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Summary. 

ZNF804A was (at the time this work started) one of only a few robustly implicated 

schizophrenia susceptibility genes, due to replicated genome-wide significant evidence 

for association between a polymorphism in the gene and schizophrenia. Determining the 

function of the ZNF804A protein, which is currently unknown, may provide a way of 

elucidating the pathophysiology of this relatively common, complex disorder. Based on 

the hypothesis that the ZNF804A protein regulates gene expression or splicing, the aim 

of this thesis was to identify genes that exhibit altered expression or splicing in brain 

tissue from mice in which the orthologue Zfp804a carries a nonsense mutation.  

 

No robust evidence was obtained that showed the effects of the mutation on differential 

expression in individual genes. Although this finding does not support the hypothesis 

that ZNF804A acts directly to regulate gene expression, the results may reflect the 

possibility that effects on gene expression may be too subtle to be detected using the 

methods applied. Evidence was obtained to show the mutation affected the alternative 

splicing of a number of individual genes, which could suggest a role for ZNF804A in 

the direct or indirect regulation of alternative splicing. 

 

Through RNA sequencing, I identified a novel transcript in Zfp804a with an alternative 

exon upstream of the Refseq exon 1. I also showed that a proportion of the significant 

splicing differences identified in mutants were artefacts of strain differences in gene 

sequences that are likely to affect the efficiency of hybridisation on the exon array.  

 

Genes identified as differentially spliced between mutants and wildtypes were enriched 

in axon guidance and cell adhesion pathways, both thought to be important during 

development. The findings of this thesis suggest the novel hypothesis that ZNF804A 

effects risk for schizophrenia via aberrant splicing in the above pathways that are 

critical to normal brain development. Further studies with increased power are required 

to understand the effects on gene expression.  
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Chapter 1: General Introduction. 

 

1.1 Schizophrenia  

Schizophrenia is a severe psychiatric disorder with psychosis being a prominent feature. 

Due to its chronic course, early onset and poor treatment response, it contributes 

substantially to human morbidity, and also has a major negative impact on the social 

and economic functioning of affected individuals, their families, and the wider society. 

At present little has been established about the specifics of schizophrenia aetiology. 

This lack of knowledge is a clear impediment for new approaches in the design of 

treatments with greater efficacy.  Schizophrenia is ranked within the top ten most 

disabling and costly disorders in society (Murray & Lopez, 1996; Freedman, 2003) and 

the estimated cost of schizophrenia to society in the UK in 2004-2005 was ~£6.7 billion 

(Mangalore & Knapp, 2007). There is a clear need to determine the underlying 

pathophysiology of this often devastating disorder to enable the improvement of 

treatment and outcome. 

  

1.1.1 History 

Schizophrenia was first described by Kraepelin (1899) whose classification of a 

dementia praecox described a degenerative disorder of cognitive disturbance distinct 

from manic depressive psychosis. The degenerative disorder Kraepelin described 

appeared inaccurate with many patients showing improvement in symptoms and so the  

disorder was re-termed in 1908 by Eugen Bleuler as schizophrenia from the Greek ‘split 

mind’ and refers to the disruption in thought and cognitive function that are 

characteristic of the disorder. 

 

1.1.2 Symptoms 

Schizophrenia is a heterogeneous disorder.  Symptoms are often classified as either 

positive or negative (Jablensky et al., 2006). Positive symptoms, those with features that 

are not present in normal individuals, include hallucinations, delusions and disorganised 



 

 

2 

thoughts. The negative symptoms, functions which are present in normal individuals but 

often absent in schizophrenia, include social withdrawal and emotional flattening. A 

cognitive deficit is also frequently observed affecting memory, attention and executive 

function (Dikeos et al., 2006). Diagnosis is based upon the assessment of behaviour as 

no biomarkers have been determined for the disorder. No disorder specific 

neuropathology has been identified preventing confirmation of a correct diagnosis in the 

post mortem brain. 

 

1.1.3 Prevalence 

Schizophrenia has a worldwide prevalence of 1%. (Gottesmann, 1991). Symptoms 

typically present in late adolescence to early twenties with a higher lifetime risk in 

males (McGrath et al., 2004).  

 

1.1.4 Neurobiology 

Whilst the pathophysiology underlying schizophrenia remains unclear the occurrence of 

hallucinations and delusions as well as cognitive deficits have implicated brain 

functions associated with perception and cognition in the underlying pathophysiology of 

schizophrenia (Ross et al. 2006). Early hypotheses of schizophrenia aetiology centered 

on a hyper-dopaminergic system based on the efficacy of D2 receptor antagonists at 

alleviating the positive symptoms (Snyder, 2006). Findings that dopamine activity is 

aberrant in sub-cortical regions during psychotic periods supports this view (Howes et 

al., 2009). The efficacy of drug treatments which in addition target serotonin 5HT2A 

receptors, points to a complex aetiology of the disorder and although these drugs are 

generally effective at treating positive symptoms, and in the case of clozapine, negative 

symptoms, the pharmacological studies of how they work have not advanced 

understanding of the complex pathophysiology underlying schizophrenia. The varying 

efficacy of such drugs in schizophrenia patients emphasize the heterogeneity of the 

disorder.  The occurrence of schizophrenia-like symptoms in healthy individuals 

following the use of phencyclidine (PCP) and ketamine which are both NMDA 

antagonists introduced the hypo-glutamatergic hypothesis (Coyle, 2006) and this has 

been given further credibility by some promising evidence for the treatment of 
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symptoms, including negative symptoms, by drugs which modulate NMDA-receptors 

(Coyle, 2006). A possible role for gabaergic, in addition to dopaminergic and 

glutamatergic input has also been supported in pharmacological studies (Javitt et al., 

2008).  

 

Gross abnormalities in the schizophrenia patient brain including enlargement of the 

lateral ventricles and an accompanying reduction in overall brain volume (Steen et al., 

2006) are present from birth and not progressive which has led to a neurodevelopmental 

hypothesis for schizophrenia (Weinberger, 1986). Regional structural differences such 

as reduced hippocampal and pre frontal cortex (PFC) volume as well as altered 

cytoarchitecture (Harrison, 2000) have also been observed, although these are less 

replicable than the changes in total brain and ventricular volume. In addition neural 

distribution and spine density appear abnormal in the hippocampus and prefrontal 

cortex in the brains of schizophrenic patients (Wong & Van Tol., 2003). Despite 

numerous hypotheses, the underlying aetiology and pathophysiology of schizophrenia 

remains elusive. 

 

1.1.5 Heritability 

Evidence from family, twin and adoption studies have shown there to be a large genetic 

component to schizophrenia risk, with heritability being ~80% (Cardno. & Gottesman, 

2000), yet evidence from monozygotic twins highlights the additional influence of 

environmental factors (Gottesman, 1991; McGrath & Murray 2003).   

 

1.1.6 Environmental Risk 

The immune response is thought to be involved in aetiology and infections such as 

influenza, poliovirus and Toxoplasma gondii (Brown & Susser, 2002) have been 

associated with schizophrenia.  Aberrant events occurring during pregnancy and birth 

have been suggested to increase risk of schizophrenia such as obstetric complications 

like preeclampsia (Dalman et al., 1999).  In addition urbanicity (Allardyce et al., 2001) 

and drug use (Arseneault et al., 2002) have all been suggested to contribute to risk, 
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although the mechanisms through which these environmental factors might act are 

unclear. 

 

1.1.7 Genetic Risk 

While its origins are enigmatic, it has been known for a long time that genes make a 

substantial contribution to population risk, the heritability of schizophrenia being ~80%, 

therefore genetics has been seen as an important tool in trying to understand the causes 

of the disorder. Despite this, finding the specific risk genes involved has, as in most 

complex diseases, been a major challenge and early linkage and association studies did 

not reliably identify any susceptibility genes operating in the wider case population at 

high levels of confidence. However, until recently, these studies have been subject to 

small sample sizes and in turn low power (Kirov et al., 2005; Owen et al., 2005; Ross et 

al., 2006).   

 

The common disease-rare variant hypothesis supports the idea that substantial 

knowledge of disease aetiology can be gained from understanding rare variants even if 

observed in very low frequency (only a limited number of people). Given relatively 

large effect sizes, they can inform a great deal on the underlying biology of a disease as 

has been exemplified in AD, PD and HD (Ross et al., 2006, Ross & Margolis, 2005).  A 

number of studies have found that specific rare copy number variants (CNVs) occur 

more frequently in schizophrenia (<1%) compared to controls (<0.1%) showing that 

rare alleles are involved in the disorder (ISC., 2008; Kirov et al., 2009; Stefansson et al., 

2008). Rare de novo CNVs occur significantly more frequently in cases (5%) than 

controls (2%) indicating the involvement of de novo CNVs in schizophrenia 

pathogenesis. De novo CNVs identified in schizophrenia patients were enriched for 

genes associated with the post-synaptic density particularly those involved in NMDA 

and ARC post-synaptic signalling suggesting the involvement of these pathways in 

schizophrenia pathophysiology (Kirov et al., 2012). A proportion of genetic risk for 

schizophrenia is therefore attributed to rare CNVs, however at present, it is in general 

unclear which of the (generally many) genes within specific CNVs are relevant to 

schizophrenia.  
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1.1.8. Genome-Wide Association Studies (GWAS)  

The advent of genome-wide association studies (GWAS), which like linkage but unlike 

candidate gene studies, requires no knowledge of disease pathophysiology, and like 

other association study designs can in principle detect small effect sizes, changed the 

way genetic studies could be carried out. In part this was because of the absence of an a 

priori requirement for selecting specific candidates based upon prevailing theories of 

disease origin, but another important factor was that the use of the very large sample 

sizes required for GWAS allowed robust evidence to emerge for a number of loci. Early 

GWAS of schizophrenia were small and did not strongly support any particular 

candidates (Lencz et al., 2007; Sullivan et al., 2008). The application of GWAS to very 

large discovery and replication samples, however resulted in the identification of strong 

evidence for association to a small number of loci. 

 

1.1.9 Polygenic Model of Schizophrenia 

The theory of a polygenic model for schizophrenia (Gottesman & Shields, 1967) 

remained unsubstantiated at the molecular genetic level for many years, but was 

recently confirmed empirically when a Genome Wide Association Study (GWAS) 

showed risk for schizophrenia to be conferred by very many, possibly thousands, of 

alleles conferring small increments to risk (OR<1.1) (ISC, 2009).  As schizophrenia is a 

polygenic disorder that is characterised by a heterogeneous set of symptoms it can be 

inferred that the underlying pathophysiology will also show heterogeneity. Despite the 

complex nature of the disorder and difficulties determining its aetiology, the 

identification of genes associated with the disorder, despite their small effect size, when 

considered together in the context of biological pathways and molecular mechanisms 

may inform networks and pathways aberrant in schizophrenia.  

 

1.2 ZNF804A 

1.2.1 Discovery as susceptibility gene 

Association of a polymorphism (rs1344706) within zinc finger protein 804A (ZNF804A) 

and schizophrenia was first highlighted by O’Donovan et al., in 2008 in a large 
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discovery and replication sample. The replication analysis provided strong evidence for 

association around ZNF804A (P = 1.61 x 10
-7

) and this association surpassed genome-

wide levels of significance when the affected phenotype included bipolar disorder (P = 

9.96 x 10
-9

) (O'Donovan et al., 2008). This indicated ZNF804A as a strongly supported 

candidate (O’Donovan et al., 2008) for both schizophrenia and bipolar disorder.  

 

1.2.2 Replication Studies 

The association of rs1344706 within the ZNF804A gene with schizophrenia has been 

replicated (ISC, 2009; Stefansson et al., 2009) several times, including in an Irish Case-

Control Study of Schizophrenia (ICCSS) sample (N=1021 cases, 626 controls) 

(P=0.0113). In this study 11 SNPs in linkage disequilibrium (LD) with rs1344706 were 

also investigated for association. Another SNP, rs7597593 (P=0.0013) showed the most 

significant association with schizophrenia (Riley et al., 2010). Another study replicated 

the association of rs1344706 and schizophrenia (odds ratio OR = 1.08, P = 0.0029) in 

5164 schizophrenia cases and 20,709 controls in addition to replicating the significant 

association when a bipolar disorder phenotype was added to the sample (OR = 1.09, P = 

0.00065) (Steinberg et al., 2011). A meta-analysis of almost 60,000 subjects provided 

convincing evidence that ZNF804A was a susceptibility gene for schizophrenia 

(P=4x10
-11

) and even more compellingly for a wider phenotype including bipolar 

disorder (p=2x10
-13

) (Williams et al., 2010).  In a meta-analysis undertaken by the 

schizophrenia Psychiatric GWAS Consortium (PGC) (PGC, 2011a) rs1344706 was not 

one of 7 genome-wide significant variants identified as being associated with 

schizophrenia. The odds ratio in this study was similar to that observed in the previous 

meta-analysis (OR 1.10) (Williams et al., 2010) despite the sample being almost half the 

size. Given that the odds ratio is similar in a sample half the size this is consistent for a 

true association between ZNF804A and schizophrenia. ZNF804A is therefore considered 

as one of the most robustly associated schizophrenia susceptibility genes. 

 

1.2.3 Psychosis and the overlap of Schizophrenia and Bipolar Disorder 

There is strong evidence for genetic overlap between schizophrenia and bipolar disorder 

(ISC, 2009). With regards to ZNF804A, joint analyses of schizophrenia and the bipolar 

disorder phenotype provide even stronger evidence for association (p = 2x10
-13

) than 
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schizophrenia alone. A stronger association between rs1344706 and bipolar disorder has 

been reported, but not yet confirmed, when considering a sub-group of bipolar disorder 

patients with psychosis (Lett et al., 2011) suggesting this gene operates as a more 

general risk factor for psychosis. Evidence for shared genetic risk has also been shown 

for other genome-wide significant susceptibility genes. CACNA1C originally associated 

with bipolar disorder is also significantly associated with schizophrenia (Green et al., 

2010, PGC, 2011a).  Neurogranin (NRGN) and the MHC region originally identified as 

schizophrenia susceptibility loci were shown to have nominally significant association 

(P < 0.05) with bipolar disorder while Polybromo-1 (PBRM1), originally associated 

with bipolar disorder is also significantly associated with schizophrenia (P = 0.00015) 

(Williams, et al., 2011). Based on this evidence it is now widely viewed that 

schizophrenia and bipolar disorder are not aetiologically discrete entities, and cross 

diagnostic approaches should be used with regards to research (Craddock & Owen, 

2010). 

 

1.2.4 Copy Number Variation in ZNF804A 

As well as common risk associated with ZNF804A, two CNVs that include ZNF804A 

(at least in part) in patients with psychosis were identified relative to none in controls 

(Steinberg et al., 2011). The same study also identified another CNV in ZNF804A in a 

patient with anxiety (Steinberg et al., 2011). Two independent studies of autism 

spectrum disorder (ASD) subjects respectively identified CNVs spanning ZNF804A 

(Griswold, 2012) and balanced chromosomal abnormalities in ZNF804A (Talkowski et 

al., 2012). No rare SNPs within ZNF804A itself have been associated with 

schizophrenia (Dwyer et al., 2010), but identification of CNVs which include ZNF804A 

provide evidence for the contribution of rare variation in ZNF804A to the risk of 

schizophrenia and again emphasises the overlap between schizophrenia and a wider 

psychosis phenotype as well as with neurodevelopmental disorders.  

 

 

1.2.5 ZNF804A mRNA Expression   

An RNA sequencing study of differential expression of inducible pluripotent stem cells 

(iPSCs) and differentiated neurons found large expression differences in genes involved 
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in neuropsychiatric disorders, including that of ZNF804A (Lin et al., 2011). Another 

study reported that in neurons derived from human iPSCs reprogrammed from 

fibroblasts derived from schizophrenia patients, altered expression of ZNF804A 

occurred in those derived from some but not all of the patients (Brennand et al., 2011). 

A novel exon within the intron 2 of ZFP804A (denoted Exon 2.2) was recently 

discovered in post mortem brain tissue from occipital lobe and LCL cultured cells 

(Okada et al., 2012), which the authors postulate could encode a novel immature 88 

amino acid protein. Compared to equal abundance of the protein coding transcript, the 

novel variant was found to be downregulated in schizophrenia patients relative to 

controls (Okada et al., 2012). Higher ZNF804A mRNA expression has been associated 

with the schizophrenia risk allele in post-mortem brain tissue from the prefrontal cortex 

(Riley et al. 2010; Williams et al., 2010) but the former is not thought to be attributable 

to the latter (Williams et al., 2010). Expression of ZNF804A in post mortem brain 

samples from healthy individuals has in one study been shown to be dependent on an 

interaction between genotype at another associated SNP in ZNF804A (rs7597593) and 

gender (Zhang et al., 2011a). Female carriers of the protective allele had significantly 

higher levels of ZNF804A mRNA relative to risk allele carriers and a trend for reduced 

levels was observed in males with the protective allele relative to risk allele carriers 

(Zhang et al., 2011a), but this is as yet unreplicated.  

 

 

1.3. Intermediate Phenotypes and ZNF804A risk Variant.  

Studying intermediate phenotypes can be beneficial in heterogenous disorders such as 

schizophrenia (Rose et al., 2012). Aberrant connectivity has been observed in the brains 

of healthy ZNF804A risk allele carriers relative to non risk allele carriers (Esslinger et 

al., 2009; Rassetti et al. 2011; Paulus et al., 2011). Although the neurophysiological 

basis for this is unknown, this abnormal connectivity between the dorso lateral 

prefrontal cortex (dlPFC) and hippocampus suggests a role for ZNF804A at the neural 

systems level.  
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Based on evidence of aberrant connectivity it was postulated that white matter volume 

or connectivity may be affected in rs1344706 risk carriers (Esslinger et al., 2009). 

Increased white matter volume has been observed in healthy subjects homozygous for 

the risk allele (Lencz et al., 2010; Wei et al., 2012; Wassink et al., 2012) which might 

relate to altered connectivity in the brains of those with the risk allele. In another study, 

no main effect of rs1344706 risk variant on total brain volume or regional brain 

volumes (Cousijn et al., 2012) was identified, but an interaction between genotype and 

disorder has been reported. In that study, reduced  grey matter thickness was found in 

healthy individuals homozygous for rs1344706 risk variant (Lencz et al., 2010; 

Voineskos et al., 2011), but this contrasted with increased gray matter volume in 

patients who were homozygous risk carriers relative to non-risk allele carriers (Donohoe 

et al., 2011).  

 

However, the increased gray matter in cases who carry the risk allele may relate to a 

finding that performance in working and episodic memory tasks is better in rs1344706 

risk allele carriers compared to non-risk allele carriers, but this is observed specifically 

in patients not in controls (Walters et al., 2010). The authors of the latter study proposed 

that ZNF804A was related to a type of schizophrenia with relative sparing of cognitive 

function rather than that ZNF804A was itself increasing cognitive performance.  This 

idea was also supported by evidence that association between rs1344706 and 

schizophrenia was stronger in patients with the highest IQ (Walters et al., 2010; Chen et 

al 2012).  The observation of preserved cognitive phenotype in ZNF804A risk variant 

carriers has been replicated in schizophrenia patients in a processing speed task (Van 

Den Bossche et al., 2012).  

 

However, a deletion syndrome known as "2q31.2q32.3 syndrome," which includes the 

deletion of ZNF804A as well as NEUROD1, PDE1A and ITGA4 has been reported in 3 

patients and is characterised by clinical features including mental retardation and 

developmental delay (Cocchella et al., 2010), although the causal gene(s) for this 

phenotype are unknown.  
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Theory of mind (ToM) is a concept which encompasses an individual’s ability to infer 

the thoughts, feelings and intentions of others and marked deficits in this cognitive 

process are observed in schizophrenia patients (Bora et al., 2009).  There is evidence of 

altered activity in brain areas associated with ToM (dorsomedial PFC and left tempero-

parietal cortex) in healthy carriers of the risk allele, possibly indicating a role for 

ZNF804A in the neural networks underlying ToM processes (Walter et al., 2010). 

Executive control has also been reported to be altered in rs1344706 risk allele carriers 

(Balog et al., 2011), suggesting a broader social cognitive function for ZNF804A.  

 

Although the evidence from endophenotype studies largely remain to be confirmed, and 

the statistical support for the associations is weaker than for association to the primary 

phenotype, imaging and cognitive studies on subjects with the rs1344706 variant have 

led to the hypothesis that a subtype of schizophrenia may exist defined by a preserved 

cognitive function and increased grey matter volume present only in risk allele carriers 

(Donohoe et al., 2011). This could reflect a relatively distinct pathophysiology in those 

with the ZNF804A risk variant which if confirmed could be used to inform drug 

targeting.  

 

1.4 ZNF804A and Drug Response.  

There is weak evidence to suggest association between the risk allele at ZNF804A and 

poor response to atypical antipsychotics. Patients with the risk allele had a poorer 

response to atypical antipsychotics measured using the Positive and Negative Syndrome 

Scale (PANSS) (Zhang et al., 2012; Mossner et al., 2012). Two additional SNPs in 

ZNF804A associated with schizophrenia, rs35676856 and rs61739288 were also 

correlated with a poor response to atypical antipsychotics as measured using the 

PANNS (Xiao et al., 2011). Again, this may point to a subtype of pathophysiology, but 

since spared cognitive function is usually considered a good prognostic factor, these 

results are not obviously compatible with those from the cognition studies.  
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1.5 ZNF804A Risk Variant.  

The ZNF804A gene found on chromosome 2q32.1 has 4 exons and spans 341 kb. 

Despite extensive searching, rs1344706 was found to be the variant with the strongest 

signal for association with schizophrenia (Williams et al., 2010). As there is no 

evidence that rs1344706 is in strong LD with any other variants, the association may not 

be attributable to rs1344706 being in LD with the casual variant. The rs1344706 SNP is 

within 30bp of conserved mammalian sequence (Donohoe et al., 2010) hypothesised to 

show this degree of conservation due to the presence of transcription binding sites 

(Riley et al., 2010). Given the location of the associated SNP (rs1344706) within intron 

2 of ZNF804A, the most likely predicted function is regulation of transcription or 

splicing leading to the hypothesis that risk is inferred via altered regulation of gene 

expression or RNA processing. The prediction that the rs1344706 risk allele (T) 

maintains binding sites for the brain expressed transcription factors MYT1l and 

POU3F1/OCT-655 (Riley et al., 2010), along with evidence to show that rs1344706 

does form sequence-specific DNA-protein complexes (Hill & Bray, 2011), provides 

evidence that rs1344706 is a functional variant, but the identity of the nuclear binding 

protein(s) remains unknown (Hill & Bray, 2011). Another variant (rs13423388) 

significantly associated with schizophrenia (Zhang et al., 2011b) is found in ZNF804A 

3kb downstream of rs1344706, this region is also highly conserved between mouse and 

human (Zhang et al., 2011b; using UCSC Browser, 2009) all of which supports the 

hypothesis that the allele may be involved in transcription factor binding or splicing. 

 

1.5.1 Putative Function of ZNF804A.  

As recently as 4 years ago there were no unequivocally implicated genes in 

schizophrenia (O’Donovan et al. 2009). The replication of association between 

ZNF804A and schizophrenia provides robust evidence that it is a schizophrenia 

susceptibility gene. At the time this study started, this was the most strongly implicated 

schizophrenia susceptibility gene from which insights into schizophrenia pathogenesis 

could be derived. However, deriving such insights was hampered by the fact that the 

function of the gene was unknown. The broad basis underpinning this thesis was that 

determining the function of the protein encoded by ZNF804A may provide a valuable 

way of elucidating the pathophysiology of this common, complex disorder. 
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1.5.2. ZNF804A Protein  

ZNF804A is predicted to be a zinc finger protein containing a single zinc finger domain. 

The single domain is a cysteine2histadine2 (C2H2)-type domain. This domain is 

commonly found in transcription factors, leading to the hypothesis that ZNF804A may 

also function as a transcription factor (Williams et al, 2010), although this proposition is 

tentative since zinc finger domains are found in other classes of protein such as those 

with housekeeping functions (Pieler and Bellefroid, 1994).  

 

Changes in gene expression have been observed in both the knockdown of ZNF804A in 

a neural cell line (Hill et al., 2012) and the over expression of ZNF804A in E11 rat 

forebrain progenitor cells (Girgenti et al., 2012) with chromatin immunoprecipitation 

assays suggesting this is a direct effect of ZNF804A on expression (Girgenti et al., 

2012).  These studies are discussed in much greater detail in chapter 3, section 1. 

 

 

1.6 Mouse Models in the Understanding of the Human Brain. 

There is a high degree of conservation between mouse and human with comparable 

biochemical pathways found in the two species.  Methods of genetic manipulation are 

well characterised in the mouse and generating a strain of mice is efficient due to their 

short gestation periods (Stevens et al., 2007).  In particular inbred strains of mice have 

been created by researchers to achieve genetic homogeneity between mice of the same 

strain offering valuable consistency across different mice and research carried out in 

different labs and in different countries when using the same strain. This valuable 

resource offers the chance to attribute any phenotype to the particular manipulations 

made by the researcher, rather than genetic heterogeneity. However, inbred strains of 

mice are not immune to genetic drift or to de novo mutations and so the stable strains of 

inbred mice may not be as homogenous as previously thought (Stevens et al. 2007).  

The advantages and disadvantages of mouse models with regards to the work in this 

thesis are outlined in more detail in chapter 3, section 1.  
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1.7 The Mouse Orthologue of ZNF804A. 

The mouse orthologue of ZNF804A is Zfp804a. It is a 206, 221bp gene which encodes a 

1200aa protein. A single Refseq mRNA (NCBI) has been identified. Zfp804a has been 

identified as a downstream target of the Hoxc8 protein both in vitro and in embryonic 

mice (Chung et al., 2010). A Hoxc8 binding site has been identified within intron one of 

Zfp804a and Hox binding sites were identified that were conserved across species.  In 

response to Hoxc8 binding, Zfp804a mRNA expression has been found to be 

unregulated in vitro, suggesting the possibility that the influence of Hoxc8 on Zfp804a 

may be relevant to the pathophysiology underlying schizophrenia and psychosis.  

 

In the adult mouse brain, interaction of Hoxc8 and Zfp804a has been demonstrated in 

the cortex and in the whole brain.  The HOX protein family has been previously 

implicated in development, including particularly brain patterning (Tischfield et al., 

2005). Members of the family have been described to have altered expression in 

epilepsy, mental retardation and subtypes of ASD (Zollino et al, 2011; Bosley et al., 

2007). As Hoxc8 appears to regulate the expression of Zfp804a this could implicate 

Zfp804a as being a mediator of the effects of HOX members in developmental 

processes relevant to schizophrenia.  

 

1.8 Aims and Objectives 

The broad objectives of this thesis are to identify mechanisms by which the zinc finger 

protein 804A gene encoding ZNF804A might influence risk of schizophrenia and a 

wider psychosis phenotype. To achieve this, based upon the hypothesis that ZNF804A 

is a regulatory protein, I studied the consequences of altered ZNF804A expression in 

the brains of mice carrying truncating mutations at ZNF804A (in mouse, known as 

Zfp804a). It was my hypothesis that genes identified as showing altered expression will 

contain downstream mediators of the effects of ZNF804A on disease risk, and that 

identifying these genes would inform both on the function of this gene and on pathways 

relevant to schizophrenia. Further, under a polygenic model of disease involving large 

numbers of risk alleles, I also postulated that the human orthologues of downstream 

targets, direct and indirect, of Zfp804a will contain variants that influence risk of 

psychosis. 
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Prior to the start of this thesis, an ENU mouse line with a Zfp804a nonsense mutation 

had been bred to isolate the Zfp804a mutation from the ENU parental strain genomic 

background in order to facilitate behaviour and expression studies.  My plan was to use 

a global transcriptomics driven approach to identify genes in which mRNA expression 

is altered in the brains of animals carrying the Zfp804a nonsense mutation, and 

functional pathways enriched for such genes. The specific approaches were initially 

based upon the Affymetrix GeneChip Mouse Exon 1.0 ST Array analysis followed by 

global transcriptomics approaches based upon Illumina next generation sequencing. 

Target genes identified as differentially expressed or otherwise regulated by Zfp804a 

were then tested for aetiological relevance in the large genome-wide association case-

control datasets from subjects with schizophrenia and bipolar disorder from the 

Psychiatric GWAS Consortium (PGC, 2011a; PGC, 2011b) using a multilocus genetic 

association approach. Overall, the aim was to elucidate genes and specific 

pathophysiological mechanisms relevant to the aetiology of schizophrenia and other 

psychoses. 
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Chapter 2: Materials and Methods. 

2.1 Samples 

2.1.1 Mouse Mutant 

Prior to the work described in this thesis, a premature termination codon (PTC) 

mutation in exon 2 of Zfp804a was identified (C59X) by another PhD student (T. 

AlJanabi) who had screened an ENU mouse library (ENU DNA Archive, MRC Mary 

Lyon Centre, Harwell) consisting of thousands of DNA samples from F1 ENU 

mutagenised mice (along side frozen sperm samples). The mutation resulted in a two 

base substitution from GT to AA replacing the wild type cysteine residue with a stop 

codon and is denoted from here on as C59X. The mutation is expected to either truncate 

the translated protein or initiate nonsense mediated decay (NMD), both of which are 

predicted to result in aberrant ZNF804A protein. Following this screen of the DNA 

archive a request to Harwell was made to recover the mutation into a mutant mouse.  

2.1.2 ENU Random mutagenesis and Speed Congenics. 

ENU random mutagenesis involves the use of a chemical mutagen, ENU (N-ethyl-N-

nitrosourea) to induce germline mutations. The mutations are thought to occur at 

random throughout the genome at a rate of approximately 1.5-6 mutations per locus per 

1000 mutagenised offspring but this may vary according to the mouse strain and dose of 

the ENU (Hitotsumachi et al., 1985; Quwailid et al., 2004). Once the ENU mutations in 

Zfp804a had been chosen the mutation was recovered into a mutant mouse using 

corresponding frozen sperm from the archive at Harwell via the in vitro fertilisation 

technique, as described in Coghill et al. (2002). The ENU strain was generated from 

ENU treated male Balb/c mice bred with C3H/HeJ females as part of the UK ENU 

mouse mutagenesis program. Mutations are then screened for in the F1 mutants (Nolan 

et al., 2000). A cohort was then bred from these mice in order to generate lines used in 

the present study. F1 heterozygote mutant males from Harwell with the C59X mutation 

were backcrossed onto a C57BL/6J background using a speed congenics approach 

(Markel et al., 1997; Visscher et al., 1999) by T. AlJanabi. Backcrossing is carried out 

onto a wildtype background to remove any potential confounding mutations, natural or 

ENU derived. Using backcrossing to achieve congenicity should ensure that any 

observations made are due to the mutation of interest rather than unwanted additional 

mutations. Mice were backcrossed onto the C57BL/6J background as this strain breed 
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well and are also genetically and phenotypically well characterised. Strain specific 

markers were used to identify mice heterozygous for the ENU mutation with the highest 

proportion of C57BL/6J background strain and these mice were backcrossed onto a 

C57BL/6 background.  Using this approach, by the F3 generation the mice were 

predicted to have ~96% of the C57BL/6 background.  F3 female and male, C59X 

heterozygotes were intercrossed to produce the F3i intercross generation.  The F3i 

generation were estimated to have 96.13% C57BL/6J background. Initial expression 

analysis was carried out on the F3i generation. Higher levels of purity are ideal but 

slower progress in deriving the lines made this necessary on pragmatic grounds. Whilst 

there is the possibility of additional ENU mutations it is unlikely the same mutation 

would be found in two mice.  At the start of the study, it was anticipated the impact of 

such mutations, if they were to arise, on expression results would be unlikely to cause 

group effects, although they might result in increased noise.  To generate the 

experimental cohorts, two heterozygotes (F3) were intercrossed so that F3i homozygote, 

heterozygote and WT littermates were generated (T. AlJanabi).  

 

Mice were housed in group cages of 2-5 mice in the Behavioural Neurosciences 

Laboratory in the School of Psychology, Cardiff University. Mice were kept under a 12 

hour light dark cycle with lights on at 07:00 and lights off at 19:00 and were given food 

and water ad libitum. For breeding of the F3i generation up to four females were 

introduced to the male’s homecage and left for one week. Females not pregnant after 

two weeks and infertile males were removed from the breeding programme.  

 

2.1.3 Brain Tissue Collection 

Mice were euthanized by cervical dislocation (schedule 1) following which the brain 

was extracted from the skull and immediately snap frozen in liquid nitrogen after which 

it was stored at -80°C until further processing.   
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2.2 DNA/RNA extraction 

2.2.1 DNA Extraction. 

Genomic DNA was extracted from mouse tail tips. Tail tips were immediately snap 

frozen in liquid nitrogen and stored at -80c until DNA extraction. Tails were lysed using 

a 400-500μl (dependent of tail size) mix of Protinase K and a tail lysis buffer and left 

overnight in a 55-60°c water bath. Samples were then spun for 10 minutes (13000rpm at 

4°C) and the supernatant was transferred to a new tube. An equal volume of isopropanol 

was added to the supernatant, mixed and then left for 20-30 minutes at 2-8°C. Each 

sample was then centrifuged for 10 minutes (13000rpm at 4°C) and the supernatant was 

discarded. Samples were left to air dry for 1 hour and the resultant DNA was 

resuspended in 100μl of nuclease-free water.   

2.2.2 RNA Extraction 

1ml of Trizol (Sigma,  St. Louis, MO) was added to brain tissue in a matrix tube (MP 

Biomedicals) and homogenised using a Bio-one homogenizer. Following centrifugation 

(12,000 x g for 5 minutes at 4°C) the supernatant was transferred to a new tube and 

allowed to stand at room temperature (RT) for 5 minutes. Chloroform (0.2ml/1ml of 

Trizol) was then added and the tube was shaken for 15 seconds before again being left 

to stand at RT this time for 10 minutes. Samples were centrifuged (12, 000 x g for 15 

minutes at 4°C) before removing the upper phase to a fresh tube. RT isopropanol was 

then added at 1/10
th

 the volume in the tube and samples were left to stand for 5mins at 

RT before centrifugation (12, 000 x g for 10 minutes at 4°C). 0.5ml of isopropanol was 

added to the supernatant in a new tube and left to stand at RT for 10 minutes then 

centrifuged (12, 000 x g for 10 minutes at 4°C). The supernatant was then discarded 

leaving the RNA pellet in the tube. Following a wash with 1ml of 75% EtOH (made 

with nuclease-free water) the samples were centrifuged (12, 000 x g for 5 minutes at 

4°C) and the supernatant was discarded. Pellets were air dried for ~ 10 minutes prior to 

resuspension in 50μl RNase-free water.  

2.2.2.1 RNA Clean Up – Column Purification. 

Following RNA extraction total RNA was purified to remove excess salts and 

contaminants using the RNeasy Mini Kit (QIAGEN, Hilden, Germany) according to the 

manufacturer’s instructions.  
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2.2.2.2 DNase Treatment 

Removal of contaminating DNA was facilitated by using the DNA-free kit (Ambion) 

which uses recombinant DNase1 for the digestion of any DNA present in the RNA 

sample. The procedure was carried out according to the manufacturer’s instructions.  

2.2.3 RNA quality assessment  

RNA quality was determined using two measures; the ratio of two ribosomal RNAs 

(28s/18s) and the RNA integrity number (RIN) both of which were analysed using the 

Agilent 2100 Bioanalyser.  

 

2.2.3.1 Agilent 2100 Bioanalyser. 

A chip containing the RNA samples, a size ladder and a fluorescence marker was 

inserted into a Bioanalyser, microfluidic station. The principle behind the instrument is 

much like electrophoresis. A voltage gradient is run across the chip via an electrode and 

due to the negatively charged nature of RNA it migrates through a polymer matrix.  

Smaller molecules pass through the matrix easier, thus the matrix separates the 

molecules according to size. The dye molecules intercalate and migrate with the RNA 

and fluorescence is recorded using laser activation.  An RNA 6000 ladder was run as a 

reference and contains 6 individual fragments which range in size from 0.2 – 6 Kb. 

Each sample was compared to the ladder fragments to determine its concentration and 

enable the identification of the rRNA peaks. Good quality, intact RNA is defined by the 

following features;  

 Two clear and distinct ribosomal RNA peaks (28s and 18s rRNA).  

 The baseline between the internal marker and the 18s peak is relatively flat. The 

absence of peaks in this region means there is no or very little smaller molecules 

in the sample which represent degraded rRNA or tRNAs. (rRNA is particularly 

sensitive to degradation if extracted from tissue using mechanical 

homogenisation or if the tissue has been frozen as both make shearing of the 

molecules more likely. The 28s rRNA is particularly sensitive to shearing as it is 

a larger molecule than the 18s rRNA). 
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2.2.3.2. 28s/18s rRNA Ratio. 

The rRNA ratio is determined by dividing the 28s peak by the 18s peak. As 28s is the 

larger molecule the ratio is expected to be 2:1 (2>) if no degradation of the RNA has 

occurred. Due to the mechanical nature of tissue homogenisation this is rarely the case 

and a ratio of 1 or above is acceptable for most analyses (Ambion).  

 

2.2.3.3 RNA Integrity Number (RIN). 

The RIN metric is produced after running the RNA sample on an Agilent bioanalyser. 

The entire electropherogram of each sample is considered, not just the two rRNA peaks 

and a score from 1-10 is generated with 1 representing the most degraded RNA and 10 

representing intact RNA.  

 

RIN is generally a reliable metric, but it does not always equate that a good RIN score 

will mean the experiment being undertaken will be successful. It is also important to 

note that rRNA integrity is used to infer mRNA integrity. Both are usually comparable, 

but differences can occur as rRNA is considered more stable.  For gene expression 

assays such as microarrays, the consensus is that a RIN of at least 7 is adequate, but 8 or 

above is preferable (Schroeder et al., 2006).  

 

2.3 Reverse Transcription.  

Using the Superscript II First-Strand synthesis system for RT-PCR (Invitrogen) and 

random primers (Invitrogen) 1μg of DNase treated total RNA was used as a template for 

cDNA synthesis according to the manufacturer’s instructions.  

 

2.4 Polymerase Chain Reaction 

The polymerase chain reaction (PCR) allows the amplification of a specific DNA target. 

DNA is synthesised using the enzyme Taq Polymerase in addition to the 4 

deoxyribonucleotide triphosphates (dNTPs), adenine (A), cytosine (C), guanine (G) and 

thymine (T) and standard buffer. Oligonucleotide primers are designed which are 

complementary to the sequence flanking the region to be amplified. The complementary 

strand of DNA is then synthesised in a 5’-3’ direction with the two primers acting as the 

double stranded starting point, initiating DNA synthesis. A series of approximately 30-
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45 temperature cycles facilitates the 3 steps of PCR to be carried out. The first step 

involves the denaturing of the double stranded DNA leaving a single stranded DNA 

template. The primers then anneal to their complementary sequence on the single 

stranded DNA. The final elongation step allows the synthesis of the complementary 

DNA strand by taq polymerase.  

  

2.4.1 Primer design 

Primers were designed using primer3 (v 0.4.0, 

http://frodo.wi.mit.edu/primer3/input.htm) and BLAST Primer 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/), which uses a combination of the 

primer3 algorithm and BLAST to determine primer specificity against the mouse 

genome database (National Centre for Biotechnology Information). Specificity was also 

checked using BLAT (http://genome.ucsc.edu/cgi-bin/hgBlat) (Kent, 2002a). Default 

settings were used where possible so that primer annealing temperature was ~60°C and 

GC content was between 30 and 80%. Primers were synthesised by Sigma. 

 

2.4.2 PCR Optimisation 

PCR reactions were performed using C1000 Thermocyclers (BioRad Laboratories, Inc). 

HotStar Taq (Qiagen) was used in all PCR reactions. The standard PCR cycling 

conditions are outlined below. When an assay failed using these conditions, PCR was 

carried out on control samples to find the optimum temperature for primer annealing 

(Tm) using a temperature gradient.  PCR was performed in 12µl reaction volumes using 

3µl genomic DNA (4ng/µl), 0.56µl of each primer (5pmol concentration), 0.96µl 

dNTPs (5mM each), 1.2µl of 10X buffer (Qiagen), and 0.06µl of HotStarTaq 

polymerase (10units/µl, Qiagen).   

For cDNA the 20μl product from the RT-PCR of 1μg RNA was diluted 1:5. Then 3μl 

added to the mastermix as described above.  

 

PCR cycling Conditions.  

1. 95°C for 15 minutes 

2. 94°C for 20 seconds 

http://genome.ucsc.edu/cgi-bin/hgBlat
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3. ~60°C for 30 seconds 

4. 72°C for 1 minute 

5. Repeats steps 2-4 for 44 cycles 

6. 72°C for 10 minutes 

7. 15°C hold 

 

2.4.3 Agarose Gel Electrophoresis  

PCR products were separated by size and visualised using agarose gel electrophoresis, 

which is facilitated by the negatively charged phosphate groups of DNA. The porous 

nature of the agarose gel allows the negatively charged DNA to move toward the anode 

when an electric current is applied. The rate at which the DNA fragment moves toward 

the anode is a property of fragment size, smaller fragments passing with less resistance 

than larger ones.  

Gels were 1-2% agarose, dependent upon the resolution required. A 1.5 % gel was 

comprised of 1.5g of agarose (AGTC Bioproducts) dissolved in 100ml of 0.5x TBE 

buffer (Ultra Pure electrophoresis grade, National Diagnostics).  The solution was 

heated to dissolve the agarose and then cooled slightly once clear. 1.5µl of Ethidium 

Bromide solution (10mg/ml) was then added. The solution was poured into a gel cast, 

into which gel combs had been placed to allow well formation and allowed to cool to a 

solid.  

Appropriate volumes of PCR product and a loading buffer were combined prior to 

loading into a well in the gel. 6x loading buffer was made up of 15% ficoll, 0.25% 

bromophenol blue, and 0.25% xylene cyanel in water. To determine the size of each 

fragment, 2µl of size standard (1kb plus DNA ladder, Invitrogen) was run alongside 

each row of samples. Gels were run in electrophoresis tanks at 100-120V for a time 

appropriate to separate a fragment of the expected size. DNA fragments were visualised 

using a UV transilluminator (UVP) and images were recorded using a Kodak 

Electrophoresis Gel analysis system.  

2.5 Genotyping 

Samples were initially genotyped by sequencing genomic DNA or mRNA using Sanger 

sequencing of exons 1-3 of Zfp804a (described in full in 2.6). Primers in Appendix 2.1.  
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An assay was then designed utilising high resolution melting analysis (HRMA) 

(described in full in section 2.7). 

 

2.6 Sequencing  

Sequencing was carried out using the Sanger Sequencing technique implemented using 

Big Dye termination chemistry (Applied Biosystems). Four fluorescently labelled 

dideoxy-nucleotide-triphosphates (ddATP, ddCTP, ddGTP and ddTTP) when 

incorporated, terminate DNA synthesis during primer extension. In doing so a series of 

nested fragments are produced each varying in length by a single base. By running the 

sample through a capillary on a 3100 capillary sequencer (Applied Biosystems, Foster 

City, CA) the fragments are sorted in size and a base specific fluorescent dye allows the 

identity of each terminal base to be identified using a fluorescence detector. 

 

2.6.1 PCR Clean up 

PCR products were purified using Ampure XP® (Agencourt). 12µl of the PCR product 

was mixed with 18µl of Ampure reagent using a Beckman-Coulter NX liquid handler. 

This enables the removal of contaminants such as salts, primers, DNA polymerases and 

unincorporated dNTPs. Ampure XP® consists of para-magnetic particles to which PCR 

amplicons bind. This facilitated the separation of PCR products from contaminants with 

the use of a magnet, to which the magnetic particles (bound with the DNA) adhered.  

Contaminants (not stuck to the magnetic beads) were then washed away using 85% 

Ethanol.  Purified product was eluted in 195µl of nuclease free water.  

 

2.6.2 Sequencing Reaction 

5µl of clean product was added to 5µl of sequencing reaction mix. Sequencing reaction 

mix was made up of 1.917µl 5X BigDye sequencing buffer, 0.116µl BigDye 

termination mix, 1µl of forward or reverse PCR primer (4pmol/µl) and 1.917µl nuclease 

free water. The BigDye termination mix includes the four dNTPs which are unlabelled 

along with the four fluorescently labelled dideoxyribonucleotide triphosphates 
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(ddNTPs) and the Sequenase enzyme. The sequencing reaction consisted of the 

following steps: 

1. 96°C for 2 minutes 

2. 96°C for 10 seconds 

3. 50°C for 5 seconds 

4. 60°C for 4 minutes 

5. Repeat steps 2-4 for 24 cycles 

6. 4°C for 4 minutes 

 2.6.3 Post Sequencing Clean up 

The clean up reaction was carried using the Beckman-Coulter NX liquid handler. 

Contaminants such as salts, primers, DNA polymerases and unincorporated ddNTPs 

were removed by mixing 10µl of PCR product with 7.5µl of CleanSeq® (Agencourt) 

reagent which contains magnetic beads to which the amplimeres bind. When the 

magnetic beads bind to a magnet, the unbound contaminants can be washed away with 

85% Ethanol.  Purified PCR products were then eluted in 90µl sterile water.  

2.6.4 Sequencing Analysis of C59X in Zfp804a  

Cleaned sequence products were passed to the School of Medicine Central Biological 

Services (CBS) for running on an ABI3100 36cm capillary sequencer (Applied 

Biosystems, Foster City, CA) with polyacrylamide POP6 (Applied Biosystems). The 

raw data generated were analysed using Sequence Analysis Software (Applied 

Biosystems) contained on the AB3100 PRISM genetic analyser. Each base was called 

according to its corresponding fluorescent signal. Genotype was then determined using 

a combination of NovoSNP (Weckx et al., 2005) and Sequencher (Gene Codes) 

software. In each instance the sequence traces of each sample were aligned to a 

reference sequence. The position of the C59X mutation was inspected in each sample to 

determine if the sample was a homozygous wildtype, C59X heterozygous or C59X 

homozygous mutant (Fig. 2.1).  
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Figure 2.1. Sequencing the C59X mutation.  Examples of sequencing traces from 

NovoSNP (Weckx et al., 2005). From top to bottom a homozygote wildtype mouse, a 

C59X heterozygote and a C59X homozygote mutant. Between the two vertical lines is 

the cysteine residue in the homozygote wildtype and the stop codon following a two 

base substitution from GT to AA in the C59X homozygote mutant. 

 

2.7 High Resolution Melting Analysis (HRMA). 

In order to quickly determine the genotype of each sample, an assay was designed 

which utilised the high resolution melting analysis technique.  This analysis is based on 

the principle that the melting temperature of a PCR amplimere is a product of its 

sequence composition (Ririe et al., 1997). Utilising fluorescent dyes which bind to 

double stranded DNA, the melt curve of the DNA during the extension phase of PCR 

can be monitored in real time using changes in fluorescence to indicate the release of 

the fluorescent dye from single stranded DNA. Melt profiles are compared to a 

reference sequence and differences from the reference are observed as a change in the 

melting temperature (Liew et al 2004; Palais et al., 2005). Changes in the shape of the 

melting curve are indicative of hetero and homoduplexes, which are formed during PCR 
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of heterozygous loci (Graham et al., 2005). Homozygous wildtypes and C59X mutants 

were distinguishable from C59X heterozygotes, which meant the requirement for 

further homozygotes was quickly determined, however the distinction between wildtype 

and C59X mutant homozygotes required the sample to be further processed using 

Sanger sequencing to confirm genotype and so the attempt to make the genotyping 

process more efficient was ultimately not achieved.  

2.7.1. HRMA PCR Conditions.  

A 12µl PCR reaction was made up of; 4µl genomic DNA (4ng/µl), 0.56µl of each 

primer (5pmol concentration), 0.96µl dNTPs (5mM each), 1.2µl of 10X LCgreen Plus 

(Idaho Technologies), 1.2µl of 10x LCgreen Plus 20mM MgCl PCR Buffer (Idaho 

Technologies) and 0.06µl of HotStarTaq polymerase (10units/µl, Qiagen). Primers were 

designed to span the mutation in exon 2 of Zfp804a (Appendix 2.2)and the PCR cycling 

conditions were as described in 2.4.2.  

HMRA was performed according to the manufacturer’s instructions using a 

LightScanner (Idaho Technologies). 12µl of each sample was denatured by increasing 

the temperature at a rate of 0.1°C/s to a maximum temperature of 98°C. Fluorescent 

datapoints were collected continuously at a rate of 14 points/°C. Using a semi-

automated analysis (Dwyer et al., 2009) the melting profiles were assessed. Once 

normalised, samples were analysed using the LightScanner software Call-IT
TM

 (Idaho 

Technologies) using the high sensitivity setting. The melt curve profile for each sample 

was plotted and then automatically called by the software by grouping samples 

according to similarity.   

 

2.8 Global Analysis of Gene Expression. 

2.8.1 Exon Arrays 

The Affymetrix GeneChip Mouse Exon 1.0 ST array (exon array) was chosen for 

expression analysis as it facilitates fairly comprehensive and accurate measurement of 

gene expression changes as well as the identification of both known and novel splice 

events. The chip contains over 5 million probes targeting all known and predicted 

mouse exons. The difference between the exon array and the more traditional 3’ in vitro 
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transcription (IVT) arrays is the removal of mismatch control probes for each of the 

probes on the chip, which frees considerable space for more probes to target exons 

throughout a transcript. Despite quite considerable differences in the design of exon 

chip relative to 3’ arrays, gene expression performance has been shown to be 

comparable in several studies (Bemmo et al., 2008; Okoniewski et al., 2007) with 

sensitivity levels for detecting gene expression in the same range as the 3’ IVT arrays 

(Abdueva et al. 2007). Each of the 5 million probes are 25 bases in length and have 

been synthesised on to the exon array which consists of a coated quartz surface. As 

described in detail below, fluorescently labelled RNA hybridised to the exon array and 

the fluorescent signal was used to infer and quantify expression levels.  

2.8.2 RNA Labelling, Hybridisation and Scanning of Exon Arrays 

All labelling, hybridisation and scanning steps were carried out by Central 

Biotechnology Services (CBS), Cardiff University.  

2.8.2.1 RNA Labelling  

Extracted total RNA was prepared for hybridisation to the exon chip using the Whole 

Transcriptome (WT) Expression Kit (Ambion) and the Affymetrix Genechip WT 

terminal labelling kit (Affymetrix, Santa Clara, CA, USA). RNA was reverse 

transcribed to first strand cDNA using specially engineered primers with a T7 promoter 

(Ambion). Primers were not complementary to ribosomal RNA (rRNA) sequences, 

removing the requirement to carry out an rRNA reduction step. Both poly-A and non 

poly-A mRNA (Ambion Protocol) was targeted.   

 

Second strand synthesis was carried out using DNA polymerase followed by RNA 

degradation using RNase H. Using an in vitro transcription step complementary 

(antisense) RNA (cRNA) was synthesised using T7 RNA polymerase from the second 

strand cDNA template (Van Gelder et al., 1990). Transcribed cRNA was then purified 

using nucleic acid binding beads and isopropanol to remove any unwanted salts or 

enzymes. A second cycle of cDNA synthesis was then completed by reverse 

transcribing 10μg of cRNA using random primers. Fragmentation of the cDNA was 

carried out as part of the Affymetrix Genechip WT terminal labelling kit. To ensure 

reproducible and uniform fragments the kit incorporated dUTP into the DNA as part of 

the first-strand cDNA synthesis reaction in the second cycle. Both UDG (uracil DNA 



 

 

27 

glycosylase) and APE 1 (apurinic/apyrimidinic endonuclease 1) were used to treat the 

DNA and recognise and cleave at the unnatural dUTP sites during the fragmentation 

step. Fragments were approximately 25-200 bases in length. RNase H was again used to 

degrade the RNA, followed by clean up of the remaining single stranded cDNA. Clean-

up was performed using nucleic acid binding beads and ethanol.   

 

Samples were labelled with terminal deoxynucleotidyl transferase (TdT) using an 

Affymetrix DNA labelling reagent covalently linked to biotin. This method, in contrast 

to the traditional 3’ IVT array, utilises random hexamer- linked T7 promoters to 

synthesise cDNA so that a DNA/DNA complex forms on hybridisation to the chip and 

amplification is not restricted to polyA RNA (Abdueva et al., 2007). 

 

2.8.2.2 Exogenous Spike-in Controls. 

Affymetrix kits include spike-in controls which are added to each sample prior to first 

strand synthesis and allow the user to assess the efficiency of the hybridisation process. 

These positive controls are a set of Escherichia coli genes; BioB, BioC, BioD and cre. 

The genes are not present in eukaryotic samples and so act as exogenous controls. Each 

is spiked-in at a known concentration and amplified simultaneously with the sample. 

The concentration of each control is such that a certain rank order of intensities is 

expected allowing the efficiency of the hybridisation process to be determined 

independent of sample quality (Affymetrix Protocol).  Oligo B2 is also used as it 

specifically hybridises to probes placed at the corners of each array and is used by the 

Affymetrix console software to align grids to the chip (Bolstad, 2008). 

 

2.8.2.3 Hybridisation and Scanning of the Exon Array 

A hybridisation cocktail made up of the labelled cDNA and the controls was inserted 

into the exon chips (Fig. 2.2). Following 16hr hybridisation, the hybridisation cocktail 

was removed and replaced with wash buffer. Chips were then washed and stained with a 

series of stain cocktails (Genechip Hybridisation, Wash and Stain Kit, Affymetrix) 

using a fluidics station 450 (Affymetrix). Streptavidin-phycoerythrin (SAPE) was used 

to stain the chips, binding to the biotin label (Bolstad, 2008). Each chip was inserted 

into the scanner (GeneChip Scanner 3000 7G, Affymetrix) and the Affymetrix 

GeneChip Command Console (AGCC) was used to control the scanning process. A raw 
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image or .dat file was initially generated.  Each exon array contains features or squares 

approximately 3μm in size. Raw data were aligned to the grid system using the Oligo 

B2 controls (2.8.2.2) allowing the intensity of each feature to be determined (Bolstad, 

2008).  Intensity of each feature was calculated by considering only pixels which 

resided within the feature, not those found on the border (Bolstad, 2008).  The intensity 

data for each feature or probe cell is then acquired by AGCC to generate the probe cell 

intensity file (CEL file) which is commonly the starting point for exon array analysis.  

The chip was then ejected from the scanner.  

 

      This image has been removed by the author for copyright reasons. 

 

Figure 2.2 The Affymetrix GeneChip Mouse Exon 1.0 ST Array. Hybridisation 

cocktail, including the labelled cDNA sample is inserted into the chip via the septa. 

(Diagram Courtesy of Affymetrix from the Affymetrix GeneChip® WT terminal 

labelling and hybridisation user manual).  

 

2.8.3 Expression Analysis  

2.8.3.1 Partek Genomics Suite. 

Partek Genomics Suite (version 6.5 and beta 6.6, St. Louis, MO) is a purpose built 

software suite designed to enable analysis of a number of high-throughput technologies.  

 

2.8.3.2 Data upload  

Initially samples were uploaded into Partek as CEL files. With each set of CEL files a 

corresponding sample sheet was prepared and uploaded. This contained information 

such as sample ID, age, gender and genotype and allowed the grouping of samples 

according to these attributes. The import process was customised to allow samples to be 

preprocessed with the criteria required for the specific experiment.  
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2.8.3.3 Preprocessing 

Once raw intensity values (CEL files) are generated several steps must take place in 

order to produce meaningful expression data. These steps collectively are termed 

preprocessing. The purpose of preprocessing is to standardise the data obtained across 

all of the chips in a study to produce results with minimal batch differences and to 

identify any potential outliers. Preprocessing consists of 3 discrete steps, which I carried 

out in the following order; background correction, normalisation and summarization.  

2.8.3.3.1. Robust Multichip Averaging (RMA).  

The method chosen to carry out preprocessing was the Robust Multichip Averaging 

(RMA) procedure (Irrizarry et al. 2003) which does not rely on mismatch (MM) probe 

values. Previous Affymetrix arrays contained a corresponding MM probe for each 

perfect match (PM) probe on the array. The MM probes differ from the PM probes at 

the 13
th

 base only and as such are used to measure non-specific binding.  As the exon 

array has no MM probes, RMA is therefore suitable for exon array analysis. RMA was 

carried out using both Partek Genomics Suite (Partek Incorporated, St Louis, USA) and 

Expression ConsoleTM V1.1.2 (Affymetrix). In each case only the core probes were 

included. During preprocessing using RMA, raw data (X) undergo background 

correction (B), normalisation (N) and then summarisation (S) to produce expression 

data (E) so that E = S(N(B(X))). 

2.8.3.3.2 Background Correction.  

RMA uses a convolution model for background correction. The idea is that the probe 

signal (S) will consist of both signal (x) and background (y), (S = x + y). The model 

uses a smoothed density plot to assume that x will be distributed exponentially (α) and 

that y is distributed normally (N(μ,σ
2 

)). Background correction uses the observed signal 

to predict the expected signal intensity for each probe, once non-specific signal has been 

removed (Bolstad, 2008). At this step each array is corrected independently using 

values found only on that array.   

To obtain the estimates a nonparametric test is used. PM probe intensities are plotted, 

and then a density estimator is fitted, which estimates the mode of the distribution. 

Anything above the mode is used to predict the exponential parameter. The normal 
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distribution is determined by fitting a half normal to anything below the model (Bolstad, 

2008; Irrizarry et al., 2003a) 

2.8.3.3.3 Normalisation.  

Normalisation is required to remove obscuring or technical variation, which is not a 

result of true biological differences between samples. Normalisation was carried out 

using the quantile normalisation method. Previous studies, reviewing several different 

methods showed quantile normalisation worked most effectively (Bolstad et al., 2003) 

and allowed more sensitive and specific detection of differential expression when using 

GeneChips, which have a 1 sample/array design (Irrizarry et al., 2003).  

The aim of quantile normalisation is to make the distribution of the probe intensities the 

same for each of the arrays in the experiment. Normalising the distribution of each array 

to the mean distribution should remove inter array variance. No reference array is used, 

instead each arrays’ probe level values are sorted (ranked).  Quantile normalisation is 

carried out at the probe level for every probe on each array (Bolstad et al., 2003). The 

non-parametric, quantile normalisation algorithm uses a matrix and essentially sorts and 

averages across rows and columns representing probes and arrays respectively. Initially 

the probe intensities are sorted from lowest to highest for each of the arrays. Then the 

average of each quantile is determined by averaging probe intensities across each row of 

the dataset.  The columns are then rearranged so that each probe intensity value goes 

back to its original ranked position (Bolstad et al., 2003).  

2.8.3.3.4 Probe Summarisation. 

A summary measure called median polish was carried out on background adjusted, 

normalised and log2 transformed PM values, to estimate log scale expression values 

(Irrizarry et al., 2003b). This was performed by fitting a robust linear model at the probe 

level, ensuring any probe-specific affinity differences would have a minimal effect. The 

RMA model uses the assumption that a probe’s expression level is determined by how 

much RNA there is available to bind to the probe (the chip effect, e) the affinity of the 

probe (a) and the error in measurement (ε) applied to the following formula: 
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PMij = ei + aj + εij 

 

Where i represents the array and j the probe. Based on the intensity value for a 

particular probeset (PMij) the algorithm determines the possible combinations of e and a 

that would result in the observed PM value (Irrizarry et al., 2003b). 

Each probe in an Affymetrix probeset interrogates a different segment of a gene 

(Gardina & Turpaz, 2008).  Summarisation acts to combine the signal intensity for 

probes within a probeset to obtain a single expression value for the probeset (Bemmo et 

al., 2008).    

2.8.3.4 Annotating the Dataset. 

Probes on the Affymetrix exon array are annotated as either core, extended or full. The 

labels denote the annotation confidence of the sequence targeted by each probe. Probes 

which target Refseqs or mRNAs from Genbank have the highest level of annotation 

confidence and are termed core probesets. Probesets with an extended annotation, target 

sequences defined using expressed sequence tags (ESTs). Probesets annotated as full 

have the lowest annotation confidence and target transcripts annotated using ab initio 

prediction software.  

All analyses reported in this thesis were restricted to the core metaprobe set, unless 

otherwise stated which target genes which have been sequenced, cloned and curated 

manually (Gardina & Turpaz, 2008). By removing more speculative content the 

likelihood of false positive calls was reduced (Gardina & Turpaz, 2008). All core 

probesets have been defined by Affymetrix as unique, meaning they should not cross-

hybridise. Restriction to the core probesets meant a total of ~15,000 genes, which were 

either RefSeq genes or full length mRNA from GenBank were included.  

There is no perfect congruence between a probeset and an exon. Each probeset covers 

what Affymetrix define as a probeset region (PSR). Each PSR represents a region of the 

genome which is considered to be independent unit (Robinson & Speed, 2009) and is 

generally represented by 4 probes.  Data were analysed using the Affymetrix annotation 

files, NetAffx, version na31. mm9. 

 



 

 

32 

2.8.3.5 Quality Control Measures. 

Standard QC measures were undertaken to identify potential dataset outliers that might 

indicate technical problems in the analysis of individual samples. A series of metrics 

were generated using Affymetrix Expression Console (Version 1.1.2) and Partek GS 

(v6.6). All metrics were generated following RMA at the gene level on core probes. 

Using only the core meta-probeset removes the potential of increased variability due to 

the higher rate of unexpressed genes found in the extended and full annotations.  

Both the mean absolute deviation (MAD) and relative log expression (RLE) metrics 

were chosen as they are robust against experimental conditions (Gardina & Turpaz, 

2008).  Present/absent calls were generated at the probeset level as detection p values. 

Whilst no standardised cutoffs currently exist, the QC measures were useful for 

identifying potential outliers, which if present were removed or closely monitored in 

downstream statistical analysis (Gardina & Turpaz, 2008). 

 

2.8.3.5.1 Affymetrix Expression Console (v1.1.2) 

Following download of the appropriate library file (MoEx-1_0-st-v1.) from Net affx 

(Affymetrix), CEL files were uploaded and summarised to produce a probe level 

summarisation file (CHP file). Exon arrays were analysed using the RMA-sketch 

workflow as this allows both gene and exon level analysis (Affymetrix).  

2.8.3.5.2 Principle Component Analysis (PCA). 

To visualise similarities and differences in the expression data PCA was carried out 

using Partek GS. PCA reduces the dimensionality of the data to a few components 

which between them explain most of the variance in the data.  

2.8.3.5.3 Exogenous Spike-in Controls. 

As described in 2.8.2.2, exogenous controls added at known concentrations were used 

to assess the efficiency of the hybridisation, wash and scanning procedures. Adequate 

efficiency was denoted by the correct rank order in the intensity of each control.   
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2.8.3.5.4 All Probeset (and Positive Control) RLE Mean. 

The ‘all probeset RLE mean’ measures the mean absolute relative log expression 

(RLE). To determine this statistic the signal of each probeset on an array is compared to 

the median signal value across all arrays in the study. The metric is the mean of these 

differences from all the probe sets. This is the measure of how different a sample is 

relative to the consensus, with very high values denoting an array with different signals 

from others in the experiment (Affymetrix, 2007).  

2.8.3.5.5 Perfect Match (PM) Mean.  

This metric is based on raw intensity data and represents the mean intensity for all 

perfect match (PM) probes on the array before pre-processing (e.g., RMA) (Affymetrix, 

2007).  

2.8.3.5.6 All Probeset (and Positive Control) Mean Absolute Deviation (Mad) 

Residual Mean.  

Different probes will give out different intensities even when a common target binds to 

them. RMA creates a model for these individual probe responses and arrays with 

multiple probes behaving differently to the model can then be identified.  Differences 

between predicted and actual values are defined as the residual. Each probe will have a 

residual value from the model. An individual probe residual value that varies from the 

median reflects a poor fit to the model. By determining the mean absolute deviation, the 

overall fit to the model of every probe on the array can be established.  If the residuals 

have a very large mean absolute deviation from the median value this is indicative of 

arrays with poor quality data (Affymetrix, 2007).  

2.8.3.5.7 Positive vs. Negative AUC. 

This metric measures the area under the curve (auc) of a receiver operating 

characteristic (ROC) plot. The ROC curve is a plot of the detection of positive controls 

against the false detection of negative controls (exon and intron probesets respectively, 

which target ~100 constitutively expressed genes). To generate the curve it must be 

determined if the probeset signals effectively separate positive control signals and 

negative control signals, which measure true and false positives respectively. It is a 

robust measurement for overall data quality often used as a first pass metric. Typical 
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values range between 0.8 and 0.9. In theory a value of 1 for this metric would indicate 

perfect separation, but a value of 0.5 or below indicates no separation and thus no 

difference between positive and negative controls (Affymetrix, 2007). Whilst values 

falling significantly below 0.8 may indicate an outlier, values above 0.8 do not 

necessarily indicate good quality data (Affymetrix, 2008).  

2.8.3.6 Statistical Analysis 

Statistical analysis was carried out using Partek Genomics Suite (v6.5 Partek Inc, St. 

Loius, MO, USA).  

2.8.3.6.1 Differential Expression Algorithm. 

Exons were first summarised to genes using the mean of probeset intensities. The core 

gene summary file was then used as the input file for the statistical analysis, performed 

to determine differentially expressed genes between wildtypes and C59X mutants. A 1-

way ANOVA model was used which implemented the Method of Moments (Eisenhart, 

1947). The model included: 

Yij = μ + Genotypei+ εij 

In this model Yij represents the j
th

 observation on the i
th

 Genotype.  μ is the common 

effect for the whole experiment.  εij represents the random error present in the j
th 

observation on the i
th

 Genotype.  Errors εij are assumed to be normally and 

independently distributed with mean 0 and standard deviation δ for all measurements. 

In addition to determining differentially expressed genes a linear contrast between 2 

specific groups within the context of an ANOVA was performed to determine fold 

changes between wildtype and C59X mutants. Fisher's Least Significant Difference 

(LSD) method was used to determine fold changes between wildtypes and C59X 

mutants (Tamhane and Dunlop, 2000). 

2.8.3.6.2 Filtering 

Whilst gene level analysis does not vary from the traditional 3’ IVT workflow, exon 

level analysis requires additional steps to control the false positive rate. These include 

filtering data prior to statistical analysis thus reducing the need for multiple test 

correction (MTC) and visual inspection of data (Affymetrix, 2006). The most common 
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filtering procedure is the removal of probesets based on low annotation confidence and 

as described previously only probesets with the highest annotation confidence (core 

probesets) were included. It is also common for probesets to be removed based on 

expression signal. This is particularly relevant to exon arrays as low expression can be 

misinterpreted as differential splicing. Probesets were filtered based on signal intensity 

values. Initially probesets with a maximum log2 signal < 3 were excluded from the 

statistical analysis. This threshold was then increased to 4, 5 and 6 and the group mean 

log2 intensity was also considered. Final analyses were based on criteria that excluded 

any probeset with a group mean, log2 intensity signal <6.  

 

2.8.3.6.3 Alternative Splicing Algorithm  

Alternative splice p values were generated using Partek Genomics Suite’s custom 

alternative splice ANOVA. A one-way ANOVA was used for the individual female and 

male experiments, but for the combined analysis a two-way ANOVA was used, which 

included gender as a factor in addition to genotype. In both cases the ANOVA 

implemented the Method of Moments (Eisenhart, 1947). In all instances genotype was 

used as the alternative splice factor, allowing splice differences between C59X mutants 

and wildtypes to be identified. Differential splicing in C59X mutants was identified 

using the following model: 

γ = µ + G + E + G*E + S(G) + ε 

Where γ is the expression of the transcript  

µ is the mean expression of the transcript,  

G is the gene expression differences between the two levels of genotype  

E is the differential exon expression, independent of genotype   

G*E is the interaction of splicing and genotype (differential exon expression between 

mutant and wildtype),  

S is the sample effect, denoted as both a random effect (this assumes animals used are 

representative of the population and these exact samples would not be represented 
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again) and nested in genotype (meaning no one sample belonged to both genotype 

groups) 

and ε is the error term  

The ANOVA uses an interaction term between the two groups and the probeset (G*E) 

to see if probeset expression varies at the two levels of group (C59X mutants and 

wildtypes) (Bemmo et al., 2008).  Both differential expression and alternative splice p 

values are generated from this model which is performed at the exon level. To 

determine fold change at the transcript and exon level a linear contrast was included in 

the model between C59X mutants and wildtypes using the Fisher's Least Significant 

Difference (LSD) method (Tamhane and Dunlop, 2000). 

2.8.3.6.4 Multiple Test Correction (MTC) and Non-independence of data. 

Carrying out multiple tests on the same dataset increases the chance of falsely rejecting 

the null hypothesis. This problem is particularly applicable to the exon array as 1.4 

million tests would need to be carried out to analyse all the data on the array. It has been 

estimated that this could result in as many as 70,000 false positives (5%) (Okoniewski 

& Miller, 2008). Conventionally this type of issue is corrected using a Bonferroni 

Correction (Holm, 1979) in which the desired p value threshold (e.g., p<0.05) is divided 

by the number of test being carried out. This type of correction conserves the family-

wise error rate (FWER) by reducing the probability that any given individual significant 

result represents a type I error. Using such a stringent correction does however have a 

direct consequence on the number of type-II errors generated (the rejection of true 

effects).  

Whilst the application of Bonferroni MTC to the array data is easy to implement to 

standard array results the exon array is more complex. Due to data being generated at 

the exon level, one of the key assumptions is violated as there is non-independence 

between the probesets of a gene.  

Currently, there is no consensus on how to deal with multiple testing in exome level 

data. Some recommend pre analysis filtering to reduce the number of tests by as much 

as possible to reduce the necessity for MTC (Della et al., 2008; Okoniewski and Miller 

2008; Whistler et al., 2010) but this offers no general solution.  
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In the absence of an accepted approach, I applied both Bonferroni correction and the 

false discovery rate (FDR) (Benjamini and Hochberg, 1995) methods to gene 

expression and alternative splice data. The FDR ascribes a threshold to the significant 

data so that it will contain a predefined number of false positives (Okoniewski and 

Miller 2008). It can also give an idea of how reliable the dataset is overall (Okoniewski 

and Miller 2008). An FDR threshold of 0.05 was set. The Bonferroni correction is the 

most conservative MTC method giving increased confidence that findings surviving this 

stringent correction are true findings.  

 

2.8.3.7 Visualisation of Alternative Splice Events. 

Predicted splice changes were visualised using the geneview produced as part of the 

alternative splice output. Probeset intensity was plotted for each group. To compare the 

results to known gene annotations, the data were also visualised using the UCSC 

genome browser (Kent et al., 2002b) (http://genome.ucsc.edu/). This was done by first 

identifying the sequence of the probeset using the probeset ID entered into NetAffx 

(http://www.affymetrix.com/analysis/index.affx). Then this sequence was BLATed in 

the UCSC genome browser (Kent et al., 2002a).  

 

2.8.4 Alternative Algorithms for Detecting Differential Splicing.  

The following software programmes and algorithms were used in addition to Partek GS 

and the Alternative Splice ANOVA to establish how robust the results generated were. 

2.8.4.1 easyExon  

easyExon (Chang et al., 2008) is a software tool developed for the assessment of CEL 

files to determine differentially expressed and spliced genes.  The software was used in 

addition to Partek GS as the different filtering criteria and statistical algorithms 

implemented allowed the opportunity to determine how robust events identified in 

Partek GS were by determining if they replicated with these different criteria.  easyExon 

was launched from the command line and CEL files were uploaded and preprocessed 

using Affymetrix Power Tools (APT), which generated the summary files required for 

statistical analysis. The RMA-sketch preprocessing algorithm was selected using the 
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mm9 mouse database and the core meta-probeset. Detection above background (DABG) 

p values were also generated and included in the summary files. This measure allows 

distinction between probesets expressed above and within the background signal. A 

significant p value (p≤0.05) represents a probeset with signal above background signal. 

Probesets were excluded if DABG p value was >0.05 in at least half of the samples 

(4/8) (default setting).  Any probesets not meeting the criteria were represented in grey 

in the graphical representation.  A log stabilisation factor of 16 was added to the 

summarised signal prior to log transformation. Transcript clusters were excluded if they 

contained less than 4 or more than 200 probesets as visual inspection is difficult when 

probesets exceed these limits. The statistical algorithm chosen was MiDAS (as 

described in 2.8.4.3). A MiDAS p value of ≤0.05 was considered significant.  

 

2.8.4.2 AltAnalyze (v.2.0.7) 

AltAnalyze is open access software for alternative splice analysis (Emig et al., 2010). 

After specifying the use of an Affymetrix platform, the species mus musculus and the 

Exon ST array, CEL files were processed. Prior to calculations of gene expression 

probesets with large cross-hybridisation scores were removed. The core meta-probeset 

was used to determine both gene expression and alternative splicing so as to be 

consistent with the Partek GS analyses. This is in accordance with the Affymetrix 

recommendation that core probes are used to determine constitutive gene expression. It 

is important to note at this stage, that the way in which AltAnalyze defines the core 

probeset differs slightly to that in Partek. Whilst the Affymetrix annotated core 

probesets form the core set of probesets, any probesets which uniquely align to a single 

Ensembl gene are included in addition.  This means the AltAnalyze defined core meta-

probeset contains a larger number of probesets therefore probesets may be included in 

the analysis which wouldn’t be present when carrying out core probeset analyses in 

Partek.  

Probesets were required to have detection above background (DABG) p values ≤0.05 

and an accompanying non-log expression value greater than 70 to be included in the 

analyses.  Gene expression was first calculated and the above expression criteria had to 

be met in at least one of the experimental groups for the probeset to be included. Gene 
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expression was calculated by averaging the expression of all core probesets aligning to a 

particular gene. Gene expression measures are also used to normalise probeset 

expression when determining differential splicing. In this case the probeset had to be 

expressed (as defined by the aforementioned criteria) in both groups. This excludes the 

possibility of a probeset being predicted as differentially spliced when in fact the gene is 

not expressed in one of the groups. Genes were excluded from differential splice 

analysis if none of the probesets within the gene met the criteria.  The FIRMA 

algorithm (Purdom et al., 2008) was chosen for the differential splice analysis again 

using the core probesets.  Mutants were defined as the experimental group and 

wildtypes as the baseline group.  By default genes with differential expression fold 

changes above 3 are excluded from the differential splice output as the differential 

splicing is likely to be a consequence of the differential gene expression.  

Differential expression is determined using a 1-way ANOVA and adjusted for multiple-

test correction using the Benjamini and Hochberg (1995) FDR.  Fold changes are 

calculated using a geometric subtraction of the experimental group from the wildtypes. 

Fold change is the non log2 transformed fold value.  

In AltAnlayse the FIRMA output differs slightly to the method initially proposed by 

Purdom et al. (2008) (described in 2.8.4.4) as only summary statistics are presented, 

which are generated by taking the average FIRMA score for the control group and 

subtracting it from the average FIRMA score of the experimental group. 

2.8.4.3 Microarray detection of Alternative Splicing (MiDAS). 

Microarray analysis of differential splicing (MADS or MiDAS) was developed to 

overcome the increased noise found on Affymetrix arrays due to having ~4 probes per 

exon (Xing et al., 2008). This increased noise was thought to impair the detection of 

true splice events. MiDAS is based on the ANOVA algorithm and determines 

differences in exon and gene level signals. The probe logarithmic intensity error 

(PLIER) algorithm is implemented to generate gene level signals from all probes within 

each exon of the gene (Affymetrix, 2005b). Background noise is removed by using the 

median intensity of GC matched antigenomic probes on the array then exon level 

expression is estimated using PLIER.  The method assumes that under the null 

hypothesis, if an exon is not differentially spliced the log expression at that exon will 

not differ from gene level signal for all samples (Affymetrix, 2005b). The ratio between 
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exon and gene signal is determined using the splicing index logged. Variance is 

stabilised by adding a constant prior to logging.  

2.8.4.4 FIRMA. 

Finding isoforms using Robust Multichip Analysis (FIRMA) is a robust RMA model, 

fitted at the probe level (Purdom et al., 2008). FIRMA determines how consistent 

expression is at a probeset relative to transcript expression within a particular sample. 

Initially each gene’s expression level is estimated using the RMA model (Irizarry et al., 

2003) then alternative splicing is determined using a score generated from the 

estimation step.  Each exon is given a score based on how much its probe’s signals 

deviate from the expected gene expression level (Purdom et al., 2008). FIRMA is a 

more general additive model than the RMA model (described in 2.8.3.3.1). First the 

RMA model is fitted then the residuals from this are produced. A score for each exon (j) 

and sample (i) is generated based on the median of the four residuals (one for each 

probe) of that exon (j) and sample (i). This score is used to determine how much the 

exon signal differs from the expected transcript expression.    
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Chapter 3: Expression analysis in Zfp804a ENU mutant mice 

3.1 Introduction.   

The availability of a mouse with disrupted Zfp804a offers the opportunity to investigate 

consequences of that disruption. In doing so, I aim to identify possible disease 

mechanisms.  Several approaches could be taken to achieve this, but I chose gene 

expression analysis, due to the availability of accurate and efficient global assays for the 

quantification of mRNA expression relative to global proteomics assays for mice, with 

the caveat that mRNA abundance would not necessarily equate to protein abundance 

due to post-transcriptional regulation processes. Measuring mRNA in the brains of mice 

with disrupted Zfp804a would allow consequential altered expression of downstream 

targets to be identified and if achieved this would provide evidence that Zfp804a does 

have a function in the regulation of the expression of other genes. Identifying the 

biological pathways, which subsets of these genes belong to may help identify 

molecular mechanisms relevant to the aetiology of schizophrenia and psychosis. By 

comparing gene expression in Zfp804a mutants and wildtype mice using a global exon 

microarray, expression or splicing changes between the mutants and wildtypes could 

highlight genes influenced by Zfp804a which could be implicated in schizophrenia and 

would imply a direct or indirect role for Zfp804a in the regulation of expression and or 

splicing. Determining a role for Zfp804a in splicing regulation irrespective of which 

genes are spliced would be informative. In addition to elucidating ZNF804A function 

other schizophrenia susceptibility genes, could be determined, which may allow a more 

comprehensive understanding of pathways affected in schizophrenia aetiology.  

 

To investigate the consequences of disrupted Zfp804a on gene expression and splicing, 

studies could be carried out using mouse models or cell lines. Whilst both have certain 

advantages and limitations, as discussed below, I chose to carryout global expression 

analyses using a mouse model, however complementary work using cell lines was also 

carried out by another PhD student.  The mouse as a model organism offers high system 

complexity and a high degree of conservation with humans.  The similar anatomy of the 

mouse and human brain is another advantage of using mice as model organisms as well 

as the availability of a broad range of validated behavioural tests, the results of which 
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can be used to complement genetic studies (Eriksen & Janus, 2007). In addition 

extensive research carried out using mouse models has facilitated the acquisition of a 

large amount of data and with the use of inbred strains of mice, assurance that mice will 

be genetically almost identical, with the exception of naturally occurring new mutations. 

The C57BL/6J strain used for backcrossing (described in chapter 2.1.2) was the first 

mouse strain to have its genome sequenced and as such is genetically well characterised 

(Mouse Genome Sequencing Consortium et al., 2002).  Mouse models are commonly 

used in expression studies to understand the function of human genes in diseases such 

as amyotrophic lateral sclerosis (ALS) (Chen et al., 2010) and Huntington’s disease 

(Morton et al., 2005). The short gestation of the mouse and ability to easily manipulate 

and monitor their external environment makes the mouse model extremely suitable for 

studies investigating gene expression.  Certain caveats need to be considered when 

translating findings from mouse models to human disorders. Results can be affected by 

genetic variation among mice, phenotypic differences can occur dependent on the strain 

of mouse used and biochemical differences can prevent the same mutation in the 

homologous gene creating the same phenotype in a mouse (Erickson, 1996). 

Differences in mouse and human life-spans are not always relative in terms of disease 

for example in Duchenne’s muscular (DM) dystrophy the mutation of the gene Mdx is 

not symptomatic in mice and may reflect that the disease is not normally diagnosed 

until the second year in humans which is the entire lifespan of a mouse (Erickson, 

1996). Generating mouse models can be very time consuming and costly in contrast to 

studies using cell lines which are relatively cost effective and cells can be readily 

manipulated, but the caveat with this work being that they do not necessarily provide an 

accurate model of the cell in vivo.    

 

A genome-wide significant and replicated association at the ZNF804A locus with 

schizophrenia (O’Donovan et al., 2008; Stefannson et al., 2009; ISC 2009, Riley et al., 

2010; Williams et al., 2010; Steinberg et al., 2011; Zhang et al 2011a 2011b) suggests 

that despite conferring a small effect ZNF804A is a schizophrenia susceptibility gene. It 

is important to consider that association studies point to a region not a gene, but there is 

no evidence for any other functional units in the region. At the time of the first 

published association, very little was known about the gene and its encoded protein and 
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four years later there is still very little published evidence pertaining to the function of 

ZNF804A and how it may influence disease risk.   

Given the location of the associated SNP (rs1344706) within intron 2 of ZNF804A, the 

most likely predicted function is regulation of transcription or splicing leading to the 

hypothesis that risk is inferred via altered regulation of gene expression or RNA 

processing. Fine mapping and resequencing have not uncovered a more strongly 

associated SNP, nor was rs1344706 found to be in strong linkage disequilibrium (LD) 

with any other variant. This led the authors to tentatively conclude the association is 

unlikely to be because rs1344706 is in LD with another variant that is causal (Williams 

et al., 2010). rs1344706 is located within a ~30bp region of conserved mammalian 

sequence (Donohoe, et al. 2010), hypothesised to show this degree of conservation due 

to the presence of transcription binding sites (Riley et al 2010). Higher ZNF804A RNA 

expression is associated with the risk allele in post-mortem brain tissue (Riley et al. 

2010; Williams et al., 2010).    

 

In the presence of the rs1344706 risk allele (T), the adjacent sequence was predicted, 

using bioinformatics, to be a binding site of the brain expressed transcription factors 

Myt1L and POU3F1/Oct655. Both are predicted to have functions in the development 

of the CNS and in particular oligodendrocyte development (Nielsen et al,. 2004; 

Collarini et al., 1992).  Sequence including the protective allele (G) was predicted to be 

a binding site for two other transcription factors, the ubiquitously expressed Homez and 

the CNS expressed Hmx2 (Riley et al., 2010). Evidence that rs1344706 does form 

sequence-specific DNA-protein complexes with nuclear binding proteins was found 

using electromobility shift assays (EMSA) and highlights rs1344706 as a functional 

variant (Hill & Bray, 2011). The prediction that the nuclear transcription factors Homez 

and Hmx2 bound to sequence containing the rs1344706 G allele (Riley et al., 2010) was 

not, however confirmed (Hill and Bray, 2011) and the identity of the nuclear binding 

protein(s) remains unknown.  The intensity of nuclear protein binding was increased 

when the protective allele (G) was present in the oligonucleotide sequence relative to 

the risk allele (T). Allele specific alterations in DNA-protein complex formation may 

explain the association of the risk allele with increased ZNF804A mRNA expression 

(Riley et al., 2010, Williams et al., 2010).  These findings do not rule out the presence 
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of other functional variants in ZNF804A, but they do provide a functional basis for a 

direct association involving rs1344706.  

Within ZNF804A, also within intron 2 approximately 3kb downstream of the associated 

SNP is another highly conserved region between mouse and human (Zhang et al., 

2011b; using UCSC Browser, 2009).  The conserved nature of this region may suggest 

its involvement in transcription factor binding or splicing. Interestingly, one variant 

within this conserved region, rs13423388 showed some evidence for association with 

schizophrenia (Zhang et al., 2011b) but no studies to date have determined if allelic 

differences at this SNP affect ZNF804A expression. 

The ZNF804A protein has been predicted to contain a single zinc finger domain. This 

domain, specifically a Cys2His2 (C2H2)-like fold group, is the best characterised of the 

many classes of zinc fingers. C2H2-type domains are known for their sequence specific 

DNA-binding properties, as well as protein-protein interactions and RNA binding 

(Gamsjaeger et al., 2007) and are commonly found in transcription factors. Thus a role 

for ZNF804A in the regulation of gene expression has been proposed. ZNF804A has 

two paralogues ZNF804B and GPATCH8. Like ZNF804A, little is known about these 

two genes affording little insight into the possible functions of ZNF804A. However, 

GPATCH8 is thought to encode a protein with a zinc finger domain and an RNA 

processing domain (Kaneko et al., 2011). 

 

To date, two independent studies have evaluated the effects of altered ZNF804A 

expression on downstream gene expression. Knockdown of ZNF804A in a neural cell 

line resulted in 154 consistent expression changes between mutant and wildtype in two 

siRNA experiments (Hill et al., 2012), more than would be expected by chance. 

Pathway analysis of the corresponding transcripts revealed enrichment for genes in 

biological adhesion pathways as well as the subsidiary cell adhesion pathway (Hill et 

al., 2012).  Overexpression of ZNF804A in E11 rat forebrain progenitor cells resulted in 

expression changes in 4 of 37 previously implicated schizophrenia genes (Girgenti et 

al., 2012). At the cellular level there is reason to believe from two studies that 

ZNF804A has a direct or indirect effect on gene expression. To evaluate if ZNF804A 

directly or indirectly regulates expression a Chromatin immunoprecipitation assay 

(ChIP) was utilised. Binding of ZNF804A was observed in the promoter regions of 2 of 

the 4 genes, PRSS16 and COMT. Both genes contained motifs predicted to interact with 
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zinc fingers consistent with the CHiP binding and a direct effect of ZNF804A on 

expression (Girgenti et al., 2012).  

Whilst there is a growing body of evidence pointing to a role for ZNF804A in 

transcription regulation, no study to date has considered the implications of altered 

ZNF804A on splicing. The proportion of splice events predicted to be conserved 

between human and mouse are small (Nurtdinov et al., 2003; Sorek et al., 2004). The 

splice events that are conserved may be indicative of isoforms with critical biological 

functions (Sorek et al., 2004).  

Alternative splicing is now thought of as the primary mechanism responsible for 

generating much of the diversity observed in the human proteome. Alternative splicing 

involves the processing of multiple mature mRNA transcripts from a single precursor 

mRNA and is thought to occur in as many as 50% of human genes (Johnson et al., 

2003) and ~95% of multi-exon genes (Wang et al. 2008; Pan et al. 2008). 

Approximately 15% of point mutations leading to Mendelian disease do so by affecting 

splicing (Johnson et al., 2003), with aberrant splicing being associated with a number of 

diseases including cancer (Venables, 2006) and cystic fibrosis (Faustino & Cooper, 

2003).  The omission or inclusion of functional domains via alternative splicing can 

alter the function of the encoded protein.  Alternative splicing can also affect protein 

function by altering the affinity of the protein to other proteins or ligands (Yeo et al., 

2005). Factors influencing alternative splicing include the secondary structure of the 

mRNA, the elongation rate of RNA polymerase II and perhaps most influential, RNA 

binding proteins, which bind to cis-elements found in both the exon and the intron of 

the pre-mRNA and either enhance or silence splicing. The length of the exon and intron 

as well as the strength of the splice site have also been implicated in splice regulation 

(Yeo et al., 2005) as have epigenetic mechanisms (Luco & Misteli, 2011).  Changes in 

chromatin conformation can alter the elongation rate of RNA polymerase II. A faster 

elongation rate increases the likelihood that multiple splice sites will become accessible 

to the splicing machinery essentially simultaneously. If one splice site is weaker than 

the other the machinery is likely to be recruited to the stronger splice site due to the 

competitive nature of the binding.  Studies have shown that dense nucleosome regions 

slow the elongation rate of RNA polymerase II (Hodges et al., 2009). This increases the 

time for spliceosome assembly at weaker splice sites promoting the inclusion of cassette 

exons. There is also thought to be an enrichment of histone marks at exons. The histone 
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marks are thought to recruit RNA binding proteins, which when bound to the pre-

mRNA can enhance or repress splicing (Luco & Misteli, 2011).   

Microarray analysis has, until recently been the primary technique used to study global 

gene expression. Its high throughput capabilities revolutionized the way in which the 

transcriptome was studied and with lowering costs, the use of arrays has enabled large 

amounts of expression data to be generated. However, the completion of the human 

genome project afforded a better understanding of the mechanisms important in 

generating proteome diversity namely alternative splicing, thus the shortcomings of 

traditional microarrays were highlighted. The placement of probes at the 3’ end of the 

transcript meant alternative isoforms in which the 3’ exon was spliced out were not 

assayed and that those with common 3’ ends could not be distinguished. From these 

arrays an incomplete picture of the transcriptome was generated as well as potentially 

incorrect measurements of total gene expression. The necessity to incorporate and 

measure expression of alternatively spliced isoforms is now widely recognised and 

investigators can now choose arrays in which probes are placed throughout the 

transcript allowing known and novel splice events to be interrogated in addition to the 

investigation of total gene expression changes (Okoniewski & Miller, 2008).  

GWAS of psychosis have identified several associations and pointed to a number of 

possible susceptibility genes, however understanding the function of these genes and the 

mechanisms responsible for disease pathophysiology requires additional experiments. In 

this thesis, to investigate potential effects of ZNF804A on gene expression and RNA 

processing, a mouse line in which the ZNF804A orthologue, Zfp804a had been 

identified as mutated in an ENU library at Harwell (ENU DNA Archive, MRC Mary 

Lyon Centre, Harwell) was utilised. The mutation generated a premature termination 

codon (PTC) in exon 2 of Zfp804a (chapter 2.1.2) which is likely to disrupt Zfp804a 

function either through an aberrant product or activation of the nonsense mediated 

decay mechanism.  

Nonsense mediated decay (NMD) is highly conserved across species and acts as both a 

surveillance mechanism, distinguishing premature and normal stop codons, as well as a 

regulator of gene expression (Stalder & Mühlemann, 2008). NMD inhibits translation 

and leads to the decay of the NMD substrate (Rebbapragada & Lykke-Anderen, 2009). 

Both transcription and splicing are necessary for NMD, exemplified by the insensitivity 
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of intronless genes harbouring PTCs to NMD (Stalder & Mühlemann, 2008). The NMD 

mechanism is only triggered if a premature termination codon (PTC) is more than 50-

54bp upstream of an exon-exon boundary (Nagy & Maquat, 1998).  NMD reduces the 

abundance of C-terminally truncated polypeptides which could have deleterious, 

dominant negative or gain of function effects (Frishmeyer & Dietz, 1999).   

Initiation of NMD is dependent upon the position of the PTC. If the PTC is less than 50-

54 nucleotides upstream of the last exon-exon junction it is possible that the transcript 

will escape NMD (Bashyam, 2009). Correct definition of exon-exon boundaries is 

critical to the NMD mechanism, exemplifying why splicing is critical to NMD, at least 

in the mammalian system. The regulation of this process is enhanced by exon junction 

complexes (EJC) which help to define exon-exon junctions.  EJCs are deposited during 

splicing 20-24bp upstream (5’) of each exon-exon junction, in a sequence non-specific 

manner. A termination codon upstream of one or more EJCs triggers NMD (Lykke-

Anderson, 2002).  Based on the above criteria it was anticipated that the PTC in exon 2 

of Zfp804a would trigger the NMD mechanism resulting in the reduced abundance of 

the Zfp804a mRNA transcript in the C59X mutants relative to the wildtypes.  

 

Work Described. 

The objective was to identify the unknown mechanisms by which the ZNF804A gene, 

encoding ZNF804A, influences risk of schizophrenia and bipolar disorder. The presence 

of a classic Cis(2)His(2) (C2H2) zinc finger domain commonly found in transcription 

factors, along with evidence of allelic differences in the binding intensity of nuclear 

binding proteins at rs1344706 (Hill & Bray, 2011; Riley et al., 2010) may predict a role 

for ZNF804A at the level of transcription regulation and RNA processing. To test these 

hypotheses, and with the aim of identifying mechanisms downstream of ZNF804A 

which may influence disease risk, the impact of  altered ZNF804A function on gene 

expression in the brains of mice which carry a truncating mutation in the mouse 

orthologue of ZNF804A, Zfp804a was determined.  
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3.2 Methods 

3.2.1 Sample  

A mouse line carrying an ENU induced premature termination codon (PTC) in exon 2 

of Zfp804a was rederived by in vitro fertilization at Harwell (ENU DNA Archive, MRC 

Mary Lyon Centre, Harwell). The mutation is denoted as C59X as it involves a two base 

substitution from GT to AA resulting in the replacement of a cysteine residue with a 

stop codon. Founder mice (F1) with the C59X mutation were then generated from a 

Balb/c x C3H/Hej cross (ENU treated male Balb/c mice bred with C3H/HeJ females) at 

Harwell, these F1 mice were then bred to form the experimental cohort by another PhD 

student at Cardiff University (T. AlJanabi). C59X mice were backcrossed onto the 

C57BL/6J mouse strain to obtain congenicity. This process was accelerated using the 

speed congenics method, in which mice were screened for strain specific markers. Mice 

carrying the ENU mutation which also had the highest proportion of C57BL/6J markers 

were used in the breeding experiments. F3 generation female C59X heterozygotes were 

intercrossed with F3 male C59X heterozygotes to produce the F3i intercross generation 

from which the brain tissue was derived for initial expression studies. The F3i 

generation were estimated to have 96.13% C57BL/6J background. This level of 

C57BL/6J background was not ideal (as discussed in 2.1.2), but provided a useful 

screen in which any observable expression differences could be validated in mice with 

>97% purity when these mice became available.  

3.2.1.1 The Zfp804a C59X Mice. 

All experiments were conducted on brain tissue extracted from mice with a nonsense 

mutation in exon 2 (C59X) of the Zfp804a gene (Fig. 1) or their wildtype littermates.  
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Figure 1. PTC Mutation in Zfp804a. The ENU mutation chosen to be re-derived into 

a line was a PTC in exon 2 of Zfp804a. The mutation is a dinucleotide polymorphism 

from GT to AA creating a premature stop codon (TAA) (C59X).   

 

Third generation (F3i) mice with estimated 96.13% pure C57BL/6J background (i.e., the 

non-ENU background) were available at the time of conducting the initial expression 

studies. While ideally, higher levels of non-ENU background are desirable (in case 

additional ENU induced mutations are present) the likelihood that any two mice would 

have the same undesired ENU mutation is small (probability calculations are discussed 

in Chapter 2.1.2).  

Genotype had no obvious effect on development or health of the mice (T. AlJanabi). 

Prior to expression analysis male Zfp804a mutant mice were observed on a range of 

behavioural tests carried out by another PhD student (T. AlJanabi) to characterise 

behavioural phenotypes that may result from the PTC. Behavioural tests included 

locomotor activity, PPI open field, elevated plus maze and rotarod and a subset of the 

mice spent 24hrs in a phenotyper. None of the mice received drug treatments nor did 

they undergo any food or water restriction programs. Further details are provided in 

Chapter 2.1.2.  

Two waves of expression studies were carried out on adult C59X brain tissue, the first 

in female mice and the second in males. As all the males of the F3i cohort were used for 

the initial battery of behavioural experiments there was a restricted number of C59X 

mutants available for expression studies as the availability of brain tissue from the mice 

was dependent upon their completion of behavioural tests. A greater availability of 

female C59X homozygotes dictated that the first wave of expression analyses was 

carried out on 3.5 month old female C59X mutant and wildtype mice. A sufficient 

number of male C59X mutants of the same generation (F3i) became available once all 

Zfp804a 

PTC NTC 

 PTC = Premature Termination Codon 

NTC = Natural Termination Codon 
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behavioural tasks had been completed, by which time these mice were 6 months old. 

Both time points represent sexually mature adult mice. 

 

3.2.2 Female C59X Expression Study. 

8 mice were included in the first expression experiment, 4 wild type at the ZNF804A 

locus and 4 homozygotes (for the PTC mutation in exon 2). All were 3.5 months old. 

Following brain dissection (Chapter 2.1.3) RNA was extracted from the left hemisphere 

as described (Chapter 2.1.3). The integrity of the RNA was determined using the 

Agilent 2100 Bioanalyser (Chapter 2.2.3.1). 

 

 

3.2.3 Male C59X Expression Study. 

The second wave of expression experiments consisted of 8 male mice, 5 wild type at the 

ZNF804A locus and 3 homozygotes (for the PTC mutation in exon 2). RNA was 

extracted from the whole brain as previously described. Male mice were 6 months old. 

Evaluation in male mice allowed the exclusion of expression changes occurring due to 

variation in stage of the female oestrous cycle.  

Whilst half brains were used in the first wave, whole brains were considered in the 

second wave to rule out hemispheric effects on expression.  

 

3.2.4 Combined Analyses. 

To increase the power of the study all 16 samples were analysed in a combined analysis 

consisting of 9 wildtype and 7 C59X mutant samples. Differences in gender, age and 

scan date were accounted for in the study as described later.   
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3.2.5 Zfp804a mRNA Levels. 

The nonsense mutation within exon 2 of Zfp804a was predicted to initiate the nonsense 

mediated decay surveillance mechanism. Activation of such a mechanism would be 

expected to result in the reduced abundance of the mRNA transcript. To determine if 

such a mechanism was occurring in the C59X mice qualitative analysis of the Zfp804a 

mRNA transcript was performed using RT-PCR. 

 

3.2.6 Sequencing the Mutation. 

Amplified cDNA was sequenced from the mice to ensure the mutants were expressing 

the mutation in the mature message. Sequencing was carried out using the primers 

specified in appendix 2.1. Sequencing is described in full in Chapter 2.6. 

 

 

3.2.7 Sample preparation and quality. 

Brains were removed and immediately snap frozen in Liquid Nitrogen. Brains were 

taken from storage at -80°C and RNA was isolated by myself from either the left 

hemisphere or whole brain (minus olfactory bulbs) and stored at -80°C. RNA was 

isolated and processed as described in Chapter 2.2 & 2.3. 

 

3.2.8 The Affymetrix Genechip Mouse Exon 1.0 ST Array 

The initial acquisition of brain tissue, RNA preparation and all statistical analyses were 

carried out by me. The labelling, hybridisation and scanning steps were carried out at 

Cardiff University by M. Musson within the Central Biotechnology Services (CBS) 

facility as described in section 2.8.  

Labelling, hybridisation and scanning procedures are described in full in Chapter 2, 

Section 2.8.2.  

 



 

 

52 

3.2.9 Statistical Analysis 

3.2.9.1 Partek Genomics Suite (Version 6.5) 

Partek Genomics Suite (version 6.5 and beta 6.6, St. Louis, MO) is a purpose built 

software suite designed to enable analysis of a number of high-throughput technologies.  

3.2.9.2 Data upload 

CEL files were uploaded into Partek GS and sample files were produced using Excel 

(2007) allowing the identification of experimental groups to be recognised by the 

software (See 2.8.3.2).  

 

3.2.9.3 Probe Filtering  

Only the core meta-probeset was included in the analysis, unless stated otherwise. 

 

3.2.9.4 Preprocessing  

Once raw intensity values (CEL files) were generated several steps were taken in order 

to produce meaningful expression data. These steps collectively are termed 

preprocessing (Chapter 2, Section 2.8.3.3). Samples were preprocessed using robust 

multichip averaging (RMA) (Irrizarry et al. 2003). The algorithm consists of three 

discrete steps background correction, normalisation using quantile normalisation and 

summarisation using the median polish technique. Intensity values were Log 

transformed (base 2).  Full details are given in Chapter 2, section 2.8.3.3. 

 

3.2.9.4.1 Background Correction 

Background correction removed non-biological variation. This was carried out on each 

chip independently (Chapter 2, section 2.8.3.3.2).   

 

3.2.9.4.2 Quantile Normalisation 

Following background correction the data were normalised to remove array bias or 

variation which is not a result of true biological differences between samples. The 

technique used for normalisation was quantile normalisation which was carried out 

across all chips on background corrected data (Chapter 2.8.3.3.3).   
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3.2.9.4.3 Probe Summarisation 

Summarisation of probe level data to a combined probeset intensity value was achieved 

using the median polish algorithm. This was the final of the three RMA steps and was 

performed on background corrected, normalised and log transformed intensity values 

(Chapter 2.8.3.3.4). 

3.2.9.5 Annotating the Dataset 

Data were analysed using the Affymetrix annotation files, NetAffx, version na31. mm9. 

Using only the core meta-probeset meant targeted sequences had been sequenced, 

cloned and curated manually and therefore had high annotation confidence 

(Affymetrix).  Only probes annotated by Affymetrix as unique were included in my 

analysis to account for the problem of probe cross-hybridisation. 

 

3.2.9.6 Quality Control (QC) 

Following preprocessing, I reviewed a number of recommended quality control metrics 

in order to check the quality of the data. QC is particularly important with exon array 

data which is prone to greater numbers of false positives as excess noise can be 

misinterpreted as differential splicing (Gardina & Turpaz, 2008).  I generated standard 

QC measures, described in chapter 2.8.3.5 using Expression Console (Affymetrix, 

Version 1.1.2) and Partek GS (v6.6). QC was run at the Gene level on all CEL files 

using RMA sketch on core probes and using a log2 scale.  

There are no standardized cut offs. For this reason, as recommended by Affymetrix the 

distribution of several metrics was assessed to ensure the microarray experiment has 

passed a minimum level of quality control. Within each metric, any sample with values 

two standard deviations away from the mean was flagged. Samples outside of this range 

across 3 or more metrics were either excluded or monitored in all downstream analyses, 

dependent on the severity of the case (Gardina & Turpaz, 2008). Removal of an outlier 

in only two or three metrics may be more detrimental than beneficial depending on 

sample size, as power may be considerably reduced. As there was no standard 

procedure outliers were removed in extreme cases (outlying in more than 3 metrics). 

Samples with values outlying in 3 or less metrics were instead monitored after statistical 
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analysis to ensure they were not behaving differently to other samples within the 

experimental group. Samples were considered as one single group and also within their 

experimental group (wildtype or C59X mutant). Samples were assessed within their 

experimental groups as they would be expected to behave more similarly and so outliers 

may be more apparent. 

3.2.9.7 Filtering 

Probesets were filtered prior to statistical analysis based on annotation confidence and 

intensity, to optimise the likelihood of identifying true expression differences.  

Probesets were initially excluded if they had a maximum log2 intensity value <3, but 

this was increased for more stringent analysis. 

 

 

3.2.9.8. Statistical Algorithm. 

Details of the algorithms used to calculate differential expression and splicing p values 

are given in Chapter 2, section 8.3.6.1 & 3. Briefly I determined differential expression 

and splicing using the custom alternative splice ANOVA in Partek Genomics Suite. A 

one-way ANOVA was performed for individual female and male experiments with a 

two-way ANOVA used in the combined male/female analyses in order to covary for 

gender differences. In all instances genotype was added to the model and was specified 

as the alternative splice factor, meaning differential splicing was determined based on 

differential probeset expression across the 2 levels of genotype (wildtype and C59X 

mutant). A total of 15,808 and 15,813 transcript clusters were included in the female 

and male analyses respectively which equates to ~194,000 probesets. Gender was added 

to the model for all combined analyses to account for gender differences. This was also 

perfectly correlated with age, scan date, and hemisphere versus whole brain differences 

between samples. Thus all variance attributable to these factors are embraced by a 

single factor. For combined analyses 15,833 probesets were tested following probeset 

filtering. Both differential expression and differential splicing p values were generated 

from this model. Genes showing significant differential expression and splicing were 

then filtered and prioritised based on statistical significance.  To determine fold change 

at the transcript level a linear contrast was included in the model between C59X 
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mutants and wildtypes using the Fisher's Least Significant Difference (LSD) method 

(Tamhane and Dunlop, 2000).  

3.2.9.9 Multiple Test Correction (MTC) 

Data were corrected for multiple testing using both the step up False Discovery Rate 

(FDR) (Benjamini & Hochberg, 1995) and the more stringent Bonferroni correction 

(Holm, 1979). An FDR threshold of 0.05 was set, meaning 5% of the results were 

expected to be false positives. The Bonferroni correction is the most conservative MTC 

method as p values are corrected by the number of tests carried out.  

 

3.2.10 Visualisation of Alternative Splice Events. 

Visual inspection was carried out for differentially expressed and spliced genes using 

the geneview produced as part of the alternative splice output. The geneview plots the 

expression at each probeset across the transcript for each experimental group and allows 

the position of the probeset to be visualised relative to the exons of the transcript using a 

RefSeq track from the UCSC genome browser (Kent et al., 2002b) 

(http://genome.ucsc.edu/).  

 

3.2.11 Degree of Overlap. 

To determine how robust the differential expression and splice results were, the degree 

of overlap or replication between female and male experiments was assessed. Simply 

considering whether compared with a null distribution, there is an excess of transcripts 

significant in the female experiment that are also significant in the male experiment 

does not account for the possibility of non-null distributions in the two datasets (i.e. if in 

a replication dataset, 50% of all genes show nominally significant effects, then by 

chance, not 5% but 50% of genes significant in a discovery sample should show effects 

that replicate at the P=0.05 level). To account for this a 2x2 contingency table (Table 1) 

was constructed and statistical analysis performed using the chi-square test (χ
2
) to 

determine whether the proportion of genes that replicate differ contingent on whether 

they were or were not significant in the other dataset. The Pearson’s chi-square test was 

http://genome.ucsc.edu/
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performed using SPSS (v16), except for instances in which the expected cell frequency 

was less than 5, in which case the Fisher’s exact test was used.   

 

 

 Male Experiment -

Significant Genes 

Male Experiment – Non-

Significant Genes 

Female 

Experiment -

Significant Genes 

n =  number of genes 

significant in both 

female and male 

analyses 

n = number of genes significant 

in the female experiment that are 

not significant in the male 

experiment 

Female 

Experiment -  Non-

Significant Genes 

 n = number of genes 

not significant in 

Female experiment 

that are significant in 

the male experiment 

n = number of genes that are not 

significant in either analysis 

Table 1. 2x2 Contingency table used for Chi-square test. 

 

3.2.12 Alternative Algorithms for Detecting Splicing. 

Multiple statistical algorithms are available for the analysis of differential splicing from 

exon array data. The underlying structure of each model has the same fundamental 

assumptions in that probeset expression is predicted by the model and compared to the 

null hypothesis that the expression of the probeset is proportional to other probesets 

within a gene across all samples considered (Affymetrix, 2005b). Each algorithm 

determines how much the probeset expression diverges from the model and a p value is 

generated based on this. Affymetrix recommended considering several different tests on 

the data for robust identification of alternative splice events. Within this thesis I used 

the ANOVA (Chapter 2.8.3.6.3) FIRMA (Chapter 2.8.4.4) and MiDAS (Chapter 

2.8.4.3) statistical algorithms each described in full in Chapter 2.  
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3.3 Results. 

3.3.1. Abundance of Zfp804a Transcript. 

To establish if the NMD mechanism was operating in the C59X homozygote mice, 

levels of Zfp804a mRNA were qualitatively assessed using RT-PCR. Zfp804a mRNA 

was expressed in homozygote C59X mice as well as in WT mice (Figure 3.3.1). This 

result provides evidence to strongly argue against the NMD mechanism and could 

indicate that a compensation mechanism is being utilised (Chapter 4, section 4.3.3).   

 

Figure 3.3.1 Abundance of Zfp804a in WT and ENU Mutants. The abundance of the 

Zfp804a transcript in F3i mice was determined using an RT-PCR assay. PCR products 

were run out on a gel. An amplimer of 209bp corresponds to Zfp804a. NTC No 

template control WT Wildtype Hom Homozygote C59X mutant RT- Reverse 

Transcriptase negative control. 

 

 

3.3.2 Sequencing the C59X mutation. 

To ensure the mutation was present in the mRNA transcript of the mutant mice, 

sequencing of the mRNA transcript was carried out by myself. Sequence traces from 

both homozygote mutants and WT controls can be seen in Figure 3.3.2. I confirmed 

genotype from the sequencing traces to ensure mRNA matched previous genotype 

assignment using gDNA from tail tips (carried out by T. AlJanabi). 



 

 

58 

 

Figure 3.3.2. Zfp804a Exon 1-3 Sequence Results. Sequencing from exon 1-3 of 

Zfp804a viewed in NovoSNP (version 3.0.1) enabled the site of the ENU mutation to be 

observed in each of the four female mice used in the expression study (right hand side, 

red box) rather than the wildtype cysteine residue (left hand side, red box). 19c, 7c, 19a 

and 7b = 4 wildtype mice. 31b, 18a, 22a and 22b = 4 mutant mice.  

 

3.3.3 RNA Quality.  

Prior to establishing mRNA expression or splice differences which may be present 

between mutant and wt, RNA samples were analysed for quality. One of the most 

important determinants of the quality of an expression study is the quality of the RNA. 

Standard thresholds for quality RNA include a 28s/18s ratio above 1.0, ideally close to 

2 (Ch 2.2.3.2) and an RIN of 7 or above, ideally 8 (Ch 2.2.3.3) (Shroeder et al., 2006). 

An example of one of the Agilent Bioanalyser (Ch 2.2.3.1) traces is presented in figure 

3.3.3. All 16 samples (male & female) had a RIN above 8 and 28s/18s ratios at 1 or 

above.  
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Figure 3.3.3. Determination of RNA quality. Each sample was run on an Agilent 

2100 Bioanalyser to determine RNA quality using the RIN and rRNA ratio. The above 

example displays the results from sample 22b, a female mutant. The bioanalyser uses 

electrophoretic separation of RNA and both an electropherogram (left) and a gel image 

(right) is produced for each sample. Fluorescence (Fu) is plotted on the Y axis and time 

in seconds (s) on the X axis. The above example had a RIN of 9.1 and a 28s/18s ratio of 

1.7. This high quality RNA is observable from the graph by the two clearly defined 18s 

and 28s peaks (2 clear bands on the gel) (a) as well as low levels of smaller RNA 

molecules which are the products of degraded 18s and 28s rRNA and tRNAs (b).  

 

3.3.4 Affymetrix Genechip Exon 1.0 ST Array.  

To determine the expression profiles of C59X mutants relative to wildtypes I used the 

Affymetrix exon array. Exon arrays not only facilitate more accurate determination of 

gene expression levels, but also allow processes such as alternative splicing to be 

interrogated.  As the study was performed in two stages the results are presented 

accordingly. The initial analysis performed in female mice and the second analysis in 

male mice. The degree of overlap in the results across the two studies was then 

identified.  

3.3.4.1 Quality Control. 

The experiment can be assessed for quality using a number of variables. Each 

experiment was assessed first using a hybridisation efficiency metric, then by 

qualitative assessment using principle component analysis (PCA), signal distribution 

and relative log expression signal. Following this 6 quality metrics that I generated 

using expression console (Affymetrix Version 1.1.2) and Partek GS were used to 

determine if any sample met outlier criteria as outlined by Affymetrix as lying more 

 

a 

b 
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than 2 standard deviations from the mean. This was done both as a whole group and 

within biological replicates (experimental groups). 

3.3.4.1.1 Hybridisation Efficiency. 

The efficiency of sample hybridisation to the chip was assessed using 4 E.coli internal 

controls. Each is hybridised to the chip at a known concentration and based on this 

predefined concentration the signal intensities of each should follow an order from 

lowest expression in BioB hybridised at the lowest concentration up to Cre, hybridised 

at the highest concentration. From the graph (Fig 3.3.4) it is clear that each of the 4 

controls has a Log 2 expression in each of the 8 female samples in the expected rank 

order and from this it can be inferred that the hybridisation of each of the samples to the 

exon chip was efficient and should have no detrimental effects on expression.  
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Figure 3.3.4 Quality Control. Hybridisation Efficiency of Affymetrix GeneChip 

Mouse Exon 1.0 ST Arrays.  Hybridisation Efficiency is determined by the ranked 

signal intensities of four E.Coli controls (BioB, BioC, BioD and Cre). The expression 

signal of the hybridisation for each of the 4 controls (y-axis) is plotted for each of the 8 

female samples (x-axis). Efficient hybridisation is denoted by a rank order of 

BioB<BioC<BioD<Cre and is observed in all 8 female samples.  

 

3.3.4.1.2 Examining the Global Expression Pattern with Principle Components 

Analysis (PCA). 

To determine the global expression profile in C59X mutants I performed PCA on the 

normalised intensity of all core probesets. Visual inspection of the PCA plot (Fig 3.3.5) 

showed no obvious clustering of samples suggesting the gene expression profiles of 

each samples was different. The spread of the samples suggests there is a considerable 

degree of variation in the expression profiles of the female mice and this variation 

occurs across all samples not between Wt and C59X mutants. Whilst this makes 

observing outliers difficult there were no egregious outliers observed by looking at the 

plot, although more thorough quantitative QC analyses would be needed to determine if 
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this is correct. There is a very slight degree of separation of mutants and wildtypes 

along the second principle component although there is no clustering of biological 

replicates.  

 

 

Figure 3.3.5. Principal Components Analysis (PCA) of Female  C59X mutant and 

wildtype samples. The first and second principal components are displayed in the plot. 

Samples do not appear to cluster by genotype and a considerable amount of variation 

between biological replicates is observed.  Hom Mutant C59X (red); WT wildtype 

(blue). 

 

Each sample will have an expression profile which can be plotted as the range in signal 

intensities and the frequency of each of these signal intensities. From this plot the 

distribution of the signal intensity for each sample can be observed (Fig 3.3.6). The plot 

shows that all samples followed a normal distribution. There was little variation 

observed in this distribution for all 8 samples therefore data appeared to be of good 

quality. A number of other QC metrics were assessed using data I generated from 

expression console (Affymetrix) and Partek GS.  
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Figure 3.3.6. Histogram of Signal Intensity. The range of signal intensities were 

plotted on the x-axis with the frequency of each of these intensities for each of the 8 

samples plotted on the y axis to create the distribution of signal intensities. Each of the 8 

samples follows a normal pattern of distribution with the distribution of all 8 samples 

tightly clustered.   

 

 

Box plots were also generated to assess the degree of variation in signal distribution in 

the 8 samples prior to and after preprocessing steps (Fig. 3.3.7). The mean, interquartile 

range and spread of the data were comparable across all samples even prior to 

normalisation and summarisation (Ch2.8.3.3.3 & 2.8.3.3.4). Any observable differences 

were corrected for by the preprocessing procedures. The relative log expression signal 

boxplot was also plotted which was used to determine, overall how differently one 

sample behaves relative to all other samples.  This metric was also quantitatively 

assessed in tables 1 and 2.  
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Figure 3.3.7. Quality Control. Boxplots of Expression Signals. The left box plot 

shows the log probe cell intensity for each sample prior to any normalisation or 

summarisation, with the central box plot showing the log expression signals of probsets 

following normalisation and summarisation. The small amount of variation prior to 

preprossecing is corrected by the normalisation and summarisation procedures. The 

right boxplot is generated by taking the expression signal at a particular probeset on a 

particular chip and comparing it to the median signal across all the chips, this is done 

for every probeset on the chip and so gives an indication if one sample is behaving very 

differently to the other samples, this was not apparent for the 8 female samples.   

 

The quality of the data generated for each sample were also quantitatively assessed by 

generating values for 6 quality metrics in both Partek GS and Expression Console 

(Affymetrix). A detailed description of each of these metrics can be found in 

(Ch2.8.3.5.4 - 2.8.3.5.7) but briefly the overall brightness of the chip was assessed (PM 

mean), comparison of residuals to the median (Mad residual mean using all probesets 

and just the positive controls), the overall performance of each chip relative to the other 

chips (RLE mean, using all probesets and just the positive controls) and finally how 

well the probesets signals separated positive and negative signals (pos vs. neg auc). The 

samples were considered both within experimental group (C59X mutant or wildtype) 

(Table 1) and as a whole group (Table 2). This is because it may be expected that 

mutants and wildtype would behave differently from each other, but within the wildtype 

or mutant group the samples would be expected to behave similarly. Calculating the 

values which were 2 standard deviations either side of the mean (Bold values in each 

table) allowed thresholds to be established to determine if any sample was defined as an 

outlier (2> standard deviations from the mean). The results presented, were metrics I 

generated using Partek GS. Whilst differences in the absolute numbers were found 

between Partek and Expression Console the same outcome was observed in both QC 

analyses.  No outliers were identified in any of the metrics generated when using either 
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software, even when considering the samples within their experimental groups. All 8 

samples were considered good quality and were taken forward for statistical analysis.  
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C59 Mutants       

Sample ID 

 

PM 

Mean 

 

All probeset mad 

residual mean 

 

Pos control mad residual 

mean 

 

All probeset rle mean 

 

Pos control rle mean 

 

Pos vs neg 

auc 

 

18A C.CEL 375.32 0.15 0.1 0.16 0.13 0.87 

22A C.CEL 422.82 0.13 0.09 0.15 0.11 0.88 

22B C.CEL 512.25 0.15 0.11 0.21 0.18 0.87 

31B C.CEL 409.68 0.16 0.11 0.21 0.18 0.87 

Mean -2*SD 313.29 0.12 0.08 0.12 0.08 0.86 

Mean +2*SD 546.75 0.17 0.12 0.25 0.22 0.88 

Within Threshold YES YES YES YES YES YES 

       

Wildtypes       

Sample ID 

 

PM 

Mean 

 

All probeset mad 

residual mean 

 

Pos control mad residual 

mean 

 

All probeset rle mean 

 

Pos control rle mean 

 

Pos vs neg 

auc 

 

7B C.CEL 297.56 0.17 0.13 0.19 0.15 0.87 

7C C.CEL 372.48 0.16 0.11 0.18 0.14 0.87 

19C C.CEL 379.77 0.16 0.11 0.18 0.14 0.87 

19A.CEL 388.97 0.14 0.09 0.14 0.1 0.87 

Mean -2*SD 275.75 0.13 0.08 0.13 0.08 0.87 

Mean +2*SD 443.64 0.18 0.14 0.21 0.18 0.88 

Within Threshold YES YES YES YES YES YES 

Table 1 Quality Control Metrics. Six quality control metrics were generated following sample pre-processing. Each metric is described in full in 

chapter 2 and can be used to determine the quality of the data for each sample. The mean and standard deviation are given for both experimental 

groups (Wt and C59X Mutants). Affymetrix recommend that any sample more than 2 standard deviations from the mean be flagged as an outlier and 

potentially excluded from further analyses. The thresholds for values more than 2 standard deviations from the mean, in either direction are reported in 

bold. The final row states whether or not each of the biological replicates had a value within this threshold, with YES denoting that all samples are fine 

and NO denoting that an outlier(s) has been flagged up.  N.B: Figures are displayed to 2 decimal places. To determine if the value was within threshold 
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the figures were considered to more decimal places therefore each instance where the value displayed for a sample matches a threshold, the value is 

within threshold when considering to more decimal places. 

 

Sample ID pm_mean 

All probeset mad residual 

mean Positive control mad residual mean All probeset rle mean Positive control rle mean Pos vs neg auc 

7B C.CEL 297.56 0.17 0.13 0.19 0.15 0.87 

7C C.CEL 372.48 0.16 0.11 0.18 0.14 0.87 

18A C.CEL 375.32 0.15 0.10 0.16 0.13 0.87 

19C C.CEL 379.77 0.16 0.11 0.18 0.14 0.87 

22A C.CEL 422.82 0.13 0.09 0.15 0.11 0.88 

22B C.CEL 512.25 0.15 0.11 0.21 0.18 0.87 

31B C.CEL 409.68 0.16 0.11 0.21 0.18 0.87 

19A.CEL 388.97 0.14 0.09 0.14 0.10 0.87 

Mean -2xSD 274.39 0.12 0.08 0.12 0.08 0.86 

Mean +2xSD 515.32 0.18 0.13 0.23 0.20 0.88 

Within Threshold Yes Yes Yes Yes Yes Yes 
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Table 2. Quality Control Assessment of all 8 female Samples Combined. When considering the 8 female samples as one group there is no 

indication that any sample is an outlier and behaving differently to any of the other samples.  
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3.3.4.2 Identification of Differentially Expressed Genes between Female Wildtype 

and C59X Mutant Mice.  

Following QC, gene expression analysis was conducted using an alternative splicing 

ANOVA (Partek GS) to identify genes differentially expressed between C59X mutant 

and wildtypes. Due to the increased numbers of probes and their placement throughout 

the transcript the exon array should facilitate more accurate measurement of gene 

expression. As described in the methods, gene expression p values can be generated 

using the differential expression and the alternative splice algorithms (Ch2.8.3.6.1&3). 

Whilst both the workflows were used to determine gene expression differences for 

clarity only the alternative splice algorithm data will be presented in the next section. I 

set the algorithm so that genotype was the splicing factor as described in Ch2.8.3.6.3 to 

determine changes in gene expression between wildtype and C59X mutants. Only 

probesets annotated by Affymetrix as unique (and not known to cross-hybridise) were 

included. Cross-hybridising probesets have been previously described to greatly 

increase the numbers of false positives (Xing et al., 2008).  Any probeset with a mean 

log2 intensity <3 was excluded leaving a total of 15,808 transcripts (equating to 194,293 

probesets). The output of the experiment was a list of genes with both differential 

expression and alternative splice p values. I then determined the number of genes 

significantly differentially expressed and spliced using a number of p value stringencies 

and following multiple test corrections using the false discovery rate (FDR) and the 

Bonferroni correction (Ch2.8.3.6.4).    

3.3.4.3 Identification of Differentially Spliced Genes between Female C59X Mutant 

and wildtype Mice.  

The identification of both known and novel splice events is facilitated with the exon 

array due to probeset placement within the exons and not across exon boundaries.  It is 

important to note that when using chips such as the exon array the idea is to determine 

differential splicing rather than identify known or novel alternative splice events per se. 

Either type of alternative splice event can be detected by the platform but only if the 

expression of each isoform differs between the groups in the experiment, thus it is a 

relative measure. It is only when the expression of an isoform/exon in one group 

diverges from that seen in the other group that differential splicing is called and 

significant p values are observed (Robinson and Speed, 2009).  
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The numbers of significant differentially expressed and spliced genes at different 

significance thresholds are displayed in table 3. The hypothesis that ZNF804A may 

function as a transcription factor was addressed by looking to see if there were any 

genes significantly differently expressed between the WT controls and the Zfp804a 

mutant mice.  6% of genes were significantly differentially expressed (p≤ 0.05). Given 

that 15808 transcripts were included in the analysis the family-wise error rate needed to 

be controlled to limit the number of false positives. The false discovery rate (Benjamini 

& Hochberg, 1995) was set at 0.05 at which threshold it is expected that 5% of the 

significant changes are false positives. The more stringent Bonferroni correction was 

used to set a threshold adjusted for number of tests such that this P value is expected to 

be attained by chance by any transcript only once in 20 complete experiments (Holm, 

1979). Using an FDR threshold of 0.05 and a Bonferroni correction for 15,808 tests, in 

no genes were the expression levels significantly different between the groups. The 

results provide no evidence for a direct link between the mutation in Zfp804a and 

regulation of gene expression.  

 

As the evidence for a role in the regulation of transcription was not apparent, 

differential splicing was assessed between C59X mutants and Wildtypes to determine if 

the mutation in Zfp804a was affecting RNA processing.  The alternative splicing 

algorithm predicts splicing based on expression at a particular probeset (or exon) 

relative to the pattern of expression observed throughout the whole transcript. 

Significant differential splicing is called when probeset expression diverges from the 

transcript expression pattern (Ch2.8.3.6.3). Results showed that a similar proportion 

(~6%) of the total number of transcripts were differentially spliced between wildtype 

and C59X mutants as those predicted to be differentially expressed at the nominal p 

value p≤0.05 (Table 4). The splicing results were however more robust than in the 

differential expression as evidenced by the number of transcripts remaining significant 

at more stringent p values and following multiple test correction. A total of 79 and 21 

genes remained statistically significant following multiple test correction with an FDR 

threshold of 0.05 and the Bonferroni correction for 15808 tests, respectively.   
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P Value Threshold  No. of Significant Genes  % of Genes 

Unadjusted p≤0.05  968 6.12 

p≤0.01  226 1.43 

p≤0.001  23 0.15 

p≤0.0001  2 0.01 

Following Multiple Test Correction 

With FDR 0.05   0 0 

With Bonferroni Correction 
(15808 tests) 0 0 

Table 3. The number of genes differentially Expressed between Female Wildtype 

and Mutant C59X mice. Whilst a considerable number of genes are found to be 

differentially expressed at a nominal p value following adjustments for multiple testing 

the number of significant genes reduces to 0, suggesting no individual genes show 

strong expression differences between the wildtypes and the mutants.  

 

From the initial exploration of the data, there is more evidence for the hypothesis that 

aberrant Zfp804a effects RNA processing than that proposing an effect on differential 

expression.  

 

Following the acquisition of male C59X brain tissue the experiment was repeated, using 

the same methodological and analytical procedures (Ch2). Replication in male mice was 

carried out to ascertain if the results observed in the female mice could be recapitulated 

and to remove any possibility that the results were attributable to variation in the stage 

of the oestrous cycle among the female mice.  
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Alternative Splicing   No. of Significant Genes  % of Genes 

Unadjusted p<0.05  1010 6.39 

p<0.01  400 2.53 

p<0.001  136 0.86 

p<0.0001  54 0.34 

Following Multiple Test Correction 

With FDR 0.05   79 0.50 

With Bonferroni Correction 
(15808 tests) 21 0.13 

Table 4. The number of differentially spliced genes between wildtype and C59X 

mutant female mice. Whilst a similar proportion of genes are shown to be 

differentially spliced to those differentially expressed at a nominal p value of p<0.05, 

when considering the more stringent p values and in particular the number of genes 

significant following multiple test correction there is a greater proportion of spliced 

genes.  

 

3.3.4.4. Replication study in Male C59X mice. 

The experiment was repeated when there were sufficient numbers of male homozygote 

C59X mice available for expression analysis. The same QC measures were generated 

and the same criteria used for outlier analysis. The hybridisation efficiency of all 9 male 

(4 C59X mutants, 5 wildtypes) samples was sufficient, as denoted by the correct rank 

order in expression values of 4 internal controls (Fig 3.3.8). Whilst observing the 

expression patterns of these 4 E. Coli controls it was noted that sample 6, a C59X 

mutant, had a divergent log2 expression pattern of the four controls relative to the other 

8 samples.  Following the generation of a PCA plot (Fig 3.3.9) the overall pattern of 

gene expression for each of the samples was assessed. There was no indication of 

samples clustering by genotype. A single cluster is observed in the top right of the plot 

where the majority of samples lie. Two samples were not found within this cluster one 

of which is separated from the other samples along the first principle component 

(Indicated with arrow A). This sample corresponds to sample that appeared divergent in 

the hybridisation efficiency assessment. The other sample, a wildtype (17c) is separated 

from the other samples along principle component 2 (Indicated with arrow B). A normal 

distribution of signal intensity was observed for all male mice (Fig. 3.3.10) however 

both 17b and 17c, highlighted in the PCA, were at the extremities of the distribution 

toward the mean frequency range of the plot. I then generated boxplots of the log 
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expression signal to establish if the degree of variation in 17b and 17c was consistent in 

these plots and if so whether the 2 samples should be excluded (Fig. 3.3.11).  

 

 

Figure 3.3.8. Quality Control. Hybridisation Efficiency of Affymetrix GeneChip 

Mouse Exon 1.0 ST Arrays. Efficient hybridisation is denoted by a rank order of 

BioB<BioC<BioD<Cre, four E.Coli internal controls that are hybridised to the chip at 

known, staggered concentrations. This rank order is observed in all of the Male 

wildtype and C59X samples (n = 9). In assessing the quality of the hybridisation process 

it was also noted that the log 2 expression in sample 6 (a C59X mutant) was quite 

different to the other samples. 
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Figure 3.3.9. Quality Control. Principal Component Analysis of Male samples. The 

samples do not appear to cluster by genotype along the first and second principle 

components. Instead a cluster of samples is observed in the top right of the plot with 

two samples (labelled with arrows) separated from this cluster suggesting a different 

overall pattern of gene expression in these two samples. 

 

A 

B                      
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Figure 3.3.10. Quality Control. Histogram of Signal Intensity. The distribution of 

signal intensities.  Intensity is plotted along the x-axis and frequency of intensity plotted 

on the y-axis. Distribution is normal across all male wildtype and C59X mice. At the 

peak of the curve the differences in the distribution of the samples becomes slightly 

evident with both the mutant, 17b and the wildtype, 17c furthest from the cluster of the 

other samples. 

 

Boxplots generated to examine the log expression signals of each male sample are 

shown in Figure 3.3.11. Whilst the normalisation and summarisation of the data 

appeared to correct the variance in expression, the relative log expression signal boxplot 

(right plot) clearly shows that sample 17b (6), the same C59X mutant as observed 

previously, is behaving differently relative to the other 8 samples. The inter-quartile 

range (IQR) of this sample is much larger than that observed in the other samples and 

this characteristic is often present in samples of poor quality.  Sample 17c (7), also 

separate from the PCA cluster, had a slightly larger IQR but was not as distinguishable 

as sample 17b. In the four qualitative and subjective measures analysed so far, the male 
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C59X mutant (17b) appeared to be a consistent outlier, whilst the male wildtype (17c), 

demonstrated outlier characteristics in several of the metrics but not all. To more 

quantitatively establish if either of these samples should be excluded I generated the 

same 6 metrics as described previously (Ch2.8.3.5.4-7) to determine as accurately as 

possible if 17b and 17c were outliers, defined as metric values consistently greater than 

2 standard deviations away from the mean.  First considering all male samples together 

(Table 5), the mutant 17b (sample 6) that appeared to be an outlier in the qualitative 

metrics, had values greater than 2 standard deviations from the mean in 5 of the 6 

metrics generated. Again the results presented are those I generated in Partek GS, but 

analysing the QC results in Expression Console also resulted in sample 17B being an 

outlier in 5 of the 6 metrics. In both instances the metric in which sample 17b was 

within 2 standard deviations of the mean was the positive versus negative auc metric. 

17b has a value (0.88) above which Affymetrix guidelines suggest may be an outlier, 

Affymetrix stipulate that values above 0.8 do not guarantee good quality data (Chapter 

2.8.3.5.7)  Samples were then considered by experimental group, as a better indication 

of an outlier may be how samples behave relative to their biological replicates 

(Affymetrix, 2008) (Table 6). Within experimental group comparisons showed no 

evidence of outlier behaviour again this was consistent between analyses performed in 

Partek GS and Expression Console. As the wildtype sample, 17c satisfied criteria both 

within and across groups it was deemed of adequate quality for gene expression 

analyses. Due to the ambiguous outlier nature of sample 6, I plotted several MA plots to 

establish the extent to which the intensity of this sample varied when directly compared 

with each of the other samples and to enable the decision of whether the sample should 

be excluded (Fig. 3.3.12).   
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Figure 3.3.11. Quality Control. Boxplots of Expression Signals.  The variation observed in the probe cell intenisty before normalisation and 

summarisation (left) is corrected following normalisation and summarisation (centre). The relative log expression signal boxplot (right), which is used 

to give an indication of samples behaving differently to the consensus, demonstrates sample 6 has a much wider IQR. Samples with a larger IQR may 

represent a low quality array.  
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Sample ID  PM Mean 

All Probeset Mad Residual 

Mean 

Pos Control Mad Residual 

Mean 

All Probeset RLE 

Mean Pos Control RLE Mean 

Pos vs. Neg  

AUC 

Z2C.CEL 414.85 0.12 0.09 0.13 0.10 0.86 

Z2D.CEL 396.00 0.13 0.10 0.15 0.13 0.87 

Z2E.CEL 430.13 0.12 0.09 0.13 0.10 0.86 

Z4A.CEL 356.77 0.14 0.09 0.14 0.11 0.86 

Z6A.CEL 435.08 0.12 0.09 0.12 0.09 0.86 

Z17B.CEL 276.81 0.23 0.16 0.48 0.49 0.88 

Z17C.CEL 381.87 0.15 0.10 0.19 0.14 0.86 

Z21B.CEL 437.45 0.12 0.09 0.14 0.11 0.87 

Z21C.CEL 484.40 0.13 0.10 0.15 0.13 0.86 

Mean -2xSD  282.63 0.07 0.05 -0.04 -0.10 0.86 

Mean +2xSD  520.34 0.21 0.15 0.41 0.41 0.88 

Within Threshold No No No No No No 

Table 5. Quality Control. 6 Quality Control Metrics Generated for Male wildtype and C59X mutants.  In 5 of the 6 metrics the values generated for 

sample Z17B were outside of the thresholds recommended by Affymetrix (red).
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C59X Mutants       

Sample ID PM Mean 

All Probeset MAD 

Residual Mean 

Pos Control MAD Residual 

Mean 

All Probeset RLE 

Mean 

Pos Control RLE 

Mean Pos vs. Neg AUC 

Z2D.CEL 396.00 0.13 0.10 0.15 0.13 0.87 

Z2E.CEL 430.13 0.12 0.09 0.13 0.10 0.86 

Z4A.CEL 356.77 0.14 0.09 0.14 0.11 0.86 

Z17B.CEL 276.81 0.23 0.16 0.48 0.49 0.88 

Mean -2*SD 233.03 0.05 0.04 -0.11 -0.18 0.86 

Mean +2*SD 496.83 0.26 0.18 0.56 0.59 0.88 

Within Threshold Yes Yes Yes Yes Yes Yes 

       

Wildtypes       

Sample ID PM Mean 

All Probeset MAD 

Residual Mean 

Pos Control MAD Residual 

Mean 

All Probeset RLE 

Mean 

Pos Control RLE 

Mean Pos vs. Neg AUC 

Z2C.CEL 414.85 0.12 0.09 0.13 0.10 0.86 

Z6A.CEL 435.08 0.12 0.09 0.12 0.09 0.86 

Z17C.CEL 381.87 0.15 0.10 0.19 0.14 0.86 

Z21B.CEL 437.45 0.12 0.09 0.14 0.11 0.87 

Z21C.CEL 484.40 0.13 0.10 0.15 0.13 0.86 

Mean -2*SD 356.01 0.11 0.08 0.10 0.08 0.86 

Mean +2*SD 505.45 0.15 0.10 0.20 0.15 0.88 

Within Threshold Yes Yes Yes Yes Yes Yes 

Table 6. Quality Control. Considering the 6 quality control metrics by experimental groups. When considering the samples as biological 

replicates within their experimental groups none of the samples had values which surpassed the threshold in any of the 6 metrics (When considering 

more than 2 decimal places). 
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To evaluate the exclusion of sample 17b, MA plots (3.3.12) were generated.  The MA 

plot is used to compare the intensity of two samples. Each point in the plot represents a 

probe intensity value. The average for each probe intensity value is plotted on the x-axis 

with the difference between the two samples plotted on the y-axis. I first generated plots 

comparing sample 17b to all other samples (Fig. 3.3.12A & B) and then by exploring all 

sample combinations with the exception of those including 17b (Fig. 3.3.12C & D). To 

further evaluate the decision to retain sample 17c this was also plotted against sample 

21b. The variation in intensity was much greater in sample 17b and so it was decided 

that this samples would be excluded and omitted from all downstream analyses. MA 

plots of sample 17c were consistent with the other samples and so confirmed the 

decision to retain the sample in the statistical analysis. QC following the removal of 17b 

(Table 3.7& 3.8) did not indicate any outliers and therefore following the exclusion of 

sample 17b the remaining 8 male samples (3 homozygote C59X mutants and 5 

wildtypes) were pre-processed (Ch2.8.3.3). The Partek GS and Expression console QC 

analyses varied only in that sample 17c was outside the 2 standard deviation rule for one 

metric in Partek but two in expression console. This still does not qualify 17c as an 

outlier, but highlights the slight variation in metrics generated by the two programmes. 
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Figure 3.3.12. MA plots of signal Intensity.  Signal intensities at all probesets on the 

array were directly compared between two samples at a time and the difference in 

intensity at each probeset plotted. A Comparison of potential outlier 17b and another 

male mutant sample (4a). This plot was representative of all plots generated when 

comparing each male sample in turn with 17b as exemplified in B where 17b was 

compared to 21B, a male wildtype. There was considerable variation between the two 

samples, in each case, particularly when considering probesets with higher average 

intensity values as indicated by the wider spread of the data at the right of the plot (A 

&B).  When the same two samples (4a and 21b) were compared to each other C and 

when 21b was compared to 17c D the plots all had a reduced variation toward the right 

of the graph representing probesets with higher average intensity values. Both plots 

were representative of those generated when comparing any 2 male samples with the 

exception of 17b.  

A 

D C 

B 
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Sample ID PM Mean 

All Probeset Mad 

Residual Mean 

Pos Control MAD Residual 

Mean All Probeset RLE Mean 

Pos Control RLE 

Mean 

Pos vs Neg 

AUC 

Z2C.CEL 414.85 0.12 0.09 0.13 0.11 0.86 

Z2D.CEL 396.00 0.13 0.10 0.16 0.13 0.87 

Z2E.CEL 430.13 0.12 0.09 0.13 0.10 0.86 

Z4A.CEL 356.77 0.14 0.09 0.15 0.11 0.86 

Z6A.CEL 435.08 0.12 0.09 0.12 0.09 0.86 

Z17C.CEL 381.87 0.15 0.10 0.19 0.13 0.86 

Z21B.CEL 437.45 0.12 0.09 0.14 0.11 0.87 

Z21C.CEL 484.40 0.13 0.10 0.15 0.13 0.86 

Mean -2xSD 338.63 0.11 0.08 0.11 0.09 0.86 

Mean 

+2xSD 495.51 0.15 0.10 0.19 0.14 0.87 

Within 

Threshold Yes Yes Yes No Yes No 

Table 3.7. QC measure following the removal of 17b showed the data to be consistant and no samples were determined to be outliers.  
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C59X Mutants              

Sample ID PM Mean 
All Probeset MAD 

Residual Mean 
Pos Control MAD 

Residual Mean All Probeset RLE Mean Pos Control RLE Mean Pos vs Neg AUC 
Z2D.CEL 396.00 0.13 0.10 0.16 0.13 0.87 
Z2E.CEL 430.13 0.12 0.09 0.13 0.10 0.86 
Z4A.CEL 356.77 0.14 0.09 0.15 0.11 0.86 
Mean -2xSD 320.88 0.12 0.09 0.12 0.09 0.86 
Mean +2xSD 467.73 0.14 0.10 0.17 0.14 0.87 
Within Threshold Yes Yes Yes Yes Yes Yes 
       

Wildtypes             

Sample ID PM Mean 
All Probeset MAD 

Residual Mean 
Pos Control MAD 

Residual Mean All Probeset RLE Mean Pos Control RLE Mean Pos vs. Neg AUC 
Z2C.CEL 414.85 0.12 0.09 0.13 0.11 0.86 
Z6A.CEL 435.08 0.12 0.09 0.12 0.09 0.86 
Z17C.CEL 381.87 0.15 0.10 0.19 0.13 0.86 
Z21B.CEL 437.45 0.12 0.09 0.14 0.11 0.87 
Z21C.CEL 484.40 0.13 0.10 0.15 0.13 0.86 
Mean -2xSD 356.01 0.11 0.08 0.10 0.08 0.86 
Mean +2xSD 505.45 0.15 0.10 0.20 0.15 0.88 
Within Threshold Yes Yes Yes Yes Yes Yes 
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Table 3.8 Male C59X mice Quality Control Metrics. Following the removal of sample 17b normalisation and summarisation were again carried 

out in Partek Genomics Suite and the same metrics were generated to analyse the quality of each array in order to identify any outliers. Samples were 

separated by genotype prior to determining if any individual arrays were outside of a pre-defined threshold of 2 standard deviations from the mean for 

each of the metrics generated.  
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The 8 samples were preprocessed simultaneously using quantile normalisation and 

median polish summarisation (Ch2.8.3.3).  As with the female samples, I next 

determined the number of transcripts predicted to be differentially expressed and 

spliced. The same criteria as used in the female analysis enabled comparisons to be 

made across the two experiments and the degree of overlap to be established.   

Differential Expression   No. of Significant Genes % of Genes 

Unadjusted p≤0.05   744 4.7 

p≤0.01   152 0.96 

p≤0.001   25 0.16 

p≤0.0001   6 0.04 

Following Multiple Test Correction 

FDR 0.05   0 0 

Bonferroni Correction 

(15813 tests) 0 0 

Table 3.9. Total number of transcripts included in the analysis was 15,813.  

 

 

Approximately 5% of the total number of transcripts were significantly differentially 

expressed at a nominal p value (p≤0.05) (Table 3.9). Following correction for multiple 

testing no genes were significant using an FDR threshold of 0.05 and Bonferroni 

correction for 15,813 tests respectively. A slightly larger proportion of the total number 

of transcripts (15,813) was predicted to be differentially spliced.  As seen in the female 

mice the numbers remaining significant were greater for differentially spliced genes 

than differentially expressed genes, with a small proportion of genes remaining 

statistically significant following multiple test correction (Table 3.10).  
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Alternative Splicing   No. of Significant Genes % of Genes 

Unadjusted p≤0.05   1240 7.84 

p≤0.01   462 2.92 

p≤0.001   143 0.9 

p≤0.0001   68 0.43 

Following Multiple Test Correction 

FDR 0.05   99 0.63 

Bonferroni  Correction (15813 

tests) 34 0.22 

Table 3.10. Differentially Spliced Genes in Male C59X Mutant Mice. ~7% of the 

total number of transcripts were found to be differentially spliced in the C59X mutants 

(p≤0.05) with ~0.6% still significant following correction for multiple testing using the 

FDR at a threshold of 0.05.   

 
3.3.4.5 Multiple Test Correction. 

Pre-analytical filtration steps, including probeset filtering by intensity, were applied to 

the data to reduce the impact of multiple testing (Della et al., 2008). To further reduce 

the number of potential false positives in the data the Bonferroni correction and the 

Benjamini and Hochberg FDR correction were applied to the data. Whether or not MTC 

should be applied to data at the exon level is still a matter of contention. In alternative 

splice analysis the data are considered at the level of the probeset (exon) relative to the 

expression across a transcript. Thus far more data points are included in the analysis and 

the exons belonging to a given transcript are dependent (correlated) and thus violate the 

assumption of independence of data points in many multiple test correction approaches, 

including the Benjamini and Hochberg FDR. Whilst the application of the correction 

may not be statistically accurate, the exemption of such a correction would most likely 

result in a high proportion of false positives in the dataset.  

One way to establish the contribution of false positives to the number of significant 

genes would be to permute the data and observe if the number of significant genes 

varies considerably to those originally observed. A similar proportion of significant 



 

 

87 

genes in the permuted data set would be suggestive of a high degree of false positives. 

This option could not be applied to the data as random permutations and subsequent p 

values could not be generated on such a small data set. As a compromise and in the 

absence of adult heterozygote samples, cases were compared with other cases and 

controls with other controls in order to understand the contribution of false positives to 

the results. The total of 16 male and female samples were split by genotype comprising 

of 7 mutants and 9 wildtypes and then within in each genotype group samples were split 

balancing litter and gender as best as possible. First the wildtype controls were divided 

into either group 1 or 2, with 4 and 5 samples in each respectively. The preprocessing 

was carried out in the same way as described previously the only difference in the 

analysis was that differential expression and alternative splicing were determined 

between the two arbitrary groups (1 and 2) as only wildtype samples were included. 

This enabled an estimate to be determined of the number of genes predicted to be 

differentially expressed and spliced by chance alone. The same was repeated for the 

mutant samples comparing group 1 (3 mutants) to group 2 (4 mutants) again balanced 

by gender and litter. Gender was covaried in each instance, as the PCA in both sets of 

data showed clustering of samples by gender. A max intensity filter of Log2 3 was used 

with probesets included if they were below this threshold but showed significant results 

p≤0.05.  A considerable number of genes are significant (Table 3.11) even when 

comparing samples of the same genotype split into arbitrary groups, but the numbers are 

less than those observed in the actual analysis comparing mutants to wildtypes in each 

instance. This suggests there are true positives in the data.  
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Differential Expression p≤0.05 FDR 0.05 

Bonferroni 

Correction 

    

Wildtype vs. Wildtype 559 0 0 

Mutants vs. Mutants 712 0 0 

Females Wildtype vs. Mutant 968 0 0 

Males Wildtype vs. Mutant 744 0 0 

    

Differential Splicing 

    

Wildtype vs. Wildtype 352 7 5 

Mutants vs. Mutants 580 22 9 

Females Wildtype vs. Mutant 1010 79 21 

Males Wildtype vs. Mutant 1240 99 34 

Table 3.11. False Positives Rate. The number of significant differentially expressed or 

spliced genes are represented in the table either at an unadjusted p value of p≤0.05 or 

following multiple test correction with an FDR threshold of 0.05 or with the Bonferroni 

correction for the number of tests performed. The data generated by comparing within 

genotype groups is shown in the table with the original data, generated by comparing 

C59X mutants and wildtypes below (blue).  The number of significant differentially 

expressed genes was slightly greater in the original comparison relative to the within 

genotype dataset suggesting the results are more than would be expected by chance 

artefacts.  The number of predicted differentially spliced genes observed between C59X 

mutants and wildtypes was approximately double that observed in the within genotype 

data. This suggests that the predictions of differential splicing are not just chance 

findings produced by artefacts of the statistical algorithm.  

 

3.3.4.6 Analysis to Determine the Degree of Replication.  

Significant results are usually prioritised for validation based on significance, fold 

change and functional relevance to the disease being studied. An advantage of having 

both female and male datasets was that it enabled the degree of overlap across the two 

studies to be assessed. Genes found to overlap, despite the differences in gender, brain 

preparation and age would therefore be considered more robust and make good 

candidates for validation by quantitative PCR (qPCR).  Overlap was measured by 

comparing the observed number of overlapping genes between males and females to the 

number that would be expected to overlap by chance.  If the number of significant 

changes that overlap were greater than the number expected by chance the data would 

be considered more robust.  To precisely calculate the overlap, 2x2 contingency tables 

were produced and the significance of the overlap was tested using the Chi squared test 

(Methods 3.2.11). A summary of the results is shown in Table 3.12. A significant 

overlap was found for differentially spliced transcripts at all stringency thresholds 
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investigated. Overlap for differentially expressed transcripts was less convincing with a 

significant overlap observed only for transcripts found to be significantly differentially 

expressed in the females at p≤0.01.  This suggests the splicing data were more robust 

than the differential expression data. 

3.3.4.7 Manual inspection of Results to Determine Direction of Effect. 

Due to the significant overlap of differentially spliced transcripts across the two 

experiments a manual inspection was undertaken to establish if the replicating 

transcripts were predicted to show splice events in the same exon and have the same 

direction of effect.  Starting with the most stringent set of overlapping transcripts (those 

significant in the females at p<0.0001 and significant in the males at p<0.05) the 

geneviews (Fig. 3.3.13), which I generated in Partek GS, were manually inspected to 

establish the exon(s) generating the significant splice signal in the female dataset and 

whether the same event was evident in the males. If the same exon(s) was differentially 

spliced in the males I then determined if the direction of effect was concordant.  

N.B: The geneview displays the probeset expression of all probesets within a transcript 

cluster. Varying levels of intensity are evident for each probeset, however this does not 

represent true intensity differences across the transcript and is often attributable to 

sequence specific probe effects. Therefore when assessing the geneview for a real splice 

event, the differences in intensity between probesets should be ignored and the parallel 

nature of the lines joining the probesets should be considered. If parallel lines are 

apparent across the length of the transcript this suggests that the transcript is 

differentially expressed between the two groups. Where there is a divergence from the 

parallel nature of the lines this is indicative of differential splicing of an exon between 

the two groups. 
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Differential Expression      

Significance 
Threshold Observed Expected Exact sig 2-sided Exact sig 1-sided  Replication 

P≤0.05 54 45.4 0.18 0.11 Not significantly more than expected by chance 

P≤0.01 17 10.6 0.06 0.04 Significantly more than expected by chance (p<0.05) 

P≤0.001 2 1.1 0.30 0.30 
Not significantly more than expected by chance (Fisher's Exact 
test) 

P≤0.0001 1 0.1 0.09 0.09 
Not significantly more than expected by chance (Fisher's Exact 
test) 

 

Alternative Splicing      

Significance 
Threshold Observed Expected Exact sig 2-sided Exact sig 1-sided  Replication 

P≤0.05 111 79.2 0.00 0.00 Significantly more than expected by chance  

P≤0.01 61 31.4 0.00 0.00 Significantly more than expected by chance  

P≤0.001 34 10.7 0.00 0.00 Significantly more than expected by chance alone  

P≤0.0001 23 4.2 0.00 0.00 Significantly more than expected by chance (Fisher's Exact test) 

Table 3.12. Replication Analysis using Chi Square Test.  Significant replication in the male study was determined by establishing whether the 

number of genes that overlapped was greater than the number expected by chance using Pearson’s Chi Square test. Results were determined for both 

one and two-tailed hypotheses, however as the null hypothesis was that results would not replicate in the male study the one-tailed significance value 

was used to determine replication.  Only when considering the 226 genes significant at p≤0.01 in the females is an overlap observed in the males which 

is significantly more than would be expected by chance (χ
2
 (1) = 4.061, p<0.05) for differentially expressed genes. In contrast at every significance 

threshold the genes significantly differentially spliced in the females overlap with numbers significantly more than would be expected by chance. Due 

to an expected count less than 5 the Fisher’s Exact test significance value is reported for differential expression p≤0.001, p≤0.0001 and alternative 

splicing p≤0.0001.
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Figure 3.3.13 Replication of Potential Splice Events. After I generated geneviews in 

Partek GS, I manually inspected plots of all genes showing significant overlap to 

determine if the position and direction of the splice events was consistent. At the top of 

each geneview the known Refseq transcript(s) is plotted, with the log2 expression values 

for each of the probesets (within the defined transcript cluster) plotted underneath. 

Probeset expression is plotted for the C59X mutants and wildtypes in red and blue 

respectively. In this figure, the geneviews of four genes are displayed with the female 

and male plots on the left and right hand side respectively.  The splice event thought to 

be generating the significant splice p value is highlighted within the shaded box. The 

top 3 plots show genes in which the same splice event is observed in both males and 

females. The bottom plot shows potential differential isoform expression between 

mutants and wildtypes in the females, however only a subset of the probesets are also 

differentially expressed in the males and in one probeset the effect is in the opposite 

direction.  

 

 

Geneviews were inspected (Fig. 3.3.14) to establish how many of the 17 significantly, 

overlapping differential expression results were consistently regulated in the same 

direction in both males and females (Table 3.13). 14 genes (82%) were consistently up 

or downregulated in the females and males. Differential spliced transcripts were 

inspected to ensure the position of the predicted spliced exon(s) and the direction of 

effect was consistent in both experiments (Table 3.13).  A significant overlap between 

males and females was observed at each of the p value stringencies tested. Each set of 

genes was inspected starting with the most stringent group (p≤0.0001). Of the 111 genes 

found to overlap between male and female experiments, 70% replicated in at least one 

of the exons predicted to be differentially spliced and in the same direction. With 

increased p value stringency the percentage of splice events found to be consistent 

across the two experiments increased, with 91% of genes overlapping at p≤0.0001 

showing concordant changes. The observed degree of overlap not only increased the 

confidence in the data, but suggests that the predicted splice events are not resultant of 

technical artefacts such as probe bias.  
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Differential Expression     

Significance threshold in Females No. Genes Significant 

Overlap in Males 

(p≤0.05) No. of Genes with Same direction of Effect % 

p≤0.001 226 17 14 82 

     

Alternative Splicing     

Significance threshold in Females No. Genes Significant 

Overlap in Males 

(p≤0.05) 

No. of Genes in which the Differentially spliced 

Exon and Direction of Effect is Consistent % 

p≤0.0001 54 23 21 91 

p≤0.001 136 34 29 85 

p≤0.01 400 61 48 79 

p≤0.05 1009 111 78 70 

Table 3.13 Determining the consistency in the overlap in Male and Female Results. Manual inspection of both females and male geneviews 

allowed the percentage of overlapping genes in which the differential expression (top) or splice (bottom) event was consistent to be determined. 

Differentially expressed genes had to have altered expression in the same direction in both females and males to be counted. Consistent overlap in a 

differentially spliced transcript required that the splice event, thought to be contributing to the splice signal in females, was replicated in the males and 

that the change was in the same direction.    
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Figure 3.3.14 Inspection of Alternative Splicing Results. The geneviews displayed 

represent 3 genes (1 in each row) with the expression results for both females (left 

column) and males (right column). A. The geneview for Slc39a13 is an example of a 

result in which the splice event was easy to identify, demonstrated by a similar 

expression pattern in wildtypes and mutants across all probesets in the transcript except 

one, where a clear divergence in the expression between mutants and wildtypes was 

observed. B. An example of a transcript which only partially replicates across the male 

and female experiments. 3 differentially expressed probesets (circled) were identified in 

females, but only two of these are differentially expressed in the same direction in the 

males.  C. The geneview is representative of transcripts in which the large number of 

probesets made it difficult to determine where the alternative splice signal was coming 

from, which made determining if there was an overlap between males and females 

difficult.  

 

  

  

  

  Female  Male  

  
 

 
  

A 
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3.3.4.8 Combined Analysis. 

Due to the observed overlap in the two individual experiments I felt it was appropriate 

to combine the samples to increase the power and then repeat the analysis. This meant 

the expression and splicing was compared between 9 wildtypes (4 female, 5 male) and 7 

C59X mutants (4 female, 3 male) using a two-way ANOVA model, which included 

gender as a covariate. A total of 15,833 transcripts were tested and the proportion of 

these predicted to be significantly differentially expressed or spliced is shown in Table 

3.14. The number of transcripts significantly differentially expressed at a nominal p 

value (p≤0.05) was 7% of the total number of transcripts, more than observed in the 

individual female and male experiments (6% and 4% respectively). There were also a 

small number of genes in the combined experiment which survived correction for 

multiple testing even after using the very stringent Bonferroni correction. The impact of 

combining the samples did not increase the number of differentially spliced as expected. 

With the increase in power a decreased number of predicted splice events was observed. 

From the 7% and 6% observed previously the proportion of spliced transcripts 

decreased to 4%, almost half the number of differentially expressed transcripts.    
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Differential 
Expression 

No. of Significant 
Genes % Of Genes Expected  

Unadjusted p≤0.05 1043 7 792 

p≤0.01 242 2 158 

p≤0.001 30 0.19 16 

p≤0.0001 11 0.07 2 

FDR 0.05 9 0.06   

Bonferroni Correction 
( 15,833 tests) 3 0.02   

 

Alternative Splicing 
No. of Significant 

Genes % Of Genes Expected  

Unadjusted p<0.05 617 4 792 

p≤0.01 226 1 158 

p≤0.001 92 1 16 

p≤0.0001 54 0.34 2 

FDR 0.05 65 0.41   

Bonferroni Correction 
(15,833 tests) 29 0.18   

Table 3.14. Combined Analysis Results. The top table shows the proportion of genes 

differentially expressed between C59X mutants and wildtypes. A small number of 

genes remained significant following multiple test correction (FDR 0.05 and 

Bonferroni), something which was not observed when considering the female and male 

experiments separately.   

 

 

The combined analysis showed 3 genes to be significant following a Bonferroni 

correction of 15,833 tests and 9 using the less stringent FDR correction at a threshold of 

0.05. Whilst this number is small it is still important to consider these genes, as one or 

more of them may have downstream effects on the expression or splicing of other 

genes. For this reason these 9 genes were viewed to determine how likely the expression 

change was (Appendix 3.1). Of the 9 only 2 looked like differential gene expression 

(Mettl5 and Nfe212) with two others possibly being differential expression of known 

alternative transcripts. The remaining 5 showed differential expression in only a subset 

of the probesets within the transcripts, which could suggest differential expression of 

novel isoforms. Of the 3 Bonferroni significant transcripts only Mettl5 displays 

attributes of a differentially expressed gene, with all probesets showing differential 

expression in the geneview. None of the 9 transcripts had differential expression fold 
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changes greater than or equal to 1.5 which is a standardised cut off for differential 

expression, reducing the reliability of the results.    

The top 6 results from the combined analysis for differential splicing are shown in Fig 

3.3.15. In each case the predicted splice event was inspected to determine the likelihood 

of such an event. Of the six events 2 were potential false positives as only one of 

multiple probesets in the exon showed differential expression. From this Frzb, 

Slc39a13, Fam171b and Ssfa2 remain potential differential splice candidates.  

 

 

Figure 3.3.15. Geneviews of Significantly Differentially Spliced Genes (Combined 

Analysis). The majority of cases appear to be called due to alternative exon usage. This 

type of splice event is the most common and also the easiest to detect in this type of 

analysis. The event in Tcp11l1 is suggestive of a false positive as not all probesets 

within the exon follow the same expression pattern, as is this case in Prdm4.  Frzb’s 

  

  

  

Prdm4 Slc39a13 

Ssfa2 Tcp11l1 

Fam171b Frzb 
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geneview is suggestive of an unknown alternative isoform, or 3’ and 5’ edge effects 

masking a differentially expressed rather than spliced transcript.  

 

3.3.4.9 Alternative Algorithms.  

Assessment of differential expression and splicing were carried out using alternative 

algorithms in different software packages to establish the robustness of the data.  Both 

easyExon and AltAnalyze are open source, freely available applications. In easyExon 

the MiDAS algorithm was used to determine differential splicing and the FIRMA 

algorithm was applied in AltAnalyze, the methods for each are described in full in 

Chapter 2.8.4. Identification of the same differentially expressed and spliced genes 

when using different algorithms and filtering criteria would add validity to the data.  

3.3.4.9.1 easyExon.  

The false positive rate was controlled by first removing probesets which did not have a 

DABG p value ≤0.05 in at least 50% of the samples. With a significance threshold of 

p≤0.05 and a fold change cut off of greater than or equal to 1.5, 34 genes were predicted 

to be differentially expressed in the female experiment of which 10 had RefSeq IDs. 16 

genes were significant in Partek when applying the same thresholds. Of the 10 

easyExon results with Refseq IDs, 8 genes were found to overlap between Partek GS 

and easyExon (Table 3.15). Using EasyExon to assess the male experiment, 26 genes 

met the criteria for differential expression, but only 1 had a gene symbol; Frizzled 

related protein (Frzb).  Applying the same significance and fold change cutoffs in 

Partek GS resulted in three differentially expressed genes, one of which was Frzb.  

 

741 and 764 genes were significantly differentially spliced in female and male C59X 

mice respectively. This corresponds to the 1010 and 1240 genes identified when using 

Partek GS.  Genelists were cross referenced with significant differentially spliced genes 

in Partek GS using the Affymetrix transcript cluster ID annotation. 146 and 197 genes 

overlapped in the female and male datasets respectively. Whilst the nominally 

significant numbers vary quite considerably this probably reflects the different 

algorithms and stringency cut offs used. The number of genes which do overlap are 
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similar to the number significant in Partek GS at p≤0.001 and perhaps represents more 

reliable calls of alternative splicing by both algorithms.  

 

 

Gene 

Symbol RefSeq ID Gene Description 

Snca NM_001042451 Synuclein, alpha  

Egr2 NM_010118 early growth response 2  

Arc NM_018790 activity regulated cytoskeletal-associated protein  

Scg5 NM_009162 secretogranin V  

Mela D10049 melanoma antigen 

Npas4 NM_153553 Neuronal PAS domain protein 4  

Dusp1 NM_013642 dual specificity phosphatase 1  

Nr4a1 NM_010444 nuclear receptor subfamily 4, group A, member 1  

Table 3.15 Significantly Differentially Expressed Genes.  Using a p value cut off of 

p≤0.05 (nominal) and a fold change threshold of greater than or equal to 1.5, 8 genes 

were significant using both Partek GS and EasyExon software tools on the female 

dataset.  

 

3.3.4.9.2. AltAnalyze (Version 2.0.7).  

AltAnalyze is an integrated software workflow (Emig et al., 2010) used to preprocess 

samples and carry out statistical analysis. This software has previously been shown 

(AltAnalyze manual) to predict splicing with high specificity and reasonable sensitivity 

in a previously published dataset (Xing et al., 2008). Both the adult female and male 

datasets were analysed using AltAnalyze to detect differential gene expression and 

splicing as described in Chapter 2.8.4.2.  

The results of the analyses are shown in table 3.16. Following software specific 

filtering, as described in chapter 2 which included the core meta-probeset and excluded 

probesets with a DABG p value ≥0.05 and a non log expression value ≤70, the number 

of genes predicted to show differential expression and splicing were calculated (Table 

3.16). Overlap with Partek was then determined using the transcript cluster ID. First 

considering the female data the differential expression overlap showed that of the 1464 

genes significant in AltAnalyze and the 968 in Partek, 373 overlapped when using the 

transcript cluster ID. It is important to note that due to the different filtering methods 
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and different annotation criteria (chapter 2.8.4.2) that the probesets included in the two 

statistical analyses will have varied. 860 transcripts were predicted to show differential 

splicing in AltAnalyze compared to the 1010 predicted by Partek GS.  The overlap 

between Partek and AltAnalyze for differential splicing in female C59X mutants and 

wildtype was 167 transcripts. Next considering the male experiment, 1272 genes were 

significantly differentially expressed in AltAnalyze and 744 in Partek, of which 234 

overlapped between the two analyses. 966 genes were predicted to be differentially 

spliced in AltAnalyze and 1240 in Partek, of which 212 transcripts were significant in 

both. 

There is a degree of overlap observed considering the differences in the initial 

annotation of genes and the differences in the algorithms used. To determine if any of 

the predicted expression or splice differences between the C59X mutants and wildtypes 

were common to all 3 of the software programmes the overlap was established again 

using the Transcript cluster ID as the common identifier.  

 

Differential Expression AltAnalyze  

Female  1464   

Male 1272   

Differential Splicing    

Female  860   

Male 966   

    

Differential Expression AltAnalyze Partek Overlap  

Female  1464 968 373 

Male 1272 744 234 

    

Differential Splicing AltAnalyze Partek Overlap  

Female  860 1010 167 

Male 966 1240 212 

Table 3.16. AltAnalyze Results and Overlap with Partek GS. The number of 

differentially expressed and spliced genes predicted when using the algorithms in 

AltAnalyze.   
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3.3.4.10 Significant Results Overlap between easyExon, AltAnalyze and Partek GS. 

When using easyExon, by default significance and fold change criteria are applied so 

that only genes with a significance p value ≤0.05 and an accompanying fold change of 

greater than or equal to 1.5 are considered differentially expressed between C59X 

mutants and wildtypes. Due to the additional fold change threshold the number of genes 

in the easyExon output predicted to be differentially expressed is considerably lower 

than that predicted using Partek and AltAnalyze. For consistency the same fold change 

cut offs (greater than or equal to 1.5) were applied to the Partek and AltAnalyze results 

prior to determining any overlap.  

Caveats to determining the overlap lie in the different ways in which the data were 

annotated, filtered and the statistical approach as well as the different ways in which 

cross-hybridising probesets are dealt with. First considering genes predicted to be 

differentially expressed between female C59X mutants and wildtype only 6 genes were 

found to be common to all 3 different methods (Fig. 3.3.16). These genes were Arc, 

Dusp1, Egr2, Npas4, Nr4a1 and Snca. When considering that only 16 genes in Partek 

GS meet both the significance (p≤0.05) and fold change (greater than or equal to 1.5) 

criteria then over a third of these are significant in the other two analyses. None of the 6 

overlap with the 9 FDR (0.05) significant genes from the combined analysis but this 

may reflect the small fold changes (less than or equal to 1.5) observed in the 9 genes 

and reduced the likelihood of them being true expression changes. In contrast to the 9 

genes from the combined analysis, all 6 of these overlapping expression candidates 

looked like true expression changes from the manual inspection of the geneview. Due to 

the robust nature of these 6 candidates, in terms of significance from multiple 

algorithms and fold changes above a suggested 1.5 cut-off each one is a candidate for 

validation using an independent assay.   
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Figure 3.3.16. Genes Overlap. Genes predicted to be significantly differentially 

expressed (top) between Partek GS, AltAnalyze and easyExon. Only 6 genes were 

found to be common to all 3 significant gene lists, these genes were Arc, Dusp1, Egr2, 

Npas4, Nr4a1 and Snca.  81 genes were predicted to be differentially spliced when 

using Partek GS, AltAnalyze and easyExon for analyses. 
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Figure 3.3.17.  Male Differential Expression and Splicing Overlap. No genes were 

predicted to be significantly differentially expressed between male C59X mutants and 

wildtypes (top) when combining the results from the 3 statistical algorithms. 111 genes 

were predicted to be differentially spliced and common to the 3 statistical algorithms 

applied using Partek GS, AltAnalyze and easyExon. 
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For differential splicing 81 genes were found to be common to all 3 analyses. For male 

results no significantly differentially expressed genes were common to all 3 analyses 

(Fig. 3.3.17). The splicing results showed 111 genes to be significant in all 3. An 

overlap of the 81 and 111 genes revealed a splice overlap of 13 genes common to all 

statistical algorithms and programs and male and females (Table 3.17).  

Of these 13, 9 were found to have at least one predicted differentially spliced probeset 

common to female and male experiments, whether analysed in Partek GS, easyExon or 

AltAnalyze.  9 were significant following multiple test correction with an FDR 

threshold of 0.05 and 5 were significant following a Bonferroni correction for the 

15,800 tests in both experiments using Partek GS.  Examples of these splice events are 

displayed in Figure 3.3.18. Adding to this the results from the combined analysis 

Fam171b, Slc39a13, and Ssfa2 are strong differential splice candidates.  

From the data generated in easyExon and AltAnalyze and the overlap with Partek GS, a 

manageable list of potential expression and splice candidates for validation could be 

generated. Prior to any validation using RT-PCR the results of the planned RNAseq 

data were awaited to further confirm the results and add to their validity. 
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Transcript 

ID Gene Symbol 

6890648 2010106G01Rik* 

6919195 Centb5/Acap3* 

6858773 Colec12 

6878657 D4300389N05Rik/Fam171b** 

6918763 Dffa 

6888151 Frzb* 

6878031 Itga6 

6878655 Itgav* 

6879054 Lrp4 

6878038 Rapgef4** 

6825657 Rhobtb2/Prdm4** 

6888744 Slc39a13** 

6878469 Ssfa2** 

Table 3.17. Predicted Differentially Spliced Probesets. Manual inspection of the 

geneview (Partek GS) and indicated probesets in AltAnalyze and easyExon allowed the 

probesets predicted to be differentially spliced to be identified in the 13 genes 

significant in all analyses. In 9 (grey) of the 13 genes, at least one of the differentially 

spliced probesets was common to both female and male experiments using each of the 

statistical algorithms. * Significant following FDR threshold of 0.05 in Partek GS. ** 

Significant following Bonferroni correction of 15,808 and 15,813 tests in female and 

male analyses respectively.   
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Females 
Slc39a13 

Rapgef4 
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Males 
D430039NO5Rik/Fam171b D430039NO5Rik/Fam171b 

Rhobtb2/Prdm4 
Rhobtb2/Prdm4 



 

 

108 

Figure 3.3.18. Differentially Spliced Transcripts Common to AltAnalyze, easyExon 

and Partek GS. Predicted splice events in Slc39a13(top) and Rapgef4 (bottom) 

(Females) and Fam171b (top) and Prdm4/Rhobtb2 (bottom) in males. The geneviews 

from easyExon (left) and Partek GS (right) are displayed. The probeset predicted to be 

differentially spliced between C59X mutants and wildtypes is highlighted by a grey 

box. In each instance the predicted probeset was identical in Partek and easyExon with 

the same probeset being identified as significantly differentially spliced by AltAnalyze 

(no geneview is produced in the output) for both female and male experiments. The 

easyExon trace shows the mean normalised, log transformed and variance-stabilised 

intensities for each probeset.   The fold change values are plotted below the intensity 

plot and a significant MiDAS p value is indicated by (*) next to the corresponding 

probeset ID, all of which helped identify the splice event.  The splice index diverges 

from 0 when the intensity signal ratio at a probeset is different from the average 

intensity signal ratio across the transcript, which in each of the examples above was 

consistent with the significant splice p value.  

N.B: Prdm4/Rhobtb2 is found on the antisense strand and so is displayed from right to 

left in easyExon. In Partek GS the Refseq is displayed in a 3’ to 5’ direction but from 

left to right, which is why the geneviews appear different at first inspection.  

 

3.3.4.11 C59X Mutant and Wildtype expression of Zfp804a. 

All results presented were carried out using the core meta-probeset, due to the increased 

annotation confidence in this set. One of the disadvantages of using only the core meta-

probeset, specific to this study, was that Zfp804a was not targeted by any core probes. 

Instead the two Zfp804a transcripts (one protein coding, the other a processed 

transcript) were targeted by 11 extended probesets and 17 full probesets. As the primary 

objective of this study was to determine the effects of altered Zfp804a on gene 

expression and splicing, and as a qualitative difference in Zfp804a between C59X 

mutants and wildtype was not obvious from the RT-PCR (3.3.1), an analysis using the 

extended meta-probeset (which includes all core probes in addition to extended probes) 

was carried out to determine if any differences in Zfp804a expression could be observed 

between C59X mutants and wildtypes (Figure 3.3.19).  

No significant differential expression was observed, as predicted from the RT-PCR 

(3.3.1), but a trend for upregulation in the mutants was observed in all 3 analyses. Using 

the FIRMA algorithm in AltAnalyze resulted in significant differential expression of 

Zfp804a in male and female C59X mutants (unadjusted FIRMA p value = 0.02) with 

upregulation of Zfp804a in the mutants. The results did not remain after applying the 

1.5 fold change cut-off, as fold change was 1.26 and 1.24 in female and male 
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respectively. Following a t-test in easyExon to determine differential expression at 

Zfp804a the results showed that no significant difference was present between C59X 

mutants and wildtypes when using a fold change cut-off of 1.5. Without this cut-off 

significant differential expression was observed in female C59X mutants (p = 0.008) 

and males (p = 0.01) with upregualtion of Zfp804a observed in mutants as seen in 

Partek GS and AltAnalyze.  

Significant differential splicing was observed in Zfp804a between C59X mutants and 

wildtypes (Females p = 5.16x10
-9

; Males p = 3.07x10
-8

; combined p = 3.31x10
-16

). 

From manual inspection of each geneview it appeared that the splicing signal was being 

generated from the central of three probesets targeting intron 1 of the protein coding 

transcript (Refseq), which corresponds to the alternative exon 1 in the Ensemble 

processed transcript (Figure 3.3.19). The processed transcript is predicted to have an 

alternative promoter and so the first exon overlaps with intron 1 of the RefSeq 

transcript.  

Three of the probesets are unique to the processed transcript, the central one of which is 

predicted to show differential expression between the wildtypes and C59X mutants. The 

possibility of differential expression of the two Zfp804a transcripts between C59X 

mutants and wildtypes is unlikely due to the absence of differential expression in the 

two flanking probesets. The predicted differentially spliced probeset and the adjacent 

downstream probeset are separated by only 3bp, the differences in expression at only 

one of these probesets is suggestive of a false positive prediction.  

The observed pattern of expression could be explained by a novel variant, but this 

would be a small fragment of less than 82bp or a technical artefact such as probe cross-

hybridisation to another part of the genome. The probeset sequence was checked for any 

potential cross-hybridisation using both BLAST and BLAT and was found to be a 

perfect match to Zfp804a only. The probeset does contain a dbSNP (rs28042740), if 

however this SNP was present in the mice, then it would be expected to affect 

hybridisation in both groups equally and so should not cause the differential expression 

observed. Next the sequence surrounding the probeset was checked for the presence of 

potential splice sites.  The consensus 5’and 3’splice sites are GT and AG respectively. 

Within the 3 bases separating the spliced probeset and adjacent 3’ probeset the 5’ 

consensus splice site of GT is present in the sequence, upstream of the spliced probeset 
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also contains the conserved AG 3’ splice site (Fig. 3.3.20). If an alternative cassette 

exon were present and incorporated more frequently in wildtypes, then it would be 

expected that a separate band with an additional ~80bp would be present when carrying 

out RT-PCR between exon one and three and this is not present in any of the 16 samples 

analysed. The splice event could also be indicative of an independent transcript, albeit a 

short transcript based on the lack of differential expression in the two flanking 

probesets. Primers specific to such a transcript could not be designed due to the very 

small distance between this probeset and the downstream probeset.  

The extended analysis in easyExon gave a significant result for differential splicing in 

Zfp804a in both the female and male analyses (MiDAS p value = 0.04 in both) (Figure 

3.3.21). The probeset predicted to be differentially spliced, however was different. In 

female C59X mutants the probeset predicted to be differentially spliced was in 

agreement with the Partek GS results. In the male analysis the probeset targeting the 

third exon of Zfp804a (4929502) was predicted to be differentially spliced in male 

C59X mutants.  

In AltAnalyze (as explained in Chapter 2.8.4.2) Zfp804a was actually included in the 

core analysis. No differential splicing was found in female C59X mice, but two 

probesets were predicted to be differentially spliced in male C59X mutants. One of 

these probesets (4929502) replicates the finding from the easyExon analysis, again 

found specifically in male C59X mutants. The other differentially expressed probeset 

(5424882) is upstream of exon 1 and is predicted to be due to alternative promoter 

usage. As no splicing event is found consistently across the different statistical 

algorithms and as there appears to be inconsistencies between female and male C59X 

mutants this suggests the finding may be a false positive.  
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 Female Male Combined  

Differential 

Expression p value                                    0.19 0.75 0.99 

Differential Splice 

p value    5.16x10-9 3.07x10-8   3.31x10-16  

Fold Change                                                       1.05 -1.04 1.02 
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Figure 3.3.19 Zfp804a Expression and Splicing.  No differential expression was 

observed in Zfp804a. Significant differential splicing was present in female, male and 

combined experiments and appeared to be due to the differential splicing observed in a 

single probeset targeting the first intron of the processed transcript. Both the Refseq, 

protein coding transcript and the Ensembl, processed transcript are displayed at the 

bottom of the figure. 
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agctgtagtgccatctctctctctctctctctctctctctctctctcatctctttagatgaagaacttaaataatttgcagaaaagtaacttag

ggtgcaaaaattcaatttttaaaatttaataaaatttatcatggaatcaattacaatgacaaaataaatgaagtttaaattaacaatata

tttatgtaaatatttatgaaaagaatgaaaatatccatttgcatatataattggcagtacatatctcttcttaaaggccacatttcagatgt

tcaccaaagaggattttatagtagctaagaattagctgtttacagcagaaccaaactacttttggaagctgtattttaatgttggcaaag

attggatctatgttcacttaatgcctctttctatatgatttactgtctttcttgtacttctgctgttttcttttttttcatttatattggcttaatctg

tgaattctttgctttttttgactcatgttttcaaacttgttttgctgatttttttatttgtcttttgttctttttctagttctaattgttatattaaagt

tgacaacagttgggtcaaagtaaactcaagggagtgctcattgtatgtttcccttgaaattttatgtttcag 

Figure 3.3.20. The sequence represents the alternative exon 1 from the Zfp804a 

processed transcript. 3 Affymetrix extended probesets are found in this sequence 

(shaded) with the middle one predicted to show differential expression between C59X 

mutants and wildtypes (bold). No differential expression is observed in the two flanking 

probesets suggestive of an alternative exon, specifically within this region. The 

consensus 5’ splice site (GT) is observed downstream of the probeset in the 3 

nucleotides residing between this probeset and the downstream probeset. A potential 3’ 

splice site is also present (AG) upstream of the differentially expressed probeset. 

Variable and less conserved sequences surrounding the consensus 5’ and 3’ splice sites 

have been proposed, which are thought to be important for accurate recognition of 

splice sites by the spliceosome. The above sequence does resemble these sequences in 

part.  These sequences are known to be particularly variable in alternative exons.  
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Figure 3.3.21. easyExon Extended Analysis C59X Mutants and Wildtypes. Whilst significant differential splicing between C59X mutants and 

wildtypes is observed in both females (Left, p = 0.04) and males (right, p = 0.04) the probeset predicted to be differentially spliced is different. In 

females the probeset is the same as that observed when carrying out the analysis in Partek GS. Differential splicing in male C59X mutants is observed 

at the 7
th

 probeset, 4929502 which targets exon 3 of Zfp804a.   
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3.4 Discussion.  

Sequencing confirmed the presence of a nonsense or PTC mutation in exon 2 of the 

Zfp804a transcript carried by the mutant mouse line. Qualitative assessment by RT-

PCR and quantitative assessment using the exon array (Affymetrix) revealed no 

significant differential expression of Zfp804a between the C59X mutant and wildtype 

mice. This finding was unexpected based on the prediction that the PTC would initiate 

the nonsense mediated decay surveillance mechanism and thus reduce the abundance of 

the Zfp804a mRNA specifically in the mutants.  

The C59X mutant transcript with the PTC is not a substrate for NMD, however this 

does not mean that protein levels are unaffected. The only way to determine the effects 

of the PTC on Zfp804a protein is to measure the protein itself using a suitable antibody, 

unfortunately such an antibody is not currently available.  There are examples in which 

transcripts with PTCs in the first exon escape NMD, for example β-globin (Neu-Yilik et 

al, 2011). PTCs in exon 1 of β-globin are bypassed with re-initiation of translation 

occurring at an upstream, in-frame start codon (Neu-Yilik et al, 2011), although the N-

terminally truncated protein is not functional (Neu-Yilik et al., 2011). I have not found 

any known examples where a PTC in exon 2 of a gene escapes NMD.   

Read through can occur when a PTC is actually read as a normal codon by the tRNA, 

due to the fidelity of the 3
rd

 base of the codon. The transcript escapes NMD and 

translation continues in the normal reading frame which generally results in full length 

protein being translated but at reduced levels.  

tRNA has been described to temporarily detach from the mRNA being translated, 

particularly at stop codons, where the ribosome is thought to pause. This can result in 

tRNA reattachment at an in frame nucleotide to the +1 frame, a process known as 

frameshifting (Farabaugh et al., 1993). When the distance between detaching and re-

attachment of the ribosome is greater and reattachment occurs at an out of frame codon 

this is called bypassing (Weiss et al., 1987). Bypassing and frameshifting are examples 

of ways in which a PTC containing mRNA transcript can escape the NMD mechanism 

but may result in an aberrant protein (Herr et al 2000; Neu-Yilik et al., 2011). If a shift 

in the reading frame occurs, this could result in a protein which is mis-folded which 

could result in the removal of the protein via the endoplasmic reticulem-associated 

protein degradation (ERAD) system (Sommer & Wolf, 1997). The system is responsible 
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for the detection of the incorrectly or incompletely folded proteins and their subsequent 

degradation (Hamptom, 2002).   

Literature on the stop codon as a tetranucleotide suggests the 4
th

 base is important to the 

fidelity of a stop codon with UAAG and UAAA being much more efficient at causing 

termination than UAAC and UAAU (McCaughan et al., 1995). The 4
th

 base in C59X 

mutants is a G, therefore the ability of the stop codon to terminate translation would be 

expected to be high. In the absence of nonsense mediated decay, a truncated Zfp804a 

protein may be translated.   

 

The absence of reduced Zfp804a mRNA abundance in the C59X mutants was 

unexpected, however I postulate that it is likely that the resulting translated protein will 

be truncated with a loss of function in homozygotes potentially accompanied by a gain 

of function if there is a truncated protein. In the absence of an antibody, I am unable to 

test these hypotheses.  

 

A detailed look at the expression across the Zfp804a transcript in both C59X mutants 

and wildtype revealed if anything a trend for upregulation of the protein coding 

transcript in mutants. Significant differential splicing of Zfp804a mRNA between C59X 

mutants and wildtypes was also observed which replicated across the female and male 

experiments, and the significance of which increased when combining all samples into 

one group. Differential splicing between C59X mutants and wildtypes appeared to be 

occurring in the processed transcript (Ensembl) rather than the Refseq protein coding 

transcript at a single probeset, suggestive of differential cassette exon usage. The idea 

that a novel smaller transcript may be present was explored but validation was impeded 

due to the proximity of the predicted spliced probeset from the adjacent probeset which 

showed no differential expression between C59X mutants and wildtypes. When 

considering splicing of Zfp804a in other software packages this splice event failed to 

replicate across algorithms and experiments. This event may therefore reflect a technical 

artefact.  

The number of genes differentially expressed between the C59X mutants and wildtypes 

were small. In the female and male experiments no genes were significantly 

differentially expressed following multiple test corrections. Whilst the role of Zfp804a 
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in transcription regulation can not be dismissed, these data do not support the 

hypothesis that Zfp804a regulates gene expression. When combining male and female 

data together to increase power, several genes were significantly differentially 

expressed following multiple test correction, but when inspecting the geneviews the 

transcripts did not show differential expression across the entire transcript.   

When the data were processed using alternative filtering and statistical methods, 

differential expression was seen for only 6 genes across all methods. These 6 genes are 

relatively robust candidates for altered expression as they were identified in the female 

experiment in each of the three statistical packages. The geneviews for all 6 generated 

in Partek GS are also indicative of true expression differences across the whole of the 

gene. Each gene displayed expression differences between C59X mutant and wildtypes 

of more than or equal to 1.5 fold. Despite the robust nature of these findings, identifying 

only 6 genes from ~15,000 does not provide conclusive evidence that Zfp804a regulates 

gene expression. Although these 6 changes are less likely to be technical errors, the 

statistical support is not strong enough to exclude these being chance positives. It is 

important not to dismiss these genes though or rule out a role for Zfp804a in gene 

expression regulation, particularly in light of the results of previous studies in which 

evidence for such regulation has been found in cellular models (Hill et al., 2012; 

Gigenti et al., 2012).   

The results of the alternative splicing analysis are somewhat more robust with ~7% of  

transcripts tested showing differential splicing between C59X mutants and wildtypes, 

many remaining significant following multiple test correction. When assessing the 

replication across the female and male experiments, significantly more genes than 

expected by chance replicated. Detailed inspection of the specific splice events, which is 

important as splicing results are known to be subject to more false positives (Bemmo et 

al., 2008), showed that in a high proportion of the transcripts the differentially spliced 

probeset(s) was the same in female and male experiments. Altered splicing between the 

C59X mutants and wildtype also occurred in the same direction across experiments.  

Combining the male and female data in addition to carrying out the independent 

analyses with alternative filtering criteria and algorithms produced a list of 9 strong 

differential splice candidates.  The lists used for the overlap had not been corrected for 

multiple testing and so differences in the lists may reflect the different false positive 

calls arising from the different annotation, filtering and statistical procedures used. To 
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allow for the fact that transcripts are included/excluded in each method according to 

different criteria, I included only transcripts that were included under each approach. 

The genes remaining are less likely to result from artefacts of a particular type of 

analysis. The overlap also produced a more manageable list size from which manual 

inspection of the data was carried out.  

Whilst the use of female brain tissue and F3i generation mice was not ideal this was all 

that was initially available. A major limitation of using mice from this generation is the 

potential for mice to harbour a number of additional ENU mutations, although at the 

outset, it was thought unlikely that the same additional ENU mutation would be found 

in enough mice to impact upon the experiment. Nevertheless, clearly it was important to 

carry out the study on mice from a later generation in which the likelihood of such 

additional mutations is reduced further (This analysis is presented in Chapter 5).  

Despite gender differences, there is a robust overlap of splicing changes replicated 

across the male and female mouse studies. In addition when combining the samples in a 

larger analysis and covarying for gender, splice differences are still apparent between 

C59X mutants and wildtypes. These are apparent despite the use of half and whole brain 

in female and male mice respectively, and the fact that the male animals were twice the 

age of the female mice, adding to the robustness of the data. In mice of different genders 

and age groups common expression and splice variation is found between C59X 

mutants and wildtypes.  

Of the differential splice candidates, Rap guanine nucleotide exchange factor (RapGef4) 

is highly enriched in the brain. Rare non-synonymous variants in this gene have been 

associated with autism (Bacchelli et al., 2003).  Two further interesting genes are the 

integrins Itga6 and Itgav which form part of a family of cell adhesion proteins.  Itga6 is 

expressed in neuronal tissue and there is evidence of its role in development processes 

(De Arcangelis et al., 1999).  Itgav is expressed in the striatum and all cortical layers 

(Pinkstaff et al., 1999) and is thought to have a role in neuronal migration during 

cortical development (Anton et al., 1999).  

 

To determine if these genes, and the others identified as altered in the exon array, could 

be validated in an independent assay, exploratory expression and splicing analysis was 

carried out using next generation RNA sequencing (RNAseq).   
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Chapter 4. RNA-Sequencing  

4.1 Introduction. 

Having looked at expression and splice changes in the C59X mouse strain using the 

exon array (Affymetrix) I found that the F3i generation mice homozygous for the 

mutation exhibited altered expression and splicing relative to wildtype controls. 

Replication across 2 independent experiments and 3 different software programs 

highlighted a number of consistent changes. To support the exon array work I 

proceeded by monitoring expression and splicing in the same mice using next 

generation RNA sequencing (RNAseq).  

The implementation of next-generation sequencing has enabled global RNA sequencing 

in a relatively unbiased and quantitative way. I sought to apply this technology to 

confirm the expression and splicing changes I had observed in the array data. Unlike 

microarray analysis in which gene expression is determined indirectly from the degree 

of hybridisation to probes, in RNAseq a direct measurement can be taken based on the 

number of sequence reads at specific transcripts. This is therefore an unbiased approach, 

with no restriction to the transcripts represented on the chip one happens to be using. 

Given the unbiased nature of RNAseq, novel transcripts can be identified, and the 

application of RNAseq has led to the realisation that the transcriptome is far from 

complete, novel transcripts being discovered in each successive study (Trapnell et al 

2012).  

Given the expense of RNAseq, the initial plan was to carry out a pilot study on a subset 

of the samples from F3i mice used in the exon array analysis, and, if technically 

successful, followed up with a larger independent, later generation sample. The 

intention was that the initial pilot would allow the validity of the exon array findings to 

be determined whilst acting as a technical validation of the exon array procedure and 

analysis. The larger follow-up study would then allow a biological validation of any 

consistent expression or splice changes in the C59X mutants. 
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4.2 Methods.  

4.2.1 Sample. 

Brain RNA samples from 4 of the males used in the previous chapter were chosen for 

the pilot based on quality and volume of RNA.  2 C59X mutants (ZBDEZ2e & 

ZBDEZ4a) and 2 wildtypes (ZBDEZ6a & ZBDEZ21c) were chosen. All samples had 

an RNA integrity number (RIN) above 8.  

4.2.2. Sample Preparation. 

RNA was prepared using the low-throughput (LT) protocol with the Illumina TruSeq® 

RNA sample prep kit (Illumina, San Diego, CA, USA). Samples were initially re-

quantified using 1μl of sample on the Nanodrop 1000 spectrophotometer and then 

prepared as per the manufacturer’s instructions by myself and K. Matripriganda (Lab 

manager responsible for setting up new technologies in the host lab) with assistance 

from laboratory technicians. In addition to the 4 samples a Universal Human reference 

RNA (Stratagene) sample was used as a positive control and a no template sample as a 

negative control. 4μg RNA in 50μl H2O was purified using oligo dT magnetic beads to 

capture poly-A RNA which was then fragmented. Based on the published protocol, to 

ensure optimal coverage of the transcriptome in conjunction with efficient library 

production, fragments were expected to range from 120-200bp with an average size of 

150bp. Double stranded cDNA synthesis was achieved using reverse transcriptase and 

random hexamer primers. Blunt ends were formed by removing overhangs with a 

proprietary mix either of exonuclease (degrade 3’ overhangs) or polymerase (to fill in 5’ 

overhangs). Prior to ligating indexing adapters to the fragments, a single A nucleotide 

was added to the 3’ blunt end of the fragment which is complementary to the T 

nucleotide at the 3’ end of the adapter and so aids the ligation of fragment and adapter. 

This is done using an A-tailing mix.  PCR was used to amplify the DNA library and 

only fragments with adapters at both ends were amplified. Each step was carried out in 

accordance with the manufacturer’s instructions.  

 

4.2.3. cDNA Library Quality Control. 

To determine the fragment sizes within, and quality of each cDNA library, 1μl of 

sample was loaded into a DNA chip and run on the Agilent 2100 Bioanalyser (Agilent 
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Technologies, Palo Alto, CA). Distribution must be within the expected range for 

enrichment to be successful. Fragment size and purity were assessed with a product size 

of 200-300bp expected for paired-end libraries, according to the manufacturer’s 

instructions. 

 

4.2.4 Sequencing. 

Samples were sent to the core sequencing facility at Bristol University. Paired end 

(~100bp) reads were generated on an Illumina Genome Analyzer IIx.  Raw sequence in 

the form of fastq files were acquired from the Bristol facility for analysis.   

 

4.2.5 RNAseq Quality Control.  

Raw files (FASTQ) files were imported into the FastQC program (v.0.10.1) (Babraham 

Bioinformatics) (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to 

determine the quality of the sequencing. Basic statistics as well as 10 QC statistics are 

generated. For each metric FastQC will mark the sample as either acceptable in quality, 

warn that sample may be verging on poor quality or state that the sequence has an error 

or has failed the metric. If a sample fails a certain metric this simply means the results 

differ from that expected in FastQC and should not be taken that the sample is poor 

quality and should be discarded. FastQC is used to determine areas in the data which 

may have quality issues and allows you to determine if the source is one that was 

expected given the type of experiment or if a genuine quality issue has arisen. Errors 

made during cluster generation and sequencing are easier to detect than errors made 

during library preparation. This is because the errors made in the former two affect the 

detected signal and therefore the quality score. Basic statistics such as the total number 

of sequences processed, sequence length and the number of sequences filtered are 

produced for each input sequence. An explanation of the 10 QC metrics is described in 

detail alongside the presentation of the results (4.3.2.1-4.3.2.10) (Further information 

can be found at: 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Mod

ules/).  

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/
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4.2.6 Alignment, Assembly and Differential Expression Analysis.  

To align reads to the genome, assemble transcripts and quantify expression changes the 

Tuxedo protocol was followed (Trapnell et al., 2009; Trapnell et al., 2010). This 

protocol is in wide use (Lin et al., 2011, Trapnell et al., 2012). It is particularly 

compatible with sequencing carried out using the Illumina sequencing platform and 

works best with sequencing generated on model organisms for which a reference 

sequence is available. The following procedure was carried out using Unix.  

 

4.2.6.1. Sequence Alignment and Identification of Splice Junctions 

Raw sample files were aligned to the genome (mus musculus NCBI build 37.1) and 

splice sites identified using TopHat (v.1.3.2) (Trapnell et al., 2009) 

(http://tophat.cbcb.umd.edu/), which is part of the software suite collectively known as 

the tuxedo protocol/suite. TopHat runs on the Linux operating system and was 

developed specifically for reads generated using the Illumina genome analyser. Reads 

that are 75bp or greater are optimal for analyses.  TopHat utilises Bowtie (http://bowtie-

bio.sourceforge.net/index.shtml) (Langmead et al., 2009) for initial sequence alignment 

to the genome. Bowtie alone is not sufficient as the software cannot align reads to 

reference sequences which differ as the result of large mismatches such as might occur 

if the read spans an intron. TopHat takes initially unaligned reads and separates them 

into shorter reads called segments which are then re-aligned to the reference genome.  

Tophat then infers that segments within a read that map more than 100bp apart most 

likely span a splice junction and in this way a list of splice sites is generated. As no 

reference splice site annotations are used in this process, novel splice sites can be 

identified (Trapnell et al., 2012). Fastq files were used as the input for TopHat. The 

script used for alignment, alongside a description of the components can be found in 

Appendix 4.1  

The output from TopHat is a BAM file (binary version of sequence alignment map 

(SAM)).  Alignments were viewed by indexing the BAM file for each sample using 

SAMtools (http://samtools.sourceforge.net/) (For script see Appendix 4.2) and then 

uploading them into the Integrative Genomics Viewer (IGV) 

(http://www.broadinstitute.org/igv/) (Robinson et al 2011; Thorvaldsdottir et al., 2012)  

 

http://samtools.sourceforge.net/
http://www.broadinstitute.org/igv/
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4.2.6.2. Transcript Assembly. 

Cufflinks (v.1.2.1) (Trapnell et al., 2010) (http://cufflinks.cbcb.umd.edu/) was then used 

to assemble transcripts from splice site information from TopHat. Cufflinks also forms 

part of the tuxedo protocol.  The aligned BAM file is used as input into Cufflinks.  Due 

to many genes having multiple isoforms, the assignment of reads to a particular isoform 

rather than another is not straightforward. Cufflinks assembles the data in the most 

parsimonious way possible to explain the data, assembling the minimum number of 

transcript fragments which can explain the splice sites identified. Removal of pre-

mRNA transcripts and artefact transcripts is also carried out at this point. Each sample 

is aligned individually. When sequencing is of insufficient depth (less than 10 million 

reads) the amount of partial transcript fragments is greater which can increase the risk of 

false isoform calls. To overcome this, identified novel isoforms and transcripts of high 

interest should be validated using an alternative method such as RT-PCR, or Rapid 

Amplification of cDNA Ends (RACE) can also be used to ensure transcripts ends are 

more accurately defined as recommended by Trapnell et al. (2012) (Scripts used for 

transcript assembly can be viewed in Appendix 4.3). 

A normalisation procedure is required in RNAseq, as longer transcripts produce more 

fragments compared to shorter transcripts.  If two transcripts had equal abundance but 

one was twice as long as the other, the longer transcript would appear to have twice the 

(reads) abundance of the shorter transcript. Therefore the length of a transcript must be 

taken into account in abundance calculations. In Cufflinks this is done by considering 

the number of reads per transcript and then normalising this value by the length of the 

transcript. In addition the reads need to be normalised to the total number of sequenced 

fragments from the sequencing machine to account for run to run variability (Trapnell et 

al., 2012).    

The normalisation method used in Cufflinks for paired-end reads is FPKM (fragments 

per kilobase of transcripts per million mapped fragments) (Mortazavi et al., 2008). 

FPKM is comparable to the RPKM (reads per kilobase of transcripts per million 

mapped reads) used for single-end sequences. The FPKM is proportional to the 

abundance of a transcript (Trapnell et al 2010).  

When the data contain a small proportion of genes that are highly expressed, FPKM is 

subject to a known bias that can skew the differential expression analysis and results.  

This is dealt with by using the –N option (described in Appendix 4.3) which normalises 
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to the upper quartile of expressed genes rather than the total number of mapped 

fragments as the former is more robust when there are less abundant genes or transcripts 

(http://cufflinks.cbcb.umd.edu/).  

The assemblies of each sample were then merged together using CuffMerge (part of the 

Cufflinks software package). This helps to compensate for relatively poor sequencing 

depth. Correct reconstruction of a gene in a single sample is difficult when there is 

insufficient sequencing depth. By merging all samples together the gene is more likely 

to be reconstructed accurately. The reference (NCBI build 37.1) was also merged with 

the samples forming a comprehensive annotation (Trapnell et al., 2012).  To merge the 

assemblies I used gedit (a text editor) to create a file called ‘assemblies.txt’ within 

which the assembly files for each sample were listed and then CuffMerge (Appendix 

4.4).  

 4.2.6.3. Differential Expression Analysis. 

To compare the relative amounts of assembled transcripts represented in each sample 

and determine if the difference was statistically significant Cuffdiff 

(http://cufflinks.cbcb.umd.edu/) was used (Appendix 4.5). Samples were compared 

according to experimental group, therefore samples 1 and 2 representing the 2 C59X 

mutants were compared to samples 3 and 4 representing the 2 wildtypes.  The 

expression of a transcript is calculated based on the number of reads as described above.  

To increase the accuracy of expression measurements, Cuffdiff models the technical 

variation in the data, which can arise due to artefacts in the library preparation or 

sequencing procedure and this is then adjusted for. Cuffdiff tries to estimate this 

variation using a likelihood based approach (Roberts et al., 2011) and uses this 

information when determining expression differences between experimental groups 

(Trapnell et al., 2012). The relative abundances of each transcript are compared using 

the Cuffdiff command. If a transcript or gene has several isoforms it can be problematic 

to determine which isoform a read is from. A linear model is used in Cuffdiff to work 

out, using maximum likelihood, which way of assigning abundance to each transcript 

best explains the reads generated (Trapnell et al., 2012). Total gene expression equals 

the combined expression of the relevant isoforms. Following this a results file is 

produced containing results of differential expression and differential splicing analyses. 
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4.3 Results. 

4.3.1 cDNA Library Quality Control. 

To ensure the cDNA library preparation was comprised of uniform sized fragments each 

sample was run on the Agilent Bioanalyser (Fig. 4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. cDNA library Quality Assessment. 1μl of each of the 4 samples was 

loaded into a chip and run on the Agilent 2100 Bioanalyser. In each sample the majority 

of fragments were around ~270bp, which is within the expected size range. The second 

peak at ~1500bp is likely to represent concatenated adapter sequences. As this 

represents only a small proportion of the sample this is considered adequate quality 

(Illumina) and I was able to proceed to the cluster generation step with these samples.  
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4.3.2 Sequence Quality Control.  

From the bioanalyser trace the fragments in each sample appeared to have a similar 

distribution.  Therefore the cDNA library preparation stage passed this quality control 

measure. The sequencing data were assessed for quality using FastQC software. Initially 

basic statistics were generated which showed all samples to contain mate-paired end 

reads of 110bp sequences.  The total number of sequences was 41M, 61M, 61M and 

54M for samples 1-4 respectively.  

4.3.2.1 Assessing ‘Per base sequence quality’  

The distribution of quality scores at each position in the read is plotted. Each base in a 

read is assigned a quality score using a Phred-Like algorithm where Qphred = -10log10(p), 

where p represents the estimated probability that a base call is incorrect (Ewing et al., 

1998; Ewing & Green, 1998). For example a quality score of 30 would represent a 1 in 

1000 chance that the base had been called incorrectly (Ewing & Green, 1998). At each 

position a box and whisker plot is drawn (Fig. 4.2). A higher quality score represents a 

more accurate base call. A warning is issued if the lower quartile of any base is less than 

10 or if the median is less than 25 at any base position. Sequencing is deemed to have 

failed quality control if the lower quartile of any base is less than 5 or if the median is 

less than 20 at any base position 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The plot in Figure 4.2 was 

generated from the sequencing of sample 1 (a C59X mutant) which had the lowest per 

base quality score. The median quality in each sample went below a median quality 

score of 20 in at least one base toward the end of the read. The low quality scores in this 

metric for each of the 4 samples indicate poor quality sequencing. The very low quality 

scores at the end of the sequences most likely reflect the decrease in quality calls on 

most sequencing platforms further into the sequencing process. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure 4.2. Per Base Sequence Quality. The position of the base within the read is 

plotted on the x-axis with quality (phred) score on the y-axis. A higher quality score 

represents a more accurate base call. Three zones are present on the y axis, depicted by 

a green, orange and red background colour, which depict good, reasonable and poor 

quality base calls respectively (as defined in section 4.3.2.1).  The yellow boxes 

represent the inter quartile range (IQR), with the upper and lower whiskers representing 

the 10 and 90% points. The red line represents the median and the blue line the mean 

quality. The above is an example showing sample 1, a C59X mutant. All the samples 

failed this metric due to the median quality being less than 20 at, at least one base 

position.   

 

 

4.3.2.2 Per sequence quality Scores. This metric is generated to determine if a subset 

of sequences from each sample have universally low quality scores. Low quality scores 

can arise due to poor imaging based on position on the flow cell. Sequences with low 

quality scores should only represent a small percentage of the total number of 

sequences. FastQC denote sequences with modal mean quality scores below 27 (0.2% 

error rate) as quality of that sample is poor 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Samples 2 (Fig. 4.3) and 4 

had modal mean quality scores of greater than 27 (Fig. 4.3), with the quality score being 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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38 in both. The modal mean quality score in samples 1 and 3 was only 2, in one of the 

pair-end reads. Both samples were considered to have poor quality based on this quality 

score. As more than a small proportion of the data had low mean low quality score this 

could reflect a systematic error where perhaps one end of the flow cell was incorrectly 

read, however this is merely speculative.  

 

Figure 4.3. Per sequence quality Scores. Along the x-axis the mean phred quality 

score was plotted with frequency on the y-axis. In this example of sample 2 (C59X 

mutant) the modal mean quality score is 38 which is above the FastQC cut-off of 27 and 

represents good sequence quality scores. The majority of sequences have good quality 

scores and only a small subset have low quality scores, which most likely reflects their 

position on the edge of the field of view when imaging the sequences.  

 

 

4.3.2.3 Per base sequence content. 

This metric determines the proportion of G, T, A and C bases as a function of the 

position along the read throughout the sequence run for a given sample (Fig. 4.4). 

Across the read you would expect the line representing %G, T, A and C to be constant. 
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This demonstrates the relative amount of each base and should reflect the overall 

amount of each base in the transcriptome. If the cDNA library generated was random 

then the lines would be expected to run parallel as an equal proportion of each base 

would be expected.  A bias in one particular base is indicated by a divergence form the 

parallel lines. If this divergence occurs in different bases according to the position 

within the read this may reflect a contaminating overrepresented sequence. If a 

divergence from parallel lines (and therefore unequal representation of each of the four 

bases) is seen across all positions of the read it indicates that the library was biased for 

particular sequences or a systematic error may have occurred during sequencing, such 

as difficulty in sequencing AT rich repetitive sequences (Harismendy et al., 2009).  A 

difference of more than 10% between A and T or C and G at any position in the read 

would indicate questionable quality, likewise a difference of more than 20% between A 

and T or C and G in any position is representative of an unequal proportion of each of 

the 4 bases throughout a read which is indicative of low quality sequencing 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). This however was not the 

case in any of the 4 samples. Each had a difference between A and T or C and G that 

was >20% at one or more position in the sequence. In each case this occurred in the first 

~10bp of the read. As this bias is not present across the whole sequence it is unlikely 

due to a systematic error. That fact it occurs in the first ~10 bases is most likely 

accounted for by the random primers used in the cDNA library preparation, which bias 

the nucleotide composition of a sequence specifically at the start of a read (Hansen et 

al., 2010).  

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure 4.4 Per base Sequence Content. The proportion of G, T, A and C bases as a 

function of the position along the read throughout the sequence run is plotted above for 

sample 3 (this plot is representative of the plot observed for all 4 samples). The 

difference between A and T or C and G that was greater than 20% at one or more 

positions in the read occurred in all 4 samples which may indicate poor quality 

sequencing as defined in (4.3.2.3), however this was only observed in the first ~10bp of 

the read in all 4 of the samples.  

 

 

4.3.2.4 Per base GC content.  

This metric determines the GC content as a function of the position along the read 

throughout the sequence run for a given sample (Fig. 4. 5). Variable GC content across 

the positions in a read may indicate a strongly overrepresented sequence that is 

contaminating the library. A greater than 10% fluctuation from the mean GC content at 

any base position indicates that the sequencing is of poor quality 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The GC content at one or 

more base positions varied from the mean by more than 10% in each sample which 

therefore failed this metric. This always occurred in the first 15 bases of the read and 

again most likely reflects the random primers used in library preparation (Hansen et al., 

2010) 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure 4.5 Per base GC content The GC content as a function of the position along the 

read, throughout the sequence run for sample 4 was plotted. A horizontal line is 

expected as the GC content should not vary when using a random primed RNAseq 

library. The GC content at one or more positions in the read varied from the mean by 

more than 10%.  This was the case in samples 1, 2 and 3 as well.  The variation in GC 

content from the mean was observed only at positions 1-15 of the read.  

 

 

4.3.2.5. Per sequence GC content  

The distribution of GC content across all sequences for a given sample was compared to 

a reference distribution predicted from the modal GC content in the actual data. A 

normal distribution is expected. The central peak should reflect the GC content of the 

underlying transcriptome. Contamination, e.g., from an adapter sequence, can cause an 

unusual distribution. If more than 15% of the reads deviate from the normal distribution 

this could be indicative of poor quality sequencing and should be looked into further. 

Distribution of GC content did not deviate from a normal distribution in samples 1 and 

3. GC content deviated by more than 15% in samples 2 and 4 (Fig. 4.6) and may 

indicate contamination from an overrepresented sequence such as an adapter. FastQC 

recommends looking into fluctuations occurring in more that 15% of reads, but that 
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fluctuations in over 30% of reads is a real cause for concern and neither sample 2 or 4 

passed this threshold (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

Figure 4.6 The distribution of GC content across all sequences for sample 4 was 

plotted. More than 15% of the reads deviated from the normal distribution which could 

be indicative of poor quality sequencing and should be looked into further. The central 

peak should reflect the GC content of the underlying transcriptome. 

 

 

4.3.2.6 Per base N content.  

When there is not enough confidence to make a base call, a base is designated ‘N’ rather 

than one of ACTG. The ‘per base N content’ metric is used to determine the percentage 

of base calls that were called as N’s over each position of a read. A small proportion of 

N calls are expected, particularly toward the ends of reads but if greater than 5% of base 

calls were ‘N’, this indicates that there was insufficient evidence to make a sequencing 

call at that position most likely due to poor quality sequencing and this is even more 

likely if more that 20% of the calls at a particular position are given as 

‘N’(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The results are 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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displayed for sample 1 (Fig. 4.7) and reflect that at no position along the read did the % 

N call exceed 5%. This was true of the results for samples 2, 3, and 4 as well.  

 

Figure 4.7. The percentage of ‘N’ base calls over each position of a read for 

sequences from Sample 1. The position in the read was plotted along the x-axis and the 

% of N’s on the y-axis, to determine the percentage of N base calls at each position of a 

read.  In this and the other 3 samples the % of N base calls at any of the positions of the 

reads did not exceed 5% which reflects adequate quality.  

 

 

4.3.2.7 Sequence length distribution.  Some sequencing machines will remove poor 

quality bases from the ends of each fragment resulting in sequences of varying length 

despite the library containing uniform sized fragments. If more than one sized sequence 

is observed in your sample or if any sequences have a length of zero then FastQC will 

highlight that sample as having potential quality issues. Sequence size distribution was 

plotted to ensure sequence length did not vary due to the removal of poor quality bases 

from the ends of fragments by sequencers. The graph should display a peak at a single 

size and this was the case for all 4 samples (Fig 4. 8) 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure 4.8 The distribution of Sequence lengths for all sequences in Sample 1. All 

sequences in Sample one were a uniform length of 110 bases. Exactly the same plot was 

generated for Samples 2, 3 and 4 with all sequences having a length of 110bp.  

 

 

4.3.2.8 Sequence Duplication Level.  Most sequences will be represented once (except 

in the final output). Low levels of sequence duplication are expected and indicate a high 

level of coverage of the target. High duplication levels may indicate an enrichment bias 

possibly during PCR amplification. How many times a sequence is duplicated is 

determined. Each sequence is then put in 1 of 10 categories based on how many times it 

is duplicated ranging from 1 (it is unique) to 10+ which indicates the sequence is 

present in the output 10 or more times.  The proportion of duplicate to singleton (unique 

sequences represented only once) sequences in each of these 10 groups is then plotted 

(Fig. 4.9). A slight increase in the proportion of duplicates to singletons is expected in 

the 10+ category due to it including all sequences duplicated 10 or more times not just 

10.   FastQC truncates each sequence to 50bp because an exact sequence match is 

required to define a duplicate.  FastQC only considers the first 200,000 sequences in a 

file to reduce processing time, and proposes that this is an adequate number to gauge the 

% of duplicate sequences in the whole sample 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).   

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure 4.9. The Percentage of Duplicates in the Total Sample. A large increase in the 

10+ category indicates that ~35% of samples appear in the final dataset 10 or more 

times. More than 50% of the total number of sequences in sample 2 (above) were 

estimated to be duplicates which is indicative of poor quality sequencing The 

percentage of duplicates relative to singleton sequences was plotted for each level of 

duplication from unique (1) to 10+ (duplicated 10 or more times in the sequencing 

output). 

 

In Samples 1 and 3 more than 20% of the total sequences were duplicates. In samples 2 

and 4, 54% and 52% of the total sequences were duplicates respectively.  In FastQC if 

more than 50% of the total number of sequences were duplicates then this is indicative 

of low quality sequencing (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

The large number of duplicates is comprised mainly of samples represented 10 or more 

times in the output.  The plot shown in figure 4.9 was representative of each sample and 

although FastQC guidelines suggest that a plot like this represents poor quality 

sequencing it is commonly observed in RNA-sequencing.  The reason for this is that 

with RNAseq a certain proportion of sequences will occur very frequently (e.g., 

housekeeping genes) whilst others will be very rare. In order to sequence the rare 

transcripts the common transcripts are over-sequenced, resulting in a high level of 

duplicates present in the data. Therefore some duplication is unavoidable for RNAseq 

data.   

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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4.3.2.9 Overrepresented sequences. No single sequence is expected to contribute a 

significant proportion of the total sequences. If this does occur, it might reflect 

contamination, maybe of adapter sequences, or it could be true biological variation. Any 

sequence contributing more than 0.1% of the total is identified in FastQC.  Again only 

the first 200,000 sequences are analysed so there is the possibility of missing an 

overrepresented sequence that occurs later in the file. The flagged overrepresented 

sequences are then compared to a list of common contaminants from a database 

accessed by FastQC and if a match is found, which is at least 20bp long and has a 

maximum of one mismatch, the identity is displayed. This is not robust but should be a 

good indicator of the type of contaminant. Often adapters are the cause and as they have 

similar sequences the precise adapter may not be flagged up, but another adapter will.  

Again reads are trimmed to 50bp. A sequence which makes up more than 0.1% of the 

total is considered overrepresented in FastQC and depending on the source may require 

further processing of the data to remove it 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

No overrepresented sequences were identified in the 4 forward reactions. In the reverse 

a single sequence was identified in all 4 samples and contributed to 0.23-0.28% of the 

total number of sequences and so was identified as overrepresented by FastQC. The 

sequence was not identified as a common contaminant, rather it was a string of N’s. 

Given that a sequence consisting of N’s is overrepresented in the sample it is surprising 

that the ‘per base N content’ was not a cause for concern. Although greater than 0.1% 

this is not a great enough proportion of the total number of sequences to have an impact 

upon the other QC results, as the problems appear to arise in the first 1 to 10 bases and 

the overrepresented sequence would effect more bases than this if it were contributing 

to low quality scores. No adapter contamination was observed in the sequences.  

 

4.3.2.10 Overrepresented K-mers.  

Smaller overrepresented sequences (less than 20bp) will be overlooked in the 

‘overrepresented sequence’ metric (4.3.2.9) due to the applied stringency (the match 

must be at least 20bp with only 1 mismatch). Overrepresented 5-mers are analysed to 

compensate for this. The expected proportion of a k-mer is estimated using the whole 

library base content and then the observed proportion of the k-mer is determined from 

the actual count. An observed-expected ratio is then calculated. The top 6 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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overrepresented k-mers were plotted in a graph to demonstrate their relative enrichment 

across the read length. This plot can be used to determine if the enrichment in each k-

mer occurs at the same position within the read each time or if it is random. To be 

reported as overrepresented the k-mer must show a 3-fold enrichment in the observed 

proportion relative to the expected proportion or there must be more than 5-fold 

enrichment in observed relative to expected proportion at a particular base.  Greater than 

10-fold enrichment of a specific k-mer indicates potential poor quality sequencing. 20% 

of the library is actually tested 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  

k-mers with relative 3-fold enrichment were identified in all 4 samples. A list of the 

overrepresented k-mers was generated and the top 6 were plotted in a graph to 

demonstrate the enrichment across the read length. The most overrepresented k-mer was 

either TTTTT or GGGGG occurring from position 2 or 105 within the read 

respectively. With the exception of the GGGGG at position 105 all overrepresented k-

mers were in the first 10bp of the read. Each sample had ~30 overrepresented k-mers. 

As the majority of overrepresented k-mers occur from the start of the read this is most 

likely attributable to the use of random primers in the generation of the cDNA library.  

4.3.2.11 RNAseq Quality  

The metrics I generated using FastQC were not designed to be used to dismiss samples 

based on the passing or failing of a metric, but instead used to identify areas in the 

sequencing where there could be a problem 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Whilst the sequencing in 

this experiment does diverge from this expected range in some metrics this is due to the 

expected high proportion of duplicates in an RNAseq experiment and the variation at 

base position 1-10 in a read due to the use of random hexamers in the library 

preparation. These are well documented and are not a cause for concern with regards to 

the quality of the data. The low ‘per base sequence content’ quality scores were 

however a cause for concern as this metric generated particularly low quality scores.  

The RNAseq data were analysed to determine genes differentially expressed and spliced 

in the C59X mutants, but with the caveat the any results obtained could be artefacts of 

the low quality sequencing and would therefore require validation with a 

complementary technique.  

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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4.3.3 Zfp804a C59X mutation. 

Each BAM file was visualised in the Integrative Genomics Viewer (IGV) to confirm the 

presence of the C59X mutation in the mutants (Fig. 4.10). The mutation was present in 

both mutants and the constitutive GT present in both wildtypes. 

When viewing the coverage of Zfp804a I also identified two additional reads 5’ of the 

constitutive exon 1 in one of C59X mutants that mapped across to constitutive exon 2.  

These two reads could indicate an alternative isoform with an alternative exon 1 that 

skips the constitutive exon 1 in its entirety and maps to the start of exon 2 (Fig. 4.11).  

 

Figure 4.10. Zfp804a C59X mutation. Output from the integrative genomics viewer 

(IGV) shows the sequencing data of four samples following alignment. The viewer is 

zoomed onto exon 2 of the Zfp804a Refseq. Each of the grey bars represents a read. The 

C59X mutation can clearly be seen in the two mutants. The two base substitution 

GT>AA results in a STOP rather than the constitutive cysteine residue.  

 

 

In order to confirm the predicted alternative isoform I designed primers (Appendix 4.6) 

to amplify between the alternative exon 1 and exon 2 which spanned the C59X mutation 

Wt 

Wt 

Mutant 

Mutant 
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in exon 2. The read representing the alternative exon is 150bp long, 94bp different to 

constitutive exon 1 and lies ~1300bp upstream of exon 1 with no obvious sequence 

similarities.  These were used to amplify cDNA for the same samples used in the 

RNAseq experiment (Fig. 4.12). In all samples, a PCR product was detected of the size 

expected if the predicted novel isoform exists.   

 

Figure 4.11. Predicted Alternative Zfp804a Isoform. The BAM alignment files 

(displayed using the Integrative Genomics Viewer (IGV)) are shown for all 4 samples 

with reads from the RNA derived from two C59X mutants (top) and two wildtypes 

(below). Specifically the region between Chr2 81,891638-81,895808 is shown. At the 

bottom is the RefSeq track. Zfp804a constitutive exon 1 is in blue. In the second track 

the black circle highlights 2 reads from which a novel exon upstream of Zfp804a 

constitutive exon 1 was identified. From the plot the reads can be seen to skip the 

constitutive exon 1 and map to exon 2 (out of view). This was present in only one 

sample, a C59X mutant. 

 

 

 

The PCR product was next sequenced, confirming that the alternative exon links to the 

start of constitutive exon 2 (Fig 4.13). Sequencing also showed that the C59X mutation 

was present in this isoform in both the mutants. This is a novel isoform not yet 

documented in any of the genome browsers. 
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Figure 4.12. RT-PCR of Zfp804a Alternative Exon1 – Exon 2. The 4 samples run in 

the RNAseq experiment were assessed to determine if an isoform containing an 

alternative exon 1 was expressed in the mRNA. Not only was this isoform expressed 

(band at 173bp) in the C59X mutant from which the presence of this exon was inferred 

from the RNAseq output, it was expressed in all of the samples. Mut C59X mutant 1 

and 2. Wt C59X Wildtype 1 and 2. RT+ Reverse transcriptase positive RT- Reverse 

transcriptase negative control NTC no template control. 

 

 

 

Following visualisation of the alignment files I used Cufflinks and Cuffdiff to determine 

if there were differences in expression or splicing at Zfp804a between C59X mutants 

and wildtypes as suggested by the exon array data. Based upon Cuffdiff metrics, both 

alignment and the depth of sequencing was adequate to test differential expression. 

Zfp804a mRNA was significantly upregulated in mutants (fold change = 1.56 

upregualtion in C59X mutants relative to wildtypes, p = 2.26x10-7) and this remained 

significant following Benjamini and Hochberg (1995) FDR correction for multiple 

testing, replicating the findings from the exon array analysis. However, there were not 

enough alignments for splice analysis. Despite the apparent poor quality of the RNAseq 

data the validation of the predicted novel Zfp804a exon suggested some insights could 
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be gained and therefore I evaluated the most robust differential expression and splicing 

events predicted from the array in the sequencing data.  

 

Figure 4.13 Sequencing of Zfp804a Alternative Isoform. Sequencing of the RT-PCR 

product showed that the constitutive exon 1 was skipped in this isoform and the 

alternative exon 1 sequence runs straight into constitutive exon 2 sequence (indicated by 

the arrow). As the C59X mutation position was spanned by the primers the traces could 

be analysed to see if the C59X mutation was present in this isoform. As the traces show 

the mutation was present in both mutants and the cysteine residue in both wildtypes 

(Shown in the sequence within red rectangle). Grey shaded areas indicate where 

sequence quality decreased toward the end of the amplicon near the reverse primer.   

 

 

 

4.3.4 Differential Expression in C59X Mutants. 

The differential expression analysis was run on 31,974 transcripts of which 30,199 had 

suitable quality sequencing for the tests. Of the 30,199, 2571 were significantly 

differentially expressed between C59X mutant and wildtype with 489 genes remaining 

significant following Benjamini and Hochberg FDR correction. Of the 6 genes found to 

be differentially expressed in females in all 3 exon array software analyses, 5 were 
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highly significantly differentially expressed in the RNAseq data, with the remaining 

gene unable to be identified in the output from cuffdiff (Table 1).  

 

Gene 

Symbol 

Status Fold 

Change  Direction of Change 

P value FDR Sig 

Arc OK 
2.76 Mutant up vs Wildtype 

0 yes 

Dusp1 OK 
2.41 Mutant up vs Wildtype 

1.53x10
-13

 yes 

Npas4 OK 
1.92 Mutant up vs Wildtype 

4.77x10
-09

 yes 

Nr4a1 OK 
2.42 Mutant up vs Wildtype 

0 yes 

Snca OK 
>154.77 Mutant up vs Wildtype 

4.13x10
-30

 yes 

Egr2  No Data 

Table 1. Replication of Top candidates from Exon Array in RNAseq Data. Of the 6 

most robust differential expression findings from the exon array, 5 replicated in the 

RNAseq data. Egr2 was not identified in the output from Cuffdiff.   

 

4.3.5 Alpha Synuclein (Snca) 

One of the most significant differentially expressed genes was the alpha synuclein gene 

(Snca). The fold change in Snca was greater than 154.77 upregulated in C59X mutants 

relative to wildtypes due to the normalised expression value in the wildtype groups 

being 0, i.e., no expression of Snca in either of the 2 wildtype samples. To determine if 

any sequence reads were present in the wildtypes, I viewed the alignment files in IGV 

(Fig. 4.14). This confirmed the absence of any Snca reads in the two wildtypes. Reads 

for both Snca transcripts were present in both the C59X mutants. 

Given this surprising result, I undertook a literature review of the Snca gene in mice. 

This revealed a paper describing a C57BL/6J substrain that have a deletion spanning the 

Snca locus (Specht & Schoepfer, 2001). This deletion was originally identified by 

chance in a similar gene expression study using a transgenic mouse model that had been 

backcrossed onto the C57BL/6JOlaHsd substrain from Harlan (Bicester, UK).  Since 

C57BL/6J mice were used in the backcross breeding experiments in this study, it 

seemed possible the substrain with this deletion had been used.  By determining the 

source of the C57BL/6J mice used for backcrossing I confirmed that the substrain used 

for backcrossing the C59X ENU mutants was indeed the C57BL/6JOlaHsd substrain 

from Harlan (Bicester, UK). To determine how widespread this effect was the average 
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Snca expression, based on the expression values from the array, was determined for all 

16 mice used in the exon array (Fig. 4.15).  

 

Figure 4.14. Alpha Synuclein (Snca) Expression. Viewing the alignment files of all 4 

samples in IGV confirmed no reads of Snca transcripts (Displayed in the Refseq genes 

track) in the two wildtypes (bottom) where as reads were present in both C59X mutants.   

 

 

 

All but one of the 7 C59X mutants expressed both Snca transcripts. Of the 9 wildtypes, 

one expressed both transcripts and two others expressed only one of the transcripts. 

These results therefore confirmed that the expression of the Snca gene by chance 

correlated with the C59X mutation in Zfp804a. Given that Snca expression correlates 

with Zfp804a genotype, differences in expression between C59X mutants and wildtypes 

could be attributable to deletion of the Snca gene.  
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Figure 4.15. Alpha Synuclein Expression. Plotting the average expression of alpha 

synuclein (y-axis) for each sample (x-axis) showed that 6 of the 7 C59X mutants still 

expressed Snca and 2 of the 9 wildtypes expressed Snca. Therefore Snca expression 

appears to correlate with Zfp804a genotype.  

 

4.3.6 RNAseq Predictions of Differential Splicing. 

Next taking the splicing data, only 2957 transcripts passed read depth and quality for 

statistical testing. 1211 transcripts showed significant differential spicing between the 2 

C59X mutants and the 2 wildtypes and 1044 remained significant following FDR 

multiple test correction (Benjamini and Hochberg, 1995). The numbers of nominally 

significant differentially spliced genes were similar to the numbers in the individual 

male and female analyses in the exon array study which is a surprisingly high number of 

genes in the RNAseq data considering only 2957 transcripts were statistically tested and 

may represent a large number of false positives. From the exon array 13 genes were 

consistently significantly differentially spliced based on 3 different software packages 

and in both male and female analyses of which only 5 have sufficient data to generate a 

test statistic in the RNAseq data. Of these, two were significantly differentially spliced, 

Itga6 (p = 0.0068) and Dffa (p = 0.01) both of which remained significant following 

FDR correction. The three genes that were not significant were some of the most robust 

findings from the exon array with Bonferroni corrected significance values. This was 

surprising considering the exon array data showed them to replicate across gender, 

experiment, different age, different filtering criteria and different statistical algorithms. 

The issue of power must be considered given only two samples were in each group.  To 

determine if there was an alternative reason the sequences targeted by probesets 

identified to be differentially spliced in the exon array were searched in the alignment 

files in IGV (Fig. 4.16).  



 146 

 

 

 

 

Rapgef4 

Ssfa2 

Slc39a13 
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Figure 4.16. C59X Mutant Specific Single Nucleotide Polymorphisms in Probe 

Target Regions. Consistently significant differential splicing at 3 genes (Rapgef4, 

Slc39a13 and Ssfa2) observed in the exon array experiment failed to replicate in the 

RNAseq analysis. Visualisation of the sequences targeted by the probesets in IGV 

highlighted the presence of C59X mutant specific SNPs which might have had an 

impact upon hybridisation efficiency on the Exon array. In each of the three examples 

the 2 C59X mutant sequencing reads are displayed as the first two tracks of the IGV 

display and the 2 wildtypes the second two. The SNPs lie between the tram tracks and is 

presented as the letter which represents the base change. In all 3 the probeset sequence 

matches the wildtype sequence. The corresponding exons were downregulated in the 

C59X mutants relative to the wildtypes. In Ssfa2 and Slc39a13 the SNPs were dbSNPs 

(dbSNP build 128) in Rapgef4 the SNP was novel. 

 

 

 

 

In each instance the alignment files for the corresponding probeset region contained a 

SNP which was present in the majority of all reads of the 2 C59X mutants and not 

present at all in both wildtypes. Each of these SNPs corresponded to the location of a 

probe and so the identified mutant specific SNP may have affected the hybridisation 

efficiency of the probe binding to the target. Revisiting the geneviews of these same 

three genes from the exon array data showed that in each instance it was the C59X 

mutants which showed down regulation relative to the wildtypes and this would fit with 

a reduced hybridisation efficiency effect since the probe sequence corresponds to that of 

the wildtype and not the C59X background (Fig. 4.17).  Each of these genes lies on 

Chromosome 2 and the SNPs may potentially represent mutations linked to the C59X 

mutation.  

   

 



 148 

 

Figure 4.17. Direction of Effect in Probesets with Predicted Differential Splicing. 

The exon array results predicted differential splicing in the circled probesets in each of 

the 3 genes Rapgef 4 (top), Slc39a13 (middle) and Ssfa2 (bottom). The C59X mutants 

differ from the wildtype at a base, and that base does not match the sequence of the 

probe which is perfectly complimentary to that of the WT. This may cause reduced 

hybridisation efficiency specifically in the mutants resulting in a false call of 

downregulation in the relevant probeset. The probesets are downregulated in C59X 

mutants (Hom) in all 3 genes for females (left) and males (right).  
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4.4 Discussion. 

Next generation RNA sequencing was carried out on a pilot sample of 2 male C59X 

mutants and 2 male wildtypes. Initial RNA and library preparation quality control 

showed good quality RNA and fragments respectively, yet QC on the sequencing data 

highlighted numerous poor quality attributes of the data. Most notably the reliability of 

base calling based on phred quality scores was poor particularly towards the end of each 

read. It was evident that there was variable GC content and disproportionate 

representation of each of the four bases both of which occurred within the first 10 bases 

of the read. Based on common causes for such results I hypothesised that the most 

likely explanation was that a sequence such as an adapter was contaminating the 

sample, however no adapter or any other contaminating sequence was identified 

frequently enough in the total number of sequences to confirm this. Duplicate levels 

were high but this is often observed in RNAseq data when highly expressed sequences 

are over-sequenced in order to sequence the rare transcripts. Despite a high number of 

duplicate sequences present in the data no reads were excluded as this is actually more 

detrimental to the results due to the considerable loss in data and the ambiguity of the 

source of such duplicates. Whilst PCR amplified duplicates can result in false positive 

results, duplicates from highly expressed genes represent true positive findings 

(Bainbridge et al., 2010).  

Following the Tuxedo Protocol alignment files were initially assessed in the Integrative 

Genomics Viewer (IGV) (Robinson et al., 2011; Thorvaldsdόttir et al., 2012) with the 

intention of determining the presence of the C59X mutation in the mutants specifically. 

This was confirmed and led to the identification of a novel exon in Zfp804a upstream to 

the Refseq exon 1 in 1 C59X mutant. The alternative exon 1 appeared to skip the 

constitutive exon 1 and splice to exon 2 of Zfp804a. RT-PCR followed by sequencing 

validated this transcript which was found in all 4 samples, and confirmed the C59X 

mutation was also retained in exon 2 of both C59X mutants. Determining the open 

reading frame as well as the start and end positions of the alternative exon and transcript 

is necessary to fully understand Zfp804a expression in the C59X mice, but was not able 

to be carried out within the timeframe of this PhD.  

Although the RNAseq was generally of poor quality, I undertook an assessment where 

possible of the most robust results from the exon array experiment. It is important to 

consider when comparing the exon array and RNAseq data that each protocol used 
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slightly varying amplification methods. The RNAseq protocol targeted polyA RNA 

whereas the exon array samples were random primed. Despite this, concordance 

between the two platforms has been demonstrated (Raghavachari et al., 2012).  5 of the 

6 most robust differential expression results replicated in the RNAseq data with 

significance surviving multiple test correction using the FDR correction (Benjamini and 

Hochberg, 1995).  This therefore provides strong evidence that these are true expression 

changes. I discovered that both wildtype samples had no reads in Snca. This was found 

to be the result of a deletion which spans the Snca locus present in the C57BL/6JHsdOla 

substrain which was used for backcrossing the C59X mutation. Expression results from 

the array of all 16 F3i mice found the issue to be widespread and most worryingly to 

correlate with genotype.  

Silent mutations are a common problem in inbred strains of mice and have been 

documented on numerous occasions. Examples include the discovery that the 

129S6/SvEv inbred substrain has a 25bp deletion in the Disc1 gene resulting in a 

frameshift and a premature termination codon (Koike et al., 2006). Silent mutations, 

which have no observable phenotype, are particularly problematic as the mice are 

continually used for breeding and the de novo silent mutation becomes fixed in the 

strain.  Stable silent mutations in an inbred strain can confound studies when attempting 

to determine the effects of a particular mutation, when in fact two mutations are present. 

In the C57BL/6JHsdOla strain the deletion occurred following transfer of the strain to a 

breeding centre in Harlan. Due to the lack of an observable phenotype the mice are 

continually used in breeding and the deletion became stable in the substrain. It was only 

when expression studies began that used the C57BL/6JHsdOla strain for backcrossing 

that the deletion which spans the Snca locus was discovered (Specht & Schoepfer, 

2001).   

Specifically the deletion affects 365kb of chromosome 6, which includes Snca and one 

other gene; Multimerin (Specht & Schoepfer, 2004), but this gene is not thought to be 

brain expressed (Leimeister et al., 2002). Neither compensatory up regulation of β or γ 

synuclein has been observed in the strain nor changes in the expression of other genes in 

an array study in these mice (Specht and Shoepfer., 2001). These observations suggest 

that mice with the Snca deletion would not have altered expression in other genes as a 

result of this mutation alone and therefore differential expression observed between 

C59X mutants and wildtypes is most likely the result of disrupted Zfp804a, however 
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this is not definite and there is always the caveat the Snca deletion could confound the 

results.   

De novo mutations which arise and have no apparent phenotype become problematic  

when the mutation is in such close physical proximity that it tends to be co-inherited 

with  the mutation that is the target of the study, so distinguishing the effects of each is 

difficult (Gajovic et al., 2006).  This cannot have occurred in the C59X mice as Zfp804a 

lies on Chromosome 2 and Snca on Chromosome 6.  The problem lies with the use of 

the F3i generation in expression studies as the mice only had ~96% C57BL/6JOlaHsd 

purity and you would expect ~7 additional mutations from the ENU derived founder 

strain. 

The evidence for a deletion at the Snca locus puts into question the validity of the exon 

array and RNAseq experiments using tissue derived from the F3i generation.  

Unfortunately, delays in the availability of mice meant the F3i generation had to be used 

for the initial experiments, although the intention was to repeat the experiments in later 

(F7) generations which are expected to have at least 98% of the C57BL/6JHsdOla 

genome.  

Poor sequence quality meant 8 out of the 13 differential splice candidates from the exon 

array were not able to be tested in the RNAseq data. Of those that had adequate read 

quality, replication of significant differential splicing was observed in only two of the 5. 

Considering only 2957 genes were statistically tested and 1211 were significant this is 

no greater than would be expected by chance.  The lack of replication is possibly 

attributable to false positives in the array data or not enough power in the study given 

only an n of 2 in each group. The variants observed in the C59X mutant sequence may 

have influenced the efficiency of probe hybridisation on the exon array, and 

consequently a false positive splice prediction due to misinterpreted downregulation of 

the exon in the mutants is observed. A large source of errors in array results are 

generated by SNPs in sequences targeted by probes. Humans are outbred and 

genetically heterogeneous and there is an abundance of literature on the best way to deal 

with probes that target SNPs on assays designed for humans (Duan et al., 2008; 

Gamazon et al., 2010). Isogenic samples should not produce such false positives.  The 

mice in this experiment are heterogeneous and differences correlate with the Zfp804a 

genotype. The most likely explanation for C59X mutant specific polymorphisms is that 

at F3i, polymorphisms that distinguish the C57BL/6JHsdOla and Balb/c or C3H/HeJ 
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strains are still present, as indicated with the Snca finding. There is also the possibility 

that the C59X mutant specific SNPs found on chromosome 2 are linked to the C59X 

mutation and being inherited together. A major strength of the RNA sequencing data 

was the ability to assess the region surrounding the C59X mutation in both C59X 

mutant and wildtypes at single base resolution. Whilst only two mice from each 

experimental group were sequenced, there was an unambiguous finding of sequence 

variants in the C59X mutants specifically. It is possible that these strain specific 

sequence variants will not be separated from the C59X mutation by recombination by 

the F7 generation and therefore the same genes would be predicted to be differentially 

spliced.    

Whilst the data were not of the most robust quality, the RNAseq experiment enabled me 

to make several critical findings. The identification of a novel Zfp804a isoform when 

fully characterised is likely to be informative. Without the RNAseq data the 

identification of a deletion at the Snca locus and several polymorphisms in the C59X 

mutants would not have been possible. These findings are critical to the interpretation of 

the data generated with F3i generation mice. The occurrence of these strain specific 

sequence variants was investigated in the F7 generation to enable the correct 

interpretation of the results (Chapter 6). 
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Chapter 5. Expression Analysis in Embryonic C59X Mice. 

5.1 Introduction. 

One of the leading hypotheses of schizophrenia is that it has its early origins in 

disruption of brain development in utero, but that the major symptoms remain latent 

until adolescence or adulthood (Weinberger, 1986). Although the evidence is not 

definitive, a number of lines of evidence are broadly in favour of this hypothesis (Owen 

et al., 2011).  

Follow up of births occurring during or just after the 1957 influenza epidemic showed 

those exposed to the epidemic in utero had an increased rate of schizophrenia diagnosis 

in adulthood compared to those not exposed to the epidemic (Mednick et al., 1988; 

O’Callaghan et al., 1991a; Cooper, 1992) leading to the hypothesis that the influenza 

virus might be an in utero insult increasing risk of schizophrenia, but these conclusions 

have been widely challenged (Kendall and Kemp, 1989; Bowler & Torrey, 1990; Crow 

et al., 1991, Crow et al., 1994). Increased rates of influenza in pregnant women with 

young children have been observed (Hennessy et al., 1964), an observation considered 

by some to support a contribution to schizophrenia from in utero infection since an 

increased rate of schizophrenia has been suggested in younger siblings (Farina et al., 

1963). An enrichment of winter and spring births in those with schizophrenia has being 

widely reported (O’Callaghan et al., 1991b) and may be more common in patients who 

have no family history of the disorder, again possibly implicating environmental factors 

such as viral infection which are more prevalent at that time of year (Sham et al., 1992). 

Malnutrition during the first trimester (Susser et al., 96), toxoplasmosis (Brown et al., 

2005), respiratory infection (Brown et al., 2000) and bacterial infections (Sorenson et 

al., 2009) have also been suggested to cause damage in utero resulting in aberrant 

development as well as neonatal adversity, including obstetric complications (Murray et 

al., 1985) and CNS infection (Rantakallio et al., 1997). While the nature of the insult is 

disputed there appears to be a body of evidence that pre and perinatal insults may 

contribute to schizophrenia. Early studies indicated the second trimester of pregnancy as 

the temporal window when increased susceptibility occurred (Mednick et al., 1988) 

more recently studies have suggested insults occurring as early as the first trimester and 

as late as the neonatal period increased risk, with the Prenatal Determinants of 

Schizophrenia (PSD) study reporting risk is incurred during either conception or the 

first few weeks of pregnancy (Meyer et al., 2007).   



 154 

How the putative insults lead to pathophysiology which predisposes schizophrenia is 

less clear. The immune response, which is common to the different types of infections, 

may play a role. Increased levels of IL-8 in mothers of schizophrenia spectrum disorder 

patients have been reported (Brown et al., 2004). IL-8 is thought to have an important 

role in brain development and thus increased levels may cause aberrant development 

(Gilmore, 1997), but IL-8 protein levels may themselves be mediated by genetic risk. 

Insults during development of the CNS may disrupt important processes such as cell 

proliferation and migration leading to aberrant axonal connectivity (Murray and Lewis, 

1987).  

Structural differences in the schizophrenic brain such as enlarged ventricles and reduced 

cortical volume appear to be present at the onset of disease (Roberts, 1991) and are 

often described as non-progressive, again suggesting important brain changes have 

already occurred prior to the onset of clinical symptoms. Other features which favour a 

neurodevelopmental hypothesis of schizophrenia include observations of motor, 

behavioural and cognitive impairment in children suggestive of a ‘pre-schizophrenic’ 

brain. These observations are not apparent in every schizophrenia patient and it maybe 

that factors occurring during development are responsible for increased risk in a subset 

of schizophrenia cases (Sham et al., 1992). The neurodevelopmental hypothesis of 

schizophrenia is also strengthened by the finding that copy number variants (CNVs) 

have been identified that are common to schizophrenia and neurodevelopmental 

disorders such as ADHD, autism and mental retardation (Mefford et al 2008; Wassink 

et al., 2001). 

Infectious agents administered to pregnant rats have consequences on 

neurodevelopment and the timing of the insult affects the extent of damage, with earlier 

insults associated with more widespread damage (Meyer et al., 2007). Administration of 

infectious agents in rats at E18 caused brain atrophy and whiter matter thinning as well 

as gene expression changes in the PFC and hippocampus at P35 (equating to 

adolescence) (Fatemi et al., 2008). Lesions in the rat hippocampus at P7 have been 

reported to impair the pre-pulse inhibition (PPI) startle response (a putative 

schizophrenia endophenotype or biomarker) following puberty (P35) relative to rats 

with sham lesions. This fits with a neurodevelopmental model of schizophrenia where 

by an insult occurs during development but a phenotype is not observed until early 

adulthood (Lipska et al., 1995).  Prenatal exposure of rats to viruses (Piontkewitz et al. 

2012), bacteria or cytokines (Samualsson et al., 2006) have elicited behaviours in 
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offspring akin to certain cognitive and behavioural symptoms observed in schizophrenia 

and perhaps more convincingly some of these studies have shown amelioration of these 

symptoms following administration of atypical antipsychotics (Borrell et al., 2002). 

Whilst a number of studies report findings in favour of a neurodevelopmetal hypothesis 

it is best to view the animal literature with caution particularly when inferring 

similarities between animal models and infection in humans (Samuelsson et al., 2006). 

A developmental hypothesis implies a latent period prior to the onset of clinical 

symptoms, but understanding what is happening during this latent period has proven 

difficult. Extensive maturation processes occurring during adolescence may initiate the 

requirement for systems in the brain that up until that point were not utilised 

(Weinberger, 1986).  Synaptic development and pruning could be affected by genetics 

or the hormonal imbalances and stress common during adolescence (Benes et al 1994; 

Walker, 1994).  

There are a number of studies showing genes which switch from foetal to adult 

expression patterns in the first few postnatal weeks. This switch is observable during 

this period in NRXN1 and NRXN3 (Lijima et al., 2011). The SNAP25 gene is thought to 

switch between isoforms a and b between postnatal day 25 and 35 which is thought to 

alter the efficacy of synaptic transmission to allow the stabilisation of the developed 

neuronal circuit (Bark et al., 2004). Similar postnatal switches in isoform expression are 

seen in NUMB (Bani-Yaghoub et al., 2007) CELF and MBNL (Kalsotra et al., 2008). 

The latter two regulate a number of alternative splice events themselves and 

misregulation of their targets has been implicated in Myotonic Dystrophy (DM) 

(Charlet et al., 2002).  DM is characterised by muscle wasting and myotonia and is 

caused by the misregulation of splicing. Several of the genes involved fail to switch 

from foetal to adult isoforms resulting in the isoforms being expressed at inappropriate 

times (Charlet et al., 2002).    

A number of splice regulatory factors are themselves developmentally regulated for 

example PTB (Boutz et al., 2007), which has implications for the splicing of 

downstream targets. In this way it is thought that a splicing network exists initiated from 

regulation of splice factors which in turn regulate their downstream targets resulting in 

extensive developmental regulation of alternative spliced isoforms (Revil et al., 2010).  

If Zfp804a does have a role in regulation of transcription and or splicing the genes it 

regulates may be developmentally regulated. In support of this hypothesis an RNA 
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sequencing study looking at differential expression during neurogenesis of human 

neurons from iPS cells showed one of the genes with large expression changes to be 

ZNF804A (Lin et al., 2011). Based on a neurodevelopmental hypothesis of 

schizophrenia, splicing differences observed between C59X mutants and wildtypes that 

occur during development may point to genes fundamental to aberrant development 

relevant to the aetiology of schizophrenia. To determine if developmentally regulated 

splice or expression changes occurred as a result of the C59X mutation, I undertook an 

exon array experiment using brain tissue from embryonic day 18.5 mice as this time 

point has been likened to the second trimester of pregnancy in humans (Fatemi et al., 

2008), which although controversial, is the period when the embryo may be most 

susceptible to environmental factors which could predispose schizophrenia risk in later 

life.  

 

 

 

5.2 Materials and Methods 

5.2.1 Sample  

To study embryonic expression in later generation mice (~98.5% C57BL/6HsdOla 

background), I set up heterozygote intercrosses using mice with ~98.5% C57BL/6 

HsdOla genome from either the 7
th

 or 8
th

 generation (Appendix 5.1). Mice used for 

breeding were caged individually. Female mice were placed in the male home cage in 

the evening and the observation of a vaginal plug the following morning was recorded 

as embryonic day 0.5 (E0.5). Female mice were then returned to their home cage. 18 

days later whole brain and tail tip samples were collected from each embryo on 

embryonic day 18.5 (E18.5). The pregnant female was killed by cervical dislocation and 

then placed ventral side up and 70% ethanol was applied to the body. An incision was 

made and then a cut down the midline using scissors to expose the uterus from which 

the embryos were carefully removed. The embryo was decapitated and the tip of the tail 

collected. The head was then placed in ice cold 1x PBS solution if necessary and the 

brain extracted from the skull. Brain and tail samples were immediately snap frozen in 

liquid nitrogen then stored at -80°c until RNA extraction. 
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5.2.2 Genotyping 

DNA was extracted from tail tips (Chapter 2.2.1) and quantified using the Nanodrop 

1000 spectrophotometer (Thermo Scientific) before being amplified in a PCR reaction 

(Chapter 2.4) using primers spanning the C59X mutation (Appendix 2.1). Sequencing 

was carried out as previously described (Chapter 2.6) and genotype assessed in 

NovoSNP version 3.0.1 (Weckx et al., 2005).  

 

5.2.2.1 Gender PCR. 

The gender of the embryonic samples was assessed using a multiplex PCR with gDNA 

extracted from tail tips. Two primer sets were used, one for the Y-linked gene, Ssty and 

one for an autosomal control gene, Om1a (Myogenin) (Appendix 5.2). Running the 

product on a 1.5% gel enabled males, with a band representing both Ssty and Om1a, to 

be distinguished from females with the single band corresponding to the Om1a product.  

 

 

PCR Reaction.  

The PCR reaction was performed using C1000 Thermocyclers (BioRad Laboratories, 

Inc). The PCR cycling conditions are outlined below. PCR was performed in a 25µl 

reaction volume using 1µl genomic DNA, 15.75μl Sterile water, 2.5μl 10X buffer, 2.0μl 

25mM MgCl2, 1.0μl 5mM dNTPs, 1.0μl Ssty (forward) 10μM and 1.0μl Ssty (reverse) 

10μM, 0.25μl Om1a (forward) 500ng/μl and 0.25μl Om1a (reverse) 500ng/μl and 

0.25μl HotStar Taq (Qiagen).  

 

The PCR cycling conditions. 

1. 94°C for 4 minutes  

2. 94°C for 45 seconds 

3. 61
o
C for 45 seconds 

4. 72
o
C for 45 seconds   

5. Repeat steps 2-4 for 35 cycles  

6. 72
o
C for 5 minutes 
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5.2.3 RNA Processing  

RNA was extracted from whole brain and purified using an RNeasy column (Qiagen) as 

described in Chapter 2.2.2. Samples were then quantified and assessed for quality using 

the NanoDrop 1000 spectrophotometer (Thermo Scientific) and the Agilent 2100 

Bioanalyser respectively (Chapter 2.2.3.1). 

 

5.2.4 Affymetrix Exon Array 

Total RNA was labelled and prepared for hybridisation to the Affymetrix Genechip® 

Mouse Exon 1.0 ST array as described in full in Chapter 2.8. Sample preparation and 

chip scanning protocols did not differ to those used on adult mice (Chapter 2.8). 

 

5.2.4.1 Quality Control. 

This was assessed as described in Chapter 2.8.3.5.  

 

 

5.2.4.2 Determining Snca Expression 

To establish how many of the embryonic mice had the C57BL/6JHsdOla specific 

deletion, which spanned the Snca locus I calculated the average raw expression values 

across all Snca probesets for each sample.  

 

 

5.2.4.3 Partek Genomics Suite 

The same filtering criteria and statistical algorithms were applied to the embryonic 

dataset as described for the adult data in chapter 3. As before, an initial analysis focused 

on C59X mutant and wildtype samples homozygotes but an additional analysis that 

included the heterozygote samples was also performed.  
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5.2.4.4 EasyExon. 

I analysed the embryonic data in easyExon as described in chapter 2. Briefly CEL files 

were uploaded for the 12 mutant and wildtype samples. For a probeset to be included 

the DABG p value had to be ≤0.05 in 6 of the 12 samples. For differential expression 

analysis genes required a fold change of greater than 1.5 and a MiDAS p value ≤0.05 to 

be significant. Significant differential splicing was defined by a MiDAS p value ≤0.05. 

As only two groups can be included in the analysis only the C59X mutant and wildtype 

samples were compared.  

 

5.2.4.5 AltAnalyze. 

I uploaded the 12 CEL files into AltAnalyze and compared expression and splicing in 

C59X mutants and wildtypes using the MiDAS and FIRMA algorithms respectively as 

described in chapter 2.  

 

5.2.4.6 Overlap Analysis 

Using the method outlined in Chapter 3, section 2 the overlap between differentially 

expressed and spliced genes in embryonic samples at different p value thresholds 

(p≤0.05, p≤0.01, p≤0.001 and p≤0.0001) was determined in the adult dataset at a 

nominal p≤0.05. The adult data set used was that of all 16 samples (male and female) 

combined with gender covaried.  

The degree of overlap for the embryonic results in each of the 3 software packages 

(Partek GS, easyExon and AltAnalyze) was then assessed. Differentially spliced genes 

from this overlap found to be significant following an FDR correction (threshold 0.05) 

in Partek GS were assessed to determine how many overlapped in the adult dataset at 

p≤0.05. Genes that were significantly differentially spliced following Bonferroni 

correction in adult and embryonic samples were also assessed to determine the genes 

common to both analyses at this stringent p value threshold.  
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5.3 Results  

5.3.1 Embryonic Sample.  

5 successful heterozygote intercrosses were set up between mice with 98.5% 

C57BL/6JHsdOla background (Appendix 5.2). Brain and tail tips were collected from 

the embryos on E18.5. DNA was extracted from the tail tips and processed using PCR 

(Fig. 5.1) and sequencing (Fig. 5.2) to determine gender and genotype of each 

embryonic sample (Table 5.1). The results of each revealed there to be a total of 7 C59X 

homozygote mutants and 6 wildtypes. 12 C59X heterozygotes were also selected for 

inclusion on the exon array. Of the 25 samples 12 were female and 13 male.  

 

 

 

 

 

 

 

 

Figure 5.1 Determining Gender in E18.5 Mice. A multiplex PCR was used to 

determine the gender of each embryonic sample by using a Y-linked gene (Ssty) and an 

autosomal control gene (Om1a). Ssty had a product of 434bp and Om1a 245bp. Samples 

with both bands represented males and samples with only the smaller band (Om1a) 

represented female samples.   

 

 

 

Ssty 434bp 
Om1a 245bp 
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Figure 5.2 Sequencing of the C59X mutation in Embryonic Samples. PCR was 

carried out on gDNA using primers which spanned the C59X mutation in Zfp804a. The 

PCR product was then sequenced to determine the genotype of each embryo. The 

example above shows sequencing traces from 4 of the embryonic samples. The red 

rectangle highlights the position of the normal cysteine codon (TGT) in exon 2 of 

Zfp804a. The top trace represents a homozygous wildtype. The second trace is from a 

C59X homozygote mutant in which both alleles have the ENU C59X mutation. The 

bottom 2 traces are C59X heterozygotes each with one C59X mutant allele.  

 

 

 

 

 

 

 



 162 

Sample ID Genotype Gender Age 
    

B8A2P1 Het Male E18.5 

B8A2P4 Het Female E18.5 

B8A2P5 Het Female E18.5 

B8E1P1 Het Male E18.5 

B8E1P7 Het Male E18.5 

B8E1P8 Het Male E18.5 

E27AD2P3 Het Male E18.5 

E27AD2P4 Het Female E18.5 

E27AD2P5 Het Female E18.5 

E27AM2P2 Het Male E18.5 

E27AO4P3 Het Female E18.5 

E27AO4P4 Het Male E18.5 
    

B8A2P2 Mut Male E18.5 

B8E1P2 Mut Female E18.5 

E27AD2P6 Mut Male E18.5 

E27AD2P2 Mut Male E18.5 

E27AM2P3 Mut  Female E18.5 

B8E1P3 Mut  Female  E18.5 

B8E1P4 Mut  Male E18.5 
    

B8A2P3 Wt Female E18.5 

B8E1P5 Wt Female E18.5 

E27AD2P7 Wt Female E18.5 

B8E1P6 Wt Male E18.5 

E27AO4P2 Wt Female E18.5 

E27AM2P1 Wt Male E18.5 

 

Table 5.1. The C59X Embryonic Sample. Tail tip gDNA was extracted and used for 

assessment of genotype and gender in the embryonic mice. The sample was comprised 

of 12 C59X heterozygotes (Het), 7 C59X mutants (Mut) and 6 wildtypes (Wt), with 12 

females and 13 males.  

 

5.3.2 RNA quality. 

The whole brains from these 25 samples were then processed to extract RNA and the 

quality was determined (Table 5.2). With the exception of E27AM2P3, RNA was of 

good quality with RIN above 8 and 28s/18s ratios above 1. RNA was hybridised to the 

exon array chips and then assessed on a number of quality metrics using Partek GS and 

Expression Console (Affymetrix) as described previously (Chapter 2.8.3.5). 
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Sample ID Genotype Gender 

rRNA Ratio 

[28s/18s] RIN 

B8A2P1 Het Male 1.8 10 

B8A2P2 Hom Male 1.8 10 

B8A2P3 Wt Female  1.8 10 

B8A2P4 Het Female  1.8 10 

B8A2P5 Het Female 1.9 10 

B8E1P1 Het  Male 1.7 10 

B8E1P2 Hom Female 1.7 9.8 

B8E1P3 Hom Female 1.6 9.8 

B8E1P4 Hom Male 1.8 9.7 

B8E1P5 Wt Female 2 10 

B8E1P6 Wt Male 1.7 9.8 

B8E1P7 Het Male 1.8 10 

B8E1P8 Het Male 1.9 10 

E27AD2P1 Hom Male 1.5 9.9 

E27AD2P3 Het Male 1.9 10 

E27AD2P4 Het Female 1.9 10 

E27AD2P5 Het Female 2 10 

E27AD2P6 Hom Male 1.8 9.8 

E27AD2P7 Wt Female  1.8 10 

E27AM2P1 Wt Male 1.6 9.5 

E27AM2P2 Het Male 1.8 10 

E27AM2P3 Hom  Female  0.1 6.7 

E27AO4P2 Wt Female 1.8 10 

E27AO4P3 Het Female 1.8 10 

E27AO4P4 Het Male 1.7 10 

Table 5.2. RNA quality Scores. RNA samples were run on the 2100 Bioanalyser 

(Agilent). The resulting 28s/18s ratio and RIN scores are presented in the table.  Sample 

E27AM2P3 (highlighted in red) has values less that the accepted (chapter 2.2.3) 

thresholds of 1 and 7 for the 28s/18s ratio and RIN scores respectively.  

 

 

Despite its low RNA quality scores, given the difficulty obtaining samples, I decided to 

process E27AM2P3 along with the other 24 samples to determine if the resultant quality 

of the array data was sufficient for inclusion.  
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5.3.3 Quality Control. 

I generated the same quality control metrics described in Chapter 2.8.3.5 in both Partek 

GS and Expression Console for all 25 samples. Initially a PCA plot was generated 

including all samples (Fig. 5.3). Visualisation of the PCA plot shows one sample to 

have very different patterns of gene expression relative to the other samples. This 

sample is E27AM2P3, the C59X mutant which had low RNA quality scores. The other 

samples do not appear to separate along the first principle component but there is 

indication there is some separation along the second principle component, although 

importantly, they do not cluster by C59X genotype.  

 

Figure 5.3. PCA of 25 Embryonic Samples. The gene expression patterns of the 25 

samples is divided along the first principle component with 1 sample, found at the top 

left of the plot (Female, mutant), having very different expression patterns to the other 

24 samples. The other samples appear to have similar patterns of global gene expression 

with the majority clustering in the top right of the plot.   
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The expression profile of each sample was plotted next (Fig. 5.4). Again, E27AM2P3 

did not cluster with the other samples. To determine if the difference in expression 

pattern and distribution of signal intensity in E27AM2P3 may have arisen due to a 

reduced hybridisation efficiency, this metric was assessed next (Fig. 5.5). The expected 

rank order of signal intensities of 4 exogenous control genes was observed in all 

samples, but the expression pattern in sample E27AM2P3 is clearly different to that of 

the other samples. I then generated box plots of the log expression signal distribution 

(Fig. 5.6) to determine if preprocessing procedures corrected any of the variation 

observed in E27AM2P3. The mean and interquartile range of E27AM2P3 was lower 

relative to the other samples and the difference was not corrected by normalisation and 

summarisation procedures. A good way to determine if the general behaviour of a 

sample is different to the other samples is to plot the relative log expression signal 

(Chapter 2.8.3.5.4). From this plot it was apparent that the data arising from sample 

E27AM2P3 are different from those of all other samples.  
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Figure 5.4. Distribution of Signal Intensity. The expression profile of all 25 samples 

was plotted in Partek GS (top) and Expression Console (below). The range of signal 

intensities are plotted along the x-axis with the frequency of each signal intensity 

plotted on the y-axis. One sample can be clearly distinguished from the others due to the 

difference in the distribution of signal intensities observable in both plots, this sample is 

E27AM2P3 (indicated by the arrow).  
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Figure 5.5 Hybridisation Efficiency in Embryonic C59X mice.  4 exogenous 

Escherichia coli genes included on the exon array were used to assess hybridisation 

efficiency. As each of the 4 genes are added at known concentrations, adequate 

hybridisation efficiency is observed from the following rank order of signal intensities 

from lowest to highest; BioB, BioC, BioD and cre. Whilst this rank order is observed in 

all samples, the log2 expression pattern of each of the 4 control genes is very different 

in one sample relative to the others and this sample (17) corresponds to sample 

E27AM2P3.   

 

To formally assess if the sample should be removed, quantitative quality assessment 

was next performed using the 6 metrics described in Chapter 2.8.3.5. Samples were first 

considered all together (Table 5.3) and then after in groups separated by genotype 

(Table 5.4). Values greater than 2 standard deviations from the mean in any metric are 

considered outlying values, while samples with values greater than 2 standard 

deviations from the mean in 3 or more metrics are considered outlier samples. 

E27AM2P3 had values greater than 2 standard deviations from the mean in each of the 

6 metrics and therefore was an egregious outlier. Based on these results there is a clear 

argument in favour of removing this sample from the study.  Considering the samples 

stratified by genotype, two other samples were identified with quality values greater 

than 2 standard deviations from the mean; B8A2P4 and B8A2P5. B8A2P5 was only 

highlighted in a single metric so was not defined as an outlier. B8A2P4 had more than 3 

metrics with values outside of the defined threshold and was therefore regarded as an 
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outlier.  The same metrics were also generated in Affymetrix Expression Console (data 

not shown) which gave the same pattern of results.  
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Figure 5.6 Distribution of Log Expression Signals. Sample E27AM2P3 has a reduced log probe cell intensity relative to the other samples (left) as 

indicated by the lower mean and inter quartile range (arrow) and this is not corrected by normalisation and summarisation procedures (central). This is 

indicative of a dim array, which would correlate with the lower RNA quality observed for this sample. From the relative log expression plot (right) it is 

clear that E27AM2P3 is behaving very differently to the other 24 samples. 
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Sample ID Genotype PM Mean 
All Probeset MAD 

Residual Mean 
Pos Control MAD 

Residual Mean 
All Probeset RLE 

Mean 
Pos Control RLE 

Mean 
Pos vs. Neg 

AUC 

1. B8A2P1.CEL Het 453.28 0.13 0.10 0.13 0.10 0.87 

2. B8A2P2.CEL Mutant 424.61 0.14 0.10 0.15 0.11 0.87 

3. B8A2P3.CEL Wt 490.42 0.13 0.09 0.13 0.10 0.87 

4. B8A2P4.CEL Het 407.82 0.19 0.16 0.26 0.22 0.86 

5. B8A2P5.CEL Het 504.31 0.14 0.11 0.15 0.12 0.87 

6. B8E1P1.CEL Het 382.91 0.16 0.12 0.18 0.17 0.86 

7. B8E1P5.CEL Wt 333.17 0.18 0.13 0.19 0.16 0.87 

8. B8E1P7.CEL Het 392.05 0.17 0.12 0.18 0.13 0.87 

9. B8E1P8.CEL Het 368.41 0.16 0.12 0.18 0.15 0.87 

10. E27AD2P3.CEL Het 425.85 0.15 0.11 0.19 0.15 0.86 

11. E27AD2P4.CEL Het 457.78 0.14 0.10 0.15 0.12 0.86 

12. E27AD2P5.CEL Het 387.87 0.16 0.11 0.16 0.12 0.87 

13. E27AD2P7.CEL Wt 432.60 0.14 0.10 0.15 0.12 0.86 

14. E27AM2P2.CEL Het 454.74 0.14 0.11 0.16 0.12 0.87 

15. E27AO4P3.CEL Het 401.01 0.14 0.11 0.14 0.11 0.87 

16. E27AO4P4.CEL Het 366.23 0.14 0.10 0.14 0.10 0.87 

17. E27AM2P3.CEL Mutant 214.34 0.43 0.36 0.99 0.98 0.79 

18. B8E1P2.CEL Mutant 433.18 0.16 0.12 0.20 0.17 0.87 

19. B8E1P3.CEL Mutant 352.13 0.17 0.12 0.19 0.16 0.87 

20. B8E1P4.CEL Mutant 409.25 0.16 0.12 0.23 0.18 0.87 

21. B8E1P6.CEL Wt 401.05 0.15 0.11 0.20 0.17 0.87 

22. E27AD2P1.CEL Mutant 395.13 0.16 0.12 0.19 0.17 0.87 

23. E27AD2P6.CEL Mutant 329.21 0.20 0.15 0.25 0.21 0.87 

24. E27AO4P2.CEL Wt 383.60 0.18 0.14 0.26 0.24 0.85 
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25. E27AM2P1.CEL Wt 343.60 0.18 0.15 0.28 0.30 0.85 

Mean -SD*2   279.43 0.05 0.02 -0.11 -0.16 0.83 

Mean +SD*2   516.13 0.28 0.23 0.55 0.53 0.90 

Table 5.3. Quantitative Outlier Analysis in all E18.5 Samples combined. I generated values for 6 quality metrics in Partek GS which together 

assess the general performance of each of the chips.  Following Affymetrix recommended guidelines, samples with values more than 2 standard 

deviations from the mean in any metric were highlighted (yellow). If any one sample was consistently highlighted in more than 3 metrics it was 

considered to be an outlier. From the above table it is clear that sample E27AM2P3 is an outlier as it exceeds the threshold in all 6 of the metrics 

analysed.  
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Sample ID Genotype PM Mean 
All Probeset MAD 

Residual Mean 
Pos Control MAD 

Residual Mean 
All Probeset RLE 

Mean 
Pos Control RLE 

Mean 
Pos vs. 

Neg AUC 

17. E27AM2P3.CEL Mutant 214.34 0.43 0.36 0.99 0.98 0.79 

18. B8E1P2.CEL Mutant 433.18 0.16 0.12 0.20 0.17 0.87 

19. B8E1P3.CEL Mutant 352.13 0.17 0.12 0.19 0.16 0.87 

2. B8A2P2.CEL Mutant 424.61 0.14 0.10 0.15 0.11 0.87 

20. B8E1P4.CEL Mutant 409.25 0.16 0.12 0.23 0.18 0.87 

22. E27AD2P1.CEL Mutant 395.13 0.16 0.12 0.19 0.17 0.87 

23. E27AD2P6.CEL Mutant 329.21 0.20 0.15 0.25 0.21 0.87 

Mean -SD*2   212.19 0.00 -0.03 -0.28 -0.33 0.80 

Mean +SD*2   518.62 0.40 0.33 0.91 0.90 0.92 

         

 

Sample ID Genotype PM Mean 
All Probeset MAD 

Residual Mean 
Pos Control MAD 

Residual Mean 
All Probeset RLE 

Mean 
Pos Control RLE 

Mean 
Pos vs. 

Neg AUC 

13. E27AD2P7.CEL Wt 432.60 0.14 0.10 0.15 0.12 0.86 

21. B8E1P6.CEL Wt 401.05 0.15 0.11 0.20 0.17 0.87 

24. E27AO4P2.CEL Wt 383.60 0.18 0.14 0.26 0.24 0.85 

25. E27AM2P1.CEL Wt 343.60 0.18 0.15 0.28 0.30 0.85 

3. B8A2P3.CEL Wt 490.42 0.13 0.09 0.13 0.10 0.87 

7. B8E1P5.CEL Wt 333.17 0.18 0.13 0.19 0.16 0.87 

Mean -SD*2   280.39 0.11 0.08 0.09 0.03 0.84 

Mean +SD*2   514.42 0.21 0.16 0.32 0.34 0.88 
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Sample ID Genotype PM Mean 
All Probeset MAD Residual 

Mean 
Pos Control MAD 

Residual Mean 
All Probeset RLE 

Mean 
Pos Control RLE 

Mean 
Pos vs. 

Neg AUC 

1. B8A2P1.CEL Het 453.28 0.13 0.10 0.13 0.10 0.87 

10. E27AD2P3.CEL Het 425.85 0.15 0.11 0.19 0.15 0.86 

11. E27AD2P4.CEL Het 457.78 0.14 0.10 0.15 0.12 0.86 

12. E27AD2P5.CEL Het 387.87 0.16 0.11 0.16 0.12 0.87 

14. E27AM2P2.CEL Het 454.74 0.14 0.11 0.16 0.12 0.87 

15. E27AO4P3.CEL Het 401.01 0.14 0.11 0.14 0.11 0.87 

16. E27AO4P4.CEL Het 366.23 0.14 0.10 0.14 0.10 0.87 

4. B8A2P4.CEL Het 407.82 0.19 0.16 0.26 0.22 0.86 

5. B8A2P5.CEL Het 504.31 0.14 0.11 0.15 0.12 0.87 

6. B8E1P1.CEL Het 382.91 0.16 0.12 0.18 0.17 0.86 

8. B8E1P7.CEL Het 392.05 0.17 0.12 0.18 0.13 0.87 

9. B8E1P8.CEL Het 368.41 0.16 0.12 0.18 0.15 0.87 

Mean -SD*2   331.54 0.12 0.08 0.10 0.06 0.86 

Mean +SD*2   502.17 0.18 0.15 0.24 0.20 0.87 

Table 5.4. Quantitative Outlier Analysis of groups stratified by Genotype. When considering the same 25 samples by C59X genotype group (in 

Partek GS) E27AM2P3 was still an outlier. All wildtype samples had quality values within the specified thresholds. 2 heterozygote samples were 

highlighted as having at least one measure greater than two standard deviations from the mean, B8A2P4 and B8A2P5 (marked in yellow).   
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Regardless of the type of analysis, E27AM2P3 was a clear outlier a finding consistent 

with its relatively poor RNA quality. B8A2P4 was acceptable in the whole group 

analysis but had 4 outlier values in the stratified by genotype analysis. As it was not 

such an obvious outlier, and as the main analysis is focussed on comparing 

homozygotes, this sample was retained but was monitored in the downstream output as 

described later.  

 

5.3.4 Deletion at the Snca Locus 

That the mice used for backcrossing (C57BL/6JOlaHsd, Harlan) had a deletion at the 

Snca locus was established in Chapter 4. Whilst this may have had a confounding effect 

on the results generated on the F3i adult mouse data it was hypothesised that by F7 the 

mice would have 98.5% C57BL/6JOlaHsd background and so the deletion was likely to 

present in all embryonic samples. The exon array data were used to determine the 

expression of Snca in the embryonic mice. The raw expression at each probeset 

targeting the Snca gene was averaged across the genes and plotted for each of the 25 

samples (Fig. 5.7).  This revealed that two of the 25 mice did not have the deletion at 

the Snca locus. Both were excluded from further analysis to avoid confounding by Snca 

genotype. In addition to the outlier E27AM2P3, the exclusion of these two sample left 

22 embryonic samples, 6 C59X homozygous mutants, 5 wildtypes and 11 C59X 

heterozygotes. The QC was repeated following the removal of the 3 samples. The 

Partek GS analysis is reported in Table 5.6.  All samples considered together showed no 

outliers. Within C59X experimental group only B8A2P4 behaved slightly differently to 

other C59X heterozygote in 4 metrics. This sample was flagged previously and was 

retained and monitored for the same reasons described in 5.3.3. 
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Figure 5.7 Snca Expression in E18.5 C59X Samples. Average raw expression values 

from the exon array across all probesets targeting Snca were plotted on the y-axis. The 

two peaks clearly indicate expression of the Snca gene in two of the samples, 

E27AO4P2 (female, wildtype) and E27AO4P4 (male, C59X heterozygote).
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Sample ID Genotype 
PM 

Mean 
All Probeset MAD 

Residual Mean 
Pos Control MAD 

Residual Mean 
All Probeset RLE 

Mean 
Pos Control RLE 

Mean 
Pos vs. 

Neg AUC 

B8A2P1.CEL Het 453.28 0.13 0.10 0.13 0.10 0.87 

B8A2P2.CEL Mutant 424.61 0.14 0.10 0.15 0.11 0.87 

B8A2P3.CEL Wt 490.42 0.13 0.09 0.13 0.10 0.87 

B8A2P4.CEL Het 407.82 0.19 0.16 0.26 0.22 0.86 

B8A2P5.CEL Het 504.31 0.14 0.11 0.15 0.12 0.87 

B8E1P1.CEL Het 382.91 0.16 0.12 0.18 0.17 0.86 

B8E1P5.CEL Wt 333.17 0.18 0.13 0.19 0.16 0.87 

B8E1P7.CEL Het 392.05 0.17 0.12 0.18 0.13 0.87 

B8E1P8.CEL Het 368.41 0.16 0.12 0.18 0.15 0.87 

E27AD2P3.CEL Het 425.85 0.15 0.11 0.19 0.15 0.86 

E27AD2P4.CEL Het 457.78 0.14 0.10 0.15 0.12 0.86 

E27AD2P5.CEL Het 387.87 0.16 0.11 0.16 0.12 0.87 

E27AD2P7.CEL Wt 432.60 0.14 0.10 0.15 0.12 0.86 

E27AM2P2.CEL Het 454.74 0.14 0.11 0.16 0.12 0.87 

E27AO4P3.CEL Het 401.01 0.14 0.11 0.14 0.11 0.87 

B8E1P2.CEL Mutant 433.18 0.16 0.12 0.20 0.17 0.87 

B8E1P3.CEL Mutant 352.13 0.17 0.12 0.19 0.16 0.87 

B8E1P4.CEL Mutant 409.25 0.16 0.12 0.23 0.18 0.87 

B8E1P6.CEL Wt 401.05 0.15 0.11 0.20 0.17 0.87 

E27AD2P1.CEL Mutant 395.13 0.16 0.12 0.19 0.17 0.87 

E27AD2P6.CEL Mutant 329.21 0.20 0.15 0.25 0.21 0.87 

E27AM2P1.CEL Wt 343.60 0.18 0.15 0.28 0.30 0.85 

Mean-SD*2   313.77 0.12 0.08 0.10 0.06 0.86 

Mean+SD*2   502.62 0.19 0.15 0.27 0.25 0.88 
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Sample ID Genotype 
PM 

Mean 
All Probeset MAD 

Residual Mean 
Pos Control MAD 

Residual Mean 
All Probeset RLE 

Mean 
Pos Control RLE 

Mean 
Pos vs. 

Neg AUC 

B8A2P1.CEL Het 453.28 0.13 0.10 0.13 0.10 0.87 

B8A2P4.CEL Het 407.82 0.19 0.16 0.26 0.22 0.86 

B8A2P5.CEL Het 504.31 0.14 0.11 0.15 0.12 0.87 

B8E1P1.CEL Het 382.91 0.16 0.12 0.18 0.17 0.86 

B8E1P7.CEL Het 392.05 0.17 0.12 0.18 0.13 0.87 

B8E1P8.CEL Het 368.41 0.16 0.12 0.18 0.15 0.87 

E27AD2P3.CEL Het 425.85 0.15 0.11 0.19 0.15 0.86 

E27AD2P4.CEL Het 457.78 0.14 0.10 0.15 0.12 0.86 

E27AD2P5.CEL Het 387.87 0.16 0.11 0.16 0.12 0.87 

E27AM2P2.CEL Het 454.74 0.14 0.11 0.16 0.12 0.87 

E27AO4P3.CEL Het 401.01 0.14 0.11 0.14 0.11 0.87 

Mean-SD*2   338.46 0.12 0.08 0.10 0.07 0.86 

Mean+SD*2   504.45 0.19 0.15 0.24 0.21 0.87 

 

Sample ID Genotype 
PM 

Mean 
All Probeset MAD 

Residual Mean 
Pos Control MAD 

Residual Mean 
All Probeset RLE 

Mean 
Pos Control RLE 

Mean 
Pos vs. 

Neg AUC 

B8E1P6.CEL Wt 401.05 0.15 0.11 0.20 0.17 0.87 

E27AM2P1.CEL Wt 343.60 0.18 0.15 0.28 0.30 0.85 

E27AD2P7.CEL Wt 432.60 0.14 0.10 0.15 0.12 0.86 

B8E1P5.CEL Wt 333.17 0.18 0.13 0.19 0.16 0.87 

B8A2P3.CEL Wt 490.42 0.13 0.09 0.13 0.10 0.87 

Mean-SD*2   270.22 0.11 0.07 0.08 0.01 0.85 

Mean+SD*2   530.12 0.20 0.16 0.31 0.33 0.88 
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Sample ID Genotype 
PM 

Mean 
All Probeset MAD 

Residual Mean 
Pos Control MAD 

Residual Mean 
All Probeset RLE 

Mean 
Pos Control RLE 

Mean 
Pos vs. 

Neg AUC 

B8A2P2.CEL Mutant 424.61 0.14 0.10 0.15 0.11 0.87 

B8E1P2.CEL Mutant 433.18 0.16 0.12 0.20 0.17 0.87 

B8E1P3.CEL Mutant 352.13 0.17 0.12 0.19 0.16 0.87 

B8E1P4.CEL Mutant 409.25 0.16 0.12 0.23 0.18 0.87 

E27AD2P1.CEL Mutant 395.13 0.16 0.12 0.19 0.17 0.87 

E27AD2P6.CEL Mutant 329.21 0.20 0.15 0.25 0.21 0.87 

Mean-SD*2   307.70 0.13 0.09 0.13 0.10 0.86 

Mean+SD*2   473.46 0.20 0.15 0.27 0.23 0.88 

Table 5.6. QC following the removal of an outlier and Snca expressing Samples. When considering all 22 samples no outliers were observed. 

When considering the samples by C59X genotype only B8A2P4 had more than 3 metrics with values more than 2 standard deviations from the mean. 

This sample had been flagged previously for this reason.
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5.3.6 Embryonic C59X Mutant vs Wildtype Analysis. 

After exclusions, samples from 6 C59X homozygous mutants and from 5 wildtypes 

were analysed for differential expression and splicing.  

5.3.6.1 Differential Gene expression.  

I evaluated gene expression in the 6 embryonic C59X mutants relative to the 5 

wildtypes using a 3-way ANOVA in Partek GS. Genotype, gender and scan date were 

all included as ANOVA factors. A total of 15,830 transcripts passed the filtering 

thresholds and were included in the analysis. The number of genes found to be 

significantly differentially (P≤0.05) expressed in the C59X mutants was 1346 (9%), 

almost double that expected by chance alone (Table 5.7) but none survived correction 

for multiple testing (as was observed in the adult data). Of the 6 robust differentially 

expressed genes between C59X mutants and wildtype in the adult data only Npas4 was 

nominally significantly differentially expressed (p = 0.046) between embryonic C59X 

mutants and wildtype.   

Unadjusted p value 
Significant 
Genes % of Genes  

Expected by 
Chance   

0.05 1346 8.50 792 

0.01 225 1.42 158 

0.001 15 0.09 16 

0.0001 0 0 2 

FDR 0.05 threshold 0 0   

Bonferroni Correction for 15830 
tests 0 0   

Table 5.7 Genes differentially expressed in C59X embryonic mutants. Prior to 

correction for multiple testing, 1346 genes were significantly differentially expressed at 

p≤0.05 in the C59X mutants, however following either FDR or Bonferroni correction no 

genes were significant.  

 

 

5.3.6.2 Differential Splicing.  

I evaluated differential splicing using the alternative splice ANOVA in Partek GS. 

Genotype was added as the alternative splice factor (as in the adult C59X dataset) with 

both gender and scan date added as covariates. As before, probesets with a maximum 

log2 intensity <3 were excluded. The default option to retain probesets if significant 

differential splicing between the two groups at a p value ≤0.05 was observed, despite an 
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intensity below 3, was included. As observed previously in the adult data the number of 

significant differentially spliced genes at a nominal p value ≤0.05 was greater than the 

number differentially expressed (Table 5.8) with 11% (1808) of genes predicted to be 

differentially spliced in the C59X mutants. Using the FDR step up (Benjamini & 

Hochberg, 1995) set at 0.05, 172 genes were found to be significantly differentially 

spliced, of which 5% (~9 genes) would be predicted to be false positives. Using the very 

conservative Bonferroni correction, 30 genes (0.2%) were predicted to be differentially 

spliced in the C59X embryonic mutants. This appears to replicate the general pattern of 

the data observed in the adult C59X mutants, in that the number of differential splice 

predictions is greater and more robust than the differential expression predictions. When 

considering the splicing data the numbers of predicted differential splice events are 

greater than expected by chance alone at the more stringent statistical thresholds.  

 

Unadjusted p value 
Significant 

Genes % of Genes  

Expected by 
chance 

P≤0.05 1808 11.42 792 

P≤0.01 721 4.55 158 

P≤0.001 214 1.35 16 

P≤0.0001 104 0.66 2 

FDR (0.05 threshold)  172 1.09   

Bonferroni Correction for 15830 
tests 30 0.19   

Table 5.8. Differentially Spliced Genes. A total of 1808 genes were significantly 

differentially spliced in the embryonic C59X mutants at p≤0.05. 172 of these genes 

were still significant following an FDR correction using the 0.05 threshold. With a 

stringent Bonferroni correction for the 15,830 tests, 30 genes were significantly 

differentially spliced.  

 

 

5.3.7 Overlap between the findings from the Embryonic and Adult studies.  

The validity of the adult data came into question following the discovery that the 

C57BL/6JHsdOla strain harboured a mutation at the Snca locus which at F3i correlated 

with C59X genotype, Snca being expressed in all but one C59X mutant and deleted in 

the majority of the wildtypes. Prior to the discovery of the Snca deletion, my intention 

had been to investigate if there was developmental specificity between mutant and wild 

type animals with respect to differences in expression and splicing. However, due to the 
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confounding Snca deletion, differences between the results observed in the adult and 

embryonic might simply reflect the confounding effect of Snca. The primary use 

therefore of the comparison between adult and embryonic data was therefore to test the 

validity of the adult data by determining if any of the embryonic expression or splice 

changes replicated in the adult results. This is clearly not an ideal replication experiment 

given splice events are known to be developmentally regulated, and therefore true 

differences might be expected between the results obtained in the embryonic and adult 

studies. Nevertheless, results consistent across the studies would suggest the adult data 

may contain true positives unrelated to the Scna confound.  I did consider whether in 

the adult data, the Snca deletion could be statistically adjusted for but due to the high 

degree of correlation between Snca deletion and the C59X genotype, covarying for Snca 

would essentially remove any differences between the strains.  

To assess the degree of overlap between the embryonic and adult data, I compared if the 

observed number of genes attaining significance thresholds for each of the expression 

and splicing analyses in both datasets was greater than the number expected by chance 

(Table 5.9 & 5.10). The adult data set used was that of all 16 samples (male and female) 

combined with gender covaried.  

In the embryonic data, significant genes were defined as those attaining a range of p 

value thresholds (p≤0.05, p≤0.01, p≤0.001 and p≤0.0001). Based on the number of 

genes surpassing each threshold in the embryonic data, the number of genes expected by 

chance to attain significance at p≤0.05 in the adult brain analysis were estimated using 2 

x 2 contingency tables and the χ
2
 test (method described in Chapter 3.2).  The results for 

differential expression and splicing are summarised in tables 5.9 and 5.10 respectively.  

For both differential expression and splice changes, among genes attaining each of the 

thresholds in the embryonic experiment, more also showed significant differences 

between mutant and wildtype in the analysis of the samples from adult brain than 

expected by chance. This data suggests that at least some of the differential expression 

and splice predictions in the adult data are neither due to chance nor to differences in 

Snca expression in the C59X mutant and wildtype groups.   
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Significance Threshold OR Significance of Overlap  

P≤0.05 1.25 p=0.021 

p≤0.01 1.79 p=0.007 

p≤0.001 7.13 p=0.002 

p≤0.0001 No genes significant 

Table 5.9 Differential Expression changes common to Embryonic and Adult C59X 

Mutants. OR is the odds ratio that genes nominally (≤0.05) significantly differentially 

expressed in the embryonic mutants will be nominally significant in the adult mutants 

conditional on the gene being significantly differentially expressed at the indicated P 

value threshold in the embryonic expression data. 

 

 

 

 

 

 

 

Significance 

Threshold OR  Significance of Overlap 

p≤0.05 1.51 p<0.01 

p≤0.01 2.00 p<0.01 

p≤0.001 4.00 p<0.01 

p≤0.0001 5.28 p<0.01 

Table 5.10 Differential Splicing changes common to Embryonic and Adult C59X 

Mutants.  OR is the odds ratio that genes nominally (≤0.05) significantly differentially 

spliced in the embryonic mutants will be nominally significant in the adult mutants 

conditional on the gene being significantly differentially spliced at the indicated P value 

threshold in the embryonic splicing data.  
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5.3.8 Alternative Algorithms. 

To determine how robust the embryonic data were the data were analysed using 

alternative software packages which offer different filtering and statistical methods. 

5.3.8.1 easyExon. 

Using the easyExon, which unlike the other approaches, requires an accompanying fold 

change of greater than or equal to 1.5 fold only 18 genes were nominally significantly 

differentially expressed (MiDAS p≤0.05) and 345 genes nominally differentially spliced 

(MiDAS p≤0.05).   

5.3.8.2 AltAnalyze. 

Using the MiDAS algorithm in AltAnalyze, 1407 genes were differentially expressed 

(unadjusted p<0.05) which is similar to that in Partek GS (1346). Including a fold 

change filter of greater than or equal to 1.5 to make the analysis analogous to easyExon 

reduced this number to 38 genes. Thus many of the significant expression changes have 

small fold changes, and this explains the major numerical differences between easyExon 

and Partek GS. Using the FIRMA algorithm, 489 genes were predicted to be 

differentially spliced in AltAnalyze, similar to that observed in easyExon (345), but 

considerably less than the number observed in Partek GS (1808 genes). This may reflect 

the more stringent intensity filters used in easyExon and AltAnalyze to remove signals 

close to the background. Both use the DABG algorithm. The DABG p value represents 

the likelihood that the intensity value of a particular probe set is part of the background 

(null) distribution (Della et al., 2008). Probesets with an average DABG p value less 

than or equal to 0.05 in a biological group were excluded in AltAnalyze and probesets 

with a DABG p value less than or equal to 0.05 in half the samples were excluded in 

easyExon. In Partek GS probesets with a log2 intensity <3 were excluded. The larger 

number of results in Partek GS may therefore reflect false positives due to low 

expressing probesets close to the background signal being included in splicing 

calculations or that the smaller number of results in AltAnalyze and easyExon reflect a 

larger number of false negatives.  
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5.3.8.3. Differential Expression and Splicing Results Common to Partek GS, 

AltAnalyze and easyExon.  

To determine how robust the expression and splicing data were the overlap between 

Partek GS, AltAnalyze and easyExon was established. 

 

5.3.8.3.1. Expression:  

To be included as significant in each of the methods, genes were required to have 

significant differential expression in C59X mutants at an unadjusted p value ≤0.05 and 

with an accompanying fold change of greater than or equal to 1.5. (Fig 5.8) as used in 

the adult analyses.  

With these criteria in place a single gene showed consistent expression changes in 

AltAnalyze, easyExon and Partek GS (Fig. 5.8). That gene was Osteoglycin (Ogn), 

(Partek p = 0.0025; AltAnalyze p = 0.0032; easyExon p = 0.0032).  Ogn was not 

significant in the adult data (Fig. 5.9). Ogn is a leucine-rich proteoglycan (Iozzo., 1999; 

Kukita et al., 1990) forming part of the brain exctracellular matrix. The observation of 

only a single gene showing consistent expression changes is not suggestive of a role for 

Zfp804a in the direct regulation of gene expression.  The fact that only a single gene 

surpasses a threshold of p ≤ 0.05 and a fold change greater than or equal to 1.5 suggests 

this requirement is excessively stringent. Under a null model 1 in 20 genes would be 

expected to be differentially expressed by chance (~800 genes) and under this same 

model finding only 1 that overlaps suggests the approach is very insensitive. When 

considering the results of Partek and AltAnalyze using just a p value threshold of less 

than or equal to 0.05 (p≤0.05) then 281 genes overlap, one of which is Npas4 which was 

a robust differential expression candidate in the adult dataset. When reducing the 

stringency of the overlap threshold the proportion of genes is greater than the proportion 

you would expect by chance.    
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Figure 5.8 The number of Differential Expression results that replicate across 

Partek GS, easyExon and AltAnalyze. Only one gene (Ogn) is predicted to be 

differentially expressed in C59X mutants in all 3 programmes. 
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Figure 5.9 Differential Expression of Osteoglycin in Embryonic C59X Mutants. Osteoglycin was upregulated in embryonic C59X mutants (left). 

This expression change was not apparent in adult C59X mutants (combined sample) (p = 0.64) (right) and may reflect the developmental regulation of 

this gene. N.B. C59X homozygotes are represented in the above plots by a red line and wildtypes by a blue line.  
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5.3.8.3.2. Splicing:  

Considering the alternative splicing results, 62 genes were predicted to be significantly 

differentially spliced across all three algorithms (Fig. 5.10). Of the genes significantly 

differentially spliced in C59X mutants relative to wildtypes in easyExon and 

AltAnalyze a large proportion were also significant in at least one other software 

package (185/350 for easyExon and 216/467 in AltAnalyze). Of these 62 genes, 20 had 

been significant after using a FDR threshold of 0.05 in Partek GS (Table 5.11).   

 

 

Figure 5.10 The number of Differential Splice results that replicate across Partek 

GS, easyExon and AltAnalyze. 62 genes are predicted to be differentially spliced by 

all 3 algorithms.  

 

 

Of these 20 genes, 6 showed significant differences (at P ≤0.05) in the analysis of adult 

samples of which no less than 4 were among the 13 most robust differential splice 

predictions in the adult data (defined as being significant in male and female datasets 

separately and being significant with all three software algorithms, see chapter 3 section 

3) However, as shown in chapter 4, section 3.6, the apparent differential splicing at two 
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of these genes, Slc39a13 and Ssfa2 arises from probesets which span sequences at 

which the two strains, C3H/HeJ or Balb/c (the ENU strain), and C57BL/6JHsdOla (the 

strain used for backcrossing) differ by a single base with the potential to impact on 

probe binding and generate a false prediction of differential splicing. Also of note, of 

these top 20 genes, 7 mapped to chromosome 2, the same chromosome as Zfp804a, of 

which 4 mapped within 15 Mb of Zfp804a (Table 5.11).   

 

This led me to the hypothesis that like Slc39a13 and Ssfa2, the other robust splicing 

differences at genes on chromosome 2 might also reflect background strain specific 

sequence variants affecting probe binding which due to genetic linkage to the Zfp804a 

locus, still had not been randomly segregated with respect to the C59X mutation among 

offspring. To test this hypothesis the sequences targeted by the other 2 probesets 

predicted to be differentially spliced (Fam171b and Prdm4) out of the 4 genes that had 

shown robust effects in both adult and embryonic analyses were checked for dbSNPs.  

The sequence corresponding to the probeset predicted to be differentially spliced in 

Fam171b had relatively lower expression in the C59X mutants and had sequence 

variants that were present in adult mutant sequences specifically. The sequence 

corresponding to the probeset predicted to be differentially spliced in Prdm4 was highly 

expressed in the mutant relative to the wildtype and there was no evidence of 

polymorphism in the sequence. Interestingly Slc39a13, Ssfa2 and Fam171b are all on 

chromosome 2 where as Prdm4 is on chromosome 10. 

In the data I generated using Partek GS, 29 genes had differential splicing effects that 

were Bonferroni significant in the adult (combined male female) analysis and 30 genes 

in the embryonic dataset. Although the proportion of genes with these effects was 

similar in each, only 6 genes were common to both analyses (Table 5.12).  Three of the 

six (Fam171b, Slc29a13 and Ssfa2) were suspected to be attributable to C59X mutant 

strain specific variants and are found on chromosome 2. Tcp11l1 and Zc3h15 are also 

on chromosome 2 and so there was the possibility that a strain specific variant in the 

target sequence was causing a false positive result and it was these false positives which 

were responsible for the common results between embryonic and adult C59X mutants. I 

found both Zc3h15 and Tcp11l1 to contain dbSNPs in the sequence targeted by the 

probeset that was predicted to be differentially spliced. The exon targeted by the 

probeset was downregulated in the C59X mutants in both cases. A bias for genes 



 189 

predicted to be highly significantly differentially spliced in both embryonic and adult 

C59X mutants was found on chromosome 2. This could indicate a region of 

chromosome 2 that was being inherited with the C59X mutation which resulted in 

additional C59X mutant strain specific variants (This is assessed in detail in chapter 6 

section 3.1). 
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Gene 

Symbol Chromosome 

Start 

Position  Stop Position 

Differential Splice P value 

(Nominal p<0.05) 

FDR (0.05 

threshold) Adult Splice p value  

Inpp4a 1 37356703 37476203 8.13x10-5 0.01 0.89 

Cds2 2 132088919 132137786 7.23x10-6 0.003 0.13 

ext2 2 93535349 93662754 5.79x10-5 0.01 0.66 

Fam171b 2 83652803 83723677 1.34x10-14 1.06x10-10 5.16x10-18* 

Itih2 2 10016224 10089270 1.10x10-6 8.74x10-4 1.00 

Pla2g4e 2 119992148 120071314 3.33x10-6 0.002 4.23x10-4 

Slc39a13 2 90901953 90928948 1.95x10-10 4.40x10-7 3.74x10-17* 

Ssfa2 2 79475519 79513499 2.03x10-6 1.27x10-3 2.54x10-27* 

Nomo1 7 53289086 53344037 7.79x10-9 1.23x10-5 0.72 

Xab2 8 3608421 3621314 2.36x10-4 0.03 0.06 

Baz2a 10 127528233 127567216 5.97x10-5 0.01 0.99 

Myh10 11 68505007 68630180 8.21x10-7 6.84x10-4 0.90 

Trim37 11 86940579 87064356 2.24x10-5 0.006 0.90 

Dync1h1 12 111839631 111905126 6.57x10-9 1.16x10-5 0.04 

Atp8a2 14 60266382 60816016 1.03x10-4 0.02 0.99 

Prdm4 14 70162232 70237257 2.83x10-6 1.55x10-3 8.67x10-20* 

Arf3 15 98565314 98593635 4.12x10-6 0.00186 0.86 

Serpind1 16 17331484 17343665 5.91x10-5 0.01 0.51 

Fbn2 18 58168277 58392191 5.84x10-5 0.01 0.98 

Huwe1 X  148235370 148369956 6.46x10-6 0.002 1.00 
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Table 5.11 Overlapping Genes Significant After Multiple Test Correction. Of the 62 genes predicted by AltAnalyze, easyExon and Partek GS to 

be differentially spliced in the embryonic C59X mutants 20 were significant in Partek GS following an FDR correction set at 0.05. 6 Genes were 

significant in the embryonic data in Partek GS, easyExon and AltAnalyze and were also significant in the adult data at a nominal p value of <0.05. *4 

genes were among the 13 most robust differential splice predictions in the adult data (defined as being significant in male and female datasets 

separately and being significant with all three software algorithms) and were also significant in all 3 programmes in the embryonic dataset. 
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Gene 

Symbol Cytoband 

Adult Splice p value 

(p<0.05) 

Bonferroni Correction 

for 15833 Tests 

E18.5 Splice p value 

(p<0.05) Bonferroni Correction for 15830 Tests 

Ssfa2 2qC3 2.53x10-27 4.01x10-23 2.03x10-6 0.03 

Prdm4 14qD2 8.67x10-20 1.37x10-15 2.83x10-6 0.04 

Tcp11l1 2qE2 1.80x10-19 2.85x10-15 1.48x10-10 2.34x10-6 

Fam171b 2qD 5.16x10-18 8.18x10-14 1.34x10-14 2.13x10-10 

Slc39a13 2qE1 3.75x10-17 5.93x10-13 1.94x10-10 3.08x10-6 

Zc3h15 2qD 1.28x10-14 2.03x10 1.40x10-8 2.22x10-4 

Table 5.12 Genes with Bonferroni Significant Differential Splicing in embryonic and Adult C59X mutants. The 6 genes in the table above were 

all predicted to be differentially spliced in embryonic and adult C59X mutants following a Bonferroni correction. 5 of the 6 genes are found on 

chromosome 2.  
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5.4 Discussion.   

I determined the effects of the C59X mutation on expression and splicing in embryonic 

mice from the F7 generation which were expected to have at least 98.5% of the 

C57BL/6HsdOla genome. Whole transcriptome expression and splicing were 

investigated in brain tissue derived from E18.5 embryos. Embryonic tissue was chosen 

due to evidence for a neurodevelopmental origin of schizophrenia as well as the 

growing evidence in support for substantial alternative splicing prevalent during 

development. The aim was to identify expression and splice changes that occur during 

this developmental period which in mouse, is thought to be roughly comparable to the 

second trimester of human pregnancy when it is thought impaired or altered 

development influences predisposition to schizophrenia.  

Expression of Snca in the ENU background strain was still observed in 2 of the 25 

embryonic samples. Although deletion of Snca did not strongly correlate with C59X 

genotype, I excluded these 2 samples to rule out confounding effects expression of this 

gene might have on the results. The Snca deletion has been reported to have some 

phenotypic effects (Oksman et al., 2006) and may alter the expression of other genes, 

though evidence of this is as yet lacking (Specht & Shoepfer, 2001).  

Expression and splice differences between mutant and wild type mice followed the 

same general pattern as observed in adult results. The proportion of differentially 

expressed genes was for adult and embryonic samples respectively 7% and 8%. Only 

one gene, Ogn was found to be differentially expressed in the embryonic C59X mutants 

using 3 different software tools. Leucine-rich proteoglycans such as Ogn are thought to 

have roles in neurite outgrowth, ECM assembly and cell adhesion (Ruoslahti, 1996). 

Extracellular matrix proteins such as Ogn (Jung et al., 2012), whilst having structurally 

supportive functions in the brain, are also thought to be important to the architecture of 

the brain and contribute to plasticity (Bonneh-Barkay & Wiley, 2009). The expression 

of Ogn is reduced in the amygdala of chronic immobilisation stress (CIS)-induced 

depressed mice (Jung et al., 2012). The authors suggest this may affect plasticity in the 

amygdala and neural circuits involved in stress which could have implications in 

psychiatric disorders (Jung et al., 2012). As the expression difference between C59X 

mutant and wildtype is not found in the equivalent analysis of the adult samples it may 

represent a developmentally specific expression difference between embryonic and 

adult C59X mutants, which could reflect the importance of this gene in development. 
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Interestingly, known functions of Ogn include the assembly of the extracellular matrix 

and cell adhesion. Extracellular matrix and cell adhesion pathways are enriched for 

developmentally regulated differentially spliced genes in embryonic mice (Revil et al., 

2010). The absence of robust expression differences between C59X mutants and 

wildtypes does not appear to support a role for Zfp804a in the direct regulation of gene 

expression. The identification of Ogn is however interesting with regards to the 

developmental hypothesis of schizophrenia. Ogn was identified in all software at a 

nominally significant p value (p=0.003). Despite it not being one of the most significant 

expression differences the geneview shows consistent upregulation across the transcript 

in the C59X mutants with a fold change of greater than or equal to 1.5. This indicates 

that the observed differential expression of the Ogn gene between C59X mutants and 

wildtypes is a real difference in the sample not attributable to the software. 

The percentage of genes predicted to be significantly differential spliced was slightly 

higher in the analysis of embryonic samples than adult (11% compared to ~6% in the 

adult data) but when applying a Bonferroni correction ~30 genes remained significant in 

both datasets. However, when considering the specific overlap of genes in this 

Bonferroni significant set and also from the overlap between Partek GS, easyExon and 

AltAnalyze it would appear that the consensus between the adult and embryonic results 

may, at least in part, be due to the effects of C59X mutant strain specific variants which 

are in genetic linkage with the C59X mutation.  As this observation has been made in 

both adult and embryonic datasets, it is difficult to establish the proportion of true splice 

events which may be functionally interesting until the linked region has been 

determined and the false positives excluded. Further investigation of the alternative 

splicing results on chromosome 2, and indeed other chromosomes is therefore necessary 

to establish the extent of this issue. This analysis is presented in detail in the next 

chapter. As the observation of mutant specific variants was in genes on chromosome 2 it 

is likely these variants were being inherited along with the C59X mutation and therefore 

sequence variants specific to the mutants would not be expected in genes on other 

chromosomes.   

When considering the splicing results in embryonic C59X mutants the number of 

significant results was much greater in Partek GS compared to easyExon and 

AltAnalyze and this may reflect the intensity filter being used in Partek GS. The default 

intensity filter in Partek GS may result in background signal being used to calculate 

differential splicing; resulting in a large number of false positives or alternatively the 
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number of false negatives in the easyExon and AltAnalyze may be greater due to very 

stringent filters being used. To ensure the distinction between true expression and 

background signal in Partek GS it may be necessary to undertake the analysis with more 

stringent intensity filters.  

 

More in depth analysis of differential splicing taking into account inherited SNPs and 

intensity thresholds is necessary to ensure more accurate determination of differential 

splicing results which when taken forward to pathway and other downstream analyses 

will provide insight into sets of genes and their functions which are relevant to the 

pathophysiology of schizophrenia. Downstream analysis carried out on these results 

prior to assessing the apparent enrichment of significant splice results on chromosome 2 

and the intensity cut offs would result in the identification of pathways that would not 

truly represent the effects of the C59X mutation and the function of Zfp804a.  Therefore 

before conducting any further functional analyses the technical issues arising from using 

the C59X mouse model were further explored. 
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Chapter 6. Technical Artefacts 

6.1 Introduction 

Microarrays have been in wide use for many years in expression studies. Certain issues 

which have arisen from this study appear to be common pitfalls of such technology 

particularly when using mouse models in which backcrossing of a specific mutation is 

carried out on a different strain (Gajovic et al., 2006). In an attempt to address some of 

these issues in this chapter, I explore the technical artefacts in such experiments which 

can lead to false positives and where possible, address these with further analyses.   

Sequence variants affecting cDNA-probe binding: The RNAseq experiment (chapter 4) 

identified the potential issue of linked mutations in sequences targeted by probesets 

predicted to be differentially spliced between C59X mutants and wildtypes.  This 

problem is not well documented in mouse literature. The microarray technique is based 

on cDNA hybridising to a probe on the array with its complementary sequence. A 

polymorphism in the cDNA sequence that influences complementarity may reduce the 

hybridisation efficiency, resulting in an altered expression measure at the probeset. This 

is a problem if the polymorphism affecting hybridisation is specific to one of the 

experimental groups being studied as this could lead to false positive splicing results.  

The failure of some of the most significant splice changes from the adult exon array to 

replicate in the RNA sequencing data brought up the possibility of a technical artefact 

leading to false positive splice calls in the array experiment.  After the F3i experiment, I 

assumed this to be attributable to the mice having ~96% congenicity to the 

C57BL/6JHsdOla background strain, leaving the possibility that additional ENU 

induced mutations might still be present. However since the same genes showed highly 

significant changes in the embryonic data as well, this raised the issue that these 

mutations were in genetic linkage (i.e. these mutations had not been separated from the 

C59X mutation by a recombination event) with the C59X mutation since they were 

retained despite the now 98.5% congenicity to the C57BL/6JHsdOla strain. Based on 

preliminary analyses, significant differentially spliced genes around the Zfp804a locus 

and on chromosome 2 were investigated to determine if differential splicing correlated 

with the presence of dbSNPs in the associated probesets.  

Impact of intensity filter: The use of relatively stringent intensity filters removes 

probesets corresponding to sequences with low expression. Low intensity signals in 
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probesets when normalised to total gene expression have the potential to be 

misinterpreted as differential splicing, so aggressive filtering for intensity can be 

expected to reduce the false positive rate. The optimal choice of intensity filters is 

dependent upon the aim of the experiment (Whistler et al., 2010). If the aim is to 

minimize false negative findings, or identify novel splicing events, the filter needs to be 

less stringent but the trade off for higher sensitivity is lower specificity, that is a higher 

false positive rate.  The first intensity filter used was the Partek GS default which is a 

maximum log2 intensity <3 (except when that probeset has significant differential 

expression p≤0.05). This threshold is recommended in the Partek Manual to prevent the 

exclusion of true positives and is used elsewhere (Tian et al., 2010). This threshold 

corresponds to fairly low expression, and as a result, probesets corresponding to 

sequences that are not expressed won’t be included.  Others report that a more stringent 

log2 intensity > 6 represents reliable expression (Zhang et al., 2008), so I investigated 

the effects of increasing stringency up to this level.  

The use of a log2 intensity filter of 3 in Partek GS resulted in the prediction of many 

more differential splicing events than easyExon and AltAnalyze which both filter 

probesets using the DABG p value. The detection above p value represents the 

likelihood that the intensity value of a particular probe set is part of the background 

(null) distribution (Della et al., 2008). In a paper by Whistler et al., (2010) they 

observed a similar finding where the percentage of probesets removed from the analysis 

was double when using the DABG (p≤0.05) over a log2 intensity of 3. With the number 

of genes predicted to be differentially spliced almost 3 times as many when using the 

log2 intensity <3 filter (Whistler et al., 2010).   

Impact of gene size: Alternative splicing is thought to affect ~ 70% (Johnson et al., 

2003) of mammalian genes, but this is known to increase to ~97% in multi-exon genes, 

with a linear increase in the number of alternative splicing events per gene as the 

number of exons increases (Pan et al., 2008). When considering the results of exon 

arrays, increased splicing in large, multi-exon genes may reflect a genuine biological 

finding, but the number of spurious apparent differential splice events could also 

increase in genes with a larger number of exons as more probes implies a greater 

potential for an impact of chance fluctuations. Both true biological and chance effects 

would imply a relationship between the probability of finding a significant differential 

splicing effect and gene size. To determine if this relationship was found in the C59X 

mice the embryonic splicing data were assessed.  
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After the above potential artefacts were assessed, I reappraised all the previously 

presented data from Chapters 3 and 5.   

 

6.2 Methods 

6.2.1. Linked Sequence variants affecting cDNA-probe binding. 

To investigate potential effects of strain specific alleles in genetic linkage with the 

C59X mutation, I concentrated on the splicing data. Due to the way in which total 

expression and splicing changes are calculated, alleles affecting hybridization are 

expected to have a greater impact on splicing data. This is because splicing is 

determined by comparing expression at a single probeset relative to expression across 

the transcript whereas expression changes are based on average expression across all 

probesets in a transcript and are therefore less likely to be effected by a SNP in a single 

probe.  

The hypothesis investigated is that C3H/HeJ or Balb/c strain alleles within sequences 

representing probesets that generate apparent differential splicing effects remain 

associated with the C59X mutation on chromosome 2 because of genetic linkage. To 

test this hypothesis, using the embryonic data, I determined the 50 most significant 

splicing events to identify if there was an enrichment of results around the Zfp804a 

locus on chromosome 2. I then took the 17 most significantly differentially spliced 

genes on chromosome 2 and the 50 most significantly differentially spliced genes 

elsewhere in the genome (17 on chromosome 2 as these had an equivalent p value level 

(2x10
-5

) to the 50 non chromosome 2 genes) and in each identified the probeset 

indicative of differential splicing (Fig. 6.1). The probeset sequences were then identified 

using NetAffx (an Affymetrix tool for finding annotation and design information for 

GeneChip® arrays. http://www.affymetrix.com/analysis/index.affx) and the presence of 

a dbSNP (dbSNP 128) using UCSC. If a dbSNP was found within the sequence targeted 

by a probeset, the corresponding region was viewed in the adult mice RNAseq data 

(Chapter 4) using the Integrative Genomics Viewer (IGV) to confirm it distinguished 

C59X mutants from wildtypes.   
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Figure 6.1 To establish the number of genes that contained dbSNPs linked to the C59X 

mutation the sequences corresponding to the probeset (red circle) indicative of 

differential splicing was checked in UCSC to determine known dbSNPs (dbSNP 128) 

within the targeted sequence.   

 

6.2.2. Exclusion of Chromosome 2. 

The core meta-probeset file consisted of 194,293 probesets, following the removal of 

the 15,713 probesets found on chromosome 2, 178,580 remained.  A custom probeset 

file was made (Excel, 2007) with these 178,580 probeset IDs and the analysis was re-

run with all other criteria as described in chapter 2.8.3.1 

6.2.3 Impact of Intensity Threshold. 

To determine the effects of altering the stringency of intensity filter, the alternative 

splice ANOVA (Partek GS) was run with both the embryonic and adult data (excluding 

probesets targeting chromosome 2). The original analyses, which excluded probesets 

with a maximum (in a sample) log2 intensity <3 unless there was differential expression 

of the probeset (p≤0.05) were compared with those using filters at log2 intensity <4, <5 

and <6, retaining as before probesets that significantly differed (p≤0.05) between 

mutant and wildtype. I also investigated using a filter of mean log2 intensity <3, <4, <5 

and <6, both retaining (as before) and excluding differentially expressed (p≤0.05) 

probesets.     
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6.2.4 Impact of Gene size. 

To determine if there was a bias of significant splicing events in genes with more exons, 

I tested for correlation between probeset number (used as a proxy for exon number, as 

on average each exon is represented by one probeset) and –log alternative splice p value 

using the embryonic data. Both probeset number and alternative splice p value were not 

normally distributed and therefore a bivariate correlation using the non parametric 

Kendall’s tau b statistic was calculated using SPSS (v16.0).  

 

6.2.5 Re-analysing the data with more stringent thresholds and exclusion of 

Chromosome 2. 

To obtain a more conservative analysis, I reanalyzed the embryonic data without 

probesets targeting chromosome 2 and with the more stringent intensity filters indicated 

by the above evaluation.  

 

6.2.6 Embryonic and Adult Dataset Replication Following Stringent Analyses.  

To obtain a more conservative analysis of the extent of overlap between adult and 

embryonic datasets, I re-examined both datasets after exclusion of chromosome 2 

probesets and with a mean log2 intensity filter of 6. The embryonic data had gender and 

scan date covaried and the adult data were the combined data set of 16 samples with 

gender covaried. Overlap was determined as described in chapter 3.2.11. 

 

6.2.7 Expression and Splicing of Zfp804a.  

To establish if more stringent intensity cut-offs affected the previously generated 

expression and splicing results for Zfp804a, the more conservative analysis was run for 

both adult and embryonic datasets as described in chapter 2.8.3.6 but using the extended 

meta-probeset file and a mean log2 intensity = 6 filter. 

 

 



 201 

6.3 Results  

6.3.1 Linkage with the C59X Mutation. 

6 genes (Fam171b, Prdm4, Slc39a13, Ssfa2, Tcp11l1 and Zc3h15) were predicted to 

have differential splicing in embryonic and adult C59X mutants following a Bonferroni 

correction for multiple testing, 5 of which (all but Prdm4) had reduced expression in the 

exon targeted by the probeset in the C59X mutants. All 5 were identified as having 

C59X mutant specific alleles in the sequence targeted by the probeset predicted to be 

differentially spliced. These observations had led to the hypothesis that reduced 

hybridisation efficiency caused by the C59X specific alleles was resulting in false 

differential splicing predictions. All 5 were on chromosome 2 and all were in dbSNP, 

thus unlikely to be ENU generated, suggesting that a region of chromosome 2 with 

ENU strain dbSNPs was co-segregating with the C59X mutation. When assessing the 

distribution of the 50 most significant differential splice results from the embryonic 

data, there was an obvious enrichment of significant events on chromosome 2 (Fig. 6.2).   

 

 

Figure 6.2 Genomic Distribution of the most Significant Differential Splice Events. 
Plotting the frequency of the 50 most significant differentially spliced genes from the 

embryonic analysis across the genome showed enrichment on chromosome 2.  

 

In the embryonic data, the top 17 significant differentially spliced genes on 

chromosome 2 (Table 6.1) and the top 50 elsewhere in the genome (Table 6.2) were 

investigated to determine how frequently the predicted spliced probeset targeted a 

sequence with a dbSNP that when investigated in the RNAseq data was found to 

distinguish C59X mutants and wildtypes. Whilst none of the top 50 results found 

elsewhere in the genome had dbSNPs in the predicted spliced probeset that could be 

identified in the RNAseq to distinguish C59X mutants from wildtypes, 7 of the 17 on 

chromosome 2 did.  
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For each of the 7 dbSNPs in sequences targeted by probesets on chromosome 2, the 

RNAseq revealed the allele in the wildtype C57BL6J/HsdOla background was a perfect 

match for that of the probeset, the C3H/Hej or Balb/c ENU strain having a base that was 

non complementary to the probe. This is expected since the probesets were designed by 

Affymetrix based upon the NCBI build 37/mm9 sequence which itself is derived from 

the C57BL/6J strain. The 7 genes affected were also in proximity to Zfp804a. 

Consistent with an adverse effect of the non-reference allele on hybridisation, 6 of the 7 

probesets indicated downregulation in the mutants. The exception is the gene Calcrl. 

This might point to a genuine upregulation of splicing of the gene, or simply a chance 

finding.  This suggests that the mice are inheriting a region (under linkage) rather than 

just the C59X mutation which is not being broken up by recombination. 
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Gene Symbol Start Position  Alt Splice P value dbSNP Strain carrying non-probe allele Direction of Change 

Itih2 10016220 1.10E-06 None   Mutant up 

Mllt10 17986021 2.37E-05 None   Mutant up 

Traf2 25373502 2.73E-05 3 dbSNPs Variants not observed in Mutant or Wt Mutant down 

Bat2l 32079483 2.53E-06 None   Mutant down 

Ssfa2 79475509 2.03E-06 rs13471129  Mutant Mutant down 

Zc3h15 83484592 1.40E-08 rs33018080  Mutant Mutant down 

Fam171b 83652793 1.34E-14 rs28032403  Mutant Mutant down 

Calcrl 84170783 1.26E-05 rs28028711  Mutant Mutant up 

Slc39a13 90901948 1.95E-10 rs13463033  Mutant Mutant down 

Caprin1 103603098 5.65E-06 rs33587735  Mutant Mutant down 

Tcp11l1 104497445 1.48E-10 rs27414619  Mutant Mutant down 

Eif2ak4 118214354 4.29E-06 2 dbSNPs rs27424057 in both  Mutant down 

Pla2g4e 119992148 3.33E-06 None   Mutant up 

Zfp106 120332556 6.26E-09 None   Mutant down 

Ubr1 120686005 9.62E-14 rs27438911  Both  Mutant down 

Ccndbp1 120834139 2.77E-05 2 dbSNPs Both  Mutant down 

Cds2 132088884 7.23E-06 None   Mutant up 

 

Table 6.1 Frequency of dbSNPs in Sequences of Differentially Spliced Genes on Chromosome 2. The top 17 significant differentially spliced 

genes found on chromosome 2 are ordered from top to bottom by genomic location. Those highlighted in yellow were genes in which the differentially 

spliced probeset contained a dbSNP specifically found in the mutant samples. This occurred in 7 of the genes and in 6 of the 7 the probeset was 

downregulated in the C59X mutants. Zfp804a is located between Ssfa2 and Zc3h15.  
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Gene Symbol Chromosome Start 

Coordinate 

Alternative Splice p value dbSNP Strain carrying non-probe allele Direction of 

Change 

Cul3 1 80261498 4.66E-06 None   Mutant up 

Kif1a 1 94912033 6.03E-06 None   Mutant down 

R3hdm1 1 129999883 9.10E-06 None   Mutant up 

Cp 3 19857054 7.08E-06 None   Mutant up 

Tnfsf15 4 63388118 8.52E-06 None   Mutant down 

Elavl2 4 90917397 2.17E-05 None   Mutant up 

Ift74 4 94281182 3.31E-06 None   Mutant up 

Agrn 4 155539407 1.10E-05 None   Mutant down 

Akap9 5 3928054 7.91E-06 None   Mutant up 

0610007C21Rik 5 31350685 1.87E-06 None   Mutant up 

Vps33a 5 123978773 3.44E-06 None   Mutant up 

Eefsec 6 88173756 1.07E-05 rs37659956  Variants not observed in Mutant or 

Wt 

Mutant down 

Plxna1 6 89265692 2.27E-05 None   Mutant down 

Emp1 6 135312949 3.15E-06 None   Mutant down 

Saps1 7 4,583,196 7.64E-06 None   Mutant down 

Supt5h 7 29099917 1.30E-06 rs36348871  Variants not observed in Mutant or 

Wt* 

Mutant down 

   Table 6.2  

 

 

 

http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1347360
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:108391
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:2448514
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:88476
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:2180140
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1914944
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:2178217
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1918918
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1924823
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:107941
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1202400
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Gene 

Symbol 

Chromosome Start 

Coordinate 

Alternative Splice p value dbSNP Strain carrying non-probe 

allele 

Direction of 

Change 

Nomo1 7 53289066 7.79E-09 2 nonsynonymous; 3 

synonymous 

Variants not observed in 

Mutant or Wt 

Mutant Down 

Alg8 7 104520116 2.41E-05 None   Mutant up 

Eif4g2 7 118214082 1.04E-05 None   Mutant down 

Spon1 7 120909512 2.21E-11 None   Mutant up 

Odz3 8 49285946 1.95E-05 None   Mutant up 

Robo3 9 37223264 1.13E-05 None   Mutant down 

Anxa2 9 69301447 1.18E-05 None   Mutant up 

Clstn2 9 97344814 1.85E-05 None   Mutant down 

Gpr126 10 14122391 4.75E-06 None   Mutant up 

Prdm4 10 85354711 2.83E-06 rs30113788  Variants not observed in 

Mutant or Wt 

Mutant up 

Zdhhc17 10 110381449 1.79E-05 None   Mutant up 

Lrp1 10 126975217 3.41E-06 None   Mutant down 

Myh10 11 68505061 8.21E-07 None   Mutant up 

Trim37 11 86940579 2.24E-05 None   Mutant up 

Med24 11 98565905 2.02E-06 rs27041085 (C/T) Variants not observed in 

Mutant or Wt* 

Mutant up 

Nol11 11 107027977 3.97E-07 None   Mutant up 

   Table 6.2 

 

 

http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:2385850
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:2141959
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:109207
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:2385287
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1916151
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1920093
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:96828
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1930780
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1344385
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1916229
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Gene 

Symbol 

Chromosome Start 

Coordinate 

Alternative Splice p value dbSNP Strain carrying non-probe allele Direction of 

Change 

Abca9 11 109962063 2.09E-06 rs27036976 (C/T) Variants not observed in Mutant or Wt* Mutant up 

Dync1h1 12 111839662 6.57E-09 None    Mutant up 

Bap1 14 32064675 1.21E-06 None   Mutant up 

Pcca 14 122933546 8.53E-08 None   Mutant up 

Zfr 15 12047586 2.53E-06 None   Mutant up 

Cdh6 15 12963955 1.04E-10 None   Mutant up 

Arf3 15 98568052 4.12E-06 None   Mutant up 

Ktelc1 16 38,525,264 3.12E-15 None   Mutant up 

Grik1 16 87896441 1.70E-07 None   Mutant up 

Dopey2 16 93712152 2.35E-05 None   Mutant down 

Gtpbp2 17 46297981 8.69E-09 None   Mutant up 

Ptprs 17 56551854 1.76E-08 None   Mutant down 

Dpysl3 18 43480633 4.69E-06 None   Mutant up 

Mus81 19 5482355 1.50E-05 None   Mutant up 

Cybasc3 19 10652213 7.43E-08 None   Mutant down 

Hcfc1 X 71188131 2.00E-07 None   Mutant down 

Eda X 97170945 7.91E-06 None   Mutant up 

Huwe1 X 148235350 6.46E-06 None   Mutant up 

Table 6.2 Frequency of dbSNPs in Sequences of Differentially Spliced Genes not on Chromosome 2. The top 50 significant differentially spliced 

genes found in the rest of the genome were investigated to determine if a dbSNP was present in the sequence targeted by differentially spliced 

probesets and if so whether that variant was specifically in the C59X mutants (identified using the RNAseq alignment files). None of the dbSNPs 

identified were found in the RNAseq data although the coverage was poor in the RNAseq data for 3 of the genes (*). Gene listed from top to bottom by 

genomic location. 

http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:2386796
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:103147
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1206586
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:97499
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1341890
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:107435
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:99432
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:95814
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1860138
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:97815
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1349762
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:2686925
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:105942
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1195272
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&id=MGI:1926884
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Strain information could only be obtained for 3 of the 7 dbSNPs (using the SNP query 

form from MGI based on dbSNP build 128, 

http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=snpQF) (Table 6.3). All 

3 of the sequence variants were specific to one or both of the strains used to generate the 

ENU mouse line and suggests that each of these mutations was being inherited from the 

ENU strain along with the C59X mutation.  

 

 

 

Gene Symbol Strain Info 

Ssfa2 Specific to C3Hej and Balb/cByJ 

Zc3h15 Not there 

Fam171b Specific to C3Hej and Balb/cByJ 

Calcrl Not there 

Slc39a13 Not there 

Caprin1 Not there 

Tcp11l1 Specific to C3Hej and Balb/cByJ 

 Table 6.3. Inbred Mouse Strain Specificity of C59X Mutant Specific dbSNPs. Of 

the 7 dbSNPs identified, strain information could only be found for 3. All 3 were 

specific to one or both of the mouse strains used to generate the ENU mouse line.  
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The data above strongly support the hypothesis that a proportion of the splice events on 

chromosome 2 are artefacts of ENU strain specific alleles co-segregating with the C59X 

mutation.  

 

6.3.2 Exclusion of Chromosome 2.  

Given the impact of linkage between polymorphisms on chromosome 2 and the C59X 

mutation on the analyses, I repeated the analysis after excluding all probesets that 

targeted chromosome 2. The general pattern of the data was broadly similar to that 

observed previously (chapter 5) in that more significant results were observed for 

splicing following multiple test correction, although there were fewer differentially 

expressed (Table 6.4) and spliced genes (Table 6.5).  

Expression 

(embryonic) 

Including Chr. 2 

Total Transcript 

Number: 15830 

Excluding Chr. 2 

Total Transcript  

Number: 14512 

p≤0.05 1346 1228 

p≤0.01 225 204 

p≤0.001 15 11 

p≤0.0001 0 0 

FDR 0.05 0 0 
 

Expression (adult) 

Including Chr. 2 

Total Transcript 

Number: 15833 

Excluding Chr. 2 

Total Transcript  

Number: 14515 

p≤0.05 1043 902 

p≤0.01 242 194 

p≤0.001 30 13 

p≤0.0001 11 3 

FDR 0.05 9 2 

Bonferroni 3 1 

Table 6.4 Differentially Expressed Genes following the removal of Chromosome 2 

Probesets. After the ~15,700 probesets on chromosome 2 had been removed the 

number of differentially expressed genes in the C59X mutants was slightly lower at 

each p value threshold for both embryonic (top table) and adult (bottom table) results. 
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The number of apparently differentially spliced genes also decreased following the 

removal of chromosome 2 probesets from the analysis, with the adult analysis 

proportionately affected more than the embryonic.  Following the removal of 

chromosome 2 probesets, only Prdm4 (see chapter 5) remained significant in both 

datasets after a Bonferroni correction. 

 

 

Splicing 

(Embyonic) 

Including Chr. 2 

Total Transcript Number: 

15830 

Excluding Chr. 2 

Total Transcript Number: 

14512 

p≤0.05 1808 1627 

p≤0.01 721 629 

p≤0.001 214 170 

p≤0.0001 104 80 

FDR 0.05 172 125 

Bonferroni 30 23 
 

Splicing 

(adult) 

Including Chr. 2 

Total Transcript Number: 

15833 

Excluding Chr. 2 

Total Transcript Number: 

14515 

p≤0.05 617 514 

p≤0.01 226 162 

p≤0.001 92 51 

p≤0.0001 54 22 

FDR 0.05 65 22 

Bonferroni 29 9 

Table 6.5 Differential splicing in C59X embryonic (top) and adult (bottom) 

mutants following the exclusion of all probesets on chromosome 2.  

 

 

 

Due to the decreased numbers of significant differentially expressed and spliced genes it 

does suggest an unusual proportion of the significant results were genes found on 

chromosome 2 and favours the removal of these probesets as it is probable the majority 

are artefacts and in the absence of the ability to distinguish between true and false 

positives it is best to remove them all.  
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6.3.3 Assessment of Intensity Cut-offs. 

All analyses presented thus far used the default intensity filter in Partek GS which 

excludes any probeset with a maximum log2 intensity less than 3 unless it is 

significantly differentially expressed (p≤0.05). Given the substantially higher numbers 

of significant differentially spliced genes with Partek GS relative to others based on the 

DABG algorithm (chapter 3 and 5) more stringent thresholds were tested. Analyses 

excluded chromosome 2.  As expected, all increases in stringency (increasing the 

intensity threshold, using the mean threshold rather than requiring at least one sample to 

attain that threshold) reduced the total number of transcripts in the analyses (Table 6.6). 

However, when probesets are excluded based on intensity alone irrespective of 

differential expression p value (column called no exception), as the intensity threshold 

is increased, the numbers of differentially expressed and spliced genes decreases. The 

reverse is true when those probesets below the threshold are retained if they show 

significant differences between groups (columns called Max and Mean). The reduction 

in the former is easily explained by the exclusion of probesets with significant 

differential expression (p≤0.05) that have low intensity. However, it is less obvious why 

there should be an increase in the number of significant observations when the more 

stringent thresholds are applied in the latter two analyses. It maybe that a probeset with 

low expression is not differentially expressed between the two groups, however the 

probesets across the remainder of the transcript are differentially expressed. When the 

filters are less stringent the low expressing probeset is included so no significant 

differential expression is observed. When the more stringent filters are applied the low 

expressing probeset is excluded and the differential expression observed throughout the 

remained of the transcript becomes significant.   
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Adult Dataset Log2 Intensity   Embryonic Dataset Log2 Intensity 

  Max<3 Mean<3  Mean<3 Without 

Exceptions 

  Max<3 Mean<3  Mean<3 Without 

Exceptions 

Total Transcripts  14515 14440 14422 Total Transcripts  14512 14459 14444 

Expression (P≤0.05) 902 911 902 Expression (P≤0.05) 1228 1229 1227 

Splicing (P≤0.05) 514 517 510 Splicing (P≤0.05) 1627 1631 1628 

  Log2 Intensity   Log2 Intensity 
  Max<4 Mean<4 Mean<4 Without 

Exceptions 

  Max<4 Mean<4 Mean<4 Without 

Exceptions 

Total Transcripts  14426 14302 14258 Total Transcripts  14410 14304 14261 

Expression (P≤0.05) 911 918 896 Expression (P≤0.05) 1223 1239 1219 

Splicing (P≤0.05) 516 537 502 Splicing (P≤0.05) 1639 1637 1607 

  Log2 Intensity   Log2 Intensity 

  Max<5 Mean<5 Mean<5 Without 

Exceptions 

  Max<5 Mean<5 Mean<5 Without 

Exceptions 

Total Transcripts  14288 14102 14006 Total Transcripts  14253 14080 14002 

Expression (P≤0.05) 913 935 876 Expression (P≤0.05) 1239 1253 1208 

Splicing (P≤0.05) 539 562 462 Splicing (P≤0.05) 1625 1631 1534 

  Log2 Intensity   Log2 Intensity 

  Max<6 Mean<6 Mean<6 Without 

Exceptions 

  Max<6 Mean<6 Mean<6 Without 

Exceptions 

Total Transcripts  13998 13712 13498 Total Transcripts  13982 13693 13535 

Expression (P≤0.05) 936 967 849 Expression (P≤0.05) 1250 1280 1184 

Splicing (P≤0.05) 584 639 425 Splicing (P≤0.05) 1650 1682 1440 
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Table 6.6 The Effect of Intensity Filters on Determining Differentially Expressed and Spliced genes in Embryonic and Adult analyses of 

mutants versus wildtype. ‘Without Exceptions’ refers to the analyses which excluded probesets based on intensity alone and does not retain 

differentially expressed probesets (p≤0.05). 
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The analysis at the most stringent threshold which also excluded differentially 

expressed probesets with intensity values below the designated cut-off is the most 

conservative, and one would assume is the most robust. Previous analyses were aimed 

at capturing as many expression and splice differences as possible and therefore lower 

intensity stringencies were used to reduce the number of false negatives. When carrying 

out pathway analyses (presented in chapter 7) I chose what I felt to be the more robust 

intensity filter, where probesets are removed based on intensity, irrespective of 

significance. As when a probeset has low expression (log2 intensity <6) it is far more 

likely that the differential expression prediction is a false positive due to the probeset 

being expressed at an intensity which is not distinguishable from the background 

distribution.  The caveat being real data could also be excluded. When taking this 

analysis into consideration and the exclusion of chromosome 2 reduction in the total 

number of transcripts is observed, but this time an accompanying reduction in the 

number of significant differentially expressed and spliced genes is also observed.  

 

6.3.4 Determining the Effect of Gene Size on Differential Splicing Results.  

Larger genes have a greater number of exons, and as a result a larger number of 

probesets and a greater degree of multiple testing may introduce a bias towards such 

genes appearing to be significant in the differential splicing assay.  Larger genes may 

also have a true biological increase in alternative splicing.  Significant differential 

splicing results would therefore contain a disproportionate number of larger genes.  

When carrying out pathway analysis on such data the analysis would be bias in 

identifying pathways that happen to be comprised of larger genes irrespective of the 

cause. To determine if there is a relationship between the probability of observing a 

significant splicing event in a gene and the number of probesets in the gene, I sought 

correlation between the number of probesets targeting a gene and the –log alternative 

splice p value in the embryonic data. 

I hypothesised that as probeset number increased, the likelihood of a significant 

alternative splice event would also increase. As variables were not normally distributed, 

I undertook bivariate correlation with the Kendall’s tau b statistic. A two-tailed test was 

carried out. The number of markers in a gene and the –log of the differential splice p 

value were weakly (r = 0.061) but significantly (P<0.01) correlated (Fig. 6.3). This 

supports the hypothesis that the more probesets that target a gene, the more likely that 
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gene is to have a significant differential splice p value. Again it is important to note this 

increased differential splicing may be a result of a real biological effect or the impact of 

multiple testing. Whilst a significant correlation is observed, less than 1% of the 

variance in differential splice p value is explained by the number of probesets in a 

transcript, which is very small.  
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Figure 6.3 Correlation between the Number of probesets Targeting a Gene and the 

Signficance of Differential Splicing (-log P value).  

 

 

6.3.5 Re-analysis With More Stringent Intensity Filters and Exclusion of 

Chromosome 2. 

Having determined that the conservative analysis would be to exclude probesets that 

target chromosome 2 or that are expressed at a mean log2 intensity <6, the embryonic 

dataset was re-analysed using these filters. 

6.3.5.1 Differential Expression between C59X Mutants and Wildtypes.   

The number of genes differentially expressed between the C59X mutants and wildtypes  

at a p value ≤0.05 when probesets that target chromosome 2 are excluded was 1184 

(Table 6.7) approximately 200 fewer than when using the original filters (Chapter 5, 

Table 5.7). As before, no genes remained significant after multiple test correction (FDR 

threshold 0.05).  
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Unadjusted p value Significant Genes % of Genes  

Expected by 
Chance   

p≤0.05 1184 9 677 

p≤0.01 199 1 135 

p≤0.001 12 0 14 

p≤0.0001 1 0 1 

FDR 0.05 threshold 0     

Bonferroni Correction for 15830 
tests 0     

Table 6.7. Differentially Expressed Genes between Embryonic C59X Mutants and 

Wildtypes.  

 

 

 

The AltAnalyze software predicts 1246 (p≤0.05) differentially expressed genes when 

chromosome 2 is removed of which 260 genes are also among those nominally 

significant in the Partek analysis. Of 1019 genes significantly differentially expressed in 

easyExon, 263 of them are among those nominally significant in the Partek analysis. 

When considering the results of all 3 analyses, 157 genes are predicted to be 

differentially expressed in all 3. The fold change of the expression difference was not 

considered with this data. This is because, using what I consider to be a more robust 

analysis in Partek GS with the more stringent intensity threshold, the addition of a fold 

change filter in addition to a significance filter seemed excessively stringent (as 

observed in Chapter 5.3.8.3.1). The degree by which significant differential expression 

results from the embryonic data replicated in the adult dataset was evaluated using 

Partek GS (Table 6.8). This analysis took the data generated using the more stringent 

approach. Significant genes were defined at a series of p value thresholds beginning at 

p≤0.05 in the embryonic data with a progressively more stringent threshold applied 

(p≤0.01, p≤0.001 and p≤0.0001). There was no obvious concordant significantly 

differentially expressed genes in the adult and embryonic datasets. 
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Differential Expression 
O.R 

χ2 

p≤0.05 
1.11 

p = 0.216 

p≤0.01 
1.22 

p = 0.273 

p≤0.001 
2.98 

p = 0.172 

p≤0.0001 
0 

p = 0.937 

Table 6.8 Replication of Differential Expression Results in C59X Embryonic and Adult Following the Removal of Low Expressing and 

Chromosome 2 Targeting Probesets. When more stringent filters were applied to the data no overlap was observed between embryonic and adult 

studies. O.R. is the odds ratio that a finding is significant in the adult data conditional on it being significant in the embryonic data. An O.R. <1 means 

findings that are significant in the embryonic data are not more likely to be significant in the adult data compared with those that are not significant in 

the embryonic data.  
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6.3.5.2 Differential Splicing Between Embryonic C59X Mutants and Wildtypes. 

The number of differentially spliced genes between embryonic C59X mutants and 

wildtypes following the removal of low intensity and chromosome 2 probesets 

decreased by ~400 genes at an unadjusted p value of ≤0.05 (Table 6.9). Although fewer 

than before, there were still an appreciable number of genes (Chapter 5, table 5.8) 

significant following multiple test correction.  

 

Unadjusted p value 
Significant 

Genes % of Genes  

Expected by 
Chance   

p≤0.05 1440 11 677 

p≤0.01 544 4 135 

p≤0.001 140 1 14 

p≤0.0001 58 0 1 

FDR 0.05 threshold 88     

Bonferroni Correction for 
15830 tests 16     

Table 6.9. Number of Differentially Spliced Genes between Embryonic C59X 

Mutants and Wildtypes.  

 

In AltAnalyze 412 genes are predicted to be differentially spliced (p≤0.05 FIRMA) of 

which 130 overlap with genes predicted by Partek GS. The easyExon analysis using the 

MiDAS algorithm (p≤0.05) predicts 316 significant differential splice events of which 

114 overlap with those significant in Partek GS. 55 significant differentially spliced 

genes were common to all 3 analyses.  

Revisiting the overlap of differential splicing results between C59X mutants and 

wildtypes in embryonic and adult data using the more robust filtering criteria, there 

were no more replications between embryonic and adult data than expected by chance at 

any p value stringency (Table 6.10). This suggests the highly significant overlap before 

was likely driven by false positive results due to a combination of low intensity 

probesets and polymorphisms linked to the C59X mutation on chromosome 2. The 

apparent lack of overlap in the more stringent analyses can be interpreted in four ways. 

First, the results of the adult experiment could be confounded by the Snca deletion, and 

a high proportion of changes seen between C59X mutants and wildtypes could be 

attributable to the Snca deletion. Second, changes observed in the adult mutants could 

be different from those seen in embryonic mutants due to the developmental regulation 
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of the expression or splice changes. Third, the results from both adult and embryonic 

studies were chance findings (although the number of FDR and Bonferroni significant 

genes would argue against this (Chapter 3, Table 3.10).  Fourth, there could be an as yet 

unaccounted for technical confounder in the embryonic data.      
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Differential Splicing  O.R  χ2 

p≤0.05 0.97 p = 0.472 

p≤0.01 0.87 p = 0.360 

p≤0.001 1.38 p = 0.279 

p≤0.0001 2.29 p = 0.109 

Table 6.10 Replication of Differential Splicing events observed in embryonic and adult studies following the removal of low expressing and 

chromosome 2 targeting probesets. When more stringent filters were applied to the data no overlap was observed between embryonic and adult 

studies. O.R. is the odds ratio that a finding is significant in the adult data conditional on it being significant in the embryonic data. An O.R. <1 means 

findings that are significant in the embryonic data are not more likely to be significant in the adult data compared with those that are not significant in 

the embryonic data.  
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6.3.6 Expression and Splicing in Zfp804a Following increased Intensity Filtering.  

6.3.6.1 Differential Expression of Zfp804a.  

Using the original less stringent intensity filters in the adult data no significant 

differential expression was observed in either the female or the male analyses using 

Partek GS (Table 6.11), although a trend was observed for upregulation in the mutants. 

In AltAnalyse there is the option to make intensity filters less stringent. The default is to 

exclude probesets with a non log expression below 70. I reduced this to exclude only 

probesets with a nonlog expression below 1. A similar non significant result was 

observed in AltAnalyze when using this less stringent intensity cut-off. In easyExon 

(without the default fold change filter), significant upregulation of Zfp804a was 

observed in the C59X female and male mutants (p = 0.008 and p= 0.01 respectively). I 

repeated the analysis in Partek GS using the extended metaprobeset file (as no core 

probesets target Zfp804a) with the mean intensity <6 exclusion criterion, and in 

AltAnalyze excluding probesets with a non log (absolute) expression below 70. 

Significant differential expression was observed in both AltAnalyze (female p< 0.02; 

male p<0.02) and Partek GS (females p < 0.01 and males p <0.0007) concordant with 

the easyExon results. In the embryonic data, no differential expression is observed 

between mutants and wildtype irrespective of intensity filter.  

In the RNAseq data Zfp804a was significantly upregulated in mutants (fold change = 

1.56), p = 2.26x10
-7

) and this remained significant following Benjamini and Hochberg 

(1995) FDR correction for multiple testing.  Thus, significant upregulation of Zfp804a 

was consistently observed in Partek GS, easyExon, AltAnlayze and the RNAseq data 

for adult C59X mutants, but no differential expression was observed in the embryonic 

C59X mutants.   
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  Differential Expression of Zfp804a P value 

Differential Expression Adult Female C59X  Adult Male C59X  Embryonic C59X  

Partek GS (Log2 Intensity >3) 0.18 0.75 0.84 

AltAnalyze (No nonLog expression Filter) 0.17 0.83 Not Significant 

easyExon 0.008 0.01 Not Significant 

 

 

With More Stringent Intensity Filters  Differential Expression of Zfp804a P value 

Differential Expression Adult Female C59X  Adult Male C59X  Embryonic C59X  

Partek GS (Log2 Intensity >6) 0.01 0.007 0.58 

AltAnalyze (Non log expression >70) 0.02 0.02 Not Significant 

 

Table 6.11 Expression of Zfp804a in Embryonic and Adult C59X mutants. When using the most stringent intensity cut offs significant 

upregulation of Zfp804a is observed in female and male adult C59X mutants in all 3 software tools. Differential expression is not observed in 

embryonic C59X mutants.  
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6.3.6.2 Differential Splicing of Zfp804a. 

In the adult data with the default intensity filter (Max log2 intensity <3), significant 

differential splicing was observed at Zfp804a using Partek GS in both female and male 

datasets (Females p = 5.16x10
-9

; Males p = 3.07x10
-8

) (Table 6.12). Using all three 

packages (Partek GS, AltAnalyze and easyExon) significant differential splicing at 

probeset 5023975 was observed in the analysis of female mice, and the same probeset 

showed the same effect using Partek GS in male mice. Significant differential splicing 

was also observed in males in AltAnalyze and easyExon, but at different probesets 

(4929502 and 4710659 in AltAnalyze and 4929502 in easyExon). There were an 

inadequate number of alignments in the RNAseq data for differential splicing to be 

calculated. 

When more stringent filters are applied in both Partek GS and AltAnalyze the 

significant differential splicing in female adult mice is nominal (p=0.05) and in 

embryonic C59X mice it disappears.  Significant differential splicing in Male C59X 

mutants is observed in all 3 software programmes and appears to be robust to more 

stringent intensity filters. In the adult males, probeset 5424882 (p<0.007) was 

significantly differentially spliced between C59X mutants and wildtypes in AltAnalyze 

and Partek GS while probeset 4929502 was significant in AltAnalyze and easyExon.  

 

Zfp804a appeared to be upregulated in the adult C59X mutants (male and female), but 

differential splicing robust to software and threshold changes was observed only in the 

adult male analyses (Fig. 6.5). As the spliced probeset varied depending on the software 

programme, the splice differences may reflect technical artefacts. Overall, no significant 

differential expression and splicing changes in Zfp804a were observed in the embryonic 

study using the most conservative criteria (Fig. 6.6). As upregualtion of Zfp804a in 

C59X mutants relative to wildtypes in observed only in adult mice, the difference may 

be the result of an unknown technical confounder. 
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  Differential Expression of Zfp804a Pvalue 

Differential Splicing Adult Female C59X  Adult Male C59X  Embryonic C59X  

Partek GS (Log2 Intensity >3) 5.16x10
-9

 3.07x10
-8

 0.002 

AltAnalyze (No nonLog expression Filter) 0.009 0.04 Not Significant 

easyExon 0.04 0.04 Not Significant 

 

 

With More Stringent Intensity Filters  Differential Expression of Zfp804a Pvalue 

Differential Splicing Adult Female C59X  Adult Male C59X  Embryonic C59X  

Partek GS (Log2 Intensity >6) 0.05 1.28x10-8 0.07 

AltAnalyze (Non log expression >70) Not Significant 0.02 Not Significant 

 

Table 6.11 Splicing of Zfp804a in Embryonic and Adult C59X Mutants. When more stringent filters are applied in both Partek GS and AltAnalyze 

the significant differential splicing in female and embryonic C59X mutants disappears.  Significant differential splicing in Male C59X mutants is 

observed in all 3 software programmes and appears to be robust to more stringent intensity filters.  
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Figure 6.5 Differential Expression and Splicing of Zfp804a in Partek GS in female 

adult mice (top) and male adult mice (bottom). When probesets with expression 

values below a mean log2 intensity of 6 are excluded from the analysis (drawn 

transparent and circled in red) significant upregulation of Zfp804a in female and male 

C59X mutants is observed. The significant differential splicing from the central of the 3 

circled probesets is removed. Differential splicing is observed for the 5’ probeset 

(circled black) in male C59X mutants relative to increased mutant expression in all 

other probesets. Mutants Red Wildtype Blue. 
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Figure 6.6 Differential Expression and Splicing of Zfp804a in Partek GS. Using a 

log2 intensity threshold <6 the 3 circled probesets are excluded and so no significant 

differential expression or splicing was observed between embryonic C59X mutants and 

wildtypes. Expression for each of the probesets targeting Zfp804a are displayed in a 5’ 

to 3’ direction with expression plotted on the y axis using a log2 scale. The blue line 

represents Wildtypes and the red line represents C59X Mutants. 
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The probeset predicted to be differentially spliced in Partek GS using lower stringencies 

targeted sequence containing a dbSNP (rs28042740) and was downregulated in C59X 

mutants. Based on earlier findings of linked variants causing reduced hybridisation 

efficiency, in the mutants I hypothesised that the differential splicing in Partek GS could 

have be generated due to this sequence variant. Only perfect match alleles to the 

probeset were present in the RNAseq data suggesting reduced hybridisation efficiency 

at the probeset did not explain the differential splicing. This rules out the effects of a 

C59X mutants specific SNP generating a false positive. The possibility of the probeset 

cross-hybridising was ruled out by ensuring that the probeset sequence specifically 

targeted Zfp804a (Chapter 3.3.4.11). This suggests the differential splicing at this 

probeset could be an artefact of the low expression of the probeset. When using more 

stringent filters this probeset is excluded.  

To determine if any strain specific alleles lay within the Zfp804a all exons of the gene 

were inspected in the RNAseq data. In addition to the C59X mutation, the mutant line 

differs from wildtype at two points. Both are known dbSNPs, both in exon 4, and are 

targeted by probeset 5147435. One is non-synonymous (H782R) the other synonymous 

(V340V).  
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6.4 Discussion. 

The removal of probes with known SNPs is an important part of the analysis workflow 

when using human samples (Kwan et al., 2007 & 2008) and options to do so are 

provided within the Partek GS software. This option is omitted from the mouse array 

workflow and the issue of probes targeting mouse sequences with SNPs is largely 

absent from the literature and Affymetrix support. This is most likely due to the 

presumption that inbred mouse strains will be genetically identical, but as I have shown, 

this is an important consideration when mouse lines are derived by backcrossing when 

genetic linkage can generate correlations between experimental groups and genotype. 

Gene level analyses will take into account intensities at a larger number of probes than 

exon level data and therefore false positives due to polymorphisms are much more 

likely to be prevalent in splicing data.  Polymorphisms found at the centre of a probe 

sequence can generate a 2 fold decrease in expression measure relative to a near 0 fold 

change when the polymorphism is found at either end of the probe sequence (Benovoy 

et al., 2008) and thus are more likely to cause erroneous results. Several methods have 

been developed to overcome this problem when using human data. Most methods deal 

with the issue by masking probes that target sequence containing SNPs then carrying 

out expression analysis (Duan et al., 2008). Only one method has been developed which 

considers mouse array data and uses a post analysis statistical method to remove false 

positives caused by differential hybridisation efficiency as a result of polymorphisms in 

probe sequences (Alberts et al., 2007).  

All probesets targeting chromosome 2 were excluded from the present analysis.  Whilst 

this is not an approach that has been reported in the literature, the excess of significant 

results on the same chromosome as the mutation of interest in probesets spanning 

dbSNPs was suggestive of a technical artefact and, in my opinion, justified a 

conservative approach to data analysis. Without the removal of these false positives on 

chromosome 2 the results would impact on multi-locus pathway analysis, and 

conclusions about biological functions would have been made based on these inaccurate 

results.  

 

A number of C59X mutant specific dbSNP were identified, including a nonsynonymous 

SNP found in exon 4 of Zfp804a. Nonsynonymous genetically linked mutations could 

have an impact on the relevant protein’s function in the C59X mutants specifically 
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independent of the effects of the C59X mutation, and therefore influence the expression 

and splicing results of the present study. Unfortunately, the presence of such variants 

could not be adjusted for in the present study, leaving the caveat that any expression or 

splicing changes observed may not be attributable to Zfp804a.  

Probesets that cause many of the technical artefacts are difficult to filter out using the 

currently available filtering methods and as exon arrays are relatively new there is no 

general consensus yet as to which probesets are problematic. As more results are 

generated this will allow this information to become available which should aid 

appropriate analyses (Whistler et al., 2010). Due to the number of different pre- and 

post-analytical filtering and the different software and algorithms available to analyse 

exon arrays, it is difficult to determine the best approach. A more systematic approach 

would increase the identification of robust splicing events and lessen the requirement 

for time consuming visual inspection of the data (Whistler et al., 2010).  

 

I discovered that a linear relationship between the size of a gene and significant 

alternative splicing existed and this is in accordance with an mRNA sequencing study 

(Pan et al., 2008). Increased alternative splicing in larger genes may be attributable to a 

real biological increase of splicing in genes with more exons or as a result of the 

increased multiple testing in larger genes. Due to the weak relationship observed it is 

most likely not attributable to multiple testing.  

Covarying for Snca expression was not possible in the adult data therefore the overlap 

analysis offered an alternative way of determining how confident to be in the data. 

When using the most conservative filtering (excluding probesets targeting chromosome 

2 and with a mean log2 intensity <6) no overlap was observed between the embryonic 

and adult data that was more than would be expected by chance. This makes it difficult 

to interpret the results. The different gene expression and splicing profiles could reflect 

developmental regulation by Zfp804a, but could also represent changes that are a direct 

or indirect effect of the deletion in Snca. The findings in both experiments could be 

attributable to chance and this would account for the differences, although the overlap 

of multiple test corrected data and the control of type I error analysis (Chapter 3, pp.88.) 

would discount this. Finally it can not be disregarded that an as yet unaccounted for 

technical confounder in the embryonic data is responsible for the different findings 

between embryonic and adult C59X mutants. As it was difficult to determine which of 

these hypotheses was correct, the confidence in the data was not enough to extrapolate 
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meaningful conclusions about Zfp804a gene’s function nor the potential ways in which 

mutations in this gene influence the pathophysiology of schizophrenia. The lack of any 

overlap does not negate the embryonic data which I regarded as the most reliable due to 

the consistent deletion of the Snca locus in all mice. These were therefore used in 

further downstream analyses described in the next section. Based upon the work of the 

present chapter, the downstream analyses are informed by a better understanding of the 

technical limitations of the data and analytic methods.  
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Chapter 7. Relevance of altered Zfp804a function for 

Schizophrenia.  

7.1 Introduction. 

The use of microarray experiments to study gene expression is now common place, but 

the output of these experiments at the level of single transcripts is generally inadequate 

for making functional inferences. The data need to be placed in the context of biological 

processes to infer knowledge about the changes in function related to the experimental 

conditions. One method commonly used to acquire functional relevance to microarray 

results is pathway analysis. Whilst the benefits of pathway analysis have been 

exemplified in some studies (Mootha et al., 2003) the potential for bias and ambiguity 

must be considered. 

Ascertaining biological insights from a microarray study is a time consuming and 

demanding task if each gene were to be considered individually. Investigating the data 

at the level of biological pathways enables information to be gained about the entire 

dataset simultaneously without highly specific a priori functional hypotheses, which is 

one of the main advantages of pathway analysis (Drăghici et al., 2003). 

Small sample sizes can limit the power of a gene expression study. Difficulty in 

distinguishing between true signal and noise is also often amplified by high variability 

between samples and the large number of genes that are tested (Mootha et al., 2003). 

Pathway analysis can offer a way of gaining more insight into the data from small 

samples because the data are viewed at the level of biological pathways rather than 

individual genes, the latter often being known to act as sets of coregulated gene sets. 

Power can then be increased by considering changes in multiple sets of functionally 

related genes. In essence, a large expression change observed in a single gene may 

provide less information than multiple smaller changes in a group of genes all belonging 

to the same biological pathway (Subramanian et al. 2005). 

 

The basic hypothesis is that if changed function in a pathway results from the presence 

of the mutation at Zfp804a, genes found within that pathway would be enriched for 

those with significant differential expression or splicing. One major caveat of pathway 

analysis is the fact that functionally related genes are often co-regulated which means 
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observations cannot be strictly considered as providing fully independent evidence for a 

given set of genes.  If a particular pathway shows significant changes in the expression 

or splicing of multiple members, this could simply be attributable to a chance 

fluctuation affecting an entire group of genes due to their correlated expression (Mootha 

et al., 2003). This is important to consider in pathway analysis where often 

independence of genes is assumed, and where doing so can increase the false positive 

rate (Emmert-streib & Glazko, 2011).  

Often the approach taken to pathway analysis is to restrict pathways to those thought 

relevant to what is already understood about the condition. This user definition of how 

the gene lists and pathways are chosen can bias the results toward biological processes 

already known to be relevant to the pathophysiology of the disorder being studied. In 

other words, significant findings have high plausibility simply because they are defined 

in advance to have such plausibility. In addition the statistics can prioritise gene sets 

with more genes ascribed to them than gene sets that include genes demonstrating the 

greatest expression changes, which may be counter intuitive (Damian & Gorfine, 2004).   

 

The numerous pathway analysis tools available can hinder the interpretation of 

expression results. The use of a variety of algorithms, databases and thresholds makes it 

difficult for a standardised approach to be followed and no consensus or gold standard 

currently exists which further impairs the comparison of results across studies.  

 

One important aspect of pathway analysis is the use of an appropriate comparator 

reference set of genes (hereafter called a background list) (Huang et al., 2009a) against 

which the changes in specific target pathways can be assessed. The significance of 

overrepresentation in the target versus background sets can be determined using a 

number of tests, for example Fisher’s exact test, the Chi squared test or the 

hypergeometric distribution (Huang et al., 2009a). As with pathways analysis in general 

there is no gold standard for background or the statistical approach. Generally the larger 

(i.e., the more comprehensive) the list the more accurate the estimate of enrichment 

(Huang et al., 2009a). Often several pathway analyses tools are used to gauge the 

robustness of results (Huang et al 2009b). 
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In order to understand the consequences of the Zfp804a mutation, I used complete lists 

of significant results for the pathway analysis.  Enrichment analysis (EA) was 

performed using Metacore (GeneGO) (Inc., St Joseph, MI) and DAVID (Database for 

Annotation, Visualisation and Integration Discovery (Dennis et al., 2003; Huang et al., 

2009a; Huang et al., 2009b). There are many different pathway tools available each 

using different annotation databases, but one common annotation database widely used 

is the Gene Ontology (GO) database (The Gene Ontology Consortium, 2000). The GO 

database consists of a hierarchy of 5 levels with level 1 representing the most general 

terms and 5 the most specific. Since level 1 incorporates all level terms, and genes may 

be members of multiple categories, the pathways are overlapping in membership and 

are not independent. This is generally not compensated for in available pathway tools 

(Jantzen et al., 2011). The occurrence of similar terms in functionally related pathways 

can obviously result in multiple similar pathways being simultaneously identified as 

significant, which might be misinterpreted as increased evidence for the relevance of the 

broad biological function to the question being studied (Jantzen et al., 2011). Both 

Metacore GeneGO and DAVID use the GO ontology as well as other annotation 

databases to allow a more thorough evaluation of functional enrichment in the gene list. 

The current level of annotation does however bias results in favour of systems for which 

more information is known.   

 

As well as assessing the consequences of the C59X mutation through pathway analysis 

of the array data, the expression results were also considered within the context of 

human genetic data. It was my hypothesis that genes identified as showing altered 

expression or splicing would contain downstream mediators of the effects of ZNF804A 

on disease risk. The polygenic model of schizophrenia suggests the involvement of 

thousands of genetic variants (ISC, 2009) and therefore I postulated that a number of the 

downstream targets of ZNF804A might contain genetic variants that influence disease 

risk. Genes identified in the exon array as showing altered expression and splicing were 

therefore tested for genetic association using large genome-wide schizophrenia case-

control association resources available from the Psychiatric GWAS Consortium 

(https://pgc.unc.edu/). To identify genes influenced by ZNF804A that might mediate 

disease risk, I used two gene-wide analyses, one which had been previously 

implemented and validated by the host department (Moskvina et al., 2009), the other 

based on the Simes’ tests, the applicability of which for extracting valid gene-wide 

https://pgc.unc.edu/
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genetic association values allowing for multiple testing has been demonstrated (Li et al., 

2011).  

Aim  

The overall aim of this section is to assess the gene expression data in the context of 

biological pathways, and to determine if any of the genes showing altered expression or 

splicing are relevant to disease risk by assessing association with disease in a large case-

control genetic dataset.  

 

7.2 Methods 

7.2.1 Pathway Analysis. 

Pathway analysis was carried out using Metacore GeneGO and DAVID seeking 

biological pathways enriched for genes differentially expressed and spliced in 

embryonic C59X mutants compared to wildtype mouse brain.  

 

7.2.1.1 Gene and Background lists  

When referring to the ‘gene list’ I refer to all genes significantly differentially expressed 

or spliced at the relevant statistical threshold.  In order to evaluate enrichment a 

background list must be provided for a comparator as discussed above. Default 

background lists are provided in both DAVID and Metacore GeneGO, but these lists 

represent either the complete mouse transcriptome or all genes included on specific 

array platforms. Both are inappropriate as a comparator group as these sets include 

genes that are not included in the analysis (e.g. genes not expressed in brain). The use of 

default sets would therefore inflate the significance of almost all pathways relevant to 

brain expression as only brain expressed genes have any chance of showing significant 

effects in the present study.  There is no consensus as to the most appropriate 

background list to use, but in principle, the most appropriate set would include only 

those genes that were evaluated for significant changes in expression or splicing. 

 Both Metacore and DAVID offer the option to upload a customised background list. To 

construct the most relevant background list, I compiled a list consisting of all genes 

which had been entered into the expression or splicing analyses. This meant I included 
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only genes that met with the most stringent criteria (excluding probesets on 

chromosome 2 and with a mean Log2 Intensity <6). This same background list was used 

for both expression and splicing pathway analyses.  

Of 13,535 genes included in the background list, 28 had no gene symbol or other useful 

identifier and were removed. Different transcripts of the same gene can be significantly 

differentially spliced meaning the same gene identifier will be represented in the list 

more than once, biasing the results related to this gene and its associated pathways. 

Duplicate genes symbols were removed to allow only one representation, of which there 

were 163 leaving 13,344 unique gene symbols. Using MGI Biomart 

(http://biomart.informatics.jax.org/biomart/martview/06197243657fc4ec9d186dc2cb2df

738) gene symbols were converted to Entrez IDs, of which 12,943 unique identifiers 

were found and these comprised the background list for all analyses.   

1184 genes were significantly differentially expressed at p<0.05 of which 1 had no gene 

symbol and the remaining 1183 were unique. 199 unique genes were significantly 

differentially expressed at p<0.01. These arbitrary thresholds were used to obtain gene 

lists of adequate size for pathway analysis. The gene symbols were converted to 1141 

and 191 unique Entrez IDs respectively. The alternatively spliced gene lists were made 

up of either the genes significant at p<0.01 (544) or the genes significant at p<0.001 

(140) of which all had gene symbols and no duplicate gene symbols were present. 530 

and 135 unique Entrez IDs were identified in MGI Biomart for each list respectively. 

Pathway analysis was conducted in both Metacore and DAVID with the species 

selected as Mus musculus. 

 

7.2.1.2 Metacore GeneGO 

Metacore (GeneGo, Inc., St Joseph, MI, http://www.genego.com/metacore.php) is based 

on a collection of protein-protein, protein-DNA, protein-RNA, protein-compound and 

compound-compound interactions. The GeneGO database has been manually curated, 

with the content based on literature published from 2002-present.  

Gene lists of Entrez IDs were uploaded into Metacore and the number of IDs recognised 

by Metacore was determined. Options to filter data based on fold change and 

significance are available but the lists entered had already been filtered for significance, 

and I did not apply fold change thresholds. P value thresholds for gene selection for 
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pathway analyses are generally not as conservative as those applied for inference from 

single locus analyses since the idea is to obtain information from multiple changes that 

are not themselves necessarily highly significant. Enrichment Analysis was carried out 

using the GO ontologies of ‘Biological processes’, ‘Molecular Functions’ and 

‘Localisations’ in addition to the proprietary GeneGO datasets of ‘Pathway Maps’ and 

‘Cellular Process Networks’. The GeneGo Pathway Maps are made up of about 650 

signalling and metabolic pathways. The GeneGo Process Network ontology is made up 

of 110 cellular and molecular processes each comprised of a set network of protein 

interactions which contain information about empirically validated interactions between 

the products of the genes.  Annotations were curated by Metacore using an oracle 

database consisting of information from full text articles. Only empirically validated 

data are included in the database and the database is updated daily.  I chose to include 

the Metacore GeneGO ontologies in addition to the GO ontologies as the GeneGO 

ontologies are more frequently updated and are, according to Metacore, more 

comprehensive. I also included GO ontologies. Following upload of the gene and 

background lists the Entrez gene IDs were mapped onto gene IDs from the GO 

ontologies or Metacore’s own GeneGO database. 

In Metacore all statistics are calculated according to the gene ID and whether or not the 

genes were associated with a particular pathway relative to the background list. A 

number of the GO processes have no actual gene content and for this reason, these 

“empty terms” are excluded.  After each analysis was performed the results were 

presented in a histogram ordered according to the negative log p value for enrichment of 

the pathway for transcripts showing significant changes in expression or splicing that 

meet the significance thresholds described above. Enrichment analysis statistics were 

calculated using the hypergeometric p value. This evaluates the significance of the 

number of genes surpassing the chosen threshold in the test gene set given the 

distribution of results in the background comparator set (Tavazoie et al., 1999). Multiple 

testing was controlled using the FDR set at a threshold of 0.05. In Metacore the FDR is 

determined using the q-value (Storey, 2002), where a q value of 0.05 corresponds to a 

FDR of 0.05.  
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7.2.1.3 DAVID 

DAVID (v6.7) (Database for Annotation, Visualisation and Integration Discovery) was 

also used for pathway analysis (Dennis et al., 2003; Huang et al., 2009a; Huang et al., 

2009b). The gene list and background list were uploaded into DAVID and the Entrez 

IDs were then mapped to DAVID gene IDs. Each DAVID gene ID is unique to account 

for redundancy in the input gene list, although all lists I compiled had already had 

duplicates removed.  I then used the functional annotation chart option to carry out 

enrichment or overrepresentation analysis. Statistics in DAVID are based on an 

adaptation of the Fisher’s exact test called the EASE score, which is a one tail Fisher’s 

exact probability value (Fig. 7.1). The EASE score is more conservative than the 

Fisher’s exact test. In DAVID for a pathway to be considered significant, that pathway 

must contain at least 2 genes from the test set. This is because a finding derived from a 

single gene in a pathway is neither likely to be robust nor can in implicate convergence 

in a pathway as convergence implies multiple lines of evidence. As the intention is to 

discover overrepresented pathways the EASE score in DAVID is always a one tailed p 

value (Huang et al., 2009b).   
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Figure 7.1. The Ease Score Method. In the above example a gene list of 332 

‘significant’ genes is compared to a background list of 14959 genes. 19 genes from the 

significant gene list hit the pathway being tested and 214 genes from the background list 

are also found in this pathway. To determine if this pathway is overrepresented in the 

gene list 2x2 contingency tables are compiled. In DAVID a modified version of the 

Fisher’s Exact Test is used to determine if the gene list is overrepresented in a particular 

pathway. The modification is that the positive count (i.e., number of genes in the 

pathway that are found in the gene list) is penalised by subtracting 1. In the above 

example 19 genes from the pathway are found in the ‘significant’ gene list which is 

entered as 18 (19-1). To determine the significance of this a one tail Fishers Exact Test 

is then used (Huang et al., 2009b). Example taken from http://david.abcc.ncifcrf.gov/  

 

 

To prevent redundancy among pathways, only one type of database is usually included 

in pathway tools but this can limit the depth of information obtained. In contrast, 

DAVID allows multiple databases to be examined and explored simultaneously. In 

order to avoid the issue of redundancy, a specific DAVID ID is used representing all 

possible identifiers of one gene. This enables that gene to be cross referenced across all 

http://david.abcc.ncifcrf.gov/
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the different databases irrespective of what identifier is used by each database (Huang et 

al., 2009b).  

 

To avoid repetition of GO ontologies from different levels of the hierarchy, and to 

reduce multiple testing, I used the GO FAT database (Dennis et al., 2003). The GO FAT 

database was developed by DAVID to filter out broad terms with numerous child terms, 

thereby including specific terms with less repetition at lower levels in the hierarchy 

(Huang et al., 2009b).  

 

7.2.3 Genetic Analysis using the PGC database 

7.2.3.1 Investigating PGC Schizophrenia top hits for Differential Expression and 

Splicing in C59X mutants. 

The mouse orthologues at loci showing genome wide significance in the Psychiatric 

GWAS consortium (PGC) (PGC, 2011a) schizophrenia GWAS were specifically 

investigated for differential expression and splicing in the embryonic exon array data. 

MIR137 was not targeted by any core probesets and so could not be investigated. 

PCGEM1 is found on chromosome 2 and so was also omitted from the analysis. The 

MHC region was also excluded in this analysis given the imprecision of mapping the 

association signal due to long range LD in this region (PGC, 2011a).  

 

7.2.3.2 Investigating the C59X Differentially Expressed and Spliced Genes for 

Association with Psychosis. 

In order to investigate a relationship between the expression and splicing data from my 

mouse experiments, and the human genetic data the significant genes were investigated 

in the Psychiatric GWAS Consortium (PGC) schizophrenia and bipolar disorder 

datasets (PGC, 2011a; PGC, 2011b). The schizophrenia PGC carried out meta-analyses 

of GWAS data from 17 studies consisting of ~9000 cases and ~12,000 controls of 

European Ancestry. The most significant 81 SNPs identified were followed up in an 

independent sample of ~8,000 cases and ~21,000 controls (PGC, 2011a). The PGC 

Bipolar Disorder Working Group carried out combined GWAS on 7481 patients with 

bipolar disorder and 9250 controls. In this study the top 34 SNPs were tested in an 
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independent sample of 4,496 bipolar disorder and 42,422 controls. Both schizophrenia 

and bipolar disorder PGC studies used data collected from subjects of white European 

ancestry. These datasets are the largest GWAS datasets available. To investigate 

differentially spliced and expressed genes in these GWAS datasets, I used gene-wide 

estimates of significance (discussed below).  

7.2.3.2.1 Approximation Method using Brown’s p value 

Across a gene, genotypes at many SNPs may be correlated with each other due to 

linkage disequilibrium. If this non independence is not allowed for when combining the 

SNP p values, highly inaccurate gene-wide p values can result. Traditionally, this is 

dealt with though permutation testing requiring the availability of individual genotypes 

but Moskvina and colleagues (Moskvina et al., 2011) reported a method that allows 

gene-wide p values to be derived from summary association statistics in the absence of 

individual genotype data. The derived P values, based upon theoretical approximation 

of the Fisher’s Statistic (Brown, 1975), I refer to as Browns P values.  All Browns P 

values were derived from the PGC data by Dr Moskvina.  

7.2.3.2.2 Simes’ P value 

An alternative approach to establishing gene-wide significance value is based on the 

Simes’ method, the validity of which has been demonstrated for GWAS data (Li et al., 

2011). Using this approach the p values of each SNP are ranked from most significant 

to least. The p value ranked 1 is then multiplied by the number of markers divided by its 

rank (n/1). This process is repeated for the SNP ranked 2 (and so on) until all SNPs had 

been adjusted. The smallest p value is the Simes’ corrected p value. The Simes’ 

corrected p values for the PGC SZ and BP datasets were based on the data published by 

the PGC (2011). I personally calculated the Simes’ values for the genes of highest 

interest, but otherwise accessed a database available in the host department.  
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7.3 Results  

7.3.1 Pathway Analysis based on embryonic expression data. 

Pathway analysis was carried out on the embryonic expression data. Chromosome 2 

probesets were excluded as were probesets with mean log2 intensity <6. Both Metacore 

and DAVID were used for the analysis.  

 

7.3.1.1 Pathways Enriched for Differentially Expressed Genes.  

Gene sets comprising those differentially expressed at two thresholds, p<0.05 and 

p<0.01 were chosen for the analysis. When converted to unique Entrez IDs this resulted 

in lists of 1411 and 191 genes respectively. Both lists along with the background list of 

12,943 Entrez IDs were uploaded into Metacore GeneGO and DAVID to enable 

enrichment of the gene lists in pathways to be quantified relative to the background list. 

1137 of the 1141 Entrez IDs at p<0.05 mapped to DAVID IDs. Of the smaller list (n= 

191) based upon the more stringent threshold for differential expression (p<0.01), 190 

of them mapped to DAVID IDs.  The ‘functional annotation chart’ option was chosen to 

test pathways for enrichment for genes in the differential expression dataset. The GO 

ontologies ‘biological processes’ (BP), ‘molecular functions’ (MF) and ‘cellular 

component’ (CC) were investigated as were KEGG and PANTHER databases. For each 

GO ontology, the FAT database was chosen. In Metacore, all 1141 Entrez identifiers 

were recognised. For each gene list the analysis was run in DAVID and then in 

Metacore first using the GO ontologies (as in DAVID), then using Metacore’s own 

proprietaty GeneGO databases which have been curated differently to the GO 

ontologies.  

P≤0.05  

In DAVID 21 pathways were significantly enriched for genes with altered expression 

between C59X mutants and wildtype following a Bonferroni correction for the 

pathways tested. The top 10 most significant pathways are presented in Table 7.1. 7 of 

the 10 pathways related to the mitochondria or energy metabolism.  
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Differentially Expressed Genes between C59X mutants and Wildtypes (p≤0.05) 

DAVID GO, KEGG, PANTHER  pValue Bonferroni 

GO:0005739~mitochondrion 5.42E-14 2.32E-11 

GO:0044429~mitochondrial part 7.49E-13 3.21E-10 

GO:0005743~mitochondrial inner membrane 1.35E-10 5.80E-08 

GO:0031966~mitochondrial membrane 1.95E-10 8.36E-08 

GO:0006091~generation of precursor metabolites and energy 2.24E-10 5.43E-07 

GO:0006412~translation 3.62E-10 8.78E-07 

GO:0005740~mitochondrial envelope 6.27E-10 2.69E-07 

GO:0019866~organelle inner membrane 1.16E-09 4.98E-07 

GO:0006413~translational initiation 1.35E-07 3.27E-04 

mmu05016:Huntington's disease 4.33E-07 7.41E-05 

Table 7.1 DAVID annotation categories significantly enriched for genes which 

show differential expression in the embryonic expression data. The pathways 

displayed above are the top 10 most significant pathways enriched for genes with 

significant (p≤0.05) differential expression between C59X mutants and wildtype. 

Enrichment was tested for GO biological processes, molecular functions and cellular 

components as well as the KEGG and PANTHER databases. P value was generated 

using the EASE score, a modified Fishers Exact Test. Bonferroni represents the p value 

following multiple test correction for the number of pathways in each database.  

 

 

For Metacore the results are divided so that first the GO ontologies are considered, as 

these correspond to the same ontologies investigated in DAVID, then the results using 

the GeneGO databases (Metacore proprietary databases) are presented.  

 

 

Non proprietary GO ontologies. The GO ontologies of Biological processes, molecular 

functions and localisations (cellular components) were each investigated separately in 

Metacore and KEGG and PANTHER databases were not included. The top 10 most 

significantly enriched pathways for genes differentially expressed between C59X 

mutants and wildtype for the three GO ontologies are displayed in table 7.2. Of the 9 

GO ontologies in the top 10 DAVID results (‘Huntington’s disease’ is a KEGG 

pathway) 8 are replicated in the top 10 from Metacore. All pathways relating to 

translation and the mitochondria replicated. The Metacore algorithm identified the GO 

biological processes of ‘translation’ (p = 1.32 x10
-8

) and ‘translational initiation’ (p = 

1.67x10
-8

) as enriched for differentially expressed genes. Both were significant at FDR 

threshold of 0.05.  
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Differentially Expressed Genes between C59X mutants and Wildtypes (p≤0.05) 

Metacore GO Biological Processes pValue FDR 

cellular respiration 3.42E-11 Significant  

respiratory electron transport chain 1.02E-10 Significant  

oxidation-reduction process 7.06E-09 Significant  

translation* 1.32E-08 Significant  

small molecule metabolic process 1.45E-08 Significant  

translational initiation* 1.67E-08 Significant  

electron transport chain 2.07E-08 Significant  

negative regulation of protein ubiquitination 1.97E-07 Significant  

energy derivation by oxidation of organic compounds 2.45E-07 Significant  

mitochondrial ATP synthesis coupled electron transport 2.62E-07 Significant  

   

Metacore GO Molecular functions pValue FDR 

structural constituent of ribosome 1.39E-07 Significant  

translation initiation factor activity 3.06E-07 Significant  

oxidoreductase activity 3.27E-07 Significant  

oxidoreductase activity, acting on NADH or NADPH, quinone 

or similar compound as acceptor 

1.23E-05 

Significant  

catalytic activity 3.23E-05 Significant  

gamma-catenin binding 6.99E-05 Significant  

translation factor activity, nucleic acid binding 7.74E-05 Significant  

NADH dehydrogenase activity 7.92E-05 Significant  

NADH dehydrogenase (ubiquinone) activity 7.92E-05 Significant  

NADH dehydrogenase (quinone) activity 7.92E-05 Significant  

   

Metacore GO Localizations pValue FDR 

cytoplasmic part 6.61E-15 Significant  

mitochondrion* 7.15E-14 Significant  

mitochondrial part* 2.15E-13 Significant  

mitochondrial inner membrane* 9.51E-11 Significant  

Cytoplasm 2.30E-10 Significant  

mitochondrial envelope* 3.81E-09 Significant  

organelle inner membrane* 5.29E-09 Significant  

mitochondrial membrane* 2.97E-08 Significant  

respiratory chain 3.22E-08 Significant  

macromolecular complex 4.85E-08 Significant  

Table 7.2 Metacore Analysis of Non proprietary GO ontologies. The results for 

each analysis (Biological processes, molecular function and localisation) are 

generated and presented separately. * Represents pathways that were one of the 10 

most significant pathways in DAVID. These include translation and the mitochondrion. 

 

Proprietry GeneGO database: The Metcore GeneGO process networks of ‘translation 

initiation’ as well as ‘translation in mitochondria’ were significant following multiple 

test correction (FDR 0.05 threshold) (Table 7.3). Although the GeneGo databases use 
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different classification methods the pathways that were the most significant relate to 

translation and the mitochondria which were prominent in the GO ontology results.  

 

Differentially Expressed Genes between C59X mutants and Wildtypes (p≤0.05) 

Metacore GeneGO Pathway Maps pValue FDR  

Oxidative phosphorylation 1.88E-10 Significant  

Ubiquinone metabolism 1.52E-04 Significant  

Immune response_Signaling pathway mediated by IL-6 

and IL-1 

7.40E-04 

Not Significant  

Tricarbonic acid cycle 1.41E-03 Not Significant  

Development_Thyroliberin signalling 1.44E-03 Not Significant  

Immune response_IL-5 signalling 2.81E-03 Not Significant  

Development_Prolactin receptor signalling 3.07E-03 Not Significant  

Aminoacyl-tRNA biosynthesis in cytoplasm 3.17E-03 Not Significant  

Aminoacyl-tRNA biosynthesis in cytoplasm/ Rodent 

version 

3.17E-03 

Not Significant  

GTP-XTP metabolism 3.85E-03 Not Significant  

   

Metacore GeneGO Process Networks pValue FDR  

Translation_Translation initiation 2.05E-07 Significant  

Translation_Translation in mitochondria 2.76E-05 Significant  

Translation_Regulation of initiation 8.68E-05 Significant  

Protein folding_Folding in normal condition 2.50E-04 Significant  

Immune response_IL-5 signalling 2.19E-03 Not Significant  

Translation_Elongation-Termination 4.28E-03 Not Significant  

Translation_Elongation-Termination_test 4.28E-03 Not Significant  

Protein folding_Protein folding nucleus 5.83E-03 Not Significant  

Protein folding_Response to unfolded proteins 6.18E-03 Not Significant  

Proteolysis_Ubiquitin-proteasomal proteolysis 0.01 Not Significant  

Table 7.3. Metacore Analysis of proprietary GeneGO ontologies annotation 

categories significantly enriched for genes which show differential expression in 

the embryonic expression data. The p values displayed are unadjusted but all 4 

pathways remained significant following correction for multiple testing using the FDR 

(q value) with a threshold set at 0.05.  

  

p≤0.01  

When analysing the smaller list (n= 191) based upon the more stringent threshold for 

differential expression (p<0.01) four pathways were significant following Bonferroni 

correction using the DAVID functional annotation chart analysis (Table 7.4). Each of 

the 4 pathways involved translation and included ‘translation’ and ‘translational 

initiation’ both observed when using the less stringent list (Table 7.1). The 

‘mitochondrion’ pathway was also significant when using the more stringent p value 

threshold (p≤0.01). The finding that all 4 Bonferroni significant pathways were related 
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to translation, 2 of which were identified at the less stringent threshold, suggests 

Zfp804a may play a role in regulating genes which control translation.  

 

Differentially Expressed Genes between C59X mutants and Wildtypes (p≤0.01) 

DAVID GO, KEGG, PANTHER  pValue Bonferroni 

GO:0006413~translational initiation † 2.71E-06 0.002 

GO:0006412~translation † 1.35E-05 0.01 

GO:0005852~eukaryotic translation initiation factor 3 complex 1.49E-05 0.003 

GO:0003743~translation initiation factor activity 4.99E-05 0.01 

GO:0008135~translation factor activity, nucleic acid binding 6.70E-04 0.18 

GO:0030027~lamellipodium 1.88E-03 0.31 

GO:0031252~cell leading edge 3.37E-03 0.48 

GO:0006644~phospholipid metabolic process 3.55E-03 0.96 

GO:0019637~organophosphate metabolic process 4.95E-03 0.99 

GO:0005739~mitochondrion † 8.79E-03 0.82 

Table 7.4 Pathways overrepresented for genes with significant differential 

expression at p<0.01 in the analysis of embryonic brains using DAVID (v6.7). In the 

GO ontologies, KEGG and Panther databases, 4 pathways were significantly enriched 

after Bonferroni correction. † Pathway is in the top 10 when using the p value threshold 

p≤0.05 in corresponding DAVID analysis 

 

 

 

 

Metacore Non proprietary GO ontologies Taking the same list of 191 genes which 

show differential expression in the embryonic expression data at p≤0.01 and analysing 

them in Metacore using the GO onotology pathways (Table 7.5). 8 of the top 10 

DAVID pathways were also significantly enriched using the same GO ontologies in 

Metacore. These pathways related to translation and the mitochondria.  
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Differentially Expressed Genes between C59X mutants and Wildtypes (p≤0.01) 

Metacore GO Biological Processes pValue FDR 

translation* † 1.36E-05 Significant 

translational initiation* † 3.29E-05 Significant 

cellular protein metabolic process 4.13E-05 Significant 

protein metabolic process 5.35E-05 Significant 

sulfur amino acid metabolic process 1.30E-04 Not Significant  

cellular metabolic process 5.09E-04 Not Significant  

metabolic process 5.80E-04 Not Significant  

cellular carbohydrate metabolic process 6.92E-04 Not Significant  

phospholipid metabolic process* 1.30E-03 Not Significant  

organophosphate metabolic process* 1.49E-03 Not Significant  

   

Metacore GO Molecular functions pValue FDR 

translation initiation factor activity* † 3.10E-06 Significant 

translation factor activity, nucleic acid binding* † 1.39E-04 Significant 

catalytic activity † 2.60E-04 Significant 

intramolecular oxidoreductase activity, interconverting 

aldoses and ketoses 

5.00E-04 

Not Significant  

isomerase activity 1.00E-03 Not Significant  

alditol:NADP+ 1-oxidoreductase activity 1.31E-03 Not Significant  

S-methyl-5-thioribose-1-phosphate isomerise activity 1.31E-03 Not Significant  

tRNA (guanine) methyltransferase activity 1.31E-03 Not Significant  

monosaccharide binding 1.47E-03 Not Significant  

oxidoreductase activity † 2.24E-03 Not Significant  

   

Metacore GO Localizations pValue FDR 

eukaryotic translation initiation factor 3 complex* 3.46E-07 Signficiant 

cytoplasmic part † 6.51E-06 Significant 

cytoplasm † 2.43E-05 Significant 

mitochondrial matrix 9.68E-04 Not Significant  

eukaryotic translation initiation factor 2B complex 1.38E-03 Not Significant  

mitochondrion* † 1.96E-03 Not Significant  

intracellular part 2.58E-03 Not Significant  

Intracellular 2.76E-03 Not Significant  

mitochondrial part † 3.19E-03 Not Significant  

Arp2/3 protein complex 3.38E-03 Not Significant  

Table 7.5 Pathways overrepresented for genes with significant differential 

expression at p<0.01 in the analysis of embryonic brains using Metacore Non 

proprietary GO databases. * Represents pathways that were one of the top 10 

pathways in the DAVID analysis of the same gene list (191 genes) † Represents 

pathway that is in the top 10 when using p value threshold p≤0.05 in corresponding 

Metacore analysis. FDR p value following Benjamini & Hochberg (1995) False 

Discovery Rate Correction, set at a 0.05 threshold.  
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Metacore Proprietry GeneGO database: The GeneGO databases are curated by 

Metacore and use a different method to assign genes into relevant pathways (7.2.1.2). 

Therefore the lists of genes in each pathway will not be exactly the same. Despite this, 

pathways relating to ‘translation initiation’ and ‘regulation of translation initiation’ were 

the most significantly enriched pathways for genes with differential expression in the 

embryonic data set in both the GeneGO datasets. None of the pathways were significant 

following multiple test correction using a FDR of threshold of 0.05. The pathway 

‘translation in mitochondria’ is significant and the ‘mitochondrion’ pathway was a 

significant GO cellular component when using the GO ontologies.  

Differentially Expressed Genes between C59X mutants and Wildtypes (p≤0.01) 

Metacore GeneGO Pathway Maps pValue FDR  

Translation _Regulation of translation initiation 1.48E-03 Not Significant  

Immune response_MIF-JAB1 signalling 3.35E-03 Not Significant  

Estrone metabolism / Human version 8.68E-03 Not Significant  

Estrone metabolism 8.68E-03 Not Significant  

Androstenedione and testosterone biosynthesis and 

metabolism p.1 

0.01 Not Significant  

Androstenedione and testosterone biosynthesis and 

metabolism p.1/ Rodent version 

0.01 Not Significant  

Sphingolipid metabolism / Human version 0.02 Not Significant  

Sphingolipid metabolism 0.02 Not Significant  

Apoptosis and survival_NGF activation of NF-kB 0.03 Not Significant  

Oxidative phosphorylation † 0.03 Not Significant  

   

Metacore GeneGO Process Networks pValue FDR  

Translation_Translation initiation † 6.12E-04 Not Significant  

Apoptosis_Endoplasmic reticulum stress pathway 1.74E-03 Not Significant  

Translation_Regulation of initiation † 2.55E-03 Not Significant  

Translation_Translation in mitochondria † 9.25E-03 Not Significant  

Inflammation_MIF signalling 0.02 Not Significant  

Inflammation_Kallikrein-kinin system 0.05 Not Significant  

Immune response_IL-5 signalling † 0.07 Not Significant  

Blood coagulation 0.07 Not Significant  

Inflammation_Inflammasome 0.09 Not Significant  

Neurophysiological process_Long-term potentiation 0.12 Not Significant  

Table 7.6 Pathways overrepresented for genes with significant differential 

expression at p<0.01 in the analysis of embryonic brains using Metacore’s 

propriety GeneGO databases. Pathways relating to ‘translation initiation’ were 

significant using this gene list as well as when using a larger gene list with less stringent 

p values (p≤0.05).  † Pathway is in the top 10 when using p value threshold p≤0.05 in 

corresponding Metacore GeneGO analysis. FDR significance following Benjamini & 

Hochberg (1995) False Discovery Rate Correction, set at 0.05 threshold.  
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Using the same GO ontologies but different pathway analysis tools and algorithms 

produced consistent results. There was also concordance with Metacore’s own curated 

databases. Genes differentially expressed in C59X mutants appeared to be consistently 

overrepresented in pathways relating to translation and the mitochondrion. Translation 

initiation is known to negatively regulate gene expression in response to stress (Harding 

et al., 2000). Differential expression in a number of components of the translation 

initiation pathway in C59X mutants could affect the rate of translation under certain cell 

conditions such as stress.  

7.3.1.2 Pathways Enriched for Genes Differentially Spliced between C59X Mutants 

and wildtypes.   

Selection for genes differentially spliced at p<0.01 and p<0.001 resulted in lists of 530 

and 135 unique Entrez IDs respectively which were compared with the background set 

of genes (12,943 unique Entrez IDs). All 530 Entrez IDs mapped to DAVID IDs and all 

identifiers were recognised in Metacore. The analyses were conducted on the same 

databases as described in 7.3.1.1. 

 

 

p≤0.01 

Entering the list of 530 genes into DAVID resulted in no pathways that were significant 

following Bonferroni correction (Table 7.7). The most significant pathways was ‘axon 

guidance’ from the KEGG database. The GO biological process ‘translation’ was also 

significant for differentially spliced genes as observed for the genes showing differential 

expression in the embryonic data.  
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Pathways enriched for Genes Differentially Spliced between C59X mutants and 

Wildtypes (p≤0.01) 

DAVID GO, KEGG, PANTHER  pValue Bonferroni 

mmu04360:Axon guidance 5.73E-04 0.07 

GO:0031252~cell leading edge 6.10E-04 0.20 

GO:0006412~translation 1.13E-03 0.86 

GO:0006418~tRNA aminoacylation for protein translation 1.82E-03 0.96 

GO:0043038~amino acid activation 1.82E-03 0.96 

GO:0043039~tRNA aminoacylation 1.82E-03 0.96 

GO:0005768~endosome 1.85E-03 0.49 

P00034:Integrin signalling pathway 2.24E-03 0.17 

GO:0016876~ligase activity, forming aminoacyl-tRNA and 

related compounds 2.43E-03 0.72 

GO:0016875~ligase activity, forming carbon-oxygen bonds 2.43E-03 0.72 

Table 7.7 Pathways overrepresented for genes with significant differential splicing 

at p≤0.01 in the analysis of embryonic brains using DAVID (v6.7). The most 

significant pathways was axon guidance from the KEGG database.   

 

 

 

 

Non proprietary GO ontologies. Considering the same GO ontologies in Metacore the 

biological process ‘axon guidance’ was the most significant pathway but did not survive 

the FDR correction for all the pathways in the GO category (Table 7.8). Although the 

‘axon guidance’ pathway that was top of the DAVID list was from the KEGG database 

the fact that the same pathway from two different databases is the most significant in 

DAVID and Metacore suggests that genes differentially spliced between C59X mutants 

and wildtypes are enriched in pathways related to axon guidance.   
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Pathways enriched for Genes Differentially Spliced between C59X mutants and 

Wildtypes (p≤0.01) 

Metacore GO Biological Processes pValue FDR 

axon guidance* 3.26E-05 Not Significant  

cell morphogenesis involved in differentiation 3.46E-05 Not Significant  

cell-substrate adhesion 4.36E-05 Not Significant  

chemotaxis 6.64E-05 Not Significant  

Taxis 6.95E-05 Not Significant  

cellular component organization or biogenesis at cellular 

level 

1.07E-04 

Not Significant  

cell morphogenesis involved in neuron differentiation 1.39E-04 Not Significant  

cellular component organization at cellular level 1.69E-04 Not Significant  

semaphorin-plexin signalling pathway 1.88E-04 Not Significant  

axonogenesis 2.01E-04 Not Significant  

   

Metacore GO Molecular functions pValue FDR 

protein binding 1.66E-06 Significant 

binding 2.26E-05 Significant 

semaphorin receptor activity 3.40E-04 Not Significant  

transferase activity, transferring acyl groups other than 

amino-acyl groups 

4.69E-04 

Not Significant  

choline transmembrane transporter activity 7.11E-04 Not Significant  

transferase activity, transferring acyl groups 9.56E-04 Not Significant  

actin binding 1.36E-03 Not Significant  

semaphorin receptor binding 1.38E-03 Not Significant  

monovalent cation:hydrogen antiporter activity 1.38E-03 Not Significant  

ligase activity, forming aminoacyl-tRNA and related 

compounds* 

1.76E-03 

Not Significant  

   

Metacore GO Localizations pValue FDR 

organelle part 1.62E-06 Significant 

cell leading edge* 1.68E-06 Significant 

lamellipodium 3.81E-06 Significant 

intracellular organelle part 4.05E-06 Significant 

stress fiber 1.88E-04 Significant 

actin filament bundle 3.01E-04 Significant 

cell body 3.93E-04 Significant 

cell projection 4.14E-04 Significant 

endosome* 5.15E-04 Significant 

actomyosin 5.34E-04 Significant 

Table 7.8 Pathways overrepresented for genes with significant differential splicing 

at p≤0.01 in the analysis of embryonic brains using Metacore. The most significant 

biological process was ‘axon guidance’, which was also the most significant pathway in 

the DAVID analysis. * Pathway was one of the top 10 pathways in the corresponding 

DAVID analysis.  
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Metacore Proprietry GeneGO database: Using Metacore’s proprietary GeneGO 

databases 2 pathways were significant following FDR correction using a 0.05 threshold; 

the proprietary pathway map ‘cell adhesion ECM remodelling’ (p = 4.24x10
-5

) and the 

proprietary process network ‘development neurogenesis axonal guidance (p = 1.33x10
-

5
). Both pathways are significantly enriched following an FDR correction at a threshold 

of 0.05 (Table 7.9). 

 

 

Pathways enriched for Genes Differentially Spliced between C59X mutants and 

Wildtypes (p≤0.01) 

Metacore GeneGO Pathway Maps pValue FDR  

Cell adhesion_ECM remodelling 4.243E-05 Significant 

Cell adhesion_Chemokines and adhesion 1.342E-03 Not Significant  

Cell adhesion_Endothelial cell contacts by non-

junctional mechanisms 

5.113E-03 

Not Significant  

Cytoskeleton remodeling_Integrin outside-in signaling 5.859E-03 Not Significant  

Development_Role of HDAC and calcium/calmodulin-

dependent kinase (CaMK) in control of skeletal 

myogenesis 

7.558E-03 

Not Significant  

Cytoskeleton remodeling_Cytoskeleton remodeling 8.810E-03 Not Significant  

Transport_RAB5A regulation pathway 1.623E-02 Not Significant  

Development_Role of CDK5 in neuronal development 1.623E-02 Not Significant  

Nitrogen metabolism 1.743E-02 Not Significant  

Development_VEGF-family signalling 1.911E-02 Not Significant  

   

Metacore GeneGO Process Networks pValue FDR  

Development_Neurogenesis_Axonal guidance 1.328E-05 Significant 

Cytoskeleton_Actin filaments 1.825E-03 Not Significant  

Inflammation_Complement system 3.864E-03 Not Significant  

Cell adhesion_Integrin-mediated cell-matrix adhesion 6.286E-03 Not Significant  

Cell adhesion_Attractive and repulsive receptors 9.440E-03 Not Significant  

Signal transduction_Androgen receptor nuclear 

signalling 

1.412E-02 

Not Significant  

DNA damage_Core 1.898E-02 Not Significant  

Cell adhesion_Synaptic contact 1.988E-02 Not Significant  

DNA damage_Checkpoint 2.413E-02 Not Significant  

Cell cycle_G2-M 2.928E-02 Not Significant  

Table 7.9 Pathways overrepresented for genes with significant differential splicing 

at p≤0.01 in the analysis of embryonic brains using Metacore’s Proprietary 

GeneGO databases. Following a FDR correction for all pathways in the database both 

The ‘Cell adhesion ECM remodelling’ and ‘Development Neurogenesis Axonal 

guidance’ were significant. 
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p≤0.001 

The most significant pathway in DAVID when using the more stringent p≤0.001 

threshold was the KEGG pathway ‘axon guidance’ (p = 8.09x10
-5

) and it remained 

significant after a Bonferroni correction for all pathways tested (p = 0.006) (Table 7.10). 

This pathway was also the most significant pathway when using the p≤0.01 threshold, 

but did not survive the Bonferroni correction.  8 genes differentially spliced at p<0.001 

are found in this pathway (Epha2, Sema6b, Plxnb2, Sema6a, Rac3, Robo1, Plxna1 and 

Robo3).  The ‘cell adhesion’ pathway was also significant. 

 

Pathways enriched for Genes Differentially Spliced between C59X mutants and 

Wildtypes (p≤0.001) 

DAVID GO, KEGG, PANTHER  pValue Bonferroni 

mmu04360:Axon guidance † 8.09E-05 5.57E-03 

GO:0044420~extracellular matrix part 7.66E-04 0.14 

GO:0005604~basement membrane 2.55E-03 0.40 

GO:0007155~cell adhesion 4.01E-03 0.97 

GO:0022610~biological adhesion 4.06E-03 0.97 

GO:0015629~actin cytoskeleton 5.45E-03 0.66 

GO:0030036~actin cytoskeleton organization 9.06E-03 1.00 

GO:0031252~cell leading edge † 1.16E-02 0.90 

GO:0030029~actin filament-based process 1.17E-02 1.00 

GO:0030030~cell projection organization 1.18E-02 1.00 

Table 7.10 Pathways overrepresented for genes with significant differential 

splicing at p≤0.001 in the analysis of embryonic brains using DAVID (v6.7). The 

most significant pathway was axon guidance as observed at p≤0.01. This pathway was 

the only one to remain significant following a Bonferroni correction.  † Pathway is in 

the top 10 pathways in corresponding DAVID analysis at p value threshold p≤0.01. 

 

Non proprietary GO ontologies: 6 of the top 10 pathways from DAVID overlap in 

Metacore GO analysis of same 3 databases at p≤0.001 threshold (Table 7.11). ‘Cell 

adhesion’ (p = 9.27x10
-5

) and ‘biological adhesion’ (p = 9.86x10
-5

) were significantly 

enriched biological processes, but did not remain significant following FDR correction. 

Both these pathways were nominally significant in DAVID (p = 0.01 for both) but 

neither had survived Bonferroni correction for all pathways. Interestingly, these same 2 

pathways (‘cell adhesion’ and ‘biological adhesion’) were also identified as enriched for 

genes showing differential expression following knockdown of ZNF804A in a neural 

cell line (Hill et al., 2012). Of the genes within these pathways one gene, Lama4 was 

found to be differentially spliced between C59X mutants and wildtypes (p=0.00048) 

and also differentially expressed following knockdown of ZNF804A (significant using 
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two ZNF804A siRNA conditions p=0.0139 p=0.0155, Hill et al., 2012).  Mutations in 

this gene cause a mild muscular dystrophy (Patton et al., 2001) and bleeding disorder 

(Thyboll et al., 2002).  

Pathways enriched for Genes Differentially Spliced between C59X mutants and 

Wildtypes (p≤0.001) 

Metacore GO Biological Processes pValue FDR 

cell adhesion* 9.27E-05 Not Significant  

biological adhesion* 9.86E-05 Not Significant  

regulation of neuron migration 1.13E-04 Not Significant  

cellular process 2.47E-04 Not Significant  

positive regulation of histone H3-K9 methylation 3.35E-04 Not Significant  

semaphorin-plexin signalling pathway † 3.94E-04 Not Significant  

cellular component organization or biogenesis at 

cellular level † 

5.02E-04 

Not Significant  

negative regulation of translational initiation in 

response to stress 

6.65E-04 

Not Significant  

regulation of translational initiation in response to 

stress 

6.65E-04 

Not Significant  

cellular component organization or biogenesis 7.28E-04 Not Significant  

Metacore GO Molecular functions PValue FDR 

transferase activity, transferring acyl groups other than 

amino-acyl groups † 

1.30E-05 

Significant 

transferase activity, transferring acyl groups † 1.00E-04 Significant 

binding † 2.92E-04 Significant 

tyrosine-tRNA ligase activity 3.48E-04 Significant 

interleukin-8 receptor binding 3.48E-04 Significant 

sphingosine N-acyltransferase activity 3.48E-04 Significant 

N-acyltransferase activity 5.09E-04 Significant 

protein binding † 5.89E-04 Significant 

aminoacyl-tRNA ligase activity 1.08E-03 Significant 

ligase activity, forming aminoacyl-tRNA and related 

compounds † 

1.08E-03 

Significant 

Metacore GO Localizations pValue FDR 

lamellipodium † 1.40E-04 Significant 

cell leading edge* † 1.98E-04 Significant 

actin cytoskeleton* 6.56E-04 Not Significant  

eukaryotic translation initiation factor 2B complex 7.75E-04 Not Significant  

filamentous actin 8.98E-04 Not Significant  

actin filament 1.73E-03 Not Significant  

stress fibre † 2.37E-03 Not Significant  

basement membrane* 2.50E-03 Not Significant  

extracellular matrix part* 2.55E-03 Not Significant  

organelle part † 2.69E-03 Not Significant  

   

   

Table 7.11. Pathways overrepresented for genes with significant differential splicing at 

p≤0.001 in the analysis of embryonic brains using Metacore. ‘Cell adhesion’ and 

‘biological adhesion’ were the most significant biological processes. * Pathway was one 

of the top 10 pathways in the corresponding DAVID analysis. † Pathway is in the top 10 

pathways in the Metacore analysis when using the less stringent p value threshold 

p≤0.01. 
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Proprietry GeneGO database: When genes meeting the more stringent p value 

threshold (p≤0.001) for differential splicing were examined using the proprietary 

database, the same ‘development neurogenesis axonal guidance’ pathway was 

significantly enriched (p = 1.57x10
-4

) as seen with the less stringent p value threshold 

(p≤0.01) as was the ‘cell adhesion ECM remodelling’ pathway, (p = 0.017) although 

only the former remained significant following multiple test correction (Table 7.12).  

Lama4 is also found in the Metacore proprietary GeneGO database in the ‘cell adhesion 

ECM remodelling’ pathway. 



 254 

 

Pathways enriched for Genes Differentially Spliced between C59X mutants and 

Wildtypes (p≤0.001) 

Metacore GeneGO Pathway Maps pValue FDR  

Development_Slit-Robo signaling 2.93E-03 Not Significant  

Immune response_Classical complement pathway 3.38E-03 Not Significant  

Immune response_Lectin induced complement pathway 3.88E-03 Not Significant  

DNA damage_DNA-damage-induced responses 5.71E-03 Not Significant  

DNA damage_Role of NFBD1 in DNA damage 

response 

1.09E-02 

Not Significant  

Nitrogen metabolism † 1.30E-02 Not Significant  

Nitrogen metabolism/ Rodent version 1.52E-02 Not Significant  

Cell adhesion_ECM remodelling † 1.68E-02 Not Significant  

Cytoskeleton remodeling_Fibronectin-binding integrins 

in cell motility 

2.00E-02 

Not Significant  

Cell adhesion_Alpha-4 integrins in cell migration and 

adhesion 

2.84E-02 

Not Significant  

   

Metacore GeneGO Process Networks pValue FDR  

Development_Neurogenesis_Axonal guidance † 1.57E-04 Significant 

Cytoskeleton_Actin filaments † 1.94E-03 Not Significant  

Cell adhesion_Attractive and repulsive receptors † 2.98E-03 Not Significant  

Inflammation_Complement system † 1.18E-02 Not Significant  

Cytoskeleton_Regulation of cytoskeleton rearrangement 2.53E-02 Not Significant  

DNA damage_BER-NER repair 3.35E-02 Not Significant  

DNA damage_Checkpoint † 4.06E-02 Not Significant  

DNA damage_Core † 4.13E-02 Not Significant  

Protein folding_Protein folding nucleus 7.83E-02 Not Significant  

Transcription_Transcription by RNA polymerase II 8.14E-02 Not Significant  

Table 7.12. Pathways overrepresented for genes with significant differential 

splicing at p≤0.001 in the analysis of embryonic brains using Metacore’s 

proprietary GeneGO databases. The only pathway that was significant following the 

FDR correction was the process network ‘development neurogenesis axonal guidance’.  

 

The KEGG Pathway of ‘axon guidance’ significantly enriched in the DAVID analysis 

for gene sets showing differential splicing at both thresholds, comprises genes involved 

in axon guidance during brain development and is therefore an attractive candidate 

pathway for schizophrenia. As this is a KEGG pathway it is not tested in Metacore, 

however the Metacore proprietary pathway of ‘development neurogenesis axonal 

guidance’ was FDR significant at both thresholds. There were 6 differentially spliced 

genes that were common to the ‘axon guidance’ pathway (at the p≤0.001 P value 

threshold) in KEGG and the proprietary Metacore GeneGo process ‘Development 

Neurogenesis Axonal Guidance’; Robo1, Robo3, Epha2, Plxna1, Plxnb2 and Sema6a. 

Multiple isoforms of both Robo1 and Robo3 have been demonstrated, the different 

isoforms of Robo3 having been shown to have different functions and roles in 
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embryogenesis (Camurri et al., 2005). Both are also cell adhesion molecules. Different 

splice variants can have a large impact on the function of this general class of molecules 

(Walsh & Doherty, 1991). In addition to roles in axon guidance, the Plexin Plxnb2 is 

known to have important roles during the development of the neocortex including the 

generation, differentiation and migration of cortical cells (Hirschberg et al., 2010).  

 

Using the more stringent threshold (P≤0.001) for selecting differentially spliced genes, 

the GO molecular function pathway ‘interleukin-8 receptor binding’ was one of the 

significant pathways in Metacore (p = 3.48x10
-4

) that survives an FDR correction (0.05 

threshold). Increased levels of IL-8 have been observed in the serum of mothers of 

patients with schizophrenia spectrum disorder (Brown et al., 2004) and have been 

thought to be associated with aberrant brain development (Gilmore & Jarskog, 1997).  

 

 

7.3.1.3. The effect of Probeset Number on Pathway Analysis. 

In Chapter 6.3.4 I showed a significant correlation between the number of probes and 

the differential splice p value. Although the correlation was weak (r = 0.061) the effect 

was significant (P<0.01). Whilst that analysis could not distinguish between the 

possibility that such genes tend to be more significant due to a true biological effect 

(increased occurrence of altered splicing in genes with more exons) or because of the 

effects of multiple testing on genes with more probesets, both phenomena could bias the 

results of pathway analyses. That is if the main driver of significance with respect to 

differential splicing is simply number of probesets, pathways identified as being 

enriched for differentially spliced genes could simply reflect pathways which happen to 

be comprised of genes containing large numbers of probesets regardless of the function 

of those genes. 

 

To determine if the significant pathways were enriched for genes with large numbers of 

probesets, I re-ran the pathway analyses using a gene list selected on the basis of 

probeset number rather than differential splicing p value. Genes were first ranked by 

number of probesets (range from 2-119 for the whole dataset). To make the comparison 

between differentially spliced genes and those selected by probeset number, I ensured 

the number of genes in the latter list was comparable to that selected by splicing p value 

(at a threshold P≤0.01). Thus, I selected the 530 genes with the most probesets which 
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also had Entrez IDs. In these 530 genes the probeset number ranged from 29-119.  As 

before, gene symbols were converted to unique Entrez IDs and, as before, this gene set 

was compared using both Metacore and DAVID against the same background list as 

previously used (n = 12,943). All 530 IDs were recognised in Metacore and all 530 

mapped to DAVID IDs. The same ontologies were investigated as described in 7.3.1.1.  

 

In DAVID, 98 pathways were significant following Bonferroni correction. In both 

DAVID (Table 7.13) and Metacore the GO biological processes of ‘biological adhesion’ 

and ‘cell adhesion’ were significantly enriched for the geneset selected by probeset 

number (Metacore; cell adhesion p = 1.21x10
-16

, biological adhesion p = 1.59x10
-16

, 

both highly significant following multiple test correction (FDR 0.05 in Metacore). 
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Pathways enriched for the 530 genes with the most probesets 

DAVID GO, KEGG, PANTHER  pValue Bonferroni 

GO:0005581~collagen 4.06E-19 1.62E-16 

GO:0044420~extracellular matrix part 3.99E-18 1.59E-15 

GO:0005201~extracellular matrix structural constituent 5.60E-17 5.50E-14 

GO:0005524~ATP binding 6.20E-15 3.08E-12 

GO:0022610~biological adhesion 9.76E-15 1.98E-11 

GO:0007155~cell adhesion 9.76E-15 1.98E-11 

GO:0032559~adenyl ribonucleotide binding 1.31E-14 6.48E-12 

GO:0008092~cytoskeletal protein binding 7.95E-14 3.93E-11 

GO:0001882~nucleoside binding 8.96E-14 4.43E-11 

GO:0003774~motor activity 1.90E-13 9.42E-11 

Table 7.13 Top 10 Significant Pathways enriched for Genes with the Highest 

Number of Probesets in DAVID (v6.7). The 10 most significant pathways enriched for 

530 genes with the largest number of probesets included the biological processes of 

‘cell adhesion’ and ‘biological adhesion’ and the cellular component term ‘extracellular 

matrix part’. 

 

 

 

 

Considering the Metacore proprietary GeneGO databases the process network 

‘Development Neurogenesis Axonal guidance’ was the most significant pathway 

following FDR correction (0.05 threshold) (Table 7.14). This pathway was also the 

most significant pathway in the differential splice data.  
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Pathways enriched for the 530 genes with the most probesets 

Metacore GeneGO Pathway Maps pValue FDR  

cAMP/ Ca(2+)-dependent Insulin secretion 7.49E-05 Significant 

Neurophysiological process_Receptor-mediated axon 

growth repulsion 

1.28E-04 

Significant 

wtCFTR and delta508 traffic / Clathrin coated vesicles 

formation (norm and CF) 

3.88E-04 

Significant 

Immune response_Classical complement pathway 6.19E-04 Significant 

Immune response_Alternative complement pathway 6.19E-04 Significant 

Immune response_Lectin induced complement pathway 8.14E-04 Significant 

Transcription_Ligand-Dependent Transcription of Retinoid-

Target genes 

8.29E-04 

Significant 

Neurophysiological process_ACM regulation of nerve 

impulse 

2.07E-03 

Not Significant 

Neurophysiological process_Netrin-1 in regulation of axon 

guidance 

2.07E-03 

Not Significant 

Development_Osteopontin signaling in osteoclasts 5.33E-03 Not Significant 

   

Metacore GeneGO Process Networks pValue FDR  

Development_Neurogenesis_Axonal guidance 1.38E-08 Significant 

Cell adhesion_Cell-matrix interactions 2.00E-08 Significant 

Cytoskeleton_Actin filaments 3.73E-08 Significant 

Cell adhesion_Attractive and repulsive receptors 4.26E-08 Significant 

Cytoskeleton_Regulation of cytoskeleton rearrangement 1.17E-03 Significant 

Cell adhesion_Cadherins 3.57E-03 Not Significant 

Development_Neuromuscular junction 5.27E-03 Not Significant 

Development_Cartilage development 5.65E-03 Not Significant 

Cell adhesion_Integrin-mediated cell-matrix adhesion 1.81E-02 Not Significant 

Signal transduction_Androgen receptor signaling cross-talk 1.99E-02 Not Significant 

Table 7.14. Top 10 Significant Pathways enriched for Genes with the Highest 

Number of Probesets in Metacore Proprietary GeneGO databases. The most 

significant process network was ‘development neurogenesis axonal guidance’. 

 

 

Evidently, the same pathways that were enriched for differentially spliced genes were 

also enriched for genes with large probeset number. This does not imply that the true 

experimental pathway results were being driven by a statistical or biological artefact 

arising from probeset number, but given the significant (though weak) correlation 

between splicing p value and probeset number, it is consistent with the hypothesis that 

they might be.  It was therefore important to adjust all pathway analyses by probeset 

number.  The issue of gene size has been addressed previously for pathway analysis of 

GWAS data and RNAseq data (Jia et al., 2011; Young et al., 2010), but review of the 

literature revealed no publications which have endeavoured to make such corrections 

for exon array splicing data.  
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To adjust for the effect of probeset number on pathway analysis I carried out a linear 

regression between the number of probesets in a gene and the –log p value. In such an 

analysis, the standardised residual essentially reflects the contribution to the p value that 

is independent of the effect of probeset number. Genes were then ranked on the basis of 

the largest to smallest residuals, in effect identifying ranking the genes based upon their 

splicing p value independent of probeset number. To allow a direct comparison to the 

previous analysis of the experimental groups, the top 530 ranked genes were taken. Of 

these, 500 genes were also present in the unadjusted 530 most significantly 

differentially spliced genelist. This almost complete overlap in the top gene sets for 

adjusted and unadjusted analyses implying most of the variance in splicing p values was 

not related to probeset number, a result not entirely surprising given the correlation 

between p value and probeset number was weak.  

   

Pathway analysis in both Metacore and DAVID was then carried out with these genes 

using all criteria as described previously (7.3.1.1). When correcting for gene size the 

‘axon guidance’ pathway in the KEGG database remained the most significant pathway 

and the GO biological processes ‘axon guidance’ was significant as was the GeneGO 

process network ‘ development neurogenesis axonal guidance. Only the GeneGO 

pathway remains significant following multiple test correction using the FDR (0.05 

threshold). ‘Cell adhesion’ remains significant in DAVID and Metacore GO analysis 

and ‘cell adhesion ECM remodelling’ was still a significant Metacore proprietary 

GeneGO pathway.  

 

The overlap of results from the analyses in Metacore was determined using contingency 

tables (described in Chapter 3.2.11) to compare the outputs based upon the top sets 

derived from the adjusted and unadjusted analyses in GeneGO Pathway Maps and GO 

Molecular Functions. A significant overlap was observed for both (p< 0.01). Genes that 

showed significant differential splicing were still enriched in pathways relating to axon 

guidance in particular during development and cell adhesion.  
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7.3.2 Genetic Analysis  

7.3.2.1 Investigating PGC Schizophrenia Top Hits for Significant Differential 

Expression and Splicing in the Embryonic Dataset.  

The Psychiatric GWAS consortium (PGC) identified genome-wide significant 

association for 10 loci in schizophrenia. The mouse orthologues of the genes or miRNA 

nearest to each of the 10 SNPs were specifically investigated to determine if any of 

them were significantly differentially expressed or spliced in the C59X mutants. Due to 

the LD structure within the MHC (6p21.3-p22.1) this region was excluded. Both 

miR137 and PCGEM1 were also excluded as they did not qualify for the analysis as 

miR137 was targeted by no core probesets and PCGEM1 was on chromosome 2. None 

of the top PGC genes showed differential splicing between those with and without the 

C59X mutation (Table 7.5). Ccdc68 showed nominally significant differential 

expression (p=0.02). The function of CCDC68 is not known. A 1.2 Mb deletion 

including this gene and TCF4 has been identified in a patient with Pitt-Hopkins 

Syndrome, although the resultant phenotype is likely attributable to the deletion of 

TCF4 (Zweier et al., 2007).  
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Table 7.5 PGC Schizophrenia Top Genome-Wide Association Results. No altered splicing was observed in the top PGC schizophrenia genes in 

C59X mutants. Only Ccdc68 showed nominally significant altered expression in mice with the C59X mutation. Both Mir137 and PCGEM1 were 

excluded as no core probesets target miR137 and PCGEM1 is located on chromosome 2 which had been excluded from the exon array analyses. 
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7.3.2.2 Relevance of Genes Differentially Expressed in C59X Mutants to Disease 

Risk.   

My hypothesis was that genes identified as showing differential expression or splicing 

in mutants compared with wildtype would include genes that are downstream mediators 

of the effects of ZNF804A on disease risk, and that the gene sets might be enriched for 

genes associated with psychosis (schizophrenia and bipolar disorder). In the PGC 

datasets (https://pgc.unc.edu/), the differentially expressed gene sets (Table 7.6) were 

not clearly significantly enriched for genes showing nominally significant evidence for 

association to either disorder, though the geneset selected at a differential expression 

threshold p≤0.05 was nominally significantly enriched for genes showing evidence for 

association to bipolar disorder using Brown’s method.  

Differential 

Expression 

Brown SZ Simes’ SZ 

OR P VALUE OR P VALUE 

p≤0.05 1.20 0.10 1.32 0.06 

P≤0.01 0.77 0.31 0.91 0.42 

P≤0.001 4.01 0.12 2.05 0.30 

P≤0.0001 4.66 0.93 2.74 0.89 

 

Differential 

Expression 

Brown BP Simes’ BP 

OR P VALUE OR P VALUE 

p≤0.05 1.38 0.01 1.20 0.06 

P≤0.01 1.05 0.50 1.37 0.13 

P≤0.001 0.88 0.60 1.31 0.56 

P≤0.0001 No Genes Significant 3.49 0.91 

 

Table 7.6 Genetic Relevance of Genes Differentially Expressed in C59X Mutants. 

OR is the odds ratio that a gene will be nominally significant in the respective PGC 

dataset conditional on it being significantly differential expressed at the indicated P 

value threshold in the embryonic expression data. Brown Brown method used to 

calculate gene wide significance. Simes’ Simes’ method used to calculate gene wide 

significance. SZ schizophrenia BP bipolar disorder. 

 

 

 

 

 

https://pgc.unc.edu/
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7.3.2.3 Relevance of Genes Differentially Spliced in C59X Mutants to Disease Risk.  

Genes that were significantly differentially spliced (Table 7.7) were also not enriched 

for genes showing evidence (P≤0.05) for association with schizophrenia. Three of the 

tests in the bipolar dataset were significant but there was inconsistency between the 

Simes’ and Brown generated gene-wide p values. Overall, there is some weak evidence 

that genes identified as being differentially expressed and spliced are enriched for genes 

showing evidence for association to bipolar disorder but the findings are far from 

conclusive.  

 

 

Differential 

Splicing 

Brown SZ Simes’ SZ 

OR P VALUE OR P VALUE 

p≤0.05 0.94 0.34 1.12 0.13 

P≤0.01 1.10 0.33 1.10 0.27 

P≤0.001 1.04 0.51 1.11 0.40 

P≤0.0001 0.57 0.33 1.10 0.48 

 

Differential 

Splicing 

Brown BP Simes’ BP 

OR P VALUE OR P VALUE 

p≤0.05 1.22 0.06 1.28 0.01 

P≤0.01 1.50 0.01 1.21 0.13 

P≤0.001 1.59 0.10 1.53 0.09 

P≤0.0001 2.44 0.04 1.95 0.07 

 

Table 7.7 Relevance of Genes Differentially Spliced in C59X Mutant to Disease 

Risk. OR is the odds ratio that a gene will be nominally significant in the respective 

PGC dataset conditional on it being significantly differential spliced at the indicated P 

value threshold in the embryonic expression data. Brown Brown method used to 

calculate gene wide significance. Simes’ Simes’ method used to calculate gene wide 

significance. SZ schizophrenia BP bipolar disorder. 
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7.4 Discussion. 

Pathways enriched for genes showing evidence for differential expression and splicing 

were investigated using DAVID and Metacore which are both widely used pathway 

analysis tools. Despite the different algorithms a consensus between the two sets of 

results was apparent. Genes with altered expression are enriched in pathways related to 

translation, most robustly ‘translation initiation’. Translation rate in a cell is known to 

alter in response to certain conditions where cells need to respond rapidly such as stress 

(Sonenberg & Hinnebusch, 2009).  

Genes with altered splicing were enriched in the pathway ‘axon guidance’ from the 

KEGG database as well as the GeneGO process network ‘Development Neurogenesis 

Axonal Guidance’ and both were significant following Bonferroni and FDR correction 

respectively. These pathways are involved in developing the neuronal network. The 

gene Robo3 found in this pathway was differentially spliced in C59X mutants. The 

alternative isoforms of this gene are known to have distinct roles in embryogenesis 

(Camurri et al., 2005). The disrupted in schizophrenia 1 (DISC1) gene, which as its 

name suggests, has been implicated in schizophrenia and other psychiatric disorders 

(Millar et al., 2000) is thought to have a role in axon guidance (Chen et al., 2011), as is 

semaphorin Sema3a, expression of which has been reported to be increased in 

schizophrenia in the cerebellum (Eastwood et al., 2003). The pathway ‘SLIT/ROBO 

axon guidance’ was significantly enriched in genes differentially expressed between  

neurons derived from human inducible pluripotent stem cells (hiPSC) from 

schizophrenia fibroblast reprogramming compared to control fibroblast reprogramming 

(Brennand et al., 2011). 

One of the prominent functional pathways enriched in genes which show differential 

splicing was ‘cell adhesion’. Initially regarded with extreme caution as it contains genes 

with large numbers of probesets, further investigation revealed that when controlling for 

the number of probesets, cell adhesion categories were still amongst the most 

significantly enriched pathways. This suggests the ‘cell adhesion’ pathway is enriched 

for genes which are directly or indirectly regulated by Zfp804a.  

The KEGG pathway ‘cell adhesion molecule’ has been observed to be enriched for 

genes with significant association signals in schizophrenia and bipolar disorder GWAS 

data (O’Dulshaine et al., 2011). The ‘cell adhesion molecule’ pathway genes NRXN1 

and CNTNAP2 were associated in both association datasets (O’Dulshaine et al., 2011). 
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Genes involved in cell adhesion have also been reported as associated with autism 

spectrum disorder (ASD) in a GWAS study (Wang et al., 2009).  Neither NRXN1 or 

CNTNAP2 showed evidence for differential splicing between C59X mutants and 

wildtypes but both are found in the GO biological process of ‘cell adhesion’ (which 

differs to the KEGG pathway of ‘cell adhesion molecule’), which was significantly 

enriched for differentially spliced genes following correction for the number of 

probesets, though this did not survive the stringent Bonferroni correction (nominal p = 

0.03, Bonferroni p value = 1). This is the same pathway significantly enriched for genes 

differentially expressed between ZNF804A knockdown and wildtype (Hill et al., 2012) 

which also did not survive Bonferroni correction for all pathways in the relevant GO 

database.  

 

An RNA sequencing study looking at expression differences in differentiating and 

mature neurons found increased expression in differentiating neurons in several genes 

(NRXN1, NRXN3, NLGN1, CTNNA2, NCAM1, CHL1, ELAVL4 and PCDH9) with 

functions in cell adhesion (Lin et al., 2011). The neurexins and neuroligins form part of 

this pathway and are necessary for effective neurotransmission and have been 

associated with schizophrenia (Kirov et al., 2009b; Walsh et al., 2008).  None of these 9 

genes were significantly differentially spliced in my study, but the catenins Ctnnb1 (p = 

0.006) and Ctnnd2 (p = 8.57x10
-5

) (also part of the cell adhesion pathway) were. The 

finding that another catenin (CTNND1), also in the cell adhesion pathway, was 

differentially expressed following ZNF804A knockdown in a neural cell line (Hill et al., 

2012) derived from human foetal brain may suggest catenin function is directly or 

indirectly regulated by ZNF804A.  

 

The ‘Cell adhesion extracellular matrix (ECM) remodelling pathway’ was significantly 

enriched for genes with altered splicing. This pathway is involved in embryonic 

development and includes the genes Lama4 and Syndecan-2 which were differentially 

spliced. Lama4 is also part of the ‘cell adhesion’ and ‘biological adhesion’ pathways 

which were significantly enriched for genes differentially expressed following the 

knockdown of ZNF804A (Hill et al., 2012). Lama4 itself was found to be differentially 

expressed in response to ZNF804A knockdown (Hill et al., 2012). The significance of 

cell adhesion pathways in studies of schizophrenia risk genes (O’Dulshaine et al., 
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2011), ZNF804A knockdown (Hill et al., 2012), differentiating neurons (Lin et al., 

2011) and autism (Wang et al., 2009) suggests that aberrant cell adhesion processes in 

the brain during development could underlie neurodevelopmental disorders 

(O’Dulshaine et al., 2011). 

Pathways enriched for genes with the largest number of probesets were similar to those 

obtained with differentially spliced genes. This highlights the potential for artefacts 

influencing pathway analyses. This is a particularly critical issue in differential splice 

data as the way in which differential splicing is calculated may be influenced by the 

number of probesets in the gene, which in the majority of instances is related to gene 

size. Since brain expressed genes are generally larger, and such genes are more likely to 

be significantly differentially spliced, pathways relevant to brain function are more 

likely to be significantly enriched by chance. However, importantly, the main findings 

reported above survived adjustment for probeset number.  

 

As mentioned in the methods (7.2.1) both Metacore and DAVID are described as 

singular enrichment analysis as they follow a linear procedure. The output from both is 

a long list of pathways ordered by enrichment p value. The investigator chooses which 

pathways to investigate further and therefore sometimes the most relevant biological 

pathways for the data can be overlooked (Huang et al., 2008).  

The mouse orthologues of genome wide significant genes from the PGC SZ GWAS 

were specifically investigated for differential expression and splicing; only Ccdc68 had 

nominally significant differential expression. Little is known about the function of this 

gene so it is difficult to postulate how aberrant expression of this gene may mediate the 

effects of ZNF804A on disease risk.  Overall, there was no substantial evidence that the 

human orthologues of genes with altered expression and splicing in the present 

experiments were mediating the effects of ZNF804A on disease risk, although weak 

evidence for a link between differential splicing and bipolar disorder risk was observed.  

As GWAS datasets enlarge, it will be possible to test this more powerfully.  

In conclusion genes showing significant differences between Zfp804a mutant and 

wildtype mouse brain in their expression and splicing were enriched in pathways 

associated with translation, axon guidance and cell adhesion. The latter two are known 

to be important processes during development and fit with a neurodevelopmental 

hypothesis of schizophrenia. However, the human orthologues of genes differentially 
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expressed and spliced were not clearly enriched for associations to either schizophrenia 

or bipolar disorder, thereby providing no evidence that would suggest the human 

orthologues of these genes are responsible for mediating the effects of ZNF804A on 

disease risk.  
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Chapter 8. General Discussion. 

8.1 Research Findings.  

ZNF804A is a strongly supported schizophrenia susceptibility gene, and at the time this 

thesis started, there were few other genes implicated at convincing levels of evidence 

from which insights into schizophrenia pathogenesis could be derived. The function of 

ZNF804A protein is currently unknown, but a hypothesis suggests it regulates gene 

expression and splicing. I have investigated this hypothesis by determining the 

consequences of disrupted ZNF804A in the brains of mice who carry a nonsense 

mutation in the mouse orthologue Zfp804a (a summary of the results is displayed in 

Table 8.1). 

 

Levels of Zfp804a mRNA transcript were essentially unchanged between mutants 

carrying the nonsense and wildtypes indicating the nonsense mutation (C59X) did not 

activate the nonsense mediated decay (NMD) surveillance mechanism. In the absence of 

a suitable antibody to empirically determine if Zfp804a protein was expressed, it was 

postulated that the Zfp804a protein was disrupted.   

Affymetrix exon array analysis of RNA extracted from whole brain of embryonic and of 

adult mice revealed no genes that showed significant expression differences between 

mice with and without the nonsense mutation. My data do not then support the 

hypothesis that Zfp804a is involved in transcription regulation, a finding that contrasts 

with that of others (Hill et al., 2012; Gigenti et al., 2012). This may reflect the absence 

of a significant expression difference between C59X mutants and wildtypes in Zfp804a, 

compared to the knockdown and overexpression of ZNF804A observed in the published 

studies. The discrepancy could also reflect the conflicting results sometimes observed 

between in vitro and in vivo gene expression studies (Tatenhorst et al., 2005; Lund et 

al., 2006; Tsai et al., 2007; Lisle et al., 2008). Expression differences could arise due to 

the complexities of regulation of certain pathways in vivo (Lisle et al., 2008). There are 

however examples where there is agreement between in vivo and in vitro studies (Suryo 

Rahmanto et al., 2007; Ma et al., 2007), but caution should be taken in extrapolating in 

vitro results to complex brain pathways (Tatenhorst et al., 2005).  
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Results Chapter Chapter Outline Differential Expression Candidates Differential Splicing Candidates 

Chapter 3: Expression analysis in 

Adult ENU mutant mice 

Brain mRNA from adult Zfp804a 

mutant and wildtype mice were 

analysed using an Exon array 

(Affymetrix) to determine genes 

differentially expressed and spliced 

between Zfp804a mutants and 

wildtype controls. 

Arc 

Dusp1 

Egr2 

Npas4 

Nr4a1 

Snca 

 

 

 

 

2010106G01Rik 

Centb5/Acap3 

Colec12 

Fam171b/D4300389N05Rik 

Dffa 

Frzb 

Itga6 

Itgav 

Lrp4 

Rapgef4 

Rhobtb2/Prdm4 

Slc39a13 

Ssfa2 

Chapter 4: RNA Sequencing Whole transcriptome RNA Sequencing 

of 4 male mice analysed in the 

previous array experiment (2 Zfp804a 

mutants and 2 wildtypes).  

Arc 

Dusp1 

Npas4 

Nr4a1 

Itga6 

Dffa 

 

 

Chapter 5: Expression Analysis 

in Embryonic Mice 

The analyses carried out in Chapter 3 

were repeated using embryonic tissue 

comparing expression and splicing 

differences between Zfp804a mutants 

and wildtypes. 

Npas4  

Ogn  

Rhobtb2/Prdm4 

 

Chapter 6: Technical Artefacts The results of the exon array analyses 

on embryonic and adult data following 

the exclusion of chromosome 2 

probesets (due to an unusual excess of 

results on this chromosome) and the 

application of more stringent intensity 

filters. 

Npas4 

Ogn 

 

Prdm4 
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Chapter 7: Relevance of altered 

Zfp804a function for 

Schizophrenia  

Pathway analysis in Metacore and 

DAVID. Lists of genes significantly 

differentially expressed or spliced 

between Zfp804a mutants and 

wildtypes were tested for enrichment 

in biological pathways 

Genes enriched in: 

Translation 

Translation initiation 

Genes enriched in: 

Axon Guidance 

Development Neurogenesis Axonal 

Guidance  (Robo3) 

Cell Adhesion (Ctnnb1; Ctnnd2) 

Cell Adhesion Extra Cellular Matrix 

Remodelling (Lama 4; Syndecan-2) 

Table 8.1. Summary of Results. Following each experimental chapter a number of candidate genes were identified as having robust differential 

expression or splicing in mice with a nonsense mutation in Zfp804a relative to wildtype controls.  
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Differential splicing was evident between C59X mutants and wildtypes in both 

embryonic and adult mice with a large number of genes (more than chance) remaining 

significant following multiple test correction. However a caveat to this is that the false 

positive rate in a differential splicing study might be greater than that for differential 

expression analysis because of the additional complexities of the former (Bemmo et al. 

2008 and Chapter 3 of this thesis). 

I employed quantitative RNA sequencing (RNAseq) to provide a guide as to the validity 

of the array results. It was also viewed as a tool with which to discover novel transcript 

variants, which is not possible using the exon array as analysis is restricted to known 

transcripts.  Although statistical evaluations were performed on the sequencing data, the 

studies were based on two animals in each experimental group so I regarded the 

findings as a rough guide to the validity of the array results rather than as a robust 

confirmatory test.  

Through RNAseq I identified (and subsequently confirmed using RT-PCR) a novel 

Zfp804a transcript containing an alternative exon 5’ to the Refseq exon 1. This was 

present in both mutants and wildtypes.  The alternative exon 1 skips the constitutive 

exon 1 and is spliced to exon 2 of Zfp804a. Characterising this transcript was not 

possible within the timeframe of this PhD but doing so will be important to fully 

understand Zfp804a function. 

From the same RNAseq data, I found a deletion that was present in the 

C57BL/6JHsdOla strain that had been used in the breeding programme. This mutation 

has been reported before (Specht & Schoepfer, 2001), but this was unknown to the team 

who had been breeding the mutant mice.  This deletion, which spans Snca, confounded 

the analysis of the adult mice since the majority of wildtype mice were deletion carriers 

whereas only one of the mutant mice were. Effects in gene expression variation due to 

the Snca deletion have not been reported before (Specht & Schoeffer, 2001), but 

nevertheless a caveat of the adult expression results was that the Snca deletion 

correlating with C59X genotype may have confounded the results.  

Although of low quality, the RNAseq data also allowed me to identify a number of 

strain specific cDNA sequence variants at sites corresponding to probesets, many of 

which were providing data indicative of splice differences between C59X mutants and 
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wildtype.  These sequence variants were largely confined to genes on chromosome 2, 

the same chromosome to which Zfp804a maps, and most likely are indicative of genetic 

linkage to the C59X mutation. Since these variants appeared to be largely responsible 

for an excess of significant splicing results on chromosome 2, for subsequent analysis, I 

excluded genes mapping to that chromosome. This was a conservative approach, but 

only removed a modest proportion of the genome and as such was unlikely to impact 

upon the results observed in pathway analyses.  

Embryonic tissue was used to assess splicing and expression differences between C59X 

mutants and wildtypes during development. Impaired development is predicted to 

influence predisposition to schizophrenia (Weinberger, 1986). The genes with 

differential expression and splicing between C59X mutants and wildtype did not 

significantly overlap between embryonic and adult mice datasets, but the Snca deletion 

in the adult mouse data unfortunately prevented me from determining if changes in 

expression and splicing as a result of the Zfp804a mutation differed developmentally 

(between embryonic and adult datasets). 

Prior to carrying out pathway analysis I established that probe number correlated with 

the likelihood of a significant alternative splicing result.  In response to this finding I 

corrected for probe number. One of the prominent functional pathways enriched in 

genes which show differential splicing between C59X mutants and wildtypes was cell 

adhesion. Cell adhesion pathways have been implicated previously in schizophrenia, 

bipolar disorder (O’Dulshaine et al., 2011), autism (Wang et al., 2009) and in genes 

differentially expressed following knockdown of ZNF804A (Hill et al., 2012). 

Significant pathways also included axon guidance and extracellular matrix remodelling 

both important during embryonic development. Processes which are prominent during 

development therefore may be aberrant in C59X mutants following the disruption of 

Zfp804a.  Genes differentially expressed and spliced between mutants and wildtypes 

were not enriched for association with disease in a large case-control genetic dataset.  

 

8.2 Limitations of the data 

The biggest limitation of the study, with regards to accurately determining genes with 

altered expression and splicing as a result of disrupted Zfp804a, was the presence of 

strain specific sequence variants found in the C59X mutants. This included a 
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nonsynonymous SNP found in exon 4 of Zfp804a, in addition to the artefacts relating to 

hybridisation. Nonsynonymous genetically linked mutations may impact upon the 

relevant protein’s function. This in turn could affect expression and splicing results in 

the C59X mutants. Adjusting for the potential effects of these variants was not possible 

in this study and so leaves the caveat that expression and splicing differences observed 

between C59X mutants and wildtypes may not be attributable specifically to Zfp804a 

disruption. 

Sample sizes meant the power of the studies were limited. 5 biological replicates per 

experimental group are recommended (Affymetrix) for determining differential splicing 

on the exon array, but the limited availability of C59X homozygotes meant this couldn’t 

be met in the experiments on adult mice. The RNAseq study consisted of just 2 samples 

per experimental group and therefore the power to determine statistical differences in 

expression and splicing was very low.  

Discrepancies occurring when assessing the overlap of results produced by different 

software may arise due to the annotation methods used. Previous studies have found this 

and note the importance of manually checking the curation (Bemmo et al., 2008). This 

was noted in this study as one of the results from Partek GS is annotated as Prdm4, 

however when the sequence predicted to be differentially spliced was entered into 

BLAT (UCSC) the sequence was found within the Rhobtb2 gene found on a different 

chromosome. The two genes have different Refseq IDs but have the same Affymetrix 

transcript cluster ID annotation.  

The correlation structure of genes is a caveat of pathway analysis but there is no 

standardised way known to deal with it aside from determining the LD between every 

gene. To address this future studies could use gene set enrichment analysis (GSEA). 

GSEA uses permutations and therefore may control for the correlation observed in the 

expression of co-regulated genes.  

Finally, the absence of an antibody is an important limitation since I have no direct data 

regarding the impact of the mutation on protein abundance.  

8.3 Future Work. 

To complement the work carried out in this thesis results could be considered at the 

individual gene level. Genes with the most significant differential expression and 

splicing between C59X mutants and wildtypes would be confirmed using a real time 
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PCR technique in independent tissue derived from C59X mutant and wildtype mice that 

have undergone additional backcrossing to the C57/BL6JHsdOla strain. Further to this 

the confirmed splice and expression differences observed in C59X mutants relative to 

wildtypes could be linked to the psychosis associated risk variant (rs1344706) using 

mRNA from human post-mortem samples.  

An experiment could be carried out in which the C59X mutation is rescued. This could 

be done by promoting read through of the premature termination codon (Kayali et al., 

2012). The absence of expression and splicing differences between rescued C59X 

mutants and wildtypes would imply the differences observed previously were a 

consequence of the C59X mutation specifically.  

The chromatin-immunoprecipitation sequencing technique (ChIPseq) could be utilised 

which would allow the distinction to be made between downstream targets which are 

either directly or indirectly regulated by Zfp804a. Genes found to interact directly with 

Zfp804a are more likely to be aetiologically relevant and would be more beneficial in 

elucidating the mechanisms by which ZNF804A may be linked to schizophrenia and 

psychosis. This approach would ideally rely on the genesis of a sensitive and specific 

antibody.  

A transgenic approach could be taken in which the Zfp804a gene is knocked out in the 

mouse. This would avoid the complications that have arisen in this thesis as a result of 

using ENU random mutagenesis to create a mutation in one strain and then 

backcrossing to another strain for congenicity. By removing the problem of strain 

specific sequence variation any observed expression and splice differences between 

mice with Zfp804a knocked out and wildtype could be more confidently attributed to 

Zfp804a.  

 

8.4 General Conclusion. 

The data generated for this thesis demonstrate that a PTC within exon 2 of Zfp804a 

predominately effects the splicing of genes and suggests a role for ZNF804A in the 

regulation of RNA processing. When addressing the hypothesis that ZNF804A may be a 

transcription factor this cannot be confirmed from the data generated here, but at the 

same time does not rule out the possibility that effects on gene expression only occur in 

a very small number of genes. Downstream targets of Zfp804a were enriched in 
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pathways involved in axon guidance during development and cell adhesion. This 

provides additional support for these pathways in the underlying pathophysiology of 

schizophrenia and the relevance of developmental pathways to the aetiology of the 

disorder.   
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Appendix. 

Chapter 2 Appendices 

 

Appendix 2.1 Zfp804a Exon1-3 Primers  

The primers were used to amplify between exon 1 and exon 3 of Zfp804a under the 

conditions described in Chapter 2.4.2. 

 

Left primer         ctctcagcaagaacgggaac 

Right primer        cgagcaaattctctctgtttca 

Product Size: 208 

 

 

Appendix 2.2 Zfp804a Exon 2 Primers 

Primers used to amplify within exon 2 of Zfp804a spanning the C59X mutation for use 

in the high resolution melt analysis (HRMA) 

 

Left Primer  ccaaagctctggaggatctg 

Right Primer  tgggcgtggtcatatgagtt 

Product Size 109 
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Chapter 3 Appendices 

 

Appendix 3.1 Geneviews of Differentially Expressed Genes between Adult C59X 

Mutants and Wildtypes. 

 

The Geneviews of 9 genes significantly differentially expressed between C59X mutant 

and wildtype following a FDR correction at a threshold of 0.05 in the combined adult 

sample. Of the 9 only 2 looked like differential gene expression (Mettl5 and Nfe212) 

with two others possibly being differential expression of known alternative transcripts. 

The remaining 5 showed differential expression in only a subset of the probesets within 

the transcripts, which could suggest differential expression of novel isoforms. Of the 3 

Bonferroni significant transcripts only Mettl5 displays attributes of a differentially 

expressed gene, with all probesets showing differential expression in the geneview. 

 

 

 

 

 

 

 



 278 

 

 

 

 

 

 

 

Polr1b 

Ddb2 



 279 

 

 

 

 

 

 

Ncaph 

Slc2a5 



 280 

 

 

 

 

 

 

 

Psmc3 

Nfe2l2 



 281 

 

 

 

 

 

Mettl5 

Nol9 



 282 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Masp2 



 283 

Chapter 4 Appendices 

 

Appendix 4.1 TopHat 

 

Scripts used to align sequence Files in TopHat (v.1.3.2) (Trapnell et al., 2009) 

 

$ tophat –-output-dir s_1_thout -–solexa1.3-quals -–num-threads 10 -–library-type fr-

unstranded –r 40 genome s_1_1_sequence.txt,s_1_3_sequence.txt  

 

Where s_1_1 and s_1_3 represent the paired end reads for sample 1 a C59X mutant. 

The other C59X mutant was annotated as s_2_1; s_2_3 and the two wildtypes were 

s_3_1; s_3_3 and s_5_1; s_5_3.  

 

The use of each option in the script is explained below and derived from the TopHat 

manual (http://tophat.cbcb.umd.edu/manual.html).  

 

--output-dir This option defined the output directory in which the results files were 

placed e.g., s_1_thout 

 

--solexa1.3-quals This option was used because the sequences were in fastq format 

produced using the Illumina GA pipeline version 1.5 and this option is recommended 

for versions 1.3 or later and states that the quality scores are in encoded using the phred 

scale (base 64). 

 

--num-threads 10 10 threads were used to align reads.  

 

http://tophat.cbcb.umd.edu/manual.html
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--library-type fr-unstranded This option is the default and was used as it is suitable 

for sequencing produced using the Illumina Truseq protocol. This means TopHat treated 

the reads as strand specific. Reads at the left end of the transcript were mapped to the 

transcript strand and reads at the right end were mapped to the opposite strand.  

 

-r 40 The –r option represents the mean inner distance between mate pairs. This 

parameter must be set for paired end runs.  As adapters are ligated to the ends of 

sequences this option ensures sequencing begins at the cDNA not the adapter. The 

length of the adapter sequences was subtracted from the length of the library fragment 

size to determine the average distance between the ends of the paired end reads. 

Appendix 4.2 SamTools 

 

Script used to Index Binary Alignment Files (BAM) in order to view them in the 

Integrative Genomics Viewer. This was carried out using Samtools 

(http://samtools.sourceforge.net/) 

 

$ samtools index accepted_hits.bam 

 

Appendix 4.3 Cufflinks 

 

Scripts used for RNAseq Transcript Assembly in Cufflinks (v.1.2.1) (Trapnell et al., 

2010) (http://cufflinks.cbcb.umd.edu/)  

 

$ cufflinks –p 8 –o s_1_clout –b genome.fa –u –N –g genes.gtf 

s_1_thout/accepted_hits.bam 

 

-p reflects the number of threads used and can be either be 4 or 8. 8 was chosen as the 

faster option. 

http://samtools.sourceforge.net/
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-b The NCBI 37.1build genome fasta file was provided to Cufflinks to allow the bias 

detection and correction algorithm to be run. This option was included to improve the 

accuracy of transcript abundance estimates. 

-u This option was included so that cufflinks can accurately weight reads that map to 

multiple sites in the genome by running an estimation procedure.  

-N represents an upper quartile normalisation. Rather than normalising to the total 

number of fragments mapping to an individual loci (default), cufflinks takes the upper 

quartile.  

-g The NCBI build 37.1 reference annotation was supplied to Cufflinks to give 

additional information to increase the accuracy of transcript assembly. Novel 

genes/isoforms are still included in the output as well as reference transcripts.  

 

Appendix 4.4 CuffMerge 

 

Assemblies were merged by first using gedit (a text editor) to create a file called 

‘assemblies.txt’ within which the assembly files for each sample were listed:  

 

./s_1_clout/transcripts.gtf 

./s_2_clout/transcripts.gtf 

./s_3_clout/transcripts.gtf 

./s_5_clout/transcripts.gtf 

 

And then running CuffMerge (http://cufflinks.cbcb.umd.edu/)  

 

$ cuffmerge -g genes.gtf -s genome.fa –p 8 assemblies.txt 

 

The –s option was included to provide Cuffmerge with gDNA reference sequences 

(Mus musculus NCBI build 37.1) to help remove artefacts and define transcript 

fragments.   
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Appendix 4.5 CuffDiff 

 

The following script in Cuffdiff (http://cufflinks.cbcb.umd.edu/) was used to compare 

the relative amounts of assembled transcripts represented in each sample and determine 

if the difference was statistically significant  

 

 

$ cuffdiff –o diff_out -b genome.fa –p 8 –L mut,wt –u merged_asm/merged.gtf 

s_1_thout/accepted_hits.bam,./s_2_thout/accepted_hits.bam 

s_3_thout/accepted_hits.bam,./s_5_thout/accepted_hits.bam   

 

Appendix 4.6 Primers Targeting an Alternative Zfp804a Isoform. 

 

The primers were used to amplify between alternative exon 1 and exon 2 of Zfp804a 

under the conditions described in Chapter 2.4.2. 

 

Left primer         CCACCACCTCAAAGGAGCTA 

Right primer        GTTTGTGGGCGTGGTCATA 

Product Size: 173bp 

 

 

 

 

 

 

 

 

 

 

 

http://cufflinks.cbcb.umd.edu/
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Chapter 5 Appendices 

Appendix 5.1 Embryonic Sample Background. All brain tissue used on the 

embryonic array study was derived from E18.5 mice from a heterozygous intercross 

from parent mice with 98.5% C57BL/6J genome from either the 7
th

 or 8
th

 generation.  

Parent ID Genotype Generation C57BL/6J Genome (%) 

Female E27AD2 Het F7 98.5 

Male E27AJ2 Het F7 98.5 

Parent ID Genotype Generation C57BL/6J Genome (%) 

Female E27AO4 Het F7 98.5 

Male E27P3 Het F7 98.5 

Parent ID Genotype Generation C57BL/6J Genome (%) 

Female B8E1 Het F8 98.5 

Male E27T2 Het F7 98.5 

Parent ID Genotype Generation C57BL/6J Genome (%) 

Female E27AM2 Het F7 98.5 

Male E27X0 Het F7 98.5 

        Parent ID Genotype Generation C57BL/6J Genome (%) 

Female B8A2 Het F8 98.5 

Male E27VO Het F7 98.5 
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Appendix 5.2 Gender PCR Primers  

 

Ssty (forward): CTGGAGCTCTACAGTGATGA 

Ssty (reverse): CAGTTACCAATCAACACATCAC Product: 343bp 

 

Om1a (forward): TTACGTCCATCGTGGACAGCAT 

Om1a (reverse): TGGGCTGGGTGTTAGTCTTAT  Product: 245bp 
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