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Abstract. We present millimetre-line imaging of the Galactic H region Sh 104. We show that it is surrounded by a ring
of molecular gas and dust. Four large molecular condensations are regularly spaced around the ring. These condensations are
themselves fragmented and contain several massive dense cores. A deeply embedded cluster is observed in the near IR towards
the largest condensation. It contains at least one massive star ionizing an ultra-compact H region. The Sh 104 region is a good
illustration of the “collect and collapse” model for star formation triggered by the expansion of an H region.
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1. Introduction

The expansion of an H region may trigger star formation in
various ways (see the review of Elmegreen 1998 and refer-
ences therein). As an H region expands with supersonic ve-
locity, dense neutral material accumulates between the ioniza-
tion front and the shock front which precedes it on the neutral
side; this decelerating shocked layer may become unstable and
fragment on various time scales to form stars. This is the “col-
lect and collapse” model, first proposed by Elmegreen & Lada
(1977), in which:

– The layer may be unstable on a short time scale, of the or-
der of the internal crossing time. The resulting stars are not
massive, and should be observed, later on, moving ahead of
the swept-up layer.

– The layer may also be unstable, on a longer time scale,
to gravitational collapse along its length. The fragments
are massive enough to form massive stars or clusters
(Whitworth et al. 1994), which should be observed in the
direction of the parental layer.

It has been shown that, statistically, the more luminous pro-
tostellar objects tend to form in molecular clouds adjacent to
H  regions (Dobashi et al. 2001), hence the search we are
carrying out for deeply embedded massive stars and clusters
at the peripheries of H regions. We present here the case
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of the H region Sh 104 (Sharpless 1959). An ultracompact
(UC) H  region, ionized by a deeply embedded cluster, lies
at its periphery. This cluster is possibly a second-generation
cluster, whose formation has been triggered by the expansion
of Sh 104. We present new molecular observations of this re-
gion, and discuss the possible origin of the observed massive-
star formation.

The molecular observations and theJHK photometry of the
cluster will be fully presented and discussed in a forthcoming
paper, hereafter Paper II, and a model for the star formation
triggered by Sh 104 will be presented in Paper III.

2. Presentation of the region

Sh 104 is a 7′ diameter, optically visible H region, whose
main exciting star is an O6V with a visual extinction of 4.7 mag
(Crampton et al. 1978; Lahulla 1985). The LSR velocity of the
ionized gas is∼0 km s−1 (Georgelin et al. 1973). The distance
to Sh 104 is 4.0± 0.5 kpc (see Paper II).

Sh 104 is a thermal radio continuum source (Israel 1977).
Figure 1 shows the radio map obtained by Fich (1993)
at 1.46 GHz, with a resolution of 40′′. Sh 104 exhibits a shell
morphology, both at optical and radio wavelengths, with the
exciting star at the centre of the shell. Sh 104 is a low den-
sity H  region. For the assumed distance, the mass of ion-
ized hydrogen is∼450 M� (Israel 1977). A non-resolved ther-
mal radio source lies at its eastern border, at 20h17m55.s9,
+36◦45′39′′ (J2000), according to the NVSS Source Catalog
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Fig. 1.Composite colour image of the Sh 104 region. The emission of
the dust appears in red (MSX survey, band A), and that of the ionized
gas in turquoise (DSS2-red survey); the yellow contours correspond to
the radio continuum emission at 1.46 GHz (Fich 1993). The field size
is 12.′8× 12.′8; north is up and east is to the left. The yellow rectangle
shows the field of Fig. 3.

(Condon et al. 1998). This UC H region coincides with the
IRAS 20160+3636 source discussed below.

The Sh 104 region appears as a most remarkable object in
band A of the MSX Survey (Egan et al. 1999). This band cov-
ers the 6.8–10.8µm range with an angular resolution of∼20′′.
Figure 1 shows a complete emission ring surrounding the ion-
ized region. Band A contains the 7.7µm and 8.6µm emission
bands, often attributed to polycyclic aromatic hydrocarbons
(PAHs). This is most probably the origin of the band A emis-
sion ring surrounding the Sh 104 ionized region. Continuum
emission due to small grains at high temperature may also con-
tribute to the band A emission.

An MSX point source lies in the direction of the dust ring. It
is resolved, with a HPBW (corrected for the instrumental PSF)
of 21′′ (0.41 pc). This MSX point source coincides with the
IRAS point source IRAS 20160+3636 (LIR ∼ 3 × 104 L�). A
near-IR cluster lies in the direction of this source. This cluster
is most probably the exciting cluster of the UC H region, and
therefore contains at least one massive star (see Paper II). We
obtainedJHK images of this cluster at the CFHT 3.6-m tele-
scope in October 2002.

3. Molecular observations and results

The molecular material associated with Sh 104 was observed
with the IRAM 30-m telescope in September 2002. The
12CO(2–1) line emission was mapped at 11′′ resolution with
the HERA 9-channel heterodyne array in the “on-the-fly”
mode. We adopted a reference position located 15′ east of the
exciting star. The emission at this position was observed in

frequency switching mode and subsequently added to the ob-
served spectra. The final map has a size of 15′ × 15′ and is
almost fully sampled. CO fluxes are given in units of antenna
temperatureT∗A scale). The emission of the other tracers being
limited to the denser regions, and with a much smaller extent,
we adopt the main-beam scale for brightness temperatures.

Figure 2 presents the CO emission integrated over three
velocity intervals. It shows that the CO material forms a ring
which entirely surrounds the H region. The CO brightness
is highest at the border of the ionized region, and lies in the
range 17–27 K.

The emission of the denser material was observed using
the standard heterodyne receivers in the lines of CS, HCO+,
13CO and C18O. Figure 2 shows that the dense gas is mainly
concentrated in four large fragments, separated from each other
by 4.3 to 6.7 pc.

The brightest fragment is found in the direction of the clus-
ter. Its dimensions are about 3.1 pc× 1.5 pc (based on the
contour at 20% of the peak C18O(1–0) intensity). From the
CO data, we estimate a gas kinetic temperature of∼30 K in
the fragment. The mass of molecular material inside the frag-
ment is estimated by integrating the flux of the C18O(1–0) line;
assuming that the levels are populated according to LTE and
that the line is optically thin, we derive a mass of 670M� for
the fragment and a mean density of 3100 cm−3.

Integrating the total flux of the13CO(1–0) line over the
whole shell, and assuming the line to be optically thin with
an average excitation temperature of 20 K, the total mass of
material amounts to 6000M�.

As can be seen in Fig. 2, each fragment consists of several
roughly circular subunits, or “cores”, with a typical diameter
of 0.4–0.6 pc (from CS(3–2)), marginally resolved at 2 mm
(and 3 mm). Observations of the C18O(2–1) line show that the
fragment associated with the IRAS source is composed of three
cores separated by about 0.8 pc (Fig. 3). The stellar cluster
lies between two of these cores (at about 10′′ from the cen-
tre of the north-eastern core). Their physical properties, as de-
rived from the C18O observations, are very similar. The average
gas column density is 3−3.5 × 1015 cm−2, which implies core
masses of 70 to 100M�. From the C18O data, we find an aver-
age H2 density of∼104 cm−3 inside the cores.

For the same cores, a large-velocity gradient analysis of
three CS transitions shows that the density of the emitting
gas isn(H2) = 1.6−2.8 × 105 cm−3 and the average column
densityN(CS) ' 1013 cm−2. Adopting a standard abundance
[CS]/[H2] = 10−9, we derive a mass of 45M�.

4. Discussion and conclusions

The existence of a molecular ring surrounding the ionized
gas, and the presence, around this ring, offour dense frag-
ments regularly spaced, provide strong evidence in favour
of the “collect and collapse” model. This configuration al-
lows us to reject the following hypotheses concerning the
formation of the cluster: i) spontaneous collapse of a pre-
existing molecular clump; ii) collision of the compressed layer
with a pre-existing molecular clump; and iii) collapse of a
molecular postshock core formed in the compressed layer
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Fig. 2. First three panels: maps of the12CO(2–1) velocity-integrated emission. The velocity interval is marked on each panel. In the
[−7;−2] km s−1 panel the lowest contour as well as the contour step is 5 K km s−1; for the [−2;+2] panel the first contour and contour in-
terval are 10 K km s−1; for the [+2;+8] km s−1 panel the contours levels are at 5, 10, 15, 20, 30 and 40 K km s−1. Coordinates are the offsets
in arcseconds with respect to the field centre at 20h17m45s, 36◦46′00′′ (J2000). The white “star” marks the position of the exciting star. The
yellow rectangle in the upper right panel shows the field of Fig. 3.Lower right panel: distribution of the CS(2−1) flux integrated between−3
and+5 km s−1 (red contours). First contour and contour interval are 0.3 K km s−1. The contours are superposed on the DSS2-red frame of Sh 104.

propagating in a supersonic turbulent medium (Elmegreen et al.
1995) – in which case the fragments would be randomly lo-
cated. The cluster is most probably a second-generation clus-
ter, resulting from the fragmentation of the swept-up layer due
to gravitational instabilities developing on the long time scale,
t ∼ 0.5(Gρ0)−

1
2 ∼ 1−3 × 106 years for an H region expand-

ing in a medium of densityρ0 = 103 to 102 cm−3, respectively.
The fact that the cluster is still observed in the direction of the
compressed layer reinforces this interpretation.

Whitworth et al. (1994) have estimated the characteristics
of the fragments formed by gravitational instability in the dense

shell swept up when an H region expands into an infinite, uni-
form, neutral medium. The fragment properties are insensitive
to the rate at which ionizing photons are emitted by the central
star; they depend primarily on the preshock density,ρ0, and –
very strongly – on the effective sound speed in the postshock
gas,as. However, with this model, no pair of values ofρ0 andas

can simultaneously reproduce the number of fragments ob-
served in Sh 104 (four)andtheir individual masses (∼700M�).
We have therefore developed a new model for Sh 104.

In the new model, a massive star is formed near the centre
of a molecular cloud of finite extent. The H region, which
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Fig. 3. Map of the C18O(2–1) emission (turquoise) of the fragment
associated with the cluster, integrated between radial velocities−7
and+8 km s−1. The contours are at 30%, 40%, 50%, 60%, 70%, 80%
and 90% of the peak brightness of 6.7 K km s−1. This map is super-
imposed on a CFHTK frame of the cluster, with the stars appearing
in yellow. This field corresponds to the yellow rectangles in Figs. 1
and 2. The zero point of the coordinates is the same as in Fig. 2.

the massive star excites, expands and sweeps up the cloud into
a dense shell, which then fragments. The model takes account
of the self-gravity of the swept-up shell, and also the inertial
drag of the material being swept up by the expanding shell. By
invoking a cloud which is slightly aspherical, in the sense of
being slightly more extended in the plane of the sky than along
the line of sight, we can explain why all four fragments are seen
– in projection – around the rim of the H region. The model
will be described in detail in Paper III.

The mean density of the fragments observed around Sh 104
is high, ∼3100 cm−3; for T ∼ 30 K, their Jeans length is
∼0.65 pc. Thus this structure itself must fragment into sev-
eral cores separated by some 0.65 pc. Such dense cores are ob-
served in the fragment associated with the cluster. Due to their
high density, star formation must proceed rapidly in these dense
cores (∼7×104 years for the observed density of 2×105 cm−3).
This is most probably the origin of the observed embedded
cluster. The other three fragments observed at the periphery of
Sh 104 are potential sites of massive-star formation.

The Sh 104 region appears as the prototype of massive-star
formation triggered by the expansion of an H region. Thanks
to its very simple morphology, Sh 104 is particularly helpful
for understanding this sequential star formation mechanism.
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