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3D Point of Interest Detection via Spectral Irregularity
Diffusion

Ran Song · Yonghuai Liu · Ralph R. Martin · Paul L. Rosin

Abstract This paper presents a method for detecting
points of interest on 3D meshes. It comprises two major

stages. In the first, we capture saliency in the spectral
domain by detecting spectral irregularities of a mesh.
Such saliency corresponds to the interesting portions of

surface in the spatial domain. In the second stage, to
transfer saliency information from the spectral domain
to the spatial domain, we rely on spectral irregularity
diffusion (SID) based on heat diffusion. SID captures

not only the information about neighbourhoods of a
given point in a multiscale manner, but also cues re-
lated to the global structure of a shape. It thus preserves

information about both local and global saliency. We fi-
nally extract points of interest by looking for global and
local maxima of the saliency map. We demonstrate the
advantages of our proposed method using both visual

and quantitative comparisons based on a publicly avail-
able benchmark.

Keywords Mesh saliency · Points of interest ·
Laplacian · Eigendecomposition

1 Introduction

Detection of points of interest on a 3D surface is a
fundamental problem in computer vision and graphics,
with applications to problems such as shape matching,
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shape-based retrieval, mesh simplification and viewpoint
selection. Its widespread applicability has led to a range

of definitions in the literature. Usually, points of inter-
est are considered to be points which are (i) locally dis-
tinctive, and (ii) likely to attract visual attention from a

human. The former is merely related to the local geom-
etry of the surface, and can be easily formulated once
distinctiveness has been defined. However, the latter
corresponds to the semantic relevance of points, and is

hard to describe by a computational model even if this
is often consistent to some degree with local geometric
distinctiveness [3].

Generally, two different processes influence visual
attention. One operates top-down and depends on the
task at hand, or the cognitive and affective factors of the
observer. The other operates bottom-up, and is driven

by features within the input data. The relationship be-
tween top-down and bottom-up factors remains con-
troversial. For example, can top-down interest counter-
act strong visual stimulus signals and shift attention
away from bottom-up features? In this article, we focus
on bottom-up point of interest detection. In our ex-

periments, we will compare different bottom-up point
of interest detectors based on human-generated ground
truth data, in the hope that we can fairly measure how
much a detector relates to the real interests of human
perception.

1.1 Related work

Early work on detecting points of interest on 3D meshes
mostly relied on measures of local surface geometry.
[8] developed a curvature-related descriptor working at
multiple levels of surface detail. A histogram of the de-
scriptor was then calculated over the mesh, and points

mailto:res@aber.ac.uk


2 Ran Song et al.

corresponding to the least populated bins were selected
as candidate points of interest. For shape retrieval, [19]
proposed a Monte-Carlo strategy to select points on a
surface with each point having the same initial prob-
ability of being chosen. The assumption behind this
method is that the task can be affected by shape tessel-
lations. [24] selected points that contribute to improv-
ing retrieval performance by assigning a predicted dis-
tinctiveness value to each selected point using a training
phase. [29] built to detect points of interest. [28] as-
sumed that the vertices of a 3D object have associated
information such as curvature or photometric proper-
ties. The authors applied a discrete DoG on the function
defined by the associated information.

However, these methods lack an important consider-
ation in human perception: a mechanism take account
of global shape information. They thus tend to miss
the globally-salient points. For example, in the human-
generated ground truth shown in [3,6], a large group
of points (the segment centres) which are not salient

in their local neighbourhoods are nevertheless marked
as points of interest. Here, to analyse and capture the
global shape in a mesh, we detect the irregularity of its

Laplace spectrum composed of a group of eigenvalues
related to the global structure of the mesh.

Since the seminal proposal of mesh saliency [16], a
measure of perceptual importance on 3D meshes, recent
papers have developed point of interest detectors incor-
porating this idea. [2] first defined a saliency measure by

applying a Gaussian at the vertices, then a scale space
was constructed and vertices highly displaced after the
filtering were marked as candidate points of interest.

[13] defined the geometric energy of a vertex via the
eigendecomposition of the Laplace-Beltrami spectrum
of a mesh, capturing saliency in the spectral domain. A
vertex is selected as a point of interest if it remains as

a local maximum of the geometry energy function over
several successive frequencies. [26] used the heat ker-
nel signature as a temporal domain restriction of the
heat kernel to a manifold; this is also related to eigen-
decomposition of the Laplace-Beltrami operator. A ver-
tex is selected as point of interest when its signature is
a local maximum. Another method also employing the
heat kernel for shape analysis is the autodiffusion func-
tion [7], which shows nice properties for feature based
skeletonisation and segmentation. [20] extracted scale-
invariant key points and ranked them using a measure
directly related to their repeatability and the distinc-
tiveness of the underlying local descriptor.

In general, saliency-based point of interest detectors
use various mechanisms to extract saliency information,
and then integrate such information in the process of lo-

calising points of interest. Their performances are thus

largely dependent on the design of the computational
models for saliency detection. In this work, we also con-
centrate on this vital stage, and give an algorithm for
saliency detection together with an analysis.

1.2 Our work

Inspired by the spectrum-based methods for detecting
2D image saliency, we first capture potential saliency
by investigating local irregularities in the spectrum of
the Laplace-Beltrami operator. Then, to construct a
saliency map, we use a curvature-weighted heat diffu-
sion function to deliver and reorganise the saliency in-
formation into the spatial domain in a multiscale way.
The points of interest are finally localised by consider-
ing both local and global maxima of the saliency map.

Two main contributions are highlighted in this pa-
per. Firstly, we develop a fully automatic method for

detecting sparse points of interest to humans on 3D
surface meshes. To achieve this goal, we design a novel
mechanism which combines both local geometric cues

and global shape information obtained via spectral ir-
regularity diffusion.

Secondly, we provide a theoretical analysis for the

proposed saliency detection method based on spectral
irregularity. To the best of our knowledge, it is the first
time that spectral shape analysis has been used to de-

tect saliency on 3D meshes. In our theoretical analysis,
we investigate the intrinsic relationship between points
of interest to human perception and the representation
of shape information in the spectral domain.

2 Mesh saliency via spectral shape analysis

Various methods have detected saliency through spec-
tral analysis of 2D images. One common motivation is
the intrinsic relation between the spectral properties
of images and the characteristics of the human percep-

tual system. On one hand, spectral analysis can provide
information about global cues or statistics of images
which are difficult to extract in the spatial domain; on
the other hand, the human perceptual system has the
ability to rapidly recognise objects or features without
a slow process of scrutinising details. The human per-
ceptual system achieves this by swiftly extracting cer-
tain low-frequency saliency information [10,12,18]; this
can be computationally modeled via spectral analysis.
In this work, we extend such spectral analysis to 3D
shapes.
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2.1 Preliminaries

For a 2D image, it is well-known that the spectral analy-
sis can be performed via the Fourier transform. As sum-
marised in [17], one way to extend the notion of Fourier
analysis to the manifold or surface setting, where the
signal represents the geometry of a 3D surface instead of
the intensity of a 2D image, is to define appropriately
a Laplacian operator and rely on its eigenvalues and
eigenvectors to perform frequency analysis. The defini-
tion of the Laplacian can be generalised to functions
defined over a manifold M with metric g, to give the
Laplace-Beltrami operator [17]:

∆ = div grad = δd =
∑
i

1√
|g|

∂

∂xi

√
|g| ∂
∂xi

(1)

where |g| is the determinant of g. Since a closed form
expression for the eigenvectors of the Laplace-Beltrami
operator on an arbitrary manifold is generally unavail-
able, the eigenvectors are numerically calculated by dis-
cretising the Laplace-Beltrami operator. To solve the
eigenproblem

−∆ψj = λjψj (2)

where λj is the eigenvalue corresponding to the eigen-
vector ψj and the ‘−’ sign is here required for the
eigenvalues to be positive, it is typical to discretise

the Laplace-Beltrami operator using the cotan formu-
lation [5,23]. Doing so, Eq. (2) is simplified to the fol-
lowing generalised eigenproblem in matrix form:

−Qψ = λBψ (3)

where the matrix Q is called the stiffness matrix and

B is the mass matrix. λ represents the diagonal matrix
formed by unknown eigenvalues (frequencies) λf where
f is the frequency index. ψ is a matrix whose columns

are the corresponding eigenvectors. Q and B can be
determined by the finite element method (FEM) [4,22,
17].

2.2 A computational saliency model

We define the Laplace spectrum of a mesh as H(f) =
{λf : 1 ≤ f ≤ m} where m denotes the number of ver-
tices on the mesh. Fig. 1(a) shows the Laplace spectrum
of a mesh and Fig. 2 shows plots of the eigenvectors of
the Laplace operator for the Girl model.

[14] revealed that the human visual system regards
features that deviate from the norm as informative and
stays sensitive to them. The norm represents the ex-
pected, indistinctive and ever-present patterns. Its spec-

trum, as formulated in [12], is usually a smooth curve.
[12] generated a residual spectrum of the log-Fourier

Fig. 1 (a) The Laplacian spectrum (300 smallest eigenvalues
only) of the Girl model (see Fig. 2); (b) Laplacian spectral
irregularity.

spectrum of an image to approximately represent the
features which deviate from the norm in the spectral
domain. Inspired by this, we calculate spectral irregu-
larities by computing the difference between the Lapla-
cian spectrum and its locally smoothed spectrum.

A simple procedure to accomplish a locally smoothed
spectrum is to adopt a discrete Laplacian, denoted by
δ =

[
1
2 −1 1

2

]
. The smoothed spectrum is calculated as

S(f) = H(f) +
1

2
δ ∗ H(f) (4)

Remark 1 As pointed out in [18], convolution of the
amplitude spectrum with a low-pass Gaussian operator
provides a saliency detector for 2D images. The effect

of applying the 1D discrete Laplace operator over such
a monotonic spectrum is similar to Gaussian smooth-
ing since both lead to attenuation of high-frequency
content. However, whereas Gaussian smoothing is ex-

pressed in terms of squared differences from the mean,
Laplacian smoothing is expressed in terms of absolutes
difference from the mean. Consequently, the Laplacian

has a fatter tail than the Gaussian, so it is less locally-
supported and thus a better approximation of the spec-
trum of the norm.

Spectral deviation can now be computed as the spec-
tral irregularity R:

R(f) = H(f)− S(f) (5)

Remark 2 The spectral decomposition of the Laplacian
is well-known for facilitating analysis of global structure
of shape [17]. However, saliency eventually needs to be
localised in the spatial domain to generate a saliency
map. Eigenvectors of the Laplacian, as shown in Fig. 2,
give no help in localising salient features in the spatial
domain. In fact, the use of eigenvectors can suppress
the influence of small-scale fluctuations, as shown in

the minimisation of the RatioCut model [11] where the
eigendecomposition is used for graph partitioning. The
spectral irregularity computed via Eq. (5) helps to lo-
calise saliency in the spatial domain. Note that in [16,
2], saliency is directly localised in the spatial domain
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Fig. 2 Plots of the eigenvectors of the Laplace operator corresponding to the eight smallest nonzero eigenvalues

by calculating a difference between Gaussian-weighted
averages.

Remark 3 The nice localisation property of spectral ir-
regularity can also be interpreted via its relation to
wavelets. Eqs. (4) and (5) and the curve shown in Fig.
1(b) are reminiscent of wavelet functions which have
powerful localisation properties in both spectral and
spatial domains. It is critical for a wavelet function to
satisfy the admissibility condition since it ensures the
wavelet transform can be recovered, leading to desir-
able properties for various graphics applications. Here

we demonstrate that spectral irregularity is admissible.

Proposition 1 . The proposed spectral irregularity R
suffices the admissibility condition, expressed in discrete
manifold space as

∞∑
f=0

|ΨR(f)|2

f
<∞ (6)

where ΨR is the manifold harmonic transform of R.

Proof . Recall that the zero-frequency manifold har-
monic basis φ0 = 1√

A
where A is the total area of the

mesh, which is a constant everywhere on the mesh. Ac-
cording to Eqs. (4) and (5), R has zero mean. Hence,
it vanishes at zero frequency in the manifold harmonic
transform (MHT)[27],

ΨR(0) = 〈R, φ0〉 = 0, (7)

where 〈x, y〉 denotes the inner product of x and y. Also,
since R is compactly-supported, it has limited band-
width in its MHT. If f∗ is its upper frequency, we have

ΨR(f) = 0, for f > f∗. (8)

Therefore, we have

∞∑
f=0

|ΨR(f)|2

f
=

f∗∑
f=1

|ΨR(f)|2

f
<∞, (9)

Hence, R is admissible.

3 Spectral irregularity diffusion

In this section, we propose a method for transferring
saliency captured by spectral irregularity to the spatial
domain, based on diffusion.

Gaussian filtering has been widely used for mul-
tiscale saliency detection. Given a d-dimensional sig-
nal U : Rd → R, its linear scale-space representation
F : Rd × R→ R is defined as the convolution:

F (·, t) = U(·) ∗ g(·, t), (10)

where t is a scale parameter and g(·, t) is a Gaussian ker-
nel with standard deviation σ determined by the scale

parameter: σ =
√
t.

The generating equation of F in Eq. (10) is the heat
diffusion equation [15], so F can also be obtained as the
solution to a diffusion process:(
∆+

∂

∂t

)
F (p, t) = 0. (11)

Given an initial heat diffusion F0(p), for a mesh M
which can be regarded as a compact Riemannian man-

ifold, the solution is expressed as

F (p, t) =

∫
M

ht(p, q)F0(q)dq (12)

where dq is the volume form at q ∈ M . The minimum
function ht(p, q) that satisfies Eq. (12) is called the heat
kernel, and can be regarded as the amount of heat that
is transferred from vertex p to q in time t given a unit
heat source at p. The eigendecomposition of the heat
kernel can be expressed as

ht(p, q) =
m∑
f=1

e−λf tψf (p)ψf (q) (13)

where again, λf and ψf are eigenvalues and eigenvectors
of the Laplacian operator respectively.

The heat kernel ht(p, q) has quite a few nice prop-
erties [26]. However, computations using it have high
complexity as it operates in both spatial and temporal

domains. [26] demonstrated that under some mild as-
sumptions, restricting the kernel to only the temporal
domain can still preserve all of the information about
the intrinsic geometry of the shape, and also retain the
major useful properties of the heat kernel. The concise
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Fig. 3 (a) The original model; (b) The scaled model where the length of the diagonal of its bounding box is 1.75 times of
that of the original model; (c) The unnormalised IKS for the green and the red points on the two models; (d) The normalised
IKS for the green and the red points on the two models.

heat kernel, or heat kernel signature (HKS) [26], is ex-
pressed as

Ht(p) =
m∑
f=1

e−H(f)tψ2
f (p). (14)

3.1 Irregularity kernel signature

In this work, we propose a novel signature, which we
call the irregularity kernel signature (IKS)

It(p) =
m∑
f=1

e−R(f)tψ2
f (p). (15)

It can be proved that the IKS inherits most of the

advantages of the HKS including isometric invariance,
multiscale properties, stability, etc. Isometric invariance
is important for shape matching and shape-based re-

trieval [26], for example.

Proposition 2 : Isometric invariance. If T: M → N is
an isometry between two Riemannian manifolds M and
N, then IMt (p) = IMt (T (p)), ∀p ∈M and ∀t > 0.

The IKS inherits the isometric invariance of the
HKS because it is also based on the Laplace-Beltrami
operator. The spectrum of the Lalace-Beltrami opera-
tor has isometric invariance since it only depends on
the gradient and divergence which in turn only depend
on the Riemannian structure of the manifold.

However, it inevitably inherits the disadvantages of
the HKS, e.g., the sensitivity to scale [1]. Here, we nor-
malise the Laplacian eigenvalues and eigenvectors to
achieve scale invariance for the IKS

R′(f) =
ApR(f)∑
p∈M Ap

, ψ′f (p) =

√
Ap∑
p∈M Ap

ψf (p) (16)

where Ap denotes the area associated with the vertex
p; we typically normalise the IKS using

I ′t(p) =
1∑

p∈M (Ap · It(p))
It(p). (17)

Fig. 3 compares the original IKS and the normalised
IKS. After the normalisation, the IKS of corresponding
points computed at the two different scales are almost
identical, which means it achieves scale invariance.

To make the eigendecomposition of the Laplacian
tractable, we only compute the 300 smallest eigenvalues

and their corresponding eigenvectors in practice. The
smallest eigenvalues correspond to the lowest frequen-
cies, conveying information mostly about the global

structure of the shape—the IKS is equivalent to a col-
lection of low-pass filters. The trade-off is that we dis-
card high-frequency information corresponding to sur-
face details to efficiently compute the IKS. The em-

phasis on low frequencies could potentially damage the
ability of the IKS to precisely localise features, although
saliency detected using spectral irregularity has a nice

localisation property. In this work, we simply weight the
IKS using Gaussian curvature to help improve feature
localisation. Note that, due to the multi-scale property
of the IKS, for point of interest detection, we typically

set t to a small value causing the IKS to focus more on
local details. Weighting by Gaussian curvature further
strengthens the localisation property of the detector. To
further balance local and global features, and make the
process adjustable, we design a simple but fast scheme
for point of interest selection.

3.2 point of interest selection

The IKS (which we henceforth assume to be weighted
by Gaussian curvature) gives each mesh vertex a re-
sponse informed by both global and local saliency in-
formation. To select points of interest based on such
a saliency map, we find the globally-salient points and
the stable locally-salient points in turn. A point on a
mesh is a globally-salient point if its IKS is (i) maxi-
mal over its 2-ring neighbourhood and (ii) greater than
TglobalIM where IM is the global maximum of the IKS
over all points and Tglobal is a threshold factor. A point
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is a stable locally-salient point if its IKS is (i) maxi-
mal over its 2-ring neighbourhood and (ii) greater than
TlocalIS where IS is the second-largest IKS in its neigh-
bourhood and Tlocal is a thresholding factor.

4 Experiments

Our experiments are based on the publicly available
benchmark [6] (http://www.itl.nist.gov/iad/vug/
sharp/benchmark/3DInterestPoint). In this bench-
mark, human subjects were asked to mark points of in-
terest on models, giving human-generated ground truth
data for use in measuring the performance of 3D point
of interest detectors. It also provided results of tests on
six algorithms: 3D-Harris [25], 3D-SIFT [9], HKS [26],
mesh saliency [16], salient points [2] and SD-corners [21].
Previous evaluation methods usually measured the re-
peatability rate according to varying factors, such as
model deformation, scale change, different modalities,

noise, and topological change. Unlike them, [6] used
false positive error (FPE), false negative error (FNE)
and weighted miss error (WME) to directly measure the
key quality of a 3D point of interest detection method:

how similar are the points it detects of interest to those
selected by human perception?

4.1 Evaluation methods

[6] denotes the set of points of interest detected by an al-
gorithm on model M as A and the set of ground truth
points of interest as G(n, σ) where n and σ are two

controlling parameter, to which the final set of ground
truth points of interest are highly sensitive. In our ex-
periments, we fix n = 2 and σ = 0.03. For a point of
interest g in set G, a geodesic neighbourhood of radius r

is defined as Cr(g) = {p ∈M |d(g, p) ≤ r} where d(g, p)
is the geodesic distance betweent points g and p. The
parameter r controls the localisation error tolerance. A
point g is considered to be ‘correctly detected’ if a de-
tected point a ∈ A exists in Cr(g), such that a is not
closer to any other points in G. Denoting the number
of correctly detected points in G as NC , the FNE at
localisation error tolerance r is

FNE(r) = 1− NC
NG

(18)

where NG is the number of points in G.
Each correctly detected point g ∈ G corresponds to

a unique a, the closest point to g among the points in A.
All points in A without a correspondence in G are de-
clared as false positives. Then, the FPE at localisation
error tolerance r is

FPE(r) =
NA −NC

NA
(19)

where NA is the number of detected points of interest.

To incorporate the saliency of a point of interest
in the evaluation, [6] also proposed the WME. Assume
that within a geodesic neighbourhood of radius r around
the ground truth point gi ∈ G, ni human subjects have
marked an point of interest. Then the WME is defined
as

WME(r) = 1− 1∑NG

i=1 ni

NG∑
i=1

niδi (20)

where δi = 1 if gi is detected and 0 otherwise.

An algorithm gets a low WME if it manages to de-
tect a point that is frequently voted for by human sub-
jects. Thus it measures the ability of an algorithm to
detect the most salient points. In contrast, FNE and
FPE treat all ground truth points of interest equally.

4.2 Experimental results and analysis

Fig. 4 visualizes over 8 models: the ground truth, the
results of our proposed spectral irregularity diffusion
method (SID), and the 6 competing methods from the

benchmark. The models were selected to represent dif-
ferent classes of objects.

Global saliency: 3D-Harris, mesh saliency, salient
points and SD-corners respond to regions where there
is a strong local geometric response; i.e. they do not
locate points of interest in flat regions. It is usually

a challenge for bottom-up point of interest detectors
to capture globally-salient points as they are mostly
driven by local geometrical cues. However, the ground

truth data show that human perception has the abil-
ity to capture points of global interest in flat regions.
In this regard, 3D-SIFT, HKS and SID perform better
since they not only capture points with a strong lo-

cal geometric response, but also detect some points of
high global saliency in flat regions. 3D-SIFT sometimes
locates points of interest in geometrically insignificant
regions since it works on a coarse voxel structure. SID
works well as it captures saliency in the spectral do-
main, which considers the global structure of the ob-

ject.

Local saliency: Although 3D-SIFT works well with
respect to marking points of global interest, it does not
localise the finer points of interest as well as the other
algorithms (see the tentacle tips of the Octopus, the
nose of the Human and the feet and the ear tip of the

Horse). This undesirable behaviour of missing some lo-
cally salient points is caused by its coarse voxelisation
scheme which nonetheless benefits its ability to detect
globally-salient points. Typically, it is difficult for a de-
tector to well capture both global and local saliency.

http://www.itl.nist.gov/iad/vug/sharp/benchmark/3DInterestPoint
http://www.itl.nist.gov/iad/vug/sharp/benchmark/3DInterestPoint
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Fig. 4 Ground truth obtained by setting σ = 0.03 and n = 2 (first column); points of interest detected by the algorithms:
3D-Harris [25] (second column), 3D-SIFT [9] (third column), HKS [26] (fourth column), Mesh saliency [16] (fifth column),
Salient points [2] (sixth column), SD-corners [21] (seventh column) and the proposed SID method (eighth column).
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Fig. 5 FNE, WME, and FPE graphs of various algorithms for the test models as rendered in Fig. 4.

SID performs significantly better than 3D-SIFT at lo-
calising such finer points of interest.

Number of points of interest: All methods, ex-
cept for HKS which returns few points of interest, tended
to mark more points of interest than human users. For
the IKS used in SID, we set t = 0.05, the same set-
ting for the implementation of HKS in the benchmark.
It can be seen that mesh saliency and SD-corners pick
up points of interest from almost all singularities while

other methods including SID provide fewer points of
interest.

Fig. 5 gives FNE, WME and FPE graphs with re-
spect to localisation error tolerance r. As more points
of interest are captured, more false positives are nor-
mally detected, although that usually corresponds to
a lower FNE. Similarly, if an algorithm tends to mark
fewer points of interest, this results in a lower FPE, at
the cost of a higher FNE. An ideal method should keep
both FNE and FPE low. Also, since the WME considers

the semantic importance of each ground truth point, it
is desirable that a method should have a low WME.
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Fig. 5 (Continued)

FNE: Mesh saliency, SD-corners and SID localise
the points of interest well, as demonstrated by their low
FNE. SID stably achieves the lowest FNE on almost all
test models. In most graphs, SID has a similar FNE
to other methods at the starting point, but its FNE
drops very quickly with respect to r. A rapid drop in

FNE means that the method finds the points of interest
with a low localisation error. In most cases, the FNE
curve for 3D-Harris drops slowly, which indicates that
the detected points of interest are poorly localised. 3D-
SIFT does not perform as well as other methods in

terms of FNE, since the coarse voxel structure does not
allow good localisation of points of interest.

WME: SID returns the lowest WME in most cases,
and SID’s WME curve is usually the one which drops
fastest in each graph. 3D-SIFT does not perform well in
quite a few cases. The good performance of SID as mea-
sured by WME means that it is less likely to miss the
most salient points (i.e. points marked by many human
subjects). This also demonstrates that the proposed

saliency detection scheme is effective. Mesh saliency
also performs well in most cases because it also has
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a mechanism for considering saliency in its computa-
tional model.

FPE: SID achieves the lowest FPE in most cases. In
sharp contrast, although mesh saliency and SD-corners
perform well in terms of FNE and WME, they also
have high FPE, as they have a tendency to return an
excessive number of points of interest, including ‘false’
ones.

HKS: We single HKS out since it exhibits a com-
pletely different behaviour to the other 6 methods. It
detects very few points on the models, most of which
correspond to tips of extremities of the models (see Fig.
4). Despite having a low FPE, HKS gives the highest
FNE among all other methods since it detects far fewer
points than human subjects usually mark.

5 Conclusions

We have proposed a novel point of interest detector
for 3D meshes. In our method, saliency is captured in

terms of the irregularity of the Laplacian spectrum of
the mesh Laplacian. Incorporating this irregularity into
a diffusion model leads to the IKS which inherits the

desirable properties of HKS. Diffusion allows saliency
information represented as spectral irregularity in the
spectral domain to be transferred to the spatial domain
as a per-vertex property. Experiments demonstrate that

detected salient points are largely of human interest.

We use Gaussian curvature to weight local geometry
to help improve localisation of points of interest. It is
possible that other advanced local feature descriptors

could be of benefit. A remaining open question is how to
balance global and local saliency—locally-salient points
are not always globally salient. Further understanding

is needed of the corresponding mechanisms within the
human perceptual system.
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