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Summary 

Potential alterations of host and parasite ranges are likely with climate change so an 

understanding of the host traits and ecological factors that can influence host-parasite 

interactions is vital for the effective protection of ecosystems. Accidental introductions of 

non-native species can place elevated stress on native ecosystems so that the examination 

of key species can act as early warning systems. The Eurasian otter, Lutra lutra  ̧is a top 

predator and sentinel species for the health of European freshwater ecosystems and is 

therefore a suitable model for exploring parasite fauna introductions. In this PhD, the 

patterns and processes that define macro-parasitic infections were explored using 

evidence from post-mortems of 587 otters. Specifically, the invasive status of two 

helminths (Pseudamphistomum truncatum and Metorchis albidus: Trematoda; 

Opisthorchiidae) was investigated, both species having been identified in the UK otter 

populations for the first time within the last 10 years. Genetic variation, however, was 

similar across Europe indicating neither helminth is likely to have been a recent 

introduction to the UK., The distribution of both helminths as well as the only 

ectoparasite, Ixodes hexagonus (Arthropoda; Ixodidae), recovered from UK otters, were 

associated with abiotic factors, particularly temperature. The complexity of the parasite 

life cycles was investigated; otters act as a definitive host for both helminth species 

considered in this thesis and early stage intermediate hosts were identified for P. 

truncatum as the snail Radix balthica and the roach Rutilus rutilus. Metacercariae of M. 

ablidus were detected on chub (Leuciscus cephalus), rudd (Scardinius erythrophthalmus) 

and roach. Parasite aggregation and parasite fecundity of the P. truncatum populations 

were influenced by abiotic factors, region and season, whilst P. truncatum abundance was 

defined better by the biotic factors host age-class and condition demonstrating how 

multiple factors combine to produce parasite population dynamics in wild fauna. 

Ultimately, the data collated throughout this PhD was used to parameterise a susceptible-

infected Susceptible-Infected (SI) model describing the host population dynamics of 

opisthorchiid trematodes. This model is applied to the P. truncatum system to examine 

which factors might determine the proportion of hosts that become infected.  
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Figure 8.4: The change in the proportion of Pseudamphistomum truncatum 

infected otters, fish and snails with increasing λ at different time points (T 

= 50 solid line, T = 150 dashed line and T = 300 dotted line). The 

proportion of infected otters does not change regardless of the value of λ. 
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Almost all fish are infected as soon as λ increases above 1000. There is a 

steady increase in snail infections with increasing λ. 

 

Figure 8.5: The change in the proportion of Pseudamphistomum 

truncatum infected otters, fish and snails with increasing ω at different time 

points (T = 50 solid line, T = 150 dashed line and T = 300 dotted line). The 

proportion of infected otters does not change regardless of the value of ω. 

As ω increases from 0 to 1, the proportion of snails and fish that are 

infected decreases regardless of whether λ = 1,000 (top row) or λ = 100 

(bottom row).  

 

Figure 8.6: The change in parameters affects the proportion of fish 

infected with Pseudamphistomum truncatum at time T = 50 weeks after the 

first case (solid line), T = 150 (dashed line) and T = 300 (dotted line): Very 

small increases in the value of the infection rate of snails with parasite eggs 

(ρ) and the infection rate of fish (α) lead to a rapid increase in the 

proportion of fish infected tending toward 100%. As the hatch rate of snails 

(bo), the infection rate of otters (µ) and the predation rate of otters on fish 

(γ) increase there is a relatively steady increase in the proportion of fish 

that are infected. Conversely, as fish hatch rate (bf) and otter birth rate (bo) 

increase, there is a decrease in the proportion of fish that are infected.  

 

Figure 8.7: Changes to the snail population: as the infection rate of snails 

with parasite eggs (ρ) increases so does the proportion of snails that are 

infected with Pseudamphistomum truncatum. As the hatch rate of snails 

(bo) increases so does the proportion of infected snails but only at time T = 

300, prior to this (T = 50 and T = 150) there is very little effect of snail 

hatch rate on the proportion of infected snails. 

 

Figure 8.8: The impact of changing parameters on the proportion of 

Pseudamphistomum truncatum infected otters at time T = 50 weeks after 

the first case (solid line), T = 150 (dashed line) and T = 300 (dotted line): 

as otter birth rate (bo) increases, the proportion of infected otters decreases; 

as the infection rate of otters, µ, increases so does the proportion of 

infected otters; as the predation rate of otters, γ, so does the proportion of 

infected otters. 

 

Figure 8.9: The response of the otter population to a decreasing carrying 

capacity. As otter birth rate (bo) increases from 0.01 to 0.1 the proportion 

of infected otters decreases, whilst decreasing the carrying capacity has no 

additional effect on the proportion of infected otters (top set of graphs). At 

a fixed birth rate, the proportion of infected otters remains at c.40% 

regardless of carrying capacity (bottom set of graphs, black line = 

Susceptible otters; red line = infected otters). 
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1. General Introduction 

 

1.1 Parasites: a global issue 

Many species select parasitism as an effective life strategy (Poulin and Morand 2000). 

Parasites have a significant role in shaping host communities (Poulin 1999a), the 

individual host and ecosystem properties (Hatcher et al. 2012); not only can they induce 

changes to the host phenotype but further are considered to have trans-generational 

impacts on host offspring (Poulin and Frederic 2008). There is limited data on geographic 

ranges and host population susceptibility, arising in part because of the challenge to 

achieve comprehensive sampling and the cryptic nature of many parasitic species (Poulin 

and Morand 2000).  

 

Parasites show an extraordinary capacity to adapt to novel hosts and changing 

environmental conditions and can even, via progenesis, alter their own life-histories in 

the absence of definitive hosts (Poulin 2003). This adaptive potential may play a role in 

colonisation success, which is strongly dependent on host densities (Morand and Poulin 

1998, Poulin 1999b). Novel host-parasite interactions often present more serious 

pathologies for host populations, partly because of naïve immune responses in the host, 

and the natural equilibrium of the adopted ecosystem may be affected (Torchin et al. 

2002). As a result, recognition of the role that anthropogenic movement of living 

organisms has had in introducing parasites to naïve systems has resulted in more stringent 

screening and quarantine procedures (see Torchin et al. 2002). Parasites of host 

populations under such scrutiny are, accordingly, most likely to be discovered.  

 

1.2 Parasite distributions 

Identification of parasites through surveillance is challenging because both the 

geographic distribution and aggregations within the host population are typically variable 

(Anderson and May 1979, 1991, Poulin and Dick 2007). Parasitic populations tend to be 

described by the negative binomial distribution such that a minority of the host 

population are infected with the majority of the parasitic population (Anderson and May 

1979, Shaw and Dobson 1995, Shaw et al. 1998, Woolhouse et al. 1997, Perkins et al. 

2003, Galvani and May 2005, Lloyd-Smith et al. 2005). Shaw and Dobson’s (1995) 

review on macro-parasite abundance (see Table 1.1 for definitions) and aggregation 

patterns indicates that mean parasite burdens were log-normally distributed, indicating 
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that parasite loads must be regulated to a certain degree. Both density independent (for 

example, environment and host behaviour) and density dependent factors (such as 

competition and the immune system of the host) act in combination, to a great or lesser 

extent, as species specific regulatory mechanisms for parasitic populations (Anderson and 

May 1978, May and Anderson 1978).  

 

Table 1.1 Definitions of common terms used in parasitology adopted in the current thesis 

(following Bush et al. 1997).  

Terminology Definition 

Parasite Any organism that lives on or in another living organism, known 

as the host, from which it obtains nourishment and benefits at the 

expense of the other. Parasites include both macroparasites (for 

example arachnids, helminths and protozoa) and microparasites 

(including viruses and bacteria). Parasites tend to reduce the 

biological fitness of their hosts. 

 

Prevalence  The number of hosts infected or infested with one or more 

parasites of a particular taxonomic group divided by total number 

of hosts examined for that parasite taxon.  

 

Intensity The number of individuals of a particular parasite species in a 

single infected host. 

 

Mean intensity The total number of parasites of particular species found in a 

sample divided by the number of hosts infected with that 

parasite. 

 

Abundance The number of individuals of a particular parasite in or on a 

single host, regardless of whether or not that host is infected with 

the respective parasite 

 

Mean abundance The total number of parasites of a particular species found in a 

sample divided by the total number of hosts in that sample. 

 

 

High parasite intensity (see Table 1.1) within an individual host is not necessarily 

synonymous with high transmission potential of parasitic infective stages from that host. 

In a similar manner to parasite distribution patterns, there is inherent variation in the 

reproductive potential of a parasite and this is affected by parasite and host genetics, 

parasite age and host immunity (Kaitala et al. 1997, Koehler and Poulin 2012). In 

addition, certain abiotic factors may result in high reproductive success of parasites. 

Atypical aggregations, together with an understanding of transmission potential of 

infective stages from particular sub-sections of the host population, can be advantageous 
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because particular sub-populations of heavily infected hosts can be isolated for 

management.  

 

1.3 Abiotic and biotic associations 

The interplay between abiotic (both natural and anthropogenic) and biotic factors shape 

parasite transmission processes (Thieltges et al. 2008). Further, understanding of such 

interactions is a prerequisite to preparing for the global changes in parasite and host 

communities that will result from anticipated climate change (Thieltges et al. 2008). All 

host-parasite systems are dynamic interactions and parasites are theorised to have evolved 

to infect disproportionately the common phenotypes in the host population (Lively et al. 

1990). Underlying genetic mechanisms experience, therefore, continual selection 

pressures which may be biotic and/or abiotic in nature (Mone et al. 2011). Such dynamic 

host-parasite interactions are, nevertheless, considered remarkably stable (May 1977, 

Anderson and May 1979, May and Anderson 1979, Stear et al. 2011). This is, perhaps, a 

consequence of a long history of co-evolution between hosts and their parasites (see 

Macnab et al. 2009, Stear et al. 2011). Perturbation through increasing host numbers or 

weather events will, however, impact on parasite distributions across their range. 

Identification of dynamic patterns in parasite and host distributions associated with both 

abiotic and biotic factors are, therefore, integral to our understanding of parasite ecology, 

particularly where there is a question over the invasive status of a particular parasite.  

 

1.4 Thesis aims 

Long-term studies of the parasite fauna of wildlife are rare because of the scarcity of data 

and the challenges presented in surveying endoparasites. Global climate change will 

impact host-parasite interactions (Harvell et al. 2002) and therefore, knowledge of the 

likely perturbations to such systems, will help us anticipate potential damage and so 

protect the equilibrium of our ecosystems (see Thieltges et al. 2008). Specifically, this 

thesis aims to investigate and compare the abiotic and biotic factors acting on different 

parasitic species isolated from otters (Lutra lutra) in the UK including endo- (Trematoda) 

and ecto-parasitic (Ixodida) species. Identifying functionally important factors that 

impact aggregation, intensity and fecundity, could have a profound effect on our 

understanding of disease transmission. Therefore, the hypothesis tested was that the 

patterns of parasite infection across a host population (aggregation) and parasite fecundity 

may be explained by abiotic (season and geographic region) or biotic (host sex, age-class 
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and body condition) factors. The two trematodes Pseudamphistomum truncatum and 

Metorchis albidus (Opisthorchiida) examined in this thesis have been reported only 

recently in the UK (see Simpson et al. 2005, Sherrard-Smith et al. 2009). We detailed 

their multi-host life cycle and examined the host population dynamics for this group of 

parasites.  

 

Chapter 2 reviews the impact of abiotic and biotic factors on trematode distributions in 

their hosts, particularly their definitive mammalian hosts. Parallels are drawn between 

comparable systems and gaps in the literature are highlighted, some of which are 

explored in the subsequent chapters of this thesis. 

 

In general parasites respond in species-specific manners to external stressors and in this 

thesis, two groups of parasites are considered. The ectoparasites of otters have been 

examined rarely. The aim of Chapter 3 was to assess the extent that inter-annual 

variations in large-scale weather patterns and host characteristics influence tick 

prevalence and intensity on otters. A version of this chapter has been published in PLoS 

One (2012, e47131). 

 

Whilst the majority of work on trematodes focuses on livestock infections, Chapter 4 

aims to define the abiotic and biotic factors contributing to the distribution of P. 

truncatum and M. albidus identified recently in wild otter populations in the UK. A 

version of this chapter has been accepted for publication in International Journal for 

Parasitology. 

 

There is speculation about the invasive status of P. truncatum and M. albidus in the UK 

(see Simpson et al. 2005, Sherrard-Smith et al. 2009). To address this, a molecular 

analysis of two mitochondrial DNA regions was undertaken in Chapter 5, using samples 

from across Europe, to test the hypothesis that these trematodes have been introduced 

recently or, alternatively, that they are native to Britain as well as mainland Europe.  

 

The patterns of parasite intensity across a host population and parasite fecundity within 

different hosts may vary between different groups within a host population. The 

identification of functionally important groups could have a profound impact on our 

understanding of disease transmission because hosts that are able to transmit a high 
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proportion of infective parasitic units (e.g. eggs) can be identified for targeted treatment. 

The aim of Chapter 6 was to test whether it was possible to use both aggregation patterns 

and fecundity (as a proxy for transmission potential), in P. truncatum infecting otters, to 

assess whether parasites aggregate differently within certain hosts distinguished by 

season, region or host age class, sex or condition.  

 

The distribution of parasites is determined by the distribution of their hosts. The life cycle 

of the two trematodes examined in this study is complex; three hosts are required, a snail, 

a fish and a piscivorous mammal. Therefore, a survey of snails, to complement available 

data on fish infections provided by the Environment Agency, was completed in Chapter 7 

to address the gap in the literature concerning the specific hosts for P. truncatum and M. 

albidus at early life stages. 

 

In Chapter 8, the empirical data collected during the course of this PhD was brought 

together in a three host population dynamics model. This chapter aims to i) estimate the 

proportion of infective stages (eggs) that are successfully transmitted to the first 

intermediate host; and ii) identify parameters that have a strong influence on the 

proportion of hosts that are infected at each life stage.  

 

Each chapter in this thesis is written as a self-contained article and therefore there is some 

overlap with regard to background information and methodology. A final discussion is 

provided in Chapter 9 to draw together some of the overall thesis findings, to provide a 

brief critique of this work and to propose some future directions for the continuation of 

this study. 
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2. Literature Review: How do abiotic and biotic factors determine the host-parasite 

distribution patterns observed in trematode populations of mammalians hosts? 

 

2.1 Abstract 

When parasites are introduced to novel ecosystems, there are sometimes devastating 

impacts on biodiversity, and recognition of key components influencing host-parasite 

relationships is essential to increase our ability to react, protect and manage ecosystems. 

Here abiotic and biotic impacts on trematodes of mammalian definitive hosts are 

reviewed. As global warming is predicted to promote the proliferation of parasitic 

infective stages, the first aim is to identify common associations of climate and local 

weather with host-trematode dynamics. Next, the major biotic factors impacting on host-

trematode relationships are discussed. Meteorological trends can be identified such that 1) 

higher rainfall is often associated with increased transmission and 2) higher temperature 

tends to benefit trematode populations, but relationships are species specific and complex. 

Seasonality is a key component in the transmission success of trematodes and acts both 

directly and indirectly through the impacts on intermediate host density. Host sex can 

explain the distribution patterns of many parasites but tends not to explain observed 

patterns for trematodes. Within the definitive host, age-related associations are observed, 

but are not always apparent, for these trophically transmitted parasites. Evidently, the 

combined influence of biotic and abiotic stressors drive the population dynamics of 

parasite systems. This review discusses how multi-disciplinary approaches could greatly 

improve our understanding of the processes regulating helminth distributions. 

 

2.2 The importance of parasites  

Parasites constitute more than half (>50%) of our global biota and parasitism represents 

one of the most widely adopted life strategies of any living organism (Price 1980, Kuris et 

al. 2008, Hechinger et al. 2011). Ironically, a high diversity of parasitic fauna is indicative 

of a healthy ecosystem because of the integral role parasites play in ecosystem 

functioning (Marcogliese 2005, Hudson et al. 2006). Yet parasites can be devastating to 

their host populations, particularly when the equilibrium of such systems is perturbed 

(Kennedy 2009). Consequently, parasite ecology has developed as a discipline concerned 

with, in part, the harm to host organisms caused by the dynamic nature of parasitism as a 

consumer strategy. Recognition of the key components influencing host-parasite 
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relationships is, therefore, essential to increase our ability to react, protect and manage 

ecosystems. 

 

Helminths are of substantial importance aquaculturally, agriculturally and zoonotically. 

Some of the principle zoonoses impacting human health are helminthic infections, 

including fascioliasis and schistosomiasis (trematodes), echinococcosis (cestodes) and 

trichinellosis (nematodes) (see Robinson and Dalton 2009). More recently, a range of 

fish-borne trematodiases have been recognized as important zoonoses (Robinson and 

Dalton 2009) and anthropogenic factors contribute to the distribution and inevitable 

spread of trematode disease (McCarthy and Moore 2000, Keiser and Utzinger 2005). In 

addition, parasite or host ranges move in response to global climate change which has, 

inescapably, contributed to emerging or re-emerging disease. Trematode parasites are 

particularly responsive to environmental perturbation because of the sensitivity of free-

living life stages (Kennedy 2009). It is important however to understand exactly how 

host-parasite systems respond to abiotic and biotic pressures.  

 

The ultimate prevalence, distribution and intensity of parasites in their definitive hosts is 

an amalgamation of interacting variables (including climate, weather and season, host 

sex, age and behaviour) that impact upon each intermediate host, the final host and each 

life stage of the specific parasite. This review aims to identify general patterns governing 

host-trematode systems, targeting those digeneans with mammalian hosts in particular. 

The associations, both abiotic and biotic, between host-parasite interactions are explored 

here with the objective of increasing our understanding and consequently instructing 

future research and management. This is particularly important to allow predictions 

concerning the response of parasitic populations to a changing climate.  

 

2.3 Abiotic interactions 

2.3.1 Meteorological conditions 

Trematodes have free living stages within their life cycle (see Figure 2.1) during which 

they are directly exposed to environmental conditions; it is therefore anticipated that the 

effect of climate change will be significant, especially pertaining to altered cercarial 

output from intermediate hosts (Mas-Coma et al. 2008, van Dijk et al. 2010). Such 

elevated sensitivities are highlighted by the associations of climate (long-term trends in 

meteorological conditions) with Fasciola and Schistosoma species, both economically 
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important trematodes that have been studied extensively (see Fenwick et al. 2007, Mas-

Coma et al. 2008, Beltran et al. 2009, McCann et al. 2010, van Dijk et al. 2010 and 

others). More generally, the impact of climate on the free-living stages of trematodes is 

well-documented. For example, provision of adequate moisture for survival and 

transmission success is associated with increased geographic range (Kendall and 

McCullough 1951, Smith and Wilson 1980, Mangal et al. 2008, van Dijk et al. 2010). 

Certain indirect impacts of climate change on helminth communities are evident through 

the effects of global warming on intermediate hosts (van Dijk et al. 2010, Lima dos 

Santos and Howgate 2011) but climate change might not have such obvious effects on 

defintivie hosts, perhaps because of the range of potential hosts available to generalist 

parasites (see Jenkins et al. 2006).  

 

 

Figure 2.1 An example of the life cycle of three-host trematodes. The trematode releases 

asexually produced clones (cercariae) from its snail host into freshwater environments in 

vast numbers (e.g. Diplostomum spathaceum 7279 – 37418 mean cercariae shed per host 

per day, Karvonen et al. 2004). The free-living cercariae attach to fish where they encyst 

as metacercariae. The life cycle is completed when infected fish are consumed by a 

vertebrate (a predatory mammal in the current example but this could be any vertebrate 
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depending on the parasite). The trematode matures in a specific habitat within the 

definitive host (for P. truncatum this is the mammalian gall bladder) and sexual 

reproduction complemented by occasional self-fertilisation allows the hermaphroditic 

adult worms to release eggs into the faeces to re-start the cycle.  

Where a study considers prevalence and intensity of trematodes in their definitive hosts, 

associations with climate can be explained, on occasion, by impacts on intermediate hosts 

and free-living stages of the parasite life cycle so that effects are seen within the 

definitive host population after a given lag time. Climate primarily explained long-term 

dynamics of common helminthic infections (but not rare infections) in bank voles, 

Clethrionomys glareolus, and changes in the bank voles were associated with climate-

related cycling in intermediate host beetle, flea and free-living mite populations (see 

Haukisalmi and Henttonen 1990). The comprehensive sampling of parasites from wild 

fauna would greatly facilitate our current understanding of how global climate change 

will impact macroparasitic communities (see Cribb 1999, Poulin and Morand 2000, 

Hotez and Gurwith 2011). 

 

A number of studies identify long-term meteorological patterns (5 years or more) as 

better predictors of parasite prevalence in hosts at each life stage than recent weather (1 

year or less) conditions (Morley and Lewis 2008, Wimberly et al. 2008, McCann et al. 

2010). But weather, the short-term variation in meteorological conditions, influences 

local parasite ecology (see Morley and Lewis 2008, Wimberly et al. 2008, McCann et al. 

2010). The liver fluke, Fasciola hepatica, has a global distribution and infects both wild 

and agriculturally important ruminants (McCann et al. 2010). In Northern Europe, 

temperature can be a limiting factor in liver fluke distribution and the parasite is endemic 

only in areas of the UK where day and night temperatures exceed 10°C for more than half 

the year (Torgerson and Claxton 1999). This is explained by the effects of local 

temperatures on the intermediate hosts. 

   

Local temperature has a complex association with helminths. Where snails are present, 

high temperatures can deplete the total abundance of cercariae in a water system 

(Zbikowska 2001, Koprivnikar et al. 2010). Further, high temperatures can prevent the 

establishment of snail hosts in some locations (Sturrock 1966, Appleton 1977, Fenwick 

2007). Yet generally, temperature increases are correlated with increased cercarial 

shedding (Poulin 2006, Koprivnikar and Poulin 2009, see Table 2.1). In the UK, 

sporocyst infections of snails increased following wet summers and warm winters 
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(Morley and Lewis 2008). There are, however, exceptions to this trend; for example, a 

decrease in Maritrema novaezealandensis cercariae emergence is observed with 

increasing temperature (Koprivnikar and Poulin 2009) and dicrocoeliid sporocysts 

decline in UK mollusc populations following hot and dry periods (Morley and Lewis 

2008). On the other hand, temperature has no apparent effect on Euhaplorchis 

californiensis (see Koprivnikar et al. 2010). Further, low temperatures can increase the 

longevity of cercariae whilst high temperatures accelerate cercariae development and 

maturation (Pechenik and Fried 1995, Measure 1996). So, there are evident system-

specific responses to changes in temperature between trematodes and their hosts. 

 

Rainfall and moisture levels can become particularly important where temperatures are, 

on average, warmer (see Morley and Lewis 2008). When trematodes require water for 

completion of their development (see Niewiadomska and Pojmańska 2011), heavy rain 

can have a negative effect on trematode prevalence (see Table 2.1) because of the dilution 

effect within streams (see Weil and Kvale 1985). Further, high stream velocity as a 

consequence of heavy rainfall in low level equatorial regions of African countries is 

considered to result in unfavourable habitat for the snail intermediate hosts of S. 

haematobium (see Wright 1970). Conversely, the prevalence of helminths can be reduced 

following prolonged periods of drought (see Morley and Lewis 2008) through a decrease 

in suitable host habitat within the freshwater system. For meteorological associations 

(climate and weather), the strength of the impact on parasite distribution in the definitive 

host depends on the scale under consideration. Small scale differences may result from 

variation in local weather whilst general trends may be caused by associated climatic 

conditions.   
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Table 2.1 Trematodes of Mammals in England, Wales and the Isle of Man recorded on the Natural History Museum Host-Parasite Database 

where associations with abiotic stressors are documented (as of August 2012, excludes Zoo animals); Where available, data from the literature 

on directional effects of temperature (T), rainfall (R) and season on trematode prevalence (P) abundance (A) or intensity (I) within the definitive 

mammalian host are presented. *Data additionally incorporated from this thesis. Corresponding references are listed below 
 

 

 

Parasite Mammalian Host Effect 

Class Species  Temperature Rainfall Season 

Brachylaemidae Brachylaima. recurva Apodemus flavicollis
1
 

A. sylvaticus
2 

Rattus norvegicus
1
 

Vulpes vulpes
3 

  Fewer in Spring
3
  

Seasonal effects
11

 

Dicrocoeliidae Corrigia vitta Apodemus flavicollis
1
 

A. sylvaticus
2
 

   

Two year cycles in P
4
 

Fasciolidae Fasciola hepatica Bos taurus
5 

>10ºC increases P
12

   

Heterophyidae Cryptocotyle lingua Vulpes vulpes
3 

  P highest in March
3
 

Omphalometridae Omphalometra flexuosa Talpa europaea
4 

  NS
13

 

Opisthorchiidae  Metorchis albidus* Lutra lutra Increased P with 

higher temperature* 

Decreased P with 

increased rainfall* 

NS* 

Pseudamphistomum 

truncatum* 

Lutra lutra 

Mustela vison 

Increased P with 

higher temperature* 

Decreased P with 

increased rainfall* 

NS* 

Paramphistomidae Gastrodiscoides hominus Mouse deer
8
   (NUK) A high late 

summer until early 

autumn
14

 

Paramphistomum sp. Ruminants   (NUK) High egg output 

may until october
15

 

Schistosomatidae Schistosoma haematobium Homo sapiens
7
  (NUK) Transmission 

during dry season
16

 

 

S. mansoni Homo sapiens
6,7

 

Mesocricetus auratus
9
 

Mus musculus
9
 

Rattus rattus
10

 

 (NUK) Transmission 

during wet season
17
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2.3.2 Season and annual patterns       

Seasonal patterns in parasite fecundity can be observed through faecal egg count studies 

(for example Hanna et al. 1988) and are often explained by the synchronicity of parasites 

with the seasonal fluctuations in abundance of their snail hosts (Hughes and Answer 

1982, Phiri et al. 2007). Late spring until early autumn tend to be the most successful 

seasons for trematodes in the UK (Table 2.1). There is evidence of developmental 

variation between Paramphistomum leydeni in reindeer from Finland such that immature 

worms are recovered only in winter whilst sexually mature worms develop in summer 

(Nikander and Seppo 2007) suggesting infection occurs sometime during summer or 

autumn following the release of eggs in summer from mature worms.  

 

Synchrony between egg release and the abundance of the next host is a crucial factor 

influencing egg production. Many adult helminths elicit a peak egg production during or 

just after heavy rain (see Rolfe et al., 1991, Madhavi 1979). Paramphistomum epiclitum 

and Gastrothylax crumenifer, for example, have peak egg production during the Monsoon 

season in August and September when grazing definitive hosts are also most abundant 

(Hanna et al. 1988). Trematodes can be transmitted to their definitive host via encysted 

vegetation or with predation of infected intermediate hosts. This difference in 

transmission route (with vegetation or prey) will interplay with the dynamics of host-

parasite populations. For instance, seasonality is associated with parasites of the 

Paramphistomidae such that egg output from infected definitive hosts is greatest over 

summer months (Table 2.1 and references therein) perhaps because of the use of seasonal 

vegetation for transmission of cysts to definitive hosts (see Phiri et al. 2007). Similarly, 

warmer conditions are associated with increased prevalence among the Fasciolidae, 

transmitted as cysts on vegetation (MacCann et al. 2010). Conversely, cysts can be 

maintained on fish hosts for long periods, potentially diluting any seasonal impact for 

trematodes transmitted via intermediate hosts found throughout the year, potentially 

explaining the lack of seasonality in the Opisthorchiidae (Table 2.1 and references 

therein). As such, seasonal variation in host diet may affect transmission patterns within 

host populations.  

 

2.3.3 Land use and habitat ecology 

The abundance of the definitive host is inextricably linked to characters of the local 

habitat, including prey availability, and therefore such characters must be of great 
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importance for the underlying assemblage of parasites (reviewed in Lafferty and Kuris 

1999, Bush et al. 2001, Pietrock and Marcogliese 2003). The strength of ecological 

factors associated with infection, including interactions with the local environment, are 

scale dependent (Aukema 2004, Byers et al. 2008). Large scale studies are considered of 

great importance to recognise trends between land-use, pollution or habitat type and 

parasite abundance (Holdenrieder et al. 2004, Farnsworth et al. 2006, Byers et al. 2008) 

but fine scale studies can inform about intricate effects that may impact trematodes (e.g. 

Lasiak 1993, Lively and Jokela 1996).  

 

Land use and habitat factors that increase host density or transmission potential will have 

a positive impact on trematode populations (Bustnes and Galaktionov 1999, Lafferty and 

Kuris 1999, Bush et al. 2001, Pietrock and Marcogliese 2003, Byers et al. 2008). In 

freshwater systems, infection intensity can decrease with increasing distance from large 

rivers and this is related, once again, to the use of habitat by host populations (see 

Hartson et al. 2011). Further, altitude may determine trematode distributions if 

establishment of snail populations that act as intermediate hosts is not possible at 

particular altitudes (see Rosenfield 1979, Weil and Kvale 1985). 

 

2.3.4 Anthropogenic impacts 

Humans have irreversibly altered global ecosystems and, inevitably, resident fauna and 

flora communities are disrupted with consequential impacts to parasite distributions in the 

definitive host. Disturbingly, such human mediated land use change is a contributing 

factor to disease emergence (Hartson et al. 2011). Parasite populations do not tend to 

show general responses to altered environmental conditions arising from anthropogenic 

activities (Lafferty 1997), mainly because each group of parasites demonstrates great 

variation in their sensitivity to different types of environmental stress. For trematodes 

specifically, cercariae are vulnerable to anthropogenic environmental conditions, such as 

the direct exposure to toxins (Pietrock and Marcogliese 2003, Morley et al. 2010, Ariyo 

and Oyerinde 1990). Pietrock and Marcogliese (2003) review the life stages of digeneans 

that respond to various stimuli such as toxins resulting from pollution, but also 

temperature and UV light. Generally, digenean cercarial survival is negatively affected by 

toxins, which is exacerbated by high temperature, low pH, salinity and water hardness 

(Morley et al. 2003).  
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Most laboratory studies have assessed the effects of single or, at most, a few variables on 

cercarial survival, such as pH (Sawabe and Makiya 1995), cadmium (Cd) or zinc (Zn) 

concentrations (Morley et al. 2003) but together their impact may differ. Morley et al. 

(2003) highlighted the need to consider the combined factors that may influence natural 

systems in the field, specifically in cercarial experiments. This has been demonstrated 

with Cryptocotyle lingua emergence from snails, Littorina littorea, where the cercariae 

located in ‘clean’ streams had greater survival compared to those emerging from snails in 

polluted waters (Cross et al. 2001). In addition this study showed that the swimming 

ability of cercariae from polluted environments was significantly reduced when compared 

to their ‘clean’ water sourced counterparts. More specifically, Zoogonoides viviparous 

cercariae survival is reduced when exposed to 0.1% sewage sludge in field experiments 

(Siddall and Clers 1994). The observed reaction of cercariae to water quality is now used 

generally as an indicator of freshwater ecosystem health (see Hechinger and Lafferty 

2005, Marcogliese 2005). Pollutants can also interact with host susceptibility to parasites, 

which has been comprehensively reviewed by Lafferty and Kuris (1999).   

 

Schistosomiasis, a trematode induced disease, is estimated to infect 207 million people 

worldwide (Steinmann et al. 2006). The human activities with greatest impact on 

Schistosomiasis are reportedly landscape alteration, disease-control measures and host 

contact with water (reviewed in Weil and Kvale 1985). Trematodes infecting wildlife 

alone are not subjected to such management or education led changes in host behaviour. 

In addition, the schistosomes are distinct from other trematodes in that they are dioecious 

and use only two hosts (a molluscan intermediate host and a vertebrate definitive host) 

for the completion of their life cycle, but the wealth of research on these trematodes (see 

Weil and Kvale 1985 and references therein) can be a useful start point for other species.  

 

Another major factor in the spread of parasites is human management of farmed fish, and 

translocations will have substantial impacts on trematodes using these hosts. The 

eradication of Echinostoma echinatum from the Lindu Valley, Sulawesi, was attributed to 

the managed introduction of non-native fish, because introduced fish, incapable of 

hosting the parasite, inadvertently consumed cercariae when competing with native fish 

for phytoplankton (Carney et al. 1980). This is a particularly clear example to 

demonstrate how anthropogenic induced changes to an ecosystem can alter parasite 

prevalence. Equally, the water quality dimensions such as nutrient and organic loading 
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have massive implications for freshwater systems and may be key drivers of trematode 

population dynamics.  

 

2.4 Biotic interactions 

The role of biotic factors in shaping parasite distributions are well documented and 

include differences between the host sexes (Poulin 1996, Klein 2000, Arneberg 2002, Zuk 

2009) and host age classes (Anderson and Gordon 1982, Anderson and Medley 1985, 

Pacala and Dobson 1988, Grenfell et al. 1995, Anderson and May 1991) but there is less 

literature on the role of additional biotic factors such as diet and biodiversity within the 

habitat of the parasite. Recently however, Thieltges et al. (2008) review the significant 

impact of biotic factors including biodiversity on parasite transmission success. Below, a 

number of key interacting biotic factors that are associated with trematode population 

dynamics in the definitive host are, briefly, outlined.  

 

2.4.1 Diet 

For diseases that are trophically transmitted, host diet ultimately defines whether or not an 

individual will become infected, and differences in parasite loads can be explained 

therefore by host prey choice. Clonorchis sinensis cases in China are more prevalent in 

men compared to women because males consume more raw fish (Lun et al. 2005). Host 

diet can have additional repercussions for parasite fecundity (Molan and James 1984), 

such that the fitness of a parasite increases with the resources available within the host 

habitat. This is confounded, however, by the increased host resistance that parallels the 

nutritional status of the host (Bize et al. 2008) and consequently, the success of the 

parasite is a compromise between these two components (Bize et al. 2008, Heylen and 

Matthysen 2011). Further, starving parasites at earlier life stages can have repercussions 

for the success, fecundity and longevity of the parasites once in the definitive host 

(Davies et al. 2001, Walker et al. 2006). Both the susceptibility of the host, and also the 

fecundity of the parasite can be impacted therefore by host diet. 

 

2.4.2 Host sex and age 

Sex biased parasitism has been reported extensively in the literature (Poulin 1996, Klein 

2000, Arneberg 2002). In mammals there is a general trend for males to suffer greater 

prevalence, intensity of infections and severity of disease (Klein 2004, Zuk 2009), with 

consequent repercussions for host reproduction depending on mating system and parasite 
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virulence (see Moore and Wilson 2002, Miller et al. 2007). These sex differences have 

been related to hormonal differences (Klein 2000), behavioural disparities including 

home range size (Bundy 1988) and dispersal strategies (Greenward 1980), aggressiveness 

(Restif and Amos 2010) and foraging strategy (Anderson et al. 2004). All these can affect 

an individual’s ability to compete for resources or a mate and, ultimately result in 

contrasting risks of infection, disease establishment and / or severity (Lindsey and Altizer 

2009). In mammals, polygynous mating systems create morphological and physiological 

differences between males and females because of competition for mates (Zuk 2009). The 

resulting male-biased dimorphism (where one sex is larger than the other), on the 

simplest level, means males become a larger target for parasites (Poulin 1996, Arneberg 

2002, Moore and Wilson 2002). There is some evidence that larger parasites carry more 

eggs (Poulin 1996, Hanelt 2009) and that larger hosts have larger parasites (Loot et al. 

2011), so in mammalian systems, males are hypothesised to carry more, and larger, 

parasites (Poulin 1996) but availability of such data is rare. In addition, an increased body 

mass is linked to decreased leucocyte counts (Semple et al. 2002) causing the larger sex 

to suffer from increased pathology. Such variation in response to disease appears to result 

in differences in parasite infra-population size (Klein 2000), transmission rate (Perkins et 

al. 2003, Ferrari et al. 2004), and the genetic structure of the parasitic population 

(Caillaud et al. 2006). Recently it has been shown that male mammalian hosts may also 

shed more infective particles (for example, eggs) than their female conspecifics (Lin et al. 

2006). Yet F. hepatica, which lacks prevalence differences between the host sexes (Mas-

Coma et al. 1999), is most fecund within female hosts (children Homo sapiens in Peru) 

such that females produced c. 400 eggs per gram (epg) whilst parasites in male hosts 

produced only c. 100 epg (Esteban et al. 2002).  

The prevalence of infections in mammals from the UK tended to show no difference 

between the sexes (Table 2.2) perhaps because diet is similar among the sexes for most 

mammals. Additional space and resources for parasites within the host habitat in the 

larger males, alongside a greater consumption of potentially infected fish, could explain 

infection intensity differences between male and female hosts where apparent (see Table 

2.2; Frankland 1959). Predominantly male biases were observed in trematode infections 

of definitive hosts for studies outside the UK (see Klein 2004) so perhaps habitat and 

weather related factors cause increased differences between male and female behaviours 

elsewhere resulting in increased exposure to helminths of males but this geographic 

difference requires further study.  
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Table 2.2 Trematodes of Mammals in England, Wales and the Isle of Man recorded on the Natural History Museum Host-Parasite Database (as 

of August 2012, excludes Zoo animals); The directional effects of host sex, host age and host health on trematode prevalence P, abundance A, 

intensity I or fecundity F within the definitive mammalian host is presented where available in the literature. *Data additionally incorporated by 

the authors. NUK = Relationship identified in a study on a non-UK mammal. NS = No significant difference reported).  

Parasite Mammalian Host Effect 

Class Species  Host Sex Host Age Host health 

Brachylaemidae B. recurva Apodemus flavicollis
1
 

A. sylvaticus
2 

Rattus norvegicus
1
 

Vulpes vulpes
3 

 

 

 

NS
3
 

 

 

 

NS
3
 

 

Ityogonimus lorum Meles meles
1 

Talpa europaea
4 

 

NS
21

 

  

I. talpae Talpa europaea
4
    

Dicrocoeliidae Corrigia vitta Apodemus flavicollis
1
 

A. sylvaticus
2
 

Arvicola terrestris
1
 

Clethrionomys glareolus
1
 

Microtus agrestis
1
 

 

NS
22

 

 

Increased P with age
2,22

 

 

Dicrocoelium 

dendriticum 

Myocastor coypus
1 

Ruminants
20

 

 

 

P higher in females
23

 

 

 

Increased P and I with age
23

 

 

 

F increases if host 

stressed
24 

Fasciolidae 

 

Fasciola hepatica Bos taurus
5 

  Compromised health 

with respect to 

additional infection
25

 

Heterophyidae Cryptocotyle lingua Vulpes vulpes
3
 NS

3
 NS

3
  

Microphallidae Microphallus 

pygmaeus 

Mus musculus
18

 I higher in males
26 

F higher in older 

conspecifics but NS
26

 

 

Omphalometridae Omphalometra 

flexuosa 

Talpa europaea
4
 NS

13
   

Opisthorchiidae Clonorchis sinensis Homo sapiens
19

 P higher in males
27

   



 LITERATURE REVIEW  

21 

 

 

References to Table 2.2 
1
Harris, S., Yalden, D.W. (eds.) (2008) Mammals of the British Isles: handbook (4

th
 Edition). Blackwell Scientific Publications. Southampton pp. 799. 

2
Behnke, J.M., Lewis, J.W., Zain, S.N.M., Gilbert, F.S. (1999) Helminth infections in Apodemus sylvaticus in southern England: interactive effects of host 

age, sex and year on the prevalence and abundance of infections. Journal of Helminthology 73: 31-44. 
3
Richards, D.T., Harris, S., Lewis, J.W. (1995) Epidemiologic studies on intestinal helminth-parasites of rural and urban red foxes (Vulpes vulpes) in the 

United Kingdom. Veterinary Parasitology 59: 39-51. 
4
Davies, E. (1932) On a trematode, Ityogonimus lorum (Duj, 1845), with notes on the occurrence of other trematode parasites of Tapla europaea in the Aber-

ystwyth area. Parasitology 24: 253-259. 
5
Hughes, D.L., Purnell, R.E., Brocklesby, D.W. (1977) The effect of initial Fasciola hepatica infection on the pathogenicity of subsequent Babesia divergens 

infections in intact and splenectomised calves. Veterinary Record 100: 320-321. 
18

Brayton, A.R., Brain, P.F. (1974) Effects of crowding on endocrine function and retention of digenean parasite Microphallus pygmaeus in male and female 

albino mice. Journal of Helminthology 48: 99-106. 

Metorchis albidus* Lutra lutra NS* I higher in adults* Males show greater 

pathology* 

Pseudamphistomum 

truncatum* 

Lutra lutra 

Mustela vison 

NS* I higher in adults* Males show greater 

pathology* 

Schistosomatidae Schistosoma 

haematobium 

Homo sapiens
7
 

 

(NUK) NS in P
28

 (NUK) P increases with age 

until c.15 years
28

, but 

reduced egg counts from 

adults (>24 years) 

observed
29

 

Associated with 

diseases of the 

bladder and urinary 

tract
30

 

S. japonicum Mus muculus
6
   Associated with 

biochemical changes 

affecting blood 

serum, liver and 

pancreas
30

 

S. mansoni Homo sapiens
6,7

 

Mesocricetus auratus
9
 

Mus musculus
9
 

Rattus rattus
10

 

  Associated with 

biochemical changes 

affecting blood 

serum, liver and 

pancreas
30
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In addition to host sex differences, parasite prevalence and intensity can be typically and 

positively associated with host age through the cumulative risk of exposure with time 

(Anderson and Gordon 1982, Anderson and Medley 1985, Pacala and Dobson 1988, 

Grenfell et al. 1995, Anderson and May 1991). Essentially, where parasites across the 

host population become less aggregated with host age, then density-dependent effects 

such as acquired immunity are acting on the parasite population (see Quinnell et al. 

1995). Trophically transmitted parasites tend to accumulate with host age but parasite 

fecundity decreases as the parasite ages (see Table 2.2; Shaw et al. 1999). This has 

implications for disease spread because hosts that have been infected for a longer period 

may have more parasites but release less infective units (eggs) than younger conspecifics 

carrying fewer parasites. If the host continuously acquires more parasites, however, the 

overall fecundity of the individual hosts’ parasite population (and release of eggs into the 

environment) will remain high. Further, host resistance against parasites is heritable 

resulting in generational differences in parasite load and / or fecundity across the host 

population (Smith et al. 1999). 

 

2.4.3 Parasite competition and co-infection 

Trematode populations may be regulated further through density-dependent mechanisms 

such as competition (Madhavi et al. 1998). Both intra- and inter- specific competition can 

impact the life history strategy (Jackson et al. 2006, Lagrue and Poulin 2008) and 

transmission success (Pederson and Fenton 2007) of co-habiting species. For example, a 

higher proportion of Coitocaecum parvum exhibited progenesis when the molluscan host 

was co-infected with Microphallus sp. (see Lagrue and Poulin 2008). Competitive 

exclusion within the snail intermediate host limits the number of multiple helminth 

infections (Soldanova et al. 2012). In addition, pre exposure can limit the intensity of 

trematode infection where the host immune system is primed and this acquired immunity 

can protect the host from secondary species infection (Luong et al. 2011). Processes such 

as intraspecific competition are perhaps less important for trematodes because a large 

proportion of early life-stage parasites (for example, cercariae) die prior to transmission 

which results in naturally low recruitment rates (see Underwood 1979, Keough and 

Chernoff 1987). 
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The likelihood of co-infection can change depending on the life-stage of the parasite 

species. Trematodes have different requirements at different life stages: trematodes 

reproduce in the first intermediate and definitive hosts, whilst the second intermediate 

host (fish) can be viewed as a transmission vehicle. The resulting intensity of competition 

between parasites at each life stage will therefore differ considerably (Karvonen et al. 

2012 but see Niewiadomska and Pojmańska 2011). Karvonen et al. (2012)’s recent 

hypothesis suggests that co-infections will be less common in snails than in fish because 

resources in the snail are limited so that trematodes would be negatively affected at this 

life stage. Conversely, resources are not limited in the fish when the parasite is dormant. 

In addition, there is a benefit to co-infection from the parasite’s perspective because 

species specific responses to cysts by the host are less likely to develop as a consequence 

of continual exposure to generic species. This hypothesis was supported by observed low 

levels of co-infection in snails and high levels in fish (Karvonen et al. 2012). 

Alternatively, such a trend may result from sheer numbers: in snails, a single parasitic 

unit (sporocyst) produces thousands of clones (cercariae) perhaps restricting space for 

further trematode infections so that the first parasite to infect a snail becomes dominant. 

Conversely, the low impact metacercariae, encysting on fish, have little impact on the 

space or resources of the fish host. Under natural conditions, co-infections are common 

and considered the norm (for example Lello et al. 2004, Pederson and Fenton 2007, 

Telfer et al. 2010). In mice, co-infection with multiple strains of Trypanosoma brucei 

mitigated the negative pathological effects caused by single strain infections (Balmer et 

al. 2009) and perhaps this acts to alleviate the major effects of infections in natural 

populations.  

 

The parasite genotype may interact with the number or type of parasites infecting a single 

host to influence the overall distribution and assembly of parasites. For example, the 

probability of multiple infections of Microbotryum violaceum apparently depends on the 

genotypes of the particular interacting strains (Koskella et al. 2006). In the dioecious 

schistosomes, genetic structure differs between the sexes (see Prugnolle et al. 2003) with 

c. 50% of genes biased to a particular sex (Beltran and Boissier 2010). Schistosomes are 

monogamous and demonstrate male biased sex ratios in wild populations (Beltran et al. 

2009), although this ratio can be altered by ecological variables (see Mone 1997). As a 
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result, separation of monogamous couples (‘divorce’) increases with increasing male-

biased parasite ratios and this allows genetic diversity to increase across the population 

because more males would be able to contribute to the gene pool (Beltran et al. 2009). 

Further, the immune defence of the host is more successful against genetically more 

similar male worms than more distinct ones to those experienced during previous 

infection which is again tailored toward greater genetic diversity in schistosomes (Beltran 

et al. 2011).  

 

2.4.4 Trematodes as generalists 

Trematodes are able to infect a range of host species at each life stage. This combination 

of hosts may serve to dilute the overall parasite abundance within any single species host 

population (Weil and Kvale 1985). Both the nature of a parasite’s life-cycle and niche 

breadth (the specific host species available) can explain interspecific and latitudinal 

variation in geographic range size of parasites (Poulin et al. 2011). The diversity of the 

ecosystem under consideration will have additional impacts on the success of parasite 

populations in their definitive host. For example, the presence of predatory fish can 

reduce cercarial populations (see Weil and Kvale 1985). An understanding of the parasitic 

fauna within an ecosystem through comprehensive sampling can ultimately contribute to 

an analysis of ecosystem health (see Hechinger and Lafferty 2005).  

 

Parasites can influence their hosts in several ways and are integral in shaping their host 

community (Poulin 1999a). Direct impacts include a decrease in the ability of an infected 

individual to compete or survive predator-prey interactions within the host environment 

(Mouritsen and Poulin 2002). In some cases, native parasites are able to increase in 

abundance following the arrival of a novel host species; a mechanism known as ‘parasite 

spillback’ (Kelly et al. 2009). This may apply equally to cases where a native species 

recovers from a population crash so that the increase in host numbers benefits the parasite 

community by increasing their abundance and potential to infect other host populations.  

 

2.5 Combined impacts of abiotic and biotic factors 

The huge variation in different trematode-mammalian host interactions is evidence of the 

multitude of interacting variables that can define parasite distributions. The advance in 
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statistical methodologies (for example General Linear Models GLMs, Mixed-Effects 

GLMs) has allowed researchers to consider the combined impact of abiotic and biotic 

factors (see Nelder and Wedderburn 1972; e.g. Lord et al. 2012). Yet the concept of 

mixed effects has been considered since Anderson and May (1979) identified that: i) 

increasing host density leads to an increase in hosts contacting infective stages but no 

proportional change in parasite prevalence, whilst; 2) climate acts as a mechanism to 

generate changes in prevalence across the system because of the interplay between 

temperature and rainfall. Investigating the relationships between trematodes and 

mammalian hosts (particularly in the lesser-studied wild mammal systems) will ultimately 

allow comprehensive predictions of future parasite distributions in response to a changing 

world (e.g. Sripa 2010, Hotez and Gurwith 2011). 

 

2.6 Conclusions and future directions 

The impact of abiotic stressors on transmission success and population dynamics of host-

parasite systems is significant but often system specific (for example, Dobson and Carper 

1992, Lafferty and Kuris 1999, Bush et al. 2001, Pietrock and Marcogliese 2003). 

Parasites are an integral unit of any ecosystem but stochastic changes that dramatically 

change the abundance of either host or parasite population can alter the dynamics of the 

host-parasite interaction. The combined impact of both abiotic and biotic factors 

ultimately dictates the host-parasite dynamic of parasite systems and is considered less 

often in the literature. The lack of opportunities to survey the parasitic fauna of medium-

large wild mammals is a significant challenge to our understanding of the dynamics of 

host-helminth systems. Further, to predict the response of parasitic populations to a 

changing climate we must first understand the current nature of host-parasite interactions 

and utilise surveys that can monitor long-term patterns defining such systems. Much work 

on parasite ecology expresses the species-specific nature of these organisms but there 

may be general principles that are applicable across host taxa. The incorporation of multi-

disciplinary approaches – long-term studies, deterministic models and survey work – to 

consider fully the multiple factors operating, will be most beneficial to understand further 

the processes underpinning the dynamic nature of helminth distributions.     
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 (A version of this chapter is published in PLoS One: Sherrard-Smith, E., Chadwick, E.A., Cable, J. (2012) 

Abiotic and biotic factors associated with tick population dynamics on a mammalian host: Ixodes 

hexagonus infesting otters, Lutra lutra. PLoS One 7: e47131) 

 

 

3. Abiotic and biotic factors associated with tick population dynamics on a 

mammalian host: Ixodes hexagonus infesting otters, Lutra lutra 

 

3.1 Abstract 

The Eurasian otter, Lutra lutra, hosts several parasites with zoonotic potential. As this 

semiaquatic mammal has large ranges across terrestrial, freshwater and marine habitats, it 

has the capacity for wide dispersion of pathogens. Despite this, parasites of otters have 

received relatively little attention. Here, we examine their ectoparasite load and assess 

whether this is influenced by abiotic or biotic variables. Climatic phenomena such as the 

North Atlantic Oscillation (NAO) affect weather conditions in northern Europe. 

Consequently parasite distributions, particularly species with life stages exposed to the 

external environment, can be affected. We assessed the extent to which inter-annual 

variations in large-scale weather patterns (specifically the NAO and Central England 

(CE) temperatures) and host characteristics influenced tick prevalence and intensity. 

Ectoparasites consisted of a single species, the nidiculous tick Ixodes hexagonus 

(prevalence = 24.3%; mean intensity = 7.2; range = 1-122; on n = 820 otter hosts). The 

prevalence, but not intensity of infestation, was associated with high CE temperatures, 

while both prevalence and intensity were associated with positive phases of the NAO. 

Such associations indicate that I. hexagonus are most abundant when weather conditions 

are warmer and wetter. Ticks were more prevalent on juvenile than sub-adult or adult 

otters, which probably reflects the length of time the hosts spend in the holt where these 

ticks quest. High tick number was associated with poor host condition, so either poor 

condition hosts are more susceptible to ticks, or tick infestations negatively impact on 

host condition. Otters are clearly an important and common host for I. hexagonus, which 

has implications for vector-borne diseases. This work is the first to consider the impacts 

of long-term weather patterns on I. hexagonus and uses wild-animal cadavers to illustrate 

the importance of abiotic and biotic pressures impacting parasitic populations.  
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3.2 Introduction  

Current change in climate (the long-term average meteorological conditions of a region 

IPCC 2007) is associated with increases in temperature and precipitation, especially in 

Northern temperate zones (IPCC 2007). This influences parasite distributions both 

directly (Kutz et al. 2004, Mangal et al. 2008) and indirectly, for example via impacts on 

host range (Patz et al. 1996, Harvell et al. 2002). Weather (short-term variation in 

meteorological conditions) can cause variations in parasite distributions whilst 

synchronously influencing host abundance (Cattadori et al. 2005) but will affect specific 

host-parasite interactions differently (Patz et al. 1996, Kovats et al. 2001, Lafferty 2009, 

Moller 2010). Weather patterns are influenced by climatic phenomena such as the North 

Atlantic Oscillation (NAO). The NAO affects European climate such that, when in 

positive phases, northern Europe experiences warmer and wetter conditions (Hurrell et al. 

2003, Lopez-Moreno and Vicente-Serrano 2007). Identifying associations between 

climate and the distribution of vectors over time (e.g. Mills et al. 2010, Jongejan and 

Uilenberg 2004) is an essential pre-requisite to understanding public and wildlife health 

risks resulting from vector-borne infection.  

 

Ixodid ticks are vectors for a range of pathogens causing diseases including Lyme 

disease, Boutonneuse fever and tick-borne encephalitis (Hillyard 1996). Ixodes 

hexagonus is an efficient vector of Borrelia burgdorferi, the causative agent of Lyme 

disease (Gern et al. 1991) but in the UK, I.  ricinus has received most attention because of 

its ubiquitous nature and association with transmission of pathogens to humans and 

livestock (Hillyard 1996). The distribution of I. ricinus is influenced by weather 

(Randolph et al. 2002, Hancock et al. 2011) and the presence of suitable hosts and habitat 

(Gray et al. 1992). The increasing population density and geographic range of I. ricinus, a 

European tick (Hancock et al. 2011, Lindgren et al. 2000), and other tick species such as 

the North American species I. scapularis, are associated with increasing temperatures 

(Ogden et al. 2006). The majority of ixodid ticks require >80% relative humidity for 

survival off the host (Macloed 1934, 1939, Medlock et al. 2008) and as such, positive 

phases of the NAO may benefit ixodid ticks by creating suitably humid weather. 

Landscape, habitat use and local weather conditions have been associated with tick 

distributions previously (Randolph et al. 2002, Hancock et al. 2011, Lindgren et al. 2000, 
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Ogden et al. 2006, Arthur 1953, Hoberg and Brooks 2008). The impact of such 

environmental variables on host-parasite interactions is, however, highly variable 

(Tylianakis et al. 2008). Mustelids have been associated with the nidiculous (burrow or 

nest dwelling) tick I. hexagonus (Arthur 1953) but the relationship between I. hexagonus 

and weather conditions has not been examined previously. 

 

The Eurasian otter, Lutra lutra, is a top predator in the UK and a sentinel of freshwater 

health (Chadwick et al. 2011). Otters are wide ranging opportunistic predators that feed in 

terrestrial, freshwater and marine habitats (Kruuk 2006). They are therefore potentially 

exposed to a wide diversity of pathogens and a great deal can be learned about the 

distribution of parasites in UK ecosystems by screening such a generalist host. Here, we 

identified the tick species that use otters as a host. Next, we investigated how weather 

patterns and host characteristics are associated with tick infestations of otters in England 

and Wales. Specifically, we hypothesised that tick occurrence (prevalence and intensity) 

would be positively correlated with temporal variation in: i) the NAO (associated with 

warmer and wetter weather in the UK), and; ii) higher Central England (CE) temperatures 

(a long-term record of temperature in central England, see Materials and Methods). Based 

on these findings we hypothesised that spatial variation in tick counts among 

meteorologically distinct regions of the UK would correlate positively with rainfall and 

temperature.   

 

3.3 Materials and Methods 

3.3.1 The host 

The Cardiff University Otter Project receives dead otters, Lutra lutra, from across 

England and Wales. Most (86% of the current study) have been killed by road traffic and 

are stored subsequently at -20C. The location (British National Grid Reference) and date 

of death (month and year), sex, age-class (juvenile (N = 25), sub-adult (238) and adult 

(312)) and size (weight (kg) and length (m)) were recorded for each otter collected 

between 2004 and 2010. A condition index K was calculated controlling for the 

dimorphism of otter sexes, following (Kruuk et al. 1987). Such that: 

Equation 3.1  
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K = weight / [a x length
n
] 

 

where a = 5.02 and  n = 2.33 for females, and a = 5.87 and n = 2.39 for males (Kruuk et 

al. 1987). Seasons were defined as winter: December-February, spring: March-May, 

summer: June-August, and autumn: September-November. Very decomposed otters were 

excluded from the analysis. Remaining otters included in the model (and excluding those 

with missing data; n = 575) were distributed across seasons and years as follows: spring = 

137; summer = 83; autumn = 179; and winter = 176; 2004 = 12; 2005 = 48; 2006 = 70; 

2007 = 122; 2008 = 146; 2009 = 116; and 2010 = 61. 

 

3.3.2 Parasite identification 

Ticks were removed (via pelt searching and fur combing) and stored in 90% molecular 

grade ethanol prior to immersion in 0.1% saline solution for microscopic examination 

(x30 magnification) using a Nikon dissecting microscope with fibre optic illumination, 

and identified to species using morphological features (Snow 1979, Hillyard 1996). 

Ixodes hexagonus was the only tick species present and species identification of 15 

specimens (5 adults, 5 nymph and 5 larvae) was confirmed by the Natural History 

Museum. Occasionally, damage or desiccation prevented morphological identification so 

for these specimens we sought confirmation using mitochondrial DNA cytochrome 

oxidase sub-unit 1 (COX1) analysis as follows:  

 

DNA was extracted from 13 specimens, three adults, three nymphs and seven larvae, 

from four geographically separate hosts. Ethanol was evaporated fully from each sample. 

Extractions were conducted using a QIAGEN kit as per the manufacturer’s protocol 

(QIAGEN DNeasy Blood and Tissue Handbook 2006) with the additional step of 

manually crushing each tick body with a sterile pin tip at the start of the process. PCR 

followed standard procedures (QIAGEN DNeasy Blood and Tissue Handbook 2006). 

Novel primers (IHEXCO1F: 5’- TCATAAAGACATTGGGACT-3’, IHEXCO1R: 5’- 

TGGTAAAGAATGGGGTCT-3’) were designed by alignment of COX1 mtDNA from 8 

reference tick species (GenBank: Dermacentor reticulatus AF132829, Haemaphysalis 

punctata FN394339.1, Hyalomma aegyptium AF132821, Ixodes uriae NC006078, I. 
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hexagonus AF081828.1, I. lividus GU124743, I. ricinus FN394342 and Rhipicephalus 

sanguineus NC002074). The PCR reaction conditions were carried out in a 50µl final 

volume, with 10x PCR buffer II (Applied Biosystems, UK), 50mM MgCl (Applied 

Biosystems, UK), 2.5mM of each dNTP, 10pmol/µl of each primer, 0.5U Taq DNA 

polymerase (Invitrogen) for each 10 µl DNA template. PCR conditions (GenAmp PCR 

System 9700, Applied Biosystems, UK) were: 95°C for 5 min, followed by 35 cycles of 

94°C for 30 sec, 53°C for 1 min and 72°C for 1 min, with a final extension of 72°C for 10 

min. PCR products produced identical sized bands for all tick samples on a 1.5% agarose 

gel. Four larvae, one nymph and one adult were sequenced (QIAGEN, Genomic Services, 

Germany) using both forward and reverse primers. All 592 bp sequences from the current 

study were identical and showed 99% similarity to the corresponding region of GenBank 

I. hexagonus AF081828.1. This reference sequence, AF081828.1, was obtained from 

laboratory maintained ticks over ten years ago (Black and Roehrdanz 1998), perhaps 

explaining the 3bp discrepancy (at position 130 transition T to C, and at positions 172 and 

188 transversions A to C). The next closest sequence match was 82% with Ixodes 

asanumai Kitaoka 1973 (GenBank: AB231674.1).  

 

3.3.3 Data preparation 

Temporal variation in weather was quantified using mean monthly temperatures (C) for 

Central England (CE temperature) (Parker et al. 1992) and North Atlantic Oscillation 

(NAO) phases (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml, 

data provided by the Climate Prediction Centre of the U.S. National Oceanographic and 

Atmospheric Administration website). The mean of each was calculated for: i) the month 

of host death; ii) the sixth month period preceding host death; and iii) the year preceding 

host death, for each otter. These time periods were selected based on literature indicating 

that populations may be influenced by conditions during the previous season or year 

(Randolph et al. 2002, Ruiz-Fons and Gilbert 2010).  

 

Spatial variation in climate was quantified using long-term averages, which are a useful 

tool to describe the state of the climate in a particular region (Perry and Hollis 2005). 

Long-term yearly average (1971-2000) temperature (maximum and minimum, ºC) and 

rainfall (mm) measures for meteorologically distinct regions of England and Wales were 

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
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collated (Perry and Hollis 2005). These regions are defined as East and Northeast 

England, East Anglia, Southeast England and Central South, Northwest England and 

North Wales, South Wales and Southwest England, and Midlands (Figure 3.1) and are 

used by the Meteorological Office UK Climate Impacts Programme (UKCIP) to 

summarise weather patterns in the UK 

(http://www.metoffice.gov.uk/climate/uk/averages/19712000/). To determine the abiotic 

conditions for each sampled carcass, otters were assigned the regional average for climate 

data depending on their geographic location at time of death. Associations between these 

measures of climate and tick prevalence (the number of hosts infested with specific 

parasitic species, in the current study ticks, divided by the total number of hosts 

examined, Bush et al. 1997), intensity (the number of individuals of a particular parasite 

species on a single infested host, Bush et al. 1997) and tick count (the total number of 

ticks within a population) were examined from otters found between 2004 and 2010. 

 

3.3.4 Data analysis 

Ectoparasites are thought to abandon dead hosts (Nelder and Reeves 2004). We tested 

initially, therefore, whether there was a difference in tick abundance between fresh 

(collected within 24 h of death, N = 610) and not fresh (otters characterised as slightly or 

moderately decomposed, N = 210) otters. We found no significant difference in tick 

presence/absence (χ
2

1,820 = 0.515, p = 0.473) or median intensity (Kruskal-Wallis H1,195 = 

0.35, p = 0.556) and subsequently pooled all data for further analyses.  

 

The NAO and CE temperatures, for each time period examined, and host factors (sex, 

age, condition, season and year of death) were combined in a general linear model fitted 

to the tick presence/absence data with a binomial error distribution (N = 575 hosts, 

individuals were omitted where data was missing). A generalised additive model 

incorporating these explanatory variables was fitted to the tick intensity data (tick counts 

per otter excluding zero counts) with negative binomial error distribution. Relationships 

between explanatory variables and tick intensity were non-linear. A generalised additive 

model (GAM) was applied therefore with splines fitted appropriately. Final models were 

selected using Akaike Information Criterion (AIC).    

 

http://www.metoffice.gov.uk/climate/uk/averages/19712000/
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Tick counts were compared between the meteorologically distinct regions of England and 

Wales (described above) by calculating regional mean tick intensities and testing for a 

correlation with the long-term yearly average maximum and minimum temperature (ºC) 

and total rainfall (mm) in each region.  

 

The spatial distribution of infested otter carcasses (N = 199) was examined to look for 

clustering within the host distribution (N = 820) by calculating a modified Ripley’s K 

statistic, K[i.](r), using Ripley’s isotropic edge correction (Ripley 1988) with a simplified 

border of England and Wales as a boundary (for further details of methodology, see 

Sherrard-Smith et al. 2009). All statistical analyses were conducted using R version 2.12 

(R Development Core Team 2008).  

 

Figure 3.1 Distribution of Ixodes hexagonus infested (red circles) and uninfested (clear 

circles) otters in England and Wales. Meteorologically distinct regions (East and 

Northeast England, East Anglia, Southeast England and Central South, Northwest 

England and North Wales, South Wales and Southwest England, and Midlands) defined 

by the Meteorological Office UK Climate Impacts Programme (data available online). 

3.4 Results 
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3.4.1 Tick species 

Tick (Ixodes hexagonus) prevalence on Eurasian otters, between 2004 and 2010, was 

24.3% (199 out of 820) (Figure 3.1). On some hosts, all post-hatch tick life stages (larva, 

nymph and adults) were recovered (18 cases), but almost 40% of hosts had only one life 

stage present at collection (Larvae = 13 cases, Nymph = 40 cases, Adult = 26 cases) 

(Table 3.1). Infested otters were widespread across England and Wales (Figure 3.1) with 

no evidence of clustering of infestation within the otter distribution (Ripley’s K analysis 

at the 95% confidence level using radii ranging from 1 km-130 km). 

 

 

Table 3.1 Summary of Ixodes hexagonus on otters: Ixodes hexagonus infestations of 

Lutra lutra in England and Wales between 2004 and 2009 (N = 820); showing 

prevalence, parasite count, mean intensity with upper and lower 95% bootstrap 

confidence interval (10000 iterations), and maximum intensity for each tick life stage. 

 

Parasite 

stage 

Prevalence 

(%) 

Count (/ 820 

hosts) 

Mean Intensity (95% CI)  Range 

Any stage 24.3 199 7.2 (5.5-9.2) 1-122 

Larva 9.3 76 7.7 (4.7-11.7) 1-112 

Nymph 15.1 124 4.0 (2.9-5.2) 1-44 

Adult 11.8 97 2.7 (2.1-3.5) 1-26 

 

3.4.2 Abiotic factors 

Tick prevalence on otters was associated with higher Central England (CE) temperatures 

for the 12 month period preceding host death (GLM569: t = 2.594, p < 0.01), and more 

positive phases of the North Atlantic Oscillation (NAO) over the 12 month period 

preceding host death (GLM569: t = 2.099, p < 0.05) (Figure 3.2). Tick intensity was not 

significantly associated with CE temperatures over any period preceding host death 

(GAM155: t = 1.445, p = 0.15). Tick intensity was, however, positively associated with the 

NAO at month of host death (GAM155: t = 2.670, p < 0.05) (Figure 3.3).  
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Figure 3.2 Probability plot for a model of the association between tick prevalence and the 

explanatory variables A) Central England Temperature for the 12 month period preceding 

host death, B) North Atlantic Oscillation for the 12 month period preceding death for 

each host age class: Dotted line = juvenile hosts; Solid line = Adult hosts; Dashed line = 

Sub-adult hosts. 

 

 

 

 

Figure 3.3 Relationship of tick count to mean North Atlantic Oscillation at month of host 

death. Standard error bars shown. 
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The South Wales and Southwest England region (Figure 3.1) had significantly higher tick 

counts on otters than all other regions, while East and Northeast England had significantly 

lower tick counts than all other regions; these two regions contributed most strongly to 

the statistically significant difference in counts between regions (χ
2

5 = 302.169, p < 

0.001). Mean intensities for each region did not, however, correlate with maximum or 

minimum temperature, or mean rainfall for the long-term yearly average (1971-2000) 

regional data (Correlations, all p > 0.1) (Figure 3.4). There were no associations with 

season between larval, nymph or adult stage ticks on otters (GLM, p > 0.1).  

 

Figure 3.4 Mean tick intensity (grey bars) in each meteorologically distinct region (East 

and Northeast England, East Anglia, Southeast England and Central South, Northwest 

England and North Wales, South Wales and Southwest England, and Midlands) and 

corresponding 30 year average (1971-2000) summed mean rainfall (mm) (upper Y-axis), 

maximum (triangle) and minimum (cross) 30 year (1971-2000) average temperature (°C) 

for each region (lower Y-axis). Standard error marks for rainfall, maximum and minimum 

temperature correspond to variability in monthly averages. 
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3.4.3 Biotic factors 

More juvenile otters were infested than older age-classes (GLM: p > 0.01; Figure 3.2). 

The mean host condition ‘K’ for the sampled population was 1.0286. Tick intensity was 

inversely related to otter condition so that as otter condition increased, tick intensity 

decreased (GAM155: t = 3.137, p > 0.01) (Figure 3.5). 

 

 

Figure 3.5 Relationship of tick intensity to host condition (K). Standard error bars shown. 

 

3.5 Discussion 

Ixodes hexagonus is the only tick species reported from the Eurasian otter (Kelly et al. 

2001, current study). Ixodes hexagonus can complete its life cycle on the European 

hedgehog (Arthur 1953), fox (Harris and Thompson 1978) and American Mink (Page and 

Langton 1996). As all three post-hatch tick life stages were found on the otter in the 

current study, it appears that I. hexagonus can also potentially complete its life cycle on 

this mammal. The prevalence of I. hexagonus on otters (24.3%) is lower than that 

reported on European hedgehogs, which are the preferred host for this tick (Arthur 1953, 

Pfäffle 2010) (53.3% prevalence on hedgehogs from Western Europe, Pfäffle 2010). I. 

hexagonus is encountered by domestic dogs and cats in urban areas (Ogden et al. 2000) 

illustrating the close proximity of this particular tick to human populations. The 

prevalence of I. hexagonus on otters is, however, high in comparison to its prevalence on 

the domestic dog in the UK (5.6%, N = 3534, Smith et al. 2011). Further, the mean 
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intensity (the total number of parasites of a particular species found in a sample divided 

by the number of infested hosts, Bush et al. 1997) of ticks is higher on otters (7.2 per 

host) than on hedgehogs (3.8, Pfäffle et al. 2011) despite examination of cadavers in the 

current study and live hosts in the hedgehog study. This suggests that otters are a 

noteworthy host for I. hexagonus. The association between otters and I. hexagonus 

populations may be important for pathogen transmission, particularly if otters act as either 

reservoir or amplifier hosts, or reduce pathogen abundance through the dilution effect 

(Schmidt and Ostfeld 2001). Further, otters have large home ranges (Green et al. 1984, 

Kruuk 2006) indicating that this host has the potential to transfer ticks between habitat 

islands. The nocturnal and aquatic nature of otters may deter other tick species from 

utilising such a resource, explaining the absence of diversity in tick species. 

 

Positive phases of the North Atlantic Oscillation (NAO) were associated with increased 

prevalence and intensity in tick populations on otters. Strong positive phases of the NAO 

are linked with above average temperature and precipitation across northern Europe. 

Together with the elevated humidity produced, such weather conditions may lead to 

increased abundance of I. hexagonus, as reported for I. ricinus and I. scapularis 

(Lindgren et al. 2000, Ogden et al. 2006, Hancock et al. 2011). This may be related to the 

weather conditions causing changes in the behaviour of either the parasite or the host 

thereby altering infestation rates (see Kerr and Bull 2006). No previous literature was 

found relating NAO to I. hexagonus. In I. ricinus however, the NAO did not correlate 

with intensity of tick infestation but negative winter NAO phases (associated with warmer 

and wetter winters) corresponded to increased Borreliae infections (Hubalek et al. 2003). 

Further investigation into the underlying pathogenic infections of otters would be useful 

to examine whether this association holds for I. hexagonus.  

 

Both NAO and CE temperatures are indices that can be used to describe temporal 

variation in weather; they do not provide spatially explicit weather data within the UK. 

The significant relationships found in the current study therefore describe an association 

between otter ticks (prevalence and intensity) and temporal variation in weather. We 

tested subsequently whether warmer and wetter regions were associated with higher tick 

infestations of otters, and found significantly more ticks in South Wales and Southwest 
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England – a region associated with higher rainfall (Perry and Hollis 2005). Overall, 

however, at the regional scale we identified no significant correlations between the mean 

intensity of ticks and either temperature or rainfall. This may be because at the regional 

scale temperature and rainfall are negatively correlated, so a more detailed analysis of 

local weather is necessary to clarify their interaction. Other factors such as the 

distribution of non-otter hosts, and variation in habitat type, may also heavily influence 

spatial variation in tick abundance. In preliminary investigations we explored the impact 

of local weather, alternative hosts, and habitat on I. hexagonus distribution, but 

subsequently removed these from our analyses because: i) Restricted availability of data 

meant that inclusion of both spatial and temporal variation in weather reduced the size of 

the dataset considerably, rendering conclusions less robust; ii) Information on the 

reported distribution of  alternative hosts (hedgehog and fox) and of I. hexagonus were 

obtained from the National Biodiversity Network (NBN). Hedgehogs and foxes are both 

widespread and abundant in the UK and therefore availability of alternative hosts seems 

unlikely to limit I. hexagonus distribution at the regional scale. Further, I. hexagonus 

records from the NBN are concentrated in the London area of South East England, but 

because this database relies heavily on records submitted by members of the public this is 

likely to represent bias due to distribution of the human population. The NBN records 

map presence only (and not absence on screened hosts), so it was not possible to test for 

clustering within the host distribution as we did for I. hexagonus on otters. Comparisons 

were therefore uninformative; iii) Data on land use (arable, broadleaf and coniferous 

woodland, improved and semi-natural grassland, and upland habitat) were obtained from 

the Countryside Information System (CIS version 8, available online). ArcMap GIS 

(version 9.2) was used to interrogate these data and to assign percentage cover of each 

land-use within a 20 km radius of each otter. Significant negative associations were 

revealed (between tick prevalence and arable land, improved grassland, and conifer 

woodland), but interpretation is questionable because of the heterogenous and patchy 

nature of habitat data, the relatively large areas examined which may not accurately 

reflect the nature of real otter ranges (these tend to be linear along water courses, and vary 

considerably in length from a few to 40km, Kruuk 2006), and the difficulty in defining 

where, within this unknown range, an otter may have become infested.  
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Tick prevalence, but not intensity on otters, was associated with CE temperature. As far 

as we are aware, there are no previous records of  temperature effects on I. hexagonus and 

the only long-term study on population dynamics of I. hexagonus indicates little seasonal 

variation and low-level abundance (on hedgehogs, Pfäffle et al. 2011). In general, 

however; temperature has a key role in driving tick development rates (Lindgren 2000, 

Hancock et al. 2011) and so affects population dynamics (Randolph et al. 2002, Hancock 

et al. 2011). Additionally, temperature tends to be associated with length of diapause, 

larval activity and adult interactions (Randolph 2004). Particularly strong associations are 

found between I. ricinus and temperature (Hancock et al. 2011). Stochastic temperature 

variations across the year are predicted to alter population dynamics of I. ricinus with 

subsequent impacts on the transmission of vector borne diseases (Hancock et al. 2011). 

The contrasting impact of temperatures on I. hexagonus and I. ricinus may be attributable 

to the ecological differences between the two species. The most important of these is 

likely to be habitat choice. I. hexagonus is nest dwelling, and so to some extent insulated 

from changes in ambient temperatures. In contrast, I. ricinus uses open areas for questing 

(Hillyard 1996), so is likely to be exposed to wider fluctuations in air temperature.  

 

Juvenile otters were more frequently infested with I. hexagonus than adult hosts. Host 

age, in general, influences the intensity of infestations, but can also affect parasite-

induced mortality, and the distribution of the parasite among host individuals (Hawlena et 

al. 2006). Several hypotheses (Sol et al. 2003, Hawlena et al. 2006) predict that juveniles 

will carry heavier infestations than older hosts, either because: i) adult hosts develop 

immunity and/or behavioural adaptations to avoid or remove parasites; and/or ii) heavily 

infested juveniles die before adulthood (selection hypothesis, Sol et al. 2003) although 

this is very unlikely as a direct cause of death. Grooming is a learned activity in otters 

(Kruuk 2006) and may contribute to lower tick numbers on older otters (Kruuk 2006). 

Additionally, young otters spend the majority of their time in holts, the resting place of 

otters (Kruuk 2006) so are disproportionately exposed to such parasites. Effects may be 

underestimated here, however, because road killed samples tend to reflect the healthier 

section of the population (Nusser et al. 2008).  
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Finally, we found a relationship between host condition and tick intensity such that a 

better host condition is associated with decreased intensity. This is not a reflection of the 

elevated infestations on juvenile hosts because the host condition index used here (Kruuk 

et al. 1987) controls for size and therefore age, in addition to sexual dimorphism. This 

positive relationship could imply that otters in better condition are more efficient at 

grooming and thereby rid themselves of ticks, or that ticks have a negative impact on otter 

condition.  

 

We acknowledge that data from road-killed hosts are likely to underestimate tick counts 

and recognise that road-kill samples are a stochastic sub-sample of a population and may 

lead to bias in terms of the proportion of the host population examined. For protected 

species, however, road-kill samples remain the only way to obtain large sample sizes for 

analysis. The absence of tick species other than I. hexagonus, in concordance with the 

only other report of otter tick infestations (Kelly et al. 2001), could reflect differences in 

emigration patterns when abandoning a dead host, while tick emigration rates from dead 

hosts may interact with local microclimate. Our analysis of recently killed versus 

decomposed otters (see Materials and Methods), however, reveals no significant 

difference in infestation levels or species diversity, suggesting that observed associations 

are robust. Such data can therefore successfully illustrate associations between inter-

annual variations in weather patterns, host characteristics and I. hexagonus populations. 

 

To our knowledge this work is the first to consider the impacts of weather on I. 

hexagonus, and reveals that inter-annual variations in large-scale weather patterns, 

together with host characteristics, combine to affect the distribution, prevalence and 

intensity of I. hexagonus on Eurasian otters. Associations were identified between 

positive NAO phases, CE temperatures and tick prevalence, suggesting that the predicted 

change in climate in northern temperate zones may cause an increase in I. hexagonus 

populations. Although the associations highlighted here may not necessarily parallel what 

is observed on other hosts for this tick, I. hexagonus is common on domestic cats and 

dogs (Ogden et al. 2010) and we suggest that tick research should, perhaps, target species 

other than I. ricinus in the future. This study illustrates how surveys of wild-animal 

cadavers can be hugely informative about parasitic populations.  
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4. Climate variables are associated with the presence of biliary trematodes in otters 

 

 

4.1 Abstract 

Parasites with complex life cycles are expected to be disproportionately affected by 

climate change. Knowledge of current associations with weather and host-parasite 

interactions is therefore essential for the inference of future distributions. The Eurasian 

otter, Lutra lutra, is exposed to a range of parasites due to its large home range and use of 

terrestrial, freshwater and marine habitats. As such, it can act as a sentinel species for 

generalist parasites. Here we consider two biliary parasites recently reported in the 

United Kingdom, Pseudamphistomum truncatum and Metorchis albidus (Trematoda, 

Opisthorchiidae), and ask whether there are associations between abiotic factors (season, 

temperature, rainfall and the North Atlantic Oscillation) and the prevalence and 

intensities of these parasites in otters (n = 586). To control for biotic interactions we first 

examined whether particular sub-groups of the otter population (grouped by sex, age-

class and condition) are more prone to infection and whether any damage is associated 

with the presence of these parasites. Even though mean intensities of the smaller 

trematode, P. truncatum (28.3 worms/host), were much higher than M. albidus (4.1), 

both parasite species had similar impacts on the otter. The distributions of parasites on 

host sexes were similar, but males suffered greater damage and regardless of sex, parasite 

intensity increased in older hosts. The probability of infection with either parasite was 

negatively associated with ground frost, minimum temperatures and rainfall, but was 

positively associated with warm long-term average temperatures. Although it is widely 

accepted that multiple variables influence parasite distributions, to our knowledge this is 

one of only a few studies to examine the combined impact of biotic and abiotic variables 

on parasites with complex life cycles within their wild definitive host. Identifying such 

associations can give greater accuracy to predictions concerning the distribution and 

spread of trematodes with future climate change.  

 

4.2 Introduction 

Abiotic factors have direct impacts on parasites, particularly during free-living life-stages 

(eggs, cysts, larvae), but can also exert indirect impacts via their hosts. Parasites with 
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complex life-cycles are particularly vulnerable to variations in weather conditions 

(Harvell et al. 2002). Digenean trematodes infect between two and five hosts during their 

life-cycle, interspersed with free-living phases, at which time the organism is directly 

exposed to external environmental conditions (Combes 2001). Predictable responses to 

certain weather stressors have been observed in digeneans and, generally, the highest 

abundance of larval helminths coincides with heavier rainfall (Rolfe et al. 1991, van Dijk 

et al. 2010, Martins et al. 2011). Within the definitive host there may be differences in 

resource availability, space, oxygen levels and subtle differences in chemistry due to diet 

or host age impacting on metabolism. It follows that where parasite populations have 

similar biotic interactions with their hosts, we would also expect responses to abiotic 

stressors to be similar. Knowledge of current associations between parasite distribution 

and climate is essential to understand how parasite distributions may change in the future, 

thereby facilitating conservation of native susceptible fauna.   

 

The Eurasian otter (Lutra lutra) is a sentinel species of freshwater health and, due to 

population crashes in the recent past and the near threatened status of this mammal, 

extensive data on otter anatomy and health have been collected in the United Kingdom 

(UK) (Chadwick 2007, Simpson 2007). This host can be used, therefore, as a model 

system to examine the interaction between generalist parasites and climate. 

Pseudamphistomum truncatum (Platyhelminthes: Opisthorchiidae) was recently 

recovered from otter carcasses in Somerset (UK) and, despite detailed post mortem 

examinations since 1988 (n > 400), records did not pre-date 2000 (Simpson et al. 2005). 

Consequently, it was assumed that this was an invasive parasite (Simpson et al. 2005). In 

a subsequent study on additional otters from across the UK, Sherrard-Smith et al. (2009) 

identified a second biliary opisthorchiid, Metorchis albidus. These were, respectively, the 

first reports of each parasite in otters in the UK and in both cases there is evidence of 

some associated damage to the gall bladder (Simpson et al. 2005, 2009, Sherrard-Smith 

et al. 2009). There is, however, anecdotal evidence that both parasite species have been 

recovered from other British mammals (fox, Vulpes vulpes; grey seal, Halichoerus 

gryphus; and domestic cats and dogs; whilst only Pseudamphistomum truncatum has 

been reported in the common seal, Phoca vitulina, and harp seal, Phoca groenlandica) 

since the early 1900s (Nicoll 1923) but details of host origins are ambiguous and it 

remains unclear whether they are, in reality, recent invaders. The reported native range of 
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these parasites spans continental Europe to Asia (Loos-Frank and Zeyhle 1982, Shimalov 

et al. 2000, Torres et al. 2004). The life-cycle of P. truncatum is complex; parasite eggs 

are consumed by gastropod intermediate hosts (reviewed in Sukhdeo and Sukhdeo 2004). 

Cercariae emerge from these snail hosts and encyst on the second intermediate cyprinid 

host (see Skov et al. 2008, Hawkins et al. 2010) before they are trophically transmitted to 

piscivorous mammals, where they mature within the gall bladder (Dunn 1978).  

 

Examination of endoparasites usually requires destructive sampling (although estimates 

can be made via faecal egg counts; Anderson and Schad 1985, Knopp et al. 2008), which 

presents ethical issues and is not a viable approach when the host organism is of 

conservation concern. Long-term surveys of road-killed otters in the UK (Simpson 2007, 

Chadwick 2007) provide, therefore, an invaluable resource for the study of mammalian 

parasites. Here, we examined first how sub-groups of the otter population (grouped by 

host sex, age-class and condition) were associated with the biliary trematodes, P. 

truncatum and M. albidus. The distribution of each parasite in the UK, within otter hosts 

was described; the damage caused by these trematodes and extent of both spatial and 

temporal clustering was assessed. The dynamic nature of these parasite distributions were 

explored in terms of their range over time. Next, the effects of abiotic factors (temporal 

variation in weather, described using monthly averages of meteorological data), and 

spatial variation in climate (described using spatially explicit long-term 40 year averages 

of meteorological data) on each trematode population was considered. Although many 

studies consider climate, environmental or biotic factors, to our knowledge, this 

represents one of the first studies (also see Haukisalmi and Henttonen 1990) on wildlife 

to have examined the effects of both abiotic and biotic variables on parasites with 

complex life cycles within their definitive host.  

 

4.3 Materials and methods 

4.3.1 Sample preparation  

Necropsies were performed on Eurasian otter cadavers (n = 586), predominantly road-

killed samples collected between 2004 and 2010 from across England and Wales (273 

included in Sherrard-Smith et al. (2009) and 313 samples collected subsequently). Data 

on otter location (National Grid References) were recorded and each specimen was 

assigned to a Region (using UK Environment Agency Regions which are based on 
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groups of river catchments: Wales, Southwest, South, Midlands, Thames, Anglian, 

Northeast and Northwest, see Sherrard-Smith et al., 2009). Gall bladders were removed, 

stored at -18°C and subsequently screened for the presence of parasites. Otter weight 

(kg), length (m), sex and age-class were determined. A condition index was calculated: 

K = body mass (kg) / [a x length
n
] 

where a = 5.02 and n = 2.33 for females, and a = 5.87 and n = 2.39 for males (Kruuk et 

al. 1987). Prevalence (the number of hosts infected with specific parasitic species divided 

by the total number of hosts examined (Bush et al. 1997)) and mean intensity (the mean 

number of parasites per host excluding those individuals without infection; Bush et al. 

1997) were recorded. 

 

4.3.2 Species identification 

Gall bladders were defrosted, immersed in 0.6% saline in a Petri dish and examined 

under a Nikon dissecting microscope at 30x magnification with fibre optic illumination. 

Parasites were counted to calculate prevalence, mean and median intensity (excluding 

uninfected hosts) of infections, and identified morphologically (Yamaguti 1971). Species 

identification was confirmed molecularly on a subset of parasites (n = 17 P. truncatum 

and 13 M. albidus) selected from across the geographic range found in the UK. For each 

worm the Internal Transcribed Spacer sub-unit II region (ITS2) ribosomal DNA sequence 

was amplified as follows: for each sample, an entire parasite was digested in 15 µl of TE 

buffer (4 parts 1M Tris-Hydrochloric acid, 10 parts 0.5M EDTA, 986 parts de-ionised 

water) containing 0.45% Tween 20 and 2 µg of Proteinase K (modified from Faria et al. 

2010) for 3 h at 55°C. The total PCR volume of 10 µl was comprised of 2 µl of DNA 

extract with 10x PCR buffer II (Applied Biosystems, USA), 50 mM MgCl2 (Applied 

Biosystems), 2.5 mM of each dNTP, 10 pmol/µl of each primer (ITS2 rDNA: Ophet F1 

5’-CTCGGCTCGTGTGTCGATGA-3’ and Ophet R1 5’-

GCATGCARTTCAGCGGGTA-3’ following Müller et al. (2007); GenBank Accession 

numbers: P. truncatum JF710315, and M. albidus JF710316) and 5U Taq DNA 

polymerase (Invitrogen, USA). PCR conditions were: 95°C for 5 min, followed by 35 

cycles of 94°C for 30 s, 53°C for 1 min and 72°C for 1 min, with a final extension step of 

72°C for 10 min (GenAmp PCR System 9700, Applied Biosystems). The samples were 

run on a 1.5% agarose gel and produced 388 bp and 403 bp (ITS2) amplicons for P. 

truncatum and M. albidus, respectively. Sequencing was conducted by Macrogen 
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[Netherlands] and alignment of forward and reverse sequences performed in 

Sequencher
TM

 (version 4.9) and species were confirmed by matching consensus 

sequences with those in GenBank (Accession numbers: P. truncatum EU483073.1 and 

M. albidus JF710316).   

 

4.3.3 Gall bladder damage 

Opisthorchiid parasites cause pathological changes to the gall bladder and bile ducts of 

their hosts (Sripa et al. 2007). Histo-pathological examination was attempted in the 

current study but cells were too damaged following freezing. Condition scores of 1 to 5 

(1 corresponding to a normal gall bladder lining, 2 characterized by low level 

inflammation and 3-5 representing progressively more fibrous tissue) were therefore 

visually assigned and used to describe the internal lining of the gall bladder (following 

Sherrard-Smith et al. 2009). I asked whether there was an association between the 

intensity of parasitic infection and host condition and/or gall bladder damage, for each 

parasite species and host sex category (generalized linear model (GLM) with negative 

binomial error distributions). Damaged gall bladders lacking adult trematodes were 

recorded as uninfected. Although not known in otters, clearance of trematode infection 

might be possible but other factors (such as gall stones) related to dietary or genetic 

conditions may cause similar thickening and inflammation of this tissue. 

 

4.3.4 Spatial and temporal trends  

Clustering in space and time was assessed independently for each parasite species, using 

a Bernoulli Model (see Kulldorff and Nagarwalla 1995, Kulldorff 1997) with the log-

likelihood ratio calculated for 999 Monte Carlo simulations in the statistical package 

SaTScan (http://www.satscan.org/). SaTScan uses a cluster detection method to identify 

and test the significance of clusters using presence/absence data. The number of actual 

infection cases in an area is compared with the expected number if cases were distributed 

randomly (Kulldorff and Nagarwalla 1995). Statistical significance is then based on the 

log-likelihood ratio test where the alternative hypothesis is a significant increase in risk 

within, compared with outside, an area (Odoi et al. 2004, http://www.satscan.org/). 

Locations were defined as counties in England and Wales and the mean X and Y co-

ordinate for each county was used to describe the area centroids for analysis. Clusters in 

recent time, but previously absent, indicate increasing infections. SaTScan identifies 

http://www.satscan.org/
http://www.satscan.org/
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significant and secondary clusters in defined areas (counties) over specific time periods 

(http://www.satscan.org/) and therefore it is possible to examine both spatial and 

temporal shifts in range simultaneously. To assess whether the mean intensity of either 

parasite species varied over the study period 2007-2010 (time scale in months with 

sufficient consecutive data), time (in months) was fitted to log transformed mean 

intensity using linear regression. This enabled season to be considered and provided an 

indication of how robust the parasite population was across a consecutive time period. 

Spatial clustering in parasite intensity was examined for each parasite independently 

(using ANOVA for P. trucatum and Kruskal-Wallis for M. albidus due to smaller sample 

sizes).  

 

4.3.5 Abiotic associations 

Spatial variation in climate can be described using long-term average data (Perry and 

Hollis 2005). To determine whether climate is associated with biliary parasite prevalence 

and intensity, a buffer with a 20 km radius (otter ranges can reach 40 km; Kruuk 2006) 

was fitted to each otter location and plotted using ArcGIS (version 9.2). Otter polygons 

were then joined to climate data for each respective location to provide a measure of the 

typical climate in the area where each host was found. In the current study, long-term 

average data were taken from the UK Climate Observations, UKCIP09 

(http://www.metoffice.gov.uk/public/weather/climate/?tab=climateTables) which models 

weather variables on a 5 km
2 

gridded area across the UK. The mean values of each 5 km
2
 

measure, falling within the 20 km radius buffer describing each otter location, for each 

climate variable, were taken as the climate for that location over the past 46 years. Four 

measures of climate were included here: mean rainfall (mm), mean days of ground frost, 

mean temperature (°C) and average minimum temperature (°C) across a 46 year period 

(1961-2006). These variables were chosen to give a broad indication of the effects of 

climate. Specifically, rainfall has been shown to affect the distribution of intermediate 

life stages of trematodes (e.g. Rolfe et al. 1991, van Dijk et al. 2010, Martins et al. 2011) 

while understanding the effects of temperature could be a first step in predicting the 

change in the distribution of these opisthorchiids with predicted climate change (e.g. 

Harvell et al. 2002, Pachauri and Reisinger 2007). Further, ground frost was included 

because previous work has reported declines in the viability or survival of egg stages at 

low temperatures (Hunter and Hunter 1929) and we wanted to investigate whether a 

similar pattern might be apparent here.  

http://www.satscan.org/
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Temporal variation in local weather conditions (daily variation within the 20 km radius 

of each otter) and variation in habitat type may influence spatial variation in biliary 

parasite load of otters. These variables were included in preliminary analyses but 

restricted the dataset considerably, rendering conclusions less robust. Habitat at the 

location where the otter was killed was discarded because the habitat at the site of death 

may not accurately reflect the habitat where that otter became infected. Location-specific 

weather data were discarded because limited availability reduced sample size. Equally, 

local weather is very likely to have an effect on parasite distributions but detailed 

analysis of these effects was beyond the scope of the current data: i) the current data 

include no information on when the host was infected and; ii) the definitive host can 

retain an infection for an extended period. Instead, mean monthly Central England (CE) 

temperature (°C) (Parker et al. 1992) and North Atlantic Oscillation (NAO) values 

(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml) for the UK were 

used to examine the general response of trematode populations to short-term temporal 

variation in temperature patterns. The mean CE temperature fluctuates across the year in 

parallel with local measures of temperature whilst the NAO is a climatic phenomenon 

that, when in positive phases, is associated with warmer and wetter winters in northern 

Europe. Mean monthly CE temperature and NAO values were assigned to each otter, 

from each of three periods prior to that otter’s death: (i) the month of host death, (ii) the 6 

month period preceding host death, and (iii) the year preceding host death (see Sherrard-

Smith et al. 2012). Typically, the otters collected as road-killed individuals are 1-2 years 

old (Sherrard-Smith and Chadwick 2010) so infection is most likely within this period 

and other parasites have been reported to respond to past weather patterns fitting the 

above lag times (see Randolph et al. 2002).  

 

Each parasite species was considered independently. Both biotic (host sex, age, 

condition) and abiotic (season and year of death, CE temperature and NAO as measures 

of weather, 40 year average mean and minimum temperature, mean rainfall and days of 

ground frost as measures of climate) factors were included as predictive terms in GLMs 

fitted to prevalence and, initially, intensity data with appropriate error distributions 

(binomial and negative binomial error distributions, respectively). Models were, 

however, a poor fit to intensity data regardless of any transformations or error 

distributions assessed and were therefore uninformative, and were subsequently 
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discarded. Binomial models for prevalence data were simplified using the Akaike 

Information Criterion (AIC) and residual plots were checked visually for normality 

where appropriate. All statistical analysis was conducted using ArcGIS 9.1 and R version 

2.12.1 (R Development Core Team 2008), a P value of less than 0.05 was considered 

significant. 

 

4.4  Results 

Identification of P. truncatum and M. albidus was confirmed morphologically and 

molecularly (100% similarity to GenBank: JF710315 and JF710316, respectively). There 

was no intraspecific variability within the ITS2 rDNA sequences for either parasite. 

Pseudamphostomum truncatum and M. albidus were found in 13.5% (79 out of 586) and 

7.85% (46 out of 586) of hosts, and the mean intensities of infection were 28.3 (range 1 – 

302) and 4.1 (1 – 34), respectively (Table 1). Only two otters were co-infected with both 

parasite species (see Fig. 1).  

 

Table 4.1 Parasite load of gall bladders from otters, Lutra lutra, collected in England and 

Wales between 2004 and 2010 (n = 586); showing prevalence, mean intensity with upper 

and lower 95% bootstrap confidence intervals (CI) (10,000 iterations), median intensity 

and main geographic range. 

 

Parasitic species Prevalence 

(%) 

Mean Intensity 

(95% CI)  

Median 

Intensity 

Geographic Range 

Pseudamphistomum 

truncatum 

13.5 28.3 (17.4-41) 9 Southeast Wales,  

Southwest 

England 

Metorchis albidus 7.85 4.1 (2.3-6.4) 2 East Anglia, across 

England and 

Wales 

 

4.4.1 Spatial and temporal geographic trends  

The Bernoulli model highlighted a number of distinct counties as important locations for 

P. truncatum and M. albidus (Fig. 1). Important locations for P. truncatum were Avon, 

Devon, Dorset, Gloucestershire, Gwent, Hampshire, Hereford and Worcestershire, Mid-

Glamorgan, Powys, Somerset, South Glamorgan, West Glamorgan and Wiltshire (Wales 

Region: Z7,582 = 2.894, P < 0.005, and Southwest Region: Z7,582 = 3.252, P < 0.001), but 

there were no detectable temporal trends in clustering over the study period (Cluster time 

period: December 2008 until March 2010; Ll ratio = 18.98, Number of cases = 34/98, P < 
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0.0001). One of the limitations of this approach is that the Bernoulli model works on 

concentric circles and therefore, although there were no actual cases in West Glamorgan 

it is identified as an important location for P. truncatum here because it is adjacent to the 

main cluster of cases in Somerset and South Glamorgan and therefore falls within the 

definitive circle. Equally, important locations for M. albidus were Bedfordshire, 

Cambridgeshire, Essex, Hertfordshire, Norfolk and Suffolk (Anglian Region: Z7,582 = 

3.57, P < 0.005) and similarly to P. truncatum, no trend in time was observed (Cluster 

time period: July 2008 until March 2010 Ll ratio = 27.52, Number of cases = 18/39, P < 

0.0001). Although these differences in parasite prevalence were observed, there were no 

large-scale regional differences in intensity for either parasite (P. truncatum ANOVA: 

F4,69 = 1.18, P = 0.327; M. albidus Kruskal-Wallis test: H3,33 = 5.59, P = 0.134). There 

was no overall increase in parasite mean intensity with time (months) for P. truncatum 

(F30,32 = 0.6208, P = 0.4369) or M. albidus (F18,20 = 0.03885, df = 18, P = 0.846). 

 

4.4.2 Biotic associations  

Adult otters had a higher prevalence of both parasites than sub-adults (P. truncatum 

GLM507,517: t = 2.482, S.E. = 0.302, P < 0.05; M. albidus GLM508,517: t = 2.296, S.E. = 

0.519, P > 0.05). Host sex was not important for predicting infection with either parasite.  

  

Hosts with better condition scores (K) were associated with a higher prevalence of P. 

truncatum (GLM: t9,506 = 3.701, S.E. = 1.08, P < 0.001). Host condition increased with 

both P. truncatum and M. albidus intensity (GLM: F66,72 = 2.66, P < 0.01, and χ
2 

510,516 = 

2.493, P = 0.013, respectively). Both P. truncatum and M. albidus cause significant 

damage to the gall bladders of otters so that heavier infections resulted in increased gall 

bladder damage (ANOVA: F4,72 = 3.53, P < 0.01; and F4,39 = 7.97, P < 0.001 for P. 

truncatum and M. albidus, respectively). The mean condition of a gall bladder infected 

with P. truncatum was 3.1, compared with 1.7 for uninfected otters whilst the mean gall 

bladder condition of an otter infected with M. albidus was 2.4 compared with 1.7 for the 

uninfected individuals. For uninfected otters, there was no difference in gall bladder 

condition between the sexes (GLM:  t = 1.129, S.E. = 0.127, P = 0.259) and, although 

there was no difference between the sexes in likelihood of infection, once infected with 

either trematode, males presented with more severe pathological changes, however this 

relationship was not significant (ANOVA: F1,119 = 3.56, P < 0.06). There was no 
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relationship between host condition and gall bladder damage for either parasite (P. 

truncatum: ANOVA: F4,72 = 0.6554, P = 0.625; M. albidus: ANOVA: F4,44 = 0.5813, P = 

0.678 ).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Location of infected and uninfected otter Lutra lutra across England and 

Wales: Metorchis albidus infections are shown in grey circles, Pseudamphistomum 

truncatum infections are shown in black circles, co-infections are represented by black 

and grey circles, and uninfected hosts are marked with a cross. Significant hotspots of 

Pseudamphistomum truncatum in the West (lighter grey, p < 0.001) and Metorchis 

albidus in the East (darker grey, p < 0.001) as defined by the Bernoulli model are shown, 

with County boundaries indicated. 
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4.4.3 Abiotic Associations  

The probability of infection with either parasite was negatively associated with long-term 

average days of ground frost (P. truncatum GLM507,517: t = 3.102, SE = 0.14, p < 0.01 

and M. albidus GLM508,517: t = 2.411, SE = 0.28, p < 0.05), minimum temperatures (P. 

truncatum GLM507,517: t = 3.295, SE = 2.7, p < 0.001 and M. albidus GLM508,517: t = 

3.163, SE = 5.4, p < 0.05) and rainfall (P. truncatum GLM507,517: t = 3.119, SE = 0.16, p 

< 0.005 and M. albidus GLM508,517: t = 3.252, SE = 0.08, p < 0.01) but, in the case of P. 

truncatum, positively associated with warm long-term average temperatures (P. 

truncatum GLM507,517: t = 4.555, SE = 0.54, p < 0.001; M. albidus was not significant 

GLM508,517: t = 1.61, SE = 0.71, p = 0.108; see Table 4.2, Figure 4.2). Trematode 

prevalence was not associated significantly with temporal variation in weather, 

represented by mean monthly Central England Temperatures and North Atlantic 

Oscillation measures (GLM for both parasites, p > 0.1). 

 

 

Table 4.2 Mean climate measures (40 year average mean and minimum temperature 

(°C), mean monthly rainfall (mm), and mean ground frost (days per year)) for otter Lutra 

lutra, populations in the UK either infected with Pseudamphistomum truncatum or 

Metorchis albidus, or free from infection (standard error shown in parentheses). Data 

summarised from UK Climate Projections, UKCIP09 (data available online). 

 

Parasitic species Presence 

in hosts  

Mean 

temperature  

Minimum 

temperature 

Mean 

Rainfall 

Mean 

Ground 

frost 

Pseudamphistomum 

truncatum 

Infected 9.588 

(0.075) 

0.087 

(0.064) 

79.4 

(2.368) 

101 (1.07) 

 Uninfected 9.198 

(0.037) 

-0.024 

(0.039) 

84.6 

(1.561) 

104 (0.7) 

Metorchis albidus Infected 9.782 

(0.068) 

0.029 

(0.062) 

56.5 

(2.854) 

102 (1.13) 

 Uninfected 9.208 

(0.036) 

-0.011 

(0.037) 

86.2 

(1.433) 

104 (0.67) 
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Figure 4.2 Prevalence of Pseudamphistomum truncatum (black circles) and Metorchis 

albidus (grey circles) in otters Lutra lutra (unifected otters marked as white circles) 

across the UK with long-term meteorological measures associated with parasite 

distribution including mean 40 year minumum temperature, ºC, mean temperature, ºC, 

number of days of ground frost per year and rainfall, mm per year.  

 

4.2 Discussion 

 

The ultimate prevalence, distribution and intensity of parasites in their definitive hosts 

are determined by interacting variables that impact upon each intermediate host, the final 

host and each life-stage of the specific parasite. In the current study, climate was 

associated with distributions of the biliary parasites, P. truncatum and M. albidus, in their 

definitive host, the Eurasian otter. Although the two trematodes have distinct geographic 

distributions, within those regions their respective responses to climate were similar. For 

both parasites warmer temperatures, lower rainfall and fewer days of ground frost were 

associated with an increased probability of infection. In northern Europe there is a trend 
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towards a warmer and wetter climate (Nakićenovíc and Swart 2000, Pachauri and 

Reisinger 2007, Murphy et al. 2009) with milder winters and warmer springs expected in 

the UK (Pachauri and Reisinger 2007). These observations support previous research on 

trematodes suggesting that warmer conditions will benefit these parasites (via the 

increased transmission success between intermediate hosts; Poulin, 2006, Paull and 

Johnson 2011). Yet the current study is, to our knowledge, one of the first to consider the 

combined interaction of meteorological variables and host factors for complex life-cycle 

parasites in a definitive wild host (also see Haukisalmi and Henttonen 1990).   

 

In general, the response of trematodes to rainfall appears to be species-specific (Morgan 

and Wall 2009) and most studies relate trematode success to the response of intermediate 

hosts to wetter conditions (Gray et al. 2008, Morgan and Wall 2009, van Dijk et al. 

2010). Yet, whilst adequate moisture is an essential requirement for most stages of the 

trematode life-cycle including egg survival, ability to infect snails, cercarial release and 

survival of encysted metacercariae (Kendall and McCullough 1951, Smith and Wilson 

1980, van Dijk et al. 2010), excessive rainfall may be inhibitory. Both biliary trematodes 

considered here were negatively associated with rainfall (see Table 2) to such an extent 

that no otters residing in a location with an average of > 151 mm of rainfall per year were 

infected. In the UK, river levels are extremely responsive to rainfall (Marsh and Dale 

2002) so increased precipitation, resulting in flooding, will increase space availability in 

freshwater habitat. This could reduce the likelihood of contact between eggs and snails, 

and then cercariae and fish, with consequent reductions in transmission to the definitive 

host – ultimately resulting in the observed reduced prevalence at locations with relatively 

high rainfall. Parasite dispersal patterns are affected by rainfall; in Trinidad, for instance, 

infected fish are more likely to be washed downstream during seasonal flooding (van 

Oosterhout et al. 2007).  

 

Fewer days of ground frost per year were associated with an increased probability of 

infection with either P. truncatum or M. albidus. In addition, lower minimum 

temperatures, reaching freezing or below, were associated with lower prevalence for both 

parasite species. Both findings suggest that cold spells have a significant negative impact 

on survival of free-living stages of the biliary trematodes and perhaps their intermediate 

hosts. There is little reported in the literature about the effect of ground frost events on 

helminth populations; however, the strength of the association between P. truncatum and 
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M. albidus and days of ground frost suggest that this variable is, perhaps, an overlooked 

but vital aspect of climate influencing helminth populations. Egg development of 

Fascioloides magna is retarded by approximately 1 month in conditions below freezing 

but, even at -25°C, eggs still hatched and released viable larvae (Erhardova 1965). The 

tapeworm Proteocephalus ambloplitis is, however, more sensitive to frost and does not 

survive freezing (Hunter and Hunter 1929). Once again, the impacts of cold temperatures 

on helminths appear to be species-specific and although some studies report that, as 

suggested by our observations, cold conditions may have an adverse effect on the various 

life-stages of helminths (see Anderson and Levine 1968, O’Connor et al. 2006), others 

report positive impacts of cold weather relating to reduced immune function of the host 

(Huebert et al. 1990).  

 

The availability of hosts is fundamental to the underlying parasite distributions and, to a 

large degree, host distributions are also determined by climate. Indirect impacts of 

climate change on helminth communities are often detected through their effects on 

intermediate hosts (MacCann et al. 2010, van Dijk et al. 2010, Lima dos Santos and 

Howgate 2011) but have been reported only occasionally in the definitive hosts, where 

they relate most often to range shifts in livestock (see Jenkins et al. 2006, van Dijk et al. 

2010) rather than observations from wild hosts. Climate was shown, however, to explain 

long-term dynamics of common (but not rare) helminthic infections in bank voles, 

Clethrionomys glareolus (see Haukisalmi and Henttonen 1990). Sampling of parasites 

from wild fauna, such as in the current study, will facilitate our understanding of how 

global climate change will impact the macroparasitic community (see Cribb 1999, Poulin 

and Morand 2000, Hotez and Gurwith 2011).  

 

Together, the apparent lack of ongoing range expansion in either trematode and their 

adaptation to local climate suggest that P. truncatum and M. albidus have been long 

established, even though both parasites were formally identified in the UK only recently 

(Simpson et al. 2005, Sherrard-Smith et al. 2009). Given the short time period over which 

range expansion has been tested, however, it is recognised that gradual expansion may be 

occurring. The similarity in response to meteorological variables exhibited by both 

species makes climate an unlikely explanation for the spatially distinct distributions 

observed. An alternative explanation may be host density and geographic distribution 

(Arneberg et al. 1998, Tsai and Manos 2010, but see Shaw and Dobson 1995, Gaston 
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2003). Both parasites use Bithynia spp. (Gastropoda) and cyprinids as intermediate hosts 

(see Dunn 1978) but alternative hosts may be involved and it is unknown whether the 

two parasite species use the same intermediate hosts. Generally, the ranges of cyprinids 

do not extend to the far west of Cornwall or further north in the UK than the England - 

Scotland border (for suitable cyprinid examples – Rudd, Scardinius erythrophthalmus, 

Roach, Rutilus rutilus and Tench, Tinca tinca – see NBN Gateway, 

http://data.nbn.ork.uk/) and present a possible reason for the current limited distribution 

of both parasites in the far west and north of England. The snail, Bithynia sp., and a 

second, previously unreported host, Radix balthica (Sherrard-Smith et al. Chapter 7), 

have ranges that are also limited within Cornwall but would not prevent spread of either 

parasite further north where these snails are common. Host availability alone does not 

appear to explain the geographic separation of the two trematodes examined here.   

 

Indirect impacts may combine to determine parasite distribution. In northern Europe, the 

effect of local temperature is a limiting factor in liver fluke (Fasciola hepatica) 

distribution due to the responsive nature of snail populations to fluctuating temperatures 

(Torgerson and Claxton 1999) and a similar trend is apparent elsewhere (see Sturrock 

1966, Appleton 1977, Fenwick et al. 2007). Although cercarial shedding tends to increase 

with warmer temperatures (Poulin 2006, Koprivnikar and Poulin 2009), once released 

into the water, high temperatures can decrease the survival time of the cercarial stage 

(Zbikowska 2004, Koprivnikar et al. 2010). More locally, sporocyst infections of snails 

in the UK increased following wet summers and warm winters (Morley and Lewis 2008) 

but on a finer scale particular species, such as Maritrema novaezealandensis in New 

Zealand (see Koprivnikar and Poulin 2009) and dicrocoeliid parasites in the UK (Morley 

and Lewis 2008), showed the opposite trend. So, there are evident system-specific 

responses to changes in meteorological stress between trematodes and their hosts 

including those identified here between the opisthorchiids and otter hosts.  

 

There was no evidence of seasonality in the prevalence or intensity of either P. truncatum 

or M. albidus in otters. In the literature, seasonality can be observed on occasion in faecal 

egg deposits from omnipresent definitive hosts (for example Hughes and Answer 1982, 

Phiri et al. 2007) or immature parasitic stages in seasonally abundant mollusc and fish 

intermediate hosts (e.g. Sturrock et al. 2001, Rinchard and Kestemont 2005, Phiri et al. 

2007). Many parasites with complex life cycles synchronise events, such as release of 
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eggs or larvae, to coincide with host availability (see Altizer et al. 2006). Gastropod 

communities vary significantly over time, with large seasonal fluctuations in species 

abundance (Gerard et al. 2008) causing subsequent impacts for their trematode 

populations (see Karvonen et al. 2006, Ben Abdalah et al. 2010), but this trend may not 

persist in the second intermediate host. For example, although more cercariae were 

released from the snail host Bithynia tentaculata between September and February, there 

was no seasonality in metacercarial infections of fish in the Lower Thames region 

(Morley et al. 2004). The long life of opisthorchiid adults in definitive hosts (see Dunn, 

1978) may additionally mask any seasonal patterns in exposure risk. 

 

Taking an alternative perspective, otter diet varies spatially in the UK with more 

salmonid remains found in otters from the west and more cyprinids, the reported second 

intermediate host for these parasites (Dunn 1978) in the east (Chadwick et al. 

unpublished data, but see Hughes et al. 2001, Copp and Roche 2003, Britton et al. 2006). 

This indicates potential differences in diet which may determine parasite assemblages in 

the definitive host. The otters have themselves recently recovered from population 

crashes following the expansion of remnant populations in Wales, the southwest and east 

Anglia (Strachan and Jefferies 1996, Jones and Jones 2004, Crawford 2010). It is, 

perhaps, unsurprising that higher parasite prevalence and intensities are found in those 

regions where otter populations also have greatest densities. Where host populations are 

expanding, parasites and pathogens tend to lag behind the host population at the 

expanding edge of the host range (Phillips et al. 2010). This is due to stochastic events 

that may lead to local extinction of parasites, especially in low density frontal populations 

and where parasite transmission is density-dependent (Colautti et al. 2004, Liu and 

Stiling 2006, Phillips et al. 2010). Otter populations are currently increasing in England 

and Wales (Crawford 2010) and perhaps the populations of P. truncatum and M. albidus 

are lagging behind the frontal edge of the expanding otter range, due to stochastic local 

extinctions.  

 

The abundance of all hosts is inextricably linked to characteristics of the local habitat and 

therefore such traits must be of great importance for the underlying assemblage of 

parasites (reviewed in Lafferty and Kuris 1999, Bush et al. 2001, Pietrock and 

Marcogliese 2003). For example, the prevalence of Cryptocotyle lingua, predominantly a 

trematode of seabirds, was determined by habitat characteristics synonymous with high 
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gull abundance (Byers et al. 2008). Terrain differs in the east and west of the UK, which 

contributes to contrasting river flows (Poff 2002, Bower et al. 2004, Monk et al. 2006) 

and this may drive differences in host and trematode populations. Furthermore, altitude is 

thought to determine trematode distributions because snail populations are better adapted 

to low altitudes (see Rosenfield 1979, Weil and Kvale 1985). Factors including the 

velocity of river systems, proximity to standing pools, light and shade ultimately impact 

the abundance of hosts and have consequences on the transmission success of the 

cercarial life-stage that drive distribution patterns of trematodes in the otters. The benthic 

community diversity is apparently more important than the presence of competent hosts 

for determining aquatic parasite prevalence (Anderson and Sukhdeo 2010). This indicates 

that, perhaps, the underlying community structure and diversity dictates the different 

geographic distributions of the trematodes investigated.    

 

The host condition index in the current study was positively correlated with both parasite 

prevalence and intensity, indicating that parasitized otters have a better diet, the two 

trematodes are associated with nutritionally high quality prey, or that these parasites are 

more successful in otters in good condition. The latter two suggestions are supported by 

the observation that parasites will grow larger in hosts (fish) that are growing at the 

highest rate (Barber 2005). In otters, the host condition index was not correlated with gall 

bladder damage, although the organ itself had significant damage and this was positively 

associated with parasite prevalence and intensity. Both species use the same habitat 

within their definitive hosts (the gall bladder and biliary ducts) and as such, inter-specific 

competition may limit further range expansion. Co-infections are possible (0.34%) but 

the limited instances where both parasites were present are consistent with that expected 

for host populations with the observed geographic segregation. The damage caused to 

otter gall bladders is similar for P. truncatum and M. albidus (also see Schuster 2010, 

Simpson et al. 2005, 2009). There was no difference in infection prevalence or intensity 

between host sexes and without infection, there was no difference in gall bladder damage 

between males (mean condition index = 1.622) and females (1.716). Males, however, 

suffered greater damage to the gall bladder when parasites were found. Sex differences in 

host responses to parasites are well documented (for example, Pickering and Christie 

1980, Fox et al. 2003, Klein 2004, Dozières et al. 2010, McClelland and Smith 2011) and 

in general, there is a trend toward higher prevalence and severity of parasitic infections in 
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male hosts compared with female conspecifics (Goble and Konopka 1973, Degu et al. 

2002, Klein 2004). 

 

Changing climate is likely to have an effect on specific host-parasite interactions (Harvell 

et al. 2002, Thomas et al. 2004, Rohr et al. 2011). Here, biotic and abiotic factors 

interacted in a predictable manner for two biliary trematodes in a definitive host and with 

further studies we will be able to determine whether this is a true trend for this type of 

fauna. Although male and female otters have similar prevalence and intensity of 

infections, male otters exhibit greater damage once infected. Further, adult otters 

accumulate more parasites than younger conspecifics. High temperatures, less rainfall 

and fewer days of ground frost are conditions associated with higher prevalence in these 

systems. The associations observed here suggest that the warmer conditions in the UK 

following predicted climate change will lead to a greater risk of infection with these 

biliary parasites but, in contrast, increased rainfall and cold spells will limit the parasites. 

Climate has a huge influence on host-parasite systems but multiple conditions must be 

considered in parallel to better understand the ultimate effects on distribution patterns.  
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5. Distribution and molecular phylogeny of biliary trematodes (Opisthorchiida) 

infecting fish-eating mammals (Lutra lutra and Mustela vison) across Europe 

 

 

5.1 Abstract 

Invasive parasites often present serious risks to novel host populations. The recent 

identification of Pseudamphistomum truncatum and Metorchis albidus (Trematoda: 

Opisthorchiidae) in the UK caused concern because of the biliary damage associated with 

both digeneans coupled with speculation over their invasive status in Britain. Here, we 

assess the prevalence, intensity and phylogeography of these trematodes across mainland 

Europe (Czech Republic, Denmark, France, Germany, Norway, Poland and Sweden) to 

determine whether or not these species are recent introductions into the UK. Both parasites 

are found across Europe but hotspots are evident; the Saxony Region of Germany has 

comparatively high prevalence (73%) of P. truncatum whilst the parasite appears to be 

absent from both Scotland and Norway. Otters in Brittany (France) were only found to be 

infected with M. albidus. Sequencing of the cytochrome c oxidase subunits I and III 

(COXI and COXIII, mitochondrial DNA) revealed similarities in genetic heterogeneity 

across Britain and mainland Europe, suggesting that neither parasite is a recent 

introduction to the UK. The wide distribution of both parasites probably reflects relatively 

unrestricted movements (both natural and anthropogenic) of fish and snail intermediate 

hosts across Europe. 
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5.2 Introduction 

When widespread species become isolated geographically, a lack of gene flow and 

different environmental pressures can lead to the divergence of populations (for example 

see Coyne and Orr 2004, Cadena et al. 2007, Losos and Ricklefs 2009, Nakazato et al. 

2010, Miura et al. 2011). Certain geological events are proposed as exceptional periods of 

speciation because of climate cycles (see Hewitt 2000). The Pleistocene speciation model, 

for instance, suggests that populations of widespread species became fragmented and 

isolated geographically in available glacial refugia. Such isolation led to the formation of 

multiple sister species via allopatric speciation (Bermingham et al. 1992, Zink and 

Slowinski 1995 but see Near et al. 2003). This process can be reflected in the genetic 

structure of populations and therefore, comparison of genetic diversity can indicate the 

timing of separation between distinct populations. Recent evidence suggests that in the 

southern parts of the British Isles, cryptic glacial refugia may have been habitable by 

thermophilic biota (Stewart and Lister 2001, Stewart et al. 2009). This is illustrated by 

some earthworm populations, suggesting that the extant British fauna could be the result of 

both migration from mainland Europe following the retreating ice-sheets, and the survival 

of some isolated populations in favourable climatic pockets during the Pleistocene 

glaciations (Sechi et al. in preparation).  

 

Parasites play an integral role in ecosystem functioning (Poulin 1999; Torchin et al. 2002; 

Poulin and Frederic 2008; Hatcher et al. 2012). There is, however, incomplete knowledge 

of existing parasitic species, their geographic and host ranges. This arises in part because 

of the morphologically cryptic nature of many parasitic species and, specifically, the 

challenge of detection and identification (Poulin and Morand 2000; Cribb and Bray 2011). 

The recent identification of Pseudamphistomum truncatum and Metorchis albidus 

(Trematoda: Opisthorchiidae) in the UK (Simpson et al. 2005, Sherrard-Smith et al. 2009) 

caused concern because of the biliary damage associated with both digeneans and 

speculation over their invasive status in Britain (Simpson et al. 2009, Sherrard-Smith et al. 

2009). Invading parasites often present serious risks to novel host populations, partly 

because of naïve host immune responses coupled by disruption of the ecosystem 

equilibrium (Torchin et al. 2002). These two digeneans occur across Europe and have been 

found in various animal taxa (Table 5.1). During their life cycle, the parasites initially 

infect freshwater snails; a free-living cercarial stage is then released that encysts on a 
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freshwater fish intermediate host, before completing development once consumed by a 

mammalian definitive host. Anecdotal evidence from the early 1900s reports both parasite 

species from British mammals (fox Vulpes vulpes, grey seal Halichoerus gryphus, 

domestic cats Felis catus and dogs Canis lupis familiaris; Pseudamphistomum truncatum 

has also been reported in common seal Phoca vitulina and the harp seal P. groenlandica; 

see Nicoll 1923). Details of host origins are ambiguous however – while the mammals in 

question are British species, it is unclear whether the specimens reported were found in 

Britain – and so it remains unclear whether these trematodes are, in reality, recent 

invaders. The damage associated with host-parasite interactions that follow recent 

invasions makes the identification of novel species particularly crucial for successful 

conservation efforts (see Abdelkrim et al. 2005, Nieberding et al. 2005).  

 

The current study aims to establish whether Pseudamphistomum truncatum and M. albidus 

are recently introduced from mainland Europe or whether their origin is more ancient. To 

address this, we collected samples from across Europe, confirmed species identification 

using conserved internal transcribed spacer region II (ITS2) ribosomal DNA sequences 

and compared genetic diversity using mtDNA (COXI and COXIII). Although two major 

clades were identified across Europe for each species, using the mtDNA markers the 

parasite genetic structure did not support the hypothesis that these trematodes are recent 

introductions to the UK.   
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Table 5.1 Locations across Europe and Asia, intermediate and definitive hosts of 

Pseudamphistomum truncatum and Metorchis albidus 

Location Host Reference 

Pseudamphistomum truncatum 

Belarus Wolf Canis lupis, American mink Mustela 

vison, European polecat M. putorius, Stoat 

M. erminea, Weasel M. nivalis, Red fox 

Vulpes vulpes, Siberian raccoon dog 

Nyctereutes procyonoides 

Shimalov and Shimalov 

2000, 2001a, b, 2002a, b, 

Denmark Red fox, American mink, roach Rutilus 

rutilus,  

Guildal and Clausen 1973, 

Saeed et al. 2006, Skov et al. 

2008 

England and 

Wales 

Eurasian otter Lutra lutra, American mink, 

Roach 

Simpson et al. 2005, 2009, 

Sherrard-Smith et al. 2009 

France European mink Mustela lutreola, European 

polecat, American mink 

Torres et al. 2008 

Germany Red fox, Eurasian otter Saar 1957, Schuster et al. 

1988, 2000 

Ireland Eurasian otter, Mink Hawkins et al. 2010 

Italy  Simpson et al. 2005 

Poland Eurasian otter Hildebrand et al. 2011 

Portugal Red fox Eira et al. 2006 

Russia American muskrat Ondatra zibethicus, 

American mink, Siberian raccoon dog,  

Ivanov and Semenova 2000 

Spain European mink, American mink Torres et al. 2003 

Ukraine Carp Cyprinus carpio Davydov et al. 2011 

Yugoslavia Red fox Loos-Frank et al. 1982  

Wadden Sea, 

Caspian Sea 

Common Seals Phoca vitulina, Caspian 

Seals P. caspica 

Strauss et al. 1991, Kuiken et 

al. 2006 

Metorchis albidus 

Belarus Otter, Polecat Mustela putorius 

Mink Mustela lutreola 

Anisimova 2002, 

Bychkova and Sidarovich 

1994 

Bulgaria Insectivorous mammals Genov 1979 

England and 

Wales 

Otter Lutra lutra Sherrard-Smith et al. 2009 

Norway Domestic cats Felis catus Nielsen and Guildan 1974 

Novosibirsk 

Region, Russia 

Bithyniidae snails, Codiella troscheli Serbina and Yurlova 2002 

Serbia Foxes Vulpes vulpes Pavlovic and Kulisic 2001 

Shanghai, 

China 

Domestic dogs Canis lupis familiaris Andrews 1937 

Siberia Cyprinids Fattakhov 1990 

Spain Foxes Gortazar et al. 1998 

Tura-Pyshma Cyprinids Krivenko and Filatov 1990 
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5.3 Materials and Methods 

5.3.1 Sample collection 

Gall bladder samples of fish-eating mammals, predominantly otters (Lutra lutra) and some 

American mink (Mustela vison) were sourced from across Europe. Samples were donated 

from European countries (Britain, Denmark, Czech Republic, France, Germany, Norway, 

Poland, Scotland, and Sweden). Gall bladders were examined microscopically at 20x 

magnification and parasites were morphologically identified according to Yamaguti 

(1971). A sub-sample of parasites (N = 65, see Table 5.2) was selected for molecular 

analysis. For British samples, stratified random sampling was used to select hosts 

previously identified (Chapter 4) from across their known ranges (P. truncatum from 

Counties of Somerset Dorset, Gwent and Powys; M. albidus from Bedfordshire, 

Cambridgeshire, Essex, Hertfordshire and Suffolk). For continental samples DNA was 

performed on at least one parasite per host sample. 

 

Table 5.2 Summary of otter, Lutra lutra, or mink, Mustela vison (specified where 

appropriate) biliary parasite data from across Europe. The country of origin, total number 

of hosts examined (N), prevalence and intensities of the two species (Pseudamphistomum 

truncatum and Metorchis albidus) isolated from European piscivorous mammals. 

Country  

N (otters 

unless 

otherwise 

specified 

Pseudamphistomum 

truncatum 

Metorchis albidus 

Prevalence 

(%) 

Mean 

intensity (N 

for DNA 

analysis: 

Total = 37) 

Prevalence 

(%) 

Mean 

intensity (N 

for DNA 

analysis: 

Total = 28) 

Czech Republic * - - (2) - - (1) 

Denmark 52 5.8 2.3 (4) 30.8 3.4 (8) 

France, Brittany 22 0 0 (0) 18.2 2 (4) 

France,Poitou-

Charentes 

19 5.3 4 (1) 0 0 (0) 

Germany, Lusatica 11 72.7 29 (8) 18.2 1 (1) 

Norway 21 0 0 (0) 0 0 (0) 

Poland * - - (2) - - (0) 

Scotland 40 (mink) 0 0 (0) 0 0 (0) 

Sweden 12 16.7 96 (3) 16.7 13.5 (2) 

England and Wales 586  13.5 28.3 (17) 7.8 4.1 (12) 

England and Wales 104 

(mink) 

8.7 222 (0) 0 0 (0) 

      

*Parasites provided directly, one specimen of each species donated. 
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A general linear model (GLM), with a binary error distribution, was used to compare the 

parasite prevalence (the infection status of an individual regardless of the number of 

parasites present; infected = 1, uninfected = 0) between European regions where the 

sample size was equal to or larger than 10.  

 

To investigate intensity (the number of parasites infecting each individual, excluding those 

without infection) differences across host populations in Europe, a GLM (with a negative 

binomial error distribution) was fitted to the intensity data for regions where sample size of 

infected hosts was greater than or equal to 4. This analysis of intensity was limited 

however because of the small sample size available (Table 5.2). 

 

5.3.2 DNA analysis  

A conserved gene, the internal transcribed spacer sub-unit II (ITS2) ribosomal DNA region 

was used for species discrimination (see Chapter 4; Müller et al. 2007), while COXI and 

COXIII mtDNA fragments were used to examine genetic variation of P. truncatum and M. 

albidus populations across Europe. We reviewed previous phylogenetic studies of 

trematodes to identify which genes might provide a suitable target to examine genetic 

divergence across a geographic range (Appendix 5.1).  

 

Genomic DNA was extracted from whole individuals using the protocol of Faria et al. 

(2011) with some modifications. Tissue was digested for 3 hours at 55°C in 15 µl TE 

buffer containing 0.45% Tween 20 and 2 µg Proteinase K, followed by 10 min at 95°C to 

denature the proteinase K. The PCR reaction was conducted in a final volume of 10 µl, 2 

µl of DNA extract with 10x PCR buffer II (Applied Biosystems), 50 mM MgCl2 (Applied 

Biosystems), 2.5 mM of each dNTP, 10 pmol/µl of each primer (depending on reaction: 

ITS2 rDNA: Ophet F1 5’-CTCGGCTCGTGTGTCGATGA-3’ and Ophet R1 5’-

GCATGCARTTCAGCGGGTA-3’ following Müller et al. 2007; COXI mtDNA: 

ThaenCO1F 5’- CGGGTTTTGGAGCGTCATTC3’ and ThaenCO1R 5’- 

ACAGGCCACCACCAAATCAT -3’; and COXIII mtDNA: CO3FTremat 5’- 

ATGAGWTGATTACCKTT -3’ and CO3RTremat 5’ – 

ACAACCACACATAATCCACAAAATG-3’) and 5U Taq DNA polymerase (Invitrogen). 

PCR conditions were: 95°C for 5 min, followed by 35 cycles of 94°C for 30 sec, 53°C 

(ITS2 rDNA), 55°C (COXI mtDNA) or 53°C (COXIII mtDNA) for 1 min and 72°C for 1 
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min, with a final extension step of 72°C for 7 min (GenAmp PCR System 9700, Applied 

Biosystems). The samples were run on a 1.5% agarose gel and produced 387bp and 403bp 

(ITS2), 388bp and 435bp (COXI) and 370bp and 394bp (COXIII) amplicons for P. 

truncatum and M. albidus, respectively. Sequencing was conducted by Macrogen 

(Macrogen Inc., Seoul, South Korea). For P. truncatum 27 individuals were sequenced for 

ITS2 rDNA, 17 for COXI and 22 for COXIII mtDNA while for M. albidus 22 individuals 

were sequenced for ITS2 rDNA, 15 for COXI and 14 for COXIII mtDNA (see Figure 5.1 

and 5.2). Alignment of forward and reverse sequences was performed in Sequencher
TM

 

(version 4.9) and species were confirmed by matching consensus ITS2 sequences to those 

on GenBank (Accession numbers P. truncatum EU483073.1, and M. albidus JF710316).  

 

Mitochondrial DNA amplicons were considered independently and also concatenated to 

create a total 758bp (P. truncatum) and 829bp (M. albidus) sequence for the population 

comparisons (conducted using MEGA 4.0; Tamura et al. 2007). Identical sequences were 

collapsed into haplotypes leaving a total of N = 13 P. truncatum haplotypes and N = 14 M. 

albidus haplotypes for phylogenetic analyses. For those samples where only one of the 

mtDNA fragments was successfully amplified we extended the sequence of the missing 

gene with missing data (i.e. “?”) to complete the concatenated alignment length. 

Maximum-Likelihood (ML) and Bayesian inference (BI) methods were used to reconstruct 

the phylogenetic relationships among the mtDNA haplotypes for each species using 

PhyML version 3 (Guindon et al. 2010) and MrBayes version 3.2 (Ronquist et al. 2012) 

respectively. MrModeltest version 2 (Nylander 2004) was used to estimate the adequate 

model of sequence evolution of these datasets. For both datasets in each species the 

inferred model of evolution was HKY with invariant sites, two rate categories and a 

transition-transversion ratio ~2.3. The human liver fluke Clonorchis sinensis was used as 

outgroup for both datasets. Node support was determined by calculating 100 bootstrap 

replicates for the ML method and with posterior probabilities for the BI method. These 

models and phylogenetic trees were run by Pablo Orozco-terWengel. 

 

5.4 Results 

In total, 723 otters and 144 mink gall bladders were dissected from samples of 8 European 

countries (see Table 5.2, Figure 5.3). Otters from Germany had, by far, the highest 

prevalence (72.7%) of P. truncatum (GLM binomial error distribution: χ
2

769,757 = 4.188, SE 
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= 0.901, p < 0.001) and those otters in Denmark had the highest prevalence (30.8%) of M. 

albidus (GLM with a binomial error distribution: χ
2

769,757 = 2.333, SE = 0.6061, p < 0.05). 

There were, in contrast, no parasites in any of the gall bladders from Norwegian or 

Scottish samples, whereas every other country had biliary trematodes in their otter 

populations (Table 5.2). There was no significant difference in the intensity of P. 

truncatum among infected otters from Britain or Germany (the only two countries with 

large enough sample sizes to compare statistically, GLM negative binomial error 

distribution: F88,86 = 0.3167, p = 0.57). Equally, the intensity of M. albidus infection did 

not differ between comparable data sets from France, Sweden or England and Wales 

(GLM negative binomial error distribution: F65,62 = 2.42, p = 0.097). 

 

 
 

Figure 5.1 Phylogram for Pseudamphistomum truncatum (Bayesian Inference /Maximum 

likelihood, 100 bootstraps) based on the combined cytochrome c oxidase sub-unit I 

(COXI) and III (COXIII) mitochondrial DNA regions (758bp) from European samples. 

British samples are referred to by individual numbers. * indicates a BI probability of <0.2 
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Figure 5.2 Phylogram for Metorchis albidus (Bayesian Inference /Maximum likelihood, 

100 bootstraps) based on the combined cytochrome c oxidase sub-unit I (COXI) and III 

(COXIII) mitochondrial DNA regions (829bp from European samples. British samples are 

referred to by individual numbers.* indicates a BI probability of <0.2 
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Figure 5.3 Prevalence of Pseudamphistomum truncatum (blue) and Metorchis albidus 

(red), Opisthorchiidae, across Europe. The increasing size of circles corresponds to the 

increasing prevalence within a particular region. Inserts show the regional prevalence 

within the UK and locations of M. albidus infected (red) and uninfected (grey) otters in 

Brittany. 

 

The number of haplotypes per region is given in Table 5.3. Only a single ITS2 haplotype 

was identified across Europe for each parasite species; the two species differed by 2% 

across 387bp (Kimura-2-Parameter). Across the mtDNA (COXI and COXIII) phylogeny 

(758bp and 829bp for P. truncatum and M. albidus respectively), there was only 1.8% and 

3.6% difference among P. truncatum and M. albidus haplotypes, respectively. These 

differences correspond to 14 segregating sites in P. truncatum (8/388 for COXI, 6/370 for 

COXIII) and 30 in M. albidus (19/435 for COXI and 11/394 for COXIII). The resolution 

of the mtDNA trees was poor for both the ML and MrBayes analyses. However, for both 

species the British samples were scattered across the phylogenies (Figures 5.1 and 5.2) 

instead of clustered together as expected under a scenario of a recent introduction to 

Britain. The populations appear fairly heterogeneous across Europe with no significant 

structure based on the geographic locations (Table 5.3).  
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Table 5.3 Summary of the phylogenetic data on Pseudamphistomum truncatum and Metorchis albidus across Europe: Samples size (number 

of parasites sequences), the gene sequenced, the population (country of origin), the evolutionary distance among the population showing the 

pairwise difference, the fraction of sequence positions that differ by a transition and PI, the fraction of sequence positions that differ by a 

transversion, and the number of haplotypes within the population.  

 

 

Parasite Sample 

size 

Gene Population (country 

of origin) 

Mean  within 

population pairwise 

difference (PI)  

Number of 

haplotypes  

Pseudamphistomum 

truncatum 

 

6 COXI Britain 0.005 (0.0026) 2 

10  Mainland Europe 0.006 (0.0023) 7 

3  Sweden 0.000 1 

 

5 

 

COXIII 

 

Britain 

 

0.0011 (0.001) 

 

2 

17  Mainland Europe 0.0027 (0.001) 4 

4  Sweden 0.0014 (0.001) 2 

3  Denmark 0.0018 (0.0017) 2 

7  Germany 0.0026 (0.0018) 2 

 

Metorchis albidus 

 

5 COXI Britain 0.0200 (0.0051) 5 

11  Mainland Europe t 0.0187 (0.0043) 8 

3  Denmark 0.0211 (0.0052) 3 

4  France 0.0052 (0.0027) 3 

     

 

4 

 

COXIII 

 

Britain 

 

0.0013 (0.0012) 

 

2 

10  Mainland Europe 0.0138 (0.0045) 2 

6  Denmark 0.0156 (0.005) 2 

3  France 0.000 1 
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5.5 Discussion 

The phylogenies of Pseudamphistomum truncatum and Metorchis albidus across their 

European range suggest that neither digenean is a recent introduction into Britain. 

Despite anecdotal reports of the potential for P. truncatum and M. albidus to infect 

British mammals (see Nicoll 1923) the two parasite species were identified only in 2005 

(Simpson et al. 2005) and 2009 (Sherrard-Smith et al. 2009) respectively, leading to their 

status as suspected invaders. Until recently, susceptible wildlife was not screened 

systematically (Sainsbury et al. 2001, and see Simpson 1997, Chadwick 2007); therefore 

the likelihood of identifying such parasitic fauna was low, perhaps explaining the recent 

reports of these digeneans. There is often ambiguity over the native or non-native status 

of parasites in parts of their known range (Blakeslee et al. 2012). Identification is 

particularly challenging for inconspicuous or cryptic species (see Nei et al. 1975, Sakai et 

al. 2001) and may explain why neither trematode was recognised in Britain prior to 2005 

(Simpson et al. 2005 but see Nicoll 1923).  

 

Both P. truncatum, but M. albidus in particular, have similarly poor resolution across 

both mainland Europe and British populations. The resolution of both ML and Bayesian 

phylogenetic trees was poor as indicated by the low node support values inferred with the 

current data. On one hand, the current phylogenies are not well resolved as a result of the 

lack of an adequate outgroup for our data. Nevertheless, alternative outgroups were tested 

in both ML and Bayesian analyses (including M. albidus as outgroup for P. truncatum 

and vice versa) but the tree resolution remained poor. On the other hand, the lack of 

geographic resolution in our dataset may reflect a mechanism that operates to maintain a 

relatively homogeneous population across mainland Europe and Britain. Legislation is 

operative to protect fish from disease (e.g. EU Council Directive 2006/88/EC) but does 

not apply to most digeneans. In part, this relaxed approach to screening for digeneans 

stems from their reported low level impact on fish and it is therefore impractical to 

restrict fish movements on this basis. The widespread translocation of fish stocks, 

alongside movement of snails and parasite eggs with plants, gravel or water, across the 

continent and within Britain almost certainly contributes to a widespread distribution of 

digenean species.  

 

The variation in prevalence of P. truncatum between countries (from zero in Scotland 

and Norway, to >70% in part of Germany) may be indicative of patchy distribution 
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across Europe, although more extensive sampling would be required to examine this 

further. Scotland and Norway may be, at present, beyond the geographic range of both 

parasites but the presence of both species in Sweden shows that both countries are within 

the northern latitudinal limit for the parasite. Further, the predicted warmer conditions 

across Europe with climate change may suit both species and encourage a northerly 

movement of their current distributions (Chapter 4). The distribution of host species 

provides no apparent barrier to their spread within Europe: the first intermediate hosts are 

members of the gastropod Families Lymnaeidae and Bithyniidae and second intermediate 

hosts, Cyprinidae (Dunn 1978; Chapter 7); both host stages are found throughout Europe.  

 

The density-dependent processes that determine the distribution of host populations can 

result in spatial aggregation of parasite populations (Shaw and Dobson 1995) and has 

been used to explain the co-existence of species (e.g. Hassell et al. 1991, Dobson et al. 

1992, Shaw and Dobson 1995). The presence of two dominant biliary parasites in the 

otter population across Europe may contribute to the observed patchiness in distribution 

via interspecific competition, or some level of acquired host immunity, acting to separate 

P. truncatum and M. albidus. It is noteworthy that across the entire study, only 5 co-

infections were observed; 2 from the UK (out of 586 otters) and 3 in Denmark (out of 52 

otters), but none elsewhere (867 otters in total). Specifically, a distinction between the 

geographic distributions of M. albidus and P. truncatum was observed in France. Recent 

studies report a modification in otter diet observing a switch from eels to introduced 

crayfish (Beja, 1996) so differentiation in diet might explain differences in the likelihood 

of infection. The otter population of France is divided between the Massif Central Region 

and the Atlantic Coast which is probably connected to the Poitou-Charentes Region and 

from here the otter population is expanding west (Robitaille and Laurence 2002). Only a 

single P. truncatum specimen was recorded in the Poitou-Charentes Region whereas the 

dominant parasite in Brittany was M. albidus. The rarity of P. truncatum and M. albidus 

in the same geographic location is observed across continental Europe but also in Britain 

where sample sizes are large enough (N = 586) to make conclusions robust (see Sherrard-

Smith et al. 2009).  

 

Ultimately, this study does not support the hypothesis that P. truncatum and Metorchis 

albidus were recent introductions to Britain, although further work would be required to 

conclude this definitively. The significant heterogeneity among the combined COXI and 
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COXIII M. albidus mtDNA indicates population mixing, perhaps the result of the 

translocation of fish stocks. Although legislative controls are in place to restrict fish 

movements they rarely consider trematode infection (see EU Council Directive 

2006/88/EC) because the pathology associated with trematode larvae is often negligible 

on many fish intermediate hosts. The current study provides an insight into the genetic 

structure, but also geographic heterogeneity, of a widespread digenean of threatened wild 

mammals.  
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Appendix 5.1 Genetic diversity among trematodes; rationale for choosing the 

mtDNA COXI and COXIII regions 

The haplotype diversity, sample size and amplicon length were compared among studies 

that consider genetic variation within the trematodes (GLM with suitable error 

distributions, see Table 5A). The mtDNA NAD1 region presented slightly higher 

haplotype diversity than COXI – the most studied DNA sequence – but this was not 

significant and either gene seems equally informative (Figure 5A). In addition, our 

empirical data shows the mitochondrial cytochrome c oxidase sub-unit (COXIII) is 

perhaps more variable than sub-unit 1 (COXI) indicating its suitability for intraspecific 

population analyses of trematodes (and see Zarowiecki et al. 2007).  

 

Two haplogroups were identified in the COXI and COXIII mtDNA sequences for both P. 

truncatum and M. albidus, but we would expect greater genetic diversity if more 

specimens or longer amplicons were available (increased amplicon length correlates with 

increased number of haplogroups: LM (log transformed data); F = 13.12, df = 31, p < 

0.01). 

 

Certain trematodes appear to have much higher genetic diversity than others. In 

particular, more global species such as Fasciola sp. and Schistosoma spp. carry a vast 

number of haplotypes per examined mitochondrial DNA gene (see Table 5A and 

references therein; Semyenova et al. 2006). Such species are under strong selection 

pressure from drug treatment and so are perhaps incomparable with other helminths. 

Additionally, because of their economic importance, species such as F. hepatica have 

been extensively studied; this is likely to contribute to an apparent high genetic diversity 

because the number of individuals sampled relates positively to genetic diversity. 
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Table 5A Genetic diversity of trematodes, based on published information (studies highlighted using an ISI Web of Knowledge literature search 

for the terms: Trematod* AND Genetic diversity).  

Parasite species (N where 

available) 

Genetic Region Number 

of base 

pairs 

Number of 

haplotypes 

Geographic 

Region 

Reference 

Fasciola hepatica CO1  4  Iran Moazeni et al. 2012 

Opisthorchis viverrini CO1  5 Thailand Sithithaworn et al. 2012 

Opisthorchis viverrini ITS2  1 Thailand Sithithaworn et al. 2012 

Schistosoma japonicum (169) Cytb-ND4L-ND4 

ND1  

ND4 (mtDNA 

NADH 

dehydrogenase 

subunits 1 and 4) 

793-794 

767 

1463-1466 

96 (combined) Mainland China Zhao et al. 2012 

Coitocaecum parvum (120) CO1 781 18 New Zealand Blasco-Costa et al. 2012 

Stegadexamene anguillae 

(124) 

CO1 702 23 New Zealand Blasco-Costa et al. 2012 

Fasciola gigantica (60) CO1 443 8 Mauritania  Amor et al. 2011a 

Fasciola gigantica (60) ITS1 435 1 Mauritania Amor et al. 2011a 

Fasciola gigantica (60) ITS2 346 1 Mauritania Amor et al. 2011a 

Fasciola hepatica (22) ITS1 and 2 

combined 

435 and 

346  

3 Iran Amor et al. 2011b 

Fascioloides magna (324) CO1 and nad1 

combined 

384 and 

405 

8 and 15 Europe and North 

America 

Kralova-Hromadova et al. 

2011 

Trichobilharzia szidati/T. 

ocellata (39) 

CO1 1125 7 Russia and 

Europe 

Korsunenko et al. 2012 

Clinostomum spp. (22) CO1 557 21 Oklahoma, USA Bonett et al. 2011 

Fasciola hepatica (47)  ND1  549 14 Egypt Amor et al. 2011a 

Fasciola gigantica(42) ND1 549 19 Egypt Amer et al. 2011 

Fasciola hepatica (47) CO1 452 13 Egypt Amer et al. 2011 
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Parasite species (N where 

available) 

Genetic Region Number 

of base 

pairs 

Number of 

haplotypes 

Geographic 

Region 

Reference 

Fasciola gigantica (42) CO1 452 7 Egypt Amer et al. 2011 

Diplostomum 

pseudospathaceum (139) 

ITS1  1 Finland  Louhi et al. 2010 

Opisthorchis viverrini (86) NAD1 645 19 Thailand, 

LaoPDR, 

Cambodia 

Thaenkham et al. 2010 

Crassicutus cichlasomae  CO1 290-355 86 (1-8 per 

locality) 

Middle-America Razo-Mendivil et al. 2010 

Maritrema novaezealandensis 

(269) 

CO1 706 141 South Island New 

Zealand 

Keeney et al. 2009 

Philophthalmus sp (246) CO1 706 23 South Island New 

Zealand 

Keeney et al. 2009 

Cryptocotyle lingua (98) CO1 655 34 North America Blakeslee et al. 2008 

Cryptocotyle lingua (98) CO1 655 75 Europe Blakeslee et al. 2008 

Opisthorchis viverrini (3) 18S  1 Korea, China, 

Laos 

Park 2007 

Opisthorchis viverrini (3) ITS2  1 Korea, China, 

Laos 

Park 2007 

Opisthorchis viverrini  (3) CO1  1 Korea, China, 

Laos 

Park 2007 

Fasciola hepatica (113) nad1 316 13 Eastern Europe, 

Western  Asia 

Semyenova et al. 2006 

Fasciola hepatica (107) CO1 429 10 Eastern Europe, 

Western  Asia 

Semyenova et al. 2006 

*Cercaria batillariae (447) CO1 800 70 Japan Miura et al. 2005 

*Cercaria batillariae (447) ITS2 800 1 Japan  Miura et al. 2005 

Philophthalmid  sp. (323) CO1  400 13 Japan Miura et al. 2005 

Philophthalmid  sp. (323) ITS2 400 1 Japan Miura et al. 2005 
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Parasite species (N where 

available) 

Genetic Region Number 

of base 

pairs 

Number of 

haplotypes 

Geographic 

Region 

Reference 

Deropegus aspina A (66) ND1 636 19 Pacific Northwest Criscione and Blouin 2004 

Deropegus aspina B (89) ND1 636 22 Pacific Northwest Criscione and Blouin 2004 

Nanophyetus salmincola (91) ND1 639 75 Pacific Northwest Criscione and Blouin 2004 

Plagioporus shawi (92) ND1 636 28 Pacific Northwest Criscione and Blouin 2004 

Clonorchis sinensis  18S 1030 3 Korea and China Lee and Huh 2004 

Clonorchis sinensis ITS1 762 3 Korea and China Lee and Huh 2004 

Clonorchis sinensis ITS2 451 1 Korea and China Lee and Huh 2004 

Clonorchis sinensis CO1 393 2 Korea and China Lee and Huh 2004 

Opisthorchis viverrini  CO1 417 5 Northeast 

Thailand 

Ando et al. 2001 

Opisthorchis viverrini ITS2 296 1 Northeast 

Thailand 

Ando et al. 2001 

Pseudamphistomum 

truncatum (16, 22) 

CO1 

CO3 

387 

370 

2 

1 

Britain and 

continental 

Europe 

(current study) 

Metorchis albidus (15) 

                              (14)               

CO1 

CO3 

434 

394 

2 

2 

Britain and 

continental 

Europe 

(current study) 

*Genus name not given. 
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Figure 5A Comparison of the number of haplotypes identified, the length of the DNA amplicon studied and the number of samples included per 

study for different DNA regions used for trematode phylogenies from the literature (see Table 5A for data). 
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6. Spatial and seasonal factors are key determinants in the aggregation of helminth 

populations in their definitive hosts: Pseudamphistomum truncatum in otters Lutra lutra 

 

6.1 Abstract 

Parasites are typically aggregated within their host populations. The most infected hosts are 

cited frequently as targets for optimal disease control. Yet a heavily infected individual is 

not necessarily highly infectious and so does not automatically contribute a higher 

proportion of parasitic infective stages than a host with fewer parasites. Here, 

Pseudamphistomum truncatum (Opisthorchiidae) infection of a definitive host, the otter 

(Lutra lutra), was used as a model system. Whether variation in parasite abundance, 

aggregation and egg production (fecundity, as a proxy of host infectiousness) can be 

explained by abiotic (season and region) or biotic (host age, sex and body condition) factors 

was investigated. Parasite abundance was affected most strongly by the biotic factors age 

and body condition such that adults and otters in good condition had heavier infections than 

sub-adults or those in poor condition, whilst there were no significant differences in parasite 

abundance among the host sexes, seasons or regions. Conversely, parasite aggregation was 

affected most strongly by the abiotic factors season and region, which was supported by all 

four independent measures of parasite aggregation (the corrected moment estimate k, 

Taylor’s Power Law, The Index of Discrepancy D, and Boulinier’s J). P. truncatum was 

highly aggregated within otters, with aggregation stronger in the Midlands and Wales than 

in the Southwest region of Britain. Overall, more parasites were found in fewer hosts in the 

summer, which coincides with the summer peak in parasite fecundity. Combined, these data 

suggest that (i) few otters carry the majority of P. truncatum parasites and that there are 

more infective stages (eggs) produced during summer; and (ii) abiotic factors are most 

influential when describing parasite aggregation whilst biotic factors have a greater role in 

defining parasite abundance. Together, parasite abundance, aggregation and fecundity can 

help predict which hosts make a large contribution to the spread of parasitic infective stages 

so that the functionally important factors within a given population can be identified to 

allow us to focus treatment strategies more effectively. 
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6.2 Introduction 

Patterns of parasite intensity vary widely across a host population (Anderson and May 1991, 

Scott and Smith 1994) and generally parasite distributions tend to be aggregated, a pattern 

best defined by a negative binomial distribution (Shaw and Dobson 1995, Shaw et al. 1998, 

Woolhouse et al. 1997, Galvani and May 2005). The most infected individuals are frequently 

cited as key individuals to target for optimal disease control (e.g. Woolhouse et al. 1997, 

Perkins et al. 2003; Lloyd-Smith et al. 2005, Matthews et al. 2006). Yet high parasite 

intensities do not necessarily indicate that an individual has a correspondingly high 

infectiousness, or transmission potential. Parasite transmission is defined as the probability of 

contacting an infectious particle/individual and acquiring that infection. As such, the 

transmission potential of a host can, in part, be quantified by parasite fecundity, as this 

measures the number of potential infective stages (Shaw and Dobson 1995, Shaw et al. 

1998). Arguably hosts that are simultaneously the most infected and harbour parasites that are 

highly fecund are likely to contribute strongly to the transmission potential of a parasitic 

disease. There is, however, inherent variation in the reproductive potential of a parasite, 

affected by both parasite and host age, sex, body condition and host immunity (Kaitala et al. 

1997, Luong et al. 2010, Koehler and Poulin 2012), which may in turn be affected by 

environmental factors. Identifying the host and environmental factors that are associated with 

heavily infected hosts and/or highly fecund parasites will allow us to focus our treatment 

strategies more specifically. This is vital to prolong the efficacy of drugs, particularly in light 

of antihelmintic resistance to chemotherapeutic strategies (Laurenson et al. 2013). 

 

Patterns of parasite abundance, aggregation and fecundity have been used frequently to 

consider the contribution an individual host can make to the spread of disease, although 

typically these variables are considered in isolation of one another (e.g. Madhavi 1979, Rolfe 

et al. 1991, Woolhouse et al. 1997, Perkins et al. 2003; Ferrari et al. 2004, Newey et al. 

2005). The mean parasite abundance does not define parasite aggregation because parasitism 

can truncate the negative binomial distribution as a result of parasite induced mortality of the 

most infected individuals (Poulin 1993, Gregory and Woolhouse 1993). A high parasite 

abundance could lead to a high potential for carrying more infective stages if all other factors 

are equal, but increasing abundance of parasites can also result in elevated density-dependent 

competition or increased activation of host defence mechanisms (Shostak and Scott 1993) so 
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reducing survival or fecundity of each parasite (Jaenike 1996). To determine the nature of 

this trade-off parasite abundance, aggregation and fecundity need to be considered together. 

By examining all three variables in combination with ecological data it should be possible to 

identify the factors associated with hosts that are simultaneously the most infected and 

infectious. Once these factors, responsible for determining parasite abundance, aggregation 

and fecundity, are identified, this information can be used to optimise the efficacy of parasite 

treatment by using targeted control on specific hosts in specific regions and/or time periods 

(Nielsen 2012, Laurenson et al. 2013).  

 

In the current study, parasite abundance is defined as the number of individuals of a particular 

parasite species in or on a single host, regardless of whether or not that host is infected with 

the parasite (following Bush et al. 1997). An individual with a high abundance could be 

considered more functionally important with regards to parasite transmission potential than 

one with a low abundance (or no parasites), such that treatment of heavily infected 

individuals could have a disproportionally high reduction of the parasite population (see 

Woolhouse et al. 1997, Perkins et al. 2003, Ferrari et al. 2004, Skorping and Jensen 2004, 

Magalhaes et al. 2012). Equally, parasite aggregation is a measure of the extent to which 

parasites are scattered unevenly among available hosts (Poulin 1996a, Shaw and Dobson 

1995, Shaw et al. 1998). If a pattern exists where the majority of parasites are found within a 

minority of the hosts then there is potential to isolate and treat these heavily infected few (see 

Dobson et al. 1992, Hudson et al. 1992, Poulin and Morand 2000, Newey et al. 2005, Heylen 

and Matthysen 2011).  

 

Parasite fecundity is the reproductive potential of a parasite and can be measured, for 

helminths, using in utero egg counts (Stear et al. 1995, Richards and Lewis 2001) or faecal 

egg counts. The latter represents the volume of infectious particles that are released into the 

environment (Madhavi 1979, Rolfe et al. 1991). However, eggs are often shed in the faeces 

sporadically (Tinsley 1983) causing issues for quantification of shed particles, if samples are 

taken infrequently (see Wilson et al. 2001). Instead, in utero egg counts for parasites with an 

elongated uterus may provide a more robust proxy than faecal egg counts for quantifying 

parasite transmission potential, particularly where hosts are elusive or faecal samples difficult 

to collect (e.g. defecation occurs in water).  



 CHAPTER 6  

111 

 

 

In this study, parasite abundance and aggregation across a host population, and parasite 

fecundity using in utero egg counts of Pseudamphistomum truncatum (Trematoda, 

Opisthorchiidae) infections in otters, Lutra lutra (see Sherrard-Smith et al. 2009) was 

quantified. Pseudamphistomum truncatum is a mammalian biliary parasite with a three host 

life cycle that is trophically transmitted to otters via the consumption of a second intermediate 

host, cyprinid fish. The parasite matures in the otter and, typical of digeneans, accumulates 

egg capsules in an elongated uterus. Eggs are deposited into the environment with faeces and 

ingested by snails which subsequently release cercariae that can encyst on the cyprinid fish. 

This system is used to answer two questions: i) Are patterns of parasite abundance and 

aggregation related to seasonality and geographic location and/or host age, sex and body 

condition? ii) Is parasite fecundity higher in specific groups of hosts; in other words, is it 

possible to identify individuals that have the potential to disseminate significantly more 

parasite infectious stages than others? A helminth population from a long-term survey of wild 

animal cadavers is used as a model system. To our knowledge this is the first time that 

parasite abundance, aggregation and fecundity have been considered together to identify the 

factors that might contribute disproportionately to parasite transmission potential.  

 

6.3 Materials and methods 

6.3.1 Sample collection 

Road-killed otters, Lutra lutra (N = 516 of which 72 were infected) were collected from 

across England and Wales as part of a national monitoring scheme (Cardiff University Otter 

Project CUOP, see Chadwick et al. 2011). Gall bladders were removed and examined for the 

presence of biliary parasites. Pseudamphistomum truncatum were identified morphologically 

(following Yamaguti 1971). The location of each otter based on Environment Agency (EA) 

River Catchment regions (see Sherrard-Smith et al. 2009), month and year of host death, age-

class (adult or sub-adult), sex, length and body mass were recorded. A body condition index 

(BC) for otters was calculated based on otter length and mass (Kruuk et al. 1987). Body 

condition, previously referred to as K (see Kruuk et al. 1987, Sherrard-Smith et al. 2009), is 

here renamed BC, to distinguish it from the negative binomial dispersion parameter k, used in 
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this study to measure parasite aggregation. Body condition (BC) is measured by the following 

equation: 

Equation 6.1:   BC = weight(kg) / [a x length
n
] 

where a = 5.02 and n = 2.33 for females, and a = 5.87 and n = 2.39 for males (following 

Kruuk et al. 1987). The hosts were split into 2 groups allowing a comparison to be made 

between hosts in good condition (BC ≥1) and those hosts in poor condition (BC < 1). Host 

animals were also categorised by age class as ‘adult’ or ‘sub-adult’, with sub-adults defined 

as males with a baculum (penis bone) length of less than 60 mm and females that were not 

yet reproductively active (see Sherrard-Smith and Chadwick 2010). Seasons were defined as 

spring: March, April and May; summer: June, July and August; autumn: September, October 

and November; and winter: December, January and February. 

To assess whether there were distinct differences in the level of parasitic infection between 

abiotic or biotic factors, or whether the number of parasites correlated with the host condition 

index, General Linearized Models (GLM, with negative binomial error distributions) were 

fitted separately for each abiotic or biotic factor to the parasite abundance data. To compare 

the degree of aggregation of parasites within the population, differences between the abiotic 

factors, season of host death (winter, spring, summer or autumn) and geographic location 

(where sample sizes were large enough to allow comparisons; Wales, Midlands or Southwest 

England), in addition to biotic factors, age class (sub-adult or adult), sex (male or female) and 

condition (good or poor) (see Table 6.1 for sample sizes), were explored using 4 different 

metrics of aggregation. 

6.3.2 Aggregation parameters 

Several indices have been developed to explore the degree of parasite aggregation within a 

host population including the corrected moment estimate k, Taylor’s Power Law, Poulin’s 

Index of Discrepancy (D), and Boulinier’s J, which can be used to identify groups of infected 

individuals. Comparing aggregation between populations is generally challenging for 

different reasons depending on the given aggregation index. The corrected moment estimate 

of k is the most commonly used measure of parasite aggregation and it is most widely 

accepted (Wilson et al. 2001), particularly because on comparison of various indices 

(variance to mean ratio, coefficient of variation, moment estimate of k and corrected moment 

estimate of k), corrected moment estimate of k was found to vary least with mean parasite 
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load and sample size (Gregory and Woolhouse 1993). Regardless, there is still an element of 

co-variance with the mean when using the k parameter (see Gregory and Woolhouse 1993).  

Taylor’s Power Law relates the between sample variance to the overall mean abundance of a 

given sample of organisms and is most useful when a group of samples or populations are 

available for consideration (see Wilson et al. 2001). The Index of discrepancy (D) is more 

host-centric than k or Taylor’s Power Law and less sensitive to the distribution of parasites 

(Poulin 1993). The D index can vary between 0 (no aggregation) and 1 (all parasites are 

theoretically within a single host), and so can be used to compare datasets with varying 

prevalence and mean parasite load. Equally, Boulinier’s J considers the relative clustering of 

parasites, by calculating the likelihood of additional parasites occupying a host, if that host is 

already infected by any given parasite (Boulinier et al. 1996). As such, Boulinier’s J 

quantifies parasite aggregation from an individual host perspective rather than a population 

level metric and has the advantage that, unlike the k parameter, is not biased for small sample 

sizes (Gregory and Woolhouse 1993, Boulinier et al. 1996). Consequently, comparing 

aggregation between sub-samples of hosts is problematic because no single measure of 

aggregation is entirely reliable and aggregation indices vary according to sample size and 

abundance. To achieve confidence in the patterns observed, for the first time four different 

methods are applied to quantify parasite aggregation across abiotic and biotic factors, and 

assess whether there is congruence across multiple measures.  

6.3.2.1 The corrected moment estimate (k) 

The corrected moment estimate (k) of the negative binomial distribution quantifies an 

increase in parasite aggregation, for a constant mean, with a diminishing k value, i.e. it is an 

inverse measure of aggregation. For example, if the parasite population is highly aggregated 

in the host population k tends toward a theoretical limit of zero (where all parasites are 

concentrated within a single host). Conversely, for the same given mean parasite abundance, 

as k increases so parasite aggregation decreases so that the distribution tends toward a 

Poisson (random) distribution followed by a positive binomial as k increases to infinity. The 

corrected moment estimate k is calculated using the mean parasite abundance x, variance σ
2
, 

and sample size N of the given population (see Equation 6.2). The k was calculated for each 

sub-sample of the host population according to abiotic or biotic variables using the following 

equation: 

Equation 6.2:  
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k = (x
2 
- σ

2 
/ N) / (σ

2
 – x) 

The frequency distributions within host sub-groups were compared to examine differences in 

k using GLMs with negative binomial error distributions.  

6.3.2.2 Taylor’s Power Law  

To examine differences in parasite aggregation within host sub-groups, first the departure of 

the variance of the number of parasites per host among categories from a random distribution 

was quantified, and then comparable populations were examined by using a bootstrapping 

technique to calculate Taylor’s Power Law parameter b following Boag et al. (2001). Briefly, 

50 parasite counts from each population were sampled at random (with replacement) to 

calculate the log (mean + 1) and log (variance + 1). This was replicated 50 times giving an 

estimate of b (the gradient of the linear regression of log (variance + 1) onto log (mean + 1)). 

This process was repeated 100 times to calculate SE for the intercept (a) and b. Where 

possible, statistical comparisons between groups (e.g. spring, summer, autumn and winter) 

were performed using GLMs (Table 6.2). In some cases, the large number of zeros in the 

analysis led to b estimates of 0 and statistical comparisons were not possible using this 

method. A simple 2-sample Kolmogorov-Smirnov test was then applied to test whether 

samples had the same distributions.  

6.3.2.3 The Index of Discrepancy (D) 

Poulin’s Index of Discrepancy (D) quantifies the degree of inequality between the observed 

distribution and a hypothetical distribution where parasites are distributed equally among 

hosts. Here, zero represents perfect equality and 1 implies all the parasites are aggregated 

within a single host. To quantify D hosts were ranked from the most to the least infected 

individuals (including those without infection). It was then possible to calculate the 

proportion of parasites associated for any given percentage of infected hosts and D was 

calculated using: 

Equation 6.3:  
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where N = total host population, X is the number of parasites in host j, and x is the mean 

number of parasites (see Poulin 1993).  

To examine whether parasites are distributed differently between abiotic (season and region) 

or biotic (age, sex and condition) factors using D, a GLM with a binomial error distribution 

was fitted to the number of parasites per given proportion of hosts (0.01-0.99), bound to the 

total number of parasites in the associated factor (Yw). Each factor was considered 

independently so allowing comparison of the regression lines that describe each category 

(factors: season or geographic region, age, sex or condition).  

6.3.2.4 Boulinier’s ‘J’  

An alternative method to examine parasite aggregation within and among hierarchical scales 

was proposed by Boulinier et al. (1996). This method was developed to look at spatial scale 

impacts on parasite aggregation. The aggregation index, Jj (Equation 6.4), measures the 

increase in the expected number of other parasites on a host for any given parasite.  

Equation 6.4:   

 

 

Where nj is the number of hosts in a given population j; xij is the corresponding number of 

parasites in individual, i, from population j; and Xj is the mean abundance for the total 

population j. 

The Boulinier index (Jj) was calculated for each sub-sample of hosts according to season, 

region, host age, sex and body condition. To examine whether the J index indicated 

significantly different aggregation patterns between comparative sub-groups (e.g. males vs 

females) a bootstrapping method was devised to generate confidence intervals for a given 

population: 100 independent data sets with negative binomial distributions were simulated, 
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parameterised by the respective mean, k and host population sizes of each sub-sample (e.g. 

female hosts). Jj was calculated for each of these 100 generated data sets and then the Jj data 

were ranked from smallest to largest so that the 3
rd

 and 98
th

 values could represent the lower 

and upper 95% confidence intervals respectively. A posteriori testing in ANOVA was then 

applied to the simulated Jj data; where the confidence intervals overlapped with the Jj for the 

real data then it was concluded that there was no significant difference between parasite 

aggregations among sub-groups. Conversely, where confidence intervals did not overlap the 

Jj for a given sub-sample, then it was concluded that this was indicative of a significant 

difference between sub-groups of the host population. 

Here, the degree of parasite aggregation among sub-groups of a host population was 

compared using the four different measures of parasite aggregation. The analysis of Jj is 

promising because this measure of aggregation does not vary with small sample sizes (a 

limitation of k). The parameter D has been criticised because the measure of aggregation 

depends on sample size (Ploeger 1994). Poulin (1996b) argues that D measures aggregation 

directly, as opposed to the indirect estimates provided by Taylor’s Power Law and k, and 

quantifies the uneven use of hosts. D is based on both the number of uninfected hosts as well 

as the distribution of parasites among the infected host population. This measures the extent 

to which parasites use available hosts unevenly so that many hosts are uninfected whilst 

crowding occurs in a few – the definition of parasite aggregation according to Poulin 

(1996b). However, an aggregation estimate based on a small sample size and regardless of 

the method used, is likely to underestimate parasite aggregation because heavy infections are 

rare and therefore most likely to be observed only when sample sizes are large (Poulin 1993, 

1996b). The J approach asks a slightly different question to k, Taylor’s Power Law and D. 

For any given parasite, at the scale of aggregation among hosts, J asks: what is the expected 

increase in the number of additional parasites on a given host relative to a case where 

parasites are distributed randomly across the host population? It is appropriate therefore to 

consider a range of estimates of parasite aggregation to provide a comprehensive insight of a 

given system.  

6.3.3 Parasite fecundity 

Parasite fecundity can be measured by the number of reproductive units (eggs) within the 

uterus (Richards and Lewis 2001) and high fecundity can indicate individuals that are 

potentially most infectious. In the current study, the state of decomposition of hosts 
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(opportunistically collected road-kill) prevented the use of all 72 infected hosts for in utero 

analysis of the parasites. As such, to examine the parasite fecundity across different abiotic 

and biotic factors 35 infected hosts with a total of 255 P. truncatum were used. Of these,  a 

subset 119 parasites from 19 hosts were flat-fixed and measured (length, width and area) 

before storage in 70% ethanol prior to egg counts, allowing us to test whether parasite 

fecundity is confounded by parasite size. A photographic method was developed to count in 

utero fecundity. Each parasite was teased apart in 2ml of distilled water within an adapted 

microscope slide with a 2mm high rim surrounding a 15mm
2
 central arena. The slide was 

scanned at x400 magnification and c. 500 images were taken of each slide to cover the 

15mm
2
 area in fine detail. These images were knitted together without overlap of adjacent 

images. These images were then screened manually, counting all eggs touching or crossing 

the top and left edge and ignoring those on the bottom and right edge of each image, to avoid 

counting eggs twice. It was then examined how mean parasite fecundity varied with abiotic 

and biotic variables (mixed-effects GLM with Gaussian error distribution and identity link 

function). All statistical analyses were conducted using the package R, version 12.1 (R 

Development Core Team, 2010). 

6.4 Results 

6.4.1 Parasite abundance  

Pseudamphistomum truncatum infects 13% of UK otters (N = 72 infected out of 516 otters, 

mean abundance 3.9±0.97, mean intensity = 28.3±6.24, range = 1-302). Parasite abundance 

differed between sub-adults and adults (age) such that adults had higher infections (GLM, 

negative binomial error distribution: χ
2

1,515 = 1.995, SE = 0.5141, p < 0.05). Similarly, otters 

in good condition had higher infections than those in poor condition χ
 2

1,515 = 2.012, SE = 

0.5298, p < 0.05). There were no significant differences in parasite abundance between 

seasons, regions or host sexes (p > 0.1 in all cases) confirming Sherrard-Smith et al. (2013). 

6.4.2 Parasite aggregation 

Analysis of the aggregation index k found no statistically significant seasonal differences 

(GLM negative binomial error distribution, p >0.1) but parasites were more aggregated in the 

Midlands region compared to the Southwest (χ
 2

2,25 = 1.669, SE = 0.773, p = 0.095) and 

Wales (χ
 2

2,25 = 1.669, SE = 0.773, p = 0.091), but only at the 90% confidence level. There 

was no significant difference in k between host ages or sexes (GLM negative binomial error 
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distribution, p > 0.1 for all cases, Table 6.1). Parasites were significantly more aggregated in 

poor condition hosts compared to those in good condition (GLM negative binomial error 

distribution: χ
2
1,514 = 1.875, SE = 0.479, p = 0.044).  

 

Analysis of Taylor’s Power Law showed parasites from hosts in summer were more 

aggregated than those in either winter (p < 0.01, see Table 6.2) or spring (p < 0.05). Equally, 

parasites were less aggregated in the Southwest population compared to either Wales (p < 

0.001) or the Midlands (p < 0.001). Parasites were not aggregated differently between host 

age or sex classes (Table 6.2) but parasites were more aggregated in hosts in poor condition 

compared to those in good condition (p < 0.001).       
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Table 6.1 Summary statistics describing the fitted negative binomial distributions for the host-parasite interaction between Pseudamphistomum 

truncatum and otters, Lutra lutra: Biotic or abiotic sub-groups of the host population are differentiated by season, region, host age class, sex and 

host condition. Bold type-face refers to the most aggregated population among factors and significant differences among sub-groups are 

identified. 

 

Population sub-group Prevalence 

(%) 

Mean 

Abundan

ce 

Varianc

e 

N. 

of 

host

s 

N. of 

infected 

hosts 

Measures of parasite aggregation  

k 

parameter 

Index of 

Discrepan

cy D 

Variance-

to-Mean 

Ratio 

(VMR) 

Jj (CI) 

Season: Summer 15.9 5.6 1332.1 69 11 0.0089 0.96
2,3,4*** 

4.185 42.210 (18.9 – 

101.8) 
 Autumn 12.6 2.2 198.3 167 21 0.0187 0.95

3,4*** 
6.695 40.372 (18.1 – 82.2)

1 

 Winter 13.8 5.1 575.3 167 23 0.0390 0.94 3.917 22.140 (11.9 – 

47.2)
12,*** 

 Spring 15.0 3.9 257.0 113 17 0.0506 0.94 4.089 16.701 (6.8 – 42.7)
 

1,2***
 

Region: Wales 17.4 4.5 702.8 144 25 0.0224 0.94
3*** 

4.341 33.931 (14.1 – 71.2) 

 Midlands 16.2 4.1 365.9 37 6 0.0199
1,3.

 0.94
a 

4.158 20.860 (7.2 – 

39.6)
1*** 

 Southwest 

England 

34.0 11.5 1194.5 106 36 0.1019 0.89 2.903 8.9052 (4.6 – 

16.2)
1,2***

 

Age Adults 17.5 5.6 780.3 285 50 0.0377 0.96 3.846 24.220 (14.5 – 52.0)
 

 Sub-adults 10.6 2.1 122.1 207 22 0.0307 0.95 6.615 28.077 (14.1 – 

65.1)
**

 

Sex Females 12.5 4.5 745.5 232 29 0.0225 0.96
***

 4.423 37.144 (16.1 – 71.6) 
 Males 15.1 3.5 269.9 284 43 0.0433 0.95 4.437 21.323 (12.3 – 

43.7)
*** 

Conditi

on 

Poor condition 13.0 1.7 60.2 192 25 0.0415 0.96
***

 8.122 21.370 (11.3 – 46.8) 

 Good condition 14.5 5.3 729.3 324 47 0.0358
*
 0.95 3.949 25.644 (14.7 – 

43.1)
*** 
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Total population 13.9 3.9  516 72    
 

Significance of statistical tests represented by 
. 
p < 0.1, * p<0.05, **p<0.01,*** p<0.001. For factors with more than 2 sub-groups, numbers are 

used to indicate the sub-group that differs from the current comparison (e.g. significant difference for Jj between summer and autumn 

populations p < 0.1, summer and winter p < 0.001). a Sample size too small for comparison.  
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Table 6.2 Comparison of the degree of aggregation across populations using Taylor’s Power 

Law where appropriate and where necessary the non-parametric 2-sample Kolmogorov-

Smirnov test is used to test whether two samples are drawn from the same distribution 

Factor  Sub-

population 

Taylor’s Power 

Law b (CI) 

a Statistical difference 

Season: Summer 

Spring 

Autumn  

Winter 

0.272 (0 – 3.17) 

0.093 (0 – 2.40) 

0.017 (0 – 0.00) 

0.035 (0 – 0.00) 

0.037 (0 – 0.52) 

0.046 (0 – 1.10) 

0.001 (0 – 0.00) 

0.020 (0 – 0.00) 

F = 7.58, df = 3, p < 0.001 

Summer vs winter t = 2.586, 

p < 0.01 

Summer vs spring t = 2.174, 

p < 0.05  

 

Region: Southwest 

Wales 

Midlands* 

1.972 (1.69 – 2.23) 

0.031 (0 – 0.00) 

0.051 (0 – 0.00) 

1.955 (1.27 – 2.72) 

0.003 (0 – 0.00) 

0.000 (0 – 0.00)  

F = 1340, df = 2, p < 0.001 

Southwest vs Wales p < 

0.001 

Southwest vs Midlands p < 

0.001 

 

Age: Adults 

Sub-adults 

0.003 (0 – 0.00) 

0.004 (0 – 0.00) 

0.000 (0 – 0.00) 

0.000 (0 – 0.00) 

Non-parametric K-S test:  

D = 0.070, p = 0.605 

 

Sex:    Females 

Males 

0.050 (0 – 0.00) 

0.023 (0 – 0.00) 

0.009 (0 – 0) 

0.007 (0 – 0) 

Non-parametric K-S test:  

D = 0.026, p = 0.999 

 

Conditio

n: 

Good 

Poor 

0.273 (0 – 2.82) 

0.119 (0 – 3.39) 

0.104 (0 – 1.22) 

0.002 (0 – 0.00) 

F = 21.85, df = 1, p < 0.001 

 *The Midlands region n = 37, therefore the parasite counts was reduced to 25 for this 

population 

 

 

Using the D index analysis, parasites were significantly more aggregated during the summer (D 

= 0.96) than during other seasons (GLM: χ
 2

3,83 = 9.765, p < 0.001) whilst parasites were less 

aggregated across the otter population in winter (D = 0.94) and spring (D = 0.94) than during 

autumn (D = 0.95) (GLM: autumn vs. winter χ
 2

3,83 = 4.803, p < 0.001; autumn vs. spring 

chi
2

3,83 = 7.184, p < 0.001). Only 6 otters out of 46 were infected in the Midlands region (see 

Table 6.1) preventing detailed analysis of any patterns that might arise between this region 

and others. Parasites in otters from the Southwest were, however, less aggregated than those 

in otters from Wales (GLM: χ
 2

2,62 = 1.404, p < 0.001). There were no differences between 

host age classes (GLM: χ
 2

1,41 = 0.798, p = 0.425) but parasites were more aggregated in 

female otters than males (GLM: χ
 2

1,41 = 7.529, p < 0.001) and more aggregated in poor 

condition otters than those in good condition (GLM: χ
 2

1,41 = 3.803, p < 0.001).  

The Jj index identified significant differences among all abiotic and biotic factors. Parasites in 

otters from summer (Jj = 42.2; CI = 18.9 – 101.8) and autumn (Jj = 40.4; CI = 18.1 – 82.2) 
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were more aggregated than those in winter (Jj = 22.1; CI = 11.9 – 47.2) and spring (Jj = 16.7; 

CI = 6.8 – 42.7). The confidence intervals overlap least within the regional factor, indicating 

that parasites in otters from the Southwest (Jj = 8.9; CI = 4.6 – 16.2) were distributed more 

evenly among the host population than those in either Wales (Jj = 33.9; CI = 14.1 – 71.2) or 

the Midlands (Jj = 20.9; CI = 7.2 – 39.6) (Figure 6.1). Parasite aggregation was greater in 

sub-adults (Jj = 24.2; CI = 14.5 – 52.0), female otters (Jj = 37.1; CI = 16.1 – 71.6) and those 

in good condition (Jj = 25.6; CI = 14.7 – 43.1) than adults (Jj = 24.2; CI = 14.5 – 52.0), male 

otters (Jj = 21.3; CI = 12.3 – 43.7) or those in poor condition (Jj = 21.4; CI = 11.3 – 46.8) 

where a higher Jj value is indicative of greater aggregation among the host population (Table 

6.1). 

In summary, 3 out of 4 measures of aggregation found significant differences between the 

seasons; parasites aggregated in fewer hosts in summer (k = 0.008, D = 0.96, Jj = 42.210, 

Table 6.1) than in spring. Only Taylor’s Power Law indicated aggregation was strongest in 

Autumn (Table 6.1). For all measures of aggregation, parasites in otters were more 

aggregated in Wales (k = 0.025, Taylor’s Power Law b = 0.031, D = 0.94, Jj = 33.931) and 

the Midlands (k = 0.016, Taylor’s Power Law b = 0.051, D = 0.94, Jj = 20.860) than in the 

Southwest  populations (k = 0.097, Taylor’s Power Law b = 1.972, D = 0.89, Jj = 8.905). The 

aggregation indices were similar for the host ages and sexes, all indicating that these factors 

do not have a significant impact on parasite aggregation (Tables 6.1 and 6.2).  
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Figure 6.1 Comparison of the Boulinier et al. (1996)’s Jj measure of parasite aggregation for the 100 simulated populations parameterised on the 

mean, sample size and corrected moment estimate k for each sample respectively. A higher Jj indicates greater aggregation.   
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6.4.3 Parasite fecundity 

Mean intensity for the 35 sampled hosts included in the fecundity analysis was 48.3 (range = 

1-302, SD = 72.4). Fecundity ranged from 351 to 3391 eggs with a mean = 1435 (SD = 

791.4) for N = 255 parasites. Initial analyses to examine whether parasite size is associated 

with parasite fecundity revealed a positive relationship between parasite size (parasite length 

and width) and the number of eggs produced (GLM of parasite length and width fitted to egg 

count for F115,119 = 44.77, p < 0.005) indicating larger parasites carry more eggs. Parasite 

fecundity, parasite length or width were not associated with season (ANOVA, p > 0.1) or 

host factors (age, sex and condition) indicating variation among these abiotic and biotic 

factors does not explain any observed differences in fecundity. Equally, mean parasite 

intensity per host did not correlate with mean parasite fecundity per host (LM: F35 = 0.98, p = 

0.329) indicating there was no positive density dependent effect acting on parasite fecundity. 

Higher egg counts were associated with spring (mean egg count per parasite, 1627, SE 

±154.2) and summer (1852, ±91.5) with lower counts in autumn (1422, ±80.6) and winter 

(1005, ±163.6), but the fecundity of parasites was only, statistically, significantly higher in 

summer compared to winter (GLM: t31 = 2.091, p < 0.05) (Figure 6.2) indicating individuals 

are potentially most infectious during summer. There was no statistical relationship between 

mean egg counts and host age, sex, or condition, or the intensity of the parasitic infection 

(GLM: p > 0.1).  
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Figure 6.2 Differences in Pseudamphistomum truncatum fecundity with season; 

significant difference highlighted between summer and winter. 

 

6.5 Discussion 

Identifying the abiotic and biotic factors that are associated with heavily infected hosts 

and/or highly fecund parasites could have profound implications for treatment strategies; 

a particularly important objective considering increasing anthelmintic resistance 

(Laurenson et al. 2013). Such knowledge of a host-parasite system could help to prolong 

the efficacy of drug treatments by ensuring a suitable percentage of parasites are 

eradicated whilst avoiding the need to blanket treat a host population. In the current 

study, parasite abundance, aggregation and fecundity were considered together, within a 

single system, with the aim of identifying key factors associated with the most infected 

hosts and those with the greatest transmission potential. Within the current helminth-otter 

system, biotic factors influenced parasite abundance such that adults and otters in good 

p < 0.05 (between 

summer and winter 

only) 
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body condition had higher mean worm abundance than sub-adults or poor conditioned 

otters. Conversely, both abiotic and, to a lesser extent, biotic factors explained 

aggregation and fecundity differences such that Pseudamphistomum truncatum worms 

were most highly aggregated in summer and female hosts, and worms produced and/or 

stored significantly more eggs during summer. There were significant regional 

differences in parasite aggregation with infections tending to be aggregated most strongly 

in otters from Wales and the Midlands and less strongly in otters from the Southwest. 

The different aggregation indices all highlighted seasonal and regional differences but the 

Boulinier’s J metric was most sensitive and indicated differences among all factors 

examined here. The approach that was adopted in the current study, to assess parasite 

aggregation by examining the congruence between multiple measures, is robust because 

this allows much greater confidence in any patterns observed. 

Differences in parasite aggregation have been observed previously between native and 

non-native hosts (Hodasi 1969), different causes of host death (Hudson et al. 1992), 

parasite body sizes (Poulin and Morand 2000), host body sizes (Poulin 2013), and 

seasons (Dronen 1978; Newey et al. 2005). Here, across the four different methods used 

to quantify parasite aggregation in the host population, the abiotic factors season and 

region had the greatest influence on the degree of parasite aggregation (Table 1). Three 

out of 4 measures of aggregation (k-parameter estimates, Index of Discrepancy D and J) 

found significant differences between the seasons indicating parasites aggregated in 

fewer hosts in the summer and were more over-dispersed in spring. Equally, for all 

measures of aggregation, parasites in otters from Wales and the Midlands were more 

aggregated than those in the Southwest otter populations.  

In the current study, P. truncatum worms were most strongly aggregated across hosts in 

summer. Seasonal patterns in parasite aggregation have also been observed for 

Trichostrongylus retortaeformis in mountain hares (Newey et al. 2005). This helminth-

lagomorph system exhibited increased parasite aggregation in winter, which was 

attributed to reduced parasite transmission and infection across winter months. The P. 

truncatum life cycle is more complex than that of T. retortaeformis because the former 

requires intermediate hosts. Currently, it is not known whether there is a peak season 

during which the majority of otters become infected because of the probable long life 

span of P. truncatum and opportunistic sampling of otters (road-kills). Understanding 

that parasites are most tightly aggregated in summer and over-dispersed during winter 
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and spring could indicate that blanket treatment strategies would impact more infected 

individuals if applied during winter, whilst targeted treatment strategies would eradicate 

higher proportions of the parasite population if applied successfully during summer.  

In the current system, parasite aggregation differences were observed between regions of 

the UK where parasites were present at comparable levels (Midlands, Southwest and 

Wales Regions) so there is heterogeneity in host-parasite populations across the UK and 

factors that are driving aggregation within a region must act to different degrees. The 

regional differences observed may relate to host exposure; the probability of 

encountering a parasite, especially given that this parasite infects intermediate hosts 

which may have spatially heterogeneous distributions themselves. Further, the 

transmission route of infections has been shown to contribute to parasite aggregation 

patterns among regions (see Shaw and Dobson 1995) and could be important within the 

otter population if certain otters were consuming infected fish preferentially. The 

distribution of the first intermediate host (snails), will potentially create spatially distinct 

patterns of parasite aggregation among the second intermediate hosts (fish); patterns that 

may ultimately pass on to the definitive otter hosts. Spatial aggregation in helminths of 

otters may be enhanced by host-level density-dependent processes e.g. some 

endoparasites are limited by space within the host (Shaw and Dobson 1995). The 

observed regional differences also indicate that although treatment strategies can be 

applied to certain individuals during specified seasons, the most successful approach 

might differ for different geographic regions. 

The aggregation indices were similar among host age, sex and condition classes 

indicating that the examined biotic factors are less important than abiotic factors in 

determining differences in the degree of P. truncatum aggregation in otters. However, 

both the Index of Discrepancy (D) and Boulinier’s J identified differences (99% 

confidence level) in aggregation between the sexes suggesting aggregation was stronger 

in female otters compared to males. There are subtle differences in the ecology of otters 

between the sexes that may account for greater aggregation among females. From a 

behavioural perspective, the larger male otters tend to have larger geographic ranges so 

males have a greater exposure risk than more locally restricted females. However, 

parasites tend to have patchy distributions geographically so that females are only likely 

to become infected if resident at a parasite-rich location. As a result, across the 

population, fewer females will be infected but those that are infected may harbour 
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heavier infections perhaps resulting in the observed, slightly higher, parasite aggregation 

in females. Keymer and Anderson (1979) demonstrated that within an arena with uniform 

distribution of infective stages, naïve beetles became infected to different degrees 

possibly related to variation in host behaviour and/or immunity. It is very likely that host 

behaviour and immunity differences, as well as host and parasite genetics, also influence  

trematode aggregation across the otter populations. 

Host age and condition (biotic factors), had a greater impact on parasite abundance than 

the abiotic factors examined (season and region) although host sex was not important. 

The predominantly road-killed otters used in the current study are typically aged between 

1-2 years old (Sherrard-Smith and Chadwick 2010) and it is likely that the youngest and 

oldest proportion of the population may be under-represented. Older animals may be 

particularly important for parasite studies where infections are accumulated with age, 

such as the trophically transmitted trematodes considered in the current study. 

Accordingly, higher mean parasite counts were observed in adult otters compared to sub 

adults. If heavily infected older otters are under-represented then parasite aggregation 

may also be underestimated, reducing the degree of aggregation observed, and perhaps 

contributing to the observed absence of a difference between parasite aggregation in sub-

adults and adults. This under-representation of older otters is a recognised limitation of 

the current study, and small sample sizes have been highlighted as an issue for previous 

research into parasite aggregation (see Wilson et al. 2001). There were no differences in 

aggregation between host age-classes in the current study. System-specific age-group 

differences have been observed in parasite aggregation (Quinnell et al. 1995) but are not 

always present (see Henricson 1977, Wilson et al. 2001, Heylen and Matthysen 2011). 

The parasite Hypoderma bovis has been previously observed to be most aggregated in 

younger cohorts of cattle (see Breyev and Minar 1976). This warble fly actively searches 

for its host and so differences in the attractiveness of various age-classes may dictate 

parasite aggregation. The fact that sub-adult and adult otters in the current system 

probably acquire parasites via the same transmission route may explain the lack of a 

difference in parasite aggregation patterns between age-classes.  

In conclusion, the current study indicates that differences in parasite abundance are 

explained by biotic factors (host age class, sex and condition) whilst parasite aggregation 

patterns and parasite fecundity are explained by abiotic factors (season and region). 

Seasonality plays a fundamental role in the life cycle of many parasites such that peak 
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egg production of adult helminths coincides with ecologically relevant events, but these 

patterns are predominantly recorded through faecal egg counts (e.g. Madhavi 1979, Rolfe 

et al. 1991). In P. truncatum, although otters are present throughout the year, the 

observed summer peak in fecundity is synchronised with high abundance of the snail 

hosts (Bithynia species, Dunn 1978, Lam and Calow 1989; Radix balthica, unpublished 

data). The approach applied here (coupling parasite abundance with parasite aggregation 

patterns and parasite fecundity) is advantageous because: i) there is a capacity to 

understand underlying mechanisms controlling both those host individuals that are most 

heavily infected together with those that are most fecund and; ii) there are implications 

for disease risk assessment, treatment and disease management through recognition of 

key traits that are synonymous with the most heavily infected and highly infectious hosts 

allowing targeted control. Ultimately, this approach contributes to an understanding of 

the patterns that define parasite populations by highlighting key factors associated with 

parasite abundance, aggregation and fecundity in this helminth-otter system.  
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7. New intermediate hosts identified for two trematodes established in otter (Lutra 

lutra) populations in the UK 

 

 

7.1 Abstract  

An understanding of parasite life cycles is essential for the prevention, control and 

management of diseases, but is particularly challenging for cryptic organisms with 

complex life cycles. We report here novel hosts for Pseudamphistomum truncatum and 

Metorchis albidus (Trematoda: Opisthorchiidae), identified recently in otter Lutra lutra 

populations in the UK. Morphological identification of adult worms is straightforward 

but earlier life stages are more cryptic, demanding both morphological and molecular 

approaches. The internal transcribed spacer sub-unit 2 (ITS2) ribosomal DNA was used 

to identify P. truncatum and M. albidus in their intermediate hosts. To our knowledge 

this is the first report of Radix balthica (Gastropoda, Lymnaeidae) as an intermediate host 

for P. truncatum. Metacercariae of P. truncatum, identified molecularly, were recovered 

from roach Rutilus rutilus and M. albidus metacercariae were detected in roach, rudd 

Scardinius erythrophthalmus and chub Leuciscus cephalus for the first time in UK fish. 

Roach and rudd are known hosts for these opisthorchiids in mainland Europe, but these 

are unique records for chub. We confirm the presence of adult P. truncatum in mink 

Mustela vison, an alternative definitive host. This work documents the complete life 

cycle of P. truncatum and reports novel intermediate hosts for M. albidus in UK wildlife. 

The confirmation of hosts at all life stages contributes to the wider assessment of these 

parasites in host populations.  
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7.2 Introduction 

Parasites play an integral role in ecosystem functioning (Poulin 1999, Torchin et al. 2002, 

Poulin and Frederic 2008, Hatcher et al. 2012). There is, however, incomplete knowledge 

on existing parasitic species, their geographic and host ranges. This arises in part because 

of the cryptic nature of many parasitic species and, specifically, the challenge of 

detection and identification of larval stages (Poulin and Morand 2000, Cribb and Bray 

2011). Yet larval digeneans contribute hugely to the total biomass of the aquatic 

environment (Lafferty et al. 2006) and can be important indicators of biodiversity 

(Hechinger et al. 2007).  

 

Fish-borne trematodes are renowned in the eastern parts of the world as human zoonoses 

(Chai et al. 2005). The World Health Organisation estimates about 18 million people are 

infected globally with some sort of fish-borne trematode (WHO 2004) predominantly 

from the Families Heterophyidae and Echinostomatidae (Chai and Lee 1991, Rim et al. 

1994, Sohn et al. 2009). Interest in trematodes has been reignited recently because of the 

rise in trematodiasis related zoonotic diseases in more western parts of the World 

(Robinson and Dalton 2009, Sripa et al. 2010). Fish can accumulate many different 

metacercariae (Paperna & Dzikowski 2006, Sohn et al. 2009), with related consequences 

for healthy aquacultural practice (Britton et al. 2011), such that comprehensive sampling 

would be required to fully comprehend trematode diversity (McVicar 1997). In Ireland, 

for example, 89% of roach Rutilus rutilus were infected with metacercariae of the 

opisthorchiid Pseudamphistomum truncatum (see Hawkins et al. 2010). Knowing which 

intermediate hosts are used by a particular trematode species is often a missing link in 

trematode life cycles. This limits our understanding of the role parasites play in the 

ecosystem (Lafferty et al. 2008). The non-fastidious use of gastropod and fish hosts by 

the sporocyst and metacercarial stages of many trematodes means comprehensive 

documentation of potential host species is rare. Yet the identification of many introduced, 

non-native parasites has been reported recently following metacercarial surveys 

(Williams et al. in press). Some species can have pronounced effects on the health and 

fitness of wild fish populations (Mitchell et al. 2005, Longshaw et al. 2010) and many are 

extremely small, located in cryptic sites within their host, heavily encysted and lack 

reproductive organs that serve as key identifying features. Molecular technologies can, 

however, support and confirm morphological identification (see Jousson et al. 1999, 
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Dzikowski et al. 2004, Pina et al. 2009, Skov et al. 2008, Marchiori et al. 2010, Al-

Kandari et al. 2011, Born-Torrijos et al. 2012). 

 

Trematodes from the Opisthorchiidae family use three hosts to complete their life cycle. 

The first intermediate hosts are freshwater snails from which free-living cercariae are 

released. The cercariae attach to cyprinid fish where encystment ensues until a mammal 

predates the infected fish (Dunn 1978). Excystation occurs within the mammal and about 

4 weeks later, the parasite matures with the capacity for continuous release of 

encapsulated embryos (see Sukhdeo and Sukhdeo 2004). These eggs pass out with the 

mammals’ faeces and the life cycle is completed once the egg capsule is ingested and a 

miracidia hatches within a snail. Trematode parasites can overcome seasonal fluctuations 

in abundance of their intermediate host through long-life expectancy in all hosts and 

continual egg production by the adult trematodes in the definitive host (Over 1982).  

 

In the UK, two Opisthorchiidae parasites, Pseudamphistomum truncatum and Metorchis 

albidus have been identified recently in otters, Lutra lutra and, rarely, in American mink 

Mustela vison (see Simpson et al. 2005, Sherrard-Smith et al. 2009). There is some 

evidence that these parasites cause biliary damage to otters Lutra lutra (see Simpson et 

al. 2009) but little is known about the hosts used by early life stages of either digenean. 

The aim of this study was, therefore, to identify all life stage hosts of both digeneans in 

UK fauna.   

 

7.3 Materials and Methods 

7.3.1 The first intermediate host 

Opportunistic collections and examination of freshwater snails from South Wales streams 

were used to identify the first intermediate host species of Pseudamphistomum truncatum 

and Metorchis albidus. A sample of up to 20 snails per species present were collected 

from 35 sites within the Usk and the Wye catchments (5 streams with 6-8 collection sites 

per stream separated by 500m; Figure 7.1). Collections were made once during each 

season in 2010 (February (winter), May (spring), August (summer) and November 

(autumn)). Sites were chosen for their accessibility and habitat suitability for freshwater 

snails.  
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Figure 7.1 Map of the rivers sampled during this study, South Wales region. Locations 

of sampling spots are marked with a cross, the cercaria matching Pseudamphistomum 

truncatum is marked (circle). 

 

Only larger snails are reported to carry significant digenean burdens (Degueurce et al. 

1999) since the prevalence of most trematode species (e.g. Fasciola, see Deguerce et al. 

1999; or Diplostomum, see Voutilainin et al. 2009) increases with snail size (Karvonen et 

al. 2006) and therefore where possible, larger snails were chosen for examination. Only 4 

species (Radix balthica Lymnaeidae, Potamopyrgus antipodarum Hydrobiidae, Physa 

fontinalis Physidae and the limpet Ancylus fluviatilis, Planorbidae) were recovered at the 

collection sites but these were common. Snails were held in containers for 7 days at 9ºC 
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during which daily exposure to light was followed by examination of the water column 

for cercariae. After 7 days snails were exposed individually to heat (c.25ºC) and bright 

light for 4 hours to encourage cercarial shedding. Any cercariae released were collected 

and stored in 90% molecular grade ethanol for subsequent molecular analysis.  

 

7.3.2 The second intermediate hosts 

Fish health checks and disease investigations have been conducted by the Environment 

Agency (EA) and its predecessor (National Rivers Authority) since the early 1970’s. 

Over this time, many thousands of fish have been examined throughout England and 

Wales as part of the EA’s remit to maintain, improve and develop freshwater fisheries. 

This includes health checks, mortality investigations, non-native fish species monitoring 

and reports of new parasite findings and disease outbreaks. Between 2007 and 2012, 895 

fish populations were submitted for fish health examination at EA Brampton. Each 

independent survey screened a sample of approximately 30 fish from each population, 

totally > 20,000 specimens representing 32 species over 5 years. The majority of samples 

submitted for examination were from lakes, reservoirs and ponds (estimated at 

approximately 90%); however, riverine samples were also examined annually. Fish 

stocking activities placed a bias on the location of waters sampled each year (see Table 

7.1) and surveys include salmonids, particularly those used for sport, as well as cyprinids. 

Notably, the proportion of cyprinids sampled from each region varies greatly; for 

example, very few cyprinids were screened from the Southwest England, a hotspot for 

otter infections with P. truncatum (see Sherrard-Smith et al. 2009). 

Table 7.1 Locations in England and Wales where fish (32 species) were sampled for the 

current study (between 2007 and 2012). Environment Agency Regions are defined for 

England and Wales using ecologically significant river Catchment boundaries (e.g. 

Sherrard-Smith et al. 2009). The proportion of fish examined for parasites, including 

digenean metacercariae, form each area is shown. 

 

Environment Agency 

Region 

Proportion of fish 

samples examined (895 

fish populations) 

Anglian  22.1% (c. 5900 fish) 

Midlands 24.3% (c. 6500 fish) 

North East & Yorkshire 8.8% (c. 2350 fish) 

North West  20.5% (c. 5500 fish) 

South East /Thames 8.7% (c. 2300 fish) 

South West  4.8% (c. 1250 fish) 

Southern  7.4% (c. 1900 fish) 

Wales  3.4% (c. 900 fish) 
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Current protocols for routine health examinations of fish represent a compromise 

between time, cost and detail. Therefore, parasitological examinations involved both low 

and high power examinations of the skin, fins, eyes, heart, gills, lateral line, musculature, 

kidney, liver, spleen, intestinal tract, gall bladder and nares. Digenean cysts were initially 

detected using candling, the examination of fish tissues over a light box, dissected out 

and then stained appropriately for morphological identification where possible (see 

Bruno et al. 2006). Encysted digeneans were either mechanically removed with needles, 

or excysted through chemical treatments to replicate the intestinal tract of the definitive 

host (Fried 1994).  

 

Two particular parasites (type 1 and 2) raised difficulties during morphological 

examination allowing only tentative identification. The first record of the Type 1 cyst 

occurred in September 2007 from a roach in Cambridgeshire, but species identification 

was dependent upon molecular confirmation. Type 2 was a relatively small (100-120µm 

dia.) and thick, 3-layered cyst. These cysts, deposited on the fish in clumps, were difficult 

to excyst which limited the retrieval of good quality specimens for morphological study. 

The type 2 cysts were also cryptic with other digeneans (particularly Bucephalus 

polymorphus and Paracoenogonimus ovatus) and mixed infections within the fins were 

common. To investigate whether type 1 and type 2 metacercariae were P. truncatum and 

M. albidus, individual cysts of each morpho-type were fixed in ethanol for subsequent 

molecular analysis.   

 

7.3.3 Molecular identification of larvae 

A total of 15 cercariae from 10 different snails and 5 isolated metacercariae from roach 

(type 1), rudd (two type 1 and one type 2) and tench (type 1) were identified to species 

level using the internal transcribed spacer sub-unit 2 (ITS2) region of ribosomal DNA 

(see Sherrard-Smith et al. submitted). In brief, DNA was extracted using a modification 

of the methodology described in Faria et al. (2011) whereby each specimen was exposed 

to 15µl TE containing 0.45% Tween 20 and 2µg Proteinase K for 3 h at 55°C and then 

95°C for 10 minutes to denature the enzyme. For both cercariae and metacercariae 

amplifications, total PCR reaction volume was 10µl and comprised of 2µl of the DNA 

extract mixed with 10x PCR buffer II (Applied Biosystems), 50mM MgCl (Applied 

Biosystems), 2.5mM of each dNTP, 10pmol/µl of each primer (ITS2 rDNA: Ophet F1 

5’-CTCGGCTCGTGTGTCGATGA-3’ and Ophet R1 5’-
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GCATGCARTTCAGCGGGTA-3’ following Müller et al. 2007) and 5U Taq DNA 

polymerase (Invitrogen). The PCR ran at 95°C for 5 min, followed by 35 cycles of 94°C 

for 30 sec, 53°C for 1 min and 72°C for 1 min, with a final extension of 72°C for 10 min 

(GenAmp PCR System 9700, Applied Biosystems). The PCR products were then 

sequenced in both directions using the same primers (Macrogen Inc.). Consensus 

sequences generated in Sequencher
TM

 (version 4.9) of 388 bp and 403 bp matched 

identical GenBank sequences P. truncatum (Accession number JF710315) and M. 

albidus (JF710316), respectively.  

 

7.3.4 Alternative definitive host 

In the UK, the American mink is invasive and is trapped to control population numbers 

(Bonesi and Palazon 2007). Trapped mink from Somerset (N = 21) and the Severn 

Catchment (N = 29) provided samples for the current study. To confirm that mink are a 

second viable host (see Simpson et al. 2005), mink gall bladders removed during post-

mortem were examined for trematodes microscopically and identified using Yamaguti 

(1971).  

 

7.4 Results  

Here, we record for the first time the complete life cycle of Pseudamphistomum 

truncatum in the UK and in doing so identify new intermediate hosts for this digenean. 

Further, we document the first record of this parasite in British fish. In addition, novel 

second intermediate hosts for Metorchis albidus are reported. 

 

7.4.1 The first intermediate hosts: gastropods 

Of the four freshwater snail species screened in the current study, the gastropod Radix 

balthica (total number of R. balthica across all sites = 122) was the only species found 

shedding cercariae (comprising 3 trematode species). Only a single R. balthica specimen 

was infected with P. truncatum cercariae (British NGR: SO122297) identified by ITS2 

sequencing. The host snail was collected in May 2010 from the River Llynfi (see Figure 

7.1). This particular snail was co-infected with a second type of cercariae, the ITS2 

sequence of which most closely resembled species from the genus Plagiorchis (2% 

sequence difference to GenBank Accession Number AF151952.1 P. elegans, namely 

adenine deletions at positions 5 and 22, transition from cytosine to thymine at 154, 

guanine to adenine at 157, an adenine insertion at position 161, transition of guanine to 
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adenine at 170 and a thymine insertion at position 301). Analysis of the ITS2 isolated an 

identical sequence (Plagiorchis sp.) from four R. balthica individuals from the River 

Honddu (SO009397) in May 2010. A third cercarial type was isolated from a different R. 

balthica individual, collected from the River Honddu (British NGR: SO009397) in May 

2010 and this was most similar to the Diplostomum genus (2% sequence difference to 

Diplostomum baeri GenBank Accession Number AY123042.1, sequence differences are 

adenine deletions at position 5 and 22, transitions of adenine to guanine at position 162, 

guanine to adenine at 239 and transversions of guanine to thymine at 359, and adenine to 

cytosine at 374). 

 

Potamopyrgus antipodarum (N=68), the only invasive snail species encountered, and 

Physa fontinalis (14) did not release any cercariae. The limpet Ancylus fluviatilis (N = 

250) was by far the most common species but no cercariae were recovered from this 

gastropod. We did not isolate any M. albidus cercariae during the current study. 

 

7.4.2 The second intermediate hosts: cyprinid fish 

Molecular analysis revealed the ‘type 1’ metacercariae to be Pseudamphistomum 

truncatum. Some uncertainty surrounds the exact morphological characteristics of this 

parasite and work is underway to confirm this from fresh material and the examination of 

paracarmin stained specimens. As such, the following descriptions are generalised and 

must be viewed with some caution until identification through both molecular and 

morphological approaches have been resolved.   

 

Suspected larval stages of P. truncatum did not appear to be encysted within the host 

tissues. It is possible that an extremely thin cyst wall was present. Parasites were easily 

removed by applying light pressure to host tissues using forceps or a scalpel, allowing 

individual and visually active worms to emerge from the surrounding fish tissue. The 

specimens measured approximately 0.7-0.9 mm in length and possessed a large intestinal 

caecum (Figure 7.2). Due to the difficulties of identifying larval stages of digeneans, 

molecular methods are currently the only way to identify these cryptic cysts. 
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Figure 7.2 Life stages of Opisthorchiidae parasites from UK hosts; Images of: A, 

suspected Pseudamphistomum truncatum metacercaria (cyst); B, suspected P. truncatum 

excysted from roach Rutilus rutilus; C, Metorchis albidus cyst from rudd Scardinius 

erythrophthalmus; D, excysted M. albidus metacercaria. 

 

 

The geographical locations where P. truncatum-like cysts were recorded between 2007 

and 2012, included Norfolk (Number of examined fish = 10, prevalence 30%), Cheshire 

(N = 17, prevalence 5.9%), Cambridgeshire (N = 4, prevalence 25%) and Oxfordshire (N 

= 31, prevalence 6.5% see Table 7.2). In each case, low intensities were recorded ranging 

from 1-8 parasites per infected fish (roach and tench, Figure 7.3). Other fish species 

examined in these localities included Bream (Abramis brama), Bitterling (Rhodeus 

amarus), Rudd (Scardinus erythropthalmus) and Bleak (Alburnus alburnus) but no P. 

truncatum-like cysts were found.  
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Figure 7.3 The current distribution of fauna identified as hosts for either 

Pseudamphistomum truncatum or Metorchis albidus: i) Radix balthica; ii) Bithynia 

tentaculata; iii) Rutilus rutilus roach; iv) Scardinius erythrophthalmus rudd; v) Lutra 

lutra otter and; vi) Mustela vison American mink as defined and provided by the National 

Biodiversity Network (NBN) Gateway, copyright © Crown Copyright. All rights 

reserved NERC 100017897 2004. 

 

Molecular analysis identified the ‘type 2’ cysts as M. albidus from roach and chub 

(Leuciscus cepahlus) in Leicestershire (N = 20, prevalence 10%), Wessex (N = 30, 

prevalence 3%) and Yorkshire (N = 30, prevalence 15%, see Table 7.2). In contrast to the 

P. truncatum-like metacercariae, M. albidus has thick, multi-layered cysts (Figures 7.2). 

However, this cyst characteristic and positioning of the parasites’ suckers (oral and 

ventral suckers of equal size, the latter positioned in the posterior half of the parasite; 

Figure 7.2) are not reliable or consistent features to morphologically distinguish the 

species. Specimens of the metacercarial larval stage of both parasites have been 

deposited in the Natural History Museum, London (Accession Numbers pending). For 
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both P. truncatum and M. albidus, the morphology of metacercariae bears no 

resemblance to that of the adult worms (see Scholz 2008). 

 

In all cases within England and Wales, P. truncatum has co-occurred with 

Hysteromorpha triloba. P. truncatum was also found as a concurrent infection with 

Bucephalus polymorphus, Rhipidocotyle campanula and the myxozoan parasite 

Myxobolus sp. (see Table 7.2). Overall, the trematodes comprised the greatest proportion 

of the parasites infecting the studied fish: 20 parasite taxa were recorded, of which 40% 

were trematodes, compared to 15% cestodes, 10% protozoa and rare cases of 

monogeneans and nematodes (see Table 7.2). 

 

7.4.3 The definitive hosts: piscivorous mammals 

In Somerset where mink are abundant (Figure 7.3), prevalence of P. truncatum in mink 

was high (33%, 7 in 21 hosts) and comparable to that in the more piscivorous otters from 

the Southwest region (47.6%, 20 in 42 hosts, Sherrard-Smith et al. unpublished). In the 

Severn Catchment prevalence of P. truncatum was much lower in mink (3.4%, 1 case in 

29) than that for otters (17.4%, 8 of 46, data from Sherrard-Smith et al. 2009). 

 

 

7.5 Discussion 

To our knowledge, this is the first time the intermediate hosts for Pseudamphistomum 

truncatum and Metorchis albidus have been detected within the UK. Specifically, this is 

the first report of R. balthica as a host species for P. truncatum, or any Opisthorchiidae 

trematode. Previously, Bithynia species were considered the host genus of both M. 

albidus (see Dunn 1978, Serbina and Iurlova 2002) and P. truncatum (see Dunn 1978, 

Skov et al. 2008). M. albidus is reported in Bithynia inflata and B. tentaculata 

(Prosobranchia, Bithyniidae) (Genov 1984) and Codiella troscheli (Bithyniidae) (Serbina 

and Iurlova 2002).  
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Table 7.2 Location, prevalence and co-infection details of suspected Pseudamphistomum truncatum and Metorchis albidus cysts found in 

freshwater fish from England over a 5 year period (2007-2012).  

 

Parasite Location Host species 

(N) 

Prevalence Host habitat Rang

e 

Co-infections 

Pseudamphistomum 

truncatum 

Norfolk Tench (10) 3/10 (30%) Gills & Muscle 1-8 Trematoda: Hysteromorpha triloba, 

Echinostomatidae  

Apicomplexa: Coccidians  

Cestoda: Paradilpis scolecina  

 Cheshire Roach (17) 1/17 (5.9%) Muscle 1 Trematoda: Echinostomatidae 

Arthropoda: Argulus foliaceus  

Protozoa: Ichthyobodo necator, Trichodinids 

 Cambridgeshir

e 

Roach (4) 1/4 (25%) Muscle 1 Trematoda: Paraceonogonimus sp., 

Rhipidocotyle sp., Diplostomum sp., Tylodelphys 

sp., Echinostomatidae, Posthodiplostomum 

cuticola 

Ciliophora: Trichodinids  

Cnidaria: Myxobolus sp. 

Monogenea: Dactylogyrus sp. 

Nematoda: Anguillicola crassus 

 Oxfordshire Roach (31) 2/31 (6.5%) Muscle 1-2 Trematoda: Hysteromorpha triloba, 

Echinostomatidae, Diplostomum sp., 

Bucephalidae,   

Cestoda: Ligula intestinalis,  

Monogenea: Dactylogyrus sp., Caryophyllaedes 

fennica 

Protozoa: Myxobolus sp., Dermocystidium sp. 

Metorchis albidus Leicestershire Rudd (20) 2/20 (10%) Fins 1-5 Multiple co-infections 

 Wessex Roach (30) 1/30 (3%) Fins NR Trematoda: Hysteromorpha triloba, 

Diplostomum sp. Monogenea: Dactylogyrus sp. 

Protozoa: Myxidium sp. 

 Yorkshire Chub (30) 5/30 (17%) Fins, Skin NR NR 
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&Muscle 

NR (not recorded). 
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There are approximately 33 species of freshwater snails and limpets in the River Usk and 

Wye and their associated tributaries (NBN Gateway Data: GA0003381425, 

GA0003381232, GA0003381361, GA0003381431, GA0003381342, available online). 

The four snails recovered during current sampling (Radix balthica, Potamopyrgus 

antipodarum, Physa fontinalis, Ancylus fluviatilis) are common to the South Wales 

tributaries. Cercariae, including those identified as P. truncatum, were recovered from 

only Radix balthica. In addition to P. truncatum, snails of this species were infected with 

a Plagiorchis sp. and Diplostomum sp. R. balthica is also host to other trematodes 

including Fasciola hepatica (see Caron et al. 2007) so is clearly an important host for 

digenean diversity.  

 

It was not possible to identify the Plagiorchis or Diplostomum specimens, recovered in 

the current study from R. balthica, to species level. Both parasites, however, were a 98% 

match with other species from their respective genera (GenBank: Blast search February 

2013). Within the Trematoda, an ITS2 sequence difference of 2% is almost always 

indicative of a distinct species (see Table 7.3, Morgan and Blair 1995; Nolan and Cribb 

2005). To date, ITS2 sequences of 5 Plagiorchis species are held in GenBank (P. 

elegans, P. koreanus, P. vespertilionis, P. muelleri and P. maculosus on 07 February 

2013). There are reports of P. koreanus (see Lord et al. 2012) and P. muris (see Rogan et 

al. 2007) in Britain. The only other type of cercariae recovered produced ITS2 sequences 

that most closely resembled those from the Diplostomum genus. Although there are 20 

molecularly characterised Diplostomum species in central Europe (Georgieva et al. 

2013), with a few specifically referenced within Britain (Diplostomum phoxini, D. 

spathaceum, D. gasterostei e.g. Dezfuli et al. 2007; Morley et al. 2005; Kennedy 2001 

respectively), only 7 Diplostomum species ITS2 sequences are recorded on GenBank (D. 

pseudospathaceum, D. spathaceum, D. mergi, D. baeri, D. huronense, D. indistinctum 

and D. mashonense, February 2013). Clearly, further species identification is required to 

document the extensive diversity of both genera comprehensively.  
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Table 7.3 Similarity of trematode ITS2 sequences across different species and genera: 2 - 10% differences between species from the same genus 

(for example, Diplostomum sp. and Plagiorchis sp.), 2 - >25% difference between species from different Genera (Pseudamphistomum truncatum 

and Metorchis albidus, Opisthorchiidae are comparatively close, 2% difference). 

 

 

Diplostom

um baeri 

Diplostomum 

pseudospathace

um 

Diplostomu

m 

spathaceum 

Metorchis 

albidus 

Plagiorchis 

elegans 

Plagiorchis 

maculosus 

Plagiorchis 

muelleri 

Plagiorchis 

vespertilion

is 

 

JX986857.

1 JX986853.1 JX986847.1 JF710316 JX522536.1 AF316152.1 AF151947.1 

AF151951.

1 

Diplostomum baeri                 

D. 

pseudospathaceum 

98% 

(868/889)               

D.spatheceum 

97% 

(864/891) 

99% 

(1028/1041)              

Metorchis albidus <75% <75% <75%           

Plagiorchis elegans <75% <75% <75% <75%         

P. maculosus <75% <75% <75% <75% 97% (745/765)       

P. muelleri <75% <75% <75% <75% 

90% 

(1060/1175) 94% (724/773)     

P. vespertilionis <75% <75% <75% <75% 

91% 

(1057/1167) 94% (728/774) 

97% 

(1229/1266)   

Pseudamphistomum 

truncatum <75% <75% <75% 

98% 

(381/388) 86% (263/307) 85% (263/309) 

85% 

(259/303) <75% 
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The discovery of Pseudamphistomum truncatum cysts on roach represent the first record 

of this parasite from any fish in the UK (see Kennedy 1976, Kirk 2000). Roach is an 

established host for P. truncatum in mainland Europe (Skov et al. 2008). Other fish 

species may also host this digenean in the UK as bream, rudd and bleak are also reported 

as intermediate hosts in mainland Europe (see Schuurmans 1931, Meneguz 2000). During 

the current study, it proved difficult to identify these cysts from morphological 

examinations alone. Even good quality, stained and mounted specimens of larval 

digenean parasites can be extremely difficult to identify with certainty. Consequently, 

current information of this parasite is restricted to confirmation from molecular 

approaches. The staining process required to confirm identification morphologically, 

deleteriously affects DNA and rendered molecular methods unusable. Therefore parallel 

confirmation of a single P. truncatum cyst, both molecularly and morphologically, is 

challenging. If the morphological results are accurate however; within England and 

Wales, low prevalence of P. truncatum on fish was observed across the four regions 

(Norfolk, Cheshire, Cambridgeshire and Oxfordshire) where the digenean was isolated 

and reflected the low prevalence of P. truncatum on definitive hosts in these locations (2 

out of 23 otters infected from Norfolk, 0/12 Cambridgeshire, 0/8 Oxfordshire, no otters 

from Cheshire; using data from Sherrard-Smith et al. 2009). We would predict much 

higher prevalence in hotspot areas (Somerset and South Wales) where definitive hosts are 

most heavily infected (see Simpson et al. 2005, Sherrard-Smith et al. 2009) particularly 

because high prevalence, 89%, has been recorded for P. truncatum in roach from hotspots 

in Ireland (Hawkins et al. 2010). The Irish study used a digest to isolate cysts from the 

fish instead of the dissection method used in the current study; the disadvantage of the 

former is that it is not possible to assess host habitat preferences for helminths. In the 

current study, P. truncatum cysts, so far recovered as isolated cysts in fish musculature, 

could have been missed during dissections because their, currently unknown, principle 

host habitat is not dissected during routine screening. Other digenean cysts such as those 

from the Bucephalidae family were common however and these are very similar in size 

and appearance indicating the dissection method is robust. Therefore, it is unlikely that P. 

truncatum cysts were overlooked from screened tissues (skin, fins, eyes, heart, gills, 

lateral line, musculature, kidney, liver, spleen, intestinal tract, gall bladder and nares). 

 

The current study is the first record of M. albidus metacercariae from fish hosts within the 

UK; the earliest record dating back to 2003. Here, the digenean was recovered from 
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cyprinids (rudd, roach and chub) during screening in England (Leicestershire, Wessex and 

Yorkshire). The prevalence of fish infections was low in all areas and, similarly to P. 

truncatum, this may reflect low prevalence of the parasite in definitive hosts in the same 

locations (0 out of 4 otters infected from Leicestershire, 2/116 Wessex, 3/39 Yorkshire; 

using data from Sherrard-Smith et al. 2009). To our knowledge, this study is the first to 

define rudd, roach and chub as specific hosts for M. albidus, although there are reports of 

either ‘freshwater fish’ or ‘cyprinids’ as a general host type (see Dunn 1978). The 

importance of both digenean infections (in light of the many other larval digeneans that 

already infect freshwater fish) is yet to be established.  

 

Neither P. truncatum nor M. albidus cysts were single species infections on the examined 

fish hosts demonstrating co-infection is the norm in British freshwater fish. Larval 

digenean infections dominated (40% of the parasite species present were trematodes) in 

the fish samples investigated. In addition, the P. truncatum infected R. balthica snail from 

the River Llynfi was co-infected with Plagiorchis species. Cort et al. (1937) concluded 

that co-infection of freshwater snails is generally random with respect to species 

assemblages but certain species occurred as co-infections less often than expected 

(including both Diplostomum flexicaudum and Plagiorchis muris) indicating some barrier 

to co-infection for these species at least. There is a suggestion that a dominance hierarchy 

acts on co-infection events for digeneans (Esch et al. 2001, Lim and Heyneman 1972, 

Wright 1973) and species complexes have been explained by both direct antagonism (e.g. 

Lim and Heyneman 1972, Yoshino 1975) and chance (random) events (e.g. Koie 1969, 

Rohde 1981). Yet in many cases, co-infections or interspecific competition has been 

deemed unimportant for digenean infra-community structure (see Fernandez and Esch 

1991, Curtis 1997, Esch et al. 2001). The comparatively high diversity and abundance of 

digeneans in UK freshwaters ratifies the general consensus that such parasites are a vital 

component of ecosystem functioning, ecosystem health and food web dynamics (e.g. 

Lafferty et al. 2006, 2008). 

 

For P. truncatum and M. albidus, we cannot comment on the spatial distribution of the 

larval stages of these parasites in Britain. As yet there is very little overlap where both 

intermediate and definitive hosts have been comprehensively screened from the same 

region. Southwest England would be ideal for such a study, where both digeneans are 

common in otters, but to date, fish-screening in this region has focused on salmonids. 
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Based on data from the otter population (Sherrard-Smith et al. 2009), there are hotspots of 

P. truncatum in Wessex, Dorset and South Wales but the parasite is present at very low 

prevalence across the remainder of the UK. Otter populations are currently increasing 

following crashes during the 1960s (Strachan and Jefferies 1996, Jones and Jones 2004, 

Crawford 2010). If low prevalence across much of Britain is a true reflection of the 

parasite distributions then increases may be anticipated with the recovery of the otter 

population. This would mirror the significant increase in abundance of the digenean 

Hysteromorpha sp. following the recovery of its definitive host (the cormorant, 

Phalacrocorax carbo) populations across the UK (Newson et al. 2007).  

 

The American mink, a second viable definitive host for both P. truncatum and M. albidus, 

were imported to the UK in 1929 and had established feral populations in Devon by the 

late 1950s (see Chanin and Linn 1980, Halliwell and MacDonald 1996). It is generally 

recognised that mink utilise a more terrestrial habitat in the UK to avoid competition with 

the larger otters (Bonesi et al. 2004) but the current study supports their status as 

piscivorous hosts for P. truncatum (see Simpson et al. 2005). Their presence and 

population expansion may contribute further to an increase of infections in fish. It is most 

likely that the mink has acquired infection since arriving in the UK. To our knowledge P. 

truncatum has not been reported in North America. There is, however, a report of M. 

albidus in dogs from California (Freeman and Ackert 1937) although both M. albidus and 

P. truncatum are now thought to be native to Britain (Chapter 5). 

 

Here, we show that R. balthica (a first intermediate host), rudd, tench, chub and roach 

(second intermediate hosts), and mink and otters (definitive hosts) are infected by P. 

truncatum and M. albidus. The host range indicates that there is potential for both P. 

truncatum and M. albidus populations to expand further across the UK. The establishment 

success of trematodes is generally accredited to their ability to maintain a presence in the 

environment through prolonged life stages within each host, rapid production of infective 

stages and dormant phases during periods that would be otherwise inhospitable to free 

living stages (see Price 1980). By contributing to the increased discovery of cryptic 

digenea (see Cribb and Bray 2011), the current study supports the evaluation of the vital 

interaction between digenean parasites and ecosystems (e.g. Lafferty et al. 2006, 2008). 
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8. Host population dynamics of Pseudamphistomum truncatum: high sensitivity of the 

second intermediate host 

 

8.1 Abstract 

The success of generalist parasites with complex life cycles may relate to the rapidity with 

which they are able to infect, and then be maintained by, novel hosts. Yet despite major 

ramification for disease transmission, the author does not know of any empirical data for 

helminths available on the proportion of parasite eggs that are successfully cycled through 

the system and this has a major impact on parasite abundance. The trematode, 

Pseudamphistomum truncatum (Opisthorchiida) was recently identified in the UK otter 

population. Aspects of P. truncatum’s life cycle are well understood but it is unknown 

how host dynamics affect this parasite’s life-history parameters. Here, a simple three host 

(snail, fish and mammal) population dynamic model for trematodes provides a first step 

towards identifying those parameters that have a large impact on potentially disease-

causing trematode systems. All models must be used with caution because they can only 

make suggestions about the dynamics of a particular system but may highlight those 

aspects of the host-parasite relationship that require further empirical study. The model is 

used to identify the parameters that i) define the proportion of parasite eggs successfully 

transmitted; and those that are most influential in regulating ii) the intermediate and iii) 

definitive host infection dynamics. The simplicity of the model should make it suitable for 

other systems. The current model, parameterised with empirical data from UK 

populations suggests that at most 10% of eggs are successfully transmitted into the snail 

population. The proportion of second intermediate hosts, fish, that become infected with 

helminths is very sensitive to changes in model parameters, more so than snails and 

definitive hosts. A decreasing birth rate of otters results in a higher proportion of the otter 

population carrying infections but this could be an artefact of the current logistic 

assumption for otter population dynamics. This study presents a simple, but flexible, 

three-host population dynamics model for trematodes and is a rare example of a model of 

this type that can be parameterised by empirical data. 

 

 

8.2 Introduction 
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The optimisation of control and management policies requires an understanding of the 

factors that regulate parasite distributions and the dynamic stability of natural populations 

(see Anderson and May 1982, Townsend et al. 2009). Where generalist parasites with 

complex life cycles are considered, empirical data is often rare. Theoretical 

epidemiological models have analysed many aspects of host-parasite interactions, acting 

as a substitute for empirical data. The pioneering works using models considered malaria 

transmission (Ross 1911, Kermack and McKendrick 1927a,b,c and childhood infectious 

diseases (Hope Simpson 1948, 1952). Subsequently, these models were adapted for 

macroparasitic infection with a particular focus on schistosomes (Anderson and May 

1978, 1979, 1982, Woolhouse 1991, 1992, 1994, Chan et al. 1995, Carabin et al. 2000, 

Hisakane et al. 2008, Zhao and Milner 2008, Basáňez et al. 2012, Boatin et al. 2012). 

These models can be of great value in understanding how host populations may be 

affected by environmental perturbations, in the absence of the considerable resources 

required to investigate a system empirically (see Appendix 8.1). 

 

Pseudamphistomum truncatum (Trematoda, Opisthorchiida) is native to Europe (Ivanov 

and Semenova 2000, Harris and Yalden 2008) and has been identified recently in 

freshwater ecosystems within the UK (Simpson et al. 2005, Sherrard-Smith et al. 2009). 

The parasite can damage the otter gall bladder particularly when infections reach high 

intensities (Simpson et al. 2005, Sherrard-Smith et al. 2009). The life cycle of P. 

truncatum is complex. Parasite eggs are consumed by gastropod intermediate hosts 

(reviewed in Sukhdeo and Sukhdeo 2004), which include Bithynia sp. (Dunn 1978) and 

Radix balthica (Chapter 7). Cercariae emerge from these snail hosts and encyst on the 

second intermediate host: for example roach, Rutilus rutilus (see Skov et al. 2008, 

Hawkins et al. 2010). The parasites are trophically transmitted to the definitive host with 

consumption of infected fish and excystation is followed by migration to the gall bladder 

where the worms mature (Sukhdeo and Sukhdeo 2004). To date, in the UK P. truncatum 

has been isolated from two species of definitive host; the Eurasian otter, Lutra lutra (see 

Simpson et al. 2005, 2009, Sherrard-Smith et al. 2009) and American mink, Mustela vison 

(see Simpson et al. 2009). Elsewhere in Europe, the parasite has been reported in red fox, 

Vulpes vulpes (see Saeed et al. 2006), mink, otters, dogs, Canis familiaris (see Simpson et 

al. 2005), American muskrat, Fiber zibethicus (see Ivanov and Semenova, 2000) and 

domestic cats, Felix domesticus (see Nielsen and Guidal, 1974). The intermediate hosts 
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are recognised as the gastropod snails Bithynia sp. and Radix balthica and the cyprinid 

fish (see Chapter 7).  

 

Currently, there are two major hotspots for P. truncatum in the UK: the Usk and Wye 

Catchments in South Wales, and Somerset in Southwest England. What can be inferred 

from these locations could be applied elsewhere were the parasite to increase its spatial 

range. Empirical data is not available for the complete life cycle on alternative definitive 

or intermediate hosts so a theoretical model might allow us to estimate natural population 

dynamics. For instance, although a relatively small proportion of snails become infected 

with trematode eggs (e.g. Boerlage et al. 2013), we know nothing about the success rate 

of eggs in the environment once they are released with the definitive host faeces, and such 

data would be very difficult to measure in situ. Transmission stages are likely to 

experience extremely high mortality rates because of their small size, limited mobility, 

survival time and infectivity (Jennings and Calow 1975, Poulin 1996, Koehler et al. 

2013). Factors that affect mortality rates play a key role in the selective pressures acting 

on parasite populations. Here, our aim is to use a susceptible-infected (SI) deterministic 

model to i) explore the transmission of parasite eggs within the system. Equally, certain 

aspects of the parasite life cycle will affect the ultimate prevalence within the definitive 

host, the otter, a species cited as near-threatened on the International Union for 

Conservation of Nature red list (IUCN data available online). This chapter also asks how 

the prevalence of trematodes in ii) the intermediate hosts and iii) the definitive host will 

vary with predation rates and seasonal fluctuations, using a simple deterministic model 

parameterised with empirical data from P. truncatum and its three life-stage hosts.  

 

8.3 Materials and Methods 

Here, a simple deterministic model for opisthorchiid infection in host populations is 

described, as a first step toward a better understanding of three host trematode dynamics. 

The model framework is extremely flexible because of its simplicity but we present the 

output of the model that best-fits the empirical evidence currently available on P. 

truncatum.  

 

Parameters for the model are based on data from the River Wye and Usk; an area where 

available data for P. truncatum has been documented most comprehensively (e.g. 

Sherrard-Smith et al. submitted, Figure 8.1). The Wye is a large catchment with a 
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drainage area of approximately 4,180km
2 

(Lewis et al. 2007). The main river runs 

c.250km, from an altitude of 677m on Plynlimon in Mid Wales to the Severn Estuary near 

Chepstow (Lewis et al. 2007). The Usk is one of the largest rivers in Wales; the main 

channel is c.120km in length (114.266km from OS data), the drainage area is 1,358km
2
 

(Larsen et al. 2009). The length of the river system including tributaries is 566.56km (OS 

data). The Usk runs from an altitude of c.500m on Mynydd Du and flows east across the 

Northern edge of the Brecon Beacons then heads south before reaching the Severn 

Estuary (Larsen et al. 2009).  

 

Figure 8.1 Distribution map of digeneans (Pseudamphistomum truncatum as black 

circles, Metorchis albidus as grey circles and uninfected otters marked as crosses) in 

otters across England and Wales. Insert (courtesy of Dr Isabelle Durance) shows the Wye 

and Usk Catchment still water pools, streams and water courses used to calculate the 

maximum area of freshwater representing suitable habitat for freshwater snails and fish. 

Black lines represent the Catchment boundary.  

 

8.3.1 Model development  

The passage of P. truncatum parasites through their life cycle is described using a 

deterministic compartmental model (Figure 8.2). This model users differential equations 

to define key aspects of host populations; these include the birth (or hatch) rate, death rate 

and carrying capacity of each population. An additional differential equation is 

incorporated to define the eggs lost, and those consumed by snails to complete the 

parasite life cycle. As an important first step, this model makes a key simplifying 
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assumption that host population dynamics are independent of infection dynamics. This is 

a necessary assumption for this first step toward modelling three-host systems, and 

appears justified in the case of the definitive host (the impact of the parasite on otters is 

small when intensities are low, see Sherrard-Smith et al. 2009). We acknowledge, 

however, that the impact on fish or snail hosts is yet to be established.  

 

Each host species is assumed to experience logistic growth within the model to reach a 

fixed carrying capacity. Although across the UK otters are an expanding population (see 

Mason and MacDonald 2004), this is a reasonable assumption because otter populations 

in the South Wales and Somerset regions are now considered to be at carrying capacity 

(see MacDonald 1983, Mason and MacDonald 2004, Stanton et al. 2009) in part because 

of an increase in fighting injuries suggesting encounter rates are relatively high in these 

regions (e.g. Simpson 2006). Equally, fish are monitored comprehensively in these 

regions (EA unpublished data) indicating a relatively stable freshwater community. 

Infection dynamics are linked by predation rates between the three host species modelled 

using empirical data on P. truncatum in Somerset and South Wales (Sherrard-Smith et al. 

in press, Chapter 7) for parameterisation. Once infected, hosts are assumed to stay 

infected until death. This is a reasonable assumption for the intermediate hosts given the 

short life expectancy (1-2 years) of snails and the dormancy of digenean cysts in fish. The 

life span of P. truncatum in otters is unknown, but other trematode life expectancies can 

be variable ranging from 6-9 months for hemiurids (Margolis and Boyce 1969) to years 

for certain schistosomes (Loker 1983). 
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Figure 8.2 Illustration of the host population dynamics of Pseudamphistomum truncatum 
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8.3.2 Differential equations 

Each pair of differential equations describes the interaction between susceptible 

(uninfected hosts) and infected individuals within a host population. In all equations K 

represents carrying capacity, b indicates birth (or hatch) rates, S(x) represents the 

susceptible host population (otter = o, snails = s, fish = f) number and I(x), those hosts 

already infected; such that S + I = Total host population: 

 

8.3.2.1 Otter population dynamics 

Equation 8.1: 
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Equation 8.2: 
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where otter birth-rate (bo) influences the total population (susceptible otters, So + infected 

otters, Io) and is limited by carrying capacity (Ko). Otters are lost from the susceptible 

population through consumption of infected fish (If) at a rate (µ). The predation rate of 

otters on fish occurs at a rate γ. There is a limit, however, on the number of infected fish 

the otters can consume (If/(β+If)) determined by β because other prey are present in the 

otter diet, or fish may die independently of predation (and without being scavenged). The 

summed susceptible and infected population is limited by carrying capacity and otter 

death. 

 

The otter population inhabiting the Wye is considered highly stable (NBN Gateway 

Wales Otter Survey Database, Joint Nature Conservation Committee). The rather 

discontinuous distribution of otters in the UK is estimated at 10,395 individuals (NBN 

Gateway) with strongholds in Scotland, Wales and the Southwest of England. Otters are 

reported to cover 16-20km of linear river habitat daily to access sufficient resources in 

Wales (Anon 2002, Kruuk 2006). The total length of rivers defined by the Usk and Wye 

Catchments is c.816.56 km (see Lewis et al. 2007; Larson et al. 2009). Assuming each 
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otter uses 16-20 km (excluding cubs which are dependent on their mother) then the 

carrying capacity of otters in this area is estimated at c.40-50 individuals (Ko).  

 

Otter birth-rates were initially estimated from the literature. The sex ratio of otters in the 

UK is approximately 1:1 (Heggeberget 1988, Sidorovich 1991). If the carrying capacity is 

assumed to be 50 otters, this corresponds to approximately 25 females. In the UK, otters 

have an average of 1.5 cubs per year (Chadwick and Sherrard-Smith 2010), with 

generally, just over 70% of mature females reproductively active at any one time (Hauer 

et al. 2002) and as such we estimated 30 otter births per year. Reproductive rate can be 

estimated as the proportional increase in otters to the population. In this case, an increase 

of 0.58 otters per week (30 otters/52 weeks) corresponds to a birth rate (bo) of 0.02 (an 

increase of 0.58 otters per week to the total population of 50 otters). In the Usk and Wye 

Catchments prevalence of P. truncatum in otters is 43.5% (20 infected out of 46 otters).  

 

8.3.2.2 Snail population dynamics 

Equation 8.3: 
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where snail carrying capacity (Ks) is limited in a similar manner to the otter population. 

Seasonality is modelled by 1+    (
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)  where the parameter (φ) determines the 
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amplitude of the seasonal wave and, as φ increases the amplitude of this wave becomes 

more severe but set at 2, allows the snail population to cycle between 450,000 and 

500,000 individuals throughout the year (Figure 8.3). This is incorporated here as an 

annual depletion followed by increase in the overall population (susceptible snails, Ss + 

infected snails, Is) controlled by the parameter (φ). The rate at which susceptible snails 

become infected (ρ) depends on the number of parasite eggs (E) consumed. Once again 

there is no recovery once a snail becomes infected – a reasonable assumption for 

trematode systems. The unit of time, T, is 1 week. 

 

Snail populations were examined at three tributaries of the Wye Catchment using methods 

adapted from Watson and Ormerod (2004). Briefly, approximately 1 km length of river 

was selected for each tributary (Sirhowy, Llynfi and Honddu Rivers) and 6-8 5m long 

transects were marked along each stretch. Sampling predominantly focused on the 

marginal zones (within 1m of the bank) on either side of the river and on the mid-channel 

zone. Snails were extremely rare in the mid-channel zone supporting previous literature 

indicating the slower moving marginal water is a preferred habitat for gastropods (Økland 

1990). A 15 min active search was conducted at each site including stone turning, 

allowing collection of gastropods and density estimates per m
2 

(see Table 8.1). Radix 

balthica was the only infected species located in these streams (Chapter 7). To calculate 

the carrying capacity of snails, an estimate of the effective area of suitable habitat 

available to snails was defined by plotting the marginal zones of all tributaries and 

streams within the Wye and Usk Catchments = 17,808,698 m (Figure 8.1, ArcMap GIS, 

version 9.2). A carrying capacity, Ks, was calculated by multiplying area with density per 

square metre = c.5,000,000.  

 

Table 8.1 Summary of location, host snail species present, the density of those species 

and total area of the Usk and Wye region with corresponding prediction of the snail 

carrying capacity (Ks). 

River/ Location Density of Radix 

balthica (m
-2

) 

Total length (m) 

suitable habitat for 

Usk &Wye Rivers 

 

 

 

 

 

Total snails 

estimation (Ks) 
= 5,045,792 

Sirhowy 0.3 17,808,698  (from 

Figure 8.1) Honddu 0.15 

Llynfi 0.4 

Mean density for 

the Usk &Wye 

0.283 
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There is little in the literature about fish and snail recruitment rates (which for simplicity 

we model as hatch rates) and so we explored a range of possible rates for both host 

populations. After parameter testing, both hatch rates were fixed to a rate of 0.1 (an influx 

of c. 500,000 snails per year, 100,000 fish per year). As stated, the simplicity of the model 

means these values are flexible but fixing at 0.1 ensured the proportion of infected otters 

fitted what is observed using empirical data for the Usk and Wye Catchment. 

 

8.3.2.3 Fish population dynamics 

Equation 8.5: 
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Equation 8.6: 
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where carrying capacity (Kf) limits fish populations and hatch-rate (bf). The transmission 

rate (α) determines the rate at which susceptible fish become infected. So, the population 

is at a dynamic equilibrium at a set carrying capacity. The rate of consumption (γ) dictates 

movement of susceptible fish (Sf) to the infected population (If) and the parasite 

population passing back to the otters is then limited by the function (If/(β+If)) or (Sf/(β+Sf) 

for the infected and susceptible populations independently. 

 

Fish population data were available to estimate density per square metre (see Table 8.2: 

Environment Agency public access data). To calculate fish carrying capacities, observed 

densities from the Environment Agency for each potential fish host (cyprinid species) was 

multiplied by freshwater area across the Usk and Wye Catchment 704,136m
2
 (Table 8.2). 

This estimated carry capacity for all potential host fish (Kf) at c. 1,000,000. 
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Table 8.2 Summary of the location, host fish species present, the density of those species 

(data from Environment Agency, Wales) and total area of the Usk and Wye region to 

estimate the fish carrying capacity (Kf). 

 

 

 

 

 

 

 

 

 

 

8.3.2.4 Parasite eggs 

Equation 8.7: 

  

  
        

describes the final life stage, the eggs (E). This is simply the rate at which eggs are 

released by infected otters (λ) limited by those lost to the environment at a defined rate 

(ω). 

 

We estimated the number of parasite eggs produced per otter (λ) using the mean in utero 

egg count for P. truncatum of 1,435 eggs (Chapter 6), and the mean abundance of P. 

truncatum in the Wye and Usk Catchments of 3.9 worms per otter (Sherrard-Smith et al. 

In press). This would give a total of 5,597 eggs; therefore, assuming only some eggs will 

be released (see Tinsley 1983), an estimated 100 eggs released per infected host per week 

was chosen as a starting value for estimation of the parameter λ. The model was used to 

examine how this release of eggs would affect the cycling of the parasite through its host 

populations. There is no literature on the proportion of eggs that are lost to the 

environment; therefore we tested a range of values to examine this rate of loss (ω) and its 

impact on the system as a whole. 

 

Cyprinid species in the Wye 

and Usk 

Observed 

density of fish in 

the Usk (per m
2
) 

Observed density 

of fish in the Wye 

(per m
2
) 

Bream Ambramis brama 0 0 

Bleak Alburnus alburnus 0 0.000516 

Barbel Barbus barbus 0 0.001032 

Carp  Cyprinus carpio 0 0 

Gudgeon (various species) 0 0 

Chub Squalius sp. 0 0.009457 

Dace Leuciscus leuciscus 0 0.019075 

Minnow  Phoxinus phoxinus 1.491275 30.0517 

Roach  Rutilus rutilus 0  

Rudd Scardinius 

erythrophthalmus 

0  

Tench Tinca tinca 0 

 

 

Mean density for cyprinids in the Usk & Wye 1.435 
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8.3.3 Parameter estimation  

Otters are generalist predators but are primarily piscivorous (Jedrzejewska et al. 2001, 

Kruuk 2006). Numerous fish species contribute to otter diet (Kruuk and Moorhouse 1990) 

but the trematode P. truncatum uses cyprinids, in particular rudd, tench and roach (Dunn 

1978, Simpson et al. 2005, Skov 2008). The β parameter was incorporated to cap the 

numbers of infected fish consumed by otters and considers the dilution effect of otters 

consuming alternative prey (see Copp and Roche 2003, Britton et al. 2006). We explored 

the sensitivity of the models output over a span of parameter (µ, γ, ρ α, β) ranges (see 

Table 8.3) to ensure infections in otters were maintained at around 40%. This allowed us 

to examine those parameters that had the greatest impact on the prevalence of P. 

truncatum in otters and intermediate hosts. 

 

Seasonal fluctuations were incorporated to the snail population (parameter - φ). Peak 

periods of shedding have been identified in trematode populations (e.g. Karvonen et al. 

2006). P. truncatum fecundity in the definitive host is highest in summer (Chapter 6) 

indicating seasonal likelihood of infections of snail populations are operating. There will 

be ensuing seasonality in infection of fish and the rapid turnover of fish population may 

exacerbate seasonal effects, but the long life expectancy of the encysted parasite would 

limit any seasonality in the otter population. Parameter ranges were explored by 

numerical simulation using the odesolve package within GNU General Public Licence R 

version 14.2 (R Development Core Team 2008).  

 

8.4 Results  

Examplar output of a 20 year simulation from the current model is shown in Figure 8.3. 

This simple model is built to fit the observed prevalence of Pseudamphistomum 

truncatum in the Usk and Wye Catchment (43.5%) and can be compared to the similar 

prevalence of the parasite in otters from Somerset (30.3%), and the combined Catchments 

within Wessex and Devon (39.2%) – these regions were used to confirm model 

parameterisation. We also see that the majority of fish in an infected location become 

infected very quickly. This fits with the high infection rates that are observed for other 

digeneans using fish as a second intermediate host (e.g. Chai et al. 2005, Guoqing et al. 

2001, Kumchoo et al. 2005) and high infection rates of P. truncatum (89%) on roach from 

Ireland (Hawkins et al. 2010). Further, the relatively low infection rates of the snail 

population is supported by very low incidences of snail infections observed in South 
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Wales streams (see Chapter 7) although there is spatial heterogeneity in prevalence of 

infection in field populations of many other trematodes (e.g. Byers et al. 2008, 

Fredensborg and Poulin 2006). 

 

Table 8.3 Summary of parameters and starting values for the three host trematode model. 

Where appropriate, parameters are based on the Usk and Wye Catchment Region as a 

representative ecological unit hosting the trematode Pseudamphistomum truncatum 

(Opisthorchidae).  

 

Variables  Description 

So Susceptible Otter   

Io Infected Otter   

Ss Susceptible Snails   

Is Infected Snails   

Sf Susceptible Fish   

If Infected Fish   

E Eggs free in environment   

Parameters Description Starting values  Range tested 

bo Birth rate of otters 0.02 0.002 - 0.2 

Ko Carrying capacity of otters 50  

µ Infection rate of otters 0.15 0.0025 - 0.25 

Γ Predation rate of otters on 

fish 

0.1 0.01 - 1 

Β Stabiliser capping number of 

fish that can be consumed 

per otter per unit time 

5 1 - 20 

bs Hatch rate of snails 0.1 0.01 - 0.5 

Φ Seasonal effect in snail 

population 

2  

Ks Carrying capacity of snails 5000000  

Ρ Consumption rate of snails 

eating eggs = 

Infection rate of snails 

becoming infected with eggs 

0.00000001  

 

1 x 10
-9 

- 1 x 

10
-4

 

bf Hatch rate of fish 0.1 0.01 - 1 

Kf Carrying capacity of fish 1000000  

Α Infection rate of susceptible 

fish becoming infected with 

metacercariae 

0.00001 1 x 10
-7

 - 0.001 

Λ Number of eggs produced by 

each infected otter 

100 1 - 100000 

Ω Egg loss rate to the 

environment/consumed 

0.5 0.01-0.99 
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Figure 8.3 Susceptible-Infected (SI) deterministic model of host population dynamics in a three host trematode, Pseudamphistomum truncatum 

(Opisthorchiidae) system: Otter (susceptible = black line, infected = red line), Snail (susceptible = blue line, infected = green line) and Fish 

(susceptible = blue line, infected = green line). The number of eggs released is shown in the final graph (red line).  
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Aim 1: Estimation of the proportion of eggs that are successfully transmitted 

 

There is no literature on the proportion of P. truncatum eggs that are transmitted 

successfully between vertebrate and invertebrate hosts. The current model is used to 

explore how the rate of parasite egg production by the otter population ( ) and the number 

of eggs that are lost in the environment ( ) (see Equation 8.7) may affect the proportion 

of hosts that become infected by this trematode. 

 

Equation 8.7:  

  

  
        

 

Each parameter in equation 8.7 was tested across a range of values that maintained a 40% 

infection rate within the otter population (this is a stable prevalence observed for the 

consecutive years 2007-2010 in Somerset and South Wales (see Sherrard-Smith et al. 

submitted)). According to this model, the otter population will not be affected by the 

number of eggs released or recovered. As the value of   increases from 1 to 100,000, the 

proportion of snail and fish infected increases toward 1 (Figure 8.4). Conversely, as the 

value of   increases from 0.01 to 0.99, the proportion of infected snails and fish 

decreases. This decrease is expected because an increasing proportion of eggs are lost to 

the environment. According to this model, varying the parameter ω does not affect the 

quantity of eggs released by the otters, in our case 100 eggs per infected otter per week 

(Figure 8.5). Further, the low levels of infection observed in snails (Chapter 7) and the 

high levels of infection expected in fish populations (Hawkins et al. 2010) should be 

maintained if   ≥ 0.5 and    is 100 or less (eggs released per infected otter per week). So, 

if the total number of eggs per infected otter is 5,597 eggs (see section 8.3.2.4: Parasite 

eggs, above) and there are 20 infected otters, a total of 111,940 eggs are present at a given 

time, T. If   = 100, then 20,000 eggs are released and 50% (10,000 eggs) are lost to the 

environment. On this basis, this model suggests that 10,000/111,940 = c.9% of the eggs 

will be successfully transmitted from the otters to the snail populations.  

  



 CHAPTER 8 

170 

 

 

Figure 8.4: The change in the proportion of Pseudamphistomum truncatum infected otters, fish and snails with increasing λ at different time 

points (T = 50 solid line, T = 150 dashed line and T = 300 dotted line). The proportion of infected otters does not change regardless of the value 

of λ. Almost all fish are infected as soon as λ increases above 1000. There is a steady increase in snail infections with increasing λ. 
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Figure 8.5: The change in the proportion of Pseudamphistomum truncatum infected otters, fish and snails with increasing ω at different time 

points (T = 50 solid line, T = 150 dashed line and T = 300 dotted line). The proportion of infected otters does not change regardless of the value 

of ω. As ω increases from 0 to 1, the proportion of snails and fish that are infected decreases regardless of whether λ = 1,000 (top row) or λ = 100 

(bottom row).  
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Aim 2: How do model parameters impact prevalence of infection in the intermediate 

hosts? 

The intermediate hosts, the snail and fish populations, are sensitive to changes in model 

parameters (see Table 8.4) and may help create the fixed prevalence in the otters in this 

model. The number of eggs released per infected otter (λ) did not ultimately alter the 

proportion of infected otters but did have a significant impact on snail and fish parasite 

prevalence (Figure 8.4). An increase in λ from 100 to 1000 eggs released per otter 

accounted for c.20% increase in infected snails at time point T = 300, while a further 

increase in λ to 10,000 eggs corresponded to an additional 60% increase in infected snails 

during the peak season of the year (Figure 8.4). In the fish populations a tenfold increase 

in λ from 10 to 100 had the largest impact on the proportion of fish infected and where λ 

> 100 almost all fish become infected (Figure 8.4). Similarly, an increase in the loss of 

eggs to the environment, ω, led to a decrease in the proportion of infected fish and snails 

(Figure 8.5). 

 

The majority of parameters, in addition to λ and ω, affected the fish population (Figure 

8.6). As the rate of infection in snails (ρ), fish (α) or otters (µ) increases, or predation rate 

of otters on fish (γ) increases, so does the proportion of fish that are infected. Conversely, 

when fish hatch rate (bf) increases then the proportion of infected fish decreases. Equally, 

as the birth rate of otters increases (bo), the proportion of infected fish decreases. 

 

Snail hatch rate, bs, influences the proportion of fish infected. The increase in snails 

increases the chance of infection for fish. The model indicates that at low bs, the 

proportion of fish that become infected is higher and more consistent than at high bs.  
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Figure 8.6: The change in parameters affects the proportion of fish infected with Pseudamphistomum truncatum at time T = 50 weeks after the 

first case (solid line), T = 150 (dashed line) and T = 300 (dotted line): Very small increases in the value of the infection rate of snails with 

parasite eggs (ρ) and the infection rate of fish (α) lead to a rapid increase in the proportion of fish infected tending toward 100%. As the hatch 

rate of snails (bo), the infection rate of otters (µ) and the predation rate of otters on fish (γ) increase there is a relatively steady increase in the 

proportion of fish that are infected. Conversely, as fish hatch rate (bf) and otter birth rate (bo) increase, there is a decrease in the proportion of fish 

that are infected.  
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The infection rate of snails with parasite eggs, ρ, caused considerable shifts in the 

prevalence of P. truncatum in snails. A 2 fold increase in ρ (1 x 10
-8

 to1 x 10
-6

) 

corresponded to a huge increase in infected snails (Figure 8.7). Even where snail hatch 

rate, bs, was high there was no overall change in the proportion of infected fish or otters. 

 

 

Figure 8.7: Changes to the snail population: as the infection rate of snails with parasite 

eggs (ρ) increases so does the proportion of snails that are infected with 

Pseudamphistomum truncatum. As the hatch rate of snails (bo) increases so does the 

proportion of infected snails but only at time T = 300, prior to this (T = 50 and T = 150) 

there is very little effect of snail hatch rate on the proportion of infected snails. 

 

Aim 3: How do model parameters impact prevalence of infection in the otter? 

Parasite population dynamics in the otter were robust to large variations in model 

parameters (see Table 8.4). The only parameters to influence the proportion of infected 

otters were otter birth rate (bo, as birth rate increases, proportionally fewer otters become 

infected), predation rate on susceptible fish (γ, as more fish are consumed, the proportion 

of infected otters increases), and otter infection rate (µ) (see Figure 8.8). As otter infection 

rate (µ) increases, there is an increase in the proportion of infected otters, with increasing 

overall egg release an intuitive consequence (Figure 8.8). Increasing predation rate of 

otters on fish (γ) acts to remove a subset of susceptible individuals so the resulting 

proportion of infected fish increases and this has a subsequent positive feedback on the 

number of infections accumulated in otters over time (Figures 8.5 and 8.8). 
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Figure 8.8: The impact of changing parameters on the proportion of Pseudamphistomum truncatum infected otters at time T = 50 weeks after the 

first case (solid line), T = 150 (dashed line) and T = 300 (dotted line): as otter birth rate (bo) increases, the proportion of infected otters decreases; 

as the infection rate of otters, µ, increases so does the proportion of infected otters; as the predation rate of otters, γ, so does the proportion of 

infected otters. 
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8.5 Discussion 

The population dynamics model presented here is built on empirical data of 

Pseudamphistomum truncatum infection rates in areas where the parasite is most 

abundant in the UK. This model appears to be an effective starting place for future study 

of the dynamics of three-host trematode systems. The recognition of emerging fish-borne 

trematodiasis means tools such as this may be effective in elucidating the underlying 

mechanisms that govern trematode dynamics.  

 

Here, the population dynamics of P. truncatum as the parasite cycles through three host 

types are examined in a simple deterministic model. There is a lack of such models 

investigating three host trematode species, although multiple host use has been explored 

for instance where a particular life stage can infect more than a single host species (see 

Dobson 2004). The predicted model prevalence for P. truncatum in each host was robust 

to large variations in parameter ranges (see Table 8.3) and was fitted to the observed 

prevalence of P. truncatum in hotspot locations in the UK (Somerset Catchment, the 

combined Catchments within Wessex and Devon as well as the Usk and Wye Catchment).  

 

Aim 1: Estimation of the proportion of parasite eggs that are successfully transmitted 

The current model suggests that c.9% of parasite eggs contribute to infection in the snail 

population. As far as we are aware, there is no empirical quantitative data on the 

proportion of eggs that are successfully taken up by snails in wild populations. The 

infection rate of snails with parasite eggs, ρ, caused considerable shifts in the prevalence 

of P. truncatum in snails. Otters deposit spraint (faeces, the source of parasite eggs in the 

snail habitat) little and often across a variety of habitats perhaps contributing to few 

parasite eggs passing to the snail population. The 9% success of eggs passing into snails is 

probably an overestimate of what might be found in reality. Empirical studies suggest 

trematode infection rates are low in snail populations even when multiple helminth 

infections are considered (Brown et al. 1988 but see Jokela and Lively 1995).  

 

The model does not incorporate negative impacts of trematodes on snails. Trematodes can 

have a sterilising effect (e.g. Combes 1982), they can favour snails of a certain age or size 

(Poulin 1999, Koehler et al. 2013) and there may be dominance hierarchies between 

trematode species within the intermediate host (Soldanova and Kostadinova 2011). 

Further, differences in genetic susceptibility between snails (King et al. 2010) will impact 
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the proportion of successfully transmitted eggs. Equally, survival of parasite egg stages 

depends on environmental factors including temperature (Tinsley et al. 2011). Currently, 

the effects of these factors are grouped together within a single rate of loss for this model.   

 

Table 8.4 Summary of the sensitivity analysis effects on prevalence of a three host 

trematode system based on Pseudamphistomum truncatum (Opisthorchiidae) infecting 

snails, fish and otters in a c.5600km
2 

region.  

Parameters Description Effect 

bo Birth rate of otters Impacts all host populations; low bo causes 

increased proportions of otters to be infected, 

elevated seasonality on snail populations and 

greater proportion of infections in fish 

µ Infection rate of 

otters 

High µ results in higher proportions of 

infected otters. Overall proportion of either 

intermediate host remains relatively constant. 

Seasonal fluctuations increased in snail 

populations. 

Γ Predation rate of 

otters on fish 

When Γ is low, seasonal fluctuations are less 

distinct, a low proportion of otters become 

infected. 

bs Hatch rate of snails The greater bs, the greater the degree of 

seasonal fluctuations. No impact on otter or 

fish population dynamics. 

Ρ Consumption rate 

of snails eating 

parasite eggs = 

Infection rate of 

snails becoming 

infected with eggs 

Most sensitive parameter; below a rate of 1 x 

10
-8

 almost no snails are infected yet 

trematodes continue to cycle through the 

system. Conversely, a rate of 1 x 10
-5

 

produces unrealistic patterns. The model 

indicates snail infection rates lie between 

these extremes.   

bf Hatch rate of fish The greater bf, the lower the overall 

proportion of fish infected.  No impact on 

otter or snail population dynamics. 

Α Infection rate of 

susceptible fish 

becoming infected 

with metacercariae 

Generally, a high proportion of fish are 

infected regardless of infection rate. No 

impact on otter or snail population dynamics. 

Λ Number of eggs 

produced by each 

infected otter 

The greater the value of λ, the greater the 

impact of seasonal fluctuations on the snail 

populations. No impact on the otter 

population. 
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Aim 2: How do model parameters impact prevalence of infection in the intermediate 

hosts? 

The current model suggests that where the parasite is abundant almost all viable fish hosts 

will carry the parasite during peak seasons, supporting the observations that 89% of roach 

in Ireland were infected with P. truncatum metacercariae (Hawkins et al. 2010). Analysis 

of fish helminths tends to demonstrate high spatial variation explained by intermittent 

colonisation events (Esch et al. 1988). The current model indicates the proportion of fish 

that become infected with helminths is very sensitive to changes in the model parameters 

(see Table 8.4). Metacercariae identification is challenging, partly due to cryptic species, 

but also because of cyst size in comparison to that of the host making morphological 

screening of larger fish extremely time-consuming. 

  

Changes in fish hatch rate impacts the parasite cycling through the fish population such 

that where hatch rate is high (bf = 1) seasonal fluctuations in parasites are most 

pronounced but, on average, only about 20% of the fish population are infected (Figure 

8.6). This does not fit empirical data (e.g. Hawkins et al. 2010) suggesting that lower 

hatch rates are more probable in wild populations. When hatch rates are high, naïve fish 

enter the population and death rate increases to maintain the fixed carrying capacity 

parameterised into the model. Therefore, the assumption of a fixed carrying capacity in 

this model perhaps contributes to the ultimate decrease in the proportion of infected fish. 

This simple model also indicates that the infection rate of fish (α) must be relatively low 

since α values above 0.001 result in all fish becoming infected. The management and re-

stocking of water courses create an artificially high influx of fish and may decrease the 

proportion of infected fish in the system in the same manner that was seen with an 

increasing fish hatch rate (bf). The fish hatch rate is an important parameter according to 

this model. Although trematode metacercariae are dormant in fish, the ecological impacts 

of these infections are not easy to predict because behavioural changes may be induced, 

with potential fitness consequences (Barber et al. 2000).  

 

Aim 3: How do model parameters impact prevalence of infection in the otter? 

A dynamic equilibrium where there is no further increase in the proportion of infected 

otters is achieved rapidly in this simulation model. The rapid colonisation by the 

trematodes of each host population is a consequence of the simplistic assumptions of the 

model but may be realistic; recent evidence suggests that trematodes can become 
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established incredibly fast in novel locations (Soldanova and Kostadinova 2011). Based 

on the current model predictions, the relatively stable prevalence of P. truncatum in otters 

between 2007 – 2010 (Sherrard-Smith et al. submitted) suggests that this parasite is well 

established in Somerset and South Wales.  

 

Most concerning from a conservation perspective was the observation that a decreasing 

birth rate of otters (bo) results in a higher proportion of the otter population carrying 

infections (Figure 8.8). In this simplistic model however, such a result could be an artefact 

of the logistic assumption for otter population dynamics. As otter birth rate decreases, 

otter deaths must also decrease to maintain the carrying capacity at the fixed value of 50. 

So, for a given time period T1 to T2, fewer otters are in the system. Yet when no other 

parameter is altered, otters are still able to become infected at the same rate regardless of a 

high or low birth rate. So for time T1 to T2 there may be an artificial increase in the 

proportion of otters that are infected. To explore this further, an additional parameter, ε, 

was included to decrease the carrying capacity of otters alongside a decreasing birth rate. 

This can effectively remove the direct link between otter birth rate and death rate in the 

model. Equation 8.1 becomes: 

 

Equation 8.1a: 
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) (     ))         (
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And Equation 8.2 becomes: 

 

Equation 8.2a: 
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But even so the trend for an increased prevalence of P. truncatum in otters with 

decreasing birth rates remained (Figure 8.9). In the past, otter populations across the UK 

crashed as a consequence of pollution and hunting pressures (see Jefferies and Mitchell-

Jones 1993). This model suggests that when otter populations are under pressure from 

other stresses such as pollution, there may be indirect implications for the otter population 
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from parasites. Yet ultimately, the parasite population is relatively stable in the definitive 

host, according to the current model. 

 

8.5.1 Model critique 

This model is an important first step for helminth dynamics in three-host life strategies. 

Currently there are two major restrictions to this model; firstly, if the host population 

dynamics were affected by the parasite this could result in drastically different model 

outcomes. Secondly, P. truncatum, like most parasites, are aggregated amongst the otter 

population (Chapter 6) and parasite aggregation is also likely to occur in the snail and fish 

populations, but is left out of the current model. Equally, parasite aggregation could alter 

the cycling of the parasite through the host population; this could be built into an 

extension of the model, but more data on infection levels in intermediate hosts would be 

required.  

 

This initial attempt to model the host dynamics of a three-host trematode system has 

highlighted a variety of system specific and more general questions that are yet to be 

answered. Considering the system specific questions first, the manner of egg release by 

specific trematodes is often unknown. Certain species continually release eggs whilst 

others are more seasonal or sporadic (Nollen 1983). Although the number of eggs released 

here is assumed to be constant, the number of eggs lost to the environment upon release 

from the definitive host is unknown and this affects the infection rate of the snail host.  

 



 CHAPTER 8 

181 

 

 

Figure 8.9 The response of the otter population to a decreasing carrying capacity. As otter birth rate (bo) increases from 0.01 to 0.1 the 

proportion of infected otters decreases, whilst decreasing the carrying capacity has no additional effect on the proportion of infected otters (top 

set of graphs). At a fixed birth rate, the proportion of infected otters remains at c.40% regardless of carrying capacity (bottom set of graphs, black 

line = Susceptible otters; red line = infected otters). 
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The ability of trematodes to influence the overall carrying capacity for each host is unknown 

yet it is widely accepted that parasites, in general, have an integral role in host community 

structure, ecosystem properties and ecosystem functioning (Hatcher et al. 2012, Poulin 1999). 

What happens if one component host of the life cycle is increasing or decreasing in 

population size, i.e. what happens when carrying capacity is not fixed? Will trematodes cap 

host populations at a different level to that which could be achieved in the absence of such 

parasites? The limit on our understanding of potential hosts is also restricting because certain 

species may act to maintain the parasite population whilst others are dead-end hosts – this is 

beyond the scope of the current model. Further, anthropogenic impacts of such systems are 

ignored here, but influx of viable fish hosts, through the re-stocking of natural ecosystems, is 

likely to have a significant impact on the dynamics of such parasites. This is particularly 

important because the proportion of fish that become infected is high. Incorporating a 

stochastic element to this model is an intuitive next step for this research.  

 

8.5.2 Conclusions 

The current model, parameterised with empirical data where available, describes the host 

population dynamics of the trematode P. truncatum. Model output suggests that c.9% of 

parasite eggs are successfully transmitted into the snail population. As far as we are aware, 

there is no empirical data on the proportion of eggs that are successfully taken up by snails in 

wild populations. The proportion of fish that become infected with helminths is very sensitive 

to changes in the model parameters, more so than snails and definitive hosts. Both the snail 

and fish populations experience seasonality through an increase in the susceptible population 

and consequent reduction in the proportion of infected hosts following hatching. The 

proportion of fish that are infected is much greater than the comparative snail populations 

perhaps explaining the enhanced sensitivity of the fish populations in this model. The model 

predicts prevalence in the definitive hosts is invariant to large changes in parameter estimates 

particularly those describing intermediate host dynamics (both hatch and infection rates of 

snails and fish). The  model also shows that decreasing the birth rate of otters results in a 

higher proportion of the otter population carrying infections but in this simplistic model such 

a result could be an artefact of the logistic assumption for otter population dynamics. 

Although this pattern remains when otter populations decrease as a result of decreasing 

carrying capacity, further investigation is warranted. This study presents a simple, but 

flexible, three-host population dynamics model for trematodes. The simplicity of the model 
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should make it suitable for application to other systems and facilitate the inclusion of 

additional functions to make the output more realistic.  
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Appendix 8.1 A brief summary of models describing host-parasite population dynamics 

Early helminth models examined the key host and parasite life history attributes (i.e. the time 

scale of infection, host life span and the degree of aggregation of parasite populations, the 

reproductive biology and the transmission potential of the helminth) and these were used to 

define host-parasite population and transmission dynamics (see Anderson and May 1982, 

Dobson and Roberts 1994). A wider range of macroparasitic infections have been studied 

more recently (see Basáňez et al. 2012, Adler and Kretzschmar 1992, Kretzschmar and Alder 

1993). Initially models focused on single host-single parasite systems (for example see 

Anderson and May 1982, 1985, Berding et al. 1987, Dobson and Hudson 1992), but 

additional elements were incorporated to explore multiple parasite species infections (see 

Begon et al. 1992, Roberts and Dobson 1995, Gatto and De Leo 1998, Jackson et al. 2006). 

Further, host immunity (see Schweitzer and Anderson 1992a, Woolhouse 1996), seasonal 

patterns (Roberts and Grenfell 1991, Dobson and Hudson 1992, Fenton et al. 1998) and 

stochasticity (Marion et al. 1998, Cornell et al. 2004, Walker et al. 2010) have all been 

incorporated to produce more complex models (reviewed in Roberts 1995). Modelling the 

interaction of parasites with their hosts as the host ages (Chan et al. 1995, 1996, Michael et 

al. 1998, Bouloux et al. 1998) has helped develop an understanding of the most successful 

treatment strategies for some of the most devastating, global helminth infections, including 

Schistosomiasis (see Anderson and May 1979, 1982, 1985, Woolhouse 1991, 1992, 1996) 

and Filariasis (see Guyatt et al. 1993, Chan et al. 1998, Walker et al. 2010). Many studies 

have modelled the success and cost effectiveness of different treatments (Medley et al 1993, 

Guyatt et al. 1993, 1995) or other management strategies, such as livestock grazing (see 

Barnes and Dobson 1990, 1993).  

 

Recently, mathematical modelling has been highlighted as a priority of the Disease Reference 

Group on Helminthiases (DRGH) (Boatin et al. 2012). Advances in statistical methods now 

facilitate a more accurate estimation of model parameters such as parasite life span (Plaisier 

et al. 1991, Fulford et al. 1995), variation in the host immune response (Riley et al. 2003) and 

parasite establishment rates (Duerr et al. 2006, Basáňez et al. 2002, 2012). Models have been 

used to investigate questions which are often impossible to address through empirical studies: 

for example, the optimum infection strategy of macroparasites under varying resource 

availabilities and host encounter rates (Fenton and Rands 2004). Further, models of host 

population dynamics allow us to predict how systems might change with time in relation to 

predictable shifts in environmental conditions (Russell et al. 2004, 2006). Combining the 
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model outcomes of such theoretical studies with available empirical data can maximise our 

understanding of host-parasite systems (Woolhouse 1991, 1992, 1994, Basáňez et al. 2012).  

  

Population dynamics models have highlighted the inherent stability of host-helminth systems 

(Anderson and May 1982, Berding 1986, Roberts and Grenfell 1991, Dobson and Hudson 

1992, Hudson and Dobson 1997, Michael et al. 1998). In contrast to viral and bacterial 

infections which have a faster evolutionary time, helminth systems are incredibly resistant to 

environmental perturbation events such as storms, droughts and anthropogenic management 

changing landscapes (Roberts and Grenfell 1991, Dobson and Hudson 1992). Re-infection 

and host acquired immunity against helminth infection can also operate (Anderson and May 

1982, Schweitzer and Anderson 1992a, b). Further, helminths can drive the population 

dynamics of their respective hosts (Dobson and Hudson 1992, Hudson and Dobson 1997, 

Rosa et al. 2011).  

 

Digeneans infect between 2 and 5 hosts during their life-cycle, interspersed with life stages 

that are not attached to a host, at which time the organism is directly exposed to external 

environmental conditions (Coombes 2001). The dynamics of trematodes that require three 

hosts in wild fauna may behave differently to the comprehensively studied two host 

trematodes, such as the schistosomes (see Anderson and May 1978, 1979, 1982, Woolhouse 

1991, 1992, 1994, Chan et al. 1995, Carabin et al. 2000, Hisakane et al. 2008, Zhao and 

Milner 2008, Basáňez et al. 2012, Boatin et al. 2012). Models for such systems are lacking 

because sufficient data for model parameterisation is often unavailable (Barlow 1995). Yet 

understanding these helminth dynamics is essential for disease management; particularly 

since recent evidence suggests helminths influence microparasite dynamics through 

facilitating multi-species invasions of the host (Ezenwa et al. 2010, Ezenwa and Jolles 2011). 
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9. General discussion 

 

9.1 Synthesis 

Parasitism is, perhaps, such a successful life strategy because of the flexibility it allows 

organisms to accommodate changing conditions. This dissertation has contributed to our 

knowledge of two major parasite groups, the opisthorchiidae trematodes and ixodid ticks, and 

their interaction with a mammalian host, the Eurasian otter. In general, otters appear to have a 

relatively low diversity of macro-parasites (Simpson 2007, Chadwick 2007). Parasite 

abundance tends to increase with host population density (Dobson 1990, Arneberg et al. 

1998, Wilson et al. 2001); an observation that might contribute to the observed increased 

prevalence and abundance of biliary trematodes in South Wales and the Southwest of 

England (where otter populations are most dense) compared to Central England regions 

where otter populations are still increasing (Chapter 4).  

 

The most common parasite taxa recorded from otters are the trophically transmitted 

helminths (e.g. Hansson 1968, Schuster et al. 1988, Jefferies et al. 1990, Shimalov and 

Shimalov 2000, Torres et al. 2004 but see Mendez-Hermida et al. 2007, Chadwick et al. 

2013). Yet before the current work, the abiotic and biotic factors dictating the distribution of 

these parasites had been considered only rarely (e.g. Jefferies et al. 1990, Sherrard-Smith et 

al. 2009, Simpson et al. 2009). To date, the majority of work on opisthorchiasis focuses on 

the Asian populations of Clonorchis sinensis and Opisthorchis viverrini (for example Chai et 

al. 2005, Robinson and Dalton 2009, Sripa 2010) but opisthorchiasis is still considered one of 

Europe’s neglected diseases (Hotez and Gurwith 2011). Helminth infections of the Eurasian 

otter (Lutra lutra) are common (e.g. Hansson 1968, Schuster et al. 1988, Jefferies et al. 1990, 

Shimalov and Shimalov 2000, Torres et al. 2004 but see Mendez-Hermida et al. 2007) but 

understudied, The present empirical studies on Pseudamphistomum truncatum and Metorchis 

albidus in wild hosts are the first to consider both the abiotic and biotic stressors that shape 

parasite distributions on otters, a large mammalian host (Chapters 4 and 6). Additional hosts 

for these digeneans have been identified: the snail Radix balthica (recorded for the first time 

as a host of P. truncatum), and tench and chubb (added to the known list of cyprinids that can 

host both P. truncatum and M. Albidus) (Chapter 7). These data have been used to 

parameterise a model describing the population dynamics of such parasites (Chapter 8).  
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There is a strong association between climate and both tick and trematode  distributions in the 

otters (Chapters 3 and 4). In particular, increased temperatures are positively associated with 

the prevalence of Ixodes hexagonus, P. truncatum and M. albidus, whereas rainfall and 

groundfrost are negatively associated with the two digenean species. Positive phases of the 

North Atlantic Oscilllation are associated with warmer and wetter conditions coinciding with 

increased tick prevalence but these conditions may have opposing impacts on the digeneans 

making predictions on the future distributions more challenging. 

 

Both digeneans have been recovered for the first time from British wildlife within the last 10 

years (Simpson et al. 2005, Sherrard-Smith et al. 2009). Therefore it was hypothesised that 

both species were introduced recently to the UK. With the continual development of 

molecular methods we are likely to see an increase in species simply through the increased 

capabilities to identify cryptic species and we concluded that the trematodes P. truncatum and 

M. albidus in Britain are probably not recent introductions (Chapter 5). Across Europe 

mtDNA sequences were synonymous with British specimens and therefore it is probable that 

the native range of both parasites extends into Britain. This raises the question of why these 

digeneans were not discovered previously? The increase in survey efforts over recent years is 

likely to have contributed. Yet Somerset, one of the current hotspots for P. truncatum 

infections, has a relatively long record of wildlife investigation (see Simpson, Veterinary 

Investigation Centre), suggesting a recent increase in this region at least. Increasing host 

numbers are perhaps responsible, both through recovering otter populations following major 

declines during the 1960-70s, and the introduction and establishment of another definitive 

host, the American mink (Mustela vison). Alongside this, improved conditions within water 

courses as a result of conservation efforts and the removal of toxic pollutants (e.g. Kean and 

Chadwick 2013) may increase the abundance of intermediate hosts. Further, the warmer 

conditions (see Chapter 4) of recent years may have increased parasite numbers to detectable 

levels. 

 

This dissertation provided a rare opportunity to collect and analyse large amounts of data on 

parasites of a wild mammal population. Consequently, it was possible to use the model to 

explore transmission potential. Heavily infected individuals are often targeted for treatment 

but will only be influential to parasite transmission if they simultaneously release a large 

number of infective stages. Targeting both the most infected and those hosts releasing high 

proportions of infective stages (see Chapter 6; Matthews et al. 2006, Chase-Topping et al. 
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2008, Luong et al. 2010, Lass et al. 2013) will enhance the efficacy and efficiency of targeted 

treatment (Chapter 6). By allowing us to focus our treatment strategies more specifically this 

work has implications for disease control and can thereby benefit conservation. 

 

9.2 Road-kill sampling 

During the 3 years of this PhD project, samples were collected from 586 otters, credit to the 

excellent infrastructure of the Cardiff University Otter Project that has established long-term 

and wide-scale surveillance of a wild mammal across England and Wales. Data from road-

killed animals are invaluable and can provide an insight into the ecology and evolution of 

wild, elusive and protected species. Such data, however, carry with them inherent biases (see 

Wilson et al. 2001; Chapter 3). For instance, tick abundance is probably underestimated in 

the current study and all the data represent a relatively stochastic sub-sample of the otter 

population (see Sherrard-Smith and Chadwick 2010). As highlighted in Chapter 3, tick 

infestations could reflect differences in emigration patterns when abandoning a dead host (see 

9.4 Future work), while tick emigration rates from dead hosts may interact with local 

microclimate. Throughout this thesis it is important to consider that road-kill samples might 

not fully represent the otter population. Age-analysis indicates that the otter population, based 

on predominantly road-kill data, consists of mostly 1-2 year old animals (Sherrard-Smith and 

Chadwick 2010) and so the youngest and oldest proportion of the population may be under-

represented. European studies that include an increased proportion of non-road killed otters 

find a broader age distribution with individuals of 8+ years old (Heggberget 1991, Ansorge et 

al. 1997, Hauer et al. 2002). Older animals may be particularly important for parasite studies 

where infections are accumulated with age, such as the trophically transmitted trematodes 

considered here. Further, if heavily infected older otters are under-represented then parasite 

aggregation may be underestimated because heavy infections are not recorded (see Chapter 

6). Overlooking most heavily infected hosts is cited as a potential reason for inconsistencies 

with the analysis of parasite aggregation when small (host number) sample sizes are 

considered (see Wilson et al. 2001) and is a limitation of this thesis. 

 

While faecal screening can be used to examine endoparasite distributions through 

identification of eggs or larvae, they provide no information on the biotic associations that 

might act on parasite distributions. During this PhD, preliminary examinations not included 

in the thesis, showed digenean eggs were rarely found in faecal samples (taken from the 

rectal region of carcasses) even when taken from heavily infected otters. Road-kill autopsies 
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remain the only way to obtain large sample sizes of wild, protected mammals for individual 

level analysis allowing the rare opportunity for internal examination of specimens, an 

understanding of biotic associations and temporal and spatial monitoring of any given 

parasite.  

 

9.3 Future directions 

9.3.1 Comparisons between native and novel hosts 

During the course of this PhD, in addition to the otter, a second major definitive host of P. 

truncatum and M. albidus was identified as the American mink, Mustela vison. The two 

mustelids (otters and mink) provide a rare opportunity to compare the parasitic fauna of a 

native and introduced host. Both species have similar life histories but mink were introduced 

in the early 20
th

 Century whilst otters are native to the UK. Each mammal feeds on fish in 

addition to other fauna and the biliary parasites occupy the same habitat within the host – the 

gall bladder. Non-native introductions can cause severe negative implications for comparable 

native populations (see Hatcher et al. 2012). Yet to establish as a successful population in the 

first instance, the introduced species must overcome stresses from the novel environment. 

Local parasites are one such challenge and can have an impact on introduced hosts. 

Understanding how these new interactions operate can benefit control programs, management 

of introduced species and contribute to our knowledge of the evolutionary mechanisms acting 

on novel host-parasite associations. Consequently, future research could tackle the question: 

where an introduction has occurred, how does the interaction between a parasite and a native 

host compare to that with an introduced host? The few studies that have considered this 

question generally report a higher parasite species richness and abundance in the native host 

(e.g. Dunn and Dick 1998, Roche et al. 2010, Gendron et al. 2012, Lacerda et al. 2012, 

Ondračková et al. 2012) but this is not always the case (see Pasternak et al. 2007, Kestrup et 

al. 2011). The arrival of a novel host can alter the dynamics of established host and parasite 

interactions through the ability of parasites to use hosts as reservoirs (see Rudge et al. 2009). 

The contribution that the novel host population makes toward transmission of the parasite is 

therefore of fundamental importance. Parasite fecundity is an integral component determining 

the transmission potential of a host (Shaw and Dobson 1995, Shaw et al. 1998, Kaitala et al. 

1997, Chylinski et al. 2009). As an extension of this thesis, mink samples have been collated 

and examined allowing comparison of parasite fecundity in a native and introduced host 

(Sherrard-Smith et al. unpublished data).  
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9.3.2 Intermediate hosts 

In Chapter 7, the intermediate hosts for P. truncatum and M. albidus were considered to gain 

an understanding of the complete parasite life cycles. The small and opportunistic study on 

intermediate hosts could be strengthened by snail dissections and larger sample sizes, 

particularly through the spring / summer months when peak infections are apparent. To 

examine which host is influencing the parasite spatial distribution to the greatest degree, the 

genetic structure of the parasites and hosts at each life stage could be deciphered and then 

over-laid to examine whether the parasite co-evolves with a particular host. It would also be 

enlightening to ask about parasite abundance, parasite aggregation and parasite fecundity (see 

Chapter 6) within the snail and fish intermediate host populations to decipher whether these 

early lifestages are affected by the same biotic or abiotic factors that shape the distribution of 

adult P. truncatum populations. For a parasite with multiple life stages, disease control 

strategies will be most effective if all stages are considered and targeted appropriately.   

 

9.3.3 Ectoparasitic emigrations and vector status 

There is currently limited data on vector borne diseases in otters and other wild fauna of the 

UK. If the tick Ixodes hexagonus that is found on otters can act as a vector, then the wide 

ranging otters could be reservoir hosts for multiple diseases. An analysis of the 

microparasites of otter ticks and otter blood samples was performed by a student at  the 

University of Salford in collaboration with Prof. Richard Birtles to examine whether otters 

play a role in the maintenance of notable microparasites such as Borrelia sp., the causative 

agent of Lyme disease. During the study however, microparasite infection was not found in 

the otter blood or the associated ticks. However, this may have been a false negative result, 

perhaps a consequence of the freeze-thaw process of the samples used, impeding the 

amplification of microparasitic DNA. Yet, if there really is no vector-borne microparasitic 

infection within the otter population, the result suggests that either otters or I. hexagonus may 

act as dead-end hosts for such zoonoses. Fresh samples from otters are required to examine 

this issue further and the following step could be to investigate microparasite presence in I. 

hexagonus from other hosts (e.g. hedgehogs, foxes, badgers) and investigate whether 

microparasites can be maintained in I. hexagonus in lab conditions.  

 

9.3.4 Phylogenetic history and migration between the mainland continent and Britain 

The phylogenies of both Pseudamphistomum truncatum and Metorchis albidus across were 

investigated (Chapter 5). Although mtDNA has been reported to provide sufficient data on 
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trematode phylogenies in previous studies (e.g. Zaroweicki et al. 2007), little could be 

learned about the relatedness of populations across Europe using the COXI and COXIII 

mtDNA regions. While a microsatellite approach could produce a greater source of 

information this was beyond the scope of the current PhD. Alternatively, it might be possible 

to elucidate migration history between the continent and Britain if regions of the mtDNA 

with greater variation were identified. One potential region is the control region D-loop, 

which tends to be highly polymorphic and may allow us to estimate how long ago the British 

and European populations were separated, and to examine the extent and direction of 

migration between the land masses since the populations first diverged (see Charruau et al. 

2011). In doing so, a better understanding of the mechanisms that facilitate the movement of 

parasites such as P. truncatum and M. albidus could be achieved. 

 

9.3.5 Population dynamics 

Mathematical models can be a useful tool for evaluating an entire system by highlighting 

aspects that are yet to be explored. Equally models have the potential to test hypotheses for 

stochastic events such as climate warming, unusual weather events, hunting pressures and 

habitat fragmentation, that may disrupt the balanced dynamics of a given system (see 

Basáňez et al. 2012). Chapter 8 is an initial attempt to model the host dynamics of a three-

host trematode system and highlights various unknown aspects of this system. The current 

model (Chapter 8) assumes fixed carrying capacities for each host population, but in reality 

host populations are dynamic. With dynamic host populations, the question could be posed 

whether trematodes cap host populations at a different level to that which could be achieved 

in the absence of such parasites? Our limited understanding of potential hosts is also 

restricting because certain species may act to maintain the parasite population whilst others 

are dead-end hosts – this was beyond the scope of the current model. Anthropogenic impacts 

of such systems have been equally discounted, but the influx of viable fish hosts, through the 

re-stocking of natural ecosystems, is likely to have a significant impact on the dynamics of 

such parasites. This is particularly important because the proportion of fish that become 

infected is high. Further, as climate changes there will be inevitable consequences for such 

systems. Understanding of how climate change can perturb these systems will help prevent, 

control and treat outbreaks of trematodiases in the future and incorporating a stochastic 

element to this model would be a potential next step for this research.  
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