
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/5208/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Shou, Huahao, Lin, Hongwei, Martin, Ralph Robert and Wang, Guojin 2006. Modified affine arithmetic in
tensor form for trivariate polynomial evaluation and algebraic surface plotting. Journal of computational and

applied mathematics 195 (1-2) , pp. 155-171. 10.1016/j.cam.2005.08.003

Publishers page: http://www.sciencedirect.com/science?_ob=ArticleUR...

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Modified Affine Arithmetic in Tensor Form

for Trivariate Polynomial Evaluation and

Algebraic Surface Plotting ⋆

Huahao Shou a,b, Hongwei Lin a,∗, Ralph R. Martin c,
Guojin Wang a

aState Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, China.

bDepartment of Applied Mathematics, Zhejiang University of Technology,

Hangzhou 310014, China.

cSchool of Computer Science, Cardiff University, Cardiff, CF24 3AA, UK.

Abstract

This paper extends the modified affine arithmetic in matrix form method for
bivariate polynomial evaluation and algebraic curve plotting in 2D to modified affine

arithmetic in tensor form for trivariate polynomial evaluation and algebraic surface
plotting in 3D. Experimental comparison shows that modified affine arithmetic in
tensor form is not only more accurate but also much faster than standard affine
arithmetic when evaluating trivariate polynomials.

Key words: Interval arithmetic, Affine arithmetic, Algebraic surfaces

1 Introduction

Affine arithmetic (AA) was first introduced by Comba and Stolfi in 1993 [4]
as an improvement to interval arithmetic (IA). Due to its ability to keep track
of correlations between variables in subexpressions, AA is often more resis-
tant to over-conservatism when evaluating estimates of ranges of expressions

⋆ Project supported jointly by the National Natural Science Foundation of China
(No. 60373033 & No. 60333010), the National Natural Science Foundation for In-
novative Research Groups (No. 60021201) and the Foundation of State Key Basic
Research 973 Item (No. 2004CB719400).
∗ Corresponding author.

Email address: hwlin@cad.zju.edu.cn (Hongwei Lin).

Preprint submitted to Elsevier Science 30 June 2005

over intervals. AA has been successfully applied as a replacement for IA in
many geometric and computer graphics applications such as surface intersec-
tion [6], adaptive enumeration of implicit surfaces [7], ray tracing procedural
displacement shaders [9], sampling procedural shaders [10], ray casting im-
plicit surfaces [5], linear interval estimations for parametric objects [3] and a
CSG geometric modeller [2].

However standard AA still has an over-conservatism problem because it uses
approximation when multiplying affine forms, and thus it can be further im-
proved to give so-called modified affine arithmetic (MAA). This uses a matrix
form for bivariate polynomial evaluation which keeps all noise terms without
any approximation; we have used it for algebraic curve plotting in 2D [11,14].
In this paper we extend MAA to tensor form for trivariate polynomial evalu-
ation, and illustrate its use for algebraic surface plotting in 3D. In a previous
paper [13] we proved theoretically that MAA is more accurate than both in-
terval arithmetic on centered form (IAC), and standard AA. Clearly, we also
expect MAA in tensor form to also be more efficient than standard AA, and
we validate this expectation with an efficiency comparison.

2 Implicit surface plotting algorithm

The quadtree subdivision algorithm described in [11] for plotting an implicit
curve f(x, y) = 0 in a given rectangle [x, x]× [y, y] can be easily generalized to
an octree subdivision algorithm for plotting an implicit surface f(x, y, z) = 0
in a given box [x, x]× [y, y]× [z, z]. The basic idea is to evaluate f(x, y, z) over
the desired box using a range analysis estimation method (such as IA, AA or
MAA) giving a range [F , F] which is guaranteed to contain the exact range of
f over the box. If the resulting interval does not contain 0, the surface cannot
be present. If it does contain 0, we subdivide the box into eight sub-boxes at
its mid point, and consider the pieces in turn. The process stops when a box
reaches a single voxel in size. In such a case we plot the voxel. This may result
in a “thick” surface if the test is too conservative, i.e. voxels may be plotted
which do not actually contain the surface.

In a more sophisticated approach, instead of simply plotting the voxel, we
may investigate further whether the function actually crosses the voxel, and if
so, produce an appropriate linear approximant to the surface within the voxel,
for example. In this paper, we concentrate on the problem of finding this set
of candidate voxels, rather than on such subsequent processing.

In detail, we use the following procedure for the simple approach:

PROCEDURE Octree(x, x, y, y, z, z):

[F, F]=RangeEvaluation(x, x, y, y, z, z);

IF F ≤ 0 ≤ F THEN

IF x − x ≤VoxelSize AND y − y ≤VoxelSize

AND z − z ≤VoxelSize THEN

PlotVoxel(x, x, y, y, z, z)

ELSE Subdivide(x, x, y, y, z, z).

PROCEDURE Subdivide(x, x, y, y, z, z):

x0=(x + x)/2; y0=(y + y)/2; z0=(z + z)/2;

Octree(x, x0, y, y0, z, z0); Octree(x0, x, y, y0, z, z0);

Octree(x0, x, y0, y, z, z0); Octree(x, x0, y0, y, z, z0);

Octree(x, x0, y0, y, z0, z); Octree(x, x0, y, y0, z0, z);

Octree(x0, x, y, y0, z0, z); Octree(x0, x, y0, y, z0, z).

Here [F, F]=RangeEvaluation(x, x, y, y, z, z) is a conservative interval con-
taining all values of f(x, y, z) over the box [x, x] × [y, y] × [z, z], computed
using a chosen range analysis method such as IA, AA or MAA. (x0,y0,z0) is
the mid-point of the box [x, x] × [y, y] × [z, z].

3 Modified Affine Arithmetic in Tensor Form

Let f(x, y, z) be a polynomial in three variables expressed in power form
and Ω be a box-shaped interval of interest:

f(x, y, z) =
n

∑

i=0

m
∑

j=0

l
∑

k=0

Aijkx
iyjzk, (x, y, z) ∈ Ω = [x, x] × [y, y] × [z, z].

We rewrite f(x, y, z) in tensor representation:

f(x, y, z) = X ⊗x (Z ⊗z A) ⊗y Y,

where X = (1, x, · · · , xn), Y = (1, y, · · · , ym)T , Z = (1, z, · · · , zl) are power
vectors, and Aijk is the coefficient tensor.

Let us now convert the interval forms [x, x], [y, y] and [z, z] to affine forms:

x̂ = x0 + x1εx, ŷ = y0 + y1εy, ẑ = z0 + z1εz,

where εx, εy and εz are noise symbols whose values are unknown but each is
assumed to be in the range [−1, 1], and

x0 = (x + x)/2, y0 = (y + y)/2, z0 = (z + z)/2

x1 = (x − x)/2, y1 = (y − y)/2, z1 = (z − z)/2.

We also define power vectors in the noise symbols:

X̂ = (1, εx, · · · , ε
n
x), Ŷ = (1, εy, · · · , ε

m
y)T , Ẑ = (1, εz, · · · , ε

n
z).

We now define three further matrices B, C and D as follows. Firstly,

B =

1 x0 · · · xn−1

0 xn
0

0 x1 · · · (n − 1)xn−2

0 x1 nxn−1

0 x1

...
...

. . .
...

...

0 0 · · · xn−1

1 nx0x
n−1

1

0 0 · · · 0 xn
1

;

in detail

Bij =

(

j

i

)

xj−i
0 xi

1
, i ≤ j

0, i > j
, i = 0, 1, · · · , n; j = 0, 1, · · · , n.

Secondly,

C =

1 0 · · · 0 0

y0 y1 · · · 0 0
...

...
. . .

...
...

ym−1

0 (m − 1)ym−2

0 y1 · · · ym−1

1 0

ym
0

mym−1

0 y1 · · · my0y
m−1

1 ym
1

;

in detail

Cij =

0, i < j
(

i

j

)

yi−j
0 yj

1, i ≥ j
, i = 0, 1, · · · , m; j = 0, 1, · · · , m.

Finally

D =

1 z0 · · · zl−1

0 zl
0

0 z1 · · · (l − 1)zl−2

0 z1 lzl−1

0 z1

...
...

. . .
...

...

0 0 · · · zl−1

1 lz0z
l−1

1

0 0 · · · 0 zl
1

;

in detail

Dij =

(

j

i

)

zj−i
0 zi

1
, i ≤ j

0, i > j
, i = 0, 1, · · · , l; j = 0, 1, · · · , l.

We now have that

X = X̂B, Y = CŶ , Z = ẐD.

We compute the tensor G from matrices B, C and D, and the original coeffi-
cient tensor A as follows:

G = B ⊗x (D ⊗z A) ⊗y C,

giving

f(x̂, ŷ, ẑ) = X̂ ⊗x (Ẑ ⊗z G) ⊗y Ŷ =
n

∑

i=0

m
∑

j=0

l
∑

k=0

Gijkε
i
xε

j
yε

k
z .

Up to now the calculation is exact and does not involve any approximation.
Furthermore, it can be seen that this polynomial is actually the centered
form of the original polynomial [12]. In the next step we wish to convert this
result back to interval form [F , F]. This can be done by standard IA. However
standard IA can be seen not to be the best choice, if we take into account
the following observations: if all of i, j and k are even, then εi

xε
j
yε

k
z ∈ [0, 1],

otherwise εi
xε

j
yε

k
z ∈ [−1, 1]. Thus a tighter interval [F , F] can be obtained,

compared to the result given by standard IA on this centered form, as follows

F = G000 +
l

∑

k=1

max(0, G00k), if k is even

|G00k|, otherwise

+

m
∑

j=1

l
∑

k=0

max(0, G0jk), if j, k are both even

|G0jk|, otherwise

+

n
∑

i=1

m
∑

j=0

l
∑

k=0

max(0, Gijk), if i, j, k are all even

|Gijk|, otherwise

,

and

F = G000 +
l

∑

k=1

min(0, G00k), if k is even

−|G00k|, otherwise

+

m
∑

j=1

l
∑

k=0

min(0, G0jk), if j, k are both even

−|G0jk|, otherwise

+

n
∑

i=1

m
∑

j=0

l
∑

k=0

min(0, Gijk), if i, j, k are all even

−|Gijk|, otherwise

.

In this way, the trivariate polynomial f(x, y, z) thus takes on values guar-
anteed to be in the interval [F , F] over the box [x, x] × [y, y] × [z, z].

4 Comparison of AA and MAA in Tensor Form by Examples

To demonstrate and validate the results in the previous Section, and to
compare the relative performance of AA and MAA in tensor form, we now
consider some examples. We plot 10 carefully chosen example algebraic sur-
faces to compare the accuracy and speed of these two methods. Each example
surface is represented by a trivariate polynomial equation f(x, y, z) = 0; it is
plotted using the algorithm given in Section 2 on a grid of 128 × 128 × 128
voxels. We used Visual C++ 6.0 and Windows 2000 on a personal computer
with an Intel Xeon 2.8GHz CPU and 2GB RAM for all the tests.

We not only show the graphical output generated for these examples, but
also present a tabular comparison of accuracy and computation times in each
case; we also show the results obtained by IAC for comparison. To compare
the performance and efficiency of AA, IAC and MAA in tensor form methods,
a number of quantities were measured:

• The number of voxels plotted: the fewer the better, as plotted voxels may or
may not contain the surface in practice.

• The CPU time used: the lower the better.
• The number of subdivisions involved: the lower the better, due to additional

time used for stack overheads.

Fig. 1. Example 1. Hyperboloid of two
sheets plotted using AA.

Fig. 2. Example 1. Hyperboloid of two
sheets plotted using MAA in tensor
form .

Fig. 3. Example 2. Heart surface plotted
using AA.

Fig. 4. Example 2. Heart surface plotted
using MAA in tensor form.

The examples we used in this paper are as follows:

Example 1: 0.06(x2 − x + 4y − xy + 2yz + 3) = 0 on [−10, 10]× [−10, 10]×
[−10, 10]. This is a degree 2 polynomial equation representing a hyperboloid
of two sheets, taken from [2].

Example 2: (2x2 + y2 + z2 − 1)3 − 0.1x2z3 − y2z3 = 0 on [−1.25, 1.25] ×
[−1.25, 1.25]× [−1.25, 1.25]. This is a degree 6 polynomial equation represent-
ing a heart-shaped surface, taken from [15].

Example 3: (x2 + y2 + z2 − r2)2 − 2(x2 + r2)(f 2 + a2)− 2(y2 − z2)(a2 − f 2)+
8afrx + (a2 − f 2)2 = 0 where a = 15, r = 3, f = 5 on [−20, 20] × [−20, 20] ×

Fig. 5. Example 3. Dupin cyclide plot-
ted using AA.

Fig. 6. Example 3. Dupin cyclide plot-
ted using MAA in tensor form.

Fig. 7. Example 4. Spiky surface plotted
using AA.

Fig. 8. Example 4. Spiky surface plotted
using MAA in tensor form.

[−20, 20]. This is a degree 4 polynomial equation representing a Dupin cyclide,
taken from [1].

Example 4: x2n + y2n + z2n − xnyn − xnzn − ynzn = 0 where n = 4 on
[−1.5, 1.5] × [−1.5, 1.5] × [−1.5, 1.5]. This is a degree 8 polynomial equation
representing a spiky surface, chosen from [1].

Example 5: x2y2 + y2z2 + x2z2 + xyz = 0 on [−0.5, 0.5] × [−0.5, 0.5] ×
[−0.5, 0.5]. This is a degree 4 polynomial equation representing Steiner’s Ro-
man surface, which has self-intersections, taken from [1].

Example 6: (x2 + y2 − 4)(x2 + z2 − 4)(y2 + z2 − 4)− 4.0078 = 0 on [−6, 6]×
[−6, 6]×[−6, 6]. This is a degree 6 polynomial equation representing an implicit

Fig. 9. Example 5. Steiner’s Roman sur-
face plotted using AA.

Fig. 10. Example 5. Steiner’s Roman
surface plotted using MAA in tensor
form.

Fig. 11. Example 6. Implicit blending
surface plotted using AA.

Fig. 12. Example 6. Implicit blending
surface plotted using MAA in tensor
form.

blending surface, chosen from [1].

Example 7: (x4 + y4 + z4 + 1) − (x2 + y2 + z2 + y2z2 + z2x2 + x2y2) = 0 on
[−2, 2]× [−2, 2]× [−2, 2]. This is a degree 4 polynomial equation representing
the quadruple Kummer’s surface, taken from [8].

Example 8: z3 + xz + y = 0 on [−5, 5]× [−5, 5]× [−5, 5]. This is a degree 3
polynomial equation representing a cubic cusp catastrophe, taken from [8].

Example 9: −1801

50
+280x−816x2+1056x3−512x4+ 1601

25
y−512xy+1536x2y−

2048x3y + 1024x4y = 0 on [0, 1] × [0, 1] × [0, 1]. This is a degree 5 polynomial

Fig. 13. Example 7. Quadruple Kum-
mer’s surface plotted using AA.

Fig. 14. Example 7. Quadruple Kum-
mer’s surface plotted using MAA in ten-
sor form.

Fig. 15. Example 8. Cubic cusp catas-
trophe plotted using AA.

Fig. 16. Example 8. Cubic cusp catas-
trophe plotted using MAA in tensor
form.

equation representing a curve swept along the z direction, taken from [11]. In
the latter, the same polynomial equation represents a curve in 2D, but here
represents a swept surface in 3D.

Example 10: 55

256
− x + 2x2 − 2x3 + x4 − 55

64
y + 2xy − 2x2y + 119

64
y2 − 2xy2 +

2x2y2 − 2y3 + y4 = 0 on [0, 1] × [0, 1] × [0, 1]. This is a degree 4 polynomial
equation representing a pair of tangent cylinders, chosen from [11]. Again, in
the latter, the same polynomial equation represents a curve in 2D, but here
represents a swept surface in 3D.

The graphical results for these examples using AA and MAA in tensor form

Fig. 17. Example 9. Translational sur-
face plotted using AA.

Fig. 18. Example 9. Translational sur-
face plotted using MAA in tensor form.

Fig. 19. Example 10. Two tangent cylin-
ders plotted using AA.

Fig. 20. Example 10. Two tangent cylin-
ders plotted using MAA in tensor form.

methods respectively are shown in Figures 1–20, and the related quantities
are recorded in Table 1. From Figures 1–20 and Table 1 we can see that in
general the MAA in tensor form method is not only more accurate but also
much quicker than the AA method. The AA method is particularly bad on
Examples 2, 4, 9, and 10. In Example 9 AA totally fails to reveal the form
of the surface while MAA in tensor form successfully reveals it. In Examples
2 and 4 the surfaces generated by AA are much thicker than these generated
by MAA in tensor form. In Example 10, AA does badly near the tangency
line of contact of the two cylinders, while MAA in tensor form does not have
this problem. In terms of performance, AA is always clearly worst in terms
of number of subdivisions and computational effort. MAA in tensor form is
slightly more accurate than IAC, but MAA in tensor form may or may not take

slightly less CPU time than IAC—the times are usually quite similar. Overall,
it seems that the performance of MAA in tensor form is slightly better than
IAC.

The reasons why MAA in tensor form is much faster than AA can be ex-
plained as follows. Firstly, the expressions evaluated by AA involve more arith-
metic operations than those needed for IAC or MAA in tensor form. Secondly,
AA is more conservative than MAA in tensor form, and therefore needs more
subdivisions. Thirdly, MAA in tensor form contains only tensor manipula-
tions, which are essentially loops and are easy to implement. On the other
hand, AA requires a complicated data structure involving a dynamic list to
represent an affine form and the associated error terms; arithmetic operations
on affine forms are performed using insertion and deletion of elements of lists,
which are not as efficient as the simple loops needed by MAA in tensor form.

5 Conclusions

MAA in tensor form is not only more accurate but also much faster than
standard AA. We have also demonstrated that MAA in tensor form is similar
to IAC, but enhanced by a proper consideration of the signs of even or odd
powers of polynomial terms. As a result, using MAA in tensor form is always
slightly more accurate than IAC, while IAC is always more accurate than AA.
In conclusion we recommend that the MAA in tensor form be used instead of
AA or IAC in trivariate polynomial geometric computations.

References

[1] R.J. Balsys, K.G. Suffern, Visualisation of implicit surfaces, Computers &
Graphics 25 (2001) 89–107.

[2] A. Bowyer, R. Martin, H. Shou, I. Voiculescu, Affine intervals in a CSG
geometric modeller, in: J. Winkler, M. Niranjan (Eds.), Uncertainty in Geometric
Computations, 2002, pp. 1-14.

[3] K. Bühler, Linear interval estimations for parametric objects theory and
application, Computer Graphics Forum 20(3) (2001) 522–531.

[4] J.L.D. Comba, J. Stolfi, Affine arithmetic and its applications to
computer graphics, Anais do VII SIBGRAPI, 1993, pp. 9–18. Available at
http://www.dcc.unicamp.br/∼stolfi/.

[5] A.Jr. De Cusatis, L.H. De Figueiredo, M. Gattass, Interval Methods for Ray
Casting Implicit Surfaces with Affine Arithmetic, XII Brazilian Symposium on
Computer Graphics and Image Processing, 1999, pp. 65–71.

Table 1
Comparison of AA, IAC and MAA in tensor form for each example

Examples Methods Voxels plotted Subdivisions involved CPU time used

1 AA 39305 13440 167 sec

1 IAC 39305 13440 51 sec

1 MAA 39214 13343 52 sec

2 AA 143104 61901 2734 sec

2 IAC 63168 31669 147 sec

2 MAA 59104 28333 136 sec

3 AA 16716 7049 41 sec

3 IAC 16420 6881 10 sec

3 MAA 15956 6357 10 sec

4 AA 17480 17953 73 sec

4 IAC 11792 14665 15 sec

4 MAA 10256 10681 12 sec

5 AA 89396 34009 920 sec

5 IAC 86864 31897 255 sec

5 MAA 85448 31033 262 sec

6 AA 61512 35873 530 sec

6 IAC 53576 26017 101 sec

6 MAA 52544 24337 104 sec

7 AA 114320 42129 1608 sec

7 IAC 111536 40289 423 sec

7 MAA 109712 39209 428 sec

8 AA 33982 12063 174 sec

8 IAC 33982 12063 39 sec

8 MAA 33666 11683 40 sec

9 AA 748032 163881 61876 sec

9 IAC 32000 13673 35 sec

9 MAA 31744 12521 36 sec

10 AA 163072 69281 3250 sec

10 IAC 53248 20361 97 sec

10 MAA 50176 18601 89 sec

[6] L.H. De Figueiredo, Surface intersection using affine arithmetic, Proceedings of
Graphics Interface, 1996, pp. 168–175.

[7] L.H. De Figueiredo, J. Stolfi, Adaptive enumeration of implicit surfaces with
affine arithmetic, Computer Graphics Forum 15(5) (1996) 287–296.

[8] P. Hanrahan, Ray tracing algebraic surfaces, Computer Graphics 17(3) (1983)
83–90.

[9] W. Heidrich, H.P. Seidel, Ray tracing procedural displacement shaders,
Proceedings of Graphics Interface, 1998, 8–16.

[10] W. Heidrich, P. Slusallek, H.P. Seidel, Sampling of procedural shaders using
affine arithmetic, ACM Trans. on Graphics 17(3) (1998) 158–176.

[11] R. Martin, H. Shou, I. Voiculescu, A. Bowyer, G. Wang, Comparison of interval
methods for plotting algebraic curves, Computer Aided Geometric Design 19(7)
(2002) 553–587.

[12] H. Ratschek, J. Rokne, Computer Methods for the Range of Functions, Ellis
Horwood, 1984.

[13] H. Shou, H. Lin, R. Martin, G. Wang, Modified affine arithmetic is more
accurate than centered interval arithmetic or affine arithmetic, in: M.J. Wilson,
R.R. Martin (Eds.), Lecture Notes in Computer Science 2768, Mathematics of
Surfaces, Springer-Verlag Berlin Heidelberg New York, 2003, pp. 355-365.

[14] H. Shou, R. Martin, I. Voiculescu, A. Bowyer, G. Wang, Affine arithmetic in
matrix form for polynomial evaluation and algebraic curve drawing, Progress in
Natural Science 12(1) (2002) 77–80.

[15] G. Taubin, Rasterizing algebraic curves and surfaces, IEEE Computer Graphics
Appl. 14 (1994) 14–23.

