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Abstract    
In the last three decades vitamin D, or calcitriol, has been found to have important anticancer 

role in different cancer types. Unfortunately, a therapy using calcitriol remains a challenge 

due to increased drug resistance as a consequence of the up-regulation of CYP24A1, which 

metabolises and inactivates calcitriol. Moreover, the hypercalcaemia associated with an 

elevated dose of calcitriol does not allow the use of vitamin D at a high concentration. 

Analogues of calcitriol have enhanced anti-tumour activity, reducing the calcaemic undesired 

effect. The use of CYP24A1 selective inhibitors could be the appropriate strategy to increase 

the lifetime and thereby! the anti-cancer functions of calcitriol and its derivatives. 

Consequently, the aim of this project is to develop new, potent and selective inhibitors of 

CYP24A1 that could be used in the treatment of different types of cancer in order to enhance 

endogenous vitamin D levels and favour its anti-tumour activity. 

Through molecular modelling studies, a new CYP24A1 homology model has been prepared 

and the active site has been characterised examining the disposition of (R)-VID400, a CYP24 

inhibitor, (E)-N-(2-(1H-imidazol-1-yl)2-phenylethyl)-4-styrylbenzamide (MCC165), a 

compound previously synthesised in our laboratory that showed a potent CYP24A1 

inhibitory activity (IC50= 0.3µM), and the natural substrate calcitriol. Different series of 

potential CYP24A1 inhibitors were designed in order to mimic completely the calcitriol 

disposition in the binding pocket and to interact with the haem iron of the enzyme catalytic 

site. For each series a synthetic pathway was developed. The synthesis was followed by a 

CYP24A1/CYP27B1 inhibition assay. 

All the compounds occupy the same hydrophobic tunnel as calcitriol and access the active 

site through the same channel. Moreover the substituents in the lateral chain bind directly to 

the haem iron via a lone pair of electrons. The different syntheses were obtained after several 

optimisations of reactions and routes.  The CYP24A1/CYP27B1 inhibitory activity (IC50) 

using a cell-free assay and the value of the Ki (dissociation constant) of the different series of 

compounds, compared with ketoconazole (Ki= 0.030 µM, IC50= 0.47 µM) as the standard, 

were evaluated. Selectivity of CYP24A1 over CYP27B1 was also calculated. New potent 

CYP24A1 inhibitors were found.!Selectivity gave a range from poor to moderate results with 

selectivity improved in some case compared with ketoconazole (selectivity: 1.6).  
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PC-3                                               Human prostate cancer line 

PDB                                                Protein Data Bank 

Phe                                                  Phenylalanine 

PI3K                                                Phosphatidylinositol-3-kinase   
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PKC                                                Protein kinase C 

pRb                                                  Retinoblastoma protein 

PSA                                                 Prostatic specific antigen 

PTH                                                  Parathyroid hormone 

r.t.                                                     Room temperature 

Rf                                                     Retention factor                        

RMSD                                              Root-mean-square deviation 

RNA                                                 Ribonucleic acid 

ROS                                                  Reactive oxygen species 

RXR                                                  Retinoid X receptor 

SAR                                                   Structure-activity relationship 

Ser                                                      Serine 

SRC1                                                 Steroid receptor co-activator 

SRC1                                                 Steroid receptor co-activator 
tbutyl                                                  tert-butyl 

TGF-β                                                Transforming growth factor beta 

Thr                                                     Threonine 

TLC                                                   Thin layer chromatography 

Trp                                                     Tryptophan 

Tyr                                                     Tyrosine 

UVB                                                  Ultraviolet-B 

VDR                                                  Vitamin D receptor 

VDR-AP                                            Vitamin D receptor-alternative pocket 

VDRE                                                Vitamin D response elements 

VDR-GP                                            Vitamin D receptor-genomic pocket 

VCap                                                  Vertebral Cancer of the prostate cell line                                          

VEGF                                                 Vascular endothelial growth factor 
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1.1 Introduction 

In the last three decades, vitamin D, “the sunshine vitamin”, has been recognised as having 

anticancer activity including induction of apoptosis, growth arrest and differentiation of a 

variety of malignant cells. Analogues of 1α,25-(OH)2-D3 have enhanced anti-tumour activity, 

reducing the calcaemic effect.(1) Selective inhibitors of CYP24A1 (P450 cytochrome), which 

metabolises and inactivates the active form of vitamin D, increase the lifetime and thereby 

the anti-cancer function of calcitriol and its derivatives. 

 

1.2 Cytochrome P450 

 

The hydroxylase enzymes that are involved in the metabolism of 25-hydroxyvitamin D3 

(CYP1α and CYP24A1) belong to the cytochrome P450 super-family. The P450 constitute a 

family of single polypeptide chains in the order of 45000 to 55000 Da that occur in nearly all 

the 5 biological kingdoms (Plantae, Animalia, Fungi, Protista, Eubacteria and Archabacteria). 

The P450 name arises from the major characteristic 450 nm peak in their absorption spectra 

due to the addition of carbon monoxide (CO) in their Fe (II) state haem reduced form. The 

proteins contain a single haem prosthetic group consisting of a protoporphyrin IX group 

coordinating a Fe (II) through the four pyrrole nitrogens (figure 1.1).(2-4) This haem protein is 

placed in the interior of the P450 enzyme and its iron atom is involved in the enzyme 

catalytic cycle. The sulphur atom of cysteine is bound to the iron, whereas the dioxygen (O2) 

is ligated to the sixth coordination site of the haem iron during the catalytic reaction.(5,6)  
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Figure 1.1: The haem protein in the haem binding region within the P450 enzyme (CYP24A1 in this case). The 

sulphur atom of the cysteine residue is bonded to the iron of the haem protein. The haem has a porphyrin ring 

structure. 

57 P450 proteins (7) are encoded by the human genome and these enzymes are involved in 

several enzymatic reactions of a variety of lipophilic compounds of endogenous or exogenous 

origin (8). Reactions catalysed by cytochrome P450 forms are shown in figure 1.2 and they 

include aliphatic hydroxylation, aromatic hydroxylation, epoxidation of a double bond, 

dealkylation reaction, oxidation reaction on nitrogen, sulphur and phosphorus atoms and 

dehalogenation.(9)  

 

 

 

 

 

 

 

 

 

 

 
 

 Figure 1.2: P450 catalysed reactions. 
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All these reactions, in the human body, lead to different results: detoxification of chemical 

xenobiotics (such as carcinogenic compounds) (CYP1, CYP2 etc.), metabolic clearance of 

the majority of drugs in use in phase I of metabolism (CYP3A4, etc.), metabolism of sterols 

(including bile acids), oxidation of fat-soluble vitamins (vitamin A, D) (CYP26 and CYP24), 

metabolism of fatty acids and ecosanoids (CYP11). The xenobiotics and the endogenous 

compounds are converted to a more water-soluble form and then are excreted by the 

kidney.(10) In mammals, P450 enzymes are found in most tissues (a great proportion is in the 

liver in which 12-15% of the smooth endoplasmatic reticulum membrane of hepatocytes is 

composed of P450), except the muscles, neurons and red blood cells. Most are found in the 

endoplasmic reticulum (microsomes), but five are localised primarily in mitochondria.(11) 
 

1.2.1 Catalytic cycle of P450  
 

P450 enzymes are universal monooxygenases, able to insert one oxygen atom of the oxygen 

molecule (O2) into a large number of substrates, while reducing the other oxygen atom by 

two electrons to form water.(12) The general reaction (5) of this P450 mediated 

monooxygenation is reported below and R-H represents a wide variety of usually lipophilic 

compounds (bearing a site for oxygenation such as an alkane, alkene, aromatic ring or a 

heterocyclic ring) for which the different cytochrome P450 are specific: 

RH + O2 P450
2H+, 2e-

ROH + H2O

!

The two electrons (e-) are provided by the redox carrier protein and the two hydrogens (H+) 

from NADPH. The general catalytic cycle (5) of P450 is shown in figure 1.3. 

Normally the haem iron may exist in two different spin states that usually are in an 

equilibrium condition: a hexa-coordinated low-spin state and a penta-coordinated high spin 

state. The low and high spin states are descriptions of the d-electronic shells around the iron 

atom. Under normal conditions the enzyme is in the ground state, with the haem in six-

coordinated low-spin Fe (III) conformation (Ferric) and a water molecule occupying the axial 

sixth coordinate opposite cysteine (1). The binding of a RH substrate to the ferric form of the 

enzyme results in the loss of the sixth haem ligand (water) and formation of the five 

coordinate high spin Fe (III) state (2). This substrate binding produces a conformational 

change of the protein surrounding the haem iron, resulting in a more positive redox potential 

(-173 mV) than in the absence of substrate (-303mV) and making the protein more readily 

reducible by electrons donated from NADPH.(5) In fact, after substrate binding, the electrons 

will be able to flow down a potential gradient from the more redox-negative electron 
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transport protein (around – 240mV) to the P450 structure (-173 mV).(5)  Donation of an 

electron from NADPH-cytochrome P450 reductase results in reduction to the ferrous form, a 

five coordinate high spin Fe (II) (3), with the ability to coordinate with molecular oxygen, as 

sixth ligand to obtain a haem iron atom-oxyferrous intermediate (4). The molecular oxygen, 

in its electron-deficient triplet ground-state, avidly binds to the electron-rich Fe (II) which has 

a single negative charge overall due to the haem-thiolate moiety. This intermediate self-

oxidises to ferric Fe (III) cytochrome P450 and O2
- involving an electron transfer from the 

iron to the oxygen, forming a ferric superoxide species Fe3+O2
- (5). A second donation of an 

electron and the addition of a proton reduce this intermediate to a ferrous peroxy state (6) that 

self-oxidises to a more stable ferric form and O2
2- (7). A second proton cleaves the dioxygen 

bond giving water and the unstable [FeO]3+ oxenoid complex (8). This complex donates its 

oxygen to the substrate forming the hydroxylated product and the haem protein returns to its 

ground state (1).  

 
!

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Catalytic cycle of P450.(5) The binding of substrate (RH) brings about the displacement of the bound 

water molecule present in the haem. The substrate becomes oxygenated via the activation of molecular O2 

mediated by P450 enzyme. The two electrons (e-) are provided by the redox carrier protein and the two H+ from 

NADPH. 
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1.2.2 P450 electron transport systems 

 
The two electrons needed for the monooxygenase activity, are not directly transferred from 

the NADPH to the cytochrome P450. In fact the NADPH is a two electron donor while the 

P450, having a single haem group, can accept only one electron at a time. A NADPH-

dependent flavoprotein reductase is present in order to accept the two electrons from 

NADPH and transfer the electrons one at a time, either to an intermediate iron-sulfur protein 

(as in the mitochondria membrane) or directly to P450 (as in the endoplasmic reticulum).(13) 

In the endoplasmic reticulum the NADPH transfers electrons to a flavoprotein called 

NADPH-cytochrome P450 reductase which contains both flavin adenine dinucleotide 

(FAD) and flavin mononucleotide (FMN) as the prosthetic group (figure 1.4 A). These two 

molecules may exist as one or two electron-reduced forms and for this reason are able to 

receive two electrons from NADPH, store them and then transfer them individually to the 

P450. In the mitochondria the flavoprotein is called NADPH-adrenodoxin reductase and it 

contains only a single FAD molecule (figure 1.4 B). The reductase cannot directly transfer 

the two electrons to P450 so a second protein, adrenodoxin, transports the electrons between 

the adrenodoxin reductase and the mitochondrial cytochrome. Adrenoxin is formed by two 

iron-sulfur clusters, which are the two redox centres for this molecule that deliver the 

electrons from the adrenodoxin reductase to the P450.(9) A scheme of both cytochrome P450 

electron transport systems is shown in the figure below. 

 
!!

!

!

!

!

!

!

!

 

Figure 1.4: The two different P450 electron transport system.(9) A) In the endoplasmic reticulum; B) In the 

mitochondria. 

1.2.3 CYP24A1 

1α,25-Dihydroxyvitamin D-24-hydroxylase (CYP24A1) is a member of the P450 family and 

will be the target of our study. CYP24A1 is present in most tissues as with the other P450 
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enzymes and with CYP1α and CYP26 can be found in skin, colon, breast, prostate, kidney 

(here it has the highest activity) and liver.(14) In most normal tissues, CYP24A1 is expressed 

at low basic levels, but undergoes high and rapid induction in response to active vitamin D in 

almost all of its target cells via positive transcriptional regulation.(15)  The human CYP24A1 

gene is located on chromosome 20q132 and its expression is controlled by a vitamin D 

receptor (VDR) dependent process. In the human body, the enzyme is highly regulated and 

responds to different modulating agents such as parathyroid hormone (PTH), calcitonin, 

calcium, phosphorus and vitamin D active form 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2-

D3). 

This enzyme is located in the inner mitochondrial membrane (figure 1.5) to receive NADPH-

reducing equivalents, which are supplied via NADPH to a flavoprotein adrenodoxin 

reductase FR (first redox carrier) then to an iron-sulphur protein adrenodoxin FDX (second 

redox carrier) then to the CYP24A1 monooxygenase, which catalyses the hydroxylation by 

utilising one oxygen atom from molecular oxygen to form hydroxylated 24-position vitamin 

D3 and   water.(4,16)  

 
!

 

 

 

 

Figure 1.5: CYP24A1 action in the inner mitochondrial membrane.  D=25-(OH)-D3, D-OH=24,25-(OH)2-D3, 

FR=Ferrodoxin-reductase, FDX=Ferrodoxin, NADPH=Nicotinamide-adenine dinucleotide phosphate. 

!

1.3 Vitamin D 

Vitamin D is a group of lipophilic pro-hormones consisting of 9,10 secosteroids (broken- 

open steroids), which differ in their side-chain structures and are classified into 5 forms (17) 

(figure 1.6): 

• D2: ergocalciferol that is produced by invertebrates, fungus and plants from the 

precursor ergosterol, a membrane sterol which is transformed into the active 
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ergocalciferol in response to UV irradiation. Ergocalciferol is not produced in the 

human body. Ergocalciferol is widely used as a vitamin D supplement in vitamin D 

deficiency caused by chronic liver/kidney disease or intestinal malabsorption. 

Moreover is used in order to achieve a normocalcaemia in patients with 

hypocalcaemia induced by hypoparathyroidism (17).  

• D3; cholecalciferol. 

• D4: 22,23-dihydroergocalciferol. A synthetic vitamin D used to elevate the levels of 

calcium in the blood. The vitamin also has the ability to stimulate proteins in the body 

to better transport Ca2+ through the blood.  

• D5: sitosterol (24-ethylcholecalciferol). Synthetic form of vitamin D. The 1α(OH)D5 

derivative proved to be a good candidate for in vivo chemoprevention studies after it 

was shown to be less calcaemic than 1α,25-(OH)2-D3 but potent enough in inhibiting 

the progress of pre-neoplastic lesions in mammary glands in organ culture.(18) 

• D6: stigmasterol. 

Vitamin D3 is the most important form of vitamin D and its metabolites are involved in a 

wide array of biological responses such as calcium homeostasis, cell differentiation, 

immunology and regulation of gene transcription. The chemistry, pharmacology and clinical 

implication of this vitamin will be discussed in this section. 

!
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Figure 1.6: Vitamin D family. 
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1.3.1 Vitamin D3 biosynthesis and metabolism 

Vitamin D3 has been called the “sunshine vitamin” because it can be synthesised from 7-

dehydrocholesterol in the human skin (at the level of the stratum basale and stratum spinosum 

of the epidermis) upon UVB irradiation (295-297 nm).(19) This precursor is transformed by a 

rearrangement of double bonds to form vitamin D3. Regardless of whether this precursor 

comes from the skin (that provides 90% of the required level of vitamin D) or the diet (in the 

form of vitamin D3 or vitamin D2, that provides the remnant 10%), it is transported into the 

bloodstream by the vitamin D binding protein (DBP) (20) and hydroxylated in the liver at 

carbon 25 to give 25-hydroxyvitamin D3 (25-(OH)-D3) by vitamin D3-25-hydroxylase 

(CYP27A1). This is a stable metabolite of vitamin D3 whose serum levels (concentration of 

0.05 µM) are used to assess vitamin D status because its half-life is far greater than that of 

calcitriol. Vitamin D2 or D3 from the daily diet, are incorporated into the chylomicrons and 

through the lymphatic system they reach the venous circulation, and then stored in the 

adipose tissue from which they can be released.(21) A second hydroxylation occurs in the 

kidney by the enzyme 25-hydroxyvitamin D3-1!-hydroxylase (CYP1α) that introduces a 

hydroxyl group at the α-position of carbon 1 of ring A (figure 1.7) and gives the 1α,25-

dihydroxyvitamin D3 (1α,25-(OH)2-D3). This product is also called calcitriol and is the active 

form of vitamin D that is released into the serum and acts as an endocrine hormone on the 

tissue target (intestine, bone and kidney to control calcium homeostasis). Calcitriol is present 

in human plasma at concentrations ranging from 0.05 to 0.15 mmol/L. The enzyme CYP1! 

has also been shown to be present in keratinocytes, prostate epithelial, breast and colon, 

suggesting that these target organs may also be able to generate calcitriol from 25-(OH)-D3. 

The enzyme 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) in the kidney and in the 

other target tissue, is involved in the catabolism of 25-(OH)-D3 (it  is a minor substrate for 

CYP24 and its metabolism takes place only if it is present in high excess over 1α,25(OH)2-D3 

and/or at very high CYP24A1 activities) (22)
 and calcitriol to form 24,25-dihydroxyvitamin D3 

(24,25-(OH)2-D3) and 1!,24,25-trihydroxyvitamin D3 (1α,24,25-(OH)2-D3) respectively. Two 

other major inactivation pathways involving CYP24A1 have been described(15) and, 

according to the site of the first modification attack, they are called the C-24 oxidation 

pathway and the C-23 pathway. In the C-24 pathway the calcitriol is degraded to form 

1α,24R,25(OH)3-D3, 24-oxo-1α,25(OH)2-D3, 24-oxo-1α,23S,25-(OH)3-D3 consecutively  and 

finally, after side chain cleavage between C-23 and C-24, calcitroic acid (soluble in water and 

excreted in urine). The C-23 pathways starts with the formation of 1α,23S,25(OH)3-D3, 
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followed by an hydroxylation  at C-26 to form 1α,23S,25,26(OH)4-D3, formation of 

1α,25(OH)D3-23,26-lactol, and final conversion to 1α,25(OH)D3-23,26-lactone.(17,19,23) 

(figure 1.7). 

 

!

 

 

 

 

 

 

 

 

 

 

Figure 1.7: The biosynthesis and metabolism of vitamin D3.
(23)!

1.3.2 Regulation of vitamin D3  

The synthesis of 25-(OH)-D3 by the liver appears to be approximately regulated, whereas, the 

anabolism and catabolism of 1α,25-(OH)2-D3 are well regulated by the expression of specific 

cytochrome P450 enzymes, i.e. CYP1α and CYP24.(24) 1α,25-(OH)2-D3 is a negative 

feedback inhibitor, in fact its high plasma level, via its short feedback loop, suppresses 

CYP1α activity in the kidney blocking calcitriol formation. PTH (parathyroid) hormone 

activates the production of renal 1α,25-(OH)2-D3 favouring CYP1α activity. 1α,25-(OH)2-D3 

reduces parathyroid gland proliferation and PTH production by suppressing transcription of 

the parathyroid gene.(16) Hypophosphatemia stimulates calcitriol production, whereas high 

calcium level inhibits this process.(21) Moreover, 1α,25-(OH)2-D3 stimulates CYP24A1 action 

to cause its catabolism through a vitamin D3 receptor (VDR)-dependent mechanism. This 
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phenomenon predominates in the kidney but also occurs in all calcitriol target cells (25) 

(figure 1.8). 

!

 

 

 

 

 

 

 

 

Figure 1.8: The regulation of calcitriol. 

1.3.3 Biological functions and mechanism of action of vitamin D3 

Vitamin D metabolites are involved in a series of important actions in order to maintain   the 

organ system and the principal mediator in this host cellular process is the hormone calcitriol: 

• Regulation of Ca2+/Phosphorus homeostasis: the calcium and phosphorus levels in the 

human blood are controlled by calcitriol which promotes their intestinal absorption 

from food and stimulates calcium re-absorption in the renal distal tubes.(23) 

• Mobilisation of bone mineral: vitamin D3 promotes bone formation and mineralisation 

by its action on osteoblasts and is important in the development of skeleton and in the 

prevention of bone diseases such as rickets and osteomalacia. Calcitriol increases the 

release of Ca2+ in the blood by promoting the bone resorption process stimulating the 

osteoclast action.(23) 

•  Calcitriol affects the immune system through its influences on cytokine production 

and promotes immunosuppression and immunotolerance.(26) 

• Regulation of gene transcription and control of cell differentiation.(27) 

• Recently, reduced levels of vitamin D, have been linked with the onset and 

progression of different diseases (autoimmune, respiratory infections, diabetes 
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mellitus I and II, hypertension, cardiovascular problem, neuromuscular problems) 

proving its important role in all of these biological activities.(21) 

Vitamin D action is mediated by two independent pathways: genomic and non-genomic (or 

rapid response pathway) (17,19,28,29) (figure 1.9). The primary molecular action of 1α,25-

(OH)2-D3, after entering the cell through the plasma membrane,  is to initiate gene 

transcription by binding to the vitamin D receptor (VDR), a member of the steroid hormone 

receptor super-family (genomic pathway).VDR is an intracellular nuclear receptor present in 

more than 30 different human tissues and in many organs such as heart (cardiomyocytes), 

parathyroid gland, stomach, intestine, liver and testis. The VDR is a DNA-binding 

transcription factor, which generates an active signal transduction complex consisting of a 

heterodimer of the 1α,25-(OH)2-D3 –VDR complex and an unoccupied retinoid RXR 

receptor. The binding of 1α,25-(OH)2-D3 to the VDR triggers tight association between VDR 

and its RXR partner. This heterodimer migrates from the cytoplasm to the nucleus where this 

complex regulates gene transcription by interacting with specific vitamin D response 

elements (VDRE) in the promoters of vitamin D-responsive genes.(30) Recent data shows that 

RXR can be bound to the VDRE, in a silent way, prior to VDR-calcitriol recruitment.(31) The 

binding to VDREs can increase or decrease expression of genes and the protein thus made 

perform the functions of vitamin D. Activation or repression of a determinate gene depends 

on the type of protein complex recruited by the heterodimer and its consequent alteration on 

chromatin structure.(32) The heterodimer recruits “co-activator protein” (e.g.: SRC1-steroid 

receptor co-activator) and forms a complex with a histone acetyltransferase (HAT) releasing 

an ordered chromatin structure that limits gene transcription. At this point, the VDR-RXR 

heterodimer recruits the mediator complex to the promoter and utilises it to recruit and 

activate the basal transcription unit containing RNA polymerase II beginning the 

transcription. When the heterodimer recruits “co-repressor” (e.g.: NCoR-nuclear receptor co-

repressor), it forms a complex with a histone deacetylase and a DNA methyltransferase which 

alters histone tails forming a more compact structure leading to the repression of the gene.  

Figure 1.10 provides a list of some of the more representative VDRE genes (activation 

involves over 60 genes in different cell lines) directly modulated in their expression by 1α,25-

(OH)2-D3.(33) Vitamin D regulates at least eleven genes that encode bone and mineral 

homeostasis effectors, confirming that the main role of vitamin D in the human body is the 

regulation of Ca2+ homeostasis and the mobilisation of the bone minerals. The rest of the 
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genes regulated are formed of those factors impacting cell life/cancer (p53, p21, GADD45 

etc.), the immune system and metabolism (CYP24A1 and CYP3A4).  

!

Figure 1.9: The two different action pathway of vitamin D: genomic and non-genomic. 

 

Figure 1.10: Some of the genes directly modulated in their expression by vitamin D.(33) 

Gene Network Bioeffect(s) Type 

rBGP,  mSPP1 Bone Bone metabolism Positive 

mLRP5,  mLRP5 Bone Bone metabolism Positive 

mRANKL,  mRANKL Bone Bone metabolism Positive 

cPTH Mineral Mineral homeostasis Negative 

hTRPV6,  hTRPV6 Mineral  Intestinal Ca2+ transport Positive 

hFGF23, hklotho Mineral Renal phosphate reabsorbtion Positive 

hCYP24A1,  hCYP24A1 Detox 1,25D detoxification Positive 

hCYP3A4,  hCYP3A4 Detox Xenobiotic detoxification Positive 

hp21, hFOXO1 Cell life Cell cycle control Positive 

rPTHrP, hSOSTDC1 Cell life Mammalian hair cycle Negative 

hCAMP Immune Antimicrobial peptide Positive 

hCBS Metabolism Homocysteine clearance Positive 
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In 2004 Fleet et al. (29) proposed that 1α,25-(OH)2-D3 also has rapid actions which involve 

VDR but are not mediated through transcriptional events (non-genomic pathway). This new 

theory was proposed for two main reasons: the generation of some vitamin D actions occur 

too rapidly (generated within 1-2 min or 15-45 min) to be explained via a gene transcription 

regulation (generally it takes several hours to a day to be fully apparent) and some of these 

actions cannot be blocked by inhibitors of transcription and translation.(33) In the proposed 

model 1α,25-(OH)2-D3 binds to either cell surface vitamin D binding protein (i.e the 

membrane association rapid response steroid binding protein [1,25D3-MARRS receptor] ) or 

a membrane associated pool of the traditional VDR. Both lead to the activation of various 

kinases and the modulation of cell biology through phosphorylation of proteins. What the 

rapid responses are is not completely clear but different studies in the literature report 

examples.(34-37) They include the activation of the process of transcaltachia (the rapid 

stimulation of calcium absorption),(34) the insulin secretion from rat pancreatic β-cells,(35) the 

influence of the rate in human endothelial cell migration in cell culture,(36) opening Cl- and 

Ca2+ channels and secretion in osteoblasts.(37) In order to clarify the reason for these two 

different pathways several studies have been reported in the literature and the VDR structure 

and the flexibility of vitamin D have been found responsible for these two actions. In fact the 

VDR receptor contains two overlapping ligand binding sites, a genomic pocket (VDR-GP) 

and an alternative pocket (VDR-AP) that respectively bind a bowl-like vitamin D 

configuration (genomic pathway) or a planar-like vitamin D shape (non-genomic pathway) 

(figure 1.11).(38) The conformation changing, the probability to have one conformation 

instead of another one and the link with the different pathways are not completely understood 

but some experimental data using vitamin D analogues confirmed the suppositions.(38) 

 

 

 

 

 

 

 
 

Figure 1.11 Vitamin D in both its conformations 7-s-trans and 7-s-cis, resulting from 360˚rotaion around 7,8 

carbon-carbon bond at a rate of millions of times per second.(33) 
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Moreover it has been found that the VDR is also associated with the plasma membrane 

caveolae (a flask-shaped membrane invagination that are enriched in sphingolipids and 

cholesterol), which are the source of many rapidly responding signal transduction pathways 
(39) in many different tissues and cell types.(40) In these caveolae, vitamin D displays the same 

relative binding affinity to the VDR associated with caveolae as observed with the nuclear 

VDR responsible for the genomic pathway. So the binding of 1α,25-(OH)2-D3 to caveolae-

associated VDR (in a VDR-AP conformation) may result in the activation of one or more 

second messenger  systems,  including  G protein-coupled receptors, phospholipase  C, 

phosphatidylinositol-3-kinase  (PI3K) or  protein kinase C (PKC), typical of the non 

gemomic pathway.(33) 

 

1.3.4 Therapeutic use of vitamin D and its derivatives 

Hundreds of vitamin D analogues have been synthesised and biological activity has been 

evaluated. These derivatives are characterised by alterations of the A, B, and C ring of 1α,25-

(OH)2-D3. These derivatives have been used to target several diseases: 

1. Nutritional Rickets: a childhood disease characterised by impeded growth, and 

deformity, of the long bones that can be caused by calcium or phosphorus deficiency 

as well as a lack of vitamin D or from inadequate exposure to sunlight.(23) The usual 

treatment is to administer vitamin A in combination with vitamin D. Vitamin D2 

(ergocalciferol) or vitamin D3 (cholecalciferol) are used in this case. 

2. Hypoparathyroidism: is a decreased function of the parathyroid glands, leading to 

decreased levels of PTH and the consequent hypocalcaemia is a serious medical 

condition. Vitamin D3 and its analogues are a common therapy for this condition in 

order to recover the basic calcium level.(23) Among vitamin D3 derivatives 

Dihydrotachysterol (DHT) (figure 1.12) has been a preferred drug for the treatment 

due to its shorter duration of action, its faster effect and its greater influence on bone 

mobilisation.(23,41) The faster onset is due to the fact that this compound is activated in 

the liver and it does not require renal hydroxylation. Calcitriol is also effective in the 

treatment of hypoparathyroidism and in some forms of pseudohypoparathyroidism in 

which endogenous levels of calcitriol are abnormally low.(41)   

!
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Figure 1.12 Structures of Dihydrotachysterol and Calcitriol. 

3. Hyperparathyroidism secondary to chronic renal failure: this condition refers to 

the excessive secretion of PTH by the parathyroid glands in response to low blood 

calcium level. This disorder is a frequent complication of chronic renal failure. Failing 

kidneys do not convert enough 25-(OH)-D3 to 1α,25-(OH)2-D3, and they do not 

adequately excrete phosphorus. Insoluble calcium phosphate forms in the body and 

removes Ca2+ from the circulation. The low calcium concentration leads to 

parathyroid hormone secretion in an attempt to increase the serum calcium levels.(23) 

The common therapy includes the use of a vitamin D3 compound in association with 

phosphate binder (calcium carbonate or acetate) in order to prevent 

hyperphosphatemia. Intravenous calcitriol injection, in patients on haemodialysis, 

gives an important effective suppression of PTH high levels but hypercalcaemia and 

hyperphosphatemia are frequent complications that limit this type of therapy. 

Paricalcitol, Calcifediol, Doxercalciferol and Oxacalcitriol (figure 1.13), synthetic 

calcitriol analogues, are more effective drugs to control this condition associated with 

chronic renal failure since they suppress intact PTH levels with minor effect on 

calcium and phosphorus metabolism.(23,41) 
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Figure 1.13: Structures of analogues of vitamin D used in hyperparathyroidism. 

4. Psoriasis: is a chronic, autoimmune disease that appears on the skin and occurs when 

the immune system produces faulty signals that extremely stimulate the growth cycle 

of skin cells leading to epidermial hyperproliferation, altered maturation of skin cells, 

vasculare changes and inflammation.(41) 1α,25-(OH)2-D3 has a vital role in skin-tissue 

function through its effects on proliferation and differentiation of keratinocytes.  

Calcipotriene (figure 1.14), a low calcaemic synthetic vitamin D3 analogue, inhibits 

epidermal cell proliferation and enhances cell differentiation. In addition, 

Calcipotriene abolishes the inflammatory T-cells activation and proliferation and 

inhibits the production of some inflammatory mediators, which all contribute to the 

development of psoriasis.(42) The precise mechanism is not well understood, however 

it reduces cell numbers and total DNA content and is indicated for topical application 

and has the same affinity for the VDR as calcitriol but its effect on calcium 

metabolism is 100 to 200 time less due to its rapid metabolism.(26)  More recently 

another vitamin D analogue Tacalcitol (1α,24-dihydroxyvitamin D3), has become 

available for the treatment of psoriasis (figure 1.14).  
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Figure 1.14: Structure of Calcipotriene. 

!

1.4 What is cancer? 

Giving a definition about “what is cancer” may be limited and incomplete, but as a result of 

many studies carried out in the last 30-50 years, it is possible to define cancer as the 

combination of different diseases characterised by unregulated cell growth resulting in the 

invasion of the surrounding tissues and the diffusion (metastasis) to other organs of the 

body.(43) At the molecular level, cancer is characterised by a series of mutations that produce 

excessive activation of oncogenes and excessive inactivation of tumour suppressor genes.(44) 

Oncogenes are genes that have gained the potential to cause cancer as a consequence of 

genetic changes in either their coding region or regulatory sequences. In normal cells these 

genes are called proto-oncogenes, code for proteins involved in cell growth and 

differentiation, and become oncogenes after expression is altered. The gene modification 

results in either qualitative (generation of an abnormal product by mutation in the coding 

region) or quantitative (quantitative changes in a normal product generation due to altered 

transcription). Tumour suppressor are genes that in normal cells inhibit growth and other 

functions and are inactivated for growth to occur. When these genes are mutated causing a 

loss or reduction of their functions, the cells can progress to cancer. Tumourigenesis, the 

process by which cancers are generated, is a multistep mechanism, which reflects the genetic 

alteration of the normal vital pathway leading to a progressive transformation of normal cells 

into highly malignant derivatives.(43,44) Nowadays, more than 100 distinct types of cancer 

have been identified (figure 1.15), and a very large number of causes have been reported as 

tumour generators: 
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• Environmental chemicals, smoking, radiation, etc. 

• Diet and lifestyle: high consumption of fruit and vegetables is linked with a decreased 

risk of many cancers (presence of antioxidant, vitamins, fibre, etc.) whereas high 

consumption of meat and fats is associated with an elevated risk of developing 

different cancer types. 

• Sex hormones: they are involved in prostatic, breast, ovary and uterus cancer. 

Hormones influence proliferation of their target cells contributing to their promotional 

effects. 

• Family history: there is a small percentage (around 5 %) that an inherited faulty gene 

can lead to an increased risk of cancer. 

• Virus infection: either RNA (HIV, sarcomas, etc.) or DNA (Epstein-Bar virus, etc..) 

virus can influence many host functions and disrupting cell regulation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15: List of some of cancer types in human downloaded from Cancer Research UK website.(45) 
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1.4.1 Hallmarks of cancer 

In order to find general features in common between the different types of cancers, Hanahan 

et al. (44) proposed six fundamental alterations in cell physiology that altogether cause 

malignant growth: 

! Self-sufficiency in growth signals: tumour cells generate their own growth signals by 

altering the extra cellular growth signals, altering the transcellular transducers of those 

signals and altering the intracellular circuits that translate those signals into action. The 

cells grow ignoring the body control. 

! Insensitivity to antigrowth signals: tumour cells become insensitive to the normal 

antigrowth signals by down-regulation of membrane receptors, dysfunctional mutation of 

those receptors or non-response to inhibitory protein action. 

! Evading apoptosis: resistance to programmed cell death can be acquired through several 

different strategies. Loss of the proapoptotic regulator through mutation involving the p53 

tumour suppressor gene is the most common feature. 

! Limitless replication potential. 

! Sustained angiogenesis: formation of new blood vessels from pre-existing vessels, and 

consequent oxygen and nutrients supplies, is crucial for cell function and survival. During 

tumour development, the cells activate uncontrolled angiogenesis by changing the 

balance of angiogenesis induces (e.g..: VEGF) and inhibitors (e.g.: thrombospadin-1).  

! Tissue invasion and metastasis: cells from the initial tumour move out, invade adjacent 

tissues and then move to distant tissues forming new tumour colonies. Several classes of 

proteins involved are altered in cancer (proteases, integrins, etc.). 

 

1.4.2 Cancer treatments 

When a cancer is detected, the options available for treatment depend on its localisation.(43) If 

the tumour is localised, a surgical removal of the primary cancer followed by additional drug 

or radiation therapies to kill the residual cells is the common treatment. For advanced 

metastatic cancer, the drug treatment is the most effective. The ideal therapy would be one 

that removes all the cancer cells without affecting normal cells or at least minimising the side 

effects on them. Following these considerations, the surgical removal is the best but 

unfortunately is not possible for several types of cancer (blood cells, leukaemias, bone, etc.). 

Nowadays the available cancer treatments could be divided as follows: 
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! Surgery: surgical removal of cancer tissues followed by drugs or ionizing radiations. As 

mentioned before, it is not suitable for all types of cancer. 

! Radiotherapy: ionising radiations damage the DNA strand by generating oxygen species 

and the cell dies by an apoptotic pathway. Unfortunately, the quantities of x-rays that can 

be used on a patient are limited by the non-selectivity of the therapy which damages even 

the surrounding normal cells. 

! Drug treatment: or chemotherapy is the most widely used treatment.  Chemotherapy is 

based on drugs that have a broad cell specificity because they affect cell processes. The 

drug can be cytotoxic, it kills the cells and has the potential to cure the patient; or 

cytostatic, it stops proliferation of the cells preventing further growth but not always 

eliminate the cancer.  
 

1.4.3 Drug resistance 

During cancer treatment, some of the cells respond to the treatments whilst others remain un-

responsive. This difference is due to the heterogeneous behaviour of the cells acquired during 

the molecular changes associated with the tumour progression.(43, 46) The heterogeneity is a 

consequence of the characteristics of the cells themselves and to their location within the 

cancer. Resistance to the drug can be intrinsic, individual cells can develop resistance against 

drugs to which they are exposed, or extrinsic, some possibly sensitive cells became resistant 

because of external factors.  In this second case, the development of resistance is due to the 

stage in the cell cycle (cells in G1 phase are insensitive to most treatment, cells in phase S 

and M are very sensitive, but DNA synthesis take up 1% of the cycle time, only 1% will be in 

phase S so only 1% of possibility that S-phase drugs are effective) and their location relative 

to blood vessels (if the cell is too far from the blood vessel, it will not receive enough drug to 

kill it). The drug resistance is therefore the main cause of treatment failure and the cells adopt 

different mechanisms to escape the drug effects (e.g.: increased efflux/decreased influx of the 

drug, increased inactivation/decreased activation of the drug, altered target, DNA repair). The 

resistance to treatment is the major failure cause of the cancer therapy. New therapies able to 

overcome resistance problems and with reduced side effects are strongly needed. 
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1.5  Vitamin D and cancer 

In 1980, Garland and colleagues hypothesised that a greater level of vitamin D was 

associated with a reduced risk of colon cancer.(47) Afterwards, this connection between cancer 

and vitamin D was indicated for breast cancer, ovarian cancer, prostate cancer, and to 

multiple cancer types. This hypothesis resulted from the known fact that sun exposure 

increased vitamin D levels and from ecological studies which proved that residence in higher 

latitudes was associated with greater rates of these cancers.(48-52) In 1981 Abe et al. (53) found 

that  calcitriol inhibited the proliferation of a variety of human leukaemic cell lines. 

Subsequently, it was shown that neoplastic cells also express vitamin D receptors, express 1-

α-hydroxylase and that the interaction between 1α,25-(OH)2-D3 and VDR receptors induces a 

number of anticancer properties including reduced proliferation, invasiveness, angiogenesis 

and metastasis and increased differentiation and apoptosis.(54) Further epidemiologic and in 

vitro studies support the relationship between vitamin D and cancer as a consequence of 4 

main evidences: (32) 

1. Increased risk of developing cancer is linked with low levels of circulating vitamin D. 

2. Reduced risk of developing cancer is linked with elevated vitamin D intake. 

3. Lower aggressiveness of cancer has been detected in summer when the vitamin D 

production is higher. 

4. Risk of developing cancer is affected by polymorphism of genes encoding for proteins 

involved in the Vitamin D signalling pathway. 

Since this initial hypothesis a number of studies have examined the link between vitamin D 

and cancer, and although the exact mechanism of the growth inhibitory actions of vitamin D 

and its analogues in cancer cells is not entirely understood, all the obtained data support a 

multipronged effect involving: (55) 

• Cell cycle regulation: calcitriol-VDR interaction arrests the cancerous cell cycle at 

the G0-G1 transition and has an inhibitory effect on the G1/S checkpoint through 

different mechanisms. This G1 arrest is achieved in several cell types increasing the 

expression of cyclin-dependent kinase (CDK) inhibitors p21waf1/cip1 and p27kip1 which 

causes a decrease in CDK2 activity leading to dephosphorylation of retinoblastoma 

protein (pRb) and repression of E2F transcriptional activity (arrest in the G0-G1 

phase).(55,56) For example, 1α,25-(OH)2-D3 increases  p21waf1/cip1 expression in 

myelomonocytic cell line U937.(57) 
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• Growth factors and growth factor receptors: the growth inhibition of cancer cells 

by calcitriol is also linked with growth factor signalling. Transforming growth factor-

β (TGF-β) is a potent inhibitor of the proliferation of many cell types and is involved 

in cell cycle control and apoptosis.(55) Vitamin D analogues induce autocrine TGF-β 

activity increasing expression of TGF-β isoforms and/or TGF-β receptors in non-

malignant and malignant breast cells.(58,59) Similar mechanisms are also involved in 

human osteosarcoma and prostate cancer cell growth inhibition.(55)  In MCF-7 breast 

cells, the insulin-like growth factor (IGF) stimulated cell growth is inhibited by 

vitamin D analogues and the effect is associated with an elevated release of insulin-

like growth factor binding protein-3 (IGFBP-3) into media.(60) IGFBP-3 limits the 

proliferative anti-apoptotic actions of IGF by binding to it and preventing the 

interaction with the cell-surface receptor. In prostate cancer cells, 1α,25-(OH)2-D3 

and its analogues up-regulate expression of IGFBP-3 inducing its accumulation 

leading to inhibition of IGF proliferative action.(61) 

• Apoptosis: 1α,25-(OH)2-D3 and its analogues were found to induce apoptosis in 

cancer cells by the reciprocal modulation of the anti-apoptotic protein Bcl-2 and 

BclXL and the pro-apoptotic protein Bax content.(62,63) In prostate and breast cancer 

carcinoma cells, calcitriol, inhibiting the expression of the Bcl-2 gene, activates the 

intrinsic apoptotic pathway by causing the disruption of mitochondrial function 

(permeabilization of the mitochondria), releasing of cytochrome-C (into the 

cytoplasm it initiates the activation of the caspase cascade) and generating reactive 

oxygen species (ROS).(62,64) Calcitriol enhances the expression of p73, which has 

been shown to be associated with apoptosis induction in many human and animal 

tumour models.(65) Calcitriol analogues also increase intracellular calcium, which 

activates the calcium-dependent pro-apoptotic protease, µ-calpain.(55) Expression of 

G0S2 mRNA (G0-G1 switch gene 2, a pro-apoptotic protein whose expression is 

frequently suppressed in cancer) has been induced after calcitriol treatment in colon 

cancer cells.(66) A number of caspases (3, 4, 6 and 8) are induced by calcitriol after 

treatment of MCF-7 cells.(67) 

• Differentiation: in addition to proliferation and apoptosis processes, calcitriol 

regulates differentiation of different types of cells, including keratinocytes, 

osteoblasts and hematopoietic cells.(55) The differentiation process generates cells that 

acquire a more mature and less malignant phenotype.  
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• Invasion and metastasis: vitamin D and its analogues decrease the invasiveness of 

several cell types in vitro (inhibiting VEGF-induced endothelial cell tube formation), 

and inhibit angiogenesis and metastasis in xenograft and transgenic mouse models in 

vivo.(68) In cultured malignant cells, calcitriol down-regulates cell invasion-associated 

proteases such as matrix metalloproteinases (MMPs) and urokinase-type 

plasminogen activator.(55) In the same malignant cells, calcitriol increases the 

expression of plasminogen activator inhibitor and MMP inhibitor I.(69) In some breast 

cancer cell lines, calcitriol increases the expression of E-cadherin, which has an 

important role in invasion and metastasis prevention, and down-regulates the 

expression of α6 and β4 integrins.(70) Moreover it has been shown that calcitriol 

inhibits angiogenesis by suppressing COX-2 (71), a key enzyme in the synthesis of 

prostaglandins (the effect could be linked with its action in increasing HIF-1 protein 

in cancer cells).(72) 

• Anti-inflammatory effects: inflammation has been recognised as a risk factor for the 

development and progression of many cancer types.(73) Over-expression of 

inflammatory mediators (cytokines, chemokines, prostaglandines) and the presence 

of inflammatory cells has been found at the tumour sites. These inflammatory events 

promote tumour progression, metastasis and invasion by the activation of the 

angiogenic switches under VEGF control.(74) Anti-inflammatory activity of vitamin D 

and therefore the anti-tumour action is proved by several experimental results. The 

VDR receptor is expressed in the immune system and vitamin D modulates activity 

of various defence and immune cells by gene-regulation including blood monocytes, 

macrophages, antigen-presenting cells, pro-inflammatory cytokines, prostaglandins 

and activated CD4 T cells.(75) Calcitriol is involved in the modulation of T-

lymphocyte proliferation and function. 1α,25-(OH)2-D3 suppresses activation of 

NFkB, a transcription factor that regulates the expression of genes involved in 

inflammatory, immune responses and cell proliferation.(76) In a study on prostate 

cancer cell lines, calcitriol decreased the mRNA and the protein levels of COX-2, 

reduced the expression of the prostaglandins receptor EP2 and FP and increased the 

expression of 15-hydroxyprostaglandin (involved in the prostaglandins catabolism). 

Consequently the prostaglandins production is decreased together with proliferative 

and angiogenic stimulation of the cancer cells.(77) 
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• Novel molecular events: new cellular events have been shown to be regulated by 

calcitriol. 

1. Wnt/β-catenin signalling disruption: vitamin D can destroy the β-catenin 

function. 1α,25-(OH)2-D3 induces the binding of VDR to the free β-catenin 

reducing its free concentration and therefore the binding to the TCF4 

(transcription factor) on DNA that usually starts the transcription gene of 

protein involved in the cell proliferation control (e.g. Cyclin D1).(78) This lead 

to antiproliferative effect. 

2. Antioxidant defence and DNA repair: oxidative stress-induced DNA damage 

and loss of DNA repair mechanisms contribute to carcinogenesis. Calcitriol is 

involved with both of these two phenomena. The oxidative DNA damage has 

been found to be elevated in distal colonic epithelium of VDR-knockout mice 
(79) whereas it is reduced in the colon epithelium of human treated with a daily 

supplementation of 800 I.U. of vitamin D3.(80) Moreover, 1α,25-(OH)2-D3 

induces several enzymes involved in the antioxidant defence system (SOD1 

and 2).(81,82) 1α,25-(OH)2-D3 regulates the production of genome protector 

proteins. A vitamin D analogue, EB109, up-regulated GADD45α mRNA. 

GADD45α is a p53 target gene involved in DNA repair, and its activation can 

increase DNA repairing.(83) 

Vitamin D anticancer mechanisms are reported in figure 1.16 (below).(84) 
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1.5.1 Breast cancer and vitamin D 

In the last 30 years the role of vitamin D in breast cancer prevention and survival has been 

proved by several evidences.(85) The first important evidence is the presence in breast cells of 

the vitamin D metabolism machinery (CYP27B and CYP24A1).(86)  Studies have reported an 

inverse relation between vitamin D intake and the risk of developing breast cancer, 

enhancement in survival after a diagnosis of breast cancer in women with higher levels of 

vitamin D, and vitamin D deficiency in up to 75% of patients with breast cancer. VDR 

receptor have been found in up to 80% of breast cancers, and differences in survival have 

been associated with vitamin D receptor polymorphisms.(87-91) Moreover calcitriol and its 

analogues have been shown to inhibit the proliferation of breast cancer cells in vitro (92) and 

tumour progression in vivo.(93) Growth inhibition has been observed using a combination of 

vitamin D3 or its analogues and tamoxifen or other anti-oestrogen.(94) 1α,25-(OH)2-D3 can 

inhibit both the synthesis and the biological action of oestrogens by reducing the expression 

of the gene coding aromatase. In addition, 1α,25-(OH)2-D3 can down-regulate oestrogen 

receptor (ER)-α. Vitamin D analogues efficacy in both oestrogens receptor (positive and 

negative) breast cancer cells is an interesting aspect of their action. Some vitamin D 

analogues inhibit angiogenesis and decrease metastatic potential in addition to their direct 

growth inhibitory effects.(55) 

 

1.5.2 Prostate  cancer and vitamin D 

1α,25-(OH)2-D3 has been shown to inhibit the proliferation of both androgen-dependent and 

androgen-independent prostate cancer cells.(55) Now, it is well established that vitamin D 

compounds inhibit the growth of normal prostatic epithelial cells, primary cultures of prostate 

cancer cells and many prostate cancer cell lines (induction of cell cycle arrest).(95-98)  The 

VDR and the enzymes involved in calcitriol metabolism are present in healthy and tumour 

prostate cells.(32) Apoptotic and differentiation effects of endogenous calcitriol were seen on 

prostate cancer cell lines DU-145 and PC-3 and these effects are greatly enhanced by the use 

of CYP24 inhibitors (99) (see below). Moreover in vitro studies have shown induction of 

apoptosis and inhibition of cell growth in androgen-sensitive (LNCaP) and androgen-

independent (PC-3 and VeCaP) prostate cancer cell lines.(100) All these data support the use of 

vitamin D-based therapies for prostate cancer and/or as second-line therapy if the usual 

androgen deprivation therapy fails. 
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1.5.3 Colon cancer  and  vitamin D 

As previously mentioned, connection between colon cancer and vitamin D was found in the 

1980s as from epidemiological studies.(47) Vitamin D and its analogues reduce the 

proliferation of colon cancer cells in vitro and they also reduce tumourigenesis in xenograft 

and chemically induced tumours in vivo.(101,102) Vitamin D and its analogues exert their action 

through several mechanisms including interaction with Wnt/catenin signalling pathway (it 

has an important contribution to colorectal cancer evolution) and the innate immune 

response.(103,104) Several epidemiologic studies show that vitamin D deficiency may 

accelerate colon cancer growth and blood levels of 25-(OH)-D3 lower than 25 ng/mL were 

associated with an increased risk of colorectal cancer.(105) Using dietary supplementation with 

a series of low-calcaemic vitamin D analogues, studies showed a reduced tumour incidence 

and inhibition of spontaneous metastasis in a 1,2-dimethylhydrazine-induced colon 

carcinogenesis.(106) The results from these studies indicate that vitamin D analogues may be 

an effective new approach for colon cancer prevention. 

 

1.5.4 Chronic lymphocytic leukaemia  and vitamin D 

James et al. found that 1α,25-(OH)2-D3, in murine and human myeloid leukaemic cell lines, 

inhibited the proliferation and promoted differentiation towards monocytes/macrophages.(107) 

Many studies that followed, have demonstrated that treatment with calcitriol resulted in 

growth arrest, induction of monocyte differentiation and apoptosis in a variety of acute 

myeloid leukaemia (AML) cell lines.(107-110) Moreover, in 2001, a gene expression profiling 

experiments of B-cell chronic lymphocytic leukaemia (B-CLL) cells have identified that the 

VDR is highly expressed in B-CLL compared with normal B and T lymphocytes.(111) A 

clinical trial study at Semmelweis University, started in 2012, in order to examine the role of 

adequate vitamin D intake in malignant and immune-hematologic disease is now entering 

phase III.(112) In February 2013, a new clinical trial at the Mayo Clinic has been set to prove 

the importance of vitamin D replacement in improving tumour response and survival and 

delay time to treatment in patients with cancer, including CLL, who are vitamin D 

insufficient.(113) 

1.5.5 Bladder cancer and vitamin D 
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Konety et al. (114) reported preclinical studies in which exposure to vitamin D has anticancer 

properties in bladder cancer. In 2010 (115) it was reported that the risk of bladder cancer is 

higher in men with a lower 25(OH) vitamin D3 serum level if compared with men with a 

higher serum level. A higher serum level of 25(OH) vitamin D3 is associated with higher 

concentration of vitamin D metabolites in the bladder. The increased exposure of the bladder 

tissue to these metabolites could promote the anticancer effects of vitamin D and therefore 

reduce neoplastic processes in the bladder epithelium. A recent study demonstrated that 

synthetic vitamin D elocalcitol attenuates the sign of detrusor muscle over-activity in animal 

models and suppresses bladder sensory signalling during bladder irritation. Either of these 

effects could be responsible for the suppression of LUTS (lower urinary tract symptoms) in 

patients with overactive bladder in bladder tumours.(116) 

1.5.6 Melanoma and vitamin D 

During the last few years, several publications reported that calcitriol regulates cellular 

growth and apoptosis in human keratinocytes and it has immune-modulatory, cytoprotective 

and antioxidative role in the skin, protecting human keratinocytes against UV-B induced cell 

damage.(117) 1α,25-(OH)2-D3, in human keratinocytes after UV-B radiation, decreases the 

number of cyclobutane pyrimidine dimers (CPDs), which are the more common DNA 

photoproducts caused by insufficient DNA-repairing after UV radiation.(118)  Moreover, it has 

been demonstrated that calcitriol enhances the natural killer (NK) cells susceptibility of 

human melanoma cells lines (119), that melanoma cells express the VDR receptor and are able 

to convert the 25(OH) into 1α,25-(OH)2-D3, that calcitriol slows down the proliferation of 

these cells and promotes apoptosis and inhibits proliferation of human melanoma cells in 

vitro.(120) 

1.5.7 Cancer impact on vitamin D system 

The impact that the tumour has on the vitamin D system, especially on VDR, CYP27B1 and 

CYP24A1, is important to understand and needs to be investigated. There are contradictory 

results regarding the influence of cancer on VDR receptor levels. Some studies report VDR is 

up-regulated in several tumours, enhancing the antiproliferative activity of vitamin D, and 

this could be a possible endogenous response to tumour progression (121). For example VDR 

protein levels are overexpressed in colorectal tumours.(122) On the other hand, studies on 

cancer development in skin, invasive breast tumours and ovarian cancer have shown a decline 
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of VDR levels.(123-125) The decrease of VDR receptor seems linked with reduced VDR gene 

expression, recruitment of co-repressors that down-regulate VDR gene transcription or as a 

consequence of epigenetic silencing of the gene. Even for the CYP27B1 there are conflicting 

results. Several studies show that cultured cells lost the ability to convert 25(OH)-D3 into 

1α,25-(OH)2-D3 and therefore the CYP27B1 activity after developing a more severe cancer 

phenotype.(32) The enzyme is normally present in human prostate epithelial cells, but its 

activity was reduced in cells from patients with benign prostatic hypertrophy and almost 

absent in cells from patients with prostate cancer.(126) The low levels of CYP27B1 make 

cancer cells un-responding to the growth arrest action of 25(OH)-D3. On the contrary, 

increased high levels of CYP27B1 mRNA were found in breast cancer cells if compared with 

normal breast tissue.(127) Consistent results have been found for the CYP24A1. Breast, 

colorectal, lung, ovarian, cutaneous basal cell and prostate cancer cells, all showed an 

amplification of the expression of CYP24A1.(128-129) The elevated expression of the enzyme 

results in a higher calcitriol catabolism and therefore in a decrease of the vitamin anti-cancer 

action. This could be considered a form of escape for the tumour cells and CYP24A1 has 

been proposed as a possible oncogene amplified in breast cancer.(130) All the cancer-induced 

changes to the vitamin D system reported above could affect cancer prevention and cancer 

treatment in several ways. In fact, low or lost function of CYP27B1 abolished the usual 

protection conferred by high intake of 25-(OH)D3 whilst the CYP24A1 elevated activity 

and/or the decreased VDR levels make essential elevated intake of 1α,25-(OH)2-D3 in order 

to induce the anti-cancer property of calcitriol.  

1.5.8 Clinical uses of vitamin D and its analogues in cancer 
 

More than 2000 synthetic analogues of calcitriol have been synthesised and several of them 

are currently being tested in preclinical and clinical trials for the treatment of various types of 

cancer.(131) Also different combinations of calcitriol and other chemotherapeutic agents are 

the subject of investigation.(132-134) Earlier studies (in vitro and in vivo studies) showed the 

therapeutic efficacy of systemically applied calcitriol for treating cancer, but afterwards 

(phase I and II) it has not satisfied its early promise.(132) The major drawback of calcitriol and 

its analogues is their effect on calcium metabolism, which results in hypercalcaemia. The first 

clinical trial studies to evaluate the anti-proliferative and pro-differentiating action of 

calcitriol in association with cytarabine were carried out in 1990 in myelodysplastic 

syndrome and acute leukaemia patients.(135) Even if the treatment prolonged remission in 
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elderly patients, hypercalcaemia in 10-30 % of patients was found and the study stopped. 

Other clinical studies involving calcitriol as an anti-cancer agent have been undertaken but 

the hypercalcaemia associated with the supra-physiological doses used to obtain the desired 

effects caused the failure of the studies in phase II.  Since then, several (55) different strategies 

have been tried to optimise the use of vitamin D analogues for the treatment of cancer and 

minimise the side effects: 

• Development of new vitamin D analogues with lower calcaemic activity (e.g 

seocalcitol, paricalcitol,) (figure 1.14). A phase I and II study was conducted in 

patients with advanced breast and colorectal cancers using seocalcitol. The dose-

limiting toxicity was considered the drug dose able to cause hypercalciuria. 

Unfortunately, these studies did not provide data to support the anti-tumour activity of 

seocalcitol at these doses and the study was terminated.(136) Paricalcitol, shown to be 

safe in phase I and II studies in advanced prostate cancer patients, but no significant 

responses were obtained and the study was terminated.(137) Unfortunately, most 

analogues even if they have a reduced hypercalcaemia effect compared with calcitriol 

have a lower affinity for the VDR receptor, which is associated with reduction of 

anticancer properties.(138) 

• Use of vitamin D and its analogues in combination with chemotherapeutic cytotoxic 

agents (such as docetaxel, gefitinib, paclitaxel, and carboplatin, etc.).(139) Studies in 

cells and animal models have shown that calcitriol can interact in either synergistic or 

additive manner with other anti-cancer drugs. Several phase I and phase II clinical 

trials have been conducted involving calcitriol and other chemotherapeutics in 

different malignant tumours. Combination of calcitriol and carboplatin has been used 

in patients who have prostate cancer that has not responded to hormone 

therapy.(140,141) The study successfully completed phase II showing reduction of PSA 

in almost 40 % of treated patients with acceptable side-effects. Phase I studies using 

combination of calcitriol and gefitinib (iressa) with or without dexamethasone in adult 

solid tumour have been completed giving important indications about the safe 

calcitriol concentration to be used in association with gefitinib in order to achieve the 

anti-tumour activity.(142-144) Calcitriol-docetaxel is the most investigated drug 

combination studied in prostate and lung cancer giving promising results. After phase 

II trial, a PSA reduction of >50 % and low collateral effects were found in patients 

with castration-resistant prostate cancer treated with this combination.(145) 
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• Attempt to limit the hypercalcaemic side effects by co-administration of prednisolone 

or bisphosphonates to limit the bone resorptive effects and maximize effective dose of 

the vitamin D analogue. 

• Combination between P450 inhibitors (such as liarozole) and vitamin D or its 

analogues.(146)   

 

 

 

 

 

 

 

 

Figure 1.17:  Vitamin D analogues with lower calcaemic activity. 

!

1.6 Vitamin D hydroxylase (CYP24A1) 

Biologically active forms of vitamin D are generally short-lived in target cells. As mentioned 

before, active vitamin D (calcitriol) attenuates/limits its function by inducing rapidly through 

the VDR its own metabolism via CYP24A1. This single enzyme is responsible for a cascade 

of sequential metabolic processes that lead to a wide array of products with increasing 

polarity and eventual loss of hormonal activity (see vitamin D3 metabolism section 1.3.1).  

Although the potential of calcitriol and its derivatives as an anti-cancer agent has been shown 

in several in vitro and in vivo studies, an anticancer therapy using vitamin D derivatives 

remains a challenge due to increased drug resistance. Evidence shows that this resistance is 

caused by up-regulation of CYP24A1, resulting in accelerated metabolism and deactivation 

of calcitriol and derivatives.(16,55,143) 

Potential inhibitors of CYP24A1 could be the appropriate strategy to increase the lifetime and 

thereby the endogenous levels of calcitriol and its analogues, which may result in stabilised 
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CYP24A1 and enhanced stability of vitamin D compounds. In addition, as previously 

reported, the amplification of the CYP24A1 expression in several tumour cells, makes the 

gene coding for the CYP24A1 a putative oncogene that could be an interesting anti-tumour 

target. 

1.6.1 CYP24A1 inhibitors 

Several azole-type compounds have been found to inhibit P450 cytochrome activity, e.g. 

CYP51 in antifungal therapy (15,148) or CYP19A1 in breast cancer (15,148), and led to 

therapeutic breakthroughs. These compounds bind to the haem iron via a lone pair of 

electrons from the azole nitrogen and through other possible interactions with the binding 

pockets environment.(149) A few broad spectrum P450 inhibitors have been shown to inhibit 

CYP24A1 (150), e.g. ketoconazole and liarozole (figure 1.18). The challenge is designing 

CYP24A1 azole-inhibitors with selectivity in order to avoid interferences with 1α,25-(OH)2-

D3 synthesis by inhibiting 1α-hydroxylase (CYP27B1), a related mitochondrial P450 enzyme 

but important for calcitriol activation. Various studies have been conducted on potential azole 

CYP24 inhibitors. 

SDZ 89-443 and (R)-VID400 (figure 1.18) have been identified as potent and selective 

CYP24A1 inhibitors. Schuster et al. studied the vitamin D metabolism in human 

keratinocytes. In these studies (R)-VID400 showed the desired qualities as a selective 

CYP24A1 inhibitor (40-fold selectivity CYP24A1/CYP27B).(150)  

Adding liarozole, a CYP24A1 inhibitor, to calcitriol in an androgen-independent DU145 cell 

line increased the half-life of calcitriol and enhanced up-regulation of the vitamin D 

receptor.(142) 

Combination of ketoconazole (CYP24A1 inhibitor) with calcitriol gave promising results in 

preclinical studies conducted in prostate cancer cells.(151-152)  

Ketoconazole and liarozole enhanced the antiproliferation of breast cancer cell lines, working 

in synergy with calcitriol action.(153) 

Other non-azole compounds have been described as potent selective and low calcaemic 

CYP24A1 inhibitors: 

• Some 24-sulfone CTA018 (154) and 24-sulfoximine CTA091 (155) analogues of 

calcitriol (figure 1.19). 

• Zhu et al. (156) described a series of vitamin D analogues as potent CYP24A1 

inhibitors (figure 1.19). In addition to the imidazole derivative VIMI that showed an 
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KI = 0.021µM in an enzymatic inhibition assay, the sulfonate derivative TS17, the 

cyclopropyl derivative CPA1 and the bromine-ester derivative AB47 were found to 

have  good inhibitory activity with an KI respectively of 0.039µM, 0.042µM and 

0.021µM. Moreover TS17 and CPA1 showed a CYP24A1 selectivity over 25-

hydroxy-vitamin D3 1α-hydroxylase (CYP27B1), with selectivity of 39 and 80, 

respectively.  

• Tetralone derivatives (figure 1.20) greatly enhanced the apoptotic and differentiation 

effect of calcitriol on prostate cancer cell lines DU-145 and PC-3 by reducing the 

metabolism of calcitriol resulting in a better inhibition of proliferation of the cancer 

cells.(99) 

• Genistein, an isoflavone that is able to inhibit CYP24A1, showed induction of 

apoptosis and inhibition of cell growth in androgen-sensitive (LNCaP) and in 

androgen-independent (PC-3 and VeCaP) prostate cancer cell lines in vitro 

studies.(100)  

Developing CYP24A1 inhibitors could be a promising combination therapy together with 

calcitriol, for different types of cancer by sustaining the level of calcitriol and allowing the 

reduction of its dose thus limiting the side-effects.! 

!

!

 

 

 

 

 

 

 

 

 

 

Figure 1.18: Azole CYP24A1 inhibitors. 
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Figure 1.19: Vitamin D-like structure CYP24A1 inhibitors. 
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Figure 1.20: CYP24A1 inhibitors. 

!

1.7 Aims and Objectives 

The anticancer properties of vitamin D are becoming an interesting field of studies and 

several promising works have been carried out. Unfortunately, the short half-life of calcitriol, 

due to the CYP24A1 enzymatic activity, is a limitation for its use in therapy. The aim of this 

project is to develop new, potent and selective inhibitors of CYP24A1 that could be used in 

the treatment of different types of cancer in order to enhance the endogenous vitamin D 

levels and/or increase the half-life of vitamin D analogues and favour their anti-tumour 

activity. The crystal structure of human CYP24A1 is not available and the rat isoform of the 

enzyme will be used to build a homology model. The new model, after validation using 

calcitriol and (R)-VID400, will be used for different molecular modelling studies (docking, 

molecular dynamic, flexible alignment). In a previous study carried out by our research group 

the (E)-N-(2-(1H-imidazol-1-yl)-2-phenylethyl)-4-styrylbenzamide (MCC165) (figure 1.21) 

has been synthesized and showed a potent CYP24A1 inhibitory activity (IC50 = 0.3 µM 

compared with ketoconazole IC50= 0.52 µM) in a cell based assay employing a recombinant 

cell line expressing human CYP24A1 enzyme.(157) Starting from this lead compound, through 

molecular modelling studies, 13 different families of potential CYP24A1 inhibitors will be 

prepared using different synthetic pathways. 

 

 

 

 

Figure 1.21: Lead compound MCC165. 

The planned modification can be briefly summarised as follow: 
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• Substitution on the aromatic ring (e.g. Family I, Family X, Family XI) 

 

 

 

!

!

• Styrene modification: reduction, replacement, inclusion in an aromatic ring (e.g. 

Family I, Family II, Family X, Family IX) 

!

!

!

!

!

• Lateral chain modification: length, substituent, elimination of chiral carbon (e.g. 

Family III, Family IV, Family VI, Family XIII) 

 

!

!

!

!

• Modification of the haem iron interaction group: imidazole, sulfonamide, sulfonate, 

cyclopropylamine (e.g. Family VII, Family VIII, Family XI, Family XII, Family XIII) 

!

!

!

!
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CYP24A1 inhibitory activity, together with CYP27B1 selectivity, of the new molecules will 

be evaluated using an enzymatic cell-free assay. Combination of the enzymatic data and 

molecular modelling results will be used to obtain a rational SAR for a hypothetical 

CYP24A1 inhibitor. 

!
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2.1  CYP24A1 Homology Model 

Currently no human CYP24A1 crystal structure is available and requires the construction of a 

homology model to perform the molecular docking studies. In previous work carried out in 

our research group a CYP24A1 homology model was constructed (1) (figure 2.1). Using 

MOE-software, the crystal structure of CYP3A4 (human prostate +liver, 34% identity) was 

used as a template and the amino acid sequence of human CYP24A1 was downloaded from 

ExPASy (Export Protein Analysis System).(2) Supplementary active site optimisation of the 

model containing the CYP24A1 inhibitor (R)-VID400 was performed by molecular dynamics 

(GROMACS 3.2) to obtain a final CYP24A1 homology model. The new model was validated 

by docking studies of the natural substrate calcitriol and (R)-VID400. 
!
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Figure 2.1: CYP24A1 homology model built using the CYP3A4 as template.!
!

This new model has been used for the design and development of our first family of 

compounds giving important information regarding the active site environment and the 

possible amino-acid residues involved in the interactions. Unfortunately, from the docking 

studies it was not possible to understand the difference in activity among the various 

compounds obtained from the CYP24A1 enzymatic assay. All the docked compounds showed 

the same disposition in the active site with only a few hydrophobic interactions (especially 

Trp 134) and no other important binding interactions. This lack of information could be 

linked with our model because even if it represents the real enzyme in a satisfactory way, its 

3D structure was derived from a similar but not equal enzyme (CYP3A4) and therefore it will 
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not be completely accurate. Recently an open form structure of rat CYP24A1 has been 

crystallised at 2.5 Ǻ resolution and an interesting 83% identity in amino acid sequence was 

found between the new crystal and human isoform.(3,4) (figure 2.2)  

 

 

 

 

!
 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Sequence alignment of human and rat isoform obtained using Clustal omega.(5) The “*” means 

presence of identical amino acids residues, “:” means presence of conserved substitutions, “.” means presence of 

semi-conserved substitutions. Small hydrophobic residues are in red (AVFPMILWY), acidic in blue (DE), basic 

in magenta (RHK), basic hydroxyl or amine in green (STYHHCNGQ).  
!

Figure 2.3 shows the crystal structure co-crystallised with three molecules of Chaps (3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate), a common detergent used to 

solubilise biological macromolecules during their purification. One molecule of detergent is 

bound in the membrane binding region (green), one occupies the substrate-access channel 

(purple) and the third is located above the haem in a non-binding orientation (light blue). The 

presence of detergent in the access channel and binding pocket is a confirmation of the 

lipophilic nature of this part of the protein and it gives us an important enzyme open 

conformation which could be useful for studying the potential pathway of the natural 

substrate calcitriol to transit from the membrane to the active site. Moreover the well defined 
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access channel and active site could help in the development of potential and selective 

CYP24A1 inhibitors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Crystal structure of the rat CYP24A1 with 3 different Chaps molecules, one in the  membrane 

binding region (green), one occupies the substrate-access channel (purple) and the third is located above the 

haem in a non-binding orientation (light blue). The haem group is in yellow. 

 

Following the previous homology model technique, a new CYP24A1 model has been 

constructed using the rat crystal structure of the enzyme as a template and the amino acid 

sequence of the human CYP24A1 isoform. A new 3D homology structure was obtained 

(figure 2.4). 

Different validation methods were adopted in order to verify the quality of our new model 

using the on-line application RAMPAGE server (6), Verify 3D (7) and Errat.(8) The results for 

all of the three validation methods are reported in table 2.1 and compared with those obtained 

for the template crystal (the enzyme structure without crystallisation solvent). 

 

 Ramachandran plots 
(%)!

Verify 3D (total 

score) 

Errat 

(%) 

Model 96.8 195.79 96.48 

3D-Template crystal 97 195.79 96.48 

Table 2.1: Homology Model validation results.!
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Figure 2.4: New CYP24A1 homology model.!

Validation results suggest that our new model acted well in terms of main chain 

stereochemistry and amino acid environment. In the Ramachandran plot, a total of 96.8% of 

the residues of our model were in the favoured region, which is an important indication that 

the backbone dihedral angles (φ and ψ) were reasonably accurate. The high value of the 

Verify 3D total score and the Errat percentage are relevant information of the accuracy of our 

model. The correspondence in value of the three different results between our model and the 

crystal template provides a further important confirmation on the reliability of the new 

homology model. 

In order to further validate the active site architecture and confirm its quality, a molecular 

docking was performed using the natural substrate calcitriol. In addition to the published 

crystal structure, Annalora et al. (3), also reported a docking study in which they described the 

hypothetical disposition of calcitriol in the binding pocket of the enzyme open conformation. 

Using LeadIT2.12 molecular docking program reproduction of the theoretical vitamin D 

conformation and its hypothetical main interaction in the active site as reported in the paper 

quoted previously has been tried. Figure 2.5 shows the docking of calcitriol in the active site 

of our CYP24A1 model. Calcitriol reaches the active site through a hydrophobic channel 

(figure a) in which it could interact, through arene-arene or arene-H interactions, with several 

lipophilic amino acids. The conformation in the active site is stabilised by two hydrogen 

bonds between the 3-OH group of calcitriol and Leu129, and the 25-OH of the lateral chain 

and Leu325 (figure b). Moreover multiple hydrophobic interactions are possible with the 
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different residues forming the active site (Ile131, Trp134, Met246, Phe249, Thr394, Thr395, 

Gly499, Tyr500). Probably, as reported in Annalora's paper, this docking conformation is not 

the final configuration important for the enzyme catalytic cycle. In fact, the C21 of the lateral 

chain of calcitriol instead of C24 (the carbon which is hydroxylated in the normal catalytic 

cycle) is positioned over the haem perpendicular to the iron atom. Moreover the C21 overlaps 

with a water molecule co-crystallised with the enzyme (excluded during our docking studies) 

that is bound to the sixth coordination site of the haem iron during the catalytic cycle. These 

results would suggest that, in the open form, calcitriol is placed in the active site with the C21 

group over the iron, in a position that perturbs the water-iron binding. This results in a 

displacement of the water, in a forced rotation of the C21 and an optimal orientation of the 

lateral chain of calcitriol with the C24 perpendicular to the iron. The correspondence between 

the docking results and the data reported in the crystal paper provide further evidence of the 

reliability of this new homology model that could be used for studying the binding and the 

interaction of potential CYP24A inhibitors in the open form of the enzyme.!

!

!

!

!

!

!

!

!

 

 
 

A)                                                                B) 

Figure 2.5: A) Calcitriol (purple surface) in the hydrophobic channel of the new model. B) Calcitriol (purple) in 
the active site forms two H-bond with LEU129 and LEU325. C21 is positioned over the iron (orange) of the 
haem overlapping a molecule of water (red sphere). 

 

2.2  Methods  

 

2.2.1 Computational approaches 
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All molecular modelling studies were performed on an Intel® Xenon® CPU E5462 @ 

2.80GHz x 4 processors running Linux Ubuntu 12.04.1 LTS using molecular operating 

environment (MOE) 2010 (9) and FlexX module in LeadIT 2.1.2 molecular modelling 

software (10). All the minimizations were performed with MOE until RMSD gradient of 0.05 

Kcal mol-1 Å-1 with MMFF94x (small molecules) or Amber99 (protein) forcefield and the 

partial charges were automatically calculated. 

 

2.2.2 Homology Modelling 

Homology Modelling is a useful technique to obtain a model of a protein using its amino acid 

sequence and a comparative 3D crystal structure (template) when its crystallographic 

structure is not available.(11) The method relies on the fact that the tertiary protein structure is 

more conserved that the primary amino acid sequence in two homologous proteins. The 

Homology Modelling building process is characterised by three main steps: 

• Finding the primary sequence of the protein that needs to be built, the 3D structure of a 

homologous protein which will be used as the template and align them using MOE align 

tool. 

• Launch the Homology Modelling calculation in MOE. The program generates a database 

of 10 possible conformers and the final model is taken as the Cartesian average of all the 

intermediate models. 

• Final step is the energy minimization in order to obtain a conformation of the model 

which can represent the nearest local minimum of potential energy. 

In our case, the Homology Model of the human CYP24A1 was built with the MOE-

homology modelling tool using a single template approach with Amber99 force field. The 

crystal structure of the rat enzyme isoform (downloaded from PDB: 3K9V) (12) was used as 

the template, based on the high sequence similarity. The sequence of the human isoform 

(downloaded from ExPASy) was loaded in MOE together with the 3D structure of the rat 

isoform, aligned (confirmation of the high identity in primary sequence) and the final 3D 

model was obtained as a single output structure. Due to the high identity between the two 

isoforms, only one possible final 3D structure was obtained as output and not the canonical 

10. Moreover, no final energy minimization was done in order to keep the atoms spatial 

coordination the most similar to the original crystal and do not disrupt the haem group. Using 
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Ramachandran plots (the Cambridge RAMPAGE server) (5) the stereochemical quality of the 

protein backbone and side chains was evaluated. Verify 3D (6) and Errat (7) plots gave 

information regarding the amino acid environment. The solvent accessibility of the side-chain 

and the fraction of the side-chain covered by polar atoms were considered by Verify 3D in 

order to give information about the compatibility of our 3D model with its own amino acids 

sequence (1D). Errat assesses the distribution of different types of atoms with respect to one 

another in the protein model. 

 

2.2.3 Molecular Docking 

Docking studies were performed using FlexX module in LeadIT 2.1.2 by BioSolve.IT.(10) The 

important amino acid residues of the active pocket of the new model (Gln82, Ile131, Trp134, 

Met246, Ala326, Glu329, Phe249, Thr330, Val391, Phe393, Thr394, Thr395, Ser498, 

Gly499, Tyr500) (3) were selected and then the selection was extended to 12 Å in order to 

include in the docking site the haem iron region and the access tunnel to the catalytic site.  A 

ligand data base in mol2 format, prepared using MOE, was used as input for the docking 

library and the iron atom of the catalytic site was set as essential pharmacophoric feature. 

Ligand docking was performed using the default values configured with flexible torsion, 

external formal charges, Corina for ring generation, volume overlap factor 2.9, ligand clash 

factor 0.6, verbosity 0. No water molecules were considered. Ten output solution were 

obtained from each input compound and a visual inspection, in MOE, was used to identify 

interaction types between ligand and protein. 
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3.1  Molecular Modelling studies 

The initial idea of our project was to combine the (R)-VID400 structure with calcitriol in 

order to obtain a new hypothetical CYP24A1 inhibitor (figure 3.1). 

 

 
!

!

!

!

!

!

!

!

!

!

!

!

!

!
 
 

Figure 3.1: The new styryl-benzamide family. 
 
The new designed imidazole styryl-benzamide series presents the modified calcitriol scaffold 

in its lower part: the styrene moiety mimics the conjugated double bond and the different 

substituents in the aromatic ring are in the same position as the two hydroxyl groups. In the 

upper part, the amidic bond and the presence of imidazole were kept from the (R)-VID400 

structure. As previously reported, the lead compound of the imidazole styrylbenzamide series 

(MCC165) has been synthesized and displayed a potent calcitriol metabolism (CYP24A1) 

inhibitory activity (IC50 = 0.3 µM) in a cell-based assay.(1) In molecular docking studies, 

carried out using our previous homology model, MCC165 showed a promising disposition in 

the active site, occupying the cavity in a similar orientation to (R)-VID400 (2). The docking 

studies were repeated using the new homology model and the docking of MCC165, calcitriol 

and (R)-VID400 gave the some interesting results (figure 3.2):  

• The imidazole ring of MCC165 and (R)-VID400 is positioned in a favourable 

conformation with the nitrogen perpendicular to the haem iron at an optimal distance 

for interaction.  



Family I: Styryl-Benzamide 

~ 63 ~!
!

• Both molecules occupy the same hydrophobic tunnel supposed for calcitriol and 

access the active site through the same hypnotised hydrophobic channel. 

 
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

A)                                                                
 
 
 
 
 
 
 
 
 
 
B) 

Figure 3.2: A) MCC165 (yellow) and (R)-VID400 (red) occupies the same hydrophobic channel of calcitriol 

(purple). B) MCC165 and (R)-VID400 have the imidazole ring perpendicular to the haem iron.!
 

Following these observations different substitutions on the styryl phenyl ring of the imidazole 

styryl-benzamide lead compound (MCC165) were made in order to find possible interactions 

with the active site (mono, di, and tri-methoxy and mono-fluorine substitutions) and a small 

family of 5 compounds was planned. These studies showed the correct disposition of these 4 

derivatives (in particular the dimethoxy) and suggested that further modification on this ring 

would not enhance the interaction with the active site. 
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Figure 3.3: MCC204, 3,5-dimethoxy derivative in the active site. 

!

Figure 3.3 shows the disposition of the dimethoxy derivative MCC204 in the active site. The 

presence of a hydrogen bond between the 3-methoxy groups and the Gln82 (bond not present 

in MCC165 docking), and other possible expositions of the ligand to the hydrophobic 

residues (Ile131, Trp134, Met246, Phe249, Thr394, Thr395, Gly499, Tyr500) may allow the 

correct disposition of this compound in the pocket with the nitrogen of the imidazole ring in a 

favourable position for the interaction (2.26 Å distance Fe-N). 

An important consideration needs to be given regarding the chiral carbon in the lateral chain 

of these compounds. The docking of both R- and S-dimethoxy derivative (MCC204) was 

performed and similar results have been found (figure 3.4). 

 
!

 

 

 

 

 

 

 

 

Figure 3.4: R- (white) and S- (lilac) stereoisomers docking of MCC204. The chiral carbon is coloured 

in black.!
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Due to the width of the pocket, in both stereoisomers, the lateral phenyl ring can be settled in 

the active site without any clashes with the amino acid environment and the remaining part of 

the molecule occupies entirely the access tunnel to the active site retaining the H-bond with 

Gln82. Moreover, (R)-VID400 (IC50 = 15nM) and its S-stereoisomer SDZ-285428 (IC50 = 

36nM) showed similarity in activity in the inhibition of CYP24A1 in human keratinocyte. (2) 

From these results, it was decided to run all molecular modelling studies using only one of 

the two stereoisomers, the S-derivative. 
!

3.2 !Chemistry 

Following the promising results obtained from docking studies, a five step synthetic pathway, 

obtained after several optimisations of reaction methods and routes, was planned for the 

preparation of imidazole styryl-benzamide series (scheme 3.1): 

1. Synthesis of 1,2,3-unsubstituted/substituted-5-vinylbenzene (Wittig reaction).!

2. Synthesis of 4–[(E)-2-(3,4,5-unsubstituted/substitutedphenyl)-1-!

ethenyl]benzoic acid (Heck reaction). !

3. Synthesis of N-(2-hydroxy-2-phenylethyl)-4-[(E)-2-(3,4,5-!

unsubstituted/substitutedphenyl)-1-ethenyl]benzamide (Coupling reaction). !

4. Synthesis of 2,4-[(E)-2-(3,4,5-unsubstituted/substitutedphenyl)-!

1-ethenyl]phenyl-5-phenyl-4,5-dihydro-1,3-oxazole (Nucleophilic reaction).!

5. Synthesis of N-[2-(1H-1imidazolyl)-2-phenylethyl)]-4-[(E)-!

2-(unsubstituted/substitutedphenyl)-1-ethenyl]benzamide (Nucleophilic displacement).!

 

!

!

!

!

!

!

!

!

!
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Scheme 3.1: Reagents and Conditions: (I) PhCH3Br, tBuOK, r.t., 3h (II) 4-bromobenzoic acid, Pd(OAc)2, ToP, 

Et3N, 100 oC, 20h (III) 2-amino-1-phenyl-ethanol, CDI, 20 h (IV) CH3SO2Cl, Et3N, 24 h (V) imidazole, 

isopropyl acetate, 125 °C, 48h. 

 

 

 

Final Compound R1 R2 R3 

MCC165 H H H 

MCC270 H F H 

MCC269 H OCH3 H 

MCC204 OCH3 H OCH3 

MCC268 OCH3 OCH3 OCH3 
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3.2.1 Synthesis of 1,2,3-unsubstituted/substituted-5-vinylbenzene 
 
 

 

 

 

 

Scheme 3.2: Synthesis of alkene derivatives using Wittig reaction. 

 

Synthesis of compound 5, 6 and 7 were carried out by the Wittig reaction.(3) In the reaction, 

different 3,4,5-unsubstituted/substituted benzaldehydes (1-3) were reacted with 

methyltriphenylphosphonium bromide (4) and potassium tbutoxide in dry THF under nitrogen 

for 3 h at room temperature to give the corresponding vinylbenzene derivatives (5-7) as oils.!

The Wittig reaction is a chemical reaction broadly used for preparation of Z or E-alkenes 

(depending on the stability of the formed ylide) using an aldehyde or ketone with 

triphenylphosphoniumylide (or Wittig reagent). Scheme 3.3 shows a proposed mechanism of 

action for the Wittig reaction.(4) A cyclo-addition of the Wittig reagent (II) to the carbonyl 

compound (I) forms the heterocyclic oxaphosphatane (III). Elimination in the 

oxaphosphatane gives the desired alkene (IV) and the triphenylphosphine oxide (V).!

The Wittig reagent (II) is prepared from phosphonium salt (I) and a strong base such as 
tBuOK as represented in scheme 3.3 B. The reactivity and the instability towards air moisture 

requires the preparation of the ylide in situ using dry THF and reaction immediately with the 

carbonyl compound.!

Different times of reaction were set up in order to achieve an optimal yield. Unfortunately no 

differences in yield were found after 3, 4, and 5 h and the yield ranged between 40 and 56%. 

Using a less moisture sensitive base such as sodium hydride, only a small increase of yield 

Product R1 R2 R3 YIELD 

5 OCH3 OCH3 OCH3 56% 

6 OCH3 H OCH3 46% 

7 H OCH3 H 26% 
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was obtained (60% maximum achieved yield).(5) The low yield in the synthesis of compound 

7 was due to the impurity of the purchased starting material (3).  

!

 

 

 

 

 

 
 

Scheme 3.3: Mechanism of the Wittig reaction. 

 

3.2.2 Synthesis of 4-[(E)-2-(3,4,5-unsubstituted/substituted-phenyl)-1-

ethenyl]benzoic acid 

 

 

 

 

 

 

Scheme 3.4: Synthesis of substituted alkene using the Heck reaction. 
 

The synthesis involves the formation of substituted alkenes using a classic Heck reaction. 

Different 1,2,3-substituted/unsubstituted-5-vinylbenzenes (5-9) and 4-bromo benzoic acid 

(10) were coupled using palladium (II) acetate catalyst and tri(o-tolylphosphine) as ligand, in 

a Et3N basic medium at 100˚C for 20 h.(6,7) The different compounds were re-crystallised 

from ethanol. In order to re-synthesize the lead MCC165, the commercially available styrene 

Product R1 R2 R3 YIELD 

11 OCH3 OCH3 OCH3 62% 

12 OCH3 H OCH3 58% 

13 H OCH3 H 40% 

14 H F H 56% 

15 H H H 60% 
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(9) was purchased from Sigma-Aldrich together with the 4-fluorostyrene (8), used for the 

preparation of the final fluorine derivative MCC270.!

The mechanism of the reaction is shown in scheme 3.5 and involves a succession of 

transformations around the palladium.(4)!The palladium (0) compound necessary in the cycle 

is generated in situ from the reduction of palladium (II) acetate to di-(tri-(o-tolyl) phosphine) 

palladium (0) by tri(o-tolyl) phosphine in step I. Tri(o-tolyl)phosphine is oxidised to tri(o-

tolyl)phosphine oxide. An oxidative addition in which palladium places itself in the aryl-

bromide bond and formation of a Π complex between bond and alkene occur respectively in 

step II and step III. Step IV, in which the alkene inserts itself into the palladium-carbon 

bond in a syn addition step, is followed by a β-hydride elimination with the formation of a 

new palladium-alkene Π complex (step V). This new complex is broken in step VI providing 

the desired substituted alkene. In the last step (VII) the palladium (0) compound is 

regenerated by reductive elimination of the palladium (III) compound by a base 

(triethylamine).!
!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.5: Mechanism of the Heck reaction. 
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3.2.3 Synthesis of N-(2-hydroxy-2-phenylethyl)-4-[(E)-2-(3,4,5-

unsubstituted/substituted-phenyl)-1-ethenyl]benzamide 

 

 

 

 

 

 

Scheme 3.6: Amidic bond formation. 

 

The synthesis of N-(2-hydroxy-2-phenylethyl)-4-[(E)-2-(3,4,5-unsubstituted/substituted 

phenyl)-1-ethenyl]benzamides (17-21) was achieved using a typical peptide coupling reaction, 

in which the carboxylic acid moiety (11-15) is first activated by 1,1΄-carbonyldiimidazole 

(coupling reagent), and then reacted with 2-amino-1-phenylethanol (16) to produce the desired 

compound.(1) A proposed mechanism (8) may implicate nucleophilic attack of the carboxylic 

group at the carbonyl carbon of CDI to form the active CDI-intermediate. The later addition of 

2-amino-1-phenylethanol at 0˚C gives the desired compound through a simple nucleophilic 

replacement on the carbonyl carbon of the intermediate. All the desired pure products were 

precipitated out by addition of ice-cold water. 

 

 

 

 

!

Product R1 R2 R3 YIELD 

17 OCH3 OCH3 OCH3 75% 

18 OCH3 H OCH3 75% 

19 H OCH3 H 74% 

20 H F H 83% 

21 H H H 83% 
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3.2.4 Synthesis of 2,4-[(E)-2-(3,4,5-unsubstituted/substitutedphenyl)-1-

ethenyl]phenyl-5-phenyl-4,5-dihydro-1,3-oxazole 

 

 

 

 

 

 
 

Scheme 3.7: Oxazole ring formation. 

The dihydro-oxazole ring products 22-26 were prepared following a previous procedure used 

by our research group in which the amide-containing compounds were reacted with 

methanesulfonyl chloride and Et3N as base in dry THF.(9,10) This synthesis concerns two 

sequential nucleophilic reactions as showed in scheme 3.8.!

 

 

 

 

 

 

 

 

 
 

Scheme 3.8: Mechanism of the formation of the oxazole ring using methanesulfonyl chloride. 

 

Product R1 R2 R3 YIELD 

22 OCH3 OCH3 OCH3 55% 

23 OCH3 H OCH3 77% 

24 H OCH3 H 42% 

25 H F H 87% 

26 H H H 66% 
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First a nucleophilic attack by the hydroxyl group at the sulfur atom of methanesulfonyl 

chloride forms the intermediate in which the former OH group is replaced by a better mesyl 

leaving group. The activation of the carboxyl-oxygen as a nucleophile, resulting from the 

abstraction of the amido proton by Et3N, and an intra-molecular nucleophilic attack gave the 

ring closure. Using the methanesulfonyl chloride the chloride salt of the intermediate 

precipitated out and in order to ensure the complete abstraction of the amide proton, an 

excess of Et3N was added both to release the intermediate from its salt and to allow the 

activation of the carboxyl-oxygen. 

 

3.2.5 Synthesis of N-[2-(1H-imidazolyl)-2-phenylethyl)]-4-[(E)-2-

(unsubstituted/susbstituted-phenyl)-1-ethenyl]benzamide 

 

!

 

 

 

Scheme 3.9: Final Styryl-benzoimidazole compounds. 

 

The synthesis of the final compounds was achieved through a nucleophilic displacement. 

Heating of the dihydro-oxazole compounds in isopropylacetate in the presence of imidazole 

opens the oxazole ring by nucleophilic displacement.(11) The final compounds were obtained 

after column chromatography purification.!

In the CYP24A1 inhibitory activity assay this new family showed very interesting results (see 

results in section 3.3) and its scaffold was taken as the starting point for the development of a 

new series of hypothetical CYP24A1 inhibitors. In order to verify the activity influence of the 

Product R1 R2 R3 YIELD 

27 (MCC268) OCH3 OCH3 OCH3 71% 

28 (MCC204) OCH3 H OCH3 62% 

29 (MCC269) H OCH3 H 30% 

30 (MCC270) H F H 74% 

31 (MCC165) H H H 28% 
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different structural parts of this family, several modifications of the original scaffold have 

been made and new families of compounds developed.  The first modification regards the 

styryl-linker between the two aromatic rings. As shown in figure 3.5 two different types of 

modifications have been planned: 

• Flexibility of the structure by reduction of the double bond or replacement by a 
sulphonamide bond (I).!

• Ring closure: the double bond is enclosed as part of an aromatic cycle (II).!
!

!

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Modification on the styryl-linker. I: flexibility of the molecule. II: inclusion in an aromatic cycle. 
 

A common catalytic hydrogenation was utilised in order to reduce the double bond.(12) Only 

one derivative was prepared in order to check the influence in term of CYP24A1 inhibitory 

activity. Compound 30 (MCC270), the fluorine derivative of first family, was dissolved in 

THF and Pd/C 10% wt added and then left for 72 h under H2 atmosphere. After the work up 

and flash column purification the desired 4-[2-(4-fluoro-phenyl)-ethyl]-N-(2-imidazol-1-yl-2-

phenyl-ethyl)-benzamide (32) (MCC295) was isolated in a modest yield (52%).!

 

 

 

 

Scheme 3.10: Reduction of MCC270 (30) gave compound MCC295 (32). 
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With the purpose to replace the double bond with a sulphonamide, a new synthetic route was 

planned as reported in scheme 3.11. 

 

 

 

 

 

 

 

 

Scheme 3.11: Synthesis of the sulphonamide derivative: (I) Pyridine, 0° C to r.t., overnight (II) 1,1’-

carbonyldiimidazole, r.t, overnight; (III) CH3SO2Cl, Et3N, 24h (IV) imidazole, isopropyl acetate, 125 °C, 48h. 

 

Synthesis of 4-(N-Phenyl)-sulfamoyl benzoic acid (35) was carried out using a common 

method for the sulphonamide preparation.(13) In the reaction, aniline (34) was dissolved in 

pyridine (solvent and base) and then 4-(chlorosulfonyl)-benzoic acid (33) added at 0˚C.  After 

overnight reaction and purification the desired product was obtained as a white solid. 

Formation of the amidic bond in the second step was obtained using the method reported 

above in which compound 35 is first activated by 1,1΄-carbonyldiimidazole (coupling 

reagent), and then reacted with 2-amino-1-phenylethanol (16) to produce the desired N-(2-

hydroxy-2-phenyl-ethyl)-4-phenylsulfamoyl-benzamide (36) in an excellent 96% yield.(1) The 

dihydro-oxazole ring product was prepared following the procedure in which the amide-

containing compound (36) was reacted with methanesulfonyl chloride and Et3N as base in dry 

THF.(10,11) After work up and purification the 1H-NMR of the pure product showed formation 

of the oxazole ring and the presence of an unexpected singlet signal at 3.6 ppm (integration 

for 3 H). Moreover, an extra CH3 signal at 43.9 ppm was found in the 13C-NMR. The spectral 

analysis suggested the formation of a different compound than the expected 37 in which the 

excess of mesyl chloride used in the reaction, mesylated the nitrogen of sulphonamide giving 

the   N-methanesulfonyl-N-phenyl-4-(5-phenyl-4,5-dihydro-oxazol-2-yl) 

benzenesulfonamide (39) (scheme 3.12). Mass spectroscopy (HRMS) confirmed the 

formation of compound 39 instead of compound 37. 
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Scheme 3.12: The excess of mesyl chloride mesylated the nitrogen of sulphonamide giving compound 39. 
 

To introduce the imidazole ring in the lateral chain, reaction of the dihydro-oxazole in 

isopropylacetate in the presence of imidazole was tried. Unfortunately no product formation 

was seen and only formation of N-phenyl-4-(5-phenyl-4,5-dihydro-oxazol-2-yl)-benzene 

sulfonamide (37) was observed (scheme 3.13). The high temperature and the presence of 

imidazole, acting as base, gave the demesylated product in a good yield (77%). 

Disappearance of the CH3 in the NMR spectra was a confirmation that only the demesylation 

reaction took place. Moreover, demesylation of nitrogen in the presence of base under 

heating is a well reported method in the literature.(14) 

 

 

 

 

 

 

 

 
 

Scheme 3.13: The high temperature and the imidazole, acting as base, gave the demesylated product 37. 
 

Considering the structure similarity between compound 37 and compound 39, the last step 

was tried again using the same conditions but this time compound 37 was the starting 

material. After 48 h reaction in isopropylacetate and imidazole, the nucleophilic 

displacement took place and the desired N-(2-imidazol-1-yl-2-phenyl-ethyl)-4-phenyl 

sulfonyl-benzamide (38) (MCC296) was obtained as a white solid (yield: 18%). Also in this 

case only one derivative was prepared in order to investigate any changes in activity.  
!
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3.3  CYP24A1/CYP27B1 enzymatic assay 
 

The seven synthesised compounds were tested in a CYP24A1/CYP27B1 enzymatic assay 

following the method reported in the methods section of this chapter (section 3.5.4). The 

IC50 (inhibitory activity) and Ki (dissociation constant), for both inhibition assays, are 

reported in table 3.1, together with ketoconazole (KTZ), a broad spectrum P450 inhibitor 

chosen as standard. Selective inhibition of CYP24A1 over CYP27B1 was calculated 

(KiCYP27B1 /KiCYP24A1). 

 

 

 

 

Table 3.1: CYP24A1 and CYP27B1 enzymatic assay results. 

  CYP24A1 CYP27B1 Select. 

Name R IC50 (µM) Ki (µM) IC50 (µM) Ki (µM)  

MCC165 

 

0.40 0.028  

± 0.006 

0.50 0.080  

± 0.005 

2.8 

MCC270 

 

0.26 0.019 

± 0.003 

0.60 0.097 

± 0.015 

5.1 

MCC269 

 
 

0.34 0.024 

±0.003 

0.24 0.040 

± 0.009 

1.7 

MCC204 

 
 
 

 

0.11 

 
 

0.0078 

± 0.0008 

0.16 0.026 

± 0.002 

3.3 

MCC268 

 

0.14 0.0097 

± 0.0012 

0.33 0.053 

±0.006 

5.5 

MCC295 

 

0.51 0.036 

± 0.004 

0.28 0.045 

± 0.004 

1.2 

MCC296 

 

1.3 0.091 

± 0.021 

- - - 

KTZ - 0.47 0.035 

± 0.005 

0.36 0.058 

± 0.010 

1.7 
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Interesting results in the CYP24A1 inhibition assay were found, if compared with the 

ketoconazole, with a range of IC50 between 0.11-1.3 µM and a Ki between 0.0078-0.091 µM. 

Examining the results, it is evident the importance of the substituents on the styryl phenyl 

ring. The unsubstituted derivative (MCC165) showed a low activity, whereas the addition of 

different groups on the phenyl ring produced an increase in activity up to 4-fold. Among the 

four substituted compounds, MCC204, the 3,5-dimethoxy derivative, and MCC268, the 

3,4,5-trimethoxy derivative, showed the best activity with a Ki in the nM range. The para-

monomethoxy (MCC269) and the para-fluoro (MCC270) products, present similar results in 

activity, but decreased if compared with MCC204 and MCC268. The hydrogenation of the 

styryl linker in the para-fluoro derivative produces a reduction in activity from 0.26 µM 

(MCC270) to 0.51 µM (MCC295). The replacement of the double bond   with a sulfonamide 

(MCC296) led to a significant loss of activity. 

Compounds with good binding and inhibitory activity against CYP24A1 also showed similar 

behaviour against CYP27B1. Selectivity gave a range from poor to moderate results, with 

improvement in some case if compared with ketoconazole standard (selectivity 

CYP24A1/CYP27B1 = 1.7). Notably, MCC268 and MCC270 had 5-fold selectivity for 

CYP24A1 over CYP27B1. The rationale behind the selectivity needs to be further 

investigated and the only clear indication is that reduction of the styrene (MCC295) results in 

a decrease in CYP24A1 inhibitory activity, but an increase in CYP27B1 inhibition leading to 

an important loss of selectivity if compared with MCC270. 

 

3.4  Discussion and Molecular Dynamics Studies 

 
Although any SAR for this family is very preliminary, chemical-physical considerations and 

molecular modelling studies can provide a rational explanation for the observed CYP24A1 

enzymatic data. Considering the compounds chemical-physical properties and the nature of 

the enzyme binding pocket an interesting observation can be seen. There seems to be a 

correlation between the ClogP of each molecule and its activity. The different logP calculated 

using MOE 2010 software are reported in table 3.2 and the higher the logP, the more active 

the molecule.  
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Table 3.2: Relation between the ClogP and CYP24A1 enzymatic assay results. 

 

The only exception are compounds MCC204 and MCC268 in which the presence of the 3,5-

dimethoxy substituents seems to have more importance in influencing the activity than the 

logP. The higher ClogP for MCC204 could explain the slight difference in activity if 

compared to MCC268. For the rest of the compounds the link between the ClogP value and 

the CYP24A1 inhibitory activity is clear with MCC296 found to be the least active and the 

lower ClogP. The importance of the compound ClogP could be linked with the lipophilic 

nature of the access channel and binding pocket of the enzyme in which more lipophilic 

molecules can result in hydrophobic interactions that stabilise the molecule-protein complex. 

In addition to chemical-physical considerations, another rational explanation was found 

through molecular modelling studies. Initially, a normal molecular docking was done. As 

previously reported for MCC204 and MCC165, all the compounds occupy the active site in 

an identically way, with possible expositions to the hydrophobic residues (Ile131, Trp134, 

Met246, Phe249, Thr394, Thr395, Gly499, Tyr500), which may allow the correct disposition 

of the compounds in the pocket with the nitrogen of the imidazole ring in a favourable 

position for the interaction between its lone pair and the haem iron. MCC204 and MCC268 

present an additional hydrogen bond between their 3-methoxy group and the Gln82 of the 

protein, which may explain the small improvement in CYP24A1 inhibition activity.  In fact, 

this hydrogen bond could stabilise the two compounds in a favourable conformation in which 

they occupy entirely the access tunnel and present the imidazole over the haem group. The 

rest of the compounds seem, due to the absence of this H-bond, to be free moving in the wide 

pocket and consequently their binding poses in the active site are more variable. Figure 3.6 

shows MCC204 and MCC268 (A) and MCC165 and MCC270 (B) in the active site. 

Compound IC50 (µM) ClogP 

MCC204 0.11 5.4830 

MCC268 0.14 4.9015 

MCC270 0.26 5.6130 

MCC269 0.34 5.4160 

MCC165 0.40 5.4600 

MCC295 0.51 5.1450 

MCC296 1.3 3.6050 
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A)                                                                  B) 
 

Figure 3.6: A) MCC204 (lilac) and MCC268 (grey) have an extra H-bond with Gln82 which stabilise the 

compounds in the active site. B) MCC165 (yellow) and MCC270 (pink) lack the H-bond. 

 

The rigidity conferred by the styryl linker to the molecules seems to be important to occupy 

stably the active pocket. The hydrogenation of the styryl linker (MCC295) or its 

replacement with a sulfonamide (MCC296) lead to a reduction in activity in the first case 

and to a noted decrease of activity in the second. The important reduced activity in 

MCC296, as well as being due to the low logP, is a consequence of the high flexibility of 

the sulfonamide bond. The compound occupies the binding pocket in a conformation that 

does not sit entirely in the access channel. Moreover, due to its flexibility, MCC296 

assumes multiple possible conformations in the binding pocket and none of them allow the 

right disposition in the active site (figure 3.7). 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.7:  MCC296 has multiple possible conformations (silver and gold) in the active site due to the high 

flexibility of the sulfonamide bond. 
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To assess the significance of these observations (influence of logP and stability in the cavity) 

and further validate the binding mode of the docking results, 5 ns molecular dynamics (MD) 

studies for compounds MCC165, MCC204, MCC269, MCC270 and MCC296 either free in 

solution and in complex with CYP24A1 were performed. Molecular dynamics considers, in 

contrast with the normal docking, the protein flexibility and allows examining the ligand-

protein complex interaction during the time. Molecular Dynamics is a computer simulation 

which calculate the real “movement” of a system giving a view of the motion of the 

interacting atoms. The atomic sets positions (spatial coordinates) are obtained by numerically 

solving the Newton’s equations of motion.(15) Forces between the particles and potential 

energy are defined by molecular mechanism force fields. The equations are solved 

simultaneously in short time steps (1-10 femtoseconds) and in each step forces on atoms are 

calculated and combined with the current position and velocities giving a new positions and 

velocities. The atoms are moved to new positions and a new forces calculation is done. The 

coordinates as function of time are written to an output file at regular chosen intervals and 

they form the trajectory of the system. The trajectory MD output is used for further studies 

and calculation. 

In most of the different systems the protein plus ligand, after the first 2ns of system 

stabilisation, showed an interesting energy stability during the simulation as consequence of 

the hydrophobic nature of the active site, which is an ideal environment for these lipophilic 

compounds. Additionally, all the derivatives, except MCC296, present a haem-imidazole 

coordination during all the MD simulations with an optimal Fe-N distance for the possible 

interaction between 2.40 and 3.85 Å (table 3.3). 

*Average values of ΔGbinding and Fe-N distance calculated excluding the first 2ns of MD in which the system 

protein-ligand reached the stability. 
 

Table 3.3: Calculated ligand interaction energies after MD studies. 

 

Compound ΔGbinding (Kj/mol)* Fe-N distance (Å)* 

MCC204 -19.83183 2.58 

MCC270 -17.26674 2.40 

MCC269 -14.52405 3.85 

MCC165 -13.95545 2.74 

MCC296 3.49442 5.48 
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MD output results were used to compute a free ΔGbinding energy of the ligand-protein 

complex and the values are reported in table 3.3. MCC204 showed the lowest estimate 

ΔGbinding, whereas MCC296, the sulfonamide derivative, had the highest energy value. This 

interesting linear relation between the estimated ΔGbinding and the CYP24A1 enzymatic 

assay data was also evident for compound MCC165, MCC269 and MCC270. The best 

results, in terms of energy value and IC50, for MCC204 could be a consequence of the extra 

H-bond with Gln82 (figure 3.8), which keeps the compound in the optimal interaction 

conformation for the entire molecular dynamic simulation giving a supplementary 

contribution to the system stability. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.8: Trend, during the MD simulation, of the distance O-N in the H-bond formation between the 3-

methoxy of MCC204 and Gln82. After the system stabilization (2ns), the average distance is 3.51 Å. 

 

The increased value of energy found for MCC296 is a consequence of the sulfonamide bond 

which confers high flexibility and low hydrophobicity to the compound. The hydrophilicity 

has a negative contribution to the total energy system due to the hydrophobic nature of the 

active site raising the value of system energy. Due to the high flexibility of the bond, 

MCC296 is not able to accommodate entirely in the enzyme access channel during all 5 ns 

MD simulation. As consequence, MCC296 loses the imidazole-iron coordination and 

therefore part of its CYP24A1 inhibitory activity. Figure 3.9 reports the graphic of the Fe-N 

distance trend during all the MD simulation of MCC204 and MCC296. After the first 2ns in 
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which the system reached the stability, the distance remains stable for MCC204, whilst the 

distance increases for MCC296 indicating a loss of coordination to the haem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Distance Fe-N trend during MD simulation. Distance remains stable for MCC204 (blue), while it 

increases for MCC296 (orange) after 2ns of stabilization. 

 

Considering the trend of the inhibition data, together with the molecular modelling studies, a 

preliminary simple SAR consideration could be done for the potential  CYP24A1 inhibitory 

activity: 

• A methoxy substituent in positions 3 and 5 of the phenyl ring (MCC204 and 

MCC2268) increases the activity as a consequence of the extra H-bond with Gln 82, 

which stabilise the compound in the favourable active conformation in the enzyme 

pocket. 

• Para-substituents have a small influence on the inhibitory activity. 

• The rigidity of the molecule given by the double is important for the activity. In fact, 

its reduction decreases the activity (MCC295), while its substitution with a more 

flexible sulphonamide bond  led to a loss of activity (MCC296) 

• The logP of the molecule has an important influence due to the hydrophobic nature of 

the enzyme channel. 

   

3.5  Methods  
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3.5.1 Computational approaches  

All the computational approaches used here are reported in section 2.2.1 chapter 2. 
Molecular Dynamics studies were performed on an Intel® Xenon® CPU E5462 @ 2.80GHz 
x 8 processors running Linux Ubuntu 12.04.1 LTS. 

 

3.5.2 Molecular Docking 
 

Molecular docking methods are reported in section 2.2.3 chapter 2. 

 
3.5.3 Molecular Dynamics 

 

All molecular dynamics simulations were performed and analysed using the GROMACS 4.5 

simulation package.(16) The Amber99 force field was used. Parameters of the ligands were 

built using the ANTECHAMBER tool of Amber tools. The Amber forcefield parameters of 

the haem group reported by Akifumi et al. were used.(17) The initial structure of each ligand, 

chosen as best result from docking studies, either free in solution or in complex with the 

enzyme, was placed in a cubic box with TIP 3P water and consequently energy minimised 

using a steepest descent minimisation algorithm. The system was equilibrated via a 100 ps 

MD simulation at 300K at NVT canonical environment then an additional 100 ps simulation 

at constant pressure of 1 atm was performed (NPT). After the equilibration phases, a 5 ns MD 

simulation was performed at constant temperature (300 K) and pressure with a time step of 2 

fs. Electrostatic and Van der Waals ligand-surrounding energies were stored, from MD 

simulations of the ligands in complex with the enzyme and when free in solution every 3 ps, 

together with their spatial coordinates, for further analysis.  

The estimate ΔGbinding was calculated using GROMACS g_lie function based on LIE 

equation (linear interaction energy).(18,19) The method requires the calculation of average 

interaction energies between the ligand and its surroundings from molecular dynamics (MD) 

simulations of the ligand free in solution and when bound to the enzyme. Basically, using the 

ligand-protein complex .edr file, the energy file containing all the energy terms saved during 

the MD simulation, as input and giving the ligand-solvent interaction value of LJ-SR and 

Coul-SR a ΔGbinding value is obtained for that specific ligand-protein interaction. LJ-SR 

represents the contribution of Lennard-Jones energies (LJ) inside the shortest cut-off (SR) to 

the non-bonded energies. Coul-SR represent the Coulombic (Col) contribution. Both values 
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are extracted from the energy file .edr of the ligand free in solution MD, using GROMACS 

g_energy function.(20) 
 

3.5.4 CYP24A1 and CYP27B1 inhibition assay 

 

All the final compounds prepared require evaluation for their calcitriol metabolism 

(CYP24A1) inhibitory activity. Previous studies, in collaboration with Kingston University 

Ontario, employed a cell based assay using a recombinant cell line expressing human 

CYP24A1 enzyme (V79-CYP24) (21), with radiolabelled [3H-1β]-calcitriol as the substrate 

and ketoconazole as the standard for comparison. As mentioned, MCC165, displayed 

promising sub-micromolar inhibitory activity (IC50 0.3 µM) compared with the standard 

ketoconazole (IC50 0.5 µM).(1)  

The CYP24A1 inhibitory activity of all the new series of compounds described here have 

been evaluated at the University of Wisconsin (Collaboration with Professor Hector DeLuca) 

and the assays are being performed by Dr Grace Zhu using the cell-free assay that does not 

require the expensive radiolabeled substrate published by this group. 
Briefly, high-level heterologous expression of human 1α,25-dihydroxy vitamin D3 24-

hydroxylase (CYP24A1) in Escherichia coli is achieved by a fusion construct by appending 

the mature CYP24A1 without the leader sequence to the maltose binding protein (MBP). 

Facile purification is achieved efficiently through affinity chromatography to afford fully 

functional enzyme of near homogeneity, with a kcat of 0.12 min-1 and a KM of 0.19 µM toward 

1α,25-dihydroxy vitamin D3.(22)   

CYP24A1 inhibition assay were performed in a buffer containing 20 mM Tris (pH 7.5), 125 

mM NaCl, 0.1 µM adrenodoxin, 0.1 µM adrenodoxin reductase, 0.5 mM NADPH,  0.075 µM 

MBP-CYP24A1,  2.5 µM of 1,25(OH)2D3 and  different inhibitors concentration. This 

reaction mixture was incubated at 37°C for 25 min. A stock solution in ethanol (<1 mM) for 

each inhibitor was prepared diluting previously prepared solution in ethanol (>10 mM) or in 

DMSO (>50 mM). The reaction were conducted and analysed by HPLC (5%-15% 2-propanol 

in hexane, on a silica column (ZORBAX RX-SIL, 9.4 mm x 250 mm, Agilent) monitored at 

265 nm). The IC50 values were determined by fitting the relative activity (V/V0) against the 

inhibitor concentration [I] using the equation V/V0= IC50/(IC50+[I]), where V and V0 are the 

reaction rates in the presence and absence of inhibitors, respectively. The Ki values were 

obtained using equation Ki = IC50/(1 + [S]/KM), where [S] is the substrate concentration and 

KM = 0.19 µM.(22) The same assay was performed for the CYP27B1 inhibition using 2.5 µM 
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of 25(OH)D3 as substrate and the value of 0.19 µM for the KM. All the experiments were 

performed in triplicate. 

 

3.5.5 Chemistry General Information 
 

All chemicals, reagents and solvents were purchased from Sigma-Aldrich and Fisher and 

where required solvents were dried prior to use and stored over 4Å molecular sieves under 

nitrogen. Flash column chromatography was performed with silica gel 60n (230-400mesh) 

(Merck) and TLC was carried on precoated silica gel plates (Merck Kieselgel 60F254). 

Melting points were determined on an electrothermal instrument and are uncorrected. 

Compounds were visualised by irradiation with UV light at 254 nm and 366 nm. 1H and 13C, 

NMR spectra were recorded on a Bruker AVANCE DPX500 spectrometer operating at 500 

MHz and 125 MHz respectively and auto calibrated to the deuterated solvent reference peak. 

Chemical shifts are given in δ relative to tetramethylsilane (TMS); the coupling constants (J) 

are given in Hertz. TMS was used as an internal standard (δ = 0 ppm) for 1H NMR and 

CDCl3 served as an internal standard (δ = 77.0 ppm) for 13C NMR. Multiplicity are denoted 

as s (singlet), d (doublet), t (triplet), m (multiplet) or combinations thereof. Low and high 

resolution mass spectra (L/HRMS) were determined under EI (Electron impact) conditions at 

the EPSRC National Mass Spectrometry Facility at Swansea University. Microanalysis data 

were performed by Medac Ltd., Brunel Science Centre, Surrey. In some cases, due to the 

high hygroscopicity of the compound (similar structures have been reported to adsorb water 
(1,23)), a maximum of 0.5 molecules of water were included in the compound microanalysis 

formulas. 
!

3.6  Experimental  

 

3.6.1 General method for the preparation of 1,2,3- 

unsubstituted/substituted-5-vinylbenzene 
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The different 3,4,5unsubstituted/substituted benzaldehydes (1equiv.), methyl-

triphenylphosphonium bromide (1.1 equiv.) and potassium tbutoxide (1.1 equiv.) were 

dissolved in dry THF (2.5 mL/mmol) and stirred for 3h at room temperature under nitrogen. 

Then, the reaction was quenched by adding saturated aqueous solution of NH4Cl (1 

mL/mmol). The solvents were removed under reduced pressure and the obtained crude 

product was extracted with CH2Cl2 (3 mL/mmol). The organic layer was washed once with 

H2O (3 mL/mmol), dried over MgSO4, and the solvent removed under vacuum. The impure 

product was then purified by flash column chromatography (petroleum ether-EtOAc 100:0 v/v 

increasing to 90:10 v/v) to give the pure corresponding vinylbenzene derivative as an oil. 

 

1,2,3-Trimethoxy-5-vinyl-benzene (5)(4): 

(C11H14O3; M.W. 194.2) 

 

!

!

!

!

!

Reagent: 3,4,5-Trimethoxybenzaldehyde  (1) (4 g, 20.4 mmol) 

T.L.C. system: petroleum ether-EtOAc 3:1 v/v, Rf: 0.66 

Yield: 2.2 g (56%) as a yellow oil. 
1H-NMR (CDCl3), δ: 3.85 (s, 3H, OCH3, H-2’), 3.87 (s, 6H, OCH3, H-1’, H-2’), 5.21 (d, 

JCIS= 10.9 Hz, 1H, Ha), 5.66 (d, JTRANS = 17.5 Hz, 1H, Hb), 6.60-6.66 (m, 3H, H-4, H-6, Hc). 
13C-NMR (CDCl3), δ: 56.30 (CH3, C-1’, C-3’), 60.90 (CH3, C-2’), 107.05, 133.16, 137.60 

(CH, C-4, C-5, C-6, C-4’), 113.22 (CH2, C-5’), 147.91, 152.76 (C, C-1, C-2, C-3). 

 

1,3-Dimethoxy-5-vinyl-benzene (6) (4): 

(C10H12O2; M.W. 164.2)"

"

!
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Reagent: 3,5-Dimethoxybenzaldehyde (2) (3 g, 18 mmol) 

T.L.C. system: petroleum ether-EtOAc 3:1 v/v, Rf: 0.75. 

Yield: 1.35 g (46%) as a colourless oil. 

1H-NMR (CDCl3), δ: 3.83 (s, 6H, OCH3, H-1’, H-2’), 5.28 (d, JCIS = 10.8 Hz, 1H, Ha), 5.76 (d, JTRANS 

= 17.5 Hz, 1H, Hb), 6.43 (t, J = 2.3 Hz, 1H, H-2), 6.61 (d, J = 2.3 Hz, 2H, H-4, H-6), 6.68 (dd, J1 = 

17.5 Hz, J2 = 10.8 Hz,  1H, Hc). 

13C-NMR (CDCl3), δ: 55.31 (CH3, C-1’, C-2’), 100.15, 105.16, 136.27 (CH, C-2, C-4, C-6, C-3’), 

114.31 (CH2, C-4’), 139.64, 160.82 (C, C-1, C-3, C-5). 

 

1-Methoxy-4-vinyl-benzene (7) (4): 

(C9H10O; M.W. 134.2) 

"

!

!

!

!

!

Reagent: 4-Methoxybenzaldehyde (3) (2.13 mL, 17.5 mmol) 

T.L.C. system: petroleum ether-EtOAc 3:1 v/v, Rf: 0.83. 

Yield: 0.60 g (26%) as a colourless oil. 
1H-NMR (CDCl3), δ :3.84 (s, 3H, OCH3), 5.16 (d, JCIS = 10.9 Hz, 1H, Ha), 5.65 (d, JTRANS = 

17.6 Hz, 1H, Hb), 6.70 (dd, J1 = 17.6 Hz, J2 = 10.9 Hz,  1H, Hc),  6.90 (d, J = 7.9 Hz, 2H, H-

2, H-6), 7.39 (d, J = 7.9 Hz, 2H, H-3, H-5). 
13C-NMR (CDCl3), δ: 55.29 (CH3, C-1’), 111.60 (CH2, C-3’), 113.94, 127.43, 130.46, 

136.27 (CH, C-2, C-3, C-5, C-6, C-2’), 130.46, 159.41 (C, C-1, C-4). 
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3.6.2 General method for the preparation of 4-[(E)-2-(3,4,5-

unsubstituted/substituted-phenyl)-1-ethenyl]benzoic acid  "

"

 

 

 

 

 

Different 1,2,3-substituted/unsubstituted-5-vinylbenzenes (1.25 equiv.), 4-bromobenzoic acid 

(9) (1 equiv.), and triethylamine (2.5 equiv.) were heated in the presence of tri(o-

tolylphosphine) (TOP, 0.04 equiv.) and palladium (II) acetate (0.009 equiv.) in a sealed glass 

tube at 100°C for 20 h. After the reaction was complete, cold dilute 1 M HCl (2 mL/mmol) 

was added obtaining a white-grey precipitate. The crude solid was filtered, washed with 

water and dried under vacuum. Then the dry compound was re-crystallised from ethanol to 

afford pure different 4[(E)-2-(3,4,5-unsubstituted/substitutedphenyl)-1-ethenyl]-

benzoic acid as a solid.  

 

4-[(E)-2-(3,4,5-trimethoxyphenyl)-1-ethenyl]benzoic acid (11)(24): 

(C18H18O5; M.W. 314.33) 

"

!

!

!

!

!

Reagent: 1,2,3-Trimethoxy-5-vinyl-benzene (5) (2 g, 10.3 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.36. 

Yield: 1.60 g (62%) as a yellow solid. 

Melting Point: 218-220 ˚C (lit. 218-221 ˚C) (24) 
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Microanalysis: Calculated for C18H18O5 (314.33); Theoretical: %C = 68.78, %H = 5.77; 

Found: %C = 68.82, %H = 5.68. 

1H-NMR (DMSO-d6), δ : 3.69 (s, 3H, OCH3, H-5”), 3.84 (s, 6H, OCH3, H-4”, H-6”), 6.97 

(s, 2H, H-2’, H-6’), 7.29 (d, J = 16.8 Hz, H-alkene), 7.34 (d, J = 16.8 Hz, H-alkene), 7.69 (d, 

J = 8.2 Hz, 2H, H-3, H-5), 7.94 (d, J = 8.3 Hz, 2H, H-2, H-6), 12.86 (b.s., 1H, COOH).  
13C-NMR (DMSO-d6), δ : 55.89 (CH3, C-4”, C-6”), 60.07 (CH3, C-5”), 104.27, 126.24, 

126.72, 129.76, 131.10 (CH, C-2, C-3, C-6, C-6, C-2’, C-6’, C-2”, C-3”), 129.24, 132.29, 

137.76, 141.52, 153.05, 167.07 ( C, C-1, C-4, C-1’, C-3‘, C-4’, C-5’,C-1”). 

 

4-[(E)-2-(3,5-dimethoxyphenyl)-1-ethenyl]benzoic acid (12) (25): 

(C17H16O4; M.W. 284.3) 

 

 

 

 

 

 

Reagent: 1,3-Dimethoxy-5-vinyl-benzene (6) (1.35 g, 8.2 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.41. 

Yield: 1.09 g (58%) as a yellow solid. 

Melting Point: 216-218 ˚C  

Microanalysis: Calculated for C17H16O4 (284.311); Theoretical: %C = 71.81, %H = 5.67; 

Found: %C = 71.86, %H = 5.81. 
1H-NMR (DMSO-d6), δ: 3.79 (s, 6H, OCH3, H-4”,  H-5”), 6.47 (t, J = 1.8 Hz, 1H, H-4’),  

6.82 (d, J = 1.8 Hz, 2H, H-2’, H-6’), 7.30-7.37 (m, 2H, H-alkene), 7.70 (d, J = 8.2 Hz, 2H, H-

3, H-5), 7.94 (d, J = 8.2 Hz, 2H, H-2, H-6), 12.94 (b.s., 1H, COOH). 
13C-NMR (DMSO-d6), δ: 55.21 (CH3, C-4”, C-5”), 100.39, 104.79, 126.47, 127.90, 129.52, 

130.96 (CH, C-2, C-3, C-5 C-6 C-2’, C-4’, C-6’, C-2”, C-3”), 129.47, 138.62, 141.27, 

160.66, 167.07 (C, C-1, C-4, C-1’, C-3’, C-5’, C-1”). 
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4-[(E)-2-(4-methoxyphenyl)-1-ethenyl]benzoic acid (13) (26): 

(C16H14O3; M.W. 254.28) 

 

 

 

 

 

 

Reagent: 1-Methoxy-4-vinyl-benzene (7) (0.60 g, 4.48 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.5. 

Yield: 0.36 g (40%) as a yellow-white solid. 

Melting Point: 258-260 ˚C (lit. 250-255 ˚C) (26) 

Microanalysis: Calculated for C16H14O3 0.1H2O (256.086); Theoretical: %C = 75.04, %H = 

5.59; Found: %C = 75.39, %H = 5.66. 
1H-NMR (DMSO-d6), δ: 3.78 (s, 6H, OCH3, H-4”), 6.94 (d, J = 8.6 Hz, 2H, H-2’, H-6’), 

7.15 (d, J = 16.5 Hz, 1H , H-alkene), 7.34 (d, J = 16.5 Hz, 1H , H-alkene), 7.58 (d, J = 8.6 Hz, 

2H, H-3’, H-5’), 7.66 (d, J = 8.1 Hz, 2H, H-3, H-5), 7.96 (d, J = 8.1 Hz, 2H, H-2, H-6), 

12.83(b.s., 1H, COOH). 
13C-NMR (DMSO-d6), δ: 55.14 (CH3, C-4”), 114.21, 125.01, 126.07, 128.18, 129.72, 

130.62 (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-5’, C-6’, C-2”, C-3”), 128.96, 129.21, 147.79, 

159.38, 167.11 (C, C-1, C-4, C-1’, C-4’, C-1”). 

 

4-[(E)-2-(fluorophenyl)-1-ethenyl]benzoic acid (14) (26): 

(C15H11O2F; M.W. 242.25) 

 

 

 

 

Reagent: 4-Fluorostyrene (8) (1 g, 8.2 mmol) 

O

OH
1

2
3

4

5
6
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3''
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F



Family I: Styryl-Benzamide 

~ 91 ~!
!

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.39. 

Yield: 0.89 g (56%) as a white solid. 

Melting Point: 250-252 ˚C (lit. 240-252 ˚C ) (25) 

Microanalysis: Calculated for C15H11O2F (242.25); Theoretical: %C = 74.37, %H = 4.58; 

Found: %C = 74.31, %H = 4.47. 
1H-NMR (DMSO-d6), δ: 7.23 (m, 2H, Ar), 7.28 (d, J = 16.5 Hz, 1H, H-alkene), 7.40 (d, J = 

16.5 Hz, 1H , H-alkene), 7.68-7.71 (m, 4 H, Ar), 7.94 (d, J = 8.2 Hz, 2H, H-2, H-6), 12.94 

(b.s., 1H, COOH). 
13C-NMR (DMSO-d6), δ: 115.55-155.72 (d, JCF = 21.8 Hz), 126.38, 127.28-127.29 (d, JCF = 

1.8 Hz), 128.68, 128.75, 129.73 (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-5’, C-6’, C-2”, C-3”), 

129.4, 133.21-133.23 (d, JCF = 3.5 Hz), 141.32, 160.95-62.91 (d, JCF = 246.0 Hz), 167.04 (C, 

C-1, C-4, C-1’, C-4’, C-1”). 
19F-NMR (DMSO-d6), δ: -113.41 (s) 

4-Styryl-benzoic-acid (15) (1): 

(C15H12O2; M.W. 224.255) 

 

 

 

 

 

Reagent: Styrene (9) (2 g, 19.2 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.36. 

Yield: 2.0 g (60%) as a white solid 

Melting Point: 251-253 ˚C (lit. 254-255 ˚C) (1) 

1H-NMR (DMSO-d6), δ : 7.28-7.34 (m, 3H, Ar, H-alkene), 7.36-7.42 (m, 4H, Ar), 7.72 (d, J 

= 8.4 Hz, 2H, Ar), 7.95 (d, J = 6.8 Hz, 2H, Ar), 12.86 (b.s., 1H, COOH).  
13C-NMR (DMSO-d6), δ : 126.30, 126.44, 126.55, 127.35, 128.47, 129.43, 130.25,  (CH, C-

2, C-3, C-5, C-6, C-2’, C-3’, C-4’, C-5’, C-6’, C-2”, C-3”), 128.98, 136.56, 141.37, 167.07 

(C, C-1, C-4, C-1’, C-1’’). 
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3.6.3 General method for the preparation of N-(2-hydroxy-2-phenylethyl)-

4-[(E)-2-(3,4,5-unsubstituted/substituted-phenyl)-1-ethenyl]benzamide 

 

 

 

 

 

 

A suspension of 4[(E)-2-(3,4,5-unsubstituted/substitutedphenyl)-1-ethenyl]-

benzoic acid (1 equiv.) in dry DMF (4.0 mL/mmol) was combined with a solution of 1,1’-

carbonyldiimidazole (1 equiv.) in anhydrous DMF (1.0 mL/mmol). The reaction was stirred 

for 1 h at room temperature under nitrogen. The mixture was cooled to 0°C then added to a 

solution of 2-amino-1-phenylethanol (16) (1 equiv.) in DMF (1.0 mL/mmol). The resulting 

mixture was stirred at room temperature for 20 h. On completion, ice was added into the flask 

and a white solid precipitated out. The precipitate was then filtered, washed with ice-cold 

water, dried under vacuum obtaining pure N-(2-hydroxy-2-phenylethyl)-4-[(E)-2-(3,4,5-

unsubstituted/substitutedphenyl)-1-ethenyl]benzamide derivatives as a solid. 

 

N-(2-Hydroxy-2-phenyl-ethenyl)-4-[(E)-2-(3,4,5-trimethoxyphenyl)-

vinyl]benzamide (17): 

(C26H27NO5; M.W. 433.50) 

 

 

 

 

 

 

Reagent: 4-[(E)-2-(3,4,5-Trimethoxyphenyl)-1-ethenyl]benzoic acid (11) (1.60 g, 5.1 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:3 v/v, Rf: 0.61. 
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Yield: 1.65 g (75%) as a white solid. 

Melting Point: 166-168 ˚C  

HRMS (EI): Calculated mass: 434.1962 [M+H]+, Measured mass: 434.1961 [M+H]+. 
1H-NMR (DMSO-d6), δ: 3.36-3.53 (m, 2H, H-7’’’), 3.70 (s, 3H,  OCH3, H-5”‘), 3.85 (s, 6H, 

OCH3, H-4”‘, H-6”‘), 4.81 (b.s., 1H, H-8’’’), 5.34(b.s, 1H, CH-OH), 6.97 (s, 2H, H-2’, H-6’), 

7.24-7.40 (m, 7H, Ha, Hb, Ar), 7.66 (d, J = 8.2 Hz, 2H, H-3, H-5), 7.87 (d, J = 8.2 Hz, 2H, H-

2, H-6), 8.5 (t, J = 5.50 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ: 47.70 (CH2, C-7’’’), 55.89 (CH3, C-4’’’, C-6’’’), 60.07 (CH3, C-

5’’’), 71.21, 104.16, 125.97, 126.88, 126.99, 127.71, 128.00, 130.30 (CH, C-2, C-3, C-5, C-6, 

C-2’, C-6’, C-2’’, C-3’’, C-5’’, C-4’’, C-6’’ C-2’’’, C-3’’’, C-8’’’), 132.46, 133.07, 137.65, 

139.85, 143.78, 135.06, 166.01 (C, C-1, C-4, C-1’, C-3’, C-4’, C-5’, C-1’’, C-1’’’). 

 

N-(2-Hydroxy-2-phenyl-ethenyl)-4-[(E)-2-(3,5-dimethoxyphenyl)-

vinyl]benzamide (18): 

(C25H25NO4; M.W. 403.47) 

 

 

 

 

 

 

 

Reagent: 4-[(E)-2-(3,5-Dimethoxyphenyl)-1-ethenyl]benzoic acid (12) (1.09 g, 3.8 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:3 v/v, Rf: 0.66. 

Yield: 1.14 g (75%) as a white solid. 

Melting Point: 168-170 ˚C  

Microanalysis: Calculated for C25H25O4N (403.47); Theoretical: %C = 74.42, %H = 6.25, %N 

= 3.47; Found: %C = 74.25, %H = 6.52, %N =3.72. 
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1H-NMR (DMSO-d6), δ: 3.34-3.37 (m, 1H, CH2, H-6’’’), 3.49-3.54 (m, 1H, CH2, H-6’’’), 

3.79 (s, 6H, OCH3), 4.81 (dd, J1 = 8.3 Hz, J2 = 4.8 Hz, 1H,  H-7’’’), 5.53 (d, J = 4.0 Hz, 1H, 

CH-OH), 6.46 (t, J = 2.0 Hz, 1H, H-4’), 6.84 (d, J = 2.0 Hz, 2H, H-2’, H-6’), 7.24-7.33 (m, 

3H, Ar, H-alkene), 7.35 (d, J = 7.4 Hz, 2H, Ar), 7.39 (d, J = 7.3 Hz, 2H, Ar), 7.68 (d, J = 8.3 

Hz, 2H, Ar), 7.87 (d, J = 8.3 Hz, 2H, Ar),  8.52 (t, J = 5.3, 1H, NH). 
13C-NMR (DMSO-d6), δ: 47.70 (CH2, C-6’’’), 55.21 (CH3, C-4’’’, C-5’’’), 71.20, 100.24, 

104.69, 125.96, 126.21, 126.99, 127.68, 128.00, 128.05, 130.71 (CH, C-2, C-3, C-5, C-6, C-

2’, C-4’, C-6’, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-2’’’, C-3’’’, C-7’’’), 133.31, 138.79, 

139.62, 143.78, 160.67, 166.00 (C, C-1, C-4, C-1’, C-3’, C-5’, C-1’’, C-1’’’). 

 

N-(2-Hydroxy-2-phenyl-ethenyl)-4-[(E)-2-(4-methoxyphenyl)-

vinyl]benzamide (19): 

(C24H23NO3; M.W. 373.45) 

 

 

 

 

 

 

Reagent: 4-[(E)-2-(4-methoxyphenyl)-1-ethenyl]benzoic acid (13) (0.36 g, 1.42 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:3 v/v, Rf: 0.58. 

Yield: 0.39 g (74%) as a white solid. 

Melting Point: 230-232 ˚C  

Microanalysis: Calculated for C24H23O3N 0.3H2O (378.855); Theoretical: %C = 76.09, %H = 

6.28, %N = 3.70; Found: %C = 75.78, %H = 6.22, %N =3.43. 
1H-NMR (DMSO-d6), δ: 3.32-3.54 (m, 2H,H-5’’’), 3.79 (s, 3H, OCH3), 4.81 (dd, J1 = 8.0 

Hz, J2 = 4.8 Hz, 1H, H-6’’’), 5.60 (b.s., 1H, CH-OH), 6.97 (d, J = 8.6 Hz, 2H, H-3’, H-5’), 

7.13-7.16 (m, 1H, Ar), 7.24-7.40 (m, 6H, H-alkene, Ar), 7.58 (d, J = 8.6 Hz, 2H, H-2’, H-6’), 

7.64 (d, J = 8.2 Hz, 2H, Ar), 7.86 (t, J = 5.5, 1H, NH). 
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13C-NMR (DMSO-d6), δ: 47.73 (CH2, C-5’’’), 55.41 (CH3, C-4’’’), 71.22 (CH, C-6’’’), 

114.21, 125.19, 125.82, 125.96, 126.98, 128.39, 129.39, 129.80, 130.59 (CH, C-2, C-3, C-5, 

C-6, C-2’ C-3’, C-5’, C-6’, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-2’’’, C-3’’’), 130.15, 132.79, 

140.11, 140.80, 159.25, 166.06 (C, C-1, C-4, C-1’, C-4’, C1’’,  C-1’’’). 

 

N-(2-Hydroxy-2-phenyl-ethenyl)-4-[(E)-2-(4-fluorophenyl)-vinyl]benzamide 

(20): 

(C23H20FNO2; M.W. 361.41) 

 

 

 

 

 

 

Reagent: 4-[(E)-2-(4-Fluorophenyl)-1-ethenyl]benzoic acid (14) (0.85 g, 3.5 mmol)  

T.L.C. system: petroleum ether-EtOAc 1:3 v/v, Rf: 0.88. 

Yield: 1.05 g (83%) as a white solid. 

Melting Point: 200-202 ˚C 

Microanalysis: Calculated for C23H20O2FN 0.1H2O (363.216); Theoretical: %C = 76.06, %H 

= 5.61, %N = 3.86; Found: %C = 75.88, %H = 5.48, %N =3.59. 
1H-NMR (DMSO-d6), δ: 3.31-3.37 (m, 1H, H-4’’’), 3.49-3.3.53 (m, 1H, H-4’’’), 4.81 (dd, J1 

= 7.9 Hz, J2 = 5.8 Hz, 1H, H-5’’’), 5.54 (b.s., 1H, CH-OH), 7.22-7.40 (m, 9H, H-alkene, Ar), 

7.76-7.70 (m, 4H, Ar), 7.87 (d, J = 8.2 Hz, 2H, Ar), 8.53 (t, J = 5.2, 1H, NH). 
13C-NMR (DMSO-d6), δ: 47.71 (CH2, C-4’’’), 71.18 (CH, C-5’’’), 115.54-115.71 (d, JCF = 

21.4 Hz), 125.96, 126.13, 126.99, 127.44, 127.67, 128.00, 128.54-128.60 (d, JCF = 8.3 Hz), 

128.93, (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-5’, C-6’, C-2”, C-3”, C-4’’, C-5’’, C-6’’, C-

2’’’, C-3’’’), 133.26, 133.37-133.39 (d, JCF = 3.2 Hz), 139.65, 143.79, 160.86-162.81 (d, JCF 

= 246.0 Hz), 165.98 (C, C-1, C-4, C-1’, C-4’, C-1’’ C-1’’’). 
19F-NMR (DMSO-d6), δ: -113.41 (s) 
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N-(2-Hydroxy-2-phenyl-ethyl)-4-styryl-benzamide (21) (1): 

(C23H21NO2; M.W. 343.418) 

 

 

 

 

 

 

Reagent: 4-Styryl-benzoic-acid (15) (1.27 g, 5.7 mmol) 

T.L.C. system: petroleum ether-EtOAc 3:1 v/v, Rf: 0.39. 

Yield: 1.61 g (83%) as a white solid 

Melting Point: 218-220 ˚C 

Microanalysis: Calculated for C23H21NO2 (343.42); Theoretical: %C = 80.44, %H = 6.16, 

%N = 4.08; Found: %C = 80.27, %H = 6.21, %N = 3.88. 

1H-NMR (DMSO-d6), δ: 3.34-3.43 (m, 2H, H-4’’’), 3.47-3.51 (m, 1H, H-5’’’), 5.53 (b.s., 

1H, CH-OH), 7.52-7.42 (m, 10H, H-alkene, Ar), 7.64 (d, J = 7.5 Hz, 2H, Ar), 7.69 (d, J = 8.6 

Hz, 2H, Ar), 7.88 (d, J = 8.0 Hz, 2H, Ar), 8.52 (t, J = 5.5, 1H, NH). 
13C-NMR (DMSO-d6), δ: 47.72 (CH2, C-4’’’), 71.21 (CH, C-5’’’), 125.96, 126.08, 126.18, 

126.66, 126.99, 127.53, 127.67, 128.01, 128.73, 130.12 (CH, C-2, C-3, C-5, c-6, C-2’, C-3’, 

C-4’, C-5’, C-6’, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-2’’’, C-3’’’), 133.26, 136.75, 139.71, 

143.78, 166.03 (C, C-1, C-4, C-1’, C-1’’, C-1’’’). 
 

3.6.4 General method for the preparation of 2,4[(E)-2-(3,4,5-

unsubstituted/substituted-phenyl)-1-1ethenyl]phenyl-5-phenyl-4,5-

dihydro-1,3-oxazole 
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A solution or suspension of N-(2-hydroxy-2-phenylethyl)-4-[(E)-2-(3,4,5-

unsubstituted/substitutedphenyl)-1-ethenyl]benzamide (1 equiv.) in anhydrous THF (4.9 

mL/mmol) was cooled to 0°C. Then methanesulfonylchloride (7.8 equiv.) was added and the 

resulting mixture was stirred at 0°C for 3 h. Subsequently triethylamine (12 equiv.) was 

added dropwise and the solution was stirred overnight at room temperature. After completion 

of the reaction the mixture was quenched by the addition of aqueous NH3 solution (28%, 0.25 

mL/mmol) and stirred at room temperature for 15 min. Then the solvent was removed under 

reduce pressure and the residue was distributed between EtOAc (50 mL/mmol) and water (2 

x 30 mL/mmol). The aqueous layers were collected and extracted with EtOAc (2 x 

50mL/mmol). The organic layers were collected, dried under MgSO4 and concentrated in 

vacuo. The crude product was purified by flash column chromatography (petroleum ether-

EtOAc 100:0 v/v increasing to 70:30 v/v) giving pure 2,4[(E)-2-(3,4,5-

unsubstituted/substitutedphenyl)-1-ethenyl]phenyl-5-phenyl-4,5-dihydro-1,3-oxazole 
derivatives. 
 

2-{4-[(E)-2-(3,4,5-Trimethoxyphenyl)-1-ethenyl]-phenyl-5-phenyl}-4,5-

dihydro-1,3-oxazole (22): 

(C26H25NO4; M.W. 415.48) 

"

!

"

!

"

"

"

"

Reagent: N-(2-Hydroxy-2-phenyl-ethenyl)-4-[(E)-2-(3,4,5-trimethoxyphenyl)-

vinyl]benzamide (17) (1.65 g, 3.88 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:3 v/v, Rf: 0.75. 

Yield: 0.87 g (55%) as a yellow solid. 
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Melting Point: 120-122 ˚C  

Microanalysis: Calculated for C26H25O4N 0.1H2O (417.289); Theoretical: %C = 74.84, %H = 

6.04, %N = 3.36; Found: %C = 74.53, %H = 6.01, %N =3.41. 
1H-NMR (CDCl3), δ: 3.97 (s, 3H, O-CH3, H-5’’’), 3.94 (s, 6H, O-CH3, H-4’’’, H-6’’’), 4.03 

(dd, J1 = 14.9 Hz, J2 = 8.0 Hz, 1H, Hc), 4.51 (dd, J1 = 14.9 Hz, J2 = 10.1 Hz, 1H, Hd), 5.69 (dd, 

J1 = 10.1 Hz, J2 = 8.0 Hz, 1H, O-CH), 6.78 (s, 2H, H-2’, H-6’), 7.06 (d, J = 16.2 Hz, 1H, H-

alkene), 7.16 (d, J = 16.2 Hz, 1H, H-alkene), 7.36-7.43 (m, 5H, Ar), 7.59 (d, J = 8.3 Hz, 2H, 

H-3, H-5), 8.03 (d, J = 8.3 Hz, 2H, H-2, H-6). 
13C-NMR (CDCl3), δ: 56.16 (CH3, C-4’’’, C-6’’’), 60.98 (CH3, C-5’’’), 63.26 (CH2, C-7’’’), 

81.08 (CH, C-8’’’), 103.87, 125.76, 126.33, 127.26, 128.32, 128.72, 128.83, 130.46 (CH, C-

2, C-3, C-5, C-6, C-2’, C-6’, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-2’’’, C-3’’), 126.53, 132.64, 

138.42, 140.30, 141.07, 153.48, 163.81 (C, C-1, C-4, C-1’, C-3’, C-4’, C-5’, C-1’’, C-1’’’). 

 

2-{4-[(E)-2-(3,5-Dimethoxyphenyl)-1-ethenyl]-phenyl-5-phenyl}-4,5-

dihydro-1,3-oxazole (23): 

(C25H23NO3; M.W. 385.46) 

 

 

 

 

 

 

 

 

Reagent: N-(2-Hydroxy-2-phenyl-ethenyl)-4-[(E)-2-(3,5-dimethoxyphenyl)-vinyl]benzamide 

(18) (1.14 g, 2.8 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:3 v/v, Rf: 0.60. 

Yield: 0.83 g (77%) as a yellow oil. 

HRMS (EI): Calculated mass: 386.1751 [M+H]+, Measured mass: 386.1753 [M+H]+ 
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1H-NMR (CDCl3), δ: 3.86 (s, 6H, O-CH3), 4.03 (dd, J1 = 14.7 Hz, J2 = 8.0 Hz, 1H, Hc), 4.51 

(dd, J1 = 14.7 Hz, J2 = 10.2 Hz, 1H, Hd), 5.69 (dd, J1 = 10.2 Hz, J2 = 8.1 Hz, 1H, O-CH), 6.45 

(t, J = 2.2Hz, 1H, H-4’), 6.71 (d, J = 2.2 Hz, 2H, H-2’, H-6’), 7.12 (d, J = 16.4 Hz, 1H, H-

alkene), 7.16 (d, J = 16.4 Hz, 1H, H-alkene), 7.36-7.43 (m, 5H, Ar), 7.59 (d, J = 8.4 Hz, 2H, 

H-3, H-5), 8.03 (d, J = 8.4 Hz, 2H, H-2, H-6). 
13C-NMR (CDCl3), δ: 55.40 (CH3, C-4’’’, C-5’’’), 63.16 (CH2, C-6’’’), 81.12 (CH, C-7’’’), 

100.48, 104.80, 125.77, 126.51, 128.29, 128.33, 128.73, 128.84, 130.53 (CH, C-2, C-3, C-5, 

C-6, C-2’, C-4’, C-6’, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-2’’’, C-3’’’ ), 126.59, 138.92, 

140.26, 141.01, 161.05, 163.87 (C, C-1, C-4, C-1’, C-3’, C-5’, C-1’’, C-1’’’). 
 

2-{4-[(E)-2-(4-Methoxyphenyl)-1-ethenyl]-phenyl-5-phenyl}-4,5-dihydro-

1,3-oxazole (24): 

(C24H21NO2; M.W. 355.43) 

 

 

 

 

 

 

 

 

Reagent: N-(2-Hydroxy-2-phenyl-ethenyl)-4-[(E)-2-(4-methoxyphenyl)-vinyl]benzamide 

(19)  (0.39 g, 1 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:3 v/v, Rf: 0.77. 

Yield: 0.15 g (42%) as a pale yellow solid. 

Melting Point: 160-162 ˚C  

Microanalysis: Calculated for C24H21O2N (355.43); Theoretical: %C = 81.10, %H = 5.95, 

%N = 3.94; Found: %C = 81.14, %H = 6.30, %N =3.75. 
1H-NMR (DMSO-d6), δ: 3.79 (s, 3H, O-CH3), 3.84 (dd, J1 = 14.9 Hz, J2 = 7.5 Hz, 1H, Hc), 

4.45 (dd, J1 = 14.9 Hz, J2 = 10.1 Hz, 1H, Hd), 5.80 (dd, J1 = 10.1 Hz, J2 = 7.6 Hz, 1H, O-CH), 

6.97 (d, J = 8.8 Hz, 2H, H-3’, H-5’), 7.17 (2d, J1 = 16.7 Hz, J2 = 16.6 Hz, 2H, H-alkene), 
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7.32-7.43 (m, 5H, Ar), 7.59 (d, J = 8.8 Hz, 2H, H-2’, H-6’), 7.68 (d, J = 8.3 Hz, 2H, H-3, H-

5), 7.92 (d, J = 8.3 Hz, 2H, H-2, H-6). 
13C-NMR (DMSO-d6), δ: 55.15 (CH3, C-4’’’), 62.55 (CH2, C-5’’’), 80.02 (CH, C-6’’’), 

113.82, 114.22, 125.13, 125.61, 128.08, 128.11, 128.21, 128.72, 130.08 (CH, C-2, C-3, C-5, 

C-6, C-2’, C-3’ C-5’, C-6’, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-2’’’, C-3’’’ ), 125.64, 129.32, 

140.56, 141.27, 159.32, 162.26 (C, C-1, C-4, C-1’, C-4’, C-1’’,  C-1’’’). 
 

2-{4-[(E)-2-(4-Fluorophenyl)-1-ethenyl]-phenyl-5-phenyl}-4,5-dihydro-1,3-

oxazole (25): 

(C23H18FNO; M.W. 343.39) 

 

 

 

 

 

 

 

 

Reagent: N-(2-hydroxy-2-phenyl-ethenyl)-4-[(E)-2-(4-fluoro-phenyl)-vinyl]benzamide (20)  

(1.05 g, 2.9 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:3 v/v, Rf: 0.86. 

Yield: 0.87g (87%) as a white solid. 

Melting Point: 148-150 ˚C  

Microanalysis: Calculated for C23H18OFN 0.2H2O (347.002); Theoretical: %C = 79.61, %H = 

5.34, %N = 4.04; Found: %C = 79.51, %H = 5.43, %N =3.75. 
1H-NMR (DMSO-d6), δ: 3.85 (dd, J1 = 14.7 Hz, J2 = 7.7 Hz, 1H, Hc), 4.45 (dd, J1 = 14.7 Hz, 

J2 = 10.2 Hz, 1H, Hd), 5.77 (dd, J1 = 10.2 Hz, J2 = 7.7 Hz, 1H, O-CH), 7.22-7.43 (m, 9H, Ar, 

H-alkene), 7.68-7.72 (m, 4H, Ar), 7.94 (d, J = 8.3 Hz, 2H, Ar). 
13C-NMR (DMSO-d6), δ: 62.58 (CH2, C-4’’’), 80.05 (CH, C-5’’’), 115.55-115.72 (d, JCF = 

21.8 Hz), 125.62, 126.55, 127.38, 128.10-128.24 (d, JCF = 17.3 Hz), 128.62, 128.69, 128.74, 
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129.20 (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-5’, C-6’, C-2”, C-3”, C-4’’, C-5’’, C-6’’, C-

2’’’, C-3’’’), 126.12, 133.32, 140.09, 141.25, 160.90-162.19 (d, JCF = 162.0 Hz), 162.86 (C, 

C-1, C-4, C-1’, C-4’, C-1’’, C-1’’’). 
19F-NMR (DMSO-d6), δ: -113.41 (s) 
 

5-Phenyl-2-{4-[(E)-2-phenyl-1-ethenyl]phenyl}-4,5-dihydro-1,3-oxazole (26) 
(1): 

(C23H19NO; M.W. 325.40) 

 

 

 

 

 

 

 

 

Reagent: N-(2-Hydroxy-2-phenyl-ethyl)-4-styryl-benzamide (21) (1.60 g, 4.7 mmol) 

T.L.C. system: petroleum ether-EtOAc 3:1 v/v, Rf: 0.57. 

Yield: 1.00 g (66%) as a white solid 

Melting Point: 124-126 ˚C 

Microanalysis: Calculated for C23H19NO (325.40); Theoretical: %C = 84.89, %H = 5.88, %N 

= 4.30; Found: %C = 84.70, %H = 5.94, %N = 4.11. 
1H-NMR (DMSO-d6), δ: 3.88 (dd, J1 = 14.9 Hz, J2 = 7.5 Hz, 1H, Hc), 4.48 (dd, J1 = 14.9 Hz, 

J2 = 10.1 Hz, 1H, Hd), 5.80 (dd, J1 = 9.9 Hz, J2 = 7.7 Hz, 1H, O-CH), 7.46-7.33 (m, 10H, Ar, 

H-alkene), 7.67 (d, J = 7.5 Hz, 2H, Ar), 7.76 (d, J = 8.3 Hz, 2H, Ar), 7.97 (d, J = 8.3 Hz, 2H, 

Ar). 
13C-NMR (DMSO-d6), δ: 62.60 (CH2, C-4’’’), 80.10 (CH, C-5’’’), 125.60, 126.60, 126.70, 

127.50, 128.05, 128.10, 128.20, 128.70, 130.40 (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-4’, C-

5’, C-6’, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-2’’’, C-3’’’), 126.20, 136.70, 140.10, 141.30, 

162.20 (C, C-1, C-4, C-1’, C-1’’, C-1’’’). 
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3.6.5 General method for the preparation of N-[2-(1H-imidazolyl)-2-

phenylethyl)]-4-[(E)-2-(unsubstituted/susbstituted-phenyl)-1-

ethenyl]benzamide 

!

!

!

"

"

A mixture of different 2,4[(E)-2-(3,4,5-unsubstituted/substitutedphenyl)-1-ethenyl]phenyl-5-

phenyl-4,5-dihydro-1,3-oxazole derivatives (1 equiv.) and imidazole (40 equiv.) dissolved in 

isopropyl acetate (9.0 mL/mmol) was refluxed at 125°C for 48 h. On completion, the mixture 

was portioned between water (100 mL/mmol) and EtOAc (150 mL/mmol) and the organic 

phase washed with H2O (3 x 100 mL/mmol), dried (MgSO4) and concentrated in vacuo. The 

product was isolated by flash column chromatography (EtOAc-petroleum ether 50:50 v/v 

increasing to 90:10 v/v then DCM-MeOH 100:0 v/v increasing to 96:4 v/v) giving pure N-[2-

(1H-imidazolyl)-2-phenylethyl)]-4-[(E)-2-(unsubstituted/susbstituted-phenyl)-1-

ethenyl]benzamide derivatives as solid. 

 

N-[2-(1H-1-Imidazolyl)-2-phenyl-ethenyl]-4-[(E)-2-(3,4,5-

trimethoxyphenyl)-1-ethenyl]benzamide (27) (MCC268): 

(C29H29N3O4; M.W. 483.55) 
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Reagent: 2-{4-[(E)-2-(3,4,5-Trimethoxyphenyl)-1-ethenyl]-phenyl-5-phenyl}-4,5-dihydro-

1,3-oxazole (22) (0.87 g, 2.1 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.48. 

Yield: 0.72 g (71%) as a white solid. 

Melting Point: 96-98 ˚C  

Microanalysis: Calculated for C29H29O4N3 0.3H2O (488.970); Theoretical: %C = 71.24, %H 

= 6.10, %N = 8.59; Found: %C = 70.95, %H = 5.78, %N =8.64. 
1H-NMR (DMSO-d6), δ: 3.69 (s, 3H, OCH3, H-5”‘), 3.84 (s, 6H, OCH3, H-4”‘, H-6”‘), 3.95-

4.00 (m, 1H, Hc), 4.05-4.11 (m, 1H, Hb), 5.68 (dd, J1 = 9.4 Hz, J2 = 5.8 Hz, 1H,  

CH2-CH-Ar), 6.91 (s, 1H, H-imidazole), 6.96 (s, 2H, H-2’, H-6’), 7.28-7.39 (m, 8H, H-

alkene, Ar, H-imidazole), 7.65 (d, J = 8.3 Hz, 2H, H-3, H-5), 7.77 (d, J = 8.3Hz, H-2, H-6), 

7.84 (s, 1H, H-imidazole), 8.72 (t, J = 5.4 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ: 43.45 (CH2, C-7’’’’), 55.88 (CH, C-8’’’’),  55.44 (CH3, C-4’’’’, C-

6’’,’), 60.07 (CH3, C-5’’’’), 104.16, 118.34, 126.01, 129.78, 126.81, 127.66, 128.05, 128.49, 

128.70, 130.45, 136.75 (CH, C-2, C-3, C-5, C-6, C-2’, C-6’, C-2’’, C-3’’, C-5’’, C-4’’, C-6’’ 

, C-2’’’’, C-3’’’’, C-1’’’, C-2’’’, C-3’’’), 132.39, 132.55, 137.66, 139.30, 140.12, 153.05, 

166.28 (C, C-1, C-4, C-1’, C-3’, C-4’, C-5’, C-1’’,  C-1’’’’). 

 

N-[2-(1H-1-Imidazolyl)-2-phenyl-ethenyl]-4-[(E)-2-(3,5-dimethoxyphenyl)-

1-ethenyl]benzamide (28) (MCC204): 

(C28H27N3O3; M.W. 453.53) 
 

 

 

 

 

 

 

Reagent:  2-{4-[(E)-2-(3,5-Dimethoxyphenyl)-1-ethenyl]-phenyl-5-phenyl}-4,5-dihydro-1,3-

oxazole (23) (0.83 g, 2.15 mmol)  
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T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.46. 

Yield: 0.61 g (62%) as a white solid. 

Melting Point: 210-212 ˚C  

Microanalysis: Calculated for C28H27O3N3 0.1H2O (455.341); Theoretical: %C = 73.86, %H 

= 5.98, %N = 9.23; Found: %C = 73.61, %H = 5.61, %N = 9.18. 
1H-NMR (DMSO-d6), δ: 3.79 (s, 6H, OCH3, H-4’’’’, H-5’’’’), 3.95-4.00 (m, 1H, Hc), 4.05-

4.11 (m, 1H, Hb), 5.68 (dd, J1 = 9.4 Hz, J2 = 5.7 Hz, 1H, CH2-CH-Ar), 6.45 (t, J = 2.0 Hz, 1H, 

H-4’), 6.81 (d, J = 2.0 Hz, 2H, H-2’, H-6’), 6.91 (s, 1H, H-imidazole), 7.27-7.35 (m, 3H, H-

alkene, Ar), 7.38-7.40 (m, 5H, Ar, H-imidazole), 7.66 (d, J = 8.43 Hz, 2H, H-3, H-5), 7.72 (d, 

J = 8.4 Hz, 2H,  H-2, H-6), 7.84 (s, 1H, H-imidazole), 8.73 (t, J = 5.5 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ: 43.44(CH2, C-6’’’’), 55.21 (CH, C-7’’’’), 59.43 (CH3, C-4’’’’ C-

5’’’’), 100.30, 104.68, 118.34, 126.25, 126.82, 127.62, 127.96, 128.06, 128.48, 128.71, 

130.32, 136.75 (CH, C-2, C-3, C-5, C-6, C-2’, C-4’ C-6’, C-2’’, C-3’’, C-5’’, C-4’’, C-6’’ C-

2’’’’, C-3’’’’, C-1’’’, C-2’’’, C-3’’’), 132.79, 138.72, 139.27, 139.89, 160.66, 166.29 (C, C-1, 

C-4, C-1’, C-3’, C-5’, C-1’’, C-1’’’’). 

 

N-[2-(1H-1-Imidazolyl)-2-phenyl-ethenyl]-4-[(E)-2-(4-methoxyphenyl)-1-

ethenyl]benzamide (29) (MCC269): 

(C27H25N3O2; M.W. 423.51) 
 

 

 

 

 

 

Reagent: 2-{4-[(E)-2-(4-Methoxyphenyl)-1-ethenyl]-phenyl-5-phenyl}-4,5-dihydro-1,3-

oxazole (24) (0.15 g, 0.4 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.66. 

Melting Point: 188-190 ˚C  

Yield: 0.05 g (30%) as a white solid. 
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HRMS (EI): Calculated mass: 424.2020 [M+H]+, Measured mass: 424.2021 [M+H]+ 
1H-NMR (DMSO-d6), δ: 3.78 (s, 3H, OCH3, H-4”’’), 3.94-3.99 (m, 1H, Hc), 4.03-4.10 (m, 

1H, Hb), 5.68 (dd, J1 = 9.1 Hz, J2 = 5.7 Hz, 1H, CH2-CH-Ar), 6.92 (s, 1H, H-imidazole), 6.96 

(d, J = 8.6 Hz, 2H, H-3’, H-5’), 7.13 (d, J = 16.6 Hz, 1H, H-alkene), 7.28-7.33 (m, 2H, H-

alkene, Ar), 7.37-7.39 (m, 5H, Ar, H-imidazole), 7.52 (d, J = 8.6 Hz, 2H, H-2’, H-6’), 7.62 

(d, J = 8.4 Hz, 2H, H-3, H-5), 7.74 (d, J = 8.4 Hz, 2H, H-2, H-6), 7.85 (s, 1H, H-imidazole), 

8.69 (t, J = 5.3 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ : 43.43 (CH2, C-5’’’’), 55.15 (CH, C-6’’’’),  59.46 (CH3, C-4’’’’), 

113.82, 114.21, 125.09, 125.85, 126.82, 127.59, 128.06, 128.25, 128.42, 128.71, 129.88, 

129.96 (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-5’, C-6’, C-2’’, C-3’’, C-5’’, C-4’’, C-6’’ , C-

2’’’’, C-3’’’’, C-1’’’, C-2’’’, C-3’’’), 129.33, 132.25, 139.27, 140.39, 159.27, 166.33 (C, C-1, 

C-4, C-1’, C-4’, C-1’’ C-1’’’’). 
19F-NMR (DMSO-d6), δ: -113.41 (s) 

N-[2-(1H-1-Imidazolyl)-2-phenyl-ethenyl]-4-[(E)-2-(4-fluorophenyl)-1-

ethenyl]benzamide (30) (MCC270): 

(C26H22FN3O; M.W. 411.47) 
 

 

 

 

 

 

Reagent: 2-{4-[(E)-2-(4-Fluorophenyl)-1-ethenyl]-phenyl-5-phenyl}-4,5-dihydro-1,3-oxazole 

(25) (0.81 g, 2.4 mmol)  

T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.60. 

Yield: 0.74 g (74%) as a pale yellow solid. 

Melting Point: 192-194 ˚C  

Microanalysis: Calculated for C26H22OFN3 0.3H2O (416.882); Theoretical: %C = 74.90, %H 

= 5.46, %N = 10.08; Found: %C = 74.79, %H = 5.48, %N =10.40. 
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1H-NMR (DMSO-d6), δ: 3.94-3.99 (m, 1H, Hc), 4.03-4.10 (m, 1H, Hb), 5.66 (dd, J1 = 9.3 Hz, 

J2 = 6.0 Hz, 1H, CH2-CH-Ar), 6.91 (s, 1H, H- imidazole), 7.21-7.26 (m, 3H, H-alkene, Ar), 

7.33-7.39 (m, 6H, Ar), 7.65-7.69 (m, 5H, Ar, H-imidazole), 7.76 (d, J = 8.3 Hz, 2H, Ar), 7.84 

(s, 1H, H- imidazole), 8.69 (t, J = 5.3 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ: 43.47 (CH2, C-4’’’’), 59.43 (CH, C-5’’’’), 115.54-115.71 (d, JCF = 

21.8 Hz), 118.34, 126.17, 126.82, 127.36, 127.62, 128.05, 128.05, 128.57,128.63, 128.70, 

129.09, 136.75  (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-5’, C-6’, C-2’’, C-3’’, C-5’’, C-4’’, 

C-6’’, C-2’’’’, C-3’’’’, C-1’’’, C-2’’’, C-3’’’), 132.76, 133.31-133.37 (d, JCF = 3.2 Hz), 

139.30, 139.92, 160.87-162.83 (d, JCF = 264.0 Hz), 166.28 (C, C-1, C-4, C-1’, C-4’, C-1’’, C-

1’’’’). 

 

N-[2-(1H-1-Imidazolyl)-2-phenyl-ethenyl]-4-[(E)-2-phenyl-1-

ethenyl]benzamide (31) (MCC165) (1): 

(C26H23N3O; M.W. 393.48) 
 

 

 

 

 

 

Reagent: 5-Phenyl-2-{4-[(E)-2-phenyl-1-ethenyl]phenyl}-4,5-dihydro-1,3-oxazole (26) (1.0 

g, 3.0 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.77. 

Yield: 0.70g (28%) as a white solid. 

Melting Point: 190-192 ˚C  

Microanalysis: Calculated for C26H23N3O (393.48); Theoretical: %C = 79.36, %H = 5.89, 

%N = 10.67; Found: %C = 79.10, %H = 5.80, %N =10.43. 
1H-NMR (DMSO-d6), δ: 3.97-3.4.02 (m, 1H, Hc), 4.07-4.17 (m, 1H, Hb), 5.73 (dd, J1 = 9.1 

Hz, J2 = 5.7 Hz, 1H, CH2-CH-Ar), 6.96 (s, 1H, H-imidazole), 7.32-7.43 (m, 11H, H-alkene, 

Ar, H-imidazole), 7.66 (d, J = 7.4 Hz, 2H, Ar), 7.71 (d, J = 8.0 Hz, 2H, Ar), 7.81 (d, J = 8.0 

Hz, 2H, Ar), 7.89 (s, 1H, H-imidazole), 8.77 (t, J = 5.3 Hz, 1H, NH). 
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13C-NMR (DMSO-d6), δ : 43.45 (CH2, C-4’’’’), 59.43 (CH, C-5’’’’), 118.35, 126.22, 126.67, 

126.82, 127.44, 127.61, 128.02, 128.06, 128.49, 128.71, 128.74, 130.28, 136.25 (CH, C-2, C-

3, C-5, C-6, C-2’, C-3’, C-4’, C-5’, C-6’, C-2’’, C-3’’, C-5’’, C-4’’, C-6’’ , C-2’’’’, C-3’’’’, 

C-1’’’, C-2’’’, C-3’’’), 132.75, 136.69, 139.28, 139.98, 166.31 (C, C-1, C-4, C-1’, C-1’’, C-

1’’’’). 

 

4-[2-(4-Fluorophenyl)-ethyl]-N-(2-imidazol-1-yl-2-phenyl-ethyl)benzamide 

(32) (MCC295): 

(C26H24FN3O; M.W. 413.46) 

 

 

 

 

 

 

Pd/C catalyst 10% (0.17 g) was added to a solution of compound 30 (0.2 g, 0.4 mmol) in 

THF (20 mL) and the reaction was stirred under a H2 atmosphere for 72 h. After that time the 

mixture was filtered through celite. The solvent was removed under reduced pressure and the 

oil formed was purified by flash column chromatography (DCM-MeOH 100:0 v/v increasing 

to 98:2 v/v) to give 4-[2-(4-Fluoro-phenyl)-ethyl]-N-(2-imidazol-1-yl-2-phenyl-ethyl)-

benzamide (32) as a white solid. 

T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.60. 

Yield: 0.10 g (53%) as a white solid. 

Melting Point: 130-132 ˚C  

Microanalysis: Calculated for C26H24OFN3 0.3H2O (418.5950); Theoretical: %C = 74.60, %H 

= 5.92, %N = 10.03; Found: %C = 74.26, %H = 6.22, %N =10.00. 
1H-NMR (DMSO-d6), δ:  2.84-2.94 (m, 4H, CH2, H-2’’’’, H-3’’’’), 3.92-3.98 (m, 1H, Hc), 

4.01-4.08 (m, 1H, Hb), 5.66 (dd, J1 = 9.7 Hz, J2 = 5.7 Hz, 1H, CH2-CH-Ar), 6.90 (s, 1H, H- 

imidazole), 7.07-7.10 (m, 2H, Ar), 7.21-7.25 (m, 2H, Ar, H-imidazole), 7.27 (d, J = 8.2 Hz, 
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2H, Ar), 7.31-7.34 (m, 2H, Ar), 7.35-7.42 (m, 4H, Ar), 7.65 (d, J = 8.2 Hz, 2H, Ar), 7.83 (s, 

1H, H- imidazole), 8.63 (t, J = 5.5 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ: 35.67, 36.76, 43.40 (CH2, C-2’’’’, C-3’’’’, C-4’’’’), 59.41 (CH, C-

5’’’’), 114.75, 114.92, 118.33, 126.81, 127.14, 128.03, 128.28, 128.47, 128.69, 130.06, 

130.12, 136.73  (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-5’, C-6’, C-2’’, C-3’’, C-5’’, C-4’’, 

C-6’’, C-1’’’, C-2’’’, C-3’’’), 131.72, 137.27, 139.31, 144.92, 159.65, 161.57, 166.55 (C, C-

1, C-4, C-1’, C-4’, C-1’’,  C-1’’’’). 

 

4-(N-Phenyl)-sulfamoyl benzoic acid (35) (13) 

(C13H11NO4S; M.W. 277.296) 

 

 

 

 

 

 

To a solution of an aniline (33) (0.82 mL, 9.0 mmol) in pyridine (18 mL) was added 4-

(chlorosulfonyl)-benzoic acid (34) (2 g, 9.0 mmol) at 0˚C.  After stirring at room temperature 

overnight, the mixture was acidified with 2 M aqueous HCl solution (100 mL) and the 

mixture was extracted with EtOAc (100 mL).  The organic layer was washed with H2O (100 

mL) and brine (100 mL), and dried over MgSO4.  The solvent was removed under reduced 

pressure and the orange/white solid was refluxed for 1 h with EtOAc- hexane 1:1 v/v (100 

mL). The white precipitate was filtered to give the pure 4-(N-Phenyl)-sulfamoyl benzoic acid 

(35). 

T.L.C. system: petroleum ether-EtOAc 2:8 v/v, Rf: 0.53 

Yield: 1.41 g (56%) as a white solid. 

Melting Point: 274-276 ˚C (lit. 274.5-275.5 ˚C) (13) 
1H-NMR (DMSO-d6), δ:  7.03-7.06 (m, 1H, H-4’), 7.07-7.09 (m, 2H, Ar), 7.22-7.25 (m, 2H, 

Ar), 7.85 (d, J = 8.6 Hz, 2H, Ar), 8.06 (d, J = 8.6 Hz, 2H, Ar), 10.43 (b.s., 1H, NH). 
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13C-NMR (DMSO-d6), δ: 120.39, 124.41, 126.93, 129.20, 130.06 (CH, C-2, C-3, C-5, C-6, 

C-2’, C-3’, C-5’, C-6’), 134.82, 137.24, 142.92, 166.12 (C, C-1, C-4, C-1’, C-1’’). 

 

N-(2-Hydroxy-2-phenyl-ethyl)-4-phenylsulfamoyl-benzamide (36): 

(C21H20N2O4S; M.W. 396.459) 

 

 

 

 

 

 

See procedure 3.6.3. 

Reagent: 4-(N-Phenyl)-sulfamoyl benzoic acid (35) (0.4 g, 1.4 mmol) 

T.L.C. system: petroleum ether-EtOAc 2:8 v/v, Rf: 0.55 

Yield: 0.52 g (94%) as a white solid. 

Melting Point: 200-202 ˚C  

Microanalysis: Calculated for C21H20O4N3S (396.459); Theoretical: %C = 63.62, %H = 5.08, 

%N = 7.06; Found: %C = 63.45, %H = 5.11, %N = 7.16. 
1H-NMR (DMSO-d6), δ:  3.27-3.33 (m, 1H, H-2’’), 3.44-3.49 (m, 1H, H-2’’), 4.74-4.77 (m, 

1H, H-3’’), 5.51 (d, J = 4.3 Hz, 1H, CH-OH), 7.02-7.06 (m , 1H, H-4’), 7.09-7.10 (m, 2H, 

Ar), 7.22-7.26 (m, 3H, Ar), 7.32-7.37 (m, 4H, Ar), 7.82 (d, J = 8.6 Hz, 2H, Ar), 7.93  (d, J = 

8.6 Hz, 2H, Ar), 8.73 (t, J = 5.7 Hz, 1H, CONHR), 10.31 (b.s., 1H, NHSO2R). 
13C-NMR (DMSO-d6), δ: 47.72 (CH2, C-2’’), 70.94 (CH, C-3’’), 120.27, 124.27, 125.93, 

126.65, 127.05, 128.03, 128.09, 129.18 (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-5’, C-6’, C-

2’’’, C-3’’’, C-4’’’, C-5’’’, C-6’’’), 137.43, 138.38, 141.50, 143.56, 165.16 (C, C-1, C-4, C-

1’, C-1’’, C-1’’’). 

 

N-Methanesulfonyl-N-phenyl-4-(5-phenyl-4,5-dihydro-oxazol-2-yl)-benzene 

sulfonamide (39): 
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(C22H20N2O5S2; M.W. 456.534) 

 

 

 

 

 

 

 

 

See procedure 3.6.4. 

Reagent: N-(2-Hydroxy-2-phenyl-ethyl)-4-phenylsulfamoyl-benzamide (36) (0.5 g, 1.3 

mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.56 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 50:50 v/v 

Yield: 0.31 g (55%) as white crystals. 

Melting Point: 148-150 ˚C  

Microanalysis: Calculated for C22H20O5N2S2 0.1 H2O (457.88293); Theoretical: %C = 57.27, 

%H = 4.44, %N = 6.11; Found: %C = 57.23, %H = 4.62, %N = 6.13. 
1H-NMR (DMSO-d6), δ:  3.55 (s, 3H, -SO2CH3), 4.08 (dd, J1 = 15.3 Hz, J2 = 8.2 Hz, 1H, H-

2’’), 4.55 (dd, J1 = 15.3 Hz, J2 = 10.3 Hz, 1H, H-2’’), 5.74 (dd, J1 = 10.3 Hz, J2 = 8.2 Hz, 1H, 

H-3’’), 7.18 (d, J = 7.6 Hz, 2H, Ar), 7.38-7.40 (m, 3H, Ar), 7.43-7.47 (m, 4H, Ar), 7.50 (t, J = 

7.5 Hz, 1H, Ar), 7.96 (d, J = 8.5 Hz, 2H, Ar), 8.18  (d, J = 8.5 Hz, 2H, Ar). 
13C-NMR (DMSO-d6), δ:  43.90 (CH3), 63.30 (CH2, C-2’’), 81.70 (CH, C-3’’), 125.79, 

128.61, 128.79, 128.89, 128.95, 129.55, 130.57, 131.12 (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, 

C-5’, C-6’, C-2’’’, C-3’’’, C-4’’’, C-5’’’, C-6’’’), 132.97, 133.62, 140.39, 140.66, 162.42 (C, 

C-1, C-4, C-1’, C-1’’, C-1’’’). 

 

N-Phenyl-4-(5-phenyl-4,5-dihydro-oxazol-2-yl)-benzene sulfonamide (37): 

(C21H18N2O3S; M.W. 378.444) 
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See procedure 3.6.5. 

Reagent: N-Methanesulfonyl-N-phenyl-4-(5-phenyl-4,5-dihydro-oxazol-2-yl)-benzene 

sulfonamide (39) (0.3 g, 0.7 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.42 

Flash column chromatography: petroleum ether-EtOAc 30:70 v/v 

Yield: 0.20 g (77%) as a white solid. 

Melting Point: 142-144 ˚C  

Microanalysis: Calculated for C21H18O3N2S 0.5 H2O (387.11166); Theoretical: %C = 65.15, 

%H = 4.94, %N = 7.23; Found: %C = 64.96, %H = 5.02, %N = 7.18. 
1H-NMR (DMSO-d6), δ: 3.86 (dd, J1 = 15.2 Hz, J2 = 7.7 Hz, 1H, H-2’’), 4.46 (dd, J1 = 15.3 

Hz, J2 = 10.3 Hz, 1H, H-2’’), 5.80 (dd, J1 = 10.2 Hz, J2 = 7.8 Hz, 1H, H-3’’), 7.04 (t, J = 7.2 

Hz, 1H, Ar), 7.10 (d, J = 7.7 Hz, 2H, Ar), 7.24-7.30 (m, 2H, Ar), 7.33-7.41 (m, 5H, Ar), 7.87 

(d, J = 8.5 Hz, 2H, Ar), 8.07  (d, J = 8.5 Hz, 2H, Ar), 10.29 (b.s., 1H, NHSO2R). 
13C-NMR (DMSO-d6), δ: 62.59 (CH2, C-2’’), 80.59 (CH, C-3’’), 120.40, 124.29, 125.72, 

127.11, 128.22, 128.64, 128.75, 129.18 (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-5’, C-6’, C-

2’’’, C-3’’’, C-4’’’, C-5’’’, C-6’’’), 131.00, 137.44, 140.78, 142.04, 161.24 (C, C-1, C-4, C-

1’, C-1’’, C-1’’’). 

 

N-(2-Imidazol-1-yl-2-phenyl-ethyl)-4-phenyl sulfonyl-benzamide (38) 

(MCC296): 

(C24H22N4O3S; M.W. 446.521) 
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See procedure 3.6.5. 

Reagent: N-Phenyl-4-(5-phenyl-4,5-dihydro-oxazol-2-yl)-benzene sulfonamide (37) (0.2 g, 

0.5 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.74 

Flash column chromatography: EtOAc-petroleum ether 50:50 v/v increasing then DCM-

MeOH 100:0 v/v increasing to 90:10 v/v) 

Yield: 0.04 g (18%) as a white solid. 

Melting Point: 178-180 ˚C  

HRMS (EI): Calculated mass: 447.1485 [M+H]+, Measured mass: 447.1476 [M+H]+ 
1H-NMR (DMSO-d6), δ: 3.93-4.00 (m, 1H, H-2’’), 4.02-4.10 (m, 1H, H-2’’), 5.62 (dd, J1 = 

9.5 Hz, J2 = 5.7 Hz, 1H, H-3’’), 6.90 (s, 1H, H-imidazole), 7.01-7.05 (m, 1H, Ar), 7.06-7.09 

(m, 2H, Ar, H-imidazole), 7.20-7.34 (m, 2H, Ar), 7.30-7.35 (m, 2H, Ar), 7.3-7.41 (m, 4H, 

Ar), 7.78-7.85 9m, 5H, Ar, H-imidazole), 8.90 (t, J = 5.5 Hz, 1H, CONHR), 10.35 (b.s., 1H, 

NHSO2R). 
13C-NMR (DMSO-d6), δ: 43.48 (CH2, C-2’’), 59.34 (CH, C-3’’), 118.27, 120.26, 124.30, 

126.71, 126.82, 128.04, 128.08, 128.53, 128.70, 129.18 (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, 

C-5’, C-6’, C-2’’’, C-3’’’, C-4’’’, C-5’’’, C-6’’’, C-1#, C-2#, C-3#), 137.33, 137.94, 139.11, 

141.75, 165.61 (C, C-1, C-4, C-1’, C-1’’, C-1’’’). 
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4.1  Chemistry 

As reported in chapter 3 (figure 3.5), the second modification planned was to incorporate the 

styrene double bond into a heterocyclic structure for three main reasons:  

1. Confirm the importance of the styrene for the CYP24A1 inhibitory activity.  

2. Improve the solubility in water changing the logP and confirm its influence in the 

anti-CYP24A activity. 

3. Plan a shorter synthetic pathway. 

Five different heterocyclic benzoic acid derivatives were chosen as starting material. The 

choice was made from the commercially available compounds considering the theoretical 

ClogP of the final products, calculated using MOE 2010.(1) The starting materials and final 

products with the respective ClogP value are shown in table 4.1.!
!

 
 

Table 4.1: Calculated CLogP of the heterocyclic-benzamide products. 
 

STARTING STRUCTURE PRODUCT STRUCTURE CLogP  

2-Naphtoic acid (40) 

 

MCC297 

 

4.1150 

Indole-2-carboxyl 

acid (41) 
 

MCC298 

 

3.2230 

5-Benzimidazole 

carboxylic acid (42) 

 

MCC299 

 

2.2750 

Benzofuran-2-

carboxylic acid (43)  

MCC300 

 

3.0420 

3-Quinoline acid 

(44) 

 

MCC301 

 

3.0940 
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This new heterocyclic-benzamide family was easily prepared following the synthetic pathway 

already used for the styryl-benzamide family. The general scheme of the three step synthesis 

is reported in scheme 4.1 and each step will be discussed below. 

!

!

!

!

!

!

!

!

!
!

!

!

 

Scheme 4.1: Reagents and Conditions: (I) 2-amino-1-phenyl-ethanol, CDI, 20 h (II) CH3SO2Cl, Et3N, 24h (III) 

imidazole, isopropyl acetate, 125 °C, 48h. 

 

4.1.1 Synthesis of carboxylic acid (2-hydroxy-2-phenylethyl)amide 
derivatives!

!

Final Compound Ar 

MCC297 

 
MCC298 

 
MCC299 

 
MCC300 

 
MCC301 
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!

 

Scheme 4.2: Amidic bond formation.!
 

Formation of the amidic bond was obtained using the method previously reported (section 

3.2.3) giving the desired products in a good range of yield between 66 and 86 %. In the 

preparation of compound 47 the normal work up has been changed. In fact, due to the high 

water solubility of the benzimidazole derivative precipitation from water was not possible 

and a different work up was required. After reaction completion, the solvent was removed 

and the crude compound purified by flash column chromatography (see experimental 4.5.1). 

 

4.1.2 Synthesis of  5-phenyl-4,5-dihydro-oxazole derivatives!

The dihydro-oxazole ring formation was obtained following the method previously reported 

in section 3.2.4. Compounds 50-54 were easily achieved in good to excellent yield. 

Regarding compound 52, the benzimidazole derivative, a different approach was considered 

necessary to avoid the possible mesylation of the nitrogen ring considering the previous 

mesylation problem for the synthesis of compound 38 (chapter 3).!

Product Ar YIELD 

45 

 

80% 

46 

 

86% 

47 

 

71% 

48 

 

86% 

49 

 

66% 
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Scheme 4.3: Dihydro-oxazole ring formation. 

 

The nitrogen was protected with a methyl group using methyl iodide (55) as the methylation 

agent, potassium carbonate as base and acetone/DMF as solvent mixture (scheme 4.4).(2,3) 

The reaction was left for 24 h and after work and purification a pink solid was obtained.   

 

 

 

 

 

Scheme 4.4: Methylation reaction. 

 

Unfortunately, both 1H-NMR and 13C-NMR showed the presence of two products even if 

only one clear product spot was present on TLC. NMR spectra examination suggested that 

Product Ar YIELD 

50 

 

90% 

51 

 

71% 

52 

 

- 

53 

 

52% 

54 

 

54% 
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methylation took place on both nitrogens of the benzimidazole ring giving a mix of 

compound 56 and 57 in a ratio of 1:1 (figure 4.1). This unselective methylation is due to the 

motion of the nitrogen proton that is able to move between the two nitrogen atoms of 

benzimidazole (figure 4.1) and confers the same reactivity to both nitrogens. 

 

 

 

 

!

 

 

 

Figure 4.1: Methylation reaction gave two compounds in a ratio of 1:1. 

 
The impossibility to separate the two different compounds using different eluent mixtures 

suggested the need to avoid this type of protection. According to several publications, 

mesylation, together with tosylation, is a common method for the protection of benzimidazole 

nitrogen atoms (4,5) and as a protecting group, the mesyl, can be easily removed in the 

presence of a base and at high temperature as previously performed for the synthesis of 

compound 38.(6) Based on this information the normal dihydro-oxazole ring formation was 

tried and as expected a mixture of compound 58 and compound 59 was obtained in a good 

66% (ratio 1:1 ) in which the dihydro-oxazole ring and mesylated nitrogen were present 

(figure 4.2). 

 

!

 

!
 

Figure 4.2: Mixture of compounds 58 and 59 after the dihydro-oxazole ring formation reaction. 

 

4.1.3 Synthesis of carboxylic acid (2-imidazol-1-yl-2-phenylethyl)amide 
derivatives 
 

The last step was carried out as reported before (section 3.2.5). In the benzimidazole 

derivative (58 and 59), an excess of imidazole was added in order to act as base and remove 
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the mesyl protection. The difference in yield of the series could be a consequence of the 

different hetero atoms present in the cyclic rings. The electron-withdrawing and the electron-

donating effect of these atoms may influence the nucleophilic displacement by the imidazole 

that occurs in this reaction. 

 

 

 

 

 

 

Scheme 4.5: Final heterocyclic-benzamide compounds. 

 

4.2  CYP24A1/CYP27B1 enzymatic assay 
 
The five synthesised heterocyclic derivatives were tested in a CYP24A1/CYP27B1 

enzymatic assay following the method reported in the methods section (section 3.5.4). The 

IC50 (inhibitory activity) and Ki (dissociation constant), are reported in the table 4.2, 

together with the ketoconazole (KTZ) value. No relevant results were found and the family 

Product Ar YIELD 

60 (MCC297) 

 

76% 

61 (MCC 298) 

 

40% 

62 (MCC299) 

 

36% 

63 (MCC300) 

 

23% 

64 (MCC301) 

 

5% 
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is characterised by a notable reduction in activity. No CYP27B1 assay was performed as a 

consequence of the low CYP24A1 inhibitory activity if compared with KTZ. 

 

 

 

 

Table 4.2 CYP24A1 enzymatic assay results. 

 

4.3  Discussion and Docking studies 
 

The enzymatic assay showed a notable reduction in activity for this family of compounds. 

Docking studies were performed in order to give a rational explanation for the reduction in 

activity. Due to their shorter length, if compared with the first family of styryl-benzamides, 

the compounds are not able to sit entirely in the access channel and consequently the Fe-N 

coordination is difficult to form (figure 4.3 shows docking of MCC297).  

  CYP24A1 

Name Ar IC50 (µM) Ki (µM) 

MCC297 

 

1.4 0.099 

± 0.009 

MCC298 

 

1.9 0.14 

± 0.02 

MCC299 

 

~10% inhibition at 10 µM 

MCC300 

 

2.2 0.16 

± 0.03 

MCC301 

 

3.5 0.25 

± 0.03 

KTZ - 0.47 0.035 

± 0.005 
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Moreover, as noticed before, the influence of the ClogP is important. The more hydrophilic 

the molecule is, the greater the reduction in activity. In fact, MCC299, due the presence of 

the benzimidazole ring, is a hydrophilic compound (ClogP 2.2750) showing only 10% 

inhibition at 10 µM. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Two different poses of MCC297 (gold and silver) in the active site. The molecule is not able to 

entirely occupy the enzyme channel (light-blue surface) as proved by the distance from Gln82 (red line, 9.33Å). 

 

The results, obtained preparing this small family of five different compounds, are a further 

indication about the importance of the styryl linker, the rigidity of the molecule and the 

consequent occupation of the active pocket in determining CYP24A1 inhibition. The logP 

was confirmed to be an important factor influencing the activity. 
!

4.4  Methods  
 

4.4.1 Computational Approaches  

All the computational information is reported in section 2.2.1 chapter 2.  

4.4.2 Molecular Docking 

All the molecular docking information is reported in section 2.2.3 chapter 2. 

4.4.3 CYP24A1 and CYP27B1 inhibition assay 

All the enzymatic assay information is reported in section 3.5.4 chapter 3. 



Family II: Heterocyclic-Benzamide 

~ 124 ~!
!

4.4.4 Chemistry General Information 

All general chemistry information is reported in section 3.5.5 chapter 3. 

4.5  Experimental 
 

4.5.1 !General method for the preparation of different carboxylic acid (2-

hydroxy-2-phenyl-ethyl)amide derivatives 

 

 

 

 

See procedure 3.6.3 chapter 3 

 

Naphathalene-2-carboxylic acid (2-hydroxy-2-phenylethyl)amide (45): 

(C19H17NO2; M.W. 291.344) 

 

!

!

!

!

Reagent: 2-Naphthoic acid (40) (1.5 g, 8.7 mmol) 

T.L.C. system: petroleum ether-EtOAc 2:8 v/v Rf: 0.72 

Yield: 2.01 g (80%) as a white solid 

Melting Point: 174-176 ˚C  

Microanalysis: Calculated for C19H17NO2 (291.344); Theoretical: %C = 78.33, %H = 5.88, 

%N = 4.81; Found: %C = 77.93, %H = 5.71, %N = 4.87. 
1H-NMR (DMSO-d6), δ: 3.37-3.43 (m, 1H, H-2’), 3.54-3.59 (m, 1H, H-2’), 4.83-4.86 (m, 

1H, H-3’), 5.55 (d, J = 4.4 Hz, 1H, CH-OH), 7.25-7.28 (m, 1H, Ar), 7.35 (m, 2H, Ar), 7.41 

(d, J = 7.4 Hz, 2H, Ar), 7.58-7.63 (m, 2H, Ar), 7.94 (dd, J1= 8.6 Hz, J2= 1.7 Hz, 1H, Ar), 

7.97-8.02 (m, 3H, Ar), 8.46 (s, 1H, Ar), 8.67 (t, J = 5.3 Hz, 1H, NH). 
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13C-NMR (DMSO-d6), δ: 47.79 (CH2, C-2’), 71.21 (CH, C-3’), 124.19, 125.99, 126.66, 

127.01, 127.42, 127.49, 127.57, 127.76, 128.08, 128.78 (CH, C-1, C-3, C-4, C-6, C-7, C-8, 

C-9, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’), 131.88, 132.11, 134.07, 143.78 (C, C-2, C-5, C-10, C-

1’’), 166.43 (C, C-1’). 

1H-Indole-2-carboxylic acid (2-hydroxy-2-phenylethyl)amide (46): 

(C17H16N2O2; M.W. 280.321) 

 

 

 

 

 

Reagent: Indole-2-carboxylic acid (41) (1.5 g, 9.3 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.44 

Yield: 2.25 g (86%) as a pale yellow solid 

Melting Point: 226-228 ˚C  

Microanalysis: Calculated for C17H16N2O2 (280.321); Theoretical: %C = 72.84, %H = 5.75, 

%N = 9.99; Found: %C = 72.72, %H = 5.88, %N = 10.09. 
1H-NMR (DMSO-d6), δ: 3.35-3.41 (m, 1H, H-2’), 3.51-3.56 (m, 1H, H-2’), 4.79-4.82 (m, 

1H, H-3’), 5.56 (d, J = 4.5 Hz, 1H, CH-OH), 7.03 (t, J = 7.5 Hz, 1H, Ar), 7.13 (d, J = 1.6 Hz, 

1H, H-2), 7.18 (t, J = 7.5 Hz, 1H, Ar), 7.25-7.27 (m, 1H, Ar), 7.34-7.36 (m, 2H, Ar), 7.39-

7.44 (m, 3H, Ar), 7.61 (d, J = 8.0 Hz, 1H, Ar), 8.51 (t, J = 5.7 Hz, 1H, NH), 11.54 (s, 1H, NH 

indole). 
13C-NMR (DMSO-d6), δ: 47.18 (CH2, C-2’), 71.28 (CH, C-3’), 102.59, 112.23, 119.63, 

121.44, 123.18, 125.99, 127.02, 128.01 (CH, C-2, C-4, C-5, C-6, C-7, C-2’’, C-3’’, C-4’’, C-

5’’, C-6’’), 127.07, 131.73, 136.36, 134.74 (C, C-1, C-3, C-8, C-1’’), 161.20 (C, C-1’). 

 

1H-Benzimidazole-5-carboxylic acid (2-hydroxy-2-phenylethyl)amide (47): 

(C16H15N3O2; M.W. 281.309) 
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Reagent: 5-Benzimidazole carboxylic acid (42) (1.5 g, 9.3 mmol) 

Work up: On completion, the solvent was evaporated under reduced pressure and the crude 

residue was purified by flash column chromatography (EtOAc-MeOH 100:0 v/v increasing to 

90:10 v/v) to obtain the pure product. 

T.L.C. system: EtOAc-MeOH 9:1 v/v Rf: 0.21 

Yield: 1.84 g (71 %) as a pale pink solid 

Melting Point: 200-202 ˚C  

Microanalysis: Calculated for C16H15N3O2 (281.309); Theoretical: %C = 68.31, %H = 5.37, 

%N = 14.93; Found: %C = 68.03, %H = 5.47, %N = 14.98. 
1H-NMR (DMSO-d6), δ: 3.36-3.40 (m, 1H, H-2’), 3.49-3.55 (m, 1H, H-2’), 4.80-4.84 (m, 

1H, H-3’), 5.52 (d, J = 4.4 Hz, 1H, CH-OH), 7.23-7.27 (m, 1H, Ar), 7.34 (t, J = 7.5  Hz, 2H, 

Ar), 7.38-7.41 (m, 2H, Ar), 7.62 (bs, 1H, Ar), 7.34 (d, J = 8.4 Hz, 1H, Ar), 8.14 (bs, 1H, Ar), 

8.32 (s, 1H, Ar), 8.47 (t, J = 5.1 Hz, 1H, NH), 12.66 (bs, 1H, NH benzimidazole). 
13C-NMR (DMSO-d6), δ: 47.81 (CH2, C-2’), 71.30 (CH, C-3’), 111.09, 118.36, 120.64, 

121.97, 125.98, 126.95, 127.98 (CH, C-2, C-4, C-5, C-6, C-7, C-2’’, C-3’’, C-4’’, C-5’’, C-

6’’), 124.25, 128.41, 141.23, 143.84 (C, C-2, C-4, C-7, C-1’’), 167.01 (C, C-1’).  
 

Benzofuran-2-carboxylic acid (2-hydroxy-2-phenylethyl)amide (48): 

(C17H15NO3; M.W. 281.305) 

 

 

 

 

Reagent: Benzofuran-2-carboxylic acid (43) (1.3 g, 8.0 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.40 

Yield: 1.95 g (86%) as a white solid 
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Melting Point: 142-144 ˚C  

Microanalysis: Calculated for C17H15N2O3 (281.305); Theoretical: %C = 72.58, %H = 5.37, 

%N = 4.98; Found: %C = 72.49, %H = 5.63, %N = 5.16. 
1H-NMR (DMSO-d6), δ: 3.35-3.41 (m, 1H, H-2’), 3.50-3.55 (m, 1H, H-2’), 4.80-4.84 (m, 

1H, H-3’), 5.57 (d, J = 4.5 Hz, 1H, CH-OH), 7.26 (t, J = 7.2 Hz, 1H, Ar), 7.32-7.36 (m, 3H, 

Ar), 7.39-7.40 (m, 2H, Ar), 7.47 (t, J = 7.8 Hz, 1H, Ar), 7.55 (s, 1H, H-2), 7.66 (d, J = 8.2 Hz, 

1H, Ar), 7.77 (d, J = 7.8 Hz, 1H, Ar), 8.62 (t, J = 5.7 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ: 46.96 (CH2, C-2’), 71.00 (CH, C-3’), 109.28, 111.75, 122.71, 

123.65, 125.98, 126.73, 127.07, 128.04 (CH, C-2, C-4, C-5, C-6, C-7, C-2’’, C-3’’, C-4’’, C-

5’’, C-6’’), 127.15, 143.50, 149.13, 154.16 (C, C-1, C-3, C-8, C-1’’), 158.15 (C, C-1’). 

 

Quinoline-3-carboxylic acid (2-hydroxy-2-phenylethyl)amide (49): 

(C18H16N2O2; M.W. 292.331) 

 

 

 

 

Reagent: 3-Quinoline acid (44) (0.9 g, 5.2 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.20 

Yield: 1 g (66%) as a white solid 

Melting Point: 158-160 ˚C  

Microanalysis: Calculated for C19H17NO2 (292.331); Theoretical: %C = 73.96, %H = 5.52, 

%N = 9.58; Found: %C = 73.82, %H = 5.84, %N = 9.59. 
1H-NMR (DMSO-d6), δ: 3.37-3.44 (m, 1H, H-2’), 3.56-3.60 (m, 1H, H-2’), 4.83-4.87 (m, 

1H, H-3’), 5.58 (d, J = 4.5 Hz, 1H, CH-OH), 7.27 (t, J = 7.2 Hz, 1H, Ar), 7.36 (t, J = 7.4 Hz, 

2H, Ar), 7.42 (d, J = 7.1 Hz, 2H, Ar), 7.70 (t, J = 7.5 Hz, 1H, Ar), 7.85-7.89 (m, 1H, Ar), 8.09 

(dd, J1 = 8.1 Hz, J2 = 1.0 Hz, 2H, Ar), 8.82 (d, J = 2.2 Hz, 1H, Ar), 8.92 (t, J = 5.5 Hz, 1H, 

NH), 9.28 (d, J = 2.2 Hz, 1H, Ar). 
13C-NMR (DMSO-d6), δ: 47.71 (CH2, C-2’), 71.11 (CH, C-3’), 125.98, 127.07, 127.34, 

128.05, 128.73, 129.05, 131.07, 135.45, 148.94 (CH, C-1, C-3, C-5, C-6, C-7, C-8, C-2’’, C-
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3’’, C-4’’, C-5’’, C-6’’), 126.50, 127.18, 143.63, 148.39 (C, C-2, C-4, C-9, C-1’’), 164.99 (C, 

C-1’). 

 

4.5.2 General method for the preparation of 5-phenyl-4,5-dihydro-oxazole 

derivatives 

 

 

 

 !

See procedure 3.6.4 chapter 3 

 

2-Naphthalen-2-yl-5-phenyl-4,5-dihydro-oxazole (50) (7): 

(C19H15NO; M.W. 273.329) 

 

 

 

 

 

Reagent: Naphathalene-2-carboxylic acid (2-hydroxy-2-phenylethyl)amide (45) (1.5 g, 5.1 

mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.75 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 70:30 v/v 

Yield: 1.26 g (90%) as a white solid 

Melting Point: 70-72 ˚C (lit. 73.2-76.7 ˚C) (6)  
1H-NMR (DMSO-d6), δ: 4.09 (dd, J1 = 15.3 Hz, J2 = 7.8 Hz, 1H, H-2’), 4.57 (dd, J1 = 15.3 

Hz, J2 = 10.2 Hz, 1H, H-2’), 5.75 (dd, J1 = 10.5 Hz, J2 = 7.8 Hz, 1H, H-3’), 7.35-7.40 (m, 1H, 

Ar), 7.43 (d, J = 4.4 Hz, 4H, Ar), 7.53-7.60 (m, 2H, Ar), 7.89-7.95 (m, 3H, Ar), 8.14 (dd, J1 = 

8.6 Hz, J2 = 1.6 Hz, 1H, Ar), 8.55 (s, 1H, Ar). 
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13C-NMR (DMSO-d6), δ: 63.34 (CH2, C-2’), 81.21 (CH, C-3’), 124.86, 125.83, 126.60, 

127.60, 127.81, 128.23, 128.38, 128.89, 128.95 (CH, C-1, C-3, C-4, C-6, C-7, C-8, C-9, C-

2’’, C-3’’, C-4’’, C-5’’, C-6’’), 124.92, 132.73, 134.80, 141.07 (C, C-2, C-5, C-10, C-1’’), 

164.17 (C, C-1’). 

2-(5-Phenyl-4,5-dihydro-oxazol-2-yl)-1H-indole (51): 

(C17H14N2O; M.W. 262.30) 

 

 

 

 

Reagent: 1H-Indole-2-carboxylic acid (2-hydroxy-2-phenylethyl)amide (46) (1.5 g, 5.4 

mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.55 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 70:30 v/v 

Yield: 1.00 g (71%) as a pale yellow solid 

Melting Point: 168-170 ˚C  

Microanalysis: Calculated for C17H14N2O 0.4H2O (269.316); Theoretical: %C = 75.81, %H = 

5.53, %N = 10.40; Found: %C = 75.77, %H = 5.37, %N = 10.43. 
1H-NMR (DMSO-d6), δ: 3.88 (dd, J1 = 14.9 Hz, J2 = 7.3 Hz, 1H, H-2’), 4.48 (dd, J1 = 14.9 

Hz, J2 = 10.0 Hz, 1H, H-2’), 5.81 (dd, J1 = 10.3 Hz, J2 = 7.4 Hz, 1H, H-3’), 7.01 (s, 1H, H-

indole.), 7.06 (t, J = 7.9 Hz, 1H, Ar), 7.22 (t, J = 7.7 Hz, 1H, Ar), 7.34-7.43 (m, 5H, Ar), 7.45 

(d, J = 8.6 Hz, 1H, Ar), 7.62 (d, J = 7.8 Hz, 1H, Ar), 11.81 (s, 1H, NH indole). 
13C-NMR (DMSO-d6), δ: 62.37 (CH2, C-2’), 80.02 (CH, C-3’), 104.98, 112.12, 119.82, 

121.30, 123.59, 125.69, 127.06, 128.73 (CH, C-2, C-4, C-5, C-6, C-7, C-2’’, C-3’’, C-4’’, C-

5’’, C-6’’), 125.95, 128.15, 137.33, 141.12 (C, C-1, C-3, C-8, C-1’’), 157.36 (C, C-1’). 

 

1-Methanesulfonyl-5-(5-phenyl-4,5-dihydro-oxazol-2-yl)-1H-

benzoimidazole (58) & 1-Methanesulfonyl-6-(5-phenyl-4,5-dihydro-oxazol-

2-yl)-1H-benzoimidazole (59): 

(C17H15N3O3S; M.W. 341.384) 
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Reagent: 1H-Benzimidazole-5-carboxylic acid (2-hydroxy-2-phenylethyl)amide (47) (0.72 g, 

2.5 mmol) 

T.L.C. system: EtOAc 100%   Rf: 0.5 

Flash column chromatography: petroleum ether-EtOAc 50:50 v/v increasing to 0:100 v/v 

Yield: 0.58 g (66%) as a pale yellow solid (ratio 1:1) 
1H-NMR (DMSO-d6), δ: 3.73 (s, 3H, CH3), 3.76 (s, 3H, CH3), 3.86-3.92 (m, 2H, H-

compound a, H-compound b), 4.46-4.52 (m, 2H, H-compound a, H-compound b), 5.84 (dd, J1 

= 10.3 Hz, J2 = 7.7 Hz, 2H, CH, H-compound a, H-compound b), 7.35-7344 (m, 10 H, Ar 

compound a, Ar compound b), 7.93 (d, J = 8.5 Hz, 1H, Ar), 7.96 (d, J = 8.5 Hz, 1H, Ar), 8.04 

(dd, J1 = 8.6 Hz, J2 = 1.6 Hz, 1H, Ar), 8.10 (dd, J1 = 8.6 Hz, J2 = 1.6 Hz, 1H, Ar), 8.30 (d, J = 

1.1 Hz, 1H, Ar), 8.37 (d, J = 1.1 Hz, 1H, Ar), 8.68 (s, 1H, Ar), 8.72 (s, 1H, Ar). 
13C-NMR (DMSO-d6), δ: 42.09, 42.29 (CH3), 62.60 (CH2, C-2’-compound a, C-2’-

compound b), 80.27, 80.47 (CH, C-3’-compound a, C-3’-compound b), 112.29, 112.90, 

119.95, 120.67, 124.34, 125.05, 125.56, 125.73, 128..1, 128.20, 128.75, 128.77, 143.66, 

144.36 (CH, C-1, C-3, C-5, C-6, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’ compound a and compound 

b), 123.91, 124.25, 130.71, 132.79, 141.06, 141.23, 143.28, 145.48 (C, C-2, C-7, C-4, C-1’’ 

compound a and compound b), 162.16, 162.19 (C, C-1’ compound a and compound b). 
 

2-Benzofuran-2-yl-5-phenyl-4,5-dihydro-oxazole (53): 

(C17H13NO2; M.W. 262.290) 

 

 

 

 

Reagent: Benzofuran-2-carboxylic acid (2-hydroxy-2-phenylethyl)amide (48) (1.5 g, 5.3 

mmol) 
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T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.70 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 70:30 v/v 

Yield: 0.72 g (52%) as a white solid 

Melting Point: 80-82 ˚C  

Microanalysis: Calculated for C17H13NO2 0.3H2O (269.499); Theoretical: %C = 76.04, %H = 

5.10, %N = 5.21; Found: %C = 75.92, %H = 5.15, %N = 5.27. 
1H-NMR (DMSO-d6), δ: 3.91 (dd, J1 = 15.1 Hz, J2 = 7.6 Hz, 1H, H-2’), 4.50 (dd, J1 = 15.2 

Hz, J2 = 10.1 Hz, 1H, H-2’), 5.83 (dd, J1 = 10.3 Hz, J2 = 7.6 Hz, 1H, H-3’), 7.34-7.44 (m, 6H, 

Ar), 7.46-7.49 (m, 1H, Ar), 7.58 (s, 1H, H-2), 7.71 (d, J = 8.4 Hz, 1H, Ar), 7.77 (d, J = 7.8 

Hz,  1H, Ar). 
13C-NMR (DMSO-d6), δ: 62.54 (CH2, C-2’), 80.44 (CH, C-3’), 110.82, 11.73, 122.55, 

123.81, 125.81, 126.88, 128.44, 128.77 (CH, C-2, C-4, C-5, C-6, C-7, C-2’’, C-3’’, C-4’’, C-

5’’, C-6’’), 126.99, 140.55, 143.86, 154.89 (C, C-1, C-3, C-8, C-1’’), 155.27 (C, C-1’). 

 

3-(5-Phenyl-4,5-dihydro-oxazol-2-yl)-quinoline (54): 

(C18H14N2O2; M.W. 274.316) 

 

 

 

 

 

Reagent: Quinoline-3-carboxylic acid (2-hydroxy-2-phenylethyl)amide (49) (1.0 g, 3.4 

mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.33 

Flash column chromatography: petroleum ether-EtOAc 70:30 v/v increasing to 50:50 v/v 

Yield: 0.5 g (54%) as a pale yellow wax 

HRMS (EI): Calculated mass: 275.1179 [M+H]+, Measured mass: 275.1179 [M+H]+ 
1H-NMR (DMSO-d6), δ: 3.95 (dd, J1 = 14.6 Hz, J2 = 7.6 Hz, 1H, H-2’), 4.55 (dd, J1 = 14.9 

Hz, J2 = 10.1 Hz, 1H, H-2’), 5.87 (dd, J1 = 10.1 Hz, J2 = 7.6 Hz, 1H, H-3’), 7.35-7.40 (m, 1H, 

Ar), 7.42-7.45 (m, 4H, Ar), 7.69-7.72 (m, 1H, Ar), 7.87-7.90 (m, 1H, Ar), 8.11 (d, J = 8.5 Hz, 
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1H, Ar), 8.18 (d, J = 7.7 Hz, 1H, Ar), 8.90 (d, J = 2.1 Hz, 1H, Ar), 9.41 (d, J = 2.1 Hz, 1H, 

Ar). 
13C-NMR (DMSO-d6), δ: 62.64 (CH2, C-2’), 80.37 (CH, C-3’), 125.83, 127.52, 128.25, 

128.77, 128.80, 129.17, 131.36, 135.81, 148.92 (CH, C-1, C-3, C-5, C-6, C-7, C-8, C-2’’, C-

3’’, C-4’’, C-5’’, C-6’’), 120.37, 126.67, 140.87, 148.42 (C, C-2, C-4, C-9, C-1’’), 160.89  

(C, C-1’). 

4.5.3 General method for the preparation of (2-imidazol-1-yl-2-

phenylethyl)amide derivatives 

 
 

 

 

 

See procedure 3.6.5 chapter 3 

 

Naphthalene-2-carboxylic acid (2-imidazol-1-yl-2-phenylethyl)amide (60) 

(MCC297): 

(C22H19N3O; M.W. 341.406) 

 

 

 

 

Reagent: 2-Naphthalen-2-yl-5-phenyl-4,5-dihydro-oxazole (50)  (1.26 g, 4.6 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.74 

Flash column chromatography: petroleum ether-EtOAc 50:50 v/v then DCM-MeOH 100:0 

v/v increasing to 98:2 v/v 

Yield: 1.14 g (76%) as a pale yellow solid 

Melting Point: 162-164 ˚C  
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Microanalysis: Calculated for C22H19N3O (341.406); Theoretical: %C = 77.40, %H = 5.61, 

%N = 12.30; Found: %C = 77.26, %H = 5.50, %N = 12.40. 
1H-NMR (DMSO-d6), δ: 4.02-4.06 (m, 1H, H-2’), 4.11-4.17 (m, 1H, H-2’), 5.73 (dd, J1 = 

9.3 Hz, J2 = 5.8 Hz, 1H, H-3’), 6.92 (s, 1H, H-imidazole), 7.32-7.43 (m, 6H, Ar, H-

imidazole), 7.85-7.86 (m, 1H, Ar), 7.87 (s, 1H, H-imidazole), 7.96-8.00 (m, 3H, Ar), 8.35 (s, 

1H, Ar), 8.90 (t, J = 5.6 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ: 43.57 (CH2, C-2’), 59.48 (CH, C-3’), 118.37, 124.01, 126.76, 

126.85, 127.44, 127.60, 127.88, 128.06, 128.52, 128.71, 128.76, 136.78 (CH, C-1, C-3, C-4, 

C-6, C-7, C-8, C-9, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-1’’’, C-2’’’, C-3’’’ ), 131.43, 132.01, 

134.14, 139.32 (C, C-2, C-5, C-10, C-1’’), 166.73 (C, C-1’). 

 

1H-Indole-2-carboxylic acid (2-imidazol-1-yl-2-phenylethyl)amide (61) 

(MCC298): 

(C20H18N4O; M.W. 330.383) 

 

 

 

 

Reagent: 2-(5-Phenyl-4,5-dihydro-oxazol-2-yl)-1H-indole (51)  (1.0 g, 3.8 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.48 

Flash column chromatography: petroleum ether-EtOAc 50:50 v/v then DCM-MeOH 100:0 

v/v increasing to 98:2 v/v 

Yield: 0.5 g (40 %) as a pale yellow solid 

Melting Point: 222-224 ˚C  

Microanalysis: Calculated for C20H18N4O 0.1H2O (331.9496); Theoretical: %C = 72.36, %H 

= 5.52, %N = 16.87; Found: %C = 71.57, %H = 5.50, %N = 16.90-9. 
1H-NMR (DMSO-d6), δ: 3.99-4.04 (m, 1H, H-2’), 4.10-4.16 (m, 1H, H-2’), 5.66 (dd, J1 = 

9.5 Hz, J2 = 6.0 Hz, 1H, H-3’), 6.91 (s, 1H, H-imidazole), 7.031-7.04(m, 2H, Ar, H-2), 7.18 

(t, J = 7.5 Hz, 1H, Ar), 7.31-7.41 (m, 1H, Ar), 7.34 (m, 6H, Ar, H-imidazole), 7.42 (d, J = 8.4 
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Hz,  1H, Ar), 7.60 (d, J = 7.9 Hz, 1H, Ar), 7.86 (s, 1H, H-imidazole), 8.71 (t, J = 5.7 Hz, 1H, 

NH), 11.56 (s, 1H, NH indole). 
13C-NMR (DMSO-d6), δ: 43.00 (CH2, C-2’), 59.69 (CH, C-3’), 102102.86, 112.27, 118.34, 

119.73, 121.48, 123.40, 126.84, 128.07, 128.52, 128.70, 136.72 (CH, C-2, C-4, C-5, C-6, C-

7, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-1’’’, C-2’’’, C-3’’’), 126.92, 131.16, 136.43, 139.27 

(C, C-1, C-3, C-8, C-1’’), 161.36 (C, C-1’). 

1H-Benzimidazole-5-carboxylic acid (2-imidazol-1-yl--2-

phenylethyl)amide (62) (MCC299): 

(C19H17N5O; M.W. 331.37) 

 

 

 

 

 

Reagent: 1-Methanesulfonyl-5-(5-phenyl-4,5-dihydro-oxazol-2-yl)-1H-benzimidazole (58) & 

1-Methanesulfonyl-6-(5-phenyl-4,5-dihydro-oxazol-2-yl)-1H-benzimidazole (59): (0.58 g, 

1.7 mmol) 

Reaction: 5 more equivalents of imidazole were added in order to promote the demesylation 

reaction. 

Work up: On completion, the solvent was evaporated under reduced pressure and the crude 

residue was purified by flash column chromatography (petroleum ether-EtOAc 30:70 v/v 

then EtOAc-MeOH 100:0 v/v increasing to 90:10 v/v) to obtain the pure product. 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.33 

Yield: 0.2 g (36 %) as a pale yellow solid 

Melting Point: 224-226 ˚C  

Microanalysis: Calculated for C19H17N5O 0.7H2O (343.7543); Theoretical: %C = 68.38, %H 

= 5.02, %N = 20.37; Found: %C = 66.04, %H = 5.22, %N = 19.36. 
1H-NMR (DMSO-d6), δ: 3.97-4.02 (m, 1H, H-2’), 4.06-4.11 (m, 1H, H-2’), 5.70 (dd, J1 = 

9.5 Hz, J2 = 5.7 Hz, 1H, H-3’), 6.91 (s, 1H, H-imidazole), 7.31-7.36 (m, 2H, Ar), 7.39 (m, 
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5H, Ar, H-imidazole), 7.55-7.70 (m, 2H, Ar), 7.85 (s, 1H, H-imidazole), 8.32 (bs, 1H, Ar), 

8.47 (t, J = 5.1 Hz, 1H, NH), 12.65 (bs, 1H, NH benzimidazole). 
13C-NMR (DMSO-d6), δ: 43.54 (CH2, C-2’), 59.48 (CH, C-3’), 111.21, 118.36, 121.95, 

125.52, 126.83, 128.02, 128.40, 128.47, 128.69, 136.74 (CH,  C-1, C-3, C-5, C-6,, C-2’’, C-

3’’, C-4’’, C-5’’, C-6’’, C-1’’’, C-2’’’, C-3’’’), 124.25, , 139.09, 139.38, 141.52  (C, C-2, C-

4, C-7, C-1’’), 167.37 (C, C-1’).  

 

Benzofuran-2-carboxylic acid (2-imidazol-1-yl-2-phenylethyl)amide (63) 

(MCC300): 

(C20H17N3O2; M.W. 331.367) 

 

 

 

 

Reagent: 2-Benzofuran-2-yl-5-phenyl-4,5-dihydro-oxazole (53)  (0.72 g, 2.7 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.50 

Yield: 0.2 g (23%) as a white solid 

Flash column chromatography: petroleum ether-EtOAc 50:50 v/v then DCM-MeOH 100:0 

v/v increasing to 98:2 v/v 

Melting Point: 182-184 ˚C  

Microanalysis: Calculated for C20H17N3O2 0.2H2O (334.73512); Theoretical: %C = 71.76, 

%H = 5.23, %N = 12.55; Found: %C = 71.56, %H = 5.49, %N = 12.51. 
1H-NMR (DMSO-d6), δ: 3.96-4.01 (m, 1H, H-2’), 4.10-4.16 (m, 1H, H-2’), 5.70 (dd, J1 = 

9.5 Hz, J2 = 5.6 Hz, 1H, H-3’),  6.91 (s, 1H, H-imidazole), 7.31-7.35 (m, 3H, Ar), 7.37-7.42 

(m, 4H, Ar, H-imidazole), 7.44-7.48 (m, 1H, Ar), 7.52 (s, 1H, H-2), 7.63 (d, J = 8.3 Hz, 1H, 

Ar), 7.76 (d, J = 7.8 Hz, 1H, Ar), 7.85 (s, 1H, H-imidazole), 8.96 (t, J = 5.7 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ: 42.84 (CH2, C-2’), 59.44 (CH, C-3’), 109.81, 111.73, 118.34, 

122.79, 123.73, 126.79, 126.93, 128.11, 128.53, 128.73, 136.74 (CH, C-2, C-4, C-5, C-6, C-

7, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-1’’’, C-2’’’, C-3’’’), 127.01, 139.14, 148.61, 154.15 

(C, C-1, C-3, C-8, C-1’’), 158.35 (C, C-1’). 
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Quinoline-3-carboxylic acid (2-imidazole-1-yl-2-phenylethyl)amide (64) 

(MCC301): 

(C21H18N4O; M.W. 342.393) 

 

 

 

 

 

Reagent: 3-(5-Phenyl-4,5-dihydro-oxazol-2-yl)-quinoline (54)  (0.5 g, 1.8 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.25 

Flash column chromatography: petroleum ether-EtOAc 50:50 v/v then DCM-MeOH 100:0 

v/v increasing to 95:5 v/v 

Yield: 0.030 g (5%) as a pale yellow solid 

Melting Point: 160-162°C 

HRMS (EI): Calculated mass: 343.1553 [M+H]+, Measured mass: 343.1557 [M+H]+ 
1H-NMR (DMSO-d6), δ: 4.04-4.09 (m, 1H, H-2’), 4.13-4.19 (m, 1H, H-2’), 5.71 (dd, J1 = 

9.6 Hz, J2 = 5.7 Hz, 1H, H-3’), 6.92 (s, 1H, H-imidazole), 7.32-7.36 (m, 1H, Ar), 7.37-7.45 

(m, 5H, Ar, H-imidazole), 7.68-7.71 (m, 1H, Ar), 7.85-7.89 (m, 2H, Ar, H-imidazole), 8.06-

8.09 (m, 2H, Ar), 8.72 (d, J = 2.1 Hz, 1H, Ar), 9.09 (t, J = 5.5 Hz, 1H, NH), 9.18 (d, J = 2.2 

Hz, 1H, Ar). 
13C-NMR (DMSO-d6), δ: 43.51 (CH2, C-2’), 59.45 (CH, C-3’), 118.34, 126.88, 127.45, 

128.11, 128.56, 128.73, 128.80, 129.05, 131.25, 135.48, 136.82 (CH, C-1, C-3, C-5, C-6, C-

7, C-8, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-1’’’, C-2’’’, C-3’’’), 126.38, 126.37, 139.16, 

148.47 (C, C-2, C-4, C-9, C-1’’), 165.35 (C, C-1’). 
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5.1  Molecular Modelling  

After the different modifications on the styryl linker had been made and its importance for 

the activity explained, we focused our attention on the lateral chain of the styryl-benzamide 

family, and in particularly on compound MCC204 and MCC165. The planned modifications 

concern substitution of the amidic bond with an alkyl chain (in order to mimic the alkyl 

lateral chain of calcitriol) and replacement of the final phenyl ring by different groups 

(methyl, tert-butyl, ester, naphthalene, different substituted phenyl rings) in order to see the 

influence in the interaction with the active site (figure 5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: New Alkyl-Imidazole family. 
!

Docking studies were performed to see which of these new hypothetical structures show the 

best disposition in the active site and could be a potential CYP24A1 inhibitor. From the 

docking results, substitution on the phenyl ring, even width of the active site pocket, could 

cause clashes with the active site environment, whereas replacement of the phenyl ring by 

other groups such as an alkyl derivatives or methyl derivative could mimic better the 

calcitriol lateral chain disposition. A bulky group such as the naphthalene does not fit in the 

active site whereas the tert-butyl moiety in the lateral chain mimics better the calcitriol 

disposition having an optimal conformation for the interaction in the cavity. The docking 

studies on family I showed the lack of interactions between the amidic bond present in the 

lateral chain and the amino acid environment of the enzyme making the bond not 

fundamental for the ligand-protein binding. Following this information and in order to 



Family III: Alkyl-Imidazole 

~ 140 ~!
!

increase the molecule logP (hydrophobic nature of the pocket) the amidic bond could be 

replaced with a different group (an alkyl chain in our case). Considering the docking results, 

compound 65 was chosen for further docking evaluations. Even the unsubstituted derivative 

66 was further studied in order to confirm the important role of the 3-methoxy group in the 

interaction with the enzyme (Gln82 interaction) (figure 5.2). 

 

 

 

 

 

 

 

 

 

 

 

 

A) 

 

 

 

 

 

 

 

 

 

B) 

                               

Figure 5.2: New alkyl-imidazole family. Compound 65 (A-purple)) and 66 (B-yellow)) in the active site 

together with MCC204 (black). Both molecules occupy the active site in a different manner than MCC204 as 

consequence of the more flexible alkyl chain. 
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Figure 5.2 reports the docking of 65 (A) and 66 (B). The two compounds occupy the active 

site in a manner slightly different if compared with family I (MCC204, black structure in 

figure). In fact, it is evident that the flexibility of the alkyl chain does not allow the complete 

occupation of the enzyme channel and the two compounds are free to assume different 

conformations in the active site. On the other hand, both compounds present the imidazole 

perpendicular to the haem iron at an optimal distance for the interaction and the presence of 

tert-butyl confers a hydrophobic nature creating possible hydrophobic interactions with the 

active site environment. Moreover, as shown by the docking poses, no possible H-bond 

formation seems possible between Gln82 and the 3-methoxy of 65 due to the conformation of 

the compound in the pocket (the 3-methoxy group is 8.69 Å away from the Gln82). In order 

to find a real recognition between the docking studies and the anti-CYP24A1 activity, a 

synthesis was planned for compounds 65 and 66. 

 

5.2 !Chemistry!
!

For the synthesis of the selected compound, a 5 step synthetic pathway was planned (scheme 

5.1): 

1. Bromination of 4-bromobenzylalchol. 

2. Synthesis of 1-(4-bromophenyl)-4,4-dimethylpentan-3one (Indium-

catalysed coupling reaction). 

3. Heck Reaction. 

4. Reduction of the ketone to alcohol 

5. Addition of the imidazole ring. 

!

!

!

!

!

!

!

!

!

!

!

!
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!

!
 

Scheme 5.1: Reagents and Conditions: (I) TMSBr, CHCl3, 0˚C to r.t, 6h (II) InBr3, 1(tert-

butylvinyloxy)trimethylsilane, DCM, r.t., 2h (III) Pd(OAc)2, ToP, Et3N, 110 ˚C, 6h (IV) NaBH4, EtOH, 0˚C to  

r.t, 2h (V) CDI, imidazole, CH3CN, reflux, 48h. 

!

5.2.1 Synthesis of bromo-4-(bromomethyl)benzene)!

!

 

 

 

Scheme 5.2: Bromination of 4-bromobenzylalcohol.  
!

1-Bromo-4-(bromomethyl)benzene (68) was achieved by direct bromination of 4-

bromobenzylalcohol (67) using  trimethylsilyl bromide in chloroform for 1h at 0˚C, and then 

6 h at room temperature.(1) This method is a simple nucleophilic substitution of a primary 

alcohol by Br using a halotrimethylsilane. The pure product was obtained in a good yield as 

Final Compound R1 R2 

65 OCH3 OCH3 

66 H H 
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white crystals. The 1H-NMR spectrum disappearance of the OH group signal at 

approximately 2.0-2.3 ppm was confirmation of conversion to the desired product.!

!

5.2.2 Synthesis of 1-(4-bromophenyl)-4,4-dimethylpentan-3-one!
!

!

 

 

 

Scheme 5.3: Carbon-carbon bond formation. 

 

Carbon-carbon bond-forming reactions are important in organic synthesis and the α-

alkylation of enolates derived from ketones with electrophiles such as alkyl halides is the 

conventional method used. 1(tert-Butylvinyloxy)trimethylsilane (69), 1-bromo-4-

(bromomethyl)benzene (68) and indium (III) bromide were stirred for 2 h at room 

temperature in CH2CH2 to afford 1-(4-bromophenyl)-4,4-dimethylpentan-3-one (70) as a 

yellow oil in a good yield.(2) Silylenolates are alkylated by reactive electrophiles, such as 

alkyl halides, in the presence of Lewis acid and the plausible mechanism is shown in scheme 

5.4.(2, 3) The carbocation species, a potent electrophile, is generated in situ by abstraction of a 

bromide from compound 68 by indium (III) bromide, a moderate Lewis acid. The resulting 

stable carbocation species then reacts with the silylenolate to give the new C-C bond and 

Me3SiBr with InBr3 regeneration (Path A). The combination of InBr3 and Me3SiBr generated 

in situ, may accelerate the reaction, because this combination system showed strong Lewis 

acidity (Path B).  In this method proposed by Nishimoto et al. (2) the low oxophilicity 

(tendency to form oxides) and moderate Lewis acidity of InBr3 allows the reaction to proceed 

smoothly (alkylbromide activation) without deactivation by the oxygen atom of the 

silylenolate. 
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Scheme 5.4: Indium catalysed reaction mechanism. 
 

5.2.3 Synthesis of 1-(4-(3,5-Dimethoxystyryl)phenyl)-4,4-dimethylpentan-3-

one and 4,4-dimethyl-1-(4-styryl-phenyl)pentan-3-one 

 

 

 

 
!

 

Scheme 5.5: Synthesis of 71 and 72 through Heck reaction. 

 
The classical Heck reaction to form the substituted alkene was used to prepare compound 71 

and 72. Compound 70 and the styrene derivative 6 or 9 were coupled for 6 h using palladium 

(II) acetate catalyst and tri(o-tolylphosphine) as the ligand, with Et3N as base at 110 ˚C.(4, 5) 

The pure 71 and 72 were obtained respectively after flash column chromatography 

purification as a yellow oil that crashed out on the bottom of the flask forming a pale yellow 

solid. 

 

 

 

Product R1 R2 YIELD 

71 OCH3 OCH3 74% 

72 H H 78% 
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5.2.4 Reduction of ketone to the corresponding alcohol 

!

 
 

!

 

!

 

Scheme 5.6: Reduction of ketone to alcohol. 

 
The reduction of the ketone (71/72) compounds to the corresponding alcohols (73/74) was 

achieved under mild conditions using the reducing agent sodium borohydride (NaBH4) in 

ethanol.(6) NaBH4 is a salt containing the tetrahedral BH4
- anion that reacts as a nucleophile. 

The reaction is a “hydride transfer” in which the hydrogen atom, together with the pair of 

electrons from the B-H bond, are transferred to the carbon atom of the C=O group forming an 

oxyanion (scheme 5.7).(3) The produced oxanion stabilises the electron-deficient BH3 

molecule by adding to its empty p orbital forming again a tetravalent boron anion, which 

transfers a second hydrogen atom (hydride transfer) to another molecule of ketone. This 

process can continue for all four hydride atoms of boron and basically, if the reaction is as 

efficient as that, one mole of NaBH4 could reduce 4 moles of ketone. The aqueous HCl added 

during the work up provides the proton needed to form the alcohol from the alkoxide.!

 

 

 

 

 

 

 

 

 

 

 

Product R1 R2 YIELD 

73 OCH3 OCH3 87% 

74 H H 67% 
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Scheme 5.7: NaBH4 ketone reduction. 

 
5.2.5 Addition of the imidazole ring to the alcohol derivatives 
 
Different methods were investigated for the synthesis of the imidazole derivatives 65 and 66 

(figure 5.3). 

!

 
 
 

 

  

 

 

 

 

 

Figure 5.3: Different methods tried for the imidazole insertion on the lateral chain. 
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As shown in scheme 5.1 the first attempt planned was carried out through the direct reaction 

of the alcohol derivate 73 with 1,1΄-carbonyldiimidazole in the presence of excess imidazole 

as reported by Njar et al. (7) (method A figure 5.3). The reaction was refluxed for 24 h/48 h/ 

168 h in dry acetonitrile but after the work up and the NMR analysis, the desired product was 

not found in all of the three reaction sets. The 1H-NMR showed the disappearance of the OH 

group at 1.55 ppm and the presence of the typical 1H imidazole signals as three separate 

singlets. Unfortunately the 13C-NMR showed an extra quaternary C at 148.96 ppm belonging 

to a C=O and it confirmed that the reaction stopped at the point of formation of the 

intermediate carbonyl imidazole forming the compound 75 (MCC272) as reported in figure 

5.4. High resolution mass spectra confirmed compound 75. 
!

 

 

 

 

 

 

 

 

Figure 5.4: Side product (75) (MCC272) of CDI/imidazole reaction. 

 

Generally the mechanism of this reaction involves two nucleophilic substitutions in which the 

alcohol group reacts with 1,1΄-carbonyldiimidazole to produce an intermediate (75) which 

undergoes a second nucleophilic substitution by the excess of imidazole to give the desired 

product. In our case the second nucleophilic substitution did not take place and the 

intermediate was isolated.  The presence of the imidazole in this intermediate makes its 

structure interesting and it will be considered for the CYP24A1 enzymatic assay. A new 

approach was tried (method B) through conversion of the alcohol group to the more active 

bromine group and then reaction with the imidazole sodium salt. Bromination of our 

secondary alcohol was tried stirring compound 73 (the dimethoxy alcohol derivative) with 

phosphorus tribromide, a common bromination agent, in diethyl ether at 0˚C for 3 hours.(8) 

After column chromatography purification, one pure product and a mix of two products (2 

TLC spots) were isolated. The 1H-NMR of the mixed compounds showed the disappearance 



Family III: Alkyl-Imidazole 

~ 148 ~!
!

of the OH group at 1.55 ppm but to confirm the presence of the brominated compound a low 

resolution mass spectra experiment was done. Unfortunately no expected ion signals for the 

bromide were found and the mixture appears to contain molecules with a different molecular 

weight than the expected compound 65. The 1H-NMR of the pure product fraction showed 

the disappearances of OH signal and the possible –CH signal linked to the Br at 3.9 ppm. 

Unfortunately, the high resolution mass spectra experiment did not confirm the presence of 

our product, no expected ion signals for the bromide were found and the compound appears 

to be a mixture of molecules with a different molecular weight.!

A third approach (method C) involved the conversion of the alcohol group into a different 

leaving group. The mesylate moiety was chosen as the leaving group instead of bromine. 

Mesylation was obtained by stirring compound 73 and 74 with mesyl chloride, DMAP, 

pyridine as base in DCM at 0° and then room temperature for 24 h (Scheme 5.8).(9) After 

purification the pure product (76 and 77) was isolated and 1H-NMR showed the 

disappearance of the –OH group at 1.55 ppm and the –CH3 signal of the mesyl group at 3.1 

ppm for both the derivatives.!

 

 

 

 

 

 

 

Scheme 5.8: Mesylation of alcohol compound. 

 
Once obtained the more active mesylate derivatives, compounds 76 and 77, were reacted with 

the imidazole sodium salt (scheme 5.9).(10) The mechanism of this reaction involves a 

nucleophilic substitution by the imidazole sodium salt formed in situ. In our case 

displacement of the mesyl with the imidazole anion was unsuccessful and the pure starting 

material was recovered with both derivatives. 

 

Product R1 R2 YIELD 

76 (MCC264) OCH3 OCH3 84% 

77 (MCC263) H H 52% 
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Scheme 5.9: Failure of Method C, no nucleophilic displacement was seen. 

 
In a further method (method D figure 5.3), the intermediate 75 (MCC272) was reacted with 

the imidazole sodium salt for one week in DMF at 60 °C (same conditions as the second step 

of method C).  The reaction was tried in order to see if the direct reaction of the intermediate 

(75) with the imidazole sodium salt could give the nucleophilic substitution to obtain the 

desired product. Unfortunately also in this case no product formation has been seen and only 

a mixture of molecules with a similar structure as the starting material was found. The last 

method tried (method E) is a common procedure patented by Drabel and Regel (11) in which 

the thionyl-imidazole is reacted with a substituted carbinol to form N-(1,1,1-trisubstituted)-

methylazoles. Also in this case, no product was found and only a mixture of several 

compounds was seen. 

All the reactions were tried twice and the desired product was never obtained. Procedures A, 

D, and E reported above are published methods for the substitution of an OH group close to a 

bulky groups by an imidazole but they did not work in our case. Hu et al. (12) reported the 

replacement of the alcohol next to a tert-butyl group by imidazole in acetonitrile using only 

CDI. The main concern about this publication is, although the low resolution mass spectra 

and 1H-NMR are reported, in our opinion and according with our experience, this is not 

enough to prove the formation of the imidazole derivative. In fact, the only clear way to 

distinguish between the imidazole product and its intermediate is the 13C-NMR in which the 

intermediate presents a quaternary C at 148.96 ppm belonging to a C=O that is not present in 

the imidazole compound. The 1H-NMR spectra are too similar to recognize which compound 

is present. !

The only explanation for the failure of all of these reported methods in our case, including the 

common mesyl nucleophilic substitution and the bromination, could be the presence of the 

bulky tert-butyl moiety at the end of the lateral chain which does not permit the nucleophilic 

attack by the imidazole in some cases and the bromination in the other cases. Moreover, even 
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electronic factors can be involved reducing the reactivity of the alcohol group towards the 

nucleophilic substitution.!

In order to confirm our theory about the steric hindrance of the tert-butyl, synthesis of a 

single methyl derivative (78) (MCC306) was tried (figure 5.5).  

 

 

 

 

 

 

 

Figure 5.5: Compound 78 (MCC306) was selected to be synthesised as methyl derivative. 
 

Moreover, the docking of 78 and its dimethoxy derivative (79), as previously reported, 

showed a similar disposition in the active site if compared with the tert-butyl derivative. In 

figure 5.6 the docking poses of the two compounds are shown in which hydrophobic 

interaction with the enzyme amino acids are evident (Trp134, Gly499) and the correct 

disposition of the imidazole is present. 

 

 

 

 

 

 

 

 

 

Figure 5.6: Compound 78 (MCC306) (yellow) and 79 (pink) in the CYP24A1 active site. 
 

The unsubstituted derivative 78 was chosen in order to avoid the Wittig reaction for the 

preparation of the substituted styrene. 
!

5.2.6 Synthesis of (E)-1-(4-(4-styrylphenyl)butan-2-yl)-1H-imidazole 
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The same synthetic pathway planned for the tert-butyl derivatives was followed (see scheme 

5.1), using a different reaction on the second step. After the bromination of 4-

bromobenzylalcohol (5), 4-(4-bromophenyl)-butan-2-one (81) was prepared according to the 

procedure reported by G. Roman et al. (13) in which 1-bromo-4-(bromomethyl)benzene (68) 

was refluxed with 2,4-pentanone (acetylacetone) (80) and potassium carbonate in methanol 

for 16 h (scheme 5.10). The desired product was obtained after purification as a clear liquid. 

!

 

 

 

 

Scheme 5.10: Preparation of compound 81 

 
In the third step (Heck reaction) to form the substituted alkene, the styrene (9) was used in 

order to obtain the desired 4-(4-styryl-phenyl)-butan-2-one (82) as a white solid. 
!

 

 

 

 

Scheme 5.11: Heck reaction 

 
The reduction of the ketone (82) compound to the corresponding alcohol gives the 4-(4-

styryl-phenyl)-butan-2-ol (83). 

!

 

 
 
 

Scheme 5.12: Reduction of ketone. 

 
To introduce the imidazole ring, the direct reaction of the alcohol derivate 83 with 1,1΄-

carbonyldiimidazole in the presence of excess imidazole in dry acetonitrile was tried 
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(method A figure 5.3).  Also this time, after one week of reaction, no product formation was 

seen and the intermediate 84 (MCC304) was isolated as the only product (figure 5.7). 

 

!

 

 
 
 
 
 

Figure 5.7: Formation of the carbonyl imidazole intermediate 84 (MCC304). 

 
The failure of this CDI/imidazole method suggested another possible reason that could 

explain the impossibility to obtain the imidazole derivative. In fact, in addition to the steric 

obstruction of the tert-butyl group, the stability of the carbonyl imidazole intermediate makes 

it very hard to be replaced by the imidazole disfavouring the nucleophilic reaction. A further 

confirmation about the stability of the intermediate was achieved reacting compound 84, the 

intermediate with the methyl group in the lateral chain, with the sodium salt of the imidazole 

as previously reported for the tert-butyl  derivative (conditions reaction in scheme 5.9). Also 

in this case, no product formation was observed and a mix of unknown compounds was 

found. The last attempt involved conversion of the alcohol group into a mesylate moiety. 

Mesylation was obtained by stirring compound 83 with mesyl chloride, following the 

procedure previously reported for the preparation of compound 76 and 77. 

 

 

 

 

 

Scheme 5.13: Mesylation of 83 gave compound 85 (MCC305) 

The mesylate derivative (85) (MCC305) was reacted with the imidazole sodium salt using 

the method cited before for the tert-butyl derivative that did not give the desired product. In 



Family III: Alkyl-Imidazole 

~ 153 ~!
!

this case, the nucleophilic substitution of the mesyl group by imidazole took place and after 

flash column purification, the pure compound 78 (MCC306) was obtained (scheme 5.14). 

 
 
 
 
 
 
 
Scheme 5.14: Final methyl imidazole compound 78 (MCC306). 

The success of the mesylation strategy with the methyl derivative, could confirm the two 

previous hypothesis:!

• The stability of the carbonyl imidazole intermediate makes it very hard for 

replacement by the imidazole disfavouring the nucleophilic reaction regardless of the 

type of substituent present in the lateral chain. The problem was present in both 

methyl and tert-butyl derivative. 

• The tert-butyl moiety is bulky and does not permit the nucleophilic attack by the 

imidazole in some cases and the bromination in the other cases. The nucleophilic 

reaction worked in the preparation of compound 78 due to the absence of steric 

hindrance with the smaller methyl group. 

5.3  CYP24A1/CYP27B1 enzymatic assay 
 

Due to the synthesis problems, the initial planned molecules 65 and 66 were not achieved and 

only the two intermediate, 75 (MCC272) and 84 (MCC304), were tested for CYP24A1 

inhibitory activity. The results of both CYP24A1 and CYP27B1 assays are reported in the 

table below (table 5.1). The reference value for ketoconazole (KTZ) and our best compound 

MCC204 are also reported. 
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Table 5.1: CYP24A1/CYP27B1 enzymatic assay results. 

 

Surprisingly, the carbonyl imidazole derivative MCC272 shows a very interesting CYP24A1 

inhibitory activity and the value of IC50 and Ki are not far from the MCC204 enzymatic 

results. Compared with the standard ketoconazole, MCC272 results in a better activity with 

an improvement in selectivity of almost 2-fold. On the contrary, MCC304 was found to have 

a poor activity and no CYP27B1 assay was done. MCC306, the methyl imidazole derivative, 

showed an interesting IC50 value and a selectivity comparable with our best compound 

MCC204. 

 

5.4  Discussion and Docking studies 
 

 CYP24A1 CYP27B1 Select. 

Name IC50 (µM) Ki (µM) IC50 (µM) Ki (µM)  

MCC272 0.16 0.11 ± 0.002 0.20 0.033 ± 0.006 3 

MCC304 3.4 0.24 ± 0.05 - - - 

MCC306 0.65 0.046 ± 0.005 1.1 0.18 ± 0.05 3.9 

MCC204 0.11 0.0078 ± 0.0008 0.16 0.026 ± 0.002 3.3 

KTZ 0.47 0.035 ± 0.005 0.36 0.058 ± 0.010 1.7 
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The enzymatic results obtained for the two carbonyl imidazole intermediate were very 

different and in order to find any possible explanation, a molecular docking was performed. 

Figure 5.8 shows the MCC272 disposition in the active site. The molecule sits in the active 

site in the same manner of our MCC204, with the formation of the 3-methoxy Gln82 H-bond 

which stabilize the compound in an ideal conformation for the interaction. As previously 

reported in figure 5.2, compound 65, the tert-butyl imidazole derivative, due to the flexibility 

of the alkyl chain was not able to occupy completely the enzyme channel losing the Gln82 H-

bond. 

 

!

!

!

!

!

!

!

!

Figure 5.8: Docking of MCC272. 

 

In compound MCC272, the presence of the lateral carbonyl imidazole moiety seems to 

confer to the molecule an optimal length to entirely occupy the access tunnel and have the 

imidazole in the right position for the N-Fe interaction balancing the flexibility issue of the 

alkyl lateral chain. Considering the previous enzymatic/molecular modelling results obtained 

for other molecules, the decrease of activity for MCC304 could be the consequence of 

different factors: 

• Decrease of the ClogP from 7.360 (MCC272) to 6.3650, due to the replacement of the 

tert-butyl with a methyl group and the addition of the 3,5-dimethoxy groups. The 

hydrophobic nature of the active site has an important influence in the ligand-protein 

interaction.!

• The small methyl group has less steric hindrance than tert-butyl one. As a 

consequence, MCC304 has less hydrophobic contact points and less spatial 

occupation than MCC272.!
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• No H-bond between Gln82 and the 3-methoxy group. An important anchor point for 

the ligand is missing.!

Even preparation of the planned compounds was not entirely successful, the tested 

intermediate gave some important information regarding the relationship between the ligand-

structure and the CYP24A1 inhibitory enzymatic activity (presence of the dimethoxy, length 

of the molecule, rigidity). MCC306 gave an important result in terms of activity and 

selectivity making this compound interesting for further structural investigation such as the 

addition of the 3,5-dimethoxy group (possible interaction with the active site) or the 

replacement of the methyl group with the tert-butyl (increasing the steric hindrance of the 

molecule) finding a synthetic pathway able to overcome all the synthesis problems found 

during the tert-butyl derivatives preparation.!
!

5.5  Methods  

 

5.5.1 Computational Approaches  

All the computational information is reported in section 2.2.1 chapter 2.  

5.5.2 Molecular Docking 

All the molecular docking information is reported in section 2.2.3 chapter 2. 

5.5.3 CYP24A1 and CYP27B1 inhibition assay 

All the enzymatic assay information is reported in section 3.5.4 chapter 3. 

5.5.4 Chemistry General Information 

All chemistry general information is reported in section 3.5.5 chapter 3. 
!

5.6  Experimental 
 

5.6.1 Bromo-4-(bromomethyl)benzene (68) (14): 

(C7H6Br2; M.W. 249.93) 

 

 

 

Bromotrimethylsilane (1.7 mL, 12.8 mmol) was added dropwise to a stirred solution of 4-

bromobenzylalcohol (67) (2 g, 10 mmol) in CHCl3 (25 mL) at 0˚C. The yellow solution was 
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stirred for 1 h at 0˚C, then 6 h at room temperature. The solvent was removed under vacuum. 

The product was isolated by flash column chromatography (DCM 100%) to give the pure 

compound as white crystals.  

T.L.C. system: DCM 100 %, Rf: 0.9 

Yield: 2.04 g (76%). 

Melting Point: 56-58˚C (lit. 62-63˚C) (14) 
1H-NMR (CDCl3), δ: 4.46 (s, 2H, CH2, H-1’), 7.29 (d, J = 8.4 Hz, 2H, H-3, H-5), 7.49 (d, J 

= 8.4 Hz, 2H, H-2, H-6). 
13C-NMR (CDCl3), δ : 32.37 (CH2, C-1’), 122.48 (C, C-1), 130.67, 131.99, 136.81  (CH, C-

2, C-3, C-4, C-5, C-6). 
 

5.6.2 1-(4-Bromophenyl)-4,4-dimethylpentan-3-one (70): 

(C13H17BrO; M.W. 269.18) 

 

 

 

 

1-Bromo-4-(bromomethyl)benzene (68) (1.95 g, 7.8 mmol) was added to a solution of indium 

(III) bromide (0.14 g, 0.4 mmol) and 1-(tert-butylvinyloxy)trimethylsilane (69) (2.7 mL, 12.5 

mmol) in CH2Cl2 (4 mL). The mixture was stirred for 2 h at room temperature and then 

poured into aqueous saturated NaHCO3 (100 mL). The resulting mixture was extracted with 

Et2O (100 mL), the organic layer dried over MgSO4 and the solvent removed under reduced 

pressure. The pure product was obtained by flash column chromatography purification 

(petroleum ether-EtOAc 100/0 v/v increasing to 95:5 v/v) as a yellow oil. 

T.L.C. system: PE-EtOAc 9:1 v/v, Rf: 0.74 

Yield: 1.31 g (62%). 

HRMS (EI): Calculated mass: 269.0536 [M+H]+, Measured mass: 269.0537 [M+H]+. 
1H-NMR (CDCl3), δ: 1.11 (s, 9H, CH3, H-5, H-1’’, H-2’’), 2.77-2.80 (m, 2H, CH2), 2.83-

2.86 (m, 2H, CH2), 7.08 (d, J = 8.4 Hz, 2H, H-3’, H-5’), 7.40 (d, J = 8.4 Hz, 2H, H-2’, H-6’). 
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13C-NMR (CDCl3), δ : 26.29 (CH3, C-5, C-1’’, C-2’’), 29.40, 38.11 (CH2, C-1, C-2),  44.05 

(C, C-4), 130.21, 131.45 (CH, C-2’, C-3’, C-5’, C-6’), 119.75, 140.57, 214.50 (C, C-3, C-1’, 

C-4’). 
 

5.6.3 4-(4-Bromophenyl)-butan-2-one (81) (13): 

(C10H11BrO; M.W. 227.097) 

 

 

 
 

A mixture of 2,4-pentanedione (0.51 mL, 5.0 mmol) (80), 1-bromo-4-(bromomethyl)benzene 

(68) (1.26 g, 5.0 mmol) and anhydrous potassium carbonate (0.69 g, 5.0 mmol) in methanol 

(25 mL) was heated at reflux temperature for 16 h. The mixture was then cooled to room 

temperature, methanol was removed under reduced pressure, and the resulting residue was 

partitioned between ethyl acetate (20 mL) and water (20 mL). The organic layer was 

separated, and the aqueous layer was extracted further with ethyl acetate (3x20 mL). The 

combined organic phase was washed with water (20 mL), dried over anhydrous MgSO4, and 

then the solvent was removed under pressure. The resulting oil was purified by flash column 

chromatography (n-hexane-EtOAc 100/0 v/v increasing to 90:10 v/v) giving the pure product 

as a clear liquid. 

T.L.C. system: PE-EtOAc 8:2 v/v, Rf: 0.52 

Yield: 0.52 g (46%) 
1H-NMR (CDCl3), δ: 2.14 (s, 3H, CH3, H-4), 2.74 (t, J = 7.5 Hz, 2H, CH2), 2.85 (t, J = 7.5 

Hz, 2H, CH2), 7.06 (d, J = 8.3 Hz, 2H, H-3’, H-5’), 7.39 (d, J = 8.3 Hz, 2H, H-2’, H-6’). 
13C-NMR (CDCl3), δ: 29.04, 44.95 (CH2, C-1, C-2), 30.07 (CH3, C-4), 130.13, 131.75 (CH, 

C-2’, C-3’, C-5’, C-6’), 119.85, 140.03, 207.38 (C, C-3, C-1’, C-4’). 
 

5.6.4 General method for the preparation of ketones using the Heck reaction 

 

 !

!
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1,3-Dimethoxy-5-vinyl-benzene or styrene (6/9) (1 equiv.), 1-(4-bromophenyl)-4,4-

dimethylpentan-3-one (70) or 4-(4-bromophenyl)-butan-2-one (81) (1 equiv.), and 

triethylamine (2 equiv.) were heated in the presence of tri(o-tolylphosphine) (TOP, 0.03 

equiv.) and palladium (II) acetate (0.006 equiv.) in a sealed glass tube at 110°C for 6 h. After 

the reaction was complete, water was added (2 mL/mmol). The product was portioned 

between diethyl ether (20 mL/mmol) and water (20 mL/mmol), then the organic layer was 

dried over MgSO4 and the solvent evaporated under vacuum. The product was isolated by 

flash column chromatography to give the pure desired compound as asolid. 
 

1-(4-(3,5-Dimethoxystyryl)phenyl)-4,4-dimethylpentan-3-one (71): 

(C23H28O3; M.W. 352.47) 

 
 

 

 

 

 

Reagent: 1,3-Dimethoxy-5-vinyl-benzene (6) (0.8 g, 4.5 mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v, Rf: 0.57. 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 95:5 v/v 
Yield: 1.18 g (74%) as a pale yellow solid. 

Melting point: 60-62˚C 

HRMS (EI): Calculated mass: 353.2111 [M+H]+, Measured mass: 353.2114 [M+H]+. 
1H-NMR (CDCl3), δ: 1.14 (s, 9H, CH3, H-5, H-1’’, H-2’’), 2.81-2.85 (m, 2H, CH2), 2.89-

2.92 (m, 2H, CH2), 3.85 (s, 6H, O-CH3, H-5’’, H-6’’), 6.42 (t, J = 2.2 Hz, 1H, H-4’’’), 6.69 
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(d, J = 2.2 Hz, 2H, H-2’’’, H-6’’’), 7.02 (d, J = 16.1 Hz, 1H, H-alkene), 7.08 (d, J = 16.1 Hz, 

1H, H-alkene), 7.20 (d, J = 8.2 Hz, 2H, H-3’, H-5’), 7.45 (d, J = 8.2 Hz, 2H, H-2’, H-6’). 
13C-NMR (CDCl3), δ: 26.33 (CH3, C-5, C-1’’, C-2’’), 29.85, 38.32 (CH2, C-1, C-2),  44.09 

(C, C-4), 55.37 (CH3, C-5’’, C-6’’), 99.92, 104.54, 126.67, 128.05, 128.87, 129.00 (CH, C-

2’, C-3’, C-5’, C-6’, C-3’’, C-4’’, C-2’’’, C-4’’’, C-6’’’), 135.04, 139.48, 141.46, 161.01, 

214.82(C, C-3, C-1’, C-4’, C-1’’’, C-3’’’, C-5’’’). 
 

4,4-Dimethyl-1-(4-stryrylphenyl)pentan-3-one (72): 

(C21H24O; M.W. 292.41) 

 
 

 

 

 

Reagent: Styrene (9) (0.76 mL, 6.6 mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v, Rf: 0.57. 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 95:5 v/v. 
Yield: 1.5 g (78%) as a yellow-white solid. 

Melting point: 70-72˚C. 

HRMS (EI): Calculated mass: 293.1900 [M+H]+, Measured mass: 293.1901 [M+H]+. 
1H-NMR (CDCl3), δ: 1.14 (s, 9H, CH3, H-5, H-1’’, H-2’’), 2.81-2.85 (m, 2H, CH2), 2.88-

2.92 (m, 2H, CH2), 7.08 (d, J = 16.4 Hz, 1H, H-alkene), 7.12 (d, J = 16.4 Hz, 1H, H-alkene), 

7.21 (d, J = 7.2 Hz, 2H, Ar), 7.26-7.29(m, 1H, Ar), 7.35-7.39 (m, 2H, Ar),  7.46 (d, J = 8.1 

Hz, 2H, Ar), 7.53 (d, J = 8.0 Hz, 2H, Ar). 
13C-NMR (CDCl3), δ: 26.34 (CH3, C-5, C-1’’, C-2’’), 29.85, 38.32 (CH2, C-1, C-2),  44.09 

(C, C-4), 126.60, 128.07, 128.13, 128.28, 128.32, 128.48, 128.77 (CH, C-2’, C-3’, C-5’, C-

6’, C-3’’, C-4’’, C-2’’’, C-3’’’,  C-4’’’, C-5’’’, C-6’’’), 135.24, 137.45, 141.22, 214.84 (C, C-

3, C-1’, C-4’, C-1’’’). 

4-(4-Styryl-phenyl)-butan-2-one (82): 

(C18H18O; M.W. 250.334) 
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Reagent: Styrene (9) (0.25 mL, 2.2 mmol)  

T.L.C. system: petroleum ether-EtOAc 7:3 v/v, Rf: 0.61. 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 80:20 v/v 

Yield: 1.5 g (78%) as a white solid. 

Melting point: 106-108˚C. 

Microanalysis: Calculated for C18H18O 0.1H2O (251.93733); Theoretical: %C = 85.81, %H = 

7.28; Found: %C = 85.70, %H = 7.45. 
1H-NMR (CDCl3), δ: 2.17 (s, 3H, CH3, H-4), 2.79 (t, J = 7.7 Hz, 2H, CH2), 2.93 (t, J = 7.5 

Hz, 2H, CH2), 7.08-7.12 (two collapsed doublet, 2H, H-alkene), 7.20 (d, J =8.1 Hz, 2H, Ar), 

7.25-7.30 (m, 1H, Ar), 7.36-7.40 (m, 2H, Ar), 7.46 (d, J = 8.1 Hz, 2H, Ar), 7.51-7.54 (m, 2H, 

Ar). 
13C-NMR (CDCl3), δ : 29.51, 45.05 (CH2, C-1, C-2),  30.10 (CH3, C-4), 126.45, 126.66, 

127.52, 128.19, 128.41, 128.67,  (CH, C-2’, C-3’, C-5’, C-6’, C-1’’, C-2’’, C-2’’’, C-3’’’, C-

4’’’, C-5’’’, C-6’’’), 135.36, 137.43, 140.58, 207.83  (C, C-3, C-1’, C-4’, C-1’’’). 

 

5.6.5 General method for the reduction of the ketone compound to the 

corresponding alcohol 

 

 

 

To a cooled (0˚C) solution/suspension of ketone (1 equiv.) in ethanol (15 mL/mmol) was 

added sodium borohydride (2.5 equiv.), then the solution was stirred at room temperature for 

2 h. After completion of the reaction as shown by the disappearance of starting material by 

T.L.C., the solvent was concentrated in vacuum and 1M aqueous HCl (15 mL/mmol) added 

to the residue. The white oil formed was extracted with diethyl ether (2 x 15 mL/mmol) and 

water (2 x 7.5 mL/mmol), the organic layers were combined, dried (MgSO4) and the solvent 

evaporated under vacuum to afford the desired alcohol. 
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1-(4-(3,5-Dimethoxystyryl)phenyl)-4,4-dimethylpentan-3-ol (73): 

(C23H30O3; M.W. 354.48) 

 

 

 

 

 
 

Reagent: 1-(4-(3,5-Dimethoxystyryl)phenyl)-4,4-dimethylpentan-3-one (71) (1.18 g, 3.4 

mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v, Rf: 0.41. 

Yield: 1 g (83%) as a clear thick syrup. 

HRMS (EI): Calculated mass: 355.2268 [M+H]+, Measured mass: 355.2258 [M+H]+ 

1H-NMR (CDCl3), δ: 0.94 (s, 9H, CH3, H-5, H-1’’, H-2’’), 1.55 (b.s., 1H, CH-OH), 1.58-

1.67, 1.85-1.92 (two m, 2H, CH2), 2.64-2.70, 2.93-2.99 (two m, 2H, CH2), 3.26 (d, J = 10.49 

Hz, 1H, CH, H-3), 3.86 (s, 6H, O-CH3, H-5’’, H-6’’), 6.43 (t, J = 2.2 Hz, 1H, H-4’’’), 6.70 (d, 

J = 2.2 Hz, 2H, H-2’’’, H-6’’’), 7.03 (d, J = 16.3 Hz, 1H, H-alkene), 7.10 (d, J = 16.3 Hz, 1H, 

H-alkene), 7.25 (d, J = 8.2 Hz, 2H, H-3’, H-5’), 7.47 (d, J = 8.2 Hz, 2H, H-2’, H-6’). 
13C-NMR (CDCl3), δ: 25.70 (CH3, C-5, C-1’’, C-2’’), 33.11, 33.30 (CH2, C-1, C-2),  35.00 

(C, C-4), 55.37 (CH3, C-5’’, C-6’’), 79.30 (CH, C-3), 99.88, 104.54, 126.67, 128.22, 128.87, 

129.19 (CH, C-2’, C-3’, C-5’, C-6’, C-3’’, C-4’’, C-2’’’, C-4’’’, C-6’’’), 134.81, 139.57, 

142.29, 161.01 (C, C-1’, C-4’, C-1’’’, C-3’’’, C-5’’’).  
 

4,4-Dimethyl-1-(4-styrylphenyl)pentan-3-ol (74): 

(C21H26O; M.W. 294.43) 
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Reagent: 4,4-Dimethyl-1-(4-styrylphenyl)pentan-3-one (72) (1.50 g, 5.1 mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v, Rf: 0.41. 

Yield: 1 g (67%) as a white solid. 

HRMS (EI): Calculated mass: 295.2056 [M+H]+, Measured mass: 295.2062 [M+H]+ 

Melting point: 76-78˚C 
1H-NMR (CDCl3), δ: 0.92 (s, 9H, CH3, H-5, H-1’’, H-2’’), 1.43(d, J =5.4 Hz, 1H, -CHOH), 

1.59-1.66 (m, 1H, CH2), 1.85-1.91 (m, 1H, CH2), 2.64-2.70 (m, 1H, CH2), 2.92-2.98 (m, 1H, 

CH2), 3.24-3.28(m, 1H, H-3), 7.09 (d, J = 16.2 Hz, 1H, H-alkene), 7.13 (d, J = 16.2 Hz, 1H, 

H-alkene), 7.24 (d, J = 7.9 Hz, 2H, Ar), 7.27-7.29 (m, 1H, Ar), 7.36-7.39 (m, 2H, Ar),  7.47 

(d, J = 8.1 Hz, 2H, Ar), 7.53 (d, J = .3 Hz, 2H, Ar). 
13C-NMR (CDCl3), δ: 25.67 (CH3, C-5, C-1’’, C-2’’), 33.09, 33.32 (CH2, C-1, C-2),  35.09 

(C, C-4), 79.32 (CH, C-3), 126.42, 126.58, 127.45, 127.92, 128.58, 128.66, 128.85 (CH, C-

2’, C-3’, C-5’, C-6’, C-3’’, C-4’’, C-2’’’, C-3’’’,  C-4’’’, C-5’’’, C-6’’’), 135.01, 137.51, 

142.13 (C, C-1’, C-4’, C-1’’’). 
 

4-(4-Styryl-phenyl)-butan-2-ol (83): 

(C18H20O; M.W. 252.35) 

 
 

 

 

 

Reagent: 4-(4-Styryl-phenyl)-butan-2-one (82) (0.48 g, 1.9 mmol) 

T.L.C. system: petroleum ether-EtOAc 7:3 v/v, Rf: 0.48. 

Yield: 0.40 g (83%) as a white solid. 

Melting point: 122.124 ˚C  

Microanalysis: Calculated for C18H18O 0.1H2O (257.55612); Theoretical: %C= 83.94, %H= 

8.06; Found: %C= 83.71, %H= 7.95. 
1H-NMR (CDCl3), δ: 1.27 (d, J = 6.2 Hz, 3H, CH3, H-4), 1.55 (b.s., 1H, -CHOH), 1.75-1.86 

(m,, 2H, CH2, H-1 ), 2.67-2.75 (m, 1H, CH2, H-2), 2.76-2.83 (m, 1H, CH2, H-2), 3.82-3.90 
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(m, 1H, H-3), 7.08 (d, J = 16.4 Hz, 1H, H-alkene), 7.12 (d, J = 16.4 Hz, 1H, H-alkene), 7.22 

(d, J = 8.1 Hz, 2H, Ar), 7.25-7.29 (m, 1H, Ar), 7.36-7.40 (m, 2H, Ar), 7.42 (d, J = 8.2 Hz, 2H, 

Ar), 7.52-7.54 (m, 2H, Ar). 
13C-NMR (CDCl3), δ : 23.68 (CH3, C-4), 31.89, 40.75 (CH2, C-1, C-2), 67.51 (CH, C-3), 

126.43, 126.59, 127.46, 127.99, 128.54, 128.66, 128.75 (CH, C-2’, C-3’, C-5’, C-6’, C-1’’, 

C-2’’, C-2’’’, C-3’’’, C-4’’’, C-5’’’, C-6’’’), 135.07, 137.50, 141.70 (C, C-1’, C-4’, C-1’’’). 
 

5.6.6 General method for the mesylation of an alcohol compound 

 

!

!

To a cooled (0˚C) solution of the alcohol derivative (1 equiv.) and 4-dimethylaminopyridine 

(0.22 equiv.) in dry DCM (3.5 mL/mmol) and pyridine (0.4 mL/mmol) under nitrogen 

atmosphere was added methane sulfonyl chloride (2.2 equiv.) dropwise. The reaction was 

stirred at 0˚C for 10 min then stirred for 24 h at room temperature. On the completion, the 

reaction mixture was washed with aqueous satured NaHCO3 (15 mL/mmol) and the organic 

layer was separated. The aqueous layer was back extracted with DCM (15 mL/mmol) and 

both organic layers were washed with aqueous 1 M HCl (15 mL/mmol). The organic layer 

was washed with aqueous satured NaHCO3 (15 mL/mmol) and then dried over MgSO4. The 

solvent was evaporated under vacuum and the product was isolated by flash column 

chromatography (petroleum ether-EtOAc 100:0 v/v increasing to 90:10 v/v) giving the pure 

desired compound. 
 

1-(4-(3,5-Dimethoxystyryl)phenyl)-4,4-dimethylpentan-3-yl)-methanesulfonate 

(76) (MCC264): 

(C24H32O5S; M.W. 432.57) 
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Reagent: 1-(4-(3,5-Dimethoxystyryl)phenyl)-4,4-dimethylpentan-3-ol (73) (0.65 g, 1.8 

mmol) 

T.L.C. system: petroleum ether-EtOAc 8:2 v/v Rf: 0.53. 

Yield: 0.66 g (84%) as a yellow oil. 

HRMS (EI): Calculated mass: 433.2043 [M+H]+, Measured mass: 433.2043 [M+H]+. 
1H-NMR (CDCl3), δ: 1.00 (s, 9H, CH3, H-5, H-1’’, H-2’’), 1.96-2.01(m, 2H, CH2), 2.70-

2.76, 2.94-3.00 (two m, 2H, CH2), 3.1(s, 1H, SO2CH3), 3.85(s, 6H, O-CH3, H-5’’, H-6’’), 

4.57 (dd, J1 = 5.03 Hz, J2 = 3.1 Hz, 1H, H-3), 6.42 (t, J = 2.2 Hz, 1H, H-4’’’), 6.69 (d, J = 2.2 

Hz, 2H, H-2’’’, H-6’’’), 7.02 (d, J = 16.3 Hz, 1H, H-alkene), 7.09 (d, J = 16.3 Hz, 1H, H-

alkene), 7.24 (d, J = 8.1 Hz, 2H, H-3’, H-5’), 7.46 (d, J = 8.2 Hz, 2H, H-2’, H-6’). 
13C-NMR (CDCl3), δ: 26.20 (CH3, C-5, C-1’’, C-2’’), 32.81, 32.74 (CH2, C-1, C-2),  35.30 

(C, C-4), 38.85(CH3, SO2CH3), 55.37 (CH3, C-5’’, C-6’’), 91.46(CH, C-3), 99.93, 104.54, 

126.73, 128.11, 128.85, 128.89(CH, C-2’, C-3’, C-5’, C-6’, C-3’’, C-4’’, C-2’’’, C-4’’’, C-

6’’’), 135.11, 139.48, 141.11, 161.00 (C, C-1’, C-4’, C-1’’’, C-3’’’, C-5’’’).  
 

4,4-Dimethyl-1-(4-styrylphenyl)pentan-3-yl methansesulfonate (77) 

(MCC263): 

 (C22H28O3S; M.W. 372.52): 

 

 
 

 

Reagent: 4,4-Dimethyl-1-(4-styrylphenyl)pentan-3-ol (74) (0.5 g, 1.7 mmol) 

T.L.C. system: petroleum ether-EtOAc 8:2 v/v Rf: 0.53. 

Yield: 0.33 g (52%) as a white solid. 

Melting point: 80-82˚C. 

HRMS (EI): Calculated mass: 390.2097 [M+NH4]+, Measured mass: 390.2094 [M+NH4]+. 
1H-NMR (CDCl3), δ: 1.01 (s, 9H, CH3, H-5, H-1’’, H-2’’), 1.97-2.01 (m, 2H, CH2), 2.70-

2.76 (m, 1H, CH2), 2.95-3.00 (m, 1H, CH2), 3.11(s, 3H, SO2CH3), 4.58(t, J = 5.6 Hz, 1H, H-

3), 7.09 (d, J = 16.6 Hz, 1H, H-alkene), 7.12 (d, J = 16.6 Hz, 1H, H-alkene), 7.24 (d, J = 8.0 
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Hz, 2H, Ar), 7.27-7.29(m, 1H, Ar), 7.36-7.39(m, 2H, Ar), 7.48 (d, J =8.0 Hz, 2H, Ar), 7.53 

(d, J = 7.6 Hz, 2H, Ar). 
13C-NMR (CDCl3), δ: 26.21 (CH3, C-5, C-1’’, C-2’’), 32.75, 32.82(CH2, C-1, C-2), 35.31 

(C, C-4), 38.86(CH3, SO2CH3), 91.50 (CH, C-3), 126.44, 126.58, 126.66, 127.50, 128.14, 

128.47, 128.67 (CH, C-2’, C-3’, C-5’, C-6’, C-3’’, C-4’’, C-2’’’, C-3’’’,  C-4’’’, C-5’’’, C-

6’’’), 135.32, 137.45, 140.97 (C, C-1’, C-4’, C-1’’’). 
 

Methanesulfonic acid 1-methyl-3-(4-styryl-phenyl)-propyl ester (85) 

(MCC305): 

 (C29H22O3S; M.W. 330.441): 

 

 

 

 
 

Reagent: 4-(4-Styryl-phenyl)-butan-2-ol (83) (0.25 g, 1 mmol) 

T.L.C. system: petroleum ether-EtOAc 7:3 v/v Rf: 0.5. 

Yield: 0.16 g (48%) as a white solid. 

Melting point: 80-82˚C. 

Microanalysis: Calculated for C19H22O3S (330.441); Theoretical: %C = 69.06, %H = 6.71; 

Found: %C = 69.00, %H = 6.71. 
1H-NMR (CDCl3), δ: 1.50  (d, J = 6.3 Hz,  3H, CH3, H-4), 1.97-2.00  (m, 1H, CH2), 2.05-

2.14  (m, 1H, CH2), 2.70-2.84 (m, 2H, CH2), 3.02 (s, 3H, SO2CH3), 4.58-4.92 (m, 1H, H-3),  

7.11 (two collapsed doublet, 2H, H-alkene), 7.22 (d, J = 8.1 Hz, 2H, Ar), 7.26-7.30 (m, 1H, 

Ar), 7.36-7.40 (m, 2H, Ar), 7.48 (d, J = 8.1 Hz, 2H, Ar), 7.53 (d, J = 7.6 Hz, 2H, Ar). 
13C-NMR (CDCl3), δ: 21.27 (CH3, C-4), 31.19, 38.21 (CH2, C-1, C-2), 38.76 (CH3, 

SO2CH3), 79.41 (CH, C-3), 126.45, 126.71, 127.54, 128.25, 128.38, 128.68, 128.71 (CH, C-

2’, C-3’, C-5’, C-6’, C-1’’, C-2’’, C-2’’’, C-3’’’,  C-4’’’, C-5’’’, C-6’’’), 135.43, 137.41, 

140.28 (C, C-1’, C-4’, C-1’’’). 
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5.6.7 General method for the preparation of carbonyl imidazole 

derivatives 

 

 

 

 

To a solution of alcohol (1 equiv.) in anhydrous CH3CN (20 mL/mmol) was added 1,1’-

carbonyldiimidazole (2.1 equiv.). The mixture was heated at 70-80˚C for 48 h, then allowed 

to cool and extracted with CH2Cl2 (35 mL/mmol) and H2O (35 mL/mmol), the aqueous layer 

was further washed with DCM (2 x 35 mL/mmol). The combined organic layers were washed 

with H2O (3 x 35 mL/mmol), dried (MgSO4) and reduced in vacuo. The product was isolated 

by flash column chromatography. 
 

1-(4-(3,5-Dimethoxystyryl)phenyl)-4,4-dimethylpentan-3-yl-1H-imidazole-

1-carboxylate (75) (MCC272): 

(C27H32N2O4; M.W. 448.55) 

 

 

 

 

 

 

 

 

Reagent: 1-(4-(3,5-Dimethoxystyryl)phenyl)-4,4-dimethylpentan-3-ol (73) (0.5 g, 1.4  

mmol) 

T.L.C. system: PE-EtOAc 7:3 v/v, Rf: 0.34. 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 80:20 v/v 

Yield: 0.41 g (65%) as colourless oil. 
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HRMS (EI): Calculated mass: 449.2435 [M+H]+, Measured mass: 449.2431 [M+H]+ 
1H-NMR (CDCl3), δ: 0.94 (s, 9H, CH3, H-5, H-1’’, H-2’’), 2.00-2.10, ( m, 2H, CH2), 2.64-

2.73 (m, 2H, CH2), 3.86 (s, 6H, O-CH3, H-5’’, H-6’’), 4.95 (dd, J = 3.03, 9.6 Hz  , 1H, H-3),  

6.39 (t, J = 2.2 Hz, 1H, H-4’’’), 6.69 (d, J = 2.2 Hz, 2H, H-2’’’, H-6’’’), 6.97 (d, J = 16.2 Hz, 

1H, H-alkene), 7.03 (d, J = 16.2 Hz, 1H, H-alkene), 7.12 (bs, 1H, H-imidazole), 7.25 (d, J = 

8.2 Hz, 2H, Ar), 7.43-7.48 (m, 3H, Ar, H-imidazole), 8.17 (bs, 1H, H-imidazole). 
13C-NMR (CDCl3), δ : 25.84 (CH3, C-5, C-1’’, C-2’’), 33.41, 35.12 (CH2, C-1, C-2),  32.54 

(C, C-4), 55.36 (CH3, C-5’’, C-6’’), 86.31 (CH, C-3), 99.93, 104.55, 117.13, 126.70, 128.20, 

128.29, 128.64, 130.62, 137.04 (CH, C-2’, C-3’, C-5’, C-6’, C-3’’, C-4’’, C-2’’’, C-4’’’, C-

6’’’, C-1##, C-2##, C-3##), 135.22, 139.44, 140.63, 148.96, 160.99 (C, C-1’, C-4’, C-1’’’, C-

3’’’, C-5’’’, C-1#). 
 

Imidazole-1-carboxylic acid 1-methyl-3-(4-styryl-phenyl)-propyl-ester (84) 

(MCC304): 

(C22H22N2O2; M.W. 346.422) 

 

 

 

 

 

 

 

 

Reagent: 4-(4-Styryl-phenyl)-butan-2-ol (83) (0.4 g, 1.6 mmol)  

T.L.C. system: PE-EtOAc 4:6 v/v, Rf: 0.62. 

Flash column chromatography: petroleum ether-EtOAc 60:40 v/v  

Yield: 0.38 g (69%) as a white solid. 

Melting point: 96-98˚C. 

HRMS (EI): Calculated mass: 347.1754 [M+H]+, Measured mass: 347.1757 [M+H]+ 
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1H-NMR (CDCl3), δ: 1.47 (d, J = 6.3 Hz, 3H, CH3, H-4), 1.98-2.07 (m,, 1H, CH2, H-2 ), 

2.12-2.20 (m, 1H, CH2, H-2), 2.12-2.20 (m, 1H, CH2, H-1), 5.15-5.22 (m, 1H, H-3), 7.06-

7.12 (m, 3H, H-alkene, H-imidazole), 7.19 (d, J = 8.1 Hz, 2H, Ar), 7.28-7.30 (m, 1H, Ar), 

7.35-7.41 (m, 3H, Ar, H-imidazole), 7.46 (d, J = 8.1 Hz, 2H, Ar), 7.53 (d, J = 7.7 Hz, 2H, 

Ar), 8.13 (bs, 1H, H-imidazole). 
13C-NMR (CDCl3), δ : 19.95 (CH3, C-4), 31.44, 37.14 (CH2, C-1, C-2), 75.90 (CH, C-3), 

117.08, 126.46, 126.73, 127.55, 128.31, 128.32, 128.60, 128.67, 130.57, 137.06 (CH, C-2’, 

C-3’, C-5’, C-6’, C-1’’, C-2’’, C-2’’’, C-3’’’, C-4’’’, C-5’’’, C-6’’’, C-1#, C-2#, C-3#), 

135.51, 137.40, 140.20, 148.30 (C, C-1’, C-4’, C-3’’, C-1’’’) 
 

5.6.8 1-[1-Methyl-3-(4-styryl-phenyl)-propyl]-1H-imidazole (78) 

(MCC306): 

 (C21H22N2; M.W.=302.178) 

 

 

 

 

 
 

A suspension of NaH (60% dispersion in mineral oil) (0.024 g, 1 mmol) in dry DMF (10 mL) 

was stirred and heated at 60˚C for 5 min. Imidazole (0.068 g, 1 mmol) was added and the 

reaction mixture was heated at 60˚C for 1 h. The reaction mixture was cooled to room 

temperature and methanesulfonic acid 1-methyl-3-(4-styryl-phenyl)propyl ester (85) (0.16 g, 

0.5 mmol) was added. The reaction mixture was heated at 60˚C for 54 h and then hydrolysed 

by adding H2O (100 mL). The aqueous layer was extracted with EtOAc (3 x 100 mL), the 

organic layers were collected and dried over MgSO4. The solvent was then evaporated to 

dryness and the residue was purified by flash column chromatography (petroleum ether-

EtOAc 50:50 v/v then DCM-MeOH 100:0 v/v increasing to 99:1 v/v) to obtain the pure 

product as a pale yellow solid. 

T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.61. 

Yield: 0.08 g (53%). 

Melting point: 96-98˚C  
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HRMS (EI): Calculated mass: 303.1856 [M+H]+, Measured mass: 303.1855[M+H]+ 
1H-NMR (CDCl3), δ: 1.54 (d, J = 6.7 Hz, 3H, CH3, H-4), 2.10-2.16 (m, 2H, CH2, H-2 ), 

2.47-2.60 (m, 2H, CH2, H-1), 4.17-4.25 (m, 1H, H-3), 7.01 (bs, 1H, H-imidazole), 7.09-7.13 

(m, 4H, H-alkene, Ar), 7.19 (bs, 1H, H-imidazole), 7.26-7.30 (m, 1H, Ar), 7.36-7.40 (m, 2H, 

Ar), 7.46 (d, J = 8.1 Hz, 2H, Ar), 7.53 (d, J = 7.6 Hz, 2H, Ar), 7.78 (bs, 1H, H-imidazole). 
13C-NMR (CDCl3), δ : 22.35 (CH3, C-4), 31.81, 38.92 (CH2, C-1, C-2), 52.95 (CH, C-3), 

116.51, 126.42, 126.69, 127.55, 128.26, 128.28, 128.66, 129.13, 135.85 (CH, C-2’, C-3’, C-

5’, C-6’, C-1’’, C-2’’, C-2’’’, C-3’’’, C-4’’’, C-5’’’, C-6’’’, C-1#, C-2#, C-3#), 135.46, 137.32, 

139.97 (C, C-1’, C-4’, C-1’’’). 
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6.1  Molecular Modelling  

A new alkyl-imidazole derivative was designed in which the position of the imidazole ring in 

the lateral chain was changed in order to obtain a new alkyl tert-butyl imidazole family with a 

more viable synthesis. The main goal was to keep the imidazole in the lateral chain and the 

terminal tert-butyl moiety. The structure of compound 65/66 was changed moving the 

imidazole position from carbon number 3 of the lateral chain to carbon number 2 to obtain 

the new derivative (figure 6.1).!

 

 

 

 

 

 

Figure 6.1: The new II alkyl-imidazole family. 
!

The carbonyl was introduced only for synthetic reasons and the docking of the new designed 

series (figure 6.2) showed that the imidazole nitrogen is still able to react with the haem iron 

suggesting that this minor change would not affect the potential activity of the final products.!

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Docking of compound 86 in the active site. 
!

As previously chosen for compound 78, only the unsubstituted derivative (86) was prepared 

in order to speed the synthesis avoiding the preparation of the substituted styryl derivatives. 
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Figure 6.3: The new II alkyl-imidazole compound. 
 

6.2 !Chemistry!

The synthetic route for the new compound is reported in scheme 6.1 and each of its step will 

be discussed below. 

 

 

 

 

 

 

!

!

!

!

!
 

Scheme 6.1: Reagents and Conditions: (I) NaH, imidazole, DMF, 55˚C, 3h (II) K2CO3, acetic anhydride, r.t, 3h 

(III ) H2, Pd/C, EtOH, r.t, 24h (IV) Pd(OAc)2, ToP, Et3N, 110 ˚C, 6h;   

!

6.2.1 Synthesis of 1-(1H-imidazol-1-yl)-3,3-dimethylbutan-2-one!

!

!

!

!

!

Scheme 6.2: Formation of the lateral chain. 
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The lateral tert-butyl chain was easily prepared using the method reported by Todoroki et 

al.(1) The imidazole sodium salt, obtained reacting imidazole (87) and sodium hydride as 

base, attacks the carbon atom of 1-bromopinacolone (88) in a simple nucleophilic reaction in 

which the bromine is the leaving group. The pure product was obtained in quantitative yield 

as a yellow oil. 

 

6.2.2 Synthesis of 1(4-bromophenyl)-2-(1H-imidazol-1-yl)-4,4-

dimethylpent-1-en-3-one 
!

 
 

!

!

!
 

Scheme 6.3:  Aldol condensations between 4-bromobenzaldehyde and compound 89. 

!

Synthesis of compound 91 was carried out using an aldol condensation. In the reaction, 

compound 89 was reacted with 4-bromobenzaldehyde (90) and potassium carbonate in acetic 

anhydride for 3 h at room temperature to give the desired “enone” compound as a mix of E 

and Z isomers, with the Z as the major isomer according to the reported procedure.(1) 

The aldol condensation is a chemical reaction broadly used for the preparation of β-

hydroxyketone or β-hydroxyaldehyde, followed by a dehydration to give a conjugated 

enone.(2) Scheme 6.4 shows a proposed mechanism of action for the aldol condensation. 

Potassium carbonate catalyses the aldol deprotonating compound 89 (A) forming the enolate 

ion and this reacts with the electrophilic carbonyl group of 4-bromobenzaldehyde to form an 

alkoxide ion (B). The alkoxide will be protonated by the water molecule formed in the first 

step (C) to give the aldol derivatives. Due to the excess of base present, the aldol product 

dehydrates to give a stable enone in an elimination reaction step (D, E). 

 

 

!

!

!

!

!
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!

!

!

 

 
!

!

!

!

!

!

 
!

!
!

Scheme 6.4: Mechanism of the aldol condensation followed by elimination. 
!

6.2.3 Synthesis of 1(4-bromophenyl)-2-(1H-imidazol-1-yl)-4,4-

dimethylpentan-3-one 

 

 

 
 

 

 

 

Scheme 6.5:  Reduction of the double bond. 

!

A common catalytic hydrogenation was utilised in order to reduce the double bond.  The E/Z 

mixture was dissolved in ethanol, added of Pd/C 10% wt and then left overnight under H2 

atmosphere.(3)After the work up, TLC showed disappearance of the two spots of starting 

material (mix E/Z) and the formation of a new spot with a different Rf. A 1H-NMR and a 13C-

NMR were done to confirm the presence of the desired product. The disappearance of the –

CH signal of the double bond of the starting material, the presence of a new –CH2 signal at 

3.1-3.3 ppm (as multiplet) and a new signal of a –CH at approximately 5.2 ppm (as a triplet) 

confirmed the reduction of the alkene. Unfortunately, the presence of an extra aromatic 

proton was found and this suggested that the 2-imidazol-1-yl-4,4-dimethyl-1-phenyl-pentan-
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3-one (93) (MCC274) was obtained instead of the desired compound 92 (figure 6.4). A de-

bromination of the aromatic ring took place, due to the strong reducing conditions. 

 

 

 

 

 
!

Figure 6.4: de-halogenation of compound 92 (MCC274). 

 

Due to problem with the reduction step, an alternative pathway was planned for the synthesis 

of compound 86 (scheme 6.6) 
!

 

 

 
!

!

!

!

!

!

!

!

!

!

!

!

 

 

Scheme 6.6: Reagents and Conditions: (I) NaH, imidazole, DMF, 55˚C, 3h (II) K2CO3, acetic anhydride, r.t, 3h 

(III ) H2, Pd/C, EtOH, r.t, 24h  (IV) NaNO2, 48% aqueous HBr, CuBr, 0˚C to reflux, 5h  (V) Pd(OAc)2, ToP, 

Et3N, 110 ˚C, 6h. 

!
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The first three steps were the same as the previous synthetic scheme (scheme 5.1) but in this 

case 4-nitrobenzaldehyde (94) was used in the aldol condensation in order to obtain the (Z/E)-

2-(1H-imidazol-1-yl)-4,4-dimethyl-1-(4-nitrophenyl)pentan-1-en-3-one (95). Reduction of 

both double bond and nitro group, using Pd/C 10%, in the third step gave the 1-(4-

aminophenyl)-2-(1H-imidazol-1-yl)-4,4-dimethyl-pentan-3-one (96). In order to obtain 

compound 97 a Sandmeyer Reaction was performed. Our amine derivative was dissolved in 

48% aqueous HBr and sodium nitrite added with the temperature maintained between 0˚ and 

5˚C (scheme 5.6). The diazonium salt formed was then heated at reflux for 5 h with a 

solution of copper (I) bromide and 48% aqueous HBr.(4) After work up, the pure 1(4-

bromophenyl)-2-(1H-imidazol-1-yl)-4,4-dimethylpentan-3-one (92) was obtained as a brown 

wax. 

The Sandmeyer reaction is an adaptable method for replacing the amine group of a primary 

aromatic amine with a series of different substituents. In the first part of the reaction (scheme 

6.7) the amine is treated with “nitrous acid” (HNO2) under acid conditions, which produces 

the diazonium salt. The nitrous species is formed by the reaction between the sodium nitrite 

and the bromidic acid, and it reacts with the amine group to form an aryl diazonium salt (A). 

The diazonium salt undergoes a substitution reaction with the copper (I) bromide to form the 

desired aryl bromide. The mechanism of this substitution is not known with certainty, but it is 

believed to be a radical-nucleophilic aromatic substitution in which the reduction of 

diazonium salt by the cuprous ion gives an aryl radical that abstracts bromide from cupric 

bromide, reducing it to copper bromide (B). The CuBr is regenerated, acting as a true 

catalyst.(5) 

 
!

 

 

 

 

 

 

 

 

Scheme 6.7: Sandmeyer mechanism. 
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6.2.4 Synthesis of 2-(1H-imidazol-1-yl)-4,4-dimethyl-1-(4-styrylphenyl)pentan-

3-one 

 
 

 

 

 

 

 

 

Scheme 6.8: Heck and Suzuki-Miyaura reaction. 

 

Once compound 92 was obtained, the last step of the synthetic route was attempted. First, a 

classical Heck reaction was performed to achieve the formation of the substituted alkene. As 

reported in scheme 6.8 (A), our compound and a simple styrene (9) were coupled overnight 

using palladium (II) acetate catalyst and tri(o-tolylphosphine) as the ligand, in a Et3N basic 

medium at 110˚C overnight.(6,7) After work up, the 1H-NMR shown that no product was 

formed and only the pure starting material was recovered. The failure of the Heck reaction 

suggested trying a different method. The Suzuki-Miyaura coupling reaction (B) of compound 

92 with trans-phenylvinyl boronic acid (97) using tetrakis(triphenylphosphine)palladium (0) 

as a catalyst and aqueous Na2CO3 as a base was performed in dry toluene.(8) After refluxing 

the reaction mixture for 24 h, a 1H-NMR of a crude compound, shown formation of several 

collateral products but no formation of the desired compound. A plausible explanation for the 

failure of both attempts could be linked with the presence of the imidazole ring. In fact the 

nitrogen of the ring could sequester the palladium which cannot perform its catalytic function 

that is fundamental for the Heck mechanism. 

The problems of the synthesis and the necessity to have at least one derivative for this second 

alkyl family in order to evaluate the combination imidazole/tert-butyl in terms of CYP24A1 

inhibitory activity, suggested us to make a minor change in the structure of the designed 

compound 86 obtaining compound 99 (MCC302) in which a double bond in the lateral chain 

was present conferring more rigidity to the structure. The compound was easily prepared 

following the three step-synthetic pathway reported below (scheme 6.9) 
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Scheme 6.9: Reagents and Conditions: (I) NaH, imidazole, DMF, 55˚C, 3h (II) Pd(OAc)2, ToP, Et3N, 110 ˚C, 

o.n  (III) K2CO3, acetic anhydride, r.t, 3h (IV ) H2, Pd/C 10% , THF, r.t, 72h . 

!

Compound 89 was prepared following the method previously reported. The 4-styryl-

benzaldehyde (98) was prepared reacting styrene (9) with the 4-bromobenzaldehyde (90) in a 

simple Heck reaction.  In the last step, the aldol condensation between compound 89 and 98 

gave the desired (E/Z)-2-imidazol-1-yl-4,4-dimethyl-1-(4-styryl-phenyl)-pent-1-en-3-one 

(99) (MCC302) as mixture of E/Z isomers. The mixture between the two isomers was not 

separated because the two compounds have the same chromatography characteristics. In 

order to have the derivative with no double bond in the lateral chain, the E/Z mixture was 

reduced using the catalytic hydrogenation already reported before. The non-selectivity of this 

reaction gave us compound 100 (MCC303) in which both double bonds present in the 

structure were hydrogenated.!

 

6.3  CYP24A1/CYP27B1 enzymatic assay 
 
The two final products 99 (MCC302) and 100 (MCC303) were tested in both enzymatic 

assays. The test was also conducted on compound 93 (MCC274), the de-halogenation side 

product, in order to see if any activity is present in a small molecule bearing the imidazole 

and the tert-butyl group.   The results of both CYP24A1 and CYP27B1 assay are reported in 

the table below (table 6.1). The reference value for ketoconazole (KTZ) and our best 

compound MCC204 are also reported. 
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Table 6.1: CYP24A1/CYP27B1 enzymatic assay results. 

 

MCC302 showed an interesting CYP24A1 inhibitory activity, with the IC50 and Ki in the 

same range of family I (styryl-benzamide family). Unfortunately, the compound seems to 

have a greater activity as a CYP27B1 inhibitor, as proved by its IC50 in the nM range and its 

poor selectivity (0.44). Reduction of the double bond (MCC303), as expected, led to a 

decrease in activity against CYP24A1 but a 2-fold increase in selectivity. MCC274 had poor 

activity and the CYP27B1 inhibition assay was not performed. 

 
6.4  Discussion  

 
The scaffold with the imidazole ring and the tert-butyl group seems to have good CYP24A1 

inhibitory activity that could be linked with lipophilicity of the molecule and with its rigidity 

conferred by the two double bonds. On the other hand, this new scaffold seems also to be an 

 CYP24A1 CYP27B1 Select. 

Name IC50 (µM) Ki (µM) IC50 (µM) Ki (µM)  

MCC274 7.0 0.49 ± 0.05 - - - 

MCC302 0.18 0.013 ± 0.001 0.036 0.0057  ± 0.0004 0.44 

MCC303 0.60 0.042 ± 0.003 0.23 0.037 ± 0.004 0.88 

MCC204 0.11 0.0078 ± 0.0008 0.16 0.026 ± 0.002 3.3 

KTZ 0.47 0.035 ± 0.005 0.36 0.058 ± 0.010 1.7 
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excellent inhibitor for the CYP27B1 enzyme as shown by the data for both MCC302 and 

MCC303. An important indication was again obtained regarding the importance of the 

molecule rigidity for the CYP24A1 inhibitory activity. In fact, as happened for family I, 

reduction of the double bond (MCC303) and the consequent increase of flexibility led to a 

decrease of activity for the same reasons already treated in chapter 3. Unlike what happened 

with MCC295 (section 3.3 chapter 3) in this case the reduction of the double bond gives an 

increase in selectivity instead of the decrease seen before. MCC274 could be a consequence 

of different factors including its low ClogP (2.9110), its short length and its lack of rigidity. 

However the enzymatic results obtained for this small family are not easy to interpret and 

they will need further investigation in the future. 

 

6.5  Methods  
 

6.5.1 Computational Approaches  
All the computational approaches information is reported in section 2.2.1 chapter 2.  

6.5.2 Molecular Docking 

All the molecular docking information is reported in section 2.2.3 chapter 2. 

6.5.3 CYP24A1 and CYP27B1 inhibition assay 

All the enzymatic assay information is reported in section 3.5.4 chapter 3. 

6.5.4 Chemistry General Information 

All chemistry general information is reported in section 3.5.5 chapter 3. 
!

6.6  Experimental 
 

6.6.1 1-(1H-Imidazol-1-yl)-3,3-dimethylbutan-2-one (89) (1): 

(C9H14N2O2; M.W. 166.22) 
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A suspension of NaH (60% dispersion in mineral oil) (2 equiv.) in dry DMF (7 mL/mmol) 

was stirred and heated at 60˚C for 5 min. Imidazole (87) (2 equiv.) was added and the 

reaction mixture was heated at 60˚C for 1 h. The reaction mixture was cooled to room 

temperature and 1-bromopinacolone (88) (1 equiv.) was added. The reaction mixture was 

heated at 60˚C for 3 h and then hydrolysed by adding H2O (100 mL). The aqueous layer was 

extracted with DCM (2 x 100 mL), the organic layers were collected and dried over MgSO4. 

The solvent was then evaporated to dryness and the residue was purified by flash column 

chromatography (petroleum ether-EtOAc 50:50 v/v increasing to 30:70 v/v) to obtain the 

pure desired product as a yellow oil.  

T.L.C. system: PE-EtOAc 1:1 v/v, Rf: 0.15. 

Yield: 1.50 g (82%) as a yellow oil. 
1H-NMR (CDCl3), δ:  1.25 (s, 9H, CH3, H-1’, H-2’, H-3’), 4.92 (s, 2H, CH2, H-1), 6.68 (s, 

1H, H-imidazole), 7.10 (s, 1H, H-imidazole), 7.43 (s, 1H, H-imidazole). 
13C-NMR (CDCl3), δ: 26.46 (CH3, C-1’, C-2’, C-3’), 43.41 (C, C-3), 50.51 (CH2, C-1), 

120.27, 130.38, 138.09 (CH, C-1#, C-2#, C-3#), 207.41 (C, C-2). 

 

6.6.2 4-Styryl-benzaldehyde (98) (9): 

(C15H12O; M.W. 208.255) 

 
 

 

 

 

 

 

See procedure 5.6.4 chapter 5. 

Reagent: Styrene (9) (0.93 mL g, 8.1 mmol) and 4-bromobenzaldehyde (90) (1.5g, 8.1 mmol) 

T.L.C. system: petroleum ether-EtOAc 7:3 v/v, Rf: 0.75. 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 95:5 v/v 

Yield: 1.34 g (79%) as a yellow solid. 
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Melting point: 108-110˚C (lit. 107-109 ˚C ) (9) 

1H-NMR (CDCl3), δ:  7.17 (d, J = 16.3 Hz, 1H, H-alkene), 7.29 (d, J = 16.4 Hz, 1H, H-

alkene), 7.32-7.36 (m, 1H, Ar), 7.40-7.43 (m, 2H, Ar), 7.57 (d, J = 8.4 Hz, 2H, Ar), 7.68 (d, J 

= 8.3Hz, 2H, Ar), 7.90 (d, J = 8.3 Hz, 2H, Ar), 10.02 (s, 1H, H-1’’).  
13C-NMR (CDCl3), δ: 126.92, 127.36, 128.51, 128.85, 130.25, 132.22,  (CH, C-2, C-3, C-5, 

C-6, C-2’, C-3’, C-4’, C-5’, C-6’, C-2”, C-3’’), 135.37, 136.57, 143.44, 191.59 (C, C-1, C-4, 

C-1’, C-1’’). 

 

6.6.3 2-Imidazol-1-yl-4,4-dimethyl-1-(4-styryl-phenyl)pent-1-en-3-one (99) 

(MCC302): 

(C24H24N2O; M.W. 356.460) 

 

 

 

 

To a stirred solution of 1-(1H-imidazol-1-yl)-3,3-dimethylbutan-2-one (89) (0.48 g, 2.8 

mmol) and K2CO3 (0.48 g, 3.5 mmol) in Ac2O (8 mL) was added 4-styryl-benzaldehyde (98) 

(0.72 g, 3.5 mmol). The mixture was stirred for 3 h at room temperature. After quenched with 

water (50 mL), the resulting mixture was extracted with EtOAc (50 mL × 4). The combined 

organic layer was washed with brine (150 mL), dried over MgSO4, and concentrated in 

vacuo. The residual oil was purified by silica gel flash column chromatography (petroleum 

ether-EtOAc 100:0 v/v increasing to 50:50 v/v) to obtain the E/Z mixture compound as a 

yellow solid. 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.65. 

Yield: 0.160 g (16%). 

Melting point of mixture:  122-124˚C  

Microanalysis: Calculated for C24H24ON2 0.1H2O (357.99043); Theoretical: %C = 80.52, %H 

= 6.81, %N = 7.82; Found: %C = 80.39, %H = 6.83, %N = 7.82. 
1H-NMR (CDCl3), δ:  1.25 (s, 9H, CH3, H-1’’’’, H-2’’’’, H-3’’’’), 6.77 (d, J = 8.4 Hz, 2H, 

Ar), 6.94 (s, 1H, H-imidazole), 7.04 (d, J = 16.4 Hz, 1H, H-alkene), 7.15 (d, J = 16.4 Hz, 1H, 
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H-alkene), 7.28-7.32 (m, 2H, Ar), 7.36-7.42 (m, 4H, Ar, H-imidazole), 7.44 (s, 1H, H-4’’), 

7.47 (s, 1H, H-imidazole), 7.52 (d, J = 7.4 Hz, 2H, Ar). 
13C-NMR (CDCl3), δ: 27.81 (CH3, C-1’’’’, C-2’’’’, C-3’’’’), 44.17 (C, C-1’’), 119.78, 

126.75, 126.94, 127.37, 128.20, 128.77, 130.35, 130.40, 130.89, 136.40, 137.33  (CH, C-2, 

C-3, C-5, C-6, C-2’, C-3’, C-4’, C-5’, C-6’, C-4’’, C-5”, C-6’’, C-1#, C-2#, C-3#), 130.67, 

132.12, 136.77, 139.72, 203.02 (C, C-1, C-4, C-1’, C-2’’, C-3’’). 

 

6.6.4 2-Imidazol-1-yl-4,4-dimethyl-1-(4-phenylethyl)pentan-3-one (100) 

(MCC303): 

(C24H28N2O; M.W. 360.491) 

 

 

 

 

 

See procedure preparation MCC295 chapter 3. 

Reagent: 2-Imidazol-1-yl-4,4-dimethyl-1-(4-styryl-phenyl)-pent-1-en-3-one (99) (0.32 g, 0.9 

mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.21 

Flash column chromatography: petroleum ether-EtOAc 80:20 v/v increasing to 50:50 v/v 

Yield: 0.13 g (40%) as a white wax. 

HRMS (EI): Calculated mass: 361.2274 [M+H]+, Measured mass: 361.2269 [M+H]+ 
1H-NMR (CDCl3), δ:  1.04 (s, 9H, CH3, H-1’’’’, H-2’’’’, H-3’’’’), 2.89 (s, 4H, CH2, H-5’’, 

H-6’’), 3.06-3.11 (m, 1H, CH2, H-4’’), 3.21-3.26 (m, 1H, CH2, H-4’’), 5.25 (dd, J1 = 8.4 Hz, 

J2 = 6.8 Hz, 1H, H-3’’), 6.87-9.91 (m, 2H, Ar, H-imidazole), 7.03-7.07  (m, 4H, Ar), 7.13-

7.16 (m, 2H, Ar), 7.18-7.22 (m, 1H, Ar), 7.24-7.31 (m, 2H, Ar, H-imidazole), 7.42 (s, 1H, H-

imidazole). 
13C-NMR (CDCl3), δ: 25.60 (CH3, C-1’’’’, C-2’’’’, C-3’’’’), 37.37, 37.74, 39.84 (CH2, C-

4’’, C-5’’, C-6’’), 44.86 (C, C-1’’), 60.00 (CH, C-3’’), 117.78, 125.93, 128.30, 128.47, 
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128.91, 128.96, 129.61, 136.55  (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-4’, C-5’, C-6’, C-1#, 

C-2#, C-3#), 133.34, 140.81, 141.48, 209.69 (C, C-1, C-4, C-1’, C-2’). 
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7.1  Molecular Modelling  

As previously reported in chapter I (section 1.6.1), the vitamin D analogue TS17 (figure 7.1) 

bearing a sulfonate group at the end of its lateral chain, showed interesting CYP24A1 

inhibitory activity comparable with the imidazole derivative VIMI (figure 7.1).(1) Moreover, 

TS17 had a 39-fold CYP24A1 selectivity over the CYP27B1. The synthetic difficulties in the 

preparation of the first alkyl-imidazole family and the possibility to replace the imidazole 

with a different active group, led to a new alkyl-sulfonate series where the sulfonate moiety 

should be the responsible for the ligand-haem interaction (figure 7.2).!

 

 

 

 

 

 

 

 

 

Figure 7.1: The sulfonate derivative TS17 published in 2010. 
!
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Figure 7.2: The alkyl-sulfonate family.!
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A short family of five compounds was planned for testing in the CYP24A1 enzymatic assay. 

The sulfonate moiety could be either the mesyl or tosyl group to determine any influence in 

the activity of the compounds. The tert-butyl or the methyl moiety were used as the terminal 

group in the lateral chain. Docking studies of compound 76 (MCC264), the tert-butyl 

dimethoxy mesyl derivative, showed the sulfonyl-moiety disposed in a favourable 

conformation with the oxygen perpendicular to the haem iron at an optimal distance for 

interaction between the iron and the lone  pair of electrons of the sulfonyl oxygen. The 

compound entirely occupies the active site and the H-bond between the 3-methoxy and Gln82 

is present (figure 7.3). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.3: Docking of compound 76 (MCC264). The sulfonyl oxygen is in the right position for the interaction 

with the iron. 
 

7.2 !Chemistry!

The synthetic route for the new alkyl-sulfonate has already been reported in chapter 5, where 

the sulfonyl alkyl derivatives were used as intermediates in an attempt to prepare the final 

alkyl-imidazole compound. Here, the synthetic general scheme is reported (scheme 7.1) and 

the different steps are briefly discussed. 
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Scheme 7.1: Reagents and Conditions: (I) TMSBr, CHCl3, 0˚C to r.t, 6h (II) K2CO3, MeOH, 2,4-

pentanedione16h, reflux (III) InBr3, 1(tbutylvinyloxy)trimethylsilane, DCM, r.t.,2h (IV) Pd(OAc)2, ToP, Et3

N, 110 ˚C, 6h (V) NaBH4, EtOH, 0˚C to r.t, 2h (VI) CH3SO2Cl, DMAP, CH2Cl2, 24h (VII) 4-

toluenesulfonylchloride, DMAP, CH2Cl2, reflux 24h. 

!

To prepare compounds 71, 72 and 82, in the third step (Heck reaction) (2,3), 70 and 81 were 

reacted with the 1,3-dimethoxy-5-vinylbenzene (6) or with a simple styrene (9). Once the 

Final Compound R1 R2 R3 

MCC263 (77) H H tbutyl 

MCC264 (76) OCH3 OCH3 tbutyl 

MCC265 (101) OCH3 OCH3 tbutyl 

MCC305 (85) H H CH3 

102 H H CH3 
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alcohol derivatives 73, 74 and 83 have been prepared as reported in the synthesis scheme (4), 

the last step of the reaction was performed in order to obtain the desired sulfonate 

compounds. As reported before (Chapter 5) synthesis of compounds 77 (MCC263),  76 

(MCC264) and 85 (MCC305), the mesyl derivative was achieved using mesyl chloride as 

the mesylating agent: the three alcohol derivatives were stirred with mesyl chloride, 4-

dimethylaminopyridine (DMAP) and pyridine as base in DCM at 0° to room temperature for 

24 h (5). 
!

7.2.1 Synthesis of tosyl derivatives 

!

!

!

 

 
!

!

Scheme 7.2: Tosylation of alcohol. 
 

The alkyl-tosylate derivative 101 (MCC265) was prepared following the same method 

reported above for the synthesis of mesylated compounds. In this case 4-toluenesulfonyl 

(103) was used instead of mesyl chloride in order to obtain the tosyl derivative. The reaction 

was tried under the same conditions reported above (room temperature for 24 h) but no 

product formation was seen. The same reaction mixture was then refluxed for 24 h and after a 

flash column chromatography purification the pure product was obtained as a thick colourless 

oil. The low yield of the reaction (8% yield) was confirmed by the large amount of unreacted 

starting material recovered after the flash column chromatography. The only explanation for 

the low yield if compared with the mesylation, as previously reported for the alkyl-imidazole 

derivative (chapter 5), could be the presence of the bulky tert-butyl moiety at the end of the 

lateral chain which does not permit the nucleophilic attack by the alcohol to the sulphur atom 

of tosyl chloride. Further confirmation of the steric hindrance was the easy preparation of 

compound 102, the less bulky methyl derivative, which was obtained in a better yield (45%). 

Final Compound R1 R2 R3 

MCC265 (101) OCH3 OCH3 tbutyl 

102 H H CH3 
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7.3  CYP24A1/CYP27B1 enzymatic assay 
 

The final compounds of this alkyl-sulfonate family were tested against CYP24A1 enzyme 

and the results are reported below together with the reference value for ketoconazole (KTZ) 

and our best compound MCC204 (table 7.1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 7.1: CYP24A1/CYP27B1 enzymatic assay results. 

 CYP24A1 CYP27B1 Select. 

Name IC50 (µM) Ki (µM) IC50 (µM) Ki (µM)  

MCC263 5.6 0.40 ± 0.02 - - - 

MCC264 5.4 0.38 ± 0.07 - 0.13 0.34 

MCC265 2.9 0.21 ± 0.04 - - - 

MCC305 78.8 5.56 - - - 

102 Not evaluated 

MCC204 0.11 0.0078 ± 0.0008 0.16 0.026 ± 0.002 3.3 

KTZ 0.47 0.035 ± 0.005 0.36 0.058 ± 0.010 1.7 
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None of the sulfonate/tosylate derivatives showed interesting CYP24A1 activity leading to a 

notable loss of activity. Due to this lack of activity, CYP27B1 inhibitory evaluation was not 

performed. Only the CYP27B1 Ki for MCC264 was calculated to confirm the lack of 

selectivity in this family. Compound 102 was not tested and prepared only for chemical 

interest to confirm steric hindrance of tert-butyl. 

 

7.4  Discussion 
  

The important loss of activity for this alkyl-sulfonate family underlines the key role of the 

imidazole in the binding to the haem. Even though the compounds occupy the active site in 

an optimal conformation (figure 7.3) interacting with the enzyme, the interaction with the 

haem is not strong enough resulting in reduced enzyme inhibitory activity. The imidazole 

nitrogen lone pair could be more available for the interaction with the iron if compared with 

the sulfonyl oxygen making the sulfonate-Fe interaction weaker than imidazole-Fe resulting 

in an important decrease of the CYP24A1 inhibitory potential. Even with the poor activity, 

the importance of logP for the ligand-enzyme interaction can be seen: MCC265 is the 

molecule with the best activity among the family and this could be linked with its higher 

lipophilicity (ClogP 8.3220) and with the presence of the tosyl aromatic group, which creates 

more hydrophobic contact points with the enzyme cavity. 

 

7.5  Methods  

 

7.5.1 Computational Approaches  

All the computational approaches information is reported in section 2.2.1 chapter 2.  

7.5.2 Molecular Docking 

All the molecular docking information is reported in section 2.2.3 chapter 2. 

7.5.3 CYP24A1 and CYP27B1 inhibition assay 

All the enzymatic assay information is reported in section 3.5.4 chapter 3. 

7.5.4 Chemistry General Information 

All chemistry general information is reported in section 3.5.5 chapter 3. 
!

!

!
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7.6  Experimental 
 
Procedure preparation and characterisation of compound from number 67 to 85 are reported 
in the experimental part 5.6 of chapter 5. 

 

7.6.1 General method for the tosylation of alcohol 
 
 
 

 

To a cooled (0˚C) solution of the alcohol derivative (1 equiv.) and 4-dimethylaminopyridine 

(0.22 equiv.) in dry DCM (3.5 mL/mmol) and pyridine (0.4 mL/mmol) under nitrogen 

atmosphere was added 4-toluene sulfonyl chloride (2.2 equiv.) portion-wise. The reaction 

was stirred at 0˚C for 10 min then stirred at reflux for 24 h. On completion, the reaction 

mixture was washed with aqueous satured NaHCO3 (15 mL/mmol) and the organic layer was 

separated. The aqueous layer was back extracted with DCM (15 mL/mmol) and both organic 

layers were washed with aqueous 1 M HCl (15 mL/mmol). The organic layer was washed 

with aqueous satured NaHCO3 (15 mL/mmol) and then dried over MgSO4. The solvent was 

evaporated under vacuum and the product was isolated by flash column chromatography 

(petroleum ether-EtOAc 100:0 v/v increasing to 90:10 v/v) giving the pure desired 

compound. 

 

(E)-1-(4-(3,5-Dimethoxystyryl)phenyl)-4,4-dimethylpentan-3-yl 4-

 methylbenzenesulfonate (101) (MCC265): 

(C30H36O5S; M.W. 508.67) 
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Reagent: 1-(4-(3,5-Dimethoxystyryl)phenyl)-4,4-dimethylpentan-3-ol (73) (0.65 g, 1.8 

mmol) 

T.L.C. system: petroleum ether-EtOAc 8:2 v/v Rf: 0.37. 

Yield: 0.03 g (8%) as a thick colourless oil. 

HRMS (EI): Calculated mass: 509.2356 [M+H]+, Measured mass: 509.2350 [M+H]+. 
1H-NMR (CDCl3), δ: 0.91 (s, 9H, CH3, H-5, H-1’’, H-2’’), 1.86-1.99 (m, 2H, CH2), 2.47 (s, 

1H, SO2PhCH3), 2.58-2.64, 2.72-2.78 (two m, 2H, CH2), 3.85 (s, 6H, O-CH3, H-5’’, H-6’’), 

4.54 (dd, J1 = 5.03 Hz, J2 = 3.1 Hz, 1H, H-3), 6.42 (t, J = 2.1 Hz, 1H, H-4’’’), 6.69 (d, J = 2.2 

Hz, 2H, H-2’’’, H-6’’’), 7.01 (d, J = 16.3 Hz, 1H, H-alkene), 7.08 (d, J = 16.3 Hz, 1H, H-

alkene), 7.12 (d, J = 8.1 Hz, 2H, Ar). 7.36 (d, J = 8.0 Hz, 2H, Ar), 7.44 (d, J = 8.0 Hz, 2H, 

Ar), 7.86 (d, J = 8.2 Hz, 2H, Ar). 
13C-NMR (CDCl3), δ: 21.62 (CH3, SO2PhCH3), 26.18 (CH3, C-5, C-1’’, C-2’’), 32.94, 32.83 

(CH2, C-1, C-2),  35.39(C, C-4), 55.38 (CH3, C-5’’, C-6’’), 92.20 (CH, C-3), 99.91, 104.54, 

126.65, 127.54, 128.05, 128.76, 129.00, 129.62 (CH, C-2’, C-3’, C-5’, C-6’, C-3’’, C-4’’, C-

2’’’, C-4’’’, C-6’’’, SO2PhCH3), 135.01, 135.35, 139.49, 141.30, 144.21, 161.01 (C, C-1’, C-

4’, C-1’’’, C-3’’’, C-5’’’, SO2PhCH3).  

 

Toluene 4-sulfonic acid 1-ethyl-3-(4-styryl-phenyl)-propyl ester (102): 

(C26H28O3S; M.W. 420.563) 

 

 

 

 

 

Reagent: 4-(4-Styryl-phenyl)-butan-2-ol (83) (0.25 g, 1 mmol) 

T.L.C. system: petroleum ether-EtOAc 7:3 v/v Rf: 0.60. 

Yield: 0.18 g (45%) as a pale yellow solid. 

Melting point: 84-86˚C. 

HRMS (EI): tbd 

CH3

OTs

(102)

1

2'

1'

6

5

4
3

2
4'

5'
6

3'

6"

3"

2"

1"

4"

5"
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1H-NMR (CDCl3), δ: 1.34  (d, J = 5.3 Hz, 3H, CH3, H-4), 1.81-1.89 (m, 1H, CH2), 1.93-2.01  

(m, 1H, CH2), 2.48 (s, 3H, SO2PhCH3), 2.51-2.59 (m, 1H, CH2), 2.62-2.68 (m, 1H, CH2), 

4.66-4.73 (m, 1H, H-3),  7.07-7.11 (m, 4H, H-alkene, Ar), 7.26-7.30 (m, 1H, Ar), 7.34-7.40 

(m, 4H, Ar), 7.43 (d, J = 8.2 Hz, 2H, Ar), 7.53 (d, J = 7.4 Hz, 2H, Ar), 7.83 (d, J = 8.3 Hz, 

2H, Ar) . 
13C-NMR (CDCl3), δ: 20.86, 21.27 (CH3, C-4, SO2PhCH3), 30.93, 38.07 (CH2, C-1, C-2), 

79.79 (CH, C-3), 126.45, 126.61, 126.66, 127.54, 128.18, 128.40, 128.64, 128.69, 129.79 

(CH, C-2’, C-3’, C-5’, C-6’, C-1’’, C-2’’, C-2’’’, C-3’’’,  C-4’’’, C-5’’’, C-6’’’, SO2PhCH3), 

134.57, 135.30, 137.42, 140.42, 144.51 (C, C-1’, C-4’, C-1’’’, SO2PhCH3). 
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8.1  Molecular Modelling  

All the previous designed families have the presence of a chiral carbon in the lateral chain. 

The influence on the activity of the two stereoisomers R and S of these compounds has not 

been considered. In order to eliminate that chiral carbon and mimic the calcitriol central core, 

a new indole-imidazole family has been designed. The indole ring has been chosen as the 

central core enclosing the amidic nitrogen of the first family in an aromatic ring and 

removing the carboxylic group. The imidazole ring is bonded to the core by a lateral carbon 

chain of different length. Dimethoxy and unsubstituted derivatives were planned with 

variation of the length of the lateral chain (3 or 4 carbons) in order to have a small family of 

four compounds (figure 8.1). 

 

 

 

 

 

 

 

 

Figure 7.1: The sulfonate derivative published in 2010. 
!

!

!

!
!

 

Figure 8.1: The new indole-imidazole family. 

!

Figure 8.2 shows the docking of the 3,5-dimethoxy and the unsubstituted (MCC259 and 

MCC260) 3-carbon lateral chain derivatives. Both compounds sit in the active site making 

important H-pi interactions with the surrounding environment (interaction with Trp134, 

Gly499). The imidazole ring is disposed in a favourable conformation with the nitrogen 

perpendicular to the haem iron at an optimal distance for interaction (2.2-2.5 Å). No possible 

H-bond formation seems possible between Gln82 and the 3-methoxy of MCC259 due to the 
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length of the compound. For this reason the 4-carbon lateral chain derivatives were also 

planned in order to entirely occupy the active site and reach the Gln82. 

!

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8.2: Docking of MCC259 (purple) and MCC260 (white). H-pi interactions with Trp134 and Gly499 are 

present. 

 

In order to verify the influence on the activity of the styrene bond position, 5-indole 

derivatives have been planned moving the double bond from position 4 to position 5 of the 

central indole core (figure 8.3). 

 

 

 

 

 

 

 
 

Figure 8.3: The 5-indole derivative. 
 

8.2 !Chemistry!

The synthesis of this family follows a three step synthetic pathway (scheme 8.1): 

1. Synthesis of 4/5-(3,5-unsubstituted/substituted styryl)-1H-indole (Heck reaction or 

Suzuki-Miyaura ).!
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2. Synthesis of 4/5-(3,5-unsubstituted/substituted styryl)-1-(3-bromopropyl/4-

bromobutyl)-1H-indole (Nucleophilic reaction).!

3. Synthesis of 1-(3-(1H-imidazol-1-yl)propyl/butyl)-4/5-(3,5-unsubstituted/substituted 

styryl)-1H-indole (Nucleophilic reaction).!

 

 

 

 

 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
 

Scheme 8.1: Reagents and Conditions: (I) Pd(OAc)2, ToP, Et3N, 110 ˚C, 5h (Ia) Pd(PPh3) aq. Na2CO3, toluene, 

reflux; (II) NaH, DMF, 0˚C, 5-10 min (III) NaH, imidazole, DMF, 45˚C, o.n. 

!

Final Compound R1 R2 n 

MCC259 (118) OCH3 OCH3 3 

MCC260 (119) H H 3 

MCC261 (120) OCH3 OCH3 4 

MCC267 (121) H H 4 

MCC293 (122) H H 3 

MCC294 (123) H H 4 
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8.2.1 Synthesis of 4/5-(3,5-unsubstituted/substituted styryl)-1H-indole 

!

!

!

!

!

!

!

Scheme 8.2: Synthesis of substituted alkenes using the Heck reaction. 
 

The synthesis involves the formation of substituted alkenes using a classical Heck reaction. 

As mentioned before, 1,3-dimethoxy-5-vinylbenzene (6) or a simple styrene (9) and 4-

bromoindole (104) or 5-bromoindole (105) were coupled for 5 h using palladium (II) acetate 

catalyst and tri(o-tolylphosphine) as ligand, in a Et3N basic medium at 110˚C(1,!2) The final 

products were purified by flash column chromatography.!The synthesis of compound 108 was 

also performed by the Suzuki-Miyaura coupling reaction. The 4-bromoindole (104) was 

refluxed with trans-phenylvinyl boronic acid (106) using tetrakis (triphenylphosphine)- 

palladium (0) as a catalyst and aqueous Na2CO3 as a base in dry toluene for 24 h.(3) 

 

 

 

 

 

 
 
 

Scheme 8.3: Alternative method for the preparation of compound 108. 
 

The reaction yield obtained for this method (71%) was comparable to the one obtained with 

the Heck reaction. The Suzuki-Miyaura coupling reaction is a palladium-catalysed cross 

Product R1 R2 Double bond YIELD 

107 OCH3 OCH3 position 4 65% 

108 H H position 4 80% 

109 H H position 5 49% 
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coupling between organoboric acid and halides (aryls, heteroaryls, alkenyls, alkynyls,).(4) The 

mechanism for the cross-coupling reaction (scheme 8.4) includes oxidative addition in which 

palladium places itself in the aryl-bromide bond (I), transmetallation that involves the two 

metal centre palladium and boron with the transfer of phenyl group from the boron to the 

palladium complexes (II), and a reductive elimination with the formation of the new carbon-

carbon bond (III). The boronic acid must be activated using a base which increases the 

carbanion character of the phenyl groups by coordination with the boron atom (by forming an 

organoborate (a) with a tetravalent boron atom). The activation enhances the polarisation of 

the organic ligand and facilitates the transmetallation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Scheme 8.4: Suzuki-Miyaura reaction between arylboronic acid [Ar’B(OH)2] and an organic bromide [Ar-Br] 

catalysed by transition metal Pd(PPh3)4 [Pd(0)] using a base [NaBs]. 
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8.2.2 Synthesis of 4/5-(3,5-unsubstituted/substituted styryl)-1-(3-bromopropyl/4-

bromobutyl)-1H-indole 

 

 
 
 
 
 
 
 
 

 

Scheme 8.5: Preparation of the bromopropyl/butyl indole derivatives. 
 

The indole bromoalkyl derivatives were easily prepared through the reaction of 

dibromopropane (110) to prepare the 3-carbon lateral chain or dibromobutane (111) for the 4-

carbon lateral chain with the indole-styryl derivatives (107-109) in DMF in the presence of 

NaH as base.(3) The reaction was realised at 0°C and in the presence of a large excess of 

bromoalkyl derivative in order to decrease the formation of possible side-products such as the 

di-substituted propane/butane di-indole or the elimination product in which the final bromine 

of the lateral chain, due to the heating and NaH presence, leads to formation of  a terminal 

alkene. 

 

8.2.3 Synthesis of 1-(3-(1H-imidazol-1-yl)propyl/butyl)-4/5-(3,5-

unsubstituted/substituted styryl)-1H-indole 

 

Product R1 R2 n Double bond YIELD 

112 OCH3 OCH3 3 position 4 66% 

113 H H 3 position 4 50% 

114 OCH3 OCH3 4 position 4 69% 

115 H H 4 position 4 86% 

116 H H 3 position 5 46% 

117 H H 4 position 5 84% 
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Scheme 8.6: Synthesis of the indole-imidazole compounds. 
 

The final products 118-123 were obtained reacting the different starting materials with 

sodium imidazole salt. The salt was formed in situ by reacting the imidazole with sodium 

hydride for 1 hour at 45˚C.(5) Once the sodium salt was obtained, the different propyl/butyl 

indoles (112-117) were added giving the desired products after heating at 45˚C overnight. 

The reaction is a simple nucleophilic substitution of bromine with the imidazole ring. 

 
 
 
 
 
 

Scheme 8.7: Nucleophilic substitution of the bromine. 
 

8.3  CYP24A1/CYP27B1 enzymatic assay 
 
The CYP24A1 enzymatic assay together with the CYP27B1 were performed following the 

methodology previously described. The results are reported below together with the reference 

value for ketoconazole (KTZ) and our best compound MCC204 (table 8.1). 

Final Compound R1 R2 n Double bond YIELD 

118 (MCC259) OCH3 OCH3 3 position 4 72% 

119 (MCC260) H H 3 position 4 72% 

120 (MCC261) OCH3 OCH3 4 position 4 75% 

121 (MCC297) H H 4 position 4 67% 

122 (MCC293) H H 3 position 5 83% 

123 (MCC294) H H 4 position 5 67% 
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Table 8.1: CYP24A1/CYP27B1 enzymatic assay results. 

 

The prepared indole-imidazole derivatives were all potent inhibitors of CYP24A1 activity if 

compared with the ketoconazole standard but they have shown a small reduction in activity if 

compared with our lead compound MCC204. The 4-indole derivatives with 4-carbon lateral 

chain (MCC261 and MCC267) were more active than the 3-carbon derivatives (MCC259 

   CYP24A1 CYP27B1 Sel. 

Name R n IC50 (µM) Ki (µM) IC50 (µM) Ki (µM)  

MCC259 

 

3 0.44 0.031  

± 0.004 

0.14 0.022 

± 0.004 

0.71 

MCC260 

 

3 0.36 0.026 

± 0.004 

0.21 0.034 

± 0.005 

1.3 

MCC261 

 

4 0.19 0.014 

± 0.02 

0.10 0.017 

± 0.004 

1.2 

MCC267 

 

4 0.20 0.014 

± 0.002 

0.15 0.025 

± 0.003 

1.8 

MCC293 

 

3 0.52 0.037 

± 0.004 

0.28 0.046 

± 0.004 

1.2 

MCC294 

 

4 0.52 0.037 

± 0.002 

0.15 0.024 

± 0.005 

0.65 

MCC204 " - 0.11 0.0078 

± 0.0008 

0.15 0.026 

± 0.002 

3.3 

KTZ "! - 0.47 0.035 

± 0.005 

0.36 0.058 

± 0.010 

1.7 
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and MCC260). The 5-indole derivatives showed a larger reduction in activity, a result found 

for both the 3 (MCC293) and 4 (MCC294) carbon lateral chain. Substitution on the aromatic 

ring does not affect the CYP24A1 inhibitory activity. All the compounds showed a good 

binding and inhibitory activity against CYP27B1 leading to a poor selectivity with only 

MCC267 displaying a selectivity comparable with ketoconazole (1.8 vs 1.7). From the data, 

the 4-carbon lateral chain derivatives (MCC261, MCC267 and MCC294) have a greater 

CYP27B1 inhibitory activity as shown by their IC50 and Ki values. 

 

8.4  Discussion  
 
From the enzymatic assay, the change in activity among the six compounds of this family 

seems to be influenced by two main aspects: 

• The position of the styryl linker in the central indole core: 4-indole derivatives are 

better than the 5-indole. 

• The length of the lateral chain: 4-carbon lateral chain compounds were more active 

than the 3-carbon. 

In order to find the rational link between these structural aspects and the CYP24A1 inhibitory 

activity, a flexible alignment study was run using the MOE 2010 flexible alignment tool.(6) 

MCC204, our most active compound, was used as the template. The docked pose of 

MCC204 in the enzyme (as mentioned in chapter 2 the stereoisomer S was used) active site 

was kept rigid while a flexible alignment was run using a database of the six compounds. The 

goal of the flexible alignment was to find the best alignment in terms of internal strain and 

overlap of molecules feature (H-bond donor/acceptor, aromatic features, etc.) for each ligand 

with the chosen template (see method section 8.5.3). In our case, we wanted to verify if our 

compounds aligned with the docked active conformation of MCC204 and find some possible 

link with the enzymatic activity. An interesting relation was found between the flexible 

alignment results (table 8.2 method section) and the enzymatic data. As reported before, 

MCC261, a 4-indole 4-lateral carbon derivative, is the most active compound of series. 

MCC261 was also the best aligned compound in terms of both spatial overlapping and S 

value (sum of the internal energy of the ligand [U] and the similarity score [F]). MCC261 

(yellow) shows a very good spatial overlap with the docked conformation of MCC204 (lilac) 

(Figure 8.4 A), with the imidazole and the 3,5-dimethoxy phenyl ring matching perfectly.  
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Moreover, the lowest S value (entry 1 table 8.2) is a consequence of the good internal energy 

of the ligand pose (U value) and the excellent similarity score (F value) meaning that the 

conformation obtained is not forced in the first case and that the two structure (MCC261 and 

MCC204) have a high shape/functional group similarity in the second case.  

 

 

A)                                                                        B) 

Figure 8.4: Flexible alignment between MCC204 (lilac) and MCC261 (yellow) and MCC267 (light blue). 

 

The same consideration reported above can be done for MCC267 (light blue), the 4-carbon 

unsubstituted derivative. Also in this case the compound perfectly overlaps with MCC204 

(figure 8.4 B) and the slightly higher S value (entry 2 table 8.2) could be a consequence of 

the absence of the 3,5-dimethoxy that results in a decrease of the similarity score F with 

MCC204. Considering the 3-carbon derivatives MCC259 (green) and MCC260 (white), the 

slight loss of activity could be explained by the flexible alignment results. In fact both the S 

value (entry 3 and 7 table 8.2) and the visual spatial overlapping of these two compounds 

are not as good as the two obtained for the 4-carbon derivatives. The two compounds are not 

perfectly overlapping especially in the imidazole ring moiety and this influences negatively 

the F similarity score (figure 8.5).  

 

 

A)                                                                     B) 

 

 

                                      C) 

Figure 8.5: Flexible alignment between MCC204 (lilac) and MCC259 (green) and MCC260 (white). MCC260 

gave two possible alignment outputs. 
 

MCC260, according to the flexible alignment output results, has another possible 

conformation (figure 8.5 C) with an S value identical to the one obtained for the above 

reported result (entry 6 vs entry 7) and the molecule orientated in an opposite way to 

MCC204. These studies suggested that the 4-carbon derivatives overlap in a better way with 
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MCC204 and this similarity could influence their disposition in the active site leading to the 

interesting CYP24A1 inhibitory activity. 

A molecular docking was performed to evaluate the binding of these inhibitors. The docking 

results confirmed the importance of the 4-carbon lateral chain as shown in figure 8.6 (A). 

MCC261 is disposed in the active site in the same manner of MCC204, occupying the full 

length of the enzyme channel and forming the H-bond between its 3-methoxy and Gln82. 

MCC267 presents an equal disposition lacking the H-bond. The docking of MCC259 and 

MCC260 (figure 8.6 B), as reported at beginning of this chapter, showed the two molecules 

orientated in the right position with the imidazole perpendicular to the iron, but due to the 

shorter lateral chain they are not able to entirely occupy the active site and their interaction 

with the enzyme is less strong than the 4-carbon lateral chain derivatives. This aspect could 

influence the enzymatic results. 

 

 

 

 

 

A)                                                                        B) 

Figure 8.6: Docking of MCC261 (yellow), MCC259 (lilac) and MCC260 (white). 
 

The flexible alignment results obtained for the 5-indole molecules MCC294 and MCC293 

could also explain their reduction in activity if compared with their corresponding 4-indole 

derivatives. In fact, both compounds do not completely overlap with MCC204 (figure 8.7) 

with an opposite orientation found in both cases together with a low S value (entry 4 and 5).  

 

A) 

 

 
B) 

 
Figure 8.7: Flexible alignment between MCC204 (lilac) and MCC294 (green) and MCC93 (red). No good 

visual spatial overlapping was found. 
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The docking studies of these 5-indole derivatives confirmed our deduction and the link 

between the alignment with MCC204 and the ability to occupy the active site. MCC294 

(figure 8.8) is not able to entirely sit in the active site due to its structural flexibility conferred 

by the presence of the styryl ring in position 5 instead of 4. As reported before, the inability to 

accommodate the entire active site can result in a decrease of CYP24A1 enzymatic inhibition.   

 

 

 

 

 

 

 

 

 

 

 
Figure 8.8: Docking of MCC294. The molecule does not occupy entirely the active site (too far from Gln82). 

 

In this new family, elimination of the styryl-benzamide lateral chiral carbon and introduction 

of the indole central core resulted in a retention of the CYP24A1 inhibitory activity. The 4-

indole 4-carbon lateral chain derivatives were found to be the most active among this family 

with an IC50 and Ki comparable to the styryl-benzamide compounds. Unfortunately, the 

selectivity for CYP24A1 over CYP27B1 was poor and further modification of this indole-

imidazole series needs to be done in order to improve the selectivity. 

 

8.5  Methods  
 

8.5.1 Computational Approaches  

All the computational information is reported in section 2.2.1 chapter 2.  

8.5.2 Molecular Docking 

All the molecular docking information is reported in section 2.2.3 chapter 2. 

8.5.3 Flexible Alignment 
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The MOE flexible alignment tool generates different possible conformations for each of the 

different molecules present in the input database (mol2 database) that could overlap with the 

assigned template. The quality of the alignment is evaluated by a score which is a sum of the 

internal strain of the obtained conformation and the overlap of molecular features.(7) An 

alignment is considered good if: 

• The internal strain energy of the obtained conformation is small. 

• There is a similarity in shape 

• There is an overlapping of the aromatic regions 

• There is an overlapping of the donors/acceptors 

MOE, for each alignment performed, evaluates the average internal energy of the ligands U, 

the similarity score F (the lower value is the better two structures overlap) and the value S 

(sum of U and F values obtained for each alignment). Normally, a good alignment should 

present a dU value (the average strain energy of the molecules in the alignment in kcal/mol) 

lower than 1 kcal/mol meaning that the obtained conformation are not energetically 

disadvantaged. In our case, we kept our template rigid and the flexible alignment of the six 

compounds was run. The obtained data with a dU of 0.0 (no energy penalty) were kept and 

ranked according to the lowest S value. Table 8.2 reports the best results. For some 

molecules more than one optimal output alignment was obtained. 

 
Table 8.2: Scoring results from flexible alignment. 

8.5.4 CYP24A1 and CYP27B1 inhibition assay 

Entry mol U F S dU 

1 MCC261 34.3428 -169.6129 -135.2701 0.0 

2 MCC267 26.3473 -153.5406 -127.1933 0.0!

3 MCC259 32.7516 -148.6960 -115.9444 0.0!

4 MCC294 24.4710 -132.8601 -108.3891 0.0!

5 MCC293 23.3696 -129.8127 -106.4431 0.0!

6 MCC260 25.0259 -131.2711 -106.2452 0.0!

7 MCC260 25.0259 -131.0792 -106.0533 0.0!

8 MCC260 25.0259 -126.9750 -101.9492 0.0!

9 MCC294 24.4710 -125.4641 -100.9931 0.0!

10 MCC293 23.3696 -119.7692 -96.4266 0.0!
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All the enzymatic assay information is reported in section 3.5.4 chapter 3. 

8.5.5 Chemistry General Information 

All chemistry general information is reported in section 3.5.5 chapter 3. 
!

8.6  Experimental 
 

8.6.1 General method for the preparation4/5-(3,5-
unsubstituted/substituted styryl)-1H-indole 

 
 
 

 

 

 

1,3-Dimethoxy-5-vinylbenzene (6) or simple styrene (9) (1 equiv.), 4-bromoindole (104) or 

5-bromoindole (105) (1 equiv.), and triethylamine (2.0 equiv.) were heated in the presence of 

tri(o-tolylphosphine) (TOP, 0.03 equiv.) and palladium (II) acetate (0.005 equiv.) in a sealed 

glass tube at 110°C for 5 h. On completion, water (2 mL/mmol) was added. The product was 

portioned between DCM (20 mL/mmol) and water (20 mL/mmol), then the organic layer was 

dried over MgSO4 and the solvent evaporated under vacuum. The product was isolated by 

flash column chromatography (petroleum ether-EtOAc 100:0 v/v increasing to 90:10 v/v) to 

give the pure products as a solid.  
 

4-(3,5-Dimethoxystyryl)-1H-indole (107): 

(C18H17NO2; M.W. 279.33) 
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Reagent: 1,3-Dimethoxy-5-vinyl-benzene (6) (0.9 g, 5.5 mmol) 

T.L.C. system: petroleum ether-EtOAc 7:3 v/v, Rf: 0.5. 

Yield: 1 g (65%) as a green-grey solid. 

Melting Point: 96-98 ˚C.  

HRMS (EI): Calculated mass: 280.1332 [M+H]+, Measured mass: 280.1335 [M+H]+ 
1H-NMR (CDCl3), δ : 3.88 (s, 6H, OCH3, H-1”, H-2”), 6.45 (t, J= 2.2 Hz, 1H, H-4’), 6.78 (d, 

J = 2.2 Hz, 2H, H-2’, H-6’), 6.88-6.89 (m, 1H, H-indole), 7.23-7.28 (m, 2H, H-alkene, H-5), 

7.31 (t, J = 2.9 Hz, 1H, H-indole), 7.36 (d, J = 8.1 Hz, 1H, Ar), 7.39 (d, J = 7.3 Hz, 1H, Ar), 

7.53 (d, J = 16.3 Hz, 1H, H-alkene), 8.27 (b.s., 1H, NH). 
13C-NMR (CDCl3), δ : 55.42 (CH3, C-1”, C-2”), 99.79, 101.31, 104.63, 110.62, 117.77, 

122.23, 124.49, 127.91, 129.31, (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’), 

126.30, 129.57, 136.28, 140.06, 161.02 (C, C-3, C-7, C-8, C-1’, C-3’, C-5’). 

 

4-Styryl-1H-indole (108): 

(C16H13N; M.W. 219.28) 

 

 

 

 

 

 

Reagent: Styrene (9) (1 g, 9.6 mmol) 

T.L.C. system: petroleum ether-EtOAc 7:3 v/v, Rf: 0.57. 

Yield: 1.70 g (80%) as a green solid. 

Melting Point: 126-128 ˚C 

Microanalysis: Calculated for C16H13N 0.1H2O (220.90637); Theoretical: %C = 86.92, %H = 

5.93, %N = 6.34; Found: %C = 87.10, %H = 5.86, %N = 6.40. 
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1H-NMR (CDCl3), δ : 6.72  (s, 1H, H-indole), 7.03 (m, 1H, H-4’), 7.20 (m, 4H, H-indole, H-

4, H-5, H-6), 7.30 (d, J = 16.1 Hz, 1H, H-alkene), 7.33 (d, J = 7.4 Hz, 2 H, H-3’, H-5’), 7.59 

(d, J = 16.3 Hz, 1H, H-alkene), 7.63(d, J =  8.27 Hz, 2H, H-2’, H-6’),  8.3 (b.s., 1H, NH). 
13C-NMR (CDCl3), δ : 100.07, 109.51, 113.60, 119.33, 121.62, 125.44, 126.27, 126.36, 

127.53, 128.28 (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-3’, C-4’, C-5’ C-6’), 

125.11, 128.62, 135.14, 136.87 (C, C-3, C-7, C-8, C-1’). 

 

Suzuki-Miyaura reaction:  

 

 

 

 

 

 

A solution of 4-bromoindole (104) (2.0 g, 10.2 mmol) in anhydrous toluene (20 mL) was 

treated with Pd(PPh3)4 (1.18 g, 1.02 mmol). The mixture was then purged with N2 and stirred 

for 30 min. Trans-2-phenylvinyl boronic acid (106) (2.5 g, 16.9 mmol) was then added 

followed by satured aqueous Na2CO3 (8 mL) and the reaction mixture purged again with N2 

and refluxed for 24 h. The solvent was then evaporated in vacuo and the residue was 

dissolved in DCM (100 mL), extracted with water (2 x 50 mL) and dried over MgSO4. The 

organic layer was evaporated under vacuum and the product was isolated by flash column 

chromatography (petroleum ether-EtOAc 100:0 v/v increasing to 80:20 v/v) to give the pure 

product as a green solid. 

Yield: 1.60 g (71%). 

 

5-Styryl-1H-indole (109): 

(C16H13N; M.W. 219.28) 
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Reagent: Styrene (9) (0.80 g, 7.6 mmol) 

T.L.C. system: petroleum ether-EtOAc 7:3 v/v, Rf: 0.62. 

Yield: 0.82 g (49%) as a pale green-solid. 

Melting Point: 152-154 ˚C 

Microanalysis: Calculated for C16H13N 0.1H2O (220.90637); Theoretical: %C = 86.99, %H = 

6.02, %N = 6.34; Found: %C = 87.07, %H = 6.28, %N = 6.44. 
1H-NMR (CDCl3), δ : 6.59-6.61 (m, 1H, H-indole), 7.12 (d, J = 16.3 Hz, 1H, H-alkene), 7.23 

(t, J = 2.8 Hz,  1H, Ar), 7.25-7.31 (m, 2H, Ar, H-alkene), 7.37-7.41 (m, 3H, Ar, H-indole), 

7.49 (dd, J1 = 8.7 Hz, J2= 1.7 Hz, 1H, Ar), 7.57 (d, J = 7.4 Hz, 2H, Ar), 7.80 (s, 1H, Ar), 8.15 

(b.s., 1H, NH). 
13C-NMR (CDCl3), δ : 103.07, 111.29, 119.52, 120.75, 124.76, 126.13, 126.24, 126.99, 

128.64, 130.09 (CH, C-1, C-2, C-4, C-5, C-7, C-9, C-10, C-2’, C-3’, C-4’, C-5’ C-6’), 

128.29, 129.60, 135.63, 138.06 (C, C-3, C-6, C-8, C-1’). 

 

8.6.2 General method for the preparation of 4/5-(3,5-

unsubstituted/substituted styryl)-1-(3-bromopropyl/4-bromobutyl)-

1H-indole 

 

 

 

 

 

 

 

The different 4/5-(3,5-unsubstituted/substituted styryl)-1H-indole (107-108) (1 equiv.) and 

NaH  (60% dispersion in mineral oil) (3 equiv.) in dry DMF (4.7 mL/mmol) were cooled to 

0˚C using an ice bath and stirred for 5 min. 1,3-Dibromopropane (110) or  1,4-dibromobutane 

(111) (10 equiv.) was added and the reaction mixture was stirred for 10 min. On completion, 

the solvent was evaporated under reduced pressure and the residue was dissolved in DCM (30 
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mL/mmol), washed with water (2 x 15 mL/mmol) and dried over MgSO4. The organic layer 

was then evaporated to dryness and the residue was purified by flash column chromatography 

to obtain the pure product. 

 

4-(3,5-Dimethoxystyryl)-1-(3-bromopropyl)-1H-indole (112): 

(C21H22BrNO2; M.W. 400.30) 

 

 

 

 

 

 

 

 

Reagent: 4-(3,5-Dimethoxystyryl)-1H-indole (107) (0.43 g, 1.5 mmol) 

T.L.C. system: petroleum ether-EtOAc 3:1 v/v, Rf: 0.72. 

Flash column chromatography: petroleum ether-diethyl ether 100:0 v/v increasing to 95:5 v/v 

Yield: 0.34 g (66%) as a yellow oil. 

HRMS (EI): Calculated mass: 400.0907 [M+H]+, Measured mass: 400.0911 [M+H]+ 
1H-NMR (CDCl3), δ : 2.37-2.42 (m, 2H, H-2’’), 3.34 (t, J = 6.1 Hz, 2H, H-1’’), 3.88 (s, 6H, 

OCH3, H-4”, H-5”), 4.38 (t, J = 6.3 Hz, 2H, H-3’’), 6.44 (t, J = 2.3 Hz, 1H, H-4’), 6.77 (d, J = 

2.3 Hz, 2H, H-2’, H-6’), 6.82-6.84 (m, 1H, H-indole), 7.23-7.28 (m, 3H, H-alkene, H-indole, 

H-5), 7.34 (d, J = 8.1 Hz, 1H, Ar), 7.39 (d, J = 7.3 Hz, 1H, Ar), 7.53 (d, J = 16.5 Hz, 1H, H-

alkene). 
13C-NMR (CDCl3), δ :  30.42, 32.74, 44.16 (CH2, C-1’’, C-2’’, C-3’’), 55.41 (CH3, C-4”, C-

5”), 99.79, 101.17, 104.64, 108.85, 117.49, 121.95, 127.70, 128.38, 129.46, (CH, C-1, C-2, 

C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’), 127.12, 129.90, 136.34, 140.00, 161.02 (C, C-3, 

C-7, C-8, C-1’ C-3’, C-5’). 
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1-(3-Bromopropyl)-4-styryl-1H-indole (113): 

(C19H18BrN; M.W. 340.26) 

 

 

 

 

 

 

 

Reagent: 4-Styryl-1H-indole (108) (0.75 g, 3.4 mmol) 

T.L.C. system: petroleum ether-EtOAc 3:1 v/v, Rf: 0.73. 

Flash column chromatography: petroleum ether-diethyl ether 100:0 v/v increasing to 99:1 v/v 

Yield: 0.58 g (50%) as a yellow sticky oil. 

HRMS (EI): Calculated mass: 341.07791 [M+H]+, Measured mass: 341.07795 [M+H]+ 
1H-NMR (CDCl3), δ : 2.36-2.43 (m, 2H, H-2’’), 3.35 (t, J = 6.1 Hz, 2H, H-1’’), 4.4 (t, J = 

6.4 Hz, 2H, H-3’’), 6.83 (d, J = 3.0 Hz, 1H, H-indole), 7.25 (d, J = 3.0 Hz, 1H, H-indole),  

7.26-7.36 (m, 4H, Ar, H-alkene), 7.39-7.43 (m, 3H, Ar), 7.55 (d, J = 16.3 Hz, 1H, H-alkene), 

7.61 (d, J = 7.3 Hz, 2 H, H-2’, H-6’). 
13C-NMR (CDCl3), δ : 30.44, 32.74, 44.16 (CH2, C-1’’, C-2’’, C-3’’), 100.17, 108.72, 

117.31, 121.96, 126.51, 127.12, 127.43, 128.33, 128.68, 129.50 (CH, C-1, C-2, C-4, C-5, C-

6, C-9, C-10, C-2’, C-3’, C-4’, C-5’ C-6’), 129.93 , 130.11, 136.34, 137.95 (C, C-3, C-7, C-8, 

C-1’). 

 

4-(3,5-Dimethoxystyryl)-1-(4-bromobutyl)-1H-indole (114): 

(C22H24BrNO2; M.W. 414.33) 
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Reagent: 4-(3,5-Dimethoxystyryl)-1H-indole (107) (0.95 g, 3.4 mmol)  

T.L.C. system: petroleum ether-EtOAc 3:1 v/v, Rf: 0.55. 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 90:10 v/v 

Yield: 0.97 g (69%) as a thick yellow oil. 

HRMS (EI): Calculated mass: 413.0985 [M]+, 414.1063 [M+H]+, Measured mass: 413.0990 

[M]+, 414.1063 [M+H]+ 
1H-NMR (CDCl3), δ : 1.86-1.92 (m, 2H, CH2), 2.03-2.09 (m, 2H, CH2), 3.40 (t, J = 6.6 Hz, 

2H, H-1’’), 3.88 (s, 6H, OCH3, H-5”, H-6”), 4.21 (t, J = 6.8 Hz, 2H, H-4’’), 6.44 (t, J = 2.2 

Hz, 1H, H-4’), 6.77 (d, J = 2.2 Hz, 2H, H-2’, H-6’), 6.82 (d, J =3.2 Hz, 1H, H-indole), 7.18 

(d, J =3.2 Hz, 1H, H-indole), 7.22-7.31 (m, 2H, H-alkene, H-5), 7.30 (d, J = 8.0 Hz, 1H, Ar), 

7.38 (d, J = 7.3 Hz, 1 H, Ar), 7.51 (d, J = 16.4 Hz, 1H, H-alkene). 
13C-NMR (CDCl3), δ :  28.85, 29.97, 32.91, 45.67 (CH2, C-1’’, C-2’’, C-3’’, C-4’’), 55.41 

(CH3, C-5”, C-6”), 99.77, 99.88, 104.63, 108.85, 117.38, 121.82, 127.79, 127.96, 129.36 

(CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’), 127.03, 129.82,136.42, 140.04, 

161.01 (C, C-3, C-7, C-8, C-1’, C-3’, C-5’). 

 

1-(4-Bromobutyl)-4-styryl-1H-indole (115): 

(C20H20BrN; M.W. 354.28) 
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Reagent: 4-Styryl-1H-indole (108) (1.70 g, 7.7 mmol) 

T.L.C. system: petroleum ether-EtOAc 3:1 v/v, Rf: 0.73. 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 90:10 v/v 

Yield: 2.37 g (86%) as a thick yellow oil.  

HRMS (EI): Calculated mass: 354.0852 [M+H]+, Measured mass: 354.0857 [M+H]+ 
1H-NMR (CDCl3), δ : 1.86-1.92 (m, 2H, CH2), 2.03-2.09 (m, 2H, CH2), 3.41 (t, J = 6.5 Hz, 

2H, H-1’’), 4.21 (t, J = 6.7 Hz, 2H, H-4’’), 6.85 (d, J = 3.3 Hz, 1H, H-indole), 7.19 (d, J = 3.3 

Hz, 1H, H-indole), 7.30-7.37 (m, 4H, Ar, H-alkene), 7.42-7.45 (m, 3H, Ar), 7.58 (d, J = 16.2 

Hz, 1H, H-alkene), 7.64 (d, J = 7.4 Hz, 2 H, H-2’, H-6’). 
13C-NMR (CDCl3), δ : 28.87, 29.99, 32.98, 45.68  (CH2, C-1’’, C-2’’, C-3’’, C-4’’), 99.99, 

108.78, 117.24, 121.87, 126.53, 127.07, 127.54, 128.14, 128.71, 129.42 (CH, C-1, C-2, C-4, 

C-5, C-6, C-9, C-10, C-2’, C-3’, C-4’, C-5’ C-6’), 127.43, 130.05, 136.45, 138.02 (C, C-3, C-

7, C-8, C-1’). 

 

1-(3-Bromopropyl)-5-styryl-1H-indole (116): 

(C19H18BrN; M.W. 340.256) 

 

 

 

 

 

Reagent: 5-Styryl-1H-indole (109) (0.4 g, 1.8 mmol) 
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T.L.C. system: petroleum ether-EtOAc 9:1 v/v, Rf: 0.50 

Flash column chromatography: petroleum ether-diethylether 100:0 v/v increasing to 99:1 v/v 

Yield: 0.25 g (46%) as a white solid. 

Melting Point: 78-80 ˚C 

Microanalysis: Calculated for C19H18BrN (340.256); Theoretical: %C = 67.07, %H = 5.33, 

%N = 4.11; Found: %C = 66.73, %H = 5.75, %N = 4.08. 
1H-NMR (CDCl3), δ : 2.34-2.44 (m, 2H, H-2’’), 3.34 (t, J = 6.1 Hz, 2H, H-1’’), 4.36 (t, J = 

6.4 Hz, 2H, H-3’’), 6.54 (d, J = 3.2 Hz, 1H, H-indole), 7.11 (d, J = 16.3 Hz, 1H, H-alkene), 

7.17 (d, J = 3.1 Hz, 1H, H-indole),  7.23-7.30 (m, 2H, Ar, H-alkene), 7.37-7.42 (m, 3H, Ar), 

7.50 (d, J1 = 8.6 Hz, J2 = 1.6 Hz, 1H, Ar), 7.56 (d, J = 7.2 Hz, 2 H, Ar), 7.78 (s, 1H, Ar). 
13C-NMR (CDCl3), δ : 30.42, 32.80, 44.10 (CH2, C-1’’, C-2’’, C-3’’), 102.04, 109.57, 

119.85, 120.39, 126.14, 126.22, 126.98, 128.25, 128.63, 129.96 (CH, C-1, C-2, C-4, C-5, C-

7, C-9, C-10, C-2’, C-3’, C-4’, C-5’ C-6’), 129.10, 129.32, 135.72, 138.04 (C, C-3, C-6, C-8, 

C-1’). 

 

1-(4-Bromobutyl)-5-styryl-1H-indole (117): 

(C20H20BrN; M.W. 354.28) 

 

 

 

 

 

Reagent: 5-Styryl-1H-indole (109) (0.4 g, 1.8 mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v, Rf: 0.44. 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 98:2 v/v 

Yield: 0.53 g (84%) as a yellow wax. 

HRMS (EI): Calculated mass: 354.0852 [M+H]+, Measured mass: 354.0849 [M+H]+ 
1H-NMR (CDCl3), δ : 1.83-1.95 (m, 2H, CH2), 1.99-2.11 (m, 2H, CH2), 3.41 (t, J = 6.6 Hz, 

2H, H-1’’), 4.19 (t, J = 6.9 Hz, 2H, H-4’’), 6.54 (d, J = 3.2 Hz, 1H, H-indole), 7.11 (d, J = 3.2 

Hz, 1H, H-indole), 7.12 (d, J = 16.3 Hz, 1H, H-alkene), 7.24-7.30 (m, 2H, Ar, H-alkene), 
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7.34 (d, J = 8.6 Hz, 1H, Ar), 7.38-7.42  (m, 2H, Ar), 7.9 (dd, J1 = 8.6 Hz, J2 = 1.3 Hz, 1 H, 

Ar), 7.56 (d, J = 7.5 Hz, 2H, Ar), 7.78 (s, 1H, Ar). 
13C-NMR (CDCl3), δ : 28.89, 29.96, 32.92, 45.64  (CH2, C-1’’, C-2’’, C-3’’, C-4’’), 101.83, 

109.54, 119.85, 120.27, 126.03, 126.21, 126.95, 128.22, 128.63, 130.03 (CH, C-1, C-2, C-4, 

C-5, C-7, C-9, C-10, C-2’, C-3’, C-4’, C-5’ C-6’), 129.00, 129.16, 135.80, 138.07 (C, C-3, C-

6, C-8, C-1’). 

 

8.6.3 !General method for the preparation of 1-(3-(1H-imidazol-1-

yl)propyl/butyl)-4/5-(3,5-unsubstituted/substituted styryl)-1H-indole 

 

 

 

 

 

 

 

A suspension of NaH (60% dispersion in mineral oil) (2 equiv.) in dry DMF (7 mL/mmol) 

was stirred and!heated at 60˚C for 5 min. Imidazole (2 equiv.) was added and the reaction 

mixture was heated at 60˚C for 1 h. The reaction mixture was cooled to room temperature 

and the different 4/5-(3,5-unsubstituted/substitutedstyryl)-1-(3-bromopropyl/4-bromobutyl)-

1H-indole (112-117)  (1 equiv.) was added. The reaction mixture was heated at 60˚C 

overnight and then hydrolysed by adding H2O (50 mL/mmol). The aqueous layer was 

extracted with EtOAc (3 x 50 mL/mmol), the organic layers were collected and dried over 

MgSO4. The solvent was then evaporated to dryness and the residue was purified by flash 

column chromatography (petroleum ether-EtOAc 50:50 v/v then DCM-MeOH 100:0 v/v 

increasing to 98:2 v/v) to obtain the pure desired product. 

 

1-(3-(1H-Imidazol-1-yl)propyl)-4-(3,5-dimethoxystyryl)-1H-indole (118) 

(MCC259): 

(C24H25N3O2; M.W. 387.47) 
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Reagent: 4-(3,5-Dimethoxystyryl)-1-(3-bromopropyl)-1H-indole (112) (0.8 g, 1.9 mmol) 

T.L.C. system: petroleum ether-EtOAc 3:1 v/v, Rf: 0.14. 

Yield: 0.56 g (72%) as a yellow-orange glue. 

HRMS (EI): Calculated mass: 388.2020 [M+H]+, Measured mass: 388.2018 [M+H]+ 
1H-NMR (CDCl3), δ : 2.38-2.43 (m, 2H, H-2’’), 3.88 (s, 6H, OCH3, H-4”, H-5”), 3.91 (t, J = 

6.8 Hz, 2H, H-1’’), 4.17 (t, J = 6.7 Hz, 2H, H-3’’), 6.44 (t, J = 2.2 Hz, 1H, H-4’), 6.77 (d, J = 

2.2 Hz, 2H, H-2’, H-6’), 6.85 (d, J = 3.1 Hz, 1H, H-indole), 6.93 (s, 1H, H-imidazole), 7.12 

(d, J = 3.1 Hz, 1H, H-indole), 7.14 (s, 1H, H-imidazole), 7.19-7.26 (m, 3H, H-alkene, Ar), 

7.40 (d, J = 7.3 Hz, 1H, Ar), 7.48 (s, 1H, H-imidazole), 7.51 (d, J = 16.3 Hz, 1H, H-alkene). 
13C-NMR (CDCl3), δ :  31.06, 43.04, 43.88 (CH2, C-1’’, C-2’’, C-3’’), 55.42 (CH3, C-4”, C-

5”), 99.82, 100.59, 104.67, 106.28, 108.64, 117.60, 118.59, 122.18, 127.81, 128.23, 129.63, 

137.22 (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’, C-1#, C-2#, C-3#), 127.52, 

130.04, 136.31, 139.91, 161.03 (C, C-3-, C-7, C-8, C-1’, C-3’, C-5’). 

 

1-(3-(1H-Imidazol-1-yl)propyl)-4-styryl-1H-indole (119) (MCC260): 

(C22H21N3; M.W. 327.42) 
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Reagent: 1-(3-Bromopropyl)-4-styryl-1H-indole (113) (1 g, 2.9 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.31. 

Yield: 0.68 g (72%) as a yellow glue. 

HRMS (EI): Calculated mass: 328.1808 [M+H]+, Measured mass: 328.1807 [M+H]+ 
1H-NMR (CDCl3), δ : 2.36-2.43 (m, 2H, H-2’’), 3.91 (t, J = 7 Hz, 2H, H-1’’), 4.17 (t, J = 6.6 

Hz, 2H, H-3’’), 6.86 (d, J = 3.1 Hz, 1H, H-indole), 6.93 (s, 1H, H-imidazole), 7.12 (d, J = 3.2 

Hz, 1H, H-indole), 7.14 (s, 1H, H-imidazole), 7.19 (d, J =8.4 Hz, 1H, Ar), 7.24-7.34 (m, 3H, 

H-alkene, Ar), 7.39-7.42 (m, 3H, Ar), 7.48 (s, 1H, H-imidazole), 7.54 (d, J = 16.1 Hz, 1H, H-

alkene), 7.61 (d, J =7.4 Hz, 2H, H-2’, H-6’). 
13C-NMR (CDCl3), δ :  31.06, 43.04, 43.87 (CH2, C-1’’, C-2’’, C-3’’), 100.58, 102.47, 

108.52, 117.42, 118.58, 122.19, 126.52, 127.50, 127.76, 128.69, 129.68, 130.06, 137.22 (CH, 

C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-3’, C-4’, C-5’, C-6’, C-1#, C-2#, C-3#), 127.17, 

130.28, 136.32, 137.87 (C, C-3, C-7, C-8, C-1’). 

 

1-(4-(1H-Imidazol-1-yl)butyl)-4-(3,5-dimethoxystyryl)-1H-indole (120) 

(MCC261): 

(C25H27N3O2; M.W. 401.50) 

 

 

 

 

 

 

 

 

Reagent: 4-(3,5-Dimethoxystyryl)-1-(4-bromobutyl)-1H-indole (114) (0.94 g, 2.3 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.48. 

Yield: 0.69 g (75%) as thick yellow oil. 

HRMS (EI): Calculated mass: 402.2176 [M+H]+, Measured mass: 402.2173 [M+H]+ 
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1H-NMR (CDCl3), δ : 1.75-1.81 (m, 2H, CH2), 1.83-1.89 (m, 2H, CH2), 3.85 (t, J = 6.7 Hz, 

2H, H-1’’), 3.87 (s, 6H, OCH3, H-5”, H-6”), , 4.17 (t, J = 6.3 Hz, 2H, H-3’’), 6.44 (t, J = 2.2 

Hz, 1H, H-4’), 6.76 (d, J = 2.2 Hz, 2H, H-2’, H-6’), 6.81 (d, J = 3.3 Hz, 1H, H-indole), 6.83 

(s, 1H, H-imidazole), 7.06 (s, 1H, H-imidazole), 7.13 (d, J = 3.3 Hz, 1H, H-indole), 7.23-7.26 

(m, 3H, H-alkene, Ar), 7.37-7.40 (m, 2H, Ar, H-imidazole), 7.50 (d, J = 16.1 Hz, 1H, H-

alkene). 
13C-NMR (CDCl3), δ :  27.25, 28.63, 45.92, 46.48 (CH2, C-1’’, C-2’’, C-3’’, C-4’’), 55.41 

(CH3, C-5”, C-6”), 99.80, 100.14, 104.64, 108.75, 117.45, 118.64, 121.93, 127.05, 127.68, 

129.47, 129.66, 137.01 (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’, C-1#, C-

2#, C-3#), 127.93, 129.91, 136.36, 139.98, 161.03 (C, C-3, C-7, C-8, C-1’, C-3’, C-5’). 

 

1-(4-(1H-Imidazol-1-yl)butyl)-4-styryl-1H-indole (121) (MCC267): 

(C23H23N3; M.W. 341.44) 

 

 

 

 

 

 

 

Reagent: 1-(4-Bromobutyl)-4-styryl-1H-indole (115) (1.40 g, 3.9 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.4. 

Yield: 0.91 g (67%) as thick yellow oil. 

HRMS (EI): Calculated mass: 342.1965 [M+H]+, Measured mass: 342.1959 [M+H]+ 
1H-NMR (CDCl3), δ : 1.75-1.81 (m, 2H, CH2), 1.82-1.88 (m, 2H, CH2), 3.85 (t, J = 6.9 Hz, 

2H, H-1’’), 4.16 (t, J = 6.5 Hz, 2H, H-3’’), 6.82 (d, J = 3.2 Hz, 1H, H-indole), 7.06 (s, 1H, H-

imidazole), 7.13 (d, J = 3.2 Hz, 1H, H-indole), 7.23-7.33 (m, 5H, H-alkene, Ar, H-imidazole), 

7.38-7.41 (m, 4H, Ar, H-imidazole), 7.58 (d, J = 16.3 Hz, 1H, H-alkene), 7.60 (d, J =7.5 Hz, 

2H, H-2’, H-6’). 
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13C-NMR (CDCl3), δ :  27.25, 28.63, 45.91, 46.48 (CH2, C-1’’, C-2’’, C-3’’, C-4’’), 100.13, 

108.63, 117.26, 118.65, 121.94, 126.49, 127.10, 127.44, 127.88, 128.68, 129.50, 129.67, 

137.02 (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-3’, C-4’, C-5’, C-6’, C-1#, C-2#, C-

3#), 127.05, 130.12, 136.36, 137.92 (C, C-3, C-7, C-8, C-1’). 

 

1-(3-(1H-Imidazol-1-yl)propyl)-5-styryl-1H-indole (122) (MCC293): 

(C22H21N3; M.W. 327.42) 

 

 

 

 

 

Reagent: 1-(3-Bromopropyl)-5-styryl-1H-indole (116) (0.25 g, 0.7 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.61. 

Yield: 0.19 g (83%) as a white solid. 

Melting Point: 116-118 ˚C 

Microanalysis: Calculated for C22H21N3 0.5H2O (336.1814); Theoretical: %C = 78.59, %H = 

6.32, %N = 12.49; Found: %C = 78.56, %H = 6.70, %N = 12.48. 
1H-NMR (CDCl3), δ : 2.33-2.44 (m, 2H, H-2’’), 3.90 (t, J = 6.8 Hz, 2H, H-1’’), 4.13 (t, J = 

6.6 Hz, 2H, H-3’’), 6.57 (d, J = 3.1 Hz, 1H, H-indole), 6.92 (s, 1H, H-imidazole), 7.04 (d, J = 

3.1 Hz, 1H, H-indole), 7.11 (d, J = 16.3 Hz, 1H, H-alkene), 7.15 (s, 1H, H-imidazole), 7.22-

7.28 (m, 3H, Ar, H-alkene, H-imidazole), 7.38-7.40 (m, 2H, Ar), 7.45-7.52 (m, 2H, Ar), 7.56 

(d, J = 7.3 Hz, 2H,  Ar), 7.78 (s, 1H, Ar). 
13C-NMR (CDCl3), δ :  31.09, 42.97, 43.85 (CH2, C-1’’, C-2’’, C-3’’), 102.45, 109.41, 

118.60, 119.95, 120.60, 126.23, 126.33, 127.05, 128.07, 128.65, 130.07, 137.23 (CH, C-1, C-

2, C-4, C-5, C-7, C-9, C-10, C-2’, C-3’, C-4’, C-5’, C-6’, C-1#, C-2#, C-3#), 129.14, 129.50, 

135.66, 137.95  (C, C-3, C-6, C-8, C-1’). 

 

1-(4-(1H-Imidazol-1-yl)butyl)-5-styryl-1H-indole (123) (MCC294): 

(C23H23N3; M.W. 341.44) 
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Reagent: 1-(4-Bromobutyl)-5-styryl-1H-indole (117) (0.53 g, 1.5 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v, Rf: 0.5. 

Yield: 0.91 g (67%) as a white solid. 

Melting Point: 114-116 ˚C 

Microanalysis: Calculated for C23H23N3 0.1H2O (342.99077); Theoretical: %C = 80.54, %H 

= 6.81, %N = 12.25; Found: %C = 80.39, %H = 7.39, %N = 12.20. 
1H-NMR (CDCl3), δ : 1.76-1.82 (m, 2H, CH2), 1.83-1.90 (m, 2H, CH2), 3.86 (t, J = 6.9 Hz, 

2H, H-1’’), 4.15 (t, J = 6.4 Hz, 2H, H-3’’), 6.53 (d, J = 3.1 Hz, 1H, H-indole), 6.84 (s, 1H, H-

imidazole), 7.05 (d, J = 3.1 Hz, 1H, H-indole), 7.07 (s, 1H, H-imidazole), 7.10  (d, J = 16.3 

Hz, 1H, H-alkene), 7.24-7.28 (m, 2H, Ar, H-imidazole), 7.30 (d, J = 8.6 Hz, 1H, Ar), 7.36-

7.42 (m, 3H, Ar, H-alkene), 7.48 (dd, J1 = 8.6 Hz, J2 = 1.5 Hz, 1H,  Ar), 7.55 (d, J = 7.5 Hz, 

2H, Ar), 7.77 (s, 1H, H-imidazole). 
13C-NMR (CDCl3), δ :  27.29, 28.63, 45.89, 46.49 (CH2, C-1’’, C-2’’, C-3’’, C-4’’), 102.00, 

109.45, 118.64, 119.90, 120.37, 126.15, 126.21, 126.99, 128.19, 128.64, 129.72, 129.92, 

137.03 (CH, C-1, C-2, C-4, C-5, C-7, C-9, C-10, C-2’, C-3’, C-4’, C-5’, C-6’, C-1#, C-2#, C-

3#), 129.02, 129.27, 135.71, 138.01 (C, C-3, C-6, C-8, C-1’). 
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9.1  Molecular Modelling Family VII 

Following the promising results obtained for the indole-imidazole family as CYP24A1 

inhibitors, a new indole-sulfonate family was planned in which the imidazole ring has been 

replaced by a sulfonyl group (figure 9.1). The main intent of this replacement was to improve 

the CYP24A1/CYP27B1 selectivity of the indole derivatives basing on the published results 

for compound TS17 (1), as already reported in chapter 7(section 7.1). In fact, this sulfonyl 

derivative was 39-fold more selective for the CYP24A1. 

 

 

 

 

 

 

 

Figure 7.1: The sulfonate derivative published in 2010. 
!

!

!

!
!

 
 

Figure 9.1: The new indole-sulfonate family. 

!

Figure 9.2 shows the docking of the 3,5-dimethoxy indole-sulfonate derivative MCC258. 

The compound sits in the active site and the sulfonyl group is disposed in a favourable 

conformation with the oxygen perpendicular to the haem at an optimal distance for 

interaction (2.2-2.5 Å) between the lone pair electron of the sulfonyl oxygen and the iron. 

The H-bond formation between Gln82 and the 3-methoxy is present. MCC258, from the 

docking studies, appears to be a potential CYP24A1 inhibitor and the presence of the sulfonyl 

group could confer a better selectivity.!
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Figure 9.2: Docking of MCC258. The oxygen of sulfonyl group could interact with the haem iron. 

 

9.2 !Chemistry!

The synthesis of the indole-sulfonate series was achieved through a 4-step synthetic route.  

 

 

 

!

!

!

!

!

!

!

!

!

!

!

!

!
 

Scheme 9.1: Reagents and Conditions: (I) Pd(OAc)2, ToP, Et3N, 110 ˚C, 5h (II) NaH, DMF, 0˚C to r.t, 2h (III) 

LiAlH4, THF, 0°C 1 h then r.t. 4h (IV) TsCl, DMAP, CH2Cl2, pyridine, r.t., 24h. 

Final Compound R1 R2 

MCC258 (129) OCH3 OCH3 

MCC257 (130) H H 
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9.2.1 Preparation of 3-(4-(3,5-unsubstituted/substituted-styryl)-1H-indol-1-

yl)propionate derivatives 

!

!

!

!

 

 
!

!

Scheme 9.2: Addition of the ethyl propionate lateral chain. 

 

After the two different styryl-indole derivatives (107 and 108) were obtained, using the Heck 

reaction method previously reported, the lateral chain was added following the procedure 

reported before for the synthesis of the imidazole-indole series. In this case, ethyl-3-

bromopropionate (124) was used instead of the di-bromoalkyl derivatives in order to obtain 

the ethyl 3-(4-(3,5-dimethoxystyryl)-1H-indol-1-yl)proponate (125) and the 3-(4-styryl-indol-

1-yl)-propionic acid ethyl ester (126).(2) 

 

9.2.2 Preparation of 3-(4-(3,5-substituted/unsubstitutedstyryl)-1H-indol-1-

yl)propan-1-ol derivatives 

 

In order to reduce the ester compounds 125 and 126 to alcohol derivatives, lithium 

aluminium hydride (LiAlH4) was used as the reducing agent. A solution of ester derivative in 

dry THF under nitrogen atmosphere was cooled at 0˚C, LiAlH4 (1 M in THF) was added 

drop-wise and the reaction stirred for 4 h at room temperature.(3) After the work up and flash 

column chromatography purification, compounds 127 and compounds 128 were obtained as a 

wax. The formation of the products was confirmed by 1H-NMR that showed the 

disappearance of –CH3 and –CH2 (at 1.26 ppm and at 4.18 ppm) of the ethyl ester of the two 

Product R1 R2 YIELD 

125 OCH3 OCH3 53% 

126 H H 60% 



Family VII and VIII: Indole-Sulfonate and Indole-Sulfonamide 

~ 231 ~!
!

starting materials and the presence of a new broad signal approximately at 1.4 ppm indicating 

the presence of a –OH group. 

 

 

 

 

 

 

 
 

 

Scheme 9.3: Preparation of compound 127 and 128. 
 

The reaction mechanism is shown in scheme 9.4.(4) Lithium aluminium hydride is a powerful 

reducing agent and quickly attacks the carbonyl group of our ester forming a tetrahedral 

intermediate (a). This intermediate collapses giving an aldehyde (b) which is more reactive 

than the ester starting material, so a second reaction with LiAlH4 takes place (c and d) and the 

ester is reduced into an alcohol (e).  
 
 
 
 
 
 

Scheme 9.4: Reduction of ester to alcohol. 

 

9.2.3 Preparation of toluene-sulfonic acid 3-{4[(3,5-

substituted/unsubstituted)-styryl]-indol-1-yl}-propyl ester derivatives 

 

 

 

 

 

Product R1 R2 YIELD 

127 OCH3 OCH3 48% 

128 H H 20% 
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Scheme 9.5: Synthesis of the indole-sulfonate compounds. 

 

The final compounds 129 (MCC258) and 130 (MCC257) were easily prepared by 

sulfonylation with tosyl chloride. A cooled solution of our alcohol derivatives, 4-

dimethylaminopyridine (DMAP) and pyridine in DCM were added, followed by tosyl 

chloride and left stirring for 24 h at room temperature.(5) After a basic/acid work up in order 

to remove all the formed salt and a column chromatography purification, the two pure final 

products were obtained as yellow-orange glues in a moderate yield. 

The reaction is a common nucleophilic substitution in which the electron lone pair of OH 

attacks the sulphur with the exit of chlorine as leaving group. The pyridine was used as a base 

and has a triple function: scavenging any acid generated during the reaction, preventing 

DMAP from being protonated and acting as a catalyst in the reaction. The DMAP was used 

as a useful nucleophilic catalyst and first it reacts with the sulphur of TsCl to generate a 

sulfanylpyridinium-anion ion-pair intermediate (scheme 9.6 a). This is followed by attack of 

the alcohol to the intermediate to generate the product and to regenerate DMAP (b). As 

mentioned before, the pyridine also has a catalytic function but DMAP shows a higher 

potency due to the improved delocalization of the positive charge on the sulfanylpyridinium 

intermediate via the +R effect of the 4-N-methyl group.(6) 

 
 

 

 

 

 

Product R1 R2 YIELD 

129 (MCC258) OCH3 OCH3 50% 

130 (MCC257) H H 53% 
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Scheme 9.6: Catalytic cycle of DMAP. 

 

9.3  CYP24A1/CYP27B1 enzymatic assay. 

 
The CYP24A1 enzymatic assay of these two derivatives were performed following the 

methodology previously described. The results are reported below together with the reference 

value for ketoconazole (KTZ) and our best compound MCC204 (table 9.1). 

 

 

 

 

 

 

Table 9.1: CYP24A1 enzymatic assay results. 

 

The sulfonyl derivatives displayed a significant reduction of the CYP24A1 inhibitory activity 

if compared with MCC204 and ketoconazole. MCC257, the unsubstituted derivative, 

displayed an almost 2-fold greater inhibitory activity than the dimethoxy derivative 

MCC258. The CYP27B1 assay was not performed due to the poor CYP24A1 inhibitory 

activity. 

 
9.4  Discussion  

 

 CYP24A1 CYP27B1 

Name IC50 (µM) Ki (µM) IC50 (µM) Ki (µM) 

MCC257 9.0 0.64 ± 0.009 - - 

MCC258 16.9 1.19 ± 0.43 - - 

MCC204 0.11 0.0078 ± 0.0008 0.15 0.026 ± 0.002 

KTZ 0.47 0.035 ± 0.005 - 0.058 ± 0.010 
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Replacement of the imidazole ring with a sulfonyl moiety has caused a significant loss of 

activity in these indole derivatives. The enzymatic data confirmed, as already noticed for the 

alkyl-sulfonate family (family V), the fundamental role of the imidazole for the inhibitory 

activity and the weakness of the Fe-sulfonyl interaction if compared with the Fe-nitrogen one. 

These results are controversial when compared to those reported for the compound TS17. As 

mentioned before, this sulfonyl vitamin D analogue showed a Ki in the CYP24A1 inhibition 

assay similar to the Ki of the imidazole derivative VIMI (see section 7.1). Considering our 

results we can assume that the activity of those vitamin D derivatives is almost totally 

affected by their vitamin D-like structure with only a small contribution from the lateral 

substituent (sulfonyl, imidazole, et.). Comparing the enzymatic results of this indole-

sulfonate family with the alkyl-sulfonate family data we can consider also the importance of 

the general structural scaffold of the compound for the inhibitory activity. In fact, even if in 

both the series the replacement of the imidazole caused a significant decrease of activity, the 

alkyl derivatives were more potent inhibitors showing an activity almost 2-3 fold higher (see 

section 7.3) making the styryl-benzene scaffold important for the CYP24A1 inhibitory 

activity. Moreover, from this small family the presence of the substituent on the aromatic ring 

causes a decrease of activity and this is in contrast with the results of our previous families. 
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9.5  Bond Modification Family VIII 

The poor activity obtained for the indole-sulfonate could also be a consequence of the 

possible instability in the enzymatic assay environment of the sulfonate bond. The sulfonyl 

moiety is an excellent leaving group and can be easily displaced by different nucleophilic 

group such as water (7), therefore in order to verify if this problem influenced the assay of our 

previous family, a new series was planned in which the sulfonate bond was replaced by a 

more stable sulfonamide (figure 9.3). Compounds with 3 and 4-carbon lateral chain and the 

usual 3,5-dimethoxy and unsubstituted aryl group were prepared. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.3: The more stable sulfonamide family. 
!

This bond modification would not affect the potential CYP24A1inhibitory activity because 

the sulfonamide oxygen has a lone pair electrons available for interaction with the haem iron. 

 

9.6  Chemistry!

A three-step synthetic route was planned for the indole-sulfonamide series and is reported 

below (scheme 9.7). The Heck reaction and the nucleophilic substitution, as reported in 

section 8.2 for the indole-imidazole preparation, using the dibromopropane (110) or the 1,4-

dibromobutane (111) gave the 4-(3,5-unsubstituted/substitutedstyryl)-1-(3-bromopropyl/4-

bromobutyl)-1H-indole derivatives (112-115) used as starting material for the preparation of 

this family. 
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Scheme 9.7: Reagents and Conditions: (I) NaN3, DMF, r.t. 5h (II) (a) PPh3, THF, r.t., 1h, (b) H2O, 60 °C, 2h. 

(III) TsCl, Et3N, DCM, 0˚C, 30 min. 

 

9.6.1 Preparation of 1-(3/4-azido-propyl/butyl)-4-(3,5-

unsubstituted/substituted styryl)-1H-indole derivatives 

A common method for the preparation of primary amines from alkyl halides is the 

displacement of halide ions with azide followed by reduction of the resulting organic azide. 

The indole-bromopropyl (112/113) and the indole-bromobutyl (114/115) derivatives were 

reacted with sodium azide in DMF for 5 h at room temperature (8), and after work up the pure 

compounds 131-134 were obtained as oils in a good yield. 

 

Final Compound R1 R2 n 

MCC255 (139) OCH3 OCH3 3 

MCC256 (140) H H 3 

MCC253 (141) OCH3 OCH3 4 

MCC254 (142) H H 4 
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Scheme 9.8: Conversion of alkyl bromide to alkyl azide. 
 

The azide ion N3
- is a linear tri-atomic species, nucleophilic at both ends and is able to insert 

itself into almost any electrophilic site giving a nucleophilic substitution (scheme 10.3). The 

formed azide reacts only once with the alkyl halides because the product, an alkyl azide, is no 

longer nucleophilic.(9) 

 

 

 

 

 

 
 

Scheme 9.9:  Mechanism of the formation of the azide derivatives. 

!

9.6.2 Preparation of 3-(4-[3,5 unsubstituted/ substituted styryl]-indol-1-yl)-

propyl/butylamine derivatives 

 

Product R1 R2 n YIELD 

131 OCH3 OCH3 3 72% 

132 H H 3 82% 

133 OCH3 OCH3 4 57% 

134 H H 4 86% 
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The reduction of azides is commonly achieved through metal-based hydrogenation, hydride-

based reductions or the Staudinger reaction. For the synthesis of our amine derivatives this 

last method was chosen. The respective azide derivatives (131-134) were dissolved in THF 

and an excess of triphenylphosphine was added. The mixture was stirred at room temperature 

for 1 h until the evolution of nitrogen ceased then water was added and the reaction heated 

for a further 2 h. After work up the amine derivatives (135-138) were obtained as a yellow 

glue.(10,11) 

 

 

 

 

 

 

 

 

Scheme 9.10: Synthesis of the amine derivatives.  

!

The Staudinger reaction is one of the mildest and most selective method to convert azides to 

amines and involves the reaction of azide with triphenylphosphine (scheme 9.11 A) to form 

the corresponding iminophosphorane. The triphenylphosphine goes through a nucleophilic 

addition at the terminal nitrogen atom of the azide and elimination of nitrogen to form the 

iminophosphorane. This intermediate is then hydrolysed (scheme 9.11 B), by adding water, 

to the amine (I) and triphenylphosphine oxide (II). The final amine could also be obtained by 

ammonolysis of the iminophosphorane using ammonium hydroxide.(10,11)  

 

 

 

Product R1 R2 n YIELD 

135 OCH3 OCH3 3 72% 

136 H H 3 77% 

137 OCH3 OCH3 4 79% 

138 H H 4 60% 
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Scheme 9.11: Proposed Staudinger reaction mechanism.  

 

9.6.3 Preparation of N-(3-{4-[3,5 unsubstituted/substituted styryl]-indol-1-

yl}-propyl/butyl)-4-methyl-benzenesulfonamide derivatives 

 

 

 

 

 

 

 

 

Scheme 9.12: Synthesis of the indole-sulfonamide compounds. 
 

The synthesis of the final compounds was achieved through a simple nucleophilic 

substitution. The amine derivative and p-toluenesulfonyl chloride (tosyl chloride or TsCl) 

were dissolved in DCM, triethylamine added and the reaction stirred at 0˚C for 30 min.(12) 

The pure products were obtained after column chromatography purification as a white solid 

Final Compound R1 R2 n YIELD 

139 (MCC255) OCH3 OCH3 3 45% 

140 (MCC256) H H 3 39% 

141 (MCC253) OCH3 OCH3 4 20% 

142 (MCC254) H H 4 33% 
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in the case of propyl derivatives and as a yellow oil for the butyl derivatives. The low yield is 

due to the formation of different side products which interfere with the purification of the 

desired compounds. As mentioned before, the reaction mechanism involves a nucleophilic 

attack by the lone pair of the electron of nitrogen at the sulphur atom with the exit of the 

chloride that acts as a leaving group. 

 

 

 

 

 
 

Scheme 9.13: Formation of the sulfonamidic bond. 

 

9.6.4  Synthesis of (E)-3-(4-styryl-1H-indol-1-yl)propyl benzenesulfinate 

 

 

 

 

 

 

Scheme 9.14: Synthesis of the indole-sulfinatebenzene derivative. 
!

The indole-sulfonamide series and the indole-sulfonate series reported above, present a C-N-

S or a C-O-S (sulfonate) bond at the end of the lateral chain. In order to have a more stable 

sulfinate derivative, compound 144 was synthesised. The synthetic pathway was the same 

used for the indole-imidazole series changing only the last step in which the 1-(3-

bromopropyl)-4-styryl-1H-indole (113) was reacted with benzenesulfinic acid sodium salt 

(143) in DMF at room temperature for 24 h.(13,14) After purification by flash column 

chromatography, compound 144 was obtained as a yellow oil (53% yield). The reaction 

follows the same mechanism shown before for the nucleophilic substitution of the bromine 

with the imidazole ring. In this case the nucleophilic species is the sulfinicbenzene. 

 

N Br

S

O

ONa

+ DMF

r.t., 24 h

N O
S

O

(113) (144)

(143)
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9.7  CYP24A1/CYP27B1 enzymatic assay. 

 

The CYP24A1 enzymatic assay were performed following the methodology previously 

described. The results are reported below together with the reference value for ketoconazole 

(KTZ) and our best compound MCC204 (table 9.2). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 9.2: CYP24A1 enzymatic assay results. 
 

The activity is comparable with (MCC255 and MCC253) or slightly better (MCC256, 

MCC254, MCC161) than the previous indole-sulfonate family (Family VII) but is 

substantially reduced if compared with the ketoconazole standard or MCC204. In this series 

the substitution on the styryl aromatic ring seems to have a negative effect on the activity 

    CYP24A1 CYP27B1 

Name R1 R2 n IC50 (µM) Ki (µM) IC50 (µM) Ki (µM) 

MCC255 OCH3 OCH3 3 10.4 0.73 ± 0.18 - - 

MCC256 H H 3 4.8 0.34 ± 0.02 - - 

MCC253 OCH3 OCH3 4 10.5 0.74 ± 0.03 - - 

MCC254 H H 4 3.3 0.23 ± 0.06 - - 

MCC161 H H 3 7.6 0.54 ± 0.07 - 0.20 

MCC204 - - - 0.11 0.0078 ± 0.0008 0.15 0.026 ± 0.002 

KTZ - - - 0.47 0.035 ± 0.005 0.36 0.058 ± 0.010 

N O
S

O

MCC161
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(MCC255 and MCC253) compared with the unsubstituted derivatives (MCC256 and 

MCC254). The same results were found for the indole-sulfonate family. No substantial 

differences have been seen between the 3 and 4-carbon lateral chain derivatives. The sulfinate 

derivative (MCC161) did not improve the activity. The CYP27B1 assay was not performed 

due to the poor CYP24A1 assay results. 

 

9.8  Results discussion  
 

The replacement of the imidazole resulted in a decrease in inhibitory activity and this result 

was consistent with the previous enzymatic data obtained for the alkyl and indole sulfonate 

families (family V and family VII) underlining the weakness of the interaction between the 

sulfonate group and the haem iron. The use of the more stable sulfonamide instead of the 

sulfonate group (MCC254/MCC256 vs MCC25) gave the desired result with activity 

improved by 2/3 fold. Unfortunately, no other important information could be collected form 

this family and on the contrary conflicting results have been found. In fact, in this family as 

observed for family VI, the presence of the 3,5-dimethoxy on the aromatic ring caused a 

decrease in inhibitory activity and the unsubstituted derivatives are 2/3-fold more active, 

exactly the opposite of what was seen for the other families. The length of the lateral chain 

does not affect the activity whereas it was important in the indole-imidazole family. The 

usual influence of the ClogP is not present for this family and no rationale seems present 

between the lipophilicity of the compound and enzymatic activity.  

 

9.9  Methods  
 

9.9.1 Computational Approaches  

All the computational approaches information is reported in section 2.2.1 chapter 2.  

9.9.2 Molecular Docking 

All the molecular docking information is reported in section 2.2.3 chapter 2. 

9.9.3 CYP24A1 and CYP27B1 inhibition assay 

All the enzymatic assay information is reported in section 3.5.4 chapter 3. 

9.9.4 Chemistry General Information 

All chemistry general information is reported in section 3.5.5 chapter 3. 
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9.10  Experimental 
 

Preparation of compounds 107/108 and 112-115 are reported in chapter 8 section 8.6.1 

and 8.6.2. 

 

9.10.1  General method for the preparation of ethyl 3-(4-(3,5-

unsubstituted/substituted-styryl)-1H-indol-1-yl)propionate 

 

 
 

 

 

 

4-(3,5-Unsubstituted/substituted styryl)-1H-indole (107/108) (1 equiv.) and NaH (60% 

dispersion in mineral oil) (3 equiv.) in dry DMF (4.7 mL/mmol) were cooled to 0˚C using an 

ice bath and stirred for 5 min. Ethyl-3-bromopropionate (124) (3 equiv.) was added to the 

cooled solution then the reaction stirred for 2 h at room temperature. On completion, the 

solvent was evaporated under reduced pressure and the residue was dissolved in DCM (25 

mL/mmol), washed with water (2 x 12 mL/mmol) and dried over MgSO4. The organic layer 

was then evaporated to dryness and the residue was purified by flash column chromatography 

(petroleum ether 100% then DCM 100 %) to obtain the pure product as a yellow oil. 
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3-{4-[2-(3,5-Dimethoxyphenyl)-vinyl]-indol-1-yl}propionic acid ethyl ester 

(125): 

(C23H25NO4; M.W. 379.44) 

 

 

 

 

 

 

 

 

 

Reagent: 4-(3,5-Dimethoxystyryl)-1H-indole (107) (1.20 g, 4.3 mmol) 

T.L.C. system: DCM 100%, Rf: 0.71. 

Yield: 0.85 g (53%) as a yellow oil. 

HRMS (EI): Calculated mass: 380.1856 [M+H]+, Measured mass: 380.1859 [M+H]+ 
1H-NMR (CDCl3), δ : 1.24 (t, J = 7.2 Hz, 3H, H-1’’), 2.86  (t, J = 6.9 Hz, 2H, H-4’’), 3.88 

(s, 6H, OCH3, H-6”, H-7”), 4.15 (q, J = 7.2 Hz, 2H, H-2’’), 4.50 (t, J = 6.9 Hz, 2H, H-5’’), 

6.45 (t, J = 2 Hz, 1H, H-4’), 6.78 (d, J = 2 Hz, 2H, H-2’, H-6’), 6.81 (d, J = 3.1 Hz, 1H, H-

indole), 7.24 (d, J =3.2 Hz, 1H, H-indole), 7.27 (d, J = 7.2 Hz, 1H, Ar), 7.30-7.36 (m, 2H, Ar, 

H-alkene), 7.39 (d, J = 7.2 Hz, 1H, Ar), 7.52 (d, J = 16.3 Hz, 1H, H-alkene), 
13C-NMR (CDCl3), δ : 14.11 (CH3, C-1’’), 35.05, 42.01, 60.95 (CH2, C-2’’, C-4’’, C-5’’), 

55.42 (CH3, C-6”, C-7”), 99.79, 100.19, 104.62, 108.71, 117.48, 121.91, 127.74, 128.35, 

129.37, (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’), 127.13, 129.8, 136.18, 

140.02, 161.03, 171.19 (C, C-3, C-7, C-8, C-1’, C-3’, C-5’, C-3’’). 
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3-(4-Styryl-indol-1-yl)-propionic acid ethyl ester (126): 

(C21H21NO2; M.W. 319.40) 

 

 

 

 

 

 

 

 

 

 

Reagent: 4-Styryl-1H-indole (108) (0.8 g, 3.6 mmol)  

T.L.C. system: DCM 100%, Rf: 0.83. 

Yield: 0.68 g (60%) as thick yellow oil. 

HRMS (EI): Calculated mass: 320.1645 [M+H]+, Measured mass: 320.1648 [M+H]+ 

1H-NMR (CDCl3), δ : 1.26 (t, J =27. Hz, 3H, H-1’’), 2.87  (t, J = 6.9 Hz, 2H, H-4’’), 4.18 (q, 

J = 7.2 Hz, 2H, H-2’’), 4.59 (t, J = 6.9 Hz, 2H, H-5’’), 6.85 (d, J = 3.2 Hz, 1H, H-indole), 

7.26 (d, J = 3.2 Hz, 1H, H-indole), 7.29-7.37 (m, 4H, Ar, H-alkene,), 7.42-7.45 (m, 3H, Ar), 

7.59 (d, J = 16.2 Hz, 1H, H-alkene), 7.64 (d, J = 7.7 Hz, 2H, H-2’, H-6’). 

13C-NMR (CDCl3), δ : 14.11 (CH3, C-1’’), 35.05, 42.01, 60.94 (CH2, C-2’’, C-4’’, C-5’’), 

100.20, 101.31, 108.57, 117.30, 117.58, 121.93, 126.50, 127.16, 127.41, 128.20, 128.68, 

129.42 (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-3’, C-4’, C-5’, C-6’), 127.14, 

130.06, 136.18, 137.97, 171.19 (C,C-3, C-7, C-8, C-1’, C-3’’). 
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9.10.2  General method for the preparation of 3-(4-(3,5-

substituted/unsubstituted-styryl)-1H-indol-1-yl)propan-1-ol 

 

 

 

 

 

 

 

A solution of different 3-(4-(3,5-unsubstituted/substituted-styryl)-1H-indol-1-yl)propionate 

(125/126)  (1 equiv.) in dry THF (6 mL/mmol) under nitrogen atmosphere was cooled to 0˚C. 

LiAlH4 (1M solution in THF) (4 equiv.) was added dropwise via syringe. The yellow reaction 

mixture was stirred at 0˚C for 1 h, then at room temperature for 4 h. The reaction was 

quenched by the addition of EtOAc (35 mL/mmol), the organic layer was washed with H2O 

(3 x 25 mL/mmol), dried over MgSO4, and evaporated to dryness. The pure product was 

obtained after flash column chromatography purification as a wax. 
 

3-{4-[2-(3,5-Dimethoxyphenyl)-vinyl]-indol-1-yl}-propan-1-ol (127): 

(C21H23NO3; M.W. 337.41) 

 

 

 

 

 

 

 

 

Reagent: 3-{4-[2-(3,5-Dimethoxy-phenyl)-vinyl]-indol-1-yl}propionic acid ethyl ester (125) 

(0.8 g, 2.1 mmol) 
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T.L.C. system: DCM 100%, Rf: 0.20. 

Flash column chromatography: DCM-MeOH 100:0 v/v increasing to 98:2 v/v  

Yield: 0.34 g (48%) as a brownish wax. 

HRMS (EI): Calculated mass: 338.1751 [M+H]+, Measured mass: 338.1755 [M+H]+ 
1H-NMR (CDCl3), δ : 1.65 (b.s., 1H, -CH2OH), 2.10 (m, 2H, H-2’’), 3.63 (t, J = 5.9 Hz, 2H, 

H-1’’),  3.88 (s, 6H, OCH3, H-4”, H-5”), , 4.33 (t, J = 6.7 Hz, 2H, H-3’’), 6.44 (t, J = 2.1 Hz, 

1H, H-4’), 6.77 (d, J = 2.1 Hz, 2H, H-2’, H-6’), 6.81 (d, J = 3.1 Hz, 1H, H-indole), 7.22-7.27 

(m, 3H, H-alkene, H-indole, Ar), 7.34-7.38 (m, 2H, Ar), 7.52 (d, J = 16.4 Hz, 1H, H-alkene). 
13C-NMR (CDCl3), δ : 35.69, 42.81, 59.46 (CH2, C-1’’, C-2’’, C-3’’), 55.41 (CH3, C-4”, C-

5”), 99.69, 99.75, 104.62, 108.93, 117.35, 121.74, 127.74, 128.35, 129.28, (CH, C-1, C-2, C-

4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’), 126.98, 129.73, 136.52, 140.08, 161.01 (C, C-3, C-

7, C-8, C-1’,C-3’, C-5’). 
 

3-(4-Styryl-indol-1-yl)-propan-1-ol (128): 

(C19H19NO; M.W. 277.36) 

 

 

 

 

 

 

 

Reagent: 3-(4-Styryl-indol-1-yl)-propionic acid ethyl ester (126) (0.6 g, 2.0 mmol)  

T.L.C. system: DCM 100%, Rf: 0.28. 

Flash column chromatography: DCM-MeOH 100% 

Yield: 0.11 g (20%) as a yellow-orange wax. 

HRMS (EI): Calculated mass: 278.1539 [M+H]+, Measured mass: 278.1539 [M+H]+ 
1H-NMR (CDCl3), δ : 1.37 (b.s., 1H, CH2 -OH), 2.08-2.13 (m, 2H, H-2’’), 3.64 (t, J = 5.8 

Hz, 2H, H-1’’), 4.33 (t, J = 6.8 Hz, 2H, H-3’’), 6.83 (d, J = 3.2 Hz, 1H, H-indole), 7.23 (d, J 
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=3.2 Hz, 1H, H-indole), 7.24-7.31 (m, 3H, Ar, H-alkene,), 7.35 (d, J =7.4 Hz, 1H, Ar), 7.39-

7.42 (m, 3H, Ar), 7.56 (d, J = 16.5 Hz, 1H, H-alkene), 7.61 (d, J = 7.3 Hz, 2H, H-2’, H-6’). 
13C-NMR (CDCl3), δ : 32.69, 42.80, 59.50 (CH2, C-1’’, C-2’’, C-3’’), 99.84, 108.84, 117.16, 

121.77, 126.49, 127.29, 127.37, 128.29, 128.67, 129.34 (CH, C-1, C-2, C-4, C-5, C-6, C-9, 

C-10, C-2’, C-3’, C-4’, C-5’ C-6’), 127.00, 129.97, 136.52, 138.02 (C, C-3, C-7, C-8, C-1’). 

 

9.10.3  General method for the preparation of toluene-sulfonic acid 3-

{4[(3,5-substituted/unsubstituted)-styryl]-indol-1-yl}-propyl ester 

 

 

 

 

 

 

 

To a cooled (0˚C) solution of  different (4-(3,5-substituted/unsubstitutedstyryl)-1H-indol-1-

yl)propan-1-ol (127/128) (1 equiv.) and 4-dimethylaminopyridine (0.2 equiv.) in dry DCM (7 

mL/mmol) and pyridine (0.4 mL/mmol) under nitrogen atmosphere was added 4-

toluenesulfonyl chloride (2.2 equiv.) in portions. The reaction was stirred at 0˚C for 10 min 

then stirred for 24 h at room temperature. On completion, the reaction mixture was washed 

with aqueous satured NaHCO3 (50 mL/mmol) and the organic layer was separated. The 

aqueous layer was extracted with DCM (50 mL/mmol) and both organic layers were washed 

with aqueous 1 M HCl (50 mL/mmol). The organic layer was washed with aqueous satured 

NaHCO3 (50 mL/mmol) and then dried over MgSO4. The solvent was evaporated under 

vacuum and the product was isolated by flash column chromatography giving the pure 

desired compound as a glue.  

 

Toluene-4-sulfonic acid 3-{4-[2-(3,5-dimethoxyphenyl)-vinyl]-indol-1-

yl}propyl ester (129) (MCC258): 

(C28H29NO5S; M.W. 491.60) 
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Reagent: 3-{4-[2-(3,5-Dimethoxyphenyl)-vinyl]-indol-1-yl}-propan-1-ol (127) (0.3 g, 0.9 

mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.57. 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 80:20 v/v 

Yield: 0.22 g (50%) as a yellow-orange glue. 

HRMS (EI): Calculated mass: 492.1839 [M+H]+, Measured mass: 492.1831 [M+H]+ 
1H-NMR (CDCl3), δ : 2.02-2.06 (m, 2H, H-2’’), 2.47(s, 3H, H-1#), 3.88 (s, 6H, OCH3, H-4”, 

H-5”), 3.99 (t, J = 5.7 Hz, 2H, H-1’’), 4.26 (t, J = 6.6 Hz, 2H, H-3’’), 6.44 (t, J = 2.2 Hz, 1H, 

H-4’), 6.74 (d, J = 3.1 Hz, 1H, H-indole), 6.76 (d, J = 2.2 Hz, 2H, H-2’, H-6’), 7.04 (d, J = 3.1 

Hz, 1H, H-indole), 7.21-7.24 (m, 3H, H-alkene, Ar), 7.33-7.37 (m, 3H, Ar), 7.48 (d, J = 16.5 

Hz, 1H, H-alkene), 7.78 (d, J = 8.2 Hz, 2H, H-2’’’, H-6’’’). 
13C-NMR (CDCl3), δ : 21.65(CH3, C-1#), 29.46, 42.26, 67.06 (CH2, C-1’’, C-2’’, C-3’’), 

55.41 (CH3, C-4”, C-5”), 99.78, 100.15, 104.65, 108.69, 117.47, 121.94, 127.10, 127.91, 

128.19, 129.44, 129.95 (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’, C-2’’’,C-

3’’’, C-5’’’, C-6’’’), 127.66, 129.86, 132.76, 136.17, 139.97, 145.02, 161.04 (C,C-3, C-7, C-

8, C-3’, C-5’, C-1’’’, C-4’’’). 

 

Toluene-4-sulfonic acid 3-(4-styryl-indol-1-yl)-propyl ester (130) 

(MCC130): 

(C26H25NO3S; M.W. 431.55) 
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Reagent: 3-(4-Styryl-indol-1-yl)-propan-1-ol (128) (0.11 g, 0.4 mmol)  

T.L.C. system: petroleum ether-EtOAc 8:2 v/v Rf: 0.48. 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 90:10 v/v  

Yield: 0.09 g (53%) as a yellow glue. 

HRMS (EI): Calculated mass: 432.1628 [M+H]+, Measured mass: 432.1627 [M+H]+ 
1H-NMR (CDCl3), δ : 2.17-2.22 (m, 2H, H-2’’), 2.47(s, 3H, H-1#), 3.99 (t, J = 5.5 Hz, 2H, 

H-1’’), 4.26 (t, J = 6.5 Hz, 2H, H-3’’), 6.74 (d, J = 3.1 Hz, 1H, H-indole), 7.04(d, J = 3.2 Hz, 

1H, H-indole), 7.20-7.24 (m, 2H, Ar), 7.2-7.42 (m, 7H, Ar, H-alkene), 7.52 (d, J = 16.4 Hz, 

1H, H-alkene), 7.60 (d, J = 7.1 Hz, 2H, Ar), 7.78 (d, J = 8.2 Hz, 2H, H-2’’’, H-6’’’). 
13C-NMR (CDCl3), δ : 21.66(CH3, C-1#), 29.46, 42.26, 67.08 (CH2, C-1’’, C-2’’, C-3’’), 

100.14, 108.58, 117.29, 121.96, 126.49, 127.11, 127.45, 127.91, 128.15, 128.69, 129.48, 

129.96 (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-3’, C-4’, C-5’,C-6’, C-3’’’, C-5’’’, 

C-6’’’ ), 127.08, 130.07, 132.74, 136.17, 139.92, 145.03(C, C-3, C-7, C-8, C-1’, C-1’’’, C-

4’’’). 
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9.10.4  General method for the preparation of 1-(3/4-azido-propyl/butyl)-4-

(3,5-unsubstituted/substituted styryl)-1H-indole!

 
 
 

 

 

 
 

 

Sodium azide (1.5 equiv.) was added to a solution of different 4-(3,5-

unsubstituted/substituted styryl)-1-(3-bromopropyl/4-bromobutyl)-1H-indole (112-115) (1 

equiv.) in DMF (1.1 mL/mmol). The resulting green reaction mixture was stirred at room 

temperature for 5 h. H2O (10 mL/mmol) was added to the solution and the aqueous layer was 

extracted with EtOAc (3 x 10 mL/mmol). The combined organic phase was washed with 

brine (15 mL/mmol), dried over MgSO4 and evaporated in vacuo to give the pure product as 

glue. 

 

1-(3-Azidopropyl)-4-[2-(3,5-dimethoxyphenyl)-vinyl]-1H-indole (131): 

(C21H22N4O2; M.W. 362.42) 

 

 

 

 

 

 

 

 

Reagent: 4-(3,5-Dimethoxystyryl)-1-(3-bromopropyl)-1H-indole (112) (0.73 g, 1.8 mmol) 
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T.L.C. system: petroleum ether-EtOAc 8:2 v/v Rf: 0.5. 

Yield: 0.47 g (72%) as an orange glue. 

HRMS (EI): Calculated mass: 363.1816 [M+H]+, Measured mass: 363.1817 [M+H]+ 
1H-NMR (CDCl3), δ : 2.04-2.09 (m, 2H, H-2’’), 3.24 (t, J = 6.2 Hz, 2H, H-1’’), 3.85 (s, 6H, 

OCH3, H-4”, H-5”), 4.23 (t, J = 6.7 Hz, 2H, H-3’’), 6.42 (t, J = 2.2 Hz, 1H, H-4’), 6.75 (d, J = 

2.2 Hz, 2H, H-2’, H-6’), 6.81 (dd, J1 =  2.6 Hz, J2 = 0.8 Hz, 1H, H-indole), 7.16 (d, J =  3.2 

Hz, 1H, H-indole), 7.21-7.29 (m, 3H, H-alkene, Ar), 7.36 (d, J = 7.2 Hz, 1H, Ar), 7.50 (d, J = 

16.2 Hz, 1H, H-alkene). 
13C-NMR (CDCl3), δ :  29.34, 43.16, 48.36 (CH2, C-1’’, C-2’’, C-3’’), 55.37 (CH3, C-4”, C-

5”), 99.76, 100.47, 104.60, 108.82, 117.45, 121.94, 127.69, 128.21, 129.37, (CH, C-1, C-2, 

C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’), 127.04, 129.79 136.37, 139.97, 161.03 (C, C-3, 

C-7, C-8, C-1’, C-3’, C-5’). 
 

1-(3-Azidopropyl)-4-styryl-1H-indole (132): 

(C19H18N4; M.W. 302.37) 

 

 

 

 

 

 

 

Reagent: 1-(3-Bromopropyl)-4-styryl-1H-indole (113) (0.58 g, 1.7 mmol) 

T.L.C. system: petroleum ether-EtOAc 8:2 v/v Rf: 0.5. 

Flash column chromatography: petroleum ether-diethyl ether 100:0 v/v increasing to 95:5 v/v 

Yield: 0.42 g (82%) as an yellow glue. 

HRMS (EI): Calculated mass: 303.1604 [M+H]+, Measured mass: 303.1608 [M+H]+ 
1H-NMR (CDCl3), δ : 2.09-2.15 (m, 2H, H-2’’), 3.29 (t, J = 6.4 Hz, 2H, H-1’’), 4.29 (t, J = 

6.6 Hz, 2H, H-3’’), 6.84 (d, J = 3.1 Hz, 1H, H-indole), 7.19 (d, J = 3.1 Hz, 1H, H-indole), 
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7.26-7.35 (m, 4H, Ar, H-alkene,), 7.39-7.43 (m, 3H, Ar), 7.55 (d, J = 16.4 Hz, 1H, H-alkene), 

7.62 (d, J = 7.3 Hz, 2 H, H-2’, H-6’). 
13C-NMR (CDCl3), δ : 29.38, 43.21, 48.39 (CH2, C-1’’, C-2’’, C-3’’), 100.22, 108.66, 

117.30, 122.00, 126.51, 127.13, 127.43, 128.14, 128.68, 129.50 (CH, C-1, C-2, C-4, C-5, C-

6, C-9, C-10, C-2’, C-3’, C-4’, C-5’ C-6’), 127.08, 130.11, 136.39, 137.96 (C, C-3, C-7, C-8, 

C-1’). 

 
 

1-(4-Azidobutyl)-4-[2-(3,5-dimethoxyphenyl)-vinyl]-1H-indole (133): 

(C22H24N4O2; M.W. 376.45) 

 

 

 

 

 

 

 

Reagent: 4-(3,5-Dimethoxystyryl)-1-(4-bromobutyl)-1H-indole (114) (0.59 g, 1.4 mmol) 

T.L.C. system: petroleum ether-EtOAc 8:2 v/v Rf: 0.34. 

Yield: 0.30 g (57%) as an orange glue. 

HRMS (EI): Calculated mass: 377.1972 [M+H]+, Measured mass: 377.1975 [M+H]+ 
1H-NMR (CDCl3), δ : 1.59-1.65 (m, 2H, CH2), 1.94-2.00 (m, 2H, CH2), 3.30 (t, J = 6.7 Hz, 

2H, H-1’’), 3.88 (s, 6H, OCH3, H-5”, H-6”), 4.21 (t, J = 6.8 Hz, 2H, H-4’’), 6.44 (t, J = 2.2 

Hz, 1H, H-4’), 6.77 (d, J = 2.2 Hz, 2H, H-2’, H-6’), 6.82 (d, J =3.1 Hz, 1H, H-indole), 7.18 

(d, J =3.3 Hz, 1H, H-indole), 7.23-7.30 (m, 3H, H-alkene, Ar), 7.38 (d, J = 7.1 Hz, 1H, Ar), 

7.51 (d, J = 16.2 Hz, 1H, H-alkene). 
13C-NMR (CDCl3), δ :  26.44, 27.53, 46.00, 51.07 (CH2, C-1’’, C-2’’, C-3’’, C-4’’), 55.41 

(CH3, C-5”, C-6”), 99.76, 99.95, 104.63, 108.84, 117.38, 121.81, 127.79, 127.99, 129.36 

(CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’), 127.03, 129.83, 136.40, 140.04, 

161.01 (C, C-3, C-7, C-8, C-1’, C-3’, C-5’). 
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1-(4-Azidobutyl)-4-styryl-1H-indole (134): 

(C20H20N4; M.W. 316.40) 

 

 

 

 

 

 

 

Reagent: 1-(4-Bromobutyl)-4-styryl-1H-indole (115) (1 g, 2.8 mmol)  

T.L.C. system: petroleum ether-EtOAc 8:2 v/v Rf: 0.57. 

Yield: 0.76 g (86%) as a yellow glue. 

HRMS (EI): Calculated mass: 317.1761 [M+H]+, Measured mass: 317.1764 [M+H]+ 
1H-NMR (CDCl3), δ : 1.58-1.64 (m, 2H, CH2), 1.92-1.98 (m, 2H, CH2), 3.28 (t, J = 6.8 Hz, 

2H, H-1’’), 4.18 (t, J = 6.9 Hz, 2H, H-4’’), 6.85 (d, J = 3.1 Hz, 1H, H-indole), 7.10 (d, J = 3.1 

Hz, 1H, H-indole), 7.26-7.33 (m, 3H, Ar,), 7.35 (d, J = 16.2 Hz, 1H, H-alkene) 7.41-7.44 (m, 

3H, Ar), 7.58 (d, J = 16.2 Hz, 1H, H-alkene), 7.63 (d, J = 7.4 Hz, 2 H, H-2’, H-6’). 
13C-NMR (CDCl3), δ : 28.87, 29.99, 32.98, 45.68  (CH2, C-1’’, C-2’’, C-3’’, C-4’’), 99.32, 

108.88, 117.23, 121.5, 126.53, 127.08, 127.55, 128.14, 128.72, 129.39 (CH, C-1, C-2, C-4, 

C-5, C-6, C-9, C-10, C-2’, C-3’, C-4’, C-5’ C-6’), 127.44, 130.02, 136.44, 138.01 (C, C-3, C-

7, C-8, C-1’). 
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9.10.5  General method for the preparation of 3-(4-[3,5-unsubstituted/ 

substituted styryl]-indol-1-yl)-propyl/butylamine 

 

 

 

 

 

 

 

To a solution of different 1-(3/4-azido-propyl/butyl)-4-(3,5-unsubstituted/substituted styryl)-

1H-indole (131-134) (1 equiv.) in dry THF (3 mL/mmol) was added triphenylphosphine (1.2 

equiv.) and the reaction stirred at room temperature until evolution of nitrogen ceased (about 

1 h). H2O (11 equiv.) was added to the reaction mixture which was heated at 60˚C for 2 h. 

The reaction mixture was concentrated under reduced pressure. The residue was stirred for 20 

min. with aqueous 2 M HCl (10 mL/mmol) and then extracted with DCM (4 x 10 mL/mmol). 

To the aqueous layer was added aqueous 1 M NaOH (25 mL/7mmol) until basic pH. The 

aqueous solution was then extracted with EtOAc (2 x 50 mL/mmol), dried (MgSO4) and the 

solvent removed under reduced pressure to afford the pure product as a glue. 

 

3-{4-[2-(3,5-Dimethoxyphenyl)-vinyl]-indol-1yl}propylamine (135): 

(C21H24N2O2; M.W. 336.43) 
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Reagent: 1-(3-Azidopropyl)-4-[2-(3,5-dimethoxyphenyl)-vinyl]-1H-indole (131) (0.47 g, 1.3 

mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.15. 

Yield: 0.33 g (72%) as a yellow glue. 

HRMS (EI): Calculated mass: 337.1911 [M+H]+, Measured mass: 337.1911 [M+H]+ 
1H-NMR (CDCl3), δ : 2.04-2.09 (m, 2H, H-2’’), 3.24 (b.s., 4H, H-1’’, -NH2), 3.86(s, 6H, 

OCH3, H-4”, H-5”), 4.23 (t, J = 6.7 Hz, 2H, H-3’’), 6.42 (t, J = 2.2 Hz, 1H, H-4’), 6.75 (d, J = 

2.2 Hz, 2H, H-2’, H-6’), 6.81 (dd, J1 =  2.6 Hz, J2 = 0.8 Hz, 1H, H-indole), 7.16 (d, J =  3.2 

Hz, 1H, H-indole), 7.21-7.29 (m, 3H, H-alkene, Ar), 7.36 (d, J = 7.2 Hz, 1H, Ar), 7.51 (d, J = 

16.2 Hz, 1H, H-alkene). 
13C-NMR (CDCl3), δ :  29.34, 43.16, 48.36 (CH2, C-1’’, C-2’’, C-3’’), 55.37 (CH3, C-4”, C-

5”), 99.76, 100.47, 104.60, 108.82, 117.45, 121.94, 127.69, 128.21, 129.37, (CH, C-1, C-2, 

C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’), 127.04, 129.79, 136.37 , 139.97 (C, C-3), 161.03 

(C, C-3, C-7, C-8, C-1’C-3’, C-5’). 

 

3-(4-Styryl-indol-1-yl)-propylamine (136): 

(C19H20N2; M.W. 276.38) 

 

 

 

 

 

 

Reagent: 1-(3-Azidopropyl)-4-styryl-1H-indole (113) (0.40 g, 1.3 mmol)  

T.L.C. system: DCM 100% v Rf: 0.16. 

Yield: 0.27 g (77%) as a yellow glue. 

HRMS (EI): Calculated mass: 277.1701 [M+H]+, Measured mass: 277.1699 [M+H]+ 
1H-NMR (CDCl3), δ : 1.67 (b.s., 2H, -NH2), 1.98-2.05 (m, 2H, H-2’’), 2.75 (t, J = 6.9 Hz,  

2H, H-1’’), 4.27 (t, J = 6.8 Hz, 2H, H-3’’), 6.82 (d, J = 3.0 Hz, 1H, H-indole), 7.21 (d, J = 3.0 
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Hz, 1H, H-indole), 7.23-7.35 (m, 5H, Ar, H-alkene), 7.37-7.43 (m, 3H, Ar), 7.55 (d, J = 16.3 

Hz, 1H, H-alkene), 7.61 (d, J = 7.4 Hz, 2 H, Ar). 
13C-NMR (CDCl3), δ : 33.70, 39.36, 43.99 (CH2, C-1’’, C-2’’, C-3’’), 99.75, 108.85, 117.13, 

121.71, 126.48, 127.31, 127.36, 128.12, 128.56, 129.31 (CH, C-1, C-2, C-4, C-5, C-6, C-9, 

C-10, C-2’, C-3’, C-4’, C-5’ C-6’), 126.99, 129.95, 136.49, 138.03 (C, C-3, C-7, C-8, C-1’). 
 

4-{4-[2-(3,5-Dimethoxyphenyl)-vinyl]-indol-1-yl}butylamine (137): 

(C22H26N2O2; M.W. 350.45) 

 

 

 

 

 

 

 

Reagent: 1-(4-Azidobutyl)-4-[2-(3,5-dimethoxyphenyl)-vinyl]-1H-indole (133) (0.3 g, 0.8 

mmol) 

T.L.C. system: petroleum ether-EtOAc 8:2 v/v Rf: 0.16. 

Yield: 0.22 g (79%) as a yellow glue. 

HRMS (EI): Calculated mass: 351.2067 [M+H]+, Measured mass: 351.2070 [M+H]+ 
1H-NMR (CDCl3), δ : 1.68-1.73 (m, 2H, CH2), 1.88-1.92 (m, 2H, CH2), 3.36 (b.s.,  4H, H-

1’’, -NH2), 3.86 (s, 6H, OCH3, H-5”, H-6”), 4.20-4.28 (m, 2H, H-4’’), 6.42 (t, J = 2.3 Hz, 1H, 

H-4’), 6.74 (d, J = 2.2 Hz, 2H, H-2’, H-6’), 6.76 (d, J = 3.1 Hz, 1H, H-indole), 7.17 (d, J = 3.3 

Hz, 1H, H-indole), 7.23-7.30 (m, 3H, H-alkene, Ar), 7.38 (d, J = 7.1 Hz, 1 H, Ar), 7.51 (d, J = 

16.2 Hz, 1H, H-alkene). 
13C-NMR (CDCl3), δ :  23.76, 28.93, 30.38, 45.96 (CH2, C-1’’, C-2’’, C-3’’, C-4’’), 55.40 

(CH3, C-5”, C-6”), 99.75, 99.83, 104.61, 108.97, 117.34, 121.75, 127.78, 128.17, 12926 (CH, 

C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’), 131.98, 132.06, 133.66, 133.81, 161.00 

(C, C-3, C-7, C-8, C-1’, C-3’, C-5’). 
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4-(4-Styryl-indol-1-yl)-butylamine (138): 

(C20H22N2; M.W. 290.40) 

 

 

 

 

 

 

 

 

Reagent: 1-(4-Azidobutyl)-4-styryl-1H-indole (138) (0.76 g, 2.4 mmol)  

T.L.C. system: DCM 100% v Rf: 0.16. 

Yield: 0.42 g (60%) as a yellow glue. 

HRMS (EI): Calculated mass: 291.1856 [M+H]+, Measured mass: 291.1857 [M+H]+ 

1H-NMR (CDCl3), δ : 1.46-1.52 (m, 2H, CH2), 1.88-1.94 (m, 4H, CH2 ,-NH2), 2.72 (t, J = 

7.0 Hz, 2H, H-1’’), 4.18 (t, J = 6.9 Hz, 2H, H-4’’), 6.81 (d, J = 3.1 Hz, 1H, H-indole), 7.19 (d, 

J = 3.1 Hz, 1H, H-indole), 7.26-7.35 (m, 4H, Ar, H-alkene), 7.44-7.58 (m, 4H, Ar, H-alkene), 

7.61 (d, J = 7.3 Hz, 2 H, H-2’, H-6’). 

13C-NMR (CDCl3), δ : 27.20, 30.99, 41.75, 46.42  (CH2, C-1’’, C-2’’, C-3’’, C-4’’), 99.66, 

108.85, 117.11, 121.67, 126.48, 127.00, 128.08, 128.46, 128.71, 129.28 (CH, C-1, C-2, C-4, 

C-5, C-6, C-9, C-10, C-2’, C-3’, C-4’, C-5’ C-6’), 127.35, 129.93, 136.45, 138.03(C, C-3, C-

7, C-8, C-1’). 
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9.10.6  General method for the preparation of N-(3-{4-[3,5-unsubstituted/ 

substituted-styryl]-indol-1-yl}-propyl/butyl)-4-methyl-

benzenesulfonamide 

 

 

 

 

 

 

4-Toluenesulfonyl chloride (1 equiv.) and the different 3-(4-[3,5-unsubstituted/ substituted 

styryl]-indol-1-yl)-propyl/butylamine (135-138) (1.1 equiv.) were dissolved in  dry DCM (10 

mL/mmol) under nitrogen atmosphere. The mixture was treated dropwise with triethylamine 

(2.2 equiv.) under ice-cooling and then stirred for 30 min at 0˚C. On completion, the reaction 

mixture was washed with aqueous 2 M HCl (2 x 30 mL/mmol) and with brine (25 

mL/mmol). Evaporation of the organic solvent after drying over MgSO4 gave the crude 

compound. The product was isolated by flash column chromatography giving the desired 

compound. 

 

N-(3-{4-[2-(3,5-Dimethoxyphenyl)-vinyl]-indol-1yl}-propyl)-4-methyl-

benzenesulfonamide (139) (MCC255): 

(C28H30N2O4S; M.W. 490.61) 
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Reagent: 3-{4-[2-(3,5-Dimethoxyphenyl)-vinyl]-indol-1-yl}propylamine (135) (0.33 g, 0.9 

mmol) 

T.L.C. system: DCM 100% v Rf: 0.4. 

Flash column chromatography: DCM 100%  

Yield: 0.2 g (45%) as a white solid. 

Melting point: 142-144˚C. 

HRMS (EI): Calculated mass: 491.1999 [M+H]+, Measured mass: 491.1989 [M+H]+ 
1H-NMR (CDCl3), δ : 2.01-2.06 (m, 2H, H-2’’), 2.43 (s, 3H, H-1#), 2.92 (q, J = 6.5 Hz, 2H, 

H-1’’), 3.88 (s, 6H, OCH3, H-4”, H-5”), 4.23 (t, J = 6.6 Hz, 2H, H-3’’), 4.44 (t, J = 6.4 Hz, 

1H, -NH), 6.44 (t, J = 2.2 Hz, 1H, H-4’), 6.76 (d, J = 2.2 Hz, 2H, H-2’, H-6’) 6.79 (d, J = 3.3 

Hz, 1H, H-indole), 7.10(d, J = 3.1 Hz, 1H, H-indole), 7.22 (d, J = 4.4 Hz, 2H, Ar), 7.24 (d, J 

= 16.4 Hz, 1H, H-alkene), 7.28 (d, J = 8.3 Hz, 2H, H-3’’’, H-5’’’), 7.35-7.39(m, 1H, Ar), 

7.50 (d, J = 16.4 Hz, 1H, H-alkene), 7.68 (d, J = 8.3 Hz, 2H, H-2’’’, H-6’’’). 
13C-NMR (CDCl3), δ : 21.52(CH3, C-1#), 30.01, 40.55, 43.31 (CH2, C-1’’, C-2’’, C-3’’), 

55.42 (CH3, C-4”, C-5”), 99.80, 100.16, 104.63, 108.73, 117.44, 121.94, 127.05, 127.69, 

128.19, 129.43, 129.81 (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’, C-2’’’,C-

3’’’, C-5’’’, C-6’’’), 127.66, 129.89, 136.24, 136.48, 139.98, 143.66, 161.02 (C, C-3, C-7, C-

8, C-1’, C-3’, C-5’, C-1’’’, C-4’’’). 

 

4-Methyl-N-[3-(4-styryl-indol-1yl)-propyl]benzenesulfonamide (140) 

(MCC256): 

(C26H26N2O2S; M.W. 430.56) 
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Reagent: 3-(4-Styryl-indol-1-yl)-propylamine (136) (0.27 g, 0.9 mmol) 

T.L.C. system: DCM 100% v Rf: 0.3. 

The crude compound was dissolved in a small amount of EtOAC and then precipitated using 

n-hexane. 

Yield: 0.15 g (39%) as a white solid. 

Melting point: 130-132˚C. 

HRMS (EI): Calculated mass: 431.1788 [M+H]+, Measured mass: 431.1783 [M+H]+ 
1H-NMR (CDCl3), δ : 2.01-2.07 (m, 2H, H-2’’), 2.43 (s, 3H, H-1#), 2.92 (q, J = 6.4 Hz, 2H, 

H-1’’), 4.23 (t, J = 6.6 Hz, 2H, H-3’’), 4.49 (b.s., 1H, -NH), 6.79 (d, J = 3.0 Hz, 1H, H-

indole), 7.15 (d, J = 3.0 Hz, 1H, H-indole), 7.21-7.25 (m, 2H, Ar), 7.27-7.33 (m, 4H, H-

alkene, Ar), 7.37-7.43(m, 3H, Ar), 7.53 (d, J = 16.3 Hz, 1H, H-alkene), 7.61 (d, J = 7.5 Hz, 

2H, Ar), 7.69 (d, J = 8.1 Hz, 2H, H-2’’’, H-6’’’). 
13C-NMR (CDCl3), δ : 21.52 (CH3, C-1#), 30.01, 40.55, 43.32 (CH2, C-1’’, C-2’’, C-3’’), 

100.15, 108.61, 117.26, 121.93, 126.50, 127.06, 127.11, 127.44, 128.14, 128.69, 129.47, 

129.81 (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-3’, C-4’, C-5’, C-6’, C-2’’’,C-3’’’, 

C-5’’’, C-6’’’), 127.66, 130.10, 136.25, 136.49, 137.93, 143.66 (C, C-3, C-7, C-8, C-1’, C-

1’’’, C-4’’’). 

 

N-(4-{4-[2-(3,5-Dimethoxyphenyl)-vinyl]-indol-1yl}-butyl)-4-methyl-

benzenesulfonamide (141) (MCC253): 

(C29H32N2O4S; M.W. 504.64) 
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Reagent: 4-{4-[2-(3,5-Dimethoxyphenyl)-vinyl]-indol-1-yl}butylamine (137) (0.22 g, 0.63 

mmol) 

T.L.C. system: DCM 100% v Rf: 0.24. 

Flash column chromatography: DCM 100%  

Yield: 0.06 g (20%) as a yellow glue. 

HRMS (EI): Calculated mass: 505.2156 [M+H]+, Measured mass: 505.2150 [M+H]+ 
1H-NMR (CDCl3), δ : 1.44-1.50 (m, 2H, CH2), 1.84-1.89 (m, 2H, CH2), 2.42 (s, 3H, H-1#), 

2.92 (dd, J1 = 6.6 Hz, J2 =6.8 Hz, 2H, H-1’’), 3.87 (s, 6H, OCH3, H-5”, H-6”), 4.12 (t, J = 6.6 

Hz, 2H, H-4’’), 4.47 (t, J = 6.4 Hz, 1H, -NH), 6.44 (t, J = 2.1 Hz, 1H, H-4’), 6.76 (d, J = 2.1 

Hz, 2H, H-2’, H-6’),  6.78 (d, J = 3.3 Hz, 1H, H-indole), 7.11(d, J = 3.3 Hz, 1H, H-indole), 

7.22-7.29 (m, 5H, Ar, H-alkene), 7.35-7.37(m, 1H, Ar), 7.50 (d, J = 16.3 Hz, 1H, H-alkene), 

7.71 (d, J = 8.3 Hz, 2H, H-2’’’, H-6’’’). 
13C-NMR (CDCl3), δ: 21.50(CH3, C-1#), 27.08, 27.17, 42.68, 45.85 (CH2, C-1’’, C-2’’, C-

3’’, C-4’’), 55.42 (CH3, C-5”, C-6”), 99.75, 99.80, 104.63, 108.89, 117.35, 121.78, 127.02, 

127.79, 128.03, 129.41, 129.74 (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-4’, C-6’, C-

2’’’,C-3’’’, C-5’’’, C-6’’’), 126.98, 129.89, 136.37, 136.85, 140.02, 143.49(C, C-1’’’), 

161.02 (C, C-3, C-7, C-8, C-1’, C-3’, C-5’, C-1’’’, C-4’’’). 

 

4-Methyl-N-[4-(4-styryl-indol-1yl)-butyl]benzenesulfonamide (142) 

(MCC254): 

 (C27H28N2O2S; M.W. 444.59) 
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Reagent: 4-(4-Styryl-indol-1-yl)-butylamine (138) (0.42 g, 1.4 mmol) 

T.L.C. system: DCM 100% v Rf: 0.4. 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 80:20 v/v 

Yield: 0.21 g (33%) as a yellow glue. 

HRMS (EI): Calculated mass: 445.1944 [M+H]+, Measured mass: 445.1944 [M+H]+ 
1H-NMR (CDCl3), δ :  1.44-1.50 (m, 2H, CH2), 1.84-1.90 (m, 2H, CH2), 2.42 (s, 3H, H-1#), 

2.92 (q, J = 6.7 Hz, 2H, H-1’’), 4.13 (t, J = 6.5Hz, 2H, H-4’’), 4.43 (t, J = 6.3 Hz, 1H, -NH), 

6.79 (d, J = 3.2 Hz, 1H, H-indole), 7.11 (d, J = 3.1 Hz, 1H, H-indole), 7.23 (d, J = 4.4 Hz, 2H, 

Ar), 7.28-7.33 (m, 4H, H-alkene, Ar), 7.36-7.42 (m, 3H, Ar), 7.53 (d, J = 16.3 Hz, 1H, H-

alkene), 7.61 (d, J = 7.4 Hz, 2H, Ar), 7.71 (d, J = 8.2 Hz, 2H, H-2’’’, H-6’’’). 
13C-NMR (CDCl3), δ: 21.50(CH3, C-1#), 27.10, 27.17, 42.69, 45.84 (CH2, C-1’’, C-2’’, C-

3’’, C-4’’), 99.87, 108.75, 117.17, 121.80, 126.49, 127.03, 127.20, 127.41, 127.97, 128.68, 

129.38, 129.74 (CH, C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-3’, C-4’, C-5’, C-6’, C-

2’’’,C-3’’’, C-5’’’, C-6’’’), 126.99, 129.98, 136.38 , 136.86, 137.9, 143.50 (C, C-3, C-7, C-8, 

C-1’, C-1’’’, C-4’’’). 

 

(E)-3-(4-styryl-1H-indol-1-yl)propyl benzenesulfinate (144) (MCC161): 

  (C25H23NO2S; M.W. 401.52) 

 

 

 

 

 

 

 

 

To a solution of 1-(3-bromopropyl)-4-styryl-1H-indole (113) (1 g, 2.9 mmol) in DMF (10 

mL) was added benzenesulfinic acid sodium salt (0.48 g, 2.9 mmol) and the reaction stirred at 

room temperature for 24 h. The reaction mixture was then evaporated in vacuo and the 

residue was dissolved in DCM (100 mL), extracted with H2O (2 x 50 mL) and dried over 
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MgSO4. The organic layer was reduced in vacuo to give an oil which was purified by column 

chromatography (petroleum ether-EtOAc 100:0 v/v increasing to 70:30 v/v) to give the 

product as a yellow oil. 

T.L.C. system: petroleum ether-EtOAc 7:3 v/v Rf: 0.29. 

Yield: 0.61 g (53%). 

HRMS (EI): Calculated mass: 402.1522 [M+H]+, Measured mass: 402.1523 [M+H]+ 
1H-NMR (CDCl3), δ : 2.29-2.34 (m, 2H, H-2’’), 3.01 (t, J = 6.9 Hz, 2H, H-1’’), 4.32 (t, J = 

6.7 Hz, 2H, H-3’’), 6.81 (d, J = 3.2 Hz, 1H, H-indole), 7.15 (d, J = 3.2 Hz, 1H, H-indole), 

7.22-7.23 (m, 2H, Ar), 7.27-7.32 (m, 2H, Ar, H-alkene), 7.38-7.41 (m, 3H, Ar), 7.51-7.55 (m, 

3H, Ar, H-alkene), 7.60 (d, J = 7.5 Hz, 2H, Ar), 7.62-7.65 (m, 1H, Ar), 7.87 (d, J = 8.2 Hz, 

2H, Ar). 
13C-NMR (CDCl3), δ : 44.39, 53.05, 60.37 (CH2, C-1’’, C-2’’, C-3’’), 100.50, 108.60, 

117.38, 122.13, 126.51, 127.10, 127.48, 127.74, 127.91, 127.96, 128.69, 129.55, 133.88 (CH, 

C-1, C-2, C-4, C-5, C-6, C-9, C-10, C-2’, C-3’, C-4’, C-5’,C-6’, C-3’’’, C-4’’’, C-5’’’, C-6’’’ 

), 127.00, 129.39 , 130.11, 136.31, 137.88, 138.92 (C, C-3, C-7, C-8, C-1’, C-1’’’, C-4’’’). 
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10.1 Bond Modification 

The poor activity obtained for the indole-sulfonate and the indole-sulfonamide family was a 

further confirmation of the key role of the imidazole in the interaction with the CYP24A1 

enzyme. As already done for family I, the attention has then focused on the lower part of the 

indole derivatives. In chapter 8, it was found that moving the styrene bond position from 4 to 

5 in the indole central core led to a decrease of activity. Here, two different modifications of 

the styryl linker, retaining the 4-position, are described (figure 10.1). 

 

 

 

 

 

 

 
!

Figure 10.1: Modification of the styryl linker.  

 

In family IX the styryl linker will be replaced with the more flexible amidic bond whereas the 

more rigid carbon-carbon bond will be present in family X. 

 

10.2 !Chemistry!

A five-step synthetic pathway for the amido-indole-imidazole family has been planned 

(scheme 10.1) in order to prepare two derivatives using the two reagents benzoylchloride 

(149) and 4-cholorobenzoylchloride (150): 

1 Synthesis of 2,6-dinitro-trans-β-dimethylaminostyrene (first step of the Leimgruber-

Batcho reaction). 

2 Synthesis of 4-aminoindole (second step of the Leimgruber-Batcho reaction). 

3 Synthesis substituted/unsubstituted-N-(1H-indol-4-yl)-benzamide (Coupling reaction). 

4 Synthesis of N-[1-(3-bromopropyl)-1H-indol-4-yl]-substitute/unsubstituted-benzamide 

(Nucleophilic reaction). 

5 Synthesis of substituted/unsubstituted-N-[1-(3-imidazol-1-yl-propyl)-1H-indol-4-yl]-

benzamide (Nucleophilic reaction). 

!
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Scheme 11.1: Reagents and Conditions: (I) DMF, 4h, reflux (II) Pd/C10%, H2, MeOH, r.t., o.n. (III) Et3N, 

DCM, 0˚C to r.t.,  3h (IV) NaH, DMF, 0˚C, 10 min (V) NaH, imidazole, DMF, 60˚C, 48h. 

!

10.2.1 Preparation of 2,6-dinitro-trans-β-dimethylaminostyrene 

 
!

!

!

!
!

 

Scheme 10.2: First step of the Leimgruber-Batcho reaction. 

 

For the new series of compounds, 4-aminoindole (148) was needed as the starting material. 

The reagent is commercially available but the expensive cost suggested synthesising it from 

less expensive starting material. A common and widely used method for the preparation of 

indole containing structures is the Leimgruber–Batcho reaction, a two step method that 

Final Compound R1 

MCC273 (155) H 

MCC275 (156) Cl 
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produces indole derivatives only substituted on the benzene ring from different o-nitrotoluene 

compounds.(1-4) The first step of this reaction is the synthesis of 2,6-dinitro-trans-β-

dimethylaminostyrene (147). 2,6-Dinitrotoluene (145), the o-nitrotoluene derivative chosen 

as starting material in order to obtain the final 4-aminoindole, was dissolved in DMF, the  

N,N-dimethylformamide dimethylacetal added (146) and the reaction refluxed for 4 h. After 

evaporation of DMF the pure product was achieved in a quantitative yield as a reddish-black 

solid.(1) The reaction depends on the mild acidity of a methyl group positioned adjacent to an 

aromatic nitro group that can be deprotonated under the basic conditions. The formed 

carbanion attacks the carbon of N,N-dimethylformamide dimethylacetal forming the enamine 

with the loss of methanol (scheme 10.3). (3) 
 

 

 
!

!

!

!

!

!

!

 
!

Scheme 10.3:  Mechanism of enamine formation: first step of the Leimgruber-Batcho reaction. 

!

10.2.2  Synthesis of 4-aminoindole 

 
 

 

 

 
 

Scheme 10.4: Second step of the Leimgruber-Batcho reaction. 
!

The second step of the Leimgruber-Batcho is characterised by a reduction of both the nitro 

groups to –NH2 (Scheme 10.5 a) followed by cyclisation (b) and elimination of 

dimethylamine (c). The reductive cyclisation can be obtained using different reducing agents 
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such as Raney nickel and hydrazine (5), palladium-on-carbon and hydrogen (3), stannous 

chloride, titanium trichloride in HCl (1-2), etc.  
!

!

!
 

Scheme 10.5: Mechanism of indoleamine  formation: second step of  Leimgruber-Batcho 
 

According to the procedure reported by Ferlin et al. (1) and by Bös et al. (2) titanium (III) 

chloride 10% wt in 20-30% wt HCl was chosen as the reducing agent. In the procedure the 

titanium was used in a large excess (6-8 equivalent more than 2,6-dinitro-trans-β-

dimethylaminostyrene) but due to the elevated cost of this reagent the reaction was attempted 

with only 3 equivalent. After flash column chromatography purification two main products in 

a low quantity were isolated and characterised by 1H-NMR. One product showed all the 

typical signals of an indole substituted in the aromatic ring, but unfortunately no proton 

signal of –NH2 was found (usually around 4.2 ppm as reported) suggesting that the 4-

nitroindole (157) (scheme 10.6) was formed instead of the desired product. Different 

considerations needed to be done for the second isolated product after 1H-NMR and 13C-

NMR spectra examination: 

• The proton signal at approximately 9.75 ppm indicated the presence of an –OH of a 

hydroxylamine: similar compounds were found in the literature and comparison of 
1H-NMR and 13C-NMR confirmed the presence of this type of product.(6) 

• Disappearance of the styrene signal present at 5.38 and 6.48 ppm in the 1H-NMR of 

           starting material indicated reduction of the carbon-carbon double bond. 

• The presence of a quaternary carbon signal at 193.81 ppm in the 13C-NMR typical of 

cyclic ketones was observed. 

• Disappearance of the –CH3 signal present in the starting material indicated an 

elimination of the dimethylamine. 

• A new –CH2 at approximately 4 ppm indicated the formation of a new di-substituted 

carbon. 

• No presence of a –NH2 signal was observed indicating no reduction of the nitro 

groups. 
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Scheme 10.6:  Side products after reaction with titanium trichloride. 
 

After a literature search three different articles were found in which Somei et al. discussed 

the use of TiCl3 as the reducing agent in the Leimgruber-Batcho synthesis. They found that 

the product distribution in this type of reaction is sometimes dependent on the amount of 

TiCl3 used as well as the choice of the solvent employed in the reaction. Comparing the 

amount of TiCl3 used by us and the possible collateral products reported by Somei et al.(7-9), 

an important confirmation that the isolated products were 157 and 158 was obtained and no 

formation of 4-aminoindole was present. Based on this information, the ideal amount of TiCl3 

needed for our purpose is 12 equivalents. Due to the elevated cost of TiCl3, the use of this 

reagent would cost more than buying directly the 4-aminoindole. In order to avoid the use of 

titanium (III) chloride a different reducing agent was chosen. Palladium-on-carbon and 

hydrogen gives a lower yield (usually around 50-60%) in the 4-aminoindole formation than 

the other proposed reducing agent but it is also less expensive. Considering both of these 

aspects it was chosen for the reductive cyclisation. 2,6-Dinitro-trans-β-dimethylaminostyrene 

in DCM was added to a stirred suspension of Pd/C in MeOH, saturated with H2 and left to stir 

for 24 h to give 148 in 62% yield. 
 

 

10.2.3  Synthesis of substituted/unsubstituted-N-(1H-Indol-4-yl)-benzamide 

 

 
 
 
 
 
 
 

 

 
 

Scheme 10.7: Coupling reaction between 4-aminoindole and different benzoylchloride derivatives. 

Product R1 YIELD 

151 H 50% 

152 Cl 55% 
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The formation of the amidic bond was easily achieved by reacting 4-aminoindole (148) with 

different benzoylchloride derivatives (149/150) in DCM in the presence of triethylamine. The 

benzoylchloride derivatives were added dropwise at 0˚C then the reaction was left at room 

temperature for 3 h.(10) The pure products were obtained by precipitation from DCM or from 

diethylether as solids.  

 

10.2.4  Synthesis of N-[1-(3-bromopropyl)-1H-indol-4-yl]-substituted/unsubstituted-

benzamide 
 

The synthesis of amido-indole-bromopropyl derivatives was easily carried out through the 

reaction of dibromopropane (110) with the corresponding indole-benzamide derivatives 

(151/152) in DMF in the presence of NaH as base. The reaction was realised at 0˚C and in the 

presence of a large excess of dibromopropane as reported before for the indole-imidazole 

synthesis (chapter 8).  
 

 

 

 

 

 

 

 

 
 

Scheme 10.8:  Addition of lateral propyl chain. 

 

The low yield of the reaction is due, as reported in chapter 8, to the formation of the 

elimination product in which the lateral bromine leaves forming the terminal alkene 

derivative which has similar chromatography behaviour of the desired product interfering 

with the purification process. 

Product R1 YIELD 

153 H 38% 

154 Cl 42% 



Family IX and X: Amido-Indole-Imidazole and Phenyl-Indole-Imidazole 

~ 274 ~!
!

10.2.5  Synthesis of substituted/unsubstituted-N-[1-(3-imidazol-1-yl-propyl)-

1H-indol-4-yl]benzamide 

 

The final products 155 (MCC273) and 156 (MCC275) were obtained through the sodium 

imidazole salt reaction. The salt formed in situ was reacted with the different starting 

materials at 45˚C for 48 h. The impure solid, obtained after work up, was dissolved in 

chloroform, diethylether was added and the mixture left at 0˚C for 3-5 h. The pure product 

precipitated out as a white solid. The formation of the desired product was confirmed by 1H-

NMR, in which the typical imidazole proton signals were found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 11.9:  Synthesis of the amido-indole-imidazole final compounds. 

 

Different purification methods were tried (column purification, recrystallization, precipitation 

from different solvents) and only the partial precipitation from chloroform after adding 

diethyl ether gave the pure compounds though in a very low yield due to their solubility in 

chloroform.  

 

 

 

Final Compound R1 YIELD 

155 (MCC 273) H 24% 

156 (MCC 275) Cl 10% 
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A three-step synthetic pathway for the phenyl-indole-imidazole family (family X) has been 

planned (scheme 10.10) preparing derivatives with different substituents in the aromatic ring 

in order to see the influence in terms of activity: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 11.10:  Reagents and Conditions: (I) K2CO3, H2O/toluene/EtOH, 80°C, o.n. (II) NaH, DMF, 0˚C, 10 

min (III) NaH, imidazole, DMF, 60˚C, 48h. 

 

10.2.6  Synthesis of 4 substituted/unsubstituted-phenyl-1H-indole 

 

The synthesis of compounds 162-166 was performed using the Suzuki-Miyaura coupling 

reaction, the same reaction used for the preparation of compound 108 (chapter 8).  

The different boronic acid derivatives (157-161) were coupled with the 4-bromoindole (104) 

using tetrakis-(triphenylphosphine)palladium (0) as a catalyst and K2CO3 as a base in a mix 

Final Compound R n 

177/182 (MCC283/284) H 3/4 

178/183 (MCC285/286) 4-Ph 3/4 

179184 (MCC287/288) 3,5-OCH3 3/4!

180/185 (MCC289/290) 4-F 3/4!

181/186 (MCC291/292) 2,4-Cl 3/4!
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of toluene/water/ethanol overnight at 80 °C.(11) The desired products were obtained in 

moderate to good yield. 

 

 

 

 

 

 

 

 

 

 

Scheme 10.11:  Suzuki-Miyaura coupling reaction. 

 

10.2.7  Synthesis of 1-(bromo-propyl/butyl)-4 -substituted/unsubstituted-

phenyl-1H-indole 

 

The alkyl lateral chain was easily added reacting the corresponding phenyl-indole derivative 

(162-166) either with dibromopropane (110) or dibromobutane (111) using the method 

previously reported in DMF in the presence of NaH as base. The products (167-176) were 

obtained after flash column purification as a thick glue. The very low yield for the 

preparation of compound 170, the 4-fluoro 3-carbon lateral chain derivative, was due to 

purification problems. 

 

 

 

 

 

 

 

Product R YIELD 

162 H Quantitative 

163 4-Ph 60% 

164 3,5-OCH3 85%!

165 4-F 84%!

166 2,4-Cl 64%!
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Scheme 10.12:  Alkylation of the phenyl-indole derivatives. 

 

10.2.8  Synthesis of 1-(imidazol-1-yl-propyl/butyl)-4-substituted/unsubstituted-

phenyl-1H-indole 

 

The imidazole ring was introduced using the previously described reaction with NaH, 

imidazole in DMF at 60 °C. The 10 final products (177-186) were obtained after flash 

column chromatography. Also in this case, the formation of the desired product was 

confirmed by 1H-NMR, in which the typical imidazole proton signals were found. Compound 

180, the 4-fluoro 3-carbon lateral chain derivative, gave purification problem as in the 

previous step. 

 

 

 

 

 

 

 

 

Product R n YIELD 

167/172 H 3/4 83%/85% 

168/173 4-Ph 3/4! 47%/68% 

169/174 3,5-OCH3 3/4! 48%/31% 

170/175 4-F 3/4! 13%/80%!

171/176 2,4-Cl 3/4! 25%/42%!
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Scheme 10.13:  Bromine nucleophilic substitution by imidazole 

 

10.3  CYP24A1/CYP27B1 enzymatic assay 
 
The enzymatic assay of these two families were performed following the methodology 

previously described. The results are reported below together with the reference value for 

ketoconazole (KTZ) and our best compound MCC204 (table 11.1). Selectivity of CYP24A1 

over CYP27B1 was calculated. 

 

 

 

 

 

 

 

 

 

 

Final Compound R n YIELD 

177/182 (MCC283/284) H 3/4 32%/18% 

178/183 (MCC285/286) 4-Ph 3/4 50%/74% 

179/184 (MCC287/288) 3,5-OCH3 3/4! 60%/60% 

180/185 (MCC289/290) 4-F 3/4! 31%/78% 

181/186 (MCC291/292) 2,4-Cl 3/4! 72%/66% 
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Table 10.1: Enzymatic assay results. 

   CYP24A1 CYP27B1  

Name R n IC50 (µM) Ki (µM) IC50 (µM) Ki (µM) Sel. 

MCC273 H 3 2.8 0.20 ± 0.05 - - - 

MCC275 Cl 3 2.9 0.20 ± 0.022 - 0.28 1.4 

MCC283 H 3 5.6 0.40 ± 0.08 - 0.22 0.55 

MCC284 H 4 0.77 0.054 ± 0.003 - - - 

MCC285 4-Ph 3 0.35 0.025 ± 0.003 0.073 0.012  

± 0.002 

0.48 

MCC286 4-Ph 4 0.23 0.016 ± 0.001 0.094 0.015  

± 0.003 

0.94 

MCC287 3,5-OCH3 3 2.2 0.16 ± 0.01 - 0.13 0.81 

MCC288 3,5-OCH3 4 1.0 0.072 ± 0.010 - - - 

MCC289 4-F 3 1.7 0.12 ± 0.02 - - - 

MCC290 4-F 4 0.92 0.065 ± 0.010 - 0.051 0.78 

MCC291 2,4-Cl 3 0.41 0.029 ± 0.003 0.16 0.025  

± 0.003 

0.86 

MCC292 2,4-Cl 4 0.30 0.021 ± 0.001 0.063 0.010  

± 0.002 

0.48 

MCC204 - - 0.11 0.0078  

± 0.0008 

0.15 0.026  

± 0.002 

3.3 

KTZ - - 0.47 0.035 ± 0.005 0.36 0.058 ± 

0.010 

1.6 
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The presence of the amidic bond (family IX) results in a loss of activity (MCC273 and 

MCC275) and no improvement in selectivity was found (MCC275). The substituent on the 

ring of family IX does not appear to affect the activity. Variable results were obtained for the 

Phenyl-Indole-Imidazole derivatives (family X) with a decrease (MCC283, MCC287), 

retention (MCC285, MCC291) or slightly improvement (MCC286, MCC292) of activity if 

compared with the standard ketoconazole. No improvements were obtained if compared with 

compound MCC204. As with the previous families, the 4-carbon lateral chain derivatives 

show a more interesting activity than the corresponding 3-carbon molecules (eg: MCC284 vs 

MCC283; MCC286 vs MCC285). The substituents on the aromatic ring do affect the 

enzymatic activity with the results changing with the different type of substituent. All the 

family X compounds were found to be CYP27B1 inhibitors with the 3-carbon lateral chain 

derivatives displaying  a better CYP27B1 inhibition than the 4-carbon compounds (MCC283 

vs MCC284; MCC285 vs MCC286) with the exception of the 2,4-dichloro derivatives in 

which the 4-carbon showed greater CYP27B1 inhibition (MCC292 vs MCC291). A drastic 

diminution of the selectivity characterised family X and only MCC275 showed a selectivity 

comparable to ketoconazole. 

 

10.4 Discussion and Modelling Studies 
 

The enzymatic results obtained for family IX are not surprising and can be easily linked with 

the presence of the amidic bond. In fact, as already found for the sulfonamide derivative 

MCC296 (Chapter 3), due to the flexibility of the bond, MCC273 and MCC275 do not 

occupy the access channel fully (figure 10.2). Moreover, the logP conferred by the amidic 

bond could cause the decrease of activity as hydrophobicity is required for optimal CYP24A1 

inhibitory activity (table 10.2). 
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Figure 10.2: Docking of MCC273. Due to the amidic bond flexibility, the compound is not able to occupy the 

active site in the right conformation. 

 

 

Table 11.2: ClogP of family IX and X. 
 

Regarding family X, a synergetic combination of the ClogP (table 10.2) value and the length 

of the lateral chain seems to influence the activity. The lower activities were found for the 3-

carbon lateral chain derivatives with lower ClogP (MCC283, MCC287 and MCC289) 

whereas the 3-carbon lateral chain derivatives with higher ClogP showed greater inhibitory 

activity (MCC285 and MCC91) and have been found to be more active than the 4-carbon 

Compound ClogP 

MCC273 3.800 

MCC275 4.3920 

MCC283 4.8070 

MCC284 5.2490 

MCC285 6.7670 

MCC286 7.2090 

MCC287 4.8300 

MCC288 5.2720 

MCC289 4.9600 

MCC290 5.4020 

MCC291 6.0260 

MCC292 6.4680 
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derivative with a lower ClogP (MCC284, MCC290 and MCC288). As already reported, the 

ClogP influence is a consequence of the hydrophobic nature of the enzyme active site and 

more lipophilic molecules can  give hydrophobic interaction that stabilise the molecule-

protein complex. The most active compound was MCC286, the 4-carbon biphenyl derivative. 

Besides having a greatest ClogP value, this compound thanks to the 4-carbon lateral chain 

and the presence of the biphenyl moiety occupy entirely the active site and has a H-pi bond 

with Gln82 that can stabilise the compound as noticed in our previous families (figure 10.3). 

Furthermore, MCC286 presents extra H-pi interaction with Thr394 and Thr395 which 

stabilise the compound in the active conformation. Figure 10.4 reports the docking of 

MCC285, the biphenyl derivative with a 3-carbon lateral chain and its slightly reduced 

activity could be a consequence of its inability to entirely occupy the active site and the 

improbability to form any bond with Gln82.  

 

 

 

 

 

 

 

 

 

 

 

Figure 10.3: MCC286 in the active site. Interaction with Gln82, Thr394 and Thr395 are present. 
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Figure 10.4: MCC285 in the active site.  

 

An identical consideration can be done for MCC291 and MCC292, the 2,4-dichloro 

derivatives, with the 4-carbon more active than the 3-carbon as a consequence of the different 

ability to occupy the active site. The greater logP of MCC291 makes the compound more 

active than the 4-carbon lateral chain derivative such as MCC288, MCC290 and MCC284. 

Families IX and X have given a further confirmation about the importance of the styryl linker 

for the activity underlining the necessity to have a rigid bond between the central core and the 

aromatic ring as proved by the loss of activity of the flexible amidic derivatives (family IX) 

and the activity retention of the more rigid carbon-carbon bond (family X). The important 

synergism between the length and the hydrophobic nature of the molecule for the CYP24A1 

inhibitory activity has been proved. Unfortunately, no good results were obtained in terms of 

selectivity with both the families showing the same potency in the CYP24A1 and CYP27B1 

inhibition assay. 
 

10.5 Methods  
 

10.5.1  Computational Approaches  

All the computational information is reported in section 2.2.1 chapter 2.  

 

10.5.2  Molecular Docking 

All the molecular docking information is reported in section 2.2.3 chapter 2. 
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10.5.3  CYP24A1 and CYP27B1 inhibition assay 

All the enzymatic assay information is reported in section 3.5.4 chapter 3. 

 

10.5.4  Chemistry General Information 

All chemistry general information is reported in section 3.5.5 chapter 3. 
!

10.6 Experimental  
 

10.6.1  2,6-Dinitro-trans-β-dimethylaminostyrene (147) (12): 

(C10H11N3O4; M.W. 237.21) 

 

 

 

 

 

A solution of 2,6-dinitrotoluene (145) (1 g, 5.5 mmol) and N,N-dimethylformamide 

dimethylacetal (146) (1.5 mL, 11 mmol) in anhydrous DMF (10 mL) was refluxed for 4 h. 

The mixture was then evaporated to obtain the 2,6-dinitro-trans-β-dimethylamino-styrene 

(147) as a reddish-black solid. 

T.L.C. system: DCM 100% Rf: 0.62. 

Yield: 1.3 g (quantitative). 

Melting Point: 90-92˚C (lit. 90-93˚C) (12) 

1H-NMR (CDCl3), δ : 2.88 (s, 6H, H-3’,H-4’), 5.38 (d, J = 13.6 Hz, 1H, H-alkene), 6.48 (d, J 

= 13.6 Hz, 1H, H-alkene.), 7.12 (t, J = 8.1 Hz, 1H, H-4), 7.74 (t, J = 8.1 Hz, 2H, H-3, H-5). 

13C-NMR (CDCl3), δ : 40.51 (CH3, C-3’, C-4’), 83.51, 122.37, 127.48, 146.56 (CH, C-3, C-

4, C-5, C-1’, C-2’ ), 129.11 (C, C-1), 149.15 (C, C-2, C-6). 

 

10.6.2 !4-Aminoindole (148) (5) : 
(C8H8N2; M.W. 132.16) 
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To a stirred suspension of Pd/C (10 % wt) (2.4 g, 2.2 mmol) in MeOH (50 mL)   was   added   

a   solution   of   2,6-dinitro-trans-β-dimethylamino-styrene (147) (2.6  g, 11  mmol)  in DCM 

(5 mL). The solution was then saturated with H2 gas and stirred for 24 h under H2 at room 

temperature. Afterwards the Pd/C was filtered through a short pad of celite/silica/celite and 

washed with EtOAc  (20 mL). The filtrate was concentrated under vacuum to obtain a red-

brownish oil that was purified by column chromatography (petroleum ether-EtOAc 100:0 v/v 

increasing to 70:30 v/v) to give 4-aminoindole (148) as a pale yellow solid.  

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.56. 

Yield: 0.9 g (62%). 

Melting Point: 102-104˚C (lit. 104-105˚C) (5) 

1H-NMR (CDCl3), δ : 3.95 (b.s., 2H, -NH2), 6.44 (dd, J1 = 7.5 Hz, J2 = 0.6 Hz, 1H, Ar), 6.49-

6.50 (m, 1H, H-1), 6.89 (dt, J1 = 8.1 Hz, J2  = 0.7 Hz, 1H, Ar), 7.05 (t, J = 7.8 Hz, 1H, Ar), 

7.13 (t, J = 2.5 Hz, 1H, H-2), 8.13 (b.s., 1H, -NH). 
13C-NMR (CDCl3), δ : 98.93, 102.20, 104.17, 122.37, 123.21 (CH, C-1, C-2, C-4, C-5, C-6), 

117.36, 136.88, 139.41(C, C-3, C-7, C-8). 

 

10.6.3 !General method for the preparation of substituted/unsubstituted-N-

(1H-indol-4-yl)benzamide 
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To a mixture of 4-aminoindole (148) (1 equiv.) and triethylamine (1.1 equiv.) in DCM (2.6 

mL/mmol), while stirring and cooling on an ice bath, was added dropwise the corresponding 

benzoylchloride derivative (149/150)(1.2 equiv.). The reaction was stirred for 20 min at 0˚C 

then left at room temperature for 3 h. The reaction mixture was diluted with DCM (45 

mL/mmol) and washed with aqueous 2M HCl (2 x 25 mL/mmol). The organic phase was 

dried (MgSO4) and evaporated under reduced pressure. The solid obtained was washed with 

diethylether to achieve the pure desired product as a solid. 

 

N-(1H-Indol-4-yl)-benzamide (151): 

(C15H12N2O; M.W. 236.27) 

 

 

 

 

 

 

 

Reagent: Benzoylchloride (149) (0.75 mL) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.66 

Yield: 0.63 g (50%) as a white solid 

Melting Point: 188-190˚C. 

LRMS (ES): m/z 237.10 (M+H)+, 259.08 (M+Na)+ 
1H-NMR (DMSO-d6), δ : 6.60-6.61 (m, 1H, H-indole), 7.08 (t, J = 7.8 Hz, 1H, Ar), 7.25 (d, 

J = 8.1 Hz,  1H, Ar), 7.32 (t, J = 2.7 Hz, 1H, H-indole), 7.39 (d, J = 7.5 Hz, 1H, Ar), 7.52-

7.55 (m., 2H, Ar), 7.58-7.61 (m., 1H, Ar), 8.02 (d, J = 7.1 Hz, 2H, Ar), 10.06 (b.s., 1H, -NH), 

11.12 (b.s., 1H, -NH-CO). 
13C-NMR (DMSO-d6), δ : 99.91, 108.44, 113.13, 120.83, 124.29, 127.78, 128.28, 131.29 

(CH, C-1, C-2, C-4, C-5, C-6, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’), 122.20, 130.24, 135.14, 

136.81, (C, C-3, C-7, C-8, C-1’’), 165.47(C, C-1’). 
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4-Chloro-N-(1H-indol-4-yl)-benzamide (152): 

(C15H11ClN2O; M.W. 270.71) 

 

 

 

 

 

 

 

 

Reagent: 4-Cholorobenzoylchloride (150) (0.6 mL) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.58 

Yield: 0.56 g (55%) as a white solid 

Melting Point: 168-170˚C. 

LRMS (ES): m/z 271.06 (M+H)+, 293.043 (M+Na)+ 
1H-NMR (DMSO-d6), δ : 6.59 (t, J = 1.8 Hz, 1H, H-indole), 7.08 (t, J = 7.8 Hz, 1H, Ar), 

7.26 (d, J = 8.0 Hz,  1H, Ar), 7.31 (t, J = 2.8 Hz, 1H, H-indole), 7.37 (d, J = 7.6 Hz, 1H, Ar), 

7.61 (d, J = 8.5 Hz, 2H, Ar), 8.04 (d, J = 8.05 Hz, 2H, Ar), 10.15 (b.s., 1H, -NH), 11.14 (b.s., 

1H, -NH-CO). 
13C-NMR (DMSO-d6), δ : 99.89, 108.60, 113.23, 120.82, 124.37, 128.72, 129.75 (CH, C-1, 

C-2, C-4, C-5, C-6, C-2’’, C-3’’, C-5’’, C-6’’), 122.21, 130.00, 133.86, 136.11, 136.82, (C, 

C-3, C-7, C-8, C-1’’, C-4’’), 164.43(C, C-1’). 
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10.6.4  General method for the preparation of N-[1-(3-bromopropyl)-1H-

indol-4-yl]- substituted/unsubstituted-benzamide 
 

 

 

 

 

 

 

 

The substituted/unsubstituted-N-(1H-indol-4-yl)-benzamides (151/152) (1 equiv.) and NaH  

(60% dispersion in mineral oil) (3 equiv.) in dry DMF (4.7 mL/mmol) were cooled to 0˚C 

using an ice bath and stirred for 5 min. Dibromopropane (8 equiv.) was added and the 

reaction mixture was stirred for 10 min. On completion, the solvent was evaporated under 

reduced pressure and the residue was dissolved in DCM (30 mL/mmol), washed with water 

(2 x 15 mL/mmol) and dried over MgSO4. The organic layer was then evaporated to dryness 

and the residue was purified by flash column chromatography (petroleum ether-EtOAc 100:0 

v/v increasing to 80:20 v/v) to obtain the pure product as oils. 
 

N-[1-(3-Bromopropyl)-1H-indol-4-yl]benzamide (153): 

(C18H17BrN2O; M.W. 357.24) 

 

 

 

 

 

 

 

 

Reagent: N-(1H-Indol-4-yl)-benzamide (151) (0.6 g) 
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T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.71 

Yield: 0.34g (38%) as a brownish oil 

LRMS (ES): m/z 357.057 (M+H)+, 379.039 (M+Na)+ 
1H-NMR (DMSO-d6), δ : 2.28-2.33 (m, 2H, H-2’), 3.44 (t, J = 6.5 Hz, 1H, H-1’), 4.32 (t, J = 

6.5 Hz, 2H, H-3’), 6.64 (d, J = 3.2 Hz, 1H, H-indole), 7.16(t, J = 8.0 Hz, 1H, Ar), 7.27 (d, J = 

8.3 Hz, 1H, Ar), 7.35 (d, J = 3.4 Hz, 1H, H-indole), 7.44 (d, J = 7.2 Hz, 1H, Ar), 7.53-7.55 

(m., 2H, Ar), 7.58-7.61 (m., 1H, Ar), 8.01 (d, J = 7.4 Hz, 2H, Ar), 10.09 (b.s., 1H, -NH-CO). 
13C-NMR (DMSO-d6), δ :  32.88, 39.00, 40.00 (CH2, C-1’, C-2’, C-3’), 99.91, 108.44, 

113.13, 120.83, 124.29, 127.78, 128.28, 131.29 (CH, C-1, C-2, C-4, C-5, C-6, C-2’’, C-3’’, 

C-4’’, C-5’’, C-6’’), 122.20, 133.35 135.05, 136.69, (C, C-3, C-7, C-8, C-1’’), 165.56 (C, C-

4’). 
 

N-[1-(3-Bromopropyl)-1H-indol-4-yl]-4-chloro-benzamide (154): 

(C18H16BrClN2O; M.W. 391.69) 

 

 

 

 

 

 

 

 

Reagent: Chloro-N-(1H-indol-4-yl)-benzamide (152) (0.33 g) 

T.L.C. system: petroleum ether-EtOAc 7:3 v/v Rf: 0.67 

Yield: 0.33g (42%) as a grey oil 

LRMS (ES): m/z 391.014 (M+H)+, 414.679 (M+Na)+ 
1H-NMR (CDCl3), δ : 2.21-2.30 (m, 2H, H-2’), 3.33 (t, J = 6.2 Hz, 2H, H-1’), 4.38 (t, J = 6.5 

Hz, 2H, H-3’), 6.42 (d, J = 3.1 Hz, 1H, H-indole), 6.50 (d, J = 3.3 Hz, 1H, H-indole), 7.16-

7.25 (m, 3H, Ar), 7.50 (d, J = 8.5 Hz, 2H, Ar), 8.90 (d, J = 8.5 Hz, 2H, Ar), 8.05 (b.s., 1H, -

NH-CO). 
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13C-NMR (CDCl3), δ : 30.07, 32.62, 44.32 (CH2, C-1’, C-2’, C-3’), 97.50, 99.30, 109.06, 

121.92, 124.37, 127.65, 129.47 (CH, C-1, C-2, C-4, C-5, C-6, C-2’’, C-3’’, C-5’’, C-6’’), 

122.32, 129.97, 133.00, 134.65, 137.11, (C, C-3, C-7, C-8, C-1’’, C-4’’), 164.43(C, C-4’). 

 

10.6.5  General method for the preparation of substituted/unsubstituted-N-

[1-(3-imidazol-1-yl-propyl)-1H-indol-4-yl]benzamide 

 

 
!

!

!

!

!

!

!

!

A suspension of NaH (60% dispersion in mineral oil) (2 equiv.) in dry DMF (5 mL/mmol) 

was stirred and heated at 60 ˚C for 5 min. Imidazole (2 equiv.) was added and the reaction 

mixture was heated at 60 ˚C for 1 h. The reaction mixture was cooled to room temperature 

and the different N-[1-(3-bromopropyl)-1H-indol-4-yl]-substitute/unsubstituted-

benzamides (153/154) (1 equiv.) were added. The reaction mixture was heated at 60˚C for 48 

h and then hydrolysed by adding H2O (50 mL/mmol). The aqueous layer was extracted with 

EtOAc (3 x 50 mL/mmol), the organic layers were collected and dried over MgSO4. The 

solvent was then evaporated to dryness and the residue was dissolved in chloroform. 

Diethylether was added and the mixture left at 0˚C for 3-5 h. The pure product precipitated 

out as a solid.  
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N-[1-(3-Imidazol-1-yl-propyl)-1H-indol-4-yl]benzamide (155) (MCC273): 

(C21H20N4O; M.W. 344.41) 

 

 

 

 

 

 

 

 

Reagent: N-[1-(3-bromopropyl)-1H-indol-4-yl]benzamide (153)  (0.34 g) 

T.L.C. system: DCM:MeOH 9:1 v/v Rf: 0.21 

Yield: 0.080g (24%) as a white solid 

Melting point: 176-178˚C. 

LRMS (ES): m/z 345.170 (M+H)+, 367.161 (M+Na)+ 
1H-NMR (DMSO-d6), δ : 2.22-2.28 (m, 2H, H-2’), 3.99 (t, J = 7.1 Hz, 1H, H-1’), 4.17 (t, J = 

7.2 Hz, 2H, H-3’), 6.64 (d, J = 3.0 Hz, 1H, H-indole), 6.93 (s, 1H, H-imidazole), 7.14 (t, J = 

7.7  Hz, 1H, Ar), 7.21( s, 1H, H-imidazole), 7.25 (d, J = 8.2 Hz, 1H, Ar), 7.34 (d, J = 3.0 Hz, 

1H, H-indole), 7.43 (d, J = 7.5 Hz, 1H, Ar), 7.53-7.62 (m., 3H, Ar), 7.64 (s., 1H, H-

imidazole), 8.01 (d, J = 7.1 Hz, 2H, Ar), 10.09 (b.s., 1H, -NH-CO). 
13C-NMR (DMSO-d6), δ :  31.18, 42.95, 43.60 (CH2, C-1’, C-2’, C-3’), 99.74, 106.61, 

113.42, 119.21, 121.13, 127.52, 127.80, 128.29, 128.57, 131.35, 137.24 (CH, C-1, C-2, C-4, 

C-5, C-6, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-1’’’, C-2’’’, C-3’’’), 122.56, 130.61, 135.07, 

136.53 (C, C-3, C-7, C-8, C-1’’), 165.56 (C, C-4’). 
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4-Chloro-N-[1-(3-imidazol-1-yl-propyl)-1H-indol-4-yl]benzamide (156) 

(MCC275): 

(C21H19ClN4O; M.W. 378.85) 

 

 

 

 

 

 

 

 

 

Reagent: N-[1-(3-bromopropyl)-1H-indol-4-yl]-4-chloro-benzamide (154) (0.33 g) 

T.L.C. system: DCM:MeOH 9:1 v/v Rf: 0.28 

Yield: 0.030g (10%) as a pale yellow solid 

Melting point: 140-142˚C. 

LRMS (ES): m/z 379.130 (M+H)+, 401.116 (M+Na)+ 
1H-NMR (DMSO-d6), δ : 2.22-2.28 (m, 2H, H-2’), 3.98 (t, J = 7.2 Hz, 1H, H-1’), 4.16 (t, J = 

7.3 Hz, 2H, H-3’), 6.62 (d, J = 3.0 Hz, 1H, H-indole), 6.92 (s, 1H, H-imidazole), 7.14 (t, J = 

7.9  Hz, 1H, Ar), 7.21( s, 1H, H-imidazole), 7.25 (d, J = 8.0 Hz, 1H, Ar), 7.34 (d, J = 3.1 Hz, 

1H, H-indole), 7.41 (d, J = 7.6 Hz, 1H, Ar), 7.61 (d, J = 8.4 Hz, 2H, Ar), 7.64 (s., 1H, H-

imidazole), 8.01 (d, J = 8.4 Hz, 2H, Ar), 10.17 (b.s., 1H, -NH-CO). 
13C-NMR (DMSO-d6), δ :  31.17, 42.96, 43.59 (CH2, C-1’, C-2’, C-3’), 99.72, 106.78, 

113.52, 119.21, 121.12, 127.59, 128.35, 128.57, 129.77, 137.24 (CH, C-1, C-2, C-4, C-5, C-

6, C-2’’, C-3’’, C-5’’, C-6’’, C-1’’’, C-2’’’, C-3’’’), 122.58, 130.36, 133.79, 136.17, 136.54 

(C, C-3, C-7, C-8, C-1’’, C-4’’), 164.52  (C, C-4’). 
 

10.6.6  General method for the preparation of 4 substituted/unsubstituted-

phenyl-1H-indole 
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4-Bromoindole (104) (1 equiv.), 4-phenyl boronic acid derivatives (157-161) (2 equiv.), 

Pd(PPh3)4 (10 mol % from indole), and K2CO3 (4 equiv.) were dissolved in  

water:toluene:ethanol  (1:1:3). The reaction mixture was stirred at 80 ºC overnight. After 

completion, the reaction mixture was diluted with EtOAc (30 mL/mmol) and the resulting 

organic layer was separated, followed filtration through celite. The filtrate was concentrated 

under reduced pressure and  purified  by  flash  column  chromatography  to  give the desired 

product. 

 

4-Phenyl-1H-indole (162) (13): 

 (C14H11N; M.W. 193.24) 

 

 

 

 

 

 

Reagent: Phenylboronic acid (157) (1.24 g, 10.2 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.8 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 90:10 v/v 

Yield: quantitative as a green glue 
1H-NMR (CDCl3), δ : 6.77-6.78 (m, 1H, H-indole), 7.24 (dd, J1= 6.5 Hz, J2= 0.7 Hz, 1H, 

Ar), 7.27 (d, J = 3.04 Hz,  1H, H-indole), 7.32 (t, J = 7.3 Hz, 1H, Ar), 7.39-7.43 (m, 2H, Ar), 

7.52 (t, J = 7.5 Hz, 2H, Ar), 7.75 (d, J = 7.0 Hz, 2H, Ar), 8.25 (b.s., 1H, -NH). 
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13C-NMR (CDCl3), δ : 102.22, 110.21, 119.78, 122.34, 124.42, 126.17, 128.48, 128.80  

(CH, C-1, C-2, C-4, C-5, C-6, C-2’, C-3’, C-4’, C-5’, C-6’), 126.93, 134.53, 136.27, 141.29 

(C, C-3, C-7, C-8, C-1’). 
 

4-Biphenyl-4-yl-1H-indole (163): 

(C20H15N; M.W. 269.34) 

 

 

 

 

 

 

 

 

Reagent: 4-Biphenylboronic acid (158) (2 g, 10.2 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.7 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 95:5 v/v 

Yield: 0.82 g (60%) as a white solid. 

Melting Point: 160-162 °C 

Microanalysis: Calculated for C20H15N 0.3H2O (274.52501); Theoretical: %C= 87.50, %H= 

5.76, %N= 5.10; Found: %C= 87.40, %H= 5.63, %N= 4.35. 
1H-NMR (CDCl3), δ : 6.82-6.83 (m, 1H, H-indole), 7.30-7.35 (m, 3H, Ar, H-indole), 7.38-

7.42 (m, 1H, Ar), 7.43-7.45 (m, 1H, Ar), 7.51-7.54 (m, 2H, Ar), 7.72 (d, J = 7.1 Hz, 2H, Ar), 

7.76 (d, J = 8.3 Hz, 2H, Ar), 7.83 (d, J = 8.3 Hz, 2H, Ar),  8.29 (b.s., 1H, -NH). 
13C-NMR (CDCl3), δ : 102.27, 110.31, 115.66, 119.75, 122.38, 124.49, 127.23, 128.40, 

128.82, 129.15  (CH, C-1, C-2, C-4, C-5, C-6, C-2’, C-3’, C-5’, C-6’, C-2’’, C-3’’, C-4’’, C-

5’’, C-6’’), 126.15, 134.03, 136.32, 139.75, 140.31, 141.00 (C, C-3, C-7, C-8, C-1’, C-4’,C-

1’’, C-4’’). 
 

4-(3,5-Dimethoxyphenyl)-1H-indole (164): 

(C16H15NO2; M.W. 253.296) 
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Reagent: 3,5-Dimethoxyphenylboronic acid (159) (1 g, 5.5 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.75 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 90:10 v/v 

Yield: 0.59 g (85%) as a green glue 

HRMS (EI): Calculated mass: 254.1176 [M+H]+, Measured mass: 254.1178 [M+H]+ 
1H-NMR (CDCl3), δ :  3.88 (s, 6H, O-CH3, H-1’’, H-2’’), 6.54 (t, J = 2.2 Hz, 1H, H-4’), 

6.78-6.79 (m, 1H, H-indole), 6.90 (d, J = 2.2 Hz, 2H, H-2’, H-6’), 7.24 (d, J = 7.0 Hz, 1H, 

Ar), 7.27-7.31 (m, 2H, Ar, H-indole),  7.42 (d, J = 8.0 Hz, 1H, Ar), 8.28 (b.s., 1H, -NH). 
13C-NMR (CDCl3), δ :  55.44 (CH3, C-1’’, C-2’’), 99.39, 102.31, 106.93, 110.42, 119.60, 

122.25, 124.43 (CH, C-1, C-2, C-4, C-5, C-6, C-2’, C-4’, C-6’), 126.10, 134.43, 136.26, 

143.37, 160.81 (C, C-3, C-7, C-8, C1’, C-3’, C-5’). 
 

4-(4-Fluorophenyl)-1H-indole (165): 

(C14H10FN; M.W. 211.234) 

 

 

 

 

 

 

 

Reagent: 4-Fluorophenylboronic acid (160) (1 g, 7.1 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.57 
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Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 95:5 v/v 

Yield: 0.63 g (84%) as a pale pink crystals. 

Melting Point: 110-112 °C 

HRMS (EI): Calculated mass: 212.0870 [M+H]+, Measured mass: 212.0871 [M+H]+ 
1H-NMR (CDCl3), δ : 6.71-6.72 (m, 1H, H-indole), 7.18-7.23 (m, 3H, Ar, H-indole), 7.28-

7.29 (m, 1H, Ar), 7.32 (d, J = 7.4 Hz, 1H, Ar), 7.42 (d, J = 8.2 Hz, 2H, Ar), 7.68-7.72 (m, 2H, 

Ar), 8.27 (b.s., 1H, -NH). 
13C-NMR (CDCl3), δ :  101.98, 110.28, 115.25, 115.42, 119.71, 122.35, 124.54, 130.18, 

130.25 (CH, C-1, C-2, C-4, C-5, C-6, C-2’, C-3’, C-5’, C-6’), 126.13, 133.48, 136.24, 

137.27, 137.70, 161.18, 163.13 (C, C-3, C-7, C-8, C1’, C-4’). 
 

4-(2,4-Dichlorophenyl)-1H-indole (166): 

(C14H9Cl2N; M.W. 262.134) 

 

 

 

 

 

 

Reagent: 2,4-Dichlorophenylboronic acid (161) (2 g, 10.5 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.8 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 95:5 v/v 

Yield: 0.87 g (64%) a green glue. 

HRMS (EI): Calculated mass: 261.0107 [M]+, 262.0185 [M+H]+, Measured mass: 261.0109 

[M]+, 262.0186 [M+H]+ 
1H-NMR (CDCl3), δ : 6.34-6.35 (m, 1H, H-indole), 7.12-7.16 (m, 1H, H-indole), 7.25-7.27 

(m, 1H, Ar), 7.29-7.32 (m, 1H, Ar), 7.34-7.37 (m, 1H, Ar), 7.43 (d, J = 8.2 Hz, 1H, Ar), 7.45-

7.48 (m, 1H, Ar), 7.57 (d, J = 2.1 Hz, 1H, Ar), 8.28 (b.s., 1H, -NH). 
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13C-NMR (CDCl3), δ :  102.22, 111.01, 120.99, 121.75, 124.55, 126.90, 129.61, 132.62 

(CH, C-1, C-2, C-4, C-5, C-6, C-3’, C-5’, C-6’), 126.85, 130.74, 133.48, 135.75, 138.28 (C, 

C-3, C-7, C-8, C1’, C-2’, C-4’). 

 

10.6.7  General method for the preparation of 1-(bromo-propyl/butyl)-4 -

substituted/unsubstituted-phenyl-1H-indole 

!

!

!

!

!

!

!

!

The different 4 substituted/unsubstituted-phenyl-1H-indole (162-167) (1 equiv.) and NaH  

(60% dispersion in mineral oil) (3 equiv.) in dry DMF (4.7 mL/mmol) were cooled to 0˚C 

using an ice bath and stirred for 5 min. 1,3-Dibromopropane (110) or  1,4-dibromobutane 

(111) (8 equiv.) was added and the reaction mixture was stirred for 10 min. On completion, 

the solvent was evaporated under reduced pressure and the residue was dissolved in DCM (50 

mL/mmol), washed with water (2 x 25 mL/mmol) and dried over MgSO4. The organic layer 

was then evaporated to dryness and the residue was purified by flash column chromatography 

to obtain the pure product. 
 

1-(3-Bromopropyl)-4-phenyl-1H-indole (167): 

(C17H16BrN; M.W. 314.22) 
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Reagents: 4-Phenyl-1H-indole (162) (0.5 g, 2.5 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v Rf: 0.83 

Flash column chromatography: petroleum ether-diethyl ether 100:0 v/v increasing to 99:1 v/v 

Yield: 0.68 g (83%) as a green-dark glue 

HRMS (EI): Calculated mass: 314.0539 [M+H]+, Measured mass: 314.0542 [M+H]+ 
1H-NMR (CDCl3), δ : 2.39-2.44 (m, 2H, H-2’), 3.37 (t, J = 6.0 Hz, 2H, H-1’), 4.41 (t, J = 6.4 

Hz, 2H, H-3’), 6.71 (d, J = 3.2 Hz, 1H, H-indole), 7.22-7.24  (m, 2H, Ar, H-indole), 7.34 (t, J 

= 7.5 Hz, 1H, Ar), 7.41 (d, J = 7.7 Hz,  2H, Ar), 7.51-7.52 (m, 2H, Ar), 7.73 (d, J = 7.1 Hz, 

2H, Ar). 
13C-NMR (CDCl3), δ :  30.51, 32.74, 44.19 (CH2, C-1’, C-2’, C-3’), 100.98, 108.43, 114.57, 

119.47, 121.90, 126.89, 128.45, 128.82  (CH, C-1, C-2, C-4, C-5, C-6, C-2’’, C-3’’, C-4’’, C-

5’’, C-6’’), 126.97, 134.87, 136.29, 141.17 (C, C-3, C-7, C-8, C-1’’). 
 

4-Biphenyl-4-yl-1-(3-bromopropyl)-phenyl-1H-indole (168): 

(C23H20BrN; M.W. 390.31) 

 

 

 

 

 

 

 

 

Reagent: 4-Biphenyl-4-yl-1H-indole (163) (0.41 g, 1.5 mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v Rf: 0.48 

Flash column chromatography: petroleum ether-diethyl ether 100:0 v/v increasing to 99:1 v/v 

Yield: 0.27 g (47%) as a white glue 

HRMS (EI): Calculated mass: 389.0774 [M]+, 390.0852 [M+H]+, Measured mass: 389.0770 

[M]+, 390.0845 [M+H]+ 
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1H-NMR (CDCl3), δ : 2.40-2.45 (m, 2H, H-2’), 3.38 (t, J = 6.0 Hz, 2H, H-1’), 4.42 (t, J = 6.4 

Hz, 2H, H-3’), 6.76 (d, J = 2.9 Hz, 1H, H-indole), 7.25 (d, J = 3.2 Hz, 1H, H-indole), 7.27-

7.29 (m, 1H, Ar), 7.34-7.43 (m, 3H, Ar), 7.50-7.53 (m, 2H, Ar), 7.71 (d, J = 7.4 Hz, 2H, Ar), 

7.75 (d, J = 8.2 Hz, 2H, Ar), 7.81 (d, J = 8.2 Hz, 2H, Ar). 
13C-NMR (CDCl3), δ : 30.5, 32.75, 44.21 (CH2, C-1’, C-2’, C-3’), 101.15, 108.52, 119.54, 

122.09, 127.10, 127.21, 127.23, 128.43, 128.81, 129.17 (CH, C-1, C-2, C-4, C-5, C-6, C-2’’, 

C-3’’, C-5’’, C-6’’, C-2’’’, C-3’’’, C-4’’’, C-5’’’, C-6’’’), 126.29, 134.37, 136.34, 139.79, 

140.18, 140.97 (C, C-3, C-7, C-8, C-1’’, C-4’’, C-1’’’). 
 

1-(3-Bromopropyl)-4-(3,5-dimethoxyphenyl)-1H-indole (169): 

(C19H20BrNO2; M.W. 374.272) 

 

 

 

 

 

 

 

Reagent: 4-(3,5-Dimethoxyphenyl)-1H-indole (164) (0.3 g, 1.1 mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v Rf: 0.3 

Flash column chromatography: petroleum ether-diethyl ether 100:0 v/v increasing to 95:5 v/v 

Yield: 0.21 g (48%) as a transparent glue 

HRMS (EI): Calculated mass: 373.0672 [M]+, 374.0750 [M+H]+, Measured mass: 373.0670 

[M]+, 374.0746 [M+H] 
1H-NMR (CDCl3), δ : 2.39-2.43 (m, 2H, H-2’), 3.37 (t, J = 6.1 Hz, 2H, H-1’), 3.88 (s, 6H,  

O-CH3, H-4’, H-5’),  4.40 (t, J = 6.4 Hz, 2H, H-3’), 6.53 (t, J = 2.3 Hz, 1H, H-4’’), 6.73 (dd, 

J1 = 3.2 Hz, J2 = 0.7 Hz, 1H, H-indole), 6.88 (d, J = 2.3 Hz, 2H, H-2’’, H-6’’), 7.22 (d, J = 3.2 

Hz, 1H, H-indole), 7.23 (dd, J1 = 7.2 Hz, J2 = 0.8 Hz, 1H, Ar), 7.32 (dd, J1 = 8.8 Hz, J2 = 7.3 

Hz, 1H, Ar), 7.41 (dt, J1 = 8.2 Hz, J2 = 0.8 Hz, 1H, Ar). 



Family IX and X: Amido-Indole-Imidazole and Phenyl-Indole-Imidazole 

~ 300 ~!
!

13C-NMR (CDCl3), δ : 30.54, 32.71, 44.17 (CH2, C-1’, C-2’, C-3’), 55.45 (CH3, C-4’, C-5’), 

99.39, 101.19, 106.91, 108.66, 119.39, 121.97, 128.40 (CH, C-1, C-2, C-4, C-5, C-6, C-2’’, 

C-4’’, C-6’’), 126.88, 134.76, 136.25, 143.23, 160.79 (C, C-3, C-7, C-8, C-1’’, C-3’’, C-5’’). 
 

1-(3-Bromopropyl)-4-(4-fluorophenyl)-1H-indole (170): 

(C17H15BrFN; M.W. 332.210) 

 

 

 

 

 

 

 

Reagent: 4-(4-Fluorophenyl)-1H-indole (165) (0.33 g, 1.6 mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v Rf: 0.54 

Flash column chromatography: petroleum ether-diethyl ether 100:0 v/v increasing to 95:1 v/v 

Yield: 0.07 g (13%) as a white glue 

HRMS (EI): Calculated mass: 332.0445 [M+H]+, Measured mass: 332.0440 [M+H]+ 
1H-NMR (CDCl3), δ : 2.39-2.44 (m, 2H, H-2’), 3.37 (t, J = 6.1 Hz, 2H, H-1’), 4.41 (t, J = 6.4 

Hz, 2H, H-3’), 6.64 (dd, J1 = 3.2 Hz, J2 = 0.8 Hz, 1H, H-indole), 7.16-7.21 (m, 3H, Ar), 7.23 

(d, J = 3.2 Hz, 1H, H-indole), 7.32 (dd, J1 = 8.8 Hz, J2 = 0.8 Hz, 1H, Ar), 7.41 (dt, J1 = 8.3 Hz, 

J2 = 0.8 Hz, 1H, Ar), 7.65-7.69 (m. 2H, Ar). 
13C-NMR (CDCl3), δ : 30.48, 32.69, 44.19 (CH2, C-1’, C-2’, C-3’), 100.84, 108.51, 115.26, 

115.43, 119.48, 122.06, 128.51, 13.20, 130.26 (CH, C-1, C-2, C-4, C-5, C-6, C-2’’, C-3’’, C-

5’’,  C-6’’), 126.91, 133.79, 136.31, 137.21, 137.24, 161.16, 163.11 (C, C-3, C-7, C-8, C-1’’, 

C-4’’). 
 

 

1-(3-Bromopropyl)-4-(2,4-dichlorophenyl)-1H-indole (171): 

(C17H14BrCl2N; M.W. 383.110) 
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Reagent: 4-(2,4-Dichlorophenyl)-1H-indole (166) (0.3 g, 1.1 mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v Rf: 0.43 

Flash column chromatography: petroleum ether 100:0 v/v  

Yield: 0.11 g (25%) as a yellow glue 

HRMS (EI): Calculated mass: 381.9759 [M+H]+, Measured mass: 381.9754 [M+H]+ 
1H-NMR (CDCl3), δ : 2.39-2.44 (m, 2H, H-2’), 3.37 (t, J = 6.1 Hz, 2H, H-1’), 4.40 (t, J = 6.4 

Hz, 2H, H-3’), 6.28 (dd, J1 = 3.3 Hz, J2 = 0.8 Hz, 1H, H-indole), 7.12 (dd, J1 = 7.3 Hz, J2 = 0.9 

Hz, 1H, Ar), 7.20 (d, J = 3.2 Hz, 1H, H-indole), 7.32 (dd, J1 = 8.6 Hz, J2 = 7.3 Hz, 1H, Ar), 

7.35 (dd, J1 = 8.5 Hz, J2 = 2.1 Hz, 1H, Ar), 7.42 (d, J = 8.2 Hz, 1H, Ar), 7.45 (dt, J1 = 8.3 Hz, 

J2 = 0.9 Hz, 1H, Ar), 7.57 (d, J = 2.1 Hz, 1H, Ar). 
13C-NMR (CDCl3), δ : 30.52, 32.73, 44.19 (CH2, C-1’, C-2’, C-3’), 101.06, 109.24, 120.75, 

121.42, 126.85, 128.48, 129.63, 132.62 (CH, C-1, C-2, C-4, C-5, C-6, C-2’’, C-3’’, C-5’’), 

127.68, 131.03, 133.50, 133.96, 135.85, 138.15 (C, C-3, C-7, C-8, C-1’’, C-4’’, C-6’’). 
 

 

1-(4-Bromobutyl)-4-phenyl-1H-indole (172): 

(C18H18BrN; M.W. 328.24) 
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Reagent: 4-Phenyl-1H-indole (162) (0.5 g, 2.5 mmol) 

T.L.C. system: petroleum ether-EtOAc 7:3 v/v Rf: 0.87 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 95:5 v/v 

Yield: 0.72 g (85%) as a brown oil 

HRMS (EI): Calculated mass: 328.0695 [M+H]+, Measured mass: 328.0698 [M+H]+ 
1H-NMR (CDCl3), δ : 1.89-1.95 (m, 2H, CH2), 2.05-2.12 (m, 2H, CH2), 3.42 (t, J = 6.5 Hz, 

2H, H-1’), 4.23 (t, J = 6.9 Hz, 2H, H-4’), 6.71 (dd, J1 = 3.1 Hz, J2 = 0.6 Hz,  1H, H-indole), 

7.16  (d, J = 3.1 Hz, 1H, H-indole), 7.22 (dd, J1 = 5.9 Hz, J2 = 1.1 Hz,  1H, Ar), 7.30-7.42 (m, 

3H, Ar), 7.50-7.52 (m, 2H, Ar), 7.74 (d, J = 7.0 Hz, 2H, Ar). 
13C-NMR (CDCl3), δ :  28.86, 30.02, 32.95, 45.71 (CH2, C-1’, C-2’, C-3’, C-4’), 100.92, 

108.42, 114.49, 119.43, 121.93, 126.89, 128.46, 128.82  (CH, C-1, C-2, C-4, C-5, C-6, C-2’’, 

C-3’’, C-4’’, C-5’’, C-6’’), 126.92, 134.80, 136.36, 141.25 (C, C-3, C-7, C-8, C-1’’). 

 

4-Biphenyl-4-yl-1-(4-Bromobutyl)-phenyl-1H-indole (173): 

(C24H22BrN; M.W. 404.342) 

 

 

 

 

 

 

 

 

 

Reagent: 4-Biphenyl-4-yl-1H-indole (163) (0.5 g, 1.9 mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v Rf: 0.46 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 98:2 v/v 

Yield: 0.52 g (68%) as a pale yellow glue 

HRMS (EI): Calculated mass: 404.1008 [M+H]+, Measured mass: 404.1010 [M+H]+ 
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1H-NMR (CDCl3), δ : 1.90-1.96 (m, 2H, CH2), 2.06-2.12 (m, 2H, CH2) 3.43 (t, J = 6.6 Hz, 

2H, H-1’), 4.24 (t, J = 6.9 Hz, 2H, H-4’), 6.76 (d, J = 2.9 Hz, 1H, H-indole), 7.18 (d, J = 3.1 

Hz, 1H, H-indole), 7.26-7.28 (m, 1H, Ar), 7.33-7.41 (m, 3H, Ar), 7.50-7.53 (m, 2H, Ar), 7.71 

(d, J = 7.2 Hz, 2H, Ar), 7.75 (d, J = 8.2 Hz, 2H, Ar), 7.82 (d, J = 8.2 Hz, 2H, Ar). 
13C-NMR (CDCl3), δ : 28.87, 30.02, 32.95, 45.73 (CH2, C-1’, C-2’, C-3’, C-4’), 100.95, 

108.51, 119.40, 121.89, 127.10, 127.21, 127.23, 128.01, 128.81, 129.18 (CH, C-1, C-2, C-4, 

C-5, C-6, C-2’’, C-3’’, C-5’’, C-6’’, C-2’’’, C-3’’’, C-4’’’, C-5’’’, C-6’’’), 126.86, 134.30, 

136.41, 139.74, 140.27, 140.99 (C, C-3, C-7, C-8, C-1’’, C-4’’, C-1’’’). 

 
 

1-(4-Bromobutyl)-4-(3,5-dimethoxyphenyl)-1H-indole (174): 

(C20H22BrNO2; M.W. 388.298) 

 

 

 

 

 

 

 

Reagent: 4-(3,5-Dimethoxyphenyl)-1H-indole (164)  (0.3 g, 1.1 mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v Rf: 0.5 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 95:5 v/v 

Yield: 0.14 g (31%) as a yellow glue 

HRMS (EI): Calculated mass: 388.0907 [M+H]+, Measured mass: 388.0912 [M+H]+ 
1H-NMR (CDCl3), δ : 1.89-1.94 (m, 2H, CH2), 2.04-2.10 (m, 2H, CH2), 3.42 (t, J = 6.6 Hz, 

2H, H-1’), 3.88 (s, 6H,  O-CH3, H-5’, H-6’),  4.23 (t, J = 6.9 Hz, 2H, H-4’), 6.53 (t, J = 2.3 

Hz, 1H, H-4’’), 6.72 (d, J = 3.1 Hz, 1H, H-indole), 6.89 (d, J = 2.3 Hz, 2H, H-2’’, H-6’’), 

7.15 (d, J = 3.2 Hz, 1H, H-indole), 7.22 (d, J = 7.0 Hz, 1H, Ar), 7.31 (t, J = 7.2 Hz, 1H, Ar), 

7.36 (d, J = 8.1 Hz, 1H, Ar). 
13C-NMR (CDCl3), δ : 28.85, 30.00, 32.93, 45.71 (CH2, C-1’, C-2’, C-3’, C-4’), 55.43 (CH3, 

C-5’, C-6’), 99.39, 101.00, 106.94, 108.63, 119.25, 121.84, 127.95 (CH, C-1, C-2, C-4, C-5, 
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C-6, C-2’’, C-4’’, C-6’’), 126.81, 134.71, 136.34, 143.31, 160.79 (C, C-3, C-7, C-8, C-1’’, C-

3’’, C-5’’). 

 
 

1-(4-Bromobutyl)-4-(4-fluorophenyl)-1H-indole (175): 

(C18H17BrFN; M.W. 346.237) 

 

 

 

 

 

 

 

Reagent: 4-(4-Fluorophenyl)-1H-indole (165) (0.25 g, 1.1 mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v Rf: 0.5 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 98:2 v/v 

Yield: 0.32 g (80%) as a transparent glue 

HRMS (EI): Calculated mass: 346.0601 [M+H]+, Measured mass: 346.0598 [M+H]+ 
1H-NMR (CDCl3), δ :  1.89-1.94 (m, 2H, CH2),  2.05-2.11 (m, 2H, CH2), 3.42 (t, J = 6.6 Hz, 

2H, H-1’), 4.23 (t, J = 6.9 Hz, 2H, H-4’), 6.65 (dd, J1= 3.2 Hz, J2= 0.7 Hz, 1H, H-indole), 

7.16-7.22 (m, 4H, Ar, H-indole), 7.32 (dd, J1 = 8.6 Hz, J2 = 7.2 Hz, 1H, Ar), 7.37 (dt, J1 = 8.2 

Hz, J2 = 0.9 Hz, 1H, Ar), 7.66-7.69 (m. 2H, Ar). 
13C-NMR (CDCl3), δ : 28.86, 30.00, 32.97, 45.74 (CH2, C-1’, C-2’, C-3’, C-4’), 100.65, 

108.51, 115.25, 115.42, 119.34, 121.94, 128.10, 130.21, 130.28 (CH, C-1, C-2, C-4, C-5, C-

6, C-2’’, C-3’’, C-5’’, C-6’’), 126.82, 133.73, 136.31, 137.21, 137.24, 131.16, 163.11 (C, C-

3, C-7, C-8, C-1’’, C-4’’). 
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1-(4-Bromobutyl)-4-(2,4-dichlorophenyl)-1H-indole (176): 

(C18H16BrCl2N; M.W. 397.136) 

 

 

 

 

 

 

 

Reagent: 4-(2,4-Dichlorophenyl)-1H-indole (166) (0.3 g, 1.1 mmol) 

T.L.C. system: petroleum ether-EtOAc 9:1 v/v Rf: 0.42 

Flash column chromatography: petroleum ether-EtOAc 100:0 v/v increasing to 99:1 v/v 

Yield: 0.25 g (42%) as a transparent glue 

HRMS (EI): Calculated mass: 395.9916 [M+H]+, Measured mass: 395.9920 [M+H]+ 
1H-NMR (CDCl3), δ : 1.90-1.95 (m, 2H, CH2), 2.05-2.11 (m, 2H, CH2), 3.43 (t, J = 6.5 Hz, 

2H, H-1’), 4.22 (t, J = 7.0 Hz, 2H, H-4’), 6.28 (dd, J1 = 3.2 Hz, J2 = 0.8 Hz, 1H, H-indole), 

7.10 (d, J = 6.2 Hz, 1H, Ar), 7.14 (d, J = 3.1 Hz, 1H, H-indole), 7.31 (dd, J1 = 8.5 Hz, J2 = 7.2 

Hz, 1H, Ar), 7.34 (dd, J1 = 8.3 Hz, J2 = 2.2 Hz, 1H, Ar), 7.42 (d, J = 8.2 Hz, 2H, Ar), 7.57 (d, 

J = 2.2 Hz, 1H, Ar). 
13C-NMR (CDCl3), δ : 28.87, 30.02, 32.90, 45.74 (CH2, C-1’, C-2’, C-3’, C-4’), 100.87, 

109.21, 120.60, 121.29, 126.81, 128.04, 129.61, 132.63,  (CH, C-1, C-2, C-4, C-5, C-6, C-

2’’, C-3’’, C-5’’), 127.60, 130.98, 133.46, 133.98, 135.93, 138.24 (C, C-3, C-7, C-8, C-1’’, 

C-4’’, C-6’’). 
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10.6.8  General method for the preparation of 1-(imidazol-1-yl-

propyl/butyl)-4-substituted/unsubstituted-phenyl-1H-indole 

!

!

!

!

!

!

!

!

!

A suspension of NaH (60% dispersion in mineral oil) (2 equiv.) in dry DMF (7 mL/mmol) 

was stirred and heated at 60˚C for 5 min. Imidazole (2 equiv.) was added and the reaction 

mixture was heated at 60˚C for 1 h. The reaction mixture was cooled to room temperature 

and the different 1-(bromo-propyl/butyl)-4-substituted/unsubstituted-phenyl-1H-indole (167-

176) (1 equiv.) was added. The reaction mixture was heated at 60˚C for 48 h and then 

hydrolysed by adding H2O (50 mL/mmol). The aqueous layer was extracted with EtOAc (3 x 

50 mL/mmol), the organic layers were collected and dried over MgSO4. The solvent was then 

evaporated to dryness and the residue was purified by flash column chromatography 

(petroleum ether-EtOAc 50:50 v/v then DCM-MeOH 100:0 v/v increasing to 98:2 v/v) to 

obtain the pure desired product. 

 
 

1-(3-Imidazol-1-yl-propyl)-4-phenyl-1H-indole (177) (MCC283): 

(C20H19N3; M.W. 301.385) 

 

 

 

 

 

 

Reagents: 1-(3-Bromo-propyl)-4-phenyl-1H-indole (167) (0.68 g, 2.1 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.66 

Yield: 0.21 g (32%) as a yellow sticky glue 
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HRMS (EI): Calculated mass: 302.1652 [M+H]+, Measured mass: 302.1647 [M+H]+ 
1H-NMR (CDCl3), δ : 2.37-2.43 (m, 2H, H-2’), 3.93 (t, J = 6.9 Hz, 2H, H-1’), 4.17 (t, J = 6.7 

Hz, 2H, H-3’), 6.72 (d, J = 3.1 Hz, 1H, H-indole), 6.94 (s, 1H, H-imidazole), 7.09 (d, J = 3.2 

Hz, 1H, H-indole), 7.14 (s, 1H, H-imidazole), 7.22-7.26  (m, 2H, Ar,), 7.31 -7.34(m, 1H, Ar), 

7.40 (t, J = 7.4 Hz,  1H, Ar), 7.50-7.52 (m, 3H, Ar, H-imidazole), 7.72 (d, J = 7.3 Hz, 2H, 

Ar). 
13C-NMR (CDCl3), δ :  31.05, 36.45, 43.94 (CH2, C-1’, C-2’, C-3’), 101.50, 108.26, 114.47, 

119.71, 122.26, 127.04, 127.82, 128.51, 128.79, 129.59, 130.04  (CH, C-1, C-2, C-4, C-5, C-

6, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-1#, C-2#, C-3#), 127.01, 135.00, 136.27, 141.04 (C, C-

3, C-7, C-8, C-1’’). 

 
 

4-Biphenyl-4-yl-1-(3-imidazol-1-yl-propyl)-phenyl-1H-indole (178) 

(MCC285): 

(C26H23N3; M.W. 377.48) 

 

 

 

 

 

 

 

 

 

Reagent: 4-Biphenyl-4-yl-1-(3-bromopropyl)phenyl-1H-indole (168) (0.27 g, 0.7 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.64 

Yield: 0.13 g (50%) as a white glue 

HRMS (EI): Calculated mass: 377.1886 [M]+, 378.1965 [M+H]+, Measured mass: 377.1882 

[M]+, 378.1957 [M+H]+ 
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1H-NMR (CDCl3), δ : 2.40-2.45 (m, 2H, H-2’), 3.95 (t, J = 6.9 Hz, 2H, H-1’), 4.20 (t, J = 6.6 

Hz, 2H, H-3’), 6.79 (d, J = 3.19 Hz, 1H, H-indole), 6.95 (s, 1H, H-imidazole), 7.12 (d, J = 3.1 

Hz, 1H, H-indole), 7.15 (s, 1H, H-imidazole), 7.28-7.29 (m, 2H, Ar), 7.34-7.37 (m, 1H, Ar), 

7.39 (t, J1= 7.3 Hz, 1H, Ar), 7.48-7.51 (m, 3H, Ar, H-imidazole), 7.71 (d, J = 7.6 Hz, 2H, Ar), 

7.75 (d, J = 8.2 Hz, 2H, Ar), 7.81 (d, J = 8.2 Hz, 2H, Ar). 
13C-NMR (CDCl3), δ : 31.07, 43.10, 43.95 (CH2, C-1’, C-2’, C-3’), 101.57, 108.33, 119.70, 

127.00, 127.09, 127.26, 127.28, 127.88, 128.82, 129.05, 129.16, 130.07, 137.23 (CH, C-1, C-

2, C-4, C-5, C-6, C-2’’, C-3’’, C-5’’, C-6’’, C-2’’’, C-3’’’, C-4’’’, C-5’’’, C-6’’’, C-1#, C-2#, 

C-3#), 128.23, 134.54, 136.32, 139.87, 140.04, 140.92 (C, C-3, C-7, C-8, C-1’’, C-4’’, C-

1’’’). 

 
 

4-(3,5-Dimethoxyphenyl)-1-(3-imidazol-1-yl-propyl)-1H-indole (179) 

(MCC287): 

(C22H23N3O2; M.W. 361.437) 

 

 

 

 

 

 

 

Reagent: 1-(3-Bromopropyl)-4-(3,5-dimethoxyphenyl)-1H-indole (169) (0.21 g, 0.5 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.65 

Yield: 0.12 g (60%) as a yellow glue 

HRMS (EI): Calculated mass: 361.1785 [M]+, 362.1863 [M+H]+, Measured mass: 361.1781 

[M]+, 362.1856 [M+H] 
1H-NMR (CDCl3), δ : 2.38-2.44 (m, 2H, H-2’), 3.88 (s, 6H,  O-CH3, H-4’, H-5’), 3.94 (t, J = 

6.8 Hz, 2H, H-1’), 4.18 (t, J = 6.7 Hz, 2H, H-3’), 6.53 (t, J = 2.4 Hz, 1H, H-4’’), 6.76 (dd, J1= 

3.2 Hz, J2= 0.7 Hz, 1H, H-indole), 6.88 (d, J = 2.4 Hz, 2H, H-2’’, H-6’’), 6.95 (s, 1H, H-
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imidazole), 7.09 (d, J = 3.2 Hz, 1H, H-indole), 7.15 (s, 1H, H-imidazole), 7.21-7.27 (m, 2H, 

Ar), 7.30-7.34 (m, 1H, Ar), 7.50 (s, 1H, H-imidazole). 
13C-NMR (CDCl3), δ : 31.05, 43.07, 43.93 (CH2, C-1’, C-2’, C-3’), 55.45 (CH3, C-4’, C-5’), 

99.39, 101.61, 106.93, 108.48, 119.56, 122.19, 125.31, 128.25, 129.06, 130.06 (CH, C-1, C-

2, C-4, C-5, C-6, C-2’’, C-4’’, C-6’’, C-1#, C-2#, C-3#), 126.93, 134.92, 136.23, 143.08, 

160.83 (C, C-3, C-7, C-8, C-1’’, C-3’’, C-5’’). 

 
 

4-(4-Fluorophenyl)- 1-(3-imidazol-1-yl-propyl)-1H-indole (180) (MCC289): 

(C20H18FN3; M.W. 319.375) 

 

 

 

 

 

 

 

Reagent: 1-(3-Bromopropyl)-4-(4-fluorophenyl)-1H-indole (170) (0.07 g, 0.2 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.68 

Yield: 0.021 g (31%) as a yellow glue 

HRMS (EI): Calculated mass: 320.1558 [M+H]+, Measured mass: 320.1562 [M+H]+ 
1H-NMR (CDCl3), δ : 2.39-2.44 (m, 2H, H-2’), 3.94 (t, J = 6.8 Hz, 2H, H-1’), 4.18 (t, J = 6.7 

Hz, 2H, H-3’), 6.67 (dd, J1 = 3.2 Hz, J2 = 0.8 Hz, 1H, H-indole), 6.95 (s, 1H, H-imidazole), 

7.10 (d, J = 3.2 Hz, 1H, H-indole), 7.14-7.21 (m, 4H, Ar, H-imidazole), 7.36 (dt, J1 = 8.3 Hz, 

J2 = 0.8 Hz, 1H, Ar), 7.32 (dd, J1 = 8.5 Hz, J2 = 7.2 Hz, 1H, Ar), 7.51 (s, 1H, H-imidazole), 

7.65-7.69 (m, 2H, Ar). 
13C-NMR (CDCl3), δ : 31.03, 43.09, 43.95 (CH2, C-1’, C-2’, C-3’), 101.27, 108.33, 115.31, 

115.48, 119.65, 122.29, 127.95, 130.20, 130.26, 130.96 (CH, C-1, C-2, C-4, C-5, C-6, C-2’’, 

C-3’’, C-5’’,  C-6’’, C-1#, C-2#, C-3#), 126.95, 133.95, 136.22, 137.00, 137.03, 161.21, 

163.16 (C, C-3, C-7, C-8, C-1’’, C-4’’). 
 



Family IX and X: Amido-Indole-Imidazole and Phenyl-Indole-Imidazole 

~ 310 ~!
!

4-(2,4-Dichlorophenyl)- 1-(3-imidazol-1-yl-propyl)-1H-indole (181) 

(MCC291): 

(C20H17Cl2N3; M.W. 370.275) 

 

 

 

 

 

 

 

Reagent: 1-(3-Bromopropyl)-4-(2,4-dichlorophenyl)-1H-indole (171)  (0.11 g, 0.3 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.60 

Yield: 0.08 g (72%) as a yellow glue 

HRMS (EI): Calculated mass: 370.0872 [M+H]+, Measured mass: 370.0869 [M+H]+ 
1H-NMR (CDCl3), δ : 2.39-2.45 (m, 2H, H-2’), 3.96 (t, J = 6.8 Hz, 2H, H-1’), 4.28 (t, J = 6.7 

Hz, 2H, H-3’), 6.31 (d, J = 3.2 Hz, 1H, H-indole), 6.95 (s,1H, H-imidazole), 7.08 (d, J = 3.2 

Hz, 1H, H-indole), 7.11-7.13 (m, 1H, Ar), 7.15 (s, 1H, H-imidazole), 7.30-7.32 (m, 2H, Ar), 

7.34-7.36 (m, 1H, Ar), 7.42 (d, J = 8.2 Hz, 1H, Ar), 7.50 (s, 1H, H-imidazole), 7.57 (d, J = 

2.1 Hz, 1H, Ar). 
13C-NMR (CDCl3), δ : 31.07, 43.10, 43.97 (CH2, C-1’, C-2’, C-3’), 101.23, 101.49, 109.06, 

120.92, 121.65, 126.88, 127.93, 128.48, 129.65, 130.06, 132.59 (CH, C-1, C-2, C-4, C-5, C-

6, C-2’’, C-3’’, C-5’’, C-1#, C-2#, C-3#), 127.73, 131.21, 133.59, 133.96, 135.82, 138.02 (C, 

C-3, C-7, C-8, C-1’’, C-4’’, C-6’’). 

 
 

1-(4-Imidazol-1-yl-butyl)-4-phenyl-1H-indole (182) (MCC284): 

(C21H21N3; M.W. 315.41) 
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Reagent: 1-(4-Bromobutyl)-4-phenyl-1H-indole (172) (0.72 g, 2.2 mmol) 

T.L.C. system: DCM-MeOH 98:2 v/v Rf: 0.27 

Yield: 0.12 g (18%) as a yellow glue 

HRMS (EI): Calculated mass: 315.1730 [M]+, 316.1808 [M+H]+, Measured mass: 315.1725 

[M]+, 316.1797 [M+H] 
1H-NMR (CDCl3), δ : 1.78-1.83 (m, 2H, CH2), 1.85-1.91 (m, 2H, CH2), 3.87 (t, J = 6.9 Hz, 

2H, H-1’), 4.18 (t, J = 6.4 Hz, 2H, H-4’), 6.70 (d, J = 3.2 Hz, 1H, H-indole), 6.84 (s, 1H, H-

imidazole), 7.07 (s, 1H, H-imidazole), 7.10  (d, J = 3.1 Hz, 1H, H-indole), 7.21-7.23 (m, 1H, 

Ar), 7.32-7.33 (m, 2H, Ar, H-imidazole), 7.38-7.41 (m, 2H, Ar), 7.50-7.53 (m, 2H, Ar), 7.72 

(d, J = 7.3 Hz, 2H, Ar). 
13C-NMR (CDCl3), δ :  27.26, 18.68, 45.96, 46.51 (CH2, C-1’, C-2’, C-3’, C-4’), 101.07, 

108.33, 114.44, 119.51, 122.03, 127.92, 128.48, 128.79, 129.58, 129.69, 137.03 (CH, C-1, C-

2, C-4, C-5, C-6, C-2’’, C-3’’, C-4’’, C-5’’, C-6’’, C-1#, C-2#, C-3#), 126.98 134.88, 136.31, 

141.15 (C, C-3, C-7, C-8, C-1’’). 

 
 

4-Biphenyl-4-yl-1-(4-imidazol-1-yl-butyl)phenyl-1H-indole (183) 

(MCC286): 

(C27H25N3; M.W. 391.508) 
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Reagent: 4-Biphenyl-4-yl-1-(4-bromobutyl)phenyl-1H-indole (173) (0.51 g, 1.3 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.64 

Yield: 0.37 g (74%) as a yellow wax 

HRMS (EI): Calculated mass: 391.2043 [M]+, Measured mass: 391.2039 [M+H]+ 
1H-NMR (CDCl3), δ : 1.80-1.86 (m, 2H, CH2), 1.87-1.93 (m, 2H, CH2) 3.89 (t, J = 6.9 Hz, 

2H, H-1’), 4.21 (t, J = 6.3 Hz, 2H, H-4’), 6.75 (d, J = 3.0 Hz, 1H, H-indole), 6.85 (s, 1H, H-

imidazole), 7.08 (s, 1H, H-imidazole), 7.13 (d, J = 3.1 Hz, 1H, H-indole), 7.26-7.28 (m, 1H, 

Ar), 7.33-7.35 (m, 2H, Ar), 7.39 (t, J = 7.3 Hz, 1H, Ar), 7.43 (s, 1H, H-imidazole), 7.50-7.53 

(m, 2H, Ar), 7.71 (d, J = 7.5 Hz, 2H, Ar), 7.74 (d, J = 8.1 Hz, 2H, Ar), 7.81 (d, J = 8.2 Hz, 

2H, Ar). 
13C-NMR (CDCl3), δ : 27.28, 28.70, 45.99, 46.53 (CH2, C-1’, C-2’, C-3’, C-4’), 101.12, 

108.41, 118.66, 119.49, 122.08, 127.09, 127.22, 127.25, 127.97, 128.80, 129.16, 129.70, 

137.04 (CH, C-1, C-2, C-4, C-5, C-6, C-2’’, C-3’’, C-5’’, C-6’’, C-2’’’, C-3’’’, C-4’’’, C-

5’’’, C-6’’’, C-1#, C-2#, C-3#), 126.87, 134.40, 136.35, 139.80, 140.16, 140.95 (C, C-3, C-7, 

C-8, C-1’’, C-4’’, C-1’’’). 

 
 

4-(3,5-Dimethoxyphenyl)-1-(4-imidazol-1-yl-butyl)-1H-indole (184) 

(MCC288): 

(C23H25N3O2; M.W. 374.46) 
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Reagent: 1-(4-Bromobutyl)-4-(3,5-dimethoxyphenyl)-1H-indole (174) (0.14 g, 0.4 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.50 

Yield: 0.08 g (60%) as a transparent yellow glue 

HRMS (EI): Calculated mass: 376.2020 [M]+, Measured mass: 376.2022 [M+H]+ 
1H-NMR (CDCl3), δ : 1.79-1.84 (m, 2H, CH2), 1.86-1.92 (m, 2H, CH2), 3.87 (s, 6H,  O-CH3, 

H-5’, H-6’), 3.89 (t, J = 7.0  Hz, 2H, H-1’), 4.19 (t, J = 6.5 Hz, 2H, H-4’), 6.52 (t, J = 2.3 Hz, 

1H, H-4’’), 6.72 (d, J = 3.1 Hz, 1H, H-indole), 6.85 (s, 1H, H-imidazole), 6.87 (d, J = 2.3 Hz, 

2H, H-2’’, H-6’’), 7.07 (s, 1H, H-imidazole), 7.10 (d, J = 3.1 Hz, 1H, H-indole), 7.22-7.23 

(m, 1H, Ar), 7.30-7.33 (m, 2H, Ar), 7.42 (s, 1H, H-imidazole). 
13C-NMR (CDCl3), δ : 27.27, 28.68, 45.96, 46.54 (CH2, C-1’, C-2’, C-3’, C-4’), 55.43 (CH3, 

C-5’, C-6’), 99.39, 101.18, 106.95, 108.52, 119.35, 121.94, 127.91, 128.23, 129.04, 129.69 

(CH, C-1, C-2, C-4, C-5, C-6, C-2’’, C-4’’, C-6’’, C-1#, C-2#, C-3#), 126.83, 134.81, 136.28, 

143.20, 160.81 (C, C-3, C-7, C-8, C-1’’, C-3’’, C-5’’). 
 

4-(4-Fluorophenyl)-1-(4-imidazol-1-yl-butyl)-1H-indole (185) (MCC290): 

(C21H20FN3; M.W. 333.402) 
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Reagent: 1-(4-Bromobutyl)-4-(4-fluorophenyl)-1H-indole (175) (0.32 g, 0.9 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.47 

Yield: 0.24 g (78%) as a yellow glue 

HRMS (EI): Calculated mass: 346.0601 [M+H]+, Measured mass: 346.0598 [M+H]+ 
1H-NMR (CDCl3), δ :  1.78-1.84 (m, 2H, CH2),  1.86-1.92 (m, 2H, CH2), 3.89 (t, J = 6.9 Hz, 

2H, H-1’), 4.20 (t, J = 6.4 Hz, 2H, H-4’), 6.64 (d, J = 3.0 Hz, 1H, H-indole), 6.85 (s, 1H, H-

imidazole), 7.07 (s, 1H, H-imidazole), 7.12 (d, J = 3.1 Hz, 1H, H-indole), 7.16-7.21 (m, 3H, 

Ar), 7.29-7.33 (m, 2H, Ar), 7.42 (s, 1H, H-imidazole), 7.65-7.69 (m. 2H, Ar). 
13C-NMR (CDCl3), δ : 27.27, 28.69, 45.99, 46.53 (CH2, C-1’, C-2’, C-3’, C-4’), 100.82, 

108.40, 115.27, 115.44, 118.67, 119.44, 122.04, 128.05, 129.72, 130.20, 130.26, 137.04 (CH, 

C-1, C-2, C-4, C-5, C-6, C-2’’, C-3’’, C-5’’, C-6’’, C-1#, C-2#, C-3#), 126.82, 133.83, 136.25, 

137.13, 163.11, 161.17 (C, C-3, C-7, C-8, C-1’’, C-4’’). 

 

4-(2,4-Dichlorophenyl)-1-(4-imidazol-1-yl-butyl)-1H-indole (186) 

(MCC292): 

(C21H19Cl2N3; M.W. 384.302) 

 

 

 

 

 

 

 

 

Reagent: 1-(4-Bromobutyl)-4-(2,4-dichlorophenyl)-1H-indole (176) (0.25 g, 0.6 mmol) 

T.L.C. system: DCM-MeOH 9:1 v/v Rf: 0.60 

Yield: 0.16 g (66%) as a yellow glue 

HRMS (EI): Calculated mass: 384.1029 [M+H]+, Measured mass: 384.1035 [M+H]+ 
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1H-NMR (CDCl3), δ : 1.79-1.85 (m, 2H, CH2), 1.86-1.92 (m, 2H, CH2), 3.88 (t, J = 6.9 Hz, 

2H, H-1’), 4.19 (t, J = 6.4 Hz, 2H, H-4’), 6.28 (d, J = 3.1 Hz, 1H, H-indole), 6.84 (s, 1H, H-

imidazole), 7.07 (s, 1H, H-imidazole),  7.11 (d, J = 7.2 Hz, 1H, Ar), 7.29-7.37 (m, 3H, Ar,  

H-indole), 7.42 (d, J = 8.2 Hz, 2H, Ar), 7.56 (d, J = 2.1 Hz, 1H, Ar). 
13C-NMR (CDCl3), δ : 27.25, 28.69, 46.00, 46.49 (CH2, C-1’, C-2’, C-3’, C-4’), 101.06, 

109.13, 118.64, 120.70, 121.41, 126.84, 128.00, 129.62, 129.72, 132.59, 137.03 (CH, C-1, C-

2, C-4, C-5, C-6, C-2’’, C-3’’, C-5’’, C-1#, C-2#, C-3#), 127.62, 131.11, 133.53, 133.96, 

135.87, 138.15 (C, C-3, C-7, C-8, C-1’’, C-4’’, C-6’’). 
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11.1 Bond Modification 

The presence of the imidazole in a potential CYP24A1 inhibitor has been proved to be 

essential among all our different families. The medium or the lack of selectivity have also 

been found to be an inseparable feature of these azole derivatives. Unfortunately, all attempts 

to replace the imidazole with more hypothetical selective groups such as sulfonate or 

sulfonamide did not give the desired results leading to a loss of the CYP24A1 inhibitory 

activity. The necessity to develop potent but selective inhibitors suggested focusing our 

attention on the replacement of the imidazole with a new group able to interact with the haem 

iron of CYP24A1 without interacting with the CYP27B1 enzyme. Cyclopropylamine 

derivatives are well-known P450 enzyme inhibitors and N-benzylcyclopropylamine (figure 

11.1) has been found to be a suicide substrate for these enzyme.(1) The use of 

cyclopropylamine derivatives has produced different P450 drug inhibitors (2)  and based on 

this Chiellini et al. in 2012 (3) published a vitamin D-like compound bearing a 

cyclopropylamine group in the lateral chain (CPA1) (figure 12.1). CPA1 showed interesting 

CYP24A1 inhibitory activity with a Ki of 0.042 µM (ketoconazole Ki = 0.032 µM) and it 

was 80 times more selective for CYP24A1 over CYP27B1. 

 

 

 

 

 

 

 

 

 

 

Figure 11.1: Cyclopropyl derivatives. 
!

Based on all these findings, our styryl-benzamide family (Family I) was modified keeping the 

original styryl-benzamide scaffold, which has given the best results in term of CYP24A1 

inhibitory activity among all the different scaffolds prepared, and replaced the imidazole with 

a cyclopropylamine (figure 11.2). Different lengths of the lateral chain have been planned in 
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order to determine how compound length can influence the activity and therefore 3 different 

small families have been designed with a variety of substituents on the aromatic ring: 

• Family XI: Styryl-Benzoic Acid-Cyclopropylamine derivatives.  

• Family XII: Styryl-Phenylacetic Acid-Cyclopropylamine derivatives. 

• Family XIII: Styryl-β-alanine-Cyclopropylamine derivatives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11.2: The three new cyclopropylamine families. 

!

In addition to the unsubstituted derivatives, prepared as standard, the substituents on the 

aromatic ring were chosen considering the enzymatic results obtained for family I. The 3,5-

dimethoxy derivative (MCC204) was the most active compound, the 3,4,5-trimethoxy and 

the 4-fluoro compounds (MCC268 and MCC270) had the best selectivity profile. 

 

11.2 !Chemistry!

The general synthetic pathway for the three families is briefly reported in scheme 11.1 and 

then each family preparation will be discussed separately below. 

!
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Scheme 11.1: Reagents and Conditions: (I) 4-bromobenzoic acid or 4-bromophenylacetic acid, Pd(OAc)2, ToP, 

Et3N, 100/120 oC, 20h (II) Cyclopropylamine, CDI, 20h (III) Oxalyl chloride, DCM, DMF, 1h r.t then 4h reflux 

(IV) β-alanine ethyl ester hydrochloride, Et3N, DCM, 0 °C to r.t., 30 min (V) NaOH 2M, MeOH, r.t., 2h. 

!

!

!

!

Final Compound R 

MCC312 (188) MCC316 (196) MCC309 (211) 3,4,5-trimethoxy-styrylbenzene 

MCC311 (189) MCC315 (197) MCC308 (212) 3,5-dimethoxy-styrylbenzene 

MCC313 (190) 4-fluoro-styrylbenzene 

MCC310 (191) MCC314 (198) MCC307 (213) styrylbenzene 



Family XI, XII and XIII: Styryl-Cyclopropylamine 

~ 321 ~!
!

11.2.1 !Preparation of Styryl-BenzoicAcid-Cyclopropylamine derivatives 

(Family XI)!

!

A simple two synthetic pathway, as reported in scheme 11.1, has been developed for the 

preparation of Family XI. Preparation through the Heck reaction of 4-[(E)-2-(3,4,5-

unsubstituted/substitutedphenyl)-1-ethenyl]benzoic acid derivatives (11-12/14-15) has been 

already reported in chapter 3 (section 3.2.2) using 4-bromobenzoic acid (10) as starting 

reagent. The final compounds (188-189) were achieved through the 1,1΄-carbonyldiimidazole 

(CDI) coupling reaction, previously mentioned in chapter 3 (section 3.2.3), using the 

cyclopropylamine (187) as amine. 

!

!

!

!

!

!

!
 

 

 

 

 

 

Scheme 11.2: Final synthesis of Syryl-Benzoic acid-cyclopropylamine derivatives. 

!

A different preparation method was adopted for compound 190 (MCC313) and 191 

(MCC310), the 4-fluoro and the unsubstituted derivative. The corresponding ethenylbenzoic 

acids (14-15) were converted to the more reactive acyl chloride derivatives (202-203) using 

the oxalyl chloride (199) as chlorinating agent, dichloromethane as solvent and a few drops 

of DMF as catalyst (4) (scheme 11.3). 

 

 

!

!

!

Final Compound R1 R2 R3 YIELD 

188 (MCC312) OCH3 OCH3 OCH3 64% 

189 (MCC311) OCH3 H OCH3 56% 
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!

!

!

!

!

!

!

!

!
 

Scheme 11.3: Chlorination of acid. 

!

Oxalyl chloride is a common reagent for the preparation of acyl chloride from acid and it is 

more handleable than the widely use thionyl chloride. The mechanism of action is reported in 

scheme 11.4. The DMF, used in catalytic amount, is fundamental for the reaction forming the 

chlorinating agent, also called the Vilsmeier reagent, after reacting with the oxalyl chloride 

(a). The formed electrophilic iminium cation reacts with the free acid forming the desired 

acyl chloride and the regenerating the DMF that acts as a proper catalyst (b).(5) 

!

!

!

!

!

!

!

!

!
 

Scheme 11.4: Oxalyl chloride mechanism of action. 
!

The acyl chloride derivatives (202-203) were then reacted with the cyclopropylamine (187) in 

DCM and triethylamine as base in a normal nucleophilic substitution in which the chlorine is 

substituted by the amine forming the amidic bond of the desired products 190 (MCC313) and 

191 (MCC310).(6)  

 

 

Product R YIELD 

 202  F 94% 

203  H 84% 
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Scheme 11.5: Amidic bond formation. 

!

The low yield of 191 is due to the loss of product during the recrystallization process.  

!

11.2.2  Preparation of Styryl-Phenylacetic Acid-Cyclopropylamine 

derivatives (Family XII) 
 

Family XII was prepared following the synthetic pathway used for family XI as reported in 

the general scheme 11.1. The 4-bromophenylacetic acid (192) was used in the Heck reaction 

in order to prepare the (E)-styryl-phenylacetic acid derivatives (193-195) (scheme 11.6). 

!

!

!

!

!

!

!
!

!
 

Scheme 11.6: Synthesis of substituted alkenes using the Heck reaction. 

Final Compound R YIELD 

 190 F 46% 

191 H 25% 

Product R1 R2 R3 YIELD 

193 OCH3 OCH3 OCH3 82% 

194 OCH3 H OCH3 82% 

195 H H H 77% 



Family XI, XII and XIII: Styryl-Cyclopropylamine 

~ 324 ~!
!

The 4-bromophenylacetic acid melting point temperature of 120°C was used this time for the 

reaction instead of the usual 100°C (4-bromobenzoic acid melting point). 

The final products (196-198) were prepared using the CDI coupling reaction and the 

cyclopropylamine as previously cited. The reaction scheme and the yield of the three 

different product are reported in scheme 11.7. 

!

!

!

!

!

!
!

 

 

Scheme 11.7: Final synthesis of Syryl-Phenyl acetic acid-cyclopropylamine derivatives. 

 

 

11.2.3  Preparation of Styryl-β-alanine-Cyclopropylamine derivatives 

(Family XIII) 

 

In order to elongate the lateral chain of these new cyclopropylamine molecules, the amino 

acid β-alanine (214) was attached to the 4-[(E)-2-(3,4,5-unsubstituted/substitutedphenyl)-1-

ethenyl]benzoic acid derivatives (11-12/14-15) (family XI). The attempt to form an amidic 

bond between the β-alanine and these acid derivatives following the procedure reported by 

Liu et al.  (7) failed due to the poor solubility of these acids in water. In fact, the amphoteric 

nature of the amino acid required the reaction to be done in aqueous 2M NaOH solution and 

after the procedure time only acid starting material was recovered which precipitated out due 

to the low solubility in water. To overcome this problem the β-alanine has been made soluble 

in organic solvent by preparing its ethyl ester hydrochloride salt. After overnight reflux of β-

alanine in ethanol using oxalyl chloride (199), the pure β-alanine ethyl ester hydrochloride 

(204) was obtained by precipitation from diethyl ether.(8) 

 

Final Compound R1 R2 R3 YIELD 

196 (MCC316) OCH3 OCH3 OCH3 57% 

197 (MCC315) OCH3 H OCH3 34% 

198 (MCC314) H H H 52% 
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Scheme 11.8: Esterification of β-alanine. 

!

The acyl chloride derivative (200-201) of the 4-[(E)-2-(3,4,5-

unsubstituted/substitutedphenyl)-1-ethenyl]benzoic acid derivatives (11-12) (scheme 11.9) 

were synthesised as previously reported for preparation of compounds (202-203) (scheme 

11.3). 

 
 

 

 

 

 

 

 

 

 

Scheme 11.9: Chlorination of the acid derivatives 

 

The acyl chloride derivatives (200-201/203) were then reacted with the β-alanine ethyl ester 

hydrochloride (204) in DCM and triethylamine as base in the nucleophilic substitution 

already reported above. Substitution of the chlorine by the amino group of 204 gave the 

amidic bond of the desired products 205-207 in which the β-alanine lateral chain was 

attached to the original scaffold (scheme 11.10). 

 
 

 

 

 

 

Product R1 R2 R3 YIELD 

200 OCH3 OCH3 OCH3 73% 

201 OCH3 H OCH3 48% 
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Scheme 11.10: Addition of the lateral chain. 

!

The ethyl ester group is the hydrolysed in step V (scheme 11.11) to produce the free 

carboxylic acid derivatives (208-210) (scheme 11.11) that will be used in the last step. A 

basic hydrolysis in aqueous 2M NaOH and methanol was chosen.(8) 

 

 

 

 

 

 

 

 

 

 

Scheme 11.11: Hydrolysis of the ester to form the free carboxylic acid. 

 

The carboxylic acid derivatives (205-207) can then undergo the previously mentioned CDI 

coupling reaction forming the desired final compounds of family XIII (scheme 11.12). 

 

Product R1 R2 R3 YIELD 

205 OCH3 OCH3 OCH3 53% 

206 OCH3 H OCH3 66% 

207 H H H 47% 

Product R1 R2 R3 YIELD 

208 OCH3 OCH3 OCH3 64% 

209 OCH3 H OCH3 70% 

210 H H H 88% 
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Scheme 11.12: Coupling reaction with the cyclopropylamine (187). 

 

 

11.3  CYP24A1/CYP27B1 enzymatic assay  
 
The CYP24A1 enzymatic assay was performed following the methodology previously 

described. The results are reported below together with the reference value for ketoconazole 

(KTZ) and our best compound MCC204 (table 8.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Final Compound R1 R2 R3 YIELD 

211 (MCC309) OCH3 OCH3 OCH3 50% 

212 (MCC308) OCH3 H OCH3 45% 

213 (MCC307) H H H 45% 
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Table 11.1: CYP24A1 enzymatic assay results. 

!

All the prepared compounds displayed a significant loss of the CYP24A1 inhibitory activity 

with a IC50 values higher than 10 µM. No data were obtained for MCC316 due to its 

interference with the assay. The CYP27B1 assay was not performed due to the poor 

CYP24A1 inhibitory activity.  

 

11.4 Results discussion 

 

Unfortunately the replacement of the imidazole by the cyclopropylamine group did not give 

the desired results in terms of selectivity and the CYP24A1 inhibitory activity was drastically 

reduced if compared with our previous families. Probably, the nitrogen lone pair of 

cyclopropylamine is shared with the oxygen of the amidic bond and it is not available for the 

interaction with the iron haem reducing the inhibitory activity of these families. The styryl-β-

alanine family (MCC307-MCC309), the one with the longest lateral chain, showed the best 

activity profile confirming the importance of the length of the lateral chain to entirely occupy 

the active site. The 3,5-dimethoxy compounds of the three different families (MCC308, 

  CYP24A1 

Name R IC50 (µM) Ki (µM) 

MCC307 styrylbenzene! 31.6 2.23 ± 0.37 

MCC308 3,5-dimethoxy-styrylbenzene! 17.5 1.24 ± 0.16 

MCC309 3,4,5-trimethoxy-styrylbenzene! 25.6 1.80 ± 0.17 

MCC310 styrylbenzene 41.6 2.94 ± 0.43 

MCC311 3,5-dimethoxy-styrylbenzene 33.0 2.33 ± 0.21 

MCC312 3,4,5-trimethoxy-styrylbenzene! 68.8 4.86  

MCC313 4-fluoro-styrylbenzene 87.0 6.14 

MCC314 styrylbenzene 35.8 2.53 ± 0.42 

MCC315 3,5-dimethoxy-styrylbenzene 27.0 1.91 ± 0.42 

MCC316 3,4,5-trimethoxy-styrylbenzene! Interference in assay 

MCC204 " 0.11 0.0078 ± 0.0008 

KTZ "! 0.47 0.035 ± 0.005 
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MCC311 and MCC315) gave the best IC50 in comparison with the other derivatives 

underlining the importance of the two methoxy group for the interaction with the enzyme 

active site.  

 

11.5 Methods  

 

11.5.1  CYP24A1 and CYP27B1 inhibition assay 

All the enzymatic assay information is reported in section 3.5.4 chapter 3. 
 

11.5.2  Chemistry General Information 

All chemistry general information is reported in section 3.5.5 chapter 3. 

!

11.6 Experimental 
 

11.6.1 General method for the preparation of different 4-[(E)-2-(3,4,5-

unsubstituted/substitutedphenyl)-1-ethenyl]phenyl-acetic acid 

 

 

 

 

 

 

 

See procedure 3.6.2 chapter 3. Reaction Temperature 120°C. 

 

 

 

 

4-[(E)-2-(3,4,5-trimethoxyphenyl)-1-ethenyl]phenyl acetic acid (193): 
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(C19H20O5; M.W. 328.35) 

!

!

!

!

!

!

Reagent: 1,2,3-Trimethoxy-5-vinyl-benzene (5) (0.7 g, 3.6 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.55. 

Yield: 1.13 g (83%) as a yellow solid. 

Melting Point: 132-134˚C  

Microanalysis: Calculated for C19H20O5 0.2H2O (331.73411); Theoretical: %C = 68.79, %H = 

6.19; Found: %C = 68.77, %H = 6.14. 
1H-NMR (DMSO-d6), δ : 3.58 (s, 2H, CH2, H-2’’),  3.69 (s, 3H, OCH3, H-6”), 3.84 (s, 6H, 

OCH3, H-5”, H-7”), 6.93 (s, 2H, H-2’, H-6’), 7.16 (d, J = 16.5 Hz, 1H,  H-alkene), 7.22 (d, J 

= 16.5 Hz, 1H,  H-alkene), 7.27 (d, J = 8.3 Hz, 2H, H-3, H-5), 7.53 (d, J = 8.2 Hz, 2H, H-2, 

H-6), 12.32 (b.s., 1H, COOH).  
13C-NMR (DMSO-d6), δ : 40.40 (CH2, C-2’’), 55.88 (CH3, C-5”, C-7”), 60.05 (CH3, C-6”), 

103.88, 126.16, 127.44, 128.21, 129.72 (CH, C-2, C-3, C-6, C-6, C-2’, C-6’, C-3”, C-4’’), 

132.75, 134.27, 135.53, 137.31, 153.04, 172.57 ( C, C-1, C-4, C-1’, C-3‘, C-4’, C-5’,C-1”). 

 

4-[(E)-2-(3,5-dimethoxyphenyl)-1-ethenyl]phenyl acetic acid (194): 

(C18H18O4; M.W. 298.33) 

 

 

 

 

 

Reagent: 1,3-Dimethoxy-5-vinyl-benzene (6) (0.63 g, 3.8 mmol) 
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T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.37. 

Yield: 0.94 g (83%) as a yellow solid. 

Melting Point: 118-120 ˚C  

Microanalysis: Calculated for C18H18O4 0.1H2O (299.92203); Theoretical: %C = 72.08, %H = 

6.11; Found: %C = 72.03, %H = 6.15. 
1H-NMR (DMSO-d6), δ: 3.58 (s, 2H, CH2, H-2’’),  3.79 (s, 6H, OCH3, H-5”,  H-6”), 6.41-

6.43 (m, 1H, H-4’),  6.79 (d, J = 2.3 Hz, 2H, H-2’, H-6’), 7.16 (d, J = 16.5 Hz, 1H, H-alkene), 

7.23-7.30 (m, 3H, H-alkene, H-3, H-5), 7.55 (d, J = 8.3 Hz, 2H, H-2, H-6), 12.41 (b.s., 1H, 

COOH). 
13C-NMR (DMSO-d6), δ: 40.41 (CH2, C-2’’), 55.18 (CH3, C-5”, C-6”), 99.89, 104.42, 

126.37, 128.10, 128.60, 129.71 (CH, C-2, C-3, C-5 C-6 C-2’, C-4’, C-6’, C-3”, C-4’’), 

134.53, 153.33, 139.09, 160.65, 172.55 (C, C-1, C-4, C-1’, C-3’, C-5’, C-1”). 
 

4-Styryl-phenyl-acetic acid (195) (9): 

(C16H14O2; M.W. 238.28) 

 

 

 

 

Reagent: Styrene (9) (1.2 g, 11.6 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.57. 

Yield: 1.72 g (77%) as a yellow solid 

Melting Point: 176-178 ˚C (lit. 186-187 ˚C) (9) 

1H-NMR (DMSO-d6), δ : 3.58 (s, 2H, CH2, H-2’’),  7.23-7.24 (m, 2H, H-alkene), 7.25-7.31 

(m, 3H, Ar.), 7.36-7.42 (m, 2H, Ar.), 7.56 (d, J = 8.0 Hz, 2H, Ar.), 7.61 (d, J = 8.1 Hz, 2H, 

Ar.), 12.15 (b.s., 1H, COOH).  
13C-NMR (DMSO-d6), δ : 40.41 (CH2, C-2’’), 126.32, 126.39, 127.53, 128.02, 128.12, 

128.66, 129.69 (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-4’, C-5’, C-6’, C-3”, C-4’’), 134.59, 

135.38, 137.04, 172.59 (C, C-1, C-4, C-1’, C-1’’). 
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11.6.2 General method for the preparation of different 4-[(E)-2-(3,4,5-

unsubstituted/substituted-phenyl)-1-ethenyl]benzoyl chloride 

 

 

 

 

 

To a suspension of different 4[(E)-2-(3,4,5-unsubstituted/substitutedphenyl)-1-

ethenyl]benzoic acid (11-12/114-15) (1 equiv.) in DCM (6 mL/mmol) at 0°C was added 

oxalyl chloride (199) (1.2 equiv.) dropwise followed by 3-5 drops of DMF. After 1 h at room 

temperature, the reaction was refluxed for 4 h. On completion, the solvent was removed 

under reduced pressure giving the desired product as a solid. 

 

4-[(E)-2-(3,4,5-trimethoxyphenyl)-1-ethenyl]benzoyl chloride (200): 

(C18H17O4Cl; M.W. 332.77) 

!

!

!

!

!

!

Reagent: 4-[(E)-2-(3,4,5-trimethoxyphenyl)-1-ethenyl]benzoic acid (11) (0.75 g, 2.4 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.75. 

Yield: 0.60 g (73%) as an orange solid. 

Melting Point: 144-146 ˚C  

HRMS (EI): Calculated mass: 332.0810 [M]+, Measured mass: 332.0804 [M]+ 
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1H-NMR (DMSO-d6), δ : 3.69 (s, 3H, OCH3, H-5”), 3.85 (s, 6H, OCH3, H-4”, H-6”), 6.98 

(s, 2H, H-2’, H-6’), 7.31 (d, J = 16.5 Hz, 1H,  H-alkene), 7.35 (d, J = 16.5 Hz, 1H,  H-

alkene), 7.70 (d, J = 8.5 Hz, 2H, H-3, H-5), 7.95 (d, J = 8.3 Hz, 2H, H-2, H-6). 
13C-NMR (DMSO-d6), δ : 55.92 (CH3, C-4”, C-6”), 60.07 (CH3, C-5”), 104.33, 126.23, 

126.72, 129.76, 131.12 (CH, C-2, C-3, C-6, C-6, C-2’, C-6’, C-2”, C-3’’), 129.25, 132.30, 

137.80, 141.54, 153.06, 167.01 ( C, C-1, C-4, C-1’, C-3‘, C-4’, C-5’,C-1”). 
 

4-[(E)-2-(3,5-dimethoxyphenyl)-1-ethenyl]benzoyl chloride (201): 

(C17H15O3Cl; M.W. 302.75) 

 

 

 

 

 

 

Reagent: 4-[(E)-2-(3,5-dimethoxyphenyl)-1-ethenyl]benzoic acid (12) (1.78 g, 6.3 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.76. 

Yield: 0.91 g (48%) as a yellow solid. 

Melting Point: 198-200 ˚C  

HRMS (EI): the compound quickly hydrolysed and only the starting acid signals were 

present. The presence of the compound was confirmed by the obtainment of the desired 

product in the final step 
1H-NMR (DMSO-d6), δ: 3.78 (s, 6H, OCH3, H-4”, H-5”), 6.45 (t, J = 2.3 Hz, 1H, H-4’),  

6.82 (d, J = 2.3 Hz, 2H, H-2’, H-6’), 7.31 (d, J = 16.6 Hz, 1H,  H-alkene), 7.35 (d, J = 16.5 

Hz, 1H, H-alkene), 7.70 (d, J = 8.4 Hz, 2H, H-3, H-5), 7.93 (d, J = 8.4 Hz, 2H, H-2, H-6). 
13C-NMR (DMSO-d6), δ: 55.23 (CH3, C-4”, C-5”), 100.40, 104.79, 126.48, 127.90, 129.73, 

130.97 (CH, C-2, C-3, C-5 C-6 C-2’, C-4’, C-6’, C-2”, C-3’’), 129.47, 138.63, 141.29, 

160.66, 167.05 (C, C-1, C-4, C-1’, C-3’, C-5’, C-1”). 
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4-[(E)-2-(fluorophenyl)-1-ethenyl]benzoyl chloride (202): 

(C15H10O2FCl; M.W. 260.69) 

 

 

 

 

 

Reagent: 4-[(E)-2-(4-fluorophenyl)-1-ethenyl]benzoic acid (14) (0.75 g, 3.1 mmol)  

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.90. 

Yield: 0.76 g (94%) as a yellow solid. 

Melting Point: 98-100 ˚C 

HRMS (EI): Calculated mass: 260.0399 [M]+, Measured mass: 260.0395 [M]+ 
1H-NMR (DMSO-d6), δ: 7.23 (m, 2H, Ar), 7.28 (d, J = 16.5 Hz, 1H, H-alkene), 7.41 (d, J = 

16.5 Hz, 1H , H-alkene), 7.67-7.73 (m, 4 H, Ar), 7.94 (d, J = 8.3 Hz, 2H, H-2, H-6). 
13C-NMR (DMSO-d6), δ: 115.54, 155.71, 126.38, 127.27, 127.29, 128.68, 128.75, 129.72 

(CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-5’, C-6’, C-2”, C-3”), 129.39, 133.21, 133.23, 141.34, 

160.95, 162.90, 166.95 (C, C-1, C-4, C-1’, C-4’, C-1”). 

 

4-Styryl-benzoyl chloride (203) (10): 

(C15H11O2Cl; M.W. 242.70) 

 

 

 

 

Reagent: 4-Styryl-benzoic-acid (15) (1 g, 4.4 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.90. 

Yield: 0.91 g (84%) as a yellow solid solid 

Melting Point: 116-118 ˚C (lit. 131-133 ˚C) (10) 
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1H-NMR (DMSO-d6), δ : 7.29-7.37 (m, 2H, Ar, H-alkene), 7.38-7.44 (m, 3H, Ar, H-alkene), 

7.64-7.67 (m, 2H, Ar) 7.73 (d, J =8.3 Hz, 2H, Ar), 7.94 (d, J = 8.3 Hz, 2H, Ar). 
13C-NMR (DMSO-d6), δ : 126.44, 126.784, 127.38, 128.15, 128.74, 129.72, 130.95,  (CH, 

C-2, C-3, C-5, C-6, C-2’, C-3’, C-4’, C-5’, C-6’, C-2”, C-3’’), 129.45, 136.61, 141.37, 167.00 

(C, C-1, C-4, C-1’, C-1’’). 
 

11.6.3 Preparation of β-Alanine ethyl ester hydrochloride 

(C5H12O2NCl; M.W. 153.60) 

 

 

 

 

Oxalyl chloride (1.2 equiv.)  (199) was added dropwise to stirring EtOH (30 mL) at 0°C. 

After 20 min at 0°C, β-alanine (1 equiv.) (214) was slowly added to the solution. This 

mixture was refluxed overnight. The volume of the solution was reduced by half under 

vaccum and diethyl ether was added giving a white precipitate. The solid was then filtered off 

and washed with diethyl ether obtaining the desired compound. 

Yield: quantitative as a white solid  
1H-NMR (CD3OD), δ : 1.28 (t, J = 7.2 Hz, 3H, CH3), 2.76 (t, J = 6.6 Hz, 2H, H-4), 3.21 (t, J 

= 6.6 Hz, 2H, H-5),  4.12 (q, J = 7.2 Hz, 2H, H-2), 4.97 (s, 2H, NH2). 

 

11.6.4 Preparation of amidic bond from acyl chloride derivative 

 

 

 

 

Using an amino hydrochloride salt: the acyl chloride derivative (1 equiv.) and the amino 

hydrochloride salt (1.1 equiv.) were suspended in DCM (7.5 mL/mmol) under N2 
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atmosphere. The reaction was mixed and cooled to 0°C. Triethylamine (2.3 equiv.) was 

added dropwise and the reaction was left stirring at 0°C for 10 min, then at room temperature 

for a further 20 min. The reaction mixture was diluted with DCM (15 mL/mmol) and washed 

twice with aqueous 2M HCl (2 x 15 mL/mmol). The organic phase was washed with brine 

(15 mL/mmol), dried under MgSO4 and then removed under vacuum. 

Using a free amine: the acyl chloride derivative (1 equiv.) was dissolved in DCM (7.5 

mL/mmol) and triethylamine (2.2 equiv.) under N2 atmosphere. The reaction mixture was 

cooled to 0°C, then amine (1.3 equiv.) was added dropwise and the reaction left stirring at 

0°C for 10 min, then at room temperature for a further 20 min. The reaction mixture was 

diluted with DCM (15 mL/mmol) and washed twice with aqueous 2M HCl (2 x 15 

mL/mmol). The organic phase was washed with brine (15 mL/mmol), dried under MgSO4 

and then removed under vacuum. 

 

3-(4-[(E)-2-(3,4,5-Trimethoxyphenyl)vinyl]benzoylamino)propionic acid 

ethyl ester (205): 

(C23H27O6N; M.W. 413.46) 

 

 

 

 

 

 

Reagents: 4-[(E)-2-(3,4,5-trimethoxyphenyl)-1-ethenyl]benzoyl chloride (200) (0.60 g, 1.8 

mmol) and β-alanine ethyl ester hydrochloride (204) (0.30 g, 2 mmol). 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.73. 

Yield: 0.39 g (53%) as a pale yellow solid 

Melting Point: 110-112 ˚C  

HRMS (EI): Calculated mass: 413.1833 [M]+, Measured mass: 413.1826 [M]+ 
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1H-NMR (DMSO-d6), δ : 1.19 (t, J = 7.2 Hz, 3H, CH3), 2.59 (d, J = 7.0 Hz, 2H, H-4’’’), 

3.48-3.55 (m, 2H, H-5’’’), 3.69 (s, 3H, OCH3, H-5”), 3.85 (s, 6H, OCH3, H-4”, H-6”), 4.09 

(q, J = 7.2 Hz, 1H,  H-2’’’), 6.97 (s, 2H, H-2’, H-6’), 7.28 (d, J = 16.5 Hz, 1H, H-alkene), 

7.32 (d, J = 16.5 Hz, 1H, H-alkene), 7.67 (d, J = 8.4 Hz, 2H, H-3, H-5), 7.85 (d, J = 8.3 Hz, 

2H, H-2, H-6), 8.53 (t, J = 5.8 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ : 14.05 (CH3, C-1’’’), 33.79, 35.50, 59.89 (CH2, C-2’’’, C-4’’’, C-

5’’’), 55.89 (CH3, C-4”, C-6”), 60.06 (CH3, C-5”), 104.16, 126.00, 126.84, 127.62, 130.33 

(CH, C-2, C-3, C-6, C-6, C-2’, C-6’, C-2”, C-3’’), 132.43, 132.85, 137.65, 139.91, 153.05, 

165.84, 171.27 ( C, C-1, C-4, C-1’, C-3‘, C-4’, C-5’,C-1”, C-3’’’). 

 

3-(4-[(E)-2-(3,5-dimethoxyphenyl)vinyl]benzoylamino)propionic acid ethyl 

ester (206): 

(C22H25O5N; M.W. 383.43) 

 

 

 

 

 

 

Reagents: 4-[(E)-2-(3,5-dimethoxyphenyl)-1-ethenyl]benzoyl chloride (201) (0.90 g, 2.9 

mmol) and β-alanine ethyl ester hydrochloride (204) (0.50 g, 3.3 mmol). 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.73. 

Yield: 0.74 g (66%) as a yellow solid 

Melting Point: 134-136 ˚C  

HRMS (EI): Calculated mass: 384.1805 [M + H]+, Measured mass: 384.1803 [M + H]+ 
1H-NMR (DMSO-d6), δ: 1.19 (t, J = 7.2 Hz, 3H, CH3), 2.59 (d, J = 7.1 Hz, 2H, H-4’’’), 

3.48-3.53 (m, 2H, H-5’’’), 3.79 (s, 6H, OCH3, H-4”,  H-5”), 4.08 (q, J = 7.2 Hz, 1H,  H-2’’’), 

6.45 (t, J = 2.2 Hz, 1H, H-4’),  6.82 (d, J = 2.2 Hz, 2H, H-2’, H-6’), 7.29 (d, J =16.6 Hz, 1H,  
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H-alkene), 7.33 (d, J = 16.5 Hz, 1H, H-alkene), 7.68 (d, J = 8.4 Hz, 2H, H-3, H-5), 7.84 (d, J 

= 8.4 Hz, 2H, H-2, H-6), 8.54 (t, J = 5.6 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ: 14.05 (CH3, C-1’’’), 33.79, 35.50, 59.89 (CH2, C-2’’’, C-4’’’, C-

5’’’), 55.21 (CH3, C-4”, C-5”), 100.27, 104.69, 126.22, 127.59, 128.02, 130.20 (CH, C-2, C-

3, C-5 C-6 C-2’, C-4’, C-6’, C-2”, C-3’’), 133.10, 138.77, 139.69, 160.67, 165.83, 171.27 (C, 

C-1, C-4, C-1’, C-3’, C-5’, C-1”, C-3’’’). 

 

3-(4-[(E)-styryl-benzoylamino)propionic acid ethyl ester (207): 

(C20H21O3N; M.W. 323.38) 

 

 

 

 

 

Reagents: 4-Styryl-benzoyl chloride (202) (1 g, 4.1 mmol) and β-alanine ethyl ester 

hydrochloride (204) (0.70 g, 4.5 mmol). 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.38. 

Yield: 0.62 g (47%) as a pale yellow solid 

Melting Point: 134-136 ˚C  

HRMS (EI): tbd 
1H-NMR (DMSO-d6), δ : 1.19 (t, J = 7.2 Hz, 3H, CH3), 2.60 (d, J = 7.1 Hz, 2H, H-4’’’), 

3.48-3.55 (m, 2H, H-5’’’), 4.08 (q, J = 7.2 Hz, 1H,  H-2’’’), 7.29-7.34 (m, 2H, Ar, H-alkene), 

7.36-7.44 (m, 3H, Ar, H-alkene), 7.64 (d, J = 7.7 Hz, 2H, Ar) 7.69 (d, J = 8.4 Hz, 2H, Ar), 

7.85 (d, J = 8.4 Hz, 2H, Ar), 8.54 (t, J = 5.7 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ : 14.05 (CH3, C-1’’’), 33.22, 35.51, 59.89 (CH2, C-2’’’, C-4’’’, C-

5’’’), 126.20, 126.66, 127.58, 127.98, 128.73, 129.70, 130.15,  (CH, C-2, C-3, C-5, C-6, C-

2’, C-3’, C-4’, C-5’, C-6’, C-2”, C-3’’), 133.05, 136.74, 139.77, 165.84, 171.27 (C, C-1, C-4, 

C-1’, C-1’’, C-3’’’). 
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N-Cyclopropyl-4-[(E)-2-(4-fluorophenyl)vinyl]benzamide (190) (MCC313): 

(C18H16O2FN; M.W. 281.32) 

 

 

 

 

 

Reagents: 4-[(E)-2-(4-fluorophenyl)-1-ethenyl]benzoyl chloride (202) (0.37 g, 1.4 mmol) and 

cyclopropylamine (187) (0.13 mL, 1.8 mmol)  

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.46 

Purification: recrystallization from ethanol. 

Yield: 0.18 g (46%) as a white crystals. 

Melting Point: 249-250 ˚C 

Microanalysis: Calculated for C18H16FNO (281.32); Theoretical: %C = 76.85, %H = 5.73, 

%N = 4.98; Found: %C = 76.88, %H = 5.72, %N = 4.95. 
1H-NMR (DMSO-d6), δ: 0.57-0.62 (m, 2H, CH2-cyclopropylamine), 0.68-0.74 (m, 2H, CH2-

cyclopropylamine), 2.83-2.89 (m, 1H, CH-cyclopropylamine), 7.20-7.29 (m, 3H, Ar, H-

alkene), 7.38 (d, J = 16.5 Hz, 1H, H-alkene), 7.63-7.72 (m, 4 H, Ar), 7.84 (d, J = 8.2 Hz, 2H, 

H-2, H-6), 8.42 (d, J = 4.4 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ: 5.73 (CH2, C-2#, C-3#), 23.02 (CH, C-1#),  115.53, 155.70, 126.08, 

127.44, 127.45, 128.53, 128.59, 128.89 (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-5’, C-6’, C-

2”, C-3”), 133.13, 133.36, 133.39, 139.61, 160.85, 162.80, 167.00 (C, C-1, C-4, C-1’, C-4’, 

C-1”). 

 

N-Cyclopropyl-4-styryl-benzamide (191) (MCC310): 

(C18H17O2N; M.W. 263.33) 
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Reagents: 4-Styryl-benzoyl chloride (203) (0.5 g, 2.1 mmol) and cyclopropylamine (187) 

(0.0.19 mL, 2.7 mmol)  

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.73 

Purification: recrystallization from ethanol. 

Yield: 0.12 g (22%) as a white crystals. 

Melting Point: 220-222 ˚C 

Microanalysis: Calculated for C18H17NO (263.33); Theoretical: %C = 82.10, %H = 6.51, %N 

= 5.32; Found: %C = 82.01, %H = 6.54, %N = 5.32. 
1H-NMR (DMSO-d6), δ : 0.57-0.62 (m, 2H, CH2-cyclopropylamine), 0.68-0.74 (m, 2H, 

CH2-cyclopropylamine), 2.82-2.91 (m, 1H, CH-cyclopropylamine), 7.28-7.33 (m, 2H, Ar, H-

alkene), 7.35-7.43 (m, 3H, Ar, H-alkene), 7.62-7.66 (m, 2H, Ar.) 7.68 (d, J = 8.3 Hz, 2H, Ar), 

7.84 (d, J = 8.3 Hz, 2H, Ar), 8.42 (d, J = 4.5 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ : 5.73 (CH2, C-2#, C-3#), 23.02 (CH, C-1#),  126.13, 126.65, 

127.53, 127.58, 127.96, 128.72, 130.07  (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-4’, C-5’, C-

6’, C-2”, C-3’’), 133.14, 136.75, 139.66, 166.40 (C, C-1, C-4, C-1’, C-1’’). 

 

11.6.5 Hydrolysis of ester to carboxylic acid 

  

 

 

An aqueous solution of 2M NaOH (3.1 mL/mmol) was added dropwise to a stirring solution 

of the ester (1 mmol) in MeOH (10 mL/mmol). After stirring for 2 h at room temperature, the 

reaction mixture was neutralised with aqueous 2M HCl and extracted with EtOAc (2 x 20 

mL/mmol). The organic layer was washed with brine (15 mL/mmol) and dried over MgSO4. 

The organic solvent was removed under reduced pressure giving the desired product. 

 

3-(4-[(E)-2-(3,4,5-trimethoxyphenyl)vinyl]benzoylamino)propionic acid  

(208): 

(C21H23O6N; M.W. 385.410) 
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Reagent: 3-(4-[(E)-2-(3,4,5-trimethoxyphenyl)vinyl]benzoylamino)propionic acid ethyl ester 

(205) (0.39 g, 0.9 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.1. 

Yield: 0.23 g (64%) as a pale yellow solid 

Melting Point: 169-170 ˚C  

HRMS (EI): tbd 
1H-NMR (DMSO-d6), δ : 2.54 (t, J = 7.2 Hz, 2H, H-2’’’), 3.48-3.51 (m, 2H, H-3’’’), 3.69 (s, 

3H, OCH3, H-5”), 3.85 (s, 6H, OCH3, H-4”, H-6”), 6.97 (s, 2H, H-2’, H-6’), 7.28 (d, J = 16.5 

Hz, 1H, H-alkene), 7.32 (d, J = 16.5 Hz, 1H, H-alkene), 7.66 (d, J = 8.4 Hz, 2H, H-3, H-5), 

7.86 (d, J = 8.4 Hz, 2H, H-2, H-6), 8.53 (t, J = 5.8 Hz, 1H, NH), 12.40 (b.s., 1H, -COOH). 
13C-NMR (DMSO-d6), δ : 33.78, 35.55 (CH2, C-2’’’, C-3’’’), 55.89 (CH3, C-4”, C-6”), 

60.07 (CH3, C-5”), 104.16, 125.19, 126.86, 127.63, 130.31 (CH, C-2, C-3, C-6, C-6, C-2’, C-

6’, C-2”, C-3’’), 132.44, 132.90, 137.64, 139.88, 153.05, 165.79, 172.85 ( C, C-1, C-4, C-1’, 

C-3‘, C-4’, C-5’,C-1”, C-1’’’). 
 

3-(4-[(E)-2-(3,5-dimethoxyphenyl)vinyl]benzoylamino)propionic acid  

(209): 

(C20H21O5N; M.W. 355.38) 
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Reagent: 3-(4-[(E)-2-(3,5-dimethoxyphenyl)vinyl]benzoylamino)propionic acid ethyl ester 

(206) (0.74 g, 1.9 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.1. 

Yield: 0.51 g (70%) as a yellow solid 

Melting Point: 138-140 ˚C  

HRMS (EI): Calculated mass: 356.1492 [M + H]+, Measured mass: 356.1492 [M + H]+ 
1H-NMR (DMSO-d6), δ: 2.53 (t, J = 7.1 Hz, 2H, H-2’’’), 3.45-3.50 (m, 2H, H-3’’’), 3.79 (s, 

6H, OCH3, H-4”,  H-5”), 6.45 (t, J = 2.2 Hz, 1H, H-4’),  6.82 (d, J = 2.2 Hz, 2H, H-2’, H-6’), 

7.29 (d, J =16.4 Hz, 1H,  H-alkene), 7.33 (d, J =16.4 Hz, 1H, H-alkene), 7.67 (d, J = 8.2 Hz, 

2H, H-3, H-5), 7.85 (d, J = 8.2 Hz, 2H, H-2, H-6), 8.51 (t, J = 5.4 Hz, 1H, NH), 12.40 (b.s., 

1H, -COOH). 
13C-NMR (DMSO-d6), δ: 33.78, 35.56 (CH2, C-2’’’, C-3’’’), 55.21 (CH3, C-4”, C-5”), 

100.26, 104.68, 126.22, 127.60, 128.03, 130.18 (CH, C-2, C-3, C-5 C-6 C-2’, C-4’, C-6’, C-

2”, C-3’’), 133.15, 138.78, 139.65, 160.67, 165.78, 172.84 (C, C-1, C-4, C-1’, C-3’, C-5’, C-

1”, C-1’’’). 

 

3-(4-[(E)-styryl-benzoylamino)propionic acid  (210): 

(C18H17O3N; M.W. 295.33) 

 

 

 

 

 

Reagent: 3-(4-[(E)-styryl-benzoylamino)propionic acid ethyl ester (207) (0.62 g, 1.9 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.1. 

Yield: 0.49 g (88%) as a white solid 

Melting Point: 210-212 ˚C  

HRMS (EI): tbd  
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1H-NMR (DMSO-d6), δ : 2.54 (t,  J = 7.3 Hz, 2H, H-2’’’), 3.46-3.51 (m, 2H, H-3’’’), 7.28-

7.34 (m, 2H, Ar, H-alkene), 7.36-7.44 (m, 3H, Ar, H-alkene), 7.64 (d, J = 8.0 Hz, 2H, Ar) 

7.69 (d, J =8.3 Hz, 2H, Ar), 7.85 (d, J = 8.3 Hz, 2H, Ar), 8.53 (t, J = 5.3 Hz, 1H, NH), 12.30 

(b.s., 1H, -COOH) 
13C-NMR (DMSO-d6), δ : 33.79, 35.56, (CH2, C-2’’’, C-3’’’), 126.19, 126.66, 127.51, 

127.59, 127.98, 128.73, 130.14  (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, C-4’, C-5’, C-6’, C-2”, 

C-3’’), 133.09, 136.73, 139.73, 165.80, 172.86 (C, C-1, C-4, C-1’, C-1’’, C-1’’’). 

 

11.6.6 Preparation of Cyclopropyl-benzamide derivatives through CDI 

coupling reaction 

 

 

 

 

 

See procedure 3.6.3 chapter 3.  

 

N-Cyclopropyl-4-[(E)-2-(3,4,5-trimethoxyphenyl)vinyl]benzamide (188) 

(MCC312): 

(C21H23O4N; M.W. 353.41) 

 

 

 

 

 

Reagent: 4-[(E)-2-(3,4,5-trimethoxyphenyl)-1-ethenyl]benzoic acid (11) (0.5 g, 1.6 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.54. 

Yield: 0.36 g (64%) as a white solid. 
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Melting Point: 220-222 ˚C  

Microanalysis: Calculated for C21H23NO4 0.3H2O (358.56727); Theoretical: %C = 70.34, %H 

= 6.63, %N = 3.90; Found: %C = 70.25, %H = 6.38, %N = 3.78. 
1H-NMR (DMSO-d6), δ : 0.56-0.62 (m, 2H, CH2-cyclopropylamine), 0.67-0.75 (m, 2H, 

CH2-cyclopropylamine), 2.82-2.92 (m, 1H, CH-cyclopropylamine), 3.70 (s, 3H, OCH3, H-

5”), 3.85 (s, 6H, OCH3, H-4”, H-6”), 6.97 (s, 2H, H-2’, H-6’), 7.27 (d, J = 16.5 Hz, 1H,  H-

alkene), 7.31 (d, J = 16.5 Hz, 1H,  H-alkene), 7.65 (d, J = 8.5 Hz, 2H, H-3, H-5), 7.84 (d, J = 

8.5 Hz, 2H, H-2, H-6), 8.40 (d, J = 4.1 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ : 5.72 (CH2, C-2#, C-3#), 23.02 (CH, C-1#), 55.89 (CH3, C-4”, C-

6”), 60.06 (CH3, C-5”), 104.16, 125.93, 126.88, 127.62, 130.24 (CH, C-2, C-3, C-6, C-6, C-

2’, C-6’, C-2”, C-3’’), 132.45, 132.95, 137.64, 139.81, 153.05, 167.00 ( C, C-1, C-4, C-1’, C-

3‘, C-4’, C-5’,C-1”). 

 

N-Cyclopropyl-4-[(E)-2-(3,5-dimethoxyphenyl)vinyl]benzamide (189) 

(MCC311): 

(C20H21O3N; M.W. 323.39) 

 

 

 

 

 

 

Reagent: 4-[(E)-2-(3,5-dimethoxyphenyl)-1-ethenyl]benzoic acid (12) (0.4 g, 1.4 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.66. 

Yield: 0.25 g (56%) as a white solid. 

Melting Point: 184-186 ˚C  

Microanalysis: Calculated for C20H21NO3 0.3H2O (328.5567); Theoretical: %C = 73.11, %H 

= 6.62, %N = 4.26; Found: %C = 72.90, %H = 6.38, %N = 4.23. 
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1H-NMR (DMSO-d6), δ: 0.57-0.62 (m, 2H, CH2-cyclopropylamine), 0.67-0.74 (m, 2H, CH2-

cyclopropylamine), 2.82-2.92 (m, 1H, CH-cyclopropylamine), 3.79 (s, 6H, OCH3, H-4”,  H-

5”), 6.45 (t, J = 2.1 Hz, 1H, H-4’),  6.82 (d, J = 2.2 Hz, 2H, H-2’, H-6’), 7.30 (d, J = 16.5 Hz, 

1H,  H-alkene), 7.34 (d, J = 16.5 Hz, 1H, H-alkene), 7.67 (d, J = 8.3 Hz, 2H, H-3, H-5), 7.84 

(d, J =8.3 Hz, 2H, H-2, H-6), 8.41 (d, J = 4.2 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ: 5.72 (CH2, C-2#, C-3#), 23.02 (CH, C-1#), 55.21 (CH3, C-4”, C-

5”), 100.26, 104.67, 126.16, 127.59, 128.05, 130.12 (CH, C-2, C-3, C-5 C-6 C-2’, C-4’, C-6’, 

C-2”, C-3’’), 133.19, 138.78, 139.58, 160.66, 166.99 (C, C-1, C-4, C-1’, C-3’, C-5’, C-1”). 

 

N-Cyclopropyl-2-(4-[(E)-2-(3,4,5-trimethoxyphenyl)vinyl]phenyl)-

acetamide (196) (MCC316): 

(C22H25O4N; M.W. 361.44) 

 

 

 

 

Reagent: 4-[(E)-2-(3,4,5-trimethoxyphenyl)-1-ethenyl]phenyl acetic acid (193) (0.8 g, 2.4 

mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.15. 

Yield: 0.51 g (57%) as a white solid. 

Melting Point: 160-162 ˚C  

Microanalysis: Calculated for C22H25NO4 0.1H2O (368.97988); Theoretical: %C = 71.61, %H 

= 6.88, %N = 3.79; Found: %C = 71.42, %H = 6.85, %N = 3.64. 
1H-NMR (DMSO-d6), δ : 0.36-0.44 (m, 2H, CH2-cyclopropylamine), 0.58-0.66 (m, 2H, 

CH2-cyclopropylamine), 2.58-2.68 (m, 1H, CH-cyclopropylamine), 3.36 (s, 2H, CH2, H-2’’),  

3.68 (s, 3H, OCH3, H-6”), 3.84 (s, 6H, OCH3, H-5”, H-7”), 6.93 (s, 2H, H-2’, H-6’), 7.15 (d, 

J = 16.5 Hz, 1H,  H-alkene), 7.21 (d, J = 16.5 Hz, 1H,  H-alkene), 7.25 (d, J = 8.3 Hz, 2H, H-

3, H-5), 7.51 (d, J = 8.2 Hz, 2H, H-2, H-6), 8.1 (d, J = 4.1 Hz, 1H, NH).  
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13C-NMR (DMSO-d6), δ : 5.64 (CH2, C-2#, C-3#), 23.38 (CH, C-1#), 41.95 (CH2, C-2’’), 

55.88 (CH3, C-5”, C-7”), 60.05 (CH3, C-6”), 103.86, 126.12, 127.51 128.02, 129.28 (CH, C-

2, C-3, C-6, C-6, C-2’, C-6’, C-3”, C-4’’), 132.78, 135.26, 135.71, , 137.29, 153.03, 170.98 ( 

C, C-1, C-4, C-1’, C-3‘, C-4’, C-5’,C-1”). 

 

N-Cyclopropyl-2-(4-[(E)-2-(3,5-dimethoxyphenyl)vinyl]phenyl)-

acetamide (197) (MCC315): 

(C21H23O3N; M.W. 337.41) 

 

 

 

 

Reagent: 4-[(E)-2-(3,5-dimethoxyphenyl)-1-ethenyl]phenyl acetic acid (194) (0.8 g, 2.6 

mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.20. 

Yield: 0.30 g (33%) as a pale yellow solid. 

Purification: recrystallization from ethanol 

Melting Point: 176-178 ˚C  

Microanalysis: Calculated for C21H23NO3 0.2H2O (340.77083); Theoretical: %C = 74.01, %H 

= 6.92, %N = 4.11; Found: %C = 73.81, %H = 6.94, %N = 4.02. 
1H-NMR (DMSO-d6), δ: 0.36-0.44 (m, 2H, CH2-cyclopropylamine), 0.58-0.66 (m, 2H, CH2-

cyclopropylamine), 2.59-2.67 (m, 1H, CH-cyclopropylamine), 3.36 (s, 2H, CH2, H-2’’),  3.79 

(s, 6H, OCH3, H-5”,  H-6”), 6.42 (d, J = 2.2 Hz, 1H, H-4’),  6.78 (d, J = 2.3 Hz, 2H, H-2’, H-

6’), 7.15 (d, J = 16.5 Hz, 1H, H-alkene), 7.23-7.28 (m, 3H, H-alkene, H-3, H-5), 7.53 (d, J = 

8.3 Hz, 2H, H-2, H-6), 8.12 (d, J = 4.0 Hz, 1H, NH).  
13C-NMR (DMSO-d6), δ: 5.64 (CH2, C-2#, C-3#), 23.38 (CH, C-1#), 41.96 (CH2, C-2’’), 

55.18 (CH3, C-5”, C-6”), 99.86, 104.39, 126.34, 127.91 128.67, 129.26 (CH, C-2, C-3, C-5 

C-6 C-2’, C-4’, C-6’, C-3”, C-4’’), 135.06, 135.97, 139.11, 160.64, 170.97 (C, C-1, C-4, C-

1’, C-3’, C-5’, C-1”). 
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N-Cyclopropyl-2-(4-[(E)-styryl-phenyl)-acetamide (198) (MCC314): 

(C19H19ON; M.W. 277.36) 

 

 

 

Reagent: 4-[(E)-styryl]phenyl acetic acid (195) (0.5 g, 2.1 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.20. 

Yield: 0.30 g (52%) as a white solid. 

Melting Point: 218-220 ˚C  

Microanalysis: Calculated for C19H19NO 0.1H2O (278.94818); Theoretical: %C = 81.81, %H 

= 6.93, %N = 5.02; Found: %C = 81.56, %H = 6.91, %N = 4.94. 
1H-NMR (DMSO-d6), δ : 0.37-0.45 (m, 2H, CH2-cyclopropylamine), 0.58-0.67 (m, 2H, 

CH2-cyclopropylamine), 2.59-2.67 (m, 1H, CH-cyclopropylamine), 3.36 (s, 2H, CH2, H-2’’),  

7.20-7.30 (m, 5H, 2H-alkene, Ar), 7.3-7.4 (m, 2H, Ar), 7.56 (d, J = 8. Hz, 2H, Ar), .6 (d, J = 

8.1 Hz, 2H, Ar.), 8.11 (d, J = 3.8 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ : 5.64 (CH2, C-2#, C-3#), 23.38 (CH, C-1#), 41.98 (CH2, C-2’’), 

126.30, 126.37, 127.50, 127.85, 128.17, 128.66, 129.25 (CH, C-2, C-3, C-5, C-6, C-2’, C-3’, 

C-4’, C-5’, C-6’, C-3”, C-4’’), 135.15, 135.92, 137.06, 170.97 (C, C-1, C-4, C-1’, C-1’’). 

 

N-(2-Cyclopropylcarbamoyl-ethyl)-4-[(E)-2-(3,4,5-trimethoxyphenyl)vinyl]-

benzamide  (211) (MCC309): 

(C24H28O5N2; M.W. 424.48) 
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Reagent: 3-(4-[(E)-2-(3,4,5-trimethoxyphenyl)vinyl]benzoylamino)propionic acid (208) (0.23 

g, 0.6 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.2. 

Yield: 0.13 g (50%) as a white solid 

Melting Point: 194-196 ˚C  

Microanalysis: Calculated for C24H28N2O5 (424.48); Theoretical: %C = 67.91, %H = 6.65, 

%N = 6.60; Found: %C = 67.55, %H = 6.37, %N = 6.28. 
1H-NMR (DMSO-d6), δ : 0.36-0.42 (m, 2H, CH2-cyclopropylamine), 0.56-0.63 (m, 2H, 

CH2-cyclopropylamine), 2.53 (t, J = 7.2 Hz, 2H, H-2’’’),  2.59-2.67 (m, 1H, CH-

cyclopropylamine), 3.43-3.49 (m, 2H, H-3’’’), 3.69 (s, 3H, OCH3, H-5”), 3.85 (s, 6H, OCH3, 

H-4”, H-6”), 6.97 (s, 2H, H-2’, H-6’), 7.28 (d, J = 16.5 Hz, 1H, H-alkene), 7.32 (d, J = 16.5 

Hz, 1H, H-alkene), 7.66 (d, J = 8.3 Hz, 2H, H-3, H-5), 7.84 (d, J = 8.3 Hz, 2H, H-2, H-6), 

7.95 (d, J = 3.8 Hz, 1H, NH-cyclopropylamine), 8.48 (t, J = 5.8 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ : 5.59 (CH2, C-2#, C-3#), 23.16 (CH, C-1#), 35.25, 36.06 (CH2, C-

2’’’, C-3’’’), 55.89 (CH3, C-4”, C-6”), 60.07 (CH3, C-5”), 104.16, 125.98, 126.86, 127.60, 

130.28 (CH, C-2, C-3, C-6, C-6, C-2’, C-6’, C-2”, C-3’’), 132.44, 133.03, 137.64, 139.83, 

153.05, 165.75, 171.46 ( C, C-1, C-4, C-1’, C-3‘, C-4’, C-5’,C-1”, C-1’’’). 

 

N-(2-cyclopropylcarbamoyl-ethyl)-4[(E)-2-(3,5-dimethoxy-phenyl)-vinyl]-

benzamide  (211) (MCC308): 

(C23H26O4N2; M.W. 394.46) 

 

 

 

 

 

 

Reagent: 3-(4-[(E)-2-(3,5-dimethoxyphenyl)vinyl]benzoylamino)propionic acid (209) (0.50 

g, 1.4 mmol) 
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T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.2. 

Purification: recrystallization from ethanol 

Yield: 0.10 g (20%) as a white solid 

Melting Point: 194-196 ˚C  

Microanalysis: Calculated for C23H26N2O4 (394.46); Theoretical: %C = 70.03, %H = 6.64, 

%N = 7.10; Found: %C = 69.70, %H = 6.44, %N = 7.04. 
1H-NMR (DMSO-d6), δ: 0.36-0.40 (m, 2H, CH2-cyclopropylamine), 0.5-0.61 (m, 2H, CH2-

cyclopropylamine), 2.33 (t, J = 7.2 Hz, 2H, H-2’’’), 2.59-2.65 (m, 1H, CH-

cyclopropylamine),  3.42-3.48 (m, 2H, H-3’’’), 3.79 (s, 6H, OCH3, H-4”,  H-5”), 6.45 (t, J = 

2.2 Hz, 1H, H-4’),  6.81 (d, J = 2.2 Hz, 2H, H-2’, H-6’), 7.29 (d, J = 16.6 Hz, 1H,  H-alkene), 

7.33 (d, J = 16.6 Hz, 1H, H-alkene), 7.67 (d, J = 8.4 Hz, 2H, H-3, H-5), 7.84 (d, J = 8.4 Hz, 

2H, H-2, H-6), 7.93 (d, J = 4.2 Hz, 1H, NH-cyclopropylamine), 8.43 (t, J = 5.6 Hz, 1H, NH). 
13C-NMR (DMSO-d6), δ: 5.59 (CH2, C-2#, C-3#), 22.16 (CH, C-1#), 35.26, 36.07 (CH2, C-

2’’’, C-3’’’), 55.21 (CH3, C-4”, C-5”), 100.25, 104.69, 126.21, 127.57, 128.04, 130.16 (CH, 

C-2, C-3, C-5 C-6 C-2’, C-4’, C-6’, C-2”, C-3’’), 133.28, 138.78, 139.60, 160.67, 165.74, 

171.45 (C, C-1, C-4, C-1’, C-3’, C-5’, C-1”, C-1’’’). 

 

N-(2-Cyclopropylcarbamoyl-ethyl)-4-[(E)-styryl-benzamide (213) 

(MCC307): 

(C21H22O2N2; M.W. 334.41) 

 

 

 

 

 

 

Reagent: 3-(4-[(E)-styryl-benzoylamino)propionic acid (2010 (0.49 g, 1.6 mmol) 

T.L.C. system: petroleum ether-EtOAc 1:1 v/v, Rf: 0.15. 

Yield: 0.24 g (44%) as a white solid 
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Melting Point: 304-306 ˚C  

HRMS (EI): tbd 
1H-NMR (DMSO-d6), δ 0.36-0.40 (m, 2H, CH2-cyclopropylamine), 0.5-0.61 (m, 2H, CH2-

cyclopropylamine), 2.33 (t, J = 7.2 Hz, 2H, H-2’’’), 2.59-2.65 (m, 1H, CH-

cyclopropylamine),  3.42-3.48 (m, 2H, H-3’’’), 7.28-7.34 (m, 2H, Ar, H-alkene), 7.36-7.44 

(m, 3H, Ar, H-alkene), 7.64 (d, J = 8.0 Hz, 2H, Ar) 7.69 (d, J =8.3 Hz, 2H, Ar), 7.85 (d, J = 

8.3 Hz, 2H, Ar), 7.95 (d, J = 4.2 Hz, 1H, NH-cyclopropylamine), 8.43 (t, J = 5.6 Hz, 1H, 

NH). 
13C-NMR (DMSO-d6), δ : 5.58 (CH2, C-2#, C-3#), 22.17 (CH, C-1#), 35.24, 36.07 (CH2, C-

2’’’, C-3’’’), 126.19, 126.65, 127.56, 127.98, 128.73, 130.00 (CH, C-2, C-3, C-5, C-6, C-2’, 

C-3’, C-4’, C-5’, C-6’, C-2”, C-3’’), 133.21, 136.73, 139.70, 165.80, 171.53 (C, C-1, C-4, C-

1’, C-1’’, C-1’’’). 
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The aim of this project was the development of potential CYP24A1 inhibitors that could be 

used as therapy for different types of cancer in association with calcitriol. Due to the absence 

of a human CYP24A1 crystal, a homology model was constructed using the rat CYP24A1 

isoform. Validation of the new model was performed and the active site has been 

characterised examining the disposition of the natural substrate calcitriol and the (R)-VID-

400, the most potent CYP24A1 inhibitor. Through molecular docking studies and using the 

structure of the (E)-N-(2-(1H-imidazol-1-yl)-2-phenylethyl)-4-styrylbenzamide (MCC165), a 

compound previously synthesised in our laboratory that showed a potent CYP24A1 

inhibitory activity (IC50= 0.3µM), 13 different families have been developed as potential 

CYP24A1 inhibitors. All the proposed compounds occupy the same hydrophobic tunnel as 

calcitriol and access the active site trough the same channel exposed to possible hydrophobic 

interactions with the amino acid environment. The substituent in the lateral chain (imidazole, 

sulfonate, sulfonamide, cyclopropylamine) is in the optimal position to bind directly to the 

haem iron via a lone pair of electrons. Among the 13 families different structural 

modifications were planned in order to check the influence on activity of the different 

moieties of the original MCC165 scaffold. 

The planned modifications are summarised below: 

• Substitution on the styryl-aromatic ring (e.g. Family I, Family X, Family XI) 

• Modification of the styrene linker: reduction, replacement, inclusion in an aromatic 

ring (e.g. Family I, Family II, Family X, Family IX) 

• Changing the lateral chain: length, substituent, elimination of chiral carbon (e.g. 

Family III, Family IV, Family VI, Family XIII) 

• Changing the haem iron interaction group: imidazole, sulfonamide, sulfonate, 

cyclopropylamine (e.g. Family VII, Family VIII, Family XI, Family XII, Family XIII) 

 

 

 

 

 

 



Conclusions and Future work 

~ 354 ~!
!

The compounds were readily prepared using efficient and different 4 or 5-step syntheses 

obtained after several optimisations of reactions and routes. All the new and unpublished 

molecules, both reaction intermediates and final compounds, have been purified through 

different methods and then characterised by 1H- and 13C-NMR and HRMS. 

The synthesis was followed by CYP24A1/CYP27B1 cell-free enzymatic assay using 

ketoconazole as the standard obtaining interesting results. Among all the families, the 

compounds bearing the imidazole group were found to be the most active with an interesting 

IC50 and a Ki in the nM range. Considering these imidazole-derivatives, the 3,5-dimethoxy 

substituted with the styryl linker showed the best activity profile and compound MCC204 

(IC50 = 0.11µM; Ki = 0.0078µM) was found to be the most potent CYP24A1 inhibitor if 

compared with ketoconazole. Unfortunately, only a range from poor to moderate selectivity 

was obtained and an improvement compared to ketoconazole (selectivity 1.6) was found for 

MCC204 (selectivity 3.3), MCC268 (selectivity 5.5) and MCC270 (selectivity 5.1).  

 

 

 

 

 

 

 

 

Considering the molecular modelling results and the enzymatic assay data we can speculate a 

SAR required for CYP24A1 inhibitors: 

• 3,5-Dimethoxy group for the interaction with Gln82 

• Presence of styrene or short single C-C bond to confer rigidity: hydrogenation or 

modification to a sulfonamide or amide caused a loss of activity 

• Aromatic central core 

• Specific length of the compound to entirely occupy the active site (≈17 Å) 

• Lipophilic substituent in the lateral chain: unsubstituted phenyl ring, tbutyl group 
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• LogP: the more liphophilic, the better activity: hydrophobic nature of the enzyme 

channel 

• Imidazole: interaction via a lone pair of electrons. Fundamental for the interaction but 

responsible for the low selectivity observed for CYP24A1 over CYP27B1. The low 

activity of cyclopropylamine and sulfonamide derivatives could be a consequence of 

the delocalization of the electrons lone pair (from the nitrogen in the 

cyclopropylamine families and from the oxygen in the sulfonamide derivatives) on 

the vicinal atoms: the lone pair could be not available for the interaction with the iron 

haem reducing the inhibitory activity of all of these families. 

 

 

 

 

 

As reported above promising results in terms of CYP24A1 inhibitory activity were obtained 

even if with some selectivity issue. Future work will include the development of more 

selective compounds able to inhibit the CYP24A1 but with reduced CYP27B1 inhibition.  

From a virtual-screening study (not reported in this thesis) on the CYP24A1 homology model 

using MCC204 as template for the pharmacofore preparation, 10 new interesting potential 

inhibitors were found (IC50 between 4 and 10 µM) and their structure will be used as starting 

point for the development of new CYP24A1 inhibitors families. Moreover, using a molecular 

modelling approach on CYP27B1 could help to understand the active site difference with 

CYP24A1 and to design selective inhibitors. Currently no CYP27B1 crystal structure is 

available suggesting the building of a homology model as first step.  

A CYP selectivity using a panel of different P450 human isoforms (1A2, 3A4, etc.) will be 

useful to evaluate the selectivity for CYP24A1 of our most active compounds. 

The potential anti-cancer activity of our fist family in combination with calcitriol in primary 

chronic lymphocytic leukaemia (CLL) is being tested in collaboration with Dr Chris Pepper 

from Cardiff School of Medicine and interesting preliminary results have been obtained. 


