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Abstract

We prove that the operator product expansion (OPE), which is usually thought of as an
asymptotic short distance expansion, actually converges at arbitrary finite distances within
perturbative quantum field theory. The result is derived for the massive scalar field with
'4-interaction on Euclidean spacetime. This constitutes a generalisation of an earlier
result by Hollands and Kopper, which states that the OPE of exactly two quantum fields
converges. We also show that the OPE coefficients satisfy factorisation conditions for
certain configurations of the spacetime arguments. Such conditions are known to encode
information on the algebraic structure of the underlying quantum field theory.

Both results rely on modified versions of the renormalisation group flow equations,
which allow us to derive explicit bounds on the remainder of these expansions. Within
this framework, we also derive a new formula for the perturbation of OPE coefficients,
i.e. an equation relating coefficients at a given perturbation order to those of lower order.
By iteration of this formula, a new constructive method for the computation of OPE
coefficients in perturbation theory is obtained, which only requires the coefficients of the
free theory as initial data.

Finally, we investigate a strategy to restrict renormalisation ambiguities in quantum field
theory via the condition that the OPE coefficients depend analytically on the coupling
constant(s) of the respective model. We apply this strategy to the computation of the
vacuum expectation value of the stress energy operator in the two dimensional Gross-
Neveu model and we obtain a unique prediction for the non-perturbative contribution to
this expectation value, which is of the order exp.�2�=g2/ (here g is the coupling constant).
We discuss the possibility that a similar effect, if present in the Standard Model of particle
physics, could account for the ”unnatural” smallness of the cosmological constant.
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Notation and conventions

Conventions used in chapter 3: The convention for the Fourier transform in R4

used in this thesis is

f .x/ D

Z
p

Of .p/ eipx WD

Z
R4

d4p

.2�/4
eipx Of .p/ : (0.1)

We use a standard multi-index notation. Our multi-indices are elementsw D .w1; : : : ; wn/ 2
N4n, where each wi 2 N4 is a four-tuple with components wi;� 2 N and � D 1; : : : ; 4.
For f .p1; : : : ; pn/ a smooth function on R4n, we use the shorthand f . Ep/ and we set

@wf . Ep/ D
Y
i;�

�
@

@pi;�

�wi;�
f . Ep/ (0.2)

and
wŠ D

Y
i;�

wi;�Š ; jwj D
X
i;�

wi;� : (0.3)

If a function f .ExI Ep/ depends on two sets of variables, .Ex; Ep/ 2 R4n1 � R4n2 , then we
write @w

Ep
to indicate that the partial derivatives are taken with respect to the variables

.p1; : : : ; pn2/ as in (0.2). Derivatives @w of a product of functions f1 � � � fr are distributed
over the factors using the Leibniz rule, which results in the sum of all terms of the
form cfvi g @

v1f1 � � � @
vrfr . Here each vi is now a 4n-dimensional multi-index, where

v1 C : : :C vr D w, and where

cfvi g D
.v1 C : : :C vr/Š

v1Š � � � vr Š
� r jwj (0.4)

is the associated multi-nomial weight factor. We will denote sets of indices by I D
fi1; : : : ; ikg with ij 2 N and we denote their cardinality by jI j.

Given a set of momenta .p1; : : : ; pn/ 2 R4n, we agree on the shorthand notation

Ep WD .p1; : : : ; pn/ ; j Epjn WD sup
J�f1;:::;ng

ˇ̌̌X
i2J

pi

ˇ̌̌
; EpnC2 WD . Ep; k;�k/ (0.5)
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Later we will often simply write j Epj instead of j Epjn. Further we define � WD sup.ƒ;m/

for later convenience. We also use the notation

.c/C D sup.0; c/ (0.6)

to denote the positive part of c 2 R. In particular, we often write logC.x/ D sup.0; log.x// D

log.sup.1; x//.
If F.'/ is a differentiable function (in the Frechet space sense) of the Schwartz space

function ' 2 S.R4/, we denote its functional derivative as

d

dt
F .' C t /jtD0 D

Z
d4x

ıF.'/

ı'.x/
 .x/ ;  2 S.R4/ ; (0.7)

where the right side is understood in the sense of distributions in S 0.R4/. Multiple
functional derivatives are denoted in a similar way and define in general distributions on
multiple Cartesian copies of R4.

Conventions used in chapter 4: We use the sign convention

.���/ WD

 
1 0

0 �1

!
(0.8)

for the two dimensional Minkowski-metric. Our Dirac-matrices are defined as


0 WD

 
0 �i

i 0

!

1 WD

 
0 i

i 0

!
; (0.9)

and the Dirac conjugate is given by  D  �
0. As usual, we also define 
5 WD 
0
1.
We use letters from the beginning of the Greek alphabet, such as ˛; ˇ 2 f1; 2g, to denote
spinor indices, and letters from the middle of the Greek alphabet, such as �; � 2 f0; 1g, for
spacetime indices.



1
Introduction

Quantum field theory (QFT) is the mathematical framework underlying the Standard Model
of particle physics, which provides our current understanding of the electromagnetic-,
weak- and strong interactions of elementary particles [1, 2, 3]. In other words, it offers
a unified model for all fundamental forces except gravity. The Standard Model has been
gradually developed throughout the 1970s as a collaborative effort of many theorists, and it
has since then continued to pass experimental tests to an ever growing - and certainly quite
astonishing - precision. This process culminated in the recent discovery of the Higgs boson
at the Large Hadron Collider (LHC), which added the last missing piece to the experimental
verification of Standard Model predictions. It should further be mentioned that quantum
field theory has found important applications also in the areas of condensed matter physics
and the theory of critical phenomena [4]. Despite this remarkable phenomenological
and quantitative success, our understanding of quantum field theory in a mathematically
rigorous sense is still somewhat unsatisfying and incomplete.

One of the main difficulties in formulating a theory of quantum fields lies in the char-
acteristic singular nature of operator products: Given a quantum field �.x/ representing
some physical observable of interest localised at a spacetime point x, it is a general feature
that the product �.x/�.y/ diverges as the spacetime arguments approach each other, i.e.
in the limit y ! x. Technically speaking, this behaviour is due to the fact that local
quantum fields are not regular functions, but (operator valued) distributions, which in
general have ill-defined products. In terms of physical intuition, one may view the ap-
pearance of divergences in the attempt to define sharply localised quantum observables
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as a manifestation of Heisenberg’s uncertainty relation, which would imply complete
de-localisation in momentum space for these objects. The singular nature of the product
�.x/�.y/ also complicates the definition of composite operators, i.e. monomials in the
basic field �. The importance of overcoming this difficulty should be evident in view
of the fact that powers of � show up in various quantities of physical interest, such as
Lagrangians, field equations or energy momentum tensors.

The most important tool in the analysis of operator products in quantum field theory
is Wilson’s operator product expansion (OPE) [5], which states that any product of local
quantum fields can be expanded as

OA1.x1/ � � �OAN .xN / �
X
B

CB
A1:::AN

.x1; : : : ; xN /OB.xN / : (1.0.1)

Here the symbols OA denote the composite fields that appear in the given theory, where
the label A also incorporates the tensor or spinor character of the field. The so called
OPE coefficients, CB

A1:::AN
, are distributions with singularities on the diagonals xi D xj

for 1 � i < j � N . The relation (1.0.1) is supposed to hold in the weak sense, i.e.
it holds when inserted into an arbitrary (suitably well-behaved) quantum state. Further,
the symbol ”�” signifies that the OPE is usually understood as an asymptotic expansion,
which means that the remainder of such an expansion, when truncated at a sufficiently high
dimension D for the operators OB on the right side, should go to zero as we take the limit
x1; : : : ; xN�1 ! xN at a rate that improves as we increase D.

The operator product expansion is the answer to the problem described above: It
is designed to study the singularity structure of operator products, and it allows for a
meaningful definition of composite operators. It is therefore no surprise that Wilson’s idea
caught on quickly in the physics community, and that it is by now a well established tool
in most approaches to quantum field theory. The first proof that perturbative quantum field
theory admits an operator product expansion is due to Zimmermann [6]. In the context
of particle physics, the OPE has found applications for example in the understanding of
deep inelastic scattering [3, 7]. It has further played a crucial role in the development of
conformal field theories [8, 9, 10], has been derived within axiomatic settings [11], and
has also been proven to hold order by order in perturbative quantum field theory on curved

spacetimes [12].

In this thesis we derive mathematical properties of the operator product expansion within
perturbative quantum field theory, which are of both technical as well as conceptual interest.
More precisely, we will deal with the topics of convergence, factorisation and deformation
of the OPE. A brief explanation of what is meant by these terms as well as a discussion of
their relevance can be found in the following sections of this introduction.

The second line of research presented in the present work concerns an application of the
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OPE in the presence of non-perturbative effects. We will follow a proposal of Hollands
and Wald [13] by which the OPE may be used to reduce renormalisation ambiguities in
the computation of vacuum expectation values of composite operators. We will apply this
strategy in the two dimensional Gross-Neveu model [14] and discuss possible ramifications
for the cosmological constant problem.

1.1 Convergence of the operator product expansion
As mentioned above, the operator product expansion was originally introduced as an
asymptotic expansion, which means that the difference between the left and right hand side
of (1.0.1) goes to zero as the space time arguments are scaled together, x1; : : : ; xN�1 !
xN , if we sum over all B up to sufficiently high dimension. This interpretation of the
symbol� in eq.(1.0.1) has generally remained unchanged since then. However, it has been
shown recently in [15] that the operator product expansion of two fields in fact converges

to any order in perturbation theory in the setting of Euclidean g'4-theory. More precisely,
it was shown that, for a product of two fields OA1.x1/OA2.x2/, the difference between
left and right hand side of eq. (1.0.1) goes to zero in the weak sense (i.e. as an insertion
into any suitably well-behaved state) as we sum over all B . The result holds for any finite
separation .x1 � x2/2 of the two spacetime arguments!

One would expect that this result can be generalised to a product of any number of
quantum fields, i.e. to products of the form OA1.x1/ � � �OAN .xN / with N � 2. In the
first main result of this thesis we will show that this is indeed the case (see section 3.3),
i.e. we will show that the OPE of any number of quantum fields converges up to any
perturbation order in (massive) Euclidean g'4-theory. The proof utilises a refinement of
the Wilson-Wegner-Polchinski renormalisation group flow method [16, 17, 18, 19], which
is due to Kopper et al. (see e.g. [20] for a review). This technique will allow us to derive
explicit bounds on the remainder of the OPE, i.e. it will provide us with an estimate for
the difference between the left and right hand side of equation (1.0.1) as we sum over all
operators OB of dimension � D on the right hand side. This bound on the remainder will
be found to go to zero as we take the limit D !1.

While the general idea of the proof will be the same as in the N D 2 case analysed
in [15], an additional complication arises for products of more than two quantum fields
due to the presence of nested subdivergences in the spacetime arguments. Our main
technical advance in the mentioned flow equation approach to perturbative quantum field
theory therefore lies in the understanding and regularisation of these subdivergences (see
in particular sections 3.1.3 and 3.1.4). As a side result of this analysis, we will also be able
to show that the OPE coefficients are real analytic functions in the spacetime arguments
for non-coinciding points.
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We would like to stress that convergence of the operator product expansion is not merely
a technicality. It is rather a property that offers conceptual insights into the general structure
of quantum field theory. For the sake of the argument, let us switch to a Minkowskian
context for the moment. Here the analog of our result would be that theN -point correlation
functions hOA1.x1/ � � �OAN .xN /i‰ in a (well-behaved) state ‰ are entirely determined by
the collections of OPE coefficients, which are state-independent, together with 1-point
functions hOB.xN /i‰:

hOA1.x1/ � � �OAN .xN /i‰ D
X
B

CB
A1:::AN

.x1; : : : ; xN / hOB.xN /i‰ (1.1.1)

Here it is understood that the infinite sum over B would be convergent, and the distances
.xi � xj /

2 would not necessarily have to be small. It follows that all the state-independent
algebraic information of quantum field theory would be encoded in the OPE coefficients,
which play a role similar to the structure constants of an ordinary algebra, whereas all the
information about the quantum state is contained in the 1-point functions (”form factors”)
only.

The convergence result further yields strong support to a novel approach to quantum
field theory, due to Hollands [21], which elevates the OPE to a defining object of a quantum
field theory. In this axiomatic framework, a QFT is defined in terms of its OPE coefficients
and one-point functions. As we have seen, convergence of the OPE would imply that these
data indeed contain the same information as the n-point functions.

1.2 Factorisation of the operator product expansion

Consider an operator product OA1.x1/ � � �OAN .xN / of N � 3 fields. Assume that the
points x1; : : : ; xM�1 are closer to xM than the points xMC1; : : : ; xN . We may express this
condition in terms of the inequality

max1�i�M jxi � xM j

minMC1�j�N jxj � xM j
<
1

K
;K � 1 ; (1.2.1)

where the parameter K specifies how much closer one set of points has to be to xM
compared to the other points. As an example, a configuration satisfying this requirement is
depicted in fig. 1.1.

Since the OPE is designed to be a short distance expansion, one would expect that we
may perform the OPE of only the product OA1.x1/ � � �OAM .xM / around the point xM first,
since the other fields are farther away from OAM .xM /. Such an expansion would have the
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xM

r
R

Figure 1.1.: Sketch of a configuration satisfying (1.2.1). Here the points x1; : : : ; xM are
coloured red, and the points xMC1; : : : ; xN are blue. Further, the radii of
the circles are r D max1�i�M jxi � xM j and R D minM<j�N jxj � xM j,
respectively. By equation (1.2.1), they are required to satisfy r=R < 1=K.

form

OA1.x1/ � � �OAN .xN / �
X
B

CB
A1:::AM

.x1; : : : ; xM /OB.xM /OAMC1.xMC1/ � � �OAN .xN / :

(1.2.2)
We refer to this kind of expansion as a partial OPE. What does the symbol � stand for in
this case? When inserted into a state, one would certainly expect such an expansion to hold
in an asymptotic sense, i.e. as the points x1; : : : ; xM are scaled together. But what can be
said about the convergence properties of the infinite sum over B? In this thesis we will
show, again within massive Euclidean g'4-theory, that the partial OPE converges in the
weak sense for suitable configurations of the spacetime arguments. The significance of this
result becomes apparent if one performs another OPE on the right hand side of equation
(1.2.2), which leads to the relation

OA1.x1/ � � �OAN .xN /�
X
B1;B2

CB1
A1:::AM

.x1; : : : ; xM /CB2
B1AMC1:::AN

.xM ; : : : ; xN /OB2.xN / :

(1.2.3)
Comparing this expansion to eq.(1.0.1), we can simply read off the following non-trivial
algebraic relations between the OPE coefficients1:

CB
A1:::AN

.x1; : : : ; xN / D
X
C

CC
A1:::AM

.x1; : : : ; xM /CB
CAMC1:::AN

.xM ; : : : ; xN / (1.2.4)

We will show that such relations indeed hold in g'4-theory, i.e. the sum over C converges
on certain spacetime domains. In the case .N �M/ � 2 this domain coincides with the
one described in eq.(1.2.1), where K is a (potentially large) constant. In other words, the

1Here we have implicitly exchanged the order of the infinite sums over B1 and B2. Strictly speaking, this
would have to be justified of course. In section 3.5 we will derive eq.(1.2.4) in a slightly different, a little
more complicated, but rigorous manner.
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points xMC1; : : : ; xN have to be very far away from the cluster x1; : : : ; xM in order for
(1.2.4) to hold. For general N;M our result holds on a somewhat smaller, but quite similar
domain.

The relations (1.2.4) will be called factorisation conditions in the following2. Our
interest in these conditions is rooted in the fact that they put potentially powerful restrictions
on the OPE coefficients. These restrictions are clearly the stronger the smaller the constant
K from (1.2.1) is. In the case K D 1, for example, one can deduce from the factorisation
conditions that all the N -point OPE coefficients, CB

A1:::AN
, can be determined just from

the two point coefficients [21]. Further, the factorisation condition in that case suggests
a close connection to vertex operator algebras [22], which usually appear in the context
of conformal field theories [8, 9]. It was also observed in [22] that, as a side result, one
might even obtain non-trivial results in the theory of special functions if the factorisation
condition holds for K D 1.

1.3 Deformation of the operator product expansion
The explicit computation of OPE coefficients in perturbation theory is usually presented in
textbooks by expanding certain correlation functions at short distance/large momentum [7,
3]. Fundamentally, however, the OPE coefficients are state-independent objects, so one
would expect to be able to compute them without any reference to particular correlation
functions.

In this thesis, we derive a rigorous formula that relates the OPE coefficients of Euclidean
g'4-theory at any finite perturbation order r 2 N to those at lower order. For the OPE of
two fields, this formula reads explicitly (the general case of more than two fields can be
found below in theorem 4)

.CrC1/
B
A1A2

.x1; x2/ D
�1

4Š .r C 1/

Z
d4y�

.Cr/
B
AgA1A2

.y; x1; x2/ �

rX
sD0

� X
ŒC ��ŒA1�

.Cs/
C
AgA1

.y; x1/ .Cr�s/
B
CA2

.x1; x2/

C

X
ŒC ��ŒA2�

.Cs/
C
AgA2

.y; x2/ .Cr�s/
B
A1C

.x1; x2/C
X

ŒC �<ŒB�

.Cs/
C
A1A2

.x1; x2/ .Cr�s/
B
AgC

.y; x2/
��
:

(1.3.1)

Here we used the notation .Cn/ to denote the OPE coefficients at perturbation order n, and
ŒA� stands for the engineering dimension of the operator OA (the precise notions are given
in chapter 3). Further, the index Ag corresponds to the interaction operator, i.e. OAg WD '

4

2Similar conditions are sometimes also referred to in the literature [21] as consistency conditions or
associativity conditions.
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in our example of g'4-theory.

Our derivation of this formula is again formulated within the flow equation approach to
perturbative quantum field theory, based on a definition of the operator product expansion
which was first given in [23]. An advantage of this setup is that it is conceptually very clean.
In one stroke, it allows for a manifestly state-independent definition of all OPE coefficients
to arbitrary order in perturbation theory. We derive formula (1.3.1) from first principles
in this framework, i.e. we do not make any assumptions besides BPHZ-renormalisation
conditions. The formula is shown to hold in the theory with a finite ultraviolet-cutoff,
which, as we show, can be safely removed in the end.

Given the OPE coefficients of the free theory (i.e. zeroth perturbation order) as ”initial
data”, our formula (1.3.1) provides a concrete algorithm for the calculation of any OPE
coefficient to arbitrary (finite) order in perturbation theory. To our knowledge, this consti-
tutes the first method for the perturbative computation of OPE coefficients which is entirely
”self contained”, in the sense that it does not require any additional information besides
the zeroth order coefficients, and which at the same time does not make any additional
assumptions3. The result yields further support to the proposed formulation of quantum
field theory in terms of OPE coefficients and 1-point functions.

In the context of ordinary algebra one usually refers to perturbations of the algebra
product as deformation [24]. In view of the analogy between OPE coefficients on the one
side and structure constants of an algebra on the other, we will also refer to (1.3.1) as a
”deformation of the operator product expansion”.

From a purely computational perspective, we do not expect this new algorithm to yield a
significant simplification over the usual techniques for the calculation of OPE coefficients,
since we expect to encounter the same types of loop integrals. On the other hand, an
advantage of our method is that it provides a very clear prescription for the computation of
any OPE coefficient CB

A1:::AN
to any order. The computations in standard textbooks [7, 3]

usually cover only particular examples, such as the coefficient C
'2

'' to first order, and it is
often not entirely clear, in our opinion, how to generalise these calculations in order to
obtain other OPE coefficients.

1.4 Non-perturbative effects and Dark Energy
Composite operators in quantum field theory are generally subject to so called renormali-

sation ambiguities. These ambiguities are a finite remainder of the process of removing the
characteristic divergences from a quantum field theory. Unless reasonable restrictions can

3A similar algorithm for the computation of OPE coefficients in perturbation theory was given in [21].
However, a crucial requirement for that scheme to work is that factorisation conditions of the type (1.2.4)
hold on the domain (1.2.1) with K D 1. As discussed in the previous section, it is currently not known
whether these conditions are satisfied by interacting quantum fields.
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be imposed on such ambiguities, these effects make it impossible to make quantitative pre-
dictions for vacuum expectation values of composite operators. While various symmetry
conditions can be imposed quite naturally in a given theory, these do not suffice to uniquely
define composite operators in general. In the usual applications of quantum field theory this
is not actually a problem, since experiments in condensed-matter or particle physics usually
do not measure absolute expectation values of observables, but rather different values
between these observables in different states (such as e.g. vacuum- and multi-particle
states). If one is interested in cosmological applications, however, the absolute expectation
value of the energy-momentum tensor is of prime importance, since it appears in the
(semi-classical) Einstein field equations as a source term generating spacetime curvature.
Some mechanism to further restrict renormalisation ambiguities of composite operators
would therefore be highly desirable.

Such a mechanism, based on the OPE, was proposed in [13]. Namely, it was observed
that OPE coefficients appear to have a more regular behaviour in the parameters of a theory
than the correlation functions. In particular, it was suggested that one may impose the
requirement that the OPE coefficients depend analytically on the parameters of the model.
It was further noticed that, in the presence of non-perturbative (i.e. non-analytic in the
coupling constant) effects, such a condition on the OPE coefficients could allow one to
uniquely single out the non-perturbative contributions to expectation values of composite
operators. While non-perturbative effects are well known to exist in the Standard Model of
particle physics, it is extremely difficult to make rigorous calculations beyond perturbation
theory within any quantum field theory in four spacetime dimensions. In order to analyse
the proposed analyticity condition on the OPE coefficients, as well as its consequences
for the ambiguities in the definition of composite operators, we therefore focus on a
simpler quantum field theory in this thesis. Our model should be sufficiently complex to
include non-perturbative effects, but at the same time simple enough to allow for explicit
calculations. In this thesis, our toy model of choice, which satisfies these requirements, is
the two dimensional Gross-Neveu model (GN-model) [14].

Non-perturbative results in the Gross-Neveu model are obtained via a large flavour (or
1=N -) expansion. In the present work, we compute the OPE coefficients that are needed
for the construction of the energy momentum operator of the GN-model to leading order in
1=N . We will see that, indeed, these OPE coefficients can be chosen to be analytic in the
coupling constant. Imposing the analyticity condition on the OPE coefficients in order to
restrict renormalisation ambiguities, we obtain a unique prediction for the non-perturbative
contribution to the vacuum expectation value of the stress energy operator. More precisely,
this non-perturbative contribution is found to be of the form exp.�2�=g2/, where g
is the coupling constant of the model. Pursuing the analogy with the Standard Model,
it is conceivable that a similar mechanism produces a non-perturbative, exponentially
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small factor, which could be responsible for the ”unnatural smallness” of the observed
cosmological constant [25]. This could possibly be an explanation for the measured value
of Dark Energy.

1.5 Outline
The research presented in this thesis was largely motivated by the approach to quantum
field theory based on the operator product expansion proposed in [21]. It has been
mentioned a few times in this introduction that many of our results are of relevance to
the viability of this framework. To put our research into perspective, we will devote
chapter 2 to a brief account of the axiomatic setting presented in [21] before we come to
the actual derivation of our results. Chapter 3 contains the proofs of the convergence-,
factorisation- and deformation results mentioned above in this introduction. All these
results are derived within a pertubative setting, and we will start off in section 3.1 by
reviewing the renormalisation flow equation approach to perturbative quantum field theory,
which will be used throughout chapter 3. In section 3.2 we present certain bounds on
quantities of interest, such as Green’s functions with regularisation. These bounds are then
used in sections 3.3-3.5 to obtain the convergence and factorisation results, followed by the
derivation of our deformation formula in 3.6. Finally, our non-perturbative results in the
Gross-Neveu model, as well as possible cosmological implications, are outlined in chapter
4, and we draw conclusions from our findings and discuss possible future lines of research
in chapter 5.

Let us take a moment to clarify the distinction between literature review and original
research presented in this thesis. All of chapter 2 as well as most of section 3.1 provide
background material from the existing literature that will help to put our results into
context. Our original contributions start in sections 3.1.3 and 3.1.4 with the discussion
of the regularisation of Schwinger functions with multiple operator insertions (the case
of up to two insertions was first discussed by Kopper and Keller in [23], and the case of
three insertions was treated by the present author in collaboration with Hollands in [26]).
Similarly, the bounds on Schwinger functions with N operator insertions presented in
sections 3.2.2 and 3.2.3 as well as the OPE convergence and factorisation proofs (theorems
1 and 3) constitute new results due to the author, which generalise earlier results for the
case N D 2 [15] by Hollands and Kopper and N D 3 [26] by Hollands and the present
author. The deformation formula for OPE coefficients derived in section 3.6 is also an
original result of this thesis. Finally, the contents of chapter 4 are based on a collaboration
with Hollands [27].

Some of the results published in [28, 29], which deal with properties of black holes in
classical general relativity, were also obtained as part of the author’s PhD project. We



10 CHAPTER 1. INTRODUCTION

chose not to include these results in this thesis due to the fact that they are completely
unrelated to the main theme of the present work.



2
Quantum field theory based on the

operator product expansion

The idea to put special emphasis on the algebraic relations between quantum field observ-
ables as a fundamental characteristic of a quantum field theory dates back to the work of
Haag and Kastler [30]. Algebraic approaches have also been useful in conformal quantum
field theories (cQFT), see e.g. [8, 9], and, in view of the lack of a preferred vacuum
state, turned out to be essential in the construction of quantum field theories on curved
spacetimes [31, 32, 33, 34, 35, 36].

In the present chapter we will briefly review an axiomatic approach to quantum field
theory, due to Hollands [21], which elevates Wilson’s operator product expansion (OPE) [5]
to a defining feature of the theory, encoding all the algebraic relations between the fields. A
particular appeal of this framework is that, with slight adjustments, it can be generalised to
give an axiomatic definition of quantum field theories on curved spacetimes [36]. But even
in the Euclidean context, the shift of perspective provided by this approach has already led
to valuable insights (see section 2.2 for a brief account).

It is one aim of this thesis to analyse the relation between this axiomatic setting and the
usual perturbative treatment of quantum field theory, based on a Lagrangian and the path
integral. At the end of this chapter we will pose more precise questions that will be tackled
in the following chapters.
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2.1 An axiomatic definition of quantum field theory

A quantum field theory in the sense of [21] is defined as a pair .V;C/. Here V is an infinite
dimensional vector space, whose basis elements are in one-to-one correspondence with
the composite fields OA of the theory. It is therefore graded by the fermionic/bosonic
character of these fields, by their dimension as well as by their transformation properties
under rotations of R4. Thus, we have

V D
M
i2f0;1g

M
�2RC

M
S2irrep

V i;�;S (2.1.1)

where i distinguishes the bosonic and fermionic subspace,� denotes the scaling dimension
and ”irrep” stands for all finite dimensional, irreducible unitary representations of Spin.4/.
The sum over the field dimensions� is assumed to be infinite, but countable. On the vector
space V we would like to have an anti-linear, involutive operation called � W V ! V ,
which should be thought of as taking the hermitian adjoint of the quantum fields. We
would also like to have a linear grading map 
 W V ! V with the property 
2 D id. The
vectors corresponding to eigenvalue C1 are to be thought of as ”bosonic”, while those
corresponding to eigenvalue �1 are to be thought of as ”fermionic”.

The dynamical content of the theory is encoded in the collection of operator product
expansion coefficients

C D .C.x1; x2/;C.x1; x2; x3/;C.x1; x2; x3; x4/; : : :/ ; (2.1.2)

which is a hierarchy of linear maps

C.x1; : : : ; xN / W V
˝N
! V (2.1.3)

which are (real) analytic in .x1; : : : ; xN / on

MN D f.x1; : : : ; xN / 2 R4N
j xi ¤ xj for all 1 � i < j � N g : (2.1.4)

For one point we set C.x1/ D id, where id is the identity map on V . The components of
these maps in a basis of V correspond to the actual OPE coefficients. More precisely, if
we denote a basis of V by fjvAig and a basis of the corresponding dual vector space V � by
fhvAjg, then

CB
A1:::AN

.x1; : : : ; xN / D hvB jC.x1; : : : ; xN / jvA1 ˝ � � � ˝ vAN i (2.1.5)

where we used the standard physicist bra-ket notation jvA1 ˝ � � � ˝ vAN i WD jvA1i ˝ � � � ˝
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jvAN i. The OPE coefficients are required to have the following properties (see [21] for a
more detailed account of the motivations behind these axioms):

Hermitian conjugation: Denoting by � W V ! V the anti-linear map given by the star
operation �, we have

C.x1; : : : ; xN / D � C.x1; : : : ; xN / �
N (2.1.6)

where �N WD �˝ � � � ˝ � is the N -fold tensor product of the map �.

Euclidean invariance: Let R be the representation of Spin.4/ on V , let a 2 R4 and let
g 2 Spin.4/. The OPE coefficients satisfy

C.gx1 C a; : : : ; gxN C a/ D R
�.g/ C.x1; : : : ; xN / R.g/

N (2.1.7)

where R.g/N is the N -fold tensor product R.g/˝ � � � ˝R.g/.

Bosonic nature: The OPE coefficients themselves should be ”bosonic” in the sense
that

C.x1; : : : ; xN / D 
 C.x1; : : : ; xN /

N (2.1.8)

where 
N is again the N -fold tensor product 
 ˝ � � � ˝ 
 .

Identity element: There exists a unique element 1 2 V 0;0;e, where e is the identity
element in our representation of Spin.4/. This vector has the properties 1� D 1,

.1/ D 1. The OPE coefficients satisfy

C.x1; : : : ; xN / jv1 ˝ � � �1˝ � � � vN�1i D C.x1; : : : bxi ; : : : ; xN / jv1 ˝ � � � ˝ vN�1i
(2.1.9)

where 1 is in the i-th tensor position, with i < N . When 1 is in the N -th position,
the condition takes a slightly more complicated form. This is due to the fact that, by
convention, we expand around the point xN , which therefore stands on a different
footing than the other points. In this case, we require the OPE coefficients to satisfy
the equation

C.x1; : : : ; xN / jv1˝� � � vN�1˝1i D t .xN�1; xN /C.x1; : : : ; xN�1/ jv1˝� � �˝vN�1i

(2.1.10)
where the ”Taylor expansion map” is a linear map t .x1; x2/ W V ! V for each
x1; x2 2 R4 with the following properties: The map should have the same trans-
formation properties as the OPE coefficients, see the Euclidean invariance axiom.
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Further, it satisfies the properties

t .x1; x2/ V
�
�

M
b���V

b� (2.1.11)

and
t .x1; x2/t.x2; x3/ D t .x1; x3/ : (2.1.12)

Finally, the restriction of any vector of t .x1; x2/V � to any subspace Vb� should have
a polynomial dependence on .x1 � x2/.

Scaling: Let jvA1i 2 V
�1; : : : ; jvAN i 2 V

�N and hvB j 2 .V �/�NC1 . Then the scaling
degree1 of the C-valued distribution (2.1.5) can be estimated by

sd CB
A1:::AN

� �1 C : : :C�N ��NC1 : (2.1.14)

If hvB j 2 .V �/0, if N D 2 and if jvA1i; jvA2i ¤ 0, then the inequality is required to
be saturated.

(Anti-)symmetry: Let �i�1;i be the permutation acting on V ˝ � � � ˝ V by exchanging
the .i � 1/-th and i -th tensor factors. We require that for all 1 < i < N

C.x1; : : : ; xi�1; xi ; : : : ; xN / �i�1;i D C.x1; : : : ; xi ; xi�1; : : : ; xN / .�1/
Fi�1Fi

(2.1.15)
where Fi WD 1=2 idi�1˝.id�
/˝ idn�i . For i D N we demand that

C.x1; : : : ; xN�1; xN / �N�1;N D t .xN�1; xN /C.x1; : : : ; xN ; xN�1/ .�1/
FN�1FN

(2.1.16)
where t .x1; x2/ is the Taylor expansion map defined in identity element axiom
above.

Factorisation: 2 For any M < N 2 N, let the OPE coefficients satisfy the identity

CB
A1:::AN

.x1; : : : ; xN / D
X
C

CC
A1:::AM

.x1; : : : ; xM /CB
CAMC1:::AN

.xM ; : : : ; xN /

(2.1.17)
1We define the scaling degree as

sdCBA1:::AN D inf
p2R

lim
�!0

�pCBA1:::AN .�x1; : : : ; �xN / D 0 for all .x1; : : : ; xN / 2MN (2.1.13)

2The axiom differs slightly from the original version presented in [21]. By iteration of our factorisation
identities (2.1.17) and (2.1.19), one can in fact derive the relation required in [21]. The only difference
lies in the domain where this relation is supposed to hold. The factorisation axiom presented here turns
out to be slightly weaker than the original one (i.e. the mentioned spacetime domain is smaller). This
seems to be necessary in order to guarantee that the axiom is fulfilled by the OPE of a free quantum field.
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on the spacetime domain

max
1�i�M

jxi � xM j < min
M<j�N

jxj � xM j : (2.1.18)

We require in particular that the infinite sum over C converges on the indicated
domain, which, as we note, coincides with the domain (1.2.1) mentioned in the
introduction for the choice K D 1. We note also that the identity

CB
A1:::AN

.x1; : : : ; xN /D
X
C

CC
AMC1:::AN

.xMC1; : : : ; xN /CB
A1:::AMC

.x1; : : : ; xM ; xN /

(2.1.19)
holds on the spacetime domain

max
MC1�i�N

jxi � xN j < min
1�j�M

jxj � xN j ; (2.1.20)

which follows from eq.(2.1.17) combined with the symmetry axiom above.

Analyticity (optional): 3 The OPE coefficients are analytic functions in the coupling
constant(s) in a quantum field theory described by a Lagrangian.

We agree that two theories are equivalent if they differ only by a redefinition of the
composite fields OA ! OOA D

P
B Z

B
A OB , or equivalently jvAi !

P
B Z

B
A jvBi in terms

of the vector space V , where ZBA is a matrix of complex numbers. The OPE coefficients
transform under such a redefinition by factors of this matrix, i.e.

C.x1; : : : ; xN / D Z
�1 OC.x1; : : : ; xN /Z

N : (2.1.21)

The axioms stated above put various restrictions on the admissible matrices ZBA :

� ZBA �OB should have the same tensor/spinor character as OA.

� Field redefinitions should be consistent with Euclidean invariance.

� The redefinition should not increase the dimension of the fields, i.e. for a redefinition
V � 3 jvAi !

P
B Z

B
A jvBi and we require jvBi 2 V �

0

with �0 � �.

� If the theory depends on a coupling constant g, it is reasonable to require thatZBA .g/
has a smooth dependence on g.

� We require Z� D �Z.

3This property was not required in [21]. However, it was argued in [13] that a condition of this type
could be fruitful in that it leads to a restriction of renormalisation ambiguities. We will discuss potential
ramifications of the analyticity condition in chapter 4.
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We will re-encounter the ambiguities in the definition of composite fields later in the flow
equation framework, see the discussion following eq.(3.1.28), and in the two dimensional
Gross-Neveu model, see in particular section 4.1.

Finally, we require the existence of a collection of Schwinger functions, denoted by
hOA1.x1/ � � �OAN .xN /i�, which are analytic on MN and satisfy the Osterwalder-Schrader
(OS) axioms for the vacuum state � [37, 38]. They should also satisfy the OPE in the
sense of an asymptotic expansion, i.e.

hOA1.x1/ � � �OAN .xN /i� �
X
B

CB
A1:::AN

.x1; : : : ; xN /hOB.xN /i� : (2.1.22)

Here the symbol�means that the difference between the left and right side is a distribution
on MN whose scaling degree is smaller than any given number ı provided the above sum
goes over all of the finitely many fields OB whose dimension is smaller than some number
� D �.ı/.

2.2 Features of the framework

The approach outlined in the previous section has been proposed quite recently, but it has
nevertheless already proven to exhibit some interesting features and applications. Here we
would like to give a rough overview of these existing results. We refer the reader to the
cited literature for more details.

Coherence [21]: One can show that, due to the factorisation axiom, the N -point OPE
coefficients, C.x1; : : : ; xN /, are uniquely determined in terms of the two point coefficients
C.x1; x2/. Further, the factorisation conditions with N > 3 pose no additional conditions
on the OPE coefficients beyond those already present in the factorisation condition with
N D 3.

Hochschild Cohomology [21]: The problem of finding perturbations of the OPE
coefficients satisfying the above axioms (in particular the factorisation axiom) can be
expressed quite elegantly in terms of cohomology theory. This formulation of perturbation
theory is similar to the theory of deformations of an ordinary algebra.

Vertex algebras [22]: One can define vertex operators Y.x; v/ W V ! V as the
endomorphism of V whose matrix elements are given by

hvC jY.x; vA/jvBi WD CC
AB.x/ (2.2.1)
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for any x ¤ 0. It is possible to express the framework of the previous section entirely in
terms of these vertex operators. In particular, the factorisation axiom then takes the form

Y.vA; x/Y.vB ; y/ D Y.Y.vA; x � y/vB ; y/ ; (2.2.2)

where the spacetime arguments are required to satisfy jxj > jyj > jx � yj > 0. This
quadratic relation actually first appeared in the study of conformal field theories in two
dimensions, where it is one of the crucial properties of the vertex operator algebras [9].
It should be stressed, however, that in our context, where conformal symmetry is not
required, the condition above is a statement on the convergence of the infinite sums implicit
in eq.(2.2.2), whereas the same equality in the CFT context is understood in terms of
formal power series.

Field equations [21]: If a (massless) classical theory is described by a field equation
such as �' D @�@�' D g'3, one would expect that this relation should also be realised
on the level of OPE coefficients. It was noted in [21] that this relation, combined with
the factorisation condition on the OPE coefficients, allows one to construct the OPE
coefficients in perturbation theory via an iterative algorithm. The idea is as follows: One
requires the identity4

� CB
'A.x/ D g CB

'3A
.x/ ; (2.2.3)

which is just the field equation expressed on the level of OPE coefficients. If we expand
the OPE coefficients in this equation as a formal power series in g, i.e. if we write

CC
AB.x/ DW

1X
iD0

gi

i Š
.Ci/

C
AB.x/ ; (2.2.4)

then equation (2.2.3) yields a relation between OPE coefficients of different perturbation
order due to the additional factor g on the right hand side.

� .Ci/
B
'A.x/ D .Ci�1/

B
'3A
.x/ (2.2.5)

If we can solve this differential equation, i.e. invert the Laplace operator, then we can
determine the OPE coefficient .Ci/B'A in terms of a coefficient of lower order. In order to
construct all the other coefficients .Ci/CAB at this order, one can make use of the factorisation
condition. In this way, one could in principle construct the OPE up to any order in
perturbation theory (see also [39] for an explicit construction of coefficients up to second
perturbation order). An interesting feature of this algorithm is that one can avoid the
familiar Feynman integrals in the explicit computations. Instead, one has to perform nested

4We slightly abuse notation here by writing for example CB'A instead of CBCA in the case OC D '.
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infinite sums.

Extension to curved spacetimes [36, 13]: The framework has been adapted to
curved spacetimes by Hollands and Wald. Some of the axioms presented above have to
be changed slightly in this context. For example, the factorisation axiom is only required
to hold in terms of asymptotic scaling relations, as opposed to convergent power series.
Also, the coefficients are required to satisfy a microlocal spectrum condition, which is a
requirement on their singularity structure.

It has been shown in [12] that the OPE satisfies the adapted version of the axioms within
perturbative quantum field theory on curved spacetime.

Spin-statistics and CPT [40, 36]: An OPE satisfying the versions of the axioms
adapted to curved spacetimes can be used to prove a version of the spin-statistics theorem
as well the CPT-theorem, also on curved spacetimes, Thus, this axiomatic framework
captures much of the same content as the Minkowski space Wightman axioms.

2.3 Relation to perturbative quantum field theory
The quantitative predictions of perturbative quantum field theory based on the Feynman
path integral have been verified experimentally to extraordinary precision. Therefore it
seems natural, as a first test, to verify whether a new approach to quantum field theory is
consistent with the customary perturbative treatment.

As mentioned above, the existence of the OPE as an asymptotic expansion in perturbation
theory is by now well established [41]. Hence, our question is: Does the operator product
expansion in perturbative quantum field theory satisfy the axioms of section 2.1? For
most of the axioms this is quite easy to check. The factorisation identity, however, is an
exception. While it can be shown to hold for non-interacting quantum fields (i.e. in zeroth
order of perturbation theory), it is not known whether the factorisation property carries
over to interacting fields. The problem will be addressed in this thesis, and we will be
able to prove the somewhat weaker long distance factorisation identity discussed in the
introduction (see also section 3.5).

Even if the axiomatic approach is consistent with perturbative quantum field theory, one
might ask whether the information provided by the collection of OPE coefficients and one-
point functions is really equivalent to that provided by the n-point Schwinger functions
in customary perturbative quantum field theory. We know that the operator product
expansion approximates n-point functions in an asymptotic sense. If these expansions
were to even converge at finite distances, then we could deduce that, indeed, the OPE
coefficients combined with the one-point functions contain the same information as the
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n-point functions. Generalising earlier results of Hollands and Kopper [15], we will show
below that this is indeed the case.

To summarise, we are interested in the following questions within the setting of pertur-
bative quantum field theory:

1. Does the operator product expansion converge for finite distances of the spacetime
arguments?

2. Does the operator product expansion satisfy the factorisation identity?





3
The operator product expansion in

perturbation theory

In 1970 Zimmermann gave the first proof that the operator product expansion holds (as an
asymptotic expansion) in perturbative quantum field theory [6]. He also used this new tool
in order to define normal products of quantum fields, which were essential in defining a
sensible notion of composite fields within interacting models. In the following decades,
the OPE was shown to exist within a large variety of settings, and it has also been found to
be an indispensable computational tool in the study of high energy phenomena, such as
e.g. deep inelastic scattering [7].

In this thesis we will study some fundamental properties of the OPE within massive
Euclidean, perturbative g'4-theory. In particular, our main results in this chapter will be
(the precise theorems including technical details will be given later in the corresponding
sections):

Result 1: The operator product expansion converges (in the weak sense) up to any finite
order in perturbation theory and for arbitrary finite separation of the spacetime
arguments (see theorem 1 in section 3.3).

Result 2: The OPE coefficients factorise at large spacetime separation, i.e.

CB
A1:::AN

.x1; : : : xN / D
X
C

CC
A1:::AM

.x1; : : : xM /C
B
CAMC1:::AN

.xM ; ; : : : xN /

(3.0.1)



22 CHAPTER 3. THE OPE IN PERTURBATION THEORY

holds for max1�i�M jxi � xM j << minMC1�j�N jxj � xM j (see theorem 3 in
section 3.5).

Result 3: We will give an explicit formula for the deformation of the operator product,
i.e. we will express the OPE coefficients at perturbation order r in terms of (an
integral over) those of order s < r (see theorem 4 in section 3.6.2).

In view of the framework outlined in the previous chapter, it should be clear that these
results are of conceptual interest, as they provide a rigorous underpinning for the approach
to quantum field theory based on the OPE. The first two results yield direct answers to
the questions raised at the end of chapter 2. The third result provides a very direct way of
computing OPE coefficients in perturbation theory. Given the OPE coefficients of the free
theory, the formula yields an algorithm for the construction of OPE coefficients up to any
order. This algorithm is based purely on the OPE coefficients, i.e. no other objects, such
as Schwinger functions, appear in the construction. Conceptually, this way of computing
OPE coefficients is remarkably simple, compared to standard methods [7]. Practically,
one should, of course, expect to encounter the same loop integrals as in the customary
computation methods.

Our results are obtained within a framework of quantum field theory based on the
renormalisation group flow equations. Early versions of this approach are due to Wilson
and Wegner [16, 17, 19]. More recent treatments, which are closer to the methods employed
in this thesis, were given by Polchinski, Kopper, Keller [18, 42, 43, 23]. For applications
in a non-perturbative setting, see for example the work of Wetterich et.al. [44]. One of the
appeals of this framework is that the objects of interest for the purposes of this thesis, such
as Schwinger functions, composite operators and OPE coefficients, can be defined in a
clear and mathematically rigorous fashion. Starting with the work of Polchinski, the flow
equations have been applied to derive explicit bounds on important quantities, such as e.g.
Schwinger functions, to all orders in perturbation theory. Refined versions of such bounds
will be essential ingredients in the derivation of the results mentioned above.

One of our main technical advances in the flow equation framework developed in this
thesis is the analysis of Schwinger functions with insertions of multiple composite operators.
We will study the singular behaviour of these functions in the spacetime arguments, and
we will define certain ”regularised” (sometimes called ”oversubtracted”) versions of them.
The regularisation of composite operators in perturbative quantum field theory was first
developed by Zimmermann [6, 41], who introduced the so called normal products. Our
work builds upon the results of [43, 23, 15], where Schwinger functions with insertion of
up to two composite operators have been analysed within the flow equation setting. The
generalisation of these results is non-trivial due to the presence of nested sub-divergences
in the spacetime arguments in the case of three or more operator insertions, which clearly
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have no analogue in the case of two operator insertions and therefore pose a qualitatively
new problem.

We will continue the present chapter with a review of the flow equation framework,
where we will define all objects of relevance for us, in 3.1. Our original work starts with
section 3.1.3, where the mentioned regularisation of Schwinger functions with multiple
operator insertions is defined. In section 3.2 we present various bounds on these objects,
which are derived using an inductive method based on the renormalisation flow equations.
In sections 3.3 and 3.5 we will put these bounds to use and prove convergence and
factorisation of the operator product expansion. To conclude this chapter, we will derive
the mentioned perturbation formula for the OPE coefficients in section 3.6.

3.1 The flow equation framework

Wilson’s view of renormalisation as a continuous evolution of effective actions was origi-
nally introduced with a focus primarily on non-perturbative theories. It was Polchinski
who had the key insight that Wilson’s renormalisation group flow equations, when applied
to perturbation theory, allow for a closed inductive proof of renormalisability [18]. A great
advantage of this proof lies in its remarkable simplicity as compared to the previous results
on perturbative renormalisation, which had to deal with the great complexity of Feynman
diagram expansions (see for example [45] for a review). The subsequent extensions of the
framework [42, 43, 23] revealed that the flow equation method is also particularly well
suited for the study of composite operators and of the Wilson operator product expansion.
We will give a brief account of this framework in the following.

The model studied in this chapter is the hermitian scalar field theory with self-interaction
g'4 and mass m > 0 on flat 4-dimensional Euclidean space. The quantities of interest in
this (perturbative) quantum field theory will be defined in this section via the flow equation
(FE) method [18, 19, 16, 17]. We will give a brief outline of the general formalism with a
focus on objects of relevance to our study of the OPE, following closely [15]. The original
presentation of the particular method used in this thesis can be found in [42], and for more
detailed reviews we refer the reader to [20] and in [46] (in German).

3.1.1. Connected amputated Green’s functions (CAG’s)

We begin by introducing an infrared cutoff ƒ, and an ultraviolet cutoff ƒ0. These cutoffs
are implemented into the theory through a modification of the propagator Cƒ;ƒ0 , which
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reads in momentum space:

Cƒ;ƒ0.p/ WD
1

p2 Cm2

�
exp

�
�
p2 Cm2

ƒ20

�
� exp

�
�
p2 Cm2

ƒ2

��
(3.1.1)

Removing the cutoffs corresponds to taking the limits ƒ ! 0 and ƒ0 ! 1, which
recovers the full propagator 1=.p2 Cm2/. In the following, we always assume

0 < ƒ ; � WD sup.ƒ;m/ < ƒ0 : (3.1.2)

Other choices of regularisation than (3.1.1) are equally legitimate. The definition (3.1.1)
has the advantage of being analytic in p2 for ƒ > 0. As we are dealing with a massive
theory, an infrared cutoff is of course not actually necessary. It is introduced in the
flow equation framework as a technical device, which will later allow us to derive the
name-giving differential equations.

The propagator (3.1.1) defines a corresponding Gaussian measure �ƒ;ƒ0 , whose co-
variance is „Cƒ;ƒ0 . Here the factor „ is introduced in order to obtain a consistent loop

expansion1 in the following. Since we are interested in g'4-theory, the interaction, includ-
ing renormalisation counter terms, is taken to be (we also require the symmetry ' ! �',
which causes odd powers of the basic field to vanish)

Lƒ0.'/ D

Z
d4x

�
aƒ0 '.x/2 C bƒ0 @'.x/2 C cƒ0 '.x/4

�
: (3.1.3)

Here the basic field ' 2 S.R4/ is any Schwartz space function. The counter terms
aƒ0 D O.„/; bƒ0 D O.„2/ and cƒ0 D g

4Š
CO.„/ will be adjusted–and actually diverge–

when ƒ0 !1, in order to obtain a well defined limit of the quantities of interest. This
has been anticipated by making them “running couplings”, i.e. functions of the ultra violet
cutoff ƒ0. The correlation (D Schwinger- D Green’s- D n-point-) functions of n basic
fields with cutoff are defined by the expectation values

h'.x1/ � � �'.xn/i � E�ƒ;ƒ0

�
exp

�
�
1

„
Lƒ0

�
'.x1/ � � �'.xn/

��
Zƒ;ƒ0

D

Z
d�ƒ;ƒ0 exp

�
�
1

„
Lƒ0

�
'.x1/ � � �'.xn/

�
Zƒ;ƒ0 :

(3.1.4)

This expression is simply the standard Euclidean path-integral, but with the free part in the
Lagrangian absorbed into the Gaussian measure d�ƒ;ƒ0 . The normalisation factor Zƒ;ƒ0

is chosen so that h1i D 1. To keep this factor finite one actually has to impose an additional
volume cutoff, but the infinite volume limit can be taken without difficulty once we pass to

1If one considers the usual Feynman diagram expansion of the quantities of interest defined below, then
every closed loop yields a power of „.
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perturbative connected correlation functions, which we shall do in a moment. For more
details on this limit see [47, 20]. In the perturbative approach to quantum field theory,
which we will follow in this chapter, the exponentials in the path integral are expanded
out and the Gaussian integrals are then performed. As mentioned earlier, the full theory
is obtained by removing the cutoffs, ƒ0 ! 1 and ƒ ! 0, for a suitable choice of the
running couplings. The correct behaviour of these couplings is determined, in the flow
equation framework, by deriving first a differential equation in the parameter ƒ for the
Schwinger functions, and by then defining the running couplings implicitly through the
boundary conditions for this equation.

These differential equations, referred to from now on as flow equations, are written
more conveniently in terms of the hierarchy of “connected, amputated Green’s functions”
(CAG’s), whose generating functional is given by the following convolution2 of the
Gaussian measure with the exponentiated interaction,

�Lƒ;ƒ0 WD „ log �ƒ;ƒ0 ? exp

�
�
1

„
Lƒ0

�
� „ logZƒ;ƒ0 : (3.1.5)

One can expand the functionals Lƒ;ƒ0 as formal power series in terms of Feynman
diagrams with l loops, n external legs and propagator Cƒ;ƒ0.p/. One can show that,
indeed, only connected diagrams contribute, and the (free) propagators on the external legs
are removed. While we will not use diagrammatic decompositions in terms of Feynman
diagrams here, we will also analyse the functional (3.1.5) in the sense of formal power
series

Lƒ;ƒ0.'/ WD

1X
n>0

1X
lD0

„
l

Z
d4x1 : : : d

4xn L
ƒ;ƒ0
n;l

.x1; : : : ; xn/ '.x1/ � � �'.xn/ : (3.1.6)

No statement is made about the convergence of the series in „. It turns out that the objects
on the right side, the CAG’s, are easier to work with than the full Schwinger functions.
Thus, we will use these objects as basic quantities in our analysis. Of course, the full
Schwinger functions can be recovered from the CAG’s in the end.

Translation invariance of the connected amputated functions in position space implies
that their Fourier transforms, denoted L

ƒ;ƒ0
n;l

.p1; : : : ; pn/, are supported at p1C: : :Cpn D
0. Therefore, we can write, by abuse of notation

L
ƒ;ƒ0
n;l

.p1; : : : ; pn/ D ı
4.

nX
iD1

pi/L
ƒ;ƒ0
n;l

.p1; : : : ; pn�1/ ; (3.1.7)

i.e. the momentum variable pn is determined in terms of the remaining n � 1 independent

2The convolution is defined in general by .�ƒ;ƒ0 ? F /.'/ D
R
d�ƒ;ƒ0.'0/ F.' C '0/.
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momenta by momentum conservation. One can show that, as functions of these remaining
independent momenta, the connected amputated Green’s functions are smooth forƒ0 <1,
L
ƒ;ƒ0
n;l

.p1; : : : ; pn�1/ 2 C
1.R4.n�1//.

To obtain the flow equations for the CAG’s, we take the ƒ-derivative of eq.(3.1.5):

@ƒL
ƒ;ƒ0 D

„

2
h
ı
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ı

ı'
iLƒ;ƒ0 �
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2
h
ı

ı'
Lƒ;ƒ0; PCƒ?

ı

ı'
Lƒ;ƒ0iC„@ƒ logZƒ;ƒ0 :

(3.1.8)
Here we use the following notation: We write PCƒ for the derivative @ƒCƒ;ƒ0 , which, as
we note, does not depend on ƒ0. Further, by h ; i we denote the standard scalar product in
L2.R4; d4x/ , and ? stands for convolution in R4. As an example,

h
ı

ı'
; PCƒ ?

ı

ı'
i D

Z
d4x d4y PCƒ.x � y/

ı

ı'.x/

ı

ı'.y/
(3.1.9)

is the “functional Laplace operator”. Using eq.(3.1.6) to expand the functionals Lƒ;ƒ0 , we
can also write the flow equation (3.1.8) as

@ƒL
ƒ;ƒ0
2n;l

.p1; : : : ; p2n/ D

�
2nC 2

2

� Z
k

PCƒ.k/L
ƒ;ƒ0
2nC2;l�1

.k;�k; p1; : : : ; p2n/
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X

l1Cl2Dl

n1Cn2DnC1

n1n2 S
h
L
ƒ;ƒ0
2n1;l1

.q; p1; : : : ; p2n1�1/
PCƒ.q/L

ƒ;ƒ0
2n2;l2

.p2n1; : : : ; p2n/
i
;

(3.1.10)

with q D p2n1 C : : :C p2n and where S is the symmetrisation operator acting on func-
tions of the momenta .p1; : : : ; p2n/ by taking the mean value over all permutations � of
1; : : : ; 2n satisfying �.1/ < �.2/ < : : : < �.2n1 � 1/ and �.2n1/ < : : : < �.2n/. The
CAG’s are defined uniquely as a solution to this differential equation only after we impose
suitable boundary conditions. These are3, using the multi-index convention introduced
above in “Notations and Conventions”:

@w
Ep
L
0;ƒ0
n;l

.E0/ D ıw;0 ın;4 ıl;0
g

4Š
for nC jwj � 4, (3.1.11)

as well as
@w
Ep
L
ƒ0;ƒ0
n;l

. Ep/ D 0 for nC jwj > 4. (3.1.12)

Here ıa;b is the Kronecker-delta. The second boundary condition, (3.1.12), simply follows
by noting that Lƒ0;ƒ0 D Lƒ0 , see (3.1.5), and by recalling the definition of the interaction
Lƒ0 , (3.1.3). The actual renormalisation conditions are encoded in (3.1.11). The CAG’s
are then determined by integrating the flow equations subject to these boundary conditions,

3We restrict to BPHZ renormalisation in this thesis. Other choices are of course possible, and equally
legitimate.
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see e.g. [42, 20].

3.1.2. Insertions of composite fields

In the previous section we have defined Schwinger functions of products of the basic field.
We now turn to the so called composite operators (or ”composite fields”), which are given
by the monomials

OA D @
w1' � � � @wn' ; A D fn;wg : (3.1.13)

Here w D .w1; : : : ; wn/ 2 N4n is a multi-index (see also our notation and conventions
section), and we denote the canonical dimension of such a field by

ŒA� WD nC
X
i

jwi j : (3.1.14)

The Schwinger functions with insertions of composite operators are obtained by replacing
the action Lƒ0 with an action containing additional sources, expressed through smooth
functionals. Particular examples of such functionals are local ones. Any such local
functional can by definition be written as

F.'/ D
X
A

Z
d4x OA.x/ f

A.x/ ; f A 2 C10 .R
4/ ; (3.1.15)

where the composite operators OA are as in eq. (3.1.13) and where the sum is finite. Recall
that we may restrict attention to composite fields (3.1.13) with an even number of factors
of ' as a result of our symmetry requirement ' ! �'. We now modify the action Lƒ0 by
adding sources f A as follows:

Lƒ0 ! L
ƒ0
F WD L

ƒ0 � F �

1X
jD0

B
ƒ0
j .F ˝ � � � ˝ F„ ƒ‚ …

j

/ (3.1.16)

Here the last term represents the counter terms which are needed to eliminate the additional
divergences arising from composite field insertions in the limit ƒ0 !1. For each j it is
a linear functional4

B
ƒ0
j W ŒC1.S.R4//�˝j ! C1.S.R4// ; (3.1.17)

that is symmetric, and of order O.„/. To obtain the Schwinger functions with insertions
of r composite operators we now simply take functional derivatives with respect to the

4C1.S.R4// denotes the space of smooth (in the Frechet sense) functionals. All our functionals are
actually formal power series in „, so we should write more accurately C1.S.R4//ŒŒ„�� for the space
appearing below.
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sources, setting the sources f Ai D 0 afterwards:

hOA1.x1/ � � �OAr .xr/i WD
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(3.1.18)

Note that the CAG’s discussed in the previous section are a special case of this equation;
there we take F D

R
d4x f .x/ '.x/, and we have Bƒ0j .F˝j / D 0, because no extra

counter terms are required for this insertion. As above, we can define a corresponding
effective action as
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�
�logZƒ;ƒ0 (3.1.19)

which now depends on the sources f Ai , as well as on '. From this modified effective
action we determine the generating functionals of the CAG’s with r operator insertions:

Lƒ;ƒ0.OA1.x1/˝ � � � ˝OAr .xr// WD
ır L
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: (3.1.20)

The CAG’s with insertions defined this way are multi-linear, as indicated by the tensor
product notation, and symmetric in the insertions. We can also expand the CAG’s with
insertions in ' and „ again (in momentum space):
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(3.1.21)

Due to the insertions in L
ƒ;ƒ0
n;l

. j̋OAj .xj /; Ep/, there is no restriction on the momentum
set Ep in this case. Translation invariance, however, implies that the CAG’s with insertions
at a translated set of points xjCy are obtained from those at y D 0 through multiplication
by eiy

Pn
iD1 pi , i.e.
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(3.1.22)
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Note also that only moments of CAG’s with an even number n are non-vanishing, again by
our Z2-symmetry requirement. The flow equation for the CAG’s with insertions reads:
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(3.1.23)

In the second line it is understood that in the case I D ; we obtain the CAG’s without
insertions, i.e. Lƒ;ƒ0.˝i2ID;OAi / WD Lƒ;ƒ0 . We also suppressed the coordinate space
variables .x1; : : : ; xN / by writing OAi instead of OAi .xi/. This convention will also be
used regularly in the following for the sake of brevity. For convenience, let us define P.I /
to be the set of partitions of a set I , i.e.

P.I / D f.I1; : : : ; In/ W [
n
iD1Ii D I; Ii ¤ ;; Ii \ Ij D ; for i ¤ j g : (3.1.24)

We can alternatively write the flow equation in the expanded version
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(3.1.25)

Note that the flow equation for the CAG’s with N � 2 insertions involves inhomogeneities
(called source terms in the following) in the last line, which are quadratic in the CAG’s
with less than N insertions. Therefore, we have to ascend in the number of insertions if
we want to integrate the flow equations (3.1.25). To complete the definition of the CAG’s
with insertions, we again have to specify boundary conditions on the corresponding flow
equation. The simplest choice in the case of N � 2 insertions is

@w
Ep
L
ƒ0;ƒ0
n;l

.˝NiD1OAi .xi/I Ep/ D 0 for all w; n; l: (3.1.26)
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For CAG’s with one insertion we choose (”normal ordering”)5

@w
Ep
L
0;ƒ0
n;l

.OA.0/I E0/ D i
jwjwŠıw;w 0ın;n0ıl;0 for nC jwj � ŒA� (3.1.27)

@w
Ep
L
ƒ0;ƒ0
n;l

.OA.0/I Ep/ D 0 for nC jwj > ŒA� : (3.1.28)

Our freedom to choose boundary conditions different from (3.1.27) can be seen to cor-
respond to field redefinitions of the type discussed at the end of section 2.1 (cf. [43]).
Although the connected amputated Green’s functions (CAG’s) with insertions can be used
as the basic building blocks of the correlation functions, it will turn out to be useful to
also consider certain non-connected versions of these, called ”AG’s with insertions” in the
following. They are defined as

Gƒ;ƒ0.˝NiD1OAi / WD
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Note that the case N D 1 just reduces to the CAG’s with one insertion, i.e. Gƒ;ƒ0.OA/ D
Lƒ;ƒ0.OA/. As usual, we also consider the expanded quantities in „ and O'; these are
denoted in the present case as G

ƒ;ƒ0
n;l

.˝NiD1OAi ; Ep/, where as usual, l indicates the power
of „, and n the power of O'. As the name suggests, these are the amputated versions of the
Schwinger (=Green’s) functions6,
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(3.1.30)

where NLƒ;ƒ0
n;l

are the expansion coefficients of the generating functional NLƒ;ƒ0.'/ D
�Lƒ;ƒ0.'/C 1

2
h'; .Cƒ;ƒ0/�1 ? 'i without the momentum conservation delta functions

taken out. We will use this relation later.

5See [43, 23] for a more detailed motivation of these boundary conditions. It should be mentioned that our
definition of the functionals Lƒ;ƒ0.OA/ differs from the one given in those papers by a minus sign.

6Strictly speaking, the functionals Gƒ;ƒ0.˝NiD1OAi / do not generate all the amputated Feynman diagrams
with operator insertions, since connected pieces without any operator insertion are excluded, see also
eq.(3.1.30). For lack of a better name, we will however continue to refer to these functionals as amputated
Green’s functions with insertions by a slight abuse of language.
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By contrast to the CAG’s, the AG’s satisfy linear homogeneous flow equations,
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(3.1.31)

The fact that the AG’s satisfy a linear homogeneous flow equation is a welcome simplifica-
tion, which is unfortunately counterbalanced by the fact that the boundary conditions for
the AG’s are more complicated. Therefore, as a compromise between simple flow equation
and simple boundary conditions, we will not work with the full AG’s in the following, but
instead define the slightly modified objects
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Using the definitions of the CAG’s given above, these functionals are seen to obey the flow
equation
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(3.1.33)

and the trivial boundary conditions

@w
Ep
F
ƒ0;ƒ0
n;l

.˝NiD1OAi I Ep/ D 0 for all n; l; w; (3.1.34)

with a calligraphic letter F
ƒ;ƒ0
n;l

denoting as usual the objects appearing in the expansion of
Fƒ;ƒ0 in powers of „; '. In terms of Feynman diagrams we may interpret these functionals
as follows: As mentioned above, the G-functionals correspond to the (not necessarily
connected) amputated Feynman graphs withN extra vertices corresponding to the operator
insertions. On the other hand, the F -functionals correspond to the subset of these diagrams
where at least two of the operator insertions belong to the same connected component of
the graph. Like the CAG’s with multiple insertions, the F -functionals are divergent on
the partial diagonals, i.e. whenever two or more spacetime arguments coincide. Since the
CAG’s with one insertion are smooth in the spacetime argument [see equation (3.1.22)], the
decomposition (3.1.32) separates the contributions to G which are regular in the spacetime
arguments from those which are singular at short distances. We also note that translation
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invariance again implies

F
ƒ;ƒ0
n;l

.˝NiD1OAi .xi/Ip1; : : : ; pn/ D eiy.p1C:::Cpn/F ƒ;ƒ0
n;l

.˝NiD1OAi .xi�y/Ip1; : : : ; pn/ :

(3.1.35)

3.1.3. Regularisation of Schwinger functions with insertions

The purpose of introducing a UV-cutoff is that as long as we keep ƒ0 finite, the CAG’s
with insertions depend smoothly on the points x1; : : : ; xN , as well as on the momenta
p1; : : : ; pn (see also remark 5 below). In the limit ƒ0 ! 1, smoothness in the xi ’s
however is lost, and the CAG’s develop singularities for configurations such that some
of the points xi coincide. This is of course not a problem, nor unexpected–the Green’s
functions in quantum field theory are usually singular for coinciding points–reflecting
the singular nature of the operators themselves. In the following we will discuss certain
regularised (sometimes also called oversubtracted) versions of the Green’s functions with
insertions defined in the previous section, which possess a higher degree of regularity in
the spacetime arguments. As we will see later, these regularised Green’s functions play a
crucial role in the definition and application of the operator product expansion.

A method for improving regularity of Green’s functions with two operator insertions
was first given, in the context of the present framework, in [23], and the case of three
insertions has been analysed by Hollands and the present author in [26]. The procedure
described in the present- and the following section constitutes, as far as we are aware, the
first discussion of the regularisation of Green’s functions with more than three operator
insertions within the flow equation framework.

Let us first try to understand the process of regularisation for Green’s functions with a
low number of operator insertions. For N D 1 insertion, the functionals Lƒ;ƒ0.OA.x//
are already smooth in x, see eq.(3.1.22), so there is no need to improve regularity in this
case. For N D 2, however, one can show that the CAG’s Lƒ;ƒ0.OA1.x/˝ OA2.0// are
singular at x D 0 if we remove the cutoff ƒ0 ! 1. As mentioned above, a method of
removing this divergence was first given in [23]. Namely, one simply changes the boundary
conditions for the flow equation defining these CAG’s . These regularised CAG’s are
then parametrised by a single integer D � �1 and defined by the same flow equation,
eq.(3.1.23), but subject to the boundary conditions

@w
Ep
L
0;ƒ0
D;n;l

.OA1.x/˝OA2.0/I
E0/ D 0 for nC jwj � D (3.1.36)

as well as

@w
Ep
L
ƒ0;ƒ0
D;n;l

.OA1.x/˝OA2.0/I Ep/ D 0 for nC jwj > D (3.1.37)
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instead of eq.(3.1.26). It has been shown in [23] that these functions are of differentiability
class CD�ŒA1��ŒA2� in x7. This justifies the interpretation ofD as a regularisation parameter.

As we progress to the case of N D 3 insertions, however, the situation starts to get more
complicated. This is due to the fact that now the source terms in the corresponding flow
equation, (3.1.23), contain not only the regular CAG’s with one insertion, but also CAG’s
with two insertions, which themselves are singular when the spacetime arguments of the
two insertions coincide. Therefore, in order to remove the singularities from the CAG’s
with three insertions, simply changing the boundary conditions for the flow equation does
not suffice. One also has to alter the flow equation itself so as to regularise these ”source
terms”. This way, one has to specify not only one regularisation parameter, but a whole
hierarchy (one for each partial diagonal). This strategy can indeed be carried through, and
the procedure has been outlined in [26]. However, as one tries to progress to larger N , i.e.
insertions of more operators, the method quickly becomes somewhat cumbersome and
heavy on notation due to the need to regularise nested subdivergences. In the following we
will present an alternative method for regularising the amputated Green’s functions (AG’s)
instead of the CAG’s. While the method based on the AG’s will leave us with less control
over the exact degree of regularisation for each nested subdivergence, it will be sufficiently
versatile for our needs, and it has the benefit of being much more economical and also
easier to follow in the case of large N .

Recall from eq.(3.1.32) that we can decompose the AG’s Gƒ;ƒ0.˝NiD1OAi / into a
factorised part, where the composite operators OAi are inserted into diagrams which
are disconnected from each other, and a contribution called Fƒ;ƒ0.˝NiD1OAi /, which
corresponds to diagrams where at least one pair of composite operators is inserted into
the same connected piece. Since the CAG’s with one insertion are smooth, so will be the
factorised part. All the divergences on the (partial) diagonals are thus included in the F
functionals. Therefore, the question now is how to regularise these functionals.

Note that the source term in the flow equation for the F -functionals, i.e. the last line of
eq.(3.1.33), contains only CAG’s with one insertion, which are smooth. Thus, there is no
need to alter the flow equation if we want to regularise the F -functionals. The regularised
versions of the F -functionals, called Fƒ;ƒ0D .˝NiD1OAi /, are therefore quite easily obtained
in an analogous manner to the CAG’s Lƒ;ƒ0D .OA1.x/˝OA2.0// by simply changing the
boundary conditions:

7Explicit bounds on these functions have been given in [15] (for the case D D ŒA1�C ŒA2�) and [26].
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Definition 1 (Regularised AG’s): The amputated Green’s functions (AG’s) with in-
sertions and regularisation are defined for any D � �1 as

G
ƒ;ƒ0
D .˝NiD1OAi / WD „F

ƒ;ƒ0
D .˝NiD1OAi /C

NY
iD1

Lƒ;ƒ0.OAi / ; (3.1.38)

where the functionals Fƒ;ƒ0D are required to satisfy the flow equation (3.1.33) and the

boundary conditions

@w
Ep
F
0;ƒ0
D;n;l

.˝NiD1OAi .xi/I
E0/
ˇ̌̌
xND0

D 0 for nC jwj � D (3.1.39)

@w
Ep
F
ƒ0;ƒ0
D;n;l

.˝NiD1OAi .xi/I Ep/
ˇ̌̌
xND0

D 0 for nC jwj > D : (3.1.40)

Evidently, Fƒ;ƒ0DD�1.˝
N
iD1OAi / D Fƒ;ƒ0.˝NiD1OAi / are the functionals without regulari-

sation. We will see below in bound 1 that, indeed, the functionals defined above are of
scaling degree (recall eq.(2.1.13) for the definition of this concept)

sd.Fƒ;ƒ0D .˝NiD1OAi // � ŒA1�C : : :C ŒAN � �D (3.1.41)

in the spacetime arguments xi , which confirms the role of D as a regularisation parameter.
Note that in the N D 2 case, FD reduces to the CAG with two insertions, i.e.

F
ƒ;ƒ0
D .OA.x/˝OB.0// D �L

ƒ;ƒ0
D .OA.x/˝OB.0// (3.1.42)

since both sides of the equation share the same flow equation and boundary conditions.
For N � 3, however, such a simple relation does not seem to exist.

The spacetime derivatives of the AG’s with insertions satisfy some properties which
will come in handy in later sections. These relations are generalisations of the so called
Lowenstein rules, which can be found for example in [43, 23].

Proposition 1: The amputated Green’s functions with operator insertions satisfy the

relations

@vxj G
ƒ;ƒ0
D .˝NiD1OAi .xi//

ˇ̌̌
xND0

D G
ƒ;ƒ0
D

�
@vxj ˝

N
iD1 OAi .xi/

� ˇ̌̌
xND0

; (3.1.43)

for any 1 � j < N , and

.@x1 C : : :C @xN /
v G

ƒ;ƒ0
D .˝NiD1OAi .xi// D G

ƒ;ƒ0
DCjvj

�
.@x1 C : : :C @xN /

v
˝
N
iD1 OAi .xi/

�
;

(3.1.44)
where v 2 N4 .
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Remark 1: Note that on the left hand side the derivatives act on the functional Gƒ;ƒ0
D;n;l

,
whereas they act directly on the composite fields OAi on the right hand side. By @wOA

we mean the linear combination of monomials which are obtained by carrying out the
derivatives in the obvious manner. We also note that in the case N D 1, these Lowenstein
rules imply

@vxL
ƒ;ƒ0.OA.x// D L

ƒ;ƒ0.@vxOA.x// : (3.1.45)

Proof. We derive all the claimed relations using the same general strategy: If two function-

als satisfy the same linear flow equations and the same boundary conditions, then these

functionals must coincide. We will, in fact, apply this strategy repeatedly in this thesis.

To begin with, let us verify the Lowenstein rule for the case of one insertion, eq.(3.1.45).
Note that both sides of the equation obey the same linear homogeneous flow equation.
Further, note that, using the translation properties of the CAG’s with insertions, we can
write

@vxL
ƒ;ƒ0
n;l

.OA.x/I Ep/ D @
v
xe
i.p1C:::Cpn/x L

ƒ;ƒ0
n;l

.OA.0/I Ep/

D i jvj.p1 C : : :C pn/
vL

ƒ;ƒ0
n;l

.OA.x/I Ep/ :
(3.1.46)

Combining this equation with the boundary conditions for the CAG’s with one insertion,
eqs.(3.1.27) and (3.1.28), it is easy to check that both sides of eq.(3.1.45) are also subject
to the same boundary conditions. Thus, both sides of eq.(3.1.45) must coincide.

To continue, let us come to the proof of eq.(3.1.43). Recall first the definition of the AG’s
with insertions, Gƒ;ƒ0D , from equation (3.1.38). In view of eq.(3.1.45), we immediately
find that the factorised contributions to both sides of (3.1.43) coincide, i.e.

@vxj

NY
iD1

Lƒ;ƒ0.OAi .xi// D L
ƒ;ƒ0.@vxjOAj .xj //

NY
iD1
i¤j

Lƒ;ƒ0.OAi .xi// : (3.1.47)

Concerning the remaining contributions from the Fƒ;ƒ0D functionals, we again simply
compare flow equations and boundary conditions to see that both sides of the equation
coincide.

Finally, the relation (3.1.44) can be derived in a very similar way. Again it is not hard to
check that both sides of the equation satisfy the same flow equation. To see that also the
boundary conditions coincide, we need the translation property for the AG’s

G
ƒ;ƒ0
D;n;l

.˝NiD1OAi .xi/I Ep/ D exp.i.p1 C : : :C pn/y/G
ƒ;ƒ0
D;n;l

.˝NiD1OAi .xi � y/I Ep/ ;

(3.1.48)
where we made use of eq.(3.1.35) and (3.1.22). Choosing y D .x1 C : : :C xN /=N and
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taking the corresponding derivatives of this equation then yields

.@x1 C : : :C @xN /
v G

ƒ;ƒ0
D;n;l

.˝NiD1OAi .xi/I Ep/ D .p1C: : :Cpn/
v G

ƒ;ƒ0
D;n;l

.˝NiD1OAi .xi/I Ep/ :

(3.1.49)
The powers of Ep imply that the right hand side of this equation is subject to the same
boundary conditions as the right hand side of (3.1.44), which finishes the proof of the
proposition.

3.1.4. Regularisation of subdivergences

In the previous section we have outlined a procedure that allows us to improve the total
scaling degree of the amputated Green’s functions Gƒ;ƒ0.˝NiD1OAi /. In other words, we
are able to control the singular behaviour of these functionals with respect to the total
diagonal x1 D : : : D xN . In some applications, however, one might want to remove only
divergences associated to the partial diagonals of a subset of the spacetime arguments
x1; : : : ; xN . In the present section we will define this regularisation of subdivergences,
which is one of the main technical advances to the flow equation framework provided by
this thesis.

It is a priori far from clear how to generalise the strategy of the previous section to
subdivergences. The following lemma provides a decomposition of the AG’s that will be
helpful for this purpose:

Lemma 1: For any N � 2 and M < N the following decomposition holds:

Gƒ;ƒ0.˝NiD1OAi / D G
ƒ;ƒ0.˝MiD1OAi / G

ƒ;ƒ0.˝NiDMC1OAi /

C „Hƒ;ƒ0.˝MiD1OAi I˝
N
iDMC1OAi /

(3.1.50)

Here the functionals Hƒ;ƒ0 are defined through the flow equation

@ƒH
ƒ;ƒ0.˝MiD1OAi I˝

N
iDMC1OAi / D

„

2
h
ı

ı'
; PCƒ ?

ı

ı'
iHƒ;ƒ0.˝MiD1OAi I˝

N
iDMC1OAi /

�h
ı

ı'
Hƒ;ƒ0.˝MiD1OAi I˝

N
iDMC1OAi /;

PCƒ ?
ı

ı'
Lƒ;ƒ0i

Ch
ı

ı'
Gƒ;ƒ0.˝MiD1OAi /;

PCƒ ?
ı

ı'
Gƒ;ƒ0.˝NiDMC1OAi /i

(3.1.51)

and the boundary conditions

@w
Ep
H
ƒ0;ƒ0
n;l

.˝MiD1OAi I˝
N
iDMC1OAi I Ep/ D 0 for all n; l; w: (3.1.52)

Remark 2: The lemma can also be understood diagrammatically. On the l.h.s. of equation
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(3.1.50) we have all (amputated) diagrams with insertion of extra vertices corresponding to
the composite operators OA1; : : : ;OAN . The first term on the r.h.s. stands for the factorised
contributions, where the diagrams containing the OA1; : : : ;OAM vertices are disconnected
from the diagrams containing the OAMC1; : : : ;OAN vertices. The second term on the
r.h.s. then contains all contributions where at least one pair of vertices OAi ;OAj with
1 � i �M < j � N belong to the same connected diagram.

Proof. We will show that both sides of the equation satisfy the same flow equation and
boundary conditions. First, we note that the fully factorised term

QN
iD1L

ƒ;ƒ0.OAi /

appears on both sides of the equation, so we can just subtract it and arrive at the equivalent
claim

„Fƒ;ƒ0.˝NiD1OAi /

D„
2Fƒ;ƒ0.˝MiD1OAi / F

ƒ;ƒ0.˝NiDMC1OAi /C „F
ƒ;ƒ0.˝MiD1OAi /

NY
jDMC1

Lƒ;ƒ0.OAj /

C

MY
iD1

Lƒ;ƒ0.OAj / „F
ƒ;ƒ0.˝NjDMC1OAj /C „H

ƒ;ƒ0.˝MiD1OAi I˝
N
iDMC1OAi /

(3.1.53)

Note that in view of eqs. (3.1.34) and (3.1.52), all the terms in this expression satisfy the
same trivial boundary conditions. Let us now determine the flow equation satisfied by the
r.h.s. of the equation. Using eq.(3.1.33) we find for the first term

@ƒ

�
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Lƒ;ƒ0.OAr /F
ƒ;ƒ0.˝NkDMC1OAk /
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X
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(3.1.54)



38 CHAPTER 3. THE OPE IN PERTURBATION THEORY

For the second term we obtain
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(3.1.55)

The flow equation for the third term is analogous to the one above, with the roles of the
indices .1; : : : ;M/$ .M C 1; : : : ; N / exchanged. With these flow equations at hand, it
is a straightforward exercise to check that the right hand side of eq.(3.1.53) satisfies a flow
equation of the form

@ƒŒr.h.s. of (3.1.53)�

D
„

2
h
ı

ı'
; PCƒ ?

ı

ı'
i Œr.h.s. of (3.1.53)� � h

ı

ı'
Œr.h.s. of (3.1.53)�; PCƒ ?
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C„

X
1�i<j�N

h
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Lƒ;ƒ0.OAi /;

PCƒ ?
ı

ı'
Lƒ;ƒ0.OAj /i

Y
r2f1;:::;N gnfi;j g

Lƒ;ƒ0.OAr /

(3.1.56)

which coincides with the flow equation for „Fƒ;ƒ0.˝NiD1OAi /, see eq.(3.1.33). To sum-
marise, we have shown that both sides of eq.(3.1.53) satisfy the same flow equation and
boundary conditions, which establishes their equality.
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The decomposition provided by lemma 1 suggests the following definition:

Definition 2 (Partially regularised AG’s): Let M < N � 2. We denote the ampu-

tated Green’s functions with operator insertions OA1.x1/; : : : ;OAN .xN /, regularised to

degree D � ŒA1�C : : :C ŒAM � in the coordinates x1; : : : ; xM , by

Gƒ;ƒ0.Œ˝MiD1OAi �D ˝
N
MC1 OAi /. These functionals are defined as

Gƒ;ƒ0
�
Œ˝MiD1OAi �D ˝

N
MC1 OAi

�
WD G

ƒ;ƒ0
D .˝MiD1OAi / G

ƒ;ƒ0.˝NiDMC1OAi /

C „Hƒ;ƒ0
�
Œ˝MiD1OAi �DI˝

N
iDMC1OAi

� (3.1.57)

where Hƒ;ƒ0
�
Œ˝MiD1OAi �DI˝

N
iDMC1OAi

�
is defined through the flow equation (3.1.51)

with Gƒ;ƒ0.˝MiD1OAi / replaced by Gƒ;ƒ0D .˝MiD1OAi /, subject to the boundary conditions

(3.1.52).

The bounds on these functionals derived below in section 3.2.3 show that the parameter D
does indeed allow us to improve regularity on the partial diagonal x1 D : : : D xM , while
the behaviour on the other diagonals in Diagf1;:::;N g remains unaffected. We also note that
the spacetime derivatives of the partially regularised AG’s satisfy the Lowenstein rule

.@x1 C : : :C @xM /
v Gƒ;ƒ0

�
Œ˝MiD1OAi �D ˝

N
MC1 OAi

�
D Gƒ;ƒ0

�
Œ.@x1 C : : :C @xM /

v
˝
M
iD1 OAi �DCjvj ˝

N
MC1 OAi

�
(3.1.58)

which follows straightforwardly from proposition 1, and that they satisfy the translation
identity

G
ƒ;ƒ0
n;l

�
Œ˝MiD1OAi .xi/�D ˝

N
MC1 OAi .xi/I Ep

�
D ei.p1C:::Cpn/y G

ƒ;ƒ0
n;l

�
Œ˝MiD1OAi .xi � y/�D ˝

N
MC1 OAi .xi � y/I Ep

�
;

(3.1.59)

which follows with the help of eq.(3.1.48) by comparing the defining flow equation and
boundary conditions for both sides of the equation.

3.1.5. OPE coefficients

We next give the definition of the OPE coefficients. To have a more compact notation, let
us define the operator DA acting on differentiable functionals F.'/ of Schwartz space
functions ' 2 S.R4/ by

DAF.'/ D
.�i/jwj

nŠwŠ
@w
Ep

ın

ı O'.p1/ � � � ı O'.pn/
F.'/

ˇ̌̌̌
O'D0; EpD0

; (3.1.60)
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where A D fn;wg. Further, let us also define the multivariate Taylor expansion operator
through

T
j

Ex!Ey
f .Ex/ D T

j

.x1;:::;xN /!.y1;:::;yN /
f .x1; : : : ; xN / D

X
jwjDj

.Ex � Ey/w

wŠ
@wf . Ey/

(3.1.61)
where Ex D .x1; : : : ; xN / and where f is a sufficiently smooth function on R4N . For
expansions around zero we will use the shorthand T

j

Ex!E0
DW T

j

Ex
. Then the OPE coefficients

are defined as follows [26]:

Definition 3 (OPE coefficients): Let � WD ŒB� � .ŒA1� C : : : C ŒAN �/. The OPE

coefficients are defined in terms of the regularised AG’s with insertions as

CB
A1:::AN

.x1; : : : ; xN�1; 0/ WD DB

8<:G0;ƒ0ŒB��1

0@.1 �X
j<�

T
j

Ex
/˝NiD1 OAi .xi/

1A9=; ;

(3.1.62)
where it is understood that xN D 0.

Remark 3: In the case N D 2 this definition is equivalent to the one given in [15]. Note
also that the OPE coefficients are translation invariant, so we may e.g. put the last point to
zero by a translation, as we have done above to get a simpler formula.

3.2 Bounds on Green’s functions with insertions
In the previous section we have defined all quantities of interest for the purpose of the
present work, such as (regularised) Schwinger functions and OPE-coefficients. As men-
tioned earlier, the reason we have cast perturbative g'4-theory in this form is that the flow
equation approach to the theory allows us to derive bounds on the quantities of interest via
an inductive scheme, which is based on the renormalisation group flow equations. These
bounds will be presented in the present section. The corresponding proofs, which are
somewhat lengthy and technical in nature, can be found in appendix A.

Before we come to the statement of the various bounds, let us first give a brief account of
the general idea behind the induction scheme, which is used repeatedly in the derivation of
these bounds. First, consider as an example the CAG’s without operator insertion. Recall
from eq.(3.1.10) that these objects satisfy a flow equation, which is roughly of the form

@ƒL
ƒ;ƒ0
2n;l

D �

Z
k

PCƒ.k/L
ƒ;ƒ0
2nC2;l�1

.k;�k; : : :/C �
X

l1Cl2Dl

n1Cn2DnC1

L
ƒ;ƒ0
2n1;l1

PCƒ.q/L
ƒ;ƒ0
2n2;l2

;

(3.2.1)
where we used a shortened notation for the sake of simplicity of this schematic outline. In
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order to show that the CAG’s satisfy a certain bound, let us call it jLƒ;ƒ0
2n;l
j � B

ƒ;ƒ0
2n;l

, we
can use the following induction procedure (see also fig. 3.1):

� Assume that the estimate is true for all L
ƒ;ƒ0
2n;l

satisfying 2nC 2l < 2r for some
constant r 2 N.

� Note that the right hand side of the flow equation for L
ƒ;ƒ0
2r;0 contains only CAG’s

with 2nC 2l < 2r . This can be seen as follows: The first term on the r.h.s. of the
flow equation vanishes trivially in the case l D 0. For the second term we note that8

L
ƒ;ƒ0
2;0 D 0, which implies that each of the two factors L

ƒ;ƒ0
2n1;l1

and L
ƒ;ƒ0
2n2;l2

satisfies
2ni C 2li < 2r .

� Thus, we can substitute our inductive bound, jLƒ;ƒ0
2n;l
j � B

ƒ;ƒ0
2n;l

, for the CAG’s with
2nC 2l < 2r on the r.h.s. of the flow equation for L

ƒ;ƒ0
2r;0 and integrate over ƒ in

order to derive a bound for this CAG as well. In order for the induction to close, this
bound should imply jLƒ;ƒ0

2r;0 j � B
ƒ;ƒ0
2r;0 .

� Keeping 2nC 2l D 2r fixed, we then ascend in l , i.e. we next verify our bound for
L
ƒ;ƒ0
2.r�1/;1

. The r.h.s. of the flow equation again contains CAG’s with 2nC 2l < 2r ,
as well as additionally the CAG L

ƒ;ƒ0
2r;0 . All of these have been bounded already in

the inductive procedure. By iteration, we thereby verify our bound for all CAG’s
L
ƒ;ƒ0
2n;l

with 2nC 2l D 2r .

� Repeat the procedure to determine the CAG’s with 2nC 2l D 2r C 2, and so on.

l

n

0 1 2 3 4 5

2
4
6
8

10

Figure 3.1.: Schematic visualisation of the induction procedure used to derive various
bounds on the Schwinger functions

Some further explanations are in order. First, we have mentioned in the outline above
that we have to integrate the flow equation. However, we have not specified the limits of
integration. This is where the boundary conditions (3.1.11) and (3.1.12) come into play.

8The equation L
ƒ;ƒ0
2;0 D 0 can be seen either directly from the definition (3.1.5) or alternatively from the

flow equation and boundary conditions for these CAG’s.
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� For 2n � 4 the boundary conditions are given at ƒ0 D 0. Hence, we integrate over
ƒ0 from 0 to ƒ in this case. At this stage, our choice for the coupling constant enters
the scheme via the boundary condition L

0;ƒ0
4;0 .
E0/ D g=4Š. The contributions with

2n � 4 are known as relevant terms in the literature.

� For 2n � 5 the boundary conditions are given at ƒ0 D ƒ0. Hence, we integrate over
ƒ0 from ƒ to ƒ0 in this case. These contributions are known as irrelevant terms in
the literature.

Note also that the boundary conditions for the relevant terms are given at vanishing
momentum. This complicates the induction scheme somewhat. In order to obtain a
bound for the relevant terms also at non-vanishing momentum one has to perform a Taylor
expansion with remainder in the momenta. Thus, one is forced to also include momentum
derivatives of the CAG’s in the induction scheme. These subtleties of the induction will be
discussed in more detail in the actual proofs in appendix A.

In the following we will not derive new bounds on the CAG’s themselves, but we
are mainly interested in the AG’s with operator insertions and regularisation, defined in
sections 3.1.3 and 3.1.4. More precisely, we will derive estimates on the functionals Fƒ;ƒ0D

and Hƒ;ƒ0 defined in those sections. The flow equation for the F -functionals is of the
general form

@ƒF
ƒ;ƒ0
D;2n;l

D �

Z
k

PCƒ.k/F
ƒ;ƒ0
D;2nC2;l�1

.k;�k; : : :/C �
X

l1Cl2Dl

n1Cn2DnC1

F
ƒ;ƒ0
D;2n1;l1

PCƒ.q/L
ƒ;ƒ0
2n2;l2

C ” Source Terms”

(3.2.2)

where source terms stands for the momentum integral over a product of CAG’s with one
operator insertion. We see that the first two terms on the r.h.s. of this flow equation are of a
similar form as in the case of the CAG’s above. It should therefore not come as a surprise
that we can use the same induction scheme for these terms. In contrast to the CAG case,
however, we have an additional term on the r.h.s. of the flow equation. Hence, we have to
make sure that this source term satisfies a bound that is consistent with our inductive bound.
This is in fact the main complication in the derivation of the bounds for the AG’s with
insertions. The corresponding bounds on the source terms can be found in the appendix,
see lemma 6. In order to arrive at this estimate, we make use of the known bounds on
the CAG’s with one insertion (see [15] and section 3.2.1). For the H -functionals one can
proceed in a similar fashion. Here the source terms are the AG’s with operator insertions.
Since we derive bounds on these quantities first, we can use those bounds in order to
estimate the source terms for the H -functionals, see lemma 8 and 9 in the appendix.
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Remark 4: The loop expanded (inserted or non-inserted) CAG’s depend on the coupling
constant g in an obvious manner; the non-inserted functions L

ƒ;ƒ0
2n;l

carry a power of
g.2n�2/=2Cl for example. For the sake of simplicity, we will set g D 1 in the following.

3.2.1. CAG’s with up to one insertion

Bounds on CAG’s without insertions and on those with one insertion were derived in [48,
15]. It can be seen from the decomposition (3.1.38) that these bounds are a crucial
input for the subsequent bounds on AG’s with multiple insertions, as both the factorised
contribution

QN
iD1L

ƒ;ƒ0.OAi / as well as the Fƒ;ƒ0-functionals depend on the CAG’s
with one insertion [the latter via the flow equation (3.1.33)].

Let us recall the bound for the CAG’s without insertions first [48, 15]. There exists a
constant K > 0 such that for 2nC jwj � 5 (recall also the definitions of j Epj and � from
our notations and conventions section above)

j@w
Ep
L
ƒ;ƒ0
2n;l

.p1; : : : ; pn�1/j

�
p
jwjŠ ƒ4�2n�jwj K.2nC4l�4/.jwjC1/ .nC l � 2/Š

`.n;l/X
�D0

log�.sup. j Epj
�
; �
m
//

2� �Š
;

(3.2.3)

where `.n; l/ D l if n � 2 and `.n; l/ D l � 1 if n D 1 . For 2nC jwj � 4 one has
the estimates

jL
ƒ;ƒ0
4;l

. Ep/j �
K2l

.l C 1/2 24
.1C l/Š

lX
�D0

log�
�
sup. j Epj

�
; �
m
/
�

2� �Š
; (3.2.4)

j@w
Ep
L
ƒ;ƒ0
2;l

.p/j � sup.jpj; �/2�jwj
K2l�1

.l C 1/2
lŠ

l�1X
�D0

log�
�
sup. jpj

�
; �
m
/
�

2� �Š
: (3.2.5)

We also recall the following bound for the CAG’s with one insertion [15]. Fix any
A D fr; vg. Then

j@w
Ep
L
ƒ;ƒ0
2n;l

.OA.0/I Ep/j �ƒ
ŒA��2n�jwjK.4nC8l�4/jwjKŒA�.nC2l/3

p
jwjŠ jvjŠ

�

d.ND1;n;l;w;ŒA�/X
�D0

1p
�Š

�
j Epj

ƒ

�� 2lCn�1X
�D0

log�.sup. j Epj
�
; �
m
//

2��Š
;

(3.2.6)

where K > 0 is a constant, and where we defined

d.N; n; l; w;D0/ WD 2D0.nC l C 2.N � 1//C sup.D0 C 1 � 2n � jwj; 0/ : (3.2.7)
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For n D l D 0 the CAG’s with one insertion vanish, L
ƒ;ƒ0
0;0 .OA.0// D 0. Eventually we

would of course like to remove the cutoffs, i.e. take the limits ƒ! 0 and ƒ0 !1. In
this respect, the following bounds, which hold for ƒ � m, will be useful [15]

j@w
Ep
L
ƒ;ƒ0
2n;l

. Ep/j � m4�2n�jwj
K.2nC4l�4/.jwjC1/

nŠ
.nC l � 1/Š

�
p
jwjŠ .jwj C 2n � 4/Š

lX
�D0

log�C.
j Epj

m
/

2� �Š
for 2nC jwj � 5

(3.2.8)

j@w
Ep
L
ƒ;ƒ0
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.OA.0/I Ep/j � m
ŒA��2n�jwj K.4nC8l�4/jwj KŒA�.nC2l/3

p
jwjŠ jvjŠ

�
p
Œ2nC jwj � ŒA��CŠ

d.ND1;n;l;w;ŒA�/X
�D0

�
j Epj

m

�� 2lCn�1X
�D0

log�C.
j Epj

m
/

2� �Š
;

(3.2.9)

where by Œ � �C we mean the positive part of the respective expression (see also our notations
and conventions section).

3.2.2. Amputated Green’s functions with N insertions

The amputated Green’s functions (AG’s) with regularisation on the total diagonal were
defined in section 3.1.3. These functionals are of major interest to us not only since they
appear in the definition of the OPE-coefficients, but also because they are closely related
to the remainder of the OPE (see lemma 2 below).

We will first derive a bound on the moments of the Fƒ;ƒ0D -functionals and then combine
this with the bounds on the CAG’s with one insertion, eqs.(3.2.6) and (3.2.9), in order
to estimate the AG’s, making use of the decomposition (3.1.38). These bounds will also
confirm the nature of D as a regularisation parameter for the singularity on the total
diagonal, and they will further allow us to prove that the AG’s with insertions are real
analytic functions in the spacetime arguments for non-coinciding points.

Bound 1: Let xN D 0 andD � D0 D ŒA1�C : : :C ŒAN �. There exists a constantK > 0

such that

j@w
Ep
F
ƒ;ƒ0
D;2n;l

.˝NiD1OAi .xi/I Ep/j � m
D�2n�jwjK.4nC8l�3/jwjCD0.nC2l/3

p
D0Š.D0 �D/Š

�

jwjŠ max
1�i�N

jxi j
max.jwj;DC1/

min
1�i<j�N

jxi � xj jD
0�DCmax.jwj;DC1/

sup

�
1;
j Epj

m

�d.N;n;l;w;D0/ 2lCnX
�D0

log�C.
j Epj

m
/

2��Š

(3.2.10)

with d.N; n; l; w;D0/ WD 2D0.nC l C 2.N � 1//C sup.D0 C 1 � 2n � jwj; 0/.
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Remark 5: The bound leads us to the following observations:

1. If we scale the spacetime arguments by a multiplicative factor " > 0, i.e.

x1; : : : ; xN�1 ! "x1; : : : ; "xN�1 ; (3.2.11)

the bound behaves as "D�D
0

. In other words, the bound implies

sdFƒ;ƒ0D .˝NiD1OAi / � D
0
�D ; (3.2.12)

as indicated in section 3.1.3. Thus, we can see explicitly that the parameter D
improves regularity on the total diagonal x1 D : : : D xN D 0. Note, however, that
our bounds do not imply improved regularity on the partial diagonals, i.e. in the case
where only a subset of the spacetime arguments are scaled together.

2. The conventional opinion, based on dimensional arguments, is that the short distance
behaviour of the quantity in question should in fact be of the form "D�D

0C1 log."/r

for some r 2 N depending on the loop order. In fact, such a behaviour was indeed
shown to hold in the Lorentzian setting using a different approach to quantum field
theory [12]. At present, we are only able to give formal arguments that support this
expectation in the flow equation framework. Namely, as first observed in [23], one
could improve our bound (3.2.10) to yield the scaling behaviour "D�D

0C1�ı for any
0 < ı 2 R if we were allowed to calculate with non-integer powers of the partial
derivative .@k/ı as we do with integer powers. One could then simply follow the
proof of bound 1, but replacing D ! D C 1 � ı throughout the proof. The crucial
step where .@k/ı would have to be used appears in the proof of lemma 6, where
partial integrations in the momentum variables have to be performed to obtain the
correct ƒ behaviour. It might be possible to put these formal manipulations on solid
footing, using the techniques of fractional calculus [49, 50], but this is beyond the
scope of the present work.

3. One can derive a version of the bound (3.2.10) where the factor min jxi � xj j
D�D0

is replaced by a factor ƒD
0�D

0 =
p
.D0 �D/Š. We conclude, also taking into account

the Lowenstein rule (3.1.43), that the F -functionals are smooth in the spacetime
arguments as long as we keep ƒ0 finite. We will briefly explain in appendix A.1.1
how this version of the bound is obtained.

4. Concerning the behaviour in the infrared (i.e. jxi j ! 1 for all 1 � i < N ), we
will also show (see the discussion in appendix A.1.2) that it is possible to introduce
any number r 2 N of additional inverse powers of .m � min1�i<j�N jxi � xj j/

on the right hand side of (3.2.10) at the cost of a factor rŠ. This property is not
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surprising in view of the characteristic exponential decay of Schwinger functions at
large distances in massive quantum field theories.

5. As mentioned previously, in the case N D 2 the F -functionals coincide (up to a
sign) with the CAG’s with two insertions. These have been estimated by Hollands
and Kopper in [15] for the particular choice D D ŒA1�C ŒA2� (full regularisation)
and jwj � D C 1, and by Hollands and the author in [26] for any D � ŒA1�C ŒA2�
and any w 2 N8n.

The somewhat lengthy proof of the inequality (3.2.10), which is based on the inductive
scheme sketched in the previous section, can be found in appendix A.1. It is now an easy
exercise to derive a bound on the AG’s with insertions, Gƒ;ƒ0D , which is the upshot of this
section.

Corollary 1: Let D � D0 D ŒA1� C : : : C ŒAN �. For ƒ � m there exists a constant

K > 0 such that
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1�i<j�N

jxi � xj jD
0�D
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mD

0�Dp
.D0 �D/Š

1A
(3.2.13)

with d.N; n; l; w;D0/ WD 2D0.nC l C 2.N � 1//C sup.D0 C 1 � 2n � jwj; 0/.

Remark 6: This bound implies convergence of the Taylor expansion of the AG’s with
operator insertions, @w

Ep
G
ƒ;ƒ0
D;2n;l

.˝NiD1OAi .xi//, with respect to the spacetime variables in a
neighborhood of Ex 2 R4N nMN , for any degree of regularisation D � ŒA1�C : : :C ŒAN �,
and uniformly in ƒ;ƒ0. This can be seen from the fact that the bound grows like

j Š
�
sup.j Epj=m; 1/2.nClC2N/ QK=jxj

�j
(3.2.14)

if we take j derivatives with respect to Ex and write QK D K.nC2l/3 . Hence the AG’s with
insertions are real analytic in Ex away from the partial diagonals, and the same holds for the
OPE coefficients, related to them by defn. 3.

Proof of corollary 1. Recall form (3.1.38) that Gƒ;ƒ0D is defined as the sum of Fƒ;ƒ0D and
a product of CAG’s with one insertion. It follows from bound 1 and from the translation
properties (3.1.35) that the F -functionals satisfy the claimed inequality, (3.2.13). For the
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factorised contributions we may write, using the translation property (3.1.22) (recall from
the notation and conventions section that by cfwj g we denote multi-nomial factors),

ˇ̌
@w
Ep

NY
iD1

L
ƒ;ƒ0
2ni ;li

.OAi .xi/I Epi/
ˇ̌
�

X
w1Cw2Dw

cfwj g jExj
jw1j
ˇ̌
@
w2
Ep

NY
iD1

L
ƒ;ƒ0
2ni ;li

.OAi .0/I Epi/
ˇ̌

(3.2.15)
Combining this inequality with the bound (3.2.9), it is straightforward to check that also
the product CAG’s with one insertion satisfies the inequality (3.2.13).

We will see below that the convergence and factorisation property of the operator product
expansion are related to coordinate space Taylor expansions of the AG’s with insertions.
In this context, the following bound will prove to be useful:

Bound 2: Let D D D0 C�, where D0 D ŒA1�C : : :C ŒAN � and � > 0. For ƒ � m

there exists a constant K > 0 such that
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with d.N; n; l; w;D0/ WD 2D0.nC l C 2.N � 1//C sup.D0 C 1 � 2n � jwj; 0/.

Remark 7: The bound is a slight improvement over the estimate one would obtain
through a combination of corollary 1 and the remainder formula for the Taylor expansion,
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(3.2.17)

Namely, this method would yield a bound which is essentially of the same form as (3.2.16),
but with the replacement0@ max

1�i�N
jxi � xN j
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in the last line. While the difference between the two results is irrelevant for our study
of convergence of the OPE, the stronger result (3.2.16) will be useful in our proof of the
factorisation result, theorem 3. The proof of bound 2 can be found in appendix A.2.

3.2.3. Amputated Green’s functions with partial regularisation

The AG’s with insertions and regularisation with respect to a partial diagonal have been
defined in section 3.1.4. As we will see later in section 3.4, these objects appear when
one performs the OPE of a product OA1 : : :OAN in only a subset of these operators, say
OA1; : : : ;OAM with M < N , while leaving the others as spectators. We are interested in
this type of partial OPE, because it will allow us to derive non trivial algebraic relations
between the OPE coefficients.

Again, we will see that our bounds will justify our terminology, in the sense that the
functionals Gƒ;ƒ0.Œ˝MiD1OAi �D ˝

N
jDMC1 OAj / will indeed be shown to become more

regular on the partial diagonal x1 D : : : D xM as we increase D.

Bound 3: Let D � ŒA1�C : : :C ŒAM �, xM D 0 and ƒ � m. There exists a constant

K > 0 such that
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(3.2.19)

withD0 D ŒA1�C : : :C ŒAN � and d.N; n; l; w;D0/ WD 2D0.nClC2.N �1//Csup.D0C

1 � 2n � jwj; 0/.

Remark 8: We are led to the following observations:

1. If we scale the spacetime arguments x1; : : : ; xN by a multiplicative factor " > 0, the
bound behaves as "�.D

0C1/, which suggests that the parameter D does not influence
the singular behaviour on the total diagonal.
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2. If we only scale the spacetime arguments x1; : : : ; xM�1 by a factor ", i.e.

.x1; : : : ; xN /! ."x1; : : : ; "xM�1; xM D 0; xMC1; : : : ; xN / ; (3.2.20)

the bound behaves as "�.ŒA1�C:::CŒAM ��D/ in the limit " ! 0. Thus, we can see
that, as advertised, the parameter D improves regularity on the partial diagonal
x1 D : : : D xM .

3. It was mentioned in remark 5 that one can derive bounds on the AG’s with insertions
with an improved infrared behaviour (i.e. at large separation of the spacetime
arguments) without much extra effort. The same is true here for the H -functionals.
Using a strategy analogous to the one outlined in appendix A.1.2, we can introduce
any number r 2 N of inverse powers of .m �min jxi � xj j/ where 1 � i � M <

j � N at the cost of a factor rŠ.

The proof of bound 3 is given in appendix A.3. As we will see below in section 3.4, the
remainder of the partial OPE is related to a Taylor expansion of the partially regularised
AG’s with insertions. The following bound will allow us to estimate this remainder:

Bound 4: Let D D ŒA1�C : : :C ŒAM �C�, where and � > 0, and assume jxi � xM j �

jxj � xM j for all 1 � i � M and M C 1 � j � N . For ƒ � m there exists a constant
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jxi � xj j; 1=m

�
1AD0C1 �

0@ max
1�i<j�N

jxi � xj j

min
1�i<j�N

jxi � xj j

1A2D0C3jwjC2

�

�
QK sup. j Epj

m
; 1/2nC2lC4N max

1�i�M
jxi � xM j

��
min

��
min

M<j�N
jxj � xM j��1 � min

1�i<j�N
jxi � xj j

�
;
p
�Š
m�

� �
0@ max

M<i�N
jxi � xN j

min
M<i<j�N

jxi � xj j

1A�

(3.2.21)

where D0 D ŒA1�C : : :C ŒAN �.

The proof of this bound can be found in appendix A.4.
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3.3 Proof of OPE convergence

The bounds presented in the previous section will now be put to use. Our aim is to prove
two of the main results of this thesis, namely convergence and (long distance) factorisation
of the OPE. We begin with the former. More precisely, we would like insert equation
(1.0.1) into a correlation function with suitable spectator fields and estimate the difference
between left- and right hand side. These spectator fields play the role of a quantum state in
the Euclidean context. Our quite simple and natural choice is as follows:

Let fp.x/ be any smooth function on x 2 R4 such that the support of the Fourier
transform Ofp.q/ is contained in a ball jp � qj � 1. Define the smeared spectator fields by

'.fp/ �

Z
d4x '.x/ fp.x/ : (3.3.1)

Using this convention, we are ready to state our result.

Theorem 1 (OPE convergence): The remainder of the operator product expansion,

carried out up to operators of dimension D D
PN
iD1ŒAi �C�, at l-loops, is bounded byˇ̌̌D

OA1.x1/ � � �OAN .xN / '.fp1/ � � �'.fpn/
E

�

X
C WŒC ��D

CC
A1:::AN

.x1; : : : ; xN /
D
OC .xN / '.fp1/ � � �'.fpn/

Eˇ̌̌
l�loops

� mn�1
NY
iD1

p
ŒAi �Š

Y
j

sup j Ofpj j sup.1;
j Epjn

m
/.2

P
ŒAi �C2�/.nClC2N/C3n

�

2lCn=2X
�D0

log� sup.1; j Epjn
m
/

2��Š

1
p
�Š

. QK m max1�i�N jxi � xN j/
P
ŒAi �C1C�

min1�i<j�N jxi � xj j
P
ŒAi �C1

(3.3.2)

in g'4-theory. Here ŒA� denotes the canonical dimension of a composite field OA as in

eq. (3.1.13). QK is a constant depending on n and l .

Remark 9: A version of the bound for N D 2 was first given in [15] by Hollands and
Kopper, and a version for N D 3 due to Hollands and the author can be found in [26].
Evidently, the bound implies convergence of the operator product expansion for any finite
distance of the spacetime arguments and to any order in perturbation theory. This can be
seen from the fact that lim�!1 c

�=
p
�Š D 0 for any c 2 R.
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Proof. We define the remainder functional

R
ƒ;ƒ0
D .˝NiD1OAi .xi// WD Gƒ;ƒ0.˝NiD1OAi .xi//

�

X
C WŒC ��D

CC
A1:::AN

.x1; : : : ; xN / L
ƒ;ƒ0.OC .xN // ;

(3.3.3)

which, in view of equation (3.1.30), allows us to write (for the theory with UV and IR
cutoffs ƒ0 and ƒ),ˇ̌̌D

OA1.x1/ � � �OAN .xN / '.fp1/ � � �'.fpn/
E

�

X
C WŒC ��D0��

CC
A1:::AN

.x1; : : : ; xN /
D
OC .xN / '.fp1/ � � �'.fpn/

Eˇ̌̌

D

nX
jD1

X
I1[:::[IjDf1;:::;ng

Ii\IjD;
l1C:::CljDl

„
nClC1�j

�

Z
Eq

R
ƒ;ƒ0
D;jI1j;l1

.˝NiD1OAi I EqI1/
NL
ƒ;ƒ0
jI2j;l2

.EqI2/ � � �
NL
ƒ;ƒ0
jIj j;lj

.EqIj /

nY
iD1

h
Ofpi .qi/ C

ƒ;ƒ0.qi/
i

(3.3.4)

where NLƒ;ƒ0
n;l

are the moments of the generating functional NLƒ;ƒ0.'/ D �Lƒ;ƒ0.'/C
1
2
h'; .Cƒ;ƒ0/�1 ? 'i without the momentum conservation delta functions taken out. We

wish to find a bound for the above expression. Since we already have bounds on L
ƒ;ƒ0
n;l

from (3.2.3), and since Cƒ;ƒ0 can be estimated trivially as Cƒ;ƒ0.p/ � Œsup.m; jpj/��2,
we will be concerned with R

ƒ;ƒ0
D;n;l

in the following. The following lemma will allow us to
express R

ƒ;ƒ0
D;n;l

in terms of quantities with known bounds as given in the previous sections:

Lemma 2: The remainder functionals satisfy

R
ƒ;ƒ0
D .˝NiD1OAi .xi// D .1 �

X
j��

T
j

Ex!.xN ;:::;xN /
/G

ƒ;ƒ0
D .˝NiD1OAi .xi// (3.3.5)

with � D D �
PN
iD1ŒAi �.

This lemma was first given for N D 2 in [15] and for general N in [26].

Proof. The proof follows the same strategy as the proof of lemma 4.1 in [15]. Let us
assume xN D 0 for the moment. To begin with, consider the telescopic sum

Gƒ;ƒ0.˝NiD1OAi / D G
ƒ;ƒ0
D .˝NiD1OAi /C

DX
jD0

ŒG
ƒ;ƒ0
j�1 .˝

N
iD1OAi / �G

ƒ;ƒ0
j .˝NiD1OAi /� :

(3.3.6)
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Note that for any j 2 N we have

G
ƒ;ƒ0
j�1 .˝

N
iD1OAi /�G

ƒ;ƒ0
j .˝NiD1OAi / D

X
C WŒC �Dj

DC
f„F

0;ƒ0
j�1 .˝

N
iD1OAi /gL

ƒ;ƒ0.OC .0// ;

(3.3.7)
which can be seen by checking that both sides of the equation satisfy the same linear
homogeneous flow equation and the same boundary conditions, which are

@w
Ep

�
G
0;ƒ0
n;l;j�1

.˝NiD1OAi I
E0/ � G

0;ƒ0
n;l;j

.˝NiD1OAi I
E0/
�
D 0 for nC jwj < j

@w
Ep

�
G
0;ƒ0
n;l;j�1

.˝NiD1OAi I
E0/ � G

0;ƒ0
n;l;j

.˝NiD1OAi I
E0/
�
D

„@w
Ep
F
0;ƒ0
n;l;j�1

.˝NiD1OAi I
E0/ for nC jwj D j

@w
Ep

�
G
ƒ0;ƒ0
n;l;j�1

.˝NiD1OAi I Ep/ � G
ƒ0;ƒ0
n;l;j

.˝NiD1OAi I Ep/
�
D 0 for nC jwj > j

in both cases. Further, we will need the identity

G
ƒ;ƒ0
D0 .˝NiD1OAi .0// D

X
ŒC �DD0

DC

(
NY
iD1

L0;ƒ0.OAi /

)
Lƒ;ƒ0.OC .0//

D Lƒ;ƒ0
�h

OA1 � � �OAN

i
.0/
� (3.3.8)

where D0 D ŒA1�C : : :C ŒAN � and where the expression in the second line is a CAG with
a single insertion of the composite operator OA1 � � �OAN D OB , with

fnB ; vBg D fnA1 C : : :C nAN ; .vA1; : : : ; vAN /g : (3.3.9)

Equation (3.3.8) is again verified by noting that all the terms in that equation satisfy a
homogeneous flow equation and the same boundary conditions. As a consequence of
eq.(3.3.8), we may write

T�C1

Ex!E0
G
ƒ;ƒ0
DC1 .˝

N
iD1OAi / D

X
ŒC �DDC1

DC

(
T�C1

Ex!E0

NY
iD1

L0;ƒ0.OAi /

)
Lƒ;ƒ0.OC .0//

D

X
ŒC �DDC1

DC

8<:.1 �X
j��

T
j

Ex!E0
/

NY
iD1

L0;ƒ0.OAi /

9=; Lƒ;ƒ0.OC .0// ;

(3.3.10)

where � D D �D0 � 0. In the last line we applied the formula for the Taylor expansion
with remainder, eq.(3.2.17). The Taylor expansion terms of degree j > �C 1 vanish due
to the boundary conditions of the CAG’s with one insertion.

Note also that the boundary conditions for the CAG’s with one insertion, eq.(3.1.27),
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imply

DC
fG

0;ƒ0
ŒC ��1

.˝NiD1OAi /g D DC
f„F

0;ƒ0
ŒC ��1

.˝NiD1OAi /g for ŒC � < D0 : (3.3.11)

We now prove lemma 2 by induction in D:

1. Induction start: ForD D �1 the sum in eq.(3.3.3) vanishes and we obtain the lemma
for D D �1, Rƒ;ƒ0DD�1.˝

N
iD1OAi / D G

ƒ;ƒ0
DD�1.˝

N
iD1OAi /, trivially.

2. Induction step: Assume the lemma holds up to degree D, i.e. assume

R
ƒ;ƒ0
QD

.˝NiD1OAi / D .1 �
X

j� QD�D0

T
j

Ex!E0
/G

ƒ;ƒ0
QD

.˝NiD1OAi .xi// (3.3.12)

for all QD � D. Using again eq.(3.3.3), we then get

R
ƒ;ƒ0
DC1 .˝

N
iD1OAi / D R

ƒ;ƒ0
D .˝NiD1OAi / �

X
ŒC �DDC1

CC
A1:::AN

Lƒ;ƒ0.OC /

D.1 �
X
j��

T
j

Ex!E0
/G

ƒ;ƒ0
D .˝NiD1OAi .xi// �

X
ŒC �DDC1

CC
A1:::AN

Lƒ;ƒ0.OC /

D.1 �
X

j��C1

T
j

Ex!E0
/G

ƒ;ƒ0
DC1 .˝

N
iD1OAi .xi//

C.1 �
X
j��

T
j

Ex!E0
/
n
G
ƒ;ƒ0
D .˝NiD1OAi .xi// �G

ƒ;ƒ0
DC1 .˝

N
iD1OAi .xi//

o
C

X
jD�C1

T
j

Ex!E0
G
ƒ;ƒ0
DC1 .˝

N
iD1OAi / �

X
ŒC �DDC1

CC
A1:::AN

Lƒ;ƒ0.OC /

(3.3.13)

where � D D �D0. Using eqs.(3.3.7) and (3.3.10) to replace the corresponding
terms in the last two lines and also recalling the definition of the OPE coefficients
CC
A1:::AN

, eq.(3.1.62), we find that the last three terms cancel out (in the case � < 0

one also has to take into account eq.(3.3.11) to see this), leaving the claim of the
lemma at order D C 1 in the case xN D 0. The case xN ¤ 0 then follows by
translation covariance.

Lemma 2 combined with bound 2 allows us to estimate the remainder functionals.
Substituting this bound along with the estimate (3.2.8) on the CAG’s without operator
insertions into eq.(3.3.4), and also using Cƒ;ƒ0.p/ � Œsup.m; jpj/��2, we obtain the
statement of the theorem (note that the resulting bound is independent of ƒ � m and ƒ0,
so the cutoffs can be removed safely).
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3.4 Partial OPE

In the previous section we have shown that the remainder

Gƒ;ƒ0.˝NiD1OAi / �
X
ŒC ��D

CC
A1:::AN

Lƒ;ƒ0.OC / (3.4.1)

goes to zero as D !1. Instead of expanding the complete operator product OA1 � � �OAN ,
we now consider a similar expansion in just a subset OA1 � � �OAM<N

of these operators,
while leaving the remaining operators untouched. In other words, we are now interested in
the expansion

Gƒ;ƒ0.˝NiD1OAi .xi// �
X
ŒC ��D

CC
A1:::AM

.x1; : : : ; xM /G
ƒ;ƒ0.OC .xM /˝

N
jDMC1 OAj .xj // :

(3.4.2)
We will see in section 3.5 below that convergence of this partial OPE would imply non-
trivial algebraic relations between the OPE coefficients. The following lemma will allow us
to estimate the remainder of the partial OPE and to thereby analyse under what conditions
this expansion converges.

Lemma 3: Let� D D� .ŒA1�C : : :C ŒAM �/ andM < N . The remainder of the partial

OPE can be expressed as

Gƒ;ƒ0.˝NiD1OAi .xi// �
X
ŒC ��D

CC
A1:::AM

.x1; : : : ; xM /G
ƒ;ƒ0.OC .xM /˝

N
jDMC1 OAj .xj //

D .1 �

�X
jD0

T
j

.x1;:::;xM /!.xM ;:::;xM /
/ Gƒ;ƒ0

�
Œ˝MiD1OAi .xi/�DI˝

N
jDMC1OAj .xj /

�
;

(3.4.3)

where Gƒ;ƒ0.Œ˝MiD1OAi �DI˝
N
jDMC1OAj /, defined in section 3.1.4, are the AG’s with

regularisation on the partial diagonal x1 D : : : D xM .

Proof. With the help of lemma 1 we may write the l.h.s. of equation (3.4.3) as

Gƒ;ƒ0.˝NiD1OAi / �
X
ŒC ��D

CC
A1:::AM

Gƒ;ƒ0.OC ˝
N
jDMC1 OAj / D

Gƒ;ƒ0.˝MiD1OAi / G
ƒ;ƒ0.˝NiDMC1OAi /C „H

ƒ;ƒ0.˝MiD1OAi I˝
N
iDMC1OAi /

�

X
ŒC ��D

CC
A1:::AM

�
Lƒ;ƒ0.OC /G

ƒ;ƒ0.˝NjDMC1OAj /C „H
ƒ;ƒ0.OC I˝

N
jDMC1OAj /

�
(3.4.4)
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We have shown in lemma 2 that24Gƒ;ƒ0.˝MiD1OAi / � X
ŒC ��D

CC
A1:::AM

Lƒ;ƒ0.OC /

35Gƒ;ƒ0.˝NiDMC1OAi /
D.1 �

�X
jD0

T
j

.x1;:::;xM /!.xM ;:::;xM /
/ G

ƒ;ƒ0
D .˝MiD1OAi / G

ƒ;ƒ0.˝NiDMC1OAi / :

(3.4.5)

Further, the equality

Hƒ;ƒ0.˝MiD1OAi I˝
N
iDMC1OAi / �

X
ŒC ��D

CC
A1:::AM

Hƒ;ƒ0.OC I˝
N
jDMC1OAj /

D .1 �

�X
jD0

T
j

.x1;:::;xM /!.xM ;:::;xM /
/ Hƒ;ƒ0

�
Œ˝MiD1OAi �DI˝

N
iDMC1OAi

� (3.4.6)

can be seen to hold by comparing the flow equations and boundary conditions for both
sides of the equation. One also has to make use of lemma 2 again to verify this equation.
Substituting eqs.(3.4.5) and (3.4.6) on the r.h.s. of eq. (3.4.4), we obtain eq.(3.4.3).

Lemma 3 combined with our bounds on the Taylor expansion of the AG’s with partial
regularisation, bound 4, directly allows us to estimate the remainder of the partial OPE.

Theorem 2 (Partial OPE convergence): Assume jxi � xM j � jxj � xM j for all

1 � i � M and M C 1 � j � N and let ƒ � m. There exists a constant QK > 0

depending on n and l , such that for all D � ŒA1� � : : : � ŒAN � D �ˇ̌̌
@w
Ep

�
G
ƒ;ƒ0
2n;l

.˝NiD1OAi .xi/I Ep/

�

X
ŒC ��D

CC
A1:::AM

.x1; : : : ; xM /G
ƒ;ƒ0
2n;l

.OC .xM /˝OAMC1.xMC1/ � � � ˝OAN .xN /I Ep/
�ˇ̌̌

� m�2n�jwj�1 jwjŠ

NY
iD1

ŒAi �Š

2lCnX
�D0

log�C.
j Epj

m
/

2��Š
QK jwj sup.1;mjExj/jwj

�

0@ QK sup. j Epj
m
; 1/2nC2lC4N

min
1�i<j�N

�
jxi � xj j; 1=m

�
1AD0C1 �

0@ max
1�i<j�N

jxi � xj j

min
1�i<j�N
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p
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1A�

(3.4.7)

where D0 D ŒA1�C : : :C ŒAN �.



56 CHAPTER 3. THE OPE IN PERTURBATION THEORY

Remark 10: The r.h.s. of (3.4.7) vanishes as we take the limit �!1 provided that�
QK sup.

j Epj

m
; 1/2nC2lC4N

max1�i�M jxi � xM j

minM<j�N jxj � xM j
�
maxM<i�N jxi � xN j

minM<i<j�N jxi � xj j

�
< 1 :

(3.4.8)
This condition defines an open spacetime region �.n; l; Ep;m/ 2 R4 for any finite values
of n; l;m and Ep. Hence, the partial OPE converges in that region, which is the upshot of
the present section.

3.5 Proof of OPE factorisation
Our interest in the partial OPE, analysed in the previous section, is mostly rooted in its
implications on the properties of the OPE coefficients. In the present section we will
show that convergence of the partial OPE yields non-trivial relations between the OPE
coefficients. More precisely, we will show:

Theorem 3 (OPE factorisation): Let 2 �M < N . Up to any arbitrary but fixed loop

order l in g'4-theory, the identity

CB
A1:::AN

.x1; : : : ; xN / D
X
C

CC
A1:::AM

.x1; : : : ; xM / CB
CAMC1:::AN

.xM ; xMC1; : : : ; xN /

(3.5.1)
holds for all configurations .x1; : : : ; xN / 2 R4N satisfying

max
1�i�M

jxi � xM j

min
MC1�j�N

jxj � xM j
�

max
M<i�N

jxi � xN j

min
M<i<j�N

jxi � xj j
<
1

QK
(3.5.2)

for some (sufficiently large) constant QK > 0 (depending on l; B).

Remark 11: In the case .N �M/ � 2 the second factor on the l.h.s. of (3.5.2) clearly is
equal to one, i.e. the condition reduces in that case to the simpler form

max
1�i�M

jxi � xM j

min
MC1�j�N

jxj � xM j
<
1

QK
: (3.5.3)

Note that this condition would coincide with the spacetime domain specified in the state-
ment of the factorisation axiom, see (2.1.18), if we had QK D 1. The appearance of the,
potentially large, constant QK in (3.5.3) means that theorem 3 is a somewhat weaker prop-
erty than that required by the factorisation axiom in section 2.1. The points x1; : : : ; xM�1
have to be much closer to xM than the points xMC1; : : : ; xN , instead of just closer. The
situation is sketched in fig. 3.2. In order for the condition (3.5.3) to be fulfilled, the ratio of



3.5. PROOF OF OPE FACTORISATION 57

the two dashed lines must be smaller then 1= QK.

x1

x2 x3

x4

Figure 3.2.: A configuration satisfying the condition (3.5.3) with M D 2;N D 4.

For general M;N , the condition (3.5.2) is even weaker. However, the spacetime region
(3.5.2) is certainly non-empty, so the OPE coefficients do factorise on a certain domain.
This is the main message from theorem 3 in this general case. The condition (3.5.2) seems
somewhat awkward from an intuitive standpoint, as one would not expect the mutual
distances between the points xMC1; : : : ; xN to be of any relevance here. We believe that,
in principle, an improved result, where (3.5.2) is replaced by (3.5.3), should be achievable.

Proof. Let us first recall our definition of the OPE coefficients (here � D ŒB� � ŒA1� �

: : : � ŒAN �):

CB
A1:::AN

.x1; : : : ; xN / WDDB

8<:.1 �X
j<�

T j / G
0;ƒ0
ŒB��1

.˝NiD1OAi /

9=;
DDB

8<:G0;ƒ0.˝NiD1OAi / �X
Œ QC�<ŒB�

C
QC
A1:::AN

.x1; : : : ; xN /L
0;ƒ0.O QC /

9=;
(3.5.4)

In the second line we used lemma 2. In view of this equation we rewrite the r.h.s. of
eq.(3.5.1) asX

C

CC
A1:::AM

CB
CAMC1:::AN

D

DB

8<:X
C

CC
A1:::AM

0@G0;ƒ0.OC ˝
N
iDMC1 OAi / �

X
Œ QC�<ŒB�

C
QC
CAMC1:::AN

L0;ƒ0.O QC /

1A9=;
(3.5.5)

We recognise the expression
P
C CC

A1:::AM
G0;ƒ0.OC ˝

N
iDMC1 OAi / as the partial OPE in

the fields OA1; : : : ;OAM , which was discussed in the previous section. By assumption, the
configuration .x1; : : : ; xN / satisfies the inequality (3.5.2), which guarantees convergence
of this partial OPE according to theorem 2. Thus, eq.(3.5.5) may equivalently be written
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asX
C

CC
A1:::AM

CB
CAMC1:::AN

D DB

8<:G0;ƒ0.˝NiD1OAi / �X
C

CC
A1:::AM

X
Œ QC�<ŒB�

C
QC
CAMC1:::AN

L0;ƒ0.O QC /

9=;
D CB

A1:::AN
C

X
Œ QC�<ŒB�

 
C
QC
A1:::AN

�

X
C

CC
A1:::AM

C
QC
CAMC1:::AN

!
DBL0;ƒ0.O QC / :

(3.5.6)

To obtain the last equality, we made use of the relation

DB
˚
G0;ƒ0.˝NiD1OAi /

	
D DB

8<: X
Œ QC��ŒB�

C
QC
A1:::AN

L0;ƒ0.O QC /

9=; : (3.5.7)

which, in turn, can be seen to hold by combining lemma 2 with the boundary conditions
for the regularised AG’s, see eqs.(3.1.39), (3.1.40), (3.1.27) and (3.1.28). Theorem 3 now
follows from equation (3.5.6) by induction:

Induction start (ŒB� D 0): In this case the sum over QC in the second line of eq.(3.5.6)
vanishes, and we are left with the claim of the theorem.

Induction step: Assume that C
QC
A1:::AN

�
P
C CC

A1:::AM
C
QC
CAMC1:::AN

holds for all QC with
Œ QC � < ŒB�. Then the equation in brackets in the last line of eq.(3.5.6) vanishes, and we are
again left with the claim of the theorem.

3.6 Deformation of the OPE algebra
While the definition of the perturbative OPE coefficients used throughout this chapter, see
def. 3, is very clear from a conceptual standpoint, it is somewhat dissatisfying that we have
to rely on secondary objects (i.e. regularised AG’s with insertions) in order to determine
the OPE coefficients in perturbation theory. It would be desirable to be able to construct
the perturbed OPE coefficients just in terms of the zeroth perturbation order ones, without
reference to any other quantities. This would yield support to the viewpoint that no data
other than the OPE coefficients and one point functions are needed to define a quantum
field theory [cf. chapter 2].

In the following we are going to show that such a construction is indeed possible. Starting
from our definition of the OPE coefficients in terms of amputated Green’s functions with
insertions, see def.3, we will derive a formula that allows us to express the coefficients
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at a given order r in terms of (an integral over) lower order ones. Our derivation of this
formula is from first principles, i.e. we do not have to make any additional assumptions. It
should be mentioned that our formula is derived for the theory with a finite UV-cutoff ƒ0.
Our bounds in section 3.2 guarantee that the limit ƒ0 !1 can be taken safely in the end,
i.e. after the formula is applied.

To obtain the mentioned perturbation formula, we will first study the effect of taking a
derivative with respect to the coupling constant9 g of Green’s functions with and without
insertions, see section 3.6.1. In section 3.6.2 we will put these results to use and come to the
actual derivation of the perturbation formula for the OPE coefficients, see theorem 4. As
mentioned above, this formula requires the OPE coefficients of the free theory as initial data.
Therefore, we will derive explicit formulae for these zeroth order coefficients in section
3.6.3. Finally, we will perform a few exemplary calculations of first order coefficients in
section 3.6.4 in order to showcase the application of our perturbation formula.

3.6.1. Variation of Green’s functions with respect to the
coupling constant

In the familiar diagrammatic framework of quantum field theory, increasing the perturbation
order is represented by additional insertions of interaction vertices, corresponding in our
case to '4 insertions, into the Feynman diagrams. This relation between insertions of the
interaction operator and the order of perturbation theory takes on a very simple form in our
framework. Namely, one can show:

Proposition 2: (Müller [20]) The derivative with respect to the coupling constant of

the CAG’s without insertion, which were defined in section 3.1.1, can be expressed as

@gL
ƒ;ƒ0 D

1

4Š

Z
d4y Lƒ;ƒ0.'4.y// ; (3.6.1)

where we have the CAG’s with insertion of the composite operator '4 on the right hand

side (see section 3.1.2 for the definition of operator insertions).

Proof. We give a slightly different version of the proof compared to the one presented
in [20], which is more in the spirit of this thesis. Namely, we note that Lƒ;ƒ0 is defined
through the following conditions:

1. Flow Equation (3.1.8)

2. Boundary conditions (3.1.11), (3.1.12)

9Recall that we fixed g D 1 in the previous sections (see remark 4). In the present discussion we are
interested in variations of the coupling constant, so we leave g 2 R arbitrary for the remainder of section
3.6.
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3. Translation invariance

Taking a ƒ-derivative10 on both sides of equation (3.6.1) and substituting the flow equa-
tions (3.1.8) and (3.1.23), we find that both expressions indeed obey the same linear
homogeneous flow equation. Concerning the boundary conditions, we apply the g-
derivative to eqs.(3.1.11) and (3.1.12), which yields the conditions (3.1.27) and (3.1.28)
withA D fw0 D 0; n0 D 4g. Finally, both sides of equation (3.6.1) are evidently translation
invariant.

The proposition can be generalised to the g-derivative of CAG’s with insertions.

Proposition 3: The CAG’s with one insertion satisfy the identity

@gL
ƒ;ƒ0.OA.x// D

1

4Š

Z
d4y Lƒ;ƒ0

DDŒA�
.OA.x/˝ '

4.y// : (3.6.2)

Proof. It is again our strategy to prove that both sides of the equation satisfy the same
flow equations and boundary conditions. Taking the g-derivative of the flow equation for
Lƒ;ƒ0.OA/, (3.1.23), we obtain for the left hand side

@ƒ@gL
ƒ;ƒ0.OA/

D
„

2
h
ı

ı'
; PCƒ ?

ı

ı'
i @gL

ƒ;ƒ0.OA/ � h
ı

ı'
@gL

ƒ;ƒ0.OA/ ; PC
ƒ ?

ı

ı'
Lƒ;ƒ0.'/i

� h
ı

ı'
Lƒ;ƒ0.OA/ ; PC

ƒ ?
ı

ı'

1

4Š

Z
d4y Lƒ;ƒ0.'4.y//i ;

(3.6.3)

where we used proposition 2 in the last line. Further, @gLƒ;ƒ0.OA/ is subject to the
following boundary conditions:

@w
Ep
@gL

0;ƒ0
n;l

.OA.0/I E0/ D 0 for nC jwj � ŒA� (3.6.4)

@w
Ep
@gL

ƒ0;ƒ0
n;l

.OA.0/I Ep/ D 0 for nC jwj > ŒA� : (3.6.5)

By definition, the right hand side of equation (3.6.2) satisfies the same boundary conditions.
Concerning the flow equation, it is easy to check that the ƒ-derivative of the right hand
side would coincide with equation (3.6.3), if we were allowed to exchange the order of the
ƒ-derivative with the integral over y. This differentiation under the integral sign has to be
justified of course, which is the tricky part in the proof. We have to show that the integrand
satisfies the following two properties:

1. Lƒ;ƒ0
DDŒA�

.OA.x/˝ '
4.y// is integrable (over y) for all ƒ 2 Œ0;ƒ0�.

10Note that we can use the translation properties of the CAG’s with one insertion in order to write the ƒ
derivative of the r.h.s. as @ƒL

ƒ;ƒ0
2n;l

.'4.0/I Ep/ 1
4Š

R
d4y expŒiy.p1 C : : :C p2n/�, so we do not have to

exchange the order of integration and differentiation here.
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2. For some integrable function g.y/ we have

j@ƒL
ƒ;ƒ0
DDŒA�

.OA.x/˝ '
4.y//j � g.y/ (3.6.6)

for all y 2 R4 and all ƒ 2 Œ0;ƒ0�.

Naturally, we would like to derive these properties with the help of our inductive estimates
presented in bound 1 (recall that in the case N D 2, the F -functionals coincide with the
CAG’s with two insertions). Unfortunately, however, we see that these bounds depend on
the spacetime variables through a factor jx � yj�4 for the CAG with two insertions at hand.
The y-integral over this bound therefore diverges logarithmically in both the ultraviolet
(y ! x) and the infrared (jyj ! 1). Thus, we will need to use different bounds here.

As mentioned in remark 5, the F -functionals decay as jx � yj�r for arbitrary r 2 N

at large separation of the spacetime arguments, so Lƒ;ƒ0
DDŒA�

.OA.x/˝ '
4.y// is certainly

integrable away from the singularity at y D x. It was also mentioned in remark 5 that we
can derive an alternative bound on the F -functionals where the singular dependence on the
spacetime arguments is replaced by factors of ƒ0. In the case at hand, this version of the
bound would be uniform in x and y, but it depends on the UV-cutoff via ƒ40. Therefore, as
long as we keep ƒ0 finite, the y-integral over Lƒ;ƒ0

DDŒA�
.OA.x/˝ '

4.y// in fact converges
absolutely.

Using these alternative bounds, it also easy to find a function g.y/ satisfying the
requirement (3.6.6). We can pick, for example11,

g.y/ D min

�
1

mr jx � yj4Cr
; ƒ40

�
QK

�
j Epj

m

�a
logbC.

j Epj

m
/ max.ƒŒA��2n�10 ; mŒA��2n�1/

(3.6.7)
for some constant QK > 0 and some a; b; r 2 N. We see that this function is constant for y
close to x, that it decays rapidly for large jyj and that it is integrable over y.

To summarise, we have shown that equation (3.6.2) holds for finite ƒ0. To see that both
expressions in that equation stay finite as we remove the UV-cutoff, ƒ0 !1, we recall
the bounds on the CAG’s with one insertion, (3.2.9), which clearly imply that the left hand
side of equation (3.6.2) is finite in that limit. The same must therefore be true for the right
hand side, as long as we agree to remove the UV-cutoff after performing the y-integral.

Remark 12: If we could derive a bound on Lƒ;ƒ0
DDŒA�

.OA.x/ ˝ '
4.y// which scales as

jx � yj�3�ı for any ı > 0 instead of jx � yj�4, and which at the same time does not
depend on the UV-cutoff ƒ0, then it would be possible to show that equation (3.6.2) holds
also if we remove the cutoffs under the integral. As mentioned in remark 5, such a scaling

11In the case ƒ � m we can remove the dependence on the IR-cutoff as in the proof of bound 1, see the
discussion around (A.1.52).
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behaviour is generally expected to hold, but we have no rigorous proof of this property
within the flow equation framework at present.

Below we will also be interested in the g-derivative of the amputated Green’s functions
with insertions, Gƒ;ƒ0.˝NiD1OAi /.

Proposition 4: The g-derivative of the amputated Green’s functions with insertions can

be expressed as

„ @gG
ƒ;ƒ0.˝NiD1OAi .xi// D

�1

4Š

Z
d4y

h
Gƒ;ƒ0.˝NiD1OAi .xi/˝ '

4.y// �Gƒ;ƒ0.˝NiD1OAi .xi//L
ƒ;ƒ0.'4.y//

�

NX
jD1

X
ŒC ��ŒAj �

CC
AgAj

.y; xj /G
ƒ;ƒ0.˝NiD1

i¤j

OAi .xi/˝OC .xj //
i

(3.6.8)

where Ag WD fn D 4;w D 0g, i.e. OAg D '
4 is the interaction operator.

Remark 13: With the help of lemma 2 one can check that equation (3.6.8) reduces to
proposition 3 in the case N D 1.

Proof. Again we argue that the integral on the right hand side converges absolutely for
finite ƒ0. Note that the first two terms on the right hand side give

Gƒ;ƒ0.˝NiD1OAi ˝ '
4/ �Gƒ;ƒ0.˝NiD1OAi /L

ƒ;ƒ0.'4/ D „Hƒ;ƒ0.˝NiD1OAi I'
4/

(3.6.9)
by definition. We know from remark 8 that these Hƒ;ƒ0-functionals decay more rapidly
than any power for large jyj, so the integral over these terms is infrared safe. To estimate
the infrared behaviour of the OPE coefficients CC

AgAj
.y; xj /, we recall their definition in

terms of AG’s with insertions, see def. 3. The contribution where '4 appears as a single
operator insertion vanishes in the case ŒC � < ŒAg �C ŒAj � due to the boundary conditions
of the CAG’s with one insertion, and the contribution including the bilocal insertion is
found to decay rapidly for large jyj by the same arguments as in proposition 3.

Let us now discuss the UV behaviour of the integral, i.e. the regions where y is close to
one of the xj . The two contributions which are potentially singular in this region are

Gƒ;ƒ0.˝NiD1OAi .xi/˝ '
4.y// �

X
ŒC ��ŒAj �

CC
AgAj

.y; xj /G
ƒ;ƒ0.˝NiD1

i¤j

OAi .xi/˝OC .xj //

D Gƒ;ƒ0
�
ŒOAj .xj /˝ '

4.y/�ŒAj � I˝
N
iD1
i¤j

OAi .xi/
�
(3.6.10)

where we used lemma 3 in the second line. To see that we can safely integrate over the
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region y � xj as long as we keep the UV-cutoff finite, we recall from remark 5 that we have
bounds on the functionals Fƒ;ƒ0

ŒAj �
.OAj .xj /˝'

4.y//, which do not depend on jxj �yj, but
instead contain factors of ƒ0. If we use these estimates in the proof of bound 3, we obtain
an alternative bound on the functionals Gƒ;ƒ0

�
ŒOAj .xj / ˝ '

4.y/�ŒAj � I˝
N
iD1
i¤j

OAi .xi/
�
,

which shows no dependence on jxj � yj either, but which contains factors of ƒ0. This
alternative bound shows that the integral over the UV-regions, where y is close to one of
the xj , converges absolutely for finite ƒ0.

Thus, combining all these bounds for different spacetime regions, we conclude that the
integral on the right hand side of equation (3.6.8) is absolutely convergent for finite ƒ0.
Following a similar strategy as in the proof of proposition 3, it is then also not hard to find
a function g.y/ which satisfies the analog of (3.6.6) for the case at hand.

Hence, we are allowed to exchange the order of the y-integral with the ƒ-derivative
if we want to determine the flow equation for the right hand side of equation (3.6.8). A
proof that both sides of equation (3.6.8) then indeed satisfy the same boundary conditions
and flow equations can be found in appendix A.5. Finally we argue, based on our bounds
on the AG’s with insertions [see corollary 1], that the left hand side of equation (3.6.8)
has a finite limit ƒ0 !1. Again, the same, then, has to be true for the right hand side,
provided we remove the UV-cutoff after performing the k-integral.

3.6.2. Variation of OPE coefficients with respect to the
coupling constant

The OPE coefficients have been defined in def. 3 in terms of amputated Green’s functions
with insertions. The results of the previous section can be used to derive the following
formula for the deformation of the OPE algebra:

Theorem 4 (OPE deformation): Let Ag WD fn D 4; v D 0g, i.e. OAg D '4. The

derivative of the OPE coefficients w.r.t. the coupling constant g can be expressed as

„@g CB
A1:::AN

.x1; : : : ; xN / D
�1

4Š

Z
d4y

�

24CB
AgA1:::AN

.y; x1; : : : ; xN / �

NX
iD1

X
ŒC ��ŒAi �

CC
AgAi

.y; xi/CB

A1:::bAi C:::AN .x1; : : : ; xN /
�

X
ŒC �<ŒB�

CC
A1:::AN

.x1; : : : ; xN /CB
AgC

.y; xN /

35 :

(3.6.11)

Here bAi denotes omission of the corresponding index. The relation holds to arbitrary finite
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perturbation order in Euclidean g'4-theory with BPHZ renormalisation conditions. It is

understood here that we perform the y-integral before removing the UV-cutoff on the right

hand side.

Remark 14: A few observations are in order:

1. We suspect that the expressions which appear with a negative sign in the brackets
on the right hand side of equation (3.6.11) may be interpreted as ”counter terms”,
i.e. they cancel possible UV- and IR-divergent contributions from the first term on
the right hand side in the theory without cutoffs. More precisely, if the integration
variable y is close to one of the arguments xj , then we can factorise the first
coefficient on the right hand side using theorem 3:

CB
AgA1:::AN

.y; x1; : : : ; xN / D
X
C

CC
AgAj

.y; xj /C
B

A1:::bAj C:::AN .x1; : : : ; xN /
(3.6.12)

The corresponding counter term subtracts all terms from the sum over C with
ŒC � � ŒAj �. Recall that the OPE coefficients were given in def. 3 in terms of the AG’s
with operator insertions. Assuming, for the moment, that the AG’s with insertions
G
0;1
D .˝NiD1OAi ."xi// scale as "D�

P
ŒAi �C1�ı for "; ı > 0 [see our discussion in

remarks 5 and 12], we find that the remaining terms in the sum over C , which
contain coefficients CC

AgAj
.y; xj / with ŒC � > ŒAj �, diverge at most like jxj �yj�3�ı

and are thus indeed integrable on the domain with y close to xj . Similarly, if jyj is
large compared to the jxi j, then we can factorise the first term on the right hand side
of (3.6.11) using theorem 3:

CB
AgA1:::AN

.y; x1; : : : ; xN / D
X
C

CC
A1:::AN

.x1; : : : ; xN /CB
AgC

.y; xN / (3.6.13)

Here the corresponding counter term subtracts all summands with ŒC � < ŒB�. One
can check, using arguments from the derivation of proposition 4, that the remaining
terms decay faster than any power jy � xN j�r for arbitrary r 2 N.

We will observe this cancellation of divergences in a concrete example in section
3.6.4.

2. Since OPE coefficients in perturbative quantum field theory are generally subject to
renormalisation ambiguities, we expect the formula (3.6.11) to be sensitive to the
renormalisation conditions.

3. Expanding the OPE coefficients as formal power series in the coupling constant,i.e.

CB
A1:::AN

.x1; : : : ; xN / DW

1X
iD0

.Ci/
B
A1:::AN

.x1; : : : ; xN / g
i ; (3.6.14)
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and fixing our auxiliary loop parameter „ D 1, the theorem implies the relation

.CrC1/
B
A1:::AN

.x1; : : : ; xN / D

�1

4Š .r C 1/

Z
d4y

�
.Cr/

B
AgA1:::AN

.y; x1; : : : ; xN /

�

NX
iD1

X
ŒC ��ŒAi �

rX
sD0

.Cs/
C
AgAi

.y; xi/ .Cr�s/
B

A1:::bAi C:::AN .x1; : : : ; xN /
�

X
ŒC �<ŒB�

rX
sD0

.Cs/
C
A1:::AN

.x1; : : : ; xN / .Cr�s/
B
AgC

.y; xN /

�
:

(3.6.15)

This equation allows us to determine the coefficients at order .r C 1/ from those of
lower perturbation order. In particular, given the OPE coefficients of the free theory,
we can in principle iterate this equation to construct the coefficients to arbitrary order
in g. Again, this iteration should be performed with a finite cutoff ƒ0, which can be
removed, i.e. ƒ0 !1, in the very end. Our bounds in section 3.2 guarantee that
taking this limit is safe up to any finite order in perturbation theory.

Proof of theorem 4: Recall from eq.(3.5.4) that we may rewrite our definition of the OPE
coefficients as (suppressing the dependence on the spacetime arguments for the moment)

CB
A1:::AN

D DB

8<:G0;ƒ0.˝NiD1OAi / � X
ŒC �<ŒB�

CC
A1:::AN

L0;ƒ0.OC /

9=; : (3.6.16)

Applying the g-derivative and using proposition 4 yields

„@gCB
A1:::AN

D DB�1

4Š

Z
d4y

h
G0;ƒ0.˝NiD1OAi ˝Og/ �G

0;ƒ0.˝NiD1OAi /L
0;ƒ0.Og/

�

NX
jD1

X
ŒC ��ŒAj �

CC
AgAj

G0;ƒ0.˝NiD1
i¤j

OAi ˝OC /C „
X

ŒC �<ŒB�

CC
A1:::AN

L
0;ƒ0
ŒC �

.OAg ˝OC /
i

�„DB
X

Œ QC�<ŒB�

�
@gC

QC
A1:::AN

�
L0;ƒ0.O QC /

(3.6.17)

Now note that, in view of lemma 2, we have for D > ŒB�

DB@g

24G0;ƒ0.˝NiD1OAi / � X
ŒC ��D

CC
A1:::AN

L0;ƒ0.OC /

35 D DB@gR
0;ƒ0
D .˝NiD1OAi /

D @gDB.1 �
X
j��

T j /G
0;ƒ0
D .˝NiD1OAi / D 0

(3.6.18)
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where we recalled the boundary conditions for the AG’s with insertions, see def.1, in the
last line. This allows us to replace the AG’s in eq.(3.6.17) by sums over OPE coefficients.
Using also

L0;ƒ0.OAg/L
0;ƒ0.OC / � „L

0;ƒ0
ŒC �

.OAg ˝OC / D G
0;ƒ0
ŒC �

.OAg ˝OC / ; (3.6.19)

we arrive at the form

DB
X

ŒC ��ŒB�

�
„@gCC

A1:::AN

�
L0;ƒ0.OC /

D DB
X

ŒC ��ŒB�

L0;ƒ0.OC /
�1

4Š

Z
d4y

�

24CC
AgA1:::AN

�

NX
jD1

X
ŒC 0��ŒAj �

CC 0

AgAj
CC

A1:::bAjC 0:::AN � X
ŒC 0�<ŒC �

CC 0

A1:::AN
CC
AgC 0

35 :

(3.6.20)

Since this relation holds for any choice of index B , we can ascend inductively in [B]:

� Let ŒB� D 0, i.e B D 1. The boundary conditions for the CAG’s with one insertion
then imply DBL0;ƒ0.OB/ D 1, which immediately yields

„@gCB
A1:::AN

D

�

Z
d4y

4Š

24CB
AgA1:::AN

�

NX
jD1

X
ŒC 0��ŒAj �

CC 0

AgAj
CB

A1:::bAjC:::AN � X
ŒC 0�<ŒB�

CC 0

A1:::AN
CB
AgC 0

35
(3.6.21)

in accordance with the theorem (here the sum over ŒC 0� < ŒB� D 0 actually van-
ishes).
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� Assume the theorem holds for all B with ŒB� < D. Pick a B 0 with ŒB 0� D D. Then
we obtain

DB 0
X

ŒC ��ŒB 0�

�
„@gCC

A1:::AN

�
L0;ƒ0.OC / D DB 0

X
ŒC �<ŒB 0�

L0;ƒ0.OC /
�1

4Š

Z
d4y

�

24CC
AgA1:::AN

�

NX
jD1

X
ŒC 0��ŒAj �

CC 0

AgAj
CC

A1:::bAjC:::AN � X
ŒC 0�<ŒC �

CC 0

A1:::AN
CC
AgC 0

35
�

Z
d4y

4Š

24CB 0

AgA1:::AN
�

NX
jD1

X
ŒC 0��ŒAj �

CC 0

AgAj
CB 0

A1:::bAjC:::AN � X
ŒC 0�<ŒB 0�

CC 0

A1:::AN
CB 0

AgC 0

35
(3.6.22)

where we made use of the boundary conditions for the CAG’s with one insertion in
the last line, which imply for ŒB� D ŒC � that DBL0;ƒ0.OC / D ıB;C . By assumption,
we can apply theorem 4 on the left hand side for the terms with ŒC � < ŒB 0�, which
yields exactly the same expressions as the sum over ŒC � < ŒB 0� on the right hand
side. Subtracting these contributions from both sides of equation (3.6.22), we are
again left with the claim of the theorem, which closes the induction.

3.6.3. Zeroth order OPE coefficients
We have seen in the previous section that it is possible to express the OPE coefficients
in perturbation theory entirely in terms of the OPE coefficients of the corresponding free
theory. The purpose of the present section is to give explicit formulae for these zeroth
order coefficients, which we will denote by .C0/BA1:::AN . In the following we will set „ D 1
for the sake of simplicity, since we are not interested in the ”loop-expansion” here.

Recall again our general definition of the OPE coefficients in terms of the amputated
Green’s functions:

CB
A1:::AN

.x1; : : : ; xN / D DB

8<:
0@1 �X

j<�

T j

1A G
0;ƒ0
ŒB��1

.˝NiD1OAi .xi//

9=; (3.6.23)

At zeroth perturbation order, one would expect to be able to obtain a more explicit
formula. It will be our aim to derive such a formula in the following. Let us first
introduce some notation. We find it most convenient to express the zeroth order coefficients
diagrammatically. The following definition will be helpful:
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Definition 4 (Decorated graphs): Let A1; : : : ; AN be multi-indices with

Ai D fnAi ; vAi g. By P .A1; : : : ; AN / we denote a collection of decorated graphs, which

are characterised as follows:

� The elements of P .A1; : : : ; AN / are (not necessarily connected) graphs with N

vertices, labelled Ai and of degree nAi , respectively.

� Every edge connects two different vertices. The total number of edges is thus

.nA1 C : : :C nAN /=2 (if nA1 C : : :C nAN is odd, then P .A1; : : : ; AN / D ;).

� To every edge attached to the vertex Ai we associate one of the indices v 2 N4 from

the multi-index vAi 2 N4nAi . This process is required to be ”injective”, in the sense

that no index is associated to more than one edge. In this way, all the indices from

vA1; : : : ; vAN are distributed over the edges, and every edge is decorated with two

indices .v; w/ 2 .N4 �N4/.

For any such graph P 2 P , we further denote by E.P/ the set of all decorations attached

to edges in P, i.e.

E.P/ WD f.v; w/ 2 .N4
�N4/ j .v; w/ is the decoration of an edge in Pg : (3.6.24)

An example graph is given in fig.3.3 below. The set of decorations corresponding to the
graph displayed in that figure is

E.P/ D f.v2A1; v
2
A2
/; .v1A1; v

1
A2
/; .v3A1; v

1
A3
/; .v2A3; v

3
A2
/; .v1A4; v

1
A5
/g : (3.6.25)

A1

A2

A3

.v
2
A1
; v
2
A2
/

.v
1
A1
; v
1
A2
/

.v 3
A
1 ; v 1

A
3 /

.v
2
A3
; v
3
A2
/

A4

A5

.v
1
A
4
;
v
1
A
5
/

Figure 3.3.: A graph P 2 P .A1; : : : ; A5/ with nA1 D 3 D nA2; nA3 D 2 and nA4 D 1 D

nA5 .

In view of equation (3.6.23), the following lemma will allow us to derive an explicit
formula for the zeroth order OPE coefficients:
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Lemma 4: The amputated Green’s functions with insertions at zeroth perturbation order,

.G0/
0;1.˝NiD1OAi /, are given by the formula12

DB.G0/
0;1.˝NiD1OAi .xi// DX

P2P .A1;:::;AN ;B/

Y
.v;w/2E.P/
v;w…vB

fv;w
�
.xl/v2vAl ; .xk/w2vAk

� Y
.v;w/2E.P/
w2vB

gv;w
�
.xl/v2vAl ; 0

�
(3.6.26)

where we used the notation (v;w 2 N4)

fv;w.x1; x2/ WD @vx1@
w
x2
OC 0;1.x1 � x2/ (3.6.27)

gv;w.x1; x2/ WD

4Y
�D1

�.w� � v�/.x1 � x2/
w��v�
� =.w� � v�/Š : (3.6.28)

Here � is the Heavyside step-function (with convention �.0/ D 1) and OC 0;1.x/ is the

coordinate space propagator (without cutoffs), i.e.

OC 0;1.x/ D

Z
d4p

.2�/4
eipx

p2 Cm2
: (3.6.29)

Proof. To begin with, recall equation (3.1.30) (we do not expand in powers of „ here),

D NY
iD1

OAi .xi/

nY
jD1

O'.pi/
E nY
kD1

.Cƒ;ƒ0.pk//
�1

D

nX
jD1

X
I1[:::[IjDf1;:::;ng

Ia\IbD;

G
ƒ;ƒ0
jI1j

.˝NiD1OAi .xi/; EpI1/
NL
ƒ;ƒ0
jI2j

. EpI2/ � � �
NL
ƒ;ƒ0
jIj j

. EpIj / ;

(3.6.30)

where NLƒ;ƒ0
n are the expansion coefficients of the generating functional NLƒ;ƒ0.'/ D

�Lƒ;ƒ0.'/C 1
2
h'; .Cƒ;ƒ0/�1 ? 'i without the momentum conservation delta functions

taken out. It follows by definition that the CAG’s without insertion vanish at zeroth
perturbation order (see e.g. [46]). Therefore, the r.h.s. of eq.(3.6.30) simplifies in the case

12By v 2 vA we mean that the index v 2 N4 is part of the multi-index vA 2 N4nA .
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at hand. We obtain:

D NY
iD1

OAi .xi/

nY
jD1

O'.pi/
E

0th-order

nY
kD1

.C 0;1.pk//
�1

D

X
I1[I2Df1;:::;ng
I1\I2D;

.G0/
0;1

jI1j
.˝NiD1OAi .xi/; EpI1/

Y
.i;j /2I2�I2

i¤j

ı.pi � pj / .C
0;1.pi//

�1

(3.6.31)

Here ı.p/ is the Dirac delta function. We read off that .G0/0;1n .˝NiD1OAi I Ep/ is simply the
contribution to the zeroth order amputated Schwinger function h

QN
iD1 OAi .xi/

Qn
jD1 O'.pi/i

that contains no contractions between the spectator fields O'. To determine the l.h.s. of
eq.(3.6.31), we can use standard methods for non-interacting quantum fields. In particular,
we can apply Wick’s theorem. It is then not hard to convince oneself that the corresponding
Feynman diagrams are precisely the graphs in P .A1; : : : ; AN ; B/ with B D fn; v D 0g:
As usual in Feynman diagram expansions, each edge in these diagrams corresponds to a
propagator, and the labels on the edges correspond to spacetime derivatives. The edges
connected to the vertex B represent the Wick-contractions with the spectator fields O'.pi/.
Note that these propagators are amputated by the factor

Qn
kD1.C

0;1.pk//
�1 on the l.h.s.

of (3.6.31). Therefore, any edge that connects the vertex Ai to B contributes a factor
@vxie

ipjxi instead of a propagator, where v 2 vAi and vB;j D 0 are the decorations of
the edge. If we take momentum derivatives @w

Ep
on both sides of eq.(3.6.31), we find

that, in summary, @w
Ep
.G0/

0;1
n .˝NiD1OAi I Ep/ is given by the r.h.s. of equation (3.6.26) with

B D fn;wg, but with gv;w replaced by @wpj @
v
xi
eipjxi . Setting Ep D E0, dividing by wŠ and

multiplying by .�i/jwj, we find that, indeed, DB.G0/
0;1
n .˝NiD1OAi / is given exactly by

the r.h.s. of (3.6.26).

We are now ready to state our result for the zeroth order OPE coefficients:

Lemma 5: The OPE coefficients of the free, scalar quantum field in four dimensions are

given by

.C0/
B
A1:::AN

.x1; : : : ; xN / D DB.G0/
0;1.˝NiD1OAi .xi//

D

X
P2P .A1;:::;AN ;B/

0B@ Y
.v;w/2E.P/
v;w…vB

fv;w
�
.xl/v2vAl ; .xk/w2vAk

�1CA
0B@ Y
.v;w/2E.P/
w2vB

gv;w
�
.xl/v2vAl ; xN

�1CA
(3.6.32)

where f; g are the functions defined in eqs.(3.6.27) and (3.6.28).

Remark 15: The lemma suggests the following procedure to obtain the OPE coefficients
.C0/

B
A1:::AN

in terms of graphs:
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� Draw all decorated graphs P 2 P .A1; : : : ; AN ; B/ as explained in definition 4.

� For a given graph P, associate the function fv;w.xi ; xj / to edges connecting the
vertices Ai and Aj with decorations v and w, and associate gv;w.xi ; xN / to every
edge connected to the vertices Ai and B with decorations v 2 vAi and w 2 vB .

� Each graph contributes to the OPE coefficient the product of these functions associ-
ated to its edges. The contributions from all the different graphs in P are summed
over.

Proof. Recall from equation (3.5.4) that we may generally write the OPE coefficients as

CB
A1:::AN

.x1; : : : ; xN / D

DB

8<:G0;1.˝NiD1OAi .xi// � X
ŒC �<ŒB�

CC
A1:::AN

.x1; : : : ; xN /L
0;1.OC .xN //

9=; :
(3.6.33)

If we assume xN D 0 for the moment, then equation (3.6.32) follows directly from
eq.(3.6.33) and lemma 4. Namely, in that case the expression DB.L0/

0;1.OC .0// with
ŒC � < ŒB� vanishes according to lemma 4 (the CAG’s with one insertion are covered by
the case N D 1 in that lemma), and the remaining contribution DB.G0/

0;1.˝NiD1OAi /

yields exactly the r.h.s. of eq.(3.6.32). The general case, xN ¤ 0, then follows simply
from the inherent translation invariance of the OPE coefficients.

To conclude this section, we give a few examples of zeroth order OPE coefficients,
which should help to clarify the graphical definition above:

� Let OA1 D ', OA2 D ' and OB D ' @
w'. We will refer to the coefficients .C0/BA1A2

also as .C0/
' @w'
' ' . The graphs in P .A1; A2; B/ are in the case at hand13

A1 A2

B

.0
; w
/ .0; 0/

A1 A2

B

.0
; 0
/ .w

; 0/
P .A1; A2; B/ D

� �
;

(3.6.34)
Translating these graphs into equations as defined in eq.(3.6.32), we obtain

.C0/
' @w'
' ' .x1; x2/ D g0;w.x1; x2/C g0;w.x2; x2/ D

.x1 � x2/
w

wŠ
(3.6.35)

13Note that in the case w D 0 the two diagrams in eq.(3.6.34) coincide. Thus, the set P .A1; A2; B/ contains
only one element in that case, and we find .C0/

'2

' ' D 1.
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� Let OA1 D @v', OA2 D @w' and OB D 1, i.e. we are now interested in the
coefficient .C0/1@v' @w' . This time, the set P .A1; A2; B/ is given by

A1 A2

B

.v; w/

P .A1; A2; B/ D

� �
(3.6.36)

which implies for the corresponding OPE coefficient

.C0/
1
@v' @w'.x1; x2/ D @

v
x1
@wx2
OC 0;1.x1 � x2/ (3.6.37)

� Let OA1 D '
n,OA2 D '

m and OB D '
nCm�2k. By straightforward combinatorics,

one checks

.C0/
'nCm�2k

'n 'm .x1; x2/ D
nŠmŠ

.n � k/Š.m � k/ŠkŠ
Œ OC 0;1.x1 � x2/�

k (3.6.38)

If instead we had OB D '
nCm�2kC1, we would find

.C0/
'nCm�2kC1

'n 'm .x1; x2/ D 0 ; (3.6.39)

as in this case nA1 C nA2 C nB is odd, which implies P .A1; A2; B/ D ;.

We see that our graphical notation reproduces the expected results for simple zeroth order
OPE coefficients (see for example [22, 39]).

3.6.4. Examples of first order OPE coefficients

The OPE coefficients at first perturbation order can now be determined from the zeroth
order ones with the help of our integral formula, eq.(3.6.15). To give the reader an
impression of this algorithm, we will calculate a few simple examples below.

We note that in the case at hand we can, in fact, remove the cutoff under the integral
sign in equation (3.6.15). This can be seen from the fact that at zeroth order the OPE
coefficients .C0/BA1A2.x/ have the scaling behaviour jxjŒB��ŒA1��ŒA2�, which implies that
the integral in (3.6.15) converges absolutely, as discussed in remark 14.
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The coefficient .C1/'
4

' ' : Equation (3.6.15) allows us to write this coefficient as

.C1/
'4

' '.x1; x2/ D
�1

4Š

Z
d4y

�
.C0/

'4

'4 ' '
.y; x1; x2/ �

X
ŒC ��1

.C0/
OC
'4 '

.y; x1/ .C0/
'4

OC '
.x1; x2/

�

X
ŒC ��1

.C0/
OC
'4 '

.y; x2/ .C0/
'4

'OC
.x1; x2/ �

X
ŒC �<4

.C0/
OC
' ' .x1; x2/ .C0/

'4

'4OC
.y; x2/

�
:

(3.6.40)

On the right hand side we can now substitute our explicit expression for the zeroth order
coefficients, see lemma 5. We find that many terms in the sums over C in equation (3.6.40)
actually vanish. First, note that the condition ŒC � � 1 restricts OC to be either 1 or '. In
either case, our results of the previous section imply that the coefficient .C0/

OC
'4 '

vanishes.
Concerning the last term on the r.h.s. of eq.(3.6.40), the results of the previous section
suggest that only the terms with OC D 1;OC D '

2 and OC D '@�' are non-zero. Hence,
we arrive at the simpler equation

.C1/
'4

' '.x1; x2/ D
�1

4Š

Z
d4y

�
.C0/

'4

'4 ' '
.y; x1; x2/ � .C0/

1
' '.x1; x2/ .C0/

'4

'4 1
.y; x2/

�

4X
�D1

.C0/
'@�'
' ' .x1; x2/ .C0/

'4

'4 '@�'
.y; x2/ � .C0/

'2

' '.x1; x2/ .C0/
'4

'4 '2
.y; x2/

�
:

(3.6.41)

It is now an easy exercise to compute the zeroth order coefficients on the r.h.s. of this
equation. Our final result is

.C1/
'4

' '.x1;x2/ D �

R
d4y

4Š

�
4 OC 0;1.x1 � y/C 4 OC

0;1.x2 � y/C OC
0;1.x1 � x2/

� OC 0;1.x1 � x2/ � 4.x1 � x2/
�@� OC

0;1.x2 � y/ � 8 OC
0;1.x2 � y/

i
D 0

(3.6.42)

The coefficient .C1/'
2

' ' : We again use eq.(3.6.15) to write

.C1/
'2

' '.x1; x2/ D

�1

4Š

Z
d4y

�
.C0/

'2

'4 ' '
.y; x1; x2/ �

X
ŒC ��1

.C0/
OC
'4 '

.y; x1/ .C0/
'2

OC '
.x1; x2/

�

X
ŒC ��1

.C0/
OC
'4 '

.y; x2/ .C0/
'2

'OC
.x1; x2/ �

X
ŒC �<2

.C0/
OC
' ' .x1; x2/ .C0/

'2

'2OC
.y; x2/

�
:

(3.6.43)
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Using the results of the previous section, one verifies that the sums over C on the right
hand side actually vanish. Our result for this coefficient is

.C1/
'2

' '.x1; x2/ D �

Z
d4y

4Š
.C0/

'2

'4 ' '
.y; x1; x2/ D �

Z
d4y

2
OC 0;1.x1 � y/ OC

0;1.x2 � y/

D
�1

16�2
K0.

p
.x1 � x2/2m2/ D

1

16�2

h
log.

p
.x1 � x2/2m2=2/C �E

i
C : : : ;

(3.6.44)

where K0 is a modified Bessel function of the second kind, see eq.(B.1.2) in the appendix,
and where �E is the Euler-Mascheroni constant. This particular coefficient is the standard
example computed in the textbooks [7, 3]. While these authors perform their calculations
on Minkowski space, it is not hard to translate their results into the Euclidean context
via Wick rotation. The explicit form of this coefficient given in the standard reference [7,
p. 262] then corresponds to

.C1/
'2

' '.x1; x2/ D
1

16�2
�
1

2

�
�E C log.�2�2.x1 � x2/

2/
�

(3.6.45)

where � is a free renormalisation parameter. The appearance of an extra free parameter in
this result as compared to ours, eq.(3.6.44), can be traced back to the fact that we have fixed
our renormalisation conditions through our choice of boundary conditions for the CAG’s.
It is crucial, however, that both results agree on the leading short distance behaviour of the
coefficient, and we find that this is indeed the case.

The coefficient .C1/'
2

' '3
: We use the same strategy as above.

.C1/
'2

' '3
.x1; x2/ D �

Z
d4y

4Š

�
.C0/

'2

'4 ' '3
.y; x1; x2/ �

X
ŒC ��1

.C0/
OC
'4 '

.y; x1/ .C0/
'2

OC '3
.x1; x2/

�

X
ŒC ��3

.C0/
OC
'4 '3

.y; x2/ .C0/
'2

'OC
.x1; x2/ �

X
ŒC �<2

.C0/
OC
' '3

.x1; x2/ .C0/
'2

'2OC
.y; x2/

�
:

(3.6.46)

Dropping vanishing terms in the summations, we obtain the formula

.C1/
'2

' '3
.x1; x2/ D

�1

4Š

Z
d4y

�
.C0/

'2

'4 ' '3
.y; x1; x2/ � .C0/

'

'4 '3
.y; x2/ .C0/

'2

' '.x1; x2/

� .C0/
'3

'4 '3
.y; x2/ .C0/

'2

' '3
.x1; x2/

�
:

(3.6.47)
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Substituting the explicit form of the zeroth order coefficients on the right hand side, we
arrive at the result

.C1/
'2

' '3
.x1; x2/ D �3

Z
d4y

h
. OC 0;1.y � x2//

2
�
OC 0;1.y � x1/ � OC

0;1.x1 � x2/
�i

(3.6.48)

We do not bother here to compute the remaining loop integral. An interesting point about
this particular coefficient is that the integral over y diverges (in the UV-region y ! x2)
if we integrate over the two summands on the right hand side separately. It is not hard
to check, however, that the divergent contributions cancel between the two terms, so that
the total expression on the right side is indeed finite, as it should be. Here we see in a
concrete example how the sums over C , which are subtracted on the right hand side of our
perturbation formula (3.6.15), act as counter-terms, which guarantee (UV-) finiteness.





4
The OPE, non-perturbative effects

and Dark Energy

One of the most significant cosmological discoveries in recent history has been the ob-
servation that the expansion of the universe is accelerating. This finding was based on
observational data of Supernovae accumulated up to the year 1998 [51, 52], and it has
been confirmed by various other experiments since then. The common explanation for
such an accelerated expansion is that there has to be some, as of yet unknown, form of
energy, dubbed now as ”Dark Energy”, exerting a negative vacuum pressure. Recent high
precision measurements imply that Dark Energy constitutes about 70% of the total energy
in the universe [53].

The simplest and most natural candidate for Dark Energy is the cosmological constant

ƒCosm. Originally, this quantity was introduced by Einstein in 1917, shortly after his
formulation of the theory of General Relativity, as an additional parameter to model a
static universe. When in the 1920s observations of recession speeds of distant galaxies
suggested that the universe is actually expanding, the cosmological constant appeared to
be a superfluous and inelegant modification of Einstein’s equations. This led to Einstein’s
famous assertion that the idea may have been his ”biggest blunder”. Interest in the
cosmological constant was re-invigorated, however, after the mentioned 1998 discovery.

The cosmological constant can be interpreted as energy density of the universe. There-
fore, it should be given by the expectation value of the quantum field theoretic stress energy
operator, hT��i, of the Standard Model of particle physics. The quantum state should in
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principle contain the approximately 1080 hadronic particles in the universe distributed onto
stars, galaxies, dust clouds, etc. But for the problem at hand, we are not really interested
in the detailed functional form of hT��i on smaller scales arising from these features,
but rather in the contribution from the vacuum itself, in particular since the universe is
mostly empty. Hence, one may take the state to be the vacuum state. Also, although our
universe is expanding, its expansion rate is so small compared to the scales occurring in
particle physics that we may safely do our analysis in Minkowski spacetime. Since the
Minkowski vacuum state is Poincare invariant, the vacuum expectation value (VEV) must
automatically have the form hT��i D �vac ��� of a cosmological constant.

Rough estimates of �vac within the Standard Model of particle physics, based on dimen-
sional analysis, suggest a value of the order of magnitude M 4

Higgs D .125GeV/4. On the
other hand, astrophysical measurements suggest an upper bound of �vac � .10

�12GeV/4

[25]. This spectacular failure of theoretical prediction has been known for a long time
as the cosmological constant problem. Prior to 1998 it therefore seemed most likely that
there had to be some unknown mechanism which causes the vacuum energy to vanish.
The discovery of Dark Energy, whose value is estimated to be of the order 10�47GeV4 by
modern experiments [54, 55], makes this problem even more difficult to resolve, since it
seems harder to imagine some mechanism which causes the vacuum energy to be extremely
small, but non-zero. Nevertheless, many, and very diverse, possible explanations have
been proposed in this direction, see e.g. [25] for a review. Many of these proposals involve
highly speculative features such as hypothetical new fields or dynamical mechanisms
that have neither been observed, nor have been explored thoroughly from the theoretical
viewpoint.

In this thesis we will follow a strategy, put forward by Hollands and Wald [13], which
may provide a very natural explanation for the small value of the cosmological constant.
To put the general idea into context, let us first elaborate on the main difficulties one has to
face when trying to determine hT��i:

1. The huge complexity of the Standard Model, and in particular the difficulty of
making non-perturbative calculations.

2. The fact that, as is well-known, ’the’ stress energy operator, like any other composite
operator in quantum field theory, is an intrinsically ambiguous object.

To circumvent the problems associated with point one, we will consider a simpler toy model
in this thesis, which allows us to substantiate the proposal of [13] in a clean setup. Ideally,
our toy model should be mathematically tractable and at the same time display some of the
non-perturbative effects characteristic of the Standard Model. One of the few candidate
theories fitting these requirements is the Gross-Neveu model in two dimensions [14], which
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will be our toy model of choice in the following1.

Our focus in this thesis will be on the second problem mentioned above, i.e. on
the renormalisation ambiguities affecting the computation of the vacuum energy within
quantum field theory. In order to be able to predict the value of hT��i, one inevitably has
to introduce some additional, reasonable conditions to reduce these ambiguities. The key
idea put forward in [13] is to impose the requirement that the OPE coefficients in quantum
field theory should depend analytically on the coupling constant(s) of the model. As we
will explain in more detail in the next section, this condition has the potential to permit
unique predictions for the non-perturbative contributions to expectation values of quantum
field observables. It was speculated in [13] that, in the presence of exponentially small

non-perturbative effects, which occur quite typically in quantum field theory, these effects
could account for a deviation from the naive dimensional analysis result by a dimensionless,
exponentially small factor. Potentially, this could explain the unexpectedly small observed
value of the cosmological constant.

It is our aim to apply the strategy proposed in [13] to the Gross-Neveu model in a rigorous
fashion. As a result, we obtain a unique prediction for the vacuum expectation value of the
stress-energy operator to leading order in the ”large flavour expansion” (see below). The
corresponding vacuum energy density is found to be of the order �vac � e�2�=g

2

, where g
is the coupling constant of the model. The results presented in this chapter are based on
the paper [27] by Hollands and the present author.

The present chapter is organised as follows: First, we will elaborate on the general idea
behind the proposed analyticity condition in section 4.1. In section 4.2 we will then apply
this strategy to our specific toy model, the Gross-Neveu model. Finally, we will discuss
possible implications of our findings on more realistic cosmological models in section 4.3.

4.1 General Idea:
Restriction of renormalisation ambiguities

We have already encountered in the previous chapters that in order to give a sensible
definition of composite operators in renormalised quantum field theory, one inevitably has
to make some choice of renormalisation conditions. It was mentioned at the end of section
2.1 that this ambiguity can be expressed in terms of field redefinitions

OA.x/! ZBA �OB.x/ ; (4.1.1)

1We expect very similar results to hold also for the two dimensional O(N) sigma model, treated along the
lines of [56]



80 CHAPTER 4. OPE, NON-PERTURB. EFFECTS AND DARK ENERGY

where OA;OB are composite operators andZBA is a matrix of complex numbers. Recall that
in the flow equation framework of the previous chapter, the ambiguity in the definition of
composite operators corresponds to our freedom in the choice of the boundary conditions
(3.1.27). As we have mentioned previously in section 2.1, this mixing matrix ZBA is
generally restricted by various conditions, such as for example consistency with symmetry
properties and scaling behaviour. In the more specific setting of a Lagrangian theory,
additional conditions arise through field equations and conservation laws.

Let us consider an example to illustrate the effect of these restrictions. Let OA be a
conserved current, called J �, associated with a symmetry of the theory. If there is no other
conserved current in the theory, then the only possible field redefinition is J � ! Z J � for
Z 2 R. The corresponding conserved charge Q D

R
J 0d3x should furthermore generate

the symmetry, ŒQ;OB.x/� D iqBOB.x/, where qB is the charge quantum number of the
operator OB . Since qB is fixed, we must have Z D 1 in this example. Thus, the current
J � is uniquely defined as an operator.

In this thesis we are mainly interested in the stress energy operator T�� . A crucial
requirement on this tensor is that it should be conserved, @�T�� D 0, which implies
that the stress energy operator can only mix with other conserved operators that are also
symmetric tensors. A possible field redefinition is then

T�� ! ZT�� C c ��� 1 ; (4.1.2)

where 1 is the identity operator and c is a dimensionful constant (if the Lagrangian of the
theory contains only one mass parameterM , and if we consider four spacetime dimensions,
then c / M 4). As above, we argue that Z D 1. This is due to the fact the we want the
operator P� D

R
T 0�d

3x to generate translations, i.e. ŒP�;OB.x/� D i@�OB.x/, which
requires Z D 1. Unfortunately, however, the constant c remains unconstrained. If we
normalise h1i D 1, our remaining freedom to redefine hT��i ! hT��i C c��� allows us
to set the vacuum energy �vac to any value we want. In the presence of a coupling constant
g, we can even make the vacuum energy into an arbitrary smooth function of g.

In the usual areas of application for quantum field theory, i.e. particle- or condensed
matter physics, this ambiguity in the value of hT��i is not a serious problem, since one
generally measures only differences of expectation values between different states (like e.g.
vacuum and many-particle states). Gravity, however, is sensitive to the absolute value of
hT��i via Einstein’s equation. In order to apply quantum field theory also to cosmological
questions, it therefore appears to be necessary to impose additional conditions of some
kind to reduce the mentioned ambiguities in the definition of composite operators.

In the present work, we will study one such condition, which was first proposed in [13].
Very much in the spirit of the approach to quantum field theory outlined in chapter 2, this
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additional restriction is stated as a requirement on the OPE coefficients. In view of the
general form of the operator product expansion,*

OA.x/OB.0/
Y
i

�.zi/

+
� CC

AB.x/

*
OC .0/

Y
i

�.zi/

+
(4.1.3)

it is quite clear that a field redefinition (4.1.1) would cause a corresponding transformation
of the OPE coefficients. If our theory contains a coupling constant g, then this redefinition
ZBA .g/, as well as the OPE coefficients CC

AB.x; g/, will depend (smoothly) on this coupling
constant. In this setting, the proposal of [13] is as follows:

Suppose there exists a definition of the composite operators such that CC
AB.x; g/ is an

analytic function of g, i.e. has a convergent Taylor expansion in g for small, but finite, g.
Then we allow only field redefinitions ZBA .g/ preserving this property, i.e. ones which are
likewise analytic in g.

The proposal appears to be quite natural. As a consequence, we would, for example,
only be allowed to make a redefinition with an analytic function c.g/ in eq.(4.1.2). Such
a redefinition could not cancel any non-analytic (D non-perturbative) contributions to
the vacuum energy. In other words, if the VEV of the stress energy operator contains
non-perturbative contributions, then these will in fact be unique. This procedure could
in principle allow for an unambiguous prediction of a non-perturbatively small value for
the vacuum energy. We will substantiate this idea in the following section within the
Gross-Neveu model.

Remark 16: The methods employed within the present chapter differ from those of the
previous one. Namely, we will not use the flow equation approach to the theory in the
following. Instead, we will make use of standard Feynman diagram expansions combined
with the so called large flavour (or also 1=N -) expansion.

4.2 The Gross-Neveu model

The quantum field theory described by the Lagrangian (here � 2 R)

LGN D i  =@ C
�2

2
.  /2 (4.2.1)
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on two dimensional Minkowski space2 is known as the Gross-Neveu model. Here

 D . 1; : : : ;  N / ;  D

0BB@
 1

:::

 N

1CCA (4.2.2)

are row/column vectors of N flavours of a 2-component spinor field, and we use the
standard ’slash’-notation, =@ D 
�@� (our conventions for gamma matrices, metric signature,
etc. can be found in the notation and conventions section at the beginning of this thesis).
The model was the first example of a quantum field theory featuring the phenomenon of
dynamical symmetry breaking (see below). A crucial tool in the study of the Gross-Neveu
model has been the 1=N - or large flavour- expansion, which makes it possible to obtain
non-perturbative information. Such non-perturbative results are otherwise hard to come by.
The model has also been of interest due to the fact that it shares some basic features with
quantum chromodynamics (QCD), namely asymptotic freedom and symmetry breaking.
Our interest in this particular model is rooted in the fact that is sufficiently complex to
feature interesting non-perturbative effects, but at the same time sufficiently simple to still
be mathematically tractable.

For the purposes of this thesis, it will be more convenient to use a slightly modified
version of the Lagrangian. Namely, we rescale the fields  ; !  =

p
N; =

p
N , and

we introduce the t’Hooft coupling g2 WD �2N . Within the large N expansion it is then
understood that g is kept fixed while quantities of interest are expanded in powers of 1=N .
The Lagrangian used in this thesis therefore takes the form

LGN D N

�
i  =@ C

g2

2
.  /2

�
: (4.2.3)

A crucial feature of the Gross-Neveu Lagrangian is its invariance under the discrete
transformation

 ! 
5 ; (4.2.4)

which ensures masslessness of the Fermions (to any order in perturbation theory).

Our ultimate aim in this chapter is to determine the vacuum expectation value of the
stress-energy operator in the Gross-Neveu model (to leading order in 1=N ). As a starting
point, we will need the classical form of the stress-energy tensor per flavour, i.e. divided

2Recall from the notation and conventions section that �; � 2 f0; 1g denote Minkowski space indices from
now on.
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by N :

T�� D
i

4

�
 
�@� C  
�@� � @� 
� � @� 
� 

�
� ���

�
i  =@ C

g2

2
.  /2

�
(4.2.5)

With the help of the classical equations of motion,

i =@ D �g2 .  / i =@ D g2 .  / (4.2.6)

the stress tensor can be rewritten in the compact form

T�� D i  
.�
 !
@�/ (4.2.7)

where we used the notation

f
 !
@ g WD

1

2

h
f @g � .@f /g

i
(4.2.8)

and where
t.��/ D

1

2

h
t�� C t�� � ���t

�
�

i
(4.2.9)

denotes the symmetric, trace-free part of a tensor. Using the equations of motion, it is easy
to verify that the stress tensor is conserved, i.e. @�T�� D 0, and traceless, i.e. T �� D 0, in
the classical theory. The vanishing trace is a consequence of the conformal invariance of
the classical Gross-Neveu model.

4.2.1. The 1=N expansion and dynamical symmetry breaking

It was shown in the work of Gross and Neveu that, despite the fact that the underlying La-
grangian is conformally invariant, the fermions in the GN-model obtain a mass dynamically.
In the original work [14] this was shown to be true in the large N limit (i.e. for N !1),
and it was later also rigorously proven for sufficiently large, but finite N by [57]. By
”dynamical mass generation” we mean concretely that, at large space like separation, the
2-point correlation function falls off exponentially, h .x/ .0/i � exp.�K.g/

p
�x2=`2/.

Here K.g/ > 0 is a numerical constant and ` is a constant with the dimension of Œlength�.
The dynamically generated mass is hence given by m.g/ WD K.g/=`. The constant ` may
be viewed as a choice of units (fm, mm, km, etc.), which are obviously not provided by
the classical Lagrangian (this phenomenon is known as dimensional transmutation in the
literature). Its value may best be viewed as part of the definition of the quantum field
theory.

In the following we will present the derivation of dynamical symmetry breaking to
leading order in the 1=N expansion as originally given by Gross and Neveu [14]. We will
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then state the Feynman rules for the perturbation theory around the physical vacuum, and
we will explicitly compute the 2- and 4-point functions of the basic field, which will be
needed later in our construction of the stress energy operator.

We start out by introducing an auxiliary field, � , and by adding to the Gross-Neveu
Lagrangian a term that does not affect the dynamics of the model:

L� WD LGN �
N

2g2

�
� � g2  

�2
D N

�
i  =@ �

1

2g2
�2 C �   

�
(4.2.10)

The functional integral over � is simply a Gaussian integral which only causes the generat-
ing functional of the theory to be multiplied by some constant. Also one easily checks that
the Euler-Lagrange equation for � reads � D g2  . Substituting this constraint into the
Lagrangian leads us back to the original form (4.2.3), which confirms that the additional
term has no effect on the physics of the model.

The motivation to introduce such an auxiliary field is the following: The effective poten-
tial, Veff.�/, defined as the sum of the one-particle-irreducible (1PI) Feynman diagrams
with external � -lines carrying zero momentum, see fig. 4.1, can be interpreted at stationary
points as the vacuum energy density to leading order in 1=N [14, 58].

C C C : : :

Figure 4.1.: Feynman graphs contributing to Veff.�/ at leading order in 1=N (solid lines
correspond to the fermion propagator, dashed ones to the � -propagator)

In the presence of multiple stationary points, only those minimising the energy are
physically realised. The effective potential can be computed explicitly as follows:

Veff.�/ D
N

2g2
�2 C i

1X
nD1

N

2n

Z ƒ d2p

.2�/2

�
�2

p2

�n
D

N

2g2
�2 C

N

4�
�2
�
log

�2

ƒ2
� 1

�
;

(4.2.11)
where ƒ is a UV-cutoff here. The theory can be renormalised by introducing a running
coupling g.`/, which we define as

1

g2.`/
WD

1

g2.ƒ/
�
1

2�
log.ƒ2`2/ ; (4.2.12)

where g.ƒ/ is the coupling constant of the unrenormalised theory (i.e. the bare coupling
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constant). Hence, the effective potential of the renormalised theory takes the form

Veff.�/ D
N

2g2.`/
�2 C

N

4�
�2
�
log.�2`2/ � 1

�
: (4.2.13)

As mentioned above, we are interested in the minima of this potential. A straightforward
calculation reveals that Veff.�/ has a local maximum at the origin and two global minima
at the values

˙m WD ˙`�1 exp.��=g2/ ; (4.2.14)

see fig. 4.2. Thus, we have found that the discrete symmetry (4.2.4) is spontaneously
broken. The value of the effective potential at its minima is V.m/ D �Nm2=.4�/.3

�m m

�
Nm2

4�

�

Veff.�/

Figure 4.2.: The effective potential Veff.�/

In order to formulate perturbation theory around the physical vacuum, we introduce a
shifted auxiliary field Q� WD � Cm, in terms of which the Lagrangian takes the form

LQ� D N

�
 
�
i =@ �m

�
 �

1

2g2
Q�2 C Q�   C

m

g2
Q� �

m2

2g2

�
: (4.2.15)

The last term on the r.h.s. simply yields an overall multiplicative constant and can again
be safely neglected. We are now interested in the Feynman rules corresponding to the
Lagrangian (4.2.15). Here it is important to note that all tadpole diagrams, which result
from the third term in the Lagrangian, are cancelled by the fourth term. This follows from

3This expression can also be interpreted as the vacuum energy density to leading order in 1=N [58]. Below
in section 4.2.2 we will re-derive this result via an explicit construction, based on the operator product
expansion, of the energy momentum operator. This method will allow us to discuss the renormalisation
ambiguities, as well as possible restrictions by the requirement to keep the OPE coefficients analytic in
g, as outlined in section 4.1.
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the straightforward computation

iNm

g2

Z
d2x Q�.x/ � iN

Z
d2x Q�.x/ Tr

Z
dk2

.2�/2
OS.k/ D 0 ; (4.2.16)

where OS.k/ is the (massive) Fermion propagator in momentum space, i.e. OS.p/ WD i.=pCm/

p2�m2
.

Equation (4.2.16) is verified by performing the momentum integral with a UV-cutoff ƒ
and using equation (4.2.14) with ` D ƒ. It also implies that the shifted auxiliary field has
vanishing vacuum expectation value.

One can now determine the Feynman rules corresponding to the Lagrangian (4.2.15).
These diagrammatic rules are depicted in table 4.1. With these Feynman rules at hand we

Table 4.1.: Feynman rules for the GN-model (here K0 is a modified Bessel function of
the second kind, see eq.(B.1.2), i; j are flavour indices and ı.x/ is the Dirac
delta-function)

 -propagator i; x j; y
hT i.x/ j .0/i D ıij

.i =@Cm/

2�N
K0.m

p
�x2 C i�/

Q� -propagator x 0 �ig2

N
ı.x/

  Q� -vertex

x

iN
R
d2x

could in principle compute any n-point correlation function of the basic field. In this thesis,
we will only need the 2- and 4-point functions. The 2-point function is (here and below we
assume x to be space like):

h ˛.x/ ˇ .0/i D �
.i =@x Cm/ˇ˛

2�
K0.
p
�x2m2/CO.

1

N
/ (4.2.17)

where ˛; ˇ are spinor indices and where K0 is a modified Bessel function, see eq.(B.1.2).
Here and in the following we write O.x/ for contributions of order x or higher. The
4-point function is written most conveniently for our purposes as (see appendix B.1 for the
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derivation of this formula)

h ˛.x/ ˇ .0/ 
.z1/ ı.z2/i D

�1

2N

Z
d2p d2q
.2�/4

Œ.=p Cm/.=q Cm/�
ı e
i.z1�x/pCi.x�z2/q

.p2 �m2/.q2 �m2/ B.q � p/
Œ.=q � =p Cm � i =@x/.m � i =@x/�˛ˇ

�

Z 1

0

d˛

p
�x2K1Œ

p
�x2.m2 � ˛.1 � ˛/.q � p/2/�eix.q�p/.˛�1/p

m2 � ˛.1 � ˛/.q � p/2

C h ˛.x/ ˇ .0/i h 
.z1/ ı.z2/i �
1

N
h ˛.x/ ı.z2/i h 
.z1/ ˇ .0/i CO.

1

N 2
/ ;

(4.2.18)

where again K1 is a modified Bessel function, and where we use the short-hand

B.k/ WD

r
4m2 � k2

�k2
log

p
4m2 � k2 C

p
�k2

p
4m2 � k2 �

p
�k2

: (4.2.19)

Note that the correlation functions have a non-analytic dependence on g through m D
e��=g

2

=`.

4.2.2. Construction of the stress-energy operator

Our ultimate aim in this chapter is to determine the vacuum expectation value (VEV) of
the stress energy operator, which is evidently a composite operator. Expectation values
of composite operators, subject to the intrinsic renormalisation ambiguities discussed in
section 4.1, can be obtained form the operator product expansion of the n-point correlation
functions of the basic fields,  ; .

As an example, let us start off with the computation of the VEV h  i. Our general
strategy works as follows: Assume we know the first two expansion coefficients of the
operator product expansion

 .x/ .0/ D C1

  
.x/1C C

  

  
.x/  .0/CO.x/ : (4.2.20)

Then we can take the expectation value of this equation, solve for h  i and take the limit
x ! 0:

h  .0/i D lim
x!0

0@h .x/ .0/i � C1

  
.x/ h1i

C
  

  
.x/

1A (4.2.21)

We would like to find an explicit expression for the right hand side. For the two point
function such an expression can be found in eq.(4.2.17). It remains to determine the two
OPE coefficients. In the following, we will show that the most general form of these
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coefficients is

C
  

  
.x/ D Z

�
1 �

g2

2�
log

�
�x2e2�E

4`2

��
CO.x/CO.

1

N
/ (4.2.22)

and

C1

  
.x/ D c.g/

�
1 �

g2

2�
log

�
�x2e2�E

4`2

��
CO.x/CO.

1

N
/ ; (4.2.23)

where c.g/ is of dimension Œlength��1,Z 2 R and �E is the Euler-Mascheroni constant. In
principle we would have to show that the expansion (4.2.20) holds as an operator insertion
into an arbitrary correlation function. However, in view of the identity*

nY
iD1

 .yi/ .zi/

+
D

X
1�i<j�n

˝
 .yi/ .zi/ .yj / .zj /

˛ ˝ Y
k2f1;:::;N gnfi;j g

 .yk/ .zk/
˛

CO.1=N 2/

(4.2.24)

which holds for n � 2, we see that it suffices to consider the OPE only inside the 2- and
4-point functions, if one is willing to neglect contributions of order 1=N 2. Since we are
mainly interested in the large N -limit within this thesis, this will be exactly our strategy.

The coefficient C
  

  
is then determined with the help of the 4-point function (4.2.18).

Contracting the spinor indices, we find the expansion (see appendix B.2 for the derivation
of this formula)

h ˛.x/ 
˛.0/  ˇ .z1/ 

ˇ .z2/i � h ˛.x/ 
˛.0/i h ˇ .z1/ 

ˇ .z2/i

D
4�

g2N

Z
d2p d2q
.2�/4

.p�q� Cm
2/ eiz1p�iz2q

.p2 �m2/.q2 �m2/ B.q � p/

�
1 �

g2

2�
log

�
�x2e2�E

4`2

�
CO.x/

�
CO.

1

N 2
/

D C
  

  
.x/

h
h  .0/ ˇ .z1/ 

ˇ .z2/i � h  .0/i h ˇ .z1/ 
ˇ .z2/i

i
CO.x/

(4.2.25)

which confirms eq.(4.2.22). In the last line we have substituted the OPE (4.2.20). The
coefficient C1

  
appears in the expansion of the two point function:

h ˛.x/ 
˛.0/i D

�m

g2

�
1 �

g2

2�
log

�
�x2e2�E

4`2

�
CO.x/

�
CO.1=N/

D C1

  
.x/C C

  

  
.x/ h  .0/i CO.x/

(4.2.26)
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This equation is solved by eq.(4.2.23) under the condition that

h  .0/i D �
m=Z C c.g/

g2
CO.

1

N
/ D

�1

Zg2`
e��=g

2

�
c.g/

g2
CO.

1

N
/ (4.2.27)

for the vacuum condensate. The freedom to choose the functions Z.g/; c.g/ amounts to
field redefinitions of the type   ! Z  C c1. At this point our analyticity condition
on the OPE coefficients effectively restricts such renormalisation ambiguities. Namely,
since we require Z.g/; c.g/ to be analytic, it follows that the non-perturbative contribution
to h  i cannot be cancelled by a field redefinition!

Further, it is easy to see that different choices for the parameter Z simply rescale the
constant `. We have already mentioned above that one is free to choose this constant,
so we can absorb the factor Z by rescaling ` ! `=Z. The constant c.g/, on the other
hand, causes a purely perturbative contribution to the vacuum condensate h  i. In the
following we will set c.g/ D 0, which is the same as requiring that h  i D 0 to all orders
in perturbation theory. This appears to be a reasonable requirement, since we would not
expect dynamical symmetry breaking to occur within perturbation theory. To summarise,
we have found

h  .0/i D �
m

g2
CO.

1

N
/ D
�1

g2`
e��=g

2

CO.
1

N
/ : (4.2.28)

Using the strategy outlined above, one can in principle compute the VEV for any composite
operator, provided that all OPE coefficients and n-point functions are known. We will
focus on the VEV of the stress energy operator in the following. One has to be a little
more careful in this case, because we also want to make sure that our definition of this
composite operator obeys the conservation law, @�T�� D 0, as an operator equation. For
this purpose, we will proceed as follows: First, we will define separately the composite
operators corresponding to the classical expressions in eq.(4.2.5). The resulting tensor will
turn out to be not conserved. But fortunately we can add another operator of the same
dimension (field redefinition) to it such that it now is conserved [up to order O. 1

N 2
/]. The

resulting conserved operator is then the physical stress energy operator, which is seen to
have a non-zero VEV.

Let us now describe this procedure in some more detail. Since we can consistently
assume that

i  =@ D .g   /2 (4.2.29)

as an operator equation, we may simply write T�� D i 
.�
 !
@�/ again. We want to define

this composite operator using our method based on the OPE. For this purpose, we will
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need the following two OPE’s4:

 .x/=@ .0/ D O.
1

N
/1CO.

1

N
/  .0/

C
g2

i

�
1 �

g2

2�
log

�
�x2e2�E

4`2

�
CO.

1

N
/

�
.  /2.0/CO.x/

(4.2.30)

 .x/
.�@�/ .0/ D

�
�2x.�x�/

i� x4
CO.

1

N
/

�
1CO.

1

N
/  .0/

C

�
1CO.

1

N
/
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.�@�/ .0/ �

�
g4x.�x�/

2�i x2
CO.

1

N
/

�
.  /2.0/CO.x/

(4.2.31)

In order to verify these expansions, we have to make sure that they hold as insertions into
arbitrary correlation functions. By the same arguments as above, we will only need to
consider the 2- and 4-point functions in order to show that our expansions hold up to terms
of the order 1=N 2.

Verification of the OPE (4.2.30): We find for the short distance expansion of the
4-point function (see again appendix B.2 for the derivation of this formula)

h .x/=@ .0/ .z1/ .z2/i � h .x/=@ .0/i h .z1/ .z2/i

D
8�m

ig2N

Z
d2p d2q
.2�/4

.p�q� Cm
2/ eiz1p�iz2q

.p2 �m2/.q2 �m2/ B.q � p/

�
1 �

g2

2�
log

�
�x2e2�E

4`2

�
CO.x/

�
CO.

1

N 2
/

(4.2.32)

When combined with the OPE (4.2.30), this equation allows us to determine the following
insertion of the composite operator  =@ :

h =@ .0/ .z1/ .z2/i � h =@ .0/i h .z1/ .z2/i

D lim
x!0

0@h .x/=@ .0/ .z1/ .z2/i � h .x/=@ .0/i h .z1/ .z2/i CO.1=N 2/h
1 � g2

2�
log

�
�x2e2�E

4`2

�i
CO.1=N/

1A
D
8�m

ig2N

Z
d2p d2q
.2�/4

.p�q� Cm
2/ eiz1p�iz2q

.p2 �m2/.q2 �m2/ B.q � p/
CO.

1

N 2
/

(4.2.33)

4Here we do not give the most the most general form of the OPE coefficients, but choose a particularly
convenient set of coefficients for the sake of brevity. These coefficients along with the composite
operators defined below are then subject to the renormalisation ambiguities outlined in section 4.1.
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For the 2-point function we find the short distance expansion

h .x/=@ .0/i D m2
�
1 �

g2

2�
log

�
�x2e2�E

4`2

�
CO.x/

�
CO.

1

N
/ (4.2.34)

which allows us to determine the VEV

h =@ .0/i D lim
x!0

0@ h .x/=@ .0/i CO.1=N/h
1 � g2

2�
log

�
�x2e2�E

4`2

�i
CO. 1

N
/

1A D m2

ig2
CO.

1

N
/ (4.2.35)

In view of eqs.(4.2.32) to (4.2.35), we see that the OPE (4.2.30) does indeed hold when
inserted into correlators with up to two spectator fields. Due to the fact that the higher
n-point functions factorise (up to contributions of order 1=N 2), see eq.(4.2.24), we deduce
that our OPE in fact holds as an insertion into an arbitrary correlator.

Verification of the OPE (4.2.31): We can repeat the game for the OPE (4.2.31). Again,
we first compute the 4-point function (see appendix B.2 for details)
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which then allows us to determine the following insertion of the composite operator
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The short distance expansion of the 2-point function is
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which yields the VEV

h 
.�@�/ .0/i

D lim
x!0

0@h .x/
.�@�/ .0/i � � 2� x.�x�/x4
CO. 1

N
/
�
�

h
�
g4

2�

x.�x�/
x2
CO. 1

N
/
i
h.  /2.0/i

1CO. 1
N
/

1A
D O.

1

N
/

(4.2.39)

Inserting these equations into the OPE (4.2.31) confirms that this OPE holds as an insertion
into correlators with up to two spectator fields. Again, we argue based on eq.(4.2.24) that
this implies that the OPE also holds, up to terms of order 1=N 2, when inserted into any
other correlator.

Having defined the composite operator T�� D i  
.�
 !
@�/ , we are now ready to check

the conservation law. Since we would like to check whether the stress tensor is conserved
as an operator, we need to calculate the divergence h@�T��.0/

Q
 .yi/

Q
 .zj /i inside

a correlation function. Actually, it suffices for our purpose to consider two spectator fields
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 .z1/ .z2/ inside the correlator. Taking the divergence of eq.(4.2.37), we find explicitly5
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Since the r.h.s. is not zero, it follows that the composite operator T�� , as defined, is not

conserved. However, it follows that the operator ��� WD T�� � .g
2i=4�/ ��� =@ is

conserved [up to order O. 1
N 2
/]. We consequently define ��� to be the physical stress

energy tensor up to that order. Using equations (4.2.35) and (4.2.39), its VEV is found to
be
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N
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This corresponds to a negative vacuum energy of �vac D �1=.4�`
2/ e�2�=g

2

to leading
order in 1=N . The negative sign is related to the negative sign of the ˇ-function in the
Gross-Neveu model.

We must finally discuss the ambiguity of our result. According to the general discussion
in section 4.1 we are still free to change ��� ! ��� C `

�2c.g/ ���1, where c.g/ D
c0C c1gC c2g

2C : : : is analytic [cf. equation (4.1.2)]. This will result in a corresponding
change �vac ! �vac C `

�2c.g/. We can eliminate this remaining ambiguity by making
the, seemingly-reasonable, assumption, that �vac should vanish to all orders in perturbation
theory. This is the same as demanding that, at the perturbative level, Minkowski space
is a solution to the semi-classical Einstein equations. Under this assumption, �vac D

�1=.4�`2/ e�2�=g
2

is unique. This is the main result of this section.

5Note that the contribution h@.� 
�/ .0/ .z1/ .z2/i can be obtained from eq.(4.2.37) through the
relation

h@.� 
�/ .0/ .z1/ .z2/i D h 
.�@�/ .0/ .z2/ .z1/i D h 
.�@�/ .0/ .z2/ .z1/i (4.2.40)
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4.3 A possible explanation for Dark Energy

In the previous section we have defined the stress energy operator of the Gross-Neveu
model to leading order in the large flavour expansion, and we have made sure that our
definition respects the energy-momentum conservation law. Under the condition that the
OPE coefficients are analytic in the coupling constant, we found that the non-perturbative
contribution to the vacuum energy is uniquely given by �vac D �1=.4�`

2/ e�2�=g
2

.
Unfortunately, the definition of our model at the quantum level includes the scale `, which
corresponds to a choice of units of length. This constant is not provided by the classical
Lagrangian, which makes it difficult to determine the exact value of the vacuum energy. It
would certainly be preferable to have a theory wherein all dimensionful parameters are
already part of the fundamental Lagrangian defining the theory in the ultra-violet. In order
to achieve this, one could couple our model to other quantum fields with dimensionful
couplings. As an example, one could consider the Lagrangian

L' WD LGN C
1

2
@�'@�' C

1

2
M 2'2 C yM '  (4.3.1)

where LGN is the Gross-Neveu Lagrangian (4.2.3) and where y;M 2 R are additional
coupling constants. In this model it is possible to relate the constant ` to the dimensionful
parameter M by a renormalisation condition, such as e.g. the condition that the physical
(renormalised) mass of  (as determined by the exponential decay of the fermion 2-point
function) at some value g D O.1/ D y equals M , where M is the physical (renormalised)
mass of ' (as determined by the exponential decay of the ' 2-point function). In this
model we would expect that our result for the vacuum energy would be modified to
�vac �M

2e�O.1/=g
2

, i.e. the scale ` is simply set by the new parameter M , which is now
a parameter that appears in the Lagrangian. As mentioned above, the analyticity condition
on the OPE coefficients only fixes the non-perturbative contribution to the stress-energy
operator. In the case at hand, the remaining freedom amounts to addition of a term of
the form c.g; y/M 2��� , where c.g; y/ is analytic in the coupling constants. Again, by
demanding that Minkowski space is a solution to the semi-classical Einstein equations
to all perturbation orders in y; g gets rid of this perturbative contribution and leads to a
unique result for the vacuum energy.

In order to make a realistic prediction for the vacuum energy of the universe, we would
of course have to use the Standard Model of particle physics instead of the Gross-Neveu
model. If we take a bold leap and pursue the analogy with the model outlined above, one
would expect the parameter M to be replaced by a mass scale of the Standard Model, such
as e.g. the Higgs mass, M ! MH . Furthermore, the coupling should be replaced by a
gauge coupling, such as g2=4� ! ˛EW � 1=137. These speculations would result in a
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vacuum energy of the form �vac �M
4
He�O.1/=˛EW . The unnatural smallness of �vac would

thus be achieved through the exponential factor. We believe that, as proposed in [13], such
a mechanism could possibly explain the observed value of Dark Energy.





5
Conclusions and Outlook

Our focus in the present work has been on fundamental properties as well as applications
of the operator product expansion in both perturbative- and non-perturbative quantum field
theory. In the perturbative setting on Euclidean space we have shown that the OPE of any
number of fields converges (generalising the previous convergence result for the OPE of
two fields [15]) and factorises at long distances. As we have argued above, the convergence
result offers the important insight that the model is entirely determined through its OPE
coefficients together with the 1-point functions, in the sense that all n-point functions can
be constructed from these data. The factorisation property imposes non-trivial algebraic
relations between the OPE coefficients, which can lead to strong restrictions on the latter.
Both results also yield support to the axiomatic framework proposed in [21]. The explicit
bounds on various quantities of interest, which were necessary to prove our results, were
derived within the flow equation framework of perturbative quantum field theory. For this
purpose, we had to get a grasp on the regularisation of subdivergences of Green’s functions
with multiple insertions of composite operators, which is probably the main technical
advance to the flow equation framework provided by this thesis.

We further introduced an explicit formula for perturbations of the OPE coefficients,
which provides an algorithm for the computation of perturbed OPE coefficients in terms of
the zeroth order ones. It was shown that this formula follows directly from our definition
of the OPE coefficients in the flow equation framework. The possibility to compute
OPE coefficients in perturbation theory without reference to any other objects, such as
for example correlation functions, is quite satisfying conceptually. To our knowledge,
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our formula constitutes the first result in this regard that does not require any additional
assumptions (such as factorisation or bootstrap conditions).

In the last part of this thesis we determined the vacuum expectation value of the stress
energy operator in the two dimensional Gross-Neveu model, to leading order in the large
flavour expansion. Our construction was based in the operator product expansion. We
found, following a proposal by Hollands and Wald, that one can impose an analyticity con-
dition on the OPE coefficients, which leads to a unique prediction for the non-perturbative
contribution to the VEV of the stress energy operator. This non-perturbative contribution
is ”exponentially small”. We finally discussed possible cosmological implications of our
findings. Namely, if a similar mechanism is present in the Standard Model of particle
physics, which seems conceivable, the mentioned smallness of the effect could offer a
natural explanation for the observed value of Dark Energy.

We conclude this thesis with a discussion of some possible lines of future research linked
to the work presented here:

� We expect that convergence and long distance factorisation of the OPE also hold
in other perturbative models. One could for example try to extend our results to
theories with different symmetry properties, to massless models or even to theories
on curved manifolds.

� It would be desirable to improve our factorisation result. In particular, one would like
to have a version of theorem 3 without the second factor on the l.h.s. and with QK as
close to 1 as possible. This would validate the axioms of [21] in perturbative quantum
field theory, and confirm the relation between the OPE and vertex operators [22].
It seems difficult, however, to improve much on the constant QK if one follows the
strategy presented in section 3.5, since we expect it to be hard, if at all possible,
to derive significantly stronger bounds on the relevant Schwinger functions with
insertions. We believe that it might be possible to exploit our OPE deformation
result, theorem 4, in order to attack the problem from a different angle.

� The perturbation formula for the OPE coefficients presented in theorem 4 should
depend on the renormalisation conditions. It would be interesting to study this
dependence in more detail.

� Concerning the proposed mechanism to reduce renormalisation ambiguities via an
analyticity condition on the OPE coefficients, a similar non-perturbative analysis
of more complex models could be fruitful. In particular, one should be looking
for models (most likely in two dimensions), which share as many features with
the Standard Model as possible. One could also look for more arguments on how
a non-perturbative effect like the one described in chapter 4 could appear in the
Standard Model.
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� The motivation for the research presented in chapter 4 lies primarily in cosmological
applications. Therefore, it would be more ”realistic” to apply the same strategy to
the Gross-Neveu model on a curved spacetime, especially on Robertson-Walker
space. It would be interesting to see how far curvature effects influence our result.





A
Derivation of bounds on Schwinger

functions in g'4-theory

In this appendix we collect the somewhat lengthy and technical proofs of the bounds
presented in section 3.2.

A.1 Proof of bound 1
Using the inductive scheme sketched in section 3.2, we will first derive a bound on the
functionals Fƒ;ƒ0D that holds for arbitrary ƒ. Under the condition ƒ � m this result then
implies our bound 1, which is uniform in ƒ and thus allows for the removal of this cutoff
(i.e. ƒ! 0).

Proposition 5: Let xN D 0 and D � D0 D ŒA1�C : : :C ŒAN �. There exists a constant

K > 0 such that
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with d.N; n; l; w;D0/ WD 2D0.nC l C 2.N � 1//C sup.D0 C 1 � 2n � jwj; 0/.
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Proof of proposition 5. The strategy is to integrate the differentiated flow equation
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over ƒ and bound each term on the right hand side separately. For the first two terms on
the right hand side of this equation, the bound is verified to hold inductively as one goes
up in nC l and for fixed nC l goes up in l . This general procedure is very similar to the
one employed in [15]. To bound the third term on the r.h.s. of eq.(A.1.2), we will make
use of the known bounds on the CAG’s with one insertion, (3.2.6).

When integrating eq.(A.1.2) over ƒ, we have to distinguish three cases:

(A) Contributions with 2nC jwj > D are referred to as irrelevant. Here the boundary
conditions are given at ƒ D ƒ0, see eq.(3.1.37). Therefore, we integrate over ƒ0

from ƒ to ƒ0 in this case.

(B) Contributions with 2nC jwj � D are referred to as relevant. The boundary condi-
tions for relevant terms, eq.(3.1.36), are given at ƒ D 0 and at vanishing external
momentum, Ep D E0. Thus, we will integrate over ƒ0 from 0 to ƒ in this case.

(C) Contributions with 2nC jwj � D and Ep ¤ E0 will be obtained from (A),(B) with the
help of a Taylor expansion in Ep.

(A) Irrelevant terms (2nC jwj > D):

First term on the r.h.s. of the flow equation: In the following we will use the
shorthand

X.Ex;D0;D;w/ WD
max1�i�N jxi j
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min1�i<j�N jxi � xj jD
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(A.1.3)
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for the sake of brevity. Substituting our inductive bound, (A.1.1), as well as
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ƒ2 (A.1.4)

into the first term on the r.h.s. of eq.(A.1.2) and integrating over ƒ0 from ƒ to ƒ0 yields
the inequality [recall the definition of j Epj2nC2 from eq.(0.5)]
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Here we made use of the inequality

d.N; nC 1; l � 1;w;D0/ � d.N; n; l; w;D0/ ; (A.1.6)

which follows directly from the definition of d stated in the proposition. One can show
[48] that the momentum integral in the last line of (A.1.5) is bounded by
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The ƒ0 integral can then be estimated using the formula [48]
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which holds for any s 2 N. Using (A.1.7) and (A.1.8) in formula (A.1.5) and also noting
the relation .2l C n � 1/3 D .2l C n/3 � 3.2l C n/.2l C n � 1/ � 1, we find the bound
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We see that this contribution satisfies the inductive bound, (A.1.1) multiplied by 1 1=8 A,

A.D0;D; n; l; w/ WD K�3jwj�2D
0.nC2l/.nC2l�1/�D0 (A.1.10)

if K is chosen large enough such that

10.nC 1/.2nC 1/ 2d.N;n;l;w;D
0/K�D

0.nC2l/.nC2l�1/�jwj
� 1=8 ; (A.1.11)

for all n; l . For large n, we see that the left hand side of (A.1.11) behaves as n24D
0nK�D

0n2 ,
so a K satisfying the inequality is easy to find in that case. The case of large l; jwj is
similar. To see that a largeK also satisfies the inequality for small n; l; jwj, it is crucial that
K always appears with a negative power on the left hand side of the inequality (A.1.11).
For this purpose, it is helpful to note that l � 1 here, since otherwise the first term on the
right side of the flow equation is simply zero.

Second term on the r.h.s. of the flow equation: We integrate the second term in
the flow equation (A.1.2) over ƒ0 from ƒ to ƒ0 and insert our inductive bound as well as

1This factor will be crucial below in the discussion of the relevant terms at non-zero momentum, see in
particular eq.(A.1.50).
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the known bound for the CAG’s without insertions [see (3.2.3)] to obtain
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Here we implicitly assumed that the constant K in proposition 5 is greater or equal to the
constant K in the bound for the CAG’s without insertion, (3.2.3). It can of course always
be chosen that way. We now use the inequality 2l1C n1 � 2l C n� 1, which holds due to
the fact that the CAG without insertion vanishes unless n2 C 2l2 � 2, to obtain

r.h.s. of (A.1.12) � KD0.2lCn�1/3C.4nC8l�7/.jw1jCjw2jC1/
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(A.1.13)

Here we also made use of the fact that X.Ex;D0;D;w1/ � X.Ex;D0;D;w/ for jw1j � jwj.
Then, using the bound [15, 59]ˇ̌̌
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ƒ2 ; k D 1:086 : : : (A.1.14)
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and the identity �1 C �2 � 2l1 C n1 C l2 � 2l C n (again since n2 C 2l2 � 2), we find
the bound

r.h.s. of (A.1.13) �
X

l1Cl2Dl ;
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(A.1.15)

Now the ƒ0 integral can again be estimated using the inequality (A.1.8). Noting that also

d.N; n1; l1; w1;D
0/ � d.N; n; l; w;D0/ (A.1.16)

which holds as a result of the inequality 2.n1C l1/ � 2.nC l/�2 (using n1Cn2 D nC1,
and n2 C l2 � 2), and using also

P
cfwi g2

jw3j=2 D .2C
p
2/jwj, one obtains the bound

claimed in (A.1.1) multiplied by 1=8 A, which was defined in eq.(A.1.10), provided that
K is chosen large enough that

K�D
0.nC2l/.nC2l�1/C.4nC8l�7/�jwj 5k

X
l1Cl2Dl

n1Cn2DnC1

.n2Cl2/Š 4 n1 .2lCn/ 2
2lCn .2C

p
2/jwj �

1

8

(A.1.17)
Again, it is easy to convince oneself that such a K can be found for large n; l; jwj. To see
that this is also true for small values of these parameters, it is helpful to note the inequality
.nC 2l/.nC 2l � 1/ > 4nC 8l � 7, which implies that the exponent of K on the l.h.s. is
always negative.

Third term on the r.h.s. of the flow equation: Note that this term is a momentum
integral over the CAG’s with one insertion, for which we have a bound already, see (3.2.6).
To keep formulas at a reasonable length, we will use the notation

Epi D .p2ni�1; : : : ; p2ni�1/ (A.1.18)

in the following, where i takes values between 1 and N and where we set p2n0 WD p1 and
p2nN�1 WD p2n. The momentum integral can then be estimated as follows:
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Lemma 6: Let n1C : : :CnN D nC 1 and l D l1C : : :C lN with nC lC 1 � N . Then

we have for any D � D0 D ŒA1�C : : :C ŒAN � and 1 � a < b � Nˇ̌̌̌
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(A.1.19)

where Q D .N C 1/jwj 6jwjCD
0�D N 2lCnC2�NN d .2l C nC 2 �N/d 2d and where K0

is the constant (called K there) appearing in our bound on the CAG’s with one insertion,

see (3.2.6). For nC l C 1 < N the left hand side vanishes.

Remark 17: For N D 2, D D ŒA1� C ŒA2� and jwj � D C 1 this integral was first
estimated by Hollands and Kopper in [15].

Proof. Recall that L
ƒ;ƒ0
0;0 .OA.0/I Ep/ D 0, which implies that the left side of (A.1.19)

vanishes for nC l C 1 < N . Assuming now nC l C 1 � N and using the translation
property of the CAG’s with one insertion, eq.(3.1.22), we can rewrite our integrand as

L
ƒ;ƒ0
2na;la

.OAa.xa/I k; Epa/ PC
ƒ.k/L

ƒ;ƒ0
2nb;lb

.OAb.xb/I �k; Epb/
Y
r¤a;b

L
ƒ;ƒ0
2nr ;lr

.OAr .xr/I Epr/

D ei.p1C:::Cp2n1�1/x1C:::Ci.p2nN�1C:::Cp2nN�1/xNCik.xa�xb/

�L
ƒ;ƒ0
2na;la

.OAa.0/I k; Epa/ PC
ƒ.k/L

ƒ;ƒ0
2nb;lb

.OAb.0/I �k; Epb/
Y
r¤a;b

L
ƒ;ƒ0
2nr ;lr

.OAr .0/I Epr/

(A.1.20)

Applying the momentum derivatives then yields
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The momentum derivatives on the exponentials can be estimated simply viaˇ̌̌
@
w1
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Thus, we have arrived at the boundˇ̌̌̌
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In order to obtain the desired dependence on the IR-cutoff, which is ƒD�2n�jwj�1 in
lemma 6, we now introduce additional momentum derivatives at the cost of inverse powers
of jxa � xbj through the following procedure: Denote by jjxjj D max�2f1;:::;4g jx�j the
maximal component of x. We can then use the elementary relationˇ̌̌

jjxjj � exp.ikx/ : : :
ˇ̌̌
D

ˇ̌̌
@k˛ exp.ikx/ : : :

ˇ̌̌
(A.1.24)

where ˛ 2 f1; : : : ; 4g is defined via jjxjj D jx˛j. We use this method to introduce
D0 �D C jw1j additional k-derivatives into eq.(A.1.23). These derivatives can then be
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shifted from the exponential onto the CAG’s via partial integration2, and we arrive atˇ̌̌̌ Z
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Here the index ˛ on the k-derivatives is defined through the condition jjxa � xbjj D
j.xa � xb/˛j. We can now use our bounds for the CAG’s with one insertion in order to
estimate the integrand. Note also that jxj � 2jjxjj for any x 2 R4. Substituting these
estimates along with the bounds for the CAG’s with one insertion, we find after some
bookkeeping [note also that D0.nC 2l/3 �

P
i ŒAi �.ni C 2li/

3]ˇ̌̌̌
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whereQ0 D .NC1/
jwj 6jwjCD

0�DN 2lCnC2�NN d1C:::CdN .2lCnC2�N/.d1C: : :CdN /

and where we used the shorthand di D 2ŒAi �.ni C li/C sup.ŒAi �C 1 � 2ni � jwi j; 0/.
We can replace the upper limit for the summation over �, which is d1 C : : : C dN , by
d.N; n; l; w;D0/, since

d1 C : : :C dN � 2D
0.nC 1C l/CD0 CN � 2 � d.N; n; l; w;D0/ : (A.1.27)

2The exponential damping factor PCƒ.k/ ensures that the integrand decays sufficiently rapid for large k to
allow for this partial integration. Recall that the bounds on the CAG’s with one insertion, (3.2.6), only
grow polynomially in the momenta.
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The momentum integral can then be bounded by an application of the inequality (A.1.7).
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Substitution into (A.1.26) confirms the bound stated in the lemma.

Now, to obtain a bound for the third term in the flow equation we have to integrate the
bound derived in lemma 6 over ƒ0 between ƒ0 and ƒ. Using the identity (A.1.8) for the
ƒ0 integral, we obtain the boundˇ̌̌̌
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(A.1.29)

where K0 is the constant from lemma 6. Recall from the flow equation, eq.(A.1.2),
that this term is to be multiplied by 4nanb, and we also have to apply the operator S

and sum over the configurations n1 C : : : C nN D n C 1 and l1 C : : : C lN D l as
well as over 1 � a < b � N . Note that the assumption xN D 0 guarantees that
max1�k�N jxkj=min1�i<j�N jxi � xj j � 1. In total we find that the inductive bound
(A.1.1) multiplied by 1=8 is reproduced under the condition that K � K0 satisfies

20N 2.lC1/N�1.nC1/NC1QK
.4nC8l�4/.jwjCD0�D/CD0.nC2l/3

0 �
1

8
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(A.1.30)
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Here it is useful to note that both .2l C n/ and .4nC 8l � 3/ are always positive (since
nC l � 1), which helps one to see that the inequality can be satisfied by making K large
enough.

(B) Relevant terms (2nC jwj � D) at Ep D E0:
As the boundary conditions for the relevant terms are given at zero momentum, we will

first derive bounds for Ep D E0 and then proceed to arbitrary momentum with the help of the
Taylor expansion formula
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(A.1.31)

First term on the r.h.s. of the FE: In view of eq.(A.1.31), let us consider the
first term on the r.h.s. of the flow equation with momentum derivatives @ QwCw
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and with

2nC j Qw C wj � D at zero momentum. Integrating over ƒ0 from 0 to ƒ we find
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The momentum integral in the last line can be estimated by (cf. inequality (76) in [15])
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and for the subsequent sum over � we can use the bound (cf. inequality (88) in [15])
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For the ƒ0 integral we make use of the inequality (cf. (89) in [15])Z ƒ
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(A.1.35)

Using these bounds to estimate the r.h.s. of (A.1.32) shows that this contribution satis-
fies the inductive bound, formula (A.1.1), multiplied by 1=8 A, defined in eq.(A.1.10),
provided that K is chosen such that

12

�
2nC 2

2

�
d.N; n; l; Qw C w;D0/3=2 K�D

0.nC2l/.nC2l�1/�jwC Qwj
� 1=8 : (A.1.36)

It can be seen that it is indeed possible to find such a K. This is easy to see for large values
of nC l . To see that it is also true for small nC l , it is useful to recall that for the first
term on the r.h.s. of the flow equation, (A.1.2), we can assume l � 1, so K will always
have a negative exponent.
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Second term on the r.h.s of the FE: Inserting the induction hypothesis for the AG’s
with N insertion and the known bounds for the CAG’s without insertion, formula (3.2.3),
yields
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(A.1.37)

We again use the inequality (A.1.14) and proceed as in (A.1.35) to estimate the ƒ0 integral.
Recall also that X.Ex;D0;D;w1/ � X.Ex;D0;D;w/ for jw1j � jwj. As a result we arrive
at the bound (A.1.1) multiplied by 1=8 A, under the condition that K satisfies the lower
bound

6K�D
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8
: (A.1.38)

The inequality .nC 2l/.nC 2l � 1/ � .4nC 8l � 6/ ensures that K always appears with
a negative exponent on the right side, which is helpful in order to see that such a K can be
found.
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Third term on the r.h.s. of the FE : Using lemma 6, we findˇ̌̌̌
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(A.1.39)

Since we assume N � 2, we can replace the upper limit for the summation over � by
2l C n � 1. For the integral over ƒ0 we then use the inequality [15]
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Recalling that we have to multiply (A.1.39) by 4nanb and that we also have to apply
the symmetrization operator S and sum over the indices n1 C : : : C nN D n C 1 and
l1 C : : :C lN D l , as well as over 1 � a < b � N , we reproduce the inductive bound,
(A.1.1), multiplied by 1=8 under the condition
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(A.1.41)

on K. Again, this condition can be satisfied by a sufficiently large K.
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(C) Relevant terms (2nC jwj � D) at arbitrary momentum:

In order to proceed to non-zero momentum we now make use of the Taylor series.
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On the right hand side we can use the bounds previously derived in (A) and (B).
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(A.1.43)

Here K0 is the constant (called K there) from the bound on the CAG’s with one insertion,
(3.2.9), and Q is the constant defined in the statement of lemma 6. To obtain the r.h.s. of
the inequality above, we used the fact that the first and second term on the r.h.s. of the flow
equation satisfy the bound (A.1.1) multiplied by 1=8 A in the cases (A) and (B). Hence
the expressions include the factor A. For the contribution from the third term in the flow
equation we also used the bounds derived above for the cases (A) and (B), but expressed
in terms of the constant K0 instead of K, see the inequalities (A.1.29) and (A.1.39) and
the discussion following them.
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To simplify the inequality (A.1.43), we make use of the estimates:
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d.N; n; l; Qw C w;D0/C j Qwj � d.N; n; l; w;D0/ for j Qwj � D0 � 2n � jwj C 1
(A.1.48)

We then obtain the bound
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It follows that this contribution satisfies the bound claimed in the theorem, (A.1.1), provided
that K is chosen sufficiently large such that the following two conditions are satisfied:X
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It can be seen that it is indeed possible to choose K such that the conditions (A.1.50) and
(A.1.51) are satisfied (recall also that we can always assume nC l � 1, since otherwise
the contributions vanish), which finishes the proof of proposition 5.

With proposition 5 at hand, we are now in a position to verify bound 1 without much
effort.

Proof of bound 1. We can insert the bounds from proposition 5 into the flow equation
(A.1.2) once more and integrate over ƒ from 0 to m. Note that there is a damping factor
exp.�m2=ƒ2/ in each of the terms on the r.h.s. of the flow equation, so we can bound
negative powers of ƒ through the estimateZ m

0

dƒ0 exp.�m2=ƒ02/
ƒ0D�2n�jwj���1p

�Š
� mD�2n�jwj��
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(A.1.52)

Choosing a somewhat larger constant K to accommodate for the additional powers of 2
and for the factor

p
.2n �D/CŠ, we obtain bound 1.

A.1.1. Alternative bound with explicit ƒ0-dependence
It was mentioned in remark 5 that we can derive a version of bound 1 where the factor
min1�i<j�N jxi � xj j

D�D0 is replaced by a factor ƒD
0�D

0 =
p
.D0 �D/Š. This is achieved

as follows: We follow the same inductive strategy as in the proof of bound 1. For
the first two terms on the right hand side of the flow equation (A.1.2), we can follow
exactly the same steps as before, making the adjustment min1�i<j�N jxi � xj j

D�D0 !

ƒD
0�D

0 =
p
.D0 �D/Š in the definition of the placeholder X. Concerning the source term,

we again make use of lemma 6, but we choose D D D0 for the constant appearing in that
lemma. The resulting bound differs from the one used in the proof of proposition 5 by
the replacement min1�i<j�N jxi � xj j

D�D0 ! ƒD
0�D=

p
.D0 �D/Š. We recall that by

assumption ƒ � ƒ0, so we can replace the extra powers of ƒ by powers of ƒ0, which
confirms that also the third term on the right hand side of the flow equation satisfies the
alternative bound.

A.1.2. Alternative bound with improved IR-behaviour
Finally, we would like to substantiate our claim in remark 5 concerning the IR-behaviour
of the bound. Recall that we introduced additional momentum derivatives at the cost of
inverse powers of jxi �xj j in the proof of lemma 6. Nothing prevents us from going further



118 APPENDIX A. DERIVATION OF BOUNDS ON SCHWINGER FUNCTIONS

and introducing r 2 N additional momentum derivatives this way. The resulting bound,
then, contains an additional factor ƒ�r

p
rŠ and some additional powers of K0, which

are not relevant here. This bound would of course not be consistent with the induction
hypothesis (A.1.1) due to the extra powers of ƒ�1. However, we can get rid of this factor
with the help of the exponential e�m

2=ƒ2 , which is still at our disposal, i.e. we use the
estimate ƒ�re�m

2=ƒ2 � m�r
p
rŠ. We can then bound the ƒ integral as before in (A.1.29)

and (A.1.40) and adjust the definition of X accordingly to obtain proposition 5 with an
additional factor of rŠ .m �min1�i<j�N jxi � xj j/

�r on the right hand side of the bound,
which is just the behaviour claimed in remark 5.

A.2 Proof of bound 2
We will assume xN D 0 for the remainder of this proof, which allows us to keep formulas
relatively compact. The general case, xN ¤ 0, follows quite easily in the end with the
help of the translation properties of the AG’s with insertions, eq.(3.1.48). Recalling the
decomposition (3.1.38) of the functionals Gƒ;ƒ0D ,

G
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we first verify bound 2 for the factorised contribution. Estimating the remainder of the
Taylor expansion with the help of eq.(3.2.17) and using the Lowenstein rule (3.1.45) for
the spacetime derivatives, we arrive at the formula
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(A.2.2)

The CAG’s with one insertion on the right hand side can now be estimated using the
inequality (3.2.9). It is then not hard to check that this contribution indeed satisfies the
claimed bound, (3.2.16), for a suitably large constant K.

To prove that the remaining contribution containing the Fƒ;ƒ0D -functionals also satisfies
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bound 2, we first derive the following result:

Proposition 6: Let D D D0 C �, where D0 D ŒA1� C : : : C ŒAN � and � > 0, and

assume xN D 0. There exists a constant K > 0 such that
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with d.N; n; l; w;D0/ WD 2D0.nC l C 2.N � 1//C sup.D0 C 1 � 2n � jwj; 0/.

Proof. The proof is very similar to that of proposition 5. Applying the Taylor expansion
.1 �

P
j�� T

j

Ex!E0
/ to the flow equation (A.1.2), we can in fact follow exactly the same

inductive procedure as in the proof of proposition 5 to show that the first two terms on the
r.h.s. of the flow equation satisfy the bound (A.2.3). The only significant difference is that
in the proof we replace X.Ex;D0;D;w/, as defined in (A.1.3), by
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The only properties of this function that were used in the proof are

X.Ex;D0;D;w1/ � X.Ex;D0;D;w/ for jw1j � jwj (A.2.5)

X.Ex;D0;D;w C Qw/ D X.Ex;D0;D;w/ for jwj C j Qwj � D C 1 : (A.2.6)

Clearly, both these conditions are fulfilled also by QX. Thus, with the adjustment X ! QX

one simply has to follow the same steps as in the proof of proposition 5. The main effort
in proving proposition 6 therefore goes into showing that the ”source term”, i.e. the third
term on the r.h.s. of the flow equation, satisfies the claimed bound. In order to verify our
improved bound (3.2.16), we will need, instead of lemma 6, the following estimate:
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Lemma 7: Let n1 C : : : C nN D n C 1, l D l1 C : : : C lN with n C l C 1 � N and

xN D 0. Further, pick D D D0 C�, where D0 D ŒA1�C : : :C ŒAN � and � � 0. Then

we have for any 1 � a < b � Nˇ̌̌̌
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whereQ D �4�Cjwj.N C1/jwj 6jwjN 2lCnC1�NN d .2lCnC1�N/d 2d , where .jwj�

�/C D sup.jwj ��; 0/, and where K0 is the constant (called K there) appearing in our

bound on the CAG’s with one insertion, see (3.2.6). For nC l C 1 < N the left hand side

vanishes.

Proof. Vanishing of the l.h.s. for nC l C 1 < N follows again from L
ƒ;ƒ0
0;0 .OA.0// D 0.

We start off by decomposing the Taylor expansion into two steps. For later convenience,
we define the tuple
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i.e. E� is equal to Ex except for the a-th and b-th entry (geometrically, E� is obtained from Ex
by a �=4-rotation in the .a; b/-plane). The Taylor expansion can equivalently be expressed
in terms of the E� coordinates:
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This equation can be checked explicitly using the definition of the operators T , eq.(3.1.61).
Substituting the decomposition (A.2.9) on the left hand side of (A.2.7), we will show that
the contributions from both summands on the r.h.s. of (A.2.9) satisfy the claimed bound.
For the contribution corresponding to the second term on the r.h.s. of eq.(A.2.9), this
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simply follows from lemma 6 combined with the remainder formula (3.2.17). Note in
particular that in this case
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so this particular factor can be neglected in the bounds. Using the formula (3.2.17) for the
remainder of the Taylor expansion, we can write the contribution from the first term on the
r.h.s. of eq.(A.2.9) as
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The second term on the right hand side of this expression is again easily found to be
consistent with the claimed bound (A.2.7) with the help of lemma 6 together with the
Lowenstein rule (3.1.45). Using the translation properties of the CAG’s with insertions,
eq.(3.1.22), the first term on the right hand side can also be written in the form
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Our aim is now to get rid of the momentum derivatives on the exponential in the second
line. Let us first consider derivatives with respect to Epr with r ¤ a; b. Every such
derivative on the exponential yields a factor i��r . Each of those factors of � , in turn, allows
us to perform a partial integration in � without picking up a boundary contribution, i.e. we
can useZ 1
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which holds for n < �. The momentum derivatives with respect to Epa and Epb yield factors
of i.��a ˙ �b/=

p
2, respectively. The additional factors of � can again be used to perform

partial integrations as above. The powers of �b, on the other hand, can be transformed
into k-derivatives, which can then be moved to the term in the last line of (A.2.12) via
partial integration in k. Summing up, we can estimate (A.2.12) via [recall that we use the
notation .c/C D sup.c; 0/]
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where the index ˛ 2 f1; : : : ; 4g on the k-derivatives satisfies jjxa � xbjj D j.xa � xb/˛j.
Using the bounds on the CAG’s with one insertion, (3.2.6), as well as the estimateZ 1
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the claimed bound, (A.2.7), is verified after some straightforward algebraic manipulations
and estimates.

Returning to the proof of proposition 6, recall that our final task to finish the proof is
to make sure that the source term, i.e. the third term on the right hand side of the flow
equation, satisfies the claimed bound. For this purpose, we have to estimate the ƒ integral
over the bound we have just derived in lemma 7. To achieve this, one can again follow the
same computational steps as in the proof of proposition 5, i.e. we make use of the estimate
(A.1.8). We spare the reader the repetition of these calculations.

With proposition 6 at hand, we can now remove the dependence on the IR-cutoff just as
in the estimate (A.1.52). This finishes the proof of bound 2 for the case xN D 0. As
mentioned above, one can use the translation properties of the amputated Green’s functions
with insertions, eq.(3.1.48), in order to generalise the bound to xN ¤ 0.



A.3. PROOF OF BOUND 3 123

A.3 Proof of bound 3
Our strategy here will be similar to that of the previous two sections. First, we will derive
a bound on the Hƒ;ƒ0-functionals for arbitrary ƒ with the help of the inductive scheme
based on the renormalisation flow equations. To verify bound 3 we will then remove the ƒ
dependence under the assumption ƒ � m.

Proposition 7: LetD � ŒA1�C : : :C ŒAM � and xM D 0. There exists a constantK > 0

such that
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withD0 D ŒA1�C : : :C ŒAN � and d.N; n; l; w;D0/ WD 2D0.nClC2.N �1//Csup.D0C
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Proof of proposition 7. Our strategy is to use the same inductive scheme as in the proof of
proposition 5. Our task is to integrate the flow equation for H , which can be written as [cf.
eq.(3.1.51)]
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Note that, in contrast to the proof of proposition 5, we do not have to distinguish between
relevant and irrelevant contributions. Here the boundary conditions for the Hƒ;ƒ0 func-
tionals, eq.(3.1.52), imply that we always integrate from ƒ to ƒ0. In the following we will
estimate each of the terms on the r.h.s. of eq.(A.3.2) separately.

First and second term: The first two terms on the r.h.s. of the flow equation, which
are linear in Hƒ;ƒ0 , can be estimated using the same inductive scheme used in the proof
of proposition 5. As mentioned above, we only have to consider the part of the induction
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which refers to irrelevant contributions. Collecting all the Ex dependent terms in NX,
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we can follow exactly the same steps as in the proof of proposition 5 (our boundary
conditions correspond to the case D D �1 there). Note that, crucially, NX satisfies the
condition (A.2.5), and that the condition (A.2.6), which is not satisfied by NX, is not used
in the part of the proof dealing with irrelevant contributions. We will not repeat the lengthy
estimates here.

Third term: In order to estimate the third term on the r.h.s. of the flow equation, we
will make use of he following lemma.
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where Q D 18jwjCD 22lCn4d .2l C n/ d and where K0 is the constant (called K there)

appearing in our bound on the F -functionals, see proposition 5.
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Proof. Using the translation properties of the F -functionals, the integral can be written asˇ̌̌̌
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The momentum derivatives on the exponential can turned into k-derivatives and moved
onto the moments of the F -functionals via partial integration. Just as in the proof of lemma
6, we now introduce D additional k-derivatives at the cost of a factor .2=jxN j/D, in order
to obtain the desired dependence on ƒ. Henceˇ̌̌̌
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where ˛ 2 f1; : : : ; 4g corresponds to the maximal component of xN , i.e. jjxN jj DW jxN;˛j.
Distributing the k-derivatives over the three factors, substituting our bounds for the F -
functionals [see proposition 5] and estimating the k-integral as in (A.1.28) then yields the
lemma after some elementary estimates for binomial factors.
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Continuing the proof of proposition 7, we can now estimate the ƒ-integral over the third
term on the r.h.s. of the flow equation. Using lemma 8 and the bound (A.1.7), we findˇ̌̌̌
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where K0 is the constant from lemma 8 (called K there). Multiplying this bound by 4n1n2,
applying the operator S and summing over the configurations n1 C n2 D n C 1 and
l1 C l2 D l � 2 we find that the inductive bound (A.3.1), multiplied by 1=6, is fulfilled
under the condition thatK satisfies (recall also that we assumedD � D0 in the proposition)
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Here it is useful to note that both .2l C n/ and .4nC 8l � 3/ are always positive (since
l � 2 for this contribution), which helps one to see that the inequality can be satisfied by
making K large enough.
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Fourth and fifth term: The following lemma will help us to estimate both these
contributions:
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where Q0 D .M C 2/
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M C 1/ d and where K0 is the constant (called K there) appearing in our bound on the

F -functionals, see proposition 5.

Proof. Using the same strategy as in the proof of lemma 8, we can estimate the l.h.s. of
eq.(A.3.9) asˇ̌̌̌
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We now distribute the momentum derivatives over the factors, pull the modulus inside the
integral and substitute our previous bounds from (3.2.6) and (A.1.1). Using also (A.1.28)
to estimate the momentum integral, we arrive at the lemma, after some straightforward
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algebraic manipulations and elementary estimates.

This lemma allows us to find a bound for the ƒ integral of both the fourth and the fifth
term on the r.h.s. of the flow equation, (A.3.2). Using the case D D �1 in the lemma, we
can estimate the ƒ-integral over the fourth term on the r.h.s. of the flow equation as (here
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where K0 is the constant from lemma 9. Multiplying the bound (A.3.11) by 4nanMC1,
applying the operator S and summing over the configurations n1 C : : :C nMC1 D nC 1
and l1C : : :C lMC1 D l � 1 as well as over 1 � a �M , we find that the inductive bound
is reproduced under the condition that K satisfies

20MlM .nC 1/MC3QK
.4nC8l�3/.jwjCŒA1�C:::CŒAM �/
0 K

D0.nC2l/3

0

�
1

8
K.4nC8l�3/jwjCD0.nC2l/3 ;

(A.3.12)

which can always be achieved by a large enough K.

For the fifth term on the r.h.s. of the flow equation we use lemma 9 again, but we
exchange the role of the indices .1; : : : ;M/$ .M C 1; : : : ; N / to obtain the bound (here
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we fix a 2 fM C 1; : : : ; N g)ˇ̌̌̌
ˇ
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By the same arguments as above, and also recalling that we assumed xM D 0 in the
proposition, we find that the inductive bound is reproduced under the condition that K
satisfies

20.N �M/lN�M .nC 1/N�MC3QK
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which can always be achieved by a large enough K.

Sixth term: The last term on the r.h.s. of the flow equation (A.3.2) can be estimated
with the help of lemma 6. If we take the D D �1 in the inequality (A.1.19), multiply by
4nanb, apply the operator S and sum over the configurations n1 C : : :C nN D nC 1 and
l1 C : : :C lN D l as well as over 1 � a � M and M C 1 � b � N , we find that this
bound is consistent with the inequality (A.3.1), provided K is chosen large enough that
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(A.3.15)

which, again, can always be satisfied by an appropriate choice of K.

Bound 3 is obtained from proposition 7 by inserting the inequality (A.3.1) into the flow
equation (A.3.2) and integrating over ƒ from 0 to m. The procedure is analogous to the
derivation of bound 1, see (A.1.52).
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A.4 Proof of bound 4
To arrive at the claimed bound, we follow the same steps as in the proof of proposition 7.
The main difference is that in the case at hand we make use of proposition 6 to estimate
the Taylor expansion of the regularised AG’s.

Proposition 8: Let D D ŒA1�C : : :C ŒAM �C� and xM D 0 and assume jxi j � jxj j
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withD0 D ŒA1�C : : :C ŒAN � and d.N; n; l; w;D/ WD 2D0.nC lC2.N �1//C sup.DC

1 � 2n � jwj; 0/.

Proof. We follow the same strategy as in the proof of proposition 7. Applying the operator
.1 �

P
j�� T j / to both sides of the flow equation (A.3.2), we again bound all six terms

on the right hand side separately. Since the procedure is very close to that described in the
previous section, we only focus on the differences in the proof.

� For the first two terms on the right hand side of the flow equation we again verify the
bound (A.4.1) inductively. Adjusting the expression QX.Ex;D0;D;w/ accordingly,
this part of the proof works just the same way as in propositions 5 and 7.

� For the third and fifth term, the only difference to the proof presented in the previous
section is that we make use of proposition 6 to bound the Taylor expansion of the
moments of Fƒ;ƒ0D .˝MiD1OAi /.

� To estimate the fourth term, we make use of the expression (3.2.17) for the remainder
of the Taylor expansion and pull the resulting spacetime derivatives in the CAG’s
with the help of the Lowenstein rule (3.1.45). We can then proceed as before, i.e.
use lemma 9 and integrate over ƒ as in (A.3.11). We also make use of the inequality
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�
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jxN j
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(A.4.2)
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which holds for all 1 � a �M under the assumption jxaj � jxN j.

� Finally, to verify our bound for the sixth term on the r.h.s. of the flow equation, we
again make use of eq.(3.2.17) for the remainder of the Taylor expansion and pull
spacetime derivatives into CAG’s using (3.1.45). We can then use lemma 6 and
estimate the ƒ integral as before. Here we also make use of the inequality

.1 � �/

jxb � �xaj
�

1

jxbj
(A.4.3)

which holds for all 1 � a �M < b � N under the assumption jxaj � jxbj.

We are now ready to finish the proof of bound 4. Recall the definition of the partially
regularised AG’s with insertions,
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�
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N
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�
:

(A.4.4)

Combing corollary 1 and bound 2, we find that the Taylor expansion of first term on the
r.h.s. of the equation above satisfies the claimed inequality, (3.2.21). To estimate the
contribution from the Hƒ;ƒ0 functional, we use proposition 8. We can remove the cutoff
dependence from that bound as in (A.1.52) and arrive at an estimate consistent with bound
4 in the case xM D 0. The general case xM ¤ 0 is obtained with the help of the translation
property (3.1.59).

A.5 Proof of proposition 4

We make use of the decompositionGƒ;ƒ0.˝NiD1OAi / D „F
ƒ;ƒ0.˝NiD1OAi /C

QN
iD1L

ƒ;ƒ0.OAi /

and study the g-derivative of the expressions on the right side of this equation. To begin
with, consider the derivative of the factorised contribution to „@gGƒ;ƒ0.˝NiD1OAi .xi//.
Using proposition 3 we find
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We find a similar contribution on the r.h.s. of eq.(3.6.8):
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In the second line we made use of lemma 2. We see that the first term on the r.h.s. of
(A.5.2) coincides with the r.h.s. of equation (A.5.1), which means that these terms cancel
in equation (3.6.8). Note also that the factorised contributions (i.e. terms containing only
CAG’s with one insertion) to the first two terms on the r.h.s of equation (3.6.8) cancel each
other. Let us now come to the various contributions from the Fƒ;ƒ0-functionals. Consider
first the g-derivative of the flow equation for Fƒ;ƒ0
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where we made use of proposition 3. The boundary conditions read

@w
Ep
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ƒ0;ƒ0
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.˝NiD1OAi I Ep/ D 0 for all n; l; w: (A.5.4)
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We want to compare this to the flow equations for the terms on the r.h.s. of eq.(3.6.8). To
start with, we have
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Next, we have

@ƒ

�
Fƒ;ƒ0.˝NiD1OAi /

1

4Š

Z
d4y Lƒ;ƒ0.'4.y//

�
D
„

2
h
ı

ı'
; PCƒ ?

ı

ı'
iFƒ;ƒ0.˝NiD1OAi /

1

4Š

Z
d4y Lƒ;ƒ0.'4.y//

� h
ı

ı'
Fƒ;ƒ0.˝NiD1OAi /

1

4Š

Z
d4y Lƒ;ƒ0.'4.y//; PCƒ ?

ı

ı'
Lƒ;ƒ0i

� „h
ı

ı'
Fƒ;ƒ0.˝NiD1OAi /;

PCƒ ?
ı

ı'

1

4Š

Z
d4y Lƒ;ƒ0.'4.y//i

C

X
1�i<j�N

h
ı

ı'
Lƒ;ƒ0.OAi /;

PCƒ ?
ı

ı'
Lƒ;ƒ0.OAj /i

Y
r2f1;:::;N gnfi;j g

Lƒ;ƒ0.OAr /

Z
d4y

4Š
Lƒ;ƒ0.'4.y//

(A.5.6)



A.5. PROOF OF PROPOSITION 4 135

Finally, for the last term in eq.(3.6.8):
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Also recall the remaining term from eq.(A.5.2), which satisfies the flow equation
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Now, summing up equations (A.5.5),(A.5.6),(A.5.7) and (A.5.8), one can check that these
contributions satisfy the same flow equation as „ @gFƒ;ƒ0.˝NiD1OAi /, see eq.(A.5.3). Also
note that all these contributions satisfy the boundary conditions of the form (A.5.4). It
follows that the left and right hand side of equation (3.6.8) are equal.



B
Computations in the 1=N -expansion

of the Gross-Neveu model

In this appendix we collect some of the explicit, but somewhat lengthy, calculations that
are used in our treatment of the 1=N -expansion of the GN-model.

B.1 The 4-point function to order 1=N
In eq.(4.2.18) we gave an explicit expression for the 4-point function of the basic field.
Here we are going to present the calculation leading to that equation. Up to order 1=N ,
the connected Feynman diagrams contributing to the 4-point function are

C C C : : :

Figure B.1.: Connected contributions to the 4-point function

Let us denote the fermion propagator by
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(B.1.1)
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where ˛; ˇ are spinor indices and where K0.x/ is a modified Bessel function of the second
kind, defined e.g. via the integral [60]

Kn.x/ D
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Z 1
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t�n�1e�t�x
2=4t dt (B.1.2)

for n 2 Z. Using the rules given in table 4.1 to translate Feynman diagrams into equations,
we obtain
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The integration over the fermion loops can be performed as follows1.Z
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Performing a Wick rotation and introducing a UV-cutoff ƒ, the integral over p3 can be
computed (see also [61]):
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1The i� terms are of no relevance to our calculations, so we suppress them in the following. Recall also
that we assume x to be spacelike
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Substituting this result for the fermion loops into eq.(B.1.3) yields
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Performing the geometric series and recalling form eq.(4.2.14) that

g.ƒ/

2�
log

m2

ƒ2
D 1 (B.1.7)

we arrive at the formZ
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where B.k/ is the function defined in equation (4.2.19). Finally, rewriting the k-integral
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we arrive at eq.(4.2.18).

B.2 Short distance expansion of correlation functions

For the derivation of the OPE coefficients in section 4.2.2 we needed explicit expressions
for the short distance expansion of various correlation functions. Here we will give the
computations leading to those formulae.
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Derivation of equation (4.2.25): Contracting the spinor indices in our formula for
the 4-point function yields
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In the last line of this equation we can substitute the explicit expression for the two point
functions, eq.(B.1.1), to obtain
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The expression in the third line of eq.(B.2.1) can be rewritten as follows (here we replace
the difference of the two momenta, .q � p/, by k for the sake of brevity):
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Using the short distance expansion for the modified Bessel functions,
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where �E is the Euler-Mascheroni constant, we arrive at the equation
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The integral in the second line was performed using MATHEMATICA. We can now
substitute equations (B.2.2) and (B.2.6) into equation (B.2.1), which yields the short
distance expansion
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as claimed in equation (4.2.25).

Derivation of equation (4.2.32): Our formula for the 4-point function implies
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Inserting the known 2-point function in the last line, we find for the disconnected contribu-
tion
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For the integral in the third line of equation (B.2.8) we obtain
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Expanding around x D 0 the integrand simplifies to
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Inserting equations (B.2.9) and (B.2.11) into equation (B.2.8) then yields equation (4.2.32).

Derivation of equation (4.2.36): Here we find with the help of equation (4.2.18)
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For the disconnected part we can again insert the known 2-point function.
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The third line of eq.(B.2.12) can be written as follows:
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Substituting eqs.(B.2.13) and (B.2.14) into equation (B.2.12) then yields equation (4.2.36).
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