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Summary

Viscoelastic flows are characterised by fast spatial and temporal variations in the solu-
tion featuring thin stress boundary near walls and stress concentrations in the vicinity of
geometrical singularities. Resolving these fast variations of the fields in space and time
is important for two reasons: (i) they affect the quantity of interest of the computation
(e.g. drag force); and (ii) they are commonly believed to be associated with the numerical
breakdown of the computation. Traditional discretisation methods such as finite differ-
ences or low-order finite elements require a large number of degrees of freedom to resolve
these variations. Spectral methods enable this issue to be resolved by defining spatial ex-
pansions that are able to represent such variations with a smaller number of degrees of
freedom. However, such methods are limited in terms of geometric flexibility. Recently,
the spectral/hp element method (Karniadakis and Sherwin, 2005) has been developed in
order to guarantee both spectral convergence, and geometric flexibility by allowing the
use of quadrilateral and triangular elements. Our work is the first attempt to apply this
method to viscoelastic free surface flows in arbitrary complex geometries.

The conservation equations are solved in combination with the Oldroyd-B or Giesekus
constitutive equation using the DEVSS-G/DG formulation. The combination of this for-
mulation with a spectral element method is novel. A continuous approximation is em-
ployed for the velocity and discontinuous approximations for pressure, velocity gradi-
ent and polymeric stress. The conservation equations are discretised using the Galerkin
method and the constitutive equation using a discontinuous Galerkin method to increase
the stability of the approximation. The viscoelastic free surface is traced using an arbitrary
Lagrangian Eulerian method.

The performance of our scheme is demonstrated on the time-dependent Poiseuille flow in
a channel, the flow around a cylinder and the die-swell problem. The comparison of the
scheme to the analytical solution in the transient Oldroyd-B Poiseuille flow shows that
the DEVSS-G stabilisation increases the critical Weissenberg number from Wi = 3.3 to
Wi = 9.8 and converges to the steady state solution with machine precision. For the flow
around the cylinder of an Oldroyd-B fluid, we find a transient flow regime for Wi > 0.6
for finer meshes. We identify the tendency of a velocity inflection on top of the cylinder as
a possible cause for the onset of this transient flow regime. Furthermore, we give detailed
results for the flow around a cylinder for the Giesekus model and investigate the influence
of the mobility parameter on the flow. For Newtonian extrudate swell, we investigate the
impact of inertia and slip along the die wall on the swelling ratio and give detailed results
about the behaviour of the dependent variables at the flow singularity. We find excellent
agreement between our results and those in the literature. Additionally, we give detailed
results for Oldroyd-B and Giesekus fluids including no-slip and slip along the die wall in
plane extrudate swell and investigate the behaviour of the pressure and polymeric stress
components at the flow singularity.
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Chapter 1
Introduction

1.1. Viscoelastic Phenomena

(a) Weissenberg effect (McKinley, 2008). (b) Die swell in Newtonian and polymeric liquids
(YouTube, Psidot (2007)).

Figure 1.1.: Viscoelastic flow phenomena which differ vastly from Newtonian flow be-
haviour.

Viscoelastic fluids exhibit both viscous and elastic characteristics when undergoing defor-

mations. Figure 1.1 shows two of the most fascinating macroscopic phenomena observed

for viscoelastic fluids: the Weissenberg effect and the die-swell effect. The Weissenberg

effect (Figure 1.1(a)) can be observed when a rotating rod is inserted into a beaker filled

with a viscoelastic liquid. In a Newtonian fluid, the rotating motion generates a centrifugal

force which pushes the liquid outward and the free surface dips near the rod. In contrast,

in viscoelastic fluids, the free surface rises and the fluid climbs up the rod. The die-swell

effect can be observed when a fluid is forced out of a die. The jet of exiting liquid expands

radially to a diameter greater than that of the orifice. For Newtonian fluids, we observe a

small increase in diameter while for viscoelastic liquids, the exiting jet can swell up to a

radius of two times the die radius (Figure 1.1(b)). Such viscoelastic effects originate from

the deformation of large molecular chains within the fluid. A schematic diagram of the

deformation of the molecular chains and their impact on the macroscopic flow in the die
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Shear flow - partially
stretched molecular
chains

Flow rearranges near die
exit - molecular chains
begin to recoil

Uniform velocity profile
- chains relax to coiled
configuration

.

Figure 1.2.: Schematic diagram of the molecular deformation in the die swell experiment
which causes the significant swell of the liquid jet. In a shear layer, near the
wall inside the die, the molecules get stretched significantly. As soon as they
approach the die exit and the shear free surface of the free liquid jet, they
start to relax and recoil. This elastic recoil process causes a tension along
the streamlines and the significant swelling of the liquid jet (MacMinn and
McKinley, 2004).

swell experiment is shown in Figure 1.2.

In fact, viscoelastic effects can be observed in any flow involving fluids with complex

microstructures. In industrial processes, many fluids such as engine oils, gels and paints

exhibit these properties. Being able to adequately understand and model viscoelasticity is

therefore of prime interest for the optimisation of these processes.

1.2. Challenges in the Numerical Solution of Viscoelastic
Flows

The flow of a viscoelastic fluid can be described mathematically using the conservation of

mass and momentum and a relationship between the stress and rate-of-deformation. This

relationship is called the constitutive equation and it is used to differentiate one material

from another. As the molecular structure of each complex liquid differs vastly from one

material to the other, there is no general constitutive equation to describe all viscoelastic

materials. Therefore, a large number of models have been developed over the last few

decades to understand and predict the behaviour of viscoelastic liquids (for an overview

see e.g. Bird et al. (1987a,b)). These models are either phenomenological, meaning that

they assume the local stress/deformation relationship from macroscopic observations of

simple flows, or based on homogenisation principles, whereby the stress/deformation law

is obtained from statistical averaging of the microscopic behaviour of the molecular chains

or a combination of both approaches.
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Choosing, identifying and validating a mathematical model for a specific viscoelastic ma-

terial is still an open issue. In general, the mathematical models are fitted to experimental

data obtained for a viscoelastic fluid undergoing pure shear or elongational deformations

(see e.g. Tanner (2002), Macosko (1994)). Additionally, these so-called viscometric flows

have the advantage of having some analytical results available. However, the main bottle-

neck in rheology is the extension of this identification and validation to complex flows, for

which no analytical results are available. Numerical methods can help tackle this issue, by

providing the missing link between model and macroscopic prediction for complex flows.

The first challenge in the numerical simulation of viscoelastic flows is to choose the right

numerical techniques in order to solve the system of equations describing viscoelastic

flows, which are of mixed type: the conservation of mass and momentum are of ellip-

tic/parabolic type and the constitutive equation is hyperbolic (Gerritsma (1996); Owens

and Phillips (2005)). This choice includes the implementation of appropriate stabilisa-

tion techniques. The two main categories of stabilisation techniques for this system of

equations are: (i) stabilisation techniques that enhance the elliptic operator in the momen-

tum equation and (ii) upwinding techniques for the solution of the hyperbolic constitutive

equation.

The success of techniques that enhance the ellipticity in the momentum equation arises

from the explicit form of the viscous operator in the momentum equation, which results

in solving an elliptic saddle point problem. For viscoelastic liquids this viscous term is

scaled with the ratio of Newtonian to total viscosity. As we are often interested in flow

configurations with dominant viscoelastic effects, the ratio of Newtonian to total viscos-

ity is chosen to be small. In these cases the elastic stress contribution can dominate the

viscous term and this can lead to instabilities. The more dominant the viscous term is in

the equation, relative to the elastic stress contribution, the better the performance of the

method. The idea of introducing ellipticity through a change of variables was first em-

ployed in the elastic viscous split stress (EVSS) formulation, introduced by Perera and

Walters (1977), Mendelson et al. (1982) for second order fluids and extended to viscoelas-

tic liquids by Beris et al. (1984). In the EVSS scheme, we perform a change of variables

to the stress variable. Later, Sun et al. (1996) introduced the adaptive viscoelastic stress

split (AVSS) scheme, in which the viscosity in the change of variables is adapted accord-

ing to the flow configuration. Brown et al. (1993) used the velocity gradient tensor as an

additional unknown, instead of using the rate of deformation tensor. leading to what is

known as the EVSS-G method. However, the change of variables performed in EVSS-

type methods introduces the upper-convected derivative of the rate of deformation tensor,

which includes second order derivatives of the velocity and therefore poses challenges

in the implementation of C0 continuous approximation spaces. Therefore, Guénette and

Fortin (1995) introduced the discrete EVSS (DEVSS) method, in which no change of vari-
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ables is required and the viscous term is introduced into the momentum equation only in

an approximate sense using the numerical approximations. The discrete splitting method

essentially adds and subtracts two different approximations of the same viscous contribu-

tion to increase the viscous contribution in the momentum equation that comes from the

Newtonian viscosity. In the limit where these approximations are exact, the added terms

cancel, giving the original equation. In analogy to the EVSS-G method, the DEVSS-G

method (Liu et al. (1998)) may be defined, where a projection of the velocity gradient

tensor is made instead of the rate of deformation tensor Sun et al. (1999) introduced the

DAVSS-G formulation in analogy to the AVSS formulation employing an adaptive stabil-

isation viscosity that differs from element to element depending on the flow properties in

an element. An overview over these methods can be found in Baaijens (1998) and Owens

and Phillips (2005).

Choosing suitable upwinding techniques such as streamline upwind/ Petrov-Galerkin

(SUPG, Brooks and Hughes (1982)) or discontinuous Galerkin methods (Lesaint and

Raviart (1974)) to discretise the hyperbolic constitutive equation can enhance the sta-

bility of the computations significantly. The SUPG method, first applied to viscoelastic

flows by Marchal and Crochet (1987), is applied to the constitutive equation by replacing

the test functions φ with φ + γ∇φ. Here, γ is an upwind factor dependent on the char-

acteristic length-scale of an element and a characteristic velocity of the flow. However,

the SUPG method may produce oscillatory stress fields at steep stress boundary layers or

near singularities. Another possibility to account for the hyperbolic nature of the constitu-

tive equation is the discontinuous Galerkin method which was first applied to viscoelastic

flows by Fortin and Fortin (1989). An overview over these stabilisation techniques and

their appropriate combination can be found in Baaijens (1998) and Owens and Phillips

(2005).

Even though these stabilisation techniques improve the stability of the numerical solution,

all numerical algorithms which solve viscoelastic flows face one big outstanding issue:

the so-called high Weissenberg number problem (HWNP). To date, all numerical schemes

breakdown above a certain value of the Weissenberg number, which is a non-dimensional

measure for the elasticity of the fluid. This critical Weissenberg number depends on a

number of factors: the geometrical complexity of the flow; the chosen viscoelastic model;

other characteristic numbers of the flow such as the Reynolds number and on the compu-

tational mesh.

Indeed, the attainable Weissenberg number is often seen to decrease with mesh refinement

(see e.g. Keunings (1986)). Keiller (1992) identified a mesh-ratio dependent instability

criterion in the time-dependent simulation of planar Couette flow for the upper-convected

Maxwell, Oldroyd-B and FENE equations, Wi crit ∼
(∆y

∆x

)
, where ∆x and ∆y are the
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resolution scales of the computational grid in the streamwise and cross-stream directions,

respectively. Further evidence of the dependence of the critical Weissenberg number on

the grid size ratio was given by Sureshkumar et al. (1999) and Smith et al. (2000), who

observed the same dependence of the critical Weissenberg number on the aspect ratio

∆y/∆x in transient calculations of a flow around a cylinder of an Oldroyd-B fluid.

Another critical mesh dependent factor was discovered by Fattal and Kupferman (2004,

2005) who identified a stability criterion dependent on the mesh-size ∆x. They demon-

strated that ∆x has to be chosen very small in areas of the flow where convection is weak

and the deformation rate is high. Such areas include regions near stagnation points or near

geometric singularities. The stability criterion arises from the fact that the combination of

the rate of deformation of the fluid and convection of the fluid particles gives rise to steep

exponential stress profiles which are poorly approximated by polynomial interpolation.

Therefore, Fattal and Kupferman (2004, 2005) proposed to reformulate the constitutive

equation in terms of the logarithm of the stress tensor. However, the logarithm of the

stress tensor may not always exist as its strict positive definiteness cannot be guaranteed.

Therefore, we take the logarithm of a physical quantity related to the stress tensor that pre-

serves positive definiteness: the conformation tensor c, which is a dimensionless measure

for the deformation. Fattal and Kupferman (2004, 2005) called the change of variables

ψψψ = log(c) and the resulting equations the log-conformation representation.

Another factor putting severe restriction on the success of numerical simulations for higher

Weissenberg numbers is the difficulty of resolving thin stress boundary layers near solid

boundaries and near corner singularities which feature steep stress gradients (Renardy,

2000). For example, for no-slip boundaries, the velocity and all its tangential derivatives

vanish at the wall and therefore the convective terms disappear at the wall. However, these

terms enter the force balance at a very short distance from the wall. This transition from

viscometric shear flow behaviour near the wall boundary to a convection dominated re-

gion away from the wall yields a substantially different stress behaviour in a thin layer

near the wall. Renardy (2000) demonstrated that the thickness of this boundary layer de-

creases with increasing Weissenberg number. For the upper convected Maxwell model

the boundary layer thickness is of order Wi−1, for the Phan-Thien Tanner model (PTT),

it is of order Wi−1/3, and for the Giesekus model, it is of order Wi−1/2. This means

the boundary layer for the PTT and the Giesekus models sharpen much less rapidly with

increasing Weissenberg number than the upper convected Maxwell model. In fact, numer-

ical simulations using the PTT and the Giesekus models seem indeed to achieve stable

results for much higher Weissenberg numbers than the ones using the upper convected

Maxwell model.

In addition to the thin stress boundary layers, the numerical solution of viscoelastic flows

in domains involving corner singularities is very challenging. At corner singularities the
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stress values become infinite yielding high approximation errors at the singularity. This

discretisation error can then be propagated downstream due to the hyperbolic nature of the

constitutive equations (Owens and Phillips, 2005). This propagated error can grow down-

stream causing large scale oscillations in the solution. Fontelos and Friedman (2000)

observed a downstream growth of the error for the Oldroyd-B model for a no-slip re-

entrant corner singularity. However, for the PTT model, Renardy (1997) did not observe

any downstream growth of errors. The reason for this might be that the boundary layers

in the PTT model have a different scaling and are much broader than in the Oldroyd-B

model. As a result, for particles which enter the boundary layer, the stress relaxation takes

over before the downstream instability has had a chance to fully manifest itself.

1.3. About this Thesis

In this thesis, we propose a numerical technique that allows us to capture local effects such

as the thin stress boundary layers near walls or the stress concentrations in the vicinity of

geometrical singularities mentioned above. Resolving these fast variations of the fields in

space and time is important for two reasons (i) they affect the quantity of interest of the

computation (e.g. the drag force around an object in a channel, or the swelling ratio in

the die swell experiment) and (ii) they are commonly believed to be associated with the

numerical breakdown of the computation (see explanations above). Additionally, we want

to apply this numerical technique to viscoelastic flows in arbitrary geometries including

viscoelastic flows with free surfaces.

In the literature, the vast majority of numerical investigations concerning complex vis-

coelastic flows rely on the finite element method, finite differences and finite volume

methods (Owens and Phillips, 2005). These low-order methods have the advantage of

being easy to implement, well-understood, geometrically flexible and, in the case of vis-

coelasticity, to have a filtering effect which tends to stabilise the problem. However, if

steep boundary layers have to be resolved, the associated numerical costs can become

tremendous.

On the other end of the spectrum, spectral methods propose the use of higher-order poly-

nomial expansions, which allows for high resolution and accuracy of limited numerical

cost, at least for smooth problems. The main drawback is their relative lack of geomet-

rical flexibility and their challenging implementation. Recently, the spectral/hp element

method (Karniadakis and Sherwin, 2005) has been developed in order to guarantee both

spectral convergence, and geometric flexibility by allowing the use of quadrilateral and

triangular elements.
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1.3.1. Numerical Method

In order to resolve the boundary regions without prohibitive numerical cost, we will adapt

the spectral/hp method (Karniadakis and Sherwin, 2005) to the computation of complex

viscoelastic flows. Our numerical scheme is based on the popular decoupled approach to

split the formulation into the solution of the conservation equations for velocity-pressure

and the computation of the constitutive equation for the polymeric stress. The method is

stabilised using a discontinuous Galerkin method for the constitutive equation in space

in combination with the DEVSS-G (Liu et al., 1998) method to enhance the ellipticity

of the moment equation. A continuous approximation is employed for the velocity and

discontinuous approximations for pressure, velocity gradient and polymeric stress. This

is the first time such coupling between a spectral element method and the DEVSS-G/DG

method is proposed for the accurate and robust prediction of complex viscoelastic free

surface flows. The free surface is traced using an arbitrary Lagrangian Eulerian technique

(ALE).

1.3.2. Validation and Results

We first demonstrate the capabilities and limitations of the spectral/hp element method in

comparison to the finite element method by investigating the approximation error for dif-

ferent functions using Galerkin projection and one-dimensional constant linear advection.

We examine three functions with decreasing smoothness and demonstrate the advantages

of the discontinuous Galerkin discretisation over the continuous Galerkin discretisation

for the one dimensional advection.

Then, we validate our DEVSS/DG algorithm on the transient Poiseuille channel flow of an

Oldroyd-B fluid, for which we know the analytical solution. This simple time-dependent

flow does not exhibit the previously mentioned steep boundary layers, but features fast

variations in time, which will help us demonstrate the efficiency and robustness of the pro-

posed method and the impact of the stabilisation measures on the accuracy of the method.

Furthermore, we test the method on two complex flow examples. The flow around the

cylinder of Oldroyd-B and Giesekus fluids and the extrudate swell of Newtonian, Oldroyd-

B and Giesekus fluids including no-slip and slip boundary conditions inside the die.

The flow around a cylinder features the formation of thin boundary layers with steep stress

gradients around the cylinder and the formation of a thin birefringent strand in the wake

behind the cylinder. We explore the influence of Wi on the drag coefficient and the flow

profiles along the centreline, around the cylinder and in the gap between the cylinder sur-

face and the channel walls for the Oldroyd-B model for Re = {0, 0.01, 0.1, 1} and for the

Giesekus model for α = {0.001, 0.01, 0.1}. We observe oscillations in the convergence

of the drag coefficient for Wi ≥ 0.6 on finer meshes for the Oldroyd-B model. To find
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a possible explanation for the onset of this instability, we interpret the results by means

of the theory of Dou and Phan-Thien (2007). In this theory the onset of the instability is

explained in terms of a velocity inflection on top of the cylinder which leads to oscilla-

tions in the shear layer which are then transported downstream into the cylinder wake. We

demonstrate that the velocity and pressure profiles in the gap between the top of the cylin-

der and the channel wall show a clear tendency for the formation of a velocity inflection

with increasing Wi when particles leave the shear layer near the cylinder. In summary,

we identify three distinct regimes. In the first regime (Wi≤ 0.6), the flow is stable and

convergent values of the drag coefficient are obtained. Excellent agreement is obtained

across a wide range of numerical schemes. In the second regime (Wi ∈ [0.6, 1]), there is

a transition to an oscillatory flow near the rear stagnation point. Steady state values of the

drag can be determined provided the mesh is not too fine. For a given mesh, a conver-

gent steady state approximation is obtained. However, there is a lack of convergence with

mesh refinement. In the third regime (Wi> 1), the flow becomes unstable and numerical

schemes fail to converge. The evidence that such a transient regime can be predicted by

numerical simulations becomes more and more apparent with the enhancement of numer-

ical algorithms and the use of high-resolution meshes. Oliveira and Miranda (2005) find

a time-dependent regime featuring a recirculation zone at the rear of the cylinder for a

FENE-CR fluid for Wi ≈ 1.3 for an extensibility parameter of L2 = 144 with their finite

volume method on highly refined meshes. We discover a qualitatively similar behaviour

for the Oldroyd-B model for Wi & 0.62. However, the numerical cost of our scheme to

reveal this transient regime is significantly lower than the cost for the finite volume and

finite element schemes, which require the use of high performance computers.

Last, we will try to extend this success to the die swell problem. This example requires

the development of a free surface algorithm, which needs to be developed consistently

with the spectral/hp method. The extrudate swell problem features a stress singularity at

the die exit and boundary layers at the wall near the die exit and near the free surface

boundary. The validity and efficiency of the free surface algorithm will be shown in the

Newtonian case. In the case of viscoelastic die-swell however, unstable modes originating

from the corner singularity prevent us from obtaining the accurate and stable results that

would have been expected. We will however provide some partial results, which conform

to the literature.

In more detail, we consider the swelling ratio and the exit pressure loss for Newtonian flu-

ids in the die swell problem and investigate the impact of inertia on the swelling ratio for

Reynolds numbers ranging from 0 to 100. We obtain excellent agreement with the results

in the literature for a much smaller number of degrees of freedom, which demonstrates

that p-refinement is effective for the Newtonian extrudate swell even though the result

is polluted by Gibbs oscillations in the pressure around the singularity. However, these



1.3. About this Thesis 9

Gibbs oscillations in the pressure stay confined to elements adjacent to the singularity.

We demonstrate that the Gibbs oscillations disappear when the slip condition is employed

along the die wall and mesh convergence is significantly improved.

For viscoelastic flows, the simulation of the extrudate swell problem becomes very diffi-

cult. Discretisation errors originating at the singularity can be convected downstream. In-

deed, we find that the extrudate swell computations could only be successfully performed

for a very narrow range of parameters and success is highly dependent on the mesh con-

figuration. However, for meshes with low polynomial order P = 3, we obtain swelling

ratios up to 2.067 for Wi = 0.85. This result agrees with those in the literature. For an

increase in the polynomial order, the numerical algorithm breaks down at a much lower

Weissenberg number due to oscillations on the free surface boundary. These oscillations

originate at the singularity and are convected downstream. We attempt to alleviate the

problem associated with the singularity using the slip condition along the die wall. Even

though this seems to cure the break down of the computation with mesh refinement for the

tested polynomial orders, the computations breakdown at Wi = 0.6 even for the coarsest

mesh. We explore possible reasons for the breakdown using a range of contour plots and

plots of the dependent variables in the vicinity of the singularity.

1.3.3. Outline

This thesis is outlined as follows

Chapter 2 We present the equations which describe the motion of viscoelastic fluids.

First, we introduce the description of a fluid flow in different reference frames including

the Eulerian, Lagrangian and arbitrary Lagrangian-Eulerian frames. Second, we derive

the equations for the conservation of mass and momentum in these different reference

frames. Then, we introduce a range of constitutive equations relating the stress tensor to

the rate of deformation including the Oldroyd-B and Giesekus models. Furthermore, we

investigate the Oldroyd-B and Giesekus model in steady shear flow and in steady uniaxial

extensional flow. Subsequently, to complete the description of the governing equations,

we give a detailed overview of different boundary conditions. Finally, we present the weak

formulation of the governing equations in their dimensionless form.

Chapter 3 We review several numerical methods for solving partial differential equations

including the finite element method, spectral methods and spectral/hp element methods.

Then, we present details about the spectral/hp element method employed in this thesis.

We introduce integration and differentiation on general shaped elements including the iso-

parametric geometrical mapping and we give their corresponding matrix notations. In this

work, we employ the spectral/hp element method to solve the equations describing vis-

coelastic flow. Then, we discuss the continuous Galerkin and the discontinuous Galerkin
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methods to couple the spectral elements. Finally, we demonstrate the capabilities and the

limitations of the spectral/hp element method in comparison to the finite element method

for one-dimensional constant linear advection for three functions with decreasing smooth-

ness.

Chapter 4 We present the spatial and temporal approximations used in this thesis to solve

the weak formulation of the governing equations for viscoelastic flow. We review up-

winding stabilisation techniques for hyperbolic problems and elastic viscous split stress

techniques to enhance the ellipticity of the momentum equation. We use a continuous

approximation space for the velocity field and discontinuous approximation spaces for the

stress tensor, velocity gradient projection tensor and pressure. We introduce the first order

explicit Euler and second order BDF2/EX2 time integration schemes and we detail the

DEVSS-G/DG algorithm used to solve the governing equations for fixed computational

meshes. Finally, we describe the solution procedure employed to solve the discrete cou-

pled system of velocity and pressure using the multi-static condensation technique and the

discontinuous Galerkin method used to compute the polymeric stress.

Chapter 5 We demonstrate the performance and accuracy of our algorithm for the un-

steady Poiseuille flow of an Oldroyd-B fluid, for which an analytical solution exists, and

the flow around a cylinder for the Oldroyd-B model for Re = {0, 0.01, 0.1, 1} and for the

Giesekus model for α = {0.001, 0.01, 0.1}.
Chapter 6 We introduce the DEVSS-G/DG formulation in the ALE framework. Then,

we discuss the details of the algorithm used to move the mesh in order to trace the free

surface boundary movement. We employ a cubic spline representation of the free surface

boundary in order to guarantee the smoothness of the free surface to obtain continuous

normals and curvature across several spectral elements. Then, we discuss the algorithm

used to solve the discrete coupled system for the velocity, pressure and velocity gradient

projection tensor and the discretised constitutive equation.

Chapter 7 We investigate the performance of the ALE-algorithm in simulating the extru-

date swell phenomenon for Newtonian fluids including the impact of inertia and slip along

the die wall and for Oldroyd-B and Giesekus fluids including no-slip and slip along the

die wall.

Chapter 8 We draw some conclusions from our investigations and propose further devel-

opments of the algorithm.



Chapter 2
Mathematical Description of
Viscoelastic Flows

In this Chapter, we present the equations which describe the motion of viscoelastic fluids.

First, we introduce the description of a fluid flow in different reference frames including

the Eulerian, Lagrangian and arbitrary Lagrangian-Eulerian frames. Second, we derive

the equations for the conservation of mass and momentum in these different reference

frames. Then, we introduce a range of constitutive equations relating the stress tensor to

the rate of deformation including the Oldroyd-B and Giesekus models. Furthermore, we

investigate the Oldroyd-B and Giesekus models in steady shear flow and in steady uniaxial

extensional flow. Subsequently, to complete the description of the governing equations,

we give a detailed overview of different boundary conditions. Finally, we present the weak

formulation of the governing equations in their dimensionless form. This Chapter is based

on Claus (2008), Owens and Phillips (2005), Donea et al. (2004), Scovazzi and Hughes

(2007) and Pena (2009).

2.1. Kinematic Description of the Flow in Different
Reference Frames

2.1.1. Eulerian and Lagrangian Flow Descriptions

In fluid dynamics, the flow of a liquid is usually described either by a fixed observer, who

observes the flow in terms of the flow velocity u(xxx, t) in a spatial domain with spatial

points xxx over time t, which is called the Eulerian description; or by an observer, who

follows a fluid particle X through time. We call reference frames that follow material

particles the material or Lagrangian reference frame.

The two reference frames can be related as follows. Consider a domain Ωt0 at time t = t0

filled with fluid particles at positions X. To describe the trajectory of the particles, we
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consider a family of mappings

Lt : Ωt0 → Ωt, ∀t ≥ 0,

X 7→ xxx(X, t) = Lt(X), ∀X ∈ Ωt0 . (2.1)

Here, x represents the current position of an infinitesimal material particle originally at

X. The domain Ωt and Ωt0 are referred to as the current and the original or reference

configuration, respectively. Note that, Lt is a Lagrangian to Eulerian map. The velocity

of a material particle identified by the Lagrangian coordinate X, or material velocity, is

defined as the increment in position per unit time

u(xxx, t) = ∂xxx(X, t)
∂t

∣∣∣∣
X

= ∂Lt(X)
∂t

∣∣∣∣
X
. (2.2)

The deformation gradient tensor, F and the Jacobian determinant, J , are defined as

F = ∇XLt(X) = ∂xxx

∂X , (2.3)

J = det(F). (2.4)

Consider a scalar function f : Ωt × [t0, T ]→ R defined in the Eulerian frame. Then, the

Lagrangian or material time derivative of this function in the Eulerian frame is given by

Df(xxx, t)
Dt

:= ∂f(xxx, t)
∂t

∣∣∣∣
X

= ∂f(xxx(X, t), t)
∂t

∣∣∣∣
X

= ∂f

∂t

∣∣∣∣
xxx
+ ∂Lt(X)

∂t

∣∣∣∣
X
·∇xxxf = ∂f

∂t

∣∣∣∣
xxx
+u·∇xxxf
(2.5)

Here, we used the chain rule. Therefore, the acceleration of a material particle in the

Eulerian frame is given by

a(xxx, t) = ∂u(xxx, t)
∂t

∣∣∣∣
X

= ∂u
∂t

∣∣∣∣
xxx

+ u · ∇xxxu. (2.6)

2.1.2. Arbitrary Lagrangian-Eulerian Flow Description

In computational methods, we can distinguish between Lagrangian algorithms in which

the computational mesh nodes follow the associated material parameter during motion and

Eulerian algorithms in which the mesh is fixed and the fluid moves with respect to the grid.

Lagrangian algorithms allow one to track the movement of interfaces and free surfaces be-

tween different materials very easily and accurately. However, the computational mesh be-

comes very distorted for large deformations and frequent remeshing becomes necessary in

order to guarantee the accuracy and stability of the algorithm. Eulerian algorithms on the

other hand can cope with large material deformations but interfaces and small flow details
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Ωt0

Ωt Ω̂t0

X

xxx Y

Lt L̃t

Rt

Figure 2.1.: Reference frames and transformations.

cannot be captured very precisely. In order to overcome some of these shortcomings and

to incorporate the strengths of both descriptions, we can employ computational methods

in which the mesh follows the flow in an arbitrary fashion using reference frames which

are neither fixed in space nor attached to the material. These computational algorithms are

called arbitrary Lagrangian-Eulerian (ALE) algorithms. This description gives rise to a

third reference frame associated to the mesh motion, which we term the referential frame.

The referential frame can be related to the Eulerian and the Lagrangian frame through

the following mappings. First, we consider the parametrized family of diffeomorphisms

relating the referential frame to the Eulerian frame:

Rt : Ω̂t0 → Ωt, ∀t ≥ 0,

Y 7→ xxx(Y, t) = Rt(Y), ∀Y ∈ Ω̂t0 . (2.7)

Here, the points Y are usually associated with the positions of the nodes of the computa-

tional mesh. The mapping Rt is called the ALE map. Now, we can define the velocity of

the mesh ( or mesh-velocity) in the Eulerian frame as

w := ∂xxx(Y, t)
∂t

∣∣∣∣
Y

= ∂Rt(Y)
∂t

∣∣∣∣
Y
. (2.8)
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This gives the velocity of the "mesh particles" in the Eulerian frame. In addition, the mesh

deformation gradient tensor and the mesh Jacobian determinant are defined as

F̂ = ∇YRt(Y) = ∂xxx

∂Y , (2.9)

Ĵ = det(F̂). (2.10)

Considering a scalar function f : Ωt × [t0, T ] → R defined in the Eulerian frame, the

referential time derivative of this function in the Eulerian frame is given by

∂f(xxx, t)
∂t

∣∣∣∣
Y

= ∂f(xxx(Y, t), t)
∂t

∣∣∣∣
Y

= ∂f

∂t

∣∣∣∣
xxx
+ ∂Rt(Y)

∂t

∣∣∣∣
Y
·∇xxxf = ∂f

∂t

∣∣∣∣
xxx
+w·∇xxxf (2.11)

Finally, it is also important to consider the Lagrangian-to-referential transformation, which

tracks the motion of the referential frame, observed from the Lagrangian reference frame,

L̃t : Ωt0 → Ω̂t0 , ∀t ≥ 0,

X 7→ Y(X, t) = L̃t(X), ∀X ∈ Ω̂t0 . (2.12)

The previous map has to be interpreted as the following composition:

L̃t = R−1
t ◦ Lt. (2.13)

The velocity of the referential frame observed from the Lagrangian frame (i.e. the velocity

of a material particle relative to the moving mesh "particles") is

ṽ := ∂Y(X, t)
∂t

∣∣∣∣
X

= ∂L̃t(X)
∂t

∣∣∣∣∣
X
. (2.14)

Now, consider a scalar function f : Ω̂t0 × [t0, T ] → R defined in the referential frame.

Using the chain rule, we obtain

∂f(Y, t)
∂t

∣∣∣∣
X

= ∂f(Y(X, t), t)
∂t

∣∣∣∣
X

= ∂f

∂t

∣∣∣∣
Y

+ ∂L̃t(X)
∂t

∣∣∣∣∣
X
· ∇Yf = ∂f

∂t

∣∣∣∣
Y

+ ṽ · ∇Yf.

(2.15)

Applying this relationship to xxx(Y, t) = Rt(Y) yields

u = w + F̂ṽ, (2.16)

which can be recast as

c := F̂ṽ = u−w, (2.17)
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where c is termed convective velocity, the difference between material and mesh velocity.

We can obtain an alternative expression for the material time derivative by combining (2.5)

and (2.11)

Df(xxx, t)
Dt

= ∂f(xxx, t)
∂t

∣∣∣∣
X

(2.18)

(2.5)= ∂f

∂t

∣∣∣∣
xxx

+ u · ∇xxxf (2.19)

(2.11)= ∂f

∂t

∣∣∣∣
Y
−w · ∇xxxf + u · ∇xxxf. (2.20)

This means the acceleration of a fluid particle can be expressed as

a(xxx, t) = ∂u(xxx, t)
∂t

∣∣∣∣
X

= ∂u
∂t

∣∣∣∣
Y

+ (u−w) · ∇xxxu. (2.21)

2.2. Conservation Laws

The motion of every fluid is governed by the conservation of mass and momentum, and

if thermal effects are important, the balance of energy. In this thesis, we will be only

concerned with purely mechanical problems, where we assume a constant temperature.

We will also assume that the fluids are incompressible, i.e.
Dρ

Dt
= 0.

2.3. Transport Theorems

In order to compute the rate of change of volume integrals, we need to introduce trans-

port theorems, which express the rate of change in time of some integral quantity using

the properties of maps between reference frames. Each of the mappings in the previous

Section corresponds to an appropriate transport theorem

Theorem 2.1 (Reynolds transport theorem for Lt). Let Ωt be a region filled with a fluid

which deforms according to the diffeomorphism (2.1) Lt : Ωt0 → Ωt with velocity u. Let

∂Ωt be the boundary of Ωt with outward normal n and let f(xxx, t) be a scalar or vector
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function defined over Ωt. Then

d

dt

∫

Ωt=Lt(Ωt0 )

f dΩ =
∫

Ωt

[
∂f

∂t

∣∣∣∣
xxx

+∇xxx · (fu)
]
dΩ

=
∫

Ωt

[
∂f

∂t

∣∣∣∣
xxx

+ u · ∇xxxf + f (∇xxx · u)
]
dΩ

=
∫

Ωt

[
Df

Dt
+ f (∇xxx · u)

]
dΩ. (2.22)

Theorem 2.2 (Leibnitz transport theorem forRt). Let Ω̂t0 be an arbitrary control volume

which deforms according to the diffeomorphism (2.7)Rt : Ω̂t0 → Ωt with velocity w. Let

f(xxx, t) be a scalar or vector function defined over Ωt. Then

d

dt

∫

Ωt=Rt(Ω̂t0 )

f dΩ =
∫

Ωt

[
∂f

∂t

∣∣∣∣
xxx

+∇xxx · (fw)
]
dΩ. (2.23)

Theorem 2.3 (Generalised Reynolds transport theorem for L̃t). Let Ωt be a region filled

with a fluid which deforms according to the diffeomorphism (2.1) Lt : Ωt0 → Ωt with

velocity u. Furthermore, let Ω̂t0 be the inverse image of Ωt through the diffeomorphism

Rt : Ω̂t0 → Ωt, that is Ωt = Rt(Ω̂t0). Let ∂Ω̂t0 be the boundary of Ω̂t0 with outward

normal n̂. Also, let Ωt0 be the inverse image of Ω̂t0 through the diffeomorphic map (2.12)

L̃t : Ωt0 → Ω̂t0 with velocity ṽ. That is, Ω̂t0 = L̃t(Ωt0) with Lt = Rt ◦ L̃t. Let f(xxx, t)
be a scalar or vector function defined over Ωt. Then

d

dt

∫

Ωt=Lt(Ωt0 )

f dΩ =
∫

Ω̂t0

[
∂(Ĵf)
∂t

∣∣∣∣∣
Y

+∇ · (Ĵ ṽ)
]
dΩ = d

dt

∫

Ωt=Rt(Ω̂t0 )

f dΩ+
∫

∂Ωt

(fc)·n dΓ,

(2.24)

where c is the convective velocity defined in Equation (2.17).

The detailed proofs of the transport theorems can be found in Scovazzi and Hughes (2007).

With (2.11), we obtain an alternative version of the Reynolds transport theorem in terms

of the referential time derivative

d

dt

∫

Ωt=Lt(Ωt0 )

f dΩ =
∫

Ωt

[
∂f

∂t

∣∣∣∣
Y

+ (u−w) · ∇xxxf + f (∇xxx · u)
]
dΩ. (2.25)



2.3. Transport Theorems 17

2.3.1. Conservation of Mass

The mass in the volume Ωt is conserved at all time, i.e.

d

dt

∫

Ωt

ρ dΩ = 0, (2.26)

where ρ(x, t) is the density field at time t. Using the Reynolds transport theorem (2.25),

we obtain ∫

Ωt

(
Dρ

Dt
+ ρ (∇xxx · u)

)
dΩ = 0, (2.27)

where

Dρ

Dt
= ∂ρ

∂t

∣∣∣∣
xxx

+ u · ∇xxxρ for a fixed mesh,

Dρ

Dt
= ∂ρ

∂t

∣∣∣∣
Y

+ (u−w) · ∇xxxρ for a deforming mesh. (2.28)

Since the volume Ωt is arbitrary and the integrand continuous, we deduce that

Dρ

Dt
+ ρ (∇xxx · u) = 0. (2.29)

For incompressible fluids (i.e.
Dρ

Dt
= 0), we obtain

∇xxx · u = 0. (2.30)

2.3.2. Conservation of Linear Momentum

We recognise two types of force acting on an infinitesimal fluid element, which occupies

a volume Ωt at some time t (see Figure 2.2). One, due to the action-at-a-distance type of

force such as gravitation and electromagnetic forces, can be expressed as a force per unit

mass, and is called the body force; the other, due to the direct action across the boundary

surface S, is called the surface force. To describe the body force, we assume that the fluid

element has a well-defined mass density ρ. The mass of the fluid element with volume

Ωt is then given by

m =
∫

Ωt

ρ dΩ, (2.31)
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n

t dΓf

dΓ

Ωt

dΩ

Figure 2.2.: Stress and body force definition.

such that the total body force acting on the volume V is given by

Fb =
∫

Ωt

ρb dΩ, (2.32)

where b is the body force per unit mass.

To describe the surface force, let us consider a small surface element of area dΓ with an

outward pointing unit normal vector n. Then the total surface force acting on Γ is given

by

Ft =
∫

Γ

t dΓ, (2.33)

where t is the force per unit area acting on the surface and is called the stress vector. The

clear isolation of surface forces in a continuum is usually attributed to Cauchy.

Then the total force experienced by the fluid occupying Ωt, given by Newton’s second law

(mass × acceleration ), is

ma =
∫

Ωt

ρb dΩ +
∫

Γ

t dΓ. (2.34)

Here,

a =
d
dt

∫
Ωt ρudΩ∫
Ωt ρdΩ (2.35)

is an average acceleration.

Theorem 2.4 (Existence and Symmetry of the Stress Tensor). Let Ω ⊂ Rd, d = 2, 3,

be some bounded region and let t be the stress vector defined above. Then there exists a

second-order stress tensor σσσ such that throughout Ω
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(i)

t = σσσ · n, (2.36)

i.e. the stress tensor σσσ can be seen as a linear mapping of the unit normal vector n
into the stress vector t.

(ii)

σσσ is symmetric. (2.37)

σσσ is called the Cauchy stress tensor.

Proof. See e.g. Owens and Phillips (2005), p. 361ff.

z

x
y

σzy

σxy σyy

σzz

σxz

σyz

σzx

σxx

σyx

Figure 2.3.: Notation used for the stress tensor.

Notation:. The components of the stress tensor are usually denoted as seen in Figure 2.3

by

σσσ =




σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 , (2.38)

where the σxx, σyy, σzz components are called normal stresses and σxy = σyx, σxz =
σzx, σyz = σzy are called shear stresses.

Definition 2.5 (deviatoric stress/extra-stress tensor). For fluids, we decompose the Cauchy

stress tensor into contributions from the rate of deformation independent spherically-

symmetrical pressure and the deviatoric stress or more generally extra-stress tensor T,

i.e.

σσσ = −pI + T. (2.39)

By (2.33) the total force acting on a volume element is given by

ma =
∫

Ωt

ρb dΩ +
∫

Γ

t dΓ. (2.40)
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By (2.36) and the divergence theorem (DT), we are led to

∫

Ωt

ρ
Du
Dt

dΩ =
∫

Ωt

ρb dΩ +
∫

Γ

σσσ · n dΓ DT=
∫

Ωt

ρb dΩ +
∫

Ωt

∇xxx · σσσ dΩ. (2.41)

With Equation (2.39), we obtain

∫

Ωt

ρ
Du
Dt

dΩ =
∫

Ωt

ρb dΩ−
∫

Ωt

∇xxxp dΩ +
∫

Ωt

∇xxx ·T dΩ. (2.42)

Since the integrand is continuous in an arbitrary region Ωt, the conservation of linear

momentum becomes

ρ
Du
Dt

= −∇xxxp+∇xxx ·T + ρb. (2.43)

where

Du
Dt

= ∂u
∂t

∣∣∣∣
xxx

+ u · ∇xxxu in Eulerian frame,

Du
Dt

= ∂u
∂t

∣∣∣∣
Y

+ (u−w) · ∇xxxu in ALE frame. (2.44)

For the following Sections, we will drop the xxx notation for the sake of simplicity, until we

discuss the discretisation of the equations in the ALE framework.

2.4. Constitutive Equations

To complete the mathematical formulation, we need to relate the extra-stress tensor T to

the motion. These supplementary relations, which are called the constitutive equations or

the rheological equations of state, differentiate one material from another. This Chapter

is based on the books of Tanner (2002), Böhme (2000), Bird et al. (1987a,b), Renardy

(2000), Owens and Phillips (2005) and on Claus (2008).

2.4.1. The Newtonian Fluid

For a Newtonian fluid, we assume that

1. the stress is independent of any previous history of distortion, i.e. it depends only

on the deformation state at the present time (present time),

2. the stress depends only on the local kinematic state of the immediate neighbourhood

(local action),
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3. the stress depends linearly on the rate of deformation (linearity),

4. the material is considered to be isotropic, that means its physical properties are

independent of direction (isotropy).

Taking these four considerations into account, the constitutive law for a Newtonian fluid
is given by

T = 2η0D. (2.45)

Here, D is the rate of deformation tensor and ∇u is the velocity gradient tensor. For

example, in two space dimensions, D is defined by

D := 1
2
(
∇u +∇uT

)
=




∂u

∂x

1
2

(
∂u

∂y
+ ∂v

∂x

)

1
2

(
∂u

∂y
+ ∂v

∂x

)
∂v

∂y


 , (2.46)

and ∇u is given by

∇u =




∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y


 . (2.47)

The rate of deformation tensor contains information about the deformation rate at the

present time at a local point. It is symmetric, which means it is suitable for the description

of isotropic materials. In the relation (2.45), we assume that the extra stress T depends

linearly on the rate of deformation D. The proportionality coefficient η0 is called the vis-
cosity. This law shows that the viscosity, i.e. the friction of particles at the molecular

level, is uniquely responsible for the existence of extra stresses.

Substituting Equation (2.45) into the momentum equation (2.43) leads in the case of in-

compressible flow to the Navier-Stokes equations




ρ
Du
Dt

= −∇p+ η0∆u + ρb,

∇ · u = 0.
(2.48)

2.4.2. The Generalised Newtonian Fluid

As a first step towards deriving constitutive relations for non-Newtonian fluids, we lift

the linearity assumption and allow for non-linear dependency of the stress on the rate

of deformation. To derive a model, which is independent of the coordinate system, we

write the viscosity η as a function of the invariants of D. We use the symmetry of the
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rate of deformation tensor by noticing that every symmetric second order tensor can be

diagonalized and its eigenvalues are guaranteed to be real, i.e.

D =




λ1 0 0
0 λ2 0
0 0 λ3


 , (2.49)

det(D− λI) = −λ3 + IDλ
2 − IIDλ+ IIID = 0, (2.50)

where

ID = Dxx +Dyy +Dzz = tr D, (2.51)

IID = DxxDyy +DyyDzz +DzzDxx −D2
xy −D2

xz −D2
yz = 1

2[(tr D)2 − tr D2],

(2.52)

IIID = det D (2.53)

are called the principal invariants of D and they are independent of the coordinate sys-

tem. Hence, we obtain the following relation between the extra stress tensor and the rate

of deformation tensor

T = 2η0(ID, IID, IIID)D. (2.54)

• ID = 0 for incompressible fluids. Then IID ≤ 0 , |IIID| ≤
2

3
√

3
(−IID)

3
2 .

• IIID = 0 for simple shear flow.

This model is only suitable for the description of flows, where elastic effects are negligible

and the shear-thinning effect has a strong influence on the flow behaviour. Its principal

usefulness is for calculating flow rates and shearing forces in steady-state simple shear

flow such as tube flow. The most widely used form of the general viscous constitutive

relation is the power law model

T = 2K|IID|
(n−1)

2 D, (2.55)

where K and n are positive material parameters. Details on models of this kind can be

found in Macosko (1994), Bird et al. (1987a), Böhme (2000) and Owens and Phillips

(2005). Like the Newtonian fluid, the generalised Newtonian fluid has zero first and sec-

ond normal stress differences, but it shows shear-thinning for n < 1 and shear-thickening

for n > 1.
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2.4.3. Viscoelastic Models for Dilute Polymer Solutions

F(c)
1

F(c)
2

Figure 2.4.: Dumbbell model to describe dilute polymer solutions.

To describe viscoelastic behaviour in complex flow configurations, we need to take the

molecular structure of the fluid material into account in the mathematical modelling. The

variety of viscoelastic models to describe the stress response to the presence of molecules

and molecular networks in a fluid is almost as large as the variety of fluid materials. In

principle, we assume that the total stress σσσ (as defined in (2.36)) in a polymer solution

is the sum of a contribution from the Newtonian solvent σσσN and the polymeric stress

contribution σσσP , resulting from the presence of the polymer molecules, i.e.

σσσ = σσσS + σσσP (2.56)

= (−pSI + TS) + (−pP I + τττ) (2.57)

= −pI + T, (2.58)

where p = pS +pP , T = TS +τττ = 2ηND+τττ and ηN is the solvent viscosity. The stress

tensor T is zero at equilibrium.

In this thesis, we will concentrate on models based on the notion that the molecules, which

are dispersed in a Newtonian fluid, can be modelled by so-called elastic dumbbells. These

dumbbells have a strong impact on the stress response of the fluid to deformations.

We model the elastic dumbbells as two identical beads and a massless inter-connecting

elastic spring. Each of the two beads has mass m with position vectors r1 and r2 relative

to some fixed coordinate frame. Let Q = r2 − r1 denote the end-to-end vector of the

dumbbell.

Furthermore, we constitute an equation of motion for each bead of the elastic dumbbell,
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assuming that there are three significant forces acting on each bead:

1. Friction force F(f)
i

This is the force of resistance experienced by a bead as it moves through the so-

lution. This friction force is for spherical beads assumed to be given by Stokes’

Law:

F(f)
i = 6πηNa

(dri
dt
− u(ri)

)
= ζ

(dri
dt
− u(ri)

)
. (2.59)

Here, ηN is the solvent viscosity, a is the radius of the bead and u(ri) is the velocity

of the surrounding fluid at the point with position vector ri. Hence,
(dri
dt
− u(ri)

)

is the velocity of the i-th bead relative to the surrounding fluid. We shall write ζ for

6πηNa. This constant ζ is the so-called friction coefficient.
Note that we have neglected any effect which one bead may have on the velocity of

the solvent in the neighbourhood of the other bead. That means, we assume that the

concentration of dumbbells in the Newtonian solvent is very low and therefore that

the dumbbells don’t interact with each other. This restricts our model to extremely

dilute polymer solutions.

2. Spring force F(c)
i

The spring connecting the beads exerts a spring force F(c)
i on the i-th bead. We

assume this spring force to be given by Hooke’s law:

F(c)
1 = −H(r1 − r2) = HQ, (2.60)

F(c)
2 = −H(r2 − r1) = −HQ, (2.61)

where H is the spring constant.

3. Brownian forces F(b)
i

Brownian forces are the cumulative effect of the exceedingly frequent collisions

between a large particle, called a Brownian particle, and the many surrounding

much smaller fluid particles, which are in perpetual thermal motion. The mathe-

matical model to describe these random movements is the so called Wiener process

Wi = Wi(t) (i = 1, 2), which is a Gaussian stochastic process and is therefore

completely characterized by the mean and autocorrelation of its components Wi,j :

〈Wi,j(t)〉 = 0 ,
〈
Wi,j(t)Wi,j(t′)

〉
= min(t′, t). (2.62)
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We assume that a bead is large compared to the solvent molecules. This assumption

justifies the continuum description of the solvent. With the Wiener process we may

write the Brownian force F(b)
i acting on the i-th bead in the form

F(b)
i dt =

√
2kTζ dWi, (2.63)

where k is the Boltzmann constant, T is the absolute temperature and ζ is the friction

coefficient. The coefficient
√

2kTζ may be derived from the principle of equiparti-

tion of energy from kinetic gas theory, which states that in equilibrium

Ekin = 1
2
〈
V(t)2

〉
= kT

2 , (2.64)

where V(t) is the velocity of the Brownian particle, which is the solution of the

stochastic differential equation describing the motion of a Brownian particle

m
dV(t)
dt

= −ζV(t) + F(b)
i . (Langevin equation) (2.65)

A detailed derivation may be found in Phan-Thien (2002) or Öttinger (1996).

We assume that inertial forces at the molecular level can be neglected. Additionally, we

neglect external forces such as gravity on a bead. This yields the following equation of

motion for the beads

F(f)
i + F(c)

i + F(b)
i = 0 , i=1,2 (2.66)

Inserting all the expressions for the forces above yields

−ζ
(dr1
dt
− u(r1, t)

)
+HQ +

√
2kTζ dW1

dt
= 0, (2.67)

−ζ
(dr2
dt
− u(r2, t)

)
−HQ +

√
2kTζ dW2

dt
= 0. (2.68)

Subtracting the two equations from each other and assuming a homogeneous solvent flow

field, i.e.

u(r2, t) = u(r1, t) + (∇∇∇u)(r2 − r1). (2.69)

yields the following equation of change for the end-to-end vector of the dumbbell

dQ
dt

=∇∇∇u ·Q− 2H
ζ

Q−
√

4kT
ζ
dW(t), (2.70)

where we set W(t) := (W2(t)−W1(t))/
√

2. The Equation (2.70) is a stochastic differ-

ential equation and Q(t) is a stochastic process. Using methods in stochastic differential
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equations we can convert the stochastic differential equation (2.70) to the corresponding

Fokker-Planck or diffusion equation

∂

∂t
p(Q, t) = − ∂

∂Q ·
[(
∇∇∇u ·Q− 2H

ζ
Q
)
p(Q, t)− 2kT

ζ

∂

∂Qp(Q, t)
]
, (2.71)

where p(Q, t) is the probability density function which means that p(Q, t)dQ gives the

probability that a dumbbell has an orientation in the range Q to Q + dQ. It can also be

used to determine the expectation of a given function g(Q)

〈g(Q)〉 =
∫
g(Q)p(Q, t)dQ. (2.72)

In order to determine an expression for the macroscopic polymeric stress contribution σσσP ,

we follow Bird et al. (1987b), Kramers (1946) and Deville and Gatski (2012). The elastic

dumbbells will contribute to the stress in the suspension in two principal ways: through

the spring force and through the momentum of the beads. The average force contribution

through the momentum of the beads is given by

σσσ
(b)
P = 2nkT I, (2.73)

if we assume that the velocity distribution of the beads is given by the Maxwell-Boltzmann

distribution from kinetic gas theory. This means we assume that the velocity distribution

of the flow system (here consisting of the dumbbells swimming in the Newtonian solvent)

is the same as that in a solution at equilibrium. This isotropic tensor part will be merged

into the pressure term.

The averaged contribution of the spring connecting the beads to the stress is given by

σσσ
(c)
P = n

∫ (
Q⊗ F(c)

)
p(Q, t)dQ = n

〈
Q⊗ F(c)

〉
= nH 〈Q⊗Q〉 . (2.74)

Here, n is the number of dumbbells per unit volume and ⊗ denotes the tensor product of

two vectors. The total polymeric stress is given by

σσσP = −pP I + τττ = nH 〈Q⊗Q〉+ 2nkT I. (2.75)

The tensor

c = 〈Q⊗Q〉 (2.76)

is called the conformation tensor. To obtain an expression in terms of the conformation

tensor c from the Fokker-Planck equation (2.71), we multiply it by Q ⊗Q and integrate
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over the whole configuration space R3 to obtain

Dc
Dt
−∇∇∇u · c− c · ∇∇∇uT = 4kT

ζ
I− 4H

ζ
c. (2.77)

The left hand side of (2.77) is called the upper-convected derivative of c denoted by
∇c

∇c := Dc
Dt
−∇∇∇u · c− c · ∇∇∇uT . (2.78)

Finally we note that, in a system at equilibrium (that is, ∇∇∇u = 0, Dc
Dt

= 0), Eq. (2.77)

gives

ceq = kT

H
I. (2.79)

The corresponding equation at equilibrium (i.e. τττ = 0) gives us the polymeric contribu-

tion to the pressure

pP I = −nHceq − 2nkT I (2.79)= −3nkT I. (2.80)

Finally, we get the Kramers expression for the extra stress tensor

T = TS + τττ = 2ηND + nHc− nkT I. (2.81)

If we normalise the conformation tensor ( in order to give ceq = I), then with

c∗ = H

kT
c (2.82)

we obtain
∇c
∗

= −4H
ζ

(c∗ − I). (2.83)

and

T = TS + τττ = 2ηND + nkT (c∗ − I). (2.84)

We define the relaxation time λ (time constant for the Hookean elastic dumbbells) and the

polymeric viscosity ηP in terms of the parameters appearing in (2.83) and (2.84) by

λ = ζ

4H and ηp = nkTζ

4H = nkTλ. (2.85)
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This results in the so-called Oldroyd-B model in terms of the conformation tensor





∇c
∗

= − 1
λ

(c∗ − I),

T = TS + τττ = 2ηND + ηp
λ

(c∗ − I).
(2.86)

We can use the expression for the polymeric stress contribution τττ = ηp
λ

(c∗ − I) to obtain

the Oldroyd-B model




T = 2ηND + τττ ,

τττ + λ
∇
τττ = 2ηpD.

(2.87)

where we used
∇
I = −∇∇∇u− (∇∇∇u)T = −2D. (2.88)

Giesekus (1966) dropped the assumption of an isotropic influence of neighboring dumb-

bells on the dumbbell at hand, and proposed that the environment of the adjacent dumb-

bells induces an anisotropic drag that is dependent on the orientation. To take this ef-

fect into account, we replace the friction coefficient
1
ζ

in the relaxation time λ with an

anisotropic mobility tensor B such that

∇c + 4H [B(c− I)] = 0. (2.89)

Since at equilibrium the stress is isotropic, this would imply that B = I with c = I . The

simplest representation for the anisotropy would be obtained by choosing B proportional

to c− I ,

B = 1
ζ

(I + α(c− I)) , (2.90)

where α is the proportionality constant, which we will call the anisotropy parameter. This

yields the Giesekus model in terms of the conformation tensor

∇c + 1
λ

[
(c− I) + α(c− I)2

]
= 0. (2.91)

Alternatively, expressed in terms of the polymeric stress contribution the Giesekus model
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becomes

τττ + λ
∇
τττ + α

λ

ηp
τττ2 = 2ηp D. (2.92)

2.5. Simple Flows, Viscosities and Stress Differences

The first step in evaluating constitutive models is to consider their predictions in a number

of simple flows. We will look at two simple types of flows: steady shear flow and uniaxial

extensional flow. This will lead us to the definition of shear-dependent viscosity, normal

stress differences and elongational viscosity.

2.5.1. Steady Shear Flow and Viscometric Functions

x

y

h

u

γ̇ = ∂u
∂y shear rate

Figure 2.5.: Simple shear flow configuration.

Consider a fluid between two infinite parallel plates separated by a distance h as shown

in Figure 2.5. Now, suppose that the top plate moves with a constant velocity u in the

x-direction. This flow is called steady shear flow or viscometric flow. The velocity field

is given by

u = (u(y), 0, 0).

Consequently, the velocity gradient and the rate of deformation tensor are given by

∇u =




0 ∂u

∂y
0

0 0 0
0 0 0


 ; 2D =




0 ∂u

∂y
0

∂u

∂y
0 0

0 0 0



. (2.93)
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The quantity

γ̇ := ∂u(y)
∂y

, (2.94)

is known as the shear rate. If we consider an isotropic material, the zx- and zy-components

of stress must be zero and the stress tensor reduces to

σσσ =




σxx σxy 0
σxy σyy 0
0 0 σzz


 . (2.95)

When a viscoelastic liquid is brought from rest into a state of steady shearing motion, a

time-dependent shear stress is built up. However, if the shearing motion continues at a

constant rate, the shear stress approaches a steady-state value that depends only on the

shear rate.

Definition 2.6 (Viscometric Functions). The ratio of the shear stress σxy to the shear rate

is a function

η(γ̇) = σxy
γ̇

(2.96)

called the (shear-rate dependent) viscosity. The shear viscosity η is typically a monoton-

ically decreasing function of shear rate that tends to some limit η∞ for very high-shear

rates. Such fluids are termed shear-thinning. At low shear rates, the viscosity approaches

a constant value

η0 = lim
γ̇→0

η(γ̇),

which is called the zero-shear-rate-viscosity.

The two independent differences

N1(γ̇) := σxx − σyy, (2.97)

N2(γ̇) := σyy − σzz, (2.98)

are called the first and second normal stress differences, respectively. Polymeric fluids

usually have non-zero normal stress differences, where the first normal stress difference

is positive, the second normal stress difference is negative and its absolute value is much

smaller than that of N1.

2.5.2. Steady Uniaxial Extensional Flow and Elongational Viscosity

Suppose that a rod of material is being extended homogeneously along its x-axis, so that

each part of the rod is stressed uniformly as shown in Figure 2.6. We suppose that the

constant rate of elongation ∂u/∂x(≡ ε̇) is independent of x. For an incompressible fluid,
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x

y

z

R

L

time t1 time t2 > t1

ε̇ = ∂u
∂x elongation rate

Figure 2.6.: Steady Uniaxial Extensional Flow Configuration.

mass conservation and axial symmetry then demand that ∂v/∂y = ∂w/∂z = −ε̇/2. Thus,

the velocity in a steady elongational flow is given by

u =
(
ε̇x,− ε̇2y,−

ε̇

2z
)
. (2.99)

Consequently, the velocity gradient tensor and the rate of deformation tensor are equal

and

∇∇∇u = D =




ε̇ 0 0
0 − ε̇2 0

0 0 − ε̇2



. (2.100)

All shear stress components are zero and σyy = σzz by symmetry. The presence of non-

zero shear stress would lead to an angle change in volume elements. Therefore, the stress

tensor becomes

σσσ =




σxx 0 0
0 σyy 0
0 0 σyy


 . (2.101)

The stress response is then completely defined by the dependence of σxx − σyy on the

constant rate of extension ε̇.

Definition 2.7 (Elongational Viscosity). The ratio of the stress difference σxx−σyy to the

elongation rate ε̇

ηE(ε̇) = σxx − σyy
ε̇

, (2.102)

is called the elongational or extensional viscosity. For polymeric fluids, the elongational

viscosity is usually seen to increase as the elongation rate is increased. This behaviour

is termed extensional-thickening. The ratio between the extensional viscosity and the
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zero-shear-rate viscosity is called the Trouton ratio

Trouton ratio = ηE(ε̇)
η0

. (2.103)

The strain accumulated by a fluid element in elongational flows is called the Hencky
strain and is given by

ε(t) :=
∫ t

0
ε̇(t′) dt′ (2.104)

2.5.3. Viscometric Functions for Newtonian Fluids

For steady simple shear flow (see Section 2.5.1), the stress tensor for a Newtonian fluid

becomes

σσσ =




−p η0γ̇ 0
η0γ̇ −p 0
0 0 −p


 . (2.105)

Therefore, a Newtonian fluid has a constant shear viscosity η0, i.e. it is not shear-thinning

and it has zero first and second normal stress differences. For steady uniaxial elongation

(see Section 2.5.2), we obtain

σσσ =




−p+ 2ηε̇ 0 0
0 −p− ηε̇ 0
0 0 −p− ηε̇


 . (2.106)

Therefore, the elongational viscosity

ηE(ε̇) = 3η0, (2.107)

is three times larger than the shear viscosity, i.e. the Trouton ratio is ηE(ε̇)/η0 = 3.

2.5.4. Viscometric Functions for Oldroyd-B Fluid

For steady simple shear flow, i.e.
Dτττ

Dt
= 0, the Oldroyd-B constitutive equation becomes




τxx τxy 0
τxy τyy 0
0 0 τzz


− λ








0 γ̇ 0
0 0 0
0 0 0







τxx τxy 0
τxy τyy 0
0 0 τzz








−λ








τxx τxy 0
τxy τyy 0
0 0 τzz







0 0 0
γ̇ 0 0
0 0 0








= ηp




0 γ̇ 0
γ̇ 0 0
0 0 0


 ,
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so that solving this system yields

τxy = ηpγ̇ , τxx = 2ηpλγ̇2 , τyy = τzz = 0. (2.108)

Therefore, the viscometric functions are given by

η(γ̇) = σxy
γ̇

= η0 , N1(γ̇) = σxx − σyy = 2λη0γ̇
2 , N2(γ̇) = σyy − σzz = 0,

(2.109)

where η0 = ηN+ηp is the total viscosity. Hence, we see that the Oldroyd-B model predicts

a constant shear-rate viscosity, a quadratic first normal stress difference and a zero second

normal stress difference. For steady elongational flow, the equations




τxx 0 0
0 τyy 0
0 0 τzz


− λ








ε̇ 0 0
0 − ε̇2 0

0 0 − ε̇2







τxx 0 0
0 τyy 0
0 0 τzz








−λ








τxx 0 0
0 τyy 0
0 0 τzz







ε̇ 0 0
0 − ε̇2 0

0 0 − ε̇2








= 2ηp




ε̇ 0 0
0 − ε̇2 0

0 0 − ε̇2




yield

τxx = 2ηpε̇
1− 2λε̇ , τyy = τzz = − ηpε̇

1 + λε̇
. (2.110)

Thus, the elongational viscosity is given by

ηE(ε̇) = 3η0
(1− 2λε̇)(1 + λε̇) . (2.111)

As shown in Figure 2.7 the elongational viscosity becomes infinitely large at the finite

elongation rate ε̇ = 1
2λ . This is one of the severest disadvantages of the Oldroyd-B

model.
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Figure 2.7.: Elongational viscosity predicted by Oldroyd-B model with unphysical singu-

larity at ε̇ = 1
2λ .

2.5.5. Viscometric Functions for Giesekus Fluid

For steady simple shear flow, the Giesekus model reduces to the system of equations

τxx − 2λτxyγ̇ + αλ

ηp

(
τ2
xx + τ2

xy

)
= 0, (2.112)

τxy − λτyyγ̇ + αλ

ηp
(τxy (τxx + τyy)) = ηpγ̇, (2.113)

τyy + αλ

ηp

(
τ2
xy + τ2

yy

)
= 0, (2.114)

τzz + αλ

ηp
τ2
zz = 0. (2.115)

We investigate the equations following Renardy (2000). First, the physical relevant solu-

tion for τzz is

τzz = 0, (2.116)

as the first and second normal stress differences should approach zero for small shear rates.

Next, we can eliminate τxx and τyy from the system of equations to obtain a quadratic

equation relating the shear rate γ̇ to a given shear stress τxy, which yields

γ̇2
(
ηp
λ2 −

ηpα

λ2 −
ηp
λ2 τ

2
xy

)2
+ γ̇τxy

(
ηp
λ4 + ηpα

λ4 −
α

ηpλ2 τxy + 8α2

λ2ηp
τ2
xy −

8α3

λ2ηp
τ2
xy

)

+ α

ηp
τ2
xy

(
ηp
λ4 −

α

λ3 + α

λ2ηp
τxy −

4α
ηpλ2 τ

2
xy + 4α3

λ2ηp
τ2
xy

)
= 0. (2.117)
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Investigating the solution of this quadratic equation in the limits of low and high shear

rates yields

γ̇ →∞ : τxy = ηp
λ

√
(1− α)/α (2.118)

γ̇ → 0 :





τxy = ηpγ̇ physical

τxy = ηpγ̇
(1− α)
α

unphysical
(2.119)

In the solution for high shear rates, we observe that we need to choose α < 1 in order to

obtain a solution in R. For low shear rates, we obtain two solutions for the shear stress,

which coincide for α = 0.5. The solution τxy = ηpγ̇
1
α

(1− α) can be ruled out as

unphysical as it leads to nonzero normal stress differences in the limit of zero shear rate.

The viscometric functions for the Giesekus model are given by

η(γ̇) = ηN γ̇ + τxy
γ̇

, (2.120)

N1(γ̇) = τxx − τyy, (2.121)

N2(γ̇) = τyy − τzz, (2.122)

which in the limits of large and small shear rates yields

γ̇ → 0 : η(γ̇) = η0, N1(γ̇)→ 0, N2(γ̇)→ 0 (2.123)

γ̇ →∞ : η(γ̇) = ηN , N1(γ̇) ∼
√
γ̇,

N2(γ̇) = − ηp
2αλ

(
1−

√
1− 4α(1− α)

)
. (2.124)

The impact of the mobility parameter α on the viscometric functions is illustrated in Fig-

ure 2.8 (a) - (c) for α = 0, 0.1, 0.25, 0.5. We see that the Giesekus model becomes in-

creasingly shear thinning with increasing α and that the first and second normal stress dif-

ferences decrease with increasing α. For uniaxial steady elongational flow, the Giesekus

equations reduce to

(1− 2λε̇) τxx + αλ

ηp
τ2
xx = 2ηpε̇, (2.125)

(1 + λε̇) τyy + αλ

ηp
τ2
yy = −ηpε̇. (2.126)

The physically relevant solutions have τxx > 0 and −ηp
λ
< τyy < 0. This determines a

unique value of τxx and τyy. The elongational viscosity is given by

ηE(ε̇) = 3ηN + τxx − τyy
ε̇

. (2.127)
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Figure 2.8.: Viscometric functions for the Giesekus model for a range of different α with
λ = 1, ηp = 0.5 and η0 = 1.
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The elongational viscosity is finite for all elongation rates. It is an increasing function of

the elongation rate as can be seen in Figure 2.8(d) and reaches a constant value for high

elongation rates given by

ηE(ε̇) = 3ηN + 2ηp
α
. (2.128)

That means the elongational viscosity decreases with increasing α.

2.6. Governing Equations

In summary, we have the following equations describing an incompressible viscoelastic

fluid in a domain Ωt with boundary Γ over a time interval [0, T ]





ρ
Du
Dt

= ρg−∇p+ ηN∇ ·D +∇ · τττ , Momentum Equation

∇ · u = 0, Continuity Equation

τττ + λ
∇
τττ + αλ

ηp
τττ2 = 2ηp D. Constitutive Equation

(2.129)

The constitutive equation describing the viscoelastic response of the fluid to deformations

contains the following models





Oldroyd-B: α = 0;

Giesekus: 0 ≤ α < 1.
(2.130)

The system of partial differential equations (2.129) is of mixed type and portrays traits

of elliptic, parabolic and hyperbolic character (Gerritsma (1996); Owens and Phillips

(2005)). The constitutive equations for the extra stress tensor contain the hyperbolic part,

i.e. the components of the extra stress tensor are convected along the streamlines, while

the conservation laws contain the elliptic/ parabolic part. To ensure the well-posedness of

the equation system, we need to prescribe appropriate boundary and initial conditions as

described in the following Section.

2.6.1. Boundary and Initial Conditions

In this Section, we describe suitable boundary and initial conditions in order to complete

the equation system (2.129). For the conservation equations, we can distinguish between

two boundary condition types: essential boundary conditions (Dirichlet boundary condi-
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tions), for which we prescribe the velocity and natural boundary conditions, for which we

prescribe the traction (Neumann boundary condition). That means, for the Dirichlet part

of the boundary, denoted by ΓD, we impose

u = gu, (2.131)

and for the Neumann part of the boundary, denoted by ΓN , we impose

σσσ · n = h. (2.132)

The constitutive equation is a hyperbolic equation that needs prescribed values at inflow

τττ = gτττ . (2.133)

We employed the following boundary and initial conditions.

Initial Conditions

At the initial time t = t0, we need to prescribe the velocity u and the polymeric stress τττ

u(x, t0) = u0 and τττ(x, t0) = τττ0. (2.134)

Typically, we either prescribe zero initial conditions for the velocity and the polymeric

stress; or we set the initial values of velocity and polymeric stress equal to a previous

solution in the same geometry with a different set of parameters.

No-Slip Boundary Conditions

At wall and obstacle boundaries, Γw, we prescribe no-slip and no-penetration boundary

conditions for the velocity u = (u, v), i.e.

u = 0, v = 0 on Γw. (2.135)

The elastic stress is obtained from the constitutive equation using the velocity.

Slip Boundary Conditions

The slip boundary condition, Γsl, is a combination of Dirichlet and Neumann conditions

u · n = 0 on Γsl, (2.136)

t · σσσ · n = 0 on Γsl. (2.137)
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Alternatively, we can employ Navier’s slip condition in order to account for wall friction

u · n = 0 on Γsl, (2.138)

t · σσσ · n = 1
βsl

u · t on Γsl, (2.139)

where βsl is an empirical slip length with the dimension of length. This condition ex-

presses a linear dependency of the tangential velocity component to the shear rate at the

boundary. For pure shear flow, the parameter βsl can be interpreted as the fictitious dis-

tance below the boundary, where the no slip condition would be satisfied. The condition

u · n = 0 ensures that mass cannot penetrate the boundary.

Symmetry Boundary Conditions

Similar to the slip boundary condition, the symmetry condition, Γsym, is a combination of

Dirichlet and Neumann conditions given by

u · n = 0 on Γsym, (2.140)

t · σσσ · n = 0 on Γsym, (2.141)

which means fluid cannot penetrate the boundary and the shear stress is zero.

Inflow Boundary Conditions

At the inflow boundary Γin of the domain, we prescribe the velocity field of the flow.

For viscoelastic fluids, the values for the polymeric stress components are also required

at inflow, because they represent the information carried with the fluid from its previous

deformation states. Therefore, we set Dirichlet boundary conditions for the velocity field

and the polymeric stress tensor at inflow

u = uin on Γin, (2.142)

τττ = τττ in on Γin. (2.143)

We have to be aware that it is not possible to simply prescribe arbitrary stress values at

inflow, because they have to be consistent with the constitutive equations. If we don’t

know the stress response to the prescribed velocity field, we assume that the polymeric

stress is zero at inflow, i.e.

τττ = 0 on Γin. (2.144)

Renardy (1988) showed that, while for the Oldroyd-B model all elastic stress components

must be prescribed, for the UCM model prescribing all stress components leads to an over-



40 Chapter 2. Mathematical Description of Viscoelastic Flows

determined system, which can lead to errors. However, we will not use the UCM model

and therefore we always set Dirichlet conditions for the polymeric stress tensor at inflow.

Outflow Boundary Conditions

At the outflow boundary Γout, we impose one of the following boundary conditions

1. a combination of Dirichlet and Neumann boundary conditions

u · t = 0, (2.145)

t · σσσ · n = 0, n · σσσ · n = −p∞. (2.146)

where σσσ is the Cauchy stress tensor, t is the unit tangential vector to the boundary

and p∞ is a prescribed pressure. The prescribed pressure is usually set to zero.

2. imposed pressure p = p∞ through the boundary integral

3. for fully developed unidirectional flow fields at outflow, we impose

∇u · n = ∇v · n = 0 on Γout, (2.147)

through the boundary integral in conjunction with imposing a pressure value at out-

flow.

Free Surface Boundary Conditions

At a free surface boundary, Γf , we have a combination of Dirichlet and Neumann bound-

ary conditions

u · n = w · n on Γf (kinematic boundary condition) (2.148)

[σσσ] · n = σκn on Γf (dynamic boundary condition) (2.149)

where w is the velocity of the free surface, σ is the surface tension coefficient, κ is the

curvature of the free surface, n is the unit outward normal on the free surface and [σσσ]
denotes the jump in the Cauchy stress tensor across the free surface. We will describe a

few further details considering the boundary conditions.

Dynamic Boundary Condition Assume the free surface is an interface between a

liquid and a gas. The dynamic boundary condition sets the sum of the contact forces given

by the traction exerted from the fluid to the gas and the traction exerted by the gas to the
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Figure 2.9.: Free Surface Boundary Conditions

fluid equal to the surface tension

tl + tg = σσσl · nl + σσσg · ng = (σσσl − σσσg) · nl = σκnl (2.150)

where σσσg is the Cauchy stress tensor of the gas phase and σσσl is the Cauchy stress tensor of

the liquid phase and we define the jump

[σσσ] := σσσl − σσσg. (2.151)

If we assume that the gas is inviscid, then the Cauchy stress tensor of the gas is given by

σσσg = −pgI, (2.152)

and the dynamic boundary condition becomes

σσσl · nl = σκnl − pgnl (2.153)

which can be expressed in terms of a condition on the tangential and normal stress as

nl · σσσl · nl = σκ− pg, (2.154)

sl · σσσl · nl = 0, (2.155)

where sl is the unit tangent vector on the free surface.
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Kinematic Boundary Condition The kinematic boundary condition ensures that no

particle crosses the interface. Note that, we can describe the free surface as a function

f(x, t) = y. (2.156)

This function can then be used to determine the unit outward normals n and the curvature

κ of the free surface using

n(t) = 1√
∂f(x,t)
∂x

2
+ 1


 −

∂f(x, t)
∂x
1


 , (2.157)

κ(t) =
|∂2f(x,t)

∂x2 |
(1 + ∂f(x,t)

∂x

2
)3/2

. (2.158)

The kinematic boundary condition just gives a constraint on the normal velocity. How-

ever there is no condition on the tangential velocity. In this work, we use the ALE

scheme to trace the free surface movement. In these schemes, we move the mesh with

the normal fluid velocity at the free surface and choose the tangential mesh velocity

such that the distortion of the mesh is minimal. For problems that can be expressed as

a function f(x, t) = y, setting wx = 0 usually prevents the mesh from distorting. The

kinematic boundary condition can then be expressed with wy = ∂y

∂t
= ∂f(x, t)

∂t
and

ny
nx

= −∂f(x, t)
∂x

as

∂f(x, t)
∂t

+ u
∂f(x, t)
∂x

= v. (2.159)

Alternatively, we can express the free surface using the zero level set value of a function

F (x, y, t) ≡ f(x, t)− y = 0 (2.160)

and solve
DF (x, y, t)

Dt
= 0. (2.161)

2.6.2. Weak Formulation

In the finite element method and in spectral methods, the equations are solved in their weak

form. To obtain the weak form of the equations, we multiply them by test functions and

integrate the equations. We need to choose appropriate spaces for the dependent variables

u, p and τττ and for their test functions. For the velocity u, we choose

[H1
D(Ω)]d := {u ∈ [H1(Ω)]d : u = uD on ΓD}, (2.162)
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where ΓD is the part of Γ on which Dirichlet conditions are imposed and d = 2, 3 is the

space dimension. The corresponding test functions φu are chosen to be in

[H1
0 (Ω)]d := {φu ∈ [H1(Ω)]d : φu = 0 on ΓD}. (2.163)

For the pressure p and the corresponding test functions ψ, we choose

L2
0(Ω) := {q ∈ L2(Ω) :

∫

Ωt
q dΩ = 0}. (2.164)

The polymeric stress τττ and corresponding test functions φτττ are chosen to be in [L2(Ω)]d2
s ,

where s denotes the space of symmetric tensors. The weak formulation reads

Problem 2.8. Find (u, p, τττ) ∈ [H1
D(Ω)]2×[L2

0(Ω)]×[L2(Ω)]d2
s such that, for all (φu, ψ, φτττ ) ∈

[H1
0 (Ω)]d × [L2

0(Ω)]× [L2(Ω)]d2
s

ρ

∫

Ωt

Du
Dt
· φu dΩ + 2ηN

∫

Ωt
D : ∇φu dΩ−

∫

Ωt
p (∇ · φu) dΩ +

∫

Ωt
τττ : ∇φudΩ,

−
∫

ΓN
(σσσ · n) · φu dΓ = 0,

∫

Ωt
(∇ · u) ψ dΩ = 0, (2.165)

λ

∫

Ωt

(
Dτττ

Dt
−∇u · τττ − τττ · ∇uT

)
: φτττ dΩ +

∫

Ωt
τττ : φτττ dΩ + αλ

ηp

∫

Ωt
τττ2 : φτττdΩ

= 2ηp
∫

Ωt
D : φτττdΩ,

,(2.166)

where ΓN is the Neumann boundary.

Here, we integrated the momentum equation by parts. The Neumann boundary condition

can be decomposed into the outflow boundary part, the symmetry boundary part, the slip

boundary part and the free surface boundary part. That means the boundary integral is

given by

∫

ΓN
(σσσ · n) · φu dΓ =

∫

Γout
(σσσ · n) · φu dΓ +

∫

Γsym
(σσσ · n) · φu dΓ

+
∫

Γsl
(σσσ · n) · φu dΓ +

∫

Γf
(σκ · n) · φu dΓ.

(2.167)

2.7. Non-Dimensionalisation

We employ the following non-dimensionalisation

x∗ = x

L
, u∗ = u

U
, t∗ = U

L
t, ρ∗ = ρ

ρref
, p∗ = L

η0U
p, τττ∗ = L

η0U
τττ ,
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where L, U , ρref denote the characteristic length, velocity and density scales for the flow

respectively. This leads to the following system of dimensionless equations





Re
Du∗
Dt

= −∇p∗ + 2β∇ ·D∗ +∇ · τττ∗,

τττ∗ + Wi
∇
τττ∗ + αWi

(1− β)(τττ∗)2 = 2(1− β) D∗,

∇ · u∗ = 0.

(2.168)

We recall the upper convected derivative

∇
τττ∗ = ∂τ∗τ∗τ∗

∂t
+ u · ∇τ∗∇τ∗∇τ∗ −∇u∗ · τ∗τ∗τ∗ − τττ · ∇u∗T . (2.169)

The dimensionless numbers in (2.168) describe the nature of the flow and are defined as

follows:

Definition 2.9 (Dimensionless Numbers).

Re = ULρref
η0

= inertial forces
viscous forces

(2.170)

is the ratio of inertial forces to viscous forces and is called the Reynolds number.

Wi = λ
U

L
= λ

T
= relaxation time

characteristic time
(2.171)

is the ratio of the relaxation time to the characteristic time scale of the fluid process and

is called the Weissenberg number. It can be regarded as a measure of the elasticity of

the fluid in the flow. For high Weissenberg numbers, the fluid behaves like an elastic

solid and for low Weissenberg numbers, it behaves like a Newtonian fluid. Another useful

dimensionless number describing the importance of elasticity relative to inertial forces is

the so-called elasticity number, which we define as

El = Wi
Re
. (2.172)

Furthermore, we define

β = ηN
η0

(2.173)

which is measuring the percentage of the solvent Newtonian viscosity ηN to the total

viscosity η0 = ηN + ηp, i.e. 0 ≤ β ≤ 1. Here, ηp denotes the polymeric viscosity.

In addition, we have dimensionless numbers arising from the non-dimensionalisation of
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the boundary conditions.

Definition 2.10 (Dimensionless Numbers - Boundary Conditions). For the slip boundary

condition, we have

Bsl (t · σσσ∗ · n) = u∗ · t on Γsl, (2.174)

where the slip coefficient

Bsl = βslη0
L

(2.175)

measures the fluid slip at the wall. For Bsl = 0, we recover the no-slip boundary condi-

tion. For the free surface boundary condition, we have

σσσ∗ · n = κ∗

Ca
n (2.176)

where the capillary number

Ca = Uη0
σ

(2.177)

measures viscous forces over surface tension effects. For high capillary numbers, viscous

forces dominate and for low capillary numbers, surface tension dominates.

In the following, we will drop the star notation for the sake of simplicity. The non-

dimensionalised weak form reads

Problem 2.11. Find (u, p, τττ) ∈ [H1
D(Ω)]2 × [L2

0(Ω)] × [L2(Ω)]d2
s such that, for all

(φu, ψ, φτττ ) ∈ [H1
0 (Ω)]d × [L2

0(Ω)]× [L2(Ω)]d2
s





Re

∫

Ωt

Du
Dt
· φu dΩ + 2β

∫

Ωt
D : ∇φu dΩ−

∫

Ωt
p (∇ · φu) dΩ

+
∫

Ωt
τττ : ∇φudΩ−

∫

ΓN\Γf
(σσσ · n) · φu dΓ− 1

Ca

∫

Γf
κn · φu dΓ = 0,

∫

Ωt
(∇ · u) ψ dΩ = 0,

Wi
∫

Ωt

(
Dτττ

Dt
−∇u · τττ − τττ · ∇uT

)
: φτττ dΩ +

∫

Ωt
τττ : φτττ dΩ

+ αWi
(1− β)

∫

Ωt
τττ2 : φτττdΩ = 2(1− β)

∫

Ωt
D : φτττdΩ,

where ΓN is the Neumann boundary and Γf is the free surface boundary.





Chapter 3
Spectral/hp element methods

In this Chapter, we review several numerical methods for solving partial differential equa-

tions including the finite element method, spectral methods and spectral/hp element meth-

ods. Then, we present details about the spectral/hp element method employed in this

thesis. We introduce the integration and differentiation on general shaped elements in-

cluding the iso-parametric geometrical mapping and we give their corresponding matrix

notations. In this work, we employ the spectral/hp element method to solve the equations

describing viscoelastic flow. Then, we discuss the continuous Galerkin and the discon-

tinuous Galerkin methods to couple the spectral elements. Finally, we demonstrate the

capabilities and the limitations of the spectral/hp element method in comparison to the

finite element method for a one-dimensional constant linear advection equation for three

functions with decreasing smoothness. The explanations given in this Chapter draw on the

monographs by Karniadakis and Sherwin (2005), Kopriva (2009), Trefethen (2000) and

Canuto et al. (2006) and the thesis of Vos (2011).

3.1. Discretisation

3.1.1. Discretisation of the Solution Space

The issue of how to approximate the solution of a differential equation in a discrete space

can be illustrated using the so-called method of weighted residuals. Consider a linear

differential equation for the unknown function u defined in some domain Ω given by

L(u) = f, (3.1)

subject to appropriate initial and boundary conditions. Further, assume an appropriate

space for the unknown function u is given by V . Then, the solution u(x) can be approxi-

mated by the truncated series uδ(x)

uδ(x) =
Ndof−1∑

i=0
ûiφi(x), (3.2)
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where ûi are called expansion coefficients and φi are called trial or expansion functions.

This approximation of the unknown means we are no longer determining the exact solution

in V but an approximate solution in a discrete subspace Vδ which, in general, yields a non

zero residual

R(uδ) = L(uδ)− f 6= 0. (3.3)

To obtain the unknown coefficients, the aim of the method of weighted residuals is to force

the residual to zero in some average sense over the domain by forming the inner product

of the residual R with so-called weight or test functions vj(x) in the test function space

Wδ, that is, ∫

Ω
R(uδ, x) vj(x) dx = 0, j = 1, . . . , Ndof . (3.4)

These Ndof conditions form a system of ordinary differential equations in ûi(t) . As

Ndof → ∞, the residual tends to zero since the approximate solution approaches the ex-

act solution.

The choice of the expansion functions φi(x) and the test functions vj determines the nu-

merical scheme. The most popular choices are

• Collocation method: The test functions are chosen to be the Dirac delta functions,

i.e. vj = δ(x− xj), which yields

R(uδ, xj) = 0, j = 1, . . . , Ndof . (3.5)

Here, xj denotes a set of given distinct collocation points. In the context of spectral

methods the use of collocation projection is called pseudo-spectral method.

• Galerkin method: The test functions are chosen to be the same as the trial or expan-

sion functions vj = φj .

• Petrov-Galerkin method: The test functions are chosen such that vj 6= φj but typ-

ically they are based upon a perturbation of the trial functions, e.g. to impose an

upwind condition.

3.1.2. Discretisation of the Domain

To approximate the solution of a differential equation in a complex geometry Ω, we sub-

divide the domain into non-overlapping subdomains Ωe, i.e.

Ω =
Nel⋃

e=1
Ωe, Ωe1 ∩ Ωe2 = ∅ for e1 6= e2. (3.6)
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Figure 3.1.: Domain decomposition and mapping onto standard element.

where Nel is the number of subdomains or elements. Each of these subdomains, Ωe, is

then mapped onto a standard element Ωst using a transformation χe. This transforma-

tion maps the physical coordinates x onto the standard coordinates ξξξ. For quadrilateral

subdomains in two space dimensions, the standard element is given by

Ωst = {(ξ1, ξ2) | −1 ≤ ξi ≤ 1, i = 1, 2}. (3.7)

Usually, we construct the mapping by expressing the physical coordinates x and y in

terms of the same expansion functions as the ones that we use to represent the dependent

variables. These type of same-order mappings for the geometry are called isoparametric.

Details on the isoparametric mappings for the different discretisation techniques are given

in Section 3.4.

To obtain a global solution from the elemental solutions, we need to introduce some form

of coupling between adjacent elements. This coupling of the elements is achieved either

by enforcing continuity of the approximation in some sense (weak or strong) (continuous

Galerkin) or by considering fluxes across element boundaries (discontinuous Galerkin).

Details about these methods can be found in Section 3.3.1.
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3.2. Numerical Methods

3.2.1. Finite element method

0

1

Ω1 Ω2 Ω3

Φ0 Φ1 Φ2 Φ3

û0

û1 û2
û3

x0 x1 x2 x3

Figure 3.2.: One-dimensional finite element expansion.

The classical finite element method uses a decomposition of the domain and builds up the

solution from the local elemental contributions. In each element the solution is approxi-

mated by piecewise polynomial expansion functions. For example in 1D, the linear basis

functions are given by

φ0(ξ) =





1− ξ
2 , ξ ∈ Ωst

0, ξ /∈ Ωst

, φ1(ξ) =





1 + ξ

2 , ξ ∈ Ωst

0, ξ /∈ Ωst

(3.8)

where Ωst = {ξ | − 1 ≤ ξ ≤ 1} and the standard coordinate ξ is related to the physical

coordinate x by the mapping

x = χe(ξ) = φ0(ξ)xe−1 + φ1(ξ)xe (3.9)

where Ωe = {x |xe−1 < x < xe}. In the example shown in Figure 3.2, the global solution

uδ is then obtained in terms of the global expansion modes Φi, which are constructed from

the local expansion modes, e.g.

Φ0 =




φ0(ξ) = φ0(

[
χ1
]−1

(x)), x ∈ Ω1,

0, x /∈ Ω1,

Φ1 =





φ1(ξ) = φ1(
[
χ1
]−1

(x)), x ∈ Ω1,

φ0(ξ) = φ0(
[
χ2
]−1

(x)), x ∈ Ω2,

0, otherwise.

(3.10)
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The approximated solution then becomes ( see Figure 3.2)

uδ(x, t) =
Ndof−1∑

i=0
ûiΦi(x) =

Nel∑

e=1
(ûe0φe0(ξ) + ûe1φ

e
1(ξ)). (3.11)

If we are seeking a continuous solution, we can determine the global expansion coeffi-

cients from the local expansion coefficients by enforcing continuity in the local expansion

coefficient, e.g.

û0 = û1
0, (3.12)

û1 = û1
1 = û2

0 etc. (3.13)

We can express these relations in terms of a sparse matrix that scatters the global degrees

of freedom onto the local degrees of freedom

ûl =AAAûg, (3.14)

where

ûg = [û0, . . . , ûNdof−1]T , (3.15)

ûl = [û1
0, û

1
1, . . . , û

Nel
0 , ûNel1 ]T . (3.16)

3.2.2. Spectral Method

In contrast to the finite element method, which is based on the computation of local solu-

tions, spectral methods, first presented by Gottlieb and Orszag (1977), represent a function

u in the entire domain via a truncated series expansion of high order polynomials

uδ(x, t) =
P∑

p=0
ûp(t)φp(x). (3.17)

For classical global spectral methods, these basis functions are typically given by Fourier

basis functions

φp(x) = eipx (3.18)

which are subject to periodic boundary conditions, or orthogonal polynomials which are

a member of the family of Jacobi polynomials P (α,β)
p ( see Appendix A for details), such
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as Legendre polynomials

φp(x) = Lp(x) = P (0,0)
p (x) (3.19)

or Chebyshev polynomials

φp(x) = Tp(x) = 22n(n!)2

(2n)! P (−1/2,−1/2)
p (x). (3.20)

Jacobi polynomials are not subject to periodic boundary conditions and maintain the

approximation property of exponentially decaying coefficients ûn for smooth functions

u ∈ C∞ of the Fourier series. This property of exponentially decaying coefficients yields

spectral or exponential convergence to the exact solution in the approximation of a smooth

function with a truncated series.

In the spectral method, these series expansions are then used in the context of the method

of weighted residuals. That means the solution to a differential equation can be computed

using collocation methods (pseudo-spectral method), Galerkin methods or other methods

as explained in Section 3.1.1.

3.2.3. Spectral/hp element method

As global spectral methods are restricted to simple geometries due to difficulties that we

encounter if we try to combine these expansions with h-type elemental decompositions,

modifications to the classical spectral method were made in order to extend the method

to complex geometries while maintaining their excellent approximation properties. The

difficulty with a basis formed by orthogonal polynomials such as Legendre polynomi-

als is that if we want to couple the elements by imposing C0 continuity across element

boundaries, we need to prescribe an interface matching condition of the form

P∑

p=0
ûepφ

e
p(1) =

P∑

p=0
ûe+1
p φe+1

p (−1), (3.21)

where the superscripts e and e+1 denote contributions from two adjacent domains. Such a

condition couples all of the degrees of freedom in one element with the modes in the adja-

cent element. This is more difficult to implement and it destroys the sparsity of the global

matrix structure. Therefore, we seek expansions for which only a few expansion modes

have a non-zero contribution at an elemental boundary and which we can decompose into

boundary and interior modes. Boundary modes only have non-zero contributions at one
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of the elemental boundaries and are zero on all other boundaries and interior modes have

non-zero contributions in the interior of the element.

In general, spectral methods can be classified into two categories: modal methods, where

the unknowns are coefficients or modes and nodal methods, where we represent the solu-

tion in terms of grid points values and the coefficients are associated with these grid point

values.

Modal expansion bases are built up hierarchically, which means the expansion set of order

P − 1 is contained within the expansion set of order P . This property does not hold for

the nodal basis - the expansion sets of orders P − 1 and P do not have common mem-

bers. Note that, we can formulate any modal expansion basis in terms of a Lagrangian

interpolant through the grid points by

hj(x) = g(x)
g′(x)(x− xj)

. (3.22)

where g(x) is the polynomial of order P + 1 with zeros at the P + 1 nodal points xj . We

will introduce two examples for possible spectral element bases, which have a boundary-

interior decomposition: one modal expansion, which builds the basis for a method we

will call the spectral/hp method due to Karniadakis and Sherwin (2005); and one nodal

expansion, which builds the basis for a method that has become known as the spectral

element method due to Patera (1984).

Nodal spectral element method

The nodal expansion basis due to Patera (1984) is constructed using Legendre polyno-

mials, defined in (3.19), in the construction of Lagrange polynomials through the Gauss-

Lobatto-Legendre (GLL) points ξp

φp(ξ) = hp(ξ) = (ξ − 1)(ξ + 1)L′P (ξ)
P (P + 1)LP (ξp)(ξp − ξ)

. (3.23)

The Gauss-Lobatto-Legendre points are the zeroes of g(ξ) = (1− ξ)(1 + ξ)L′P (ξ). Note

that, all modes are polynomials of order P with hp(ξq) = δpq. The Gauss-Lobatto Legen-

dre points contain the boundary points of the element−1 and 1 and therefore these modes

are decomposed into interior and boundary modes. The resulting polynomials of this La-

grange basis are displayed in Figure 3.3(a).

In addition to the convenient boundary interior decomposition, this Lagrange basis has

several other advantages: firstly, the quadrature weights for Gaussian quadrature in the

numerical evaluation of integrals are unity and secondly the construction of the Lagrange
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basis through the GLL points avoids a problem that can be encountered in the construction

of Lagrange polynomials: the Runge phenomenon. The Runge phenomenon manifests it-

self in terms of violent oscillations near the end points x = −1 and x = 1 for Lagrange

polynomials which are constructed through equidistant points. These oscillations can be

prevented using interpolation points distributed with a spacing of O(N−2) near x = ±1
andO(N−1) spacing in the interior (see Trefethen (2000) for a further explanation), which

is fullfilled by the GLL points.

Modal spectral element method

The modal expansion basis based on Dubiner (1991) and extended by Karniadakis and

Sherwin (2005) is another choice for a high order expansion basis which is applicable to

h-type domain decomposition due to its boundary interior decomposition. This modal (hi-

erarchical) expansion basis is constructed by adding second and higher-order polynomials

to the linear finite element expansion. Note that in contrast to classical spectral methods

this expansion is a set of polynomials of increasing order with maximal order P . The

boundary interior decomposition is ensured as follows: the linear finite element expansion

functions give us the elemental boundary modes and since only polynomials of second and

higher order are added, it is possible to ensure that they are zero at the elemental bound-

aries, thereby meeting the requirements for interior modes. In addition, we choose the

higher order modes such that the mass and Laplacian elemental matrices have a minimal

bandwidth. The expansion basis fulfilling these requirements is given by

φp(ξ) =





1− ξ
2 , p = 0,

(1− ξ
2

)(1 + ξ

2

)
P

(1,1)
p−1 (ξ), 0 < p < P

1 + ξ

2 , p = P,

(3.24)

where φ0 and φP are the linear finite element basis functions and

φ1(ξ) =
(1− ξ

2

)(1 + ξ

2

)

is the usual quadratic hierarchical expansion mode for quadratic elements. Here, P de-

notes the highest polynomial order of the hierarchical expansion and P (α,β)
p (ξ) denotes

the pth-order Jacobi polynomial. Figure 3.3(b) shows plots of the expansion modes φp
for 0 ≤ p ≤ 5. For the two dimensional standard quadrilateral, we obtain the expan-

sion set using the tensor product of the modal expansion basis functions φp, such that the
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approximation of a two dimensional function in the e-th element becomes

u(xxx, t) =
P∑

p=0

P∑

q=0
ûpqφp(ξ1)φq(ξ2), (3.25)

where P is the highest polynomial order of the expansion and

ξ1 = [χe1]−1 (x, y), ξ2 = [χe2]−1 (x, y), (3.26)

which are given by the inverse of the transformation χ. The two dimensional tensor prod-

uct expansion set for polynomial order P = 3 is displayed in Figure 3.4. The two dimen-

sional expansion modes can be decomposed into vertex, edge and interior modes. This

decomposition makes an efficient coupling of neighbouring elements possible.

This expansion basis was extended to a wide range of element shapes in 2D (Dubiner

(1991)) and 3D ( Karniadakis and Sherwin (2005)), which gives methods based on these

expansion functions huge geometric flexibility. In 2D, it can be modified to be applied

to quadrilateral and triangular elements and in 3D to hexahedrons, prisms, pyramids and

tetrahedrons. We call numerical methods based on this expansion basis spectral/hp ele-

ment methods. We use this expansion basis in this thesis. However, in this work, we only

use the expansion functions for quadrilaterals, which is given by the tensor product of the

expansion functions φp defined by (3.24).
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(a) Nodal P-type expansion set {hi : P = 5, 0 ≤ i ≤ P}.
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(b) Modal P-type expansion set {φp : 0 ≤ p ≤ 5}.

Figure 3.3.: Expansion sets for (a) the classical spectral element method and (b) the spec-
tral/hp element method.
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Figure 3.4.: Spectral/hp expansion set for P = 3 on a two dimensional quadrilateral ele-
ment. The expansion modes can be decomposed into vertex, edge and interior
modes and are formed by the tensor product of the one-dimensional expansion
functions illustrated in Figure 3.3(b).
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3.3. Integration and Differentiation on the Standard
Element

3.3.1. Integration

Solving a differential equations using Galerkin or Petrov-Galerkin methods involves the

evaluation of integrals. We want to find a way to discretely evaluate integrals that re-

tains orthogonality and spectral accuracy. This means the quadrature rule on the one-

dimensional standard region [−1, 1] should satisfy

Q−1∑

j=0
u(ξj)φp(ξj)wj =

∫ 1

−1
u(ξ)φp(ξ)dx, (3.27)

where wj are the quadrature weights and ξj are the abscissas of the Q quadrature points.

Such an exact integration is possible using Gauss rules. In this work, we use the Gauss-

Legendre-Lobatto quadrature rule, which evaluates integrals exactly for polynomials of

degree 2Q− 3 or less. The Gauss-Legendre-Lobatto quadrature rule is given by

ξj = −1, zeros of L′Q−1(ξ),+1, (3.28)

wj = 2
Q(Q− 1)

1
LQ−1(ξj)2 . (3.29)

Note that, the zeroes of L′Q−1(ξ) are identical to the zeroes of P (1,1)
Q−2 (ξ). We choose the

quadrature order Q = P + 2 (i.e. exact integration for polynomials of order 2P + 1)

in order to guarantee that all discrete inner products involving the spectral/hp element

expansion functions such as

(φp, φq)δ :=
Q−1∑

j=0
φp(ξj)φq(ξj)wj =

∫ 1

−1
φpφqdx (3.30)

are evaluated exactly, as the highest order of the polynomials in the inner product for the

spectral/hp element method is 2P . We can trivially extend the quadrature rule to two

dimensional standard regions

∫ 1

−1

∫ 1

−1
u(ξ1, ξ2)φpq(ξ1, ξ2) dξ1 dξ2 ≈

Q−1∑

i=0
wi





Q−1∑

j=0
wju(ξ1i , ξ2j )φpq(ξ1i , ξ2j )




(3.31)

with φpq(ξ1, ξ2) = φp(ξ1)φq(ξ2).
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3.3.2. Differentiation

Let us assume that we have the approximation of the function uδ(ξ) in terms of poly-

nomials, such that uδ(ξ) is a polynomial of order P or less in [−1, 1]. To calculate the

derivative of such a function on the standard element, we employ the so-called collocation

differentiation technique. In this technique, we first express the function uδ(ξ) in terms of

Lagrange polynomials hi(ξ) through a set of Q nodal points ξi

u(ξ) ≈
Q−1∑

j=0
hj(ξ)u(ξj), (3.32)

where

hj(ξ) =
∏Q−1
i=0,i 6=j(ξ − ξi)∏Q−1
i=0,i 6=j(ξj − ξi)

. (3.33)

This gives an exact representation of the function uδ(ξ) ∈ PP ([−1, 1]) for Q ≥ P + 1.

Here, PP ([−1, 1]) is the space of all polynomials of degree P defined on the standard

element Ωst = {ξ | − 1 ≤ ξ ≤ 1}. The derivative of uδ(ξ) can then be evaluated as

du(ξi)
dξ

≈
Q−1∑

j=0

dhj(ξi)
dξ

u(ξj). (3.34)

If we choose the Q quadrature points (we use Q = P + 2, see previous Section), this

allows us to compute the derivative of a function at the quadrature points based on the

function values at the quadrature points. For two dimensions, the collocation differentia-

tion becomes

∂u(ξ1r , ξ2s)
∂ξ1

≈
Q−1∑

i=0

Q−1∑

j=0

dhi(ξ1r)
dξ1

hj(ξ2s)u(ξ1i , ξ2j ). (3.35)

3.4. Geometrical Mapping

As described in Section 3.1.2, in order to describe complex geometries we decompose the

domain into elements. Each element is then mapped onto a standard element on which

all computations are performed. In this Section, we will describe how this one-to-one

mapping x = (x, y) = χχχe(ξ1, ξ2) between the physical coordinates (x, y) and the local

or computational coordinates (ξ1, ξ2) is constructed in the spectral/hp element method.

The geometry is approximated with the same expansion functions that we use in order to
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Figure 3.5.: Mapping between an element in physical space Ωe and the standard element
Ωst.

approximate the dependent variables, i.e. we express the coordinates as

x = χχχe(ξ1, ξ2) =
P∑

p=0

P∑

q=0
x̂pqφp(ξ1)φq(ξ2). (3.36)

For a straight-sided element, the linear finite element functions are sufficient to describe

the geometry, so that the mapping can be constructed using these vertex modes and the

coordinates of the vertices of the element (xA,xB,xC ,xD)

x = χχχe(ξ1, ξ2) = xA
(1− ξ1

2

)(1− ξ2
2

)
+ xB

(1 + ξ1
2

)(1− ξ2
2

)

+xC
(1 + ξ1

2

)(1 + ξ2
2

)
+ xD

(1− ξ1
2

)(1 + ξ2
2

)
,(3.37)

where

x̂00 = xA, x̂P0 = xB, x̂PP = xC , x̂0P = xD (3.38)

and all the other coefficients are zero. For elements with a curved boundary, we use the

expansion with the same polynomial order as for the dependent variables to approximate

each edge of the element and then blend between these polynomial curves into the interior

of the element using the vertex modes. In detail, this works as follows.

First, given coordinates ofN points along the ith edge, we parametrise the edge according

to arc length or a reasonable approximation thereto and map this parameter to s ∈ [−1, 1]
to obtain the curves Γi : [−1, 1]→ R2. Then we construct Lagrange polynomials through

the N given points sk in order to determine the interpolation of the given curve values

onto the values along the curve, which are the image of the Q Gauss-Lobatto-Legendre
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points ξj

Γ1(ξ1j ) ≈
N∑

k=0
Γ1(sk)hk(ξ1j ), j = 0, . . . , Q− 1,

Γ2(ξ2j ) ≈
N∑

k=0
Γ2(sk)hk(ξ2j ), j = 0, . . . , Q− 1,

Γ3(ξ1j ) ≈
N∑

k=0
Γ3(sk)hk(ξ1j ), j = 0, . . . , Q− 1,

Γ4(ξ2j ) ≈
N∑

k=0
Γ4(sk)hk(ξ2j ), j = 0, . . . , Q− 1, (3.39)

where

hk(ξij ) =
N∏

m=0,m 6=k

ξij − sm
sk − sm

, i = 1, 2 (3.40)

and

Γi(sk) = (xk, yk), i = 1, 2, 3, 4. (3.41)

where (xk, yk) are the given points along the curves in the physical domain. To obtain

the unknown coefficients for the coordinate expansion (3.36), we use the Q values of each

edge Γi(ξj) from Equation (3.39) and determine the unknown coefficients edge-by-edge

through a Galerkin projection or a collocation projection. For example, for the first edge

described by Γ1(ξ1) this means, we solve

P∑

p=0




1∫

−1

φp φq dξ


 x̂p0 ≈

Q−1∑

j=0
wj φq(ξ1j )Γ1(ξ1j ), q = 0, . . . , P. (3.42)

Here,wj are the quadrature weights of the Gauss-Lobatto-Legendre quadrature introduced

in Section 3.3.1. The projection for the other edges can be performed analogously. Details

on Galerkin projections are given in the following Section. Performing the projection for

each edge, gives us the approximation of the curves in terms of the modal spectral/hp
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expansion functions, i.e.

Γ1(ξ1) =
P∑

p=0
x̂p0 φp(ξ1), (3.43)

Γ2(ξ2) =
P∑

q=0
x̂Pq φq(ξ2), (3.44)

Γ3(ξ1) =
P∑

p=0
x̂pP φp(ξ1), (3.45)

Γ4(ξ2) =
P∑

q=0
x̂0P φq(ξ2). (3.46)

The remaining coefficients in the expansions (3.36) are zero. Therefore, the expansion can

be expressed as

x = χχχe(ξ1, ξ2) = Γ1(ξ1)φ0(ξ2)− Γ1(−1)φ0(ξ1)φ0(ξ2)− Γ1(1)φP (ξ1)φ0(ξ2)

+ Γ2(ξ2)φP (ξ1)

+ Γ3(ξ1)φP (ξ2)− Γ3(−1)φ0(ξ1)φP (ξ2)− Γ3(1)φP (ξ1)φP (ξ2)

+ Γ4(ξ2)φ0(ξ1). (3.47)

Note that, the vertex values are subtracted once to avoid multiplicity, since they are con-

tained in two terms in (3.47). This expression is equivalent to using linear blending func-

tions as originally proposed by Gordon and Hall (1973).

3.5. Integration and Differentiation for Generally Shaped
Elements

3.5.1. Integration

In practice, we use the mapping introduced in the previous Section to transform integrals

or derivatives over generally shaped elements to the standard element. In a generally

shaped element Ωe, the inner products arising from the Galerkin method are typically

given by ∫

Ωe
φpq(x, y)u(x, y) dx dy, ∀p, q ∈ [0, P ], (3.48)

which can be transformed into an integral over the standard element
∫

Ωe=χe(Ωst)

φpq(x, y)u(x, y) dx dy =
∫

Ωst
φpq(ξ1, ξ2)u(ξ1, ξ2) |J | dξ1 dξ2 (3.49)
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∫
Ωe
u(x, y)φpq(x, y) dΩe

x = χχχe(ξ1, ξ2)

(−1, 1)

(−1,−1) (1,−1)

(1, 1)

ξ1

ξ2

=
∫

Ωst
u(ξ1, ξ2)φpq(ξ1, ξ2) |J | dΩst

(−1, 1)

(−1,−1) (1,−1)

(1, 1)

ξ1

ξ2

≈
Q−1∑
i=0

Q−1∑
j=0

wiwju(ξ1i, ξ2j)φpq(ξ1i, ξ2j)|Jij|

Figure 3.6.: Illustration of the integration over a generally shaped element.

using the mapping χe and its Jacobian

J = ∂x

∂ξ1

∂y

∂ξ2
− ∂y

∂ξ1

∂x

∂ξ2
. (3.50)

Finally, we use Gaussian quadrature to evaluate the integral over the standard element

(φpq, u)δΩe :=
Q−1∑

i=0

Q−1∑

j=0
wiwj |Jij |φpq(ξ1i , ξ2j )u(ξ1i , ξ2j ), (3.51)

where

Jij = ∂xi
∂ξ1i

∂yj
∂ξ2j

− ∂yj
∂ξ1i

∂xi
∂ξ2j

. (3.52)

3.5.2. Differentiation

For the differentiation of a function within a generally shaped element, we apply the chain

rule and obtain



∂u

∂x
∂u

∂y


 =




∂ξ1
∂x

∂ξ2
∂x

∂ξ1
∂y

∂ξ2
∂y







∂u

∂ξ1
∂u

∂ξ2


 = 1

J




∂y

∂ξ2
− ∂y
∂ξ1

− ∂x
∂ξ2

∂x

∂ξ1







∂u

∂ξ1
∂u

∂ξ2


 . (3.53)

The values in the last expression can then all be evaluated using the collocation differen-

tiation technique over the standard element as explained in Section 3.3.2.

3.6. Matrix notation

Before we continue by demonstrating the spectral/hp method on a one-dimensional exam-

ple, we introduce the notation for the elemental vectors and matrices based on the thesis

of Vos (2011) and the monograph of Karniadakis and Sherwin (2005). For every element
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Ωe of general shape, we form the vector of physical values, ue, which contains the values

of the unknown function at the image of the quadrature points. In two-dimensions, for the

spectral/hp tensor-product expansion, these quadrature point values are ordered according

to a lexicographical ordering along the ξ1 direction given by the index m(ij) which runs

consecutively from 0 to Q2 − 1 with

m(ij) = i+ jQ, 0 ≤ i < Q, 0 ≤ j < Q. (3.54)

The entries of the vector of physical values are then given by

ue[m(ij)] := ue(ξ1i , ξ2j ), (3.55)

ue =
[
u(ξ10 , ξ20), . . . , u(ξ1Q−1 , ξ20), u(ξ10 , ξ21), . . . , u(ξ1Q−1 , ξ2Q−1)

]T
. (3.56)

The corresponding vector of unknown expansion coefficients for the element e, is denoted

by ûe, and is ordered using a lexicographical numbering convention defined by

n(pq) = q + p(P + 1), 0 ≤ p ≤ P, 0 ≤ q ≤ P. (3.57)

Note that, we order the expansion coefficients such that the coefficients for vertex modes

are listed first followed by edges and finally the interior modes. This means, the vector of

expansion coefficients in the element Ωe is defined as

ûe[n(pq)] := ûpq, 0 ≤ p ≤ P, 0 ≤ q ≤ P, (3.58)

ûe = [û00, . . . , û0P , û10, . . . , ûPP ]T . (3.59)

Furthermore, we define the elemental basis matrix Be, which stores the discrete represen-

tation of the basis functions. Every column of Be is defined as the evaluation of a fixed

expansion function φpq(ξ1i , ξ2j ) = φp(ξ1i)φq(ξ2j ) at all the quadrature points , that is,

Be[m(ij)][n(pq)] := φpq(ξ1i , ξ2j ). (3.60)

Note that both the expansion functions (the columns) and the quadrature points (the rows)

within the matrix Be are ordered in a consistent fashion to the vectors û and u respec-

tively. In the following Subsections, we will introduce the matrix notation for the integra-

tion, differentiation and forward and backward transformations on an arbitrarily shaped
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element.

3.6.1. Integration

The integration of an unknown function u on an arbitrarily shaped element Ωe given by

(φpq, u)δΩe :=
Q−1∑

i=0

Q−1∑

j=0
wiwj |Jij |φpq(ξ1i , ξ2j )u(ξ1i , ξ2j ), (3.61)

as explained in Section 3.5.1 can be expressed as

(φpq, u)δΩe = [Be]T Weue. (3.62)

in terms of the elemental basis matrix Be and the weight matrix We. The weight matrix

We is a diagonal matrix containing the Gaussian quadrature weights multiplied by the

Jacobian at the quadrature points, such that

We[m(ij)][n(rs)] := wiwj |Jij |δmn. (3.63)

The weight matrix W is ordered in a consistent fashion with the vector u.

3.6.2. Differentiation

To express the derivative of an unknown function u in an arbitrarily shaped element Ωe as

explained in Section 3.5.2 in terms of elemental matrices, we first define the differentiation

matrices De
ξ1 and De

ξ2 acting on ue evaluated at the quadrature points

De
ξ1u

e :=
∂u(ξ1i , ξ2j )

∂ξ1
=

Q−1∑

r=0

Q−1∑

s=0

dhr(ξ1i)
dξ1

hs(ξ2j )u(ξ1r , ξ2s), (3.64)

De
ξ1 [m(ij)][n(rs)] = dhr(ξ1i)

dξ1
hs(ξ2j ). (3.65)

Then, within a general shaped element, we define the differentiation matrices De
x and De

y

as

De
x := Ξ1

1Dξ1 + Ξ2
1Dξ2 , (3.66)



66 Chapter 3. Spectral/hp element methods

De
y := Ξ1

2Dξ1 + Ξ2
2Dξ2 , (3.67)

where Ξk
l are the diagonal matrices containing the derivative metrics evaluated at the

quadrature points, i.e.

Ξk
1[m(ij)][n(rs)] = ∂ξki

∂xj
δmn, Ξk

2[m(ij)][n(rs)] = ∂ξki
∂yj

δmn. (3.68)

3.6.3. Backward transformation

When using modal expansion bases, it is often necessary to transform the coefficients of

an expansion to the value of the spectral/hp expansion at the quadrature points. This is

the case for example when applying the collocation differentiation technique to a spec-

tral/hp expansion. This backward transformation from coefficient space to physical space

is simply defined as

ue(ξ1i , ξ2j ) =
P∑

p=0

P∑

q=0
φpq(ξ1i , ξ2j )ûepq, (3.69)

that is, the backward transformation is merely the evaluation of the spectral/hp element

expansion at the quadrature points. In matrix notation this can be represented as

ue = Beûe. (3.70)

3.6.4. Forward transformation

For the inverse transformation of obtaining the coefficients of an expansion from the phys-

ical values at the quadrature points, we employ the method of weighted residuals




P∑

p=0

P∑

q=0
ûepq φpq(ξξξ), φrs(ξξξ)



δ

Ωe

− (ue, φrs(ξξξ))δΩe = R(u) != 0, ∀r, s ∈ [0, P ] (3.71)

P∑

p=0

P∑

q=0
(φpq(ξξξ), φrs(ξξξ))δΩe û

e
pq = (ue, φrs(ξξξ))δΩe , ∀r, s ∈ [0, P ] (3.72)

which yields in matrix notation

[Be]T WeBeûe = [Be]T Weue. (3.73)
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Here, ξξξ = (ξ1, ξ2) are the coordinates of the standard element. We define the elemental

mass matrix

Me[n(pq)][n′(rs)] := [Be]T WeBe = (φpq, φrs)δΩe , (3.74)

where n′ and n are integers following the lexicographical numbering convention defined in

Equation (3.57). To obtain the vector of expansion coefficients from the vector of physical

values, we perform

ûe = [Me]−1 [Be]T Weue. (3.75)

This is called discrete forward transformation.

3.7. Coupling between Elements

In the previous Section, we described how to perform integration and differentiation on

each element Ωe in the domain. However, in order to obtain a global solution over the

whole domain Ω, we need to introduce some appropriate form of coupling between the

elements. There are different choices dependent on the type of the underlying partial dif-

ferential equations. In this Section, we will introduce the continuous Galerkin method,

where we couple the elements by imposing continuity and this is achieved by making the

approximation globally continuous. We also consider the discontinuous Galerkin method,

in which elements are coupled using fluxes across element boundary. Before we go into

the details of each of these methods, let us introduce the following notation for the con-

catenation of all elemental vectors and matrices:

1. vector of all local degrees of freedom

ûl :=
[
û1, û2, . . . , ûNel

]
. (3.76)

2. vector of all local physical values

ul :=
[
u1,u2, . . . ,uNel

]
. (3.77)
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3. global element-by-element matrix

Me :=




M1 0 0 0
0 M2 0 0

0 0 . . . 0
0 0 0 MNel



. (3.78)

Define the local expansion modes φepq(x, y) within our global solution domain Ω by

φepq(x, y) =




φpq(ξ1, ξ2), (x, y) ∈ Ωe,

0, otherwise,
(3.79)

where

ξ1 = [χe1]−1 (x, y), ξ2 = [χe2]−1 (x, y) (3.80)

and χei is the iso-parametric mapping introduced in Section 3.4.

3.7.1. Continuous Galerkin Method

If we choose to couple the elements by enforcing continuity in the approximation of the

solution, we are looking for a solution in the following discrete space within the spec-

tral/hp element framework

Vδ(Ω) :=
{
v ∈ C0(Ω) : v|Ωe ∈ PP (Ωe), ∀Ωe

}
. (3.81)

Here, PP (Ωe) is the space of polynomials of order P defined in the element Ωe. This

discrete space is spanned by globally continuous expansion modes, Φg. To construct this

globally continuous expansion from elemental or local contributions, we need to intro-

duce a local to global assembly process, often referred to as direct stiffness summation

or global assembly. To construct a system of globally continuous expansion modes Φg

out of the globally defined local expansion modes φepq defined by (3.79), we match corre-

sponding boundary and vertex modes as depicted in Figure 3.7(a). We only need to match

boundary and vertex modes, as all interior modes can be taken directly as global modes

as they are already C0 continuous over the whole domain, when we use definition (3.79).

Constructing global modes in this manner yields the global C0 continuous spectral/hp

approximation

u(x, y) =
Ndof−1∑

n=0
Φn(x, y)ûgn =

Nel∑

e=1

P∑

p=0

P∑

q=0
φepq(x, y)ûepq, (3.82)
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ûe−1

ûe

φe−1
01

φe
31

ûg

Φg

(a) Construction of global mode Φg .

∫
φe−1

01

+u(x, y)

∫
φe

31

u(x, y)

∫
Φg

u(x, y)=

(b) Global evaluation of inner product.

Figure 3.7.: (a) Construction of globally continuous global modes Φg from elemental
modes φpq by matching of corresponding boundary modes and (b) integra-
tion in the global region is the sum of the integration in the local regions (see
Karniadakis and Sherwin (2005)).

where ûgn are the global degrees of freedom corresponding to the global expansion basis

Φn. TheNel×(P+1)2 elemental degrees of freedom ûepq can be related to theNdof global

degrees of freedom ûgn through the local-to-global mapping, which can be represented by

a matrix operation A,

ûl = Aûg. (3.83)

The scatter matrix A is sparse and contains typically one entry of 1 on any given row. It

distributes the vector of global coefficients ûg upon the vector of local coefficients ûl. We

can now define the assembly process from local to global degrees of freedom in terms of

the global assembly matrixAT . Considering the global inner product of a function u(x, y)
with respect to the global basis Φn

Îg[n] =
∫

Ω
u(x, y) Φn(x, y) dx dy (3.84)
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and the elemental integral

Îe[m] =
∫

Ωe
u(x, y)φem(x, y) dx dy (3.85)

we can define the global assembly matrixAT as the representation of a mapping which ex-

presses the global inner product in terms of the sum of their local elemental contributions

as depicted in Figure 3.7(b)

Îg = AT Îe. (3.86)

Here, the underlined matrix Îe is the global element-by-element matrix as defined in Equa-

tion (3.78). Using these matrix definitions, we can now formulate operations in terms of

global matrices. For example, the global forward transformation is given by

ATMeA ûg = AT [Be]T Weul (3.87)

where

Mg := ATMeA (3.88)

is the global mass matrix. The global matrix Mg is usually too large to store and to invert

Mg =

AT

1
1 1

1 1
1 1

1
1

1
1

1

M1

M2

M3

M4

A
1

1
1
1

1
1
1

1
1
1

1
1

=
Mbb Mbi

Mib Mii

Figure 3.8.: Schematic structure of the global matrix (see Karniadakis and Sherwin (2005)
for further details).

directly. However, we can reduce the global matrix into smaller components using the

boundary-interior decomposition of the spectral/hp element expansion modes. The global

matrix can be split into components containing boundary and interior contributions

Mg =
[

Mbb Mbi

Mib Mii

]
, (3.89)
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where the matrix Mbb denotes the global assembly of the elemental boundary-boundary

mode interactions, Mbi and Mib correspond to the global assembly of the elemental

boundary-interior coupling and Mii denotes the block-diagonal matrix of elemental interior-

interior mode interactions. This matrix decomposition is called substructuring or static

condensation and has the structure shown in Figure 3.8. Note that, Mii is block diagonal

and therefore very inexpensive to evaluate since each block may be inverted individually.

This arises from the fact that the interior modes are non-overlapping and it is the structure

of Mii which makes the substructuring so effective. The global "submatrices" Mbb, Mib,

Mbi and Mii are constructed from the elemental matrices by

Mii = Me
ii, (3.90)

Mbi = ATb Me
bi, (3.91)

Mib = Me
ibAb, (3.92)

Mbb = ATb Me
bbAb. (3.93)

Here,Ab is the boundary version ofA. It scatters the global boundary degrees of freedom

to the local boundary degrees of freedom. Similarly, ATb assembles the global boundary

degrees of freedom from the local boundary degrees of freedom.

Now, the static condensation enables us to solve global systems effectively. Consider,

for example, the continuous forward transformation (3.87). If we decompose ûg and

f = AT [Be]T Weue into their boundary and interior components ûb, ûi, fb,fi, the for-

ward transform becomes
[

Mbb Mbi

Mib Mii

] [
ûb
ûi

]
=
[

fb
fi

]
. (3.94)

Performing a block elimination, we obtain

[
S 0

Mib Mii

] [
ûb
ûi

]
=
[

fb −Mbi [Mii]−1 fi
fi

]
, (3.95)

where

S = Mbb −MbiM−1
ii Mib = ATb

[
Me

bb −Me
bi

[
Me

ii

]−1
Me

ib

]
Ab (3.96)

is the so-called Schur complement. The boundary unknowns can be determined by

S ûb = fb −Mbi [Mii]−1 fi (3.97)
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and once the boundary solution is known, we obtain the interior solution using

ûi = [Mii]−1 fi − [Mii]−1 Mibûb. (3.98)

To calculate the inverse of the Schur complement, we apply the so-called multi-static

condensation technique explained in Karniadakis and Sherwin (2005) and Vos (2011). In

the multi-static condensation technique, we decompose the Schur complement repeatedly

into modes that couple with each other and modes that do not interact with each other to

obtain a matrix structure for the Schur complement as shown in Figure 3.8. For example,

in the second level of static condensation, we use the fact that, even though the boundary

modes are coupled to all boundary modes within an element and the boundary modes

of neighbouring elements of that element, they are not coupled within non-neighbouring

elements.

Boundary Conditions

In general, we treat all boundary modes that touch the solution domain boundary as global

degrees of freedom. However, boundaries with Dirichlet conditions are not part of the

Galerkin test space. Therefore, we remove the Dirichlet degrees of freedom from the

global degrees of freedom by lifting the solution at the Dirichlet boundary as follows.

First, we decompose the solution into an unknown homogeneous solution, uH(x), and the

known Dirichlet boundary values uD(x) along the Dirichlet part of the boundary ΓD, i.e.

u(x) = uH(x) + uD(x), (3.99)

uH(ΓD) = 0, u(ΓD) = uD(ΓD). (3.100)

For the discrete solution, uδ(x), this means we separate the global solution array û into

known Dirichlet degrees of freedom, ûD, corresponding to the global expansion functions

ΦD
j (x), which has support on the Dirichlet boundary and the unknown degrees of freedom,

ûH , corresponding to the global expansion functions with zero support on the Dirichlet

boundary ΦH
j (x), that is,

uδ(x) =
∑

j∈NH
ûHj ΦH

j (x) +
∑

i∈ND
ûDi ΦD

i (x), (3.101)

where Φj(x) are the global expansion modes, NH is the number of global homogeneous

degrees of freedom andND is the number of global degrees of freedom with contributions

on the Dirichlet boundary. In order to remove the known Dirichlet degrees of freedom

from the matrix system, we reorder the global degrees of freedom such that the unknown

boundary degrees of freedom are ordered first, followed by the known degrees of freedom
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given by the Dirichlet boundary condition.

Consider the Galerkin L2-projection

(vj , u(x))Ω = (vj , f)Ω in Ω, (3.102)

u(x) = uD on ΓD, (3.103)

where vj = ΦH
j are the Galerkin test functions which are zero at the Dirichlet boundary.

Using the decomposition of u(x) according to Equation (3.101),i.e.

u = BH ûH + BDûD, (3.104)

the Dirichlet part of the solution can be lifted out of the global matrix system by

MHH ûH =
[
BH

]T
WHf −MHDûD. (3.105)

Here,

MHH [i][j] =
∫

Ωt
ΦH
j ΦH

i , i ∈ NH , j ∈ NH, (3.106)

MHD[i][j] =
∫

Ωt
ΦH
j ΦD

i , i ∈ ND, j ∈ NH. (3.107)

The solution is then given by

u = BH
[
(MHH)−1

(
(BH)TWHf −MHDûD

)]
+ BDûD. (3.108)

3.7.2. Discontinuous Galerkin Method

Ωel Ωeuext uint

V

Ωel Ωeuext uint

V

Figure 3.9.: Coupling of element Ωe with neighbouring element Ωel through upwind flux.

While the continuous Galerkin method is a suitable method to couple elements for the

solution of a wide range of partial differential equations in a region Ω, there is a more
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natural way to couple elements in equations describing transport phenomena, that can

improve the stability and accuracy of a scheme. For example, the advection of a conserved

quantity u(x, t) in a region Ω, described by the nonlinear hyperbolic conservation law

∂u

∂t
+∇ · F(u) = 0, (3.109)

where F(u) is a flux vector defining the transport of u(x, t), tends to have solutions that

include discontinuities, e.g. shocks. This suggests that a more appropriate choice for the

discrete test and trial spaces would allow for these discontinuities to appear in the solution.

The so-called discontinuous Galerkin method was first introduced by Lesaint and Raviart

(1974) for the solution of the neutron transport equation. A discrete space that allows for

discontinuities within spectral/hp element framework, is given by the space of piecewise

continuous polynomial functions such as

Vδ =
{
v ∈ L2(Ω) : v|Ωe ∈ PP (Ωe) , ∀Ωe

}
. (3.110)

Here, PP (Ωe) is the space of polynomials of order P defined in the element Ωe.

Using this space as our trial and test space, we form the weak formulation of Equa-

tion (3.109) over each element Ωe

∫

Ωe
φpq

∂u

∂t
dΩ +

∫

Ωe
φpq∇ · F(u) dΩ = 0. (3.111)

Then, in contrast to the Galerkin method, we integrate the equation by parts and obtain

∫

Ωe
φpq

∂u

∂t
dΩ +

∫

∂Ωe
φpqF(u) · n dΓ−

∫

Ωe
∇φpq · F(u) dΩ = 0. (3.112)

The integral term over the elemental boundary can now be used to couple the elements

through the flux F(u). This flux F(u) enables information to propagate across elements

and boundary conditions can be enforced through it within each element. This means

that we can solve the equation element-by-element and a global assembly is no longer

required. As the flux F(u) is computed at the boundary between adjacent elements, where

the solution might be discontinuous, we have two possible values of the solution: one

external to the element, uext(x), and one internal to the element, uint(x). Therefore the

flux in the boundary integral becomes a function of these two values f̃ e(uext(x), uint(x)).

That means, in an implementation, we replace the flux F(u) in the boundary integral with

the numerical flux f̃ e(uext(x), uint(x)). The numerical flux f̃ e(uext(x), uint(x)) can be

chosen based on the natural propagation of the solution of the hyperbolic conservation law

along the characteristics. For example, for the linear advection equation, i.e. F(u) = Vu,
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where V is a divergence free velocity field, a choice of f̃ e(uext(x), uint(x)) using an

upwinded approach generates a stable scheme (see Figure 3.9). Upwinding means that

if information is transported into the element Ωe, i.e. is entering the domain Ωe, from a

neighbouring element Ωel , the flux at the boundary f̃ e(uext(x), uint(x)) for element Ωe

contains a higher percentage of the external value of the quantity of the neighbouring

element Ωel than of the internal value of the element. This gives an inflow condition for

each element Ωe, where information is transported into the domain. In this thesis, we

employ the numerical flux f̃ e(uext(x), uint(x)) defined as follows

f̃ e(uext(x), uint(x)) =





V(γ uext(x) + (1− γ)uint(x)), V · n < 0

V(γ uint(x) + (1− γ)uext(x)), V · n ≥ 0

VuD, at inflow boundary

Vuint, at outflow boundary
(3.113)

for some γ ∈ [0.5, 1]. For γ = 1 we obtain a fully upwind scheme. Here, n is the

outward unit normal vector on ∂Ωe. However, this is just one of the many possible choices

for an upwind scheme. Note that, we have used the discontinuous Galerkin formulation

given in Equation (3.112) in our implementation. Solving Equation (3.112) in two space

dimensions with the spectral/hp element method yields the following matrix operations

for each element Ωe

dûe
dt

= [Me]−1
[
(De

xBe)T WeΞe(f(u)) +
(
De
yBe

)T
WeΞe(g(u))

]
− [Me]−1 be,

(3.114)

where be is the vector corresponding to the surface integral

be[n(pq)] =
∫

∂Ωe
φpq f̃ e(uext(x), uint(x)) · nedΓ, (3.115)

F(u) = [f(u), g(u)]T is the two dimensional flux and

Ξe(f(u))[m(ij)][n(rs)] = f(u)|(ξ1i ,ξ2j )δmn. (3.116)

Note that Equation (3.114) only involves the inversion of the local elemental mass matrix,

which is significantly cheaper to invert than the global mass matrix of the continuous

Galerkin discretisation. This element-by-element inversion is also ideal for the purpose of

parallelisation. An alternative implementation of the discontinuous Galerkin method is to
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integrate by parts again and obtain

∫

Ωe
φpq

∂uδ

∂t
dΩ +

∫

∂Ωe
φpq

(
f̃ e(uext, uint)− F(uδ)

)
·n dΓ +

∫

Ωe
φpq∇ ·F(uδ) dΩ = 0.

(3.117)

This version does not include the derivative of the test functions and is therefore more

consistent with the continuous Galerkin formulation.

Note that, in the discontinuous Galerkin method, we weakly impose the boundary con-

ditions by enforcing them through the flux values, in contrast to the continuous Galerkin

method, where we strongly enforce the Dirichlet boundary condition through lifting of

the Dirichlet degrees of freedom. Details on other upwind scheme and the discontinuous

Galerkin method can be found in the monographs of Karniadakis and Sherwin (2005) and

Cockburn and Quarteroni (1998).
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3.8. Example: One-Dimensional Projection and
Advection

0 1Ω0 2Ω1 3Ω2 4Ω3 5Ω4 6Ω5 7Ω6 8Ω7 9Ω8 10Ω9

V

Figure 3.10.: One dimensional advection of square wave on domain Ω = [0, 10] subdi-
vided into 10 equally-sized elements.

In order to demonstrate the capabilities and limitations of the spectral/hp element method

in comparison to the finite element, we investigate the approximation error for different

functions using Galerkin projection and one-dimensional constant linear advection. We

examine three functions with decreasing smoothness:

• a smooth Gaussian function

f0(x) = e−10(x−3)2
. (3.118)

• a hat function

f0(x) =





x− 2, for 2 ≤ x ≤ 3,

1− (x− 3), for 3 < x ≤ 4,

0, otherwise .

(3.119)

• a square wave function

f0(x) =





1, for 2 ≤ x ≤ 4,

0, otherwise.
(3.120)

For the one-dimensional linear advection equation, we will compare the performance of

the continuous Galerkin method and the discontinuous Galerkin method. And for the pro-

jection, we will perform a continuous projection and an element-by-element projection.

We consider the one dimensional domain I = [0, 10] decomposed into ten elements of

the same size. For the spectral/hp element method, we increase the number of degrees

of freedom by increasing the polynomial order and for the finite element method we sub-

divide each element into equally sized smaller elements. We compare both methods for

the same number of local degrees of freedom. That means we compare the behaviour of

p-convergence for the spectral/hp element method and h-convergence for the linear finite
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element method. Note that, we recover the linear finite element method for P = 1 in the

spectral/hp element method.

We measure the error for each refinement level, l, in terms of the discrete normalised L2-

error, El2, and of the discrete relative L∞-error, El∞. These errors are defined as follows

El2 =

√∑Nel
e=1 (||f0 − f δ||e2)2

√∑Nel
e=1 (||f0||e2)2

, with ||f0||e2 =
√∫

Ωe
f2

0dΩ, (3.121)

El∞ =
max1≤e≤Nel

(
||f0 − f δ||e∞

)

max1≤e≤Nel (||f0||e∞) , with ||f0||e∞ = max
1≤i,j<Q

|f0(ξ1i , ξ2j )|.(3.122)

Here, the integrals in the norm || · ||e2 are computed using Gaussian quadrature, | · | denotes

the absolute value and f δ denotes the numerical solution. The rate of convergence pl from

level l to a higher refinement level l + 1, is determined by

pl =
log

(
El+1

El

)

log
(

DOFl+1

DOFl
) . (3.123)

The rate of convergence plotted in the following graphs is computed using linear regres-

sion, i.e. we determine y(x) = px+ b with

p =
∑Nl
l=1(xl − x)(yl − y)
∑Nl
l=1(xl − x)2

, (3.124)

where Nl is the number of levels, xi = log(DOFl), yi = log(El) and

x = 1
Nl

Nl∑

l=1
xl

is the arithmetic mean.
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3.8.1. Galerkin Projection

We perform a one-dimensional Galerkin projection for the three functions f0(x) specified

in (3.118), (3.119) and (3.120). We compare Galerkin projections performed element-by-

element and globally C0. The Galerkin projection for an element is given by

(f , φq)δΩe = (f0, φq)δΩe , ∀q ∈ [0, P ] (3.125)

which is solved as follows

f̂ e =
[
[Me]−1

(
[Be]T Wef e0

)]
. (3.126)

For the element-by-element projection, we solve Equation (3.126) for each element. For

the continuous Galerkin method, we need to form the global matrix system and invert

the global matrix using the multi-level static condensation technique as explained in Sec-

tion 3.7.1. The global problem is given by

f̂g = [Mg]−1
(
AT [Be]T WeAf̂0,g

)
, (3.127)

where

Mg := ATMeA. (3.128)

After solving Equation (3.126) or Equation (3.127), we obtain the values of the approxi-

mated solution by

fe,δ(ξi) =
P∑

p=0
φp(ξi)f̂ep , ∀ξi, i = 1, . . . , Q, ∀Ωe (3.129)

The results of the projection in comparison to the analytical functions are plotted for a

total number of local degrees of freedom of 90 together with the L2 error and the L∞

error for an increasing number of local degrees of freedom in Figures 3.11-3.13. We com-

pare the performance of the spectral/hp element method for P = 8, i.e. the number of

modes per element is Nm = 9, and Nel = 10 with the linear finite element method, i.e.

Nm = 2, for Nel = 45 yielding a total number of local degrees of freedom of 90 for

both methods. To investigate the convergence properties of the methods, the local number

of degrees of freedom is increased by increasing the polynomial order for the spectral/hp

element method while keeping the element size constant and decreasing the element size

for the linear finite element method.

In Figure 3.11(e) and (f), we observe that for the smooth Gaussian function the spectral/hp

element method captures the function excellently and we can observe exponential conver-
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gence of the computed projection to the analytical function with increasing polynomial

order in terms of the L2 and L∞ error. In the finite element method the numerical projec-

tion suffers from numerical diffusion in contrast to the spectral/hp element method. The

order of convergence with decreasing mesh size for the finite element method is around 2.

Figure 3.12 (e) and (f) shows the numerical L2 projection of the hat function. The spec-

tral/hp element method is able to capture the hat function up to machine precision from

the lowest polynomial order tested P = 2. The finite element method suffers again from

numerical diffusion, i.e. it underpredicts the peak value. The numerical diffusion of the

sharp peak value of the hat function remains dominant with decreasing mesh size and the

order of convergence is 1 in terms of the L2 error and 1.5 in terms of the L∞ error.

In Figure 3.13, we observe the so-called Gibbs phenomenon in the numerical projection.

The approximation of the jump discontinuity using the spectral/hp element method yields

over- and undershoots near the jump. However, these oscillations are confined to one ele-

ment. The number of over- and undershoots equals the number of degrees of freedom in

the element (P +1), i.e. in Figure 3.13(a) and (b) five overshoots and four undershoots for

a polynomial order of P = 8. Even though the number of over and undershoots increases

with polynomial order their magnitude decreases with increasing polynomial order and

the projection slowly converges to the analytical function with a convergence order of

0.88 in terms of L2 and 1.38 in terms of L∞. The magnitude of the overshoot on the

element boundary of the element at the bottom of the jump discontinuity is lower for the

global C0 projection than for the element by element projection.

The numerical projection using the linear finite element method yields one over and un-

dershoot at the bottom and the top of each jump discontinuity for the global C0 projection

and one undershoot for the element by element projection. The L2 error for the projection

almost stagnates and the L∞ error decreases slowly with decreasing mesh size with a rate

of convergence of 0.5.
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3.8.2. Advection

In this Section, we consider the linear advection of the function f(x, t) with constant

advection velocity V = 1, described by the linear advection equation

∂f(x, t)
∂t

+ V
∂f(x, t)
∂x

= 0 in Ω = [0, 10] ,

f(x, 0) = f0(x),

f(0, t) = f(10, t) = 0. (3.130)

We discretise the equation in weak form, by taking the inner product of the advection

equation with respect to the test function v. For the continuous Galerkin method the weak

formulation is given by (
v,
∂f

∂t

)

Ω
+
(
v, V

∂f

∂x

)

Ω
= 0 (3.131)

which, with v = φp(x), in matrix notation becomes

Mg
df̂g
dt

+AT
(
[Be]T WeDeBe

)
A f̂g = 0, (3.132)

where

De = ΞeDe
ξ, Ξe[m(ij)][n(rs)] = V

∂ξi
∂xj

δmn. (3.133)

For the discontinuous Galerkin method, the weak form is given by

(
v,
∂f

∂t

)

Ωe
+
[
v f̃e(fext, f int)

]
∂Ωe
−
(
∂v

∂x
, V f

)

Ωe
= 0 (3.134)

where 〈·〉∂Ωe denotes the boundary integral. Employing a fully upwind scheme with γ = 1
in Equation (3.113) for the numerical flux yields

f̃e(fext, f int) =




V f int, V · n ≥ 0,

V fext, V · n < 0.
(3.135)

Integrating by parts again yields

(
v,
∂f

∂t

)

Ωe
+
[
v
(
f̃e(fext, f int)− fV

)]
∂Ωe

+
(
v, V

∂f

∂x

)

Ωe
= 0. (3.136)
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In our one dimensional example the numerical flux in an element Ωe = [xL, xR] with

v = φp becomes

[
φp
(
f̃e(fext, f int)− fV

)]
∂Ωe

=
[(
φp
(
f̃e(fext, f int)− fV

))]xR
xL

= φp(xR)
(
f̃e(xR)− f(xR)u(xR)

)
− φp(xL)

(
f̃e(xL)− f(xL)u(xL)

)
. (3.137)

For the numerical flux, we have, for V = 1

f̃e(xR) = f int(xR) as nR = 1, (3.138)

f̃e(xL) = fext(xL) as nL = −1, (3.139)

and as f(xR) = f int(xR) and f(xL) = f int(xL), we obtain

〈
φp,

(
f̃e(fext, f int)− f

)
· n
〉
∂Ωe

= −φp(xL)
(
fext(xL)− f int(xL)

)
. (3.140)

Note that for our spectral/hp element basis and for the finite element basis only φ0 has

a contribution at the boundary vertex xL and that contribution is one (see Figure 3.3(b)).

Therefore the discontinuous Galerkin formulation with v = φp of Equation (3.136) be-

comes
(
φ0,

∂f

∂t

)

Ωe
+
(
φ0,

∂f

∂x

)

Ωe
−
(
fext(xL)− f int(xL)

)
= 0, (3.141)

(
φp,

∂f

∂t

)

Ωe
+
(
φp,

∂f

∂x

)

Ωe
= 0, 1 ≤ p ≤ P. (3.142)

The discontinuous Galerkin discretisation in matrix notation becomes

Medf̂ e
dt

+
(
[Be]T WeDeBe

)
f̂ e + be = 0. (3.143)

Here, De is the same matrix as defined in (3.133) and the vector be is

be[0] = −
(
fext(xL)− f int(xL)

)
, (3.144)

be[n(pq)] = 0, for 1 ≤ p, q ≤ P. (3.145)

Note that, the matrix formulation (3.143) is very similar to the matrix formulation of the

continuous Galerkin discretisation (3.132). However, the significant difference is that in

the DG discretisation, we do not need to assemble the global system and we can compute

the solution element-by-element thanks to the coupling of the element through the bound-

ary integral.
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The solution for the continuous Galerkin method is determined by

df̂g
dt

= − [Mg]−1
[
AT

(
[Be]T WeDeBe

)
A f̂g

]
, (3.146)

where the inversion of the global matrix is computed using the multi-static condensation

technique explained in Section 3.7.1. And for the discontinuous Galerkin method the

solution is determined by

df̂ e
dt

= − [Me]−1
[(

[Be]T WeDeBe
)

f̂ e + be
]
, ∀Ωe. (3.147)

We solve the linear advection equation in time using a fourth-order Runge-Kutta method

and transport the function f(x, t) for 30000 timesteps of size ∆t = 10−4, i.e. until the

final time tfin = 3.

The exact solution for the advection with convection velocity V until tfin of the three

investigated functions (3.118)-(3.120) is then given by

• for the smooth Gaussian function

f0(x) = e−10(x−(3+V tfin))2
. (3.148)

• for the hat function

f0(x) =





x− (2 + V tfin), for 2 + V tfin ≤ x ≤ 3 + V tfin,

1− (x− (3 + V tfin)), for 3 + V tfin < x ≤ 4 + V tfin,

0, otherwise .

(3.149)

• for the square wave function

f0(x) =





1, for 2 + V tfin ≤ x ≤ 4 + V tfin,

0, otherwise.
(3.150)

We observe in Figure 3.14 that for the spectral/hp element method the error for the trans-

port of the smooth Gaussian function decreases exponentially with increasing polynomial

order. Continuous Galerkin and discontinuous Galerkin yield similar results for the spec-

tral/hp element method. The only difference is in an onset of slight oscillations in the wake

of the Gaussian function for the continuous Galerkin method. For the continuous Galerkin

linear finite element method, we observe numerical diffusion and strong oscillations in the

wake. The discontinuous Galerkin linear finite element method performs undershoots near

the Gaussian hump and the convergence rate for the finite element method is around 1.8.
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Figure 3.15 reveals similar qualitative behaviour for the approximation of the hat function

for the finite element method with decreased convergence rate of 1 for the L2 error and

1.34 for the L∞ error. However, for the spectral element method, the exponential conver-

gence is lost as the hat function gets smoothed by the approximation at the top of the hat

function and at the bottom and the convergence rate reduces to linear convergence with a

rate of 1.21 for the L2 error and 1.69 for the L∞ error.

Figure 3.16 reveals the dramatic consequences of the Gibbs phenomenon in advection of a

jump discontinuity. In the continuous Galerkin method for the spectral/hp element method

the oscillations occurring around the jump discontinuity in the approximation as displayed

in Figure 3.13(a) are transported across the whole domain even yielding divergence with

increasing polynomial order. The discontinuous Galerkin method for the spectral/hp el-

ement prevents the oscillations from convecting into the whole domain and yields much

smaller oscillations only in the direction of the advection velocity and close to the first

jump discontinuity and on top of the square wave. For the finite element method, strong

oscillations occur in the wake and on the top of the square wave. However, there is no

divergence with decreasing mesh size. The discontinuous Galerkin linear finite element

method prevents these oscillations and simply shows an undershoot near the jump continu-

ity and an overshoot on top of the square wave. There is almost no convergence observed

in terms of the L2 error for DG for the spectral/hp element method and for the DG and

the C0 method for the finite element method. In terms of the L∞ error the DG method

for the spectral/hp method converges with a rate of 0.5, which is slightly higher than the

convergence rate of 0.33 for the DG method for the finite element method.

These examples show very clearly that the DG method is superior to the continuous

Galerkin method for advection dominated problems. For all three tested function the dis-

continuous Galerkin method for the spectral/hp element method showed the lowest error.

However, spectral convergence can only be achieved for smooth functions.
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(b) Spectral/hp elementwise projection.
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(d) FEM elementwise projection.
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Figure 3.11.: Comparison of Galerkin projection for the Gaussian function of ((a), (b))
spectral/hp element method and ((c), (d)) linear finite element method for
DOF = 90 and the corresponding L2 and L∞ error for increasing DOF
((e), (f)).
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(a) Spectral/hp C0 projection.
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(b) Spectral/hp elementwise projection.
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(d) FEM elementwise projection.
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Figure 3.12.: Comparison of Galerkin projection for the hat function of ((a), (b)) spec-
tral/hp element method and ((c), (d)) linear finite element method for
DOF = 90 and the corresponding L2 and L∞ error for increasing DOF
((e), (f)).
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(a) Spectral/hp C0 projection.
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(b) Spectral/hp elementwise projection.
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(c) FEM C0 projection.
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(d) FEM elementwise projection.
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(e) L2 error for Galerkin projection.
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(f) L∞ error for Galerkin projection.

Figure 3.13.: Comparison of Galerkin projection for the square wave function of ((a), (b))
spectral/hp element method and ((c), (d)) linear finite element method for
DOF = 90 and the corresponding L2 and L∞ error for increasing DOF
((e), (f)).
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(a) C0 spectral/hp element method.
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(b) Upwind DG spectral/hp element method.
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(c) C0 finite element method.
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(d) Upwind DG finite element method.
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(e) L2 error at tfin = 3.
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(f) L∞ error at tfin = 3.

Figure 3.14.: Comparison of the numerical results for the advection equation after 30000
timesteps with ∆t = 10−4 using the continuous Galerkin method and the
discontinuous Galerkin method for the spectral/hp element method for P =
8, Nel = 10 ((a), (b)) and the linear finite element method, i.e. P = 1, for
Nel = 45 ((c), (d)) for the smooth Gaussian function and the L2 and L∞

error for increasing DOF ((e), (f)).
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(a) C0 spectral/hp element method.
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(b) Upwind DG spectral/hp element method.
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(c) C0 finite element method.
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(d) Upwind DG finite element method.
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(e) L2 error at tfin = 3.
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(f) L∞ error at tfin = 3.

Figure 3.15.: Comparison of the numerical results for the advection equation after 30000
timesteps with ∆t = 10−4 using the continuous Galerkin method and the
discontinuous Galerkin method for the spectral/hp element method for P =
8, Nel = 10 ((a), (b)) and the linear finite element method, i.e. P = 1,
for Nel = 45 ((c), (d)) for the hat function and the L2 and L∞ error for
increasing DOF ((e), (f)).
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(a) C0 spectral/hp element method.
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(b) Upwind DG spectral/hp element method.
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(c) C0 finite element method.
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(d) Upwind DG finite element method.
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Figure 3.16.: Comparison of the numerical results for the advection equation after 30000
timesteps with ∆t = 10−4 using the continuous Galerkin method and the
discontinuous Galerkin method for the spectral/hp element method for P =
8, Nel = 10 ((a), (b)) and the linear finite element method, i.e. P = 1,
for Nel = 45 ((c), (d)) for the hat function and the L2 and L∞ error for
increasing DOF ((e), (f)).



Chapter 4
Temporal and Spatial Approximation
for Viscoelastic Flows

In this Section, we present the spatial and temporal approximations employed in this thesis

to solve the weak form of the equations governing viscoelastic flows (2.178), which were

introduced in Chapter 2. As mentioned in Chapter 2 the system of equations (2.178) are of

mixed type: the conservation laws are of elliptic/parabolic type and the constitutive equa-

tion is hyperbolic (Gerritsma (1996); Owens and Phillips (2005)). Our numerical scheme

is based on the popular decoupled approach to split the formulation into the solution of the

conservation equations for velocity-pressure and into the computation of the constitutive

equation for the polymeric stress. To each of these two split “solution steps”, we apply a

stabilisation technique:

1. for the constitutive equation, we employ upwinding techniques in order to develop

a stable scheme considering its hyperbolic nature. As demonstrated in Section 3.8.2

on a one dimensional linear advection problem, the continuous Galerkin method is

not suitable for hyperbolic problems.

2. for the conservation equations, we introduce an additional elliptic operator into the

momentum equation in order to enhance stability. This elliptic operator is intro-

duced because for viscoelastic liquids, flow configurations of interest are often in a

parameter range of a low Newtonian to total viscosity, i.e. β << 1. This means the

elliptic term β∆u in the momentum equation is a lot weaker in the balance of terms

in comparison to the Navier-Stokes equations for Newtonian liquids, i.e. β = 1.

In addition to these two stabilisation techniques, we need to consider compatibility condi-

tions in the selection of the discrete spaces for the three variables of velocity, pressure and

polymeric stress. An overview of stabilisation techniques for viscoelastic flow is given in

Baaijens (1998).

In the following, we employ the following notation. Let a, b be two scalars, a,b be two

vectors and A,B be two tensors. Then, the inner products (·, ·)Ω and 〈·, ·〉∂Ω are defined
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as follows

(a, b)Ω =
∫

Ω
ab dΩ, (4.1)

(a,b)Ω =
∫

Ω
a · b dΩ, (4.2)

(A,B)Ω =
∫

Ω
A : B dΩ, (4.3)

〈A · n,b〉Γ =
∫

Γ
(A · n) · b dΓ. (4.4)

4.1. Stabilisation Techniques

4.1.1. Upwinding Techniques for the Constitutive Equations

A constitutive equation of Maxwell and Oldroyd-type for the polymeric stress is hyper-

bolic in nature (see Owens and Phillips (2005)), which means we need to incorporate

discretisation techniques suitable for hyperbolic problems such as upwinding techniques,

e.g. streamline upwind/Petrov-Galerkin (SUPG, Brooks and Hughes (1982)) or discon-

tinuous Galerkin methods (Lesaint and Raviart (1974)).

The SUPG method, first applied to viscoelastic flows by Marchal and Crochet (1987), is

applied to the Oldroyd-B constitutive equation, for example, by modifying the test func-

tion space with an upwind factor

(
Wi
∇
τττ + τττ − 2(1− β)D, φτττ + γ∇φτττ

)

Ω
= 0, (4.5)

where γ is the upwind parameter. Several choices for γ have been introduced, however,

all are of the form

γ = h

U
, (4.6)

where h is a characteristic length-scale of an element and U is a characteristic velocity,

e.g. the norm of the velocity u or a characteristic velocity of the flow. An SUPG method

suitable for nodal spectral element methods has been presented by Owens et al. (2002).

The SUPG method may produce oscillatory stress fields at steep stress boundary layers or

near singularities.

Another possibility to account for the hyperbolic nature of the constitutive equation is

the discontinuous Galerkin method introduced in Section 3.7.2, which we employ in this

thesis in order to solve the constitutive equation. The discontinuous Galerkin method

was first applied to viscoelastic flows by Fortin and Fortin (1989). We demonstrated the

advantages of the discontinous Galerkin method over the continuous Galerkin method in

Section 3.8.2 on a one dimensional linear advection problem. To employ the discontinuous
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Galerkin method, we integrate the convection term u · ∇τττ in the constitutive equation by

parts on each element Ωe, which yields
∫

Ωe
(u · ∇τττ) : φτττ dΩe = −

∫

Ωe
(u · ∇)φτττ : τττ dΩe +

∫

∂Ωe
(u · n)τττ : φτττ dΓ (4.7)

Note that the elemental domains Ωe are now coupled through the boundary integral term

and the equations can be solved element-by-element. Next, we replace the term (u · n)τττ
in the boundary integral by the boundary flux f̃ e(τττ ext(x), τττ int(x)) given by

f̃ e(τττ int(x), τττ ext(x)) =





(u · n)(γτττ ext + (1− γ)τττ int), u · n < 0,

(u · n)(γτττ int + (1− γ)τττ ext), u · n ≥ 0,

(u · n)τττ in, at inflow boundary,

(u · n)τττ int, at outflow boundary,

(4.8)

where τττ ext(x) is the value of τττ external to the element and τττ int(x) is the value internal

to the element and γ ∈ [0, 1]. For γ = 1, we obtain a fully upwind approximation to the

flux. Here, τττ in denotes the Dirichlet inflow values of the polymeric stress.

4.1.2. DEVSS-G Formulation

In order to stabilise the numerical solution by improving the ellipticity of the momentum

equation, we employ a variant of the discrete elastic viscous split stress DEVSS method,

the DEVSS-G scheme, first introduced by Liu et al. (1998). The DEVSS-G method is

based on methods that were introduced earlier. The success of schemes introducing addi-

tional ellipticity into the momentum equations arises from the explicit form of the viscous

operator in the momentum equation, which results in solving an elliptic saddle point prob-

lem. For viscoelastic liquids this viscous term is scaled with the ratio of Newtonian to

total viscosity. As we are usually interested in flow configurations with dominant vis-

coelastic effects, the ratio of Newtonian to total viscosity as defined in (2.173) is usually

chosen to be small β ≈ 0.1 (i.e. 90 % polymeric viscosity to 10 % Newtonian viscosity).

In these cases the elastic stress contribution can dominate the viscous term and this can

lead to instabilities. The more dominant the viscous term is in the equation, relative to the

elastic stress contribution, the better the performance of the method. An overview over

these methods can be found in Baaijens (1998) and Owens and Phillips (2005). The idea

of introducing ellipticity through a change of variables was first employed in the elastic

viscous split stress (EVSS) formulation, introduced by Perera and Walters (1977), used by

Mendelson et al. (1982) for second order fluids and extended for viscoelastic liquids by

Beris et al. (1984). In the EVSS scheme, we perform a change of variables to the stress
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variable ΣΣΣ
ΣΣΣ = τττ − 2(1− β)D. (4.9)

Substituting this expression into the governing equations introduced in Problem 2.11 for

Oldroyd-B flow with
Du
Dt

= 0 yields

(
ΣΣΣ + Wi

∇
ΣΣΣ + 2(1− β)Wi

∇
D, φΣ

)

Ω
= 0, (4.10)

(2D + ΣΣΣ,∇φu)Ω − (p, ∇ · φu)Ω = 0, (4.11)

(∇ · u, ψ)Ω = 0. (4.12)

Here, we assume that all boundary terms are zero. One disadvantage of this formulation

is that in Equation (4.10), we need to evaluate the upper convected derivative of the rate

of deformation tensor, which includes the second-order derivative of the velocity field. In

order to avoid this, Rajagopalan et al. (1990), proposed treating the rate of deformation

tensor as a separate unknown and computing it using an L2-projection of the rate of defor-

mation tensor. Sun et al. (1996) introduced the adaptive viscoelastic split stress (AVSS)

scheme, in which the viscosity in the change of variables is adapted according to the flow

configuration, in such a way that the viscous contribution in ΣΣΣ is of at least the same order

as that of the elastic contribution.

Brown et al. (1993) used the velocity gradient tensor as an additional unknown, instead

of using the rate of deformation tensor. In this method, called the EVSS-G method, we

compute the additional unknown, the velocity gradient projection tensor G, by an L2

projection

(G−∇u, φG)Ω = 0. (4.13)

The change of variables performed in EVSS-type methods may be impossible to perform

for some constitutive equations. Therefore, Guénette and Fortin (1995) introduced the

discrete EVSS (DEVSS) method, in which no change of variables is required and the

viscous term is introduced into the momentum equation only in an approximate sense

using the numerical approximations. The discrete splitting method essentially adds and

subtracts two different approximations of the same viscous contribution to increase the

viscous contribution in the momentum equation that comes from the Newtonian viscosity.

In the limit where these approximations are exact, the added terms cancel, giving the orig-

inal equation. Introducing the discrete approximation of the rate of deformation tensor D,

computed by an L2 projection of the rate of deformation tensor, as an additional unknown

and including this term into the Cauchy stress tensor, by adding θD and subtracting the
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same amount in terms of the discrete approximation θD, that is,

σσσ ≈ −pI + 2βD + 2θ(D−D), (4.14)

the DEVSS formulation for steady state flows reads

Problem 4.1 (DEVSS). Find
(
u, p,D, τττ

)
∈ [H1

D(Ω)]2×[L2
0(Ω)]×[L2(Ω)]d2×[L2(Ω)]d2

s

such that, for all
(
φu, ψ, φD, φτττ

) ∈ [H1
0 (Ω)]d × [L2

0(Ω)]× [L2(Ω)]d2 × [L2(Ω)]d2
s

2(β + θ) (D, ∇φu)Ω − (p, ∇ · φu)Ω + (τττ , ∇φu)Ω − 2θ
(
D, ∇φu

)
Ω

= 0(4.15)

(∇ · u, ψ)Ω = 0, (4.16)
(
D−D, φD

)
Ω

= 0 (4.17)

Wi
(
Dτττ

Dt
−∇u · τττ − τττ · ∇uT , φτττ

)

Ω
+ (τττ , φτττ )Ω = 2(1− β) (D, φτττ )Ω ,(4.18)

where θ is the stabilisation parameter.

Here, we assume
Du
Dt

= 0 and that all boundary terms are zero. In analogy to the EVSS-G

method, the DEVSS-G method (Liu et al. (1998)) may be defined, where a projection of

the velocity gradient tensor is made instead of the rate of deformation tensor, that is,

σσσδ ≈ −pI + 2βD + θ(2D− (G + GT )). (4.19)

In this formulation the velocity gradient projection tensor is used in the constitutive equa-

tion as well as in the momentum equation. Sun et al. (1999) introduced the DAVSS-G

formulation in analogy to the AVSS formulation employing an adaptive stabilisation vis-

cosity that differs from element to element depending on the flow properties in an element.

Sun et al. (1999) combined the DAVSS-G with the discontinuous Galerkin method.

In this thesis, we employ the DEVSS-G method in combination with the discontinuous

Galerkin method for the constitutive equation. This algorithm is known as DEVSS-G/DG

and has been employed in the finite element context by Baaijens (1997), Sun et al. (1999),

Caola et al. (2001) and Kim et al. (2005). To the best of our knowledge, the DEVSS-

G/DG method has not been applied to spectral element methods. It has been implemented

in the context of spectral elements for the first time in this thesis. We choose the solution

space for the velocity gradient projection tensor as [L2(Ω)]d2
, to be consistent with the

spaces for pressure and polymeric stress, which are chosen to be L2
0(Ω) and [L2(Ω)]d2

s ,

respectively.
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We employ the following DEVSS-G formulation

Problem 4.2 (Weak Formulation DEVSS-G). Find (u, p,G, τττ) ∈ [H1
D(Ω)]2× [L2

0(Ω)]×
[L2(Ω)]d2 × [L2(Ω)]d2

s such that

Re
(
Du
Dt

, φu

)

Ω
+ (β + θ) (2D, ∇φu)Ω − (p, ∇ · φu)Ω

+ (τττ , ∇φu)Ω − θ
(
G + GT , ∇φu

)
Ω
− 〈σσσ · n, φu〉ΓN = 0,

(4.20)

(∇ · u, ψ)Ω = 0, (4.21)

(G−∇u, φG)Ω = 0, (4.22)

Wi
(
Dτττ

Dt
−G · τττ − τττ ·GT , φτττ

)

Ω
+ (τττ , φτττ )Ω + αWi

(1− β)
(
τττ2, φτττ

)
Ω

= (1− β)
(
G + GT , φτττ

)
Ω
,

, (4.23)

for all (φu, ψ, φG, φτττ ) ∈ [H1
0 (Ω)]d × [L2

0(Ω)]× [L2(Ω)]d2 × [L2(Ω)]d2
s . Here, ΓN is the

Neumann boundary.

If not stated otherwise, we choose

θ = (1− β) (4.24)

for the stabilisation parameter as discussed in Fortin (2000). Fortin (2000) also contains

further details on possible choices for the stabilisation parameter and admissible choices

for the discrete approximation unknowns.

4.2. Spatial Approximation of Velocity, Pressure and
Polymeric Stress

Before we discuss the details of suitable approximation spaces for velocity, pressure and

polymeric stress, we introduce some definitions for discrete polynomial spaces. To ap-

proximate the unknowns of velocity, pressure, velocity gradient projection tensor and the

polymeric stress tensor and to discretise Equations (4.20)-(4.23) in space, we use the spec-

tral/hp element method. In the spectral/hp element method we approximate the solution

using the modal expansion functions defined in Equation (3.24), which is a hierarchical

set of polynomials with highest polynomial order P . In detail, each element Ωe is mapped

onto the standard element Ωst using an iso-parametric mapping χχχ : Ωst → Ωe as ex-

plained in Section 3.4. This means, on each element, the solution is approximated in the

space of polynomials of degree P defined as

PP (Ωe) :=
{
g : g = ĝ ◦χχχ−1, ĝ ∈ PP (Ωst)

}
. (4.25)
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To obtain the approximate solution on the whole domain Ω, different coupling strategies

between the elements can be applied. In the continuous Galerkin method, we construct a

globally continuous expansion basis as explained in Section 3.7.1. With this in mind, we

define the globally continuous space of polynomials PcP (Ω) as

PcP (Ω) :=
{
g ∈ C0(Ω) : g|Ωe ∈ PP (Ωe), ∀Ωe

}
. (4.26)

However, if we do not seek a globally continuous solution, we can describe the approx-

imation using the space of piecewise continuous polynomials of degree P over Ω, that

is,

PP (Ω) :=
{
g ∈ L2(Ω) : g|Ωe ∈ PP (Ωe), ∀Ωe

}
. (4.27)

Using these polynomial spaces, we can define the discrete spaces for velocity, Vδ, pres-

sure, Qδ and polymeric stress Σδ. However, the discrete spaces have to be chosen with

care in order to ensure stability and uniqueness of the discrete solution. For Oldroyd-B

flow with
Du
Dt

= 0 and zero contribution from the boundary terms, the discrete three field

formulation reads

Problem 4.3 (MIX). Find
(
uδ, pδ, τττ δ

)
∈ Vδ ×Qδ × Σδ such that

2β
∫

Ωt
D : ∇φu dΩ−

∫

Ωt
p (∇ · φu) dΩ +

∫

Ωt
τττ : ∇φudΩ = 0,

∫

Ωt
(∇ · u) ψ dΩ = 0,

Wi
∫

Ωt

∇
τττ : φτττ dΩ +

∫

Ωt
τττ : φτττ dΩ− 2(1− β)

∫

Ωt
D : φτττdΩ = 0, (4.28)

for all (φu, ψ, φτττ ) ∈ Vδ ×Qδ × Σδ.

This formulation was introduced by Crochet et al. (1984). Fortin and Pierre (1987) have

shown that in the limiting case of the absence of a purely viscous contribution, i.e. β = 0,

the following conditions must hold

1. The discrete spaces for velocity and pressure have to satisfy the Ladyzhenskaya-

Babuška-Brezzi (LBB) condition (Brezzi, 1974) in order to avoid spurious oscilla-

tions in the pressure approximation and to ensure stability and uniqueness of the

discrete solution.

2. If the space for the polymeric stress is chosen to be discontinuous, as for example

in the discontinuous Galerkin method, the discrete space for the rate of deformation

tensor D must be contained in the discrete space for the polymeric stress D ∈ Σδ .
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3. If the space for the polymeric stress is chosen to be continuous, e.g. for the SUPG

method, the number of degrees of freedom for each component of τττ δ must be greater

than or equal to the number of all degrees of freedom of each component uδ.

Baranger and Sandri (1992) demonstrated that for β > 0 the third condition does not need

to be imposed. A choice of appropriate discrete spaces fulfilling the LBB condition for

higher order methods is given for the velocity space by

Vδ = [H1
0 (Ω)]2δ := [H1

0 (Ω)]2 ∩ [PcP (Ω)]2 (4.29)

in combination with an approximation of the pressure with a lower-degree polynomial of

order P − 2
Qδ = [L2(Ω)]δ := [L2(Ω)] ∩ PP−2(Ω) (4.30)

as shown by Maday et al. (1992). Gerritsma and Phillips (1999, 2001) have shown that for

the three field Stokes problem (4.28), in the limit of β = 0, well-posedness of the discrete

problem is guaranteed if, in addition to satisfying the LBB condition on the velocity-

pressure approximation, the degree of polynomial used for the polymeric stress compo-

nents is at least as great as that used for the components of velocity. Therefore, we choose

for the polymeric stress

Σδ = [L2(Ω)]d2
s,δ := [L2(Ω)]d2

s ∩ [PP (Ω)]d2
. (4.31)

For the DEVSS-G method, we need to choose an appropriate function space for the ve-

locity gradient projection tensor G as

Σδ
G = [L2(Ω)]d2

δ := [L2(Ω)]d2 ∩ [PP (Ω)]d2
(4.32)

which fulfils Requirement 2, i.e. D = 1/2(G + GT ) ∈ Σδ. Thus, the approximation of
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the dependent variables in any parent element (ξ1, ξ2) ∈ [−1, 1]2 take the form

uδ(ξ1, ξ2) =
P∑

p=0

P∑

q=0
ûpqφp(ξ1)φq(ξ2), (4.33)

vδ(ξ1, ξ2) =
P∑

p=0

P∑

q=0
v̂pqφp(ξ1)φq(ξ2), (4.34)

pδ(ξ1, ξ2) =
P−2∑

p=0

P−2∑

q=0
p̂pqφp(ξ1)φq(ξ2), (4.35)

τ δkl(ξ1, ξ2) =
P∑

p=0

P∑

q=0
τ̂klpqφp(ξ1)φq(ξ2), k = 1, 2, l = 1, 2 (4.36)

Gδkl(ξ1, ξ2) =
P∑

p=0

P∑

q=0
Ĝklpqφp(ξ1)φq(ξ2), k = 1, 2, l = 1, 2 (4.37)

where ûpq, v̂pq, p̂pq, τ̂klpq and Ĝklpq are the expansion coefficients. The discrete evaluation of

the integrals in the weak form of the equations is explained in detail in Chapter 3.

4.3. Temporal schemes

We discretise the Equations (2.168) in time using the first-order explicit Euler and the

second-order backward differentiation formula in combination with second-order extrap-

olation (BDF2/EX2) time integration schemes. These two schemes can be defined as

follows. Consider a system of ordinary differential equations of the form

du
dt

= F(u) (4.38)

which is discretised in time using the linear multi-step method

γ0un+1 −∑J−1
q=0 αqun−q

∆t =
J−1∑

q=0
βq F(u)n−q, (4.39)

where J = 1, 2 is the time integration order with γ0 = 1, α0 = 1, β0 = 1 for the

first-order explicit Euler and γ0 = 3/2, α0 = 2, α1 = −1/2, β0 = 2, β1 = −1 for

second-order BDF2/EX2.

4.4. DEVSS/DG Algorithm in a Fixed Domain

In our algorithm for fixed domains, we use the fact that ∇ · ∇uT = 0 due to incompress-

ibility and we adjust the DEVSS-G stabilisation accordingly. That means we stabilise the
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computations only with G, instead of G + GT as proposed by Bogaerds et al. (2002),

which yields





Re
Du
Dt

= −∇p+ (β + θ)∆u− θ∇ ·G +∇ · τττ ,

∇ · u = 0,

G−∇u = 0,

τττ + Wi
∇
τττ + αWi

(1− β)τ
ττ2 = (1− β)

(
G + GT

)
,

(4.40)

where G is the velocity gradient projection tensor. The upper convected derivative in the

constitutive equation is computed using the velocity gradient projection tensor, that is,

∇
τττ = Dτττ

Dt
−G · τττ − τττ ·GT . (4.41)

This system of equations is completed by specifying initial and boundary conditions as

explained in Section 2.6.1. We employ the temporal schemes introduced in Section 4.3 in

the following way

Problem 4.4 (Semi-Discretised DEVSS-G/DG Formulation).
Find

(
un+1, pn+1,Gn+1, τττn+1

)
∈ [H1

D(Ω)]2 × [L2
0(Ω)] × [L2(Ω)]d2 × [L2(Ω)]d2

s such

that, for all (φu, ψ, φG, φτττ ) ∈ [H1
0 (Ω)]d × [L2

0(Ω)]× [L2(Ω)]d2 × [L2(Ω)]d2
s

Re

(
γ0un+1 −∑J−1

q=0 αqun−q

∆t , φu

)

Ω
+ (β + θ)

(
∇un+1,∇φu

)
Ω
−
(
pn+1,∇ · φu

)
Ω

=
J−1∑

q=0
βq [−Re (u · ∇u, φu)Ω + (θG− τττ ,∇φu)Ω

+〈(−p+∇u + τττ − θG) · n, φu〉ΓN ]n−q , (4.42)

(
∇ · un+1, ψ

)
Ω

= 0, (4.43)
(
Gn+1, φG

)
Ωe

=
(
∇un+1, φG

)
Ωe
, ∀Ωe, (4.44)

Wi

(
γ0τττn+1 −∑J−1

q=0 αqτττ
n−q

∆t , φτττ

)

Ωe
−
[
Wi
(
Gτττ + τττGT , φτττ

)
Ωe
− (τττ , φτττ )Ωe

]n+1

+
[
αWi

(1− β)τ
ττ2
]n+1

−
[(

(1− β)(G + GT ), φτττ
)

Ωe

]n+1
= g̃, ∀Ωe

(4.45)
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with

g̃ =
J−1∑

q=0
βq

[∫

Ωe
(u · ∇)φτττ : τττ dΩe +

∫

∂Ωe
f̃ e(τττ int(x), τττ ext(x)) : φτττ dΓ

]n−q
.

This system of equations is solved as outlined in Algorithm 4.4.1. The different steps

outlined in the algorithm are explained in the following Sections.

Algorithm 4.4.1: DEVSS-G/DG SCHEME FOR A FIXED MESH.(un, pn, τττn)

t = t0

while t ≤ tfin

do





Set boundary conditions for u.

procedure COMPUTERHS(un, τττn,un−1, τττn−1)
Determine explicit terms on RHS of (4.42) and (4.45).

output (RHS(u), RHS(τττ))

procedure SOLVECOUPLEDSYSTEM(un, pn, τττn, RHS(u))
Solve Coupled System of Velocity and Pressure (4.42), (4.43).

output (un+1, pn+1)

procedure COMPUTEG(un+1)
Perform L2 projection (4.44).

output (Gn+1)

Set boundary conditions for τττ .

procedure SOLVECONSTITUTIVEEQUATION(Gn+1, RHS(τττ))
Solve (4.45).

output (τττn+1)

t← t+ ∆t
n+ 1← n

4.4.1. Solving the Coupled System of Velocity and Pressure

As outlined in Algorithm 4.4.1, we first solve the coupled system for velocity and pres-

sure with respect to the polymeric stress at the previous time-level. We base this step on a

coupled Navier-Stokes solver for Newtonian flows introduced in Ainsworth and Sherwin

(1999) and Sherwin and Ainsworth (2000). Here, we will outline the steps that we take
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to solve the coupled system. Further details on the coupled solver can be found in Karni-

adakis and Sherwin (2005).

First, as we employ a continuous global basis for the velocity, we write the conservation

laws in a global matrix form given by

Hgûg −DT
g p̂g = f ,

Dgûg = 0, (4.46)

where ûg and p̂g are the vectors of unknown global coefficients, Hg is the global Helmholtz

matrix and Dg = (Dx1 ,Dx2) is the global discrete gradient operator based on the deriva-

tive matrices defined in (3.66) and (3.66) in Section 3.6. The global matrices can be

constructed from the block diagonal matrix of all elemental matrices He by using the per-

mutation matrix A which constructs the local vector ûl from the global vector ûg, and its

transpose AT which represents the global assembly process

Hg = ATHeA, He =




H1 0 0 0
0 H2 0 0

0 0 . . . 0
0 0 0 HNel



, ûl = Aûg. (4.47)

This global assembly procedure is explained in detail in Section 3.7.1. The elemental

Helmholtz matrix for the momentum equation consists of

He[m][n] = (β + θ) (∇φnu,∇φmu )δΩe + Re γ0
∆t (φnu, φmu )δΩe . (4.48)

where the indices m = m(pq), n = n(rs) are ordered using the lexicographical number-

ing convention defined in Equation (3.57). And the elemental discrete gradient operator is

given by

De[n,m] = (∇φnu, ψm)δΩe . (4.49)

As explained in Section 3.7.1, we choose the global numbering scheme in such a way that

we obtain global matrices with a structure that is optimal for solving the equations using

the multi-static condensation technique. In order to apply the multi-static condensation

technique explained in Section 3.7.1 to solve the coupled system (4.46), we decompose

our system into boundary and interior contributions




Hbb −DT
b Hbi

−Db 0 −Di

Hib −DT
i Hii







ûb
p̂
ûi


 =




fb
0
fi


 (4.50)
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where ûb, fb denote the degrees of freedom of the elemental velocities on the boundary of

the element and ûi, fi denote the interior degrees of freedom of the element.

The matrix Hbb denotes the global assembly of the elemental boundary-boundary mode

interactions, Hbi and Hib correspond to the global assembly of the elemental boundary-

interior coupling and Hii denotes the block-diagonal matrix of elemental interior-interior

mode interactions. Note, that these global matrices can be constructed from the elemental

matrices by

H−1
ii =

[
He
ii

]−1
, (4.51)

Hbi = ATb He
bi, (4.52)

Hib = He
ibAb, (4.53)

Hbb = ATb He
biAb, (4.54)

Db = ATb De
b, (4.55)

where He denotes the block-diagonal concatenation of the elemental matrices as in (3.74).

Here,Ab is the boundary version ofA. It scatters the global boundary degrees of freedom

to the local boundary degrees of freedom. Similarly, ATb assembles the global boundary

degrees of freedom from the local boundary degrees of freedom. The elemental matrices

for each element are given by

He
bb[n,m] = Re γ0

∆t
(
φb,nu , φb,mu

)δ
Ωe

+ (β + θ)
(
∇φb,nu ,∇φb,mu

)δ
Ωe
, (4.56)

He
ib[n,m] = Re γ0

∆t
(
φi,nu , φb,mu

)δ
Ωe

+ (β + θ)
(
∇φi,nu ,∇φb,mu

)δ
Ωe
, (4.57)

He
bi[n,m] = Re γ0

∆t
(
φb,nu , φi,mu

)δ
Ωe

+ (β + θ)
(
∇φb,nu ,∇φi,mu

)δ
Ωe
, (4.58)

He
ii[n,m] = Re γ0

∆t
(
φi,nu , φi,mu

)δ
Ωe

+ (β + θ)
(
∇φi,nu ,∇φi,mu

)δ
Ωe
, (4.59)

De
b[n,m] =

(
∇φb,nu , ψm

)δ
Ωe
, (4.60)

De
i [n,m] =

(
∇φi,nu , ψm

)δ
Ωe

(4.61)

and

f =


Re

∆t

J−1∑

q=0
αqun−q, φu



δ

Ω

+
J−1∑

q=0
βq
[
−Re (u · ∇u, φu)δΩ + (θG− τττ ,∇φu)δΩ

]n−q
.

(4.62)
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To decouple the interior degrees of freedom ûi from the boundary degrees of freedom ûb
and pressure p̂, we premultiply the equation system (4.50) with the matrix




I 0 −HbiH−1
ii

0 I DiH−1
ii

0 0 I


 (4.63)

which leads to the system




Hbb −HbiH−1
ii Hib −DT

b + HbiH−1
ii DT

i 0
−Db + DiH−1

ii Hib −DiH−1
ii DT

i 0
Hib −DT

i Hii







ûb
p̂
ûi


 =




fb −HbiH−1
ii fi

DiH−1
ii fi

fi


 .

(4.64)

Note that the Schur complement is determined from the matrix concatenation He using

the global boundary permutation matrix Ab, that is,

Hbb −HbiH−1
ii Hib = ATb

[
He
bb −He

bi

[
He
ii

]−1
He
ib

]
Ab. (4.65)

Next, we perform another step of substructuring by lumping a pressure degree of freedom

containing a mean component p̂0 with the velocity boundary degrees of freedom ûb into

b = [ûb, p̂0]. If pr denotes the remainder of the pressure degrees of freedom, we can

write the system in the form

[
Â B̂

Ĉ D̂

] [
b
pr

]
=
[

f̂b
f̂p

]
. (4.66)

Now, we decouple b from pr by performing a second level of static condensation

[
Â− B̂D̂−1Ĉ 0

Ĉ D̂

] [
b
pr

]
=
[

f̂b − B̂D̂−1f̂p
f̂p

]
. (4.67)

For the boundary unknowns, we obtain the equation

(Â− B̂D̂−1Ĉ) b = f̂b − B̂D̂−1f̂p. (4.68)

which can be solved either iteratively or directly. Here, we solve this equation using multi-

level static condensation. Once this system has been solved for b = [ûb, p̂0], we can then

recover the rest of the pressure modes

pr = D̂−1(−Ĉb + f̂p). (4.69)
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And finally, we can use this result to obtain the interior velocity degrees of freedom using

ûi = H−1
ii (−Hibûb + DT

i p̂). (4.70)

4.4.2. Solving the Constitutive Equation

Having determined the velocity, un+1, and pressure, pn+1, from the coupled conserva-

tion equations using the algorithm described in the previous Section, we perform an L2-

projection, to determine the unknown coefficients of the velocity gradient projection tensor

G component-by-component using

Ĝn+1,e
11 = [Me

G11 ]−1Me
G11uûe, Ĝn+1,e

12 = [Me
G12 ]−1Me

G12uûe

Ĝn+1,e
21 = [Me

G21 ]−1Me
G21vv̂e, Ĝn+1,e

22 = [Me
G22 ]−1Me

G22vv̂e, ∀Ωe, (4.71)

where

Me
Gij [m,n] =

(
φnGij , φ

m
Gij

)δ
Ωe
, i, j = 1, 2,

Me
G11u[m,n] = −

(
∂φnu
∂x

, φmG11

)δ

Ωe
, Me

G12u[m,n] = −
(
∂φnu
∂y

, φmG12

)δ

Ωe
,

Me
G21v[m,n] = −

(
∂φnv
∂x

, φmG21

)δ

Ωe
, Me

G22v[m,n] = −
(
∂φnv
∂y

, φmG22

)δ

Ωe
. (4.72)

The physical values of G at the quadrature points are then obtained using the backward

transformation defined in Equation (3.70)

Gn+1,e
ij = BeĜe

ij , i = 1, 2, j = 1, 2, ∀Ωe, (4.73)

We can now use Gn+1 to solve the constitutive equation.

However, we first evaluate the explicit terms of the RHS of Equation (4.45)

g̃e =
J−1∑

q=0
βq

[∫

Ωe
(u · ∇)φτττ : τττ dΩe +

∫

∂Ωe
f̃ e(τττ ext(x), τττ ext(x)) : φτττ dΓ

]n−q
, ∀Ωe

(4.74)

which in matrix notation is given by (see Section 3.7.2)

g̃e =
J−1∑

q=0
βq

[
(De

xBe)T WeΞe(f(τττn−q)) +
(
De
yBe

)T
WeΞe(g(τττn−q))− be(τττn−q)

]
,

(4.75)
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where be is the vector corresponding to the surface integral

be(τττn−q)[k] =
∫

∂Ωe
f̃ e(τττ ext,(n−q)(x), τττ int,(n−q)(x)) : φkτττ dΓ, (4.76)

Ξe(f(τττ (n−q)), Ξe(g(τττ (n−q)) are the diagonal elemental matrices containing the flux val-

ues F(τττ (n−q)) = [f(τττn−q), g(τττn−q)]T at the quadrature points given by

Ξe(f(τττ (n−q)))[m(ij)][k(rs)] = u(n−q)(ξ1i , ξ2j ) · τττ (n−q)(ξ1i , ξ2j )δmk, (4.77)

Ξe(g(τττ (n−q)))[m(ij)][k(rs)] = v(n−q)(ξ1i , ξ2j ) · τττ (n−q)(ξ1i , ξ2j )δmk, (4.78)

De
x, De

y are the discrete differentiation matrices defined in (3.66) and (3.67), u,v are the

components of the velocity vector u = (u, v), Me is the elemental mass matrix defined

in (3.74), Be is the basis matrix defined in (3.60) and We is the elemental weight matrix

defined in (3.63). Using these elemental evaluations of the RHS in the weak formulation,

we compute the physical values at the quadrature points for an intermediate polymeric

stress field τ̃ττ

τ̃ττ e = Be[Me]−1


 ∆t
γ0Wi

g̃e +
J−1∑

q=0

αq
γ0

[Be]T Weτττ e,(n−q)


 , ∀Ωe. (4.79)

This explicit treatment of the convection term, and having G given, leaves us with a linear

system of equations for the polymeric stress when α = 0 (Oldroyd-B model). We solve

this linear system in the strong form for each quadrature point as follows. We cast the

remaining terms in the constitutive equation given by

Wi γ0
∆t τττn+1 −Wi

[
Gτττ − τττGT

]n+1
+ τττn+1

=
[
(1− β)(G + GT )

]n+1
+ Wi γ0

∆t τ̃ττ −
[
αWi

(1− β)τ
ττ2
](it) (4.80)

into the form



Ae
xx,xx Ae

xx,xy 0
Ae
xy,xx Ae

xy,xy Ae
xy,yy

0 Ae
yy,xy Ae

yy,yy







τττ exx

τττ exy

τττ eyy


 =




f exx + ge,(it)xx

f exy + ge,(it)xy

f eyy + ge,(it)yy


 (4.81)
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where

Ae
xx,xx[m] =

[(
1 + Wi γ0

∆t

)
− 2WiGe11(ξξξm)

]
, Ae

xx,xy[m] = −2WiGe12(ξξξm)

Ae
xy,xx[m] = −WiGe21(ξξξm), Ae

xy,yy[m] = −WiGe12(ξξξm)

Ae
xy,xy[m] =

[(
1 + Wi γ0

∆t

)
−Wi (Ge11(ξξξm) +Ge22(ξξξm))

]
,

Ae
yy,xy[m] = −2WiGe21(ξξξm), Ae

yy,yy[m] =
[(

1 + Wi γ0
∆t

)
− 2WiGe22(ξξξm)

]
(4.82)

and

f exx[m] = 2(1− β)Ge11(ξξξm) + Wi γ0
∆t τ̃xx,

f exy[m] = (1− β)(Ge12(ξξξm) +Ge21(ξξξm)) + Wi γ0
∆t τ̃xy, (4.83)

f eyy[m] = 2(1− β)G22(ξξξm) + Wi γ0
∆t τ̃yy

ge,(it)xx [m] = − αWi
(1− β)

[
τxx(ξξξm)2 + τxy(ξξξm)2

](it)

ge,(it)xy [m] = − αWi
(1− β) [τxy(ξξξm)(τxx(ξξξm) + τyy(ξξξm))](it)

ge,(it)yy [m] = − αWi
(1− β)

[
τyy(ξξξm)2 + τxy(ξξξm)2

](it)
(4.84)

where the indices m = m(ij) are ordered according to a lexicographical ordering along

the ξ1 direction given in (3.54) and ξξξm(ij) = (ξ1i , ξ2j ).

Next, we solve the system (4.81) point wise using the analytic expression for A−1.

When α = 0, this gives us the solution τττn+1 at the quadrature points. However, in the

case when α 6= 0, we perform a fixed point iteration by solving the same system

τττ (it+1) = A−1
(
f + g(it)

)
(4.85)

and updating the term g(it) with τττ (it) on the RHS in each iteration step until the residual

R = max
kl=xx,xy,yy

[
max

1≤i,j≤Q

∣∣∣τ (it+1)
kl (ξ1i , ξ2j )− τ

(it)
kl (ξ1i , ξ2j )

∣∣∣
]
< 10−10. (4.86)

For the first iteration, we set
[
τττ2
](0)

=
[
τττ2
]n

.





Chapter 5
Numerical Results for Fixed Meshes

In this Chapter, we demonstrate the performance and accuracy of our algorithm for the

unsteady Poiseuille flow of an Oldroyd-B fluid, for which an analytical solution exists,

and the flow around a cylinder for the Oldroyd-B model for Re = {0, 0.01, 0.1, 1} and

for the Giesekus model for α = {0.001, 0.01, 0.1}. Throughout this Chapter, we choose

γ = 1 in the numerical flux term (4.8).

5.1. Unsteady Poiseuille Flow of an Oldroyd-B Fluid

In this Section, we investigate the Poiseuille flow of an Oldroyd-B fluid in a plane chan-

nel. For this flow configuration an analytical solution exists for both steady and unsteady

Poiseuille flow. It is therefore an ideal first benchmark to evaluate the quality of numerical

algorithms for Oldroyd-B fluids. In this Section, we first present the analytical solution.

Then, we investigate the numerical solution at fixed points in the channel domain and

compare the results to the analytical solution.

5.1.1. Analytical Solution

Poiseuille flow is the flow of a fluid through a channel of length L and height H driven by

a constant pressure gradient. Let this constant pressure gradient be denoted by

∂p

∂x
= κ. (5.1)

Next, we assume a velocity distribution of the form

(u(y, t), 0, 0) with 0 < y < H and t > 0 (5.2)

with boundary conditions

u(0, t) = 0 and u(H, t) = 0 (5.3)
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and initial condition

u(y, 0) = 0 with 0 < y < H. (5.4)

For this velocity field the equation of continuity is automatically satisfied and the flow

field is described by the momentum equation

ρ
∂u

∂t
= −κ+ ∂Txy

∂y
, (5.5)

where Txy is the shear stress component of the extra stress tensor T. Waters and King

(1970) derived the solution for this problem and employed the following non-dimensionali-

sation

y∗ = y

H
, u∗ = u

U
, U = −κH

2

8η0
, t∗ = η0t

ρH2 . (5.6)

Using the dimensionless numbers

El = λη0
ρH2 = Wi

Re
, β = ηS

η0
, Wi = λ

U

H
, Re = UHρ

η0
. (5.7)

The solution of Waters and King (1970) is given by

u∗(y∗, t∗) = 4y∗(1− y∗)− 32
∞∑

n=1

sin(Ny∗)
N3 GN (El, t∗), (5.8)

where

GN (El, t∗) = exp
(
−αN t

∗

2El

)[
cosh

(
βN t

∗

2El

)
+ γN
βN

sinh
(
βN t

∗

2El

)]
(5.9)

and

N = (2n− 1)π, αN = 1 + ElN2,

β2
N = α2

N − 4N2El, βN =
√
β2
N ,

γN = 1 +N2El(β − 2). (5.10)

If β2
N < 0, then GN (El, t∗) changes to

GN (El, t∗) = exp
(
−αN t

∗

2El

)[
cos

(
βN t

∗

2El

)
+ γN
βN

sin
(
βN t

∗

2El

)]
(5.11)

with

βN =
√
−β2

N . (5.12)



5.1. Unsteady Poiseuille Flow of an Oldroyd-B Fluid 111

The corresponding Newtonian solution is given by

u∗(y∗, t∗) = 4y∗(1− y∗)− 32
∞∑

n=1

sin(Ny∗)
N3 exp

(
−N2t∗

)
. (5.13)

Note that the non-dimensional time scale (t∗our = (U/H)t) in our numerical scheme has

to be fitted to the time scale of the analytic solution (t∗ana = (η0t)/(ρH2)), which yields

t∗ana = η0t

ρH2 = El
t

λ
= El

t U

WiH
= t∗our

Re
. (5.14)

For t→∞, the same steady state solution for the velocity field for the Newtonian and the

Oldroyd-B fluid is recovered, which is given by

A(y) = u∗(y∗) = 4y∗(1− y∗). (5.15)

In the following, the star notation will be dropped for the sake of simplicity. The stress

components of the Oldroyd-B equation have the steady state solution

τxx = 2 Wi
∂u

∂y
τxy = 2 Wi (1− β)

(
∂u

∂y

)2
= 2 Wi (1− β)A′(y)2,

τxy = (1− β)∂u
∂y

= (1− β)A′(y),

τyy = 0, (5.16)

where

A′(y) = dA(y)
dy

. (5.17)

Carew et al. (1994) derived the transient analytical expressions for the stress components

using the solution of Waters and King (1970)

τyy = 0,

τxy = (1− β)
El

[
ElA′(y)− 32

∞∑

n=1

cos(Ny)
N2 HN (El, t)

]
+ Cxy(El, y) exp

(
− t

El

)
,

(5.18)
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τxx = 2ReCxy(El, y)
[
A′(y) exp

(
− t

El

)
t− 32

∞∑

n=1

cos(Ny)
N2 IN (El, t)

]

+ 2Re (1− β)A′(y)
[
A′(y)El− 32

∞∑

n=1

cos(Ny)
N2 HN (El, t)

]

− 64 ReA′(y)(1− β)
El

∞∑

n=1

cos(Ny)
N2 JN (El, t)

+ 2 · 322 Re (1− β)
El

∞∑

n,m=1

cos(Ny)
N2

cos(My)
M2 KNM (El, t)

+ Cxx(El, y) exp
(
− t

El

)
,

(5.19)

where M = (2m − 1)π, and Cxy and Cxx are time-independent functions defined by

the requirement that τxy and τxx are zero at time t = 0, respectively. Here, t is the non-

dimensional time scale defined in Equation (5.14). The coefficients HN (El, t), IN (El, t),

JN (El, t) and KNM (El, t) are given in Carew et al. (1994).

5.1.2. Transient Numerical Solution

L = 64.0

H = 1.0 1

2

51.0

u = uana

τxx = τxx(ana)
τxy = τxy(ana)

u = uana

(a)

(b)

Figure 5.1.: Schematics (a) and mesh configuration (b) for Poiseuille channel flow.

Consider the flow through a channel of length L = 64 and height H = 1.0 as illustrated

in Figure 5.1. At t = 0, we start our computation with a fluid at rest (u = 0, τττ = 0).

For t > 0, we set the velocity at inflow and outflow to the time-dependent analytical

solution of Waters and King (1970) given by the time-dependent Poiseuille flow (5.8).

For the polymeric stress components, we impose Dirichlet inflow values given by (5.19).
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We choose a mesh consisting of Nel = 8 elements (see Figure 5.1(b)) and perform the

computation for a polynomial order of P = 6. We observe the time-dependent Poiseuille

flow at two quadrature points in the channel domain: one point at the channel wall (P2 =
(51.2664, 0)), where we observe the numerical solution of the stress components τxx and

τxy; and one point in the middle of the channel (P1 = (51.2664, 0.5)), where we observe

the velocity component u. At these two points, we investigate the quality of the solution

in the time interval t ∈ [0, 100]. We set the Reynolds number to 1.0 and β = 0.1 and

solve the problem with the second order time integration scheme (BDF2/EX2) with a

timestep of ∆t = 10−2 as detailed in Chapter 4. Figure 5.2 displays the comparison of

the analytical and the numerical solution at point P1 (a), (b) and point P2 (c) for a range

of stabilisation parameters θ of the DEVSS-G stabilisation scheme. Undershoots and

overshoots of the velocity and stress components can be observed in the solution before

the steady state solution is reached. In Figure 5.2, we discover that an increase in the

stabilisation parameter amplifies the overshoots and undershoots for the stress components

and dampens the oscillations in the velocity. However , the steady state solution is not

polluted by the stabilisation parameter and coincides with the analytical solution up to

machine precision for all tested θ. The amplification in the stress oscillations and the

damping of the velocity oscillations is due to the amount of artificial viscosity, controlled

by θ, that is added and subtracted in the momentum equation in order to stabilise the

computations. The artificial increase in the viscosity yields lower velocity and higher

stress values.

We evaluate the deviation of the numerical solution from the analytical solution at each

overshoot and undershoot in terms of maximum relative error defined as

et∞(u) := max
t∈I

( |uana(t)− unum(t)|
|uana(t)|

)
, (5.20)

where uana(t) is the analytical solution at time t, unum(t) is the numerical solution at

time t and max(·) is the maximum value over all t ∈ I , where I is the time interval of

an overshoot or undershoot. Table 5.1 lists these relative errors in percent for a range of

stabilisation parameters. The maximum relative error is the greatest for the first overshoot

and then dampens down quickly with the following overshoots and undershoots. The

relative error increases significantly with θ for the first overshoot. However, the maximum

error decreases with each overshoot and undershoot and the difference between stabilised

and non-stabilised computations decreases until the difference vanishes for the steady state

solution, which coincides with the analytical solution with machine precision for all θ.

However, even though the errors increase slightly with θ, θ has a significant stabilising

effect and computations can be performed up to much higher Weissenberg numbers than

without the stabilisation. Table 5.2 lists the critical Weissenberg number beyond which
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Table 5.1.: Dependence of maximum relative error at each overshoot and undershoot in
percent on the stabilisation parameter θ.

et∞(τxx) in % et∞(τxy) in %

θ = 0 θ = 0.5 θ = 0.9 θ = 0 θ = 0.5 θ = 0.9

overshoot1 0.0863 5.2077 6.2491 0.1335 3.6341 4.2056
undershoot1 0.0765 0.8733 0.9647 0.1399 1.6265 1.9093
overshoot2 0.0390 0.8171 0.9411 0.0151 0.6002 0.6831

undershoot2 0.0284 0.0319 0.0474 0.0164 0.1579 0.1918
overshoot3 0.0108 0.1339 0.1456 0.0019 0.0849 0.0938

et∞(u) in %

θ = 0 θ = 0.5 θ = 0.9

overshoot1 0.0401 3.4277 3.6516
undershoot1 0.1247 6.5624 7.2907
overshoot2 0.0057 0.6273 0.7169

undershoot2 0.0003 0.3265 0.3617
overshoot3 0.0001 0.0913 0.1046

Table 5.2.: Dependence of critical Weissenberg number yielding numerical breakdown on
stabilisation parameter θ within the time interval t ∈ [0, 100].

θ Wi c

0 3.3
0.1 4.6
0.5 9.2
0.9 9.8

computations fail in the time interval t ∈ [0, 100]. Without the DEVSS-G stabilisation in

the momentum equation computations fail beyond Wi c = 3.3. However, for a stabilisation

parameter of θ = (1 − β) = 0.9 computations can be performed up until Wi c = 9.8,

which is a significant improvement. Figure 5.3 displays the numerical and analytical

solution for a large range of Weissenberg numbers. With a stabilisation parameter of

θ = 0.9, computations follow the analytical solution up to Wi = 7. Beyond Wi = 7,

oscillations in the stress components occur that grow overtime and become more violent

with increasing Weissenberg number until the computation fail for Wi = 9.8 in the time

interval t ∈ [0, 100].
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Figure 5.2.: Comparison of numerical and analytical solution for Wi= 1.0 for increasing
stabilisation parameter θ at point P1 (a), (b) and point P2 (c).



116 Chapter 5. Numerical Results for Fixed Meshes

Wi=0.1

Wi=0.25

Wi=0.5

Wi=0.75

0 2 4 6 8 10
0

5

10

15

20

25

t

τ x
x

Wi=0.1(ana)
Wi=0.1
Wi=0.25(ana)
Wi=0.25
Wi=0.5(ana)
Wi=0.5
Wi=0.75(ana)
Wi=0.75

(a) τxx, θ = 0

Wi=2

Wi=3

Wi=5

Wi=6

0 20 40 60 80 100
0

50

100

150

t

τ x
x

Wi=2(ana)
Wi=2
Wi=3(ana)
Wi=3
Wi=5(ana)
Wi=5
Wi=6(ana)
Wi=6

(b) τxx, θ = 0.9

0 20 40 60 80 100
0

50

100

150

200

250

300

t

τ x
x

Wi=6(ana)
Wi=6
Wi=8(ana)
Wi=8
Wi=9(ana)
Wi=9
Wi=9.8(ana)
Wi=9.8

Wi

(c) τxx, θ = 0.9

Figure 5.3.: Comparison of analytical and numerical solution for a range of Weissenberg
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5.2. Flow around a Confined Cylinder

In this Section, we investigate the performance of our DEVSS-G/DG algorithm on the well

established flow around a cylinder in a confined channel benchmark problem. The results

of the investigation in this Section have been published in essence in Claus and Phillips

(2013a). Even though this flow configuration has been tested thoroughly for different

numerical methods and solution schemes (see Liu et al. (1998), Fan et al. (1999), Fan

et al. (2005), Alves et al. (2001), Owens et al. (2002), Ma et al. (2003), Kim et al. (2004),

Caola et al. (2001), Phan-Thien and Dou (1999), Sun et al. (1999), Hulsen et al. (2005), for

example), there remain unresolved issues. The use of very fine meshes and stabilisation

techniques are essential in order to capture the formation of thin boundary layers with

steep stress gradients around the cylinder and the formation of a thin birefringent strand

in the wake behind the cylinder.

The most reported property for numerical simulations of flow around a cylinder is the

drag coefficient. Values of the drag coefficient up to a Weissenberg number Wi = 1 for

an Oldroyd-B fluid can be found in all the mentioned works above. However, converged

solutions in the wake downstream of the cylinder are difficult or impossible to achieve for

Wi ≥ 0.7. In addition, all numerical algorithms start to diverge with spatial refinement

for some Wi ≤ 1 for the Oldroyd-B fluid. The cause for this loss of convergence and the

numerical failure is still unknown. Some of the possible sources include

1. unphysical predictions of the viscoelastic models and the ill-posedness of the un-

derlying initial-boundary value problem.

2. propagation of numerical errors introduced by the approximation scheme.

3. onset of physical viscoelastic instabilities.

Concerning the first point, we demonstrated in Chapter 2.5.4 that the Oldroyd-B model

predicts a singularity in the elongational viscosity even for low elongation rates, which

leads to unphysical predictions of the flow behaviour and possible instabilities in the nu-

merical solution. This makes the Oldroyd-B model unsuitable for the simulation of flows

undergoing elongational deformations. For the flow around a cylinder, there are regions

of the flow which experience elongational deformation and therefore the results achieved

with the Oldroyd-B model have to be interpreted with care.

In addition to exploring the flow of an Oldroyd-B fluid around a cylinder, we will present

results using the Giesekus model, which does not exhibit a singularity in the elongational

viscosity. Numerical predictions are compared with those of the Oldroyd-B fluid for dif-

ferent values of the mobility parameter α in the Giesekus model. The Giesekus model for

the flow around a confined cylinder has been investigated by Liu et al. (1998), Sun et al.
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(1999) and Hulsen et al. (2005). However, these investigations were mostly concerned

with the reduction of the drag coefficient. We give detailed tables of drag coefficients

for increasing spatial refinement for α = 0.001, 0.01, 0.1, contour plots and plots along

different paths in the fluid domain.

We present our results using the flow directed shear and normal stress measures proposed

by Bollada and Phillips (2008). These reveal that the flow dependent normal stress domi-

nates the flow for the Oldroyd-B fluid and its magnitude increases significantly with Wi ,

while the flow dependent shear stress decreases slightly with increasing Wi . This means

the flow around a cylinder is increasingly characterised by normal stress effects, which in-

clude the elongational contributions. For the Giesekus fluid, we show that with increasing

α, the shear stress contributions become more and more important in comparison to the

normal stress until the flow is dominated by the shear stress component for α = 0.1. In

addition, we investigate the effect of the Reynolds number on the drag and flow patterns

for the Oldroyd-B fluid.

Concerning the second point, Hulsen et al. (2005) identified the region downstream close

to the rear stagnation point as a critical point for exponential stress growth. This ex-

ponential growth in stress is poorly approximated by polynomial expansion bases. This

leads to large numerical errors. However, this problem can be alleviated using the log-

conformation approach. Hulsen et al. (2005) demonstrated that when the log-conformation

reformulation is used, results for larger values of Wi can be achieved especially for the

Giesekus model. However, loss of convergence in the wake remains a problem.

Concerning the third point, there is experimental evidence of an onset of a physical vis-

coelastic instability. The experimental work of McKinley et al. (1993) and Byars (1996)

suggest that there is an onset of viscoelastic instabilities in the flow around a cylinder

at a critical Weissenberg number. They found that beyond a critical Weissenberg num-

ber large downstream shifts in the velocity profiles are generated progressively. Then,

beyond another critical value the steady planar stagnation flow in the downstream wake

becomes unstable and evolves into a steady, three-dimensional cellular structure. Byars

(1996) reported a transition at around Wi=0.5. At this critical Weissenberg number the

instability was observed to be confined to the vicinity of the wake of the cylinder. Mea-

surements near to the cylinder beyond the critical Weissenberg number showed that the

instability also existed along the cylinder upstream of the rear stagnation point. The ex-

perimental evidence seems to suggest that the instability, generated by normal stresses on

the cylinder due to fluid elasticity, is convected downstream into the wake region. Numer-

ical evidence suggests that there are three distinct regimes. In the first regime (Wi≤ 0.6),

the flow is stable and convergent values of the drag coefficient are obtained. Excellent

agreement is obtained across a wide range of numerical schemes. In the second regime

(Wi ∈ [0.6, 1]), there is a transition to an oscillatory flow near the rear stagnation point.
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Steady state values of the drag can be determined provided the mesh is not too fine. For a

given mesh, a convergent steady state approximation is obtained. However, there is a lack

of convergence with mesh refinement. In the third regime (Wi> 1), the flow becomes un-

stable and numerical schemes fail to converge. Some form of turbulence model is required

in this regime. In order to obtain predictions in the second regime, transient algorithms

are required since there is not a convergent steady state solution. This may explain why

algorithms that are designed to compute steady state solutions fail to do so above a critical

Weissenberg number.

The evidence that such a transient regime can be predicted by numerical simulations be-

comes more and more apparent with the enhancement of numerical algorithms and the

use of high-resolution meshes. Oliveira and Miranda (2005) simulated the flow around a

cylinder of a FENE-CR fluid and observed that the flow becomes unsteady for Wi ≈ 1.3
for an extensibility parameter of L2 = 144. Oliveira and Miranda (2005) also observed

that the transient flow is characterised by a small pulsating recirculation zone of size ap-

proximately equal to 0.15 times the cylinder radius attached to the downstream face of the

cylinder and that the drag value undergoes a sinusoidal motion in time. Very little is known

about how this instability develops. The most common assumption is that the instability

develops due to the presence of a thin extensional wake characterised by high longitudinal

stresses τxx in the downstream wake of the cylinder. Another possible explanation is that

the instability is caused by oscillations in the shear layer on top of the cylinder, which are

then convected downstream into the wake. In our computations, we predict the onset of

oscillations on top of the cylinder and observe a small recirculation zone of radius less

than 1% of the cylinder radius for Wi & 0.62. This critical Wi is consistent with the

observations by Dou and Phan-Thien (2007).

Dou and Phan-Thien (2007, 2008) developed a theory aiming to explain the onset of a

viscoelastic instability in the shear layer on the top of the cylinder. They investigated this

shear layer numerically and analytically using boundary layer analysis and interpreted

their results in terms of energy gradients. They identified the ratio, K, of the total me-

chanical energy E = p + 1
2ρu

2 in the direction normal to the streamlines to the gradient

of the total energy loss in the streamwise direction, denoted by H , as a critical parameter

for the onset of an instability. For large ratios the flow is dominated by the transverse en-

ergy gradient which can amplify a disturbance if the energy loss, H , along the streamline

is not large enough to dampen the disturbance. As a result the disturbance is transported

downstream and amplified. For Newtonian flow, the energy loss along the streamline

is due to viscous friction along the streamwise direction. Dou and Phan-Thien (2007)

point out that an inflection in the velocity profile results in a zero energy loss along the

streamlines which leads to infinite K. This causes the flow to become unstable when it is
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subjected to a finite disturbance. In Dou and Phan-Thien (2007), they find a velocity in-

flection for Wi ≈ 0.6 for an Oldroyd-B fluid, which lies very close to the cylinder surface

at y/R ≈ 1.02. Because this velocity inflection occurs very close to the cylinder surface

only fine meshes can capture it. This might provide one possible explanation, why com-

putations performed on coarse meshes converge to steady state solutions but convergence

problems occur for finer meshes. We find the onset of oscillations in the drag coefficient

for Wi & 0.6 only for the finest meshes. We investigate the velocity and pressure on top

of the cylinder and demonstrate the development of a velocity inflection with increasing

Wi .

5.2.1. Benchmark Geometry

Inflow:
u = 3

2 (1 − y2

4 ),
v = 0,
τττ = τττ in(u)

Outflow:
∂u
∂n = 0,
p = 0

No-Slip u = 0

Symmetry v = 0, σxy = 0

x

y

R = 1

H
2 = 2

20D 20D

Figure 5.4.: Schematic diagram of flow around a cylinder.

We investigate the flow around a confined cylinder of radius R = 1 in a channel of height

H = 4 resulting in a 50% blockage ratio (see Figure 5.4). At inflow, we impose a parabolic

velocity profile with an average inlet fluid speed of 1. The average fluid speed is defined

as

〈u〉 := 1
b− a

∫ b

a
u(x) dx = 1. (5.21)

Table 5.3.: Parameters for flow around a confined cylinder.

Re 0 , 0.01, 0.1, 1
Wi 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
β 0.59
θ (1− β)
γ 1
α 0, 0.001, 0.01, 0.1
∆t 10−3

Tfin 40
Time integration BDF2/EX2
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This results in a parabolic velocity profile given by

u = 3
2

(
1− y2

4

)
, v = 0. (5.22)

Furthermore, we set the polymeric stress components at inflow to the steady state solu-

tion of Poiseuille flow of the Oldroyd-B fluid given by Equation (5.16). At the outflow

boundary Γout, we assume a fully developed unidirectional flow field, i.e. we impose

∇u · n = 0, (5.23)

through the boundary integral in Equation (4.42) in combination with a reference pressure

of zero. This means the boundary integral in Equation (4.42) reduces at outflow to

〈(τττ − (1− β)G) · n, φu〉Γout . (5.24)

On symmetry boundaries, we impose a combination of Dirichlet and Neumann conditions

u · n = 0,

t · σσσ · n = 0. (5.25)

Here, σσσ is the Cauchy stress tensor, n is the unit outward normal vector and t is the unit

tangent vector on the boundary. For the cylinder geometry displayed in Figure 5.4, Equa-

tion (5.25) reduces to setting v = 0 in combination with σxy = 0 along the symmetry

boundary. These boundary conditions mean that there is no contribution of the boundary

integral term in the momentum equation (4.42) along the symmetry line. At the wall and

along the cylinder surface, we impose no-slip boundary conditions, i.e. u = 0. We as-

sume the fluid to be at rest initially, i.e. u = 0 and τττ = 0 at t = 0.

In the flow around the cylinder benchmark problem, we define the Reynolds and Weis-

senberg number by

Re = ρ〈u〉R
η0

, (5.26)

Wi = λ
〈u〉
R
, (5.27)

where η0 = ηp + ηN is the total viscosity given by the sum of polymeric viscosity ηp and

Newtonian viscosity ηN , λ is the relaxation time and ρ is the fluid density. The character-

istic length scale is given by the radius R of the cylinder and the characteristic velocity is

given by the average fluid inlet speed 〈u〉. The parameters chosen in our computations are

listed in Table 5.3. To investigate the quality of our numerical solution, we compute the
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(a)

(b)

Figure 5.5.: Mesh for Nel = 20, (a) complete computational domain, (b) zoom of region
around the cylinder.

drag coefficient around the cylinder. The drag coefficient is defined as the x-component

of the traction force around the cylinder given by

F =
∫

Γc
σσσ · n dΓ, (5.28)

where Γc is the cylinder surface, n is the unit outward normal to the cylinder surface and

σσσ = −pI +β(∇u +∇uT ) +τττ is the Cauchy stress tensor. With σσσ∗ = R

η0〈u〉
σσσ, we obtain

the dimensionless traction force

F∗ = 1
〈u〉η0

∫

Γc
σσσ∗ · n∗ dΓ. (5.29)

The x-component of F∗ gives the drag coefficient

C∗D = 1
〈u〉η0

∫

Γc
σσσ∗ · n∗ · x̂ dΓ, (5.30)

where x̂ is the unit vector in the x-direction. In two-dimensional components, it is given

by

C∗D = 1
〈u〉η0

∫

Γc

{(
−p+ τxx + 2β∂u

∂x

)
nx +

(
τxy + β

(
∂u

∂y
+ ∂v

∂x

))
ny

}
dΓ,(5.31)

We use a mesh withNel = 20 as illustrated in Figure 5.5 and investigate the quality of our

solution for increasing order of the polynomial expansion basis. The number of degrees

of freedom for the dependent variables and the distance of the closest quadrature point to
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Table 5.4.: Number of degrees of freedom for dependent variables and the distance of the
closest quadrature point to the cylinder surface, hq, on a mesh consisting of 20
elements for increasing polynomial order.

P u τττ , G p Total hq

12 3013 3380 2420 32106 2.77 · 10−2

14 4075 4500 3380 43030 2.38 · 10−2

16 5297 5780 4500 55554 2.08 · 10−2

18 6679 7220 5780 69678 1.85 · 10−2

the cylinder surface, hq, for the employed mesh are listed in Table 5.4. We compare the

drag results with those of Owens et al. (2002), Fan et al. (1999) and Alves et al. (2001).

Owens et al. (2002) used a spectral method with LUST upwinding, a variant of SUPG

for nodal spectral methods, with a maximum polynomial order P = 20, Ndof = 8239
for the velocities and a total number of degrees of freedom of Ndof = 48415. Fan et al.

(1999) employed a high order FEM and used Ndof = 29206 for a mesh with elements of

maximum polynomial order P = 5. Alves et al. (2001) used the finite volume method

with high order upwinding and 69600 control volumes in their finest mesh.

We display the stress tensor results using flow dependent shear and normal stress mea-

sures as proposed by Bollada and Phillips (2008). The decomposition in the streamwise

and cross stream direction was first introduced by Wapperom and Renardy (2005) for the

configuration tensor in the Oldroyd B model. This decomposition, when applied to the to-

tal stress tensor (Cauchy stress), is the subject of the contribution of Bollada and Phillips

(2008). This has the advantage of decomposing the principal stresses into shear and nor-

mal stresses in a natural way. An example of the physical importance of such quantities is

suggested in Lodge (1956): “in shear flow, in addition to the usual hydrostatic and shear

stress components, there is a tensile stress in the direction of the streamline” and also the

Weissenberg hypothesis: the stress tensor rotates towards the direction of the streamlines

of flow as the rate of shear increases (Weissenberg et al., 1947). First, we remove the

isotropic part from the Cauchy stress

T = σσσ − (1
2 trσσσ)I. (5.32)

Then, we decompose the traceless symmetric stress T into a flow directed shear and nor-

mal stress using the direction of the streamlines u‖ = u
|u| and their unit normals in the

cross stream direction u⊥. We define the flow dependent shear stress as

S1 = u⊥ ·T · u‖ (5.33)
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and the flow dependent normal stress

S2 = u‖ ·T · u‖. (5.34)

Additionally, we define the principal stress as

T =
√
S2

1 + S2
2 . (5.35)

5.2.2. Oldroyd-B Model

Drag Coefficient

The computed values of the drag coefficient for different values of P for an Oldroyd-B

fluid (0 ≤Wi ≤ 1, β = 0.59) are tabulated in Table 5.5 and plotted in Figure 5.6 in com-

parison with the results of Alves et al. (2001), Fan et al. (1999) and Owens et al. (2002).

The predicted drag coefficients are in very good agreement with the existing literature.

Converged values for the drag are obtained for Wi ≤ 0.7 on all meshes. However, for

finer meshes, the drag oscillates about a mean value for Wi ≥ 0.6. The amplitude of

these time-dependent but stable oscillations in the drag value is very small initially but in-

creases with increasing polynomial order. For Wi = 0.6, the drag exhibits the sinusoidal

behaviour from P = 16, while for Wi = 0.7 the evolution of the drag exhibits oscillatory

behaviour from P = 14. Figure 5.7 shows the development of the drag with time for

increasing values of Wi . The drag reaches an apparent steady state value, i.e. it either

reaches a constant value or it oscillates around a mean value, for t ≈ 7. However, for

Wi ≥ 0.8 the computations diverge after an apparent drag value is reached from P = 16
(marked with a (D) in Table 5.5). For Wi = 1, we fail to obtain a steady state solution for

the polynomial orders investigated. However, the drag reaches its apparent steady state

value before the computations fail.

The time dependent behaviour of the drag for Wi ≥ 0.6 may be due to the onset of ve-

locity fluctuations in the shear layer on top of the cylinder initiated by an inflection in the

velocity profile near the cylinder surface as described by Dou and Phan-Thien (2007). The

velocity inflection occurs very close to the cylinder and can therefore only be captured by

meshes that are sufficiently fine. In the next Section, we present plots of the velocity com-

ponents and the pressure in the gap between the top of the cylinder and the channel wall

that confirm the development of a velocity inflection on top of the cylinder for increasing

Wi .

Moreover, in our computations, we observe the formation of a small pulsating recircula-

tion zone attached to the rear of the cylinder for Wi ≥ 0.62. A similar recirculation region

was found by Oliveira and Miranda (2005) for a FENE-CR fluid with Wi & 1.3 and an
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Table 5.5.: Comparison of computed values of the drag coefficient for an Oldroyd-B fluid
(β = 0.59) with results in the literature. (D) means computations diverge after
an apparent converged drag value is reached.

Wi P = 12 P = 14 P = 16 P = 18 Alves
et al.
(2001)

Fan et al.
(1999)

Owens
et al.
(2002)

0.1 130.364 130.360 130.364 130.364 130.355 130.36 -
0.2 126.627 126.623 126.626 126.626 126.32 126.62 -
0.3 123.193 123.189 123.192 123.192 123.210 123.19 -
0.4 120.592 120.589 120.592 120.593 120.607 120.59 -
0.5 118.826 118.822 118.826 118.826 118.838 118.83 118.827
0.6 117.775 117.773 117.775 117.776 117.787 117.77 117.775
0.7 117.306 117.319 117.319 117.316 117.323 117.32 117.291
0.8 117.307 117.352 117.369 (D) 117.368 (D) 117.357 117.36 117.237
0.9 117.688 117.776 117.817 (D) 117.812 (D) 117.851 117.79 117.503
1 118.372 (D) 118.508 (D) 118.558 (D) 118.550 (D) 118.518 118.49 118.030

extensibility parameter of L2 = 144. Oliveira and Miranda (2005) found a recirculation

zone of size approximately equal to 0.15R attached to the rear of the cylinder. We observe

a recirculation zone for Wi & 0.62 for the Oldroyd-B model of size less than 0.01R. This

zone is only captured on the finer meshes. This demonstrates the capability of the spec-

tral/hp method to capture fast and small spatial and temporal variations in the solution.

Plots along Paths

In this Section, the behaviour of the polymeric stress component τxx along the symmetry

line and around the cylinder surface, the horizontal velocity in the wake region along the

symmetry line and the pressure and velocity components on top of the cylinder between

the cylinder surface and the channel wall are investigated. Figure 5.8 shows the profile

of the polymeric stress τxx along the centreline and on the cylinder surface for increas-

ing values of Wi on the mesh with P = 14. The maximum value of τxx on top of the

cylinder increases with Wi and a tail in the wake of the cylinder is formed. The maxi-

mum value of τxx in the wake of the cylinder increases sharply with increasing Wi . In

Figure 5.9, the convergence behaviour of the polymeric stress component τxx along this

path with increasing polynomial order for Wi = 0.5, 0.6, 0.7 is presented. Convergence

of τxx is achieved on the cylinder surface and the drag converges with increasing P for

up to Wi = 0.5. For Wi = 0.6, we observe a trend indicating convergence in the wake.

However, there is a loss of convergence with increasing P in the downstream wake for
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Figure 5.6.: Comparison of the dependence of the drag coefficient on Wi computed using
the spectral/hp element method with results in the literature. Oldroyd-B fluid
with β = 0.59.

Wi = 0.7. As loss of convergence is observed in the wake, the drag does not provide a

good sole measure for the convergence behaviour for simulations of an Oldroyd-B fluid

for the flow around a cylinder for large values of Wi .

Examining the horizontal velocity component in the wake of the cylinder along the sym-

metry line (see Figure 5.10(a)) for increasing values of Wi , reveals that the horizontal

velocity component experiences an upstream shift with respect to the Newtonian velocity

near the rear of the cylinder followed by a downstream shift further downstream of the

cylinder wake. These shifts in the velocity profile increase with increasing Wi and the

point where the upstream shift is followed by the downstream shift lie closer to the rear of

the cylinder with increasing Wi (see Figure 5.10(b)).

Additionally, we investigate the velocity components and the pressure on top of the cylin-

der. According to the theory of Dou and Phan-Thien (2007, 2008) oscillations in the shear

stress layer on the top of the cylinder may be the origin of transient viscoelastic behaviour.

They identified the occurrence of a velocity inflection on the top of the cylinder as a pos-

sible cause for the onset of a viscoelastic instability. They identify the viscoelastic flow

with an energy gradient field and determine the ratio of the energy gradient normal to the

streamlines, E, and the energy loss gradient in the streamwise direction, H , as a critical
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Figure 5.7.: Dependence of the evolution of the drag coefficient on P for (a) Wi = 0.5,
(b) Wi = 0.6, (c) Wi = 0.7.
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value that determines the stability of the flow. In the shear layer around the cylinder, the

kinetic energy is negligible and the ratio of the energy gradients in the transverse direc-

tion to that in the streamwise direction becomes the ratio of pressure derivatives. Using

the two dimensional cylindrical coordinate system (r, θ), with origin at the centre of the

cylinder, to express the pressure gradient in cross-stream and streamwise direction in the

region around the cylinder, K becomes

K = ∂E/∂n
∂H/∂s =

∂p
∂r

1
r
∂p
∂θ

. (5.36)

As depicted in Figure 5.11, K can be expressed in terms of the angle γ between the cross-

stream and streamwise pressure derivative. Figure 5.11 shows that this angle between the

cross-stream and streamwise pressure derivative grows with increasing values of Wi . This

increasing distortion of the pressure causes the velocity profile to deform and eventually

causes a velocity inflection, which is associated with the onset of the transient flow regime.

In Figures 5.12 and 5.13, we see that the magnitude of the horizontal velocity component

is reduced near the cylinder in comparison to the parabolic Newtonian profile and is in-

creased near the middle of the gap between the cylinder and the channel wall. The vertical

velocity component (see Figure 5.13(b)) increases near the cylinder surface and decreases

near the channel wall with increasing Wi . The vertical velocity component experiences

a change in the velocity gradient when leaving the shear layer at y ≈ 1.02 that increases

with increasing Wi . These findings are in agreement with Dou and Phan-Thien (2007),

who also found a significant change in the velocity gradient at y ≈ 1.02. Note that, in

our case, this change in the velocity gradient does not occur on an element boundary but

inside one high order element. Therefore, this change is not a numerical artefact occurring

from coupling one element to the other. According to Dou and Phan-Thien (2007), the

sudden change in the vertical velocity component will eventually allow particles to leave

the shear layer and will cause a disturbance of the flow. This disturbance will be amplified

and transported downstream if the energy gradient in the transverse direction dominates

the energy gradient loss in the streamwise direction.
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Figure 5.8.: Profiles of τxx along centreline and cylinder surface for increasing Wi for
P = 14.
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Figure 5.9.: Convergence of the profiles of τxx along the centreline and around the cylinder
with P for (a) Wi = 0.5, (b) Wi = 0.6, and (c) Wi = 0.7
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Contour Plots

Figure 5.14 displays contour plots of the pressure and the horizontal velocity component.

As Wi increases, we observe a pressure concentration at the front and at the rear stagna-

tion point and the formation of strong pressure gradients near the cylinder surface. The

horizontal velocity component experiences an upstream shift in comparison to the Newto-

nian flow profile near the rear stagnation point and a downstream shift further downstream

of the wake. The shifts are strongest along the symmetry line. The contour plots of the

polymeric stress component τxx and the flow dependent normal stress S2 are displayed in

Figure 5.15. The polymeric stress component τxx forms thin and steep boundary layers

on top of the cylinder and along the channel wall above the cylinder. In addition, the

polymeric stress component τxx forms a region of high stress along the symmetry line in

the rear of the cylinder forming a thin tail in the downstream region of the cylinder. The

boundary layers and the tail increase in strength with increasing values of Wi .

These observations are consistent with the literature (see Caola et al. (2001) and Sun et al.

(1999), for example). However, in addition to the pressure and the components of ve-

locity and stress, we investigate the behaviour of the flow dependent normal and shear

stress contributions as defined in (5.33) and (5.34). The right hand column of Figure 5.15

displays the contour plots of the flow dependent normal stress and Figure 5.16 shows the

flow dependent shear stress and the principal stress. Looking at this flow dependent stress

decomposition, we observe that the major contribution to the total stress is given by the

flow dependent normal stress which means the flow around a cylinder is dominated by

normal stress effects. The flow dependent normal stress S2 exhibits qualitatively all the

features of the polymeric stress component τxx, i.e. sharp increase of the normal stress

value in the boundary layers around the cylinder and formation of a tail with increasing

Wi . However, in addition to that, S2 shows a low normal stress region near the front

stagnation point of the cylinder. In contrast to the sharp increase of the normal stresses

with increasing Wi , the flow dependent shear stress S1 decreases slightly with increas-

ing Wi . Furthermore, S1 exhibits the development of a high shear stress region a small

distance upstream of the front stagnation point. The decrease in the shear stress might be

explained by the small decrease in
∂u

∂y
on top of the cylinder. For example, at the top of

the cylinder at (x1, x2) = (0, 1), we find
∂u

∂y
= 14.637 for Wi = 0.1,

∂u

∂y
= 13.739 for

Wi = 0.5 and
∂u

∂y
= 13.228 for Wi = 0.7. The principal stress T is almost symmetric

for low values of Wi and then gradually becomes asymmetric with the formation of the

thin bi-refringence strand downstream of the cylinder and low stress regions close to the

front and rear stagnation points. The contribution of the flow dependent normal stress S2

is much higher than the contribution of the flow dependent shear stress S1 to the principal
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stress T . Therefore, the flow around a cylinder for the Oldroyd-B fluid will be dominated

by normal stress phenomena, due to both normal stress differences and elongational flow

properties, rather than shear stress phenomena.

(c) p: Max: 0, Min: -73.762 for Wi = 0.1. (d) u: Max: 2.955, Min: 0 for Wi = 0.1.

(e) p: Max: 0, Min: -70.591 for Wi = 0.5. (f) u: Max: 2.980 Min: 0 for Wi = 0.5.

(g) p: Max: 0, Min: -70.269 for Wi = 0.7. (h) u: Max: 2.987 Min:0 for Wi = 0.7.

Figure 5.14.: Contour plots of pressure p (left) and velocity component u in x-direction
(right) for P = 18 for an Oldroyd-B fluid.
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(c) τxx: Max: 18.171„ Min:-1.315 for Wi = 0.1. (d) S2: Max: 8.926, Min: -2.575 for Wi = 0.1.

(e) τxx: Max: 80.259, Min:-0.451 for Wi = 0.5. (f) S2: Max: 40.895, Min: -4.281 for Wi = 0.5 .

(g) τxx: Max:107.276, Min:-0.367 for Wi =
0.7.

(h) S2: Max: 55.232, Min: -7.489 forWi = 0.7.

Figure 5.15.: Contour plots of polymeric stress component τxx (left) and flow dependent
normal stress S2 (right) for an Oldroyd-B fluid.

(c) S1: Max: 14.796, Min: -11.283 for Wi = 0.1
.

(d) T : Max: 17.225, Min: 0 for Wi = 0.1 .

(e) S1: Max: 14.163, Min: -10.855 for Wi =
0.5.

(f) T : Max: 43.261, Min: 0 for Wi = 0.5.

(g) S1: Max: 13.951, Min: -10.8694 for Wi =
0.7.

(h) T : Max: 56.967, Min: 0 for Wi = 0.7.

Figure 5.16.: Contour plots of flow dependent shear stress S1 (left) and flow dependent
principal stress T for an Oldroyd-B fluid.
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5.2.3. Oldroyd-B Model for higher Reynolds numbers

We investigate the effect of inertia on the flow around a cylinder. The computed drag

coefficient values for Re = 0.01, 0.1, 1, are tabulated in Table 5.6 and illustrated in Fig-

ure 5.17. The drag values increase with increasing values of Re . The drag reduction effect

caused by increasing Wi decreases with increasing Re . For Wi = 0.7, the drag value for

Re = 0.01 differs from the drag value for Re = 0 by 0.006%, for Re = 0.1 by 0.06%
and for Re = 1 by 1.18%. The cause for the increase of the drag value with increasing Re

is increasing velocity gradients. Table 5.7 displays the maximum and minimum values of

the dependent variables as a function of Re . While the maximum values of τxy and τyy
increase for increasing Re , the maximum value of τxx decreases. Figure 5.18(a) shows

that τxx decreases only slightly on top of the cylinder surface for all tested Re . However,

the values in the wake behind the cylinder strongly decrease when Re = 1. The horizontal

velocity component in the downstream region in the wake of the cylinder is depicted in

Figure 5.18(b) and the difference between the viscoelastic and the Newtonian horizontal

velocity is displayed in Figure 5.18(c). The horizontal velocity component in the wake of

the cylinder experiences an overshoot near the cylinder (x ≈ 1.5) in comparison to the

Newtonian velocity profile and an undershoot further downstream (x ≈ 3). The overshoot

increases with increasing Re and the undershoot decreases with increasing Re . In addi-

tion, the maximum of the overshoot and the minimum of the undershoot occur further and

further downstream with increasing Re .

The changes of the velocity profiles with increasing Re in the gap between the top of the

cylinder and the channel wall are shown in Figure 5.19. The horizontal velocity profile de-

creases near the top of the cylinder and increases in the middle of the gap with increasing

Re . In contrast, the vertical velocity increases near the top of the cylinder and decreases

near the wall with increasing Re . This reduced horizontal velocity and amplified vertical

velocity explains the increase of the drag value as well as the increase in τxy and τyy and

the decrease τxx.
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Table 5.6.: Computed values of the drag coefficient for an Oldroyd-B fluid for 0 ≤ Wi ≤
1 and Re= 0.01, 0.1, 1.

Re = 0.01 Re = 0.1 Re = 1

Wi P = 14 P = 18 P = 14 P = 18 P = 14 P = 18
0.1 130.361 130.364 130.365 130.368 130.605 130.609
0.2 126.624 126.627 126.633 126.636 126.935 126.938
0.3 123.191 123.194 123.208 123.211 123.594 123.597
0.4 120.591 120.595 120.617 120.622 121.102 121.106
0.5 118.826 118.831 118.863 118.868 119.456 119.460
0.6 117.779 117.781 117.828 117.831 118.542 118.542
0.7 117.326 117.323 117.390 117.387 118.238 118.233
0.8 117.360 117.379 (D) 117.440 117.459 (D) 118.437 118.455 (D)
0.9 117.786 117.827 (D) 117.883 117.925 (D) 119.047 119.096 (D)
1 118.520 (D) 118.563 (D) 118.635 (D) 118.697 (D) 119.992 (D) 120.057 (D)
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Figure 5.17.: Dependence of the drag coefficient on Wi and Re for P = 14.

Table 5.7.: Minimum and maximum values for dependent variables for P = 18 and Wi =
0.7 for Re = {0.01, 0.1, 1}.
Re Max(τxx) Min(τxx) Max(τxy) Min(τxy) Max(τyy) Min(τyy)

0.01 107.251 -0.368 37.027 -20.734 24.673 -0.495
0.1 107.032 -0.369 37.172 -20.385 24.909 -0.533
1.0 104.871 -0.380 38.588 -17.783 27.511 -0.695

Re Max(u) Min(u) Max(v) Min(v) Max(p) Min(p)

0.01 2.988 0.000 0.884 -0.944 0 -70.272
0.1 2.988 0.000 0.888 -0.942 0 -70.288
1.0 2.994 0.000 0.929 -0.920 0 -70.522



5.2. Flow around a Confined Cylinder 139

 

 

Re=1
Re=0.1
Re=0.01
Re=0

τ x
x

x
-2 0 2 4 6 8 10

0

10

20

30

40

50

60

70

80

90

100

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u

Re=0.01
Re=0.1
Re=1

(b)

1 2 3 4 5

−0.1

− 5 · 10−2

0

5 · 10−2

0.1

x

u
−

u
N

Re=0.01
Re=0.1
Re=1

(c)

Figure 5.18.: Dependence on Re of the profiles of (a) τxx along the centreline and cylin-
der surface, (b) u along the downstream centreline,(c) u − uN along the
downstream centreline for P = 14.
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5.2.4. Giesekus Model

The Giesekus model for the flow around a confined cylinder has been investigated by Liu

et al. (1998), Sun et al. (1999) and Hulsen et al. (2005). However, these investigations were

mostly concerned with the reduction of the drag coefficient for the Giesekus model and

whether the Giesekus model provided improved results in comparison to the Oldroyd-B

model concerning elongational flow properties. We investigate the dependence of the flow

properties for the Giesekus model for a range of mobility parameters α = 0.001, 0.01,

0.1 for Re = 0. With increasing α the critical value of Wi , Wi c, above which the com-

putations fail to converge, increases. For P = 12, we obtain Wi c = 1.0 for α = 0.001,

the same value as for the Oldroyd-B model, Wi c = 1.4 for α = 0.01 and Wi c = 8.5
for α = 0.1. Figure 5.20 shows the influence of the mobility parameter α on the first and

second normal stress difference and the shear and elongational viscosities for β = 0.59
and Wi = 0.7 for two fixed shear rates (γ̇ = 10 and γ̇ = 5), and a fixed elongation rate

(ε̇ = 1) in time-dependent simple shear and uniaxial elongation. Increasing the value of

α yields a decrease in the shear and elongational viscosities. Additionally, the transient

shear viscosity goes through a maximum in time before attaining a constant value. The

magnitude of this overshoot in the transient shear viscosity increases with increasing α.

The elongational viscosity for the Oldroyd-B model (α = 0) becomes unbounded at finite

time when it is subjected to a fixed elongation rate of 1. An elongation rate of this magni-

tude can be expected to occur in the cylinder benchmark problem.

Drag Coefficient

The drag coefficients for the Giesekus model for increasing α are tabulated in Table 5.8

and displayed in Figure 5.21. Figure 5.21 shows that, for a fixed value of Wi , the drag

coefficient decreases with increasing α which means that α has a strong drag reduction

effect. This drag reduction is due to the shear-thinning properties of the Giesekus model.

The drag values for increasing Wi show that a minimum value is attained before they

increase again for higher Wi for the Oldroyd-B model (α = 0) and for the Giesekus

model with α = 0.001. This upturn in the drag value for higher Wi is not present for

α = 0.01 and α = 0.1 for this range of Wi .
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Figure 5.20.: Dependence of transient viscometric functions on parameter α for a shear
rate of γ̇ = 10 and γ̇ = 5 and an elongation rate of ε̇ = 1 for β = 0.59 and
Wi = 0.7.
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Table 5.8.: Comparison of drag coefficients for the Giesekus fluid for different values of
α.

α = 0.001 α = 0.01 α = 0.1

Wi P = 14 P = 18 P = 14 P = 18 P = 14 P = 18
0.1 130.287 130.291 129.667 129.671 125.585 125.587
0.2 126.392 126.396 124.666 124.670 117.110 117.113
0.3 122.775 122.778 120.082 120.085 111.096 111.098
0.4 119.978 119.981 116.513 116.517 106.853 106.855
0.5 118.002 118.005 113.861 113.867 103.732 103.733
0.6 116.719 116.719 111.895 111.906 101.341 101.341
0.7 115.991 115.982 110.409 110.422 99.449 99.448
0.8 115.687 115.679 (D) 109.247 109.258 97.910 97.909
0.9 115.678 115.664 (D) 108.302 108.307 96.632 96.631
1 115.887 (D) 115.868 (D) 107.508 107.505 95.552 95.552

Plots along Paths

Figure 5.22 shows the profile of the polymeric stress component τxx along the symmetry

line and the cylinder surface for increasing values of α for Wi = 0.7. We observe that

the maximum values of τxx on top of the cylinder and in the wake behind the cylinder

decrease drastically with increasing α. In fact, the maximum value of all three polymeric

stress components decrease with increasing α as displayed in Table 5.9. The maximum

values of τxx decrease by 23.9% for α = 0.001, by 66% for α = 0.01 and by 90.7% for

α = 0.1.

To understand the mechanism behind this decrease in the polymeric stress value, we in-

vestigate the velocity in the downstream wake of the cylinder and in the gap between the

top of the cylinder and the channel wall. Figure 5.23 shows that the horizontal velocity

profile for the Giesekus fluid exhibits an overshoot near the rear stagnation point in com-

parison to the Newtonian velocity profile and an undershoot further downstream before the

constant Newtonian velocity value along the centreline is reached. These velocity shifts

in the horizontal velocity in the wake of the cylinder are reduced with increasing α. For

α = 0.1 the undershoot disappears completely and the velocity profile only performs a

slight overshoot near the rear stagnation point before it approaches a constant lower than

the Newtonian value. This reduced limiting value of u along the centreline is caused by

the flattening of the velocity profile due to shear-thinning.

This onset of the dominance of shear thinning effects for α = 0.1 can also be observed

in Figure 5.24 and Figure 5.25 in the gap between the top of the cylinder and the channel

wall. The values of the horizontal velocity component in the middle of the gap decrease

with increasing α until the viscoelastic velocity overshoot of the parabolic profile disap-
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Figure 5.21.: Dependence of the drag coefficient on Wi and α for Giesekus fluid for
P = 14.

pears and the horizontal velocity profile flattens for α = 0.1. This flattening of the velocity

profile can be observed more clearly, in Figure 5.25, which illustrates the behaviour of the

velocity components with respect to the Newtonian velocity. With increasing α, the de-

crease in the horizontal velocity near the cylinder surface due to the elasticity of the fluid

lessens with increasing α and for α = 0.1 the horizontal velocity near the cylinder even

increases. Similarly, the increase of the vertical velocity component near the cylinder wall

due to elasticity lessens with increasing α until the vertical velocity profile decreases for

α = 0.1. This reduction in the magnitude of the overshoots and undershoots for the ve-

locity components delays the onset of the formation of a velocity inflection on top of the

cylinder and therefore the onset of viscoelastic instabilities. Furthermore, it reduces the

magnitude of the velocity gradients and therefore the magnitude of the polymeric stress

components. To confirm that the onset of a viscoelastic instability will be delayed with

increasing α, we consider the Dou and Phan-Thien (2008) criterion, that the ratio between

the streamwise component and the cross streamwise component of the pressure deriva-

tive gives us a critical value for the onset of an instability. The pressure profile plotted

in Figure 5.26 shows that the pressure derivative in the cross-stream direction decreases

significantly with increasing α, which means that increasing α leads to stable flow fields

for wider ranges of elasticity.

To illustrate the influence of the value of α on the convergence properties of the scheme,
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the axial component of the polymeric stress τxx is plotted along the axis of symmetry and

around the cylinder for Wi = 0.7 in Figure 5.27. The convergence behaviour in the wake

improves as α increases. When α = 0.1 converged results are obtained with P = 12.

As α tends to zero, we recover the convergence properties associated with the Oldroyd-B

model.

Table 5.9.: Minimum and maximum values of the polymeric stress components for the
Giesekus model for P = 18, Wi = 0.7.
α Max(τxx) Min(τxx) Max(τxy) Min(τxy) Max(τyy) Min(τyy)

0 107.276 -0.367 37.011 -20.772 24.646 -0.489
0.001 81.675 -0.367 28.193 -17.455 20.508 -0.375
0.01 36.462 -0.368 13.033 -10.430 11.197 -0.374
0.1 9.982 -0.377 4.039 -3.364 3.889 -0.427
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Figure 5.22.: Profile of τxx along symmetry line and cylinder surface for Wi = 0.7,
P = 14 and increasing α.
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Figure 5.23.: Dependence of (a) u and (b) u − uN (the velocity shift with respect to the
Newtonian velocity profile), on Wi along the downstream centreline.
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Figure 5.24.: Dependence of u on top of the cylinder on α for Wi = 0.7.
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Figure 5.25.: Dependence of (a) u − uN and (b) v on α along the shortest path from the
top of the cylinder to the channel wall for Wi = 0.7.
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Figure 5.26.: Dependence of the pressure profile on top of the cylinder on α for Wi = 0.7.
The pressure derivative in cross stream direction decreases with increasing
α. This means for higher α, the flow field is more stable.
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Figure 5.27.: Dependence of the profiles of τxx along the centreline and around the cylin-
der on P for Wi = 0.7 for (a) α = 0.001, (b) α = 0.01 and (c) α = 0.1.
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Contour Plots

Figure 5.28 displays the contour plots of the pressure p and the horizontal velocity com-

ponent for increasing α. With increasing α the high pressure concentrations in the regions

close to the stagnation points are dissipated. The pressure derivatives close to the cylin-

der surface are reduced with increasing α. Additionally, we observe a smaller pressure

concentration near the stagnation points with increasing α. The horizontal velocity shifts

upstream with increasing α in the downstream region of the cylinder and the maximum

value decreases with increasing α. This is due to the flattening of the velocity profile with

increasing α. Figure 5.29 shows that the magnitude of the axial polymeric stress compo-

nent τxx and the flow dependent normal stress S2 decrease significantly in the boundary

layers around the cylinder and the channel walls and in the downstream wake of the cylin-

der with increasing α. The magnitude of S2 decreases by 24.6% for α = 0.001, by 66.9%
for α = 0.01 and by 90.8% for α = 0.1, which is a very similar to the decrease in τxx. The

magnitude of the low normal stress region of S2 near the front stagnation point decreases

with increasing α. The decrease in the flow dependent shear stress S1 (see Figure 5.30

) is more gentle with increasing α than the decrease in the flow dependent normal stress

S2. The magnitude of S1 decreases by 5.1% for α = 0.001, by 16% for α = 0.01 and

by 25.9% for α = 0.1 with respect to the shear stress of the Oldroyd-B fluid (α = 0). To

interpret the results, for the flow dependent stress decomposition for the Giesekus model,

we turn to the predictions of the viscometric functions in simple shear and uniaxial elon-

gation as plotted in Figure 5.20. For increasing α, the first normal stress difference N1,

the shear viscosity η(γ̇) and the elongational viscosity decrease with increasing α. Fig-

ure 5.20 shows the viscometric shear functions for a shear rate of γ̇ = 10, which is the

order of magnitude of the shear rate on top of the cylinder in the benchmark problem and

for an elongation rate of ε̇ = 1, which is the order of magnitude of the elongation rate in

the wake behind the cylinder. Examining the values of the first normal stress differenceN1

for Wi = 0.7 shows that N1 decreases by 17.7% for α = 0.001, by 58.1% for α = 0.01
and by 87.2% for α = 0.1. In addition, the elongational viscosity decreases sharply with

increasing α. The combination of the significant decreases in the first normal stress dif-

ference and the elongational viscosity lead to the sharp decrease in the flow dependent

normal stress S2 and τxx and therefore also in the principal stress T . The shear viscosity

for the simple shear flow with γ̇ = 10 decreases by 4.5% for α = 0.001, by 16.8% for

α = 0.01 and by 29.6% for α = 0.1 with respect to the Oldroyd-B fluid. This decrease

is of the same order of magnitude as the decrease of the flow dependent shear stress S1.

Therefore, we deduce the flow dependent shear stress is reduced due to the shear thinning

of the shear viscosity of the fluid. In contrast to the Oldroyd-B fluid, the contribution of

S1 to T increases with increasing α until the flow dependent shear stress dominates the
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principal stress for α = 0.1. Therefore, the impact of S1 on the flow patterns in com-

parison to S2 increases with increasing α. This gives rise to the manifestation of typical

shear thinning phenomena such as the flattening of the parabolic velocity profile, which

was observed in the simulations presented in the previous Subsection.

(c) p Max: 0, Min: -70.270 for α = 0. (d) u Max: 2.987, Min: 0 for α = 0.

(e) p Max: 0, Min: -69.705 for α = 0.001. (f) u Max: 2.981, Min:0 for α = 0.001.

(g) p Max: 0, Min: -67.22 for α = 0.01. (h) u Max: 2.961, Min:0 for α = 0.01.

(i) p Max: 0, Min: -61.653 for α = 0.1. (j) u Max: 2.933 Min:0 for α = 0.1.

Figure 5.28.: Contour plots for Giesekus fluid for different values of α: pressure p (left)
and horizontal velocity component u (right) for Wi = 0.7 and P = 18.
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(c) α = 0 for τxx Max: 107.276 , Min: -0.367 (d) α = 0 for S2 Max: 55.232, Min: -7.489

(e) α = 0.001 for τxx Max: 81.675 , Min: -0.367 (f) α = 0.001 for S2 Max: 41.442 Min:-7.240

(g) α = 0.01 for τxx Max: 36.462, Min:-0.368 (h) α = 0.01 for S2 Max:18.256 Min:-5.762

(i) α = 0.1 for τxx Max: 9.982, Min: -0.377 (j) α = 0.1 for S2 Max: 5.076 Min:-3.294

Figure 5.29.: Contour plots for Giesekus fluid for different values of α: polymeric
stress component τxx (left) and flow dependent normal stress S2 (right) for
Wi = 0.7, P = 18.
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(c) S1 Max: 13.951 , Min:-10.869 for α = 0. (d) T Max: 56.967, Min: 0 for α = 0.

(e) S1 Max: 13.236, Min: -10.426 for α =
0.001.

(f) T Max: 43.455, Min:0 for α = 0.001

(g) S1 Max: 11.712 , Min: -9.247 for α = 0.01. (h) T Max: 21.689, Min:0 for α = 0.01.

(i) S1 Max:10.336, Min:-8.044 for α = 0.1. (j) T Max:11.505, Min:0 for α = 0.1.

Figure 5.30.: Contour plots for Giesekus fluid for different values of α: flow depen-
dent shear stress S1 (left) and flow dependent principal stress T (right) for
Wi = 0.7, P = 18.





Chapter 6
DEVSS/DG Algorithm for
Viscoelastic Free Surface Flows

In this Chapter, we first introduce the DEVSS-G/DG formulation in the ALE framework.

Then, we discuss the details of the algorithm used to move the mesh in order to trace

the free surface boundary movement. We employ a cubic spline representation of the

free surface boundary in order to guarantee the smoothness of the free surface to obtain

continuous normals and curvature across several spectral elements. Then, we discuss the

algorithm used to solve the discrete coupled system of velocity, pressure and velocity

gradient projection tensor and the discretised constitutive equation.

6.1. Weak DEVSS/DG Formulation in the ALE framework

In this Section, we describe the DEVSS-G/DG algorithm that we employed to simulate

viscoelastic free surface flows. We use mesh particles to trace the deformation of the

domain employing the arbitrary Lagrangian Eulerian (ALE) introduced in Section 2.1.2.

Here, we trace the deformation of the free surface by moving the grid points at the free sur-

face with the normal fluid velocity, thus ensuring that particles do not cross the interface.

In the interior of the domain, we move the mesh points in an arbitrary fashion to avoid

mesh distortion. The movement of the mesh introduces a referential frame or ALE-frame

which is connected to the Eulerian and Lagrangian frames as described in Section 2.1.

Here, we provide a summary of some of the key definitions, that we introduced in Sec-

tion 2.1.2, for the ALE-frame:

1. the ALE-map

Rt : Ω̂t0 → Ωt, ∀t ≥ 0,

Y 7→ xxx(Y, t) = Rt(Y), ∀Y ∈ Ω̂t0 . (6.1)

which is the parametrized family of diffeomorphisms relating the reference con-
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figuration, Ω̂t0 , to the Eulerian configuration Ωt. Here, xxx are the coordinates in the

Eulerian frame and the coordinates Y are associated with the positions of the nodes.

2. the mesh velocity

w(xxx, t) := ∂xxx(Y, t)
∂t

∣∣∣∣
Y

= ∂Rt(Y)
∂t

∣∣∣∣
Y
. (6.2)

3. the material time derivative in terms of time derivative with respect to the ALE-

frame

Df(xxx, t)
Dt

= ∂f

∂t

∣∣∣∣
Y

+ (u−w) · ∇xxxf (6.3)

In Section 2.2, we presented the conservation laws in fixed and moving domains. In this

Section, we base our definitions of the solution spaces in the weak formulation on the

thesis of Nobile (2001) and Pena (2009).

The governing equations of free surface incompressible viscoelastic flows for moving

domains in dimensionless form over the time interval I = [t0, tfin] is given by

Re
(
∂u
∂t

∣∣∣∣
Y

+ (u−w) · ∇xxxu
)

= −∇xxxp+ 2β∇xxx ·Dxxx +∇xxx · τττ ,

∇xxx · u = 0, (6.4)

τττ+Wi
(
∂τττ

∂t

∣∣∣∣
Y

+ (u−w) · ∇xxxτττ −∇xxxu · τττ − τττ · ∇xxxuT
)

+ αWi
(1− β)τ

ττ2 = 2(1−β) Dxxx,

(6.5)

subject to appropriate boundary and initial conditions. Here, Dxxx = 1/2(∇xxxu + ∇xxxuT )
is the rate of deformation tensor in the Eulerian frame of reference.

To derive the weak formulation of the equations including the DEVSS-G stabilisation, we

first define the trial and test functions spaces on the reference configuration Ω̂t0 , which are

the same as the ones we chose for the equations in fixed meshes

V̂(Ω̂t0) = [H1
0 (Ω̂t0)]d, V̂D(Ω̂t0) = [H1

D(Ω̂t0)]d

Q̂(Ω̂t0) = L2(Ω̂t0), Q̂0(Ω̂t0) = L2
0(Ω̂t0)

Σ(Ω̂t0) = [L2(Ω̂t0)]d2
s , ΣG(Ω̂t0) = [L2(Ω̂t0)]d2

(6.6)
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Using the ALE-mapRt, we extend these trial and test function spaces over the referential

domain to the spaces defined over the Eulerian domain Ωt

VD(Ωt) =
{
u : Ωt × I → Rd : u = û ◦ R−1

t , û ∈ V̂(Ω̂t0)
}
, (6.7)

Q(Ωt) =
{
q : Ωt × I → Rd : q = q̂ ◦ R−1

t , q̂ ∈ Q̂(Ω̂t0)
}
, (6.8)

Σ(Ωt) =
{
τττ : Ωt × I → Rd×d : τττ = τ̂ττ ◦ R−1

t , τ̂ττ ∈ Σ(Ω̂t0)
}
, (6.9)

ΣG(Ωt) =
{
G : Ωt × I → Rd×d : G = Ĝ ◦ R−1

t , Ĝ ∈ ΣG(Ω̂t0)
}
. (6.10)

Similar definitions hold for V̂(Ωt) and Q̂0(Ωt) For these spaces to be admissible for the

weak formulation of the system of equations (6.4)-(6.5), we need to ensure that V(Ωt) ⊆
[H1

D(Ωt)]d, Q(Ωt) ⊆ L2(Ωt) and Σ(Ωt) ⊆ [L2(Ωt)]d
2
s . Nobile (2001) showed that

V(Ωt) ⊆ [H1
D(Ω)]d and Q(Ωt) ⊆ L2(Ωt) if Ω̂t0 and Ωt = Rt(Ω̂t0) are bounded do-

mains with Lipschitz continuous boundaries and

Rt ∈W 1,∞(Ω̂t0), R−1
t ∈W 1,∞(Ωt), (6.11)

which means that we have restrictions on the regularity of the ALE-map Rt. More-

over, Nobile (2001) demonstrated that ||u||[H1(Ωt)]d is equivalent to ||û||[H1(Ω̂t0 )]d for all

u ∈ [H1(Ωt)]d under these conditions.

In order to stabilise our computation, we employ the DEVSS-G method specified in Prob-

lem 4.2. However, in contrast to the fixed domain DEVSS/DG algorithm introduced in

Section 4.4, we can no longer simplify the equations by noting that ∇ · ∇uT = 0 due

to the incompressibility of the fluid. We require this term in computations involving a

free surface to obtain the right force balance of the Cauchy stress at the free surface of

σσσ · n = σκn after the integration by parts.
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The weak formulation of the system of equations (6.4)-(6.5) including the DEVSS-G/DG

stabilisation with θ = (1− β) in the ALE framework reads

Problem 6.1 (Weak DEVSS-G/DG Formulation in the ALE framework). For almost every

t ∈ I find t → (u(t), p(t),G(t), τττ(t)) ∈ V(Ωt) × Q(Ωt) × ΣG(Ωt) × Σ(Ωt) such that,

for all (φu, ψ, φG, φτττ ) ∈ V(Ωt)×Q(Ωt)× ΣG(Ωt)× Σ(Ωt)

Re
(
∂u
∂t

∣∣∣∣
Y

+ ((u−w) · ∇xxx) u, φu

)

Ωt
+ (2Dxxx, ∇xxxφu)Ωt − (p, ∇xxx · φu)Ωt

+ (τττ , ∇xxxφu)Ωt − (1− β)
(
G + GT , ∇xxxφu

)
Ωt

− 〈σσσ · n, φu〉ΓN (t) − 〈σκ · n, φu〉Γf (t) = 0,

(6.12)

(∇xxx · u, ψ)Ωt = 0, (6.13)

(G−∇xxxu, φG)Ωet
= 0, (6.14)

Wi
(
∂τττ

∂t

∣∣∣∣
Y
, φτττ

)

Ωet
−Wi (τττ , ((u−w) · ∇xxx)φτττ )Ωet

+ Wi
〈

[(u−w) · n] f̃
(
τττ ext, τττ int

)
, φτττ

〉
∂Ωet

−Wi
(
G · τττ + τττ ·GT , φτττ

)
Ωet

+ (τττ , φτττ )Ωet
+ αWi

(1− β)
(
τττ2, φτττ

)
Ωet

= (1− β)
(
G + GT , φτττ

)
Ωet
,

(6.15)

where ΓN (t) is the Neumann boundary and Γf (t) is the free surface boundary.

Note that, Problem 6.1 is in the so-called non-conservative form due to the face that the

ALE time derivative is under the integral over Ωt. The conservative form of the Navier-

Stokes equations in the ALE framework can be found, for example, in Nobile (2001). In

Equation (6.15), the numerical flux is defined as

f̃
(
τττ ext, τττ int

)
=





γτττ ext + (1− γ)τττ int, (u−w) · n < 0,

γτττ int + (1− γ)τττ ext, (u−w) · n ≥ 0,

τττD at inflow,

τττ int at outflow.

(6.16)

The discrete spaces are defined in analogy to Section 4.2 as

Vδ(Ωt) = V(Ωt) ∩ [PcP (Ωt)]2,

Qδ(Ωt) = Q(Ωt) ∩ PP−2(Ωt),

Σδ(Ωt) = Σ(Ωt) ∩ [PP (Ωt)]d
2
,

Σδ
G(Ωt) = ΣG(Ωt) ∩ [PP (Ωt)]d

2
. (6.17)
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6.2. Domain Movement

We employ the ALE-scheme in order to trace the movement of the free surface boundary.

In general, the domain movement is characterised by the movement of its boundary ∂Ωt

and can be described using the domain or mesh velocity w (Ho and Rønquist (1994),

Robertson et al. (2004)), the ALE-mapping R(t) (Nobile (2001), Pena (2009)) or the

displacement d = ∆tw (Choi and Hulsen (2011)).

In this thesis, we describe the movement of the domain in terms of the mesh velocity

w. We wish to use the domain deformation to trace the movement of the free surface.

The movement of the free surface boundary is characterised by the kinematic boundary

condition, which ensures that no particle crosses the interface, that is,

u · n = wf · n on Γf (kinematic boundary condition) (6.18)

where wf is the velocity of the free surface. In our implementation, we can satisfy this

boundary condition and use it to trace the free surface profile by moving the mesh nodes

at the free surface with the normal fluid velocity, that is,

w · n = u · n on Γf . (6.19)

The remaining boundary conditions and the movement of the mesh in the interior of the

domain are chosen in order to prevent strong deformations of the elements Ωe. In general,

we choose the following set of boundary conditions for the mesh velocity





w · n = u · n,
w · s = 0

at Γf ,

∇w · n = 0 at outflow,

w = 0 elsewhere, (6.20)

where s is the unit tangent vector on the free surface boundary. In order to guarantee

smooth mesh movement in the interior, we solve an elliptic problem for the mesh velocity,

given by

∆w = 0, (6.21)

subject to the boundary conditions (6.20). This approach delivers good results when con-

sidering mesh movements with small displacements and has been employed, for instance,

by Ho and Rønquist (1994), Nobile (2001) and Pena (2009). However, for larger mesh

deformations, other elliptic problems may be solved for the movement of the domain,

such as elliptic operators arising from Stokes or elasticity problems (see the monograph
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of Deville et al. (2002) for further details).

We choose the same trial and test function space for the mesh velocity as for the fluid

velocity, i.e. we choose

W ≡ V (6.22)

and we solve Equation (6.21) with the boundary conditions (6.20) using a continuous

Galerkin method. That means the weak formulation reads

Problem 6.2 (Weak Formulation Mesh Velocity). For almost every t ∈ I find t→ w(t) ∈
VD(Ωt) such that, for all φw ∈ V(Ωt)

(∇w,∇φw)Ωe = 0, (6.23)

subject to the boundary conditions (6.20). Note that, we suppose that ∇w · n = 0 on all

Neumann boundaries.

The position of the new nodes of the mesh can be obtained via Equation (6.2), that is,

∂xxx(Y, t)
∂t

∣∣∣∣
Y

= ∂Rt(Y)
∂t

∣∣∣∣
Y

= w(xxx, t). (6.24)

Even though solving Problem 6.2 yields continuous mesh movement, the free surface

boundary might not be sufficiently smooth. The free surface boundary undergoes the

largest deformations and its movement involves the evaluations of the outward normal, n,

in Equation (6.19), across multiple elements. In our computations, we experienced peaks

appearing in the free surface boundary, which may lead to the violation of the restrictions

on the regularity of the mapping (see Equation (6.11)) and to instabilities. To ensure a

higher degree of smoothness of the free surface, we could consider a Hermite mapping,

instead of the iso-parametric mapping introduced in Section 3.4, which yields continuous

derivatives of grid lines over element boundaries. However, we found that the interior

mesh nodes and element boundaries were kept sufficiently smooth using (6.21). There-

fore, we found a smooth representation of the free surface sufficient to obtain a sufficiently

smooth mapping for our numerical examples.

In order to obtain a smooth free surface representation, we represent the free surface using

a cubic spline, and we use it to determine the normals in the kinematic free surface bound-

ary condition (6.19) and the curvature and normals in the dynamic boundary condition

term 〈σκ · n, φu〉Γf (t) in Equation (6.12).
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6.3. Free Surface Representation

x1 x2 x3 xN−2 xN−1 xNS1 S2 SN−2 SN−1

Figure 6.1.: Cubic spline free surface representation.

As mentioned above, we represent the free surface using a cubic spline, S(x, t) ∈ C2(Γf )
in order to guarantee the smoothness of the free surface boundary. This guarantees contin-

uous outward normals and curvature of the free surface boundary across several spectral

elements.

The cubic spline is constructed through all the quadrature points on the free surface. Let

(xi, yi), 1 ≤ i ≤ N, be the physical coordinates of the N quadrature points along the free

surface. Then, we construct a cubic spline S(x, t) = Si(x, t) for each xi ≤ x ≤ xi+1

through

Si(x, t) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di (6.25)

where we enforce continuity

Si−1(xi, t) = Si(xi, t),

Si(xi+1, t) = Si+1(xi+1, t) (6.26)

and smoothness

S′i−1(xi, t) = S′i(xi, t),

S′′i−1(xi, t) = S′′i (xi, t),

S′i(xi+1, t) = S′i+1(xi+1, t),

S′′i (xi+1, t) = S′′i+1(xi+1, t). (6.27)

Here, S′ denotes the partial differentiation with respect to x. We have

Si(xi, t) = di(t) = yi(t), S′i(xi, t) = ci(t), S′′i (xi, t) = 2bi(t). (6.28)

From the continuity and smoothness conditions, we can derive expressions for the coeffi-
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cients ai(t), bi(t), ci(t), di(t) in terms of the second derivative of S, Mi := S′′i (xi, t),

ai(t) = Mi+1 −Mi

6hi
, (6.29)

bi(t) = Mi

2 , (6.30)

ci(t) = yi+1 − yi
hi

−
(
Mi+1 + 2Mi

6

)
hi, (6.31)

di(t) = yi, (6.32)

where hi = xi+1 − xi. Substituting these expressions into the smoothness condition

S′i(xi) = S′i−1(xi) yields the system of equations

(2hi−1 + 2hi)Mi + hi−1Mi−1 + hiMi+1 = 6
(
yi+1 − yi

hi
− yi − yi−1

hi−1

)
, (6.33)

for 1 < i < N − 1, which can be solved if we specify boundary conditions for i = 1 and

i = N − 1. We employ the following boundary conditions

1. the natural boundary condition

M1 = 0, MN−1 = 0; (6.34)

2. the not-a-knot boundary condition

S′′′1 (x2) = S′′′2 (x2), i.e. a1 = a2, (6.35)

S′′′N−1(xN−1) = S′′′N−2(xN−1); (6.36)

3. the clamped boundary condition

S′1(x1) = c1 = cL, S′N−1(xN ) = cN = cR, (6.37)

where cL and cR are arbitrary values. To obtain the values cL or cR for the clamped

boundary condition, we determine the value of the derivative of a Lagrange polyno-

mial through the first or last three nodes, respectively. For cL, that means

cL = 2x1 − (x2 + x3)
(x1 − x2)(x1 − x3)y1 + x1 − x3

(x2 − x1)(x2 − x3)y2 + x1 − x2
(x3 − x1)(x3 − x2)y3.

(6.38)

The system of equations (6.33) with corresponding boundary conditions forms a tridiago-

nal matrix, which can be inverted to obtain Mi. Using Mi, we obtain the coefficients ai,

bi, ci and di, which define the cubic spline. The cubic spline can then be used to determine
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the unit outward normals n and the curvature κ of the free surface using

nS(t) = 1√
S′(x, t)2 + 1

(
−S′(x, t)

1

)
, (6.39)

κS(t) = |S′′(x, t)|
(1 + S′(x, t)2)3/2 . (6.40)

These expressions are then used to evaluate the free surface boundary condition for the

mesh velocity given by Equation (6.20) and the free surface boundary integral in the mo-

mentum equation ∫

Γf

σκSnS φu dΓ. (6.41)

6.4. Spatial discretisation

The spectral element approximation of Problem 6.1 involves the discretisation of the equa-

tions describing viscoelastic flow and the discretisation of the domain motion. Here, we

describe the domain motion in terms of the mesh velocity.

Consider a fixed reference mesh Ω̂δ
t0 consisting of the union of Nel mesh elements Ω̂e

t0 ,

that is,

Ω̂δ
t0 =

Nel⋃

e=1
Ω̂e
t0 , Ω̂e1

t0 ∩ Ω̂e2
t0 = ∅ for e1 6= e2. (6.42)

Furthermore, let Ωδ
t be the union of all mesh elements in the Eulerian frame at time t.

The discrete ALE-mapping Rδt can be identified with the geometrical mappings of the

standard element Ωst onto each element Ωe
t , χχχ

e, defined in Section 3.4 as follows. Let

χχχe(t0) be the parametric mapping from Ωst to Ω̂e
t0 defined as

Y(ξ1, ξ2) = χχχe(t0; ξ1, ξ2) =
P∑

p=0

P∑

q=0
Ŷpqφp(ξ1)φq(ξ2). (6.43)

Similar to the definitions of the spaces of polynomials in Section 4.2, we define the glob-

ally continuous space of polynomials of degree P over the reference mesh as

PcP (Ω̂δ
t0) =

{
gδ : Ω̂δ

t0 → R
∣∣∣ gδ ∈ C0(Ω̂δ

t0), gδ
∣∣∣
Ω̂et0
◦ [χχχe(t0)]−1 ∈ PP (Ωst)

}
, (6.44)
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and the space of piecewise continuous polynomials of degree P over the reference mesh

as

PP (Ω̂δ
t0) =

{
gδ : Ω̂δ

t0 → R
∣∣∣ gδ ∈ L2(Ω̂δ

t0), gδ
∣∣∣
Ω̂et0
◦ [χχχe(t0)]−1 ∈ PP (Ωst)

}
. (6.45)

Here, gδ
∣∣∣
Ω̂et0

indicates the restrictions of gδ to the spectral element Ω̂e
t0 , PP (Ωst) is the

space of polynomials of degree P defined on the standard element. At each time t, we

define the elemental mapping on the elements of the Eulerian mesh as

χe(t) : Ωst → Ω̂e
t0

x(ξ1, ξ2) = χχχe(t; ξ1, ξ2) =
P∑

p=0

P∑

q=0
x̂pq(t)φp(ξ1)φq(ξ2). (6.46)

where x̂pq(t) denotes the expansion coefficients at time t; the globally continuous poly-

nomial space over the Eulerian mesh as

PcP (Ωδ
t ) =

{
gδ : Ωδ

t → R
∣∣∣ gδ ∈ C0(Ωδ

t ), gδ
∣∣∣
Ωet
◦ [χχχe(t)]−1 ∈ PP (Ωst)

}
, (6.47)

and the piecewise continuous polynomial space over the Eulerian mesh as

PP (Ωδ
t ) =

{
gδ : Ωδ

t → R
∣∣∣ gδ ∈ L2(Ωδ

t ) gδ
∣∣∣
Ωet
◦ [χχχe(t)]−1 ∈ PP (Ωst)

}
. (6.48)

Nobile (2001) showed that if the discrete ALE-map is constructed as

Rδt
∣∣∣
Ω̂et0
◦χχχe(t0) = χχχe(t), ∀Ω̂e

t0 , Ωe
t = Rt (6.49)

or equivalently

Rδt
∣∣∣
Ω̂et0

= χχχe(t) ◦ [χχχe(t0)]−1 (6.50)

and is globally continuous then if the discrete space over the reference mesh is given by

X δ(Ω̂δ
t0) = PcP (Ω̂δ

t0), t = t0, (6.51)

the discrete space over the Eulerian mesh

X δ(Ωδ
t ) =

{
g : Ωt × I → Rd : g = ĝ ◦ [Rδt ]−1, ĝ ∈ X δ(Ω̂δ

t0)
}
, ∀t ∈ I (6.52)

is given by

X δ(Ωδ
t ) = PcP (Ωδ

t ). (6.53)
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An analogous results holds for the discontinuous spaces.

With these definitions, we can now define the discrete trial and test function spaces for

the unknowns consisting of the velocity, pressure, velocity gradient projection, polymeric

stress and the mesh velocity. Appropriate discrete spaces fulfilling the compatibility con-

ditions presented in Section 4.2 are given by

Vδ(Ωδ
t ) =

{
u : Ωδ

t × I → Rd : u = û ◦ [Rδt ]−1, û ∈ [H1
D(Ω̂δ

t0)]d ∩ [PcP (Ω̂δ
t0)]d

}
,

(6.54)

Qδ(Ωδ
t ) =

{
q : Ωδ

t × I → R : q = q̂ ◦ [Rδt ]−1, q̂ ∈ L2(Ω̂δ
t0) ∩ [PP−2(Ω̂δ

t0)]d)
}
,

(6.55)

Σδ
G(Ωδ

t ) =
{
G : Ωδ

t × I → Rd×d : G = Ĝ ◦ [Rδt ]−1, Ĝ ∈ [L2(Ω̂δ
t0)]d2 ∩ [PP (Ω̂δ

t0)]d
}
,

(6.56)

Σδ(Ωδ
t ) =

{
τττ : Ωδ

t × I → Rd×d : τττ = τ̂ττ ◦ [Rδt ]−1, τ̂ττ ∈ [L2(Ω̂δ
t0)]d2

s ∩ [PP (Ω̂δ
t0)]d

}
.

(6.57)

Alternatively, these spaces can be expressed as (see Pena (2009))

Vδ(Ωδ
t ) = [H1

D(Ωδ
t )]d ∩ [PcP (Ωδ

t )]d, (6.58)

Qδ(Ωδ
t ) = L2(Ωδ

t ) ∩ [PP−2(Ωδ
t )]d, (6.59)

Σδ
G(Ωδ

t ) = [L2(Ωδ
t )]d

2 ∩ [PP (Ωδ
t )]d, (6.60)

Σδ(Ωδ
t ) = [L2(Ωδ

t )]d
2
s ∩ [PP (Ωδ

t )]d. (6.61)
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The unknowns are approximated by the expansion series given in Equation (4.37) and the

spatial approximation of the Weak DEVSS/DG formulation becomes

Problem 6.3 (Spatial Discretisation of the Weak DEVSS-G/DG Formulation in the ALE

framework). For almost every t ∈ I find t → (wδ(t),uδ(t), pδ(t),Gδ(t), τττ δ(t)) ∈
VδD(Ωt)×VδD(Ωt)×Qδ(Ωt)×Σδ

G(Ωt)×Σδ(Ωt) such that, for all (φw, φu, ψ, φG, φτττ ) ∈
Vδ(Ωt)× Vδ(Ωt)×Qδ(Ωt)× Σδ

G(Ωt)× Σδ(Ωt)

(∇wδ,∇φw)Ωt = 0, (6.62)

Re
(
∂uδ
∂t

∣∣∣∣
Y

+ ((uδ −wδ) · ∇xxx) uδ, φu

)

Ωt
+ (2Dxxx,δ, ∇xxxφu)Ωt − (pδ, ∇xxx · φu)Ωt

+ (τττ δ, ∇xxxφu)Ωt − (1− β)
(
Gδ + [Gδ]T , ∇xxxφu

)
Ωt

− 〈σσσδ · n, φu〉ΓN (t) − 〈σκS · nS , φu〉Γf (t) = 0,

(6.63)

(∇xxx · u, ψ)Ωt = 0, (6.64)

(Gδ −∇xxxuδ, φG)Ωet
= 0, (6.65)

Wi
(
∂τττ δ
∂t

∣∣∣∣
Y
, φτττ

)

Ωet
−Wi (τττ δ, ((uδ −wδ) · ∇xxx)φτττ )Ωet

+ Wi
〈

[(uδ −wδ) · n] f̃
(
τττ ext, τττ int

)
, φτττ

〉
∂Ωet

−Wi
(
Gδ · τττ + τττ δ ·GT

δ , φτττ
)

Ωet
+ (τττ , φτττ )Ωet

+ αWi
(1− β)

(
τττ2
δ , φτττ

)
Ωet

= (1− β)
(
Gδ + GT

δ , φτττ
)

Ωet
,

(6.66)

where ΓN (t) is the Neumann boundary and Γf (t) is the free surface boundary.

The matrix notation and the temporal discretisation schemes used to solve system of equa-

tions of Problem 6.3 are detailed in the following Sections. Here, we just briefly outline

the solution procedure in Algorithm 6.4.1
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Algorithm 6.4.1: ALE/DEVSS-G/DG SCHEME.(un, pn, τττn)

t = t0

while t ≤ tfin

do





procedure MOVEMESH(un, pn, τττn)
Construct Cubic Spline through Free Surface Boundary.

Set BC for Mesh Velocity (see (6.20)).

Solve Elliptic Problem for Mesh Velocity (6.62).

output (wn+1)
Compute New Mesh Coordinates Xn+1.

Construct New Parametric Mappings χχχe(tn+1).

output (Ωtn+1)

Set Boundary Conditions for u and p.

procedure SOLVECOUPLEDSYSTEM(un, pn, τττn,wn+1)
Solve Coupled System of Velocity, Pressure

and Velocity Gradient Projection Tensor (6.63), (6.64) and (6.65).

output (un+1, pn+1,Gn+1)

Set Boundary Conditions for τττ .

procedure SOLVECONSTITUTIVEEQUATION(Gn+1,un+1,wn+1)
Solve the Constitutive Equation (4.45).

output (τττn+1)

tn+1 ← tn + ∆t
n+ 1← n
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6.5. Mesh Movement

For given un, we perform the mesh movement in the following way. First, we determine

the cubic spline through all the quadrature points along the free surface as described in

Section 6.3 from which we compute the normals along the free surface nS . Here, the

index S indicates that the normal is determined using the cubic spline according to Equa-

tion (6.39). Then, solve the elliptic problem using the continuous Galerkin method

Problem 6.4. Find t→ wδ(t) ∈ VδD(Ωt), such that

(∇wδ,∇φw)Ωt = 0, ∀φw ∈ Vδ(Ωt) (6.67)

subject to the boundary conditions





w · nS = u · nS ,
w · sS = 0,

at Γf ,

∇w · n = 0 at outflow,

w = 0 elsewhere, (6.68)

where nS is the outward unit normal and sS is the unit tangent vector on the cubic spline

representing the free surface boundary.

The mesh velocity resulting from the solution of Problem 6.4, denoted by w̃, is then used

to update the coordinates of the mesh nodes using a third order Adams-Bashforth-Scheme

for Equation (6.2).

Xn+1 = Xn + ∆t
12 (23w̃− 16wn + 5wn−1). (6.69)

This equation is solved pointwise in the strong form for each quadrature point. However,

in practice, we do not move all the mesh nodes of every element. We only move all

the quadrature points along the free surface boundary. In the interior of the domain, we

just move the corner vertices of every element keeping the interior edges of the domain

straight.

The movement of all the quadrature points along the free surfaces, means that we introduce

curved edges along the free surface boundary. These curved edges are approximated by

a polynomial expansion of the same order as the unknowns (see Section 3.4 for details),

e.g.

Γef (tn+1; ξ1) =
P∑

p=0
x̂p0 φp(ξ1). (6.70)
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From these edge representations along the free surface and from the new coordinates of the

interior corner vertices of the elements, we construct the geometrical mappings χχχe(tn+1)
using the blending technique described in Section 3.4. These mappings then specify the

new location of all mesh nodes and their continuous union describes Ωδ
tn+1 . Using these

new coordinates of all mesh nodes, we compute the mesh velocity at the new time level

pointwise as

wn+1 = Xn+1 −Xn

∆t . (6.71)

6.6. Solving the Coupled System of Velocity, Pressure
and G

In the next step, we solve the coupled system of equations (6.63) - (6.65) for velocity,

pressure and velocity gradient projection tensor. We discretise the equations in time using

an implicit Euler scheme for velocity, pressure and the velocity gradient projection tensor

and the resulting problem reads

Problem 6.5. For each n, let tn = t0 + n∆t, find (un+1
δ , pn+1

δ ,Gn+1
δ ) ∈ (VδD(Ωδ

tn+1)×
Qδ(Ωδ

tn+1)× Σδ
G(Ωδ

tn+1)) with u0
δ = u0,δ in Ω̂δ

t0 such that

Re

(
un+1
δ − unδ

∆t , φu

)

Ωδtn+1

+
(
[
(
u∗δ −wn+1

δ

)
· ∇xxx]un+1

δ , φu
)

Ωδtn+1

+
(
2Dn+1

xxx,δ , ∇xxxφu
)

Ωδtn+1

−
(
pn+1
δ , ∇xxx · φu

)
Ωδtn+1

+ (τττ∗δ , ∇xxxφu)Ωδtn+1
− (1− β)

(
Gn+1
δ + [Gn+1

δ ]T , ∇xxxφu
)

Ωδtn+1

−
〈
σσσn+1
δ · n, φu

〉
ΓN (tn+1)

− 〈σκS · nS , φu〉Γf (tn+1) = 0,

(6.72)

(
∇xxx · un+1

δ , ψ
)

Ωδtn+1

= 0, (6.73)

(
Gn+1
δ −∇xxxun+1

δ , φG
)δ

Ωet
= 0, (6.74)

for all (φu, ψ, φG) ∈ (Vδ(Ωδ
tn+1) × Qδ(Ωδ

tn+1) × Σδ
G(Ωδ

tn+1)). Here, we linearise the

convective term in the momentum equation by setting u∗δ = unδ , which is an extrapolation

of the velocity of the same order as the implicit Euler scheme.

For the linear advection diffusion problem, Nobile (2001) showed that the implicit Euler

method in the non-conservative form is only conditionally stable. The stability condition
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restricts the time step and involves only geometrical quantities

∆t <
(
||∇ ·wn

δ ||L∞(Ωδtn ) + sup
t∈(tn,tn+1)

∣∣∣
∣∣∣JRtn,tn+1

∇ ·wδ

∣∣∣
∣∣∣
L∞(Ωδt )

)−1

(6.75)

whereRtn,tn+1 is the mapping between Ωtn and Ωtn+1 . If the mesh velocity is divergence

free, then the scheme is unconditionally stable and this is a sufficient condition to satisfy

the so-called geometric conservation law (GCL). The Geometric Conservation Law de-

mands that a numerical scheme is able to reproduce a constant solution accurately and

independently of the mesh motion. The system of equations describing viscoelastic flow

is geometrically conserving. However, this is not clearly the case for the discrete form of

the equations. Let us suppose unδ = u0 and pnδ = 0 are constant for all tn ∈ I . Then, the

discrete momentum equation (6.72) reduces to

(
un+1, φu

)
Ωδtn+1

= (un, φu)Ωδtn+1
. (6.76)

which fulfils the geometric conservation. However, this means geometric conservation

requires that the terms arising from the time derivative have to be integrated over the same

domain Ωδ
tn+1 at the same instant in time. This means all the governing equations need to

be tested and integrated within the same configuration in time (see Förster et al. (2006)).

In addition to this condition, the mesh deformation is subject to some restrictions in or-

der to guarantee geometric conservation. Consider the mesh Jacobian defined in Equa-

tion (2.10), that is,

Ĵt = det
(
∂xxx

∂Y

)
, (6.77)

which describes the ratio between the differential volume elements in the current configu-

ration Ωt and the referential configuration Ω̂t0 . Then, the time derivative of the Jacobian,

known from continuum mechanics (see e.g. Scovazzi and Hughes (2007)), gives the re-

lationship of volume transformation and relative velocity between the two systems Y and

xxx
∂Ĵt
∂t

= Ĵt∇ ·w. (6.78)

Therefore for an algorithm to satisfy the geometric conservation law, Equation (6.78)

should be satisfied in addition to Equation (6.76). Hence, a divergence free mesh velocity

is sufficient to satisfy Equation (6.78). However, even though the GCL could be linked

to convergence properties in numerical schemes using the finite volume method by Farhat

et al. (2001) and Lesoinne and Farhat (1996), Mavriplis and Yang (2006) noted that there

is no evidence that makes the GCL a sufficient or necessary condition for convergence or
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stability in the context of the Navier-Stokes equations in the ALE framework.

Introducing the following matrices

Me(t)[j][i] = Re
∆t

(
φiu, φ

j
u,
)δ

Ωet
, (6.79)

Ke(t)[j][i] =
(
∇xxxφiu + [∇xxxφiu]T , ∇xxxφju

)δ
Ωet
,

−
〈(
∇xxxφiu + [∇xxxφiu]T

)
· n, φju

〉
ΓN (t)

, (6.80)

Be(t; uδ,wδ)[j][i] =
(
[(uδ −wδ) · ∇xxx]φiu, φju

)δ
Ωet
, (6.81)

De(t)[j][i] =
(
∇xxxφiu, ψj

)δ
Ωet
, (6.82)

MuG
e(t)[j][i] = −(1− β)

(
φiG + [φiG]T , ∇xxxφju

)δ
Ωet
,

+(1− β)
〈(
φiG + [φiG]T

)
· n, φju

〉
ΓN (t)

, (6.83)

b(t)[j] =
〈
σκS · nS , φju

〉
Γf (t)

,

f(t;τττ)[j] = −
(
τττ δ, ∇xxxφju

)δ
Ωet

+
〈
τττ δ · n, φju

〉
ΓN (t)

, (6.84)

MGu
e(t)[j][i] = −

(
∇xxxφiu, φjG

)δ
Ωet
, (6.85)

MGG
e(t)[j][i] = −

(
φiG, φ

j
G

)δ
Ωet
, (6.86)

and introducing a modified Helmholtz matrix

He(t)[j][i] := Me(t)[j][i] + Ke(t)[j][i] + Be(t; uδ,wδ)[j][i], (6.87)

this system of equations can be written for each element in algebraic form as

Hg(tn+1)ûn+1
g −Dg(tn+1)T p̂n+1

g + MuG(tn+1)Ĝn+1 = M(tn+1)ûng
+ f(tn+1;τττn) + b(tn+1),

Dg(tn+1)ûn+1
g = 0,

MGu(tn+1)ûn+1
g + MGG(tn+1)Ĝn+1 = 0, (6.88)

where ûg and p̂g are the vectors of unknown global coefficients, Hg, Dg = (Dx1 ,Dx2)
are the global matrices assembled from the elemental matrix contributions by

Hg = ATHeA, (6.89)

as explained in Section 3.7.1 and Section 4.4.1. The matrices are listed component-wise
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in Appendix B.2. In a first step, we eliminate Ĝ in the momentum equation and obtain

[
Hg −MuG [MGG]−1 MGu

]
ûn+1
g −DT

g p̂n+1
g = M(tn+1)ûng

+ f(tn+1;τττn) + b(tn+1), (6.90)

Dgûn+1
g = 0, (6.91)

Ĝn+1 = − [MGG]−1 MGuûn+1
g . (6.92)

Introducing the matrix

H̃ := Hg −MuG [MGG]−1 MGu, (6.93)

the system of equations is of a similar form to the system of equations introduced in

Section 4.4.1 and we can proceed by solving the system of equations analogously to the

coupled solver algorithm explained in Section 4.4.1.
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6.7. Solving the Constitutive Equation

Having obtained (un+1
δ , pn+1

δ ,Gn+1
δ ) and wn+1

δ , we solve the constitutive equation using

a semi-implicit Euler scheme, which is formulated in the following problem

Problem 6.6. For each n, let tn = t0 + n∆t, and given (un+1
δ ,wn+1

δ , pn+1
δ ,Gn+1

δ ), find

τττn+1
δ ∈ Σδ(Ωδ

tn+1) with τττ0
δ = τττ0,δ in Ωδ

t0 such that, for all φτττ ∈ Σδ(Ωδ
tn+1)

Wi

(
τττn+1
δ − τττnδ

∆t , φu

)

Ωδtn+1

−Wi
(
τττn+1
δ ,

((
un+1
δ −wn+1

δ

)
· ∇xxx

)
φτττ
)

Ωδtn+1

−Wi
(
Gn+1
δ · τττn+1

δ + τττn+1
δ · [Gn+1

δ ]T , φτττ
)

Ωδtn+1

+
(
τττn+1
δ , φτττ

)
Ωδtn+1

= (1− β)
(
Gn+1
δ + [Gn+1

δ ]T , φτττ
)

Ωδtn+1

−Wi
〈[(

un+1
δ −wn+1

δ

)
· n
]
f̃
(
τττ∗,ext, τττ∗,int

)
, φτττ

〉
∂Ωδtn+1

− αWi
(1− β)

(
[τττ∗δ ]2, φτττ

)
Ωδtn+1

,

(6.94)

where the flux across the element boundary

f̃
(
τττ∗,ext, τττ∗,int

)
=





γτττ∗,ext + (1− γ)τττ∗,int, (un+1
δ −wn+1

δ ) · n < 0,

γτττ∗,int + (1− γ)τττ∗,ext, (un+1
δ −wn+1

δ ) · n ≥ 0,

τττD at inflow,

τττ∗,int at outflow,

(6.95)

and the non-linear term arising for α > 0 are computed at the new time level using a

Picard iteration scheme, that is, τττ∗ ≈ τττ (it).

We cast Equation (6.94) into the form

A(tn+1) τ̂ττ = f̂(tn+1) + ĝ(tn+1;τττ (it)), (6.96)

where we solve the component-wise system given by




Axx,xx(tn+1) Axx,xy(tn+1) 0
Axy,xx(tn+1) Axy,xy(tn+1) Axy,yy(tn+1)

0 Ayy,xy(tn+1) Ayy,yy(tn+1)







τ̂ττxx

τ̂ττxy

τ̂ττyy




=




f̂xx(tn+1) + ĝxx(tn+1;τττ (it))
f̂xy(tn+1) + ĝxy(tn+1;τττ (it))
f̂yy(tn+1) + ĝyy(tn+1;τττ (it))


 . (6.97)
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Here, A is the concatenation of the following elemental matrices

Ae
xx,xx(tn+1)[j, i] =

([(
1 + Wi γ0

∆t

)
− 2Wi Gn+1

11,δ

]
φiτxx , φ

j
τxx

)δ

Ωet

−Wi
(
(un+1

δ −wn+1
δ )φiτxx , ∇φjτxx

)δ
Ωet
,

Ae
xx,xy(tn+1)[j, i] = −

(
2Wi Gn+1

12,δφ
i
τxy , φ

j
τxx

)δ
Ωet
,

Ae
xy,xx(tn+1)[j, i] = −

(
Wi Gn+1

21,δφ
i
τxx , φ

j
τxy

)δ
Ωet
,

Ae
xy,xy(tn+1)[j, i] =

([(
1 + Wi γ0

∆t

)
−Wi

(
Gn+1

11,δ + Gn+1
22,δ

)]
φiτxy , φ

j
τxy

)δ

Ωet

−Wi
(
(un+1

δ −wn+1
δ )φiτxy , ∇φjτxy

)δ
Ωet
,

Ae
xy,yy(tn+1)[j, i] = −

(
Wi Gn+1

12,δφ
i
τyy , φ

j
τxy

)δ
Ωet
, (6.98)

Ae
yy,xy(tn+1)[j, i] = −

(
2Wi G(n)

21,δφ
i
τxy , φ

j
τyy

)δ
Ωet
,

Ae
yy,yy(tn+1)[j, i] =

([(
1 + Wi γ0

∆t

)
− 2Wi Gn+1

22,δ

]
φiτyy , φ

j
τyy

)δ

Ωet

−Wi
(
(un+1

δ −wn+1
δ )φiτyy , ∇φjτyy

)δ
Ωet
, (6.99)

and the right hand side terms are given by

f̂ e(tn+1)[j] = (1− β)
(
Gn+1
δ + [Gn+1

δ ]T , φjτττ
)δ

Ωet
+ Wi

∆t
(
τττnδ , φ

j
τττ

)δ
Ωet
, (6.100)

ĝe(tn+1;τττ (it))[j] = −Wi
〈[(

un+1
δ −wn+1

δ

)
· n
]
f̃
(
τττ (it),ext, τττ (it),int

)
, φjτττ

〉
∂Ωe,δtn+1

− αWi
(1− β)

(
[τττ (it)
δ ]2, φjτττ

)δ
Ωet
. (6.101)

We solve the system (6.97) element by element by first, eliminating τ̂ττxx and τ̂ττyy in the

equation for τ̂ττxy, which results in

[
Ae
xy,xy −Ae

xy,xx

[
Ae
xx,xx

]−1
Ae
xx,xy −Ae

xy,yy

[
Ae
yy,yy

]−1
Ae
yy,xy

]
τ̂ττxy

= f̂ exy(tn+1) + ĝexy(tn+1;τττ (it))

−Ae
xy,xx

[
Ae
xx,xx

]−1
(f̂ exx(tn+1) + ĝexx(tn+1;τττ (it)))

−Ae
xy,yy

[
Ae
yy,yy

]−1
(f̂ eyy(tn+1) + ĝeyy(tn+1;τττ (it))), (6.102)
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and which we solve to obtain the coefficients of the polymeric shear stress component τ̂ττxy.

Using τ̂ττxy, we then compute the coefficients of the polymeric normal stress components

τ̂ττxx and τ̂ττyy by

τ̂ττxx =
[
Ae
xx,xx

]−1 (
(f̂ exx(tn+1) + ĝexx(tn+1;τττ (it)))−Ae

xx,xy τ̂ττxy
)
, (6.103)

τ̂ττyy =
[
Ae
yy,yy

]−1 (
(f̂ eyy(tn+1) + ĝeyy(tn+1;τττ (it)))−Ae

yy,xy τ̂ττ
n+1
xy

)
. (6.104)

Solving this system, we obtain the polymeric stress components τ̂ττ = τ̂ττ (it+1) at the

next iteration level. We start the Picard iteration with τ̂ττ (it=0) = τ̂ττn. We then update

ĝ(tn+1;τττ (it)) and compute

τ̂ττ (it+1) = A(tn+1)−1
(
f̂(tn+1) + ĝ(tn+1;τττ (it))

)
(6.105)

in each iteration step until the residual satisfies

R = max
kl=xx,xy,yy

[
max

1≤i,j≤Q

∣∣∣τ (it+1)
kl (ξ1i , ξ2j )− τ

(it)
kl (ξ1i , ξ2j )

∣∣∣
]
< 10−10. (6.106)

Here, we perform a backward transformation as defined in Section 3.6.3 in order to eval-

uate the residual in terms of the values of τττ in physical space.





Chapter 7
Die Swell Simulations

(a) Newtonian fluid. (b) Polymer solution.

Figure 7.1.: Extrudate or die swell phenomenon for a Newtonian (a) and a viscoelastic
fluid (b).

In this Chapter, we investigate the extrudate swell phenomenon, which is exhibited by

viscous fluids exiting long die slits. While Newtonian fluids show relatively small swelling

ratios of the exiting jet of liquid, non-Newtonian fluids show significant swelling ratios of

up to twice the diameter of the die. A better understanding of this phenomenon is therefore

of great importance in many industrial extrusion processes involving polymers and other

viscoelastic materials. Numerical simulations of the extrudate or die swell phenomenon

are very challenging due to the presence of a stress singularity at the exit of the die. This

singularity originates from the sudden change in the boundary condition from the wall of

the die to the free surface of the exiting jet (see Figure 7.2(c)). This "jump" in the boundary

condition and the singularity in the boundary geometry, which can be characterised by the

angle θ between the wall and the free surface at the singular points, yields infinite stress

values at the singular point. The behaviour of velocity and polymeric stress for Oldroyd-

B and Giesekus fluids near corner singularities with angle θ along a wall boundary, as
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Figure 7.2.: Schematic diagrams of (a) the re-entrant corner singularity between two walls,
(b) the stick-slip problem and (c) the separation point between wall and free
surface, which yield stress singularities.
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depicted in Figure 7.2(a), has been investigated by Evans (2005, 2010). Let r denote

radial distance from the corner of angle θ = π/γ, γ ∈ [1/2, 1) in the wall boundary.

Evans (2005, 2010) examined the local asymptotic solution at the singularity and found

the following behaviour for the velocity and the stress near the singularity as r → 0

τττ =




O(r−2(1−γ)), Oldroyd-B,

O(r−(1−λ0)(3−λ0)/4), Giesekus,
(7.1)

TN =




O(r−(1−γ)(2−γ)), Oldroyd-B,

O(r−(1−λ0)), Giesekus,
(7.2)

u =




O(r(3−γ)γ−1), Oldroyd-B,

O(rλ0), Giesekus,
(7.3)

Boundary layer thickness =




O(r(2−γ)), Oldroyd-B,

O(r(3−λ0)/2), Giesekus,
(7.4)

Here, λ0 ∈ [1/2, 1) is the Newtonian flow field eigenvalue given by the smallest positive

root of the transcendental equation

sin
(
λ0π

γ

)
= −λ0sin

(
π

γ

)
(no-slip/ no-slip corner). (7.5)

For a Newtonian liquid the asymptotic behaviour of the velocity and pressure near the

corner singularity is given by

u = O(rλ0), p = O(rλ0−1). (7.6)

For the intersection of a no-slip boundary with a shear-free surface boundary, the local

asymptotic solution for the singular behaviour of velocity and pressure can be derived in

an analogous manner to the no-slip corner case. Moffatt (1964) demonstrated that for the

intersection of a no-slip and a shear-free surface boundary the Newtonian flow field is

characterised by the smallest eigenvalue, λ0 ∈ (0, 0.5], that satisfies

sin (2λ0θ) = λ0sin (2θ) , (no-slip/ shear-free corner), (7.7)

and the condition (7.6) holds (see also Salamon et al. (1997)). In the case of θ = 180◦, the

jump from no-slip to shear-free boundary is called the stick-slip problem as depicted in

Figure 7.2(b). Richardson (1970) provided an analytical solution for the stick-slip prob-

lem and showed that the pressure and the velocity gradient around the singularity are
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characterised by an inverse square root, that is,

∇u = O(r−1/2), p = O(r−1/2). (7.8)

The investigation of an intersection of a Navier’s slip and shear free surface is consider-

ably more complicated and has been investigated by Salamon et al. (1995, 1997). They

demonstrated that Navier’s slip boundary condition behaves at leading-order like a shear-

free surface in the local asymptotic solution. Moffatt (1964) showed that a wedge of angle

θ formed from two shear-free surfaces has asymptotics described by the characteristic

equation

λ0 cos
((λ0 + 1)θ

2

)
cos

((λ0 − 1)θ
2

)
= 0, (Navier’s slip/ shear-free corner), (7.9)

where λ0 ∈ (0, 0.5] and again the velocity and pressure are characterised by (7.6). In all

these cases the stress values at the singularity are infinite. These infinite stress values near

the singularity impact the accuracy of the numerical solution. As the computed stress and

pressure values cannot be infinite at the singular point, we have large discretisation errors

near the singularity and the numerical solution is tainted by Gibbs-type spurious oscilla-

tions that occur in the approximation of rapidly changing functions using polynomials.

These Gibbs-type oscillations further pollute the numerical solution and destroy the rate

of convergence of the solution with mesh refinement.

For Newtonian flows, the high discretisation errors in the vicinity of the singularity stay

confined to this area. This is due to the fact that the flow near the corner singularity can

be assumed to be creeping as the inertia terms are negligible near the no slip boundary

and the flow is described by the Stokes equation, which is elliptic and therefore has no

real characteristics. This means the discretisation errors are not propagated downstream

along the streamlines and even though the numerical solution is highly polluted near the

singularity due to large discretisation errors, the error can be controlled by mesh refine-

ment (Blum (1990)).

However, for viscoelastic flows the discretisation error originating at the singularity can

be propagated along the characteristics, i.e. the stream lines, into the whole domain (see

Owens and Phillips (2005) for further explanation) due to the hyperbolic nature of the

constitutive equations. This propagated error can grow downstream causing large scale

oscillations in the solution. For the die swell problem, this can cause large oscillations

to appear near the singularity at the die exit and these oscillations are then convected

downstream and cause violent oscillations in the free surface shape which can cause the

simulations to breakdown. This makes the numerical solution of viscoelastic flows in the

presence of geometric singularities particularly challenging.



181

To improve the stability and quality of the numerical solution, special numerical tech-

niques have been developed such as the singular finite element method (Georgiou et al.,

1989; Georgiou and Boudouvis, 1999). Alternatively, the problem can be modified by

introducing slip along the die wall to alleviate the strength of the singularity. Introducing

slip along the wall is experimentally justified (see Denn (2001)). However, despite some

early successes of Silliman and Scriven (1980), who showed that for Newtonian extrudate

swell, the use of Navier’s slip boundary condition yields bounded stresses and Wesson and

Papanastasiou (1988), who demonstrated that the maximum attainable Weissenberg num-

ber for the UCM and Oldroyd-B model could be increased using a slip condition given

by u = βslτ
m
w , where τw is the wall shear stress, the use of the slip condition as a “cure”

for the singularity remains questionable. Salamon et al. (1995) pointed out that the re-

sults of Silliman and Scriven (1980) were obtained before more advanced finite element

techniques and faster computers allowed careful mesh refinement. Salamon et al. (1995)

investigated planar Newtonian die swell involving Navier’s slip condition using extremely

fine meshes around the singularity to capture and resolve the behaviour of velocity and

stress at the singularity. Their results revealed that while the singularity in the shear stress

is alleviated at the die exit edge, the pressure and viscous normal stress remain singular.

In addition, they pointed out that the length scales for the flow structure are extremely

small even as the slip parameter is increased and therefore accurate calculations remain

extremely difficult. Moreover, in further investigations, Salamon et al. (1997) found that

the slip condition along the wall can yield more singular behaviour than the no-slip con-

dition. This behaviour is also predicted by the local asymptotic analysis as depicted in

Figure 7.3. Figure 7.3 displays the values of the eigenvalue λ0 for a range of angles

180◦ ≤ θ < 270◦ for the corner singularity of an intersection between no-slip/no-slip

boundaries, no-slip/shear-free boundaries and slip/shear-free boundaries. The eigenvalues

for the intersection of slip/shear-free boundaries are smaller than for the no-slip/shear-free

boundary intersection hence leading to sharper increases of the pressure and stress values

near the singularity. Nevertheless, the use of the slip condition along the die wall is highly

relevant due to its existence in experiments.
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Figure 7.3.: Dependency of the smallest Newtonian eigenvalue on the angle θ of a cor-
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boundaries.
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7.1. Computational Domain and Quantities of Interest
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Figure 7.4.: Schematics of the die swell flow configuration including boundary conditions.

In this thesis, we consider the extrusion of Newtonian, Oldroyd-B and Giesekus fluids

from a planar die. The schematics of the employed planar die geometry is depicted in

Figure 7.4. We consider a die of length L1 and height H , and an exit region of length L2.

The length of the die is chosen sufficiently long in order to guarantee a fully developed

flow far upstream of the exit plane.

In the next Section, we mainly investigate two quantities of interest: the swelling ratio and

the exit pressure correction factor. These two quantities are commonly investigated in the

literature. This is due to their importance for practitioners. The extrudate swell ratio is

of importance in extrusion processes and the excess pressure loss gives an indication how

much extra pressure has to be applied to achieve certain swell ratios. The swelling ratio,

χR, is defined as

χR = hf
H
, (7.10)

where H is the half-height of the die and hf is the maximum height of the free surface

with respect to the symmetry line. The swelling ratio is a function of several parameters

χ(H, 〈u〉,Re ,Ca , Bsl,Wi , α), (7.11)

whereH is the half height of the die, 〈u〉 is the average inflow velocity, Re is the Reynolds

number, Ca is the capillary number, Bsl is the slip parameter along the die wall, Wi is the

Weissenberg number and α is the mobility parameter.

The dimensionless exit pressure correction factor, nex, is defined as

nex = ∆p−∆p0
2σw

, (7.12)

where ∆p is the pressure drop between the inlet and the outlet plane, ∆p0 is the pressure

drop between the inlet and the exit of the die for fully developed Poiseuille flow and σw
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is the shear stress at the channel wall corresponding to fully developed Poiseuille flow. In

this thesis, we take the pressure differences along the centreline. The pressure drops are

given by (Tanner (2002))

∆p0 = p|x=−L1 = 2σw
L1
H

(Poiseuille flow for x ∈ [−L1 0]), (7.13)

∆p = p|x=−L1 − p|x=L2 (Extrudate Swell for x ∈ [−L1 L2]), (7.14)

where H is the total height of the channel.

In our computations, we employ the following boundary as depicted in Figure 7.4 for

a half-channel height of H/2 = 1. We assume the flow is symmetric and along the

symmetry line, we set v = 0 and σxy = 0. Note that, σxy = 0 is set through the boundary

integral in the momentum equation (4.42). For the die swell geometry this means there

is no contribution of the Neumann boundary integral in the momentum equation along

the symmetry line. At the die wall we either impose no-slip boundary conditions, i.e.

u = 0, or Navier’s slip condition. Navier’s slip boundary condition is a mixed boundary

condition of Dirichlet and Neumann type. For the extrudate swell geometry depicted in

Figure 7.4, we set v = 0 and impose σxy = 1
Bsl

u through the Neumann boundary term in

the momentum equation. This means for the velocity component u along the slip boundary

Γsl, we obtain the boundary integral

∫

Γsl
(σσσ · nφu) exdΓ =

∫

Γsl

1
Bsl

uφudΓ, (7.15)

where ex is the unit vector in the x-direction. At outflow, we employ an open outflow

boundary condition. We assume a reference pressure of p = 0 along the outflow boundary

and the remaining terms in the Neumann boundary integral along the outflow boundary

in the momentum equation are evaluated along with the volume integrals. In practice,

this means that the boundary terms along the outflow boundary are integrated into the

corresponding global matrices of system (6.88) of the coupled solver for velocity, pressure

and velocity gradient projection tensor. We also integrate the boundary integral resulting

from the slip condition (7.15) into the system (6.88). At inflow, we either impose the

parabolic profile

u = 3
2
(
1− y2

)
, v = 0, (7.16)

in combination with no-slip along the die wall or the profile (Kountouriotis et al. (2013))

u = 3
2(1 + 3Bsl)

(1− y2 + 2Bsl),
∂u

∂y
= −3y

(1 + 3Bsl)
, v = 0, (7.17)
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in combination with the slip boundary condition. For the elastic stress, we impose

τxx = 2 Wi (1− β)
(
∂u

∂y

)2
, (7.18)

τxy = (1− β)∂u
∂y
, (7.19)

τyy = 0 (7.20)

at the inflow boundary.

Concerning the mesh velocity, we employ the following boundary conditions. We consider

the mesh to be fixed at inflow, the die wall and along the symmetry line, i.e. homogeneous

Dirichlet conditions, w = (wx, wy) = 0, are imposed for the mesh-velocity along these

boundaries. At the outflow boundary, we allow the mesh to move in the y-direction, i.e

∇wy · n = 0, and fix it in the x-direction, wx = 0. At the free surface, we enforce the

kinematic boundary condition through the mesh velocity in terms of a Dirichlet boundary

condition for the mesh-velocity, i.e.

w · n = u · n. (7.21)

To avoid mesh distortion, we choose to move the mesh along the free surface boundary

only in the y-direction. The mesh is moved with sufficient velocity wy into the y-direction

to ensure that no particle crosses the interface, that is,

wx = 0, wy = v + u
nx
ny
. (7.22)

The spline representing the free surface is employed using the not-a-knot conditions at

both ends of the spline as explained in Section 6.3.
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7.2. Newtonian Die Swell

Figure 7.5.: Mesh configuration used for the Newtonian die swell computation.

In this Section, we consider the swell of Newtonian fluids and investigate the impact of

inertia on the swelling ratio. A journal article detailing the findings in this Section is in

preparation (Claus and Phillips, 2013b). We consider a die of length L1 = 10 and an

exit region of length L2 = 10. The entry length is sufficient for the fluid to guarantee

a fully developed flow far upstream from the exit of the die. The exit length is chosen

sufficiently long to allow the free surface to reach a constant downstream height for a

large range of Reynolds numbers. The chosen mesh consists of Nel = 14 elements as

shown in Figure 7.5 and we increase the polynomial order to refine the mesh. We choose

a time step of 5× 10−3.

The Newtonian die swell is mainly influenced by the reorganisation of the velocity profile

from the parabolic Poiseuille flow inside the die to plug flow downstream (Tanner (2002)).

This transition is characterised by the sudden jump in the shear stress at the die exit (Russo

(2009)). Inside the die, the shear stress at the wall is at its maximum with particles sticking

to the wall (for the no-slip boundary condition). Then immediately after the die exit, the

removal of the wall shear stress causes a boundary layer to form at the free surface. In

this layer, the parabolic velocity profile adjusts itself so as to satisfy the condition of zero

shear stress at the free surface. This sudden jump in the shear stress at the die exit causes

an instantaneous acceleration of the particles at the free surface causing the fluid jet to

swell. Due to the conservation of energy (there is no gain or loss of energy since gravity

is neglected and the free surface boundary is frictionless) the flow rate in the die has to be
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the same as in the uniform plug flow, which yields

uplug = 1
2hplug

∫ H

−H
u(y) dy, (7.23)

where hplug is the height of the fluid jet in the uniform flow region and u(y) is the parabolic

Poiseuille flow profile. We have 0 < uplug < umax, which means that while particles at

the free surface accelerate when exiting the die the flow near the centreline decelerates.

Inertialess Newtonian extrudate swell was first investigated in the mid 1970s by Tanner

(1973) and Nickell et al. (1974). In a series of articles, Tanner (1973); Tanner et al. (1975);

Reddy and Tanner (1978) performed comparisons with experiments. Tanner (2002) sum-

marises a range of results for Newtonian die swell with Re = 0 and negligible surface

tension and gives extrapolated values from these results. For axisymmetric die swell

Tanner’s extrapolated swelling ratio is χR = 1.127 ± 0.003 and for planar die swell

χR = 1.190±0.002. Table 7.1 summarises some swelling ratios obtained in the literature

for plane Newtonian die swell. In general, an increase in the degrees of freedom yields

less swelling. The effect of inertia and surface tension on the Newtonian extrudate swell

was first investigated by Omodei (1980, 1979). Later, Georgiou and Boudouvis (1999)

compared the singular finite element method to standard FEM for the simulation of New-

tonian die swell including inertia and surface tension. The latest detailed investigations

of the impact of inertia and surface tension was provided Mitsoulis et al. (2012), who in

addition to these factors used FEM to investigate the impact of slip, gravity and compress-

ibility. Inertia causes a decrease of the swelling and the liquid jet eventually contracts for

sufficiently high Reynolds numbers.

We performed computations for Reynolds numbers ranging from 0 to 100. We start com-

puting the extrudate swell for Reynolds number 0 and initialise this computation with the

solution of the corresponding stick-slip problem (Figure 7.2(b)). After having obtained

the extrudate swell for Reynolds number 0, we increase the Reynolds number in steps of 1

from 1 to 10 and in steps of 10 from 10 to 100, each time using the result of the converged

Table 7.1.: Newtonian swelling ratios for Re = 0
Method DOF χR

Crochet and Keunings (1982) FEM 562 1.200
1178 1.196

Reddy and Tanner (1978) FEM 254 1.199
Mitsoulis et al. (2012) FEM 11270 1.191

30866 1.186
Georgiou and Boudouvis (1999) FEM (SFEM) 7528 1.1919 (1.1863)

FEM (SFEM) 12642 1.1888 (1.1863)
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extrudate swell of the previous lower Reynolds number as the initial condition. As the

convergence criterion, we choose a change of the maximum absolute value of all variables

including the mesh velocity of less than 10−6. Figure 7.6 and Table 7.2 shows the com-

parison of the swelling ratios obtained with our algorithm to the results of Mitsoulis et al.

(2012), which are in excellent agreement.
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Figure 7.6.: Swell ratios for Newtonian fluid for P = 10 in comparison with Mitsoulis
et al. (2012)
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Table 7.2.: Comparison of Newtonian die swell ratio for increasing Reynolds number with
Mitsoulis et al. (2012).

Re Mitsoulis et al.
(2012)

P = 10 Re Mitsoulis et al.
(2012)

P = 10

0 1.1915 1.1912 10 0.9842 0.9846
1 1.1885 1.1873 20 0.9168 0.9161
2 1.1687 1.1665 30 0.8960 0.8903
3 1.1394 1.1370 40 0.877
4 1.1060 50 0.8691 0.8692
5 1.0775 1.0774 60 0.8643
6 1.0525 70 0.8611
7 1.0313 80 0.8564 0.8592
8 1.0124 1.0132 90 0.8579
9 0.9977 100 0.85103 0.8573
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Figure 7.7 displays the corresponding free surface spline profiles. We observe that the

swelling ratio decreases at an accelerating pace with increasing Reynolds number until a

Reynolds number of 6. For a Reynolds number equal to 6, we see the onset of a delayed die

swell this means the fluid surface first goes through a minimum before it swells again. The

delay in the swelling of the jet increases with increasing Reynolds number from Re = 6
to Re = 10. For Re = 9 and Re = 10, the fluid contracts (χR < 1) but still experiences

some swelling after going through a minimum near the die exit. For Re = 20 to Re = 100
the fluid does not experience any delayed swelling and contracts. For 10 < Re < 40 the

fluid contracts very fast with increasing Reynolds number. This trend in the contraction

rate with increasing Reynolds number then slows down and approaches a limit for 40 <
Re < 100. The limit for infinite Reynolds number was estimated by Tillett (1968) who

performed a boundary layer analysis for a free Newtonian jet and predicted a limiting

value of χR = 0.8333 for an infinite Reynolds number.

We explore the contour plots of the velocity field for a range of Reynolds numbers in

Figures 7.8 (horizontal velocity component u) and 7.9 (vertical velocity component v).

With increasing Reynolds number the horizontal velocity increases along the centreline,

the vertical velocity near the singularity induced by the sudden change in the boundary

condition decreases and the transition zone under the free surface from Poiseuille flow in

the die to plug flow is extended downstream. This shows that with increasing Reynolds

number the particles along the centreline are accelerated and decelerated near the free

surface yielding the contraction of the free fluid jet. This is indeed the behaviour we would

expect as particles leaving the die will deviate less from their initial path for increasing

inertia. As pointed out by Mitsoulis et al. (2012) in order to accommodate the whole

transition zone the domain length of the free fluid jet should be chosen as L2 = Re .

However, we employ open boundary conditions at outflow which enable us to compute

the extrudate swell accurately in the truncated domain with L2 = 10. As demonstrated

by Mitsoulis and Malamataris (2011) the results for extrudate swell with a domain length

L2 = 6 are virtually identical with those from long domains with L2 = Re , for all

variables, when using the open boundary condition at outflow. However, in this case,

the swell ratio results are only correct up to the truncated length as they continuously

drop beyond the truncated domain. A small discrepancy between swell ratios for different

domain lengths can therefore be expected.

To investigate the transition from Poiseuille flow to plug flow for increasing Reynolds

number further, we plot the velocity and pressure along different paths in the domain.

Figure 7.10 displays the velocity components along the symmetry line (i.e. v = 0) and

along the free surface boundary. In Figure 7.10(a), we see the smooth transition of the

velocity field from the maximum of the parabolic profile to the average plug flow velocity
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given by (7.23), i.e. uplug = 1/χR. As the swell decreases with increasing Reynolds

number the plug flow value of the velocity increases with increasing Reynolds number.

With increasing Reynolds number the change from the maximum parabolic value of the

velocity component u to the plug flow value shifts further downstream. For Re = 0, the

velocity reaches the plug flow value at around x ≈ 3, for Re = 10 at x ≈ 6 and for

Re = 50 the plug flow value is not reached within our computational domain. However,

as pointed out above, due to the use of open boundary conditions at outflow, the velocity

and pressure profiles stay accurate even if they are truncated at outflow. Along the free

surface boundary (Figure 7.10(b), (c)), the velocity component u increases sharply near

the die exit until it reaches the plug flow value, the velocity component v goes through a

maximum near the die exit for Re = 0 and Re = 3 and through a minimum for Re > 7,

when particles are no longer constrained by the no-slip boundary condition. This causes

the swell (for v > 0) or the contraction (for v < 0) of the free surface near the die exit

until the surface is sufficiently curved to obtain a zero total shear stress (i.e. t ·σσσ ·n = 0).

Further downstream when the free surface boundary has reached its maximum swelling

value, the vertical velocity component reaches zero in accordance with the condition of

no particle penetration along the surface (horizontal free surface boundary has outward

normal n = (0, 1) and therefore u · n = v = 0). The maximum value of v along

the free surface decreases with increasing Reynolds number (0 ≤ Re ≤ 5). For the

range of Reynolds number that causes a delayed die swell the velocity component v first

undergoes a sharp minimum and then goes through a maximum (6 ≤ Re ≤ 10). For the

range of Reynolds numbers that cause a contraction of the free Newtonian jet, the velocity

component v goes through a minimum and then slowly approaches zero (Re > 10).

Figure 7.11 shows the velocity components in the cross stream wise direction at inflow

(x = −10), near the die exit (x = −0.2, x = 0.2), further downstream in the free jet

region x = 1 and at outflow x = 10. The velocity component u, is parabolic at inflow,

shortly before the die exit (x = −0.2) the parabolic profile flattens inside the die, after

the die exit the parabolic profile flattens further and builds a boundary layer in which it

goes through a minimum x = 0.2, then flattens increasingly until the plug flow value is

reached. The vertical velocity component, which is zero at inflow, forms a parabolic like

profile with a small boundary layer near the die exit inside the die, which first sharpens

shortly after exiting the die and then relaxes back to the zero value.

On the contour plots for the pressure p displayed in Figure 7.12, we observe that the

pressure isobars are curved near the die exit and in the free jet region in the downstream

direction for low Reynolds number (Re = 0, 3, 7) and in the upstream direction for higher

Reynolds numbers (Re > 10). The change in the pressure becomes more apparent when

we explore the pressure values along the symmetry line (Figure 7.13(a)). Inside the die,

the pressure gradient is constant as expected for Poiseuille flow. However, near the die
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exit (x = 0) the pressure curves smoothly and approaches zero for the plug flow. For

higher Reynolds numbers the pressure on the centreline goes through a minimum. This

behaviour of the pressure yields a shift in the pressure values at inflow, which is expressed

by the exit pressure correction as defined in Equation (7.12). Table 7.3 lists a comparison

of the exit pressure correction for Re = 0 of our scheme and the swell ratio for increasing

mesh refinement with the results obtained by Taliadorou et al. (2007). We obtain close

agreement for a much smaller number of degrees of freedom, which demonstrates that p-

refinement is effective for the Newtonian extrudate swell even though the result is polluted

by Gibbs oscillations in the pressure around the singularity (Figure 7.14(c)). The Gibbs

oscillations in the pressure stay confined to the elements adjacent to the singularity.

Increasing the Reynolds number leads to a dampening in the oscillations in the elements

adjacent to the singularity and the extreme values of the pressure at the singularity decrease

significantly (Figure 7.13(b)). As demonstrated in Section 3.8.2 increasing the polynomial

order yields an increase in the number of oscillations. However, the amplitude of each os-

cillation is reduced with increasing polynomial order P . Increasing the polynomial order

also has the effect of exponentially increasing the maximum value of the pressure and

sharply increasing the minimum value of the pressure at the singularity which reflects an

improved approximation of the infinite pressure value at the singularity (Figure 7.14(d)).

While the infinite pressure values at the singularity hamper the rate of convergence of the

numerical pressure solution, the values of the velocity components along the free surface

are converged for P ≥ 10 (see Figure 7.14(a), (b)).

Table 7.3.: Comparison of swell ratios and exit pressure corrections for increasing number
of degrees for freedom (DOF) between our algorithm and that of Taliadorou
et al. (2007).

Spectral/hp method Taliadorou et al. (2007) FEM

P DOF hf nex DOF hf nex

8 2624 1.1928 0.1507
10 4116 1.1912 0.1503 37208 1.1953 0.1514
12 5944 1.1901 0.1497 43320 1.1908 0.1491
14 8108 1.1900 0.1491 49864 1.1893 0.1482
16 10608 1.1891 0.1485 60490 1.1878 0.1473

To alleviate the pressure singularity at the die exit, we investigate the effect of slip along

the die wall on the dependent variables. We therefore change the inflow profile according

to Equation (7.17) and employ the slip condition (7.15) along the die wall. We explore the

velocity field and the pressure along the free surface for a slip parameter of Bsl = 0.01,

Bsl = 0.1 and Bsl = 0 (no-slip) in Figure 7.15. With the introduction of slip along the

wall, the horizontal velocity component experiences a smooth transition at the die exit
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in vast contrast to the kink at the singularity that is observed for the no-slip condition

(Bsl = 0) along the wall (Figure 7.15(a)). The change for the vertical velocity remains

sudden and features a kink at the singularity. However, the maximum value of the vertical

velocity component decreases with increasing slip (Figure 7.15(c)). The pressure profile

at the singularity is changed drastically with slip along the wall and the Gibbs oscillations

disappear (Figure 7.15(e), (f)). Even though the minimum of the pressure does not show a

converging trend in the range of the employed polynomial orders, its value only increases

slightly with increasing P (Figure 7.15(f)). Table 7.4 lists the swelling ratios for increasing

polynomial order, P , for Bsl = 0.1 and Bsl = 0.01. The swelling ratios are converged

to three decimal places. Figure 7.15(b), (d) shows that the velocity values are converged

for P ≥ 10. The free surface spline for increasing slip parameter is shown in Figure 7.16.

Increasing the slip parameter yields a decrease in swelling.

Table 7.4.: Dependence of the swelling ratio on P for Bsl = 0.1 and Bsl = 0.01.
P Bsl = 0.1 Bsl = 0.01
10 1.1041 1.1671
12 1.1041 1.1673
14 1.1040 1.1670
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Figure 7.7.: Free surface spline profiles for Newtonian extrudate swell for P = 10 for a
range of Reynolds numbers.
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(a) Re = 0

(b) Re = 3

(c) Re = 7

(d) Re = 10

(e) Re = 50

Figure 7.8.: Contour plots of horizontal velocity component u for P = 10 for a range of
Reynolds numbers.



196 Chapter 7. Die Swell Simulations

(a) Re = 0

(b) Re = 3

(c) Re = 7

(d) Re = 10

(e) Re = 50

Figure 7.9.: Contour plots of vertical velocity component v for P = 10 for a range of
Reynolds numbers.
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Figure 7.10.: Dependency of velocity components along (a) the symmetry line and (b)- (c)
along the free surface on the Reynolds number.
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Figure 7.11.: Velocity components in cross stream wise direction at inflow (x = −10),
near the die exit (x = −0.2, x = −0.2), further downstream in the free jet
region x = 1 and at outflow x = 10.
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(a) Re = 0

(b) Re = 3

(c) Re = 7

(d) Re = 10

(e) Re = 50

Figure 7.12.: Contour plots of pressure p for P = 10 for a range of Reynolds numbers.
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Figure 7.13.: Plots of pressure p along (a) the centreline and (b) the wall and the free
surface.
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(c) Pressure p along the die wall and the free surface.
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Figure 7.14.: Influence of P -mesh refinement on (a) the velocity components u, (b) v and
(c) pressure p along the free surface and the increase of maximum and min-
imum values of the pressure at the singularity with increasing polynomial
order (d).
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Figure 7.15.: Dependence of (a) velocity components u, (c) v and (e) pressure on the slip
parameter for P = 10 and on mesh refinement for Bsl = 0.01 ((b),(d),(f))
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7.3. Viscoelastic Die Swell

(a) Mesh M1

(b) Mesh M2

Figure 7.17.: Computational meshes employed for the viscoelastic extrudate swell com-
putations.

In this Section, we present results for the viscoelastic extrudate swell for Oldroyd-B and

Giesekus fluids. As detailed in the beginning of this Chapter, the computations of vis-

coelastic flows in the presence of the jump singularity at the boundary between the wall

and the free surface, which yields infinite stresses, is very challenging. Discretisation er-

rors originating at the singularity can be convected downstream for viscoelastic flows due

to the hyperbolic nature of the constitutive equation in contrast to the Newtonian flow,

where the error stays confined. Indeed, we find that the extrudate swell computations

could only be successfully performed for a very narrow range of parameters and success

is highly dependent on the mesh configuration. For the mesh configuration detailed in

Figure 7.17 consisting of Nel = 14 (Mesh M1) and for P = 3, we obtain swelling ratios

up to 2.067 for Wi = 0.85. For an increase in the polynomial order or for a decrease in the

mesh size (Nel = 64 (Mesh M2)), the numerical algorithm breaks down at a much lower

Weissenberg number due to oscillations on the free surface boundary. These oscillations

originate at the singularity and are convected downstream. We attempted to alleviate the

problem associated with the singularity using the slip condition. Even though this seems

to cure the breakdown of the computation with mesh refinement for the tested polynomial

orders, the computations break down at Wi = 0.6 even for the coarsest mesh. In addition

to the Oldroyd-B model, we investigate the extrudate swell of Giesekus fluids. For the

Giesekus fluid, we were able to obtain converged results up to Wi = 1.5 for a mobility

parameter of α = 0.1 on the coarsest mesh.

Subsequently, we will first present the results that we obtain with mesh M1 (P = 3).

Then, in order to shed some light on possible causes for the failure of the numerical algo-
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rithm with increasing Weissenberg number and mesh refinement, we will investigate the

behaviour of the stress components in the vicinity of the singularity.

The computations are performed employing the boundary conditions specified in Fig-

ure 7.4 and detailed in Section 7.1 and the following parameters. We choose ∆t = 10−3,

β = 0.1 and investigate the swell ratio and the exit pressure correction for increasing

Weissenberg numbers. For the Oldroyd-B fluid, we compute the steady state results by

incrementing Wi by 0.05. For the Giesekus model, we perform the computations in incre-

ments of ∆Wi = 0.1. The first computation is performed for Wi = 0.1 with the stick-slip

solution for Wi = 0.1 as the initial condition. Every other computation is then initialised

with the steady state solution from the previous Wi -step.

For viscoelastic fluids, the extrudate swell is caused by a combination of several effects:

the reorganisation of the velocity profile from Poiseuille flow inside the die to uniform

plug flow (as in the Newtonian case); the elastic recoil from the relaxation of molecules

passing from a stressed viscometric state in the die to an unstressed state; and inelastic

swelling due to, for example, thermal effects (Tanner, 1980). In this thesis, we will ne-

glect thermal effects. The contribution of the remaining effects were estimated by Tanner

(2002). Tanner (2002) estimates the swelling ratio caused by the rearrangement of the

velocity profile from Poiseuille to plug flow as

χR(velocity rearrangement) = 0.19, (7.24)

assuming that the swelling in the case of a Newtonian liquid is mainly determined by the

rearrangement of the velocity field. For the contribution of the elastic recoil mechanism,

Tanner (2002) demonstrates that the swelling caused by the elastic recoil mechanism ex-

iting from a plane die can be estimated as

χR(elastic recoil) =


1 + 1

12

(
N1
σxy

)2

w




1
4

. (7.25)

Here, N1 = σxx−σyy is the first normal stress difference and σxy is the shear stress, both

of which are evaluated at the wall of the die. The quantity

SR :=
[
N1

2σxy

]

w

(7.26)

at the upstream wall is called recoverable shear. To derive formula (7.25), Tanner (2002)

assumed that the elastic behaviour can be modeled by a K-BKZ integral equation, which

has τxy ∼ γ̇w and N1 ∼ γ̇2
w, where γ̇w = ∂u

∂y
is the wall shear rate, but N2 = 0. This

is a reasonable assumption for the Oldroyd-B model. Combining the two effects, the total
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estimate for the swell ratio is

χR = 0.19 +
[
1 + 1

3S
2
R

] 1
4
. (7.27)

Equation (7.27) is called Tanner’s formula.

For fully developed Poiseuille flow, the recoverable shear for the Oldroyd-B model is

given by

SR =
[

2(1− β)Wi γ̇2

2((1− β)γ̇ + βγ̇))

]

w

= (1− β)Wi γ̇w (7.28)

where the Weissenberg number is defined as

Wi = λ〈u〉
L

. (7.29)

Here, we define the half channel height H as the characteristic length L and the average

fluid inlet speed 〈u〉 as the characteristic velocity. In addition, we define the effective

Weissenberg number

Wi eff := λγ̇w = λ
U

L
γ̇∗w = Wi γ̇∗w. (7.30)

where γ̇∗w is the non-dimensionalised γ̇w using the non-dimensionalisation u∗ = u/U ,

y∗ = y/L. The combination of elasticity and wall shear rate is an important measure for

the extrudate swell problem (see also SR (7.28)).

For our flow configuration with an inflow profile given by Equation (7.16), we obtain

〈u〉 = 1 and γ̇w = 3 and our half-channel height is L = H = 1. Therefore, the recover-

able shear (7.28) becomes

SR = (1− β)Wi γ̇w = 3(1− β)Wi . (7.31)

7.3.1. Swelling Ratio and Exit Pressure Correction Factor

We compare our numerical results for the planar Oldroyd-B extrudate swell with Crochet

and Keunings (1982), Tomé et al. (2002) and Russo and Phillips (2011), which to our

knowledge are the only authors so far to have presented results for the planar Oldroyd-B

die swell. However, the comparison with these authors has to be interpreted with care

and is not fully conclusive as different geometries and different parameters were varied in

order to achieve a range of swell ratios (Figure 7.18). We choose the geometry definition

closely to Crochet and Keunings (1982) as this geometry is commonly used for the New-

tonian extrudate swell benchmark computations.

Crochet and Keunings (1982) used a channel of half-height H = 1, a channel and free

jet domain length of L1 = L2 = 16, an inflow profile of u = 3
2(1 − y2), which results
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in 〈u〉 = 1 and γ̇w = 3 (Figure 7.18(a)). They used a coarse Taylor-Hood (i.e. P = 2
for velocity and stress, P = 1 for pressure) finite element mesh of 75 elements and 357

nodes resulting in 1889 degrees of freedom. They used the governing equations in their

dimensional form and increased elasticity in terms of λγ̇ in increments of 0.25. Crochet

and Keunings (1982) obtained a maximum swell ratio of h/h0 = 2.19 for λγ̇ = 4.5,

(SR = 4 for β = 1/9). For Crochet and Keunings (1982) the recoverable shear is given

by

SR = (1− β)λγ̇w = 3(1− β)λ. (7.32)

The results were given in terms of λγ̇w.

Tomé et al. (2002) employed a finite difference method with a mesh size of ∆x = ∆y =
0.025m. They solved the equation in the dimensionless form but chose a very different

domain as depicted in Figure 7.18(b). They defined the full channel height as the charac-

teristic length (in contrast to the standard choice of half channel height) and the average

velocity as the characteristic velocity. As their full channel height is chosen to be L = 1
an average inlet velocity of 〈u〉 = 1 is given by the velocity profile u = −6y(y−1) yield-

ing a wall shear rate of γ̇w = 6. To increase the swell ratio, they varied the Weissenberg

number. For Tomé et al. (2002), the recoverable shear becomes

SR = (1− β)Wi γ̇w = 6(1− β)Wi . (7.33)

They listed their results in terms of Wi γ̇w.

Russo and Phillips (2011) employed a nodal spectral element technique and varied the

mesh with Nel = 8, 10, 12, 14 and P = 6, 7, 8, 10. They chose a geometry of half-

channel height H = 2 and varying length L1 = 10, L2 = 6, 10 and varied the fluid

inlet speed to vary the wall shear stress γ̇ = 2, 4, 6, 8 and they varied the Weissenberg

number accordingly in order to obtain a range of swell ratios (Figure 7.18(c)). They used

the dimensionless version of the equations. However, they fixed λ = 0.125, varied the

maximum of the inflow profile u(y) = umax(1−y2/4), which yields 〈u〉 = 2/3umax,γ̇ =
∂yu|y=2 = umax and thus varied Wi = λγ̇. Results are given in terms of Wi . For Russo

and Phillips (2011) the recoverable shear becomes

SR = (1− β)Wi γ̇w (7.34)

Russo and Phillips (2011) presented results for the cases

(γ̇w,Wi ) = (2, 0.25), (4, 0.5), (6, 0.75), (8, 1) (7.35)
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yielding SR = (1− β)/2, 2(1− β), 9/2(1− β), 8(1− β).

As we performed our computations with the same dimensionless form as Tomé et al.

(2002) and Russo and Phillips (2011), we will compare our results in terms of Wi . To

compare our results with those of Crochet and Keunings (1982), we need to relate the

Weissenberg number to the relaxation time λ. For our geometry and for Crochet and

Keunings (1982) geometry, we obtain

Wi = λ
U

L
= λ as U = 1, L = 1. (7.36)

Figure 7.19(a) shows the comparison of swell ratios for the Oldroyd-B model using our al-

gorithm for P = 3 (Mesh M1) with those in the above mentioned articles by Crochet and

Keunings (1982), Tomé et al. (2002) and Russo and Phillips (2011) and Tanner’s formula

given by Equation (7.27). Crochet and Keunings (1982) and Tomé et al. (2002) observe a

quasi-linear growth of the swelling ratio with a change in slope at a critical Weissenberg

number, while Russo and Phillips (2011)’s calculations predict quasilinear increase in the

swelling ratio without a slope change. We predict a quasi-quadratic growth (polynomial

regression fitting yields p(x) = 0.9372x2 + 0.2511x+ 1.1659) in the swelling ratio. Tan-

ner’s formula underpredicts the swelling ratio. For P = 3, we obtain a maximum swell

ratio of 2.067 for Wi = 0.85. This discrepancy with Tanner’s formula could be due to

the derivation of the formula using the K-BKZ model instead of Oldroyd-B. Our results

are closest to those obtained by Russo and Phillips (2011) and the swelling ratio lies in

between the results of Crochet and Keunings (1982) and Tomé et al. (2002). We predict

a linear growth in the exit correction factor (7.12) for the Oldroyd-B model for P = 3,

which also lies in between the results of Crochet and Keunings (1982) and Tomé et al.

(2002) (Figure 7.19(b)). However, as detailed above it is very difficult to draw conclu-

sions from the comparison of extrudate swell data with the existing literature as many

variations in the geometry and in the technique to increase swelling have been employed.

In addition to the Oldroyd-B model, we investigate the die swell of Giesekus fluids. To

our knowledge, results for the two dimensional extrudate swell of a Giesekus model in

a planar die have not been presented in the standard geometry used for planar Newto-

nian extrudate swell. However, the swell of Giesekus fluids has been investigated in a

range of other geometries. Tanoue et al. (1995) and Otsuki and Kajiwara (1999) used

the Giesekus model to predict swelling in blow molding specific geometries, Delvaux and

Crochet (1990) computed delayed die swell with the Oldroyd-B and Giesekus constitutive

equation and Adrian (2010) used three-dimensional finite elements to investigate the ex-

trudate swell for the Oldroyd-B and Giesekus model. Other models that have been studied

for extrudate swell include the K-BKZ model (e.g. Mitsoulis (2010)), the Phan-Thien-

Tanner model (e.g. Ganvir et al. (2009)) and the XPP model (Russo and Phillips (2010)).
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Note that most of the above listed computations have been performed using finite ele-

ments. Nodal spectral methods have only been employed for die swell flow by Ho and

Rønquist (1994) for Newtonian fluids and by Russo (2009) for Newtonian, XPP and

Oldroyd-B fluids. To our knowledge, modal spectral methods have not yet been employed

to investigate extrudate swell. A review about numerical techniques and results for New-

tonian and viscoelastic extrudate swell problems for axisymmetric and planar dies can be

found in Tanner (2002).

Figure 7.20(a) displays the comparison of the swell ratio for the Giesekus model with a

mobility parameter of α = 0.1 and the Oldroyd-B model for no-slip and slip boundary

conditions. The increase in the swelling ratio with increasing Weissenberg number for

the Giesekus model is much lower than for the Oldroyd-B model and computations are

successful for much higher Weissenberg numbers (Wi = 1.5). To explain the reduction

in the swelling ratio for the Giesekus model, we explore the values of the recoverable

shear for simple shear flow (see Section 2.5.4 and 2.5.5) with γ̇w = 3 for a no-slip wall

boundary condition and γ̇slw = 3/(1 + 3Bsl) (see Equation (7.17)) for the slip condition.

The values of the recoverable shear for increasing Weissenberg number are plotted in Fig-

ure 7.20(b). For the Giesekus model the recoverable shear is lower than for the Oldroyd-B

model and it is bounded. This is due to the shear-thinning behaviour and the bounded-

ness of the first normal stress difference of the Giesekus model (see Section 2.5.5). As

the recoverable shear has been established as one of the main factors for swelling (Tanner

(2002)), we would expect lower swelling for the Giesekus model and a bounded swelling

ratio with increasing elasticity. In contrast, for the Oldroyd-B model, we can expect that

the swelling ratio increases without bound. Figure 7.21 shows the exit pressure correction

factor for the Giesekus model and the plots of the pressure values along the centreline for

the Giesekus and Oldroyd-B models. The exit pressure correction factor for the Giesekus

model is positive up to Wi = 0.25 and negative for Wi ≥ 0.3, which is in stark contrast

to the Oldroyd-B model. For the Oldroyd-B model the pressure at inflow is always greater

than the Poiseuille flow value (hence nex > 0) and increases with increasing Wi, while

for the Giesekus model the pressure value at inflow decreases with increasing Wi, which

is due to the shear-thinning properties of the Giesekus model.

The introduction of slip along the wall reduces the recoverable shear as the wall shear rate

decreases and for Bsl = 0.1, we obtain

γ̇w = 3
1 + 3Bsl

= 2.3077. (7.37)

This decreases the swelling ratio (Figure 7.20) and the slope of the increase with increas-

ing Weissenberg number is smaller than the slope for the no-slip boundary condition.
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Figure 7.18.: Comparison of geometries employed by (a) Crochet and Keunings (1982),
(b) Tomé et al. (2002), (c) Russo and Phillips (2011) and (d) our computa-
tional domain.
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Figure 7.19.: Swelling Ratio (a) and exit pressure correction factor (b) for Oldroyd-B fluid
in comparison with literature.
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Figure 7.21.: Dependency of exit pressure correction factor on the Weissenberg number
for the Giesekus model (a) and plot of pressure values along the symmetry
line for P = 3 for the Giesekus model (b) and the Oldroyd-B model (c).
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7.3.2. Spline Profiles and Contour Plots

The free surface shape in terms of the spline representing the free surface are plotted in

Figure 7.22 for the Oldroyd-B and Giesekus model for a range of Weissenberg numbers

for the mesh M1 for P = 3. The swell caused by the elasticity is a sharp increase in the

free surface profile at the die exit and with increasing elasticity the free surface reaches its

constant value further and further downstream.

These free surface shapes can also be seen for the Oldroyd-B model in Figure 7.23 dis-

plays the contour plots for the velocity components u for Wi=0.1, 0.25, 0.5, 0.75, 0.85 and

v for Wi=0.25, 0.5. With increasing Wi, the velocity component u deforms increasingly

along the whole height of channel at the die exit and increasingly upstream inside the

die near the die exit. The velocity component v increases with increasing Wi causing the

increase in the swelling. For both velocity components, the length of the transition zone

from Poiseuille flow to plug flow increases with increasing elasticity. These effects show

the increase in the fluid memory with elasticity, i.e. the flow is impacted increasingly

further upstream and downstream from the point where a considerate change in the flow

configuration occurs. Figure 7.24 shows the contour plots of the pressure p , the flow

dependent shear stress S1 (see Equation (5.33)) and the flow dependent normal stress S2

(see Equation (5.34)). The pressure has a circular low pressure region attached the die exit

that increases in size with increasing Wi and is increasingly bent in the downstream direc-

tion. The flow dependent shear stress undergoes a radial relaxation into the free jet region

originating from a low shear stress value at the die exit. This radial relaxation reaches

increasingly downstream with increasing elasticity reflecting the increase in the relaxation

time of the fluid. The flow dependent normal stress also undergoes a relaxation from its

maximum value at the die exit. However, this relaxation is very fast in the cross stream

direction and is counteracted by the formation of a low normal stress region forming along

the centreline (lowest values) and reaching over a large percentage of the whole height of

the free jet domain.
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Figure 7.22.: Free surface spline profiles for the Oldroyd-B (a) and Giesekus model (b)
for increasing Weissenberg number.
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(a) Wi = 0.1 (b) Wi = 0.25

(c) Wi = 0.5 (d) Wi = 0.85

(e) Wi = 0.25 (f) Wi = 0.5

Figure 7.23.: Contour plots of velocity components u (a)-(d) and v (e)-(f) for Oldroyd-B
model for a range of Weissenberg numbers.
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(a) Wi = 0.25 (b) Wi = 0.5

(c) Wi = 0.25 (d) Wi = 0.5

(e) Wi = 0.25 (f) Wi = 0.5

Figure 7.24.: Contour plots of pressure p (a)-(b) and flow dependent shear stress S1 (c)-
(d), normal stress S2 (e)-(f) for Oldroyd-B model for Wi= 0.25, 0.5.
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7.3.3. Mesh Refinement and Stress Components in the Vicinity of
the Singularity

As discussed in the beginning of the Section, the jump from the no-slip or partial slip

boundary condition to the free surface causes infinite stresses at the die exit. With mesh

refinement, the increased resolution of the singularity yields a significant increase in the

approximated stress values and the stress profiles steepen. With P -refinement of the mesh

(i.e. increasing the polynomial order of the expansion basis) the closest quadrature point,

where the weak forms are evaluated, is at a distance of approximately
h

P 2 to the sin-

gularity, where h is the length of the element edge in the streamwise direction. This

yields a significant increase in the magnitude of the approximated stress profiles with P -

refinement. Figures 7.25 and 7.26 show the profiles of the pressure and polymeric stress

components near the singularity for the no-slip and partial slip condition along the die

wall for Wi= 0.14. We can clearly observe the steep increase of the profile values with

increasing polynomial order. Note that the vertical lines in Figures 7.25 and 7.26 in the

pressure and stress profiles at x = −0.3, 0, 0.3 are in fact discontinuities in the solution

at element boundaries, which we allow in our discontinuous Galerkin method. For the

no-slip boundary condition, the pressure jumps from a negative value to an increasingly

high value with P -refinement at the die exit (Figure 7.25(a) at x = 0), while for the slip

boundary condition it experiences a jump to a lower peak value (Figure 7.25(c) at x = 0).

This minimum peak value increases much slower with increasing polynomial order than

the maximum peak value in case of the no-slip condition. The polymeric stress τxx jumps

from a steeply increasing high value to a low value at x = 0 before it experiences a sec-

ond peak for the no-slip boundary condition (Figure 7.25(b)), while for the slip condition

it undergoes a smoother symmetric peak that increases much slower with increasing P

(Figure 7.25(d)). Figure 7.25(e) displays the increase in the peak values with increasing

polynomial order in more detail and shows that the peak growth is much lower for the slip

condition for Wi= 0.1. Figure 7.26 displays the comparison of slip and no-slip boundary

condition with increasing polynomial order for the profiles of the stress components τxy
and τyy. The stress component τxy undergoes a jump from a sharp high peak value, which

increases significantly with increasing P , to a negative low value at x = 0 and then expe-

riences a second peak, which also increases with P -refinement, for the no-slip boundary

condition (Figure 7.26(a)). In contrast, for the slip boundary condition it undergoes a step

change from a lower to a higher value and the growth of the peaks with increasing P is

much lower (Figure 7.26(c)). The stress component τyy undergoes a sharp minimum at

the die exit, which is more symmetric but sharper for the slip condition than for the no-slip

condition (Figure 7.26(b), (d)). Figures 7.26(e) and 7.26(f) document the growth in the

peak values for τxy and τyy. In addition, we clearly observe Gibbs-type oscillations in



7.3. Viscoelastic Die Swell 219

the vicinity of the singularity for the polymeric stress components τxy and τyy. As these

stress components interact with the velocity gradient tensor, these oscillations can cause

oscillations in the velocity components. These oscillations of the velocity components

impact the movement of the free surface boundary and oscillations appear on the free

surface. Beyond a critical value, the oscillations of the free surface do not dampen and

get amplified and transported downstream which causes a breakdown of the computation.

Figure 7.27 shows two examples of the numerical breakdown of the scheme for critical

Weissenberg numbers in case of the no-slip boundary condition. For no-slip along the die

wall, a refinement of the mesh for P = 6 yields a breakdown at Wi = 0.2 with violent

oscillations appearing at the free surface boundary (Figure 7.27(a)). For h-refinement and

no-slip, we obtain a critical Wi = 0.35 and the free surface shows oscillations that travel

downstream and eventually yield a breakdown (Figure 7.27(b)).

As shown in Figures 7.25 and 7.26 the increase in the peak values for the slip condition

are much less severe than for the no-slip condition for increasing polynomial order. In-

deed, in our computations, we observe that the introduction of the slip condition prevents

the breakdown of the computation with mesh refinement for all tested polynomial orders.

However, the critical Weissenberg number, which is now independent of the tested mesh

refinements (P = 3, 4, 6, 8), is Wi = 0.6 and therefore lower than in the no-slip case for

the coarsest mesh, where we obtain a critical Wi = 0.9. This breakdown at Wi = 0.6 for

the slip condition is due to the growth of the stress values with increasing Wi as displayed

in Figure 7.28 for the coarsest mesh (M1, P = 3). Roughly speaking, the increase of the

peak values with increasing Wi is quasi-quadratic for the slip boundary condition, while

it seems quasi-linear for the no-slip condition yielding to a lower critical Wi for the slip

condition in the coarsest mesh.

Table 7.5 show the swelling ratios obtained for mesh refinement for the Oldroyd-B and the

no-slip boundary condition. With increasing polynomial order the swelling ratio reduces.

Table 7.6 lists the swelling ratios for the Oldroyd-B with slip along the wall, which also

shows a reduction with mesh refinement.

Table 7.5.: Dependency of swelling ratio on mesh refinement for the Oldroyd-B model.

Wi M1 (P = 3) M2 (P = 3) P = 4 (M1) P = 6 (M1)

0.1 1.207 1.198 1.197 1.191
0.15 1.222 1.221 1.217 1.213
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Figure 7.25.: Dependence of pressure ((a), (c)) and polymeric stress τxx ((b),(d)) in the
vicinity of the singularity on the polynomial order for Wi = 0.1 for the no-
slip and slip boundary condition and the increase in magnitude of τxx with
polynomial order (e).
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Figure 7.26.: Dependence of polymeric stress components τxy ((a), (c)) and τyy ((b),(d))
in the vicinity of the singularity on the polynomial order for Wi = 0.1 for
the no-slip and slip boundary condition and their increase in magnitude with
polynomial order (e),(f).
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Table 7.6.: Dependency of swelling ratio on mesh refinement in mesh M1 for the Oldroyd-
B model with slip along the wall Bsl = 0.1.

Wi P = 3 P = 6 P = 8
0.1 1.12 1.112 1.113
0.2 1.135 1.122 1.118
0.5 1.303 1.253 1.244

(a) (b)

Figure 7.27.: Numerical breakdown for (a) Mesh M1 for P = 6 at Wi = 0.2 and (b) Mesh
M2 for P = 3 at Wi = 0.35.
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Figure 7.28.: Dependency of the profiles of velocity component u, pressure p and the poly-
meric stress components on the Weissenberg number with slip along the wall
and the increase of magnitude with increasing Weissenberg number for the
polymeric stress components for no-slip and partial slip along the die wall.





Chapter 8
Conclusions

One of the main bottlenecks in rheology is the extension of the identification and valida-

tion of mathematical models from simple flows to complex flows. Numerical methods can

help tackle this issue, by providing the missing link between model and macroscopic pre-

diction for complex flows. However, the numerical simulation of viscoelastic flows is very

challenging. The formation of thin stress boundary layers near walls and solid structures

and high stress concentrations near singularities has been commonly associated with the

numerical breakdown of algorithms for solving the governing equations for viscoelastic

fluids. In addition, resolving these stress layers and concentrations is of crucial importance

in obtaining accurate results for parameters of interest such as the drag coefficient around

solid structures. However, resolving these boundary layers and stress concentrations is

usually prohibitively expensive for low order methods.

In this thesis, we have employed the spectral/hp element method, which uses high order

polynomials and provides spectral accuracy in space at least for smooth functions. This

method is capable of resolving thin layers at relatively low computational cost. To stabilise

the computations, we have employed the discontinuous Galerkin method in combination

with the DEVSS-G scheme. A continuous approximation space for the velocity and dis-

continuous approximation spaces for the pressure, velocity gradient projection tensor and

the polymeric stress have been used. We have extended our scheme to describe free sur-

face viscoelastic flows using an arbitrary Lagrangian Eulerian method to trace the free

surface movement. Here, a cubic spline representation has been implemented to guaran-

tee smoothness of normals and the curvature between spectral elements.

First, we have successfully applied the algorithm to unsteady Poiseuille flow of an Oldroyd-

B fluid in a channel, for which an analytical solution exists, to demonstrate the stability

and accuracy of the scheme. We have found that the DEVSS-G stabilisation yields small

errors in the time dependent solution. However, the solution converges up to machine

precision to the steady state solution. The DEVSS-G stabilisation significantly raises the
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critical Weissenberg number from Wi = 3.3 without stabilisation to Wi = 9.8 for stabil-

isation with θ = (1− β).

Secondly, we have investigated the flow around a cylinder for the Oldroyd-B model for

Re = {0, 0.01, 0.1, 1} and for the Giesekus model for α = {0.001, 0.01, 0.1}. The results

of this investigation have been published in essence in Claus and Phillips (2013a). Our

drag coefficient values are in excellent agreement with the literature. For finer meshes,

we have found a transient flow regime for Wi > 0.6 with a sinusoidal movement in the

drag. We have interpreted these results by means of the theory of Dou and Phan-Thien

(2007). In this theory the onset of the instability is explained in terms of a velocity inflec-

tion on top of the cylinder which leads to oscillations in the shear layer which are then

transported downstream into the cylinder wake. We have demonstrated that the velocity

and pressure profiles in the gap between the top of cylinder and the channel wall show a

clear tendency for the formation of a velocity inflection with increasing Wi . The evidence

that such a transient regime can be predicted by numerical simulations becomes more

and more apparent with the enhancement of numerical algorithms and the use of high-

resolution meshes. Oliveira and Miranda (2005) simulated the flow around a cylinder of a

FENE-CR fluid and observed that the flow becomes unsteady for De ≈ 1.3 for an exten-

sibility parameter of L2 = 144. Our scheme can predict this transient regime with very

low computational cost and computations can even be performed on a desktop computer.

For the Giesekus model, we have investigated the impact of the mobility parameter α on

the flow configuration. We have demonstrated that for α = 0.001 and α = 0.01, the flow

is dominated by normal stress effects while for α = 0.1 the flow is dominated by the flow

dependent shear stress and the flow patterns start to show shear thinning characteristics.

In addition, we have shown that increasing the mobility parameter yields a decrease in the

drag coefficient.

Finally, we extended the algorithm to incorporate the movement of a free surface bound-

ary and investigated extrudate swell phenomena for Newtonian and viscoelastic flows. A

journal article detailing our results for the Newtonian extrudate swell is in preparation

(Claus and Phillips, 2013b). We have paid special attention to the behaviour of the pres-

sure and the polymeric stress components at the singularity at the die exit, where a sudden

change in the boundary condition yields infinite stress values. For Newtonian extrudate

swell, we have demonstrated that the swelling ratio and the exit pressure loss are in excel-

lent agreement with those in the literature. However, the comparable results by Mitsoulis

et al. (2012) and Taliadorou et al. (2007), which were acquired using the finite element

method, require a much larger number of degrees of freedom. We have shown agreement

with the literature including the impact of inertia for a wide range of Reynolds numbers

from 0 to 100. We have demonstrated that the solution is tainted by Gibbs oscillations
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in the pressure, which stay local to the elements adjacent to the singularity. Therefore,

these Gibbs oscillations impact accuracy but not the stability of the algorithm. Then, we

have shown that the introduction of slip along the die wall changes the behaviour of the

pressure at the singularity and the Gibbs oscillations disappear yielding improved mesh

convergence rates in comparison to those including no-slip.

For viscoelastic flow and no-slip along the die wall, we could obtain swell ratios of up to

2.067 for Wi = 0.85 and P = 3 for the Oldroyd-B fluid and swell ratios up to 1.615 for

Wi = 1.5 and α = 0.1 for the Giesekus fluid. These results are in qualitative agreement

with those in the literature. However, we have observed that mesh refinement yields nu-

merical breakdown for Wi ≥ 0.2 for the Oldroyd-B fluid. We have observed the behaviour

of the pressure and polymeric stress values at the singularity and have demonstrated their

almost exponential growth with p-refinement and the growth of the Gibbs oscillations with

p-refinement. We have drawn the conclusion from our numerical observations including

the appearance of oscillations in the free surface shape, that the Gibbs oscillations are

transported downstream and grow downstream yielding numerical breakdown. For vis-

coelastic flows, this growth in error and the transport downstream can be associated with

the constitutive equations and their hyperbolic nature (Renardy, 2000). We have inves-

tigated the impact of the slip condition on the viscoelastic die swell for the Oldroyd-B

fluid. We have demonstrated that in this case, mesh p-refinement could be successfully

applied for P = 3, 4, 6, 8. However, the computations breakdown for Wi = 0.6 for all

tested meshes. We have demonstrated that this is possibly caused by the following be-

haviour. Although the introduction of the slip condition along the die wall has changed

the behaviour of the stresses at the singularity and has improved the growth of the max-

imal values with p-refinement, the growth of maximum values in the polymeric stresses

has become steeper with increasing Wi in comparison to the no-slip condition along the

wall. In addition, the Gibbs oscillations in the polymeric stress components do not vanish

for the slip condition. In summary, for the viscoelastic extrudate swell problem, Gibbs

oscillations around the singularity in pressure and the polymeric stress components limit

the applicability of spectral/hp element methods.

In future work, the limitations of the spectral/hp method in the die swell experiment, could

be alleviated by introducing a method with variable polynomial order throughout the do-

main. Lower order elements around the singularity could be used to filter out the Gibbs

oscillations and higher order elements further away from the singularity could provide

high accuracy. Such variable order methods have been proven to be useful for re-entrant

corner singularities as demonstrated in van Os and Gerritsma (2002) for a 4:1 contraction

for an upper convected Maxwell fluid.

Furthermore, to use the full potential of geometric flexibility of the spectral/hp element
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method, more viscoelastic flow examples should be tested including complex geometries

discretised by triangles and the extension to three dimensional domains.

The ALE algorithm could be improved to include free surface flows with larger deforma-

tions of the free surface as the elliptic problem we have used to move the mesh in this

thesis, can only be applied to mesh movements with small displacements. For larger mesh

deformations, other elliptic problems to describe the mesh movement have to be solved,

such as elliptic operators arising from Stokes or elasticity problems (see Deville et al.

(2002)).

To gain more insights into the mechanism of the onset of the time dependent oscillations

in the thin shear layer around the cylinder or the growth of the numerical error arising

from the Gibbs oscillations at the die swell singularity, the implementation of the log con-

formation approach in the spectral/hp framework would be very useful. However, these

extensions will not be straightforward. We have found in some preliminary investigations

on channel flow that the use of the log conformation reformulation yields higher errors

than the classical formulation. These errors destroy the spectral accuracy and could stem

from the necessity of approximating zero stress values along the symmetry line of the

flow. We are unaware of a successful implementation of the log conformation approach

for spectral element methods in complex geometries. To the best of our knowledge, the

thesis of Jafari (2011) includes the only application of the log conformation reformulation

in the context of spectral elements in the literature. Jafari (2011) found that for spectral

elements it did not behave in the same way as in the finite element context. No signif-

icant improvements over the classical formulation were found. However, if an accurate

algorithm could be designed this could improve the simulation for higher Wi.



Appendix A
Jacobi Polynomials

Jacobi polynomials are the eigenfunctions, up, to countable infinite eigenvalues λp of the

singular Sturm-Liouville problem, which, for a domain of −1 < x < 1 is written as

− d

dx

(
(1 + x)1+α(1− x)1+β dup(x)

dx

)
= λw(x)up(x), α, β > −1 (A.1)

where

up(x) = P (α,β)
p (x), w(x) = (1− x)α(1 + x)β, λp = −p(α+ β + p+ 1) (A.2)

According to the Sturm-Liouville theorem, the Jacobi polynomials form an orthogonal

basis on L2
w(−1, 1) with

∫ 1

−1
(1− x)α(1 + x)βP (α,β)

p (x)P (α,β)
q (x) = Cδpq (A.3)

with

C = 2α+β+1

2p+ α+ β + 1
(p+ α)!(p+ β)!
p!(p+ α+ β)! (A.4)

This means that P (α,β)
p (x) is orthogonal to all polynomials of order less than pwith respect

to the weight function (1 − x)α(1 + x)β . When α = β = 0, the polynomials P (0,0)
n (x)

are the Legendre polynomials

φn(x) = Ln(x) = P (0,0)
n (x) (A.5)

and when α = β = −1/2, P (−1/2,−1/2)
n (x) are the Chebyshev polynomials

φn(x) = Tn(x) = 22n(n!)2

(2n)! P (−1/2,−1/2)
n (x). (A.6)
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The Jacobi polynomial P (1,1)
n (x) used in the spectral/hp element method have the follow-

ing relations to the Legendre polynomials

L′p(x) = 1/2(P + 1)P (1,1)
p−1 (x), (A.7)

2p
∫ ξ

−1
Lp(s)ds = −(1− ξ)(1 + ξ)P (1,1)

p−1 (ξ). (A.8)

Jacobi polynomials have several computationally useful properties. Firstly, they satisfy

a three term recursion relation making them easy to evaluate. Secondly, for p ≥ 1,

P (α,β)
p has p distinct real roots in (−1, 1). Thirdly, Jacobi polynomials form a basis for

L2
w(−1, 1), which means, we can represent any square integrable function f as an infinite

series of Jacobi polynomials

f(x) =
∞∑

k=0
f̂kP

(α,β)
k (x) (A.9)

which has excellent approximation properties. The rate of convergence of a truncated

series approximation formed from this series depends only on the rate of convergence of

the coefficients f̂k. This can be seen in the following way. Splitting the series into a

truncated part and the remainder

f(x) =
N∑

k=0
f̂kφk(x) +

∞∑

k=N+1
f̂kφk(x) (A.10)

where the truncated sum can be expressed in terms of an orthogonal projection operator,

PN , defined as

PNf(x) =
N∑

k=0
f̂kφk(x) (A.11)

and the remainder can be evaluated using the norm of the truncation error defined by

||τ ||2L2
w

=
∞∑

k=N+1
|f̂k|2||φk(x)||2L2

w
, (A.12)

we can see that the rate of convergence of the approximation PNf depends only on the

rate of convergence of the coefficients f̂k, which are given by

f̂k = (f, P (α,β)
k (x))w

||P (α,β)
k (x)||w

(A.13)

due to the orthogonality of the Jacobi polynomials. The rate of decay of the expansion

coefficients depends only on the smoothness of the function being approximated. The
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details for showing these facts are quite technical, and can be found, for example, in the

book by Canuto et al. (2006). The Jacobi polynomial truncation converges spectrally fast

as N → ∞ but without the restrictions of periodic boundaries as required for Fourier

series.





Appendix B
Free Surface Governing Equations in
Components

B.1. Semi-Discretised Weak Formulation in Components

Conservation Equations

Momentum equation x-component:

Re γ0
∆t

∫

Ω(t)

un+1 φu dΩ +
∫

Ω(t)

[
2
(
∂u

∂x

)n+1 ∂φu
∂x

+
(
∂u

∂y

)n+1 ∂φu
∂y

]
dΩφu dΩ

+ Re
∫

Ω(t)

[(
u(n) − w(n)

x

) (∂u
∂x

)n+1
+
(
v(n) − w(n)

y

) (∂u
∂y

)n+1]
φu dΩ

+
∫

Ω(t)

(
∂v

∂x

)(n+1) ∂φu
∂y

dΩ−
∫

Ω(t)

pn+1 ∂φu
∂x

dΩ

−
∫

ΓN (t)

[(
2∂u
∂x
− p

)
nx +

(
∂u

∂y
+ ∂v

∂x

)
ny

](n+1)
φu dΓ

−(1− β)
∫

Ω(t)

[
2G11

∂φu
∂x

+ (G12 +G21) ∂φu
∂y

](n+1)
dΩ

+(1− β)
∫

ΓN (t)

[2G11 nx + (G12 +G21)ny](n+1) φu dΓ

=
J∑

q=0
βq


−

∫

Ω(t)

[
τxx

∂φu
∂x

+ τxy
∂φu
∂y

]
dΩ +

∫

ΓN (t)

[τxx nx + τxyny]φu dΓ




n−q

+
∫

Γf (t)

σκnx φu dΓ + Re
∆t

J∑

q=0
αq

∫

Ω(t)

un−q φu dΩ. (B.1)
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Momentum equation y-component:

Re γ0
∆t

∫

Ω(t)

vn+1 φv dΩ +
∫

Ω(t)

[(
∂v

∂x

)n+1 ∂φv
∂x

+ 2
(
∂v

∂y

)n+1 ∂φv
∂y

]
dΩ

+ Re
∫

Ω(t)

[(
u(n) − w(n)

x

) (∂v
∂x

)n+1
+
(
v(n) − w(n)

y

) (∂v
∂y

)n+1]
φv dΩ

+
∫

Ω(t)

(
∂u

∂y

)(n+1) ∂φv
∂x

dΩ−
∫

Ω(t)

pn+1 ∂φv
∂y

dΩ

−
∫

ΓN (t)

[(
∂u

∂y
+ ∂v

∂x

)
nx +

(
2∂v
∂y
− p

)
ny

](n+1)
φv dΓ

−(1− β)
∫

Ω(t)

[
(G21 +G12) ∂φv

∂x
+ 2G22

∂φv
∂y

](n+1)
dΩ

+(1− β)
∫

ΓN (t)

[(G12 +G21) nx + 2G22 ny](n+1) φv dΓ (B.2)

=
J∑

q=0
βq


−

∫

Ω(t)

[
τxy

∂φv
∂x

+ τyy
∂φv
∂y

]
dΩ +

∫

ΓN (t)

[τxy nx + τyy ny]φv dΓ




n−q

+
∫

Γf (t)

σκny φv dΓ + Re
∆t

J∑

q=0
αq

∫

Ω(t)

vn−q φv dΩ. (B.3)

Mass conservation:



∫

Ω(t)

∂u

∂x
ψ dΩ +

∫

Ω(t)

∂v

∂y
ψ dΩ




n+1

= 0. (B.4)
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Constitutive Equations

Velocity gradient projection tensor:

∫

Ω(t)

G11 φG11 dΩ =
∫

Ω(t)

(
∂u

∂x

)n+1
φG11 dΩ, (B.5)

∫

Ω(t)

G12 φG12 dΩ =
∫

Ω(t)

(
∂u

∂y

)n+1
φG12 dΩ, (B.6)

∫

Ω(t)

G21 φG21 dΩ =
∫

Ω(t)

(
∂v

∂x

)n+1
φG21 dΩ, (B.7)

∫

Ω(t)

G22 φG22 dΩ =
∫

Ω(t)

(
∂v

∂y

)n+1
φG22 dΩ. (B.8)

Constitutive equation xx-component:

Wi γ0
∆t

∫

Ω(t)

τn+1
xx φτxx dΩ +

∫

Ω(t)

τn+1
xx φτxx dΩ

−Wi
∫

Ω(t)

[(
un+1 − wnx

)
τn+1
xx

∂φτxx
∂x

+
(
vn+1 − wny

)
τn+1
xx

∂φτxx
∂y

]
dΩ

−2 Wi
∫

Ω(t)

Gn+1
11 τn+1

xx φτxx dΩ− 2 Wi
∫

Ω(t)

Gn+1
12 τn+1

xy φτxx dΩ

= 2(1− β)
∫

Ω(t)

Gn+1
11 φτxx dΩ− αWi

(1− β)

∫

Ω(t)

(
τ2
xx + τ2

xy

)(it)
φτxx dΩ

−Wi
∫

∂Ωe(t)

[(
un+1 − wnx

)
nx +

(
vn+1 − wny

)
ny
]
f̃
(
τ exx, τ

i
xx

)(it)
φτxx dΓ

+Wi
∆t

J∑

q=0
αq

∫

Ω(t)

τn−qxx φτxx dΩ. (B.9)
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Constitutive equation xy-component:

Wi γ0
∆t

∫

Ω(t)

τn+1
xy φτxy dΩ +

∫

Ω(t)

τn+1
xy φτxy dΩ

−Wi
∫

Ω(t)

[(
un+1 − wnx

)
τn+1
xy

∂φτxy
∂x

+
(
vn+1 − wny

)
τn+1
xy

∂φτxy
∂y

]
dΩ

−Wi
∫

Ω(t)

(
Gn+1

11 +Gn+1
22

)
τn+1
xy φτxy dΩ− Wi

∫

Ω(t)

Gn+1
21 τn+1

xx φτxy dΩ− Wi
∫

Ω(t)

Gn+1
12 τn+1

yy φτxy dΩ

= (1− β)
∫

Ω(t)

(
Gn+1

12 +Gn+1
21

)
φτxy dΩ− αWi

(1− β)

∫

Ω(t)

(τxxτxy + τyyτxy)(it) φτxy dΩ

−Wi
∫

∂Ωe(t)

[(
un+1 − wnx

)
nx +

(
vn+1 − wny

)
ny
]
f̃
(
τ exy, τ

i
xy

)(it)
φτxx dΓ

+Wi
∆t

J∑

q=0
αq

∫

Ω(t)

τn−qxy φτxy dΩ. (B.10)

Constitutive equation yy-component:

Wi γ0
∆t

∫

Ω(t)

τn+1
yy φτyy dΩ +

∫

Ω(t)

τn+1
yy φτyy dΩ

−Wi
∫

Ω(t)

[(
un+1 − wnx

)
τn+1
yy

∂φτyy
∂x

+
(
vn+1 − wny

)
τn+1
yy

∂φτyy
∂y

]
dΩ

−2 Wi
∫

Ω(t)

Gn+1
22 τn+1

yy φτyy dΩ− 2 Wi
∫

Ω(t)

Gn+1
21 τn+1

xy φτyy dΩ

= 2(1− β)
∫

Ω(t)

Gn+1
22 φτyy dΩ− αWi

(1− β)

∫

Ω(t)

(
τ2
xy + τ2

yy

)(it)
φτyy dΩ

−Wi
∫

∂Ωe(t)

[(
un+1 − wnx

)
nx +

(
vn+1 − wny

)
ny
]
f̃
(
τ eyy, τ

i
yy

)(it)
φτyy dΓ

+Wi
∆t

J∑

q=0
αq

∫

Ω(t)

τn−qyy φτyy dΩ. (B.11)
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Mesh Velocity

∫

Ω(t)

(
∂wx
∂x

∂φwx
∂x

+ ∂wx
∂y

∂φwx
∂y

)
dΩ−

∫

ΓN (t)

(
∂wx
∂x

nx + ∂wx
∂y

ny

)
φwx dΓ = 0, (B.12)

∫

Ω(t)

(
∂wy
∂x

∂φwy
∂x

+ ∂wy
∂y

∂φwy
∂y

)
dΩ−

∫

ΓN (t)

(
∂wy
∂x

nx + ∂wy
∂y

ny

)
φwy dΓ = 0. (B.13)

B.2. Matrix Notation in Components

The coupled system for velocity, pressure and velocity gradient projection tensor can be

written as

Hg(tn+1)ûn+1
g −Dg(tn+1)T p̂n+1

g + MuG(tn+1)Ĝn+1 = M(tn+1)ûn

+ f(tn+1;τττn) + b(tn+1),

Dg(tn+1)ûn+1
g = 0,

MGu(tn+1)ûn+1 + MGG(tn+1)Ĝn+1 = 0, (B.14)

where ûg and p̂g are the vectors of unknown global coefficients, Hg is the global modified

Helmholtz matrix and Dg = (Dx,Dy) is the global discrete gradient operator. These

global matrices are assembled from the elemental matrix contributions by

Hg = ATHeA, (B.15)

as explained in Section 3.7.1 and Section 4.4.1. The discrete gradient operator is given by

De
b =

[
De
x De

y

]
, (B.16)

De
x[m,n] =

(
∂φmu
∂x

, ψn
)δ

Ωe
, (B.17)

De
y[m,n] =

(
∂φmv
∂y

, ψn
)δ

Ωe
(B.18)
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and the terms on the right hand side are given by

f e(u, τττ) =


Re

∆t

J∑

q=0
αqun−q, φu



δ

Ωe

+
J∑

q=0
βq
[
(−τττ ,∇φu)δΩe + 〈τττ · n, φu〉N

]n−q

+ 〈σκn, φu〉n+1
f .

(B.19)

The components of the elemental modified Helmholtz matrix are given by

He =
[

He
uu He

uv

He
vu He

vv

]
(B.20)

with

He
uu[i, j] = Re γ0

∆t
(
φju, φ

i
u

)δ
Ωe

+ 2
(
∂φju
∂x

,
∂φiu
∂x

)δ

Ωe
+
(
∂φju
∂y

,
∂φiu
∂y

)δ

Ωe

−
〈

2∂φ
j
u

∂x
nx + ∂φju

∂y
ny, φ

i
u

〉δ

ΓN

+ Re
(
(un −wn) · ∇φju, φiu

)δ
Ωe
, (B.21)

He
uv[i, j] =

(
∂φjv
∂x

,
∂φiu
∂y

)δ

Ωe
−
〈
∂φjv
∂x

ny, φ
i
u

〉δ

ΓN
, (B.22)

He
vu[i, j] =

(
∂φju
∂y

,
∂φiv
∂x

)δ

Ωe
−
〈
∂φju
∂y

nx, φ
i
v

〉δ

ΓN
, (B.23)

He
vv[i, j] = Re γ0

∆t
(
φjv, φ

i
v

)δ
Ωe

+
(
∂φjv
∂x

,
∂φiv
∂x

)δ

Ωe
+ 2

(
∂φjv
∂y

,
∂φiv
∂y

)δ

Ωe

−
〈
∂φjv
∂x

nx + 2∂φ
j
v

∂y
ny, φ

i
v

〉δ

ΓN

+ Re
(
(un −wn) · ∇φjv, φiv

)δ
Ωe
. (B.24)

To solve the system of equation (B.14), we compute in a first step

H̃e
uu = He

uu −
[
MuG11 [MG11 ]−1 MG11u + MuG12 [MG12 ]−1 MG12u

]
, (B.25)

H̃e
uv = He

uv −
[
MuG21 [MG21 ]−1 MG21v

]
, (B.26)

H̃e
vu = He

vu −
[
MvG12 [MG12 ]−1 MG12u

]
, (B.27)

H̃e
vv = He

vv −
[
MvG21 [MG21 ]−1 MG21v + MvG22 [MG22 ]−1 MG22v

]
, (B.28)
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where

MG11[i, j] =
(
φjG11

, φiG11

)δ
Ωe
, MG12[i, j] =

(
φjG12

, φiG12

)δ
Ωe
,

MG21[i, j] =
(
φjG21

, φiG21

)δ
Ωe
, MG22[i, j] =

(
φjG22

, φiG22

)δ
Ωe

(B.29)

MG11u[i, j] = −
(
∂φju
∂x

, φiG11

)δ

Ωe
, MG12u[i, j] = −

(
∂φju
∂y

, φiG12

)δ

Ωe
,

MG21v[i, j] = −
(
∂φjv
∂x

, φiG21

)δ

Ωe
, MG22v[i, j] = −

(
∂φjv
∂y

, φiG22

)δ

Ωe
, (B.30)

MuG11[i, j] = −2 θ
(
φjG11

,
∂φju
∂x

)δ

Ωe
+ 2 θ

〈
φjG11

nx, φ
i
u

〉δ
ΓN

, (B.31)

MuG12[i, j] = − θ
(
φjG12

,
∂φju
∂y

)δ

Ωe
+ θ

〈
φjG12

ny, φ
i
u

〉δ
ΓN

, (B.32)

MuG21[i, j] = − θ
(
φjG21

,
∂φju
∂y

)δ

Ωe
+ θ

〈
φjG21

ny, φ
i
u

〉δ
ΓN

, (B.33)

MvG12[i, j] = − θ
(
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MvG22[i, j] = −2 θ
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)δ

Ωe
+ 2 θ

〈
φjG22

ny, φ
i
v

〉δ
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. (B.36)

The remainder of the algorithm is detailed in Section 6.6 and Section 6.7.
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