

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/52918/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Clare, Elizabeth L., Symondson, William Oliver Christian and Brockett Fenton, M. 2014. An inordinate fondness for beetles? variation in seasonal dietary preferences of night-roosting big brown bats (Eptesicus fuscus). Molecular Ecology 23 (15), pp. 3633-3647. 10.1111/mec.12519

Publishers page: http://dx.doi.org/10.1111/mec.12519

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1	An inordinate fondness for beetles? Variation in seasonal dietary preferences of night
2	roosting big brown bats (<i>Eptesicus fuscus</i>)
3	Elizabeth L. Clare ¹ , William O.C. Symondson ² , and M. Brock Fenton ³
4	
5	¹ School of Biological and Chemical Sciences, Queen Mary , University of London, Mile End
6	Road, London E1 4NS, UK
7	² Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10
8	3AX, UK
9	³ Department of Biology, Western University, London Ontario, Canada, N6A 5B7
10	
11	Corresponding Author
12	Elizabeth L. Clare
13	School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End
14	Road, London E1 4NS, UK, e-mail: elclare.evol.biology@gmail.com, Fax: +44 (0)20 7882 7732
15	
16	Key Words: insectivores, species' interactions, molecular diet analysis
17	Running Title: Molecular analysis of big brown bat diet

Formatted: List Paragraph, Indent: First line: 0.5", Line spacing: Double

18 Abstract

19	Generalist species with numerous food web interactions are thought to provide stability to
20	ecosystem dynamics however it is not always clear whether habitat generality translates into
21	dietary diversity. Big brown bats are common across North America and employ a flexible
22	foraging strategy , flying over water, <u>dense</u> forestesd areas, along forest edges and in rural and
23	urban settings-in search of prey. Despite this generalist use of habitat, they are <u>paradoxically</u>
24	characterized as beetle specialists. However, hard carapaces may preferentially survive digestion
25	leading to overrepresentation during morphological analysis of facees diet. and tThis
26	specialization has not been evaluated independently using molecular analysis and species level
27	identification of prey. We used next generation sequencing to assess the diet of big brown bats
28	from fecal samples collected in 2008 and 2011. Beetles were consumed in the highest frequency
29	but Lepidoptera species richness was highest among identified prey. The consumption of species
30	showed strong seasonal <u>and annual</u> variation $\frac{(2008, \chi^2 - 20.6, p - 0.005, 2011, \chi^2 - 23.2, p - 0.004)}{(2008, \chi^2 - 20.6, p - 0.005, 2011, \chi^2 - 23.2, p - 0.004)}$
31	but also varied between years (($\chi^2 = 19.7, p = 0.04$). While Coleoptera consumption varied
32	seasonally, Lepidoptera and Ephemeroptera were <u>relatively</u> constant dietary component-in all
33	years and over the entire summer. Dietary diversity increased in late summer when insect
34	diversity decreases. Our results indicate that the diet of big brown bats is are dietary omnivorous
35	generalists and, while beetles are an important component of the diet, Lepidoptera are equally

36	important, and Lepidoptera and Ephemeroptera are the only stable prey resource exploited. As
37	resources become limited big brown bats may respond by increasing the species richness of prey
38	and thus their connectedness in the ecosystem. This characterization of diet corresponds well
39	with a generalist approach to foraging and this extreme generalist strategy makes them an
40	fundamentally-important species in encouraging and maintaining ecosystem stability.

41	
42	Introduction
43	Understanding interactions among species is fundamental to assessing the way in which
44	ecosystems function and respond to variation. Predator preySpecies' interactions, particularly
45	those involving generalists and omnivores, -predators can be particularly important in promoting
46	ecosystem stability. The importance of behavioural flexibility and resource use has been widely
47	modelled in studies of food-web stability. Food webs appear most susceptible to the removal of
48	the most linked (generalist) species (e.g. Solé & Montoya 2001). In general, increased
49	behavioural flexibility of species in these networks allows a wider variety of species to interact
50	in response to local resource availability, and this functional redundancy may stabilize ecological
51	networks (Kondoh 2003) e.g. by directly stabilizing both predator and prey population sizes
52	(Singer & Bernays 2003) or via indirect control on lower level food web links (Rosenheim &
53	Corbett 2003). although they are among the most difficult to document.
54	In response to resource limitations, species may compete for resources or alter the prey
55	they choose. Over many generations, resource limitation may drive the evolution of
56	morphological or behavioural specialization and adaptive radiations and sympatric species are
57	thought to evolve and co-exist through partitioning available resources and niche specialization
58	differentiation (Ricklefs 2007). Alternatively, competition for resources may result in increasing

59	niche flexibility (Grant & Grant 1987; Tebbich <i>et al</i> . 2004). Behavioural flexibility is key to
60	ecosystem functioning and is viewed as a stabilizing force in food webs which buffers the impact
61	of species loss (Solé & Montoya 2001; Dunne <i>et al.</i> 2004). Spatial-temporal variation in resource
62	use is an important form of behavioural flexibility which is particularly adaptive when resource
63	availability fluctuates.
64	There are two main hypotheses-ways in which attempt to explain how resource
65	distributions are may be related to the stability of food webs. First, increasing complexity within
66	food webs increases their stability and thus highly linked generalists promote ecosystem
67	functioning_(Solé & Montoya 2001). Second, generalists that consume resources based on
68	frequency of encounters (Rosenheim & Corbett 2003)_(rather than achieving generalism by
69	switching between highly specialized tactics) may respond to resource limitation by increasing
70	the abundance of a particularly resource or increasing their flexibility and consuming a wider
71	variety of resources. In this context, behaviourally flexible highly linked omnivores or
72	generalists, that respond to limitations by increasing the variety of prey they consume, may be
73	particularly important components of ecosystem stability and documenting their ecosystem
74	function <u>is</u> vital to understanding ecosystem response to disturbance (Solé & Montoya 2001).
75	Behavioural flexibility in foraging by insectivorous bats has been well documented and
76	dietary diversity and choices may be influenced by habitat variation (Aldridge & Rautenbach

77	1987), temporal availability and abundance of prey (Rydell et al. 1996), gender (Belwood &
78	Fenton 1976) and or age (Adams 1997). In extreme cases, bats may switch between feeding
79	guilds and trophic levels to supplement diet (e.g. the supposedly nectivorous Glossophaga
80	soricina uses unique tactics incorporate insects in its diet (Clare et al. in rpresseview)). This
81	degree of flexibility is unusual in a top predator and makes them bats key ecosystem species taxa
82	and excellent models for the study of ecosystem functioning, though their cryptic behaviour
83	makes it extraordinarily difficult to directly document their behaviour in the wild.
84	A variety of molecular methods have been used to untangle these complex relationships
85	species' interactions (Symondson 2002; King et al. 2008), especially next generation sequencing
86	(NGS) methods (Pompanon et al. 2012) that can generate millions of prey-sequences_at
87	relatively low cost. NGS methods can be applied to fragmentary, emulsified or mixed starting
88	materials such as stomach or faecal contents. This approach is based on sequencing in
89	extraordinary volume (so called "sequencing depth") to encompass the complete richness of
90	targets species within a system (Pompanon et al. 2012). This contrasts with cloning methods
91	(Zeale et al. 2011) that also begin with mixed starting materials but where the discovery of new
92	prey species is based on the inevitably limited number of sequenced clones rather than the NGS
93	mass screening approach. The NGS approach provides a possible solution to the problem of
94	understanding the complexity of interactions between generalist predators and their prey by

95	analyzing the prey exploited based on large samples. Using this method we can extend our
96	analyses beyond accurately documenting interactions (e.g., Deagle et al. 2009, 2010) to testing
97	specific predictions about how species' interactions vary in time and space (e.g., Razgour et al.
98	2011).
99	Several previous molecular analyses of bat diets have documented temporal variation in
100	resource use. In the first large scale molecular analysis of the diet of an insectivorous bat, Clare
101	et al. (2009) found little evidence that Lasiurus borealis (the eastern red bat) in Ontario, Canada
102	exhibited temporal variation in prey consumption. In contrast, molecular analyses of the feces of
103	another species, Myotis lucifugus in Ontario (Canada) (Clare et al. 2011, Clare et al. in
104	review <u>THIS ISSUE</u>) and <i>Plecotus</i> in the UK (Razgour <i>et al.</i> 2011) showed evidence of temporal
105	variation in diet. In the case of sister species of <i>Plecotus</i> this may lead to competition when
106	resources become limited (Razgour et al. 2011).
107	The tendency for resident populations of bats to hunt locally and show strong temporal
108	variation in resources use has significant implications for understanding ecosystem dynamics and
109	their response to change. Understanding ecosystem function and the services provided by
110	generalist predators is particularly important when population demography is unstable and this
111	"service" may fluctuate (Blehert et al. 2009). Eptesicus fuscus, the big brown bat, is common
112	across most of North America and in-parts of Central and northern South American and the

113	Antilles (Simmons 2005). It is one of the bats best known to the general-North American public	
114	because of its association with rabies (Nadin-Davis et al. 2010) and its propensity to roost in	
115	buildings (Kurta & Baker 1990). <u>E. fuseus Individuals may frequently</u> forage within 2 km of their	Formatted: Font: Not Italic
116	roost (Kurta and Baker 1990), or-but may also travel to sites up to 7 km away (Brigham 1991). In	
117	some areas, <i>E. fuscus</i> big brown bats use night roosts as places to temporarily stop and digest	
118	prey (Kurta & Baker 1990) so accumulations of droppings at night roosts provide an opportunity	
119	to determine which foods are consumed locally.	
120	While many bats used mixed foraging habitats (and sympatric species may overlap in	
121	their foraging (Furlonger et al. 1987)) some general trends in habitat use are apparent for the	
122	common species in the study site (Ontario Canada). For example, horay bats and Eastern-eastern	
123	red batss often forage in cover or along edges (Furlonger et al. 1987) and frequently in	
124	concentrations of insects at street lights (Hickey & Fenton 1996; Acharya & Fenton 1999), while	
125	the three small <i>Myotis</i> bats little brown bats mainly forageare much more habitat restricted and	Formatted: Font: Italic
126	forage over riparian systems water (Furlonger et al. 1987;-) very close to their roosts (Clare et al.	
127	2011) more commonly than the othe Clare et al. 2011)species In contrast, Big big brown bats	
128	appear to employ one of the mosta very general flexible forage strategiestrategy with no	
129	significant habitat associations (Furlonger et al. 1987)s. Acoustic monitoring has measured big	
130	brown bat activity in all rural settings - They have been reported to fly over including over water,	

131	forested areas, along edges and at street lights and in both rural and urban settings (Geggie &
132	Fenton 1985; Furlonger et al. 1987) and they are the only species to make significant use of
133	urban areas (Furlonger et al. 1987). Although they employ a generalist strategy across these
134	landscapes, big brown bats have been paradoxically called beetle specialists (Coleoptera; e.g.,
135	Freeman 1981; Ober and Hayes 2008; Agosta et al. 2003). However, the alleged observed
136	preference for beetles (as high as 96% of diet by mass, Agosta et al. 2003) has not been
137	challenged by accurate species-level identification of their prey. The hard carapace of beetles
138	may preferentially survive digestion leading to an overrepresentation of these taxa during
139	morphological analysis of prey remains in faeces. Molecular analysis has been demonstrated to
140	accurately identify small, soft bodied prey and rare taxa (Clare et al. 2009) and it presents an
141	excellent diagnostic tool to assess the complete providing species-level analysis of the diet of big
142	brown bats. These data will and answer the question of whether their generalist foraging strategy
143	translates into a far more general diet than previously documented.?
144	We assessed the diet of a group of night-roosting big brown bats during their colony
145	establishment periods in the summer of both 2008 and in-2011 (total of 25 weeks). The roost was
146	located in a forested patch along the Grand River in Cambridge Ontario. The bats roosted in an
147	overhanging section of soffit and fascia. Continuous observation and inspection of the home
148	showed no evidence that the bats roosted in the home during the day however they - E fuscus

149	foraged in the area in the apparent absence of other bat species and fresh guano (faeces)	
150	accumulated each night. Given this, We we concluded that we were sampling faeces left by	
151	night-roosting bats rather than a permanent colony. If the bats whose diets we documented fed	
152	locally, we predicted that the diet would vary reflecting local availability of prey.	
153	We tested three hypotheses about the diet of this species. First, we tested the hypothesis	
154	that resident big brown bats exhibit seasonal variation in their diet reflecting a preference for	
155	local feeding, tracking generally established fluctuations in prey abundance. Second, we tested	
156	the hypothesis that variation in diet between years is minimal so that overall dietary diversity and	
157	seasonal variation in diet are stable across years. Finally, we tested the prediction that <u>E fuseus</u>	Formatted: Font: Not Italic
158	isbig brow bats are beetle specialists by estimating the relative importance of prey groups in the	
159	diet of this species over two years of monitoring. We also compared ordinal level analysis of	
160	prey (as traditionally conducted during morphological dietary analysis) with analysis at the	
161	species level made possible using molecular methods.	
162		
163	Materials and Methods	
164	Sample collection, DNA Extraction, Amplification and Sequencing	
165	We placed collection sheets under the colony for weeklong periods between May and	
166	September in 2008 and again in 2011. We collected the accumulated faeces weekly and stored it	

167	at -20°C prior to analysis for a total of 25 weeks of monitoring (15 weeks of continuous
168	monitoring in 2008 and 10 weeks in 2011 reflecting differential colony establishment times in
169	the two years, we observed no variation in sequencing success due to length of storage).
170	For each weekly sample we selected a minimum of 30 faecal pellets and homogenized
171	them as a single unit to ensure they were well mixed – hereafter we refer to these homogenized
172	pellets as a "sample". From each sample we extracted DNA using the QIAmp DNA Stool Mini
173	Kit (Qiagen, Valencia, CAUK) according to manufacturers instructions with the modifications
174	suggested by Zeale et al. (2011). In addition we made the following protocol additions; 1) to
175	encompass community diet in each sample, rather than the diet of a single individual bat, we
176	used many (at least 30) faecal pellets rather than just one giving a volume of 1-1.5ml of starting
177	material and 2) we extended the first centrifuge step (Zeale step 4) to 3 minutes to aid in
178	pelleting the particulate material produced by this large volume. We stored the extracted DNA at
179	-20°C prior to PCR amplification.
180	We tested all DNA extractions using unmodified primers ZBJ-ARTF1c and ZBJ-ArtR2c
181	from Zeal <u>e</u> et al. (2011) to confirm extraction success. We then amplified each sample using
182	fusion primers (Figure 1) adapted for the Ion Torrent platform (Ion Torrent, Life Technologies).
183	These primers consisted of adaptor sequences (forward adaptor and trP regions) a unique DNA
184	sequence (MID) used to bioinformatically separate sequences for analysis and the original primer

185	sequence ZBJ-ARTF1c and ZBJ-ArtR2c from Zeale et al. (2011) as required for the sequencing
186	platform. In our design we <u>follow Brown et al. (THIS ISSUE) and</u> used unique combinations of
187	10 bp MID sequences on both the forward and reverse primer for each pooled sample. This
188	design allows fewer primers to be used to resolve the same number of samples (called sequence
189	libraries) (e.g., rather than 100 unique forward MID tagged primers for 100 samples, 10 unique
190	forward and 10 unique reversesed can yield the same resolution power). This reduced the cost of
191	primers. We sequenced only in the forward direction did not use bi directional sequencing but
192	sequenced only in the forward direction further reducing the number of required primers.
193	We carried out PCRs reactions following the amplification reaction described by
194	(Bohmann et al. (2011) in a 20 ul reaction containing 1ul of template DNA using Qiagen
195	multiplex PCR kits (Qiagen, UK) as described with the following modifications: we did not use
196	either Q solution (from Qiagen) or BSA (as suggested by Bohmann et al. 2011). We visualized
197	all PCR products on a 1.5% agarose gel. We quantified the PCR products by measuring the
198	relative luminescence of 1ul of PCR product on a 1.5% agarose gel stained with ethidium
199	bromide (validated using Qubit low sensitivity dsDNA BR Assay Kit on a Qubit Flurometer,
200	Invitrogen Life Technologies). We pooled equal molar quantities of each PCR product and then
201	size selected and purified these using a QIAquick Gel Extraction kit (Qiagen, UK). We
202	quantified the final mixed PCR product using a Qubit dsDNA BR Assay Kit (low sensitivity)

203	with a Qubit Flurometer (Invitrogen Life Technologies). Sequencing of the product was
204	conducted at the University of Bristol Genomics facility (School of Biological Sciences, Bristol
205	UK) on an Ion Torrent personal gene machine (PGM) (Ion Torrent, Life Technologies) using a
206	316 chip and 300 bp chemistry. PCR products were quantified for sequencing using a
207	Bioanalyzer (high sensitivity kit, Agilent Technologies).
208	
209	Sequence Analysis
210	We separated forward and reverse MIDs, clipped primer and adapter sequence and
211	filtered sequences using the Galaxy platform (<u>https://main.g2.bx.psu.edu/root</u> , (Giardine et al.
212	2005; Blankenberg et al. 2010; Goecks et al. 2010) and Bioedit (T. Hall, http://www.
213	Mbio.ncsu.edu/bioedit/bioedit.html). We filtered all recovered sequences for rare haplotypes
214	(represented by <2 copies) and sequences much longer (>175 bp) or shorter (<100 bp) than the
215	expected 157 bp amplicon.
216	We clustered the sequences into molecular operational taxonomic units in the program
217	jMOTU (Jones et al. 2011) and tested thresholds from 1-10 bp. A graph (not shown) of
218	recovered MOTU vs. threshold suggests that a 4 bp cut-off was most appropriate for this data set
219	(see (Razgour <i>et al.</i> 2011). We extracted representative sequences for each MOTU and edited

220	and aligned them manually to remove indels and to match to compare with reference sequences
221	from known insect sequencestaxa.
222	We compared these representatives to the reference database in BOLD (www.
223	barcodinglife.org) and extracted identifications based on four criteria modified from (Razgour et
224	al. 2011). Confidence $1a =$ match to one species or several species in a genus (100% sequence
225	similarity) most conservative taxonomy kept; confidence 1b = good match (>98% sequence
226	similarity) but could belong to a congener if the database is updated with something with a
227	higher sequence match; confidence $2 =$ match to more than one species (>98.5%) only one of
228	which is known to be present in sampling range (that taxonomy kept) and confidence 3 = close
229	match (as above) to several species from different genera, or to reference sequence which itself
230	lacks a full taxonomic record. In these cases, the most conservative taxonomy (normally family)
231	was kept (Note: this is not the same as an identification to higher level taxonomy, but an
232	acknowledgement of a match meeting the criteria of 1b but retaining an ambiguity in the proper
233	assignment due to either multiple similar matches or incomplete data in the reference collection).
234	In addition, we estimated the identity of all prey (including unidentified MOTU) using the
235	methods of Emrich et al. (THIS ISSUE) and the programme MOTU. See Emrich et al. (THIS
236	ISSUE) for details of that procedure and a brief discussion.
237	

238 Ecological Analysis

239	We divided our collections into three temporal periods: early (May13 th - June 20 th)
240	middle (June 20 th – Aug 6 th) and late (Aug 6 th - September 9 th) (periods in 2011 varied by one or
241	two days to equalize time periods and based on colony establishment) following (Clare et al.
242	2011) to coincide with the observed periods of pregnancy, lactation and post lactation for this
243	species in Ontario. Ecological analyses were conducted using the program PAST (Hammer et al.
244	2001) on species and order level data with p-values estimated by permutation. We compared the
245	Shannon and Simpson diversity indices for identified prey between years and between earlym
246	middle and late summer within years and estimated the magnitude of the effect where differences
247	were statistically significant following Jost (2006). We computed rarefaction curves for these
248	data with 95% confidence intervals.
249	We compared the frequency of consumption for each order (number of species consumed
250	and the frequency of <u>each species</u> consumption) and each species (with its frequency) between
251	years and between early, middle and late summer within years using a χ^2 test with p-values
252	computed using a Monte Carlo simulation with 2000 replicates in R 2.15.1 ("R Development
253	Core Team: R: A language and environment for statistical computing" 2008).
254	

255 **Results**

256 Prey Identification and Dietary Composition

257	We recovered ~3.5 million DNA sequences from the Ion Torrent 316 chip of which
258	\sim 50% were produced for this study (the chip was shared). Of these, processing for quality
259	(sequence length, recoverable MIDs and primers), collapsing to unique haplotypes and splitting
260	files by MID left a total of 32,212 unique haplotypes from all 25 weeks of collection (Data
261	archived in <u>Dryad</u> -Dryad:). Processing through jMOTU reduced these to 221 molecular
262	operational taxonomic units (MOTU) at the 4 bp threshold.
263	Using representative sequences of the 221 MOTU (species of prey) we identified 158
264	(71%), with most identifications at the species level, through comparison to existing reference
265	databases of known insect DNA barcodes for the area. Of these, species of Lepidoptera, Diptera
266	and Coleoptera dominated the diet, with species of Coleoptera representing the highest frequency
267	of consumption while Lepidoptera were present in the highest taxonomic richness (Table 1).
268	
269	Seasonal and Annual Variation in Prey Consumption by order
270	Using order level taxonomy (ignoring genus and species)only, the consumption of
271	species showed strong seasonal variation in 2008 (χ^2 =20.6, p=0.005) and in 2011 (χ^2 =23.2,
272	p=0.004) (Figure 2) although the pattern of variation was inconstant between years and the
273	overall consumption of prey differed significantly between the two years ($\chi^2 = 19.7$, p=0.04;

274	Figure 3). In 2008 the early summer diet was dominated by species of Diptera (43% of prey
275	consumed) while the importance of Coleoptera increased throughout the year peaking at 32% in
276	the late summer. In 2011, Coleoptera were dominant in both early (39%) and mid (38%) summer
277	diet while Diptera increased from 20-26% over the year. Consumption of Lepidoptera was
278	relatively constant within and between years varying between ~18-29% of the diet at all times
279	(Figure 2, Figure 3). Similarly the consumption of Ephemeropterans was low but consistent
280	across the summer and years representing 8-13% of the identified prey diet at all times (Figure 2,
281	Figure 3).
282	Despite variation in how prey resources are used in the consumption of prey orders, we
283	found no change in the diversity of diet between years (Shannon index 2008=1.57, 2011= 1.60,
284	p=0.55, Simpson index 2008=0.78, 2011= 0.77 p=0.41; Figure 4 and 5). Within years, we
285	detected a significant increase in the diversity of prey consumed between early and late summer
286	in 2008 (Shannon index early=1.4, late= 1.5, p=0.036, Simpson index early=0.71, late= 0.77
287	p=0.007) though significance was lost in the Shannon index comparison after a sequential
288	Bonferroni correction (Figure 4, Figure 5). The magnitude of the difference in the effective
289	number of species consumed was close to 10% between the early summer and either middle or
290	late summer. In 2011 the diversity of prey consumed was significantly higher in late summer
291	than in either early (Shannon index early=1.5, late= 1.7, p=0.009, Simpson index early=0.75,

292	late= 0.81 p=0.014) or mid (Shannon index early=1.4, late= 1.7, p=0.001, Simpson index	
293	early=0.73, late= 0.81 p=0.003) summer (Figure 4, Figure 5) with the magnitude of the	
294	difference estimated at 9% and 7.5% respectively. In both cases, the effective number of species	
295	in the diet appears to increase by as much as 10% from early in the summer (when bats are	
296	pregnant) to late summer (when bats are preparing to hibernate).	
297		
298	Seasonal and Annual Variation in Prey Consumption by MOTU	
299	Using MOTU as a proxy for species level taxonomy, dietary diversity also was constant	
300	between years (Shannon index 2008=4.6, 2011= 4.4, p=0.54, Simpson index 2008=0.99, 2011=	
301	0.95 p=0.41) (Figure 4, Figure 5). In 2008 we detected a significant increase in the diversity of	
302	prey consumed between early and mid summer (Shannon index early=3.8, mid= 4.1, p=0.032,	
303	Simpson index early=0.97, mid= 0.98 p=0.021) though significance is lost in the Shannon index	
304	after a sequential Bonferroni correction (Figure 4, Figure 5). We also detected an increase in	
305	diversity between early and late summer (Shannon index early=3.8, late= 4.1, p=0.013, Simpson	
306	index early=0.97, mid= 0.98 p=0.012) (Figure 4). We detected no significant trend in diversity	
307	changes in 2011 after sequential Bonferroni correction (Figure 4, Figure 5).	
308	We recovered a similar analysis of prey diversity from MEGAN (Figure 6) which suggest	
309	that unidentified prey are relatively dispersed among the consumed insect groups.	

3	1	0
-	-	~

311	Dietary Species of Interest	
312	A number of prey species consumed by big brown bats are interesting in the context of	
313	"ecosystem services" provided by bats. Big brown bats ate human pests such as Culex pipens	
314	(the common house mosquito), Simulum spp. (the black flies) and Polistes spp. (the paper	
315	wasps). Paper wasp nests were observed under the same overhang as the bat roost. <u>It is possible</u>	
316	this record represents a secondary contamination event, however the nest was not located over	
317	the collection surface. Bats also ate some species such as Trichoptera that emerge from water.	
318	Other aquatic insects Caenis spp. and Maccaffertium mediopunctatum are generally found over	
319	moving water habitats in this area of their distribution (Clare et al. 2011).	
320		
321	Discussion	
322	Dietary Richness and Diversity	
323	The most striking conclusion from our analysis is the confirmation that Epterious	Formatted: Font: Not Italic
324	fuscusbig brown bats relyies heavily on Coleoptera although, at most, beetles constituted about	
325	40% of dietary richness. This contrasts strongly with the Previous analyses have reported 42-96%	
326	consumption by volume in some studies (e.g. Agosta <i>et al.</i> 2003). While abundance is not	
327	necessarily proportional to species richness, they are often related, particularly when a predator	

328	cannot effectively make prey choices at the species level. It is very likely that consumption
329	varies significantly between areas and years, at least in part due to local conditions. In this case,
330	wWe furthermore strongly suspect that big brown bats are unlikely tocannot obtain enough
331	information to discriminate subtle species level characteristics, but likely-make choices about
332	prey-perhaps based on acoustic detection of size, flight speed, flight path, and acoustic properties
333	generated by hard carapaces revealed through echolocation (see also Brigham & Saunders
334	(1990 <u>,</u>) and Barclay & Brigham (1994)). It is also very probabl <u>ey</u> that the flexibility exhibited by
335	big brown bats leads to significant regional differences in diet thus the relative importance of
336	beetles may vary greatly by location (e.g. (Brigham 1990). Agosta et al. (2003) argued that
337	richness of diet increases when prey themselves become more limited, presumably because
338	resource limitation provides incentive for a more generalist strategy. Our data <u>also</u> suggested that
339	dietary richness increased in the late summer. In this case, increases in dietary richness measured
340	at the species level here, and estimates made for richness measured by abundance (Agosta et al.
341	2003) may be in agreement that diet is responding- to local insect population fluctuations. This
342	presumes that insects themselves are a limited resource and there may be some evidence for this
343	in late summer of temperate bats' active periods. Razgour et al. (2011) observed increased
344	dietary partitioning between cryptic bat species late in the year and speculated that a drop in
345	insect abundance led to increased resource competition driving a temporally constrained niche

346	specialization. Records-Trends of flight periods of adult beetles in Ontario obtained from the
347	Canadian National Collection (CNC, Ottawa Ontario, Canada) for many species in this dataset
348	suggest a local flight peak in mid summer corresponding to the lactation period of bats. For
349	example, Ecyrus dasycerus, and Cymatoder bicolor peak in June and July, Ampedus semicinctus
350	peaks in May-July, Graphisurus fasciatus and Monochamus notatus peak in June - August, and
351	Melanotus similis peaks in April-August (Bruce Gill, CNC Ottawa, personal communication).
352	We hypothesize that if beetle [insect] species richness and diversity undergoes a significant local
353	decrease in late summer coinciding with increased dietary needs of bats as they approach
354	hibernation, this could drive increases in dietary richness without the bats actively choosing new
355	prey at the species level. As such, it is an effect of insect phenology, rather than predator choice.
356	Interestingly, records for a wider geographic area show peaks for these same insect species often
357	extend into late fall (Yanega 1996) in other areas thus the affect may be local to this part of the
358	bats' and beetles' range. An additional contributing factor to this pattern is the emergence of
359	juvenile bats that may be less discriminatory in their prey choice. Their appearance co-insides
360	with this drop in insect richness and abundance and both factors may cause an increase in dietary
361	richness.
362	In addition to the importance of Coleoptera in the diet, Diptera, Lepidoptera, and
363	Ephemeroptera were often eaten. While Diptera (primarily chironomids) and Coleoptera varied

364	in importance over time, Lepidoptera and Ephemeroptera were consistent components of the
365	bats' diet across years. As such, they may be an underappreciated stable resource supporting the
366	population while other insect groups fluctuate in importance.
367	Several One-important data considerations need to be taken into account. First, is that
368	within a sample, prey are-were measured simply by their presence (quantification is not
369	possible). We used larger pools of guano to maximize potential biodiversity by increasing the
370	number of contributing predators. However, a rare item and a common item would both be
371	recorded as "present" in that sample. A large sample size may control for the potential for
372	overrepresentation of rare prey (or underrepresentation of common prey) in any one sample,
373	though it is not a correction that can be empirically assessed. <u>Another consideration is that</u>
374	Lepidoptera dominates the reference collection, as this has been a major campaign of the various
375	DNA barcode consortia. As such, there is likely an identification bias towards Lepidoptera which
376	must be considered, though our estimates based on MEGAN (Figure 6) did not vary greatly
377	suggesting this is not a significant factor. Finally, we have no basis to conclude whether the bats
378	have consumed prey groups (e.g. moths) in accordance with abundance, however the authors
379	have evaluated the diet of 5 sympatric species of bat (manuscript published and in preparation)
380	and none has revealed beetles as such a strong dietary component, thus we suggest this is a true

381 preference for this predator on this prey rather than a case of encountering more in the

382 <u>environment.</u>

383

384 Temporal variation in diet

385 Increases in dietary diversity as the summer progressed, suggests a relationship between 386 diet and known changes in species richness in prey availability. Seasonal limitations in prey 387 cause shifts to more generalist behaviour in several groups. For example, spiders are normally 388 unselective in their choice of prey because they are in a state of suboptimal nutrition and cannot 389 afford to be selective, however, when prey are in excess, they become more selective (Riechert 390 & Harp 1987). We may have recorded a similar effect raising implications for the relationship 391 between diet and hibernation. Hibernation and torpor success is directly influenced by dietary 392 components. For example, in marmots, diets deficient in essential fatty acids led to decreased 393 length of torpor (Florant et al. 1993) and a diet high in n-6 polyunsaturated fatty acids (PUFA) 394 increases the frequency and duration of torpor, decreases body temperature and decreases mass 395 loss during inactivity, and the ratio of n-6 to n-3 PUFAs may be key (Ruf & Arnold 2008). 396 However, insectivorous bat diet is naturally very low in PUFA and, though they do apparently 397 preferentially select insects which maximize PUFA intake, the goal may be to optimize rather 398 than maximize PUFA (Munro & Thomas 2004). Coleoptera and Trichoptera are very high in the

399	essential fatty acid linoleic acid (Schalk & Brigham 1995) and the richness of these in the diet of
400	big brown bats increased in the fall in 2008 and 2011 respectively. This may reflect an increase
401	reliance on prey which can supply high quality diet in preparation for hibernation when body
402	mass may increases by as much as 50% (Beer & Richards 1956), though the relationship
403	between dietary fats and hibernation is complex.
404	Our observations of an increase in dietary diversity contradict the pattern that dominates
405	in little brown bats across Canada (Clare et al. in review THIS ISSUE). In this-that species,
406	diversity peaked in mid summer and was significantly reduced in late summer. This difference
407	likely reflects the degree of habitat flexibility between these two predators. Little brown bats
408	hunt mainly-more frequently over water. In this-that case, reduced flexibility in habitat choice
409	may reduce the diversity of their diet. Little brown bats may rely on greater volume of more
410	limited prey richness, while big brown bats exploit a wider variety of prey.
411	We documented dietary variation across the summer but also between years which
412	strongly supports of the importance of long term monitoring. Had our analysis been limited to a
413	single year we would not have uncovered that the seasonal patterns of prey use change between
414	years. For example, Diptera accounted for half of the dietary prey in early 2008 and decreased in
415	importance throughout the year but the opposite trend occurred in 2011 where they increased in

416	importance. Similarly, considering only inter-annual variation in diet would not have uncovered
417	the seasonal variation in prey use.
418	
419	Ordinal vs. species level analysis of diet.
420	We compared dietary trends using data restricted to ordinal level identifications (as
421	would have been obtained using traditional fecal analysis by morphology) to species (MOTU)
422	level taxonomy available using molecular methods. There are two main advantages of molecular
423	dietary analysis. First, it automates the identification process reducing the need for specialized
424	training. While some mammalogist have specific entomological qualifications, many Most
425	traditional analyses of diet are conducted by mammalogists individuals without this
426	specialization (not entomologists) and thus the skills required for proper identification of these
427	insect fragments under a microscope must be obtained on an <i>ad hoc</i> basis for analysis. While the
428	bioinformatics of NGS analysis similarly require training, molecular analysis in general is less
429	specialized and most molecular labs can perform these steps without additional training. Second,
430	the resolution is much higher using molecular analyses (Clare et al. 2009) providing much more
431	information from the same samples with less effort and we which are is more likely to document
432	the presence of rare prey items (Clare et al. 2009). While these differences may be important in
433	terms of demonstrating behavioural flexibility which stabilizes ecosystem functioning, it may not

434	be important in terms of energetics when these are consumed in low frequency (Table 1). It is
435	particularly interesting that, while the trends we found are similar between the different levels of
436	analysis (Figure 4, Figure 5), our ability to detect statistical significance differed. This is largely
437	due to the variability of the data. For example, while diversity increased between early and mid
438	summer in 2008 (Figure 4) we only detected significant differences in the species-level analysis
439	(Figure 4d). Similarly, diversity increased in late 2011 but this was only significant in ordinal
440	level analysis. Rarefaction curves (Figure 5) are more revealing in species level analysis as the
441	data quickly plateaus in ordinal level analysis. The key then is to recognize the advantage of
442	species-level resolution, while keeping in mind that the bats themselves may not be acquiring the
443	same information acoustically. Concurrent analyses at both levels may be the most revealing. We
444	used both the Shannon and Simpson diversity indices though we only report data for the
445	Simpson indices in figures. The Simpson index is less sensitive to the inclusion of rare records.
446	Species-level analysis of diet almost always leads to the detection of many rare taxa (Bohmann
447	et al. 2011), indeed that is one of its advantages (Clare et al. 2009), thus the Simpson index is
448	likely more appropriate for these data, while both the Shannon and Simpson index could be used
449	at the ordinal level where the detection of new taxa has reached a plateau (Figure 5).
450	

451 Habitat and foraging behaviour inferred from dietary analysis

452	The species richness of prey consumed by big brown bats included both terrestrial insects
152	
453	and those that emerge from water (e.g., mayflies and caddisflies) supporting the view that <i>E</i> .
454	<i>fuscus</i> is a generalist. This reflects the fact that there is little evidence of preference for habitat(s)
455	(Geggie & Fenton 1985; Furlonger et al. 1987). Species level dietary analysis provides a unique
456	opportunity to infer habitat parameters non-invasively without radio tracking (Clare et al. 2011,
457	Clare et al. THIS ISSUE). Consumption of Caenis and Maccaffertium mediopunctatum suggest
458	that these bats hunt over a small, fast-moving stream located 100 m of the night roost. Similarly
459	the bats appear to have eaten paper wasps whose nests were adjacent to the night roost providing
460	a direct benefit to the homeowners who actively tried to discourage the wasps. The strong
461	reliance on beetles and moths indicates that most hunting is not over water (unlike little brown
462	bats) although some insects (e.g., Coleoptera genus Agonum) prefer damp habitats.
463	
464	Implications of resource competition
465	Resource partitioning is thought to be common and may result from previous (or
466	ongoing) competition between consumers. This rests on the assumption that resources such as
467	food are limited and therefore limiting. While it is obvious that many bats eat different insects
468	(e.g., eastern red bats and Lepidoptera (Clare et al. 2009), little brown bats and emerging aquatic
469	insects (Clare et al. 2011), big brown bats beetles + a variety of other prey) it is not clear why

470	these divisions occur. The alternative hypothesis is that habitat preferences based on morphology
471	(e.g. (Freeman 1981) lead to partitioning of insect resources in the absence of any food resource
472	limitation or current competition (Emrich et al. THIS ISSUE). For a true test of these hypotheses,
473	at least one potential competitor must be excluded to determine whether the behaviour of the
474	others changes. The continuing spread of white nosed syndrome (WNS) (Cryan et al. 2010) and
475	its lethal impact on bats that hibernate underground may provide a natural test of this hypothesis.
476	Although Eptesicus fuscus big brown bats appear to be somewhat resilient to infection and
477	mortality, several sympatric species of Myotis species are not and are predicted to be locally
478	extirpated by 2020 (Frick et al. 2010). Our study represents an important baseline of information
479	about diet based on a pre-WNS population (2008) and effected affected (but not post-WNS)
480	population ($20\underline{10}1$). If resource competition exists between bat species in this community, these
481	measures may be used to assess both competition between predators and population responses of
482	prey as predators are lost from the ecosystem, particularly if measured across a broad geographic
483	region.
484	
485	Conclusions
486	Our observations confirm that the flexible foraging strategy of big brown bats
487	corresponds to a generalist diet. Extreme seasonal and inter-annual fluctuations in diet highlight

488	the importance of continguous monitoring for accurate dietary characterization. We confirm the
489	importance of beetles in the diet, but also highlight that, while this resources appears to fluctuate,
490	Lepidoptera and Ephemeroptera are stable dietary components and may be an important buffer in
491	times of resource limitation. Our observation that, in response to resource fluctuations, these bats
492	become even more flexible and increase taxonomic diversity of prey, highlights their importance
493	as a highly connected ecosystem components promoting stability in response to disturbance.
494	
495	Acknowledgements:
496	We wish to thank landowners Allison Lupton and Geoff Somers for their co-operation with
497	sample collection. Professors Gareth Jones and Colin Lazarus provided laboratory support. This
498	study was made possible by funding from K.M. Molson Foundation and the Natural Sciences
499	and Engineering Research Council of Canada through grants to MBF and ELC. We thank many
500	colleagues for advice and suggestions on analysis and manuscript content.
501	References:
502 503	Acharya L, Fenton M (1999) Bat attacks and moth defensive behaviour around street lights. Canadian Journal of Zoology, 77 , 27–33.
504 505	Adams RA (1997) Onset of volancy and foraging patterns of juvenile littel brown bats, <i>Myotis lucifugus</i> . <i>Journal of Mammalogy</i> , 239–246.

506 507 508	Agosta SJ, Morton D, Kuhn KM (2003) Feeding ecology of the bat <i>Eptesicus fuscus</i> : "preferred" prey abundance as one factor influencing prey selection and diet breadth. <i>Journal of Zoology</i> , 260 , 169–177.
509 510	Aldridge HDJ., Rautenbach I. (1987) Morphology, echolocation and resource partitioning in insectivorous bats. <i>The Journal of Animal Ecology</i> , 56, 763–778.
511 512	Barclay R, Brigham R (1994) Constraints on optimal foraging: a field test of prey discrimination by echolocating insectivorous bats. <i>Animal Behaviour</i> , 48, 1013–1021.
513 514	Beer JR, Richards AG (1956) Hibernation of the big brown bat. <i>Journal of Mammalogy</i> , 37 , 31–41.
515 516	Belwood JJ, Fenton MB (1976) Variation in the diet of <i>Myotis lucifugus</i> (Chiroptera- Vespertilionidae). <i>Canadian Journal of Zoology</i> , 54, 1674–1678.
517 518 519	Blankenberg D, Von Kuster G, Coraor N <i>et al.</i> (2010) Galaxy: a web-based genome analysis tool for experimentalists. <i>Current protocols in molecular biology</i> , Supplement , 19.10.1–19.10.21.
520 521	Blehert DS, Hicks AC, Behr M et al. (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science, 323 , 227.
522 523 524	Bohmann K, Monadjem A, Lehmkuhl Noer C <i>et al.</i> (2011) Molecular diet analysis of two african free-tailed bats (molossidae) using high throughput sequencing. <i>PloS ONE</i> , 6 , e21441.
525 526	Brigham RM (1990) Prey selection by big brown bats (<i>Eptesicus fuscus</i>) and common nighthawks (<i>Chordeiles minor</i>). <i>American Midland Naturalist</i> , 124 , 73–80.
527 528	Brigham RM (1991) Flexibility in foragin and roosting behaviour by the big brown bat (<i>Eptesicus fuscus</i>). Canadian Journal of Zoology, 69 , 117–121.
529 530	Brigham R, Saunders M (1990) Diet of big brown bat's (<i>Eptesicus fuscus</i>) in relation to insect availability in southern Alberta, Canada. <i>Northwest Science</i> , 64 , 7–10.
531 532	Brown DS, Burger R, Cole N, Vencatasamy D, Clear EL, Montaxam A, Symondson WOC (THIS ISSUE) Dietary competition between the alien asian musk shrew (<i>Sancus murinus</i>)

533	and a reintroduced population of telfair's skink (Leiolopisma telfarii). Molecular Ecology,	Formatted: Font: Italic, English (U.K.)
534	(XXXX-XXXX)	
535	Clare EL, Barber BR, Sweeney BW, Hebert PDN, Fenton MB (2011) Eating local: influences of	
536	habitat on the diet of little brown bats (Myotis lucifugus). Molecular Ecology, 20, 1772–	
537	1780.	
551	1700.	
538	Clare EL, Fraser EE, Braid HE, Fenton MB, Hebert PDN (2009) Species on the menu of a	
539	generalist predator, the eastern red bat (<i>Lasiurus borealis</i>): using a molecular approach to	
540	detect arthropod prey. <i>Molecular Ecology</i> , 18 , 2532–2542.	
541	Clare EL, Symondson WOC, Broders H et al. (THIS ISSUE) The diet of Myotis lucifugus across	
	Canada: assessing foragin quality and diet variability. <i>Molecular Ecology</i> , (XXXX-XXXX)	Formatted: Font: Italic, English (U.K.)
542	Canada, assessing foragin quarity and diet variability. <u>Molecular Ecology</u> , (XXXX-XXXX)	
543	Cryan P, Meteyer C, Boyles J, Blehert D (2010) Wing pathology of white-nose syndrome in bats	
544	suggests life-threatening disruption of physiology. BMC Biology, 8, 135.	
545	Deagle BE, Chiaradia A, McInnes J, Jarman SN (2010) Pyrosequencing faecal DNA to	
546	determine diet of little penguins: is what goes in what comes out? <i>Conservation Genetics</i> ,	
547	11 , 2039–2048.	
548	Deagle BE, Kirkwood R, Jarman SN (2009) Analysis of Australian fur seal diet by	
549	pyrosequencing prey DNA in faeces. <i>Molecular Ecology</i> , 18 , 2022–2038.	
550	Emrich MA, Clare EL, Symondson WOC, Koenig SE, Fenton MB (THIS ISSUE) Resource	
		Formatted: Font: Italic, English (U.K.)
551	partitioning by insectivorous bats in Jamaica. <u>Molecular Ecology</u> , (XXXX-XXXX)	
552	Florant GL, Hester L, Ameenuddin S, Rintoul DA (1993) The effect of a low essential fatty acid	
553	diet on hibernation in marmots. American Journal of Physiology Regulatory, Integrative	
554	and Comparative Physiology, 264, R747–R753.	
555	Freeman PW (1981) Correspondence of food habits and morphology in insectivorous bats.	
556	Mammalogy Papers: Univeristy of Nebraska State Museum, 62 , 166–173.	
557	Frick WF, Pollock JF, Hicks AC et al. (2010) An emerging disease causes regional population	
558	collapse of a common North American bat species. Science, 329 , 679–682.	

559 560	Furlonger CL, Dewar HJ, Fenton MB (1987) Habitat use by foraging insectivorous bats. <i>Canadian Journal of Zoology</i> , 65 , 284–288.
561 562 563	Geggie JF, Fenton MB (1985) A comparison of foraging by <i>Eptesicus fuscus</i> (Chiroptera: Vespertilionidae) in urban and rural environments. <i>Canadian Journal of Zoology</i> , 63 , 263–267.
564	Giardine B, Riemer C, Hardison RC et al. (2005) Galaxy: a platform for interactive large-scale
565 566	genome analysis. <i>Genome Research</i> , 15 , 1451–1455. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting
567 568	accessible, reproducible, and transparent computational research in the life sciences. <i>Genome biology</i> , 11 , R86.
569 570	Grant PR, Grant BR (1987) El Nino event of 1982-83: effects on Darwin's finches on Isla Genovesa, Galapagos. <i>Oikos</i> , 49 , 55–66.
571 572	Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleotological statistics software package for education and data analysis. <i>Palaeontologia Electronica</i> , 4, 1–9.
573 574 575	 Hickey MBC, Fenton MB (1996) Behavioural and thermoregulatory responses of female hoary bats , <i>Lasiurus cinereus</i> (Chiroptera : Vespertilionidae), to variations in prey availability. <i>Ecoscience</i>, 3, 414–422.
576 577	Jones M, Ghoorah A, Blaxter M (2011) jMOTU and Taxonerator: turning DNA barcode sequences into annotated operational taxonomic units. <i>PloS ONE</i> , 6 , e19259.
578	Jost L (2006) Entropy and diversity. Oikos, 113, 363-375.
579 580	King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. <i>Molecular Ecology</i> , 17 , 947–963.
581 582	Kondoh M (2003) Foraging adaptation and the relationship between food-web complexity and stability. <i>Science</i> , 299 , 1388–1391.
583	Kurta A, Baker RH (1990) Eptesicus fuscus. Mammal Species, 356, 1–10.

584 585	Munro D, Thomas DW (2004) The role of polyunsaturated fatty acids in the expression of torpor by mammals: a review. <i>Zoology</i> , 107 , 29–48.
586 587 588	Nadin-Davis S a, Feng Y, Mousse D, Wandeler AI, Aris-Brosou S (2010) Spatial and temporal dynamics of rabies virus variants in big brown bat populations across Canada: footprints of an emerging zoonosis. <i>Molecular Ecology</i> , 19 , 2120–36.
589 590	Pompanon F, Deagle BE, Symondson WOC <i>et al.</i> (2012) Who is eating what: diet assessment using next generation sequencing. <i>Molecular Ecology</i> , 21 , 1931–1950.
591	R Development Core Team: R: A language and environment for statistical computing (2008)
592 593 594	Razgour O, Clare EL, Zeale MRK <i>et al.</i> (2011) High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. <i>Ecology and Evolution</i> , 1 , 556–570.
595 596	Ricklefs RE (2007) History and diversity: explorations at the intersection of ecology and evolution. <i>American Naturalist</i> , 170 , 856–870.
597 598 599	Riechert S, Harp J (1987) Nutritional ecology of spiders. In: <i>Nutritional Ecology of Insects,</i> <i>Mites, Spiders and Related Invertebrates</i> (eds Slansky F, Rodriguez J), pp. 645–672. Wiley, New York.
600 601	Rosenheim J, Corbett A (2003) Omnivory and the indeterminacy of predator function: can a knowledge of foraging behaviour help? <i>Ecology</i> , 84 , 2538–2548.
602 603 604	Ruf T, Arnold W (2008) Effects of polyunsaturated fatty acids on hibernation and torpor: a review and hypothesis. <i>American Journal of Physiology - Regulatory, Integrative and Comparative Physiology</i> , 294 , R1044–R1052.
605 606	Rydell J, Entwistle A, Racey P a (1996) Timing of foraging flight of three species of bats in relation to insect activity and predation risk. <i>Oikos</i> , 76 , 243–252.
607 608	Schalk G, Brigham RM (1995) Prey selection by insectivorous bats: are essential fatty acids important? <i>Canadian Journal of Forest Research</i> , 73 , 1855–1859.

609	Simmons NB (2005) Order Chiroptera. In: Mammal Species of the world: a taxonomic and	
610	geographic reference, Volume 1 (eds Wilson DE, Reeder DM), pp. 312–529. Johns Hopkins	
611	University Press.	
612	Singer M, Bernays E (2003) Understanding omnivory needs a behavioural perspective. <i>Ecology</i> ,	
613	84 , 2532–2537.	
614	Solé R V, Montoya JM (2001) Complexity and fragility in ecological networks. Proceedings of	
615	the Royal Society B-Biological Sciences, 268, 2039–2045.	
616	Symondson WOC (2002) Molecular identification of prey in predator diets. <i>Molecular Ecology</i> ,	
617	11, 627–641.	
618	Tebbich S, Taborsky M, Fessl B, Dvorak M, Winkler H (2004) Feeding behavior of four	
619	arboreal Darwin's finches: adaptations to spatial and seasonal variability. The Condor, 106,	
620	95–105.	
621	Yanega D (1996) Field guide to northeastern longhorned beetles (Coleoptera: Cerambycidae).	
622	Illinois Natural History Survey Manual 6.	
623	Zeale MRK, Butlin RK, Barker GLA, Lees DC, Jones G (2011) Taxon-specific PCR for DNA	
624	barcoding arthropod prey in bat faeces. <i>Molecular Ecology Resources</i> , 11 , 236–244.	
625		
626	Data Accessibility: Sequence files are <u>a read me file are</u> available in Dryad (accession/doi	
020	Data Accessibility. Sequence mes are <u>a read me me are</u> available in Dryad (accession/doi	
(27		
627	available on publication): doi:10.5061/dryad.t30bh	
(20)		
628		
629	Author Contributions: ELC and MBF conceived of the project and provided funding. ELC	
630	conducted all field, molecular and bioinformatics analysis. ELC and WOCS contributed to	
631	molecular protocol designs. ELC, WOCS and MBF wrote the manuscript.	

632

633	Figure Legends
634	Figure 1: Primer design used in this study for uni-directional sequencing on the Ion Torrent
635	sequencing platform. Our forward primer included a "key" region. The key is the only difference
636	between the design of the forward primer in Roche 454 Lib-L chemistry (Roche, Basel,
637	Switzerland) and the Ion Torrent platform primer A (Ion Torrent, Life Technologies). Including
638	this "key" permits us to use the same primers on both platforms and does not interfere with
639	amplification or sequencing thus it was included here but is not required.
640	
641	Figure 2: Seasonal variation in dietary prey consumption. The proportion of each prey group
642	composing the diet varied significantly across the summer and between years. A) In 2008
643	Diptera dominated early while Coleoptera become more important in the late summer. B) In
644	2011 Coleoptera were more important earlier in the year but decreased towards late summer.
645	
646	Figure 3: Overall consumption of prey groups was similar in both 2008 and 2011. Coleoptera,
647	Diptera and Lepidoptera dominated the diet of <i>Eptesicus fuscus</i> . Consumption is calculated as
648	presence or absence within a sample x frequency among samples.
649	

650	Figure 4: Estimates of dietary diversity based on the Simpson diversity index. Data restricted to
651	ordinal level taxonomy shows variation between early, middle and late summer in A) 2008 and
652	B) 2011 though overall diversity C) was the same between years. Similarly trends are observed
653	in species-level data D), E) and F).
654	
655	Figure 5: A comparison of rarefaction curves for operational taxonomic units at the order (A, B,
656	C) and species (D, E, F) level. Red lines indicate mean estimates while blue lines indicate the
657	95% confidence level from permutations.
658	
659	Figure 6: A schematic of prey species consumed including all MOTU (including those that could
660	not be identified using a reference database). Identifications have been made by BLAST score
661	and are limited to hypothesis at the order level. Values at nodes or tips represent the number of
662	MOTU assigned. Node size is scaled to the number of assignments. See Emrich et al. (in press)
663	for additional details.
664	

Table 1: Prey species identified in the diet of night roosting *Eptesicus fuscus*. Frequency refers to presence or absence in each weekly sample.

Class	Order	Family	Genus	Species	Similarity	Frequency
Arachnida	Aranea	Theridiidae	Parasteatoda	sp.	100	1
Insecta	Coleoptera	Carabidae	Agonum	placidum	100	1
			Amara	apricaria	100	1
			Amphasia	sericea	99.33	2
			Calosoma	frigidum	99.36	1
			Harpalus	pennsylvanicus	99.31	3
			Notiobia	terminata	100	16
			Ophonus	puncticeps	100	8
			Platynus	cincticollis	100	1
			Platynus	sp.	98.72	3
			Poecilus	lucublandus	100	8
			Selenophorus	opalinus	100	1
			Stenolophus	comma	99.36	4
			Stenolophus	ochropezus	98.08	1
			Trichotichnus	vulpeculus	100	1
			Trichotichnus	sp.	100	6
		Cerambycidae	Ecyrus	dasycerus	100	1
			Graphisurus	fasciatus	100	1
			Monochamus	notatus	100	1
			Monochamus	sp.	100	2
		Cleridae	Cymatodera	bicolor	98.08	2
		Elateridae	Ampedus	semicintus	100	2
			Melanotus	similis	100	2
		Silphidae	Nicrophorus	pustulatus	100	1
		Tenebrionidae	Tenebrio	sp.	99.21	4
	Diptera	Chaboridae	Unknown	sp.	99.36	1
			Unknown	sp.	99.36	4
		Chironomidae	Ablabesmyia	americana	99.36	1
			Dicrotendipes	tritomus	100	7
			Paracladopelma	winnelli	99.33	3
			Tanytarsus	mendax	100	1
			Tanytarsus	sp.	98	1
			Xenochironomus	zenolabis	99.35	1
			Unknown	sp.	100	1
			Unknown	sp.	100	1
			Unknown	sp.	99.31	2
		Culicidae	Culex	pipiens	99.07	1
			Unknown	sp.	100	1
		Peiciidae	Unknown	sp.	100	6
		Psychodidae	Unknown	sp.	100	1
			Unknown	sp.	100	1
			Unknown	sp.	100	6

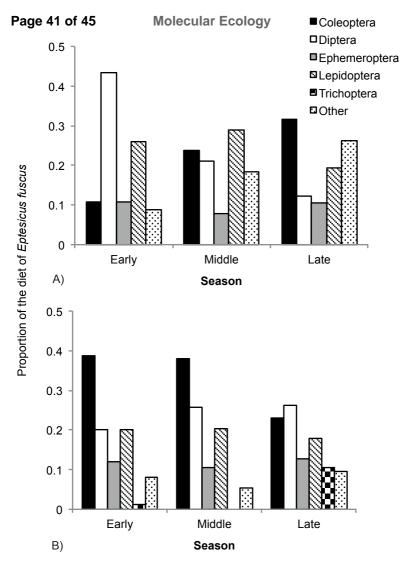
	Sarcophagidae	Unknown	sp.	100	1
	Simuliidae	Simulium	gouldingi	100	1
	Tachinidae	Zaira	sp.	98.72	1
	Tipulidae	Tipula	furca	100	5
		Tipula	sp.	100	1
		Unknown	sp.	100	1
		Unknown	sp.	99.36	1
		Unknown	sp.	100	1
		Unknown	sp.	99.36	1
		Unknown	sp.	98.64	2
Ephemeroptera	Caenidae	Caenis	youngi	100	1
		Caenis	sp.	99.35	11
	Ephemeridae	Hexagenia	atrocaudata	100	1
		Hexagenia	limbata	100	1
	Heptageniidae	Leucrocuta	maculipennis	100	2
		Maccaffertium	mediopunctatum	98.72	9
	Isonychiidae	Isonychia	bicolor	100	1
		Isonychia	sp.	100	15
		Isonychia	rufa	99.36	6
Hemiptera	Miridae	Lygus	lineolaris	100	1
Hymenoptera	Vespidae	Polistes	sp.	100	2
Lepidoptera	Blastobasidae	Holcocera	immaculella	100	2
<u> </u>	Coleophoridae	Coleophora	versurella	98.72	1
	Crambidae	Herpetogramma	phaeopteralis	100	2
	cruitolauv	Petrophila	bifascialis	100	- 1
	Elachistidae	Agonopterix	robinella	100	1
	Erebidae	Idia	sp.	100	2
	Gelechiidae	Coleotechnites	sp.	98.72	3
	Geleennaae	Ezoteleia	dodecella	99.36	1
		Filatima	pseudacaciella	100	1
	Geometridae	Hydriomena	impluviata	100	6
	Lasiocampidae	Malacosoma	disstria	99.36	15
	Limacodidae	Lithacodes	fasciola	100	15
	Lyonetiidae	Corythophora	sp.	100	1
	Noctuidae	Elphria	sp.	100	1
	Woetuldae	Spodoptera	sp.	100	3
		Zale	sp. galbanata	100	1
	Pyralidae	Sciota	virgatella	100	2
	Tineidae	Sciola Amydria	-	99.36	1
	Tortricidae	Amyaria Acleris	sp. chalybeana	100	1
	1 UTITICIDAE	Clepsis	clemensiana	99.26	1
		Crephasia		99.20 98.08	
			geitalana davalaata		1
		Eucosma Eucosma	derelecta	98.72	1
			sp.	99.31	1
		Phtheochroa	birdana	100	3

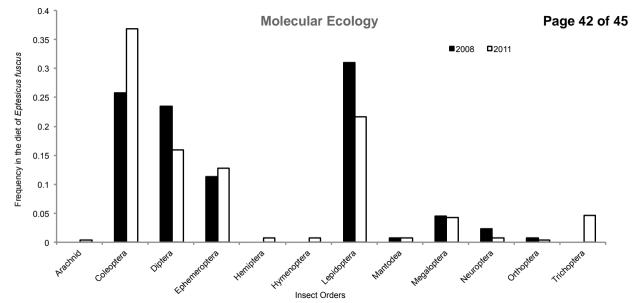
		Pseudoexentera	cressoniana	99.36	3
		Pseudoexentera	maracana	99.36	1
		Sparganothis	pettitana	100	1
Mantodea	Mantidae	Mantis	religiosa	100	3
Megaloptera	Corydalidae	Chauliodes	sp.	98.67	20
Neuroptera	Hemerobiidae	Hemerobius	stigma	100	4
		Unknown	sp.	100	1
Orthoptera	Gryllidae	Gryllus	pennsylvanicus	100	1
Trichoptera	Helicopsychidae	Helicopsyche	borealis	100	1
		Cheumatophsyche	campyla	100	1
		Cheumatophsyche	sp.	100	1
		Cheumatopsyche	campyla	99.36	5
		Macrostemum	zebratum	98.69	1
	Leptoceridae	Ceraclea	transversa	100	1
	Limnephilidae	Limnephilus	sp.	99.36	1

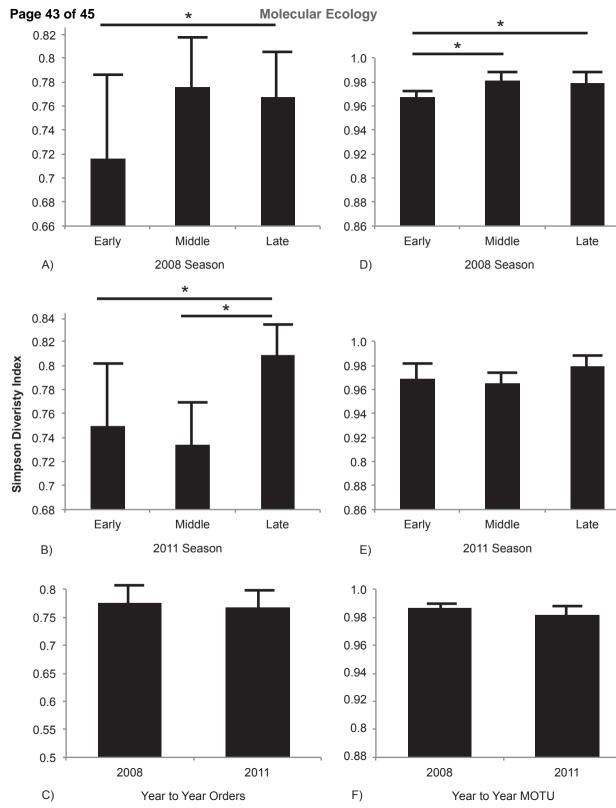
667

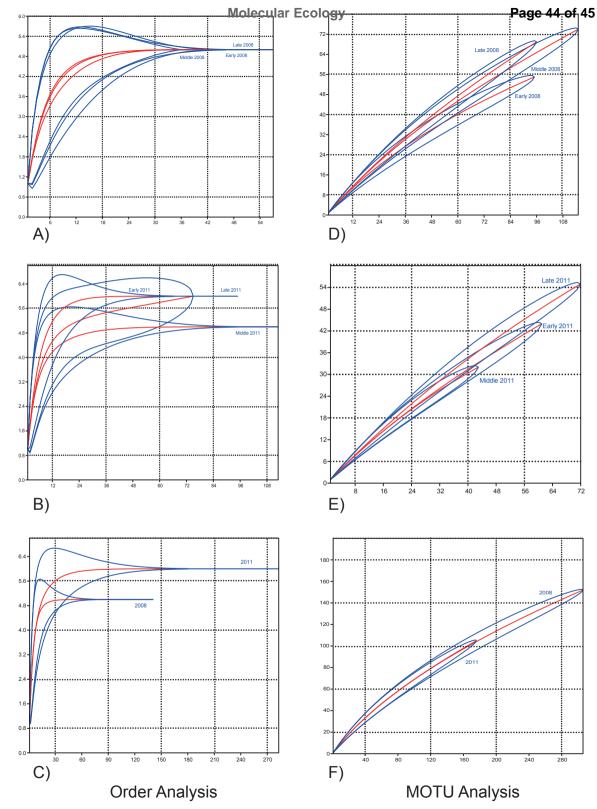
Molecular Ecology

Page 40 of 45


Adaptor sequence Key	Unique 10bp MID	ZBJ-ArtF1c Primer
----------------------	-----------------	-------------------


Reverse Fusion Primer


trP1 sequence	Unique 10bp MID	ZBJ-ArtR2c Primer
---------------	-----------------	-------------------


Resulting Amplicon

Taxa (95% confidence)

