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ABSTRACT

Context. In addition to gas phase reactions, the chemical processes on the surfaces of interstellar dust grains are important for
the energy and material budget of the interstellar medium. The stochasticity of these processes requires special care in modeling.
Previously methods based on the modified rate equation, the master equation, the moment equation, and Monte Carlo simulations
have been used.
Aims. We attempt to develop a systematic and efficient way to model the gas-grain chemistry with a large reaction network as
accurately as possible.
Methods. We present a hybrid moment equation approach, which is a general and automatic method where the generating function is
used to generate the moment equations. For large reaction networks, the moment equation is cut off at the second order, and a switch
scheme is used when the average population of certain species reaches 1. For small networks, the third order moments can also be
utilized to achieve a higher accuracy.
Results. For physical conditions in which the surface reactions are important, our method provides a major improvement over the
rate equation approach, when benchmarked against the rigorous Monte Carlo results. For either very low or very high temperatures,
or large grain radii, results from the rate equation are similar to those from our new approach. Our method is faster than the Monte
Carlo approach, but slower than the rate equation approach.
Conclusions. The hybrid moment equation approach with a cutoff and switch scheme is a very powerful way to solve gas-grain
chemistry. It is applicable to large gas-grain networks, and is demonstrated to have a degree of accuracy high enough to be used for
astrochemistry studies. Further work should be done to investigate how to cut off the hybrid moment equation selectively to make the
computation faster, more accurate, and more stable, how to make the switch to rate equation more mathematically sound, and how to
make the errors controllable. The layered structure of the grain mantle could also be incorporated into this approach, although a full
implementation of the grain micro-physics appears to be difficult.
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1. Introduction

The chemistry of the interstellar medium can be roughly divided
into two types: gas phase chemistry and grain surface chem-
istry. The two types of chemistry are coupled by the adsorp-
tion and desorption processes. Species adsorbed on the grain
surface migrate in a random walk manner, and they may react
with each other upon encounter at the same site (a local potential
minimum). The products can be released back to the gas phase
through certain desorption mechanisms. In addition to the gas
phase chemistry, grain chemistry is important for the material
and energy budget of the interstellar medium. For example, be-
sides H2, molecules such as methanol are believed to be formed
on the grain surfaces (Garrod et al. 2007), because its relatively
high abundance (see, e.g., Menten et al. 1988) cannot be repro-
duced by gas phase chemistry.

Several methods have been used to model the gas-grain
chemistry. In the rate equation (RE) approach (see, e.g.,
Hasegawa et al. 1992), the surface processes are treated the same
way as the gas phase processes. This works fine when the num-
ber of reactants on a single grain is large (under the assumption
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that the system is well stirred; see Gillespie 2007), but might
not be accurate enough when the average populations1 of some
reactants on a single grain is small. This failure of the rate equa-
tion is related to the treatment of two-body reaction. For the REs
to be applicable, the probability of one reactant being present
should be independent of that of another being present. This is
not always true, especially when the average populations of both
reactants are low, in which case they might be highly correlated.
The flaws in employing the RE for grain-surface chemistry were
pointed out by Charnley et al. (1997) and Tielens & Charnley
(1997).

To remedy this problem, modification schemes based on
some empirical, heuristic, and/or physical reasoning have been
applied to the RE approach (Caselli et al. 1998; Stantcheva
et al. 2001), and are called modified rate equation (MRE) ap-
proach. The validity of this method has been questioned (Rae
et al. 2003). A modification scheme developed by Garrod (2008)
uses different functional forms for different surface populations,

1 Here by “population” we mean the number of a species in a volume
of interest, and by “average” we mean an ensemble average (i.e. aver-
age over many different realizations of the same system setup). Hence
“population” can only take non-negative integer values, while “average
population” is a non-negative real number.
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taking various competition processes and refinements into ac-
count. It has been shown to work very well, even for very large
reaction networks (Garrod et al. 2009).

Mathematically, the gas-grain system should be viewed as a
stochastic chemical system (see, e.g., McQuarrie 1967; Gillespie
1976; Charnley 1998), being described by a probability distribu-
tion P(x, t), which is the probability that the system has a pop-
ulation vector x at time t, with xi being the number of the ith
species in the system. The evolution equation of P(x, t) is the
so-called master equation, whose form is determined by the re-
action network.

Many sophisticated methods have been proposed (mainly
outside the astro-chemical community; see, e.g., the operator
method described in Mattis & Glasser 1998; or the variational
approach used by Ohkubo 2008) to solve the master equation.
However, these methods work fine only when either the chemi-
cal network is small or some special assumptions are made in the
derivation, thus their validity in the general case should be ques-
tioned. It is unclear whether these methods can be generalized to
large complex networks.

The numerical solution of the master equation has also been
performed (Biham et al. 2001; Stantcheva et al. 2002; Stantcheva
& Herbst 2004). To limit the number of variables in the set of dif-
ferential equations and to separate the deterministic and stochas-
tic species, usually a priori knowledge of the system is required
in these studies. The steady state solution of the master equation
can also be obtained analytically in some very simple cases, such
as the formation of H2 molecules on the grain surface (Green
et al. 2001; Biham & Lipshtat 2002).

On the other hand, the master equation prescription can be
“realized” through a stochastic simulation algorithm (SSA), pro-
posed by Gillespie 1976 (see also Gillespie 1977, 2007). In this
approach, the waiting time for the next reaction to occur, as
well as which specific reaction will occur are random variables
that are completely determined by the master equation, so this
approach should be considered the most accurate. In principle,
multiple runs are needed to average out the random fluctuations,
but in practice this is unnecessary if one only cares about the
abundant species. This approach has been applied successfully
to astrochemical problems (Charnley 1998, 2001; Vasyunin et al.
2009), even in the case of very large networks (Vasyunin et al.
2009). Besides providing results that are accurate, this approach
is very easy to implement. However, it requires a very long run
time for large networks if a long evolution track is to be fol-
lowed, although some approximate accelerated methods do exist
(e.g. Gillespie 2000).

The SSA described above is somewhat different from a
Monte Carlo (MC) approach which has also been applied to
astrochemistry (e.g. Tielens & Hagen 1982); however, this ap-
proach is not rigorously consistent with the master equation (see
the comment by Charnley 2005), and can lead to a reaction prob-
ability higher than 1 (Awad et al. 2005) in certain cases. The
nomenclature of these two approaches is not always consistent
in the astrochemical literature2. For example, the SSA used by
Vasyunin et al. (2009) is called the Monte Carlo approach in their
paper. Hereafter, we use the term “Monte Carlo” when referring
to the rigorous stochastic simulation approach of Gillespie.

By taking various moments of the master equation, the so-
called moment equation (ME) is obtained (Lipshtat & Biham
2003; Barzel & Biham 2007a,b). This set of equations describes

2 For a discussion about the relations and differences between
“stochastic simulation” and “Monte Carlo”, see Kalos & Whitlock
(2008) and Ripley (2008).

the evolution of both the average population of each species and
the average value of the products of the population of a group of
species, usually cut off at the second order moments. Its formu-
lation is similar to that of the RE, so it is relatively easy to im-
plement. Furthermore, in this approach the gas phase chemistry
and grain surface chemistry can be coupled together naturally. It
has been tested on small surface networks.

In the present paper, we propose yet another approach to
modeling gas-grain chemistry, named the hybrid moment equa-
tion (HME) approach. The goal is to find a systematic, auto-
matic, and fast way to modeling gas-grain chemistry as accu-
rately as possible. Our method is based on the ME approach.
Different approximations are applied to the MEs at different time
depending on the overall populations at that specific time. It
is hybrid in the sense that the RE and the ME are combined
together. The basic modification and competition scheme pre-
sented in Garrod (2008) can be viewed as a semi-steady-state ap-
proximation to our approach (by assuming that the time deriva-
tives of certain second order moments are equal to zero), while
our approach can also be viewed as a combination of the ME ap-
proach of Barzel & Biham (2007a) and the RE. In our approach,
the MEs are generated automatically with the generating func-
tion technique, and in principle MEs up to any order can be ob-
tained this way. We benchmark our approach against the exact
MC approach (i.e. the SSA of Gillespie).

The remaining part of this paper is organized as follows. In
Sect. 2, we review the chemical master equation and ME, then
describe the main steps of the HME approach. In Sect. 3, we
benchmark the HME approach with a cutoff at the second order
and the RE approach against the MC approach with a large gas-
grain network; we also tested the HME approach with a cutoff
at the third order with a small network. In Sect. 4, we discuss
the performance of the HME, and its relation with previous ap-
proaches, as well as possibilities for additional improvements.
Our way of generating the MEs is described in Appendix A.
A surface chemical network we used for benchmark is listed in
Appendix B.

2. Description of the hybrid moment equation
(HME) approach

In this section, we first review both the chemical master and mo-
ment equations. Although this content can be found in many
other papers (e.g., Charnley 1998; Gillespie 2007), we present
them here as they are the basis of our HME approach. We then
describe the MEs and REs for a simple set of reactions as an ex-
ample, to demonstrate how the HME approach naturally arise as
a combination of ME and RE. Finally we show the main steps of
the HME approach.

2.1. The chemical master equation and the moment
equation (ME)

A chemical system at a given time t can be described by a state
vector x which changes with time, with its jth component x j
being the number of the jth species in this system. As a chemical
system is usually stochastic, x should be viewed as a random
variable, whose probability distribution function P(x, t) evolves
with time according to the master equation (Gillespie 2007)

∂tP(x, t) =
M∑

i=1

[ai(x − νi)P(x − νi, t) − ai(x)P(x)], (1)
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where ai(x) is called the propensity function, ai(x)Δt is the prob-
ability that given a current state vector x an ith reaction will
happen in the next infinitesimal time interval Δt, and νi is the
stoichiometry vector of the ith reaction. The sum is over all the
reactions, and M is the total number of reactions.

The ME is derived by taking moments of the master equa-
tion. For example, for the first order moment 〈x j〉, which is sim-
ply the average number of species j, 〈x j〉 ≡ ∑x P(x, t)x j, its evo-
lution is determined by (Gillespie 2007)

∂t〈x j〉 =
∑

x

∂t[P(x, t)]x j

=

M∑
i

∑
x

x j[ai(x − νi)P(x − νi, t) − ai(x)P(x)]

=

M∑
i

∑
x

[(x j + νi j)ai(x)P(x, t) − x jai(x)P(x)] (2)

=

M∑
i

∑
x

νi jai(x)P(x, t) =
M∑
i

νi j〈ai(x)〉,

where νi j is the jth component of the stoichiometry vector of
the ith reaction, i.e. the number of jth species produced (nega-
tive when being consumed) by the ith reaction. For higher order
moments, their corresponding evolution equations can be simi-
larly derived, although the final form will be more complex. In
Appendix A, we present another method based on the generating
function technique to derive the MEs, which is more suitable for
programming.

For the simplest network, in which all the reactions are
single-body reactions, ai(x) is a linear function of x. In this case
the ME is closed and can easily be solved. However, when two-
body reactions are present, this is no longer true, as 〈ai(x)〉might
be of a form 〈xk(xk − 1)〉 or 〈xk xl〉, which is of order two and
cannot be determined in general by the lower order moments.
Hence additional equations governing their evolution should be
included, i.e., they should be taken to be independent variables.
The evolution equation of these second order moments may also
involve moments of order three, and this process continues with-
out an end, thus the ME is actually an infinite set of coupled
equations (although in principle they are not completely inde-
pendent if the chemical system being considered is finite, which
leads to a finite-dimensional space of state vectors). The equa-
tion cannot be solved without a compromise, e.g., a cutoff pro-
cedure, except for the simplest cases in which an analytical so-
lution is obtainable in the steady state.

2.2. The MEs and REs for a set of reactions

We take the following symbolic reactions as an illustrative
example

Adsorption: a
kad−−→ A, (3)

Evaporation: A
kevap−−−→ a, (4)

Surface reaction: A + B
kAB−−→ C + D, (5)

Surface reaction: A + A
kAA−−→ E, (6)

where the ks are the reaction rates of each reaction, A–E are
assumed to be surface species that are distinct from each other,
and “a” is the gas phase counterpart of A.

In the following we first write down the MEs and REs for this
system, then discuss the relations and differences between them,
as well as the relation between a cutoff of MEs and a cutoff of
master equations in previous studies. These discussions will be
essential to developing our HME approach.

2.2.1. The MEs for this system

The propensity functions for the above four reactions are kada,
kevapA, kABAB, and kAAA(A − 1), respectively. Here for conve-
nience we use the letter “A” to represent both the name of a
species and the population of the corresponding species.

For the first order moments, we have

∂t〈A〉 = kad〈a〉 − kevap〈A〉 − kAB〈AB〉 − 2kAA〈A(A − 1)〉, (7)

∂t〈C〉 = kAB〈AB〉, (8)

∂t〈E〉 = kAA〈A(A − 1)〉. (9)

Other similar equations are omitted. The symbol 〈∗〉 is used to
represent the average population of “*” in the system; the aver-
age should be understood as an ensemble average. The second
order moments 〈AB〉 and 〈A(A − 1)〉 have their own evolution
equations, which are

∂t〈AB〉 = kad〈aB〉 − kevap〈AB〉
− kAB[〈A(A − 1)B〉 + 〈AB(B − 1)〉 + 〈AB〉] (10)

− 2kAA〈A(A − 1)B〉,

∂t〈A(A − 1)〉 = 2kad〈aA〉 − 2kevap〈A(A − 1)〉
− 2kAB〈A(A − 1)B〉 (11)

− 2kAA[2〈A(A − 1)(A − 2)〉 + 〈A(A − 1)〉].
For this simple example set of reactions (Eqs. (3–6) ), the above
equations can be easily obtained from the master equation (see,
e.g., Lipshtat & Biham 2003, p. 8). In the general case (e.g.,
when A–E are not completely distinct from each other), an auto-
matic way of obtaining the MEs is described in Appendix A. The
method described there is also applicable to moments with any
order, and to all the common reaction types in astrochemistry.

In general, the third order moments in the above equations
cannot be expressed as a function of the lower order moments, so
they need their own differential equations. In the case of a cutoff
at the second order, the chain of equations, however, stops here.
We describe the method required to evaluate them in Sect. 2.3.

2.2.2. The REs for this system

When using REs, Eqs. (7–11) are replaced by

∂t〈A〉 = kad〈a〉 − kevap〈A〉 − kAB〈A〉〈B〉 − 2kAA〈A〉2, (7′)
∂t〈C〉 = kAB〈A〉〈B〉, (8′)

∂t〈E〉 = kAA〈A〉2. (9′)
∂t[〈A〉〈B〉] = kad〈a〉〈B〉 − kevap〈A〉〈B〉

− kAB[〈A〉2〈B〉 + 〈A〉〈B〉2] (10′)

− 2kAA〈A〉2〈B〉,
∂t[〈A〉2] = 2kad〈a〉〈A〉 − 2kevap〈A〉2

− 2kAB〈A〉2〈B〉 − 4kAA〈A〉3. (11′)

The equations for 〈A〉〈B〉 and 〈A〉2 are of course not needed in
the RE approach but are simply derived from Eq. (7′) (and an
omitted similar equation for 〈B〉) using the chain rule of calculus.
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2.2.3. The relation between MEs and REs

The differences between the MEs (Eqs. (7–11)) and the REs
(Eqs. (7′–11′)) in the present case are as follows: all the 〈AB〉
are replaced by 〈A〉〈B〉, all the 〈A(A − 1)〉 are replaced by 〈A〉2,
all the 〈A(A − 1)B〉 are replaced by 〈A〉2〈B〉, the 〈AB(B − 1)〉 is
replaced by 〈A〉〈B〉2, and the 〈A(A − 1)(A − 2)〉 is replaced by
〈A〉3. Furthermore, the term kAB〈AB〉 in Eq. (10) and the term
kAA〈A(A − 1)〉 in Eq. (11) disappear in the RE (10′) and (11′).

These differences make clear why the REs are accurate when
the involved species are abundant (namely when 〈A〉	 1 and
〈B〉	 1). This is because, in this case, 〈AB〉 can be approximated
well by3 〈A〉〈B〉, and 〈A(A − 1)〉 can be approximated well by
〈A〉2.

The RE approach will be erroneous when 〈A〉 or 〈B〉 are
smaller than 1 because, in this case, the correlation between A
and B might cause 〈AB〉 to differ considerably from 〈A〉〈B〉, and
the fluctuation in A might cause 〈A(A−1)〉 to differ considerably
from 〈A〉2. It can also be viewed like this: in Eqs. (10′) and (11′)
that govern the evolution of second order moments, the omitted
term kAB〈AB〉might be much larger than the retained terms such
as 〈A〉2〈B〉 or 〈A〉〈B〉2, and the omitted term kAA〈A(A−1)〉might
be much larger than the retained term 〈A〉3.

2.2.4. The relation between a cutoff of MEs and a cutoff
of possible states in previous master equation
approaches

In Eqs. (7–11) we do not write terms such as 〈A(A − 1)〉 in
the split form 〈A2〉 − 〈A〉. We keep terms such as 〈A(A − 1)B〉
and 〈A(A − 1)(A − 2)〉 in their present forms intentionally. One
reason for this is that terms such as 〈A(A − 1)〉 look more suc-
cinct and follow naturally from our way of deriving them (see
Appendix A). When 〈A〉 	 1, 〈A(A − 1)〉 and 〈AB〉 can be di-
rectly replaced by 〈A〉2 and 〈A〉〈B〉, respectively, to obtain the
RE formulation.

More importantly, this formulation can be directly connected
to the cutoff schemes in the previous master equation approaches
(e.g., Biham et al. 2001; Stantcheva et al. 2002). For example,
in a scheme in which no more than two particles of A are ex-
pected to be present on a single grain at the same time, we have
P(A> 2) = 0. In this case, 〈A(A − 1)(A − 2)〉 = ∑∞A=3 P(A)A(A −
1)(A− 2) = 0. Thus we see that a cutoff at a population of two in
the master equation approach corresponds naturally to assigning
a zero value to moments containing A more than twice, as far as
the moments are defined in the form presented above.

2.3. The HME approach

The HME approach is a combination of the ME and RE ap-
proaches. The basic idea is that, for deterministic (average pop-
ulation >1) species, the REs are used, while for stochastic (av-
erage population <1) species, the stochastic effects are taken
into account by including higher order moments in the equa-
tions. Since a deterministic species may become stochastic as
time goes by, and vice versa, the set of differential equations
governing the evolution of the system also changes with time,

3 Assuming Poisson statistics, we have

|〈AB〉 − 〈A〉〈B〉|
〈A〉〈B〉 �

√
1
〈A〉 +

1
〈B〉 � 1.

1. Import all the physical parameters
and reactions, calculate the rates.

2. Prepare all the potentially needed
moment equations (see Appendix A).

3. Initialize all the moments, assuming no
species is on the grain at the beginning.

4. Start iteration.

5. Stochasticity changed?

6. Determine which moments to
be kept and which to be dropped.

7. Re-initialize the ODE solver.

8. Call the ODE solver.

9. Final time reached?

10. Finish.

yes

no

yes

no

Fig. 1. A flow chart of the main components of our HME code. Steps 2,
5, 6, and 8 are described in detail in the text.

and is determined dynamically. A flow chart of our HME code
is shown in Fig. 1.

We first set up all potentially needed MEs (using the proce-
dure described in Appendix A), with a cutoff of moments at a
prescribed order (usually two). After this and some other initial-
ization work, the program enters the main loop.

The main loop contains an ODE solver because the system
of MEs is a set of ordinary differential equations (ODEs). We
use the solver from the ODEPACK package4.

Not all MEs and moments are used at all times; which ones
are used is determined dynamically. In each iteration of the main
loop, we verify whether some surface species have changed from
stochastic to deterministic, or from deterministic to stochastic.
The gas phase species are always treated as deterministic, re-
gardless of how small their average populations are. In either of
these two cases, we re-examine all the moments, and determine
the way to treat them. There are four cases:

1. all the first order moments are treated as independent
variables;

2. if a moment consists of only stochastic species, and its order
is no larger than the prescribed highest allowed order, it will
be treated as an independent variable, and the corresponding
moment equation will be included and solved. For the sake
of numerical stability, its value should be no larger than its
deterministic counterpart. For example, if the ODE solver
yields a value of 〈AB〉 > 〈A〉〈B〉, then the latter value will be
assigned to 〈AB〉;

4 Downloaded from www.netlib.org
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3. if a moment consists of only stochastic species, and its order
is larger than the prescribed highest allowed order, its value
will be set to zero, and of course, its moment equation will
not be solved. For example, if 〈A〉< 1 and 〈B〉< 1, then, with
a highest allowed order set to two, moments such as 〈A(A −
1)(A − 2)〉 and 〈A(A − 1)B〉 will be set to zero. This follows
from the discussion in Sect. 2.2.4;

4. if a moment contains at least one deterministic species, it will
not be treated as an independent variable, and its moment
equation will not be solved. It can be evaluated in the follow-
ing way: assuming that the moment under consideration has
a form 〈AB(B− 1)〉, and that A is deterministic (i.e. 〈A 〉> 1),
then the value of 〈AB(B − 1)〉 is set to be 〈A〉〈B(B − 1)〉. If
B is also deterministic, then it will be evaluated as 〈A〉〈B〉2.
This follows from the discussion in Sect. 2.2.3.

From these procedures, we see that the number of equations, as
well as the form of these equations will change when a transi-
tion between stochastic and deterministic state of certain species
occurs. Each time the ODE system is updated, the ODE solver
must therefore be re-initialized.

It seems possible to replace the sharp transition between the
stochastic and deterministic state of a species (based on whether
its average population is smaller than 1) with a smooth transition,
e.g., using a weight function similar to that in Garrod (2008).
However, it is not mathematically clear which weight function
we should choose, and an arbitrary one might cause some artifi-
cial effects, so we prefer not to use this formulation.

3. Benchmark with the Monte Carlo approach
We compare the results of our HME approach with those from
the exact stochastic simulation (Gillespie 2007; Charnley 1998,
2001; Vasyunin et al. 2009). The RE results are also compared
for reference. As in previous studies (Charnley 2001; Vasyunin
et al. 2009), we consider a closed chemical system in a vol-
ume containing exactly one grain particle. The number of each
species in this volume is called a “population”, which can be
translated into an abundance relative to H nuclei by multiply-
ing it by the dust-to-gas ratio, which is 2.8 × 10−12(0.1 μm/r)3,
where r is the grain radius, assuming an average molecular
weight of 1.4, a dust-to-gas mass ratio 0.01, and a density of
grain material of 2 g cm−3.

In the MC approach, the number of each species in this vol-
ume at any time is an integer. Owing to the large amount of
time steps (>109), it is impractical to store all intermediate steps,
so we average the population of each species in time, weighted
by the time intervals (remember that the lengths of time inter-
vals between reactions are also random in MC). Because of this
weighted average (rather than merely saving the state vector at
certain instants), the MC approach can resolve average popula-
tions much smaller than one, although the fluctuations that are
intrinsic to the MC approach can be larger than the average pop-
ulations when the latter is small.

We first demonstrate how our method works for a large
gas-grain network. We then show that for a small surface net-
work, third order moments can also be included to improve the
accuracy.

3.1. Test of the HME approach truncated at the second order
on a large gas-grain network

We use the “dipole-enhanced” version of the RATE06 gas phase
reaction network5 (Woodall et al. 2007), coupled with a surface

5 http://www.udfa.net/

network of Keane (1997, see Appendix B). The surface network
contains 44 reactions between 43 species, which is basically a
reduced and slightly revised version of the network of Tielens &
Hagen (1982), containing the formation routes of the most com-
mon grain mantle species, such as H2O, CH3OH, CH4, NH3,
etc. This surface network is not really large in comparison with
some of the previous works, such as that used by Garrod et al.
(2009). However, it is already essential for the most important
species. The energy barriers for thermal desorption and diffu-
sion are taken from Stantcheva & Herbst (2004). Diffusion of
H atoms on the surface through quantum tunneling is included.
Desorption by cosmic rays is taken into account following the
approach of Hasegawa & Herbst (1993). The rate coefficients
of the gas phase reactions are calculated according to Woodall
et al. (2007), while the rate coefficients of the surface reactions
are calculated following Hasegawa et al. (1992). The initial con-
dition is the same as in Stantcheva & Herbst (2004).

We assumed a dust-to-gas mass ratio of 0.01. The grain mass
density is taken to be 2 g cm−3, with a site density 5×1013 cm−2.
Two grain sizes have been used: 0.1 μm and 0.02 μm. A cosmic
ray ionization rate of 1.3 × 10−17 s−1 is adopted. Four different
temperatures (10, 20, 30, 50 K) and three different densities (103,
104, 105 cm−3) have been used. In total, the comparison has been
made for 24 different sets of physical parameters. These con-
ditions are commonly seen in translucent clouds and cold dark
clouds.

As in Garrod et al. (2009), we make a global comparison
between the results of MC, HME, and RE. For each set of phys-
ical parameters, the comparisons are made at a time of 103, 104,
and 105 years. We calculate the percentage of species for which
the agreement between MC and HME/RE is within a factor of 2
or 10. Only species with a population (either from MC or from
HME/RE) larger than 10 are included for comparison. This is
because for species with smaller populations, the intrinsic fluc-
tuation in the MC results can be significant. For several different
sets of physical parameters, we repeated the MC several times to
get a feeling for how large the fluctuation magnitude would be,
although this is impractical for all the cases.

The comparison results are shown in Table 1 (grain radius
= 0.1 μm) and Table 2 (grain radius = 0.02 μm). The HME ap-
proach always has a better global agreement (or the same for
several cases) than the RE approach in the cases we tested. The
typical time evolution of certain species is shown in Fig. 2. In
each panel of the figure, the species with a name preceded with
a “g” means it is a surface species.

The poorest agreement of HME (Fig. 3) is at t = 103 year
for T = 20 K, nH = 105 cm−3, and grain radius = 0.02 μm. This
is mostly because at the time of comparison the populations of
certain species were changing very rapidly, so a slight mismatch
in time leads to a large discrepancy. This mismatch is probably
caused by the truncation of higher-order terms in the HME (see
Sect. 3.2). For gN2 in Fig. 3, its population seems to be sys-
tematically smaller in HME than in MC during the early period,
although the HME result matches the one from MC at a later
stage (after 3 × 103 years).

The RE is as effective as the HME in several cases, when
the temperature is either relatively low (∼10 K) or high (∼50 K)
(see also Vasyunin et al. 2009), and generally works better for a
grain radius of 0.1 μm than of 0.02 μm. When the temperature is
very low, many surface reactions with barriers cannot happen (at
least in the considered timescales). On the other hand, when the
temperature is high, the surface species evaporate very quickly
and the surface reactions are also unable to occur. In these two
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Table 1. Percentage of agreement between the results from MC and those from HME/RE.

nH = 2 × 103 cm−3 nH = 2 × 104 cm−3 nH = 2 × 105 cm−3

t 103 yr 104 yr 105 yr 103 yr 104 yr 105 yr 103 yr 104 yr 105 yr
hybrid moment equation

T = 10 K 100, 100 100, 100 100, 100 100, 100 100, 100 97.6, 99.2 99.0, 100 100, 100 100, 100
T = 20 K 100, 100 100, 100 100, 100 97.7, 98.9 98.2, 100 100, 100 100, 100 100, 100 100, 100
T = 30 K 100, 100 100, 100 100, 100 98.8, 100 100, 100 99.2, 100 100, 100 100, 100 100, 100
T = 50 K 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 97.9, 100

rate equation
T = 10 K 100, 100 100, 100 94.1, 98.8 100, 100 100, 100 93.7, 98.4 99.0, 100 100, 100 95.8, 99.3
T = 20 K 90.2, 93.4 85.3, 90.7 83.6, 93.2 95.5, 95.5 91.2, 95.6 92.3, 96.2 95.3, 96.2 95.0, 95.8 93.9, 96.6
T = 30 K 96.6, 96.6 95.5, 95.5 95.5, 97.0 94.3, 96.6 98.1, 98.1 96.9, 97.7 94.9, 96.9 92.9, 97.4 40.0, 75.0
T = 50 K 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 97.9, 100

Notes. The comparison is only made between those species with populations (from MC or HME/RE) larger than 10. The two numbers in each
table entry means the percentage of agreement within a factor of 2 or 10, respectively. The grain radius is taken to be 0.1 μm.

Table 2. Same as Table 1 except a smaller grain radius of 0.02 μm is taken.

nH = 2 × 103 cm−3 nH = 2 × 104 cm−3 nH = 2 × 105 cm−3

t 103 yr 104 yr 105 yr 103 yr 104 yr 105 yr 103 yr 104 yr 105 yr
hybrid moment equation

T = 10 K 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100
T = 20 K 95.5, 100 100, 100 97.1, 100 100, 100 100, 100 94.4, 100 73.0, 83.8 97.7, 100 98.3, 100
T = 30 K 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 97.0, 100
T = 50 K 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100

rate equation
T = 10 K 100, 100 100, 100 82.1, 94.9 100, 100 100, 100 87.1, 95.2 100, 100 100, 100 94.8, 98.3
T = 20 K 87.0, 91.3 76.7, 83.3 71.4, 82.9 74.3, 88.6 68.3, 87.8 28.6, 60.0 61.8, 82.4 42.3, 82.7 59.4, 92.2
T = 30 K 100, 100 95.7, 95.7 92.3, 92.3 89.3, 92.9 90.9, 93.9 87.8, 90.2 82.1, 89.3 45.2, 90.3 24.3, 62.2
T = 50 K 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 93.3, 93.3

Fig. 2. Typical time evolution of the average populations of certain species from MC (solid lines), HME to the 2nd order (dotted lines), and RE
(dashed lines). Note that the Monte Carlo has been repeated twice. The y-axis is the number of each species in a volume containing exactly
one grain. To translate it into abundance relative to H nuclei, it should be multiplied by 2.8 × 10−12. Physical parameters used: T = 20 K,
n = 2 × 105 cm−3, grain radius = 0.1 μm.
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Fig. 3. Cases in which the agreement between the results of MC and those of HME are not so good, especially at t = 103 year. The y-axis is the
number of each species in a volume containing exactly one grain. To translate it into abundance relative to H nuclei, it should be multiplied by
3.5 × 10−10. Physical parameters used: T = 20 K, n = 2 × 105 cm−3, grain radius = 0.02 μm.

extreme cases, the surface processes are inactive, and the RE
works fine.

The RE becomes problematic in the intermediate cases,
when the temperature is high enough for many surface reactions
to occur, but not too high to evaporate all the surface species; in
these cases the HME represents a major improvement over the
RE. For a smaller grain radius, the population of each species in
a volume containing one grain will be smaller, thus the stochas-
tic effect will play a more important role, and the RE will tend
to fail.

We note that, in the HME approach, there is no elemental
leakage except those caused by the finite precision of the com-
puter. In all the models that we have run, all the elements (includ-
ing electric charge) are conserved with a relative error smaller
than 5× 10−14. The reason why elemental conservation is always
guaranteed is that either the rate equations or the moment equa-
tions for the first order moments conserve the elements.

When comparing the results from the HME approach with
those from MC simulation, it is important to see how the in-
trinsic fluctuation in MC behaves. If we assume the probability
distribution of the population of a species, say A, is Poissonian,
then the variance of A is σ2(A) = 〈A〉. Hence if 〈A〉 is small,
the relative fluctuation of the MC result can be quite large. This
fluctuation might be smoothed out by means of a weighted av-
erage in time, but this procedure does not always work. This is
why we choose to only compare species with a population higher
than 10, corresponding to an abundance relative to H nuclei of
2.8 × 10−11 (for grain radius = 0.1 μm) or 3.5 × 10−9 (for grain

radius = 0.02 μm). For a real reaction network, it is usually dif-
ficult to predict the intrinsic fluctuation in a MC simulation, un-
less it is repeated many times. These fluctuations will not have
any observational effects, because along a line of sight there are
always a large number of a certain species (as far as it is de-
tectable) and the fluctuations are averaged out.

We note that the gas phase processes are not treated iden-
tically in our HME approach and MC simulation. In the MC
approach, the gas phase processes are always treated as being
stochastic (see, e.g., Charnley 1998; Vasyunin et al. 2009), in
the same way as the surface processes. However, in our HME ap-
proach, the gas phase species are treated in a deterministic way,
i.e., REs are always applied to them. This means that even if two
reacting gas phase species A and B both have average popula-
tions much smaller than one, we still assume that 〈AB〉 = 〈A〉〈B〉.
This is physically quite reasonable, because the presence of large
amounts of reacting partners in the gas phase (if not limited to a
volume containing only one dust grain; see, e.g., Charnley 1998)
ensures that the RE is applicable. However, although it might
sound a bit pedantic, mathematically this is not equivalent to
the MC approach, and some discrepancies caused by this are
expected. For a large network, it is impractical to treat the gas
phase processes in the same way as the surface processes in the
HME approach, because in that case the number of independent
variables in the ODE system will be quite large (at least no less
than the number of two-body reactions), and the performance of
the ODE solver will be degraded.
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Fig. 4. Comparison of the results from MC, HME to the 2nd order, HME to the 3rd order, and RE. The y-axis is the number of each species in a
volume containing exactly one grain. To translate it into abundance relative to H nuclei, it should be multiplied by 3.5× 10−10. Physical parameters
used when running these models include T = 10 K, nH = 2 × 105 cm−3, grain radius = 0.02 μm.

3.2. Test of the HME approach truncated at the third order
on a small surface network

To test the improvement in accuracy when the cutoff is made at a
higher order, we compare the results of the HME approach with
a cutoff at the second order to those obtained from the same ap-
proach with a cutoff at the third order. We use a small surface
reaction network of Stantcheva & Herbst (2004), containing 17
surface reactions between 21 species, producing H2O, CH3OH,
CH4, NH3, and CO2. No gas phase reactions are included, ex-
cept adsorption and desorption processes. The initial gas phase
abundances of the relevant species are obtained from the steady
state solution of the RATE06 network under the corresponding
physical conditions.

As before, we run the HME, RE, and the MC code for differ-
ent sets of physical parameters. Although by transferring from
the RE to the second order HME a major improvement in ac-
curacy can be obtained, the inclusion of the third order mo-
ments to the HME usually only improves slightly over the sec-
ond order case. In Fig. 4, we show an example (T = 10 K,
nH = 2×105 cm−3, grain radius= 0.02 μm), in which the distinc-
tions between the results from the second and third order HME
are relatively large.

For several species, we note that the third order HME is still
unable to match the MC results perfectly, and for gHCO (Fig. 4)
the third order HME even produces an artificial spike in the time
evolution curve. The results from the third order HME are oth-
erwise of greater accuracy than the second order one, the abun-
dances of gH2CO and gCH3OH in particular being in almost
perfect agreement with those from the MC approach. In the case
of gHCO, the timescale mismatch between HME and MC is al-
leviated by including the third order moments.

It might be useful to see the difference between the second
order HME and the third order HME in a computational sense.
For the current reaction network with physical parameters de-
scribed above, the number of variables (same as the number of
equations, which changes with time) is 145 initially in the sec-
ond order case, and this number becomes 705 for the third order
case. To reach a time span of ∼106 year, the second order HME
takes about 3 s, while the third order one takes about 220 s on
a standard desktop computer (a CPU @ 3.00 GHz with double
cores, 4 GBytes memory). The number of variables depends on
the network structure, and it is not straightforward to derive a
formula to calculate it. Qualitatively, this number (as a function
of the number of reactions or the number of species) seems to in-
crease with the cutoff order less quickly than exponential growth.
However, such a “mild” increase affects the behavior of the ODE
solver quite significantly. This is partly because the solver con-
tains operations (such as matrix inversion) that become slower as
the number of variables become larger. An increase in the num-
ber of variables might also increase the stiffness of the problem,
let alone the memory limitation of the computer. For the larger
reaction network described in the previous section, the third or-
der HME would involve about 5000 variables and has not been
tested successfully.

4. Discussion

In our HME approach, we have used a general and automatic
way to derive the MEs. For large gas-grain networks, the MEs
are cut off at the second order. For small networks, a cutoff at the
third order is possible and higher accuracy can be obtained. We
incorporate a switching scheme between the ME and RE when
the average population of a species reaches 1.
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The results from HME are more accurate than those from
the RE in the cases we have tested, when benchmarked
against the exact MC results. The abundances of almost all the
abundant species (�2.8×10−11 for a grain radius of 0.1 μm and
�3.5×10−9 for a grain radius of 0.02 μm) from HME are ac-
curate to within a factor of two, especially at later stages of the
chemical evolution, while in some cases nearly 40% of the re-
sults from RE are incorrect by a factor of at least ten.

In terms of computation time, our approach usually takes
several tens of minutes to reach a evolution time span of
106 years, so it is slower than the RE, but faster than the MC
approach (which usually takes from several hours to days). Our
approach may also be slower than the MRE approach of Garrod
(2008), because more variables (namely the moments with or-
ders higher than one) are present in our method, and the ODE
system in HME is usually stiffer. For example, for a moderate
temperature many surface reactions can be much faster than any
gas phase reactions, and yield a very large coefficient in some of
the MEs. However, this is not the case in the stochastic regime of
the MRE approach, because when a competition scheme is used
in MRE, such a large coefficient does not appear. In this sense,
we also advocate the MRE approach of Garrod (2008).

Mathematically, our approach is partially equivalent to the
master equation approach of Stantcheva & Herbst (2004) in two
respects. 1) They separated stochastic and deterministic species,
which is similar to our adopting RE for the abundant species. 2)
They set a cutoff for the possible states of the stochastic species.
This is in essence equivalent to letting moments containing these
species with order higher than a certain number equal to zero.

Our approach can also be viewed as a combination of some
of the ideas of Garrod (2008) and Barzel & Biham (2007a). The
basic modification and competition scheme in Garrod (2008) can
be derived from the MEs, with a semi-steady state assumption
for the second order moments. Barzel & Biham (2007a) used
the MEs, but they did not include a switch scheme, and their
way of deriving the MEs is different from the one in the present
paper.

There are still many possibilities for improvement. Although
in principle moments with any order can be included, the num-
ber of equations grows quite quickly with the cutoff order, which
makes the system of equations intractable with a normal desk-
top computer. It is unclear whether it is possible to include the
moments selectively. It is unclear whether there are better, and
more mathematically well founded strategies than the switch at
an average population of 1. The present approach is usually sta-
ble numerically. However, this is not always guaranteed, espe-
cially if higher order moments are to be included. The behavior
of the numerical solution also depends on other factors, such as
the ODE solver being used and the tunable parameters for it,
while the MC approach does not have such issues. In this sense,
the MC approach is the most robust.

Even in the accurate MC approach described above, the de-
tailed morphology of the grain surface and the detailed reaction
mechanism is not taken into account. One step in this direction
would be to take into account the layered structure of the grain
mantle. This was done by Charnley (2001; see also Charnley &
Rodgers 2009) by means of stochastic simulation. It could also
be included in the HME approach, as far as the underlying phys-
ical mechanism could be described by a master equation.

However, a microscopic MC approach has also been used to
study the grain chemistry (see, e.g., Chang et al. 2005; Cuppen
& Herbst 2007). In this approach, the morphology of the grain
mantle and the interaction between species are modeled in de-
tail. As far as we know, this approach is only practical when the

network is small. It remains unclear whether it is possible to in-
corporate these details into the current HME approach.

In some cases, errors caused by uncertainties in the reaction
mechanism and rate parameters might be larger than those intro-
duced by the modeling method (Vasyunin et al. 2008). Hence,
further experimental study and a more sophisticated way of in-
terpreting those results would be indispensable.
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Appendix A: A method to generate the moment
equations based on the generating function

We describe our means of getting the MEs. Our method is au-
tomatic, and can be easily coded into a computer program. It
is applicable to moments of any order and all the common as-
trochemical reactions. It makes use of the probability generat-
ing function. While preparing the present paper, we noted that
Barzel & Biham (2011) also proposed a binomial formulation
of ME, which in essence is partly equivalent to our approach
presented here, although our way of deriving the MEs is quite
different from theirs.

For a probability distribution P(x, t), the corresponding gen-
erating function is defined as (van Kampen 2007)

f (z1, z2, . . . , t) =
∑

x

P(x, t)zx1

1 zx2

2 . . . (A.1)

here all the zis should be thought of as merely symbols without
any physical meaning, and they have a one-to-one correspon-
dence with the xis.

It is obvious that f (z = 1, t) ≡ 1, which is just the normal-
ization condition for probability. It is also easy to see that the
average population of the ith species is

〈xi〉 = ∂zi f (z1, z2, . . . , t)|z=1. (A.2)

The right hand side of the above equation means taking the par-
tial derivative first, then assigning a value one to all the zis.

For the second order moment between two distinct species i
and j, we have

〈xix j〉 = ∂zi∂z j f (z1, z2, . . . , t)|z=1. (A.3)

If i equals j in the above equation, then what we actually get is

〈xi(xi − 1)〉 = ∂2
zi

f (z1, z2, . . . , t)|z=1. (A.4)

In general, we have

〈xix jxk · · · 〉 = ∂zi∂z j∂zk · · · f (z1, z2, . . . , t)|z=1. (A.5)

If several of the subscripts are the same in the left hand side of
the above equation, say, i = j = k, then the second should be
understood as (x j − 1), while the third should be understood as
(xk − 2), and so on.

From the master equation in Eq. (1), it seems possible to
get an equation for the evolution of f (z, t) in the general case.
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However, if the propensity functions ai(x) (see Eq. (1)) are al-
lowed to take any functional form, then this is not straightfor-
ward. Fortunately, in practice ai(x) usually has a very simple
form. On the other hand, we note that in the right hand side of
the master equation in Eq. (1) the contributions from all the reac-
tions are added linearly. Hence the contribution of each reaction
to the evolution of generating function can be considered inde-
pendently of each other.

We assume there is only one reaction in the network, which
has a form

x1 + x2 + · · · + xn
k−→ y1 + y2 + · · · + ym, (A.6)

where the xis and yis represent the reactants and products,
which do not have to be different from each other. We also use
these symbols to represent the populations of the corresponding
species. If, given a population of x1, x2, . . . , xn, the probability
that the above reaction will happen in a unit time is kx1x2 . . . xn
(namely, the propensity function a(x) = kx1x2 . . . xn; the prod-
uct should be understood as explained in the sentence following
Eq. (A.5)), then the generating function6 will evolve according
to

∂t f = k(y1y2 . . . ym − x1x2 . . . xn)∂x1∂x2 . . . ∂xn f . (A.7)

It is not difficult to derive the above equation from the master
equation and the definition of generating equation and our as-
sumption about the propensity function.

We note that Eq. (A.7) has a very simple pattern that is easy
to remember: (a) the constant coefficient is the rate coefficient;
(b) in the parenthesis, the symbols of all the products are multi-
plied together, with a coefficient +1, while the symbols of all the
reactants are multiplied together, with a coefficient −1; (c) in
the differential part, all the reactants are present as they are
in the left hand side of Eq. (A.6), while none of the products
appear.

We now attempt to derive the ME. We obtain the evolution
equation of each moment (as defined in Eq. (A.5)) by simply
differentiating both sides of Eq. (A.7) with respect to the rele-
vant components in the moment, then setting all the symbols to
a value of one.

For example, for the reaction A + B
k−→ C + D, the evolution

equation of the generating function f is

∂t f = k(CD − AB)∂A∂B f .

For 〈AB〉, we differentiate both sides of the above equation by A
and B. We obtain

∂t∂A∂B f = k[(CD − AB)∂2
A∂

2
B f

− A∂2
A∂B f − B∂A∂

2
B f − ∂A∂B f ].

Next we assign a value of one to all the symbols (A–D) ap-
pearing in the resulting expressions, and “translate” the remain-
ing terms into moments (recalling the remark about Eq. (A.5)),
obtaining

∂t〈AB〉 = −k[〈A(A − 1)B〉 + 〈AB(B − 1)〉 + 〈AB〉].
Although the above derivation involves differentiations, these
operations can be easily translated into some combinatorial rules
and written as a computer program. A recursive procedure is
needed to generate all the potentially needed moments up to a
given order.

6 Instead of using zis as symbols for the independent variables of the
generating function f , we use xis and yis instead. This will not cause
any confusion.

Appendix B: A surface reaction network we used
to test our code

Table B.1. The surface network used in Sect. 3.1 of this paper.

Number Reactants Products Ereac (K)
1 H H H2 0.0
2 H O OH 0.0
3 H OH H2O 0.0
4 H O2 O2H 1200.0
5 H O2H H2O2 0.0
6 H H2O2 H2O OH 1400.0
7 H O3 O2 OH 450.0
8 H CO HCO 1000.0
9 H HCO H2CO 0.0
10 H H2CO CH3O 1500.0
11 H H2CO H2COH 1500.0
12 H CH3O CH3OH 0.0
13 H H2COH CH3OH 0.0
14 H HCOO HCOOH 0.0
15 H N NH 0.0
16 H NH NH2 0.0
17 H NH2 NH3 0.0
18 H C CH 0.0
19 H CH CH2 0.0
20 H CH2 CH3 0.0
21 H CH3 CH4 0.0
22 H CN HCN 0.0
23 H NO HNO 0.0
24 H NO2 HNO2 0.0
25 H NO3 HNO3 0.0
26 H NHCO NH2CO 0.0
27 H NH2CO NH2CHO 0.0
28 H N2H N2H2 0.0
29 H N2H2 N2H H2 650.0
30 O O O2 0.0
31 O O2 O3 1200.0
32 O CO CO2 1000.0
33 O HCO HCOO 0.0
34 O N NO 0.0
35 O NO NO2 0.0
36 O NO2 NO3 0.0
37 O CN OCN 0.0
38 C N CN 0.0
39 N N N2 0.0
40 N NH N2H 0.0
41 N HCO NHCO 0.0
42 H2 OH H2O H 2600.0
43 O HCO CO2 H 0.0
44 OH CO CO2 H 80.0

Notes. The original references listed below this table should be cited
if these data are to be used. We note that the validity of the numerical
method (namely the HME approach) presented in this paper does not
depend on the specific test network that we used.

References. Keane (1997) and Tielens & Hagen (1982).

References
Awad, Z., Chigai, T., Kimura, Y., Shalabiea, O. M., & Yamamoto, T. 2005, ApJ,

626, 262
Barzel, B., & Biham, O. 2007a, ApJ, 658, L37
Barzel, B., & Biham, O. 2007b, J. Chem. Phys., 127, 144703
Barzel, B., & Biham, O. 2011, Phys. Rev. Lett., 106, 150602
Biham, O., & Lipshtat, A. 2002, Phys. Rev. E, 66, 056103
Biham, O., Furman, I., Pirronello, V., & Vidali, G. 2001, ApJ, 553, 595
Caselli, P., Hasegawa, T. I., & Herbst, E. 1998, ApJ, 495, 309
Chang, Q., Cuppen, H., & Herbst, E. 2005, A&A, 434, 599
Charnley, S. B. 1998, ApJ, 509, L121

A131, page 10 of 11



F. Du and B. Parise: A hybrid moment equation approach to gas-grain chemical modeling

Charnley, S. B. 2001, ApJ, 562, L99
Charnley, S. B. 2005, Adv. Space Res., 36, 132
Charnley, S. B., & Rodgers, S. B. 2009, in ASP Conf. Ser. 420, ed. K. J. Meech,

J. V. Keane, M. J. Mumma, J. L. Siefert, & D. J. Werthimer, 29
Charnley, S. B., Tielens, A. G. G. M., & Rodgers, S. D. 1997, ApJ, 482, L203
Cuppen, H., & Herbst, E. 2007, ApJ, 668, 294
Garrod, R. 2008, A&A, 491, 239
Garrod, R., Wakelam, V., & Herbst, E. 2007, A&A, 467, 1103
Garrod, R., Vasyunin, A., Semenov, D., Wiebe, D., & Henning, T. 2009, ApJ,

700, L43
Gillespie, D. 1976, J. Comp. Phys., 22, 403
Gillespie, D. 1977, J. Phys. Chem., 81, 25
Gillespie, D. T. 2000, J. Chem. Phys., 113, 297
Gillespie, D. 2007, Ann. Rev. Phys. Chem., 58, 35
Green, N., Toniazzo, T., Pilling, M., et al. 2001, A&A, 375, 1111
Hasegawa, T. I., & Herbst, E. 1993, MNRAS, 261, 83
Hasegawa, T., Herbst, E., & Leung, C. M. 1992, ApJS, 82, 167
Kalos, M. H., & Whitlock, P. A. 2008, Monte Carlo Methods: Second Revised

and Enlarged Edition (Wiley-VCH Verlag)
Keane, J. 1997, Ph.D. Thesis, Rijks Univ., Leiden

Lipshtat, A., & Biham, O. 2003, A&A, 400, 585
Mattis, D., & Glasser, M. 1998, Rev. Mod. Phys., 70, 3
McQuarrie, D. A. 1967, J. Appl. Probab., 4, 413
Menten, K. M., Walmsley, C. M., Henkel, C., & Wilson, T. L. 1988, A&A, 198,

253
Ohkubo, J. 2008, J. Chem. Phys., 129, 044108
Rae, J. G. L., Green, N. J. B., Hartquist, T. W., Pilling, M. J., & Toniazzo, T.

2003, A&A, 405, 387
Ripley, B. D. 2008, Stochastic Simulation (John Wiley & Sons, Inc.)
Stantcheva, T., & Herbst, E. 2004, A&A, 423, 241
Stantcheva, T., Caselli, P., & Herbst, E. 2001, A&A, 375, 673
Stantcheva, T., Shematovich, V., & Herbst, E. 2002, A&A, 391, 1069
Tielens, A., & Hagen, W. 1982, A&A, 114, 245
Tielens, A. G. G. M., & Charnley, S. B. 1997, OLEB, 27, 23
van Kampen, N. 2007, Stochastic processes in physics and chemistry, 3rd edn.

(North Holland)
Vasyunin, A., Semenov, D., Henning, T., et al. 2008, ApJ, 672, 629
Vasyunin, A., Semenov, D., Wiebe, D., & Henning, T. 2009, ApJ, 691, 1459
Woodall, J., Agúndez, M., Markwick-Kemper, A., & Millar, T. 2007, A&A, 466,

1197

A131, page 11 of 11


	Introduction
	Description of the hybrid moment equation (HME) approach
	The chemical master equation and the moment equation (ME)
	The MEs and REs for a set of reactions
	The MEs for this system
	The REs for this system
	The relation between MEs and REs
	The relation between a cutoff of MEs and a cutoffof possible states in previous master equation approaches

	The HME approach

	Benchmark with the Monte Carlo approach
	Test of the HME approach truncated at the second order on a large gas-grain network
	Test of the HME approach truncated at the third order on a small surface network

	Discussion
	A method to generate the moment equations based on the generating function
	A surface reaction network we usedto test our code
	References

