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ABSTRACT

This thesis identifies and explores a link between the theory of linear viscoelasticity

and the spectral theory of Sturm-Liouville problems.

The thesis is divided into five chapters. Chapter 1 gives a brief account of the

relevant parts of the theory of linear viscoelasticity and lays the foundation for

making the link with spectral theory. Chapter 2 is concerned with the construction

of approximate Dirichlet series for completely monotonic functions. The chapter

introduces various connections between non-negative measures, orthogonal poly-

nomials, moment problems, and the Stieltjes continued fraction. Several interlac-

ing properties for discrete relaxation and retardation times are also proved.

The link between linear viscoelasticity and spectral theory is studied in detail

in Chapter 3. The stepwise spectral functions associated with some elementary

viscoelastic models are derived and their Sturm-Liouville potentials are explicitly

found by using the Gelfand-Levitan method for inverse spectral problems.

Chapter 4 presents a new family of exact solutions to the nonlinear integro-

differential A-equation, which is the main equation in a recent method proposed by

Barry Simon for solving inverse spectral problems. Starting from the A-amplitude

A(t) = A(t, 0) which is determined by the spectral function, the solution A(t, x) of

the A-equation identifies the potential q(x) as A(0, x).

Finally, Chapter 5 deals with two numerical approaches for solving an inverse

spectral problem with a viscoelastic continuous spectral function. In the first ap-

proach, the A-equation is solved by reducing it to a system of Riccati equations

using expansions in terms of shifted Chebyshev polynomials. In the second ap-

proach, the spectral function is approximated by stepwise spectral functions whose

potentials, obtained using the Gelfand-Levitan method, serve as approximations

for the underlying potential.
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1.1 Linear viscoelasticity

Viscoelasticity is the theory that describes the behaviour of materials which display

a time-dependent relationship between stress and strain. In a viscoelastic material,

the strain at a given point and at a given time is specified by a strain tensor, γij,

i, j = 1, 2, 3. For an infinitesimal deformation, in terms of Cartesian coordinates,

the strain tensor takes the simple form

γij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
,

where xi is a component of position and ui is a component of displacement. The

rate of strain tensor, γ̇ij, is formulated similarly with ui replaced by vi, the velocity

of displacement. For large deformation, the definition of strain becomes much

more complicated and will not be addressed in this thesis.

In the theory of linear viscoelasticity, the relationship between stress in a vis-

coelastic material (specified by a tensor σij) and strain, γij, is linear. For small

uniform shear deformations, the stress and strain components are independent

of position. Furthermore, for incompressible deformations, the stress and strain

tensors are symmetric. For small incompressible shear deformations, it is only the

time-dependent shear components σ12 and γ12 which play a role and it is custom-

ary to drop the index notation. We shall write σ12 = σ(t) and γ12 = γ(t). The

relationship between stress and strain is modelled by linear integral or differential

equations and it is the detailed study of the nature of these integral and differential

operators which will be the subject of this thesis.

In what follows, we will look at different well-known viscoelastic models used

to describe linear viscoelasticity. The simplest model for a linear viscoelastic mate-

rial undergoing incompressible shear deformation was proposed in 1867 by James

Clerk Maxwell [21]. In this model, the relationship between the stress and strain
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reads

σ + τσ̇ = ηγ̇, (1.1)

where the positive constants τ and η denote, respectively, a relaxation time and a

viscosity. The solution of this differential equation, with σ(−∞) = 0, is given by

σ(t) =
η

τ

∫ t

−∞
exp

[
− (t − t′)

τ

]
γ̇(t′) dt′, (1.2)

where t and t′ denote the present and the earlier times, respectively.

In 1874, Ludwig Boltzmann proposed a general linear integral model [25]. In

the context of simple shear, this may be written in the form [11]

σ(t) =
∫ t

−∞
G(t − t′)γ̇(t′) dt′. (1.3)

The kernel function G(t) is monotonically decreasing and is known as the relax-

ation function for the material. Equation (1.3) shows that the current stress of a

viscoelastic material depends on the complete past history of the strain-rate expe-

rienced by the material. For this reason, viscoelastic materials are often referred to

as materials with memory. Writing (1.3) in the form

σ(t) =
∫ ∞

0
G(s)γ̇(t − s) ds, s = t − t′,

it follows, since G(s) is monotonically decreasing with increasing time-lapse s, that

σ(t) depends more on the recent past than the distant past. This property is known

as the principle of fading memory.

It is inherent in Boltzmann’s classical formulation of the theory of linear vis-

coelasticity that for fixed pressure and temperature, every material possesses a

unique relaxation function G(t). This is a key material function which is of vi-

tal importance in the characterization of modern advanced materials. In practice,

the function is determined experimentally. By comparing (1.2) and (1.3), we see

immediately that for the Maxwell model, the corresponding relaxation function
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takes the form

G(t) = g exp
(
− t

τ

)
, g =

η

τ
,

where the constant g is called the elastic modulus of the material.

Equation (1.1) can be generalized for a number, n, of Maxwell elements using

the principle of superposition, giving the so-called multi-mode Maxwell model.

The stress in this case has the form

σ(t) =
n

∑
i=1

σi(t), (1.4a)

where each σi satisfies (1.1) with different τi and ηi, i.e.,

σi + τiσ̇i = ηiγ̇, i = 1, . . . , n. (1.4b)

Consequently, from (1.2), we find that

σ(t) =
n

∑
i=1

ηi

τi

∫ t

−∞
exp

[
− (t − t′)

τi

]
γ̇(t′) dt′,

which gives the following relaxation function

G(t) =
n

∑
i=1

gi exp
(
− t

τi

)
, gi =

ηi

τi
· (1.5)

The differential system (1.4b) can be replaced by a single differential equation in

σ of order n. The most general differential equation for linear viscoelasticity takes

the form [2] [
1 +

n

∑
i=1

αiDi

]
σ =

[
β0 +

m

∑
i=1

βiDi

]
γ, (1.6)

where n = m or n = m − 1. In this equation, D denotes the differential operator

d/dt and αi, βi are constants. For the case of the multi-mode Maxwell model, we
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have β0 = 0 and the coefficients αi are determined from the identity

1 +
n

∑
i=1

αixi =
n

∏
i=1

(1 + τix).

Two further special cases of (1.6) need to be introduced here. The first one

corresponds to n = 0, m = 1, β0 = 0 and is the constitutive equation proposed by

Isaac Newton (1642-1727) as the model for a purely viscous fluid

σ = η1γ̇. (1.7)

There is no memory in this model, since the stress depends only on the current rate

of strain. The relaxation function here is simply

G(t) = η1δ(t),

where δ(t) denotes the Dirac delta function.

The second special case is the constitutive equation for the Oldroyd-B model

[23]. The form of such an equation reads

σ + τ2σ̇ = ηγ̇ + η1τ2γ̈, (1.8a)

and may be decomposed as follows

σ = σ1 + σ2, η = η1 + η2, (1.8b)

where

σ1 = η1γ̇, σ2 + τ2σ̇2 = η2γ̇.

In this case, the relaxation function is given by

G(t) = η1δ(t) + g2 exp
(
− t

τ2

)
, g2 =

η2

τ2
·
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1.2 Complete monotonicity and the relaxation spectrum

Boltzmann’s equation (1.3), upon integration by parts and assuming γ(−∞) = 0,

may be rewritten in the form

σ(t) = G(0)γ(t)−
∫ t

−∞
M(t − t′)γ(t′) dt′,

where

M(t) = −dG(t)
dt

,

is called the memory function of the material. M(t) is positive and, in accord with

the principle of fading memory, is again monotonically decreasing. Thus, fading

memory demands that G(t) is monotonically decreasing and Ġ(t) is monotonically

increasing.

We next consider the much more restrictive assumption that G(t) is completely

monotonic, i.e.,

(−1)n dnG(t)
dtn ≥ 0, n ≥ 0, t ≥ 0.

According to Bernstein’s theorem [28], G(t) is completely monotonic on [0, ∞) if

and only if it can be represented as the Laplace transform of a non-negative mea-

sure, i.e.,

G(t) =
∫ ∞

0
exp(−st) dµ(s), (1.9)

where µ(s) is bounded and non-decreasing and the integral converges for all t ≥ 0.

Since, in equation (1.5), the constants gi and τi are positive, it follows that the

relaxation function for the multi-mode Maxwell model is completely monotonic.

Furthermore, by making the change of variable s = τ−1, the appropriate measure

dµ(s) is given by

dµ(s) =
1
τ

n

∑
i=1

ηiδ(τ − τi) dτ. (1.10)
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In the literature on linear viscoelasticity, the distribution

H(τ) =
n

∑
i=1

ηiδ(τ − τi),

is called the discrete relaxation spectrum of a material. There is a huge literature on

various methods for determining the discrete relaxation spectra from experimental

data. A recent account is given by Davies and Goulding [7].

As we have stated, the measure (1.10) associated with the multi-mode Maxwell

model gives rise to a discrete spectrum of relaxation times which may be used to

characterize a viscoelastic material. On the other hand, if the measure for G(t)

is continuous or piecewise continuous, then there is an associated non-negative

continuous relaxation spectrum, H(τ), given by

dµ(s) = τH(τ) ds, s = τ−1. (1.11)

Equation (1.9) may then be rewritten in the form

G(t) =
∫ ∞

0
exp

(
− t

τ

)
H(τ)

τ
dτ, (1.12)

which is the conventional form found in the literature on linear viscoelasticity [11].

Whether or not the spectrum is discrete or continuous, the total viscosity of the

material being modelled is expressed as

η =
∫ ∞

0
H(τ) dτ. (1.13)

This is the zeroth moment of the relaxation spectrum. Provided G(t) has no term

in δ(t), the first negative moment

µ0 =
∫ ∞

0
τ−1H(τ) dτ,



1. Introduction 8

always exists and takes the value G(0). The other negative moments

µn =
∫ ∞

0
τ−(n+1)H(τ) dτ, n = 1, 2, 3, . . . ,

always exist for a discrete spectrum, but may not always exist for a continuous

spectrum. If G(t) has a representation as a Maclaurin series, then all negative mo-

ments exist and take the values

µn = (−1)nG(n)(0).

A proof of this is given in the appendix.

Finally, in Table 1.1 below, we collect the formulae for the relaxation functions

and discrete relaxation spectra for the models introduced in the previous section.

Model Equation G(t) H(τ)

Newtonian (1.7) η1δ(t) η1δ(τ)

Maxwell (1.1)
η1

τ1
exp

(
− t

τ1

)
η1δ(τ − τ1)

Oldroyd-B (1.8) η1δ(t) +
η2

τ2
exp

(
− t

τ2

)
η1δ(τ) + η2δ(τ − τ2)

Multi-mode Maxwell (1.4)
n

∑
i=1

ηi
τi

exp
(
− t

τi

) n

∑
i=1

ηiδ(τ − τi)

Table 1.1: Relaxation functions and discrete relaxation spectra for four well-known models.

1.3 Ill-posedness

Equation (1.12) and its Laplace transform equivalent

G(t) =
∫ ∞

0
exp(−st) s−1H(s−1) ds,
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are both examples of a Fredholm integral equation of the first kind with smooth

kernel. For such equations the problem of determining H(τ) from G(t) is ill-posed

in the sense of Hadamard. Let us assume that H(τ) exists and is unique for a given

G(t). The problem of finding H(τ) from G(t) is ill-posed if a small perturbation

in G(t) leads to an arbitrarily large perturbation in H(τ), i.e., the inverse of the

integral operator is not continuous. The ill-posedness of the inverse Laplace trans-

form has been well documented (see, for instance, Epstein and Schotland [9]). It is

known to be exponentially ill-posed.

We can demonstrate the ill-posedness of problem (1.12) by choosing a simple

example. Let ϵ be small and positive, and let Hϵ(τ) be the box spectrum

Hϵ(τ) =


1
ϵ

, 1 ≤ τ ≤ 1 + ϵ2,

0, otherwise.

Then Gϵ(t) has the form

Gϵ(t) =
1
ϵ

[
Ei
(

t
1 + ϵ2

)
− Ei(t)

]
, (1.14)

where Ei is the exponential integral defined by

Ei(t) =
∫ ∞

1

1
x

exp(−xt) dx. (1.15)

The right-hand side of (1.14) may be expanded as a series in ϵ to give

Gϵ(t) = exp(−t)ϵ +
1
2
(t − 1) exp(−t)ϵ3 + O(ϵ5).

The function Gϵ(t) is completely monotonic, although if the series is truncated to

more than one term, the truncated series is not completely monotonic. By taking

a perturbation in G(t) of the form (1.14) of order ϵ in supremum norm, the corre-

sponding perturbation in H(τ) will be of order ϵ−1 measured in supremum norm.
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1.4 Relaxation and creep compliance functions

In this section, we consider the physical meaning of the relaxation function and

show that is connected to the phenomenon of creep. The connection is made

through the creep compliance function, J(t).

The relaxation function G(t) has the physical interpretation that it depicts the

way in which the stress relaxes upon imposing a step-strain

γ(t) =

γ0 if t ≥ 0,

0 if t < 0.
(1.16)

To prove this, we rewrite the Boltzmann equation (1.3) as

σ(t) = γ(0)G(t) +
∫ t

0
G(t − t′)γ̇(t′) dt′, (1.17)

where we have assumed that γ(t) = 0 when t < 0. Substituting (1.16) into (1.17)

yields

G(t) =
σ(t)
γ0

, t ≥ 0.

On the other hand, if, instead of (1.16), one considers an imposed step-stress

σ(t) =

σ0 if t ≥ 0,

0 if t < 0,
(1.18)

then the Laplace transform γ̂(s) of γ(t) may be found from (1.17) in the form

γ̂(s) =
σ0

s2Ĝ(s)
·

By introducing the new function Ĵ(s) such that

Ĝ(s) Ĵ(s) =
1
s2 , (1.19)
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it follows that

J(t) =
γ(t)
σ0

, t ≥ 0.

The function J(t) is called the creep compliance function since it describes the strain

(creep) resulting from the imposed step-stress (1.18).

Equation (1.19) is simply the Laplace transform of the following integral equa-

tion, known as the interconversion equation, which establishes the relationship

between G(t) and J(t) [11]

∫ t

0
G(t − t′)J(t′) dt′ =

∫ t

0
J(t − t′)G(t′) dt′ = t. (1.20)

1.5 The retardation spectrum

The Laplace transform of equation (1.12) reads

Ĝ(s) =
∫ ∞

0

H(τ)

τs + 1
dτ, Re(s) > 0. (1.21)

Under the simple change of variable s = −z−1, we obtain

−z−1Ĝ
(
−z−1) = ∫ ∞

0

H(τ)

τ − z
dτ, Re(z) < 0, (1.22)

which means that −z−1Ĝ
(
−z−1) corresponds to the Stieltjes transform of the relax-

ation spectrum in the left half-plane. The Stieltjes transform is analytic in the upper

half-plane. This means that −z−1Ĝ
(
−z−1) can be analytically continued into the

upper half-plane with

Im
(
−z−1Ĝ

(
−z−1)) > 0, for Im(z) > 0.

These two properties imply that −z−1Ĝ
(
−z−1) is a Herglotz function [1]. Using

the important property of Herglotz functions that if F(z) is Herglotz, then so is
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−F(z)−1, we find from (1.19) that

z−1 Ĵ
(
−z−1) = 1

z−1Ĝ
(
−z−1

) , z = −s−1, (1.23)

is also a Herglotz function. Being Herglotz means that there exists a monotone

non-decreasing function µJ(λ) with the following property

∫ ∞

0

dµJ(λ)

1 + λ2 < ∞,

and related to z−1 Ĵ
(
−z−1) via the integral

z−1 Ĵ
(
−z−1) = α + βz +

∫ ∞

0

[
1

λ − z
− λ

1 + λ2

]
dµJ(λ), (1.24)

where

α = Re
(
−i Ĵ(i)

)
, and β = lim

z→∞
z−2 Ĵ

(
−z−1) ≥ 0.

Equation (1.24), upon changing the variable back to s and rearranging, reads

Ĵ(s) = −
[

α +
∫ ∞

0

dµJ(λ)

λ(1 + λ2)

]
1
s
+

β

s2 +
∫ ∞

0

[
1

λs
− 1

λs + 1

]
dµJ(λ),

which is the Laplace transform of

J(t) = −
[

α +
∫ ∞

0

dµJ(λ)

λ(1 + λ2)

]
+ βt +

∫ ∞

0

[
1 − exp

(
− t

λ

)]
dµJ(λ)

λ
· (1.25)

From (1.13), (1.21) and (1.23), it follows that

β =
1
η
·

Furthermore, if we write J(0) = j0 and introduce the continuous retardation spec-

trum, L(λ), defined by

dµJ(λ) = L(λ) dλ,
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equation (1.25) will then reduce to the conventional form found in the literature on

linear viscoelasticity [11]

J(t) = j0 +
t
η
+
∫ ∞

0

[
1 − exp

(
− t

λ

)]
L(λ)

λ
dλ,

where λ denotes a retardation time.

For each discrete relaxation spectrum, there exists a corresponding discrete re-

tardation spectrum. The discrete retardation spectra for the models introduced in

Section 1.1 are listed in Table 1.2 below together with their corresponding creep

compliance functions.

Model Equation J(t) L(λ)

Newtonian (1.7)
t

η1
0

Maxwell (1.1)
τ1

η1
+

t
η1

0

Oldroyd-B (1.8)
t
η
+ j1

[
1 − exp

(
− t

λ1

)]
j1λ1δ(λ − λ1)

Multi-mode Maxwell (1.4) j0 +
t
η
+

n−1

∑
i=1

ji

[
1 − exp

(
− t

λi

)] n−1

∑
i=1

jiλiδ(λ − λi)

Table 1.2: Creep compliance functions and discrete retardation spectra for four well-known
models. For the Oldroyd-B model, we have j1 = η2τ2/η2 and λ1 = η1τ2/η. For the multi-
mode Maxwell model, we have η = ∑n

i=1 ηi.

Tables 1.1 and 1.2 show that for the case of the multi-mode Maxwell model, G(t)

has n relaxation times, whereas J(t) has n − 1 retardation times. These relaxation

and retardation times, as will be proved in the next chapter, separate each other as

follows [22]

τ1 < λ1 < τ2 < · · · < τn−1 < λn−1 < τn, (1.26)

a property known as the interlacing property.
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1.6 Connection with Weyl-Titchmarsh theory

It is known from the Weyl-Titchmarsh theory (see, for instance, [8] and [17]) that

for the Sturm-Liouville problem
−y′′(x, z) + q(x)y(x, z) = zy(x, z), x ≥ 0,

y(0, z) = 0,
(1.27)

there exists a Herglotz function, m(z), called the Weyl-Titchmarsh function. Such a

function has the representation

m(z) = Re(m(i)) +
∫ ∞

−∞

[
1

τ − z
− τ

1 + τ2

]
dρ(τ), Im(z) > 0,

where ρ(τ) is called the spectral function of the problem (1.27). Everitt [10] has

shown that

m(z) = iz1/2 + o(1), as |z| → ∞, 0 < ϵ < arg(z) < π − ϵ.

If we return to the Herglotz function −z−1Ĝ
(
−z−1) given by (1.22), then we find

−z−1Ĝ
(
−z−1) = o(1), as |z| → ∞.

One of the purposes of this thesis is to investigate the question of whether there

exists a certain Sturm-Liouville problem of the form (1.27) whose Weyl-Titchmarsh

function is

m(z) = iz1/2 − z−1Ĝ(−z−1), Im(z) > 0. (1.28)

We will show in a later chapter that the answer to this question is yes. This impor-

tant result will lead us to the study of the inverse spectral problem of recovering

the potential q(x) from the spectral function associated with (1.28).



1. Introduction 15

1.7 Thesis outline

The rest of this thesis is organized as follows:

Chapter 2 : Constructing Dirichlet series for completely monotonic functions

In this chapter, a particular kind of continued fraction, namely the S-fraction, is

used to construct Dirichlet series approximations for the relaxation function which

is assumed to be completely monotonic. Each approximation generates its own dis-

crete relaxation spectrum representation for the underlying continuous relaxation

spectrum.

Chapter 3 : Linear viscoelasticity and spectral theory

In this chapter, we relate for the first time the spectral and Weyl-Titchmarsh func-

tions to the theory of linear viscoelasticity. Another topic considered in this chapter

is formulating and explicitly solving inverse spectral problems corresponding to

three well-known viscoelastic models.

Chapter 4 : A new family of exact solutions to the A-equation

In this chapter, we derive a new family of exact solutions A(t, x) to a particular

nonlinear integro-differential equation, the A-equation. Such an equation corre-

sponds to a Sturm-Liouville problem with potential q(x) = A(0, x).

Chapter 5 : An inverse spectral problem with continuous spectral function

In this final chapter, we study a viscoelastic inverse spectral problem in which the

spectral function is continuous. It is not possible to solve this problem explicitly,

and we look at two numerical approaches to solve the problem.



2

CONSTRUCTING DIRICHLET SERIES

FOR COMPLETELY MONOTONIC

FUNCTIONS
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2.1 Introduction

The discrete relaxation spectrum representation is closely related to the problem

of approximating the relaxation function, G(t), by a general Dirichlet series of the

form

Gn(t) = an,0 +
n

∑
i=1

an,i exp(−bn,it), t ≥ 0, (2.1)

where the coefficients an,0, an,i are non-negative and bn,i are distinct positive. In his

paper [20], Liu proved the following: a function, defined on [0, ∞), can be approximated

by a Dirichlet series of the form (2.1) on supremum norm on [0, ∞) if and only if it is

completely monotonic on [0, ∞). This is an extension of a theorem due to Bernstein

[3] which may be stated in the form: every function which is completely monotonic on

[0, ∞) is the limit as n → ∞ of a sum of exponentials of the form (2.1).

This chapter is essentially concerned with a method for constructing Dirich-

let series approximations of the form (2.1) to completely monotonic functions. The

method is based on constructing a continued fraction approximation to the Laplace

transform of G(t) and related functions. The type of continued fraction is origi-

nally due to Stieltjes and is known as an S-fraction. Each approximation generates

its own discrete relaxation spectrum representation for the underlying continuous

relaxation spectrum H(τ).

Given any one value of n, we shall show that the S-fraction method can be

made to generate more than one discrete relaxation spectrum, and more than one

Dirichlet series for G(t). We also show the equivalence of the S-fraction approach

to the solution of certain moment problems.

To our knowledge, the S-fraction approach developed in this chapter is the only

method for constructing Dirichlet series approximations which does not rely on

directly fitting the function being approximated. It has not previously been used to

generate discrete relaxation spectra. Bernstein’s approach was based on collocation

and all conventional methods of fitting are based on sampling the data.
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In practice, experimentalists can measure either G(t), the relaxation function,

or J(t), the creep compliance function. Most viscoelastic materials respond best

either to a step-strain experiment (which gives discrete sampled values of G(t))

or to a step-stress experiment (which gives discrete sampled values of J(t)). The

experimental data is always contaminated by noise. Sums of exponentials are then

fitted to G(t) or J(t). Whichever function is fitted, the interconversion equation

(1.20) may be solved to find the other.

The most popular methods of fitting experimental data are methods based on

constrained non-linear least-squares. Details may be found in Liu [18, 19]. Perhaps

the most crucial observation to be made here is that every method delivers a differ-

ent Dirichlet series and consequently a different discrete spectrum. Also, working

with noisy data means that one has to restrict the numbers of terms in the sums

to prevent over-fitting or fitting the noise. It is never possible to determine a large

number of terms.

The organization of the chapter is as follows. The main idea of the S-fraction

method, which consists in expanding the Laplace transform of G(t) into an S-

fraction, is presented in Section 2.2. The section also shows that such an expansion

has rational approximants, Ĝn(s), in which the denominator for each n has real

and simple zeros different from those of the numerator. The S-fraction method, as

shown in Section 2.3, proceeds by exploiting the partial fraction decomposition of

Ĝn(s) which can then be conveniently transformed to the time domain to give the

desired Dirichlet series approximations for G(t). In Section 2.4, we describe the

connection with the Stieltjes moment problem.

The obtained approximations for G(t) are used in Section 2.5 as input functions

to solve the interconversion equation and determine the corresponding approx-

imations for the creep compliance function. Section 2.6 proves some interlacing

properties satisfied by the relaxation and retardation times. Finally, the numerical

examples provided in Section 2.7 show the accuracy of the S-fraction method as

well as the ill-posedness inherent in its construction.
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2.2 The S-fraction

2.2.1 The S-fraction for Ĝ(s)

In this subsection, we derive an S-fraction expansion for the Laplace transform of

the relaxation function

G(t) =
∫ ∞

0
exp

(
− t

τ

)
H(τ)

τ
dτ. (2.2)

This is the main step in the S-fraction method suggested for approximating G(t)

by Dirichlet series. We shall assume throughout that G(t) is completely monotonic.

This is the case if and only if the relaxation spectrum is non-negative. We also make

the additional assumption that G(t) has a Maclaurin series which is convergent in

a neighborhood of the origin t = 0. This is more restrictive than the assumption

made in the theorem of the appendix, which requires only that G(t) has a formal

power series about the origin. It then follows that the Laplace transform of G(t),

Ĝ(s) =
∫ ∞

0

H(τ)

τs + 1
dτ,

has a formal power series

Ĝ(s) =
∞

∑
n=0

(−1)n µn

sn+1 , (2.3)

where

µn = (−1)nG(n)(0), n = 0, 1, 2, . . . . (2.4)

In particular, all the negative moments of H(τ) exist:

µn =
∫ ∞

0
τ−(n+1)H(τ) dτ, n = 0, 1, 2, . . . . (2.5)
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The desired continued fraction representation for Ĝ(s) may be obtained from

(2.3) by using successive reciprocal series

Ĝ(s) =
µ0

s

[
1 − µ1

µ0s
+

µ2

µ0s2 − µ3

µ0s3 + · · ·
]

=
µ0

s

[
1 +

µ
(1)
0
s

+
µ
(1)
1
s2 +

µ
(1)
2
s3 + · · ·

]−1

=
µ0

s

[
1 +

µ
(1)
0
s

(
1 +

µ
(1)
1

µ
(1)
0 s

+
µ
(1)
2

µ
(1)
0 s2

+ · · ·
)]−1

=
µ0

s

[
1 +

µ
(1)
0
s

(
1 +

µ
(2)
0
s

+
µ
(2)
1
s2 + · · ·

)−1
]−1

·

Continuing this process, and denoting

α1 = µ0 and αn = µ
(n−1)
0 , n ≥ 2,

we arrive at the following continued fraction

Ĝ(s) =
α1

s +
α2

1 +
α3

s +
α4

1 + . . .

which has the conventional notation

Ĝ(s) =
α1

s
+

α2

1
+

α3

s
+

α4

1
+ · · · · (2.6)
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A continued fraction of the form (2.6) is called a Stieltjes continued fraction or just

an S-fraction if the coefficients αn are all positive (see, for instance, Henrici [15]).

Such a condition, as we will show in what follows, is indeed fulfilled.

The coefficients of the continued fraction (2.6) can be obtained from those of the

series (2.3) using the following formulae:

α1 = ∆(0)
1 , α2k =

∆(0)
k−1∆(1)

k

∆(0)
k ∆(1)

k−1

, α2k+1 =
∆(0)

k+1∆(1)
k−1

∆(0)
k ∆(1)

k

, (2.7)

for k ≥ 1, where ∆(n)
k is the Hankel determinant defined by

∆(n)
k =

∣∣∣∣∣∣∣∣∣∣∣∣

µn µn+1 . . . µn+k−1

µn+1 µn+2 . . . µn+k
...

...
...

µn+k−1 µn+k . . . µn+2k−2

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.8)

with ∆(n)
0 = 1.

Remark 2.1. The formulae (2.7) are quoted, without proof, by Van Deun [26]. He

claims that they follow from an application of Theorem 7.2 in Jones and Thron

[16]. Analogous formulae to (2.7) are also derived by Henrici [15, Chapter 12] in

his study of continued fractions.

We now prove the following theorem.

Theorem 2.1. The Hankel determinants (2.8) satisfy

∆(n)
k > 0, for all n ≥ 0 and k ≥ 1.

Proof. It is sufficient to show that the following quadratic form satisfies

k−1

∑
i=0

k−1

∑
j=0

µn+i+j xi xj > 0,
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where xi are real and not all zero. Using (2.5), we find

k−1

∑
i=0

k−1

∑
j=0

µn+i+jxixj =
∫ ∞

0
τ−(n+1)

(
k−1

∑
i=0

xiτ
−i

)2

H(τ) dτ. (2.9)

The existence of all µn implies that the integral in (2.9) is convergent. The integral

is non-negative since H(τ) is non-negative. Also, the integral vanishes if and only

if H(τ) or the sum ∑k−1
i=0 xiτ

−i vanishes for all τ > 0. This sum cannot vanish for all

τ > 0 since the xi are not all zero. Hence, the quadratic form is strictly positive.

From the above theorem it follows immediately that the coefficients αn given

by (2.7) satisfy

αn > 0, for all n ≥ 1,

and consequently, the continued fraction expansion (2.6) for Ĝ(s) is an S-fraction.

2.2.2 Approximants of Ĝ(s)

The nth approximant of Ĝ(s) is a finite continued fraction of the form

Ĝn(s) =
α1

s
+

α2

1
+ · · ·+

αn

ϵn

, n ≥ 1, (2.10)

where

ϵn =

1, n = 2k,

s, n = 2k + 1,

and is obtained by truncating the infinite S-fraction (2.6). Such an approximant

may also be written as a rational function

Ĝn(s) =
Pn(s)
Qn(s)

, n ≥ 1, (2.11)
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where the degrees of the polynomials Pn(s) and Qn(s) depend on n in the following

way:

deg(Pn) =

k − 1, n = 2k,

k, n = 2k + 1,
deg(Qn) =

k, n = 2k,

k + 1, n = 2k + 1.

Furthermore, the coefficients α1, α2, . . . , αn in (2.10) are constructed in such a way

that the series expansion of (2.11) has the form

Ĝn(s) =
n−1

∑
i=0

(−1)i µi

si+1 + O
(
s−(n+1)),

i.e., the first n terms in the series expansion of Ĝn(s) agree with the first n terms of

the series (2.3) for Ĝ(s). In particular,

α1 = µ0, P1(s) = α1, Q1(s) = s,

α2 =
µ1

µ0
, P2(s) = α1, Q2(s) = s + α2,

α3 =
µ0µ2 − µ2

1
µ0µ1

, P3(s) = α1(s + α3), Q3(s) = s(s + α1 + α3).

More generally, the polynomials Pn(s) and Qn(s) satisfy the following three-term

recurrence relations 
Pn = αnPn−2 + ϵnPn−1, n ≥ 1,

P−1 = 1, P0 = 0,
Qn = αnQn−2 + ϵnQn−1, n ≥ 1,

Q−1 = 0, Q0 = 1.



2. Constructing Dirichlet series for completely monotonic functions 24

The above recurrence relations show that Pn(s) and Qn(s) have only positive coef-

ficients and are of the forms

P2k = α1
(
a2k,0 + a2k,1s + . . . + a2k,k−2sk−2 + sk−1), k ≥ 1,

Q2k = b2k,0 + b2k,1s + . . . + b2k,k−1sk−1 + sk, k ≥ 1,

P2k+1 = α1
(
a2k+1,0 + a2k+1,1s + . . . + a2k+1,k−1sk−1 + sk), k ≥ 1,

Q2k+1 = s
(
b2k+1,0 + b2k+1,1s + . . . + b2k+1,k−1sk−1 + sk), k ≥ 1.

The recurrence relations also show that the following two relations hold:

P2kQ2k+2 − P2k+2Q2k = −α1α2 . . . α2k+1, k ≥ 0, (2.12a)

P2k+1Q2k+3 − P2k+3Q2k+1 = s α1α2 . . . α2k+2, k ≥ 0. (2.12b)

2.2.3 Zeros and poles of the approximants

Here, we focus on the zeros and poles of Ĝn(s). In other words, the zeros of Pn(s)

and Qn(s) as they will play an important role in the S-fraction method.

The following theorem is due to Henrici [15].

Theorem 2.2. Let µ(s) be a bounded and non-decreasing function on [0, ∞). Then for

n = 0, 1, . . ., the following relation holds:

∫ ∞

0
siQn(−s) dµ(s) =

 0, i = 0, 1, . . . , n − k − 1,

(−1)kα1α2 . . . αn+1, i = n − k,
(2.13)

where k is the degree of Qn.

Remark 2.2. In this theorem, dµ(s) is a non-negative measure with nth moment

µn =
∫ ∞

0
sn dµ(s).
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Recalling that Q2k is of degree k, relation (2.13) in terms of the non-negative

measure dµ(s) given by (1.11) reads

∫ ∞

0
siQ2k(−s)

[
s−1H(s−1)

]
ds =

 0, i = 0, 1, . . . , k − 1,

(−1)kα1α2 . . . α2k+1, i = k.

This is equivalent to saying that
{

Q2k(−s)
}

k≥1 forms a sequence of orthogonal

polynomials on [0, ∞) with respect to s−1H(s−1). On the other hand, since Q2k+1

is of degree k + 1 and has a factor of s, the new polynomials

Q̃2k+1(s) =
Q2k+1(s)

s
, k ≥ 1, (2.14)

are of degree k. It then follows from (1.11) and (2.13) that

∫ ∞

0
siQ̃2k+1(−s)H(s−1) ds =

 0, i = 0, 1, . . . , k − 1,

(−1)kα1α2 . . . α2k+2, i = k.

This relation implies that the sequence
{

Q̃2k+1(−s)
}

k≥1 is also orthogonal on [0, ∞),

but with respect to H(s−1).

Through the above orthogonality relations, we will be able to know some basic

properties of the zeros of Qn. This is due to the next theorem which can be found

in any text on the theory of orthogonal polynomials (see, for instance, Chihara [6]).

Theorem 2.3. If
{

fn(s)
}

n≥0 is a sequence of polynomials orthogonal on the interval I

with respect to some measure, then the zeros of fn are all real, simple and are contained in

I. Moreover, they interlace with those of fn+1, i.e.,

sn+1,1 < sn,1 < sn+1,2 < · · · < sn+1,n < sn,n < sn+1,n+1,

where sn,i, i = 1, 2, . . . , n, and sn+1,i, i = 1, 2, . . . , n + 1, are the zeros of fn and fn+1,

respectively.
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Using the above theorem, we easily obtain the following result.

Theorem 2.4. For k = 1, 2, . . .,

(i) The k zeros of the polynomial Q2k(s) are all real, simple, negative and are interlaced

with those of Q2k+2(s).

(ii) Besides the zero at the origin, the polynomial Q2k+1(s) has k real, simple, negative

zeros interlacing those of Q2k+3(s).

(iii) If the support of H(s−1) is the finite interval [a, b], then the zeros of Qn(s) lie in

[−b,−a].

Let us now turn our attention to the study of the zeros of the polynomials Pn(s).

Theorem 2.5. For k = 1, 2, . . .,

(i) The polynomial P2k(s) has k − 1 real, simple and negative zeros. Moreover, they

interlace with those of P2k+2(s) and Q2k(s).

(ii) The polynomial P2k+1(s) has k real, simple and negative zeros. Moreover, they inter-

lace with those of P2k+3(s) and Q2k+1(s).

Proof.

(i) The proof requires the relation (2.12a), i.e.,

P2kQ2k+2 − P2k+2Q2k = −α1α2 . . . α2k+1, k ≥ 0.

It follows from this relation that P2k and Q2k+2 have different signs at the zeros

of Q2k. This together with the fact that the zeros of Q2k+2 and Q2k interlace

imply that P2k has k − 1 real, simple and negative zeros interlacing those of

Q2k.

Similarly, the above relation shows that P2k and Q2k+2 are of opposite signs

at the zeros of P2k+2. Since the zeros of Q2k+2 interlace with those of P2k+2, it

follows that the zeros of P2k and P2k+2 are interlaced.
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(ii) Recall the relation (2.12b), i.e.,

P2k+1Q2k+3 − P2k+3Q2k+1 = s α1α2 . . . α2k+2, k ≥ 0.

This relation shows that P2k+1 and Q2k+3 have different signs at the negative

zeros of Q2k+1. Combining this with the interlacing property satisfied by the

zeros of Q2k+3 and Q2k+1, we find that the k zeros of P2k+1 are real, simple,

negative and are interlaced with those of Q2k+1.

Similarly, it follows from the above relation that P2k+1 and Q2k+3 are of oppo-

site signs at the zeros of P2k+3. The interlacing property of the zeros of P2k+1

and P2k+3 then follows from the interlacing property satisfied by the zeros of

Q2k+3 and P2k+3.

2.3 Approximating G(t) by Dirichlet series

2.3.1 Approximants of G(t)

This subsection shows how the S-fraction method can be used to generate Dirichlet

series approximations for the relaxation function.

In the previous section, we have shown that the nth approximant for the Laplace

transform of G(t) has a rational representation

Ĝn(s) =
Pn(s)
Qn(s)

, n ≥ 1,

in which deg(Qn) = deg(Pn) + 1 and all the zeros of Qn(s) are real and non-

positive. In particular, we may write

Q2k(s) =
k

∏
i=1

(
s +

1
τ2k,i

)
, 0 < τ2k,1 < τ2k,2 < · · · < τ2k,k, k ≥ 1,
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and

Q2k+1(s) = s
k

∏
i=1

(
s +

1
τ2k+1,i

)
, 0 < τ2k+1,1 < τ2k+1,2 < · · · < τ2k+1,k, k ≥ 1.

The reason for writing the zeros of Qn(s) as reciprocals will become clear shortly. It

then follows, since Qn(s) and Pn(s) have no common zeros, that the approximants

Ĝn(s) can be expanded into two partial fractions of the form

Ĝ2k(s) =
k

∑
i=1

g2k,i

s + 1/τ2k,i
, k ≥ 1, (2.15)

where

g2k,i =
P2k(−1/τ2k,i)

Q′
2k(−1/τ2k,i)

, i = 1, 2, . . . , k,

and

Ĝ2k+1(s) =
g2k+1,0

s
+

k

∑
i=1

g2k+1,i

s + 1/τ2k+1,i
, k ≥ 1, (2.16)

where

g2k+1,0 =
P2k+1(0)
Q′

2k+1(0)
, g2k+1,i =

P2k+1(−1/τ2k+1,i)

Q′
2k+1(−1/τ2k+1,i)

, i = 1, 2, . . . , k.

At this point, one can conveniently apply the inverse Laplace transform to obtain

G2k(t) =
k

∑
i=1

g2k,i exp
(
− t

τ2k,i

)
, k ≥ 1, (2.17)

and

G2k+1(t) = g2k+1,0 +
k

∑
i=1

g2k+1,i exp
(
− t

τ2k+1,i

)
, k ≥ 1, (2.18)

which are the desired Dirichlet series approximations for G(t). We note that the

positive constants τn,i represent the relaxation times. Regarding the signs of the

other constants, we prove the following theorem.
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Theorem 2.6. The constants g2k,i, g2k+1,0 and g2k+1,i, i = 1, 2, . . . , k, are all positive.

Proof. The positivity of P2k(0) and Q2k(0) together with the interlacing property of

the zeros of P2k and Q2k imply that P2k has the same sign as Q′
2k at the zeros of Q2k.

Thus, g2k,i > 0 for i = 1, 2, . . . , k.

For the odd constants, it follows from (2.14) that

g2k+1,0 =
P2k+1(0)
Q̃2k+1(0)

> 0,

since both P2k+1(0) and Q̃2k+1(0) are positive. Combining this latter fact with the

interlacing property satisfied by the zeros of P2k+1 and Q2k+1, we find that P2k+1

and Q′
2k+1 have the same sign at the negative zeros of Q2k+1. Thus, g2k+1,i > 0 for

i = 1, 2, . . . , k.

Comparing (2.2) with (2.17) and (2.18), we find that G2k(t) and G2k+1(t) corre-

spond, respectively, to the following discrete relaxation spectra

H2k(τ) =
k

∑
i=1

η2k,i δ(τ − τ2k,i), k ≥ 1, (2.19)

and

H2k+1(τ) = g2k+1,0τ−1δ(τ−1) +
k

∑
i=1

η2k+1,i δ(τ − τ2k+1,i), k ≥ 1, (2.20)

where ηn,i = gn,iτn,i.

Remark 2.3 (Solids and liquids: limiting cases).

Let G∞ = limt→∞ G(t). For a linear viscoelastic solid, it is well-known [11] that

G∞ > 0, while for a linear viscoelastic liquid, G∞ = 0. For a viscoelastic solid, the

series (2.17) has the properties

g2k,k → G∞ and τ2k,k → ∞, as k → ∞,
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while the series (2.18) has the property

g2k+1,0 → G∞, as k → ∞.

For a viscoelastic liquid, the series (2.18) has the property

g2k+1,0 → 0, as k → ∞.

More generally, referring to (1.9), the measure dµ(s) must contain a term of the

form G∞δ(s), although this term vanishes for a liquid. A solid, therefore, has an

infinite relaxation time. For completeness, we note that a model of the form

G(t) = G∞ +
k

∑
i=1

gi exp
(
− t

τi

)
,

is called a generalized Kelvin-Voigt model [11].

2.3.2 Convergence of the S-fraction

Under the simple change of variable s = τ−1, equation (2.2) becomes

G(t) =
∫ ∞

0
exp(−st) s−1H(s−1) ds.

Applying the Laplace transform to the above equation, with transformation vari-

able x, yields

Ĝ(x) =
∫ ∞

0

s−1H(s−1)

x + s
ds, (2.21)

which means that Ĝ(x) is the Stieltjes transform of s−1H(s−1). It follows, then,

from Henrici [15, Theorem 12.11d] that for all x > 0 and k ≥ 0, the approximants

of the S-fraction expansion of Ĝ(x) satisfy the following inequality

Ĝ2k(x) < Ĝ(x) < Ĝ2k+1(x). (2.22)
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We may develop (2.22) further and obtain

Theorem 2.7. For all x > 0, we have

Ĝ0(x) < Ĝ2(x) < · · · < Ĝ(x) < · · · < Ĝ3(x) < Ĝ1(x). (2.23)

Proof. We only need to show that the even and odd approximants form increasing

and decreasing sequences, respectively. From (2.11) and (2.12a), it follows that

Ĝ2k(x)− Ĝ2k+2(x) = − α1α2 . . . α2k+1

Q2k(x)Q2k+2(x)
·

We note that the denominator of the right-hand side is a polynomial with positive

coefficients and consequently

Ĝ2k(x) < Ĝ2k+2(x), for all x > 0 and k ≥ 0.

Similarly, (2.11) and (2.12b) implies that

Ĝ2k+3(x)− Ĝ2k+1(x) = − xα1α2 . . . α2k+2

Q2k+1(x)Q2k+3(x)
·

Since Q2m+1Q2m+3 is again a polynomial with positive coefficients, it follows that

Ĝ2k+3(x) < Ĝ2k+1(x), for all x > 0 and k ≥ 0.

Theorem 2.7 tells us that the subsequence of even approximants
{

Ĝ2k(x)
}

con-

verges to an upper limit function f+(x), say, while the subsequence of odd approx-

imants
{

Ĝ2k+1(x)
}

converges to a lower limit function f−(x). We may also deduce

from (2.23) that

f+(x) ≤ Ĝ(x) ≤ f−(x), for all x > 0.
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A sufficient condition for the convergence of the full sequence
{

Ĝn(x)
}

n≥1 is

∞

∑
n=1

µ−1/2n
n = ∞, (2.24)

a condition known as the Carleman condition (see Henrici [15]). We may therefore

deduce that if (2.24) holds, then

f+(x) = Ĝ(x) = f−(x), for all x > 0,

since every subsequence of a convergent sequence must converge to the same limit.

Remark 2.4 (The Carleman condition and discrete spectra).

Consider a discrete relaxation spectrum

H(τ) =
k

∑
i=1

ηiδ(τ − τi), τi > 0,

with moments

µn =
k

∑
i=1

giτ
−n
i , gi =

ηi

τi
, n ≥ 1.

Let

gmax = max
1≤i≤k

{gi}, gmin = min
1≤i≤k

{gi}, τmax = max
1≤i≤k

{τi}, τmin = min
1≤i≤k

{τi}.

Then

kgminτ−n
max < µn < kgmaxτ−n

min,

which implies that

(kgmax)
−1/2n τ1/2

min < µ−1/2n
n < (kgmin)

−1/2n τ1/2
max.
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Thus, for all n, µ−1/2n
n is bounded below by (kgmax)−1/2 τ1/2

min if kgmax ≥ 1, and

by τ1/2
min if kgmax ≤ 1. Hence,

∞

∑
n=1

µ−1/2n
n = ∞.

It is clear, in this case, that the S-fraction will terminate after a finite number of

steps to give the exact result

Ĝ(s) =
k

∑
i=1

gi

s + 1/τi
,

which is the Laplace transform of

G(t) =
k

∑
i=1

gi exp
(
− t

τi

)
·

2.4 Connection with the Stieltjes moment problem

Let {µn}n≥0 be a sequence of real numbers. The Stieltjes moment problem con-

sists of finding a non-negative measure dµ(s), s ∈ [0, ∞), such that the µn are the

moments of µ(s), i.e.,

µn =
∫ ∞

0
sn dµ(s), n = 0, 1, 2, . . . . (2.25)

A necessary condition for the existence of a solution to the moment problem is

∆(0)
k > 0 and ∆(1)

k > 0, k ≥ 1,

where ∆(n)
k is the Hankel determinant given by (2.8). A sufficient condition for the

existence of a unique solution is the Carleman condition (2.24). For more details

on this problem, see Henrici [15]. In this section, we relate the Stieltjes moment

problem to two moment problems associated with the relaxation spectrum H(τ).
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The negative moment problem of finding H(τ) from its moments (2.5), i.e.,

µn =
∫ ∞

0
τ−(n+1)H(τ) dτ, n = 0, 1, 2, . . . ,

is equivalent to the Stieltjes moment problem (2.25) with solution

dµ(s) = s−1H(s−1) ds = τH(τ) ds, s = τ−1 > 0. (2.26)

The positive moment problem of finding H(τ) from its moments

ηn =
∫ ∞

0
τnH(τ) dτ, n = 0, 1, 2, . . . , (2.27)

is equivalent to the Stieltjes moment problem

ηn =
∫ ∞

0
sn dη(s), n = 0, 1, 2, . . . ,

with solution

dη(s) = H(s) ds. (2.28)

In what follows, we assume that the two sequences {µn}n≥0 and {ηn}n≥0 satisfy

the necessary and sufficient conditions for a unique solution of the related Stieltjes

moment problem to exist.

2.4.1 The negative moment problem

Starting from (2.26), we may define a unique non-decreasing function

µ(s) =
∫ ∞

s−1
H(τ)

dτ

τ
, (2.29)

provided we stipulate that µ(s) = µ(s−) at a point of discontinuity. The function

µ(s) may be constructed from the limit of the S-fraction associated with the formal
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power series (2.3). In particular, the 2kth approximant in (2.15) may be written as

Ĝ2k(x) =
∫ ∞

0

dµ[2k](s)
x + s

,

where µ[2k](s) is the step function given by

µ[2k](s) =



0, s ≤ τ−1
2k,k,

g2k,k, τ−1
2k,k < s ≤ τ−1

2k,k−1,

g2k,k + g2k,k−1, τ−1
2k,k−1 < s ≤ τ−1

2k,k−2,
...

...

g2k,k + g2k,k−1 + . . . + g2k,1, τ−1
2k,1 < s.

(2.30)

µ(s) is then obtained as the limit of a sequence of step functions

µ(s) = lim
k→∞

µ[2k](s).

Due to the uniqueness of the inverse Laplace transform, it follows from (1.9) that

G(t) = lim
k→∞

∫ ∞

0
exp(−st) dµ[2k](s).

An alternative route to the limit is obtainable via the odd approximants Ĝ2k+1(x)

in (2.16). In either case, if µ(s) is a continuously differentiable function of s, then

H(τ) is a continuous function of τ, as seen from (2.29).

2.4.2 The positive moment problem

According to Bernstein’s theorem, the function

F(t) =
∫ ∞

0
exp(−τt)H(τ) dτ, H(τ) ≥ 0, (2.31)
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is completely monotonic on [0, ∞). Then, as in the theorem of the appendix, assum-

ing that there is a formal power series in t which is asymptotic to F(t) as t → 0, the

moments (2.27) exist and have values

ηn = (−1)nF(n)(0), n = 0, 1, 2, . . . .

Furthermore, the Laplace transform of (2.31) has a formal power series

F̂(s) =
∞

∑
n=0

(−1)n ηn

sn+1 · (2.32)

Starting from (2.28), we may define a unique non-decreasing function

η(s) =
∫ s

0
H(τ) dτ, (2.33)

provided we stipulate that η(s) = η(s−) at a point of discontinuity. If

F̂2k(x) =
P∗

2k(s)
Q∗

2k(s)
=
∫ ∞

0

dη[2k](s)
x + s

=
k

∑
i=1

η∗
2k,i

x + τ∗
2k,i

,

denotes the 2kth approximant of the S-fraction associated with (2.32), then η[2k](s)

is the step function

η[2k](s) =



0, s < τ∗
2k,1,

η∗
2k,1, τ∗

2k,1 ≤ s < τ∗
2k,2,

η∗
2k,1 + η∗

2k,2, τ∗
2k,2 ≤ s < τ∗

2k,3,
...

...

η∗
2k,1 + η∗

2k,2 + . . . + η∗
2k,k, τ∗

2k,k ≤ s.

(2.34)

Again, η(s) is obtained as the limit

η(s) = lim
k→∞

η[2k](s).
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Due to the uniqueness of the inverse Laplace transform, it follows from (2.2) and

(2.28) that

G(t) = lim
k→∞

∫ ∞

0
exp

(
− t

s

)
1
s

dη[2k](s).

The 2kth approximant (2.34) gives rise to an approximate Dirichlet series for

G(t) in the form

G∗
2k(t) =

k

∑
i=1

g∗2k,i exp
(
− t

τ∗
2k,i

)
, g∗2k,i =

η∗
2k,i

τ∗
2k,i

, (2.35)

with corresponding discrete relaxation spectrum

H∗
2k(τ) =

k

∑
i=1

η∗
2k,i δ(τ − τ∗

2k,i). (2.36)

We note that the relaxation times τ∗
2k,i are the negative zeros of Q∗

2k(s). In a similar

fashion, we can obtain the odd approximants of G(t) in the form

G∗
2k+1(t) = η∗

2k+1,0δ(t) +
k

∑
i=1

g∗2k+1,i exp
(
− t

τ∗
2k+1,i

)
, g∗2k+1,i =

η∗
2k+1,i

τ∗
2k+1,i

, (2.37)

with corresponding discrete relaxation spectrum

H∗
2k+1(τ) = η∗

2k+1,0δ(τ) +
k

∑
i=1

η∗
2k+1,i δ(τ − τ∗

2k+1,i). (2.38)

2.5 Solving the interconversion equation

Having constructed Dirichlet series approximations for the relaxation function, we

proceed in this section to determine the corresponding approximations for the

creep compliance function, J(t). For this purpose, one has to consider the inter-

conversion equation (1.20) derived in Chapter 1, i.e.,

∫ t

0
G(t − t′)J(t′) dt′ = t. (2.39)
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This equation allows us to find J(t) from G(t) through their Laplace transforms

Ĵ(s) =
1

s2Ĝ(s)
· (2.40)

Indeed, since Ĝ(s) has its approximants being rational functions, i.e.,

Ĝn(s) =
Pn(s)
Qn(s)

,

the approximants of Ĵ(s) will also admit rational representations of the form

Ĵn(s) =
Qn(s)

s2 Pn(s)
·

We have shown in Section 2.2 that deg(Pn) = deg(Qn)− 1 and all the zeros of Pn(s)

are real and negative. In particular, we may write

P2k(s) =
k−1

∏
i=1

(
s +

1
λ2k,i

)
, 0 < λ2k,1 < λ2k,2 < · · · < λ2k,k−1, k ≥ 1,

and

P2k+1(s) =
k

∏
i=1

(
s +

1
λ2k+1,i

)
, 0 < λ2k+1,1 < λ2k+1,2 < · · · < λ2k+1,k, k ≥ 1.

The reason for writing the zeros of Pn(s) as reciprocals will become clear shortly.

It then follows, since Pn(s) and Qn(s) have no zeros in common, that the approxi-

mants Ĵn(s) have two partial fractions of the form

Ĵ2k(s) =
j2k,0

s
+

β2k
s2 +

k−1

∑
i=1

j2k,i

[
1
s
− 1

s + 1/λ2k,i

]
, k ≥ 1,

and

Ĵ2k+1(s) =
j2k+1,0

s
+

k

∑
i=1

j2k+1,i

[
1
s
− 1

s + 1/λ2k+1,i

]
, k ≥ 1.
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The desired approximations for J(t) now follow by applying the inverse Laplace

transform which gives

J2k(t) = j2k,0 + β2kt +
k−1

∑
i=1

j2k,i

[
1 − exp

(
− t

λ2k,i

)]
, k ≥ 1, (2.41)

and

J2k+1(t) = j2k+1,0 +
k

∑
i=1

j2k+1,i

[
1 − exp

(
− t

λ2k+1,i

)]
, k ≥ 1. (2.42)

We note that the positive constants λn,i represent the retardation times. Also

j2k,i = −λ2
2k,i

Q2k(−1/λ2k,i)

P′
2k(−1/λ2k,i)

, i = 1, 2, . . . , k − 1,

j2k+1,i = −λ2
2k+1,i

Q2k+1(−1/λ2k+1,i)

P′
2k+1(−1/λ2k+1,i)

, i = 1, 2, . . . , k.

Furthermore, using (2.15) and (2.40), we obtain

β2k = lim
s→0

s2 Ĵ2k(s) =
1

∑k
i=1 η2k,i

, η2k,i = g2k,iτ2k,i.

Finally, since (2.39) implies J(0) = 1/G(0), it follows from (2.17) and (2.18) that

j2k,0 =
1

∑k
i=1 g2k,i

, and j2k+1,0 =
1

∑k
i=0 g2k+1,i

·

We now prove the following theorem regarding the signs of the above constants.

Theorem 2.8. The constants in the formulae (2.41) and (2.42) are all positive.

Proof. From Theorem 2.6 and the positivity of the relaxation times, it follows im-

mediately that j2k,0, j2k+1,0 and β2k are all positive. Also, the positivity of Q2k(0)

and P2k(0) together with the interlacing property satisfied by the zeros of Q2k and

P2k imply that Q2k and P′
2k have different signs at the zeros of P2k. Thus, j2k,i > 0

for i = 1, 2, . . . , k − 1. Finally, since both Q̃2k+1(0) defined by (2.14) and P2k+1(0)
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are positive, it follows from the interlacing property of the zeros of Q2k+1(s) and

P2k+1(s) that Q2k+1 and P′
2k+1 are of opposite signs at the zeros of P2k+1. Thus,

j2k+1,i > 0 for i = 1, 2, . . . , k.

2.6 Interlacing properties of the relaxation and retar-

dation times

It has been shown in Section 2.2 that the denominators of the approximants Ĝn(s)

give rise to two different sequences of polynomials, each of which is orthogonal.

Because of these orthogonalities, we were able to show that their zeros as well

as the zeros of the numerators are interlaced. Indeed, since the relaxation and

retardation times are the negative reciprocals of these zeros, they must satisfy some

interlacing properties. Such properties are presented in this short section.

Our first interlacing properties follow from Theorem 2.4 and the observation

that the negative zeros of Qn(s) represent the negative reciprocals of the relaxation

times.

Theorem 2.9. The following interlacing properties hold:

τ2k+2,1 < τ2k,1 < τ2k+2,2 < · · · < τ2k+2,k < τ2k,k < τ2k+2,k+1, k ≥ 1,

τ2k+3,1 < τ2k+1,1 < τ2k+3,2 < · · · < τ2k+3,k < τ2k+1,k < τ2k+3,k+1, k ≥ 1.

Similarly, Theorem 2.5 implies the following interlacing properties of the retar-

dation times which are the negative reciprocals of the zeros of Pn(s).

Theorem 2.10. The following interlacing properties hold:

λ2k+2,1 < λ2k,1 < λ2k+2,2 < · · · < λ2k+2,k−1 < λ2k,k−1 < λ2k+2,k, k ≥ 2,

λ2k+3,1 < λ2k+1,1 < λ2k+3,2 < · · · < λ2k+3,k < λ2k+1,k < λ2k+3,k+1, k ≥ 1.
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As a final theorem, we present two more interlacing properties satisfied by a

mixture of the relaxation and retardation times. This theorem is also a direct con-

sequence of Theorem 2.5.

Theorem 2.11. The following interlacing properties hold:

τ2k,1 < λ2k,1 < τ2k,2 < · · · < τ2k,k−1 < λ2k,k−1 < τ2k,k, k ≥ 2,

τ2k+1,1 < λ2k+1,1 < τ2k+1,2 < · · · < λ2k+1,k−1 < τ2k+1,k < λ2k+1,k, k ≥ 1.

Remark 2.5. We believe that Theorems 2.9 and 2.10 and the second inequality

of Theorem 2.11 are new to this thesis. The first inequality of Theorem 2.11 was

proved by Mead [22] using a different approach.

2.7 Numerical examples

In this section, the S-fraction method proposed earlier is applied to construct Dirich-

let series approximations for the relaxation function in which H(τ) is chosen to be

the box relaxation spectrum

H(τ) =

1, 1
2 ≤ τ ≤ 3

2 ,

0, otherwise.
(2.43)

It then follows from (2.2) that

G(t) = Ei
(

2t
3

)
− Ei(2t), (2.44)

where Ei is the exponential integral defined by (1.15). Note that since G(t) → 0

as t → ∞, then (2.43) and (2.44) represent the relaxation spectrum and relaxation

function for a viscoelastic fluid.
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We first approximate G(t) using the moments of negative order of H(τ). The

results are then compared with those obtained from the moments of positive order.

Furthermore, using these approximations as input functions for the interconver-

sion equation, we obtain the corresponding approximations for J(t). Finally, we

close this section by discussing the ill-posedness inherent in the S-fraction method.

2.7.1 Approximating G(t) using negative moments

From (2.5), we find that the moments of negative order of (2.43) are given by

µ0 = ln(3), µn =
2n

n

(
1 − 1

3n

)
, n = 1, 2, . . . . (2.45)

These moments are the coefficients in the formal power series of the Laplace trans-

form of (2.44), i.e.,

Ĝ(s) =
1
s

ln
(

2 + 3s
2 + s

)
· (2.46)

The coefficients αn of the corresponding S-fraction are given in Table 2.1 for n =

1, 2, . . . , 21. We note that the even and odd coefficients converge to different limits.

Here, we quote a theorem due to Van Deun [26]:

Theorem 2.12. If H(s−1) > 0 has compact support [a, b] with 0 ≤ a < b < ∞, then the

coefficients in the S-fraction expansion of the Stieltjes transform (2.21) satisfy

lim
k→∞

α2k =

(√
b +

√
a
)2

4
and lim

k→∞
α2k+1 =

(√
b −

√
a
)2

4
·

If we return to (2.43), we then find that

lim
k→∞

α2k ≈ 1.24402 and lim
k→∞

α2k+1 ≈ 0.08932.

Table 2.1 shows the first few terms of the sequences leading to these limits.
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k α2k α2k+1

0 - 1.09861

1 1.21365 0.11968

2 1.23786 0.09548

3 1.24136 0.09198

4 1.24253 0.09080

5 1.24307 0.09027

6 1.24336 0.08998

7 1.24353 0.08980

8 1.24365 0.08969

9 1.24372 0.08961

10 1.24378 0.08955

Table 2.1: The coefficients in the S-fraction expansion of Ĝ(s).

The S-fraction method, using the negative moments (2.45), produces two differ-

ent Dirichlet series approximations for G(t). These are G2k(t) and G2k+1(t) given,

respectively, by (2.17) and (2.18). We have computed these approximations for

k = 1, 2, . . . , 10. The coefficients in (2.17) are listed in Table 2.2, while Table 2.3

shows those in (2.18). These tables contain discrete relaxation spectra representa-

tions for the viscoelastic fluid whose true relaxation spectrum is given by (2.43).

We note that the numerical values in these tables verify the interlacing properties

between the relaxation times proved in Theorem 2.9. The numerical values also

show that all the relaxation times satisfy

1
2
≤ τn,i ≤

3
2
·

This is a consequence of part (iii) of Theorem 2.4 and the fact that the relaxation

times are the negative reciprocals of the negative zeros of Qn(s).
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k g2k,1 g2k,2 g2k,3 g2k,4 g2k,5 g2k,6 g2k,7 g2k,8 g2k,9 g2k,10

1 1.09861 - - - - - - - - -

2 0.44741 0.65120 - - - - - - - -

3 0.22432 0.46734 0.40696 - - - - - - -

4 0.13321 0.29772 0.39348 0.27421 - - - - - -

5 0.08795 0.20086 0.29413 0.31972 0.19595 - - - - -

6 0.06232 0.14358 0.21788 0.26872 0.25963 0.14648 - - - -

7 0.04644 0.10744 0.16556 0.21428 0.23871 0.21277 0.11340 - - -

8 0.03594 0.08332 0.12936 0.17115 0.20219 0.20995 0.17643 0.09027 - -

9 0.02863 0.06646 0.10361 0.13864 0.16846 0.18700 0.18424 0.14808 0.07349 -

10 0.02334 0.05423 0.08475 0.11412 0.14076 0.16158 0.17123 0.16193 0.12570 0.06096

k τ2k,1 τ2k,2 τ2k,3 τ2k,4 τ2k,5 τ2k,6 τ2k,7 τ2k,8 τ2k,9 τ2k,10

1 0.82396 - - - - - - - - -

2 0.59757 1.11390 - - - - - - - -

3 0.54599 0.77965 1.25966 - - - - - - -

4 0.52672 0.65481 0.93487 1.33839 - - - - - -

5 0.51746 0.59823 0.76850 1.05390 1.38469 - - - - -

6 0.51230 0.56798 0.68120 0.87155 1.14312 1.41391 - - - -

7 0.50914 0.54991 0.63060 0.76344 0.96034 1.21014 1.43341 - - -

8 0.50705 0.53823 0.59874 0.69620 0.84018 1.03518 1.26106 1.44703 - -

9 0.50561 0.53024 0.57736 0.65188 0.76055 0.90966 1.09770 1.30030 1.45690 -

10 0.50457 0.52453 0.56230 0.62118 0.70584 0.82158 0.97152 1.14985 1.33100 1.46427

Table 2.2: The coefficients of G2k(t).
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k g2k+1,0

1 9.8E-02

2 7.7E-03

3 5.7E-04

4 4.1E-05

5 3.0E-06

6 2.2E-07

7 1.5E-08

8 1.1E-09

9 8.2E-11

10 5.9E-12

Table 2.3: The coefficients of G2k+1(t).

k g2k+1,1 g2k+1,2 g2k+1,3 g2k+1,4 g2k+1,5 g2k+1,6 g2k+1,7 g2k+1,8 g2k+1,9 g2k+1,10

1 1.00000 - - - - - - - - -

2 0.38800 0.70291 - - - - - - - -

3 0.20023 0.44444 0.45337 - - - - - - -

4 0.12158 0.27870 0.39285 0.30544 - - - - - -

5 0.08153 0.18855 0.28444 0.32748 0.21660 - - - - -

6 0.05842 0.13556 0.20902 0.26565 0.26947 0.16049 - - - -

7 0.04391 0.10203 0.15871 0.20898 0.23952 0.22226 0.12321 - - -

8 0.03420 0.07952 0.12421 0.16611 0.19965 0.21276 0.18480 0.09736 - -

9 0.02738 0.06370 0.09972 0.13439 0.16512 0.18639 0.18795 0.15520 0.07877 -

10 0.02242 0.05216 0.08177 0.11065 0.13753 0.15965 0.17188 0.16590 0.13168 0.06498

k τ2k+1,1 τ2k+1,2 τ2k+1,3 τ2k+1,4 τ2k+1,5 τ2k+1,6 τ2k+1,7 τ2k+1,8 τ2k+1,9 τ2k+1,10

1 0.75000 - - - - - - - - -

2 0.58199 1.05437 - - - - - - - -

3 0.54062 0.75000 1.22409 - - - - - - -

4 0.52427 0.64103 0.90360 1.31710 - - - - - -

5 0.51614 0.59091 0.75000 1.02632 1.37134 - - - - -

6 0.51151 0.56365 0.67006 0.85160 1.12041 1.40511 - - - -

7 0.50863 0.54714 0.62348 0.75000 0.94094 1.19192 1.42736 - - -

8 0.50671 0.53635 0.59393 0.68699 0.82573 1.01732 1.24654 1.44271 - -

9 0.50536 0.52891 0.57397 0.64537 0.75000 0.89512 1.08176 1.28869 1.45371 -

10 0.50439 0.52355 0.55982 0.61642 0.69804 0.81032 0.95748 1.13586 1.32166 1.46186
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Since we have a viscoelastic fluid, we will also consider the approximations

G̃2k+1(t) =
k

∑
i=1

g2k+1,i exp
(
− t

τ2k+1,i

)
, k ≥ 1, (2.47)

obtained from G2k+1(t) by ignoring the constant term. The question now arises

as to which of the formulae (2.17), (2.18) and (2.47) are best approximations for

G(t). To answer the question, we present in Table 2.4 a comparison between the

maximum absolute errors of these approximations for k = 1, 2, . . . , 10. Also, Figure

2.1 shows the absolute errors of G20(t), G21(t) and G̃21(t). The results suggest that

the best approximations are obtained from the even approximants G2k(t) in (2.17).

k
∣∣G(t)− G2k(t)

∣∣ ∣∣G(t)− G2k+1(t)
∣∣ ∣∣G(t)− G̃2k+1(t)

∣∣
1 2.9E-02 9.8E-02 9.8E-02

2 1.6E-03 7.7E-03 7.7E-03

3 9.5E-05 5.7E-04 5.7E-04

4 5.9E-06 4.1E-05 4.1E-05

5 3.9E-07 3.0E-06 3.0E-06

6 2.5E-08 2.2E-07 2.2E-07

7 1.7E-09 1.5E-08 1.5E-08

8 1.2E-10 1.1E-09 1.1E-09

9 7.8E-12 8.2E-11 8.2E-11

10 5.3E-13 5.9E-12 5.9E-12

Table 2.4: The maximum absolute errors of G2k(t), G2k+1(t) and G̃2k+1(t).

Finally, we plot schematically in Figure 2.2 the discrete relaxation spectrum

H2k(τ) given by (2.19) for k = 9, 10. Also, Figure 2.3 shows the function

µ(s) =


0, s ≤ 2

3 ,

ln(s)− ln
(2

3

)
, 2

3 < s ≤ 2,

ln(3), 2 < s,

obtained from (2.29) and (2.43), along with its approximant µ[20](s) given by (2.30).
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Figure 2.1: The absolute errors of G20(t) (green), G21(t) (blue) and G̃21(t) (red).

Figure 2.2: The discrete relaxation spectra
H18(τ) (blue) and H20(τ) (red).

Figure 2.3: The functions µ(s) (blue) and
µ[20](s) (red).
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2.7.2 Approximating G(t) using positive moments

From (2.27), we find that the moments of positive order of (2.43) are given by

ηn =
3n+1 − 1

(n + 1)2n+1 , n = 0, 1, 2, . . . . (2.48)

These moments are the coefficients in the formal power series of the function

F(t) =
1
t

[
exp

(
− t

2

)
− exp

(
−3t

2

)]
,

obtained from (2.31) and (2.43). If α∗n denote the coefficients in the S-fraction ex-

pansion of the Laplace transform F̂(s) of F(t), then it follows by Theorem 2.12 that

lim
k→∞

α∗2k ≈ 0.93301 and lim
k→∞

α∗2k+1 ≈ 0.06699,

as shown in Table 2.5.

k α∗2k α∗2k+1

0 - 1.00000

1 1.00000 0.08333

2 0.91667 0.07273

3 0.92727 0.06933

4 0.93067 0.06822

5 0.93178 0.06775

6 0.93225 0.06751

7 0.93249 0.06737

8 0.93263 0.06728

9 0.93272 0.06722

10 0.93278 0.06717

Table 2.5: The coefficients in the S-fraction expansion of F̂(s).

Starting from the positive moments (2.48), the S-fraction method generates two

other Dirichlet series approximations for G(t) in (2.44). These are G∗
2k(t) and G∗

2k+1(t)

given, respectively, by (2.35) and (2.37). We have computed these approximations
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for k = 1, 2, . . . , 10. In Tables 2.6 and 2.7, we present the coefficients in these ap-

proximations, respectively. These tables contain other discrete representations for

the box spectrum (2.43) different from those shown in Tables 2.2 and 2.3 of the pre-

vious subsection. We note that the interlacing properties of the relaxation times

proved in Theorem 2.9 are satisfied by the numerical values in these tables. This

follows from Theorem 2.4 and the fact that the relaxation times are the negative

zeros of Q∗
n(s). We also note that

1
2
≤ τ∗

n,i ≤
3
2

,

since the relaxation times lie in the support of H(τ).

k g∗2k,1 g∗2k,2 g∗2k,3 g∗2k,4 g∗2k,5 g∗2k,6 g∗2k,7 g∗2k,8 g∗2k,9 g∗2k,10

1 1.00000 - - - - - - - - -

2 0.70291 0.38800 - - - - - - - -

3 0.45337 0.44444 0.20023 - - - - - - -

4 0.30544 0.39285 0.27870 0.12158 - - - - - -

5 0.21660 0.32748 0.28444 0.18855 0.08153 - - - - -

6 0.16049 0.26947 0.26565 0.20902 0.13556 0.05842 - - - -

7 0.12321 0.22226 0.23952 0.20898 0.15871 0.10203 0.04391 - - -

8 0.09736 0.18480 0.21276 0.19965 0.16611 0.12421 0.07952 0.03420 - -

9 0.07877 0.15520 0.18795 0.18639 0.16512 0.13439 0.09972 0.06370 0.02738 -

10 0.06498 0.13168 0.16590 0.17188 0.15965 0.13753 0.11065 0.08177 0.05216 0.02242

k τ∗
2k,1 τ∗

2k,2 τ∗
2k,3 τ∗

2k,4 τ∗
2k,5 τ∗

2k,6 τ∗
2k,7 τ∗

2k,8 τ∗
2k,9 τ∗

2k,10

1 1.00000 - - - - - - - - -

2 0.71132 1.28868 - - - - - - - -

3 0.61270 1.00000 1.38730 - - - - - - -

4 0.56943 0.83001 1.16999 1.43057 - - - - - -

5 0.54691 0.73077 1.00000 1.26923 1.45309 - - - - -

6 0.53377 0.66940 0.88069 1.11931 1.33060 1.46623 - - - -

7 0.52545 0.62923 0.79708 1.00000 1.20292 1.37077 1.47455 - - -

8 0.51986 0.60167 0.73723 0.90828 1.09172 1.26277 1.39833 1.48014 - -

9 0.51592 0.58198 0.69331 0.83787 1.00000 1.16213 1.30669 1.41802 1.48408 -

10 0.51305 0.56747 0.66030 0.78330 0.92556 1.07444 1.21670 1.33970 1.43253 1.48695

Table 2.6: The coefficients of G∗
2k(t).
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k η∗
2k+1,0

1 7.6E-02

2 6.0E-03

3 4.5E-04

4 3.3E-05

5 2.4E-06

6 1.7E-07

7 1.2E-08

8 9.2E-10

9 6.6E-11

10 4.7E-12

Table 2.7: The coefficients of G∗
2k+1(t).

k g∗2k+1,1 g∗2k+1,2 g∗2k+1,3 g∗2k+1,4 g∗2k+1,5 g∗2k+1,6 g∗2k+1,7 g∗2k+1,8 g∗2k+1,9 g∗2k+1,10

1 0.85207 - - - - - - - - -

2 0.72824 0.33671 - - - - - - - -

3 0.49786 0.41773 0.17943 - - - - - - -

4 0.33900 0.38769 0.26026 0.11132 - - - - - -

5 0.23950 0.33256 0.27377 0.17699 0.07576 - - - - -

6 0.17611 0.27808 0.26131 0.20016 0.12808 0.05487 - - - -

7 0.13414 0.23134 0.23927 0.20329 0.15206 0.09696 0.04157 - - -

8 0.10522 0.19315 0.21483 0.19661 0.16101 0.11927 0.07594 0.03257 - -

9 0.08457 0.16247 0.19118 0.18531 0.16159 0.13018 0.09600 0.06109 0.02621 -

10 0.06937 0.13786 0.16960 0.17213 0.15747 0.13424 0.10727 0.07891 0.05021 0.02155

k τ∗
2k+1,1 τ∗

2k+1,2 τ∗
2k+1,3 τ∗

2k+1,4 τ∗
2k+1,5 τ∗

2k+1,6 τ∗
2k+1,7 τ∗

2k+1,8 τ∗
2k+1,9 τ∗

2k+1,10

1 1.08333 - - - - - - - - -

2 0.75602 1.31671 - - - - - - - -

3 0.63369 1.03665 1.39899 - - - - - - -

4 0.58030 0.85867 1.19283 1.43642 - - - - - -

5 0.55312 0.75115 1.02350 1.28358 1.45641 - - - - -

6 0.53761 0.68376 0.90101 1.13684 1.34000 1.46829 - - - -

7 0.52798 0.63952 0.81363 1.01729 1.21584 1.37720 1.47591 - - -

8 0.52161 0.60920 0.75047 0.92391 1.10573 1.27239 1.40290 1.48109 - -

9 0.51718 0.58762 0.70386 0.85144 1.01368 1.17334 1.31398 1.42137 1.48476 -

10 0.51398 0.57177 0.66875 0.79487 0.93822 1.08606 1.22567 1.34533 1.43506 1.48746
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Instead of G∗
2k+1(t), we will consider the approximations

G̃∗
2k+1(t) =

k

∑
i=1

g∗2k+1,i exp
(
− t

τ∗
2k+1,i

)
, k ≥ 1. (2.49)

The maximum absolute errors of (2.49) are compared in Table 2.8 with those of

G∗
2k(t) for k = 1, 2, . . . , 10. Also, shown in Figure 2.4 are the errors G(t)− G∗

20(t)

and G(t) − G̃∗
21(t). From these results, we find that the approximants G∗

2k(t) are

better than those given by (2.49).

k
∣∣G(t)− G∗

2k(t)
∣∣ ∣∣G(t)− G̃∗

2k+1(t)
∣∣

1 9.8E-02 2.4E-01

2 7.7E-03 3.3E-02

3 5.7E-04 3.5E-03

4 4.1E-05 3.4E-04

5 3.0E-06 3.0E-05

6 2.2E-07 2.6E-06

7 1.5E-08 2.1E-07

8 1.1E-09 1.7E-08

9 8.2E-11 1.4E-09

10 5.9E-12 1.1E-10

Table 2.8: The maximum absolute errors of G∗
2k(t) and G̃∗

2k+1(t).

Similar to the previous example, we plot schematically in Figure 2.5 the discrete

relaxation spectrum H∗
2k(τ) given by (2.36) for k = 9, 10. Also, the function

η(s) =


0, s ≤ 1

2 ,

s − 1
2 , 1

2 < s ≤ 3
2 ,

1, 3
2 < s,

obtained from (2.33) and (2.43) is plotted in Figure 2.6 along with its approximant

η[20](s) given by (2.34).
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Figure 2.4: The errors of G∗
20(t) (red) and G̃∗

21(t) (blue).

Figure 2.5: The discrete relaxation spectra
H∗

18(τ) (blue) and H∗
20(τ) (red).

Figure 2.6: The functions η(s) (blue) and
η[20](s) (red).
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Finally, we compare the two best approximations for G(t) obtained from the

negative and positive moments of H(τ). As we have shown in previous and this

subsections, the best approximations obtained from the moments of negative order

are the series G2k(t) given by (2.17), while the best approximations obtained from

the moments of positive order are the series G∗
2k(t) given by (2.35). According to the

first column of Tables 2.4 and 2.8, the approximants G2k(t) are the most accurate.

However, Figure 2.7 below shows that over the range 8 ≤ t ≤ 30, the series G∗
20(t)

gives better approximation than G20(t).

Figure 2.7: The errors of G20(t) (blue) and G∗
20(t) (red).



2. Constructing Dirichlet series for completely monotonic functions 54

2.7.3 Approximate solutions of the interconversion equation

Here, we consider solving for J(t) the interconversion equation (2.39) in which G(t)

is given by (2.44). The laplace transform of J(t) may be found from (2.40) and (2.46)

in the form

Ĵ(s) =
1

s ln
(

2+3s
2+s

) , s > 0.

This shows that J(t) does not exist in closed-form. It can be shown from the above

equation that

J(t) ∼ 1 + t as t → ∞. (2.50)

In Section 2.5, we have shown how to obtain an approximation Jn(t) to J(t)

by replacing G(t) by its Dirichlet series approximant Gn(t). Here, we restrict our

attention only to the approximations G2k(t) and G2k+1(t) generated from the nega-

tive moments (2.45). The corresponding approximations for J(t) therefore take two

different forms, namely, J2k(t) and J2k+1(t) given, respectively, by (2.41) and (2.42).

Table 2.9 lists the coefficients in (2.41), while those in (2.42) are shown in Table 2.10.

The true retardation spectrum corresponding to the box spectrum (2.43) cannot

be expressed in closed-form, but Tables 2.9 and 2.10 contain its discrete represen-

tations. We note that the numerical values in these tables verify the interlacing

properties between the retardation times proved in Theorem 2.10. We also note

that the retardation times shown in Tables 2.9 and 2.10 interlace, respectively, with

the relaxation times shown in Tables 2.2 and 2.3 verifying the interlacing properties

proved in Theorem 2.11.
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k j2k,0 β2k

1 0.91024 1.10471

2 0.91024 1.00732

3 0.91024 1.00054

4 0.91024 1.00004

5 0.91024 1.00000

6 0.91024 1.00000

7 0.91024 1.00000

8 0.91024 1.00000

9 0.91024 1.00000

10 0.91024 1.00000

Table 2.9: The coefficients of J2k(t).

k j2k,1 j2k,2 j2k,3 j2k,4 j2k,5 j2k,6 j2k,7 j2k,8 j2k,9

1 - - - - - - - - -

2 0.07174 - - - - - - - -

3 0.02381 0.06370 - - - - - - -

4 0.01070 0.03582 0.04302 - - - - - -

5 0.00578 0.01995 0.03579 0.02822 - - - - -

6 0.00351 0.01214 0.02383 0.03133 0.01896 - - - -

7 0.00231 0.00795 0.01603 0.02426 0.02602 0.01319 - - -

8 0.00162 0.00551 0.01121 0.01784 0.02289 0.02120 0.00949 - -

9 0.00118 0.00400 0.00814 0.01323 0.01823 0.02074 0.01719 0.00705 -

10 0.00089 0.00300 0.00610 0.01002 0.01426 0.01773 0.01839 0.01399 0.00537

k λ2k,1 λ2k,2 λ2k,3 λ2k,4 λ2k,5 λ2k,6 λ2k,7 λ2k,8 λ2k,9

1 - - - - - - - - -

2 0.73663 - - - - - - - -

3 0.59132 0.99676 - - - - - - -

4 0.54833 0.74304 1.16370 - - - - - -

5 0.52987 0.64376 0.88325 1.26591 - - - - -

6 0.52027 0.59530 0.74533 0.99903 1.33014 - - - -

7 0.51464 0.56795 0.67063 0.84073 1.09085 1.37218 - - -

8 0.51106 0.55096 0.62582 0.74649 0.92575 1.16274 1.40083 - -

9 0.50865 0.53966 0.59678 0.68675 0.81868 0.99954 1.21905 1.42109 -

10 0.50694 0.53176 0.57685 0.64659 0.74719 0.88530 1.06271 1.26342 1.43586
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k j2k+1,0

1 0.91024

2 0.91024

3 0.91024

4 0.91024

5 0.91024

6 0.91024

7 0.91024

8 0.91024

9 0.91024

10 0.91024

Table 2.10: The coefficients of J2k+1(t).

k j2k+1,1 j2k+1,2 j2k+1,3 j2k+1,4 j2k+1,5 j2k+1,6 j2k+1,7 j2k+1,8 j2k+1,9 j2k+1,10

1 9.23048 - - - - - - - - -

2 0.05945 1.28E02 - - - - - - - -

3 0.02013 0.06386 1.74E03 - - - - - - -

4 0.00936 0.03289 0.04670 2.38E04 - - - - - -

5 0.00518 0.01824 0.03477 0.03147 3.28E05 - - - - -

6 0.00321 0.01118 0.02256 0.03156 0.02125 4.53E06 - - - -

7 0.00214 0.00738 0.01511 0.02358 0.02681 0.01473 6.27E07 - - -

8 0.00151 0.00516 0.01058 0.01714 0.02270 0.02213 0.01054 8.70E08 - -

9 0.00111 0.00377 0.00771 0.01267 0.01778 0.02087 0.01809 0.00777 1.20E10 -

10 0.00084 0.00284 0.00580 0.00959 0.01381 0.01751 0.01870 0.01477 0.00588 1.67E11

k λ2k+1,1 λ2k+1,2 λ2k+1,3 λ2k+1,4 λ2k+1,5 λ2k+1,6 λ2k+1,7 λ2k+1,8 λ2k+1,9 λ2k+1,10

1 8.35554 - - - - - - - - -

2 0.69199 1.26E02 - - - - - - - -

3 0.57912 0.94428 1.74E03 - - - - - - -

4 0.54338 0.71954 1.12418 2.38E04 - - - - - -

5 0.52740 0.63214 0.85621 1.23909 3.28E05 - - - - -

6 0.51886 0.58878 0.72942 0.97323 1.31208 4.53E06 - - - -

7 0.51376 0.56393 0.66080 0.82293 1.06826 1.35978 6.27E07 - - -

8 0.51048 0.54831 0.61937 0.73447 0.90779 1.14377 1.39209 8.70E08 - -

9 0.50824 0.53782 0.59233 0.67840 0.80550 0.98247 1.20339 1.41475 1.20E10 -

10 0.50665 0.53043 0.57366 0.64060 0.73753 0.87176 1.04704 1.25058 1.43115 1.67E11
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We note with interest that the coefficients j2k+1,k and λ2k+1,k in Table 2.10 appear

to grow without bound as k increases. Both (2.41) and (2.42) are valid approxima-

tions but have different forms. Formula (2.41) contains a linear term β2kt, and all

coefficients remain finite as k → ∞, while formula (2.42) has no linear term. Table

2.9 suggests that

lim
k→∞

β2k = 1.

In addition, the unbounded growth of the coefficients j2k+1,k and λ2k+1,k suggests

that the contribution

j2k+1,k

[
1 − exp

(
− t

λ2k+1,k

)]
,

to the expression in (2.42) is attempting to play the role of its linear approximation

j2k+1,k

λ2k+1,k
t, (2.51)

as shown in Table 2.11.

k
j2k+1,k

λ2k+1,k

1 1.10471

2 1.01880

3 1.00233

4 1.00024

5 1.00002

6 1.00000

7 1.00000

8 1.00000

9 1.00000

10 1.00000

Table 2.11: The coefficients of (2.51).

Table 2.12 presents the numerical results of J2k(t) and J2k+1(t) with k = 2, 6, 10

for different values of t. The results show that J2k(t) and J2k+1(t) satisfy the relation

(2.50).
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J2k(t) J2k+1(t)

t k = 2 k = 6 k = 10 k = 2 k = 6 k = 10

0 0.91024 0.91024 0.91024 0.91024 0.91024 0.91024

10 11.05520 10.99999 10.99999 10.76530 10.99999 10.99999

20 21.12842 21.00000 21.00000 19.81619 20.99999 21.00000

Table 2.12: The numerical values of J2k(t) and J2k+1(t).

Finally, in Figure 2.8 below, we plot the approximations of G(t) and J(t) ob-

tained from the even approximants G2k(t) and J2k(t) given by (2.17) and (2.41) for

k = 1, 2, 3.

Figure 2.8: The approximants G2k(t) (decreasing) and J2k(t) (increasing) for k = 1 (green),
k = 2 (blue) and k = 3 (red).

2.7.4 Ill-posedness and the S-fraction method

It is to be expected that the S-fraction method will be subject to the ill-posedness of

recovering a discrete relaxation spectrum from G(t). To demonstrate this, we add

some noise to G(t) in (2.44), in particular,

Gϵ(t) = G(t) +
ln(3)
1000

sin(2t), (2.52)
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which has noise of order 10−3. The S-fraction method is used to construct the

Dirichlet series approximations for (2.52), and the results are then compared with

those obtained in Subsection 2.7.1.

In Table 2.13, we present the moments µϵ
n obtained from Gϵ(t) together with

the exact moments µn obtained from G(t) in (2.44). Also, shown in Table 2.14 are

the coefficients in the S-fraction expansions of the Laplace transforms of Gϵ(t) and

G(t). We note that, as a result of the noise in (2.52), the coefficients αϵ
n become

negative, and then unstable, once n > 4.

n µn µϵ
n

0 1.09861 1.09861

1 1.33333 1.33114

2 1.77778 1.77778

3 2.56790 2.57669

4 3.95062 3.95062

5 6.37366 6.33851

6 10.65203 10.65203

Table 2.13: The moments obtained from
G(t) and Gϵ(t).

n αn αϵ
n

1 1.09861 1.09861

2 1.21365 1.21165

3 0.11968 0.12388

4 1.23786 1.22743

5 0.09548 -0.04645

6 1.24136 -7.33674

7 0.09198 9.62523

Table 2.14: The coefficients in the S-
fraction expansions of Ĝ(s) and Ĝϵ(s).

Using the S-fraction method, we generate the Dirichlet series approximations

for (2.52). These approximations, according to Subsection 2.3.1, take the form

Gϵ
2k(t) =

k

∑
i=1

gϵ
2k,i exp

(
− t

τϵ
2k,i

)
, k ≥ 1,

and

Gϵ
2k+1(t) = gϵ

2k+1,0 +
k

∑
i=1

gϵ
2k+1,i exp

(
− t

τϵ
2k+1,i

)
, k ≥ 1.

The coefficients in the above formulae are shown, respectively, in Tables 2.15 and

2.17. The tables show that it is only possible to recover Gϵ
n(t) for n = 2, 3 and 4.

For the sake of comparison, we also reproduce in Tables 2.16 and 2.18, respectively,

the coefficients in the Dirichlet series approximations G2k(t) and G2k+1(t) for G(t)

obtained in Subsection 2.7.1.
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k gϵ
2k,1 gϵ

2k,2 gϵ
2k,3 τϵ

2k,1 τϵ
2k,2 τϵ

2k,3

1 1.09861 - - 0.82532 - -

2 0.45187 0.64674 - 0.59696 1.12637 -

3 -0.2E-05 0.45632 0.64229 -0.13556 0.59828 1.13000

Table 2.15: The coefficients of Gϵ
2k(t).

k g2k,1 g2k,2 g2k,3 τ2k,1 τ2k,2 τ2k,3

1 1.09861 - - 0.82396 - -

2 0.44741 0.65120 - 0.59757 1.11390 -

3 0.22432 0.46734 0.40696 0.54599 0.77965 1.25966

Table 2.16: The coefficients of G2k(t).

k gϵ
2k+1,0 gϵ

2k+1,1 gϵ
2k+1,2 gϵ

2k+1,3 τϵ
2k+1,1 τϵ

2k+1,2 τϵ
2k+1,3

1 0.10191 0.99671 - - 0.74876 - -

2 -0.00444 0.48011 0.62294 - 0.60394 1.16181 -

3 -0.02168 0.00921 0.63017 0.48091 0.39062 0.65483 1.39308

Table 2.17: The coefficients of Gϵ
2k+1(t).

k g2k+1,0 g2k+1,1 g2k+1,2 g2k+1,3 τ2k+1,1 τ2k+1,2 τ2k+1,3

1 9.8E-02 1.00000 - - 0.75000 - -

2 7.7E-03 0.38800 0.70291 - 0.58199 1.05437 -

3 5.7E-04 0.20023 0.44444 0.45337 0.54062 0.75000 1.22409

Table 2.18: The coefficients of G2k+1(t).
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Finally, in Figure 2.9, we plot the errors G(t) − G4(t) and G(t) − Gϵ
4(t). Also,

Figure 2.10 shows the errors G(t)− G̃5(t) and G(t)− G̃ϵ
5(t), where G̃5(t) is obtained

from (2.47) and G̃ϵ
5(t) is obtained from

G̃ϵ
2k+1(t) =

k

∑
i=1

gϵ
2k+1,i exp

(
− t

τϵ
2k+1,i

)
, k ≥ 1.

The figures show that the maximum error in Gϵ
4(t) is of order 10−3 (the same level

as the noise in the data), whereas the maximum error in G̃ϵ
5(t) is of order 5× 10−3.

Figure 2.9: The errors of G4(t) (red) and
Gϵ

4(t) (blue).
Figure 2.10: The errors of G̃5(t) (red) and
G̃ϵ

5(t) (blue).
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In this chapter, two important topics from the spectral theory, particularly the

spectral and Weyl-Titchmarsh functions, are related to the theory of linear vis-

coelasticity. Through these relations, several inverse spectral problems in linear

viscoelasticity are formulated and then explicitly solved.

The chapter is organized as follows. We recall, in Section 3.1, the definition and

some important facts of the Weyl-Titschmarsh function, m(z). In particular, we

give the Herglotz integral formula which expresses m(z) in terms of the spectral

function.

In Section 3.2, we derive a condition on the relaxation spectrum H(τ) which is

sufficient for the existence of a Sturm-Liouville problem whose spectral function is

determined by H(τ). The m(z) associated with this problem is given in Section 3.3

explicitly in terms of H(τ) and the Laplace transform of the relaxation function.

The spectral function for discrete H(τ) is used in Section 3.4 to formulate an in-

verse spectral problem for a Sturm-Liouville operator. In solving such a problem,

we use the well-known Gelfand-Levitan method. We show there that, fortunately,

the Gelfand-Levitan equation can be solved explicitly leading to an explicit solu-

tion of the inverse problem. We consider in more detail the cases where H(τ)

corresponds to the Newtonian, Maxwell and Oldroyd-B models.

3.1 Spectral and Weyl-Titchmarsh functions

This section introduces the Weyl-Titchmarsh function and reviews some of its basic

properties including its relation to the spectral function. Most of the material given

here is collected from [8] and [17].

Consider the Sturm-Liouville operator

− d2

dx2 + q(x), x ≥ 0, (3.1)

in which the potential function q(x) is real-valued. We will assume throughout
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that (3.1) is in the limit-point case at infinity. This means that for every complex z

with Im(z) > 0, exactly one solution (up to a multiplicative constant) u(x, z) of

−y′′(x, z) + q(x)y(x, z) = zy(x, z), x ≥ 0, (3.2)

is square-integrable on (0, ∞), i.e.,

∫ ∞

0
|u(x, z)|2 dx < ∞, Im(z) > 0.

If u1(x, z) and u2(x, z) solve equation (3.2) with

u1(0, z) = 1 = u′
2(0, z), u2(0, z) = 0 = u′

1(0, z),

then u(x, z) may be written in the form

u(x, z) = u1(x, z) + m(z)u2(x, z).

The function m(z) in this equation is unique and is called the Weyl-Titchmarsh

function or just the m-function. In consequence of the initial condition u2(0, z) = 0,

this m-function may be associated with the Sturm-Liouville problem
−y′′(x, z) + q(x)y(x, z) = zy(x, z), x ≥ 0,

y(0, z) = 0,
(3.3)

for which u2(x, z) is a solution. An important property of the m-function is that it

is a Herglotz function, i.e., analytic in the upper half-plane and satisfies

Im(m(z)) > 0, for Im(z) > 0.
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This property allows m(z) to be written as

m(z) = Re(m(i)) +
∫ ∞

−∞

[
1

τ − z
− τ

1 + τ2

]
dρ(τ), Im(z) > 0, (3.4)

where ρ(τ) is a monotone non-decreasing function satisfying

∫ ∞

−∞

dρ(τ)

1 + τ2 < ∞.

The function ρ(τ) is called the spectral function associated with the Sturm-Liouville

problem (3.3) and is uniquely determined from m(z) by using the Stieltjes inversion

formula

ρ(τ) = lim
ϵ→0+

1
π

∫ τ

0
Im(m(ν + iϵ)) dν. (3.5)

In the special case where q(x) = 0 in the Sturm-Liouville problem (3.3), the

m-function takes the form

m0(z) = iz1/2, Im(z) > 0, (3.6)

which, according to (3.4), has the representation

m0(z) = Re(m0(i)) +
∫ ∞

−∞

[
1

τ − z
− τ

1 + τ2

]
dρ0(τ), Im(z) > 0, (3.7)

with the spectral function

ρ0(τ) =
2

3π
τ3/2, τ ≥ 0; ρ0(τ) = 0, τ < 0. (3.8)

The integral on the right-hand side of equation (3.7) cannot be written as the dif-

ference of the two integrals, since the improper integrals obtained by taking each

integrand separately are both divergent. Writing z = x + iy with y > 0, equation

(3.6) gives

m0(z) = −

√√
x2 + y2 − x

2
+ i

√√
x2 + y2 + x

2
·
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It then follows by equating the real and imaginary parts of (3.7) that the following

two remarkable identities hold:

1
π

∫ ∞

0

√
τ
[
(τ − x)(1 + τx)− τy2]

(1 + τ2)
[
(τ − x)2 + y2

] dτ =
1 −

√√
x2 + y2 − x
√

2
, y ̸= 0,

and

1
π

∫ ∞

0

y
√

τ

(τ − x)2 + y2 dτ =

√√
x2 + y2 + x

2
, y > 0.

3.2 A sufficient condition for a spectral function

In this section, we provide a sufficient condition for the function

ρ(τ) =
∫ τ

0
H(τ′) dτ′ + ρ0(τ), τ ≥ 0, (3.9)

to be the spectral function associated with a Sturm-Liouville problem of the form

(3.3). In (3.9), H(τ) is a viscoelastic relaxation spectrum and ρ0(τ) is given by (3.8).

We also show that ρ(τ) is a spectral function in the case where H(τ) is in a discrete

form.

In his book on inverse Sturm-Liouville problems, Levitan [17, § 2.9] gives two

necessary and sufficient conditions in order for a monotone non-decreasing func-

tion to be the spectral function associated with a problem of the form (3.3). In terms

of (3.9), these conditions may by stated as follows:

(i) The sequence of functions

ΦN(x) =
∫ N

0

cos(
√

τx)− 1
τ

H(τ) dτ, (3.10)

converges boundedly as N → ∞.



3. Linear viscoelasticity and spectral theory 67

(ii) Let

E(τ) =
∫ ∞

0
f (x)

sin(
√

τx)√
τ

dx,

where f (x) is a smooth function of bounded support. Then the equality

∫ ∞

0
E2(τ) dρ(τ) = 0, (3.11)

implies that f (x) ≡ 0.

We now state and prove a simpler condition on H(τ) which is sufficient to make

ρ(τ) in (3.9) a spectral function.

Theorem 3.1. If the cosine transform

C(x) =
∫ ∞

0
cos(

√
τx)τ−1H(τ) dτ, (3.12)

is bounded and continuous for all x ≥ 0, then the function ρ(τ) given by (3.9) is a spectral

function of a certain Sturm-Liouville problem of the form (3.3).

Proof. We will show that conditions (i) and (ii) are satisfied. Clearly, (3.12) implies

that condition (i) is satisfied, since

ΦN(x) → C(x)− C(0) as N → ∞.

Condition (ii) does not depend on (3.12), but on the fact that dρ(τ) is a positive

measure on (0, ∞). Since f (x) is a smooth function of bounded support, E(τ) is a

continuous function of τ on (0, ∞). Consequently, (3.11) implies that E(τ) ≡ 0 on

(0, ∞). Using the Fourier sine formula, we may write

f (x) =
1
π

∫ ∞

0
sin(

√
τx) dτ

∫ ∞

0
f (t)

sin(
√

τt)√
τ

dt

=
1
π

∫ ∞

0
E(τ) sin(

√
τx) dτ.

Hence, f (x) ≡ 0.
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In what follows, we will consider the case where H(τ) is discrete. Let

H(τ) =
n

∑
j=1

ηjδ(τ − τj), (3.13)

where ηj > 0 and τj ≥ 0, n ≤ 2,

τj > 0, n > 2.

This spectrum contains all the relaxation spectra for the viscoelastic models listed

in Table 1.1 of Section 1.2. More precisely,

(i) if n = 1 and τ1 = 0, then (3.13) corresponds to the Newtonian model,

(ii) if n = 1 and τ1 > 0, then (3.13) corresponds to the Maxwell model,

(iii) if n = 2, τ1 = 0 and τ2 > 0, then (3.13) corresponds to the Oldroyd-B model,

(iv) if n ≥ 2 and τj > 0 for all j, then (3.13) corresponds to the multi-mode

Maxwell model.

Substituting (3.13) into (3.9) and then using the well-known relation

∫ τ

0
δ(τ′ − τj) dτ′ = U(τ − τj),

where U(τ − τj) is the Heaviside step function defined by

U(τ − τj) =

0, τ ≤ τj,

1, τ > τj,

we obtain

ρ(τ) =
n

∑
j=1

ηjU(τ − τj) + ρ0(τ). (3.14)

If τj > 0 for all j, then the above function is a spectral function of a Sturm-Liouville

problem of the form (3.3), since in this case, the discrete relaxation spectrum (3.13)



3. Linear viscoelasticity and spectral theory 69

satisfies the condition (3.12). The condition is not satisfied if at least one τj is zero.

However, it can be shown in this case that Levitan’s two conditions stated above

are satisfied and consequently (3.14) is again a spectral function. Thus, we may

state the following theorem.

Theorem 3.2. The function ρ(τ) in (3.14) is a spectral function of a certain Sturm-

Liouville problem of the form (3.3).

Remark 3.1. That Theorem 3.2 is true is not surprising. Eastham and Kalf [8] and

Levitan [17] give explicit constructions for potentials which embed a finite number

of eigenvalues into a continuous spectrum. These constructions are for Sturm-

Liouville problems with different initial conditions from the zero boundary condi-

tion given in (3.3).

Theorem 3.2 will serve later as the basis of Section 3.4 in which we formulate

and solve an inverse spectral problem for the Sturm-Liouville operator (3.1).

3.3 The m-function in linear viscoelasticity

In the previous section we have established that, given a linear viscoelastic material

whose relaxation spectrum satisfies the condition of Theorem 3.1, then there exists

a Sturm-Liouville problem of the form (3.3) for which ρ(τ) in (3.9) is its spectral

function. Our purpose in this section is to determine the m-function associated

with this problem.

The desired m-function is the function m(z) that satisfies the representation (3.4)

with ρ(τ) given by (3.9). So, starting with the integral term of (3.4) and taking (3.7)

into account, we find

∫ ∞

0

[
1

τ − z
− τ

1 + τ2

][
H(τ)dτ + dρ0(τ)

]
=
∫ ∞

0

[
1

τ − z
− τ

1 + τ2

]
H(τ)dτ

+ m0(z)− Re(m0(i)).
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The above equation, upon writing

g(z) =
∫ ∞

0

H(τ)

τ − z
dτ, Im(z) > 0,

and then rearranging the terms, becomes

g(z) + m0(z) = Re(g(i) + m0(i)) +
∫ ∞

0

[
1

τ − z
− τ

1 + τ2

][
H(τ)dτ + dρ0(τ)

]
.

Thus, we have arrived at the following theorem which presents the m-function

explicitly in terms of H(τ).

Theorem 3.3. If ρ(τ) in (3.9) is a spectral function of a certain Sturm-Liouville problem

of the form (3.3), then the associated m-function is

m(z) =
∫ ∞

0

H(τ)

τ − z
dτ + m0(z), Im(z) > 0. (3.15)

In Table 3.1 below, we collect the spectral functions and m-functions for the

viscoelastic models introduced in Chapter 1.

Model m(z) ρ(τ)

Newtonian −η1

z
+ m0(z) η1U(τ) + ρ0(τ)

Maxwell
η1

τ1 − z
+ m0(z) η1U(τ − τ1) + ρ0(τ)

Oldroyd-B −η1

z
+

η2

τ2 − z
+ m0(z) η1U(τ) + η2U(τ − τ2) + ρ0(τ)

Multi-mode Maxwell
n

∑
j=1

ηj

τj − z
+ m0(z)

n

∑
j=1

ηjU(τ − τj) + ρ0(τ)

Table 3.1: Spectral functions and m-functions for four well-known models.
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The next theorem gives the m-function in terms of the Laplace transform of the

relaxation function.

Theorem 3.4. The following relation holds:

m(z) = −z−1Ĝ(−z−1) + m0(z), Im(z) > 0.

Proof. The result follows from (3.15) and the analytic continuation of

−z−1Ĝ
(
−z−1) = ∫ ∞

0

H(τ)

τ − z
dτ,

to the upper half-plane (see Section 1.5).

3.4 Inverse spectral problems in linear viscoelasticity

We have shown in Theorem 3.2 that the function ρ(τ) in (3.14), which is determined

by the discrete relaxation spectrum (3.13), is a spectral function of a Sturm-Liouville

problem of the form (3.3). In this section, we proceed to determine the potential

function q(x) of the Sturm-Liouville operator associated with this problem. This

process, i.e., recovering q(x) from ρ(τ), is called the inverse spectral problem for

the Sturm-Liouville operator. Thus, we may state our inverse problem as follows.

Problem 3.1. Given ρ(τ) by (3.14), reconstruct q(x).

In the literature, several methods exist for solving inverse spectral problems. In

this thesis, we consider two possible methods. One method is due to Simon [24]

where the inverse problem is reduced to a problem of solving a particular nonlin-

ear integro-differential equation, the A-equation. This method, however, will be

postponed until the next chapter. Here, we will use the other method produced by

Gelfand and Levitan [17]. Such a method allows one to reconstruct the potential

from a given spectral function by solving a particular linear integral equation, the

Gelfand-Levitan equation.



3. Linear viscoelasticity and spectral theory 72

3.4.1 Gelfand-Levitan method

In this subsection, we first briefly describe the Gelfand-Levitan method [17]. We

then show that using this method, Problem 3.1 can be solved explicitly.

In the Gelfand-Levitan method [17], the potential q(x) is reconstructed by the

formula

q(x) = 2
d

dx
K(x, x), (3.16)

where K(x, t) is the unique solution of the Gelfand-Levitan equation

K(x, t) + F(x, t) +
∫ x

0
K(x, s)F(s, t) ds = 0, 0 ≤ t ≤ x, (3.17)

in which the input function F(x, t) is given by

F(x, t) =
∫ ∞

0

sin(
√

τx) sin(
√

τt)
τ

[
dρ(τ)− dρ0(τ)

]
. (3.18)

Thus, given a spectral function ρ(τ), one can use (3.18) to calculate F(x, t), which

in turn uniquely determines K(x, t) by solving (3.17). Once K(x, t) is obtained, the

potential q(x) can be found by (3.16). Clearly, ρ(τ) determines q(x) uniquely.

ρ(τ) =⇒ F(x, t) =⇒ K(x, t) =⇒ q(x).

Let us now return to our problem, Problem 3.1, and consider solving it using

the above method. Substituting (3.14) into (3.18), we obtain

F(x, t) =
n

∑
j=1

ηju0(x, τj)u0(t, τj), (3.19)

where

u0(x, τj) =


x, τj = 0,

sin(√τjx)
√

τj
, τj > 0.
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We look for a solution of the Gelfand-Levitan equation in the form

K(x, t) =
n

∑
j=1

Kj(x)u0(t, τj), (3.20)

where Kj(x), j = 1, 2, . . . , n, are the unknown functions to be determined. These

unknowns, upon substituting (3.19) and (3.20) into (3.17), satisfy the following sys-

tem of equations

Kj(x) +
n

∑
l=1

yjl(x)Kl(x) = −ηju0(x, τj),

where

yjl(x) = ηj

∫ x

0
u0(y, τj)u0(y, τl) dy.

If T(x) is the n × n matrix defined by

T(x) = In + Y(x), (3.21)

where In is the identity matrix and Y(x) is the matrix

Y(x) =


y11(x) y12(x) . . . y1n(x)

y21(x) y22(x) . . . y2n(x)
...

... . . . ...

yn1(x) yn2(x) . . . ynn(x)

 ,

then we obtain

Kj(x) =
det T(j)(x)
det T(x)

, (3.22)

where the new matrix T(j)(x) is constructed by substituting the jth column of the

matrix T(x) with the new column −ηju0(x, τj), j = 1, 2, . . . , n. It now follows from

(3.20) and (3.22) that the Gelfand-Levitan equation has the explicit solution

K(x, t) =
1

det T(x)

n

∑
j=1

u0(t, τj)det T(j)(x), (3.23)
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which on substitution into (3.16) gives

q(x) = −2
d2

dx2 ln det T(x). (3.24)

Hence, with ρ(τ) given by (3.14), the potential q(x) is obtained explicitly.

Remark 3.2. The method shown above for solving Problem 3.1 is a modification of

the method used in [17] which was developed for a non-zero initial condition in

problem (3.3).

3.4.2 Inverse problem for the Newtonian model

In the previous subsection, we have shown that Problem 3.1 can be explicitly solved

using the Gelfand-Levitan method. This follows because we managed to obtain an

explicit solution of the Gelfand-Levitan equation. In this and the following two

subsections, we will consider three special cases of Problem 3.1 in more detail. In

particular, we will consider the inverse problems in which the spectral functions

are those for the Newtonian, Maxwell and Oldroyd-B models. For each problem,

we will give the explicit solution of the Gelfand-Levitan equation and most impor-

tantly the explicit solution of the problem itself.

Let us first consider the simplest case, where n = 1 and τ1 = 0 in (3.14). Then

ρ(τ) = η1U(τ) + ρ0(τ),

which is the spectral function for the Newtonian model. In this case, equation

(3.19) reduces to

F(x, t) = η1xt. (3.25)

The solution of the Gelfand-Levitan equation corresponding to (3.25) is given by

the following theorem.
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Theorem 3.5. The function

K(x, t) = − 3η1xt
η1x3 + 3

,

solves the Gelfand-Levitan equation (3.17) with F(x, t) given by (3.25).

Proof. With F(x, t) given as above, the matrix (3.21) has only one element

T(x) =

[
η1x3 + 3

3

]
· (3.26)

The desired result now follows from (3.23) and (3.26).

The next theorem is the main result of this subsection.

Theorem 3.6. For the Newtonian model, the potential takes the form

q(x) =
6η1x(η1x3 − 6)
(η1x3 + 3)2 · (3.27)

Proof. The result follows immediately from (3.24) and (3.26).

We note that q(x) has no poles on [0, ∞) and has only two zeros: x = 0 and

x = 3
√

6/η1. Furthermore, q′(0) = −4η1 and q(x) ∼ 6/x2 as x → ∞. In Figure 3.1

below, we plot q(x) with η1 = 1.

Figure 3.1: q(x) for the Newtonian model
with η1 = 1.
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3.4.3 Inverse problem for the Maxwell model

For the Maxwell model, the spectral function takes the form

ρ(τ) = η1U(τ − τ1) + ρ0(τ),

which is the special case of (3.14) with n = 1 and τ1 > 0. It then follows from (3.19)

that

F(x, t) =
η1 sin(

√
τ1x) sin(

√
τ1t)

τ1
· (3.28)

The next theorem presents the solution of the Gelfand-Levitan equation in which

the input function is (3.28).

Theorem 3.7. The function

K(x, t) = − 4η1
√

τ1 sin(
√

τ1x) sin(
√

τ1t)
2
√

τ1(η1x + 2τ1)− η1 sin(2
√

τ1x)
, (3.29)

solves the Gelfand-Levitan equation (3.17) with F(x, t) given by (3.28).

Proof. With F(x, t) given as above, the matrix (3.21) reduces to

T(x) =

[
2
√

τ1(η1x + 2τ1)− η1 sin(2
√

τ1x)
4τ1

√
τ1

]
· (3.30)

The desired result now follows from (3.23) and (3.30).

The main result for this subsection is given by the following theorem.

Theorem 3.8. For the Maxwell model, the potential takes the form

q(x) =
16η1τ1

[
η1
(
1 − cos(2

√
τ1x)

)
−√

τ1(η1x + 2τ1) sin(2
√

τ1x)
]

[
2
√

τ1(η1x + 2τ1)− η1 sin(2
√

τ1x)
]2 · (3.31)

Proof. The result follows immediately from (3.24) and (3.30).
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It can be easily shown that q(x) has no poles on [0, ∞) and has an infinite num-

ber of zeros

x2n =
nπ√

τ1
and

nπ√
τ1

< x2n+1 <
(2n + 1)π

2
√

τ1
, n ≥ 0. (3.32)

Furthermore, q′(0) = −4η1 and

q(x) ∼ −4
√

τ1 sin(2
√

τ1x)
x

as x → ∞. (3.33)

Figure 3.2 shows q(x) with η1 = τ1 = 1.

Figure 3.2: q(x) for the Maxwell model
with η1 = τ1 = 1.

3.4.4 Inverse problem for the Oldroyd-B model

As a final case, we consider (3.14) with n = 2, τ1 = 0 and τ2 > 0. Then

ρ(τ) = η1U(τ) + η2U(τ − τ2) + ρ0(τ), (3.34)

which is the spectral function for the Oldroyd-B model. Equation (3.19) now gives

F(x, t) = η1xt +
η2 sin(

√
τ2x) sin(

√
τ2t)

τ2
· (3.35)
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In the next theorem, we present the solution of the Gelfand-Levitan equation when

F(x, t) is given by (3.35).

Theorem 3.9. The solution of the Gelfand-Levitan equation (3.17) corresponding to (3.35)

takes the form

K(x, t) =
1

det T(x)

[
t det T(1)(x) +

sin(
√

τ2t)√
τ2

det T(2)(x)
]

, (3.36)

where

det T(1)(x) =
η1

4τ2
2

[
2η2(1 − τ2x2)− 4τ2

2 x − η2
(√

τ2x sin(2
√

τ2x) + 2 cos(2
√

τ2x)
)]

,

det T(2)(x) =
η2

3τ2
√

τ2

[(
η1x(3 − τ2x2)− 3τ2

)
sin(

√
τ2x)− 3η1

√
τ2x2 cos(

√
τ2x)

]
,

and

det T(x) =
1

12τ3
2

[
2τ2

2 (η1x3 + 3)(η2x + 2τ2)− 6η1η2(τ2x2 + 1)

+ η2
√

τ2
(
η1x(12 − τ2x2)− 3τ2

)
sin(2

√
τ2x)

+ 6η1η2(1 − τ2x2) cos(2
√

τ2x)
]
.

(3.37)

Proof. With F(x, t) given as above, the matrix (3.21) reads

T(x) =


η1x3+3

3
η1

(
sin(

√
τ2x)−√

τ2x cos(
√

τ2x)
)

τ2
√

τ2

η2

(
sin(

√
τ2x)−√

τ2x cos(
√

τ2x)
)

τ2
√

τ2

2
√

τ2(η2x+2τ2)−η2 sin(2
√

τ2x)
4τ2

√
τ2

 . (3.38)

The desired result now follows from (3.23) and (3.38).
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We now state our main result for this subsection.

Theorem 3.10. For the Oldroyd-B model, the potential takes the form

q(x) = −2
d2

dx2 ln det T(x), (3.39)

where det T(x) is given by (3.37).

Proof. The result follows immediately from (3.24) and (3.38).

Direct calculation shows that q(x) has the following structure

q(x) =
p(x)[

det T(x)
]2 ,

where

p(x) = p0(x) + p1(x) sin(2
√

τ2x) + p2(x) cos(2
√

τ2x) + p3(x) sin(4
√

τ2x)

+ p4(x) cos(4
√

τ2x),

and pi(x) are polynomials in x. From (3.37), we obtain

det T(x) ∼ 1 +
1
3
(η1 + η2)x3 − 1

15
η2τ2x5 as x → 0,

which implies that

q(x) ∼ −4(η1 + η2)x +
8
3

η2τ2x3 as x → 0. (3.40)

On the other side, since (3.36) gives

K(x, x) ∼ −3 + 2 sin2(
√

τ2x)
x

as x → ∞,

then it follows from (3.16) that q(x) for the Oldroyd-B model has the same asymp-

totic behaviour (3.33) as q(x) for the Maxwell model, with τ1 replaced by τ2, and
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consequently has infinitely many zeros. Regarding the poles of q(x), equation

(3.21) with n = 2 gives

det T(x) = (1 + λ1)(1 + λ2),

where λ1 and λ2 are the eigenvalues of the matrix Y(x). These eigenvalues, upon

writing

Y(x) =

η1 I11 η1 I12

η2 I12 η2 I22

 , Ijl =
∫ x

0
u0(y, τj)u0(y, τl) dy,

take the form

λ =
b ±

√
b2 − 4c
2

,

where

b = η1 I11 + η2 I22 ≥ 0 and c = η1η2(I11 I22 − I2
12).

The Cauchy-Schwarz inequality implies that c ≥ 0. Now, since

b2 − 4c = (η1 I11 − η2 I22)
2 + 4η1η2 I2

12 ≥ 0,

it follows that λ1 and λ2 are both non-negative. Hence, q(x) has no poles on [0, ∞).

Finally, in Figure 3.3 below, we plot q(x) with η1 = η2 = τ2 = 1.

Figure 3.3: q(x) for the Oldroyd-B model
with η1 = η2 = τ2 = 1.
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3.5 Concluding remarks

The connection between Weyl-Titchmarsh theory and linear viscoelasticity, to our

knowledge, has never before been explored. Furthermore, the idea of identifying

a potential q(x) with a linear viscoelastic material is new to this thesis. There are

two questions one can ask about these connections:

Q1. What are the properties of q(x)?

Q2. Does q(x) have a physical meaning?

We have gone some way towards answering the first question, at least for the

simple viscoelastic models of Newtonian, Maxwell and Oldroyd-B types. Here

q(x) gives rise to a finite number of non-negative eigenvalues embedded in the

continuous spectrum of the operator and these eigenvalues are the relaxation times

of the viscoelastic model. Thus if q(x) were known, the relaxation times could be

found by solving the direct Sturm-Liouville problem (3.3). Moreover, Eastham and

Kalf [8, p109] argue that the asymptotic behaviour of q(x) when y(0) ̸= 0 and

ρ(τ) =
n

∑
j=1

ηjU(τ − τj) +
2
π

√
τ, τj > 0,

is

q(x) ∼ 4
x

n

∑
j=1

√
τj sin(2

√
τjx) as x → ∞.

(The change in sign, compared to (3.33), is due to the different initial condition).

Hence one could, in principle, determine the eigenvalues from a sinusoidal de-

composition of xq(x) as x → ∞. Unfortunately, we do not know the form of the

asymptotics of q(x) when the relaxation spectrum is itself a continuous function.

The viscoelastic part of the m-function in (3.15), i.e.,

g(z) =
∫ ∞

0

H(τ)

τ − z
dτ, Im(z) > 0,
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has a physical interpretation. The real and imaginary parts of the complex shear

modulus

G∗(ω) =
∫ ∞

0

iω
1 + iωτ

H(τ) dτ,

are called the storage and loss moduli of the material, respectively. These can be

measured for a range of discrete frequencies, ω, in an oscillatory shear rheometer

[25, 27]. The complex shear modulus is just the viscoelastic part of the m-function

along the imaginary z-axis, z = iω−1. This observation gives a physical meaning

to the m-function, but there appears to be no obvious way of attributing a physical

meaning to the potential q(x).
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4.1 Simon method

In 1999, Simon [24] proposed a new method for reconstructing the potential q(x)

in the Sturm-Liouville problem
−y′′(x, z) + q(x)y(x, z) = zy(x, z), x ≥ 0,

y(0, z) = 0,
(4.1)

from its spectral function ρ(τ). He showed that q(x) can be reconstructed by the

formula

q(x) = lim
t→0

A(t, x), (4.2)

where A(t, x) is the unique solution of the nonlinear integro-differential equation

∂A(t, x)
∂x

=
∂A(t, x)

∂t
+
∫ t

0
A(s, x)A(t − s, x) ds, (4.3)

in the domain {
(x, t) : 0 ≤ x ≤ a, 0 ≤ t ≤ a − x

}
,

with the initial condition [13]

A(t, 0) = A(t) = −2 lim
ε→0

∫ ∞

0
e−ετ sin(2

√
τt)√

τ
dρ(τ). (4.4)

Equation (4.3) is called the A-equation and the initial function A(t) is called the

A-amplitude. Thus, given ρ(τ), one can use (4.4) to calculate A(t), which in turn

uniquely determines A(t, x) by solving (4.3) with A(t, 0) = A(t). Once the solution

A(t, x) is obtained, the potential q(x) can be found by (4.2).

ρ(τ) =⇒ A(t) =⇒ A(t, x) =⇒ q(x).

Simon [24] also proved the uniqueness theorem: q(x) in the interval x ∈ [0, a] is

uniquely determined by A(t) in the interval t ∈ [0, a] and vice versa. In prov-
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ing this, he also proved that for a given A(t) in [0, a], equation (4.3) has a unique

solution A(t, x) in the sector 0 ≤ x + t ≤ a.

In this chapter, after relating the A-amplitude to the theory of linear viscoelas-

ticity in Section 4.2, we derive a new family of exact solutions to the A-equation

(4.3). Our first exact solution is obtained in Section 4.3 by means of the Laplace

transform. The form of this solution is then generalized in Section 4.4 leading to

a further exact solution. The zero-level curves of these solutions are discussed in

Section 4.5. Using the generalized solution as a point of departure, we arrive at a

larger family of new exact solutions by means of complexification. This family is

presented in Section 4.6, together with a conjecture.

4.2 The A-amplitude in linear viscoelasticity

Assume that we have a linear viscoelastic material for which its relaxation spec-

trum H(τ) satisfies the condition (3.12) derived in the previous chapter. Then the

function

ρ(τ) =
∫ τ

0
H(τ′) dτ′ + ρ0(τ), τ ≥ 0, (4.5)

is a spectral function of a Sturm-Liouville problem of the form (4.1). The main

purpose of this section is to look at the A-amplitude associated with (4.5).

In the case where q(x) = 0 in the problem (4.1), Gesztesy and Simon [13] have

shown that A(t) = 0. Taking this into account, one easily arrives at the following

theorem which gives an explicit representation for A(t) in terms of H(τ).

Theorem 4.1. If ρ(τ) in (4.5) is a spectral function of a certain Sturm-Liouville problem

of the form (4.1), then the associated A-amplitude is

A(t) = −2
∫ ∞

0

sin(2
√

τt)√
τ

H(τ) dτ. (4.6)

Remark 4.1. Using exactly the same argument as we have used in Section 1.3, it is

easy to show that the recovery of H(τ) from A(t) in (4.6) is ill-posed.
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In Table 4.1, we list A(t) for the viscoelastic models introduced in Chapter 1.

Model A(t)

Newtonian −4η1t

Maxwell − 2η1√
τ1

sin(2
√

τ1t)

Oldroyd-B −4η1t − 2η2√
τ2

sin(2
√

τ2t)

Multi-mode Maxwell −2
n

∑
j=1

ηj
√

τj
sin(2

√
τjt)

Table 4.1: A-amplitudes for four well-known models.

The representation (4.6) allows us to establish the following relationship be-

tween the Laplace transform of A(t) and that of the relaxation function, G(t).

Theorem 4.2. The following relation holds:

Â
(
−2iz1/2) = z−1Ĝ

(
−z−1), Im(z) > 0.

Proof. The Laplace transform of (4.6) reads

Â(s) = −
∫ ∞

0

4
4τ + s2 H(τ) dτ, Re(s) > 0,

which, upon writing s = −2iz1/2, becomes

Â
(
−2iz1/2) = −

∫ ∞

0

H(τ)

τ − z
dτ.

The desired result now follows from the analytic continuation of

−z−1Ĝ
(
−z−1) = ∫ ∞

0

H(τ)

τ − z
dτ,

to the upper half-plane (see Section 1.5).
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We close this section with an interesting property satisfied by the zeros of A(t)

and q(x) associated with the Maxwell model. For this model, A(t) takes the form

A(t) = − 2η1√
τ1

sin(2
√

τ1t), (4.7)

which has infinitely many zeros given by

t2n =
nπ√

τ1
and t2n+1 =

(2n + 1)π
2
√

τ1
, n ≥ 0.

Taking (3.32) into account, we easily obtain the following result.

Theorem 4.3. For the Maxwell model, the zeros of A(t) partially interlace with those of

q(x), i.e.,

x2n = t2n and x2n+1 < t2n+1, n ≥ 0.

4.3 A new exact solution to the A-equation

In this section, after presenting the existing exact solutions to the A-equation (4.3),

we derive a new exact solution. Such a solution is derived from the Laplace trans-

form of the A-equation.

In the literature, only a few exact solutions to the A-equation have been derived,

since it is a quite new equation in inverse spectral theory. Using two properties of

Bessel functions Jn(t), Zhang [29] shows that for all x ≥ 0, the function

A(t, x) =
q1/2

0
t

J1(2tq1/2
0 ), q0 > 0, (4.8)

solves the A-equation (4.3) with q(x) = q0. This solution was first found by

Gesztesy and Simon [13] who proved it for the case x = 0 only. Zhang [29] also

suggests the following form of solution

A(t, x) = q(x)et f (x), (4.9)
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which on substitution into the A-equation (4.3) gives a system of two differential

equations in two unknowns f (x) and q(x). By solving such a system, she has three

possibilities for (4.9):

(i)

A(t, x) =
2

(x + a)2 e−
2t

x+a , (4.10)

with

q(x) =
2

(x + a)2 , a > 0.

(ii)

A(t, x) = − 8b2βe−2bx(
1 + βe−2bx

)2 e
−2bt 1−βe−2bx

1+βe−2bx , (4.11)

with the Bargmann potential [5]

q(x) = − 8b2βe−2bx(
1 + βe−2bx

)2 , β =
b − a
b + a

, a ≥ 0, b > 0.

(iii)

A(t, x) = a sec2
[√

a
2
(x + b)

]
e
√

2a tan
[√

a
2 (x+b)

]
t, (4.12)

with

q(x) = a sec2
[√

a
2
(x + b)

]
, a > 0.

Our method for deriving new exact solutions to the A-equation is based on

using the Laplace transform. The Laplace transform, with respect to t, reduces the

A-equation (4.3) to

∂Â(u, x)
∂x

= −q(x) + uÂ(u, x) + Â2(u, x), (4.13a)

which is a differential equation of Riccati type. To this equation, we attach the
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Laplace transform of A(t) as an initial condition

Â(u, 0) = Â(u). (4.13b)

Thus if we are given A(t) and q(x), we can solve the initial value problem (4.13) for

Â(u, x) and then take the inverse Laplace transform to obtain the desired solution

A(t, x) of the A-equation.

In Sections 4.2 and 3.4, respectively, we have found A(t) and q(x) for some

well-known viscoelastic models. For the simplest one which is of the Newtonian

type, these functions read

A(t) = −4η1t and q(x) =
6η1x(η1x3 − 6)
(η1x3 + 3)2 ·

In this case, with the help of Maple, the solution of the Riccati problem (4.13) is

Â(u, x) =
6η1
[
ux(η1x3 − 6) + 2(2η1x3 − 3)

]
(η1x3 + 3)

[
u2(η1x3 + 3) + 6η1x(ux + 2)

] ,

which may be written in the form

Â(u, x) =

[
u − f (x)

]
q(x) + r(x)[

u − f (x)
]2

+ k2(x)
, (4.14)

where

f (x) = − 3η1x2

η1x3 + 3
, (4.15a)

k2(x) =
3η1x(η1x3 + 12)

(η1x3 + 3)2 , (4.15b)

r(x) =
6η1(η

2
1 x6 + 24η1x3 − 18)
(η1x3 + 3)3 · (4.15c)
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Equation (4.14) can be conveniently transformed to the time domain to give

A(t, x) = et f (x)
{

q(x) cos
[
tk(x)

]
+ p(x) sin

[
tk(x)

]}
, (4.16)

where

p(x) =
r(x)
k(x)

·

We have therefore proved the following theorem.

Theorem 4.4. The function A(t, x) given by (4.16) with f (x), k(x) and r(x) given by

(4.15) solves the A-equation (4.3) with A(0, x) the Newtonian potential.

4.4 Further exact solutions

In the previous section, we have derived a new exact solution to the A-equation

(4.3) through its Laplace transform. In this section, we will use the ansatz (4.16)

and derive new exact solutions directly from the A-equation.

The following theorem gives all possible solutions of the form

A(t, x) = et f (x)
{

q(x) cos
[
tk(x)

]
+ p(x) sin

[
tk(x)

]}
. (4.17)

We note that if p(x) ≡ q(x) ≡ 0, then (4.17) reduces to A(t, x) ≡ 0, so we will

ignore this case. We will also ignore the case where k(x) ≡ 0, since this leads to

Zhang’s solution (4.9).

Theorem 4.5. If A(t, x) is of the form (4.17) and solves the A-equation (4.3), then

q(x) = 2 f ′(x), (4.18)

p(x) = −2k′(x), (4.19)
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and f (x) and k(x) satisfy the system of differential equations

f ′′(x) = f (x) f ′(x)− k(x)k′(x), (4.20a)

k′′(x) =
[

f (x)k(x)
]′ − [

f ′(x)
]2

+
[
k′(x)

]2
k(x)

· (4.20b)

Conversely, if f (x) and k(x) satisfy (4.20), then the function

A(t, x) = 2et f (x)
{

f ′(x) cos
[
tk(x)

]
− k′(x) sin

[
tk(x)

]}
, (4.21)

solves the A-equation (4.3).

Proof. From (4.17), we find

∂A
∂x

(t, x) = et f (x)

{[
p′(x) +

(
f ′(x)p(x)− k′(x)q(x)

)
t
]

sin
[
tk(x)

]

+

[
q′(x) +

(
f ′(x)q(x) + k′(x)p(x)

)
t
]

cos
[
tk(x)

]}
,

∂A
∂t

(t, x) = et f (x)

{[
f (x)p(x)− k(x)q(x)

]
sin
[
tk(x)

]

+

[
f (x)q(x) + k(x)p(x)

]
cos
[
tk(x)

]}
,

and

∫ t

0
A(s, x)A(t − s, x) ds = et f (x)

{[
p2(x) + q2(x)

2k(x)
+ p(x)q(x)t

]
sin
[
tk(x)

]

+
t
2

[
q2(x)− p2(x)

]
cos
[
tk(x)

]}
·
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If A(t, x) in (4.17) solves the A-equation (4.3), then the above equalities imply that

f (x), k(x), p(x) and q(x) satisfy the following system of differential equations

q′(x)− f (x)q(x)− k(x)p(x) = 0, (4.22a)

f ′(x)p(x)− k′(x)q(x)− p(x)q(x) = 0, (4.22b)

2 f ′(x)q(x) + 2k′(x)p(x) + p2(x)− q2(x) = 0, (4.22c)

2k(x)p′(x)− 2 f (x)k(x)p(x) + 2k2(x)q(x)− p2(x)− q2(x) = 0. (4.22d)

Equations (4.22b) and (4.22c) may be rewritten in the form

(p + k′)(q − f ′) = − f ′k′,

(p + k′)2 − (q − f ′)2 = (k′)2 − ( f ′)2.

(We have dropped the x-dependence for convenience). The above two equations

represent two rectangular hyperbolas in the pq-plane. There are exactly two points

of intersection, namely,

(p, q) = (0, 0) and (p, q) = (−2k′, 2 f ′).

We have therefore established (4.18) and (4.19), since the trivial case p ≡ q ≡ 0 is

excluded. Finally, the system (4.20) follows by substituting (4.18) and (4.19) into

the system (4.22).

Conversely, if f (x) and k(x) satisfy (4.20), then direct calculation shows that

A(t, x) in (4.21) is indeed a solution of the A-equation.

Remark 4.2. We note that the set of solutions of the form (4.17) is non-empty, since,

according to Theorem 4.4, the Newtonian solution is of this form. We also note that

Theorem 4.5 implies that the Newtonian solution has the form (4.21).
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Using (4.18), it is possible to eliminate f (x) and k(x) from the system (4.20) and

obtain a single differential equation for q(x). To this end, we eliminate k(x)k′(x)

from (4.20) by differentiation and obtain

k2(x) =

[
f 2(x)

]′′ − f 2(x) f ′(x)− f ′′′(x)
f ′(x)

, (4.23)

which, upon differentiating and then using (4.20a), gives

F′(x)− 2 f (x)F(x) = 0, (4.24)

where

F(x) = f ′(x) f ′′′(x)−
[

f ′′(x)
]2 − 2

[
f ′(x)

]3.

Differentiating (4.24) and then using (4.18), we obtain the nonlinear differential

equation

Q(x)Q′′(x)−
[
Q′(x)

]2 − q(x)Q2(x) = 0, (4.25)

where

Q(x) = q(x)q′′(x)−
[
q′(x)

]2 − q3(x).

Thus, we have proved the following result.

Corollary 4.1. If A(t, x) is of the form (4.17) and solves the A-equation (4.3), then q(x)

satisfies (4.25).

If q(0) = 0, then there is a solution of the A-equation of the form (4.17) with

A(t) = p(0)et f (0) sin
[
tk(0)

]
.

In addition, if we choose

p(0) = − 2η1√
τ1

, f (0) = 0 and k(0) = 2
√

τ1,

then we obtain the A-amplitude (4.7) for the Maxwell model. The potential for this
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model is given by q(x) in (3.31) for which q(0) = 0. This tells us that there exists a

solution of the A-equation of the form (4.17) which has the Maxwell A-amplitude

for x = 0 and the Maxwell potential for t = 0. Such a solution is given by the

following Theorem.

Theorem 4.6. The function A(t, x) given by (4.21) with

f (x) = −
2η1

√
τ1
(
1 − cos(2

√
τ1x)

)
2
√

τ1
(
η1x + 2τ1

)
− η1 sin(2

√
τ1x)

, (4.26a)

k2(x) =
8τ1

[
2τ1
(
η1x + 2τ1

)2 − η2
1
(
1 − cos(2

√
τ1x)

)]
[
2
√

τ1(η1x + 2τ1)− η1 sin(2
√

τ1x)
]2 , (4.26b)

solves the A-equation (4.3) with A(0, x) the Maxwell potential.

Proof. From (3.16) and (4.18), we immediately obtain

f (x) = K(x, x) + c,

where c is an arbitrary constant and K(x, t) is the solution of the Gelfand-Levitan

equation. For the Maxwell model, K(x, t) is given by (3.29), which on substitu-

tion into the above equation gives (4.26a). Equation (4.26b) follows by substituting

(4.26a) into (4.23). Now, direct calculation shows that (4.26) satisfy the system

2 f ′(x) = f 2(x)− k2(x) + k2(0),

[
k2(x)

]′′
= f (x)

[
k2(x)

]′
+ 2 f ′(x)

[
k2(x)− f ′(x)

]
,

which is equivalent to the system (4.20). Consequently, by Theorem 4.5, the func-

tion A(t, x) solves the A-equation.
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We close this section with the following lemma, which will be needed later.

Lemma 4.1. For the Maxwell models, the function k′(x) has infinitely many simple zeros.

Moreover, they do not coincide with those of f ′(x).

Proof. We have shown in Subsection 3.4.3 that the Maxwell potential q(x) has in-

finitely many zeros all of which are simple. Let xn denote a zero of q(x). It then

follows from (4.18) and (4.20a) that

f ′(xn) = 0 and q′(xn) = −2k(xn)k′(xn). (4.27)

If xn and xn+1 are adjacent zeros of q(x), then q′(xn) and q′(xn+1) have different

signs. Consequently, from (4.27), k(x)k′(x) will change sign infinitely many times.

Since k(x) > 0, k′(x) will have infinitely many zeros none of which coincide with

those of f ′(x).

4.5 Zero-level curves

In this section, we look at the zero-level curves of certain functions A(t, x) which

solve the A-equation (4.3), i.e., we look at the curves in the xt-plane for which

A(t, x) = 0. The zero-level curves (if they exist) cross the t-axis at the zeros of A(t)

and cross the x-axis at the zeros of q(x). Our principal motivation is to discuss

whether there exist continuous zero-level curves which connect the zeros of A(t)

to those of q(x).

We first answer this question for the existing exact solutions presented in Sec-

tion 4.3. In the case (4.8) in which q(x) = q0 > 0, the zero-level curves are the

horizontal straight lines which intersect the t-axis at the zeros of J1(2tq1/2
0 ). With

q0 = 1/4, these are shown in Figure 4.1. We note that A(t, x) changes sign at these

curves. Therefore, if we use black and white colours to fill, respectively, the regions

where A(t, x) takes negative and positive values, then we obtain black and white

horizontal stripes as shown in Figure 4.2.
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Figure 4.1: The zero level curves of (4.8)
with q0 = 1/4.

Figure 4.2: Black and white horizontal
stripes for (4.8) with q0 = 1/4.

In the cases (4.10), (4.11) and (4.12) which are of the form (4.9), any zero-level curves

would correspond to zeros of q(x). Since q(x) has no zeros in each of these cases,

there are no zero-level curves.

We now look at the solution

A(t, x) = 2et f (x)
{

f ′(x) cos
[
tk(x)

]
− k′(x) sin

[
tk(x)

]}
. (4.28)

It is possible to derive closed-form expressions for the zero-level curves of (4.28)

provided the zeros of k′(x) are treated with care.

Let x0 denote the zero of k′(x). Then (4.28) may be rewritten in the form

A(t, x) =


−2
√[

f ′(x)
]2

+
[
k′(x)

]2et f (x) sin
[
tk(x)− arctan

(
f ′(x)
k′(x)

)]
, x ̸= x0,

2 f ′(x0)et f (x0) cos
[
tk(x0)

]
, x = x0.
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It is clear from the above expression that A(t, x) has infinitely many zero-level

curves given by

t =


1

k(x)

[
arctan

(
f ′(x)
k′(x)

)
+ nπ

]
, x ̸= x0,

1
k(x0)

(
n + 1

2

)
π, x = x0,

n ≥ 0. (4.29)

The curves in (4.29) for each fixed value of n are disjoint, and have a jump discon-

tinuity of π/k(x0) at x = x0. Provided the zeros of f ′(x) and k′(x) do not coincide,

the ensemble of all such curves represents a set of continuous curves. To illus-

trate this, consider the case k′(x) > 0 when x < x0, k′(x) < 0 when x > x0, and

f ′(x0) < 0 (the other cases can be shown similarly). Then

lim
x→x−0

1
k(x)

[
arctan

(
f ′(x)
k′(x)

)
+ nπ

]
=

(n − 1
2)π

k(x0)
,

and

lim
x→x+0

1
k(x)

[
arctan

(
f ′(x)
k′(x)

)
+ nπ

]
=

(n + 1
2)π

k(x0)
·

Hence, the curve for n = m + 1 in the interval x < x0 joins continuously with the

curve for n = m in the interval x > x0.

In what follows, we will look at the zero-level curves of the two special cases of

(4.28) which correspond to the Newtonian and Maxwell models.

For the Newtonian model, the functions f (x) and k(x) are given by (4.15a) and

(4.15b), respectively. The derivative k′(x) has only one zero x0 which does not

coincide with those of f ′(x), as shown in Figure 4.3. Consequently, the ensemble

of the zero-level curves represents a set of continuous curves given by

t =



1
k(x)

[
arctan

(
f ′(x)
k′(x)

)
+ (n + 1)π

]
, 0 ≤ x < x0,

1
k(x0)

(
n + 1

2

)
π, x = x0,

1
k(x)

[
arctan

(
f ′(x)
k′(x)

)
+ nπ

]
, x0 < x.

(4.30)
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Figure 4.3: f ′(x) (red) and k′(x) (blue) for
the Newtonian model with η1 = 1.

Figure 4.4 shows that the curves in (4.30) never intersect the t-axis, since A(t)

has no zeros in this case. On the other side, the curve for n = 0 is the only curve

that intersects the x-axis which occurs at the zero of q(x). These curves, using

black and white colours as before, generate a pattern of zebroid stripes as shown

in Figure 4.5.

Figure 4.4: The zero-level curves for the
Newtonian model with η1 = 1.

Figure 4.5: The zebroid stripes pattern for
the Newtonian model with η1 = 1.
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Turning now to the Maxwell model, the functions f (x) and k(x) are given by

(4.26). According to Lemma 4.1, the derivative k′(x) has infinitely many zeros

x0, x1, . . ., which do not coincide with the zeros of f ′(x), as shown in Figure 4.6

below.

Figure 4.6: f ′(x) (red) and k′(x) (blue) for
the Maxwell model with η1 = τ1 = 1.

Consequently, the ensemble of the zero-level curves represents a set of continuous

curves given by

t =



1
k(x)

[
arctan

(
f ′(x)
k′(x)

)
+ (n + 1)π

]
, 0 ≤ x < x0,

1
k(x0)

(
n + 1

2

)
π, x = x0,

1
k(x)

[
arctan

(
f ′(x)
k′(x)

)
+ nπ

]
, x0 < x < x1,

...
...

1
k(x)

[
arctan

(
f ′(x)
k′(x)

)
+ π

]
, xn−1 < x < xn,

1
k(xn)

(
n + 1

2

)
π, x = xn,

1
k(x)

[
arctan

(
f ′(x)
k′(x)

)]
, xn < x.
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As a result of these continuities, the above curves will connect the zeros of A(t) to

those of q(x), as shown in Figure 4.7. Finally, Figure 4.8 shows the zebroid stripes

pattern generated from these curves.

Figure 4.7: The zero-level curves for the
Maxwell model with η1 = τ1 = 1.

Figure 4.8: The zebroid stripes pattern for
the Maxwell model with η1 = τ1 = 1.

4.6 Complexification and a conjecture

In this section, we continue to derive new exact solutions to the A-equation (4.3)

by generalizing the form of A(t, x) in (4.21).

4.6.1 Complexification

In this subsection, we will show that the A-equation (4.3) possesses solutions of the

form

A(t, x) = 2
n

∑
j=1

et f j(x)
{

f ′j (x) cos
[
tk j(x)

]
− k′j(x) sin

[
tk j(x)

]}
, (4.31)

by dealing with their complex analogues.
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Writing the trigonometric functions in complex form

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
,

equation (4.31) gives

A(t, x) =
n

∑
j=1

{[
f ′j (x) + ik′j(x)

]
et[ f j(x)+ikj(x)] +

[
f ′j (x)− ik′j(x)

]
et[ f j(x)−ikj(x)]

}
. (4.32)

By defining

γj(x) = f j(x) + ik j(x), j = 1, 2, . . . , n, (4.33)

with their complex conjugate γ̄j(x), equation (4.32) can be more elegantly written

as

A(t, x) =
n

∑
j=1

[
γ′

j(x)etγj(x) + γ̄′
j(x)etγ̄j(x)

]
(4.34)

= 2 Re
n

∑
j=1

γ′
j(x)etγj(x).

We now state and prove the following theorem.

Theorem 4.7. Let A(t, x) be a function of the form (4.34). Then A(t, x) solves the A-

equation (4.3) if and only if γj(x) satisfy the following system of differential equations

γ′′
j = γjγ

′
j +

n

∑
l=1
l ̸=j

2γ′
jγ

′
l

γj − γl
+

n

∑
l=1

2γ′
jγ̄

′
l

γj − γ̄l
, j = 1, 2, . . . , n. (4.35)

Proof. Let

I1 =
∂A
∂x

(t, x), I2 =
∂A
∂t

(t, x) and I3 =
∫ t

0
A(s, x)A(t − s, x) ds.
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From (4.34), we find

I1 =
n

∑
j=1

{[
γ′′

j (x) + t
(
γ′

j(x)
)2
]
etγj(x) +

[
γ̄′′

j (x) + t
(
γ̄′

j(x)
)2
]
etγ̄j(x)

}
,

I2 =
n

∑
j=1

{
γj(x)γ′

j(x)etγj(x) + γ̄j(x)γ̄′
j(x)etγ̄j(x)

}
,

and

I3 =
n

∑
j=1

{[ n

∑
l=1
l ̸=j

2γ′
j(x)γ′

l(x)

γj(x)− γl(x)
+

n

∑
l=1

2γ′
j(x)γ̄′

l(x)

γj(x)− γ̄l(x)
+ t
(
γ′

j(x)
)2
]

etγj(x)

+

[ n

∑
l=1
l ̸=j

2γ̄′
j(x)γ̄′

l(x)

γ̄j(x)− γ̄l(x)
+

n

∑
l=1

2γ̄′
j(x)γ′

l(x)

γ̄j(x)− γl(x)
+ t
(
γ̄′

j(x)
)2
]

etγ̄j(x)

}
.

If A(t, x) solves the A-equation (4.3), then the system (4.35) follows immediately

from the above equalities.

Conversely, if γj(x) satisfy (4.35), then direct calculation shows that the function

A(t, x) is indeed a solution of the A-equation.

From (4.31), we immediately obtain

q(x) = 2
n

∑
j=1

f ′j (x), (4.36)

which, according to (4.34), takes the form

q(x) =
n

∑
j=1

[
γ′

j(x) + γ̄′
j(x)

]

= 2 Re
n

∑
j=1

γ′
j(x).
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4.6.2 A conjecture

The purpose of this subsection is to test the following conjecture.

Conjecture 4.1. The exact solution of the A-equation (4.3) corresponding to the Oldroyd-

B model is of the form

A(t, x) = 2
2

∑
j=1

et f j(x)
{

f ′j (x) cos
[
tk j(x)

]
− k′j(x) sin

[
tk j(x)

]}
. (4.37)

With n = 2 and taking into account (4.33), the system (4.35) gives

f ′′1 = f1 f ′1 − k1k′1 + 2

(
f1 − f2

)(
f ′1 f ′2 + k′1k′2

)
+
(
k1 + k2

)(
f ′2k′1 − f ′1k′2

)(
f1 − f2

)2
+
(
k1 + k2

)2

+ 2

(
f1 − f2

)(
f ′1 f ′2 − k′1k′2

)
+
(
k1 − k2

)(
f ′1k′2 + f ′2k′1

)(
f1 − f2

)2
+
(
k1 − k2

)2 ,

(4.38a)

f ′′2 = f2 f ′2 − k2k′2 + 2

(
f2 − f1

)(
f ′2 f ′1 + k′2k′1

)
+
(
k2 + k1

)(
f ′1k′2 − f ′2k′1

)(
f2 − f1

)2
+
(
k2 + k1

)2

+ 2

(
f2 − f1

)(
f ′2 f ′1 − k′2k′1

)
+
(
k2 − k1

)(
f ′2k′1 + f ′1k′2

)(
f2 − f1

)2
+
(
k2 − k1

)2 ,

(4.38b)

k′′1 = f ′1k1 + f1k′1 + 2

(
f1 − f2

)(
f ′2k′1 − f ′1k′2

)
−
(
k1 + k2

)(
f ′1 f ′2 + k′1k′2

)(
f1 − f2

)2
+
(
k1 + k2

)2

+ 2

(
f1 − f2

)(
f ′1k′2 + f ′2k′1

)
−
(
k1 − k2

)(
f ′1 f ′2 − k′1k′2

)(
f1 − f2

)2
+
(
k1 − k2

)2 −
(

f ′1
)2

+
(
k′1
)2

k1
,

(4.38c)

k′′2 = f ′2k2 + f2k′2 + 2

(
f2 − f1

)(
f ′1k′2 − f ′2k′1

)
−
(
k2 + k1

)(
f ′2 f ′1 + k′2k′1

)(
f2 − f1

)2
+
(
k2 + k1

)2

+ 2

(
f2 − f1

)(
f ′2k′1 + f ′1k′2

)
−
(
k2 − k1

)(
f ′2 f ′1 − k′2k′1

)(
f2 − f1

)2
+
(
k2 − k1

)2 −
(

f ′2
)2

+
(
k′2
)2

k2
·

(4.38d)
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In order that (4.37) at x = 0 agrees with the A-amplitude for the Oldroyd-B model,

i.e.,

A(t) = −4η1t − 2η2√
τ2

sin(2
√

τ2t),

we must choose

f1(0) = f ′1(0) = f2(0) = f ′2(0) = 0, k2(0) = 2
√

τ2, k′2(0) =
η2√
τ2

, (4.39a)

lim
x→0

k′1(x) sin
[
tk1(x)

]
= 2η1t. (4.39b)

The reason why we state Conjecture 4.1 as a conjecture rather than a theorem is

because we have been unable to find an explicit solution for the nonlinear system

(4.38) and (4.39). Neither have we proved that this system admits a solution. Nev-

ertheless, we are able to present strong evidence that the conjecture is true. We do

this in two ways. Firstly, by showing that the system admits an asymptotic solu-

tion as x → 0, and that the resulting asymptotic solution for q(x) agrees with the

Oldroyd-B potential derived in the previous chapter, up to and including the third

order. Secondly, by solving the system numerically in the range 0 ≤ x ≤ 10 and

comparing the resulting q(x) with the exact values obtained from the Oldroyd-B

potential.

We note that (4.39b) is satisfied if k1(x) → 0 and

k′1(x)
2η1

∼ 1
k1(x)

, as x → 0. (4.40)

We anticipate the same singularity in k′1(x) as is found in the Newtonian case. From

(4.15b), we note

k(x) = O(
√

x), as x → 0.

Therefore, if we assume

k1(x) ∼ αxβ, as x → 0,
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then it follows from (4.40) that

k1(x) ∼ 2
√

η1x, as x → 0.

Hence, to eliminate the singularity of k′1(x) at the origin, we can use the following

transformation

k1(x) =
√

x y(x). (4.41)

Having substituted (4.41) into system (4.38), we look for series expansions of the

transformed system, i.e., we look for solutions expanded as follows

f j(x) ∼
f (2)j (0)

2
x2 +

f (3)j (0)

6
x3 +

f (4)j (0)

24
x4, j = 1, 2, (4.42a)

k2(x) ∼ 2
√

τ2 +
η2√
τ2

x +
k(2)2 (0)

2
x2 +

k(3)2 (0)
6

x3, (4.42b)

y(x) ∼ 2
√

η1 + y(1)(0)x +
y(2)(0)

2
x2 +

y(3)(0)
6

x3, (4.42c)

as x → 0. Substituting (4.42) into the transformed system, we obtain

f (2)1 (0) = −2η1, f (3)1 (0) =
12η1η2

τ2
, f (4)1 (0) =

72η1η2(η1 − η2)

τ2
2

,

f (2)2 (0) = −2η2, f (3)2 (0) = −12η1η2

τ2
, f (4)2 (0) = 8η2τ2 −

72η1η2(η1 − η2)

τ2
2

,

k(2)2 (0) =
η2(4η1 − η2)

2τ2
√

τ2
, k(3)2 (0) =

η2(24η2
1 − 36η1η2 + 3η2

2 − 16τ3
2 )

4τ2
2
√

τ2
,

and

y(1)(0) = −
η2
√

η1

τ2
, y(2)(0) =

η2
√

η1(3η2 − 4η1)

2τ2
2

,

y(3)(0) =
√

η1
[
2τ3

2 (4η2 − 7η1)− 3η2(8η2
1 + 5η2

2 − 20η1η2)
]

4τ3
2

·
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Consequently, from (4.36), it follows that

q(x) = 2
[

f ′1(x) + f ′2(x)
]

∼ −4(η1 + η2)x +
8
3

η2τ2x3, as x → 0.

This is the same asymptotic behaviour as that for the Oldroyd-B potential (see

(3.40)), which is consistent with Conjecture 4.1.

We now turn to the second way of testing Conjecture 4.1. With η1 = η2 = τ2 =

1, the transformed system together with the initial conditions is solved numerically

using a Fehlberg fourth-fifth order Runge-Kutta method in Maple 15. The resulting

values for q(x) are shown in Figure 4.9 and Table 4.2 together with the exact values

obtained from the Oldroyd-B potential (3.39). The figure and the table show a very

good agreement between these values, which again suggests that the Oldroyd-B

solution is of the form (4.37).

Figure 4.9: The numerical (dots) and ex-
act (line) q(x) for the Oldroyd-B model
with η1 = η2 = τ2 = 1.

q(x)

x Numerical Exact

0 0.0000000 0.0000000

2 0.0972307 0.0972304

4 0.8009791 0.8009787

6 -0.0656150 -0.0656148

8 0.4856779 0.4856768

10 -0.2681532 -0.2681515

Table 4.2: The numerical and exact q(x)
for the Oldroyd-B model with η1 = η2 =
τ2 = 1.
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In Chapter 3, we have considered inverse spectral problems with spectral func-

tions of the form

ρ(τ) =
∫ τ

0
H(τ′) dτ′ + ρ0(τ), τ ≥ 0. (5.1)

We were able to provide exact solutions to these problems in the case where the

relaxation spectrum H(τ) is discrete. In this final chapter, we study an inverse

spectral problem in which H(τ) in (5.1) is piecewise continuous. It is not possible

to solve this problem exactly, and we look at two numerical approaches to solve

the problem.

The first approach is based on approximating the solution of the A-equation

∂A(t, x)
∂x

=
∂A(t, x)

∂t
+
∫ t

0
A(s, x)A(t − s, x) ds, (5.2)

as an expansion in shifted Chebyshev polynomials. This approximation reduces

(5.2) to a system of Riccati differential equations, which can be solved numerically

resulting in an approximation for the potential q(x). In the second approach, we

approximate ρ(τ) in (5.1) by a stepwise spectral function, which corresponds to a

multi-mode Maxwell model. The Gelfand-Levitan method is then used to calculate

the corresponding potential which serves as an alternative approximation for q(x).

5.1 Reducing the A-equation to a Riccati system

Let
{

ϕn(t)
}

n≥0 be a sequence of polynomials orthogonal on the interval Ω with

respect to the weight function w(t), i.e.,

⟨ϕm, ϕn⟩ =
∫

Ω
ϕm(t)ϕn(t)w(t) dt =

0, m ̸= n,

an, m = n.
(5.3)
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We look for an approximate solution of the A-equation (5.2) expanded as follows

A(t, x) ≈
N

∑
n=0

ϕn(t)Cn(x), t, x ∈ Ω, (5.4)

where Cn(x) are unknown functions to be determined. Substituting (5.4) into (5.2)

yields

N

∑
n=0

ϕn(t)C′
n(x) =

N

∑
n=0

ϕ′
n(t)Cn(x) +

N

∑
m=0

N

∑
n=0

Imn(t)Cm(x)Cn(x),

where

Imn(t) =
∫ t

0
ϕm(s)ϕn(t − s) ds.

Using (5.3), we obtain the following system of Riccati equations

C′
k(x) =

1
ak

N

∑
n=0

⟨ϕk, ϕ′
n⟩Cn(x) +

1
ak

N

∑
m=0

N

∑
n=0

⟨ϕk, Imn⟩Cm(x)Cn(x), k = 0, 1, . . . , N.

(5.5)

In addition, from (5.4), we find

A(t) ≈
N

∑
n=0

ϕn(t)Cn(0), t ∈ Ω, (5.6)

which, upon using (5.3), gives

Ck(0) =
1
ak
⟨ϕk, A⟩, k = 0, 1, . . . , N. (5.7)

Hence, it turns out that the suggested approximation (5.4) reduces the A-equation

(5.2) to the system of N + 1 Riccati equations (5.5). By solving this system, together

with the initial conditions (5.7), one can find the unknown functions Ck(x), and

consequently obtain the following approximation for the solution of the inverse

spectral problem

q(x) ≈
N

∑
n=0

ϕn(0)Cn(x), x ∈ Ω. (5.8)
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In setting up the Riccati system (5.5), we must choose the interval Ω and a

convenient sequence of orthogonal polynomials
{

ϕn(t)
}

n≥0. Ideally, the choice

Ω = [0, ∞) would enable us to approximate the potential q(x) over the entire half-

line, x ≥ 0. An essential requirement is that an accurate approximation is possible

for the initial condition (5.6). In particular, we must allow for the fact that A(t)

is likely to be an oscillatory function (see equation (4.6) and Table 4.1). It is well

known (see, for instance, Gottlieb and Orszag [14, p 42]) that orthogonal polyno-

mials defined on [0, ∞) require a larger number of terms per wavelength in approx-

imating an oscillatory function than do orthogonal polynomials defined on a finite

interval. For example, the expansion of sin t in terms of Chebyshev polynomials

Tn(t) = cos(n arccos t), t ∈ [−1, 1], n ≥ 0,

is

sin t = 2
∞

∑
n=1

Jn(1) sin
(nπ

2

)
Tn(t), (5.9)

where Jn denotes the Bessel function of order n. The Laguerre expansion of sin t on

the interval [0, ∞) is

sin t =
∞

∑
n=0

2−
n+1

2 cos
[
(n + 1)π

4

]
Ln(t). (5.10)

The maximum error after N terms (N odd) in (5.9) is approximately 2JN+2(1),

while in (5.10), with N ≫ t > 0, the error is roughly

et/2

2N/2(Nt)1/4 ·

Comparing (5.9) and (5.10), truncated to N terms, for values of t in the range [0, 1],

(5.9) requires N = 7 to give an error of ≈ 10−8, whereas (5.10) requires N > 50 to

give an error of ≈ 10−8.
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Another possibility in dealing with the interval Ω = [0, ∞) is the choice of

rational Chebyshev functions, as studied by Boyd [4]. Here one maps the interval

0 ≤ t < ∞ onto the interval −1 ≤ y ≤ 1 using the map

t =
L(1 + y)

1 − y
, y =

t − L
t + L

,

with a mapping constant L. Boyd [4, pp 457-458]) points out that rational Cheby-

shev approximations give poor results for oscillatory functions unless the function

also decays exponentially at infinity. If we attempt to expand sin t in terms of the

rational Chebyshev functions

Rn(t) = Tn

(
t − L
t + L

)
,

in the form

sin t =
∞

∑
n=0

cnRn(t),

then

cn =
2
π

∫ π

0
cos(nθ) sin

[
L cot2

(θ

2

)]
dθ, n ≥ 1.

The function cot2(θ/2) and its derivatives are all singular at θ = 0 which rules out

a rapid rate of decay in the coefficients. For this reason, we restrict attention to

finite intervals, and the use of shifted Chebyshev polynomials.

5.2 Shifted Chebyshev polynomials

The facts given in this section can be found in [12].

The shifted Chebyshev polynomials, denoted by Sn(t), are defined on the finite

interval [0, a] by

Sn(t) = Tn

(
2t − a

a

)
.
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Such polynomials can also be generated using the three-term recurrence relation


Sn(t) = 2

(2t−a
a
)
Sn−1(t)− Sn−2(t), n ≥ 2,

S0(t) = 1 S1(t) = 2t−a
a ·

Two important properties of the shifted Chebyshev polynomials are the orthogo-

nality relation

⟨Sm, Sn⟩ =
∫ a

0

Sm(t)Sn(t)√
t(a − t)

dt =


π, m = n = 0,

0, m ̸= n,

π
2 , m = n > 0,

and

Sn(0) = (−1)n, n ≥ 0. (5.11)

The shifted Chebyshev expansion, truncated after N + 1 terms, of a function f (t)

continuous on [0, a] serves as an approximation for f (t)

f (t) ≈
N

∑
n=0

bnSn(t), t ∈ [0, a],

where

b0 =
1
π
⟨S0, f ⟩ and bn =

2
π
⟨Sn, f ⟩, n = 1, 2, . . . , N.

The error bound for the above approximation is given by

∣∣∣∣ f (t)− N

∑
n=0

bnSn(t)
∣∣∣∣ ≤ ∞

∑
n=N+1

|bn|.

Furthermore, if the function f (t) is sufficiently smooth, then the coefficients bn

decay exponentially fast as n increases, guaranteeing an accurate approximation

with relatively few terms.
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5.3 Numerical examples for inverse spectral problems

In this section, we will attempt to recover the potential q(x) from a continuous

spectral function of the form (5.1) by solving the A-equation numerically. We shall

do this for the spectral function which corresponds to a viscoelastic box spectrum.

Before attempting the calculations for a box spectrum, for which q(x) is unknown,

we will first test our numerical method using two examples from Chapter 3 for

which q(x) is known exactly.

In the following three examples, the solution A(t, x) of the A-equation (5.2) is

approximated in the domain

0 ≤ x ≤ 6, and 0 ≤ x + t ≤ 6,

using the shifted Chebyshev method, i.e., the method presented in Section 5.1 with

the shifted Chebyshev polynomials as basis polynomials. The resulting Riccati sys-

tem is solved numerically using a Fehlberg fourth-fifth order Runge-Kutta method

in Maple 15. The desired approximation for q(x) is then obtained using

q(x) ≈
N

∑
n=0

(−1)nCn(x), x ∈ [0, 6],

which follows from (5.8) and the property (5.11).

5.3.1 The Newtonian potential

For the Newtonian model, the A-amplitude with η1 = 1 takes the form

A(t) = −4t, (5.12)

and the corresponding exact potential, according to Theorem 3.6, is

q(x) =
6x(x3 − 6)
(x3 + 3)2 · (5.13)
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The coefficients in the shifted Chebyshev expansion of (5.12) have the following

values

Ck(0) =

−12, k ≤ 1,

0, k > 1.

The numerical results of q(x) obtained using the shifted Chebyshev method with

N = 10 and N = 15 are shown in Table 5.1 together with the exact results obtained

from (5.13) for different values of x. The table shows that the numerical results

converge to the exact results in the interval [0, 6].

q(x)

x N = 10 N = 15 Exact

0 0.00000 0.00000 0.00000

1 -1.87513 -1.87500 -1.87500

2 0.19806 0.19835 0.19835

3 0.42024 0.42000 0.42000

4 0.30993 0.31009 0.31009

5 0.21797 0.21790 0.21790

6 0.15728 0.15763 0.15763

Table 5.1: The numerical and exact Newtonian potential with η1 = 1.

Figure 5.1 shows (5.13) along with its approximation obtained with N = 15.

Figure 5.1: The Newtonian potential with
η1 = 1 (line) and its approximation with
N = 15 (dots).
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5.3.2 The Maxwell potential

For the Maxwell model, the A-amplitude with η1 = τ1 = 1 takes the form

A(t) = −2 sin(2t), (5.14)

and the corresponding exact potential, according to Theorem 3.8, is

q(x) =
16
[(

1 − cos(2x)
)
− (x + 2) sin(2x)

][
2(x + 2)− sin(2x)

]2 · (5.15)

The coefficients in the shifted Chebyshev expansion of (5.14) are shown in Table

5.2 for n = 0, 1, . . . , 20. The table indicates that 21 shifted Chebyshev polynomials

produce a good approximation for A(t).

n Cn(0) n Cn(0) n Cn(0)

0 0.08419 7 0.49770 14 -0.00003

1 1.06266 8 0.06318 15 0.00002

2 0.27145 9 -0.08129 16 1.3E-06

3 0.44079 10 -0.00778 17 -8.4E-07

4 0.39972 11 0.00787 18 -4.2E-08

5 -1.39066 12 0.00061 19 2.3E-08

6 -0.27476 13 -0.00051 20 1.0E-09

Table 5.2: The coefficients in the shifted Chebyshev expansion of (5.14).

The numerical results of q(x) obtained using the shifted Chebyshev method with

N = 15 and N = 20 are shown in Table 5.3 together with the exact results obtained

from (5.15) for different values of x. As can be seen, the numerical results converge

to the exact results in the interval [0, 6]. Finally, we plot in Figure 5.2 the exact q(x)

in (5.15) along with its approximation obtained with N = 20.
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q(x)

x N = 15 N = 20 Exact

0 0.00000 0.00000 0.00000

1 -0.80983 -0.80987 -0.80987

2 0.97670 0.97668 0.97668

3 0.21760 0.21758 0.21758

4 -0.63222 -0.63225 -0.63225

5 0.42795 0.42716 0.42716

6 0.67877 0.26029 0.26029

Table 5.3: The numerical and exact Maxwell potential with η1 = τ1 = 1.

Figure 5.2: The Maxwell potential with
η1 = τ1 = 1 (line) and its approximation
with N = 20 (dots).

5.3.3 The box potential

Having tested our numerical method, we now proceed to recover the potential q(x)

from the spectral function (5.1) in which H(τ) is chosen to be the box relaxation

spectrum

H(τ) =

1, 1
2 ≤ τ ≤ 3

2 ,

0, otherwise.
(5.16)
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It then follows from (5.1) that

ρ(τ) = ρ0(τ) +


0, 0 < τ ≤ 1

2 ,

τ − 1
2 , 1

2 < τ ≤ 3
2 ,

1, 3
2 < τ.

(5.17)

Remark 5.1. We note that the box spectrum (5.16) satisfies the condition of Theo-

rem 3.1 for ρ(τ) in (5.17) to be a spectral function.

From (4.6) and (5.16), we find that the A-amplitude for the box spectrum takes

the form

A(t) = −2
t

[
cos
(√

2t
)
− cos

(√
6t
)]
· (5.18)

Table 5.4 shows the first twenty six coefficients in the shifted Chebyshev expansion

of (5.18). The table indicates that with N = 25, we get a very good approximation

for A(t).

n Cn(0) n Cn(0) n Cn(0)

0 -0.25145 9 -0.07792 18 3.7E-07

1 0.46270 10 0.01222 19 8.5E-08

2 -0.28206 11 0.00958 20 -1.3E-08

3 0.07444 12 -0.00161 21 -2.6E-09

4 0.61463 13 -0.00080 22 3.9E-10

5 -0.83847 14 0.00014 23 6.1E-11

6 -0.03766 15 0.00005 24 -8.7E-12

7 0.38031 16 -8.2E-06 25 -2.8E-12

8 -0.04431 17 -2.3E-06

Table 5.4: The coefficients in the shifted Chebyshev expansion of (5.18).

The numerical results for q(x) obtained using the shifted Chebyshev method with

N = 15, N = 20 and N = 25 are shown in Table 5.5 for different values of x. These

results demonstrate numerical convergence as N increases.
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q(x)

x N = 15 N = 20 N = 25

0 0.00000 0.00000 0.00000

1 -0.83208 -0.83214 -0.83214

2 0.78042 0.78040 0.78040

3 0.03767 0.03763 0.03763

4 -0.04715 -0.04721 -0.04721

5 0.00023 -0.00274 -0.00274

6 2.34840 -0.18767 -0.18762

Table 5.5: The numerical results of the box potential.

For later convenience, we denote by qsc(x) the approximation of the box poten-

tial obtained using the shifted Chebyshev method with N = 25, i.e.,

qsc(x) =
25

∑
n=0

(−1)nCn(x), x ∈ [0, 6]. (5.19)

This is shown in Figure 5.3 below.

Figure 5.3: The approximation qsc(x) of the box potential.
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Remark 5.2. In the above three examples, the calculations are run on a PC with a

2.70 GHz Pentium(R) Dual-Core processor. The CPU time taken (in minutes) for

setting up and solving the Riccati system (5.5) is shown in Table 5.6.

N Time (min)

10 2

15 11

20 35

25 94

Table 5.6: The CPU time.

5.4 Alternative approximations to the box potential

In the previous section, we have shown that it is possible to recover q(x) numeri-

cally for a viscoelastic box spectrum by solving a Riccati system reduced from the

A-equation, at least for a finite interval in x. If we attempt to increase the size of the

finite interval, then the value of N required to reach numerical convergence also in-

creases, making the CPU time for the calculations prohibitive. In this section, we

adopt a different approach to recovering q(x) for the box spectrum. The approach

consists of two main steps:

(i) We approximate the box spectral function (5.17) by stepwise approximations

ρ2m(τ) =
m

∑
k=1

η2m,kU(τ − τ2m,k) + ρ0(τ), η2m,k = g2m,kτ2m,k. (5.20)

These are the spectral functions associated with the m-mode Maxwell model.

The coefficients g2m,k and τ2m,k are taken from the Dirichlet series approxima-

tions (2.17) derived in Chapter 2 for the box relaxation function (2.44) using

the S-fraction method. These coefficients are to be found in Table 2.2 for vari-

ous values of m.
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(ii) The Gelfand-Levitan method of Chapter 3 is then used to calculate the cor-

responding potentials q2m(x). The elements of the matrix T(x) in (3.21) are

evaluated explicitly using Maple, and the differentiation (3.24) is also per-

formed explicitly in Maple. It is not necessary to record the resulting expres-

sions explicitly. They are easily evaluated and plotted numerically over any

interval.

Using the data from Table 2.2, we plot ρ2m(τ) versus the box spectral function

(5.17) in Figures 5.4, 5.5, 5.6 with m = 2, 4, 6, respectively. These figures show that

as m increases, ρ2m(τ) gets closer to the box spectral function.

Figure 5.4: The box spectral function
(dots) and ρ4(τ) (line).

Figure 5.5: The box spectral function
(dots) and ρ8(τ) (line).

Figure 5.6: The box spectral function
(dots) and ρ12(τ) (line).



5. An inverse spectral problem with continuous spectral function 121

Using the Gelfand-Levitan method, we calculate the potentials q2m(x) for m = 2, 4

and 6. These are shown in Figure 5.7. The figure shows that, as m increases, q2m(x)

demonstrates numerical convergence in the interval 0 ≤ x ≤ 6.

Figure 5.7: q2m(x) for m = 2 (green), m = 4 (blue) and m = 6 (red).

In Table 5.7, we show the numerical results of q2m(x) with m = 2, 4, 6 for different

values of x. The table also shows the numerical results of qsc(x) in (5.19). We note

that as we increase m, the values of q2m(x) approach those of qsc(x).

x q4(x) q8(x) q12(x) qsc(x)

0 0.00000 0.00000 0.00000 0.00000

1 -0.84625 -0.83221 -0.83214 -0.83214

2 0.81819 0.78064 0.78040 0.78040

3 0.01788 0.03623 0.03764 0.03763

4 -0.11878 -0.04330 -0.04722 -0.04721

5 0.24517 -0.01028 -0.00278 -0.00274

6 -0.43457 -0.18049 -0.18738 -0.18762

Table 5.7: q2m(x) with m = 2, 4, 6 and qsc(x) for different values of x.
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Finally, in Figure 5.8, we plot q12(x) against qsc(x). The values of qsc(x) are avail-

able only in the interval [0, 6], whereas q12(x) is available for all x ≥ 0 and is plotted

in the interval [0, 10] for information.

Figure 5.8: q12(x) (line) and qsc(x) (dots).

5.5 Discussion of results

Simon’s uniqueness theorem [24] (see Section 4.1) tells us that A(t) on the interval

0 ≤ t ≤ a determines q(x) uniquely on the interval 0 ≤ x ≤ a, and vice versa.

If the process of calculating q(x) from A(t) is stable, then small perturbations in

A(t) will result in small perturbations in q(x) on the interval [0, a]. In the shifted

Chebyshev method with a = 6 and N = 25, the approximation of A(t) in (5.18) by

Asc(t) =
25

∑
n=0

Cn(0)Sn(t), t ∈ [0, 6],

is accurate to ≈ 10−12 (see Table 5.4). Furthermore, the numerical convergence

of the potentials in Table 5.5 as N increases from 15 to 25 shows no evidence of

instability. It would be reasonable to expect that the potential qsc(x) in (5.19) should

be an accurate representation of the box potential on that interval.
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Next, we consider the potentials q2m(x) derived from the stepwise spectral

functions ρ2m(τ). We see from Figures 5.4-5.6 that the perturbation ∥ρ(τ)− ρ2m(τ)∥∞

is not small. Nevertheless, as Figure 5.7 shows, the potentials q4(x), q8(x) and

q12(x) change very little in the interval 0 ≤ x ≤ 2, while q8(x) and q12(x) are in

good agreement in the interval 0 ≤ x ≤ 6. We also note from Figure 5.8 that q12(x)

and qsc(x) are in excellent agreement in the interval 0 ≤ x ≤ 6.

It is of interest to consider the A-amplitudes corresponding to the stepwise

spectral functions ρ2m(τ). These are given by

A2m(t) = −2
m

∑
k=1

η2m,k√
τ2m,k

sin(2
√

τ2m,kt), η2m,k = g2m,kτ2m,k, (5.21)

and are compared with the exact A-amplitude (5.18) in Figures 5.9, 5.10, 5.11 with

m = 2, 4, 6, respectively. We note that A4(t) approximates A(t) well in the interval

0 ≤ t ≤ 2, A8(t) is accurate in the interval 0 ≤ t ≤ 6, while A12(t) is accurate in the

interval 0 ≤ t ≤ 10. This would suggest that q12(x) is an accurate representation

of the true box potential in the interval 0 ≤ x ≤ 10.

As t → ∞, the asymptotic behaviour of A2m(t) in (5.21) cannot reproduce the

asymptotic behaviour of the exact A(t) in (5.18). This means that while q2m(x) may

provide a good approximation to the box potential q(x) on a finite interval which

increases in size with m, it must differ from q(x) as x → ∞.
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Figure 5.9: The box A-amplitude (dots)
and A4(t) (line).

Figure 5.10: The box A-amplitude (dots)
and A8(t) (line).

Figure 5.11: The box A-amplitude (dots)
and A12(t) (line).



APPENDIX

In this appendix, we prove the following theorem.

Theorem. Let

G(t) =
∫ ∞

0
exp(−st) dµ(s), (A.1)

where

(i) dµ(s) is a non-negative measure on [0, ∞),

(ii) the integral converges for all t ≥ 0,

(iii) G(t) is continuous for all t ≥ 0.

Let

µ−1 =
∫ ∞

0
G(t) dt =

∫ ∞

0
s−1 dµ(s),

be finite. Let B(t) be a formal power series,

B(t) =
∞

∑
n=0

γn

n!
tn, (A.2)

satisfying

lim
t→0

1
tn

[
G(t)−

n

∑
k=0

γk
k!

tk
]
= 0, n = 0, 1, 2, . . . . (A.3)

Then all the integrals

µn =
∫ ∞

0
sn dµ(s), n = 0, 1, 2, . . . ,

exist and take the values

µn = (−1)nγn, n = 0, 1, 2, . . . .

125
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Proof. We prove the theorem by induction. Let Pm be the following statement: µn

exist for n = −1, 0, . . . , m and are equal to (−1)nγn for n = −1, 0, . . . , m − 1. P0

is true if we define γ−1 = −µ−1. It also follows that µ0 = G(0) from (A.1) and

G(0) = γ0 from (A.3). Hence, µ0 = γ0. We therefore assume that Pm is true for

some m ≥ 0 and show that

(i) µm = (−1)mγm, (ii) µm+1 exists.

Using the integral form of the remainder in the expansion of exp(−st), we find

exp(−st) =
m−1

∑
n=0

(−1)n

n!
(st)n +

(−1)m

(m − 1)!

∫ t

0
(t − u)m−1 exp(−su)sm du,

and hence, from (A.1), we obtain

G(t) =
m−1

∑
n=0

γn

n!
tn +

(−1)m

(m − 1)!

∫ ∞

0

[∫ t

0
(t − u)m−1 exp(−su) du

]
sm dµ(s). (A.4)

Comparing this with (A.2) gives

(−1)m

(m − 1)!

∫ ∞

0

[∫ t

0
(t − u)m−1 exp(−su) du

]
sm dµ(s) =

γm

m!
tm + O(tm+1),

which implies that

γm = (−1)m lim
t→0

m
tm

∫ ∞

0

[∫ t

0
(t − u)m−1 exp(−su) du

]
sm dµ(s).

Part (i) now follows since for all s ≥ 0, the inner integral is convergent and

lim
t→0

m
tm

∫ t

0
(t − u)m−1 exp(−su) du = 1.

Turning to part (ii), we note that (A.2) and (A.4) together imply

(−1)m+1

m!

∫ ∞

0

[∫ t

0
(t − u)m exp(−su) du

]
sm+1 dµ(s) = O(tm+1),
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from which we have

I = t−(m+1)
∫ ∞

0

[∫ t

0
(t − u)m exp(−su) du

]
sm+1 dµ(s) = O(1).

Since the inner integral, for all s ≥ 0 and under the transformation v = t − u,

satisfies

∫ t

0
(t − u)m exp(−su) du = exp(−st)

∫ t

0
vm exp(sv) dv ≥ exp(−st)

tm+1

m + 1
,

it follows then that

∫ ∞

0
exp(−st)sm+1 dµ(s) ≤ (m + 1)I,

and consequently µm+1 exists proving the truth of Pm+1. Hence, Pm is true for all

m ≥ 0.
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