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Dissipation of energy in micro- and nano-electromechanical resonators governs their dynamical

response and limits their potential use in device applications. Quantified by the quality factor Q,

dissipation (Q�1) usually occurs by energy loss mechanisms that are linear, appearing as a damping

term proportional to the velocity. Mechanisms of linear dissipation in micro- and nano-mechanical

resonators are well studied both theoretically and experimentally. Mechanisms of nonlinear

dissipation of energy, however, are rarely studied, though their effects could be fundamentally

important to the operation of numerous devices based on nonlinear resonators such as switches,

signal processers, sensors, and energy harvesting systems. Here, we report experimental

observation of nonlinear dissipation in diamond nanoelectromechanical resonators. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4794907]

Microelectromechanical systems (MEMS) and nano-

electromechanical systems (NEMS) are often based on reso-

nators of corresponding length scales for many device

applications that are of fundamental and technical interests.

MEMS and NEMS resonators are used for signal processing

in wireless communications in filters, timing oscillators and

switches, and as sensors in accelerometers and gyroscopes in

inertial navigation. Fundamental applications of NEMS reso-

nators include the effort to observe quantum effects in mac-

roscopic systems and spintronics. Even though resonators

are used in the linear regime in all these applications, resona-

tors operating in the nonlinear regime are also used in

numerous counterintuitive applications that include signal

processing using stochastic resonance,1 improved sensitiv-

ity,2 and energy harvesting.3 The understanding of nonlinear

dissipation mechanisms is therefore fundamentally important

for determining the limitations of devices using resonators in

either linear or nonlinear regimes.

Dissipation mechanisms are usually expressed by the

following nonlinear damped driven resonator equation. The

damping term is proportional to the velocity of the resonator,

where a phenomenological parameter c represents damping

given by a particular mechanism. This term characterizes the

normalized rate at which energy escapes a particular reso-

nant mode. All underlying physical mechanisms are bundled

into this single phenomenological parameter. The simplest

way to add mechanical nonlinearity is given by the Duffing

equation, which includes a higher order term in x

€x þ c _x þ k

m
xþ k3

m
x3 ¼ F

m
cosðxtÞ; (1)

where k3 is the nonlinear coefficient. An x2 term may be

included but the x3 term is required to ensure the energy is

bounded. A positive k3 makes the structure stiffer and results in

maximum amplitudes at higher frequencies. Correspondingly, a

negative k3 results in beam softening and lowers the frequency

of the maximum displacement; these cases are described by the

backbone curve. After a critical drive force, the resonator dis-

placement bifurcates, resulting in a parameter space where the

total displacement depends on the history of the resonator. This

can be observed by changing the sweep direction of the drive

frequency. This behavior has led to the study of controlled

switching between stable states,4,5 stochastic resonance,6–8 and

control of nonlinearity in resonator devices.9

Intrinsic nonlinearities of the resonator material typi-

cally contribute only at displacements far greater than non-

linear effects due to the geometry or external potentials. An

example of nonlinearities due to an external potential can be

illustrated by electrostatic actuation and detection method.

For weak drive forces,

€x þ c _x þ x2
0 �

C00V2
B

2m

� �
x � C0VBVd

m
: (2)

The drive force results from a Taylor expansion of the voltage

acting between the resonator and the gates that form the capac-

itor. Simply including higher order terms in x will result in

terms proportional to x2 and x3, resulting in an explicit term for

k3 (and k2, where applicable). Geometric nonlinearities occur

when the thin-beam approximation is no longer valid.10 For a

doubly clamped rectangular beam, it can be shown that the

nonlinearity coefficient takes the form k3 ¼ x2
n

S
2I bn, where xn

is the n-th mode eigenfrequency, S is the cross sectional area

of the beam, and I the second moment of inertia. bn is a mode

dependent numerical constant, where b1 � 0.2 and approaches
1=2 as n!1. Typical displacements, <10 nm, are small com-

pared to device widths or thicknesses that are usually greater

than 100 nm. So, with the exception of graphene and CNT

devices, nonlinearities due to external potentials will often

dominate over geometric nonlinearities.

One may consider the additional terms _x3; _xx2; x2 _x;
which are all on the same order as x3. As these terms are

made up of the velocity, they result in nonlinear dissipative

contributions. The following is known as the van der

Pol-Duffing equation:a)E-mail: mohanty@bu.edu.
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m€x þ mc _x þ kxþ k3x3 þ gx2 _x ¼ F cosðxtÞ; (3)

where g is the nonlinear damping coefficient and F the drive

force at frequency x. An approximate solution10 can be

obtained using secular perturbation theory, valid in the limit

of low dissipation and small oscillations. In addition, it is

assumed that the response is only large close to the reso-

nance frequency and hence the perturbation is conducted

close to the resonance. The nonlinear oscillator displacement

amplitude becomes

x2
0 ¼

F

2mx2
0

� �2

x� x0

x0

� 3

8

k3

mx2
0

x2
0

� �2

þ 1

2
Q�1 þ 1

8

g
mx0

x2
0

� �2
: (4)

In contrast to the linear response, the maximum displacement

is now shifted from the resonance frequency, where the fre-

quency shift is dependent on x2. This results in the backbone

expression given by xmax ¼ x0 þ 3k3ðx0Þ2max=8mx0. For

increasing drive force, Eq. (4) eventually bifurcates resulting

in a frequency space that is multivalued in x0. The critical am-

plitude (and corresponding force and frequency) is defined by

the onset of the bifurcation10

x2
c0 ¼

8

3

mcx0

k3

1ffiffiffi
3
p
� gx0

k3

: (5)

For g¼ 0, x2
c0 is inversely proportional to k3. As

k3 approaches zero (which represents the linear regime),

the amplitude diverges before bifurcation occurs. This is the

expected result. As the nonlinear damping increases, the

critical displacement also increases and even diverges as

g!
ffiffiffi
3
p

k3=x0 above which no bifurcation in frequency

space occurs. This is a fundamental difference compared to

the case without nonlinear damping, where bifurcation will

eventually always occur for nonzero values of k3.

To demonstrate the effects of nonlinear damping,

our experiments were conducted on a set of resonators

designed to operate with the electrostatic or magnetomotive

method. The two sets of resonators shown in Figure 1 were

fabricated using e-beam lithography from nano- and ultra-

nano-crystalline diamond (NCD and UNCD). The doubly

clamped NCD resonator shown in Figure 1(a) is sandwiched

between two side gates for capacitive actuation as schemati-

cally shown in Figure 1(c). This resonator is 380 nm thick,

500 nm wide and 18.6 lm long. The resulting fundamental

flexural mode has a frequency of 20.917 MHz and linear

quality factor at room temperature of 6845 (without circuit

loading). The Young’s modulus of �600 GPa is low for dia-

mond due to the large undercut at the clamps, resulting in

an effectively longer structure. The true Young’s modulus

of the diamond has been independently determined11 to be

as high as 1100 GPa. Figure 1(b) depicts a series of doubly

clamped UNCD beams with gold top electrodes for magne-

tomotive actuation, as schematically shown in Figure 1(d).

The resonator discussed here is 340 nm thick, 350 nm

wide, and 13.1 lm long, with a resonant frequency of

13.501 MHz and a quality factor at 40 mK of �14920

(without circuit loading).12 The resonators were cooled to

40 mK in a dilution cryostat and actuated magnetomotively

with a superconducting magnet. A full description of these

structures and their linear dynamic response is given

elsewhere.13

Experimentally, there are multiple ways the effect of

nonlinear damping may be observed. For low drive forces, as

compared to the critical force, the response is essentially

Lorentzian, one may observe a widening of the resonance

given by Dx ¼ cþ x0gx2
0=4, and correspondingly a

FIG. 1. (a) NCD doubly clamped beam

with capacitive side electrodes. (b)

UNCD harp structure with multiple dou-

bly clamped beams of varying lengths,

similar to the one discussed here. (c)

Capacitive drive and detection sche-

matics. (d) Magnetomotive drive and

detection schematics. For all measure-

ments, the resonators are actuated in a

high vacuum were viscous damping

does not occur.
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displacement dependent dissipation of the form Q�1 ffi c
x0

þ gx2
0=4. Typically, this is a small effect that is hard to

observe in experiments as the uncertainty in Dx can be sig-

nificant. However, the effect of g can be also observed in the

high drive regime where the response bifurcates and the cor-

rection to the amplitude is significant.10 It is shown that for

g¼ 0 the normalized response (where the amplitude is di-

vided by the drive force) is independent of the drive force.

For g > 0, however, the normalized response drops with

increasing drive force, as depicted in Figure 2(b), implying

that the maximum amplitude response is not affected by k3

and Hooke’s law still applies. Correspondingly, if nonlinear

damping is present a displacement-force trace will no longer

fall on a straight line but fall off at higher drive forces. In

both cases, bifurcation occurs above a critical drive force as

the nonlinear dissipation is not sufficient to suppress this

phenomenology (g <
ffiffiffi
3
p

k3=x0).

Figure 3 depicts a power sweep of an electrostatically

driven diamond resonator at room temperature (a) and a

magnetomotively driven doubly clamped diamond resonator

at 40 mK (b). Figure 3(a) shows the normalized power sweep

of an in-plane flexural mode in the doubly clamped structure

driven electrostatically with f0¼ 20.92 MHz, Q¼ 3520,
g¼ 0. Figure 3(b) shows normalized power sweeps of the

out-of-plane flexural mode in the doubly clamped structure

driven magnetomotively, with f0¼ 13.5 MHz, Q¼ 14 924,
k3¼ 4.5, and g¼ 4.8� 10�6 (normalized units). Again,

bifurcation was observed in both cases, indicating that the

nonlinear dissipation is still in the weak limit.

Ideally, all traces should be reproduced by Eq. (4), pro-

vided the actuation force is known. In reality, the fits proved

very difficult and results were only obtained by allowing for

different values for k3 and g for each trace. Hence, the solid

lines in Figure 3 should only be considered as a guide to the

eye rather than exact fits. These results show that the effects

of nonlinear damping correlate well with the theory presented

in Figure 2. Why more precise fitting was not possible may

indicate that further mechanisms that are not accounted for

are at play. For comparison, the trace in Figure 3(a) shows

results for the electrostatically driven beam at room tempera-

ture. Even though the response is highly nonlinear, there is no

measurable nonlinear damping. The normalized maximum

amplitude is constant, and no peak broadening is observed

within experimental errors.

FIG. 2. (a) Normalized response of the Duffing equation without nonlinear

damping. This is the numerical solution the force-displacement relation

given by Eq. (4), and no nonlinear dissipation (g¼ 0). For forces above the

critical force, the solution becomes triple valued, where middle amplitude

solution is not physical. Colors indicate varying drive forces. (b) Same as

above but now including finite nonlinear damping as described by the

Pol-Duffing equation.

FIG. 3. (a) Normalized amplitude response of a doubly clamped structure

driven electrostatically at room temperature. f0¼ 21.05 MHz, Q¼ 3720,
g¼ 0, in-plane flexural mode. In this case, g¼ 0 and the normalized maxi-

mum amplitude is constant as seen in Fig. 2(a). (b) Normalized drive power

sweep of doubly clamped structure driven magnetomotively in a dilution

cryostat at 40 mK. f0¼ 13.5 MHz, Q¼ 14 924, k3¼ 4.5 (normalized units).

Here, g¼ 4.8 � 10�6, for this out-of-plane flexural mode and a clear drop in

the maximum amplitude is observed.
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For large drive forcing, it is possible to raise the temper-

ature of the resonator through Ohmic heating. Corresponding

the quality factor would decrease. In our experiment, we can

rule out this heating effect and the source of increased dissi-

pation with drive power. For the dissipation to increase by a

factor of 1.4, the observed temperature would have to rise

from 40 mK to roughly 500 mK. At 500 mK, the expected

frequency shift would exceed 6 kHz, which is not observed

here.

Q is much higher at low temperatures, which results in

larger amplitudes for the equivalent drive force. The drive

powers cannot be compared directly as the transduction effi-

ciency of magnetomotive and electrostatic methods are very

different. In principle, only the absolute amplitudes should

factor in.

Similar nonlinear effects have been observed in NEMS

devices. It is conjectured that nonlinearities due to geometry

may result in nonlinear dissipation.14 However, such mecha-

nisms are still unknown. While smaller resonators are often

easier to drive into the nonlinear regime, larger structures

also have shown frequency broadening as a function of

increased strain.15 These effects are considerable, but their

precise cause is still unknown. It is found16 that parametric

amplification can be limited by nonlinear damping as was

observed in a recent experiment on qubit-coupled nanoreso-

nator. In addition, nonlinear dissipation must be considered

in active feedback systems, where out of phase feedback will

result in nonlinear dissipation17 as well as noise squeezing.18

Strong nonlinear damping has recently been observed in

CNT and graphene resonators under tensile strain and string

like structures.19 In these structures, nonlinear damping is re-

sponsible for destroying hysteresis. The frequency widening

is greater than the frequency shift and is analyzed in the zero

linear dissipation limit, where Df / ðg1=3=mÞðFdrive=f0Þ2=3
.

While again, no particular damping mechanism is discov-

ered, it is suggested that linear damping mechanisms coupled

to geometric nonlinearities or external mechanisms such as

clamping losses may contribute to the effect. The relatively

high nonlinear damping may also point to a mechanism spe-

cific to graphene and CNT such as sliding of the carbon

resonator over its metal electrodes. In experiments20 involv-

ing two-level systems (TLS) the observed strain dependent

dissipation and shifts in sound velocity can be explained by

coupling of TLS. This mechanism could be a good candidate

as a source of nonlinear dissipation as TLS are known to be

significant in both the diamond structure presented above

and are likely also to occur in the graphene and CNT resona-

tors that have exhibited nonlinear dissipation.
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