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PURPOSE. Laser-assisted in situ keratomileus (LASIK) creates a
permanent flap that remains non-attached to the underlying
laser-modified stroma. This lack of permanent adhesion is a
liability. To immobilize a corneal flap, a protocol using
fibrinogen (FIB), riboflavin (RF), and ultraviolet (UVA) light
(FIBþRFþUVA) was devised to re-adhere the flap to the stroma.

METHODS. A model flap was created using rabbit (Oryctolagus

cuniculus) and shark (Squalus acanthias) corneas. Solutions
containing FIB and RF were applied between corneal strips as
glue. Experimental corneas were irradiated with long wave-
length (365 nm) UVA. To quantify adhesive strength between
corneal strips, the glue-tissue interface was subjected to a
constant force while a digital force gauge recorded peak
tension.

RESULTS. In the presence of FIB, substantive non-covalent
interactions occurred between rabbit corneal strips. Adhesive-
ness was augmented if RF and UVA also were applied,
suggesting formation of covalent bonds. Additionally, exposing
both sides of rabbit corneas to UVA generated more adhesion
than exposure from one side, suggesting that RF in the FIB
solution catalyzes formation of covalent bonds at only the
interface between stromal molecules and FIB closest to the
UVA. In contrast, in the presence of FIB, shark corneal strips
interacted non-covalently more substantively than those of
rabbits, and adhesion was not augmented by applying RFþUVA,
from either or both sides. Residual RF could be rinsed away
within 1 hour.

CONCLUSIONS. Glue solution containing FIB and RF, together
with UVA treatment, may aid immobilization of a corneal flap,
potentially reducing risk of flap dislodgement. (Invest Oph-

thalmol Vis Sci. 2012;53:4011–4020) DOI:10.1167/
iovs.12-9515

Clinical laser-assisted in situ keratomileus (LASIK) protocols
use a microkeratome blade or femtosecond laser to create

a 100–180 lm deep lateral incision into the corneal stroma to
separate a top layer of the stroma, while leaving it connected,
via a non-incised region, to an underlying bottom layer of
stroma, much like a door is left connected to the frame by a
hinge.1–4 Once this flap is created, the underlying stroma is
exposed and reshaped using a laser to vaporize a calculated
amount of the bottom stromal layer. After the cornea is
reshaped, the stromal flap is re-applied smoothly on top of the
bottom layer of underlying stroma to correct eye conditions,
such as nearsightedness, farsightedness, or astigmatism. LASIK
patients have experienced complications, such as dislocation
of the flap up to 9 years postoperatively upon head/corneal
trauma5–8 and recurrent epithelial ingrowth,9–10 yet to our
knowledge there is no standard treatment to ensure that the
flap re-adheres to or is immobilized to the lower surface, other
than by surface tension. Furthermore, a study of the local
keratan sulfate and chondroitin/dermatan sulfate disaccharides
in human postmortem, post-LASIK corneas suggests that the
reason why the LASIK flap never heals to the underlying
stroma is that exposure to the laser irradiation alters
permanently the composition of the glycosaminoglycans on
the modified surface of the stroma11 and renders it non-
functional for normal wound healing adhesion.

Our study uses a combination of fibrinogen (FIB), riboflavin
(RF), and long wavelength (365 nm) ultraviolet light (UVA) to
create a ‘‘biologic tissue glue’’ to adhere the stromal layers of a
corneal flap to the exposed bottom stromal layer, and thus
decrease the risk of flap dislodgement and re-exposure of the
underlying stroma.12 Experiments performed on rabbit and
shark corneas were designed to create a beginning model of a
cornea containing a LASIK flap. The model reported describes
the covalent and non-covalent interactions between an
anterior corneal stromal flap and the underlying stromal bed
still containing native macromolecules, not yet modified by the
effects of laser ablation used in the LASIK protocol demon-
strated previously to alter their composition significantly.11

Therefore, in the interests of accuracy, the corneas prepared
here are referred to as containing a ‘‘corneal flap,’’ rather than
a ‘‘LASIK flap.’’

MATERIALS AND METHODS

Materials

FIB and ‘‘riboflavin’’ were purchased from Sigma (Cat. Nos. F8630 and

77623, respectively, the latter as riboflavin-50 -phosphate, the soluble

compound that generates genuine riboflavin in solution; St. Louis,

MO). Solutions of riboflavin-50-phosphate will be referred to here as

‘‘riboflavin’’ (RF). Dextran was purchased from Fisher Scientific (Cat.

No. BP1580; Pittsburgh, PA). Rabbit eye globes were purchased from

Pel Freez Biologicals (Catalog No. 41211-2; Rogers, AR).
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Solution Preparation

Experimental solutions used for adhesion testing were prepared fresh

before experimentation, and included ‘‘FIB only,’’ ‘‘RF only,’’ and

‘‘FIBþRF.’’ FIB solutions contained 18% (wt/vol, 180 mg/mL, 530 lM)

FIB. RF solutions contained 2.6% (wt/vol, 2.6 mg/mL, 5.44 mM) of RF.

De-ionized water was used as the solvent in all experimental solutions,

as per the protocol of Khadem et al.12 All experimental solution tubes

were wrapped in aluminum foil following preparation to prevent

premature photoactivation of RF. A 20% (wt/vol, 400 nM) dextran in

1· PBS (pH 7.2) solution was applied topically to keep rabbit and

shark corneas from drying during experimentation.

Tissue Preparation

Corneas from spiny dogfish sharks, Squalus acanthias, were harvested

at Mount Desert Island Biological Laboratory, Salisbury Cove, ME, and

Marine Biological Laboratory, Woods Hole, MA, under an Institutional

Animal Care and Use Committee (IACUC) and ARVO Animal Statement

for the Use of Animals in Ophthalmic and Vision Research approved

protocol. Within 5 minutes of euthanization, corneas were dissected

from sharks and snap-frozen using liquid nitrogen. Corneas then were

stored in a�808C freezer until needed for experimentation. Rabbit eye

globes were ordered from Pel-Freez Biologicals, stored in�808C until

needed for experimentation, and then thawed partially to allow

dissection of the corneas surrounded by a 6 mm wide margin of sclera.

At Kansas State University, shark corneas were placed in 1· PBS (pH

7.2) to thaw. Next, shark corneas were de-epithelialized and de-

endothelialized using a spatula (Fig. 1a).13 Then, two 8 mm-wide strips

were excised from the centermost region of the cornea using a razor

blade (Fig. 1b). To ensure the strips consistently were 8 mm wide, a

visible guide was placed beneath the cornea and Petri dish to indicate

where each cornea should be cut to produce strips of identical widths.

Once two strips were isolated from the central region of the shark cornea,

one of the strips was rotated laterally so as to match the orientation of the

other strip (Fig. 1c). Next, one ‘‘scleral tag’’ was removed from opposite

ends of each strip (Fig. 1d) to prevent adhesion from occurring between

surfaces that were not cornea-to-cornea (e.g., sclera-to-sclera).

Rabbit corneas were treated identically to shark corneas except,

because of the smaller size of the rabbit eye globe, only one 8 mm strip

was excised from the center region of each cornea (Fig. 1b0).

Therefore, in rabbits, 2 whole eye globes were used to create 1

experimental pair, whereas only 1 eye globe was sufficient to create

the experimental pair in sharks.

Additional testing was performed on rabbit corneas to determine

the effect of the presence/absence of Descemet’s membrane (DM) and

of corneal orientation on strip adhesion. In orientation 1 (DM:epithelial

basement membrane [Epi-BM]), rabbit corneas were placed on top of

each other in the same orientation (anterior surfaces facing up), so the

posterior surface of the top strip (DM) interacted with the anterior

surface of the bottom strip (Epi-BM, Fig. 2a). In orientation 2

(stroma:Epi-BM), rabbit corneas were placed on top of each other

(anterior surfaces [Epi-BM] facing up), except the DM was removed

gently with jeweler’s forceps from the posterior surface of the top

strip. In this orientation, the posterior surface of the top strip (exposed

stroma) interacted with the anterior surface of the bottom strip (Epi-

BM, Fig. 2b). In orientation 3 (stroma:stroma), the anterior surface Epi-

BMs were left intact, but the DM was removed from the posterior

surfaces of both strips. After flipping over the bottom strip, the two

posterior surfaces (both exposed stromas) of the top and bottom

corneal strips interacted in this orientation (Fig. 2c), thus approxi-

mately modeling the stroma-to-stroma interaction of a LASIK cornea

(but absent the laser-modification of the bottom layer surface).

Tissue Treatment

Following corneal strip excision, 30 lL of experimental solution were

distributed evenly on what became the ‘‘lower strip’’ of each set (Fig.

3a), and the remaining strip was placed on top to represent a corneal

flap (Fig. 3b). During experimentation, the aforementioned system,

consisting of two strips of cornea with solution in between, was placed

on a contoured surface to resemble the natural curvature of the eye

(Fig. 3c). This two-strip tissue ‘‘sandwich’’ or tissue pair was allowed to

incubate for a total of 30 minutes to allow the solution/glue to

penetrate somewhat into each tissue interface. To keep the tissue from

drying during incubation, a 20% (wt/vol) dextran solution was dripped

onto the surface using a syringe pump at a rate of 10 lL per minute

(Model NE-4000; New Era Pump Systems, Inc., Farmingdale, NY, Fig.

3d). Upon completion of the permeation stage, experimental corneas

were placed 50 mm beneath a light emitting diode and irradiated with

long wavelength UVA (365 nm UVA, 3 mW/cm2 intensity) for an

additional 30 minutes (the dextran drip was continued at 10 lL per

minute during irradiation, Fig. 3e). Control corneas also continued to

receive the 20% dextran drip for the second 30-minute period, but

were not exposed to UVA irradiation.

FIGURE 1. Tissue preparation. (a) Cornea was de-epithelialized using
spatula. (b) De-epithelialized shark (b0) and rabbit corneas were cut
into 8 mm strips from the centermost region using a razor blade. Two
strips were harvested from each shark cornea; due to smaller size of
rabbit eyes, only one 8 mm strip was isolated per cornea. (c) One
cornea strip was rotated to match orientation of remaining strip. Both
corneas remained epithelial-side up. (d) Scleral tags were removed on
opposite ends of each strip to prevent adhesion between scleral tissue
during testing.
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Adhesion Testing

To measure quantitatively the force of adhesion generated by the glue,

the scleral tag of one strip was clamped on one side and the tag of the

other strip was clamped on the other side, thus creating a ‘‘nested’’

pair of corneal tissue strips. Constant tension then was applied

horizontally to the two clamps at a rate of 6 mm/min (Motorized

Horizontal Test Stand, Item ML275; Imada, Northbrook, IL, Fig. 3f). The

FIGURE 2. Tissue orientation. In all 3 orientations, the glue solution is
represented by the yellow shaded zone. (a) Orientation 1 (DM:Epi-BM):
Two rabbit cornea strips were stacked with anterior surfaces facing up.
Epithelium was removed (x) from both strips. DM (DDD) was left
intact in both strips. (b) Orientation 2 (stroma:Epi-BM): Two rabbit
cornea strips were stacked with anterior surfaces facing up. Epithelium
was removed from both strips. DM was removed from top strip to
expose stromal ECM. (c) Orientation 3 (stroma:stroma): Two rabbit
cornea strips were stacked with posterior surfaces facing each other.
Epithelium was removed from both strips. DM was removed from both
strips to expose stromal ECM.

FIGURE 3. Tissue treatment/adhesion testing. (a) Control or experi-
mental glue solution (here, the experimental solution is colored yellow,
30 lL) was dispensed using a pipette onto surface of what became the
‘‘bottom strip’’ of the system. (b) ‘‘Top’’ cornea strip then was placed
on bottom strip, maintaining correct orientation. (c) Tissue pair was
placed on top of a curved surface to model natural contour of the eye
(side view). (d) Dextran solution (20% wt/vol) was applied topically to
top of tissue pair for 30 minutes. (e) Experimental corneas then
received 30 minutes of UVA irradiation. (f) Scleral tags were gripped
and constant tension was applied horizontally in opposite directions
for quantitative measurement of tissue-to-tissue adhesion strength.
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pulling force, therefore, was applied directly to the adhesive interface

between the two strips in a manner designed to determine the force

needed to make the two surfaces break the adhesion and slide past

each other. Computer software then interpreted the values collected

every 0.10 second to generate a force versus time graph (Force

Acquisition Software, Item SW-1; Imada, Fig. 4). Each measurement

condition described in Figures 7 and 8 was repeated at least 8 times

before calculating averages, standard deviations, and degrees of

significant difference.

Post-Treatment Corneal Transparency

Because solutions containing RF have a yellow hue, it was important to

observe corneal clarity following treatment to determine if transpar-

ency was compromised. Rabbit corneas were prepared in the

stroma:stroma orientation as described above and imaged immediately

following four separate treatments (none, FIB only, RFþUVA, and

FIBþRFþUVA, Fig. 5a). Additionally, after corneal pairs were imaged

immediately following treatment, the tissue was placed in 1 · PBS,

subjected to gentle movement, and imaged again after 30 minutes and

1 hour of 1 · PBS incubation. The rinsing procedure showed how

readily residual RF was rinsed from the treated tissue.

Image-analysis software (Image Pro; Media Cybernetics, Inc.,

Bethesda, MD) was used to quantify transparency of corneas prepared

as described above. The protocol used has been described in detail

previously.14 In short, two images were collected: image 1 was of the

cornea in a Petri dish of 1 · PBS (focused on the cornea), and image 2

was of the dish containing 1 · PBS without the cornea (this was the

background image and was taken at the same focal level as when the

cornea was present in the dish). Optical density of the corneas then

was quantified by performing a background correction on the image of

the cornea, converting the corrected image from an RGB-color image

to a 16-pixel gray scale image, and finally measuring the light intensity

of pixels in the selected area (the center) of the image. These data are

shown in Figure 5b.

Tissue Imaging

To show the presence and absence of epithelium (EPI) and the DM

following tissue isolation in a rabbit cornea, approximately 10 lm thick

cryostat tissue sections were imaged (Model OTF; Bright Instrument

Company LTD., Huntingdon, Cambridge, UK). Figure 6a shows the

intact rabbit cornea with EPI and DM present. Figure 6b depicts a

rabbit cornea following removal of epithelium with a spatula, and

Figure 6c illustrates a rabbit cornea after removal of DM with jeweler’s

forceps.

RESULTS

Adhesion Testing – Rabbit Corneas

Results collected from orientation 1 (DM:Epi-BM, Fig. 7a)
suggest that, as predicted initially, greatest adhesion is achieved
when FIBþRFþUVA are present during tissue treatment, with
adhesion greater than any of the 7 types of control
preparations of adhesive solutions. This indicates that, in this
orientation where the two surfaces that interact with
FIBþRFþUVA are both basement membranes, but unlike each
other (DM:Epi-BM), protocol 8 (FIBþRFþUVA) produces the
strongest adhesion, statistically significantly different from all
other controls in this orientation, including the next strongest
control, protocol 5 (FIBþRF). Orientation 1 (DM:Epi-BM) was
used as a simple beginning point to study FIB-glue-mediated
adhesion between two dissimilar basement membrane surfac-
es, even though the tissues apposed are not in the orientation
of a LASIK cornea.

In proceeding stepwise to study adhesion with a new set of
extracellular matrix (ECM) components, one surface from
orientation 1 (Epi-BM) and the other, raw stroma, were tested
in orientation 2 (stroma:Epi-BM, Fig. 7b). Surprisingly, data
showed two new features. First, magnitudes of adhesion were
dramatically higher in orientation 2, almost double the values
observed in orientation 1. In comparison with orientation 1,
FIBþRFþUVA conditions led to higher absolute levels of
adhesion (orientation 1: 0.08 Newtons [N] versus orientation
2: 0.12 N). Secondly, surprisingly, two other protocols showed
adhesion as strong as protocol 8 (protocols 2 [FIB] and 6
[FIBþUVA]). Both involve FIB, as does protocol 8. Because FIB
alone (protocol 2) generated adhesion levels as high as
FIBþUVA (protocol 6) and those levels were as high as
FIBþRFþUVA (protocol 8), the simplest conclusion is that
orientation 2 (stroma:Epi-BM) has revealed a new type of
adhesion that does not involve the formation of covalent cross-
links and involves the stroma. This conclusion can be drawn
because, in the case of FIB alone (protocol 2), there is no RF or

FIGURE 4. Sample graph. Imada software generated force versus time graph of increasing tension on treated pair of corneal strips until integrity of
adhesion is overcome and strips slide apart by shearing along the glue interface. Gauge reading (y-axis) is adhesion force measured in Newtons.
Time (x-axis) refers to real time measured in seconds.
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FIGURE 5. Corneal transparency. (a) Corneal strips were placed on a grid immediately following treatment and after incubation in 1 · PBS
for 30 minutes and 1 hour to visualize the effect of respective treatments on corneal transparency. (b) Optical density of corneas was
measured with imaging software to quantify transparency changes immediately after treatment, and 30 minutes and 1 hour after 1 · PBS
rinse.
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UVA to catalyze formation of covalent cross-links, yet its
adhesion is of the same magnitude as protocols 6 (FIBþUVA)
and 8 (FIBþRFþUVA). All that is different in orientation 2 is that
the absence of the DM allows ECM molecules in the stroma to
participate in the adhesion, albeit from only one side of the
glue layer.

The remarkably increased adhesion observed in orientation
2 (stroma:Epi-BM) upon removal of DM and the consequent
exposure of raw stroma in one strip, thus, suggested that the
exposure of two stromal surfaces to each other via removal of
both DMs in orientation 3 (stroma:stroma) might generate even
greater adhesion. The result, as predicted, was even higher
tissue adhesion achieved as a result of orienting corneal strips
so two stromal surfaces interacted with FIB glue (Fig. 7c). To
determine the extent to which adhesion of protocol 8
(FIBþRFþUVA) was RF-UVA-catalyzed, covalent adhesion, it
was important to look at the amount of adhesion seen in the
absence of RF and UVA. Protocol 2 (FIB) in Figure 7c revealed
that even FIB alone, in the absence of RF and UVA, produced
extremely high adhesion (0.29 N in orientation 3 vs. 0.15 N in
orientation 2 vs. 0.03 N in orientation 1). This indicates that in
a stroma:stroma interaction, FIB alone generates very strong
non-covalent adhesion. However, Figure 7c also shows
evidence for an additional type of adhesion that is UVA-
catalyzed and covalent: when FIB interacted with two stromal
surfaces and also then was irradiated with UVA light (both in
the presence or absence of RF, protocols 6, 8), the level of
adhesion was markedly higher. This UVA-induced adhesion is
presumed to be covalent (mechanism in Discussion) and
reaches almost twice the degree of adhesion as FIB alone. As
shown in Figure 7c, all of those adhesions involving
stroma:stroma interactions in the presence of FIB are orders
of magnitude greater than those seen in orientation 1 or 2. That
comparison of the adhesive strengths measured between strips
of rabbit corneas in orientations 1–3 is seen most dramatically
when the data from all 3 orientations are graphed on the same
scale (Fig. 7d).

Test of UVA Penetration – Rabbit Corneas

In exploring ways that adhesion seen in protocol 8
(FIBþRFþUVA) could be increased even further, it was
reasoned that, especially in the presence of RF, covalent
cross-links probably formed near the stroma interface with the
FIB glue closest to the UVA source. This is logical because RF
not only acts as a catalyst for cross-link formation, but also
blocks UV penetration into deeper layers,15 leading us to
hypothesize that in the presence of RF, UVA does not penetrate
the glue layer substantively to the other glue:stroma interface.
Therefore, to test this hypothesis without increasing the total
UV dosage, we exposed one side of the corneal set for 15

minutes, then gently flipped the pair of corneal strips over
(without allowing their separation) and exposed the opposite
side for an additional 15 minutes (Fig. 7c, protocol 9). Results
obtained from orientation 3 (stroma:stroma), protocol 9
(FIBþRFþUVA 15 mins/side) were consistent with this hypoth-
esis, because the degree of adhesion increased spectacularly to
the highest level ever observed in rabbit corneas (1.00 N).

Adhesion Testing – Shark Corneas

As in orientation 3 (stroma:stroma) of rabbit cornea trials,
when shark corneal stromas were allowed to interact directly,
they demonstrated that FIB alone (protocol 2) and FIBþRF
(protocol 5) produced adhesion as strong as that of protocol 8
(FIBþRFþUVA, Fig. 8). As in rabbit corneas, protocol 8
(FIBþRFþUVA) gave adhesion substantially greater than proto-
col 1 (none), 3 (RF alone), or even 7 (RFþUVA). Also similar to
rabbits, the simple addition of FIB to the treatment led to very
strong stromal adhesion. However, in the case of shark
corneas, the data suggested that all adhesion seen in
orientation 3 (stroma:stroma) is non-covalent because in the
presence of RF and UVA, there is no significant increase in
adhesion. This led to a prediction that if no covalent adhesion
is occurring in shark corneas in response to RFþUVA, adhesion
would not increase as it does in rabbit tissue if both sides of the
shark corneal tissue pair were irradiated with UV.

Test of UVA Penetration – Shark Corneas

Results from protocol 9 (FIBþRFþUVA 15 mins/side) of
orientation 3 (stroma:stroma) in shark tissue supported this
hypothesis: there was no substantial increase in adhesion
when both sides of system were exposed to UV (Fig. 8),
indicating that only very strong, non-covalent adhesion takes
place between the FIB glue and the shark corneal stroma,
rather than the covalent and non-covalent adhesion mecha-
nisms that are responsible for adhesion between the FIB glue
and the rabbit corneal stroma. Note that the ranges of all those
protocols involving application of FIB to shark corneas
(protocols 2, 5, 6, 8, 9) generated levels of adhesion (1.0–3.0
N) that were triple those seen using rabbit corneas, even
including the additional effects from RFþUVA.

Post-Treatment Corneal Transparency

Images collected from treated corneal pairs showed that if RF
was present during treatment, the corneas had a fluorescent
yellow color (Fig. 5a). However, after 30 minutes of incubation
in 1 · PBS, most of the RF was rinsed away and only a subtle
yellow hue remained. Moreover, after an additional 30 minutes
(total of 1 hour) incubation in 1 · PBS, the transparency of the

FIGURE 6. Rabbit cornea cross sections. Epithelium (Epi) is present in (a) and (c), but absent in (b). DM is present in (a) and (b), but absent in (c).
Stroma (ST) remains intact in (a–c). Bar length in bottom right corner of (c) represents 200 l.
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FIGURE 7. Rabbit cornea adhesion. All y-axis values are measured in Newtons (N). (a) Orientation 1 (DM:Epi-BM): Effects of FIB, RF, and UVA on
rabbit corneas oriented so DM of top strip interacts with Epi-BM of bottom strip. Greatest adhesion is produced when FIB, RF, and UVA all are
present. (b) Orientation 2 (stroma:Epi-BM): Effects of FIB, RF, and UVA on rabbit corneas after removal of DM from top strip. One stromal surface
interacted with epithelial BM of bottom strip. Most adhesion occurred in protocols that contained FIB (2, 5, 6, 8). (c) Orientation 3 (stroma:stroma):
Effects of FIB, RF, and UVA on rabbit corneas after DM was removed and bottom strip was flipped over so the two stromal surfaces interacted.
Strongest adhesion occurred between FIB-containing protocols, as in orientation 2 (stroma:Epi-BM). New protocol 9 (FIBþRFþUVA, 15 mins/side)
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corneal pairs was restored almost totally to that of the ‘‘none’’
control, suggesting that residual RF could be rinsed easily from
the treated corneas.

Additionally, t-test statistical analysis was performed on the
quantitative transparency data in Figure 5b. The statistical
analysis identified that the corneas treated with FIB only and
FIBþRFþUVA were significantly more optically dense as
compared to ‘‘none’’ corneas immediately following treatment.
Interestingly, the optical density of the RFþUVA corneas
immediately after treatment was not significantly different
from the ‘‘none’’ control immediately after treatment, suggest-
ing that, despite its yellow hue, the presence of RF in the
treated cornea does not hinder overall clarity of the cornea.
Furthermore, after 1 hour of 1 · PBS rinsing, the optical
density of FIB only and FIBþRFþUVA corneas decreased, and
their transparency no longer was statistically different from
that of the ‘‘none’’ corneas.

DISCUSSION

Development of a tissue glue to reinforce the LASIK flap would
be invaluable to those patients who have received or plan to
receive LASIK. Based on the data collected here, the
application of such glue as a standard addition to current
LASIK protocols would increase the amount of force required
to dislodge a corneal flap, and/or would decrease the
incidence of flap dislocation upon trauma to the eyes of
postoperative patients. Additionally, epithelial ingrowth that
results occasionally from LASIK likely would be reduced.

In developing a protocol to test the candidate tissue glue
presented in our study, two model corneas (shark and rabbit)
were studied. Shark and rabbit corneas have been used in
previous corneal cross-linking studies and have produced
results similar to each other.16,17 Additionally, shark and rabbit
corneas are large and easily accessible (when compared to

those of other model organisms, such as the adult chicken or
mice).

It can be concluded from data collected from rabbit corneal
strips in orientation 1 (DM:Epi-BM) that protocol 8
(FIBþRFþUVA) was the most effective at adhering the strips
of the corneal pairs, suggesting its mechanism involves
formation of covalent bonds. However, because after scraping
away the endothelium, the DM was present on the posterior
surface of the top strip, and because after scraping away the
epithelium, the epithelial BM was present on the anterior
surface of the bottom strip,18,19 the FIBþRFþUVA would have
been interacting on both surfaces with predominately BM
proteins, such as collagen type IV and laminin, which are
native to basement membranes.20,21 These proteins are unlike
those that would be available for interactions in the stroma of a
LASIK patient because the LASIK flap is created intrastro-
mally22,23 and, in addition, has undergone significant molecular
modification as a result of exposure to the laser.11 Nonetheless,
as a control, BM-BM adhesion levels were important to
characterize.

Data collected from rabbit corneas in orientation 2
(stroma:Epi-BM) tested interactions between stromal ECM
molecules, such as collagen type I24; proteoglycan core
proteins (decorin, keratocan, and lumican), and glycosamino-
glycans (keratan sulfate, chondroitin sulfate, dermatan sulfate,
and heparan sulfate),25 and, like those in orientation 1,
epithelial basement membrane molecules collagen type IV
and laminin. This change in the available molecular binding
partners revealed an additional mechanism of adhesion that
added to overall adhesive strength between the exposed
stromal surface and the epithelial basement membrane. As in
orientation 1 (DM:Epi-BM), protocol 8 (FIBþRFþUVA), gener-
ated very strong adhesion when compared to most other
controls. Surprisingly, in addition, two other protocols, 2 (FIB)
and 6 (FIBþUVA) demonstrated adhesion similar in strength to
that of the FIBþRFþUVA protocol. Because no RF or UVA was
involved to catalyze formation of covalent interactions in
protocol 2 (FIB), the mechanism by which that adhesion
occurred must have been non-covalent. A second prediction
generated by the greatly enhanced adhesions seen in orienta-
tion 2 (stroma:Epi-BM) data, therefore, was that if more stromal
ECM molecules were exposed, more adhesion would occur
between FIB and corneal tissue, and thus generate even greater
adhesion between the corneal strips. To test this hypothesis,
which also most accurately replicates the conditions of the
stroma of a corneal flap resting upon the laser-modified bottom
layer of corneal stroma, the obvious next tissue orientation to
test engaged not just one but TWO stromal surfaces
(orientation 3, stroma:stroma).

Results collected from rabbit corneas in orientation 3
(stroma:stroma) supported the hypothesis that when two
stromal interfaces were allowed to interact with each other in
the presence of FIB, adhesive strength doubled compared to
orientation 2, in which only 1 stromal interface was exposed to
the FIB glue involved in adhesion (stroma:Epi-BM). This
indicates that the mechanism by which adhesion occurs is
enhanced greatly when stromal ECM molecules (not laser-
modified) are available on both tissue strips, when compared
to orientations in which either or both strip surfaces were
comprised of basement membrane ECM molecules.

Moreover, although the presence of FIB alone allowed
enhanced stroma:stroma adhesion, even greater adhesion was

FIGURE 8. Shark cornea adhesion. All y-axis values are measured in
Newtons (N). Effects of FIB, RF, and UVA on shark cornea stromal
adhesion. DM was removed from both strips and oriented so both
exposed stromal surfaces interacted with control or experimental
solutions (Fig. 3c). Non-covalent adhesion occurred in controls
containing FIB. The lack of strengthened adhesion in protocol 8 or 9
demonstrated that no covalent interactions were responsible for the
adhesion that occurred in shark corneas. *Averages and standard
deviations are based on measurement of at least 8 replicates of each
condition.

was applied to the orientation 3 (stroma:stroma) ‘‘sandwich’’ to test the hypothesis described in Results section. (d) All data collected from rabbit
corneas were compared along the vertical scale of one graph to demonstrate the dramatic increase in adhesion observed when one or both stromal
surfaces were exposed and allowed to interact. *Averages and standard deviations are based on measurement of at least 8 replicates of each condition.
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seen when RF and/or UVA also was present (Fig. 7c,
orientation 3, protocols 6 [FIBþUVA], 8 [FIBþRFþUVA]),
compared to protocol 2 (FIB alone), or protocol 5 (FIBþRF).
These protocols (6 [FIBþUVA] and 8 [FIBþRFþUVA]) demon-
strated more than 3· more adhesion strength in stroma:stroma
orientation 3 compared to that produced when only one
stromal surface was exposed to the FIB glue between them in
orientation 2 (stroma:Epi-BM). In both of these cases, there is
evidence of covalent and non-covalent mechanisms contribut-
ing to the substantial adhesive strength observed. Orientation
3, protocol 6 (FIBþUVA) contained FIB, which alone would
produce non-covalent adhesion, based on protocol 2 (FIB)
results. In addition, we hypothesized that the simplest
explanation for the consistently strong adhesion of protocol
6 (FIBþUVA) was the presence of endogenous RF26 (or other
free radical-generating molecule, such as aromatic residues
within the FIB polypeptide chain27) in rabbit stromas, present
in a sufficient concentration to catalyze formation of UVA-
catalyzed cross-linking, even in the absence of additional,
exogenous RF in the FIB glue. Similarly, in protocol 8
(FIBþRFþUVA), non-covalent adhesion between stromal ECM
and FIB can explain part of the overall adhesion force.
Additionally, the most logical explanation for the dramatic
increase in adhesion observed in orientation 3, protocol 8
(compared to protocols 2 [FIB] and 5 [FIBþRF]) is that, in
addition, the formation of covalent cross-links occurs via a
mechanism similar to that used to produce the strengthening
effect on corneal stromal tissue itself in keratoconus RFþUVA
treatment studies.17 In our study, results from orientation 3,
protocol 8 indicate that exogenous (and/or endogenous26) RF
is activated by UVA light, releases reactive oxygen species, and
thus catalyzes the formation of covalent cross-links between
FIB in the glue and molecules in the corneal stroma. Finally, the
great adhesion detected in orientation 3 (stroma:stroma),
protocol 9, is consistent with the hypothesis of covalent
cross-linking being activated, especially along the stroma-to-FIB
glue interface closest to the UVA light source, because
adhesion doubled when both sides of the corneal set were
irradiated with UVA, thus allowing both stroma-to-FIB glue
interfaces to contribute to the adhesion.

Shark cornea adhesion was tested only in the stroma:stroma
orientation 3 (Fig. 8). Impressively, the results revealed
adhesion strengths in the presence of FIB that were 2–2.5-
fold greater than the corresponding values in rabbit stroma:s-
troma orientation 3 adhesion. As in the case of rabbits, shark
corneas produced significantly more adhesion in those
controls that contained FIB (protocols 2, 5, 6, 8, 9). This
adhesive effect was non-covalent, because the adhesion in
protocols 2 (FIB) and 5 (FIBþRF) occurred in the absence of
UVA. Adhesion protocols 6–9 involved UVA in the presence of
exogenously added RF (protocols 7–9), or hypothetically
present endogenous RF or RF-like catalyzer (protocol 6).26,27

However, those protocols generated no significantly greater
adhesion than FIB alone (protocol 2) or FIBþRF (protocol 5),
indicating that UVA-catalyzed adhesion did not occur between
the stroma:stroma pairs. The results also suggested an absence
of any endogenous RF-like molecules in the stroma in these
shark corneas (unlike rabbit corneas), because dramatically
increased adhesion was not observed in FIBþUVA (protocol 6).
Unlike rabbit corneas, shark cornea adhesion was not
increased markedly when cross-linking agents RF and UVA
were present in the FIB-glue (protocols 8, 9). In addition, as
predicted, the strength of adhesion did not double when both
sides of the corneal tissue pair were irradiated for 15 minutes
each with UVA (Fig. 6, protocol 9), in contrast to rabbits,
therefore again suggesting no covalent interactions formed
between the FIB-glue and stromal molecules in shark corneas.

Our study is intended to serve as a proof-of-concept
demonstration for the ability of FIBþRFþUVA to create
adhesion between two corneal stroma surfaces (neither laser-
modified), and thus, adhesion between two control tissues.
This work is meant to represent a first step, the required
controls, in developing a treatment for post-LASIK corneas.
Conditions, such as FIB concentration, RF concentration, and
UVA exposure time, have yet to be optimized for use in human
tissue. In addition, these same experiments using FIBþRFþUVA
glue will now need to be repeated, using laser-ablated tissue, in
cognizance of the altered glycosaminoglycans on such
surfaces.11 It should be noted that an RFþUVA protocol was
devised recently that increased LASIK flap adhesion, but it did
not involve the use of FIB28; neither that treatment, nor the
one described here with FIB significantly alters corneal
transparency.

The data from our current study revealed that FIB-mediated
adhesion between a pair of stromal strips derives from
formation of non-covalent and covalent bonds between the
FIB-glue and ECM molecules exposed on the corneal surfaces
available, with the proportion of the total strength of adhesion
arising from either of those types of bonds dependent on the
species of animal.
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