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Abstract. This paper gives a method of quantifying (small) visual differences
between 3D mesh models with conforming topology, based on the theory of
strain fields. Our experiments show that our difference estimates are well cor-
related with human perception of differences. This work has applications in the
evaluation of 3D mesh watermarking, 3D mesh compression reconstruction, and
3D mesh filtering.
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1 Introduction

3D surface triangle meshes have widespread uses in computer graphics and modelling;
such techniques as watermarking, filtering and compression are often applied to such
meshes.

Watermarking is used to provide information security and digital rights manage-
ment, the aim being to hide an ‘invisible’ digital signature into the mesh [1, 2, 7, 11–
13]. The basic approach used is to encode the watermark information into small per-
turbations to the model’s description, e.g. its vertex coordinates, such that the model’s
geometry changes by a hopefully imperceptible amount. Relatively little work has been
done on methods for evaluating thequality of watermarking schemes, which involves
theperceptibilityof the watermark (as well as other considerations such as how diffi-
cult it is to remove or destroy the watermark, how much information the watermark can
carry, the time taken to process the watermark, etc).

Generally, mesh models constructed from 3D scanner data are often noisy, and must
be denoised, or faired, before they are suitable for application purposes [17]. More
generally, various filters may be applied to meshes to modify them in some way [18].
Again, it is useful to be able to assess thevisual impactof filtering algorithms.

Both to economize use of bandwidth, and to save storage, various mesh compression
algorithms have been devised [8, 14, 16]. Evaluation of mesh compression algorithms
is again an important issue, wherevisual differencesbetween the reconstructed version
and the original are again important (as well as other issues such as speed of compres-
sion and decompression).



Here, we give a new method for measuring small visual differences between con-
forming meshes (i.e. meshes with the same number of triangles, connected in the same
way), with such applications as the above in mind. Specifically, given an initial mesh,
and a modified version of the mesh, we quantify the visible difference between the two
models. Such a quality measure should agree with human perception, which is gen-
erally considered to be subjective and hard to quantify [19]. However, our objective
methodology based on strain fields, which numerically assesses deformation between
the meshes, provides a measures which is well correlated with perceptual results pro-
vided by human subjects.

A limitation of our method is that it assumes that the processing method only per-
turbs the vertices of the mesh, and does not change its topology. This is often the case
in watermarking and filtering schemes, but perhaps less so in other applications.

2 Related work

We now review previous work on measuring visual errors in various application areas.
Clearly, if a watermark becomes too obvious, or distorts the model too much, a wa-

termarking scheme is unacceptable. We may also wish tocomparethe perceptibility of
the same watermarking information added by different schemes when deciding which
scheme to adopt. For such assessment, [9] gives a method adapted from image water-
marking assessment, while [6] provides two methods based on surface roughness. The
shortcomings of these approaches will be discussed shortly. Few objective methodolo-
gies have been proposed, and even less attention has been paid to reliable procedures
for the tricky problem of subjective evaluation [15]: static 2D images of 3D models
are inadequate for assessing the quality of a 3D model. There is a need for 3D quality
metrics.

Other papers have considered evaluation of the visual effects of mesh compression
and filtering. Some are based on the perceptual metrics used for assessing visual differ-
ences between images [9], others consider geometric differences [3, 5, 6], and yet others
combine both [21]. However, assessing perceptual degradation of images is a rather dif-
ferent task to assessing perceptual degradation of 3D models. The methodologies in [3,
5] only consider maximum and mean geometric errors based on Hausdorff distance,
which have been shown not to correlate well with human opinions of perceptibility [6].
The two methodologies in [6] provide better bases for evaluation. One describes mesh
distortion using changes of dihedral angles between faces, but ignores vertex displace-
ments. The other uses a first order equation for displacement in a 2-ring area which can
not readily describe gradual changes and sudden changes alike. Furthermore, the time
taken is worse than linear in the number of mesh faces.

The most direct way of evaluating the perceptibility of a change made to a 3D mesh
is to measure it by means of subjective experiments using human observers. While such
methods represent the ‘correct’ answer, provided by the human visual system, there
are many difficulties in carrying out such evaluations. Using a pool of ‘typical’ (what-
ever that means) human observers is time consuming and costly. Human beings do not
give consistent and repeatable answers. Different people may give different opinions.
They may get tired and lose concentration. It is difficult to carry out tests of this kind



without accidentally introducing bias. Thus, there are various reasons to prefer objec-
tive methodologies for assessing visual changes in meshes. This paper provides such
a methodology which at the same time produces results correlating well with those
subjectively produced by human observers, at least in our limited testing.

Our basic approach is based on analyzing shape and size changes of the mesh tri-
angles, in a way which removes any rigid-body motion. We usestrain field energyto
quantify the deformation. Section 3 explains the basic ideas of strain fields, and Sec-
tion 4 shows how to compute strain in a mesh. Section 5 provides a method to compute
a perceptibility distance based on strain field energy. Section 6 and Section 7 describe
an experiment used to understand human perception of visual changes in meshes, and
experimental tests of our proposed methodology, including comparisons with other sim-
pler candidate measures of perceptual difference. Conclusions are drawn in Section 8.

3 Strain fields

Stressandstrain are physical quantities used to describe pointwise deformation inside
an elastic body [22]. Stress represents forces acting at any point, while strain represents
the resulting deformation. Strain field theory makes the following assumptions:

1. The object is solid, and contains no voids.
2. The object is composed of a homogeneous material.
3. The material is isotropic (i.e. behaves the same in all directions).
4. The material reverts to its original shape if external forces are removed; deforma-

tion is proportional to the applied external force.
5. No external forces act in the undeformed state, i.e. the original stress is zero.
6. The deformation of the object is small.

Clearly, the first five assumptions are plausible for most mesh models, and so it is rea-
sonable to treat them as (the surfaces of) elastic objects. The final assumption is also
satisfied for the kind of visual difference we wish to assess.

We regard the effect of the mesh processing algorithm being evaluated as equivalent
to applying a fictitious external force which causes a distortion of the 3D mesh. We use
the idea of a strain field to analyze the deformation of the mesh (or more exactly, of the
3D elastic solid whose surface is the mesh).

Changes in position of the mesh vertices represent distortion of the mesh, but may
also incorporate a rigid-body motion which leaves the object’s shape unchanged. We
thus must first remove any such rigid body motion, using the concept ofstrain. How-
ever, we first explainstress, which causes strain.

When external forces are applied to an object, these create internal forces. Consider
two parts of the solid which touch each other—these exert mutual forces on each other.
See Figure 1(a): suppose the planen–n is the interface between the two parts; letM be
any point on that plane. Consider the differential area∆A aroundM . Let the internal
forceFin on ∆A caused by the external force be∆P; this will generally have com-
ponents both within the plane and perpendicular to it. The quantity∆P/∆A is called
the average pressure. ThestressF acting onM is defined to be the limit of the average



(a) Object acted on by an outside force (b) Local deformation within an object

Fig. 1. Object deformation

pressure [20]:

F = lim
∆A→0

∆P

∆A
(1)

Within this plane, we may divide thestressinto two components: thenormal stress,
denoted byσ, perpendicular to the section plane, and theshear stress, within the section
plane, denoted byτ : see Figure 1(a).

We now consider strain: see Figure 1(b). LetA be some arbitrary point of the object.
Consider three infinitesimal linesAB, AC, andAD within the object, parallel to the
coordinate axes, with respective lengthsdx, dy, dz. When the object is acted upon
by an external force, the lengths of these lines, and the angles between them, change.
The fractional changes in thelengthsare called thenormal strainat A, denoted by
ξx, ξy, ξz , and the fractional changes in theanglesare called theshear strain, denoted
by γxy, γyz, γzx.

When an external force acts on an object, its changes in shape and size can be
described in terms of displacements. GivenA, at (x, y, z), let A′ be the corresponding
point after deformation. We denote by(u, v, w) the components of thedisplacementin
the(x, y, z) directions respectively, i.e.A′ = (x + u, y + v, z + w).

We may now state the relations between displacement and strain. In 3D these are
given by:

ξx = ∂u/∂x, γxy = ∂v/∂x + ∂u/∂y

ξy = ∂v/∂y, γyz = ∂w/∂y + ∂v/∂z (2)

ξz = ∂w/∂z, γzx = ∂u/∂z + ∂w/∂x

4 Strain in a mesh

We now consider how stress and strain can be used to provide a simple measure of
perceptibility of differences between two conforming meshes.



(a) Distortion in a mesh triangle
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Fig. 2.Triangular face before and after distortion

The 3D mesh is a shell composed of triangular faces with negligible thickness.
We analyze the strain by considering these triangles. See Figure 2(a). If the model is
distorted slightly, and we assume that its faces do not bend, to a first approximation
the mesh triangles are unchanged in the direction of their normal: only their shapes and
locations change [4]. Thus, any elastic deformation only occurs within the plane of each
triangle, and the strain for each triangle can be computed in its own plane by ignoring
any rigid body motion.

To compute the strain for the whole mesh, using the mesh vertex displacements, we
also need the rates of change of displacement. Thus, we interpolate the displacement
functions across each triangle. See Figure 2(b). LetD, E, F be the vertices of a triangle
in its initial position. We choose a local coordinate system so that this triangle is in the
(x, y) plane. After deformation, these vertices go to new positions. We project these
final vertices, in thez-direction, back into the(x, y) plane as shown, giving new points
D′, E′, F ′. The displacement of each vertex from its initial position is given byxD′ =
xD + uD, yD′ = yD + vD. The finite element method [23] is now used to interpolate
the displacement functionsu, v at all points inside the triangle. We consideru in detail;
v is computed similarly. We approximateu across each triangle by a linear function:
u = a1 + a2x + a3y where theai are to be determined. We putu, x andy for each
vertex of the triangle in turn into this expression and solve the resulting equations to
givea1, a2, a3. The results are:

a1 =
1

2A
((xEyF − xF yE)uD + (xF yD − xDyF )uE + (xDyE − xEyD)uF )

a2 =
1

2A
((yE − yF )uD + (yF − yD)uE + (yD − yE)uF ) (3)

a3 =
1

2A
((xF − xE)uD + (xD − xF )uE + (xE − xD)uF )

where
2A = (yE − yF )xD + (yF − yD)xE + (yD − yE)xF .



(a) Area deformation (b) Distortion deformation

Fig. 3. Area and distortion deformation

As we assume that each triangle deforms entirely within its own plane, there is
no deformation or strain normal to each triangle. Thus, following the approach in [4],
Equation (2) may be simplified in this case to give:

ξx =
∂u

∂x
, ξy =

∂v

∂y
, ξz =

ν

ν − 1
(ξx + ξy),

γxy =
∂v

∂x
+

∂u

∂y
, γyz = 0, γzx = 0, (4)

whereν is the Poisson ratio (see later). We can now computeξx, ξy andγxy from the
displacement functionsu, v obtained above.

5 Perceptibility and strain field energy

5.1 Basic Approach

A model of perceptual change for images was given in [7]; we use a similar approach for
perceptual differences in meshes. We define aperceptual distanceP (m0, mp) between
the original modelm0 and the processed modelmp: the larger the perceptual distance,
the more visible the difference. Defining such a function that entirely agrees with human
perception is an idealistic goal. However, our experiments show that we can define such
a function using stress and strain which agrees well with human perception.

Finding a suitable way to combineξx, ξy andγxy, which have different physical
meanings, and different directionality, is a difficult issue which we now consider. As
a first step to combining the strain components into a perceptual distance, it helps to
combine them into fewer physical quantities with more easily understood meanings
and which are more convenient to use. We use the concept ofstrain field energyfrom
elasticity for this purpose.

Thestrain field energy densityis defined as

D =
1

2
(σxξx + σyξy + σzξz + τxyγxy + τyzγyz + τzxγzx).



Using the relations between stress and strain, thestrain field energymay be written
as [22]:

W = DS△ = (
1

2
(λ +

2

3
G)ξ2

ii +
E

2(1 + ν)
ξ′ijξ

′

ij)S△ (5)

whereS△ is the area of each triangle, and

ξ2

ii = ξ2

x + ξ2

y + ξ2

z , ξ′ijξ
′

ij = ξ′xξ′x + ξ′yξ′y + ξ′zξ
′

z +
1

2
(γ2

xy + γ2

yz + γ2

zx),

ξ′k = ξk −
1

3
(ξx + ξy + ξz), k = x, y, z

E is Young’s modulusof elasticity,ν is thePoisson ratioandG = E/(2(1 + ν)) is the
shear modulus: these physical quantities determine the material’s elastic properties. We
simply fix them in our methodology: we useE = 1 andν = 0, as these choices seem
to give good results in practice.

Elastic deformation of a planar triangle can be decomposed to into two parts,area
change anddistortiondeformation: see Figure 3. The former describes change inarea
of the triangle; the latter describes change inshapeof the triangle. As these two de-
formations may have different visual effects when looking at a deformed mesh, we
may divide thestrain field energyW into two corresponding parts:area strain field
energy, WArea anddistortion strain field energy, WDistortion [22]. This allows us to
combine them with different weights according to their respective visual importance.
To calculate these energies, we decompose the stress and strain into independent parts
corresponding to area change and distortion deformation. Thestrain field energymodel
for a single triangle can now be written asW = WArea + WDistortion, where

WArea =
1

2
(λ +

2

3
G)ξ2

ijS△, WDistortion =
1

2
(2G)ξ′ijξ

′

ijS△.

5.2 Candidates for improved methods

Distortions in 3D meshes may be may be considered to be of varying kinds, with vary-
ing perceptibility. We therefore considered how we might improve upon the basic idea
of using strain energy to assess visibility of mesh cvhanges. In particular, we considered
two issues, and candidate improvements:

– Projection Many applications of 3D meshes render them. The most important ele-
ment determining the appearance of a triangle is its normal vector. Strain field en-
ergy does not directly capture this idea. For example, when vertices are displaced
within the local tangent plane of the mesh, the strain field can be large although a
rendered image remains almost the same. Consider several adjacent triangles which
lie almost in the same plane; we call such trianglesnearly tangential triangular
faces: see Figures 4(a) and 4(b). These triangular faces have the same normals. We
may consider two types of distortion involving these triangles: ones in which the
center vertex still lies in the plane (Figure 4(c)), and others in which the center ver-
tex moves perpendicular to the tangent plane (Figure 4(d)). The former have little



(a) Nearly tangent
plane 1

(b) Nearly tangent
plane 2

(c) Distortion 1 (d) Distortion 2

Fig. 4.Nearly tangential triangular faces and their distortions

visual effect. We should de-emphasise the strain field energy of such distortions
which have little or no visual effect.
More generally, we can represent any local distortion as a combination of within-
tangent-plane distortion and normal distortion. To reduce the contribution of the in-
tangent-plane distortion, we may project the vertex after distortion into the original
tangent plane as shown in Figure 4(d), andadjust the triangles connected toO
accordingly. We then calculate the strain field energy with respect to theseadjusted
original triangles.

– Edge trianglesTriangular faces in different locations generally have differing vi-
sual impact. In particular, small distortions in triangular faces near sharp edges of
the model are likely to more noticeable than faces in the interior of smooth surfaces.
It is plausible that we should thus give edge triangles a greater weighting. This can
be done by applying a weightwi to each triangle’s strain field energy according to
the angle between it and neighbouring faces. A simple way to choose the weights
is to setwi = π − αi, if αi is less thanπ/2 andwi = 1 otherwise, whereαi is the
smallest dihedral angle between facei and its neighbours.

As we will see later, these two proposed improvements actually have little useful
effect on our results.

5.3 Perceptual distance

We now consider how to use strain field energy as a model forperceptual distance. We
must take into account that when the same geometric change is produced in models
of different sizes, visual differences will be smaller in the bigger model. Our method
should also ideally be independent of the number of triangles in the model. We thus
define theperceptual distanceP (m0, mp) to be the weighted average strain field energy
(ASFE) over all triangles (processing tangent triangular faces), normalized byS, the
total area of the triangular faces:

P (m0, mp) =
1

S

∑
wiWi. (6)

We may go further, however, and define two separate componentsPArea(m0, mp)
andPDistortion(m0, mp) by separately summing the area and distortion components
of Wi. The simplest way to combine them is to just sum them, givingP (m0, mp) =
PArea(m0, mp)+PDistortion(m0, mp) as before. Alternatively, we might wish to ensure
thatbothtypes of distortion are independently less than some threshold for a difference



to be considered imperceptible, or thatbothquantities are less for a given mesh change
than some other mesh change.

Alternatively, we could try to determine the relative importance of these two strain
field energies to perceptual mesh differences, and produce an overall perceptual distance
based on a projected or weighted sum of these quantities. However, in practice, this does
not seem to produce an obvious improvement.

5.4 Algorithm

We now summarize the above ideas as an algorithm for computing the visual change in
a mesh.

1. Input the original mesh and the mesh under comparison.
2. Find and process the tangent triangular faces; (optionally) compute the weight for

each triangle.
3. Compute and interpolate the displacement function over each triangle.
4. Compute the components of strain for each triangle.
5. Sum the area and distortion strain field energies over the mesh and combine using

Equation (6).

6 Evaluation

We now demonstrate testing of our methodology using three experiments, and show that
our measure of perceptibility of small changes to a mesh produces results that correlate
well with those assessed by human subjects.

Experiment I gives human opinions concerning the perceptibility of changes caused
by making changes to models used in Experiments II and III. Experiment II considers
two simple measures of perceptibility of changes, based on triangle areas, and triangle
normals: clearly we hope to do better than using such simple measures. Experiment III
demonstrates the correlation between perceptual distance computed by our approaches
with and without the suggested improvements, and the human perception results.

Experiment I: Human perception of differences versus strain field measure
To obtain ground truth, i.e. some subjective human results on the perceptibility of

various changes in the mesh models [19], we followed the approach in [6], used to eval-
uate and multimedia content quality. We embedded data into mesh models of a chess
king and a horse, using theTriangle Similarity Quadruplewatermarking method [12],
and a noise embedding method.

To measure the subjective degree of mesh deformations perceived by human ob-
servers, we produced meshes with different amounts of deformation. We prepared vari-
ants of the horse, and of the chess king, resulting in 15 meshes for each: the undeformed
model, 7 with watermarks embedded in different parts of the mesh, incorporating differ-
ent amounts of data, and 7 with different intensity noise embedded at different places.

Subjects were asked to rate the differences between the original model and the pro-
cessed model on a scale from from 0 to 10, where 0 meant identical and 10 meant very
dissimilar, to give aopinion score(OS).



In order to help the subjects evaluate the 3D mesh models, and to assist subjects’
determination of differences, we paid careful attention to rendering conditions, as sug-
gested by [6]:

– Color. We used black for the background to help models stand out. Models were
coloured grey, which makes edges more visible and deformations easier to see.

– Light source.All models used the same single white point light source: multiple
lights can confuse observers.

– Lighting. Although a local illumination model can produce more realistic effects
for textured models, it can hide parts with high distortion. Thus we also used a
global illumination model.

– Texture.Models were untextured, as textures can hide any distortion.
– Test subjects.30 test subjects (20 male, 10 female) were drawn from a pool of

computer science students aged 22–25. For impartiality, some of the chosen test
subjects had knowledge of computer graphics, and others did not.

– Screen and Model Resolution.The models were displayed on an 17-in LCD mon-
itor, with resolution1280 × 1024. The watermarked and original model were dis-
played together so as to fill the screen. The chess king model had 12170 triangles
and horse model had 10024 triangles, allowing clear observation of detail. The
screen was viewed from a distance of approximately 0.6m.

– Interaction.We allowed the subjects to rotate and zoom the models: [15] suggests
that evaluation of alterations to 3D objects should permit interaction.

The experiment comprised three steps:

1. Oral instructions and training.First, we told the subjects about 3D mesh mod-
els, watermarking, compression and filters. We then gave examples of an unaltered
mesh, to be scored as 0, and a worst-case altered mesh, to be scored as 5.

2. Practice with a sample model.Next, the subjects were allowed to interact with
various processed models to familiarize themselves with the experiment.

3. Experimental trials.In this step, the subjects were asked to score the differences
between the original models and altered models.

While human observers were somewhat variable in their opinions as to percepti-
bility of differences, there was general correlation between (average) strain field en-
ergy and opinion scores, as will be discussed in more detail in the next Section. Fig-
ures 5(a) and 5(b) show plots of the individual opinion scores (OS) against strain field
energy. Each circle in Figure 5(a) and cross in Figure 5(b) corresponds to one model
assessed by one subject.

We note that as might be expected, human subjects vary considerably in their opin-
ions of the perceptibility of differences. Thus, in subsequent experiments we used the
meansof these human opinion scores (MOS) for each altered model as being represen-
tative of the amount of visual differences perceived by human subjects.

Experiment II: Strain field measure versus other simpler measures
We next investigated the relationship between mean opinion score values (MOS)

and two other simple perceptual distance measures which might plausibly be used
for assessing mesh distortion: thefractional change in the total area of the triangles
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Fig. 5. UnimprovedASFE perceptual distance versus subjective opinion score (OS)
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Fig. 6.Various perceptual difference measures versus mean subjective opinion score (MOS)

(PFTAR) and thefractional change in angle between normal vectors of adjacent faces
(PFNVANG). The first of these measures is defined as follows:

PFTAR(m0, mp) =

n∑

i=1

|∆Si|/

n∑

i=1

Si,

wheren is the number of faces of the mesh,∆Si is the change in area of facei andSi

is its area. The second is defined as

PFNVANG(m0, mp) =

m∑

i=1

|∆αi|/

m∑

i=1

αi,

wherem is the number of the edges of the mesh,∆αi is change between in angle of
normal vectors between edgei andαi is the angle of normal vectors between edgei.

Figure 6 show the mean opinion scores from Experiment I are not well correlated
with the proposedPFTAR or PFNVANG perceptual distances, either for the horse or the
chess king—we can see these two simpler perceptual distance measures produce much
more scattered results than our strain energy measure. They do not adequately predict
human opinion of mesh differences—whereas the strain field perceptual distance mea-
sure produces results which lie much closer to a straight line.



Table 1.Correlation between various perceptual distance measures and human opinion

Perceptual distanceCorrelation coefficientCorrelation coefficient
based on Horse Chess King
FTAR 0.56 0.71
FNVANG 0.67 0.54
unimprovedASFE 0.97 0.97
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Fig. 7. Kinds of ASFE perceptual distance and mean opinion score

To more precisely analyze this observation, we calculated the correlation coefficient
between each perceptual distance measure and the human mean observation scores: see
Table 1. As, expected, the simpler FTAR and FNVANG perceptual distance have much
lower correlation than ourunimprovedASFE strain energy perceptual distance, and
hence are of less value for measuring human opinion of distortion. We further conclude,
given the very high correlation coefficients observed, that the (unimproved) perceptual
distance based on strain field energy is a useful replacement for subjective mean human
opinions of mesh differences.

Experiment III: Variants of strain field energy measure
We next investigated the relationship between strain field energy and mean opin-

ion score values (MOS) when using the suggested improvements based on projection
and edge weights (see Section 5.2). We compared compared 4 variants of our method:
unimprovedperceptual distance (without projection and face weights), perceptual dis-
tance using projection, perceptual distance using edge weights, and perceptual distances
using both projection and edge weights.

Figure 7 shows the results of comparing the four different perceptual measures with
mean human opinion scores, as in Experiment II. In each case a similar close-to-linear
relationship can be seen. close-to-linear fashion for both the horse and chess king. It can
be seen that the projection idea has almost no effect on perceptual distances. Using edge
weighting produces a bigger difference in the perceptual distance measure, although a
visual inspection of the results does not show any obvious immediate improvement
(see Figure 7) in terms of linearity of relationship. Again correlation coefficients were
computed and are given in Table 2. The edge weightsdo make a small improvements
for the horse model, but projection does the opposite, while for the chess king model,



Table 2.Correlation between the four perceptual distance measures and human opinion

Perceptual distance Correlation coefficientCorrelation coefficient
based on Horse Chess King
unimprovedASFE 0.9745 0.9660
projectedASFE 0.9715 0.9661
weightedASFE 0.9751 0.9560
projected & weightedASFE 0.9752 0.9557

Table 3. Perceptual distance based on strain energyP × 10
−5 for Buddha models with varying

deformations

Watermarked modelsFTAR P Models with noiseFTAR P
(a) 0 0 (g) 0 0
(b) 661 4 (h) 115 4
(c) 3335 114 (i) 568 114
(d) 6644 455 (j) 1074 523
(e) 100201042 (k) 17021778
(f) 123421533 (l) 23133988

the opposite is true, projection making a small improvement but edge weighting do-
ing the opposite. Overall, our experiments show no benefit to using either suggested
improvement: using projection and/or edge weights makes almost no difference to the
correlation between the computed measure and human opinion. We thus recommend
theunimprovedASFE based perceptual distance which is simpler to compute, and the
other methods increase the computation time, without any benefit.

7 Further demonstrations

We now provide two further demonstrations of our approach. The first is intended to
give the reader a visual impression of how our measure works in practice, while the
second demonstrates an application of our methodology by comparing the relative per-
ceptibility deformations produced by two different mesh deformation methods.

Demonstration I: Distortion in a Bhudda model
We now present a series of Buddha models, with 62224 faces, which have been pro-

cessed by watermarking (Figures 8(a–f))and noise addition (Figures 8(g–l)) algorithms,
making changes controlled by successively increasing the FTAR measure as stated in
Table 3.

These figures and numbers allow the reader to gain some impression of their own
concerning our (basic) perceptual distance measure based on strain energy for these
models.

Demonstration II: Application to comparison of mesh processing methods
We next demonstrate a simple application of our methodology.We compared meshes

processed in two different ways, to demonstrate that our method provides the same opin-



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8.Watermarked Buddhas (a–f), Buddhas with added noise (g–l)



(a) Original mesh, horse (b) Watermarked mesh, horse (c) Noisy mesh, horse

Fig. 9. Original and processed models, horse

ion as human observers as to which produced less perceptible results. Again we used
the horse model with 10024 faces and the chess king with 12170 faces. The latter is
smoother than the horse and its edges are more obvious than those of the horse, and so
we expected differences to be more visually apparent for this model. The meshes were
distorted using the same two processing methods as in Experiment I—watermarking,
and adding noise. We embedded an average 2 bits distortion into each triangular face
of the meshes using each method. Figure 9(a) shows the original horse model, Fig-
ure 9(b) shows the watermarked horse model, and Figure 9(c) shows the noisy horse
model. Differences in the distortions are clearly perceptible in these close up views.
Figures 10(a)–10(c) are analogous figures for the chess king model.

For both models, the reader will probably agree with other human observers that the
original and watermarked meshes show quite small differences, whereas the differences
between the original and noisy meshes are more obvious. The watermarks are embed-
ded into the all parts of the mesh fairly evenly, whereas more noise is embedded into
the mesh at some places than others. As a result distortions in the latter case is more
obvious, and correspondingly our perceptual distance measure is also bigger.

Furthermore, as expected, because the king is smoother than the horse, the traces of
the processing in the king are more obvious and the deformations are more noticeable,
as predicted in Table 4 by our strain energy perceptual distance; here we have used the
projected and edge weighted measure. For both models, our measure of the difference
is lower for the watermarked mesh than the noisy mesh, which corresponds with our
visual inspection of these models. Our own visual subjective results, and the measure
are in agreement that the watermarking method produces less visible differences than
adding noise, both for the smoother king model and for the more textured horse model.

Note, however, that both of the simpler area-based and normal-based perceptual
distance measures predict theopposite: that the watermarking changes should be more
visible. This is further evidence that these particular, simple, perceptual distance mea-
sures are not satisfactory.



(a) Original mesh, king (b) Watermarked mesh, king (c) Noisy mesh, king

Fig. 10.Original and processed models, king

Table 4.Perceptibility distances for three measures and two models

Models Projected & weighted ASFEFTAR FNVANG
Watermarked Horse 0.0002 0.0623 0.3596
Noisy Horse 0.0017 0.0414 0.2712
Watermarked King 0.0140 0.0835 1.1492
Noisy King 0.0591 0.0499 0.4720

8 Conclusions and future work

This paper has proposed a new methodology for comparing small visual differences be-
tween conforming models. Our methodology is based on the use of strain field theory to
describe the deformation arising due to application of some algorithm. Our experiments
show that this objective method can produce results which are strongly correlated with
the average of subjective human opinions. The same isnot true of simpler measures
based on changes in triangle areas, or surface normals.

This work has applications to the comparison of 3D mesh processing algorithms
such as watermarking, compression and other filtering in terms of the perceptible effects
they produce on models. For example, in watermarking we could use this approach to
decide which part of a model is the most suitable place for embedding a watermark,
to decide how much data can be hidden in a mesh model, or to choose between water-
marking schemes.

One area we wish to explore in future is to try to statistically determine thresholds of
perceptibility through subjective experiments, which can then be used with our method
to decide whether a visual difference is perceptible.
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