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Abstract 

This paper attempts to investigate the possibility of structural change in tanker freight 

volatilities pre-and during the financial crisis. The aim is to apply a Markov-switching general 

autoregressive conditional heteroskedasticity (MS-GARCH) model that identifies and 

estimates the parameters of high and low volatility states, which are associated with different 

stages in the business cycle. Time varying volatility models, proposed by Engle (1982) and 

Bollerslev (1986) show that volatility is driven by shocks. Estimates of the persistence of 

shocks in time varying volatility models have been very high, particularly for financial data. 

This led to the introduction of integrated general autoregressive conditional heteroscedasticity 

(IGARCH) models by Engle and Bollerslev (1986), with unit persistence implying that 

market shocks do not die out over time. However, it has been suggested that the cause of high 

persistence of shocks within market volatilities may be due to structural shifts in the 

unconditional variance of the time series. Diebold (1986) argues that volatility persistence can 

be decomposed into two components, namely shocks persistence and persistence due to 

regime switching in the parameters of the variance model. Based on these findings we 

investigated the possibility of tanker freight volatilities being state dependent. Empirical 

findings show that tanker freight volatilities are clustered which may indicate that volatilities 

switch between distinct states. Assuming conditional volatilities of tanker freight rates switch 

simultaneously between a high volatility state and a low volatility state, and by measuring the 

magnitude and duration of these volatilities shocks, this paper attempts to explore the 

usefulness of such an implication to shipping freight risk and trading strategies, during booms 

and busts. The validity and comparative performance of the models is investigated with a set 

of diagnostics that discriminate between models on the basis of conservatism, accuracy and 

efficiency. Thus, this study contributes to the literature by: 1) investigating the possibility of 

state dependence of tanker freight volatilities. 2) measuring the duration and magnitude of 

high and low tanker freight volatilities shocks. 3) proposing a dynamic approach to measure 
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long-term risk exposure through a Markov-Switching Conditional Variance-Value-at-Risk 

(VaR) model.  

Keywords: freight risk, freight volatility, markov-switching volatility models and Value-at-

Risk. 

 

1. Introduction 

Analysing volatilities for tanker freight returns is a major issue for participants in freight 

markets. The understanding of freight volatility measures is vital in improving ship-owners’ 

profitability, and reducing financial risk exposure for investors and shipping portfolio 

managers. Furthermore, the vast and growing shipping derivative markets provide the 

necessary hedging tools for ship-owners and charterers to manage their freight risk exposures, 

but only provided those exposures are fully-understood. 

The shipping markets operate under conditions of perfect competition, and are extreme 

volatile, with clear evidence of high volatility, seasonality and clusters in returns, they also 

exhibit leverage effects, and feature non-zero and high levels of skewness and kurtosis 

respectively. Studies in the area of freight risk still remain scarce and the understanding of the 

relationship between freight risk and its return remains a gap in shipping literature worth 

exploring. Thus, empirical work carried out in this study aim to fill this gap in knowledge. 

The benefit of such a study can be summarized as; to aid ship-owners in improving profit 

margins, through optimized operations; to improve vessel investment decisions; to reduce 

financial risk exposure for shipping portfolio managers and to improve the use of freight 

derivatives for risk management. 

The few papers that explore different ways to measure shipping freight dynamics have 

differed in their interpretation of the most suitable measure for conditional freight volatility 

and consequently for the most appropriate freight risk measure, which has been borrowed 

from the financial literature. Furthermore, recent empirical work in maritime studies suggests 

the possibility of conditional freight volatility switching between different regime states that 

are dynamically distinct Alizadeh and Nomikos (2007) and Abouarghoub and Mariscal 

(2011). Therefore, these dissimilarities in findings within maritime literature are attributed in 

this study to the possibility of freight rate returns switching between different volatility 

structures. Most important, an appropriate risk measure should adapt to these dynamics. 

Consequently, it seems critical that a value-at-risk measure for freight returns accommodates 

these distinct dynamics that are associated with different conditional freight volatility levels. 

Therefore, this study contributes to maritime literature by proposing a two-state Markov 

regime-switching and distinctive conditional variance model by matching the two-state 
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conditional freight variance to the most suitable GARCH specification. This provides for the 

first time a distinctive empirical insight into the dynamics of shipping tanker freight rates. 

This is applied to the BDTI that represents freight movements for the whole tanker industry. 

The rest of the paper is structured as follows. Section 2, reviews relevant literature, section 3, 

presents the applied framework, section 4, presents empirical results and analysis. Finally, 

section 5 concludes the paper. 

 

2. Literature review 

Value-at-risk is a powerful method used to assess the overall market risk for an asset or a 

portfolio of assets over a short horizon, such as one-day and ten-day periods, and under 

normal market conditions. The applied methodology captures in a single number the multiple 

components of market risk, such as curve risk, basis risk and volatility risk. However, value-

at-risk measure is unreliable over longer periods and abnormal market conditions, Crouhy et 

al (2006). Crouhy et al (2006, p.149) argue that during crisis periods financial institution tend 

to sell assets in the affected classes to reduce their risk exposure and keep within the required 

value-at-risk limit set by the risk management team. This further depresses the market and 

increase’s volatilities and correlations of the risk factors for these assets. 

Value-at-risk is defined as the worst loss that is expected from holding an asset or a portfolio 

of assets for a defined period of time and with a specified level of probability. Thus, offering a 

probability statement of a potential change in the value of a portfolio resulting from a possible 

change in market factors over a specified period of time. Most value-at-risk models are 

designed to measure risk over a short period of time and with a high level of confidence and is 

in aligned with the requirement of the Basel Committee (BIS, 1998) , ten-day period and 99 

per cent confidence level, respectively. For more details see Crouhy et al (2006, p.154). 

Furthermore, value-at-risk methods for traditional financial markets are well documented in 

Dowd (1998), Jorion (2006) and most recently in Alexander (2008b). A comprehensive 

introduction to VaR for shipping markets can be found in Alizadeh and Nomikos (2009). VaR 

main criticism seems to be twofold. Firstly, VaR measures do not provide any information 

regarding the loss beyond the estimated VaR level. Secondly, VaR is not a coherent risk 

measure, as it fails to fulfil the sub-additivity condition, which requires the risk of the total 

positions to be less than or equal to the sum of the risk of the individual positions, Artzner et 

al (1997). These defects are overcome by the introduction of the expected tail loss (ETL) that 

expresses the loss beyond the VaR and fulfils the coherent condition, Artzner et al (1999). 

Yamai and Yoshiba, (2005) find that expected shortfall is a better risk measure than value-at-

risk and that the latter should be complemented with the former to produce more 

comprehensive risk monitoring.  
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Sadeghi and Shavvalpour (2006) argue that value-at-risk has became an essential tool to 

quantify risk in oil markets, due to the increase in level of competition and deregulation that 

lead to relatively free energy markets characterised by high price shifts. Cabedo and Moya 

(2003) suggest that the value-at-risk approach, regardless of the calculated method, is suited 

to quantify maximum changes in oil prices in association with a likelihood level and that this 

quantification is fundamental for risk management strategies. Similar value-at-risk measure 

can be used to quantify maximum changes in tanker freight prices that provide shipping 

practitioners with a vital tool to improve their risk management strategies.   

Studies of volatility dynamics and subsequently estimated risk measures within the shipping 

freight markets are scars and can be classified to belong to two schools of thoughts. One that 

support the use of semi-parametric and parametric, see Kavussanos and Dimitrakopoulos 

(2007), Nomikos et al (2009) and Abouarghoub and Mariscal (2011), and another that support 

the use of non-parametric based approaches to measure short-term freight risk, see Angelidis 

and Skiadopolous (2008) and Kavussanos and Dimitrakopoulos (2011). The choice of the 

appropriate model to measure risk within different markets is subject to underlying empirical 

work, thus, the literature recognises the lack of consensus about a preferred method to 

estimate market risk, Kuester et al (2006). Furthermore, it has been suggested in the literature 

that incorporating regime changes in volatility models might improve VaR estimates within 

freight markets, Alizadeh and Nomikos (2007). Moreover, Abouarghoub and Mariscal (2011) 

suggest the possibility of conditional freight volatility switching between different regime 

states that are dynamically distinct. 

In summary, there are dissimilarities in findings within maritime literature regarding a 

preferred freight risk measure and that this can be attributed to the possibility of freight rate 

returns switching between different volatility structures that are dynamically distinctive. 

Therefore, this study investigates this postulate and consequently, accommodates these 

distinct dynamics in a value-at-risk measure for freight returns. As suggested earlier value-at-

risk has become an essential tool to quantify risk in oil markets. Thus, maritime researchers 

apply value-at-risk methodology to tanker freight markets in recognition of interlinks between 

tanker freight markets and the underlying transported commodity. Thus, this risk measure can 

be used to quantify the maximum change in freight price in association with a likelihood 

level. This study postulates a platform in an attempt to improve freight risk measures by 

accounting for distinctive market conditions. In other words, proposing a framework to 

quantify the maximum change in freight price in association with a likelihood level, in 

particular during distinctive market conditions. Furthermore, the estimation of freight risk in 

this paper is limited. As discussed earlier VaR should be complemented by expected shortfall 

to produce a more comprehensive risk monitoring. On the one hand, we are in agreement that 

VaR measure provides limited information for shipping practitioners and should be 

complemented with another risk tool to measure medium-term risk that largely benefits small 

and medium shipping enterprises. On the other hand, we believe that an accurate VaR 
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measure along with a strong understanding of fundamentals and market structure is sufficient 

to measure short-term risk and meets the needs of large shipping enterprises. 

 

 

3. Framework 

Empiricals within maritime literature provide strong evidence of clusters in daily freight 

returns. For example see Abouarghoub and Mariscal (2011) and references within. Therefore, 

first, we introduce a two-state Markov regime-switching conditional variance framework to 

investigate the possibility of two different volatility structures in shipping tanker freight 

markets. Second, we investigate the two-state Markov-switching conditional variance model 

for the best match from the GARCH-family to capture the dynamics within these distinct 

freight volatility states. The results are profound. Thus, this paper postulates that estimates of 

short-term freight risk can be improved through a framework that is capable of capturing the 

distinctive nature of freight returns by switching between two distinctive regime states, a high 

and low freight volatility states. Furthermore, the proposed framework explains the 

dissimilarities in maritime literature in measuring freight risk using value-at-risk models. 

3.1. Value-at-risk 

The distribution of risk factor returns for the VaR measure used in this study is assumed to be 

normal. Therefore, a one-day ahead normal value-at-risk (N-VaR) is measured for 

unconditional freight returns at time t and h days ahead, and can be expressed in the 

following: 

      
     (   )                                                        (1) 

where   is the significance level and    (   ) is the standard normal quantile     value. 

The estimated conditional volatility at time t for a h days ahead is denoted by     . 

 

3.2. Modeling conditional volatility 

On the one hand, this study does not compare the performance of different conditional 

variance models in measuring one-day ahead value-at-risk, for such a comparisons see 

Angelidis and Skiadopolous (2008), Nomikos, et al (2009), Abouarghoub and Mariscal 

(2011) and Kavussanos and Dimitrakopoulos (2011). On the other hand, this paper, explores 

the best conditional variance models from the GARCH-family that matches the distinctive 

nature of the freight market, based on the assumption that freight returns switch between a 
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high and low freight volatility states. Therefore, in the following sections we review these 

models that where chosen based on a trial and error procedure. 

 

3.2.1. The symmetric GARCH (SGARCH) model 

Bollerslev (1986, 1997) developed the symmetric normal general autoregression conditional 

heteroscedasticity (SGARCH) model, which is a generalization of the ARCH model that was 

developed by Engle (1982) and is based on an infinite ARCH specification and allows a 

reduced number of estimated parameters by imposing nonlinear restrictions. This study, like 

most empirical studies, applies the GARCH(1,1) model assuming that the dynamic behaviour 

of the conditional variance depends on absolute values of market shocks and the persistence 

of conditional variance. This is represented as follows: 

  
    ∑       

  
    ∑       

  
                      (    

 )                  (2) 

where   
  represents the dynamic conditional variance,   refers to the constant,   is the 

market shock coefficient,   is the lagged conditional variance coefficient and    denotes the 

market shock and is assumed to be normally distributed with zero mean and time varying 

conditional variance.  

The above equation is rearranged so that   in the conditional variance equation is replaced by 

  (  ∑   
 
    ∑   

 
   ), where    is calculated by measuring the variance of the full 

sample observed returns. This procedure is referred to as variance targeting for GARCH 

models. 

In general a conditional variance model consists of two equations, a conditional mean 

equation and a conditional variance equation that specifies the behaviour of returns. The 

conditional variance error    is the error process in the conditional mean equation that is 

expressed in this thesis as: 

                                                                     (3)     

where c is a constant and is assumed to equal average returns  ̅, thus, it is reasonable to 

assume that        ̅. Therefore, in this study the mean for daily freight returns is assumed 

to be zero, which is an appropriate assumption for daily returns, Alexander (2008a), thus, 

equation (2) is rewritten as: 

  
         

       
                    (    

 )                                      (4) 

where      . The variance is updated by the weighted squared return and the weighted 

variance of the previous period. The coefficient   is the weight assigned to squared return at 

time t,   
 
 
and   is the weight assigned to variance at time t,   

 . The implication of the 

GARCH model is that there is a relatively stable long-run variance to which the estimated 
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variance returns over time. The long-run, or the unconditional variance can be derived as: 

     (     ). By substituting the long-run variance into equation 4, it can be shown 

that the updated variance is the weighted average of the long-run variance, the squared return 

and yesterday’s variance. Put simply, the predicted variance is the long-run plus or minus 

something dependent of the squared return and the squared previous day’s variance. The sum 

coefficient of alpha and beta measures the persistence of the model. If the sum (alpha + beta) 

is close to one, the model is said to have a high persistence. This means that it will take a long 

time for the variance to return to its long-run level, once shocks push it away from its long-

run level. 

 

3.2.2. A fractionally integrated GARCH (FIGARCH) model 

Ding, Granger and Engle (1993) studied the daily S&P500 index and found that the squared 

returns series has positive autocorrelations over more than ten years. Thus, volatility tends to 

slowly change over time and a shock effect can take a considerable time to decay. Laurent 

(2009, p88) argues that the distinction between stationary and unit root processes is 

restrictive. On the one hand, the generation of shocks in a stationary process occurs at an 

exponential rate of decay, thus, capturing only the short-memory. On the other hand, for a unit 

root process the persistence of shocks is infinite. The short- run behaviour of the time-series 

can be captured by the parameters of an ARMA model, while the long-run dependence is 

better captured by a fractional differencing parameter. Therefore, Baillie, Bollerslev and 

Mikkelsen (BBM) introduced the Fractionally Integrated GARCH (FIGARCH) model to 

capture the correlogram of the observed volatility. The FIGARCH (p,d,q) model is expressed 

using lag operators as: 

  
   [   ( )]   {  [   ( )]   ( )(   ) }  

                          (5)  

with                 
   

 
 and  (  

   

 
)   (     ). These 

conditions ensure that the conditional variance of the FIGARCH (p,d,q) is positive for all t. 

The high significance of the estimated parameter and log-likelihood along with tests results 

justifies the use of a long-memory process in the conditional variance. The main 

characteristics of this model is that it is not stationary when    . 

(   )  ∑
 (   )

 (   ) (     )
 
                                                      (6) 

      
 

 
 (   )   

 

 
 (   )(   )      

     ∑   ( ) 
  

                                                           (7) 
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where   ( )      ( )  
 

 
 (   ), etc, and ∑   ( )   

 
    for any value of d. Therefore, 

the FIGARCH model is nonstationary similar to the IGARCH model. For more details see 

Laurent (2009, p. 90). 

 

3.2.3. MARKOV-SWITCHING GARCH MODELS 

This study investigates for the first time the possibility of the second moment for freight 

returns switching between two sets of constant parameter values, one set representing a higher 

freight volatility regime state and the other a lower freight volatility regime state. 

Furthermore, each regime state is modelled by capturing the dynamics within these distinct 

regime states through the best match from the GARCH-family. In other words, a two-state 

Markov-switching conditional variance (2-S MSCV) framework provides a useful insight into 

freight tanker information by distinguishing between two freight volatility regimes. These 

distinct states are matched against the best fit from GARCH-family models to capture the 

dynamics within these regime states. This framework in this study is referred to as a two-state 

Markov-switching distinctive conditional (2-S MSDCV) variance framework. 

The log-likelihood of both Markov regime-switching models are maximised subject to the 

constraint that the probabilities lie between zero and one and sum to unity. In this paper the 

estimation method used is the feasible non-linear programming approach of Lawrence and 

Tits (2001). These estimations are evaluated using the filtering procedure of Hamilton (1989) 

followed by the smoothing algorithm of Kim (1994), for more details and preceding 

references regarding the filtering algorithm see Hamilton (1994, Ch. 22) and Krolzig (1997, 

Ch. 5).   

Therefore, the second moment of freight returns for a time series that better represents freight 

returns for the whole tanker industry (returns on a portfolio of different tanker vessels) is 

assumed to switch between two distinctive conditional variance regime sates, the parameters 

of these distinctive volatility frameworks are assumed to be constant and are estimated 

simultaneously. This provides an insight into the dynamics of the distinctive nature of the 

freight market. This switching process is captured by time variance estimates of the 

conditional probability of each state and an estimate of a constant matrix of state transition 

probabilities. In the Markov-switching model the regression coefficients and the variance of 

the error terms are all assumed to be state dependent and returns are assumed normally 

distributed in each state. The Markov regime-switching conditional variance model is 

expressed as: 

  
  {

    
         

    
         

}        
     (     

 )                                     (8) 

The framework expressed in equation 8 investigates the hypothesis of tanker freight returns 

shifting between two-state, lower and higher volatility regime states. Furthermore, to model 
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the dynamics of these distinctive two-state volatility regimes we employ a Markov-switching 

distinctive conditional variance model that is expressed as: 

  
  {

     
     [     ( )]

    ( )[     ( )]
       

 

     
     [     ( )]

   {  [     ( )]
   ( )(   ) }     

     
}       

  
  {

     
         

     
         

}        
     (     

 )                                (9)                             

where LV and HV refer to lower freight volatility state and higher freight volatility state, 

respectively. In equation 9 the conditional variance for freight returns is better expressed 

through a two-state Markov-switching distinctive conditional variance model, where the 

dynamics within the lower volatility state and the higher volatility state are captured by a 

fractional integrated conditional variance model (FIGARCH) and a normal symmetric 

conditional variance mode (NSGARCH), respectively. The choice of these two specifications 

to model the two distinct regime states is based on trial and error. 

The state variance is assumed to follow a first-order Markov chain where the transition 

probabilities for the two states are assumed to be constant in the form of: 

  [
      
      

]  [   ]                                                   (10) 

Where   denotes the probability of being in state one (the higher volatility state) ,     

denotes the probability of staying in the higher volatility state,      denotes the probability of 

staying in the lower volatility state,     denotes the probability of switching from the higher 

volatility state to the lower volatility state,     denotes the probability of switching from the 

lower volatility state two to the higher volatility state, at any given point in time. The relations 

between these transition probabilities are explained as;     (     );     (     ) 

and the transitional probability of lower volatility state = (   ). The unconditional 

probability of being in the higher volatility state regime is expressed as    (       )⁄ . 

The set of parameters to be estimated for the conditional variance model in equation 8 is 

represented by the following vector. 

  (                 )                                                   (11) 

Assuming that the Markov chain is represented by a random state indicator vector   whose ith 

element equals one if      and zero otherwise. Thus, in a two-state Markov chain the state 

indicator vector is: 

   (
  
  

  
  )  {

(
 
 
)                                

(
 
 
)                                

                                 (12) 
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Therefore, the conditional probabilities of the state indicator    at time t, given all information 

up to time t-1, is denoted by       , this conditional expectation is the product of the 

transitional matrix  and the state indicator at time t-1: 

           (  )                                                      (13) 

Starting values are set as: 

 ̂  (
 ̂ 
  

 ̂ 
  
)  (

 
 
)     (

 
 
)                                              (14) 

The model is estimated using maximum likelihood method that is constructed based on the 

investigated sample. The inclusion of conditional regime probabilities in the maximum 

likelihood estimation requires a sub-iteration at every step of the numerical algorithm used to 

maximize the log likelihood function. For more details see Alexander (2008a, p.328) and 

references within. As the errors terms are assumed to be normally distributed in each state, the 

normal density function with expectation   and standard deviation   is expressed as: 

 (            )  
 

√     
 
   [ 

 

 
(
 

   
)
 
]                              (15) 

The regression coefficients and error standard deviation starting values are set equal to their 

values from standard linear regression, where  ̂    ̂   and  ̂    ̂  . The set of 

parameters to be estimated for the distinctive conditional variance model in equation 9 is 

represented by the following vector. 

  (                                   )
                            (16) 

where the log-likelihood function that is estimated is expressed as follows: 

  ∑    [
 

√       
 ( 

   
      )

   ( 
 

 
(

 

     (    
      )

)

 

) 
              

 
(   )

√       
 ( 

   
      )

   ( 
 

 
(

 

     (    
      )

)

 

)]                        (17) 

where   and (   ) are the conditional probabilities of being in state one (in this thesis is 

referred to as the higher freight volatility state (HV)) and being in state two ( or in some other 

notations referred to as sate zero, in this thesis is referred to as the lower freight volatility state 

(LV)), respectively. The expression (          ) refers to the unknown parameters of the 

relevant conditional variance model that need estimation and conditional on available 
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information at the time. For extensive details of the construction of the log-likelihood function 

for Markov regime-switching GARCH models see the appendix of Gray (1996). 

     

3.3. Backtesting VaRs 

Backtesting of VaR is a test of the accuracy with which the chosen VaR model predicts 

losses. For purposes of examining the accuracy of forecasts, we split the total sample in two 

periods. The first period is for model estimation; this is used for calculating VaRs for the 

second period, which is then back tested against actual returns for the same period. The 

      
  measure promises that only  ×100% of the time the actual return will be worse than 

the forecast       
  measure. For the purposes of evaluating the accuracy of forecasts, this 

study conducts the unconditional coverage test, the independent test and the conditional test. 

For more details see Christofferson, (1998). 

 
 

3.4. Misspecification tests 

In this chapter we conduct several misspecification tests to investigate the robustness of the 

proposed models. First, an information criteria method is used to evaluate the goodness of fit 

of the conditional variance models that constitute our freight risk measure. In general, 

econometric models are estimated using the maximum likelihood estimation method, in doing 

so there is the possibility of improving the log-likelihood by adding parameters, which may 

result in over fitting. This problem is overcome in the literature by model selection criteria. 

They resolve this problem by introducing a penalty term for the number of parameters in the 

model. The following criteria are used to rank and compare the proposed models in this study. 

Akaike (1974), Schwarz (1978), Shibata (1981).  

Second, employed conditional heteroscedasticity models in this chapter are diagnosed using 

Tse (2002) proposed Residual-Based Diagnostic (RBD) for conditional heteroscedasticity, 

this is applied with various lag values to test for the presence of heteroscedasticity in the 

standardized residuals by running the following regression: 

 ( ̂ 
 )       ̂   

       ̂   
                                      (18) 

where  ̂ 
    ̂  ̂ ⁄ . As  ̂ 

  depends on a set of parameters and assuming that  ( ̂ 
 )   , we 

run the above regression on the information available at the time and examine the statistical 

significance of the regression parameters. Tse (2002) derives the asymptotic distribution of 

the estimated parameters and shows that a joint test of significance of the          follows a 

  ( ) distribution. Tse (2002) proposed framework overcomes the shortcomings of the 

BoxPierce portmanteau statistic that is the most widely used diagnostic for conditional 

heteroscedasticity models. 
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Third, misspecification of the conditional variance equation and the presence of leverage 

effects are investigated through the diagnostic test of Engle and Ng (1993). This test examines 

if squared normalized residuals can be predicted by observed information in the past through 

the following variables                 ̂                 ̂   , and can not be 

captured by the implemented volatility model. Therefore, in this study using Engle and Ng 

(1993) framework we test the presence and the size magnitude of the leverage effect 

remaining in the residuals of our conditional variance models. 

4. Empirical results 

An appropriate conditional volatility measure is vital for a correct risk measure as it 

constitutes the building block for value-at-risk (VaR) that is used to estimate freight risk in the 

literature. As argued earlier a better insight into freight information can be provided by a 

framework that is capable to capture the distinctive nature of volatilities dynamics within 

freight returns, which should improve freight risk measures, by calculating short-term VaR 

based on a two-state distinctive conditional variance model. Therefore, VaR in this section is 

estimated on the bases that the underlying conditional volatility measure switches between 

lower and higher volatilities regime states. 

To this end, in this study we investigate the hypothesis of the second moment of freight return 

(conditional variance) being regime state dependence and then we examine the suitability of 

different conditional variance models to better capture freight dynamics within these distinct 

regimes. These two steps are carried out by employing a two-state Markov regime-switching 

conditional variance model and a two-state Markov regime-switching distinctive conditional 

variance model on average Baltic Dirty Tanker Index (BDTI), a time series that represents 

freight rate positions for a fleet of tankers, see Table 1. As suggested in the literature, for 

example Kavussanos and Dimitrakopoulos (2011) study the BCTI and the BDTI stating that 

these freight rate indices are averages of individual route indices, and can be thought of as 

imitating portfolios of freight rate positions, covering a fleet of vessels. For the purposes of 

this study, we examine daily shipping freight returns for the BDTI; the full data sample period 

is from 30-May-2000 to 30-OCT-2009. The data period used for estimation is from 30-May-

98 to 24-DEC-07, and the data period used for evaluation is from 02-JAN-2008 to 30-OCT-

09. Over the second period, we use a sample of 462 days (approximately five quarters) which 

is rolled on over time to estimate one-day VaRs. We obtain thus 462 VaR estimates, which 

are used to test and evaluate the VaR model. 

4.1. Baltic Dirty Tanker Index (BDTI) 

The BDTI is an index that tracks freight movements for crude oil and dirty oil products and is 

composed of 17 voyage-charter (spot) routes quoted in Worldscale (WS) points. This is 

represented in Table 1 with a description of the route and maximum amount of cargo in 

metric tonnes that can be transported on a specific route using a specific tanker size and for 
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some routes the required temperature in Fahrenheit to maintain a particular type of cargo in its 

liquid form.   

Table 1 Baltic Dirty Tanker Index (BDTI) route definitions 

 

Note: Table 1 presents the definitions of the Baltic Dirty Tanker Index (BSTI) routes based on 2008. All 

routes are quoted in WorldScale points and cargoes are for the transportation of crude oil apart from 

TD10D and TD16 routes that are for fuel oil. LOOP stands for Louisiana oil port; NHC no heat crude; DPP 

dirty products. 

Source: Baltic Exchange. 

 

In Figure 1, three regime-states that represent phases of low, transitional and high volatilities 

states within freight cycles are imposed on tanker price-levels to illustrate different volatility 

dynamics within a period under investigation for the tanker markets. These shifts in freight 

dynamics are highlighted in more details in Table 2. 

    

 

 

Route Route Description Cargo Description
TD1 MEG (Ras Tanura) to US Gulf (LOOP) 280,000 mt 

TD2 MEG (Ras Tanura) to Singapore 260,000 mt

TD3 MEG (Ras Tanura) to Japan (Chiba) 260,000 mt

TD4 West Africa (bonny) to US Gulf (LOOP) 260,000 mt

TD5 West Africa (bonny) to USAC Gulf (Philadelphia) 130,000 mt

TD6 Black sea (Novorossiysk) to Mediterranean (Augusta) 135,000 mt

TD7 North Sea (Sullom Voe) to continent (Wilhelmshaven) 80,000 mt

TD8 Kuwait (Mena el Ahmadi) to Singapore 80,000 mt , crude/DPP 135F

TD9 Caribbean (Puerto la Cruz) to US Gulf (Corpus Christi) 70,000 mt

TD10D Caribbean (Aruba) to USAC (New York) 50,000 mt fuel oil

TD11 Cross Mediterranean, Banias to Lavera 80,000 mt

TD12 ARA (Antwerp) US Gulf (Houston) 55,000 mt

TD14 SE Asia (Seria) to East Cost Ausralia (Sydeny) 80,000 mt NHC

TD15 West Africa (Bonny) to China (Niqpo) 260,000 mt NHC

TD16 Black Sea (Odesa) to Mediterranean (Augusta) 30,000 mt fuel oil 135F

TD17 Baltic (Primors) to UK or continental Europe (wilhelmshaven) 100,000 mt

TD18 Baltic (Tallinn) to UK or continental Europe (Rotterdam) 30,000 mt 
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Figure 1: A Three Regime-State imposed on Tanker Freight Price-Levels 

 

1998    1999     2000   2001   2002   2003    2004    2005   2006     2007    2008    2009     2010 

 

 

Figure 2: Three Regime-State for Tanker Freight Price-Levels 

 

Note: Figure 1 illustrates transitional shifts between lower volatility state, transitional volatility state and higher 

volatility states, indicated on the vertical axis by 0, 1 and 2, respectively. 
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Table 2: Different Phases of Freight Cycles within the Tanker Markets 

 

Note: Table 2 presents duration of different phases of freight cycles within the tanker markets. These are Low 

Volatility State, Transitional Volatility State and Higher Volatility State.  

 

No. Regime State Start Date End Date Duration in Days

1 TVS 03/08/1998 07/08/1998 5

2 LVS 10/08/1998 10/12/1999 341

3 TVS 13/12/1999 16/05/2000 103

4 HVS 17/05/2000 04/04/2001 226

5 TVS 05/04/2001 12/06/2001 45

6 LVS 13/06/2001 09/07/2001 19

7 TVS 10/07/2001 22/10/2001 74

8 LVS 23/10/2001 15/10/2002 245

9 TVS 16/10/2002 07/01/2003 54

10 HVS 08/01/2003 02/04/2003 61

11 TVS 03/04/2003 30/06/2003 59

12 LVS 01/07/2003 08/09/2003 49

13 TVS 09/09/2003 04/11/2003 41

14 HVS 05/11/2003 26/03/2004 97

15 TVS 29/03/2004 24/05/2004 38

16 HVS 25/05/2004 05/08/2004 52

17 TVS 06/08/2004 21/09/2004 32

18 HVS 22/09/2004 30/03/2005 128

19 TVS 31/03/2005 23/09/2005 124

20 HVS 26/09/2005 09/02/2006 92

21 TVS 10/02/2006 12/07/2006 105

22 HVS 13/07/2006 31/07/2006 13

23 TVS 01/08/2006 10/08/2006 8

24 HVS 11/08/2006 31/08/2006 14

25 TVS 01/09/2006 02/08/2007 230

26 LVS 03/08/2007 17/10/2007 53

27 TVS 18/10/2007 28/11/2007 30

28 HVS 29/11/2007 11/01/2008 26

29 TVS 14/01/2008 17/03/2008 46

30 HVS 18/03/2008 07/10/2008 141

31 TVS 08/10/2008 24/12/2008 56

32 LVS 02/01/2009 24/12/2009 250

33 TVS 04/01/2010 09/02/2010 27

34 LVS 10/02/2010 15/03/2010 24

35 TVS 16/03/2010 28/05/2010 51
36 LVS 01/06/2010 29/10/2010 108



Dynamic Risk and Volatility in Tanker Shipping Markets: A Markov-switching application  

Insert the paper’s ID 14 

IAME 2013 Conference, July 3-5– Marseille, France  16 

4.2. Markov regime-switching estimations 

The above argument suggests that the dynamics of freight returns are conditional on the level 

of volatility and that these are better captured by distinctive freight volatility regime states. 

Therefore, we investigate the postulate that freight volatilities during these distinct regime 

states are better captured by distinctive conditional variance models. In doing so, we carryout 

this on tanker freight returns for the Baltic Dirty Tanker Index (BDTI), which represents 

freight returns on a portfolio of tankers of different sizes operating on different routes. Thus, a 

Markov regime-switching distinctive conditional variance framework applied to the BDTI, 

examines the strength of such a claim and identifies the best fit of a switching conditional 

freight volatility for the whole tanker market. Our empirical findings postulate that volatilities 

within tanker freight returns are better modelled by a two-state Markov regime-switching 

distinctive conditional variance model, for a higher and a lower freight volatility regime 

states, and most importantly the dynamics of these two distinct regime states are better 

modelled by a normal symmetric conditional variance framework and a fractional integrated 

conditional variance framework, respectively.   

In Table 3 we present the results of the two-state Markov regime-switching conditional 

variance model. This includes for both lower and higher volatility levels, transition 

probabilities, unconditional probability, daily volatility level, average volatility state weight 

and average volatility duration. Furthermore, the two-states and smoothed transitional 

probability are illustrated in Figure 3 to provide a prospective of the reported analysis.     
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Table 3: Two-state Markov-switching conditional variance 

 

Note Table 3: This table presents transition 

probabilities, unconditional probability, two state 

volatility measures, average total low/high volatility 

weighting and daily average duration. The two state 

volatility regimes are represented by low and high 

volatility structures. 

                                             Source: Author. 

 

 

   : Transition probability of remaining in the lower volatility state.  

   : Transition probability of switching from lower volatility state to higher volatility state.  

   : Transition probability of switching from higher volatility state to lower volatility state.  

   : Transition probability of remaining in the higher volatility state. 

 :  Unconditional transition probability  

LV : Lower Volatility  

HV : Higher Volatility  

 

 

 

 

 

Transition πHH 0.842732 (41.1)†

Transition πLH 0.0790435 (7.50)†

Transition πHL 0.15727

Transition πLL 0.92096

Unconditional π 0.085751357

Daily Low Volatility 0.01114125

Daily High Volatility 0.03612530

Average LV Weight 70.14%

Average LV Duration 16.56 Days

Average HV Weight 29.86%

Average HV Duration 7.12 Days

Markov-Switching SGARCH Model
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Figure 3: Smoothed probabilities for two-state distinctive conditional variance regimes  

 

Note Figure 3: illustrates fitted regimes to tanker freight returns and smoothed probabilities for the two 

distinctive conditional freight volatility regime states.  The first illustration represents tanker freight returns for 

the BDTI imposed on the estimated two distinct states, with the gray shaded area represents the higher volatility 

regime state. The other two illustrations representing smoothed probabilities for the estimated higher freight 

volatility state and lower freight volatility state, respectively. Regime 0 and Regime 1 refers to higher freight 

volatility state (HV) and lower freight volatility state (LV), respectively. 

Source: Author’s output from PcGive13 package. 

  

A two state analysis point out that volatilities of tanker freight rates tend to switch between 

two state regimes, a lower volatility state and a higher volatility state with an average duration 

of 16.5 days and 7 days, within each regime, respectively. Transition probabilities indicate 

that the tendency of switching from the higher regime to the lower regime once in higher 

volatility is lower than vice versa, this is represented in an overall 70 per cent of the time in 

lower volatility and 30 per cent in higher volatility. This average duration within a volatility 

structure can be vital for long term risk management strategies, for example by identifying 

which state the market is in, one can forecast volatility ahead number of days and the 

unconditional volatility corresponding to the  relevant state. Figure 4 illustrate higher and 

lower conditional volatilities limitations for tanker freight returns by plotting the latter 

imposed on upper and lower thresholds to illustrate the distinct states of unconditional freight 

volatilities.   
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Figure 4: Tanker freight returns imposed on volatilities higher and lower limitations 

 

Note Figure 4: This is an illustration of tanker freight returns represented by the returns of the Baltic Dirty 

Tanker Index (BDTI) with freight volatility bands illustrated by dashed line for lower and higher volatility 

levels. 

Source: Author. 

 

Table 4 reports empirical estimations and test results for the employed two-state Markov 

regime-switching distinctive conditional variance model for tanker freight returns. Results are 

presented for two distinct regime states, lower volatility (LV-BDTI) and higher volatility 

(HV-BDTI). First, the table starts with basic statistics such as split of number of observations, 

mean, minimum, maximum, percentage of bad news (negative returns), variance, one-day 

long-term volatility and annualised long-term volatility. Furthermore, normality tests are 

carried out on standardised returns for each model that includes skewness, kurtosis and J-B 

tests. Second, the middle part of the table reports estimations output for two distinct 

conditional variance models that are used to model tanker freight volatility within the two 

estimated distinctive regime states. These are a FIGARCH and a SGARCH models for the 

lower and higher volatility structures, respectively. Reported results include the number of 

estimated parameters, coefficients values along with their t-statistics and p-values, persistence 

and the log likelihood values. Third, diagnostic and misspecification tests are reported in the 

final part of the table. Starting with serial correlation tests using the Box-Pierce statistics with 

lags from 5 to 50 for squared residuals, Engles’s LM ARCH test (Engle, 1982) to test the 
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presence of ARCH effects in freight returns for each distinct regime state, the diagnostic test 

of Engle and Ng (1993) to investigate possible misspecification conditional variance equation 

for each distinct regime state, the Residual-Based Diagnostic (RBD) to test for the presence of 

conditional heteroscedasticity, testing for the consistency of estimated parameters over time 

Nyblom’s Parameter Stability Test statistics are reported along with joint parameter test and 

Back-Testing for value-at-risk measure using Christofferson (1998) unconditional coverage, 

independence and conditional coverage tests. 

Empiricals reported in Table 4 provide significant evidence to support the postulate of a two-

state Markov-switching distinctive conditional variance framework to better capture freight 

volatility for tanker freight returns by representing freight returns in two distinct volatility 

regime states, lower and higher, and modelled by a fractional integrated conditional variance 

framework and a normal symmetric conditional variance framework, respectively. Thus, 

estimated coefficients for both models are positive and highly significance, with no evidence 

of autocorrelation or heteroscedasticity. The null hypothesis for correct specification, absence 

of conditional heteroscedasticity and the consistency of parameters over time cannot be 

rejected at any level, providing sufficient evidence of the superiority of the chosen models. 

Finally, Back-Testing results support the above claims and test the robustness of these models 

in measuring freight risk. Thus, one-day ahead value-at-risk at one per cent and five per cent 

significance levels are reported for both distinct regime states using Christofferson (1998) 

ratios.  

In summary, empirical results within this study support the usefulness of models that combine 

the ability to capture conditional heteroscedasticity in the data and simultaneously accounts 

for freight volatility state dependency in measuring short-term freight risk. These results are 

profound. As they provide a better understanding of the magnitude and the duration of 

volatility clusters within the lower and higher volatility states for the distinctive nature of the 

freight market. 
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Table 4: Freight returns for the BDTI are expressed in two distinct regime states for a sample 

period from 30-05-2000 to 30-10-2009. 

 

Note Table 4: presents estimation and test results for a two-state Markov-switching distinct conditional variance 

models for tanker freight returns. The underlying data is the Baltic Dirty Tanker Index (BDTI) that mimics 

earnings within the whole tanker market reported in WorldScale points.† and * refer to significance at 1% 

significance level and correct specifications, respectively. The full sample period is from 30-05-2000 to 30-10-

2009 (2361 observed returns). Back-testing is carried out on out-sample period from 02-01-2008 to 30-10-2009 

(462 observations). The in-sample period from 30-05-2000 to 24-12-2007 (1899 observations) is used to 

estimate the two-state Markov regime-switching distinctive conditional variance model. 

Source: Author. 

LV-BDTI HV-BDTI

No. Observations 1657 704

Mean -0.00079 0.00053

Minimum -0.03416633 -0.381223905

Maximum 0.033877622 0.123748819

Negative Returns 51.69% 48.94%

Variance 0.00013024 0.00130504

1-Day LTV 0.01141227 0.03612530

252-Days LTV 18.12% 57.35%

Skemness 0.03353 -1.41859

Kurtosis 2.84937 16.45782

J-B 6734.5† [0.000] 5813.7† [0.000]

Framework FIGARCH SGARCH

No. Parameters 3 2

Omega 0.000347

Phi(Alpha)         0.664878 (9.099)† [0.000] 0.145789 (3.11)† [0.002]

Beta       0.874086 (15.86)† [0.000] 0.617518 (4.23)† [0.000]

d-Figarch 0.429895 (10.25)† [0.000]

Persistence 0.76331

Log Likelihood 5128.56 1309.782

Q2(  5)  7.82601  [0.049] 0.49476   [0.920]  

Q2( 10)  13.3327   [0.100]   0.74946  [0.999]  

Q2( 20)   34.1957  [0.012] 1.60093   [0.999]  

Q2( 50)  49.0238   [0.432]  3.78802   [1.000]  

ARCH 1-2 0.9419 [0.3901]  0.12051 [0.8865]  

ARCH 1-5 1.4836 [0.1920]  0.09539 [0.9929]  

ARCH 1-10  1.2752 [0.2390]  0.07406 [1.0000]  

SBT              1.27728   [0.20150] 0.24000 [0.81033]

NSBT      0.47198  [0.63694] 0.80933 [0.41833]

PSNT 0.62812   [0.52993] 0.16224 [0.87112]

Joint Test 5.62117   [0.13157] 2.34672 [0.50363]

RBD( 2) 5.02241 [0.08117] 0.121761 [0.94094]

RBD( 5) -16.3043 [1.00000] 0.349496 [0.99660]

RBD(10) 11.6791 [0.30711] 0.453088 [0.99999]

NPST ARCH(Phi)       0.1118 0.10651

NPST Beta     0.07661 0.10798

NPST d 0.15242

NPST Joint Test 0.357359 0.152128

VaR B-T 1%  5%: LRuc 0.71*   0.44* 0.34*   0.21*

VaR B-T 1%  5%: LRind 0.84*   0.23* 0.52*   0.19*

VaR B-T 1%  5%: LRcc 0.33*   0.11* 0.15*   0.10*
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5. Conclusion 

This study attempts to investigate the short-term risk exposure in the tanker freight markets 

through a framework that is capable of capturing the distinctive nature of volatility dynamics 

within the tanker freight market. Therefore, the hypothesis of freight returns second moment 

being state dependence is challenged and the suitability of different conditional variance 

models to better capture freight dynamics within these distinct regimes is investigated. 

Findings support the postulate that tanker freight dynamics are state dependence and are better 

captured by distinctive conditional volatility models, and subsequently provide better risk 

measures. 

In other words, empirical findings postulate that volatilities within tanker freight returns are 

better modelled by a framework that is capable of capturing freight dynamics within the 

higher freight volatility and lower freight volatility states, through a normal symmetric 

conditional framework and a fractional integrated conditional variance framework, 

respectively. Most importantly, the fitting of distinct conditional variance models to freight 

dynamics that are relevant to the prevailing volatility state at the time, identifies the dynamics 

of each volatility state and provides a market insight into the distinctive nature of the freight 

markets, improving freight returns information. Thus, long-memory in variance is more 

pronounced in lower freight volatility levels, while higher freight volatility levels are 

normally distributed and symmetric. These distinct states are characterised with a lower 

tendency to shift from the lower volatility structure to the higher volatility structure, 

compared with the tendency of shifting from higher to lower volatilities, at any time, and once 

in the higher volatility state, time duration is shorter compared to lower volatility states.  

The implications of these finding to vessel operators and shipping portfolio managers are 

profound. The better understanding of the distinctive volatility dynamics within the lower and 

higher volatility states, in addition to the understanding of the magnitudes, durations and 

occurrences of volatility clusters, is important to improve vessel operations, hedging 

techniques and trading strategies. Furthermore, it’s paramount that the validity of these 

findings is further investigated for a portfolio of freight returns. Therefore, future empirical 

work should account for the distinctive nature of freight volatility dynamics in estimates of 

value-at-risk for different shipping segments. Furthermore, the superiority of a value-at-risk 

measure based on a two-state Markov-switching distinctive conditional variance framework 

should be further investigated and compared against value-at-risk measures based on different 

single conditional variance models. 
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