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ABSTRACT 

 

Prospecting carried out to the south of the Zambezi-Limpopo drainage divide in the 

vicinity of Bulawayo, Zimbabwe, led to the recovery of a suite of ilmenites with a 

chemical “fingerprint” that can be closely matched with the population found in the 

early Palaeozoic Colossus kimberlite, which is located to the north of the modern 

watershed. The ilmenite geochemistry  eliminates other Zimbabwe Kimberlites as 

potential sources of these pathfinder minerals. Geophysical modelling has been used 

to ascribe the elevation of southern Africa  to dynamic topography sustained by a 

mantle plume; however, the evolution of the modern divide between the Zambezi and 

Limpopo drainage basins is not readily explained in terms of this model.   Rather, it 

can be interpreted to represent a late Palaeogene continental flexure, which formed in 

response to crustal shortening, linked to intra-plate transmission of stresses associated 

with an episode of spreading reorganization at the ocean ridges surrounding southern 

Africa.      It is proposed that the formation of the flexure was a dynamic process, with 

the initial locus of flexure located to the north of the Colossus, resulting in the 

dispersal of ilmenites to the south of this kimberlite.   Subsequently, the axis of 

flexure migrated to its present position, to the south of Colossus.    
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INTRODUCTION 

Plate tectonic concepts (Le Pichon, 1968) provide a unified framework for 

interpreting tectonic processes at plate boundaries.  However, more than 40 years after 

the theory was tabled, there remains considerable debate surrounding the origins of 

vertical (epeirogenic) motions of continents.   Plumes have been invoked as a driving 

force, with, for example, the anomalously elevated topography of southern Africa 

ascribed to dynamic uplift over a putative extant African plume (e.g. Lithgow-

Beterlloni and Silver, 1998; Gurnis et al., 2000).   However, this mechanism predicts 

domal uplift of southern Africa, and a radial drainage pattern, whereas the interior of 

this region is a topographic “low”, associated with the Cenozoic Kalahari basin (Fig. 

1).   Further, instead of a radial drainage pattern, the major river divides in southern 

Africa define three roughly concentric arcs, broadly parallel to the coastline (Moore, 

1999; Moore et al., 2009a) (Fig. 1).    

 
These unusual aspects of southern Africa topography are not readily interpreted in 

terms of dynamic (plume-sustained) uplift.   An additional complexity is that the three 

watersheds are of different ages (Moore, 1999; Moore et al., 2009) – which is also not 

predicted by dynamic uplift over  a plume.   The oldest is the outer divide (the 

Escarpment Axis), initiated in the Early Cretaceous, coeval with the disruption of 

Gondwana.   The central divide (the Etosha-Griqualand-Transvaal or EGT Axis) is 

mid-Cretaceous in age, and broadly coeval with a major episode of reorganization of 

plate spreading in the Atlantic and Indian Oceans.   The inner drainage divide (the 

Ovambo-Kalahari-Zimbabwe or OKZ Axis) was initiated in the late Palaeogene, 

broadly coeval with a reorganization of spreading of the Indian Ocean Ridge, and a 

marked increase in spreading rate at the mid-Atlantic Ridge (Moore et al., 2009a).  

 

The river divides were interpreted to reflect axes of epeirogenic uplift by Maufe 

(1927, 1935).   This interpretation was endorsed by du Toit (1933), who also stressed 

that subsidence of the Kalahari Basin accompanied uplift along the EGT and OKZ 

Axes.   Moore et al. (2009a) noted that the coincidence in timing of uplift of each of 

the axes with volcanic activity in southern Africa, as well as episodes of 

reorganization of the oceanic spreading ridges surrounding southern Africa, pointed to 

a casual link with plate margin processes.   They suggested that vertical motions on 
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the continent reflected lateral transmission of stresses across the African Plate, 

associated with changes in the plate spreading regime at the ridges.   A more refined 

appreciation of the nature of these vertical (epeirogenic) continental motions would 

allow a clearer understanding of their relationship to plate margin driving forces.    

 

The aim of this study is to present results from a kimberlite prospecting programme in 

Exclusive Prospecting Orders (EPOs) in the Bulawayo area of western Zimbabwe 

(Fig. 2), and their bearing on the development of the OKZ Axis, which today forms 

the watershed between the major Limpopo and Zambezi drainage basins (Fig. 1).   

These EPOs, referred to in-house as the Bulawayo Block, were investigated in the 

mid-late 1990’s by Somabula Explorations (Pty) Ltd. – a private Zimbabwe-registered 

diamond exploration company, managed by the first author.   The northern extremity 

of the Bulawayo EPO block straddles the central Zimbabwe watershed (Figs. 2 & 3).    

 

GEOLOGIC SETTING OF THE BULAWAYO EPO’s 

The regional geological setting of the EPOs investigated by Somabula Explorations, is 

illustrated in Figs. 2.   The entire block is underlain by the granite-greenstone complex 

of the Archaean Zimbabwe Craton.   To the north, the Archaean basement is overlain 

with a marked unconformity by Permian to Triassic Karoo sediments, capped by an 

early Jurassic basalt.   The Karoo sequence is in turn unconformably overlain by 

unconsolidated and semi-consolidated sands of the Kalahari Group.   The Karoo and 

Kalahari sequences both thicken to the northwest.   To the northeast of the Bulawayo 

block, there is a linear outcrop of Karoo sediments, in part overlain by Kalahari cover, 

with an impersistent basal diamond bearing gravel (the Somabula Gravels).   

 

A group of kimberlites, discovered in the early 1900’s, are located just to the north of 

the central Zimbabwe watershed.    The largest of these is Colossus (Fig 2), with a 

reported grade of 2.76ct/100t, and a diameter of ~900m, , although this may prove to 

be a composite body, comprising two separate pipes (Mafara, 2000).  Two small non-

diamondiferous bodies (Prospects S1 and S2, not shown in Fig. 2) are located within 2 

km of Colossus.    The Wessels Sill, located some 10 km to the east of Colossus is 

also poorly diamondiferous (~1.4ct/100t).   Moffat and Clare to the northeast are both 

small pipes that are either low grade or barren (Fig. 2) (Mafara, 2000).     Colossus has 
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been dated at 533 +/- 7 Ma (Phillips, 1999), and it is probable that the associated 

kimberlites are also Lower Palaeozoic in age.    

 

Subsequent exploration work in Zimbabwe resulted in the discovery of a number of  

post-Karoo kimberlite clusters in the Zambezi Valley (Fig. 4).   These all proved to be 

either barren or to contain only trace amounts of diamonds (Mafara, 2000).   Several 

groups of kimberlites were also discovered to the south of the central Zimbabwe 

watershed (Fig. 4) (Mafara, 2000), including the economic River Ranch and Murowa 

pipes.   The former is described as “low grade” (Muusha, 1997), while the latter has a 

reported grade of 90ct/100t (Rio Tinto Zimbabwe Ltd., 2004).   The Mwenezi-1 

kimberlite in the southeast of Zimbabwe has a sub-economic grade of <10ct/100t 

(Williamson and Robey,  1999).   The Ngulube kimberlite in southeast Zimbabwe is 

diamondiferous but low-grade, while the Mambali kimberlite, from the same cluster, 

produced one small (0.5ct) diamond from 1553 tonnes of surface material processed 

(Mafara, 2000).   The remaining kimberlites south of the watershed are believed to be 

either low-grade or barren.   

 

The Mwenezi kimberlites have been dated at ~ 520 Ma (Phillips et al., 1997), while 

ages of 430 +/- 6 Ma and 740 +260/-310 Ma have been reported for the River Ranch 

pipe (Kramers and Smith, 1983).   Dolerite dykes of presumed Karoo age cut the 

Mwenezi-1 kimberlite (Williamson and Robey, 1999), and also the Ngulube pipe 

(Martin Spence, personal communication, 2002).    The Juliasdale kimberlite has been 

metamorphosed (Mafara, 2000), suggesting that it pre-dates the Pan African orogeny.   

Collectively, this evidence suggests that most of the kimberlites south of the 

watershed are pre-Karoo, and likely early Palaeozoic in age, with the Juliasdale pipe 

being even older. 

 

GEOMORPHIC SETTING OF THE BULAWAYO EPOs 

Amm (1937) used borehole evidence to reconstruct the pre-Karoo surface beneath the 

Karoo sedimentary basin to the north of the watershed.   His study showed that this 

surface is characterized by a low relief, and a regional slope to the northwest.   Moore 

et al. (2009b) noted that south-east oriented “fingers” at the southern extreme of the 

Karoo outcrop (Fig. 2) filled pre-Karoo valleys, and thus reflected an inverted 
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topography.   The elongate Somabula Karoo outcrop to the northeast (Fig. 2), which 

also fills a pre-Karoo valley, is a further example of such inverted topography.    

 

Moore et al. (2009b) pointed out that the upper reaches of modern tributaries of the 

Zambezi River, to the north of the watershed, have a general northwest orientation 

broadly parallel to the pre-Karoo drainage lines.  They noted that this pattern is not in 

accord with the present-day east-flowing Zambezi River, indicating that the extant 

drainage system to the north of the watershed is controlled by a regional slope that has 

been inherited from pre-Karoo times.   Moore et al. (2009b) presented evidence that 

the modern watershed was originally mantled by Karoo sediments.   Stripping of this 

cover exhumed the pre-Kalahari floor. 

 

Lister (1987) presented evidence for pre-Karoo palaeo-surfaces south of the modern 

watershed (e.g the summit of Wedza Mountain), and inferred that the pre-Karoo 

watershed would have been located some 150-200 km to the south of the modern 

watershed (Fig. 4, 1600m contour).   Moore et al. (2009b) also envisaged that the pre-

Karoo watershed was located to the south of the modern divide, but proposed that 

alluvial diamonds in the basal Karoo Somabula Gravels were ultimately derived from 

the Murowa-Sese kimberlites.    This requires that the pre-Karoo river divide was 

located even further to the south than suggested by Lister (1987) (Fig. 4, heavy 

dashed lines).    Moore et al. (2009b) argued that staurolite and kyanite, which 

dominate the heavy mineral suite in the Somabula Gravels, were derived from sources 

in the Nyanga and Chimanimani areas of the eastern highlands of Zimbabwe.   This 

area must therefore have formed part of the headwaters of the Somabula drainage 

system, requiring that the watershed curved to the north following this elevated terrain 

(Fig. 4). 

 

The modern central Zimbabwe watershed is characterized by a gently undulating 

topography (Fig. 5), which Lister (1987) ascribed to the African erosion cycle.   

Moore and Moore (2006) however noted that deep weathering profiles characteristic 

of the African Surface (Partridge and Maud, 1987) are rare on the watershed.   They 

argued that the African surface weathering carapace developed on the former Karoo 

cover over the modern watershed, and that the modern senile, low relief divide is an 

exhumed pre-Karoo surface, exposed by stripping of this cover.   Lister (1987) 
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questioned the view that the watershed represented an axis of flexure, as originally 

proposed by Maufe (1927, 1935) and du Toit (1933).   She suggested rather that it 

represented the present locus of headward erosion to the north, reflecting that the 

steeper gradient south-draining river system was more aggressive than the lower 

gradient system to the north of the watershed.   However, Moore (1999) subsequently 

presented evidence that supported the original Maufe-du Toit interpretation that this 

divide represents an axis of flexure. 

 

 

PROSPECTING IN THE BULAWAYO EPOs 

Somabula Explorations carried out a reconnaissance drainage sampling programme 

over the entire EPO block, at a density of 1 sample/20 km2.   This resulted in the 

recovery of a diffuse scatter of kimberlitic picroilmenites (with diameters > 0.5mm) in 

the headwaters of the south-draining river system, in the extreme north of the EPO 

block (Figs. 2 & 3).   Several phases of detailed follow-up sampling were carried out 

in the vicinity of the initial anomalous sample sites.   While further picroilmenites 

were recovered, the follow-up work failed to define any bulls-eye concentrations of 

these kimberlitic pathfinder minerals, arguing against a proximal source.   Subsequent 

prospecting in this area by other companies also failed to locate a local kimberlite 

source.   These results suggest that the diffuse scatter of  kimberlitic ilmenites 

recovered in the north of the Bulawayo Block represents a secondary pathfinder 

anomaly, derived from a distal source.   Clearly, from the perspective of kimberlite 

prospecting, it is important to identify where this source is located. 

 

ILMENITE FINGERPRINTING 

There are frequently significant differences in the chemical fields defined by suites 

ilmenites from different kimberlite pipe clusters.   This is illustrated in Fig. 6, where 

the compositional field for the Bulawayo Block ilmenites is compared with those for a 

number of different kimberlite clusters in central and southern Zimbabwe.   More 

subtle differences in ilmenite compositional fields often characterize different 

kimberlites within the same pipe cluster (Mitchell, 1973; Lee, 1993; Moore and Lock, 

2001).   This is illustrated for three kimberlites (Colossus, Wessels and Moffat) from 

the Colossus cluster (Fig. 7a).   Ilmenite compositional fields (rather than individual 

ilmenite compositions) thus provide a “chemical fingerprint” of the host kimberlite, 
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which is invaluable during prospecting operations.   The recovery of a suite of 

ilmenites with a chemical fingerprint which cannot be matched with those from 

known kimberlites provides compelling evidence for the existence of an undiscovered 

source.    

 

Given the evidence that the pre-Karoo watershed was located to the south of the 

modern divide, it is possible that the ilmenites recovered within the Bulawayo Block 

could have had a provenance to the south.   The data presented in Fig. 6 shows that 

the chemical fingerprints for the Mwenezi, Mungezi and Charter kimberlites bear no 

resemblance to that for the Bulawayo Block suite.   The former three localities can 

therefore be ruled out as potential sources of the unexplained anomaly identified by 

Somabula Explorations.   The same applies to the Ngulube kimberlite, which lacks 

picro-ilmenite (Martin Spence, personal communication, 2002).   Data for ilmenites 

from the Murowa-Sese area (Fig. 4), kindly made available by Rio Tinto plc, shows 

that a significant proportion of the ilmenites in this area are markedly enriched in Mn.   

This distinguishes these ilmenites from those in the Bulawayo block, which are Mn-

poor.   The closest match to the latter suite is provided by the Colossus-Moffat pipes, 

to the north of the watershed, and the Mambali kimberlite (Fig. 6), which is located in 

the Ngulube cluster in the southwest of Zimbabwe (Fig. 4). 

 

Fig. 7a shows that virtually all of the Bulawayo ilmenites fall within the 

compositional field  defined by the Colossus kimberlite cluster. The particularly close 

correlation with  the ilmenite field for Colossus flags this kimberlite as a potential 

primary source for the ilmenite anomaly in the north of the Bulawayo block.      Fig. 

7b provides a more detailed comparison between the Bulawayo ilmenite suite and 

those from the Mambali kimberlite.   There is a relatively poor correlation between 

their respective fields, which argues that the Mambali kimberlite is unlikely to be the 

source of the pathfinder anomaly identified in the north of the Bulawayo Block.   This 

conclusion is consistent with Lister’s reconstruction of the pre-Karoo surface to the 

south of the modern watershed.   The surface was inclined to the northwest, and 

Karoo-age glacial or fluvial systems would therefore be expected to have dispersed 

pathfinder minerals well to the west of the Bulawayo Block.   The northwest drainage 

direction is also consistent with the suggestion by Moore et al. (2009b) that a major 

pyrope garnet-diamond pathfinder anomaly associated with the Kalahari margin at 
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Maitengwe (Fig. 2) might be derived from a source in the Ngulube area.   The lack of 

ilmenite in this anomaly would reflect the relatively higher density of this phase 

(~4.5) relative to pyrope garnet and diamond (~3.5).   The higher density ilmenite 

tends to concentrate as a lag, proximal to the source, leading to an increase in the ratio 

of garnet (+/-diamond) relative to ilmenite during dispersion away from the source 

kimberlite (Grey, 1976).   Quantitative evidence for this separation of kimberlitic 

ilmenites and garnets during transport is presented in the following section. 

 

In summary, a comparison between the field of the unexplained Bulawayo Block 

ilmenites with those for other kimberlites in Zimbabwe indicates a close match with 

the Colossus ilmenite suite.    This suggests that the latter kimberlite is the ultimate 

source of the Bulawayo anomaly,  but such an origin begs explanation of how heavy 

minerals were dispersed over a distance of 40-50 km to the south of the modern 

watershed from a source located to the north of the divide (Fig. 3).   This is considered 

in the following section. 

 

DISPERSION OF KIMBERLITIC MINERALS FROM SOURCE ROCKS 

Kimberlitic Searches Ltd., the Zimbabwe subsidiary of de Beers Consolidated Mines, 

discovered two small kimberlites on the low-relief central Zimbabwe watershed in the 

Charter area of Zimbabwe (Fig. 4) during the tenure of EPO 466 (Kimberlitic 

Searches, 1975).   The loam sampling programme which led to their discovery 

outlined an anomalous ilmenite concentration (in the approximate size range 330-

1500µm) in close proximity to the two kimberlites.   However, the numbers of 

ilmenites recovered showed a marked decrease away from source, with a majority of 

samples being barren beyond a distance of 2-3km.   These results illustrate that 

processes such as soil creep and biological activity associated with, for example, ants, 

termites and moles, will disperse ilmenites over a very limited distance on low relief 

terrains such as the central Zimbabwe watershed.   This argues strongly that mass soil 

movements and biological agents do not provide a satisfactory mechanism to account 

for the translocation of ilmenites from the Colossus kimberlite across the watershed 

into the Bulawayo EPO block. 

 

In contrast, rivers are capable of transporting kimberlitic minerals over considerably 

greater distances.   This is illustrated by the study carried out by Edwards (1958) in 
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the Bembezi River, which directly drains the Colossus kimberlite via a minor 

tributary.   Significant numbers of ilmenites in the 1-2 mm size fraction were 

recovered within 23.8 km of the pipe from sample volumes ranging between 1.3-4.6 

cu. yd. Thereafter, recoveries diminished rapidly with no grains recovered after 33.65 

km, or from a larger (5 cu. yd.) sample taken 40.1 km downstream of Colossus.   

However, the sampling programme recovered significant numbers of kimberlitic 

pyrope 138 km downstream of the pipe – the limit of the study.   This pattern is a 

good illustration of the progressive increase in the garnet/ilmenite ratio associated 

with progressive fluvial dispersion away from the primary kimberlite source.  

 

Garnets and ilmenites in smaller size fractions (0.5 – 1.0 mm) would be expected to 

be dispersed over greater distances than the respective coarse fractions of these two 

minerals from the Bembezi River that were examined by Edwards (1958).   This is 

supported by qualitative data from sampling carried out by de Beers around the Orapa 

kimberlite field in Botswana (Grey, 1976).   These data indicate that significant 

numbers of kimberlitic ilmenites in the >0.5mm size fraction were recovered up to at 

least 50 km down the original palaeo-slope from the nearest known kimberlite.   It 

should be noted in passing that glaciers are  capable of dispersing kimberlitic minerals 

over extensive distances (several 100km) (Craigie, 1993). 

 

TECTONIC IMPLICATIONS 

The quantitative and qualitative results from the various kimberlite pathfinder 

sampling programmes indicate that mass soil movements and biological agents are 

unlikely to provide a satisfactory explanation for dispersion of ilmenites from 

Colossus over a distance of 40-50 km into the north of the Bulawayo block.   Fluvial 

(or glacial) dispersion would appear to be the only satisfactory agents capable of 

transporting coarse (>0.5mm) kimberlitic minerals over such distances.   Both 

processes would require former headwaters located to the north of the Colossus 

kimberlite, and thus to the north of the modern drainage divide. 

 

The present drainage system to the north of the modern central Zimbabwe watershed 

has been interpreted to be inherited from a northwest oriented palaeo-slope, extant 

since Karoo times, with original headwaters well to the south of the modern divide 

(Lister, 1987; Moore et al., 2009b).   This surface was ultimately disrupted by uplift 
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along the OKZ Axis in the late Palaeogene (Maufe, 1927 & 1935; du Toit, 1933; 

Moore 1999; Moore et al., 2009b).   This reversed the drainage network to the south 

of the flexure, but did not radically alter the system to the north. 

 

Uplift along the line of the modern central Zimbabwe drainage divide would not 

account for dispersion of kimberlitic minerals from Colossus to the south into the area 

covered by the Bulawayo Block.    To account for this dispersion pattern requires that 

the original line of uplift was located to the north the Colossus kimberlite, and thus to 

the north of the modern divide (Fig. 2).   Following this initial uplift, rivers rising off 

the divide would have dispersed kimberlitic minerals from Colossus to the south.   

Subsequent to this initial uplift, the locus of the watershed migrated progressively 

southwards to its present position. 

 

This interpretation supports the original views of Maufe (1927 & 1935) and du Toit 

(1933) that the modern watershed is a line of flexure.   The alternative view (Lister, 

1987) is that the divide migrated northwards from an initial position to the south of 

the modern watershed(Fig. 5) to the present position by simple headward erosion., 

However, this model would not  explain the recovery of ilmenites from Colossus (to 

the north of the modern watershed) in the Bulawayo EPO block (located to the south 

of the watershed).    

 

The evidence presented for evolution of the modern watershed as a result of the  

migration of an axis of flexure from north to south, raises the question of the 

mechanisms involved. It is not entirely possible to rule out some variant of the plume 

model to account for such a rolling flexure. Burov and Guillou-Frottier (2005) suggest 

that a non-Newtonian plume and a multi-layer brittle-elastic-ductile lithosphere could 

lead to a complex pattern involving both uplift and subsidence on various scales.   

Brown (2011) proposed that such processes provide a potential explanation for the 

flexure axes illustrated in Fig. 2, and that the model could be extended to explain a 

rolling flexure.  

 

Nevertheless, this theoretical geophysical model is based on variables that are not 

readily constrained, and assumes a uniform lithospheric thickness.   This contrasts 

with evidence for a marked thickening beneath the Archaean Kaapvaal and Zimbabwe 
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cratons that form the nuclei to southern Africa (Fouche et al., 2004).  Moreover, it is 

difficult to reconcile with the evidence that the three epeirogenic flexures are of 

different ages, and coeval with episodes of alkaline volcanic activity, as well as 

periods of reorganization of the spreading regime at the oceanic ridges surrounding 

southern Africa (Moore et al., 2008; 2009a).   This problem is magnified by the fact 

that the volcanic episodes recognized in southern Africa are widespread across Africa 

(Bailey, 1993).   Further, the ages of the southern African flexures correlates well with 

major unconformities in the Congo Basin (Cahen and Lepersonne, 1952; Giresse, 

2005), pointing to linked tectonic processes across broad areas of Africa (Moore et al., 

2009a).   It is very difficult to account for all of these coincidences in terms of 

standard plume models. 

 

Moore et al. (2009a) present evidence for a close temporal link between the ages of 

flexure axes in southern Africa and episodes of reorganization of  the surrounding 

oceanic spreading ridges.   They suggested that uplift along the inland flexure axes 

reflects continental shortening in response to intra-plate transmission of stresses 

linked to these spreading reorganizations.   The rolling uplift might then be a 

reflection of changes in the geometry and magnitude of stresses along different 

sections of the ocean ridges. 

 

A complementary, or possibly alternative driving force may be erosion and the 

coupled epeirogenic rebound triggered by continental flexing.   Drainages flowing to 

the north of the Zambezi-Limpopo watershed are characterized by very gentle 

gradients (1:704), inherited from the pre-Karoo surface.   In contrast, south-draining 

rivers are characterized by far steeper gradients (1:176) (Maufe, 1935).   More 

aggressive erosion by rivers flowing south off the watershed would initiate a coupled 

isostatic rebound, which might either contribute to, or play the major role in a 

southerly migration of the watershed following the initial flexure.     
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Fig. 1.  SRTM digital elevation image for southern Africa.   The highest elevations  
are associated with the marginal escarpment and the central Zimbabwe watershed.   
This high ground surrounds the Cenozoic sediments in the Kalahari Basin (KB).    
EGT = Etosha-Griqualand-Transvaal Axis; OKZ = Ovambo-Kalahari-Zimbabwe 
Axis.  Elevations in metres. 
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Fig. 2 Location of the Bulawayo EPOs in relationship to a simplified regional geology 

and the modern watershed (long-dashed lines) between the Zambezi and Limpopo 

drainage basins.   Short-dashed line shows inferred initial locus of epeirogenic 

flexure, located to the north of the modern watershed 
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Fig. 3.  Detail of the Bulawayo Block in relationship to the drainage system.   Inverted 
triangles denote the sites of samples in which kimberlitic ilmenites were recovered.   
Numbers denote the numbers of >500µm ilmenites if more than one grain was 
present.   Data from Moore (1998a & 1998b). 
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Fig. 4 Locations of known kimberlite clusters in Zimbabwe.   Light-dashed and solid 
lines denote elevations in metres on the pre-Karoo surface (from Lister, 1987).   The 
solid line (1400m) lies close to the modern watershed,    Bold dashed line showing the 
minimum southerly limit of the Karoo watershed is from Moore et al., 2009b.    
Triangles denote unexplained kimberlitic heavy mineral anomalies.   M = Maitengwe; 
N = Nanda; Byo = Bulawayo Block; D = Daiseyfield (From Moore, et al., 2009b).   
Solid black arrows show Permian ice movements summarized by Lister (1987); 
Dashed black arrows show Permian ice movements inferred by Moore and Moore 
(2006). 
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Fig. 5 Acacia savanna country on the senile watershed to the north of Bulawayo.   
Photo kindly provided by Darrel Plowes. 
 
 

 

Fig. 6.   Compositional fields for picroilmenites from kimberlites in south and central 
Zimbabwe in relationship to compositions of those from the Bulawayo Block 
(triangles).   Sources of Data: Bulawayo Block:   Moore, 1998 a&b; Charter 
Kimberlite: Brennan, 1999; Colossus-Moffat: Hildebrand, 1993; Mambali: Data 
kindly provided by Leon Daniels; Mungezi: Kimberlitic Searches (Pty.) 
Ltd/Somabula Explorations (Pty.) Ltd. Joint Venture, in house data; Mwenezi: 
Williamson and Robey, 1999.  
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Fig. 7a.   Comparison of chemical fields for ilmenites from the Bulawayo Block and 
kimberlites from the Colossus cluster.   Sources of Data:   Bulawayo Block: Moore, 
1998a&b; Colossus, Moffat &Wessels:   Hildebrand, 1993 
 

 

 

Fig. 7b. Comparison of chemical field for ilmenites from the Bulawayo Block and 
Mambali kimberlite, SW Zimbabwe.   Sources of data:  Bulawayo Block: Moore, 
1998 a&b; Mambali kimberlite: Leon Daniels, Pers comm.. 
 

 

 

 


