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Abstract

This paper extends the modified affine arithmetic in matrix form method for
bivariate polynomial evaluation and algebraic curve plotting in 2D to modified affine

arithmetic in tensor form for trivariate polynomial evaluation and algebraic surface
plotting in 3D. Experimental comparison shows that modified affine arithmetic in
tensor form is not only more accurate but also much faster than standard affine
arithmetic when evaluating trivariate polynomials.
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1 Introduction

Affine arithmetic (AA) was first introduced by Comba and Stolfi in 1993 [4]
as an improvement to interval arithmetic (IA). Due to its ability to keep track
of correlations between variables in subexpressions, AA is often more resis-
tant to over-conservatism when evaluating estimates of ranges of expressions

⋆ Project supported jointly by the National Natural Science Foundation of China
(No. 60373033 & No. 60333010), the National Natural Science Foundation for In-
novative Research Groups (No. 60021201) and the Foundation of State Key Basic
Research 973 Item (No. 2004CB719400).
∗ Corresponding author.

Email address: hwlin@cad.zju.edu.cn (Hongwei Lin).

Preprint submitted to Elsevier Science 30 June 2005



over intervals. AA has been successfully applied as a replacement for IA in
many geometric and computer graphics applications such as surface intersec-
tion [6], adaptive enumeration of implicit surfaces [7], ray tracing procedural
displacement shaders [9], sampling procedural shaders [10], ray casting im-
plicit surfaces [5], linear interval estimations for parametric objects [3] and a
CSG geometric modeller [2].

However standard AA still has an over-conservatism problem because it uses
approximation when multiplying affine forms, and thus it can be further im-
proved to give so-called modified affine arithmetic (MAA). This uses a matrix
form for bivariate polynomial evaluation which keeps all noise terms without
any approximation; we have used it for algebraic curve plotting in 2D [11,14].
In this paper we extend MAA to tensor form for trivariate polynomial evalu-
ation, and illustrate its use for algebraic surface plotting in 3D. In a previous
paper [13] we proved theoretically that MAA is more accurate than both in-
terval arithmetic on centered form (IAC), and standard AA. Clearly, we also
expect MAA in tensor form to also be more efficient than standard AA, and
we validate this expectation with an efficiency comparison.

2 Implicit surface plotting algorithm

The quadtree subdivision algorithm described in [11] for plotting an implicit
curve f(x, y) = 0 in a given rectangle [x, x]× [y, y] can be easily generalized to
an octree subdivision algorithm for plotting an implicit surface f(x, y, z) = 0
in a given box [x, x]× [y, y]× [z, z]. The basic idea is to evaluate f(x, y, z) over
the desired box using a range analysis estimation method (such as IA, AA or
MAA) giving a range [F , F ] which is guaranteed to contain the exact range of
f over the box. If the resulting interval does not contain 0, the surface cannot
be present. If it does contain 0, we subdivide the box into eight sub-boxes at
its mid point, and consider the pieces in turn. The process stops when a box
reaches a single voxel in size. In such a case we plot the voxel. This may result
in a “thick” surface if the test is too conservative, i.e. voxels may be plotted
which do not actually contain the surface.

In a more sophisticated approach, instead of simply plotting the voxel, we
may investigate further whether the function actually crosses the voxel, and if
so, produce an appropriate linear approximant to the surface within the voxel,
for example. In this paper, we concentrate on the problem of finding this set
of candidate voxels, rather than on such subsequent processing.

In detail, we use the following procedure for the simple approach:



PROCEDURE Octree(x, x, y, y, z, z):

[F, F ]=RangeEvaluation(x, x, y, y, z, z);

IF F ≤ 0 ≤ F THEN

IF x − x ≤VoxelSize AND y − y ≤VoxelSize

AND z − z ≤VoxelSize THEN

PlotVoxel(x, x, y, y, z, z)

ELSE Subdivide(x, x, y, y, z, z).

PROCEDURE Subdivide(x, x, y, y, z, z):

x0=(x + x)/2; y0=(y + y)/2; z0=(z + z)/2;

Octree(x, x0, y, y0, z, z0); Octree(x0, x, y, y0, z, z0);

Octree(x0, x, y0, y, z, z0); Octree(x, x0, y0, y, z, z0);

Octree(x, x0, y0, y, z0, z); Octree(x, x0, y, y0, z0, z);

Octree(x0, x, y, y0, z0, z); Octree(x0, x, y0, y, z0, z).

Here [F, F ]=RangeEvaluation(x, x, y, y, z, z) is a conservative interval con-
taining all values of f(x, y, z) over the box [x, x] × [y, y] × [z, z], computed
using a chosen range analysis method such as IA, AA or MAA. (x0,y0,z0) is
the mid-point of the box [x, x] × [y, y] × [z, z].

3 Modified Affine Arithmetic in Tensor Form

Let f(x, y, z) be a polynomial in three variables expressed in power form
and Ω be a box-shaped interval of interest:

f(x, y, z) =
n

∑

i=0

m
∑

j=0

l
∑

k=0

Aijkx
iyjzk, (x, y, z) ∈ Ω = [x, x] × [y, y] × [z, z].

We rewrite f(x, y, z) in tensor representation:

f(x, y, z) = X ⊗x (Z ⊗z A) ⊗y Y,



where X = (1, x, · · · , xn), Y = (1, y, · · · , ym)T , Z = (1, z, · · · , zl) are power
vectors, and Aijk is the coefficient tensor.

Let us now convert the interval forms [x, x], [y, y] and [z, z] to affine forms:

x̂ = x0 + x1εx, ŷ = y0 + y1εy, ẑ = z0 + z1εz,

where εx, εy and εz are noise symbols whose values are unknown but each is
assumed to be in the range [−1, 1], and

x0 = (x + x)/2, y0 = (y + y)/2, z0 = (z + z)/2

x1 = (x − x)/2, y1 = (y − y)/2, z1 = (z − z)/2.

We also define power vectors in the noise symbols:

X̂ = (1, εx, · · · , ε
n
x), Ŷ = (1, εy, · · · , ε

m
y )T , Ẑ = (1, εz, · · · , ε

n
z ).

We now define three further matrices B, C and D as follows. Firstly,

B =
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;

in detail

Bij =
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j

i

)

xj−i
0 xi

1
, i ≤ j

0, i > j
, i = 0, 1, · · · , n; j = 0, 1, · · · , n.

Secondly,

C =





























1 0 · · · 0 0

y0 y1 · · · 0 0
...

...
. . .

...
...

ym−1

0 (m − 1)ym−2

0 y1 · · · ym−1

1 0

ym
0

mym−1

0 y1 · · · my0y
m−1

1 ym
1





























;

in detail

Cij =











0, i < j
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0 yj

1, i ≥ j
, i = 0, 1, · · · , m; j = 0, 1, · · · , m.



Finally

D =
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0 zl
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;

in detail

Dij =











(

j

i

)

zj−i
0 zi

1
, i ≤ j

0, i > j
, i = 0, 1, · · · , l; j = 0, 1, · · · , l.

We now have that

X = X̂B, Y = CŶ , Z = ẐD.

We compute the tensor G from matrices B, C and D, and the original coeffi-
cient tensor A as follows:

G = B ⊗x (D ⊗z A) ⊗y C,

giving

f(x̂, ŷ, ẑ) = X̂ ⊗x (Ẑ ⊗z G) ⊗y Ŷ =
n

∑

i=0

m
∑

j=0

l
∑

k=0

Gijkε
i
xε

j
yε

k
z .

Up to now the calculation is exact and does not involve any approximation.
Furthermore, it can be seen that this polynomial is actually the centered
form of the original polynomial [12]. In the next step we wish to convert this
result back to interval form [F , F ]. This can be done by standard IA. However
standard IA can be seen not to be the best choice, if we take into account
the following observations: if all of i, j and k are even, then εi

xε
j
yε

k
z ∈ [0, 1],

otherwise εi
xε

j
yε

k
z ∈ [−1, 1]. Thus a tighter interval [F , F ] can be obtained,

compared to the result given by standard IA on this centered form, as follows

F = G000 +
l

∑

k=1











max(0, G00k), if k is even

|G00k|, otherwise











+

m
∑

j=1

l
∑

k=0











max(0, G0jk), if j, k are both even
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,

and

F = G000 +
l
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−|G00k|, otherwise
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min(0, Gijk), if i, j, k are all even

−|Gijk|, otherwise











.

In this way, the trivariate polynomial f(x, y, z) thus takes on values guar-
anteed to be in the interval [F , F ] over the box [x, x] × [y, y] × [z, z].

4 Comparison of AA and MAA in Tensor Form by Examples

To demonstrate and validate the results in the previous Section, and to
compare the relative performance of AA and MAA in tensor form, we now
consider some examples. We plot 10 carefully chosen example algebraic sur-
faces to compare the accuracy and speed of these two methods. Each example
surface is represented by a trivariate polynomial equation f(x, y, z) = 0; it is
plotted using the algorithm given in Section 2 on a grid of 128 × 128 × 128
voxels. We used Visual C++ 6.0 and Windows 2000 on a personal computer
with an Intel Xeon 2.8GHz CPU and 2GB RAM for all the tests.

We not only show the graphical output generated for these examples, but
also present a tabular comparison of accuracy and computation times in each
case; we also show the results obtained by IAC for comparison. To compare
the performance and efficiency of AA, IAC and MAA in tensor form methods,
a number of quantities were measured:

• The number of voxels plotted: the fewer the better, as plotted voxels may or
may not contain the surface in practice.

• The CPU time used: the lower the better.
• The number of subdivisions involved: the lower the better, due to additional

time used for stack overheads.



Fig. 1. Example 1. Hyperboloid of two
sheets plotted using AA.

Fig. 2. Example 1. Hyperboloid of two
sheets plotted using MAA in tensor
form .

Fig. 3. Example 2. Heart surface plotted
using AA.

Fig. 4. Example 2. Heart surface plotted
using MAA in tensor form.

The examples we used in this paper are as follows:

Example 1: 0.06(x2 − x + 4y − xy + 2yz + 3) = 0 on [−10, 10]× [−10, 10]×
[−10, 10]. This is a degree 2 polynomial equation representing a hyperboloid
of two sheets, taken from [2].

Example 2: (2x2 + y2 + z2 − 1)3 − 0.1x2z3 − y2z3 = 0 on [−1.25, 1.25] ×
[−1.25, 1.25]× [−1.25, 1.25]. This is a degree 6 polynomial equation represent-
ing a heart-shaped surface, taken from [15].

Example 3: (x2 + y2 + z2 − r2)2 − 2(x2 + r2)(f 2 + a2)− 2(y2 − z2)(a2 − f 2)+
8afrx + (a2 − f 2)2 = 0 where a = 15, r = 3, f = 5 on [−20, 20] × [−20, 20] ×



Fig. 5. Example 3. Dupin cyclide plot-
ted using AA.

Fig. 6. Example 3. Dupin cyclide plot-
ted using MAA in tensor form.

Fig. 7. Example 4. Spiky surface plotted
using AA.

Fig. 8. Example 4. Spiky surface plotted
using MAA in tensor form.

[−20, 20]. This is a degree 4 polynomial equation representing a Dupin cyclide,
taken from [1].

Example 4: x2n + y2n + z2n − xnyn − xnzn − ynzn = 0 where n = 4 on
[−1.5, 1.5] × [−1.5, 1.5] × [−1.5, 1.5]. This is a degree 8 polynomial equation
representing a spiky surface, chosen from [1].

Example 5: x2y2 + y2z2 + x2z2 + xyz = 0 on [−0.5, 0.5] × [−0.5, 0.5] ×
[−0.5, 0.5]. This is a degree 4 polynomial equation representing Steiner’s Ro-
man surface, which has self-intersections, taken from [1].

Example 6: (x2 + y2 − 4)(x2 + z2 − 4)(y2 + z2 − 4)− 4.0078 = 0 on [−6, 6]×
[−6, 6]×[−6, 6]. This is a degree 6 polynomial equation representing an implicit



Fig. 9. Example 5. Steiner’s Roman sur-
face plotted using AA.

Fig. 10. Example 5. Steiner’s Roman
surface plotted using MAA in tensor
form.

Fig. 11. Example 6. Implicit blending
surface plotted using AA.

Fig. 12. Example 6. Implicit blending
surface plotted using MAA in tensor
form.

blending surface, chosen from [1].

Example 7: (x4 + y4 + z4 + 1) − (x2 + y2 + z2 + y2z2 + z2x2 + x2y2) = 0 on
[−2, 2]× [−2, 2]× [−2, 2]. This is a degree 4 polynomial equation representing
the quadruple Kummer’s surface, taken from [8].

Example 8: z3 + xz + y = 0 on [−5, 5]× [−5, 5]× [−5, 5]. This is a degree 3
polynomial equation representing a cubic cusp catastrophe, taken from [8].

Example 9: −1801

50
+280x−816x2+1056x3−512x4+ 1601

25
y−512xy+1536x2y−

2048x3y + 1024x4y = 0 on [0, 1] × [0, 1] × [0, 1]. This is a degree 5 polynomial



Fig. 13. Example 7. Quadruple Kum-
mer’s surface plotted using AA.

Fig. 14. Example 7. Quadruple Kum-
mer’s surface plotted using MAA in ten-
sor form.

Fig. 15. Example 8. Cubic cusp catas-
trophe plotted using AA.

Fig. 16. Example 8. Cubic cusp catas-
trophe plotted using MAA in tensor
form.

equation representing a curve swept along the z direction, taken from [11]. In
the latter, the same polynomial equation represents a curve in 2D, but here
represents a swept surface in 3D.

Example 10: 55

256
− x + 2x2 − 2x3 + x4 − 55

64
y + 2xy − 2x2y + 119

64
y2 − 2xy2 +

2x2y2 − 2y3 + y4 = 0 on [0, 1] × [0, 1] × [0, 1]. This is a degree 4 polynomial
equation representing a pair of tangent cylinders, chosen from [11]. Again, in
the latter, the same polynomial equation represents a curve in 2D, but here
represents a swept surface in 3D.

The graphical results for these examples using AA and MAA in tensor form



Fig. 17. Example 9. Translational sur-
face plotted using AA.

Fig. 18. Example 9. Translational sur-
face plotted using MAA in tensor form.

Fig. 19. Example 10. Two tangent cylin-
ders plotted using AA.

Fig. 20. Example 10. Two tangent cylin-
ders plotted using MAA in tensor form.

methods respectively are shown in Figures 1–20, and the related quantities
are recorded in Table 1. From Figures 1–20 and Table 1 we can see that in
general the MAA in tensor form method is not only more accurate but also
much quicker than the AA method. The AA method is particularly bad on
Examples 2, 4, 9, and 10. In Example 9 AA totally fails to reveal the form
of the surface while MAA in tensor form successfully reveals it. In Examples
2 and 4 the surfaces generated by AA are much thicker than these generated
by MAA in tensor form. In Example 10, AA does badly near the tangency
line of contact of the two cylinders, while MAA in tensor form does not have
this problem. In terms of performance, AA is always clearly worst in terms
of number of subdivisions and computational effort. MAA in tensor form is
slightly more accurate than IAC, but MAA in tensor form may or may not take



slightly less CPU time than IAC—the times are usually quite similar. Overall,
it seems that the performance of MAA in tensor form is slightly better than
IAC.

The reasons why MAA in tensor form is much faster than AA can be ex-
plained as follows. Firstly, the expressions evaluated by AA involve more arith-
metic operations than those needed for IAC or MAA in tensor form. Secondly,
AA is more conservative than MAA in tensor form, and therefore needs more
subdivisions. Thirdly, MAA in tensor form contains only tensor manipula-
tions, which are essentially loops and are easy to implement. On the other
hand, AA requires a complicated data structure involving a dynamic list to
represent an affine form and the associated error terms; arithmetic operations
on affine forms are performed using insertion and deletion of elements of lists,
which are not as efficient as the simple loops needed by MAA in tensor form.

5 Conclusions

MAA in tensor form is not only more accurate but also much faster than
standard AA. We have also demonstrated that MAA in tensor form is similar
to IAC, but enhanced by a proper consideration of the signs of even or odd
powers of polynomial terms. As a result, using MAA in tensor form is always
slightly more accurate than IAC, while IAC is always more accurate than AA.
In conclusion we recommend that the MAA in tensor form be used instead of
AA or IAC in trivariate polynomial geometric computations.
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