
A Computer-Based Holistic
Approach to Managing Progress

of Distributed Agile Teams

Sultan Abdulaziz Alyahya

School of Computer Science & Informatics
Cardiff University

This thesis is submitted in partial fulfilment of the
requirement for the degree of Doctor of Philosophy

May 2013

i

DECLARATION

This work has not been submitted in substance for any other degree or award at this or
any other university or place of learning, nor is being submitted concurrently in
candidature for any degree or other award.

Signed ………………………………………… (candidate)
Date …………………………

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the degree
of PhD.

Signed ………………………………………… (candidate)
Date …………………………

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where
otherwise stated. Other sources are acknowledged by explicit references. The views
expressed are my own.

Signed ………………………………………… (candidate)
Date …………………………

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside
organisations.

Signed ………………………………………… (candidate)
Date …………………………

ii

Abstract

One of the co-ordination difficulties of remote agile teamwork is managing the
progress of development. Several technical factors affect agile development progress;
hence, their impact on progress needs to be explicitly identified and co-ordinated.
These factors include source code versioning, unit testing (UT), acceptance testing
(AT), continuous integration (CI), and releasing. These factors play a role in
determining whether software produced for a user story (i.e. feature or use case) is
‘working software’ (i.e. the user story is complete) or not. One of the principles
introduced by the Agile Manifesto is that working software is the primary measure of
progress.

In distributed agile teams, informal methods, such as video-conference meetings, can
be used to raise the awareness of how the technical factors affect development
progress. However, with infrequent communications, it is difficult to understand how
the work of one team member at one site influences the work progress of another
team member at a different site.

Furthermore, formal methods, such as agile project management tools are widely used
to support managing progress of distributed agile projects. However, these tools rely
on team members’ perceptions in understanding change in progress. Identifying and
co-ordinating the impact of technical factors on development progress are not
considered.

This thesis supports the effective management of progress by providing a computer-
based holistic approach to managing development progress that aims to explicitly
identify and co-ordinate the effects of the various technical factors on progress. The
holistic approach requires analysis of how the technical factors cause change in
progress. With each progress change event, the co-ordination support necessary to
manage the event has been explicitly identified.

The holistic approach also requires designing computer-based mechanisms that take
into consideration the impact of technical factors on progress. A progress tracking
system has been designed that keeps track of the impact of the technical factors by
placing them under control of the tracking system. This has been achieved by
integrating the versioning functionality into the progress tracking system and linking
the UT tool, AT tool and CI tool with the progress tracking system.

The approach has been evaluated through practical scenarios and has validated these
through a research prototype. The result shows that the holistic approach is achievable
and helps raise awareness of distributed agile teams regarding the change in the
progress, as soon as it occurs. It overcomes the limitations of the informal and formal
methods. Team members will no longer need to spend time determining how their
change will impact the work of the other team members so that they can notify the
affected members regarding the change. They will be provided with a system that
helps them achieve this as they carry out their technical activities. In addition, they
will not rely on static information about progress registered in a progress tracking
system, but will be updated continuously with relevant information about progress
changes occurring to their work.

iii

Acknowledgements

Above all, I praise Allah (God) for his uncountable favours and for providing me with
patience, strength and persistence to complete this work.

I would like to express my sincere gratitude and thanks to my first supervisor Dr.
Wendy Ivins for her unlimited support, patience and encouragement during the period
of my study. She was always eager to listen and discuss my ideas, findings and even
my concerns. In addition, I would like to thank my second supervisor, Prof. Alex
Gray, for his advice and expert guidance during important stages in my research.

I am grateful for the feedback I received from many people in the agile community at
XP 2008, ICGSE 2011 and SERA 2012 conferences. Their valuable comments and
discussions during the conference days have added to the success of this work.

I would like to thank the members at the School of Computer Science & Informatics
at Cardiff University for their help, especially Helen Williams and Dr. Pamela Munn
for their help with administrative issues, and Kirsty Hall for her help with travel
related issues.

I acknowledge, with grateful thanks, my employer, King Saud University (Riyadh,
Saudi Arabia), for granting my scholarship, and providing the financial support
needed to complete my study.

I wish to thank my colleagues, Fahad Al-Wasil, Badr Aldaihani, Ahmed Alqaoud,
Waleed Alnuwaiser, Yaser Alosefer, Yahya Ibrahim, Ahmed Alazzawi, Ehab
ElGindy, Abdul Hamid Elwaer, Khaled Almuzaini and Abdolbast Greede for their
friendship and help. Very special thanks are due for Hmood Al-Dossari for the long
hours he has spent with me discussing this research, which is absolutely unrelated to
his own.

Special admiration and gratitude must go to my parents, brothers and sisters whose
prayers, love, patience, support and encouragement have always enabled me to
perform to the best of my abilities.

Last, but by no means least, I cannot find words to express my gratitude to my wife,
Muneera, who stood by me during the hardest times of the project and provided me
with infinite love, care and confidence. Finally, I am greatly indebted to my son,
Abdulaziz, for putting a smile on my face when I have needed it the most.

iv

Dedication

To the Egyptian thinker & philosopher Dr. Mustafa Mahmoud (1921-2009) who

taught me that the value of human is what he adds to life between his birth and death.

v

Acronyms

APM

ASD

AT

Agile Project Management

Adaptive Software Development

Acceptance Testing

ATs

CFD

Acceptance Tests

Cumulative Flow Diagrams

CI

CSCW

DFD

DSDM

FDD

IMs

IV

Continuous Integration

Computer-Supported Co-operative Work

Data Flow Diagrams

Dynamic Systems Development Method

Feature-Driven Development

Instant Messaging

Integrated Version

RERO

RTF

Releasing Early and Releasing Often

Running Tested Features

RUP

RV

SBE

SCM

TDD

TFS

TTM

TV

UML

UT

UTV

WIP

Rational Unified Process

Releasable Version

Scenario-Based Evaluation

Software Configuration Management

Test-Driven Development

Team Foundation Server

Time-to-Market

Transient Version

Unified Modeling Language

Unit Testing

Unit-Tested Version

Work In Progress

XP Extreme Programming

vi

Contents

Declarations/Statements ...i

Abstract...ii

Acknowledgements ...iii

Dedication ..iv

Acronyms..v

1. Introduction ...1

1.1 Problem Statement ... 1

1.2 Hypothesis, Aims and Objectives... 3

1.3 Achievements of the Research... 5

1.4 Structure of the Thesis... 7

2. Agile Software Development ..9

2.1 Limitations of the Plan-Driven Approach... 9

2.2 Agile Approach... 12

2.2.1 Fundamentals of Agile Software Development ..13

2.2.2 The Concept of Progress in Agile Approach ..14

2.2.3 Extreme Programming.. 15

2.2.3.1 XP Process and Terminology .. 16

2.2.3.2 XP Values and Practices ... 17

2.3 Technical Factors Affecting Agile Development Progress..................................... 20

2.3.1 The Technical Factors... 20

2.3.2 The Technical Factors in Agile Methods..25

2.4 Summary .. 26

3. Managing Development Progress in Distributed Agile Projects28

3.1 Managing Progress of Agile Software Development .. 28

3.2 Distributed Software Development.. 30

3.2.1 Motivations for Distributing Software Development ... 30

3.2.2 The Need for Co-ordination Support ..32

3.3 Current Approaches to Managing Progress in Distributed Agile Projects............ 33

3.3.1 Informal Methods ...34

3.3.1.1 Synchronous Communication.. 34

3.3.1.2 Asynchronous Communication.. 36

3.3.1.3 Daily Tracker .. 37

3.3.1.4 Information Radiators ... 37

vii

3.3.1.5 Cross-location Visits ... 38

3.3.2 Formal Methods..38

3.3.2.1 Wikis and Spreadsheets... 38

3.3.2.2 Traditional Project Management Tools .. 39

3.3.2.3 Agile Project Management (APM) Tools .. 40

3.3.2.3.1 Web-Based Task-Board... 42

3.3.2.3.2 Progress Reporting .. 43

3.3.2.3.3 Time Tracking ... 44

3.3.2.3.4 AT Progress Tracking.. 44

3.3.2.3.5 Progress Notifications.. 45

3.4 Justification for Computer-Based Holistic Approach .. 47

3.5 Summary .. 50

4. Co-ordination Support Required for Managing Progress of Distributed Agile

Projects..52

4.1 Understanding Co-ordination.. 52

4.2 Types of Co-ordination Activities Required for Managing Development Progress56

4.3 Analysis of Co-ordination Requirements for the Technical Activities................... 60

4.3.1 Source Code Versioning ..60

4.3.2 Continuous Integration and Releasing...63

4.3.3 Unit Testing ... 65

4.3.4 Acceptance Testing..66

4.4 Examples .. 69

4.5 Summary .. 72

5. Design of Progress Tracking System ...74

5.1 System Architecture ... 74

5.2 Version Model .. 76

5.2.1 Version States ...76

5.2.2 Version Operations ... 77

5.2.3 Version Tracking .. 79

5.3 User Story Progress Model .. 81

5.4 Process Model .. 84

5.4.1 Selecting a Process Modelling Technique .. 84

5.4.2 Modelling the Technical Processes...85

5.5 Data Model ... 89

5.6 Design Issues.. 92

5.6.1 Acceptance Testing Approaches... 92

5.6.2 Continuous Integration Approaches ... 93

viii

5.7 Summary .. 97

6. Evaluation..99

6.1 Evaluation Methodology.. 100

6.1.1 Evaluation for Groupware Systems .. 100

6.1.2 A Scenario-Based Evaluation Approach ..102

6.2 Selection of Scenarios.. 103

6.3 Analysis of Scenarios... 107

6.3.1 Scenario 1: ‘Check-in Source Code Version’ Scenario .. 108

6.3.2 Scenario 2: Performing Successful Integration...114

6.3.3 Scenario 3: Running Automated Acceptance Testing ..120

6.4 Validation of the Holistic Approach.. 125

6.4.1 System Database... 126

6.4.2 Implementation of Scenario 1... 127

6.4.3 Validation Discussion... 133

6.5 Further Discussion on Evaluation.. 134

6.5.1 Overcoming the Limitations of the Informal Methods ... 134

6.5.2 Overcoming the Limitations of the Formal Methods..135

6.6 Summary .. 136

7. Conclusions ..137

7.1 Achievement of the Research Objectives.. 137

7.2 Future Work... 146

7.2.1 Impact of Progress Change on Overall Project Plans and Velocity.............................. 146

7.2.2 The Use of Change Impact Analysis Techniques ...147

7.3 Contribution of the Research .. 148

7.3.1 Research Publications...148

7.3.2 Originality of the Proposed Approach .. 149

Appendix A: Agile Principles..151

Appendix B: Technical Process Models...152

Appendix C: Implementation Description for the Holistic Approach Version of

Scenarios 2 and 3..167

Bibliography ...180

1

CHAPTER 1

Introduction

This chapter presents an outline of the research. It describes the problem

statement of the research in Section 1.1. The scope of the research is defined in

Section 1.2 by describing the hypothesis, aims and objectives of the research. The

achievements of the research are discussed in Section 1.3. Finally, the structure of

the thesis is presented in Section 1.4.

1.1 Problem Statement

The practice of distributed software development has rapidly increased over the

last two decades [1] [2]. In spite of applying development methods, co-ordination

is one of the primary challenges in developing software at multiple sites [3]. The

temporal, geographical and socio-cultural barriers impose a co-ordination

challenge to the distributed teams [3] [4].

Distributed software projects using agile processes are likely to encounter more

complex co-ordination problems, because agile processes were originally aimed

at single location projects, where teams rely on intensive communications among

team members to co-ordinate their work. However, an increasing number of agile

organisations work remotely to gain the advantages of distributing the work [5]

(e.g. the promise of round-the-clock development). With the absence of face-to-

face interactions, numerous co-ordination difficulties are reported (e.g. [6–8]).

Chapter 1. Introduction

2

One of the co-ordination difficulties of remote agile teamwork is managing the

progress of development. Sauer [9] points out that progress status is less visible

and controllable in distributed agile projects. Peng [10] observes that “teams

have a difficult time keeping track of progress” in a distributed agile project.

Agile software teams may reach the end of a development iteration having a

large number of failed acceptance tests, delivering progress information late, and

to the wrong team members [11].

Several technical factors affect agile development progress. These factors include

source code versioning, unit testing (UT), acceptance testing (AT), continuous

integration (CI), and releasing. These factors play a role in determining whether

software produced for a user story (i.e. feature or use case) is ‘working software’

(i.e. the user story is complete) or not. One of the principles introduced by the

Agile Manifesto [12] is that working software is the primary measure of

progress. We propose that each of the technical factors impacts the progress

towards working software; hence, they need to be managed. We will demonstrate

that the outcome for each factor can be used to apply appropriate constraints and

help determine the required co-ordination of the work of the software team to

better manage the development progress.

In distributed agile teams, informal methods, such as video-conference

meetings, can be used to raise the awareness of development progress [13].

However, with infrequent communications, it is difficult to understand how the

work of one team member at one site influences the work progress of another

team member at a different site. Team members may not recognise that there is

an effect on progress or may not know who is affected. In addition, they may

decide not to contact other team members, because of the time it takes to locate

and notify the affected people.

Furthermore, formal methods, such as agile project management tools (e.g.

Rally [14], Mingle [15], VersionOne [16], TargetProcess [17]), are widely used

in distributed agile software development. These tools facilitate sharing progress

information about iterations’ tasks and user stories. The tools provide basic

Chapter 1. Introduction

3

progress status notifications. For instance, if a task is delayed, a team leader can

be notified. However, these tools rely on team members’ perceptions in

understanding change in progress. Identifying and co-ordinating the impact of

technical factors on development progress are not considered. For example, if

modifying a source code artefact requires a further acceptance test to be

developed, this will not be recognised by the project management tools.

The lack of mechanisms to effectively manage progress change resulting from

the technical factors may lead to the project being delayed or to produce low

quality code.

In our research investigation, I attempt to support the effective management of

progress by providing a computer-based holistic approach to managing

development progress that aims to explicitly identify and co-ordinate the effects

of the various technical factors on progress. This will provide distributed agile

teams with improved awareness of the actual progress of the project.

The holistic approach will help distributed agile teams determine change in

progress as soon as it occurs. This can potentially reduce the testing bottlenecks

at the end of each iteration and release, and can support better forecasting as it

will be based on more realistic progress information.

The thesis argues that the computer-based holistic approach to managing

progress is achievable and that it can overcome the limitations of the informal

and formal methods.

1.2 Hypothesis, Aims and Objectives

The research presented in this thesis is based on the following hypothesis:

Chapter 1. Introduction

4

“Managing development progress in distributed agile projects can be supported

by providing a computer-based holistic approach that co-ordinates the impact of

the different technical activities on development progress, and will provide

improved awareness of the actual progress to team members.”

The hypothesis leads to the following aim and objectives for this research. The

aim of the research is to develop a computer-based holistic approach to managing

progress in distributed agile projects. The approach has to co-ordinate the impact

of the various technical activities on development progress.

In order to achieve this aim, a set of research objectives are defined:

1. Defining the concept of progress in the agile approach and the

difference in progress tracking between the agile approach and the

traditional (plan-driven) approach. This includes identifying the key

technical factors affecting agile development progress.

2. Surveying how well the informal methods and the formal methods

manage progress in a distributed agile development.

3. Identifying the co-ordination support required for managing

development progress. This includes analysing the various events that

cause change in progress.

4. Designing a computer-based system capable of providing the

necessary co-ordination. Computer-based mechanisms have to take

into consideration the impact of the technical activities on progress.

5. Evaluating the computer-based holistic approach. This includes

preparing an evaluation methodology and determining whether the

computer-based holistic approach is achievable.

Chapter 1. Introduction

5

1.3 Achievements of the Research

The fulfilment of the objectives of this research will demonstrate the following

achievements:

 Identification of the need for an effective approach to incorporate the

impact of the technical factors (UT, AT, CI and Releasing, and source

code versioning) on development progress. This is because these factors

impact the progress towards working software.

 Definition of a computer-based holistic approach to manage development

progress in distributed agile projects, to overcome the limitations of the

informal and formal methods. The approach can identify the effects of

change not only from the users (team members), but also from the various

technical systems that cause changes in progress.

 Comprehensive analysis of how each of the technical activities may cause

change in progress. Twenty-three progress change events are identified.

For each of these events, an explicit identification of the co-ordination

support required has been provided.

 A novel design approach is proposed for the design of a progress tracking

system that takes into consideration the impact of technical activities on

development progress. It enables the progress tracking system to keep

track of the impact of the technical activities by placing them under

control of the tracking system. This can be achieved by integrating the

versioning functionalities into the progress tracking system and linking

the UT tool, AT tool, and CI tool, with the progress tracking system. Four

types of model are proposed to serve four different needs:

o A novel version model is proposed that incorporates the outcomes

of the technical activities to indicate the level of maturity of the

source code versions associated with each task/user story.

Chapter 1. Introduction

6

o A novel user story progress model is proposed. It provides better

awareness of the progress state of user stories. The model reflects

the impact of the technical activities on development progress. For

instance, modifying a shared source code belonging to a

completed story may lead to the story being incomplete. The

modification effect on the story’s progress has to be explicitly

shown on the progress tracking system and reported to the

affected team members.

o A set of process models, covering all the technical activities is

developed. Each process model clearly illustrates how a technical

activity affects development progress. It also provides a suggested

flow of activities for co-ordination support, including checking

progress constraints, identifying the potential sources of progress

change, finding and notifying affected team members when there

is a progress change, and reflecting progress change in the

tracking system.

o A data model is proposed that represents the large number of

dependencies among the different entities in the tracking system

(i.e. tasks, stories, releases, unit tests, acceptance tests and

integration tests). The dependencies can help identify how the

development progress is affected by the technical activities and

help target the co-ordination to those who are impacted by the

technical activities.

 Development of a prototype system that is used to demonstrate that the

computer-based holistic approach to managing development progress is

sound and practical. The prototype system is used as a proof-of-concept

for the holistic approach.

Chapter 1. Introduction

7

1.4 Structure of the Thesis

This section presents an overview of the organisation of the thesis. The first

chapter has introduced the research undertaken, the hypothesis to be tested and

highlighted the aims and objectives of the research and its original achievements.

Chapter 2: Agile Software Development

This chapter presents the main limitations of the plan-driven approach and

provides a background to the agile approach. It also discusses how the concept of

progress tracking is different in these two approaches. The key technical factors

affecting agile development progress are also identified and discussed. This

includes a survey that explores the popularity of the technical factors among the

agile methods and includes a discussion of how they are used in agile

development.

Chapter 3: Managing Development Progress in Distributed Agile Projects

This chapter first discusses distributed software environments. This includes the

motivation for implementing distributed software development environments and

the co-ordination challenge in such environments. The chapter also investigates

the current approaches used to managing development progress in distributed

agile environments. It discusses two main approaches: informal-based methods

and formal-based methods. The analysis of the two approaches leads to

suggesting a new approach (the computer-based holistic approach) to managing

development progress in distributed agile projects.

Chapter 1. Introduction

8

Chapter 4: Co-ordination Support Required for Managing Progress of

Distributed Agile Projects

This chapter identifies the co-ordination support requirements for managing

progress of distributed agile projects. It analyses the progress change events that

may result from performing the technical activities and provides explicit

identification of the co-ordination support required to deal with these events.

Two examples are provided to enhance understanding of the co-ordination

support required.

Chapter 5: Design of Progress Tracking System

This chapter introduces a design approach for a computer-based progress tracking

system. It describes an architecture that enables the tracking system to identify

the impact of the technical activities on development progress. In addition, the

four models mentioned in Section 1.3 (version model, user story progress model,

process model and data model) are presented.

Chapter 6: Evaluation

This chapter evaluates the holistic approach to developing a progress tracking

system proposed in this work. It discusses the evaluation methodology used and

discusses three scenarios used for evaluation. It then describes developing a

prototype system to validate the holistic approach.

Chapter 7: Conclusions

This chapter highlights the key aspects of the work, assesses the achievements

against the aims and objectives and concludes with suggesting future work that

could be carried out.

9

CHAPTER 2

Agile Software Development

This chapter presents the background to agile software development. It also

discusses progress tracking in the agile approach and the various technical factors

that affect progress of an agile development. The chapter starts by discussing the

main limitations of the plan-driven approach in section 2.1 while section 2.2 gives

background to the agile approach and the difference in progress tracking between

the plan-driven approach and the agile methods. The key technical factors

affecting agile development progress are then identified and discussed in section

2.3. The chapter concludes with a brief summary.

2.1 Limitations of the Plan-Driven Approach

Plan-driven methodologies (also known as heavyweight and traditional

methodologies) have been widely adopted by software organisations for many

years. The main common characteristics of these methodologies include

providing thorough documentation, up-front system architecture and detailed

plans [18]. The waterfall model [19], V-Model [20], rapid-prototyping model

[21], spiral model [22], and the Rational Unified Process (RUP) model [23] are

among the most popular plan-driven methodologies.

Chapter 2. Agile Software Development

10

The waterfall process model has been widely used in both large and small

software projects and has been reported as a successful approach especially for

large and complex engineering projects in controlled environments [24] [25].

The waterfall model is a sequential phased-based approach to software

development in which software is developed systematically from one phase to

another in a downward fashion like a waterfall [19]. In the waterfall model, the

desired functionalities of the software need to be specified beforehand. A detailed

plan for the whole project is created at the beginning and the plan is then

followed as precisely as possible. A common feature of the waterfall model is

their emphasis on defining the scope, schedule, and cost of the project at the start.

The waterfall model has been severely criticised for its poor flexibility and lack

of adaptability for requirements change. Somerville states:

“Its major problem is the inflexible partitioning of the project into distinct stages.

Commitments must be made at an early stage in the process, which makes it

difficult to respond to changing customer requirements” [25].

Customer requirements may change over time due to the rapid changes in the

technology or the business environment [26]. In addition, the customer may not

be sure exactly what requirements are needed before using a working prototype.

In projects using the waterfall model, the customer does not receive any software

until the entire development is complete. If the software project runs over time or

budget, it is likely that the final phase of software development will be left

incomplete. Given the fact that the final stage is normally the testing and quality

phase, this means that the most important development stage could be poorly

carried out. Because defects and issues may remain for a long time before

discovering them, they may rise over time and be harder to fix.

The V-Model has the same phases as the waterfall model but each phase is

supplemented by verification and validation activities. The criticism of the V-

Chapter 2. Agile Software Development

11

Model is that it is sequential and it divides development phases with sharp

boundaries between them; this is the same problem as the waterfall model.

The rapid-prototyping model emphasises the building of an early prototype to

help understand customer requirements. Similarly, the spiral model moves

through a set of prototype builds to help the project team identify and reduce the

major risks as early as possible. In these models, however, the prototypes may

not be part of the design itself but merely representations that are thrown away

after fulfilling their function; the majority of the design work carried out

thereafter is performed in a similar manner to the waterfall model [27].

The iterative development approach builds the system incrementally; a few more

features are added during each iteration until the entire system is completed. One

of the most popular methodologies applying this approach is the Rational Unified

Process (RUP). It is an iterations process framework that organises the

development of the software into four phases (inception, elaboration,

construction and transition), each consisting of one or more iterations. RUP

requires producing large amounts of documents and although it is iterative, each

iteration has to concentrate on the main emphasis of the phase it belongs to. That

is, early iterations are mostly about defining requirements and architecture, while

later iterations focus on implementation and testing [28].

The methodologies discussed above are heavyweight, document-centred and

plan-driven approaches. Fowler [29] describes such approaches as engineering

methodologies which may work perfectly for building a bridge but not for

building software, as building software is unpredictable activity and hence could

benefit from a different process.

Chapter 2. Agile Software Development

12

2.2 Agile Approach

A more recent lightweight approach to developing software, called the agile

approach, has emerged as a reaction to the limitations of the plan-driven

approach. The agile approach proposes a different view of the certainty aspect of

the software development process, compared to the plan-driven approach. In the

plan-driven approach, intensive effort is spent in forecasting the customer

requirements in order to reduce the number of changes. In the agile approach, the

uncertainty in software development projects can be considered as a baseline

assumption [30]. Thus, the agile software development approach can be regarded

as a means of responding to uncertainty (adaptive), rather than as a means of

achieving certainty (predictive) [30]. The agile approach focuses on ‘reaction

abilities’, that is, the abilities to include changes late in the process rapidly and

with low cost [31]. It does not try to avoid changes but it seeks to embrace them

[32].

Agile concepts emerged in the mid 90s, when ‘lightweight’ software methods

and techniques such as Extreme Programming (XP) (1999) [33], Scrum (1995)

[34], Crystal Family of Methodologies (1998) [35], Dynamic Systems

Development Method (DSDM) (1995) [36], Adaptive Software Development

(ASD) (1999) [37], Pragmatic Programming (2000) [38], and Feature-Driven

Development (FDD) (1999) [39] were independently developed.

The term ‘agile’ was agreed later, during a meeting when seventeen of the

proponents of the “lightweight” methods came together in February 2001, in

order to formalise common aspects of each others’ methods. The outcome of the

meeting was the production of the Agile Manifesto [12] which includes a set of

values and principles forming the basis of the various agile methods.

Chapter 2. Agile Software Development

13

2.2.1 Fundamentals of Agile Software Development

The Agile Manifesto identified four values for agile development. These are:

 Individuals and interactions over processes and tools

The agile development emphasises the relationship and the communality of the

team members over using the heavy process models and tools.

 Working software over comprehensive documentation

Although the software documentation is useful in the development, the most

effective documentation tool is the code itself. The agile approach stresses the

point of keeping the code simple and straightforward so it can be easily

understood.

 Customer collaboration over contract negotiation

Requirements are determined through customer co-operation and collaboration

during iterative development, rather than setting these requirements in a strict

contract at the beginning of the project.

 Responding to change over following a plan

In contrast to the plan-driven methodologies, the agile approach allows for the

preparation of short term plans that are flexible to changes. The development

group, comprising both software developers and customer representatives, should

be well-informed, competent and authorised to consider possible adjustment

needs emerging during the development process life cycle [40].

In the four points above, the manifesto recognises that while there is value in the

items on the right, the items on the left are valued more. The participants pointed

Chapter 2. Agile Software Development

14

out that “the agile movement is not anti-methodology” [12]. Highsmith, one of

the contributors of the Agile Manifesto, states:

“We embrace documentation, but not hundreds of pages of never-maintained

and rarely-used tomes. We plan, but recognize the limits of planning in a

turbulent environment” [41].

The agile values are described in more detail in twelve principles. These

principles are listed in Appendix A. The principles are fundamental ideas that

represent a high-level judgment on whether a software development method is

agile or not. Abrahamson et al. [40] answered the question: What makes a

development method an agile one? by providing the following characteristics of

the agile approach:

 Incremental (small software releases, with iterative cycles),

 Cooperative (customer and developers working constantly

together with close communication),

 Straightforward (the method itself is easy to learn and to modify,

well documented), and

 Adaptive (able to make last moment changes).

2.2.2 The Concept of Progress in Agile Approach

Progress in the plan-driven methodologies is often based on the completion of

deliverables such as the requirement specification document and analysis and

design diagrams. It is difficult to judge progress based on these deliverables [25].

The progress reports may not reflect how healthy the project is. For instance, the

progress report for a project that is at the end of the design phase may show that

the project progresses well as all design diagrams are completed. However, team

members may find many problems later in the integration phase or the testing

phase. Software teams may struggle keeping all deliverables consistent when

Chapter 2. Agile Software Development

15

change occurs. Additional time is spent in developing these extra artefacts that

are not software.

The view in agile methods is different from the view in the plan-driven approach.

Progress status is judged in agile methods mainly based on the essential output of

the project which is basically the software that the customer will use. Principle 7

in the Agile Manifesto states that:

“Working software is the primary measure of progress.”

Working software implies that the software is unit-tested, integrated and

acceptance-tested by the customer.

The working software concept is easy to understand by the customer as well as

developers. User stories represents the unit of progress measurement. If the

customer is happy with the functionalities provided for a story (i.e. acceptance

test passed), it is considered complete.

2.2.3 Extreme Programming

To better understand the agile approach, it is useful to describe one of the agile

methods in detail and use it in the rest of this work as a representative of the agile

approach methods. This will provide a common use of the terminology.

The method selected is Extreme Programming (XP) [42]. It has been widely

acknowledged as the starting point of the various agile software development

methods [40]. It includes the primary practices that have been adopted in projects

using other agile methods. In addition, the literature shows that it is widely

common for teams applying XP to use all the technical factors, mentioned earlier,

in their projects (e.g. [174] [175]). This makes it a good choice to represent the

agile methods in this research.

Chapter 2. Agile Software Development

16

2.2.3.1 XP Process and Terminology

In XP development, requirements are described in terms of user stories, each of

which represents a unit of functionality of the system (i.e. use case or feature). A

release plan is created to determine how many user stories will be delivered to

the customer in the next release. The user stories are distributed over several

iterations; each iteration is completed in one week. Within an iteration, user

stories are prioritised and broken down into tasks which are given initial

estimates and then developed. After implementing a story, acceptance testing is

done to ensure that what is implemented is what the customer wants. Figure 2-1

provides a general overview of the XP process.

Figure 2-1. XP process model [40].

The fundamental XP terminology used in this work is described below.

User Story: A user story is the customer expression of a discrete feature of the

system that will be discussed with other team members with the aim of

transforming it into software. Stories are the primary input into the XP process.

Task: Stories are divided into discrete programming tasks assigned to developers

during the planning session. Typically, each task should take a few days.

Chapter 2. Agile Software Development

17

Unit Test: a test case or suite written to test the functionality embodied in a

source code artefact (e.g. Java class).

Acceptance Tests: The customer writes acceptance tests for each user story. The

acceptance tests describe what the user expects the system to do.

Release Plan: identifies what stories will be implemented over what period. The

customer receives several releases during the project life. This is critical to

getting valuable feedback in time to have an impact on the system’s

development. Each release can take several months before being submitted to the

customer.

Iteration Plan: outlines what user stories will be implemented in one week. The

customer chooses the most valuable user stories to be implemented in the

iteration.

2.2.3.2 XP Values and Practices

Beck identifies five values for effective software development using the XP

method. These are:

 Communication: XP emphasises the need for building a person-to-person,

mutual understanding of the system under design through maximum face-to-face

interaction.

 Simplicity: XP supports starting with the simplest design. Extra functionality

can then be added later. It is believed that it is better to do a simple solution today

and pay a little more tomorrow for change than to do a more complicated thing

today that may never be used.

 Feedback: Developers obtain early feedback from the written code by writing

unit tests and running integration tests. They also obtain feedback about the

current status of the system when the customer performs acceptance testing.

Chapter 2. Agile Software Development

18

 Courage: Beck states that XP teams must be courageous and willing to review

the existing system and modify it, even if it is late in the project.

 Respect: Everyone on the team should feel appreciated or valuable. This will

raise the motivation and will encourage loyalty toward the project.

As Beck says, “Values bring purpose to practices.” and “Practices are evidence

of values” [40]. XP values, described earlier, have been detailed in thirteen

primary practices. The relevant practices to this research are discussed below.

Sit Together

The team is co-located in a single large room. This will encourage free

conversations and simplify progress information exchange among team

members.

This practice supports the sixth agile principle which provides that:

“the most efficient and effective method of conveying information to and within a

development team is the face-to-face conversation”.

Informative Workspace

The workspace has rich information about the project that can easily be observed

by team members. The room has white shared boards and big charts showing

information about project progress, such as status of user stories and acceptance

tests (ATs).

Stories

It is the XP practice of thinking about software in terms of units of customer

visible functionality. One or more sentences are written by the customer that

captures what the customer would like to achieve. Each story is limited, and

should fit on a small card to ensure that it does not grow too large. Stories are

prioritised by the customer at the beginning of each iteration and then divided

Chapter 2. Agile Software Development

19

into several tasks that are undertaken by different team members. Each story is

normally accompanied with acceptance tests that determine when the story can

be claimed to be complete.

Weekly Cycle

XP recommends reducing the short term planning cycle to one week. At the end

of each weekly cycle (i.e. iteration), the XP teams normally complete an

incremental version of the system. Tracking progress in the short-term allows

better tracking of what has been completed.

Quarterly Cycle

XP also recommends having regular reviews of the high level system structure,

its goals and priorities on a quarterly basis. This includes reflections on the team,

the project and the progress (e.g. identifying project bottlenecks). At the end of

each quarterly cycle, a new release of the working software is produced to the

customer.

Continuous integration

Integration is one of the most difficult stages in traditional software development.

This is because traditional development delays the integration process until the

end of development. It will be easier if the software team adopts the practice of

bi-weekly, weekly, or daily integrations.

In XP, after finishing every piece of work, it is recommended that it be integrated

with the current system; hence, the system is built incrementally. Continuous

integration allows for early detection of defects and conflicts, and contributes

towards producing working software.

Chapter 2. Agile Software Development

20

2.3 Technical Factors Affecting Agile Development

Progress

This section identifies and discusses the various technical factors affecting agile

development and their popularity in agile methods. It also highlights how agile

teams use them in their projects.

2.3.1 The Technical Factors

Because agile progress is based on the ‘working software’ philosophy, it is wise

to ask what factors contribute to producing working software. There are several

technical factors that affect the progress of agile project development. These

factors can be derived from the meaning of the term working software. Working

software is recognised as the code that has been implemented, unit-tested,

integrated and acceptance-tested [176]. Thus, activities involved in unit testing,

acceptance testing, continuous integration, source code versioning may affect

working software that are delivered to the customer during the releasing process.

These factors apply to both traditional and agile projects; however, they represent

crucial factors in agile projects due to the highly iterative nature of this approach

and because agile development relies on ‘working software’ as a measure of

progress.

Unit Testing (UT)

The developer has to produce well-tested code before the task is determined to be

complete. Adding or modifying a unit test without running it or with a ‘fail’

result can affect the corresponding task’s progress if it is already completed.

XP introduced the concept of test driven development (TDD). In this, developers

working on tasks have to write the tests before coding the task. They have to

produce well-tested code before a task is completed.

Chapter 2. Agile Software Development

21

Several unit testing frameworks have been developed to automate and help

simplify the process of unit testing, with support for a wide variety of languages.

Examples of such frameworks include JUnit [44] for the Java language and

NUnit [45] for the .Net language.

Acceptance Testing (AT)

Each story may have one or more acceptance tests and is not considered complete

until all its acceptance tests pass. The corresponding completed stories may be

affected if a new acceptance test is added to the story or an existing one is

modified due to changes in customer requirements. The AT can be used as a

measure of progress. Running Tested Features (RTF) [46] is a progress metric

that uses the number of running ATs as an indicator of project progress.

Continuous Integration (CI)

CI is an effective way of identifying how healthy the overall code is at a specific

point of time. The result of integration has a direct impact on development

progress because it is a condition for completing stories.

There are two approaches used to provide the CI, synchronous or asynchronous:

 In the synchronous integration approach, every commit to the

repository builds the system, as Martin Fowler suggests [47]. The

main problem with this approach is that the build process may

take a long time to succeed, which can delay sharing the code

amongst the developers.

 In the asynchronous integration approach, developers share code

that is either integrated or ready for integration. The integration

might be done only once or twice a day. This provides a more

flexible approach to the team members and is considered practical

for broader situations such as distributed teams.

Chapter 2. Agile Software Development

22

A further discussion of these two approaches and the strategies that each of them

includes is provided in Chapter 5.

Releasing

Releasing is a special case of the integration process where a copy of the system

is delivered to the customer. Releasing a user story requires that it is totally

completed. This implies that the story’s functionalities have been accepted by the

customer.

Agile development emphasises the importance of releasing early and releasing

often (RERO). That is, the customer is provided with multiple releases before

producing the final product.

This allows a feedback loop between team members and the customer. The

customer can say what they like and what they do not, and what stories they

would like to see in the product.

The period between one release and another is normally different between agile

projects and is based on several factors, including the size of the project and

customer preferences. However, the Agile Manifesto recommends providing

releases as soon as possible. The third principle states:

“Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference for the shorter timescale.”

The release process takes place at the end of an iteration. ‘Potentially shippable

code’ is produced and hence a potentially releasable version of the system

becomes available to the customer.

It is worth mentioning that the output of a release process is not necessarily a

released version but could be only a releasable version. A version of the system

can be placed in a test environment. This test environment is as similar as

Chapter 2. Agile Software Development

23

possible to the real production environment. The decision to put the releasable

version into production is for the customer.

Here, we will focus on the production of releasable versions of the system,

regardless of whether a release is deployed into the business environment or not.

Source Code Versioning

Creating, modifying or deleting some source code artefacts will usually change

the actual project progress. There are many cases where changing the source

code influences project tasks, user stories and releases. For instance, modifying a

source code version that belongs to a completed story means that the story is no

longer deemed to be complete.

Agility is about creating and responding to change [32]. For this reason, most

agile methods recommend software configuration management (SCM) tools to

automate the change process. According to Cockburn [48], in Crystal methods,

versioning and configuration management tools are “the most important tools the

team can own.” Agile methods consider the ability to revert to earlier versions of

development artefacts highly valuable [49]. Since rapid development and quick

changes may lead to mistakes in development, it is important that earlier versions

of artefacts are accessible [49].

Ron Jeffries et al. [50] stress that, for agile teams, there should be as few

restrictions as possible in an SCM tool; for example, there should be no

password, no group restrictions, and as little “hassle” as possible. This is

supported by the experiences of Lippert et al. [51], who found that optimistic

concurrency control is a superior locking mechanism in agile methods.

Key technical activities affecting development progress are shown in Table 2-1.

Chapter 2. Agile Software Development

24

Unit Testing (UT) Acceptance

Testing (AT)

Continuous

Integration (CI)

 & Releasing

Source Code

Versioning

 Create a new UT

 Update existing UT

 Delete UT

 Run UT

 Create a new AT

 Update existing AT

 Delete AT

 Run AT

 Perform integration

 Make a release

 Create an artefact

 Modify an artefact

 Delete an artefact

Table 2-1. Key technical activities affecting agile development progress.

Task progress is usually linked to whether functionalities involved in it are unit-

tested or not, whereas story progress status also covers integration level and

acceptance test level (see Figure 2-2).

Figure 2-2. Level of influence of the technical factors.

User story

Continuous integration

Acceptance testing

Task

Unit testing

Versioning

Release

Make a release

Chapter 2. Agile Software Development

25

2.3.2 The Technical Factors in Agile Methods

The popularity of the technical factors among the agile methods was surveyed.

This has been done by investigating the essential reference for each agile method

where the formal description of the method is introduced (XP [42], Scrum [57],

Crystal Family of Methodologies [78], DSDM [36], ASD [37] and Pragmatic

Programming [38]). The results showed that most agile methods recommended

using UT, AT, CI, releasing, and source code versioning (see Table 2-2). Most

methods have explicitly mentioned them in the formal methods description.

 Explicitly mentioned  Implicitly mentioned
1

Table 2-2. The technical factors in agile methods.

However, not all the technical factors have been mentioned explicitly in some

agile methods:

- Source code versioning is implicitly mentioned in XP

- UT, AT, CI and source code versioning are implicitly mentioned in

Scrum

1
 A technical factor may not be explicitly mentioned by an agile method but some practices used

by the method requires doing the technical factor (e.g. the Ten-Minute Build practice in XP

implies that there is a version control system where the most recent source code versions can be

retrieved from).

Agile Method UT AT CI Releasing Versioning

Extreme Programming     

Scrum     

Crystal Family of Methodologies     

Dynamic Systems Development     

Adaptive Software Development     

Agile Modeling     

Pragmatic Programming     

Feature-Driven Development     

Chapter 2. Agile Software Development

26

- UT, AT and CI are implicitly mentioned in Adaptive Software

Development

XP did not explicitly emphasise the importance of using systems to manage

source code versions in XP projects. Paulk [52] states that SCM is partially

addressed in XP via collective ownership, continuous integration and small

releases. However, the literature on XP emphasises clearly the need for

versioning systems (e.g. [46] [53]).

Furthermore, the focus in Scrum and ASD is not on the development techniques.

Scrum has focused on providing a project management framework, while ASD’s

primary focus is on the problems of developing large and complex systems.

Scrum and ASD provide very few practices for day-to-day software development

work [40]. These methods state that they welcome practices from other

methodologies for use in the development.

Regardless of the agile method applied, the literature and survey show that UT,

AT, CI, releasing, and source code versioning have been widely adopted in agile

projects (e.g. [54] [55]).

2.4 Summary

This chapter has addressed three key points. First, the limitations of the plan-

driven approach were described. The main limitation is that both the technology

and the business environment keep shifting during the project life, and, hence,

the requirements may get out of date within even a short period of time.

Secondly, the agile approach, with XP as an example, has been presented. How

the agile approach overcomes the limitations of the plan-driven approach was

demonstrated. The concept of progress in the agile approach was introduced.

Chapter 2. Agile Software Development

27

Contrary to the plan-driven approach that is based on producing deliverables to

measure progress, the working software is the primary measure of progress.

Working software is the code that has been implemented, unit-tested, integrated

and acceptance-tested.

Finally, the key technical factors affecting agile development progress have been

identified and discussed. These are unit testing, acceptance testing, continuous

integration, releasing and source code versioning. The influence level of these

factors has been analysed. In addition, the extent to which these factors have

been mentioned in the various agile methods has been explored and discussed.

The result shows that most agile methods explicitly mention the technical factors.

28

CHAPTER 3

Managing Development Progress in Distributed

Agile Projects

Distributing agile software development over multiple sites has gained a

noticeable interest in both the literature and in industry. A common problem in

projects not co-located is managing development progress. This chapter looks at

the current approaches used to manage development progress in distributed agile

environments. It discusses two approaches: informal methods and formal

methods. The informal methods rely mainly on humans to manage progress while

formal methods utilise automatic mechanisms in storing, retrieving and

manipulating progress information to achieve the goal of managing progress. The

analysis of these approaches shows that they are insufficient and, as a result, a

new approach is suggested.

3.1 Managing Progress of Agile Software Development

Progress management is commonly understood as a managerial task that is used

to provide information about the project’s progress. Project management implies

tracking and monitoring processes to observe project tasks, so that potential

problems can be identified in a timely manner and corrective action can be taken,

when necessary, to control the execution of the project [56].

Chapter 3. Managing Development Progress in Distributed Agile Projects

29

As progress status is judged in agile methods based on the working software, it is

required to monitor the status of the software and manage the technical activities

that affect it. The source code versioning, unit testing, acceptance testing,

continuous integration and releasing imply technical activities have an effect on

the working software progress. Being aware of the actual progress of the agile

project is not only important for the project manager, but also for the team

members. This is because the progress is a result of highly interdependent tasks.

Any task carried out by a team member may have an effect on the progress of

other tasks carried out by other team members.

XP supports managing progress of co-located teams by two main practices: Sit

Together and Informative Workspace. When team members sit together, they are

expected to share information about factors that may affect the progress of the

project through face-to-face communication. The ad-hoc co-ordination is likely to

facilitate partial sharing of the progress information amongst team members.

XP teams are also encouraged to surround the workspace with rich information

about the state of tasks, stories and tests that are updated continuously. They often

use big charts to visualise the development progress. A commonly used chart is

the burn-down chart [57] (Figure 3-1). The solid line on the chart shows the

actual remaining work, while the dashed one represents the planned remaining

work.

Figure 3-1. Burn-down chart.

Chapter 3. Managing Development Progress in Distributed Agile Projects

30

When the project is distributed, team members find it harder to maintain an

awareness of how the technical factors are affecting the progress of their tasks.

Before discussing how the distributed agile teams manage development progress,

a brief background about distributed software development is provided in the next

section.

3.2 Distributed Software Development

Distributed software development (also known as Global Software Development

and Multi-Site Development) means that the software project does not take place

in one site but in several places, where stakeholders involved in the process are

physically distant [4]. The practice of distributing software development has

rapidly increased during the last two decades [1] [2]. This section will discuss the

main motivations for implementing distributed software development and will

also discuss the need for co-ordination support in such environments.

3.2.1 Motivations for Distributing Software Development

There are several reasons for the shift toward developing software remotely. The

often cited drivers are those identified by Carmel [3]:

 Reducing costs

Software companies can reduce the cost of developing software by

performing the development in countries where the workforce is cheaper.

In addition, countries differ in business-tax rates. While they are high in

western countries such as the UK, other countries provide tax benefits to

companies which start development centres in their country or even

provide funding to increase local business [58].

Chapter 3. Managing Development Progress in Distributed Agile Projects

31

 Customer Distribution

A customer’s business might be distributed over several branches. It can

be beneficial to be close to the customer, or at least to build localisation

points in close proximity to the markets in order to obtain information

about the local markets [59]. If team members need to be close to the

customer in some or all the branches, a multi-site software development

project is required.

 Promise of round-the-clock development

Software companies can benefit from doing the project globally to reduce

the overall time of the project. Assuming that there are two teams, one in

the United States and the other in India, the company can obtain 16

working hours daily. Completing a product and delivering it to the

customer in a short time can be a distinctive advantage. Therefore,

companies strive to reduce the time-to-market (TTM) value of their

product to the lowest possible.

 Limited pool of trained workforce

Some software projects might prefer to have the expertise ready rather

than having to lose time in training team members for a particular project.

If the expertise is not available locally, this could force the company to

look for it in distant places, making the development project distributed.

Furthermore, there are circumstances that make creating co-located teams

difficult. Examples of such circumstance include [60] [61]:

 Office arrangements may not allow the whole team to be situated at one

location.

Chapter 3. Managing Development Progress in Distributed Agile Projects

32

 The team might be too large to fit into one location and even if this was

possible, then communication would produce a high level of noise.

 New models of work such as Tele-work explicitly demand distribution.

 Distribution can minimise the risk in case of natural catastrophes or other

unexpected events.

3.2.2 The Need for Co-ordination Support

The perceived benefits of distributing software development are diminished by

several challenges, which have been intensively discussed in the literature. In

spite of the development methods applied, co-ordination is one of the primary

problems of developing software on multiple sites [3]. Herbsleb and Grinter

observe that co-ordination problems were greatly enhanced across sites, largely

because of the breakdown of informal communication channels [62]. The

temporal, geographical and socio-cultural barriers impose a co-ordination

challenge to distributed teams [4] [3].

Frequency of communication generally drops off sharply with physical

separation [10] [11]. Inadequate communication among team members causes

reduced response times and irregular information flow. Consequently, co-

ordination problems result in frequent delays and re-work. Time-zone differences

further worsen the situation as it reduces the time-window for effective

synchronous communication between remote teams [65].

Co-ordination problems could be exacerbated if the distributed teams share

different cultures. Language difference, attitudes, and communication styles may

negatively affect distributed teams. Studies show that distributed teams that share

different cultures may not be as cohesive as local ones [66].

Furthermore, the co-ordination problem shows a positive relationship with the

degree of interdependencies between the distributed sites. Little co-ordination

Chapter 3. Managing Development Progress in Distributed Agile Projects

33

difficulty is expected in projects that use offshore outsourcing, where little work

is shared between the onshore and offshore teams. In contrast, projects that are

formed from fully dispersed members are likely to encounter high co-ordination

overhead.

Distributed software projects using agile methods are likely to encounter more

complex co-ordination problems, because agile methods are aimed at co-located

projects, where teams rely on intensive communications among team members to

co-ordinate their work. However, there are an increasing number of agile

organisations working remotely to gain the advantages of distributing the work

[5]. With the absence of face-to-face interactions, numerous co-ordination

difficulties are reported (e.g. [6–8]). One of these difficulties is how to manage

development progress of distributed agile projects. The next section discusses

how agile projects currently deal with this issue.

3.3 Current Approaches to Managing Progress in

Distributed Agile Projects

The primary methods used by distributed agile projects to manage development

progress can be divided into two approaches: informal methods and formal

methods. These approaches have been extensively reviewed for this section. A

roadmap of the various methods discussed is given in Figure 3-2.

Chapter 3. Managing Development Progress in Distributed Agile Projects

34

Approaches to Managing Progress

Asynchronous

Communication
Daily Tracker

Information

Radiators

Informal Methods

Formal Methods

Synchronous

Communication

Cross-location

Visits

Wiki and

Spreadsheets

Traditional Project

Management Tools

Agile Project

Management Tools

Web-based Task Board

Progress Reporting

Time Tracking

AT Tracking

Progress Notifications

Figure 3-2. A roadmap for the current approaches used for managing progress

3.3.1 Informal Methods

Distributed agile teams use several informal methods to track progress

information. The main informal methods are synchronous communication,

asynchronous communication, daily tracker, information radiators and cross-

location visits. These are discussed below.

Chapter 3. Managing Development Progress in Distributed Agile Projects

35

3.3.1.1 Synchronous Communication

In co-located teams, face-to-face communication and daily stand-up meetings

enable team members to easily share progress information. In distributed teams,

meetings can be held by synchronous tools such as audio and video-conferencing

tools. Stand-up meetings may be held for about half an hour everyday using these

tools. Other meetings can be scheduled weekly and monthly.

In addition, some teams may use instant messaging (IMs) for one-to-one

communication between team members. These are likely to be used in situations

where developers need to communicate personally about issues such as coding

aspects or design aspects or any clarifications.

A large number of case studies about distributed agile projects reported

difficulties in using synchronous communication (e.g. [67] [68] [69]). Some of

these difficulties are:

 Good video-conferencing tools can be expensive for teams with a limited

budget.

 Meetings have to be planned in advance to ensure that all involved team

members are available and can participate.

 Cultural and language differences may reduce the participation among

team members (i.e. some team members may keep silent).

 Team members may get exhausted with long teleconferences.

 Some teams report spending significant time in resolving technical issues,

such as sound quality not always being good enough due to limited

bandwidth.

 Teams may encounter difficulties in recognising speakers when not

seeing their faces or when a large group of team members participates in

a meeting using a single camera.

 Different cultures often have different public holidays at different dates.

Moreover, people of different cultures prefer to take holidays at different

times of the year.

Chapter 3. Managing Development Progress in Distributed Agile Projects

36

 Time-zone differences cause challenges to arrange meetings. Having

multiple time zones may only provide little time overlap in which team

members can interact simultaneously.

These issues may cause synchronous meetings to be held less frequently than

physical stand-up meetings in co-located projects. Thus, distributed teams may

prefer using synchronous tools only for the major progress update events.

3.3.1.2 Asynchronous Communication

Due to the many issues associated with the synchronous communication

approach, distributed teams may rely more on asynchronous communication

tools, such as e-mail and community discussion boards. While e-mail is more

direct and chiefly used for point-to-point communications, community discussion

forums are more open and allow interested people to subscribe to the list [70]

[71].

The asynchronous tools are cheap, popular, and have fewer technical issues. A

further advantage of these tools is that they allow information to be shared

without having to schedule meetings [72].

Layman et al. [73] had positive experiences using e-mail to share information.

Their findings indicate the importance of short, asynchronous communication

loops that can serve as a sufficient substitute for synchronous communication.

They recommended providing timely response to developer inquiries to prevent

affecting development progress while awaiting a definitive answer. On the other

hand, empirical evidence indicates that increasing reliance on asynchronous

communication channels can result in higher software defect rates [74].

Chapter 3. Managing Development Progress in Distributed Agile Projects

37

Kajko-Mattsson et al. [8] observed that the use of tools such as email proved to

be insufficient for maintaining the daily communication as dictated by the agile

values. Using these tools results in a slow turnaround in communication [75] and

often causes misunderstandings, due to messages being composed quickly [76].

In addition, managing e-mails and filtering them may become more difficult and

burdensome over time as the team and project knowledge grow in size and

complexity [77]. It is also expected that some of the shared information will be

misunderstood because of culture and language differences and because the body

language, voice inflection and emotions are lost through this type of

communication.

3.3.1.3 Daily Tracker

The daily tracker’s role has been used in many distributed agile projects. A

couple of times a week, the tracker finds out where everyone is with the iteration

[43]. He tracks the individual progress of the developers by asking them how

many days they have worked on the tasks and how many more days are left to

complete them.

The daily tracker’s role helps reporting progress, but does not support the

management of the daily dependencies among team members’ work, which may

affect development progress.

3.3.1.4 Information Radiators

Cockburn suggests having an ‘information radiator’ in the workspace [78]. An

Information Radiator is a screen displaying information (e.g. progress

information) in a place where passers-by can see it. It shows team members

information they care about without having to ask anyone questions. Examples of

the displayed information include burn charts, and state of acceptance tests. Two

Chapter 3. Managing Development Progress in Distributed Agile Projects

38

characteristics are key to a good information radiator: the information must

change over time and it takes very little energy to view the display [78].

Similar to the daily tracker practice, the information radiator can support sharing

the daily progress information but it cannot support identifying and managing

changes in development progress.

3.3.1.5 Cross-location Visits

Cross-location visits have been frequently recommended for distributed agile

projects (e.g. [78] [79]). Team members are often rotated across project

locations, to work within multiple teams. This helps in solving conflicts and

misunderstandings among the distributed teams.

In addition to the cost constraint of this practice, the visits do not serve the aim of

sharing and managing the daily progress information but only help sharing of the

overall progress information.

3.3.2 Formal Methods

Distributed agile teams use several formal methods to manage development

progress. The key formal methods include Wikis and spreadsheets, traditional

project management tools, and agile project management (APM) tools. This

section will discuss these methods.

3.3.2.1 Wikis and Spreadsheets

The basic technologies used for managing development progress are Wikis and

spreadsheets. These tools allow users to freely create and edit content.

Chapter 3. Managing Development Progress in Distributed Agile Projects

39

The advantage of using Wiki-based systems is that they provide a visible

environment, making it easy to check project status, update task lists and view

the team members’ work progress [80].

Furthermore, online spreadsheets such as Google Spreadsheets [81] allow

distributed team members to share and edit the same file at the same time,

providing different editing permissions. They can also produce burn-down charts

automatically.

However, Wikis and spreadsheets have limitations. Dubakov and Stevens [82]

state that “the problem with Wiki and Excel is quite common … they do not have

business logic behind them, but provide frameworks to resolve simple data

manipulation problems.” They observe that these tools provide little support for

working on distributed environments and limited support for progress reporting

and progress visibility [82].

A case study applied to a geographically distributed team using a wiki-based

system called MASE [83] revealed further problems. When many minds

collaborate together in a Wiki repository, it becomes more difficult to search and

maintain as users contribute more and more content into the repository over time.

In addition, content albeit useful may be put in the wrong place.

3.3.2.2 Traditional Project Management Tools

Traditional project management tools such as MS Project [84] could be used with

agile methods. These tools can show information in PERT charts, Gantt charts

and work breakdown structure charts.

Based on the surveys in [54] and [85], traditional project management tools have

been utilised to manage development progress by many distributed agile projects.

Most project managers are familiar with traditional tools and it is easier for them

Chapter 3. Managing Development Progress in Distributed Agile Projects

40

to manage iterations using well known tools [82]. Main advantages include ease

of use, flexibility and workflow support [86].

Unlike traditional software projects, only a part of the requirement is known

when the project starts and new requirements will constantly emerge during

development; this makes it unfeasible to follow the progress of the development

work with these traditional tools [87]. Recreating the traditional charts whenever

a new requirement emerges would take resources out of development work [87].

These tools are not designed for agile development and hence they do not include

key progress tracking features, such as burn-down charts and story/task boards.

3.3.2.3 Agile Project Management (APM) Tools

Due to the limitations of the previous tools, a new generation of project

management tools are being developed to satisfy the agile approach (e.g. Rally

[14], Mingle [15], VersionOne [16], TargetProcess [17]). A review of thirty

APM tools (Table 3-1) revealed a number of different mechanisms available to

assist in supporting the management of distributed agile development progress.

The review includes both commercial and open source tools and covers the most

popular APM tools according to the surveys in [54] and [85].

In order to provide a comprehensive review of the available mechanisms and

how they are used, the review has been carried out using a number of methods:

 working on trial versions offered by the surveyed tools.

 watching demos explaining the tools' functionalities.

 reading the formal description of the tools. This is normally made

available as a text in the software website or as white papers written by

the software company.

 asking direct questions through community boards associated with the

software websites.

Chapter 3. Managing Development Progress in Distributed Agile Projects

41

APM tools are be used over the Internet either directly by the browser or by web-

based applications. Through these tools, it becomes easier to share progress

information among the distributed agile teams. The key progress tracking

mechanisms in these tools are web-based task board, progress reporting, time

tracking, acceptance testing (AT) tracking and progress notifications. These are

discussed below.

Key:  Full support for a mechanism.  Partial support for a mechanism.

Table 3-1. A review of progress tracking mechanisms in APM tools.

Agile Tool

W
eb

-b
a

se
d

T
a

sk
-b

o
a

rd

T
im

e
T

ra
ck

in
g

A
T

 P
ro

g
re

ss

T
ra

ck
in

g

N
o

ti
fi

ca
ti

o
n

s

a
b

o
u

t
T

a
sk

N
o

ti
fi

ca
ti

o
n

s

a
b

o
u

t
S

to
ry

N
o

ti
fi

ca
ti

o
n

s

a
b

o
u

t
A

T

Progress Reporting

It
er

a
ti

o
n

B
u

rn
-d

o
w

n

R
el

e
a

se

B
u

rn
-d

o
w

n

V
el

o
ci

ty

C
F

D

Rally [14]         

Mingle [15]          

VersionOne [16]          

ScrumWorks [88]       

ExtremePlanner [89]        

XPlanner [90]    

TargetProcess [17]          

Pivotal Tracker [91]     

Scrum VSTS [92]      

Agilefant [93]   

IceScrum [94]       

Planbox [95]    

XP StoryStudio [96]  

XPWeb [97] 

AgileWrap [98]        

ScrumDesk [99]     

SpiraTeam [100]        

Leankit [101]    

DevSuite [102]        

TinyPM [103]        

Planigle [104]      

Acunote [105]   

On Time [106]     

AgileZen [107]  

ScrumPad [108]         

eXPlainPMT [109]  

AgileBuddy [110]    

Daily Scrum [111]     

Express [112]    

Agile Tracking [113]  

Chapter 3. Managing Development Progress in Distributed Agile Projects

42

3.3.2.3.1 Web-Based Task-Board

Task-boards are commonly used in co-located teams to visibly show the progress

of tasks/user stories. They show all user stories with their tasks for the current

iteration. Usually, each user story and task is represented by cards stuck to a

board. Distributed teams use a web-based version in imitation of the manual

task-boards with easy drag-and-drop facilities (Figure 3-3).

The task board usually has three main columns:

 Un-started (To Do): this holds all tasks that are not done.

 In Progress (In Process): a task is moved to ‘In-Progress’ state when a

developer starts working on it.

 Done: a task is moved to ‘Done’ state if the functionalities required for

the task have been accomplished.

Figure 3-3. A typical web-based task-board

Nineteen of the tools reviewed have a graphical representation of task-boards

while the rest allow merely for textual representation of a task’s status. Tools

such as On Time [106] and VersionOne [16] enable users to add extra columns

such as ‘To Be Verified’ and ‘Tested’, which can show more detailed progress

information.

Chapter 3. Managing Development Progress in Distributed Agile Projects

43

3.3.2.3.2 Progress Reporting

During each iteration, while the team members are focused on creating the new

user stories they have committed to deliver, the project manager is responsible

for understanding the progress that the team is making and keeping the customer

informed of any potential delays in the development. Most APM tools provide

users with graphical reports that show key progress information about the

project. These reports include:

 Iteration Burn-down Chart (the work that needs to be completed over

an iteration).

 Release Burn-down Chart (the work that needs to be completed over a

release).

 Velocity (number of units of work, i.e. user story points, completed

over a period of time).

While velocity concerns the work done and how fast it is being done, the burn-

down charts allow for forecasting. They allow “what if” analysis to be performed

by adding and removing functionality from the release to get a more acceptable

date or extend the date to include more functionality [57].

The review revealed that, of the 30, 25 APM tools provide iteration burn-down

charts, 17 tools provide release burn-down charts and 24 tools provide automatic

calculations of the project’s velocity. Some tools, such as eXplainPMT [109], has

burn-down charts but it is based on the whole project, not for each iteration nor

each release.

Further progress charts called Cumulative Flow Diagrams (CFDs) [114] are

offered by 11 APM tools. CFDs are constructed by counting the number of user

stories that have reached a certain state of development at a given time. CFDs

provide further detailed information about the ‘Work In Progress’ (WIP) state.

Common progress points measured are: designing, coding and testing.

Chapter 3. Managing Development Progress in Distributed Agile Projects

44

3.3.2.3.3 Time Tracking

Another progress tracking feature offered by the majority of APM tools (21

tools) is time tracking, in which hours spent/hours remaining for each

task/story/iteration are presented. It replaces the tracker role in the co-located

teams mentioned in the informal methods. Instead of having every team member

entering their time, the time is calculated simply based on when a team member

changes a task’s status to ‘In Progress’, and when he sets the task to ‘Done’.

The online derivation of time tracking data supports distributed agile projects as

team members are scattered over different sites. It also eliminates erroneous data

and time wastage problems existing in the manual calculation method.

3.3.2.3.4 AT Progress Tracking

Eleven of the APM tools reviewed allow scheduling and tracking acceptance

tests’ progress during the different iterations. Feedback on tests’ progress is

provided by a built-in electronic testing board and through various types of AT

graphical reports. Examples of these reports include the test run progress rate

graph produced by the Scrum VSTS tool [92] (Figure 3-4).

Chapter 3. Managing Development Progress in Distributed Agile Projects

45

Figure 3-4. Test run progress rate graph by Scrum VSTS [92].

Acceptance tests are linked with their corresponding user stories. In addition,

some APM tools such as VersionOne maintain a full history of each acceptance

test which can be used for traceability purposes.

3.3.2.3.5 Progress Notifications

An effective progress notification system is an important requirement for

managing development progress in distributed agile teams. Team members have

to be made aware of the changes in development progress that affect them. Many

of the APM tools reviewed provide some support for progress notifications when

there is a change in progress status. Fourteen of them provide notifications when

the progress status field of a task is changed by a team member, while 16 tools

notify when the progress status field of a user story is changed. In addition, 6

tools only provide notifications if there are changes in the progress status field of

an acceptance test.

Chapter 3. Managing Development Progress in Distributed Agile Projects

46

Rally [14] allows team members to set up personalised notifications. They can

select the types of event to be notified. Notifications offered by Mingle [15] are

classified into three main types: user-generated messages between team

members, system-generated alerts from subscriptions, and admin-level

announcements to the whole project team. For instance, team members can send

messages to raise awareness about new issues or provide immediate visibility of

the status change of an asset (i.e. task, story or test). Team members can also set

up subscriptions that will alert them if there are changes to a specific asset.

ScrumWorks [88] allows team members to select the period at which they wish

to receive notification of changes. Notifications can be sent either immediately

when each change occurs, or a once-daily listing of all accumulated changes.

Less robust notification systems are provided by VersionOne and TargetProcess.

In VersionOne, team members cannot subscribe to events. Only the asset owner

is notified when change occurs. The notification system in TargetProcess is role-

based, that is, selecting any of the system roles will send the notification to all

members of that particular role in the appropriate project. For example, selecting

developer will notify all team members whose project role is developer.

The notification system in Planbox [95] is also limited. The scope of

notifications is restricted to user stories only (called items in Planbox). Moreover,

Planbox does not offer an event subscription service. A team member is notified

either when the progress status field of the stories he works on has been changed,

or when the progress status field of any story in the project has been changed.

Notifications in Planbox can be triggered by various activities including progress

status changes. Conditions can be defined so that only business critical items

result in an email notification being sent, for example when an item’s status is

changed to ‘Done’.

Agilewrap [98] sends notifications if a task or user story is overdue. In addition,

if somebody accepts (story passed testing) or rejects (story did not pass testing) a

user story, the story owner is notified.

Chapter 3. Managing Development Progress in Distributed Agile Projects

47

ScrumDesk [99] does not provide notifications about specific assets. However,

when the system starts, it displays all changes since the last time the user logged

out.

In ScrumPad [108], the asset creator can designate the team members who will

receive notifications about change in the asset’s progress. This could be a

disadvantage as the creator may not know who is affected by his work.

3.4 Justification for Computer-Based Holistic Approach

In the informal approach, managing progress of distributed agile teams is

conducted in an ad hoc manner by the individual team members. If a change in

progress has been introduced, the originator of the change has to co-ordinate the

introduction of the change with other team members affected. A significant

limitation of the informal methods is that the impact of the change may not be

fully recognised by the team members. This is because of the difficulty of

understanding how the work of one team member at one site influences the work

of another team member at a different site. Team members may not recognise

that there is an effect on progress or may not know who is affected. In addition,

they may decide not to contact other team members, because of the time it takes

to locate and notify the affected people.

The formal approach uses several mechanisms, incorporated into computer

systems such as APM tools, that can be used to facilitate managing development

progress. The distributed team members use these mechanisms to register, share

and report the progress information. However, the main limitation of the formal

approach is that the computer systems are static and rely completely on team

members to report changes in progress. A team member performs a task and then

registers the task’s progress status in the computer system. Changes in progress

caused by technical factors mentioned in the previous chapter, e.g. modifying

Chapter 3. Managing Development Progress in Distributed Agile Projects

48

source code, are not logged by the formal approach; hence, if these changes

affect development progress, this will not be discovered.

From the analysis of the informal methods and the formal methods, it is clear that

these approaches are insufficient to fully identify and co-ordinate changes in

progress caused by the technical activities. Although most distributed agile

projects combine methods from both approaches to manage development

progress, the literature shows that the distributed teams still have difficulties.

Sauer [9] points out that progress status is less visible and controllable in

distributed agile projects. Peng [10] observes that “teams have a difficult time

keeping track of progress” in a distributed agile project. Teams may end an

iteration having a large number of failed acceptance tests, delivering progress

information late and to the wrong team members. Jeff Patton, a team leader in

several agile projects, states that he noticed many agile organisations struggling

to keep track of the acceptance tests. He states [11]:

“When an acceptance test fails, it’s usually a long time after the offending code

has been checked in. In fact, a lot of code may have been checked in. This makes

finding the offending code difficult. Also, it’s not always clear who should be

finding and fixing the issue. It’s not the person who wrote the test, if his is a role

that writes tests and not code. It’s not clear which developer should fix the code.”

Better progress management support can be achieved by providing a computer-

based holistic approach to developing a progress tracking system. The progress

tracking system has to have a holistic view from the perspective that it needs to

realise the effects of changes not only from the user (team members), but also

from the various technical systems that cause changes in progress.

This will first require analysis of the various events that cause change in

progress. This includes identifying the co-ordination support necessary for

managing these events.

Chapter 3. Managing Development Progress in Distributed Agile Projects

49

The holistic approach will also require designing computer-based mechanisms

that take into consideration the impact of technical activities on progress. This

means that there must be connections between the tracking system and the

technical systems.

The proposed computer-based holistic approach responses to the distributed agile

development literature which highlighted the need for providing more formal

mechanisms (i.e. such as formal systems to track progress) to co-ordinate

distributed teams (e.g. [5] [172]). A main reason for recommending these

mechanisms is to reduce the need for informal communication due to its

limitations in distributed environments.

Recently, several APM tools have started providing integration with some

technical systems (UT tools, AT tools, versioning systems, CI tools). For

instance, Rally, TargetProcess and VersionOne, provide integration with several

commercial versioning systems. These integrations allow developers to

synchronise their updates to tasks and source code without taking additional time

to log their activity into both of the systems. They are also integrated with the UT

tools to provide test tracking. However, these integrations are fairly simple and

solely provide a linkage between the tracking system and the technical systems.

This is insufficient to manage the impact of changes from technical activities on

development progress.

Asklund et al. [115] mention the need to integrate source code changes to

progress tracking data. They suggest adding task and story numbers as a

comment with every check-in. Appleton et al. [116] support this by pointing out

that “one of the most basic ways to help connect and navigate information is with

a task-based approach [task-level commit] that links every action and event in the

version-control system with a corresponding action and event in the tracking

system.” However, these methods do not provide automatic identification of

potential changes that affect development progress and do not support managing

the impact of changes.

Chapter 3. Managing Development Progress in Distributed Agile Projects

50

Traceability tools have been broadly used in software development projects.

Tools such as Chianti [117] help developers know what acceptance tests need to

be repeated due to changes in the source code. These tools allow team members

to discover what source code files could be affected if an acceptance test fails.

The current work is different from the traceability tools from two angles.

Traceability tools look for change resulting from the source code only, whereas

this work additionally takes into account change resulting from unit testing,

acceptance testing and continuous integration. Likewise, traceability tools do not

consider identifying and co-ordinating the effect of change on development

progress, unlike this work.

3.5 Summary

This chapter has discussed managing progress of agile software development.

Practices such as Sit Together and Informative Workspace can facilitate sharing

progress information among team members in co-located agile projects.

However, when the project is distributed, team members find it harder to

maintain an awareness of progress of their tasks.

After discussing distributed software environments, including the motivation for

implementing distributed software development environments and the co-

ordination challenge in such environments, the chapter reviewed in detail the

primary approaches used to manage development progress in distributed agile

projects. These are:

 Informal methods: in this approach, ad hoc co-ordination mechanisms

are used between team members to manage development progress. The

main methods include synchronous communication, asynchronous

communication, daily tracker, information radiators, and cross-location

Chapter 3. Managing Development Progress in Distributed Agile Projects

51

visits. The main limitation of these methods is that team members may

not recognise the impact of a change on development progress.

 Formal methods: in this approach, the distributed teams use computer

systems to keep track of progress information and to manage them. The

main methods include Wikis and spreadsheets, traditional project

management tools, and agile project management (APM) tools. All these

methods were reviewed with a focus on APM tools. A review of 30 APM

tools revealed several mechanisms available to assist in supporting the

management of distributed agile development. The main limitation of this

approach is that the computer systems do not discover the impact of the

change on progress but rely completely on team members to recognise it.

The research presented here aims to overcome the limitations of these two

approaches through providing a computer-based holistic approach to developing

a progress tracking system. This will require identifying the co-ordination

support required for managing development progress (Chapter 4) and designing a

computer-based system capable of providing the necessary co-ordination

(Chapter 5).

52

CHAPTER 4

Co-ordination Support Required for Managing

Progress of Distributed Agile Projects

The goal of this chapter is to identify the co-ordination support requirements for

managing the progress of distributed agile projects. The chapter starts by

introducing the concept of co-ordination. The main types of co-ordination activity

required for managing the progress are then identified. Section 4.3 analyses the

progress change events that may result from performing each technical activity,

and also provides explicit identification of the co-ordination support required to

deal with these events. Two examples are provided in section 4.4 to enhance the

understanding of the co-ordination support required for managing the

development progress of distributed agile teams. Finally, a short summary for the

chapter is given.

4.1 Understanding Co-ordination

Co-ordination is an integral part of teamwork. Mintzberg [118] states:

“Every organized human activity – from the making of pottery to the placing of a

man on the moon – gives rise to two fundamental and opposing requirements:

the division of labour into various tasks to be performed and the coordination of

those tasks to accomplish the activity.”

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

53

Within the context of software development projects, Mintzberg’s observation

illustrates that as long as the development process is broken down into tasks and

processes, there is a co-ordination requirement [119].

A dictionary definition of co-ordination is ‘the act of working together

harmoniously’ [120]. The definition provides a ‘common sense’ meaning of the

concept. The definition can be divided to three parts:

- ‘act’: implies that there are actors,

- ‘working’ indicates that actors must carry out activities;

- ‘harmoniously’ implies that the actors perform the activities in order to

achieve goals.

Hence, actors, activities and goals comprise the main components of co-

ordination [121]. Applying the definition to the software development domain,

team members (e.g. developers, testers) work on software development activities

(e.g. coding, testing) in order to achieve the goal of completing the software

requested by the customer.

The dictionary definition is a broad definition; researchers have developed

several definitions and theories to understand co-ordination in a more restricted

(narrow) way [122]. Chandler defines co-ordination as “structuring and

facilitating transactions between interdependent components” [123]. Thompson

defines it as “the protocols, tasks and decision-making mechanisms designed to

achieve concerted actions between interdependent units” [124]; the National

Science Foundation defines it as “the emergent behaviour of collections of

individuals whose actions are based on complex decision processes” [125];

Curtis defines it as: “activities required to maintain consistency within a work

product or to manage dependencies within the workflow” [126]; Singh defines it

as: “the integration and harmonious adjustment of individual work efforts

towards the accomplishment of a larger goal” [127].

Some of the above definitions focus on the dependencies between individuals

and units while some are concerned with the outcome of the co-ordination [119].

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

54

Malone and Crowston developed a general co-ordination theory by the

recognition of commonalities in co-ordination problems that were previously

considered separately in many different fields, such as economics, computer

science, sociology, social psychology, linguistics, organisational theory and

management information systems [122].

A co-ordination definition is provided by Malone and Crowston [128] as:

“Co-ordination is managing dependencies between activities.”

Malone and Crowston see dependencies as dependencies between tasks rather

than individuals or units. In addition, their definition concentrates on the case for

a need to co-ordinate rather than on the desired outcome of co-ordination. This

provides a theoretical framework for analysing co-ordination in complex

processes [129].

In a further work [130], they, with other colleagues, characterise the co-

ordination dependencies as specialisations or combinations of three basic types

of dependencies among activities: flow, sharing and fit. These three types are

illustrated in Figure 4-1.

Figure 4-1. The basic types of co-ordination dependencies [130].

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

55

 Flow Dependencies: arise whenever one activity produces a resource that is

used by another activity.

 Sharing Dependencies: occur whenever multiple activities all use the same

resource.

 Fit Dependencies: arise when multiple activities collectively produce a

single resource.

Managing progress in agile development requires activities to manage

dependencies from all the three basic types of dependency:

 Flow dependencies: The agile software development involves a

number of sequential activities each of which contributes to making

progress towards achieving the goal of completing the software. Team

members often need artefacts produced at one stage of the development

process in order to perform activities in subsequent stages. An example

of this is the acceptance testing for a user story. It cannot be started

until the functionalities required for the story are completed.

 Fit dependencies: The agile software development involves fit

dependencies since a set of tasks can contribute to complete a user

story. Moreover, all the user stories performed by the team members

contribute to develop the same product. One of the XP practices is to

perform continuous integration with the source code produced by the

user stories. Assuming that the source code artefacts produced by the

user stories US1, US2 and US3 have been integrated by an integration

process, any later change to the integrated artefacts should ensure that

the interfaces remain consistent.

 Sharing dependencies: The agile project is divided into iterations

where each iteration produces a releasable version of the system. This

means that the user stories are developed within a shared period of time.

In addition, a number of different tasks may share the reading of the

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

56

same source code artefact. Changes to the shared artefact have to be

managed to ensure that the changes made by one team member do not

conflict with tasks performed by other team members.

4.2 Types of Co-ordination Activities Required for

Managing Development Progress

Performing any of the technical activities affecting development progress,

described in Chapter 2 (Table 2-1), will require performing further co-ordination

activities to manage change in development progress. The key types of co-

ordination activity are: checking progress constraints, identifying potential

sources of progress change, reflecting progress change in the tracking system,

and finding and notifying team members affected by potential progress change.

These co-ordination activities are discussed below.

 Checking Progress Constraints

Indicating progress of tasks, user story and releases requires some

conditions that should be satisfied first. Source code artefacts associated

with the task must be unit-tested before a developer can register the task

as ‘complete’ in the tracking system. The user story must be integrated

and acceptance-tested before it can be described as ‘complete’.

Releasing is only for the complete stories. Any attempt to violate these

conditions needs to be prevented and clarified to the team members.

Tools such as the versioning system, Team Foundation Server (TFS)

[131], enable teams to set policies that enforce every check-in to TFS

have an associated unit test written for the code being checked in. TFS

offers such policies to improve code quality. Although this policy is not

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

57

offered as part of a progress management system, it can be seen as a

progress constraint check.

Current progress tracking systems do not apply progress constraint

checking for the tasks, user stories or releases. Thus, manual

verification is conducted by team members. The manual approach has

its limitations. Developers may forget to follow the practices and rules.

In addition, with distributed teams, it is more likely that the team

members will be unaware of the different technical factors that

contribute to violation of the constraints. Code change by other team

members may change the development progress because it is not tested

or not integrated.

This can result in code with low quality or delay the project because

registering a particular user story in the tracking system as ‘active’ and

giving a percentage of completion do not reflect the actual working

software of that user story. In addition, registering it as ‘complete’ does

not guarantee that all the unit tests, acceptance tests, integration tests

and the required builds have been successfully completed.

 Identifying Potential Sources of Progress Change

Generally speaking, the sooner problems affecting progress are

discovered, the more likely they can be resolved in the current iteration.

When a test fails, team members may spend a significant amount of

time identifying potential sources of defects. This is because they may

not discover problems until acceptance testing is made. Between

making two acceptance tests, a large number of changes which may

introduce defects can be performed by team members. It is commonly

believed that the earlier a defect is found the cheaper it is to fix it.

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

58

The difficulty involved in identification of the source of progress

change varies depending on the progress change event taking place.

There may be little effort from team members, such as when a tester

repeats an acceptance test to complete a user story. If the status of the

acceptance test changes from ‘pass’ to ‘fail’, this simply means that the

corresponding story’s progress has been affected. However, identifying

the source of the change can be one of the most difficult processes that

team members can face. An example of this is when two developers at

different geographical locations working on two different tasks use the

same source code artefact. One of the developers may modify the

source code in a way that affects the progress of the other. This

progress change event is hard to track down as the developer affected

by the change is not the one who introduced the problem and the

originator of the change may be unaware that he has caused the

problem.

 Reflecting Progress Change in the Tracking System

If the development progress is affected by one of the technical factors

described earlier, the impact has to be reflected in the tracking system.

For instance, if an acceptance test that is associated with complete story

fails, this may lead to changes in the story progress. Such a change has

to be reflected in the tracking system. This is important not only

because it shows the real progress position of the user stories, but it also

shows that the story may need to be modified, re-integrated and

undergo acceptance testing again.

Current tracking systems do not provide automatic reflection of the

progress of the tasks, user stories and releases. The developer has to

change the progress himself. This implies a time overhead; there are

lots of daily updates resulting from performing the technical activities.

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

59

In addition, most required reflections cannot be easily recognised by the

developers. A developer who changes some code may not understand

how this change could influence the progress of other tasks.

 Finding and Notifying Team Members Affected by a Potential

Progress Change

Team members may perform some of the technical activities that affect

project progress. It is important that every team member who is affected

by a progress change is notified. If a team member is working on a task

dependent on another task, he needs to be notified about any progress

change to the preceding one.

Current tracking systems do not provide such co-ordination

mechanisms. It has to be done manually by team members. This may

cause a time overhead due to the frequency of such events. In addition,

senders of information do not know the information needs of everyone

in the organisation, so they cannot always determine who should

receive the information they send [132]. If all team members are

informed about all the progress change events, it could result in

information overload, so team members may face difficulties in finding

the relevant notifications. In other cases there is complexity in

understanding the impact of performing the technical activities

described earlier, while the notifications may go to team members who

are not interested whereas the team members affected by the progress

change are not informed.

The lack of mechanisms to identify and notify the right people could

lead to serious problems because it can be a reason for delaying the

project progress. If a change has been made to a source code artefact

that belongs to a complete task or a complete user story and the affected

developers are not notified, team members may need to spend a

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

60

significant amount of time conducting additional work to resolve issues

that occur from the impact of the change. They may not realise that they

need to do this, however, until a late stage of the iteration or the project.

4.3 Analysis of Co-ordination Requirements for the

Technical Activities

Every technical activity may be carried out in a way that causes a change in

development progress. Progress change events need to be recognised as well as

the provision of the necessary co-ordination activities (i.e. derived from the co-

ordination types discussed in the previous section) that can help managing these

events.

This section analyses the progress change events caused by each technical

activity and identifies explicitly the co-ordination support required to manage

them. It also discusses the distribution effect of co-ordinating technical activities.

4.3.1 Source Code Versioning

Activities involved in source code versioning (create an artefact, update an

artefact and delete an artefact) may cause several progress change events that

need co-ordination support.

In the case of creating a source code artefact, if the state of corresponding

task/story is ‘un-started’ or ‘complete’, creating the new artefact for the

task/story implies that its state is changed to ‘active’. The developer who tries to

create the new artefact has to be informed that the task/story is inactive. The state

of the task/story has to be changed to ‘active’ in the progress tracking system. If

other team members are affected by the recent task’s/story’s state, they must be

notified.

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

61

Updating a source code artefact normally requires that the developer checks out

the source code artefact, makes the modification, and then checks it in again.

Progress changes resulting from the check-out process are similar to the case of

creating a source code artefact.

In case of having a source code artefact shared between two tasks/stories or

more, where the state of one of them is ‘complete’, making check-in to the

artefact may change the progress state of that task/story. In this case, which

tasks/stories have been affected must be identified. The affected team member

must also be found and notified.

If an integrated artefact is modified, it will need to be re-integrated. The recent

changes may affect progress of other tasks/stories that share the same artefact.

Developers who share a previously integrated artefact to complete their

tasks/stories should be made aware that it has new version and, therefore, the

artefact need to be re-integrated.

Deleting an integrated artefact may break the build leading to a negative impact

on the progress state of a large number of tasks/stories. Affected user stories may

need to undergo AT again. If deleting an artefact breaks the build, this needs to

be clarified to the developer and deletion may be delayed until the developer

discusses the activity with the affected developers. It is important to identify the

impact of deleting the artefact on progress and reflect it in the tracking system.

Finding and notifying affected team members are also required.

Identifying and co-ordinating the progress change events resulting from the

source code versioning are likely to be more difficult if the agile project is

distributed. The relationship between the source code artefacts and tasks/stories

is difficult to realise with the distributed sites. Consequently, it is difficult to

maintain the impact on tasks/stories progress of creating, updating or deleting a

source code artefact. In addition, locating and notifying the affected team

members may become a significant hindrance. In the case of deleting a source

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

62

code artefact, it may be difficult to realise how important the artefact is to team

members located at different sites.

A summary of the progress change events resulting from the source code

versioning activities and their co-ordination requirements is provided in Table 4-

1.

Versioning

Activities
Progress Change Event

Co-ordination

Requirements
Distribution Effect

Create a new

artefact

- Creating a new artefact

whose task is ‘un-started’ or

‘completed’ changes the task’s

state.

- Creating a new artefact

whose story is ‘un-started’ or

‘completed’ changes the

story’s state.

- Changing state of the

task/story if its current state is

‘un-started’ or ‘complete’.

- Finding and notifying team

members affected may be

required.

- The relationship between

the artefacts and

tasks/stories in the

distributed sites is difficult

to realise.

- It is harder to determine

the team members

affected.

Update an

artefact

- Checking-out a new artefact

whose task is ‘un-started’ or

‘completed’ changes the task’s

state.

- Checking-out a new artefact

whose story is ‘un-started’ or

‘completed’ changes the

story’s state.

- Modifying an artefact whose

task is ‘un-started’ or

‘completed’ changes the task’s

state.

- Modifying an artefact whose

story is ‘un-started’ or

‘completed’ changes the

story’s state.

- Modifying an integrated

artefact may require it to be re-

integrated.

- Checking-out may require

changing the state of the

task/story if its current state is

‘un-started’ or ‘complete’.

- Sharing new artefact

versions should be prevented

if corresponding unit tests

have failed.

- Developers who use a

previously integrated artefact

should be aware that it has

new versions updated and,

therefore, the artefact need to

be re-integrated.

- Finding and notifying team

members affected may be

required.

- It is harder to realise the

impact of updating an

artefact on development

progress.

- It is harder to determine

the team members

affected.

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

63

Versioning

Activities
Progress Change Event

Co-ordination

Requirements
Distribution Effect

Delete an

artefact

- Deleting an integrated

artefact may break the build.

- If deleting an artefact breaks

the build, this needs to be

clarified with the developer

and deletion may be delayed

until the developer discusses

the activity with other

developers affected.

- Finding and notifying team

members affected may be

required.

- It is difficult to realise the

importance of the artefact

to team members.

- It is harder to determine

who needs to be notified.

Table 4-1. Progress change events, distribution effect, and co-ordination

requirements for the source code versioning activities.

4.3.2 Continuous Integration and Releasing

Integration and releasing activities can lead to positive/negative progress change.

If an integration process has been performed that failed, team members may not

realise which user stories have been negatively affected. The ‘failed’ result

should not affect those stories that do not have new versions entered in the build.

An integration ‘pass’ result should contribute to making progress on the affected

stories. When a successful integration is made, story owners and testers may not

know exactly which stories are ready for the acceptance testing stage. If all the

functionalities for a story have been completed and integrated, the tester

responsible for the story has to be located and notified that the story is now ready

for acceptance testing.

Another potential progress change event may result from the releasing process. A

set of user stories may be released while some of them have not been fully tested.

In this case, the release process should be prevented. The person making the

release has to be made aware that releasing should be for complete stories only.

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

64

Continuous integration and releasing activities causing progress change can be

difficult to identify and co-ordinate in distributed environments. It is harder to

maintain awareness of the effect of an integration result on development progress

if the team is distributed. In addition, team members making a release at one site

may not know the actual progress state of user stories carried out at another site.

A summary of the progress change events resulting from the continuous

integration and releasing activities and their co-ordination requirements is

provided in Table 4-2.

CI/Releasing

Activities

Progress Change

Event

Co-ordination

Requirements
Distribution Effect

Perform

integration

- A failed integration

process has been

performed.

- A successful

integration process

has been performed.

- Determining which stories

have been affected and

reflecting that in the tracking

system are required.

- When a successful

integration is made, testers

may not know exactly which

stories are ready for the AT.

Finding and notifying

affected team members may

be required.

- It is harder to

maintain awareness

of the effect of

integration on

development progress

if the team is

distributed.

Make a release - A set of user stories

may be released

while some of them

have not been fully

tested.

- A release has to be made for

complete stories only.

- Team members

making a release at

one site may not

know the actual

progress state of

stories performed at

another site.

Table 4-2. Progress change events, distribution effect, and co-ordination

requirements for the continuous integration and releasing activities.

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

65

4.3.3 Unit Testing

Activities involved in unit testing include adding, modifying, deleting and

running a unit test. These activities may cause several progress change events

that need co-ordination support.

Adding or modifying a unit test without re-testing it or with a ‘fail’ result can

affect the corresponding task, if it was complete. It is important to clarify to the

developer that state of completed tasks may change due to his activity. It would

be safe to prevent the addition or the modification until the unit test passes.

Deleting the only unit test for an artefact of a completed task affects the task’s

progress. If it is the only unit test for the corresponding source code artefact, and

if the corresponding task is complete, the task state may be affected. It is required

to prevent the deletion.

Furthermore, a unit test may not have passed when its corresponding source code

version is checked in. In this case, it may affect development progress because

getting the unit tests passed is a condition of completing the source code artefacts

developed to fulfil requirements of a task. Sharing new source code versions

should be prevented if the corresponding unit tests have failed.

Similarly, a unit test may not have passed when a developer wants to set its

corresponding task to ‘complete’. It is required then to prevent setting the task to

‘complete’ until all its source code artefacts are successfully unit-tested.

A developer working on his machine may easily understand how adding,

modifying, deleting or running a unit test may affect the progress state of the task

he is currently working on. The impact of these activities affect the developer

who created them only as long as the corresponding source code artefact is not

yet shared. However, if the source code artefact is shared with other developers

at a different site, it can be difficult to understand the impact on them.

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

66

A summary of the progress change events resulting from the unit testing

activities and their co-ordination requirements is provided in Table 4-3.

Unit Testing

Activities
Progress Change Event

Co-ordination

Requirements
Distribution Effect

Add or modify a

unit test

- Adding or modifying unit

test without testing it or

with a ‘fail’ result can

affect the corresponding

tasks if they were complete.

- It is required to

delay the addition/

modification until the

test passes.

- Developers may not

know which tasks are

associated with the

unit tests.

Delete a unit test - Deleting the only unit test

for an artefact of a

completed task affects its

progress.

- Deletion may need

to be prevented and

the impact clarified to

the developer.

- Affected developers

may not know the

impact of deleting a

unit test.

Run a unit test - A unit test may not have

passed when its

corresponding source code

version is checked-in.

- A failed unit test prevents

completing the task.

- Sharing new

artefact versions

should be prevented

if corresponding unit

tests have failed.

- If a unit test fails,

the corresponding

task must not be set

as ‘complete’.

- It will be difficult to

realise the impact if

the corresponding

source code artefact

is shared with

developers at a

different site.

Table 4-3. Progress change events, distribution effect, and co-ordination

requirements for the unit testing activities.

4.3.4 Acceptance Testing

Activities resulting from manual and automated acceptance testing (AT) can

cause several progress change events that need co-ordination support. These

progress change events are discussed below.

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

67

Adding or modifying an acceptance test without testing it, or with a ‘fail’ result,

can affect the corresponding story if it was complete. States of the corresponding

completed stories may need to be changed. Finding and notifying the owner of

the completed story may be required.

Deleting the only acceptance test for a complete user story affects the story’s

progress. If it is the only acceptance test for the user story, and if the story is

complete, the story’s state may need to be changed. The story owner and the

affected tester must also be found and notified.

Running automated AT may result in two progress change events. First, a

complete user story will be affected if one of its associated automated acceptance

tests has failed. If an acceptance test fails, the corresponding user story must not

be set as ‘complete’. Team members affected must also be found and notified.

Second, a user story may be affected if one of its associated automated

acceptance tests has passed. This happens if all the functionalities required for

the story have been completed and integrated and the other acceptance tests for

the same story have already passed. The corresponding user story must be set as

‘complete’ and team members affected must be found and notified.

Similar to running automated AT, updating a manual acceptance test to ‘fail’

causes a complete story to become incomplete. In this event, the user story must

not be set as ‘complete’. Finding and notifying the story owner and the affected

tester may be required. Likewise, updating a manual acceptance test to ‘pass’

may cause the story to become complete The corresponding user story must be

set as ‘complete’ and team members who are affected must be found and

notified.

Finally, an acceptance test may not have passed when a team member wants to

set its corresponding story to ‘complete’. It is required then to prevent setting the

story to ‘complete’ until all its corresponding acceptance tests pass.

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

68

With distributed agile projects, it is possible to have testers and story owners

scattered at different sites. Adding, modifying deleting or running an acceptance

test may affect its corresponding story. Testers may encounter difficulties in

finding and targeting notifications to those story owners affected if they are at

different sites. In addition, running automated acceptance tests frequently as part

of a build process may result in having a large number of progress changes to the

stories they belong to. It can be difficult to manually find and notify team

members affected as size of the acceptance test grows.

A summary of the progress change events resulting from the acceptance testing

activities and their co-ordination requirements is provided in Table 4-4.

Acceptance

Testing Activities
Progress Change Event

Co-ordination

Requirements

Distribution

Effect
Add or modify an

acceptance test

- Adding an acceptance test

without testing it or with ‘fail’

result can affect the

corresponding story if it was

complete.

- Modifying an acceptance test

without testing it or with ‘fail’

result can affect the

corresponding story if it was

complete.

- States of

corresponding

completed stories

may need to be

changed.

- Finding and

notifying affected

team members may

be required.

- Team members

may not know

impact of adding an

acceptance test.

Delete an

acceptance test

- Deleting the only acceptance

test for a completed story

affects its progress.

- Story state may

need to be changed.

- Finding and

notifying affected

team members may

be required.

- Developers may not

know the impact of

deleting an

acceptance test.

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

69

Acceptance

Testing Activities
Progress Change Event

Co-ordination

Requirements

Distribution

Effect
Run an acceptance

test

- A complete user story will be

affected if one of its associated

automated ATs has failed.

- A user story may be affected

if one of its associated

automated ATs has passed.

- Updating a manual

acceptance test to ‘fail’ may

cause a complete story to

become incomplete.

- A failed acceptance test

prevents completing its

corresponding story.

- If an acceptance

test fails, the

corresponding story

must not be set as

‘complete’.

- State of the relevant

story may need to be

changed.

- Finding and

notifying affected

team members may

be required.

- Testers may

encounter difficulties

in finding and

targeting

notifications to those

affected.

Table 4-4. Progress change events, distribution effect, and co-ordination

requirements for the acceptance testing activities.

4.4 Examples

The last section identified the co-ordination requirements for each progress

change event. This section shows examples of the sequence of co-ordination

steps that each technical activity has to get through. This can cover enhanced

understanding of the co-ordination support required to manage the development

progress of distributed agile teams. Two examples are provided. An update

activity to a source code artefact normally requires two smaller activities: check-

out and then check-in; the co-ordination support required for these activities is

illustrated.

A typical check-out process will involve the following steps:

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

70

 Before checking-out a source code artefact, it must be ensured that the

corresponding task and story are still active, because developers can

only work on an active task/story.

 If the task and/or story are active, the developer can check-out the

artefact. Otherwise, the progress state of the corresponding task and/or

story must be changed. This needs to be explicitly shown on the

tracking system so that the whole team will be aware of the actual

progress of the project.

 The team members affected must be found and notified: team members

affected (i.e. story owner/tester) may be at different sites. It is important

to look for team members affected and notify them in order to resolve

problems as early as possible.

The co-ordination required for the check-out process is described in the

following UML activity diagram (Figure 4-2):

Request to check-

out artefact version

Change

corresponding task/

story progress state

Find and notify

affected team

members

Technical Activities Co-ordination Activities

Ensure corresponding

task/story are still

active

Check-out code

[Yes] [No]

x
x

x

Figure 4-2. Co-ordination support required for the check-out process.

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

71

A typical check-in process will involve the following steps:

 Before checking-in the source code artefact, the developer has to ensure

all corresponding unit tests are successful. Only unit-tested code can be

shared with other team members.

 If one or more of the unit tests has failed, the developer has to refactor the

code and try testing again. If all the unit tests are successful, the

developer can check-in the artefact. If the recent change affects the

progress of other stories, the affected stories must be identified.

 The progress state of the stories affected must be changed.

 Finally, the team members affected must be found and notified.

The co-ordination required for the check-in process is described in the following

UML activity diagram (Figure 4-3):

Run UT

Refactor code

Identify affected

stories

Change progress state

of the affected stories

Find and notify affected

team members

Technical Activities Co-ordination Activities

Ensure all corresponding

UTs are successful

Check-in code
[Yes]

[No]

x

x

x

Figure 4-3. Co-ordination support required for the check-in process.

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

72

4.5 Summary

This chapter has discussed the concept of co-ordination. It has shown how

different researchers have different opinions on defining co-ordination. More

emphasis has been given to the co-ordination theory established by Malone and

Crowston. One of the important contributions of the coordination theory is its

definition that looks at co-ordination as managing dependencies between

activities. The definition focuses attention on the causes for co-ordination, which

can help analyse co-ordination in complex processes. Section 4.1 argued that

managing progress in agile development requires activities to manage the three

basic types of dependencies identified by Malone and Crowston (i.e. flow, fit and

shared dependencies).

Section 4.2 identified four key types of co-ordination activity for managing

progress of distributed agile projects. These are:

 Checking progress constraints.

 Identifying potential sources of progress change.

 Reflecting progress change in the tracking system.

 Finding and notifying team members affected by potential progress

change.

Technical activities may cause progress change events that require performing

further co-ordination activities, derived from the four co-ordination types

identified above. Section 4.3 identified explicitly the co-ordination requirements

associated with each progress change event. The check-out and check-in

examples were provided in section 4.4 to illustrate how these activities may

cause progress change events and what co-ordination support is required to

manage these events.

Current formal methods discussed in Chapter 3 do not support co-ordinating

progress changes resulting from these technical activities; hence, co-ordination

activities are performed informally. Due to limitations of informal methods, a

Chapter 4. Co-ordination Support Required for Managing Progress of Distributed Agile Projects

73

computer-based system that takes into account the various technical activities

affecting progress is essential. The next chapter discusses how such a system can

be designed.

74

CHAPTER 5

Design of Progress Tracking System

This chapter discusses the design of a computer-based progress tracking system

capable of providing the necessary co-ordination requirements identified in the

previous chapter. It starts by describing an architecture that enables the tracking

system to recognise the impact of the technical activities on development

progress. Since judging progress in agile development is primarily based on the

source code state, a version model has been developed to identify the level of

maturity of each source code version (section 5.2). In addition, to provide team

members with better awareness of the progress of user stories, a novel user story

progress model has been proposed (section 5.3). The process model and the data

model for the progress tracking system are provided in sections 5.4 and 5.5

respectively. Finally, design issues are discussed in section 5.6 before

summarising the chapter in section 5.7.

5.1 System Architecture

There are several technical activities affecting development progress as discussed

in Chapter 2. These activities are currently carried out by technical systems:

- Source Code Versioning: carried out by version control systems

- Unit Testing (UT) activities: carried out by UT tools

- Acceptance Testing (AT) activities: partially carried out by AT tools

Chapter 5. Design of Progress Tracking System

75

- Continuous Integration (CI) and Releasing activities: carried out by CI and

releasing tools.

The problem with these systems is that they work separately from the progress

tracking system. Hence, if a progress change event is caused by a technical

activity, the progress tracking system cannot identify it.

The progress tracking system proposed here enables the tracking system to keep

track of the impact of the technical activities by placing them under control of the

tracking system (Figure 5-1). This can be achieved by:

- Integrating the versioning functionalities into the progress tracking

system,

- Linking the UT tool, AT tool and CI tool with the progress tracking

system.

Figure 5-1. A High level architecture for the progress tracking system.

Database

Versioning

Operations

Progress Tracking

System

(Integration Testing

+

Acceptance Testing)

Testing

Environment

Development

Environment

(Development

+

Unit Testing)

T
ech

n
ical O

p
eratio

n
s

In
terface

T
ech

n
ical O

p
eratio

n
s

In
terface

Task/Story

Operations

Chapter 5. Design of Progress Tracking System

76

 Integrating Versioning Functionalities into the Tracking
System

Current versioning systems provide technical mechanisms to store

and control source code artefacts. However, these systems provide

no support for identifying and co-ordinating changes affecting

development progress.

Because development progress in an agile development is directly

based on the maturity of the source code artefacts, tasks/stories

should not be tracked separately from the source code artefacts that

determine their functionalities. There should be a consistency

between the progress data and the actual work performed by

developers. This has been seen as a worthy reason to fully

integrate versioning functionalities into the progress tracking

system.

 Linking the UT, AT and CI Tools with the Tracking System

The progress tracking system has to offer interfaces to the UT

tool, AT tool and CI tool, so the tracking system can capture the

point where a potential progress change takes place.

5.2 Version Model

5.2.1 Version States

Version states are used to indicate the level of maturity of different versions of

source code artefacts. Version state is taken into account when determining

progress. Based on the fact that source code artefacts pass several stages before

Chapter 5. Design of Progress Tracking System

77

they are released (unit testing, integration, releasing), a four-stage hierarchical

promotion model that shows this evolution is proposed which incorporates the

following versions:

● Transient Version (TV): the artefact version is not shared with other team

members.

● Unit-Tested Version (UTV): the artefact version is unit-tested and available to

be shared with other team members. The artefacts in the unit-tested stage are

prepared for the next integration so this stage can be seen as the ‘Ready-for-

Integration’ stage.

● Integrated Version (IV): the artefact version is unit-tested and has passed the

build.

● Releasable Version (RV): The user stories for which the artefact version

provides functionality have passed AT and are ready for releasing.

The concept of version states in versioning systems is not new. It has been

widely applied in versioning systems built to support change management in

software design and engineering design (e.g. [133] [134] [135]). However, unlike

this work, previous versioning systems do not incorporate ‘agile’ maturity. The

promotion model in these systems does not serve the purpose of supporting agile

software projects specifically.

5.2.2 Version Operations

Current versioning systems capture the point where change is instigated but these

systems do not show and co-ordinate the impact of change on the agile progress.

New operations are required to fulfil the requirements of providing a better

description of artefact progress states. Extended versioning operations are

described in Table 5-1.

Chapter 5. Design of Progress Tracking System

78

Versioning

Operation
Description

Create a new

artefact

A new artefact is created as transient version

(TV) in a developer’s workspace.

Check-out artefact

version

A new TV can be created from a version of an

existing artefact. The version is created as part

of specific task duty.

Check-in artefact

version

If TV is stable and unit-tested, it can be

promoted to UTV.

Perform integration If integration is successful, all UTVs included in

the integration are promoted to IV.

Release artefact

version

If acceptance testing is successful for all

affected stories, their associated versions can be

released to the customer.

Delete an artefact An artefact is deleted.

Table 5-1. Extended versioning Operations.

The UML Statechart Diagram in Figure 5-2 shows how the new versioning

operations can change an artefact’s state.

s

Transient Version

(TV)

Releasable

Version

(RV)

Integrated

Version

(IV)

Unit-Tested

Version

(UTV)

Check-in

Transient Version

(Unit tests passed)

Perform

Integration

(Build succeed)

Release Version

(Corresponding

story(ies) is/are

complete)

Check-out

Create a New

Artefact

Delete an

Artefact

Figure 5-2. Source code version states.

Chapter 5. Design of Progress Tracking System

79

2.2.3 Version Tracking

Managers need to know which tasks are working on each source code artefact.

This information can help to recognise which tasks are affected by progress

change. In order to obtain this information, every time a developer tries to

change an artefact, the task he is working on has to be identified.

A linkage for each source code artefact can be created that describes the tasks

that are using versions of the artefact and at which state they are. Table 5-2

shows an example of an artefact with different versions for different tasks.

Version Task1 Task2 Task3

TV V3

UTV V2

IV V1

RV

Table 5-2. Each source code artefact is linked to the tasks working on it.

The linkage allows the two important versions for each source code artefact to be

kept track of. They are the last stable version (last IV), and the last recent version

(last UTV). When a developer asks to read or create a new version, he can

choose either one. This provides the awareness to the developer about the status

of the version he is using.

The promotion to a higher state affects all the tasks/stories that have the same or

lower state. The tasks that have TVs are not usually affected by new updates as

the TVs represent unstable copies that are isolated from the other developers.

Table 5-3 illustrates when a new version can affect current versions. The main

driver of producing such a table is to identify clearly the situations in which

editing or promoting a source code artefact by one task can have an effect on

other tasks’ progress.

Chapter 5. Design of Progress Tracking System

80

 Current TV Current UTV Current IV
Current

RV

New

TV
No No No No

New

UTV
No

Yes (developers who

use old version should

be informed)

No No

New

IV
No

Yes (The task that is

linked with the UTV

should be updated with

the new version)

Yes (developers who

use old version

should be informed)

No

New

RV
No Yes Yes Yes

Table 5-3. New version affects current versions.

If a version is promoted to UTV, all the tasks that have UTV versions for the

same artefact can be affected. The new modifications for the artefact may

influence the work recently completed by other tasks, which are not integrated.

However, if a new UTV is produced, the tasks that have IVs are not affected

because the UTV version can be seen as a second transient version due to the fact

that it is not integrated yet.

Furthermore, it is important to prevent the new build result from influencing

complete stories. Let us assume that a story US1 is complete and new versions of

the artefacts that US1 used are produced by another story and have undergone a

build. If the build failed, it should not affect the stories that are already complete.

The progress impact should apply only to those stories that made recent changes.

Chapter 5. Design of Progress Tracking System

81

5.3 User Story Progress Model

Status of the agile projects is expressed through determining the state of the user

stories, where each story should produce a block of working software. In order

for the story to produce a working software, the individual source code versions

contributing to fulfilling the requirements of a story have to be integrated

successfully (i.e. reach IV stage) and the set of versions together has to be

acceptance-tested in a testing environment to ensure the customer is satisfied

with the story. The version model presented in the previous section helps

determine the state of the software (source code) and hence can help describe the

state of user stories.

User story states are commonly identified as ‘Un-started’, ‘In Progress’ or

‘Done’ (e.g. [17] [100]). There is often doubt regarding the meaning of the

‘Done’ state. Some agile teams assume that a complete story means that all tasks

included in a story are complete. This interpretation does not satisfy the agile

definition of the completed stories, which also requires stories to be integrated

and acceptance-tested. Sutherland et al. [177] stress the point that user stories

must only be considered complete after testing. They pointed out that failure to

do this allows work in progress to spread, introducing waiting times and greater

risk into the project.

The user story’s state may change, even after performing acceptance testing

(AT). Source code artefacts related to a completed story may be versioned and

need to be re-integrated and re-tested. To satisfy this, we have identified a new

model for the story progress states that takes into account the different progress

stages that a user story can assume (Table 5-4). User stories may assume one of

the following states: ‘Not started’, ‘Active’, ‘Waiting for integration’, ‘Waiting

for AT’, or ‘Complete’.

The user story progress model supports providing a more realistic view of the

actual state of the software project and also helps reflect the impact of the

technical activities on development progress.

Chapter 5. Design of Progress Tracking System

82

A user story becomes ‘Active’ once a developer works on one of its

corresponding tasks. After implementing all its functionalities, it moves to the

‘Waiting for Integration’ state. Once the integration is passed, it moves to the

‘Waiting for acceptance testing’ state. Finally, it can only become complete if all

the associated acceptance tests pass. Team members will have better awareness

of the progress state of user stories if they can obtain detailed information about

these midpoints.

Story State Description

Not started User story has not been started yet.

Active One or more of the story’s tasks is still active.

Waiting for

integration

All included tasks are complete, but

integration has not been conducted yet, or it

has failed.

Waiting for

acceptance

testing

Integration has been successful, but acceptance

tests have not yet been performed, or they have

failed.

Complete Integration has been successful and acceptance

tests have successfully passed

Table 5-4. User story progress model.

At the beginning of an iteration, all user stories are in the ‘Not started’ state.

However, the technical activities described in Chapter 2 (Table 2-1) may change

stories’ states and move them from one state to another.

Checking-out a source code artefact version, as part of working on a user story,

causes the story to become ‘Active’. The completion of implementing all the

tasks corresponding to a user story makes the story move to the ‘Waiting for

integration’ state (this implies that source code artefacts associated with each task

Chapter 5. Design of Progress Tracking System

83

have been unit-tested). If integration is passed, the story becomes ready for

acceptance testing (moves to the ‘Waiting for AT’ state). If all acceptance tests

associated with the user story have passed, the story then becomes ‘Complete’.

Creating a new artefact or checking-out artefact versions means that there is still

work needed to fulfil requirements of the story, i.e. the story is still ‘Active’.

Editing a source code artefact that belongs to a ‘Waiting for AT’ story or a

‘Complete’ story may require that the story undergoes integration once again. In

addition, deleting a source code artefact belonging to a complete story may

require performing further integration. Moreover, adding or modifying an

acceptance test for a ‘Complete’ story moves the story to the ‘Waiting for AT’

state. Figure 5-3 is a UML state diagram showing how the technical activities

may move a user story from one state to another.

Active

Not started Waiting for Integration

Waiting for

Acceptance Testing
Complete

C
reate a new

 artefact

C
heck-out artefact version

C
re

at
e

a
ne

w
 a

rte
fa

ct

C
he

ck
-o

ut
 a

rte
fa

ct
 v
er

si
on

C
re

at
e

a
ne

w
 a

rte
fa

ct

C
he

ck
-o

ut
 a

rte
fa

ct
 v
er

si
on

C
reate a new

 artefact

C
heck-out artefact version

P
e

rf
o

rm
 i
n

te
g

ra
ti
o

n

Add AT/Modify AT

Delete an artefact/ Check-in TV

All unit tests pass for

associated tasks

All associated ATs passed

C
h

e
c
k
-i

n
 T

V

Figure 5-3. A UML story state diagram.

Chapter 5. Design of Progress Tracking System

84

5.4 Process Model

A set of process models needs to be developed to illustrate how each technical

activity affects development progress. These models have to provide a visual

representation of how the co-ordination activities discussed in Chapter 4 can be

implemented in a computer-based system.

5.4.1 Selecting a Process Modelling Technique

The technique chosen to represent process models for the technical operation has

to be able to fulfil the following requirements.

- It must show the co-ordination required to manage development progress.

A behavioural model must clearly show the sequence of activities in a

process. This includes representing sequential and parallel activities as well

as the events that trigger activities.

- It should be transparent. Visual representation of each type of technical

operation is needed. The value of making the processes transparent is that

they can be examined and modified if necessary.

- It should be capable of representing roles in the process. Technical

operations involves performance by different types of team member (i.e.

developers, story owners, testers) and different technical systems (i.e.

progress tracking system, UT tool, AT tool, CI & releasing tool).

Other general requirements necessary for the selected modelling techniques

include [136]:

- sufficiently expressive

- easy to use

- unambiguous

- supported by suitable tools

- widely used.

Chapter 5. Design of Progress Tracking System

85

In order to identify appropriate techniques for process modelling, a review of

software engineering literature has been conducted [137] [138] [25] [139]. The

review revealed the availability of a wide range of options.

Text-based modelling and pseudo-code can provide powerful ways for

expressing ideas; however, they can result in a large amount of text, which can

be a barrier to reviewing the models properly.

Flow charts can be used to show the flow of control but fail to represent the roles

involved in the process. Data Flow Diagrams (DFDs) are easy to communicate

with users and provide the flexibility to abstract any level of details. The main

limitation of a data flow diagram is that it does not show flow of control. If

several outputs may result from decisions within a transformation, a data flow

diagram shows only the different possible outputs, not the decisions taken. In

addition, a data flow diagram does not model time-dependent behaviour well

[140].

UML Activity Diagrams were chosen as the techniques to model the technical

activities. They can fulfil all the requirements identified above. They are able to

provide behavioural models to clearly represent both sequential and concurrent

activities. They also provide transparent processes that explicitly show the co-

ordination required to support tracking progress. Moreover, they can represent

different roles involved in a process.

Most software developers can easily understand the notation for UML Activity

Diagrams. UML has been adopted as the industrial standard for object-oriented

modelling by the Object Management Group [141].

5.4.2 Modelling the Technical Processes

A process model is developed for each technical activity (Appendix B). It

provides a visual representation of how the co-ordination activities can be

implemented. This includes showing explicit support for checking progress

constraints, finding and notifying team members affected by progress change,

Chapter 5. Design of Progress Tracking System

86

identifying potential sources of progress change, and reflecting progress change

in the tracking system.

As an example, the check-in process model is provided in Figure 5-4. It shows

the sequence of activities involved in checking-in a source code artefact version.

The process model incorporates the various co-ordination requirements identified

for the check-in operation identified in the example of Section 4.3.

 Before checking-in the source code artefact, the developer has to ensure

all corresponding unit tests are successful. Only unit-tested code can be

shared with other team members. If one or more of the unit tests has

failed, the developer has to change the code and try testing again.

The tracking system automatically checks whether there is a unit test

associated with the source code artefact. If there is no unit test, the

tracking system displays a message to the developer informing him about

that.

If the tracking system discovers that there is a unit test associated with the

artefact, a unit testing request is sent to the unit test tool. The tracking

system then gets the unit testing result. If it shows that the test failed, the

tracking system informs the developer that the check-in process cannot be

completed and he needs to ensure that the unit test passes before trying to

check-in the code again.

 If all the unit tests are successful, the developer can check-in the artefact.

If the recent change affects the progress of other stories, the affected

stories must be identified.

If the unit test passed, the source code version is checked-in and its state

is updated to ‘UTV’. The tracking system identifies the stories potentially

affected that are in the ‘Waiting for AT’ state or in the ‘Complete’ state.

The developer selects the stories that he thinks are likely to be affected.

Chapter 5. Design of Progress Tracking System

87

 The progress state of the stories affected must be changed.

The progress state of the affected stories are changed to ‘Waiting for

Integration’.

 Finally, the team members affected must be found and notified.

The owners and testers of the affected stories are found and notified.

Other affected team members, such as developers who completed a task

that used the source code, need also to be identified and notified.

The models are abstractions which show how the technical processes can be

designed. However, they provide only one possible way to model the technical

processes. Different agile projects may have different requirements based on

their working practices. Therefore, the proposed models can be adapted. For

instance, some agile teams may prefer not to use the unit testing check associated

with every check-in process. They may prefer to relax this constraint by leaving

the unit testing check as a policy option for team members.

Chapter 5. Design of Progress Tracking System

88

Request to

check-in

 artefact version

Check if there is unit test

 associated with this artefact

[No]

 Notify developer

that no unit

tests exist

Check if the unit

 test has passed

[Yes]

[No] [Yes]

 Notify developer

that the unit

 test is failed

Check if there are stories

in 'waiting for AT' or 'complete' state

affected by introducing the UTV

[Yes]

 Notify the relevant developers

and testers about the new

story(ies) state

Update the

version’s status

Developer Tracking System

[No]

Send unit testing

 request

 Check if there is any

existing artefact that

needs to be merged

Check if there

is any conflict

Notify developer

about the conflict

Merge the

two versions
[Yes]

[Yes]

[No]

[No]

Unit Testing

 Tool

Perform

unit testing

Send test

 result

Change story(ies) state to

 'Waiting for integration'

Inform developer that some

 stories may be affected

Developer selects

 affected stories

x

x

x

Inform developer

that the version is

 checked-in

Figure 5-4. The ‘Check-in’ process model.

Chapter 5. Design of Progress Tracking System

89

5.5 Data Model

The proposed progress tracking system requires storing and accessing different

types of data entity. These data entities have dependencies among them. There is

a large number of dependencies among tasks, stories, releases, unit tests,

acceptance tests and integration tests. These dependencies in the tracking system

need to be carefully represented in a data model. The UML Class Diagram in

Figure 5-5 shows the relationships among the main entities in the system.

Unit Test

Results
Integration

Test Results

Source Code

Artefact

Task

User Story Release
Acceptance

Test Results

1

*

1..*

*

1

* 1

1..*

Has

Belongs to

Belongs to

Included

in
Has

* 1

Has

v

v

v

v

Figure 5-5. UML Class Diagram for the main entities in the tracking system.

The model shows a logical representation for the data in an agile software project.

A release consists of user stories, where each story needs at least one acceptance

test to test it. A user story consists of tasks and within each task one or more

source code (development) artefacts is created. A source code artefact should

have at least one unit test and may be included in many integration processes.

The model in Figure 5-5 represents only the main entities in the progress tracking

system. Figure 5-6 extends it by representing the team members’ information:

developer (develops source code artefacts as part of his work on a task), story

owner (is responsible for ensuring completing a story as customer requires), tester

(is responsible for testing one or more acceptance tests), and project manager

Chapter 5. Design of Progress Tracking System

90

(takes responsibility for managing the whole stories in a release). The model also

represents the following data entities:

 Development Version: each development artefact may have one or more

versions.

 UT Version: each unit test artefact may have one or more versions.

 AT Version: each acceptance test artefact may have one or more

versions.

The data model shows the minimum data requirements needed to design a simple

progress tracking system using the holistic approach. A summary of the entities

included and their attributes is provided in Table 5-5 below.

Data Entity Attributes

Release ID, Planned Start, Planned Complete, Actual Start,

Actual Complete

Iteration ID, Start Date, Complete Date

User Story ID, Name, State, Planned Start, Planned Complete,

Actual Start, Actual Complete

Task ID, Name, State, Planned Start, Planned Complete,

Actual Start, Actual Complete

Development Artefact ID, Name, Last UT, Last IV, Last RV

Development Version ID, Time Stamp, Status

UT Artefact ID, Name

UT Version ID, Time Stamp, Status

AT Artefact ID, Description, Type

AT Version ID, Time Stamp, Status

Developer ID, Name, Tel, Location

Tester ID, Name, Tel, Location

Story Owner ID, Name, Tel, Location

Project Manager ID, Name, Tel, Location

Table 5-5. Data entities and their attributes.

UT

Version

Integration

Test

Results

Development

Version

Task

User Story

Iteration

AT

Version

1

*

1..*

*

1

* 1

1..* Has

Belnogs to

Belnogs to

Included in

Has
*

1

Has

Developer

Story

Owner

Project

Manager

Development

Artefact

UT

Artefact

Tester
ID

Name
Location

ID

Name
Location

ID

Name

Location
ID Name

Location

AT

Artefact

ID

Start Date

Complete

Date

ID Name Last

UTV

Last IV

Last RV

ID Name

ID

Time Stamp

Status

ID

O
wner

Tim
e S

ta
m

p

Status

ID

Name

ID

TimeStamp

Status

ID

Name

Planned Start

Planned

Complete

Actual

Start
Actual

Complete
ID

Time

StampStatus

ID

Name

Planned Start

Planned

Complete

State

Actual Start

Actual

complete

State

Release

ID Planned

Start

Planned

Complete

Is part Of

1

*

Owns

Works on1 *

*

1

1

1

1

Owns

IsIs

Is

1

1

*

*

*

Tests

*

1

Tel

Tel

Tel

Tel

Type

Actual

Start

Actual

Complete

Figure 5-6. Detailed data model.

Chapter 5. Design of Progress Tracking System

92

5.6 Design Issues

There are different techniques and approaches used by agile teams to apply the

agile practices. This section discusses the acceptance testing approaches and the

continuous integration approaches and which approaches are supported in the

proposed progress tracking system.

5.6.1 Acceptance Testing Approaches

During an iteration, user stories will be translated into acceptance tests.

Acceptance tests are high level tests of user stories and are used to ensure that the

functionalities implemented in stories meet customer requirements, rather than as

a means of testing internal or technical elements of the code, as this is done by

unit tests.

Acceptance tests can be automated by means of acceptance testing frameworks

such as Fitness [142] and Selenium [143]. There is a debate in the agile

community regarding the value of automating the acceptance tests. While some

proponents like Ron Jeffries
2
, believe that the use of an acceptance testing tool is

essential to the success of the agile project [144], others believe it can be costly,

as well as being time consuming. James Shore
3
 states that he no longer uses

automated acceptance testing or recommends it [145]. He adds:

“My experience with Fit and other agile acceptance testing tools is that they cost

more than they’re worth. There’s a lot of value in getting concrete examples from

real customers and business experts; not so much value in using “natural

language” tools like Fit and similar” [145].

2
 Ron Jeffries is one of the 3 founders of XP and the author of ‘Extreme Programming Installed’

book.

3
 James Shore is a thought leader in the agile community and the author of ‘The Art of Agile

Development’ book.

Chapter 5. Design of Progress Tracking System

93

According to a survey by VersionOne published in December 2010 [54], more

than two-thirds of the agile community do not use any automated AT tools. In

addition, there are some tests that cannot be automated and need to be performed

manually. If testing is manual, there will usually be a longer interval before the

test is performed again because performing tests is often extremely time-

consuming. This makes it harder to recognise the source of the failed tests. It also

causes team members to rely on less accurate progress information.

In order to provide a general approach in this research, the proposed progress

tracking system provides support not only for the manual acceptance testing but

also for the automated approach. The proposed architecture allows receiving

acceptance testing information from the acceptance testing tool.

Furthermore, additional functionalities are provided to the automated AT

process. The tracking system sends an AT request to the AT tool and then

receives the result. The tracking system analyses the AT result and finds out how

it affects the development progress. If a complete user story is affected due to

one of its associated automated acceptance tests failing, the corresponding user

story is set as ‘Waiting for AT’. Team members affected are found and notified.

In addition, if a user story is affected because one of its associated automated

acceptance tests has passed (i.e. all the functionalities required for the story have

been completed and integrated and the other acceptance tests for the same story

have already passed), then the corresponding user story is set as ‘Complete’.

Team members affected are also found and notified.

5.6.2 Continuous Integration Approaches

Continuous integration (CI) is proposed in XP to eliminate the problems of the

traditional integration by building the system incrementally. There are two

approaches to provide the CI; either synchronous or asynchronous. The

Chapter 5. Design of Progress Tracking System

94

synchronous CI means that every commit to the repository builds the system as

Martin Fowler suggests [47].

Developers test their own changes before committing to the repository. If a

personal build is done successfully, the developer can check-in code in

confidence that his/her code has been tested. If it fails, the developer is free to fix

the problem and re-test before committing. The code is built again immediately

after the check-in and any failed results between the two builds are notified. GO

[146] and Pulse [147] are examples of CI systems that support the personal build

strategy.

Pre-commit build is another synchronous strategy. It enforces the build before

every check in as in TeamCity [148] and Gauntlet [149]. However, it is not

always possible to make a build and integration tests with every commit. Poon

[150] observes that:

“With tests that took 3 hours to run, how could we do continuous integration?

We were never going to get multiple check-ins per day”.

Poon suggests checking-in the artefacts to branches first and then if the tests

passed, it is integrated to the shared mainline. This strategy can still be described

as synchronous because the artefacts are not shared until a successful build.

There are few versioning systems that can support a high number of branches

(e.g. plastic SCM [151]) whereas most of them do not have strong merging

support. All the previous strategies might prevent the developers from sharing

some code that they could need during working on their tasks for a long time.

The synchronous approach has its limitations. The primary disadvantage is the

difficulty in implementation without affecting productivity in other ways.

Forcing tests in a trigger can be a bottleneck for commits; while a build is

running for one commit other commits will be blocked [152]. Besides, it might

be too long a time until code is shared.

Chapter 5. Design of Progress Tracking System

95

The asynchronous integration approach allows the team to share code that is

either integrated or ready for integration. The integration might be done once or

twice a day. This provides a more flexible and more general integration strategy

that uses the continuous integration practice and can still be useful in broader

situations (i.e. distributed teams). The asynchronous CI strategies have been

classified by the author to two main strategies:

The first strategy is to use one mainline that is integrated periodically. The

developers share one repository and one mainline. The disadvantage of this

strategy is that the developers might use not integrated or possibly not unit-tested

artefacts. Examples of versioning systems which support this strategy include

Subversion [153] and Clearcase [154].

The second strategy is the multi-stage continuous integration. Developers in each

site integrate their work together first before doing a bigger continuous

integration between the different sites. An example of SCM that supports this

strategy is Accurev [155] .

The mini integrations in each site isolate the integration problems and facilitate

identifying the source of the defects. However, although this strategy can solve

the limitation of the one mainline by sharing only the mature artefacts between

the different teams, it might prevent the team from sharing some code that they

could need for a long time (the same existing problem in synchronous CI). The

multi-stage continuous integration also requires the dispersed teams to be well

decoupled [156].

A summary of the strengths and weaknesses of the discussed approaches and

strategies is provided in Table 5-6.

Chapter 5. Design of Progress Tracking System

96

Table 5-6. Continuous integration approaches and strategies.

Beck [42] mentioned that the asynchronous approach is the most common style

of continuous integration. The weaknesses of the synchronous approach are

worse than the weaknesses in the asynchronous approach. Keeping the team too

long a time before sharing the code or stopping the commits for the pre-commit

build can adversely affect the agility and productivity. Beck also recommends

using one mainline strategy. He observes that multiple code streams are an

enormous source of waste in software development.

Therefore, for the purpose of this research, the asynchronous approach is more

appropriate to be part of the progress tracking system proposed in this research.

Furthermore, the one mainline strategy is sufficient to support the research. It can

Approach Strategy Strengths Weaknesses

Systems

Supporting

the Strategy

S
y
n

ch
ro

n
o
u

s

Personal

builds

- Few defects can only

be shared.

- Defects could be shared.

- Long time before sharing

the code.

- GO

- Pulse

Pre-commit

build

- Integrated code can

only be shared.

- Can be a bottleneck for

commits.

- Long time before sharing

the code.

- TeamCity

- Gauntlet

Private

branch

- Integrated code can

only be shared.

- Long time before sharing

the code.

- Plastic

SCM

A
sy

n
ch

ro
n

o
u

s

One

mainline

- Developers do not

need to wait long time

before seeing others’

code.

- Developers can share not

integrated code and

possibly not unit-tested

code.

- Developers do not know

the last integrated version

- Subversion

- Clearcase

Multi-stage

integration

- The integrated code is

only shared between

the distributed teams.

- Facilitate identifying

the source of the

defects.

- Long time before sharing

the code between the sites.

- The dispersed teams need

to be well decoupled.

- Accurev

Chapter 5. Design of Progress Tracking System

97

demonstrate that the integration in the distributed agile development can be

managed by the holistic approach. Showing the process in one stage is sufficient

because the process support that will be taken in the other stages is similar.

Although there are several integration systems that support the chosen strategy

(e.g. Subversion and Clearcase), these systems do not show impact of the

integration activity on development progress. The proposed tracking system

overcomes this limitation by providing a process that allows team members to

know which user stories have been positively/negatively affected due to an

integration activity.

5.7 Summary

An approach for designing a progress tracking system for distributed agile teams

has been proposed. The system pays attention to the impact of the technical

activities on development progress. It keeps track of the impact of the technical

activities by placing them under control of the tracking system. This has been

achieved through integrating the versioning functionality into the progress

tracking system and linking the UT tool, AT tool and CI tool with the progress

tracking system.

The chapter has introduced four types of model that serve diversified needs.

 Version Model: This four-stage hierarchical promotion model shows the

progress of each source code version from the time of the developer

creating it until it becomes ready for release. Knowing the current

progress state of source code enables agile teams to identify the real

progress of a specific task/user story.

 User Story Progress Model: A better awareness of the progress state of

user stories can be achieved by providing detailed information about the

Chapter 5. Design of Progress Tracking System

98

stages that user stories go through. The proposed user story progress

model distinguishes between the following states: ‘Not started’, ‘Active’,

‘Waiting for integration’, ‘Waiting for AT’ and ‘Complete’. These states

can provide more accurate progress information. They reflect the effect of

the technical activities on the story’s progress.

 Process Model: The technical activities have been re-designed in a set of

process models. The aim of these process models is to provide a visual

representation of how the co-ordination activities discussed in Chapter 4

can be implemented in a computer-based system.

 Data Model: The model represents the data necessary for developing the

progress tracking system and the relationships among them.

Progress is measured through blocks of working software called stories. In order

to know how far we are from completing a block (i.e. story), a story progress

model is proposed that shows the stage that the story is in. Determining the story

stage requires knowing the status of the source code versions which is developed

to achieve the story purpose and the version model helps determine the version

status.

The process model helps identify the point where a progress change takes place

and then helps co-ordinate it. Finally, the data model saves the information of the

various project artefacts (tasks, stories, tests, etc) and the dependencies between

them.

99

CHAPTER 6

Evaluation

This chapter evaluates the holistic approach to developing a progress tracking

system proposed in this work. In section 1.2, the hypothesis was given as:

“Managing development progress in distributed agile projects can be supported

by providing a computer-based holistic approach that co-ordinates the impact of

the different technical activities on development progress, and will provide

improved awareness of the actual progress to team members.”

In order to test the hypothesis, three scenarios are created. Within each scenario, a

comparison is made between the old version of the scenario, where the holistic

approach is not considered, and the new version of the scenario after introducing

the holistic approach.

This chapter is organised as follows: section 6.1 discusses the evaluation

methodology used. Section 6.2 describes the methodology used for selecting the

three scenarios, while section 6.3 describes and discusses the three scenarios used

for evaluation. Section 6.4 describes developing a prototype system to validate

the holistic approach. Further discussion is given in section 6.5. Finally, the

chapter is summarised in section 6.6.

Chapter 6. Evaluation

100

6.1 Evaluation Methodology

6.1.1 Evaluation for Groupware Systems

The progress tracking system presented in this research is a groupware system.

Ellis et al. [157] define groupware systems as:

“…computer-based systems that support groups of people engaged in a

common task (or goal) and that provide an interface to a shared

environment.”

The definition applies to the proposed progress tracking system. Therefore, its

evaluation will have the same issues identified as those for evaluating groupware

systems.

Evaluation of groupware has been widely considered as a difficult task and it is

still an active research area in the field of computer-supported co-operative work

(CSCW). Gruhn [157] observes:

“The almost insurmountable obstacles to meaningful, generalizable

analysis and evaluation of groupware systems prevents us from learning

from experience.”

A main reason why groupware is hard to evaluate is the effect of the plurality of

people and their social and organizational context [158][159]. Gruhn [157] notes:

“Lab situations and partial prototypes cannot reliably capture complex but

important social, motivational, economic and political dynamics… Field

observations are complicated by the number of people involved over time at

each site, the variability in group composition, and the range of

environmental factors that affect the use of technology.”

Therefore, it will be difficult to use a quantitative approach to evaluate the

effectiveness of a proposed groupware system (e.g. identify measurable claims

such as hours saved as a result of system support for a particular activity).

Chapter 6. Evaluation

101

A review of evaluations in 45 proposed groupware systems has been conducted

by Pinelle and Gutwin [160]. The study revealed that about three quarters of

groupware systems did not undergo any sort of quantitative evaluation.

To assess the value of the holistic approach in co-ordinating team members’

work, it will be useful to provide qualitative-based behavioural analysis of the

technical activities. This analysis is needed in order to understand how the co-

ordination support enhances team members’ awareness of development progress.

An analysis based on experiment may not be possible to evaluate the

effectiveness of the proposed progress tracking system. The main reasons for this

include the large number of dependent functionalities of the proposed progress

tracking system. Implementing a complete system by one person will need

considerable amount of time. In addition, allocating sufficient time to evaluate

each functionality is an obstacle. This becomes impossible if there is a short time

constraint for the evaluation exercise.

Another issue with experiment-based analysis is that the anticipated benefits of

the proposed system may take a long time to appear [161]. The value of keeping

track of the dependencies among source code artefacts, tasks, stories, and tests,

may not be clear at the early stages of an agile project. It will be more obvious

when the team has a large amount of data, when it is hard for the team members

to understand the relationships among them.

Araujo et al. [161] observe also that it is difficult to find ‘ideal’ groups to

conduct evaluations:

“It is a consensus in groupware evaluation research that groups are quite

unique. Even if we try hard, it is almost impossible to find two groups

with the same values to conform to our independent variables. Often we

cannot find the ideal group to conduct our evaluations. To find or to build

groups for evaluation is difficult and costly.”

The next sub-section introduces a scenario-based evaluation approach that is

used to evaluate the holistic approach.

Chapter 6. Evaluation

102

6.1.2 A Scenario-Based Evaluation Approach

Scenario-based evaluation (SBE) has been suggested as an effective means for

the assessment of systems [162]. A key advantage of scenarios is their scalability

and flexibility to account for work practices distributed over space, people, and

time [163]. In addition, SBE can provide a broad understanding of the contextual

interactions between users, tasks and the system features [162] [164].

The suggested evaluation approach provides an analytic comparison between the

classical agile approach of performing technical activities, based on XP practices,

and the proposed holistic approach. In addition, practical validation has been

made by developing a prototype system for selected scenarios.

The evaluation process consists of three main parts.

 First: Selection of scenarios

Real world agile projects include too many scenarios that affect the

development progress. It is difficult to generate sufficient scenarios to

reflect real world activity. Hence, it is more efficient and effective to

generate a subset of representative scenarios that cover the main set of

technical activities. In order to do this, a systematic method is required to

identify suitable scenarios.

 Second: Analysis of scenarios

In order to evaluate the selected scenarios, each scenario is represented

twice:

o First, with the classical XP approach. The XP approach is used as a

representative of agile methods. For fair comparison, it is assumed

that XP best practices are used in these scenarios. For example, in the

XP project, automated AT is expected to be used for some of the tests.

o Second, with our holistic approach.

Chapter 6. Evaluation

103

An analytical comparison between the two scenario versions is carried

out. In addition, a multi-perspective view is achieved through providing a

role-oriented analysis to each scenario.

 Third: Validation of Scenarios

A software system is developed to validate the holistic scenario.

6.2 Selection of Scenarios

To ensure that the selected scenarios are significant and have reasonable

coverage for evaluating the holistic approach, the following methodology is

adopted.

1) For each technical factor, the various events affecting progress, identified in

chapter 4, are listed (Table 6-1).

2) The significance of the progress change events are evaluated on the following

criteria:

 Complexity of co-ordination required.

o Low: requires progress constraint checking only.

o Medium: dependency is only between two team members.

o High: dependency is among several team members.

 Frequency of progress change event.

o Low: few times during the project.

o Medium: several times during each iteration.

o High: several times every day.

 Influence on development progress.

o Low: impact on task scope only.

o Medium: impact on one user story.

Chapter 6. Evaluation

104

o High: impact on several user stories.

3) Scenarios are selected so that they include potential progress change events

from each technical factor (i.e. source code versioning, CI and releasing, UT, and

AT).

No
Technical

Factor
Progress Change Event

Complexity of

Co-ordination

Required

Event

Frequency

Influence on

Development

Progress

L M H L M H L M H

1

S
o

u
rc

e
 C

o
d

e
V

er
si

o
n

in
g

Creating a new artefact belonging to un-

started/incomplete tasks may change the

task’s state.

  

2

Creating a new artefact belonging to un-

started/incomplete story may change the

story’s state.

  

3

Checking-out artefact version belonging to

un-started/incomplete tasks may change the

task’s state.

  

4

Checking-out artefact belonging to un-

started/incomplete story may change the

story’s state.

  

5
Modifying an artefact belonging to a

‘complete’ task may change the task’s state.
   

6

Modifying an artefact belonging to a

‘complete’ story may change the story’s

state.

   

7
Modifying an integrated artefact may

require it to be re-integrated.
   

8
Deleting an integrated artefact may break

the build.
   

9

C
I

&

R
el

e
a

si
n

g

An integration process has been performed

that failed.
   

10
An integration process has been performed

that was successful.
   

11
A set of user stories may be released while

some of them have not been fully tested.
   

Chapter 6. Evaluation

105

No
Technical

Factor
Progress Change Event

Complexity of

Co-ordination

Required

Event

Frequency

Influence on

Development

Progress

L M H L M H L M H

12

U
n

it
 T

es
ti

n
g

Adding a unit test without re-testing it or

with a ‘fail’ result can affect the

corresponding task if it was complete.

  

13

Modifying a unit test without re-testing it or

with a ‘fail’ result can affect the

corresponding task if it was complete.

  

14
Deleting the only unit test for an artefact of

a completed task affects the task’s progress.
  

15

A unit test may not have passed when its

corresponding source code version is

checked-in.

  

16 A failed unit test prevents completing the task.   

17

A
cc

ep
ta

n
ce

 T
es

ti
n

g

Adding an acceptance test without testing it,

or with a ‘fail’ result, can affect the

corresponding story if it was complete.

   

18

Modifying an acceptance test without

testing it, or with a ‘fail’ result, can affect

the corresponding story if it was complete.

   

19
Deleting the only acceptance test for a

complete story affects the story’s progress.
   

20

Running automated acceptance testing may

result in failing acceptance tests whose

stories are complete.

   

21

Running automated acceptance testing may

result in passing acceptance tests whose

stories are complete.

   

22

Updating a manual acceptance test to ‘fail’

may cause a complete story to become

incomplete.

   

23
Updating a manual acceptance test to ‘pass’

may cause the story to become complete.
   

Table 6-1. Significance of progress change events that may affect agile

development progress. Key (L: Low, M: Medium, H: High).

Chapter 6. Evaluation

106

Based on the results in Table 6-1, the following progress change events can be

selected to be part of the scenarios that will be developed.

Source code versioning:

(Event 6) Modifying an artefact belonging to a ‘complete’ story may change the

story’s state.

Continuous Integration and Releasing:

Any of the following events can be selected (these events have the same

significance):

(Event 9) An integration process has been performed that failed.

(Event 10) An integration process has been performed that was successful.

Unit Testing:

Any of the following events can be selected (these events have the same

significance):

(Event 15) A unit test may not have passed when its corresponding source code

version is checked in.

(Event 16) A complete task will be affected if one of its associated unit tests has

failed.

Acceptance Testing:

Any of the following events can be selected (these events have the same

significance):

(Event 20) Running automated acceptance testing may result in failing

acceptance tests whose stories are complete.

(Event 21) Running automated acceptance testing may result in passing

acceptance tests whose stories are complete.

Chapter 6. Evaluation

107

It has been decided to choose the following progress events as representative of

the technical factors: events 6, 10, 15 and 20. Consequently, the following

scenarios are created (Table 6-2):

 To represent event 6 a ‘check-in source code version’ scenario is created.

 To represent event 10, ‘performing successful integration’ scenario is created.

 Because the check-in process usually includes running a unit test before

checking-in the code, the ‘check-in source code version’ scenario can be used

to represent event 15.

 To represent event 20, ‘Running Automated Acceptance testing’ scenario is

created.

Scenario Technical Factor Covered
Progress Event

Covered

Scenario 1: Check-in Source

Code Version

Source Code Versioning, Unit

Testing

Event 6, Event 15

Scenario 2: Performing

Successful Integration

Continuous Integration Event 10

Scenario 3: Running Automated

Acceptance Testing

Acceptance Testing Event 20

Table 6-2. Scenarios used for evaluation.

These scenarios include the most significant progress change events, according

to the methodology used in this section. They are also able to provide examples

that show the need for each of the four key types of co-ordination activity, as

identified in section 4.2.

6.3 Analysis of Scenarios

This section describes three scenarios that are independent of each other. These

are: Check-in Source Code Version, Performing Successful Integration and

Running Automated Acceptance Testing. Each of them has two versions: the

classical XP version and the holistic approach version. The classical XP version

of the scenarios are based on the best practices used for checking-in source code

Chapter 6. Evaluation

108

[42] [165], performing integration [156] and running automated acceptance test

[166].

Before describing the scenario details of each version, a general description of

the scenario is given through showing pre-conditions (the state before the

scenario starts), trigger (what initiates the scenario) and post-conditions (the state

after completing the scenario).

6.3.1 Scenario 1: ‘Check-in Source Code Version’ Scenario

Pre-conditions: The source code artefact A2 has three versions: A2.1, A2.2 and

A2.3. The first two versions belong to the completed stories, US1 and US2. The

developer, Mike, is currently working on the third version, A2.3, as part of his

work on Task T3.1 that belongs to user story US3
4
 (Figure 6-1).

Trigger: Mike checks-in A2.3.

Post-conditions: The new modification made by Mike affects the user stories

US1 and US2. It affects the two acceptance tests: AT1.1 that belongs to US1, and

AT2.1 that belongs to US2.

A2

User Story2 (US2)

State: Complete

A2.2

Story Owner:

 Ahmed

Acceptance Testing

AT2.1: Pass

AT2.2: Pass

Tester:

 Sara

User Story1 (US1)

State: Complete

A2.1

Story Owner:

 Steve

Acceptance Testing

AT1.1: Pass

AT1.2: Pass

Tester:

 James

X

X

X

X

User Story3 (US3)

State: Active

A2.3

Story Owner:

Ian

Acceptance Testing

AT3.1: Fail

AT3.2: Fail

Tester:

Chris

Figure 6-1. The state before the check-in process.

4
 Because of applying the practice of test-driven development (TDD) in XP, the acceptance tests

AT3.1 and AT3.2 which belong to US3 are flagged as ‘Fail’ until team can demonstrate they

have passed.

Chapter 6. Evaluation

109

Classical XP Version of Scenario 1

1. Mike undertakes the unit testing for A2.3 and it is successful.

2. He checks in A2.3 to the versioning system.

3. He identifies US1 and US2 as a potentially affected story.

4. He looks for the affected team members (story owners: ‘Steve’ and ‘Ahmed’,

testers: ‘James’ and ‘Sara’ as well as project manager) and informs them that the

story might be affected.

The key scenario steps are summarised in Figure 6-2.

 x

Developer: Mike

Versioning System

M
ik
e

ch
ec

ks
-in

 A
2.

3

2

4Story Owner: Steve

Story Owner:

 Ahmed

Tester: Sara

x

UT tool

1 Mike makes

UT

Mike identifies US1 and US2 as potential affected

stories.
3

Mike looks for the affected team members and informs them

that US1 and US2 might be affected.

Project

 Manager: Nick

Tester: James

Figure 6-2. Description of the classical XP version of scenario 1.

Chapter 6. Evaluation

110

The Holistic Approach Version of Scenario 1

1. Mike undertakes the unit testing for A2.3 and it is successful.

2. Mike makes a ‘check-in’ request to the tracking system.

3. The system sends a UT request to the UT tool. The test has passed; hence,

A2.3 is checked-in.

4. The system retrieves stories that might be affected by introducing the new

version. They are US1 and US2.

5. Mike is asked if he wants to delete any of the potentially affected stories. He

does not remove any of them.

6. Progress state of US1 and US2 are changed to ‘Waiting for Integration’.

7. Notifications are sent automatically to the affected team members (story

owners: ‘Steve’ and ‘Ahmed’, testers: ‘James’ and ‘Sara’ as well as project

manager).

The key scenario steps are summarised in Figure 6-3.
x

Developer: Mike

Tracking System

check-in
 re

quest is
 m

ade

2

Story Owner:

 Steve

Mike determ
ines th

e

affe
cted storie

s

5
System immediately notifies affected story

owners, testers and project manager

 about change in progress

Tester: James

7

4 System identifies potential affected stories

Story Owner:

Ahmed
Tester: Sara

6 System changes progress states of

the affected stories

x
x

x

UT Tool

System makes UT3

Project

 Manager: Nick

1
Mike Makes

 UT

Figure 6-3. Description of the holistic approach version of scenario 1.

Chapter 6. Evaluation

111

Scenario 1 Analysis

As mentioned earlier, the check-in scenario covers the progress change events 6

and 15. These events require performing all the four types of co-ordination

activities identified in section 4.2:

 Checking progress constraints: ensure that all corresponding

unit tests are successful.

 Identifying potential sources of progress change: when the

shared artefact is updated, the stories that have been affected must

be identified.

 Reflecting progress change in the tracking system: the progress

state of the affected stories has to be changed.

 Finding and notifying team members affected by a potential

progress change: the affected team members (e.g. story owner

and tester responsible for the acceptance testing for the story)

must be found and notified.

Table 6-3 compares the holistic approach with the classical XP approach, based

on the four co-ordination activities needed to manage progress change events 6

and 15.

The comparison shows that the holistic approach provides better awareness of

the actual work completed by the developers’ tasks. It immediately identifies the

potential change in progress resulting from the check-in process. In addition,

affected team members are immediately informed about the change. Therefore,

the holistic approach can help team members become aware earlier of the sources

of the potential defects that may cause a project delay.

Chapter 6. Evaluation

112

Co-ordination

Activity
The Classical XP Approach The Holistic Approach

Checking

progress

constraints

 It is up to the developer to make the UT.

 He may forget to run the UTs or may not

follow the practices. This may lead to shared

code that contains errors.

 Automatic verification is carried out.

 Automating the process ensures that

only unit-tested code is shared among

the developers.

Identifying

potential

sources of

progress

change

 Affected stories may be identified but it can

be difficult for the developer working in the

distributed project to identify which stories.

It is also time consuming.

 If affected stories are not identified earlier

by the developer, then these stories may be

unidentified until the next AT time.

 If the AT is automated, the team members

would still need to investigate the source of

the problem. In addition, not all ATs can be

automated.

 A manual AT may allow for a long defect

life before it is discovered. This may cause

the introduction of new defects to the project.

 Potentially affected stories are

automatically identified once the

developer checks-in the source code.

 The holistic approach can provide

better visibility of the actual progress. It

immediately identifies the potential

change in progress resulting from the

check-in process. By doing so, the

holistic approach will help the team

members identify the potential source of

the defects that may cause a project

delay rather than waiting until they are

discovered during AT time.

Reflecting

progress

change in the

tracking system

 Team members usually share the new

progress state informally, not in the tracking

system.

 The change of state is reflected in the

tracking system.

 It increases the entire team’s

awareness about the project state.

Find and notify

the affected

team members

 If the developer identifies an affected story,

he will need to determine who must be

contacted and then will need to share the

information with them informally (e.g. by e-

mail or during the next video-conferencing

meeting).

 If the developer is unable to identify some

of the affected stories, this activity will not

be carried out until a defect is discovered in

the AT.

 The affected story owners and testers

are notified automatically by the system

once the versioning activity is used. In

addition, the project manager is

immediately informed about the change

in progress.

Table 6-3. Analysis of the co-ordination support in scenario 1.

Chapter 6. Evaluation

113

The scenario involves participation of developers, testers, story owners and the

project manager. The benefits that each individual may achieve from introducing

the holistic approach is assessed through a role-oriented analysis (Table 6-4).

Role of the

Team Member
The Classical XP Approach The Holistic Approach

Developer ● checks-in an artefact version.

● has to understand how his

modification affects other team

members.

● has to find and notify affected

team members.

● checks-in an artefact version

● determines the potentially

affected stories suggested by the

tracking system.

Tester ● will not know the effect until

AT is made or contacted by the

developer.

● If an acceptance test failed, he

has to find and notify story owner

about change in progress

● has to trace changes to detect

source of the failure.

● is informed immediately about

potential source of defect. He does

not need to trace changes to detect

source of the defect.

Story Owner ● will not know the effect until

AT is made or contacted by the

developer.

● is informed immediately about

the progress change in his story.

Project Manager ● will not know the effect until

AT is made or contacted by the

developer.

● is informed immediately about

the progress change.

Table 6-4. Role-Based Analysis of scenario 1.

Chapter 6. Evaluation

114

6.3.2 Scenario 2: Performing Successful Integration

Pre-conditions: Ten new versions have been developed since last integration.

The functionalities required for user story US1 have been implemented and the

story is waiting for its new versions, A5.1 and A6.1, to be integrated. In addition,

the functionalities required for user story US2 have been implemented and the

story is waiting for its new versions, A8.1 and A9.1, to be integrated. The user

stories US3 and US4 are still active (Figure 6-4).

Trigger: Additionally to the nightly build practice that the team follows, Sally

would like to initiate an integration process to ensure that source code does not

include any integration problems at the moment.

Post-conditions: The integration is successful and the user stories US1 and US2

become ready for acceptance testing.

User Story1 (US1)

Story’s functionalities

are implemented

and waiting for build

x

x

x

A5.1

Story Owner:

 Steve

Acceptance Testing

AT1.1: Fail

AT1.2: Fail
Tester:

 James

User Story2 (US2)

Story’s functionalities

are implemented

and waiting for build Story Owner:

 Ahmed

Acceptance Testing

AT2.1: Fail

AT2.2: Fail

Tester:

 Sara

User Story3 (US3)

State: Active

Acceptance Testing

AT3.1: Fail

AT3.2: Fail

Tester:

 Steve

x

New Versions Entering the Build New Versions Entering the BuildNew Versions Entering the Build

Integration Process

User Story4 (US4)

State: Active

Story Owner:

 Robert

Acceptance Testing

AT4.1: Fail

AT4.2: Fail

Tester:

 Mark

New Versions Entering the Build

A18.1A16.1A15.1A14.2A13.2A12.1A9.1A8.1A6.1

Story Owner:

 Ian

Tester:

 Chris

 Sally

Initiates integration

 process

Figure 6-4. The state before performing the integration.

Chapter 6. Evaluation

115

Classical XP Version of Scenario 2

1. Sally clicks on ‘Perform Integration’ in the continuous integration (CI) system.

2. The integration system retrieves the new artefact versions from the versioning

system and performs the integration.

3. The integration system returns the result to Sally and sends generic

notifications of the integration result to team members.

4. Team members need to figure out which story functionalities are completely

implemented and integrated in the current build and then need to be acceptance-

tested.

The key scenario steps are summarised in the following diagram (Figure 6-5):

x

CI System

M
ak

es
 In

te
gr

at
io
n

re
qu

es
t

1

Versioning System

2 CI system retrieves artefact

versions and performs integration

3 CI System sends

the result to Sally and sends generic

notifications to team members about

integration result

x

x

x

Developer: SallyStory Owner: Steve

Story Owner:

 Ahmed

Project Manager:

 Nick

4 Team members figure out how

integration result affected progress.

Tester: James

Tester: Sara

Figure 6-5. Description of the classical XP version of scenario 2.

Chapter 6. Evaluation

116

The Holistic Approach Version of Scenario 2

1. Sally clicks on ‘Perform Integration’ in the tracking system.

2. System retrieves the last UTVs of the recently updated artefacts and the last

IVs of the non-recently updated artefacts and sends an integration request to the

continuous integration (CI) system.

3. System receives ‘Successful’ result from the CI system and updates the UTV

versions to ‘IV’.

4. System checks if there are any ‘Waiting for Integration’ user stories. It moves

the stories US1 and US2 to ‘Waiting for AT’.

5. Generic notifications are sent to all team members to raise awareness of the

integration result. In addition, specialised notifications, clarifying the new state

of US1 and US2, are sent to those responsible for US1 and US2, story owners

(Steve and Ahmed) and testers (James and Sara) as well as the project manager.

The key scenario steps are summarised in the following diagram (Figure 6-6):
x

Developer: Sally

Tracking System
Makes Integration

request

1 2

Integration System
Sends integration request

3

Story Owner:

 Steve

Project Manager: Nick

Tester: James
Story Owner:

Ahmed Tester: Sara

CI system returns

integration result

Tracking system sends generic

notifications to all team members

and specialised notification to the

affected team members

5

4

x

x
x

Tracking system moves the
stories US1 and US2 to
‘Waiting for AT’

Figure 6-6. Description of the holistic approach version of scenario 2.

Chapter 6. Evaluation

117

Scenario 2 Analysis

The ‘Perform Successful Integration’ scenario covers change event 10. This

event requires performing three of the co-ordination activities identified in

section 4.2:

 Identifying potential sources of progress change: an integration

‘pass’ result should contribute to making progress on the stories

that are completely implemented and have associated versions

entering the build.

 Reflecting progress change in the tracking system: the progress

state of the affected stories has to be changed.

 Finding and notifying team members affected by a potential

progress change: story owner and tester have to be located and

notified that the story is now ready for acceptance testing.

Table 6-5 compares the holistic approach with the classical XP approach, based

on the three co-ordination activities needed to manage progress change event 10.

The holistic approach provides better visibility of the actual work completed by

team members. It automatically identifies the affected stories and hence team

members will not need to spend time recognising how the integration result

affects their work progress. When integration passes, relevant story owners and

testers become aware immediately that their stories have become ready for

acceptance testing. The automatic notification helps in making the acceptance

test as early as possible in the development cycle.

Chapter 6. Evaluation

118

Co-ordination

Activity
The Classical XP Approach The Holistic Approach

Identifying potential

sources of progress

change

● Team members need to figure

out how the integration result

affects progress.

● It can be difficult for team

members working in the

distributed project to realise

which stories have been

affected.

● Potentially affected stories

are automatically identified

once the integration is

performed.

 Provides better visibility of

the actual progress.

Immediately identifies the

potential change in progress

resulting from the integration

process.

Reflecting progress

change in the

tracking system

 Team members usually share

the new progress state

informally, not in the tracking

system.

● The integration effect is

automatically reflected in the

tracking system.

 It increases the entire team’s

awareness about the project

state.

Finding and

notifying team

members affected by

potential progress

change

● It is done in an ad-hoc

manner.

● The affected story owners

and testers may be in different

sites. This may make it difficult

to identify who should be

notified.

● A delay in making the

acceptance testing may take

place because affected team

members do not know that the

story is ready for acceptance

testing.

● The affected story owners

and testers are notified

automatically by the system

once the integration process is

completed.

● The automatic notification

raises awareness that the stories

are available for acceptance

testing, thus increasing the

opportunity to run the

acceptance tests earlier in the

development cycle.

Table 6-5. Analysis of the co-ordination support in scenario 2.

Chapter 6. Evaluation

119

Similar to Scenario 1, this scenario involves participation from a developer, story

owners, testers and project manager. A role-oriented analysis is provided in

Table 6-6.

Role of the

Team Member
The Classical XP Approach The Holistic Approach

Developer ● performs integration ● performs integration

Tester ● needs to figure out which story

functionalities are completely

programmed and integrated in the

current build.

● is informed immediately about

which stories have become ready for

AT.

Story Owner ● may not recognise how the

integration result affects his story

progress.

● is informed immediately about

change in his story progress.

Project Manager ● will know the integration result

but will not know how the result

affects the development progress.

● The approach allows him to

realise the effect of the integration

on the development progress.

Table 6-6. A Role-based analysis of scenario 2.

Chapter 6. Evaluation

120

6.3.3 Scenario 3: Running Automated Acceptance Testing

Pre-conditions: The acceptance tests AT1.1, AT2.1 and AT3.1 are passed.

These tests belong to the completed stories US1, US2 and US3 respectively

(Figure 6-7).

Trigger: As part of a regression testing, the test leader, Sam, runs automated

acceptance testing with the three acceptance tests (AT1.1, AT2.1, AT3.1).

Post-conditions: The acceptance tests AT1.1 and AT2.1 failed due to recent

modifications to shared code belonging to US1 and US2.

User Story1 (US1)

State: Complete
Story Owner:

 Steve

Acceptance Testing

AT1.1: Pass

Tester:

 James

User Story2 (US2)

State: Complete
Story Owner:

 Ahmed

Acceptance Testing

AT2.1: Pass

Tester:

 Sara

User Story3 (US3)

State: Complete

Acceptance Testing

AT3.1: Pass

x

Automated AT Process

Story Owner:

 Ian

Tester:

 Chris

Sam

Initiates automated AT

 Process

Figure 6-7. The state before the testing process.

Chapter 6. Evaluation

121

Classical XP version of Scenario 3

1. Sam initiates automated acceptance testing using the AT tool.

2. The AT tool performs the tests and returns the results to Sam.

3. Sam finds and then notifies the affected team members.

The key scenario steps are summarised in the following diagram (Figure 6-8):

AT Tool

Initiates automated AT 1

Tester: Sara

Sam finds and notifies affected story

owners, testers and project manager

Story Owner: Steve

3

x

Sam
AT tool performs the tests and returns

the result

2

Project Manager: Nick

Tester: James Story Owner: Ahmed

Figure 6-8. Description of the classical XP version of scenario 3.

Chapter 6. Evaluation

122

The Holistic Approach Version of Scenario 3

1. Sam initiates automated acceptance testing using the tracking system.

2. The tracking system sends request to the AT tool and then receives the

test result.

3. As the result shows that the acceptance tests AT1 and AT2 failed, the

tracking system changes the state of the user stories US1 and US2 to

‘Waiting for AT’.

4. The tracking system provides the result to Sam and automatically sends

notifications to the affected team members (story owners: Steve and

Ahmed, testers: James and Sara, and the project manager, Nick).

The key scenario steps are summarised in the following diagram (Figure 6-9):

Tracking SystemInitiates automated AT

1

Tester: Sara

The tracking system provides the result

to Sam and sends automatic

notifications to the affected story

owners, testers and project manager

Story Owner: Steve

4

x

Sam

The tracking system sends request

 to AT tool and get the result.

2

Project Manager: Nick

Tester: James

Story Owner: Ahmed

Acceptance Testing

Tool

The tracking system changes the state of

the affected stories

3

Figure 6-9. Description of the holistic approach version of scenario 3.

Chapter 6. Evaluation

123

Scenario 3 Analysis:

The ‘Running Automated AT’ scenario covers change event 20. This event

requires performing three of the co-ordination activities identified in section 4.2:

 Identifying potential sources of progress change: if running

automated acceptance testing has led to failed acceptance tests

and if these acceptance tests belong to completed stories, these

stories become incomplete.

 Reflecting progress change in the tracking system: the progress

state of the affected stories has to be changed.

 Finding and notifying team members affected by a potential

progress change: story owners and testers have to be located and

notified that the affected stories have failed acceptance tests.

Table 6-7 compares the holistic approach with the classical XP approach, based

on the three co-ordination activities needed to manage change event 20. This

scenario shows that the holistic approach allows the tracking system to identify

the influence of failed acceptance tests on development progress. If an

acceptance test fails, the system automatically changes the state of the

corresponding user story and notifies the story users.

By replacing the manual method, the holistic approach can provide better

awareness to team members about the real progress of development. The impact

of failed acceptance tests is formally reflected in the tracking system. In addition,

the affected story owners and testers, as well as project manager, are

automatically found and notified.

Chapter 6. Evaluation

124

Co-ordination

Activity
The Classical XP Approach The Holistic Approach

Identifying potential

sources of progress

change

● The person who made the

automated AT may not know

which stories have been affected.

This is likely if the failed

acceptance tests belong to stories

created at different sites.

● Identified automatically by the

tracking system.

Reflecting progress

change in the

tracking system

● Progress change is not

reflected in the tracking system.

● The effect of the automated

AT is automatically reflected in

the tracking system.

● It increases the entire team’s

awareness of the project state.

Finding and

notifying team

members affected by

potential progress

change

● It is done in an ad-hoc manner.

● The affected story owners and

testers may be at different sites.

This may make it difficult to

identify who should be notified.

● A delay in resolving the

defects may take place because

affected team members may not

be notified about the failed tests.

● The affected story owners and

testers are notified automatically

by the tracking system once the

AT process is completed.

● The automatic notification

helps in resolving the defects

early in the development cycle.

Table 6-7. Analysis of the co-ordination support in scenario 3.

This scenario involves participation of the test leader, testers, story owners and

project manager. An evaluation of the benefits that each of them can achieve is

assessed in the role-oriented analysis presented in Table 6-8.

Chapter 6. Evaluation

125

Role of the

Team Member

The Classical XP Approach The Holistic Approach

Test Leader ● performs the automated AT.

● has to find and notify the

affected team members.

● performs the automated AT.

Tester ● will not be able to investigate

the source of the problem until he

is notified by the test leader.

● is informed immediately about

failed test.

Story Owner ● will not be able to investigate

the source of the problem until he

is notified by the test leader.

● is informed immediately about

change in his story progress.

Project Manager ● will not know the actual

progress until he is notified by the

test leader.

● will be notified automatically

about the progress change.

Table 6-8. A Role-based analysis of scenario 3.

6.4 Validation of the Holistic Approach

A research prototype system has been developed to demonstrate the feasibility of

the proposed holistic approach to developing a progress tracking system. It

validates the holistic approach version of the three scenarios provided in the

previous section and ensures that a computer-based system is capable of

demonstrating them.

The NetBeans IDE [167] has been used to develop the application, while

MySQL [168] is used as the backend database. Both are popular tools used for

creating computer applications.

Chapter 6. Evaluation

126

6.4.1 System Database

The data model created in Chapter 5 has been translated into a progress tracking

system database (Figure 6-10). This database is sufficient to keep track of the

basic data needed to demonstrate the value of the proposed holistic approach.

Figure 6-10. Progress Tracking System Database.

Chapter 6. Evaluation

127

6.4.2 Implementation of Scenario 1

The prototype implementation does not provide complete functionalities for the

tracking system but demonstrates only that a computer system is able to perform

the steps involved in each of the three holistic approach scenarios described in

this chapter. The implementation for each scenario consists of a sequence of

screens, where each screen represents one step of the scenario described earlier.

Each screen displays the output that results from moving from one step to

another. A timer is used to move the screens forward.

Here, we explain in detail the various steps involved in the holistic approach

version of scenario 1 (Check-in Source Code Version). The implementation

description of the other two scenarios is described in Appendix C.

Scenario 1 starts with the following initial data set:

- The source code artefact A2 has three versions: A2.1, A2.2 and A2.3.

- A2.1 and A2.2 belong to the completed stories, US1 and US2.

- The developer, Mike, is working on the third version, A2.3, as part of

his work on Task T3.1, which belongs to user story US3.

The implementation of the six steps involved in the holistic version of the check-

in scenario is discussed below.

1- Mike makes a ‘check-in’ request to the tracking system (Figure 6-11):

The versions that the developer updates as part of his work on Task 3.1 can be

achieved through the following query:

 SELECT a.versionID

FROM Developmentversion a

WHERE a.taskID='T3.1

Chapter 6. Evaluation

128

Figure 6-11. Implementation of scenario 1, step 1.

2- After the system checks the corresponding unit test passed, A2.3 is checked-in

(Figure 6-12).

Figure 6-12. Implementation of scenario 1, step 2.

Chapter 6. Evaluation

129

The system retrieves the state of the corresponding unit test through the

following query:

If the unit test is in the ‘pass’ state, the artefact version can be checked-in. The

check-in process promotes the version to ‘UTV’ state.

3,4. The system retrieves stories that might be affected by introducing the new

version. They are US1 and US2. Mike is asked if he wants to delete any of the

potentially affected stories from the list. He does not remove any of them.

In order to obtain this information, the system has to check stories that use the

same artefact and are now in ‘Waiting for AT’ state or in ‘Complete’ state:

SELECT u.id, u.status

FROM Utversion u , Developmentversion a

WHERE a.versionID='A2.3' and a.uTVersion=u.id

SELECT story.id, story.name

FROM task, story

WHERE (story.state = 'Complete' or story.state =

 'Waiting for AT')and task.storyID=

 story.ID and task.id in

 (SELECT tasked

 FROM Developmentversion

 WHERE artefactid =

 (SELECT artefactid

 FROM Developmentversion

 WHERE versionid= 'A2.3'))

UPDATE Developmentversion a

SET a.vState='UTV'

WHERE a.versionID='A2.3'

Chapter 6. Evaluation

130

The query result retrieves the stories US1 and US2 as they both are complete and

updated the artefact A2 (Figure 6-13).

Figure 6-13. Implementation of scenario 1, steps 3,4.

5. As stated in the scenario description, Mike believes both stories US1 and US2

are affected; hence, the system updates their states to ‘Waiting for Integration’

(Figure 6-14) using the following SQL update statement.

UPDATE Story s

SET s.state='Waiting for Integration'

WHERE ((s.id='US1')or (s.id='US2'))

Chapter 6. Evaluation

131

Figure 6-14. Implementation of scenario 1, step 5.

6. Notifications are sent automatically to the affected team members (story

owners: ‘Steve’ and ‘Ahmed’, testers: ‘James’ and ‘Sara’ as well as the project

manager).

In order to retrieve the affected story owners, the following query is created:

SELECT ss.id StoryID, so.name StoryOwner,

 so.location OwnerLocation

FROM story ss, storyowner so

WHERE ss.ownerid=so.id and (ss.id = 'US1' or

 ss.id = 'US2')

Chapter 6. Evaluation

132

and in order to retrieve the affected testers, the following query is created:

The query result shows that the story owners (Steve and Ahmed) and testers

(James and Sara) are affected.

A notification message is sent automatically to each of the affected team

members. Example of such message is shown in Figure 6-15. It shows the

affected story, which caused the change in progress and in which site Mike

works in.

Figure 6-15. Implementation of scenario 1, step 6.

SELECT ss.id StoryID, t.name Tester,

 t.location TesterLocation

FROM story ss, tester t

WHERE ss.testerid=t.id and (ss.id = 'US1'

 or ss.id = 'US2')

Chapter 6. Evaluation

133

6.4.3 Validation Discussion

Implementation of the three scenarios has shown several results. These results

are discussed below.

 The capability of keeping track of the dependencies between

project artefacts (tasks, stories, tests, code etc):

Each project artefact is represented in a table in the database and a

logical representation of the relations between the tables is made.

Once one of the artefacts changes, it becomes possible to know

which of the other artefacts have been affected.

 The capability of storing changes to the source code versions and

moving them from one state to another based on versioning

activities such as check-in process:

Implementation of the check-in scenario involved moving the TV

version that Mike was working on in his private workspace to

UTV. Such change to the version state allows sharing the version

with the other developers, where they can use the version in

confidence that it has been unit-tested.

 The capability of checking progress constraints:

 Before checking-in the source code version A2.3, the system

 carries out an activity that makes sure that the version is unit-

 tested. This guarantees that only the unit-tested code is shared

 amongst team members.

Chapter 6. Evaluation

134

 The capability of reflecting the impact of technical activities

carried out by team members on development progress state:

In implementation of the check-in scenario, the system discovered

what stories have been potentially affected due to the recent

change introduced by Mike. This has been discovered through

querying the database about the stories that use the same artefact

and are in ‘Waiting for AT’ state or in ‘Complete’ state. As the

developer believes that all the suggested stories are affected, an

update statement is made to change the stories’ states to ‘Waiting

for Integration’.

 The capability of identifying affected team members and targeting

the co-ordination to those who are impacted:

After determining the affected stories, it becomes easy to identify

the affected people. This is because the information on the story

owner and tester for each user story is registered in the database.

6.5 Further Discussion on Evaluation

6.5.1 Overcoming the Limitations of the Informal Methods

The three scenarios of the classical extreme programming approach show that the

impact of the technical activities on development progress is completely

managed manually in an ad-hoc manner. It is the team members’ responsibility

to identify and co-ordinate progress change events.

Section 3.3 highlighted the main limitation of informal methods used to manage

development progress of distributed agile projects as the impact of technical

Chapter 6. Evaluation

135

activities on progress may not be fully recognised by the team members. As an

agile project grows, the number of dependencies between progress information

and technical objects (e.g. source code artefacts and tests) becomes

uncontrollable and difficult to keep track of. This is true for the three scenarios

introduced in this chapter, although these scenarios consider only a few

dependencies.

The computer-based holistic approach overcomes the limitations of the informal

methods by providing a system architecture that allows the impact of technical

activities on development progress to be captured. The automatic identification

and co-ordination of progress change events compensate for human deficiencies.

The holistic approach does not replace the need for informal communication

among team members as it also supports raising the awareness of the changes

that may affect development progress. However, depending completely on

humans to capture and co-ordinate the different types of change is unrealistic.

One major cause is the complexity involved in understanding the impact of

changes on development progress.

6.5.2 Overcoming the Limitations of the Formal Methods

Although there are computer systems which include many mechanisms to

support managing progress of distributed agile projects, as discussed in section

3.2, all these systems fail in identifying the impact of technical activities on

development progress. This is because they rely on changes in progress, caused

by the technical activities, to be flagged in the system by team members.

The proposed holistic approach extends the scope of current progress tracking

systems. It makes the tracking system identify progress change events, not only

through user inputs, but also through automatic identification. It then helps raise

team members’ awareness of the progress state by providing the necessary co-

ordination for each progress change event.

Chapter 6. Evaluation

136

6.6 Summary

This chapter has evaluated the holistic approach to developing a progress

tracking system for distributed agile teams. A scenario-based approach has been

used as an evaluation methodology. The following three scenarios were used:

 Check-in Source Code Version

 Performing Successful Integration

 Running automated Acceptance Testing

The comparisons between the execution of these scenarios when the classical XP

approach is used, and when the holistic approach is introduced, revealed that

better awareness of progress can be achieved with the holistic approach. The

strength of the holistic approach is that it provides automatic identification and

co-ordination of progress change events.

A proof-of-concept prototype was developed to ensure that a computer system is

capable of demonstrating the holistic approach. The implementation

demonstrated that the holistic approach scenario can be made. The database

schema and the SQL queries were able to identify the change in progress and to

provide the necessary co-ordination.

137

CHAPTER 7

Conclusions

This chapter concludes the research reported in this thesis. It will discuss the

achievement of the research against its hypothesis and objectives (section 7.1),

future directions for further improvement (section 7.2), and will finally discuss

the overall contribution of the research (section 7.3).

7.1 Achievement of the Research Objectives

Section 1.2 included a statement of the hypothesis of the research as:

“Managing development progress in distributed agile projects can be supported

by providing a computer-based holistic approach that co-ordinates the impact of

the different technical activities on development progress, and will provide

improved awareness of the actual progress to team members.”

The research conducted in this thesis and the approach documented in the

previous chapters tested this hypothesis to the point where it is possible to say

that it does indeed hold true. The holistic approach helps distributed agile teams

identifying potential sources of progress change and helps co-ordinate it with

other team members. This overcomes the limitation of the informal methods,

where team members completely rely on their understanding of how carrying out

technical activities may change the progress. The holistic approach also

Chapter 7. Conclusions

138

overcomes the limitations of the formal methods. These methods use computer

systems merely for registering progress information but do not help team

members in identifying the point where a progress change event occurs and

obviously do not provide the co-ordination support necessary to deal with such

events.

Providing an effective approach that incorporates the impact of the technical

activities on development progress improves the awareness of distributed agile

teams regarding the actual progress. Team members will no longer struggle in

understanding their change impact on development progress alone, but will be

provided with a system that help them achieve that. In addition, they will not rely

on static information about progress registered in a progress tracking system, but

will be updated continuously with relevant information about progress changes

occurring to their work. Notifications regarding the changes in the progress are

targeted to those affected team members, which can help solving the problem of

information overload (i.e. having too much information where it becomes

difficult to understand how they relate to a team member's work).

Section 1.2 also identified the objectives that needed to be satisfied to achieve the

research aim of developing a computer-based holistic approach to managing

progress in a distributed agile development. These objectives are reviewed

below.

Objective 1: Defining the concept of progress in the agile approach and the

difference in progress tracking between the agile approach and the traditional

(plan-driven) approach. This includes identifying the key technical factors

affecting agile development progress.

Section 2.2.2 explained the meaning of progress in the agile approach and how it

is different from the plan-driven methodologies. While the development progress

in plan-driven methodologies is based on the completion of deliverables such as

the requirement specification document and analysis and design diagrams, the

Chapter 7. Conclusions

139

agile approach considers the amount of ‘working software’ as the primary

measure of progress.

Section 2.3.1 provided a proposition of the need for effective approach to

incorporate the impact of the technical factors (UT, AT, CI and Releasing, and

source code versioning) on development progress. This is because these factors

impact the progress towards working software. The identification of these factors

has been derived from analysing the factors that contribute to producing working

software. Each of these factors comprises a set of technical activities affecting

agile development progress (see Table 7-1).

Unit Testing (UT) Acceptance

Testing (AT)

Continuous

Integration (CI)

 & Releasing

Source

Code

Versioning

 Create a new UT

 Update existing UT

 Delete UT

 Run UT

 Create a new AT

 Update existing AT

 Delete AT

 Run AT

 Perform integration

 Make a release

 Create an artefact

 Modify an artefact

 Delete an artefact

Table 7-1. Key technical activities affecting agile development progress.

The popularity of the technical factors among the agile methods was surveyed in

section 2.3.2. The results showed that most agile methods recommended using

them.

The discussion in sections 2.2.2, 2.3.1, and 2.3.2, contributed to explicitly

defining an agile philosophy of development progress and the factors affecting it,

which has been the basis for developing a progress tracking system for agile

teams.

Chapter 7. Conclusions

140

Objective 2: Surveying how well the informal methods and the formal methods

manage progress in a distributed agile development.

Chapter 3 discussed the current approaches used to manage development

progress in distributed agile environments. It discussed two approaches: informal

methods and formal methods.

Informal methods rely on humans to identify and co-ordinate development

progress in an ad-hoc manner. The main informal methods discussed were

synchronous communication, asynchronous communication, daily tracker,

information radiators and cross-location visits.

The limitation of the informal methods is that the impact of the change may not

be fully recognised by the team members. This is because of the difficulty of

understanding how the work of one team member at one site influences the work

of another team member at a different site.

Formal methods use automatic mechanisms for storing, retrieving and

manipulating progress information. The formal methods include Wikis and

spreadsheets, traditional project management tools, and agile project

management (APM) tools. These methods were reviewed but with particular

focus on APM tools. A review of 30 APM tools has been carried out by using

several methods (i.e. working on trial versions, watching demos, reading the

formal description of the tools and asking questions through community boards).

The use of a variety of methods was useful as some information that could not be

found by one method is gathered by others. The review revealed a number of

mechanisms available to assist in supporting the management of distributed agile

development. The key progress tracking mechanisms in these tools are: web-

based task board, progress reporting, time tracking, acceptance testing (AT)

tracking and progress notifications.

The limitation of the formal approach is that the computer systems used are static

and completely rely on team members to report changes in progress.

Chapter 7. Conclusions

141

The analysis of the informal and formal methods achieved the second objective

and revealed that they are insufficient to manage distributed agile development

progress. As a result, a computer-based holistic approach was suggested. The

progress tracking system has a holistic view as it realises the effects of changes

from the users (team members) and also from the various technical systems that

cause progress change.

Objective 3: Identifying the co-ordination support required for managing

development progress. This includes analysing the various events that cause

change in progress.

Technical activities may cause progress change events that require performing

further co-ordination activities. Chapter 4 identified 23 events that may cause

change in progress. The progress events identified are comprehensive enough to

cover all the technical activities carried out by team members (UT activities, AT

activities, CI and releasing activities, and source code versioning activities).

With each progress event, the co-ordination support necessary to manage the

event has been explicitly identified. The identification of co-ordination

requirements is based on the four key types of co-ordination activity required for

managing progress in agile projects: checking progress constraints, identifying

potential sources of progress change, reflecting progress change in the tracking

system, and finding and notifying team members affected by potential progress

change.

Chapter 7. Conclusions

142

Objective 4: Designing a computer-based system capable of providing the

necessary co-ordination. Computer-based mechanisms have to take into

consideration the impact of the technical activities on progress.

Chapter 5 proposed an approach for designing a progress tracking system for

distributed agile teams. The system keeps track of the impact of the technical

activities by placing them under control of the tracking system. This has been

achieved by integrating the versioning functionality into the progress tracking

system and linking the UT tool, AT tool and CI tool with the progress tracking

system.

A version model was created to show the progress of each source code version.

Because development progress in agile approach is based on the state of the

source code, the model helps by informing users of the actual state of a

task/story. The progress states of tasks/stories are now based on their

corresponding source code. With this novel design, it is no longer possible to

claim that a task is complete while its corresponding source code artefacts have

not been unit tested. Moreover, it is no longer possible to claim that a user story

is complete while its corresponding source code artefacts have not been

integrated, or the user story as a whole has not been accepted by the customer.

The version model helps to change the thinking about progress tracking and

moves it from being traditional, where it is merely based on completion of duties,

to becoming more agile, where it is based on the maturity of source code and

how far it is from being ‘working software’.

The user story progress model provided detailed information about the stages

that user stories go through. User stories may assume one of the following states:

‘Not started’, ‘Active’, ‘Waiting for integration’, ‘Waiting for acceptance

testing’, and ‘Complete’. Unlike the traditional story progress states, which

assume that a story is in ‘Complete’ state once its functionalities are

implemented, the proposed model makes explicit differentiation between three

different states: a story’s functionalities may only be implemented (‘Waiting for

Integration’ state), a story’s functionalities may be implemented and also

Chapter 7. Conclusions

143

integrated (‘Waiting for acceptance testing’ state), and a story’s functionalities

may be implemented, integrated and accepted by the customer (‘Complete’

state). The value of this differentiation is that the progress measure now becomes

based on an agile perspective of what is considered a complete story. This

supports providing a more realistic view of the actual state of the software

project. Another value of the proposed user story progress model is that it reflects

the impact of the technical activities on development progress. For instance,

modifying shared source code belonging to a completed story may result in the

story being incomplete. The modification effect on the story progress has to be

explicitly shown by the progress tracking system. The team needs to know that

this story has become incomplete and thus may need to be re-integrated and

acceptance-tested again.

The design of a progress tracking system required the provision of process

models to cover the various technical activities. The modelling of these processes

is considered an integral part of designing the progress tracking system, as it

provides a visual representation of how the co-ordination activities necessary for

each technical activity can be implemented in a computer-based system. This

includes providing automatic support for checking progress constraints, finding

and notifying team members affected by progress change, identifying potential

sources of progress change, and reflecting progress change in the tracking

system. The process models can help team members understand the co-ordination

of activities in each technical process and then adapt them to meet their needs.

Therefore, the set of process models in Appendix B should be considered as

representative rather than definitive.

A data model was created to store and access different types of data entity. The

data model represented a wide range of data entities and the dependencies

between them. These include representing tasks, stories, releases, unit tests,

acceptance tests, integration tests, developers, testers, story owners and project

managers. The dependencies can help identify how the development progress is

affected by the technical activities and help target co-ordination support to

affected team members.

Chapter 7. Conclusions

144

The four models proposed (the version model, the user story progress model, the

process model, and the data model), have together contributed in providing a

strong design to the progress tracking system. The version model paid attention

to the state of the source code artefacts. The user story progress model provided

detailed progress information, based on the state of its corresponding source code

versions. The process model successfully helped in identifying the points where a

progress change takes place, reflecting this on development progress (e.g.

progress states of stories), and co-ordinating the impact on the affected team

members. Finally, the data model provided the infrastructure that saves the

relationships between progress information (i.e. stories and their underlying

tasks) and the technical objects that affect progress (i.e. source code artefacts,

unit testing data, acceptance testing data and integration data).

Objective 5: Evaluating the computer-based holistic approach. This includes

preparing an evaluation methodology and determining whether the computer-

based holistic approach is achievable.

Chapter 6 evaluated the holistic approach to managing progress of distributed

agile teams. The chapter explained a methodology for evaluation that relies on

the scenario-based evaluation approach. It consists of three main parts: selection

of scenarios, analysis of scenarios and validation of scenarios.

To achieve the first, a systematic method was used to identify suitable scenarios.

This ensured that the progress change events involved in the scenarios were

significant and had reasonable coverage for evaluating the holistic approach by

considering the complexity degree of the progress event, frequency of the event

occurrence and influence of the progress event on the development progress. In

addition, scenarios were selected that included potential progress events from

each technical factor. The selection process resulted in choosing three

representative scenarios: Check-in Source Code Version, Performing Successful

Integration and Running Automated Acceptance Testing.

Chapter 7. Conclusions

145

In the analysis of scenarios, a comparison was made between the classical XP

version of each scenario, where the holistic approach is not considered, and the

new version after introducing the holistic approach. In addition, a multi-

perspective view was achieved by providing a role-oriented analysis of each

scenario version. The analysis showed that team members could achieve better

awareness of progress with the holistic approach version of these scenarios. The

holistic approach was able to provide automatic identification and co-ordination

of progress change events. It immediately identified the potential change in

progress resulting from the technical activity. In addition, affected team members

were immediately informed about the progress change.

The validation of scenarios was achieved through developing a prototype system.

The implementation successfully demonstrated that the holistic approach

scenarios can be implemented with a computer-based system. The database

schema and the SQL queries were able to identify the various dependencies

existing in the scenarios. This helps validate the data model. In addition, the

implementation of the three scenarios were able to validate the version model

(i.e. moving source code versions from one state to another based on the

versioning activities), the user story progress model (moving stories from one

state to another based on how the technical activities affect progress) as well as

the process model (i.e. providing the necessary co-ordination such as

notifications).

Although the scenario-based evaluation used in this work revealed that a better

awareness of progress can be achieved with the holistic approach, it is worth

emphasising that a more critical assessment will be achieved if the tracking

system runs in real projects and for a long time. This will help refine the system

and examine the organisational impact when it is introduced.

Chapter 7. Conclusions

146

7.2 Future Work

This section describes a number of ways in which the work presented in this

thesis can be further extended.

7.2.1 Impact of Progress Change on Overall Project Plans and

Velocity

The holistic approach identifies and co-ordinates potential changes that may

affect development progress, but it does not tell how a recent change in progress

may affect the overall iteration and release plans. A further improvement can be

made by showing how the change will influence the current iteration and release.

This includes identifying what tasks/stories may not be possible to carry out in

the current cycle and what the new date is for providing the release to the

customer.

Rather than the project manager being sent only notifications about progress

changes, he may also be notified about how his plans are affected due to the

change. The tracking system can also send notifications to the project manager

informing him about any changes occurring to the project velocity (i.e. number

of units of work completed over a period of time).

The proposed data model registers the planned time and date of each task, user

story, iteration and release. In addition, from the activities provided for each

technical process, calculations measuring the impact of potential changes on the

iteration and the release can be made, and notifications based on that sent.

Furthermore, the proposed system can be integrated with some of the commercial

agile project management (APM) tools such as Rally [14] or Mingle [15]. These

tools involve professional capabilities to support making planning and re-

planning activities based on the latest information about the current progress of

the project. The approach created in this research provides up-to-date progress

Chapter 7. Conclusions

147

information which can then be utilised by the APM tools to identify how changes

will affect the velocity or release delivery date.

7.2.2 The Use of Change Impact Analysis Techniques

Changes to a source code artefact that directly affect its corresponding story

progress are recognised easily due to the linkage between each source code

artefact and tasks/stories. However, changes affecting progress could be as a

result of the implicit relationship between the functionalities of one story and

another.

Several approaches have been used to understand the ripple effect of one element

on the other elements in the source code. One of these approaches that can be

used to predict potential changes affecting progress is the Heuristic-Based

Analysis. This approach tries to mine change history stored in the versioning

control system in order to obtain useful information about change propagation

required. One of the most used heuristic-based analysis techniques is the

historical co-change analysis [169]. If two source code elements have been

changed at the same change set, this means that they are related via a historical

co-change relation. The historical co-change analysis technique is based on the

following intuition: elements that changed together in the past have a high

tendency to change together in the future [170]. It assumes that there is logical

dependency between the co-changed elements.

The heuristic-based analysis has gained high interest in the literature recently and

studies prove that it can be used to help developers in their daily work (e.g. [170]

[171]). This approach can be used in this research to predict the source code

artefacts potentially affected. The co-change concept can be updated in this

context to mean the group of artefacts that contribute to the same task. It still

serves the same purpose because tasks are normally completed by correlated

artefacts.

Chapter 7. Conclusions

148

7.3 Contribution of the Research

7.3.1 Research Publications

The author had participated in three International Conferences: 9th International

Conference on Agile Processes in Software Engineering and eXtreme

Programming (XP 2008, Limerick), IEEE 6th International conference on Global

Software Engineering (ICGSE 2011, Helsinki), and 10th International

Conference on Software Engineering Research, Management and Applications

(SERA 2012, Shanghai). These conferences provided opportunities for the

research to be shared with researchers and practitioners in the software

engineering community, and the agile community in particular. Discussion of the

research ideas and concepts with others helped refine the work presented in this

thesis.

Large portions of Chapters 2, 3, 4, 5, and 6 have been published in the

proceedings of the peer-reviewed ICGSE and SERA conferences and the peer-

reviewed International Journal of Computer Applications. The paper published at

the SERA Conference has been selected among the best papers at the conference.

An extended version of this paper has been accepted for publication in the peer-

reviewed Journal of Software. The list of publications are:

 S. Alyahya, WK. Ivins, WA. Gray, Co-ordination Support for Managing

Progress of Distributed Agile Projects, IEEE Sixth International

Conference on Global Software Engineering-Workshop, Helsinki, 2011.

 S. Alyahya, WK. Ivins, WA. Gray, Managing Versioning Activities to

Support Tracking Progress of Distributed Agile Teams. International

Journal of Computer Applications, February 2012. Published by

Foundation of Computer Science, New York, USA.

 S. Alyahya, WK. Ivins, WA. Gray, A Holistic Approach to Developing a

Progress Tracking System for Distributed Agile Teams, ACIS 10th

International Conference on Software Engineering Research,

Management and Applications (SERA), Shanghai, 2012.

Chapter 7. Conclusions

149

 S. Alyahya, WK. Ivins, WA. Gray, Raising the Awareness of

Development Progress in Distributed Agile Projects, Journal of Software,

Academy Publisher, Finland, Accepted.

7.3.2 Originality of the Proposed Approach

This thesis supports the effective management of progress by providing a

computer-based holistic approach to managing development progress that aims

to explicitly identify and co-ordinate the effects of the various technical factors

on progress. It provides formal mechanisms to support the problem of progress

management. This copes with the growing calls in the agile literature for more

formal processes to co-ordinate distributed agile teams (e.g. [5] [172]).

Although some of the agile project management (APM) tools (e.g. Rally,

TargetProcess, VersionOne) have started providing integration with the technical

systems (e.g. UT tool, versioning system), these integrations are insufficient to

solve the impact of technical activities on development progress. Their main

purpose is to provide traceability linkages between the technical artefacts (e.g.

source code artefacts and test artefacts) and the progress tracking artefacts (i.e.

tasks, stories, releases). The holistic approach extends the scope of current

progress tracking systems. It allows the progress tracking system to identify

progress change events, not only through user inputs, but also through automatic

identification. It then helps raise team members’ awareness of the progress state

by providing the necessary co-ordination for each progress change event. Thus,

the thesis provides a step forward for agile project management tools.

Furthermore, Asklund et al. [115] mention that managing change can provide

valuable information about development progress. They suggest linking each

change with the tasks/stories information by adding task and story numbers as a

comment with every check-in process. However, their work does not provide an

approach that allows for automatic identification of potential changes that affect

Chapter 7. Conclusions

150

development progress and does not support co-ordinating the change impact with

team members. One of this work’s authors, Lars Bendix from Lund University

(Sweden), along with another author, Christian Pendleton from agile consultancy

company called SoftHouse, recently use our work as an example of

implementing processes to support managing changes that occur to project

artefacts (source code artefacts, tests, etc) in distributed agile projects and to

support providing awareness about the state of these artefacts [173] (August

2012).

The author believes that new knowledge has been added to the field by providing

the holistic approach to managing development progress of distributed agile

teams. The holistic approach will help distributed team members become aware

of the actual progress of the project. They will be able to know the state of the

project artefacts that they use. They will also be made aware of potential

changes, affecting progress, to the items that they are responsible for as soon as

these changes occur. By doing so, the approach can support solving the problem

of having large acceptance tests failing at the end of each iteration and release,

due to the lack of good progress tracking mechanisms.

The approach is achieved through identifying the co-ordination support

necessary for managing progress change events and designing a computer-based

system capable of providing the necessary co-ordination. 23 progress change

events, caused by the technical activities, were identified along with

identification of the co-ordination support required for each progress change

event. In addition, the four models proposed have contributed to providing a

strong design of the progress tracking system. These models are: the version

model, the user story progress model, the process model and the data model.

151

Appendix A

Agile Principles

The principles behind the Agile Manifesto are [12]:

1. Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile

processes harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple

of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the

project.

5. Build projects around motivated individuals. Give them the environment

and support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace

indefinitely.

9. Continuous attention to technical excellence and good design enhances

agility.

10. Simplicity--the art of maximizing the amount of work not done--is

essential.

11. The best architectures, requirements, and designs emerge from self-

organising teams.

12. At regular intervals, the team reflects on how to become more effective,

then tunes and adjusts its behaviour accordingly.

152

Appendix B

Technical Process Models

Source Code Versioning Process Models

Create a new source code artefact:

Identify the task

 that the artefact will belong to

Check if the artefact belongs

 to unstarted task

Check if the developer

 wants to start the task now

Check if the developer wants

 to re-work on the task

Check if the artefact belongs

 to completed task

Inform the developer that the

task is already completed

Inform the developer that the

 task is inactive

Change the task state

Ask developer if he wants

 to create the artefact from

scratch or from existing artefact

Name the new artefact

Identify the existing

artefact and version

Give the artefact a new name

Create a new version in the

 developer's private space

Copy the existing artefact into the

developer's private workspace

[Yes]

[No]

[From scratch][From existing artefact]

[Yes]

[Yes]

[Yes]

[No]

[No]

[No]

Developer Tracking System

Create a relationship between

 the task and the artefact

Notify the relevant members

about the new story state

Request to create a new artefact
Ask developer to choose the

 corresponding task

Check if the corresponding story

is not in ‘Active’ state

[No]

Notify the relevant members

about the new task state

[Yes]
Change the story state

 to ‘Active’

Appendix B. Technical Process Models

153

Check-out a source code version:

Identify the artefact and

 the version to change

Check if the artefact belongs

 to unstarted task

Check if the developer

 wants to start the task now
Check if the developer wants

 to re-work on the task

Check if the artefact belongs

 to completed task

Inform the developer that the

task is already completed

Inform the developer that the

 task is inactive

Create a new version in the

 developer's private space

[Yes]

[No]

[Yes]

[Yes]

[Yes]

[No]

[No]

[No]

Developer Tracking System

Create a relationship between

 the task and the artefact version

Ask developer to choose

 the corresponding task

Change the task

Notify the relevant members

about the new story state

Check if the corresponding story

 is not in ‘Active’ state

[Yes]

[No]

Notify the relevant members

about the new task state

Change the story(ies)

 state to 'Active'

Identify the task that the

version will belong to

Appendix B. Technical Process Models

154

}}

Check-in a source code version:

Request to

check-in

 artefact version

Check if there is unit test

 associated with this artefact

[No]

 Notify developer

that no unit

tests exist

Check if the unit

 test has passed

[Yes]

[No] [Yes]

 Notify developer

that the unit

 test is failed

Check if there are stories

in 'waiting for AT' or 'complete' state

affected by introducing the UTV

[Yes]

 Notify the relevant developers

and testers about the new

story(ies) state

Update the

version’s status

Developer Tracking System

[No]

Send unit testing

 request

 Check if there is any

existing artefact that

needs to be merged

Check if there

is any conflict

Notify developer

about the conflict

Merge the

two versions

[Yes]

[Yes]

[No]

[No]

UT Tool

Perform

unit testing

Send test

 result

Change story(ies) state to

 'Waiting for integration'

Inform developer that some

 stories may be affected

Developer selects

 affected stories

x

x

x

Inform developer

that the version is

 checked-in

Appendix B. Technical Process Models

155

}}

Delete an artefact:

Identify the artefact

 to be deleted

Developer Tracking System

Check if the artefact

 has been released

[No]

[Yes]

Retrieve all tasks (stories) that

have updated the artefact

Check if state of any of the

 corresponding stories is ‘Complete'

Inform the relevant story owners

 and testers about the new state

Change story(ies) state to

'Waiting for AT'

[No]

[Yes]

Inform developer that request

 can not be granted

Check if the deletion can

 break the integration
Perform integration

Send integration resultCheck if integration passed

[No]
Notify developer that deletion

 can break the integration

Integration System

Notify task owners about the deletion

[Yes]

Check if the artefact

 has IV

[No]

[Yes]

Delete the artefact

Appendix B. Technical Process Models

156

}}

CI and Releasing Process Models

Perform integration:

Request to perform

 integration

Check if the integration passed

[No] [Yes]

Notify all developers about

 the integration result

Developer Tracking System

Change artefacts

versions’ status to 'IV'

Integration system

Obtain the last UTVs of the

 updated artefacts & the last IVs of

 the non-updated artefacts

Send integration request Perform integration

Send integration result

Notify developers who have

 old IVs about the new ones

Check if there are any ‘Waiting

 for integration’ stories

Change story(ies) state

 to 'Waiting for AT'

Notify the relevant story

 owners and testers about

 the new story state

[Yes]

[No]

Appendix B. Technical Process Models

157

}}

Make a release:

Release Manager Tracking System

Request to make release
Retrieve source code versions

 of all completed stories

Change state of source

 code versions to ‘RV’

Notify the affected

team members

Appendix B. Technical Process Models

158

}}

AT Process Models

Create a new acceptance test:

Check if the AT belongs

to complete story

Check if the tester wants to move

the story state to 'waiting for AT'

Inform the tester that the

 story is complete

Change the story state

 to 'waiting for AT'

Create a new version in the

tester's private space

[Yes]

[No]

[Yes][No]

Tester Tracking System

Create a relationship between

 the test and the story

Request to create a new AT

Notify the relevant members

about the new story state

Ask tester to determine

 whether the AT is

 automated or manual

Determine AT type

Appendix B. Technical Process Models

159

}}

Check-out acceptance test version:

Check if the AT belongs to complete story

Check if the tester wants to move

the story state to 'waiting for AT'

Inform the tester that the

 story is complete

Change the story state

 to 'Waiting for AT'

Create a new version in the

tester's private space

[Yes]

[No]

[Yes]
[No]

Tester Tracking System

Create a relationship between

 the test version and the story

Request to check-out AT

Notify the relevant members

about the new story state

Change test status to ‘Fail’

Notify relevant members

 about the new test state

Check if AT is unlocked
Inform the tester that the

 AT is locked

[Yes]

[No]

Appendix B. Technical Process Models

160

}}

Check-in acceptance test

Check if the AT is automated

Ask the tester if he

wants to run the AT

Send run request

[Yes]

[No]

[Yes]

[No]

Tester Tracking System

Request to check-in AT

Notify the relevant members

about the new AT state

Move the version to

the shared space

AT Tool

Run AT

Send AT resultReceive AT result

Check if AT result is 'pass'

Change AT result

to ‘pass’

Check if corresponding story state

needs to be changed to ‘complete’

Change story state to ‘complete’

[Yes]

[No]

Notify tester about the new state

Inform tester that

 AT failed

[Yes]

[No]

Notify relevant members about

 the new story state

Appendix B. Technical Process Models

161

}}

Run acceptance testing:

Send run request

Tester (CI system) Tracking System

Request to run AT

AT Tool

Run ATs

Send AT resultReceive AT result

Notify relevant members about

each test result

Check if state of any of the ‘Waiting for AT’ stories

needs to be changed to ‘Complete’

Update states of stories requiring

 for change to 'Complete'

[Yes]

[No]

Notify relevant members about

 the new story state

Change relevant AT status

Check if state of any of the ‘Complete’ stories

needs to be changed to ‘Waiting for AT’

Update states of stories requiring

 for change to 'Waiting for AT'

[Yes]

[No]

Notify relevant members about

 the new story state

Appendix B. Technical Process Models

162

}}

Update manual acceptance test to pass:

Tester Tracking System

Request to update manual

 AT to pass

Notify the relevant members

about the new AT state

Update AT status to pass

Check if corresponding story state

needs to be changed to ‘complete’

Change story state to ‘complete’

[Yes]

[No]

Notify relevant members about

 the new story state

Appendix B. Technical Process Models

163

}}

Update manual acceptance test to fail:

Tester Tracking System

Request to update manual AT to fail

Notify the relevant members

about the new AT status

Update AT status to fail

Check if corresponding story state

needs to be changed to ‘Waiting for AT’

Change story state to ‘waiting for AT’

[Yes]

[No]

Notify the relevant members about

 the new story state

Delete an acceptance test:

Tester Tracking System

Request to delete AT

Notify relevant members

About the deletion

Check it is not the only

 AT for a complete story

Inform tester that deletion

 can not be granted

Delete AT

[No][Yes]

Appendix B. Technical Process Models

164

}}

UT Process Models

Create a new unit test:

Create a new version in the

developer's private space

Developer Tracking System

Request to create new

unit test

Determine the corresponding

source code version

Check-out unit test version:

Create a new version in the

developer's private space

Developer Tracking System

Request to check-out

unit test version

Determine the corresponding

source code version

Appendix B. Technical Process Models

165

}}

Check-in unit test version:

Check if the unit test failed and

is carried out as part

 of completed task’s work

Inform the developer

that test failed while corresponding

 task is completed

Developer Tracking System

Request to check-in

unit test version
Send UT request Perform Unit Testing

Send test result

[Yes]

[No]

Check-in the unit test

UT Tool

Save test result

Appendix B. Technical Process Models

166

}}

Run unit test:

Return Result to

 developer

Developer Tracking System

Request to run

unit test version
Send UT request Perform Unit Testing

Send test result

UT Tool

Save test result

Delete unit test:

Developer Tracking System

Request to delete

unit test

Check if unit test is the only one

for an artefact of a completed task

Inform the developer

about the impact

[Yes]

[No]

Delete unit test

167

}}

Appendix C

Implementation Description for the Holistic

Approach Version of Scenarios 2 and 3

Implementation of Scenario 2 (Performing Successful

Integration)

The scenario starts with the following initial data set:

- The functionalities required for user story US1 have been implemented, and the

story is waiting for its new versions A5.1 and A6.1 to be integrated.

- The functionalities required for user story US2 have been implemented, and

the story is waiting for its new versions A8.1 and A9.1 to be integrated.

- The user story US3 is still active and has the following new versions entering

the integration process: A12.1, A13.2 and A14.2.

- The user story US4 is still active and has the following new versions entering

the integration process: A15.1, A16.1 and A18.1.

The implementation of the five steps involved in the holistic approach version of

the integration scenario is discussed below.

Appendix C. Implementation Description for the Holistic Approach Version of Scenarios 2 and 3

168

}}

1- Sally clicks on ‘Perform Integration’ in the tracking system (Figure A3-1).

Figure A3-1. Implementation of scenario 2, step 1.

The new integration process is registered in the database through the following

SQL query:

2- The system retrieves the last UTVs of the recently updated artefacts and the

last IVs of the non-recently updated artefacts and sends an integration request to

the continuous integration (CI) system.

INSERT

INTO integration(result,creator)

VALUES ('In Progress','Sally')

Appendix C. Implementation Description for the Holistic Approach Version of Scenarios 2 and 3

169

}}

The 'DevelopmentArtefact' table can help determine the last UTV version and the

last IV version for each source code artefact. Hence, in order to retrieve the

required versions, we need to compare the timestamps of those two versions for

each artefact.

If the last UTV version is more recent than the last IV version for an artefact, this

means that the artefact has been updated since it was last integrated; this requires

the recent UTV version to be integrated. Otherwise, the IV version is chosen to

enter the integration process.

In the case of having an artefact without the IV version, the UTV version is

selected, as this means that the artefact has not entered any integration process

thus far.

The selected versions are kept in the table 'VersionIntegration', which shows

which versions entered in which integration processes. The code overleaf is used

to perform the second step in the scenario. We update the timestamps of the last

UTVs and IVs several times to ensure that the code satisfies the various cases.

Appendix C. Implementation Description for the Holistic Approach Version of Scenarios 2 and 3

170

}}

// the columens:id, lastUT and LastIV of the table 'DevelopmentArtefact' are stored in

a table model 'tm1'

tm1= jTable1.getModel();

int s= developmentartefactList.size();

int i;

for(i=0;i<s;i++) // Each cycle compares the last UTV and the last IV of an artefact

{String lastutv = tm1.getValueAt(i, 1).toString();

String lastiv = tm1.getValueAt(i, 2).toString();

request1 = java.beans.Beans.isDesignTime() ? null :

scenario2PUEntityManager.createNativeQuery("select Timestamp from developmentversion

where versionid='"+lastutv+"'"); //retrieving the timestamp of the last UTV

request2 = java.beans.Beans.isDesignTime() ? null :

scenario2PUEntityManager.createNativeQuery("select Timestamp from developmentversion

where versionid='"+lastiv+"'"); //retrieving the timestamp of the last IV

String timee = request1.getResultList().toString();

String timeee = request2.getResultList().toString();

if (!(request1.getResultList().isEmpty()))

{ if (!(request2.getResultList().isEmpty()))

{ // It is required first to remove the brackets from the received queries

timee= timee.substring(2, 23);

timeee= timeee.substring(2, 23);

Timestamp ts1= Timestamp.valueOf(timee);

Timestamp ts2= Timestamp.valueOf(timeee);

if (ts1.after(ts2)) // if the timestamp of the UTV version is more recent than the IV

version

{ jTextArea1.append(" value of object is: "+lastutv + " State: UTV, Time: " +

ts1.toString()+"\n");

scenario2PUEntityManager.getTransaction().begin();

request3 = java.beans.Beans.isDesignTime() ? null :

scenario2PUEntityManager.createNativeQuery("INSERT INTO

versionintegration(IntegrationID,Version) VALUES ('"+id+"','"+lastutv+"')"); // the

id here and in the following insert statements is the integration id

 int rowCount2 = request3.executeUpdate();

scenario2PUEntityManager.flush();

scenario2PUEntityManager.getTransaction().commit();

}

else // if the timestamp of the UTV version is not more recent than the IV version

{ scenario2PUEntityManager.getTransaction().begin();

request3 = java.beans.Beans.isDesignTime() ? null :

scenario2PUEntityManager.createNativeQuery("INSERT INTO

versionintegration(IntegrationID,Version) VALUES ('"+id+"','"+lastiv+"')");

int rowCount2 = request3.executeUpdate();

scenario2PUEntityManager.flush();

scenario2PUEntityManager.getTransaction().commit();

jTextArea1.append ("value of object is: "+lastiv + " State: IV, Time: " +

ts2.toString()+"\n");

 }}

Appendix C. Implementation Description for the Holistic Approach Version of Scenarios 2 and 3

171

}}

Implementing the previous code results in retrieving the versions displayed in

Figure A3-2. For each version, the following information is displayed: version

ID, Version State and Version Timestamp.

else // There is no IV version

{

timee= timee.substring(2, 23); // to remove the brackets from the received query

Timestamp ts1= Timestamp.valueOf(timee);

jTextArea1.append (" value of object is: "+lastutv + " State: UTV, Time: " +

ts1.toString()+"\n");

scenario2PUEntityManager.getTransaction().begin();

request3 = java.beans.Beans.isDesignTime() ? null :

scenario2PUEntityManager.createNativeQuery("INSERT INTO

versionintegration(IntegrationID,Version) VALUES ('"+id+"','"+lastutv+"')");

int rowCount2 = request3.executeUpdate();

scenario2PUEntityManager.flush();

scenario2PUEntityManager.getTransaction().commit();

}

}

else if (!(request2.getResultList().isEmpty()))

{

timeee= timeee.substring(2, 23); // to remove the brackets from the received query

Timestamp ts2= Timestamp.valueOf(timeee);

jTextArea1.append ("value of object is: "+lastiv + " State: IV, Ttime: " +

ts2.toString()+"\n");

scenario2PUEntityManager.getTransaction().begin();

request3 = java.beans.Beans.isDesignTime() ? null :

scenario2PUEntityManager.createNativeQuery("INSERT INTO

versionintegration(IntegrationID,Version) VALUES ('"+id+"','"+lastiv+"')");

int rowCount2 = request3.executeUpdate();

scenario2PUEntityManager.flush();

scenario2PUEntityManager.getTransaction().commit();

}}

Appendix C. Implementation Description for the Holistic Approach Version of Scenarios 2 and 3

172

}}

Figure A3-2. Implementation of scenario 2, step 2.

3- The system receives ‘Successful’ result from the CI system and updates the

UTV versions to ‘IV’.

Because the scenario post-conditions show that the integration is successful, the

integration result is be stored in the database as 'pass' using the following query:

"Update integration

Set result= 'Pass'

where id='"+id+"'"

Appendix C. Implementation Description for the Holistic Approach Version of Scenarios 2 and 3

173

}}

The second ‘id’ shown in italics in the last line of the query refers to a variable

identified in the code that stores the integration id of the current integration

process.

A successful integration process requires updating the state of the involved UTV

versions to 'IV'. This is done using the following Update statement:

4,5. The system checks if there are any ‘Waiting for Integration’ user stories. It

moves the stories US1 and US2 to ‘Waiting for AT’. In addition to the generic

notifications sent to all team members about the integration result, specialised

notifications, clarifying the new state of US1 and US2, are sent to those

responsible for US1 and US2, story owners (Steve and Ahmed) and testers

(James and Sara) as well as the project manager.

The stories that need to be moved to 'Waiting for Acceptance Testing' are

retrieved through the following query:

"Update developmentversion

Set vstate= 'IV'

Where versionid in (Select version

 From versionintegration

 Where integrationid='"+id+"')"

"Select Distinct s.id

From story s, task t, developmentversion dv

Where (s.state='Waiting for Integration') and

 (t.storyid= s.id) and(dv.taskid= t.id) and

 dv.versionid in (Select version

 From versionintegration

 Where integrationid='"+id+"')"

Appendix C. Implementation Description for the Holistic Approach Version of Scenarios 2 and 3

174

}}

For each of the affected stories, the story owners and testers are retrieved through

the following two queries:

The ‘story’ symbol shown in italics in the previous two queries refers to a

variable in the code that represents an affected story's id.

The affected user stories, story owners and testers are shown in Figure A3-3.

"Select so.name

From story s, storyowner so

Where s.ownerid=so.id and s.id='"+story+"'"

"Select t.name

From story s, tester t

Where s.testerid=t.id and s.id='"+story+"'"

Appendix C. Implementation Description for the Holistic Approach Version of Scenarios 2 and 3

175

}}

Figure A3-3. Implementation of scenario 2, steps 4.

A notification message is sent automatically to each of the affected team

members. Example of such message is shown in Figure A3-4. It shows a

notification message sent to Steve, the story owner of US1.

Figure A3-4. Implementation of scenario 2, step 5.

Appendix C. Implementation Description for the Holistic Approach Version of Scenarios 2 and 3

176

}}

Implementation of Scenario 3 (Running Automated Acceptance

Testing)

Scenario 3 starts with the following initial data set:

- The acceptance tests AT1.1, AT2.1 and AT3.1 have passed.

- These tests belong to the completed stories US1, US2 and US3, respectively.

Implementation of the four steps involved in the holistic version of the

integration scenario is discussed below.

1- Sam initiates automated acceptance testing using the tracking system.

The current states of AT1.1, AT2.1 and AT3.1 are displayed in Figure A3-5.

Figure A3-5. Implementation of scenario 3, step 1.

Appendix C. Implementation Description for the Holistic Approach Version of Scenarios 2 and 3

177

}}

2- The tracking system sends a request to the AT tool and then receives the test

result.

The test results show that acceptance tests AT1.1 and AT2.1 have failed. Hence,

the state of each test needs to be updated in the database. This can be achieved

through the following SQL query:

The ‘s[i]’ symbol shown in italics in the previous query refers to an array in the

source code that stores the id value of the failed acceptance tests.

3,4. The tracking system changes the state of user stories US1 and US2 to

‘Waiting for AT’. The tracking system provides the result to Sam and

automatically sends notifications to the affected team members.

The stories that need to be moved to 'Waiting for Acceptance Testing' are

retrieved through the following query:

Similar to the previous scenario, for each of the affected stories, the story owners

and testers are retrieved through the following two queries:

"Update ATversion

Set state='Fail'

Where id='"+ s[i]+ "'"

"Select storyid

From atversion

Where id='"+failedtests[i]+"'"

"Select so.name

From story s, storyowner so

Where s.ownerid=so.id and

 s.id='"+story+"'"

Appendix C. Implementation Description for the Holistic Approach Version of Scenarios 2 and 3

178

}}

The ‘story’ symbol shown in italics in the previous two queries refers to a

variable in the source code that represents an affected story's id.

The affected user stories, story owners and testers are shown in Figure A3-6.

Figure A3-6. Implementation of scenario 3, step 3.

"Select t.name

From story s, tester t

Where s.testerid=t.id and

 s.id='"+story+"'"

Appendix C. Implementation Description for the Holistic Approach Version of Scenarios 2 and 3

179

}}

A notification message is sent automatically to each of the affected team

members. Example of such message is shown in Figure A3-7. It shows a

notification message sent to Sara, the tester responsible for US2.

Figure A3-7. Implementation of scenario 3, step 4.

180

}}

Bibliography

[1] J. D. Herbsleb, “Global Software Engineering: The Future of Socio-

technical Coordination,” in FOSE ’07 Future of Software Engineering,

2007, vol. 24, pp. 188–198.

[2] J. Noll, S. Beecham, and I. Richardson, “Global software development and

collaboration: barriers and solutions,” ACM Inroads, vol. 1, no. 3, pp. 66–

78, 2010.

[3] E. Carmel, Global software teams: collaborating across borders and time

zones, vol. ISBN:0–13-. Prentice Hall PTR, 1999, p. 269.

[4] J. D. Herbsleb and D. Moitra, “Global software development,” IEEE

Software, vol. 18, no. 2, pp. 16–20, 2001.

[5] B. Ramesh, L. Cao, K. Mohan, and P. Xu, “Can distributed software

development be agile?,” Communications of the ACM, vol. 49, no. 10, pp.

41–46, 2006.

[6] J. Sutherland, G. Schoonheim, N. Kumar, V. Pandey, and S. Vishal,

“Fully Distributed Scrum: Linear Scalability of Production between San

Francisco and India,” in 2009 Agile Conference, 2009, pp. 277–282.

Biobliography

181

}}

[7] J. Sutherland, G. Schoonheim, and M. Rijk, “Fully Distributed Scrum:

Replicating Local Productivity and Quality with Offshore Teams,” in

Hawaii International Conference on System Sciences, 2009, pp. 1–8.

[8] M. Kajko-Mattsson, G. Azizyan, and M. K. Magarian, “Classes of

Distributed Agile Development Problems,” in Agile Conference, 2010, pp.

51–58.

[9] J. Sauer, “Agile Practices in Offshore Outsourcing - An Analysis of

Published Experiences,” Proceedings of the 29th Information Systems

Research, pp. 1–12, 2006.

[10] P. Xu, “Coordination In Large Agile Projects,” Review of Business, vol.

13, no. 4, pp. 29–44, 2009.

[11] J. Patton, “Secrets to Automated Acceptance Tests.” [Online]. Available:

www.stickyminds.com/s.asp?F=S13798_COL_2. Accessed: May 2013.

[12] K. Beck, M. Beedle, A. V. Bennekum, A. Cockburn, W. Cunningham, M.

Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B.

Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D.

Thomas, “Manifesto for Agile Software Development,” The Agile

Alliance, 2001. [Online]. Available: http://agilemanifesto.org/. Accessed:

May 2013.

[13] E. Hossain, P. L. Bannerman, and D. R. Jeffery, “Scrum Practices in

Global Software Development : A Research Framework,” PROFES 2011,

pp. 88–102, 2011.

[14] “Rally.” [Online]. Available: http://www.rallydev.com/. Accessed: May

2013.

[15] “Mingle.” [Online]. Available: http://www.thoughtworks-

studios.com/mingle-agile-project-management. Accessed: May 2013.

Biobliography

182

}}

[16] “VersionOne.” [Online]. Available: www.versionone.com. Accessed: May

2013.

[17] “TargetProcess.” [Online]. Available: www.targetprocess.com. Accessed:

May 2013.

[18] B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for

the Perplexed. Addison-Wesley, 2003, p. 266.

[19] B. W. Boehm, “Software Engineering,” IEEE Transactions on Computers,

vol. 25, no. 12, pp. 1226–1241, 1976.

[20] B. Boehm, “Guidelines for verifying and validating software requirements

and design specifications,” Proc European Conf Applied Information

Technology, 1979.

[21] M. Rueher, “Structured rapid prototyping -- an evolutionary approach to

software development,” Information and Software Technology, vol. 32,

no. 4, p. 318, 1990.

[22] B. W. Boehm, “A spiral model of software development and

enhancement,” Computer, vol. 21, no. 5, pp. 61–72, 1988.

[23] P. Kruchten, The Rational Unified Process: An Introduction. Addison-

Wesley, 2003, p. 298.

[24] M. Huo, J. Verner, L. Zhu, and M. A. Babar, “Software Quality and Agile

Methods,” Computer, pp. 1–6, 2004.

[25] I. Sommerville, Software engineering (9th edition). Addison Wesley,

2010.

[26] L. Williams and A. Cockburn, “Agile software development: it’s about

feedback and change,” IEEE Computer, vol. 36, no. 6, pp. 39–43, 2003.

Biobliography

183

}}

[27] A. MacCormack, “Product-Development Practices That Work: How

Internet Companies Build Software,” MIT Sloan Management Review,

vol. 42, no. 2, pp. 75–84, 2001.

[28] S. Kharytonov, “Waterfall, RUP and Agile: Which is Right for You,”

2009. [Online]. Available: http://www.executivebrief.com/software-

development/waterfall-rup-agile/. Accessed: May 2013.

[29] M. Fowler, “The New Methodology,” Wuhan University Journal of

Natural Sciences, vol. 6, no. 1–2, pp. 12–24, 2001.

[30] O. Salo, “Enabling Software Process Improvement in Agile Software

Development Teams and Organisations,” University of Oulu, 2006.

[31] A. Sillitti, M. Ceschi, B. Russo, and G. Succi, “Managing Uncertainty in

Requirements: A Survey in Documentation-Driven and Agile

Companies,” 11th IEEE International Software Metrics Symposium

METRICS05, no. Metrics, pp. 17–17, 2005.

[32] J. Highsmith and A. Cockburn, “Agile software development: the business

of innovation,” Computer, vol. 34, no. 9, pp. 120–127, 2001.

[33] K. Beck, Extreme Programming Explained. Addison-Wesley, 1999, p.

224.

[34] K. Schwaber, “Scrum development process,” in OOPSLA’95 Workshop on

Business Object Design and Implementation, 1995, pp. 10–19.

[35] A. Cockburn, Surviving object-oriented projects: A manager’s guide.

Addison Wesley, 1998, p. 250.

[36] J. Stapleton, DSDM: Dynamic Systems Development Method: The Method

in Practice. Addison Wesley, 1997, pp. 1–163.

Biobliography

184

}}

[37] J. A. Highsmith, “Adaptive Software Development,” Adaptive software

development, pp. 173–179, 1999.

[38] A. Hunt and D. Thomas, The Pragmatic Programmer. Addison-Wesley,

2000.

[39] P. Coad, E. LeFebvre, and J. D. Luca, Java modeling in color with UML:

Enterprise components and process. Prentice Hall, 1999.

[40] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software

development methods,” Vtt Publications, vol. 478, no. 3, pp. 167–168,

2002.

[41] J. Highsmith, “History: The Agile Manifesto,” 2001. [Online]. Available:

http://agilemanifesto.org/history.html. Accessed: May 2013.

[42] K. Beck, Extreme Programming Explained: Embrace Change. Addison-

Wesley Professional, 2004, p. 224.

[43] K. Beck and M. Fowler, Planning Extreme Programming. Addison-

Wesley, 2001, p. xvii, 139 p.

[44] “JUnit.” [Online]. Available: www.junit.org/. Accessed: May 2013.

[45] “NUnit.” [Online]. Available: www.nunit.org/. Accessed: May 2013.

[46] “A Metric Leading to Agility,” XProgramming, 2004. Accessed: May

2013.

[47] M. Fowler, “Continuous Integration,” Integration The Vlsi Journal, 2006.

[Online]. Available:

http://martinfowler.com/articles/continuousIntegration.html. Accessed:

May 2013.

Biobliography

185

}}

[48] A. Cockburn, Agile Software Development: The Cooperative Game

(Second Edition). Addison-Wesley Professional, 2006.

[49] J. Koskela, “Software configuration management in agile methods,” Vtt

Publications, vol. VTT Public, no. 514, p. 54, 2003.

[50] R. Jeffries, A. Anderson, and C. Hendrickson, Extreme Programming

Installed. Addison-Wesley, 2001, p. 288.

[51] M. Lippert, S. Roock, and H. Wolf, eXtreme programming in action:

practical experiences from real world projects. J. Wiley, 2002.

[52] M. C. Paulk, “Extreme programming from a CMM perspective,” IEEE

Software, vol. 18, no. 6, pp. 19–26, 2001.

[53] “Summary of the subworkshop on extreme programming,” Nordic Journal

of Computing, vol. 9, no. 3, 2002.

[54] VersionOne, “5th Annual State of Agile Development Survey Final

summary report,” 2010.

[55] “Agile Practices and Principles Survey Results,” 2008. [Online].

Available:

http://www.ambysoft.com/surveys/practicesPrinciples2008.html.

Accessed: May 2013.

[56] PMI, A guide to the project management body of knowledge (PMBOK®

guide), vol. 40, no. 2. Project Management Institute, 2008.

[57] K. Schwaber, “Agile project management with Scrum,” Redmond

Microsoft Press, p. 163, 2004.

[58] M. national I. Initiative, “MSC Malaysia Research & Development.”

[Online]. Available:

http://www.mscmalaysia.my/codenavia/portals/msc/images/img/business/

Biobliography

186

}}

grow_your_business/msc_status_funding/rnd_grant_scheme/MGS_MsMe

iYuet.pdf. Accessed: May 2013.

[59] P. Haikonen, “Distributed Agile software development and the

requirements for Information Technology,” Helsinki University of

Technology, MSc Dissertation, 2009.

[60] T. Schümmer and J. Schümmer, “Support for Distributed Teams in

eXtreme Programming,” Information Systems Journal, pp. 355–377, 2001.

[61] I. Lehtonen, “Communication Challenges in Agile Global Software

Development,” in University of Helsinki, Report, 2009.

[62] J. D. Herbsleb and R. E. Grinter, “Splitting the organization and

integrating the code: Conway’s law revisited,” in Proceedings of the 21st

international conference on Software engineering, 1999, vol. Los Angeles,

no. 5, pp. 85–95.

[63] T. J. Allen, Managing the Flow of Technology. MIT Press, 1977, p. 320.

[64] J. D. Herbsleb and A. Mockus, “An Empirical Study of Speed and

Communication in Globally-Distributed Software Development,” IEEE

Transactions on Software Engineering, vol. 29, no. 3, pp. 1–14, 2003.

[65] B. Sengupta, S. Chandra, and V. Sinha, “A research agenda for distributed

software development,” Proceeding of the 28th international conference

on Software engineering ICSE 06, vol. 2006, no. 3, p. 731, 2006.

[66] R. J. Ocker, “The relationship between interaction, group development,

and outcome: a study of virtual communication,” in Proceedings of the

34th Annual Hawaii International Conference on System Sciences, 2001.

[67] M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Using Scrum in

Distributed Agile Development: A Multiple Case Study,” in Fourth IEEE

Biobliography

187

}}

International Conference on Global Software Engineering, 2009, pp. 195–

204.

[68] E. Therrien, “Overcoming the Challenges of Building a Distributed Agile

Organization,” in Agile Conference, 2008, pp. 368–372.

[69] W. Williams and M. Stout, “Colossal, Scattered, and Chaotic (Planning

with a Large Distributed Team),” in Agile Conference, 2008, pp. 356–361.

[70] N. Ducheneaut and V. Bellotti, “E-mail as habitat: an exploration of

embedded personal information management,” interactions Magazine,

vol. 8, no. 5, pp. 30–38, 2001.

[71] E. Bradner, W. A. Kellogg, and T. Erickson, “The adoption and use of

BABBLE: A field study of chat in the workplace,” in Proceedings of the

Sixth European conference on Computer supported cooperative work,

1999, pp. 139–158.

[72] A. Sarma, “A Survey of Collaborative Tools in Software Development,”

in University of California Irvine, ISR Technical Report, 2005.

[73] L. Layman, L. Williams, D. Damian, and H. Bures, “Essential

communication practices for Extreme Programming in a global software

development team,” Information and Software Technology, vol. 48, no. 9,

pp. 781–794, 2006.

[74] M. Korkala, P. Abrahamsson, and P. Kyllonen, “A Case Study on the

Impact of Customer Communication on Defects in Agile Software

Development.,” in Agile 2006, 2006, pp. 76–88.

[75] M. Vax and S. Michaud, “Distributed Agile: Growing a Practice

Together,” in Agile 2008 Conference, 2008, pp. 310–314.

[76] M. Cottmeyer, “The Good and Bad of Agile Offshore Development,”

Agile 2008 Conference, pp. 362–367, 2008.

Biobliography

188

}}

[77] S. H. Rayhan and N. Haque, “Incremental Adoption of Scrum for

Successful Delivery of an IT Project in a Remote Setup,” Agile 2008

Conference, pp. 351–355, 2008.

[78] A. Cockburn, Crystal-Clear a Human-Powered Methodology for Small

Teams. Pearson Education, Inc., p. 312, 2005.

[79] A. Danait, “Agile offshore techniques - a case study,” Agile Development

Conference ADC05, pp. 214–217, 2005.

[80] X. Wang, F. Maurer, R. Morgan, and J. Oliveira, “Tools for Supporting

Distributed Agile Project Planning,” J Phys Conf Ser, vol. 41, pp. 1–18,

2006.

[81] Google, “Google Spreadsheets.” [Online]. Available:

http://www.google.com/google-d-s/spreadsheets/. Accessed: May 2013.

[82] M. Dubakov and P. Stevens, “Agile Tools: The Good, the Bad and the

Ugly.” Report, TargetProcess, Inc, 2008.

[83] T. Chau and F. Maurer, “A case study of wiki-based experience repository

at a medium-sized software company,” KCAP 05 Proceedings of the 3rd

international conference on Knowledge capture, p. 185, 2005.

[84] Mircrosoft, “MS Project.” [Online]. Available:

http://www.microsoft.com/project/en-us/project-management.aspx.

Accessed: May 2013.

[85] G. Azizyan, M. K. Magarian, and M. Kajko-Matsson, “Survey of Agile

Tool Usage and Needs,” 2011 AGILE Conference, pp. 29–38, 2011.

[86] P. Behrens, Agile Project Management (APM) Tooling Survey Results,

Trail Ridge Consulting,” 2006.

Biobliography

189

}}

[87] V. Heikkilä, “Tool Support for Development Management in Agile

Methods,” Helisinki University of Technology, 2008.

[88] “ScrumWorks.” [Online]. Available:

http://www.collab.net/products/scrumworks/. Accessed: May 2013.

[89] “ExtremePlanner.” [Online]. Available: www.extremeplanner.com.

Accessed: May 2013.

[90] “XPlanner.” [Online]. Available: http://xplanner.codehaus.org/. Accessed:

May 2013.

[91] “Pivotal Tracker.” [Online]. Available: www.pivotaltracker.com.

Accessed: May 2013.

[92] “Scrum VSTS.” [Online]. Available: www.scrumforteamsystem.co.uk.

Accessed: May 2013.

[93] “Agilefant.” [Online]. Available: www.agilefant.org. Accessed: May

2013.

[94] “IceScrum.” [Online]. Available: www.icescrum.org. Accessed: May

2013.

[95] “Planbox.” [Online]. Available: www.planbox.com. Accessed: May 2013.

[96] “XP StoryStudio.” [Online]. Available: www.xpstorystudio.com/.

Accessed: May 2013.

[97] “XPWeb.” [Online]. Available: xpweb.sourceforge.net/. Accessed: May

2013.

[98] “AgileWrap.” [Online]. Available: www.agilewrap.com/. Accessed: May

2013.

Biobliography

190

}}

[99] “ScrumDesk.” [Online]. Available: www.scrumdesk.com/. Accessed: May

2013.

[100] “SpiraTeam.” [Online]. Available: www.inflectra.com/spirateam/.

Accessed: May 2013.

[101] “Leankit.” [Online]. Available: leankitkanban.com/. Accessed: May 2013.

[102] “DevSuite.” [Online]. Available: www.techexcel.com/devsuite/.

Accessed: May 2013.

[103] “TinyPM.” [Online]. Available: www.tinypm.com/. Accessed: May 2013.

[104] “Planigle.” [Online]. Available: planigle.com/. Accessed: May 2013.

[105] “Acunote.” [Online]. Available: www.acunote.com/. Accessed: May 2013.

[106] “On Time.” [Online]. Available: www.axosoft.com/. Accessed: May

2013.

[107] “AgileZen.” [Online]. Available: www.agilezen.com/. Accessed: May

2013.

[108] “ScrumPad.” [Online]. Available: www.code71.com/. Accessed: May

2013.

[109] “eXPlainPMT.” [Online]. Available:

https://github.com/explainpmt/explainpmt. Accessed: May 2013.

[110] “AgileBuddy.” [Online]. Available: www.agilebuddy.com/. Accessed:

May 2013.

[111] “Daily Scrum.” [Online]. Available: http://daily-scrum.com/. Accessed:

May 2013.

Biobliography

191

}}

[112] “Express.” [Online]. Available: agileexpress.sourceforge.net/. Accessed:

May 2013.

[113] “Agile Tracking.” [Online]. Available:

https://sites.google.com/site/agiletrackingtool/home. Accessed: May 2013.

[114] D. J. Anderson, “Using Cumulative Flow Diagrams.” The Coad Letter –

Agile Management, Technical Report, 2004.

[115] U. Asklund, L. Bendix, and T. Ekman, “Software Configuration

Management Practices for eXtreme Programming Teams,” in Proceedings

of the 11th Nordic Workshop on Programming and Software Development

Tools and Techniques, 2004, pp. 1–16.

[116] B. Appleton et al., “Lean Traceability: A smattering of strategies and

solutions,” CM Journal, 2007.

[117] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: a change

impact analysis tool for java programs,” ACM Sigplan Notices, vol. 39, no.

10, pp. 664–665, 2004.

[118] H. Mintzberg, The Structuring of Organizations. Prentice-Hall, 1979, p.

512.

[119] S. Alyahya, “Investigation of using system dynamics to understand

coordination in software projects,” MSc Dissertation, Cardiff University,

2006.

[120] W. Morris, The American Heritage Dictionary of the English Language,

Boston: Houghton Mifflin, 2000.

[121] T. W. Malone, “What is Coordination Theory ?,” in Coordination Theory

Workshop., 1988, vol. 88, no. SSM WP # 2051–88, pp. 357–370.

Biobliography

192

}}

[122] T. W. Malone and K. Crowston, “What is coordination theory and how

can it help design cooperative work systems?,” Proceedings of the 1990

ACM conference on Computersupported cooperative work CSCW 90,

October, pp. 357–370, 1990.

[123] A. D. Chandler, Strategy and structure: chapters in the history of the

industrial enterprise. M.I.T. Press, 1962.

[124] J. D. Thompson, Organizations in Action: Social Science Bases of

Administrative Theory, vol. 48, no. 3. McGraw-Hill, 1967, p. 192.

[125] N. S. Foundation, “A report by the NSF-IRIS review panel for research on

coordination theory and technology,” Washington, D.C., 1989.

[126] B. Curtis, “Modeling coordination from field experiments,” in

Organizational Computing Coordination and Collaboration Theories and

Technologies for ComputerSupported Work, 1989.

[127] B. Singh. Interconnected roles (IR): A coordination model. Technical

Report, CT-084-92, MCC, 1992.

[128] T. W. Malone and K. Crowston, “The interdisciplinary Study of

Coordination,” ACM Computing Surveys, vol. 26, no. 1, pp. 87–119, 1994.

[129] K. Crowston, J. Rubleske, and J. Howison, “Coordination Theory: A Ten-

Year Retrospective,” in Human-Computer Interaction and Management

Information Systems: Foundations, M.E. Sharpe Inc, 2004.

[130] T. W. Malone, K. Crowston, J. Lee, B. Pentland, G. Wyner, J. Quimby, C.

S. Osborn, A. Bernstein, M. Klein, E. O. Donnell, C. Dellarocas, G.

Herman, and F. Investments, “Tools a for Inventing of Organizations :

Toward Handbook Organizational Processes Michigan Massachusetts,”

Management, vol. 45, no. 3, pp. 425–443, 1999.

Biobliography

193

}}

[131] “Team Foundation Server (TFS).” [Online]. Available:

http://msdn.microsoft.com/en-us/vstudio/ff637362. Accessed: May 2013.

[132] R. Kass and I. Stadnyk, “Intelligent Assistance for the Communication of

Information in Large Organizations,” in Proceedings of 8th Conference on

Artificial Intelligence for Application, 1992, pp. 171–178.

[133] H-T. Chou and W. Kim, “A Unifying Framework for Version Control in a

CAD Environment,” in Proceedings of the 12th International Conference

on Very Large Data Bases, 1986, pp. 336–344.

[134] W. K. Ivins, W. A. Gray, and J. C. Miles, “A process-based approach to

managing changes in a system to support engineering product design,” in

Proc of the Engineering Design Conference, 2002.

[135] R. H. Katz, M. Anwarrudin, and E. Chang, A Version Server for

Computer-Aided Design Data. IEEE Press, 1986, pp. 27–33.

[136] Open_University, “Models and modelling.” [Online]. Available:

http://openlearn.open.ac.uk/mod/oucontent/view.php?id=397581§ion

=3.1. Accessed: May 2013.

[137] D. E. Avison and G. Fitzgerald, Information Systems Development:

Methodologies, Techniques and Tools. McGraw-Hill, 2006, p. 608.

[138] M. S. and F. R. Bennett S, Object Oriented System Analysis and Design:

using UML. McGraw-Hill, 1999.

[139] P. Stevens, Using UML: Software Engineering with Objects and

Components. Addison Wesley, 2005.

[140] A. M. Langer, Analysis and Design of Information Systems. Springer, New

York., 2010.

Biobliography

194

}}

[141] “Object Management Group.” [Online]. Available: http://www.omg.org/.

Accessed: May 2013.

[142] “Fitnesse.” [Online]. Available: http://fitnesse.org/. Accessed: May 2013.

[143] “Selenium.” [Online]. Available: http://seleniumhq.org/. Accessed: May

2013.

[144] R. Jeffries, “Re: Problems with Acceptance Testing.” [Online]. Available:

http://xprogramming.com/xpmag/problems-with-acceptance-testing/.

Accessed: May 2013.

[145] J. Shore, “The Problems With Acceptance Testing.” [Online]. Available:

http://jamesshore.com/Blog/The-Problems-With-Acceptance-

Testing.html. Accessed: May 2013.

[146] “GO.” [Online]. Available: http://www.thoughtworks-studios.com/go-

agile-release-management. Accessed: May 2013.

[147] “Pulse.” [Online]. Available: http://zutubi.com/products/pulse/. Accessed:

May 2013.

[148] “Teamcity.” [Online]. Available: http://www.jetbrains.com/teamcity/.

Accessed: May 2013.

[149] Gauntlet, “Gauntlet.” [Online]. Available:

http://techpubs.borland.com/silk_gauntlet/gauntlet/2007_10/en/Gauntlet_1

0.pdf. Accessed: May 2013.

[150] D. Poon, “A Self Funding Agile Transformation,” in Agile Conference,

2006, pp. 342–350.

[151] “Plasticscm.” [Online]. Available: http://www.plasticscm.com/. Accessed:

May 2013.

Biobliography

195

}}

[152] “Reducing the Impact of Broken Builds.” [Online]. Available:

http://zutubi.com/products/pulse/articles/brokenbuilds/. Accessed: May

2013.

[153] “Subversion.” [Online]. Available: subversion.tigris.org. Accessed: May

2013.

[154] “Clearcase.” [Online]. Available: http://www-

01.ibm.com/software/awdtools/clearcase/. Accessed: May 2013.

[155] “Accurev.” [Online]. Available: http://www.accurev.com/. Accessed: May

2013.

[156] P. Duvall, S. Matyas, and A. Glover, Continuous integration: improving

software quality and reducing risk. Addison-Wesley Professional, 2007, p.

336.

[157] C. A. Ellis, S. J. Gibbs, and G. Rein, “Groupware: some issues and

experiences,” Communications of the ACM, vol. 34, no. 1, pp. 38–58,

1991.

[158] J. Grudin, “Groupware and social dynamics: eight challenges for

developers,” Communications of the ACM, vol. 37, no. 1, pp. 92–105,

1994.

[159] W. Orlikowski, “Learning from notes: Organizational issues in groupware

implementation,” The Information Society, vol. 9, no. 3, pp. 237–250,

1993.

[160] D. Pinelle and C. Gutwin, “A review of groupware evaluations,” in

Proceedings IEEE 9th International Workshops on Enabling Technologies

Infrastructure for Collaborative Enterprises WET ICE 2000, 2000, pp.

86–91.

Biobliography

196

}}

[161] R. M. D. Araujo, F. M. Santoro, and M. R. S. Borges, The CSCW lab

ontology for groupware evaluation, The 8th International Conference on

Computer Supported Cooperative Work in Design, 2004.

[162] J. M. Carroll, “Making Use : Scenarios and Scenario-Based Design,”

Design, pp. 1998–1998, 2000.

[163] S. R. Haynes, S. Purao, and A. L. Skattebo, “Scenario-Based Methods for

Evaluating Collaborative Systems,” Computer Supported Cooperative

Work, vol. 18, no. 4, pp. 331–356, 2009.

[164] O. Stiemerling and A. B. Cremers, “The use of cooperation scenarios in

the design and evaluation of a CSCW system,” IEEE Transactions on

Software Engineering, vol. 24, no. 12, pp. 1171–1181, 1998.

[165] Smart Bear Software, “Peer Code Review : An Agile Process,” in the

proceedings of the Agile Development Practices conference, 2009.

[166] L. Crispin and T. House, Testing Extreme Programming. Addison-Wesley

Professional, 2002.

[167] “NetBeans IDE”, [Online]. Available: http://www.netbeans.org. Accessed:

May 2013.

[168] “MySQL”, [Online]. Available: http://www.mysql.com/. Accessed: May

2013.

[169] T. Zimmermann, “Changes and bugs — Mining and predicting

development activities,” 2009 IEEE International Conference on Software

Maintenance, pp. 443–446, 2009.

[170] A. E. Hassan and R. C. Holt, “Predicting change propagation in software

systems,” in 20th IEEE International Conference on Software

Maintenance 2004 Proceedings, 2004, pp. 284–293.

Biobliography

197

}}

[171] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version

histories to guide software changes,” in IEEE Transactions on Software

Engineering, 2005, vol. 31, no. 6, pp. 429–445.

[172] S. V. Shrivastava and H. Date, “Distributed Agile Software Development:

A Review,” Journal of Computer Science, vol. 1, no. 1, pp. 10–17, 2010.

[173] L. Bendix and C. Pendleton, “Configuration Management–Mother’s little

helper for Global Agile Projects?,” in International Conference on Global

Software Engineering-Workshop, 2012.

[174] K. Keefe and M. Dick, "Using Extreme Programming in a capstone

project." In Proceedings of the Sixth Australasian Conference on

Computing Education-Volume 30, pp. 151-160. Australian Computer

Society, Inc., 2004.

[175] M. Yap, "Follow the sun: distributed extreme programming development."

In Proceedings of the Agile Conference (2005), pp. 218-224. IEEE, 2005.

[176] D. Wells, "Working Software", [Online] http://www.agile-

process.org/working.html, Accessed: May 2013.

[177] J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed

Scrum: Agile Project Management with Outsourced Development Teams"

In in HICSS'40, Hawaii International Conference on Software Systems,

Big Island, Hawaii, 2007.

