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SUMMARY 
Asthma is a chronic inflammatory disease of the airways characterised by early and late asthmatic 

responses (EAR & LAR) to allergen, airways hyperresponsiveness (AHR) to inhaled spasmogens, 

airway inflammation and airway oedema. Viral infections and lipopolysaccharide (LPS) from bacteria 

and environmental sources contribute to exacerbations of asthma and the development of 

insensitivity to corticosteroids. Complete insensitivity to oral corticosteroids is rare and most 

patients lie on a continuum of steroid responsiveness. This thesis aimed to examine the effect of 

viral infection and LPS in a guinea-pig model of asthma and determine the sensitivity to inhaled and 

systemic corticosteroids.  

Sensitised guinea-pigs challenged with ovalbumin displayed EAR, LAR, AHR to histamine, airways 

inflammation and airway oedema. Inoculation of guinea-pigs with parainfluenza-3 virus alone 

induced AHR to histamine and airway inflammation. However this response was not consistent. 

Inhaled LPS alone induced an immediate bronchoconstriction, AHR, airway inflammation and 

oedema and goblet cell hyperplasia. LPS co-administered with ovalbumin exacerbated the allergen 

response by lengthening the EAR, prolonging the bronchoconstrictor response to histamine, 

increasing airway inflammation and oedema and goblet cell hyperplasia.  

In guinea-pigs challenged with ovalbumin alone, treatment with inhaled fluticasone propionate (FP) 

and inhaled and systemic dexamethasone decreased the LAR, abolished AHR, airway inflammation 

and oedema. Responses to LPS alone were not reduced by inhaled dexamethasone or FP but 

partially reduced by systemic dexamethasone. Ovalbumin and LPS combined responses were 

insensitive to inhaled corticosteroids, except lavage fluid protein. These responses were partially 

sensitive to systemic dexamethasone, with the prolonged EAR, inflammation and airway oedema all 

reduced.  

The data in this thesis suggests that LPS inhalation exacerbates ovalbumin-induced functional and 

inflammatory responses rendering them insensitive to inhaled corticosteroids but partially sensitive 

to systemic corticosteroids. Thus, the experimental combination of ovalbumin with LPS might 

represent a useful preclinical model of corticosteroid-insensitive airway inflammation. 
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1.1 DEFINITION 

The current operational definition of asthma by the National Asthma Education and 

Prevention Program Expert Panel Report 3 (2007) is  

“Asthma is a chronic inflammatory disorder of the airways in which many cells and 

cellular elements play a role: in particular, mast cells, eosinophils, neutrophils (especially 

in sudden onset, fatal exacerbations, occupational asthma, and patients who smoke), T 

lymphocytes, macrophages, and epithelial cells. In susceptible individuals, this 

inflammation causes recurrent episodes of coughing (particularly at night or early in the 

morning), wheezing, breathlessness, and chest tightness. These episodes are usually 

associated with widespread but variable airflow obstruction that is often reversible 

either spontaneously or with treatment” from Busse, (2007) 

Maintaining a precise definition that includes all aspects of the disease remains 

problematic. One particular problem in asthma’s definition stems from the overlap 

between symptoms of other respiratory conditions such as COPD. In particular, airways 

hyperresponsiveness is one of the key characteristics of asthma but is absent in some 

patients, despite clear evidence of other asthma symptoms. It is also present in some 

individuals without other significant respiratory symptoms (Pattemore et al, 1990). 

There are also wide differences in the reversibility of airway obstruction, especially in 

asthmatics that smoke or work in polluted environments (Barnes et al, 1998). 

Accordingly, diagnosis is not always clear cut and the re-assessment of symptom 

histories can lead to re-classification of diagnosis from asthma. 

1.2 PREVALENCE 

Asthma has seen a growing diagnosis/prevalence over the last 50 years, especially in the 

western world, with an estimated 300 million people worldwide now suffering from the 

affliction (ISAAC, 1998). Approximately 180,000 deaths across the world annually are 

asthma related. In the UK alone an estimated 5.1 million people have asthma costing 
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the NHS £2.5 billion (Holgate et al, 2008). The exact reasons for increased incidence of 

asthma are unknown but factors such as genetic background, early life infection and the 

adoption of a western lifestyle are all implicated. More recently, disturbances in the 

bacterial community of the lungs have been implicated (Hilty et al, 2009).  

1.3 ASTHMA SUBTYPES 

Both the environment and genetic factors are likely to lead to the creation of a 

phenotypically heterogeneous disease with numerous aetiologies (Barnes et al, 1998). 

Many forms of asthma such as childhood asthma, aspirin sensitive asthma, chronic 

respiratory infection related asthma, occupational asthma and severe asthma have been 

described in the past but often overlap in definition and do not consider more than one 

symptom. More recent attempts to classify asthma subtypes have used multiple factors 

to designate subgroups (Moore et al, 2008).  

The first distinction between asthma subtypes can be made based on the presence of 

atopy. 70% of asthmatics are atopic and demonstrate increased circulating levels of IgE 

antibodies to specific allergens; although these allergens may not be the driving force 

behind the condition in all cases. The other 30% of asthmatics are non-atopic, with an 

onset commonly in the forties and an association with intolerance to non-steroidal anti-

inflammatory drugs (Botturi et al, 2011). Further distinctions can be made on the basis 

of independent factors including clinical markers (Body mass index and age of onset), 

lung function (Forced expiratory volume in 1 second, FEV1), inflammatory markers 

(eosinophils and neutrophils) and treatment use (frequency and type) (Rosi et al, 1999; 

Moore et al, 2008). Severe asthmatics are one such subgroup and demonstrate high 

numbers of eosinophils, more FEV1 variability and a higher risk of tracheal intubation 

during exacerbation. The presence of high neutrophil counts and increased resistance to 

steroid therapy is also observed in some individuals (Leung & Bloom, 2003).  
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The term ‘asthma’ in the context of this thesis will refer to atopic, IgE-related asthma. 

Eosinophil dominant inflammation is also a key characteristic but not an exclusive term 

as the presence of neutrophils is often observed in severe asthma, particularly at times 

of exacerbation (in't Veen et al, 1999). IgE-mediated asthma is characterised by 

hypersensitivity to allergens such as pollen and house dust mites, and in experimental 

animals to ovalbumin from egg whites. Hypersensitivity to an allergen results from initial 

sensitisation and subsequent allergen re-encounter which triggers the effector phase.  

1.4 ASTHMA PATHOLOGY 

1.4.1 ALLERGEN SENSITISATION 

In asthma, the sensitisation process begins with the inhalation of allergen and its active 

uptake by antigen presenting cells (APCs) such as macrophages and dendritic cells. The 

antigen is internalised, then proteolysed into peptide for incorporation into major 

histocompatibility complex (MHC) class II at the cell membrane. Following this, APCs 

migrate to local lymph nodes or lymph mucosa and present antigen to T and B 

lymphocytes (Lambrecht & Hammad, 2011). Depending on the presence of certain co-

stimulatory molecules such as OX40L, these cells then become active or undergo 

apoptosis. T lymphocyte differentiation requires IL-2. Whether lymphocytes become the 

Th1 or Th2 type is dependent on the presence of IL-12 or IL-4 respectively. In allergen 

sensitisation Th2 cells predominate (Galli et al, 2008). These cells secrete IL-4 and IL-13, 

which drive immunoglobulin class switching to IgE (Geha et al, 2003). IL-4 is also able to 

increase the expression of the high affinity IgE receptor (FcεRI) on mast cells and 

basophils. Monovalent binding of IgE to the high affinity IgE receptor (FcεRI) results in 

receptor priming for degranulation upon further exposure to the same allergen (Gould 

& Sutton, 2008).  
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1.4.1.1 ENHANCEMENT OF SENSITISATION 

Several factors contribute to an enhancement of allergic sensitisation. The first is the 

breakdown of the airway epithelial barrier which in asthmatics has leaky tight junctions 

which facilitate penetration of allergens (Xiao et al, 2011). This problem is further 

augmented by intrinsic properties of allergens such as house dust mite and cockroach 

extract which can disrupt the epithelial barrier and trigger the release of danger signals. 

Pollutants, viruses, ozone, LPS and tobacco smoke can also augment allergen 

sensitisation. The second factor is the enhancement of dendritic cell maturation and 

activation. Pattern recognition receptors on dendritic cells recognise pathogen 

associated molecular patterns (PAMPs) such as those on LPS and single stranded 

(ss)RNA. Danger associated molecular patterns (DAMPs) such as those on ATP are also 

recognized. These enhance dendritic cell maturation, allergen sampling and the 

production of co-stimulatory molecules via mediators such as TSLP, IL-33 and IL-25, 

which are secreted by airway epithelial cells in response to pathogens (Holgate, 2012).
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Figure 1: Simplified diagram of allergic sensitisation in the airways. Antigen presenting cells such 

as dendritic cells capture allergen, internalise it and process it to the cell surface. This along with 

co-stimulatory molecules promotes the differentiation of T helper (Th) cells into Th2 cells which 

stimulate the production of immonoglubulin E (IgE) from B lymphocytes. IgE binds to the surface 

of mast cells in the airways.  Figure adapted and redrawn from Galli et al, 2008. 

1.4.2 EFFECTOR PHASE 

The effector phase results from re-exposure to an allergen to which an individual is 

sensitised. This phase can be divided into 2 distinct categories; that of the early 

asthmatic response (EAR) and the late asthmatic response (LAR). The EAR occurs within 

minutes of allergen exposure and is mediated by IgE crosslinking on the surface of mast 

cells (Gould & Sutton, 2008). Crosslinking triggers a complex intracellular cascade of 

signalling molecules leading to mast cell degranulation and the secretion of three 

classes of active products. The first set of mast cell products are those stored in 

cytoplasmic granules prior to degranulation and include biogenic amines (e.g. 

Th naïve Th2
B 

cell

IgE

Mast cell

Dendritic 
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histamine), serglycin proteoglycans (e.g. heparin and chondroitin sulphate), serine 

proteases (e.g. chymases, trypases and carboxypeptidases) and other granule associated 

products like TNF-α and vascular endothelial growth factor A (VEGFA). The second class 

of mast cell product are lipid mediators and include prostaglandins, leukotrienes, 

cysteinyl leukotrienes and platelet activating factor (PAF). The third class of mast cell 

products is cytokines, chemokines and the growth factors (Bradding et al, 2006). The 1st 

two classes of product act within the duration of the EAR and are responsible for 

physiological changes including vasodilation, increased vascular permeability (causing 

tissue swelling), contraction of bronchial smooth muscle (causing airflow obstruction) 

and increased mucus secretion (contributing to airflow obstruction in the lower 

airways). Sneezing, coughing and itching can also be evoked by stimulation of 

nociceptors on sensory nerves. These effects are shown in Figure 2.  

The LAR develops 6-9 hours after allergen exposure. This phase is characterised by the 

recruitment, activation and migration of eosinophils, lymphocytes, neutrophils and 

macrophages into the lamina propria, epithelium and the airway lumen (Galli et al, 

2008). The cytokines, chemokines and growth factors produced during the EAR drive 

this process and allow for further release of mediators from these cells and further 

bronchoconstriction. 
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Figure 2: Diagram of the main processes during the early asthmatic response (EAR) evoked by an 

allergen. Allergen enters the airway and binds with high affinity IgE receptors on mast cells 

resulting in degranulation. Mast cell degranulation products increased leukocyte recruitment, 

increased vascular permeability, vasodilatation, bronchoconstriction and increased mucus 

production Based on Galli et al, 2008. 

1.4.3 INFLAMMATION 

Inflammation of the lungs is one of the key hallmarks of asthma and is observed across 

the entire spectrum of disease severity (Laitinen et al, 1996). The extent of inflammation 

has also been shown to correlate with disease severity, suggesting inflammation may be 

important in the pathogenesis of the disease (Barnes, 1996). The relationship between 

inflammation and the clinical symptoms of asthma is complex, with inflammation likely 

contributing to them both directly and indirectly. The inflammatory infiltrate consists of 
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numerous cell types both from the innate and adaptive branches of the immune system. 

Discussed below are the aspects of the various cell types.  

1.4.3.1 EOSINOPHILS 

Eosinophils are the predominant cell type during the late asthmatic response to 

allergens, with their numbers peaking 24 hours after allergen challenge (Smith & 

Broadley, 2007; Toward & Broadley, 2004). Eosinophils are found in the lungs of those 

even with mild asthma. An association between eosinophil activation and asthma 

severity and bronchial responsiveness exists (Bousquet et al, 1990; Bradley et al, 1991). 

Eosinophils release many biological products including eicosanoids, oxygen free radicals, 

Th2 cytokines, growth factors and toxic granule products which contribute to 

contraction of smooth muscle, airways hyperresponsiveness (AHR) and increased 

vascular permeability (Bousquet et al, 2000). Granule products such as major basic 

protein (MBP), eosinophil cationic protein (ECP) and eosinophil derived neurotoxin 

(EDN) contribute directly to the development of AHR and epithelial shredding (Gleich et 

al, 1993). Other products such as growth factors, metalloproteases and elastase are 

involved in fibrosis and tissue remodelling (Bousquet et al, 2000).  

1.4.3.2 MAST CELLS 

Mast cells play a key role in both sensitisation to an allergen and also in the effector 

phase of asthma. Mast cell numbers are 2-6 times higher in the bronchial lavage fluid of 

asthmatics compared to non-asthmatics (Hamid et al, 2003). Mast cells are commonly 

found in their degranulated state in both stable asthma and following allergen exposure 

(Bousquet et al, 2000). Their cytoplasmic granules contain products including tryptase, 

prostaglandin (PG)-D2, histamine, cysteinyl leukotrienes (Cys-LT), which when released 

can elicit bronchoconstriction, mucus secretion, and oedema (Broide et al, 1991). Other 

products such as chymase may contribute to increased collagen deposition (Kofford et 

al, 1997). Mast cells also produce heparin, which has biological activities including 

modulation of wound healing and cell proliferation and differentiation (Bousquet et al, 
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2000). Heparin is also thought to have an anti-inflammatory role by binding and 

inhibiting chemokines; in addition to inhibiting the effects of several eosinophil-specific 

granule proteins such as major basic protein (MBP) (Diamant and Page, 2000). 

1.4.3.3 MACROPHAGES 

Macrophages are derived from monocytes and are the most commonly found 

inflammatory cell type in asthma (Hamid et al, 2003). Macrophages seem to have a dual 

role in asthma in both increasing and decreasing inflammation. Classical activation of 

macrophages by cytokines such as interferon-γ (IFN-γ), IL-1β, IL-6, IL-12 and tumour 

necrosis factor (TNF)-α lead to differentiation into M1 macrophages, which are efficient 

at phagocytosis and pathogen clearance. They also release cytokines, growth factors 

and chemoattractants directly and indirectly via epithelial cells and fibroblasts. Factors 

such as CCL2 (MCP-1) and CCL5 (RANTES) attract eosinophils and further macrophages 

(Barnes, 1996). In the presence of Th2 cytokines such as IL-4, macrophages can 

differentiate into M2 macrophages with anti-inflammatory actions such as IL-10 

production. Macrophages can also suppress inflammation by decreasing lymphocyte 

activity. However, this effect may be impaired following allergen exposure (Hamid et al, 

2003). M2 macrophages can also become a source of IL-13 and worsen asthma 

increasing AHR and mucus production (Byers & Holtzman, 2011).    

1.4.3.4 NEUTROPHILS 

Neutrophils are important in severe cases of asthma along with asthma exacerbations 

where their numbers are significantly elevated compared to milder forms of the disease. 

(Taha et al, 2001; Douwes et al, 2002). Neutrophils are also implicated in the pathology 

of steroid insensitive asthma (Monteseirín, 2009). Neutrophils may also play a role in 

milder forms of asthma, having been implicated in the early asthmatic response. In 

patients that died within 2 hours of an asthma attack, neutrophil numbers were found 

to be significantly elevated as compared to individuals that died from slow-onset fatal 

asthma (Sur et al, 1993). Neutrophil numbers are also found raised in animal models, 
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peaking only 2 hours after allergen challenge (Toward & Broadley, 2004). Neutrophils 

are able to produce a wide range of substances including metalloproteinases, elastase, 

lactoferrin, myeloperoxidase and reactive oxygen species (ROS). These have the 

capability to increase inflammation and increase the extent of tissue damage 

(Monteseirín, 2009).    

1.4.3.5 LYMPHOCYTES 

Lymphocytes play an indispensable role in the asthmatic inflammatory response. B 

lymphocyte’s main role is in the secretion of IgE antibodies. T lymphocytes can be 

broadly divided on the presence of the cell surface marker CD4 or CD8. CD8+ cells are 

generally cytotoxic (TC) cells and are more rarely found in asthmatics. CD4+ cells are 

normally T helper (Th) cells and the predominant T lymphocyte type observed in asthma 

(Corrigan et al, 1995). The activation of CD4+ lymphocytes has been shown to correlate 

with eosinophil number and bronchial responsiveness (Robinson et al, 1993). Several 

subtypes of Th cells exist including Th1, Th2, Th17, and Th9. These cells differ in their 

cell surface markers, cytokine secretion pattern and role in the disease. Classically Th2 

cells, secreting IL-4, IL-5 and IL-13 have been identified as the main Th cell type in the 

mediation of allergic airway inflammation (Galli et al, 2008). T regulatory (Treg) cells 

may be important in suppressing the persistent inflammation. Other innate-like T cells 

such as the natural killer and γδ cells may also have roles. A detailed analysis of specific 

lymphocyte sub-populations is beyond the scope of this thesis. Table 1 contains an 

overview of the main roles of T lymphocytes in asthma and their cytokine mediators. 
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Cell Type Cytokines secreted Role in Asthma 

CD8+ T cell IFN-γ, IL-4, IL-13 AHR, eosinophilia, viral 

exacerbation? 

Th1 cell IFN-γ Exacerbations? 

Th2 cell IL-4, IL-5, IL-13 IgE production, 

eosinophilia, AHR, mucus 

Th17 cell IL-17 Neutrophilia, steroid 

insensitivity? 

Th9 cell IL-9 IgE production, mucus, 

mast cell recruitment 

T-reg cell IL-10, TGF-β Suppression of 

inflammatory response 

Natural killer cell IFN-γ, IL-13 eosinophilia, AHR, IgE 

production, 

γδ T cell IL-4, IL-17 Subtypes respectively 

suppress and promote AHR 

Table 1: An overview of the different T lymphocyte sub-populations, their role in asthma and 

cytokine mediators secreted.  

1.4.3.6 INFLAMMATORY CYTOKINES 

Cytokines, chemokines and other inflammatory mediators play a central role in 

coordinating the actions of inflammatory cells and promoting the functional changes 

seen in asthma. Table 2 shows some of the main mediators involved in asthma. Of 

particular importance are the Th2 cytokines, IL-4, IL-5 and IL-13, cytokines triggered by 

toll like receptor signaling such as TNF-α and IL-8. Th17 cytokines such as IL-17 are also 

important and have been implicated in steroid insensitivity.  
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Cytokine Effect in asthma Mechanism 

T helper cell cytokines (Th2, Th9, Th1, Th17) 

IL-4 ↑ disease ↑ IgE, Th2 cells 

IL-5 ↑ disease ↑ eosinophils 

IL-9 ↑ disease ↑ mast cells 

IL-13 ↑ disease ↑ IgE, AHR 

IL-12 ↓ disease ↑ Th1 cells 

IL-17 ↑ disease ↑ neutrophils 

IL-18 ↑ disease ↑ IFN-γ release 

IFN-γ ↓ disease ↓  Th2 cells 

Pro-inflammatory and innate cytokines 

IL-1β, IL-6 ↑ disease ↑ inflammation 

TNF-α ↑ severe disease ↑ inflammation 

TSLP, IL-25, IL-33 ↑ disease ↑ Th2 cells, dendritic cell 

maturation 

Growth factors and anti-inflammatory 

EGF ↑ disease ↑ mucus secretion 

GM-CSF ↑ disease ↑ eosinophils,  neutrophils  

TGF-β ↑ severe disease ↑ fibrosis, ↓ inflammation 

IL-10 ↓ disease ↓ inflammation 

Table 2: Table showing the some of the main inflammatory cytokines involved in asthma. IL = 

Interleukin; IFN = Interferon; EGF = TNF = Tumour necrosis factor; TSLP = Thymic stromal 

lumphopoietin; Epidermal growth factor; GM-CSF = Granulocyte-macrophage colony stimulating 

factor; TGF = Transforming growth factor. Adapted from Barnes, 2008 
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1.4.4 AIRWAY HYPERRESPONSIVENESS 

Airway hyperresponsiveness (AHR) is an increased response to a bronchoconstrictor 

stimulus of natural or pharmacological origin. AHR is an essential component of asthma 

and is a requirement for diagnosis. However, the presence alone of AHR is not an 

indicator of asthma as it can also be present in asymptomatic people and sufferers of 

other respiratory diseases like COPD (Woolcock et al, 1987). The AHR seen in asthmatics 

can be episodic, persistent or both (Cockcroft & Davis, 2006). On this basis it has been 

suggested that AHR can be divided into 2 subtypes, persistent and variable. Persistent 

AHR which is thought to be associated with airway remodelling is often seen in chronic 

asthma. Variable AHR is more commonly associated with acute inflammation. 

Bronchoconstrictive agents can be divided into those that act directly or indirectly on 

airway smooth muscle. Direct stimuli include histamine and methacholine which act on 

H1 and muscarnic receptors respectively and are used clinically for diagnosis. Other 

direct acting stimuli not used clinically, include cysteinyl leukotrienes, thromboxanes, 

and prostaglandins (O'Byrne et al, 2009). Indirect stimuli include adenosine 

monophosphate (AMP) and allergens, but also stimuli that alter the physical 

environment including cold air, exercise, hypertonic saline, mannitol and voluntary 

hyperventilation. These agents cause the release of bronchoconstrictor mediators from 

inflammatory cells, which then act on the smooth muscle (O'Byrne et al, 2009). 

Clinically, AHR is measured using bronchial provocation tests such as FEV1 following the 

inhalation of a direct stimulus like methacholine. Both asthmatics and non-asthmatics 

are able to respond to these stimuli, although the dose required in asthmatics is far 

lower. AHR is expressed as provocative dose (PD) of the stimuli causing a 20% reduction 

in FEV1.  

AHR constitutes two distinct components: airway hypersensitivity and airway 

hyperreactivity and increased maximum response (Figure 3). Airway hypersensitivity is a 

decrease in the threshold dose of the bronchoconstrictor stimulus required to elicit 
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bronchoconstriction of the airways. Graphically, this is represented as a leftward shift in 

the dose-response curve to bronchoconstrictor stimulus from one in non-asthmatics. 

Airway hyperreactivity is a greater degree of closure in the airways in response to 

bronchoconstrictor stimuli. Graphically it is represented by an increased gradient in the 

slope of a dose-response curve (O'Connor et al, 1999). An increase in the maximum 

response is graphically represented as a greater degree of bronchoconstriction before 

the response plateaus. These changes are more pronounced in severe asthmatics 

compared to milder forms of the disease. The mechanisms behind these components of 

AHR may be different. Airway hypersensitivity has been linked to epithelial disruption 

and changes in the neuronal regulation of the airways. Airway hyperreactivity has been 

linked to changes in the structure in the lung including smooth muscle hyperplasia 

(Sterk & Bel, 1989.) 

The causes of AHR are still unclear. Variable AHR demonstrates a link between airways 

inflammation and the LAR (Meijer et al, 1999). Many inflammatory cells and mediators 

have been suggested as being important in the development of AHR. In particular, 

eosinophils have been implicated. However, treatment with an anti-IL-5 antibody does 

not reduce AHR despite reducing eosinophilia, suggesting eosinophils are not essential 

in this process (Lekie et al, 2000). Other inflammatory cells such as CD4+ and CD8+ T 

cells and the cytokine IL-13 have also been investigated for a potential role but a 

definitive answer as to what in the inflammatory milieu is responsible for AHR is still 

unknown (Cockcroft & Davis, 2006). On the other hand persistent AHR seems to be 

more clearly related to the consequences of airway remodelling including increased 

airway smooth muscle mass (Rennard, 1996). 
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Figure 3: Graphically demonstrates the three components of airways hyperresponsiveness 

(AHR) to a bronchoconstrictor stimuli. Hyperreactivity (red), hypersensitivity (green), increased 

maximum response (orange) and normal response (blue). PC20 expressed as the provocative 

concentration of the bronchoconstrictive agent required to cause a 20% reduction in forced 

expiratory volume in 1 second (FEV1). Redrawn from Lotvall et al, 1998 and Sterk & Bel, 1989. 

1.4.5 AIRWAY REMODELLING 

Airway remodeling is typically seen in chronic cases of asthma and is related to the 

severity of the disease (Rennard, 1996). More recently, it has been suggested that 

airway remodelling can occur in parallel and/or may be required for persistent 

inflammation (Galli et al, 2008). Several structural changes are observed in the disease. 

Increased vascularity and detachment of the epithelium, the latter leads to exposure of 

epithelial nerves and increase their exposure to irritant stimuli (Sumi & Hamid, 2007; 

Laitinen et al, 1987). Subepithelial fibrosis is also observed as a result of increased 

collagen and fibronectin deposition in the lamina reticularis (Roche et al, 1989). Elastic 
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fibres, which give the lungs their elastic recoil, are often found fragmented and tangled, 

although the number of fibres appears unchanged (Bousquet et al, 1996). These two 

changes make the lungs less compliant and can reduce the maximum improvement in 

lung function with therapy. An increase in smooth muscle mass is also observed in 

asthmatic airways and can be as much as 2-4 times that seen in normal subjects. This 

increase is thought to result from both hyperplasia and hypertrophy (Bousquet et al, 

2000).  

Mucus in the lungs is secreted by mucus glands and goblet cells distributed 

throughout the airways. An increased mucus production is one of the hallmarks of 

asthma and is attributable to increased goblet cell number, along with hyperplasia of 

the submucosal glands (Aikawa et al, 1992; Bousquet et al, 2000). The excessive mucus 

in asthma can lead to mucus plugging in both the central and peripheral airways and is a 

frequent contributor to fatal asthma (Andoh et al, 1992). A decrease in mucociliary 

clearance may also contribute to this effect (Pavia et al, 1985). The increase in mucus 

production has been atrributed to cytokines such as IL-4, IL-9 and IL-11, which can 

increase the expression of the mucus genes, MUC2 and MUC5AC (Temann et al, 1997). 
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1.5 ASTHMA EXACERBATIONS 

Asthma exacerbations are acute or sub-acute episodes of worsening symptoms such as 

wheezing, chest tightness, cough and shortness of breath. Underlying this is an increase 

in airflow obstruction due to smooth muscle contraction, mucus obstruction of the 

airway lumen and oedema (Hogg, 1997). Mucus in particular seems to be prominent, as 

emphasised by its finding in fatal cases of asthma. Cases of near fatal asthma are often 

associated with segmental lung collapse due to mucus plugging (Kuyper et al, 2003). 

Clinically, exacerbations can be measured as a further decrease in expiratory airflow by 

spirometry and peak flow from pre-exacerbation values (Busse, 2007).  

Asthma exacerbations can be divided into two types. The first are severe exacerbations, 

which require urgent action on the part of the patient and physician to prevent a life 

threatening outcome. The second are moderate exacerbations which are troublesome 

to the patient, require prompt change in treatment but are not life threatening (Reddel 

et al, 2009). It is the former that lead to hospitalisations and represent a significant 

economic burden in the developed world. The number of asthma sufferers that have an 

exacerbation requiring hospital treatment is a relatively small percent of the total 

population  of asthmatics (20%) but accounts for about 80% of the total direct costs 

(Rodrigo et al, 2004). The incidence of asthma exacerbations is similar across all age 

groups and races, when socioeconomic factors are taken into consideration. The 

occurrence of exacerbations increases in obese individuals and the presence of female 

sex hormones (Dougherty & Fahy, 2009).  

Asthma exacerbations can become self reinforcing, further increasing the risk of 

recurrent future exacerbations, independent of socioeconomic factors. (Miller et al, 

2007). A particular group of patients which have an ‘exacerbation prone’ phenotype has 

been identified. They are typically characterised by irreversible airflow limitation, 

psychological dysfunction, chronic sinusitis and intolerance to non-steroidal anti-

inflammatory medications (Koga et al, 2006). Asthma exacerbations may also have long 
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term effects on the lung. The exacerbation prone phenotype is associated with an 

accelerated loss of lung function, over asthmatics with a relatively stable form of the 

disease (Bai et al, 2007). This may be due to the increased inflammatory burden during 

an exacerbation, in addition to the activation of alternative inflammatory pathways 

(Holgate, 2007).  

1.6.1 CAUSES OF EXACERBATION 

Factors that contribute to the exacerbation of asthma include occupational exposures 

(cleaning products, grains, flours), hormones, drugs (NSAIDs, β-blockers), stress, 

exercise, air pollutants (diesel particulates) and bacterial infections (chlamydia 

pneumonia) and high doses of allergens (pollen, dust mites, animal dander). However, 

the most common cause is viral infection (Nicholson et al, 1993). Lipopolysaccharide  

(LPS) from gram-negative bacteria, which is also found ubiquitously in the environment, 

is also recognised as an important contributor to asthma exacerbations (Douwes et al, 

2006).   

1.6.1.1 VIRAL EXACERBATIONS OF ASTHMA 

Viruses are main cause of asthma exacerbations in both adults and children (Busse et al, 

2010). The importance of viruses in asthma exacerbations is well demonstrated by the 

higher rates of asthma mortality during the winter, coinciding with higher rates of 

influenza at that time of year (McCoy et al, 2005). Varying levels of virus detection have 

been made during asthma exacerbations. Using PCR techniques, viral detection rates in 

asthma patients have been recorded to be as low as 57%, to as high as 85% (Nicholson 

et al, 1993; Johnston et al, 1995). Common viral infections found during exacerbation 

include rhinovirus (RV), coronaviruses, influenza, parainfluenza and respiratory syncytial 

virus (RSV) (Atmar et al, 1998). The most commonly detected virus is RV; being reported 

in 65% of cases (Nicholson et al, 1993). Parainfluenza viruses (PIV) are also commonly 

found and thus represent a relevant human pathogen in asthma exacerbations. Viral 

exacerbations of asthma are described in more detail in chapter 4.    
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1.6.1.2 LIPOPOLYSACCHARIDE-INDUCED EXACERBATIONS OF ASTHMA 

LPS is found in the cell wall of gram-negative bacteria and also ubiquitously in the 

environment. A range of studies in humans and animal models have demonstrated that 

LPS also contributes to asthma exacerbations. Correlations between wheezing episodes 

and LPS exposure in humans have been demonstrated (Douwes et al, 2006). 

Additionally, correlations between the concentration of LPS in the domestic 

environment and severity rating of asthma exist (Michel et al, 1996). In animal models 

an increase in allergen-induced inflammation and decreased lung function with LPS has 

been demonstrated (Delayre-Orthez et al, 2004; Murakami et al, 2006). LPS-induced 

exacerbations of asthma are described in more detail in chapter 5.  
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1.6 TREATMENTS 

Treatments for asthma can be broadly divided in to those that provide symptomatic 

relief and those that target the underlying inflammation of the disease. The former 

include bronchodilators such as β2 adrenoreceptor agonists, muscarinic receptor 

antagonists and phosphodiesterase 4 (PDE4) inhibitors which relax airway smooth 

muscle and reduce bronchoconstriction. Anti-inflammatory therapies indicated in the 

treatment of asthma include leukotriene antagonists, PDE4 inhibitors, anti-IgE 

monoclonal antibodies and corticosteroids. The Global strategy for asthma management 

and prevention (GINA) outlines in its 2008 executive summary the 5 step treatment 

program indicated in the treatment of asthma across a range of disease severity 

(Bateman et al, 2008) (see Figure 4). The general principles of treatment are the use of a 

short acting β2 agonist as a reliever in all patients and a gradual introduction of longer 

acting β2 agonists and inhaled corticosteroids if symptomatic control is not achieved.   

 

Figure 4: A schematic of the treatment steps taken in the management of asthma. Treatment is 

taken to the next step if symptomatic control is not achieved. Step 1 introduces short acting β2 

agonists. Step 2 adds a low dose inhaled corticosteroids (ICS). Step 4 adds long acting β2 agonist 

(LABA). Step 3 either increases the dose of ICS or adds an additional therapy such as 

theophylline, anti-leukotriene or anti-cholinergic. Step 5 trials anti-IgE therapy or 

immunosuppresants and periodic oral corticosteroid (OCS) use. Adapted and redrawn from 

Bateman et al, 2008 
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1.6.1 Β2 ADRENORECEPTOR AGONISTS  

β2 adrenoreceptor agonists are the frontline bronchodilator used in the treatment of 

asthma. Both short and long acting β2 agonists (LABA) are available and differ in their 

use according to their pharmacological properties. Short acting β2 agonists such as 

salbutamol have a short duration of action but work rapidly so are used for symptomatic 

control when required, especially during exacerbations. Longer acting β2 agonists such 

as salmeterol have a longer duration of action and are used in long term control of 

symptoms. Additionally, several ultra-LABA are currently in development and indicated 

for once daily dosing. Controversy still exists regarding the safety of long acting β2 

agonists despite recent systematic reviews (Cates et al, 2012). Both classes of drug work 

on the β2 adrenergic receptor, which is the predominant subtype in the lungs. Binding of 

the β2 agonist to its receptor activates intra-cellular adenylate cyclase, which increases 

the production of cyclic adenosine monophosphate (cAMP). cAMP then acts via a 

variety of mechanisms to promote relaxation of smooth muscle. In addition, they may 

be able to prevent the inflammatory cell mediator release, inhibit cholinergic 

transmission, reduce vascular permeability and increase mucocilliary clearance (Barnes 

et al, 1998).  

1.6.2 ANTI-CHOLINERGIC DRUGS 

Anti-cholinergic drugs such as atropine have been established as bronchodilators for 

several centuries but have a wide range of side effects. They work by blocking the 

actions of the parasympathetic nervous system on the contraction of smooth muscle 

and mucus production in the airways (Barnes, 1989). More recently drugs which are 

selective for the muscarinic receptor subtypes of the parasympathetic nervous system 

have been developed. Ipratropium bromide is a non-selective muscarinic receptor 

antagonist, blocking the M1, M2 and M3 receptors (Barnes et al, 1998). However, the 

blocking of the M2 receptor on pre-synaptic cholinergic terminals is undesirable as it 

would enhance transmitter release and oppose the benefits from blocking the post-
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junctional M3 receptors on airway smooth muscle. M3 receptor specific antagonists 

would be of clinical benefit but have been hard to develop (Maesen et al, 1993). 

1.6.3 PHOSPHODIESTEREASE (PDE) INHIBITORS AND THEOPHYLLINE 

Phosphodiesterease (PDE) inhibitors such as theophylline have been used to treat 

asthma for over a century. The PDE4 isoform of the enzyme is found predominantly in 

inflammatory cells and airway smooth muscle. It is involved in the breakdown of cAMP 

to the inactive substance adenosine monophosphate (AMP). Inhibition of PDE will cause 

cAMP levels to increase and the inhibition of inflammatory cells (Boswell-Smith et al, 

2006).  

Clinically, theophylline is able to significantly improve asthmatic symptoms 

(Evans et al, 1997). However, the extent of PDE4 inhibition at therapeutically relevant 

concentrations is low suggesting an alternative mechanism of action (Polson et al, 

1978). One alternative mechanism suggested is antagonism of adenosine receptors. 

Adenosine causes bronchoconstriction in asthmatics by promoting the release of 

leukotrienes and histamine (Björck et al, 1992). These effects are prevented by 

therapeutic concentrations of theophylline (Cushley et al, 1984). Theophylline also 

seems to have some anti-inflammatory effects such as inhibition of the LAR and the 

activation of HDAC-2 which decreases pro-inflammatory gene transcription (Pauwels et 

al, 1985; Jaffar et al, 1996). The drug may also be able to attenuate inflammatory cell 

mediator release and lower the oxidative burden of the lung, potentially being useful in 

treating exacerbations (Nielson et al, 1988). The negative side effect profile of 

theophylline compared to β2 agonists has given the drug limited usage. More selective 

PDE4 inhibitors including roflumilast and cilomilast have been approved for use in 

severe exacerbations of COPD. Clinical studies in asthma have suggested that these 

drugs may also be beneficial in the treatment of asthma (Boswell-Smith et al, 2006). 

1.6.4 CYSTEINYL LEUKOTRIENES  
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Cysteinyl leukotrienes (Cys-LTs) are arachidonic acid derived inflammatory mediators. 

Their effects include bronchoconstriction, inflammatory cell recruitment and mucus 

hypersecretion (Riccioni et al, 2007). Montelukast, an anti-cysteinyl leukotriene drug has 

both bronchodilator and anti-inflammatory effects and works by antagonising the 

receptor of leukotriene D4: the Cysteinyl Leukotriene 1 receptor. These receptors are 

found on mast cells and can prevent release of histamine and development of the EAR 

(Taylor et al, 1991). Montelukast is also able to attenuate symptoms of the late phase 

such as mucus hypersecretion and eosinophil recruitment (Barnes et al, 1998). These 

drugs have not proved to be as successful as inhaled corticosteroids in corticosteroid-

sensitive asthma in controlling symptoms and consequently are used as 3rd line therapy.  

1.6.5 CORTICOSTEROIDS 

Corticosteroids continue to be the mainstay treatment in long term control of asthma. 

They are mainly given as an inhaled preparation due to their decreased systemic side 

effect profile compared to oral preparations. Oral preparations are reserved for treating 

severe asthma exacerbations and patients with inhaled corticosteroid insensitivity. They 

also have wide ranging effects on both functional and inflammatory components of 

asthma. Corticosteroids are able to suppress numerous inflammatory cell types 

including eosinophils, lymphocytes and mediators (Underwood et al, 1997, Krouwels et 

al, 1996; Barnes et al, 1998A). Corticosteroids act via the glucocorticoid receptor (GR), 

which translocates to the nucleus and both suppresses pro-inflammatory and increases 

anti-inflammatory gene transcription (Marwick et al, 2007). A more detailed overview of 

inhaled and systemic corticosteroids including their mechanisms can be found in 

chapter 6 and 7 respectively.  
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1.6.6 NEW AND FUTURE THERAPIES 

The most recent anti-asthma drug to be approved is the anti-IgE monoclonal antibody, 

omalizumab. Currently, issues such as certain patients demonstrating lack of symptom 

improvement and the cost of the therapy have prevented wider adoption of the 

treatment. Other treatments based on blocking key cytokines in the allergic response 

such as IL-4, IL-5, IL-9 and IL-13 are at various stages of clinical and pre-clinical 

development (Barnes, 2010). So far these have shown mixed results and may indicate 

the need to better understand the various mechanisms that underlie different forms of 

asthma. 

1.6.7 TREATMENT OF ASTHMA EXACERBATIONS 

Corticosteroids have been shown to be the most protective in the reduction of 

exacerbations, decreasing their occurrence by 55% when compared with short acting β2 

agonist or placebo (Sin et al, 2004). They also seem to be able to reduce AHR, which is 

likely to contribute to better exacerbation control (Sont et al, 1999). Despite this, 

asthma exacerbations continued to be under treated. One problem in the treatment of 

asthma exacerbations is the poor compliance with inhaled drug treatment within the 

asthmatic population. Due to this, treatment is often only begun when the symptoms of 

an asthma exacerbation have emerged and treatment is less effective. The effectiveness 

of corticosteroids during exacerbations remains under debate. In particular, the 

effectiveness of corticosteroids in reducing viral-induced exacerbation remains 

controversial, despite an extensive Cochrane review that found that inhaled 

corticosteroids are an effective strategy in dealing with respiratory viral infection (Zhang 

et al, 2007; McKean & Ducharme, 2000). The mechanism behind this may be an 

enhancement of innate immunity and epithelial defense, and also reduction in Th2 pro-

inflammatory cytokine production, which is weakly anti-viral (Zhang et al, 2007). In 

animal models, viral exacerbations have been shown to be refractory to inhaled 

corticosteroids (Singam et al, 2006) LPS-induced exacerbations of asthma have also 
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been shown to be partially refractory to even systemic corticosteroids (Komlosi et al, 

2006). Alternative strategies to treat asthma exacerbations are also under investigation. 

Exogenous interferon-β has been shown to have both anti-viral and anti-inflammatory 

properties in vitro on primary bronchial epithelia cells from asthmatics (Cakebread et al, 

2011). Thus this may represent an alternative and/or complimentary strategy to 

corticosteroids for treating viral specific asthma exacerbations.  

1.7 STEROID INSENSITIVITY 

Approximately 5% of asthmatics have been found to be unresponsive to inhaled 

corticosteroid treatment and show decreased responsiveness to oral corticosteroid 

treatment. This is termed steroid insensitivity. Relatively few people are completely 

resistant to oral steroids (Ito et al, 2006). Steroids are a front line treatment for 

controlling asthma and few alternative anti-inflammatory therapies exist. Therefore, 

patients that are unresponsive to steroid treatment are more likely to have poorly 

controlled asthma and present considerable management and economic problems. The 

underlying mechanisms of steroid insensitivity in asthma are largely unknown, although 

several pieces of evidence have suggested possible causes including a decrease in the 

activity of a group of enzymes called the histone deacetylases, which suppress pro-

inflammatory gene transcription (Ito et al, 2006).  New animal models that reflect 

human steroid insensitivity in asthma are required. These will enable the development 

of novel therapeutics to directly treat patients or to restore normal steroid response, 

allowing for better symptom control. A more detailed discussion of steroid insensitivity 

can be found in chapter 6 and 7.  

1.8 ANIMAL MODELS 

Animals are used to model diseases and test the efficacy of new drugs. However, since 

asthma is a complex disease, no one animal model can represent the heterogeneity of 

the human condition. Animals do not develop asthma spontaneously but some 
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demonstrate diseases akin to human asthma including cats, dogs, sheep and horses 

although their pathogenesis may be vastly different (Kurucz & Szelenyi, 2006). As a 

result, the majority of models of asthma are created through allergen sensitisation and 

subsequent allergen challenge. A variety of different allergens have been used in these 

models including ovalbumin (Ova), cockroach extract, ragweed, Aspergillus fumigatus 

and house dust mite (Smith & Broadley, 2007; Canning & Chou, 2008). 

A discussion of Ova allergen challenge models can be found in chapter 3. A discussion of 

viral and LPS induced asthma exacerbation models can be found in chapter 4 and 5 

respectively. A discussion of inhaled and systemic corticosteroid insensitivity models can 

be found in chapters 6 and 7 respectively. Many different animals have been used as 

models for asthma including monkeys, dogs, mice and guinea-pigs. Guinea-pigs in 

particular have been the most commonly used small animal species in preclinical testing 

for asthma (Canning & Chou, 2008). Although guinea-pigs have offered vital insight into 

processes such as immediate hypersensitivity reactions and the actions of histamine, 

their value as an animal model must be carefully considered.  

1.8.1 GUINEA-PIG MODELS 

Guinea-pigs offer several advantages over larger species such as sheep in modelling 

asthma. They are relatively cheap; so that using them is fairly cost effective. Like other 

rodents they are small and therefore easy to handle. Unlike other rodents many aspects 

of the guinea-pig lung physiology and anatomy is similar to humans (Ressmeyer et al, 

2006). As in humans, guinea-pigs have a pseudo-stratified epithelium lining the trachea, 

a similar bronchi structure, vagal innervation of the epithelial and sub epithelial spaces, 

goblet cell and mucus glands that are both neuronally and locally regulated and smooth 

muscle of similar anatomical location and functional properties (Canning & Chou, 2008). 

Importantly, the pharmacology of receptors including responses to airway smooth 

muscle relaxants and contractile agonists are nearly identical to humans, with a few 

exceptions (Muccitelli et al, 1987). In addition, in both humans and guinea-pigs the EAR 
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is mediated by histamine and leukotrienes from mast cells, whereas in species such as 

mice and rats, mast cells contain 5-HT (Lamm et al, 1984; Roquet et al, 1997). Finally, 

the docile nature of guinea-pigs makes the use of anaesthetic unnecessary for accurate 

measurements of airway function.  

The use of guinea-pigs does have several disadvantages. There exists in guinea-pigs an 

axonal reflex that results in the local release of tachykinins and the induction of 

bronchospasm, mucus secretion, inflammatory cell recruitment, vascular engorgement 

and plasma extravasation. It appears that this reflex does not exist in humans and thus 

serves as a drawback of the guinea-pig model (Barnes, 2001). It should also be noted 

that in humans the main antibody involved in type 1 hypersensitivity reactions is IgE 

whereas in guinea-pigs it is IgG (Regal, 1987). Guinea-pigs have seen decreased use as 

models for asthma due to a lack of available biochemical and molecular biological 

reagents. Guinea-pigs also have a more uncharacterised genome as compared to mice 

and thus genetic manipulation is more difficult (Canning & Chou, 2008). However, the 

advantages of guinea-pigs as models of asthma outweigh the disadvantages and they 

continue to be a useful tool in drug discovery and modelling.  

Ultimately, no animal model can seek to represent the full human asthmatic condition 

due to its heterogeneous nature, its complex causes and underlying mechanisms. 

Criticism that animal models fail to replicate the full human condition represent a 

misunderstanding of the use of animal models (Holmes et al, 2011). Animal models are 

best applied to recreating certain aspects of asthma and having their mechanisms 

shown as relevant in humans.  

1.8.2 USE OF WHOLE BODY PLETHYSMOGRAPHY 

Whole body plethysmography allows for conscious measurement of lung function over a 

prolonged period. This enables measurement of both the early and late asthmatic 

responses in the same animal, along with measurement of other asthma characteristics 

such as AHR and cellular inflammation at a separate time point. This technique has been 
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successfully employed to measure early and late asthmatic responses in a range of 

studies (Johnson & Broadley, 1999; Underwood et al, 1995, Evan et al, 2011). The 

disadvantage of this method is that it does not allow for direct measurement of 

bronchoconstriction in specific airways, along with a direct measurement of airway 

resistance and compliance. Whole body plethysmography does overcome the issues 

with using anaesthetic, as required for invasive measurement of lung function. 

Anaesthetic can interfere with the vagal reflex in the lung which can be important in 

bronchoconstrictor responses (Toward & Broadley, 2004). 

1.9 AIMS 

The overall aims of this thesis are: 

 Establish an acute allergen challenge model of asthma demonstrating an early 

and late asthmatic responses, airways hyperresponsiveness and airway 

inflammation. 

 Establish a model of asthma exacerbation demonstrating a worsening of the 

parameters observed above using live virus, viral mimetic or lipopolysaccharide. 

Also to establish the effect of these agents alone. 

 Establish the inhaled and systemic corticosteroid sensitivity of experimental 

asthma, asthma exacerbation models and virus/LPS alone.  
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A complete list of the materials, equipment and solutions used in this thesis and 

their suppliers is available in Appendix 1. Figures in this thesis were produced using 

“Servier Medical Art" (www.servier.com).  

2.1 IN VIVO METHODS 

2.1.1 ANIMAL HUSBANDRY 

Male Dunkin-Hartley guinea-pigs, 200-300g were purchased from Harlan Ltd, UK or 

Charles River, Germany. On arrival guinea-pigs were given one week to acclimatise 

with their new surroundings before commencement of experiments. Guinea-pigs 

were housed in pathogen free conditions; with environmental enrichment in the 

form of cardboard tubes and hay. The housing room conditions were: twelve hour 

light/dark cycles, at 50% humidity and room temperature of 20°C±2°C. All guinea-

pigs were given food and water ad-libitum. All procedures were carried out in 

accordance with Home office licence conditions and legislation covering animal 

husbandry and severity limits.  

2.1.2 MEASUREMENT OF LUNG FUNCTION 

Guinea-pig airway function was measured using non-invasive double chamber 

plethysmography supplied by Buxco systems Ltd. During respiration, an exchange of 

air between the airways of the animal and the surrounding environment 

(plethysmography chamber) takes place. This exchange is induced by changes in the 

volume of the small airways and alveoli of the lungs. During inspiration the volume 

of the lungs increases, resulting in a decrease in the airway pressure. Air then travels 

down its pressure gradient resulting in reduction in the volume of air of the 

surrounding environment. The opposite process takes place during expiration. The 

plethysmograph allows the difference between the rate of change of thoracic 

displacement volume and the nasal flow to be measured when the chamber is kept 

at a constant temperature.  

http://www.servier.com/
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The chamber is split into both a nasal and thoracic sections, separated by a neck seal 

and monitored by separate transducers. This allows thoracic and nasal flows to be 

compared. The difference in pressure between the alveoli and the nose or mouth, 

when divided by the airflow between them produces a measure of airway resistance 

(Raw). The reciprocal of Raw, airway conductance (Gaw), is considered a better 

measurement of airway function as it accounts for change in lung tissue tension and 

transpulmonary pressure. Gaw is influenced by changes in the thoracic gas volume 

(TGV), as occur in the alveoli and therefore a further correction is required. The value 

produced is termed specific airway conductance (sGaw) (Griffiths-Johnson et al, 1988) 

(Figure 1). The greater the resistance in airway, the greater the time delay between 

the nasal and thoracic flows, which consequently alters sGaw. A fuller description of 

the measurement of lung function can be found in Appendix 2. 

 

Gaw = 1/ Raw 

sGaw = Gaw/TGV 

Figure 1: Equation used to calculate specific airway conductance (sGaw) from airway 

resistance (Raw). Airway conductance (Gaw), Thoracic gas volume (TGV).  

 

Guinea-pigs were placed in a double chamber plethysmograph and prevented from 

moving their bodies by use of a neck restraint (Figure 2). The restraint also serves the 

function of separating the nasal and thoracic compartments of the chamber and 

makes them both airtight. Air temperature and gas percentages were kept constant 

by use of a bias flow supply unit. Box pressure changes in both compartments were 

measured by pressure transducers. The pre-amplified output is converted to 

waveforms by Finepoint software (Buxco system Ltd). An example of the waveform 

is given in Figure 3. The software is also able to derive sGaw based on the inputs it 

receives. Readings are taken every 2 seconds and at least 20 breaths are recorded 

during any time point measurement. For calculation of sGaw at a particular time 

point, 15 values are taken at random and the average is calculated. 
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Prior to the commencement of lung function measurements, all guinea-pigs were 

acclimatised to being restrained in plethysmograph chambers for at least 20 minutes 

on two separate occasions. This reduces movement related signal ‘noise’ during 

measurements. It also reduces animal stress during subsequent restraint, reducing 

the interference of stress-related hormones such as cortisol and adrenaline on 

allergen responses. 

 

 

Figure 2: Diagram of double chamber plethysmograph used for measurement of specific 

airway conductance (sGaw) in conscious, restrained guinea-pigs. Airflow is measured by aid 

of pnuemotachograph and pressure changes by transducer. The difference in these values is 

captured using the pre-amplifiers and specific airway conductance (sGaw) calculated using 

Finepoint software.  
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Figure 3:  A trace of the waveform data produced from double chamber plethysmography. 

Thoracic flow (blue) and nasal flow (red) are both represented as near overlapping 

waveforms. Taken from (Lomask, 2005). 

2.1.3 OVALBUMIN AND COMBINED OVALBUMIN AND LPS PROTOCOLS 

2.1.3.1 SENSITISATION 

Guinea-pigs were sensitised by 3 bilateral intra-peritoneal (I.p) injections (day 1, 4 

and 7) of ovalbumin (Ova, 150ug) and aluminium hydroxide (100mg) in 1ml of 

normal saline, unless otherwise stated. All further procedures commenced on day 

15. This method of sensitisation is modified from Smith and Broadley, 2007 and is 

described in more detail in chapter 3.  

2.1.3.2 ACUTE OVALBUMIN CHALLENGE PROTOCOL 

Modifications were made to this protocol and are described in chapter 3. This 

description represents the final protocol developed and used in all subsequent 

experiments. Airways hyper-responsiveness (AHR) was determined by histamine 

inhalation, both pre- and post-saline or Ova challenge on day 15 and 22 respectively 

(described in more detail in section 2.1.6). Guinea-pigs were exposed to inhaled 

ovalbumin (0.03% w/v) or saline challenge on day 21. Exposure was performed in a 

Perspex exposure chamber (15x30x15cm) using a DeVilbiss nebuliser, delivered at a 

rate of 0.3ml/min and at an air pressure of 20 ib p.s.i. Guinea-pigs were exposed for 

an hour or until they appeared distressed, in which case exposure was considered 



Chapter 2 

 

35 

 

complete. Lung function was subsequently measured over 12 hours (described in 

more detail in section 2.1.5). Further to histamine inhalation on day 22, guinea-pigs 

were sacrificed and bronchoalveolar lavage (BAL) performed (described in more 

detail in section 2.2.1). Using the fluid returned from the lungs, total and differential 

cell counts were performed. Figure 4 shows the acute protocol. 

 

Figure 4: A diagram of the acute ovalbumin protocol. Ova: Ovalbumin; BAL: bronchoalveolar 

lavage 

2.1.3.3 OVALBUMIN AND LPS CO-ADMINISTRATION PROTOCOL 

Variations of this protocol were used in chapter 5 and 6. This description refers to 

the protocol using 2 LPS exposures used in chapter 5-8. Airways hyperresponsiveness 

(AHR) was determined by histamine inhalation both pre- and post-saline or Ova 

challenge on day 15 and 22 respectively (described in more detail in section 2.1.6). 

Guinea-pigs were exposed to inhaled LPS (30μg/ml) 48 hours before Ova challenge 

and both LPS (30μg/ml) and Ova (0.03% w/v) co-administered on day 21. Exposures 

were performed for an hour using the same equipment mentioned in section 2.1.3.2. 

Lung function was subsequently measured over 12 hours (described in more detail in 

section 2.1.5). Following the second histamine inhalation on day 22, guinea-pigs 

were sacrificed and bronchoalveolar lavage performed (described in more detail in 

section 2.2.1). Using the fluid returned from the lungs, total and differential cell 

counts were performed. Figure 5 shows a diagram of this protocol. 
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Figure 5: Diagram of LPS and Ova co-exposure protocol. Guinea-pigs were exposed to saline 

or LPS (30μg/ml) on day 19 and both Ova and LPS co-administered on day 21.  

2.1.4 LPS EXPOSURE PROTOCOL 

Guinea-pigs were exposed to inhaled histamine both pre and post- LPS exposure on 

days 1 and 8 respectively of the protocol to determine the presence of AHR 

(described in more detail in section 2.1.6).  Guinea-pigs were exposed to saline or 

LPS (30μg/ml) on day 5 and 7 of the protocol. Exposures were performed for an hour 

using the same equipment mentioned in section 2.1.3.2. Lung function was 

determined for 12 hours after the 2nd LPS or saline exposure to determine the 

presence of a bronchoconstriction as described in section 2.1.5. Bronchoalveolar 

lavage was performed on day 8, following histamine inhalation and sacrifice. Total 

and differential cell counts were performed to determine airways inflammation.   

 

Figure 6: Diagram of the LPS alone exposure protocol. Guinea-pigs are exposed to 30μg/ml 

of LPS on day 5 and 7.   
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2.1.5 RECORDING LUNG FUNCTION  

Lung function was measured by the use of sGaw immediately following saline, Ova 

or LPS challenge. Values for sGaw were taken hourly for 12 hours and every 15 

minutes during the first hour of measurements. A final measurement was also taken 

24 hours post-challenge. sGaw was expressed as a percentage of the baseline 

reading, taken before saline, Ova or 2nd LPS challenge. A negative percentage change 

in baseline value represents a bronchoconstriction, whereas a positive change in 

percentage represents a bronchorelaxation. In ovalbumin challenged animals early 

and late asthmatic responses (EAR and LAR, respectively) which are characterised by 

distinct bronchoconstrictions, were determined. The EAR occurs within the first hour 

but can take as long as 6 hours to fully return to baseline. Therefore, to account for 

any individual differences between guinea-pigs the peak value between 0-6 hours is 

considered to represent the EAR. The LAR starts from about 6 hours onwards and 

shows considerable temporal variation between animals. Therefore the peak value 

between 6-12 hours is considered to represent a LAR.  

2.1.6 MEASUREMENT OF AIRWAYS HYPERRESPONSIVENESS 

The development of airway hyperresponsiveness (AHR) following Ova, LPS or saline 

challenge was determined by measuring the response to the bronchoconstrictor 

agent histamine using plethysmography. Histamine was delivered to the guinea-pigs 

by the use of a Buxco nebuliser chamber, which directly feeds into the nasal 

chamber of the plethysmograph (Figure 7). The rate of gas flow into this chamber is 

dependent on the total of the bias flow units suction vs the rate of the nebuliser 

control units extraction. The nebuliser control unit was set to extract histamine from 

the nebulisation chamber at a rate of 2 litres per minute (LPM), per chamber, which 

when subtracted from the bias flow extraction rate of 2.5LPM per chamber results in 

a flow of histamine from the nebuliser chamber to the nasal chamber of the 

plethysmograph of 0.5 LPM per chamber. Nebulisation of histamine took place over 

the first two minutes, with a 10% duty setting per chamber i.e. 1.2 seconds out of 
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every 6 seconds spent nebulising. The third minute included a 1 minute drying 

period which removes excess aerosolised histamine from the nebulisation chamber.  

 

Figure 7: A diagram of double chamber plethysmograph with nebuliser unit for performing 

assessment of the bronchoconstrictor response to aerosolised histamine. Solutions are 

added to the nebuliser, aerosolised into the chamber below and sucked into the nasal 

portion of the plethysmograph chamber where the guinea-pig inhales it. Aerosolised 

histamine is removed from the chamber by the bias flow unit. Specific airway conductance 

(sGaw) values are derived an from both the nasal and the thoracic portions of the 

plethysmograph chamber by the transducers finepoint software.  

 

A concentration of histamine that evokes minimal bronchoconstriction in naïve 

guinea-pigs was determined by dose-response curve (Figure 8). The effect of 

different nebulisation regimes on histamine response was also determined (Figure 

9). From these studies a histamine concentration of 0.3mM, 2 minutes nebulisation + 

1 minute drying, 10% duty cycle per chamber was chosen. This protocol produces a 

small bronchoconstriction in naïve guinea-pigs which ensures that a failure to see 

AHR to histamine is not due to the dose of histamine being too low.
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Figure 8: A dose-response curve to histamine performed in naïve guinea-pigs. Settings used 

were 1 minute nebulisation, 1 minute drying. Net flow to each chamber was 0.5LPM 

(2.5LPM from bias flow against 2LPM extraction from neubliser control unit), 20% duty per 

chamber.  

 

 

Figure 9: The effect of altering the nebulisation period and duty cycle on the 

bronchoconstrictor response to 2 different doses of histamine. Neb: nebulisation time, Duty: 

duty cycle for duration of nebulisation, per chamber. 

 

To determine the bronchoconstrictor response to histamine, a 1 minute baseline 

value of lung function is recorded using sGaw and all other values recorded are taken 

as a percentage of this. Further sGaw values are recorded at time points 0, 5 and 10 

minutes post histamine exposure. A decrease in sGaw following histamine exposure 
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represents a bronchoconstriction, suggestive of AHR. In each protocol, histamine 

challenges were performed both pre- and 24 hours post-Ova or LPS challenge. Pre-

Ova or saline histamine exposures were used to determine individual guinea-pigs 

sensitivity to histamine prior to Ova challenge. A direct comparison between the pre- 

and post-Ova, LPS or saline responses accommodates for group to group variation in 

responsiveness to histamine. 

2.1.7 DRUG ADMINISTRATION 

The effect of inhaled (fluticasone propionate and dexamethasone) and systemic 

corticosteroid (dexamethasone) were used on various acute asthma models of 

asthma throughout this thesis. Drugs were all administered for 6 consecutive days 

before lavage, to reflect the clinical situation where corticosteroids treatment is 

underway before asthma exacerbation. On days of Ova or LPS challenge, 

corticosteroid treatment was administered 30 minutes prior to subsequent 

challenge. The dosing regimen used for each drug is described in Table 1.  

Drug Administration Daily Doses Vehicle Frequency 

Fluticasone 

propionate 

Inhaled 

(nebulised) 15 

minutes 

0.05, 0.1, 0.5 

and 1mg/ml 

30% ethanol 

30% DMSO 

40% saline 

Split into 2x 

daily dose, 6 

hours apart 

Dexamethasone 

21-phosphate 

disodium salt 

Inhaled 

(nebulised) 15 

minutes 

4 & 20mg/kg 25% DMSO 

75% Saline 

Once daily 

Dexamethasone 

21-phosphate 

disodium salt 

Intra-peritoneal 5, 10 & 

20mg/kg 

25% DMSO 

75% Saline 

Once daily 

Table 1: A list of the compounds used throughout this thesis. 
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The corticosteroid vehicle selected was chosen to minimise side effects whilst fully 

dissolving the drug. Previous work with dexamethasone used 50% DMSO and 50% 

saline as a vehicle (Toward & Broadley, 2004). This was reduced to 25% DMSO to 

reduce local irritation at the site of injection and potential anti-inflammatory actions. 

This fully solubilised dexamethasone at even the highest concentrations used for 

both inhaled and intra-peritoneal routes. The vehicle for fluticasone propionate 

included ethanol due to issues with solubility in DMSO and saline alone. This mix has 

been shown to have minimal effects on Ova and histamine responses (Nevin & 

Broadley, 2004).  

Drugs administered by inhalation were delivered for 15 minutes in a Perspex 

exposure chamber (15x30x15cm) using a DeVilbiss nebuliser delivered at a rate of 

0.3ml/min and at an air pressure of 20 ib p.s.i. Fluticasone propionate was 

administered twice daily to reflect its clinical administration and according to a 

protocol already shown to be effective on Ova-induced allergic and functional 

responses (unpublished data). Dexamethasone was administered once daily due to 

its long biological half life of 36-54 hours, in spite of its short plasma half life (3.5-4.5 

hours) in humans (Sparrow & Geelhoed, 2006).  

Drug doses selected were based on previous work and dose-response relationships 

performed in this thesis. Previous work with inhaled fluticasone propionate has 

found that 0.5mg/ml is a dose effective at reducing Ova induced LAR, AHR and 

airway inflammation (Evans et al, 2012). Similarly, an intra-peritoneal injection of 

20mg/kg dexamethasone has been shown effective at reducing the same 

parameters (Toward & Broadley, 2004). Dexamethasone is not commonly given by 

the inhaled route and consequently there are no studies using it in guinea-pigs on 

which to estimate an effective dose. The dose used was extrapolated from one 

effective in mice (Jungsuwadee et al, 2004), relative to intra-peritoneal mouse doses 

reported in the literature (Komlósi et al, 2006; Korideck & Peterson, 2009). From this 

a ratio (5:1) between effective intra-peritoneal and inhaled doses was determined 

and used to calculate an inhaled dose for guinea-pigs.  
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2.2 EX VIVO METHODS 

2.2.1 MEASURING AIRWAY INFLAMMATION 

At 24 hours post-Ova exposure and following final histamine challenge, guinea-pigs 

were sacrificed by an intra-peritoneal overdose of sodium pentobarbitone (euthatal 

400mg/kg).  Death was confirmed by the absence of neural reflexes and heartbeat. 

Guinea-pigs were then bled via severance of the carotid artery. An incision into the 

neck was made and subsequently an intravenous 7-9FG (trachea size-dependent) 

cannula was inserted into the trachea. Dissection was then performed to excise the 

lungs. Subsequently, the right lung, consisting of 4 lobes was clamped off. 

Bronchoaleveolar lavage (BAL) was performed on the non-clamped left lung using 

normal saline (0.5ml per 100g of guinea-pig weight) instilled through the cannula for 

3 minutes. This process was then repeated and the 2 volumes of lavage return fluid 

combined. The largest of the right lobes was stored in 10% buffered formaldehyde 

for later histology. The smallest lobe had its wet weight measured and was 

subsequently dried overnight in an oven at 40oC. The remaining two lobes were 

stored at -80oc for future protein or RNA analysis.  

To measure cellular influx, both total and differential cell counts were 

performed on BAL fluid. The total number of cells (per ml of lavage fluid) was 

counted using a Neubauer haemocytometer under a light microscope at 40x 

magnification. Cell counts were performed using undiluted BAL fluid. Lavage fluid 

returns were consistent across experiments. 100µl of lavage solution was pipetted 

under a coverslip placed on top of the haemocytometer, evenly distributed by the 

aid of capillary action. 2 grids of 25 squares are present on the haemocytometer, 

with the number of cells in 5 of these squares being counted each time (always the 

top left, top right, bottom, right, bottom, left and central square). The formula used 

to calculate total cell numbers per ml of BALF is shown in (Figure 10). The resulting 

figure was multiplied by 5 and averaged with the total from the other grid of 25 cells. 

As each of the squares measure 0.04 mm2 and 25 were counted, a figure of number 
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of cells per 1 mm2 was established. However, the depth of the chamber is 0.1 mm, 

therefore giving a number of cells per 0.1 mm3. The cell count figure was multiplied 

by 104 to provide a total cell count per ml (1cm3) 

 

 

Figure 10: Formula used to calculate total cell numbers/ml of bronchoalveolar lavage fluid.  

 

Differential cell counts were the second count performed. 100µl of undiluted, 1:5 

diluted or 1:10 diluted BAL fluid stock was centrifuged for 7 minutes at 1000rpm 

onto a glass slide using a cytospin. Slides were subsequently air dried to aid cell 

adhere to the slide. Slides were then stained with 1.5% Leishmans solution in 100% 

methanol for 6 minutes and rinsed in dH20 twice. Slides were air dried overnight. 

Once slides were dry, cells were counted at x100 magnification to determine the 

subpopulations of leukocytes present. The subpopulations of leukocytes counted 

included eosinophils, macrophages, lymphocytes and neutrophils. No mast cells 

were observed. Cell types were differentiated on the basis of their granularity, cell 

size, nucleus shape and stain colouration (Figure 11).  

 

Cells/1mm3= [Average (GC1x5 & GC2x5)] x104 

 

GC1= Grid count 1 

GC2= Grid count 2 
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Figure 11: Photographs of the four subtypes of leukocytes, stained with Leishman’s solution, 

counted in a differential count. Adapted from (Gude et al., 1982). 

 

Macrophages are the predominant inflammatory cell in BAL fluid. They are also the 

largest ranging from 15-20μm.  Eosinophils are most easily identified on the basis of 

their bi-lobed nucleus, red/pink staining of granules in the cytoplasm and their 

smaller size (10-14 μm), compared to macrophages. Lymphocytes are mononuclear 

and are the smallest cell type of the 4 (<10 μm). Identification is reliant on the 

presence of a large spherical, darkly stained nucleus, taking up 70-80% of the total 

cell volume. Neutrophils are similar in size to eosinophils but easily distinguished 

from them by the presence of a multi-lobed, blue stained nucleus. The cytoplasm 

also stains a light blue further differentiating the 2 cell types (Gude et al, 1982).  

2.2.2 DETERMINATION OF AIRWAYS OEDEMA 

Initially airway oedema was determined by assessment of the wet vs dry weight of 

the lungs (described in section 2.2.2.1). This technique was used in chapter 4. 

Further studies used total protein content in lavage fluid as an indicator of airway 

oedema. This measure correlates with the wet/dry weight measure and allows for 

clearer determination of differences in oedema.  

2.2.2.1 WET VS DRY WEIGHT OF LUNG 

Wet lung oedema was determined by comparison of lung wet weight with dry 

weight. This was performed as follows. The 3rd largest lobe of the right lung was 

weighed following excision from the guinea-pig and then dried overnight in an oven 

Macrophage Eosinophil Lymphocyte Neutrophil
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at 40ºC. The lobe was again weighed. The difference between the wet and dry 

weight of the lung allows determination of lung water content and consequently 

oedema. However, percentage changes are small and do not allow for differences in 

oedema to be easily seen. Therefore the difference was expressed as a percentage 

of the dry weight according to the following equation: [Airway oedema= ((wet 

weight-dry weight)/dry weight x 100)].  

2.2.2.2 BICINCHONINIC ACID (BCA) PROTEIN ASSAY 

Total protein content was determined in lavage fluid supernatant using a BCA 

protein assay as per the manufacturer’s instructions (Pierce protein biology). This 

was performed as follows. 10µl of a 1:3 dilution of lavage fluid, PBS or protein 

standard (range 2- 0.025mg/ml) was added to 96 well plate. 200µl of BCA working 

reagent (See Appendix A1.3) was added to each well, covered and put on a plate 

shaker for 30 seconds. The plate was then incubated at 37oC for 30mins. The plate 

was then cooled and read at 540nm on a plate reader. Protein content in lavage fluid 

was determined using an 8 point protein standard curve.  

2.2.3 QUANTIFICATION OF CYTOKINE LEVELS USING ENZYME-LINKED 

IMMUNOSORBENT ASSAY (ELISA) 

To quantify the changes in cytokine levels ELISAs were performed on lung 

homogenate and lavage fluid. An initial list of cytokines of interest was determined 

and included the Th2 cytokines IL-4, IL-5 and IL-13, the Th1 cytokine IL-12p70 and 

IFN-γ, TNF-α, IL-10, IL-17 and the chemoattractant IL-8. However, due to the limited 

availability of guinea-pig specific kits an attempt at cross-reacting readily available 

mouse and human antibodies was made. The guinea-pig genome has not been fully 

sequenced yet and so antibodies for other species are not routinely screened for 

guinea-pig protein cross-reactivity. Therefore, cross-reactivity between guinea-pigs 

and mouse and human antibodies is unknown  
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2.2.3.1 BIOINFORMATIC ASSESSMENT OF POTENTIAL SPECIES CROSS REACTIVITY 

To maximise the chances of successful cross-reactivity between non-guinea-pig 

antibodies and guinea-pig proteins, an assessment of the protein sequence 

homology between species was made. Using Pubmed, the protein sequences for 

guinea-pig cytokines of interest were obtained. The homology of these guinea-pig 

sequences to other species was assessed using BLAST. The most homologous species 

to the guinea-pig species protein sequence was selected for cross-reactivity 

screening. Table 2 shows a summary of the results. For full sequence data please see 

Appendix 3. 

Cytokine Role Ab used Homology 

IL-4 Th2 differentiation Mouse 54% 

IL-5 Th2 derived, 

eosinophil recruitment and 

activation 

Human 81% 

IL-13 Th2 derived, AHR Human 79% (predicted) 

IL-12 p70 Pro-inflammatory, 

Th1 differentiation 

Human 85% 

IFN-γ Th1 effector cytokine, anti-

intracellualar pathogen 

Human 71% 

IL-17 (a) ‘exacerbation’ linked Human 81% (predicted) 

IL-10 Anti-inflammatory Human 92% 

IL-8 Neutrophil 

chemoattractant 

Human 82% 

TNF-α Pro-inflammatory Guinea pig N/a 

Table 2: Shows function of cytokines assessed, the species with the closet sequence to the 

guinea-pig protein and the percentage homology between the two. 



Chapter 2 

 

47 

 

Special consideration for the results obtained using the human IL-8 ELISA kit is 

necessary for rodents. In mice and rats, the functional ortholog CXCL1 (KC) is the 

main neutrophil chemoattractant (Mestas J, Hughes, 2004). Unlike other rodents 

used in research, in the guinea-pig it appears that CXCL8 (IL-8) is the main neutrophil 

chemoattractant, as in humans (Lyons et al, 2004; Gorden et al, 2005). Guinea-pig IL-

8 also signals through the same receptors: CXCR1 and CXCR2 as in humans (Catusse 

et al, 2003; Takahashi et al, 2007). In rats and mice CXCR1 is not present. This would 

suggest that a antibody against human IL-8 would be capable of reacting with the 

guinea-pig homologue. 

2.2.3.2 PERFORMING AN ELISA 

Approximately 100mgs of lung lobes snap frozen in liquid nitrogen and stored at -

80°C were homogenised in Precellys tubes containing 1ml of lysis buffer (see 

Appendix 1.3) for 2x 50 seconds in a Precellys tissue homogeniser. The resulting 

homogenate was then spun at 13,000rpm for 15 minutes at 4°C, aliquoted into tubes 

and stored at -80°C until use. Lavage fluid was stored at -80°C until use. ELISA assays 

were performed using Duoset kit reagents supplied by R&D systems, UK. The major 

steps in this process are shown in Figure 12. In all assays a 96 well maxisorb plate 

was coated overnight at 24°C with 100μl of capture antibody. The following day the 

plate was washed 3 times with 400μl phosphate-buffered saline with tween-20 

(PBST) and blotted dry. To prevent non-specific binding, plates were blocked for 90 

minutes at 24°C with 1x reagent diluent (1% BSA in PBS, R&D systems). Plates were 

washed as previously described. 100μl of samples, standards or 1x reagent diluent 

were added in duplicate to wells and incubated for 2 hours at 24°C. A 7 point 

standard curve with 2-fold serial dilutions were used (refer to Table 4 for details for 

specific cytokines). A wash step was performed as above. Next, 100μl of the 

detection antibody was added to each well and incubated for 2 hours at 24°C. A 

wash step was again performed as described above. Next, 100μl of enzyme labelled 

(HRP-Stepavidin, diluted per manufacturer’s instructions) was added to each well 

and incubated for 20 minutes at room temperature, avoiding direct sunlight. A wash 
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step was then performed. 100μl of enzyme substrate (TMB) was added to each well 

and incubated away from direct sunlight at room temperature for 20-40 minutes 

until the standard curve colour had developed sufficiently. 50μl of stop solution 

(H2SO4) was added to each well to stop the reaction and then gently mixed on a 

plate shaker. Optical densities were determined at 450nm using a plate reader. 

Results were calculated from a 7-point standard curve using softmax pro or 

Microsoft excel. Standard curves with R2 values below 0.95 were excluded. Values 

below the lowest point of the standard curve and therefore indistinguishable from 

blanks were given a value of 0. Lung homogenate cytokine levels were adjusted for 

protein content (performed by BCA protein assay) and expressed as weight per mg 

of lung. 

 

Figure 12: Diagram of the major steps in an enzyme-linked immunosorbent assay (ELISA). 

Step 1: the biological sample is added to a plastic well coated with primary antibody. Step 2: 

The secondary antibody is added and binds to the primary-antibody-sample complex. Step 3: 

Strepavidin-Horse radish peroxidase (HRP) is added and binds to the secondary antibody. 

Step 4: The substrate tetramethylbenzene (TMB) is added and is turned from yellow to blue 

by strepavidin-HRP. The more the colour changes the more protein in the sample there is 

present. 

2.2.3.3 INITIAL SCREENING OF ANTIBODY CROSS REACTIVITY. 

Initial screening of antibody cross-reactivity was performed using neat lavage fluid 

and a 1:2 serial dilution of lung homogenate from acute saline or Ova challenged 

guinea-pigs. ELISAs were performed as per the manufacturer’s instructions. 
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Strepavidin-
HRP

TMB

Colour
change

Step 1 Step 2 Step 3 Step 4



Chapter 2 

 

49 

 

Antibodies were considered to cross-react if samples produced higher optical density 

values then blank values and fell within the range of the standard curve. Table 3 

shows the results of these studies. Only IL-13, IL-17 and IL-8 antibodies were found 

to cross-react with guinea-pig proteins in lung homogenate. IL-17 and IL-13 were 

detectable in lavage fluid but not reliably so, only occasionally within the range of 

the standard curve. The lack of detection of the other cytokines could be due to lack 

of cross-reactivity or that the time point at which the lavage fluid and lungs were 

sampled was not optimal for specific cytokine detection. Cytokines differ in their 

temporal profile following allergen challenge. In particular, the levels of IL-8 have 

been shown to be lower at 24 hours post-allergen challenge compared to 4 hours 

post (Danahay et al, 1999). 

Cytokine Ab Lung detection Lavage fluid detection 

IL-4 (mouse) 
 

 

IL-5 (human) 
 

 

IL-13 (human) 
 

 

IL-12 p70 (human) 
 

 

IFN-γ (human) 
 

 

IL-17 (a) (human) 
 

 

IL-10 (human) 
 

 

IL-8 (human) 
 

 

TNF-α (guinea-pig) 
  

Table 3: Shows which of the selected antibodies reacted with guinea-pig specific cytokines. 

Cytokines were considered to be detectable if levels were higher then background and fell 

within the standard curve. Lung homogenate was tested via serial dilution to remove protein 

matrix effects. Lavage fluid was tested neat.  
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2.2.3.4 ELISA OPTIMISATION 

Capture and detection antibody concentrations were optimised for IL-8, IL-13, IL-17 

and TNF-α. Grid optimisations using 3 different standard concentrations (+blanks) 

and varying concentrations of both capture and detection antibody were performed. 

Table 4 shows the final assay conditions for each cytokine assessed.  

Cytokine C: Ab 

conc 

C: Ab 

diluent 

D: Ab 

conc 

D: Ab 

diluent 

Standard 

range 

Standard 

diluent 

TNF-α 4ug/ml PBS 4ug/ml 1% BSA in 

PBS 

2000-

32pg/ml 

1% BSA in 

PBS 

IL-8 8ug/ml PBS 30ng/ml 0.1% BSA 

in TBS-T 

2000-

32pg/ml 

0.1% BSA 

in TBS-T 

IL-13 4ug/ml PBS 300ng/ml 1% BSA in 

PBS 

6000-

94pg/ml 

1% BSA in 

PBS 

IL-17 4ug/ml PBS 150ng/ml 1% BSA in 

PBS 

1000-

16pg/ml 

1% BSA in 

PBS 

Table 4: Shows the final ELISA antibody conditions after optimisation. C: Ab: Capture 

antibody, D: Ab detection antibody. 

 

The dilution of lung homogenate used in ELISAs was also optimised by performing 

1:5 serial dilution curves. This is necessary to overcome the interference of matrix 

factors present in lung tissue which can otherwise obscure the differentiation of 

protein concentrations between groups (Lavoie-Lamoureuxa et al, 2010). Figure 13 

shows the results of these dilution curves. From these dilution curves a dilution in 

the linear range was selected: IL-8: 1/5, IL-13: 1/625, IL-17: 1/25, TNFa: 1/625. 
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Figure 13: Shows the relative optical densities of A) IL-8 B) IL-13 C) IL-17 and D) TNF-α in lung homogenate. Lung homogenate from ovalbumin sensitised 

and challenged and LPS challenged guinea-pigs was serially diluted. Background absorbance was subtracted from absolute ODs. Data presented as the 

mean±SEM.  N=3. 
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2.2.3 HISTOLOGICAL ANALYSIS OF LUNGS 

Histological procedures were carried out on the un-lavaged large lobe of the right 

lung.  

2.2.3.1 TISSUE PROCESSING 

Tissues were removed from formaldehyde and sliced transversely, mid-way down 

the lobe, and the flat-edge of the dissected lobe used to obtain two 1-2mm sections. 

Each section was placed into a tissue cassette and stored in fresh phosphate-

buffered (pH7.3) 10% formaldehyde. 

 

Tissue samples were treated via the following protocol, without removal from 

cassettes. 

50% ethanol (1 hour). 

70% ethanol (1 hour). 

90% ethanol (1 hour). 

100% ethanol (1.5 hours). 

100% ethanol (1.5 hours). 

100% ethanol (1.5 hours). 

Chloroform:100% ethanol 50:50 (overnight). 

100% chloroform (1.5 hours). 

100% chloroform (1.5 hours). 

Molten paraffin (2 hours).  

Molten paraffin (2 hours). 

Molten paraffin (2 hours). 

Tissue cassettes were removed from molten paraffin and samples placed into metal 

mounts. The mount was filled with molten paraffin, the tissue cassette backing 

applied under pressure and the set placed onto a cooling block at -20oC for 10 

minutes. Solidified sections were removed from mounts and excess wax trimmed.  



Chapter 2 

 

53 

Using a microtome, 5µm thick sections were obtained, placed immediately onto 

water (40oC), and fixed onto Polysine® slides. Slides were dried overnight at 300C in 

an oven.  

2.2.3.2 HISTOLOGICAL STAINING 

The following protocol was followed for all samples and staining procedures. Stain-

specific procedures are detailed in sections 2.2.3.2.1 and 2.2.3.2.2  

1. Histoclear® (5 minutes). 

2. Histoclear® (5 minutes). 

3. Histoclear® (5 minutes). 

4. 100% ethanol (3 minutes). 

5. 100% ethanol (3 minutes). 

6. 90% ethanol (3 minutes). 

7. 70% ethanol (3 minutes). 

8. Stain-specific procedures (sections 2.2.3.1 and 2.2.3.2). 

9. 70% ethanol (3 minutes). 

10. 90% ethanol (3 minutes). 

11. 100% ethanol (3 minutes). 

12. 100% ethanol (3 minutes). 

13. Histoclear® (5 minutes). 

14. Histoclear® (5 minutes). 

15. Histoclear® (5 minutes). 

16. Air-dry for 24 hours, mounted using Histomount® and a cover-slip placed on 

top. 

Subsequent to this lung sections were analysed using a Leica DMRAZ microscope. 

Images were acquired using a Leica DC500 camera and Leica QWin software. 

2.2.3.2.1 HAEMATOXYLIN AND EOSIN STAINING 

1. Deparaffinise with Histoclear® and rehydrate through graded ethanol (section 

2.2.3.2 points 1-7). 

2. Running tap water (5 minutes) 
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3. Rinse with distilled water. 

4. Mayer’s haematoxylin (2 minutes). 

5. Running tap water (5 minutes) 

6. Rinse with distilled water. 

7. 1x scotts tap water 

8. Running tap water (5 minutes) 

9. Rinse with distilled water. 

10. 1% Eosin Y (90 seconds).  

11. Dehydrate through graded ethanol and clear with Histoclear® (section 2.2.3.2, 

points 9-16). 

A typical photomicrograph obtained with the HE staining procedure is illustrated in 

Figure 14. Haematoxylin & eosin stain allows for assessment of general lung 

morphology. Sections were blinded to prevent experimenter bias. A semi-

quantitative scoring method was used to assess inflammation in and around the 

bronchi. Each sample was scored for the number of cells on the basis of 3 images. 

The scoring system used was 0=normal lung; 1= minor peribronchiolar (PB) 

inflammation, minimal PB inflammation; 2= slight inflammation in PB area; 3= 

moderate PB inflammation; 4= marked PB inflammation and cuffing. Slight loss of 

lung structure (alevoli etc); 5= severe PB inflammation, cufifng and infiltration. Loss 

of lung structure i.e. solid lung (Barends et al., 2004).  
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Figure 14: Haematoxylin and eosin stained section of guinea-pig lung following acute 

ovalbumin challenge (original magnification 200x). A large bronchiole exhibiting notable 

eosinophilia (bar = 30 µm).  

2.2.3.2.2 ALCIAN BLUE/PERIODIC ACID SCHIFF STAIN 

1. Deparaffinise with Histoclear® and rehydrate through graded ethanol (section 

2.2.3.2 points 1-7). 

2. Distilled water (5 minutes) 

3. 1% Alcian blue dissolved in 3% aqueous acetic acid (pH 2.5) (5 minutes) 

4. Running tap water (5 minutes) 

5. Periodic acid (0.5%) (5 minutes) 

6. Running tap water (5 minutes) 

7. Distilled water (5 minutes) 

8. Schiff’s reagent (10 minutes) 

9. Running tap water (10 minutes) 

10. Mayer’s haematoxylin (20 seconds) 

11. Running tap water (5 minutes) 

12. Dehydrate through graded ethanol and clear with Histoclear® (section 2.2.3.2, 

points 9-16). 
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A typical photomicrograph obtained with the Alcian blue/periodic acid Schiff staining 

procedure is illustrated in figure 15. The Alcian blue/ periodic acid Schiff stain allows 

for the identification of mucin and goblet cells. 

  

Figure 15: Alcian blue/periodic acid Schiff stain stained section following acute ovalbumin 

challenge and 2 pre-ovalbumin LPS inhalations (original magnification 200x). A large 

bronchiole exhibiting goblet cell hyperplasia (bar = 30 µm). 

 

To quantify the number of mucin-associated goblet cells in the epithelium by light 

microscopy and using the program image J. First epithelial area was calculated by 

subtracting the lumen area from the total area of the epithelium and lumen 

combined (shown in Figure 16A). Next the number of goblet cells (Ab/PAS positive 

points, stained dark blue and purple and typical goblet cell morphology) were 

counted (Figure 16B). The following formula was applied to calculate the number of 

mucin-associated goblet cells per 10,000 epithelial pixels.  

 

Mucin per 10,000 = (Number of AB/PAS+ points ÷ Epithelial area) x 10000 

 

Lumen

Smooth 
muscle

Epithelium

Goblet cell
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The resulting values allowed for determination of whether goblet cell hyperplasia 

and metaplasia had taken place.  

 

Figure 16: Alcian blue/periodic acid Schiff stain stained section following acute ovalbumin 

challenge and a single pre-ovalbumin LPS inhalation. A) A large bronchiole exhibiting goblet 

cell hyperplasia (original magnification 100x) B) Airway epithelium with numerous goblet 

cells (original magnification 200x); (bar = 30 µm). 

 

2.2.3.2.3 SIRIUS RED STAIN 

1. Deparaffinise with Histoclear® and rehydrate through graded ethanol (section 

2.2.3.2 points 1-7). 

2. Mayer’s haematoxylin (2 minutes). 

3. Running tap water (2 minutes). 

4. Rinse with 100% ethanol. 

5. Sirius red (2 hours). 

6. Running tap water (2 minutes). 

7. Dehydrate through graded ethanol and clear with Histoclear® (section 2.2.3.2, 

points 9-16). 

A typical photomicrograph obtained with the Sirius Red staining procedure is 

illustrated in Figure 17. Sirius red staining allows for the differentiation of eosinophils 
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from neutrophils (Mayerholz et al, 2009). For analysis, 3 bronchioles of comparable 

size were selected and each centered within the field of view at a 200x 

magnification. The number of eosinophils was analysed as the number per field of 

view and per bronchiole area. For the latter, bronchiole perimeter was defined by a 

line around the adventitia and all eosinophils within that area counted (Figure 18). 

Counting the number of eosinophils per bronchiole area minimises the confounding 

effect of bronchiole size on eosinophil counts. For counting, eosinophils were 

defined as cells demonstrating a cytoplasm staining an intense red with dark bi-

lobed nuclei. Neutrophils demonstrated less cytoplasmaic staining and different 

nuclear morphology. Investigator blinding was performed to minimise investigator 

bias. 

 

 

Figure 17: Sirius red stained section of guinea-pig lung following acute ovalbumin challenge 

(original magnification 200x). A An artery in close proximity to a heavily eosinophil-

infiltrated bronchiole (bar = 30 µm). B Two eosinophils with clearly-defined bi-lobed nuclei 

(black arrows; bar = 15 µm). C Clearly differentiated eosinophils (black arrows) and 

neutrophils (purple arrows; bar = 15 µm). 
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Figure 18:  Sirius red stained section of guinea-pig lung tissue showing the area defined as 

bronchiole perimeter. Eosinophils within or in contact with the bronchiolar perimeter were 

eligible for counting. 

2.3 STATISTICAL ANALYSIS 

Student’s t-tests were used for the comparison of differences between groups or 

data points. One way analysis of variance (ANOVA) followed by Dunnet post hoc test 

were used when 2 or more groups were being compared to a control group. * 

P<0.05, ** P<0.01, *** P<0.001. Results are plotted as the mean±standard error of 

the mean (SEM). All lung function data were plotted as a percentage of baseline to 

take into account the individual differences in guinea-pig baseline sGaw values. 

Graphs were drawn using GraphPad Prism 5 and results analysed using Graphpad 

Instat 3. 
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3.1 Introduction 

3.1.1 Ovalbumin models of asthma 

Allergen challenge models of asthma are created through the initial sensitisation to 

an allergen and subsequent re-encounter of the same allergen. A variety of different 

allergens have been used in a range of species including ragweed, cockroach extract, 

Aspergillus fumigatus, house dust mite and ovalbumin (Ova) (Canning & Chou, 2008). 

The most common allergen used is ovalbumin (Ova), especially in guinea-pigs (Smith 

& Broadley, 2007). A variety of different protocols have been used but generally all 

follow a basic structure. Commonly Ova is administered intraperitoneally with an 

adjuvant such as aluminium hydroxide. Animals are then given several weeks to 

develop an immune response. Re-exposure to Ova, generally by the inhaled route 

then triggers the effector phase. The intraperitoneal route of administration in these 

models has been criticised for its lack of relevance to the likely route of allergen 

sensitisation in humans, the respiratory mucosa. This could lead to differences in the 

immune response (Cates et al, 2007). However, no direct comparison between 

models that use intraperitoneal and respiratory mucosa (house dust mite) 

sensitisation have been performed, so currently this is unknown. Protocols involving 

sensitisation by aerosolised Ova exist but they take up to 4 weeks to achieve 

sensitisation (Nabe et al, 1997).  

Aluminium adjuvants exist as many different salts including aluminium phosphate 

and aluminium hydroxide. The latter is the most commonly used in allergy research 

and exists as several different preparations including powders and gels. Differences 

in the amount of other salts including magnesium hydroxide and the method of 

preparation can alter the immunestimulating capabilities of the adjuvants (Lindblad, 

2004). Aluminium hydroxide performs its action as an adjuvant by several 

mechanisms. It forms bonds with Ova when in solution, which then act as a depot for 

the slow release of antigen. This prolongs the time that antigen, antigen presenting 

cells (APC) and lymphocytes have to interact (Gupta et al, 1993). Additionally, 

aluminum hydroxide is reported to increase the efficiency of antigen uptake by APCs 
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by aiding the formation of particles of optimal size (< 10 µm) for APCs (Gupta et al, 

1995). Additionally, adjuvant-allergen pairings act as an inflammatory focus for 

immunocompetent cells (Gupta et al, 1995). Aluminium hydroxide has also been 

shown to favour development of Th2 lymphocyte responses (Cooper, 1994). Th2 

responses in asthmatic patients favour the development of early and late asthmatic 

(EAR and LAR respectively) responses. Finally, aluminium hydroxide activates 

complement and aids the development of B cell memory (Gupta et al, 1995). 

3.1.2 Features of acute ovalbumin models of asthma 

Both acute and chronic Ova models of asthma have been developed. Acute models 

of asthma involve either a single or several allergen challenges. Chronic models of 

asthma typically involve at least 8 allergen challenges over several weeks (Evans et 

al, 2012). Both acute and chronic models typically display an EAR, LAR to the final 

allergen challenge, airways hyperresponsiveness (AHR) and airway inflammation. 

Chronic models also display additional features seen in human asthma such as 

airway remodelling (Rennard, 1996). This makes chronic models useful for 

investigating remodelling processes in asthma. The length of time they take to 

develop (typically over 6 weeks) is a drawback for drug screening. Acute models have 

the advantage of reproducing key functional and inflammatory responses in asthma 

while taking less time to develop. Thus, they represent a good starting point for the 

investigation of the effect of viruses and LPS on these features.  

Early and late asthmatic responses are seen in humans following allergen challenge 

(Booij-Noord et al, 1971).  The EAR is an immediate bronchoconstriction to allergen 

and usually resolves within the first couple of hours. The LAR is a delayed 

bronchoconstriction to an allergen and is observed in the majority of asthmatic 

patients. In humans, this is typically seen 4-8 hours after allergen challenge (Galli et 

al, 2008). Airways hyperresponsiveness (AHR) is another key feature of asthma. AHR 

is an increased response to a bronchoconstrictor stimulus such as histamine 

(Cockcroft & Davis, 2006). The final key feature that acute Ova models demonstrate 

is airway inflammation. In particular eosinophils, macrophages and lymphocytes are 
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increased in human asthma (Laitinen et al, 1996). Neutrophils are also important; 

especially in more severe forms of the disease (Taha et al, 2001). Airway 

inflammation can be assessed by bronchoalveolar lavage or histological staining of 

lung sections (Walters and Gardiner, 1991; Grootendorst et al, 1997). Dissociation 

between these indices of airway inflammation has been observed making it useful to 

investigate inflammation using both methods (Barends et al, 2004). 

Several groups have demonstrated isolated characteristics such as AHR, EAR and LAR 

in guinea-pig models (Hutson et al, 1990; Danahay et al, 1999). However, not all 

groups have been able reproduce these features. In particular the LAR has proved 

difficult to achieve under a range of different sensitisation conditions (Everitt & 

Moore, 1992; Underwood et al, 1992). Within this laboratory a model demonstrating 

an EAR, LAR, AHR and airway inflammation to Ova challenge in guinea-pig has been 

developed (Evans et al, 2012). However this model has required optimisation on 

several occasions over the years to continue to produce these features. Lewis et al, 

(1996) modified the allergen challenge conditions to stop the need for mepyramine, 

which prevents fatal anaphylaxis. Smith & Broadley, (2007) modified the 

sensitisation conditions because of the loss of key features over time, increasing the 

amount of Ova used and the number of injections given. This restored the EAR, LAR 

and AHR to Ova challenge. In the present study, modifications to both the challenge 

and sensitisation conditions were made to restore EAR, LAR, AHR and airway 

inflammation. That had again waned by the start of this PhD project. 
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3.2 Hypothesis 

Modifications to the ovalbumin sensitisation and challenge protocol will restore 

functional and inflammatory responses in an acute model of asthma 

3.3 Aims and objectives 

The aim of this chapter was to re-establish an acute guinea-pig model of asthma 

displaying an early and late asthmatic responses, airway hyperresponsiveness and 

airway inflammation as demonstrated by Smith & Broadley, (2007) and Evans et al, 

(2012). By producing these features, subsequent work to investigate the effect of 

viruses, LPS and anti-asthma drugs on these characteristics can be performed. 
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3.4 Methods 

These methods are described in more detail in chapter 2.  

3.4.1 Sensitisation 

Guinea pigs (Dunkin-Hartley, male) were sensitised by an bilateral intra-peritoneal 

injection of a solution containing ovalbumin (Ova) and aluminium hydroxide 

(Al(OH)3) in normal saline on days 1 and 5 (protocol 1 and 2) or 1, 4 and 7 (protocol 

3-7). Please refer to Table `1 or details on the amount of Ova and (Al(OH)3) used in 

each protocol. The solution was stirred for 2 hours previous to injection to ensure 

the formation of Ova-aluminium hydroxide complexes. 

3.4.2 Ovalbumin challenge 

Allergic responses were triggered by inhalation of Ova in a Perspex exposure 

chamber using a DeVilbiss nebuliser for 1 hour. Please refer to Table 1 for 

information on the day of Ova challenge and the concentration. 

3.4.3 Acute challenge protocols 

An acute challenge protocol as per Smith & Broadley, (2007) was used initially as 

described below (protocol 1). Subsequently, modifications were made to the 

protocol to produce an EAR, LAR, AHR and total and differential cell numbers. 
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Protocol 

Ova 

Challenge 

Dose 

No. of 

sensitisati

ons 

Ova 

Sensitisation 

dose 

(Al (OH)3) 

sensitisation 

dose 

Injection 

volume 

Challenge 

day 

Protocol 1 * 0.01% 2 100µg/ml 100mg/ml 1ml Day 15 

Protocol 2 0.03% 2 100µg/ml 100mg/ml 1ml Day 15 

Protocol 3 0.03% 3 100µg/ml 100mg/ml 1ml Day 15 

Protocol 4 0.03% 3 150µg/ml 100mg/ml 1ml Day 15 

Protocol 5 0.03% 3 75µg/ml 50mg/ml 2ml Day 15 

Protocol 6 0.03% 3 75µg/ml 75mg/ml 2ml Day 15 

Protocol 7 0.03% 3 150µg/ml 100mg/ml 1ml Day 21 

Table 1:  Variations made to the acute ovalbumin guinea-pig model as established in Smith & 

Broadley, (2007). * Protocol of Smith and Broadley, (2007). Modifications for each protocol 

are shown in red. 

 

3.4.4 Measurement of lung function 

Guinea-pig airway function was measured using non-invasive double chamber 

plethysmography, using specific airway conductance (sGaw) as a measure of airway 

conductance (Griffiths-Johnson et al, 1988). Lung function was recorded following 

Ova challenge, hourly for 12 hours and every 15 minutes during the first hour of 

measurements. A final measurement was also taken 24 hours post-challenge. All 

values from these readings were expressed as a percentage of the baseline reading, 

taken before Ova challenge. A negative percentage change in baseline value 

represents a bronchoconstriction. To account for differences in the timing of allergen 

responses during the early (0-6 hours) and late (6-12 hours) phases, sGaw was also 

expressed as the peak bronchoconstriction during that period (displayed as a 

histogram next to a time course plot) and area under the curve. 
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3.4.5 Measurement of Airways hyperresponsiveness (AHR) 

AHR was determined using whole body plethysmography. This was performed by 

measuring the bronchoconstrictor response to histamine pre- (day 15) and post-Ova 

challenge (24 hours after Ova challenge). Histamine (0.3mM) was delivered to the 

guinea-pigs by the use of a Buxco nebuliser chamber at a rate of 0.5 LPM per, two 

minutes nebulisation, and 1 minute drying period with a 10% duty setting per 

chamber. Lung function was measured before histamine inhalation and at 0, 5 and 

10 minutes post-histamine exposure.  

3.4.6 Measuring Airway Inflammation 

Following final histamine challenge, guinea-pigs were sacrificed by an intra-

peritoneal overdose of sodium pentobarbitone, the lungs excised and lavaged. Total 

and differential cell counts were then performed. 

3.4.7 Histological analysis of lungs 

Lung lobe samples were stored in formaldehyde and 1-2mm bilateral sections cut. 

Samples were dehydrated in increasing concentrations of alcohol and then 

chloroform. Tissue sections were then set into wax blocks using molten paraffin. 

5µm sections were cut using a microtome and fixed to polysine coated slides. Slides 

were stained using the Sirius red staining protocol which allows the identification of 

eosinophils. The number of eosinophils was counted per field of view and per 

bronchiole. Eosinophils within the perimeter of a bronchiole were included in the 

latter. Eosinophils were defined as cells demonstrating a cytoplasm staining an 

intense red with dark bi-lobed nuclei. 
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3.5 Results 

3.5.1 Protocol 1 

Sensitisation: 2 intra-peritoneal injections of 100µg Ova and 100mg Al(OH)3 

Ova challenge: 0.01% Ova or saline 

 

 

Figure 1: The acute ovalbumin protocol for guinea-pigs exposed to saline or Ova protocol 1.  

 

In Ova challenged guinea-pigs a significant bronchoconstriction was observed 

immediately (-45.6± 6.2%), which did not return to saline challenged levels until 2 

hours post-Ova challenge. This bronchoconstriction was the early asthmatic 

response. No further significant differences between saline and Ova challenged 

sGaw values were observed. Therefore no late asthmatic response was observed 

(Figure 2, time-course). A significant increase in the peak bronchoconstriction during 

the EAR was observed in Ova challenged guinea-pigs, as shown by a significant 

decrease in sGaw compared to saline challenged guinea pigs (-45.6±6.2 compared 

with 2.0±2.6 respectively). No significant difference in the peak sGaw values was 

seen between 6-12 hours (Figure 2, histogram). Throughout the total time course, 

Ova challenged guinea-pigs demonstrated significantly greater area under the curve 

then saline challenged guinea-pigs (97.6±11.1%.hr compared to 10.0±6.1%.hr). This 
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was also the case for the EAR time points (80.3±9.4%.hr compared to 8.5±5.4%.hr). A 

significant increase in area under the curve (AUC) during the LAR was also seen with 

Ova challenge (17.7±5.0%.hr compared to 1.6±1.0%) (Figure 3). 24 hours after saline 

challenge, guinea-pigs show no significant change in the bronchoconstrictor 

response to histamine compared to before saline challenge (Figure 4A). This was also 

the case for Ova challenged animals (Figure 4B). 

Ova challenge significantly increased total lavage cells (3.2±0.5x106/ml compared to 

saline, 1.6±0.13x106/ml). Eosinophils made up most of this increase (1.3±0.3x106/ml 

compared to saline, 0.05±0.01x106/ml). No changes in any other cell type were 

observed (Figure 5). 

3.5.1.1 Summary 

Guinea-pigs sensitised with 2 injections of 100µg Ova and 100mg aluminium 

hydroxide and subsequently challenged with 0.01% Ova (protocol 1) demonstrated 

an EAR, an increase in total cells and eosinophils in lavage fluid. The protocol did not 

lead to the development of a clear LAR, AHR and increase in macrophages and 

lymphocytes. These results are inconsistent with Smith and Broadley, (2007) and 

Evans et al, (2012). In both studies this protocol induced an EAR, LAR, AHR and 

airway inflammation.  

To restore these features, modifications to the sensitisation and challenge protocol 

were made. Previously, protocol modification has been shown to restore these 

responses (Smith and Broadley, 2007). The first modification made was an increase 

in the allergen challenge concentration from 0.01% to 0.03% Ova, to ensure the full 

allergen response was being triggered. 
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Figure 2: The mean time-course values of sGaw in guinea-pigs sensitised with 2 injections of a suspension of 100µg ovalbumin (Ova) and 100mg aluminium 

hydroxide and challenged with 0.01% Ova or saline. The histogram represents the maximum bronchoconstriction values recorded during early asthmatic 

response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are expressed as mean±SEM 

percentage change from baseline. A negative value represents a bronchoconstriction. N=6 (saline), N=5 (Ova); *Significantly different from saline treatment 

p<0.05, *** p<0.001; performed with a two tailed T-test. 
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Figure 3: Area under the curve analysis of bronchoconstrictor responses in guinea-pigs 

sensitised with 2 injections of a suspension of 100µg ovalbumin (Ova) and 100mg aluminium 

hydroxide and challenged with 0.01% Ova or saline. For the purpose of analysis only 

negative peaks were considered and all positive sGaw values were excluded. Total includes 

all negative peaks from 0-24 hours, early asthmatic response (EAR) includes values from 0-6 

hours and late asthmatic response (LAR) includes values from 6-12 hours. Area under the 

curve is measured in %.hour. N=6 (saline), N=5 (Ova).  ***Significantly different from saline 

treatment p<0.001; performed with a two tailed T-test. 
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Figure 4: Response of the airways to nebulised histamine delivered in a plethysmograph 

(0.3mM, 10% duty cycles with 0.5LPM flow per chamber over 2 minutes, 1 minute drying 

period) in guinea-pigs sensitised with 2 injections of a suspension of 100µg ovalbumin (Ova) 

and 100mg aluminium hydroxide and challenged with A) saline or B) 0.01% Ova. Values were 

recorded 24 hours pre- and post-saline or Ova challenge. Mean changes in sGaw are 

expressed as mean±SEM percentage change from baseline. A negative value represents a 

bronchoconstriction. N=6 (saline), N=5 (Ova); performed with a two tailed T-test. 
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Figure 5: The total cell (A), macrophages (B), eosinophils (C), lymphocytes (D) and 

neutrophils (E) counts in bronchoalveolar fluid in guinea-pigs sensitised with 2 injections of a 

suspension of 100µg ovalbumin (Ova) and 100mg aluminium hydroxide and challenged with 

0.01% Ova or saline. N=6 (saline), N=5 (Ova); **Significantly different from saline treatment 

p<0.01; *** p<0.001; performed with a two tailed T-test. 
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3.5.2 Protocol 2 

Sensitisation: 2 intra-peritoneal injections of 100µg Ova and 100mg Al(OH)3 

Ova challenge: 0.01% (Protocol 1) or 0.03% Ova (protocol 2). 

 

Figure 6: The acute ovalbumin protocol for guinea pigs exposed to Ova protocol 1 or 2. 

 

In both 0.01% and 0.03% Ova challenged guinea-pigs a significant 

bronchoconstriction was observed immediately (-45.6± 6.2% and -60.9±2.1%). No 

significant difference was seen between the times either group took to return to 

baseline levels following Ova challenge. Both these bronchoconstrictions constitute 

the EAR. No further bronchoconstrictions representing the LAR were seen in either 

of the Ova challenged groups (Figure 7, time course). The peak EAR of the 0.03% Ova 

challenged guinea-pigs was significantly increased compared to the 0.01% Ova 

challenged guinea-pigs (-45.6±6.2 and -60.9±2.1% respectively). No significant 

difference in peak sGaw values was seen 6-12 hours post-Ova challenge (Figure 7, 

histogram). Throughout the total time course 0.03% Ova challenged guinea-pigs 

demonstrated significantly greater area under the curve then 0.01% Ova challenged 

guinea-pigs (165.8±15.3%.hr compared to 97.5±9.1%.hr). This was also the case for 

the EAR time point (141.3±6.8%.hr compared to 80.3±7.7%.hr). No difference was 

observed between the two groups at LAR time points (Figure 8) 
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24 hours after 0.03% Ova challenge a significant increase in the immediate 

bronchoconstriction to histamine inhalation compared to the pre-Ova challenge 

sGaw values was observed (-38.5±7.9% compared to -4.1±2.3%). A significant 

bronchoconstriction to histamine was still present 5 minutes post-histamine 

challenge (-2.2±3.1% compared to -18±4.2%). At 10 minutes post-histamine 

exposure sGaw values were no different from pre-Ova challenge values (Figure 9). 

0.03% Ova challenge significantly increased the total cells present in lavage fluid 

(5.3±0.4x106/ml compared to 0.01% Ova, 3.2±0.5x106/ml). Eosinophils were 

significantly elevated (2.0±0.2x106/ml compared to 0.01% Ova, 1.3±0.3x106/ml). No 

changes in any other cell type with Ova challenge were observed (Figure 10). 

3.5.2.1 Summary 

Guinea-pigs sensitised with 2 injections of 100µg Ova and 100mg aluminium 

hydroxide and subsequently challenged with 0.03% Ova (protocol 2) demonstrated 

an EAR, slightly increased in duration, AHR and an increase in total cells, eosinophils 

and macrophages. Thus increasing the allergen challenge concentration 3-fold 

induced AHR and increased airway inflammation.  However, a clear LAR was not 

demonstrated so further modification to the Ova protocol were made. Increasing the 

number of sensitisation injections was shown by Smith & Broadley, 2007 to induce a 

LAR. Therefore the next modification made to the protocol was to increase the 

number of sensitisation injections from 2 to 3.  
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Figure 7: The mean time-course sGaw values in guinea-pigs sensitised with 2 injections of a suspension of 100µg ovalbumin (Ova) and 100mg aluminium 

hydroxide and challenged with 0.01% (protocol 1) or 0.03% Ova (protocol 2). The histogram represents the maximum bronchoconstriction values recorded 

during the early asthmatic response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are 

expressed as mean±SEM percentage change from baseline. A negative value represents a bronchoconstriction. N=5 (protocol 1), N=6 (protocol 2) 

*significantly different from protocol 1 p<0.05; performed with a two tailed T-test. 
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Figure 8: Area under the curve analysis of bronchoconstrictor responses in guinea-pigs 

sensitised with 2 injections of a suspension of 100ug ovalbumin (Ova) and 100mg aluminium 

hydroxide and challenged with 0.01% (protocol 1) or 0.03% Ova (protocol 2).  For the 

purpose of analysis only negative peaks were considered and all positive sGaw values were 

excluded. Total includes all negative peaks from 0-24 hours, early asthmatic response (EAR) 

includes values from 0-6 hours) and late asthmatic response (LAR) includes values from 6-12 

hours. Area under the curve is measured in %.hour. N=5 (protocol 1), N=6 (protocol 2) 

***significantly different from protocol 1 p<0.001; performed with a two tailed T-test. 
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Figure 9: Response of the airways to nebulised histamine delivered in a plethysmograph 

(0.3mM, 10% duty cycles with 0.5LPM flow per chamber over 2 minutes, 1 minute drying 

period) in guinea-pigs sensitised with 2 injections of a suspension of 100ug ovalbumin (Ova) 

and 100mg aluminium hydroxide and challenged with A) 0.01% (protocol 1) or B) 0.03% Ova 

(protocol 2). Values were recorded 24 pre- and post-Ova challenge. Mean changes in sGaw 

are expressed as mean±SEM percentage change from baseline. A negative value represents 

a bronchoconstriction.  N=5 (protocol 1), N=6 (protocol 2) *Significantly different from time 

paired pre-Ova challenge values p<0.05, ** p<0.01; performed with a two tailed T-test. 
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Figure 10: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid in guinea-pigs sensitised with 2 injections of a suspension 

of 100ug ovalbumin (Ova) and 100mg aluminium hydroxide and challenged with 0.01% 

(protocol 1) or 0.03% Ova (protocol 2). N=5 (protocol 1), N=6 (protocol 2) *Significantly 

different from protocol 1 p<0.05; performed with a two tailed T-test. 
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3.5.3 Protocol 3 

Sensitisation: 3 intra-peritoneal injections of 100µg Ova and 100mg Al(OH)3 

Ova challenge:  0.03% Ova. 

 

Figure 11: The acute ovalbumin protocol for guinea-pigs exposed to Ova protocol 3. 

 

In both guinea-pigs sensitised with protocol 2 & 3 (2 and 3 I.p sensitisation injections 

respectively) and subsequently challenged with Ova a significant bronchoconstriction 

was observed immediately (-60.9±2.15% and -61.9±2.1% respectively). No significant 

difference was observed between the times either group took to return to baseline 

sGaw values following Ova challenge. Both these bronchoconstrictions constitute the 

EAR. No further bronchoconstrictions representing the LAR were seen in either of 

the Ova challenged groups (Figure 12, time course). No significant difference 

between the peak EAR and LAR bronchoconstrictions was seen between groups 

(Figure 12, histogram). No difference in area under the curve was observed between 

the two groups at total, EAR and LAR time points ( 

Figure 13) 

Guinea-pigs sensitised with 3 intra-peritoneal injections of Ova demonstrated a 

significant increase in the bronchoconstrictor response to histamine inhalation 24 

hours after Ova challenge (-28.3±6.0% compared to pre-Ova challenge, -3.9±2.8%). 

This bronchoconstriction to histamine was still present 5 minutes post-exposure (-
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11.8±3.7%) compared to pre-challenge (-2.8±3.7%). At 10 minutes post-histamine 

exposure the guinea-pig sGaw values had recovered to pre-Ova exposure levels. The 

extent of the increased bronchoconstrictor response to histamine was not 

significantly different between groups (Figure 14).  

The addition of a 3rd sensitisation injection did not significantly change total cells or 

any other specific cell populations measured (Figure 15). 

3.5.3.1 Summary 

Guinea-pigs sensitised with 3 injections of 100µg Ova and 100mg aluminium 

hydroxide and subsequently challenged with 0.03% Ova (protocol 3) demonstrated 

an EAR, AHR and airway inflammation. However, a LAR was not observed. Therefore, 

further modifications to Ova protocol were made.  Smith & Broadley, 2007 

demonstrated that an increase in the number of sensitisation injections, increasing 

the Ova concentration in each was can promote a LAR. Therefore the next 

modification made to the protocol was to increase the concentration of Ova in each 

sensitisation injection from 100µg to 150µg/ml.  
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Figure 12: The mean time-course values of sGaw in guinea-pigs sensitised with 2 (protocol 2) or 3 (protocol 3) injections of a suspension of 100µg Ova and 

100mg aluminium hydroxide and challenged with 0.03% Ova. The histogram represents the maximum bronchoconstriction values recorded during the early 

asthmatic response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are expressed as 

mean±SEM percentage change from baseline. A negative value represents a bronchoconstriction. N=6 (protocol 2)’ N=4 (protocol 3; performed with a two 

tailed T-test. 
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Figure 13: Area under the curve analysis of bronchoconstrictor responses in guinea-pigs 

sensitised with 2 (protocol 2) or 3 (protocol 3) injections of a suspension of 100µg Ova and 

100mg aluminium hydroxide and challenged with 0.03% Ova.  For the purpose of analysis 

only negative peaks were considered and all positive sGaw values were excluded. Total 

includes all negative peaks from 0-24 hours, early asthmatic response (EAR) includes values 

from 0-6 hours) and late asthmatic response (LAR) includes values from 6-12 hours. Area 

under the curve is measured in %.hour. N=6 (protocol 2)’ N=4 (protocol 3); performed with a 

two tailed T-test. 

 

Total EAR (0-6h) LAR (6-24)
0

100

200

300

400
Ova (protocol 2)

Ova (protocol 3)

A
re

a 
u

n
d

e
r 

cu
rv

e
 (

%
h

r)



Chapter 3 

 

84 

 

 

Figure 14: Response of the airways to nebulised histamine delivered in a plethysmograph 

(0.3mM, 10% duty cycles with 0.5LPM flow per chamber over 2 minutes, 1 minute drying 

period) in guinea-pigs sensitised with A) 2 (protocol 2) or B) 3 (protocol 3) injections of a 

suspension of 100µg Ova and 100mg aluminium hydroxide and challenged with 0.03% Ova. 

Values were recorded 24 hours pre- and post-Ova challenge. Mean changes in sGaw are 

expressed as mean±SEM percentage change from baseline. A negative value represents a 

bronchoconstriction. N=6 (protocol 2), N=4 (protocol 3); *significantly different from pre-

Ova challenge values p<0.05, ** p<0.01; performed with a two tailed T-test. 
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Figure 15: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid in guinea-pigs sensitised with 2 (protocol 2) or 3 (protocol 

3) injections of a suspension of 100ug Ova and 100mg aluminium hydroxide and challenged 

with 0.03% Ova. N=6 (protocol 2), N=4 (protocol 3); performed with a two tailed T-test. 
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3.5.4 Protocol 4 

Sensitisation: 3 intra-peritoneal injections of 150µg Ova and 100mg Al(OH)3 

Ova challenge:  0.03% Ova 

 

Figure 16: The acute ovalbumin protocol for guinea-pigs exposed to Ova protocol 4. 

 

Guinea-pigs sensitised with 100µg and 150µg of Ova (protocol 3 & 4 respectively) 

demonstrated a significant bronchoconstriction immediately following Ova challenge 

(-61.9±2.1% and -60.7±4.1%). No significant difference between groups was 

observed during the early phase responses. No significant late phase 

bronchoconstrictions were observed in either group (Figure 17, time course). No 

significant difference in peak early phase bronchoconstrictions was observed 

between groups. No significant late phase bronchoconstriction was observed with an 

increase in the Ova sensitisation dose. (Figure 17, histogram). No significant 

difference in area under the curve was observed between the two groups at total, 

EAR and LAR time points (Figure 18) 

Guinea-pigs sensitised with 150ug of Ova demonstrated a significant 

bronchoconstrictor response to histamine 24 hours after Ova inhalation challenge (-

35.7±8.9% compared to pre-Ova values, -1.4±2.8). A significant bronchoconstriction 

was still present 5 minutes post-histamine challenge (-29.2±6.4% compared to -

0.3±4.5%). At 10 minutes post-histamine exposure guinea-pigs sGaw values were not 
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significantly different from pre-Ova challenge values. No significant difference in the 

post-Ova bronchoconstrictor response to histamine was observed between the 2 

groups (Figure 19). 

Increasing the sensitisation dose of Ova from 100 to 150ug significantly increased 

the total cells present in lavage fluid (8.3±0.9x106/ml compared to 4.8±0.4x106/ml). 

Eosinophils and macrophages were also significantly increased with increased Ova 

during sensitisation (3.9±0.3x106/ml compared to 2.4±0.3x106/ml; 3.5±0.3x106/ml 

compared to, 2.2±0.2x106/ml respectively) (Figure 20).  

3.5.4.1 Summary 

Guinea-pigs sensitised with 3 injections of 150µg Ova and 100mg aluminium 

hydroxide and subsequently challenged with 0.03% Ova (protocol 4) demonstrated 

an EAR, AHR and airway inflammation.  An increase in total cells was observed but 

no LAR. Therefore, further modifications to Ova protocol were made.  To further 

enhance sensitisation to Ova, the concentration of aluminium hydroxide was 

increased to 150mg.  
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Figure 17: The mean time-course values of sGaw in guinea-pigs sensitised with 3 injections of a suspension of 100µg or 150ug ovalbumin (Ova) and 100mgs 

of aluminium hydroxide (protocol 3 & 4 respectively) and challenged with 0.03% Ova. The histogram represents the maximum bronchoconstriction values 

recorded during the early asthmatic response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hour readings. Mean changes in sGaw 

are expressed as mean±SEM percentage change from baseline. A negative value represents a bronchoconstriction. N=4 (protocol 3), N=5 (protocol 4); 

performed with a two tailed T-test. 
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Figure 18: Area under the curve analysis of bronchoconstrictor responses in guinea-pigs 

sensitised with 3 injections of a suspension of 100µg or 150ug ovalbumin (Ova) and 100mgs 

of aluminium hydroxide (protocol 3 & 4 respectively) and challenged with 0.03% Ova. For 

the purpose of analysis only negative peaks were considered and all positive sGaw values 

were excluded. Total includes all negative peaks from 0-24 hours, early asthmatic response 

(EAR) includes values from 0-6 hours and late asthmatic response (LAR) includes values from 

6-12 hours. Area under the curve is measured in %.hour. N=4 (protocol 3), N=5 (protocol 4); 

performed with a two tailed T-test. 
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Figure 19: Response of the airways to nebulised histamine delivered in a plethysmograph 

(0.3mM, 10% duty cycles with 0.5LPM flow per chamber over 2 minutes, 1 minute drying 

period) in guinea-pigs sensitised with A) 3 injections of a suspension of 100µg or B) 150ug 

ovalbumin (Ova) and 100mgs of aluminium hydroxide (protocol 3 & 4 respectively) and 

challenged with 0.03% Ova. Values were recorded 24 pre- and post-Ova challenge. Mean 

changes in sGaw are expressed as mean±SEM percentage change from baseline. A negative 

value represents a bronchoconstriction. N=4 (protocol 3), N=5 (protocol 4); **significantly 

different from time paired pre-Ova challenge values p<0.01; performed with a two tailed T-

test. 
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Figure 20: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid in guinea-pigs sensitised with 3 injections of a suspension 

of 100µg or 150ug ovalbumin (Ova) and 100mgs of aluminium hydroxide (protocol 3 & 4 

respectively) and challenged with 0.03% Ova N=4 (protocol. 3) N=5 (protocol 4); 

*significantly different from protocol 3 p<0.05, ** p<0.01; performed with a two tailed T-

test. 
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3.5.5 Protocol 5 & 6 

Sensitisation: 3 intra-peritoneal injections of 150µg Ova and 100mg or 150mg 

Al(OH)3 in normal saline (protocols 5 & 6 respectively). For protocol 5 and 6, 2mls of 

sensitisation solution was injected bilaterally on days 1, 4 and 7. This prevented 

clogging of the injection syringe due to the increased viscosity of solution. Protocol 5 

was the control for the volume change of the sensitisation solution used in protocol 

6. Increasing the sensitisation solution volume from 1 to 2ml did not significantly 

alter any parameter. These results of the comparison between protocol 4 and 5 can 

be found in Appendix 4.  

Ova challenge:  0.03% Ova 

 

Figure 21: The acute ovalbumin protocol for guinea-pigs exposed to Ova protocol 6. 

 

Guinea-pigs sensitised with 100mg or 150mg of aluminium hydroxide (Protocol 5 & 6 

respectively) demonstrated an immediate bronchoconstriction to Ova (-61.0±5.5% 

and -53.6±4.3%, protocol 5 and 6 respectively). The bronchoconstrictions returned 

to baseline sGaw values 4 hours post-Ova challenge. These bronchoconstrictions 

constitute the EAR. In guinea-pigs sensitised with an increased amount of aluminium 

hydroxide (protocol 6), a second significant bronchoconstriction was observed at 6 

hours (-17.6±4.6%) compared to protocol 5, (-3.8±4.2%). The bronchoconstriction 

returned to baseline sGaw levels by 8 hours. This bronchoconstriction represents a 
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late asthmatic response (Figure 22, time course). Both groups demonstrated similar 

peak EAR. Increasing the sensitisation dose of aluminium hydroxide from 100 to 

150mg significantly increased the peak late phase bronchoconstriction (-17.6±4.6%) 

compared to protocol 5, (-3.8±4.2%) (Figure 22, histogram). No difference in area 

under the curve (AUC) was observed between the two groups at total and EAR time 

points. Although AUC for the late phase showed a trend for an increase this was 

found to be non-significant (Figure 23).  

Guinea pigs sensitised with 150mg of aluminium hydroxide demonstrated a 

significant bronchoconstrictor response to histamine exposure 24 hours post-Ova 

challenge (-37.0±8.1%) compared to pre-Ova challenge, (-5.9±2.1%). A 

bronchoconstriction was still present 5 minutes after histamine exposure (-

19.2±4.7% compared to -9.4±2.2%). 10 minutes after histamine exposure, sGaw 

values  had returned to baseline. No significant difference in the bronchoconstrictor 

response to histamine between groups was observed (Figure 24). 

Increasing the aluminium hydroxide sensitisation dose from 100 to 150mg did not 

significantly increase total cell counts. A significant increase in eosinophils was 

observed (6.9±0.8x106/ml compared to protocol 5, 4.6±0.5x106/ml). Both 

neutrophils and lymphocytes were also significantly elevated (0.15±0.02x106/ml) 

compared to protocol 5 (0.3±0.01x106/ml) (Figure 25). 

3.5.5.1 Summary 

Guinea-pigs sensitised with 3 injections of 150µg Ova and 150mg aluminium 

hydroxide and subsequently challenged with 0.03% Ova (protocol 6) demonstrated 

an EAR, AHR and airway inflammation, with a significant increase in eosinophils, 

lymphocytes and neutrophils. Most importantly, a clear LAR was seen at 6 hours 

post-allergen challenge. This result was further confirmed by the significant increase 

in the peak bronchoconstriction 6-12 hours after Ova challenge. This protocol 

produced all characteristics of asthma desired in an acute model of asthma. Despite 

this, the protocol was found to be unsuitable for further use due to the high dose of 
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aluminum hydroxide and injection volume. The protocol also produced high levels of 

distress to guinea-pigs during Ova challenge. Thus one further modification to the 

protocol was made. The time between the allergen sensitisation and challenge was 

extended from approximately 1 to 2 weeks. 
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Figure 22: The mean time-course values of sGaw in guinea-pigs sensitised with 3 injections of 2ml of a suspension of 150µg Ova and 100mg or 150mg of 

aluminium hydroxide and challenged with 0.03% Ova (protocol 5 and 6 respectively). The histogram represents the maximum bronchoconstriction values 

recorded during the early asthmatic response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hour readings. Mean changes in sGaw 

are expressed as mean±SEM percentage change from baseline. A negative value represents a bronchoconstriction. N=5; *significantly different from 

protocol 5 p<0.05, ** p<0.01; performed with a two tailed T-test. 
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Figure 23: Area under the curve analysis of bronchoconstrictor responses of in guinea-pigs 

sensitised with 3 injections of 2ml of a suspension of 150µg Ova and 100mg or 150mg of 

aluminium hydroxide and challenged with 0.03% Ova (protocol 5 and 6 respectively). For the 

purpose of analysis only negative peaks were considered and all positive sGaw values were 

excluded. Total includes all negative peaks from 0-24 hours, early asthmatic response (EAR) 

includes values from 0-6 hours and late asthmatic response (LAR) includes values from 6-12 

hours. Area under the curve is measured in %.hour. N=5; performed with a two tailed T-test. 
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Figure 24: Response of the airways to nebulised histamine delivered in a plethysmograph 

(0.3mM, 10% duty cycles with 0.5LPM flow per chamber over 2 minutes, 1 minute drying 

period) in guinea-pigs sensitised with 3 injections of 2ml of a suspension of A) 150µg Ova 

and 100mg or B) 150mg of aluminium hydroxide and challenged with 0.03% Ova (protocol 5 

and 6 respectively). Values were recorded 24 pre- and post-Ova challenge. Mean changes in 

sGaw are expressed as mean±SEM percentage change from baseline. A negative value 

represents a bronchoconstriction. N=5; **significantly different from time paired pre-Ova 

challenge values ** p<0.01; performed with a two tailed T-test. 
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Figure 25: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid in guinea-pigs sensitised with 3 injections of 2ml of a 

suspension of 150µg Ova and 100mg or 150mg of aluminium hydroxide and challenged with 

0.03% Ova (protocol 5 and 6 respectively); N=5; *significantly different from protocol 5 

p<0.05, ** p<0.01; performed with a two tailed T-test. 
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3.5.7 Protocol 7 

Sensitisation: 3 intra-peritoneal injections of 150µg Ova and 100mg Al(OH)3 in 1ml 

saline. 

Ova challenge:  0.03% Ova, day 15 (protocol 4) or day 21 (protocol 7) 

 

Figure 26: The acute ovalbumin protocol for guinea-pigs exposed to Ova protocol 7. 

 

Both guinea-pigs challenged on day 15 (-60.7±4.1%) and day 21 (-66.7±4.0%) 

demonstrated a significant bronchoconstriction at 0 minutes post-Ova challenge. In 

guinea-pigs challenged on day 21 the bronchoconstriction to Ova was significantly 

increased at all time points from 45 minutes to 5 hours post-Ova compared to 

guinea-pigs challenged on day 15. In guinea-pigs challenged with Ova on day 21 a 

further bronchoconstriction was observed from 7-9 hours. At 8 and 9 hours this 

bronchoconstriction was significantly increased compared to guinea-pigs challenged 

with Ova on day 15 (-10.7±3.9% compared to 2.0±1.6%; -13.2±7.0% compared to 

7.2±2.2%). This second bronchoconstriction represents a late asthmatic response 

(Figure 26, time course). No significant difference in peak early phase 

bronchoconstrictions was observed between guinea-pigs challenged on day 15 and 

day 21. A significant increase in the peak LAR was observed in guinea pigs challenged 

with Ova on day 21 (-19.9±4.9%) compared to challenge 15, (1.3±2.6%). No 

significant difference in sGaw values was observed 24 hours post-Ova challenge 

(Figure 26, histogram).  
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Figure 28 represents the area under the curve (AUC) analysis for sensitised guinea-

pigs challenged with Ova on day 15 or day 21. A significant increase in the total 

(246±45.9%.hr compared to 86.2±23.7%.hr), EAR (194.2±25.1%.hr compared to 

76.6±18.6%.hr) and LAR (53.1±21.0%.hr compared to 9.6±5.1%.hr) AUC were seen in 

guinea pigs challenged on day 21 compared to day 15.  

Guinea-pigs challenged with Ova day 15 and 21 demonstrated a significant increase 

in the bronchoconstrictor response to histamine, 24 hours post-Ova challenge (-

35.7±8.9% and -53.9.4±11.4%, respectively) compared to pre-Ova challenge (-

10.1±2.4%). In guinea-pigs challenged with Ova on day 15 the bronchoconstriction to 

histamine was not significantly different from pre-Ova sGaw values at 10 minutes. In 

guinea pigs challenged on day 21 a significant bronchoconstriction was still present 

at 10 minutes (-26.7±11.4% compared to 1.6±2.7%) (Figure 29).  

Total cells were not significantly different between groups. Macrophage and 

neutrophils also remained unchanged. Lymphocytes were significantly increased in 

guinea-pigs challenged with Ova on day 21 compared to day 15 (0.37±0.07x106/ml, 

compared to 0.04±0.01x106/ml respectively). Eosinophils were also significantly 

increased (5.5±0.2x106/ml compared to 3.9±0.3x106/ml) (Figure 30). 

3.5.5.1 Summary 

Guinea-pigs sensitised with 3 injections of 100µg Ova and 150mg aluminium 

hydroxide and subsequently challenged with 0.03% Ova on day 21 (protocol 7) 

demonstrated an EAR, LAR, AHR and airway inflammation with a significant increase 

in lymphocytes.  The duration of the EAR increased with the lengthening of the 

sensitisation period. Thus this protocol was able to produce all the required 

characteristics of an acute Ova model. Unlike protocol 6, the allergen challenge was 

well tolerated. On this basis, the protocol was used in all subsequent chapters.  
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Figure 27: The mean time-course values of sGaw in guinea-pigs sensitised with 3 injections of a suspension of 150µg Ova and 100mg aluminium hydroxide 

and challenged with 0.03% Ova on day 15 (protocol 4) or day 21 (protocol 7). The histogram represents the maximum bronchoconstriction values recorded 

during baseline, early asthmatic response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are 

expressed as mean±SEM percentage change from baseline. A negative value represents a bronchoconstriction; N=6 *Significantly different to protocol 4 

p<0.05, ** p<0.01; performed with T-test. 
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Figure 28: Area under the curve analysis of bronchoconstrictor response in guinea-pigs 

sensitised with 3 injections of a suspension of 150µg Ova and 100mg aluminium hydroxide 

and challenged with 0.03% Ova on day 15 (protocol 4) or day 21 (protocol 7). For the 

purpose of analysis only negative peaks were considered and all positive sGaw values were 

excluded. Total includes all negative peaks from 0-24 hours, early asthmatic response (EAR) 

includes values from 0-6 hours and late asthmatic response (LAR) includes values from 6-12 

hours. Area under the curve is measured in %.hour. N=6 *Significantly different to protocol 4 

p<0.05; performed with T-test. 
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Figure 29: Response of the airways to nebulised histamine delivered in a plethysmograph 

(0.3mM, 10% duty cycles with 0.5LPM flow per chamber over 2 minutes, 1 minute drying 

period) in guinea-pigs sensitised with 3 injections of a suspension of 150µg Ova and 100mg 

aluminium hydroxide and challenged with 0.03% Ova on A) day 15 (protocol 4) or B) day 21 

(protocol 7). Values were recorded 24 pre- and post-Ova challenge. Mean changes in sGaw 

are expressed as mean±SEM percentage change from baseline. A negative value represents 

a bronchoconstriction. N=6; *Significantly different from pre-Ova challenge values p<0.05; 

** p<0.01; performed with T-test. 
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Figure 30: The total cell (A), macrophages (B), eosinophils (C), lymphocytes (D) and 

neutrophils (E) counts in bronchoalveolar fluid in guinea-pigs sensitised with 3 injections of a 

suspension of 150µg Ova and 100mg aluminium hydroxide and challenged with 0.03% Ova 

on day 15 (protocol 4) or day 21 (protocol 7). N=6; **significantly different from protocol 4 

p<0.01; *** p<0.001; performed with a two tailed T-test. 
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3.5.7 Tissue eosinophilia 

Figure 31 shows typical photomicrographs for lung sections stained with Sirus red 

(eosinophil stain). Figure 32A shows the number of eosinophils counted per field of 

view. A progressive trend for increased eosinophil numbers was observed with 

cumulative modifications to the Ova sensitisation and challenge protocol. This 

reached significance with protocol 3 (187.4±40.2) compared to saline, (27.0±7.4). 

Protocols 4-7 also significantly increased tissue eosinophilia (173.7±29.1, 180.2±13.0 

and 185.8±20.5 respectively). Figure 32B shows the number of eosinophils per 

bronchiole area. Similar results to eosinophils per field of view were observed. 

Protocol 3-7 all significantly increased tissue eosinophilia compared to saline 

(90.8±5.9, 99.8±5.9, 89.7±15.3, 73.7±8.8 respectively, compared to saline, 9.4±3.4). 
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Figure 31: Guinea-pig lung tissue stained with Sirius red. Sensitisation and challenge varied accordingly A 2 x 100µg Ova/100mg Al(OH)3 with saline 

challenge. B 2 x 100µg Ova/100mg Al(OH)3 with 0.01% Ova challenge (protocol 1). C 2 x 100µg Ova/100mg Al(OH)3 with 0.03% Ova challenge (protocol 2). D 

3 x 100µg Ova/100mg Al(OH)3 with 0.03% Ova challenge (protocol 3). E 3 x 150µg Ova/100mg Al(OH)3 with 0.03% Ova challenge (protocol 4). F 3 x 150µg 

Ova/150mg Al(OH)3 with 0.03% Ova challenge (protocol 6). G 3 x 100µg Ova/100mg Al(OH)3 with 0.03% Ova challenge  on day 21 (protocol 7). Original 

magnification 200x; bar = 50 µm). L: lumen; ASM: airway smooth muscle; E: epithelium. Eosinophils were defined as cells demonstrating a cytoplasm 

staining an intense red with dark bi-lobed nuclei.  
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Figure 32: A) the number of tissue eosinophils (per field of view) and B) (per bronchiole) following varying ovalbumin (Ova) sensitisation and challenge 

protocols. Sal: 2 x 100µg Ova/100mg Al(OH)3 with saline challenge. Protocol 1: 2 x 100µg Ova/100mg Al(OH)3 with 0.01% Ova challenge. Protocol 2: 2 x 

100µg Ova/100mg Al(OH)3 with 0.03% Ova challenge. Protocol 3: 3 x 100µg Ova/100mg Al(OH)3 with 0.03% Ova challenge (protocol 3). Protocol 4 & 5: 3 x 

150µg Ova/100mg Al(OH)3 with 0.03% Ova challenge. Protocol 6: 3 x 150µg Ova/150mg Al(OH)3 with 0.03% Ova challenge. Protocol 7:  3 x 100µg 

Ova/100mg Al(OH)3 with 0.03% Ova challenge  on day 21; N=4-6; **Significantly different to saline  p<0.01; *** p<0.001; performed with one way analysis 

of variance.  

0

50

100

150

200

250

1 2 3 4+5 6 7Sal

Ova protocol

***********

N
u

m
b

e
r 

o
f 

e
o

si
n

o
p

h
ils

(p
e

r 
fi

e
ld

 o
f 

ve
iw

)

0

50

100

150

1 2 3 4+5 6 7Sal

Ova protocol

**********

N
o

. 
 E

o
si

n
o

p
h

ils

(p
e

r 
b

ro
n

ch
io

le
)

A B



Chapter 3 

 

108 

 

3.5.8 Results Summary 

Protocol 
EAR LAR AHR Lavage cells Tissue eos 

Saline      

Protocol 1 
 

  Total, eos  

Protocol 2 
 

 
 

Total, eos  

Protocol 3 
 

 
 

Total, eos,  
 

Protocol 4 & 5 
 

 
 

Total, eos, macro 
 

Protocol 6 
   

Total, eos, 

macro, lympho 
 

Protocol 7 
   

Total, eos, 

macro, lympho 
 

Table 2: Shows a summary of the results of ovalbumin protocol modification in guinea-pigs. 

EAR: early asthmatic response; LAR: late asthmatic response; AHR: airways 

hyperresponsiveness; macro: macrophages; eos: eosinophils; lympho: lymphocytes. 

 

Figure 33 demonstrates the variability between guinea-pigs in the timing of the early 

and late asthmatic response to ovalbumin challenge protocol 7. The parallels the 

situation in humans where individuals demonstrate wide differences in the timing 

and duration of early and late responses.  
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Figure 33: The time-course values of sGaw in individual guinea-pigs sensitised with 3 injections of a suspension of 150µg Ova and 100mg aluminium 

hydroxide and challenged with 0.03% Ova on day 21 (protocol 7). Changes in sGaw are expressed as percentage change from baseline. A negative value 

represents a bronchoconstriction. The figure illustrates the individual variability in the early and late asthmatic responses to Ova challenge in guinea-pigs. 
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3.6 Discussion 

This study has shown that by making modifications to the allergen sensitisation and 

challenge conditions, it is possible to induce an early and late asthmatic response, 

AHR and airway inflammation. Sensitisation of guinea-pigs with 2 injections of 100µg 

Ova and 100mg aluminium hydroxide and subsequent Ova challenge on day 15 with 

0.01% Ova (protocol 1) was unable to produce a LAR and AHR. Total cells were 

increased but of the subtypes measured only eosinophils were elevated. Increasing 

the Ova challenge concentration increased the peak of the EAR, induced AHR and 

increased airway inflammation. Increasing the number of sensitisation injections 

resulted in an increase in tissue eosinophilia. Similarly, increasing the Ova 

sensitisation concentration resulted in an increase in total lavage cell counts. Either 

increasing the aluminium hydroxide sensitisation concentration or increasing the 

time between Ova sensitisation and challenge was able to produce a LAR and a full 

inflammatory cell response. The latter modification was better tolerated by guinea-

pigs and thus selected for further work.  

3.6.1 Loss of sensitivity 

There are several possible reasons for the decreased responsiveness over time of 

guinea-pigs to the allergen sensitisation and challenge protocol successfully 

employed by Smith & Broadley, 2007 and Evans et al, 2012.  

Inbreeding which is employed in maintaining the homogeneity of guinea-pig strains 

such as Dunkin-Hartley is one potential cause.  Successive generations of inbreeding 

could lead to an accumulation of certain traits, including decreased activity of the 

immune response. Differences in the various strains of guinea-pigs have been shown 

to significantly alter their immune response to antigen (Ellman et al, 1971; Stone, 

1962). However, given the time frame in which decreased sensitivity to allergen was 

seen (approximately 1 year) it is unlikely that any trait that decreased sensitivity to 

allergen would have sufficient time to become widespread in the suppliers guinea-

pig colony.  
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This loss appears to be unrelated to infection. An intracellular infection could skew 

the T lymphocyte populations in favour of Th1 responses, which do not favour 

allergen sensitisation (Galli et al, 2008). This is unlikely as animals are routinely 

screened for common infections upon arrival from suppliers and none were found. 

The change does not seem to be associated with alterations to the guinea-pig diet or 

environment at both the supplier and animal house in Cardiff. Seasonal changes also 

don’t seem to be a factor as the lack of sensitivity was observed across nearly an 

entire year. 

3.6.2 Model Optimisation 

3.6.2.1 Increasing the ovalbumin challenge concentration 

All guinea-pigs sensitised and challenged with Ova demonstrated an immediate 

bronchoconstriction, indicative of an EAR. Increasing the Ova challenge dose 3-fold 

from 0.01% to 0.03% increased the magnitude of this bronchoconstriction. The EAR 

is mediated by mast cells. Allergen challenge in sensitised animals causes mast cell 

degranulation by the crosslinking of FcεR1 receptors (Gould and Sutton, 2008). 

Degranulation products include histamine, prostaglandins, PAF and leukotrienes 

which cause bronchoconstriction. The increase in bronchoconstriction with 

increasing allergen challenge concentration is possibly a result of either increased 

release of granule products or an increase in the number of mast cells degranulating 

(Dvorak, 2005). A similar increase in the peak EAR bronchoconstriction was seen in 

Smith and Broadley, (2007). This was achieved by increasing the sensitisation 

concentration of Ova 10-fold, indicating that altering sensitisation conditions can 

also increase mast cell degranulation. This was possibly as a result of enhanced 

sensitisation and IgE production (Galli et al, 2008). 

Increasing the Ova challenge concentration also induced AHR. This may be due to 

increased degranulation of mast cells during the EAR. Mast cell products produced 

during the EAR play a role in triggering later events such as lymphocyte activation 

and eosinophil influx. Eosinophils are able to release granule products such as ECP 

which can cause epithelial damage and exposure of underlying sensory nerves, 
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increasing sensitivity to bronchoconstrictor stimuli like histamine (Gleich et al, 1993; 

Laitinen et al, 1987). Concordantly, in the present study eosinophil numbers 

increased along with the development of AHR.  

AHR has been linked to the LAR and also airways inflammation, in particular 

eosinophils (Hargreave et al, 1986). Smith and Broadley, (2007) study supports this 

as AHR was only seen in association with the LAR. In addition, the AHR increased 

with increasing size of the LAR bronchoconstriction. In contrast, in the current study 

dissociation between AHR and the LAR was observed. Dissociation between AHR and 

the LAR has also been observed in humans, although is sometimes due to the 

presence of a hyperresponsive state before allergen challenge (Ward et al, 1987). 

The result in the present study may indicate that alternative mechanisms of AHR 

exist in the model or that higher numbers of eosinophils are required for a LAR.  In 

support of the latter, tissue eosinophilia was not increased with this Ova challenge 

protocol. 

3.6.2.2 Increasing the ovalbumin and aluminum hydroxide sensitisation 

concentrations and number of sensitisation injections 

The general effect of altering the sensitisation conditions was to increase airway 

inflammation. Increasing the number of sensitisation injections from 2 to 3 increased 

the number of tissue eosinophils, whereas increasing the Ova sensitisation 

concentration also increased the total number of lavage fluid cells. Increasing the 

concentration of aluminium hydroxide during sensitisation also produced this effect, 

increasing lavage eosinophils and lymphocytes. This modification also induced the 

development of a LAR.  

These changes are likely the result of increased immune stimulation during 

sensitisation. Increased immune stimulation during sensitisation increases the 

priming of lymphocytes, which produce stronger Th2 responses when re-

encountering an allergen. In accordance with this, increased lymphocyte numbers 

were observed with increased adjuvant. Additionally, eosinophil numbers also 

increased, characteristic of Th2 responses. The adjuvant used, aluminium hydroxide 
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stimulates the immune system during sensitisation via a variety of mechanisms 

including acting as a depot for the slow release of antigen,  optimising allergen size 

for APC uptake, forming an inflammatory focus site and promoting Th2 type 

lymphocyte responses  (Gupta et al, 1993; Gupta et al, 1995; Cooper, 1994). 

Aluminium hydroxide produces these effects in a concentration dependent manner. 

A small amount of adjuvant may be required for antigen absorption but may not 

provide optimal immune stimulation. Jenson and Koch, (1998) showed that there 

needs to be an excess of free adjuvant for these effects. However, there is also a 

maximal concentration at which the adjuvant works. It is speculated that this is 

because only a certain concentration of aluminium hydroxide is necessary for the 

formation of a depot site and stimulation of antigen presenting cells (APC). Beyond 

this the excess crystals may obstruct antigen access by APCs or be toxic to 

macrophages (Munder et al, 1969).  

An increased immune response during sensitisation may also have contributed to 

the development of a LAR. A link between airway inflammation and the LAR is 

known to exist. Asthmatics displaying a LAR and EAR to allergen tend to have higher 

levels of inflammatory infiltrate then asthmatics that only demonstrate an EAR 

(Silvestri et al, 1997). The development of the LAR has been linked specifically to 

increased lymphocyte activity. In humans demonstrating both an EAR and LAR, 

lymphocyte trafficking and IL-5 secretion is increased (Yoshida et al, 2005). 

Eosinophil numbers and activation also increase in asthmatics who demonstrate a 

LAR (Gauvreau et al, 2000). In the present study, the development of a LAR coincided 

with increased lymphocytes and eosinophils. These cells may contribute to this 

delayed bronchoconstriction through the release of substances including PAF, 

leukotrienes and eosinophilic basic proteins (Bradley et al, 1991; Durham and Kay, 

1985).  

3.6.2.3 Increasing the time between allergen sensitisation and challenge 

Increasing the length of time between final sensitisation and allergen challenge 

increased the length of the bronchoconstriction during the EAR. It also increased the 
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number of cells in lavage fluid, especially lymphocytes and eosinophils and produced 

a LAR. This suggests that a longer period between allergen sensitisation and 

challenge is required to generate a full response to allergen. This modification 

restores the gap between sensitisation and challenge to the length of time used in 

this laboratory’s original sensitisation protocol (Lewis et al, 1996). In this protocol, 

one sensitisation injection was given 2 weeks before Ova challenge. Subsequent 

modifications made to the protocol with the addition of a second injection on day 5 

reduced the antibody generation period to 10 days (Smith and Broadley, 2007). The 

addition of 3rd sensitisation injection on day 7 resulted in a further shortening of this 

period to 8 days from the final sensitisation. 

The increase in time between the final allergen sensitisation and challenge likely 

allowed for the development of a fuller immunological response. This response 

involves the production of IgE, which is important in mast cell degranulation. The 

activation of lymphocytes, which act as the orchestras’ of Th2 responses is also 

important (Matsumoto et al, 2002). The generation of a response to sensitisation in 

animal models can take several weeks (Nials & Uddin, 2008). 8 days between 

allergen sensitisation and challenge may not be enough time to produce a full 

response, except when the sensitisation conditions are increased to a certain extent, 

as seen in guinea-pigs sensitised with increased adjuvant concentration. Thus 

extending the length of time between allergen sensitisation and challenge allows 

more time for the development of this response.  

3.6.3 Conclusions 

This study indicates that it is possible to produce an acute Ova model of asthma in 

guinea-pigs displaying a EAR, LAR, AHR and airway inflammation. This model will be 

useful in investigating the effects of virus and LPS on these asthmatic responses.  
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4.1 INTRODUCTION 

4.1.1 VIRAL EXACERBATIONS OF ASTHMA 

Viral infections have been implicated in both exacerbations and the development of 

asthma. How viruses promote the development of asthma is unknown but a range of 

factors including the age of infection and temporal proximity of infection to allergen 

exposure have been implicated (Hansbro et al, 2008). Viruses are also involved in 

asthma exacerbations which are characterised by a worsening of symptoms such as 

wheezing, cough, chest tightness and shortness of breath (Hogg, 1997). Viral 

infections are the leading cause of asthma exacerbations and have been found in the 

lungs of as many as 80% of patients with an asthma exacerbation (Johnston et al, 

1995). Many types of virus have been found including rhinovirus (RV), influenza 

viruses, parainfluenza and respiratory syncytial virus (RSV) (Atmar et al, 1998). RV is 

the most commonly detected virus but parainfluenza viruses (PIV) are also 

frequently found and are the second leading cause of hospitalisation for respiratory 

tract infection in children (Hall, 2001). 

4.1.2 THE EFFECTS OF VIRAL INFECTION ON ASTHMA 

Viral infections in asthmatics induce a range of changes which underlie the 

worsening of clinical symptoms. These changes include increased airway 

hyperresponsiveness (AHR), increased bronchoconstriction to allergen, β-

adrenoreceptor insensitivity, altered neuronal control of the airways and increased 

airway inflammation (Folkerts et al, 1998). Viral infections increase the risk of 

hospitalisation in asthmatics with sensitisation to 1 or more allergens such as house 

dust mite or animal dander. Asthmatics with viral infection but no sensitisation show 

lower rates of hospital admission (Green et al, 2002). This effect is due to synergism 

between allergens and viruses.  
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4.1.2.1 FUNCTIONAL AND STRUCTURAL EFFECTS  

Clinically, AHR is determined by the response to a bronchoconstrictor such as 

histamine or methacholine. Mild asthmatics, inoculated with RV demonstrate an 

increased sensitivity and maximal response to methacholine compared to sham 

infection. These effects persist for 1 week post inoculation (Cheung et al, 1995). 

Changes are also observed in the bronchoconstriction in response to allergen. In 

atopic individuals who only demonstrate an early asthmatic response (EAR) to 

allergen, viral infection increases the likelihood of a late asthmatic response (LAR) 

(Lemanske et al, 1989). This may be due to increases in total and viral specific IgE, 

which facilitate mast cell degranulation (Welliver et al, 1982). One proposed 

mechanisms of these functional effects is a change of the neural control of the 

airways. Several mechanisms have been suggested including an enhancement of 

parasympathetic innervation and decreased activity of non-adrenergic, non-

cholinergic (NANC) neurons. The former constricts the airways and the latter relaxes 

the airways by the release of nitric oxide (Folkerts et al, 1995; Buckner et al, 1985). 

The increased release of neuropeptides, which upregulate leukotriene synthesis and 

mast cell mediator release has also been implicated (Saban et al, 1987).  

Viral infection in asthma can also promote structural changes in the airway. Studies 

of the effects of viral infections have revealed extensive epithelial desquamination, 

thickening of the basement membrane, hylinisation and a distortion of its airway 

structure (Walsh et al, 1961). Mucus plugging is also commonly observed and can 

lead to hyperinflation of the lungs due to air trapping. Viral infection also increases 

the percentages of degranulated mast cells, mucus gland area and numbers of 

neutrophils in the submucosal glands (Carroll et al, 2002). Ciliary function has been 

shown to be decreased in asthmatics following influenza infection and thus may 

serve to facilitate mucus plugging (Camner et al, 1973). In guinea pigs, epithelial 

disruption by parainfluenza-3 leads to significant increases in epithelial permeability 

to allergens and with it, increased allergen exposure (Riedel et al, 1996).  
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4.1.2.2 INNATE IMMUNE RESPONSES  

The innate immune system is the first line of defence against viruses, which are 

recognised by pathogen recognition receptors (PPRs). These receptors are able to 

recognise pathogen associated molecular patterns (PAMPs) that are present on 

viruses. There are several different groups of these receptors including RNA helicases 

and the toll like receptors (TLR). TLRs are predominantly expressed on APCs such as 

dendritic cells and macrophages but are also found on a range of other cell types 

(See and Wark, 2008). Once recognition of a virus has occurred, an anti-viral 

response is mounted which recruits macrophages and neutrophils. Interferons (IFNs) 

are key mediators in this response and induce an anti-viral state in infected cells and 

their neighbours. Interferons are subdivided into two groups: type 1 IFNs include 

IFN-α and IFN-β; type 2 IFNs only include IFN-γ and are only produced during Th1 

adaptive immune responses by CD4+ lymphocytes, CD8+ lymphocytes and natural 

killer cells. The anti-viral activity of IFNs is mediated through the activation of IFN 

stimulated genes (ISG). ISG have a range of effects including negative regulation of 

cell proliferation and inhibition of viral replication (Katze et al, 2002).  

Several changes in the cellular and cytokine profile occur during viral infection in 

asthmatic individuals. The number of neutrophils increase significantly compared 

with asthmatics without infection (Fahy et al, 1995). Respiratory viruses can also 

enhance superoxide responses, chemotaxis and adhesion of neutrophils, which likely 

contribute to a worsening of symptoms (Folkerts et al, 1998). Respiratory infection is 

also able to increase allergen-induced eosinophil recruitment (Calhoun et al, 1994; 

Toward et al, 2005). However, unlike in a non-infected asthmatic where eosinophils 

are the predominant cell type, eosinophil levels can be up to 8x lower than 

neutrophils (Ordonez et al, 2000). Increases are also seen in eosinophil granule 

products including eosinophil cationic protein (ECP), which may contribute to the 

development of AHR (Grünberg et al, 1997). 
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4.1.2.3 ADAPTIVE IMMUNE RESPONSES  

In asthmatics there is a deficiency in the antiviral response, independent of 

corticosteroid use and increases susceptibility to viral infection. Epithelial cells from 

asthmatic airways demonstrate enhanced viral replication and cell lysis. In addition, 

apoptosis which is important in limiting viral replication and the release of 

inflammatory mediators is impaired in the cells of asthmatic subjects. Furthermore, 

production of IFN-β is also reduced in asthmatic airways (Wark et al, 2006). A 

deficient anti-viral defence allows for enhanced viral replication, production of 

inflammatory cytokines and cell damage.  

Asthmatics may demonstrate a deficient anti-viral response for a number of reasons. 

The balance between the two CD4+ subtypes, Th1 and Th2 may be important. Th1 

cells coordinate cytotoxic and antibody responses to viral infection. However, in 

allergic disease a Th2 lymphocyte response predominates and has weak anti-viral 

activity (Moran et al, 1996; Legg et al, 2003). Additionally viruses can also induce Th2 

responses themselves, facilitating their own replication (van Rijt et al, 2005). 

Changes in CD8+ T cells may also contribute to the weak anti-viral immunity. CD8+ T 

cells’ main role during viral infection is the induction of apoptosis of infected cells 

and the secretion of IFN-γ (Cox et al, 2013). However, on a Th2 inflammatory 

background, CD8+ cells switch to a Th2 cytokine secretion pattern, producing IL-4 

and IL-5 (Erard et al, 1993). This phenotypic switch further reduces anti-viral activity 

of CD8+ T cells and contributes to a Th2 polarised response.  

4.1.3 PARAINFLUENZA-3 

4 types of parainfluenza viruses (PIV) are known and are accordingly numbered PIV 

1-4. PIV is an enveloped RNA virus belonging to the family of Paramyxoviridae with 

single stranded, non-segmented negative sense genomes (Voyles, 1993). The basic 

structure of PIV is shown in Figure 1. The envelope glycoproteins consisting of fusion 

protein (F) and hemagglutinin neuraminidase are integral to immunity and 

pathogenesis of these viruses. Like all respiratory viruses, PIV enter and replicate in 
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airway epithelial cells. PIV has an incubation period of 2-8 days, after which it 

replicates in the nasopharyngeal epithelium and 1-3 days later spreads to the lower 

respiratory tract (Hall, 2001).  

Common features of PIV infections in humans are sloughing of the epithelium in the 

small airways, increased mucus secretion, oedema and associated small airway 

obstruction. These manifest themselves in the clinical symptoms of atelectasis, 

hyperinflation and wheezing. Immunological recognition of PIV is mainly via TLR7/8 

(Heil et al, 2004). In guinea-pig models, PIV-3 alone can induce non-specific AHR and 

an increase in airway inflammation (Folkerts et al, 1992b; Toward et al, 2005). 

Within my laboratory, PIV-3 inoculation superimposed on ovalbumin challenge in 

sensitised guinea-pigs has been shown to cause an exacerbation of the responses to 

allergen. In particular, the early asthmatic response to allergen is prolonged and 

merges with the late asthmatic response. Increased airway inflammation, especially 

neutrophils is also seen (Broadley et al, 2008). Studies from this laboratory have 

suggested that this model may be steroid insensitive (Broadley et al, 2009; Broadley 

et al, 2010). This model may serve as a good basis for further investigation into the 

mechanisms of viral exacerbations of asthma and their effect on asthma treatment. 

 

Figure 1: Diagram of the structure of the parainfluenza virus (PIV). Adapted and redrawn 

from Hall, 2001. 
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4.1.3 POLYINOSINIC-POLYCYTIDYLIC ACID (POLY I:C) 

Polyinosinic-polycytidylic acid (Poly I:C) is synthetic double stranded (ds) RNA which 

can mimic certain aspects of viral infection. RNA viruses such as PIV synthesise 

dsRNA during replication, which is recognized by several PAMPs including MDA5 and 

TLR3 (Jiang et al, 2003; Kato et al, 2006). Both signaling pathways are important in 

viral induction of airways inflammation and AHR without a pre-existing allergic 

background (Wang et al, 2011). In particular, signalling through TLR3 creates a local 

cytokine burst which is specific to the cell type and microenvironment, but generally 

consists of type 1 interferons, TNF-α, CCL-2 (MCP-1) and IL-12 (Nicodemus & Berek, 

2010).  

On an allergic background, poly I:C mimics aspects of viral infection and asthma 

exacerbations including increased cellular influx (neutrophils especially), an 

increased Th2 response, AHR and structural remodeling (increased smooth muscle 

mass and goblet cell hyperplasia) in mice and rats (Torres et al, 2010; Takayama et 

al, 2011). The effects of poly I:C in guinea-pigs alone or in parallel with allergen 

challenge have not been investigated. Pilot data from my laboratory suggests that 

poly I:C can induce AHR and invoke a cellular inflammatory response (unpublished). 

Furthermore, the effect of poly I:C on functional allergic responses including the 

early and late asthmatic responses (EAR and LAR respectively) remains to be 

investigated. 

The advantage of using agents such as poly I:C is that they present no risk of 

infection, making them easier to work with. However, agents such as poly I:C are not 

able to replicate themselves so fail to model this aspect of an viral infection.   
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4.2 HYPOTHESIS 

‘PIV-3 infection in sensitised guinea-pigs will exacerbate the functional and 

inflammatory responses to ovalbumin challenge’. 

4.3 AIMS AND OBJECTIVES 

The aim of this chapter was to investigate the functional and inflammatory response 

of PIV-3 and poly I:C in guinea-pigs. Furthermore, the effect of these agents in an 

ovalbumin model of asthma developed in the previous chapter will be determined. 

In particular, the effect of these agents on the early asthmatic response, late 

asthmatic response to Ova challenge, airway hyperresponsiveness, airway oedema 

and airway inflammation will be investigated.   



Chapter 4 

123 

 

4.4 METHODS 

4.4.1 IN VITRO 

4.4.1.1 GENERATION OF PARAINFLUENZA-3 VIRAL TITRES 

BSC-1 cells from African green monkey kidney epithelium were cultured in 75cc 

flasks containing cell media (EMEM, 2mM glutamine, 1% non-essential amino acids 

(NEAA), 10% foetal bovine serum) at 37oc in a CO2 incubator until a confluent 

monolayer formed. At this stage cells were infected with PIV-3 as follows. PIV-3 

stocks were defrosted rapidly from -80oc freezer stocks. BSC-1 culture medium was 

removed from the culture flask, PIV-3 viral stock added and the cells incubated for 5 

minutes at 37oc. BSC-1 culture medium was then re-added and cells returned to the 

incubator. Cells were checked daily for signs of cytopathic effect, when cells start to 

fuse, form multi nucleated bodies (syncytia) and change shape. This first becomes 

visible 24 hours after PIV-3 inculcation and should reach full prominence 2-3 days 

post-inoculation. At this point viral harvest was performed. This was carried out by 

scraping cells from the bottom of the flask, resulting in cell lysis and the release of 

viral particles. Viral media was centrifuged at 1000rpm for 5 minutes at 20oC to 

pellet cell debris, the supernatant aliqouted and subsequently stored at -80oc. Viral 

tire was determined on samples immediately following viral harvest. 

4.4.1.2 DETERMINATION OF VIRAL TITRE 

Viral titre of PIV-3 harvested from BSC-1 cells and the homogenised lungs and lavage 

fluid of PIV-3 infected guinea-pigs (see section 4.4.2 for information on in vivo 

protocols) were determined. Quantitative assessment of viral RNA titres was 

performed in 2 steps, first by isolating and purifying viral nucleic acids and then 

performing reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) 

to convert RNA to cDNA and then amplify it. 

4.4.1.2.1  ISOLATION OF VIRAL RNA 

Lungs required homogenisation before viral nucleic acid isolation. This was 

performed as follows: ~100mg of lung lobe stored on ice was weighed and added to 



Chapter 4 

 

124 

 

tissue homogeniser tubes (containing microbeads) with 1ml of dPBS. The lung/dPBS 

mixture was homogenised with the use of an automated homogeniser (3x 5 second 

bursts, with 15 second gaps in between).  

  Viral RNA was isolated from lavage fluid, lung and cell media using a high 

pure viral nucleic acid kit supplied by Roche. All reagents in this section were made 

up as per the manufacturer’s instructions and are described in more detail in 

Appendix1.3. Briefly, 200μl of sample (viral media, lung homogenate or lavage fluid) 

was added to sterile, nuclease free tubes, followed by 200μl of working solution 

(50µl Poly A, 2.5ml binding buffer) and 50μl of proteinase K (dissolved in 500μl of 

elution buffer) to digest any remaining protein in the sample. The contents were 

mixed and incubated at 72oC for 10 minutes. Immediately, 100μl of binding buffer 

was added to the sample. Subsequently, the sample was run through a series of filter 

tube centrifugation steps to remove contaminating cellular components. At each 

step the filter tube (containing a glass fibre fleece which binds viral nucleic acid) was 

kept and flow through liquid discarded. Initially the full sample solution was pipetted 

into the upper reservoir of the filter tube. Samples were centrifuged for 1 minute at 

8,000g in between each step. These steps are shown in Figure 2. The flow through 

liquid from the last step contained isolated viral nucleic acid and was stored at -80oC 

until RT-qPCR was carried out. 
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Figure 2: Schematic of the method used to isolate viral nucleic acid from cell culture 

medium, lavage fluid and homogenised lung. 

4.4.1.3 RT-QPCR  

Reverse transcriptase- quantitative polymerase chain reaction (RT-qPCR) was carried 

out to convert viral RNA into cDNA for amplification and quantitative determination 

of viral titres. Conversion of viral RNA into cDNA was carried out using a superscript 

first-strand synthesis system kit supplied by Invitrogen, which is capable of 

converting 1ng-5ng of RNA into 1st strand cDNA.  Samples were defrosted on ice and 

RNA/primer mixtures prepared as described in Table 1. This primer mix provides the 

substrates and catalysts necessary for the production of cDNA from RNA. An RT 

negative control was used to show that cDNA amplification is not due to DNA 

contamination before the reverse transcriptase step. An RT positive control was used 
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to demonstrate a successful reverse transcription step. The RT H20 sample 

demonstrates the purity of RT water.  

Components Sample -RT Control +RT Control RT H20 

<5µg total RNA 8 µl 8µl - - 

Control RNA (50ng/µl) - - 1µl - 

10mM dNTP mix 1µl 1µl 1µl 1µl 

RT primer mix 1µl 1µl 1µl 1µl 

DEPC-treated water - - 7µl 8µl 

Table 1: Reagents used to produce cDNA from RNA for viral samples and controls. dNTP: 

deoxyribonucleotide triphosphate; DEPC : deionised, diethylpyrocarbonate, RT: reverse 

transcription. 

 

RNA/primer mixtures were added to their respective nuclease free, sterile tube and 

run through a series of thermal cycling steps using a thermocycler. The conditions 

used at each step are shown in Figure 3. During step 2, samples were placed on ice 

and a reaction mix containing 2µl of 10x RT buffer, 4µl 25mM MgCl2, 2µl 0.1mM 

dithiothreitol (DTT) and 1µl of RNase out. This mixture aids the work of the 

superscript enzyme and prevents the cleavage of RNA by RNAses. After step 3, 1μl 

(50U) of superscript was added to all tubes except the RT negative control. Following 

the conclusion of thermal cycling, samples were briefly centrifuged and chilled on ice 

for commencement of cDNA amplification. 
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Figure 3: The timing and temperatures used on a thermocycler to convert RNA to cDNA. 

 

cDNA was amplified using q-PCR performed in a thermo light-cycler. Reaction mixes 

were prepared by the addition of 10µl PCR grade water, 4µl of 5x conc master mix 

(both from Roche, Switzerland) and PIV-3/β-actin cDNA primers (Primer design, Ltd). 

To 5µl of DNA template in a chilled capillary tube and centrifuged for 5 seconds at 

700g. Samples were run using the following parameters: 1 pre-incubation cycle at 

95oc for 10mins, 50 amplification cycles at 95ºc for 10 seconds, 60oc for 60 seconds 

and finally a cooling step at 40oc for 30 seconds. The light cycler software calculates 

the individual virus particles per μl which is then converted into virus particles per 

ml. 
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4.2.2 IN VIVO METHODS 

4.2.2.1 PARAINFLUENZA-3 INFECTION PROTOCOL 

Guinea-pigs (300-400g, male, Dunkin Hartley) were inoculated intranasally with 

125µl per nostril of PIV-3 (1x107-109 viral particles per ml) or media on day 2 and 3. 

The airway response to histamine was tested on days 1 and 7 of the protocol 

(described in more detail in section 4.2.2.5). Bronchoalveolar lavage (BAL) was 

performed on day 7 of the protocol, following post-virus AHR assessment (Figure 4).  

 

 

Figure 4: Diagram of the 7 day PIV-3 protocol. I.n: intra-nasal; BAL: bronchoalveolar lavage. 

 

4.2.2.2 ACUTE OVALBUMIN AND PIV-3 PROTOCOL 

Guinea-pigs (300-400g, male, Duncan Hartley) were sensitised on days 1, 3 and 7 

with 150μg ovalbumin (Ova) and 100mg aluminium hydroxide. The airway response 

to histamine was tested on days 15 and 22 of the protocol (described in more detail 

in section 4.2.2.5). Guinea-pigs were Intranasally administered 125µl per nostril of 

PIV-3 (1x107-109 viral particles per ml) or media on days 17 and 18. The effector 

phase of asthma was elicited on day 21 by challenging sensitised guinea-pigs to 

0.03% Ova for 1 hour in an exposure chamber. Lung function was then measured 

over 12 hours (described in more detail in section 4.2.2.4). 
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BAL was performed on day 22 of the protocol, following post-Ova AHR assessment 

(Figure 5). 

 

Figure 5: Diagram of the 22 day ovalbumin (Ova) and PIV-3 protocol. I.n: intra-nasal; BAL: 

bronchoalveolar lavage. 

 

4.2.2.3 POLY I:C PROTOCOL 

Guinea pigs (300-400g, male, Duncan Hartley) were inoculated with poly I:C (125 or 

500μg) intranasally on day 2, 3 and 4. The airway response to histamine was tested 

on days 1 and 5 (described in more detail in section 4.2.2.5). BAL was performed on 

day 5 of the protocol, following post-poly I:C AHR assessment (Figure 6).  

 

 

Figure 6: Diagram of the 5 day Poly I:C protocol. I.n: intra-nasal; BAL: bronchoalveolar 

lavage. 

1 2       3       4 5 6       7 15        16         17         18         19         20         21         22

Sensitisation

I.p Ova + Al(OH)3

Histamine 
inhalation & 

BAL

Inhaled 

Ova (0.03%)

Histamine 
inhalation

Day

Acute Ovalbumin and PIV-3 Protocol

I.n. media/PIV-3

1       2     3      4 5

Histamine 
inhalation & 

BAL

Histamine 
inhalation

Poly I:C protocol

I.n. saline/Poly I:C



Chapter 4 

130 

 

4.2.2.4 MEASUREMENT OF LUNG FUNCTION 

Guinea-pig airway function was measured using non-invasive double chamber 

plethysmography, using specific airway conductance (sGaw) as a measure of airway 

conductance (Griffiths-Johnson et al, 1988). In Ova challenged groups, lung function 

was recorded hourly for 12 hours and every 15 minutes during the first hour of 

measurements following Ova challenge. A final measurement was also taken 24 

hours post-challenge. All values from these readings were expressed as a percentage 

of the baseline reading, taken before Ova/poly I:C challenge. A negative percentage 

change in baseline value represents a bronchoconstriction. To account for 

differences in the timing of allergen responses between animal values for the early 

(0-6 hours) and late (6-12 hours) phases were expressed as the peak 

bronchoconstriction during that period (displayed as a histogram next to a time 

course plot) and area under the curve. 

4.2.2.5 MEASUREMENT OF AIRWAYS HYPERRESPONSIVENESS (AHR) 

AHR was determined using whole body plethysmography. This was performed by 

measuring the bronchoconstrictor response to histamine pre- and post-PIV-3/Poly 

I:C exposure. Histamine (0.3mM) was delivered to the guinea-pigs by the use of 

Buxco nebuliser chamber at a rate of 0.5 LPM, two minute nebulisation, and 1 

minute drying period with a 10% duty setting per chamber. Lung function was 

measured just before histamine inhalation and at 0, 5 and 10 minutes post-

histamine exposure.  

4.2.2.6 MEASURING AIRWAY INFLAMMATION 

Following the final histamine inhalation challenge, guinea-pigs were sacrificed by an 

intra-peritoneal overdose of sodium pentobarbitone, the lungs excised and lavaged. 

Total and differential cell counts were then performed. 

4.2.2.7 MEASURING AIRWAY OEDEMA 

Lung oedema was determined by comparison of lung wet weight with dry weight. 

The 3rd largest lobe of the right lung was weighed following excision from the guinea-

pig and then dried overnight in an oven at 40oC. The lobe was again weighed. The 

difference between the wet and dry weight was expressed as a percentage of the dry 
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weight according to the following formula [Airway oedema= ((wet weight-dry 

weight)/dry weight x 100)]. 
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4.5 RESULTS 

4.5.1 THE EFFECT OF PIV-3 ON AIRWAY RESPONSES TO HISTAMINE, LUNG 

OEDEMA AND INFLAMMATORY CELLS. 

 

Intranasal media inoculation did not cause a significant increase in the 

bronchoconstrictor response to histamine. PIV-3 inoculation resulted in a non-

significant immediate increase in the bronchoconstrictor response to histamine, 

reaching significance 5 minutes post-histamine challenge (-25.9±5.7% compared to 

pre-PIV-3 values, -9.5±1.1% respectively). A bronchoconstriction was still present 10 

minutes after the histamine challenge (-25.3±4.3% compared to 0.5±3.0% 

respectively) (Figure 7). 

 

PIV-3 inoculation significantly increased lung oedema compared to media inoculated 

control animals (410±13.2% compared to 317.0±13.4% respectively) (Figure 8). 

 

PIV-3 inoculation resulted in a significant increase in airway inflammation. Total 

lavage cells were significantly increased in PIV-3 treated guinea-pigs compared to 

media (3.5±0.23x106/ml, 1.6±0.27x106/ml respectively). This was also true for 

macrophage numbers (3.04±0.19x106/ml compared to 1.44±0.26x106/ml 

respectively), eosinophil numbers (0.20±0.05x106/ml compared to 0.09±0.02x106/ml 

respectively), neutrophil numbers (0.09±x0.02x106/ml compared to 

0.01±0.003x106/ml respectively) and lymphocyte numbers (0.02±0.06x106/ml 

compared to 0.01±0.004x106/ml respectively) (Figure 9). 
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Figure 7: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles with 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period) in guinea-pigs inoculated with 2 intranasal doses of A) PIV-3 (1x107-109 viral particles per ml) or B) media. Values were 

recorded 24 hours pre- and 4 days post- first inoculation. Mean changes in sGaw are expressed as mean±SEM percentage change from baseline. A negative 

value represents a bronchoconstriction. N=12 (media), N=5 (PIV-3); *Significantly different from time paired pre-challenge values p<0.05, ** p<0.01; 

performed with a two tailed T-test. 
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Figure 8: Lung oedema in guinea-pigs inoculated with 2 intranasal doses of PIV-3 (1x107-109 

viral particles per ml) or media, 4 days after the initial inoculation. Oedema is expressed as 

((lung wet weight- lung dry weight)/dry weight x100). Lung weight measured following lung 

excision (wet) and overnight drying in an oven at 40oC (dry). N=12 (media), N=5 (PIV-3) 

**Significantly different from time media p<0.01; performed with a two tailed T-test. 
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Figure 9: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil (E) 

counts in bronchoalveolar fluid in guinea-pigs inoculated with 2 intranasal doses of PIV-3 

(1x107-109 viral particles per ml) or media, 4 days after the initial inoculation. N=12 (media), 

N=5 (PIV-3); *significantly different from media p<0.05, ** p<0.01; *** p<0.001; performed 

with a two tailed T-test. 
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4.5.2 THE EFFECT OF PIV-3 ON OVA-INDUCED FUNCTIONAL AND 

INFLAMMATORY RESPONSES 

In both media and PIV-3 treated guinea-pigs a bronchoconstriction was observed at 

0 minutes post-Ova challenge (-58.8±4.0% and –55.1±3.7% respectively). This 

bronchoconstriction was the early asthmatic response. Both groups also displayed 

evidence of a late asthmatic response between 6-12 hours. No significant difference 

was observed between the 2 groups at the 0 minute time point, or during the further 

12 hours of lung function measurement (Figure 10, time course. No significant 

difference between the EAR and LAR peak values was found for media and PIV-3 

inoculated guinea-pigs (Figure 10, histogram). Similarly, no difference in area under 

the curve was observed between the two groups at total, EAR and LAR time points 

(Figure 11).  

Ova challenge with media inoculation produced a significant increase in the 

bronchoconstrictor response to histamine, when compared to sGaw values pre-Ova 

challenge (-20±4.2% compared to 0.6±3.5%). At 5 minutes post-histamine challenge, 

this bronchoconstriction was no longer significantly different from pre-Ova challenge 

values. In guinea-pigs challenged with Ova, inoculated with PIV-3 a significant 

bronchoconstriction was observed at 0 minutes, compared to pre-Ova challenge 

values (-15.5±3.9% compared to 0.6±2.3%). A bronchoconstriction was still present 

at 5 (-16.7±3.2% compared to -3.1±2.6%) and 10 minutes (-20.2±2.9% compared to 

3.1±3.1%) (Figure 12).  

No significant difference in oedema in the two groups was observed (Figure 13). PIV-

3 inoculated guinea-pigs challenged with Ova demonstrated a non-significant trend 

for increased total lavage cell number compared to media inoculated guinea-pigs. 

There was a significant increase in eosinophil numbers, compared to media 

inoculated guinea-pigs (3.8±0.34x106/ml compared to 2.7±0.23x106/ml respectively). 

Neutrophil, macrophage and lymphocyte numbers were unchanged (Figure 14).  
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Figure 10: The mean time-course values of sGaw in ovalbumin (Ova) sensitised guinea-pigs inoculated with 2 intranasal doses of PIV-3 (1x107-109 viral 

particles per ml) or media, 3 days before subsequent inhalation Ova challenge. Mean changes in sGaw are expressed as mean±SEM percentage change from 

baseline prior to Ova challenge. A negative value represents a bronchoconstriction. N=10 (Ova + media), N=16 (Ova + PIV-3); performed with a two tailed T-

test. 
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Figure 11: Area under the curve analysis of sGaw values over 12 hours following ovalbumin 

(Ova) inhalation challenge in guinea-pigs inoculated with 2 intranasal doses of PIV-3 (1x107-

109 viral particles per ml) or media. For the purpose of analysis only negative peaks were 

considered and all positive sGaw values were excluded. Total includes all negative peaks 

from 0-24 hours, early asthmatic response (EAR) includes values from 0-6 hours and late 

asthmatic response (LAR) includes values from 6-12 hours. Area under the curve is expressed 

as %.hour; N=10 (Ova + media), N=16 (Ova + PIV-3); performed with a two tailed T-test. 
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Figure 12 Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles with 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period) in ovalbumin (Ova) sensitised guinea-pigs inoculated with A) 2 intranasal doses of PIV-3 (1x107-109 viral particles per ml) or 

B) media, 3 days before subsequent Ova inhalation challenge. Values were recorded 24 hours before the first inoculation and 24 hours post- Ova challenge. 

Mean changes in sGaw are expressed as mean±SEM percentage change from baseline. A negative value represents a bronchoconstriction. * Significantly 

different from time paired pre-challenge values; N=10 (Ova + media), N=16 (Ova + PIV-3); performed with a two tailed T-test. 
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Figure 13: Lung oedema in ovalbumin (Ova) sensitised guinea-pigs inoculated with 2 

intranasal doses of PIV-3 (1x107-109 viral particles per ml) or media, 3 days before 

subsequent Ova inhalation challenge. Oedema is expressed as ((lung wet weight- lung dry 

weight)/dry weight x100). Lung weight measured following lung excision (wet) and overnight 

drying in an oven at 40oC (dry). N=10 (Ova + media), N=16 (Ova + PIV-3); performed with a 

two tailed T-test. 
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Figure 14: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid in ovalbumin (Ova) sensitised guinea-pigs inoculated with 

2 intranasal doses of PIV-3 (1x107-109 viral particles per ml) or media, 3 days before 

subsequent to Ova inhalation challenge. N=10 (Ova + media), N=16 (Ova + PIV-3); performed 

with a two tailed T-test. 
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4.5.3 A RE-EVALUATION OF THE EFFECT OF PIV-3 ALONE ON AIRWAY LUNG 

FUNCTION AND AIRWAY INFLAMMATION. 

Because PIV-3 failed to enhance the responses to Ova, it was decided to re-examine 

the effects of PIV-3 alone. Media inoculation failed to produce a significant increase 

in bronchoconstriction in response to histamine, when compared to sGaw values 

prior to media inoculation. PIV-3 inoculation also did not change the 

bronchoconstrictor response to histamine (Figure 15). PIV-3 inoculation produced a 

significant increase in oedema when compared to media inoculated animals 

(404.8±10.6% compared to 317.0±13.4%) respectively (Figure 16). PIV-3 inoculation 

did not significantly increase any of the cell types in lavage fluid measured when 

compared to media inoculated guinea-pigs (Figure 17).  
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Figure 15: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles with 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period) in guinea-pigs inoculated with 2 intranasal doses of PIV-3 (1x107-109) or media. Values were recorded 24 hours pre- and 4 

days post- first inoculation. Mean changes in sGaw are expressed as mean±SEM percentage change from baseline. A negative value represents a 

bronchoconstriction. N=6; performed with a two tailed T-test. 
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Figure 16: lung oedema in guinea-pigs inoculated with 2 intranasal doses of PIV-3 (1x107-109) 

or media, 4 days after the initial inoculation. Oedema is expressed as ((lung wet weight- lung 

dry weight)/dry weight x100). Lung weight measured following lung excision (wet) and 

overnight drying in an oven at 40oC (dry). **Significantly different from media p<0.01; N=6; 

performed with a two tailed T-test. 
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Figure 17: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid in guinea-pigs inoculated with 2 intranasal doses of PIV-3 

(1x107-109 viral particles per ml) or media, 4 days after the initial inoculation N=6; performed 

with a two tailed T-test. 
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4.5.4 RESULTS OF RT-QPCR ANALYSIS ON LUNG AND LAVAGE FLUID SAMPLES 

Table 2 shows the results of RT-qPCR analysis of lung and lavage samples from PIV-3 

and media inoculated guinea-pigs. Large numbers of viral particle per ml were found 

in guinea-pigs inoculated with PIV-3 in the first experiment in the chapter. In 

subsequent experiments (Ova + PIV-3 and PIV-3 alone (repeat) viral particles per ml 

were considerably reduced. The reference product, β-actin displayed consistent 

levels for both lung and lavage fluid samples.  

 

Per x106/ml of 

PCR product 

Media PIV-3 1st exp PIV-3 2nd exp Ova + PIV-3 

Lung PIV-3 0.023±1.489 62.49± 39.13 0.287±0.108 0.69±0.304 

Lung β-actin 41.25±9.02 43.31±11.06 52.79±27.95 32.46±3.967 

Lavage fluid –

PIV3 

0.018 ±1.244 2.92±  1.58 0.35±0.24 0.45±0.158 

Lavage fluid - 

β-actin 

0.35±0.08 0.38±0.04 0.428±0.1 0.33±0.03 

Table 2: Shows the amount of PCR product recovered from lung and lavage fluid for PIV-3, 

media and PIV-3 and ovalbumin treated guinea-pigs. β-actin represents a reference gene 

product. Data are displayed as PCR product x106 per ml.  
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4.5.5 THE EFFECT OF POLY I:C ON AIRWAY HYPERRESPONSIVENESS TO 

HISTAMINE, LUNG OEDEMA AND INFLAMMATORY CELLS. 

Saline and the lower dose of poly I:C did not significantly increase the 

bronchoconstrictor response to histamine. 500μg of poly I:C (125µg) did not 

significantly increase the immediate response to histamine challenge post-poly I:C 

administration. At 10 minutes post-histamine inhalation a small increase in this 

response was observed (-9.4±2.2% compared to pre-poly I:C, -1.9±1.9%) (Figure 18).  

 

A significant increase in lung oedema was observed in guinea-pigs treated with 

125µg poly I:C compared to saline treated guinea-pigs (512±75% compared to 

313±17%). Although a trend for increased oedema was observed in guinea-pigs 

treated with 500µg poly I:C, this was not significant (Figure 19).  

 

Although total cells were unchanged between all groups, an increase in neutrophils 

in guinea-pigs treated with low dose poly I:C compared to saline was seen 

(0.3±0.13x106 compared to 0.03±0.01x106 respectively). No other significant 

difference in cell numbers was observed (Figure 20).  
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Figure 18: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles with 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period) in guinea-pigs pre-and post-.administration of 3 intranasal doses of A) saline, B) 125μg poly I:C or 500μg poly I:C. Mean 

changes in sGaw are expressed as mean±SEM percentage change from baseline. A negative value represents a bronchoconstriction. N=6 (Saline), N=6 

(125μg poly I:C), N=9 (500μg poly I:C); *significantly different from time paired pre-Ova challenge values p<0.05; performed with a two tailed T-test. 

BL 0 5 10

-60

-50

-40

-30

-20

-10

0

10

20

Pre-challenge

Post-challenge

Saline
Time  (mins)

%
 c

h
an

ge
 s

G
a

w

BL 0 5 10

-60

-50

-40

-30

-20

-10

0

10

20

Pre-challenge

Post-challenge

Poly I:C (125ug)
Time  (mins)

%
 c

h
an

ge
 s

G
a

w

BL 0 5 10

-60

-50

-40

-30

-20

-10

0

10

20

Pre-challenge

Post-challenge

Poly I:C (500ug)

*

Time  (mins)

%
 c

h
an

ge
 s

G
a

w

A B C



Chapter 4 

149 

 

 

 

Figure 19: Lung oedema in guinea-pigs administered 3 intranasal doses of poly I:C (125μg or 

500μg) or saline. Oedema is expressed as ((lung wet weight- lung dry weight)/dry weight 

x100). Lung weight measured following lung excision (wet) and overnight drying in an oven 

at 40oC (dry). N=6 (Saline), N=6 (125μg poly I:C), N=9 (500μg poly I:C); **Significantly 

different from saline p<0.01; performed with one-way analysis of variance followed by 

Bonferroni post-test. 
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Figure 20: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid in guinea-pigs administered 3 intranasal doses poly I:C 

(125μg or 500μg) or saline. N=6 (Saline), N=6 (125μg poly I:C), N=9 (500μg poly I:C);  

*Significantly different from saline p<0.05; performed with one-way analysis of variance 

followed by Bonferroni post-test. 

Total

0

1

2

3

4

Media 125ug 500ug

Poly I:C

N
o

. 
 C

e
lls

 (
x1

0
6
/m

l)

Macrophages

0.0

0.5

1.0

1.5

2.0

2.5

Media 125ug 500ug

Poly I:C

N
o

. 
 C

e
lls

 (
x1

0
6
/m

l)

Eosinophils

0.0

0.1

0.2

0.3

0.4

Media 125ug 500ug

Poly I:C

N
o

. 
 C

e
lls

 (
x1

0
6
/m

l)

Lymphocytes

0.00

0.02

0.04

0.06

0.08

0.10

Media 125ug 500ug

Poly I:C

N
o

. 
 C

e
lls

 (
x1

0
6
/m

l)

Neutrophils

0.0

0.1

0.2

0.3

0.4

0.5

Media 125ug 500ug

Poly I:C

*

N
o

. 
 C

e
lls

 (
x1

0
6
/m

l)

A

B C

D E



Chapter 4 

151 

 

4.6 DISCUSSION 

4.6.1 EFFECT OF PIV-3 IN GUINEA-PIGS 

PIV-3 infection in guinea-pigs resulted in an increase in the bronchoconstrictor 

response to histamine, airway oedema and airway inflammation. These results are in 

accordance with Toward et al, (2005) and Broadley et al, (2009). Increases in airway 

response to bronchoconstrictor stimulus such as histamine have been reported by 

several other groups and various mechanisms implicated. Folkerts et al, (1995) 

reported that the development of AHR following PIV-3 infection is related to a 

deficiency in nitric oxide. This was prevented by the administration of nitric oxide 

donor compounds. Inflammatory cells have also been implicated in AHR to PIV-3. 

Folkerts et al, (1992A) demonstrated that ex vivo contractility to histamine in 

tracheal spirals increases when incubated with lavage cells from PIV-3 treated 

guinea-pigs, In particular, incubation with eosinophils which increase significantly 

with PIV-3 infection. Treatment with an antibody to IL-5, a key cytokine in eosinophil 

biology is able to abolish AHR (van Oosterhout et al, 1995). In the present study, a 

significant increase in eosinophilia was also observed but also in several other 

inflammatory cells including lymphocytes, neutrophils and macrophages. In vitro, 

macrophages can significantly increase their production of reactive oxygen species 

which can directly cause epithelial damage (Henricks et al, 1993). This can expose 

the sensory nerves, smooth muscle and also remove a source of spasmogen 

metabolisers, promoting AHR (Folkerts & Nijkamp, 1998). Depletion of spamogen 

metabolisers such as diamine oxidase which metabolises histamine may lengthen 

the response to histamine. In the present study a prolonged bronchoconstrictor 

response to histamine was observed suggesting a decrease in diamine oxidase 

activity. Disruption of sensory nerves due to inflammation may also promote AHR. In 

particular, the M2 receptor has been reported to lose its function with PIV-3 

infection, decreasing pre-synaptic feedback inhibition of cholinergic responses 

(Adamko et al, 1999). 
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4.6.2 EFFECT OF PIV-3 IN AN ACUTE OVALBUMIN MODEL OF ASTHMA 

PIV-3 infection superimposed on ovalbumin challenge increased the duration of the 

bronchoconstrictor response to histamine and the number of eosinophils recovered 

in lavage fluid. However, it did not significantly alter the EAR and LAR. Previously in 

this laboratory, this protocol resulted in an increase in the length of the EAR, 

merging with the LAR. This effect is possibly mediated by increased histamine 

release from basophils and mast cells, which is increased by PIV (Graziano et al, 

1989). Alternatively, an increase in the uptake and response to allergens induced by 

viral infection may mediate this effect (Freihorst et al, 1989). Also unlike Broadley et 

al, 2008, no overall increase in total lavage cells and neutrophils was found. An 

increase in neutrophils is commonly reported during viral infection in asthmatics 

(Fahy et al, 1995). Increases in eosinophil numbers have been observed in both 

humans and animal models (Calhoun et al, 1994; Toward et al, 2005). Eosinophil 

numbers may be increased due to CCL11 (eotaxin-1), which is reported to increase 2-

3 days post-PIV-3 infection (Scheerens et al, 1999). Respiratory viruses can also 

promote Th2 lymphocyte development which favours eosinophilic inflammatory 

responses (Openshaw & O’Donnell, 1994). The results of this study were confirmed 

on several repeat studies. The lack of a full exacerbation response to PIV-3 was 

considered to be due to a diminished responsiveness to PIV-3. Therefore the effects 

of PIV-3 alone were re-examined with a new batch of virus. This repeat showed no 

AHR, oedema and airway inflammation. This loss of response was found to be 

associated with decreased viral titres recovered from the lavage fluid and lungs of 

PIV-3 infected animals.  

 

4.6.3 LOSS OF RESPONSE TO PIV-3 

The reasons for a diminished response to PIV-3 are unknown although there are 

several possible explanations. The first is a delivery problem with the intranasal 

method of administration, without anaesthetic. The distribution of fluid deposition 
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between the lungs can differ widely depending on small changes in animal handling 

and the use of anaesthetic (Southam et al, 2002). PIV-3 inoculation was unable to be 

carried out under anaesthetic due to anti-viral effects of common inhaled 

anaesthetics such as isoflorane (Belvisi, 2009). Problems with this route of 

administration are unlikely though as the change in response to PIV-3 occurred with 

the same animal handler, employing the same inoculation method throughout 

experiments. In addition, this route has previously been shown to result in active 

infection under a number of investigators (Toward et al, 2005, Broadley et al, 2008; 

Broadley et al, 2010).  

Another possibility is that the virus had mutated, resulting in it no longer being able 

to infect guinea-pigs. This is also unlikely as several different stocks were tried and 

completely new PIV-3 brought from the health protection agency. Also, viral titres 

remained high (1x107-9.viral particles per ml) throughout the experiments. 

Furthermore, PIV-3 continued to display normal infective and plaque forming ability 

in BSC-1 cells, not suggestive of mutations. 

The third possibility is that a change in the guinea-pig population has occurred. The 

guinea-pig population is known to have a high prevalence of PIV-3 antibodies due to 

endemic infection in some colonies (Blomgvist et al, 2002). PIV-3 infection spreads 

quickly across a colony, making it possible for the widespread development of 

antibodies to parainfluenzas. These antibodies may account for a faster and more 

specific immune response, eliminating PIV-3 quickly and thus preventing the usual 

responses. This is supported by the observation that PIV-3 viral titres measured by 

RT-qPCR in lavage fluid and lungs were lower in experiments where limited or no 

response to PIV-3 was observed. However, this method is not ideal for detecting 

active viral infection, since it does not distinguish between infectious and non-

infectious particles. Determination of the levels of infectious viral particles by cell 

plaque assay would give a better indication of this. Further studies involving the 

detection of PIV-3 specific antibodies in the blood would be required to confirm 

decreased response to PIV-3 due to increased adaptive immunity.  
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4.6.4 EFFECT OF POLY I:C IN GUINEA-PIGS 

The unreliability of PIV-3 infection and failure to produce a full exacerbation of Ova-

induced responses led to the investigation of the TLR-3 agonist poly I:C as a suitable 

alternative exacerbating agent. Lower doses of poly I:C increased airway oedema 

and neutrophils. Higher doses of poly I:C did not produce these effects but did 

slightly increase the bronchoconstrictor response to histamine.  

Previously, in the laboratory 500μg poly I:C administered intranasally for 3 days 

increased inflammatory cell influx, oedema and AHR. Additionally, on an allergic 

background, poly I:C increased cellular influx, Th2 response and AHR in mice and rats 

(Torres et al, 2010; Takayama et al, 2011). It is unknown why the highest dose of 

poly I:C used did not reproduce the effects of previous work. However, this may 

again suggest changes in the guinea-pig population and their response to antigen. 

Another possibility is that a change in poly I:C is responsible. Differences between 

the in vivo responses to various manufacturers of poly I:C have been observed, along 

with differences between poly I:C batches from the same manufacturer (verbal 

communication).  

The failure of PIV-3 infection and Poly I:C to satisfactorily cause exacerbation of Ova-

induced functional and inflammatory responses led to the search for more reliable 

and robust alternative exacerbating agents. The next chapter examines 

lipopolysaccharide (LPS).  
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5.1 INTRODUCTION 

5.1.1 LIPOPOLYSACCARIDE (LPS) AND ENDOTOXIN 

Endotoxin is a lipopolysaccharide (LPS) derived from the outermost cell wall layer of 

gram negative bacteria such as E.coli and H.influenzae. Endotoxin is comprised of 

several structural domains including o-antigen, core phospholipid and Lipid A. The 

structure of LPS is shown in Figure 1. The polysaccharide component carries an 

organism-specific antigen pattern, whereas the lipid component facilitates cell 

adhesion and the stimulation of innate immunity (Liu, 2002). Endotoxin is ubiquitous 

in the environment, in part due to the high temperatures (>100ºC) and length of 

time (>4 hours) it takes to destroy its immune stimulatory capacity. LPS is found in 

grain dust, livestock, textiles, pets, carpeting, milk, tobacco smoke, house dust-mite, 

particulate air pollution and indoor ventilation systems (Medvedev et al, 2000). 

Thus, the airways are constantly exposed to LPS but the response invoked depends 

on a range of factors discussed below. 

 

 

Figure 1: The structure of a gram-negative bacteria cell wall and the 3 components of 

lipopolysaccharide (endotoxin).  
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5.1.2 AIRWAY RESPONSE TO LPS 

A typical response to LPS in a susceptible individual includes increased chest 

tightness, chills and fever, dyspnea and myalgia. The pathophysiology underlying 

these symptoms includes an increase in airflow obstruction, oedema, reduced 

alveolar diffusion capacity and airways hyperresponsiveness. An innate and adaptive 

immune response is also evident and is mediated by epithelial cells, alveolar 

macrophages, B and T lymphocytes which release numerous chemokines, cytokines, 

adhesion molecules and inflammatory mediators. Key mediators include TNF-α, IL-

1β, IL-6 and IL-8, the latter of which is important in neutrophil recruitment (reviewed 

in Reed and Milton, 2001). Another cardinal effect of the inflammatory milieu is the 

increased production of mucus. LPS is also a potent inducer of nitric oxide synthase 2 

(NOS2, aka iNOS), which produces nitric oxide and contributes to LPS-induced 

vasodilation (Stuehr &, Marletta, 1984). LPS produces additional effects when 

exposure coincides with IgE-mediated events including increased histamine release 

from mast cells, CCL5 (RANTES) and GM-CSF from fibroblasts (Warren & Holford-

Strevens, 1986; Nonaka et al, 1999). 

 The recognition of LPS and the initiation of a response involves several 

proteins. LPS-binding protein is released locally from the airway epithelium and acts 

as a high affinity transporter, bringing LPS in contact with both soluble and 

membrane bound CD14 (Dentener et al, 2001). The LPS-CD14 complex then 

associates with TLR4 and MD2 on monocyte-macrophages and epithelial cells and 

initiates a signalling cascade which activates nuclear factor- κB (NF-κB) and activator 

protein 1 (AP1). Interferon regulatory factor 3 (IRF3) is also activated via a separate 

pathway independent of NF-κB and can lead to the expression of type-1 interferons 

(Perros et al, 2011). These nuclear factors subsequently translocate to the nucleus to 

initiate transcription of inflammatory cytokines (Medvedev et al, 2000) (Figure 2). 

LPS can also signal through non-NF-κB pathways to induce expression of the anti-

oxidant manganese superoxide dismutase and COX-2 (White et al, 2000; Wadleigh et 

al, 2000). Systemically, exposure to LPS induces tolerance to subsequent doses via 



Chapter 5 

 

158 

 

suppression of expression and function of signalling intermediates (Medvedev et al, 

2000). LPS tolerance is a compartmentalised phenomenon and in the lungs actually 

primes alveolar macrophages for further exposures. Subsequent LPS exposures 

increase pro-inflammatory signalling (Hoogerwerf et al, 2010; Reino et al, 2012). An 

increased response to LPS may be due to upregulation of TLR4 expression and 

downstream messengers. (Lin et al, 2006; Hoogerwerf et al, 2010).  

Neutrophil accumulation in the airways is mediated by the chemoattractants IL-8 

and MIP-1α and the binding molecules P-selectin and ICAM-1, all of which are 

upregulated by LPS exposure (Kamochi et al, 1999). LPS also decreases the apoptosis 

of neutrophils, prolonging the airways exposure to products such as elastase.  

Neutrophil elastase breaks down lung elastic fibres and encourages the development 

of emphysema (Nolan et al, 1999). Neutrophil elatase also promotes mucus 

secretion which is further augmented by LPS-induced epithelial growth factor (EGF) 

driven proliferation of goblet cells (Harkema et al, 1992; Takeyama et al, 1999). 

Evidence also suggests that LPS can recruit and activate eosinophils depending on 

the dose and section of airway sampled (Medvedev et al, 2000). LPS inhalation 

produces an immediate bronchoconstriction corresponding to a decrease in FEV1 

and increased bronchoconstrictor response to histamine in asthmatic individuals 

(Jagielo et al, 1996; Pauwels et al, 1990). However not all studies have confirmed 

these functional effects, possibly on account of lower doses of LPS being used 

(Nightingale et al, 1999).  
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Figure 2: Simplified diagram of LPS signalling via toll like receptor 4 (TLR4). LPS can signal 

through several different intracellular pathways to increase pro-inflammatory gene 

transcription in the nucleus. TIRAP (Toll/IL-1R domain containing adapter protein); MyD88 

(myeloid differentiation primary response protein 88); IRAK (IL-1 receptor-associated 

kinase); TRAF6 (tumor necrosis factor receptor-associated factor 6); NF-κB (nuclear factor-

kappa B); JNK (c-Jun N-terminal kinase); ERK (extracellular signal-regulated kinase); TRAM 

(TRIF-related adaptor molecule); TRIF (TIR domain-containing adaptor inducing IFN-β). IRF: 

Interferon regulatory factor; Diagram redrawn and adapted from Gribar et al, 2008. 

5.1.3 FACTORS THAT DETERMINE AIRWAY RESPONSE TO LPS IN ASTHMA 

LPS has paradoxically been shown to be both protective and exacerbating in asthma. 

These differences are due to a range of factors including the concentration of LPS, 
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host genetics, the timing of exposure and temporal proximity to other agents such as 

viruses, pollution and allergen. 

5.1.3.1 TIMING 

The timing of LPS exposure is likely key to its dual role as both protective and 

exacerbating in asthma. Early LPS exposure attenuates allergic responses and later 

LPS exposure augments it. A study by Tulic et al, 2000 demonstrated this 

experimentally in rats using an ovalbumin sensitisation and challenge model. Inhaled 

LPS either before or 4 days after ovalbumin sensitisation decreased the sensitisation 

response. Whereas LPS inhalation 1-5 days before ovalbumin challenge increased 

allergic responses 

5.1.3.2 DOSE 

The dose of LPS individuals encounter varies widely. Individuals that experience LPS 

through factories or farms are reported to be exposed to doses’ 100-1000 times 

greater than that of a typical home environment (Liu, 2002). However there are 

many problems with sampling LPS levels due to variability between measurement 

techniques, room to room differences, dust vs airborne LPS, seasonal variability, 

geographical location and other co-factors such as the presence of dogs (Park et al, 

2000). In vitro, low levels of LPS (pg/ml) prime macrophages and neutrophils for Th1 

cytokine production, whereas higher levels (>ng/ml) result in the production of free 

radical generating substances such as nitric oxide. 

5.1.3.3 GENETICS 

Genetic variability is also likely to account for differences in LPS response. In 

particular, polymorphisms in CD14 one of the receptors necessary for LPS response 

has been implicated. Other candidates for genetic variability in LPS response include 

TLR4 and TLR2, both of which recognise gram-negative bacteria cell products 

(reviewed in Doreswamy & Peden, 2010). 

5.1.3.4 ENVIRONMENTAL CO-FACTORS 

Many other factors can alter the response of the airways to LPS including the 

presence of bacterial DNA, viruses and allergens. In particular, allergen and LPS can 
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act synergistically to enhance each other’s effects. Allergen responses are enhanced 

by the presence of LPS (Tsuchiya et al, 2012). Allergen may also be able to enhance 

the effect of LPS by causing plasma extravasations of proteins such as LBP which can 

enhance LPS induced pro-inflammatory signalling (Dubin et al, 1996). Other factors 

such as differences in gastroinstestinal colonisation, antibiotic use, breast feeding, 

pets and ingestion of fermented vegetables have been shown to influence the 

coincidence of atopy (Liu, 2002). 

5.1.4 THE ROLE OF LPS IN ASTHMA  

5.1.4.1 LPS AS AN ASTHMA PROTECTIVE FACTOR 

The protective benefits of LPS are thought to be associated with exposure in early 

life before allergic sensitisation. This is in accordance with the ‘hygiene hypothesis’ 

which suggests that exposure to microbial infections and products such as LPS in 

early life may inhibit the development or pathogenesis of allergic disease (Strachan, 

1989; Schaub et al, 2006). The mechanism of this protection is thought to be via the 

promotion of Th1 lymphocyte responses over allergy promoting Th2 responses 

(Martinez & Holt, 1999). Several studies support the protective benefits of LPS. 

Children raised in rural environments such as farms, where higher levels of 

endotoxin are present are less affected by allergy (von Mutius et al, 2000; Riedler et 

al, 2000). Furthermore, this protective benefit has been shown to have a critical 

period. Reider et al, (2001) showed that children who were exposed to farm milk and 

stables (both having high endotoxin levels) before the age of 1 had a lower incidence 

of asthma and atopy then non-farming children. Farming children exposed between 

1-5 years showed no protective benefit over their non-farming equivalents. In the 

urban setting, houses with lower levels of house dust mite endotoxin inversely 

correlate with an increasing incidence of asthma (Gereda et al, 2000).  

5.1.4.2 LPS AS AN ASTHMA EXACERBATING FACTOR 

LPS has also been implicated in exacerbations asthma. These effects are thought to 

occur in individuals with pre-existing asthma and sensitisation to allergens. A 

correlation between an increased medication use, incidence of wheezing episodes 
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and LPS exposure in asthmatics has been demonstrated (Douwes et al, 2006). The 

concentration of LPS in the domestic environment is also correlated with the severity 

rating of asthma (Michel et al, 1996). Clinically, LPS exposure can cause a persistent 

bronchoconstriction over 5 hours (Michel et al, 1989). Asthmatics bronchoconstrict 

more readily to low doses of LPS (Cavagna et al, 1969). Underlying the clinical 

worsening of symptoms is range of cellular and molecular changes. A significant 

increase in eosinophil and poly mononuclear cell counts is observed following dust 

mite and LPS challenge (Eldridge & Peden, 2000). LPS can modify the response to 

allergen challenge, favouring a late phase response with a greater number of 

neutrophils then seen with allergen alone (Hunt et al, 1994). Associated with 

neutrophilia are increases in cytokines such as IL-8 and IL-17 (Doe et al, 2010). 

However, not all studies have shown these results. A study by Nightingale et al, 2000 

found no increase in airway inflammation or decrease in FEV1 in asthmatic subjects. 

Thus the effects of LPS remain controversial.  

5.1.4 ANIMAL MODELS OF ASTHMA USING LPS 

The role of LPS in asthma has been assessed in several animal models. These models 

can be broadly divided into those that use LPS during the sensitisation phase and 

those that use it during the allergen challenge phase. LPS exposure in rats prior to 

Ova sensitisation and up to 4 days after protects against the development on Ova 

specific IgE and allergic responses to the allergen (Tulic et al, 2000). Another study 

has shown that LPS induced attenuation of allergic responses is associated with a 

decrease in total and Ova-specific IgE (Delayre-Orthez et al, 2004). This process may 

involve IL-12 as anti-IL-12 antibodies administered with LPS, prior to Ova 

sensitisation were able to prevent LPS induced attenuation of allergic responses to 

Ova (Gerhold et al, 2002). These attenuating effects of LPS seem to be dose-

dependent. At higher LPS doses (>100μg) allergic sensitisation is suppressed but at 

lower concentrations (0.1μg) allergic sensitisation is boosted and dependent on the 

presence of LPS (Eisenbarth et al, 2002). More recently the low levels of LPS present 

in house dust mite extract  have been shown as critical for dendritic cell response. 
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The absence of TLR4 on epithelial cells prevents this response via the secretion of IL-

25, IL-33 and CM-CSF and TSLP (Hammad et al, 2009). 

Other animal models have administered LPS around the time of allergen challenge. 

Studies are split between those that have shown an exacerbation and those that 

demonstrate an attenuation of allergic responses. Delayre-Orthez et al, (2004) 

showed that intra-nasal LPS co-administered with Ova in mice produced a dose-

dependent increase in eosinophilia, IL-4, IL-5 and AHR. Tulic et al, (2000) showed an 

increase in Ova-induced neutrophils, eosinophils and IgE with LPS. The LPS-induced 

exacerbation was shown in part to be dependent on mast cells as mast cell deficient 

mice did not demonstrate an increase in IgE, total cells or eosinophlia (Murakami et 

al, 2006). LPS administered 24 hours before Ova challenge has also been 

demonstrated to increase cellular inflammation and nitric oxide levels but reduce IL-

4, IL-13 and AHR (Komlosi et al, 2006). Other studies have shown opposite effects. A 

study by Rodriguez et al, (2003) found that Intra-nasal LPS administered shortly 

before intra-nasal Ova challenge prolonged AHR to methacholine but did not alter 

inflammation, although neutrophils were increased and eosinophils decreased. 

Contrastingly, intravenous LPS administered with intra-nasal Ova challenge 

significantly attenuated inflammation and AHR. Another study has shown that 

guinea-pigs administered Intravenous LPS 24 hours before intra-tracheal Ova 

challenge demonstrate significantly less bronchoconstriction. This was associated 

with partially degranulated mast cells (Vannier et al, 1991). LPS administered after 

Ova inhalation also seems to attenuate allergic responses. LPS administered 18 hours 

after Ova challenge in rats reduced lymphocyte, macrophages, eosinophils and AHR 

(Tulic et al, 2000). The same group showed that the co-administration of a high 

concentration of LPS with Ova decreases AHR, inflammation and oedema (Tulic et al, 

2002). The effect of LPS on goblet cells in asthma models seems uncertain. LPS alone 

causes goblet cell hyperplasia (Harkema & Hotchkiss, 1992). In combination with 

allergen it has been reported to both not change, increase and decrease goblet cell 

numbers depending on the LPS dose (Dong et al, 2009; Tsuchiya et al, 2012).  
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In summary, in animal models of asthma LPS seems to have an attenuating effect on 

allergic responses when administered close to or with sensitisation. The effect of LPS 

administered close to allergen challenge is less clear but it appears that it may act as 

an exacerbating agent if a high dose is administered with the correct timing. These 

differences probably stem from the range of Ova protocols (single vs repeat 

challenge), dose and timing of LPS administration, route of LPS administration 

(systemic vs local), species and even the strain i.e. BALB/C vs C57BL/6 mice used to 

perform these studies. 
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5.2 HYPOTHESIS 

‘A high dose of LPS when administered with or close to allergen challenge, 

subsequent to allergen sensitisation will exacerbate functional and allergic responses 

to the allergen ovalbumin.’ 

5.3 AIMS AND OBJECTIVES 

The aim of this chapter was to use an acute ovalbumin model and exacerbate at 

least one of the following parameters: early asthmatic response, late asthmatic 

response, airways hyperresponsiveness to histamine, airways inflammation and 

oedema using LPS inhalation. Since data from other animal models suggests that LPS 

exposure close to sensitisation attenuates allergic responses, whereas exposure near 

allergen challenge may exacerbate allergic responses, the latter time point was 

chosen. However, the specific timing of LPS exposure in relation to allergen 

challenge has not been examined in a single study so several LPS exposure time 

points were assessed. A high dose of LPS was selected as both human and animal 

studies suggest that exacerbations of asthma are more likely than with lower doses. 

The effect of single or multiple LPS challenges on responses to allergen challenge 

have not been examined so the present study will assess this. This study will also be 

the first to examine the effect of LPS on both early and late asthmatic responses to 

allergen challenge, along with the more commonly measured airways 

hyperresponsiveness and airway inflammation. The effect of LPS alone was 

examined as a comparison to its effects on allergen challenge. IL-8 and IL-17 levels 

were investigated as both are implicated in neutrophilia. IL-13 was used to 

investigate changes to Th2 responses. Lung histology was assessed to investigate 

changes in airway inflammation and goblet cell numbers.  
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5.4 METHODS 

Methods describing the measurement of lung function, AHR, airway oedema, airway 

inflammation, cytokine levels and lung histology can be found in more detail in 

chapter 2.  

5.4.1 OVALBUMIN PROTOCOLS 

5.4.1.1 SENSITISATION 

Guinea-pigs (200-300g, Dunkin-Hartley, male) were sensitised by a bilateral intra-

peritoneal injection of a solution containing 150µg ovalbumin (Ova) and 100mg 

aluminium hydroxide (Al(OH)3) in normal saline on days 1, 4 and 7. 

5.4.1.2 LPS PRE-ACUTE OVALBUMIN EXPOSURE PROTOCOL 

Sensitised guinea-pigs were exposed to inhaled saline or LPS (30μg/ml) both 72 and 

24 hours before Ova challenge for 1 hour in a Perspex box. On day 21 guinea-pigs 

were exposed to Ova (0.03%) for one hour. The bronchoconstrictor response to 

histamine was assessed on day 15 and day 22. Figure 3 shows a diagram of this 

protocol.  

 

 

Figure 3: Diagram of the pre-ovalbumin (Ova) challenge LPS exposure protocol. Guinea-pigs 

were challenged with saline or LPS (30μg/ml) both 24 and 72 hours pre-Ova exposure. 
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5.4.1.3 LPS AND ACUTE OVALBUMIN CO-EXPOSURE PROTOCOL 

Sensitised guinea-pigs were exposed to inhaled saline or LPS (30μg/ml) 48 hours 

before Ova challenge in an exposure chamber and both LPS (30μg/ml) and Ova 

(0.03%) co-administered on day 21. The bronchoconstrictor response to histamine 

was assessed on day 15 and day 22. Figure 4 shows a diagram of this protocol. 

 

 

Figure 4: Diagram of LPS and Ova co-exposure protocol. Guinea-pigs were exposed to saline 

or LPS (30μg/ml) on day 19 and both Ova and LPS co-administered on day 21.  

5.4.2 LPS EXPOSURE PROTOCOL 

Non-sensitised guinea-pigs were exposed to saline or LPS (30μg/ml) on day 5 and 7 

of the protocol. The bronchoconstrictor response to histamine was assessed on day 

1 and day 8. Figure 5 shows a diagram of this protocol.  

 

Figure 5: Diagram of the LPS alone exposure protocol. Guinea-pigs were exposed to 30μg/ml 

of LPS on day 5 and 7.   
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5.4.3 MEASUREMENT OF LUNG FUNCTION 

Lung function was measured by whole body plethysmography following final saline, 

Ova, LPS or Ova and LPS exposure in all protocols. Lung function was recorded hourly 

for 12 hours and every 15 minutes during the first hour of measurements. A final 

measurement was also taken 24 hours post-final challenge. All values from these 

readings were expressed as a percentage of the baseline reading, taken before the 

final challenge. A negative percentage change in baseline value represents a 

bronchoconstriction. In Ova protocols early (0-6 hours) and late (6-12 hours) phases 

were expressed as the peak bronchoconstriction during that period (displayed as a 

histogram next to a time course plot) and area under the curve. The duration of the 

early phase was expressed as the time taken to recover to 50% of peak early phase 

bronchoconstriction values.  In the LPS only protocol lung function was measured for 

12 hours after the second LPS exposure. The peak bronchoconstriction during this 

period was expressed on a histogram next to the time course plot.  

5.4.4 MEASUREMENT OF AIRWAYS HYPERRESPONSIVENESS  

AHR was determined using whole body plethysmography. This was performed by 

measuring the bronchoconstrictor response to histamine before and 24 hours post-

final saline, Ova, LPS or Ova and LPS exposure challenge. Histamine (0.3mM) was 

delivered to the guinea-pigs by the use of a Buxco nebuliser chamber and lung 

function was measured just before histamine inhalation and at 0, 5 and 10 minutes 

post histamine exposure. The peak bronchoconstriction during this period was 

expressed on a histogram. 

5.4.5 MEASURING AIRWAYS INFLAMMATION 

Following post-saline/Ova/LPS/Ova and LPS histamine challenge guinea-pigs were 

sacrificed by an intra-peritoneal overdose of sodium pentobarbitone, the lungs 

excised and lavaged. Total and differential cell counts were then performed as 

described in chapter 2.  
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5.4.6 QUANTIFICATION OF CYTOKINE LEVELS USING ENZYME-LINKED 

IMMUNOSORBENT ASSAY (ELISA) 

Levels of IL-8, IL-17 and IL-13 were measured in diluted homogenised lung samples 

using ELISA supplied by R&D systems. Cytokine levels were adjusted for total lung 

protein and expressed as weight per mg of lung as described in section 2.2.3.2. 

5.4.7 ASSESSMENT OF AIRWAY OEDEMA 

Protein content in lavage fluid was determined as a measure of airway oedema by 

BCA protein assay as per the manufacturer’s instructions (Pierce protein biology).  

5.4.8 HISTOLOGICAL ANALYSIS OF LUNGS 

Lung lobe samples were stored in formaldehyde and 1-2mm bilateral sections cut. 

Samples were dehydrated in increasing concentrations of alcohol and then 

chloroform. Tissue sections were then set into wax blocks using molten paraffin. 

5µm sections were cut using a microtome and fixed to polysine coated slides. Slides 

were stained with haematoxylin and eosin or Alcian blue/periodic acid Schiff stain 

(Ab/PAS). Haematoxylin and eosin staining allows for assessment of general lung 

morphology and inflammation. Semi-quantitative assessment of airway 

inflammation was performed using a scoring method. 0=normal lung; 1= minor 

peribronchiolar (PB) inflammatory cell infiltration; 2= slight inflammatory cell 

infiltration in PB area; 3= moderate PB inflammatory cell infiltration; 4= marked PB 

inflammatory cell infiltration and cuffing. Slight loss of lung structure (alevoli etc); 5= 

severe PB inflammatory cell infiltration, cuffing and infiltration. Loss of lung structure 

i.e. solid lung. Ab/PAS staining allowed assessment of goblet cell numbers in airway 

epithelium using Image J software. 
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5.5 RESULTS 

5.5.1 PRE-ACUTE OVA LPS EXPOSURE 

Figure 6 represents the mean time course changes in sGaw in guinea-pigs exposed to 

inhaled saline or LPS 72 hours and 24 hours pre-ovalbumin (Ova) challenge. All 3 

groups demonstrated an EAR but this was attenuated in guinea-pigs treated with LPS 

24 hour pre-Ova (-25.0±6.6%) and 72 and 24 hours pre-Ova (-12.5±11.4%) compared 

to saline (-72.2±2.0%) at 0 minutes. Both LPS treated groups maintained significantly 

attenuated bronchoconstrictions compared to saline treatment until 3 hours post-

Ova challenge. Whereas in saline treated animals sGaw values had returned to 

baseline by about 6 hours (-10.0±5.5%), the bronchoconstriction in both LPS treated 

guinea-pigs remained relatively constant across the first 6 hours. Evidence of a LAR 

was seen in saline treated guinea-pigs at 8 and 9 hours (-13.3±3.7% and -20±5.5%, 

respectively). A well defined LAR in both LPS treated groups was not seen although 

bronchoconstrictions were present in both guinea-pigs treated with LPS 24 hours 

pre-Ova (-10.9±4%) and LPS 72 and 24 hours pre-Ova (-15.7±7.0%) at 9 hours. These 

bronchoconstrictions were resolved at 12 hours post-Ova challenge in both saline (-

5.8±6.2%) and LPS 24 hours pre-Ova (-4.4±5.5%) treated guinea-pigs. Animals 

treated with LPS twice still had a clear bronchoconstriction present at this same time 

point (-20±6.6%).  

The peak early phase response of guinea-pigs treated with LPS 24 hours (-34.4±4.6%) 

and LPS 72 and 24 hours (-25.2±27.7%) pre-Ova was significantly attenuated 

compared to saline treated animals (-73.5±1.9%). No significant difference in peak 

late asthmatic responses between groups was observed. Although there was a trend 

for guinea-pigs treated with LPS twice to demonstrate a bronchoconstriction at 24 

hours post-Ova challenge, this did not reach significance (Figure 6, histogram). 

Guinea-pigs treated once or twice with LPS demonstrated significantly lower early 

phase area under the curve compared to those treated with saline (124±18.3%.hr 

and 100.7±51.9%.hr compared to 249.8±11.8%.hr respectively). No significant 
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differences were found in LAR area under the curve (Figure 7). No difference 

between the duration of the EAR between groups was observed (Figure 8).  

 

Ova challenge with saline treatment produced a significant increase in immediate 

bronchoconstriction to histamine, when compared to the sGaw values prior to Ova-

challenge (-24.1±7.7% compared to 0.6±3.2%). The bronchoconstriction was no 

longer significant 5 minutes post-histamine challenge. Guinea-pigs challenged with 

Ova and treated with LPS once also demonstrated an increased response to 

histamine at 0 minutes post-Ova challenge (-12.9±4.7% compared to -0.18±1.1%), 

which returned to baseline sGaw values after 5 minutes. No change in the response 

to histamine was seen in guinea-pigs challenged with Ova and treated with LPS 

twice; the AHR to Ova was eliminated by LPS (Figure 9). 

 

No difference in lavage protein levels was found between groups (Figure 10). A trend 

for an increase in total cell numbers was seen with Ova challenge and treatment 

with 1 dose of LPS, although this failed to reach significance. Ova challenge with 2 

doses of LPS significantly increased total cell numbers (18.3±3.5x106/ml compared to 

saline, 8.9±0.4x106/ml respectively). In particular macrophages (7.7±x1.0x106 /ml 

compared with saline, 4.2±0.19x106/ml) and neutrophils (6.1±1.5x106/ml compared 

with saline, 0.6±0.05x106/ml) were increased. Neutrophils were also increased in the 

lavage fluid of guinea-pigs treated with LPS once (5.2±0.8x106/ml). All other cell 

types remained unchanged (Figure 11).  

 

IL-8 levels in lung increased in guinea-pigs treated with Ova and LPS once compared 

to other groups where IL-8 was not detectable. IL-13 levels increased significantly in 

guinea-pigs challenged with Ova compared to sensitised guinea-pigs challenged with 

saline (6.2±0.8ng/mg compared to 1.4±0.5ng/ml). LPS exposure did not significantly 

change IL-13 levels. IL-17 levels were not significantly increased in Ova challenged 
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guinea-pigs. Exposure to LPS once significantly increased IL-17 compared to 

sensitised, saline challenged guinea-pigs (126.1±19.7pg/ml compared to 

61.8±3.2pg/ml respectively). LPS exposure twice did not significantly change IL-17 

levels (Figure 12).  

 

Figure 13 shows lung sections stained with haematoxylin and eosin for general 

morphology of the bronchioles. Guinea-pigs challenged with Ova show increased 

inflammatory cell numbers in the peribronchiolar area. Treatment with LPS did not 

alter the inflammatory cell presence. Figure 14 presents the mean pathology scores 

for the number of inflammatory cells in the peribronchiolar area in these guinea-

pigs.  Ovalbumin challenge with saline pre-treatment significantly increases mean 

pathology score compared to saline challenge (2.64±0.34 compared to 0.58±0.19). 

LPS treatment 72 hours pre-Ova challenge also significantly increases the mean 

pathology score (2.29±0.5 compared to saline challenge, 0.58±0.19) but not 

significantly more than Ova alone. 2 pre-Ova LPS challenges did not significantly 

increase the mean pathology score, despite demonstrating a trend, probably due to 

the low N.  

 

Figure 15 shows the lung sections stained with Alcian blue/ periodic acid to reveal 

mucus containing goblet cells. Guinea-pigs challenged with Ova showed an increase 

in the number of goblet cells. Treatment with LPS further increased the number of 

goblet cells. Figure 16 presents the number of mucin associated-goblet cells per 

10,000 pixels of epithelium. Single saline or LPS exposure 24 hours pre-Ova challenge 

increased the number of goblet cells, although not significantly. Treatment with LPS 

72 and 24 hours pre-Ova challenge increased goblet cells significantly compared to 

saline challenge (769.8±154.3 compared to 182.4±65.2). 
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Figure 6: The mean time-course values of sGaw in ovalbumin (Ova) sensitised guinea-pigs treated with either saline or 30μg/ml LPS for 1 hour, 72 hours and 

24 hours pre-Ova challenge. The histogram represents the maximum bronchoconstriction values recorded during the early asthmatic response (EAR) (0-6 

hours), late asthmatic response (LAR) (6-12 hours) and the 24 hours reading. Mean changes in sGaw are expressed as mean±SEM percentage change from 

baseline prior to Ova challenge. A negative value represents a bronchoconstriction. N=6 (saline/saline/Ova), N=8 (saline/LPS/Ova), N=4 (LPS/LPS/Ova). 

*Significantly different from saline treatment p<0.05, ** p<0.01; *** p<0.001; # single LPS significantly different from saline treatment p<0.05; performed 

with one-way analysis of variance followed by Bonferroni post-test. 

BL 0 1 2 3 4 5 6 7 8 9 10 11 12

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Saline/Saline/Ova

Saline/LPS/Ova

LPS/LPS/Ova

***

**
**

*

#

Time (hours)

%
 c

h
an

ge
 s

G
a

w

EAR (0-6h) LAR (6-12h) 24h

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Saline/Saline/Ova

Saline/LPS/Ova

LPS/LPS/Ova

***
***

%
 c

h
an

ge
 s

G
a

w



Chapter 5 

 

174 

 

 

Figure 7: Area under the curve analysis of sGaw values over 12 hours following ovalbumin 

(Ova) challenge in guinea-pigs treated with either saline or 30μg/ml LPS for 1 hour, 72 hours 

and 24 hours pre-Ova challenge. For the purpose of analysis only negative peaks were 

considered and all positive sGaw values were excluded. Total includes all negative peaks 

from 0-24 hours, early asthmatic response (EAR) includes values from 0-6 hours and late 

asthmatic response (LAR) includes values from 6-12 hours. Area under the curve is expressed 

as %.hour. N=6 (saline/saline/Ova), N=8 (saline/LPS/Ova), N=4 (LPS/LPS/Ova). **Significantly 

different from saline treatment p<0.01; performed with one-way analysis of variance 

followed by Bonferroni post-test 

 

Figure 8: Analysis of the time taken for early asthmatic responses (EAR) to recover to 50% of 

peak bronchoconstriction values in guinea-pigs treated with either saline or 30μg/ml LPS for 

1 hour, 72 hours and 24 hours pre-Ova challenge. Results are expressed as mean±SEM; N=6 

(saline/saline/Ova), N=8 (saline/LPS/Ova), N=4 (LPS/LPS/Ova); performed with one-way 

analysis of variance followed by Bonferroni post-test 
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Figure 9: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles and 0.5 LPS per chamber over 2 minutes, 

1 minute drying period) in ovalbumin (Ova) sensitised guinea-pigs treated with either A) saline or 30μg/ml LPS for 1 hour B) 24 hours pre-Ova, C) 72 hours 

and 24 hours pre-Ova challenge. Values were recorded 7 days pre- and 24 hours post-Ova challenge. Mean changes in sGaw are expressed as mean±SEM 

percentage change from baseline.  A negative value represents a bronchoconstriction. N=6 (saline/saline/Ova), N=8 (saline/LPS/Ova), N=4 (LPS/LPS/Ova). 

*Significantly different from time paired pre-Ova challenge values p<0.05, ** p<0.01; performed with a two tailed T-test. 
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Figure 10:  Total lavage fluid protein in ovalbumin (Ova) sensitised guinea-pigs treated with 

either saline or 30μg/ml LPS for 1 hour, 72 hours and 24 hours pre-Ova challenge. Protein 

content determined by BCA protein assay. Results are expressed as mean±SEM; N=6 

(saline/saline/Ova), N=8 (saline/LPS/Ova), N=4 (LPS/LPS/Ova); performed with one-way 

analysis of variance followed by Bonferroni post-test 
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Figure 11: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid in ovalbumin (Ova) sensitised guinea-pigs treated with 

either saline or 30μg/ml LPS for 1 hour, 72 hours and 24 hours pre-Ova challenge. Results 

are expressed as mean±SEM; N=6 (saline/saline/Ova), N=8 (saline/LPS/Ova), N=4 

(LPS/LPS/Ova).  *Significantly different from saline treatment p<0.05, ** p<0.01; *** 

p<0.001; performed with one-way analysis of variance followed by Bonferroni post-test. 
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Figure 12: The concentration of A) IL-8 B) IL-13 C) IL-17 in the lungs of ovalbumin (Ova) 

sensitised guinea-pigs treated with either saline or 30μg/ml LPS for 1 hour, 72 hours and 24 

hours pre-Ova challenge or saline challenge alone. Results are expressed as mean±SEM; N=6 

(saline/saline/Ova), N=8 (saline/LPS/Ova), N=4 (LPS/LPS/Ova). *Significantly different from 

sensitised/saline p<0.05, ** p<0.01; *** p<0.001; performed with one-way analysis of 

variance followed by Bonferroni post-test.  
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Figure 13: Bronchiolar changes in ovalbumin (Ova) sensitised guinea-pigs exposed to A) 

saline or B) Ova C) 30μg/ml LPS for 1 hour, 24 hours pre-Ova challenge D) 30μg/ml LPS, 72 

hours and 24 hours pre-Ova challenge. L: lumen; ASM: airway smooth muscle; E: epithelium, 

IC: inflammatory cell. Stained with haematoxylin and eosin. Original magnification 100x (bar 

= 25 µm). 

 

Figure 14: The mean pathology score of the peribronchiolar area in ovalbumin (Ova) 

sensitised guinea-pigs treated with either saline or 30μg/ml LPS for 1 hour, 72 hours and 24 

hours pre-Ova challenge. Results are expressed as mean±SEM; N=6 Sen/saline (sensitised, 

exposed to saline), (saline/saline/Ova), (saline/LPS/Ova), N=4 (LPS/LPS/Ova). *Significantly 

different from sensitised/saline treated group treatment p<0.05, ** p<0.01; performed with 

one-way analysis of variance followed by Bonferroni post-test.  
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Figure 15: Bronchiolar changes in ovalbumin (Ova) sensitised guinea-pigs exposed to A) 

saline or B) Ova C) 30μg/ml LPS for 1 hour, 24 hours pre-Ova challenge D) 30μg/ml LPS, 72 

hours and 24 hours pre-Ova challenge. L: lumen; ASM: airway smooth muscle; E: epithelium; 

G: goblet cell; Stained with alcian blue/periodic acid Schiff stain Original magnification 200x 

(bar = 50 µm). 
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Figure 16: The number of mucin–associated goblet cells per 10,000 epithelial pixels in 

ovalbumin (Ova) sensitised guinea-pigs treated with either saline or 30μg/ml LPS for 1 hour, 

72 hours and 24 hours pre-Ova challenge or saline challenge alone. Results are expressed as 

mean±SEM; N=6 Sen/saline (sensitised, exposed to saline), (saline/saline/Ova), 

(saline/LPS/Ova), N=4 (LPS/LPS/Ova). *Significantly different from sensitised/saline treated 

group treatment p<0.05, performed with one-way analysis of variance followed by 

Bonferroni post-test.  
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5.5.2 ACUTE OVA AND LPS CO-EXPOSURE 

Figure 17 represents the mean time course changes in sGaw in ovalbumin (Ova) 

challenged guinea-pigs exposed to inhaled saline (saline/Ova), or LPS co-

administered with Ova (Saline/LPS+Ova) or LPS 48 hours before Ova challenge and 

co-administered with Ova (LPS/LPS+Ova). All three groups demonstrated an 

immediate bronchoconstriction, similar in degree; with LPS inhalation once (-

47.5±9.5%), LPS inhalation twice (-52.1±11.6%) and saline inhalation (-60.1±3.4%). 

Guinea-pigs co-administered LPS with Ova but receiving saline pre-treatment 

showed a similar recovery from EAR bronchoconstriction to Ova challenged animals. 

Guinea-pigs exposed to LPS twice demonstrated a slower recovery from EAR 

bronchoconstriction, being significantly more bronchoconstricted at 5 hours (-

37.3±7.6%) compared to saline (-9.7±2.8%). All 3 groups demonstrated late 

asthmatic responses. A LAR was seen in both guinea-pigs exposed to saline (-

14.9±4.4%) and LPS once (-36.6±8.8%) at 8 and 7 hours respectively. A delayed LAR 

at 10 hours (-18.3±2.9) was observed in guinea-pigs that inhaled LPS twice.  

 

The peak EAR responses to Ova were not altered by LPS treatment. LPS treated 

animals demonstrated a trend for an increase in the peak LAR but this did not reach 

statistical significance (Figure 17). No significant differences between total, EAR or 

LAR area under the curve were found between groups (Figure 18). LPS co-

administered with Ova increased the duration of the EAR, which reached significance 

when LPS was both co-administered with Ova and given 48 hours before (4.8±0.6h 

compared to saline, 2.3±0.7h) (Figure 19).  

 

Guinea-pigs challenged with only Ova demonstrated a bronchoconstriction to 

histamine at 0 minutes (-21.6±4.6 compared to pre-Ova, 0.7±4.0%) which returned 

to baseline sGaw values by 5 minutes. Ova challenge and LPS exposure once (-

19.8±4.9% compared to pre-Ova challenge, -0.2±1.9%) and twice (-19.1±10.6% 
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compared to pre-Ova challenge, -0.2±1.9%) also produced a bronchoconstriction to 

histamine at 0 minutes. These bronchoconstrictions continued to increase over the 

10 minutes. At 10 minutes post-histamine challenge in guinea-pigs exposed to LPS 

once the bronchoconstriction was -27.0±5.0% compared to pre-Ova, 0.9±3.3% and 

for LPS twice it was -41.1±7.0% compared to 7.3±2.7% (Figure 20).  

 

LPS co-administered and given 48 hours before Ova challenge significantly increased 

protein levels compared with guinea-pigs challenge with Ova and Ova and LPS co-

administered (4.2±0.6mg/ml compared to 2.0±0.3mg/ml and 2.2±0.3mg/ml 

respectively) (Figure 21).  

 

A trend for an increase in total cell numbers was seen when Ova and LPS were co-

administered, although this failed to reach significance. LPS co-administered with 

Ova and given 48 hours before significantly increased total cell numbers 

(20.9±0.9x106/ml compared to saline, 10.5±0.8x106/ml respectively). Neutrophils 

were increased in both groups exposed to LPS once and twice compared to saline 

treatment (4.0±0.9x106/ml, 7.4±0.5x106/ml compared with saline, 0.5±0.1x106/ml). 

All other cell types remained unchanged (Figure 22).  

 

Both single and 2 LPS exposures significantly increased the concentration of IL-8 

compared to saline pre-treatment and Ova challenge (11.4±1.1pg/mg, 

11.5±1.6pg/mg compared to 5.2±0.34pg/mg respectively). IL-13 and IL-17 levels 

were significantly increased in guinea-pigs challenged with Ova and exposed to 

saline (10.5±1.2ng/mg compared to 1.4±0.5ng/mg; 130.5±11.4pg/mg compared to 

61.8±3.2pg/mg respectively). LPS exposure did not significantly change IL-13 and IL-

17 levels compared with Ova alone (Figure 23).  
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Figure 24 shows lung sections stained with haematoxylin and eosin for general 

morphology of the bronchioles. Guinea-pigs challenged with Ova show increased 

inflammatory cell numbers in the peribronchiolar area. Treatment with LPS does not 

alter the inflammatory cell presence. Figure 25 presents the mean pathology scores 

for the number of inflammatory cells in the peribronchiolar area in these guinea-

pigs. Ovalbumin challenge alone significantly increases the mean pathology score 

compared to saline challenge (2.64.±0.34 compared to 0.58±0.19). A single exposure 

to LPS co-administered pre-Ova challenge and also in guinea-pigs exposure 48 hours 

pre-Ova challenge also significantly increases the mean pathology score (2.71±0.2, 

3.1±0.2 compared to saline challenge, 0.58±0.19 respectively) but not significantly 

more than Ova alone.  

 

Figure 26 shows lung sections stained with Alcian blue/ periodic acid Schiff to reveal 

the number of goblet cells in the airway epithelium. Guinea-pigs challenged with Ova 

show an increased number of goblet cells. Treatment with LPS further increases the 

number of goblet cells. Figure 27 presents the number of mucin associated-goblet 

cells per 10,000 pixels of the epithelium.  Ovalbumin challenge with a single saline 

exposure or LPS co-administrated with Ova increases the number of goblet cells, 

although not significantly. Treatment with LPS 48 pre-Ova and co-administered with 

Ova increases the number of goblet cells significantly compared to all other groups 

(974.4±98.8 compared to saline, 182.4±65.2, to Ova, 554±102.2 and to Sal/LPS+Ova, 

485.1±175.0). 
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Figure 17: The mean time-course values of sGaw in ovalbumin (Ova) sensitised guinea-pigs treated with either saline or 30μg/ml LPS for 1 hour, 48 hours 

before Ova challenge and co-administered with Ova. The histogram represents the maximum bronchoconstriction values recorded during the early 

asthmatic response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are expressed as 

mean±SEM percentage change from baseline prior to Ova challenge. A negative value represents a bronchoconstriction. N=5 (Saline/Ova), N=5 (Saline/LPS 

+Ova), N=6 (LPS/Ova+LPS).*significantly different from saline treatment p<0.05; performed with one-way analysis of variance followed by Bonferroni post-

test. 
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Figure 18: Area under the curve analysis of sGaw values over 12 hours following ovalbumin 

(Ova) in sensitised guinea-pigs treated with either saline or 30μg/ml LPS for 1 hour, 48 hours 

before Ova challenge and co-administered with Ova. For the purpose of analysis only 

negative peaks were considered and all positive sGaw values were excluded. Total includes 

all negative peaks from 0-24 hours, early asthmatic response (EAR) includes values from 0-6 

hours) and late asthmatic response (LAR) includes values from 6-12 hours. Area under the 

curve is expressed as %.hour. N=5 (Saline/Ova), N=5 (Saline/LPS +Ova), N=6 (LPS/Ova+LPS); 

performed with one-way analysis of variance followed by Bonferroni post-test. 

 

Figure 19: Analysis of the time taken for early asthmatic responses (EAR) to recover to 50% 

of peak bronchoconstriction values in guinea-pigs treated with either saline or 30μg/ml LPS 

for 1 hour, 48 hours before Ova challenge and co-administered with Ova. Results are 

expressed as mean±SEM; N=5 (Saline/Ova), N=5 (Saline/LPS +Ova), N=6 

(LPS/Ova+LPS).*significantly different from saline treatment p<0.05; performed with one-

way analysis of variance followed by Bonferroni post-test. 
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Figure 20: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles and 0.5 LPM, 2 minutes, 1 minute drying 

period) in ovalbumin (Ova) sensitised guinea-pigs treated with either A) saline or 30μg/ml LPS for 1 hour, B) co-administered with Ova or C) 48 hours before 

Ova challenge and co-administered with Ova. Values were recorded 7 days pre- and 24 hours post-Ova challenge. Mean changes in sGaw are expressed as 

mean±SEM percentage change from baseline.  A negative value represents a bronchoconstriction. N=5 (Saline/Ova), N=5 (Saline/LPS +Ova), N=6 

(LPS/Ova+LPS). **Significantly different from time paired pre-Ova challenge values p<0.01; *** p<0.001; performed with a two tailed T-test. 
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Figure 21: Total lavage fluid protein in ovalbumin (Ova) sensitised guinea-pigs treated with 

either saline or 30μg/ml LPS for 1 hour, 48 hours before Ova challenge and co-administered 

with Ova. Protein content was determined by BCA protein assay. Results are expressed as 

mean±SEM; N=5 (Saline/Ova), N=5 (Saline/LPS +Ova), N=6 (LPS/Ova+LPS). *Significantly 

different from saline treatment p<0.05; # significantly different from saline/LPS+Ova p<0.05; 

performed with one-way analysis of variance followed by Bonferroni post-test 
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Figure 22: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in the bronchoalveolar fluid of ovalbumin (Ova) sensitised guinea-pigs treated 

with either saline or 30μg/ml LPS for 1 hour, 48 hours before Ova challenge and co-

administered with Ova. Results are expressed as mean±SEM; N=5 (Saline/Ova), N=5 

(Saline/LPS +Ova), N=6 (LPS/Ova+LPS). *Significantly different from saline treatment p<0.05, 

** p<0.01; performed with one-way analysis of variance followed by Bonferroni post-test. 

Total

0

5

10

15

20

25
*

N
o

. 
 C

e
lls

 (
x1

0
6
/m

l)

Macrophages

0

2

4

6

8

10

N
o

. 
 C

e
lls

 (
x1

0
6
/m

l)

Eosinophils

0

2

4

6

N
o

. 
 C

e
lls

 (
x1

0
6
/m

l)

Lymphocytes

0.0

0.2

0.4

0.6

0.8

N
o

. 
 C

e
lls

 (
x1

0
6
/m

l)

Neutrophils

0

2

4

6

8

10

**

**

N
o

. 
 C

e
lls

 (
x1

0
6
/m

l)

Total

0

5

10

15

20

25
* Saline/Ova

Saline/LPS+Ova

LPS/LPS+Ova

N
o

. 
 C

e
lls

 (
x1

0
6
/m

l)



Chapter 5 

 

190 

 

 

Figure 23: The concentration of A) IL-8 B) IL-13 C) IL-17 in the lungs of ovalbumin (Ova) 

sensitised guinea-pigs treated with either saline or 30μg/ml LPS for 1 hour, 48 hours before 

Ova challenge and co-administered with Ova.  Results are expressed as mean±SEM; N=5 

(Saline/Ova), N=5 (Saline/LPS +Ova), N=6 (LPS/Ova+LPS). *Significantly different from 

sensitised/saline challenged guinea-pigs p<0.05, ** p<0.01; *** p<0.001; ^^^ significantly 

different from Sal/sal/Ova p<0.001. performed with one-way analysis of variance followed 

by Bonferroni post-test. 
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Figure 24: Bronchiolar changes in ovalbumin (Ova) sensitised guinea-pigs exposed to A) 

saline or B) Ova C) 30μg/ml LPS co-administered with Ova challenge D) 30μg/ml LPS 48 hours 

pre-Ova challenge and co-administered. L: lumen; ASM: airway smooth muscle; E: 

epithelium, IC: inflammatory cell. Stained with haematoxylin and eosin. Original 

magnification 100x (bar = 25 µm). 
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Figure 25: The mean pathology score of the peribronchiolar area in ovalbumin (Ova) 

sensitised guinea-pigs treated with either saline or 30μg/ml LPS for 1 hour, 48 hours before 

Ova challenge and co-administered with Ova. Results are expressed as mean±SEM; N=6 

Sen/saline (sensitised, exposed to saline), (saline/saline+Ova), (saline/LPS+Ova), N=4 

(LPS/LPS+Ova). *** Significantly different from sensitised/saline treated group treatment 

p<0.001; performed with one-way analysis of variance followed by Bonferroni post-test.  
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Figure 26: Bronchiolar changes in ovalbumin (Ova) sensitised guinea-pigs exposed to A) 

saline or B) Ova C) 30μg/ml LPS co-administered with Ova challenge D) 30μg/ml LPS 48 hours 

pre-Ova challenge and co-administered; L: lumen; ASM: airway smooth muscle; E: 

epithelium; G: goblet cell; Stained with alcian blue/periodic acid Schiff stain. Original 

magnification 200x (bar = 50 µm). 
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Figure 27: The number of mucin–associated goblet cells per 10,000 epithelial pixels in 

ovalbumin (Ova) sensitised guinea-pigs treated with either saline or 30μg/ml LPS for 1 hour, 

48 hours before Ova challenge and co-administered with Ova. Results are expressed as 

mean±SEM; N=6 Sen/saline (sensitised, exposed to saline), (saline/saline+Ova), 

(saline/LPS+Ova), N=4 (LPS/LPS+Ova). *** Significantly different from sensitised/saline 

treated group treatment p<0.001; ^ significantly different from Sal/Sal+Ova p<0.05; # 

significantly different from sal/LPS/Ova p<0.05; performed with one-way analysis of variance 

followed by Bonferroni post-test. 
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5.5.3 LPS EXPOSURE IN NON-SENSITISED GUINEA-PIGS 

Lung function was assessed for 12 hours after the 1st LPS exposure and found to not 

produce an airway response significantly different from saline (data not shown).  

 

Both saline and LPS challenged animals demonstrated an immediate 

bronchoconstriction which peaked 1 hour post-challenge. The magnitude of this 

bronchoconstriction was significantly higher in LPS challenged animals (-41.3±2.7% 

compared to saline, -22.5±4.5%). In both groups sGaw values returned to baseline by 

5 hours post-challenge. No further bronchoconstrictions were seen across the 12 

hours of measurements (Figure 28). LPS significantly increased the peak 

bronchoconstriction during 12 hours of lung function assessment compared to saline 

(-44.1±2.7% compared to -25.4±4.1%) No difference was seen at the 24 hour time 

point (Figure 28). LPS also produced a significant increase in area under the curve 

during this period (144.6±12.0%.hr compared to 75.4±20.8%.hr) (Figure 29).  

 

LPS significantly increased protein levels over saline (1.3±0.3mg/ml compared to 

0.5±0.05mg/ml) (Figure 30). Guinea-pigs challenged with saline demonstrated no 

change in response to histamine. Guinea-pigs challenged with LPS demonstrated an 

increased bronchoconstrictive response to histamine at 0 minutes (-14.1±3.8% 

compared to pre-LPS, -0.9±1.0%). This bronchoconstriction persisted until 10 

minutes post-histamine (-16.1±4.7% compared to pre-LPS, -1.0±2.5%) (Figure 31).  

 

LPS significantly increased total cells (26.0±6.1 x106/ml compared to saline, 

1.4±0.2x106/ml), macrophages (11.7±1.7x106/ml compared to 1.3±0.15x106/ml) and 

neutrophils (13.7±4.2x106/ml compared with 0.02±0.01x106/ml) (Figure 32).  
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LPS exposure significantly increased the amount of IL-8 in lungs (23.8±3.6pg/mg 

compared to saline non-detection, 0±0pg/mg respectively) (Figure 33).  

 

Figure 34 shows the lung sections stained with haematoxylin and eosin for general 

morphology of the bronchioles. Guinea-pigs exposed to LPS show increased 

inflammatory cell numbers in the peribronchiolar area. Figure 35 presents the mean 

pathology scores for the number of inflammatory cells in the peribronchiolar area in 

these guinea-pigs.  LPS exposure significantly increases the mean pathology score 

compared to saline exposure (2.5.±0.36 compared to 0.4±0.16).  

 

Figure 36 shows the lung sections stained with Alcian blue/ periodic acid Schiff to 

identifiy number of goblet cells in the airway epithelium. Guinea-pigs challenged 

with LPS show increased number of goblet cells. Figure 37 presents the number of 

mucin associated-goblet cells per 10,000 pixels of the epithelium.  LPS exposure 

significantly increases goblet cell numbers compared to saline (898.0±221.6 

compared to saline, 163.6±89.7). 
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Figure 28: The mean time-course values of sGaw in guinea-pigs treated with either saline or 30μg/ml LPS for 1 hour both 48 and 0 hours before lung 

function measurements. The histogram represents the maximum bronchoconstriction values recorded 0-12 hours and during the 24 hour reading. Mean 

changes in sGaw are expressed as mean±SEM percentage change from baseline prior to saline or LPS challenge. A negative value represents a 

bronchoconstriction. Results shown are after the second LPS or saline exposure. N=6 *significantly different from saline treatment p<0.05, ** p<0.01; 

performed with a two tailed T-test. 
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Figure 29: Total area under the curve analysis of sGaw values in guinea-pigs treated with 

either saline or 30μg/ml LPS for 1 hour both 48 and 0 hours before lung function 

measurements. For the purpose of analysis only negative peaks were considered and all 

positive sGaw values were excluded. Total includes all negative peaks from 0-12 hours. Area 

under the curve is expressed as %.hour. N=6 *significantly different from saline treatment 

p<0.05; performed with a two tailed T-test. 

 

 

Figure 30: Total lavage fluid protein of guinea-pigs treated with either saline or 30μg/ml LPS 

for 1 hour, 72 and 24 hours before lavage. Protein content was determined by BCA protein 

assay. N=6 *Significantly different from saline treatment p<0.05; performed with a two 

tailed T-test. 
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Figure 31: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles and 0.5 LPM per chamber over 2 

minutes, 1 minute drying period) in guinea-pigs treated with either A) saline or B) 30μg/ml LPS for 1 hour, 72 and 24 hours before final AHR assessment. 

Values were recorded 7 days pre- and 24 hours post-2nd LPS challenge. Mean changes in sGaw are expressed as mean±SEM percentage change from 

baseline.  A negative value represents a bronchoconstriction. N=6 *Significantly different from time paired pre-LPS challenge values p<0.05, ** p<0.01; 

performed with a two tailed T-test. 
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Figure 32: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid in guinea-pigs treated with saline or 30μg/ml LPS for 1 

hour, 72 and 24 hours before lavage. Results are expressed as mean±SEM; N=6 

***significantly different from saline treatment p<0.001; performed with a two tailed T-test. 
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Figure 33: The concentration of IL-8 in the lungs of guinea-pigs treated with saline or 

30μg/ml LPS for 1 hour, 72 and 24 hours before lavage. Results are expressed as mean±SEM; 

N=6 *significantly different from saline treatment p<0.05; performed with a two tailed T-

test. 

 

 

Figure 34: Bronchiolar changes in guinea-pigs treated with saline or 30μg/ml LPS for 1 hour, 

72 and 24 hours before lavage. L: lumen; ASM: airway smooth muscle; E: epithelium, IC: 

inflammatory cell. Stained with haematoxylin and eosin. Original magnification 100x (bar = 

25 µm). 
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Figure 35: The mean pathology score of the peribronchiolar area in guinea-pigs treated with 

saline or 30μg/ml LPS for 1 hour, 72 and 24 hours before lavage. Results are expressed as 

mean±SEM; N=6 *** significantly different from saline treatment p<0.001; performed with a 

two tailed T-test. 

 

 

 

Figure 36: Bronchiolar changes in guinea-pigs treated with saline or 30μg/ml LPS for 1 hour, 

72 and 24 hours before lavage. L: lumen; ASM: airway smooth muscle; E: epithelium; G: 

goblet cell; Stained with alcian blue/periodic acid Schiff stain Original magnification 200x 

(bar = 50 µm). 
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Figure 37: The number of mucin–associated goblet cells per 10,000 epithelial pixels in 

guinea-pigs treated with saline or 30μg/ml LPS for 1 hour, 72 and 24 hours before lavage. 

Results are expressed as mean±SEM; . Results are expressed as mean±SEM; N=6 

*significantly different from saline treatment p<0.05; performed with a two tailed T-test. 
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5.6 DISCUSSION 

LPS exposure has been shown to both attenuate and exacerbate responses to 

allergen in both humans and animal models. The range of different species, allergen 

sensitisation and challenge protocols, LPS dose and exposure timings in relation to 

allergen challenge in animal models probably account for these divergent responses.  

The experiments described in this chapter were performed to examine the effects of 

number and timing of LPS exposures on allergen-induced responses. The overall aim 

was to find a timing and number of LPS exposures that exacerbates allergen-induced 

responses as a model of asthma exacerbation. 

5.6.1 LUNG FUNCTION 

In the present study it was shown that LPS exposure 24 hours before allergen 

challenge significantly attenuates the early asthmatic response to ovalbumin. 

Contrastingly, when LPS was co-administered with ovalbumin there was no decrease 

in early phase response. A decrease in the immediate asthmatic response with LPS 

given 24 hours before allergen challenge has been demonstrated in both animal 

models and humans (Vannier et al, 1991; Sohy et al, 2006). The attenuation of the 

early asthmatic response may be due to effects on mast cells, which mediate early 

phase bronchoconstrictions via histamine and other granule product released. Mast 

cells respond to LPS via TLR4 on the cell membrane and become activated both in 

vitro (Masuda et al, 2002) and in vivo (Murakami et al, 2000). This activation results 

in a partial degranulation of stored histamine and decrease in the production of 

arachidonate acid metabolites such as LTC4 and TXA2, both of which are potent 

bronchoconstrictors (Vannier et al, 1991). Mast cells can take over 24 hours to fully 

recover from degranulation (Dvorak, 2005). Thus, the decrease in early phase 

bronchoconstriction to Ova could be due to insufficient time for mast cells to recover 

from LPS induced degranulation 24 hours before allergen challenge. The 48 hours 

between LPS exposure and allergen challenge in the Ova and LPS co-administration 

protocol likely gives mast cells sufficient time to recover from these effects.  



Chapter 5 

 

205 

 

 Early phase responses are not typically measured in allergen challenge 

models and so there are few studies on which to compare responses. Using an 

ovalbumin and LPS co-administration protocol, Tulic et al, (2002) demonstrated an 

increase in the time taken to reach peak early phase bronchoconstriction. No 

elongation in the early phase response was reported. This is in accordance with the 

current study where a single dose of LPS co-administered with ovalbumin challenge 

did not significantly prolong the early phase bronchoconstriction. The addition of a 

second LPS exposure 48 hours before co-administration with ovalbumin significantly 

lengthened the duration of the early phase. To the best of my knowledge no other 

study has shown this effect. Other changes in the early phase response have been 

shown in humans. A further reduction in FEV1 values after allergen was shown when 

co-administered with LPS (Boehlecke et al, 2003). Other studies in humans have 

failed to demonstrate this effect (Nightingale et al, 2000). In the latter study, the 

administration of salbutamol shortly before allergen challenge likely accounts for 

this difference.  

The elongation of the EAR seen in this study could be due to enhanced activation of 

mast cells by LPS. Mast cells mediate other LPS-induced exacerbation effects such as 

enhanced allergic inflammation (Murakami et al, 2000). Also, mast cells have been 

shown in vitro to demonstrate increased IgE induced cross-linking in the presence of 

a single dose of LPS (Masuda et al, 2002). In the current study an increase in the 

length of the EAR was only observed in guinea-pigs in the co-administration protocol 

exposed to 2 doses of LPS. In vivo it might be necessary for LPS priming before an 

enhance response can be produced. LPS exposure upregulates the expression of 

TLR4, the main receptor involved in LPS signalling in addition to downstream 

messengers (Lin et al, 2006; Hoogerwerf et al, 2010). Subsequent LPS exposure in 

cells with increased TLR-4 expression may mediate a larger response (Nigo et al, 

2006). LPS also primes airway neutrophils and macrophages for further exposures 

and the release of bronchoconstrictor substances either directly and indirectly 

(Reino et al, 2012; Hoogerwerf et al, 2010). This may also be the mechanism behind 
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the bronchoconstriction seen in guinea-pigs treated with LPS twice in the current 

study; although non-IgE mediated mast cell degranulation cannot be ruled out. The 

need for previous exposure to LPS to produce an increased bronchoconstrictor 

response is further highlighted by the results for LPS exposure on a non-allergic 

background. In the current study, a single LPS exposure does not cause a 

bronchoconstriction, whereas a second exposure does. LPS induced 

bronchoconstrictions have been observed in humans (Michel et al, 1989; Cavagna 

1969). This process has been associated with the release of platelet activating factor, 

a potent bronchoconstrictor (Rylander & Beijer, 1987). 

 This study did not demonstrate any significant effect of LPS on late phase 

bronchoconstrictions to allergen. A lack of effect on the late phase 

bronchoconstriction following LPS exposure has also been shown in humans (Sohy et 

al, 2006). However it is difficult to draw many comparisons with this study as it only 

examined LPS exposure 24 hours before allergen challenge and failed to 

demonstrate a change in inflammatory response. This may be due to the low dose of 

LPS used. A study by Tulic et al, (2002) reported decreased late phase responses in 

rats following allergen and LPS co-administration. However, this study did not 

actually measure late phase bronchoconstrictions and instead inferred ‘late phase 

response’ from AHR and inflammation.  As seen previously in chapter 3, dissociation 

between allergen responses can happen, making inferences difficult. Despite not 

having a significant effect on the late phase bronchoconstriction, the results suggest 

LPS may be having some effect on the late phase. A non-significant trend for an 

increase in the peak bronchoconstriction of the late phase with increasing number of 

LPS exposures in the co-administration protocol was observed. Even in the studies 

where the EAR was reduced by LPS, the response was prolonged with the EAR and 

LAR merging. Due to a lack of studies, especially in animal models examining ‘true’ 

late phase bronchoconstrictions it’s not possible to be certain of the effect of LPS on 

the late phase.  
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5.6.2 AIRWAYS HYPERRESPONSIVENESS 

The present study demonstrated that LPS has dichotomous effects on AHR 

depending on the timing of the exposure. When LPS exposure took place 24 hours 

before ovalbumin challenge there was decreased development of AHR. 2 exposures 

to LPS before Ova challenge completely abolished the development of AHR. 

Similarly, Komlosi et al, 2006 reported a decrease but not abolition of AHR when a 

single dose of LPS was given 24 hours before Ova challenge. Others have 

demonstrated no change in allergen-induced AHR with LPS exposure (Gerhold et al, 

2002). However, in this particular study AHR was measured 48 hours after the final 

Ova challenge, a time point at which AHR to Ova alone would be expected to have 

diminished (Evans, 2009). The decreased AHR in this study does not seem to be due 

to the airways already being constricted. No significant bronchoconstriction was 

present at 24 hour post-Ova challenge, the time of AHR assessment.  

LPS co-administered with Ova prolonged the bronchoconstrictor response to 

histamine. Several studies have demonstrated increases in AHR to allergen with LPS 

exposure. Delayre-Orthez et al, 2004 demonstrated an increase in AHR when repeat 

Ova challenges were co-administered with LPS. Rodriguez et al, (2003) showed that 

intra-nasal LPS immediately before Ova challenge prolongs the airway response to a 

bronchoconstrictor agent. This effect is only found when LPS is administered locally. 

LPS administered intravenously abolished the AHR after Ova challenge. Contrasting 

with the current study, LPS and allergen co-exposure has been shown to decrease 

AHR in rats (Tulic et al, 2002). However, this study also reported a decrease in 

inflammation suggesting that an alternative LPS response at this time point may 

have been triggered. Factors such as the species, dose and source of LPS and Ova 

protocol (the aforementioned study used ricin instead of alum as the adjuvant) may 

account for this discrepancy.  

The mechanism behind both the increased and decreased AHR observed in 

this study is unknown. AHR is often associated with increases in airway inflammation 

(Cockcroft & Davis, 2006). Supporting this is the observation in the present study 
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that an increase in AHR was seen alongside an increase in inflammation in guinea-

pigs co-administered LPS and Ova. Additionally, LPS alone induces AHR, 24 hours 

after LPS exposure alongside an increase in inflammation. This contrasts with Nevin 

& Broadley (2004) who demonstrated AHR only 1 hour after LPS exposure in guinea-

pigs. However, this study only used a single LPS exposure, whereas the present study 

used 2, possibly increasing the duration of LPS-induced AHR. This supported by the 

observation that 2 LPS challenges induce AHR which is still present at 4 hours post-

challenge, whereas with one it has dissipated (Toward & Broadley, 2001). 

Contrasting with the present study, LPS exposure 24 hours before Ova challenge has 

also been shown to increase inflammation but decrease AHR. Furthermore, the 

airway response to histamine was abolished with the addition of an exposure 72 

hours before Ova challenge. This is not the first study to demonstrate dissociation 

between AHR and inflammation. AHR has been demonstrated with limited 

inflammation (Delayre-Orthez et al, 2004) and less AHR in the presence of increased 

inflammation (Komlosi et al, 2006). This suggests the importance of other factors in 

the development of AHR. 

The nature of the inflammatory response may be a more important factor 

then the extent of it. In particular, neutrophil and macrophage activity may be an 

important factor in the development of AHR. LPS alone induces AHR in rats which 

correlate strongly with fluctuating levels of neutrophils (Pauwels et al, 1990). 

Neutrophils and macrophages release reactive oxygen species which cause epithelial 

damage and reduce the amount of enzymes such as diamine oxidase, important in 

breakdown of histamine (Folkerts & Nijkamp, 1998). This could extend the biological 

half-life of histamine, prolonging bronchoconstriction. In allergy, this may require a 

full allergen response to result in a worsening of AHR. The EAR and LAR are closely 

associated, the latter of which has been linked to the development of AHR 

(Hargreave et al, 1986). The observation that LPS did not increase AHR in pre-Ova 

LPS exposure groups, also not demonstrating a full EAR would support this. 

Alternatively, an increase in the production of nitric oxide may mediate increased 
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AHR. Nitric oxide levels and AHR both decrease in LPS binding protein deficient mice, 

which helps mediate LPS receptor binding (Stroheimer et al, 2001). However, an 

iNOS inhibitor effective on AHR to Ova alone, fails to reduce AHR in an Ova and LPS 

combination model questioning the role of this potential mechanism (Komlosi et al, 

2006). Regardless of the mechanism behind prolonged AHR, this study has clearly 

highlighted the temporal nature of LPS’s effect on functional responses. A study by 

Tulic et al, (2002) further demonstrates this; when LPS is administered 18 hours after 

allergen challenge it diminishes AHR. Thus it seems there is a key period around the 

time of allergen challenge where LPS will exacerbate AHR but given 18-42 pre- or 

post-allergen challenge will attenuate it. 

5.6.3 AIRWAY INFLAMMATION AND CYTOKINES 

Leukocyte infiltration in lavage fluid increased with the number of LPS exposures but 

was unaffected by the timing of LPS exposure. Airway inflammation assessed by an 

H&E scoring method did not reveal this increase in inflammation with LPS treatment. 

This is probably because H&E scoring methods lack the same fidelity as lavage based 

methods of assessment. They are mainly used to assess morphological changes. The 

increase in lavage fluid inflammation with different LPS timings is in accordance with 

other studies which suggest that the route of LPS administration (intra-venous vs 

intra-nasal/inhaled) and the exposure dose are more important factors in the 

inflammatory response. A high dose of LPS administered locally to the airways 

increases total cell counts in both mice and rats.  As in the present study, neutrophils 

were significantly increased (Murakami et al, 2006; Tulic et al, 2000). Unlike in the 

present study where no significant change in eosinophil was seen, an increase in 

eosinophils was also observed. This is similar to the situation in humans where 

neutrophil and/or eosinophils increase during asthma exacerbations (Ordonez et al, 

2000). The lack of an increase in eosinophils in the present study could be due to 

variation in the protocols employed, with the former study using multiple 

allergen/LPS challenges. This may increase Th2 lymphocyte responses which would 

favour increases in eosinophils. 
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High doses of LPS have also been shown to result in an overall decrease in 

inflammatory cells (Gerhold et al, 2002). Most of the decrease was in eosinophils; 

whether neutrophils increased is unknown as the researchers were unable to detect 

them. Making comparisons between the results of these in vivo studies is always 

problematic. It is difficult to extrapolate the dose of LPS that an animal actually 

receives from what is reported in the literature. The time of exposure, route and 

pharmacokinetic properties likely all vary.  

 Underlying the increase in neutrophils seen in the present study was an 

increase in the amount of IL-8 in the lung of guinea-pigs where LPS was co-

administered with Ova challenge. A similar increase was seen in guinea-pigs exposed 

to LPS twice. An increase in IL-8 with LPS treatment would be expected as LPS is 

known to be a potent inducer of the cytokine (Alexis et al, 2005). IL-8 is a key 

chemoattractant in the migration of neutrophils and unregulated by LPS (Kamochi et 

al, 1999). However, increases in neutrophilia were also seen in guinea-pigs treated 

with LPS 24 hours before Ova challenge but with no increase in IL-8. This is likely due 

to differences in the time point after LPS exposure that lungs were assessed. In the 

LPS co-administration groups, lungs were frozen 24 hours after final LPS exposure, 

whereas this was done 48 hours later In the 24 hour pre-Ova LPS exposure groups. 

IL-8 is a transient cytokine, not persistently increased over long time periods 

(Angrisano et al, 2010; Danahay et al, 1999). At the 48 compared to 24 hours post-

LPS exposure, IL-8 levels would be expected to be lower.  

 Increased IL-13 was seen in guinea-pigs challenged with Ova. Ova induces Th2 

lymphocyte responses which are characterised by increased levels of cytokines such 

as IL-4 and IL-13. LPS exposure did not further increase IL-13 levels in lung. This is in 

accordance with a study that also used a high dose of LPS (Murakami et al, 2006). 

Other studies have shown a decrease in IL-13 (Komlosi et al, 2006; Rodriguez et al, 

2003). No increase in IL-13 levels indicates that LPS exposure is not further 

promoting Th2 allergic responses. This is more characteristic of lower doses of LPS, 
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whereas high doses tend to favour Th1 proinflammatory responses with increased 

IL-8, IL-1β and GM-CSF (Boehlecke et al, 2003).  

IL-17 levels were increased in guinea-pigs exposed to LPS but not above that 

seen for Ova alone. The exception to this was in guinea-pigs exposed to a single dose 

of LPS 24 before Ova challenge. IL-17 is implicated in more severe forms of asthma 

and associated with increased neutrophils (Doe et al, 2010). Few studies examining 

the effect of LPS on IL-17 levels in allergic responses have been performed. One 

study using house dust mite as an allergen found that LPS increased IL-17 

concentrations (de Boer et al, 2013). This study used repeat allergen challenge and a 

non-Ova allergen which may account for difference with the present study. In 

addition, Doe et al, (2010) noted that IL-17 can be difficult to detect and only 

secreted in certain lung compartments. Thus using lung homogenate may not have 

been the best way to detect changes in IL-17 levels. Ideally lavage fluid would have 

been used but IL-17 levels were too low to be consistently detected. Therefore the 

effect of LPS on IL-17 levels requires further investigation. 

5.6.4 AIRWAY OEDEMA   

Airway oedema was observed to be significantly increased in guinea-pigs treated 

with LPS 48 hours pre- and co-administered with Ova challenge. This increase was 

also seen with 2 doses of LPS alone. This is characteristic of asthma exacerbations in 

humans (Hogg, 1997). LPS is well established at causing protein extravasation and 

oedema and has been shown to increase LPS binding protein levels, which may 

further amplify oedema (Dubin et al, 1996). An increase in airway oedema was not 

seen with a single dose of LPS co-administered. This indicates that 2 LPS exposures 

may be necessary to cause an increase in airway oedema. The lack of an increase in 

oedema in guinea-pigs treated with either 1 or 2 LPS exposures 24 hour pre- Ova 

challenge may be due to a failure to invoke the full allergic response. Alternatively, 

oedema levels may have decreased 48 hours after LPS challenge. 
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5.6.5 GOBLET CELL HYPERPLASIA/METAPLASIA 

Goblet cell numbers increased significantly with 2 doses of LPS in either exposure 

protocol used but not with a single dose of LPS. Goblet cell numbers also increased 

with 2 doses of LPS on a non-allergic background. Other studies have confirmed this 

result (Toward & Broadley, 2002). The largest increase in goblet cells was seen with 2 

LPS exposures in the Ova co-administration protocol. Importantly this was the 

protocol that also exacerbated other Ova-induced responses. Mucus secretion is one 

of the hallmarks of asthma exacerbations and is commonly seen in asthmatics that 

have died from status asthmaticus (Kuyper et al, 2003).  

5.6.6 GENERAL CONCLUSIONS 

This study has demonstrated the temporal relationship that LPS has on allergen 

challenge induced responses. It has shown that LPS exposure within 24 hours of 

allergen challenge diminishes functional responses, while increasing airway 

inflammation. It has also shown that LPS co-administered with allergen challenge is 

able to exacerbate functional and inflammatory responses to allergen challenge. 

From this study a model of asthma exacerbation demonstrating prolonged EAR, 

prolonged bronchoconstrictor response to histamine, increased airways 

inflammation, airway oedema and goblet cell hyperplasia has been developed. The 

sensitivity of this model to anti-asthma treatments will be investigated in the coming 

chapters.  
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6.1 INTRODUCTION 

6.1.1 INHALED CORTICOSTEROIDS 

Corticosteroids are a frontline therapy used in the treatment of asthma. Historically, 

when their ability to treat the symptoms of asthma were realised they were given 

systemically. However this caused extensive side effects including growth 

retardation and osteoporosis, so in the 1970s inhaled preparations were developed. 

Inhaled corticosteroids continued to be developed and many including budesonide, 

beclometasone and fluticasone propionate are still used in routine control of 

asthma. Inhaled corticosteroids have proven effective in providing symptomatic 

control, reducing exacerbations and preventing the development of irreversible 

airway remodelling (Barnes et al, 1998A). Corticosteroids are frequently used alone 

or in combination with other therapies such as theophylline, anti-leukotrienes and 

β2-adrenoceptor agonists. These medicines are all complimentary to corticosteroid 

therapy. β2-adrenoceptor agonists in particular are able to suppress early phase 

bronchoconstriction, one of the elements of asthma upon which corticosteroids 

have limited efficacy (Booij-Noord et al, 1971). 

6.1.2 EFFECT OF CORTICOSTEROIDS IN ASTHMA 

The effects of inhaled and systemic steroids are similar so will be discussed together. 

Corticosteroids have a wide range of actions on inflammatory cells, mediators, 

mucus secretion and AHR.  Eosinophils, a hallmark of allergic disease, are reduced 

following treatment with steroids. This reduction is partly due to the suppression of 

eosinophil accumulation by decreased chemoattractants, adhesion molecules and 

increased eosinophil apoptosis (Underwood et al, 1997; Meagher et al, 1996). 

Macrophages can secrete both pro- and anti-inflammatory mediators. Corticosteroid 

treatment suppresses pro-inflammatory and increases anti-inflammatory secretion 

of mediators such as IL-10 (John et al, 1998). Corticosteroids also reduced mast cell 

numbers but have little effect on mast cell degranulation (Belvisi, 2004). This 

accounts for their lack of effect on the early asthmatic response which is mast cell 
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mediated. Dendritic cells are reduced in number by corticosteroids, decreasing 

allergen presentation and dampening the immune response (Nelson et al, 1995). T-

lymphocyte activity is also blocked by corticosteroid treatment, resulting in a 

reduction in the secretion of Th2 cytokines such as IL-4, IL-5 and IL-13, which are 

important mediators in allergic disease (Krouwels et al, 1996). Epithelial cells are 

now recognised as an important source of inflammatory mediators including IL-8, 

CCL11 (eotaxin-1), GM-CSF, CCL4 (MIP-1α), CCL5 (RANTES) and nitric oxide. These 

are all decreased by corticosteroid treatment (Barnes et al, 1998a). Neutrophils are 

not commonly found in milder forms of asthma but can make up a significant portion 

of the airway inflammatory cell population in more severe and neutrophilic forms of 

the disease (Wenzel et al, 1999). Contrastingly with other inflammatory cell types, 

neutrophils are relatively unresponsive to corticosteroid and may even enhance their 

survival (Strickland et al, 2001). AHR to bronchoconstrictor agents is also reduced by 

corticosteroid treatment (Barnes, 1990). The late asthmatic response, seen in a 

majority of asthmatics is also reduced, likely because of corticosteroids anti-

inflammatory actions (Palmqvist et al, 2005). Mucus secretion is reduced by several 

mechanisms including indirect action from a reduction in inflammatory mediators, 

direct action on the mucosal glands and inhibition of the mucin genes MUC5A and 

MUC2 (Shimura et al, 1990; Kai et al, 1996). Airway oedema is decreased by direct 

genomic effects but also by extra-genomic effects such as vasoconstriction (Mendes 

et al, 2003). A simplified diagram of some of the main cellular effects of 

corticosteroids is shown in Figure 1. 

In addition to these desirable effects of corticosteroids many side effects are 

frequently encountered. Fewer side effects are encountered with inhaled than with 

oral corticosteroids due to lower systemic distribution (Wood et al, 1999). However, 

the incidence of side effects increases with higher inhaled doses, which are used in 

less corticosteroid-responsive asthma. Although rare with inhaled therapy, potential 

side effects include osteoporosis, cataracts, growth retardation in children and 

cardiovascular and gastrointestinal disturbances (Schäcke et al, 2002). Additional 
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side effects of inhaled steroids include hoarseness of voice, oral infections; 

particularly fungal and dysphonia due to laryngeal deposition (Barnes et al, 1998A).  

 

 

Figure 1: Simplified diagram of the major cellular effects of corticosteroids. 

6.1.3 MECHANISMS OF CORTICOSTEROID ACTION 

Corticosteroids pass readily through the plasma membrane and bind to the 

cytoplasmic glucocorticoid receptor (GR). Several splice variants of the GR exist 

including GR-α which binds to corticosteroids and GR-β which does not. Thus the 

effects of corticosteroids are through GR-α, although GR-β may have a role in 

corticosteroid insensitivity (Leung and Bloom, 2003; Strickland et al, 2001). The 

binding of a corticosteroid to the GR results in dissociation of molecular chaperones 

such as heat shock protein (hsp-90) and FK-binding protein, resulting in nuclear 

localisation of the GR-corticosteroid complex. Corticosteroids exert their anti-

inflammatory effects by several distinct mechanisms (Marwick et al, 2007). One 
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mechanism termed trans-activation increases the transcription of anti-inflammatory 

genes. Negative glucocorticoid response elements sites also exist which can suppress 

gene expression (Cis-repression) and likely mediate some of the side effects of 

steroids (Schäcke et al, 2002). Another anti-inflammatory effect of steroids is trans-

repression which suppresses pro-inflammatory gene transcription. These processes 

are believed to take place at different concentrations of corticosteroid. 

Corticosteroids can also modify proteins post-transcriptionally by decreasing the 

stability of mRNA (Barnes, 2006). 

6.1.3.1TRANS-ACTIVATION 

GR-corticosteroid complexes are able to dimerise at specific DNA sites called 

glucocorticoid response elements (GRE) in the promoter regions of corticosteroid-

responsive genes. This allows GR to interact with a variety of co-activator molecules 

such as GRIP-1, pCAF and CREB binding protein (CBP). These proteins have intrinsic 

histone acetyltransferase (HAT) activity and thus can induce histone acetylation, 

which unwinds DNA and increases gene transcription. Inflammatory genes activated 

by corticosteroids include IL-10, MAP kinase phosophatase-1 (MKP-1), CBP, annexin-

1 and the inhibitor of NF-κB (IκB). This is unlikely to be the main mechanism of 

corticosteroids as in vitro 100 fold higher concentrations then for trans-repression 

are required (Ito et al, 2000). Most of the side effect profile of steroids at high doses 

such as cataracts, osteoporosis, growth retardation, metabolic effects and fragility 

may be caused by trans-activation. This process is shown in Figure 2. 
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Figure 2: Transactivation of anti-inflammatory gene expression by corticosteroids. 

Corticosteroids pass through the cell membrane and bind to glucocorticoid receptors (GR) in 

the cytoplasm and translocate to the nucleus. In the nucleus they increase transcription by 

binding to glucocorticoid response elements (GRE) and interactions with co-activators such 

as pCAF, GRIP-1 and CBP, inducing histone acetylation and anti-inflammatory gene 

trascription. pCAF= p300 and p300-CBP associated factor;  CBP= cyclic AMP response 

element binding (CREB) binding protein;  GRIP-1= GR interacting protein-1. Diagram redrawn 

and adapted from Barnes, 2006. 

 

6.1.3.2 TRANS-REPRESSION 

Trans-repression is the major mechanism by which corticosteroids exert their anti-

inflammatory effect. GR monomers are able to form co-repressor complexes which 

in turn can inhibit activated transcription factors such as NF-κB and AP-1 via protein-

protein interaction. This prevents their natural HAT activity, suppressing pro-

inflammatory gene transcription (Glass & Ogawa, 2006). Corticosteroids can also 

recruit histone deacetylases (HDAC) which remove acetyl groups from histone 

protein, causing DNA to become less accessible for transcription (Ito et al, 2000). 

This process is shown in Figure 3. Other modifications such as phosphorylations, 

methylations and ubiquitinations are also important in corticosteroid gene 

suppression effects.  
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Figure 3:  Transrepression of activated inflammatory genes. Inflammatory stimuli such as IL-

1β and TNF-α stimulate an inflammatory cascade, which activates NF-κB. NF-κB translocates 

to the nucleus and forms a pro-inflammatory complex with co-activators such as pCAF and 

CBP. These activators have intrinsic HAT activity and acetylate histone proteins, increasing 

inflammatory gene transcription. Corticosteroids interfere with this process by binding to GR 

and translocating to the nucleus. In the nucleus they bind to co-activators, inhibiting HAT 

activity and also directly recruit HDAC-2. HDAC-2 deactylates histone proteins, suppressing 

gene transcription. NF-κB= nuclearfactor-kappaB; pCAF= p300 and p300-CBP associated 

factor; CBP= cyclic AMP response element binding (CREB) binding protein; HAT= histone 

acetyl transferase; HDAC= Histone deacetylase. Diagram redrawn adapted from Barnes, 

2006. 

6.1.4 INHALED CORTICOSTEROID INSENSITIVITY 

Resistance or insensitivity to corticosteroids exists in about 5% of the asthmatic 

population. Full corticosteroid resistance is rare and most patients lie on a spectrum 

of responsiveness (Szefler et al, 2002). Insensitivity to inhaled corticosteroids often 

results in higher doses being used which carry an increased risk of side effects 

(Schäcke et al, 2002). In patients completely unresponsive to inhaled corticosteroids, 

short bursts of oral corticosteroids are used to control symptoms (Chan et al, 1998). 

These are associated with extensive side effects and are therefore not desirable for 

long term control. Patients that are unresponsive to corticosteroid treatment are 



Chapter 6 

 

220 

 

more likely to have poorly controlled asthma and present considerable management 

and economic problems. 

Patients with corticosteroid insensitive asthma display increases in mast cells, 

macrophages and lymphocytes. Increased levels of ECP, IL-8 and MPO are also 

observed and correspond with increases in eosinophils and neutrophils (Jatakanon et 

al, 1999). There is considerable heterogeneity in the presence of these 2 cells 

between individuals, suggesting several sub-groups of patients may exist (Wenzel et 

al, 1999). Whether these differences are due to variability in individuals’ 

corticosteroid treatment is currently unknown. This is possible though as neutrophils 

are known to be less corticosteroid responsive then eosinophils (Strickland et al, 

2001). The presence of neutrophils in corticosteroid insensitive asthmatics has led to 

the suggestion that the activation of the innate immune system is critical in its 

development. In particular, activation of interferon and TLR4 pathways during viral 

and LPS/bacterial induced asthma exacerbations have been implicated (Yang et al, 

2009). Corticosteroid-insensitive asthmatics demonstrate inflammatory patterns 

characteristic of LPS activation, coinciding with high levels of LPS in lavage fluid 

(Goleva et al, 2008). Additionally, LPS induces neutrophilic inflammation which is 

unresponsive to inhaled corticosteroid treatment in healthy volunteers and 

asthmatics (Trapp et al, 1998; Michel et al, 2000). However, despite these 

observations the full relationship between LPS-induced asthma exacerbations and 

corticosteroid resistance remains to be fully characterised.  

 

6.1.5 MECHANISMS CORTICOSTEROID INSENSITIVITY 

Several mechanisms have been implicated in corticosteroid insensitive asthma. 

These include decreased GR expression, decreased affinity of ligands for GR, 

decreased ability of GR to bind DNA, increased expression of pro-inflammatory 

transcription factors and decreased expression and activity of co-repressor proteins. 

Cellular mechanisms including Th17 lymphocytes and neutrophils have also been 
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proposed. The potential mechanisms are shown in Figure 4. The importance of these 

mechanisms probably varies between patients. It is know that the presence of 

corticosteroid insensitivity in asthma is not associated with any abnormality of 

cortisol levels or Addison’s disease.  

6.1.5.1 GR BINDING  

A reduction in GR binding affinity to corticosteroids has been found in corticosteroid 

insensitive asthmatics. In most patients this defect was found to be reversible in vitro 

without the presence of IL-2 or IL-4 suggesting that the change is not intrinsic (Sher 

et al, 1994). One potential mechanism for this is increased expression of GR-β which 

can decrease the affinity of ligands for GR-α by the formation of hetrodimer 

complexes (Oakley et al, 1999). The combination of IL-2 and IL-4 or IL-13 alone 

increases the expression of GR-β but with no change in GR-α levels (Leung and 

Bloom, 2003). Increased expression of GR-β has been shown in macrophages of 

corticosteroid insensitive patients (Goleva et al, 2006). The high expression of GR-β 

in neutrophils, prevalent in corticosteroid insensitive asthma may also explain their 

insensitivity to steroids (Strickland et al, 2001). However, increased GR-β levels have 

not been found in all patients so may represent just one of many pathways that lead 

to corticosteroid insensitivity (Gagliardo et al, 2000; Butler et al, 2012). Other factors 

such as p38 MAPK and nitric oxide can also decrease GR activity, although the 

mechanism of this remains uncertain (Irusen et al, 2002; Galigniana et al, 1999).  

6.1.5.2 GR NUCLEAR TRANSLOCATION AND GRE BINDING 

Other groups of corticosteroid insensitive patients have shown decreased nuclear 

translocation of GR in human monocytes (Matthews et al, 2002). As with GR ligand 

affinity, p38 MAPK may also mediate this process (Irusen et al, 2002). The JAK-STAT 

pathway may also play a role in decreased nuclear translocation. Treatment of 

murine cells with IL-2 induced corticosteroid insensitivity which was reversed by a 

JAK3 inhibitor. The JAK3 inhibitor prevented GR and STAT5 binding, preventing 

nuclear translocation of GR (Goleva et al, 2002). However, Matthews et al, (2002) 
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demonstrated that in a separate group of patients nuclear translocation was normal 

but the ability of steroids to trans-activate certain genes was decreased.  

6.1.5.2 COFACTOR ASSOCIATION 

Corticosteroid insensitivity may also be due to an inability to repress pro-

inflammatory signalling. Both AP-1 and NF-κB are redox sensitive proteins which 

demonstrate increased activity with increasing oxidative burden, as seen in asthma 

exacerbations or severe chronic inflammation (Rahman & MacNee, 1998). Increased 

levels of AP-1 are observed in corticosteroid insensitive asthma and concordantly a 

reduction in the ability of steroids to repress its pro-inflammatory activity (Adcock et 

al, 1995). A decrease in the ability to recruit co-repressor proteins such as HDAC may 

also be important in corticosteroid insensitivity. Many patients demonstrate no 

decrease in nuclear translocation or corticosteroid side effects (mediated by trans-

activation) but decreased HDAC-2 function (Ito et al, 2006; Hew et al, 2006). The 

restoration of HDAC-2 activity by the drug theophylline restores corticosteroid 

sensitivity in alveolar macrophages ex vivo and in vivo (Ito et al, 2002; Ford et al, 

2010). Decreased HDAC-2 activity may be direct or indirect.  

Indirect routes include the PI3K/Akt pathway which is increased during oxidative 

stress. The PI3K-δ subtype is particularly important in the development of 

corticosteroid-insensitivity as mice without this protein are resistant to cigarette 

smoke-induced corticosteroid insensitivity (Marwick et al, 2009). Inhibition of this 

pathway by the PI3K inhibitor LY-294002 attenuates allergic inflammation, AHR and 

reverses corticosteroid resistance in mice (Barthel & Klotz, 2005). More selective 

inhibitors of PI3K-δ such as Nortriptyline have similar biological actions but lower 

incidence of toxic side-effects (Mercado et al, 2011). Directly, reactive oxygen 

species such as hydrogen peroxide and SIN-1 (a peroxynitrate generator) are able to 

reduce HDAC-2 activity and increased tyrosine nitiration of HDAC-2 (Ito et al, 2004). 

However, a recent study has called into question the importance of this mechanism 

in a majority of patients (Butler et al, 2012). 
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6.1.5.4 CELLULAR MECHANISMS 

Neutrophils are implicated in the development of corticosteroid insensitive asthma. 

Their survival is increased in severe asthma and apoptosis inhibited by corticosteroid 

treatment (Uddin et al, 2009; Cox, 1995). This is associated with high constitutive 

levels of GR-β in circulating neutrophils and decreased expression of GR-α upon 

entering the airway (Strickland et al, 2001; Plumb et al, 2012). This particular 

modification may make airway neutrophils especially insensitive to corticosteroid 

treatment. Continued exposure to neutrophil promoting factors may facilitate 

neutrophil tissue damage and further oxidative stress induced modifications to 

corticosteroid responsiveness (Leung & Bloom, 2003). 

Th17 cells and their cytokines have also been implicated in corticosteroid insensitive 

asthma. IL-17, a hallmark cytokine of Th17 responses is increased with neutrophilia 

in asthma (Bullens et al, 2006). Th17 cells are insensitive to corticosteroid both in 

vitro and in vivo. Additionally, Th17 cell transfer decreased responsiveness to 

corticosteroids in animals previously sensitive to their effects (Mckinley et al, 2008). 

Whether IL-17 represents a distinct pathway of corticosteroid insensitivity or can 

occur alongside the other potential mechanisms is unknown.  
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Figure 4: Diagram of the potential mechanisms of corticosteroid insensitivity in asthma.  

6.1.5 EFFECT OF INHALED CORTICOSTEROIDS IN ANIMAL MODELS  

Inhaled corticosteroids such as fluticasone propionate (FP) have a range of effects on 

animal models of asthma. Evans et al, (2012) demonstrated that inhaled FP abolishes 

the late asthmatic response but has no effect on the early asthmatic response in 

guinea-pigs. Coinciding with this was a suppression of AHR and a significant 

reduction in eosinophilia and lymphocytes. These effects in guinea-pigs have also 

been confirmed by other groups (Lawrence et al, 1998).  

Few groups have examined the effect of inhaled corticosteroids on asthma 

exacerbations. Animal models demonstrating partial insensitivity to inhaled 

corticosteroids have been developed. Ito et al, (2008) demonstrated that low level 

Ova challenge for 4 weeks followed by a large exacerbating dose can evoke partially 

inhaled corticosteroid insensitive inflammation and fully insensitive AHR in mice. 

This was associated with a decrease In HDAC-2 activity. Singam et al, (2006) 
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demonstrated similar results in mice using respiratory syncytial virus infection 

superimposed on allergen challenge. Inhaled FP did not reduce AHR, lymphocytes 

and neutrophils but did reduce eosinophils. Essilfie et al, (2012) demonstrated that H 

influenza before allergen sensitisation in mice increases neutrophilia and Th17 

lymphocyte responses but decreased AHR, eosinophilia, total cell counts and Th2 

cytokines. Treatment with a dose of intranasal dexamethasone, effective on Ova 

evoked responses alone does not reduce the H.influenza induced changes. Presently, 

no one has examined the effect of inhaled steroids in a model demonstrating 

exacerbation of functional and allergic responses to LPS.  
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6.2 HYPOTHESIS 

‘LPS exposure will decrease the inhaled corticosteroid sensitivity of functional and 

inflammatory responses in an acute ovalbumin model of asthma’ 

6.3 AIMS AND OBJECTIVES 

The aim of this chapter was to determine the sensitivity to the inhaled 

corticosteroid, fluticasone propionate, of functional and inflammatory responses in 

ovalbumin, LPS and ovalbumin and LPS models. The initial aim was to establish an 

inhaled fluticasone propionate dose which significantly attenuates the late asthmatic 

response, AHR and cellular inflammation in an ovalbumin model. The effective dose 

was then used to establish the corticosteroid sensitivity of these responses in LPS 

alone and ovalbumin and LPS combination models. The effect of inhaled fluticasone 

propionate on lavage fluid protein and lung cytokines was also established. Whether 

the timing of LPS exposure alters the corticosteroid sensitivity of responses was also 

assessed by comparing 2 ovalbumin and LPS models used in chapter 5. 
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6.4 METHODS 

Methods describing the measurement of lung function, AHR, airway oedema, airway 

inflammation and cytokine levels can be found in more detail in chapter 2.  

6.4.1 OVALBUMIN PROTOCOLS 

6.4.1.1 SENSITISATION 

Guinea-pigs (200-300g, Dunkin-Hartley, male) were sensitised by a bilateral intra-

peritoneal injection of a solution containing 150µg ovalbumin (Ova) and 100mg 

aluminium hydroxide (Al(OH)3) in normal saline on day 1, 4 and 7. 

 

6.4.1.2 ACUTE OVALBUMIN MODEL  

Guinea-pigs were exposed to inhaled Ova (0.03%) for 1 hour on day 21 in a Perspex 

container as described in section 6.4.1.2. The lung function response to Ova was 

assessed over 12 hours. The bronchoconstrictor response to 0.3mM histamine was 

assessed on day 15 and 22 as described in section 6.4.5. FP (0.05, 0.1, 0.5 and 

1mg/ml per day split into twice daily doses) was administered by inhalation in a 

Perspex chamber for 15 minutes, twice a day from day 16-21. On day 21 FP was 

administered 30 minutes pre- and 6 hours post-Ova challenge. A diagram of this 

protocol is shown in Figure 5. 

 

Figure 5: The acute ovalbumin (Ova) protocol. Guinea-pigs were challenged with inhaled Ova 

(0.03% on day 21). Fluticasone propionate (FP) was dosed twice daily for 6 days 
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6.4.1.3 LPS PRE-ACUTE OVALBUMIN EXPOSURE PROTOCOL 

Sensitised guinea-pigs were exposed to inhaled LPS (30μg/ml) 24 hours before Ova 

challenge for 1 hour in a Perspex box. On day 21 guinea-pigs were exposed to Ova 

(0.03%) for one hour. The bronchoconstrictor response to histamine was assessed on 

day 15 and day 22. FP (0.5mg/ml per day, split into twice daily doses) was 

administered by inhalation in a Perspex chamber for 15 minutes, from day 16-21. On 

day 20 and 21 FP was administered 30 minutes pre- and 6 hours post-Ova or LPS 

challenge. A diagram of this protocol is shown in Figure 6. 

 

Figure 6: Diagram of the pre-ovalbumin (Ova) challenge LPS exposure protocol. Guinea-pigs 

were challenged with LPS (30μg/ml) 24 hours pre-Ova exposure. Fluticasone propionate (FP) 

was dosed twice daily for 6 days 

 

6.4.1.4 ACUTE OVA AND LPS CO-EXPOSURE MODEL 

Sensitised guinea-pigs were exposed to inhaled LPS (30μg/ml) 48 hours before Ova 

challenge in an exposure chamber and both LPS (30μg/ml) and Ova (0.03%) co-

administered on day 21. The bronchoconstrictor response to histamine was assessed 

on day 15 and day 22. FP (0.5 or 1mg/ml per day, split into twice daily doses) was 

administered by inhalation in a Perspex chamber for 15 minutes, from day 16-21. On 

day 19 and 21 FP was administered 30 minutes pre- and 6 hours post-Ova or LPS 

challenge. A diagram of this protocol is shown in shown in Figure 7. 
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Figure 7: Diagram of the LPS and Ova co-exposure protocol. Guinea-pigs were exposed to 

LPS (30μg/ml) on day 19 and both Ova and LPS co-administered on day 21. Fluticasone 

propionate (FP) was dosed twice daily for 6 days 

 

6.4.2 LPS EXPOSURE PROTOCOL 

Non-sensitised guinea-pigs were exposed to LPS (30μg/ml) on day 5 and 7 of the 

protocol. The bronchoconstrictor response to histamine was assessed on day 1 and 

day 8. FP (0.5 or 1mg/ml per day, split into twice daily doses) was administered by 

inhalation in a Perspex chamber for 15 minutes, from day 2-7. On day 5 and 7 FP was 

administered 30 minutes pre- and 6 hours post-LPS challenge. A diagram of this 

protocol is shown in Figure 8 

 

Figure 8: Diagram of the LPS alone exposure protocol. Guinea-pigs were exposed to 30μg/ml 

of LPS on day 5 and 7. Fluticasone propionate (FP) was dosed twice daily for 6 days. 
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6.4.3 DRUG ADMINISTRATION 

FP was dissolved in ethanol (30%), DMSO (30%) and saline (40%) and nebulised for 

15 minutes into a Perspex exposure chamber using a DeVilbiss nebuliser. 

6.4.4 MEASUREMENT OF LUNG FUNCTION 

Lung function was measured by whole body plethysmography following final Ova, 

LPS or Ova /LPS exposure in all protocols. Lung function was recorded hourly for 12 

hours and every 15 minutes during the first hour of measurements. A final 

measurement was also taken 24 hours post-final challenge. All values were 

expressed as a percentage of the baseline reading, taken before the final challenge. 

A negative percentage change in baseline value represents a bronchoconstriction. In 

Ova protocols, early (0-6 hours) and late (6-12 hours) asthmatic responses were 

expressed as the peak bronchoconstriction during that period (displayed as a 

histogram next to a time course plot) and the area under the curve. The duration of 

the early phase was expressed as the time taken to recover to 50% of peak early 

phase bronchoconstriction values. In the LPS only protocol, lung function was 

measured for 12 hours after the second LPS exposure. The peak bronchoconstriction 

during this period was expressed on a histogram next to the time course plot.  

6.4.5 AIRWAYS HYPERRESPONSIVENESS ASSESSMENT. 

AHR was determined using whole body plethysmography. This was performed by 

measuring the bronchoconstrictor response to histamine before inhaled 

corticosteroid treatment and 24 hours post-final LPS, Ova, LPS or Ova challenge. 

Histamine was delivered as described in chapter 2. Lung function was measured just 

before histamine inhalation and at 0, 5 and 10 minutes post-histamine exposure. The 

peak bronchoconstriction during this period was expressed on a histogram.  
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6.4.6 ASSESSMENT OF AIRWAYS INFLAMMATION 

Following final histamine exposure guinea-pigs were sacrificed by an intra-peritoneal 

overdose of sodium pentobarbitone, the lungs excised and lavaged. Total and 

differential cell counts were then performed as described in chapter 2.  

6.4.7 QUANTIFICATION OF CYTOKINE LEVELS USING ENZYME-LINKED 

IMMUNOSORBENT ASSAY (ELISA) 

Levels of IL-8, IL-17 and IL-13 were measured in diluted homogenised lung samples 

using ELISA supplied by R&D systems. Cytokine levels were adjusted for total lung 

protein and expressed as weight per mg of lung as described in section 2.2.3.2. 

6.4.8 ASSESSMENT OF AIRWAY OEDEMA 

Protein content in lavage fluid was determined as a measure of airway oedema by 

BCA protein assay as per the manufacturer’s instructions (Pierce protein biology).  
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6.5 RESULTS 

6.5.1 SENSITIVITY OF OVALBUMIN RESPONSES TO INHALED FLUTICASONE 

PROPIONATE 

Guinea-pigs treated with 0.05mg/ml FP (-68.9±3.3%), 0.1mg/ml FP (-71.7±2.9%) and 

vehicle (-69.4±7.5%) demonstrated an immediate bronchoconstriction. FP had no 

effect on the time course of the EAR. A further bronchoconstriction was observed in 

all groups between 6-12 hours including 0.05mg/ml FP at 8 hours (-17.2±5.7%), 

0.01mg/ml FP (-15.2±4.6%) and vehicle at 7 hours (-19.7±5.7%)  (Figure 9, time 

course. No significant change in peak EAR, LAR or 24 values were observed with 

0.05mg/ml and 0.1mg/ml FP treatment (Figure 9, histogram).  

 

Guinea-pigs treated with 0.5mg/ml FP (-59.0±4.6%), 1mg/ml FP (-67.9±2.3%) and 

vehicle (-69.4±7.5%) demonstrated an immediate bronchoconstriction. Treatment 

with FP did not significantly change the EAR time course. A further 

bronchoconstriction was observed in vehicle treated guinea-pigs between 6-12 

hours, at 7 hours the sGaw value was -19.7±5.7%. Guinea-pigs treated with 

0.5mg/ml or 1mg/ml FP demonstrated significantly smaller bronchoconstrictions 

than vehicle between 7 and 10 hours; at 7 hours sGaw values were 2.8±3.2% and -

1.3±2.8% respectively (Figure 10, time course). Peak EAR responses were not 

significantly changed by FP treatment. Peak LAR were significantly attenuated with 

0.5mg/ml and 0.1mg/ml FP (-10.2±1.9% and -8.6±2.4%) compared with vehicle (-

26.8±3.8%). No significant difference in sGaw values was observed 24 hours post-

Ova challenge (Figure 10, histogram) 

 

No significant difference in the total and EAR AUC were observed with FP treatment, 

although a non-significant trend for decreased EAR was observed with the 0.5 and 

1mg/ml FP. LAR area under the curve decreased in a dose-dependent manner with 
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FP. This reached significance in guinea-pigs treated with 0.5mg/ml FP (16.8±6.2%.hr 

compared to 72.3±10.5%.hr). Guinea-pigs treated with 1mg/ml FP demonstrated a 

trend for decreased LAR area but this did not reach significance (Figure 11).  

 

Vehicle treated guinea-pigs demonstrated a significant increase in the 

bronchoconstrictor response to histamine post-Ova compared to pre-Ova challenge 

(-25.7±5.6% compared to 3.4±3.3%). At 5 minutes post-histamine challenge, this 

bronchoconstriction was no longer significant compared to pre-challenge sGaw 

values (-6.8±5.0% compared to -2.3±1.9%). Guinea-pigs treated with 0.05mg/ml and 

0.1mg/ml FP demonstrated significant increases in the bronchoconstrictor responses 

to histamine post-Ova challenge (-21.4±7.5% at 5 minutes compared to pre-

challenge, 5.3±1.5%,; -14.8±3.8% at 0 minutes compared to pre-challenge -4.8±1.7%, 

respectively). Both these bronchoconstrictions returned to pre-challenge levels after 

10 minutes. Guinea-pigs treated with 0.5 or 1mg/ml FP demonstrated no 

bronchonstrictor response to histamine post-Ova compared to pre-challenge values. 

Figure 12F demonstrates the peak bronchoconstrictor response to histamine both 

pre- and post-Ova challenge. Vehicle, 0.05mg/ml FP and 0.1mg/ml FP treated 

animals demonstrated a significant increase in bronchonstrictor response to 

histamine post- compared to pre-Ova challenge (-21.4±6.3% compared to -1.7±3.8%; 

-18.9±4.1% compared to -6.7±1.8%; -28.5±8.1% compared to -4.7±2.8% respectively) 

(Figure 12).  

 

The total protein content in lavage fluid, of guinea-pigs challenged with Ova and 

treated with 0.05, 0.1, 0.5 or 1mg/ml FP or vehicle demonstrated a dose-dependent 

decrease with FP treatment but did significantly attenuate this response even at the 

highest FP dose, 1mg/ml (Figure 13).  
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0.05mg/ml FP treatment did not significantly reduce any cell type measured. Both 

0.5mg/ml and 1mg/ml FP significantly decreased total cell numbers, compared to 

vehicle (5.2±0.4x106/ml, 4.5±0.4x106/ml compared to 9.0±0.45x106/ml respectively). 

This decrease was further characterised as both a significant decrease in eosinophils 

(2.0±0.23x106/ml, 1.8±0.17x106/ml compared to 3.6±0.235x106/ml respectively) and 

macrophages (2.74±0.28x106/ml, 2.1±0.19x106/ml compared to 4.38±0.24x106/ml 

respectively). Macrophage numbers were also reduced in 0.1mg/ml FP treated group 

(3.07±0.34x106/ml). Lymphocytes demonstrated a significant dose-dependent 

decrease with increasing FP dose, for 0.5 and 1mg/ml FP it was 0.07±0.02x106/ml 

and 0.08±0.01x106/ml respectively, compared to vehicle (0.23±0.01x106/ml). 

Neutrophil numbers were unchanged from vehicle level in FP treatment groups 

(Figure 14).  

 

IL-13 levels, increased in Ova challenged and vehicle treated guinea-pigs 

(13.9±1.4ng/mg) compared to naïve (8.8±0.9ng/mg), decreased non-significantly 

with increasing FP dose. IL-17 levels were also elevated in vehicle groups 

(306.1±17.9pg/mg compared to 123.6±6.5) were not significantly reduced by FP in 

any group, although 0.5 and 1mg/ml FP did tend to produce lower IL-17 levels. IL-8 

was not detectable in samples and is not shown (Figure 15).  
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Figure 9: The mean time-course values of sGaw in ovalbumin (Ova) sensitised and challenged guinea-pigs treated with either inhaled fluticasone propionate 

(FP, 0.05mg/ml or 0.1mg/ml), split into twice daily doses. The histogram represents the maximum bronchoconstriction values recorded during the early 

asthmatic response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are expressed as 

mean±SEM percentage change from baseline prior to Ova challenge. A negative value represents a bronchoconstriction. N=5 (Ova + vehicle), N=10 (Ova + 

0.05mg/ml FP), N=9 (Ova + 0.1mg/ml FP). *Significantly different from vehicle treatment p<0.05, performed with one-way analysis of variance followed by 

Dunnet’s post-test. 
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Figure 10: The mean time-course sGaw values in ovalbumin (Ova) sensitised and challenged guinea-pigs treated with either inhaled fluticasone propionate 

(FP, 0.5mg/ml or 1mg/ml), split into twice daily doses. The histogram represents the maximum bronchoconstriction values recorded during the early 

asthmatic response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are expressed as 

mean±SEM percentage change from baseline prior to Ova challenge. A negative value represents a bronchoconstriction. N=5 (Ova + vehicle), N=9 (Ova + 

0.5mg/ml FP), N=6 (Ova + 1mg/ml FP). *Significantly different from vehicle treatment p<0.05, ** p<0.01; *** p<0.001; performed with one-way analysis of 

variance followed by Dunnet’s post-test.  
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Figure 11 Area under the curve analysis of sGaw values over 12 hours following ovalbumin 

(Ova) challenge in guinea-pigs treated with either inhaled vehicle or fluticasone propionate 

(FP; 0.05mg/ml, 0.1mg/ml, 0.5mg/ml or 1mg/ml) split into twice daily doses. For the 

purpose of analysis only negative peaks were considered and all positive sGaw values were 

excluded. Total includes all negative peaks from 0-12 hours, early asthmatic response (EAR) 

includes values from 0-6 hours and late asthmatic response (LAR) includes values from 6-12 

hours. Area under the curve is expressed as %.hour. N=5 (vehicle), N=10 (0.05mg/ml FP), 

N=9 (0.1mg/ml FP), N=9 (0.5mg/ml FP), N=6 (1mg/ml FP); *significantly different from 

vehicle treatment p<0.05; performed with one-way analysis of variance followed by 

Dunnet’s post-test. 
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Figure 12: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles and 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period,) in ovalbumin (Ova) sensitised and challenged guinea-pigs treated with either inhaled A) vehicle or fluticasone propionate 

(FP) (B) 0.05mg/ml, C) 0.1mg/ml, D) 0.5mg/ml or E) 1mg/ml split into twice daily doses. F) Represents the peak bronchoconstriction to histamine pre- and 

post-Ova challenge. Values were recorded 7 days pre- and 24 hours post-Ova challenge. Mean changes in sGaw are expressed as mean±SEM percentage 

change from baseline. A negative value represents a bronchoconstriction. N=5 (vehicle), N=10 (0.05mg/ml FP), N=9 (0.1mg/ml FP), N=9 (0.5mg/ml FP), N=6 

(1mg/ml FP). *Significantly different from time paired pre-Ova challenge values p<0.05, ** p<0.01; performed with a two tailed T-test. 
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Figure 13: Total lavage fluid protein in ovalbumin (Ova) sensitised and challenged guinea-

pigs treated with either inhaled vehicle or fluticasone propionate (FP) (0.05mg/ml, 

0.1mg/ml, 0.5mg/ml or 1mg/ml) split into twice daily doses. N=5 (naïve and vehicle), N=10 

(0.05mg/ml FP), N=9 (0.1mg/ml FP), N=9 (0.5mg/ml FP), N=6 (1mg/ml FP); performed with 

one-way analysis of variance followed by selected groups Bonferroni post-test. 
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Figure 14 The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid in ovalbumin (Ova) sensitised and challenged guinea-pigs 

treated with vehicle or inhaled vehicle fluticasone propionate (FP) (0.05mg/ml, 0.1mg/ml, 

0.5mg/ml or 1mg/ml) split into twice daily doses. ^^ significantly different from naïve, 

p<0.01; ^^^ p<0.001; *significantly different from vehicle treatment p<0.05, ** p<0.01; *** 

p<0.001; N=5 (vehicle), N=10 (0.05mg/ml FP), N=9 (0.1mg/ml FP), N=9 (0.5mg/ml FP), N=6 

(1mg/ml FP); performed with one-way analysis of variance followed by selected groups 

Bonferroni post-test. 
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Figure 15: The concentration of A) IL-13 B) IL-17 in the lungs of ovalbumin (Ova) sensitised 

and challenged guinea-pigs treated with either inhaled vehicle fluticasone propionate (FP) 

(0.05mg/ml, 0.1mg/ml, 0.5mg/ml or 1mg/ml) split into twice daily doses. Results are 

expressed as mean±SEM; N=5 (vehicle), N=10 (0.05mg/ml FP), N=9 (0.1mg/ml FP), N=9 

(0.5mg/ml FP), N=6 (1mg/ml FP); ^ significantly different from naïve, p<0.05; ^^^ p<0.001 

performed with one-way analysis of variance followed by selected groups Bonferroni post-

test. 
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6.5.2 SENSITIVITY TO INHALED FLUTICASONE PROPIONATE OF ACUTE 

OVALBUMIN RESPONSES WITH LPS EXPOSURE 24 HOURS BEFORE  

Both vehicle and FP treated guinea-pigs demonstrated early phase responses 

peaking within the first hour (-35.2±8.0% and -29.8±4.5%, respectively, 30 minutes 

post-Ova). This bronchoconstriction began to return to baseline within the first 6 

hours and returned to baseline sGaw values by 12 hours. No significant difference in 

bronchoconstriction to Ova was observed at any time point in FP or vehicle treated 

guinea pigs. Figure 16 also represents the peak EAR, LAR and 24 sGaw values (Figure 

16, time course). No significant difference in peak early and late phase responses (-

22.0±3.9%, FP compared -20.3±2.8%, vehicle) was observed with FP treatment 

(Figure 16, histogram). No significant difference in the total, EAR and LAR area under 

the curve with FP treatment were observed (Figure 17).  

 

Vehicle treated guinea-pigs demonstrated a significant increase in the 

bronchoconstrictor response to histamine 0 minutes post-Ova challenge compared 

to the pre-challenge sGaw values (-19.3±7.5% and -0.04±0.9%). This 

bronchoconstriction returned to baseline by 10 minutes post-histamine challenge. In 

FP treated guinea-pigs, a significant bronchoconstriction to histamine was seen at 0 

minutes (-16.9±5.0% compared to -1.3±1.3%), 5 minutes (-19.0±4.1% compared to -

1.1±2.6%) and 10 minutes post-histamine challenge (-20.8±5.9% compared to -

2.9±1.4%) (Figure 18). Figure 18  also presents the peak bronchoconstriction to 

histamine exposure pre- and post- Ova challenge. Guinea-pigs treated with vehicle 

demonstrated a significant increase in the peak bronchoconstrictor response to 

histamine post-Ova challenge (-20.7±6.8%) compared to pre-Ova challenge 

(4.2±2.1%). Guinea pigs treated with FP also demonstrated a significant increase in 

the peak bronchonstrictor response to histamine post-Ova challenge (-27.9±5.1% 

compared to -5.2±1.3%). No significant difference between peak post-Ova 

bronchoconstrictions were found.  



Chapter 6 

 

243 

 

Total cell numbers, increased in Ova challenged and vehicle treated animals 

(14.1±0.8x106/ml compared to naïve, 1.5±0.05x106/ml were unchanged by FP 

treatment (15.5±2.7x106/ml). No change in eosinophils, macrophages and 

neutrophils cell population numbers were observed with FP treatment (Figure 19).  
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Figure 16: The mean time-course values of sGaw in ovalbumin (Ova) sensitised and challenged guinea pigs exposed to 30μg/ml LPS for 1 hour, 24 hours pre-

Ova challenge and treated with vehicle and fluticasone propionate (FP) (0.5mg/ml, split into 2 twice daily 15 minute inhalations). The histogram represents 

the maximum bronchoconstriction values recorded during the early asthmatic response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 

24 hours readings. Mean changes in sGaw are expressed as mean±SEM percentage change from baseline prior to Ova challenge. A negative value 

represents a bronchoconstriction. A negative value represents a bronchoconstriction. N=6 (vehicle), N=9 (FP); performed with two tailed T-test. 
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Figure 17: Area under the curve analysis of sGaw values over 12 hours following ovalbumin 

(Ova) challenge in guinea-pigs exposed to 30μg/ml LPS for 1 hour, 24 hours pre-Ova 

challenge and treated with vehicle or fluticasone propionate (FP) (0.5mg/ml, split into 2 

twice daily 15 minute inhalations). For the purpose of analysis only negative peaks were 

considered and all positive sGaw values were excluded. Total includes all negative peaks 

from 0-12 hours, early asthmatic response (EAR) includes values from 0-6 hours and late 

asthmatic response (LAR) includes values from 6-12 hours. Area under the curve is expressed 

as %.hour. N=6 (vehicle), N=9 (FP); performed with two tailed T-test. 
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Figure 18: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles and 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period) in guinea-pigs exposed to 30μg/ml LPS for 1 hour, 24 hours pre-Ova challenge and treated with A) vehicle or B) fluticasone 

propionate (FP) (0.5mg/ml, split into 2 twice daily 15 minute inhalations). D) represents the peak sGaw values pre- and post-Ova challenge. Values were 

recorded 7 days pre- and 24 hours post-Ova challenge. Mean changes in sGaw are expressed as mean±SEM percentage change from baseline. A negative 

value represents a bronchoconstriction. N=6 (vehicle), N=9 (FP). *Significantly different from vehicle treatment p<0.05, ** p<0.01; *** p<0.001; performed 

with two tailed T-test. 
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Figure 19: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid in guinea-pigs exposed to 30μg/ml LPS for 1 hour, 24 

hours pre-Ova challenge and treated with vehicle or fluticasone propionate (FP) (0.5mg/ml, 

split into 2 twice daily 15 minute inhalations). N=6 (naïve and vehicle), N=9 (FP); 

^significantly different from naive p<0.05, ^^^ p<0.001; performed with one-way analysis of 

variance followed by selected groups Bonferroni post-test. 
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5.5.3 SENSITIVITY OF OVALBUMIN AND LPS CO-ADMINISTRATION PROTOCOL 

RESPONSES TO INHALED FLUTICASONE PROPIONATE 

Both vehicle and FP treated groups demonstrated EAR peaking in the first hour and 

returning to baseline values between 6-8 hours. No significant differences were 

observed between these groups. Vehicle and 0.5mg/ml FP treated guinea-pigs 

demonstrated a second delayed response peaking at 10 hours (-17.6±2.4% and -

18.9±5.1%, respectively). This response was reduced but not significantly attenuated 

in 1mg/ml FP treated guinea-pigs at the same time point (-2.6±5.4%) (Figure 20, time 

course). No difference in the peak EAR was observed between all treatment groups. 

Peak LAR demonstrated a trend for a decrease with 0.5 and 1mg/ml FP treatment 

but did not reach significance. (-28.0±6.0% and -15.3±3.7% compared to vehicle, -

34.6±6.8% respectively) No significant bronchoconstriction at the 24 hour reading 

was observed (Figure 20, histogram). No significant difference in total, EAR and LAR 

area under the curve were observed between all treatment groups (Figure 21). 0.5 

or 1mg/ml FP not did not significantly reduce the time taken for the early phase to 

return to 50% of peak bronchoconstriction (3.7±0.4h, 4.0±0.4h compared to vehicle, 

4.2±0.7h respectively) (Figure 22). 

 

Vehicle treated guinea-pigs produced an immediate non-significant increase in the 

bronchoconstrictor response to histamine, post-Ova challenge. The 

bronchoconstriction continued to increase at 5 (-28.1±8.2% compared to pre-Ova: -

1.8±3.3%) and 10 minutes (-34.7±8.5% compared to pre-Ova: -0.1±2.1%). 0.5 and 

1mg/ml FP treatment did not significantly alter this response with significant 

constrictions still present at 10 minutes (-34.2±8.3% compared to pre-Ova: -

0.1±2.0%; -31.7±11.8% compared to pre-Ova -4.5±1.9%, respectively) (Figure 23) 

Figure 23D also presents the peak bronchoconstriction to histamine pre- and post- 

Ova challenge. Guinea-pigs treated with vehicle, 0.5mg/ml FP and 1mg/ml FP 

demonstrated a significant increase in the peak bronchoconstriction to histamine 
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following Ova challenge (-33.3±4.5% compared to -9.4±7.1%; -40.2±9.0% compared 

to 6.1±1.6%; -41.2±10.6% compared to -9.9±2.0% respectively).  

 

Lavage protein levels, elevated in vehicle treated guinea-pigs (3.05±0.1mg/ml, 

compared to naïve, 0.5±0.05mg/ml) were significantly reduced by 0.5 and 1mg/ml FP 

(1.4±0.1mg/ml and 1.8±0.4mg/ml respectively) compared to vehicle (Figure 24).  

 

Total cells, increased in vehicle treated guinea pigs (21.6±1.3x106/ml, compared to 

naïve 1.4±0.2x106/ml) were not significantly reduced by 0.5 or 1mg/ml FP 

(21.6±1.3x106/ml, and 18.0±2.6x106/ml respectively). No specific cell population was 

reduced by FP treatment (Figure 25). 

 

IL-8 and IL-17 levels were significantly increased in Ova challenged and vehicle 

treated guinea-pigs compared to naïve animals (16.5±1.6ng/mg compared to 

undetectable; 183.4±36.4ng/mg compared to 61.2±3.2ng/mg, respectively). IL-8 and 

IL-17 were not reduced by FP treatment. IL-13 was significantly decreased by both 

0.5mg/ml FP and 1mg/ml (6.1±0.6ng/mg, 6.4±0.3ng/mg compared to vehicle, 

8.6±0.6ng/mg) (Figure 26). 
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Figure 20: The mean time-course values of sGaw in ovalbumin (Ova) challenged guinea-pigs exposed to 30μg/ml LPS for 1 hour, 48 hours before Ova 

challenge and co-administered with Ova and treated with fluticasone propionate (FP) (0.05mg/ml or 1mg/ml, split into 2 twice daily 15 inhalations,) or 

vehicle. The histogram represents the maximum bronchoconstriction values recorded during the early asthmatic response (EAR) (0-6 hours), late asthmatic 

response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are expressed as mean±SEM percentage change from baseline prior to Ova 

challenge. A negative value represents a bronchoconstriction. N=7 (vehicle), N=7 (0.5mg/ml FP), N=5 (1mg/ml FP; performed with one-way analysis of 

variance followed by Dunnet’s post-test. 
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Figure 21:  Area under the curve analysis of sGaw values over 12 hours in ovalbumin (Ova) 

challenged guinea-pigs exposed to 30μg/ml LPS for 1 hour, 48 hours before Ova challenge 

and co-administered with Ova and treated with fluticasone propionate (FP) (0.05mg/ml or 

1mg/ml, split into 2 twice daily 15 inhalations) or vehicle. For the purpose of analysis only 

negative peaks were considered and all positive sGaw values were excluded. Total includes 

all negative peaks from 0-24 hours, early asthmatic response (EAR) includes values from 0-6 

hours and late asthmatic response (LAR) includes values from 6-12 hours. Area under the 

curve is expressed as %.hour. N=7 (vehicle), N=7 (0.5mg/ml FP), N=5 (1mg/ml FP); 

performed with one-way analysis of variance followed by Dunnet’s post-test. 
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Figure 22: Analysis of the time taken for early asthmatic responses (EAR) to recover to 50% 

of peak bronchoconstriction values in ovalbumin (Ova) challenged guinea-pigs exposed to 

30μg/ml LPS for 1 hour, 48 hours before Ova challenge and co-administered with Ova and 

treated with fluticasone propionate (FP) (0.05mg/ml or 1mg/ml, split into 2 twice daily 15 

inhalations) or vehicle. N=7 (vehicle), N=7 (0.5mg/ml FP), N=5 (1mg/ml FP); performed with 

one-way analysis of variance followed by Dunnet’s post-test. 
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Figure 23: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles and 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period) in ovalbumin (Ova) challenged guinea-pigs exposed to 30μg/ml LPS for 1 hour, 48 hours before Ova challenge and co-

administered with Ova and treated with A) vehicle or fluticasone propionate (FP) (B) 0.05mg/ml or C) 1mg/ml, split into 2 twice daily 15 inhalations). D) 

represents the peak sGaw values pre- and post-Ova challenge. Values were recorded 7 days pre- and 24 hours post-Ova challenge. Mean changes in sGaw 

are expressed as mean±SEM percentage change from baseline. A negative value represents a bronchoconstriction. N=7 (vehicle), N=7 (0.5mg/ml FP), N=5 

(1mg/ml FP). *Significantly different from time paired pre-Ova challenge values p<0.05, ** p<0.01; *** p<0.001; performed with a two tailed T-test. 
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Figure 24: Total lavage fluid protein in ovalbumin (Ova) challenged guinea-pigs exposed to 

30μg/ml LPS for 1 hour, 48 hours before Ova challenge and co-administered with Ova and 

treated with fluticasone propionate (FP) (0.05mg/ml or 1mg/ml, split into 2 twice daily 15 

inhalations) or vehicle. Protein content was determined by BCA protein assay. N=6 (naïve), 

N=7 (vehicle), N=7 (0.5mg/ml FP), N=5 (1mg/ml FP). ^^^significantly different from naive 

p<0.001;*significantly different from vehicle treatment p<0.05, ** p<0.01; performed with 

one-way analysis of variance followed by selected groups Bonferroni post-test. 
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Figure 25: The total cell (A), macrophages (B), eosinophils (C), lymphocytes (D) and 

neutrophils (E) counts in bronchoalveolar fluid in ovalbumin (Ova) challenged guinea-pigs 

exposed to 30μg/ml LPS for 1 hour, 48 hours before Ova challenge and co-administered with 

Ova and treated with fluticasone propionate (FP) (0.05mg/ml or 1mg/ml, split into 2 twice 

daily 15 inhalations) or vehicle. N=6( naïve), N=7 (vehicle), N=7 (0.5mg/ml FP), N=5 (1mg/ml 

FP). ^significantly different from naive p<0.05, ^^^ p<0.001; performed with one-way 

analysis of variance followed by selected groups Bonferroni post-test. 
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Figure 26: The concentration of A) IL-8 B) IL-13 C) IL-17 in the lungs of ovalbumin (Ova) 

sensitised guinea-pigs exposed to 30μg/ml LPS for 1 hour, 48 hours before Ova challenge 

and co-administered with Ova and treated with fluticasone propionate (FP) (0.05mg/ml or 

1mg/ml, split into 2 twice daily 15 inhalations or vehicle. N=6 (naïve), N=7 (vehicle), N=7 

(0.5mg/ml FP), N=5 (1mg/ml FP). ^^significantly different from naive p<0.01, ^^^ p<0.001; 

*significantly different from vehicle treatment p<0.05, ** p<0.01; performed with one-way 

analysis of variance followed by selected groups Bonferroni post-test. 
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6.5.4 SENSITIVITY OF LPS RESPONSES TO INHALED FLUTICASONE PROPIONATE 

Both vehicle and FP treated groups showed a progressive increase in 

bronchoconstriction during the 1st hour post-LPS exposure, reaching its greatest 

extent at 3 hours (vehicle: -22.9±5.4%; 0.5mg/ml FP: -24.3±6.1%; 1mg/ml -

19.4±2.0%). The bronchoconstriction then dissipated and returned to near baseline 

sGaw levels by 5 hours (Figure 27, time course). Vehicle treated guinea pigs 

demonstrated a peak bronchoconstriction of -32.9±2.9% which was not significantly 

changed by FP treatment, despite a trend (0.5mg/ml: -28.9±4.4%; 1mg/ml -

24.6±3.8%). A small bronchoconstriction was observed at 24 hours in vehicle treated 

guinea-pigs and unaltered by FP treatment (Figure 27, histogram). FP treatment did 

not significantly change the area under the curve between 0-12 hours (Figure 28) 

 

In vehicle treated guinea-pigs a non-significant increase in the response to histamine 

was observed post-LPS challenge throughout the 10 minutes post-histamine 

challenge, reaching significance at 10 minutes (-16.5±1.9%) compared to pre-

challenge (-5.6±1.9 %). Guinea-pigs treated with 0.5mg/ml and 1mg/ml FP 

demonstrated non-significant increase in the bronchoconstrictor response to 

histamine following LPS exposure. In guinea-pigs treated with 1mg/ml FP this was 

significant at 5 minutes post-histamine (-16.2±3.4%) compared to pre-LPS (-

1.6±5.3%) (Figure 29). Figure 29D shows peak bronchoconstrictor responses pre- and 

post-LPS exposure. A significant increase in the peak bronchoconstrictor response to 

histamine was seen in vehicle treated guinea-pigs (-22.0±5.2% post-LPS, compared 

to pre-LPS -7.0±1.8%). Guinea-pigs treated with FP demonstrated a non-significant 

trend for an increase in the bronchoconstrictor response to histamine post-LPS. 

 

LPS increased protein levels in lavage fluid (1.9±0.3mg/ml, compared to naïve 

0.5±0.05mg/ml) which were not significantly reduced by FP treatment (0.5mg/ml: 

2.2±0.5mg/ml and 1mg/ml: 1.6±0.3mg/ml) (Figure 30).  
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Total cell numbers, increased in vehicle treated groups (22.5±2.3x106/ml compared 

to naïve, 1.4±0.2x106/ml) were not significantly reduced by treatment with 0.5 or 

1mg/ml FP (20.9±2.8x106 and 20.5±3.7x106/ml, respectively). Macrophages, 

eosinophils, lymphocytes and neutrophils were all significantly increased by LPS 

exposure but not significantly reduced by either dose of FP (Figure 31). 

 

IL-8 levels, increased in guinea-pigs challenged with Ova and treated with vehicle 

were not significantly reduced by either does of FP used (0.5mg/ml FP: 

21.9±1.4pg/ml: 1mg/mg FP: 29.5±6.4pg/mg and vehicle: 18.6±1.3pg/mg) (Figure 32).
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Figure 27: The mean time-course values of sGaw in guinea-pigs exposed to 30μg/ml LPS twice and treated with fluticasone propionate (FP, 0.5 or 1mg/ml) 

or vehicle. The histogram represents the maximum bronchoconstriction values recorded during the 0-12 hours and 24 hours readings. Mean changes in 

sGaw are expressed as mean±SEM percentage change from baseline prior LPS challenge. A negative value represents a bronchoconstriction. Results shown 

are after the second LPS exposure. N=6 (veh and 0.5mg/ml FP), N=4 1mg/ml FP; performed with one-way analysis of variance followed by Dunnet’s post-

test. 
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Figure 28: Total area under the curve analysis of sGaw values in guinea-pigs exposed to 

30μg/ml LPS twice and treated with fluticasone propionate (FP, 0.5 or 1mg/ml) or vehicle. 

For the purpose of analysis only negative peaks were considered and all positive sGaw 

values were excluded. Total includes all negative peaks from 0-12 hours. Area under the 

curve is expressed as %.hour. N=6 (veh and 0.5mg/ml FP), N=4 1mg/ml FP; performed with 

one-way analysis of variance followed by Dunnet’s post-test. 
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Figure 29: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles and 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period) in guinea-pigs exposed to 30μg/ml LPS twice and treated with A) vehicle or fluticasone propionate (FP, B) 0.5 or C) 

1mg/ml). D) represents the peak sGaw values pre- and post-Ova challenge. Values were recorded 7 days pre- and 24 hours post-2nd LPS challenge. Mean 

changes in sGaw are expressed as mean±SEM percentage change from baseline. A negative value represents a bronchoconstriction. N=6 (veh and 0.5mg/ml 

FP), N=4 1mg/ml FP *Significantly different from time paired pre-LPS challenge values p<0.05, ** p<0.01; performed with a two tailed T-test. 
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Figure 30: Total lavage fluid protein in guinea-pigs exposed to 30μg/ml LPS twice and treated 

with fluticasone propionate (FP, 0.5 or 1mg/ml) or vehicle. Protein content was determined 

by BCA protein assay.  N=6 (Naïve, veh and 0.5mg/ml FP), N=4 1mg/ml FP; ^^^significantly 

different from naive p<0.001; performed with one-way analysis of variance followed by 

selected groups Bonferroni post-test. 
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Figure 31: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid in guinea-pigs exposed to 30μg/ml LPS twice and treated 

with fluticasone propionate (FP, 0.5 or 1mg/ml) or vehicle; N=6 (naïve, veh and 0.5mg/ml 

FP), N=4 1mg/ml FP ^significantly different from naive p<0.05; ^^^ p<0.001; performed with 

one-way analysis of variance followed by selected groups Bonferroni post-test. 
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Figure 32: The concentration of IL-8 in the lungs of guinea-pigs exposed to 30μg/ml LPS 

twice for 1 hour and treated with vehicle or fluticasone propionate (FP, 0.5 or 1mg/ml). 

Results are expressed as mean±SEM; N=6 (Naïve, veh and 0.5mg/ml FP), N=4 1mg/ml FP 

^^^significantly different from naive p<0.001; performed with one-way analysis of variance 

followed by selected groups Bonferroni post-test. 
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6.6 DISCUSSION 

Inhaled corticosteroids have wide ranging effects on both inflammatory and 

functional attributes of asthma. Initial work in this chapter established a dose of 

fluticasone propionate (FP) that significantly attenuated the LAR, AHR and cellular 

influx by dose-response curve. This dose was then used on 2 ovalbumin and LPS 

models developed in chapter 5. A higher dose of FP was also tried on the Ova and 

LPS combination model to assess the extent of inhaled corticosteroid insensitivity. 

Finally, these 2 doses of FP were used to assess the corticosteroid sensitivity of 

bronchoconstrictor and inflammatory responses in a double LPS exposure model. 

6.6.1 THE EFFECT OF INHALED FLUTICASONE PROPIONATE ON EARLY AND LATE 

ASTHMATIC RESPONSES 

In the current study it was shown that FP does not significantly affect the EAR in 

guinea-pigs challenged with Ova alone. The EAR in both humans and animal models 

has been shown to be insensitive to corticosteroids (Booij-Noord et al., 1971; Evans 

et al, 2012). This would be expected as the EAR is mainly mediated by mast cell 

degranulation and corticosteroids are not known to have any effect on this process. 

The prolonged EAR induced by LPS co-administered with ovalbumin was also found 

to be FP insensitive. This would suggest that the mechanisms that mediate the 

increased duration of the EAR are also insensitive to inhaled corticosteroid. Thus 

enhanced activation of mast cells or neutrophils by LPS may be the cause (Masuda et 

al, 2002; Reino et al, 2012). Neutrophils are known to be relatively corticosteroid 

insensitive, especially in the lung and have been implicated in the EAR (Plumb et al, 

2012). However, their levels do not increase until 3 hours post-allergen challenge, so 

neutrophils are not likely to be involved in the induction of the EAR but may be 

responsible for its elongation of it (Danahay et al, 1999). In the current study, LPS 

alone also induced a bronchoconstriction which developed slowly over 3 hours and 

was insensitive to inhaled FP. Similarly, the attenuated but prolonged EAR in guinea-

pigs exposed to LPS 24 hours before Ova challenge was also unresponsive to inhaled 
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FP. These both coincided with an increase in lavage fluid neutrophils 24 hours later, 

further suggesting the role of the neutrophil in elongated EARs.  

The LAR was attenuated with 0.5mg/ml inhaled FP in ovalbumin challenged guinea-

pigs. The LAR was not suppressed by the 5-fold lower dose of FP (0.1mg/ml), nor was 

there increased suppression at the 2-fold higher dose of 1mg/ml. This indicates that 

the LAR has a fairly steep dose-response relationship with inhaled FP. This is similar 

in humans where higher doses of inhaled corticosteroid do not provide increased 

clinical benefit above lower effective doses (Adam et al, 2001). The attenuation of 

the LAR by Inhaled FP would be expected as corticosteroids are able to suppress this 

response in both humans and animal models (Palmqvist et al, 2005; Evans et al, 

2012). The LAR has been linked to a range of inflammatory cells and mediators 

including lymphocytes, eosinophils and IL-5, all of which are suppressed by the wide 

ranging anti-inflammatory activity of corticosteroids (Belvisi, 2004).  

Contrasting with effects of inhaled FP on Ova alone, in guinea-pigs exposed to either 

of the Ova and LPS protocols, the LAR was not significantly decreased by 0.5mg/ml 

FP. This indicates that LPS exposure has decreased the sensitivity of the Ova induced 

LAR to inhaled FP. It also indicates that the development of corticosteroid 

insensitivity is not dependent on the presence of a full EAR. Guinea-pigs exposed to 

LPS 24 hours before Ova challenge, displayed an attenuated EAR, merging into a LAR 

which was not reduced by FP treatment. To examine the extent of inhaled FP 

insensitivity of the LAR in the Ova and LPS co-administration model, a higher dose of 

1mg/ml FP, effective on the LAR of Ova challenged guinea-pigs, was used. This dose 

of FP was not able to significantly attenuate the LAR but did demonstrate a trend for 

decreased sGaw values. This would suggest that the insensitivity to inhaled FP is due 

to a rightward shift in the dose response curve. Higher doses of FP were not tried 

due to issues with FP solubility.  
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6.6.2 THE EFFECT OF INHALED FLUTICASONE PROPIONATE ON AIRWAYS 

HYPERRESPONSIVENESS 

Inhaled FP (0.5 and 1mg/ml) significantly attenuated the development of AHR 

following Ova challenge. Contrastingly, the 2 lower doses of FP used did not suppress 

the development of AHR. This was an expected effect as inhaled corticosteroids are 

well known clinically to suppress the development of AHR (Palmqvist et al, 2005). In 

contrast, inhaled FP demonstrated only modest suppressive effects on AHR to LPS 

alone. Even at 1mg/ml FP AHR was not completely abolished. This may indicate that 

LPS-induced AHR is inherently insensitive to inhaled FP. Although the precise 

mechanisms of AHR are still unknown, a general link to inflammation has been made 

and more specifically eosinophils. Eosinophil granule release can cause epithelial 

damage, increasing the exposure of underlying nerves to bronchoconstrictor stimuli 

(Gleich et al, 1993; Laitinen et al, 1987). Regardless of the specific inflammatory 

mediators of AHR, corticosteroids broad anti-inflammatory action is likely to be 

responsible for the suppression of AHR.  

In contrast with the effectiveness of inhaled FP on Ova induced AHR, in guinea-pigs 

also exposed to LPS, 0.5mg/ml did not attenuate the development of AHR. In the 

case of guinea-pigs exposed to LPS 24 hours before Ova challenge, 0.5mg/ml FP 

actually potentiated the length of the bronchoconstrictor response to histamine 

compared to vehicle. Additionally, a higher dose of FP (1mg/ml) was also unable to 

suppress the development of AHR in Ova/LPS co-administration groups. The failure 

to suppress AHR would further suggest the development of insensitivity to this 

inhaled corticosteroid in the combined Ova and LPS model. It would also support the 

hypothesis that AHR in the model is mediated by inflammation. Differences in the 

inflammatory responses may account for the differing responsiveness of AHR to 

inhaled FP between Ova and Ova/LPS models. In particular, neutrophils, which are 

prominent in Ova and LPS models, have been implicated in the development of AHR 

(Essilfie et al, 2012; Ito et al, 2008). Additionally, neutrophils demonstrate increased 

survival in the presence of corticosteroids (Cox, 1995). This could explain why 
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inhaled FP potentiated AHR in guinea-pigs exposed to LPS 24 hours before Ova 

challenge. This could increase exposure to neutrophil granule products, increasing 

airway damage. However, a potentiation of AHR was not seen in LPS challenged 

guinea-pigs, also displaying increased neutrophilia indicating that this process is 

more complex and requires the presence of other factors induced by Ova. This is 

supported by Yang et al, (2009) who found that the development of corticosteroid-

resistant AHR is dependent on exposure to both Ova and LPS. It was also found that 

macrophage but not neutrophil depletion was able to prevent the development of 

AHR. This may indicate that macrophages are an important cell type in the 

development of corticosteroid resistant AHR. However, this study produced these 

effects on a Th1 inflammatory background, contrasting with the Th2 inflammatory 

background present in the current study. This may mean that different molecular 

pathways are involved in AHR, making it difficult to make comparisons. Overall, the 

lack of insensitivity of all inflammatory cells measured does not allow any 

conclusions as to which particular inflammatory cell is mediating these effects.  

6.6.3 THE EFFECT OF INHALED FLUTICASONE PROPIONATE ON AIRWAY 

INFLAMMATION AND CYTOKINES 

Inhaled FP reduced the total cells, macrophages and lymphocytes in lavage fluid in a 

dose-dependent manner in Ova challenged guinea-pigs. 0.5 and 1mg/ml FP reduced 

eosinophils significantly but 0.05 and 0.1mg/ml FP had no effect on numbers. This 

indicates a steep dose response effect of inhaled FP on eosinophilia. IL-13 a typical 

Th2 cytokine implicated in the development of AHR was also reduced. The 

effectiveness of inhaled FP in reducing Ova induced inflammation would be expected 

as corticosteroids are known to be potent suppressants of allergic inflammation 

(Belvisi, 2004).  

LPS responses have been shown to be less sensitive to single and multiple doses of 

inhaled corticosteroids (Trapp et al, 1998; Michel et al, 2000). These results were 

confirmed in the present study. Neither dose of FP was able to significantly reduce 
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LPS-induced increases in total cells, macrophages and neutrophils. IL-8, an important 

chemoattractant for neutrophils was also not reduced by inhaled FP treatment, 

indicating that this cytokine may be partly responsible for the continued presence of 

neutrophils even in the presence of FP. Whether the combination of Ova and LPS 

would result in inflammation that was inhaled corticosteroid insensitive was 

previously unknown. The present study showed that guinea-pigs exposed to LPS and 

Ova demonstrate no decrease in any cell type with 0.5mg/ml FP treatment, 

regardless of the timing of LPS exposure. Increasing the inhaled FP dose to 1mg/ml 

did not significantly decrease any cell type in the Ova and LPS co-administration 

model. However, a non-significant trend for a decrease was seen, further suggesting 

a rightward shift in corticosteroid dose-response effects. 

The mechanism behind insensitivity to inhaled FP in this study remains to be 

investigated. However, several hypotheses exist. Neutrophils are known to be less 

sensitive to corticosteroid treatment then other cell types, so inhaled FP not 

reducing neutrophils would be expected (Uddin et al, 2009). The observation that 

eosinophils, macrophages and lymphocytes are all not significantly decreased is less 

expected as these cells are typically corticosteroid sensitive. Essilfie et al, (2012) also 

demonstrated that H. Influenza can cause inhaled corticosteroid insensitivity in 

eosinophils and lymphocytes. This contrasts with the findings of Ito et al, (2008) who 

demonstrated that eosinophils and lymphocytes are both significantly decreased 

with inhaled FP, while neutrophils and AHR are unaffected in repeat, low level 

allergen challenge model. This suggests that more widespread corticosteroid 

insensitivity is evoked by the TLR4 pathway which is activated by LPS.  

Corticosteroid insensitivity in eosinophils, macrophages and lymphocytes in Ova and 

LPS challenged guinea-pigs may be as a result of the upregulation of GR-β. Increases 

in GR-β in macrophages, eosinophils and lymphocytes have been found in other 

allergic diseases (Hamilos et al, 2001). GR-β does not bind corticosteroids but can 

interfere with GR-α binding at DNA sites, as well as forming transcriptionally less 

active heterodimers with GR-α (Oakley et al, 1999). Thus, an increase in GR-β would 
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make cells less sensitive to corticosteroids. Alternatively, mechanisms such as a 

decrease in HDAC-2 as a result of increased AP-1 and NF-κB signalling, activation of 

the PI3K/Akt pathway and decreased HDAC-2 activity could all be involved. Pro-

inflammatory signalling and the oxidative burden of the lungs increase during an 

asthma exacerbation which activates these pathways and decreases corticosteroid 

activity (Ito et al, 2004). 

Interestingly, IL-13 levels were decreased despite there not being a significant 

decrease in any of the inflammatory cells measured. This may indicate that other cell 

types e.g. epithelial cells, not measured are producing IL-13 and are being 

suppressed by corticosteroids (Temann et al, 2007). Alternatively, a decrease in Th2 

lymphocytes which secrete IL-13 may be masked by the corticosteroid insensitivity of 

other lymphocyte subpopulations. In the present study although no significant 

decrease in lymphocytes was seen, there is a trend for decreasing numbers with 

increasing FP dose. Analysis of the sensitivity of different lymphocyte populations 

may find that Th2 cells are still corticosteroids sensitive, as is typically reported (Yang 

et al, 2009).  

IL-17 levels in the lung were unaffected by inhaled FP treatment in Ova challenged 

guinea-pigs. Similarly, FP did not significantly decrease IL-17 levels in LPS and Ova 

challenged guinea-pigs. This is in accordance with studies that have shown IL-17 

responses to be corticosteroid insensitive (Mckinley et al, 2008). This has led to the 

suggestion that IL-17 and Th17 cells, a major source of IL-17 may have a role in 

corticosteroid insensitivity. As IL-17 levels did not increase with the addition of LPS 

to Ova (data shown in chapter 5) it seems unlikely that IL-17 is mediating 

corticosteroid-insensitivity in this model. However, other cytokines such as IL-17F 

and IL-22 have been implicated in Th17 responses. These cytokines along with Th17 

cell numbers are unknown in the present study meaning its not possible to fully rule 

out a role of IL-17 in the inhaled FP insensitivity observed.  
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6.6.4 THE EFFECT OF INHALED FLUTICASONE PROPIONATE ON AIRWAY 

OEDEMA 

Total protein levels in lavage fluid, an indicator of airway oedema decreased with FP 

treatment (although not significantly) in Ova challenged guinea-pigs. They were also 

decreased in Ova and LPS challenged guinea-pigs indicating that although this model 

demonstrates corticosteroid insensitivity, not all corticosteroid effects are reduced. 

This also indicates that results seen in this model are not due to impaired delivery of 

inhaled FP. This reduction in total lavage fluid protein levels may be due to the 

vasoconstrictive effects of corticosteroids (Mendes et al, 2003). This is thought to be 

by decreased uptake of noradrenaline at sympathetic synapses, potentiating 

noradrenaline’s action at α1 adrenoreceptors (Wanner et al, 2004). Contrastingly, 

guinea-pigs exposed to LPS demonstrated no reduction in total lavage fluid protein 

levels with inhaled FP. A lack of corticosteroid effect on plasma extravasation has 

been demonstrated before with systemic corticosteroids (O'Leary et al, 1996). The 

reason behind a lack of corticosteroid effect on LPS induced increases in lavage fluid 

protein levels is unknown.  

6.6.5 GENERAL CONCLUSIONS 

This study has demonstrated that the LAR, AHR, airway inflammation and airway 

oedema induced by Ova alone is sensitive to inhaled FP. Moreover, it has been 

shown that exposure to LPS and Ova together decreases the response of the LAR, 

AHR and airway inflammation to inhaled FP. The timing of LPS exposure (24 hours 

pre- vs 48 hours pre-Ova and co-administered with Ova) does not affect the 

development of inhaled corticosteroid insensitivity. LPS alone was shown to produce 

a bronchoconstriction, inflammation and airway oedema which is also insensitive to 

inhaled FP. Whether a systemically administered corticosteroid will have the same 

effect is unknown and will be investigated in the following chapter.  
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 7.1 INTRODUCTION 

7.1.1 SYSTEMIC CORTICOSTEROIDS 

Systemic corticosteroids are used as last resort therapy in patients who do not 

achieve symptomatic control with high dose inhaled corticosteroids, long acting β2-

adrenoreceptor agonists or alternative therapies. Systemic corticosteroids such as 

prednisone and dexamethasone are given orally while hydrocortisone is generally 

given by intravenous injection. Side effects with systemic corticosteroids are 

extensive and include osteoporosis, cataracts, various cardiovascular and 

gastrointestinal disturbances and growth retardation in children (Schäcke et al, 

2002). For this reason, systemic corticosteroids are only used in short bursts (1-2 

weeks). Oral corticosteroids are indicated in the treatment of asthma exacerbations 

whereas intravenous therapy is used in acute asthma, with patients displaying <30% 

of predicted lung function and not responsive to a β2-adrenoreceptor agonist (Chan 

et al, 1998). Their biological action and mechanisms are similar to inhaled 

corticosteroids. A description of these can be found in chapter 6. Systemic 

corticosteroids do have the added effect of suppressing bone marrow 

haematopoiesis (Mao et al, 2004). This decreases the maturation of inflammatory 

progenitor cells, especially eosinophils. Corticosteroids do this by suppressing CCL11 

(eotaxin-1) and IL-5 induced differentiation of CD34+ cells into eosinophils (Ben et al, 

2008). Inhaled corticosteroids can also suppress bone marrow inflammatory cell 

maturation but probably only with sustained treatment and higher doses (Wood et 

al, 1999; Shen et al, 2002).  

7.1.2 SYSTEMIC CORTICOSTEROID RESISTANCE 

A description of proposed mechanisms of corticosteroid insensitivity can be found in 

chapter 6. Clinically, a patient is defined as fully corticosteroid resistant if they 

demonstrate a failure to increase FEV1 more than >15% after 14 days of prednisone 

treatment, despite demonstrating the same increase with a β2 agonist. Although 

insensitivity to corticosteroids is reported to exist in about 5% of the asthmatic 
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population, full resistance to systemic corticosteroids is rare (Szefler et al, 2002). The 

development of full corticosteroid resistance is associated with longer disease 

duration, increased airway inflammation and more frequent exacerbations 

(Bumbacea et al, 2004). This suggests that repeated asthma exacerbations on a 

chronic inflammatory background can progressively increase corticosteroid 

insensitivity in an individual. Asthma exacerbations, although not particularly 

sensitive to inhaled corticosteroids seem to retain some sensitivity to systemic 

corticosteroids. Matsuse et al, 2012 reported that patients with virally induced 

asthma exacerbations demonstrate reduced time to clear symptoms with oral 

corticosteroid treatment. However, this study did not use any measures to assess 

improvement so it is not possible to know what aspects of the asthma exacerbation 

responded to corticosteroid therapy. A recent study by Hodgson et al, (2012) 

suggests that inhaled corticosteroid-insensitive patients with eosinophilic or mixed 

granulocytic airway inflammation retain sensitivity to systemic corticosteroid 

treatment. Oral prednisone treatment increased lung function and decreased 

eosinophil numbers. LPS induced inflammatory responses also seem to retain some 

sensitivity to systemic corticosteroid, despite not displaying any towards inhaled 

corticosteroids (Trapp et al, 1998).  

7.1.3 THE EFFECT OF SYSTEMIC CORTICOSTEROIDS IN ANIMAL MODELS 

Systemic corticosteroids such as dexamethasone have been shown to attenuate the 

LAR, AHR and inflammation in a guinea-pig Ova model (Toward & Broadley, 2004). 

Asthma exacerbation models have differing sensitivity to systemic corticosteroids 

depending on the nature of the exacerbation. Latent adenovirus infection in 

combination with Ova sensitisation and challenge results in systemic corticosteroid 

resistant eosinophils and sensitive lymphocyte subpopulations (Yamada et al, 2000). 

Contrastingly, combined Ova and LPS induced inflammation is sensitive and AHR 

insensitive to treatment with systemic dexamethasone in mice (Komlosi et al, 2006). 

LPS responses without the presence of Ova seem to be sensitive to systemic 

dexamethasone. Single or multiple LPS exposures cause systemic corticosteroid 
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sensitive airway inflammation and goblet cell hyperplasia, but insensitive lung 

function (O’leary et al 1996; Toward & Broadley 2002). The effect of systemic 

corticosteroid on early and late asthmatic responses has not been investigated in a 

model of asthma exacerbation. Moreover, a comparison between the sensitivity of 

asthma exacerbation models to inhaled and systemic corticosteroid has not been 

made.  
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7.2 HYPOTHESIS 

‘LPS exposure will decrease the systemic corticosteroid sensitivity of functional and 

inflammatory responses in an acute ovalbumin model of asthma’ 

 

7.3 AIMS AND OBJECTIVES 

The aim of this chapter will be to determine the systemic corticosteroid sensitivity of 

functional and inflammatory responses to ovalbumin, LPS and combined ovalbumin 

and LPS models. Initially a dose of systemic dexamethasone which reduces the LAR, 

AHR and airways inflammation after Ova challenge was established. The sensitivity 

of LPS and ovalbumin and LPS responses to this dose of systemic dexamethasone 

was also tested. The effect of systemic dexamethasone on cytokines and lavage fluid 

protein was also established.  
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7.4 METHODS 

Methods describing the measurement of lung function, AHR, airway oedema, airway 

inflammation, cytokine levels and can be found in more detail in chapter 2.  

7.4.1 OVALBUMIN PROTOCOLS 

7.4.1.1 SENSITISATION 

Guinea-pigs (200-300g, Dunkin-Hartley, male) were sensitised by a bilateral intra-

peritoneal injection of a solution containing 150µg Ovalbumin (Ova) and 100mg 

aluminium hydroxide (Al(OH)3) in normal saline on day 1, 4 and 7. 

 

7.4.1.2 ACUTE OVALBUMIN MODEL  

Sensitised guinea-pigs were exposed to inhaled Ova (0.03%) for 1 hour on day 21 in a 

Perspex container as described in section 7.4.1.2. The lung function response to Ova 

was assessed over 12 hours. The bronchoconstrictor response to 0.3mM histamine 

was assessed on day 15 and 22 as described in section 7.4.5. Dexamethasone (5, 10 

or 20mg/kg) was given by intraperitoneal injections, daily from day 16-21. On day 21, 

dexamethasone was administered 30 minutes pre-Ova challenge. A diagram of this 

protocol is shown Figure 1. 

 

Figure 1: The acute Ovalbumin (Ova) protocol. Guinea-pigs were challenged with inhaled 

Ova (0.03% on day 21). Dexamethasone was administered once a day by intraperitoneal 

injection.    
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7.4.1.3 ACUTE OVA AND LPS CO-EXPOSURE MODEL 

Sensitised guinea-pigs were exposed to inhaled LPS (30μg/ml) 48 hours before Ova 

challenge in an exposure chamber and both LPS (30μg/ml) and Ova (0.03%) co-

administered on day 21. The bronchoconstrictor response to histamine was assessed 

on day 15 and day 22. Dexamethasone (5, 10 or 20mg/kg) was given by 

intraperitoneal injections, daily from day 16-21. On day 21, dexamethasone was 

administered 30 minutes pre-Ova challenge. A diagram of this protocol is shown in 

shown in Figure 2. 

 

 

Figure 2: Diagram of the LPS and Ova co-exposure protocol. Guinea-pigs were exposed to 

LPS (30μg/ml) on day 19 and both Ova and LPS co-administered on day 21. Dexamethasone 

was administered once a day by intraperitoneal injection.    

7.4.2 LPS EXPOSURE PROTOCOL  

Non-sensitised guinea-pigs were exposed to LPS (30μg/ml) on day 5 and 7 of the 

protocol. The bronchoconstrictor response to histamine was assessed on day 1 and 

day 8. Dexamethasone (5, 10 or 20mg/kg) was given by intraperitoneal injections, 

daily from day 16-21. On day 5 and 7, dexamethasone was administered 30 minutes 

pre-LPS challenge. A diagram of this protocol is shown in Figure 3. 
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Figure 3: Diagram of the LPS alone exposure protocol. Guinea-pigs were exposed to 30μg/ml 

of LPS on day 5 and 7. Dexamethasone was administered once a day by intra peritoneal 

injection.    

7.4.3 DRUG ADMINISTRATION 

Dexamethasone was dissolved in 25% DMSO and 75% saline and administered by a 

bilateral intraperitoneal injection. 

7.4.4 MEASUREMENT OF LUNG FUNCTION 

Lung function was measured by whole body plethysmography following final Ova, 

LPS or combined Ova and LPS exposure in all protocols. Lung function was recorded 

hourly for 12 hours and every 15 minutes during the first hour of measurements. A 

final measurement was also taken 24 hours post-final challenge. All values were 

expressed as a percentage of the baseline reading, taken before the final challenge. 

A negative percentage change in baseline value represents a bronchoconstriction. In 

Ova protocols, early (0-6 hours) and late (6-12 hours) asthmatic responses were 

expressed as the peak bronchoconstriction during that period (displayed as a 

histogram next to a time course plot) and area under the curve. The duration of the 

early phase was expressed as the time taken to recover to 50% of peak early phase 

bronchoconstriction values.  In the LPS only protocol lung function was measured for 

12 hours after the second LPS exposure. The peak bronchoconstriction during this 

period was expressed on a histogram next to the time course plot.  
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7.4.5 AIRWAYS HYPER-RESPONSIVENESS ASSESSMENT. 

AHR was determined using whole body plethysmography. This was performed by 

measuring the bronchoconstrictor response to histamine before inhaled 

corticosteroid treatment and 24 hours post-final LPS, Ova, LPS or Ova challenge. 

Histamine was delivered as described in chapter 2. Lung function was measured just 

before histamine inhalation and at 0, 5 and 10 minutes post-histamine exposure. The 

peak bronchoconstriction during this period was expressed on a histogram.  

7.4.6 ASSESSMENT OF AIRWAYS INFLAMMATION 

Following final histamine exposure guinea-pigs were sacrificed by an intra-peritoneal 

overdose of sodium pentobarbitone, the lungs excised and lavaged. Total and 

differential cell counts were then performed as described in chapter 2.  

7.4.7 QUANTIFICATION OF CYTOKINE LEVELS USING ENZYME-LINKED 

IMMUNOSORBENT ASSAY (ELISA) 

Levels of IL-8, IL-17 and IL-13 were measured in diluted homogenised lung samples 

using ELISA supplied by R&D systems. Cytokine levels were adjusted for total lung 

protein and expressed as weight per mg of lung as described in section 2.2.3.2. 

7.4.8 ASSESSMENT OF AIRWAY OEDEMA 

Protein content in lavage fluid was determined as a measure of airway oedema by 

BCA protein assay as per the manufacturer’s instructions (Pierce protein biology).  
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7.5 RESULTS 

7.5.1 THE EFFECT OF SYSTEMIC DEXAMETHASONE ON ACUTE OVALBUMIN 

RESPONSES 

Vehicle treated guinea-pigs displayed an immediate bronchoconstriction to Ova at 0 

minutes (-74.4±1.5%) which returned to baseline sGaw values by 6 hours. Guinea-

pigs treated with 5mg/kg dexamethasone also displayed an immediate 

bronchoconstriction to Ova (-66.0±5.5%) and significantly less of a 

bronchoconstriction then vehicle at 45 minutes (-32.8±3.2% and -58.7±2.7% 

respectively). 10mg/kg dexamethasone treated guinea-pigs consistently 

demonstrated less of a bronchoconstriction to Ova during the first 4 hours, at 1 hour 

it was (-33.6±3.3%) compared to vehicle (-56.7±4.3%) and at 2 hours it was (-

20.8±4.3%) compared to vehicle (-51.9±3.8%). 20mg/kg dexamethasone did not 

significantly alter the early phase response to Ova. Vehicle treated guinea-pigs 

demonstrated a second, delayed response at 7 hours (-21.4±2.2%), which was 

unchanged by 5mg/kg dexamethasone but significantly attenuated by both 10 and 

20mg/kg dexamethasone (-3.1±3.5% and 2.0±4.0% respectively). sGaw values 

returned to baseline levels in all groups by 12 hours (Figure 4, time course).  

Dexamethasone treatment did not significantly alter the peak EAR compared 

to vehicle. 20 but not 5 and 10mg/kg dexamethasone significantly reduced the peak 

LAR (-10.2±1.7%, -21.4±7.4% and -21.3±2.0% respectively) compared to vehicle (-

22.6±1.9%). No significant differences between the 24 hour sGaw values were found 

(Figure 4, histogram). The total area under the curve (AUC) was significantly reduced 

by 5, 10 and 20mg/kg dexamethasone (187.6±22.9%.hr, 177.4±17.8%.hr and 

194.1±28.4%.hr respectively) compared to vehicle (316.6±28.3%.hr). Early asthmatic 

response AUC was significantly decreased by 10mg/kg dexamethasone 

(139.1±12.4%.hr) compared to vehicle (248.6±19.7%.hr). 5 and 20mg/kg 

dexamethasone did not significantly reduce the early asthmatic response AUC. Late 

asthmatic response AUC was significantly attenuated by 5, 10 and 20mg/kg 
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dexamethasone (20.7±6.5%.hr, 39.5±9.6%.hr and 11.8±3.5%.hr respectively) 

compared to vehicle (68.1±12.9%.hr) (Figure 5). 

 

In vehicle treated guinea-pigs histamine produced a significant increase in 

bronchoconstrictor response to histamine post-Ova challenge (-20.3±3.7%) 

compared to pre-Ova (-0.02±5.2%). At 5 and 10 minutes, the bronchoconstriction 

was still significantly increased over pre-Ova values (-23.7±3.4% compared to pre-

Ova, -2.8±5.9%; -23.3±2.9% compared to pre-Ova, -0.2±1.9%, respectively). 

Treatment with 5, 10 and 20mg/kg dexamethasone reduced the bronchoconstrictor 

response to histamine, with no significant difference between pre and post-Ova 

responses (Figure 6). The peak bronchoconstrictor response to histamine was 

significantly increased in guinea-pigs treated with vehicle post-Ova treatment (-

21.0±4.8%) compared to pre-Ova (-4.9±3.3%). All doses of dexamethasone 

significantly decreased this response (Figure 6). 

 

Guinea-pigs challenged with Ova and treated with vehicle demonstrated a significant 

increase in protein (1.74±0.1mg/ml) compared to naïve levels (0.4±0.01mg/ml). 10 

and 20 but not 5mg/kg dexamethasone significantly reduced protein levels 

(1.2±0.2mg/ml, 1.1±0.2mg/ml and 1.7±0.2mg/ml respectively) (Figure 7) 

 

Total cell numbers were increased in Ova challenged and vehicle treated guinea-pigs 

(8.6±0.5x106/ml) compared to naïve 1.4±0.2x106/ml). Dexamethasone reduced total 

cell numbers in a dose-dependent manner; 20mg/kg dexamethasone significantly 

decreased total cell numbers (5.6±0.5x106/ml). Macrophages were also significantly 

decreased by 20mg/kg dexamethasone (2.9±0.3x106/ml compared to vehicle, 

4.0±0.3x106/ml). Eosinophils were significantly reduced by both 10 and 20mg/kg 

dexamethasone (2.2±0.5x106/ml and 2.3±0.3x106/ml compared to vehicle, 

4.3±0.5x106/ml). Additionally 10mg/kg dexamethasone significantly decreased 
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lymphocyte numbers (0.03±0.01x106 compared to vehicle 0.8±0.02x106). A non 

significant trend for decreased neutrophils with increasing dexamethasone dose was 

also observed (Figure 8).  

 

IL-13 levels were significantly increased in Ova challenged and vehicle treated 

guinea-pigs (13.9±1.14ng/ml) compared to naïve (9.8±0.6ng/mg). IL-13 was 

significantly decreased by treatment with 5, 10 and 20mg/kg dexamethasone 

compared to vehicle (10.2±0.42ng/mg, 10.1±0.8ng/ml and 10.0±0.6ng/ml 

respectively). IL-17 levels were also increased in Ova challenged and vehicle treated 

guinea-pigs (143.5±6.5pg/mg) compared to naïve (112±5.0pg/mg). IL-17 levels were 

decreased by dexamethasone treatment in a dose-dependent manner. With 5, 10 

and 20mg/kg dexamethasone IL-17 levels were 107.6±5.7pg/mg, 103.0±4.0pg/mg 

and 98.2±6.1pg/mg respectively. IL-8 was not detectable in samples and is not 

shown (Figure 9). 
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Figure 4: The mean time-course values of sGaw in ovalbumin (Ova) sensitised and challenged guinea-pigs treated with either intra-peritoneal vehicle or 

dexamethasone (Dex, 5mg/kg, 10mg/kg and 20mg/kg) dosed daily for 6 days. The histogram represents the maximum bronchoconstriction values recorded 

during the early asthmatic response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are 

expressed as mean±SEM percentage change from baseline prior to Ova challenge. A negative value represents a bronchoconstriction. N=6 (vehicle), N=4 

(Dex 5mg/kg), N=6 (Dex 10mg/kg), N=7 (Dex 20mg/kg). *Dex 10mg/kg significantly different from vehicle treatment p<0.05, ** p<0.01; ^^ Dex 20mg/kg 

significantly from vehicle treatment p<0.01; # Dex 5mg/kg significantly different from vehicle treatment p<0.05 performed with one-way analysis of 

variance followed by Bonferroni post-test. 
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Figure 5: Area under the curve analysis of sGaw values over 12 hours following ovalbumin 

(Ova) challenge in sensitised guinea-pigs treated with either intra-peritoneal vehicle or 

dexamethasone (Dex, 5mg/kg, 10mg/kg and 20mg/kg) dosed daily for 6 days. For the 

purpose of analysis only negative peaks were considered and all positive sGaw values were 

excluded. Total includes all negative peaks from 0-12 hours, early asthmatic response (EAR) 

includes values from 0-6 hours and late asthmatic response (LAR) includes values from 6-12 

hours. Area under the curve is expressed as %.hour N=6 (vehicle), N=4 (Dex 5mg/kg), N=6 

(Dex 10mg/kg), N=7 (Dex 20mg/kg).*significantly different from vehicle treatment p<0.05, 

** p<0.01; performed with one-way analysis of variance followed by Dunnet’s post-test.
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Figure 6: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles and 0.5LPM flow per chamber over 

2minutes, 1 minute drying period) in ovalbumin (Ova) sensitised and challenged guinea-pigs treated with either A) intra-peritoneal vehicle or 

dexamethasone (B) 5mg/kg C) 10mg/kg D) 20mg/kg) dosed daily for 6 days. E) Represents the peak the bronchoconstriction pre- and post-Ova following 

histamine challenge. Values were recorded 7 days pre- and 24 hours post-Ova challenge. Mean changes in sGaw are expressed as mean±SEM percentage 

change from baseline. A negative value represents a bronchoconstriction. N=6 (vehicle), N=4 (Dex 5mg/kg), N=6 (Dex 10mg/kg), N=7 (Dex 20mg/kg). 

***significantly different from vehicle treatment p<0.001; performed with performed with a two tailed T-test. 
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Figure 7: Total lavage fluid protein in ovalbumin (Ova) sensitised and challenged guinea-pigs 

treated with either intra-peritoneal vehicle or dexamethasone (Dex, 5mg/kg, 10mg/kg and 

20mg/kg) dosed daily for 6 days. Protein content was determined by BCA protein assay. N=6 

(vehicle), N=4 (Dex 5mg/kg), N=6 (Dex 10mg/kg), N=7 (Dex 20mg/kg).*significantly different 

from vehicle treatment p<0.05, ** p<0.01; ^^^significantly different from naïve, p<0.001; 

performed with one-way analysis of variance followed by selected groups Bonferroni post-

test. 
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Figure 8: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil (E) 

counts in bronchoalveolar fluid in ovalbumin (Ova) sensitised and challenged guinea-pigs 

treated with intra-peritoneal vehicle or dexamethasone (Dex, 5mg/kg, 10mg/kg and 

20mg/kg) dosed daily for 6 days. N=6 (vehicle), N=4 (Dex 5mg/kg), N=6 (Dex 10mg/kg), N=7 

(Dex 20mg/kg).*significantly different from vehicle treatment p<0.05, ** p<0.01; ^^^ 

significantly different from naive p<0.001; performed with one-way analysis of variance 

followed by selected groups Bonferroni post-test. 
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Figure 9: The concentration of A) IL-13 B) IL-17 in the lungs of ovalbumin (Ova) sensitised 

and challenged guinea-pigs treated with intra-peritoneal vehicle or dexamethasone (Dex, 

5mg/kg, 10mg/kg and 20mg/kg) dosed daily for 6 days. N=6 (vehicle), N=4 (Dex 5mg/kg), 

N=6 (Dex 10mg/kg), N=7 (Dex 20mg/kg).*significantly different from vehicle treatment 

p<0.05, ** p<0.01; *** p<0.001; ^^ significantly different from naive p<0.01; performed with 

one-way analysis of variance followed by selected groups Bonferroni post-test. 
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7.5.2 THE EFFECT OF SYSTEMIC DEXAMETHASONE ON ACUTE OVALBUMIN AND 

LPS CO-EXPOSURE RESPONSES 

Ova challenged and vehicle treated guinea-pigs demonstrated an immediate 

bronchoconstriction to Ova at 0 minutes (-54.3±6.6%) which did not return to 

baseline sGaw values until 7 hours. Dexamethasone (20mg/kg) treated animals also 

demonstrated an immediate bronchoconstriction (-46.1±11.2%). During the first 6 

hours following Ova exposure, dexamethasone treated animals demonstrated 

significantly less of a bronchoconstriction than vehicle, including at 3 (-15.4±10.0% 

compared to -55.6±4.6%) 4 (-7.9±8.8% compared to -41.9±5.2%) and 5 hours (-

11.5±8.2% compared to -35.1±3.4%). Vehicle treated guinea-pigs displayed a late 

asthmatic response at 9 hours (-21.9±9.9%) which was not significantly reduced by 

dexamethasone treatment (-9.0±9.7%) (Figure 10, time course). No difference in the 

peak early or late phase responses was observed between vehicle and 

dexamethasone treatment groups (Figure 10, histogram). The area under the curve 

for early phase responses was significantly reduced by dexamethasone treatment 

(208.0±59.3%.hr compared to vehicle, 357.6±44.0%.hr). No significant difference in 

late phase area under the curve was observed (Figure 11). Intra-peritoneal 

dexamethasone (20mg/kg) significantly increased the recovery from early asthmatic 

response bronchoconstriction (2.1±0.5h compared to 4.8±0.5h respectively) (Figure 

12).   

 

Vehicle treated guinea-pigs demonstrated an immediate increase in the 

bronchoconstrictor response to histamine, post-Ova challenge (-34.8±5.8% 

compared to pre-Ova, -2.0±1.3%). This bronchoconstriction continued to increase 

over 10 minutes. At 10 minutes it was -43.2±5.1% compared to pre-challenge, -

6.9±3.1%. Treatment with 20mg/kg dexamethasone did not significantly attenuate 

the development of airways-hyperresponsiveness. At 5 and 10 minutes the 

bronchoconstriction to histamine post-Ova challenge was -36.0±12.3% compared to 
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pre-Ova, -3.9±4.1%; -35.3±9.9% compared to pre-Ova, -1.1±2.6% respectively) 

although the immediate response to histamine was attenuated (Figure 13). The peak 

bronchoconstriction to histamine increased post-Ova/LPS challenge in both vehicle (-

43.2±5.1% compared to pre-Ova, -7.0±5.1%) and dexamethasone (-36.0±12.3% 

compared to pre-Ova, -6.3±1.8%).  

 

Lavage fluid protein levels, increased in vehicle treated guinea-pigs (2.4±0.4mg/ml) 

compared to naïve (0.4±0.1). Lavage fluid protein levels were reduced in 

dexamethasone (20mg/kg) treated guinea pigs, nearly back to naïve levels 

(0.7±0.2mf/ml) (Figure 14).  

 

Total cell numbers, increased In Ova/LPS challenged guinea-pigs (25.8±1.6x106/ml) 

compared to naïve (1.4±0.2x106/ml), were significantly reduced by dexamethasone 

(20mg/kg) treatment (11.2±1.2x106/ml). All cell types measured were reduced by 

dexamethasone treatment including macrophages (5.5±0.5x106/ml compared to 

vehicle 10.5±0.8x106/ml), eosinophils (2.4±0.7x106/ml compared to vehicle 

8.2±1.2x106/ml), lymphocytes (0.1±0.04x106/ml compared to vehicle 

0.6±0.2x106/ml) and neutrophils (3.2±0.8x106/ml compared to vehicle 

6.8±0.8x106/ml) (Figure 15).  

 

IL-8, IL-13 and IL-17 levels were significantly elevated in Ova/LPS challenged and 

vehicle treated guinea-pigs (45±7.3pg/mg, 16.9±1.0ng/mg and 105.6±19.8pg/mg, 

respectively) compared to naïve (not detectable, 8.7±2.9ng/mg and not detectable 

respectively). None of these cytokines were significantly reduced by dexamethasone 

treatment (Figure 16).  
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Figure 10: The mean time-course values of sGaw in ovalbumin (Ova) and LPS challenged guinea-pigs treated with intra-peritoneal vehicle or dexamethasone 

(Dex, 20mg/kg) dosed daily for 6 days. The histogram represents the maximum bronchoconstriction values recorded during the early asthmatic response 

(EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are expressed as mean±SEM percentage 

change from baseline prior to Ova challenge. A negative value represents a bronchoconstriction. N=5 (vehicle), N=6 (Dex) *significantly different from 

vehicle treatment p<0.05, ** p<0.01; performed with a two tailed T-test. 
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Figure 11: Area under the curve analysis of sGaw values over 12 in ovalbumin (Ova) and LPS 

challenged guinea-pigs treated with intra-peritoneal vehicle or dexamethasone (Dex, 

20mg/kg) dosed daily for 6 days. For the purpose of analysis only negative peaks were 

considered and all positive sGaw values were excluded. Total includes all negative peaks 

from 0-24 hours, early asthmatic response (EAR) includes values from 0-6 hours and late 

asthmatic response (LAR) includes values from 6-12 hours. Area under the curve is expressed 

as %.hour. N=5 (vehicle), N=6 (Dex) *significantly different from vehicle treatment p<0.05; 

performed with a two tailed T-test. 

 

Figure 12: Analysis of the time taken for early asthmatic responses (EAR) to recover to 50% 

of peak bronchoconstriction values in ovalbumin (Ova) and LPS challenged guinea-pigs 

treated with intra-peritoneal vehicle or dexamethasone (Dex, 20mg/kg) dosed daily for 6 

days. N=5 (vehicle), N=6 (Dex) **significantly different from vehicle treatment p<0.01; 

performed with a two tailed T-test. 
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Figure 13: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period) in ovalbumin (Ova) and LPS challenged guinea-pigs treated with intra-peritoneal A) vehicle or B) dexamethasone (Dex, 

20mg/kg) dosed daily for 6 days. C) Represents the peak the bronchoconstriction pre- and post-Ova following histamine challenge. Values were recorded 7 

days pre- and 24 hours post-Ova challenge. Mean changes in sGaw are expressed as mean±SEM percentage change from baseline.  A negative value 

represents a bronchoconstriction. N=5 (vehicle), N=6 (Dex) **significantly different from time paired pre-Ova challenge values p<0.01; *** p<0.001; 

performed with a two tailed T-test. 
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Figure 14: Total lavage fluid protein in ovalbumin (Ova) and LPS challenged guinea-pigs 

treated with intra-peritoneal vehicle or dexamethasone (Dex, 20mg/kg) dosed daily for 6 

days. Protein content was determined by BCA protein assay. N=5 (vehicle), N=6 (Dex) 

**significantly different from vehicle treatment p<0.01; ^^^significantly different from 

naïve, p<0.001; performed with one-way analysis of variance followed by selected groups 

Bonferroni post-test. 
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Figure 15: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid of ovalbumin (Ova) and LPS challenged guinea-pigs 

treated with intra-peritoneal vehicle or dexamethasone (Dex, 20mg/kg) dosed daily for 6 

days. N=5 (vehicle), N=6 (Dex) *significantly different from vehicle treatment p<0.05,; *** 

p<0.001; ^^^significantly different from naïve, p<0.001; performed with one-way analysis of 

variance followed by selected groups Bonferroni post-test. 
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Figure 16: The concentration of A) IL-8 B) IL-13 C) IL-17 in the lungs of ovalbumin (Ova) 

sensitised guinea-pigs treated with intra-peritoneal vehicle or dexamethasone (Dex, 

20mg/kg) dosed daily for 6 days. N=5 (vehicle), N=6 (Dex) ^significantly different from naive 

p<0.05, ^^^ p<0.001; performed with one-way analysis of variance followed by selected 

groups Bonferroni post-test. 
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8.5.3 THE EFFECT OF SYSTEMIC DEXAMETHASONE ON LPS EXPOSURE 

RESPONSES 

Vehicle treated animals demonstrated a progressive increase in bronchoconstriction 

during the 1st hour post-LPS exposure, reaching its peak at 3 hours (-36.0±3.5%). 

Dexamethasone (20mg/kg) significantly attenuated the LPS induced 

bronchoconstriction during this time period. At 1 hour the bronchoconstriction was -

9.5±7.1% compared to vehicle -31.8±2.8%, 2 hours -7.9±5.1% compared to vehicle, -

29.1±3.4% and 3 hours -7.8±5.9% compared to -36.0±3.5%. In vehicle treated 

animals the bronchoconstriction returned to baseline sGaw levels at 5 hours. No 

further significant difference between vehicle and dexamethasone treated groups 

was seen (Figure 17, time course). Vehicle treated guinea pigs demonstrated a peak 

constriction between 0-12 hours of -38.5±3.2% which was significantly reduced by 

dexamethasone treatment (-17.6±5.6%) (Figure 17, histogram). Dexamethasone 

treatment significantly reduced the area under the curve between 0-12 hours 

compared to vehicle (212.6±34.1%.hr compared to 93.0±30.4%.hr) (Figure 18).  

 

LPS increased protein levels in lavage fluid (1.5±0.1mg/ml) compared with naïve 

(0.5±0.05mg/ml) was significantly reduced by dexamethasone (20mg/kg) treatment 

to near naïve levels (0.6±0.1mg/ml and 0.5±0.1mg/ml respectively) (Figure 19).  

 

Vehicle treated guinea-pigs demonstrated a significant increase in the 

bronchoconstrictor response at 0 minutes to histamine post-LPS exposure (-

15.8±3.1%) compared to pre-LPS (-2.1±3.5%). At 5 minutes post-histamine challenge 

a significant bronchoconstriction was still present (-12.3±2.3%) compared to pre-LPS 

(5.6±2.4%). The bronchoconstriction was no longer significant at 10 minutes. 

Dexamethasone treated guinea-pigs also displayed no increase in bronchoconstrictor 

response to histamine (Figure 20). LPS challenged and vehicle treated guinea pigs 

also demonstrated an increase in the peak bronchoconstriction to histamine (-



Chapter 7 

 

299 

 

16.5±2.7%) compared to pre-LPS (-7.4±1.7%). Dexamethasone treated guinea-pigs 

demonstrated no change in peak bronchoconstriction.  

 

LPS increased total cell numbers (19.4±0.8x106/ml) compared to naïve 

(1.1±00.2x106/ml) and were significantly reduced by treatment with dexamethasone 

(13.5±0.9x106/ml). This decrease corresponded with a decrease in the number of 

eosinophils and neutrophils (0.1±0.02x106/ml compared with vehicle, 

0.6±0.2x106/ml; 5.5±0.7x106/ml compared with vehicle, 10.5±0.4x106/ml). All other 

cell types remained unchanged by dexamethasone treatment (Figure 21).  

 

IL-8 levels increased in vehicle treated guinea–pigs (190.8±34.4pg/mg) compared to 

naïve (not detectable) and was significantly reduced by treatment with 

dexamethasone (91.4±15.8pg/mg) (Figure 22). 
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Figure 17: The mean time-course values of sGaw in guinea-pigs exposed to LPS twice and treated with an intra-peritoneal injection of vehicle or 20mg/kg 

dexamethasone, dosed daily for 6 days. The histogram represents the maximum bronchoconstriction values recorded during 0-12 hours and 24 hours 

readings. Mean changes in sGaw are expressed as mean±SEM percentage change from baseline prior LPS challenge. A negative value represents a 

bronchoconstriction. Results shown are after the second LPS exposure. N=6 *significantly different from vehicle treatment p<0.05, ** p<0.01; performed 

with a two tailed T-test. 
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Figure 18: Total area under the curve analysis of sGaw values in guinea-pigs exposed to LPS 

twice and treated with an intra-peritoneal injection of vehicle or 20mg/kg dexamethasone, 

dosed daily for 6 days.  For the purpose of analysis only negative peaks were considered and 

all positive sGaw values were excluded. Total includes all negative peaks from 0-12 hours. 

Area under the curve is expressed as %.hour. N=6 ***significantly different from vehicle 

treatment p<0.001; performed with a two tailed T-test. 

 

 

Figure 19: Total lavage fluid in guinea-pigs exposed to LPS twice and treated with an intra-

peritoneal injection of vehicle or 20mg/kg dexamethasone, dosed daily for 6 days. Protein 

content was determined by BCA protein assay.  N=6 ***significantly different from vehicle 

treatment  p<0.001; ^^^ significantly different from naive p<0.001; performed with one-way 

analysis of variance followed by selected groups Bonferroni post-test.  
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Figure 20: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period,) in guinea-pigs exposed to LPS twice and treated with an intra-peritoneal injection of A) vehicle or B) 20mg/kg 

dexamethasone, dosed daily for 6 days. C) Represents the peak the bronchoconstriction pre- and post-Ova following histamine challenge. Values were 

recorded 7 days pre- and 24 hours post-Ova challenge.  Mean changes in sGaw are expressed as mean±SEM percentage change from baseline. A negative 

value represents a bronchoconstriction. N=6 *significantly different from time paired pre-LPS challenge values p<0.05; *** p<0.001; performed with a two 

tailed T-test. 
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Figure 21: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar in guinea-pigs exposed to LPS twice and treated with an intra-

peritoneal injection of vehicle or 20mg/kg dexamethasone, dosed daily for 6 days. N=6 

***significantly different from vehicle treatment p<0.001; ^significantly different from 

naïve, p<0.05; ^^^ p<0.001; performed with one-way analysis of variance followed by 

selected groups Bonferroni post-test. 
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Figure 22: The concentration of IL-8 in the lungs of guinea-pigs exposed to LPS twice and 

treated with an intra-peritoneal injection of vehicle or 20mg/kg dexamethasone, dosed daily 

for 6 days. N=6 *significantly different from vehicle treatment p<0.05, ^^^ significantly 

different from naive p<0.001; performed with one-way analysis of variance followed by 

selected groups Bonferroni post-test. 
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7.6 DISCUSSION 

Initially, a dose of systemic dexamethasone which reduced the LAR, AHR and airway 

inflammation induced by Ova alone was sought. This dose was then used to test the 

systemic corticosteroid sensitivity of the Ova and LPS exacerbation model developed 

in chapter 5. The sensitivity of LPS induced responses to this same dose was also 

investigated.  

7.6.1 THE EFFECT OF SYSTEMIC DEXAMETHASONE ON EARLY AND LATE 

ASTHMATIC RESPONSES 

Systemic dexamethasone demonstrated some effect on the EAR. The peak of the 

EAR was not affected by any dose of systemic dexamethasone but the area under 

the curve during this time period was reduced. In the case of 10mg/kg 

dexamethasone this was a statistically significant reduction. This indicates that 

systemic dexamethasone can reduce the duration of the EAR. This effect of 

dexamethasone is supported by a study by Toward & Broadley, 2004, who also 

demonstrated that systemically administered dexamethasone reduces the length of 

the EAR. This response coincided with a reduction in lavage fluid histamine levels 

and increased nitric oxide 1 hour after allergen challenge. This indicates that a 

reduction in histamine release from mast cells and increased nitric oxide production 

may mediate this effect in the present study. This is further supported by the 

observation that L-NAME, a nitric oxide synthase inhibitor increases the duration of 

the EAR (Schuiling et al, 1998).    

Systemic dexamethasone also reduced the prolonged EAR in Ova and LPS challenged 

guinea-pigs. This may suggest that the EAR in Ova/LPS groups consists of separate 

systemic corticosteroid sensitive and insensitive components. This could be 

mediated by the selective decrease in mast cells and histamine release. James et al, 

(2012) recently demonstrated that inhaled corticosteroids can selectively decrease 

epithelial and smooth muscle mast cells but not sub mucosal mast cells. A similar 
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selective decrease in the mast cells with a systemic corticosteroid may account for a 

decrease in the prolonged EAR in Ova/LPS groups. The reduction could also be due 

to a decrease in neutrophils in lavage fluid. Systemic dexamethasone treatment in 

LPS exposed guinea-pigs also decreased LPS-induced bronchoconstrictions and 

neutrophil numbers. Neutrophils increase during the EAR and can release 

bronchoconstrictive substances (Danahay et al, 1995; Reino et al, 2012). However, 

sensitivity to systemic corticosteroid of LPS-induced bronchoconstrictions and 

neutrophils has not been shown in all studies. Lefort et al, (2001) demonstrated that 

LPS-induced bronchoconstrictions were systemic corticosteroid insensitive while 

lavage neutrophils were not. However, no decrease in neutrophil numbers was 

found in the airway structure with histological assessment, not making it possible to 

rule out the role of neutrophils. Instead this study suggested that macrophages may 

be the mediators of immediate bronchoconstrictions to LPS. However, in the present 

study macrophage numbers were not reduced with systemic dexamethasone 

treatment not supporting this conclusion. The reasons for this disparity are unclear, 

but differences in the LPS exposure protocol and the use of C57BL/6 mice may 

account for this.  

 The LAR was reduced in a dose-dependent manner; being significantly 

attenuated by the highest dose of dexamethasone (20mg/kg) used in Ova challenged 

guinea-pigs. The ability of systemic dexamethasone to reduce the LAR is well 

established (Toward & Broadley, 2004). In contrast, systemic dexamethasone did not 

significantly reduce the LAR in Ova and LPS challenged guinea-pigs. This is slightly 

surprising as the LAR is linked to the presence of airway inflammation but in the 

current study inflammation is reduced by dexamethasone treatment (Yoshida et al, 

2005; Gauvreau et al, 2000). However, the specific component of the inflammatory 

response that promotes the LAR is unknown and consequently dissociation has been 

observed in several animal models (Smith & Broadley, 2007). Additionally, despite 

the reduction in airway inflammations by systemic dexamethasone, the absolute 

number of cells found in lavage fluid is still high (10 million total). Thus the reduction 
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in airway inflammation may not be sufficient to suppress the LAR. The observation 

that IL-13 levels, typically corticosteroid sensitive are not reduced by systemic 

dexamethasone would suggest these remaining cells are still actively secreting 

mediators.  

7.6.2 THE EFFECT OF SYSTEMIC DEXAMETHASONE ON AIRWAYS 

HYPERRESPONSIVENESS 

All doses of systemic dexamethasone reduced the development of AHR following 

Ova challenge. This confirms the results of previous studies from this laboratory in 

guinea-pigs (Toward & Broadley, 2004; Smith & Broadley, 2010). Systemic 

dexamethasone (20mg/kg) also reduced LPS-induced AHR at 24 hours. This confirms 

that the AHR suppressive effects of systemic dexamethasone at 1 hour extend to the 

24 hour time point (Toward & Broadley, 2001). 

In contrast, even the highest dose (20mg/kg) of systemic dexamethasone did not 

significantly reduce the development of AHR in guinea-pigs exposed to Ova and LPS. 

This result is supported by a study by Komlosi et al, (2006) who also found that Ova 

and LPS induced systemic corticosteroid insensitive AHR. Although AHR is generally 

associated with inflammation, in the present study total and differential cell counts 

are all reduced by systemic dexamethasone in Ova/LPS animals. This suggests that 

the reduction in inflammation is not sufficient to completely abolish the 

development of AHR in these animals. In support of this is the observation that 

although inflammation is reduced by systemic dexamethasone treatment, cell 

numbers are still significantly higher than naïve levels. Thus neutrophils and 

macrophages may still be active and releasing mediators which cause epithelial 

damage. The damage may increase the access and prevent the breakdown of 

bronchoconstrictive substances such as exogenous histamine. Some mediators such 

as IFN-γ and IL-13 are also directly implicated in AHR (Cockcroft & Davis, 2006; Yang 

et al, 2009). In the current study, IL-13 levels are not significantly reduced by 

systemic dexamethasone in Ova/LPS challenged guinea-pigs. However, IL-13 is 
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unlikely to be the main mediator of the prolonged bronchoconstrictor response in 

this model since levels do not increase over those in Ova challenged guinea-pigs 

7.6.3 THE EFFECT OF SYSTEMIC DEXAMETHASONE ON AIRWAY INFLAMMATION 

AND CYTOKINES 

Systemic dexamethasone reduced the total number of lavage cells in a dose-

dependent manner in Ova challenged guinea-pigs. Eosinophils, macrophages and 

lymphocytes were all reduced by the highest dose (20mg/kg) of systemic 

dexamethasone. This confirms the findings of Toward & Broadley, (2004) and Smith 

& Broadley, (2010) who also used systemic dexamethasone in a guinea-pig allergen 

challenge model. Total and differential cells were also reduced by systemic 

dexamethasone in Ova and LPS challenged guinea-pigs, indicating that the 

inflammation in this model is sensitive to systemic corticosteroids. This confirms the 

findings of Komlosi et al, (2006) who also demonstrated significant decreases in 

these cell populations with systemic dexamethasone in mice. IL-13 was significantly 

reduced by systemic dexamethasone in both Ova and Ova and LPS groups. 

Contrastingly, in the present study IL-13 levels were only decreased in Ova but not 

Ova/LPS challenged groups. The reason for this difference is unknown but species 

differences, protocols and the medium used to assess IL-13 (lavage fluid vs lung) may 

account for the difference. 

The reason inflammation is sensitive to systemic corticosteroid in the Ova and LPS 

model is likely to be due to the compartmentalisation of corticosteroid insensitivity 

in the lung. Also, systemic corticosteroids have additional biological effects over 

inhaled corticosteroids. Systemic corticosteroids work not only by reducing 

inflammation in the lungs but also by suppressing bone marrow derived 

haemopoietic cells (Mao et al, 2004; Ben et al, 2008). Since LPS is administered by 

inhalation to the lungs the main corticosteroid insensitivity inducing effects are likely 

localised to this region of the body.  Although systemic exposure to LPS from 

inhalation is also likely, the levels of exposure will be lower than that of the lung. At 
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higher doses or increased numbers of LPS exposures, corticosteroid insensitivity may 

become more generalised in the body. Goleva et al, (2008) showed that in vitro 

prolonged exposure to LPS reduces the effect of dexamethasone on human 

monocytes. In vivo a high dose of intranasal LPS in mice can cause systemic 

corticosteroids insensitivity (Lefort et al, 2001). This contrasts with the current study 

where fewer and lower doses of LPS induced inflammation that was sensitive to 

systemic dexamethasone.  

Neutrophils have different sensitivity to corticosteroids in the systemic 

circulation and the lungs. Although neutrophils in the lung are relatively 

corticosteroid insensitive due to decreased expression of GR-α, in the blood they 

demonstrate increased expression of GR-α, rendering them sensitive to suppression 

by corticosteroids (Plumb et al, 2012). This may account for the decrease in 

neutrophils with systemic dexamethasone in Ova/LPS and LPS challenged guinea-

pigs. Systemic administration of corticosteroids suppresses neutrophil recruitment to 

the lung because of high circulating levels of the drug (Ben et al, 2008). However, 

blood neutrophils are still relatively insensitive to corticosteroids, probably 

explaining why systemic dexamethasone does not completely eliminate them. Lung 

neutrophils in conditions of high oxidative stress may become even more 

corticosteroid insensitive by decreasing the activity of HDAC-2 and increasing GR-β 

(Hamilos et al, 2001; Ito et al, 2004). Thus the elevated neutrophil numbers still 

present in Ova and LPS challenged guinea-pigs may represent a distinct 

corticosteroid insensitive lung neutrophil population. This population may be 

supported by the increased levels of IL-8 in the lungs, which are not suppressed by 

systemic dexamethasone. IL-17 levels in lung were unaffected by systemic 

dexamethasone treatment in Ova and LPS but decreased in Ova challenged groups. 

This indicates that IL-17-based responses have become less responsive to systemic 

corticosteroid treatment. This may be as a result of IL-17 responses being localised 

to the lung, where cells secreting IL-17 are less corticosteroid sensitive with Ova and 

LPS exposure.  
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7.6.4 THE EFFECT OF SYSTEMIC DEXAMETHASONE ON AIRWAY OEDEMA 

Systemic dexamethasone significantly decreased total lavage fluid protein levels in 

guinea-pigs challenged with Ova, LPS/Ova and LPS. The decrease in total protein 

levels correlated with decreases in inflammation which may indicate that these 

effects are due to decreased levels of pro-inflammatory mediators. However, 

corticosteroids are known to have extra-genomic effects such as vasoconstriction so 

these effects are likely to also be important (Mendes et al, 2003).  

7.6.5 GENERAL CONCLUSIONS 

This study has demonstrated that Ova induced LAR, AHR, airway inflammation, lung 

cytokines and lavage fluid protein levels are sensitive to systemic dexamethasone. 

Exposure to LPS reduces the effect of systemic dexamethasone on the LAR, AHR and 

cytokines. However, the elongated EAR, inflammatory cell influx and lavage protein 

levels are still sensitive to systemic dexamethasone. These results demonstrate that 

the Ova and LPS model may be clinically relevant. Patients who are insensitive to 

inhaled corticosteroids frequently demonstrate some sensitivity to systemic 

corticosteroids (Hodgson et al, 2012; Massuse et al, 2012). To fully confirm inhaled 

corticosteroid insensitivity in this model, the next chapter will use dexamethasone as 

an inhaled preparation.  



Chapter 8 

 

311 

 

 

 

  

CHAPTER 8 
The Effect Of Inhaled Dexamethasone On 
Functional And Inflammatory Responses 
To Ovalbumin And LPS 

 



Chapter 8 

 

312 

 

8.1 INTRODUCTION 

For a description of the use of inhaled corticosteroids, corticosteroid insensitivity 

and their mechanism please refer to Chapter 6.1. 

8.1.1 CONFIRMATION OF INHALED CORTICOSTEROID INSENSITIVITY 

Following on from the results of chapter 6 and 7, this chapter aimed to confirm that 

insensitivity to inhaled corticosteroids in the Ova and LPS combination model was 

not specific to just FP. Therefore dexamethasone, having been shown to be 

systemically active in reducing functional and allergic responses in the Ova and LPS 

combination model was given as an inhalation. Dexamethasone is normally 

administered systemically but a few studies have given it as an intranasal 

preparation and found that it reduces AHR, airway inflammation and Th2 cytokines 

(Essilfie et al, 2012). Only one previous study in animals has administered 

dexamethasone as an inhalation (Jungsuwadee et al, 2004). This study found that 

inhaled dexamethasone in mice was also effective at reducing Ova-induced AHR and 

airway inflammation. To find an effective dose at reducing these parameters and the 

EAR, LAR and oedema induced by Ova alone, several doses were initially 

investigated.  
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8.2 HYPOTHESIS 

‘LPS exposure will decrease the sensitivity of functional and inflammatory responses 

to inhaled dexamethasone in an ovalbumin model of asthma’ 

8.3 AIMS AND OBJECTIVES 

The aim of this chapter was to establish whether LPS decreases the sensitivity of 

Ova-induced functional and inflammatory responses to inhaled dexamethasone. 

Initially a dose of inhaled dexamethasone effective at reducing the LAR, AHR and 

airway inflammation by Ova alone was established. This dose was then tested in the 

LPS and Ova/LPS models. 
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8.4 METHODS 

Methods describing the measurement of lung function, AHR, airway oedema, airway 

inflammation and cytokine levels can be found in more detail in chapter 2.  

8.4.1 OVALBUMIN PROTOCOLS 

8.4.1.1 SENSITISATION 

Guinea-pigs (200-300g, Dunkin-Hartley, male) were sensitised by a bilateral intra-

peritoneal injection of a solution containing 150µg ovalbumin (Ova) and 100mg 

aluminium hydroxide (Al(OH)3) in normal saline on day 1, 4 and 7. 

 

8.4.1.23 ACUTE OVALBUMIN MODEL  

Sensitised guinea-pigs were exposed to inhaled Ova (0.03%) for 1 hour on day 21 in a 

Perspex container as described in section 8.4.1.2. The lung function response to Ova 

was assessed over 12 hours. The bronchoconstrictor response to 0.3mM histamine 

was accessed on day 15 and 22 as described in section 8.4.5. Dexamethasone was 

administered by inhalation in a Perspex chamber for 15 minutes, once a day from 

day 16-21. On day 21, dexamethasone was administered 30 minutes pre-Ova 

challenge. A diagram of this protocol is shown in shown in Figure 1. 

 

Figure 1: The acute ovalbumin (Ova) protocol. Guinea-pigs were challenged with inhaled Ova 

(0.03% on day 21). Dexamethasone (Dex) was dosed daily for 6 days.  
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8.4.1.3 ACUTE OVA AND LPS CO-EXPOSURE MODEL 

Sensitised guinea-pigs were exposed to inhaled LPS (30μg/ml) 48 hours before Ova 

challenge in an exposure chamber and both LPS (30μg/ml) and Ova (0.03%) co-

administered on day 21. The bronchoconstrictor response to histamine was assessed 

on day 15 and day 22. Dexamethasone was administered by inhalation in a Perspex 

chamber for 15 minutes, once a day from day 16-21. On day 21, dexamethasone was 

administered 30 minutes pre-Ova challenge. A diagram of this protocol is shown in 

shown in Figure 2. 

 

 

Figure 2 Diagram of the LPS and Ova co-exposure protocol. Guinea-pigs were exposed to LPS 

(30μg/ml) on day 19 and both Ova and LPS co-administered on day 21. Dexamethasone 

(Dex) was dosed daily for 6 days. 

 

8.4.2 LPS EXPOSURE PROTOCOL 

Non-sensitised guinea-pigs were exposed to LPS (30μg/ml) on days 5 and 7 of the 

protocol. The bronchoconstrictor response to histamine was assessed on day 1 and 

day 8. Figure 3 shows a diagram of this protocol. Dexamethasone was administered 

by inhalation in a Perspex chamber for 15 minutes, once a day from day 2-7. On day 

7,  dexamethasone was administered 30 minutes pre-LPS challenge. A diagram of 

this protocol is shown in Figure 2. 
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Figure 3: Diagram of the LPS alone exposure protocol. Guinea-pigs were exposed to 30μg/ml 

of LPS on day 5 and 7. Dexamethasone (Dex) was dosed daily for 6 days. 

8.4.3 DRUG ADMINISTRATION 

Dexamethasone was dissolved in 25% DMSO and 75% saline and administered as an 

inhalation for 15 minutes in a Perspex exposure chamber using a DeVilbiss nebuliser. 

8.4.4 MEASUREMENT OF LUNG FUNCTION 

Lung function was measured by whole body plethysmography following final Ova, 

LPS or Ova/LPS exposure in all protocols. Lung function was recorded hourly for 12 

hours and every 15 minutes during the first hour of measurements. A final 

measurement was also taken 24 hours post-final challenge. All values were 

expressed as a percentage of the baseline reading, taken before the final challenge. 

A negative percentage change in baseline value represents a bronchoconstriction. In 

Ova protocols, early (0-6 hours) and late (6-12 hours) asthmatic responses were 

expressed as the peak bronchoconstriction during that period (displayed as a 

histogram next to a time course plot) and area under the curve. The duration of the 

early phase was expressed as the time taken to recover to 50% of peak early phase 

bronchoconstriction values.  In the LPS only protocol, lung function was measured 

for 12 hours after the second LPS exposure. The peak bronchoconstriction during 

this period was expressed on a histogram next to the time course plot.  
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8.4.5 AIRWAYS HYPERRESPONSIVENESS ASSESSMENT. 

AHR was determined using whole body plethysmography. This was performed by 

measuring the bronchoconstrictor response to histamine before inhaled 

corticosteroid treatment and 24 hours post-final LPS, Ova, LPS or Ova challenge. 

Histamine was delivered as described in chapter 2. Lung function was measured just 

before histamine inhalation and at 0, 5 and 10 minutes post-histamine exposure. The 

peak bronchoconstriction during this period was expressed on a histogram.  

6.4.6 ASSESSMENT OF AIRWAYS INFLAMMATION 

Following final histamine exposure guinea-pigs were sacrificed by an intra-peritoneal 

overdose of sodium pentobarbitone, the lungs excised and lavaged. Total and 

differential cell counts were then performed as described in chapter 2.  

8.4.7 QUANTIFICATION OF CYTOKINE LEVELS USING ENZYME-LINKED 

IMMUNOSORBENT ASSAY (ELISA) 

Levels of IL-8, IL-17 and IL-13 were measured in diluted homogenised lung samples 

using ELISA supplied by R&D systems. Cytokine levels were adjusted for total lung 

protein and expressed as weight per mg of lung as described in section 2.2.3.2. 

8.4.8 ASSESSMENT OF AIRWAY OEDEMA 

Protein content in lavage fluid was determined as a measure of airway oedema by 

BCA protein assay as per the manufacturer’s instructions (Pierce protein biology).  
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8.5 RESULTS 

8.5.1 THE EFFECT OF INHALED DEXAMETHASONE ON ACUTE OVALBUMIN  

Inhaled vehicle (25% DMSO/75% saline) treated animals demonstrated an 

immediate bronchoconstriction to Ova at 0 minutes (-70.2±2.7%). This was 

attenuated in guinea-pigs treated with 20mg/ml but not 4mg/ml dexamethasone (-

57.7±3.6% and -72.8±2.7%, respectively). Animals treated with 20mg/ml 

dexamethasone demonstrated significantly less of a bronchoconstriction than 

vehicle during the first hour of readings, at 1 hour the sGaw value was -34.0±5.1% 

compared to vehicle, -56.2±5.4%. This was also the case at 3 hours (-26.1±5.8%) 

compared to vehicle (-46.5±5.5%). Both vehicle and dexamethasone treated group’s 

early phase bronchoconstrictions returned to baseline sGaw values by 6 hours. Both 

vehicle and 4mg/ml dexamethasone treated animals demonstrated late asthmatic 

responses between 7-10 hours (-18.3±3.7% and -18.7±2.6% respectively). No clear 

LAR was seen in 20mg/ml treated animals during this period (-6.2±3.5%) (Figure 4, 

time course).  

Vehicle treated guinea-pigs demonstrated a peak EAR of -70.8±2.6%, unchanged by 

4mg/ml dexamethasone (-73.2±2.7%) but significantly attenuated by 20mg/ml 

dexamethasone (-57.9±3.6%). Late asthmatic response in animals treated with 

4mg/ml dexamethasone were unchanged from vehicle (-21.3±2.6 compared to -

23.3±2.6%) but were significantly reduced by 20mg/ml dexamethasone (-11.1±2.0%). 

No significant differences between sGaw values at 24 hours were observed (Figure 4, 

histogram). 4mg/ml dexamethasone did not significantly reduce the total or early 

asthmatic response area under the curve compared to vehicle. 20mg/ml 

dexamethasone significantly reduced both total (169.2±31.9%.hr compared to 

vehicle, 302.1±32.1%.hr) and EAR area (145.5±25.9%.hr compared to vehicle, 

235.9±24.4%.hr). LAR area was reduced by 20mg/ml dexamethasone but not 

significantly (Figure 5). 

 



Chapter 8 

 

319 

 

Vehicle treated guinea-pigs demonstrated a significant increase in the 

bronchoconstrictor response to histamine post-Ova compared to pre-Ova challenge 

(-17.1±6.2% compared to 0.3±2.9%). At 5 minutes post-histamine challenge, sGaw 

values began to return to pre-challenge values (-12.3±4.5% compared to 8.2±2.4%). 

At 10 minutes the bronchoconstriction was still significant (-11.4±4.2% compared to 

pre-challenge, 6.8±4.0%). Guinea pigs treated with both 4 and 20 mg/ml 

dexamethasone demonstrated no significant change in histamine bronchoconstrictor 

response post-Ova challenge (Figure 6).  

 

Lavage fluid protein levels increased following Ova challenge and vehicle treatment 

(2.6±0.5mg/ml) and was reduced non-significantly by both 4 and 20mg/ml 

dexamethasone treatment (1.5±0.3mg/ml and 1.7±0.2mg/ml respectively) (Figure 7).  

 

Ova challenge with vehicle treatment increased total (9.1±1.1x106/ml) compared to 

naïve (1.4±0.2x106/ml) and differential cell counts. Guinea-pigs treated with 

dexamethasone or vehicle. Both 4 and 20mg/ml dexamethasone treatment 

significantly reduced total cell numbers compared to vehicle (6.1±0.7x106/ml and 

5.3±0.3x106/ml). Both 4 and 20mg/ml dexamethasone also significantly reduced 

eosinophil numbers (2.1±0.3x106/ml, 1.8±0.2x106/ml compared to vehicle, 

4.1±0.8x106/ml respectively). Additionally, 20mg/ml dexamethasone significantly 

reduced macrophage cell numbers compared to vehicle levels (3.1±0.3x106/ml 

compared to 4.8±0.4x106/ml). 4 but not 20mg/ml dexamethasone significantly 

reduced neutrophil numbers compared to vehicle (0.2±0.1x106/ml compared with 

0.5±0.1x106/ml respectively) (Figure 7). 

 

IL-13 levels, increased in Ova challenged and vehicle treated guinea-pigs (32.0±5.0%) 

compared to naïve (2.8±0.8ng/mg), demonstrated a non-significant trend for a 

decrease with increasing dose of dexamethasone. IL-17 levels were also increased in 

vehicle treated animals (106.6±17.7pg/mg) compared to naïve (41.9±15.4pg/mg) 
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and decreased non-significantly by dexamethasone, IL-8 was not detectable and is 

not shown (Figure 9).  
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Figure 4: The mean time-course values of sGaw in ovalbumin (Ova) sensitised and challenged guinea-pigs treated with either inhaled vehicle or 

dexamethasone (Dex, 4mg/ml or 20mg/ml), dosed daily for 6 days. The histogram represents the maximum bronchoconstriction values recorded during the 

early asthmatic response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are expressed as 

mean±SEM percentage change from baseline prior to Ova challenge. A negative value represents a bronchoconstriction. N=6 *significantly different from 

vehicle treatment p<0.05, ** p<0.01; performed with one-way analysis of variance followed by Dunnet’s post-test. 
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Figure 5: Area under the curve analysis of sGaw values over 12 hours following ovalbumin 

(Ova) challenge in guinea-pigs treated with either inhaled vehicle or dexamethasone (Dex, 

4mg/ml or 20mg/ml), dosed daily for 6 days. For the purpose of analysis only negative peaks 

were considered and all positive sGaw values were excluded. Total includes all negative 

peaks from 0-12 hours, early asthmatic response (EAR) includes values from 0-6 hours and 

late asthmatic response (LAR) includes values from 6-12 hours. Area under the curve is 

expressed as %.hour. N=6 *significantly different from vehicle treatment p<0.05; performed 

with one-way analysis of variance followed by Dunnet’s post-test. 
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Figure 6: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles and 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period) in ovalbumin (Ova) sensitised and challenged guinea-pigs treated with either inhaled A) vehicle (B) 4mg/ml 

dexamethasone (Dex)  C) 20mg/ml dexamethasone dosed daily for 6 days. D) Represents the peak the bronchoconstriction pre- and post-Ova following 

histamine challenge. Values were recorded 7 days pre- and 24 hours post-Ova challenge. Mean changes in sGaw are expressed as mean±SEM percentage 

change from baseline. A negative value represents a bronchoconstriction. N=6, *Significantly different from time paired pre-Ova challenge values p<0.05, 

** p<0.01; performed with a two tailed T-test. 
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Figure 7: Total lavage fluid protein in ovalbumin (Ova) sensitised and challenged guinea-pigs 

treated with either inhaled vehicle or dexamethasone (Dex, 4mg/ml or 20mg/ml), dosed 

daily for 6 days. ^^^significantly different from naïve p<0.001; N=6, performed with one-way 

analysis of variance followed by selected groups Bonferroni post-test 
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Figure 8: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil (E) 

counts in bronchoalveolar fluid in ovalbumin (Ova) sensitised and challenged guinea-pigs 

treated with either inhaled vehicle or dexamethasone (Dex, 4mg/ml or 20mg/ml), dosed 

daily for 6 days. N=6 *significantly different from vehicle treatment p<0.05, ** p<0.01; 

^^significantly different from naïve p<0.01; ^^^ p<0.001; performed with one-way analysis 

of variance followed by selected groups Bonferroni post-test 
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Figure 9: The concentration of A) IL-13 B) IL-17 in the lungs of ovalbumin (Ova) sensitised 

and challenged guinea-pigs treated with either inhaled vehicle or dexamethasone (Dex, 

4mg/ml or 20mg/ml), dosed daily for 6 days, N=6 ^^significantly different from naive p<0.01; 

performed with one-way analysis of variance followed by selected groups Bonferroni post-

test. 
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7.5.6 THE EFFECT OF INHALED DEXAMETHASONE ON ACUTE OVALBUMIN AND 

LPS CO-EXPOSURE. 

Vehicle treated guinea-pigs demonstrated an immediate bronchoconstriction to 

Ova/LPS at 0 minutes (-50.6±4.9%) which returned to baseline sGaw values at 6 

hours. Dexamethasone (20mg/ml) treated animals also demonstrated an immediate 

bronchoconstriction (-55.5±2.2%). During the first hour following Ova exposure, 

dexamethasone treated animals demonstrated significantly more of a 

bronchoconstriction then vehicle, including at 15 (-61.8±3.1% compared to -

48.3±3.1%), 30 (-61.1±2.8% compared to -46.9±4.2%) and 45 minutes (-57.2±3.1% 

compared to -47.2±2.8%). Vehicle treated guinea-pigs displayed a late asthmatic 

response from 7 hours (-18.2±5.9%) which was not significantly reduced by 

dexamethasone treatment (-15.0±2.6%). No significant difference in LAR responses 

was seen from 8-12 hours (Figure 10, time course). No difference in the peak early or 

late phase responses was observed between vehicle and dexamethasone treatment 

groups (Figure 10, histogram). No significant difference in total, early phase, late 

phase area under the curve was observed (Figure 11). Inhaled dexamethasone 

treatment did not significantly change the length of the early phase 

bronchoconstriction (2.9±02h) compared to vehicle (3.8±0.9h) (Figure 12). 

 

Vehicle treated guinea-pigs demonstrated an immediate increase in the 

bronchoconstrictor response to histamine, post-Ova/LPS challenge but this was not 

significant. This bronchoconstriction continued to increase and at 5 minutes was 

significant compared to pre-Ova challenge sGaw values (-17.7±6.0%) compared to 

pre-challenge (-3.1±1.2%). By 10 minutes post-histamine challenge the 

bronchoconstriction was -30.2±10.2% compared to pre-Ova, -0.2±2.1%. Treatment 

with dexamethasone (20mg/ml) did not significantly attenuate the development of 

airway hyperresponsiveness. At 0 minutes the bronchoconstriction to histamine was 

significantly increased (-13.0±4.6%) compared to pre-Ova (-2.0±1.3%). This 

bronchoconstriction continued to increase and at 5 and 10 minutes the 
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bronchoconstriction to histamine post-Ova challenge was -20.5±4.3% compared to 

pre-Ova, -4.1±2.8% and -23.3±5.0% compared to pre-Ova, -4.0±2.4% respectively 

(Figure 13).  

 

Protein levels were increased in vehicle treated guinea-pigs (1.6±0.3mg/ml) 

compared to naïve (0.4±0.06mg/ml). Protein levels were significantly reduced in 

dexamethasone treated guinea pigs, (0.8±0.1mg/ml) (Figure 14).  

 

Total cell numbers were significantly increased in Ova/LPS challenged and vehicle 

treated guinea-pigs (18.2±1.0x106/ml) compared to naïve (1.4±0.2x106/ml). 

Dexamethasone treatment significantly increased total cell numbers 

(21.3±0.8x106/ml). Correspondingly, macrophage numbers were also increased by 

dexamethasone treatment (10.5±0.4x106/ml compared to vehicle 8.6±0.5x106/ml). 

Dexamethasone treatment did not significantly decrease eosinophils, lymphocytes 

and neutrophils (Figure 15).  

 

IL-8, IL-13 and IL-17 levels increased in Ova/LPS challenged and vehicle treated 

guinea-pigs. IL-8, IL-13 and IL-17 levels were not significantly reduced by 

dexamethasone treatment (Figure 16).  
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Figure 10: The mean time-course values of sGaw in ovalbumin (Ova) and LPS challenged guinea-pigs treated with inhaled vehicle or dexamethasone (Dex, 

20mg/ml) dosed daily for 6 days. The histogram represents the maximum bronchoconstriction values recorded during the early asthmatic response (EAR) 

(0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are expressed as mean±SEM percentage change from 

baseline prior to Ova challenge. A negative value represents a bronchoconstriction. N=6 *significantly different from vehicle treatment p<0.05; performed 

with a two tailed T-test. 

BL 0 1 2 3 4 5 6 7 8 9 10 11 12

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

*

Time (hours)

%
 c

h
an

ge
 s

G
a

w

EAR (0-6h) LAR (6-12h) 24h

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Vehicle

inhaled Dex 20mg/ml

%
 c

h
a

n
g

e
 s

G
a

w



Chapter 8 

 

330 

 

 

Figure 11: Area under the curve analysis of sGaw values over 12 in ovalbumin (Ova) and LPS 

challenged guinea-pigs treated with inhaled vehicle or dexamethasone (Dex, 20mg/ml) 

dosed daily for 6 days. For the purpose of analysis only negative peaks were considered and 

all positive sGaw values were excluded. Total includes all negative peaks from 0-24 hours, 

early asthmatic response (EAR) includes values from 0-6 hours and late asthmatic response 

(LAR) includes values from 6-12 hours. Area under the curve is expressed as %.hour. N=6 

performed with a two tailed T-test. 

 

 

Figure 12: Analysis of the time taken for early asthmatic responses (EAR) to recover to 50% 

of peak bronchoconstriction values in ovalbumin (Ova) and LPS challenged guinea-pigs 

treated with inhaled vehicle or dexamethasone (Dex, 20mg/ml) dosed daily for 6 days. N=6; 

performed with a two tailed T-test. 
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Figure 13: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles and 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period) in ovalbumin (Ova) and LPS challenged guinea-pigs treated with inhaled vehicle or dexamethasone (Dex, 20mg/ml) dosed 

daily for 6 days. Values were recorded 7 days pre- and 24 hours post-Ova challenge. Mean changes in sGaw are expressed as mean±SEM percentage change 

from baseline. A negative value represents a bronchoconstriction. N=6 *significantly different from time paired pre-Ova challenge values p<0.05, ** p<0.01; 

performed with a two tailed T-test. 
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Figure 14: Total lavage fluid protein in ovalbumin (Ova) and LPS challenged guinea-pigs 

treated with inhaled vehicle or dexamethasone (Dex, 20mg/ml) dosed daily for 6 days. 

Protein content was determined by BCA protein assay. N=6 *significantly different from 

vehicle treatment p<0.05, ^^^significantly different from naïve, p<0.001; performed with 

one-way analysis of variance followed by selected groups Bonferroni post-test. 
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Figure 15: The total cell (A), macrophage (B), eosinophil (C), lymphocyte (D) and neutrophil 

(E) counts in bronchoalveolar fluid of ovalbumin (Ova) and LPS challenged guinea-pigs 

treated with inhaled vehicle or dexamethasone (Dex, 20mg/ml) dosed daily for 6 days. N=6 

*significantly different from vehicle treatment p<0.05; ^^^significantly different from naive 

p<0.001; performed with one-way analysis of variance followed by selected groups 

Bonferroni post-test. 
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Figure 16: The concentration of A) IL-8 B) IL-13 C) IL-17 in the lungs of ovalbumin (Ova) 

sensitised guinea-pigs treated with inhaled vehicle or dexamethasone (Dex, 20mg/ml) dosed 

daily for 6 days. N=6 ^^^significantly different from naive p<0.001; performed with one-way 

analysis of variance followed by selected groups Bonferroni post-test. 
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7.5.7 THE EFFECT OF INHALED DEXAMETHASONE ON LPS EXPOSURE. 

Both vehicle and dexamethasone (20mg/ml) treated animals demonstrated a 

progressively increasing bronchoconstriction during the 1st hour post-LPS exposure, 

reaching its peaking at 3 hours (vehicle: -20.1±6.0%; dexamethasone:  -19.8±5.5%). 

The bronchoconstrictions then dissipated and returned to near baseline levels by 7 

hours. Figure 17 also presents the mean peak bronchoconstrictions between 0-12 

hours and at 24 hours. Vehicle treated guinea pigs demonstrated a peak 

bronchoconstriction of -30.8±4.0% which was not significantly changed by 

dexamethasone treatment (-26.0±5.5%) (Figure 17, time course). Dexamethasone 

treatment did not significantly change the area under the curve between 0-12 hours 

(Figure 18).  

 

In Ova challenged and vehicle treated guinea-pigs a significant increase in the 

response to histamine was observed post-LPS challenge (-21.9±5.4% compared to 

pre-challenge: -1.6±1.8%). A significant increase in histamine response was also 

present at 10 minutes (-18.5±5.2% compared to pre-challenge: -4.6±2.3%). Guinea-

pigs treated with dexamethasone demonstrated a bronchoconstriction to histamine 

at 0 minutes following LPS exposure (-5.7±1.6%) compared to pre-LPS (2.7±3.0%). At 

10 minutes a significant bronchoconstriction was still present (-9.4±2.8%) compared 

to pre-LPS (3.9±2.8%). Dexamethasone treatment significantly reduced the peak 

bronchoconstriction to histamine post-LPS challenge (-11.1±2.8%) compared to 

vehicle (-26.3±3.8%) (Figure 19).  

 

LPS increased protein levels in lavage fluid (1.7±0.1mg/ml) compared to naïve 

(0.5±0.05mg/ml), which were not significantly reduced by dexamethasone treatment 

(1.3±0.2mg/ml) (Figure 20).  
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LPS increased total cell numbers (18.9±1.0x106/ml) compared to naïve 

(1.4±0.2x106/ml). These were not significantly reduced by treatment with 

dexamethasone (20mg/ml) (20.5±1.6x106/ml). Macrophages, eosinophils, 

lymphocytes and neutrophils were all increased by LPS exposure but not significantly 

reduced by dexamethasone (Figure 21).  

 

IL-8 levels were increased in Ova challenged and vehicle treated guinea-pigs 

(85.0±14.7pg/mg) compared to naïve (undetectable) and were not significantly 

reduced by dexamethasone (20mg/ml) treatment (Figure 22).  
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Figure 17:  The mean time-course values of sGaw in guinea-pigs exposed to LPS twice and treated with inhaled vehicle or 20mg/ml dexamethasone, dosed 

daily for 6 days. The histogram represents the maximum bronchoconstriction values recorded during 0-12 hours and 24 hours readings. Mean changes in 

sGaw are expressed as mean±SEM percentage change from baseline prior LPS challenge. A negative value represents a bronchoconstriction. Results shown 

are after the second LPS exposure. N=6; performed with a two tailed T-test. 
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Figure 18: Total area under the curve analysis of sGaw values in guinea-pigs exposed to LPS 

twice and treated with inhaled vehicle or 20mg/ml dexamethasone, dosed daily for 6 days.  

For the purpose of analysis only negative peaks were considered and all positive sGaw 

values were excluded. Total includes all negative peaks from 0-12 hours. Area under the 

curve is expressed as %.hour. N=6; performed with a two tailed T-test. 
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Figure 19: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 10% duty cycles and 0.5LPM flow per chamber over 2 

minutes, 1 minute drying period) in guinea-pigs exposed to LPS twice and treated with inhaled vehicle or 20mg/ml dexamethasone, dosed daily for 6 days. 

C) Represents the peak the bronchoconstriction pre- and post-Ova following histamine challenge. Values were recorded 7 days pre- and 24 hours post-Ova 

challenge. Mean changes in sGaw are expressed as mean±SEM percentage change from baseline. A negative value represents a bronchoconstriction. N=6 

*Significantly different from time paired pre-LPS challenge values p<0.05, ** p<0.01; # significantly different from post-LPS + veh; A & B) performed with a 

two tailed T-test.; C) performed with one-way analysis of variance followed by selected groups Bonferroni post-test. 
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Figure 20: Total lavage fluid protein in guinea-pigs exposed to LPS twice and treated with 

inhaled vehicle or 20mg/ml dexamethasone, dosed daily for 6 days. Protein content was 

determined by BCA protein assay. N=6 ^^^significantly different from naïve, p<0.001; 

performed with one-way analysis of variance followed by selected groups Bonferroni post-

test. 
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Figure 21: The total cell (A), macrophages (B), eosinophils (C), lymphocytes (D) and 

neutrophils (E) counts in bronchoalveolar fluid in guinea-pigs exposed to LPS twice and 

treated with inhaled vehicle or 20mg/ml dexamethasone, dosed daily for 6 days.  N=6 

^^^significantly different from naïve, p<0.001; performed with one-way analysis of variance 

followed by selected groups Bonferroni post-test. 
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Figure 22: The concentration of IL-8 in the lungs of guinea-pigs exposed to LPS twice and 

treated with inhaled vehicle or 20mg/ml dexamethasone, dosed daily for 6 days. N=6 

^^^significantly different from naïve p<0.001; performed with one-way analysis of variance 

followed by selected groups Bonferroni post-test. 
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8.5 DISCUSSION 

8.5.1 THE EFFECT OF INHALED DEXAMETHASONE ON OVALBUMIN, LPS AND 

OVALBUMIN AND LPS INDUCED RESPONSES. 

Dose-response assessment of inhaled dexamethasone’s effect on Ova responses 

revealed that 20mg/ml was an effective dose at decreasing the LAR, AHR, total cells, 

macrophages, eosinophils and lavage fluid protein levels, as inhaled FP (0.5 and 

1mg/ml) did in chapter 6. Also like inhaled FP, inhaled dexamethasone demonstrated 

a trend for a reduction in lymphocytes and IL-13 levels. Unlike inhaled FP, IL-17 levels 

were also decreased, although non-significantly. These results confirm the sensitivity 

of Ova induced responses to inhaled corticosteroid and the report in the literature 

by Jungsuwadee et al, (2004). The effects of inhaled dexamethasone on LPS alone 

were also similar to inhaled FP. Inhaled dexamethasone did not reduce the 

immediate bronchoconstriction to LPS, total and differential cells and lavage fluid 

protein. Similar to inhaled FP, inhaled dexamethasone also reduced but did not 

abolish AHR 24 hours after the second LPS exposure. This indicates that inhaled LPS 

responses in the airways are insensitive to inhaled corticosteroids. 

In the combined Ova /LPS challenged groups, inhaled dexamethasone did not reduce 

the prolonged EAR, LAR and AHR, confirming the results from chapter 6. However 

lavage fluid protein levels were also decreased indicating that this was not due to 

drug delivery issues. Unlike inhaled FP which did not change total and differential 

cell counts, dexamethasone increased total cells and macrophages. Additionally, 

although IL-13 levels demonstrated a trend for a reduction with inhaled 

dexamethasone, they were not significantly reduced as in inhaled FP groups. This 

may be due to the issues of using the lung to assess cytokine changes. Levels may be 

higher or lower in different regions of the lung. Although the part of the lung that 

was homogenised was standardised, discrepancies are possible. These results 

confirm that 2 inhaled LPS exposures decrease the inhaled corticosteroid sensitivity 

of Ova induced functional and allergic responses. In the LPS alone challenged groups, 



Chapter 8 

 

344 

 

Inhaled dexamethasone did not reduce the bronchoconstriction, inflammation or 

lavage fluid protein levels. Thus these results confirm the lack of sensitivity of LPS 

responses to inhaled corticosteroids.  

These results suggest that the induction of inhaled corticosteroid insensitivity in Ova 

and LPS challenged guinea-pigs may be due to the inherent inhaled corticosteroid 

insensitivity of LPS responses. However, the insensitivity of responses such as the 

LAR and eosinophilia suggests that on an allergic background LPS renders allergic 

responses also insensitive, suggesting a synergistic effect. This study revealed some 

slight differences in the effect of inhaled FP and dexamethasone on Ova and LPS 

responses. The most interesting finding was that total cells and more specifically 

macrophages increased with inhaled dexamethasone treatment. This increase in 

macrophages could represent an as yet unidentified pro-survival effect of 

corticosteroids on macrophages in conditions of increased oxidative and nitric stress. 

Neutrophils are known to demonstrate this effect in the presence of corticosteroid. 

Strickland et al, (2001) observed decreased neutrophil apoptosis due to upregulation 

of GR-β in the presence of dexamethasone in vitro. Why this effect was not seen 

with inhaled FP is unknown but it may represent a dose related effect. The dose of 

FP used in this thesis was close to the threshold for suppression of the LAR, AHR and 

airway inflammation whereas the dose of inhaled dexamethasone was fairly high. 

Alternatively, this may be due to differences in the pharmadynamic and 

pharmacokinetic properties of inhaled corticosteroids. Differences in the GR 

receptor binding affinity, particle size, bioavailability, pulmonary residence size, 

systemic availability and excretion could account for the differences in the effects 

between inhaled FP and inhaled dexamethasone (Derendorf et al, 2006; Schaaf et al, 

2005). Further studies are required to explore the mechanisms behind this effect in 

macrophages.  
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9.1 MAIN AIMS 

Exacerbations of asthma are a serious economic and social burden, accounting for the 

majority of asthma hospitalisations and deaths. Currently they are poorly treated due to 

their decreased responsiveness to frontline inhaled corticosteroid therapy. In the long 

term consistent asthma exacerbations can lead to a more severe form of disease, 

refractory to even oral corticosteroid treatment. There is currently a need for animal 

models to identify targets and develop novel therapeutics. Most models of asthma 

exacerbation only examine inflammatory components of asthma and ignore the 

functional changes in the lungs. This is important since inflammatory and functional 

parameters in these models can be dissociated (Smith & Broadley, 2007). Moreover, 

differences in the sensitivity to inhaled and systemic corticosteroids in these models 

have not been assessed. Clinically this is important as patients who are insensitive to 

inhaled corticosteroids demonstrate some responsiveness to systemic corticosteroids 

(Hodgson et al, 2012). The main aim of this thesis was to create a model of asthma 

displaying an exacerbation of functional and allergic responses. The second aim was to 

establish the corticosteroid sensitivity of this model in comparison to a standard model 

of asthma. The parameters that were assessed were early and late asthmatic responses 

(EAR & LAR, respectively), airway hyperresponsiveness (AHR), cellular inflammation, 

lung and lavage fluid cytokines, lavage fluid protein and goblet cell hyperplasia. 

9.2 OUTCOMES 

9.2.1 MODEL OF ASTHMA  

At the start of the program of work the established Ova sensitisation and challenge 

model was found to no longer induce a LAR or AHR (Evans et al, 2012). By cumulative 

modifications to the sensitisation and challenge protocols, these responses together 

with the EAR and cellular influx were established. AHR to histamine was re-established 

by increasing the Ova challenge dose 3-fold. The LAR was re-established by increasing 
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the amount of Ova and number of sensitisation injections from 2 to 3 and either 

increasing aluminium hydroxide sensitisation dose or increasing the length of time 

between Ova sensitisation and challenge. The latter protocol was better tolerated and 

was used in all subsequent chapters. Thus, following modification this Ova model 

demonstrated an EAR, LAR, AHR and eosinophilic airway inflammation. These studies 

demonstrated that full functional and allergic responses can be restored by increasing 

the severity of both sensitisation and challenge procedures. The reasons behind the 

decreased response to the ovalbumin protocol are unknown but not believed to be 

related to seasonal effects, infection or changes in environment or transportation (Wiley 

& Evans, 2009).  

9.2.2 ASTHMA EXACERBATION MODELS 

Viral infection is an important cause of asthma exacerbations in humans (Johnston et al, 

1995). The effects of parainfluenza-3 (PIV-3) alone and in combination with ovalbumin 

challenge were established. Initially, PIV-3 induced AHR to histamine, airway 

inflammation and oedema. However, this response was not consistent with repeat 

experiments, coinciding with decreased viral titres in lavage fluid. PIV-3 inoculation in 

Ova sensitised and challenged guinea-pigs showed no change in early or late asthmatic 

responses or total inflammation, with small increases in eosinophilia and AHR to 

histamine. This result was not consistent with Broadley et al, (2008), who demonstrated 

that PIV-3 caused merging of the EAR and LAR and increased total inflammation 

(especially neutrophils). The unreliability of PIV-3 effects in guinea-pigs led to the 

investigation of the TLR-3 agonist, poly I:C as a potential alternative exacerbating agent. 

TLR-3 activates similar pathways to viral infection. However, poly I:C did not induce AHR 

to histamine, airway inflammation or oedema so was not further investigated.  

LPS is also important in asthma exacerbations and the development of corticosteroid 

insensitivity (Goleva et al, 2008). Two LPS exposures induced a bronchoconstriction, 

immediately following the 2nd exposure, increased airway inflammation and oedema, 
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goblet cell hyperplasia and a small increase in AHR. In combination with Ova it increased 

the duration of the EAR, prolonged the bronchoconstrictor response to histamine and 

increased total cells, neutrophils, macrophages, goblet cells and IL-8 levels. This effect 

was found to be dependent on the timing of LPS exposure. The aforementioned effects 

were only found when the second LPS exposure was co-administered with Ova 

challenge. LPS exposure 24 hours before Ova challenge decreased the EAR and AHR, 

while increasing airway inflammation and goblet cell numbers. The temporal differences 

in the effect of LPS may be due to its ability to activate mast cells, causing degranulation 

(Masuda et al, 2002). Since the production of new granules may take over 24 hours, 

mast cells challenged with allergen within this period may not be able to fully respond 

to allergen challenge (Dvorak, 2005). 

9.2.3 CORTICOSTEROID SENSITIVITY 

The dose-response effects of corticosteroids on Ova induced responses were 

determined to establish effective doses at reducing the LAR, AHR, airway inflammation 

and oedema. Inhaled fluticasone propionate (Fp), inhaled dexamethasone and 

systemically administered dexamethasone all attenuated the development of the LAR, 

AHR, airway inflammation, lung IL-13 levels and oedema induced by ovalbumin. In 

contrast, responses to combined Ova and LPS challenge were found to be insensitive to 

inhaled Fp. No decrease in the prolonged EAR, LAR, prolonged bronchoconstrictor 

response to histamine and cellular inflammation was seen. Inhaled Fp was still effective 

at decreasing lavage fluid protein levels and IL-13. These results were confirmed by the 

use of inhaled dexamethasone, indicating that LPS reduces the sensitivity of Ova 

responses to inhaled corticosteroids. However, the combined Ova and LPS-induced 

responses were found to be partially sensitive to systemically administered 

dexamethasone. Systemic dexamethasone reduced airway inflammation (including 

neutrophils), the prolonged EAR and lavage fluid protein but not AHR, the LAR and 
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cytokine levels. Responses to LPS alone were also found to be insensitive to inhaled 

corticosteroids but fully sensitive to systemic dexamethasone.  

These results indicate that corticosteroid insensitivity in asthma may be a localised 

phenomenon and that the route of corticosteroid administration can alter the sensitivity 

of asthma exacerbation responses. This is important as many studies have assumed that 

corticosteroids always have the same effect regardless of the route of administration. A 

good example of this is in the discussion of Trapp et al, (1998), where the researchers 

comment on their results being contrary to O’leary et al, (1996), despite the former 

using the inhaled route and the latter systemic.  

Inhaled corticosteroids mainly act by suppressing asthmatic responses directly in the 

lung due to their poor systemic bioavailability (Wood et al, 1999; Shen et al, 2002). 

Systemic corticosteroids also work locally in the lungs but due to their systemic 

distribution can also suppress bone marrow derived hemopoietic cells, which are 

recruited to the lung in asthma (Mao et al, 2004; Ben et al, 2008). During asthma 

exacerbations, asthmatic responses are less sensitive to corticosteroids due to a range 

of modifications to proteins responsible for mediating the effects of these drugs. The 

corticosteroid insensitivity inducing effects of asthma exacerbations are likely to be local 

to the site of the exacerbation i.e. the lungs. Therefore, inhaled corticosteroids which 

act mainly in the lungs are unable to reduce asthmatic responses during an 

exacerbation, whereas systemic corticosteroids which can act via the lungs, blood and 

bone marrow are still partially effective. 

A particular problem in asthma exacerbations is the large increase in neutrophils 

commonly observed. Neutrophils by their very nature are less corticosteroid sensitive 

than other inflammatory cell types (Strickland et al, 2001). However, their response to 

corticosteroid seems to differ depending on their location within the body. Neutrophils 

in the blood are more sensitive than in the lung due to differences in glucocorticoid 

receptors (Plumb et al, 2012). Therefore, the large increase in lung neutrophils during 
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asthma exacerbations may represent an inherently inhaled corticosteroid insensitive 

population. On the other hand, systemic corticosteroids can suppress neutrophil 

recruitment before sequestering to the lungs. However, since not all neutrophils are 

prevented from lung recruitment, those that make it into the airways may undergo 

extensive neutrophil degranulation. This may increase the oxidative/nitric stress of the 

lungs, in turn modifying the expression of proteins important in corticosteroid effects in 

a range of cells (Goleva et al, 2006; Ito et al, 2004; Hamilos et al, 2001). This may also 

account for the persistence of functional effects such as AHR despite reductions in 

inflammation seen with systemic dexamethasone.  

The development of steroid insensitivity may represent an evolutionary mechanism to 

locally suppress the effects of endogenous corticosteroids during periods of short term 

immune activation i.e. during a chronic bacterial infection. However, during chronic 

bombardment by antigens, especially in the modern world this process may in the long 

term be counter-productive. Unchecked inflammation can cause excessive damage to 

the afflicted site, leading to processes such as airway remodelling, which cause 

permanent airflow obstruction.  

9.3 EXPERIMENTAL LIMITATIONS 

The use of animal models in the research of what is almost an exclusively human disease 

has been criticised (Holmes et al, 2011). However, the use of animals in asthma research 

is not a problem as long as it is remembered that they cannot replicate the full human 

disease, which is the extensive product of interacting genetic and environmental factors. 

Instead animal models offer the opportunity to model and examine certain aspects of 

asthma such as the late asthmatic responses and inflammation. They are 

complementary to studies examining the underlying causes of asthma in humans. 

However, the use of animals is not without drawbacks. The guinea-pig has several 

disadvantages including IgG mediated type 1 hypersensitivity reactions and axonal 
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reflexes not present in humans. However, their benefits outweigh their disadvantages, 

especially in comparison to the more commonly used mouse. 

The systemic route of allergen sensitisation in ovalbumin models is often criticised. 

Humans are probably sensitised to allergen via the respiratory mucosa which in theory 

could lead to differences in immune response. Since the development of asthma is 

complex and not understood it is very difficult to fully replicate this process.  

Additionally, no study to compare the difference between models using the systemic 

and inhaled route has been conducted. The use of adjuvants such as aluminium 

hydroxide has also been criticised as they may alter the mechanism of allergen 

sensitisation. Ova protocols which do not use a separate adjuvant do exist but generally 

take longer to achieve sensitisation or are not able to fully reproduce functional 

responses e.g. the LAR (Hessel et al, 1997; Dale et al, 2012). Additionally, these 

protocols contain quantities of LPS, which acts as an adjuvant and has been shown to be 

critical for Ova sensitisation (Eisenbarth et al, 2002). Other allergens now used in 

models such as Aspergillus fumigatus and house dust mite also contain substances such 

as LPS and proteases which act as adjutants (Canning & Chou, 2008; Cates et al, 2007). 

Instead the nature of the adjuvant may be a more important factor (Matzinger, 1994). 

The use of aluminium hydroxide with Ova alters the nature of allergen responses (Nakae 

et al, 2007). This is important to bear in mind when making comparisons between 

animal models and humans.  

One other drawback of the models used throughout this thesis is their acute nature. 

Acute models tend to only use a single allergen challenge, with no pre-existing 

background of inflammation. Since asthma exacerbations likely occur on a background 

of chronic inflammation, the model employed in this thesis probably does not fully 

reflect the situation in humans. However, the model does still demonstrate many 

features of asthma such as an EAR, LAR, AHR and airway inflammation. Thus the acute 

model used still represents a good starting point for the investigation of asthma 

exacerbations and for early trials of novel drug therapy.  
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9.4 FURTHER WORK 

There are many opportunities for further work from this thesis. Some of these 

suggestions were originally planned to be included in this thesis but due to time and 

financial constraints they were unable to be completed. Some studies are very difficult 

to perform in guinea-pigs due to a scarcity of molecular tools. Ideally a full assessment 

of all the models used in this thesis would be made using PCR/gene array technology 

which would allow for an unbiased assessment of molecular changes. 

Further investigation of the temporal effects of LPS on allergen-induced responses is 

warranted. It would be interesting to investigate whether the decrease in the EAR seen 

with LPS delivered 24 hours before allergen exposure is due to partial mast cell 

degranulation. Microscopic investigation of mast cells after LPS exposure and 

measurement of histamine following allergen challenge may be able to help determine 

this (Vannier et al, 1991). Additionally, although airway inflammation still increases in 

these guinea-pigs the nature of the inflammatory response may be different. The use of 

FACS to identify lymphocyte subpopulations and immunohistochemistry could help 

achieve this, although such techniques are difficult with guinea-pigs due to a lack of 

available reagents. Further characterisation of the exacerbating effects of LPS on allergic 

inflammation would also be of interest; specifically the mechanisms behind the 

prolonged bronchoconstrictor response to histamine. This process may be mediated by 

decreased levels of diamine oxidase, which breaks down histamine or by increased nitric 

oxide (Stroheimer et al, 2001).  Whether this effect is non-specific to the spasmogen 

would also be of interest. The use of alternative bronchoconstrictive agents such as 

methacholine could help investigate this. The use of an iNOS inhibitors could help 

determine this. A determination of neutrophil and eosinophil activity by elastase and 

EPO may also determine whether changes in the activity of these cells are involved.  

The mechanisms that mediate inhaled corticosteroid insensitivity in the Ova and LPS 

combination model require further investigation. Many mechanisms have been 
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proposed to mediate this process including decreased GR-α, increased GR-β, decreased 

activity of HDAC-2 and increased PI3K activity (Leung & Bloom, 2003). The levels/activity 

of these proteins could be measured using ELISA assays and western blotting. These 

effects may be localised to specific cell populations, making it necessary to use 

immunohistochemistry and cell isolation techniques. Gross assessment of lung levels 

may give a false picture as to the importance of any mechanism. Additionally, a 

comparison of the activity of these proteins in airway cells with those in the circulation 

may explain the differing sensitivity of the Ova and LPS models sensitivity to inhaled and 

systemic corticosteroids. The use of drugs such as curcumin (HDAC-2 activator) and 

nortriptyline (PI3K inhibitor) could also help determine the mechanisms of 

corticosteroid insensitivity.  

The importance of neutrophils in corticosteroid insensitivity also requires further 

investigation. Neutrophils are known to be less corticosteroid sensitive than other 

inflammatory cells and are also present in other corticosteroids insensitive lung diseases 

such as COPD (Strickland et al, 2001). The use of a pharmacological agent such as 

vinblastine, which depletes neutrophils in bone marrow would be useful for this. Finally 

a proper determination of the effect of inhaled and systemic corticosteroids on bone 

marrow in the models used in this thesis is warranted. Measurement of the plasma 

concentrations of circulating corticosteroid, as well as activity on bone marrow 

haematopoiesis would allow this.  

Further studies could also assess the effect of LPS on airway responses in a chronic 

model of asthma. These models reflect the chronic nature of inflammation in humans 

and would allow for the assessment of the effect of LPS on a pre-existing inflammatory 

background. Chronic models also demonstrate airway remodelling which would allow 

for the long term assessment of the effect of repeat exacerbations on this process 

(Evans et al, 2012). Differences in corticosteroid insensitivity between acute and chronic 

models could also be assessed. Additionally, whether corticosteroid insensitivity 

resolves after a period of time or is permanent is unknown. Allowing a period of 
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resolution of Ova and LPS challenge before starting corticosteroid treatment would 

allow this. 

9.5 CONCLUSIONS AND CLINICAL RELEVANCE 

LPS inhalation exacerbates Ova-induced functional and inflammatory responses, 

decreasing their sensitivity to inhaled and partially to systemic corticosteroids. Clinically, 

LPS is a relevant agent for asthma exacerbations and corticosteroid insensitivity as it’s 

found ubiquitously in the environment (Hunt et al, 1994; Goleva et al, 2008). The 

observation that responses in an asthma exacerbation model are nearly fully insensitive 

to inhaled corticosteroid is important. Clinically, asthmatic patients are less sensitive to 

inhaled corticosteroids during an asthma exacerbation and in more severe forms of the 

disease (in't Veen et al, 1999; Hodgson et al, 2012). However, they often show some 

clinical benefit with oral corticosteroids, which act systemically (Matsuse et al, 2012; 

Hodgson et al, 2012). Reflecting this, the asthma exacerbation model demonstrated 

some sensitivity to a systemic corticosteroid. Further work is required to better 

characterise this animal model and understand its applicability to asthma. None the less, 

this model may be useful as a preclinical model for investigating mechanisms and 

developing novel drugs for asthma exacerbations and corticosteroid-resistant asthma.  
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A1.1 EQUIPMENT 

Cannula - Bio-Med healthcare, India 

Capillary tube - Roche, Switzerland 

Cell culture flasks - Fisher Scientific UK, Loughborough, UK. 

Centrifuge (Mistral 3000) - Mistral, UK. 

Cold Plate - Fisher Scientific UK, Loughborough, UK. 

Coverslip - Fisher Scientific UK, Loughborough, UK. 

Digital Camera (Leica DC500) - Leica Microsystems, Germany 

ELISA Plates - Sigma, Poole, UK. 

Exposure Chamber - Buxco Research Systems, Winchester, UK. 

Glass Slides - Surgipath Europe Ltd, Peterborough, UK. 

Histology Cassettes - Surgipath Europe Ltd, Peterborough, UK. 

Microscope (Olympia BH-2) - Olympus, London, UK. 

Microscope (Leica DMRAZ) - Leica Microsystems, Germany 

Microtome - Mistral, UK. 

Neubauer Haemocytometer - Supe-rior, Marienfeld, Germany. 

Nuclease free tubes - Invitrogen, USA 

Polysine slides - Thermo Scientific, UK 

Cyclegene thermo cycler - Technene, Staffordshire, UK 

Thermo light cycler - Roche, Switzerland 

Tissue homogeniser - Precellys, UK 

Tissue homogeniser tubes - Precellys, UK  

Wax Dispenser - Fisher Scientific UK, Loughborough, UK. 

Whole Body Plethysmograph (complete set up) - Buxco Research Systems, Winchester, UK. 

Wright Nebuliser (Pulmostar) - Sunrise Medical Ltd., Wollaston, UK.  
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A1.2 MATERIALS 

Acetic acid - Sigma, Poole, UK. 

Alcian blue powder - Sigma, Poole, UK. 

Aluminium ammonium sulphate - Fisher Scientific UK, Loughborough, UK. 

Aluminium hydroxide - Sigma, Poole, UK. 

Aprotinin - Sigma, Poole, UK. 

Aqueous acetic acid - Sigma, Poole, UK. 

BCA protein assay Kit - Pierce protein biology, Thermo Scientific, UK 

BCA protein assay chemical A 

BCA protein assay chemical B 

BCA protein assay standard 

BSC-1 cells - European collection animal cell culture (ECACC) 

BSC-1 cell culture reagents 

 EMEM - Invitrogen, USA 

Glutamine - Sigma, Poole, UK. 

Non-essential amino acids - Sigma, Poole, UK. 

Foetal bovine serum - Sigma, Poole, UK. 

cDNA primers - Primer design Ltd 

Chloroform - Sigma, Poole, UK. 

Chloral hydrate - Fisher Scientific UK, Loughborough, UK. 

Citric acid - Sigma, Poole, UK. 

Cytokine assay reagents (Capture and detection Ab, protein standard (Duoset) - R&D 

systems, UK  

Cytokine assay diluent - R&D systems, UK 

Cytokine assay TMB substrate solutions A & - R&D systems, UK 

Cytokine assay Stepavidin-HRP - R&D systems, UK  



Appendix 1 
 

390 

 

Dexamethasone 21-phosphate salt - Sigma, Poole, UK. 

Dimethyl sulfoxide - Sigma, Poole, UK. 

EGTA disodium salt - Sigma, Poole, UK. 

Eosin - Surgipath Europe Ltd, Peterborough, UK. 

Ethanol - Sigma, Poole, UK. 

Fluticasone propionate - Sigma, Poole, UK. 

Formaldehyde - Fisher Scientific UK, Loughborough, UK. 

Guinea Pigs - Harlan, UK and Charles River, Germany 

Haematoxylin - Fisher scientific, UK 

Histamine - Sigma, Poole, UK. 

Histoclear - Fisher scientific, UK 

Histomount - Fisher scientific, UK 

Hydrochloric acid - Sigma, Poole, UK. 

Leishman’s Powder - Sigma, Poole, UK. 

Leupeptin - Sigma, Poole, UK. 

Lipopolysaccharide from E. coli - Sigma, Poole, UK. 

Magnesium sulphate - Fisher Scientific UK, Loughborough, UK. 

Mayer’s haematoxylin - Surgipath Europe Ltd, Peterborough, UK. 

Mepyramine - Sigma, Poole, UK. 

Methanol - Fisher Scientific UK, Loughborough, UK. 

Ovalbumin - VWR International Ltd., Leicestershire, UK. 

Paraffin wax - Surgipath Europe Ltd, Peterborough, UK. 

Periodic acid - Surgipath Europe Ltd, Peterborough, UK. 

PMSF - Sigma, Poole, UK. 

Phenylarsine oxide - Sigma, Poole, UK. 

Picric acid - Sigma, Poole, UK. 
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Potassium alum - Fisher Scientific UK, Loughborough, UK. 

Saline tablets - Fisher Scientific UK, Loughborough, UK.  

Schiff’s reagent - Surgipath Europe Ltd, Peterborough, UK. 

Sirius red - Sigma, Poole, UK. 

Sodium bicarbonate - Fisher Scientific UK, Loughborough, UK. 

Sodium chloride - Sigma, Poole, UK. 

Sodium Fluoride - Sigma, Poole, UK. 

Sodium iodate - Fisher Scientific UK, Loughborough, UK. 

Sodium molybdate - Sigma, Poole, UK. 

Sodium pentobarbitone (Euthatal) - Cardiff University, UK 

NaVO4 - Sigma, Poole, UK. 

Sulphuric acid - Sigma, Poole, UK. 

Superscript first-strand synthesis system kit - Invitrogen, USA 

Triton x - Sigma, Poole, UK. 

Trizma base - Sigma, Poole, UK. 

Tween 20 - Sigma, Poole, UK. 

Viral ribonucleic acid isolation kit - Roche, Switzerland 

Contains: Proteinase K - (reconstituted in 5ml Elution buffer) 

Poly A - (reconstituted in 500µl Elution buffer)  

Binding buffer - premade 

Inhibitor removal buffer - (reconstituted in 20ml ethanol) 

Wash buffer - (reconstituted in 40ml ethanol) 

Elution buffer - (Nuclease-free, sterile, double distilled water).  

All made up as per the manufactures instructions 

Light cycler TaqMan master kit (contains master mix) - Roche, Switzerland 
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A1.3 SOLUTIONS MADE 

Alcian blue- 

 1g Alcian blue powder  

 100ml 3% acetic acid 

BCA protein assay working reagent -Pierce protein biology, Thermo scientific, UK 

50 parts BCA protein assay chemical A 

1 part BCA protein assay chemical B 

Leishman’s solution - 0.5% w/v Leishman’s powder in 100% methanol 

Lipopolysaccharide - Made up in normal saline 

Lysis buffer -  

Component A - 50mM Trizma base, 5mM EGTA disodium salt, 150mM NaCl, 1% 

Triton and 100ml DH2O. 

Component B - 0.4mM NaVO4, 50mM NaF, 1mM PMSF, 20μM Phenylarsine oxide, 

10mM Sodium molybdate, 10μg/ml Leupeptin, 10μg/ml Aprotinin in lysis buffer component 

A.  

Mayer’s haematoxylin - 

 1g haematoxylin, 50g Aluminium ammonium sulphate and 0.2g sodium iodate 

dissolved in 1L distilled water with warming. 1g citric acid and 50g chloral hydrate added, 

the solution boiled for 5 minutes, cooled then filtered.  

Normal saline - 1 saline tablet per 100ml of dH2O 

Ovalbumin - made up in normal saline 

Phosphate buffered saline - 1 PBS tablet to 100µl dH20 

Phosphate buffered saline-tween 20 - 25µl tween 20 in 500ml of PBS. 

Scotts tap water - 20g sodium bicarbonate, 3.5g magnesium sulphate, 1 distilled water. 

Sirius red stain - (pH 8-9)- 2g Direct Red 80, 180ml Distilled water, 200ml 100% ethanol.                        
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A1.4 COMPUTER PROGRAMS 

Data acquisition - Fine point software, Buxco 

GraphPad Instat 3 - GraphPad  software, Inc., La Jolla, CA, USA.  

GraphPad Prism 5 - GraphPad software, Inc., La Jolla, CA, USA. 

ImageJ - National Institute of Health - http://rsbweb.nih.gov/ij/index.html  

Microsoft Excel - Microsoft corporation 

Leica QWin software - Leica Microsystems, Germany 
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A2.1 THE MEASUREMENT OF SGAW 
 

Specific airway conductance (sGaw) is derived from the changes in volume between animal 

body and plethysmograph chamber that occur as a result of ventilation. Flow based whole 

body plethysmograph chambers such as the one used in the present thesis are divided into 

nasal and thoracic components. The plethysmograph chamber measures the difference 

between the rate of change in nasal flow and thoracic displacement. The volume and rate of 

these flows is affected by both conditioning and resistance.   

To minimise the effect of conditioning, a reading is taken at the end of inspiration, where 

conditioning (which is equal to flow) is zero as there is no flow at this point.  

At this point box pressure is proportional to  

Resistance (R) x thoracic gas volume (TGV) x Difference in flow (dF) x difference 

in time (dt) 

The negative pressure in lungs during inspiration pulls air into the lungs against airway 

resistance so 

Negative pressure of the lungs (Palv) = R x F  

The rate of pressure change (dPb/dt) may also be expressed as  

TGV x dPalv/dt at the flow zero crossings.  

Additionally, when there is zero flow dF/dt is generally large as there is a delay in transition 

between inspiratory to expiratory thoracic flow.  

Thus, when there is zero flow the resistance component of the plethysmograph signal 

dominates, despite conditioning being a large component for the rest of the waveform.  

During a bronchoconstriction the nasal flow lags behind the thoracic flow (Figure 1). When 

conditioning is low as when there is zero flow the time delay between the 2 flows is related 

to specific airway resistance (sRaw) and sGaw. The reciprocal of Raw, airway conductance 
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(Gaw), is considered a better measurement of airway function as it accounts for change in 

lung tissue tension and transpulmonary pressure. 

Gaw = 1/ Raw 

sGaw = Gaw/TGV 

 

Figure 1- Waveform trace showing nasal and thoracic flows during a bronchoconstrictions 

 

Adapted from Lamask, (2005). 
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A3.1 IL-4 
 

GUINEA PIG SEQUENCE 

1 MGLVPQLTVI LFCLLACASA VVRGCNHHTL QEIIQHLNTL SREKSPCAEL LVTDVFADPQ 
61 GPASGDLCTA ATVLHHTAYL RGPQSCPNRE GDPLYPSVLR QVFRNLRSMA QSNCPVSELR 
121 QTTLKDFLEN LKRIMQKRYS KCRR 
 

HUMAN SEQUENCE 

 GENE ID: 3565 IL4 | interleukin 4 [Homo sapiens] 
 

Score = 88.6 bits (218),  Expect = 2e-20, Method: Compositional matrix adjust. 
Identities = 68/153 (44%), Positives = 89/153 (58%), Gaps = 13/153 (8%) 
 
Query  1    MGLVPQLTVILFCLLACASAVVRG--CNHHTLQEIIQHLNTLSREKSPCAELLVTDVFAD  58 
            MGL  QL   LF LLACA   V G  C+  TLQEII+ LN+L+ +K+ C EL VTD+FA  
Sbjct  1    MGLTSQLLPPLFFLLACAGNFVHGHKCDI-TLQEIIKTLNSLTEQKTLCTELTVTDIFAA  59 
 
Query  59   PQGPASGD-LCTAATVL-----HHTAYLR--GPQSCPNREGDPLYPSVLRQVFRNLRSMA  110 
             +     +  C AATVL     HH    R  G  +        L   +L+++ RNL  +A 
Sbjct  60   SKNTTEKETFCRAATVLRQFYSHHEKDTRCLGATAQQFHRHKQLIR-LLKRLDRNLWGLA  118 
 
Query  111  QSN-CPVSELRQTTLKDFLENLKRIMQKRYSKC  142 
              N CPV E  Q+TL++FLE LK IM+++YSKC 
Sbjct  119  GLNSCPVKEANQSTLENFLERLKTIMREKYSKC  151 

 

MOUSE SEQUENCE 

GENE ID: 16189 Il4 | interleukin 4 [Mus musculus] 
 

 Score = 85.9 bits (211),  Expect = 1e-19, Method: Compositional matrix adjust. 
 Identities = 53/142 (37%), Positives = 77/142 (54%), Gaps = 4/142 (3%) 
 
Query  1    MGLVPQLTVILFCLLACASAVVRGCNHHTLQEIIQHLNTLSREKSPCAELLVTDVFADPQ  60 
            MGL PQL VIL   L C  + + GC+ + L+EII  LN ++ E +PC E+ V +V    + 
Sbjct  1    MGLNPQLVVILLFFLECTRSHIHGCDKNHLREIIGILNEVTGEGTPCXEMDVPNVLTATK  60 
 
Query  61   GPASGDL-CTAATVLHHTAYLRGPQSCPNREGDPLYPSVLRQVFRNLRSMAQS-NCPVSE  118 
                 +L C A+ VL       G   C  +    L    L+++FR  R +  S +C ++E 
Sbjct  61   NTTESELVCRASKVLRIFYLKHGKTPCLKKNSSVLME--LQRLFRAFRCLDSSISCTMNE  118 
 
Query  119  LRQTTLKDFLENLKRIMQKRYS  140 
             +  +LKDFLE+LK IMQ  YS 
Sbjct  119  SKSXSLKDFLESLKSIMQMDYS  140 

 
 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=3565&RID=A00JAEBF014&log$=geneexplicitprot&blast_rank=35
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=16189&RID=A00JAEBF014&log$=geneexplicitprot&blast_rank=46
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A3.2 IL-5 
 

GUINEA PIG SEQUENCE 

1 MRVLLQLGLL ALGAVCVCAI PKQSATLRAL VRETLTLLST HRTLLKGNET LRISVPAHKN 
61 HQLCIEEIFQ GIDTLKNQTT QGEALATLFQ NLSLIKKHID LQKQKCGEER RRVKQFLDYL 
121 QEFLAVINTE WTIEG 
  

HUMAN SEQUENCE 
interleukin 5 (colony-stimulating factor, eosinophil) [Homo sapiens]  
 
 Score =  174 bits (440),  Expect = 1e-54, Method: Compositional matrix adjust. 
 Identities = 87/119 (73%), Positives = 96/119 (81%), Gaps = 1/119 (1%) 
 
Query  17   VCAIPKQSATLRALVRETLTLLSTHRTLLKGNETLRISVPAHKNHQLCIEEIFQGIDTLK  76 
            V AIP +  T  ALV+ETL LLSTHRTLL  NETLRI VP HKNHQLC EEIFQGI TL+ 
Sbjct  17   VYAIPTEIPT-SALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLE  75 
 
Query  77   NQTTQGEALATLFQNLSLIKKHIDLQKQKCGEERRRVKQFLDYLQEFLAVINTEWTIEG  135 
            +QT QG  +  LF+NLSLIKK+ID QK+KCGEERRRV QFLDYLQEFL V+NTEW IE  
Sbjct  76   SQTVQGGTVERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWIIES  134 

 

CAT SEQUENCE 
interleukin 5 (colony-stimulating factor, eosinophil) 

[Felis catus] 

 

Score = 165 bits (418),  Expect = 3e-51, Method: Compositional matrix 

adjust. 

Identities = 84/119 (71%), Positives = 93/119 (78%), Gaps = 1/119 (1%) 

 

Query  17   VCAIPKQSATLRALVRETLTLLSTHRTLLKGNETLRISVPAHKNHQLCIEEIFQGIDTLK  76 
            V AI  QS   R LV ETL LLSTHRTLL G+  L I  P H NHQLCIEE+FQGIDTLK 
Sbjct  17   VSAIAVQSPMNR-LVAETLALLSTHRTLLIGDGNLMIPTPEHNNHQLCIEEVFQGIDTLK  75 
 
Query  77   NQTTQGEALATLFQNLSLIKKHIDLQKQKCGEERRRVKQFLDYLQEFLAVINTEWTIEG  135 
            N+T  G+A+  LF+NLSLIK+HID QK+KCG ER RVK+FLDYLQ FL VINTEWTIEG 
Sbjct  76   NRTVPGDAVEKLFRNLSLIKEHIDRQKKKCGGERWRVKKFLDYLQVFLGVINTEWTIEG  134 
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A3.3 INTERFERON GAMMA 
 

GUINEA PIG SEQUENCE 

 
1 MKYTSSILAL QFCIILSFSS YYCQSRFTNE IRILKNYFNA DNSDVGDNGT LFVGILKNCQ 

61 EESERKIFQS QIVSFYFKLF EKHFTDNQTV QNSMNTIKEQ IITKFFKDNS SNKVQAFKNL 
121 IQISVNDEHV QRQAIIELKK VIDDLSPNQR KRRRTQMLFQ SRRASK 
 

HORSE SEQUENCE 
 

Score =  191 bits (484),  Expect = 3e-60, Method: Compositional matrix adjust. 
 Identities = 101/166 (61%), Positives = 125/166 (75%), Gaps = 4/166 (2%) 
 
Query  1    MKYTSSILALQFCIILSFSSYYCQSRFTNEIRILKNYFNADNSDVGDNGTLFVGILKNCQ  60 
            MKYTS ILA Q C IL  S+YYCQ+ F  EI  LK YFNA N DVGD G LF+ ILKN + 
Sbjct  1    MKYTSFILAFQLCAILGSSTYYCQAAFFKEIENLKEYFNASNPDVGDGGPLFLDILKNWK  60 
 
Query  61   EESERKIFQSQIVSFYFKLFEKHFTDNQTVQNSMNTIKEQIITKFFKDNSSNKVQAFKNL  120 
            E+S++KI QSQIVSFYFKLFE +  DNQ +Q SM+TIKE +  KFF ++S++K++ F+ L 
Sbjct  61   EDSDKKIIQSQIVSFYFKLFE-NLKDNQVIQKSMDTIKEDLFVKFF-NSSTSKLEDFQKL  118 
 
Query  121  IQISVNDEHVQRQAIIELKKVIDDLSP--NQRKRRRTQMLFQSRRA  164 
            IQI VND  VQR+AI EL KV++DLSP  N RKR+R+Q  F+ RRA 
Sbjct  119  IQIPVNDLKVQRKAISELIKVMNDLSPKANLRKRKRSQNPFRGRRA  164 

 

HUMAN SEQUENCE 

 
GENE ID: 3458 IFNG | interferon, gamma [Homo sapiens] (Over 100 PubMed links) 

 
 Score =  175 bits (443),  Expect = 5e-54, Method: Compositional matrix adjust. 
 Identities = 96/168 (57%), Positives = 119/168 (71%), Gaps = 4/168 (2%) 
 
Query  1    MKYTSSILALQFCIILSFSSYYCQSRFTNEIRILKNYFNADNSDVGDNGTLFVGILKNCQ  60 
            MKYTS ILA Q CI+L     YCQ  +  E   LK YFNA +SDV DNGTLF+GILKN + 
Sbjct  1    MKYTSYILAFQXCIVLGSLGCYCQDPYVKEAENLKKYFNAGHSDVADNGTLFLGILKNWK  60 
 
Query  61   EESERKIFQSQIVSFYFKLFEKHFTDNQTVQNSMNTIKEQIITKFFKDNSSNKVQAFKNL  120 
            EES+RKI QSQIVSFYFKLF K+F D+Q++Q S+ TIKE +  KFF  N   K   F+ L 
Sbjct  61   EESDRKIMQSQIVSFYFKLF-KNFKDDQSIQKSVETIKEDMNVKFFNSNKK-KRDDFEKL  118 
 
Query  121  IQISVNDEHVQRQAIIELKKVIDDLSPNQR--KRRRTQMLFQSRRASK  166 
               SV D +VQR+AI EL +V+ +LSP  +  KR+R+QMLF+ RRAS+ 
Sbjct  119  TNYSVTDLNVQRKAIHELIQVMAELSPAAKTGKRKRSQMLFRGRRASQ  166 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=3458&RID=A0D06V7T01N&log$=geneexplicitprot&blast_rank=30


Appendix 3 

 

398 
 

A3.4 IL-10 
 

GUINEA PIG SEQUENCE 

1 MPSSALLCCL VLLAGVKASQ GTNTQSEDSC AHFPAGLPHM LRELRAAFGR VKTFFQTQDQ 
61 LDNVLLNKSL LEDFKGYLGC QALSEMIQFY LVEVMPKAEN HDPDIKEHVS SLGEKLKTLR 
121 LRLRRCHRFL PCENKSKAVE QVKNTFNKLQ EKGVYKAMSE FDIFINYIEA YMTRKLTN 
 

MOUSE SEQUENCE 

 
GENE ID: 16153 Il10 | interleukin 10 [Mus musculus] (Over 100 PubMed links) 

 
 Score =  303 bits (777),  Expect = 1e-104, Method: Compositional matrix adjust. 
 Identities = 150/178 (84%), Positives = 163/178 (92%), Gaps = 0/178 (0%) 
 
Query  1    MPGSALLCCLALLAGVKASQGTNTQSEDSCAHFPAGLPHMLRELRAAFGRVKTFFQTQDQ  60 
            MPGSALLCCL LL G++ S+G  ++ +++C HFP G  HML ELR AF +VKTFFQT+DQ 
Sbjct  1    MPGSALLCCLLLLTGMRISRGQYSREDNNCTHFPVGQSHMLLELRTAFSQVKTFFQTKDQ  60 
 
Query  61   LDNVLLNKSLLEDFKGYLGCQALSEMIQFYLVEVMPQAEKHGPEIKEHLNSLGEKLKTLR  120 
            LDN+LL  SL++DFKGYLGCQALSEMIQFYLVEVMPQAEKHGPEIKEHLNSLGEKLKTLR 
Sbjct  61   LDNILLTDSLMQDFKGYLGCQALSEMIQFYLVEVMPQAEKHGPEIKEHLNSLGEKLKTLR  120 
 
Query  121  MRLRRCHRFLPCENKSKAVEQVKSDFNKLQDQGVYKAMNEFDIFINCIEAYMMIKMKS  178 
            MRLRRCHRFLPCENKSKAVEQVKSDFNKLQDQGVYKAMNEFDIFINCIEAYMMIKMKS 
Sbjct  121  MRLRRCHRFLPCENKSKAVEQVKSDFNKLQDQGVYKAMNEFDIFINCIEAYMMIKMKS  178 

 

A3.5 IL-12 P70 (P40 & P35) 
 

GUINEA PIG P40 SUBUNIT SEQUENCE 

 
1   MCHRQLISSW LSLVLLASPL LAMWELKKDV YVVELDWHTD APGETVVLTC NTAEEDGITW 

61  TSDRKSDILG SGKTLTIQVK EFEDAGGYTC HKGGEVLSRS QLLLHKKEDE IWSTDILKEQ 

121 KGSNGKTFLK CEARSYSGRF TCWWLTAFGT DVKFSVKGSR GSSDPSGVTC GEAERVSGDN 
181 QEYKYSVECQ EDSACPTAEE SLPIEVVVDA IHKFKYENYT SSFYIRDIIK PDPPKNLQLK 
241 PSVNSQQVEV SWEYPDTWST PHSYFSLTFL VQTHGKNKNR REKKYELFTD KTSATVSCHK 
301 ISKVEVRARD RYYSSSWSEW ASVSCSEVSV SR 
 

HUMAN P40 SUBUNIT SEQUENCE 
 

gb|AAA59938.1|  natural killer cell stimulatory factor [Homo sapiens] 

Length=328 
 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=16153&RID=A0HP6JU301S&log$=geneexplicitprot&blast_rank=2
http://www.ncbi.nlm.nih.gov/protein/189236?report=genbank&log$=protalign&blast_rank=11&RID=A8EYTEYK01S
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 GENE ID: 3593 IL12B | interleukin 12B (natural killer cell stimulatory factor 

2, cytotoxic lymphocyte maturation factor 2, p40) [Homo sapiens] 

(Over 100 PubMed links) 

 
 Score =  512 bits (1319),  Expect = 0.0, Method: Compositional matrix adjust. 
 Identities = 258/330 (78%), Positives = 283/330 (86%), Gaps = 6/330 (2%) 
 
Query  1    MCHRQLISSWLSLVLLASPLLAMWELKKDVYVVELDWHTDAPGETVVLTCNTAEEDGITW  60 
            MCH+QL+ SW SLV LASPL+A+WELKKDVYVVELDW+ DAPGE VVLTC+T EEDGITW 
Sbjct  1    MCHQQLVISWFSLVFLASPLVAIWELKKDVYVVELDWYPDAPGEMVVLTCDTPEEDGITW  60 
 
Query  61   TSDRKSDILGSGKTLTIQVKEFEDAGGYTCHKGGEVLSRSQLLLHKKEDEIWSTDILKEQ  120 
            T D+ S++LGSGKTLTIQVKEF DAG YTCHKGGEVLS S LLLHKKED IWSTDILK+Q 
Sbjct  61   TLDQSSEVLGSGKTLTIQVKEFGDAGQYTCHKGGEVLSHSLLLLHKKEDGIWSTDILKDQ  120 
 
Query  121  KGSNGKTFLKCEARSYSGRFTCWWLTAFGTDVKFSVKGSRGSSDPSGVTCG----EAERV  176 
            K    KTFL+CEA++YSGRFTCWWLT   TD+ FSVK SRGSSDP GVTCG     AERV 
Sbjct  121  KEPKNKTFLRCEAKNYSGRFTCWWLTTISTDLTFSVKSSRGSSDPQGVTCGAATLSAERV  180 
 
Query  177  SGDNQEYKYSVECQEDSACPTAEESLPIEVVVDAIHKFKYENYTSSFYIRDIIKPDPPKN  236 
             GDN+EY+YSVECQEDSACP AEESLPIEV+VDA+HK KYENYTSSF+IRDIIKPDPP N 
Sbjct  181  RGDNKEYEYSVECQEDSACPAAEESLPIEVMVDAVHKLKYENYTSSFFIRDIIKPDPPNN  240 
 
Query  237  LQLKPSVNSQQVEVSWEYPDTWSTPHSYFSLTFLVQTHGKNKNRREKKYELFTDKTSATV  296 
            LQLKP  NS+QVEVSWEYPDTWSTPHSYFSLTF VQ  GK+K  REKK  +FTDKTSATV 
Sbjct  241  LQLKPLKNSRQVEVSWEYPDTWSTPHSYFSLTFCVQVQGKSK--REKKDRVFTDKTSATV  298 
 
Query  297  SCHKISKVEVRARDRYYSSSWSEWASVSCS  326 
             C K + + VRA+DRYYSSSWSEWASV CS 
Sbjct  299  ICRKNASISVRAQDRYYSSSWSEWASVPCS  328 
 

MOUSE SEQUENCE 
 

 

 gb|AAF22556.1|AF128215_1  interleukin 12b p40 subunit [Mus musculus] 

Length=335 
 

 GENE ID: 16160 Il12b | interleukin 12b [Mus musculus] (Over 100 PubMed links) 

 
 Score =  396 bits (1017),  Expect = 4e-136, Method: Compositional matrix adjust. 
 Identities = 208/336 (62%), Positives = 249/336 (74%), Gaps = 16/336 (5%) 
 
Query  1    MCHRQLISSWLSLVLLASPLLAMWELKKDVYVVELDWHTDAPGETVVLTCNTAEEDGITW  60 
            MC ++L  SW ++VLL SPL+AMWEL+KDVYVVE+DW  DAPGETV LTC+T EED ITW 
Sbjct  1    MCPQKLTISWFAIVLLVSPLMAMWELEKDVYVVEVDWTPDAPGETVNLTCDTPEEDDITW  60 
 
Query  61   TSDRKSDILGSGKTLTIQVKEFEDAGGYTCHKGGEVLSRSQLLLHKKEDEIWSTDILKEQ  120 
            TSD++  ++GSGKTLTI VKEF DAG YTCHKGGE LS S LLLHKKE+ IWST+ILK   
Sbjct  61   TSDQRHGVIGSGKTLTITVKEFLDAGQYTCHKGGETLSHSHLLLHKKENGIWSTEILKNF  120 
 
Query  121  KGSNGKTFLKCEARSYSGRFTCWWLTAFGTDVKFSVKGSRGSSDPSGVTCG----EAERV  176 
            K    KTFLKCEA +YSGRFTC WL     D+KF++K S  S D   VTCG     AE+V 
Sbjct  121  K---NKTFLKCEAPNYSGRFTCSWLVQRNMDLKFNIKSSSSSPDSRAVTCGTASLSAEKV  177 
 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=3593&RID=A8EYTEYK01S&log$=geneexplicitprot&blast_rank=11
http://www.ncbi.nlm.nih.gov/protein/6652950?report=genbank&log$=protalign&blast_rank=47&RID=A8EYTEYK01S
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=16160&RID=A8EYTEYK01S&log$=geneexplicitprot&blast_rank=47
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Query  177  SGDNQEY-KYSVECQEDSACPTAEESLPIEVVVDAIHKFKYENYTSSFYIRDIIKPDPPK  235 
            + D ++Y KYSV CQED  CPTAEE+LPIE+ ++A  + KYENY++SF+IRDIIKPDPPK 
Sbjct  178  TLDQRDYEKYSVSCQEDVTCPTAEETLPIELALEARQQNKYENYSTSFFIRDIIKPDPPK  237 
 
Query  236  NLQLKPSVNSQQVEVSWEYPDTWSTPHSYFSLTFLVQTHGKNKNRR------EKKYELFT  289 
            NLQ+KP  NS QVEVSWEYPD+WSTPHSYFSL F V+   K +  +       +K  L   
Sbjct  238  NLQMKPLKNS-QVEVSWEYPDSWSTPHSYFSLKFFVRIQRKKEKMKETEEGCNQKGALLV  296 
 
Query  290  DKTSATVSCHKISKVEVRARDRYYSSSWSEWASVSC  325 
            +KTS  V C K   V V+A+DRYY+SS S+WA V C 
Sbjct  297  EKTSTEVQC-KGGNVCVQAQDRYYNSSCSKWACVPC  331 
 

 

GUINEA PIG IL-12 P35 SUBUNIT 

 
1 MSPLRKCLLL TSLVLLVSCS LARNLPRASP APVTEPVQCF NHSQTLLRAV NSELHKAIQM 

61 LAVYSCTPEE IDHEDITKDK TSTVKACVPL ELVKNESCLA SGHISFTTNG SCLASGKTSF 
121 MMALCLNSIY EDLKLYQLEF KNMNAQLLMD PQRQIFLDQN MLSAIDELIQ ALNGSDVTVP 
181 QKLSLEEPDF YKIKMKLCIL LHAFRIRAVT IDRVMSYLTS S 
 

HUMAN SEQUENCE 

gb|AAA35694.1| cytotoxic lymphocyte maturation factor 35 kDa subunit [Homo sapiens] 

Length=219 
 

 GENE ID: 3592 IL12A | interleukin 12A (natural killer cell stimulatory factor 

1, cytotoxic lymphocyte maturation factor 1, p35) [Homo sapiens] 

(Over 100 PubMed links) 

 
 Score =  305 bits (780),  Expect = 1e-108, Method: Compositional matrix adjust. 
 Identities = 153/202 (76%), Positives = 169/202 (84%), Gaps = 2/202 (1%) 
 
Query  20   SLARNLPRASPAPVTEPVQCFNHSQTLLRAVNSELHKAIQMLAVYSCTPEEIDHEDITKD  79 
            SLARNLP A+P P   P  C +HSQ LLRAV++ L KA Q L  Y CT EEIDHEDITKD 
Sbjct  20   SLARNLPVATPDPGMFP--CLHHSQNLLRAVSNMLQKARQTLEFYPCTSEEIDHEDITKD  77 
 
Query  80   KTSTVKACVPLELVKNESCLASGHISFTTNGSCLASGKTSFMMALCLNSIYEDLKLYQLE  139 
            KTSTV+AC+PLEL KNESCL S   SF TNGSCLAS KTSFMMALCL+SIYEDLK+YQ+E 
Sbjct  78   KTSTVEACLPLELTKNESCLNSRETSFITNGSCLASRKTSFMMALCLSSIYEDLKMYQVE  137 
 
Query  140  FKNMNAQLLMDPQRQIFLDQNMLSAIDELIQALNGSDVTVPQKLSLEEPDFYKIKMKLCI  199 
            FK MNA+LLMDP+RQIFLDQNML+ IDEL+QALN +  TVPQK SLEEPDFYK K+KLCI 
Sbjct  138  FKTMNAKLLMDPKRQIFLDQNMLAVIDELMQALNFNSETVPQKSSLEEPDFYKTKIKLCI  197 
 
Query  200  LLHAFRIRAVTIDRVMSYLTSS  221 
            LLHAFRIRAVTIDRV SYL +S 
Sbjct  198  LLHAFRIRAVTIDRVTSYLNAS  219 

 

 

http://www.ncbi.nlm.nih.gov/protein/180624?report=genbank&log$=protalign&blast_rank=3&RID=A8G91CKN01N
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=3592&RID=A8G91CKN01N&log$=geneexplicitprot&blast_rank=3
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MOUSE SEQUENCE 

 
gb|AAF22552.1|AF128211_1 interleukin 12a [Mus musculus] 

Length=116 
 

 GENE ID: 16159 Il12a | interleukin 12a [Mus musculus] (Over 100 PubMed links) 

 
 Score = 87.4 bits (215),  Expect = 1e-24, Method: Compositional matrix adjust. 
 Identities = 41/77 (53%), Positives = 55/77 (71%), Gaps = 0/77 (0%) 
 
Query  32   PVTEPVQCFNHSQTLLRAVNSELHKAIQMLAVYSCTPEEIDHEDITKDKTSTVKACVPLE  91 
            PV+ P +C + S+ LL+  +  +  A + L  YSCT E+IDHEDIT+D+TST+K C+PLE 
Sbjct  26   PVSGPARCLSQSRNLLKTTDDMVKTAREKLKHYSCTAEDIDHEDITRDQTSTLKTCLPLE  85 
 

Query  92   LVKNESCLASGHISFTT  108 
            L KNESCLA+   S TT 
Sbjct  86   LHKNESCLATRETSSTT  102 
 

http://www.ncbi.nlm.nih.gov/protein/6652942?report=genbank&log$=protalign&blast_rank=3&RID=A8GFJ0KF01S
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=16159&RID=A8GFJ0KF01S&log$=geneexplicitprot&blast_rank=3
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A3.6 IL-17 (IL-17A) 
 

GUINEA PIG SEQUENCE: PREDICTED 

 1 MVIKVDQEKS KSIVGVRAEE KIIGSLQSLQ RAPSWKGTRS PYAFPPTART FRSLLLLSLM 

 61 ATVKAGIPIP RNPGCPTATE GKNFLQNVKL NLSIFNPLTQ NVNSRRSSDY YKRSTSPWTL 
121 HRNENPNRYP PVIWEAECRY SGCVNAAGKE DHHVSSVPIQ QEILVLQREP QNCPLSFRLE 
181 KMKVTVGCTC VTPIVRHVG 

 

HUMAN SEQUENCE 

 
ref|XP_003474811.1| PREDICTED: interleukin-17A-like [Cavia porcellus] 
Length=199 
 
 GENE ID: 100735572 LOC100735572 | interleukin-17A-like [Cavia porcellus] 
 
 Score =  205 bits (521),  Expect = 1e-65, Method: Compositional matrix adjust. 
 Identities = 102/146 (70%), Positives = 118/146 (81%), Gaps = 2/146 (1%) 
 
Query  12   LLLLSLEAIVKAGITIPRNPGCPNS-EDKNFPRTVMVNLNIHNRNT-NTNPKRSSDYYNR  69 
            LLLLSL A VKAGI IPRNPGCP + E KNF + V +NL+I N  T N N +RSSDYY R 
Sbjct  54   LLLLSLMATVKAGIPIPRNPGCPTATEGKNFLQNVKLNLSIFNPLTQNVNSRRSSDYYKR  113 
 
Query  70   STSPWNLHRNEDPERYPSVIWEAKCRHLGCINADGNVDYHMNSVPIQQEILVLRREPPHC  129 
            STSPW LHRNE+P RYP VIWEA+CR+ GC+NA G  D+H++SVPIQQEILVL+REP +C 
Sbjct  114  STSPWTLHRNENPNRYPPVIWEAECRYSGCVNAAGKEDHHVSSVPIQQEILVLQREPQNC  173 
 
Query  130  PNSFRLEKILVSVGCTCVTPIVHHVA  155 
            P SFRLEK+ V+VGCTCVTPIV HV  
Sbjct  174  PLSFRLEKMKVTVGCTCVTPIVRHVG  199 

 

http://www.ncbi.nlm.nih.gov/protein/348578079?report=genbank&log$=protalign&blast_rank=22&RID=A8HN832G01S
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=100735572&RID=A8HN832G01S&log$=geneexplicitprot&blast_rank=22
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A3.7 IL-13 

 

GUINEA PIG SEQUENCE- PREDICTED 

 
1 MAFWVTVVLA LACLGGLTAP GPVPVSSTVA VSIKELLGEL VNITQDQKTP LCNSSMVWSV 

61 NLTAGLWYCA ARESLINVSN CSALQRTQKI LSGLCQHKAS AGVSSLRSPD TKIEVAEFVK 
121 KLRIHVQCLY RHGKFH 
 

HUMAN SEQUENCE 
ref|XP_003464584.1|  PREDICTED: interleukin-13-like [Cavia porcellus] 
Length=136 
 GENE ID: 100720118 LOC100720118 | interleukin-13-like [Cavia porcellus] 
 
 Score =  171 bits (433),  Expect = 3e-53, Method: Compositional matrix adjust. 
 Identities = 85/137 (62%), Positives = 108/137 (79%), Gaps = 6/137 (4%) 
 
Query  1    MALLLTTVIALTCLGGFASPGPVPPST----ALRELIEELVNITQNQKAPLCNGSMVWSI  56 
            MA  +T V+AL CLGG  +PGPVP S+    +++EL+ ELVNITQ+QK PLCN SMVWS+ 
Sbjct  1    MAFWVTVVLALACLGGLTAPGPVPVSSTVAVSIKELLGELVNITQDQKTPLCNSSMVWSV  60 
 
Query  57   NLTAGM-YCAALESLINVSGCSAIEKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFV  115 
            NLTAG+ YCAA ESLINVS CSA+++TQ++LSG C HK SAG  SSL   DTKIEVA+FV 
Sbjct  61   NLTAGLWYCAARESLINVSNCSALQRTQKILSGLCQHKASAG-VSSLRSPDTKIEVAEFV  119 
 
Query  116  KDLLLHLKKLFREGQFN  132 
            K L +H++ L+R G+F+ 
Sbjct  120  KKLRIHVQCLYRHGKFH  136 
 

MOUSE SEQUENCE 

ref|XP_003464584.1|  PREDICTED: interleukin-13-like [Cavia porcellus] 
Length=136 
 GENE ID: 100720118 LOC100720118 | interleukin-13-like [Cavia porcellus] 
 
 Score =  167 bits (424),  Expect = 4e-52, Method: Compositional matrix adjust. 
 Identities = 86/135 (64%), Positives = 103/135 (76%), Gaps = 4/135 (3%) 
 
Query  1    MALWVTAVLALACLGGLAAPGPVPRSVSLPLTLKELIEELSNITQDQ-TPLCNGSMVWSV  59 
            MA WVT VLALACLGGL APGPVP S ++ +++KEL+ EL NITQDQ TPLCN SMVWSV 
Sbjct  1    MAFWVTVVLALACLGGLTAPGPVPVSSTVAVSIKELLGELVNITQDQKTPLCNSSMVWSV  60 
 
Query  60   DLAAG-GFCVALDSLTNISNCNAIYRTQRILHGLCNRKAPTTVSSL--PDTKIEVAHFIT  116 
            +L AG  +C A +SL N+SNC+A+ RTQ+IL GLC  KA   VSSL  PDTKIEVA F+  
Sbjct  61   NLTAGLWYCAARESLINVSNCSALQRTQKILSGLCQHKASAGVSSLRSPDTKIEVAEFVK  120 
 
Query  117  KLLSYTKQLFRHGPF  131 
            KL  + + L+RHG F 
Sbjct  121  KLRIHVQCLYRHGKF  135 
 

http://www.ncbi.nlm.nih.gov/protein/348557554?report=genbank&log$=protalign&blast_rank=40&RID=AD7R0S2201S
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=100720118&RID=AD7R0S2201S&log$=geneexplicitprot&blast_rank=40
http://www.ncbi.nlm.nih.gov/protein/348557554?report=genbank&log$=protalign&blast_rank=5&RID=AD8PFKA701S
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=100720118&RID=AD8PFKA701S&log$=geneexplicitprot&blast_rank=5


Appendix 4 

 

404 
 

A4.1 PROTOCOL 5 

Sensitisation: 3 intra-peritoneal injections of 150µg Ova and 100mg Al(OH)3 in 1ml 

(protocol 4) or in 2ml (protocol 5) of saline 

Ova challenge:  0.03% Ova 

In both guinea-pig groups Ova challenge a significant bronchoconstriction was 

observed immediately (-60.7±4.1% and –61.0±5.5%, protocol 4 and 5 respectively). 

No significant difference was seen in the time course. No significant 

bronchoconstrictions were observed during the expected time of the LAR (6-12 

hours) (Figure 1, time course). No significant difference in peak bronchoconstriction 

was seen during the EAR and LAR (Figure 1, histogram). No difference was observed 

between the two groups at total, EAR and LAR time points (Figure 2).  

In guinea-pigs sensitised by protocol 5 there was a significant bronchoconstriction 

immediately following histamine challenge when compared to the sGaw values 

measured prior to Ova challenge (-34.2±18.4% compared to 6.1±7.3%). At 5 minutes 

post-histamine exposure sGaw values were not significantly different from pre-Ova 

challenge values. No significant difference in post-Ova response to histamine was 

found between the 2 groups (Figure 3).  

No significant difference in total or differential cell counts was observed (Figure 4). 
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Figure 1: the mean time-course values of sGaw in guinea-pigs sensitised with 3 injections of either 1ml (protocol 4) or 2mls (protocol 5) of a suspension of 

150ug ova and 100mg aluminium hydroxide and challenged with 0.03% Ova. The histogram represents the maximum bronchoconstriction values recorded 

during baseline, early asthmatic response (EAR) (0-6 hours), late asthmatic response (LAR) (6-12 hours) and 24 hours readings. Mean changes in sGaw are 

expressed as mean±SEM percentage change from baseline. A negative value represents a bronchoconstriction.  N=5; performed with a two tailed t-test. 
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Figure 2: Area under the curve analysis of the bronchoconstrictor response of guinea-pigs sensitised 

with 3 injections of either 1ml (protocol 4) or 2mls (protocol 5) of a suspension of 150ug Ova and 

100mg aluminium hydroxide and challenged with 0.03% Ova. For the purpose of analysis only 

negative peaks were considered and all positive sGaw values were excluded. Total includes all 

negative peaks from 0-24 hours, early asthmatic response (EAR) includes values from 0-6 hours and 

late asthmatic response (LAR) includes values from 6-12 hours. Area under the curve is measured in 

%.hour.  N=5; performed with a two tailed T-test. 
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Figure 3: Response of the airways to nebulised histamine delivered in a plethysmograph (0.3mM, 

10% duty cycles per camber over 2 minutes, 1 minute drying period, 0.5LPM flow per chamber) in 

guinea-pigs sensitised with 3 injections of either 1ml (protocol 4) or 2mls (protocol 5) of a 

suspension of 150ug Ova and 100mg aluminium hydroxide and challenged with 0.03% Ova. Values 

were recorded 24 hours before Ova challenge and at 24 hours post-Ova challenge. Mean changes in 

sGaw are expressed as mean±SEM percentage change from baseline. A negative value represents a 

bronchoconstriction. N=5; **significantly different from time paired pre-Ova challenge values 

p<0.01; performed with a two tailed T-test. 
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Figure 4: The total cell (A), macrophages (B), eosinophils (C), lymphocytes (D) and neutrophils (E) 

counts in bronchoalveolar fluid in guinea-pigs sensitised with 3 injections of either 1ml (protocol 4) 

or 2mls (protocol 5) of a suspension of 150ug Ova and 100mg aluminium hydroxide and challenged 

with 0.03% Ova. N=5; *; performed with a two tailed T-test. 
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