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Abstract. A method for incorporating multi-resolution capa-
bilities within pre-existing global 3-D spherical mantle con-
vection codes is presented. The method, which we term “ge-
ometric multigrid refinement”, is based upon the application
of a multigrid solver on non-uniform, structured grids and
allows for the incorporation of local high-resolution grids
within global models. Validation tests demonstrate that the
method is accurate and robust, with highly efficient solu-
tions to large-scale non-uniform problems obtained. Signif-
icantly, the scheme is conceptually simple and straightfor-
ward to implement, negating the need to reformulate and
restructure large sections of code. Consequently, although
more advanced techniques are under development at the fron-
tiers of mesh refinement and solver technology research, the
technique presented is capable of extending the lifetime and
applicability of pre-existing global mantle convection codes.

1 Introduction

Mantle convection is the “engine” that drives our dynamic
Earth. Quantitative modelling of this process is therefore es-
sential for understanding Earth’s dynamics, structure, and
evolution, from earthquakes and volcanoes to the forces that
build mountains and break continents apart. Whilst 2- and
3-D Cartesian models have provided important insights into a
range of mantle processes (e.g.McKenzie et al., 1974; Gurnis
and Davies, 1986; Davies and Stevenson, 1992; Moresi and
Solomatov, 1995; Labrosse, 2002; van Keken et al., 2002;

Lowman et al., 2004; King, 2009; Lee and King, 2009; Hunt
et al., 2012), 3-D spherical geometry is implicitly required to
simulate global mantle dynamics (e.g.Tackley et al., 1993;
Bunge et al., 1996, 1997; Zhong et al., 2000; Oldham and
Davies, 2004; McNamara and Zhong, 2005; Davies, 2005;
Nakagawa and Tackley, 2008; Schuberth et al., 2009; Davies
and Davies, 2009; Wolstencroft et al., 2009; Tan et al., 2011;
Styles et al., 2011; Davies et al., 2012). However, large-scale
global mantle convection models of this nature place ex-
treme demands on computational resources. This is particu-
larly true with pre-existing 3-D spherical mantle convection
codes, such as TERRA (Baumgardner, 1985; Bunge et al.,
1996; Yang and Baumgardner, 2000), CITCOMs (Moresi
and Solomatov, 1995; Zhong et al., 2000, 2008), STAG3D
(Tackley, 1996, 2008) and OEDIPUS (Choblet et al., 2007),
which are based upon structured, uniform (or quasi-uniform)
discretizations and closely coupled solution algorithms.

Whilst the uniform discretizations and algorithms used in
such codes have their advantages in terms of storage, data
structure and parallelization, they do not exploit computer
power to its full potential, since local variations in resolution
are not possible. Consequently, despite the large supercom-
puting clusters available today, these codes have difficulty
in resolving the important fine-scale physics (i.e. thermal
boundary-layers, upwelling plumes and downwelling slabs)
within a high Rayleigh number global mantle convection
simulation. The development of efficient multi-resolution nu-
merical methods for such problems has become a major goal
of current research.
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In computational engineering, non-uniform resolution is
usually attained via unstructured grids, with solution accu-
racy and computational efficiency improved through error-
guided grid adaptivity (e.g.Peraire et al., 1987; Hassan et al.,
1995; Nithiarasu and Zienkiewicz, 2000). Such techniques
(and similar adaptive techniques that are based upon hierar-
chical mesh refinement) have recently been applied within
the mantle dynamics community (e.g.Davies et al., 2007,
2008; Stadler et al., 2010; Leng and Zhong, 2011), lead-
ing to the development of several state-of-the-art computa-
tional frameworks for simulating global mantle convection.
The most notable examples are: (i) Fluidity (Davies et al.,
2011; Kramer et al., 2012); (ii) ASPECT (Kronbichler et al.,
2012); and (iii) RHEA (Stadler et al., 2010; Burstedde et al.,
2013). Such codes, which employ cutting-edge methods in
mesh refinement, solver technology and parallelisation, open
up a whole new class of problems for mantle dynamics re-
search, as demonstrated byStadler et al.(2010). However,
although perhaps more limited in their applicability, more es-
tablished codes, which are based upon older numerical me-
thods, remain heavily utilised within the community (e.g.
Nakagawa and Tackley, 2008; Schuberth et al., 2009; Davies
and Davies, 2009; Nakagawa et al., 2009; Zhang et al., 2010;
Wolstencroft and Davies, 2011; Tan et al., 2011; Davies et al.,
2012; Miller and Becker, 2012; Bower et al., 2013). A means
to extend the lifetime and applicability of such codes is there-
fore highly desirable.

In this paper we introduce a method, which we term “ge-
ometric multigrid refinement” (e.g.Brandt, 1977; Thompson
et al., 1992; Albers, 2000), that offers a practical solution
to the limitations of current codes. The approach maintains
the key benefits of the current uniform discretizations, but
allows for local variations in resolution. It is conceptually
simple and, perhaps most importantly, straightforward to im-
plement. In addition, it is suitable for finite element, finite
difference and finite volume schemes and, thus, is applicable
to several codes within the community.

The paper begins with a general introduction to the under-
lying methodology. The numerical issues involved in imple-
menting the scheme are then outlined. The technique is sub-
sequently validated, using the well-established 3-D spherical
mantle convection code TERRA as a basis: model predic-
tions are compared with analytical and benchmark solutions
(e.g.Hager and O’Connell, 1981; Richards and Hager, 1984;
Bercovici et al., 1989; Stemmer et al., 2006; Choblet et al.,
2007; Tackley, 2008; Zhong et al., 2008). Results indicate
that the proposed methodology is highly successful, generat-
ing accurate solutions at a reduced computational cost. Al-
though a thorough validation of TERRA is beyond the scope
of this study, results also demonstrate that TERRA is robust
and accurate for the class of problems examined herein.

2 Methodology

2.1 Geometric multigrid refinement

Geometric multigrid (e.g.Brandt, 1984; Briggs et al., 2000)
is an amalgamation of ideas and techniques, combining iter-
ative solution strategies and a hierarchy of grids, to form a
powerful tool for the numerical solution of differential equa-
tions. The basic idea behind the technique is to work not
with a single grid, but with a sequence of grids (“levels”)
of increasing coarseness, to improve the slow convergence
of classical iterative/relaxation methods (see, for example,
Brandt, 1984, for further details). Multigrid schemes can
be applied in combination with any of the common nu-
merical discretization techniques and, consequently, have
been widely used within the geodynamical community (e.g.
Baumgardner, 1985; Tackley, 1996, 2008; Bunge et al.,
1997; Zhong et al., 2000, 2008; Kameyama et al., 2005;
Choblet et al., 2007).

Excluding the recent examples cited above, the man-
tle convection modelling community has generally applied
multigrid to programs with uniform discretizations at each
grid level (Fig.1a). This makes programming more straight-
forward and avoids the computational overhead of dealing
with varying mesh spacing. However, as outlined above, in
global mantle convection simulations, uniform grids lead to
an excessive problem size and, hence, models that are com-
putationally inefficient. Grid–refinement is needed, predomi-
nantly in the system’s boundary layers, whilst coarser resolu-
tion is often sufficient away from the boundary layers, where
the solution is smoother. Fortunately, geometric multigrid al-
gorithms are not restricted to truly uniform discretizations.

The approach described here recovers the flexibility of
non-uniform grids by exploiting the fact that the various
grids used in the usual multigrid cycles need not extend
over the whole domain (e.g.Brandt, 1977; Bai and Brandt,
1987; Thompson et al., 1992; Lopez and Casciaro, 1997; Al-
bers, 2000). The finest levels may be confined to progres-
sively smaller subdomains, thereby providing higher resolu-
tion where required. These “local patches” are treated identi-
cally to “global” grids in the multigrid algorithm, only that
their boundary values are obtained via interpolation from
coarser grids, where needed. In such a structure, the effec-
tive mesh-size in each region will be that of the finest grid
covering it.It is the limited extent of the fine-grid that pro-
vides the benefits to the method.

To illustrate this concept, consider a simple domain, con-
sisting of four grid levels that are discretized by quadrilateral
elements (Fig.1b). Suppose grid level one and two extend
over the entire domain, as is standard practice for multigrid
programs. However, grid level three is confined to a smaller
region, in the domains lower-right-hand quadrant. Grid four
complements grid three, with further localized element sub-
division. Thus, the final non-uniform grid is made up of four
distinctive grid levels.
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D. R. Davies et al.: Geometric multigrid refinement techniques for mantle convection 1097

(a) (b)

Uniform Non-uniform

Grid 4Grid 4

Fig. 1. (a) An example of the hierarchy of uniform grids used in
regular geometric multigrid cycles. A standard bisection refinement
rule is employed; each quadrilateral element is split into four ele-
ments at the next grid level;(b) a non-uniform grid and the uniform
levels it is made of. In essence, a non-uniform grid is a union of
uniform sub-grids. However, unlike the traditional grids utilized in
a multigrid, the sub-grids do not necessarily extended over the same
domain.

This structure is highly flexible, since local grid refine-
ment (or coarsening) is done by extending (or contracting)
uniform grids, which is relatively easy and inexpensive to
implement. Recurrent operators can be used for both relaxa-
tion and transfer procedures and a simple data structure can
be employed. Furthermore, the use of partial grids leads to a
considerable saving in both computational memory and op-
erations, especially when only a small region of the domain
requires grid refinement (such as the boundary layers). There
does, however, appear to be a certain waste in the proposed
system, as one function value may be stored several times,
when its grid point belongs to several levels. This is not the
case. Firstly, the amount of such extra storage is small, being
less than 2−d of the total storage, for ad-dimensional prob-
lem (Brandt, 1977). Moreover, the stored values are exactly
those needed for the multigrid solution process.

This method of local refinements is based upon the Full
Approximation Storage (FAS) mode of multigrid processing,
where the full approximation is stored at all grid levels (see
Brandt, 1977, 1984); in parts of the domain not covered by
the finer grid, the coarser grid must show the full solution,
not just a correction, as occurs with the correction scheme
(CS) mode of multigrid processing.

2.2 Implementation

The key aspects involved with implementing the multigrid
refinement technique within a pre-existing 3-D spherical
mantle convection code are covered in this section. The well-
established code TERRA is utilized to illustrate and validate
the key ideas, although, as noted previously, the methodology
is equally applicable to other codes and, hence, the findings
of this study will be of benefit to the wider geodynamical
community. For completeness, a brief overview of TERRA is
first presented. This is intended to: (i) provide the reader with
a background to the code’s fundamental building blocks; and
(ii) summarize recent developments to the code.

2.2.1 TERRA

TERRA is a well-established finite element mantle convec-
tion code that was first developed byBaumgardner(1985)
and has been further modified byBunge et al.(1996, 1997)
and Yang and Baumgardner(2000). The code solves the
equations governing mantle convection inside a 3-D sphe-
rical shell with appropriate boundary conditions. Assuming
incompressibility and the Boussinesq approximation (e.g.
McKenzie et al., 1974), these equations, expressed in their
non-dimensional form, are:

∇ ·u = 0, (1)

µ∇
2u − ∇p + Rak̂1T = 0, (2)

∂T

∂t
+ ∇ · (T u) = κ∇

2T , (3)

where,u is the fluid velocity vector,p denotes dynamic pres-
sure,T temperature,t time,κ thermal diffusivity,g gravita-
tional acceleration,µ dynamic viscosity and̂k the unit ra-
dial vector. Note that the above non-dimensional equations
are obtained from the following characteristic scales: mantle
depthd; timed2/κ; and temperature1T .

The spherical shell is discretized by an icosahedral grid
(Baumgardner and Frederickson, 1985). By projecting the
regular icosahedron onto a sphere, the spherical surface can
be divided into twenty identical spherical triangles, or ten
identical diamonds, each of which contains one of the ten tri-
angles surrounding each pole. Triangles can subsequently be
subdivided into four triangles by construction of great circle
arcs between triangle side mid-points. This refinement pro-
cess can be repeated to yield an almost uniform triangulation
of the sphere at any desired resolution. Refinements to the
grid and, hence, lateral resolution, are referenced by mt –
the number of grid intervals along an icosahedral diamond
edge. The number of nodes on a spherical surface is given by
10mt2 + 2 (there are ten icosahedral diamonds on each sur-
face and two polar nodes). The grid is extended radially by
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placing several of these spherical shells above one another,
generating a mesh of triangular prisms (layers) with spheri-
cal ends. The number of radial layers, nr, is flexible, but is
usually set to mt/2. The total number of nodes in the sphe-
rical shell (with the standard uniform grid) is thus given by
(nr + 1)(10mt2 + 2).

TERRA utilizes the Galerkin finite element formulation.
Excluding pressure, which is piecewise constant and discon-
tinuous, all dynamic variables use local linear basis func-
tions. The discretised form of Eqs. (1) and (2) are solved
with a Uzawa type pressure correction approach, coupled to
a conjugate gradient algorithm. The basis of this approach
is that the velocity and pressure, determined by solving Eq.
(2) alone, should be corrected until Eq. (1) is satisfied (Yang
and Baumgardner, 2000). The algorithm was originally pro-
posed byVerfuerth(1984) and is outlined in detail by both
Atanga and Silvester(1992) andRamage and Wathen(1994).
The algorithm exploits a multigrid inner-solver and, hence,
TERRA is ideal for investigating and validating the geomet-
ric multigrid refinement methodology. The discretised form
of Eq. (3) is solved by means of a flux-form finite diffe-
rence method (seeBaumgardner, 1985, for further details),
while time-stepping is accomplished through a fourth-order
Runge-Kutta scheme (Davies and Davies, 2009).

2.2.2 Reference non-uniform discretization

A reference discretization is now introduced, which will be
used to illustrate (and validate) the key implementation pro-
cedures. For simplicity, fine and coarse-grid regions are se-
lected a priori (i.e. the procedure is non-adaptive). Additiona-
lly, whilst refinement is performed radially and laterally, it
is done as a function of radius only (i.e. lateral resolution
is constant for each individual radial layer, but can vary be-
tween layers). It should be noted however that the strategies
employed are equally valid for full lateral refinement (i.e.
variations in lateral spacing, within individual radial layers).

The following discussion will focus on the discretisation
displayed in Fig.2a. The spherical shell is separated into two
distinct regions (fine and coarse); the upper half (fine) is dis-
cretized by one additional refinement level (i.e. the number
of nodes in each radial layer increases by a factor of 4 and
there are twice as many radial layers: note that the interface
between fine and coarse regions can be placed at an arbi-
trary, user-defined radius). Such a configuration allows the
multi-level processes to be illustrated via one-dimensional
diagrams. Nonetheless, in spite of its simplicity, it over-
comes many disadvantages of TERRA’s conventional quasi-
uniform structure (termed uniform for the remainder of this
paper). With the original uniform scheme:

1. Grid resolution can only be increased in fixed step sizes,
with successive refinements requiring an≈ 8-fold in-
crease in the number of nodes (the number of nodes in-
creases by a factor of 4 and 2, laterally and radially, re-
spectively). The solution to a given problem therefore

requires≈ 8-times more RAM and≈ 16-times more
CPU-time at the next level of refinement, the increased
factor in CPU-time resulting from the need to decrease
the time-step, due to the CFL constraint. A local in-
crease in resolution is not possible.

2. Element sizes and inter-nodal distances are dependent
upon radius, with the grid points denser at the inner
boundary than at the surface. As a consequence, the
lower boundary layer is often better resolved than its
surface counterpart, whilst the dynamically controlled
time-step is restricted.

The non-uniform discretization presented in Fig.2a over-
comes these shortcomings. Upper mantle resolution is en-
hanced when compared to the original scheme and, hence,
element sizes and inter-nodal distances show greater con-
sistency over the entire domain. Thermal boundary layers
can therefore be simulated at similar resolutions and the
dynamically controlled time-step becomes better-suited to
the problem under examination (it is not unnecessarily re-
stricted by smaller elements at the base of the shell). Perhaps
most importantly, resolution can be increased locally, which
offers greater flexibility.

There are also significant benefits to this configuration
from a geophysical perspective. The viscosity of Earth’s
mantle increases significantly with depth (e.g.Hager et al.,
1985; Mitrovica and Forte, 2004). As a consequence, fine-
scale features will likely dominate the upper mantle convec-
tive planform, with longer wavelength features more preva-
lent at depth. The reference discretization presented, with
higher resolution in the upper mantle, is ideally suited to such
a scenario.

2.2.3 Numerical issues

Two key numerical issues must be addressed when imple-
menting the multigrid refinement scheme:

1. Non-conforming grids (i.e. the presence of irregular
points, or “hanging nodes”, at grid interfaces).

2. Solution continuity during inter-grid transfers.

Figure3a illustrates the radial location of all genuine solu-
tion nodes (s nodes) at the grid interface, along line A–B of
Fig. 2a. A hanging node arises at this interface, where two
fine-grid elements connect with one coarse-grid element. At
this node, the usual nodal solution stencil is no longer appli-
cable; it should be modified to involve both fine- and coarse-
grid components, as is done in, for example,Burstedde et al.
(2013). However, within the context of pre-existing codes,
such topological and mathematical complexity would be in-
convenient, requiring coding of new operators and subse-
quently, major changes in code structure. As a result, a dif-
ferent route is taken here. For computational convenience,

Geosci. Model Dev., 6, 1095–1107, 2013 www.geosci-model-dev.net/6/1095/2013/
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A

A

Solution

Grid h 2h 4h 8h

Multigrid Levels

s-nodes c-nodes r-nodes t-nodes n-nodes

(b)(a) (c)

Fig. 2. (a)The reference grid configuration implemented in this study. The final solution is derived from distinctive local grids, with high
resolution in the upper half of the spherical shell and coarser resolution in the lower half.(b) A radial section, drawn along A–B, illustrating
the final non-uniform solution grid.(c) The multigrid solution process, illustrated for a four level cycle (gridsh− 8h). Grid levelh is a local
fine-grid that spans the upper half of the mantle. Nodes shaded in red are those intrinsic to the final solution (s nodes).r and t nodes are
utilized during fine-grid calculations. They ensure solution accuracy on the fine-grid and solution continuity during inter-grid projection.n

nodes would occur in the regular multigrid formulation, but do not exist in the modified formulation. Grid level 2h is a global grid, covering
the whole mantle. As with grid levelh, nodes shaded in red are part of the final solution (s nodes). Conversely, nodes shaded in grey (c nodes)
are only utilized during the multigrid process; they do not explicitly contribute to the final solution. Grids 4h and 8h are further global grids,
which are involved in the multigrid solver but do not explicitly contribute to the final solution. Black arrows denote inter-grid projection.
These are reversed for coarse-to-fine grid interpolation, whilst dashed orange arrows are also applicable. Note, grid resolution is decimated
for illustrative purposes.

(a) (b) (c)

s-nodes

c-nodes r-nodes t-nodes

solution-grid solution-grid solution-gridfine-grid fine-grid fine-gridcoarse-grid coarse-grid coarse-grid

A

B

Grid
Interface

Hanging
Node

Fig. 3. (a)The problem: one coarse-grid element interfacing with two fine-grid elements. The location of genuine unknowns (i.e. unknowns
that are associated with an approximation to the governing differential equation),s nodes, is shown for both fine and coarse grids.(b) The
problem, modified to show ther nodes which are introduced for computational convenience. These nodes are not unknowns in our system
of equations, but dummy nodes that are introduced to allow consistent solution derivation at all genuine nodes. With just one boundary
layer (ther nodes), fine-grid solution continuity will not be satisfied during inter-grid projection: ther nodes would act as boundary values
during fine-grid calculations and would not be updated. Consequently, the values projected from the fine-grid to the encircledc nodes (coarse
grid nodes utilized during the multigrid process that do not explicitly contribute to the final solution), during the multigrid solution process,
would be derived from nodal solutions with both fine and coarse-grid accuracy. Accordingly, a second layer of dummy nodes, thet nodes, are
introduced, as illustrated in part(c). Their inclusion and the subsequent updating ofr nodes during fine-grid calculations, ensures solution
continuity during inter-grid projection. In summary,s nodes are the genuine nodes, intrinsic to the final solution.r andt nodes are utilized
during fine-grid calculations and inter-grid projection, whilstc nodes represent coarse-grid nodes, that are integral to the overall multigrid
process, but do not explicitly contribute to the final solution.
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a boundary band of virtual nodes is introduced in the coarse-
grid region to regularize the structure of unknowns (follow-
ing Thompson et al., 1992). This band contains two layers
of nodes:r andt nodes (relaxation and transfer), which are
displayed in Fig.3b and c respectively. These are initialized
via interpolation from the coarse-grid solution.t nodes act as
boundary values during fine-grid calculations and remain un-
modified, whilsts andr nodes, now separated from the inter-
face, are updated.t nodes thus ensure that fine-grid accuracy
is transferred to the coarse-grid during inter-grid projection
(see Fig.3b).

By utilizing uniform grids at each level of refinement,
TERRA’s standard operators can be used for both relaxa-
tion and inter-grid transfer procedures. In addition, the radial
refinement structure fits in perfectly with TERRA’s existing
parallelization and domain decomposition configuration, re-
taining the equal load-balance of the original scheme (see
Sect.4 for further details). This is of utmost importance for
computational efficiency. The major benefit to this technique
however, is the ease at which it can be implemented, which is
of great practical importance. No significant revisions were
made to TERRA. Only minor modifications were necessary,
which are listed below:

1. The multigrid was converted from the CS to the FAS
mode of multigrid processing. For linear problems, the
CS and FAS modes are directly equivalent (Brandt,
1984). Conversion to the FAS mode was simply a case
of storing the full current approximation, which is the
sum of the correction and its base approximation, at
each grid level, as opposed to the correction alone.

2. Inter-grid transfer routines, to and from the fine-grid,
were localized: projection from the fine-grid was mod-
ified to involve only fine-grids andr nodes. Interpola-
tion to the fine-grid was modified to initializes, r and
t nodes. Pre-existing inter-grid transfer operators were
utilized.

3. Fine-grid solution routines were localized, witht nodes
acting as boundary values during calculations.

The whole multigrid transfer process for the modified multi-
level scheme, in the context of a four level cycle, is presented
in Fig. 2c.

3 Methodology validation

The accuracy of the multigrid refinement algorithm, in ad-
dition to TERRA, is examined by comparing results from
the modified code with analytical solutions and previ-
ously published numerical predictions. It should be empha-
sized that the goal of this paper is not a thorough bench-
mark of TERRA. While we realize that further benchmark
tests/comparisons are possible, our aim here is to demon-
strate that the geometric multigrid refinement technique is

valid (i.e. it does not degrade results in comparison to the
uniform discretization/solution algorithms). Note that for all
simulations presented in this paper, the interface between
fine and coarse regions of the domain is placed at≈ 750 km
depth, with refinement restricted to one level only. In ad-
dition, we focus solely on isoviscous convection. Whilst
TERRA’s robustness at simulating variable viscosity convec-
tion has recently been improved (seeKoestler, 2011, for fur-
ther details), these developments have not yet been combined
with the geometric multigrid refinement technology.

3.1 Stokes flow

The first set of problems examined exclusively test the so-
lution of Eqs. (1) and (2). Comparisons are made with
quasi-analytical solutions, derived via propagator matrix me-
thods (e.g.Hager and O’Connell, 1981; Richards and Hager,
1984). We specifically examine the response of: (i) normali-
zed poloidal velocity coefficients at the surface and CMB; (ii)
surface and CMB topography; and (iii) the predicted geoid;
to a spherical harmonic temperature perturbation at a speci-
fied depth in the spherical shell. Such analytical comparisons
have previously been used to validate numerous global man-
tle convection codes (e.g.Choblet et al., 2007; Zhong et al.,
2008; Burstedde et al., 2013).

The problem is set up as follows. The inner radius is set to
mimic that of Earth’s core mantle boundary,rb = 3480 km,
while the outer radius is set to equal that of Earth’s surface,
rt = 6370 km. Free-slip mechanical boundary conditions are
specified at both surfaces (note that we have modified the
treatment of free-slip boundary conditions from the original
version of TERRA, to more accurately account for surface
curvature). The driving force is a delta function temperature
perturbation in radius, defined as:

T = δ
(
r −

rb + rt

2

)
Ylm(θ,φ) (4)

Here,Ylm is the spherical harmonic function of degreel and
orderm. Cases are investigated at a range of spherical har-
monic degrees (2, 4, 8, 16) and grid resolutions, for both uni-
form and non-uniform grids.

Results are presented in Fig.4. These demonstrate that, in
general, both uniform and non-uniform configurations agree
well with analytical solutions. Furthermore, although there
are exceptions, non-uniform configurations generally yield
a better accuracy for a given number of nodal points (i.e.
they generally plot on, or below, the uniform cases). For all
diagnostics, results are convergent, with approximately se-
cond order convergence observed in the errors for poloidal
velocity coefficients, as would be expected. The agreement
between model predictions and analytical solutions does di-
minish as one goes to higher and higher harmonic degrees.
However, this is to be expected and is consistent with the pre-
dictions of previous studies (e.g.Choblet et al., 2007; Zhong
et al., 2008; Burstedde et al., 2013).
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Fig. 4. Relative errors in numerical predictions with respect to semi-analytical solutions (e.g.Hager and O’Connell, 1981; Richards and
Hager, 1984) for: (a) normalized harmonic coefficients for poloidal velocity at the surface and CMB (combined);(b) surface and CMB
topography (combined); and(c) total geoid; for a range of uniform (circles) and non-uniform (stars) grids, at spherical harmonic degrees 2,
4, 8, and 16. Note that continuous lines connect the results from uniform cases.

3.2 Low Rayleigh number convection

We next examine three cases of low Rayleigh number, sym-
metric, 3-D flows. These cases, which have also been exam-
ined by a range of other codes (e.g.Bercovici et al., 1989;
Ratcliff et al., 1996; Yoshida and Kageyama, 2004; Stemmer
et al., 2006; Choblet et al., 2007; Tackley, 2008; Zhong et al.,
2008) test our solution strategy for all three governing equa-
tions. The first class of cases are for tetrahedral symmetry
at Ra= 7× 103, while the second and third set of cases are
for cubic symmetry atRa= 3.5× 103 andRa= 1× 105 re-
spectively. Results are compared with those of previous in-
vestigations. We specifically examine Nusselt numbers at the
surface (Nut) and base (Nub) of the shell, and the mean global
non-dimensionalized RMS velocity (〈VRMS〉):

Nut = Qt
rt

rb
, (5)

Nub = Qb
rb

rt
, (6)

〈VRMS〉 =

[
3

4π(r3
t − r3

b)

∫
�

u2d�

]1/2

. (7)

In the above equations,rt, rb, Qt andQb are the upper and
lower radii and non-dimensional heat fluxes, respectively.
Q is non-dimensionalized byk1T/d, wherek and1T are
the thermal conductivity and temperature contrast across the
mantle depth,d = rt − rb. u is the non-dimensionalized ve-
locity, non-dimensionalized viau′

= ud/κ, with κ denoting
the thermal diffusivity. Nusselt numbers are determined by
solving the time-dependent energy equation until the rela-
tive variation in the Nusselt number between five consecu-
tive time-steps is< 10−5. RMS velocities are calculated once
Nusselt numbers have converged. Results are presented in
Table 1, with representative plots of the thermal fields in
Fig. 5.

(a) (b) (c)

(a)	   (b)	   (c)	  

Fig. 5. Representative temperature anomalies from thermal ampli-
tude convection tests for:(a) tetrahedral symmetry atRa= 7×103;
(b) cubic symmetry atRa= 3.5× 103; and(c) cubic symmetry at
Ra= 1×105 respectively. Yellow and blue isosurfaces represent ra-
dial temperature anomalies of 250 and –250 K respectively. These
results are from the highest resolution non-uniform cases of Table1.

When examining the results of fully uniform cases, we ob-
serve an excellent agreement with a range of other studies,
demonstrating that TERRA is robust and accurate for this
particular class of problem. Results for non-uniform cases
are also consistent with previous studies, indicating that the
revised methodology is valid. A comforting observation is
the small difference between upper and lower boundary Nus-
selt numbers, indicating that the modified scheme is globally
conservative. These results, along with those presented in
Sect.3.1, demonstrate that the code and, hence, the new tech-
niques, are valid for this class of problem.

4 Parallel efficiency and computational cost

The parallel performance and strong scaling of TERRA and
the non-uniform extension is next examined. TERRA’s pa-
rallel implementation is enabled by MPI (seeBunge and
Baumgardner, 1996 for a full description). In brief, the
spherical shell is decomposed into smaller subdomains and
spread across a number of processes. The first step is to
divide each icosahedral diamond into a series of subdia-
monds/subdomains. As noted in Sect.2.2.1, the number of
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Table 1. Thermal amplitude benchmark comparisons for an isoviscous fluid. Abbreviations in the first column refer to the studies used for
comparison: B89 (Bercovici et al., 1989), R96 (Ratcliff et al., 1996), Y04 (Yoshida and Kageyama, 2004), S06 (Stemmer et al., 2006), C07
(Choblet et al., 2007), T08 (Tackley, 2008), Z08 (Zhong et al., 2008). D13 is the present study. U/NU represents the grid configuration, with
U being uniform and NU non-uniform. # Nodes denotes the total number of nodes, with a resolution ofr × (θ × φ) in radial (and lateral)
direction. For non-uniform cases, fine and [coarse] nodal resolutions are separated, using square brackets. The respective discretization
method (DM) is listed, where SP indicates spectral, FE finite element, FD finite differences and FV finite volume.〈VRMS〉 denotes the mean
non-dimensionalized RMS velocity, whilstNut andNub represent the upper and lower boundary Nusselt numbers, respectively. Note that,
theoretically,Nut andNub should be equal.

Study # Nodes r × (θ × φ) U/NU DM 〈VRMS〉 Nut Nub

Te
tr

ah
ed

ra
lS

ym
m

et
ry

at
R

a
=

7
×

10
3

B89 2400 12× (10× 20) U SP – 3.4657 3.5293
R96 65 536 32× (32× 64) U FV 32.19 3.4423 –
Y04 2 122 416 102× (102× 204) U FD 32.05 3.4430 –
S06 663 552 48× (6× 48× 48) U FV 32.59 3.4864 3.4864
C07 196 608 32× (6× 32× 32) U FV 32.74 3.4814 3.4717
T08 196 608 32× (2× 32× 96) U FV 32.57 3.48 –
Z08 393 216 32× (12× 32× 32) U FE 32.66 3.5126 3.4919

D13(1) 174 114 17× (10× 32× 32) U FE 32.03 3.478 3.479
D13(2) 1 351 746 33× (10× 64× 64) U FE 32.22 3.512 3.512
D13(3) 10 649 730 65× (10× 128× 128) U FE 32.24 3.513 3.513

D13(4) 491 562 9[12] × (10× 64[32] × 64[32]) NU FE 32.17 3.508 3.504
D13(5) 3 768 402 17[24] × (10× 128[64] × 128[64]) NU FE 32.23 3.516 3.514

C
ub

ic
S

ym
m

et
ry

at
R

a
=

3.
5

×
10

3

B89 2400 12× (10× 20) U SP – 2.7954 –
R96 262 144 32× (64× 128) U FV 18.86 2.8306 –
Y04 2 122 416 102× (102× 204) U FD 18.48 2.8830 –
C07 196 608 32× (6× 32× 32) U FV 19.55 2.8640 2.8948

D13(1) 174 114 17× (10× 32× 32) U FE 18.73 2.837 2.837
D13(2) 1 351 746 33× (10× 64× 64) U FE 18.79 2.855 2.855
D13(3) 10 649 730 65× (10× 128× 128) U FE 18.80 2.857 2.856

D13(4) 491 562 9[12] × (10× 64[32] × 64[32]) NU FE 18.79 2.854 2.851
D13(5) 3 768 402 17[24] × (10× 128[64] × 128[64]) NU FE 18.80 2.856 2.855

C
ub

ic
S

ym
m

et
ry

at
R

a
=

1
×

10
5

R96 262 144 32× (64× 128) U FV 157.5 7.5669 –
T08 196 608 32× (2× 32× 96) U FV 160.2 7.27 –
Z08 1 327 104 48× (12× 48× 48) U FE 154.8 7.8495 7.7701

D13(1) 1 351 746 33× (10× 64× 64) U FE 153.32 7.802 7.804
D13(2) 10 649 730 65× (10× 128× 128) U FE 153.75 7.862 7.862
D13(3) 84 541 698 129× (10× 256× 256) U FE 153.90 7.890 7.891

D13(4) 3 768 402 17[24] × (10× 128[64] × 128[64]) NU FE 153.60 7.822 7.824
D13(5) 29 491 362 33[48] × (10× 256[128] × 256[128]) NU FE 153.78 7.873 7.874

grid intervals along an icosahedral diamond edge is referred
to as mt. A second parameter is used to define the size of the
subdomains: nt – the number of grid intervals along the edge
of a local subdomain. The values of mt and nt must be such
that mt is a power of 2 and nt is also a power of two less than
or equal to mt.

The next step in the decomposition is to select the number
of subdomains to distribute to each process. This is defined
by the parameter nd – the number of diamonds from which
subdomains will be mapped onto the processes. nd can have
a value of 5 or 10; if nd = 5 only Northern Hemisphere di-

amonds are mapped onto the first half of the processes and
Southern Hemisphere diamonds to the second half. If nd = 10
each process owns one subdomain from each of the ten dia-
monds (see Fig.6). To finalize the domain decomposition,
subdomains are extended throughout the radial dimension,
from Earth’s surface to the Core-Mantle-Boundary (CMB).
This procedure is identical for all grid configurations (i.e.
uniform and non-uniform). The number of processes is thus
given by (mt/nt)2×(10/nd).

For parallel efficiency calculations we consider a symmet-
ric, cubic flow, atRa= 1× 105, identical to the final case
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examined in Section3.2. We compute the problem for 100
time steps. Calculations are carried out at a variety of prob-
lem sizes (i.e. resolutions), using between 4 and 4096 cores
(i.e. processes/CPU’s) on HECToR, the UK national super-
computing service. Figure7a illustrates the results, showing,
as expected, faster execution with a larger number of CPUs.
A reduction in elapsed time and, thus, a good improvement in
speed (“speedup”) is observed for all configurations. In addi-
tion, all configurations follow a similar pattern, thus demon-
strating that the non-uniform configuration integrates well
with TERRA’s domain decomposition strategy, maintaining
the equal load balance properties of the original scheme. A
selection of results summarizing speedup and efficiency are
displayed in Table2. Note that results are generally consis-
tent between different problem sizes (i.e. mt – see Fig.7a)
and, hence, only one set of results is presented fully.

The efficiency of the original, uniformly discretized con-
figuration is first examined. If TERRA scaled perfectly, each
case would show 100 % parallel efficiency (i.e. for a given
problem size, increasing the number of processes by a factor
of n would speed up the calculation by a factor ofn). How-
ever, as expected, that is not the case. Assuming an efficiency
of 100 % on 8 CPU’s (this problem is too large to run on a
single CPU), efficiency decreases to 58.76 % on 512 CPU’s
(Table 2). Such an observation is easily understood: for a
given problem size, as the number of cores increases, there
is a tendency for the number of pressure solve iterations to
increase, leading to a reduction in computational efficiency.
In addition, individual process subdomains extend through-
out the radial dimension – they are long and thin, with a large
surface area. As the number of CPU’s increases, the ratio of
surface area to subdomain size increases, leading to greater
message passing, which, ultimately, restricts the performance
and speedup of the code (Bunge and Baumgardner, 1996).
We consistently observe that cases at nd = 5 are more efficient
than those at nd = 10, since less inter-process communication
is required (see Fig.6). A reassuring point to note is that as
the problem size increases, the amount of work per node at
each time step remains reasonably consistent (see Fig.7a –
for example, moving from a uniform mesh simulation on 4
CPU’s at mt = 32, to a simulation on 32 CPU’s at mt = 64, to
a simulation on 256 CPU’s at mt = 128). This demonstrates
that the multigrid achieves its goal of attaining a convergence
rate that is independent of the number of grid points.

Focussing now on the modified, non-uniform, discretiza-
tions, we see that the expended CPU-time decreases in com-
parison to uniform cases. This is despite the fact that the
number of pressure solve iterations increases by, on average,
25 %. The observed speedup is therefore largely due to a re-
duction in the number of nodes (or degrees of freedom) and,
hence, the number of calculations. In addition, there is an in-
crease in parallel efficiency to 67.56 % on 512 CPU’s with
non-uniform cases, implying a better balance between com-
munication and processing, when compared to uniform grids
(see Table2).
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Fig. 6. Subdomain process mapping in TERRA for a case where
mt/nt = 2. In (a) nd = 10, while in(b) nd = 5. The diamonds have
been projected on to a flat surface and solid black lines define their
boundaries, while dashed lines represent subdomain boundaries.
The number within each subdomain denotes the MPI rank of the
process to which the subdomain is mapped.

If one neglects the aforementioned differences in parallel
efficiency, it is possible to estimate a maximum theoretical
speedup for non-uniform configurations, based on the ratio
between the number of nodes involved in non-uniform and
uniform calculations. The performance of the non-uniform
grid configuration is displayed in Fig.7b. Although results
fall short of the maximum theoretical speedup, performance
improves as the problem size increases. Such behaviour is
to be expected: the implementation involves interpolation of
values to and from ghost nodes and calculations across these
ghost nodes. Consequently, computational overheads arise.
However, as grid resolution increases, the boundary band of
ghost layers makes up a smaller percentage of the computa-
tional domain (the number of radial layers in the calculation
increases, but the number of ghost layers remains fixed) and,
hence, the computational overhead decreases (see Fig.7c).

5 Memory

The total memory requirements for uniform and non-uniform
grid configurations are presented in Table3. For uniform
cases, as noted previously, the memory addressed should the-
oretically increase by a factor of≈ 8 with successive re-
finements. However, the practical memory requirements vary
from this idealized value. In moving from mt = 32 to mt = 64,
the amount of memory addressed increases by a factor of
≈ 6. Moving from mt = 64 to mt = 128, from mt = 128 to
mt = 256 and from mt = 256 to mt = 512 requires≈ 7.2,≈ 7.6
and≈ 7.9 times more RAM, respectively. These variations
are caused by fixed static memory allocation in a number of
TERRA’s arrays, which leads to larger overhead at coarser
resolutions.
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Table 2. CPU-time for different grid configurations across a range of cores, with the domain decomposed according to nt – the number
of grid intervals along the edge of a local subdomain, and nd – the number of diamonds mapped to a local process. The speedup factor is
calculated relative to the 8-core simulation (the problem was too large to run on a single core), whilst the efficiency is calculated from the
following formula: speedup factor/(# cores/8). Note that whilst we only present the results for cases at mt= 128, the observed trends are
consistent across different problem sizes.

# Cores r × (θ × φ) # Nodes nt nd U/NU CPU-time Speedup Factor Efficiency
(s) (%)

8 65× (10× 128× 128) 10 649 730 64 5 U 11 187.75 / 100
16 65× (10× 128× 128) 10 649 730 32 10 U 7293.45 1.53 76.70
32 65× (10× 128× 128) 10 649 730 32 5 U 3131.09 3.57 89.33
64 65× (10× 128× 128) 10 649 730 16 10 U 1939.18 5.77 72.12
128 65× (10× 128× 128) 10 649 730 16 5 U 906.46 12.34 77.14
256 65× (10× 128× 128) 10 649 730 8 10 U 623.46 17.94 56.08
512 65× (10× 128× 128) 10 649 730 8 5 U 297.50 37.61 58.76

8 17(24) × (10× 128(64) × 128(64)) 3 768 402 64 (32) 5 NU 6983.42 / 100
16 17(24) × (10× 128(64) × 128(64)) 3 768 402 32 (16) 10 NU 3891.81 1.79 89.72
32 17(24) × (10× 128(64) × 128(64)) 3 768 402 32 (16) 5 NU 1807.62 3.86 96.58
64 17(24) × (10× 128(64) × 128(64)) 3 768 402 16 (8) 10 NU 1055.99 6.61 82.66
128 17(24) × (10× 128(64) × 128(64)) 3 768 402 16 (8) 5 NU 489.35 14.27 89.19
256 17(24) × (10× 128(64) × 128(64)) 3 768 402 8 (4) 10 NU 326.27 21.40 66.89
512 17(24) × (10× 128(64) × 128(64)) 3 768 402 8 (4) 5 NU 161.50 43.24 67.56
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Fig. 7. (a) Parallel performance of TERRA; the elapsed computational time as a function of the number of CPU’s, at a range of different
scales, utilizing different grid configurations – red and blue lines denote uniform and non-uniform configurations respectively. For non-
uniform cases, mt denotes the lateral resolution in fine regions of the domain. We observe faster execution using a larger number of CPUs,
as expected. Interestingly, variations are observed between different domain decompositions, with nd = 5 cases (circles) being more efficient
than nd = 10 (stars). Due to a reduction in the number of nodes, the expended CPU-time decreases in moving from uniform to non-uniform
configurations. Results for all configurations follow a similar pattern, illustrating that the non-uniform configurations integrate well with
TERRA’s parallel domain decomposition strategy;(b) the speedup attained when utilizing a non-uniform grid configuration, compared to
an estimate of the maximum theoretical speedup, based purely upon a ratio between the number of nodes in each case. As grid resolution
increases, a greater speedup is observed, converging towards the theoretical maximum;(c) the computational overhead of using a non-uniform
grid configuration – the overhead decreases as the problem size increases.

To test the numerical implementation of the non-uniform
cases, we compare the actual memory requirements with
those predicted by simple scaling relationships. One can es-
timate that a non-uniform, mt = 512/256 case, incorporating
lateral and radial refinement in the upper 25 % of the shell,
should theoretically require≈ 181.63 Gb of RAM (i.e. a fac-

tor of ≈ 3 greater than a uniform mt = 256 case). The practi-
cal memory requirement of≈ 197.45 Gb is therefore excep-
tional, demonstrating that the scheme has been implemented
efficiently. The minor overheads are caused by ghost nodes
at the fine/coarse interface. As discussed in the previous sec-
tion, these overheads decrease with increasing problem size.
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Table 3. Memory requirements for different grid configurations.
Non-uniform cases incorporate refinement in the upper 750 km (or
≈ 25 %) of the spherical shell. Note that the theoretical RAM is
calculated via the following formula, using the NU 64/32 case as an
example: (nodes mt64/32/nodes mt32)×RAM mt32.

mt nr U/NU Nodes RAM Theoretical Overhead
(Gb) RAM (Gb) (%)

32 16 U 1.74× 105 0.20 – –
64 32 U 1.35× 106 1.21 – –
128 64 U 1.06× 107 8.71 – –
256 128 U 8.45× 107 65.87 – –
512 256 U 6.74× 108 521.92 – –

64/32 21 (9/12) NU 4.91× 105 0.81 0.56 44.64
128/64 41 (17/24) NU 3.77× 106 4.58 3.38 35.50
256/128 81 (33/48) NU 2.95× 107 29.42 24.24 21.37
512/256 161 (65/96) NU 2.33× 108 197.45 181.63 8.71

6 Conclusions

This paper has explored the potential of hierarchical geomet-
ric multigrid refinement techniques for 3-D spherical mantle
convection codes. The methodology, based around the appli-
cation of a multigrid solver on non-uniform, structured grids,
yields highly efficient solutions to multi-resolution problems,
providing significant benefits for global 3-D spherical man-
tle convection simulations: localized variations in resolution
are possible, negating the need for complete global refine-
ment. Consequently, computational resources are exploited
more efficiently.

The technique is conceptually simple and, perhaps
most importantly, straightforward to implement within pre-
existing mantle convection codes. The proposed methodol-
ogy has been validated and an excellent agreement is ob-
served with analytical results and those from a wide-range
of other studies. Results also demonstrate that TERRA, the
code utilized in examining the multigrid refinement proce-
dures, is robust and accurate for the class of problems exam-
ined herein.

It is important to emphasize that the refinement strategies
presented allow simulations of global 3-D spherical man-
tle convection, with a lateral resolution of≈ 14 km at both
boundaries, on a system with≈ 200 Gb of RAM. When com-
pared to standard, uniform configurations, the memory foot-
print is therefore reduced by a factor of≈ 3, whilst typically,
simulations require a factor of≈ 2.5 less CPU-time. Con-
sequently, although the scheme may be less beneficial than
the fully adaptive techniques currently under development
(e.g.Davies et al., 2011; Kronbichler et al., 2012; Burstedde
et al., 2013), it will allow pre-existing codes to examine more
challenging problems than have previously been possible (in-
deed, it has already done so, as demonstrated byDavies and
Davies, 2009). Given the amount of investment that has gone
into these codes, a method such as that presented, which
will extend their lifetime and applicability, is a worthwhile
and significant development. Indeed, with such capabilities,

global 3-D spherical mantle convection simulations, at Earth-
like convective vigour, will no longer be restricted to individ-
uals / institutions with the largest and most advanced compu-
tational facilities, as has previously been the case.
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