
Scaling Archived Social Media Data Analysis using a Hadoop Cloud

Javier Conejero
Dept. of Computing Systems

University of Castilla-La Mancha
Albacete, Spain

Francisco.Conejero@uclm.es

Peter Burnap, Omer Rana
School of Computer Science & Informatics

Cardiff University
Cardiff, UK

{p.burnap;o.f.rana}@cs.cardiff.ac.uk

Jeffrey Morgan
Cardiff School of Social Sciences

Cardiff University
Cardiff, UK

MorganJ51@cardiff.ac.uk

Abstract—Over recent years, there has been an emerging
interest in supporting social media analysis for marketing, opin-
ion analysis and understanding community cohesion. Social
media data conforms to many of the categorisations attributed
to “big-data” – i.e. volume, velocity and variety. Generally
analysis needs to be undertaken over large volumes of data
in an efficient and timely manner. A variety of computational
infrastructures have been reported to achieve this. We present
the COSMOS platform supporting sentiment and tension
analysis on Twitter data, and demonstrate how this platform
can be scaled using the OpenNebula Cloud environment with
Map/Reduce-based analysis using Hadoop. In particular, we
describe the types of system configurations that would be
most useful from a performance perspective – i.e. how virtual
machines in the infrastructure should be distributed to reduce
variability in the analysis performance. We demonstrate the
approach using a data set consisting of several million Twitter
messages, analysed over two types of Cloud infrastructure.

Keywords-COSMOS; Twitter data analysis; Hadoop; Open-
Nebula Cloud;

I. INTRODUCTION

The growing number of people using social media to
communicate with their peers and document their personal
everyday feelings and views is creating data on an epic
scale [1]. Such data provides the opportunity for social
scientists to conduct ethnographical research through dis-
course and content analysis of social interactions, providing
an additional insight into modern ’online’ society. However,
the tools and methods required to conduct such analysis
are often isolated and/or proprietary. The Cardiff Online
Social Media Observatory (COSMOS) platform aims to
provide mechanisms to capture, analyze and visualize data
harvested from online repositories and feeds, in particular
interactive and openly accessible social networking sites
such as Twitter. The aim of the project is to translate our un-
derlying social observation and analysis mechanisms into an
embedded research tool that supports the development and
execution of defensible academic social research methods
for digital social data.

Cloud computing infrastructures can be used to host
data analysis capability for social media data. A number
of commercial companies, such as Radian 6 (now part
of SalesForce.com) and Palantir utilize proprietary Cloud-

based infrastructures (generally using Hadoop) to undertake
such analysis. However, when such analysis is carried out
over public Clouds – such as Amazon, RightScale, etc –
users generally see a high variability in performance. Such
variability can arise due to the number of virtual machines
(VMs) hosted on a physical server, cross talk between VMs,
the size of data being processed, etc. A number of studies
have already highlighted such variability [2], [3]. Our focus
in this work is to highlight how such variablility can be:
(i) identified; (ii) exposed, to a user to enable them to
make more informed resource selection – with a particular
focus on the use of the Hadoop (MapReduce) analysis
infrastructure.

COSMOS can support data ingest, analysis and visual-
isation of the results in real time. The benchmarking tool
used for the data analysis is the sentiment analysis tool
SentiStrength [4]. The reason for using this tool is that
sentiment analysis, opinion mining and public ’moods’ have
received significant attention in the research community [5]
– especially in relation to social media. We are particularly
interested in how such experiments can be conducted at
scale. Experiments have been successful on a single desktop
computer with 4GB of RAM and a 2.83GHz Intel Core
2 Quad CPU. However, COSMOS also aims to support
researchers in performing empirical longitudinal studies (e.g.
public response and reaction to political agenda, changes in
legislation, views on national identity etc.) and for this we
need to process significantly larger volumes of archived data
(for longer periods of time – ranging from 1 day to months
or even years), for which terabytes of archived tweets (stored
in plain text files) need to be processed. This is generally
not viable on a single machine, so in order to handle this
scenario we have developed a Hadoop application which
exploits the Map/Reduce paradigm.

In this paper we describe the framework designed to
run the application using virtualized Hadoop clusters in
an OpenNebula [6] based Cloud environment; and present
the results of a scalability analysis for the Hadoop ap-
plication, using SentiStrength, on a range of data archive
sizes and deployment strategies. We demonstrate how a
Hadoop deployment over a single cluster vs. one that that is
distributed across multiple machines can be supported, and

the associated tradeoffs in choosing one over the other.
The paper is structured as follows. In Section II related

work is presented. Section III provides a brief overview of
the COSMOS system and describes the problem associated
with archived data processing. The system implemented to
support sentiment analysis at scale is described in Sec-
tion IV, which is the main contribution of this article. Sub-
sequently, experimental results are presented in Section V.
The conclusions derived from the work and suggested future
work is presented in Section VI.

II. RELATED WORK

There have been several efforts in social media analysis
for marketing, opinion analysis, understanding community
cohesion, etc. There are some proposals that perform social
media data analysis on–the–fly, such as Prometheus [7]
and Truthy [8]. Prometheus is a P2P service that collects
and manages social information from multiple sources in
order to apply social inferencing functions, while Truthy is
a web service that tracks political memes in Twitter and
helps to detect astroturfing, smear campaigns, and other
misinformation in the context of U.S. political elections.

Significant literature in social media analysis generally
focuses on looking for bag-of-words, parts-of-speech or
combinations of these (using an n-gram detection approach,
for instance). Xiang et al. [9] identify how offensive content
(containing profane language) can be automatically detected
from a Twitter data stream, using a statistical topic modelling
and machine learning approach. After collecting twitter
data, they apply various pre-processing operations (such
as removing re-tweets, URLs in tweets, etc) followed by
inferring topic distributions from remaining tweets. The
Hadoop framework is used to extract training tweets from a
large tweet corpus, to enable lexical patterns to be deduced
from the extracted tweets. They were able to demonstrate a
true positive detection rate of between 70%-75%.

Twitter has also made use of Hadoop [10] for undertaking
predictive data analysis on twitter feeds, using machine
learning extensions made available in the data flow language
Pig Latin [11] (which provides primitives for carrying out
common operations on data, such as projection, join, group,
etc). Scalability in their work is achieved by ensemble
methods, whereby multiple machine learning algorithms can
be executed independently and their outcome subsequently
combined. The core focus of the work in the use of Hadoop
in [10] has been the use of data analytics tools utilizing
capabilities built into Pig.

Most of these approaches make use of Hadoop execution
on bare metal, with very limited use through virtualised
environments. Our focus is somewhat different and com-
plementary to these approaches. In COSMOS we focus
on understanding performance issues associated with data
selection and sampling, and subsequently understanding
issues of performance variability that arises when executing

huge amounts of big data analysis using Hadoop on a
Cloud environment that utilizes a virtualised infrastructure
(exploiting its advantages, such as scalability, live migration,
etc.). We believe this is much more representative of the type
of work carried out in a research environment. In addition,
we use Hadoop at different stages of the overall analysis
pipeline – for both data selection and pre-processing and
also to carry out sentiment analysis using SentiStrength.

Apache Hadoop [12], [13] is a framework for running ap-
plications on large clusters, providing reliability and support
for transparent data migration. It provides the Map/Reduce
paradigm, where the data is divided into smaller data chunks
and distributed to the worker nodes where they are pro-
cessed, and then the results are collected and combined.
It also provides a non-POSIX compliant file system – the
Hadoop Distributed File System (HDFS), to store data across
the compute nodes. Moreover, it provides limited fault
tolerance mechanisms by replicating data across multiple
nodes in the resource pool.

Hadoop has become the de-facto standard in the research
and industry use of the Map/Reduce paradigm across large-
scale clusters. There are, however, alternatives, such as
BashReduce [14], Disco [15] and Storm [15]. BashReduce
is a Map/Reduce implementation that can be used as a Unix
script using awk, grep, etc. It is less complex than Hadoop
and lacks flexibility and fault-tolerance mechanism and, as
a consequence, is less efficient. On the other hand, Disco
is closer to Hadoop in terms of complexity and implemen-
tation. It is developed by Nokia Research Center and can
be considered a good Hadoop competitor, but because it
uses the operating system’s file system and handlers, it also
lacks fault tolerance on the associated storage. Hence, both
BashReduce and Disco are less efficient than Hadoop.

Storm (also known as Real-Time Hadoop), on the other
hand, is a distributed, fault-tolerant, real-time and open
source computation system developed by Twitter. It is aimed
at real time analysis using large clusters. Its objective is the
same as Hadoop, but the usage mode differs, as Hadoop
is meant to perform batch processing instead of real time
processing. Both projects (Hadoop and Storm) are shifting
towards big-data applications.

III. THE COSMOS SYSTEM

The Cardiff Social Media Observatory (COSMOS) aims
to support social scientists in analysing socially significant
data (e.g. tweets, blogs and news stories). The volume of
data produced on a daily basis requires significant com-
putational resources to analyse. For example, COSMOS
collects around 3.5 million tweets a day. To perform a
longitudinal analysis of, say public opinion and sentiment,
around a socially significant event (e.g. a political cam-
paign, change of legislation, world sporting event etc.)
could require analysis of several weeks’ worth of data.
An example study may be public opinion surrounding the

London 2012 Olympics, where a study of opinion for two
weeks before, during and after would require the analysis
of 21 million tweets. On a single desktop computer this
could take approximately 20 minutes. This is perfectly
acceptable as a batch-processed computational exercise, but
the reality is that social media analysis may require several
“tweaks” to the study parameters, and therefore requires a
more interactive way of analysing data. For example, age,
gender, location and topic of study within the event may
change, as hypotheses are formed and tested. Therefore,
the computational analysis must be able to complete much
faster to give a more acceptable wait-time for the researcher.
The researcher should be able to invoke the computational
resources to support large-scale data analysis on-demand and
resources need to be dynamically allocated depending on the
size of the job.

Over recent years, there has also been an abundance of
social media analysis tools, created primarily to facilitate
on-line advertising and marketing, from companies such as
Radian 6, Palantir and IBM. Many of these tools however are
difficult to use in the context of social sciences research due
to their cost and proprietary closed (black box) technology
that does not lend itself to methodological inspection. COS-
MOS proposes the use of a data model and a suite of openly
available text analysis tools, which enable questions to be
formulated that are relevant for social sciences researchers
and for analyzing self-reported data [16]. Twitter provides a
number of Application Programming Interfaces (APIs) that
allow researchers to capture a percentage of the stream of
messages being posted by its users [17]. At the ’firehose’
level, researchers can capture every message that is posted, at
the ’gardenhose’ level they can get 10%, and at the ’spritzer’
level 1% of the messages posted can be harvested. COS-
MOS currently harvests and archives the ’spritzer’ stream
using the Twitter Streaming API, and makes it available to
researchers for inspection and analysis. Even at 1%, the API
provides COSMOS with approximately 3.5 million message
(or ’tweets’) per day, which are processed in real time for
some purposes and archived (∼525 MB in plain text files).

A. Data Archiving in COSMOS

COSMOS captures tweets at a rate of approximately 30
to 100 tweets per second, where the structure of each tweet
is described in [17]. The first COSMOS implementation
stored information about each tweet and the Twitter user that
authored the tweet in a normalised MySQL database using
the 140Dev PHP library [18]. Although adding information
about each tweet required a simple SQL insert at the end of
the tweets table, updating the users table required an SQL
select to determine if the Twitter user was already in the table
and a subsequent SQL insert to add the user to the table.
However, after accumulating approximately 10 million rows
of Twitter user data, MySQL was unable to handle the load
of approximately 30 to 100 select and insert operations per

second on the users table on a single computer. To overcome
the weakness of the relational data model for archiving
Twitter data, we implemented a bespoke archiving solution
that stores the information about tweets and Twitter users
collected by the 140Dev library as serialised PHP objects in
a hierarchical filing system. To improve search over Twitter
data, we use a hierarchical filing system to provide a date-
based index for archived data. Hence, data for each day is
stored in a separate directory named after the day, month
and year in which the data was captured. To focus our data
set we extract from the serialised PHP objects a subset of
tweet and Twitter user data that we store in flat-file CSV
format.

In contrast to a normalised MySQL database, our current
solution stores information about the author of each tweet
with the tweet itself. This means we repeatedly store the
same user information each time a Twitter user authors a
tweet. We took our cue for this approach from Google’s
Bigtable [19] – a distributed storage system that stores copies
of related data together for two reasons. First, data stored
in close proximity reduces disk seek times which makes
accessing the data faster. Second, storing all the data required
to answer a query enables distributed retrieval solutions such
as the use of the Map/Reduce algorithm. Figure 1 shows the
various components that make up the COSMOS system and
services within the system, such as “language detection”,
“gender detection”, etc.

Single Set of
Twitter

Authentication
Credentials

Multi-Threaded
Connection
Handling

Network
Connection

Twitter
Server
Clients

COSMOS
Analysis
Tookit

Twitter
Streaming

API

Connection
Handler
Thread

Connection
Handler
Thread

Connection
Handler
Thread

Twitter Connection Server

Tweet
Archiver

Real-Time
Sentiment Graph

Application

Real-Time
Gender Map
Application

Sentiment
Analyser

Language
Detector

Gender
Analyser

Figure 1. Architecture of the COSMOS system

B. Sentiment Analysis

In our initial experiments with sentiment analysis, we used
the Alchemy API [20]. Given a piece of text through a
RESTful API call, Alchemy returns a floating point number
between -1 and 1 that represents Alchemy’s evaluation of
the emotional content in the text (> 0 = positive sentiment;
< 0 = negative sentiment; 0 = neutral). As an online API,
Alchemy has the same two disadvantages for our work
as other online APIs. First, the round-trip time of each

networked API call lengthens the time taken to calculate the
sentiment score of each text. At a rate of approximately 30
to 100 tweets per second, any realistic amount of network
lag causes network-based text analysis to fall behind the
Twitter stream. The second reason online APIs inhibit large-
scale processing is rate limitation. Alchemy allows only
30,000 sentiment analysis API calls per day for approved
academic users. To put this figure in context, a limit of
30,000 sentiment analysis calls per day would enable us to
process the tweets we collect in ten minutes (at a rate of
50 tweets per second. To overcome these two disadvantages
of Alchemy, we use SentiStrength [21] – which is available
as a downloadable package that we have installed locally.
These two characteristics mean we can analyse an unlimited
number of tweets at no charge and with no network lag.

IV. ARCHITECTURE

Our system makes use of a distributed processing ap-
proach based on Hadoop Map/Reduce paradigm [22] over
an OpenNebula based Cloud computing infrastructure, as
illustrated in Figure 2. It is based on the study performed
in [23], but extended to a more complex Hadoop deployment
and contextualisation. OpenNebula [6] is an open source
project focused on the development of an industry standard
solution for building and managing cloud infrastructures.
As OpenNebula does not provide virtualization mechanisms,
we use the KVM (Kernel-based Virtual Machine) hyper-
visor [24] to manage the virtualization within resources.
It is an open source software for Linux that provides a
full virtualization infrastructure (with support for hardware
virtualization extensions) within a single machine. KVM
primarily supports x86 and x86_64 architectures, and
its development is supported by RedHat. KVM extends a
standard Linux kernel and supports hardware virtualization
by the use of a /dev/kvm/ interface. OpenNebula manages
KVM in order to deploy, monitor and control any virtual
machine on each physical machine associated with the local
Cloud infrastructure. Some alternatives are XEN [25] and
VMWare [26]. KVM was chosen because it has been demon-
strated to be successfully used alongside the OpenNebula
system.

OpenNebula provides Infrastructure as a Service (IaaS)
natively, but it also offers mechanisms and interfaces in order
to develop new functionalities and to allow the integration
of existing products within Cloud computing. Subsequently,
there is a wide and rich ecosystem around OpenNebula
(formed by tools, extensions and plugins) that enhance the
functionality provided by OpenNebula, such as: complex
schedulers, hypervisor support drivers, interface translators
and language bindings, etc. On the other hand, it does
not provide other kinds of service support mechanisms or
extensions as alternatives such as Nimbus (which makes use
of the Globus toolkit and associated services).

Figure 2. Data processing architecture for COSMOS using OpenNebula
& Hadoop

Hadoop was deployed over a collection of virtual ma-
chines (VMs) making up a virtual cluster. OpenNebula
allowed us to deploy as many Hadoop worker instances
as needed, letting us decide the size and characteristics
of the VMs/cluster and their deployment policy (dynamic
contextualisation) depending on the amount of data to be
processed. This also enabled us to migrate VMs to other
Cloud environments. However, a computational overhead
due to virtualization is introduced. Hadoop takes all the input
files (from HDFS) and divides them into one line chunks,
sending each one to a mapper. This action produces a
massive number of mappers which can be spread over a large
cluster. At the Map stage, each Tweet message is processed
with SentiStrength in order to get the sentiment scores (neg-
ative and positive). Each result is generated independently,
comprising the Tweet identifier and its associated positive
and negative sentiment scores. With this design, the Map
algorithm can be easily adapted to perform different analyses
on individual Tweet messages by replacing SentiStrength
with another analysis package.

map(String file_name, String line){
String TweetId = getId(line);
String Message = getMessage(line);
String Scores = SentiStrength(Message);
emit ((String) TweetId, (String) Scores);

}

The Reduce stage is not necessary due to the fact that the

result combination is not needed for this application, but it
may be necessary for other kinds of analysis. Currently, the
Reduce stage outputs the results obtained by the Mappers.

reduce(String TweetId, String Scores){
emit ((String) TweetId, (String) Scores);

}

The results obtained from the execution are stored into
the HDFS, from where they can be consulted, acquired or
even reprocessed with another Hadoop application. It is quite
feasible that Hadoop may be invoked more than once during
the analysis of a dataset to perform various types of analysis
in sequence using a number of different executable packages.

The Cloud architecture (Figure 2) used in this work has
been successfully tested over two local infrastructures, one
at Cardiff University, UK and another at the University of
Castilla-La Mancha (UCLM), Spain. The aim of having
two different Cloud infrastructures was to investigate the
behaviour of the application under different deployment
policies.

A. Cloud Infrastructure

In this work we used Cloud infrastructure at the Uni-
versities of Cardiff and Castilla-La Mancha. The Cardiff
University local infrastructure is composed of a cluster
computer (Viglen ix4600) with one compute node and 2
Xeon e5620 CPUs (4 cores per processor + Hyperthread), 24
GB of main memory, and 4 TB of storage). It has CentOS 6.2
Linux [27]. The University of Castilla-La Mancha (UCLM)
local infrastructure (known as Vesuvius) is composed of
10 compute nodes, with 2 Xeon e5462 CPU (4 cores per
processor), 32 GB of main memory and 60 GB of storage
each. It also has a headnode, with the same configuration but
with 1TB of storage shared between all the compute nodes
using NFS through a Gigabit Ethernet network. All of them
have CentOS 6.2 Linux [27].

V. EXPERIMENTAL RESULTS

In order to evaluate COSMOS with Hadoop, a virtual
cluster is installed and configured. Each VM configuration
(identifying the resources allocated to a VM), size of the
cluster and deployment strategy defined for the experiments
is described in the following subsection. Subsequently, the
performance results obtained from the execution of the
application for several million tweets are shown. We used
JVM v1.7 (on both Cardiff and UCLM deployments) and
Hadoop v0.20.0-cdh3u5 (from Cloudera).

A. Hadoop Virtual Clusters

The first step involves configuring the Hadoop virtual
cluster (e.g.- number of Hadoop servers, number of workers
and their VM parameters) on which the application is
executed. We will show that different configurations have
a direct impact on performance (i.e. the time taken to
undertake the analysis). The Tweet analysis is performed

with four different virtual cluster configurations (Table I).
These 4 different configurations share 1 Hadoop server with
100GB storage, 6GB RAM, and 20% of the total CPU power
allocated.

Table I
HADOOP VIRTUAL CLUSTER (WORKER NODES) CONFIGURATIONS

Workers CPU RAM (Gb) HDD (Gb)
1 70% 14 200
2 35% 7 100
4 17,5% 3,5 50
8 8,75% 1,75 25

These configurations are designed to maximize the usage
of the resources of the Cardiff Cloud infrastructure (due to
the fact that it has less main memory than UCLM Cloud
infrastructure) and to ensure that they will work in both
infrastructures. This is mandatory because OpenNebula 3.6
does not allow CPU and main memory overcommitment.
Note that with these configurations we reserve at least 10%
of the CPU power and 4GB of RAM for the OS and Cloud
management tools within Cardiff local infrastructure.

For the experiments, each configuration is evaluated in-
dependently from the others, which involves stopping the
workers that are not going to be used. The 4 different
virtual cluster configurations are tested on the Cardiff Cloud,
but only the 8 worker configuration on the UCLM Cloud,
in order to evaluate the impact of multiple deployment
strategies over the performance in a distributed cluster.

The aim of analysing multiple deployment policies is to
determine if performance is perturbed when having mul-
tiple VM instances when the amount of CPU allocation
is explicitly set. The objective being to understand how
interference between VMs could result in an impact on
performance of the overall application. The deployment of
a more complex cluster with more workers would require
smaller amounts of CPU dedicated to each one (due to CPU
overcommitment limitation), so allocating less than ∼8%
reduces their performance as it is not enough for each VM’s
OS and services to run efficiently.

B. Application Results

For the experimentation with the previously described
application, a test tweet archive (of more than 2 Gigabytes),
with up to 15 million tweets being processed to extract
their sentiment. COSMOS currently harvests and archives
the ’spritzer’ stream using the Twitter Streaming API, and
makes it available to researchers for inspection and analysis.
Even at 1%, the API provides COSMOS with approximately
3.5 million message (or ’tweets’) per day The tweet files
are archived using a specialised hierarchical filing system,
which stores tweets based on the day in which the collec-
tion was made. Hadoop also replicated these files multiple
times in order to improve fault tolerance – this is achieved
automatically.

Figure 3. Cardiff Cloud Tweet processing performance

The results obtained from the execution of the proposed
application for the given tweet archive in the Cardiff Cloud
(Figure 3) show an improvement on the performance (Ta-
ble I) compared with the sequential version. It is shown that
although the four configurations have the same amount of
resources in common (but split between the total number
of workers) within the same compute node, increasing the
number of workers generally leads to an improvement in
performance.

After observing the behaviour of the Cardiff Cloud with
different worker configurations we focussed on the 8 worker
configuration (as it shows better performance results) in
order to experiment with the UCLM Cloud and evaluate
if this deployment configuration, over a distributed cluster,
affects performance. In this scenario the workers are dis-
tributed across the cluster and the results obtained illustrated
in Figure 4. Workers are divided as 4 per node, 2 per node
and then 1 per node – a node in this instance being a physical
machine. Spreading the workers in this way does have an
impact on the performance but not as much as with different
worker configurations. The small difference in the 8 workers
distributed across multiple nodes is due to each worker using
one core on the node – with a total of 8 cores per node in
the UCLM configuration. Hence, although 2, 4 or 8 workers
are used on a node, each worker still makes use of a single
core on the node. The main performance improvement in
this instance is due to the high throughput resulting from
having multiple workers operating on the twitter data. The
slight improvement in performance between 2 works per
node and 8 workers per node, for instance, is due to the high
I/O per node when using 8 workers using the same network
interface card. The UCLM configuration makes use of an
NFS-based storage system. The best results are obtained
when there is one worker per compute node, due to reduced
I/O contention on the network interface card (although with
reduced utilization of the computational capacity of a node).

Comparing the results from both Cloud infrastructures it

Figure 4. UCLM Cloud Tweet processing performance

can also be observed that for the best scenario (8 workers
deployed across 8 nodes), the behaviours are quite similar,
independently of where they are deployed. However, com-
paring the performance with the 8 workers configuration
deployed in the same compute node at UCLM Cloud with
the result obtained from the same configuration at Cardiff
Cloud, it can be stated that Cardiff Cloud achieves slightly
better performance. This is due to its compute node being
more powerful than a UCLM Cloud compute node. This
performance penalty can be reduced by spreading all the 8
workers across 4 compute nodes (2 workers per compute
node). It is therefore useful to note that in a realistic
heterogeneous Hadoop cluster, one is likely to see variable
performance based on the hardware of the node used.
Performance, as in our scenario, is also impacted by the type
of Java virtual machine being used to execute the sentiment
analysis algorithm.

Focusing specifically on the deployment strategy, it can
be seen that results from the UCLM Cloud have shown
a performance increase as the level of distribution of the
VMs increases. This difference shows that when they are
deployed within the same physical machine (even without
CPU and main memory overcommitment), workers interfere
with the operation of other workers, resulting in reduced
performance. This fact means that running this application
on a virtual cluster in a production Cloud environment may
suffer perturbations from other VMs deployed within the
same physical machine.

Finally, when investigating the variability of the Cloud
system for the UCLM Cloud infrastructure observed during
the execution of the application (multiple times over 3 days)
with 15 million tweets archive (of more than 2 Gb) and
different deployment strategies (Table II), it can be observed
that there is considerable variability (in terms of execution
time) when various VMs are allocated to the same physical
machine. This variability is reduced as the VMs are scattered
over multiple idle machines within the cluster. Taking 1

worker VM per node as the reference point (it is the best
scenario), deploying 2 worker VMs per node reduces the
number of physical machines by half, but as a consequence
the variability is increased by 1.64 times; allocating 4 worker
VMs per node reduces the number of physical machines
by four but increases this variability by more than twice,
while allocate 8 worker VMs within the same physical
machine results in a very high variability. As a consequence,
the best compromise between the deployment strategy and
amount of physical machines obtained is 4 workers per node.
These results have been observed when running the KVM
hypervisor on OpenNebula Cloud.

Table II
UCLM CLOUD TWEET PROCESSING APPLICATION VARIABILITY.

Workers Execution time Ratio
variability (Seconds)

8 Workers per Node 92.92 12.54
4 Workers per Node 16.13 2.17
2 Workers per Node 12.19 1.64
1 Workers per Node 7.41 Reference

VI. CONCLUSIONS AND FUTURE WORK

The COSMOS system is presented along with issues
associated with archiving and analysing data for social media
analysis. The novelty of this work stems from two perspec-
tives: (i) the use of a distributed processing environment
using Hadoop, executed on an OpenNebula-based Cloud –
with the particular intention of understanding how VM lo-
cation and number impact the overall analysis performance;
(ii) for COSMOS archived data, a test application focused
on sentiment analysis (that can be re-purposed and adapted
with ease) and its performance evaluation. Furthermore, the
behaviour of multiple virtual clusters and their deployment
strategy is studied on two different types of private Cloud
environments.

The main conclusion from this article is the feasibility
of using Hadoop and Map/Reduce paradigm for COSMOS
archived data distributed computing. We demonstrate the
performance benefits achieved by using multiple “virtual”
worker nodes, compared to running a sequential version
of the application. Although various virtual cluster con-
figurations have different associated performance profiles,
the greater the number of workers deployed, the better the
performance achieved – limited by the amount of VMs that
can run simultaneously without affecting each other. Hence,
there is a limit on the number of VMs that can be hosted
per physical machine to ensure consistent and repeatable
performance. This particular application has primarily fo-
cused on the use of text data – using other types of content,
such as images, will have a different performance profile.
However, it is useful to note that there has been a significant
increase in the generation of user generated text data in
recent years (twitter, facebook status updates, blogs, etc),

and this approach can also apply to any of these types of
data sources.

As a consequence from the application of a distributed
model (such as Hadoop, which requires a virtual cluster)
over a Cloud environment, the deployment policy affects the
entire performance, where we have observed perturbations
between VMs deployed within the same physical machine,
even when no CPU overcommitment is allowed. Further-
more, the variability of Cloud environment for the given
application shows that the deployment policy is essential to
ensure that predictable performance can be achieved – an
aspect that cannot be controlled when deploying over public
Clouds.

Future work involves extensing the types of analysis we
can carry out, evaluating our approach on a bigger Cloud
environment by increasing the size of the virtual clusters and
increasing the number of Twitter messages we can analysis.
To deploy this system for research users, it would also be
necessary to assess the performance of the user for dealing
with multiple concurrent users using the same Cloud service,
tackling the problem of interference between VMs to reduce
performance variability. The latter could be achieved by
providing a limit on the maximum number of VMs we
should host on a given physical server.

A. Impact on Social Media Analysis

The impact of this Hadoop deployment on social media
analysis is very significant. It shows we can scale content
analysis of Tweets to the extent where we can calculate
approximately 5 days worth of Tweets in around 3 minutes,
as opposed to > 10 minutes on a single machine. As the
COSMOS compute infrastructure grows we expect to be able
add more nodes and workers to the problems and bring the
processing time down further. Even though the wait-time it
is still not as short as we would like, this scaled approach
provides academics with computational analytical tools that
have thus far only been available through proprietary (and
expensive) tools, which are not open to methodological
inspection.

ACKNOWLEDGMENT

Part of the “COSMOS” development was carried out through the
UK Joint Information Systems Committee (JISC) funded “Support-
ing Empirical Social Scientific Research with a Virtual Research
Environment” project under the Digital Infrastructure: Research
Tools Programme. We would like to thank JISC for their support.
This work has also included support from the Spanish Government
under Grants TIN2009-14475-C04-03 and TIN2012-38341-C04-04
and through a FPI scholarship associated with the TIN2009-14475-
C04-03 project.

REFERENCES

[1] P. Anderson, “What is Web 2.0? Ideas, technologies and
implications for education,” in JISC Online Report. Available

at www.jisc.ac.uk/media/documents/techwatch/tsw0701b.pdf,
2007.

[2] A. Iosup, N. Yigitbasi, and D. H. J. Epema, “On the perfor-
mance variability of production cloud services,” in Proceed-
ings of CCGRID, 2011, pp. 104–113.

[3] L. Gillam, B. Li, and J. O’Loughlin, “Adding cloud per-
formance to service level agreements,” in Proceedings of
CLOSER, 2012, pp. 621–630.

[4] “SentiStrength: The sentiment strength detection in short
texts,” Web page at http://sentistrength.wlv.ac.uk/, Last ac-
cess: 16th July, 2012.

[5] B. Pang and L. Lee, “Opinion Mining and
Sentiment Analysis,” in Foundations and Trends
in Information Retrieval 2(1-2) – available at:
http://www.cs.cornell.edu/home/llee/opinion-mining-
sentiment-analysis-survey.html, 2008, pp. 1–135.

[6] “OpenNebula: The Open Source Solution for Data Center Vir-
tualization,” Web page at http://opennebula.org/, Last access:
16th August, 2012.

[7] N. Kourtellis, J. Finnis, P. Anderson, J. Black-
burn, C. Borcea, and A. Iamnitchi, “Prometheus:
user-controlled p2p social data management for
socially-aware applications,” in Proceedings of the
ACM/IFIP/USENIX 11th International Conference on
Middleware, ser. Middleware ’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 212–231. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2023718.2023733

[8] J. Ratkiewicz, M. Conover, M. Meiss, B. Gonalves, S. Patil,
A. Flammini, and F. Menczer, “Truthy: mapping the spread
of astroturf in microblog streams,” in Proceedings of the 20th
International Conference on World Wide Web, WWW 2011,
Hyderabad, India, March 28 - April 1, 2011 (Companion
Volume), S. Srinivasan, K. Ramamritham, A. Kumar, M. P.
Ravindra, E. Bertino, and R. Kumar, Eds. ACM, 2011, pp.
249–252.

[9] G. Xiang, B. Fan, L. Wang, J. Hong, and C. Rose, “Detecting
Offensive Tweets via Topical Feature Discovery over a Large
Scale Twitter Corpus,” in Proceedings of CIKM, October 29
– November 2. ACM, 2012.

[10] J. Lin and A. Kolcz, “Large-scale machine learning at twitter,”
in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’12.
New York, NY, USA: ACM, 2012, pp. 793–804. [Online].
Available: http://doi.acm.org/10.1145/2213836.2213958

[11] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig latin: a not-so-foreign language for data processing,”
in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ’08.
New York, NY, USA: ACM, 2008, pp. 1099–1110. [Online].
Available: http://doi.acm.org/10.1145/1376616.1376726

[12] T. White, Hadoop: The Definitive Guide, M. Loukides, Ed.
O’Reilly, June 2009.

[13] C. Lam, Hadoop in Action. Manning Publications, December
2010.

[14] “BashReduce,” Web page at
https://github.com/erikfrey/bashreduce, Last access: 12th
October, 2012.

[15] “Storm. Distributed and Fault-tolerant Realtime Computa-
tion,” Web page at http://storm-project.net/, Last access: 12th
October, 2012.

[16] P. Burnap, O. Rana, and N. Avis, “Making Sense of Self
Reported Socially Significant Data Using Computational
Methods,” International Journal of Social Research Methods
(to appear), 2013.

[17] A. Bruns and Y. Liang, “Tools and methods for capturing
Twitter data during natural disasters,” First Monday, April 2,
2012, vol. 17, no. 4.

[18] “140Dev PHP Library,” Web page at http://140dev.com, Last
access: 9th October, 2012.

[19] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: A Distributed Storage System for Structured
Data,” in Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation -
Volume 7, ser. OSDI ’06. Berkeley, CA, USA: USENIX
Association, November 2006, pp. 15–15. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267308.1267323

[20] “Alchemy Sentiment Analysis API,” Web page at
http://www.alchemyapi.com/api/sentiment/, Last access:
11th October, 2012.

[21] M. Thelwall, K. Buckley, G. Paltogou, D. Cai, and A. Kappas,
“Sentiment strength detection in short informal text,” in
Journal of the American Society for Information Science and
Technology, vol. 61, 2010, pp. 2544–2558.

[22] “Apache Hadoop,” Web page at http://hadoop.apache.org/,
Last access: 17th August, 2012.

[23] Cloud-B-Lab, “Setting up a multinode hadoop cluster using
ubuntu 11.04 32 bit server virtual machines,” march 2012.

[24] “Kernel Based Virtual Machine (KVM),” Web page at
http://www.linux-kvm.org/, Last access: 15th August, 2012.

[25] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,” SIGOPS Oper. Syst. Rev.,
vol. 37, no. 5, pp. 164–177, Oct. 2003. [Online]. Available:
http://doi.acm.org/10.1145/1165389.945462

[26] “VMware Virtualization Software for Desktops, Servers and
Virtual Machines for Public and Private Cloud Solutions,”
Web page at http://www.vmware.com/, Last access: 3rd Oc-
tober, 2012.

[27] “CentOS: The Community ENTerprise Operating System,”
Web page at http://www.centos.org/, Last access: 10th July,
2012.

