
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/5281/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Lai, Yukun , Hu, Shi-Min , Martin, Ralph Robert and Rosin, Paul L. 2009. Rapid and effective segmentation
of 3D models using random walks. Computer Aided Geometric Design 26 (6) , pp. 665-679.

10.1016/j.cagd.2008.09.007

Publishers page: http://dx.doi.org/10.1016/j.cagd.2008.09.007

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Rapid and Effective Segmentation

of 3D Models using Random Walks

Yu-Kun Lai a,∗ Shi-Min Hu a Ralph R. Martin b Paul L. Rosin b

aTsinghua University, Beijing, China
bCardiff University, Wales, UK

Abstract

3D models are now widely available for use in various applications. The demand for
automatic model analysis and understanding is ever increasing. Model segmentation
is an important step towards model understanding, and acts as a useful tool for
different model processing applications, e.g. reverse engineering and modeling by
example. We extend a random walk method used previously for image segmentation
to give algorithms for both interactive and automatic model segmentation. This
method is extremely efficient, and scales almost linearly with the number of faces,
and the number of regions. For models of moderate size, interactive performance is
achieved with commodity PCs. We demonstrate that this method can be applied
to both triangle meshes and point cloud data. It is easy-to-implement, robust to
noise in the model, and yields results suitable for downstream applications for both
graphical and engineering models.

Key words: model segmentation, random walks, interactive

1 Introduction

With the development of 3D acquisition techniques, 3D models are now widely
available and used in various applications. The demand for model analysis and
understanding is thus ever increasing. However, techniques for intelligent auto-
mated processing of large models have not matched the growth in availability
of models. The task of model segmentation is to decompose a model into a set

∗ Corresponding author.
Email addresses: yukun.lai@gmail.com (Yu-Kun Lai),

shimin@tsinghua.edu.cn (Shi-Min Hu), ralph@cs.cf.ac.uk (Ralph R. Martin),
Paul.Rosin@cs.cf.ac.uk (Paul L. Rosin).

Preprint submitted to Elsevier 24 June 2008

of disjoint pieces whose union corresponds to the original model. To be useful,
segmentation must decompose a model into intuitively satisfying pieces (e.g.
limbs and torso of an animal) or ones which satisfy other desirable criteria
(e.g. each piece is bounded by sharp edges or small radius blends).

Model segmentation is an important step towards model analysis and un-
derstanding. A variety of different applications would benefit from initially
dividing the model into regions using an efficient and reliable segmentation
method. In the field of reverse engineering of CAD models, segmentation plays
an important role in splitting a model into pieces, each of which may then be
fitted with a single analytical surface [35]. In computer graphics, segmenta-
tion can be applied in various applications, including mesh simplification [40],
collision detection [18], morphing [30,40] and skeleton-driven animation [12].

In general, to be useful, model segmentation should produce results in accor-
dance with cognitive science. As pointed out by Hoffmann [9,10], the human
visual system perceives region boundaries at negative minima of principal cur-
vature, or concave creases—this observation is known as the minima rule. The
depth of the concavity directly affects the salience of region boundaries. Such
concave feature regions together with other information are important clues for
segmentation. Moreover, it can be observed that only significant features are
important to segmentation; small-scale fluctuations should be ignored, even if
they represent sharp creases. On the other hand, for reverse engineering ap-
plications, different surfaces may be separated along sharp edges, which may
be convex or concave, or even along smooth edges—different criteria lead to
useful segmentations for differing applications.

Recently, Grady [8] proposed an interactive algorithm for image segmentation
based on the use of random walks. The main ideas are as follows: a set of
seed pixels is first specified by the user. For each other pixel, using an efficient
process, we determine the probability that a random walk starting at that pixel
first reaches each particular seed, given some definition of the probability of
stepping from a given pixel to each neighbor. The segmentation is formed by
assigning the label of the seed first reached to each non-seed pixel.

Our work is an extension of the random walks method to the particular prob-
lem of 3D model segmentation; previous work has already considered the use
of random walks for solving the different problem of 3D mesh denoising [31].
By using different methods of assigning probability distributions, we are able
to segment both engineering object models and graphical models. Our results
are reliable even when the models are noisy or have small-scale textures that
should be ignored. The method can also be used for direct segmentation of
point cloud data.

As well as a method based on user selection of seeds, we give a generalization of

2

this method to automatic mesh segmentation. Two approaches are discussed.
For coarse-scale segmentation, a few seeds are distributed as far apart as
possible, resulting in a segmentation of the model into a few pieces. For fine-
scale segmentation, seeds are first placed automatically (usually with more
seeds than the required number of regions) using feature sensitive isotropic
point sampling. Our two-pass method segments the mesh using these initial
seeds, and then merges the regions found based on similarities of neighboring
regions. Our method can also be used for hierarchical segmentation of models,
mimicking the way people think.

Compared to other methods, our proposed method has the following advan-
tages. Our method:

• provides results of comparable quality to state-of-the-art methods, but is
significantly more efficient, making it especially suitable for interactive ap-
plications or applications that require segmentation of large models, or large
numbers of models,
• can be used both interactively or automatically; in the latter case, the ap-

propriate number of regions can be deduced automatically,
• is robust to noise and small-scale texture that may be present in real scanned

models,
• is applicable to both CAD models and graphical models, and the differing

kinds of segmentation expected in such cases.

This paper is an extended version of [13]. In particular, we additionally con-
sider (i) how to segment point cloud data, (ii) hierarchical segmentation, and
(iii) the robustness of the method in the presence of noise and deformation.

Section 2 briefly reviews related work. Interactive segmentation of both trian-
gle meshes and point cloud data based on random walks is presented in Sec-
tion 3 and extension to automatic mesh segmentation is presented in Section 4.
Experimental results are given in Section 5, with conclusions and discussions
in Section 6.

2 Related Work

Compared to the problem of image segmentation, research into mesh segmen-
tation is much more recent; however, it is now an active research topic, due to
the wide range of potential applications. A complete survey of mesh segmenta-
tion is beyond the scope of the paper, but up-to-date reviews and comparisons
of different methods can be found in [1,27].

3

Based on the different aims, existing mesh segmentation algorithms can be
generally categorized into two classes. The first class is aimed at applications
such as reverse engineering of CAD models (e.g. [2]). Such methods segment
a mesh model into patches each of which is a best fit to one of a given class
of mathematical surfaces, e.g. planes, cylinders, etc. The second class tries to
segment typically ‘natural objects’ into meaningful pieces, as expected by a
human observer. Our algorithm is mainly aimed at solving problems of the
latter class, but with certain modifications, it is also able to handle engineering
objects reasonably well.

Most state-of-the-art work on mesh segmentation is based on iterative clus-
tering. Shlafman et al. [30] use k-means clustering to segment the models
into meaningful pieces. Katz [12] improved on this by using fuzzy clustering
and minimal boundary cuts to achieve smoother boundaries between clusters.
Top-down hierarchical segmentation has also been used to segment objects
with a natural hierarchy of features. Lai [14] suggested combining integral
and statistical quantities derived from local surface characteristics, producing
more meaningful results on meshes with noise or repeated patterns. One of the
most prominent drawbacks of such algorithms is the necessity to compute pair-
wise distances, making it expensive or even prohibitive to handle large models
directly. To handle models with e.g. more than 10,000 faces, mesh simplifica-
tion [12,11,20] or remeshing [14] is typically used. Spectral clustering has also
been used [20] with good results, although e.g. the Nyström approximation
method may be needed to overcome the performance issues associated with
this approach [19].

Unsupervised clustering techniques like the mean shift method can also be
applied to mesh segmentation. Shamir [28] extended mean shift analysis to
mesh models based on use of a local parameterization method. Later, Ya-
mauchi [38] applied mean shift clustering to surface normals. Such methods
tend to oversegment a model into more pieces than expected or desired.

Other methods for mesh segmentation also exist. Mangan and Whitaker [21]
applied the watershed algorithm to triangle meshes. Li [18] proposed using
skeletonization based on edge contraction and space sweeping to perform mesh
decomposition. Visually appealing results are obtained; however, their results
depend mainly on large-scale features, and do not always capture salient ge-
ometric features. Recently, Reniers and Telea [25] used curve skeletons for
hierarchical mesh segmentation. Katz [11] proposed a segmentation algorithm
based on multidimensional scaling and extraction of feature points and cores.
The method is able to produce consistent results when regions of a mesh are
placed in differing relative poses. However, an expensive method is used to find
feature points, which limits the complexity of models that can be efficiently
handled, even after simplification. Mitani [22] proposed a technique for making
paper models from meshes. This can be considered to be a specialized mesh

4

segmentation method that produces naturally developable triangle strips.

Segmentation of engineering objects, especially for the purpose of reverse en-
gineering, has also been widely considered. Much of this work deals with point
clouds directly instead of triangle meshes due to their wide availability. Sapidis
and Besl [26] proposed a method to construct polynomial surfaces from point
cloud data, using region growing for segmentation. Benko and Várady [3] pro-
posed a method to directly segment point cloud data for engineering objects
based on a series of top-down recursive tests using normal information. Gelfand
and Guibas [7] proposed the use of slippage analysis and multi-pass region
growing to segment different regions based on slippage signatures. Edelsbrun-
ner [5] discussed how to segment meshes using piecewise linear Morse-Smale
theory. This idea has been extended to suit the needs for producing CAD-like
segmentation results [36].

Some work explicitly considers the problem of interactive mesh segmentation.
Lee proposed a method to segment models using user-guided or automatically
extracted cut lines based on 3D snakes [16,17]. Funkhouser [6] provided an
intuitive interactive segmentation tool to find optimal cuts guided by user-
drawn strokes, and applied it to a modeling system based on stitching parts
extracted from a model database. An interactive segmentation method based
on graph-cut was proposed by Sharf, again for use in a cut-and-paste sys-
tem [29].

Our method is different to any of the above in that it is based on a random
walk paradigm. This formulation leads to the need to solve a sparse linear
system, which is very efficient. Unlike most interactive methods, interaction is
via user choice of a set of seed faces, which is much easier than specifying an
approximate cutting boundary. For applications where automatic methods are
preferable, we use a two-stage method that first oversegments the mesh using
a set of automatically chosen seeds, and then merges these initial regions to
give the final regions.

3 Interactive Segmentation

In this section, we discuss our algorithm for interactive mesh segmentation
using random walks; extension to an automatic mesh segmentation algorithm
will be discussed in the next section. The basic idea of the algorithm is in spirit
similar to the corresponding method for image segmentation [8], but due to
the differences of source data and aims, certain issues must be resolved.

We assume for now that the given models are triangular meshes; we return
to the issue of segmenting point clouds directly later.. Random walk mesh

5

segmentation proceeds as follows: assume that the user picks n faces as seeds,
where n is the number of final regions desired; seeds should be placed so that
one seed lies within each of the final regions desired. Let these seed faces be
s1, . . . , sn. Other faces are non-seed faces, denoted by f1, . . . , fm. We associate
a probability with each of the three edges ek,i of each non-seed face fk, denoted
by pk,1, pk,2 and pk,3 respectively. These correspond to the probabilities that
a random walk will move across a particular edge to the corresponding neigh-
bor; we discuss shortly how these probabilities are chosen. These probabilities
satisfy the following equation:

3∑
i=1

pk,i = 1. (1)

For i = 1, 2, 3, denote the face sharing ek,i with fk by fk,i. For a particular seed
face sl, denote the probability of a random walk starting from a particular face
fk arriving at sl first, before reaching other seeds, as P l(fk), for l = 1, . . . , n.
P l(sl) = 1 and P l(sk) = 0 for any k 6= l. As the number of steps considered
increases, in the limit, the following equation holds for each non-seed face fk
(for each l = 1, 2, . . . n):

P l(fk) =
3∑
i=1

pk,iP
l(fk,i). (2)

For a particular seed face sl, the P l(fk) form a column vector of length m
(denoted by P l) that needs to be computed, and we have m equations of the
form given in Eqn. 2. We may rewrite Eqn. 2 in matrix form as Am×mP

l = Bl,
where A and Bl can be deduced from Eqn. 2. Most values in Bl are zeros.
However, from Eqn. 2, for a non-seed face fk adjacent to a seed face, the
corresponding P l(fk,i) is not a variable, but a constant, either 0 (if not the
lth seed) or 1 (if the lth seed). Since the lth seed has at most (and normally,
exactly) three neighbors, Bl also has at most (and normally) three non-zero
values.

Note that A is independent of the choice of l. Thus we may put the P l together
and form a matrix Pm×n with rows Pl,k = P l(fk), to give AP = B, where
B = (B1, . . . , Bn). This sparse linear system has the same general nature as
the one in [8]; this system is sparse as each row of the matrix contains at
most 4 non-zero entries, by Eqn 2. Following the argument in [8], the matrix
A is positive semi-definite, and the solution to this linear system is uniquely
determined. Note that the random walk model described above is in essence
equivalent to an electric network model as the distribution of electric potentials
at each face, where the probability of moving to a neighboring face corresponds
to the conductance. See [4] for a thorough study.

We now define that a given face belongs to the region attached to seed sl if
a random walk starting at that face has a higher probability of reaching this

6

seed than any other seed. Thus, after computing P l(fk) for l = 1, . . . , n and
k = 1, 2, . . . ,m, we assign the label for seed sl to those non-seed faces fk which
satisfy

P l(fk) = max
t=1,...,n

P t(fk). (3)

It is guaranteed that each region produced by this segmentation process is
contiguous [8].

With the basic framework given by the algorithm above, two significant is-
sues remain: to determine appropriate probabilities for stepping from face to
face, and choice of optional preprocessing and postprocessing steps to further
improve the results.

3.1 Probability computation

The choice of suitable probability assignments, i.e. pi,1, pi,2, pi,3, for each face
i is essential for the random walk approach to give good mesh segmentation
results. Appropriate probabilities depend on the purposes and expectations
of the resulting mesh segmentation. In the following, we address ‘natural’
graphical models and engineering object models separately.

3.1.1 Graphical models

Mesh segmentation of graphical models should split a model into meaning-
ful pieces. The most important information for segmentation comes from the
minima rule, as used by many segmentation algorithms, where significant con-
cave features are considered as important hints. For a given face fi, we define
a difference function d(fi, fi,k) which measures the difference in some specific
geometric property between fi and one of its neighboring faces fi,k, k = 1, 2, 3.
For graphical models, we define this function to mainly depend on a function
d1 measuring the dihedral angle:

d1(fi, fi,k) = η [1− cos (dihedral(fi, fi,k))] =
η

2
||Ni −Ni,k||2 , (4)

where dihedral(fl, fm) represents the dihedral angle between adjacent faces
fl and fm, and Nl is the normal to face fl. η is used to give higher priority
to concave edges: we set η = 1.0 for concave edges and rather smaller (e.g.
η = 0.2) for convex edges, according to the minima rule.

To handle variations in the dihedral distribution, we normalize d1 by its aver-
age over all mesh edges, d̄1, giving as the overall difference function d:

d(fi, fi,k) =
d1(fi, fi,k)

d̄1

. (5)

7

Given a definition for the difference function at hand, the probability distri-
bution is now computed as

pi,k = |ei,k| exp

{
−d(fi, fi,k)

σ

}
, (6)

where |ei,k| is the edge length of the corresponding common edge, and σ is
used to control how variations in differences maps to variations in probability.
In our experiments, we have found σ = 1.0 works well for most cases. pi,k is
then normalized to sum to one over each face. An exponential function is used
above as a convenient way of mapping differences in (0,∞) to probabilities in
(0, 1), where a high difference corresponds to a low probability.

3.1.2 Engineering models

Segmentation of engineering object meshes differs in aims from segmentation
of graphical models. We usually want to segment a mesh into pieces such that
can each be fitted with a single analytical surface [35]. In many typical cases
(but not all), Gaussian and mean curvatures should be almost uniform over a
segment, which is a different requirement from the case of graphical models.

Again, we use d1 to measure the change of normals between adjacent faces;
however, for engineering object mesh segmentation, we set η = 1.0 for both
convex and concave edges, since they are equally important for the segmenta-
tion of such models. Moreover, we introduce two further difference measures
which assess the variation of Gaussian and mean curvatures. To begin with, we
need to estimate the Gaussian and mean curvatures on both sides of a given
edge. Such curvature estimates are known to be sensitive to noise, so we use
robust estimators for this purpose—we use PCA-based integral invariants in
ball neighborhoods [39]. The method basically relies on a covariance analysis
of the intersection volume between a ball of radius r and the interior part of
the model, locally. Since the method actually computes principal tensors at
a regular mesh point, we may adapt this method to directly interpolate the
principal curvatures at the center of each face rather than at each vertex. We
denote Gaussian and mean curvatures at face fi as K(fi) and H(fi) respec-
tively. If the model is relatively clean, we may set r to be 1 to 2 times the
average edge length of the model. For noisy models, to make the result robust,
we must use a larger radius r at the cost of sacrificing the ability to accurately
locate some boundaries.

The difference functions for Gaussian and mean curvatures are now defined as

d2(fi, fi,k) = |K(fi)−K(fi,k)|
d3(fi, fi,k) = |H(fi)−H(fi,k)| . (7)

8

The overall difference function is defined by combining d1, d2 and d3 using:

d∗(fi, fi,k) = max

{
d1(fi, fi,k)

d̄1

,
d2(fi, fi,k)

d̄2

,
d3(fi, fi,k)

d̄3

}
, (8)

where d̄1, d̄2 and d̄3 are average values of the corresponding difference function
over the whole model. Note that the maximum of these three is used instead of
their weighted average: the peak responses of any component are significant,
and this approach also avoids the difficulty of choosing appropriate weights.
Probabilities are again defined as in Eqn. 6, but with d∗ in place of d. The
method works well for separating smoothly touching regions, as illustrated by
the example results in Fig. 1.

Fig. 1. Segmentation of CAD models without sharp edges.

3.2 Preprocessing and postprocessing

Although the method as described is much faster than any method based on
iterative clustering, for very large models, it may be preferable to simplify
or remesh the models to a more practical size (e.g.10, 000-20, 000 faces) for
efficiency. This is also reasonable, since extra detail in models actually provides
little extra help in segmentation. Segmentation can be computed using the
faces of the reduced model. This step is optional for the overall pipeline.

After random walk segmentation, each segment is represented by a contiguous
set of faces. The boundaries may be somewhat jagged, partly due to noise and
other variations in local properties near the separating edges, and partially
due to the limited resolution of the mesh. We use feature sensitive smooth-
ing as proposed in [15] to smooth the segment boundaries while keeping them
snapped to features. This amounts to optimizing a discretized spline-in-tension
energy in the feature sensitive metric. The boundaries generally form a compli-
cated graph, so branching points are first detected and each boundary segment
between branching points is smoothed independently.

The smoothed boundaries are represented as a set of connected points; how-
ever each point generally will not be located at any vertex of the initial mesh.

9

We suggest updating the input mesh model slightly so that the smoothed
boundaries map to a sequence of edges in the updated mesh. To do so, we first
project each point on the smoothed boundary onto the input mesh model.
The resulting point may be located at a vertex, on an edge, or within a face.
In the latter two cases, we split the related faces to make this point a vertex
of the revised mesh (as illustrated in Fig. 2(left, centre)). Projection is done
quickly using the Approximate Nearest Neighbors Library [23]. After projec-
tion, we find the geodesic path across the mesh between adjacent projected
vertices [32], and split each face crossed by the geodesic into two. To ensure
that the resulting mesh remains a triangular mesh, quad faces induced by this
splitting are further split into two triangles.

Such local updates can be performed efficiently. Since the geodesic computa-
tion requires a data structure that cannot be easily adapted for dynamic up-
dating of the mesh structure, we use the assumption that adjacent points on
the smoothed boundaries are usually close to each other, build a small patch of
the input mesh that covers both projected points, and compute the geodesics
on such small patches. An example of such splitting is shown in Fig. 2(right).
The blue edges correspond to those which must be added so that geodesic
edges become edges of the mesh. Thick blue edges correspond to edges that
are part of the smoothed boundary. After this process, the smoothed bound-
aries can be directly mapped to edges of the modified input model, and the
segmentation results after smoothing may be represented by assigning a label
to each face of the modified input mesh.

projected on face projected on edge

Fig. 2. Projection and local update of the input model. Left, centre: mapping
smoothed boundary points onto the surface. Right: mapping smoothed boundary
paths onto the surface.

3.3 Direct segmentation of point cloud data

Point cloud data is another representation of 3D geometry. If the data is
provided in this form, it may be preferable to avoid explicit triangulation
which can be computationally expensive and error-prone. The random walks
paradigm can also be applied to direct segmentation of an unstructured point

10

cloud P = (pi ∈ R3). Segmentation of point cloud data partitions P into a dis-
joint set of components. For interactive segmentation, users may select a few
seed points, and the point cloud is segmented accordingly. Unlike a triangu-
lated mesh, a point cloud does not have well-defined local connectivity. Thus,
as in [24], we use k-nearest neighbors N(pi) of each point pi to approximate
the topological neighborhood. The normal vector Ni at each point Pi can be
estimated by a local covariance analysis. For each point pi, the centroid p̄i of
the local neighborhood can be computed as

p̄i =

∑
pj∈N(pi) pj

|N(pi)|
, (9)

where |·| denotes the number of elements in the set. The covariance matrix is
a 3× 3 matrix:

Ci =
∑

pj∈N(pi)

(pj − p̄i) · (pj − p̄i)
T . (10)

The normal ni is estimated as the eigenvector of Ci corresponding to the
smallest eigenvalue.

To segment point cloud data with random walks, a graph is first constructed.
Each point pi is connected to every point pj ∈ N(pi) (i.e. within the neigh-
borhood). Note that the neighbourhood contains the k closest points where k
is fixed, guaranteeing that this graph has size proportional to the number of
points. Unlike the mesh case, where typically, long thin triangles are avoided by
the mesh construction algorithm, for point cloud neighbours, the distance to
different points in N(pi) may vary significantly, and better results are obtained
by incorporating both position and normal variation in the probability compu-
tation. Let us denote d′1(pi,pj) = ||pi − pj||2 and d′2(pi,pj) = η

2
||ni − nj||2;

η is chosen as before. A simple heuristic is used to verify if the connection
between neighboring point (pj,nj) and the center vertex (pi,ni) is convex.
Consider the plane passing through pj, parallel to the direction ni, and far-
thest away from pi. The connection is considered to be convex if nj lies on
the opposite side of the plane to pi, i.e.

((pj − pi)− ((pj − pi) · ni) ni) · nj ≥ 0. (11)

We have found that this simple heuristic works well in practice.

To adapt to the variation of point sampling density (i.e. d′1 may have a signif-
icant global variation), we compute the average distance d̄1(pi)

′ in the local
neighborhood N(pi) while still computing the average distance d̄′2 over the
whole model. The probability of moving from pi to pj is computed as

pi,j = exp

{
−d
′
1(pi,pj)

σ1d̄′1(pi)

}
· exp

{
−d
′
2(pi,pj)

σ2d̄′2

}
. (12)

11

This formula bears can be compared to the idea used in bilateral filtering where
two contributing factors are combined [34]. pi,j is then normalized to sum to
one over N(pi). σ1 and σ2 control how variations of differences of positions
and normals map to variations in probability. We have found σ1 = σ2 = 1.0
to be suitable for most examples. An example of direct segmentation of point
cloud data is given in Fig. 3, in which a dinosaur model with 56, 194 points is
segmented into 7 components.

Fig. 3. Left: example of point cloud data. Right: corresponding direct segmentation
result.

4 Automatic Segmentation

Fig. 4. Left: example of coarse seeding. Right: corresponding segmentation result.

The random walk segmentation method may be adapted to work automat-
ically. In this case, a set of seeds is automatically selected, generally with
more seeds than the number of finally expected clusters. For segmentation of
graphical models, we usually require a coarse segmentation, which does not
need a dense set of seeds; for engineering object meshes, or when a detailed
segmentation is preferred, more seeds may be necessary. Our interface allows
users to specify both an approximate number of seeds, and to place specific
seeds before or after automatic selection.

The random walk algorithm described above is used to segment the model.
There will in general be more resulting pieces than desired, and so a further

12

merging process is used to combine these oversegmented pieces into the fi-
nal segments. This approach works well in practice, as it takes advantage of
our experimental observation that random walk segmentation results are not
sensitive to the exact location of the seeds (as we demonstrate later).

4.1 Coarse-scale seeding

If it is desired to segment the model into large pieces representing large-scale
structures, we should generally evenly distribute a sparse set of seeds, so that
only the most significant features or protrusions are captured. Based on the
observation that the segmentation results are generally insensitive to the exact
location of seeds, we use a clustering method similar to that used in k-means
clustering segmentation.

The first seed face is selected as the face furthest away, in terms of geodesic
distance, from the face closest to the centroid of all faces (any such face may
be chosen if there are multiple faces equidistant from the centroid). We then
iteratively add new seed faces one by one. For any two faces fi and fj, a path
from fi to fj is a contiguous sequence of faces starting from fi and ending at
fj. For any path, we may compute the sum of the difference measures d (or d∗

if appropriate), and select the minimal sum among all possible paths, denoting
it by D(fi, fj). Assume s1, . . . , sn are n faces already selected as seeds. The
next seed face sn+1 is determined by

sn+1 = arg max
fk∈F

{
min

i=1,...,n
D(fk, si)

}
, (13)

where F is the set of all the faces. This process terminates when a significant
decrease of D occurs between the newly selected sn+1 to the nearest neighbor-
ing seed, whereupon sn+1 is discarded. Note that this computation is efficient,
since we only need to solve a few single-source shortest distance problems
starting from each seed face. Using Dijkstra’s algorithm gives a complexity
of O(nm logm), where n and m are the number of seed faces and the total
number of faces, respectively.

Fig. 4 shows an example of coarse seeding. The left figure gives the positions
of seeds (the colored balls indicating the seed locations) and the right figure
is the corresponding segmentation result.

4.2 Fine-scale seeding

In certain cases, we would like to segment the model into smaller pieces, where
as many parts are separated as possible. For example, given the skeleton ex-

13

ample shown in Fig. 4, we may want to segment to further detail than simply
5 fingers. Fine-scale seeding based on automatic seed distribution and merging
is then more appropriate.

4.2.1 Automatic seed selection

We should pick a set of random faces that are in general evenly distributed over
the surface, while giving higher priority to protrusions and regions containing
features. Feature sensitive sampling (the first phase of the feature sensitive
remeshing method proposed in [15]) suits this need well. Compared with coarse
seeding with a large number of seeds, this scheme tends to produce more
uniform distribution of initial seeds. The method basically distributes particles
over the model optimizing some spring-like energy [37]. After distribution, we
pick those faces with particles in them as seeds. For our purpose, we may use
a sufficiently large number of sampling faces (e.g. 20–200 for most models).
Again assuming that n is the number of seeds, and m is the total number of
faces, the time complexity is O(n logm), since nearest neighbor queries are
performed using kd-tree acceleration. Placement of initial seeds is typically
very fast (much less than a second). Note that if the original number of seeds
is not large enough to cover all the significant features, our semi-automatic
interface allows users to add further seeds where desired.

Fig. 5. Example of fine-scale seeding. From top left to bottom right: input model
with automatic seed selection; initial (over-) segmented results; result after merging;
final result after boundary smoothing and mapping.

14

Fig. 6. Segmentation of horse with varying seed locations. Balls represent seed
locations.

4.2.2 Merging

Using such an approach, we expect many segments to have multiple seeds,
which naturally leads to over-segmentation. However, as segmentation results
are in general not sensitive to the exact placement of seeds, we may sim-
ply merge the resulting segments to give suitable final regions. We perform
merging as an iterative process. To define the relative merging cost between
two adjacent segments Si and Sj, we first denote by ∂Si ∩ ∂Sj the common
boundary of the two segments, and by ∂Si ∪ ∂Sj the combination of the two
boundaries. We integrate the difference measure d (or d∗ if appropriate) along
the common boundary, and denote it by D∂Si∩∂Sj

=
∑
e∈∂Si∩∂Sj

|e|de, where |e|
and de are the length of edge e and the difference measure d (or d∗) between the
two faces adjacent to e. We also define the overall length of common boundary
as L∂Si∩∂Sj

=
∑
e∈Si∩Sj

|e|. D∂Si∪∂Sj
and L∂Si∪∂Sj

can be defined similarly. We
then define the relative merging cost ci,j as:

ci,j =
D∂Si∩∂Sj

/L∂Si∩∂Sj

D∂Si∪∂Sj
/L∂Si∪∂Sj

. (14)

For each adjacent pair of segments Si and Sj, we compute the merging cost
ci,j and put the pairs into a priority queue. The merging process proceeds by
picking the pair with minimal merging cost, merging them into one segment
and updating the priority queue accordingly. This process can be terminated
either when a significant increase in ci,j occurs for the current pair, or when
we have reached the final number of regions desired by the user. In our exper-
iments, the merging process usually stops with minimal relative cost of about
0.5.

Experimental results of automatic segmentation before and after merging are
shown in Fig. 5. The initial number of seeds was 60 and the number of segments
after merging was 30.

15

0 3 6 9 12 15 18 21 24 27 30
0

0.1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

S eed S hift (P ercentage)

A
v

e
ra

g
e

d
 N

o
rm

a
liz

e
d

 C
o

v
e

ra
g

e

horse

skeleton

hand

fandisk

Fig. 7. Stability test results of averaged normalized coverage.

Fig. 8. Segmentation of engineering objects: rocker arm and fan disk. Left: initial
segmentation with fine-scale seeding. Right: results after merging and smoothing.

5 Experimental Results

5.1 Insensitivity to exact seed locations

Our method is in general insensitive to the exact location of seeds. Fig. 6
shows an example of segmenting a horse model. Note that there are no clearly

16

Fig. 9. Examples of mesh segmentation for various graphical models.

defined boundaries between the legs and the body, so changing the positions
of the seeds has a slight effect on the final result. However, even if the seed
positions are changed significantly, the results are similar, and snap to some
local features.

A more accurate test of stability with respect to choice of seed faces was also
performed. Given some maximal seed shift radius r, we allow all seeds to move
randomly to any face within a geodesic distance of r from their original seed
position (but we restrict new seed positions to be within the same segment
found by segmentation using the original seeds). We performed tests using
maximal shifts of 3%, 6%, 9%, . . . , 30% of the size of the model. In each test
we computed the percentage of faces with the same labels found when using
the original seed positions (we call this the normalized coverage). To obtain a
robust result, we performed 100 trials for each shift distance and averaged the
normalized coverage. As illustrated in Fig. 7, for models like the horse example
in Fig. 6 where no clearly defined boundaries exist between segments, the
normalized coverage decreases gradually with increasing shift. Even for shifts
of up to 30%, the averaged normalized coverage is above 84%. For models like
the hand skeleton example in Fig. 4, where significant features exist between

17

segments, the averaged normalized coverage is above 99.6% for shifts up to
30%, which means almost identical results are produced even with significant
change of seed locations. For a moderate example like the hand model in Fig. 9,
the averaged normalized coverage is above 96.5% for seed shifts of up to 30%.

5.2 Segmentation of graphical and engineering models

Our method can also be applied to meshes representing engineering objects.
Fig. 8 gives the results of segmenting the well-known rocker arm and fan disk
models. On the left are the segmentation results with fine-scale seeding, while
on the right are the corresponding results after merging and smoothing. The
number of seeds before merging was 40 for both models. The numbers of
segments after merging were 20 for the rocker arm and 25 for the fan disk,
respectively. Note that significant normal noise exists near the sharp features
of the input model, making the initial segmentation results rather jagged.
These initial results also suffer from oversegmentation. After the merging and
smoothing phases, however, results are significantly improved. The averaged
normalized coverage for the fan disk (an engineering model) is also given in
Fig. 7; in this case the normalized coverage lies between the values for the
hand and the horse examples, being above 91% for shifts up to 30%.

We have also tested our method on various other graphical models, a selection
of which are shown in Fig. 9. The hand, Santa, chessman, and cheetah models
were segmented into 6, 17, 7 and 10 pieces, respectively. Generally, intuitively
reasonable and pleasing segmentation results are produced for such examples.

5.3 Robust segmentation of models with noise

Since our method is based on a probability model, it is in general robust to
small-scale noise. For relatively larger-scale additive noise, we may opt to use
a simple normal filter that assigns the averaged normal direction of adjacent
faces to the center face, and use the filtered normals in probability estimation.
By using such normal filtering, segmentation results tend to be more robust
to noise, and meanwhile the segmentation results for models without noise are
almost unaffected. Fig. 10 shows that consistent segmentation results were ob-
tained for the original models and models with significant amount of additive
noise.

18

Fig. 10. Examples of segmentation of noisy models. Consistent segmentations are
obtained for models without (top) and with (bottom) additive noise.

Fig. 11. Examples of consistent segmentation of deformed models.

5.4 Consistent segmentation of deformed models

Deformed models usually preserve significant features (but the strengths of
features may vary). Thus it can be expected that consistent segmentation

19

results would be obtained for a series of deformed models. Fig. 11 shows two
models in a variety of poses, for which consistent segmentation results were
obtained even after significant deformation.

5.5 Performance

Compared with state-of-the-art methods, our method is very efficient both
in time and memory usage. A detailed comparison of timings for the hand
skeleton model remeshed to 10K, 15K, 20K, 30K and 40K triangles using an
implementation of [14] is presented in Table 1; 6 seeds were used in each of
these experiments, which were carried out on an Intel Core2Duo 2GHz laptop
with 2GB RAM. Note that the computational time for k-means clustering
based methods [12,14,20] is dominated by pair-wise distance computations,
leading to a complexity of O(m2 logm) time and O(m2) memory, where m is
the number of faces. The method in [11] utilizes non-linear multidimensional
scaling, which is even slower. The computations in our current method are
dominated by solving the sparse linear system. We used MATLAB’s direct
solver (the \ operator) throughout the paper, though sparse linear solver li-
braries like TAUCS [33] could also be used. Experimental results in Table 1
show that the times used per triangle are almost constant as the number of
triangles varies. Although the implementation details of MatLab are not pub-
licly available, techniques such as multigrid methods are often able to achieve
almost linear time complexity in the number of unknowns for this kind of
sparse linear system. Time also increases more or less linearly with the num-
ber of seeds, as shown by the example in Table 2. Clearly, such a linear bound
is expected, as the linear system for each seed can be solved independently. In
summary, the overall complexity with respect to the number of faces m and
the number of seeds n is approximately O(mn). Segmentation of point clouds
has a similar time complexity to the mesh case, where m now represents the
number of points.

Note that models with 40K triangles or more cannot be processed by the
method in [14] without simplification or remeshing, due to memory limita-
tions. Our method only requires O(m+ n) memory to store the sparse linear
equations and thus does not have such memory limitations. For relatively
small models with 10K triangles, the current method is more than 300 times
faster, while for models as large as 30K triangles, it is more than 1, 000 times
faster. For models of moderate size, the segmentation can be carried out in
interactive time, suitable for interactive applications that require immediate
feedback.

20

Table 1
Timing comparison of a k-means clustering based method and our current method.

No. of Triangles Clustering method [14] Current method per 1K triangles

10K 129s 0.34s 0.034s

15K 303s 0.47s 0.031s

20K 532s 0.64s 0.032s

30K 1359s 1.00s 0.033s

40K n/a 1.34s 0.034s

Table 2
Timings for the same 40K-triangle model with differing numbers of seeds.

No. of seeds 6 12 24 48

Time 1.3s 2.1s 3.4s 6.5s

5.6 Hierarchical segmentation

Hierarchical segmentation was first introduced by [12]. It decomposes a given
model into several levels of segmentation, in a similar way to how people con-
sider the composition of an object as a natural hierarchy (a human body has
arms, arms have hands, hands have fingers, and so on). Hierarchical segmenta-
tion may also be helpful to improve the segmentation results in certain cases,
since coarser levels of segmentation which capture more significant compo-
nents may then be used as constraints on the finer levels of segmentation.
Once the hierarchy has been computed, a user-controlled slider may be pro-
vided to allow the user to browse and find the granularity of segmentation
appropriate to his task, as suggested by [2].

Hierarchical segmentation may be obtained by recursively segmenting the re-
gions obtained by coarser levels of segmentation to obtain finer levels of seg-
mentation. Fig. 12 gives hierarchical segmentations of the dinopet (26, 640 tri-
angles) and eagle (29, 232 triangles) models into three levels. Coarse seeding
is used in each subregion of each level of segmentation to decide the locations
of seeds, while the number of seeds in each subregion may be specified by the
user. No simplification or remeshing is required for this segmentation. Note
that unlike [12], our method can directly deal with larger models (e.g. with
20K or more triangles) efficiently. By using a higher resolution, original model,
we not only skip the unnecessary step of simplification but also keep sufficient
resolution when the segmentation goes down to finer levels.

21

Fig. 12. Examples of hierarchical segmentation.

6 Conclusions

In this paper, we have presented both an interactive and an automatic method
of model segmentation based on random walks. We have demonstrated the
effectiveness of this method, with both ‘natural’ graphical models and engi-
neering object models. The results are pleasing, and the method is sufficiently
efficient to be useful in interactive applications, and in applications that re-
quire segmentation of large models, or a large collection of models. The method
is generally robust to the movement of seeds and the presence of noise. In the

22

future, we may explore the segmentation of models with different geometric
textures.

Acknowledgment

The models in this paper are courtesy of AIM@SHAPE Repository and Cyber-
ware. The authors would like to thank Qian-Yi Zhou for his help on geodesic
computation and Han-Bing Yan for providing deformed models. This work was
supported by the National Basic Research Project of China (Project Number
2006CB303102), the Natural Science Foundation of China (Project Number
60673004) the National High Technology Research and Development Program
of China (Project Number 2007AA01Z336), and an EPSRC Travel Grant.

References

[1] M. Attene, B. Falcidieno, S. Katz, M. Mortara, G. Patane, M. Spagnuolo,
and A. Tal. Mesh segmentation—a comparative study. In Proc. IEEE Int’l
Conference on Shape Modeling and Applications, pages 7–18, 2006.

[2] M. Attene, B. Falcidieno, and M. Spagnuolo. Hierarchical mesh segmentation
based on fitting primitives. The Visual Computer, 22(3):181–193, 2006.

[3] P. Benko and T. Várady. Direct segmentation of smooth, multiple point regions.
In Proc. Geometric Modeling and Processing, pages 169–178, 2002.

[4] P. G. Doyle and J. L. Snell. Random walks and electric networks. Number 22 in
Carus Mathematical Monographs. The Mathematical Association of America,
1984.

[5] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical morse-smale
complexes for piecewise linear 2-manifolds. Discrete Computational Geometry,
30(1):87–107, 2003.

[6] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, and D. Dobkin. Modeling by examples. In Proc. ACM
SIGGRAPH, pages 652–663, 2004.

[7] N. Gelfand and L. J. Guibas. Shape segmentation using local slippage analysis.
In Proc. Eurographics Symposium on Geometry Processing, pages 219–228,
2004.

[8] L. Grady. Random walks for image segmentation. IEEE Trans. Pattern Analysis
and Machine Inbtelligence, 28(11):1768–1783, 2006.

[9] D. Hoffmann and W. Richards. Parts of recognition. Cognition, 18:65–96, 1984.

23

[10] D. Hoffmann and M. Singh. Salience of visual parts. Cognition, 63:29–78, 1997.

[11] S. Katz, G. Leifman, and A. Tal. Mesh segmentation using feature point and
core extraction. The Visual Computer, 21(8–10):865–875, 2005.

[12] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering
and cuts. ACM Trans. Graphics, 22(3):954–961, 2003.

[13] Y.-K. Lai, S.-M. Hu, R. R. Martin, and P. L. Rosin. Fast mesh segmentation
using random walks. In Proc. ACM Symposium on Solid and Physical Modeling,
pages 183–191, 2008.

[14] Y.-K. Lai, Q.-Y. Zhou, S.-M. Hu, and R. R. Martin. Feature sensitive mesh
segmentation. In Proc. ACM Symposium on Solid and Physical Modeling, pages
17–25, 2006.

[15] Y.-K. Lai, Q.-Y. Zhou, S.-M. Hu, J. Wallner, and H. Pottmann. Robust feature
classification and editing. IEEE Trans. Visualization and Computer Graphics,
13(1):34–45, 2007.

[16] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel. Intelligent mesh
scissoring using 3d snakes. In Proc. Pacific Graphics, pages 279–287, 2004.

[17] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel. Mesh scissoring with
minima rule and part salience. Computer-Aided Geometric Design, 22(5):444–
465, 2005.

[18] X. Li, T. W. Woon, T. S. Tan, and Z. Huang. Decomposing polygon meshes for
interactive applications. In Proc. ACM Symposium on Interactive 3D Graphics,
pages 35–42, 2001.

[19] R. Liu, V. Jain, and H. Zhang. Subsampling for efficient spectral mesh
processing. Lecture Notes in Computer Science, pages 172–184, 2006.

[20] R. Liu and H. Zhang. Segmentation of 3d meshes through spectral clustering.
In Proc. Pacific Graphics, pages 298–305, 2004.

[21] A. P. Mangan and R. T. Whitaker. Partitioning 3d surface meshes using
watershed segmentation. IEEE Trans. Visualization and Computer Graphics,
5(4):308–321, 1999.

[22] J. Mitani and H. Suzuki. Making papercraft toys from meshes using strip-based
approximate unfolding. In Proc. ACM SIGGRAPH, pages 259–263, 2004.

[23] D. Mount and S. Arya. ANN: a library for approximate nearest neighbors
searching.
url: http://www.cs.umd.edu/~mount/ann/, 2005.

[24] M. Pauly, M. Gross, and L. Kobbelt. Efficient simplification and point-sampled
surfaces. In Proc. IEEE Visualization, pages 163–170, 2002.

[25] D. Reniers and A. Telea. Skeleton-based hierarchical shape segmentation. In
Proc. Shape Modeling International, pages 179–188, 2007.

24

[26] N. S. Sapidis and P. J. Besl. Direct construction of polynomial surfaces from
dense range images through region growing. ACM Trans. Graphics, 14(3):171–
200, 1995.

[27] A. Shamir. A survey on mesh segmentation techniques. Computer Graphics
Forum, 2008. doi:10.1111/j.1467-8659.2007.01103.x.

[28] A. Shamir, L. Shapira, D. Cohen-Or, and R. Goldenthal. Geodesic mean shift.
In Proc. 5th Korea-Israel Conf. Geometric Modeling and Computer Graphics,
pages 51–56, 2004.

[29] A. Sharf, M. Blumenkrants, A. Shamir, and D. Cohen-Or. Snappaste: an
interactive technique for easy mesh composition. The Visual Computer, 22(9–
11):835–844, 2006.

[30] S. Shlafman, A. Tal, and S. Katz. Metamorphosis of polyhedral surfaces using
decomposition. Computer Graphics Forum, 21(3):219–229, 2002.

[31] X. Sun, P. L. Rosin, R. R. Martin, and F. C. Langbein. Random walks for
mesh denoising. In Proc. ACM Symposium on Solid and Physical Modeling,
pages 11–22, 2007.

[32] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. Gortler, and H. Hoppe. Fast exact
and approximate geodesics on meshes. In Proc. ACM SIGGRAPH, pages 553–
560, 2005.

[33] S. Toledo, D. Chen, and V. Rotkin. TAUCS: A library of sparse linear solvers,
ver. 2.2
url: http://www.tau.ac.il/~stoledo/taucs/, 2003.

[34] C. Tomasi and R. Manduchi. Bilateral filter for gray and color images. In Proc.
IEEE Int’l Conf. on Computer Vision, pages 839–846.

[35] T. Várady, R. R. Martin, and J. Cox. Reverse engineering of geometric models—
an introduction. Computer-Aided Design, 29(4):255–268, 1997.

[36] Tamás Várady. Automatic extraction of surface structures in digital shape
reconstruction. Computer-Aided Design, 39(5):379–388, 2007.

[37] A. Witkin and P. Heckbert. Using partickles to sample and control implicit
surfaces. In Proc. ACM SIGGRAPH, pages 269–277, 1994.

[38] H. Yamachi, S. Lee, Y. Lee, and Y. Ohtake. Feature sensitive mesh segmentation
with mean shift. In Proc. Shape Modeling International, pages 236–243, 2005.

[39] Y.-L. Yang, Y.-K. Lai, S.-M. Hu, and H. Pottmann. Robust principal curvatures
on multiple scales. In Proc. Eurographics Symposium on Geometry Processing,
pages 223–226, 2006.

[40] E. Zuckerberger, A. Tal, and S. Shlafman. Polyhedral surface decomposition
with applications. Computers & Graphics, 26(5):733–743, 2002.

25

