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ABSTRACT  
 
We develop a discrete control theory model of a stochastic demand pattern with both 
Auto Regressive and Moving Average (ARMA) components.  We show that the bullwhip 
effect arises when the myopic Order-Up-To (OUT) policy is used.  This policy is optimal 
when the ordering cost is linear. We then derive a set of z-transform transfer functions of 
a modified policy that allows us to avoid the bullwhip problem by incorporating a 
proportional controller into the inventory position feedback loop. With this technique, the 
order variation can be reduced to the same level as the demand variation. However, 
bullwhip-effect avoidance in our policy always comes at the costs of holding extra 
inventory. When the ordering cost is piece-wise linear and increasing, we compare the 
total cost per period under the two types of ordering policies:  with and without bullwhip-
effect reduction. Numerical examples reveal that the cost saving can be substantial if 
order variance is reduced using the proportional controller.   
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INTRODUCTION 
The purpose of an ordering policy is to control production or distribution in such a way 
that supply is matched to demand, inventory levels are maintained within acceptable 
levels and capacity requirements are kept to a minimum. In doing so, however, the 
bullwhip effect may arise (Lee, Padmanabhan and Whang, 1997).  It has been estimated 
that the economic consequences of the bullwhip effect can be as much as 30% of factory 
gate profits (Metters, 1997).  Carlsson and Fullér (2000) have further summarised the 
negative impacts as follows; 

 Excessive inventory investments throughout the supply chain to cope with the 
increased demand variability 

 Reduced customer service due to the inertia of the production/distribution 
system 

 Lost revenues due to shortages 
 Reduced productivity of capital investment 
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 Increased investment in capacity 
 Inefficient use of transport capacity 
  Production schedules missed more frequently 

 
The Order Up To (OUT) policy is a standard ordering algorithm in many MRP systems 
(Gilbert, 2002) that is used to achieve the customer service, inventory and capacity trade-
off. This policy is often set by the company to coordinate orders for multiple items from 
the same supplier, where setup costs may be reasonably ignored.  Conceptually, the OUT 
policy is very easy to understand.  Periodically, we review our inventory position and 
place an “order” to bring the inventory position “-up-to” a defined level.   However, 
because of the lead-time between placing an order and receiving the goods into stock, we 
need to forecast demand.  Common forecasting techniques to exploit here include moving 
average and exponential smoothing (Chen, Drezner, Ryan and Simchi-Levi, 2000; and 
Dejonckheere, Disney, Lambrecht and Towill, 2003).  These techniques are useful for 
identifying environmental changes when the mean demand moves from one level to 
another.   However, if demand possesses a linear trend or an explosive geometric growth, 
other forecasting techniques such as double or triple exponential smoothing may be more 
appropriate (Dejonckheere, Disney, Lambrecht and Towill, 2002). 
 
In this contribution, we consider demand to be a weakly stationary stochastic variable 
that contains Auto Regressive and Moving Average (ARMA) components (Box and 
Jenkins, 1970). In the specific case of ARMA demand, it is well known that conditional 
expectation will provide the minimum mean squared error forecast, see Lee, So and Tang 
(2000). Indeed, it has long been noted that using conditional expectation, as the 
forecasting mechanism within the OUT policy will minimise the total inventory related 
cost over time (Johnson and Thomson, 1975). Recently, it has been noticed that using 
conditional expectation forecasting within the OUT policy will produce a policy that can 
actually avoid the bullwhip effect for certain instances of the ARMA demand pattern 
(Alwyn, 2001).  However, in certain instances of the class of ARMA demands bullwhip 
still can not be avoided with this optimal forecasting technique. 
 
Herein we present a z-transform model of the myopic OUT policy with conditional 
expectation forecasting.  We exactly quantify the bullwhip produced by the system, 
together with closed form expressions of the resulting inventory variance over time.  We 
have modified the classical OUT policy by using a simple control engineering principle, 
as also exploited by Magee (1956), to eliminate the bullwhip problem for all instances of 
the ARMA demand pattern.   The principle exploited is to incorporate proportional 
controllers into the inventory position feedback loop in the classical myopic OUT policy.   
 
We start by introducing the classical ARMA demand model, then proceed to discuss the 
OUT policy and then move on to derive expressions for bullwhip and inventory variance.  
We will note that conditional expectation forecasting is very good at removing bullwhip 
for some demand patterns, but fails to remove bullwhip in all cases of the ARMA 
demand.   We incorporate a proportional controller into the OUT policy to satisfy the 
smoothing objective, but note that with conditional expectation forecasting the OUT 
policy can only remove bullwhip in all cases of the ARMA demand pattern by holding 
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extra inventory. We then demonstrate that our bullwhip reduction method results in lower 
total costs than the simple OUT policy without bullwhip reduction. For more details, the 
reader may refer to the longer version of the paper (Chen and Disney, 2003).   
 
ARMA DEMAND AND CONDITIONAL EXPECTATION FORECASTING  
We have chosen the ARMA demand pattern for our analysis as it is sufficiently general 
to represent real demand patterns, but it is still mathematically tractable. We have elected 
to use the mean centred ARMA demand pattern without lose of generality.  It is 
commonly expressed as a difference equation (1) as follows: 
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where, tD  = the ARMA demand at time, t;   = unconditional mean of the ARMA 

demand sequence;   = the Auto Regressive constant;   = the Moving Average constant;  

t  = a white noise process, that is, a normally distributed independently and identically 

distributed stochastic variable with mean zero and unity variance, 2 =1. Let tD̂  be the 

conditional forecast for period t on based on information in the previous period ( 1tD  

and 1t ). We assume   to be at least four times the variance of the ARMA demand so 

that the probability of negative demand is small as in Johnson and Thompson (1975). 

Note that the forecast error t = tt DD ˆ , hence the variance of the forecast error is 

obviously unity. 
 
We may express Eq 1 as a block diagram using standard techniques from discrete linear 
control theory as shown below in Figure 1.  For a general introduction of control theory 
we refer readers to Nise (1995). 
 

 
Figure 1.  Block diagram of the ARMA demand generator 

Re-arranging the block diagram, using common techniques, yields the ARMA demand 
transfer function (2),  
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THE ORDER-UP-TO POLICY 
The sequence of events in any period is: inventory level is reviewed and ordering 
decision is made at the beginning of the period, then the customers order is received and 
demand is realized and fulfilled at the end of the period. Thus, it takes one period to 
receive the order placed. Unmet demand in a period is backordered. Two costs are 
considered at the end of the each period, inventory holding and stock-out. Both are 
proportional functions with cost parameters constant over time, h and s, respectively. 
Piece-wise ordering costs will be considered later. In this section, we assume only a 
linear ordering cost. The objective is to minimize the long-run average total cost per 
period.   
 
For such a problem, Johnson and Thompson (1975) have shown that the simple order-up-
to (OUT) level policy is optimal. The OUT level is updated every period according to  

Dtt kDS  ˆ          (3) 

where tD̂ is an estimate of mean demand in period t, D  is  the standard deviation of 

demand, and k is the safety factor, k=F-1(s/(s+h)), where F is the standard normal 
cumulative distribution.  This is the so-called myopic OUT policy.  
  
The classical order-up-to policy definition is completed as follows; inventory position 
equals net stock (NS). We then successively obtain: 

tDtt NSkDO  ˆ          (4) 

Notice that, in this system, Ot  0 (Johnson and Thompson, 1975).  Now we propose to 
make a modification to the classical OUT policy to provide more freedom in shaping its 
dynamic response. Our change is that we are going to use a proportional controller in the 
inventory position feedback loop. Specifically, we introduce a proportional controller, 
(1/Ti), as follows: 
 

 ttt NSk
Ti

DO  1ˆ         (5) 

The new policy will be called the modified OUT policy, where (6) completes the 
definition.   

111   tttt DONSNS         (6) 

The conditional expectation forecast of the demand in the current period (remember our 
order of events) is described by the following transfer function  
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and the standard deviation of the forecast error, 1D .                               
 
From Eqs 2, 5, 6, and 7, and from our description we may now develop a block diagram 
of the ARMA demand and the modified OUT policy as shown in Figure 2.   In the block 
diagram, Dk  is a time-invariant constant that reflects the standard deviation of the 
forecast error over the lead-time and the safety factor, k,  required. 
 

 
 

Figure 2. Block diagram of our modified OUT policy with ARMA demand and conditional 
expectation forecasting 

Rearranging Figure 2 for the transfer function that describes the relationship between 
orders and the white noise process that drives the ARMA demand we have:   
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BULLWHIP IN THE MODIFIED MYOPIC OUT POLICY  
Disney and Towill (2003) have recently investigated Tsypkin’s relation (Tsypkin, 1964). 
Applying this relation to Eq 7 and dividing by the variance of the ARMA demand 
process, will yield a closed form expression for the bullwhip produced by the OUT policy 
with unconditional expectation forecasting in response to ARMA demand.  We have 
plotted the bullwhip produced by the classical OUT policy (so Ti=1)  in Figure 3.  Here 
we can see that the classical OUT policy with conditional expectation forecasting is able 
to remove bullwhip when  >  .   
 
Bullwhip is given by; 
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Our modification to the OUT policy (1/Ti) does however allow us to remove bullwhip for 
all instances of the ARMA demand pattern.  Letting the bullwhip equal 1 yields the 
minimum value of Ti that is required to avoid the bullwhip problem. This expression is 
shown in (10) below, and a high enough Ti will always eliminate the bullwhip problem. 
We have however plotted the case of Ti=5 in Figure 4.  This clearly shows the bullwhip 
reduction properties.  
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Figure 3. Bullwhip generated by the 

myopic OUT policy with ARMA demand 
pattern 

 
Figure 4. Bullwhip when Tp=1 and Ti=5 in 
modified OUT policy with CE forecasting 

 
INVENTORY VARIANCE IN THE MODIFIED OUT POLICY 
The transfer function of the inventory level can be found from the block diagram shown 
in Figure 2.   Amazingly, the inventory variance is independent of the demand properties 
and only depends on the proportional controller, Ti, see (11). 
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The inventory variance is given by
12
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NS , which we have plotted in Figure 5 

below. We note that in the inventory variance when Ti=1 is unity and minimum for all of 
the class of ARMA demand patterns.    
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Figure 5. Inventory variance for the modified OUT policy reacting to ARMA demand 
 
 
EXPECTED COSTS PER PERIOD: COMPARISON BETWEEN THE TWO OUT 
POLICIES  
 
Now we assume the ordering cost to be piece-wise linear: within the normal production 
capacity K, the unit cost is c, while it is c0>c if the order quantity is greater than K. Think 
of this as incurring an overtime premium. We assume the overtime capacity is practically 
infinite (think of this as having infinite sub-contracting capacity at the same cost as in-
house overtime working). 
  
For such a model with a piece-wise linear ordering cost structure, Karlin (1960) shows 
that when the distributions of demands over time are time-independent, the generalized 
OUT is optimal. Under such a policy, the OUT level in a period depends on the 
beginning inventory level if it is below a certain level, and if it is above this level, then no 
order is needed. Though this policy structure can be shown to remain optimal for our 
problem with ARMA demands, it is difficult to implement this policy and obtain it 
numerically. Thus, we take a practical approach by adopting a sub-optimal policy, i.e., 
the modified OUT policy.   
 
A numerical example  
With our OUT policy the order quantity in a period is a normal random variable; if it is 
greater than K, then ordering cost c0 is charged instead of c. We may find the expected 
amount of ordering costs by studying the probability density function of order levels over 
time (details omitted for brevity).   Holding and shortage costs are calculated similarly. 
The sum of these costs yields the total expected cost per period.   As the probability 
density function of the normal distribution is essentially non-algebraic, analytic results 
are difficult to obtain.  Hence, we will consider the following numerical scenario. 
 
The average ARMA demand is 10 units per period, the capacity limit, K, is 12 units per 
period, the cost to produce a unit in normal production is $100, and in overtime 
production the unit ordering (production) cost is $200. The inventory holding cost is $10 
per unit per period and the shortage cost is $50 per unit per period.  We set the inventory 
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safety factor  2.0Dk  for simplicity (although, after investigation, this does not seem 
to make a great deal of qualitative difference).  We consider four ARMA demand 
patterns at combinations of 5.0  and 5.0 .  We note that all solutions when 

   result in identical curves. This symmetry comes from the fact the ARMA demand 
is a stochastic i.i.d process under this condition.     
 

 
Figure 6. Expected total costs per period by the modified myopic OUT policy in response 

to ARMA demand  
 
We can see that our introduction to the myopic OUT policy, the proportional controller –
Ti, is clearly capable of reducing total expected costs per period, when compared to the 
classical myopic policy (when Ti=1).   We note that the relationship is complex and 
sometimes, we should use a value of Ti>1 in order to minimise total expected costs and at 
other times we should use Ti<1.  Our results are completely analytic and exact, although 
we have yet to fully understand the complete expected costs “solution space” as there are 
many dimensions to the problem.   In general, the controller is much more effective when 

0 . 
 
It is interesting to highlight the economic impact of our modification.  It is by no means 
insignificant.  For our example, average demand is 10 units per period.  In a perfect world 
all products would be solely manufactured in normal capacity and the there would be no 
inventory or backlog costs.  Therefore we expect at least $1000 of unavoidable costs per 
period.  The avoidable costs (that is the over-capacity, inventory and backlog costs) for 
the classical myopic OUT policy (when Ti=1) and our modified OUT policy (where 
Ti>0.5) are shown in Table 1.  We can see that we are able to avoid up to 50% of the 
avoidable costs by “tuning” Ti in the ordering policy to the demand pattern.    



Chen, Y.F. and Disney, S.M., (2003) “The order-up-to policy “sweet spot” - Using proportional controllers to eliminate the bullwhip problem”, 
EUROMA POMS Conference, Como Lake, Italy, 16th-18th June, Vol. 2, pp551-560, ISBN 88-86281-78-1 

    Classical OUT Modified OUT Reduction of 
avoidable costs Ti Avoidable costs Ti Avoidable costs

   1 $48.65 2.0618 $21.48 55.8% 
0.5 -0.5 1 $20.83 0.8928 $20.55 1.3% 
-0.5 0.5 1 $241.19 12.987 $115.42 52.1% 
Table 1.  Sample economic impact of the modification to the myopic OUT policy 

 
CONCLUSIONS 
Using the z-transform and the normal distribution probability density function, we have 
studied the myopic OUT policy reacting to the stochastic ARMA demand pattern.  We 
have achieved this in an environment where there are piece-wise linear ordering costs and 
piece-wise linear inventory costs are present.   Exploiting basic control engineering 
principles we have made a slight modification to the modified myopic OUT policy, the 
proportional controller in the inventory feedback loop, to allow us to better exploit the 
structure of our defined cost function.  The myopic OUT policy with our bullwhip effect 
reduction technique, Ti, outperforms the classical myopic OUT policy when the convex 
ordering cost is considered.  In some cases, the savings can be quite substantial. 
However, the comparison is based on heuristic inventory replenishment policies. As an 
ongoing research project, we are currently refining the optimal policies and developing 
procedures to quantify them.    
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