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Summary 

 

Telomeres cap the end of eukaryotic chromosomes and prevent the natural end of a chromosome 

from being recognised as a double-stranded DNA break. Dysfunctional telomeres may trigger 

replicative senescence, or fuse with other telomeres or with non-telomeric DNA breaks. The length 

of a telomere plays a key role in telomere function. Relatively little is known about how telomeric 

chromatin influences telomere length and function. A number of studies in mammalian cells have 

identified a handful of chromatin remodelling proteins and the chromatin marks they deposit in 

telomere length regulation. However such examples at human telomeres are scarce. 

 

The primary aim of this thesis was to investigate whether the chromatin structure of a telomere is a 

determinant of its length in human cells. Two approaches were taken to address this issue: Firstly, 

the chromatin structure of telomeres of differing lengths were directly analysed by measuring 

enrichment of histone modifications known to be prominent at telomeres in other model organisms. 

Secondly, selected chromatin remodelling proteins were studied to determine whether they play a 

role in telomeric chromatin structure and telomere length. 

 

Single Telomere Length Analysis (STELA) provides a high resolution method to measure telomere 

length distributions at individual chromosome ends. STELA assays were previously designed for the 

2p, 9p, 11q, 12q, 16p, 17p and 18q telomeres. An allele‐specific STELA assay has also been designed 

for the XpYp chromosome end. In this study novel telomere and telomeric allele‐specific qPCR assays 

were developed for the same chromosome ends. These qPCR assays, when used in conjunction with 

ChIP provide a tool for analysing telomeric chromatin structure at individual chromosome ends. 

Applying this ChIP‐qPCR approach alongside STELA allows any correlations between telomeric 

chromatin structure and telomere length to be identified. This approach suggested differences in 

telomeric chromatin structure between telomeres of different lengths in telomerase‐positive 

HT1080 fibrosarcoma cells. Shorter HT1080 telomeres were less abundant in H3 and TRF1 and also 

had lower levels of H4K20me3 and, to a lesser extent, H3K4me3 compared to longer telomeres. 

Differences in chromatin structure were not observed between telomeres of different lengths in 

telomerase negative MRC5 fibroblasts. Changes in chromatin structure were observed at individual 

telomeres/telomere alleles were observed between actively proliferating cells and in cells 

undergoing senescence. Telomeric enrichment of H3 and TRF1 as well as the histone methylation 

marks H3K4me3, H3K9me3 and H4K20me3 were reduced in senescent cells. The degree of 

chromatin structural change as the cells entered senescence differed between chromosome ends. 

This highlights the benefits of using the telomere-specific ChIP-qPCR approach over the more 

traditional ChIP-dot blot assays which would not be able to differentiate between the chromatin 

structure of different chromosome ends. 

 

To identify roles for chromatin remodelling proteins in telomere length maintenance siRNA 

mediated knockdown of selected chromatin remodelers was performed in a clonal population of 

HT1080 cells followed by STELA analysis. RNAi-depletion of the histone methyltransferase (HMTase) 
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EHMT2 resulted in an increase in very short 17p telomeres whereas loss of another HMTase, DOT1L 

caused a divergence in the 17p telomere length distribution suggesting the presence of two 

subpopulations of cells each with differing telomere length distributions. Subtle changes in mean 

telomere length was observed after siRNA mediated knockdown of the HMTases MLL and EZH2, the 

histone deacetylases (HDACs) HDAC1 and SIRT6, the ATP dependent chromatin remodelling complex 

subunit BAF155 and the H3.3 histone chaperone DAXX. However due to certain limitations of the 

RNAi screen the validity of these observations is questionable and more work would have to be 

performed to confirm whether these chromatin remodelers have an effect on telomere length. 

Finally, dramatic telomere shortening was observed in a keratinocyte holoclone population after 

siRNA mediated knockdown of DAXX at number of chromosome ends. Prolonged depletion of DAXX 

also caused an increase in telomere‐to‐telomere fusions. A similarly dramatic loss in telomere length 

was seen in these cells after knockdown of EHMT2. 
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Chapter 1 

Introduction 

 

1.1 The history of the telomere 

The ends of linear eukaryotic chromosomes or telomeres were first described over 70 years 

ago in two independent pioneering studies by the geneticists Hermann Joseph Muller and 

Barbara McClintock. Whist studying X ray-induced DNA breaks in Drosophila melanogaster 

Muller observed that chromosomal aberrations resulting from ionizing radiation such as 

inversions, deletions and translocations never involved the natural ends of chromosomes 

(Muller 1938). This led Muller to speculate about the presence of a terminal gene with a 

specialised function of sealing the chromosome end. Muller coined the term telomere for 

this terminal gene from the Greek, telo = end, and mere = part. 

 

Similar observations were made by Barbara McClintock in maize (Zea mays) where X-ray 

induced chromosomal aberrations resulted in fusion events between sister chromatids. 

These dicentric chromosomes formed a bridge which breaks during the anaphase stage of 

mitosis when the two centromeres are pulled to opposite poles. Following DNA replication 

in the cell cycle of the daughter cells, sister chromatids fuse again and the breakage-fusions-

bridge cycle (BFB) cycle continues (McClintock 1941). These BFB cycles can lead to unequal 

exchange of genetic information causing gene amplifications and deletions. McClintock also 

found that propagation of the BFB cycles only occured within somatic cells, in embryonic 

sporophytes the broken chromosome ends were permanently healed (McClintock 1941). 

 

Prior to the discovery of telomeres Alexis Carrel postulated that vertebrate cells can divide 

indefinitely in culture and are therefore “immortal” based on the continuous culture of chick 

heart fibroblasts for 34 years (Carrel and Ebeling 1921). This concept of cell immortality was 
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definitively disproved by the work of Paul Moorhead and Leonard Hayflick who 

demonstrated that normal human fibroblasts have a finite proliferative capacity (Hayflick 

and Moorhead 1961, Hayflick 1965). They observed that fibroblast cultures derived from 

human skin stop dividing after 40-50 cell divisions at which point they senesce. These cells 

appeared to have a cellular division counting mechanism. 

 

In the 1970s James Watson and Alexey Olovnikov noted that DNA replication was unable to 

produce a complete copy of a linear chromosome (Olovnikov 1971, Watson 1972). This was 

referred to as “the end replication problem” and would in theory result in a shortening of a 

chromosome after each round of cell division. A link between the end replication problem 

and cellular senescence described by Hayflick was proposed by Olovnikov: he reasoned that 

the continual shortening of the terminal gene or the ‘telogene’ at each round of replication 

may act as a molecular clock and might explain why normal cells can only divide a specific 

number of times (Olovnikov 1973). 

 

The presence of the hexameric telomeric repeat TTGGGG in Tetrahymena thermophila  was 

discovered in 1978 by Elizabeth Blackburn (Blackburn and Gall 1978). The discovery a few 

years later that yeast could recognise and maintain Tetrahymena telomeric DNA suggested 

that a fundamental cellular mechanism was involved and that the presence of telomeric 

repeats was conserved throughout eukaryotic evolution (Szostak and Blackburn 1982). 

 

1.2 Telomere Structure 

Telomeric DNA has since been shown to be highly conserved amongst eukaryotes. Despite 

variation in sequence composition and length, telomeric DNA, for most eukaryotes, is 

composed of double stranded short tandem repeats. Bound to these telomeric repeats are a 

multitude of proteins including the shelterin complex and other transiently-binding proteins 
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which has led to the telomere being described as a nucleoprotein complex. At the telomere 

terminus is a single stranded 3’ protrusion of the G strand referred to as the 3’ overhang 

which is maintained throughout the replicative lifespan of the cell (Chai, Shay et al. 2005). 

Like the length of telomeres themselves, the length of the G-strand overhang varies 

between species: in protozoa the average length is between 10-20bp whereas in mammalian 

cells it is considerably longer. Human 3’ overhang length is generally considered to be 50-

200bp long (Makarov, Hirose et al. 1997, McElligott and Wellinger 1997). 3’ overhangs were 

originally thought to result from incomplete synthesis of the lagging strand during DNA 

replication however the fact that 3’ overhangs are also found on leading strands shows the 

requirement of telomerase-mediated expansion of the G-rich strand or nucleolytic 

degradation of the C-rich strand at these chromosome ends (Dionne and Wellinger 1996, 

Parenteau and Wellinger 2002). The 3’ overhang is thought to strand invade the duplex 

telomeric repeats to form a higher order ‘t-loop’ structure (Griffith, Comeau et al. 1999). The 

overhang then base pairs with the C-rich strand, displacing the G-rich strand at this site into 

a displacement loop (D loop). T-loops have been observed in a number of eukaryotes 

including protozoa (Munoz-Jordan, Cross et al. 2001) plants (Cesare, Quinney et al. 2003), 

yeast (Tomaska, Willcox et al. 2004) and humans (Griffith, Comeau et al. 1999) however little 

is known about their dynamics, how they are regulated by telomeric proteins or whether 

they are present throughout the cell cycle or displaced during DNA replication (Palm and de 

Lange 2008). In vitro, telomeric ssDNA readily forms higher order G-quadruplex structures 

(Neidle and Parkinson 2003) although these structures have only thus far been reported in 

vivo at ciliate telomeres (Lipps and Rhodes 2009). These G-quadruplex structures have been 

shown to be implicated in telomere protection and inhibition of telomerase-dependent 

telomere extension (Lipps and Rhodes 2009). 
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Although differences in telomere structure exist amongst eukaryotes the evolutionary 

conservation of many components of the telomere highlight the fundamental role they play 

during the cell cycle and lifespan of a eukaryotic cell. These differences in telomeric 

composition in different eukaryotes are discussed below 

 

1.2.1 Diptera 

Drosophila melanogaster telomeres have a unique telomere structure compared to other 

eukaryotes. Drosophila telomeres are not maintained by telomerase and therefore lack the 

short arrays of simple repeat units. Instead they are maintained by two non-LTR 

reterotransposons; HeT-A and TART that transpose specifically to chromosome ends 

resulting in head-to tail arrays of these elements (Pardue and DeBaryshe 2003, Pardue, 

Rashkova et al. 2005). Despite the variation in telomeric repeat make-up, Drosophila 

telomeres still share many characteristics with telomeres of other eukaryotes such as 

homologous telomere binding proteins. 

 

1.2.2 Protozoa 

The presence of telomere repeats was first discovered on the ribosomal DNA 

minichromosome in Tetrahymena thermophila (Blackburn and Gall 1978). These protozoan 

telomeres contained 20-70 tandem copies of a simple hexanucleotide with the sequence 

TTGGGG. Since that discovery the macronuclear DNA of the ciliates Stylonychia putulata and 

Oxytricha fallax were shown be capped with a 20 nucleotide long stretch of TTTTGGGG 

telomeric repeats with the latter also ending in a 16 nucleotide single stranded 3’ overhang 

(Oka, Shiota et al. 1980, Pluta, Kaine et al. 1982). Certain Trypanosome telomere repeat 

elements have been characterised such as in T. cruzi and T. brucei. These protozoan 

telomeres are much longer consisting of 10-20kb of the repeat array TTAGGG (Blackburn 

and Challoner 1984, Munoz-Jordan, Cross et al. 2001) with the latter telomeres forming a t-
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loop approximately 1kb in size. Both display a 3’ overhang ranging from 9-50 nucleotides in 

T. cruzi and 21-250 nucleotides T. brucei (Chiurillo, Cano et al. 1999, Munoz-Jordan, Cross et 

al. 2001). 

 

1.2.3 Fungi 

Chromosomes in Saccharomyces cerevisiae were originally shown to terminate in tandem 

irregular repeats of C1-3A/TG1-3 (Shampay, Szostak et al. 1984) however it has since been 

shown that these telomeres display an unusual degree of heterogeneity (Wang and Zakian 

1990). The telomeric repeat tract is composed of a terminal sequence of G2-3(TG)1-6 repeats 

and an internal domain of TG1-7 repeats. This heterogeneity is experimentally useful as it 

allows distinction between newly synthesised and pre-existing telomeric DNA (Wang and 

Zakian 1990). S. cerevisiae telomeres terminate with a 3’ overhang which are short 

throughout most of the cell cycle (12-15nt) but which are much longer (30-100nt) in late 

S/G2 phase (Wellinger, Wolf et al. 1993, Larrivee, LeBel et al. 2004). This increase in 3’ 

overhang is also seen in Schizosaccharomyces pombe. These telomeres are composed of 

300bp of the repeat sequence (GTTACA)n (Kibe, Tomita et al. 2003). A higher order looped 

structure has been identified in both S. pombe (Tomaska, Willcox et al. 2004) and S. 

cerevisiae (de Bruin, Zaman et al. 2001). 

 

1.2.4 Plants 

 The most detailed knowledge of plant telomere biology is found in Arabidopsis thaliana. 

Telomeres in this plant consist of TTTAGGG repeats (Richards and Ausubel 1988) and can 

range in size from 2-9kb (Richards and Ausubel 1988, Shakirov and Shippen 2004). Similar 

Arabidopsis-type telomere repeats have since been found in most angiosperms however 

several studies have revealed that the sequence is absent in the telomerase-negative Allium 

cepa onion and related species (Pich, Fuchs et al. 1996). Many species within Asparagales 
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possess the vertebrate TTAGGG repeat array whereas others possess variant tandem 

repeats such as TTGGGG (Sykorova, Lim et al. 2003). Telomere length varies greatly between 

different plant species ranging from 0.5kb in C. vulgaris to 150kb in tobacco (Fajkus, Kovarik 

et al. 1995). 3’ overhangs have been identified in Arabidopsis and S. latifolia (Riha, McKnight 

et al. 2000, Riha and Shippen 2003, Berthiau, Yankulov et al. 2006) however in the latter 

case these overhangs were only found at half of the telomeres. The only plant to date in 

which a telomeric t-loop structure has been found is Pisum sativum (Cesare, Quinney et al. 

2003). 

 

1.2.5 Mammalian telomere structure 

TTAGGG was identified as the telomere repeat unit in human cells (Moyzis, Buckingham et 

al. 1988) and was later shown to be shared by mice (Meyne, Ratliff et al. 1989). The length of 

this repeat array in mice varies with sub-species and can range from ~12kb in Mus. spretus 

to 200kb in Mus. musculus (Kipling and Cooke 1990, Hemann and Greider 2000). At human 

chromosome ends the range of telomere length is much shorter (5-20kb). In addition to the 

TTAGGG repeats are degenerate telomere variant repeats such as TCAGGG, TTGGGG and 

TGAGGG in the proximal 1-2kb of the telomere (de Lange, Shiue et al. 1990, Baird, Jeffreys et 

al. 1995, Baird, Coleman et al. 2000). 

 

1.2.6 Subtelomeric regions 

Subtelomeric regions are located adjacent to the telomere repeat tract DNA. These regions 

range from 10-300kb in size and consist of unusually dynamic and variable mosaics of 

sequence arrays (Mefford and Trask 2002).  Subtelomeres are structurally similar between 

species in that they are composed of various repeated elements however the arrangement 

and composition of these sequences vary greatly among organisms. The structure of 

subtelomeric regions has been studied in a wide range of organisms including Plasmodium 
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falciparum, Saccharomyces cerevisiae, Drosophila melanogaster, various plant species and 

humans. 

 

The subtelomeric regions of parasites and pathogens such as Trypanosoma brucei and 

Plasmodium falciparum have been extensively studied and contain genes encoding surface 

antigens used in host immune invasion as well as tandem arrays of repetitive sequences (Eid 

and Sollner-Webb 1995, Pace, Ponzi et al. 1995, Rubio, Thompson et al. 1996). Drosophila 

subtelomeres also contain tandem repeat arrays which vary in size and sequence 

composition between chromosome ends (Mason and Biessmann 1995). 

 

Plants subtelomeric regions contain large tracts of tandem repeats which are separated 

from the telomeric repeat tract by spacer sequences (Ganal, Broun et al. 1992, Pryde, 

Gorham et al. 1997). Arabidopsis subtelomeric regions are unique: 8 out of the 10 

chromosome ends share very little homology between subtelomeres. Furthermore, the 

sequence directly adjacent to the telomere repeat tract contains no highly repetitive 

elements (Heacock, Spangler et al. 2004). It is these features of Arabidopsis subtelomeric 

regions which made them suitable for the development of PETRA (primer extension 

telomere repeat amplification). PETRA allows the amplification of individual telomeres and is 

achieved through the use of telomere-specific primers designed around the unique 

subtelomeric DNA sequence directly adjacent to the telomere repeat tract (Heacock, 

Spangler et al. 2004). 

 

C. elegans display even less homology between subtelomeric regions. Chromosome ends in 

this organism lack homology to each other beyond the telomeric repeat array (Wicky, 

Villeneuve et al. 1996). Like in Arabidopsis, these unique subtelomeric regions in C. Elegans 

have been exploited for the development of PCR-based telomere-specific length analysis. 
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STELA (Single Telomere Length Analysis) has allowed the measurement of single telomere 

length distributions from a single worm (Cheung, Schertzer et al. 2004). 

 

One of the most well characterised subtelomeric regions are those of S. cerevisiae. These 

subtelomeres contain several gene families, a transposable element family and repetitive 

elements often referred to as TAS elements (telomere associated sequences) (Pryde, 

Gorham et al. 1997, Wellinger and Zakian 2012). There are two classes of TAS elements: X 

and Y’. Y’ elements exist in two sizes, Y’ long (6.7kb) and Y’ short (5.2kb) which differ from 

each other by multiple insertions and deletions (Louis and Haber 1992). Up to four copies of 

these Y’ elements are present immediately adjacent to the telomere repeat array (Chan and 

Tye 1983). These Y’ elements are only found in approximately half of the subtelomeres in a 

given strain and the identity of Y’-less subtelomeres differ from strain to strain (Horowitz, 

Thorburn et al. 1984). The X element is composed of a series of repeats and is located 

centromere-proximal to the Y’ element. X is present at nearly all telomeres although it 

shows greater variation in size and sequence identity (Louis, Naumova et al. 1994, Wellinger 

and Zakian 2012). Often a stretch of degenerate telomere repeats separate the ‘X’ and 

‘Y’elements (Walmsley, Chan et al. 1984). Centromere-proximal to the X element are blocks 

of sequence that vary in size from less than 1kb up to 30kb and are shared only between a 

few chromosome ends (Pryde, Gorham et al. 1997). 

 

 In a similar manner to yeast subtelomeric regions, human subtelomeres also contain 

degenerate telomere repeat tracts. Again the location and size of these (TTAGGG)n like 

arrays vary between chromosome ends however at the 4p, 16p and 22q subtelomeric 

regions these arrays appear to separate distinct distal and proximal domains resulting in a 

subtelomeric structure similar to what is seen in S. cerevisiae (Flint, Bates et al. 1997). 
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More recent studies on human subtelomeres has shed more light on the domain 

organisation and structure of these highly variable regions. Harold Riethman and co-workers 

have performed considerable work in mapping human subtelomeric sequence assemblies 

resulting in reference sequences for all human subtelomeric regions (Riethman, Ambrosini 

et al. 2004). Analysis of these sequence assemblies has led to the identification of the 

various elements which constitute a human subtelomeric region. These include single copy 

DNA, segmentally duplicated DNA tracts which are present in two or more subtelomeres 

(subtelomeric repeats or Srpts), segmentally duplicated stretches of DNA present at only one 

chromosome end, satellite sequences, and internal (TTAGGG)n-like sequences. The 

distribution of these elements varies greatly between chromosome ends giving each 

subtelomeric region its own unique structure. The chromosome-specific segmental 

duplications are more variably dispersed throughout each subtelomere whereas the 

majority of subtelomeric repeats (Srpts) are confined to the most distal region of the 

subtelomere (Riethman, Ambrosini et al. 2004, Riethman, Ambrosini et al. 2005). The 

duplicons within the Srpts are found at a number of chromosome ends suggesting the 

presence of subtelomere families. The 7q, 8q, 11q, 14q, 18q and XpYp chromosome ends 

contain single-copy DNA sequences immediately adjacent to the TTAGGG repeat tract 

making them good candidates for Single Telomere Length Analysis (STELA) assay 

development. 

 

 

1.3 Telomere-associated proteins 

 

1.3.1 Shelterin 

Telomeric DNA associates with the six-protein complex shelterin. Shelterin allows cells to 

distinguish between natural chromosome ends and DNA breaks, represses DNA repair and 
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regulates telomerase-based telomere maintenance (Palm and de Lange 2008). Shelterin is 

made up of Telomeric Repeat binding Factor 1 and 2 (TRF1 and 2), Protection Of Telomeres 

1 (POT1), TRF1-Interacting Nuclear protein 2 (TIN2), Rap1 (the human ortholog of the yeast 

Repressor/Activator Protein 1) and TPP1. 

 

1.3.1.1 TRF1 and TRF2 

TRF1 and TRF2 are orthologs of the fission yeast Taz1 protein (Palm and de Lange 2008). 

They share a common domain structure consisting of a flexible hinge domain which connects 

C-terminal SANT/Myb domain allowing specific binding for the double stranded sequence 

5’YTAGGGTTR3’ and a TRF homology (TRFH) domain. It is through the TRFH domain that 

homodimeization of either TRF1 or TRF2 occur although TRF1 and TRF2 do not directly 

interact (Broccoli, Smogorzewska et al. 1997, Fairall, Chapman et al. 2001). This domain also 

provides a site through which other proteins are recruited to telomeres (Chen, Yang et al. 

2008). Both TRF1 and TRF2 are highly abundant at the telomere and are estimated to cover 

each telomere with thousands of dimers (Palm and de Lange 2008). They also have the 

ability to alter the higher order structure of a telomere: TRF1 can loop and pair stretches of 

telomeric DNA whereas TRF2 has been shown to form t-loop structures on a model telomere 

substrate (Stansel, de Lange et al. 2001).  

 

TRF1 is a negative regulator of telomere length: its overexpression leads to progressive 

telomere shortening whereas a dominant-negative form of TRF1 that removes endogenous 

TRF1 from telomeres has been shown to result in telomere elongation (van Steensel and de 

Lange 1997). TRF1 promotes efficient replication of TTAGGG repeats and prevent replication 

fork stalling (Sfeir, Kosiyatrakul et al. 2009). 
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TRF2 is important for telomere capping. Deletion of TRF2 results in an ATM-mediated DNA 

damage signal (Karlseder, Broccoli et al. 1999, Karlseder, Hoke et al. 2004, Celli and de Lange 

2005, Denchi and de Lange 2007). TRF2 has also been shown to interact with ATM as well as 

the Mre11 complex (Zhu, Kuster et al. 2000). TRF2 has been shown to prevent Non-

Homologous End-Joining (NHEJ) at telomeres by preventing ERCC1/XPF-mediated removal of 

the 3’ overhang (Zhu, Niedernhofer et al. 2003). Overexpression of TRF2 results in telomere 

shortening indicating an additional role for the protein as a negative regulator of telomere 

length (Smogorzewska, van Steensel et al. 2000). 

 

1.3.1.2 RAP1 

Little is known about Rap1 however it has been shown to be a binding partner of TRF2 (Li, 

Oestreich et al. 2000). Unlike yeast Rap1, human Rap1 lacks the ability to directly bind DNA. 

Instead its localization at the telomere is dependent on TRF2 with which it forms a 1:1 

complex (Li and de Lange 2003). Like TRF2, Rap1 is a negative regulator of telomere length 

(Li and de Lange 2003, O'Connor, Safari et al. 2004). Rap1 also plays a role in suppressing 

DNA repair pathways: In humans Rap1 is thought to inhibit NHEJ at telomeres. However this 

view is not supported by studies in mice where Rap1 is dispensable for the suppression of 

NHEJ and instead appears to suppress homologous recombination (Bae and Baumann 2007, 

Sarthy, Bae et al. 2009, Sfeir, Kabir et al. 2010). 

 

1.3.1.3 TIN2 

TIN2 tethers the shelterin components that bind ssDNA, TPP1/POT1, to the dsDNA-binding 

components TRF1 and TRF2 (de Lange 2005). The TRFH domains within TRF1 and TRF2 bind 

the C-terminus and N terminus respectively (Chen, Yang et al. 2008). The recruitment of 

TPP1-POT1 is achieved through a third protein interaction site in the N terminus of TIN2 

(Palm and de Lange 2008). TIN2 also prevents the release of TRF1 from the telomere by 
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preventing its ADP-ribosylation by tankyrase (Smith, Giriat et al. 1998). Furthermore the 

TIN2 bridge formed between TRF1 and TRF2 stabilizes TRF2 binding to telomeric DNA (Kim, 

Beausejour et al. 2004, Ye, Donigian et al. 2004). Loss of TIN2 results in a DNA damage 

response at the telomere (Kim, Beausejour et al. 2004) and expression of TIN2 with a 

truncated N-terminus in HT1080 cells causes telomere elongation showing that TIN2 is  a 

negative regulator of telomere length (Kim, Kaminker et al. 1999). 

 

1.3.1.4 POT1 

POT1 was first identified through its sequence similarity to TEBPα/β telomeric binding 

complex in Oxytricha nova (Baumann and Cech 2001). Like TEBPα/β, POT1 contains two OB 

folds in its N-terminus which allows it to bind single-stranded G-strand telomeric sequence 

in vitro (Baumann and Cech 2001, Lei, Podell et al. 2004). POT1 also binds the shelterin 

component TPP1, thereby connecting it to TIN2, this interaction with TPP1 has been shown 

to be critical for POT1 association at telomeres (Liu, Safari et al. 2004, Ye, Hockemeyer et al. 

2004, Hockemeyer, Palm et al. 2007) however contrasting reports suggest that a TPP1-

independent telomeric association of POT1 can occur (Colgin, Baran et al. 2003, He, Multani 

et al. 2006). Many telomeric functions of POT1 have been revealed: It is thought to stabilize 

the t-loop by binding to the displacement G-strand in the D-loop (Loayza, Parsons et al. 

2004). Reduced loading of POT1 or replacement of the endogenous POT1 with a mutant 

form lacking the DNA binding domain leads to telomerase-dependent telomere elongation 

(Loayza and de Lange 2003, Ye, Hockemeyer et al. 2004). POT1 also represses the ATR 

signalling cascade, protects against telomere-telomere fusions and has a role in generating 

the correct sequence at human chromosome ends (Veldman, Etheridge et al. 2004, 

Hockemeyer, Sfeir et al. 2005, Denchi and de Lange 2007). 

 

1.3.1.5 TPP1 
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As mentioned above TPP1 forms a complex with POT1 through its centrally located POT1 

interacting domain (Liu, Safari et al. 2004, Ye, Hockemeyer et al. 2004). This interaction is 

not only required for telomeric association of POT1 but also proper localisation of POT1 in 

the nucleus (Chen, Liu et al. 2007). Expression of a non-functional TPP1 results in loss of 

telomeric POT1 resulting in telomere de-protection and telomere length alterations similar 

to what is seen after POT1 loss (Liu, Safari et al. 2004, Denchi and de Lange 2007, Xin, Liu et 

al. 2007). TPP1 also functions to recruit telomerase to telomeres. At the N-terminus of TPP1 

is an OB-fold domain which interacts with telomerase and this interaction is necessary for 

the recruitment of telomerase (Abreu, Aritonovska et al. 2010, Nandakumar, Bell et al. 2012, 

Zhong, Batista et al. 2012).  

 

Interaction between shelterin components and how the complex associates with telomeric 

DNA is summarised in fig. 1.1. 

 

1.3.2 Other telomere binding proteins 

In addition to shelterin mammalian telomeres contain a large number of other proteins that 

contribute to the maintenance and protection of chromosome ends. These proteins are less 

abundant than shelterin and are only transiently associated with the telomere during the 

cell cycle (Palm and de Lange 2008). Additionally the majority of these factors have non-

telomeric roles and are more abundant at other sites in the nucleus or cytoplasm. 

Paradoxically a number of DNA repair proteins have a telomeric role including the Ku70/80 

heterodimer (Hsu, Gilley et al. 1999), XPF/ERCC1 (Zhu, Niedernhofer et al. 2003), the Mre11 

complex (Zhu, Kuster et al. 2000) and RAD51D (Tarsounas, Munoz et al. 2004). Other 

proteins present at the telomere include the DNA replication proteins ORC (Deng, Dheekollu 

et al. 2007), RecQ helicases (Opresko, von Kobbe et al. 2002) and proteins involved in the 

maintenance of telomeric chromatin such as HP1 (Garcia-Cao, O'Sullivan et al. 2004). 
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Figure 1.1. The shelterin complex (a) The six protein components in the shelterin complex (b) Representation of the shelterin 
complex bound to the telomere in a t-loop con�guration. TRF1 (orange) and TRF2 (green) independently bind TTAGGG repeats 
as homodimers. Rap1 (purple) is a binding partner of TRF2. POT1 binds single stranded telomeric DNA and is connected to TIN2 
(red) via TPP1 (yellow). TIN2 connects TPP1-POT1 to TRF1 and TRF2-RAP1thereby completing the complex. Adapted from Give 
me a break: How telomeres suppress the DNA damage response Denchi. DNA repair 8 1118-1126 (2009).
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1.4 Telomere function 

 

1.4.1 Chromosome capping and DNA damage response 

One of the fundamental functions of the telomere is to protect natural chromosome ends 

from being recognised as DNA double-stranded breaks and consequently prevent fusion 

between telomeres. Mammalian cells are alerted to DNA lesions in their genome by two 

phosphatidylinositol 3-kinase-related protein kinases ATM and ATR (Shiloh 2001). The ATM 

pathway is thought to respond to double-stranded breaks whereas ATR activation requires 

the formation of ssDNA. Both ATM and ATR phosphorylate histone H2AX in a large 

chromatin domain around the break site which promotes the local accumulation of other 

DNA damage response factors such as MDC, 53BP1 and the Mre11 complex. The shelterin 

components TRF2 and POT1 have been shown to play a key role in preventing telomeres 

from being recognised as double stranded DNA breaks. Deletion of TRF2 in mouse cells or its 

inhibition with a dominant-negative form in human cells results in an ATM-mediated DNA 

damage signal (Karlseder, Broccoli et al. 1999, Celli and de Lange 2005, Denchi and de Lange 

2007). Two models have been proposed to explain the TRF2 repression of the ATM pathway: 

the first suggests that TRF2 maintains the higher order telomere structure which sequesters 

the telomere terminus away from DNA repair machinery. In support of this argument is the 

fact that TRF2 has been shown to induce t-loop formation in vitro (Stansel, de Lange et al. 

2001) however whether t-loops are lost when TRF2 is inhibited is unknown. The second 

model suggests that TRF2 functions to block a step within the signalling pathway. TRF2 has 

previously been shown to physically interact with DDR proteins such as the Mre11 complex 

and ATM and even inhibit ATM activation which supports this second model (Zhu, Kuster et 

al. 2000, Karlseder, Hoke et al. 2004). POT1 deletion on the other hand results in activation 

of the ATR pathway (Karlseder, Broccoli et al. 1999, Celli and de Lange 2005, Denchi and de 

Lange 2007). An identical DNA damage response is seen upon loss of TPP1 and in cells 
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expressing a mutant POT1 which is incapable of binding TPP1 showing that the interaction 

between the two proteins is vital for repression of the ATR pathway (Karlseder, Broccoli et 

al. 1999, Celli and de Lange 2005, Denchi and de Lange 2007, Hockemeyer, Palm et al. 2007, 

Xin, Liu et al. 2007). It is thought that the POT1/TPP1 complex prevents binding of RPA 

(replication protein A) to single stranded telomeric DNA. 

 

1.4.2 Telomere position effect 

The silencing of telomere-proximal genes or telomere position effect was first identified in 

Drosophila (Gehring, Klemenz et al. 1984, Hazelrigg, Levis et al. 1984, Levis, Hazelrigg et al. 

1985) although it has been most extensively studied in Saccharomyces cerevisiae. TPE was 

first demonstrated in yeast by integration of a URA3 marker gene next to an array of 

telomeric repeats. Expression of the URA3 gene allows growth of the cells on a medium 

lacking uracil however on a plate containing 5-FOA (5-fluoro-orotic acid), a drug toxic to 

URA3 expressing cells, 20-60% cells were still able to grow suggesting that URA3 was 

silenced in the vicinity of the telomere (Gottschling, Aparicio et al. 1990). Since this initial 

discovery in yeast the mechanism regulating TPE has been thoroughly investigated. This 

mechanism consists of an inward spreading of heterochromatin originating from the 

telomere. Proteins required for TPE include the Sir (Silent Information Regulators) proteins 

(Aparicio, Billington et al. 1991), the Ku heterodimer components (Ku70 and Ku80) (Boulton 

and Jackson 1998) and the Rap1 protein (Kyrion, Liu et al. 1993). Rap1 and Ku70/80 are 

responsible for the recruitment of the Sir proteins to the telomere and thereby initiate the 

formation of a heterochromatin complex that will propagate towards subtelomeric DNA. 

This spreading of the heterochromatin complex requires the histone deacetylase activity of 

Sir2 which allows binding of the Sir3 and Sir4 proteins (Renauld, Aparicio et al. 1993, Hoppe, 

Tanny et al. 2002). Increasing telomere length improves TPE (Aparicio, Billington et al. 1991, 

Kyrion, Liu et al. 1993, Renauld, Aparicio et al. 1993). An explanation for this may be due to 
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the increased number of Rap1 on longer telomeres which allows increased recruitment of Sir 

proteins thereby promoting formation of the heterochromatin complex. In addition to the 

Sir histone deacetylases, other histone modifying proteins influence TPE in yeast. Deletion of 

the histone acetyltransferase Sas2 results in increased TPE and increased spreading of the 

Sir3 protein (Suka, Luo et al. 2002). Methylation of lysines 4 and 79 on histone H3 by the 

Set1 and Dot1 histone methyltransferases display anti-silencing properties, mainly by 

preventing Sir association with the histone H3 tail (Santos-Rosa, Schneider et al. 2002). 

 

A similar silencing of telomere proximal genes was first identified in humans over a decade 

ago. HeLa clones containing a luciferase reporter gene adjacent to a newly formed telomere 

were shown to express 10 times less luciferase than control clones generated by random 

integration of the luciferase gene. Luciferase expression was restored by the histone 

deactylase inhibitor trichostatin A (TSA) (Baur, Zou et al. 2001). Overexpression of the 

reverse transcriptase subunit (TERT) and subsequent telomere elongation led to promotion 

of TPE whereas overexpression of TRF1, which has been shown to regulate telomere length 

results in re-expression of telomere-proximal genes (Koering, Pollice et al. 2002) indicating 

the involvement of both telomere length and architecture in human TPE. The human Sir2 

homolog SIRT6 was later found to be required for TPE in human cells (Tennen, Bua et al. 

2011). 

 

1.4.3 Senescence 

Cellular senescence was described more than four decades ago when Hayflick and 

colleagues demonstrated that cells have a limited proliferative capacity when grown in 

culture (Hayflick 1965). These experiments showed that the ability of cultured human 

fibroblasts to proliferate diminishes over time to a point where, although still viable, they fail 

to grow despite the presence of ample space, nutrients and growth factors in the medium 
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(Campisi and d'Adda di Fagagna 2007). Since these findings cellular senescence has been 

shown to play a fundamental role in cancer and aging (Shay and Wright 2005). Senescence 

can be induced by many stimuli including oncogene overexpression, chromatin perturbation, 

DNA damage and telomere dysfunction (Campisi and d'Adda di Fagagna 2007). Senescent 

cells cease to proliferate, become resistant to cell-death signals (apoptosis resistance) and 

acquire widespread changes in gene expression. 

 

1.4.3.1 Telomere-dependant replicative senescence 

The end replication problem results in the progressive loss of telomeric DNA with every cell 

division until telomeres become short and dysfunctional. These dysfunctional telomeres 

trigger a classical DNA damage response (DDR) which involves recruitment of DDR proteins 

such as 53BP1, NBS1 and MDC1 to the chromosome end (d'Adda di Fagagna, Reaper et al. 

2003, Takai, Smogorzewska et al. 2003, Herbig, Jobling et al. 2004). The ATM and ATR DNA 

damage kinases are activated in senescent cells which, in addition to mediating H2AX 

phosphorylation, activate the Chk1 and Chk2 kinases. These checkpoint kinases then 

phosphorylate Cdc25, a phosphatase which regulates entry in to and progression through 

the cell cycle (Gould and Nurse 1989) and p53. p53 stimulates expression of p21, a cyclin-

dependent kinase (CDK) inhibitor which in turn inhibits CDK activity, thereby causing cell 

cycle arrest (Pines 1994). DDR can also induce senescence through the p16-pRB pathway. 

However this usually occurs secondary to the p53 pathway (Campisi and d'Adda di Fagagna 

2007). Telomere-induced replicative senescence can be prevented by ectopic expression of 

the telomerase catalytic subunit TERT (Bodnar, Ouellette et al. 1998). However telomerase 

cannot prevent senescence which arises from non-telomeric DNA damage or other 

senescence inducers (Chen, Ijpma et al. 2001). 
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1.4.3.2 Telomere independent replicative senescence 

In addition to short dysfunctional telomeres, other factors have been shown to induce 

senescence. One of these factors is DNA damage: like telomere-dependent replicative 

senescence, DNA damage induced senescence depends strongly on p53 and is usually 

accompanied by expression of p21. Chromatin perturbation also causes senescence, 

particularly the promotion of euchromatin formation by histone deacetylase inhibitors 

(HDACi) (Ogryzko, Hirai et al. 1996, Munro, Barr et al. 2004). The mechanism by which 

senescence is induced upon HDACi treatment is poorly understood and seems to differ 

depending on species and cell type: in human fiboblasts HDACi induces expression of p21 

and p16 and is dependent on the presence of pRB whereas in mouse fibroblasts the p53 

pathway is more important for senescence induction (Ogryzko, Hirai et al. 1996, Munro, Barr 

et al. 2004). Another senescence-inducing factor is oncogene expression: Expression of 

oncogenic RAS in normal human fibroblasts results in permanent G1 arrest (Serrano, Lin et 

al. 1997). Senescence was similarly induced upon overexpression of other members of the 

RAS signalling pathway such as RAF, MEK and BRAF (Lin, Barradas et al. 1998, Zhu, Woods et 

al. 1998, Michaloglou, Vredeveld et al. 2005). Since expression of such oncogenes stimulate 

cell growth it is considered that oncogene-induced senescence is a tumour suppressor 

mechanism (Braig and Schmitt 2006). 

 

1.4.4 The end replication problem 

Another function of the telomere is to provide a solution to the end replication problem. The 

end replication problem arises during the semi-conservative replication of a linear DNA 

template (Olovnikov 1973). Due to the ability of DNA polymerases to synthesize DNA only in 

the 5’ to 3’ direction, the lagging strand must be synthesised in a discontinuous manner 

using short RNA primers to prime DNA synthesis. Removal of these primers results in the 

presence of short DNA sequences or Okazaki fragments typically ~100bp in length (Timson, 
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Singleton et al. 2000) interspersed by gaps 8-12 nucleotides long. These gaps are 

subsequently filled in by extension of the DNA fragments and ligated. Removal of the 

terminal primer however leaves in a gap that cannot be filled resulting in a loss of 

nucleotides with each successive round of replication (Watson 1972). The end replication 

problem is summarised in fig. 1.2. 
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Figure 1.2. Representation of the end replication problem. (a) The 3'–5' leading strand is copied continuously to the end of the 
DNA molecule using DNA polymerase. (b) The 5'–3' lagging strand is copied in discontinuous Okazaki fragments extended from RNA 
primers. The RNA primers are then degraded, the internal gaps are �lled, and the Okazaki fragments ligated. The 5’ end gap is not 
�lled, leaving an unreplicated terminal region. Adapted from ‘The disparity between human cell senescence in vitro and lifelong 
replication in vivo’  Rubin, Nature Biotechnology 20, 675 - 681 (2002)
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1.5 Telomere elongation 

 

1.5.1 Telomerase 

Telomerase is a ribonucleoprotein reverse transcriptase which was discovered in 

Tertahymena thermophilia (Greider and Blackburn 1985) and since been detected in 

protozoa (Shippen-Lentz and Blackburn 1989, Zahler and Prescott 1989) , fungi (Cohn and 

Blackburn 1995, Lingner, Cech et al. 1997), and mammals (Morin 1989, Prowse, Avilion et al. 

1993). 

 

1.5.1.1 Structure 

Telomerase has a dimeric structure, consisting of two copies of a unique catalytic reverse 

transcriptase protein protein (TERT in humans) and a large RNA component (TERC in 

humans) from which the telomeric repeats are copied (Lingner, Hughes et al. 1997) and 

several species-specific telomerase accessory proteins. 

 

TERT consists of three main structural elements: a short C-terminal extension, a central 

catalytic RT domain and a long N-terminal extension which itself contains a TEN domain and 

the telomerase RNA-binding domain (TRBD), both of which are involved in binding single 

stranded nucleic acids (Jacobs, Podell et al. 2006, Rouda and Skordalakes 2007). 

 

TERC consist of three domains, the pseudoknot/template core domain which contains the 

template for telomere addition, the CR4/CR5 domain  and a box H/ACA domain  which 

serves as a binding site for proteins involved in RNA processing and subcellular localisation 

(Wyatt, West et al. 2010). 

 

In addition to TERT and TERC, several species-specific telomerase accessory proteins are 
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associated with the complex which regulate its biogenesis, subcellular localisation and 

functionality (Wyatt, West et al. 2010). Mass spectometric analysis of purified telomerase 

from HeLa cells identified the pseudouridine synthase dyskerin (DKC1) along with the 

NTPase proteins NHP2, NOP10, the closely related ATPases pontin/reptin and TCAB1 

(telomerase Cajal body protein 1) as integral protein components of the enzyme (Mitchell, 

Wood et al. 1999, Cohen, Graham et al. 2007, Fu and Collins 2007, Venteicher, Meng et al. 

2008, Venteicher, Abreu et al. 2009). Dyskerin, NHP2 and NOP10 are required for the 

stability and accumulation of TERC (Mitchell, Wood et al. 1999, Cohen, Graham et al. 2007, 

Fu and Collins 2007, Venteicher, Meng et al. 2008, Venteicher, Abreu et al. 2009). Similarly 

pontin/reptin are necessary for the stability of TERC (Mitchell, Wood et al. 1999, Cohen, 

Graham et al. 2007, Fu and Collins 2007, Venteicher, Meng et al. 2008, Venteicher, Abreu et 

al. 2009). TCAB1 however is thought to exert its influence on telomerase by affecting its 

subcellular localisation (Mitchell, Wood et al. 1999, Cohen, Graham et al. 2007, Fu and 

Collins 2007, Venteicher, Meng et al. 2008, Venteicher, Abreu et al. 2009, Stern, Zyner et al. 

2012). 

 

1.5.1.2 Function 

Telomerase catalyzes the de novo addition of TTAGGG repeats onto a telomere end. It is 

believed that the process is primed by the single-strand 3’ telomeric overhangs. New 

telomeric sequence is synthesised by TERT adding dNTPs onto the 3’ end using the TERC 

component as the template for reverse transcription. When the 5’-template boundary is 

reached a translocation step repositions the newly synthesised DNA 3’ end within the 

template for a second round of telomere synthesis (Wyatt, West et al. 2010). In a single 

binding and extension event approximately 60 nucleotides are added to a telomere (Zhao, 

Abreu et al. 2011). Additionally, telomerase has been shown to preferentially elongate 

shorter telomeres (Kim, Piatyszek et al. 1994, Britt-Compton, Capper et al. 2009) although 
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another report has suggested that telomerase extends most chromosome ends during each 

S phase (Zhao, Sfeir et al. 2009). 

 

1.5.1.3 Telomerase regulation  

While TERC expression is ubiquitous, TERT expression appears highly regulated. TERT 

expression and telomerase activity are often very low or undetectable in somatic cells 

leading to a loss of ~60-120bp per cell division (Harley, Futcher et al. 1990, Baird, Rowson et 

al. 2003). This telomere attrition is avoided in long-lived cell types such as germ line cells or 

stem cells as telomerase is expressed (Kim, Piatyszek et al. 1994). In most cancer cells (85-

90%) telomerase activity appears elevated. This high telomerase expression is associated 

with cancer cell immortality and has a role in tumour development (Kim, Piatyszek et al. 

1994, Kolquist, Ellisen et al. 1998). A number of transcriptional regulators have been shown 

to influence TERT transcription including the transcription factors Sp1 and MZF-2: mutations 

in the Sp1 binding site completely abolishes TERT promoter activity demonstrating its role as 

a transcriptional activator of TERT (Kyo, Takakura et al. 2008). Conversely inhibition of MZH-

2 binding within the TERT promoter resulted in TERT transcription indicating a repressive 

role of MZH-2 in TERT transcription (Fujimoto, Kyo et al. 2000). Additionally TERT expression 

has also been shown to be positively regulated by the oncogene c-Myc (Kyo, Takakura et al. 

2008). 

 

TERT can also be regulated in a post translational manner. The ubiquitn ligase MKRN1 

interacts with TERT in a yeast-two hybrid assay and its overexpression leads to telomerase 

degradation, decreased telomerase activity and telomere shortening (Kim, Park et al. 2005). 
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Finally, shelterin components have been implicated in telomerase regulation. TPP1 binds the 

TEN domain within TERT and, when in complex with other shelterin components TIN2 and 

POT1, regulates the recruitment of telomerase to a chromosome end (Xin, Liu et al. 2007, 

Abreu, Aritonovska et al. 2010, Nandakumar, Bell et al. 2012, Zhong, Batista et al. 2012). 

 

1.5.2 Alternative Lengthening of Telomeres (ALT pathway) 

The existence of a telomerase-independent telomere lengthening mechanism was first 

demonstrated in telomerase-null mutant yeast. The mechanism was found to be dependent 

on the homologous recombination protein RAD52 (Lundblad and Blackburn 1993). The 

existence of a similar pathway in humans was first discovered in immortalized human cell 

lines in which telomere length was shown to be maintained for many population doublings 

in the absence of telomerase (Bryan, Englezou et al. 1995). It has since been found that in 

15% of all human cancers, telomere length is maintained by the ALT pathway (Cesare and 

Reddel 2010). Although it is agreed that telomere lengthening via the ALT pathway requires 

a DNA recombination the precise mechanism by which this occurs is unknown. Two models 

have been proposed to try and explain the process. The first, the Unequal T-SCE model 

proposes that unequal telomere sister chromatid exchanges (T-SCEs) can result in one 

daughter cell inheriting a lengthened telomere and a prolonged proliferative capacity and 

another daughter cell inheriting a shorter telomere and with it a decreased proliferative 

capacity. The second model involves lengthening of telomeres from recombination-

mediated synthesis of new telomeric DNA using an existing telomeric sequence from an 

adjacent chromosomal telomere as a copy template (Cesare and Reddel 2010). Cells in 

which telomeres maintain their length via the ALT pathway (or ALT cells) have been shown 

to possess telomeres extremely heterogeneous in length (Bryan, Englezou et al. 1995). 

Another phenotypic characteristic of ALT cells include an abundance of extrachromosomal 
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telomeric DNA which may exist as double stranded telomeric circles (t-circles), partially 

stranded circles (G or C circles), linear double stranded DNA or very high molecular weight ‘t-

complex’ DNA that is likely to contain abnormal, highly branched (Ogino, Nakabayashi et al. 

1998, Tokutake, Matsumoto et al. 1998, Cesare, Quinney et al. 2003, Cesare and Griffith 

2004, Henson, Cao et al. 2009, Nabetani and Ishikawa 2009). Additionally, a further 

characteristic of ALT cells is the presence of ALT-associated PML bodies (APBs) (Yeager, 

Neumann et al. 1999).  
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1.6 Telomere length analysis 

 

1.6.1 Terminal Restriction Fragment (TRF) analysis 

TRF analysis involves digestion of genomic DNA with restriction enzymes (in humans usually 

a double digest with HinfI and RsaI). These enzymes digest the majority of genomic DNA but 

not within the telomere repeat tract leaving terminal restriction fragments. These fragments 

are resolved on an agarose gel and detected by telomere repeat containing probes following 

southern blot or in-gel hybridization (Baird 2005). TRF analysis has a number of benefits: it is 

relatively easy and cheap to perform and is also broadly applicable to many different tissue 

types. Despite these advantages TRF analysis does have its drawbacks: it requires large 

amounts of DNA which can be a limiting factor when analysing small tissue or cell samples 

and also severely limit the resolution. Finally there is a telomere length threshold below 

which TRF analysis will not detect. As the method relies on the degree of hybridization very 

low hybridization will occur at very short telomeres. 

 

1.6.2 Quantitative fluorescence in situ hybridization (Q-FISH) 

Q-FISH, developed by Peter Lansdorp (Lansdorp, Verwoerd et al. 1996), involves the 

hybridization of fluorescently-labelled nucleic acid probes to metaphase chromosome 

preparations. Telomere length of individual chromosome ends is represented by Telomere 

Fluorescence Units (TFUs). Its development revealed the heterogeneity displayed between 

telomeres of different chromosome ends within the same cell (Lansdorp, Verwoerd et al. 

1996). Additionally it showed that some chromosome ends (for example 17p) appear to be 

shortest in unrelated individuals (Martens, Zijlmans et al. 1998). Q-FISH has a number of 

advantages over TRF analysis: it has a higher resolution, can be applied when using small 

populations of cells and it allows telomere-specific length measurements to be made. 
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However translating TFU accurately into actual DNA length is problematic and, like TRF 

analysis, it is hybridization-based therefore there is a telomere length threshold below which 

telomeres cannot be detected by Q-FISH. Furthermore Q-FISH can only be applied to 

proliferating cells in culture, senescent cells cannot be analysed. 

 

1.6.3 Flow-FISH 

Flow-FISH is another telomere length analysis developed from the Lansdorp group. It 

involves combining telomere FISH with flow cytometry to provide telomere length 

assessment (Rufer, Dragowska et al. 1998). The development of mulitcolour flow-FISH allows 

telomere length to be measured in specific haematopoietic subpopulations (Plunkett, Soares 

et al. 2001) and has become the method of choice when analysing telomere length dynamics 

of the immune system (Baird 2005).  

 

1.6.4 qPCR 

qPCR-based measurement of telomere length was developed by Cawthon (2002). Telomere 

length is measured using primers which bind telomeric repeats. As telomere length 

increases the number of sites to which the primer can anneal to increases. The amplification 

signal generated at the telomere is then compared to signal from a single copy gene within 

the same sample providing a measurement of relative telomere length. The technique has 

since been modified by the addition of an oligomer standard which allows measurement of 

absolute telomere length (O'Callaghan and Fenech 2011). This development has the obvious 

benefits of allowing a more direct comparison between of telomere length to be made 

between experiments and between laboratories. The advantages of this technique are the 

high throughput nature of it and also comparatively small amounts of starting material 

required compared to other methods of telomere analysis. However like TRF analysis 

chromosome-specific analysis is not possible. 

28



1.6.5 Single Telomere Length Analysis (STELA) 

TRF and other DNA based analyses of telomere length are broadly applicable to numerous 

cell or tissue samples however they lack resolution. Q-FISH on the other hand provides very 

high resolution however it is only applicable to certain cell types (Baird 2005). STELA was 

developed to allow a similarly high resolution analysis of telomere length to Q-FISH but 

which has the broad application range that TRF analysis allows. 

 

STELA is a single-molecule PCR based telomere length analysis that determines the 

distribution of telomere lengths at a specific chromosome end (Baird 2005). A linker repeat 

unit is ligated to the 5’ end of the telomere providing a unique sequence tag (fig. 1.3). DNA is 

diluted such that 4-8 telomeric molecules are amplified in a PCR reaction using a 

chromosome specific primer and teltail, a primer which specifically anneals to the linker 

repeat unit. PCR products are resolved with agarose gel electrophoresis and then detected 

by southern hybridization using a telomere-specific probe. STELA was originally designed at 

the XpYp chromosome end. By designing primers around the extensive sequence 

polymorphisms in XpYp telomere-adjacent DNA the individual alleles can be analysed in 

isolation (Baird, Rowson et al. 2003). The technique has since been further developed for the 

2p, 9p, 11q, 12q, 16q, 17p and 18q chromosome ends (Britt-Compton, Rowson et al. 2006) 

and also to the model organism C. elegans (Cheung, Schertzer et al. 2004). STELA has 

allowed the detailed analysis of telomere loss by the end replication problem and also 

identified additional mutational mechanisms that are required to create severely truncated 

telomeres (Baird 2005). Its increased sensitivity compared to TRF analysis was demonstrated 

by the observation of telomere length in senescent cells: whereas TRF based estimates 

indicated that telomere length at the point of replicative senescence was around 4kb. 

However, when measured by STELA, chromosome ends were shown to be virtually devoid of 
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telomere repeats (Baird, Rowson et al. 2003). This key advantage of STELA to detect very 

short telomeres has led to the definition of a ‘threshold’ length below which telomeres have 

eroded to the point at which they become dysfunctional (Capper, Britt-Compton et al. 2007, 

Lin, Letsolo et al. 2010). STELA is limited in the fact that it is only applicable to chromosome 

ends which contain unique telomere-adjacent sequences to design primers around. 

Additionally it is somewhat labour intensive and due to the requirement of high quality DNA  

is unlikely to be applicable to degraded or fixed material (Baird 2005). 
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centromere
telorette

teltail

telomere-speci�c primer

subtelomeric sequence

telomere repeat variant

TTAGGG

G-strand overhang

Figure 1.3. Representation of STELA PCR A ‘telorette’ linker is designed that is complementary to 7bp overhang at the telomere end. The teltail primer binds the telorette linker. Ampli�cation occurs between the 
teltail primer and the telomere speci�c primer incorporating polymorphisms speci�c to the telomere-adjacent sequence of a particular chromosome end. Adapted from ‘Extensive allelic variation and ultrashort 
telomeres in senescent human cells’  Baird et al. Nature Genetics 33, 203 - 207 (2003).
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1.7 Telomeres and disease 

 

1.7.1 Cancer 

Telomere-dependent replicative senescence limits the proliferative capacity of somatic cells 

however it can be bypassed by inactivation of the p53 and Rb pathways (Lane 1984). 

Continued cell division eventually leads to ‘crisis’, a second proliferative barrier 

characterised by extensive genomic instability and large amounts of cell death (Counter, 

Avilion et al. 1992). Rare cells emerge from crisis and these cells almost universally express 

telomerase which maintain the short but stable telomeres and thus promote the formation 

of cancer (Shay and Wright 2011). Evidence supporting a role of telomerase in cell 

immortaliztion was provided by Bodnar, Ouellette et al. 1998 who found that constitutive 

ectopic expression of telomerase in pre-senescent human cells or in cells between 

senescence and crisis was sufficient to induce immortalization by stabilizing telomere length. 

Over 90% of human malignancies maintain their telomere length through reactivation of 

telomerase (Kim, Piatyszek et al. 1994) highlighting its role in cancer cell immortalization. 

This model of cancer progression suggests that the initiating cell (or cancer stem cell) is likely 

to have very short telomeres when telomerase is reactivated and recent evidence supports 

this idea (Marian, Cho et al. 2010, Marian, Wright et al. 2010). 

Certain human cancers however do not maintain telomere length through telomerase 

reactivation but instead regulate telomere length through the ALT pathway (Bryan, Englezou 

et al. 1997, Dunham, Neumann et al. 2000). Although ALT occurs in common cancers, such 

as breast carcinomas, it tends to be most prevalent in tumours of mesenchymal origin 

(Stewart and Weinberg 2006). 
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1.7.2 Diseases associated with telomere dysfunction 

In the past decade a role for telomere dysfunction has been found in a number of diverse 

degenerative disease states. Telomere dysfunction that drives these syndromes can be 

brought about through mutations in genes encoding telomerase subunits and its accessory 

proteins or through mutations in genes encoding other telomere –associated proteins which 

result in telomere defects. 

 

1.7.2.1 Telomerase dysfunction in disease 

Mutations in the genes encoding telomerase or telomerase accessory proteins have been 

observed in Idiopathic Pulmonary Fibrosis (IPF) and Dyskeratosis Congenita (DKC). 

 

Dyskeratosis Congenita (DC) is a rare inherited syndrome characterised by abnormal skin 

pigmentation, bone marrow failure, nail dystrophy and leukoplakia (Marrone and Mason 

2003). Two distinct forms of DC exist: one is a X-linked form and an autosomal dominant 

form. The X-linked form is due to mutation in the dyskerin gene at Xq28. The encoded 

dyskerin protein interacts with the RNA template of the telomerase complex (TERC) as well 

as a small subgroup of small nucleolar RNAs. Because of this second interaction it was 

initially difficult to conclude that telomere dysfunction specifically was responsible for the 

disease (Ruggero, Grisendi et al. 2003). However the discovery that the autosomal dominant 

form of the disease results from mutation in the TERC gene shows that this disease is due to 

defects at the telomere. All patients with DKC have very short telomeres (Vulliamy, Marrone 

et al. 2001). 

 

Idiopathic Pulmonary Fibrosis (IPF) is a fatal lung disease characterised by lung scarring and 

abnormal gas exchange (Gross and Hunninghake 2001). Two types of the disorder exist; 

familial IPF and sporadic IPF. Heterozygous mutations in the genes encoding TERT and TERC 
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have been found in 8-13% of familial IPF cases (Armanios, Chen et al. 2007, Tsakiri, Cronkhite 

et al. 2007) while TERT mutations have been observed in 3% sporadic IPF. All these 

mutations result in telomere shortening (Garcia, Wright et al. 2007). 

 

1.7.2.2 Dysfunctional telomere-associated proteins in disease 

A number of aging disorders have been directly linked to telomere dysfunction. One of these 

syndromes is Fanconi anemia (FA), an autosomal recessive disease caused by mutations in 

the Fanconi genes (Aubert and Lansdorp 2008). Affected individuals display a progressive 

bone marrow failure and have an increased predisposition to cancer as well as skin, skeletal, 

genitourinary, gastrointestinal, cardiac and neurological anomalies (Dokal 2006). Telomere 

shortening is associated with FA as is telomerase activation (Leteurtre, Li et al. 1999). 

Additionally abnormalities in telomere replication or repair are thought to play a role in the 

pathogenesis of the disease (Aubert and Lansdorp 2008). 

 

Ataxia Telangiectasia (AT) is another autosomal recessive disease. The responsible mutation 

for this disease is found in the ATM gene which encodes the ATM kinase protein (Savitsky, 

Sfez et al. 1995). AT is characterised by neurological deterioration, immunodeficiency and 

premature ageing. AT sufferers are also predisposed to cancer, particularly T cell leukaemia 

and lymphoma (Metcalfe, Parkhill et al. 1996). An increased number in telomere-telomere 

fusions as well as accelerated telomere attrition has been observed in AT patients (Metcalfe, 

Parkhill et al. 1996). 

 

34



1.8 Chromatin structure 

In eukaryotic organisms, nuclear DNA exists not as naked DNA, but in complex with protein 

in a structure called chromatin. The most obvious advantage of this DNA:protein complex is 

that it provides a method of DNA compaction. However the dynamic adjustment of 

chromatin between a more condensed state (heterochromatin) and a more open, accessible 

state (euchromatin) also provides another level of regulation acting on the DNA. Whether 

chromatin exists in either the relaxed euchromatic state or as the inaccessible and highly 

ordered heterochromatic state depends on a number of factors: The DNA sequence,  

chromosomal location influences chromatin compaction; repetitive DNA elements found at 

centromeres and telomeres promote a heterochromatic state. Localization within the 

nucleus also plays a part in chromatin state but the biggest factor to influence how 

euchromatic or heterochromatic chromatin is the plethora of proteins that function to alter 

the chromatin structure. These proteins either act directly on the residues on histone tails 

altering the interactions between histones and DNA or they utilise the energy derived from 

the hydrolysis of ATP to physically alter the chromatin structure, these proteins exist in 

complexes and are referred to as ATP-dependant chromatin remodelling complexes. 

 

1.8.1 Histones and Nucleosomes 

The existence of nucleosomes was first suggested based on the observation by electron 

microscopy that chromatin appeared to adopt a ‘beads on string’ structure (Kornberg 1974, 

Olins and Olins 1974, Woodcock, Safer et al. 1976). Further evidence was provided by 

Thomas and Kornberg (1974) who chemically cross-linked histones in chromatin. This 

experiment demonstrated that H2A, H2B, H3 and H4 form a discrete protein octamer within 

in the chromatin fibre. 
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It is this octamer of the core histones H2A, H2B, H3 and H4 which, in complex with DNA, 

makes up the nucleosomal core particle. The structure of nucleosome reveals a tripartite 

assembly of the octamer; H3 and H4 are organised into a central (H3/H4)2 tetramer which is 

flanked by two peripheral H2A/H2B dimers. Nucleosomal assembly is initiated by binding of 

121bp DNA around the central H3/H4 tetramer, binding of the two H2A/H2B dimers to 

either side of the tetramer extends DNA binding up to 147bp (Nemeth and Langst 2004). 

DNA is wrapped around the nucleosome ~1.65 times, severely distorting the DNA path, and 

compacting the DNA about 7-fold (Nemeth and Langst 2004). Binding of the linker histone 

H1/H5 organises an additional 20bp to complete the nucleosome (Robinson and Rhodes 

2006). This binding of H1 stabilises the structure of the nucleosome and determines the 

trajectory of DNA entering and exiting the nucleosome, it is for this reason that it is thought 

that the linker histones play an important role in the relative positioning of successive 

nucleosomes and thus the higher order chromatin structure (Robinson and Rhodes 2006). In 

the ‘beads on string’ structure the nucleosomes (beads) are separated by linker DNA (string). 

In vivo this linker DNA varies in length from 160bp in yeast to over 220bp in higher 

organisms (Nemeth and Langst 2004). 

 

1.8.2 Histone Structure 

The basic structure of a histone can be divided into two domains: the C terminal histone fold 

domain and the N- terminal tail domain. Additionally, histones H1 and H2A contains a C-

terminal tail domain (Hansen 2002). The histone fold domain is required for the organisation 

of the histone octamer and DNA binding whereas the tail domains form linker DNA and 

inter-nucleosomal interactions, thereby modulating the formation of the higher order 

chromatin structure (Nemeth and Langst 2004). Furthermore residues residing within 

histone tails are the main target for post-translational modifications such as acetylation, 

methylation and phosphorylation. 
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1.8.3 Structure of the Chromatin Fibre 

Although much is known about the nucleosomal structure, the arrangement of the higher 

order chromatin structure remains largely uncharacterized. Nucleosomes are able to 

compact into tightly folded filamentous structures at physiological salt concentrations. Early 

work focusing on the higher order chromatin structure was performed using electron 

micrographs of thin sections of HeLa metaphase chromosomes. It showed the presence of 

thick 30nm fibres which were dependent on ionic strength and the presence of a linker 

histone (Marsden and Laemmli 1979, Thoma, Koller et al. 1979). Subsequent studies using X-

ray diffraction patterns and electric dichroism have supported this view (McGhee, Nickol et 

al. 1983, Widom and Klug 1985) however the specific nature of nucleosome-to-nucleosome 

interactions and the path of linker DNA has remained elusive (Robinson and Rhodes 2006). 

 

Two main models have been proposed to explain the structure of the 30nm chromatin fibre: 

the one-start helix, or solenoid and the two start helix. The one-start helix proposes that a 

single 10nm nucleosomal array is arranged in a radial manner by bent linker DNA into a one-

start stack and the accumulation of these stacks forms the solenoid 30nm fibre (Finch and 

Klug 1976). The two-start helix is based on a zigzag arrangement of nucleosomes with 

straight linker DNA connecting the nucleosomes on the opposite sides of the fibre (Williams, 

Athey et al. 1986, Woodcock, Grigoryev et al. 1993). 

 

It has been suggested that electrostatic interactions between nucleosomes are the driving 

force in chromatin fibre compaction (Robinson and Rhodes 2006). These interactions are 

favoured by increasing salt concentrations which reduce the repulsive forces between linker 

DNA (Sun, Zhang et al. 2005) and are therefore likely to be altered by post translational 

modifications that alter the charge of histone tails (Jenuwein and Allis 2001). It has been 

shown that a key inter-nucleosomal interaction is mediated by the histone H4 tail as its 
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deletion inhibits chromatin fibre folding (Dorigo, Schalch et al. 2003). Furthermore 

acetylation of the lysine 16 residue within histone H4 is sufficient to disrupt nucleosome-

nucleosome contacts and cause fibre unfolding (Shogren-Knaak, Ishii et al. 2006). The linker 

histone H1 is also a key mediator in chromatin compaction as its removal leads to de-

condensation (Fan, Nikitina et al. 2005).  

 

Higher order structures beyond the 30nm fibre are even less well characterised. Two models 

(basic radial loop and chromonema) have been proposed to offer an explanation. The basic 

radial loop model suggests that compacted 30nm fibres form DNA loops of 50-100kb in 

length fixed to a central protein scaffold (Marsden and Laemmli 1979, Rattner and Lin 1985, 

Boy de la Tour and Laemmli 1988). In the chromonema model chromosome structures arise 

from three helical folding levels of chromatin fibres. Fibres of 60-nm in width are further 

coiled into a 100-130nm fibres which themselves are coiled into the 200-300nm structure of 

the metaphase chromatid (Belmont, Sedat et al. 1987, Belmont and Bruce 1994). 

 

1.8.4 Heterochromatin and Euchromatin 

The terms euchromatin and heterochromatin have been used ubiquitously to refer to the 

states of compaction of chromatin. Euchromatin describes a relaxed, decondensed state 

which is associated with actively transcribed regions of the genome whereas 

heterochromatin describes highly condensed, inaccessible and gene-poor chromatin 

domains. Heterochromatin can be further divided into two categories: constitutive and 

facultative. Constitutive heterochromatin remains condensed throughout an organisms 

lifespan and is usually found in repetitive regions of the genome such as centromeres and 

telomeres (Craig 2005). Facultative heterochromatin on the other hand is not permanent, it 

is inducible and can form anywhere in the genome. Its formation is required for mating-type 

switching in yeast, X-chromosome inactivation and developmental progression in 
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mammalian cells (Oberdoerffer and Sinclair 2007). Recent evidence however has suggested 

the existence of four or five heterochromatic states in animals in plants (Roudier, Ahmed et 

al. 2011, van Steensel 2011), each characterised by different combinations of epigenetic 

marks. 

 

The dynamic adjustment between euchromatic and heterochromatic states has been 

demonstrated to be fundamental to many nuclear processes ranging from transcriptional 

regulation to the repair of DNA damage and even telomere length maintenance. Proteins 

responsible for this alteration of chromatin structure can be divided into two broad 

categories: ATP-dependent chromatin remodelers which directly alter the nucleosomal 

architecture and covalent chromatin remodelers which mediate the addition and removal of 

chemical groups to residues within the histone proteins. 
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1.9 Covalent post-translational modifications to histones 

Over 60 different residues within the core histones are subject to post-translational 

modifications including acetylation, methylation, phosphorylation and ubiquitylation (fig. 

1.4). These modifications can either function to alter inter-nucleosomal interactions, thereby 

altering the higher order chromatin structure, or act as binding sites for the recruitment of 

other chromatin remodelers who can then exert their own chromatin remodelling activity. 
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Figure 1.4. Summary of covalent histone modi�cations on histones H1, H2A, H2B, H3 and H4. The residues subject to post-translational are modi�cations including acetylation, 
methylation, phosphorylation, ubiquitylation, deimination and proline isomerization are summarized.  The number under each amino acid represents its position in the sequence. Adapted 
from ‘Epigenetic Modi�cations and Human Disease’ Portela and Esteller, Nature Biotechnology, 28, 1057-1068 (2010)
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1.9.1 Histone Acetylation 

Histone acetylation was the first described histone modification (Phillips 1963). Early studies 

revealed an association between high levels of histone acetylation and actively transcribed 

genes indicating a role for histone acetylation in facilitating transcription (Allfrey, Faulkner et 

al. 1964, Pogo, Allfrey et al. 1966). Subsequent research has suggested that the acetylation 

of lysine residues neutralizes their positive charge thereby weakening charge-dependent 

interactions between a histone and nucleosomal DNA, linker DNA or adjacent nucleosomes. 

Thus accessibility of DNA to transcription machinery is increased (Zentner and Henikoff 

2013). Supporting evidence for such a model has been provided with a number of findings: 

in vitro tetra-acetylation of the histone H4 tail substantially reduced its affinity for DNA 

(Hong, Schroth et al. 1993) and in vivo altering the position of lysine on the tail does not 

alter its effect on the phenotype (Megee, Morgan et al. 1995). 

 

In addition to neutralizing the positive charges of lysine residues, acetylation of lysine 

residues also provide a binding site for bromodomain-containing proteins. First described in 

the Drosophila brahma chromatin-remodeling enzyme (Tamkun, Deuring et al. 1992), 

bromodomains have been found in a wide variety of chromatin-associated proteins 

including histone acetyltransferases and chromatin remodelling proteins (Zeng and Zhou 

2002). 

 

1.9.2 Histone Acetyltransferases (HATs) 

Histone acetylation is mediated by histone acetyltransferases (HATs). The process involves 

the transfer of an acetyl group from the acetyl coenzyme A metabolic intermediary to the -

amino group of lysine residues on the histone tails (Roth, Denu et al. 2001). There are two 

major classes of HATs: type A and type B. Type B HATs are predominantly cytoplasmic and 

acetylate free histones including H4 at K5 and K12 (as well as certain sites within H3) but not 
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histones already deposited into chromatin. This class of HAT is highly conserved, all HATs 

within this class share sequence homology to yeast Hat1, the founding member of this type 

of HAT (Bannister and Kouzarides 2011). Type A HATs are more diverse and can be 

subdivided into three separate groups, GNAT, MYST and CBP/p300 based on amino acid 

structure and conformational structure (Hodawadekar and Marmorstein 2007). Each of 

these enzymes modify multiple sites within histone tails and also sites present within the 

globular histone core such as H3K56 which is acetylated by GCN5 in human cells (Tjeertes, 

Miller et al. 2009). In common with many histone-modifying enzymes, type A HATs are often 

found in large multi-protein complexes (Bannister and Kouzarides 2011). 

 

1.9.3 Histone Deacetylases (HDACs) 

The functional importance of histone acetylation is due to its highly reversible nature 

(Sengupta and Seto 2004). This depends on the removal of acetyl groups from histone lysine 

tails or deacetlyation, a process catalyzed by the histone deacetylase enzymes (HDACs). 

Mammalian HDACs are divided into four classes based on sequence homology to the yeast 

HDACs and domain organisation. The class I histone deacetylases include HDAC1, 2, 3 and 8 

and have homology to the yeast Rpd3 (reduced potassium dependency 3) HDAC. HDAC4, 5, 

7 and 9 belong to class II and have homology to yeast HDA1 (histone deactylase I). HDAC6 

and HDAC10 contain two catalytic sites and are classified as class IIa whereas HDAC11 has 

conserved residues in its catalytic centre shared by both class I and class II HDACs and is 

sometimes placed in class IV. All these classes of HDACs contain zinc in their catalytic site 

and are inhibited by HDAC inhibitor compounds such as trichostatin A and vorinostat 

(Dokmanovic, Clarke et al. 2007). The remaining HDAC class not only differ in their sequence 

composition to other class HDACs but also in their insensitivity to HDAC inhibitors. 

Additionally they require the coenzyme NAD+ as a cofactor where the others do not. This 

class (class III) is made up of the sirtuin proteins (SIRT1, 2, 3, 4, 5, 6 and 7) (Dokmanovic, 
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Clarke et al. 2007). HDACs have relatively low substrate specificity by themselves, a single 

enzyme is capable of deacetylating multiple lysine residues within histones (Bannister and 

Kouzarides 2011). However these enzymes are usually present within multiple distinct 

protein complexes and the complex a HDAC resides in influences its recruitment and 

substrate specificity. Additionally several HDAC family members can be present within the 

same complex: HDAC1 and HDAC2 are present within the NuRD, Sin3a and Co-REST 

complexes (Bannister and Kouzarides 2011). 

 

1.9.4 Histone methylation 

Unlike acetylation and phosphorylation histone methylation does not alter the charge of a 

histone (Bannister and Kouzarides 2011). Another distinction between histone acetylation 

and methylation is that whereas histone acetylation generally correlates with transcriptional 

activation and a more relaxed euchromatic conformation, histone methylation can signal 

either activation or repression depending on the sites of methylation. Furthermore an extra 

level of complexity of histone methylation lies in the fact that different forms of methylation 

can occur: arginine residues can be either mono-methylated and either symmetrically or 

asymmetrically di-methylated whereas lysine residues can be mono-, di- or tri-methylated. 

Histidine residues have also shown to be subject to mono-methylation however this 

modification appears to be rare and is not well characterised (Greer and Shi 2012). 

 

Sites of arginine methylation include H3R2, H3R8, H3R26 and H4R3. However histone 

methylation research has tended to be focused on the methylation of lysine residues due to 

the functional importance of this modification. A number of lysine residues throughout all 

the histone protein have been identified as targets for methylation. The most extensively 

studied histone lysine methylation sites are H3K4, H3K9, H3K27, H3K36, H3K79 and H4K20. 
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The classical view of the functional consequences of histone lysine methylation is that H3K4, 

H3K36 and H3K79 methylation was associated with transcriptional activation and a relaxing 

of the chromatin structure whereas H3K9, H3K27 and H4K20 methylation mediated 

transcriptional repression and heterochromatin formation. More recently it has been shown 

that the effect of histone methylation is not so clear-cut with the degree of methylation 

(me1, me2 or me3) having a major impact on chromatin structure. For example tri-

methylation of H3K9 and H3K27 leads to repression and inactivation however H3K9me1 and 

H3K27me1 is enriched in actively transcribed genes (Snowden, Gregory et al. 2002, Plath, 

Fang et al. 2003, Barski, Cuddapah et al. 2007, Kotake, Cao et al. 2007). Furthermore there 

are instances were the same modification can have opposing activities: H3K9me3 is 

implicated in the gene silencing and heterochromatin formation by recruiting the further 

methylating enzymes and heterochromatin protein 1 (HP1) however this mark is also 

enriched in the coding region of active genes (Vakoc, Mandat et al. 2005). Similarly, 

H3K4me3 are generally associated with transcriptional activation but they have also been 

associated with transcriptional repression (Shi, Hong et al. 2006). It is thought that the 

differing effects of a histone modification are determined by the effector or ‘reader’ proteins 

which they bind (Greer and Shi 2012). 

 

Whereas histone acetylation and phosphorylation have direct effects on nucleosome-

nucleosome and nucleosome-DNA interactions, histone methylation appears to exert its 

influence on chromatin structure by the chromatin remodelling proteins it binds. Notably 

there are more distinct domain types recognising lysine methylation than any other 

modification. These include the PHD fingers and the Tudor ‘royal’ family of domains which 

comprises of chromodomains, Tudor, PWWP and MBT domains (Maurer-Stroh, Dickens et al. 

2003, Kim, Daniel et al. 2006, Champagne and Kutateladze 2009). Proteins which posses 

these domains can bind methylated histone lysine residues and then recruit further 
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chromatin modifiers. For example H3K4me3 is recognised by the PHD finger within the 

inhibitor of growth family member 2 (ING2) which tethers the repressive mSin3a-HDAC1 

HDAC complex to active proliferation-specific genes following DNA damage (Shi, Hong et al. 

2006). A further example is at telomeric chromatin in mice: H3K9me3 provides a high-

affinity binding site for heterochromatin protein 1 (HP1). HP1 then interacts with the Suv4-

20h1 and Suv4-20h2 histone methyltransferases to promote establishment of telomeric 

H4K20me3 (Garcia-Cao, O'Sullivan et al. 2004, Benetti, Gonzalo et al. 2007). 

 

1.9.5 Histone methyltransferases 

Arginine methylation is performed by a large 11-member family referred to as the PRMTs. 

All of these enzymes transfer a methyl group from S-adenosylmethionine (SAM) to the -

guanidino group or arginine (Bannister and Kouzarides 2011). The PRMTs can be divided into 

two subcatergories: the type-I and type II enzymes. The type-I enzymes monomethylate and 

asymmetrically di-methylate arginine residues whereas the type-II enzymes mono methylate 

and symmetrically di-methylate arginine residues. 

 

The methylation of lysine residues within histones is mediated by the histone lysine 

methyltransferases (HKMTs). Like arginine methyltransferases, all HKMTs catalyse the 

removal of a methyl group from SAM. This methyl group is then transferred to a lysine’s -

amino group. The first HKMT identified was the suppressor of variegation protein SUV39H1 

which targets lysine 9 on histone 3 (H3K9) (Rea, Eisenhaber et al. 2000). Numerous other 

HKMTs have since been identified. All such enzymes contain a catalytic SET domain. The 

exception to this is the DOT1L enzyme which methylates H3K79 found in the globular core of 

histone H3. Unlike other HKMTs DOT1L does not contain a SET domain (Martin and Zhang 

2005). Histone methyltransferases appear to be relatively specific enzymes, not only in the 

lysine residue they methylate but in some cases also the form of methylation they deposit. 
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For example the human histone methyltransferase SET7/9 can only mono-methylate the 

H3K4 residue (Xiao, Jing et al. 2003). 

 

1.9.6 Histone demethylases 

Histone methylation was originally considered to be irreversible (Byvoet, Shepherd et al. 

1972) however the identification of a H3K4 demethylase, lysine-specific demethylase 1A 

(KDM1A or LSD1) revealed that this was not the case (Shi, Lan et al. 2004). LSD1 was initially 

thought to demethylate mono- and di-methylated H3K4 residues only, however it has since 

been demonstrated that it can also demethylate H3K9 when complexed with the androgen 

receptor (Klose and Zhang 2007). In 2006, the JMJC family of histone demethylases were 

discovered. Importantly this family of enzymes can demethylate tri-methylated lysines such 

as H3K9me3 and H3K36me3 as well as mono-, di-methylated lysine residues (Whetstine, 

Nottke et al. 2006). Additionally one of the JMJC family members, JMJD6 was shown to be 

capable of performing a demethylation reaction on the arginine residues H3R2 and H4R3 

(Chang, Chen et al. 2007). 

 

1.9.7 Other histone modifications 

Other histone modifications have also been identified including histone phosphorylation, 

deimination, ubiquitylation, sumoylation, ADP ribosylation, -N-acetylglucosamine addition, 

proline isomerisation and histone tail clipping.  

  

1.9.7.1 Phosphorylation 

Histone phosphorylation occurs on serine, threonine and tyrosine residues predominantly 

found on histone tails. These residues are phosphorylated by kinases which function by 

transferring a phosphate group from ATP to the hyroxyl group of the target amino-acid side 

chain (Bannister and Kouzarides 2011). Whereas histone acetylation neutralizes the positive 
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charge of a histone lysine tail, phosphorylation adds a significant negative charge to the 

target histone which alters chromatin structure. Removal of phosphate groups from residues 

within histones in performed by histone phosphatases. Less is known regarding the roles of 

histone phosphatases. The best known function of histone phosphorylation takes place 

during the DNA Damage Response (DDR) where histone H2AX is phosphorylated at the 

Ser139 residue by the ATR and ATM kinases (Burma, Chen et al. 2001, Ward and Chen 2001). 

In this scenario H2AX phosphorylation spreads up to two megabases from the break site and 

is required for the accumulation of other DDR proteins such as MRN, MDC1 and 53BP1 

(Fernandez-Capetillo, Chen et al. 2002). 

 

1.9.7.2 Deimination 

Deimination or citrullination involves converting arginine to a citruline on histones H3 and 

H4. In mammalian cells this is carried out by the peptidyl deiminase PAD14 and has the 

potential to antagonize the activating effect of arginine methylation as citrulline prevents 

arginines from being methylated. There is also evidence that PAD14 can convert mono-

methylated arginine to citrulline, thereby, effectively functioning as an arginine demethylase 

(Cuthbert, Daujat et al. 2004, Wang, Wysocka et al. 2004). 

 

1.9.7.3 Ubiquitunation 

The process of ubiquitylation is distinct from all other histone modifications due to the fact 

that, whereas others result in relatively small molecular changes to amino acid side chains, 

ubiquitylation results in a much larger covalent modification (Bannister and Kouzarides 

2011). The addition of the 76-amino acid polypeptide ubiquitin to histone lysines is 

mediated by the E1-activating, E2-conjugating and E3-ligating enzymes (Hershko and 

Ciechanover 1998). Histone lysine residues can be either mono- or poly-ubiquitylated. Sites 

for ubiquitylation remain largely elusive, however two sites susceptible for ubiquitylation 
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have been defined in the H2A and H2B histones. Mono-ubiquitylation of H2AK119 has been 

shown to be involved in gene silencing (Wang, Wang et al. 2004) and mono-ubiquitylation of 

H2BK123 plays a role in transcriptional initiation and elongation (Lee, Shukla et al. 2007, 

Kim, Guermah et al. 2009). 

 

1.9.7.4 Sumoylation 

Sumoylation is a similar to ubiquitylation in that asimilar group of enxymes (E1, E2 and E3) 

are required for its deposition on histone lysine residues. Sumoylation by these enzymes 

involves the addition of a small ubiquitin-like modifier molecule (SUMO) to lysine residues 

on all four core histones. Although relatively little is known about the function of 

sumoylation it appears to be a repressive modification and antagonizes the acetylation and 

ubiquitylation which may otherwise occur on the same lysine residue (Shiio and Eisenman 

2003, Nathan, Ingvarsdottir et al. 2006). 

 

1.9.7.5 ADP ribosylation 

Arginine and glutamine residues within histones have been shown to be either mono-ADP 

ribosylated by the MART (Mono-ADP-ribosyltransferase) enzymes or poly-ADP ribosylated by 

the PARP (poly-ADP-ribose polymerase) enzymes (Bannister and Kouzarides 2011). 

Additionally, the Sir family of histone deacetylases have also been shown to possess low 

levels of ADP-ribosylation activity (Hassa, Haenni et al. 2006). Although little is known 

concerning the function of the modification, levels of poly-ADP ribosylated histones have 

been correlated with a relaxed chromatin state (Hassa, Haenni et al. 2006). Mono-ADP 

ribosylation has been detected on all four core histones as well as on the linker histone H1. 

These modifications have been shown to increase upon induction of DNA damage suggesting 

a role for this modification in the DNA damage response (Hassa, Haenni et al. 2006). 
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1.9.7.6 -N-acetylglucosamine 

A recent addition to the list of histone modifications is the addition of -N-

acetylglucosamine (O-GlcNAc) to serine and threonine residues within histones (Sakabe, 

Wang et al. 2010). All four core histones have been shown to be modified by O-GlcNAc. In 

mammalian cells the addition of O-GlcNAc is performed by a single enzyme, O-GlcNAc 

transferase, which transfers the sugar from the donor substrate, UDP-GlcNAc to the histone. 

Similarly the removal of O-GlcNAc is performed by a single enzyme, -N-

acetylglucosaminidase (O-GlcNAcase) (Sakabe, Wang et al. 2010). 

 

1.9.7.7 Histone proline isomerisation 

Prolines exist in either a trans or cis conformation. The states differ by 180 and changes 

between the two conformations can severely distort the polypeptide backbone (Kouzarides 

2007). Proline isomerases have the ability to facilitate this inter-conversion. Nelson, Santos-

Rosa et al. 2006 identified the enzyme FRP4 that can isomerize the proline H3P38 in H3. This 

activity was shown to regulate the levels of methylation of H3K56. Histone proline 

isomerisation is not, strictly speaking, a covalent histone modification as no chemical groups 

are added to histone residues. 

 

1.9.7.8 Histone tail clipping 

Like histone proline isomerization, histone clipping is not a ‘covalent’ histone modification 

although its action can remove histone modifications from a histone. As the name suggests 

this process involves the removal of part of the histone tail. Histone tail clipping was first 

identified in Tertahymena where the first 6 amino acids of the H3 tail were removed (Allis, 

Bowen et al. 1980). It has since been identified in yeast and mice were 21 amino acids of H3 

are cleaved (Duncan, Muratore-Schroeder et al. 2008, Santos-Rosa, Kirmizis et al. 2009). The 
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proteolytic enzyme responsible has yet to be determined in yeast, however in mice it was 

identified as Cathepsin L (Duncan, Muratore-Schroeder et al. 2008). 

 

1.9.7.9 Cross talk between histone modifications 

It is important to note that each histone modification does not function in isolation. 

Modification of one site may have a promotional or antagonistic influence on other 

modifications. Furthermore a number of modifications may function collectively to regulate 

the higher order chromatin structure. 

 

Certain modifications have been shown to have an inhibitory effect on the establishment of 

other modifications. For example, in yeast and mammals di-methylation of H3R2 is 

prevented by H3K4me3 and conversely H3R2me2 prevents H3K4me3 methylation 

(Guccione, Bassi et al. 2007, Kirmizis, Santos-Rosa et al. 2007). On the other hand one 

modification may be dependent on another: in S. Cerevisiae the methylation of H3K4 by 

COMPASS and of H3K79 by Dot1 is dependent on the ubiquitination of H2BK123 by 

Rad6/Bre1 (Lee, Villa et al. 2007). This mechanism is conserved in humans (Kim, Guermah et 

al. 2009). The binding of a protein to a particular modification may be affected by adjacent 

modifications. An example of this is the binding of heterochromatin protein 1 (HP1) to di- 

and tri-methylated H3K9 which is disrupted by phosphorylation of H3S10 (Fischle, Tseng et 

al. 2005). Combined modifications can also result in different functional outcomes to the 

same modifications acting in isolation. This is due to their recognition by proteins with 

multiple domains. For example, the chromatin regulator TRIM24 contains a PHD domain and 

a bromodomain which recognise unmethylated H3K4 and acetylated H3K23 on the same 

histone tail (Tsai, Wang et al. 2010). Additional histone modification ‘cross talk’ is seen when 

numerous modifications are competing for the same residue. This is particularly true for 

lysine residues that can be acetylated, methylated or ubiquitinated. 
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1.10 Histone variants 

Chromatin structure can also be influenced by the incorporation of histone variants. These 

variant or ‘replacement’ histones were identified based on the sequence similarity of the 

primary sequence which can range from just a few amino acids to differences between 

whole domains. Of all the core histones only H2A and H3 have corresponding histone 

variants. The incorporation of histone variants into chromatin requires the action of a 

histone chaperone and this incorporation plays a role in numerous processes including DNA 

repair, meiotic recombination chromosome segregation, transcriptional regulation, sex 

chromosome condensation and sperm chromatin packaging (Talbert and Henikoff 2010). 

 

1.10.1 H2A variants 

The H2A histone family has been identified to contain four variants including the canonical 

H2A, H2A.Z, H2A.X and macroH2A. 

 

1.10.1.1 H2A.Z 

H2A.Z-containing nucleosomes are found on either side of a nucleosome-free region (NFR) 

at transcription start sites were they promote efficient RNA polymerase II recruitment in 

both yeast and human cells (Zhang, Roberts et al. 2005, Jin, Zang et al. 2009). In addition to 

its transcriptional regulation role it has also been implicated in DNA repair, heterochromatin 

formation, suppression of antisense RNAs, embryonic stem cell differentiation and 

antagonizing DNA methylation in plants (Talbert and Henikoff 2010). Swr1, a member of the 

SWI/SNF family of ATP-dependent chromatin remodelling complexes, is essential for the 

incorporation of H2A.Z into chromatin. The histone chaperones Nap1 and Chz1 are thought 

to be responsible for the transfer of H2A.Z-H2B dimers to Swr1 for the exchange of canonical 

H2A-H2B dimers (Mizuguchi, Shen et al. 2004, Luk, Vu et al. 2007, Straube, Blackwell et al. 

2010). 
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 1.10.1.2 H2A.X  

H2A.X shares considerable homology with canonical H2A. As previously mentioned, the C-

terminus of H2A.X is phosphorylated at Ser139 by ATM, ATR and DNA-PK in response to DNA 

damage and this phosphorylation is important for the recruitment of downstream DNA 

damage repair factors (Fernandez-Capetillo, Celeste et al. 2003). It is thought that canonical 

H2A-H2B chaperones may also be responsible for the deposition and exchange of H2A.X. The 

H2A-H2B chaperone FACT has been shown to bind H2A.X and catalyse the exchange of H2A-

H2B with H2A.X-H2B (Heo, Kim et al. 2008). 

 

1.10.1.3 Macro H2A 

MacroH2A consists of an N terminus, which is similar to H2A and a unique, large C terminus. 

It is enriched in heterochromatin including X chromosome in female mammals and 

senescence-associated heterochromatin foci (Costanzi and Pehrson 2001) and plays a role in 

gene silencing (Angelov, Molla et al. 2003). It is also implicated in chromatin rearrangements 

during the DNA damage response upon PARP1 activation (Timinszky, Till et al. 2009). 

Although no macroH2A-specific chaperones have been identified, the apratxin-PNK-like 

factor (APLF) has been shown to bind macroH2A and loss of APLF results in defects in the 

recruitment of macroH2A to DNA damage sites (Timinszky, Till et al. 2009). 

 

1.10.1.4 H3 variants 

Four main H3 variants have been identified. These include two canonical variants H3.2 and 

the mammalian-specific H3.1 and two replacement variants: H3.3 which is structurally 

similar to H3.1 and H3.2 and the centromere-specific CenH3 (or CENP-A in mammals) 

(Allshire and Karpen 2008). H3.3 and CENPA have been studied most extensively and have 

been found to carry out distinct functions 
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1.10.1.5 H3.3 

In mouse, human and Drosophila the H3.3 protein is encoded by the genes H3F3A and 

H3F3B. Although H3.3 differs structurally to H3.2 and H3.1 by four and five amino acids 

respectively, its function in the nucleus differs considerably to its canonical counterparts. 

H3.3 is expressed throughout the cell cycle allowing histone deposition/exchange through a 

DNA synthesis-independent pathway during or outside of S phase (Szenker, Ray-Gallet et al. 

2011). Studies in Drosophila and mammalian cells suggested a role for H3.3 in active 

chromatin as enrichment of H3.3 is present within the gene body as well as at the promoter 

of actively transcribed genes (Chow, Georgiou et al. 2005, Schwartz and Ahmad 2005, 

Wirbelauer, Bell et al. 2005, Daury, Chailleux et al. 2006, Delbarre, Jacobsen et al. 2010, 

Goldberg, Banaszynski et al. 2010) although H3.3 enrichment has also been observed at 

inactive genes (Mito, Henikoff et al. 2005, Tamura, Smith et al. 2009). In addition to its 

presence at active and inactive genes and promoter regions, H3.3 is also located at various 

heterochromatic regions in the genome: it was found at pericentric chromatin in mouse 

embryonic fibroblast cells (Drané, Ouararhni et al. 2010, Santenard, Ziegler-Birling et al. 

2010) and also in human HeLa cells (Hake, Garcia et al. 2005) as well as at telomeres in 

mouse ES cells (Wong, Ren et al. 2009). Contrary to the proposal of H3.3 marking active 

chromatin, its presence at the telomere is required for proper heterochromatin formation 

and transcriptional repression of telomeric repeats (Goldberg, Banaszynski et al. 2010). The 

incorporation of H3.3 requires the action of various histone chaperones. The histone 

regulator A (HIRA) was shown to be the chaperone required for incorporation of H3.3 at 

promoters and within the body of actively transcribed genes (Goldberg, Banaszynski et al. 

2010) whereas H3.3 deposition at pericentric heterochromatin and telomeres requires the 

death domain-associated protein (DAXX) in complex with ATRX, a SNF2-like ATP-dependent 

chromatin remodelling factor (Lewis, Elsaesser et al. 2010). 
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1.10.1.6 CenH3 

CenH3 (or CENP-A in mammals) exists in multiple forms all of which share 50-60% sequence 

identity with canonical H3s in the histone fold domain and no similarities whatsoever it N 

terminal region (Talbert and Henikoff 2010). CenH3 histones are specific to centromeres 

were they interact with canonical histones to form CenH3 nucleosomes. In Drosophila these 

nucleosomes consist of one molecule each of CID (CenH3), H2A, H2B and H4 and are 

proposed to resemble half of an octomeric nucleosome (Dalal, Wang et al. 2007) whereas in 

yeast CenH3 nucleosomes are thought to comprise of two molecules each of Cse4 (CenH3), 

H4 and suppressor of chromosome missegregation 3 (Smc3) (Mizuguchi, Xiao et al. 2007). 

Although CenH3 is localized to centromeres, overexpression of CenH3 can lead to its 

spreading along the chromosome arm (Sullivan, Hechenberger et al. 1994). Little is known 

about how CenH3 is deposited to centromeres. However in S. cerevisiae loss of the histone 

chaperones Caf1 and Hira affected Cse4 centromeric association and also altered 

centromeric structure (Sharp, Franco et al. 2002). 

  

 

1.11 DNA methylation 

The most widely studied epigenetic modification in humans is cytosine methylation. It occurs 

almost exclusively at CpG dinucleotides which tend to cluster within regions referred to as 

CpG islands. DNA methylation regulates gene silencing by preventing the binding of 

transcription factors to DNA (Kuroda, Rauch et al. 2009) and by promoting the recruitment 

of methyl-CpG-binding domain (MBD) proteins. These MBD proteins in turn recruit histone-

modifying and chromatin-remodelling complexes to methylated sites (Lopez-Serra, Ballestar 

et al. 2008). DNA methylation also plays a key role in genomic imprinting as well as in the 

maintenance of pericentric and subtelomeric heterochromatin (Lehnertz, Ueda et al. 2003, 

Gonzalo, Jaco et al. 2006, Kacem and Feil 2009) 
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DNA methylation is mediated by the DNA methyltransferase (DNMT) family. These enzymes 

catalyse the transfer of a methyl group from S-adenosyl methionine to DNA (Portela and 

Esteller 2010). In mammals five members of the DNMT family have been reported (DNMT1, 

2, 3a, 3b and 3L) although only three (DNMT1, 3a and 3b) possess methyltransferase 

activity. DNMT3a and DNMT 3b are classified as de novo DNMTs responsible for the 

establishment of the pattern of methylation during embryonic development whereas 

DNMT1 is considered the maintenance DNMT as it is required for methylation of 

hemimethylated sites generated during semi conservative DNA replication (Portela and 

Esteller 2010). 

 

 

1.12 Transcription of heterochromatin domains 

The notion of heterochromatin being a transcriptionally inactive region has been challenged 

by the discovery of numerous noncoding RNAs (ncRNAs) derived from heterochromatic loci 

(Portela and Esteller 2010). In S. pombe pericentric repeats are transcribed by RNA 

polymerase II and subsequently processed by the RNA-dependent RNA polymerase (RdRP) 

Rdp1, and Dicer (Volpe, Kidner et al. 2002). Small RNAs (22-24 nucleotides) are then 

assembled into the RNA-induced transcriptional silencing (RITS) complex providing sequence 

specificity to the complex. The RITS complex is required for H3K9 methylation of centromeric 

repeats and recruitment of the histone methyltransferase Clr4, which is essential for the 

spreading of the heterochromatin domains (Portela and Esteller 2010). ncRNA has been 

shown to play a role in chromatin structure in human cells. The silencing of the inactive X 

chromosome in females involves the accumulation of the ncRNA transcript Xist. This is 

followed by recruitment of the Polycomb repressive complexes PRC1 and PRC2 which 

mediate H2AK119 ubiquitination and H3K27 trimethylation respectively (Agrelo and Wutz 
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2010) thereby maintaining heterochromatic structure. Other heterochromatin regions in the 

human genome are transcribed including heat shock-induced transcription of satellite III 

repeats as well as transcription of the telomeric C rich strand at human telomeres giving rise 

to UUAGGG-repeat containing non-coding RNAs (TERRA or TelRNA) (Rizzi, Denegri et al. 

2004, Schoeftner and Blasco 2009). 

 

 

1.13 ATP-dependent chromatin remodelling 

In addition to covalent modification of histones, DNA methylation, ncRNAs and the 

utilization of histone variants chromatin is subject to structural alteration by the action of 

large multi-protein complexes. These ATP-dependent chromatin remodelling complexes 

contain an ATPase subunit which can utilise the energy derived from the hydrolysis of ATP, 

allowing the complex to mobilize nucleosomes along DNA, evict histones off DNA or 

promote the exchange of histone variants, which in turn modulate DNA accessibility and 

alter nucleosomal structure (Wang, Allis et al. 2007). ATP dependent chromatin remodelling 

complexes can be divided into four families: SWI/SNF, ISWI, NuRD/Mi-2/CHD and INO80. 

 

1.13.1 SWI/SNF 

The first chromatin remodelling complex discovered was SWI/SNF. It was identified originally 

as a regulator of mating type switching (SWI) or as a requirement for growth on energy 

sources other than sucrose (SNF – sucrose nonfermenting) (Gangaraju and Bartholomew 

2007). In yeast, Drosophila and humans there appear to be two versions of the complex: in 

yeast this is SWI/SNF and the essential RSC complex which itself exists in two functionally 

distinct complexes (Cairns, Schlichter et al. 1999). In Drosophila the two forms of SWI/SNF 

are the Brahma associated proteins (BAP) and Polybromo-associated BAP (PBAP) 

(Mohrmann and Verrijzer 2005). Although human SWI/SNF can be characterized as existing 
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in two forms, BRG1/hBRM-associated factors (BAF) and Polybromo-associated BAF (PBAF), 

there are many forms that acquire tissue specific subunits (Wang, Allis et al. 2007). 

Additionally, sub-complexes exist which consist of SWI/SNF-type remodelers and other 

factors such as histone methylases (Pal, Yun et al. 2003, Pal, Vishwanath et al. 2004), 

components of the Sin3 histone deactylase complex (Sif, Saurin et al. 2001) and also BRCA1 

(Bochar, Wang et al. 2000, Decristofaro, Betz et al. 2001). 

 

A fundamental role of SWI/SNF complexes is transcriptional regulation. SWI/SNF complexes 

primarily organise nucleosome positioning to promote accessibility for transcription factor 

binding and gene activation (Martens and Winston 2003) however they have also been 

shown to promote transcriptional-repressor binding and gene silencing under certain 

conditions (Ooi, Belyaev et al. 2006). SWI/SNF complexes have also been implicated in the 

repair of various forms of DNA lesions: During nucleotide excision repair (NER) SWI/SNF 

increases the accessibility of DNA to the NER repair factors (Hara and Sancar 2002, Yu, Teng 

et al. 2005). In S. cerevisiae SWI/SNF is recruited to HO-induced double strand breaks where 

it is thought to play a role in the homologous recombination repair pathway (Osley, Tsukuda 

et al. 2007). Furthermore, in human cells SWI/SNF appears to play a direct role in the 

rearrangement of immunoglobin loci during V(D)J recombination (Kwon, Morshead et al. 

2000, Morshead, Ciccone et al. 2003, Patenge, Elkin et al. 2004). 

 

1.13.2 ISWI family 

The ISWI family was named Imitation Switch due to the similarity between its ATPase 

subunit, ISWI, and the ATPase subunit in SWI/SNF complexes, SWI2. The first members of 

the ISWI (Imitation Switch) family, dNURF and dCHRAC were identified in Drosophila 

(Tsukiyama and Wu 1995, Varga-Weisz, Wilm et al. 1997). Studies since have identified 

additional ISWI chromatin remodelers in yeast (Tsukiyama, Palmer et al. 1999), Xenopus 
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(Guschin, Geiman et al. 2000), mice (Lazzaro and Picketts 2001) and humans (Strohner, 

Nemeth et al. 2001). In humans there are six ISWI family members: ACF/WCRF, CHRAC, RSF, 

WICH, SNF2/Cohesin and NURF (Wang, Allis et al. 2007). The ISWI ATPase subunit is found in 

all ISWI family members. In addition to the ISWI subunit ISWI remodelers contain a SANT 

(‘SWI3, ADA2, NCOR and TFIIIB’) and a SLIDE (SANT-likeISWI) domain which is believed to 

play an important role in nucleosome recognition (Boyer, Langer et al. 2002, Grune, Brzeski 

et al. 2003). The complexes in this family are relatively small (300-800kDa) and generally 

contain fewer subunits compared to larger complexes in the SWI/SNF, IN80 and Mi-2/NuRD 

complexes (Gangaraju and Bartholomew 2007). 

 

ISWI complexes play a role in a wide variety of nuclear processes including transcriptional 

regulation (Corona and Tamkun 2004). ISWI remodelling complexes primarily order 

nucleosome positioning to induce transcriptional repression (Deuring, Fanti et al. 2000, 

Goldmark, Fazzio et al. 2000). However there are reported chromatin loci where ISWI 

remodelers promote transcriptional elongation and transcriptional activation. The ISWI 

family member NURF is required for activation of Hox genes during development (Wysocka, 

Swigut et al. 2006). This transcriptional regulation is brought about by H3K4me3 which 

provides a binding site for the bromodomain-containing NURF complex. The human ISWI 

complexes CHRAC and ACF1 have been implicated in the maintenance of higher order 

chromatin structures: The ISWI and ACF1 subunits within these complexes have been shown 

to regulate chromatin folding into loop domains together with the Sin3A/RPD3 deacetylase 

and the SATB1 (special AT-rich sequence binding 1) transcriptional regulator (Yasui, Miyano 

et al. 2002). These same ISWI subunits are also required to promote DNA replication through 

highly condensed heterochromatin (Collins, Poot et al. 2002). RNAi depletion of ACF1 

impairs the replication of pericentric heterochromatin whereas depletion of ISWI slows the 

progression of DNA replication (Collins, Poot et al. 2002). 
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1.13.3 NuRD/Mi-2/CHD family 

In 1998 several different groups simultaneously described the protein composition of a 

macromolecular histone deacetylase complex variously termed the Mi-2 complex (Wade, 

Jones et al. 1998), NuRD (Zhang, LeRoy et al. 1998) NURD (Xue, Wong et al. 1998) or NRD 

(Tong, Hassig et al. 1998). Despite minor differences the protein compositions of these 

complexes were remarkably similar (Bowen, Fujita et al. 2004): They all possessed a Mi-2 

subunit, a member of the SNF2 family of chromatin remodelling ATPases thereby providing a 

physical link between histone deactylation and ATP-dependent chromatin remodelling 

(Bowen, Fujita et al. 2004). Several distinct Mi-2/NuRD complexes with highly similar 

biochemical properties have been identified (Bowen, Fujita et al. 2004). Different isoforms of 

Mi-2 have been observed in Mi-2/NuRD complexes: (Woodage, Basrai et al. 1997) identified 

the isoform Mi-2 (CHD4) as the sole Mi-2 present in the complex however later analysis by 

(Tong, Hassig et al. 1998) revealed the presence of both Mi-2 and Mi-2. Furthermore the 

metastasis-associated (MTA) protein family members MTA1, MTA2 and MTA3 have been 

shown to occupy distinct Mi-2/NuRD complexes (Bowen, Fujita et al. 2004). 

 

The incorporation of unique subunits allows functional specialisation for the complex: only a 

subset of Mi-2/NuRD complexes contain the methyl-CpG-binding domain protein MBD2 

(Feng and Zhang 2001, Humphrey, Wang et al. 2001). The presence of MB2, along with 

MBD3 that is found in all Mi-2/NuRD complexes, allows recruitment of the complex to 

methylated DNA. The binding of Mi-2/NuRD complexes to methylated DNA, along with the 

incorporation of HDAC1 and HDAC2 subunits suggests a role in maintaining a 

heterochromatic structure and transcriptional repression. Such a role has been found 

however Mi-2/NuRD has also been shown to promote transcriptional activation (Feng and 

Zhang 2001, Humphrey, Wang et al. 2001, Williams, Naito et al. 2004). 
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1.13.4 INO80 

The INO80 family is the most recently identified ATP-dependent chromatin remodelling 

complex family. Members of the family have been identified in S. cerevisiae (INO80 and 

SWR1), Drosophila (INO80 and p400) and mammals (INO80, SRCAP (Snf2-related CBP 

activator protein) and p400) (Morrison and Shen 2009). Of all the chromatin remodelling 

complex families, INO80 appears to be the most conserved. A high degree of homology is 

seen in the ATPase subunit and a large number of orthologous subunits are shared between 

organisms including the RuvB-like, actin, Actin-related protein and YEATS protein subunits. 

In addition to these conserved subunits, a number of non-conserved, species-specific 

subunits are present in INO80 family complexes (Morrison and Shen 2009). 

 

Like most chromatin remodelling complexes, INO80 complexes have been identified as 

transcriptional regulators. In humans this transcriptional regulation is linked to the function 

of the complex subunit ying yang 1 (YY1), a transcription factor which specifies the genes 

that are targeted for INO80-mediated chromatin remodelling (Cai, Jin et al. 2007). 

Complexes within this family however have also been shown to play a key role in the repair 

of double strand DNA breaks. In S. cerevisiae INO80 influences the proximal eviction of 

nucleosomes surrounding the double strand break which allows association of DNA repair 

machinery such as the MRE11 nuclease (van Attikum, Fritsch et al. 2004, Tsukuda, Fleming et 

al. 2005). Other nuclear processes which require INO80 chromatin remodelling activity 

include DNA replication, centromere stability and chromosome segregation and telomere 

structure (Morrison and Shen 2009). 
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1.14 Telomeric Chromatin  

Telomeric chromatin structure has been investigated in a number of organisms from lower 

eukaryotes such as protozoa to mammals and more recently human cells. Although initially 

telomeres were thought to adopt a heterochromatic state, studies in Arabidopsis and 

human cells suggest the picture is more convoluted. Histone modifications associated with 

both repressed heterochromatin and relaxed euchromatic environments have been 

observed suggesting that telomeric chromatin in these organisms exists in a specialised 

intermediate conformation. Furthermore the methylation of subtelomeric DNA and 

presence of long non-coding RNA transcripts (TelRNA or TERRA) have also been shown to 

influence telomeric chromatin status. A number of chromatin remodelling proteins have 

been demonstrated to function at the telomere to preserve telomeric chromatin integrity 

and subsequently telomere length and function 

 

1.14.1 Yeast 

Although the telomeric repeat tract in S. cerevisiae is devoid of nucleosomes, subtelomeric 

regions are nucleosomal. As previously mentioned, the formation of a heterochromatin 

complex containing Rap1, Ku and the Sir proteins within the telomere propagates towards 

the subtelomeres and establishes a repressive heterochromatin environment which silences 

telomere-proximal genes (Ottaviani, Gilson et al. 2008). This process is counteracted by the 

Rpd3 histone deacetylase (De Rubertis, Kadosh et al. 1996). Several chromatin remodelers 

have also been identified as regulators of telomere length: a genome-wide screen for 

deletion mutants that affect telomere length identified 35 chromatin remodelling genes 

which when deleted caused abnormal telomere length phenotypes (Askree, Yehuda et al. 

2004). A similar screen for essential yeast genes also revealed that RSC4 and RSC8, subunits 

of the ATP dependant chromatin remodelling complex RSC as negative regulators of 

telomere length (Ungar, Yosef et al. 2009). More detailed studies on telomere length 
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regulation by the remodelling action of chromatin modifying proteins have revealed a role 

for Ies3, a subunit of the INO80 ATP-dependant chromatin remodelling complex as a 

negative regulator of telomere length (Yu, Steinberg-Neifach et al. 2007). Mutation of the 

H3K4 histone methyltransferase Set1 has also been shown to result in telomere shortening 

confirming it as a positive regulator of telomere length (Roguev, Schaft et al. 2001). 

 

Unlike in S. cerevisiae, loss of Set1 in S. pombe results in telomere elongation and also 

impaired telomeric silencing (Kanoh, Francesconi et al. 2003) suggesting that methylated 

H3K4 is an important telomeric chromatin mark. S. pombe telomeres are also enriched in 

Swi6, the orthologue of Drosophila HP1. Swi6 recruitment to telomeres is dependent on 

telomeric H3K9 methylation by the Clr4 histone methyltransferase (orthologue of 

mammalian Suv39h1) (Bannister, Zegerman et al. 2001, Nakayama, Rice et al. 2001). Loss of 

both Swi6 and Clr4 have been shown to affect telomeric silencing (Allshire, Nimmo et al. 

1995, Sugiyama, Cam et al. 2007). The multi-enzyme complex SHREC was shown to be 

recruited to telomeres by redundant pathways involving Taz1 and Ccq1 as well as the RNAi 

machinery (Sugiyama, Cam et al. 2007). SHREC contains the histone deactylase Clr3 and the 

chromatin remodelling factor Mit1. The activity of both of these enzymes is required for the 

silencing of subtelomeric reporter genes (Sugiyama, Cam et al. 2007). Ccq1 is also required, 

along with Pot1 in an alternative chromosome end maintenance pathway in S. pombe.  

HAATI (heterochromatin amplification-mediated and telomerase independent) survivor cells 

lack telomerase and instead preserve chromosome linearity in by amplifying and rearranging 

heterochromatin sequences which supersede the telomere repeats at chromosome ends 

(Jain, Hebden et al. 2010). 
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1.14.2 Drosophila 

Drosophila telomeres are enriched in heterochromatin protein 1 (HP1). HP1 is required for 

telomere length maintenance, transcriptional repression of telomeric sequences and 

capping of the chromosome end along with HOAP (HP1/ORC-associated protein), the 

Modigliani(Moi)/DTL and HipHop (HP1-HOAP-interacting protein) (Fanti, Giovinazzo et al. 

1998, Savitsky, Kravchuk et al. 2002, Cenci, Siriaco et al. 2003, Gao, Walser et al. 2010, Raffa, 

Ciapponi et al. 2011). Telomeric binding of HP1 results in the tri-methylation of lysine 9 on 

the H3 histone (H3K9me3) which promotes the formation of a repressive telomeric 

chromatin structure thereby regulating the silencing of telomeric sequences and 

transcription of telomeric retrotransposons (Perrini, Piacentini et al. 2004, Frydrychova, 

Mason et al. 2008). 

 

1.14.3 Plants 

The chromatin organization at Arabidopsis chromosome ends on the other hand appears to 

be more complex. Arabidopsis subtelomeric regions appear heterochromatin with low levels 

of H3K4me3 and H3K9 and H4K16 acetylation and high enrichment of H3K27me1. 

Subtelomeric DNA is methylated by the chromatin remodelling factor DDM1 and the histone 

methyltransferases suvh4, suvh5 and suvh6 are also required for the deposition of H3K9me2 

in subtelomeric regions (Vrbsky, Akimcheva et al. 2010, Vaquero-Sedas, Gámez-Arjona et al. 

2011, Vaquero-Sedas, Luo et al. 2012). Telomeric chromatin on the other hand was shown to 

be enriched in both histone marks usually found in actively transcribed regions including 

dimethylation of H3K4 as well as acetylation of H3K9 and H4K16 as well as the repressive 

H3K27me3 mark suggesting an intermediate chromatin structure (Vaquero-Sedas, Luo et al. 

2012). Additionally Arabidopsis telomeres also display enrichment of the histone H3 variant 

H3.3 and are transcribed leading to the formation of TERRA transcripts (Vrbsky, Akimcheva 

et al. 2010, Vaquero-Sedas and Vega-Palas 2013). Like in Arabidopsis, rice telomeres are also 
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labelled with H3K4me2, H3K9Ac and H3K27me3 and display low levels of DNA methylation 

(Vaquero-Sedas, Luo et al. 2012). 

 

1.14.4 Mice 

Mammalian telomeric chromatin maintenance has been studied predominantly in mouse 

Embryonic Stem (ES) cells and Mouse Embryonic fibroblasts (MEFs). A number of proteins 

have been identified which function in concert to maintain telomeric chromatin integrity 

and subsequently telomere length homeostasis. Telomeric chromatin in mouse ES and MEF 

cells has high levels of H3K9me3 enrichment which is mediated by the Suv39h1 and Suv39h2 

HMTases. The H3K9me3 modification provides a high-affinity binding site for Cbx1, Cbx3 and 

Cbx5, homologs of Drosophila heterochromatin protein 1 (HP1) which in turn promotes the 

recruitment of the Suv4-20h1 and Suv4-20h2 HMTases which establish H4K20me3 

enrichment. Loss of Suv39h1 and Suv39h2 in SUV39-null mouse embryonic stem (ES) cells 

and mouse embryonic fibroblasts (MEFs) results in decreased H3K9me2 and H3K9me3 at the 

telomere and also reduced binding of the chromobox proteins Cbx5, Cbx3 and to a lesser 

extent Cbx1 (Garcia-Cao, O'Sullivan et al. 2004). Importantly these SUV39-null cells showed 

abnormally long telomeres. A similar telomere lengthening phenotype was observed in 

mouse ES and MEFs deficient in Suv4-20 HMTases, along with loss of H4K20me3 at both 

telomeric and subtelomeric chromatin. These cells also show an increase in sister chromatid 

recombination both globally and at telomere regions suggesting that the telomere 

lengthening is via the ALT pathway as opposed to telomerase-mediated lengthening 

(Benetti, Gonzalo et al. 2007). H4K20me3 enrichment is further enhanced by the Dot1L-

mediated H3K79me2 deposition. Dot1L is another HMTase and its reduction results in lower 

H3K79me2 telomeric enrichment and promotes telomere lengthening via the ALT pathway. 

(Jones, Su et al. 2008). 
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Low histone acetylation is another feature of chromatin at mouse telomeres. This is 

mediated, at least in part by SIRT1, the mammalian homolog of the yeast histone 

deacetylase Sir2 which, as previously mentioned plays a pivotal role in the telomere 

position,n effect. Although the yeast Sir2 protein shows no telomere length regulation 

capacity SIRT1 in mice does: Palacios, Herranz et al. (2010) demonstrated that SIRT1-

deficient loss-of-function mouse embryonic fibroblasts (MEFs) showed significantly shorter 

telomeres than wild-type MEFs as well as a reduction of H3K9me3 and HP1-γ at the 

telomere. Conversely, MEFs taken from gain-of-function mice with a three-fold increase in 

SIRT1 expression displayed a reduction in H3K9Ac and also had significantly longer telomeres 

compared to wild-type MEFs. 

 

In addition to histone modifying proteins, DNA methyltransferases have also been 

implicated in telomere length maintenance. Subtelomeric DNA is highly methylated by the 

DNA methyltransferases DNMT1, DNMT3a and DNMT3b. Loss of DNMTs in mouse ES cells 

results in recombination-based telomere elongation confirming DNMTs as negative 

regulators of telomere length (Gonzalo, Jaco et al. 2006). 

 

The H3 histone variant H3.3 is enriched at telomeric chromatin in mouse ES cells. Proper 

deposition of H3.3 is mediated by a complex containing the SWI/SNF family member ATRX 

and the H3.3 chaperone DAXX (Lewis, Elsaesser et al. 2010). RNAi depletion of H3.3 causes 

an increase in telomere-dysfunction induced foci (TIFs) (Wong, Ren et al. 2009) as does loss 

of ATRX along with a dramatic loss of the mammalian heterochromatin protein HP1γ (CBX5) 

(Wong, McGhie et al. 2010). Loss of either ATRX, DAXX or H3.3 however does not result in 

any telomere length alterations. 
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Interestingly, differentiated mouse ES cells display decreased levels of telomeric H3.3 (along 

with increased H3k9me3 and H4K20me3) suggesting that differing telomeric chromatin 

structures exist in different cell types. This idea was further explored by a study in which 

pluripotency was induced in MEFs generating induced pluripotent stem cells (iPSCs), 

functional equivalents of mouse ES cells (Marion, Strati et al. 2009). Telomeres are shorter in 

MEFs compared to ES cells however their reprogramming was accompanied by telomerase-

dependant telomere elongation which continued to a length similar to what is observed 

mouse ES cells. Concomitant with this telomere elongation was a change in chromatin 

structure; reduced levels of H3K9me3 and H4K20me3 were observed as well as upregulation 

of TERRA. This change in chromatin structure after induced pluripotency shows how cellular 

context is a key determinant, not only in telomere length, but also in telomeric chromatin 

structure. 

 

A further feature of mouse telomeric chromatin is the presence of UUAGGG-repeat 

containing non-coding RNAs (TERRA or TelRNA) (Azzalin, Reichenbach et al. 2007, Schoeftner 

and Blasco 2009). These molecules can range between 10bp to >9kb in length and form a 

intermolecular G-quadreplex structure with single stranded telomeric DNA as well as a 

compact repeated structure containing G-quartets (Azzalin, Reichenbach et al. 2007, 

Schoeftner and Blasco 2009). It has been suggested that TERRA negatively regulates 

telomere length by base pairing with the template region of TERC, thereby inhibiting 

telomerase activity (Luke, Panza et al. 2008, Schoeftner and Blasco 2009). This view is 

supported by the fact that TERRA expression is low in embryonic stem cells and cancer cells 

where telomerase activity is high (Azzalin, Reichenbach et al. 2007, Schoeftner and Blasco 

2009). 
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1.14.5 Humans 

Telomeric chromatin structure in human cells is a relatively unexplored field. Early evidence 

of how the chromatin structure contributes towards telomere function in human cells was 

provided in work in which telomeric silencing was shown to be disrupted upon Trichostatin A 

(TSA)-induced inhibition of histone deacetylation (Baur, Zou et al. 2001, Koering, Pollice et 

al. 2002). In subsequent research the deacetylation of H3K9 and H3K56 by SIRT6 was shown 

to be responsible for this telomeric silencing (Tennen, Bua et al. 2011). SIRT6 loss also leads 

to an increase in telomere-to-telomere fusions although it has no impact on telomere length 

(Michishita, McCord et al. 2008). 

 

Very recently a handful of studies have shed light on prominent histone modifications at 

human chromosome ends. Human telomeres share similarities with Arabidopsis telomeres 

in that the chromatin environment does not appear to be purely heterochromatic. Human 

telomeres are enriched in H3K4me3 and H2BK5me1, marks often associated with actively 

transcribed genes (Rosenfeld, Wang et al. 2009). Furthermore there is an under-

representation of H3K9me3 at human telomeres in contrast to the high abundance of 

H3K9me3 at mouse telomeres, although it is enriched in human subtelomeric chromatin 

(Rosenfeld, Wang et al. 2009). Similar levels of telomeric H3K9me3 were also observed in 

IMR90 fibroblasts and HT1080 cells (O'Sullivan, Kubicek et al. 2010, Arnoult, Van Beneden et 

al. 2012). The repressive H4K20me3 and H3K27me3 marks are also enriched at human 

telomeres (O'Sullivan, Kubicek et al. 2010, Arnoult, Van Beneden et al. 2012) although again 

their telomeric enrichment is lower than at mouse telomeres indicating a more open, 

euchromatic environment at human chromosome ends. Despite these euchromatic histone 

modifications, several repressive heterochromatic features are also found at human 

chromosome ends including hypoacetylation of H3K9 and H3K56, methylation of 

subtelomeric DNA, HP1 enrichment and the presence of TERRA transcripts (Yehezkel, Segev 
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et al. 2008, Deng, Norseen et al. 2009, Nergadze, Farnung et al. 2009, Deng, Campbell et al. 

2010). 

 

TERRA plays a key role in telomere function in human cells. siRNA depletion of TERRA leads 

to an increase in telomere-dysfunction induced foci, aberrations in metaphase telomeres 

and loss of telomeric H3K9me3 and origin recognition complex (ORC) which itself prevents 

telomere dysfunction (Deng, Dheekollu et al. 2007, Deng, Norseen et al. 2009). Not 

surprisingly, due to the important role TERRA plays at human telomeres it is regulated in a 

number of ways. Subtelomeric DNA methylation, presumably mediated by the DNMT DNA 

methyltransferases, negatively regulates TERRA transcription (Yehezkel, Segev et al. 2008, 

Deng, Norseen et al. 2009, Nergadze, Farnung et al. 2009, Deng, Campbell et al. 2010). 

TERRA transcription is also down-regulated by increased H3K9me3 and HP1 after telomere 

elongation (Arnoult, Van Beneden et al. 2012). Several positive regulators of TERRA 

transcription have been identified including the chromatin organizing factor CTCF (Deng, 

Wang et al. 2012) as well as the H3K4-specific histone methyltransferas MLL. MLL depletion 

in human fibroblast cell lines HS68 and IMR90 blocks the usual up-regulation of TERRA 

following telomere uncapping (Caslini, Connelly et al. 2009). 

 

The proper deposition of H3.3 by the ATRX-DAXX complex is required to maintain telomere 

structure and function in mice (Wong, Ren et al. 2009, Drané, Ouararhni et al. 2010, 

Goldberg, Banaszynski et al. 2010, Lewis, Elsaesser et al. 2010, Wong, McGhie et al. 2010) 

and it is thought that this same pathway plays a similar role at human telomeres as loss of 

either ATRX, DAXX or H3.3 has been associated with aberrant telomere length phenotypes in 

a number of cancers. Changes in telomere length reminiscent of the ALT pathway were seen 

in a panel of human pancreatic neuroendocrine tumours (PanNETs) in which ATRX or DAXX 

had been mutated (Heaphy, de Wilde et al. 2011). Similar alternative lengthening of 
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telomeres was observed in glioblastoma multiforme (GBM) tumour samples in which the 

ATRX-DAXX-H3.3 pathway had been inactivated by somatic mutations (Schwartzentruber, 

Korshunov et al. 2012). Furthermore ATRX is either undetectable or severely depleted in 

90% of ALT cell lines (Lovejoy, Li et al. 2012). RNAi-mediated knockdown of ATRX has been 

shown in our lab to cause a prominent telomere phenotype consisting of dramatic, 

stochastic reductions in telomere length (Tankimanova, personal communication). As yet the 

ATRX-DAXX-H3.3 pathway is the only chromatin remodelling pathway identified in human 

cells which, when inactivated, leads to alterations in telomere length. 

70



1.15 Project aims 

Our lab has previously described extensive allelic and inter-chromosomal telomere length 

variation, both in the presence or absence of telomerase activity. The primary aim of this 

project is to investigate whether the chromatin structure of telomeres impacts upon 

telomere length determination of specific telomeric alleles and chromosome ends in human 

cells. Two approaches will be taken to address this issue: firstly, the chromatin structure of 

telomeres of differing lengths will be directly analysed by measuring enrichment of histone 

modifications known to be prominent at telomeres in other model organisms. Secondly, 

selected chromatin remodelling proteins will be studied to determine whether they play a 

role in telomeric chromatin structure and telomere length maintenance. 

 

Past research on telomeric chromatin structure in mammalian cells have identified a role for 

a number of chromatin remodelers and the histone modifications they deposit at the 

chromosome end. The vast majority of this work however has relied on TRF analysis and dot 

blot assays to measure telomere length telomeric occupancy respectively. These approaches 

lack sensitivity and are unable to differentiate between telomeres. Single Telomere Length 

Analysis (STELA) provides a high resolution method to measure telomere length distributions 

at individual chromosome ends. STELA assays have been designed for the 2p, 9p, 11q, 12q, 

16p, 17p and 18q telomeres. An allele-specific STELA assay has also been designed for the 

XpYp chromosome end. The first aim of this project was to develop telomere and telomeric 

allele-specific qPCR assays for the same chromosome ends. These qPCR assays, when used in 

conjunction with ChIP, will provide a tool for analysing telomeric chromatin structure at 

individual chromosome ends. Applying this ChIP-qPCR approach alongside STELA will allow 

any correlations between telomeric chromatin structure and telomere length to be 

identified. 
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Our laboratory has recently identified ATRX as a regulator of telomere length in a 

keratinocyte holoclone cell population (Tankimanova, personal communication). siRNA 

knockdown of ATRX results in dramatic reductions in telomere length at a number of 

chromosome ends. The second aim of the project was to identify more chromatin 

remodelling proteins which play a role in telomere length maintenance. A selection of 

proteins were chosen for siRNA knockdown based on a number of criteria including whether 

they have been shown to play a role at the telomere in other organisms, whether changes in 

their expression levels was implicated in cancer and also whether they interacted with ATRX. 

An RNAi screen was performed in which expression of the selected genes was depleted over 

numerous cell divisions. Any resulting aberrant telomere length phenotypes were then 

examined at a number of chromosome ends by STELA. 

 

Chromatin remodelers which, when depleted, resulted in telomere defects were 

investigated further. This included observing telomere length phenotypes after knockdown 

of the chromatin remodeler in a different cell type to determine whether its telomeric role 

was universal or restricted to certain cell types. Additionally the mutational mechanism 

which caused telomere length defects in the absence of a chromatin remodeler was 

examined. 
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Chapter 2 

 

Materials and Methods 

 

2.1 Chemicals and reagents 

Chemicals and reagents used were obtained from numerous sources including Fisher, Invitrogen, 

Applied Biosystems, Thermo Scientific, New England Biolabs, Amersham biosciences/GE healthcare, 

Roche, Sigma-Aldrich and PerkinElmer, Bio-Rad, Abcam and Millipore. 

 

2.2 Plastic lab equipment 

Plastic and glass lab equipment used for experiments was obtained from Gilson, Becton Dickinson 

labware, Eppendorf, Thermo Scientific, Costar, Ambion and SARSTEDT. 

 

2.3 Equipment/machinery 

Equipment used during experiments was obtained from Bio-Rad, MJ research, Applied biosystems, 

Thermo Scientific, Promega, Hybaid, Amersham biosciences and Qiagen. 

 

2.4 Oligonucleotides 

Primers were designed based on human DNA sequences obtained from H. Reithman at the Wistar 

institute (http:/www.wistar.upenn.edu/Reithman) and National Centre for Biotechnology 
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Information (NCBI). The oligonucleotides were synthesised by MWG-Biotech AG (Ebersberg, 

Germany). All primers used during this study are listed in table. 2.1. 
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Application Primer name Sequence 

      

STELA PCR XpYpE2 TTGTCTCAGGGTCCTAGTG 

  17pseq1rev GAATCCACGGATTGCTTTGTGTAC 

  18qrev4M CACAGGGATGGTTAGGTATCTC 

  2p2 GAGCTGCGTTTTGCTGAGCAC 

  11q13B CAGACCTTGGAGGCACGGCCTTCG 

  12q -197A GGGAGATCCACACCGTAGCA 
  16prev1 CACTTATTAGTTCCAGTCTCTG 

  XpYp -427A/415T GGTTATCAACCAGGTGCTCT 

  XpYp -427G/415C GGTTATCGACCAGGTGCTCC 

  teltail TGCTCCGTGCATCTGGCATC 

  Tel2 TGCTCCGTGCATCTGGCATCTAACCCT 

      

      

Fusion PCR 16p1 TGGACTTCTCACTTCTAGGGCAG 

  21q1 CTTGGTGTCGAGAGAGGTAG 

  XpYpM ACCAG GTTTTCCAGTGTGTT 

  17p6 GGCTGAACTATAGCCTCTGC 

      

      

Fusion Reamplification 17p7 CCTGGCATGGTATTGACATG 

  16p2 TCACTGCTGTATCTCCCAGTG 

  21qseq1 TGGTCTTATACACTGTGTTCCACTGGC 

      

      
Death-wish 

reamplification XpYpC CAGGGACCGGGACAAATAGAC 

  XpYpE TTGTCTCAGGGTCCTAGTG 

  XpYpP ACCAGGGGCTGATGTAACG 

  XpYpG AATTCCAGACACACTAGGACCCTGA 

  teltail TGCTCCGTGCATCTGGCATC 

  Tel2 TGCTCCGTGCATCTGGCATCTAACCCT 

      

      

qPCR 2p1 CTAAGCCGAAGCCTAACTGGTG 
  2p2 GA GCTGCGTTTTGCTGAGCAC 

  2p13 AAGCAGCATTCTCCTCAGG 

  11q12 CCCTGATTATTCAGGGCTGCAAAG 

  11q13B CAGACCTTGGAGGCACGGCCTTCG 

  12qA1 TCAAAAGCCCCTCTGAATCCTGC 

  12qB ATTTTCATTGCTGTCTTAGCACTGCAC 

  16pBrev TTCAGAGGGGCTTTTAGTTTCCCA 

  16pC AAAGGTGGAGCAGCATTCTG 

  17pA GTTTTCACCTGTTTTGGTCTTC 
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  17pB GGATCCTTGCACAGGAATAAAC 

  18qA TGACAGTGGTGTCCAGTGGT 

  18qC CACAGGGATGGTTAGGTATCTC 

  XpYp -176T TTTGCGGTGAGTGTCACAGCTCAT 

  XpYp -13A ACCCTCTGAAAGTGGACCT 

  XpYp -176G TTTGCGGTGAGTGTCACAGCTCAG 

  XpYp -13A ACCCTCTGAAAGTGGACCA 

  beta-globin FOR AGGACAGGTACGGCTGTCATC 

  beta-globin REV TTTATGCCCAGCCCTGGCTC 

  ZNF554 FOR CGGGGAAAAGCCCTATAAAT 

  ZNF554 REV TCCACATTCACTGCATTCGT 

  alpha satellite FOR CTGCACTACCTGAAGAGGAC 

  alpha satellite REV GATGGTTCAACACTCTTACA 

  GAPDH FOR TACTAGCGGTTTTACGGGCG 

  GAPDH REV TCGAACAGGAGGAGCAGAGAG 

  GAPDH CR FOR GCCATGTAGACCCCTTGAAGAG 

  GAPDH CR REV ACTGGTTGAGCACAGGGTACTTTAT 

      

      

Sequencing XpYpJ CTAATCTGCTCCCWCCCAC 

  XpYp-145agt/ggc GGACCCAAAGAGTGAGCAGT 

  XpYp-30A/T CTGCTTTTATTCTCTAATCTGCTCCCA 

  XpYpseq2 GTTGCTCTGACATGGACACAG 

  10q3 AGACACAGGATAGTGGGCTCTG 

  17pseq2rev CCATTAGCCTGTGGGGTCTGAT 

  17p2 GCTAGGAATGGAATCATTGACTC 

  17p5 TTCATTAGGATCCAGTTTTG 

  17p7 CCTGGCATGGTATTGACATG 

  17pK1 CATCACTTGTTGAGGACAGG 

  17pK2 GTTTTCTGTCTGGACTCC 

  17pseq1B AAGCAGGTTGAGAGGCTGAGG 

  21qseq1rev GCTCTGTTAGAGTAGATAGCTAGCT 

  Subtel13B GTACGCTGTCTTCATGGCAG 

  8p1 TGCACAGGACTCTTAGGCTG 

      

      

Others XpYpB2 TCTGAAAGTGGACC(A/T)ATCAG 

      

 

Table 2.1. Oligonucleotide sequences used during the study 
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2.5 DNA extraction 

2.5.1 Phenol/chloroform 

Genomic DNA from cell pellets containing over 3X106 cells was extracted by standard 

phenol/chloroform extraction (Sambrook et al., 1989). Briefly, cells were lysed overnight at 45°C in 

300-500µl lysis buffer (10mM Tris-Hcl pH8, 100mM NaCl, 5mM EDTA pH8, 0.5% SDS) containing 

30µg RNase A (Sigma; stock 10mg/ml) and 60µg proteinase K (Sigma; stock 20mg/ml). After brief 

centrifugation 300-500µl phenol/chloroform was added to the cell lysate and rotated for 20mins at 

room temperature. The mixture was centrifuged at 13000rpm for 5mins to separate the phases, the 

aqueous and interphase phases were removed and added to an eppendorf containing 300µl 

phenol/chloroform. This was rotated again for 20mins and then centrifuged (13000rpm) for 5 

minutes. The aqueous phase was removed and to this was added 30µl 3M sodium acetate pH5.3 

(Sigma) and 900µl ice-cold 100% ethanol to precipitate the DNA. The mix was left at -20°C for at 

least an hour. After brief centrifugation (13000rpm, 1min) the DNA pellet was washed in 70% ice-

cold ethanol and air dried in the micro-flow hood. DNA was then resuspended in 10mM Tris-Hcl pH8. 

 

2.5.2 Magnesil 

Genomic DNA was extracted from cells cultured in 96 well plates by using Magnesil paramagnetic 

particles (Promega). Briefly, cells were washed with 1XPBS and lysed with eLysis buffer (Promega) 

before the addition of Magnesil particles. After two washes with 1:1 mix of eLysis buffer & alcohol 

wash (Promega) the Magnesil particles were washed three times with alcohol wash. DNA was eluted 

from the Magnesil particles with a 10-minute incubation at 65C in 30l elution buffer (Promega). 
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2.5.3 Maxwell 

Genomic DNA was extracted from cell pellets using the Maxwell 16 LEV Blood DNA kit (Promega) 

along with the Maxwell 16 instrument. Cell lysis was achieved through incubation of the cell pellet 

with 300µl lysis buffer and 30µl proteinase K at 56°C for at least one hour. Cell lysates were then 

loaded into the cartridges and placed in the Maxwell 16 instrument. The research mode with LEV 

hardware was ran to extract DNA from the cell lysates. Extracted DNA was eluted into 50 µl elution 

buffer. 

 

2.5.4 DNA quantification 

DNA concentrations were determined in triplicate in a number of ways: either by Hoechst 33258 

flurometry as described previously (Baird et al., 2003), using a Nanodrop ND-100 system (Thermo 

scientific) supplied by the Central Biotechnology Services (CBS) Core Facility in the School of 

Medicine, Cardiff University (www.cardiff.ac.uk/medic/cbs) or by performing a pilot STELA to 

determine band number, after which relative DNA quantities to add to reactions were then 

subsequently calculated. 

 

2.6 PCR 

2.6.1 Conventional PCR 

DNA (typically 50ng) was added to PCR reactions containing 0.5μM forward primer, 0.5μM reverse 

primer, 1.2mM dNTPS, 1X Taq buffer (75mM Tris-HCl (pH8.8), 20mM (NH4)SO4, 0.01% Tween-20) 

(Abgene), 2mM MgCl2 and 0.5U Taq polymerase. PCR reactions were then cycled under the following 

conditions: 94°C (15 sec) 56-72°C depending on primers used (30 sec) and 72°C (1 min) for 33 cycles. 
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For primer optimization an annealing temperature gradient ranging from 56°C to 72°C was used 

across 12 PCR reactions. 

 

2.6.2 STELA PCR 

DNA was diluted to 250pg/µl in 10mM Tri-Hcl (pH 8). 0.9 µM Tel2 linker was added to the diluted 

DNA. Multiple 10µl reactions were set up per sample (typically 6-8) each containing 250pg DNA/tel2 

mix, 1X Taq buffer (75mM Tris-HCl (pH8.8), 20mM (NH4)SO4, 0.01% Tween-20) (Abgene), 2mM 

MgCl2,, 1.2mM dNTPs, telomere-specific primer (0.5µM), teltail primer (0.5µM), and 1U Taq/PWO 

(Abgene/Roche) at a ratio of 10:1. 1µl DNA/tel2 mix was added to each reaction. These reactions 

were then cycled in a Bio-Rad DNA Engine Tetrad®  Thermal Cycler using the following conditions: 

94°C (20 sec), 56-65°C depending on primer used (30 sec), 68°C (10 mins) for 22 cycles. 

 

2.6.3 Fusion PCR 

DNA was diluted to 50ng/µl in 10mM Tri-Hcl (pH 8). Multiple 10µl reactions were set up per sample 

(typically 9) each containing 50ng DNA, 0.5μM telomere-adjacent primers (17p6, XpYpM, 16p1 & 

21q1), 1X Taq buffer (75mM Tris-HCl (pH8.8), 20mM (NH4)SO4, 0.01% Tween-20) (Abgene), 2mM 

MgCl2,, 1.2mM dNTPs and 0.5U Taq/PWO polymerase mix (Abgene/Roche) at a ratio of 10:1. 

Reactions were then cycled using the following conditions: 94°C (15 sec), 59°C (30 sec) and 68°C (8 

mins) for 25 cycles. 

 

2.6.4 Fusion Reamplification PCR 

Fusion PCR reactions which amplified a fusion event were diluted 20-fold. 3μl of this dilution was 

added to a 30μl PCR reaction containing 0.5μM telomere adjacent primers, 1X Taq buffer (75mM 
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Tris-HCl (pH8.8), 20mM (NH4)SO4, 0.01% Tween-20) (Abgene), 2mM MgCl2,, 1.2mM dNTPs and 0.5U 

Taq/PWO polymerase mix (Abgene/Roche) at a ratio of 10:1. Reactions were then cycled using the 

following conditions: 94°C (15 sec), 59°C (30 sec) and 68°C (8 mins) for 33 cycles. 

 

2.6.5 Reamplification of gel-eluted PCR products  

Multiple 50μl reactions (typically 6) were set up per gel-eluted PCR product. Each gel-eluted PCR 

product was diluted 20-fold and 2μl of this dilution was added to the 50μl PCR reaction containing 

0.5μM XpYpC and 0.5μM tel2 or teltail, 1X Taq buffer (75mM Tris-HCl (pH8.8), 20mM (NH4)SO4, 

0.01% Tween-20) (Abgene), 2mM MgCl2,, 1.2mM dNTPs and 0.5U Taq polymerase (Abgene). The 

reactions were then cycled using the following conditions: 94°C (15 sec), 60°C (30 sec) and 68°C (8 

mins) for 35 cycles. 

 

2.7 Gel Electrophoresis 

2.7.1 Gel electrophoresis for STELA and fusion PCR products 

DNA fragments were resolved using a 40cm long, 0.5% Tris-acetate-EDTA agarose gel submerged in 

1XTAE cooled to 4°C by a circulating cooling system. For STELA 4ul PCR reactions containing 1X ficol-

based loading dye (5% bromophenol blue, 5% xylene, 15% ficol) were loaded in the gel and ran 

through the length of the gel at 120V for 16 hours. 4ul fusion products containing 1X ficol based 

loading dye were loaded and ran a third to half the length of the 40cm gel using 50V for 16 hours. 
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2.7.2 For other PCR products 

PCR products generated from other types of PCR were either resolved on a 40cm 0.7-1% Tris-

acetate-EDTA agarose gel (for large sample numbers) using 120V (1-2 hours) or for fewer sample 

numbers, on a smaller 10-20cm gels (0.7-1%) using 90V (1-2 hours). 

 

2.7.3 Visualisation of PCR products 

Bands stained by ethidium bromide were visualised on a UV-transilluminator. 

 

2.8 Southern Blotting 

The resolved STELA or fusion products were depurinated by washing the gel twice in depurination 

buffer (0.25M HCl) for 6 minutes. After rinsing, the gel was then washed in denaturation buffer 

(1.5M NaCl/0.5MNaOH ) for 15 minutes. The DNA was then transferred onto a positively charged 

membrane (Hybond XL, Amersham) by alkaline Southern blotting with denaturation buffer for 4-6 

hours. 

 

2.9 Probe labelling and hybridisation 

2.9.1 Probe synthesis 

25ng probe DNA and ladder (1:1 of 1kb:2.5kb) in TE buffer (10mM Tric-Hcl and 1mM EDTA) was 

labelled using Ready-To-Go DNA labelling beads (GE Healthcare). This kit generates labelled probes 

using random hexaprime labelling with [α-33P] dCTP. 
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2.9.2 Hybridisation 

After blotting the membranes were rinsed in H20 before undergoing pre-hybridization for 15 mins in 

church buffer (0.5M sodium phosphate buffer (1M disodium hydrogen phosphate and 1M sodium 

dihydrogen phosphate), 1mM EDTA, 1% BSA, 7% SDS, pH 7.2). 25µl of radioactively labelled probe 

was added to the hybridisation bottles which were then left to hybridize at 60°C overnight. 

 

2.9.3 Removing unbound probe 

To remove unbound probes the membrane was washed with 0.1X sodium chloride sodium citrate 

(SSC)/0.1% sodium dodecyl sulphate (SDS) several times at 60°C. The washed blots were then dried 

in the hybridization oven at 60°C for ~30mins. 

 

2.9.4 Visualisation of Radiolabelled Blots 

Radiolabelled southern blots were placed in a cassette with a phosphoimager screen (Amersham) for 

24 hours. The phosphimager screen was then scanned using the Typhoon 9410 biomolecular imager 

(GE healthcare). STELA and fusion blots were then stripped using boiling 0.1% SDS before being re-

probed with a different probe. 

 

2.10 Gel analysis and statistics 

Gels scanned using the Typhoon 9410 were subsequently analysed using Molecular dynamics 

ImageQuant 5.0 (GE). The molecular weights of individual telomeres on each STELA Southern blot 

were calculated using Phoretix 1D software (Nonlinear dynamics). Telomere length measurements 

were then exported to Microsoft Excel where the distance between the telomere-adjacent primer 
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and the telomere repeat array was subtracted giving an accurate measurement of telomere length. 

Mean telomere length and standard error measurements were then calculated. 

 

Statistics used include Analysis of variance (ANOVA) to compare mean telomere length across 

numerous samples, Student’s t-test to compare telomere means and a chi-squared analysis to 

measure the statistical significance of the proportion of small telomeres within a population of 

telomeres. 

 

2.11 Sequencing 

PCR products to be sequenced were purified from agarose gel slices using QIAquick gel extraction kit 

(Qiagen) or the GE healthcare gel extraction kit and purified in 50μl elution buffer. 4.4μl purified PCR 

product was added to 0.16μM sequencing primer and 4μl BigDye Terminator Cycle sequencing mix 

(3.1 or 3.0) (Applied Biosystems) and cycled using the following conditions: 96°C (30 sec),56°C (15 

sec) and 60°C (4 mins) for 25 cycles. Amplified products from the sequencing PCR were then purified 

using Dye EXTM 2.0 spin kit (Qiagen) before being sequenced by the Central Biotechnology Service 

(CBS), School of Medicine, Cardiff University. Sequence data obtained was viewed using Sequence 

Scanner (version 1.0) (Applied Biosystems) and analysed by using the Basic Local Alignment Search 

Tool (BLAST) (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify the sequence or in the case of 

testing primer specificity, by comparing sequence data with published subtelomeric sequences from 

Reithman et al (http://www.wistar.upenn.edu/Riethman). 

 

2.12 Elution of individual PCR products from a STELA blot 

Multiple 20µl reactions were set up containing 250pg DNA/tel2 mix, 1X Taq buffer (75mM Tris-HCl 

(pH8), 20mM (NH4)SO4, 0.01% Tween-20) (Abgene), 2mM MgCl2,, 1.2mM dNTPs, telomere-specific 
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primer (XpYpC) (0.5µM), teltail primer (0.5µM), and 1U Taq/PWO (Abgene/Roche) at a ratio of 10:1. 

These reaction were then cycled in a Bio-Rad DNA Engine Tetrad® Thermal Cycler using the following 

conditions: 94°C (20 sec), 65°C (30 sec), 68°C (10 mins) for 22 cycles. 4μl of these reactions were 

used to perform a STELA as described earlier. This initial STELA not only allowed identification of 

small bands to elute from the gel but importantly identified their position on the gel in relation to 

the DNA ladder. The remaining 16μl of the chosen STELA-PCR reactions were loaded onto a 0.5% TAE 

agarose gel and ran partially through the gel. The position of the ladders was then examined under a 

UV transilluminator and the position of the bands was estimated. Wells were cut out of the gel 

under these positions and dialysis membrane was inserted into the wells. The gel was then re-

submerged in 1XTAE buffer and migration of the bands resumed. By examining the migration of the 

DNA ladder it was possible to determine whether the desired PCR product had migrated onto the 

dialysis membrane. At this point the membrane was removed from the well and placed in a 1.5 ml 

tube. The purified products were removed from the membrane by centrifugation and washed in TE. 

 

2.13 Verification of successful elution 

20μl PCR reactions were set up containing 2μl eluted PCR product, 1X Taq buffer (75mM Tris-HCl 

(pH8), 20mM (NH4)SO4, 0.01% Tween-20) (Abgene), 2mM MgCl2,, 1.2mM dNTPs, XpYpC (0.5µM) and 

XpYpG (0.5µM), and 1U Taq polymerase (Abgene). PCR reactions were cycled under the following 

conditions: 94°C (15 sec), 65°C (30 sec) and 68°C (1 min) for 30 cycles. PCR products were then ran 

on a 1% TAE agarose gel (120V, 1h) and visualised on a transilluminator. 
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2.14 ChIP 

2.14.1 Chromatin extraction 

2x106 cells were seeded in 10mm dishes (BD labware). The following day cells (which had achieved 

80% confluency) were cross linked for 10 minutes with shaking using formaldehyde (Sigma) at a final 

concentration of 1%. Formaldehyde was then quenched using 125mM glycine. Cells were then 

washed twice with 10ml ice-cold 1XPBS before being detached by scraping in 3ml 1XPBS containing 

1XPhenylmethanesulfonyl fluoride (PMSF) (Sigma). After collecting the cells by centrifugation 

(1200rpm, 5 mins) the 1XPBS was removed by aspiration. Cells were then resuspended in SDS lysis 

buffer (1% SDS, 10mMEDTA, 50mM Tris-HCl pH8.1) containing 1XPMSF to achieve a final cell 

concentration of 1x104/μl. To ensure complete cell lysis, the resuspended cells were left on ice for 40 

minutes. Chromatin was then divided into 200μl aliquots and sheared by sonication using the 

Biorupter (Diagenode) at 4°C. 8 cycles of 30s on, 30s off at high power was used to shear chromatin 

into 200-1000bp fragments. Sonicated samples were then centrifuged for 10 minutes (13000rpm, 

4°C) and supernatant was removed. A 50μl aliquot of chromatin was taken to verify chromatin 

fragment size and the rest of the supernatant was snap frozen using liquid N2 and stored at -80°C. 

The 50μl chromatin aliquot was then diluted 1:1 in 50μl TE buffer (10mM Tris-HCl pH8, 1mM EDTA). 

To this was added 25μl pronase buffer (125mM Tris-HCl pH7.5, 25mM EDTA, 2.5% SDS) and 6.25μl 

pronase to reverse cross linking. This mix was incubated overnight at 65°C. Following a brief 

centrifugation 5μl RNase A (10mg/ml) was added to the reverse cross-linked chromatin and 

incubated for 1 hour at 37°C. DNA was then purified using the QIAquick gel extraction kit (Qiagen) 

and eluted into 50μl EB buffer. 2μl of ficol-based loading dye was added to 10μl purified DNA before 

loading the sample onto a small 1.5% TAE agarose gel and ran at 90V for ~30 minutes. The ethidium 

bromide-labelled chromatin was then visualised on a transilluminator. 
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2.14.2 Immunoprecipitation 

50μl Dynabeads protein G (Invitrogen) per sample were washed 3 times in 1XPBS containing 0.1% 

BSA before being resuspended in 50μl 1XPBS (0.1% BSA). After addition of antibodies of interest (H3, 

H3K4me3, H3K9me3, H3K27me3, H4K20me3 (Millipore) and H3.3, TRF1 (Abcam)), the Dynabeads 

were incubated at 30°C with shaking (1300rpm) for 40 minutes. After washing the beads 3 times 

with 1XPBS (0.1% BSA) the immunoprecipitation reactions were set up containing antibody 

conjugated-dynabeads, 100μl chromatin (equivalent 1x106 cells), 100ul 1XPBS (1% BSA) and 750μl 

1XPBS. The reactions were incubated with shaking (1300rpm) for 3 hours at 21°C. After incubation 

the Dynabeads underwent the following wash steps: one wash with FA/SDS buffer (50mM HEPES 

KOH pH7.5, 150mM NaCl, 1mM EDTA, 1% Triton-X, 0.1% sodium deoxycholate, 0.1% SDS), three 

washes with FA/SDS containing 500mM NaCl, one wash with LiCl solution (10mM Tris-HCl pH8, 

250mM LiCl, 1mM EDTA, 0.5% NP40, 0.5% sodium deoxycholate) and one wash with ice cold TE 

buffer (1mM Tris-HCl pH8, 1mM EDTA). Chromatin was then eluted from the Dynabeads by adding 

1X pronase buffer (25mM Tris-HCl pH7.5, 5mM EDTA, 0.5% SDS) and incubating at 65°C with shaking 

(1300rpm) for 20 minutes. Eluted chromatin was reverse cross-linked by adding 6.25μl pronase 

(20mg/ml) and incubating at 65°C overnight. DNA was purified by the same method as described 

above in ‘chromatin extraction’. 

 

2.15 qPCR 

2.15.1 ChIP-qPCR 

The degree of protein enrichment at a specific region was measured by the absolute quantification 

method. A standard curve is constructed using 10X serial dilutions of DNA of known quantity. This 

standard curve is then used to convert to the initial DNA quantity in an immunoprecipitate (IP) 

sample from the generated Ct value. The Ct value or cycle threshold is the cycle number at which an 

amplification curve intersects a set threshold. All DNA samples were amplified in triplicate qPCR 
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reactions. 20μl qPCR reactions were set up containing 0.3μM forward and reverse primers, 1X iQTM 

SYBR® green supermix (Biorad) and either IP DNA (5X dilution), input DNA (100X dilution) or  input 

DNA dilutions used for the standard curve (SC): SC1 (3X dilution), SC2 (30X dilution), SC3 (300X 

dilution) and SC4 (3000X dilution). These reaction were then cycled in an ABI PRISM 7700 (Applied 

Biosystems) under the following conditions: 94°C (10 mins) followed by 50 cycles of 94°C (20 sec) 

and 60-66°C (depending on primers used) (1 min). The qPCR reactions were then heated gradually to 

95°C for dissociation curve analysis. Raw data was analysed using SDS software v2.3 (Applied 

Biosystems). DNA quantity at a specific chromosome end was normalised to the quantity of DNA 

given within the input DNA to give a measure of enrichment (E): E=IP/input. For the telomere-

specific analysis of histone methylation marks, the enrichment of these marks was further 

normalised against enrichment of histone H3 at the same telomere. 

 

2.15.2 qPCR primer optmisation 

Amplification efficiency of primer sets was determined by creating a standard curve using 10-fold 

serial dilutions of gDNA (50, 5, 0.5, 0.05ng). The gradient value from the standard curve was used to 

calculate the efficiency of the qPCR reaction using the following formulas: 

E=10(-1/gradient) 

                  % Efficiency=(E-1)*100. 

A standard curve gradient of -3.3 indicates complete doubling of PCR product during each cycle: 

When used in the first of the above formulas a gradient of -3.3 would result in an efficiency (E) of 2: 

E=10(-1/-3.3) 

       E=2 

This can then be converted into % Efficiency: 
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  % Efficiency=(2-1)*100 

  % Efficiency=100 

When E=2 % the efficiency of the qPCR assay is 100%. The acceptable range for the standard curve 

gradient is between -3 and -3.6 which would produce qPCR assays of 115% and 90% respectively. 

 

Triplicate 20l qPCR reactions were set up containing gDNA, 1X iQTM SYBR® green supermix (Biorad), 

ddH20 and 0.3M forward and reverse primers. qPCR reactions were then cycled in an ABI PRISM 

7700 (Applied Biosystems) using the following cycling conditions: 94C (10 mins) followed by 50 

cycles of 94C (20 sec), 60-66C (1 min). The qPCR reactions were then gradually heated to 95C to 

determine the melting temperature (Tm) of amplified PCR product. Analysis of the qPCR assays was 

performed on SDS software v2.3 (Applied Biosystems).  

 

2.16 Cell culture 

2.16.1 Cells and media 

MRC5 cells were obtained from the Coriell cell repository (Institute for Medical Research, Camden, 

New Jersey, USA). HT1080 and HeLA cells were obtained from Prof. Paul Smith (School of Medicine, 

Cardiff University) and keratinocyte holoclone populations were provided by Matthew Locke (School 

of Dentistry, Cardiff University). 

 

Cells were incubated in 5% CO2 at 37°C. MRC5 cells were cultured in Eagle’s minimum essential 

medium (EMEM, Invitrogen), supplemented 0.1N sodium hydroxide, with sodium bicarbonate (7.5% 

solution, Gibco), 2X non-essential amino acids, 25mM HEPES, 1X105 U/l penicillin, 100mg/l 

streptomycin, 2mM L-glutamine (all sigma) and 10% (v/v) foetal calf serum (Autogenbioclear).  
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HT1080 clones (2, 4, 5, 15, 17, 19) and HeLa cells were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM, Invitrogen) supplemented with 1X105 U/l penicillin, 100mg/l streptomycin, 2mM L-

glutamine (all sigma) and 10% (v/v) foetal calf serum (Autogenbioclear). U87 cells were cultured in 

U87-MG containing RPMI (Invitrogen), 2X non-essential amino acids 1X105 U/l penicillin, 100mg/l 

streptomycin, 2mM L-glutamine (all Sigma) and 10% (v/v) foetal calf serum (Autogenbioclear). 

Keratinocyte holoclone C1B cellswere cultured in HNCC which consisted of Dulbecco’s Modified 

Eagle’s Medium (DMEM, Invitrogen) supplemented with Ham’s F12 nutrient mixture (Gibco), 89M 

adenine, 10-4
M cholera toxin, 400ng/ml hydrocortisone, 10ng/ml epidermal growth factor, 5g/ml 

insulin (all Sigma) and 10% (v/v) foetal calf serum (Autogenbioclear). Medium was changed every 3-4 

days and cells were passaged when ~80% confluence was reached. 

 

2.16.2 Trypsinising and passaging cells 

Cells were washed with HANKs balanced salt solution (Sigma) to remove all remaining serum. To 

detach the washed cells an appropriate amount of pre-warmed 1Xtrypsin (Life Technologies) was 

added and the cells were incubated at 37°C until all cells had detached from the plate. After 

detachment of cells, fresh medium was added to deactivate the trypsin and this cell suspension was 

transferred to a 15ml falcon tube. For re-plating sufficient numbers of cells and fresh medium was 

added to a new flask or well. 

 

2.16.3 Counting cells and calculating population doublings 

To monitor population doublings cells were counted at every passage. After trypsinisation 10μl cell 

suspension were counted in a haemocytometer (Impreoved Neubauer, Hawksley). Cell number was 

then calculated using the following formula: 

Total cell no. = (number of counted cells X 104) X cell suspension volume (ml) 

Population doublings could then be determined using the formula: 

PD= [log (total cell number) – log (seeded cell number)]/log2 
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2.16.4 Cell freezing 

Cells to be frozen were pelleted by centrifugation and resuspended in equal volume of growth 

medium and freezing mixture (4:1 foetal calf serum:dimethylsulfoxide (DMSO)). The suspension was 

then transferred to freezing ampoules which was placed in a freezing box containing isopropanol. 

This method ensures gradual freezing and prevents the formation of ice crystals in the cells. Cells 

were then frozen at 80°C and kept at this temperature for short term storage. For long term storage 

ampoules were transferred to liquid nitrogen (-196°C). 

 

2.16.5 Cell thawing 

Cells were removed from the -80°C freezer or liquid nitrogen and thawed rapidly in a water bath 

(Grant) at 37°C. Once thawed DMSO was removed by adding 9ml of fresh culture medium drop-wise 

(the slow dilution minimised cell damage through osmotic shock). The cell suspension was 

centrifuged (1000rpm, 5 minutes) and supernatant was removed. The cell pellet was then 

resuspended in the appropriate volume of culture medium and re-plated. 

 

2.16.6 Senescence assay 

Senescence of cultured cells was measured by the Senescence Detection Kit (Abcam). Cells cultured 

in 12-well plate wells were washed with 1XPBS before being fixed in fixative solution for 15 minutes 

at room temperature. After two washes with 1XPBS the cells were stained overnight at 37°C with a 

staining solution mix (staining solution, staining supplement, X-gal in DMF (N-N-dimethylformanide) 

(1mg/ml)). The following day % senescence was calculated by counting the number of blue 

senescent cells in a total cell number of 500. 
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2.17 siRNA knockdown 

siGENOME SMARTpool siRNA duplexes against all candidate genes encoding chromatin remodelers 

were obtained (Dharmacon, Thermo Scientific). For each candidate gene, siRNA knockdowns were 

performed on four independent cell populations. Three successive siRNA transfections were 

performed for each cell population at intervals of 48h (HT1080 cl. 2) or 96h (Keratinocyte C1B cells). 

Cells which were not subject to siRNA transfection (untreated) were grown in parallel as were cells 

that were either subject to transfection with a negative control siRNA or subject to a ‘mock’ 

transfection.  

 

2.17.1 Transfection procedure 

Keratinocyte holoclone C1B and HT1080 clone 2 cells were cultured in either 24-well or 96-well plate 

wells. At 70-80% confluency cells were transfected with 25nm siRNA. 

 

siRNA was diluted to a concentration of 250nM in 1XsiRNA buffer (Dharmacon) and optiMEM 

(Invitrogen). siRNA was then mixed with DharmaFECT transfection reagent and incubated at room 

temperature for 20 minutes. After incubation the siRNA-DhramaFECT complexes were diluted 10X in 

antibiotic-free complete medium resulting in a final siRNA concentration of 25nM and a final 

DharmaFECT concentration of 0.2l/96-well plate wells or 1l/24 well plate wells. This transfection 

mix was then added to the cells (100l for 96 well plates, 500l for 24 well plates). Cells were 

incubated at 37C in 5% CO2 for 12 hours after which the transfection mix was replaced by antibiotic-

free complete medium. To determine the success of the knockdown RNA was extracted from the 

cells and copied to cDNA. Expression levels of each gene were then analysed by real-time PCR. 
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2.17.2 RNA extraction 

RNA was extracted from cells using the Cells-to-cDNATM II kit (Ambion). Cells were washed with 

1XPBS before they were lysed by incubation at 75°C for 10 minutes in Cell Lysis II buffer. Following 

lysis genomic DNA was degraded by the addition of 4U DNase I and incubating at 37°C for 15 

minutes. The DNase I was then inactivated at 75°C for 5 minutes. Cell lysates were then stored at -

20C or -80C for long term storage. 

 

2.17.3 Reverse transcription 

To obtain cDNA from the extracted RNA, reverse transcription reactions were set up containing cell 

lysate containing the RNA template, 625μM dNTPs, 6.25μM random decamers and nuclease-free 

water. After briefly heating the reaction (70°C, 3 mins) 1X RT buffer, M-MLV Reverse Transcriptase 

and 10U RNase inhibitor was added. The reaction was then incubated at 42°C for 60 minutes 

followed by a 10 minute incubation at 95°C to inactivate the reverse transcriptase. Resulting cDNAs 

were either stored at -80C or added to qPCR reactions to measure gene expression. 

 

2.17.4 Gene expression analysis 

Triplicate qPCR reactions were set up for each cDNA sample containing cDNA (5X diluted), 1X 

Taqman Fast Universal PCR Master Mix (Applied Biosystems) and 1X Taqman Gene Expression Assay 

Mix targeted against either the ATRX, DAXX, EZH2 or ACTB (endogenous control) genes. qPCR 

reaction were then cycled in a ABI PRISM 7700 (Applied Biosystems) under the following conditions:  

60°C (1 min) 95°C (20 sec) followed by 4 cycles of 95°C (1 sec) and 60°C (20 sec). Relative gene 

expression was measured by the ∆∆Ct method which compares Ct values derived from amplification 
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of target genes with the Ct values of an endogenous control (ACTB). This analysis was performed 

using SDS RQ manager (Applied Biosystems). 
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Chapter 3 

The development of qPCR assays at 2p, 11q, 12q, 16p, 17p, 18q and XpYp telomeres 

 

3.1 Abstract 

Differences in telomere length exist between chromosome ends within a cell population and 

between telomeric alleles at the same chromosome end. Additionally, shorter telomeres are 

preferentially elongated by telomerase. These observations suggest a mechanism 

responsible for the maintenance of telomere length and for the targeting of shorter 

telomeres for elongation. Single Telomere Length Analysis (STELA) assays have previously 

been developed for a number of different chromosome ends including 2p, 11q, 12q, 16p, 

17p, 18q and XpYp (allele-specific). The aim of this chapter was to develop telomere- and 

allele-specific quantitative PCR (qPCR) assays for these same chromosome ends, which, 

when used in conjunction with Chromatin Immunoprecipitation (ChIP) will allow the 

enrichment of histone modifications at the telomere to be measured. Together, analysis of 

telomere length and patterns of telomeric enrichment of histone modifications will shed 

light on whether chromatin structure plays a role in telomere length regulation. Past 

research studying telomeric chromatin has been fruitful in identifying a handful of important 

histone modifications involved in maintaining proper telomeric chromatin structure. 

however this work has drawbacks: telomeric enrichment of histone modifications is 

measured using dot-blot assays which lack telomere specificity therefore measurements of a 

certain histone modification at a specific telomere cannot be achieved. Similarly methods 

used to measure telomere length in this work lack telomere specificity; FISH and Terminal 

Restriction Fragment (TRF) analysis have been the gold standard in recent years when 

determining telomere length however neither technique can produce such a high resolution, 

quantifiable, telomere specific measurement of telomere length as STELA. Using telomere-
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specific qPCR along with ChIP in parallel with STELA can provide a powerful tool for 

discovering relationships the chromatin structure of a telomere and its length 
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3.2 Introduction 

 

3.2.1 qPCR history 

The first example of quantification of a polymerase chain reaction (PCR) was described in 

1988. This method involved the use of biotin labelled primers to generate 5’ biotinylated 

DNA molecules. After hybridization to a labelled probe, these PCR products were collected 

on an avidin matrix and the amount of labelled PCR product could be quantified (Syvänen et 

al. 1988). Subsequently other end-point quantification methods were proposed (Becker-

André and Hahlbrock 1989; Gilliland et al. 1990) however the breakthrough in quantifying 

PCR was the introduction of real-time quantification of PCR products which allows the 

simultaneous amplification and detection of PCR products (Higuchi et al. 1992). Since the 

development of real-time PCR (RT-PCR) it has been adapted for numerous molecular biology 

applications. Not only has it become the standard method used in measuring gene 

expression, it is also used for pathogen detection (Egli et al. 2001; Gut et al. 1999; Kato et al. 

2000), single nucleotide polymorphism (SNP) analysis (Mattarucchi et al. 2005; Mhlanga and 

Malmberg 2001), analysis of chromosome aberrations (Peter et al. 1997; Zucman et al. 

1993) and more recently protein detection (Gillis et al. 2011). 

 

3.2.2 Chromatin Immunoprecipitation and qPCR 

In addition to the above applications, qPCR is also used for the post-chromatin 

immunoprecipitation (ChIP) quantification of chromatin-bound protein. 
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ChIP is a key method used in the study of chromatin structure and dynamics. It can be used 

to measure the enrichment of chromatin-bound proteins such as transcription factors and 

chromatin remodelling proteins or it can be used to directly analyse chromatin structure by 

measuring the degree of enrichment of histone modifications such as histone methylation 

and histone acetylation. The ChIP process involves an antibody specific to the protein of 

interest which is used to immunoprecipitate cross-linked chromatin fragmented to ~500bp. 

DNA immunoprecipitated with the protein of interest is then reverse cross-linked from the 

protein and purified. QPCR amplifies a specific region designated by the primers from the 

DNA ‘pulled down’ with the protein giving a measure of the enrichment of the protein of 

interest at that region. qPCR has several advantages over other post ChIP enrichment 

analysis methods; it provides high resolution, sensitive method for analysing enrichment of 

chromatin bound protein, it is also highly adaptable as enrichment of a particular protein of 

interest can be measured anywhere in the genome providing primers can be designed to the 

region. Additionally it requires less starting material than other post-ChIP analysis 

techniques meaning that protein enrichment within more regions of interest can be studied 

from a single immunoprecipitation. 

 

The ChIP analysis of protein enrichment at specific genomic loci has been used to study a 

wide range of cellular processes such as transcriptional activation and repression, the 

regulation of large chromosomal domains, the DNA damage response and also telomere 

maintenance. 
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3.2.3 ChIP and qPCR at the telomere 

Quantitative analysis of chromatin-bound protein enrichment at chromosome ends is 

problematic because of the DNA sequences of telomeric and subtelomeric DNA: The 

repetitive nature of telomeric DNA impedes the design of functional primers within the 

telomere and the sequence homology between subtelomeric regions from different 

chromosome ends means that designing subtelomere-specific primers is also difficult. 

Despite these challenges, telomeric qPCR has been developed for three chromosome ends 

in Saccharomyces cereisiae. These are based on telomeres with a relatively unique structure 

that lacks the conserved Y’ and X elements found at other chromosome ends. 

 

Specifically, qPCR assays have been designed within the subtelomeric region but which 

reside close to the telomeric repeat tract at the right arm of chromosome VI (Tel VI-R), the 

left arm of chromosome I (TelIL) and the left arm of chromosome VII (Tel VII-L) (Fisher et al. 

2004; Luke et al. 2008; Takata et al. 2004; Takata et al. 2005; Yu et al. 2007). These qPCR 

assays are used as standard when measuring telomeric protein enrichment in budding yeast. 

 

In Drosophila qPCR and conventional PCR methods have been used with ChIP to analyse 

telomeric chromatin structure in a small number of studies. (Burgio et al. 2011) 

Conventional PCR has been used to detect presence of telomeric enrichment of various 

heterochromatin marks including H3K9me3, H3K27me3, H4K40me3 histone H3 and H4 

acetylation at the Het-A terminal repeat retrotransposon (Burgio et al. 2011). In work 

studying the telomere capping proteins, HP1/ORC-associated protein (HOAP), HOAP 

interacting protein (HipHop) and HP1 were shown to be enriched at an artificial model 

telomere by qPCR (Gao et al. 2010). This model telomere was constructed through I-SceI 
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endonuclease-induced deletion of a P-element insertion at the tip of chromosome 2R which 

resulted in the generation of a new telomere. Adjacent to this new telomere was a non-

repetitive region which allowed qPCR primer design.  

 

The few examples given above of post-ChIP qPCR analysis of telomeric enrichment 

demonstrate the difficulty in generating robust qPCR assays at chromosome ends. 

Considerable effort has been put into obtaining such assays which must reflect the value of 

qPCR and the benefits in using qPCR over more traditional post-ChIP analysis methods when 

studying telomeric chromatin. 

 

3.2.4 qPCR at human telomeres 

qPCR has previously been utilized at human telomeres as a means of measuring telomere 

length (Cawthon 2002, 2009; O'Callaghan and Fenech 2011). Telomere length is measured 

using primers that bind telomeric repeats, as telomere length increases the number of 

binding sites for the primers also increases. Telomeric copy number is then compared to a 

single copy reference gene within the same sample to give an indication of relative telomere 

length. This method has been employed to measure telomere length in a number of varying 

studies (Aviv et al. 2011; Fernandez-Moreno et al. 2011; Marcondes et al. 2009; Pavesi et al. 

2009; Wong et al. 2011).  

 

Although qPCR has been used with ChIP in human cells to study protein enrichment at 

various loci throughout the genome for a variety of cellular processes qPCR at human 

telomeres remains a largely unexplored field. 
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Due to the inability to design primers to the TTAGGG repeat tract qPCR has not been 

considered a suitable post-ChIP method to analyse telomeric protein enrichment at human 

telomeres. An alternative method is to design a qPCR assay within the subtelomeric region 

immediately adjacent to the TTAGGG repeat tract. This is the approach taken in telomeric 

ChIP studies in yeast and allows measurement of enrichment of a protein within the 

telomere repeat tract. This method is also problematic because of two reasons: firstly, a 

number of human chromosome ends have not been fully sequenced up to the TTAGGG 

repeats therefore the position of a primer set in relation to the telomere repeats would be 

unknown. Secondly, the high level of sequence homology shared between different human 

subtelomeres makes it difficult to design a primer set which will amplify only one 

subtelomere. There are however nucleotides within telomere-adjacent regions which are 

specific to that single chromosome end. Exploiting these nucleotides when designing 

primers is how telomere-specificity can be achieved. Designing qPCR primers around these 

nucleotides will result in a qPCR assay directly adjacent to the TTAGGG repeats which can be 

used to detect protein enrichment within the telomere. 

 

Traditionally the method used for analysing chromatin-bound protein enrichment in 

mammalian cells is chromatin immunoprecipitation followed by dot blots (Benetti et al. 

2007b; Garcia-Cao et al. 2002; Garcia-Cao et al. 2004a; Jones et al. 2008; Loayza and De 

Lange 2003). This approach has been taken in a number of studies and although it has been 

successful it has drawbacks: Firstly, the TTAGGG repeat probe used for detecting 

immunoprecipitated telomeric DNA detects telomeric DNA from every chromosome end 

therefore telomere to telomere comparisons cannot be made. Secondly, there are 
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sensitivity issues with this technique with very subtle differences in enrichment are likely to 

be missed. 

 

Despite these drawbacks of ChIP-dot blot assays it is important to note that there are 

advantages of using this system instead of qPCR as a post-ChIP analysis of human telomeric 

enrichment. A qPCR assay can only detect enrichment of a protein from chromatin 

fragments which contains the region to which the qPCR assay has been designed to whereas 

a dot blot can measure enrichment throughout the entire telomere repeat array. This issue 

becomes problematic when studying telomeres longer than the size of the sonicated 

chromatin fragments and is particularly relevant at human telomeres which can be up to 

15kb in length (de Lange et al. 1990) . Therefore when investigating the role of telomere 

binding proteins such as the shelterin components or telomerase in telomere length 

regulation the qPCR assays are not suitable. Extensive evidence indicates that telomere 

length in humans is evaluated at each chromosome end by the extent of TRF1 binding along 

the length of the telomere (Smogorzewska et al. 2000; van Steensel and de Lange 1997). 

Considering that qPCR assays are limited to detecting enrichment only at regions 

incorporating the qPCR amplicon differences between TRF1 enrichment between telomeres 

of different length would not be seen. 

 

Using the telomere-adjacent qPCR assays to measure telomeric enrichment in relation to 

telomere length in yeast is a more pertinent method as telomere length in yeast is ~300bp. 

Therefore the chromatin fragments amplified by the telomere adjacent qPCR assay would 

incorporate the entire telomere repeat tract. However there are examples, even in yeast 

were dot blot assays have been used instead of qPCR as the post-ChIP detection method. 

One such example is in a study investigating the role of Taz1 and Rap1 in telomere length 
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regulation in S. pombe (Dehe et al. 2012). In this study telomerase enrichment at the 

telomere terminus was analysed in yeast strains taz1∆ and rap1∆. Telomere elongation 

within these strains resulted in telomeres much longer than the size of the sonicated 

chromatin fragments (0.5kb) therefore the telomere adjacent qPCR assays would not be 

able to detect telomerase enrichment at the telomere terminus. Because of this limitation of 

the qPCR assay the authors used the dot blot approach to measure telomerase enrichment. 

 

Despite this drawback of the ChIP-qPCR approach, it is still a suitable method for analysing 

telomeric chromatin structure at human chromosome ends. Although the enrichment of 

histone modifications cannot be measured along the entire length of the chromosome such 

differences may exist at the region detected by the qPCR assays and will reflect differences 

in chromatin structure at different chromosome ends. 

 

3.2.5 Aims of the project 

Single Telomere Length Analysis (STELA) enables the measurement of telomere length 

distributions at a single chromosome end. Telomere-specificity is achieved through the use 

of a subtelomeric primer incorporating often only a single nucleotide specific to that 

chromosome end. The aim of this chapter is to use a similar approach in primer design to 

generate telomere- and telomeric allele-specific qPCR assays which when used with ChIP will 

allow the analysis of chromatin structure of an individual chromosome end. 
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3.3 Results 

 

3.3.1 Telomere-specific qPCR assay development 

 

3.3.1.1 PCR primer design 

Because of the sequence homology between different subtelomeres of different 

chromosome ends and interstitial telomeres, it was necessary to identify nucleotides within 

a subtelomeric region specific only to that region using published telomere sequences from 

Reithman et al (http://www.wistar.upenn.edu/Riethman).  Once identified, primers were 

designed around these nucleotides taking into account some key considerations. Firstly the 

primer designed should be approximately 20 nucleotides in length with a GC content of 

~50%. Importantly the telomere-specific nucleotide should reside at the 3’ end of the 

primer. It is this design parameter which gives specificity to one subtelomeric region as a 

mismatch will occur when the primer anneals to other highly similar subtelomeric sequences 

from other chromosome ends, resulting in failure of the Taq polymerase to extend from the 

primer in a PCR reaction and hence failure to produce a PCR product from other, undesired 

subtelomeric regions. Other considerations include ensuring the PCR product is small 

enough to ensure an efficient qPCR assay (≤250nt) and as close to the telomere repeats as 

possible. The PCR product also had to include telomere-specific nucleotides to serve as 

markers during sequencing of the PCR product to confirm whether or not the PCR product 

generated during the PCR reaction is telomere-specific. 
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3.3.1.2 Primer optimization and sequencing 

Once primers had been designed for a single subtelomeric region they were tested in a 

conventional PCR reaction. Specifically, a gradient PCR was employed which uses increasing 

annealing temperature in a single PCR programme across 12 identical reactions ranging from 

55-72°C. PCR products were then resolved with a 1% agarose gel. This approach showed 

whether the primer set generated a correctly sized, robust PCR product. It also allowed 

identification of the most stringent conditions (i.e. highest annealing temperature) which 

allowed the generation of this product. 

PCR product generated at this annealing temperature was then gel excised and sequenced 

to determine if the PCR product generated was specific to that subtelomeric region. 

 

3.3.1.3 qPCR assay 

Once sequencing of the generated PCR product confirmed specificity to the desired 

subtelomeric region, the efficiency of the primer set was then tested in a qPCR reaction. 

qPCR was performed using the annealing temperature which was shown via conventional 

PCR to amplify only the desired subtelomeric sequence. 10-fold series dilution of genomic 

DNA (50, 5, 0.5 & 0.05ng) was used as input DNA for triplicate qPCR reactions to create a 

standard curve. The gradient of the standard curve determines whether differences in Ct 

values obtained from the different reaction triplicates correspond proportionately to the 10-

fold series dilution of gDNA as mentioned in material and methods section 2.15.2. Another 

factor to consider was whether the qPCR assay was only amplifying the correct PCR product 

and no other products of differing sizes. The dissociation curve determines how many PCR 

products of differing sizes are present after the last amplification cycle by measuring the 

temperature-dependant dissociation between two DNA strands. The PCR product is heated 
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gradually through their melting temperature (Tm) to 95°C, at the Tm the PCR product 

dissociates into single-stranded DNA causing a sudden decrease in SYBR green signal which 

the machine monitors. One PCR product and hence one Tm results in only one peak in the 

dissociation curve whereas two or more PCR products of differing sizes would be shown by 

two peaks. 

 

Development of telomere-specific-qPCR assays was carried out for the 2p, 11q, 12q, 16p, 

17p and 18q chromosome ends. An allele-specific qPCR assay was also developed within the 

subtelomeric region of both alleles of the XpYp telomere. The above procedure was applied 

to the design of primers for all the mentioned chromosome ends (unless otherwise stated) 

to produce robust, telomere-specific qPCR assays. 
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3.3.2 2p 

Primers 2p1 and 2p2 were previously designed by another lab member. This primer set 

amplifies an amplicon 190nt in size which extends into the TTAGGG repeats (fig. 3.1a). When 

tested in conventional PCR using an annealing temperature ranging from 65C-72C 

amplification of the anticipated 190nt PCR product was seen at every annealing temperature 

without any generation of additional non-specific products (fig. 3.1b). Because of this clean 

PCR and because 2p-specificity had already been confirmed the primer pair was tested in a 

qPCR assay with an annealing temperature of 65C. This amplification efficiency using 2p1 

and 2p2 was poor and furthermore, several peaks were present in the dissociation curve 

showing that several amplicons were being simultaneously amplified (fig. 3.1c,d). In an 

attempt to stop the amplification of these additional amplicons the annealing temperature 

was increased to 72C. Although the peaks in the dissociation curve are less prominent in 

this qPCR assay they are still present (fig. 3.1f). Also the amplification efficiency is still poor 

(fig. 3.1e) therefore this primer pair isn’t suitable for qPCR. An additional 2p-specific qPCR 

primer was designed (2p13) which when used in conjunction with 2p1 produces an amplicon 

of 144nt which extends into the TTAGGG repeats (fig. 3.2a). A conventional PCR using this 

primer pair amplifies a PCR product of the anticipated size. At lower annealing temperatures 

(56-60.5C) additional, larger products are also amplified so for this reason an annealing 

temperature of 62.8C was used for subsequent PCR. The 144nt product amplified at a 

62.8C annealing temperature was gel extracted and sequenced using 2p13. The 

electrophenogram shows that the amplified product was specific to the subtelomeric region 

of the 2p chromosome end (see the highlighted bases which correspond to the ‘marker’ 

bases in (a) (fig. 3.2c). 2p1 and 2p13 were then tested in a qPCR assay. 2p13, when used in 

tandem with 2p1, produced a better qPCR assay than 2p2 and 2p1: the gradient from the 

standard curve generated was -4.42 resulting in an amplification efficiency of 68%, however 
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this is still too low (fig. 3.2d). Additionally, amplification of products of differing sizes occurs 

when less input gDNA (0.05ng) is present in the qPCR reaction (fig. 3.2e) therefore this assay 

isn’t efficient or robust enough to be used with ChIP to measure enrichment of histone 

modifications at this chromosome end. 
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2p132p2

2p1

centromere

TTAGGG repeatssubtelomeric sequence

2p2 2p13

2p1

GGAGCTGCGT TTTGCTGAGC ACACACCCGG TGGACACCGT AAAGGCGAAG CAGCATTCTC CTCAGGACAG 

AGTTTGGGGG CACTGCCTCG CTTTGGGACC CCTCGGGGCC GCATCGACGG TGAATAAAAT ACTTCCTGTT 

TGCAGCACTG AATACTCAAA GTCAGACACG AGTTAGGCTT GGCTTAGGGT TAGGGGTTAG 

2p1 & 2p2 -  190nt

2p1 & 2p13  -  143nt

Figure. 3.1 qPCR assay development for 2p subtelomeric region using primers 2p1 & 2p2 (a) 2p1 was designed incorporating a stretch of 2p-speci�c 
nucleotides (highlighted in yellow).  PCR product generated from 2p1 and 2p2 is 190nt in length, and extends into the TTAGGG repeats. (b) PCR 
performed using the stated annealing temperature gradient, products generated were ran on a  1% gel and visualized. The red box encircles PCR product 
of correct size. (c) A standard curve was set up to test the e�ciency of the primers 2p1 & 2p2 in a qPCR assay using an annealing temperature of 65°C. The 
Ct values produced rom qPCR reactions contiaining 10-fold serial dilution of genomic DNA (50, 5, 0.5, 0.05ng) are plotted to create a standard curve with 
a gradient of –2.43. (d) Dissociation curve showing the temperature at which the PCR products generated from the qPCR ampli�cation dissociates into 
ssDNA molecules. (e) The same qPCR assay as in (c) was repeated but with an annealing temperature of 72°C, producing a standard curve with a gradient 
of -2.91. (f ) Dissociation curve from the qPCR assay performed with an annealing temperatureof 72°C still shows the presence of multiple product 
formation
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2p132p2

2p1
centromere

TTAGGG repeatssubtelomeric sequence

a b

c

d e

2p2 2p13

2p1

GGAGCTGCGT TTTGCTGAGC ACACACCCGG TGGACACCGT AAAGGCGAAG CAGCATTCTC CTCAGGACAG 

AGTTTGGGGG CACTGCCTCG CTTTGGGACC CCTCGGGGCC GCATCGACGG TGAATAAAAT ACTTCCTGTT 

TGCAGCACTG AATACTCAAA GTCAGACACG AGTTAGGCTT GGCTTAGGGT TAGGGGTTAG 

2p1 & 2p2 -  190nt

2p1 & 2p13  -  143nt

Figure. 3.2 qPCR assay development for 2p subtelomeric region using 2p1 & 2p13 (a) 2p13 was designed incorporating a 2p-speci�c nucleotide at it’s 3’ end 
(highlighted in yellow).  PCR product generated from 2p1 and 2p13 is 144nt in length, and extends into the TTAGGG repeats. (b) PCR performed using the stated 
annealing temperature gradient, products generated were ran on a  1% gel and visualized. The red box encircles PCR product of correct size. (c) Electropheno-
gram from sequencing of PCR product ampli�ed using primers 2p1 & 2p13. 2p-speci�c nucleotides are highlighted and correspond to the highlighted nucleo-
tides in (a). (d) A standard curve was set up to test the e�ciency of the primers 2p1 & 2p2 in a qPCR assay using an annealing temperature of 62.8°C. The Ct values 
produced rom qPCR reactions contiaining 10-fold serial dilution of genomic DNA (50, 5, 0.5, 0.05ng) are plotted to create a standard curve with a gradient of 
–4.42. (e) Dissociation curve showing the temperature at which the PCR products generated from the qPCR ampli�cation dissociates into ssDNA molecules.
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3.3.3 11q 

A previous lab member had also designed 11q-specific primers (11q12 and 11q13B) to 

generate products for use as a hybridisation probe.  A conventional PCR reaction using 

11q12 and 11q13B produced a PCR product 95 nucleotides in length 11 nucleotides from the 

TTAGGG repeats (fig. 3.3a). A PCR product of the correct size was generated at the lower 

annealing temperatures (65-70.5C) (fig. 3.3b). The performance of these primers was then 

tested in a qPCR reaction using an annealing temperature of 66C.  The Ct values generated 

from the serial dilution produced a standard curve with a gradient of -3.413 meaning that 

the qPCR efficiency is 96.3% (fig. 3.3c). The dissociation curve shows a single sized product 

being formed in the qPCR reaction for all the dilutions of gDNA (fig. 3.3d) therefore 11q12 

and 11q13B result in the efficient amplification of the 11q subtelomeric region in a qPCR 

reaction. 
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11q13B

11q12

centromere

Distance from
 TTAGGG - 11nt

TTAGGG repeatssubtelomeric sequence

a b

c d

Figure. 3.3 qPCR assay development for 11q subtelomeric region (a) Primers 11q12 and 11q13B were previously designed, 11q13B contains an 
11q-speci�c nucleotide at it’s 3’ end (highlighted in yellow). These primers generate a PCR product 95nt in length 11nt from away from telomere 
repeats. (b) PCR was performed using the stated annealing temperature gradient, products generated were ran on a 1% gel and visualized. The red 
box encircles PCR product of correct size.  (c) A standard curve was set up to test the e�ciency of the primers 11q12 and 11q13B in a qPCR assay using 
an annealing temperature of 66°C. The Ct values produced rom qPCR reactions contiaining 10-fold serial dilution of genomic DNA (50, 5, 0.5, 0.05ng) 
are plotted to create a standard curve with a gradient of  -3.413 (d) Dissociation curve showing the temperature at which the PCR product generated 
from the qPCR ampli�cation dissociates into ssDNA molecules

GCAGGTTTCT CAGCACAGAC CTTGGAGGCA CGGCCTTCGT TTCGGACAAT TCGGGGCCGC ATCGACGGTG 

AATAAAATCC TTCCTCTTTG CAGCCCTGAA TAATCAGGGT CAGAGATCAG TTAGGGTTAG GGTTAGGGTT 
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3.3.4 12q 

The subtelomeric sequence of 12q contains two diverged haplotypes (fig. 3.4a) (Baird et al. 

2000). In order to develop an assay specific to 12q, but not to differentiate between the 

haplotypes, it was important to design primers around 12q-specific nucleotides present in 

both haplotypes. The 12q subtelomere was a good candidate for qPCR assay design, not only 

due to the relatively high number of 12q-specific nucleotides, but also because of their 

abundance close to the TTAGGG repeats. Indeed, primers 12qA1 and 12qB each contained 

three 12q-specific bases within their sequence with one of these nucleotides residing at the 

primers’ 3’ end. The resulting product was 254nt in length and 20nt from the TTAGGG 

repeats (fig. 3.4a). In a conventional PCR 12qA1 and 12qB generated the expected 254nt 

amplicon with minimal non-specific amplification of PCR products of differing sizes even at 

lower annealing temperatures (fig 3.4b) To ensure amplification of the 12q subtelomeric 

region specifically an annealing temperature of 66C was chosen for future PCR. Sequencing 

of this product using 12qA1 showed that it was specific to the 12q subtelomere (see the 

single peaks at the highlighted bases, fig. 3.4c), it also revealed that haplotype B was 

preferentially amplified: position 192 on the electrophenogram shows a larger peak for the 

haplotype B-specific base T however there is also a peak for the haplotype A-specific C base 

showing that this haplotype is also amplified (fig. 3.4c). 12qA1 and 12qB were tested in a 

qPCR reaction with an annealing temperature of 66C. The Ct values resulting from the 

amplification of the 10-fold gDNA dilutions produced a standard curve with a gradient of -

3.42, the efficiency of the assay was calculated as 96.1% (fig. 3.4d). The dissociation curve 

was consistent with the melting of a single amplicon however in reactions containing less 

gDNA peaks were produced at lower temperatures suggesting the presence of smaller non-

specific amplicons or primer-dimer formation (fig. 3.4e). This was seen on a number of 

occasions and may well limit the functionality of this assay when used to amplify more dilute 

DNA. 
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Figure. 3.4 qPCR assay development for 12q subtelomeric region (a) Primers 12qA1 & 12qB were designed incorporating 12q-speci�c nucleotides 
(12q-speci�c nucleotides highlighted in yellow, haplotype-speci�c bases highlighted in pink). PCR product is 254nt in length, 20nt from TTAGGG repeats. 
Region to be ampli�ed also contains 12q speci�c ’marker’ nucleotides. (b) PCR performed using the stated annealing temperature gradient, products 
generated were ran on a 1% gel and visualized. The red box encircles PCR product of correct size. (c) Electrophenogram from sequencing of PCR product 
ampli�ed using primers 12qA1 and 12qB. 12q-speci�c and haplotype-speci�c nucleotides highlighted correspond to marker nucleotides in (a). (d) A 
standard curve was set up to test the e�ciency of the primers 12qA1 and 12qB in a qPCR assay using an annealingtemperature of 66°C. The Ct values of a 
10-fold serial dilution of genomic DNA (50, 5, 0.5, 0.05ng) are plotted to create a standard curve with a gradient of –3.417 (e) Dissociation curve showing 
the temperature at which the PCR product generated from the aPCR ampli�cation dissociates into ssDNA molecules

12qA1

12qB

centromere

Distance from
 TTAGGG - 20nt

TTAGGG repeatssubtelomeric sequence
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12q HapB    TCAAAAGCCC CTCTGAATCC TGCGCACCGA GATTCTCCCC AGCCAAGGTG AGGCGGCAGC AGTGGGAGAT 

12q HapA    TCAAAAGCCC CTCTGAATCC TGCGCACCGA GATTCTCCCC AGCCAAGGTG AGGCGGCAGC AGTGGGAGAT 

 

12q HapB    CCACACCGTA GCGTTGGAAC ACAAATGCAG CATTACAAAT GCAGACATGA CACCGAAAAT ATAACACACC 

12q HapA    CCACACCGTA GCATTGGAAC ACAAATGCAG CATTACAAAT GCAGACATGA CACCGAAAAT ATAACACACC 

 

12q HapB    CCATTGCTCA TGTAACAAGC ACCTGTAATG CTAATGCACT GCCTCAAAAC AAAATATTAA TATAAGATCG 

12q HapA    CCATTGCTCA TGTAACAAGC ACCTGTAATG CTAATGCACT GCCTCAAAAC AAAATATTAA TATAAGATCG 

                                                                    

12q HapB    GGCAATCTGC ACACTGCCGT GCAGTGCTAA GACAGCAATG A AATAGTCA ACATAATAAC CCTAATAGTG 

12q HapA    GGCAATCCGC ACACTGCCGT GCAGTGCTAA GACAGCAATG AAAATAGTCA ACATAATAAC CCTAATAGTG 

12qA1

12qB
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3.3.5 16p 

Primers 16pC and 16pBrev were designed around two 16p-specific nucleotides in the 16p 

subtelomeric region 190 nucleotides from the TTAGGG repeats (fig. 3.5a). In a conventional 

PCR reaction a PCR product of the desired 178 nucleotides was generated from 16pC and 

16pBrev however at lower annealing temperatures larger, non-specific PCR products were 

also generated (fig. 3.5b). When an annealing temperature of 62.8C or above was used 

these non-specific products failed to amplify leaving only the desired 178nt product. 

Sequencing of the gel-extracted 178nt PCR product using 16pC revealed that it was 16p-

specific as shown by the highlighted ‘marker’ bases (fig. 3.5c). 16pC and 16pBrev were then 

tested in a qPCR reaction: Ct values generated from qPCR reactions containing 10-fold 

dilutions produced a standard curve with a gradient of -3.55 and subsequently a qPCR assay 

efficiency as 91.2% (fig. 3.5d). A single peak in the dissociation curve shows that the single 

16p-specific amplicon is being generated during the assay. However no amplification was 

seen in the qPCR reactions containing 0.05ng of gDNA suggesting that very small amounts of 

starting gDNA may be difficult to detect using this 16p qPCR assay (fig. 3.5e). 
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a b

c

d e

Figure. 3.5 qPCR assay development for 16p subtelomeric region (a) Primers 16pBrev & 16pC were designed incorporating 16p-speci�c nucleotides 
(highlighted in yellow).  PCR product is 178nt in size and 190nt from TTAGGG repeats. Region to be ampli�ed also contains 16p-speci�c ’marker’ nucleo-
tides. (b) PCR was performed with the stated annealing temperature gradient, products generated were ran on a 1% gel and visualized. The red box 
encircles PCR product of correct size. (c) Electrophenogram from sequencing of PCR product ampli�ed using primers 16pBrev & 16pC. 16p-speci�c nucleo-
tides are highlighted and correspond to the highlighted nucleotides in (a).(d) ) A standard curve was set up to test the e�ciency of the primers 16pBrev & 
16pC in a qPCR assay using an annealing temperature of 62.8°C. The Ct values of a 10-fold serial dilution of genomic DNA (50, 5, 0.5, 0.05ng) are plotted, 
the resulting gradient from the standard curve is –3.55 (e) Dissociation curve showing the temperature at which the PCR product generated from the aPCR 
ampli�cation dissociates into ssDNA molecules

16pC

16pBrev

centromere

Distance from
 TTAGGG - 190nt

TTAGGG repeatssubtelomeric sequence

GTGCCCAGGA TTCAGAGGGG CTTTTAGTTT CCCATTTTCC ACACTGAACC GTTCTAACTG GTCTCTGACC 

TTGATTATTC ACGGCTGCAA CCGGGAAAGA TTTTATTCAC TGTCAATGCG CCCCGAGTTG TCCCAAAGCC 

AGGCAGTGCC CCCAACGTCT GTGCTTAGCA GAATGCTGCT CCACCTTTAC GGTGACCCCC AGGTCTGTGC 

16pC

16pBrev
100bp

200bp

300bp

400bp

500bp

°C 56 56.4 57.4 58.6 60.5 62.8 65.5 67.8 69.5 70.8 71.7 72
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3.3.6 17p 

Designing 17p-specific primers proved particularly difficult due to the paucity of 17p-specific 

bases in the 17p subtelomeric region. Because of this of the two primers designed (17pA and 

17pB) only 17pA possessed one 17p-specific base at its 3’ end (fig. 3.6a) and the amplicon 

was further away from the TTAGGG repeats (426nt). Using this primer set in conventional 

PCR resulted in strong amplification of a product 245nt in size with minimal amplification of 

larger, non-specific products even at the lower annealing temperatures (fig. 3.6b). Gel-

extracted PCR product was sequenced using 17pA as the sequencing primer revealing that 

the amplicon was specific to the 17p subtelomeric region (see highlighted ‘marker’ base fig. 

3.6c). Once the specificity of the primer set was confirmed their performance in a qPCR 

reaction was tested. Initially when an annealing temperature of 67.8C was used in the 

cycling conditions the efficiency of the qPCR assay was poor: amplification was weak and the 

Ct values generated between each point in the standard curve didn’t reflect the 10-fold 

difference in input gDNA. To solve this problem a lower annealing temperature was used 

(64C) which greatly improved the amplification efficiency resulting in a standard curve 

gradient of -3.36 and qPCR efficiency as 98.4% (fig. 3.6d). The dissociation curve shows a 

single peak indicating the melting of only one PCR product in the qPCR reaction (fig. 3.6e). 

Therefore using 17pA and 17pB in a qPCR reaction efficiently and specifically amplifies a 

245nt amplicon in the 17p subtelomeric region. 
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Figure. 3.6 qPCR assay development for 17p subtelomeric region (a) Primer 17pA was designed incorporating a 17p-speci�c nucleotide at its 3’end. 
Nucleotides speci�c to 17p are highlighted in yellow. The PCR product is 245nt in size and 426nt away from telomere repeats . (b) PCR was performed with 
the stated annealing temperature gradient, products generated were ran on a 1% gel and visualized. The red box encircles PCR product of correct size.  (c) 
Electrophenogram from sequencing of PCR product ampli�ed using primers 17pA and 17pB. 17p-speci�c nucleotides are highlighted and correspond to 
the highlighted nucleotides in (a). (d) A standard curve was set up to test the e�ciency of the primers 17pA and 17pB in a qPCR assaywith an annealing 
temperature of 64°C. The Ct values generated from a 10-fold serial dilution of genomic DNA (50, 5, 0.5, 0.05ng) are plotted, the resulting gradient from the 
standard curve is –3.36. (e) Dissociation curve showing the temperature at which the PCR product generated from the qPCR ampli�cation dissociates into 
ssDNA molecules

AACTGTACGT TTTCTTCCAG AGTTTTTAGT TTTCACCTGT TTTGGTCTTC GATCCATTGT AAGTTAATTT 

TTTATGTGGT ATGAGGTAAG GATACAATTT CATTTCCCTT TATGTGGATA GCAAGTTGCC TTACATCACT 

TGTTGAGGAC AGGATTCTTC CCCAATTTAC TGGTAATGGA CTTTGTCTAA AATCAGTTGA GCATAGAGGT 

ATTGTTTTCT GTCTGGACTC CCAATTCAAT TCAGTTGATC TTTCTGTTTA TTCCTGTGCA AGGATCCCAC  

a

c

b

d e

17pA

17pB

centromere

Distance from
 TTAGGG - 426nt

TTAGGG repeatssubtelomeric sequence

17pA

17pB
100bp

200bp

300bp

400bp

500bp

° C5656.457.458.660.562.865.567.869.570.871.772
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3.3.7 18q 

 18qA and 18qC were designed 444nt from the TTAGGG repeats to produce a PCR product 

190nt in length. The 18qC primer contains no 18q-specific nucleotides however 18qA was 

designed in a stretch of nucleotides specific to the 18q subtelomere thereby providing the 

specificity to this region (fig. 3.7a). Amplification using gDNA in a conventional PCR reaction 

using an annealing temperature of 62.8C and above resulted in the generation of the 

expected 190nt amplicon without any non-specific amplification of larger products (fig. 

3.7b). Sequencing of this PCR product using 18qC confirmed 18q specificity as demonstrated 

by the single peaks on the electrophenogram at the highlighted ‘marker’ bases (fig. 3.7c). 

qPCR was performed with an annealing temperature of 62.8C for this primer pair. Ct values 

derived from amplification of 10-fold gDNA dilutions using these primers produces a 

standard curve with a gradient of -3.327 (fig. 3.7d). The efficiency of this amplification was 

99.7%. The dissociation curve confirms the amplification of the single 18q-specific amplicon 

in the qPCR reaction when a larger amount of input gDNA was used however slight non-

specific amplification was observed at lower gDNA concentrations although this is minimal 

(fig. 3.7e).  
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°

Figure. 3.7 qPCR assay development for 18q subtelomeric region (a) Primers 18qA & 18qC were designed. 18qA is designed within a stretch of 18q-speci�c 
nucleotides. Bases speci�c to 18q are highlighted in yellow. The PCR product is 190nt in size and 444bp away from telomere repeats. Region to be ampli�ed also 
contains 18q-speci�c ’marker’ nucleotides.  (b) PCR was performed using the stated annealing temperature gradient, products generated were ran on a 1% gel 
and visualized. The red box encircles PCR product of correct size. (c) Electrophenogram from sequencing of PCR product ampli�ed using primers 18qA and 18qC. 
18q-speci�c nucleotides are highlighted and correspond to the highlighted nucleotides in (a). (d) A standard curve was set up to test the e�ciency of the primers 
18qA and 18qC in a qPCR assay using an annealing temperature of 62.8°C. The Ct values generaated from a 10-fold serial dilution of genomic DNA (50, 5, 0.5, 
0.05ng) are plotted, the resulting gradient from the standard curve is –3.49 (e) Dissociation curve showing the temperature at which the PCR product generated 
from the qPCR ampli�cation dissociates into ssDNA molecules

ACATTGTACC CATACAAATA TAACACAGGG ATGGTTAGGT ATCTCTTTTT ATTTGTATCT 
GGATGAATAT GTATGGTTTT CCTTATAAAA AATACATCCT ACTTTACTTG CAAAACATGC 
CCTACTTTTC TTGCATGCTT TGCGTAGAGT TGTTTCTAGT TATTCTATTA TTTCTACTAG 
TTTTCTTTAC ATATATTGAC ACCACTGGAC ACCACTGTCA GCAACAGGGC ACTGCAGTTG  

18qA

18qC

18qC

18qA

centromere

Distance from
 TTAGGG - 444nt

TTAGGG repeatssubtelomeric sequence

°C

100bp

200bp

300bp

400bp
500bp

56 56.4 57.4 58.6 60.5 62.8 65.5 67.8 69.5 70.8 71.7 72
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3.3.8 Allele-specific qPCR assay development (XpYp subtelomeric region) 

In addition to the chromosome-specific qPCR assays, an allele-specific qPCR assay was 

developed at the XpYp telomere. Differences in telomere length between alleles has 

previously been found at the XpYp telomere (Baird et al. 2003) indicating that differences in 

telomere length between maternal and paternal alleles is maintained from the zygote 

throughout development. By developing an allele-specific qPCR assay for the XpYp telomere 

it will be possible to study the enrichment of different histone modifications at each XpYp 

allele to see whether chromatin structure is playing a part in the maintenance of the 

different length telomeric alleles. 

 

3.3.8.1 Genotyping at the XpYp subtelomeric region 

Different cell lines were genotyped at the XpYp subtelomeric region to identify them as 

either heterozygous for both XpYp alleles (TA allele and GT allele), homozygous for the TA 

allele or homozygous for the GT allele (fig. 3.8a). This was done using primers already known 

to be allele-specific at the XpYp subtelomeric region (XpYp427A/G, 415T/C and XpYpB2) 

(Baird et al. 2003). However these primers generate a PCR product of 436 nucleotides in 

length and are therefore unsuitable for qPCR purposes. The genotyping PCR revealed that of 

the genomic DNAs tested HT1080, ALTD3, MRC5 genomic DNA was heterozygous at the 

XpYp subtelomeric region, U87 genomic DNA was homozygous for the TA allele and U138, 

Hch, CaSki, HeLa, IMR90 genomic DNA was homozygous for the GT allele. A representative 

from each XpYp genotype was then chosen (MRC5, U87 and HeLa) to be used as a tool for 

testing the allele-specificity of the primers designed for qPCR. 
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3.3.8.2 qPCR assay development 

Allele-specific primers for the XpYp subtelomeric region were designed in the same way that 

telomere-specific primers were designed. The sequence immediately adjacent to the XpYp 

telomere exhibits a high frequency of base substitutional polymorphisms (Baird et al. 1995; 

Syvänen et al. 1988) allowing great scope when designing primer sets which will specifically 

amplify only one of the two alleles. Primers were designed which incorporated the 

polymorphisms present at -13 (A or T) and -176 (T or G) at the 3’ end of the primer resulting 

in two sets of primers: XpYp-13A and XpYp-176T, which should only generate a PCR product 

from the TA allele and XpYp-13T and XpYp-176G, which should only amplify the GT allele. 

The primers designed generate a PCR product 202 nucleotides in length which extends into 

the XpYp telomeric repeats (fig. 3.8b). 

In a conventional PCR the most stringent conditions under which a robust, correctly sized 

PCR product was generated for both allele-specific sets of primers was at an annealing 

temperature of 65°C (fig. 3.8c). Genomic DNA heterozygous (MRC5) and homozygous (TA 

allele –U87, GT allele – HeLa) at the XpYp subtelomeric region was then utilized to test 

whether both sets of the -176, -13 primers were capable of allele-specific amplification. As 

expected, PCR products were generated by both sets of primers when MRC5 genomic DNA 

(heterozygous) was used as the template. Importantly, the primer set designed specifically 

to the TA allele (XpYp-13A,-176T) amplified a PCR product when U87 genomic DNA 

(homozygous for the TA allele) was used, a PCR product was not generated when HeLa 

genomic DNA (homozygous for GT allele) was added to the PCR reaction. Likewise XpYp -

13T,-176G (designed specifically to the GT allele) only produced a PCR product from HeLa 

genomic DNA (GT allele-homozygous) (fig. 3.8d). These results confirm that the sets of 

primers designed were indeed capable of allele-specific amplification in a conventional PCR. 
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The same process was then repeated in a qPCR reaction to determine if this specificity is 

maintained. 

122



100bp

200bp
300bp
400bp
500bp

HT1080 ATLD3HchU138 HeLaCaSki MDAMB231U87 MRC5IMR90

TA GT TA GT TA GT TA GT TA GT TA GT TA GT TA GT TA GT TA GT

Figure. 3.8 allele-speci�c qPCR assay development for the XpYp subtelomeric 
region. (a) gDNA extracted from di�erent cell lines was genotyped at the XpYp 
subtelomeric region to identify it as either heterozygous for both XpYp alleles (TA allele 
and GT allele), homozygous for the TA allele or homozygous for the GT allele . This was 
done using primers already known to be allele-speci�c at the XpYp subtelomeric 
region (XpYp427A/G,415T/C and XpYpB2). Pairs of PCR reactions were set up, each pair 
contained a gDNA, each reaction within the pair contained either XpYp427A, 415T and 
XpYpB2 or XpYp427G,415C and XpYpB2, PCR products were loaded onto a 1% gel and 
visualised (b) Primers sets XpYp-176T,-13A and XpY-176G,-13T were designed incorpo-
rating the base substitutional polymorphisms at positions -176 and -13 within the 
XpYp subtelomeric at their 3’ ends producing a PCR product 205nt in length which 
extends into the TTAGGG repeats. (c) Both sets of primers were tested in a conventional 
PCR using  the stated annealing temperature gradient, products generated were ran 
on a 1% gel and visualized. The red box encircles PCR product of correct size. (d) To test 
allele-speci�city pairs of PCR reaction were set up containing either gDNA heterozy-
gous for both alleles (MRC5), homozygous for the TA allele (U87) or homozygous for 
the GT allele (HeLa). Withiin each PCR reaction pair, either XpYp-176T,-13A (1) and 
XpY-176G,-13T (2) were used to amplify the gDNA.

XpYp-176G/T XpYp-13A/T

centromere
TTG G G C G
-13-30-176 -147 -146 -145 -73

AAT A A T C

GT allele

TA allele

AT              CTCAGGAGTG AAGCTGCAGA CCTTTGCGGT GAGTGTCACA GCTCATAAAG GCAGTGTGGA  
GC              CTCAGGAGTG AAGCTGCAGA CCTTTGCGGT GAGTGTCACA GCTCAGAAAG GCAGTGTGGA  
                ********** ********** ********** ********** ***** **** ********** 
 
AT              CCCAAAGAGT GAGCAATAGC AAGATTTATT GCAAAGAGTG AAAGAACGAA GCTTCCACAG  
GC              CCCAAAGAGT GAGCGGCAGC AAGATTTATT GCAAAGAGTG AAAGAACGAA GCTTCCACAG  
                ********** ****.. *** ********** ********** ********** ********** 
 
AT              TATGGAAAGG GACCCCATTG GGTTGCCACT GCTGGCTCAG GCAGTCTGCT TTTATTCTCT  
GC              TATGGAAAGG GACCCCATTG GGTTGCCAGT GCTGGCTCAG GCAGTCTGCT TTTATTCTCT  
                 ******************** ******** * ********** ********** ********** 
 
AT              AATCTGCTCC CACCCACATC CTGCTGATAG GTCCACTTTC AGAGGGTTAG GGTTAGGGTT  
GC              AATCTGCTCC CTCCCACATC CTGCTGATTG GTCCACTTTC AGAGGGTTAG GGTTAGGGTT  
                ********** *:******** ********:* ********** ********** ********** 
 
AT              AGGGTTAGGG TTAGGGTTAG  
GC              AGGGTTAGGG TTAGGGTTAG  
                ********** ********** 

XpYp -176T/G

XpYp -13A/T

TTAGGG repeatssubtelomeric sequence
b

c

d

MRC5 U87 HeLa

°

1 2 1 2 1 2

XpYp-176T,-13A and XpY-176G,-13T

a

100bp

200bp

300bp

400bp

500bp

°C 56 56.4 57.4 58.6 60.5 62.8 65.5 67.8 69.5 70.8 71.7 72
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°C 56 56.4 57.4 58.6 60.5 62.8 65.5 67.8 69.5 70.8 71.7 72
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A standard curve was used to determine the efficiencies of the XpYp-13A,-176T and XpYp-

13T,-176A reactions as 100% and 92% respectively (fig. 3.9a). The dissociation curves show a 

single peak indicating the generation of a single PCR product for both sets of primers (fig. 

3.9b). It was important to determine whether the single PCR products were amplified the 

expected allele for each primer pair. U87 (TA-allele homozygous) and HeLa (GT-allele 

homozygous) genomic DNA was utilised in the same manner as for conventional PCR to 

determine the allele specificity of the primer sets and the result of this test mirrored what 

was seen in the conventional PCR: XpYp-13A,-176T primers only produced a PCR product 

when the TA allele was present in the qPCR reaction (i.e. U87 genomic DNA), no PCR product 

was generated when HeLa genomic DNA was added to a qPCR reaction containing these 

primers confirming that this primer set is amplifying allele-specifically (fig. 3.9c(i)). The same 

can be said for the XpYp-13T,-176G primers but for the opposite allele, there is slight 

amplification of the TA allele from these primers however this is minimal (fig. 3.9c(ii)). 
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Figure. 3.9 Testing the XpYp allele-speci�c primers in a 
qPCR rection. (a) The e�ciency of the both primer sets (XpYp-
176T,-13A and XpY-176G,-13T ) in a qPCR assay was tested using 
an annealing temperature of 64°C. The Ct values generated 
from a 10-fold serial dilution of genomic DNA (50, 5, 0.5, 0.05ng) 
are plotted for XpYp-176T,-13A (left) and XpY-176G,-13T (right) 
producing standard curves with gradients of -3.44 and -3.46 
respectively. (b) Dissociation curve of pYp-176T,-13A (left) and 
XpY-176G,-13T (right) qPCR assays showing the temperature at 
which the PCR product generated from the qPCR ampli�cation 
dissociates into ssDNA molecules. (c) Allele-speci�city was 
tested  by using either gDNA homozygous for the TA allele (U87) 
or homozygous for the GT allele (HeLa) as the input gDNA in 
triplicate qPCR reactions containing XpYp-176T,-13A (i) orXpY-
176G,-13T (ii). The relative quantity of product generated was 
quanti�ed using the standard curves in (a).

(i) (ii)
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3.3.9 Summary 

Using the approaches described above robust qPCR assays have been established for the 

telomere-adjacent DNA of five chromosome ends.  Furthermore a similarly robust assay has 

been developed to identify the specific alleles adjacent to the XpYp telomere.  These assays 

will provide useful tools to study the chromatin structure of human telomeres and how this 

may be modulated by telomere length and other factors. 
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3.4 Discussion 

Differences in telomere length between chromosome ends within the same cell population 

have previously been shown (Britt-Compton et al. 2006). Alleles from the same XpYp 

telomere have been shown to have differing telomere length distributions (Baird et al. 2003) 

indicating that differences in telomere length between maternal and paternal alleles is 

maintained throughout development. Upon ectopic telomerase expression in otherwise 

telomerase-negative cells, preferential elongation of shorter telomeres is observed (Britt-

Compton et al. 2009).  These findings raise the question of how these differing telomere 

lengths are maintained, could it be a chromatin-based mechanism which confers this 

‘setting’ of telomere length and allows shorter telomeres to be targeted for elongation by 

telomerase? 

 

In this chapter the development of novel telomere-specific qPCR assays for the 11q, 12q, 

16p, 17p and 18q chromosome ends as well as allele-specific qPCR assays for the XpYp 

telomere has been described. When used in conjunction with ChIP, these assays will provide 

a means to compare the chromatin structure of chromosome ends with differing telomere 

length distributions. This includes comparisons between different alleles of the same 

chromosome end, between chromosome ends within the same cell population and also 

between the same chromosome from different clonal cell populations. 

 

The primers designed for qPCR were based around nucleotides specific to the subtelomeric 

sequence of interest; this was sometimes a stretch of specific nucleotides but more often it 

was a single telomere-specific nucleotide. Incorporating this nucleotide at the 3’ end of the 

primer was the key factor in the design which provided telomere or allele-specificity as 
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when the primer annealed to a highly homologous subtelomeric sequence from a different 

chromosome end mismatch at the 3’ end of the primer would inhibit extension from the 

template. This method of primer design has been successfully used in the development of 

telomere-and allele-specific single telomere length analysis (STELA) assays (Baird et al. 2003; 

Britt-Compton and Baird 2006; Britt-Compton et al. 2006; Capper et al. 2007). The primers 

designed for these qPCR assays should be more proficient at achieving telomere-specificity 

as this specificity should be gained from two telomere-specific primers, whereas telomere-

specificity in a STELA reaction is reliant on just one primer within the subtelomeric region.   

 

Although telomeric chromatin structure is predominantly studied using ChIP followed by dot 

blot assays very recent studies have begun to emerge in which telomeric ChIP-qPCR has 

been developed: ChIP-qPCR was used to determine the enrichment pattern of H3K9me3 in 

the subtelomeric region of 15q, although the primers designed were quite a distance (7.5kb) 

from the TTAGGG repeats (Arnoult et al. 2012). A more recent study used ChIP-qPCR to 

analyse the role of the chromatin organising factor CTCF in chromatin maintenance at 

human chromosome ends (Deng et al. 2012). The enrichment of a range of histone 

modifications (H3K4me2, H3K4me3, H3K9me2, H3K9me3) as well as chromatin remodelling 

proteins (CTCF, SMC3, Rad21) and telomeric binding proteins (TRF1 & TRF2) was studied at 

several subtelomeric regions. Several sets of primers were designed along the subtelomeric 

sequence of the 10q, 13q, 15q and XqYq chromosome ends allowing protein enrichment to 

be analysed from 190 nucleotides to 6.7kb away from the TTAGGG repeats. Having a 

number of primer sets which collectively span a large area of the subtelomeric region 

described in their work is an future direction which could be taken in this work. Any 

interesting histone modification enrichment observed at the telomeres to which qPCR 
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assays have been designed to could be measured further away from the telomere to 

determine whether the pattern of enrichment is propagated along the subtelomeric region. 

 

There were certain limitations which couldn’t be overcome when designing the qPCR assays: 

one of the main ones being the lack of sequenced subtelomeres. Some chromosome ends 

have not been fully sequenced through to the start of the telomeric TTAGGG repeat regions, 

meaning that the distance between a qPCR assay and the TTAGGG repeats would be 

unknown for these ends. Another limiting factor for these assays is the number of telomeres 

to which a functional STELA assay has been designed: Telomere length distributions of 2p, 

11q, 12q, 16p, 17p, 18q and XpYp (allele-specific) telomeres can be measured by STELA. The 

design of qPCR assays was focused on these chromosome ends. Future work could include 

designing qPCR assays for more chromosome ends in conjunction with the development of 

STELA assays for these ends. 

 

Amplifying very small amounts of input gDNA (0.05ng) proved problematic for the 12q, 16p 

and 18q qPCR primers. 16pBrev & 16pC failed to amplify whereas a product of a different 

size was generated by 12qA1 & 12qB, and to a certain extent 18qA & 18qC, when this 

amount of gDNA was added to the qPCR reaction (see dissociation curves: fig. 3.4e, 3.5e, 

3.7e). The additional product generated by 12qA1 & 12qB could be another PCR product or 

it could be primer-dimer formation. The presence of additional DNA molecules must be 

monitored when these assays are applied to ChIP samples by adding a dissociation step to 

each qPCR assay to ensure that they do not obscure measurements of telomeric 

enrichment. 
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Some of the qPCR assays designed targeted a region of the subtelomere which was further 

from the subtelomere-telomere boundary than anticipated. The challenge lay not only in 

identifying suitable telomere-specific nucleotides from which a functional primer for qPCR 

could be designed, but also in ensuring that there were some of these telomere-specific 

bases present within the PCR product amplified to act as a marker for telomere-specificity 

during sequencing. Of the qPCR assays designed, the 18q target region was the furthest 

from the TTAGGG repeats (444nt) meaning that the amount of telomere-repeat containing 

fragments that could be detected in a ChIP with 18qA and 18qC would be reduced. 

 

The regions analysed using any of these qPCR assays will not be purely telomeric. Designing 

primers as close to the subtelomere-telomere boundary as possible maximises the amount 

of immunoprecipitated telomeric DNA measured but considering that the chromatin 

fragments are sheared to a length of 200-1000bp, the fragments primed by the qPCR 

primers are going to encompass a large area of telomeric and subtelomeric chromatin. Due 

to the repetitive nature of telomeric DNA it would be impossible to design a telomere-

specific qPCR assay which analysed enrichment in only TTAGGG repeats. The only current 

method in analysing purely telomeric DNA is by dot blot using a TTAGGG probe which, as 

previously mentioned, has sensitivity issues and isn’t telomere-specific. However the 

subtelomeric chromatin structure between telomeres of different length is interesting in 

itself. A similar approach to telomeric qPCR assay design was taken in budding yeast (Fisher 

et al. 2004; Takata et al. 2004; Takata et al. 2005; Yu et al. 2007) and seems to be an 

accepted method for measuring telomeric protein enrichment. 

 

In this chapter the development of novel telomere-specific and telomeric allele-specific 

qPCR assays has been described. The telomeres for which qPCR assays have been designed 
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to are 11q, 12q, 16p, 17p and 18q. A telomeric allele-specific qPCR assay has also been 

designed for the XpYp chromosome end. When used in conjunction with ChIP, these assays 

can provide a sensitive, quantitative method for analysing the chromatin structure of 

individual telomeres/telomeric alleles. STELA has enabled the high resolution analysis of 

telomere length distributions of individual telomeres and telomeric alleles. Combining this 

ChIP-qPCR approach with STELA will allow a detailed analysis of telomeric chromatin 

structure between chromosome ends which display differing telomere length distributions. 

Such an approach may help towards answering the question of how telomeric chromatin 

structure impacts telomere length.
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Chapter 4 

Telomere-specific chromatin structure analysis in human cells 

 

4.1 Abstract 

The nature of telomeric chromatin architecture has been extensively studied in lower eukaryotes 

such as yeast and Drosophila. More recently the chromatin structure at mammalian telomeres has 

been characterised. This work has been predominantly performed at mouse telomeres and has 

revealed a heterochromatic environment abundant in repressive marks such as H3K9me3 and 

H4K20me3. Human telomeric chromatin structure is less well defined but recent reports suggest 

that unlike mouse telomeres, human telomeres are enriched in both repressive heterochromatin 

marks and histone modifications usually associated with transcriptionally active euchromatin such as 

H3K4me3. Although such research has begun to shed light on the chromatin architecture present at 

human chromosome ends, the chromatin structure at individual human chromosome ends has not 

yet been studied. Telomere-specific qPCR assays developed in chapter 3 were used in conjunction 

with Chromatin Immunoprecipitation (ChIP) to allow an analysis of chromatin structure at individual 

telomeres/telomeric alleles. In this chapter, STELA and telomere-specific ChIP-qPCR were used 

together to identify any correlation between telomere-specific H3, H3K4me3, H3K9me3 and 

H4K20me3 enrichment and telomere length. No such correlation was observed between different 

chromosome ends within a telomerase-negative MRC5 fibroblast population. Telomeric H3, TRF1 

and histone methylation enrichment was also compared at the same telomere stably maintained at 

different lengths in two telomerase positive HT1080 clonal populations: HT1080 cells with longer 

telomeres showed greater H3 and TRF1 telomeric occupancy, as well as increased enrichment of 

H3K4me3 and H4K20me3 which suggests a relationship exists between the chromatin structure of a 

telomere and its length in telomerase-positive cells. Additionally, telomere-specific chromatin 
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structure was compared between actively proliferating cells and senescent cells. H3, H3K4me3 and 

H4K20me3 were abundant at the telomeres in a proliferating clonal population of MRC5 cells 

however when these cells entered senescence their telomeric presence was reduced. The same 

scenario was observed at 17p and 18q in proliferating and senescent IMR90 fibroblasts. This finding 

indicates that telomeric chromatin undergoes significant structural changes as a cell ceases to 

proliferate and enters senescence. 
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4.2 Introduction 

Chromatin structure plays a key role in almost all DNA-related metabolic processes including 

transcriptional activation and repression, recombination, the sensing and repair of DNA damage and 

kinetochore and centromere formation (Li et al. 2007). Whether chromatin exists in a relaxed, 

transcriptionally active conformation or a repressive heterochromatic state is influenced by the post-

translational modification of the core histones which make up the nucleosome. Over 60 different 

residues within the core histones are subject to post-translational modifications including 

acetylation, methylation, phosphorylation and ubiquitination. However this represents a huge 

underestimate (Bernstein et al. 2007; Kouzarides 2007). Although the majority of the modifications 

remain poorly understood recent studies have provided considerable progress in the understanding 

of how histone methylation and acetylation contributes to the chromatin environment. 

 

Histone lysine acetylation almost always correlates with an open, accessible chromatin environment. 

Histone lysine methylation on the other hand can have different effects depending on which residue 

is modified (Bernstein et al. 2007). Furthermore, extra complexity comes from the fact that 

methylation of lysine residues may occur in three different forms (mono- di- and trimethyl) and that 

these forms can elicit different effects on chromatin structure. All three methylation states of H3K4 

(H3K4me1, me2 and me3) have been shown to be abundant at transcriptionally active genes in yeast 

and humans (Heintzman et al. 2007; Santos-Rosa et al. 2002). Despite slight differences in where 

enrichment of the different methylation forms peak within a gene (Pokholok et al. 2005) all three 

forms are considered open euchromatic marks. This is not the case for H3 lysine 9 (H3K9), H3 lysine 

27 (H3K27) and H4 lysine 20 (H4K20) methylation. Monomethylation of these residues is enriched in 

active genes (Barski et al. 2007) whereas trimethylation of these marks is seen in repressive 

heterochromatin (Kotake et al. 2007; Liu et al. 2007; Plath et al. 2003; Snowden et al. 2002). 

Repressive heterochromatin domains are also characterised by low histone acetylation levels as well 
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as heavily methylated DNA and are found in non-coding regions of the genome including 

pericentromeres, gene deserts and at subtelomeres and telomeres.  

 

Telomeric chromatin has generally been considered heterochromatic based on initial studies in 

budding yeast and Drosophila in which the establishment of a heterochromatic state at telomeres 

and subtelomeres is essential for the protection of chromosome ends and for the silencing of 

telomere-proximal genes (telomere position effect) (Raffa et al. 2011; Shore 2001).  More recently 

the analysis of telomeric chromatin structure has been extended to higher eukaryotes including 

mouse cell models and plants. Mouse telomeric and subtelomeric regions are characterized by high 

levels of the heterochromatic marks H3K9me3, H4K20me3 and H3K79me2 as well as histone 

hypoacetylation. Mouse subtelomeric DNA is also heavily methylated (Benetti et al. 2007b; Garcia-

Cao et al. 2004a; Gonzalo et al. 2006; Jones et al. 2008). Arabidopsis telomeres on the other hand 

contain a mixture of repressive heterochromatic marks and histone modifications usually associated 

with actively transcribed regions of the genome such as H3K4me3 and acetylation of the H3K9 and 

H4K16 residues (Vaquero-Sedas et al. 2011; Vaquero-Sedas et al. 2012; Vrbsky et al. 2010). 

 

Very recently the chromatin structure at human telomeres has begun to be uncovered. In a similar 

manner to Arabidopsis, human telomeric chromatin does not appear to be enriched in solely 

heterochromatin-associated marks. H3K4me3 and H2BK5me1, marks often associated with actively 

transcribed genes, are enriched at the telomere (Rosenfeld et al. 2009). Furthermore, in contrast to 

the high abundance of H3K9me3 at mouse telomeres, telomeric H3K9me3 is under-represented 

although it is enriched in subtelomeric chromatin (Rosenfeld et al. 2009). Similar levels of telomeric 

H3K9me3 were observed in IMR90 fibroblasts and HT1080 fibrosarcoma cells (Arnoult et al. 2012; 

O'Sullivan et al. 2010). Despite the presence of these active chromatin features, human telomeres 
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are also enriched in heterochromatin-associated marks including deacetylation of H3K9 and H3K56 

and tri-methylation of H3K27 and H4K20me3 although to a lesser extent than was seen at mouse 

telomeres (Arnoult et al. 2012; Michishita et al. 2008; O'Sullivan et al. 2010; Tennen et al. 2011). 

Additionally, human subtelomeric DNA is heavily methylated (Nergadze et al. 2009; Yehezkel et al. 

2008). The examples of both euchromatic and heterochromatic marks in human telomeric chromatin 

suggest that it differs from the repressive chromatin environment seen at mouse telomeres. Instead 

it appears to possess a specialized intermediate structure similar to what is seen at telomeres in 

Arabidopsis. Clearly the above studies of human telomeric chromatin structure are just the tip of the 

iceberg and much more work is required to gain a deeper understanding of the intricacies which 

contribute towards the maintenance of proper telomeric chromatin structure and subsequently 

ensure telomere function. 

 

Short dysfunctional telomeres are one of the main determinants of replicative senescence. How the 

telomeric chromatin structure is altered upon senescence is relatively unknown. The accumulation 

of H2AX is observed at short dysfunctional telomeres during senescence (d'Adda di Fagagna et al. 

2003) as well as at de-protected telomeres devoid of TRF2 and Pot1 (Denchi and de Lange 2007; 

Takai et al. 2003), this latter process is dependent on the accumulation of H4K20me3 (Dimitrova et 

al. 2008). Telomere-bound H4K20me3 and also H4K16Ac has been shown to be redistributed during 

the cell cycle in late passage IMR90 celss compared to early passage cells (Rosenfeld et al. 2009). 

Also observed was a decrease in H3 telomeric occupancy and reduced levels of TRF1 and TRF2 in the 

late passage cells. 

 

4.2.1 Aims of the chapter 
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Previous work studying the role of chromatin structure at telomeres has relied upon using chromatin 

immunoprecipitation in conjunction with dot-blot assays to determine enrichment of specific 

chromatin modifications. Although this approach has begun to characterise human telomeric 

chromatin it cannot differentiate between telomeres therefore telomere-specific enrichment of 

chromatin modifications is not achievable. Single Telomere Length Analysis (STELA) allows the length 

of individual telomeres to be determined at a range of chromosome ends including 11q, 16p, 17p 

and 18q. Allele-specific STELA can measure the length of individual telomeric alleles of XpYp 

chromosome end. Telomere- and telomeric allele-specific qPCR assays have been developed for 

these same chromosome ends. When used in conjunction with Chromatin Immunoprecipitaion 

(ChIP), the qPCR assays provide a method for distinguishing the enrichment of histone modifications 

at individual telomeres. The aim of this chapter is to use STELA and telomere-specific ChIP-qPCR 

together to determine whether any relationship exists between telomere length and the telomeric 

enrichment of the histone methylation marks H3K4me3, H3K9me3 and H4K20me3. Any potential 

relationship between telomere length and telomeric histone methylation will be analysed between 

different chromosome ends and between different telomeric alleles at the same chromosome end 

within the same cell population. Histone methylation will also be analysed at a single telomere stably 

maintained at different lengths in two clonal populations of the telomerase-positive HT1080 

fibrosarcoma. Finally telomeric histone methylation patterns will be analysed in actively proliferating 

and senescent cells to determine whether telomeric chromatin undergoes structural alterations as 

cells enter senescence. Telomeric enrichment of H4K20 methylation has recently been compared 

between early (PD30) and late passage IMR90 and WI38 cells (PD75) (O'Sullivan, Kubicek et al. 2010) 

using the ChIP-dot blot approach. Comparing differences in these histone methylation marks 

between proliferating and senescent cells in a telomere-specific manner will uncover whether 

changes in telomeric chromatin structure varies between chromosmoe ends during senescence. 
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 4.3 Results 

 

4.3.1 Analysing the relationship between telomeric histone methylation status and telomere 

length in MRC5 mixed population 

Initially, analysis of telomeric chromatin structure was performed using chromatin extracted from 

MRC5 mixed population cells. This allowed comparison between telomeric chromatin structure and 

telomere length at different chromosome ends within a single cell population. STELA was performed 

to determine the telomere length profiles of 17p, 18q and both alleles of XpYp. The length 

distributions were then quantified and the mean telomere length calculated for each of the different 

telomeres. Mean telomere length differs between telomeres/telomeric alleles ranging from 3.197kb 

for 17p to 5.879kb for 18q (fig. 4.1a). 

 

Before attempting to immunoprecipitate chromatin successful sonication of the chromatin had to be 

ensured. Chromatin was cross-linked by treating cells with 1% formaldehyde for 10 minutes. After 2 

washes in 1XPBS cells were scraped into a falcon tube, centrifuged and resuspended in a SDS-lysis 

buffer at a concentration of 1X106cells/100l. Cell lysates were then divided into 200l aliquots and 

sonicated for 8 minutes (30s on 30s off) resulting in chromatin fragments within the desired 200-

1000bp size (fig. 4.1b). 

 

MRC5 mixed population chromatin was immunoprecipitated with antibodies against histone H3 and 

TRF1 and qPCR was performed. This acted as a positive control to ensure that the qPCR assays 

developed in chapter 3 could amplify immunoprecipitated telomeric DNA (fig. 4.1c). Extensive 
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enrichment of histone H3 was observed in all the telomere/telomeric allele-specific qPCR assays. 

This degree of H3 enrichment was reasonably consistent across the chromosome ends although 

there did appear to be a slight decrease at the long XpYp telomeric allele (fig. 4.1c (i)). TRF1 was also 

successfully immunoprecipitated and detected by the telomere-specific ChIP-qPCR assays although 

its enrichment was lower at the chromosome ends analysed compared to H3 (fig. 4.1c). Surprisingly 

considerable variation in telomeric TRF1 occupancy was observed particularly at 17p where TRF1 

abundance was significantly lower than at 18q and both XpYp telomeric alleles. The reason for this 

variation in TRF1 enrichment is unknown but may reflect differences in the telomere variant repeat 

(TVR) distribution in the proximal 2-3kb of the telomere repeat tract between chromosome ends. 

TRF1 binds specifically to TTAGGG therefore increased TVR variation could result in less TRF1 binding 

within the region which is detected by the qPCR assay. 17p has previously been shown to contain an 

extensive TVR distribution (Letsolo et al. 2010) therefore it is possible that this is the cause of the 

reduced TRF1 enrichment at 17p. Nevertheless these results show that the ChIP procedure is 

working and that the developed telomere and telomeric allele-specific qPCR assays is able to 

measure enrichment of immunoprecipitated DNA at chromosome ends. 
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Figure 4.1. Telomere length distributions and telomeric enrichment of H3 and TRF1 at 17p, 18q and XpYp (short and long allele) in a mixed population of 
MRC5 �broblast cells. (a) STELA was performed at the 17p,18q and short and long XpYp telomeric alleles using the 17pseq1rev, 18qrev4M, XpYp-433AT and 
XpYp-433G primers respectively. Telomere length distributions were then quanti�ed using Phoretix software and mean telomere length was calculated (b) chroma-
tin extracted from MRC5 mixed population cells was sonicated for 8 mins (30s o, 30s o�). An aliquot of chromatin was taken, reverse cross-linked and DNA was 
puri�ed. DNA was then electrphoresed on a 1.5% agarose gel to determine fragment size. (c) Relative enrichment of histone  (i) H3 and  (ii) TRF1  at 17p, 18q and XpYp 
(long and short allele). Statistically signi�cant di�erences in enrichment between telomeres/telomeric alleles was measured by t-test, * - P<0.05, ** - P<0.01. Error bars 
indicate SEM for qPCR reaction replicates, not the SD for internal replicates
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MRC5 mixed population chromatin was then immunoprecipitated using antibodies against the 

histone methylation marks H3K4me3, H3K9me3, H3K27me3 and H4K20me3. Before telomeric 

occupancy of the marks could be determined the success of the immunoprecipitation had to be 

verified to ensure that any lack of enrichment of a histone methylation mark at a telomere was 

biologically relevant and not just a result of a failed IP. This was done by measuring enrichment of 

the histone methylation marks at their respective positive control loci within the genome where 

enrichment is expected. For the H3K4me3 histone modification this positive control locus was the 

GAPDH promoter, for H3K9me3 it was the 3’ end of the ZNF554 gene, for H3K27me3 – human -

satellite and for H4K20me3 - -globin promoter. These loci have previously been shown to be 

enriched in the mentioned chromatin marks and primers used to amplify these regions were 

designed by Millipore and provided with the antibody (Frietze et al. 2010; Rank et al. 2010; Tiwari et 

al. 2008; Wang et al. 2009). H3K4me3, H3K9me3 and H4K20me3 showed robust enrichment at their 

respective control loci compared to a negative control ‘no antibody’ immunoprecipitation (fig. 4.2a). 

The antibody against H3K27me3 however failed to immunoprecipitate the histone modification as 

no differences in enrichment were observed between the test and no antibody control at its positive 

control loci (fig. 4.2a (iii)). The reason for this failed immunoprecipitation was unknown and 

attempts made to improve the IP were unsuccessful therefore this histone methylation mark was 

not analysed further. 

 

Telomere-specific occupancy of the histone methylation marks was then measured at the 17p and 

18q telomeres and the short and long XpYp telomeric alleles to determine any potential differences 

in enrichment of these marks exists and whether these differences correlate with the mean length of 

the telomeres. Although little variation in H3 abundance was observed between chromosome ends 

enrichment of each histone methylation mark was normalized to H3 occupancy for each telomere to 

ensure that any differences observed between telomeres was genuine differences in histone 
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methylation status and not just as a result of telomeric nucleosomal density. H4K20me3 telomeric 

enrichment was much higher than H3K4me3 and H3K9me3 enrichment at all the telomeres analysed 

(fig. 4.2b). H3K4me3 telomeric enrichment was very low, although it was present at 17p and to a 

lesser extent 18q no enrichment of this mark was detected at either of the XpYp telomeric alleles. 

Telomeric H3K9me3 was similarly low although it was detected at similar levels at all four telomeres 

(fig. 4.2b). H4K20me3 telomeric enrichment was also seen at all four telomeres (fig. 4.2b). It was 

most abundant at the longer 18q telomere however at the longer XpYp telomeric allele, which 

showed a similar mean telomere length to 18q H4K20me3 enrichment, was at its lowest. No 

correlation of any kind was seen between the level of telomeric enrichment of any of the histone 

methylation marks and telomere length. 
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Figure 4.2. ChIP analysis of H3K4me3, H3K9me3, H3K27me3 and H4K20me3 enrichment in a mixed population of MRC5 �broblasts.  (a) Immunoprecipitation e�ciency for the histone methylation marks was analysed by 
measuring their enrichment at the following positive control loci: H3K4me3 - GAPDH promoter, H3K9me3 - ZNF554, H3K27me3 - alpa-satellite and H4K20me3 - beta-blobin promoter.  Enrichment of the marks was compared against 
a no antibody control at the same locus. (b) Telomeric enrichment of (i) H3K4me3, (ii) H3K9me3 and (iii) H4K20me3 at 17p, 18q and XpYp (short and long allele). Error bars indicate SEM for qPCR reaction replicates, not the SD for 
internal replicates
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The STELA length profiles of 17p, 18q and XpYp (short and long alleles) in this mixed population of 

MRC5 cells show considerable heterogeneity in telomere length at these chromosome ends. 

Additionally differences in mean telomere length are relatively small (fig. 4.1a) therefore these cells 

are not the best candidate for attempting to determine any correlation between telomeric histone 

methylation and telomere length. A better model would involve comparisons between telomeres 

which vary greatly in length and also possess homogenous telomere length distributions. Such 

telomeres are more likely to be present in clonal populations of cells therefore clones of MRC5 cells 

were generated from early passage mixed population MRC5 cells 

 

4.3.2 Generating clonal populations of MRC5 fibroblasts 

Early passage MRC5 fibroblasts were diluted in culture medium, 16 individual clones were picked 

and transferred into separate 96-well plate wells and allowed to expand. After the clonal population 

had expanded sufficiently an aliquot of each clone was taken and analysed for XpYp telomere length 

using STELA to observe the differences in telomere length between the two XpYp telomeric alleles 

(fig. 4.3). Clones 11 and 13 displayed the greatest differential in telomere length between the XpYp 

telomeric alleles and therefore were chosen to expand further for ChIP analysis. 

 

MRC5 cl.11 and cl.13 cells were cultured to senescence. Unfortunately MRC5 cl.11 cells senesced 

early and therefore it was not possible to culture enough cells for chromatin extraction. MRC5 cl.13 

cells however were cultured continuously and chromatin was extracted from these cells when they 

were actively proliferating (43 population doublings (PDs) and then again after 49 PDs, at which 

point the cells had begun to senesce. Senescence was determined by -galactosidase staining and 

revealed that of the MRC5 cells which had undergone 49 PDs were 38% senescent. 
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Figure 4.3. MRC5 clone generation MRC5 cells from a mixed population were diluted down to single-cell levels, these single cells were then expanded 
to produce MRC5 clones. DNA was extracted from these clones and XpYp STELA was performed to determine the clones with the largest disparity 
between the telomere length of the individual XpYp alleles
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4.3.3 Telomere length distributions in MRC5 cl.13 cells 

DNA was also extracted from the proliferating and senescent MRC5 cl.13 cells and STELA was 

performed at 11q, 16p, 17p, 18q and both XpYp telomeric alleles to determine the telomere length 

profile of the cells as they progress towards senescence (fig. 4.4). Compared to the MRC5 mixed 

population of cells the proliferating MRC5 cl.13 cells had a greater variation in mean telomere length 

between chromosome ends ranging from 2.34kb for 17p to 7.069kb for 18q. By the time the cells 

reached senescence gradual telomere erosion resulted in slight decreases in mean telomere length. 

This was most noticeable at the shorter XpYp telomeric allele whose mean telomere length 

decreased by 0.718kb. Homogenous telomere length distributions were seen in both the 

proliferating and senescent MRC5 cl.13 cells at the 11q, 17p and XpYp telomeres although not at 16p 

or 18q. 16p telomere length distribution was heterogeneous containing four separate telomeric 

distributions, consistent with the amplification of at least 2 chromosome ends. This makes it a less 

suitable candidate when looking at chromatin structure in relation to telomere length although it 

would still be interesting to determine levels of histone methylation at this telomere to see how it 

compares to other chromosome ends. 
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Figure 4.4. Telomere length distributions at 11q,16p,17p,18q and XpYp in a proliferating and senescent clonal MRC5 
population MRC5 cl.13 cells were continously cultured, aliquot of cells were taken when the cells were proliferating (43PDs) 
and when they had begun to senesce (49PDs).  DNA was extracted from the proliferating and senescent cell pellets and STELA 
was performed at the 11q, 16p, 17p, 18q and XpYp (allele speci�c) telomeres. The resulting telomere length distributions were 
quanti�ed using Phoretix software and mean telomere length was calculated
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4.3.4 Analysis of telomeric chromatin structure in proliferating and senescent MRC5 cl.13 cells 

Using the chromatin extracted from the MRC5 cl.13 cells it is possible to make several comparisons: 

Firstly telomeric chromatin structure can be compared between different telomeres/telomeric 

alleles of different lengths. Secondly any changes in the chromatin structure at the same telomere in 

proliferating and senescent cells can be determined. The telomere-specific approach will also 

uncover whether there are differences in the degree of telomeric chromatin structural change 

between chromosome ends as cells enter senescence. 

 

Sonication efficiency of the MRC5 cl.13 chromatin was confirmed: Like the MRC5 mixed population 

chromatin 8 minutes of sonication (30s off, 30s on) sheared the MRC5 cl.13 chromatin to the desired 

200-1000bp size range (fig. 4.5a). 

 

Enrichment of H3 and TRF1 were then measured at 11q, 16p, 17p and the two XpYp telomeric alleles 

(fig. 4.5b&c). Telomeric H3 enrichment in the MRC5 mixed population was fairly consistent across 

the chromosome ends, but in the MRC5 cl.13 cells, significant variation in H3 enrichment was 

observed between chromosome ends both in the proliferating cells (P<0.0001) and in the senescent 

cells (P=0.0007) (fig. 4.5b). Significant differences in telomeric H3 enrichment existed between the 

proliferating and senescent cells at the same chromosome end, this was observed at 16p, 18q and 

the short XpYp telomeric allele. Similar variation was seen in TRF1 enrichment between 

chromosome ends in the proliferating cells (P=0.0014) and in senescent cells (P<0.0001) (fig. 4.5c). 

There was a dramatic loss of TRF1 as cells underwent senescence at 11q, 16p, 17p, 18q and the 

shorter XpYp telomeric allele. 
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Figure 4.5. Ver�cation of chromatin fragment size and H3 and TRF1 telomeric enrichment in MRC5 cl.13 cells. (a) chromatin extracted from 
PD43 and PD 49 MRC5 cl.13 cells was sonicated for 8 mins (30s o, 30s o�). An aliquot of chromatin was taken, reverse cross-linked and DNA was 
puri�ed. DNA was then electrphoresed on a 1.5% agarose gel to determine fragment size. (b) Summary of mean telomere length in the proliferating 
and senescent MRC5 cl.13 cells at 11q, 16p, 17p, 18q and the short and long XpYp telomeric alleles. (b&c) Relative enrichment of histone  H3 (b) and  
TRF1 (c) was measured at the 11q, 16p, 17p, 18q and XpYp (long and short allele). Statistically signi�cant di�erences in enrichment was measured 
by t-test, * - P<0.05, ** - P<0.01. Error bars indicate SEM for qPCR reaction replicates, not the SD for internal replicates
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Chromatin extracted from the proliferating and senescent cells was immunoprecipitated using 

antibodies against H3K4me3, H3K9me3 and H4K20me3. The enrichment of these marks was 

measured at their respective positive control loci. In the proliferating MRC5 cl.13 cells robust 

enrichment of all three marks was observed (fig. 4.6). In the senescent cells H3K4me3 was enriched 

at its positive control loci however this enrichment was reduced ~2.6-fold compared to the 

proliferating cells (fig. 4.6a). A greater reduction in H3K9me3 and H4K20me3 was seen at their 

positive control loci in the senescent cells; compared to proliferating cells enrichment of these marks 

was ~10-fold and ~7-fold lower respectively (fig. 4.6b&c). 

 

The telomeric enrichment H3K4me3, H3K9me3 and H4K20me3 was compared between the different 

length telomeres within the proliferating (PD43) and senescent (PD49) MRC5 cl.13 cell populations A 

further comparison of telomeric occupancy was then made at the same chromosome end between 

the proliferating and senescent cells. In a similar manner to the MRC5 mixed population telomeric 

chromatin structure analysis telomeric histone methylation status in the MRC5 cl.13 cells was 

normalised against telomere-specific H3 occupancy. 

 

The abundance of H3K4me3 differed significantly between the chromosome ends analysed in the 

proliferating cells (P=0.0068) however it did not correlate with telomere length (fig. 4.7a). Less 

variation was seen between chromosome ends in the senescent cells, again these differences did not 

correlate with the length of the telomeres. Upon senescence loss of telomeric H3K4me3 was 

observed. This was seen at 11q, 16p, XpYp short telomeric allele and most strikingly the 17p 

telomere but not at the long XpYp allele were telomeric H3K4me3 was comparable between 

proliferating and senescent cells. Interestingly no H3K4me3 was detected at all at the 18q telomere 
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in the proliferating cells and very little in the senescent cells suggesting that this telomere adopts a 

more heterochromatic structure. 

 

A similar senescence-induced loss of telomeric H3K9me3 was observed in the MRC5 cl.13 cells. This 

was seen at all the chromosome ends but was particularly prominent at 17p and at 18q and the long 

XpYp telomeric allele were no H3K9me3 was detected at all in the senescent cells (fig. 4.7b). 

Variation in telomere-specific H3K9me3 abundance between chromosome ends was observed in 

both the proliferating and senescent cells however this wasn’t shown to be statistically significant by 

an Analysis of Variance (ANOVA) and, like telomeric H3K4me3, didn’t appear to correlate with 

telomere length. 

Although significant differences in H4K20me3 enrichment was seen between telomeres/telomeric 

alleles in the proliferating cells (P>0.0001) and senescent MRC5 cl.13 cells (P=0.0004) these 

differences failed to correlate with telomere length in (fig. 4.7c). Like H3K4me3 and H3K9me3 

enrichment there was a trend towards H4K20me3 loss as cells entered senescence. Again this was 

most prominent at 17p suggesting that this telomere is more susceptible to changes in its chromatin 

conformation than the other chromosome ends analysed. 
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Figure 4.6. Enrichment of H3K4me3, H3K9me3, H3K27me3 and H4K20me3 at their respective positive control loci  
in MRC5 cl.13 cells.  Immunoprecipitation e�ciency for the histone methylation marks was analysed  in both proliferat-
ing and senescent MRC5 cl.13 cells by measuring their enrichment at the following positive control loci:  (a) H3K4me3 - 
GAPDH promoter, (b) H3K9me3 - ZNF554,  and (c) H4K20me3 - beta-blobin promoter.  Enrichment of the marks was 
compared against a no antibody control at the same locus. Error bars indicate SEM for qPCR reaction replicates, not the 
SD for internal replicates
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Figure 4.7. Enrichment of H3K4me3, H3K9me3 and H4K20me3 at the 11q, 16p, 17p and 18q telomeres and at the short and long XpYp telomeric alleles 
in proliferating and senescent MRC5 cl.13 cells. (a) Summary of mean telomere length in the proliferating and senescent MRC5 cl.13 cells at 11q, 16p, 17p, 18q 
and the short and long XpYp telomeric alleles. (b,c&d) Chromatin extracted from proliferating (PD43)  and senescent (PD49) MRC5 cl.13 �broblasts was immuno-
precipitated using antibodies against the histone methylation marks (a) H3K4me3, (b) H3K9me3 and  (c) H4K20me3.  This DNA was then added to triplicate qPCR 
reactions for each telomere-speci�c assay. Ampli�cation signal generated at each telomere was normalised to the ampli�cation signal generated by input 
DNAand to teloere-speci�c H3 occupancy. Statistically signi�cant di�erences in enrichment was measured by t-test, * - P<0.05, ** - P<0.01. Error bars indicate SEM 
for qPCR reaction replicates, not the SD for internal replicates
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4.3.5 Differences in telomeric H4K20me3 enrichment in proliferating and senescent IMR-90 

fibroblasts 

The changes in the H4K20me3 mark in senescent cells was further investigated using IMR-90 

fibroblasts. Specifically, telomeric enrichment of this mark was compared between proliferating 

(PD32) and senescent (PD86) IMR90 cells. The H4K20me3 immunoprecipitates from these cells were 

a kind gift from Professor Peter Adams (University of Glasgow) therefore H3, H3K4me3 and 

H3K9me3 enrichment was not analysed in these cells, also telomere length analysis could not be 

performed. Also, due to the small amount of IP DNA available, it was only possible to analyse 

enrichment of H4K20me3 in these cells at 17p and 18q. Telomeric enrichment of H4K20me3 was 

analysed in three independent ChIP assays. In all three assays telomeric H4K20me3 was significantly 

higher at 17p in proliferating cells compared to the senescent cells (fig. 4.8a). This observation was 

most noticeable in ChIP 2 where senescent cells displayed a ~10 fold reduction of 17p-assocaited 

H4K20me3 compared to the proliferating cells (fig. 4.8a(ii)). H4K20me3 enrichment at 18q was also 

shown to be significantly reduced in the senescent IMR-90 fibroblasts in all three CHIP experiments 

although this reduction is less pronounced than at 17p (fig. 4.8b). 

 

It is important to note that the H4K20me3 ChIP-qPCR data for these IMR-90 fibroblasts was not 

normalised to telomeric H3 levels.  It is therefore possible that the loss of H4K20me3 in senescent 

cells may result from an altered nucleosomal density. However even if this was the case an altered 

nucleosomal structure still represents a change in chromatin structure as cells enter senescence. 

Taken together these data along with the loss of H3, H3K4me3, H3K9me3 and H4K20me3 in the 

senescent MRC5 cl.13 cells, suggest a change in telomeric chromatin structure as fibroblasts enter 

senescence. 
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Figure 4.8. Enrichment of H4K20me3 at the 17p and 18q telomeres in proliferating and senescent IMR-90 �broblasts. Chromatin was extracted from proliferating (PD32) and senescent (PD86) IMR-90 
�broblasts and immunoprecipitated using an antibody against the histone methylation mark H4K20me3 in three independant experiments (ChIP#1, #2 and #3). Telomere speci�c enrichment of these marks was 
analysed using qPCR assays designed to the 17p and 18q telomeres. Immunoprecipitated DNA was added to triplicate qPCR reactions for each telomere-speci�c assay. Statistically signi�cant di�erences in enrich-
ment was measured by t-test, * - P<0.05, ** - P<0.01. Error bars indicate SEM for qPCR reaction replicates, not the SD for internal replicates
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4.3.6 Analysis of telomeric chromatin structure in two HT1080 clonal populations 

In addition to analysing telomeric histone methylation enrichment patterns in MRC5 and IMR90 

telomerase-negative fibroblasts, the same procedure was carried out using chromatin from clonal 

populations of the telomerase-positive HT1080 fibrosarcoma cell line. The rationale behind using 

these cells was that it would allow comparison between histone methylation patterns at the same 

chromosome end stably maintained at different lengths in the two different clonal populations.  

 

4.3.7 HT1080 cl.2 and cl.4 telomere length distributions 

Firstly differences in telomere length at the same chromosome end between different HT1080 

clones were determined. HT1080 cl.2 and cl.4 showed large differences in telomere length at a range 

of chromosome ends analysed by STELA including 11q, 16p, 17p, 18q and XpYp (fig. 4.9). For all the 

chromosome ends analysed HT1080 cl.2 cells had a greater mean telomere length than HT1080 cl.4 

cells with the differences between mean telomere length for a given chromosome end ranging from 

3.114kb for 11q to 4.434kb for 18q. These large differentials in telomere length distributions 

between the two HT1080 clones make them a good candidate for identifying any relationship 

between telomere length and telomeric chromatin structure. 
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Figure 4.9. Telomere length distribution at the 11q, 16p, 17p, 18q and XpYp chromosome ends in two HT1080 clonal 
populations  DNA was extracted from two clonal populations (cl.2 & cl.4) of the �brosarcoma HT1080 cell line. STELA was 
performed at the 11q, 16p, 17p, 18q and XpYp telomeres. The resulting telomere length distributions were quanti�ed using 
Phoretix software and mean telomere length was calculated
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Before measuring the enrichment of telomeric chromatin marks it was necessary to ensure that the 

ChIP procedure used for the MRC5 cells would also be successful for the HT1080 cl.2 and cl.4 cells. 

The extracted HT1080 cl.2 and cl.4 chromatin was sonicated for 8 minutes (30s on, 30s off) and 

successfully generated fragments within the desired 200-1000bp range (fig. 4.10a). 

 

The abundance of telomere-associated histone H3 and TRF1 was then measured in both HT1080 cl.2 

and cl.4 cells. Telomeric H3 occupancy varied significantly between chromosome ends within both 

the clonal populations (cl.2 – P<0.0001, cl.4 – P=0.0002) (fig. 4.10b). The most striking observation of 

this result however was the clear differences in telomeric H3 occupancy at the same telomere 

maintained at different lengths in the two clones. Across all the chromosome ends analysed there 

was significantly less H3 enrichment at the shorter cl.4 telomeres compared to the longer cl.2 

telomeres (fig. 4.10b). Although TRF1 telomeric enrichment was lower than H3 its enrichment 

pattern across the chromosome ends mirrored what was seen for H3, particularly in the cl.2 cells. 

Like H3 enrichment the variation in TRF1 between telomeres was highly significant in this clone 

(P<0.0001) and also in the cl.4 cells (P=0.0039) (fig. 4.10c). The difference in telomere-specific TRF1 

enrichment between clones was even more dramatic than for H3. Robust enrichment of TRF1 was 

observed for all the telomeres analyzed in the HT1080 cl.2 cells however when these same 

telomeres were stably maintained at a lower length in the HT1080 cl.2 cells telomeric TRF1 

enrichment was significantly lower (fig. 4.10c) 
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Figure 4.10. Veri�cation of chromatin fragmentsize and telomeric enrichment of histone H3 and TRF1 at the 11q, 16p, 17p, 18q and XpYp 
chromosome ends in two HT1080 clonal populations.   (a)  chromatin extracted from HT1080 cl.2 and cl.4 cells was sonicated for 8 mins (30s o, 30s 
o�). An aliquot of chromatin was taken, reverse cross-linked and DNA was puri�ed. DNA was then electrphoresed on a 1.5% agarose gel to determine 
fragment size. (b) Summary of mean telomere length at 11q, 16p, 17p, 18q and XpYp in HT1080 cl.2 and cl.4 cells. (b&c) Chromatin extracted from 
HT1080 cl.2 and cl.4 cells was immunoprecipitated using antibodies against  (b) H3 and (c) TRF1. The immunoprecipitated DNA was then added to 
triplicate qPCR reactions speci�c to the 11q, 16p, 17p, 18q and XpYp telomeres. Ampli�cation signal generated at each telomere was normalised to the 
ampli�cation signal generated by input DNA and then normalised to telomere-speci�c H3 occupancy. Statistically signi�cant di�erences in enrich-
ment was measured by t-test, * - P<0.05, ** - P<0.01. Error bars indicate SEM for qPCR reaction replicates, not the SD for internal replicates
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Immunoprecipitation efficiency of H3K4me3, H3K9me3 and H4K20me3 was determined by 

measuring the enrichment of these marks at their respective positive control loci. Enrichment of 

H3K4me3 was observed at the GAPDH promoter in the HT1080 cl.2 and also in the HT1080 cl.4 cells 

although to a lesser extent (fig. 4.11a). Similarly H4K20me3 was shown to be abundant at its positive 

control loci, -globin in the HT1080 cl.2 cells however at the same locus in the HT1080 cl.4 cells this 

enrichment was reduced (fig. 4.11c). H3K9me3 enrichment was weak: in the HT1080 cl.2 cells 

enrichment of H3K9me3 was low and in the HT1080 cl.4 cells was comparable to the no antibody 

control (fig. 4.11b). 

 

There was little or no amplification of the H3K9me3 immunoprecipitated DNA from the telomere-

specific qPCR assays. Although this mark has been previously shown to be under-represented at 

HT1080 telomeres (Arnoult et al. 2012), its enrichment at its positive control loci (ZNF554) was also 

low suggesting that the immunoprecipitation was not successful (fig. 4.11b) therefore telomeric 

H3K9me3 levels were not analysed for these cells. 

  

160



a

b

c

No Ab
H3K4me3

H3K4me3

cl.2 cl.4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
el

at
iv

e 
en

ri
ch

m
en

t (
IP

/in
pu

t)

No Ab
H3K9me3

H3K9me3

cl.2 cl.4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
el

at
iv

e 
en

ri
ch

m
en

t (
IP

/in
pu

t)

No Ab
H4K20me3

H4K20me3

cl.2 cl.4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
el

at
iv

e 
en

ri
ch

m
en

t (
IP

/in
pu

t)

Figure 4.11. Enrichment of H3K4me3, H3K9me3, H3K27me3 and H4K20me3 at their respective positive control loci  in 
HT1080 cl.2 and cl.4 cells.  Immunoprecipitation e�ciency for the histone methylation marks was analysed  in both clonal 
HT1080 cell populations by measuring their enrichment at the following positive control loci:  (a) H3K4me3 - GAPDH promoter, (b) 
H3K9me3 - ZNF554,  and (c) H4K20me3 - beta-blobin promoter.  Enrichment of the marks was compared against a no antibody 
control at the same locus. Error bars indicate SEM for qPCR reaction replicates, not the SD for internal replicates
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Telomeric H3K4me3 enrichment was low at all chromosome ends analysed. Within the same clonal 

population the differences in enrichment of H3-normalised H3K4me3 did not reflect the subtle 

variation in telomere length seen between the different chromosome ends. However when 

comparison of H3K4me3 enrichment was made between the same chromosome end maintained at 

different lengths in the two HT1080 clones a positive correlation between telomeric H3K4me3 and 

telomere length was observed for four of the five telomeres analysed. The XpYp telomere in the 

HT1080 cl.2 cells had a mean telomere length of 4.843kb and also showed robust enrichment of 

H3K4me3. HT1080 cl.4 cells however displayed a mean XpYp telomere length of 1.276kb and 

H3K4me3 enrichment was minimal (fig. 4.12a). The same scenario was observed at the 16p, 17p and 

18q chromosome ends however not at 11q were H3K4me3 abundance was comparable in the two 

clonal populations. 

 

H4K20me3 was far more abundant at each telomere analysed compared to H3K4me3. Although 

significant variation in H4K20me3 enrichment existed between telomeres within the cl.2 cells 

(P=0.0018) telomeric H4K20me3 levels were much more uniform across the chromosome ends in 

cl.4 cells (P=0.4854) (fig. 4.12b). In either case no correlation was observed between telomeric 

H4K20me3 and telomere length between different chromosome ends within the same clonal 

population. However differences were observed at the same chromosome ends between clones. 

Robust H4K20me3 enrichment was observed at the longer telomeres in the HT1080 cl.2 cells at each 

chromosome end however the reduction in mean telomere length seen in the HT1080 cl.4 cells was 

accompanied by a dramatic loss of telomeric H4K20me3 (fig. 4.12b). 

 

Telomeres in HT1080 cl.4 cells were stably maintained at a lower length than in the HT1080 cl.2 

cells. Concomitant with this reduced telomere length was a dramatic reduction in H3 telomeric 
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occupancy, reduced tri-methylation of H4K20, and to a lesser extent, H3K4 and lower TRF1 levels. 

These combined observations suggest that telomeric chromatin structure does play a role in the 

maintenance of telomere length at least in a telomerase-positive context. 
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Figure 4.12. Telomeric enrichment of histone H3K4me3 and H4K20me3 at the 11q, 16p, 17p, 18q and XpYp chromosome 
ends in two HT1080 clonal populations. Chromatin extracted from two HT1080 clonal populations (cl.2 & cl.4) was immunopre-
cipitated using antibodies against  (a) H3K4me3 and (b) H4K20me3. Immunoprecipitated DNA was then added to triplicate qPCR 
reactions speci�c to the 11q, 16p, 17p, 18q and XpYp telomeres. Ampli�cation signal generated at each telomere was normalised 
to input DNA and to telomere-speci�c H3 occupancy. Statistically signi�cant di�erences in enrichment was measured by t-test, * 
- P<0.05, ** - P<0.01. Error bars indicate SEM for qPCR reaction replicates, not the SD for internal replicates
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4.4 Discussion 

In this chapter telomeric chromatin structure has been analysed in a number of different scenarios; 

between telomeres/telomeric alleles of different lengths within the same cell population, between 

the same chromosome end maintained at different lengths in two different clonal populations of the 

same cell line and between proliferating and senescent cells. Potential correlation between telomere 

length and telomeric chromatin structure has been identified in telomerase-positive HT1080 cells. 

Additionally changes in telomeric histone methylation patterns have been observed between 

actively proliferating and senescent cells. 

 

Despite the success of measuring telomere/telomeric allele-specific enrichment of the histone 

methylation marks there are a number of shortcomings to the approach taken which if rectified 

would provide a more robust analysis of telomeric chromatin structure. Firstly, aside from the IMR-

90 ChIP-qPCR data, the data presented is from single ChIP experiments. It is preferable to repeat a 

ChIP experiment several times and calculate the average enrichment of a protein. Additional 

experiments were not possible due to time constraints and therefore the data in this chapter must 

be viewed as preliminary. It will be necessary to repeat these ChIP assays to confirm whether the 

results seen in this chapter are biologically relevant. 

 

A further potential criticism of the approach taken in this chapter is that the ChIP-qPCR assays detect 

chromatin fragments containing both telomeric and subtelomeric DNA, therefore differentiating 

between the two is not possible. Subtelomere/telomere chromatin boundaries have been shown to 

exist in Arabidopsis and in budding yeast (Altaf et al. 2007; Grunstein 1998; Vaquero-Sedas et al. 

2011). Such a boundary has also been suggested in human cells (O'Sullivan et al. 2010). In this study 

a TTAGGG repeat containing probe and a probe specific to the 17p subtelomere were used to 
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analyse chromatin structure in the subtelomere and telomere. They observed higher levels of 

histone H3, H4K16 acetylation and H3K79 di-methylation in 17p subtelomeric regions compared to 

telomeric regions. A drawback of the approach taken in this study however is that the 17p 

subtelomere probe used would not be able to distinguish between the 17p subtelomeric sequence 

and the five interstitial telomeric sequences found elsewhere in genome, therefore the enrichment 

measured by this probe will reflect predominantly non-subtelomeric chromatin structure. In defence 

of the approach taken in this chapter the qPCR assays were designed immediately adjacent to the 

TTAGGG repeats where possible and considering that subtelomeres can range in size from 10-300kb 

(Mefford and Trask 2002) the amount of subtelomeric DNA detected by the ChIP-qPCR assays is 

relatively small. 

 

An issue which required careful consideration throughout the analyses was the method in which 

amplification signals generating at each chromosome end were normalised. The most widely used 

method of normalizing ChIP-qPCR data is the IP/INPUT method. This method was employed in this 

chapter. When comparing ChIP-qPCR data generated from different chromatin samples erroneous 

differences in enrichment of a chromatin-bound protein can result because of differences in the 

starting amount of chromatin between samples. By normalising to the input chromatin this source of 

variation is nullified. A limitation of this method of normalisation however is that it cannot normalise 

against variation arising due to differences in immunoprecipitation efficiency between chromatin 

samples. Normalising qPCR-data to an internal control sequence can cancel out immunoprecipitation 

efficiency differences between chromatin samples. However this method relies upon the assumption 

that the chromatin structure at the control sequence does not differ between samples (Haring et al. 

2007). It is because of this assumption that this normalisation strategy was not used when analysing 

telomeric histone methylation between proliferating and senescent MRC5 cells and IMR90 cells. It 

has been shown that when cells enter senescence their global chromatin landscape is altered 
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(O'Sullivan et al. 2010). Although no specific changes in chromatin structure at the positive control 

loci (GAPDH promoter, ZNF554 and -globin promoter) have been documented it cannot be ruled 

out therefore this data was not normalised in this manner. Instead, in addition to normalising to 

input chromatin, telomere-specific ChIP-qPCR data was normalised to telomeric H3 occupancy. This 

method is advantageous because it ensures that any differences in the enrichment of a histone 

methylation mark are not just a result of altered telomeric H3 occupancy. The downside of the 

method of normalisation used in this chapter is that it is impossible to say whether the changes seen 

in telomeric enrichment of histone methylation marks between proliferating and senescent cells or 

between HT1080 clonal populations is specific to telomeres or just a result of global alterations of 

the enrichment of a mark. 

 

Although considerable research has identified certain histone modifications as influencing factors on 

telomere length at mouse chromosome ends very little research has been undertaken identifying 

any relationship between a length of a telomere and its chromatin structure in human cells. In a 

recent study telomerase was ectopically expressed in HT1080 cells resulting in HT1080+TT cells with 

an average telomere length of 36.2kb, 24.9kb longer than the average telomere length in the 

parental cell line (HT1080) (Arnoult et al. 2012). Concomitant with this dramatic increase in telomere 

length was an increase in telomeric H3 occupancy and increased H3K9me3. H3K9me3 

immunopreipitation was unsuccessful in the HT1080 cells in this chapter therefore no comparisons 

between its enrichment and telomere length could be made however there did appear to be a 

correlation between telomeric H4K20me3, and to a lesser extent H3K4me3 and telomere length. 

 

Changes in telomere structure have previously been observed between different developmental 

stages of a cells life span. Pluripotent stem cells have been shown to possess a more relaxed 
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telomeric chromatin conformation than differentiated cells in mice (Marion et al. 2009). Changes in 

telomere chromatin structure between proliferating and senescent cells however are less well 

defined, particularly in human cells. Loss of telomeric H3 occupancy as well as reduced TRF1 and 

TRF2 abundance has been shown in IMR90 cells entering senescence (O'Sullivan et al. 2010). The 

data presented in this chapter is somewhat consistent to this work. TRF1 levels were lower at all the 

chromosome ends tested in senescent MRC5 cl. 13 cells compared to the same cells when 

proliferating. However differences in H3 occupancy are far less clear: although the senescent cells 

have lower levels of telomeric H3 at 16p, 18q and, to a lesser extent, the XpYp telomeric alleles than 

the proliferating cells, 11q and 17p H3 occupancy is comparable. This highlights the advantage of 

using the telomere-specific ChIP-qPCR assays as the dot blot system of detection is unable to 

distinguish protein occupancy between chromosome ends. Telomeric H3K4me3 and H3K9me3 levels 

were reduced in senescent MRC5 cl.13 cells. H4K20me3 was also lower in the telomeres in these 

senescent cells as well as at 17p and 18q in senescent IMR90 fibroblasts. The senescence-induced 

loss of telomeric H3K4me3 and H4K20me3 are previously unreported. Very recently reduced 

H3K9me3 within the 7q and 11q subtelomeric regions was reported in senescent human WI-38 

fibroblasts (Thijssen et al. 2013). H3K9me3 levels were 2-3 fold lower in senescent cells compared to 

proliferating cells. This difference was observed 4kb away from the telomere but is similar to the 

difference seen at 11q in the MRC5 cl.13 cells at the telomere/subtelomere boundary were a 2.8 

fold loss in H3K9me3 occupancy was seen in the senescent cells. 

 

An unexpected finding during this chapter was the differences in TRF1 enrichment between 

chromosome ends within the same cell population. The aim was to design the qPCR assays as close 

to the TTAGGG repeat tract as possible however due to the limited number of telomere-specific 

nucleotides to design primers around the qPCR PCR products were more subtelomeric than would 

have been preferable. The most extreme case is the qPCR assay for the 18q chromosome end which 
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amplifies a region 444nt away from the TTAGGG repeat tract. The upshot of this is that of the 

chromatin fragments immunoprecipitated, less telomeric DNA will be amplified by these primers 

compared to other chromosome ends. Given that TRF1 binds only TTAGGG repeats and not to 

subtelomeric DNA it would be reasonable to assume that the distance from the qPCR assay to the 

TTAGGG repeat at each chromosome end would have been reflected by the differences in telomere-

specific TRF1 enrichment. Such differences have recently been observed (Deng et al. 2012). In this 

study six sets of primers were designed at increasing distances from the TTAGGG repeat tract within 

the XqYq subtelomere and TRF1 and TRF2 abundance was analysed at these sites. Whereas robust 

TRF1 and TRF2 enrichment was observed at the most telomere-proximal site (109nt from TTAGGG), 

enrichment of the two proteins was approximately 4-fold lower at the next primer site (966nt from 

TTAGGG). TRF1 and TRF2 binding was then minimal further into the subtelomere. No such 

correlation was observed in experiments in this chapter. Although differences in TRF1 enrichment 

existed between chromosome ends in all the cell types tested these differences didn’t reflect the 

distance between the qPCR assay and TTAGGG repeat tract. This is best exemplified in the 

proliferating MRC5 cl.13 cells (fig. 4.5c). The qPCR assays at 17p and 18q were 426nt and 444nt away 

from the telomeric repeat tract respectively. Despite the similar qPCR assay position TRF1 

enrichment varies considerably between the two ends: 17p TRF1 enrichment is low whereas 18q 

TRF1 enrichment is higher and almost at a similar level to TRF1 enrichment at XpYp whose qPCR 

assay extends into the telomeric repeats. A potential cause of this variation could be the presence of 

telomere variant repeats (TVRs). TVRs have been shown to occur in the proximal 2-3kb of telomere 

repeat arrays (Baird et al. 2000; Baird et al. 1995). Considering that TRF1 binds solely to TTAGGG 

repeats TVR variation between chromosome ends may result in differing amounts of TRF1 binding in 

the proximity of the qPCR assays. 
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The telomere-specific ChIP-qPCR assays could be used to analyse telomeric chromatin structure in a 

number of different contexts including at different stages of the cell cycle, after depletion of a 

chromatin remodeler of interest or in cells ectopically expressing telomerase to name but a few. 

More specific future directions which would directly follow on from this work would include 

analyzing the telomere-specific enrichment of different histone modifications at different length 

telomeres and in proliferating and senescent cells. Such marks would include the alternative 

methylation forms (mono- and di-methylation) of the histone methylation marks studied in this 

chapter and also H2BK5me1, H3K79me2 and H4K16Ac all of which have been shown to be present at 

telomeres in various human cell types (O'Sullivan et al. 2010; Rosenfeld et al. 2009). 

 

The aim of this chapter was to determine whether telomeric chromatin structure differs between 

telomeres of different length. The telomere-specific enrichment of three histone methylation marks 

(H3K4me3, H3K9me3 and H4K20me3) as well as histone H3 and TRF1 was analysed at individual 

chromosome ends with differing telomere length distributions. Although slight differences in 

telomeric H3K4me3, H3K9me3 and H4K20me3 were observed between different chromosome ends 

in a telomerase-negative MRC5 fibroblasts these differences didn’t correlate with telomere length. 

When the same marks/proteins were analysed at the same chromosome ends stably maintained at 

different lengths in two telomerase-positive HT1080 clonal populations a positive correlation 

between telomeric chromatin structure and telomere length was observed: HT1080 cells with longer 

telomeres showed increased enrichment of H3K4me3 and H4K20me3 as well as greater H3 

telomeric occupancy suggesting the existence of a relationship between the chromatin structure of a 

telomere and its length in telomerase-positive cells. 
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A further aim of the chapter was to determine whether the chromatin structure of individual 

chromosome ends differs between actively proliferating cells and senescent cells. Telomeric 

H3K4me3, H3K9me3 and H4K20me3 were reduced in a clonal population of MRC5 cells as they 

entered senescence. Loss of H4K20me3 was also observed in IMR90 fibroblasts as they enter 

senescence at 17p and 18q. The changes in chromatin structure as cells entered senescence differed 

between chromosome ends: whereas some telomeres appeared more susceptible to loss of a 

particular histone methylation mark other telomeres did not. The identification of such differences 

highlights the benefits of using the telomere-specific ChIP-qPCR approach over the more traditional 

ChIP-dot blot assays which would not be able to differentiate between the chromatin structure of 

different chromosome ends.  
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Chapter 5 

Identification of human chromatin remodelers with a role in telomere length maintenance 

 

5.1 Abstract 

Telomere length is a key determinant of telomere function and is affected by various factors 

including telomerase-mediated extension, the ALT (Alternative Lengthening of Telomeres) pathway, 

oxidative stress and also telomeric chromatin structure. A number of chromatin remodelling 

proteins have been identified as regulators of telomere length in yeast and in recent years several 

mammalian proteins have been identified which, through their ability to maintain the chromatin 

structure at telomeres, contribute to telomere length homeostasis. The emerging model for 

telomeric chromatin regulation is one in which telomeric chromatin is maintained through an 

ordered sequence of events mediated through the actions of a number of nucleosome-altering 

proteins, DNA methyltransferases and long non-coding RNAs (TERRA). It also appears likely that the 

telomeric chromatin structure is not universal but may differ depending on the cellular context. It is 

highly probable that additional chromatin remodelers with telomeric roles are yet to be found, 

particularly in human cells were examples are scarce.  The aim of this chapter was to identify other 

chromatin remodelling proteins which may play a role in telomere length maintenance.  

A clonal population of the human HT1080 fibrosarcoma cell line was selected because it contained 

homogeneous telomere length distributions that would allow subtle changes to be detected. A novel 

96-well plate based RNAi knockdown screen was performed using siRNAs targeting 15 selected 

chromatin remodeler-encoding genes. Aberrant telomere length phenotypes resulting from loss of a 

chromatin remodelling protein were then identified by Single Length Telomere Length Analysis 

(STELA) at the 17p, 18q and XpYp chromosome ends. siRNA mediated knockdown of the histone 

methyltransferase (HMTase) EHMT2 resulted in an increase in very short 17p telomeres whereas 
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loss of another HMTase, DOT1L caused a divergence  in the 17p telomere length distribution 

suggesting the presence of two subpopulations each with differing telomere length distributions. 

Subtle alterations in mean telomere length was observed after siRNA mediated knockdown of the 

HMTases MLL and EZH2, the histone deacetylases (HDACs) HDAC1 and SIRT6, the SWI/SNF subunit 

BAF155 and the H3.3 histone chaperone DAXX. However due to certain limitations of the RNAi 

screen the robustness of these observations is questionable and more work would have to be 

performed to confirm these chromatin remodelers as regulators of telomere length. 
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5.2 Introduction 

In eukaryotes epi-genetic information is stored in the DNA-protein complex chromatin. 

Nucleosomes, the fundamental unit of chromatin, have an octomeric structure consisting of two 

copies of each of the four core histones (H2A, H2B, H3 and H4) around which 147bp of DNA is 

wrapped. Nucleosome core particles are linked by the H1 ‘linker’ histone to form a ‘beads-on-a-

string’ structure, which itself, is further folded into higher order structures. This ‘folding’ is a 

necessary function of chromatin to fit the entire genome (~2m DNA in humans) within a single 

nucleus (~5μm). Chromatin also serves another purpose within the nucleus, which is to provide 

another layer of regulation acting on the DNA. The dynamic modulation of chromatin structure 

controls access to the DNA sequence for non-histone nuclear proteins and is a highly conserved 

process throughout eukaryotes. It is achieved through chromatin remodelling activity of proteins 

which covalently modify histones, ATP-dependant chromatin remodelling complexes, utilization of 

histone variants and also DNA methylation. The role of chromatin remodelling has been implicated 

in a wide range of cellular processes including the regulation of gene expression, DNA replication, 

the DNA damage response and more recently telomere maintenance. 

 

5.2.1 The importance of telomere length 

Telomere length plays a central role to the functionality of a telomere. One of the primary functions 

of the telomere is to protect linear chromosomes from damage and degradation. Due the 

incomplete nature of semi-conservative DNA replication (the end replication problem) (Harley, 

Futcher & Greider, 1990; Olovnikov, 1971) telomeres are required to act as a buffer at the ends of 

chromosomes to prevent the loss of genetic information. The telomere erosion observed with every 

cell division in telomerase-negative cells can also act as a ‘counter’ of cell division to provide a 

mechanism of tumour suppression. With on-going cell division continued telomere erosion 
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eventually results in the loss of telomeric function, which triggers recruitment of the DNA damage 

response apparatus, leading to a p53-dependant G1-S cell cycle arrest (replicative senescence) 

(Baird, 2005). Consistent with this idea of cell division ‘counting’ by telomere erosion is the 

observation is the high level of telomerase expression in immortal cell lines and over 90% of human 

malignancies (Harle-Bachor & Boukamp, 1996; Kolquist et al., 1998) suggesting that telomerase 

expression and consequently stable telomere length prevents telomere erosion-induced replicative 

senescence. 

 

Telomeres also function to prevent the natural end of a chromosome from being recognised as a 

double stranded DNA break. This is achieved through the higher order ‘T-loop’ structure (Griffith et 

al., 1999; Stansel, de Lange & Griffith, 2001) that acts as a protective cap and sequesters 

chromosome ends away from the DNA repair apparatus. Dysfunctional short telomeres lose this 

‘capping’ property which can result in fusion of a telomere with either another telomere or with a 

non-telomeric DNA double strand break. These fusion events have the potential to promote 

genomic instability which drives tumour progression (O'Hagan et al., 2002). 

 

Due to the central role telomere length plays in telomere function considerable effort has been 

made to identify determinants of telomere length including telomerase and other telomeric 

proteins, recombination-based mechanisms, oxidative stress and also environmental effects such as 

smoking and obesity (Bryan et al., 1995; Greider & Blackburn, 1985; Petersen, Saretzki & von 

Zglinicki, 1998; Smogorzewska et al., 2000; Valdes et al., 2005; van Steensel & de Lange, 1997). The 

role of chromatin in telomere length maintenance has however been a largely unexplored field until 

recent years. 
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5.2.2 Telomeric chromatin and chromatin remodelers at the telomere 

Telomeric chromatin shares characteristic features with other repeat-containing heterochromatic 

regions of the genome such as pericentric repeats (Schoeftner & Blasco, 2010), namely low levels of 

histone acetylation, high levels of histone methylation and DNA methylation. Maintenance of 

telomeric chromatin structure is a tightly regulated process. Disruption of the telomeric chromatin 

structure can result in a number of aberrant telomere phenotypes including increased telomere-to-

telomere fusions, increased telomere dysfunction-induced foci (TIFs) and alterations in telomere 

length. Chromatin remodelers which play a role in maintaining telomeric chromatin structure have 

been studied in various organisms including yeast, mice and more recently in human cell lines. 

 

Compared to model organisms the role of chromatin remodelers at human telomeres is less well 

defined. Interestingly several studies have reported opposing enrichment patterns of certain histone 

modifications to what was observed in mouse ES and MEF cells. H3K27me3 enrichment was not 

observed at mouse telomeres however it is present at human telomeres. Conversely, whereas 

H3K9me3 levels are high at mouse telomeres, it was only detected at low levels at telomeres in 

HT1080 and HeLa cells (Arnoult, Van Beneden & Decottignies, 2012; O'Sullivan et al., 2010; 

Rosenfeld et al., 2009). The fact that human telomeres have a different chromatin structure 

compared to mice telomeres suggests that alternative chromatin remodelers are required at the 

telomere in humans. Given the scarcity of known chromatin remodelers which function at human 

telomeres there is a need to shed more light on telomeric chromatin structure maintenance in 

human cells and how this impacts upon telomere length.  
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5.2.3 Aims of the chapter 

The aim of this chapter was to identify chromatin remodelling proteins which have an impact upon 

telomere length. This was done by using a novel 96-well plate-based RNAi screen in which selected 

chromatin remodelling genes were targeted for knockdown in a clonal population of the HT1080 

fibrosarcoma cell line. Resulting aberrant telomere length phenotypes were characterised with 

Single Telomere Length Analysis (STELA). 
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5.3 Results 

 

5.3.1 Selecting chromatin remodelling genes 

The selected genes all encoded a protein with chromatin remodelling function and have all been 

implicated in some form of cancer. Deletion or knockdown of some of the genes has also been 

shown to result in telomere dysfunction in different organisms such as yeast or mice. Additionally, 

due to data generated in our lab where siRNA-mediated knockdown of the SWI/SNF family member 

ATRX resulted in a striking loss of telomere length, chromatin remodelers that interacted with ATRX 

were also were also included on the list.  A summary of the genes selected is presented in Table 5.1. 
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5.3.2 Optimization of RNAi knockdown procedure 

To allow rapid analysis of any aberrant telomere phenotypes resulting from knockdown of the 

candidate genes, the RNAi knockdown screen was performed on a 96-well plate scale using a clonal 

cell population of the HT1080 fibrosarcoma cell line (clone 2). HT1080 cl.2 was selected from a panel 

of clones because it displayed a homogeneous telomere-length distribution at all three of the 

chromosome ends to be analysed (17p, 18q and XpYp) which will allow subtle telomere phenotypes 

to be more easily identified. 

By seeding differing amounts of HT1080 cl.2 cells per well, it was determined that 4500 cells seeded 

the night prior to transfection gave the optimal cell confluence (~70%) for the knockdown (data not 

shown). siRNA transfections were then performed using the recommended conditions (Dharmacon).  

The premise for this experiment was to maintain low mRNA levels of a candidate gene over a 

number of cell divisions, thereby maximizing the chance of observing any subtle, gradual telomere 

elongation/erosion processes. To maintain low mRNA level of a given gene three successive 

transfections were carried out, however, it was necessary to determine the time points upon which 

these transfections should be performed.  This was determined in a pilot experiment in which the 

HT1080 cl.2 cells were transfected with a siRNA targeting GAPDH. GAPDH mRNA levels were then 

measured at 24-hour intervals over a period of 72 hours (fig. 5.1). GAPDH mRNA level fell to its 

lowest level 48 hours after the initial transfection (~23%) before recovering to 67% by 72 hours. 

With the caveat that different genes will exhibit differing kinetics of knockdown and protein half-life 

it was considered that for this particular clone, successive transfections 48 hours apart, should 

maintain a low mRNA level. 
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Figure 5.1. GAPDH mRNA levels reach their lowest levels 48 hours post-transfection with GAPDH siRNA. 4500 HT1080 cl. 2 
cells cultured in 96 well plate wells were either transfected with siRNA targeting GAPDH or non-targeting siRNA (negative control), 
subject to DarmaFECT 4 without siRNA (mock) or untreated. RNA was then extracted from the cells at 24 hour intervals 
post-transfection. Following reverse trancription relative gene expression was measured by RT-PCR using Taqman gene expres-
sion assays (Applied Biosystems) speci�c to GAPDH and ACTB (endogenous control)
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5.3.3 Clonal drift 

Before initiating the RNAi screen it was necessary to perform a ‘mock’ knockdown to determine 

whether changes in telomere length observed in HT1080 cl.2 cells grown in the 96-well plates could 

occur as a consequence of clonal drift in culture. Eight independent cell populations of HT1080 cl. 2 

were seeded into 96-well plate wells; the replicates were then cultured for the same amount of time 

as during the RNAi knockdown screen (6 days). DNA was then extracted and STELA was performed at 

17p, 18q and XpYp to determine the telomere length profiles of the 8 replicates (fig. 5.2). Band 

quantification revealed that the 17p telomere length ranged from 4.775kb to 5.319kb in length in 

the eight replicates. Importantly an analysis of variance showed that these small differences in 

telomere length were not statistically significant (P=0.5778) (fig. 5.2a). A similar scenario was found 

at the XpYp telomere; telomere length ranged from 4.606kb to 4.969kb and again, these differences 

in length were not significant (P=0.6593) (fig. 5.2c). More variation was observed at the 18q 

telomere at this chromosome end telomere length ranged from 6.136kb to 6.697. Although an 

analysis of variance showed no significant difference overall between the replicates (P=0.2441), 

because of the increased variation between replicates and lower ANOVA P-value, t-tests were 

performed between individual replicates. Significant differences were found between replicate 2 

and 6 (P=0.0381) and between replicate 5 and 6 (P=0.0146) (fig. 5.2b). Therefore any changes in 

mean 18q telomere length observed after gene knockdown were only considered biologically 

relevant if they were outside of this range (below 6.136kb or above 6.697kb). 
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Figure 5.2. Clonal drift of HT1080 cl. 2 cells grown in 96 well plate.  Eight cell populations of HT1080 cl. 2  cells were maintained in the same manner as 
in the siRNA mediated knockdown protocol. Brie�y 4500 HT108 cl.2 cells were seeded in 96 well plate wells and cultured for 6 days, after which DNA was 
extracted using Magnesil paramagnetic particles and used in a STELA reaction for the 17p, 18q and XpYp chromosome ends. Telomere length was then 
quanti�ed using Phoretix 1D software (Nonlinear dynamics)  and any and statistically signi�cant di�erences in mean telomere length was determined by 
one way Analysis of Variance and t-test
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5.3.4 Telomere phenotypes observed in the RNAi screen 

From the screen several abnormal telomere phenotypes were observed. Differences in mean 

telomere length occurred between untreated cells and cells deficient in a particular chromatin 

remodeler. In other cases deficiency in certain chromatin remodelers resulted in changes in the 

pattern of telomere length distributions including an increase in frequency of very short telomeres 

suggesting compromised telomere stability and also the presence of two distinct populations of 

telomere length. In most cases the telomere length defects observed through loss of a certain 

chromatin remodeler was specific to only one of the three telomeres studied however in some 

instances two or even all three telomeres (17p, 18q and XpYp) were affected. For each gene 

targeted for knockdown four independent transfections were performed (e.g. TERT-1, -2, -3 and -4), 

the same telomere length phenotype was not observed in all four biological replicates, it was only 

present in one to three of the replicates. 

 

Below the aberrant telomere length phenotypes found from the RNAi screen are summarised. The 

screen has certain limitations which may affect the robustness of the conclusions drawn from the 

results presented. These issues are discussed in detail in the following discussion chapter (5.4). 

 

5.3.5 TERT 

In every replicate of TERT-deficient HT1080 cl.2 cells a reduction in mean telomere length, compared 

to untreated controls was observed. These differences were small and did not reach statistical 

significance at the 17p and 18q telomeres (fig. 5.3a&b); however at the XpYp telomere the 

reductions in mean length were larger and statistically significant (fig. 5.3c). TERT-1 mean XpYp 

telomere length was 4.523kb, 375bp shorter than the untreated XpYp telomere (P=0.0153), whereas 

TERT-3 had an even shorter mean telomere length of 4.177kb, 721bp shorter than untreated cells 
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(P0.0001). This experiment provided a proof of principle that subtle changes in telomere length, 

following the knockdown of a telomere specific gene in this clonal population, can be identified after 

just 6 days of culture. 
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Figure 5.3. The e�ect of siRNA-mediated knockdown of TERT on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against TERT mRNA using DharmaFECT 4. TERT-1, -2, -3 & -4 represent four biological replicates independently 
transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using Magne-
sil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. Telomere 
length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated cells and cells 
targeted for TERT knockdown as measured by t-test are stated
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5.3.6 SIRT6 

siRNA knockdown of SIRT6 caused a significant decrease in mean telomere length at the 17p and 

XpYp chromosome ends. In untreated cells the mean 17p telomere length was 5.215kb. In the SIRT6-

2 and SIRT6-3 replicates telomere length was shorter than in untreated cells however this was not 

statistically significant (fig. 5.4a). The SIRT6-4 replicate did show a significant loss of 17p telomere 

length (P=0.0401) (fig. 5.4a). All four SIRT6 replicates showed a small reduction in telomere length at 

18q although this wasn’t statistically significant (fig. 5.6b). Similarly small reductions were observed 

at XpYp in the SIRT6-2, -3 and -4 replicates however SIRT6-1 showed a greater degree of telomere 

loss which was significantly different to untreated XpYp mean telomere length (P=0.0432) (fig. 5.4c). 

 

5.3.7 EHMT2 

Loss of EHMT2 appeared to result in an increase in the frequency of very short 17p telomeres 

compared to untreated cells (fig. 5.5). This phenotype was only present at 17p. In an attempt to 

determine the statistical significance of this observation a -squared test was performed. The 

proportion of telomeres below 3kb in size within the whole population of telomeres was compared 

between the four EHMT2-deficient replicates and untreated cells (fig. 5.5). EHMT2-1, -2 and -4 had a 

significantly increased percentage of 17p telomeres below 3kb in length compared to untreated cells 

(fig. 5.5c). The mean 17p telomere length was slightly lower in all four EHMT2 knockdown replicates 

compared to the untreated cells however these differences were not statistically significant (fig. 

5.6a). Similar reductions in 18q mean telomere length were observed in the EHMT2 knockdown 

replicates compared to untreated cells however again these differences were small and not 

statistically significant (fig. 5.6b). No aberrant telomere phenotypes were observed at XpYp where 

the mean telomere length of the untreated and EHMT2 replicate cells was very similar (fig. 5.6c). 
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Figure 5.4. The e�ect of siRNA-mediated knockdown of SIRT6 on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against SIRT6 mRNA using DharmaFECT 4. SIRT6, -2, -3 & -4 represent four biological replicates independently 
transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using Magne-
sil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. Telomere 
length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated cells and cells 
targeted for SIRT6 knockdown as measured by t-test are stated.
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Figure 5.5. siRNA-mediated knockdown of EHMT2 results in increased presence of very short 17p telomeres. (a) The 17p telomere length distribu-
tion of four independant EHMT2-de�cient cell populations was determined by STELA. Bands below the red line were considered short telomeres. (b) Dot 
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determined by t-test and are displayed.  (c) The proportion of small telomeres (<3kb) was calculated for all replicates. Signi�cant di�erences between the 
proportion of small 17p telomeres in the EHMT2 knockdown replicates and untreated cells was determined by a chi-squared test
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Figure 5.6. The e�ect of siRNA-mediated knockdown of EHMT2 on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against EHMT2 mRNA using DharmaFECT 4. EHMT2-1, -2, -3 & -4 represent four biological replicates indepen-
dently transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using 
Magnesil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. 
Telomere length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated cells 
and cells targeted for EHMT2 knockdown as measured by t-test are stated.
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5.3.8 SIRT1 

Quantification of 18q telomere length after siRNA knockdown of SIRT1 revealed a possible telomere 

shortening phenotype, in all four replicates one of which was significantly lower than in untreated 

cells (P=0.0349) (fig. 5.7b). However the variation observed in this experiment is within the bounds 

of variation observed in the clonal drift experiment (fig. 5.2) 

 

5.3.9 DOT1L 

DOT1L deficiency resulted in a reduction in mean telomere length at XpYp and at the 18q telomere 

(fig. 5.8b&c). The mean 18q telomere length in DOT1L-4 cells was 6.125kb, a 704bp loss compared to 

the untreated mean 18q mean telomere length. This reduction in telomere length is significant 

(P=0.01) and below the lower mean 18q telomere length threshold (6.136kb) determined in the 

clonal drift experiment (fig. 5.2). The same DOT1L knockdown replicate also displayed shorter XpYp 

telomeres than untreated cells although the difference was less pronounced (513bp loss, P=0.0345) 

(fig. 5.8c). A similarly significant XpYp telomere shortening phenotype was observed for DOT1L-3 

which had a mean telomere length of 4.551kb compared to 4.898kb for untreated cells (P=0.0211). 

DOT1L-1 cells also displayed a reduction in mean XpYp telomere length compared to untreated cells 

however this difference was smaller and not statistically significant. Additionally loss of DOT1L 

appeared to cause a divergence of telomere length in 17p telomeres in the DOT1L-1 replicate 

resulting in two distinct populations of telomeres with different length (fig. 5.8a & 5.9). Whereas the 

17p telomeres from untreated cells had a mean telomere length of 5.192kb, the two populations of 

telomeres in the DOT1L-1 replicate had mean telomere length of 5.879kb and 4.329kb respectively. 

This phenotype was only observed in one of the four knockdown replicates for DOT1L and wasn’t 

observed at 18q or XpYp. 
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Figure 5.7. The e�ect of siRNA-mediated knockdown of SIRT1 on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against SIRT1 mRNA using DharmaFECT 4. SIRT1-1, -2, -3 & -4 represent four biological replicates independently 
transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using Magne-
sil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. Telomere 
length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated cells and cells 
targeted for SIRT1 knockdown as measured by t-test are stated.
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Figure 5.8. The e�ect of siRNA-mediated knockdown of DOT1L on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against DOT1L mRNA using DharmaFECT 4. DOT1L-1, -2, -3 and -4 represent four biological replicates indepen-
dently transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using 
Magnesil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. 
Telomere length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated cells 
and cells targeted for DOT1L knockdown as measured by t-test are stated.
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Figure 5.9. siRNA-mediated knockdown of DOT1L reaults in the divergence of two populations of telomeres with di�ering 
telomere length distributions. Four HT1080 cl. 2 cell populations (DOT1L-1, -2, -3 & -4) were subject to three successive transfections 
with siRNA targeted against DOT1L at 48h intervals. Untreated cells were grown in parallel with the DOT1L knockdown replicates. 48 
hours after the third transfection DNA was extracted from the cells uisng Magnesil paramagnetic particles. 17p telomere length was 
then measured using STELA
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5.3.10 EZH2 

EZH2-deficient HT1080 cl.2 cells showed aberrant telomere length phenotypes at 17p and XpYp (fig. 

5.10). EZH2-1 and EZH2-3 replicates had mean 17p telomere length of 4.976kb and 4.997kb 

respectively which did not significantly differ from the 17p telomeres from untreated cells (telomere 

length of 5.192kb). EZH2-2 however showed a statistically significant increase in mean 17p telomere 

length of 0.491kb (P=0.0095). EZH2-4 also displayed a significant alteration in mean telomere length 

however in this replicate mean telomere length was reduced compared to untreated 17p telomeres 

(mean – 4.673, P=0.0386) (fig. 5.10a). The mean 18q telomere length in EZH2-3, -3 and -4 was 

significantly lower than in untreated cells (fig. 5.10b) however this variation in length was within the 

bounds of variation observed in the clonal drift experiment therefore it is impossible to say whether 

EZH2 loss resulted in telomere shortening at 18q. The EZH2-4 replicate displayed a reduced telomere 

length phenotype at XpYp; mean telomere length at this chromosome end was 4.471kb, a 0.427kb 

reduction compared to XpYp telomeres form untreated cells (mean: 4.898kb) (fig. 5.10c).  

 

5.3.11 BAF155 

No aberrant telomere length phenotype was observed at 17p and 18q in the HT1080 cl.2 cells 

targeted for BAF155 knockdown (fig. 5.11a&b) however at the XpYp chromosome a reduction in 

mean telomere length was observed. BAF155-1 cells had a slight reduction in mean XpYp telomere 

length compared to the untreated cells however this was not statistically significant. Greater XpYp 

length losses were observed in the other two BAF155 knockdown replicates (fig. 5.11c). BAF155-2 

and -3 had mean XpYp telomere lengths of 4.518kb and 4.444kb which, when compared to the mean 

XpYp telomere length in the untreated cells (4.898kb), represented a significant reduction in length 

(BAFF155-2 – P=0.0235, BAFF155-3 – P=0.0441). 
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Figure 5.10 The e�ect of siRNA-mediated knockdown of EZH2 on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against EZH2 mRNA using DharmaFECT 4. EZH2-1, -2, -3 and -4 represent four biological replicates independently 
transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using Magne-
sil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. Telomere 
length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated cells and cells 
targeted for EZH2 knockdown as measured by t-test are stated.

P=0.0078

P=0.0095
P=0.0386

P=0.0227
P=0.0367

P=0.009

Mean tel length (kb) 5.192 4.976 5.683 4.997 4.673

Mean tel length (kb) 6.829 6.244 6.69 6.364 6.18

Mean tel length (kb) 4.898 4.655 4.991 4.934 4.471

Lower 95% CI

Upper 95% CI

Lower 95% CI

Upper 95% CI

Lower 95% CI

Upper 95% CI

196



Te
lo

m
er

e 
le

ng
th

 (k
b)

Te
lo

m
er

e 
le

ng
th

 (k
b)

Te
lo

m
er

e 
le

ng
th

 (k
b)

17p

18q

XpYp

a

b

c

Figure 5.11. The e�ect of siRNA-mediated knockdown of BAF155 on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against BAF155 mRNA using DharmaFECT 4. BAF155-1, -2 and -3 represent three biological replicates indepen-
dently transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using 
Magnesil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. 
Telomere length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated cells 
and cells targeted for BAF155 knockdown as measured by t-test are stated.
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5.3.12 HDAC1 

17p STELA analysis showed no differences significant differences in telomere length between the 

untreated and HDAC1-knockdown replicate cells although there was a slight increase in the 

generation of very small telomeres particularly in HDAC1-1, -2 and -3 (fig. 5.12a). Mean 18q 

telomere length in the HDAC1 knockdown replicates was lower compared to untreated cells 

however these differences were small and did not reach statistical significance (fig 5.12b). A 

telomere lengthening phenotype was observed at XpYp: Untreated cells had a mean XpYp telomere 

length of 4.898kb however XpYp telomeres in the HDAC1-4 knockdown replicate had significantly 

lengthened resulting in a mean telomere of 5.391kb (P=0.0146) (fig. 5.12c). This phenotype was not 

observed for any of the other knockdown replicates, indeed there was very little deviation in mean 

XpYp telomere length between HDAC1-1, -2 and -3 and untreated (fig. 5.12c). 

 

5.3.13 MLL 

Some differences in mean 17p telomere length exists between the untreated and MLL knockdown 

replicate cells however this variation is not statistically significant (fig. 5.13a). 18q telomeres were 

significantly shorter in three of the MLL knockdown replicates tested (MLL -2 – mean: 6.363kb, 

P=0.0316, MLL-3 – mean: 6.25kb, P=0.0098, Mll-4 - mean: 5.936, P=0.0063) compared to 18q 

telomeres from untreated cells (mean: 6.829kb) (fig. 5.13b) although only the reduction in mean 18q 

telomere length in the MLL-4 was outside the bounds of variation observed in the clonal drift 

experiment. The reliability this observation however may be compromised due to the relatively low 

number of telomeres quantified for MLL-4 at this chromosome end (n=11). Despite this, the fact that 

this same telomere shortening phenotype occurs in three out of the four knockdown replicates 

suggests that this result may be significant. MLL-3 also showed a significant reduction of 0.388kb in 

mean XpYp telomere length compared to untreated cells (P=0.0489) (fig. 5.13c). 
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Figure 5.12. The e�ect of siRNA-mediated knockdown of HDAC1 on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against HDAC1 mRNA using DharmaFECT 4. DOT1L-1, -2, -3 and -4 represent four biological replicates indepen-
dently transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using 
Magnesil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. 
Telomere length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated cells 
and cells targeted for HDAC1 knockdown as measured by t-test are stated.
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Figure 5.13. The e�ect of siRNA-mediated knockdown of MLL on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against MLL mRNA using DharmaFECT 4. MLL-1, -2, -3 and -4 represent four biological replicates independently 
transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using 
Magnesil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. 
Telomere length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated 
cells and cells targeted for MLL knockdown as measured by t-test are stated.
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5.3.14 JARID1C 

RNAi-mediated depletion of the histone demethylase JARID1C did not result in any significant 

aberrant 17p telomere length phenotypes (fig. 5.14a). JARID1C-3 showed a slight increase in mean 

17p telomere length compared to untreated cells however this did not reach statistical significance. 

Statistically significant differences in mean 18q telomere length were observed between untreated 

cells and JARID1C-2 and -3 cells (fig. 5.14b). 18q telomeres from untreated cells had a mean 

telomere length of 6.829kb whereas JARID1C-2 and JARID1C-3 displayed significantly shorter 

telomeres (JARID1C2 – mean: 6.342kb, P=0.0273, JARID1C-3 – mean: 6.299kb, P=0.0236). However 

mean telomere lengths for these replicates is higher than the lower mean 18q telomere length 

threshold determined in the clonal drift experiment (6.136kb) so the biological relevance of this 

result is questionable. No significant differences in mean XpYp telomere length was observed 

between the untreated and JARID1C replicate cells (fig. 5.14c).  

 

5.3.15 DAXX 

RNAi-mediated depletion of DAXX resulted in a decrease in the mean telomere length at 17p (fig. 

5.15a). The mean 17p telomere length in DAXX-1 and -2 cells was very similar to in untreated cells 

(5.192kb). DAXX-3 cells displayed a slightly reduced mean 17p telomere length (5.044kb) although 

this did not reach statistical significance. DAXX-4 however had a significantly shorter mean 17p 

telomere length of 4.656kb (P=0.0109). Some variation in mean 18q telomere length was observed 

between untreated and DAXX-knockdown replicate cells however this was small and not statistically 

significant (fig. 5.15b). Even less variation in mean XpYp telomere length was observed between cell 

populations (fig. 5.15c). 
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Figure 5.14. The e�ect of siRNA-mediated knockdown of JARID1C on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against HDAC4 mRNA using DharmaFECT 4. JARID1C-1, -2, -3 and -4 represent four biological replicates indepen-
dently transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using 
Magnesil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. 
Telomere length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated cells 
and cells targeted for JARID1C knockdown as measured by t-test are stated.
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Figure 5.15. The e�ect of siRNA-mediated knockdown of DAXX on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against DAXX mRNA using DharmaFECT 4. DAXX-1, -2, -3 and -4 represent four biological replicates independently 
transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using 
Magnesil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. 
Telomere length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated cells 
and cells targeted for DAXX knockdown as measured by t-test are stated.
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Above, the aberrant telomere length phenotypes observed in the RNAi screen are summarised, 

siRNA mediated knock down of the other candidate genes (HDAC4, LSH, UTX, H3F3A and H3F3B) did 

not result in telomere length defects, the telomere length distributions of the 17p, 18q and XpYp 

telomeres after knockdown of these genes are summarised in figures 5.16-20. 
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Figure 5.16. The e�ect of siRNA-mediated knockdown of HDAC4 on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells 
were transfected with 25nm siRNA targeted against HDAC4 mRNA using DharmaFECT 4. HDAC4 -1, -2, -3 and -4 represent four biological replicates 
independently transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was 
extracted using Magnesil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and 
XpYpE respectively. Telomere length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length 
between untreated cells and cells targeted for HDAC4 knockdown as measured by t-test are stated.
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Figure 5.17. The e�ect of siRNA-mediated knockdown of LSH on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against LSH mRNA using DharmaFECT 4. TERT-1, -2, -3 & -4 represent four biological replicates independently 
transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using 
Magnesil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. 
Telomere length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated cells 
and cells targeted for LSH knockdown as measured by t-test are stated.
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Figure 5.18. The e�ect of siRNA-mediated knockdown of UTX on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells were 
transfected with 25nm siRNA targeted against UTX mRNA using DharmaFECT 4. UTX-1, -2, -3 and -4 represent four biological replicates independently 
transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was extracted using 
Magnesil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and XpYpE respectively. 
Telomere length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length between untreated 
cells and cells targeted for UTX knockdown as measured by t-test are stated.
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Figure 5.19. The e�ect of siRNA-mediated knockdown of H3F3A on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells 
were transfected with 25nm siRNA targeted against H3F3A mRNA using DharmaFECT 4. H3F3A-1, -2, -3 and -4 represent four biological replicates 
independently transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was 
extracted using Magnesil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and 
XpYpE respectively. Telomere length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length 
between untreated cells and cells targeted for H3F3A knockdown as measured by t-test are stated.
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Figure 5.20. The e�ect of siRNA-mediated knockdown of H3F3B on the telomere length distribution at 17p, 18q and XpYp. HT1080 cl. 2 cells 
were transfected with 25nm siRNA targeted against H3F3B mRNA using DharmaFECT 4. H3F3B-1, -2, -3 and -4 represent four biological replicates 
independently transfected. Each replicate was successively transfected three times at 48h intervals. 48 hours after the third transfection DNA was 
extracted using Magnesil paramagnetic particles. STELA was then performed at 17p (a), 18q (b) and XpYp (c) using the 17pseqrev1, 18qrev4M and 
XpYpE respectively. Telomere length distributions were then quanti�ed using Phoretix software. Any signi�cant di�erences in mean telomere length 
between untreated cells and cells targeted for H3F3B knockdown as measured by t-test are stated.
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5.4 Discussion 

Various chromatin remodelers have previously been shown to contribute to telomere length 

maintenance through their ability to modify chromatin in mouse Embryonic Stem (ES) and 

Embryonic Fibroblast (MEF) cells (Benetti et al., 2007; Garcia-Cao et al., 2004; Gonzalo et al., 2006; 

Jones et al., 2008; Palacios et al., 2010). however such examples at human telomeres are scarce with 

ATRX, DAXX and H3.3 representing the only chromatin remodelling pathway which regulates 

telomere length (de Wilde et al., 2012; Heaphy et al., 2011; Schwartzentruber et al., 2012) 

 

Single Telomere Length Analysis (STELA) allows high-resolution analysis of individual telomere length 

distributions at several chromosome ends and when used in combination with the 96-well plate 

based RNAi screen presented here provides a novel high throughput method for analysing telomere 

length at individual chromosome ends in cells targeted for gene knockdown. The sensitivity STELA 

provides allows subtle aberrant telomere length phenotypes to be identified. This is particularly 

relevant in cases were deficiency in a chromatin remodeler causes a gradual erosion of telomeric 

repeats over successive cell divisions. The likelihood of identifying these subtle telomere length 

phenotypes was also increased by using the HT1080 clonal population with the homogenous 

telomere length distribution profiles for 17p, 18q and XpYp. 

 

Despite the benefits of the approach taken there are a number of drawbacks which means that 

conclusions of the effect of the selected chromatin remodelers on telomere length cannot be made 

with confidence. Firstly the knockdown of TERT did not result in a widespread telomere shortening 

phenotype. Across all three telomeres analysed only two of the twelve comparisons between 

untreated and TERT knockdown replicate cells displayed a statistically significant telomere 

shortening phenotype (both at XpYp). The fact that there was a lack of a robust telomere shortening 
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phenotype in the absence of TERT shows that under the conditions used the approach taken lacked 

sensitivity. It would have been beneficial to know the rate at which telomere shortening was 

expected to occur in these cells. An analysis of telomere shortening in HT1080 cells after RNAi-

mediated knockdown of TERT has not previously been performed. However overexpression of the 

helicase Pif1 reduces telomerase activity in HT1080 cells by 85%. Concomitant with this inhibition of 

telomerase activity is a progressive telomere shortening phenotype (Zhang et al., 2006). The rate of 

telomere shortening upon telomerase inhibition observed was 10-27bp per PD. In this chapter the 

HT1080 cl.2 cells were subject to TERT knockdown over 6 days. The growth rate of the cells was 

1.225PD/day therefore over 6 days the population doublings for these cells was 7.225 PD. If a similar 

rate of telomere length loss occurs in these cells as in the HT1080 cells in which Pif1 was 

overexpressed then the total telomere length loss expected would be 73-195bp. This telomere 

length loss is smaller than the variation in telomere length between the untreated replicates in the 

clonal drift experiment. Therefore such losses would not be seen as the system is not sensitive under 

the conditions used in this chapter.  

 

Telomere shortening after inhibition of telomerase activity by Pif1 overexpression was obvious after 

15-35PDs (Zhang et al., 2006). After 55PDs telomere length losses amounted to 0.5-1.5kb. Similarly 

robust telomere length losses needed to be observed in this screen to give confidence that the 

differences in telomere length observed between the TERT-depleted and untreated cells were 

genuine telomere shortening events due to loss of TERT and not just the product of variation within 

the system. Therefore in future screens the cells would have to be subject to TERT depletion for a 

much longer period of time. Obviously if the screen was not sensitive enough to detect telomere 

length defects in the absence of TERT then the same will be true for mean telomere length 

alterations in the absence of the selected chromatin remodelers. Again performing the knockdown 

of these genes over a longer period of time will allow gradual telomere erosion/elongation 
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phenotypes to manifest themselves and give confidence that these phenotypes are not just due to 

variation in the system. 

 

The assay was designed to uncover very subtle deviations in telomere length and as such the 

difference between a genuine telomere length defect and just variation within the system is very 

small. The clonal drift experiment was designed to demonstrate the bounds of variability within the 

assay. Any differences in telomere length within the knockdown replicate cells that fell within the 

bounds of variability defined by the clonal drift experiment were discarded. The problem with the 

clonal drift experiment is that the number of untreated replicates chosen to analyse may have 

influenced the variation bounds within the system. Measuring telomere length in more independent 

untreated cell populations may have shown greater variation within the system and this would have 

an adverse effect on the interpretation of the results from the candidate genes. The variation 

observed within the system is exemplified in the 17p telomere length analysis in the EZH2 

knockdown replicates (fig. 5.10). In this example one of the cell populations transfected with EZH2 

targeting siRNA showed an increase in telomere length whereas another showed a decrease in 

telomere length. This must reflect variation within the system. Pooling the telomere length 

distributions from all four individual knockdown replicates may have eradicated some of this 

variation however by doing this the differences in the knockdown efficiency within each 

independent replicate are not taken into consideration. 

 

The lack of verification that the selected chromatin remodelling genes were actually being 

sufficiently depleted in the cells is another problem with the assay. The high throughput format of 

the screen is advantageous because the effect of a large number of chromatin remodelers on 

telomere length regulation can be investigated in a short space of time. However it was not possible 
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to determine the extent of knockdown for all 16 genes as it would have been too costly and time 

consuming. Although it would have been beneficial to know the extent of the knockdown for each 

gene, this screen was used as a tool to look for chromatin remodelling proteins which, when 

depleted, potentially caused an aberrant telomere length phenotype. Any such chromatin 

remodelers could then be further investigated which would include verifying expression levels of 

these genes after knockdown. The initial optimization of the technique in which the extent of 

knockdown of the GAPDH gene showed that the technique could successfully knock down 

expression of a gene, it also determined the best time point at which to do successive knockdowns 

(fig. 5.1). However a criticism of this initial experiment is that RNA levels were measured after 

GAPDH knockdown, not protein level. Measuring protein levels after knockdown is beneficial as 

protein levels within a cell are determined not only by RNA levels but also by the level of protein 

degradation. Additionally knockdown of a gene would depend somewhat on the gene in question 

and the siRNA duplex designed against that gene, however the same procedure has since been used 

to knockdown gene expression in clonal populations of keratinocyte cells and was shown to achieve 

>70% gene knockdown. Additionally, each gene targeted for knockdown was targeted in four 

independent knockdowns to maximise the chance of success. Despite this GAPDH optimization 

experiment it still would have been better to validate siRNA knockdown efficiency by western 

analysis for each gene, especially because the phenotypes that were searched for were so subtle and 

the margin between a genuine telomere length defect due to depletion of a chromatin remodeler 

and telomere length alterations due to variation within the system was so fine. 

 

Perhaps in future investigations using a similar approach fewer genes should be targeted. By 

focusing on a smaller number of chromatin remodelers it would be easier to verify the knockdown 

efficiency and the screen could also be performed on a larger scale which would allow the isolation 

of protein for western analysis. A larger screen would also enable more DNA to be extracted which 
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would result in a more robust STELA analysis with more quantifiable bands and also allow the 

analysis of any telomere-to-telomere fusion events. Obtaining enough DNA from the cells from the 

96 well plate was an issue during the screen. On some occasions there simply wasn’t enough DNA to 

perform STELA at all three chromosome ends. In other cases very little DNA was recovered which 

resulted in only very few bands on the STELA blots which impeded statistical analysis of telomere 

length distributions. 

 

RNAi-mediated knockdown of the histone methyltransferase EHMT2 resulted in a significant 

increase in very short 17p telomeres (fig. 5.5&5.6). EHMT2 is a HMTase similar to the Suv39h1 and 

Suv39h2 HMTases responsible for maintaining telomeric chromatin structure and length in mouse ES 

cells. Although EHMT2 was initially proposed to target transcriptionally active sites (Tachibana et al., 

2001; Tachibana et al., 2002) it has recently been found that it can exert transcriptional repression in 

vitro via its HMTase activity suggesting a role in heterochromatin formation (Tachibana et al., 2002). 

EHMT2 has recently been implicated in a role in the maintenance of telomere length: an 

investigation into genes involved in DNA and histone methylation revealed that the minor allele of 

EHMT2 rs558702 G>A was associated with shorter telomeres (Kim et al., 2012). The loss of telomere 

length in the EHMT2-deficient cells in this chapter does not appear to be the result of impaired 

telomerase activity as these length changes are rapid and dramatic, whereas after telomerase loss 

the changes would be small and cumulative. An alternative explanation for the generation of very 

small telomeres could be defects in the restarting of stalled replication forks. Loss of DNA replication 

and DNA damage proteins implicated in the restarting of stalled replication forks within telomeric 

DNA has been shown to lead to exposure of ssDNA that is susceptible to degradation. This results in 

dramatic telomere shortening (Crabbe et al., 2007; Pandita et al., 2006). The contribution of EHMT2 

on telomeric chromatin structure could facilitate the binding of such proteins allowing successful 

restart of stalled replication forks. Another explanation could be that loss of EHMT2 promotes 
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recombination-based telomere rapid deletion (TRD) events. TRD are single-step intrachromosomal 

events which have been shown to cause dramatic loss in telomere length in yeast, Arabidopsis and 

human cells (Iyer, Chadha & McEachern, 2005; Wang, Smogorzewska & de Lange, 2004; Watson & 

Shippen, 2007). It has been suggested that in human cells the higher order t-loop structure of a 

telomere resembles an intermediate in the homologous recombination repair pathway and is 

therefore at risk of inappropriate processing by the HR machinery. Expression of a truncated form of 

TRF2, TRF2∆B in human primary fibroblasts results in homologous recombination at the telomere 

causing dramatic telomere shortening and the formation of t-loop-sized circular DNAs suggesting 

that TRF2 represses this pathway to maintain telomere length (Wang et al., 2004). EHMT2 could 

perform a similar function by altering the telomeric chromatin structure and impeding the telomeric 

binding of HR machinery. 

 

Loss of DOT1L, another HMTase which protects against recombination-based telomere shortening in 

mouse ES cells (Jones et al., 2008), was also shown to cause aberrant telomere length phenotypes in 

the screen although this phenotype did not suggest a recombination-based mechanism was 

responsible. The presence of two populations of telomeres of different lengths was observed at 17p 

in the DOT1L-1 replicate. The reason behind this divergence in telomere length is not clear but this 

could be due to the coexistence of two sub-populations of DOT1L-1 cells; one sub-population may 

have derived from cells which were successfully transfected with DOT1L-specific siRNA and whose 

telomeres were resultantly shortened and the other sub-population may represent cells in which 

DOT1L levels were not reduced and so had telomeres of normal length. It seems likely that this 

result is a true reflection of the 17p telomere length within these cells as STELA was performed on 

two separate occasions using DOT1L-1 replicate DNA and on both occasions the same divergence in 

17p telomere length was observed. 
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Knockdown of other chromatin remodelers appeared to result in subtle alterations in the mean 

telomere length however as mentioned above the robustness of these results are questionable due 

to the limitations in the approach taken during the screen. These included the HMTases MLL and 

EZH2, the HDACs HDAC1 and SIRT6, the ATP-dependent chromatin remodelling complex subunit 

BAF155 and the H3.3 chaperone DAXX. 

 

A slight reduction in 18q and XpYp telomere length was observed in the MLL knockdown replicate 

cells (fig. 5.13). The deposition of H3K4me3 by MLL at telomeres in HS68 and IMR90 fibroblasts was 

shown to be essential for telomere transcription and capping however no telomere length regulation 

role has previously been found (Caslini et al., 2009). Set1, the MLL homolog in budding and fission 

yeast has been shown to be a regulator of telomere length (Kanoh et al., 2003; Roguev et al., 2001). 

 

Depletion of another HMTase, EZH2, showed a significant alteration in mean telomere length at 17p, 

18q and XpYp suggesting a potential role for the HMTase in telomere length maintenance. A number 

of previous reports on EZH2 and the H3K27 methylation mediated by EZH2 raise the intriguing 

possibility of a role for EZH2 at human telomeres. Firstly EZH2 has been shown to be implicated in 

TPE in Drosophila and yeast (Laible et al., 1997) although a telomere length regulatory role has not 

been reported. Secondly, H3K27 methylation has long been considered a repressive 

heterochromatin mark; it has been implicated in the silencing of HOX gene expression (Jones & 

Gelbart, 1990; Struhl, 1981) as well as silencing of the inactive X chromosome (Heard, 2005) and 

H3K27me3 enrichment has recently been reported at human telomeres (Arnoult et al., 2012; 

Rosenfeld et al., 2009; Vaquero-Sedas, Luo & Vega-Palas, 2012). Additionally, EZH2 physically 

interacts with a number of chromatin remodelling complexes which have already been reported to 

play a role at mammalian telomeres: The DNA methyltransferases (DNMTs), which prevent 
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recombination-based telomere lengthening in mouse ES cells (Gonzalo et al., 2006), not only 

physically interact with EZH2 but require EZH2 for binding to target regions in osteosarcoma cells 

(Fuks et al., 2006), the SWI/SNF family member ATRX, responsible for proper H3.3 deposition at the 

telomere in mouse ES cells, also physically interacts with EZH2. 

 

EZH2 also physically interacts with the histone deacetylase HDAC1 (van der Vlag & Otte, 1999) as 

does ATRX (Zoltewicz et al., 2004). siRNA mediated knockdown of HDAC1 resulted in a telomere 

lengthening phenotype at XpYp in one of the four knockdown replicates. A role for HDAC1 in 

regulating human telomeric chromatin maintenance has not been reported although given that the 

Drosophila orthologue to HDAC1, Rpd3 has been shown to be required for prevention of telomere 

fusions on polytene chromosome ends (Burgio et al., 2011) and Drosophila and yeast Rpd3 

counteracts the silencing of telomeric-proximal genes (De Rubertis et al., 1996) HDAC1 may well 

have a role in the maintenance of human telomeric chromatin. 

 

The histone deacetylase activity of SIRT6 has previously been shown to be required for preventing 

the establishment of telomere dysfunction induced foci (TIFs) and telomere-to-telomere fusions in 

human WI-138 fibroblasts (Michishita et al., 2008). It is also essential for the silencing of telomere 

proximal genes (TPE) (Tennen et al., 2011). Despite these reported telomeric functions of SIRT6, it 

has not been shown to be involved in maintenance of telomere length. Fig. 5.4 shows that loss of 

SIRT6 in the HT1080 cl. 2 cells leads to a reduction in telomere length suggesting a previously 

unidentified role for SIRT6 in human telomere length maintenance. 

 

BAF155, encoded by the SMARCC1 gene is one of 12 BAFs (BRG1-associated factors) found in 

mammalian SWI/SNF complexes. BAF155 deficiency in the HT1080 cl.2 cells caused a subtle 
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reduction in mean XpYp telomere length in two of the three BAF155 knockdown replicates (fig. 5.11) 

This protein, along with another BAF; BAF170 is a homolog of Rsc8, a subunit found in the RSC ATP-

dependant chromatin remodelling complex in Saccharomyces cerevisiae. A genome-wide screen 

searching for essential yeast genes that affected telomere length maintenance revealed that, 

contrary to what was observed in the BAF155-deficient HT1080 cl. 2 cells, the absence of Rsc8 

resulted in telomere elongation (Ungar et al., 2009). A similar screen performed by (Askree et al., 

2004) identified another RSC subunit, Rsc2 which functioned to maintain telomere length. Loss of 

Rsc2 resulted in a telomere shortening phenotype. These observations give support to the idea that 

BAF155 is a regulator of telomere length in HT1080 cells 

 

siRNA-mediated knockdown of DAXX caused a significant reduction in the mean telomere length of 

only one of the four knockdown replicates and only at the 17p telomere (fig. 5.15). The limited 

aberrant telomere length phenotype resulting from loss of DAXX was surprising considering DAXX 

and ATRX were shown to be associated with alternative lengthening of telomeres in human 

pancreatic neuroendocrine tumours (PanNETs) (Heaphy et al., 2011) and glioblastoma multiforme 

(GBM) tumour samples (Schwartzentruber et al., 2012). In addition RNAi-mediated knockdown of 

ATRX in a keratinocyte holoclone cell population has been shown in our lab to cause a prominent 

telomere phenotype consisting of dramatic, stochastic reductions in telomere length (Tankimanova, 

personal communication). siRNA knockdown of H3F3A and H3F3B, the genes encoding the histone 

H3 variant H3.3, did not result in any aberrant telomere length phenotypes. Seeing as DAXX 

functions to maintain telomeric chromatin structure by ensuring proper telomeric deposition of H3.3 

along with its complex partner ATRX, it was expected that telomere length defects observed in 

DAXX-deficient cells would also be present in the H3F3A and H3F3B knockdown cells. The fact that 

this is not the case may be due to one of a number of reasons: It is possible that the significant 

reduction in DAXX-4 knockdown replicate cells was due to variation in the system and not because 
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of DAXX loss. It is also possible that H3F3A and H3F3B expression may have only been partially 

knocked down and sufficient H3.3 protein remained in the HT1080 cl.2 cells to perform its telomeric 

function. An alternative explanation is that there may be an additional pathway through which DAXX 

functions to maintain telomere length which is independent of H3.3 deposition.  

 

In this chapter an RNAi screen was performed in an attempt to identify chromatin remodelling 

proteins which, when depleted, result in aberrant telomere length phenotypes. Depletion of a 

number of chromatin remodelling proteins appeared to cause alterations in mean telomere length. 

These include the histone methyltransferases EZH2 and MLL, the histone deacetylases HDAC1 and 

SIRT6, the ATP-dependant chromatin remodelling complex subunit BAF155 and the H3.3 histone 

chaperone DAXX. However due to limitations in the sensitivity of the screen under the conditions 

used the robustness of these mean telomere length alterations are questionable as they may reflect 

variation within the system. Depletion of the histone methyltransferases EHMT2 and DOT1L caused 

a change in the pattern of telomere length distributions. Loss EHMT2 caused a significant increase in 

very small 17p telomeres (<3kb) compared to untreated cells. DOT1L depletion resulted in a 

divergence in the 17p telomere length distribution suggesting the presence of two subpopulations 

each with differing telomere length distributions. The screen provides a good starting point for 

identifying chromatin remodelers with a role in telomere length regulation however a number of 

issues need to be resolved in order for robust conclusions can be made with confidence. These 

issues would include performing the screen over a longer period of time to allow aberrant telomere 

length phenotypes to manifest themselves. This is particularly relevant to the TERT knockdown 

positive control experiment where a robust telomere shortening phenotype would have to be 

observed. Using shRNA to stably knockdown expression of the selected genes over more population 

doublings would also be beneficial. Verification of knockdown would also have to be performed by 

western analysis to give confidence that changes in telomere length were due to loss of the 
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chromatin remodeler in question. Extracting protein from the cells would be achieved by performing 

the screen on a larger scale. This would also allow the extraction of more DNA for better STELA 

analysis of telomere length and also allow identification of any telomere-to-telomere fusion events 

occurring in the absence of a particular chromatin remodeler. 
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Chapter 6 

 

The role of DAXX at the telomere in keratinocyte holoclone cells 

 

6.1 Abstract 

A number of mammalian chromatin remodelling proteins have been shown to maintain 

telomeric chromatin structure and consequently prevent telomere dysfunction. Of the 

proteins identified the histone H3.3 chaperone DAXX has been shown to form a complex 

with the SWI/SNF family member ATRX and that this interaction is necessary for the proper 

H3.3 deposition within telomeric chromatin in mouse embryonic stem cells (ESCs). Loss of 

either member of this ATRX-DAXX-H3.3 pathway in these cells results in telomere 

dysfunction. Mutations in this pathway have also been implicated in telomere length 

changes in human tumour samples and in several human cell lines in which the ALT 

(Alternative Lengthening of Telomeres) pathway is activated. Recently, a member of our lab 

has identified ATRX as a regulator of telomere length in a keratinocyte holoclone population 

(Tankimanova, personal communication). In the previous chapter the RNAi screen revealed 

potential telomere length defects after knockdown of EHMT2, EZH2 and DOT1L and, to a 

lesser extent, DAXX in a clonal population of the HT1080 fibrosarcoma cell line. The aim of 

this chapter is to further investigate the roles of these proteins at the telomere in a 

population of keratinocyte holoclone (kC1B) cells. Successive siRNA-mediated knockdown of 

DAXX over a number of cell divisions in kC1B cells promotes telomere shortening at a 

number of chromosome ends and telomere-to-telomere fusion events. EHMT2 deficiency in 

these cells also caused telomere shortening. Loss of EZH2, DOT1L and ATRX did not result in 

any aberrant telomere phenotypes. To provide insight into the mechanism by which 

telomere shortening was occurring, attempts were made to sequence short telomeres 
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generated in DAXX deficient cells. Although this was unsuccessful the development of 

methods to isolate, reamplify and sequence telomeres may prove to be a useful tool to 

study telomeric DNA in the future. 
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6.2 Introduction 

The maintenance of telomeric chromatin structure in mammalian cells is a tightly regulated 

process; its disruption can lead to alterations in telomere length as well as telomere 

dysfunction and the formation of telomere-to-telomere fusions. A number of chromatin 

remodelers have been shown to preserve telomere structure and integrity through their 

ability to maintain telomeric chromatin in mouse cell models (Benetti et al. 2007b; Garcia-

Cao et al. 2004a; Gonzalo et al. 2006; Jones et al. 2008; Lewis et al. 2010; Palacios et al. 

2010; Wong et al. 2010; Wong et al. 2009) however such examples at human telomeres are 

rare (Caslini et al. 2009; Michishita et al. 2008; Tennen et al. 2011). The RNAi screen 

performed in a clonal population of the human HT1080 fibrosarcoma cell line described in 

the previous chapter revealed a potential telomeric role for a handful of proteins implicated 

in chromatin remodelling including the histone methyltransferases (HMTases) EHMT2, 

DOT1L and EZH2 and, to a lesser extent, the histone H3.3 chaperone DAXX. 

 

These HMTases have previously been shown to have a role at the telomere in various 

organisms: Reduction of EHMT2 expression has been suggested to associate with shorter 

telomeres in human blood samples (Kim et al. 2012) whereas the EZH2 HMTases has been 

implicated in the maintenance of telomere position effect in yeast and Drosophila (Laible et 

al. 1997). DOT1L has been identified as a repressor of the Alternative Lengthening of 

Telomeres (ALT) pathway in mouse embryonic stem cells (ESCs) as its loss in these cells 

results in recombination-based telomere elongation along with loss of the heterochromatin- 

associated marks H3K79me2 and H4K20me3 (Jones et al. 2008). Of all the chromatin 

remodelers identified in the screen DAXX has been the most studied in regards to its role at 

the telomere in mammalian cells 
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6.2.1 The death-domain-associated protein (DAXX) 

DAXX was originally identified through its binding with the death domain of the 

transmembrane death receptor FAS which enhances apoptosis through the induction of the 

c-Jun NH2–terminal kinase (JNK) pathway (Yang et al. 1997). It has since been shown that 

aside from its function at the plasma membrane, DAXX is mainly a nuclear protein which 

associates with a number of different proteins involved in a range of diverse nuclear 

functions (Salomoni and Khelifi 2006). One of the main functions of DAXX however, is its role 

as a histone chaperone, specifically to the histone H3.3 replacement variant. 

 

Aside from the canonical H3.1 and H3.2 variants, mammalian chromatin is also enriched in a 

histone H3 replacement variant H3.3. H3.3 differs by only four amino acids to its canonical 

counterparts however this difference has been shown to be necessary for H3.3 replication-

independent incorporation into chromatin (Ahmad and Henikoff 2002; Tagami et al. 2004). 

Whereas H3.1 and H3.2 are deposited within chromatin in replication coupled manner by 

the CAF1 complex (Verreault et al. 1996) H3.3 is subject to replication-independent 

deposition into actively transcribed regions by the HIRA complex (Ray-Gallet et al. 2002; 

Tagami et al. 2004) and by DAXX in complex with the SWI/SNF family member ATRX complex 

at pericentric repeats (Drané et al. 2010) and  at telomeres (Lewis et al. 2010). The telomeric 

deposition of H3.3 by the ATRX-DAXX complex is essential for maintaining telomeric 

chromatin structure: Mutation of the ATRX-DAXX-H3.3 pathway in mouse ESCs results in 

telomere dysfunction as well as reduced binding of the heterochromatin associated protein 

CBX5 (Lewis et al. 1999; Wong et al. 2010; Wong et al. 2009). It was shown that the precise 

role for DAXX within the complex is to physically interact with H3.3 via its globular domain 

however ATRX levels were reduced in Daxx-/- ESCs suggesting that DAXX is also required for 

ATRX protein stability or expression. 
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6.2.2 The role of the ATRX-DAXX-H3.3 pathway at human telomeres 

Although a role in telomere length regulation for the ATRX-DAXX-H3.3 pathway was not 

implicated in mouse ESCs, such a role has been implicated in numerous human tumour 

samples: In a recent study telomere-specific fluorescence in-situ hybridization (FISH) was 

used to determine telomere length in pancreatic neuroendocrine tumours (PanNETs) with 

mutations in either the ATRX or DAXX genes (Heaphy et al. 2011). All 19 PanNETs with these 

inactivated mutations displayed ultra-bright telomere FISH signals, an indicator of the 

alternative lengthening of telomeres pathway. A similar correlation between alternative 

lengthening of telomeres and mutations in the ATRX-DAXX-H3.3 pathway was observed in 

glioblastoma multiforme brain tumour samples (Schwartzentruber et al. 2012). 

Furthermore, characterisation of genetic alterations in 22 human ALT cell lines revealed that 

ATRX was either undetectable or severely depleted in 90% of ALT cell lines (Lovejoy et al. 

2012). Results from our lab also indicate an important role for ATRX at human telomeres in a 

keratinocyte holoclone cell population: siRNA-mediated knockdown of ATRX in these cells 

resulted in a striking stochastic loss of telomere length (Tankimanova, personal 

communication) which further supports the idea of the ATRX-DAXX-H3.3 pathway 

functioning to repress the ALT mechanism. This dramatic phenotype however was not seen 

in other cell types suggesting that the telomeric chromatin structure is particularly 

susceptible to recombinational mechanisms in these keratinocyte holoclone cells. 

 

6.2.3 Differing telomeric chromatin structure in pluripotent and differentiated cells 

Keratinocyte holoclone cells are one of three types of keratinocyte cells. They form large, 

smooth rapidly growing colonies with fewer than 5% of the colonies terminally 
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differentiating and aborting. It is believed these holoclones are stem cells. The other two 

types are meroclones and paraclones (Barrandon and Green 1987). Paraclones are 

terminally differentiating cells that from small and abortive colonies whereas mereclones 

consist of an intermediate mixture of holoclones and paraclones. The finding that loss of 

ATRX caused dramatic telomere shortening in only the ‘stem cell’ holoclone population of 

keratinocyte cells (Tankimanova, personal communication) is consistent with findings in 

mouse embryonic stem cells (ESCs) in which the ATRX-DAXX-H3.3 pathway was studied: H3.3 

is enriched at the telomere in pluripotent mouse ESCs and embryonic germ cells (EGs) but 

not in other non-pluripotent mouse and human cell types (Wong et al. 2009). Furthermore, 

upon differentiation of these mouse ESCs, H3.3 was delocalised from the telomeres, 

H3K9me3 and H4K20me3 levels increased and MNase sensitivity decreased as the telomeric 

chromatin became more condensed and heterochromatic. These observations strongly 

suggest that the role of the ATRX-DAXX-H3.3 pathway in ensuring telomeric chromatin 

integrity is restricted to stem cells. 

 

Differences between telomeric chromatin status between pluripotent stem cells and 

differentiated cells has been elegantly illustrated in a study in which telomeric chromatin 

structure was analysed in mouse embryonic fibroblasts (MEFs) which had undergone nuclear 

reprogramming to produce induced pluripotent stem cells (iPSCs) which were the functional 

equivalents of mouse ES cells. During reprogramming dramatic telomerase-dependent 

telomere elongation is observed which continues until ES cell telomere length is reached. 

Concomitant to telomere lengthening is a loss of the heterochromatin-associated H3K9me3 

and H4K20me3 resulting in a more open, relaxed telomeric chromatin conformation (Marion 

et al. 2009). The opposing changes in chromatin structure seen upon differentiation and 
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induced pluripotency highlight the differences in telomeric chromatin structure between 

stem cells and differentiated cells. 

 

6.2.4 Aim of the chapter 

In light of the differing chromatin states in stem cells and differentiated cells it would be 

interesting to determine whether the chromatin remodelers identified during the RNAi 

screen in the HT1080 clonal population play a role in maintaining telomeric chromatin 

structure and telomere length in the keratinocyte holoclone stem cells. This is particularly 

relevant to DAXX as loss of its complex partner ATRX was shown to have a dramatic effect on 

telomere length in these cells. DAXX, as well as the HMTases EHMT2, DOT1L and EZH2, were 

subjected to siRNA-mediated knockdown in a keratinocyte holoclone (kC1B) cell population 

and any resulting aberrant telomere length profile was analysed with Single Length 

Telomere Analysis (STELA) at a number of chromosome ends. Telomeric dysfunction was 

further analysed by studying the nature of any telomere-to-telomere fusions resulting from 

depletion of a chromatin remodeler. Finally the mechanism underpinning any telomere 

length alterations was studied using novel mutational analysis methods. 
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6.3 Results 

 

6.3.1 Optimization of knockdown procedure 

A similar screen was performed in the keratinocyte holoclone C1B (kC1B) cells as in the 

HT1080 clone cells with some alterations. The screen was performed on a larger scale (24 as 

opposed to 96 well plate-format) to allow the harvest of more cells and subsequently the 

extraction of more DNA. This allows a larger scale STELA and also single molecule telomere 

fusion assays to be performed. The time points at which the cells were transfected with 

siRNA were also changed: the expression level of a targeted RNA was at its lowest level 48 

hours after transfection in the HT1080 clone cells therefore the three transfections were 

performed at 48 hour intervals. Similar optimization performed in the keratinocyte 

holoclone C1B cells revealed that siRNA transfection at 96-hour intervals maintained low 

RNA levels of the targeted gene over numerous cell divisions and so this time interval was 

used. 

 

6.3.2 Verification of knockdown efficiency  

Before analysing any potential changes to telomere length after knockdown of the 

chromatin remodeler the efficiency of the knockdown had to be determined. kC1B cells 

were transfected with siRNA targeted against DAXX, EZH2, or ATRX (positive control) using 

DharmaFECT 1, 96 hours later RNA was extracted and RNA expression levels of the encoding 

genes were examined. Knockdown of all of the target genes was achieved with varying 

degrees of success (fig. 6.1); ATRX knockdown efficiency was highly efficient (>80%) for all 

four biological replicates (fig. 6.1a (i)). DAXX knockdown efficiency was also good with a 

~70% reduction in DAXX expression in all four of the replicates (fig. 6.1a (ii)) Knockdown of 
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EZH2 was similarly efficient (~70% gene expression) for three of the four replicates however 

EZH2-4 only a 50% reduction in EZH2 expression levels (fig. 6.1a (iii)). It is unclear as to why 

this is the case but highlights the importance of including more than one replicate for each 

siRNA transfection. As expected the cells subjected to only dharmaFECT 1 (mock) and the 

cells transfected with a scrambled non-specific siRNA sequence (negative control) showed 

no great deviation in the expression of any of the target genes compared to the untreated 

cells (fig. 6.1a). 

 

6.3.3 The effect of chromatin remodeler depletion on cell growth 

To determine any potential effect on the growth rate kinetics of the kC1B cells after loss of 

the chromatin remodelling proteins, cells were counted when passaged 24h after 

transfection and population doublings were calculated. Loss of ATRX or DAXX did not appear 

to have any impact on the growth rate of the cells, this can be seen when all four 

knockdown replicates for each gene knockdown are combined and an average growth rate is 

calculated (fig. 6.1b (i)) or when each individual ATRX or DAXX-deficient replicate is 

compared against untreated cells (fig. 6.1b (ii & iii)). Loss of EZH2 however did result in a 

slight reduction in growth rate compared to untreated cells; each replicate underwent fewer 

population doublings, particularly at the day 8 time point (fig. 6.1b (iv)). 
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Figure 6.1.  Veri�cation of knockdown e�ciency and growth rate of kC1B cells after siRNA knockdown. (a) RNA was extracted from either untreated cells, cells subjected to DharmaFECT 1 (mock),  cells transfected with a 
non-speci�c siRNA (negative control) or cells transfected with a siRNA targeted against ATRX (i), DAXX (ii) or EZH2 (iii) using a cells-to-cDNA kitTMII kit (Ambion). RNA level was then analyzed by RT-PCR using Taqman gene expression 
assays speci�c to each targeted gene and ACTB (endogenous control).(b) 24h after each siRNA transfection cells were passaged and counted. Population doublings of each cell type was then calculated to determine whether 
de�ciecy of the chromatin remodelers a�ected the growth rate of these cells. (i) the average rate of population doubling for all four biological replicates within one knockdown experiment (ii-iv) the population doublling rate of 
the (ii) ATRX , (iii) DAXX and (iv) EZH2 knockdown replicates. 
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Figure 6.2. The e�ect of siRNA-mediated knockdown of EZH2 on the telomere length distribution at 17p, 18q and XpYp. kC1B 
cells were transfected with 25nm siRNA targeted against EZH2 mRNA using DharmaFECT 1. EZH2-1, -2, -3 & -4 represent four biologi-
cal replicates independently transfected. Each replicate was successively transfected three times at 96h intervals. 96 hours after the 
third transfection DNA was extracted. STELA was then performed at 17p, 18q and XpYp using the 17pseqrev1, 18qrev4M and XpYpE 
primers respectively. Telomere length distributions were then quanti�ed using Phoretix software (Nonlinear dynamics)
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6.3.4 Telomere length defects caused by siRNA mediated knockdown of DAXX 

Once efficient gene knockdown was confirmed the effect of the chromatin remodeler 

depletion on telomere length in the kC1B cells was analyzed using STELA at the 17p, 18q, 

and XpYp chromosome ends. Firstly the telomere length profiles of untreated cells that were 

grown in parallel to the cells subject to knockdown were analyzed at 17p, 18q and XpYp 

(Appendix fig. A1). 17p had a mean telomere length of 8.831kb whereas 18q and XpYp had 

mean telomere lengths of 10.19kb and 7.992kb respectively. The kC1B telomere length 

distributions were much more heterogeneous than the HT1080 cl. 2 telomere length 

distributions at all three chromosome ends analysed. 

 

In contrast to the aberrant telomere length phenotypes seen in HT1080 cl.2 cells, siRNA-

mediated depletion of the HMTase EZH2 in the kC1B cells did not cause any alterations in 

telomere length (fig. 6.2). Mean 17p telomere length did not differ between any of the EZH2 

knockdown replicates and untreated cells as determined by an analysis of variance (ANOVA 

(P=0.7708) (fig. 6.2a). Similarly mean 18q and XpYp telomere length in the EZH2 knockdown 

replicates did not differ from what as seen in the untreated cells (18q – P=0.4551, XpYp – 

P=0.5828) (fig. 6.2b&c). Images of the 17p, 18q and XpYp STELA blots for the EZH2 

knockdown replicates are presented in Appendix figures 2-4. 

 

Telomere length distributions in ATRX-deficient cells were analysed as a positive control for 

the assay as ATRX depletion in another keratinocyte holoclone caused a striking loss of 

telomere length. Surprisingly in kC1B cells loss of ATRX did not result in any significant 

telomere length alterations (fig. 6.3). All the ATRX knockdown replicates displayed a lower 
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mean 17p telomere length compared to the untreated cells however none of these 

differences were statistically significant (P=0.8117) (fig. 6.3a). A more pronounced difference 

in mean 18q telomere length was observed, particularly between the untreated and ATRX-4 

knockdown replicate cells where the difference in mean telomere length was 1.109kb 

however, like at the 17p telomere, these differences were not significant (P=0.4215) (fig. 

6.3b). This was also the case at the XpYp telomere were negligible, insignificant differences 

in telomere length was observed between replicates (P=0.4744) (fig. 6.3c). Images of the 

17p, 18q and XpYp STELA blots for the ATRX knockdown replicates are presented in 

Appendix figures 5-7. 

 

In contrast, the depletion of DAXX in the kC1B cells caused significant alterations in telomere 

length at 17p, 18q and XpYp (fig. 6.4). There was an abundance of 17p telomeres greater 

than 15kb in length in the untreated cells however after siRNA-mediated depletion of DAXX 

the presence of these very long telomeres was greatly diminished. Furthermore there was a 

greater frequency of very short telomeres in three of the DAXX knockdown replicates (DAXX-

1, DAXX-3 & DAXX-4) (fig. 6.4a). These alterations in the 17p telomere length distributions 

caused a striking reduction in mean 17p telomere length: DAXX-1, DAXX-3 & DAXX-4 show a 

loss in telomere length of 2.203kb, 2.964kb and 1.898kb respectively. When compared to 

the mean 17p telomere length in the untreated cells this reduction in length is highly 

significant (DAXX-1 – P=0.0003, DAXX-3 – P<0.0001, DAXX-4 – P=0.0037). The same DAXX 

deficient replicates showed a similarly reduced frequency of very long 18q telomeres and an 

increase in very short 18q telomeres (fig. 6.4b). Again this caused a highly significant 

reduction in mean 18q telomere length compared to untreated 18q telomeres: DAXX-1 

showed a mean 18q telomere length reduction of 3.442kb (P<0.0001) whereas DAXX-3 and 

DAXX-4 showed loss of 2.387kb and 2.765kb respectively (DAXX-3: P=0.0011, DAXX-4: 
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P=0.0004). Although DAXX-2 cells displayed a subtle telomere shortening phenotype at 17p, 

this was not statistically significant (P=0.0958). At 18q however a striking 3.661kb loss in 

telomere length was observed in these cells (P<0.0001). This same replicate also showed 

significant telomere shortening at XpYp where a loss of 2.701kb was observed (P=0.0002) 

(fig. 6.4c), this phenotype was not present in DAXX-1, -3 and -4. 
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Figure 6.3. The e�ect of siRNA-mediated knockdown of ATRX on the telomere length distribution at 17p, 18q and XpYp. 
kC1B cells were transfected with 25nm siRNA targeted against ATRX mRNA using DharmaFECT 1. ATRX-1, -2, -3 & -4 represent four 
biological replicates independently transfected. Each replicate was successively transfected three times at 96h intervals. 96 hours 
after the third transfection DNA was extracted. STELA was then performed at 17p, 18q and XpYp using the 17pseqrev1, 18qrev4M 
and XpYpE primers respectively. Telomere length distributions were then quanti�ed using Phoretix software (Nonlinear dynamics)
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Figure 6.4. The e�ect of siRNA-mediated knockdown of DAXX on the telomere length distribution at 17p, 18q and XpYp. kC1B cells were transfected with 25nm siRNA targeted against DAXX mRNA using DharmaFECT 1. 
DAXX-1, -2, -3 & -4 represent four biological replicates independently transfected. Each replicate was successively transfected three times at 96h intervals. 96 hours after the third transfection DNA was extracted. STELA was then 
performed at (a )17p, (b) 18q and  (c) XpYp using the 17pseqrev1, 18qrev4M and XpYpE primers respectively. Telomere length distributions were then quanti�ed using Phoretix software (Nonlinear dynamics)
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6.3.5 Telomere shortening in DAXX deficient cells is less pronounced at the 2p and 16p 

chromosome ends 

Because of the dramatic telomere shortening phenotype observed at all three telomeres 

tested, the effect of DAXX deficiency at other chromosome ends was analysed. 2p and 16p 

STELAs were performed in the same manner as for 17p, 18q and XpYp. Mean 2p telomere 

length was lower in all of the DAXX deficient replicates, the most pronounced and only 

significant shortening phenotype was in the DAXX-4 replicate were a 0.98kb loss in 2p 

telomere length was observed (P=0.0143) (fig. 6.5a). No telomere shortening phenotype was 

seen at 16p. Slight differences in length were present but these were negligible (fig. 6.5b). 
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Figure 6.5. The e�ect of siRNA-mediated knockdown of DAXX on the telomere length distribution at 2p and 16p. kC1B cells were transfected with 25nm siRNA targeted against DAXX mRNA using DharmaFECT 1. DAXX-1, 
-2, -3 & -4 represent four biological replicates independently transfected. Each replicate was successively transfected three times at 96h intervals. 96 hours after the third transfection DNA was extracted. STELA was then performed 
at (a) 2p and (b) 16p using the 2p2 and 16prev1 primers respectively. Telomere length distributions were then quanti�ed using Phoretix software (Nonlinear dynamics)
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6.3.6 The rate of telomere shortening in DAXX-deficient kC1B cells 

The telomere shortening phenotypes observed in DAXX deficient cells were seen after 8 

days or 9-11 population doublings. As previously mentioned, the RNAi procedure involved 

three successive transfections at 96 hour intervals with DAXX-targeting siRNA. DNA 

extracted 96 hours after the third transfection was used to analyse the telomere lengths 

described above. DNA was also extracted 96 hours after the first transfection (3-4 PDs) and 

96 hours after the second transfection (6-8 PDs). This DNA was used in STELA reactions to 

determine any telomere shortening phenotype at the 17p, 18q and XpYp telomeres in DAXX-

deficient cells which had undergone fewer population doublings (PDs). Combining the 

telomere length profiles taken after each successive siRNA transfection for a given cell 

populations allows the pattern of telomere shortening over time to be observed. 

 

Fig. 6.6 shows the 17p telomere length distributions of untreated and DAXX-deficient kC1B 

cells at 96h intervals. As expected the untreated cells show very little variation in 17p 

telomere length between time points (fig. 6.6a) however the DAXX-1 and -3 replicates 

showed a progressive telomere shortening (fig. 6.6b (I & iii)). These replicates had 

comparable mean 17p telomere length to the untreated cells after one DAXX-targeting 

siRNA transfection however after 10-11 PDs in low DAXX conditions 17p telomeres were 

significantly shorter (fig. 6.6b (i & iii)). The 17p telomere erosion rate in DAXX-1 cells after 

two siRNA transfections was 227bp/PD however this increased after the third siRNA 

transfection (271bp/PD). The erosion rate in the DAXX-3 cells was even greater: after two 

siRNA transfections it was 328bp/PD and increased to 488bp/PD after the third siRNA 

transection at which point the cells had undergone 10.31 PDs (fig. 6.6b (I & iii)). PD 9.57 

DAXX-4 cells also displayed significantly shorter 17p telomeres compared to DAXX-4 cells 
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subjected to one siRNA transfection (PD 2.7) however this was after a slight increase in 

mean 17p telomere length in the PD 6.24 DAXX-4 cells (fig. 6.6b(iv)). 17p telomere length in 

DAXX-2 cells showed little variation between time points, although there was a slight 

increase in length after 6.32 PDs this was not significant (fig. 6.6b (ii)). 

 

Unexpectedly, the mean 18q telomere length varied significantly between the DNA 

extraction time points: the mean 18q telomere length was significantly higher in untreated 

kC1B cells which had undergone 10.92 population doublings (PDs) than in cells that had only 

undergone 6.73 PDs (P=0.0138) (fig. 6.7a). This result was unexpected and may be due to 

inherent variation in the 18q assay mentioned in the previous chapter. In all four DAXX 

knockdown replicates 18q telomeres became progressively shorter as cells continued to 

divide (fig. 6.7b). This loss of 18q telomere length was most dramatic in the DAXX-1 cells: 

Cells which had been subject to two siRNA transfections (PD 6.71) showed a loss in mean 

18q telomere length of 2.553kb compared to PD 2.99 cells subject to one siRNA transfection 

resulting in an erosion rate of 686bp/PD (fig. 6.7b (i). The rate of 18q telomere erosion then 

slowed to 232bp/PD after the third DAXX-targeting siRNA transfection resulting in an overall 

loss of 3.502kb in PD 10.78 cells compared to PD 2.9 cells (fig. 6.7b (i)). 

 

At XpYp the rate of telomere erosion is more variable. Mean XpYp telomere length was very 

similar in the untreated kC1B cells between time points (fig. 6.8a). DAXX-1 and -2 XpYp 

telomeres became progressively shorter as the cells divided although this only resulted in 

statistically significant differences in mean XpYp telomere length between time points in 

DAXX-2 cells (fig. 6.8b (i & ii)). In the DAXX-3 and -4 replicate cells, mean XpYp telomeres 

were significantly shorter after 8 days of low DAXX levels (6.54 and 6.24 PDs respectively) 

however as the cells divided further mean XpYp telomere length increased (fig. 6.8b (iii & iv). 
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Figure 6.6. Alterations in telomere length distributions at 
17p in untreated and DAXX-de�cient kC1B cells cultured 
for 8 days. Three successive siRNA transfections were 
perfored at 96h intervals. 96 hours after each siRNA transfec-
tion DNA was extracted from the DAXX- knockdown replicates 
and untreated cells. 17p STELA was performed and telomere 
length distributions were then quanti�ed using Phoretix 
software (Nonlinear dynamics). The resulting telomere length 
distributions were plotted against population doubling. Any 
signi�cant di�erences in mean telomere length between 
untreated kC1B cells at the di�erent time points are stated as 
measured by t-test are stated.
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Figure 6.7. Alterations in telomere length distributions at 
18q in untreated and DAXX-de�cient kC1B cells cultured 
for 8 days. Three successive siRNA transfections were 
perfored at 96h intervals. 96 hours after each siRNA transfec-
tion DNA was extracted from the DAXX- knockdown 
replicates and untreated cells. 18q STELA was performed and 
telomere length distributions were then quanti�ed using 
Phoretix software (Nonlinear dynamics). The resulting 
telomere length distributions were plotted against popula-
tion doubling. Any signi�cant di�erences in mean telomere 
length between untreated kC1B cells at the di�erent time 
points are stated as measured by t-test are stated.
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Figure 6.8. Alterations in telomere length distributions at 
XpYp in untreated and DAXX-de�cient kC1B cells cultured 
for 8 days. Three successive siRNA transfections were 
perfored at 96h intervals. 96 hours after each siRNA transfec-
tion DNA was extracted from the DAXX- knockdown replicates 
and untreated cells. XpYp STELA was performed and telomere 
length distributions were then quanti�ed using Phoretix 
software (Nonlinear dynamics). The resulting telomere length 
distributions were plotted against population doubling. Any 
signi�cant di�erences in mean telomere length between 
untreated kC1B cells at the di�erent time points are stated as 
measured by t-test are stated.

2.81 6.32 10.24
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6.3.7 Identifying mechanism responsible for telomere shortening in DAXX-deficient cells 

The mechanism by which DAXX deficiency causes the dramatic telomere shortening 

phenotype in the kC1B cells is unknown. A mutation analysis method was developed in 

which very short telomeres generated in the DAXX-deficient cells where isolated and 

sequenced. By sequencing these short telomeres the distribution of telomere variant 

repeats could be determined which may shed light on the mechanism responsible for 

telomere shortening. 

 

The proximal 1-3kb of human telomeres contains highly variable interspersion patterns of 

the canonical TTAGGG repeat sequence with telomere repeat variants (TVRs) (Baird et al. 

2000; Baird et al. 1995; Coleman et al. 1999). Numerous TVRs exist and how these are 

distributed throughout a telomere varies between different chromosome ends and 

telomeric alleles of the same chromosome end (Baird et al. 1995). 

 

Comparing the distribution patterns of TVRs between very short telomeres and unaffected 

telomeres could offer insight into the mutational mechanism responsible for the telomere 

length loss. For example recombination events occurring within the TVR tract, or deletion 

events, will display distinct changes in the TVR pattern. Additionally this comparison may 

also enable the identification of the progenitor telomeric allele from which the very short 

telomeres are generated. 
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In initial experiments, attempts were made to reamplify 17p STELA products directly from 

the original PCR reactions. PCR products were generated in these reamplification reactions 

however these PCR products did not correspond with the size of the telomeres on the STELA 

blot (appendix fig. 8). It is possible that the products observed may be generated from other 

additional background PCR products present in the STELA PCR reaction. Attempts were 

therefore made to purify STELA products prior to reamplification. 

 

6.3.8 Purification of STELA products 

Using electro-elution PCR products can be extracted from a gel by their capture on a dialysis 

membrane. This approach was used to isolate and purify very short telomeres at the XpYp 

telomere. This telomere was chosen because of the abundance of telomere adjacent 

primers closer to the telomeric repeats than the XpYpC primer used in the STELA reactions, 

which allowed more scope for nested PCR primer combinations (fig. 6.9b). 
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Figure 6.9. Isolation of STELA PCR products ampli�ed from very short XpYp telomeres by electro-elution. (a) XpYp STELA was performed with XpYpC as the telomere adjacent primer (see (b)) using DAXX -1, -2, -3 & -4 DNA 
to determine PCR products ampli�ed from very short XpYp telomeres (highlighted by red boxes) Also highlighted is XpYpM+B,a PCR product generated from XpYpM and XpYpB. These PCR products were isolated from the gel 
onto a dialysis membrane by electro-elution. (b) Representation of XpYp telomere. Positions of primers used for the initial STELA in (a) and subsequent analysis of electro-elution success are stated. (c) To determine whether PCR 
products had been successfully isolated  2μl of each eluted product was added to PCR reactions containing either XpYpE & XpYpB (i), XpYpC & XpYpG (ii) or XpYpP & XpYpG (iii). gDNA (positive control) was also added to PCR 
reactions containing each of the primer combinations as was dH20 (neagative control)
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Initially a STELA-PCR was performed with some modifications: A larger reaction volume was 

used (20l) and XpYpC was used as the telomere adjacent primer as opposed to XpYpE. 4l 

of this reaction was resolved on a gel, blotted and visualised to determine not only the 

presence of very short telomeres but also their location on the gel relative to the DNA ladder 

(fig. 6.9a). This was necessary as when the remaining 16l of the STELA reaction was 

resolved on another gel for electro-elution the STELA product that amplifies to an estimated 

1-10 pg would not be visible and thus only the DNA ladder would be visible under a 

handheld UV lamp. Therefore the position on the gel where a well should be made (below 

the PCR product) could be judged by using the DNA ladder. Twelve telomeres of differing 

sizes were chosen to be isolated (fig. 6.9a) as well as a positive control PCR product: this was 

an amplicon generated by the XpYpB and XpYpM primers that could be visualised on the gel 

and was used to ensure that the electro-elution process worked. After attempting to isolate 

the PCR products from the gel the success of electro-elution was determined by a nested 

PCR in which 2l of each isolated product was added to reactions containing XpYpE and 

XpYpB (fig. 6.9c (i)). PCR product of the correct size (407bp) was generated confirming that 

the electro-elution had been successful. When gDNA was used as the template for the 

nested PCR the same 407bp product was amplified and a dH20-template negative control 

generated no PCR product confirming that the product generated in the test samples was 

not a result of contamination and was in fact amplification of the isolated STELA products. 

Exactly the same results were obtained in other nested PCRs in which different XpYp primer 

combinations were used (fig. 6.9c (ii & iii)). 

 

Initial attempts to re-amplify purified STELA products included using different primer 

combinations, changing MgCl2 concentration, adding additional PCR cycles and also altering 
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the annealing temperature (fig. 6.10b&c). However these did not generate sufficient 

products of the correct size for sequence analysis. Therefore to generate enough reamplified 

PCR product each eluted STELA product was reamplified in multiple 50l reactions. These 

reactions were combined and resolved (fig. 6.10d). Reamplification of only three STELA 

products produced enough PCR product that could be successfully sequenced. Two of these 

reamplified fragments derived from DAXX-deficient cells and one from untreated cells. 

Reamplified PCR product was gel excised and purified before being sequenced from the 

telomere-adjacent DNA using XpYpJ and from the telomere end using tel2 as the sequencing 

primer (fig. 6.11a). Sequencing from both ends of the telomere was performed as neither 

sequencing primer alone could sequence the entire telomere. The sequences generated 

from XpYpJ and tel2 were put into a single contig by using a specific telomere repeat variant 

pattern as a landmark. The 2B and U (untreated) PCR products were completely sequenced 

(fig. 6.11b). Because the 1A telomere was longer the XpYpJ- and tel2-derived sequences did 

not overlap and so this telomere was not fully sequenced. Unfortunately the XpYp telomere 

in these kC1B cells does not contain a complex TVR distribution interspersion pattern and 

thus was relatively uninformative for mutational analysis. No differences were seen 

between the TVR distributions of the individual telomeres (fig. 6.11b). This is consistent with 

the idea that the telomeric deletion mutation was not because of inter-chromosomal 

recombination events as no new TVRs appeared, but instead may involve a deletion within 

the TTAGGG repeat region and subsequent healing with telomerase. 
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Figure 6.10. Optimisation of reampli�cation PCR for 
reamplifying death wishes.  (a) Representation of the 
XpYp chromosome end. The primer combinations used for 
reampli�cation of eluted STELA products are highlighted. 
(b) Reampli�d STELA product was added to PCR reactions 
containing increasing MgCl2 concentrations (1-7mM) and 
one of four primer combinations: XpYpC & teltail, XpYpC & 
tel2, XpYpP & teltail or XpYpP & tel2. (c) Reampli�d STELA 
product was added to sets of six PCR reactions containing 
either XpYpC & teltail, XpYpC & tel2, XpYpP & teltail or 
XpYpP & tel2. These PCR reaction sets were then subject to 
PCR with an annealing temperature gradient ranging from 
55-60°C for 35 cycles. This process was repeated with 40 
PCR cycles (d) STELA PCR products 1A, 2B and U 
(untreated)  were added to six 50μl reactions contain-
ing XpYpC & teltail primers with 2mM MgCl2. Reactions 
were subject to PCR for 35 cycles with an annealing 
teperature of 60°C. The six reactions were combined 
and resolved in large wells in a 1% TAE agarose gel and 
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Figure 6.11. Telomere repeat variants (TVR) distributions of very short XpYp telomeres in untreated and DAXX de�cient kC1B cells. (a) Representation of XpYp telomere, XpYpJ and tel2 
highlighted were used to sequence the telomere. (b) Reampli�ed PCR product was gel excised and sequecned from the subtelomere using XpYpJ and from the distal end of the telomere using 
tel2. The distribution of telomere variant repeats observed after sequencing is summarised
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6.3.9 DAXX deficiency causes a subtle increase in telomere-to-telomere fusion frequency 

In addition to identifying aberrant telomere length phenotypes in the DAXX-deficient kC1B 

cells single molecule telomere fusion assays were performed to detect and characterise 

telomere-to-telomere fusions events. The PCR-based fusion assay detects fusions between 

the 17p and XpYp telomeres as well as the 16p telomere family (16p, 1p. 9p, 12p, 15q, XqYq, 

2q14 (interstitial)) and the 21q telomere family (21q, 1q, 2q, 5q, 6q, 6p, 8p, 10q, 13q, 17q, 

19p, 19q, 22q, 2q13 (interstitial)). The assay was performed using the same DNA as was used 

for the STELA analysis: either untreated kC1B DNA cells or DNA extracted from kC1B cells 

successively transfected three times with DAXX-targeting siRNAat 96 hour intervals. HEK293 

DNA was also used as a positive control. 50ng DNA (≈8300 diploid genome equivalents) was 

added to fusion PCR reactions containing the fusion primers XpYpM, 21q1, 17p6 and 16p1 

(fig. 6.12a). Amplification of any fusion events was then detected by hybridization using 

radioactively labelled probes specific to these chromosome ends. 

 

No telomere fusion events of any kind were seen in the untreated kC1B cells: A total of 

483,000 genome equivalents of untreated kC1B DNA was analysed in telomere fusion assays 

and no events that were consistent with telomere fusion could be detected (fig. 6.12b, c & 

d).  This represents an estimated frequency as calculated using the modified Wald method 

(Agresti and Coull 1998) of 4.1x10-6 ±9.9x10-6. Fusion events were readily detected in a 

positive control DNA extracted from HEK293 cells that contain fusion events (Capper, Britt-

Compton et al. 2007). 
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Figure 6.12. No telomere-to-telomere fusions observed in 
untreated kC1B cells. DNA extracted from untreated kC1B cells 
was used to detect single molecule fusion events between 17p, 
XpYp and the 16p and 21q familes of telomeresin these cells. (a) 
Representation of XpYp, 21q, 17p and 16p chromosome ends, the 
positions of the fusion primers used in the fusion PCR are 
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17p, 21q and 16p telomere-adjacent probes for (c) & (d).
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In contrast fusions between 17p and the 16p and 21q families were observed in three of the 

four DAXX-deficient kC1B knockdown replicate cell populations (fig. 6.13). For each 

knockdown a total of 375,000 diploid genome equivalents were analysed for fusion. From 

the DAXX-1 knockdown replicate DNA a total of four fusion events were detected (fig. 

6.13a), a frequency of 1.2x10-5 ±9.9x10-6 that was significantly different from untreated 

controls (p=0.02, Chi-squared). Fusion D1-1 was detected by the 16p and 21q probe (D1-1), 

two fusions (D1-2 & D1-4) were detected by the 17p and 21q probes and D1-3 was only 

detected by the 21q probe. The same fusion frequency was seen in the DAXX-3 knockdown 

replicate DNA (fig. 6.13c). Surprisingly one PCR reaction amplified two independent fusion 

events, one involving 17p and a 21q family member (D3-1) and another between members 

of the 16p and 21q families (D3-2). Two additional fusions involving a member of the 21q 

family were observed (D3-3 & D3-4). Three fusion events were detected from DAXX-2 DNA 

(fig. 6.13b), a frequency of 1.0x10-5 ±9.1x10-6 that was significantly different from untreated 

controls (p=0.049, Chi-squared): D2-1, D2-2 and D2-3 all involve the 17p telomere however 

the telomere fusion partner is unknown for these fusions as the other telomere adjacent 

probes failed to detect these fusions. No fusions were detected in the DNA extracted from 

the DAXX-4 knockdown replicate kC1B cells. 
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Of the eleven telomere fusion events identified in the DAXX-deficient cells only four could be 

successfully re-amplified in a nested PCR using the reamplification primers highlighted in fig. 

6.14a. 17p-21q family fusions (D1-2 & D1-4) were reamplified using the 17p7 and 21qseq1 

primers whereas fusions involving the 16p and 21q families (D1-1 & D3-2) were reamplified 

with 16p2 and 21qseq1 primers (fig. 6.14b). After gel excision and purification of the 

reamplified PCR product the fusion events were sequenced using sequencing primers 

highlighted in fig. 6.14a. By performing BLAST (Basic Local Alignment Search Tool) searches 

on the resulting sequences the identity of the 16p and 21q family members involved in the 

fusion events could be determined (fig. 6.14c). Such searches revealed that the D1-1 fusion 

was between the 12p and 12q telomeres suggesting formation of a ring chromosome. 12p 

was also one of the two fusion partners in the D3-2 fusion, the other partner being 1q from 

the 21q telomere family. The 17p chromosome end was a fusion partner in the other two 

fusion events observed: D1-4 involved a fusion event between 17p and 10q, the other fusion 

partner in the D1-2 fusion however was unknown as the BLAST search showed that the 

sequence of the reamplified fusion event was only completely homologous to an 

unidentified telomere. 

 

Several common features were observed between fusion events: deletion of at least one of 

the fusion partners was seen in all the fusions sequenced. These deletions were extensive 

and extended up to 3.264kb into the subtelomeric regions (fig. 6.14c (i)). Another feature 

observed was microhomology at the fusion point in the D3-2, D1-4 and D1-events. The D1-1 

fusion did not display microhomology however there was an insertion of a single nucleotide 

(A) at the fusion point whereas the other fusion events did not. Only one of the four 

sequenced fusion events contained telomere repeats immediately adjacent to the fusion 
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point: The D1-4 fusion contained 0.27kb TTAGGG repeats from the 17p chromosome end. 

Extensive deletion of the 10q subtelomeric region was also seen with this fusion. 
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Figure 6.14. Reampli�cation and sequencing of fusions in DAXX-dei�cient cells.  Fusion events observed in the single molecule fusion assay were 
reampli�ed, gel excised and sequenced. (a) Representation of the 21q, 17p & 16p chromosome ends, primers used for reampli�cation of fusion events are 
highlighted in green, sequencing of these reampli�ed PCR products was performed using the sequencing primers (red). (b) The D1, D2, D5 & D3 fusions 
seen in �g. 26 & 27 were reampli�ed using the appropriate reampli�cation primers and visualised. (c) These reampli�ed PCR products were then 
sequenced using the sequencing primers highlighted in (a), the fusion sequence is displayed on the top line with the fusion partners below. Sequence 
highlighted in red and underlined indicate duplicated sequences across the fusion point. * indicates homology shared between the fusion partners
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6.3.10 EHMT2 depletion also causes a telomere shortening phenotype in the kC1B cells 

In addition to ATRX, DAXX and EZH2, three successive siRNA mediated knockdowns of the 

HMTases DOT1L and EHMT2 was also performed in the kC1B cells and any aberrant 

telomere lengths were determined in the same manner as described earlier. 

 

DOT1L depletion resulted in no aberrant telomere length phenotypes at 17p, 18q or XpYp 

(fig. 6.15a, b & c). However in one of the EHMT2 knockdown replicates EHMT2 depletion 

caused a telomere shortening phenotype at these chromosome ends: EHMT2-1 cells 

displayed a loss of 2.149kb in mean 17p telomere length compared to the untreated cells 

(P<0.0001) (fig. 6.16a). This telomere shortening phenotype in the EHMT2-1 cells was 

replicated at 18q where a loss of 2.238kb in mean 18q telomere length was recorded  

(P=0.0005) (fig. 6.16b), and also at XpYp where the mean telomere length was reduced by 

1.387kb (P=0.001) (fig. 6.16c). The other two knockdown replicates did not display aberrant 

telomere length phenotypes at any of the chromosome ends tested. The fact that the 

telomere shortening phenotype was observed across different chromosome ends in the 

EHMT2-1 cells and that this phenotype was highly significant as determined by t-test 

analysis suggests that this result is not just a product of variability within the assay. 
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Figure 6.15. The e�ect of siRNA-mediated knockdown of DOT1L on the telomere length distribution at 17p, 18q and XpYp. kC1B cells were 
transfected with 25nm siRNA targeted against DOT1L mRNA using DharmaFECT 1. DOT1L-1, -2, -3 & -4 represent four biological replicates indepen-
dently transfected. Each replicate was successively transfected three times at 96h intervals. 96 hours after the third transfection DNA was extracted. 
STELA was then performed at 17p, 18q and XpYp using the 17pseqrev1, 18qrev4M and XpYpE primers respectively. Telomere length distributions were 
then quanti�ed using Phoretix software (Nonlinear dynamics)
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Figure 6.16. The e�ect of siRNA-mediated knockdown of EHMT2 on the telomere length distribution at 17p, 18q and XpYp. kC1B cells were 
transfected with 25nm siRNA targeted against EHMT2mRNA using DharmaFECT 1. EHMT2-1, -2, -3 & -4 represent four biological replicates indepen-
dently transfected. Each replicate was successively transfected three times at 96h intervals. 96 hours after the third transfection DNA was extracted. 
STELA was then performed at 17p, 18q and XpYp using the 17pseqrev1, 18qrev4M and XpYpE primers respectively. Telomere length distributions were 
then quanti�ed using Phoretix software (Nonlinear dynamics)
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6.4 Discussion 

In this chapter an effect of the H3.3 chaperone DAXX on telomere length regulation has 

been identified in a keratinocyte holoclone population. Prolonged DAXX depletion over 

numerous cell divisions results in a telomere shortening at the 17p, 18q, XpYp and, to a 

lesser extent, 2p chromosome ends. DAXX loss also leads to an increased frequency in 

telomere-to telomere fusions between 17p and the 16p and 21q families of telomeres. 

Additionally EHMT2 was also shown to cause a telomere length shortening phenotype. 

 

A role for EHMT2 in telomere length regulation has recently been suggested in a study in 

which associations between genetic variants in histone methylation and telomere length 

were analysed in human blood samples: The single nucleotide polymorphism (SNP) rs558702 

G>A within the EHMT2 was one of six SNPs identified in the study to be associated with 

shorter telomere length (Kim et al. 2012). The RNAi screen performed in the previous 

chapter showed that siRNA-mediated knockdown of EHMT2 in HT1080 cl.2 cells resulted in 

generation of very short 17p telomeres. A similar telomere shortening phenotype was seen 

in the kC1B cells at 17p but also at 18q and XpYp. The significant loss in telomere length was 

only observed in one of the three knockdown replicate cell populations (EHMT2-1) and the 

extent of the knockdown of EHMT2 expression was not verified. Despite this it still seems 

likely that the telomere length shortening phenotype is due to EHMT2 loss and not just 

down to inherent variation within the assays as the losses in telomere length are striking and 

highly significant at all three chromosome ends. 

 

The telomere length defects observed in DAXX-deficient kC1B cells in this chapter is 

somewhat consistent with the telomere shortening phenotype observed in HT1080 cl. 2 cells 
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targeted for DAXX knockdown. However whereas siRNA knockdown of DAXX in the HT1080 

cl.2 cells resulted in a subtle telomere length defect only at 17p, the loss of telomere length 

in the kC1B cells was far greater and seen at more chromosome ends. A role for DAXX in 

telomere length regulation has also been previously reported in human pancreatic 

neuroendocrine tumours (PanNETs) (Heaphy et al. 2011) and in glioblastoma multiforme 

brain tumour samples (Schwartzentruber et al. 2012) where loss of DAXX expression was 

shown to be associated with telomere lengthening via the ALT pathway. Loss of DAXX in the 

kC1B cells had the opposing effect of dramatic telomere shortening suggesting that the 

mechanism by which DAXX contributes to telomere length maintenance in these kC1B cells 

is different to that in the mentioned tumour samples. The telomere length distributions 

were not consistent with ALT and no evidence of the ALT pathway was provided by the 

mutational analysis. The mechanism also seems unlikely to be telomerase-mediated. In 

normal somatic cells in which telomerase activity is either low or undetectable, telomere 

erosion occurs at a rate of 60-120bp/PD (Baird et al. 2003; Harley et al. 1990) which is a 

much lower erosion rate than what was observed in the DAXX-deficient kC1B cells. However 

the rate of erosion in the kC1B cells after telomerase knockdown is unknown and it would 

be an interesting to determine this in future experiments and compare it to the rate 

telomere loss observed in the DAXX-deficient kC1B cells. 

 

An alternative mechanism which could be responsible for the dramatic telomere loss in the 

DAXX-deficient cells could be replication fork stalling. Telomeres are replicated by the 

conventional DNA replication machinery however it has been suggested that the repetitive 

telomeric sequence and the presence of secondary structures such as t-loops, G 

quadruplexes and heterochromatin may cause difficulties for the passage of the replication 

fork (Gilson and Geli 2007). Replication fork stalling has been observed at telomeres in yeast 
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and human fibroblasts (Ivessa et al. 2002; Verdun and Karlseder 2006) and results in a DNA 

damage response (DDR). The DDR results in the recruitment of DNA repair and DNA 

replication proteins which restart the stalled replication fork and complete replication at the 

chromosome end (Verdun and Karlseder 2006). Mutations in some of the factors required 

for the restart of replication leads to exposure of ssDNA that is susceptible to degradation 

and consequently telomere shortening (Nakamura et al. 2005; Pandita et al. 2006; 

Parenteau and Wellinger 1999). In addition to these factors other proteins have been 

implicated in telomere replication including RecQ helicase WRN. Loss of WRN also result in 

telomere shortening (Crabbe et al. 2007). WRN association at the telomere is dependent on 

the histone deacteylase activity of SIRT6 (Michishita et al. 2008). It is possible that the ability 

of DAXX to alter chromatin structure may also promote telomeric binding of proteins 

required for proper telomeric replication and avoiding telomere shortening. An argument 

against this idea is that DAXX has as yet only been shown to be involved in the replication-

independent deposition of H3.3. However the telomere length losses in the DAXX-deficient 

kC1B cells did not appear to be mediated by ALT or inhibition of telomerase activity which 

suggests that they may have been due to defective telomere replication. Furthermore the 

increase in telomere-to-telomere fusions observed in the DAXX-deficient kC1B cells is also 

seen after loss of proteins implicated in telomere replication (Bai and Murnane 2003; Crabbe 

et al. 2007). 

 

Another aspect of the telomere length maintenance role of DAXX in the kC1B cells which 

isn’t consistent with previous reports is that it doesn’t appear to be functioning with ATRX. 

ATRX is responsible for the recruitment of DAXX to the telomere in mouse ES cells as ATRX 

loss abolishes telomeric enrichment of DAXX (Lewis et al. 2010). Loss of DAXX in these cells 

results in reduced levels of ATRX suggesting DAXX may be required for ATRX protein stability 
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or expression. This interplay between the two complex partners in the maintenance of 

telomeric chromatin is not reflected in the data shown in this chapter as loss of ATRX in the 

kC1B cells did not result in a similar telomere shortening phenotype seen in DAXX deficient 

kC1B cells. If ATRX recruits DAXX to the telomere then ATRX deficiency should have reduced 

telomeric enrichment of DAXX causing a telomere length phenotype similar to what was 

seen in the DAXX-deficient kC1B cells. Similarly if DAXX indirectly regulates telomere length 

through its ability to promote ATRX expression or stabilise ATRX protein then similar 

telomere shortening should occur in both the ATRX- and DAXX-deficient kC1B cells. The 

inconsistency in telomere length defects between the DAXX- and ATRX-deficient kC1B cells 

does not appear to be due to unsuccessful knockdown of ATRX expression as RNA levels 

after knockdown were measured and showed that ATRX levels were reduced by over 80%. 

This raises the question of whether there may be alternative pathway through which DAXX 

exerts its influence over telomere length. No evidence has been found in support such an 

argument, but the observation that DAXX causes 17p telomere shortening in HT1080 cl. 2 

cells and ATRX does not, is analogous to what was seen in the kC1B cells. An alternative 

explanation for the discrepancy could be that although the ATRX knockdown was successful, 

residual amounts of ATRX may have been sufficient for normal telomeric chromatin 

maintenance by the complex. RT-PCR was used to determine RNA levels of ATRX after 

transfection with ATRX-targeting siRNA. Although this method can determine the extent of 

the knockdown it would have been better to measure protein levels as the amount of ATRX 

in the cell is affected not only by RNA levels but also the rate at which the protein is 

degraded. Although performing a western would have given an indication of ATRX levels 

after knockdown it would not indicate whether any remaining ATRX left in the cell was 

functioning at the telomere. Therefore it would be interesting to examine telomeric 

enrichment of ATRX and also DAXX in kC1B cells targeted for ATRX knockdown to determine 
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whether residual ATRX is still present at the telomere and whether this or another protein 

recruits DAXX to the telomere. 

 

The proximal 1-3kb of human telomeres contains distribution patterns of telomere repeat 

variants (TVRs) (Baird et al. 2000; Baird et al. 1995; Coleman et al. 1999) which vary between 

different chromosome ends, telomeric alleles of the same chromosome end and also in an 

intra-allelic manner. TVR distribution patterns have previously been used to determine 

telomere mutations occurring in ALT+ cells (Varley et al. 2002). In this study it was found 

that mutant telomeres consisted of progenitor sequence which was replaced at a discrete 

point by the sequence of another telomere repeat array. The aim of isolating and 

sequencing individual STELA products was to identify similar changes in TVR distributions. 

Although only three STELA products were successfully sequenced no such variation in TVR 

distribution was observed suggesting that the loss of telomere length was not ALT-mediated 

and may instead be due to telomeric deletions within the TTAGGG repeat region. This 

method would also have allowed the progenitor telomeric allele from which the short 

telomeres where generated to be identified. However due to the inability to reamplify and 

sequence XpYp telomeres >3kb in length comparisons being made between very short 

telomeres generated and normal length telomeres could not be made. 

 

Despite the XpYp telomere in the kC1B cells being a poor candidate for the mutation analysis 

the rationale behind the method was reasonable and may have proved to be more 

informative in a telomere with a more complex TVR interspersion pattern. However the 

development of the method revealed certain experimental limitations that could not be 

overcome: The main problem faced was generating enough PCR product from the 

reamplification to allow for DNA sequence analysis. As described in the results section, many 
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strategies were taken to improve the PCR product yield however this optimisation was only 

partly successful for some of the PCR products meaning that out of the originally isolated 

STELA PCR products, only three were sequenced. Another limitation was the amount of 

telomere repeats that could be sequenced: XpYpJ, situated on the subtelomere-telomere 

boundary, enabled ~300p of telomeric DNA to be sequenced. At the distal end of the 

telomere tel2 was far more efficient than XpYpJ as a sequencing primer and sequenced a 

maximum of ~750bp. Therefore only telomeres of 1.05kb or less in size can be fully 

sequenced. There does however have to be a region containing a ‘landmark’ unique 

telomere variant/variants in the telomere sequenced by both primers to allow the two 

sequences to aligned into a single contig. Therefore 1.05kb is likely to be an overestimate in 

the maximum length of telomere that can be fully sequenced. This is a major drawback of 

this technique and because of the difficulty in sequencing repetitive DNA tracts one which 

will be very difficult to overcome. Nonetheless, development of the method to isolate, purify 

and sequence PCR products amplified from single telomeres is the first of its kind and could 

prove to be an informative tool when studying telomere dynamics in future. 

 

Telomere shortening either through gradual erosion or by stochastic telomere deletion can 

lead to telomere dysfunction in which the telomere loses its end-capping function and 

becomes susceptible to fusion with other telomeres or double stranded breaks (Capper, 

Britt-Compton et al. 2007). Examples of telomere fusions resulting from loss of a chromatin 

remodeler have been reported in Drosophila: loss of the heterochromatin protein 1 (HP1) or 

it’s interacting partners HOAP (HP1/ORC-associated protein) and HipHop (HP1-HOAP-

interacting protein) results in increased levels of telomere-to-telomere fusions (Burgio et al. 

2011; Cenci et al. 2003; Fanti et al. 1998; Gao et al. 2010) as does loss of Rpd3, the homolog 

of mammalian HDAC1 (Burgio et al. 2011). In WI-38 human fibroblasts siRNA knockdown of 
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the SIRT6 histone deacetylase leads to an increase in telomere fusions which contain no or 

very little telomere signal (Michishita et al. 2008). Similar fusions were observed in the 

DAXX-deficient cells in this chapter: sequencing the fusion events revealed extensive 

deletion of telomeric and subtelomeric regions in at least one of the fusion partners. Only 

one of the fusion events (D1-4) contained TTAGGG repeats however this only amounted to 

270bp indicating that the 17p telomere involved in this fusion had also undergone dramatic 

telomere shortening. The large-scale deletion events present in the sequenced fusion events 

along with microhomology seen at the fusion point is consistent with Ku-independent 

alternative non-homologous end-joining process that results in the large deletion events and 

utilises small patches of homology to facilitate end-joining.  This process has previously been 

implicated in the fusion of short dysfunctional telomeres (Capper et al. 2007; Tankimanova 

et al. 2012). The loss of subtelomeric sequence observed in the telomere fusion events show 

that the loss of DAXX in kC1B cells results in large-scale stochastic deletions at a 

chromosome end that extend into the subtelomeric region. These large-scale deletion 

events also increase the number of very short telomeres which contribute to the elevated 

rate of telomere erosion seen in the DAXX-deficient cells. 

 

The structure of telomeric chromatin differs between pluripotent stem cells and 

differentiated cells. Whereas telomeric chromatin is more compact in differentiated cells 

with an accumulation of heterochromatin associated marks such as H3K9me3 and 

H4K20me3, in stem cells chromatin at telomeres is less heterochromatic (Marion et al. 

2009). Stem cell telomeres are more susceptible to dysfunction after disruption to telomeric 

chromatin conformation. An example of this is seen upon disruption of the ATRX-DAXX-H3.3 

deposition pathway which causes telomere dysfunction in mouse ESCs but not in 

differentiated mouse cells (Wong et al. 2009). The differences in the extent of telomere 
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length changes after DAXX knockdown seen between HT1080 cl.2 cells and the stem cell 

keratinocyte holoclone population is consistent with this idea, it would be interesting to 

analyse telomere length profiles in conditions of low DAXX in other stem cell populations 

including cancer stem cells to gain a broader view on the role of DAXX at the telomere. 

 

In this chapter RNAi-mediated depletion of the H3.3 chaperone DAXX in a keratinocyte 

holoclone population (kC1B) was shown to result in a striking telomere shortening 

phenotype at 17p, 18q, XpYp and, to a lesser extent, 2p. This is the first direct 

demonstration of how depleting DAXX in human cells causes telomere length defects. Loss 

of DAXX in these cells also leads to an increase in telomere-to-telomere fusion events 

between 17p and the 16p and 21q family of telomeres. A mutation analysis method was 

developed to shed light on the telomere shortening mechanism in the DAXX-deficient cells. 

This approach showed no evidence of recombinational events at the severely truncated 

XpYp telomeres which is consistent with the idea that the telomeric deletion events may 

involve a deletion within the TTAGGG repeat region and subsequent healing with 

telomerase. In addition to the role of DAXX in telomere length regulation in these kC1B cells, 

loss of the histone methyltransferase EHMT2 was also shown to result in a telomere 

shortening phenotype at 17p, 18q and XpYp. 
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Chapter 7 

General Discussion and Future Directions 

 

7.1 Summary 

Extensive inter-chromosomal variation in telomere length in both telomerase-positive and 

telomerase-negative cells has previously been reported by our lab (Britt-Compton et al., 

2006). Upon ectopic expression of telomerase shorter telomeres are preferentially 

elongated (Britt-Compton et al., 2009). Furthermore, alleles from the same XpYp 

chromosome end have been shown to have differing telomere length distributions 

indicating that differences in telomere length between maternal and paternal alleles are 

maintained throughout development (Baird et al., 2003). These findings lead us to 

hypothesize whether telomeric chromatin structure confers this ‘setting’ of telomere length. 

The main aim of this project was to investigate whether the chromatin structure of a 

telomere is a determinant of its length. To address this issue two approaches were taken: 

firstly the chromatin structure of telomeres of different lengths was directly analysed by 

measuring the enrichment of histone modification known to be prominent at telomeres in 

other model organisms. This approach revealed differences in telomeric chromatin structure 

between telomeres of different lengths in telomerase-positive HT1080 fibrosarcoma cells. 

Shorter HT1080 telomeres had reduced H3 and TRF1 occupancy as well as lower levels of 

H4K20me3 and, to a lesser extent, H3K4me3 compared to longer telomeres. Such 

differences were not observed between telomeres of different lengths in telomerase-

negative MRC5 fibroblasts however senescence-induced changes to telomeric chromatin 

structure were observed. 
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The second approach was to investigate any potential roles of chromatin remodeling 

proteins in telomere length maintenance. siRNA mediated knockdown of selected chromatin 

remodelers was performed in a clonal population of HT1080 cells followed by STELA 

analysis. Telomere length defects were observed after knockdown of histone 

methyltransferases (HMTases) EHMT2, DOT1L, MLL and EZH2, histone deacetylases (HDACs) 

HDAC1 and SIRT6, the SWI/SNF subunit BAF155 and the H3.3 histone chaperone DAXX. A 

similar siRNA mediated knockdown strategy in a keratinocyte holoclone population revealed 

a dramatic telomere shortening phenotype at a number of chromosome ends in EHMT2-

depleted cells and DAXX-depleted cells. Prolonged depletion of DAXX also caused an 

increase in telomere-to-telomere fusions. 

 

The importance of identifying telomere length regulators lies in the fact that the 

functionality of a telomere is directly related to its length. A number of factors influence 

telomere length in human cells including telomerase and other telomere-associated 

proteins, recombination-based mechanism and environmental factors such as smoking and 

obesity (Greider and Blackburn, 1985, Bryan et al., 1997, van Steensel and de Lange, 1997, 

Petersen et al., 1998, Smogorzewska et al., 2000, Valdes et al., 2005). In the past decade 

telomeric chromatin structure has also been shown to influence telomere length in 

mammalian cells however examples in human cells are scarce (Benetti et al., 2007b, Benetti 

et al., 2008, Garcia-Cao et al., 2004, Gonzalo et al., 2006). There is a clear need to shed more 

light on human telomeric chromatin structure and chromatin remodelers which specifically 

function at the telomere to maintain telomere length. This will allow a greater 

understanding into the role of telomeric chromatin in normal cellular functions, during 

ageing and during the initiation and progression of diseases such as cancer and premature 
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ageing syndromes. Elucidating the pathways regulating telomeric chromatin structure may 

provide targets for therapeutic intervention in disease driven by telomere dysfunction. 

 

7.2 Implications of impaired telomeric chromatin maintenance in disease and ageing 

The stabilisation of telomere length either by telomerase or by an ALT-mediated mechanism 

is a key determinant of cancer progression (Bodnar et al., 1998, Bryan et al., 1997). 

Conversely continued telomere attrition after each round of DNA replication limits the 

proliferative capacity of adult cells which leads to senescence and is associated with 

organismal ageing (Harley et al., 1990). Accelerated telomere shortening is found in many 

premature ageing syndromes such as Dyskeratosis Congenita (DC) and Werners Syndrome 

(WS). How the chromatin structure of telomeres is implicated in these roles is less well 

defined however the identification of a number of chromatin remodelling proteins as key 

mediators of telomeric chromatin structure and telomere length provides a link between 

telomeric chromatin maintenance and disease progression. 

 

7.2.1 Reduced association of telomerase and other telomere binding proteins with 

telomeres 

Alterations in telomeric chromatin structure could result in increased or decreased access to 

the telomere for telomere binding proteins required for maintaining telomere length and 

integrity. It is possible that a change to a more open telomeric chromatin structure may 

enhance the ability of telomerase to associate with telomeres providing a mechanism of 

telomere maintenance required for the progression of cancer 
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Evidence in support of this comes from nuclear reprogramming studies. Cancer has been 

described as a pathological reprogramming where from a normal tissue, tumour-initiating 

cells or cancer stem cells start a whole new cellular differentiation branch with its own 

hierarchy (Abollo-Jimenez et al., 2010). There are common features between 

reprogramming and tumourigenesis: in both processes the normal differentiation patterns 

are altered, both undergo global epigenetic changes that are necessary for the generation of 

a new gene expression program. Additionally both have to overcome the p53-mediated 

replicative barrier and have a mechanism of telomere length maintenance (Abollo-Jimenez 

et al., 2010, Marion et al., 2011). Studies in which mouse embryonic fibroblasts were 

reprogrammed to create induced pluripotent stem (iPS) cells have uncovered clear 

associations between telomeric chromatin structure and a telomerase-mediated 

reprogramming of telomere length. Chromosome ends in mouse embryonic fibroblasts 

(MEFs) are heterochromatic with an abundance of repressive marks such as H3K9me3 and 

H4K320me3, binding of heterochromatin protein 1 (HP1) and methylation of subtelomeric 

DNA (Benetti et al., 2007b, Garcia-Cao et al., 2004, Gonzalo et al., 2006). However 

reprogramming MEFs to iPS cells causes a change in the epigenetic status with reduced 

H3K9me3 and H4K20me3 and telomerase-mediated telomere elongation (Marion et al., 

2009). Furthermore abrogation of the Suv4-20h H4K20-specific histone methytransferases in 

iPS cells accelerates telomere elongation and also leads to an increased growth rate and 

elongated telomeres in teratomas derived from iPS cells (Marion et al., 2011). These results 

suggest that a loss of heterochromatic features at a telomere increases the association of 

telomerase with telomeres resulting in telomere elongation during nuclear reprogramming, 

a process required for cancer progression. 
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Chromatin structure changes at the telomere may result in reduced access to telomere-

associated proteins. This may lead to impaired telomere maintenance resulting in telomere 

attrition and subsequent loss of the end-capping function. Such an example has been 

suggested in the rare premature ageing syndrome Werners Syndrome (WS). WS is caused by 

mutations in the gene encoding the RecQ helicase WRN. Loss of WRN leads to dramatic 

telomere loss during DNA replication which results in extensive genomic instability and an 

increase in telomere-to-telomere fusions (Crabbe et al., 2007). The histone deacetylase 

SIRT6 is responsible for H3K9 deacetylation at telomeres and has been shown to be required 

for WRN association at telomeres (Michishita et al., 2008). Interestingly, in a mutational 

analysis of 129 WS patients 26 (20%) did not have mutations in the WRN gene (Chen et al., 

2003). No evidence of physical interaction between SIRT6 and WRN has been found 

suggesting that SIRT6 does not function to recruit WRN to telomeres. Instead the 

compromised telomeric chromatin structure in the absence of SIRT6 may inhibit WRN 

binding at the telomere and therefore play a role in the progression of the disease. 

 

7.2.2 Telomeric recombination in disease 

Recombination events at chromosome ends have been implicated in a number of diseases 

including cancer, developmental delay and mental retardation (Bryan et al., 1997, Ravnan et 

al., 2006, Wu et al., 2010). Loss of heterochromatic features such as subtelomeric DNA 

methylation, and methylation of H3K9, H4K20 and H3K79 in both telomeric and 

subtelomeric regions resulted in increased telomeric recombination (Benetti et al., 2007b, 

Garcia-Cao et al., 2004, Gonzalo et al., 2006, Jones et al., 2008). Thus it seems likely that a 

more open telomeric and subtelomeric chromatin structure could facilitate disease 

progression.  
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Although ~85% of cancers express telomerase the remaining 15% maintain telomere length 

via the recombination-based alternative lengthening of telomeres pathway (ALT) (Bryan et 

al., 1997). Furthermore a subset of immortalized cell lines use ALT as their telomere length 

maintenance mechanism (Lovejoy et al., 2012). Decondensation of heterochromatin at 

telomeric and subtelomeric regions has been shown to cause ALT-mediated telomere 

elongation suggesting that a more open telomeric chromatin structure can promote a 

telomere length maintenance pathway required by some cancers. 

 

A number of studies investigating the ATRX-DAXX-H3.3 deposition pathway in humans have 

supported this view. Telomeric deposition of the histone H3 variant H3.3 is essential for 

maintaining telomeric chromatin structure and preventing telomere dysfunction in mouse 

embryonic stem cells (Lewis et al., 2010, Wong et al., 2009, Wong et al., 2010) and it appears 

that disruption of this same pathway in humans promotes cancer progression. Mutations in 

the ATRX-DAXX-H3.3 pathway have been associated with aberrant telomere length 

phenotypes reminiscent of the ALT pathway in a number of cancers including human 

pancreatic neuroendocrine tumours (PanNETs) and in glioblastoma multiforme (GBM) 

tumours (de Wilde et al., 2012, Heaphy et al., 2011, Schwartzentruber et al., 2012). 

Additionally, loss of ATRX was observed in 90% of human cell lines immortalized via the ALT 

pathway (Lovejoy et al., 2012). 

 

The repression of recombination events at chromosome ends by chromatin structure may 

not solely prevent telomere elongation seen in cancer. Telomere-associated chromosomal 

rearrangements are responsible for 2.6-5% of unexplained mental retardation syndromes 

(Ravnan et al., 2006, Wu et al., 2010). These chromosomal rearrangement included 

unbalanced translocations between two chromosome arms or two arms of the same 

274



chromosome, deletion and insertion events within subtelomeric regions and also terminal 

deletions. Although a direct relationship between subtelomeric and telomeric chromatin 

structure and telomeric rearrangements in the context of these syndromes has yet to be 

determined the fact that loss of heterochromatic features is associated with increased 

recombination events at chromosome ends suggests that it may play a role. 

 

7.2.3 Telomere length and Telomere Position Effect in disease 

It has been suggested that telomere position effect (TPE) may have a role in human disease. 

Very recently evidence for such a role has been found in a study aiming to identify the 

mutational mechanism driving the progression of Facioscapulohumeral muscular dystrophy 

(FSHD1A). FSHD1A is the third most common muscular dystrophy after the 

dystrophinopathies and myotonic dystrophy and causes progressive atrophy of facial, 

scapular and upper arm muscles. The disease also has a delayed appearance, symptoms 

often do not appear until the second or third decade of life or later (Pandya et al., 2008). 

FSHD1A is genetically linked to a reduced number of tandemly repeated 3.3kb D4Z4 

elements present near the 4q telomere. Unaffected individuals have up to 100 D4Z4 repeats 

whereas FSHD patients possess only 1-10 repeats (Stadler et al., 2013). These D4Z4 elements 

are thought to function by repressing the expression of the DUX4 gene located in the final 

D4Z4 repeat. This gene encodes the DUX4 homeobox protein that is thought to be a leading 

candidate for pathogenesis in FSHD (Dixit et al., 2007). In addition to D4Z4 elements, a 

number of observations pointed to additional contributing factors to DUX4 repression: 

Approximately 1% of the general population also contain D4Z4 deletions within the 4q 

telomere which is two orders of magnitude higher than the incidence of the disease (Scionti 

et al., 2012), also DUX4 is expressed in some unaffected individuals without D4Z4 deletions 

(Jones et al., 2012). Telomere position effect has been shown to be one of these factors. Not 
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only does TPE repress DUX4 expression but it also may provide an explanation to the late 

onset of the disease: Telomere length has previously been shown to influence TPE (Koering 

et al., 2002) and recent work found that clones generated with shorter telomeres had 

reduced TPE-mediated silencing of the DUX4 gene (Stadler et al., 2013). DUX4 expression 

was shown to be inversely proportional to telomere length suggesting that the progressive 

loss of telomere length with ageing may compromise the ability of TPE to silence DUX4, 

leading to its expression and pathogenesis in older individuals. 

 

7.3 Roles for telomeric chromatin in senescence 

The progressive loss of telomeric DNA with every cell division eventually leads to short 

dysfunctional telomeres which triggers a DNA damage response and subsequently growth 

arrest (d'Adda di Fagagna et al., 2003, Herbig et al., 2004). Alterations in telomeric 

chromatin structure result in the formation of dysfunctional telomeres (Wong et al., 2010, 

Deng et al., 2009, Michishita et al., 2008). Also, telomeric chromatin structure and telomere 

length appear mechanistically linked. These observations suggest that telomeric chromatin 

structure will play a role in the onset of senescence. 

 

Telomeric chromatin structure has been established as an influencing factor on telomere 

length in mice however it has been suggested that the reverse is also true: that the length of 

a telomere may have an impact on its chromatin structure. Progressive telomere shortening 

in telomerase-deficient mouse embryonic fibroblasts (MEFs) is accompanied by loss of 

heterochromatin features such as H3K9me3, H4K20me3, heterochromatin protein 1 (HP1) 

binding and subtelomeric DNA methylation. Concomitant with this loss is an increase in H3 

and H4 acetylation, markers of active chromatin regions (Benetti et al., 2007a). This suggests 
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a model for senescence where progressive telomere attrition leads to a gradual 

decondensation of telomeric chromatin which may facilitate association of DDR factors 

required for growth arrest in older cells. 

 

Changes to telomeric chromatin structure in senescent human cells has also been recently 

observed. Loss of telomeric H3 occupancy in late passage (PD75) cells as well as changes in 

the cell cycle distribution of telomere-bound H4K20me3 and H4K16Ac compared to early 

passage cells (PD30) has been shown (O'Sullivan et al., 2010). DNA methylation and 

repressive H3K9me3 were recently shown to be reduced within subtelomere of 7q and 11q 

in senescent W1-38 fibroblasts compared to proliferating WI-38 fibroblasts (Thijssen et al., 

2013). Concomitant with this loss was a senescence-induced increase in H3K27me3 and 

H3K36me3 however, unlike at mouse telomeres, no increase in euchromatin-associated 

marks were observed. The data in this project is somewhat consistent with these findings as 

heterochromatin associated marks were reduced in senescent MRC5 and IMR-90 fibroblasts 

however a decrease in the euchromatin associated H3K4me3 was also observed in 

senescent cells. 

 

The mentioned studies indicate that changes to telomeric chromatin structure occur during 

the lifespan of a cell however the mechanistic consequences of these changes during the 

onset of senescence are less clearly defined. It is possible that the chromatin structure of a 

telomere may function upstream in telomere end protection by regulating access to the 

telomere for end-capping proteins. A model for this is proposed in fig. 7.1. Findings from this 

thesis and the previous studies are consistent with such a model: TRF1 binding at the 

telomere was shown to be reduced in senescent cells with altered telomeric chromatin 

structure in this thesis. Telomere-bound TRF2 is similarly reduced in senescent cells 
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(O'Sullivan et al., 2010). These proteins repress the DNA damage response at the telomere 

(Karlseder et al., 1999, Karlseder et al., 2004, Palm and de Lange, 2008) therefore their loss 

may promote recruitment of DDR factors and subsequently growth arrest. Furthermore 

H3K4 and H3K9 methylation as well as subtelomeric DNA methylation influence TERRA 

expression levels (Arnoult et al., 2012, Caslini et al., 2009, Nergadze et al., 2009, Yehezkel et 

al., 2008). TERRA has been shown to have a role in the protection of the single stranded 

chromosome end by promoting POT1 binding (Flynn et al., 2011). Loss of telomeric H3K4 

and H3K9 methylation was observed at telomere in senescent cells in this thesis and loss of 

subtelomeric DNA methylation during senescence has previously been reported (Thijssen et 

al., 2013) therefore these structural changes to telomeric chromatin may cause mis-

regulation of TERRA which in turn results in reduced POT1 association at the telomere. This 

model is speculative and more work is required to determine whether telomeric chromatin 

contributes towards growth arrest in this manner. 
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7.4 Technology development 

During the course of this project a number of novel approaches were developed to gain 

insight into telomeric chromatin structure and its role in telomere length maintenance. Dot 

blots have been predominantly used for the post-ChIP analysis of the enrichment of 

telomere-bound protein however these assays lack telomere-specificity. TRF analysis has 

been used as the standard technique used for telomere length measurement for a number 

of years due to its relative ease and low cost to perform however it suffers from the same 

limitations as dot blot analysis. The increased sensitivity provided by STELA has allowed the 

detailed analysis of telomere loss during replicative senescence. Whereas TRF analysis 

estimated that telomere length at the point of replicative senescence was ~4kb, STELA 

showed that chromosome ends were virtually devoid of telomere repeats (Baird et al., 

2003). Clearly STELA can allow the analysis of telomere length dynamics at a resolution that 

is beyond the limit of TRF analysis. It is possible that the telomere- and telomeric-allele 

specific qPCR assays developed during this project can provide a similarly high resolution for 

telomeric protein enrichment as STELA does for telomere length analysis and uncover subtle 

changes in telomeric chromatin structure that are undetectable by dot blot analysis. 

 

Very recently a handful of studies of human telomeric chromatin structure have emerged 

that have employed a similar ChIP-qPCR approach as used in this project (Deng et al., 2012, 

Arnoult et al., 2012, Thijssen et al., 2013). QPCR assays were developed to the 7q and 11q 

chromosome ends in a study analysing the subtelomeric chromatin structure and TERRA 

transcription in senescing cells (Thijssen et al., 2013). However the regions amplified by the 

qPCR primers were at least 4kb away from the telomere repeat tract. Telomere-adjacent 

QPCR assays have also been designed however these assays amplify regions found at a 

number of chromosome ends (Deng et al., 2012). Although this provides a more quantitative 
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approach to measuring telomeric chromatin structure it still lacks telomere specificity. The 

assays presented in this thesis are the first examples of qPCR assays specific to individual 

chromosome ends which measure telomeric protein enrichment. The above studies 

analysed chromatin structure over a large subtelomeric region by using primers designed at 

various intervals across the subtelomere. Such an approach could be taken in this work to 

determine the extent at which a telomeric-specific chromatin mark is propagated along the 

subtelomeric region of the same chromosome end. 

 

Another potential application for the primers designed for the qPCR assays is to use them 

for the development of telomere-specific qPCR measurement of telomere length. QPCR has 

previously developed as a method to measure telomere length (Cawthon, 2002, O'Callaghan 

and Fenech, 2011). The current method involves the use of primers that bind and amplify 

telomeric repeats. As telomere length increases the number of sites which the primers can 

anneal to increases. The amplification signal generated is then compared to signal from a 

single copy gene within the sample giving a measure of relative telomere length. QPCR has 

advantages over other telomere length measurement methods in that it is a high 

throughput technique meaning the telomere lengths of a large number of samples could be 

determined in a short space of time. Additionally small amounts of DNA are required. Very 

recently a qPCR-based analysis of telomere length for single cells has been described (Wang 

et al., 2013). One problem that may be difficult to overcome in developing telomere-specific 

qPCR length analyses is designing an assay of required efficiency. PCR efficiency greatly 

diminishes as PCR amplicon length increases. Furthermore in STELA a large amount of non-

specific PCR product is amplified by the telomere-adjacent and teltail primers however these 

products are not detected by the telomere probe during hybrdization. Nonetheless, if such 
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problems are overcome this approach could be used for a fast, high throughput, telomere-

specific analysis of telomere length. 

 

The mutational analysis developed during this project could be another useful tool in 

telomere biology. Sequencing of single fusion events between telomeres has previously 

been designed by our lab (Capper et al., 2007). This allows the mutational profile of these 

events to be characterised which offers insight into the mechanistic basis of the telomere-

to-telomere fusion. It is possible that the isolation and sequencing of very short telomeres 

performed in this project can have a similar use in identifying the mechanism by which 

telomere shortening occurs. The identification of changes in the distribution pattern of 

telomere variant repeats (TVRs) could indicate telomeric recombination events or telomere 

repeat loss and subsequent healing by telomerase. In this project the method didn’t provide 

any insight into the mechanistic basis of telomere loss in DAXX depleted cells. This was due 

to the uninformative nature of the XpYp telomere analysed. Hence, this approach would 

only be useful when studying telomeres with a more variable distribution of TVRs. 

 

7.5 Conclusions and future directions 

To investigate whether the chromatin structure of a telomere was a determinant in its 

length two approaches were taken during this project: the first approach involved directly 

analysing the telomeric chromatin structure at telomeres of different lengths and the 

second approach was to identify chromatin remodelers which, when depleted resulted in 

aberrant telomere length profiles. It was initially thought that these two aspects of the 

project would not be mutually exclusive and that findings from one side of the project would 

influence the approach taken on the other side of the project. For example identification of 
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a particular chromatin remodeler in telomere length maintenance would have prompted the 

investigation of the telomeric enrichment of the histone modification it deposits. 

Unfortunately the project did not progress to a stage were such complementation was 

possible however this remains a possible approach to be taken in the future. 

 

A number of chromatin remodelling proteins have been identified in this thesis as having a 

potential role in telomere length maintenance (summarised in fig. 7.2). Furthermore a 

handful of chromatin marks appear to correlate with telomere length. The mechanisms by 

which chromatin remodelling proteins exert their influence on telomere length are 

unknown. Changes in telomeric chromatin structure could influence telomerase access to 

the telomere. Alternatively the chromatin structure at a telomere may promote or repress 

recombination-based telomere elongation or deletion events. Another possibility is that 

their influence may be exerted through the restarting of stalled replication forks within 

telomeric DNA. The elucidation of these mechanisms is another future direction which could 

be taken with this work. This could include knockdown of a chromatin remodeler known to 

modulate telomere length and subsequent analysis of telomeric enrichment of proteins 

known to mediate the above processes. Functional interactions between chromatin 

remodelers and the marks they deposit at the telomere could also be examined. Additionally 

telomeric enrichment of histone modifications and the roles of chromatin remodelers could 

be studies in a variety of cell types to gain a broader view on telomeric chromatin structure. 
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Telomeres play a pivotal role in processes throughout the lifespan of a cell. The gradual 

erosion of telomeres after each cell division acts a molecular clock that limits the 

proliferative lifespan of a cell, thereby functioning as a tumour suppressor mechanism. They 

protect natural chromosome ends from being recognised as double stranded DNA breaks as 

well as silence the expression of telomere-proximal genes. All these processes function in 

the context of chromatin therefore gaining a deeper understanding into the regulatory 

network of telomeric chromatin maintenance is required. In recent years the chromatin 

structure at human telomeres has begun to be uncovered. As such there is great scope for 

research in this field and the methods developed during this project can contribute to 

answering some of the key questions yet to be addressed in telomeric chromatin dynamics.
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