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“Chemistry is that branch of natural philosophy in which the greatest improvements 

have been and may be made: it is on that account that I  have made it my peculiar study; 

but at the same time, I  have not neglected the other branches of science. A man would 

make but a very sorry chemist if he attended to that department of human knowledge 

alone. I f  your wish is to become really a man of science, and not merely a petty 

experimentalist, I  should advise you to apply to every branch of natural philosophy,

including mathematics. ”

Waldman, professor of chemistry, 

in Mary Shelley's Frankenstein (1818)

Furu ike ya 

Cl kawazu tobikomu

7k(D% t  mizu no oto

A lonely pond in age-old stillness sleeps . . . 

Apart, unstirred by sound or motion . . . till 

Suddenly into it a lithe frog leaps.

Matsuo Basho’s Frog Haiku (1686), 

translated by Curtis Hidden Page



A bstract

The first part of this thesis deals with some general aspects of hydrogen transfer reactions. 

Based on the idea of similarity between localized orbitals of functional groups in different 

molecules, an attempt is made to reflect this transferability in segments of the correlation 

energy belonging to the set of orbitals of a certain functional group. Various possibilities 

are examined for such partitioning. It turns out that localized orbitals are the best choice 

for this purpose since other transformations delocalize orbitals, and transferability is lost. 

Possibly, quantum chemical treatment would only be necessary with certain partitions, 

the rest could be transferred from previous calculations. Ideally, only contributions from 

“reacting orbitals”, expected to carry most of the static correlation effects, would need to 

be calculated. For this reason, the transferability of segments of various compounds was 

checked. Alkanes were found to behave ideally, whereas molecules with large electrostatic 

differences, or delocalized electronic structure are harder cases allowing only a more 

qualitative use of the proposed method.

In the second half, the energetics of terminal and central OH-additions as well as allylic 

H-abstractions by OH in its reaction with propene was studied using several single and 

multireference ab initio techniques. Selection of the localized occupied orbitals forming 

the active space for multireference methods is discussed. Initial geometry optimizations 

and vibrational frequency analysis were carried out at the [5,5]-CASPT2/cc-pVTZ level of 

theory. Multireference effects turned out to be negligible and the UCCSD(T)/cc-pVTZ 

model was chosen for final geometry optimizations and vibrational frequency analysis. 

Triples contributions are found to be very important, except for the 7r-complex, which 

has a UCCSD(T)/CBS relative enthalpy of -10.56 kJ/m ol compared to infinitely sepa­

rated propene +  OH. The addition transition states are found to have relative enthalpies 

of -9.93 kJ/m ol for the central and -9.84 kJ/mol for the terminal case. Allylic abstraction 

mechanisms, although lying significantly higher, still have only slightly positive barriers 

-  a value of 3.21 kJ/mol for the direct and 1.67 kJ/mol for the consecutive case. Con­

ventional transition state theory was used as a rough estimation for determining rate 

constants which turned out to agree well with experiment.

v



Contents

1 Introduction 1

2 M ethodology 5

2.1 Hartree-Fock Theory And Electron Correlation............................................  5

2.2 Single Reference M e th o d s ................................................................................  13

2.3 Multireference Methods ..................................................................................  15

2.4 Density Functional Theory and Composite M odels.......................................  18

2.5 Thermodynamic and Kinetic Properties.........................................................  22

3 Hydrogen Transfer Reactions 25

3.1 General Theoretical I s s u e s ..............................................................................  25

3.2 Localization........................................................................................................  26

3.3 Transferability....................................................................................................  28

3.4 Partitioning of Correlation Energy..................................................................  30

3.5 Orbital T ransform ations.................................................................................. 35

3.5.1 Transformation for Transition State O rb ita ls ....................................  35

3.5.2 Transformation for Reactant O rb ita ls ................................................. 36

3.6 Results and C onclusions.................................................................................. 45

3.7 A Summary of the P ro c e d u re ........................................................................  57

vi



4 The Case o f Propene +  OH 61

4.1 Overview.............................................................................................................. 61

4.2 Notes on Applied M ethods.............................................................................. 63

4.3 Results and D iscussion....................................................................................  68

4.4 Some Further Kinetic A sp ec ts ........................................................................ 80

5 Summary 84

References 87

Appendix 96

vii



N otations

0  operators corresponding (unless otherwise noted) to the

expectation value O or (O) 

the exact or correlated wavefunction 

<$, $ 0, . . .  approximate determinant wavefunctions, with indices noting

the ground (reference) and excited states with excitations from 

{ i , j ...}  to {a, b . . .}; corresponding to the set of coefficients 

(amplitudes) denoted by {c“, ...}  or { t f , . . .}

</>i spin orbitals

ipi spatial orbitals

Kohn-Sham orbitals 

i unspecified molecular orbitals

r]i atomic orbitals

F\p\ F  is a functional of the function p

A  denotes matrices with elements Ay

v, v denote vectors with elements r*

(i\0 \j)  elements of the matrix representation of O in the basis

(i\j) overlap integral (scalar product) of orbitals (elements) labelled i, j

{i\h\j) one electron integrals

{ij\kl) two electron integrals, with (ij\ij)  being the Coulomb, (ij\ji)  the

exchange integrals

(i\h\j), (i j \k l) charge cloud notation of integrals, used with spatial orbitals only,

the relation to the previous notation is (i\h\j) =  (i\h\j) and 

(ij\kl) = (ik \jl)

{aj} a set of elements OLi



1 INTRODUCTION

1 Introduction

Molecular electronic structure theory dates back to the foundation of quantum mechanics 

itself. The complexity of the relevant equations prohibited a direct solution, but approx­

imate solutions were to follow soon (e.g. Hiickel1). However, it was not until some 50 

years ago that what is now referred to as quantum chemistry started off to become a 

theory suitable for quantitative predictions.2 Perhaps the easiest comparison between 

theory and experiment can be made through reactions in gas phase, since the connec­

tion between calculated results and observable quantities can be estimated via statistical 

mechanics, and one does not need to worry about some complications that arise with con­

densed phase systems. Hydrogen transfer reactions are an important class of reactions, 

many of which take place in gas phase. Relevant atmospheric and industrially important 

reactions belong here. Solvation effects can also be considered, and various catalytic and 

biochemical reactions can be studied. In the first part of this thesis, these reactions are 

studied from a more general point of view to observe some general characteristics of how 

correlation energy may be partitioned on a spatial basis, which might be useful to con­

sider for some methodological developments (e.g. a more “black box” like selection of 

active spaces). The second part is an application of theory to obtain the characteristics of 

some of the relevant species in the propene+OH system. These latter results have been 

published recently.3 After this section, a short introduction of theoretical methods will 

follow. After that, each section has a more specifically related introductory subsection. 

In the remainder of this section, the aim is to select a few topics of more general interest 

to illustrate the importance of hydrogen transfer reactions.

To begin with, there is a wide range of experimental measurement techniques which could 

be used in studying such reactions. Chemical and photoionization mass spectrometry are 

such methods. Reactants of known concentration are mixed and then the mixture is
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1 INTRODUCTION

ionized, and measured by mass spectrometry.4 For reactions involving unstable radical 

species, shock tube measurements are very useful. Here, the reaction takes place in a wave 

front generated by a sudden burst of a diaphragm between high and low pressure regions; 

the products can then be detected by various means.5 Cavity ringdown spectroscopy 

is another important way of measuring atmospheric and combustion reactions. Here, a 

laser is reflected between two mirrors in a tube (the cavity), so that it in resonance with 

the mode of the cavity, and when it is turned off, an exponential decay of light intensity 

can be measured. If in a reaction a species can absorb the reflected light, the ringdown 

is faster, i.e. a faster exponential drop of light intensity is measured,6 which can be used 

for various analytical purposes. Hydrogen exchange between halogens was in the focus 

of transition state spectroscopy for long.7 In photodetachment spectroscopy, the species 

are ionized and mass selected, after which photoelectron detachment from XHX~ species 

is measured, and the spectra are found to have a fine structure belonging to long lived 

states of the neutral XHX species.8

Atmospheric chemistry, which deals with slow oxidative reactions taking place in the at­

mosphere, and the closely related field of rapid oxidative reactions covered by combustion 

chemistry, are both areas which attract considerable interest owing to their environmen­

tal and industrial importance. Both fields deal with systems involving chain reactions of 

radicals with competitive reaction channels, necessitating highly accurate experimental 

and theoretical treatment (a difference of half a kcal/mol in reaction barrier heights can 

change the whole kinetic profile of the system). Among these, various H abstraction 

reactions are very significant. The majority of atmospheric reactions is initialized by OH, 

which in turn mainly comes from the abstraction of an H from water by an O atom (a 

product of ozone photolysis).9 In the followings, our main concern will be the various 

reactions of OH with hydrocarbons. Alkyl radicals are typically products of OH initial­

ized reactions, and usually participate in further reactions resulting in various products, 

mainly oxygen containing species.10 Alkoxy radicals play an important role among these. 

These radicals may go on dissociating to smaller fragments, or further H abstraction may 

occur by O2 or in the form of intramolecular H abstraction (1,5 H-shift).11 Another source 

of alkoxy radicals is H abstraction from the hydroxyl group of alcohols by OH. This and 

other possible H abstractions play an important role in the decomposition of alternative 

fuels like methanol or ethanol, but also in similar processes with alternative chlorofluoro-

2
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Figure 1: Lipoamide as a redox catalyst in the formation of Acetyl-CoA

carbons.12 The dominant reaction with alkenes is OH addition to the double bond, but H 

abstraction may play a role at higher temperatures.13,14 As far as aromatic compounds 

are concerned, the dominant reaction of benzene with OH is electrophilic addition to the 

benzene ring, and again, abstraction may have a role at higher temperatures.15

There are many important hydrogen transfer related biologically important reactions, 

like the one in Figure 1. Hydrogen transfer as a term may refer to the actual transfer of 

hydrogen, proton or hydride anion; all of which procedures are catalysed by enzymes in 

living systems. An example to hydride transfer could be the reduction of acetaldehyde 

to ethanol. Actual hydrogen transfer takes place in many important biological processes, 

e.g. ageing and oxidative stress.16 The role of vitamins (antioxidants) can be understood
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1 INTRODUCTION

in terms of hydrogen abstractions when radicals (e.g. OH) are stabilized by abstract­

ing H from them, and are, therefore, prevented from causing oxidative damage through 

processes such as lipid peroxidation.17 Proton transfer reactions are among the most 

frequent ones in biology since acid-base reactions belong here, and biochemical reactions 

are highly pH sensitive. The enzymatic catalysis of proton transfer from carbon atoms is 

a much studied field of biochemistry.18

Finally, it is perhaps worth mentioning that the author of this thesis has a previous 

publication,19 which is related to the more general field of H-transfer reactions. In Figure 

1, a biological analogue is presented to the reactions studied in this work, which deals 

with the formation of X-H bonds from X-X bonds by double H abstraction from DNA. 

Model compounds (X =  O, S, Se) are used to study possible mechanisms of a putative 

drug, where the two strands of DNA become tied together as a result. DFT studies were 

carried out with and without considering solvent effects. Docking and molecular dynamics 

studies helped identify the proper enantiomers that can form an initial complex with the 

DNA helix. An attempt is made to explore the role of various potential energy surfaces 

at the low level of HF/3-21G.

4



2 METHODOLOGY

2 M ethodology

2.1 Hartree-Fock Theory And Electron C orrelation

Quantum chemistry is the discipline that describes the electronic structure of chemical 

species, and predicts values of chemically important physical quantities.2 As it is based 

on quantum mechanics, its central notion is that of the wavefunction, that describes a 

system’s physical properties yielding observables through the action of operators, and 

determines the possible energetic states the system may assume through the Schrddinger 

equation. Because of the vast computational demands, many approximations are neces­

sary. Many times, rather than from necessity, they are introduced due to our ignorance of 

certain effects that are negligible for the accurate description of certain physical phenom­

ena. Such effects typically neglected and only considered in special cases include relativis- 

tic effects, non-adiabatic corrections or spin-orbit coupling among others. In most of the 

cases, quantum chemists work in the nonrelativistic framework, further assuming that 

the motion of electrons is separated from that of the nuclei. In the Born-Oppenheimer 

approximation,20,21 we neglect all linking terms, thus separating the nuclear kinetic term 

of the operator from the rest, and in general practice, only the electronic part is solved, 

and the nuclear one only approximated:

H V  = (1)

Here H  is the Hamilton operator, describing the kinetic and potential energies of the 

system, ^  is the electronic wavefunction, E  is the total electron energy, and (1) is the 

electronic Schrodinger equation (note that contribution from the nuclear-nuclear potential 

term is also calculated and added to the energy, but no further attention will be given to
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2.1 Hartree-Fock Theory And Electron Correlation 2 METHODOLOGY

this fact in the following discussion). The expectation value of the energy can then be 

obtained from the Rayleigh quotient:

/ON

where the denominator equals 1 if ^  is normalized. The next step aims at separating 

the variables of n electrons described by \£. For this, one needs to replace the two 

electron Coulomb potential terms of electronic repulsion involved in H , by an effective 

one electron potential which arises from assuming the form of the wavefunction as an 

antisymmetrized product of one electron functions (fa). This latter condition is to allow 

for the Pauli principle, and requires the wavefunction to change sign if the coordinates of 

two electrons are exchanged. With this we arrive at the independent particle, or mean field 

approximation, where the wavefunction is approximated by a single Slater determinant22 

(3>o) constructed from the one electron functions fa, that has the desired antisymmetric 

property. From (2), we know how the energy depends on the wavefunction, and so we 

are looking for a set of one electron functions, and a wavefunction constructed from 

them, that minimize the system’s total energy (£ [$ 0] — ^[{0i}])- This is because the 

variational principle states that the exact ground state energy is a lower limit to the 

energy expectation value belonging to any proper trial function, such as $ 0 , and the two 

are only equal if the trial function is the exact ground state wavefunction. Therefore 

the best approximate <f>o to the exact wavefunction is the minimum energy one. For this 

purpose, the following functional is introduced:

<̂ [{0*}] — &[{&}] + — (0*1 0?)) ^[{0*}] — 0 (3)
i , j = 1

where &[{fa}] is the functional the variation of which with respect to fa we would like 

to disappear in the Lagrangian multiplier procedure, which is equivalent to minimiz­

ing E[{fa}] (SE[{fa}] = 0) with the constraint of the orthonormality of fa. 6^ is the 

Kronecker delta, and are the Lagrangian multipliers. Note that the it is possible to 

directly minimize 8E[{fa}] without applying the Lagrangian method if orthonormality is 

not required. This yields:

6



2.1 Hartree-Fock Theory And Electron Correlation 2 METHODOLOGY

f<t>i = 'Ŝ£ij<l>j (4)
j=i

Here /  is the Fock operator, and (4) axe the Hartree-Fock equations.22-25 The Fock 

operator is defined as:

f  = h + Y j (Ji - k i) (5)
i=l

where h is a one electron operator, describing the kinetic and nuclear-electron potential 

energy of a single electron, and and Ki are effective one electron operators:

JiM2) = ( ^ ( 1) I - - I < M 1)}<A?(2) Kifyi2) =  ( ^ W l - r - l ^ 1) ) ^ 2) (6)1̂2 ^12

where J* is the Coulomb operator, the expectation value of which is analogous with inter- 

electronic repulsion in classical physics, whereas the exchange operator Ki does not have 

such an analogue, but arises from the antisymmetrised quantum mechanical treatment. 

It exchanges functions to the right from the operator in which r i2 is the interelectronic 

distance. Electronic labels 1 and 2 are indicated to help identify which electron belongs 

to which orbital.

Without going into much detail here, it can be proven that /  is invariant under unitary 

transformations,26 and, therefore, (pi can be transformed in a way that only diagonal €ij 

survive. The resulting equations are the canonical Hartree-Fock equations:

f(pi=£i(pi i = l , . . . , n  (7)

where we dropped the second index from eii} and kept the notation (pi for the transformed 

orbitals. (7) are eigenvalue equations, where /  depends on the eigenfunctions <̂ , which 

makes iterative solution from an initial guess necessary. Solutions of these equations are 

referred to as Hartree-Fock orbitals {(pi) and corresponding orbital energies (e*). Now,

7



2.1 Hartree-Fock Theory And Electron Correlation 2 METHODOLOGY

if (pi is separated into a product of a spatial term (<f i ) and a spin term being either a 

or 0, spin variables can be integrated, and we gain the spatial form of the equations. 

Since the Pauli principle allows the description of two electrons by the same spatial 

orbital (with different spin terms), it is straightforward to restrict these spatial orbitals 

to be the same, in which case we get the restricted Hartree-Fock formalism (RHF), which 

reduces the number of equations to half of those with spin-orbitals. If this restriction is 

not enforced, one gets equations for a  and 0  separately; this is called the unrestricted 

Hartree-Fock (UHF) formalism.

If we use the orbitals thus gained, we can find the expression for the total electron 

energy we are looking for. Here we are going to present the energy expressions of the 

Hartree-Fock energy with one electron or spin orbitals (Eq F) and also the corresponding 

expression for the closed shell restricted Hartree-Fock case (E FHF) with spatial orbitals:

n  1 n

Eo F = +  2  ~ (MA&jfa))  (8)
i i j

and

n /2  n /2

E$hf = 2 (<Px\h\<Pi) +  (2{<pi<pj\(pi<pj) -  (ipiWj\ipjipi)) (9)
i  i j

where we have used one electron integrals {i\h\i) and two electron integrals {ij\ij) (Coulomb 

integrals) and (ij\ji) (exchange integrals) with spin-orbital and spatial orbital basis. It 

is the number of two electron integrals that grows rapidly with the number of elec­

trons/orbitals making calculations less and less feasible with larger systems.

If we now consider the spatial form of the Hartree-Fock equations, which are very similar 

to (7), it turns out that although they are simpler compared to the original n-electron 

Schrodinger equation (1), they are still a system of differential equations. In yet another 

approximation, the spatial functions are expanded with a finite number of known basis 

functions In the RHF case:

8



2.1 Hartree-Fock Theory And Electron Correlation 2 METHODOLOGY

M

f l f i i  =  E i i f i  ipi  =  ^  * =  1, • • • , M  (10)
li=l

Since M is finite, there will only be a finite number of solutions for < .̂ However, this 

results in a matrix equation:

fc =  See S ,u , =  ( % M  f p »  =  ( % \ f M  (11)

where is an element of the Fock matrix f, S is the overlap matrix, c contains the 

expansion coefficients of the finite basis and e is a diagonal matrix of orbital energies. 

(11) is the generalized eigenvalue equation form of the Hartree-Fock-Roothan-Hall equa­

tions,27,28 which, by various orthonormalization procedures (in practice, it is done by 

orthonormalizing the AO basis) may be transformed into an eigenvalue equation yielding

f'c' =  e'e (12)

The advantage of (12) is that it is an algebraic matrix equation, which has very efficient 

computational algorithms to be solved with. On the other hand, the solutions depend 

on M, the number and also on the quality of basis functions chosen. There are many 

varieties of basis sets available, here we only mention Dunning’s correlation consistent 

basis set series,29-31 abbreviated as: (aug-)cc-pVXZ, where the size of the basis grows 

with X . Here VXZ refers to “valence X-tuple zeta” suggesting that X contracted basis 

functions (contracted from a number of Gaussian primitives) are used to represent each 

valence orbital. The prefix “cc-p” stands for “correlation consistent polarized” indicating 

the fact that more and more functions with higher angular momentum quantum numbers 

than minimally necessary are involved (polarized functuions). The prefix “aug-” prefix 

means “augmented” and indicates the inclusion of diffuse functions (very shallow Gaus­

sian functions). These basis sets are constructed in a manner to converge systematically 

as X  increases. For this reason it is possible to use them in extrapolations introduced 

later. As we have mentioned before, the solution has to be iterative, due to the depen­

dence of the Fock operator on the solutions. This means that following some initial guess

9



2.1 Hartree-Fock Theory And Electron Correlation 2 METHODOLOGY

at the orbitals, the Fock operator is constructed, and the above eigenvalue equation is 

solved, yielding an improved set of orbitals, that will be used to construct the operator in 

the next step, and this goes on, until the difference between the results of two consecutive 

steps goes below a predefined threshold value. This procedure is usually referred to as 

the self consistent field (SCF) algorithm.

We expect that the results obtained from (12) will be better as M  grows, the total 

electronic energy belonging to M  —> oo is called the Hartree-Fock limit. Since it is 

difficult to reach this limit by direct calculations, many times an extrapolation is carried 

out, with for example the above mentioned bases. A popular formula for extrapolation 

is Feller’s exponential formula:32

E jjf — E^fF +  ae ^  (13)

where EjfF is the Hartree-Fock limit, and EfiF is the HF energy belonging to the basis 

with X ; a and b are parameters. Sometimes for small systems, numerical solutions of 

differential equations (7) may be used for benchmarking.33

In the derivation of Hartree-Fock theory many approximations have been made for which 

not even getting to the HF limit would account. In nonrelativistic quantum chemistry, 

electronic correlation energy (E ^ r ) is defined as the difference between the exact solution 

of (1) and the HF result:

Ecorr Eexact EhF (14)

It should be noted that E ^ r  also depends on the basis set size, which is again, taken 

into consideration by extrapolation, typically with the following formula:34

E *  = E™ H— —r (15)corr corr ' -^3 \ J

where X  again refers to the Dunning basis sets, and a  is a parameter.

10



2.1 Hartree-Fock Theory And Electron Correlation 2 METHODOLOGY

The problem of giving a value for Eexact, however, still remains. Fortunately, based on 

HF but going beyond it, there is a number of approximations available for that purpose. 

These usually go back to the idea of configuration interaction method (Cl), which looks 

for the exact wavefunction in the form of a linear combination of Slater determinants 

(configurations), which are excited from a common reference ($ 0)-

* = ̂ +E *?*?+E + E +• • • (16)
ia  i jab  i jkabc

where tf, tfj, tfl-% etc. are amplitudes (coefficients) belonging to singly, doubly, triply etc. 

excited configurations (<!>“, $ “]£). If all configurations for a given basis are considered,

this method is referred to as full Cl (FCI). This method gives highly accurate results, 

however, it is mainly used for benchmarking due to its prohibitive computational expense. 

More feasible approximations will be discussed in the next sections, but before that, some 

general features of electron correlation will be discussed.

Hartree-Fock is an independent particle theory, which assumes that an electron is only 

affected by the mean field of the others. However, it is to be expected that as the 

interelectronic distance decreases, the repulsion between two electrons would be larger 

than what the mean field estimates. Moreover, it can be shown that there is no depletion 

in the possibility density for two electrons when they are at or near the same place, which 

is unphysical. For electrons with the same spin this is excluded by the Pauli principle, 

which has been considered in the construction of Hartree-Fock theory. For all this, it can 

be said that the motion of electrons in HF is uncorrelated, giving rise to the difference with 

the exact solution, i.e. correlation energy. Since there is a singularity in the Hamiltonian 

operator at zero interelectronic distances, the wavefunction, or, rather, its derivative 

has to satisfy certain conditions at these places (cusp condition35). This requires the 

wavefunction to exhibit a specific shape (a Coulomb hole) at zero interelectronic distance. 

Related correlation effects are termed short range correlation, and the arising correlation 

energy is the dynamic correlation energy. The HF wavefunction does not have the desired 

shape. On the other hand, an expansion like (16) with enough terms may be able to 

reasonably approximate the cusp, although convergence may be slow. Since the Pauli 

principle keeps electrons with the same spin apart even in Hartree-Fock, it is also true

11



2.1 Hartree-Fock Theory And Electron Correlation 2 METHODOLOGY

that the most significant correlation contributions come from electrons with opposing 

spins.

Another problem with HF is its failure to describe bond dissociation. In RHF, the 

electrons occupying the bonding orbital with different spin are forced to have the same 

spatial orbital. At a long interatomic distance, this gives rise to ionic terms in the 

wavefunction, where both electrons remain on one of the two dissociated orbitals; and 

there are terms where the two electrons sit on the two different dissociated species. The 

presence of the ionic terms increases the energy above the exact solution at long bond 

distances. If one uses UHF, where the restriction on spatial orbitals is dropped, the 

variation procedure will favour the two electrons at two different centres at long distances. 

However, as a consequence, the UHF wavefunction is not a spin eigenstate, and is a 

mixture of various spin states, introducing spin contamination. For this reason, it should 

be avoided whenever possible. The extent of spin contamination is measured by the 

difference between the expectation value of the spin squared operator with the UHF 

wavefunction and with the spin eigenstate we aim for. It should also be noted that spin 

contamination may be taken care of by constracting projection operators that remove the 

undesired components from the wavefunction. In the exact case, if an electron is localized 

on one centre, the other will prefer the other centre. In HF, since an electron sees only the 

mean field of the rest, assuming that one electron is localized, the other will be still found 

at both centres with the same probability, and therefore the probability of finding two 

electrons at one centre is not sufficiently decreased. Related correlation effects are called 

long range correlation, corresponding to non-dynamic correlation energy. If we consider 

a solution in the form of (16), we may arrive at the correct wavefunction with a linear 

combination of states where the ionic terms cancel. It is therefore very important to find 

a minimum set of configurations for these cases to ensure a good qualitative description.

Since crowding electrons together means a larger dynamic correlation, this type of cor­

relation decreases when a chemical bond breaks. For similar reasons, if dynamic effects 

are important, HF usually underestimates binding. On the other hand, as it was seen 

before, HF overestimates binding, if non-dynamical correlation is important. This of­

ten leads to a cancellation of errors in HF, which is why often RHF agrees better with 

experiment than methods which only deal with non-dynamical effects properly. These 

two types of correlation are not always easily distinguished, but typically non-dynamic
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effects are recovered by a Cl expansion of a minimum set of important configurations, 

whereas dynamic correlation converges only slowly with the size of the Cl expansion.36 

If dynamic correlation dominates the system (e.g. ground state equilibrium geometries), 

RHF is a qualitatively good description, and, therefore, it can be used as a reference in 

(16) to recover correlation energy. Such methods are termed single reference methods. If 

non-dynamic correlation is important (excited states, dissociation), and RHF fails, first a 

minimum Cl should be calculated to deal with non-dynamic effects, and this wavefunction 

can then be used as a reference in (16) to recover dynamic correlation. Such procedures 

are called multireference methods. In the following sections these methods will be in­

troduced to some extent. There are many variants, some requiring more computational 

resources than the other, but there are some points that can be checked with each of 

them:37 (1) relation to FCI, (2) are they variational? (3) size consistency (additivity of 

energies of noninteracting subsystems).

2.2 Single R eference M ethods

One of the simplest ways to account for correlation effects is offered by perturbation 

theory. Here, it is assumed that the exact Hamiltonian (H ) can be written as follows:

H = H0 +  XW  (17)

Ho is the Hartree-Fock Hamiltonian (sum of the Fock operators), W  is the perturbation 

operator and A is a small number called the perturbation parameter. If we substitute 

this into (1), and also expand E  and in terms of A, then, after multiplication terms 

with the same exponent in A can be made equal, and from this, different orders of 

corrections may be gained. If with a reference of canonical Hartree-Fock orbitals W  is 

chosen to be the difference of the exact Coulomb potential and the effective one electron 

potential of Hartree-Fock theory, then the result is called the Mpller-Plesset perturbation 

series. Summing energetic terms up to the first order only yields the Hartree-Fock energy. 

The lowest order correction that actually improves the energy is that arising from the 

second order M0ller-Plesset perturbation theory38-40 (MP2), which is possibly the simplest 

of all wavefunction based electron correlation methods, where only double excitations
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contribute to the energy expression:

M P 2
t j r s

(18)

where i, j  runs over occupied and r, s over virtual orbitals. MP2 is computationally the 

most feasible correlation method and is therefore in general used even for larger systems. 

It is also size consistent. However, it is not variational, and so it is not an upper bound 

to the exact energy (it may go below). It diverges if the HOMO-LUMO gap is not 

large enough (since the denominator of its energy expression includes differences between 

occupied and unoccupied orbital energies), and there may be other cases when its use is 

limited. Higher order perturbation theories (MP3, M P4,...) are also in general use.

If (16) is truncated after the double excitations, we get the singles and doubles Cl (CISD) 

method.41-43 The amplitudes must be determined by variationally minimizing the expec­

tation value of the CISD energy, therefore the resulting energy is an upper bound of the 

exact solution. However, it is not size consistent, since the product wavefunction of sub­

systems should contain quadruple excitations but it is truncated after doubles. For this 

reason, this method is not recommended as it is, however, it is possible to define simple 

corrections which account for this error. These include the simple additive correction of 

Davidson,44 to modifications of the iterative procedure like coupled pair functional (CPF) 

methods,45 or simply including missing terms in quadratic Cl (QCI).46

The coupled cluster (CC) method47,48 is based on the following form of the correlated 

wavefunction:

applications, T  is truncated after double excitations, yielding the singles and doubles 

coupled cluster (CCSD) model. However, in contrast with CISD, CCSD is size consistent, 

as due to the exponential treatment, higher excitations appear in the form of products of

=  eT$ 0 T  =  Ti +  f 2 +  T3 .. . (19)

T  is the excitation operator consisting of single (7\), double (T2) and higher excitations 

(T3, ...) . If all excitations are included, (19) is equivalent to (16). However, for practical
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Ti and T2. Since higher excitations are involved, a variational evaluation is too expensive 

in most cases. Amplitudes are obtained from a nonlinear set of equations which one 

gets by projecting the Schrodinger equation to the reference, singly and doubly excited 

functions:

<$o|H -  E c c s d W  =  o ($“|H - £ CC5D|̂ > = 0 { $ % \ H  -  E c c s o m  =  0 (20)

Via perturbation theory, the effect of triples can also be included once one has the CCSD 

amplitudes. This results in the CCSD with perturbative triples (CCSD(T)49) method, 

which is considered to be the most accurate standard method for general use in com­

putational chemistry. For open shell cases, the number of equations is three time as 

much as for closed shells. Additionally, without spin restriction in the CC equations, 

the unrestricted CCSD (UCCSD) model is not spin adapted, even if an RHF reference is 

used. However, a full spin adaptation is very complicated. It is simpler to devise a spin 

adaptation for CISD, and then the linear terms in CCSD can be spin adapted similarly. 

This is the partially spin adapted CCSD method, which we will refer to here simply as 

restricted CCSD (RCCSD50). It should also be noted that the difference between UCC 

and RCC methods decrease as more excitations are involved in T  as they converge to the 

same FCI value.

2.3 M ultireference M ethods

In multireference methods, we rely on a reference wavefunction of many determinants, 

rather than a single one. It should be noted here, that a single determinant is not 

necessarily an eigenfunction of the spin squared operator (as opposed to the operators 

belonging to components of the spin angular momentum), however, this property can be 

ensured by certain linear combinations of determinants which are called Configuration 

State Functions (CSF). Two important special cases when determinants are eigenfunc­

tions of the total spin are the closed shell singlet states and the high spin states. This 

often necessitates multideterminantal treatment as the simplest qualitatively correct ap­

proach excluding single reference methods in certain cases. If spin symmetry is needed, or
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one simply wants to exploit the fact that the number of CSFs is smaller than the number 

of determinants (e.g. for an active space with 2 electrons in two orbitals, the number of 

determinants is 6, the number of CSFs is 3), then CSFs must be constructed.51 However, 

since these functions are more complicated, there is an application for both approaches.

In multiconfiguration self consistent field (MCSCF) theory,52-54 one seeks to deal with the 

non-dynamic electron correlation by constructing the minimal Cl expression mentioned 

before:

K

^  =  (21)
I

In this method, the common set of orbitals used to construct is optimized together with 

the Cl coefficients (c/). Orbitals that are occupied in any are called internal, while the 

rest of the orbitals are called external orbitals corresponding to the occupied/unoccupied 

distinction in HF theory. Internal and external orbitals may mix during the optimization. 

A good choice of is necessary for good performance. It is generally advisable to choose 

configurations where the valence orbitals of the molecule are occupied. A more general 

way of generating <!>/ is to select a subset of orbitals in the valence space, and perform 

an FCI in this subset yielding all possible corresponding <!>/. This method is called the 

Complete Active Space SCF (CASSCF) method.55,56 This expansion may contain more 

configurations than minimally necessary, however, due to special methods available for 

CASSCF, it may be faster than a general MCSCF. If the CAS spans the full valence 

space, then the wavefunction is granted to behave correctly at dissociation. Moreover, in 

this special case, the method is also size consistent. In most of the cases, however, only 

a smaller subspace can be chosen due to the very steep (factorial) scaling of the method 

with the number of active orbitals.

Multireference perturbation theory57,5S relies on a similar expansion than what was seen 

in the single reference case. However, there is a number of differences. The reference 

function is now chosen as an MCSCF type wavefunction. The choice of zeroth order 

Hamiltonian is no longer as trivial as in the single reference case (i.e. the sum of one 

electron Fock operators), but it can be made.59 Furthermore, the reference wavefunction 

is no longer in general an eigenfunction of Hq, therefore the first order equations have to
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be solved iteratively instead of an analytic solution as in the single reference case. We 

have seen while discussing MP2 theory that only double excitations from the reference 

wave function contribute to the energy expression. However, since the reference here is 

a more general one, single excitations will also appear in the energy expression of the 

second order. Second and third order perturbation theories (CASPT2 and CASPT3) are 

available for general use, as long as the underlying active space is feasible.

Multireference Cl (MRCI) theory60-62 for practical applications is terminated at the dou­

ble excitations (MRCISD):

* = E  C'*' + E  + E  (22)
I  Sa  Pab

where are all the configurations taken from the underlying MCSCF, i.e. the ones 

constituting the reference function, and <Fp are all the configurations that one can

possibly get from single and double excitations on $ /. The main bottleneck of the appli­

cability of this method is the very rapid increase of the number of <Fp. If one rather than 

following (22) constructs the wavefunction taking the reference as a single entity, one gets 

the internally contracted MRCI (ICMRCI)63 method. The obvious advantage is that in 

this case the number of excitations does not depend on the number of <f>j. However, 

the excited configurations then become rather complicated, being combinations of CSFs 

(determinants) themselves making it harder to work with them. In practical applica­

tions, only the numerous <Fp configurations are contracted. The ICMRCI is a reasonable 

approximation to MRCI, with negligible errors, and significant improvement in appli­

cability. The Davidson correction44,64 and CPF methods45,65 have their multireference 

equivalents to deal with the problem of size consistency.

As with single reference methods, one would perhaps anticipate the introduction of mul­

tireference CC (MRCC) methods.66,67 A proper theoretical approach to these is very 

difficult to reach, and they have been considered very problematic until recently. How­

ever, there are some promising new implementations of this method, which may be able 

to change this. Unfortunately, with a singles and doubles truncation (MRCCSD), these 

methods are still very demanding to compute. Presently, they may be useful for very 

small systems.
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2.4 D ensity  Functional Theory and C om posite M odels

So far, pure ab initio methods have been discussed; methods that rely on a few basic 

physical constants and principles, and a hierarchy of approximations. There is, however, 

another hierarchy of methods that arises from parametrization. Even ab initio methods 

require numerically optimized parameters, it is enough to think of basis set parametriza­

tion, or perhaps the much simpler problem of basis set extrapolation. However, these 

are not based on empiria in the sense that the parameters are not introduced to im­

prove agreement with experiment. In the early days of quantum chemistry, many efforts 

were made to make theoretical calculations more feasible, to enable them to deal with 

chemically interesting, larger species. Since the bottleneck of theoretical calculations is 

computing the rapidly increasing two electron integrals, it is not surprising that many of 

these attempts aimed at avoiding calculating these. In semiempirical methods,68 a hierar­

chy was built up based on the number of integrals that were not computed, but were taken 

from fitted parameters that were optimized to properly reproduce certain experimental 

data (or sometimes ab initio calculations). Models like AMI or PM3 at the cost of some 

fitted parameters perhaps lose something of their general applicability, as it might turn 

out that they have difficulties with systems excluded from parametrization (e.g. systems 

with d type orbitals in these cases), but in exchange they can be used for much larger 

systems than ab initio methods. Perhaps the extreme of parametrization is molecular 

mechanics,69 when the quantum treatment is replaced with the ball and spring model 

of classical physics requiring parameters for every single type of bond stretch, bending 

of angles, etc. Their applicability is very much reduced to certain classes of molecules 

for which they were parametrized, but at such a price they are the only methods suit­

able for treating macromolecular systems, like those of proteins. In recent times, other 

developments have been made with the introduction of approximate models of density 

functional theory (DFT), which need only a few empirical parameters, if any, and are 

relatively accurate, and can be applied to much larger systems than high accuracy ab 

initio models.

The central notion of DFT is the electron probability density (p(r)) that gives the prob­

ability of finding an electron at a spatial point defined by r. Integrating the density 

over the full space yields the total number of electrons. Instead of using a multivariable
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wavefunction, DFT tries to calculate molecular properties from the electron density, that 

depends only on three spatial coordinates. The theoretical basis of DFT is the two theo­

rems70 proven by Hohenberg and Kohn. The first Hohenberg-Kohn theorem states that 

the external potential (£(c)) is determined within an additive constant by the electron 

density. The external potential (external to the system of electrons) can be the one elec­

tron nuclear-electron interaction potential (vne(r)), describing the attraction between one 

electron and all the nuclei, but it is not restricted to that. Once the external potential 

is determined, the Hamiltonian, and hence the wavefunction and the system’s energy 

are also determined. This allows for determining physical properties using the density 

instead of the wavefunction. The second theorem (combined with some later develop­

ments proposed by Levy) states that the trial density that minimises the total energy is 

the exact ground state density. This is the variational principle of DFT. Here, we have 

considered the energy as a functional of the density.

What remains to be seen is how to find the density without first constructing the wave­

function, and how to find the energy once we have a density, i.e. what is the form of the 

energy functional. To answer these questions, Kohn and Sham devised a procedure71 that 

will be introduced here. First, they considered a reference system of noninteracting elec­

trons, for which a determinant is an exact wavefunction, and the electronic Schrodinger 

equation separates into equations of one electron quantities while still remaining exact. 

The Hamiltonian would then contain the kinetic energy and the nuclear-electronic attrac­

tion potential operators (the latter as external potential). The idea of the Kohn-Sham 

procedure is that one should look for a system of interest, where the kinetic energy, easily 

calculated in the reference, could be exact. For this reason, the total electronic energy of 

a molecular system can be written as a functional of density as follows:

E[p] = Ts[p} + Vne{p) + J[p} + Exc[p] p(f) =  £ | t f , | 2 (23)
i

where Ts[p] is the kinetic energy functional of the noninteracting reference system, Vne[p] 

is the nuclear-electronic attraction potential functional, and J\p] is that of the Coulomb 

electronic repulsion. These are easily calculated. The last term, Exc[p] is the exchange- 

correlation functional, which incorporates the difference between the kinetic energy term
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of the molecular and noninteracting system (expected to be small), and that between 

the Coulombic, and the exact electron repulsion term. The contributions from the last 

three terms in (23) are considered to arise from the effective external potential for the 

molecular system in the Kohn-Sham procedure. Using the fact that the electron density 

can be given as a sum of orbital densities from spatial one electron functions, and that 

these are also introduced exactly in the reference system, the energy can be minimized 

with respect to these with the constraint of orthonormality:

n

*[{*,}] =  £[{*,}] +  ] T  -  <0,|^)) &*[{«,}] = o (24)
i , j = 1

which is very similar to eq. (3) of Hartree-Fock theory. We may proceed analogously,72,73 

gaining the DFT equivalent of the Hartree-Fock equations, the Kohn-Sham equations:71

( t s + V e f f ) # i  = £ i $ i  (25)

where t s is the one electron kinetic energy operator of the reference system, and vef f  is 

the effective external one electron potential mentioned before. Once the functions are 

available, p can be constructed, and the energy of the system can be obtained. The Kohn- 

Sham equations correspond to an independent particle system, but unlike HF theory, 

there is no direct physical meaning of and e*. Nevertheless, (25) are exact in principle 

since correlation is involved through the exchange-correlation potential. However, the 

main problem of DFT is that Exc[p] is unknown, hence practical DFT calculations are 

only approximations. There are numerous ways of estimating the exchange-correlation 

term, and it would be much more convenient to deal with correlation energy via that 

functional than constructing tedious wavefunction methods. This is more obvious if 

we consider that due to this formulation, correlation effects would be considered in the 

iterative SCF solution of (25), without having to set up separate calculations for that 

purpose. But since there is no systematic way of improving approximations in DFT, as 

there are in wavefuction theory, one can only rely on various model functions, some of 

which containing empirical parameters to calculate Exc, and cannot be sure to what extent 

correlation is actually dealt with in DFT. Similarly to ab initio methods, DFT also utilizes
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basis set expansion of the Kohn-Sham equations. As a consequence of approximate 

exchange-correlation functionals, KS methods are no longer variational, but they are size 

consistent.

In practical methods, the exchange-correlation functional is usually separated into Exc = 

Ex +  Ec, into terms for treating exchange and correlation effects, that are then modelled 

separately, using numerical calculations based on ab initio results, or empirical fitting 

to yield better results compared to experiment, at which point DFT becomes similar to 

semiempirical methods. For Ex, often the exchange term of the HF model is used for 

modelling. In the local density approximation (LDA), it is required that Exc satisfies 

conditions valid for the uniform electron gets, an analytic description of which was pro­

vided by Dirac. The local spin density approximation (LSDA) allows the densities for 

different spins to be separately optimised (which would not be needed if an exact theory 

was available), creating the equivalent of UHF theory in DFT. Local theories assume the 

slow variation of the density. As this is very often not the case, in the generalized gradi­

ent approximation (GGA), an attempt is made to adapt DFT to greater variation of the 

density by involving an explicit dependence on the graidents of p in Exc. Finally, hybrid 

functionals mix the exchange term of HF theory with exchange and correlation terms of 

GGA functionals, where the mixing coefficients are also fitted. All these approximations 

apply numerous functionals providing a large scale of DFT methods. The two models, 

B3LYP74 and BH&HLYP75 that will later be used in this thesis are hybrid functional 

methods.

Finally, a few words about composite model chemistries should be said here. These 

are referred to as composite, as they use several steps of low computational cost to 

approximate one expensive method. A typical setup is

Ehl,lb = Ell,lb — E Ll ,sb +  EHl,sb (26)

where a high level (subscript HL) method with a large basis (subscript LB) is approx­

imated by performing the high level calculation at a small basis (SB) and then adding 

the difference of a low level (LL) calculation with large and small bases. That is to 

say the basis set effect is considered additive in this case. Other effects often consid­
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ered additive include: relativistic, Born-Oppenheimer and spin-orbital effects. Basis set 

extrapolation is also often used, and so is fitting of some correction function against ex­

periment to yield better calculated properties. DFT methods and scaled frequencies are 

utilized widely within composite models. Various families of these exist, including the 

Gaussian,76 Weizmann77 and CBS78 methods for thermochemical calculations of larger 

species, or the HEAT79 method developed for accurate calculations on small molecules. A 

variant, G3MP2B380 mentioned in later sections belongs to the family of Gaussian meth­

ods, and aims at the approximation of QCISD(T) level with large basis via eq. (26) using 

MP2 low level calculations, and B3LYP optimized geometries and frequencies for ther­

mochemistry (see the following section). A modification of this method, G3MP2BH&H 

is also proposed and used in some of our calculations.

2.5 T herm odynam ic and K inetic Properties

So far, the focus has been on various ways of calculating the electronic energy of a molec­

ular system. However, in practice, calculating derivatives of the energy with respect to 

nuclear coordinates is equally important. Gradients are used for minimizing the energy 

as a function of nuclear positions, i.e. in geometry optimizations. Second derivatives are 

used to ensure that stationary points obtained by optimizing the geometry, are indeed 

minima, or first order saddle points (transition states), etc. By assuming a harmonic 

behaviour around the vicinity of the minimum energy point, one can interpret second 

derivatives as force constants belonging to the harmonic vibrations of the molecular sys­

tem. Although the assumption of harmonicity is in many cases an oversimplification, 

since it is much harder to include anharmonicity into calculations, the harmonic oscilla­

tor model is the most common way of calculating molecular vibrations. As mentioned 

in previous sections, the nuclear Schrodinger equation is rarely solved, so the vibrational 

energy calculated this way, is basically an approximate way to consider nuclear motion. 

Since vibrational motion also has a contribution at 0 K, when other types of motion of the 

molecular system do not, the corresponding correction to the energy is termed zero point 

vibrational energy (ZPVE or ZPE). Calculating vibrations is also essential if one wants 

to predict various thermodynamic and kinetic properties. For this, we need to consider 

two things. Firstly, that the measured quantities correspond to a manifold of molecules,
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rather than an isolated one, for which we have calculated results; and secondly, that these 

quantities need to be calculated at various temperatures, and therefore we are looking 

for thermal corrections for our calculated total energy.

Statistical mechanics makes the required connection between molecular calculations and 

macroscopic quantities, and enables us to calculate the various thermal corrections to 

get values for the latter for a temperature T. The statistical properties of a system in 

thermodynamic equilibrium are described by the partition function (Q). In an ideal gas 

of molecules, the partition function, containing translational, rotational, vibrational and 

electronic contributions, is the following:

Q  —  Q t Q r Q v Q e  —

27tm k T \  2

~ ~ w ~ ) V n hvj
e~ kT

kT

(27)

where the rotational part needs to be replaced with kT /o h B  if the molecule is linear. 

Here, k and h are the Boltzmann and Planck constants, respectively. The other quantities 

include: the molar volume of the ideal gas (V), the molecular mass (m), the external 

symmetry number (cr), rotational constants (A ,B ,C ), harmonic vibrational frequencies 

(i^). In the last term, is the degeneracy of the zth electronic state, and if more than 

one states are considered, then £* is the relative energy of the zth one to the lowest lying 

state. Various functions of thermochemical interest can now be calculated using (27), like 

the entropy (5), the internal energy (17), the enthalpy (H), the Helmholtz free energy 

(j4), the Gibbs free energy (G) and so on. S  and H  can be derived from Q as follows:

s - R T { ?w ) v * R " ‘Q  H - K T ' { dw ) v R K I V ( ?w ) I  <28>

Prom these, G can be determined, and there are similar expressions for U and A. Sub­

scripts refer to variables that are constant with respect to derivation. These, or derivative 

quantities can now be compared to experimental values.

Transition state theory (TST) assumes that reacting chemical species go through a crit­

ical configuration, the transition state, for the reaction to occur. In practice, these are
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determined by opitimizing first order saddle points of the potential energy surface (while 

with reactants minimum structures are located). This theory assumes that there is a 

chemical equilibrium between reactants and the transition state species and that the rate 

of a reaction depends on the concentration of the latter and the frequency of its decom­

position to products. With the assumption that the decomposition frequency is identical 

with the imaginary frequency of the saddle point structure (a frequency that describes a 

vibration of the transition state that is becoming the translational motion of the sepa­

rating reactants) and that the concentration of the transition state structure follows the 

Boltzmann distribution with respect to its relative energetics, the following expression is 

obtained for the rate constant:

hrsriT ) = K ^ K ° e ~ ^  (29)
/ L

Here AG* is the Gibbs free energy difference of reactants and transition states, and is a 

quasi-thermodynamic quantity, since the imaginary frequency is ignored in the transition 

state free energy. K° is there merely as a unit factor, it is unity for unimolecular, and the 

reciprocal of the standard concentration unit for bimolecular reactions. The tunnelling 

coefficient k is usually ignored in initial estimations. A simple way for estimating n is via 

Wigner’s correction depending only on the imaginary frequency, and there are many other, 

more complicated ways of calculating it. Although (29) is the simplest approximation 

among rate theories, and there are more sophisticated models available, nevertheless, in 

a good number of cases, it yields a good estimation for the rate constant.
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3 H ydrogen Transfer Reactions. A G eneral Approach

3.1 General T heoretical Issues

As a result of their importance in a variety of fields, hydrogen transfer reactions are well 

studied both experimentally and theoretically, making comparisons possible. These reac­

tions are favoured model systems for the study of chemical reactivity. In their simplest 

forms they serve as models for reactive scattering and dynamics,81 or models for heavy 

+  light-heavy atom reaction systems, e.g. symmetric H exchange between halogen atoms 

and hydrogen halides.82,83 They have served as useful model systems for testing stan­

dard theoretical approaches,84,85 and many attempts have been made to describe similar 

systems with simple yet reliable approximations.86,87

This type of reactions represents a good number of challenges.88 As a result of an open 

shell calculation in these cases, one may easily end up with a manifold of adiabatic 

states. In a case like X +  H-X reactions,83,88 where X is a halogen, the problem arises 

as X approaches H-X. If a collinear geometry is considered, X and n  states may be 

distinguished based on the spatial symmetry of the whole system. In this case, the H- 

abstraction is energetically favoured in the E state, since the SOMO is oriented towards 

the H on H-X, whereas at larger distances the n  state is favoured due to more favourable 

multipole interactions. Hence there is a crossing of these two surfaces at some point. In 

the corresponding planar case (Cs symmetry) one can distinguish between states having 

the SOMO in the molecular plane (two orbitals of A' symmetry) or out of it (one orbital of 

A!' symmetry), and an avoided crossing occurs. The presence of multiple coupled potential 

energy surfaces makes an ab initio investigation very challenging. It should also be noted 

that calculating BSSE corrections is also not trivial89 especially in a multireference case 

where the monomers have different active spaces compared to the dimer, although there
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exist some attempts to carry this out.89,90 The easiest solution is not to perform a BSSE 

correction, in which case large basis sets must be used.

For the case of Cl +  HC1, Dobbyn et.al.83 draws attention to the fact that RHF reference 

functions should be treated with caution, since symmetry breaking appears. Instead, they 

use state averaged MCSCF orbitals even for their single reference methodology, which 

may be justified as the wavefunction is mainly dominated by a single configuration. Fox 

and Schlegel84 discusses various anomalies in optimizing the FHF transition state. The 

primary target of their paper is to show that artefacts in MP2 optimizations are due to 

the lack of consistent treatment of single excitations in MP2 theory. Earlier theoretical 

studies found the FHF transition state linear at the HF level,91 whereas MP2 predicts a 

bent structure with Cs symmetry, and a minimum at the C^v bent structure. Whereas 

the collinear structure can be explained by the lack of correlation treatment, and the 

related underestimation of interactions between lone pairs, the Cs symmetry transition 

states are explained as “residuals of avoided crossings between the bond making/breaking 

state and two broken symmetry, hydrogen bonding states.” The latter are formally single 

excitations, and it is found that a proper inclusion of singles is able to treat this avoided 

crossing correctly. This is in line with the recommendation of CCSD(T) methodology 

whenever possible,92,93 and that spin contamination has a negligible effect on the ge­

ometries of radical transition states compared to triples contributions,92,93 although it 

should be noted that the use of RHF orbitals is highly recommended94 even when the CC 

treatment is not spin restricted (UCC). In the work, of Luth and Scheiner,85 the use of 

localized orbitals is recommended for constructing active spaces for hydrogen abstraction 

cases. In their work they rely on symmetry constraints besides localization to choose ac­

tive orbitals. For the virtuals, the choice of which is less unambiguous, they recommend 

trying to find orbitals which are likely to be linked only with the H transfer, and not with 

other weak interactions.

3.2 Localization

As we saw during the derivation of Hartree-Fock theory, these equations are invariant 

with respect to unitary transformations of the orbitals. Although it is most convenient
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to work with the canonical form during the SCF procedure, there may be cases, when 

this degree of freedom can be exploited. The canonical orbitals are delocalized over many 

centres, whereas the traditional chemical way of thinking works with orbitals centred on 

one or two, or not too much more atoms, i.e. with various bonds between two atoms, 

or lone pairs, etc. Using unitary transformations, it is possible to localize these orbitals, 

that is to confine them to a relatively small space, and also to reflect similarities on the 

orbital level between chemically similar groups in different species. One may choose a 

two electron operator (£?), the expectation value of which can then be optimized with 

respect to the transformation. However, there is no unique choice of this operator, and 

consequently, many localization procedures exist. Some of the possible choices are:

B̂oys — r \2 ^ER ~  (^Pm) =  ^   ̂ \Pa \ (30)
r 12 V

The Boys procedure95 minimizes the expectation value of the square distance of two 

electrons, or equivalently maximizes the distance between orbital centroids, making the 

orbitals as compact as possible. The Edmiston-Ruedenberg localization96 maximizes the 

expectation value of the inverse distance between electrons, i.e. the Coulomb repulsion. 

The Pipek-Mezey localization97 maximizes the sum of square Mulliken charges (pa) which 

corresponds to the number of electrons associated with an atomic centre (A). These 

methods yield mostly similar results. The Pipek-Mezey procedure should be used if the 

a/7r symmetry is to be preserved during the transformation .97,98

Local correlation methods99-101 use localized molecular orbitals from which only excita­

tions to virtual orbitals close to the occupied orbitals are considered. This means that 

each electron/electron pair (single, double excitations) has a different (local) domain 

of virtual orbitals smaller than the complete space, resulting in the decrease of com­

putational efforts. These methods are based on the assumption that the large scaling 

of correlation methods is unphysical in a sense that they consider excitations that are 

unimportant because of the spatial distance of the orbitals from which and to which the 

electrons are excited. The localization of occupied orbitals is usually without any prob­

lem, the Pipek-Mezey method being preferred due to the already discussed advantages. 

However, localizing the virtual orbitals is more problematic, and instead, the idea of Pu-
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lay was to use a set of projected atomic orbitals (PAOs). These orbitals are obtained 

from atomic orbitals by projection to the occupied space, and thus, they are orthogonal 

to the occupied orbitals, but not to each other. This means that under the orthogonal­

ity constraint, PAOs are the most similar transformed orbitals to the atomic orbitals, 

and they share the desired property of the latter of being localized. This enables us to 

determine the domains of virtuals necessary for these methods. Despite some problems 

like the fact that with significant changes in the geometry, the relevant domains may 

change, the big advantage of these methods is its nearly linear scaling allowing correla­

tion methods to be used with larger systems. Methods like MP2 or CCSD(T) have their 

local equivalent (LMP2 , LCCSD(T)). A further advantage would be the automatic BSSE 

correction because of the use of local domains. Unfortunately, these methods are only 

available for closed shell systems at present, therefore they cannot be used with systems 

being considered here.

3.3 Advantages o f Localization. Transferability

A defining theme in chemistry is localization and transferability: the concept, for exam­

ple, that the chemistry of functional groups is only weakly affected by the neighbouring 

molecular structure, and is therefore largely transferable between different molecules. 

This theme is reflected in some strategies for first-principles computation of molecular 

structure, suitable for use when the particular chemical transformation or property is 

known to be spatially localized. For example, QM/MM102 and other spatial partitioning 

schemes allow the cost of an electronic structure computation to be nearly independent 

of the size of the outer spatial region, depending only on the size and complexity of the 

active site. Similarly, the complete active space multiconfiguration self-consistent field 

(CASSCF) 55,56 method is formally factorial scaling in the number of electrons, but this 

exponential growth can be avoided in some circumstances by choosing an active orbital 

space that is local to one region of the molecule, on the assumption that the principal elec­

tron correlation effects on quantities such as reaction barrier heights arise predominantly 

from these orbitals. In this part of the thesis, we explore the effect of such orbital-based 

partitioning, explicitly analysing the contributions to barrier heights from the correlation 

effects within and between different orbital spaces. The ultimate purpose of this analysis
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—H R
•x

B

Figure 2 : Scheme for partitioning correlation energy

is twofold. It can lead to practical algorithms for electronic structure computations with 

strongly reduced effort, in particular for reactions between polyatomic molecules with 

large residues that do not directly affect the electronics of the reaction. It can also lead 

to simple models for understanding the characteristics of potential energy surfaces in 

terms of transferable quantities for molecular fragments.

An example of a method that embodies orbital, rather than spatial, partitioning is the 

CIPT2 ansatz. 103 An active orbital space, obtained from a prior CASSCF calculation, 

defines a multireference configuration interaction (MRCI) ansatz,60 which is then modified 
such that excitations involving one or two orbitals outside this active space are treated 

more simply using second-order perturbation theory, rather than variationally. Here, we 
follow a similar approach, but focusing in detail on a simple prototype class of bond- 

breaking chemical reaction, the transfer of hydrogen from a closed-shell hydride to a 
radical. We attempt to partition the correlation energy contribution to the reaction 
barrier height into a part that arises from the active space only, parts that correlate 

active orbitals with spectators on other parts of the reactant molecules, and pure spectator 
contributions, both intramolecular and intermolecular.

To make our envisaged partitioning well defined, we use the fact that localized orbitals 
are confined to a smaller part of the molecule. Such a partitioning would have numerous 

advantages. One of them is that since the localized orbital structure of the same functional 

group in different environments is expected to be nearly the same in different molecules, 104 

the correlation contribution arising from this group is expected to be nearly identical, 
therefore, once calculated in one species, it would be transferable to another that contains 
the same functional group. This gives us a powerful tool to check our results.
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F igure 3: Reacting orbitals (R space) at different reaction coordinates. The

orbitals shown are the breaking/forming bond orbital, labelled R, and the SOM O  

labelled r in subsequent chapters

3.4 Partition ing o f Correlation Energy

We have chosen hydrogen transfer reactions for our calculations. Here, we have a H-donor 

and a H-acceptor (radical); X — H and X, respectively in the symmetric case shown in 

Figure 2, which we consider as spatial orbital partition A and B, respectively. The 

majority of the orbitals could be identified as belonging to either of these two, assuming 

they remain confined to the same spatial partition during the reaction. It is, therefore, 

possible to introduce a partitioning in the orbital space corresponding to this spatial 

partitioning. However, it is also advisable to introduce another partition, for orbitals 

which do change during a reaction, those that would normally be chosen as (minimal) 

active space orbitals in an MCSCF calculation, being likely that they are related with 

strong long range correlation effects. This will be referred to as the reacting or R orbital 

partition. A schematic representation of R orbitals is found in Figure 3. Here we can 

interpret the changes of these orbitals as rotations with respect to the initial set of orbitals 

(or even to the AOs) as we go along the reaction coordinates in a symmetric H abstraction 

reaction. It can be seen that the orbitals involved are the SOMO and the doubly occupied 

orbital that is originally the X — H bond that breaks. These characteristics of the R space 

lead us to assume that orbitals in a CASSCF type wavefunction would ideally satisfy the 

needs of such partitioning by getting automatically separated into the desired partitions.
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Let us now continue with examining the consequences of such an orbital partitioning

to correlation energy. Note that although the CASSCF wavefunction would have certain

advantages as discussed before, all calculations eventually carried out use the single refer­

ence approach. Considering the Hamiltonian in second quantized spin free formalism, 105 

working with real spatial orbitals

„  - 1 y
H  =  ^   ̂HpqEpq + — ^   ̂{jpt \Qu) Ept̂ qu (31)

pq pqtu

the correlation energy can be written as

Ec =  (0|ff |tf) =  M O I ^ }  +  1 ^ ( * r | i S)(0 |£ jrjs |4>) =  ey (32)
i r  i j r s  i < j

where

eij = 5 i j^ 2 h ir{0\Eir\y) +  ^ ( i r | j s ) ( 0 |^ rJS|1F) (33)
r rs

with I'L) =  I'L) — |0 ), and intermediate normalisation is assumed between the reference 

(|0» and correlated (\I>) wavefunctions (0|\k) =  1 (consequently (0 |^) =  0). H  contains 

one and two electron excitation operators Eir and Eirj s, respectively, which are defined 

as follows

Eir — ^   ̂ T'zrjs = ^   ̂ (34)
o OT

which excite electrons from orbitals labelled z,j to orbitals r, s. The two indexed a) 

and a are creation and annihilation operators, respectively, generating various excited 

configurations through destroying orbitals indexed i , j  and creating others indexed r, s. 

Spin indices o and r  are applied to keep track of different spin variants of excitations from 

and to the same spatial orbitals. Since the Hamiltonian contains one and two electron 

operators, the correlation energy can be separated into pairwise contributions e^, as
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shown in (33), of orbitals z,j occupied in the reference configuration. In this convention 

we include the arising single terms into Cy as it is defined in (33). Since our partitioning 

is carried out on |0), it follows that Ec will also be split up to partial sums of 6y . As there 

are three orbital partitions, the correlation energy will be split up into six terms, denoted 

as follows: E(A-A), E(B-B), E(R-R), E(A-B), E(A-R) and E(B-R). The notations in 

brackets indicate the partitions to which the orbitals belong. Partitions E(A-A), E(B-B) 

and E(R-R) are referred to as self(energy) partitions, due to the fact that the orbital pairs 

involved are of the same partition. Besides, there are fractions describing interactions 

between fragments: E(A-B), E(A-R) and E(B-R), where E(A-B) can be interpreted as 

dispersion. The subscript ts and r would refer to the fact that these partial sums belong 

to the transition states and reactants, respectively. A A symbol refers to correlation 

contributions to barrier heights, as these are the differences of the aforementioned two 

types of quantities (e.g. AE(A-A)=E*s(A-A)-Er (A-A), etc.). If partial sums are present 

without these symbols then the relevant statement is generally valid.

It is our hope that this partitioning could make practical calculations easier. To under­

stand why, first let us consider the E(A-A) and E(B-B) partitions. Since localized orbitals 

are used, their contribution should be transferable from one reaction to another. Once 

these are known in one reaction, they need not be calculated in another. This holds triv­

ially for reactants. A similar argument may hold to the E(A-R) and E(B-R) bits, since 

we are dealing with similar types of reactions, similar changes should occur in the R space 

during a reaction, and so these partitions should also be transferable to at least some 

extent. We are left with E(A-B) and E(R-R). E(A-B) can be understood as a dispersion 

term (and as such it is trivially zero for the distant reactants), and it could be calculated 

via for instance force field calculations, in which case the only bit that should be treated 

quantum mechanically would be the E(R-R) bit, which arises only from orbitals respon­

sible for the majority of static correlation. In this manner a correlation method could be 

approximated in a QM/MM fashion, where the layers would correspond to the orbital 

space. It should be noted here that, although on a different basis, there are successful 

uses of localized orbitals for instance in making the MRCI ansatz more feasible, 106 which 

reassure us about their usage in novel methodologies.

For practical calculations of barriers of reactions, we first need to choose what orbitals 

to use with the various possible correlation methods at our disposal. With transition
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partitioning

localized orbitals

aligned TS & RE

transformed orbitals

optimized TS & RE

transformed orbitals

geometry optimization

F igure 4: A sum mary of the various calculations perform ed

state structures, CASSCF orbitals would be an optimum choice, since these account for 

the static correlation that is expected to become significant if bond breaking occurs, 

and under these circumstances an adaptive CASSCF procedure is expected to find the 

right local orbitals. However, since many single reference methods were shown to work 

well with radical transition states ,92,93 the use of Hartree-Fock orbitals is also possible. 

Various localization techniques95-97 may then be used to obtain the proper partitioning. 

As we will see later, this latter procedure was chosen for our calculations.

The case is similar for the reactants, where single reference methods should be sufficient, 

and due to the weaker static correlation, even the use of CASSCF would not ensure that 

one ends up with properly localized orbitals. Performing localization is the simplest way 

to get the orbitals needed. In our calculations, Boys localization95 is used. However, since 

localized transition state orbitals are available, it is also a possibility to come up with a 

transformation that would make reactant orbitals similar to the corresponding transition 

state ones. Before going on detailing such a transformation, it should be noted that since 

reactant and transition state geometries differ, the rotation of p and higher orbitals may 

represent some problems in such a procedure. To make sure that this effect is dealt with, 

geometries can be forced to have the same orientation and structure except with larger 

distance between the segments. All in all, this gives us the choice of using localized, 

transformed and geometrically aligned and transformed orbitals for our purposes.

In Figure 4, the various calculations performed are summarized; all of these start simi­

larly. After obtaining the transition state structure, the breaking bond distance can be
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increased, and the reactant structures can be optimized. The majority of our results 

involve localized orbitals. For the cases where orbital transformation is applied, the sub­

sequent single point calculations are carried out with the ‘noorient’ option in MOLPRO 

with both geometries. This prevents the reorientation of structures based on inertia mo­

ments, and since the structures are defined in a similar, analogous manner, it provides 

a large overlap of reactant and transition state geometries since partition A ends up in 

nearly the same position with B differing due to the larger distance of the segments in 

the reactants. As a third possibility, to further minimize the effect of misalignment, we 

can take the same segment structures only differing in the intersegmental separation, so 

that partition A would match perfectly in reactants and transition states, and partition 

B would be geometrically identical but translated relative to each other in the two cases. 

Thus, we have provided similar geometries, and we have fixed these relative to each other. 

For the latter two cases, after orbitals are localized, a Lowdin type transformation107 is 

performed between corresponding orbitals of transition state and reactant geometries. 

This will be discussed in the following sections.

Before moving on to orbital transformations, the procedure of sorting the orbitals into 

partitions should be clarified. There are several possibilities. One is to decide upon 

the graphical representation of each orbital. Another is to consider the basis function 

structure of the wavefunction. For this, a threshold for contracted function coefficients in 

molecular orbitals is needed. This is typically chosen to be 0.15, but never less than 0.1. 

Next, the centres of relevant AOs are listed for each MO. This list can then be compared 

to the list of atoms in a partition, revealing the atomic centres to which the orbital is 

localized around. This procedure is done for transition states and reactants at a large 

1000 Bohr separation. Comparing these results makes it possible to assign a partition 

for each orbital. Usually both methods were applied in our calculations, occasionally 

accompanied by an analysis of the orbital centroid positions.
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3.5 Orbital Transformations

3.5.1 Transformation for Transition State Orbitals

In this chapter of the thesis, Boys localized orbitals are used almost exclusively, as a 

practical compromise substituting a more general CASSCF orbital set. However, some 

possibilities were considered in the initial stages of our work, and therefore a short sum­

mary of such procedures will be included here, for the sake of completeness.

If such a transformation is carried out, it is carried out before reactant orbitals are 

transformed, and as we will see, that latter transformation depends on transition state 

orbitals. Here, we assume that the localized orbitals are mixed up, in particular, as we 

will see later, the orbitals of partition A with the breaking-bond orbital belonging to 

partition R. From here on, the R subindex in quantities will refer to this doubly occupied 

orbital, whereas the SOMO is denoted by r. Since the SOMO is uniquely defined, the 

minimization of the above mentioned mixing would be achieved by making R “similar” 

in nature to r, and transforming the A orbitals accordingly, resulting in the separation of 

orbital partitions A and R. This, in our method, is reached by maximizing the Coulomb 

interaction between, and therefore the correlation contribution from the transformed R 

('iP'r ) and the SOMO r :

y i  CRjCRjj^i^Ar^ | Ipjlpr)
(i>,RTpr\rn1\ip'Ril>T) _  JJ____________________  , _  v  ,

T  WrWr) £ 4 , (35)
i

where r -^1 denotes interelectronic distance, { ^ }  are orbitals of the direct sum of parti­

tion A and the breaking-bond orbital, cm are the linear coefficients assuming that the 

transformed breaking-bond orbital can be expressed as a linear combination of orbitals 

in the subspace mentioned before. This will lead to an eigenvalue problem:

Jrc = Ac Jr13 12 I (36)
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where the elements of the matrix Jr are the three centre two electron integrals J£. The 

r superindex here denotes dependence on the r orbital. These can be gained by the 

‘fcidump’ function of the FCI module in MOLPRO. The basic idea of this transforma­

tion is very similar to that of the Edmiston-Ruedenberg localization procedure described 

before. Once (36) is solved, the eigenvector belonging to the largest eigenvalue yields the 

desired transformed breaking-bond orbital, and the rest can be used to set up transfor­

mations for the other orbitals involved.

3.5.2 Transformation for Reactant Orbitals

Many possible arrangements for transforming reactant orbitals were considered, although 

actual calculations discussed in this thesis only utilize one, and as we will see, even the 

use of that is limited. However, it is perhaps better to show the chain of thoughts (and 

numerical experiments) by which we have arrived at the one finally used, and in later 

chapters why transformations were abandoned completely.

Our first idea of a transformation of reactant orbitals was based on the thought that we 

can make the transition state and reactant orbitals as similar as possible, by maximizing 

the square of the overlap between the transition state (upper index TS) and the reactant’s 

transformed (indicated by ') doubly occupied R space orbital (R lower index). Some other 

orbitals of the reactant are necessarily transformed as well, and later we will discuss what 

practical choice we settled with. For now, it is enough to know that any transformed 

orbital 0 ' can be written with the untransformed reactant orbitals (RE upper index) as 

follows:

t'i = Y Cî .
RE
3 (37)

The function (F) to maximize is:

\{VrSWr)\max F  =  max
V’k \W r Wr )\

max
CRi

E
(38)

36



3.5 Orbital Transformations 3 HYDROGEN TRANSFER REACTIONS

Assuming real orbitals:

Y  cRicRj(^RS
3̂max F - max —

• - R iE
' E c m CRj S m S R j  C R j C R j P j j

U y / ryr\\= m ax  — -----------=  max — —   (39)Ec« CR< E

with the notations Sm = {'^RS\'^f'E) and = SriSrj, where S ri are elements of the 

asymmetric overlap matrix between TS (R in particular) and RE orbitals. For our prob­

lem to be well defined, conditions for calculating the overlap matrix S need to be deter­

mined more closely. Let us examine the form of S at the atomic orbital level:

s n = =  E p ^ ' ^ I 7̂ )  =  E p “ ^ £>« (40)
kl kl

or in a matrix form

S =  pDqT (41)

where D is the atomic orbital equivalent of S, with molecular orbital coefficient matrices 

p and q for transition states and reactants, respectively. While the latter two matrices 

can be obtained easily, there are some difficulties with D. To see what these may be, we 

assume that the atomic orbitals have the following form:

where G refers to either TS or RE, A ^ g is the coordinate vector for the kth  AO centroid 

in the geometry G. In this case, an atomic overlap matrix element between TS and RE 

geometries may be written as:
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Dki = j  d f  NkNie~aklf- At'Tsl2- a‘lf~A‘'RE]2 (43)

ss J  dr NkNle -aklf- Ak'7-s]2- a‘lf- A,'Tsl‘2 (44)

«  J  dr NkNie-ak]f~Ak’REl2-°“lr- Al’REl2 (45)

As it can be seen (43) differs from (44) and (45) in replacing the geometry labels for both

functions to be either TS or RE instead of the mixed labels of the strict definition. As

eventually (45) is used, we now have to discuss what the consequences of this replacement 

will be, and this should be done by specifying what the relation should be between the 

coordinates for TS and RE species in our calculations. By using the same label for both 

species, this means that e.g. in (45) all the transition state AOs are ‘transferred’ to 

the RE geometry. It can then be seen that if there were only a translational difference 

between the two geometries, that would disappear during the integral calculation. For s 

type orbitals, even rotation is irrelevant due to their spherical symmetry, however, as we 

have seen before, the ‘noorient’ option of MOLPRO was used exactly to prevent the ill 

consequences for p and higher order orbitals. If we consider a rotational variation, these 

orbitals will not remain invariant, rather, they end up being linear combinations of the 

original (unrotated) case. This mixing would change overlap values altering our results 

significantly, and should therefore be avoided. Considering the question whether (44) or 

(45) are better approximations to (43), our experience shows that they perform equally 

well, but it is technically simpler to implement (45).

It is also possible to argue that (44) or (45) are actually better choices than (43), for 

which reason (43) was not eventually coded but approximated as discussed above. It is 

useful to look into the details of the calculation of the asymmetric matrix S to see why. 

As a consequence of eqs (43), (44) and (45), the atomic overlap matrix may be estimated 

as:

D re «  D «  D t 5  (46)

In our calculations, we particularly used the reactant atomic overlap matrix ( D ^ )  cor­
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responding to (45) rather than that of the transition state (DTS). Let us examine the 

structure of these various overlap matrices shown in Figure 5. It should be noted in 

advance that many of the properties of matrices depicted here are merely assumptions 

as D is not calculated, therefore there is only limited numerical evidence to support our 

conclusions. Nevertheless, numerical data gained from approximations fit into the overall 

picture proposed below. For simplicity, it is assumed that the molecule has two segments 

A and B (R is ignored, the SOMO being considered as belonging to B, and the break­

ing bond orbital to A). In the transition state (DTS) A and B are close, so the overlap 

matrix has non-zero elements throughout, related overlap minor matrices are denoted as 

AA, AB, etc. In the reactant case (D ^ ) ,  the A’B’ and B’A’ overlaps are zero due to 

the large separation of reactant partitions A’ and B’. If we now superimpose the two, 

in a way discussed in the previous chapter, then we find that the geometric structure 

of A nearly coincides with A’, B is close to these, and B’ is far away. The asymmetric 

D describes this case. The consequence of the geometrical arrangement is that it may 

well be assumed that overlaps AA, A’A and AA’ are nearly the same, and so are A’B 

and AB, since B remains close both to A and A’. Since B’ is distant from the rest of 

the superimposed structure, it means that overlap B’A similarly to B’A’ is zero. B’B is 

also zero, and is unlike BB or B’B’. The conclusion is that for orbitals in partition A 

all approaches yield approximately the same results. However, since B’B is zero which 

makes the transformation impossible with (43) i.e. D. As we mentioned AOs are trans­

ferred in all the other cases, the corresponding overlaps will not be zero. In our case, this 

means that the transition state orbitals are transferred to the reactant structures and the 

overlap is calculated thus, overcoming the difficulty of large intramolecular separation, 

and making it possible to perform a transformation for all orbitals. However, as we will 

see, the transformation actually constructed and described later only affects orbitals in 

segment A, for which all the approximations, as it has been shown, are valid.

Keeping in mind the consequences of the above discussion, we may now go on with our 

derivation. With the requirement that derivatives according to cm vanish, (39) becomes 

an eigenvalue problem of the matrix P:

cP =  Ac (47)
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A B A’ B’ A^A’ B B’

A A  A B \  /  A! A! A'B' =  0

B A  B B  \B 'A ' =  0 B ’B'

A'A  «  A A  «  A'A' A 'B  «  AB

B'A =  B'A' =  0 B 'B  =  0, B B  ±  B 'B  ±  B'B'

DTS DRE D

Figure 5: Structure of atomic overlap matrices of the transition state (D TS), 

the reactants (D r e )  and the two superimposed (D ) with schem atic representation  

of the relative positions of the segments. A and B refer to transition state, A ’ 

and B ’ to reactant partitions.

The eigenvector belonging to the largest eigenvalue is the solution to our problem, the 

transformed orbital that has the largest overlap with ‘ip'Rs . In addition, we get in c a set 

of other vectors orthogonal to each other, that define a transformation of other orbitals 

in the subspace. However, except for the largest eigenvalue case, it is not known if this 

transformation is the best possibility. This is because although is granted to have the 

largest overlap with ipRs , the rest of the transformed reactant orbitals are such that they 

are orthogonal to ip'R and with that constraint have the largest overlap with ipRs , rather 

than their own corresponding counterparts among transition state orbitals. This means 

that there is no guarantee that reactant orbitals other than the breaking-bond orbital have 

become “more similar” to their transition state equivalents. In the followings, attempts 

to achieve such a transformation will be introduced. The aim of these discussions is to 

show the line of thought that brought us to the transformation eventually used, rather 

than proposing either rigorous or practical alternatives.

The first idea would be to try and maximize the overlap of all orbital pairs involved in 

the two spaces. If we assume that we have already ordered the orbitals in a way that 

the ones we want to pair up have the same index in each subspace, then we may use the 

following trial function to be maximized:
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m axF =  max I ^  (ipfs |^ )  +  ^  Ay (<5y -  < ^ |^ ') )
1 \  » ij

= max I ^   ̂CijCikSijSik +  ^   ̂Ay I <5y ^   ̂CikCjk J I
\  ijk ij V fc /  /

=  max ^  CijCikP)k +  A2j 8tJ -  ^  (48)
V ijk ij \  k J  J

where we have chosen the Lagrange multiplier method to express the constraint, ( ^ | ^ )  = 

Sij, that the transformed orbitals are orthonormalized. Here Pjfc is the same as in the 

original transformation (39) and (47), except that it belongs to arbitrary orbital pair i 

instead of R, which is denoted in the upper index. This yields a similar result to what we 

had before, since after derivation with a certain parameter Cy only terms corresponding 

to the chosen i survive, resulting in:

cP 1 — Ac (49)

for each orbital pair i. In other words, this defines a separate transformation for each i, 

where the solutions for the largest eigenvalues are in maximum overlap with their TS pairs. 

But the rest of the eigenvectors have the same problem as those of the transformation 

above, and although with the largest eigenvalue cases we have a set of reactant orbitals 

with granted maximum overlap with the corresponding transition state orbitals, they are 

not orthonormal, as they are the products of unrelated transformations. We will try to 

move on for a more global solution.

Our last thought in this line is to try to not only maximize the overlap for a certain TS- 

RE pair i, but also to minimize it for i ^  j.  In this case our function takes the following 

form:
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max F  = max
V

=  max
Cij

( \
E W’P'iV’i)2 - E W’.TSî >2+E -M5« -

\

^   ̂c i j c i k F j k  ~  ^  y Cj k c j l P k l  T  ^  ( ^ i j  ~  ^   ̂ C i kCj k  1
i j k  i j k  i j  \  k /

&3 /

(50)

Now, after derivation one gets the following equation:

E pi! Ac P 1 x =  I
- P 1 if i^x  

+ P 1 if i=x
(51)

for each orbital pair x. These solutions now have a relation to others, but still they are 

to be defined for each pair separately, so still suffer from the original problem.

Now let us try a different approach. Assume that by solving (49) for each z, we get a set 

of solutions belonging to the largest eigenvalues. The problem with these is that they are 

not necessarily orthonormal. One would think that we could try orthonormalizing these, 

with a method that transforms them to the least possible extent while doing so, which 

would be Lowdin’s symmetric procedure. Unfortunately, this above mentioned set of 

transformed orbitals seems to be overdetermined, which prevents the actual application 

of the method.

However, the idea of the Lowdin procedure still appears useful, since it is a method 

which changes the orbitals to the least possible extent. If one follows this trail, one 

should take a look at how the procedure was derived. The “similarity” mentioned before 

is defined in the least squares sense, that is, minimizing the following functional of the 

initial non-orthonormal orbitals (z/>o,i) and the resulting ones ( i p i ) :

X  / 1̂ i ~  ^o,i|2d r =  X  Wi -  -  V>0,i) (52)
i i
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This should be minimized using the constraint that the resulting orbitals are orthonormal. 

The idea here in relation to our problem is that TS and transformed RE orbitals should 

be most similar in the least squares sense:

~  -  ^ i S) (53)
i

We can now expand the above term, and since we know that both the overlap of ipfs and 

0 - with themselves is constant (we want them to be 1 ), the minimization only affects the 

mixed terms, which appear with a negative sign. For this reason, these terms need to be 

maximized. With the introduction of the orthonormality constraint to the transformed 

orbitals, the function which we need to maximize is:

max F  =  max ( ^  UV’f V i )  +  (V’ilV’F ) )  +  Y  -  W M }))
1 \  i  i j

— max I 2 ^   ̂C i j S i j  T ^   ̂\ %j  I S i j  ^   ̂C i k Cj k  I J (54)
^  V ij ij V k ) )

where we have used the fact that we are working with real orbitals, and Sij is the familiar

asymmetric overlap between TS and RE orbitals. After derivation, we get the following

result:

S =  Ac (55)

This result looks like a matrix decomposition. Given that c is unitary (orthogonal), and 

A is Hermitian (symmetric) because of the symmetry of the constraint, this (assuming A

is positive semidefinite) is equivalent to the polar decomposition of a matrix. Proceeding

accordingly, one gets:

A =  Sc - 1  and AT =  (cT)- 1ST =  A (56)

from which
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A2 =  S(ccT)~1ST = SST =► A = ( S S t )  ̂ (57)

If we express c from (55), and insert (57), we get:

c =  (SST)"^S (58)

The idea was based on the usefulness of the Lowdin transformation with respect to our 

problem, and followed the concepts of a basic derivation of i t . 108 The fact that this 

transformation - similar to (54) - maximizes the sum of pairwise overlaps of the two sets 

involved was also obtained by Lowdin’s own proof. 107 A more general proof of the sym­

metric orthonormalization, leading to the Carlson-Keller theorem109 does not require that 

the two sets span the same subspace, which is closer to our situation. More importantly, 

it has also been shown that the minimization in the least squares sense yields a global 

extremum of the overlap. 110 All these results have been used for orbital transformations 

related to diabatic states, for example in those using the effective Hamiltonian method. 

In a related article, also the role of polar decomposition is hinted a t . 111

Similarly, based on previous results with 2 x 2  Jacobi rotations112 of orbitals with similar 

criteria, and a more general one113 based on (58) was also implemented in MOLPRO as 

the first step of the DDR114 procedure. This procedure aims at the determination of the 

mixing of states beyond the Born-Oppenheimer approximation, i.e. diabatic states, in 

adiabatic wavefunctions. This requires the determination of two wavefunctions, the one 

belonging to the geometry of interest and the one where the states are assumed diabatic 

for instance because they cannot mix due to symmetry reasons. More explicitly, the 

procedure requires the calculation of the following quantity:

-  -■ !« »

where the R  and R  +  AR  refer to the geometrical parameters of the (diabatic) reference 

(4>i) and target wavefunctions ( ^ 2)* The wavefunction is then written as a Cl expansion, 

introducing orbitals, and eventually, yields eq (44) or (45). In this manner, the math­
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ematical formulation of the problem bears resemblance to ours, and although we may 

not need the whole procedure, as our transformation uses the same equations - relying 

only on the overlap matrix - the same code is therefore applicable to our case. See the 

implementation in the MOLPRO routine mudiab.f for (58).

There is one point of interest left for discussion. It is worth comparing transformations 

(49) and (58). They both start off similarly: equation (49) from maximizing the sum of 

squares of pairwise overlaps, whereas (58) can be traced back to maximizing that of plain 

pairwise overlap. However, while (49) needs a separate equation for each orbital pair i, 

and on top of that, these are not related, equation (58) provides a unique orthonormal 

set of orbitals where the sum of overlaps of orbital pairs i are maximized. The reason 

for this difference is that maximizing the pairwise overlaps of orbitals is based on the 

two indexed quantity S, and as a consequence of taking the square of the overlaps, in 

(49), although the quantities are formally also two indexed, a third index is introduced 

through the matrix P 1:

p l = s !® s*  (S!)j = s ij (60)

where S_l is the overlap vector belonging to orbital pair i, and as such, a vector in S; 

and as P 1 is an outer product of these, the previously discussed dependence of this 

transformation on the choice of orbital pairs is obvious.

3.6 R esu lts and Conclusions

Considering the reasons mentioned before, and keeping computational feasibility in mind, 

our calculations were carried out at the RCCSD/aug-cc-pVDZ level, which should be 

able to supply all the relevant information we are looking for. Geometry optimizations 

are rather crude, but our purpose was not to achieve the best accuracy but to analyse 

partitioning for which any sensible geometry would do. B3LYP/6-31G(d) geometry op­

timisations were carried out in most of the cases; for some of the cases the HF model 

was used, a fact that will be referred to at the appropriate places. All calculations were 

carried out with the MOLPRO115 and Gaussian116 program packages. In Figure 6  some
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> • < * ! % t
MeHMe EtHEt iPrHiPr

HOHOH H0CH2HCH20H FEtHEtF

AmHAm SiHSi SiHAm

ArlHArl

Figure 6: Some of the species (mainly sym m etric) involved in the discussion of 

partitioning with the codes used to refer to them later. They will be explained at 

the appropriate places.

Ar2HAr2
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species are shown that are involved in the subsequent discussion to make their identifi­

cation and the recognition of their geometrical arrangements easier. Symmetric species 

are preferred, as the asymmetric ones are gained usually combinations of these without 

significant changes.

Table 1 shows results for alkanes which seem to behave ideally. Methyl, ethyl and iso­

propyl species are presented with selected asymmetric cases. The position of *+’ in this 

notation indicates which group has the H as a reactant (A) and which is the radical (B). 

Results for reactants, transition states and the barrier heights are shown, using only Boys 

localization for the partitioning. One may observe that the symmetry of the molecules 

is represented in the partitions (see e.g. Ets(A-A) and Ets(B-B) are equal for symmet­

ric cases), or that Er (A-B) is zero as expected due to the large separation. It is more 

interesting that AE(B-B) is nearly zero here, meaning that using this methodology or­

bitals from the H acceptor partition have relatively negligible contribution to the barrier. 

Another interesting note is that while all other partitions decrease the barrier, AE(A-A) 

shows increase. If we now compare symmetric and asymmetric cases, it turns out that 

partitions are indeed transferable. To see this, one needs to compare values (say E(A-A)) 

in an asymmetric case (as iPrH+Et) with the corresponding symmetric case (E(A-A) in 

iPrHiPr). In general, excluding E(R-R) and E(A-B) partitions, for reasons explained be­

fore, it can be said that for the reactants, the difference between the transferred partition 

and the one to be replaced is about a few 0.01% of the latter partition. For transition 

states, this is somewhat worse, but still below 0.5%. Since, however, we are interested 

in the differences of these partitions, the agreement is expected still somewhat worse 

there; errors arising from partition transfers is around 2.5-3% of the barrier height. In 

these cases, E(R-R) partitions appear to be transferable as well, whereas E(A-B) for an 

asymmetric case seems to be close to the average of the corresponding symmetric ones.

In Table 2, on the example of CH3HCH3 , the effect of orbital transformation will be 

studied.The expected conclusions from this study are twofold. Firstly, it will be seen 

how orbital transformations influence partitioning calculations, and if there are any im­

provements compared to the use of untransformed localied orbitals. Ifso, the transformed 

partitions should get closer to zero. Secondly, the effect of geometrical differences on the 

results of the transformation are also investigated. All geometry optimizations here were 

carried out at the RHF/aug-cc-pVDZ level of theory, transition state structures were par-
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Table 1: Partitioning of correlation energies of methyl (Me), ethyl (Et) and 
isopropyl (iPr) species. A ‘+’ indicates how separation occurs in reactants in 
asymmetric cases. All results are in Hartree units.

MeHMe EtHEt iPrHiPr iPrH +Et iPr+HEt

Reactants

Er (RHF) -79.761209 -157.839519 -235.920392 -196.878512 -196.881371

Er (A-A) -0.124223 -0.281651 -0.440806 -0.440810 -0.281648

Er(A -B ) 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

Er(A-R) -0.038786 -0.040398 -0.042169 -0.042167 -0.040400

Er (B-B) -0.120351 -0.276930 -0.434998 -0.276930 -0.434992

Er (B-R) -0.039033 -0.042842 -0.046099 -0.042848 -0.046119

Er (R-R) -0.028479 -0.028610 -0.028709 -0.028709 -0.028612

Ec,r -0.350872 -0.670432 -0.992782 -0.831465 -0.831771

Transition States

E!s(RHF) -79.705837 -157.784792 -235.865902 -196.825582 -196.825582

E(S(A-A) -0.120348 -0.276161 -0.435379 -0.435579 -0.276796

Ets(A-B) -0.002582 -0.004275 -0.006852 -0.005297 -0.005297

E(S(A-R) -0.044734 -0.048254 -0.051617 -0.051376 -0.048335

E(S(B-B) -0.120348 -0.276161 -0.435379 -0.276796 -0.435579

Et3(B-R) -0.044734 -0.048255 -0.051617 -0.048335 -0.051376

Ets(R-R) -0.042782 -0.042147 -0.042043 -0.042110 -0.042110

Ec,ts -0.375528 -0.695253 -1.022885 -0.859493 -0.859493

Barriers

AE(RHF) 0.055372 0.054727 0.054490 0.052930 0.055789

AE(A-A) 0.003875 0.005490 0.005427 0.005231 0.004852

AE(A-B) -0.002582 -0.004275 -0.006852 -0.005297 -0.005297

AE(A-R) -0.005948 -0.007857 -0.009447 -0.009209 -0.007935

AE(B-B) 0.000003 0.000769 -0.000380 0.000134 -0.000587

AE(B-R) -0.005701 -0.005412 -0.005518 -0.005486 -0.005257

AE(R-R) -0.014302 -0.013537 -0.013334 -0.013401 -0.013499

w<1 -0.024656 -0.024821 -0.030103 -0.028028 -0.027723

Total 0.030716 0.029906 0.024387 0.024902 0.028066

48



3.6 Results and Conclusions 3 HYDROGEN TRANSFER REACTIONS

tially optimised with breaking and forming C-H bond lengths restricted to be the same. 

In the first column as a comparison the untransformed, localized orbital partitioning 

is shown. Next to it are the results after a Lowdin type transformation on the react­

ing orbitals. To account for the misalignment and corresponding rotational discrepancy 

between transition state and reacting orbitals, which may have a bad effect on the trans­

formation, a third column is included showing transformation carried out at a reactant 

geometry that is gained by freezing the segment structure of A of the transition state at 

large separation. Here only the A segment is aligned, since we would expect AE(A-A) to 

vanish similarly as AE(B-B) in the untransformed case, since this transformation results 

in reactant orbitals very similar to the transition state ones. The transformation only 

affects A and R orbitals following this expectation. Also, the fact that AE(B-B) and, 

therefore, spatial segment B (i.e. the radical) orbitals can be left out of the transforma­

tion means that all of the approximations of the overlap matrix discussed earlier would 

be suitable for our purposes, but using is the most convenient. The only R orbital 

that we include is that of the breaking bond, which is reasonable given the fact that that 

orbital is spatially closely related to partition A. However, the AE(A-A) partitions still 

remain non-zero after the transformation, regardless of what geometry was used. Indeed, 

there is very little difference between the transformed and aligned cases. For this reason 

we can exclude orbital rotation as a cause for failure. The likely reason would be that 

during the transformation, the orbitals delocalize, and therefore the partitioning is ru­

ined. In Figure 7, A denotes the doubly occupied R orbital in the localized case, and B is 

that of the transformed case. It can be seen that whereas the first orbital is neatly local­

ized around the required bond centres, the back lobe of the transformed orbital is spread 

over H atoms belonging to the A partition satisfying perhaps the requirement of greater 

similarity with transition state orbitals, but violating the separation between partitions. 

Since it is hard to find a transformation that maximizes similarity and yet respects local­

ization, we decided to simply use localized orbitals calculated at the optimized reactant 

and transition state structures in all our calculations. The somewhat surprising success 

of this choice of Boys localization over some elaborate transformations perhaps follows 

from the fact that it respects partitioning. It should also be noted that Pipek-Mezey 

localization was also tested, and yielded similarly good results. This is important, as for 

larger systems the Pipek-Mezey procedure is more feasible, and it also respects the ct/ tt 

symmetries.
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Table 2: Partitioning of correlation energies of the CĤ HCHs species, without 
transformation (localized) and with transformation with and without geometry 
alignment (transformed and aligned, respectively). All results are in Hartree units.

localized transformed aligned

Reactants

Er(RHF) -79.761298 -79.761298 -79.759540

Er(A-A) -0.124041 -0.109443 -0.109303

Er(A-B) 0.000000 0.000000 0.000000

Er(A-R) -0.038791 -0.060414 -0.059985

Er(B-B) -0 .1 2 0 1 1 2 -0 .1 2 0 1 1 1 -0.120113

Er(B-R) -0.038998 -0.038998 -0.038998

Er(R-R) -0.028416 -0.021392 -0.022086

E c,r -0.350358 -0.350358 -0.350485

Transition States

Ets(RHF) -79.705977 -79.705977 -79.705977

Eta (A-A) -0.120191 -0.120191 -0.120191

Ets(A-B) -0.002614 -0.002614 -0.002614

Ets(A-R) -0.044718 -0.044718 -0.044718

Etfl(B-B) -0.120186 -0.120186 -0.120186

Ets(B-R) -0.044712 -0.044712 -0.044712

Eta(R-R) -0.042579 -0.042579 -0.042579

E c,ts -0.374999 -0.374999 -0.374999

Barriers

AE(RH F) 0.055321 0.055321 0.053563

A E(A-A ) 0.003850 -0.010748 -0.010888

A E(A -B) -0.002614 -0.002614 -0.002614

A E(A-R ) -0.005927 0.015696 0.015267

A E(B-B) -0.000074 -0.000074 -0.000073

A E(B-R) -0.005714 -0.005714 -0.005714

AE(R-R) -0.014162 -0.021187 -0.020493

A E C -0.024641 -0.024641 -0.024514

Total 0.030680 0.030680 0.029049
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B

Figure 7: Comparison of doubly occupied R orbitals in cases when only local­

ization was used (A )  and when a Lowdin type orbital transformation was also 

carried out (B).

Next in Table 3, partitions are shown for cases other than hydrocarbons. From this 

point on, transition state results will be shown, as significant new developments are 

expected with these, as there is a larger interaction between orbitals in these cases. In 

the followings, asymmetric species will be labelled in a manner that partition A comes 

first, and partition B last, the two separated by the H. For example, in MeHOH Me 

is partition A and OH is partition B, results are to be found in the tables accordingly. 

The first significant difference is that here AE(B-B) is no longer zero with these species. 

Examining the asymmetric cases shows that the partition transfer causes a larger error 

than with alkanes, especially with partitions connected with R (Ets(A-R), E*S(B-R)). For 

MeHOH, the error goes near 6% for Etg(B-R), which might cause an even larger error in 

the barriers. The cause here is what would be called traditionally the delocalization of 

the SOMO over atoms which have lone pairs like O. This delocalization is numerically 

indicated by the large AO coefficients of the SOMO belonging to O. Since the SOMO is 

uniquely defined, this cannot really be dealt with via localization. Consequently, there 

will be a violation of partitions since an R orbital mixes with those of other partitions. 

This would explain why Eta(A-R) and Eis(B-R) are more affected. If we take the other 

asymmetric case, where delocalization is less likely due to the fact that there the O atom 

is not the one directly associated with H transfer (being attached to the carbon atom that
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Table 3: Partitioning of correlation energies for some species containing oxygen 
as a heteroatom. In asymmetric cases the group written first is partition A. All 
results are in Hartree units.

MeHMe HOHOH MeHOH EtHEt HOCH2HCH2OH EtHCH2OH

Eta (A-A) -0.120348 -0.129679 -0.120758 -0.276161 -0.311845 -0.276613
Eta(A-B) -0.002582 -0.009122 -0.004107 -0.004275 -0.004046 -0.004038
Ets(A-R) -0.044734 -0.072698 -0.042256 -0.048254 -0.046802 -0.047899
Et,(B-B) -0.120348 -0.129681 -0.130991 -0.276161 -0.311845 -0.312417
Ets(B-R) -0.044734 -0.072701 -0.071292 -0.048255 -0.046802 -0.046267

Eta(R-R) -0.042782 -0.041013 -0.043304 -0.042147 -0.043199 -0.042525

Ecta -0.375528 -0.454894 -0.412707 -0.695253 -0.764540 -0.729759

is), the errors shrink back to around 1%. This seems to support the above theory. Why 

there is still a significant discrepancy, there are some factors to be considered. Firstly, 

that delocalization is still possible. Secondly, that even if there would be no delocalization 

possible, electrostatic differences between the H donor and acceptor groups could have a 

role (different electronegativities). In the remainder of our tables, we seek to gain some 

further insight into the role of these factors.

Let us, therefore, consider some further species without lone pairs: SiH3, N H j, Me and 

their asymmetric combinations as shown in Table 4. These geometries were obtained 

at the HF/6-31G(d) level, since B3LYP had some convergence problems. Interesting to 

note that SiH3 and NHg groups are eclipsed if we take the Si-H-N line as an axis in 

SiH3HNHj. This might alter with the use of diffuse funcions. Although it is evident 

from the optimisations obtained with these species that neither HF nor B3LYP are good 

choices for accurate calculations, as mentioned before, we do not persue accuracy in 

our calculations as in theory those should work for any geometries. For this reason we 

settle with the fast HF or DFT methods, whichever one fits better to the actual system. 

Among the latter species NHj seems to have the largest electron withdrawing effect due 

to its positive charge, then in decreasing order Me and SiH3. It can also be observed 

that self partitions (E(A-A) and E(B-B)) are affected to an extent of 0.3-1.5% during 

the transfer to the asymmetric species. Interestingly, the correlation energy involved in 

these partitions (meaning its absolute value) decreases in the asymmetric case compared
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Table 4: Partitioning of correlation energies for species containing the groups 
CHs (Me), NH£ (Am) and SiHs (Si). In asymmetric cases the group written first 
is partition A. All results are in Hartree units.

MeHMe AmHAm SiHSi AmHMe SiHMe SiHAm

Ets(A-A) -0.119894 -0.126924 -0.104265 -0.125708 -0.104659 -0.105806

Et.(A-B) -0.002490 -0.002895 -0.000956 -0.002897 -0.001478 -0.001868

Ets(A-R) -0.044630 -0.054572 -0.024510 -0.057316 -0.023338 -0.018545

E,s(B-B) -0.119894 -0.126924 -0.104265 -0.120529 -0.119493 -0.125428

Ets(B-R) -0.044630 -0.054571 -0.024510 -0.041197 -0.045203 -0.057183

Efs(R-R) -0.043010 -0.048632 -0.040967 -0.042135 -0.042207 -0.040515

Ec,ts -0.374549 -0.414518 -0.299474 -0.389782 -0.336377 -0.349344

to the symmetric for the group with the larger withdrawing effect and increases for 

the other. The opposite tendency can be observed for Ets(A-R) and Ets(B-R). Here, 

however, the difference is 5-10% for the majority of the cases. SiHMe is the least affected 

as there is relatively little difference in withdrawing between the two groups. The largest 

difference is in SiHAm where Ets(A-R) is differing to that in SiHSi with 32% (-0.018545 

vs. -0.024510 Hartree, respectively), as a result of matching the strongest and weakest 

electron withdrawing groups. It is, therefore, evident that electrostatic effects have a 

bad influence on the transferability of partitions through changing the electron density 

associated with a group in different molecular environments, while leaving the orbitals 

localized and the orbital partitioning unharmed.

Intrinsic delocalization of 7r-electrons over the partition boundaries may be another source 

of problems. If a phenyl group is present on both the donor and the acceptor atoms, as in 

the case of benzyl groups, then these may cause the delocalization of R orbitals over the 

whole molecule that remains even after localization (Arl case). By inserting a CH2 group 

between the phenyl group and the donor/acceptor carbon atom, the delocalization may be 

reduced (Ar2  case). The single point calculations here were carried out at the RCCSD/6 - 

31+G(d) level of theory considering the size of the species, and are shown in Table 5. The 

reason why E*a(A-A) and Ets(B-B) partitions are not equal in the Ar2HAr2 “symmetric” 

case is because the Ar2  groups are not completely equal owing to the rotational freedom
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Table 5: Partitioning of correlation energies for aromatic species, including 
benzyl (Arl) and a derivative group (Ar2 = Arl-CH2). In asymmetric cases the 
group written first is partition A. All results are in Hartree units.

MeHMe ArlHArl Ar2 HAr2 ArlHMe Ar2HMe ArlHAr2

M A - A ) -0.120191 -0.866969 -1.016990 -0.869596 -1.016671 -0.869458

E(s(A-B) -0.002614 -0.007793 -0.008185 -0.003150 -0.003462 -0.005414

Ets(A -R) -0.044718 -0.051706 -0.044289 -0.047605 -0.044065 -0.049024

Ees(B-B) -0.120186 -0.866969 -1.017747 -0.100310 -0.100152 -1.015386

Efs(B-R) -0.044712 -0.051706 -0.044286 -0.037464 -0.038625 -0.045015

Ets(R-R) -0.042579 -0.032400 -0.034705 -0.032232 -0.034711 -0.032603

Ec,ts -0.374999 -1.877542 -2.166203 -1.090357 -1.237685 -2.016900

arising from the insertion of CH2. It can be observed that the transferability of self par­

titions (Ets(A-A) or Ets(B-B)) belonging to aromatic groups are relatively little affected 

(0.3%). The transferability ruining effect on the Ets(A-R) partition in Ar2HMe (0.5%), 

or even Ets(B-R) in ArlHAr2 (1.6%) both belonging to Ar2 are small compared to that 

of Arl in ArlHMe (5-9%) which is due to the reduced delocalization in species with an 

Ar2  group in line with our expectations. Somewhat surprisingly, the transferability of 

the Me group is badly affected in ArlHMe and Ar2HMe in both Efs(B-B) and Etg(B-R) 

terms (15-20%). This could not be explained with delocalization, and perhaps it is due 

to the strong electron withdrawing effect of the aromatic groups. This seems to suggest 

that delocalization may have an undesired effect on partitioning and transferability, but 

this seems to be milder than what arises through electrostatic differences, which affects 

even groups with strongly local orbitals (like those of Me), possibly by decreasing the 

electron density associated with them.

We originally set out to establish a local methodology that would make quantum chemical 

calculations more feasible, by saving the effort of having to calculate all the contributions 

to correlation energy, provided they are known from a previous calculation. This rests 

heavily upon the condition of transferability of these partitions, which was examined 

here in detail. It was found that alkanes behave ideally from this point of view, and 

that such procedures would probably be successful with them. We have found numerous
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obstacles, however, with species that contained different functional groups. Electrostatic 

effects were identified as being very problematic in cases where there is a large change in 

the molecular environment from this respect in the species between which the transfer is 

to be made. Delocalization of ir and lone pair orbitals has a bad effect as well. For all 

these reasons, a methodology envisaged on the above basis, would be of lesser use, but 

still there is a possibility that it would yield reasonable approximations. We have also 

seen that in calculating barrier heights, localized orbitals performed better than specially 

constructed transformations to make reactant orbitals similar to transition state ones, 

because the transformed orbitals violate partition boundaries.

What remains yet to be seen, reveals little new developments, but serves to further 

illustrate some points already discussed. All the remaining cases are optimized at the 

RHF/aug-cc-pVDZ level of theory with symmetric bond lengths restricted to be the 

same. Some further examples of hydrogen transfer from alkane derivatives are examined 

via results shown in Table 6 . If we direct our attention to the energy differences between 

reactants and transition states, it is again very obvious that AE(B-B) is very nearly zero 

in all cases. If we now consider, say EtHMe in Table 6 , it can also be concluded that other 

partitions except for E(A-B) are virtually the same as corresponding partitions in EtHEt 

and MeHEt. E(A-B) being a dispersion-like term, seems to be the average of terms from 

EtHEt and MeHMe. Similar arguments hold for MeHEt (where the Me group is the H 

donor), where situation is analogous, except that A and B related terms are exchanged, 

as expected, compared to the previous case. It can be concluded that these partitions are 

transferable. Interesting to note that E(R-R) seems nearly constant in these cases, and 

E(R-R) of an asymmetric case is perhaps closer to that of the H-donor. Furthermore, the 

effect of F in the substituted cases on transferability is negligible, which is in line with 

results in Table 3; notably those of the OH containing species. It was observed there that 

the effect of the OH group decreases as it gets farther away from partition R (or more 

precisely from the donor/acceptor carbon atom). Here, F is even further away, with a 

CH2 group inserted between the head atom and itself, which is proven enough to restore 

transferability.

In Figure 8 , the contribution of partitions to the total correlation correction to the barrier 

height is shown as a percentage of this correction for various symmetric cases. Figure 8 

shows some results if one performs partitioning after localization without any transfor-
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Table 6: Results for symmetric H abstraction cases with methyl, ethyl and fluoro- 
ethyl groups, and for some of the asymmetric cases obtained from combining 
these. Results are in Hartree units at the RCCSD(T)/aug-cc-pVDZ//RHF/auc- 
cc-pVDZ level of theory. In the asymmetric cases, the groups written first belong 
to the A partition (i.e. those are the H donors).

MeHMe EtHEt FEtHEtF EtHMe MeHEt FEtHEt EtHEtF

Er (RHF) -79.761298 -157.840054 -355.570315 -118.798942 -118.802410 -256.706563 -256.703806
Er(A-A) -0.124041 -0.281207 -0.468956 -0.281203 -0.124045 -0.468959 -0.281208

Er(A-B) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Er(A-R) -0.038791 -0.040387 -0.041230 -0.040389 -0.038789 -0.041227 -0.040387
Er (B-B) -0.120112 -0.276657 -0.463245 -0.120112 -0.276657 -0.276658 -0.463244

Er(B-R) -0.038998 -0.042127 -0.043877 -0.038998 -0.042126 -0.042123 -0.043874

Er (R-R) -0.028416 -0.028535 -0.028399 -0.028536 -0.028415 -0.028398 -0.028535

Ec,r -0.350358 -0.668912 -1.045706 -0.509238 -0.510032 -0.857366 -0.857247

Ets (RHF) -79.705977 -157.784992 -355.515248 -118.745625 -118.745625 -256.650803 -256.650803
Ets(A-A) -0.120191 -0.276628 -0.463985 -0.276634 -0.120128 -0.463807 -0.276665
Ets (A-B) -0.002614 -0.004262 -0.003882 -0.003374 -0.003374 -0.004105 -0.004105

Eta(A-R) -0.044718 -0.048114 -0.049532 -0.047980 -0.044869 -0.049985 -0.047843

Ets (B-B) -0.120186 -0.276615 -0.463945 -0.120128 -0.276634 -0.276665 -0.463807

Ets(B-R) -0.044712 -0.048110 -0.049530 -0.044869 -0.047980 -0.047843 -0.049985

Ets(R-R) -0.042579 -0.042159 -0.042239 -0.042332 -0.042332 -0.042118 -0.042118

Ec>ts -0.374999 -0.695889 -1.073113 -0.535316 -0.535316 -0.884523 -0.884523

AE(RHF) 0.055321 0.055062 0.055066 0.053317 0.056784 0.055760 0.053003
AE(A-A) 0.003850 0.004579 0.004970 0.004569 0.003917 0.005152 0.004542
AE(A-B) -0.002614 -0.004262 -0.003882 -0.003374 -0.003374 -0.004105 -0.004105
AE(A-R) -0.005927 -0.007727 -0.008302 -0.007591 -0.006080 -0.008758 -0.007456
AE(B-B) -0.000074 0.000042 -0.000700 -0.000015 0.000023 -0.000007 -0.000563
AE(B-R) -0.005714 -0.005984 -0.005654 -0.005871 -0.005854 -0.005719 -0.006111
AE(R-R) -0.014162 -0.013625 -0.013840 -0.013797 -0.013917 -0.013720 -0.013583
A EC -0.024641 -0.026977 -0.027407 -0.026078 -0.025284 -0.027157 -0.027276

Total 0.030680 0.028086 0.027659 0.027239 0.031500 0.028603 0.025726
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Figure 8: Partitioning of barrier heights for different species as a percentage of 

the total barrier.

mation. AE(B-B) is only zero for MeHMe, otherwise it has a negative contribution in 

this Figure. It is because of the exceptional behaviour of E(B-B) with alkyl groups that 

the idea of transforming A orbitals so that AE(A-A)=0 originally arose. This, of course 

means, that such a transformation is expected to be the most useful with alkyl groups. 

Since the correlation energy difference is negative, that is, it decreases barrier heights, a 

negative value in Figure 8 means a contribution that actually increases the barrier. It 

can be observed that in general self partitions AE(A-A) and AE(B-B) are partitions that 

increase, while changes in reactant partition E(R-R) and the mixed partitions (including 

the dispersion term E(A-B) and mixed terms with R) decrease the barrier. In the case of 

H2NOHONH2 AE(B-B) is positive, but nothing conclusive can be said about this other 

than noting the fact. The results here should be treated with care, as we have seen, these 

results can in theory be biased by a transformation like the one described before, as long 

as their sum (the total correlation energy) remains the same. A table with the data of 

Figure 8 is included in the Appendix.

3.7 A Summary of the Procedure

Here a brief summary of the partitioning procedure discussed so far will follow with 

highlights on some possible areas for interest:
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1. Initial geometries and orbitals

• RHF wavefunction: possible symmetry break .83,84 This makes the conver­

gence of geometry optimizations with such calculations hard except for well 

defined cases, and even then results maybe problematic. A typical example 

for the manifestation of symmetry break is the failure transition state opti­

mization once the breaking and forming bond legths are not restricted to be 

the same. Not ideal for geometry optimization, but generally works with cor­

relation methods (as a compromise, often B3LYP is used to get optimized 

geometries, for which no such symmetry break was observed).

•  MCSCF wavefunction. Geometry optimizations converge, but the method 

would make it necessary to use some multireference correlation theories. How­

ever, it could be used for geometry optimization in itself, although ideally a 

method for such purpose should contain at least some of the dynamic correla­

tion energy.

2 . Localization to replace local correlation methods101 for open shell systems

• Boys:95 it seems to work well, might be improved by adjusting tolerance and 

convergence criteria

• Possible uses of Pipek-Mezey localization (e.g. in cases where ir orbital sym­

metry is significant)

3. Partitioning - splitting up the orbital space to orbitals which change during the 

reaction (R for reacting orbitals) and those remaining localized on the H carrier 

(A) and on the radical (B); partitioning pair energies accordingly

• Possibly done via numerical or graphical means

• In the numerical case, the number of R orbitals may depend on the parameters 

set in this procedure, therefore, the graphical solution is preferred, if sometimes 

accompanied by the numerical method

4. Transition state transformation of doubly occupied R and A orbitals so that the 

Coulomb interaction between R and the SOMO are maximized. This is a possibility 

we have not considered here
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• Other possible transformations, though the one used seems to work well ac­

cording to some experimental calculations, though not better than localized 

orbitals

5. Reactant transformation - maximizing overlap related quantities between the tran­

sition state and the reactant R and A orbitals, transforming reactant R and A 

accordingly

• Special geometrical arrangements are needed, the A segments should overlap 

as our transformations operate in the A0 R space. Partial geometrical align­

ment is possible, but does not improve results much. The ‘noorient’ option in 

MOLPRO should be used for calculations

• Transition state and reactant orbitals need to be paired up, since the trans­

formations depend on orbital pairs. This can again be done numerically or 

graphically, and again, the latter is preferred

• Approximation of overlap matrix S. With the present geometrical arrange­

ment, and conditions for transformation, this could either be approximated 

with reactant or transition state overlap matrices. The former one is chosen 

here

• Transformations using the sum of the squared absolute value of pairwise over­

laps, suffer from dependence on the orbital pair the transformation is based 

on (i.e. they are not unique). If separate orbital pair based transformations 

are carried out, an extra orthonormalization step would be required

• Transformations based on the sum of pairwise overlaps. This transformation 

is unique and yields a global extremum and a set of orthonormal orbitals

• For these reasons, the second type of transformations is preferred, although 

as it turns out, transformations ruin partitioning through delocalization, and 

should therefore be completely neglected. However, there may exist more ideal 

solutions, e.g. Mayer’s maximally localized orbitals117 that may work well with 

problems like ours.

All this results in the conclusion that localized orbitals should be used due to the lack 

of other similarity transformations respecting partitioning. Results have been presented,
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and the use of localized orbitals are recommended for similar procedures with the notes 

given above.

Finally, some possibilities are suggested how despite the above mentioned difficulties this 

method may still evolve into practical applications. As it was seen, the main hindrance 

for transferability had been electrostatic effects. This could be explained with assuming 

that in different molecular environments different electron densities are associated with 

a chosen transferred group, and so, the correlation energy partition associated with the 

group also changes. If in some manner, the partitioning could be corrected with the 

change in electron density, which is still easily calculated compared to high level correla­

tion methods, transferability may be restored, resulting in the provisional simplifications 

described in the beginning of this chapter. Several possibilities may be open for such 

a correction, and this chapter will be closed by mentioning a few of these on a purely 

speculative basis. The simplest possibility that comes to one’s mind is a sort of semiem- 

pirical set of parameters specific to groups and environments that would yield a better 

agreement with more accurate methods. It should also be possible to come up with a 

modification of localized methods that are invariant to density effects. Finally, it might 

also be possible to account for the varying environment in the SCF procedure in a manner 

similar to DFT using parametrized external potentials.
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4  T H E  C A S E  O F  P R O P E N E  +  O H

4 The Case o f Propene +  OH

4.1 Overview

An important special case of asymmetric H-transfer reactions plays an important role 

among hydrocarbon oxidation mechanisms. These are important in many areas of science, 

from understanding and reducing pollutant formation in combustion to describing partial 

oxidation in fuel cells. 118,119 It is widely accepted that the most common initial reaction 

of hydrocarbons in the atmosphere120 and in all hydrocarbon frames121 is the attack by an 

OH radical. Since propene can be a prototype of 1-alkenes, it is essential to characterize 

its relevant reactions to understand the chemical behaviour of 1-alkenes with the OH 

radical.

It is well-known that OH is able to attack the double bond of alkenes in terminal (T) 

and central (C) positions (Figure 9). These addition reactions take place via a van der 

Waals complex (vdW-complex), a so-called 7r-complex (R). However, the importance 

of the hydrogen transfers such as the consecutive (Acon) and direct (Adir) allylic H- 

abstractions in the case of alkenes +  OH reactions has been recognized only recently.122

Although the propene and hydroxyl radical system has been studied previously and re­

ported in several theoretical papers123-128 allylic H-abstraction channels were neglected 

in most cases. Earlier studies123-126 have focused mostly on the ratio of the terminal and 

central addition reaction rates. Although Cvetanovic reported in his work that 65% of 

the additions occur at the terminal carbon atom , 129 theoretical calculations at both the 

MP2/6-31+G(d)126 and MP4(SDTQ)/6-31G(d,p)//MP2/6-311G(d,p)123 levels of theory 

showed that central addition is preferred. However, it is emphasized in both theoretical 

works that the energy and entropy differences of the terminal and central transition states
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Figure 9: The studied direct and consecutive reactions of the propene +  OH

system.

are quite small.124 The interest in the kinetic behaviour of the 1-alkene +  OH system is 

also shown by papers published very recently127,128 in this field, papers in which theoreti­

cal calculations offered a mainly kinetic description of the system. These works are mostly 

based on PMP2/aug-cc-pVQZ//MP2/cc-pVTZ127 and CCSD(T)/cc-pVDZ//B3LYP/cc- 

pVTZ128 methods. We have found relevant discrepancy between these latter two potential 

energy surfaces, although both state that their results are good descriptions of the overall 

kinetics. These results will be discussed to some extent later on. All this has led us to 

determine the accurate energetics of transition states corresponding to the energetically 

favoured reaction channels with small difference in their energetics. Based on this set of 

calculations we are able to provide a highly accurate framework for kinetic modelling, as 

well as a procedure for the logical choice for the active space in such asymmetric species. 

On the other hand, our aim was also to provide highly reliable results from benchmark 

ab initio calculations for further tests with density functional methods for larger alkene 

homologues.
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4.2 N otes on Applied M ethods

The relevant structures of the reaction system were determined by geometry optimiza­

tions performed at two different levels of theory. Initial optimizations were carried out at 

the [5,5]-CASPT2/cc-pVTZ level. This method allows for choosing relevant correlation 

contributions by selecting the proper active space, and, therefore, it reduces computa­

tional requirements compared to more accurate models. On these geometries, various 

single point calculations were then performed to study some factors such as the effect 

of multireference treatment, spin contamination, basis sets and triples contributions. 

Based on these results, the UCCSD(T)/cc-pVTZ level of theory was chosen for the final 

geometry optimizations. Harmonic vibrational analysis was carried out at both levels 

([5,5]-CASPT2 and UCCSD(T)). Results on these geometries will be compared in the 

following section.

For the [5,5]-CASPT2/cc-pVTZ level of theory, the active space should involve the SOMO 

in all cases. For C and T  the ir bond must be involved, since it participates in the C-0 

bond formation, and in the remainder of cases, this orbital corresponds to the most mobile 

electrons out of doubly occupied orbitals (highest orbital energy in RHF reference). For 

Adir and Acon the breaking C-H bond must also be involved. For consistency, a C-H 

bond is involved in the active space for all cases. This makes the treatment balanced 

since the active space contains contributions for all non-hydrogen atoms for all species. 

Reactants (1-propene and OH) were treated in the supermolecular approach with a 1 0 0 0  A 

separation, and share the same active space structure. This results in an active space of 5 

electrons placed in 5 orbitals, 2 of which are unoccupied in the Hartree-Fock configuration. 

The occupied orbitals are chosen by first localizing the initial RHF orbitals, then after 

analysing the basis function contributions, the relevant orbitals may be identified. Similar 

procedures have been discussed in the literature, addressing the difficulty of choosing a 

balanced active space resulting in a correct correlation treatm ent.85,130 Local orbitals 

simplify the choice of occupied orbitals, however the difficulty of choosing the right virtual 

orbitals still remains. Here only the active occupied orbitals are preselected, and the 

virtuals are chosen purely on the basis of energetic order from the RHF reference. This 

procedure seems sufficient, since after the MCSCF optimization the active virtuals are 

the 7r*(C-C) and the <r*(C-H) antibonding orbitals as desired, see Figure 10. It can be
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seen that all active orbitals are well localized. This remains the case even if augmented 

basis sets are used. For further details see the following section.

The multiconfiguration nature of the wavefunction assures that the wavefunction is quali­

tatively correct, the long range static correlation effects having been considered - avoiding 

the dissociation related problems of single reference methods. The choice of CASPT2 

method ensures that the most relevant short range dynamic electron correlation effects 

important for geometry optimization are also considered. In the optimizations, the active 

space described above was used in all cases, for consistency, even in the cases, where the 

C-H bond remains intact. The removal of this orbital and a corresponding virtual one 

from the active space; or the choice of an alternative C-H orbital, however, does not 

influence the result of the optimization significantly. Neither does the use of a basis set 

augmented with diffuse functions results in any relevant change. In both the case of the 

modified active space and the basis set augmentation, the resulting change is of the order 

of a few 0 .0 1  A in bond lengths, a few 0 .1  degrees in angles, corresponding to perhaps a 

few 0 .0 1  k j/m ol in the calculated energies due to reoptimization.

For a further improvement in our results various single point calculations were carried 

out with different basis sets, and high level correlated methods. Various kinds of mul­

tireference (MR) methods were used, beginning with CASPT2  and CASPT3 perturbative 

methods. Although in some ways CASPT3 is an improvement over CASPT2 , for barrier 

heights it definitely seems inferior. 131 These methods are cheaper alternatives of the more 

expensive MRCI method, namely in our calculations the internally contracted MRCI with 

singles and doubles (ICMRCISD63) was used. With the MRCI results, denoted as Ql and 

Q2 , the Davidson corrected energies for fixed and relaxed references respectively are given 

in an attempt to make the wavefunction size consistent by adding approximate quadru­

ple corrections. As observed in the literature ,64 Q2  usually yields poorer agreement with 

FCI, and should be used only in special cases. Following this, iterative size consistency 

correction methods follow, namely MRACPF and MRAQCC, which are two variants of 

an approximate MRCC. Both have a tendency to overshoot the correlation energy, the 

first one more than the latter .65 For some further details about these methods, see e.g. 

reference 65.

Various single reference (SR) methods are also presented, the reliability of which depends
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Figure 10: [5,5]-CASSCF/cc-pVTZ active orbitals for the tt-complex (R ) as 

well as transition state structures of direct (Adir) and consecutive (Acon) allylic 

H-abstraction; terminal (T ) and central (C ) OH-addition reaction channels.
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on whether the wavefunction is dominated by one configuration during the calculation. 

To answer this, one can first take the T l diagnostics (from CCSD calculations) which 

indicates the significance of higher excitations and therefore the possibility of a need 

for a multireference treatm ent. 132 For all transition states, with cc-pVQZ basis, the T l 

values are roughly equivalent or less than the critical 0 .0 2  value (and well below for 

minima). As will be seen later on, the contribution of connected triple excitations has 

an important role, and with that included using a perturbative ansatz, a  single reference 

treatment seems sufficient. One can also say based on multiconfiguration calculations 

that the weight of the ground state configuration is dominating (about 0.97) over all 

the rest (about 0 .0 2  or less) at all examined geometries, and this dominance shows itself 

in the occupation numbers as well, those being quite close to the reference state values 

(nearly 2  for bonding orbitals, around 1 for the SOMO and about 0 for the antibonding 

orbitals). This slightly changes with relaxation in MR calculations (see the difference 

between Q 1 and Q2 corrections), and more significantly with the expansion of the active 

space (the dominance is still conserved although less evident). All this well justifies the 

use of single reference methods, and a further advantage will be that higher excitations 

are more feasible to include in the SR case.

The RMP2  values are gained as intermediate values in the coupled cluster procedure. 

The MP2 model suffers from some artefacts due to its lack of treating single excitations 

(for a study with FHF see Fox and Schlegel;84 the arguments should hold for any H 

transfer with lone pairs close to the radical centre). A variety of CC methods were 

also used, these are: RHF-RCCSD and RHF-UCCSD models, RHF here referring to the 

reference orbitals. RCCSD is the partially spin restricted coupled cluster method (spin 

adapted in linear terms, which results in virtually no spin contamination50). Triples are 

treated in a variety of ways: the standard CCSD(T ) , 49 the simpler CCSD[T] missing 

the usually important singles contributions and CCSD-T133 which considers some higher 

order perturbation terms compared to CCSD(T).

To approximate the non-relativistic limit, extrapolations were carried out based on the 

cc-pVXZ bases29,31 (X=D,T,Q), where the three point exponential formula of Feller32 

was used for HF and MCSCF results, and the two point X ~ 3 function form34 was used 

for correlation energies with X=T,Q. This latter choice is usually not too different from 

X=D,T, the most significant difference being with Davidson corrected energies, which
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Figure 11: Fitting the [5,5]-CASPT2/cc-pVTZ frequencies of Propene and OH 
against experiment.

show a slower convergence. In the multiconfiguration calculations the choice of the RHF 

or MCSCF wavefunctions as reference in the Davidson correction does not introduce 

significant differences -  which might be the case if there was a significant amount of 

dynamic correlation in the active space. In the RHF case, the extrapolation was checked 

against cc-pV5Z results, and it was found that the difference in predicted RHF barriers 

is less than 0.01 kJ/mol. The effect of augmented bases were also studied using aug-cc- 

pVXZ bases30,31 with X=D,T for correlation energies, and for the references an additional 

X=Q was calculated.

Finally, some additional calculations were carried out in a less systematic fashion with 

smaller basis sets due to their computational cost. These include calculations with ex­

tended active spaces and some UHF-UCCSD(T) calculations for comparison. The ex­

plicitly correlated model UCCSD(T)-F12a134 with the recommended basis (AVTZ) was
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calculated on the UCCSD(T) geometries. Similarly, the extrapolated UCCSD(T) energies 

for these structures were determined. In some cases, restricted active space (RASSCF) 

calculations, and the corresponding correlated methods135 prefixed with RAS were used. 

This means that we only allow certain excitations in certain regions of the active space. 

Here in the case of an extended [9,9] active space only double excitations are allowed 

from the lower two occupied, and to the upper two unoccupied orbitals, which reduces 

computational cost (singles are eliminated due to numerical reasons rather than due to 

their quantity).

Most of the calculations were carried out with the MOLPRO program package of Werner 

and Knowles. 115 For the CCSDT and UHF-UCCSD(T) calculations, the MRCC pack­

age of Kallay136 was used. Vibrational frequencies were calculated on the optimized 

geometries at the [5,5]-CASPT2/cc-pVTZ and UCCSD(T)/cc-pVTZ levels. To ensure 

a better agreement with experiment, the scale factor 0.958±0.004 was determined for

[5,5]-CASPT2 by fitting the calculated frequencies against the experimental values for 

propene137 and OH , 138 see Figure 11. For the UCCSD(T) frequencies the scale factor 

used is 0.975±0.0021.139 For comparative purposes, a variation of G3MP2B3 procedure80 

was also carried out where the B3LYP/6-3lG(d) geometry optimization and normal mode 

analysis were replaced by the BH&HLYP/6-31G(d) level of theory due to the fact that 

the B3LYP functional is not able to characterize the transition state for the consecutive 

allylic H-abstraction . 122 The BH&HLYP harmonic frequencies were scaled by 0.935. 122 

In analogy to G3MP2B3, we term this method G3MP2BH&H, and refer to its earlier 

use in our publications. 140 All the DFT results were obtained using the Gaussian pro­

gram package. 116 All enthalpy values are relative to that of the level of propene and OH. 

Additional details of calculations like geometries, frequencies and other energetic and 

thermodynamic data are to be found in the Appendix.

4.3 R esu lts  and D iscussion

First, let us discuss the single point results at the [5,5]-CASPT2 geometries. In Table 7 

relative enthalpy results extrapolated from the cc-pVXZ basis sets are shown. The first 

obvious observation is that there is a significant difference between the multireference and

68



4.3 Results and Discussion 4 THE CASE OF PROPENE + OH

Table 7: Method dependence of relative standard enthalpy values (in kJ/mol) 
obtained by extrapolation of cc-pVXZ basis sets for the tv-complex (R), transition 
states of direct (A.&\r) and consecutive (Acon) allylic H-abstractions as well as 
terminal (T) and central (C) OH-additions.

Adir A•̂ ■con C T R

[5,5]-CASPT2 4.62 2.44 -9.00 -7.45 -10.37

[5,5]-CASPT3 2 2 .1 0 20.63 6 .6 6 7.08 -8.61

[5,5]-MRCI 28.88 28.19 11.70 11.50 -6.26

[5,5]-MRCI+Ql 15.36 13.97 2.39 6.44 -8.95

[5,5]-MRCI+Q2 16.64 15.20 3.60 7.22 -9.28

[5,5]-MRACPF 16.67 15.19 1.50 2 .1 1 -8.78

[5,5J-MRAQCC 18.49 17.13 3.05 3.54 -8.41

RMP2 15.94 13.95 -3.91 -3.69 -10.96

RCCSD 16.60 15.29 -0.28 -0.19 -8.32

RCCSD[T] 5.69 3.91 -9.41 -8.60 -10.08

RCCSD-T 7.21 5.44 -8 .1 2 -7.44 -1 0 .0 0

RCCSD(T) 7.20 5.44 -8.19 -7.54 -10.03

UCCSD 14.35 13.04 -2.05 -1.84 -8.38

UCCSD[T] 2.89 1.15 -11.54 -10.60 -10.26

UCCSD-T 4.60 2.87 -10.16 -9.33 -9.96

UCCSD(T) 4.79 3.06 -1 0 .0 2 -9.24 -1 0 .0 1

the single reference results, especially when comparing the size consistency corrected MR 

and the triple corrected CC results, the ones that can be considered as the most reliable 

from the corresponding sets; this difference is approximately 10 kJ/mol.

Let us first analyse the SR results. The RMP2  result agrees with the CCSD results 

best, which is not surprising. The CCSD models show a considerable difference between 

results with and without triples corrections in both the restricted and unrestricted cases. 

Since the triples are important (see Table 7), the most reliable result must be among 

the corrected results. The CCSD[T] model as described above does not account for 

some important contributions, and is therefore inferior to the others, while the other
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two methods agree very well, again in accordance with general experience. Therefore 

the choice of the standard CCSD(T) model is justified. One can still observe some 

difference between RHF-RCCSD and RHF-UCCSD results. We will return to this later, 

here we only say that in accordance with previous recommendations,92,93 we choose the 

RHF-UCCSD results as the most reliable single reference ones, and will use this for 

comparison.

The MR results appear somewhat divergent. The CASPT2 results agree well with the 

UCCSD(T) single point ones within 1-2 kJ/mol, which supports the choice of the in­

expensive CASPT2  method for geometry optimization. The CASPT3 results seem to 

overestimate the barrier heights, and so do the MRCI results because of the size con­

sistency error. It should be noted that in the supermolecular approach size consistency 

is already approximately dealt with, but the inclusion of higher excitations may still be 

important. For this reason, the theoretically most reliable results here are the ones with 

some kind of a correction for the latter error. These (MRCI+Ql, MRCI+Q2, MRACPF 

and MRAQCC) give results within a broad 3 kJ/mol range. In all cases the difference 

between these is significantly smaller compared to that with the MRCI results, indicating 

the importance of higher excitations, and also the fact that the active space may be too 

small to involve all significant higher excitations. Indeed, if one compares these with the 

CCSD results (that is without triples correction), one finds a good agreement, showing 

that the MR calculations with the present active space is comparable with considering 

only SD excitations. We will come back to this later.

In Table 8 , we present some results coming from extrapolation using augmented basis 

sets for selected methods. In general, there is a good agreement between the two extrapo­

lations, they mostly differ for Adir and A incj in M R  calculations, and for R  in general. R  

being a weakly bound 7r-complex, longer range interactions are usually more important, 

which the augmented basis sets handle better (diffuse functions). The augmented basis 

sets also show a faster convergence. For all these reasons we will prefer results with aug­

mented bases in the followings, and refer to the extrapolations from these as the complete 

basis set (CBS) limit (see Table 9).

Table 9 provides data to compare some issues of the various calculations carried out 

at different geometries. These include the effects of the choice of active space and spin
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Table 8: Method dependence of relative standard enthalpy values (in kJ/mol) 
obtained by extrapolation of aug-cc-pVXZ basis sets for the n-complex (R), tran­
sition states of direct (A \̂r) and consecutive (Acon) allylic H-abstractions as well 
as terminal (T) and central (C) OH-additions.

Adir A Con C T R

[5,5]-CASPT2 4.66 2.55 -9.01 -7.58 -10.93

[5,5]-MRCI 28.73 28.07 11.45 11.19 -6.85

[5,5]-MRCI+Ql 16.93 15.59 2.17 11.19 -9.06

[5,5]-MRCI+Q2 18.33 17.01 3.33 4.62 -9.03

UCCSD 14.38 13.16 -2 .2 1 5.56 -9.16

UCCSD[T] 3.05 1.43 -11.51 -1 0 .6 6 -10.96

UCCSD-T 4.70 3.08 -10.18 -9.43 -10.64

UCCSD(T) 4.90 3.28 -1 0 .0 2 -9.34 -1 0 .6 8

contamination for CASPT2 geometries, and convergence tests to judge how far our results 

are from the complete basis set and from the FCI limit. It begins with the [9,9]-RAS- 

M RCI+Ql results. This [9,9] active space is the [5,5] extended with the two C-C bonds, 

and two unoccupied orbitals (and with excitations restricted from /to these extensions). 

This extension of the active space improves the agreement with single reference methods 

on the same double zeta basis, except for R. In the next step, we improve the basis set 

by augmentation, and the active space by removing the restriction of double excitations. 

The resulting [9,9]-MRCI+Ql values are now even comparable with the extrapolated 

UCCSD(T) results but in the case of R  there is no improvement. If we now take the

[5,5]-MRCI+Ql results (Table 8 ), it is obvious, that the major differences between SR 

and MR methods are in the case of the transition states, in the case of R  there is actually 

a rather good agreement (differing by 1 kJ/m ol only). Furthermore, for R, the triples 

contribution yields a contribution of 1 kJ/m ol only in CCSD indicating that a consistent 

treatment of the triples does not change the result significantly. This would explain 

why [5,5]-MRCI+Ql, which was described above to have an overall SD quality agrees 

well with UCCSD(T) for the 7r-complex. In case of the transition state structures, the 

extension of the active space brings the desired improvement, indicating that the chosen 

active space gives a consistent treatment of important higher order excitations. With
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Table 9: Method dependence of relative standard enthalpy values (in kJ/mol) 
obtained at several levels of theory for the n-complex (R), transition states of di­
rect (AfUr) and consecutive (Acon) allylic H-abstractions as well as terminal (T) 
and central (C) OH-additions. [5,5]-CASPT2 (scale factor 0.958), UCCSD(T) 
(scale factor 0.975) and BH&HLYP (scale factor 0.935) optimized geometries and 
frequencies are included.

[5,5J-CASPT2 geoms&freqs Adir A■ ^con C T R

[9,9]-RAS-MRCI+Ql/cc-pVDZ 12.30 10.81 -1.64 -1.54 -16.84

[9,9J-MRCI+Q1 /aug-cc-pVDZ 5.36 4.33 -10.15 -8.80 -18.22

RCCSD(T)/aug-cc-pVDZ 5.92 4.74 -11.65 -9.99 -12.97

UCCSD(T)/ aug-cc-pVDZ 3.96 2.83 -13.13 -11.39 -12.82

UHF-UCCSD(T)/aug-cc-pVDZ 4.36 3.17 -12.59 -1 0 .6 8 -12.99

UCCSD(T) geoms&freqs Adir Âc o n C T R

UCCSD(T)/cc-pVDZ 15.17 13.67 2.15 3.82 -11.03

CCSDT /  cc-pVDZ 14.56 13.10 1 .2 0 2.96 -11.04

UCCSD(T)/CBS 3.21 1.67 -9.93 -9.84 -10.56

UCCSD(T)-F12a/AVTZ 3.03 1.55 -10.54 -10.34 -10.47

BH&HLYP geoms&freqs Adir A con C T R

G3MP2BH&H 0.74 -0.92 -6.60 -5.35 -8.43
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R this does not seem to be the case, that is some important higher order contributions 

are included, whereas others are left out in the extended active space, which causes an 

unbalanced, inconsistent treatment. To recover consistency, one should change the active 

space. However, as it was described earlier, this is not an easy task ,85 which seems only 

necessary for R.

How to control which orbitals go into the active space? We have control over the occupied 

orbitals, but the virtual ones are harder to choose. Firstly, there is no symmetry condition 

which could help. One could perhaps see that orbitals with large contributions from the 

transferring H are involved, but even so, care should be taken to choose such that are 

only related to the transfer directly, and not to other interactions. This is a hard task in 

the case of a 7r-complex, where there are several competing non-covalent interactions. If 

we decide on not manipulating the virtual orbitals, one could try to change the occupied 

orbitals and hope that the MCSCF optimization will result in the desired virtuals. There 

are many possibilities to do this, here we only note that a [9,9] active space where the two 

C-C bonds and the C-H bond is replaced with the O-H bond, and the two lone pairs of 

the oxygen yields no better results (-22.77 kJ/mol for R). Since the [9,9] results did not 

bring improvement, one could try to increase or decrease the active space of R. Increasing 

the active space further is not feasible, neither is a larger basis set. A decrease would 

take us back to the already discussed [5,5] space, which indeed seems an improvement in 

consistency, which due to the less emphasized importance of triples contributions with R, 

shows itself as a good agreement with UCCSD(T). Since R  is a minimum structure, it is 

less likely to have a multiconfigurational nature, so the UCCSD(T) result can be taken as 

the final word. This seems to be also the case with the transition states, since the above 

mentioned not too high T 1 values seem to be taken care of by the triples correction, 

and also because the [9,9]-MRCI+Ql results seem to converge there anyway (if we could 

allow the use of larger bases). From all this, our conclusion is that consistent MRCI+Ql 

values with large enough active space and UCCSD(T) results agree well, and the latter 

should be chosen for computational and methodological ease.

The remainder of the first section of Table 9 addresses some spin related issues. Besides 

the RHF based treatments, here some UHF-UCCSD(T) results are also included. As 

pointed out earlier, there appears to be a roughly 2 kJ/mol difference between restricted 

and unrestricted CC results based on an RHF reference.92,93 A somewhat smaller dif-
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ference (a few tenths of kJ/mols) is observed between methods based on UHF and RHF 

orbitals.92,93 It is difficult to reach firm conclusions on the nature of the spin contami­

nation effects arising from the UHF or the UCCSD(T) procedures from these data. It is 

worth mentioning that the spin contamination belonging to these methods is around 0.3- 

0.4. Here, the UCCSD(T) model will be chosen92,93 with RHF reference94 as a preferred 

method for the final geometry optimizations and vibrational frequency calculations. Al­

though the energetic difference between the RCCSD(T) and UCCSD(T) single points 

remains an open question, the issue may be addressed from a geometrical point of view. 

As discussed below, T  (and also C) seems to be the most sensitive to correlation meth­

ods used for optimization. If one takes this species and optimizes the structure with 

RCCSD(T) and UCCSD(T) with 6-31G(d) basis, one gets quite similar geometries: the 

most sensitive parameter, the C •• • O distance is 2.13 A with the unrestricted, and 2.09 A 
with the restricted method. If we now perform a UCCSD(T) single point calculation on 

the RCCSD(T) geometry (or vice versa) and compare it with the UCCSD(T) optimized 

value, there is only a slight 0.24 kJ/m ol difference. On the other hand, the difference 

between the optimized energies is 2.55 kJ/mol, which corresponds to the above 2 kJ/mol 

gap between RCCSD(T) and UCCSD(T). This suggests that the choice of restricted or 

unrestricted CCSD(T) models has only a negligible effect on geometry optimizations in 

these cases, despite the energetic difference between the two. This is assumed to hold for 

all species and bases discussed here.

Having chosen the UCCSD(T) method, geometry optimizations and vibrational frequency 

analysis were performed with the cc-pVTZ basis. It is interesting to compare the [5,5]- 

CASPT2 and UCCSD(T) geometries to emphasize the good performance of the much 

cheaper CASPT2 method. In Figure 12, UCCSD(T) results are indicated first, then in 

brackets the CASPT2 ones follow. The most significant difference is the C- • • O distance 

in T  and C  (about 0.12 A) which is probably due to some neglected correlation con­

tributions rather than spin contamination effects (see above). However, this only yields 

a difference of about 0.3 kJ/mol between UCCSD(T) and UCCSD(T)//[5,5]-CASPT2 

barriers with cc-pVTZ basis. Comparing the extrapolated UCCSD(T) energies at 0 K, 

they agree within 1 kJ/mol, which is an excellent agreement. At 298.15 K, the maximum 

difference in enthalpies is a somewhat larger 1.5 kJ/mol, since in this case differences 

in frequencies also play a role. Allylic abstraction barriers are 1.5 kJ/m ol lower at the
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Figure 12: UCCSD(T)/cc-pVTZ geometry parameters followed by [5,5]-
CASPT2/cc-pVTZ ones in brackets for the tt-complex (R) as well as transition 
state structures of direct (Ad\r) and consecutive (Acon) allylic H-abstraction; ter­
minal (T) and central (C) OH-addition reaction channels.
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UCCSD(T) geometries, and the addition barriers are also much closer to each other 

compared to the results with CASPT2 (0.09 vs. 0.65 kJ/m ol difference). From now 

on, UCCSD(T) geometries will be used by default. Finally, it is also worth mentioning 

that if we take the extrapolated CASPT2  enthalpy barriers rather than the extrapolated 

UCCSD(T)//CASPT2  values as above and compare it with optimized UCCSD(T) values, 

the agreement is still very good (1-2 kJ/mol difference).

In the followings, our results will be compared with structural data available in the 

literature. The UCCSD(T) geometry of the 7r-complex is in good agreement with the 

previously published MP2/6-31+G(d) geometry. 126 Most geometry parameters of tran­

sition state structures corresponding addition channels calculated with UCCSD(T)/cc- 

pVTZ, CASPT2/cc-pVTZ, M P2/6-31+G(d)126 and MP2/cc-pVTZ127 are also close to 

each other. The only exceptions are the bonds being formed (C-O) in T  and C, where 

the CASPT2  bond lengths are about 0.13 A larger, whereas the MP2  results are about 

the same value shorter compared to UCCSD(T) with cc-pVTZ basis. In general CASPT2 

predicts earlier transition states than those obtained by single reference methods. Our 

previous BH&HLYP/6-31G(d) and CCSD/6-3lG(d) results122 on the transition states of 

allylic hydrogen abstraction channels are consistent with the corresponding UCCSD(T) 

geometries. Here, the bonds being broken (C-H) are somewhat larger in the case of the 

BH&HLYP (1 .2 2  A) or CCSD (1.23 A) geometries compared to UCCSD(T) transition 

states (1.18 A).

In the second section of Table 9, some single point calculations on UCCSD(T) geometries 

are shown to further investigate some of the problems which occurred so far. Since it has 

been concluded above that the triples contribution is of great importance, results gained 

at the (unrestricted) CCSDT/cc-pVDZ level are included, together with the perturba- 

tive CCSD(T) results for comparison. The good agreement (within 1 kJ/mol) between 

CCSDT and UCCSD(T) results suggests that we can indeed rely on the latter as a good 

approximation for triples contribution.

Finally, the convergence of the basis set extrapolation using the CCSD(T) results is tested. 

An explicitly correlated theory, UCCSD(T)-F12a134 -  as implemented in MOLPRO -  

was utilized with the recommended AVTZ basis set. This improves basis set conver­

gence, so that we can obtain accurate results with relatively small bases (differences from
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Figure 13: Energetics of the examined structures at the UCCSD(T)/CBS//
UCCSD(T)/cc-p VTZ level of theory.

UCCSD(T)/CBS are within 0.7 kJ/mol). This procedure yields very similar results from 

what we had from extrapolation. It is also worth noting that using the G3MP2BH&H 

extrapolation scheme also gives quasi-quantitative answers, the differences being in the 

worst cases around 3-4 kJ/mol.

The UCCSD(T)/CBS result for R  as shown in Figure 13 is -10.56 kJ/mol relative to the 

infinitely separated species. The addition barriers -  as suggested by earlier theoretical 

works lie very close to each other, actually our calculations show that they are within 0.09 

kJ/mol (the virtual activation enthalpies are -9.93 kJ/m ol for C and -9.84 kJ/m ol for T). 

The allylic H-abstraction enthalpy barriers are (about 12 kJ/mol) higher and have a larger 

difference, 1.54 kJ/mol, making the consecutive reaction energetically favoured (enthalpy 

barriers: 3.21 kJ/m ol for Adir and 1.67 kJ/m ol for A con)- Conventional transition state 

theory (cTST) might provide a rough estimation for the rate constants of these channels 

by means of our UCCSD(T) results. This approach is the most problematic with addition
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barriers. For cTST to be valid, there should be an equilibrium between reactants and 

transition state. As there is a low lying 7r-complex to which the TS lies very close, while 

the reactants slide down on the potential energy surface forming the complex, their kinetic 

energy increases, since the total energy should remain constant. If as a result of this, the 

reactants pass over the TS rapidly, there is no time for an equilibrium to take place that 

would allow for the distribution of the energy to other modes. However, the attractive 

nature of the PES allows for such ballistic effects that make the distribution of energy and 

reaching an equilibrium possible. We assume a fourfold electronic degeneracy (g) for OH 

(g=4, ignoring spin-orbit splitting), g—2 for the transition states and g = l for propene. 

A twofold degeneracy of reaction paths were considered in the case of the addition tran­

sition states, since they have non-superimposable mirror images (the OH can come from 

either side of the propene plain). In the case of direct H-abstraction, a threefold rota­

tional degeneracy is assumed (although the conformer with the OH in the propene plain 

is expected to be energetically a bit different), whereas in the consecutive case the same 

degeneracy is two. Propene also has a threefold conformational degeneracy because of 

the methyl group (this only affects the abstraction cases). At room temperature, the rate 

constants are 4 .86xl0~ 14 (for Adir) 4.49xl0 -1 4  (for A con) 4 .23xl0-12 (for C) 8.33xl0 -1 2  

(for T) in cm3molecule_1s_1 which in total (1.27xl0-11 cm3molecule- 1s-1) agrees within 

a factor of 2  with the value recommended by IUPAC at this temperature (3.02xl0_n 

cm3molecule- 1s- 1 ) . 141 This latter experimental value is derived from a temperature de­

pendent formula recommended by IUPAC, and is partially based on work of Zellner and 

Lorenz, 142 who suggest a value of (3.0±0.5)xl0 -1 1  cm3molecule- 1s- 1  at 298 K. Similarly, 

in Atkinson’s review,143 the suggested 2.63xlO-11 cm3molecule_1s_1 with a 15% error is 

again in good agreement with our results. The above mentioned factor of two corresponds 

to a 1.7 kJ/m ol change in the barriers. However, in our estimation, the error of the en­

ergy calculations is only around 1 kJ/mol, or perhaps even less in some cases (see Table 

9 for CCSDT benchmarks for triples errors, and also for basis set convergence). The rest 

of the discrepancy must come from sources like the choice of cTST for our estimations, 

the quality of the calculated frequencies (e.g. ignoring anharmonicity), and some other 

issues which a more thorough kinetic study should deal with. Since this was not our goal 

here, we consider our results in good agreement with experiment. To further support 

this point, the branching ratio for terminal addition (T, 65.8%) was calculated, and was 

found to be in near perfect agreement with Cvetanovic’s data (65%)129 with a calculated
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contribution of 0.4% for direct and consecutive allylic abstraction channels each. These 

results may also prove the accuracy of our quantum chemical results. It is also worthy 

to note that cTST overall rate constant obtained from UCCSD(T)/CBS//CASPT2/cc- 

pVTZ values (2 .26xl0-11 cm3molecule- 1s_1) is closer to Atkinson’s experimental one, 

whereas the calculated branching ratio for T  (57.8%) is in a less good agreement with 

the above data (Cvetanovic).

In their recent paper, Zhou et. al. 127 have explored the propene +  OH potential en­

ergy surface with projected MP2  methodology using the PM P2/aug-cc-pVQZ//MP2/cc- 

pVTZ level of theory, and CCSD(T) methodology at the same geometries using the 

6-311+G(3df,2p) basis, and extrapolation from cc-pVDZ and cc-pVTZ bases. Their aim 

was to give an overall kinetic description at a broad temperature range, whereas our report 

focuses on species relevant around room temperature. In at least some of their cases, Zhou 

finds that PMP2 results are closer to experimental values than CCSD(T) ones. It might 

be justified to choose their PMP2 methodology over an elaborate CCSD(T) optimization 

with so many species examined. However, the inclusion of higher excitations are known to 

be important with radical transition states ,92,93 which is particularly true for the studied 

system as we pointed out in the previous discussion. The good results with the PMP2 

methodology are probably due to a cancellation of errors, 125 and the inferior behaviour 

of CCSD(T) observed by these authors might be a problem of inadequate extrapolation, 

and simply the fact that CCSD(T) single points are not calculated at their optimized 

geometries. Both of these issues have been addressed here by using larger bases, using 

CCSD(T) optimized geometries and by comparing those results with ones from a wider 

choice of ab initio models. The authors were also able to reasonably reproduce the kinetic 

behaviour of the system based on weak collision master equation/microcanonical varia­

tional RRKM theory by lowering the barrier heights of central OH-addition (T Sll) and 

terminal OH-addition (TS12) with 1 kcal/mol. However, in Figure 11. of Zhou’s article, 

the branching ratio for these is around 50-50% at room temperature versus the exper­

imental 65% preference for the terminal case, which is well predicted by our CCSD(T) 

model (65.8%). If cTST branching is calculated with their results it turns out to be 

54% for the central case, indicating that the difference between their calculations and the 

ones presented here (and also the experimental results) is not due to the choice of the 

kinetic model, but to the fact that the optimized CCSD(T) results yield better and more
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Figure 14: Experimental measurements for the total rate constant of the
Propene+OH reaction.

consistent results compared to PMP2/aug-cc-pVQZ//MP2/cc-pVTZ.

Another recent paper, Huynh et al. 128 describes the kinetics of the enol formation based 

on CCSD(T)/cc-pVDZ//B3LYP/cc-pVTZ results. In our experience, results with cc- 

pVDZ basis are still roughly 10 kJ/m ol away from the CBS limit. In addition, the 

pathological behaviour of the B3LYP in relevant cases is also known for a while.122

4.4 Som e Further K inetic A sp ects

We have so far discussed the subsystem of the Propene+OH reaction that is depicted 

in Figure 9. These species were expected to be the ones governing the behaviour of the 

system at temperatures close to 298.15 K. In Figure 14, the temperature dependence of 

the total rate constant is shown as measured in different experiments. If we want to give
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Figure 15: The potential energy profile of the propene -h OH system around a 

circle perpendicular to the axis of the double bond, as a function of the radius and 

angle at two different theoretical levels.
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Figure 16: Minimum structures of the propene +  OH system  found in Figure

15.

an account of the system’s behaviour at higher temperatures, then other possible channels 

need to be considered. One candidate would be the H-abstraction from vinyl positions. 

Another possibility is to consider consecutive steps that may have a major influence on the 

total rate constant, like the dissociation of the addition product into methyl radical and 

ethanol. These can be treated with the previously described methodology, although the 

active space structure should be reconsidered in the multireference cases, but this should 

not represent a serious problem. Possibly, other more sophisticated kinetic models should 

also be used, or perhaps dynamic effects could be investigated.

In line with these latter thoughts some preliminary calculations were carried out, the 

result of which is to be seen in Figure 15. Problems arise in the addition cases, where 

there is a 7r-complex, and the transition states are relatively close to this. These may 

easily necessitate dynamic treatment in the system. In Figure 15, we tried to gain some 

information about the potential energy surface, by rotating the OH group around the 

centroid of the double bond with various radii at the BH&HLYP/6-31G(d) and MP2/aug- 

cc-pVDZ levels of theory. There seem to be two minima on both of these potential energy 

surfaces, one probably corresponding to the 7r-complex. However, one should know more
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about the variation of the energy with respect to other geometry parameters before further 

conclusions could be drawn. These calculations merely estimate the cost of a dynamic 

study, or, rather, what other possibilities there would be so that such a very expensive 

calculation could be avoided. Other possibilities would require a more precise knowledge 

of greater segments of the PES than just extrema. The application of the more complex 

RRKM and other related kinetic models is also possible, especially for the abstraction 

cases. In Figure 16, the minimum structures found in Figure 15 are shown. Both MP2 

and DFT yield similar results, and so only the MP2 results are shown. Minimum 1 

corresponds to the 7r-complex, and has a rather extensive minimum region around it, 

unlike Minimum 2 , which might even be an error of the fitting of the PES as there axe no 

grid points precisely at that very small minimum region where it can be found (a close 

grid point is shown in the Figure). It is also possible that it is a higher order stationary 

point that appears as a minimum in this partial scan of the energy, or even a possible 

artefact arising from the rigid treatment of almost all geometrical parameters during the 

scan since all of these were frozen except for the three describing the position of the H 

atom in OH. To reach any firm conclusions further calculations should be considered.

83



5 SUMMARY

5 Sum m ary

In the first part of the thesis, an attempt was made to arrive at a partitioning of correlation 

energy based on that of localized orbitals. The transferability of such partitions was 

examined for functional groups in different environments. Our results may be summarized 

in the followings:

1 . Alkanes behave ideally with respect to transferability. It should be possible to 

predict the correlation energy belonging to larger species once that of the segments 

are known.

2. In predicting barrier height contributions, localized orbitals perform better than 

orbitals transformed to make reactant and transition state orbitals similar. This is 

because transformed orbitals delocalize and ruin partitioning.

3. The inclusion of oxygen as a heteroatom resulted in the decrease of transferability, 

due to electrostatic reasons and delocalization of lone pairs.

4. Species without lone pairs but with large electrostatic difference were examined. It 

turned out that electrostatic effects can ruin transferability if there is a large enough 

change in the molecules between which the transition is to be made; probably 

through decreasing/increasing densities even of groups with well localized orbitals.

5. Effects of 7r orbital delocalization were also considered. These may also be signifi­

cant if partition boundaries are violated, but apparently electrostatic changes have 

a larger effect.

In the second half of the thesis, barrier heights for different possible reaction paths were 

calculated for the propene +  OH system with the most accurate models available for
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general use. The results could be summarized in the following points:

1. The use of single reference methods are sufficient and accurate in this case, and 

in fact they yield more accurate results than multireference methods due to com­

putational limitations for the latter. On the other hand, the advantage of using 

a multireference CASPT2 in this case is that if active orbitals are carefully se­

lected, it is able to approximate UCCSD(T) within 1-2 kJ/m ol with considerably 

less computational effort.

2 . The RHF-UCCSD(T)/CBS method is expected to yield the most accurate results. 

Triples contributions are substantial (typically around 10 kJ/m ol for barriers). The 

restricted coupled cluster variant exhibits a slight difference to these results (around 

2 kJ/mol), which is, however, unlikely to affect geometry optimizations.

3. G3MP2BH&H yields a result within 3-4 kJ/mol to the extrapolated UCCSD(T). As 

another way of approximating the complete basis set limit, the explicitly correlated 

UCCSD(T)-F12a model was utilized giving results within 0.7 kJ/m ol maximum 

difference compared to extrapolated values.

4. Consecutive allylic abstraction and addition mechanisms go through a 7r-complex 

(R), which lies at -10.56 kJ/mol with respect to the enthalpy level of the infinite 

separation of the species.

5. The addition mechanisms have negative enthalpy barriers relative to infinite sepa­

ration (-9.93 kJ/m ol for C and -9.84 kJ/m ol for T). There is only a marginal 0.09 

kJ/m ol energetic difference between the two.

6 . The allylic abstraction mechanisms have slightly positive enthalpy barriers rela­

tive to infinite separation (3 .2 1  kJ/m ol for A<jir and 1.67 kJ/m ol for A con)j with 

the consecutive mechanism favoured by 1.54 kJ/mol. Although they have signifi­

cantly higher barriers, they may contribute to the overall reaction system at higher 

temperatures.

7. Using conventional transition state theory, our UCCSD(T) results were able to re­

produce the experimental overall high pressure rate constant within a factor of two. 

Calculated branching ratios show the preference of T  (65.8%) in good agreement
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with experiment. Allylic abstraction channels have a small contribution of 0.4% 

each. UCCSD(T)/CBS//CASPT2/cc-pVTZ values show similar good agreement 

supporting its use as an alternative to more expensive methods.

8 . For higher 1-alkene homologues, where UCCSD(T) becomes too demanding to com­

pute, a CASPT2  with similar active space structure may still be an option. Another 

possibility is to use the G3MP2BH&H method, which is found to be somewhat less 

accurate compared to CASPT2, but does not require constructing an active space.
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APPENDIX

A ppendix

Table 1 0 : Partitioning of symmetric species shown in Figure 8. All results are 
shown in Hartree units.

FHF HOHOH HOOHOOH H2NHNH2 H2NOHONH2

Reactants
Er(RHF) -199.410885 -151.441423 -301.002063 -111.776386 -261.428251
Er(A-A) -0.129195 -0.136719 -0.244915 -0.134227 -0.234235
Er(A-B) 0.000000 0.000000 0.000000 0.000000 0.000000

Er(A-R) -0.069082 -0.062349 -0.125695 -0.052187 -0.119460
Er(B-B) -0.124420 -0.134108 -0.241777 -0.132237 -0.217477
Er(B-R) -0.046117 -0.046304 -0.121503 -0.044038 -0.130400
Er(R-R) -0.026822 -0.026851 -0.076635 -0.027215 -0.084471

E c,r -0.395636 -0.406332 -0.810524 -0.389906 -0.786042
Transition States

Ets(RHF) -199.321733 -151.375283 -300.929289 -111.715952 -261.359022

Eta (A-A) -0.120080 -0.128648 -0.231946 -0.127575 -0.219166
Efa(A-B) -0.008424 -0.008741 -0.009485 -0.007913 -0.007472

Efa(A-R) -0.077573 -0.071463 -0.143718 -0.061899 -0.141175

Efa(B-B) -0.120407 -0.128665 -0.232161 -0.127573 -0.219168

Efa(B-R) -0.077735 -0.071480 -0.143663 -0.061887 -0.141189
Ets(R-R) -0.044436 -0.041081 -0.091680 -0.039244 -0.097588

Ec,ts -0.448656 -0.450078 -0.852653 -0.426092 -0.825758

Barriers
AE(RHF) 0.089152 0.066140 0.072774 0.060435 0.069229
AE(A-A) 0.009115 0.008071 0.012970 0.006652 0.015068

AE(A-B) -0.008424 -0.008741 -0.009485 -0.007913 -0.007472

AE(A-R) -0.008491 -0.009114 -0.018024 -0.009712 -0.021715

AE(B-B) 0.004013 0.005443 0.009615 0.004664 -0.001691

AE(B-R) -0.031619 -0.025176 -0.022160 -0.017849 -0.010789

AE(R-R) -0.017614 -0.014229 -0.015046 -0.012029 -0.013117

AEC -0.053020 -0.043746 -0.042129 -0.036186 -0.039716

Total 0.036131 0.022393 0.030644 0.024249 0.029514
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Table 1 1 : Cartesian coordinates of direct ( A ^ )  and consecutive (Acon) allylic 
H-abstraction transition states in A units at the [5,5]-CASPT2/cc-pVTZ level of 
theory.

species atom X Y Z

Adir C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 1.339786
H 0.921504 0 .0 0 0 0 0 0 -0.561946
H -0.925798 0.002005 -0.558230
H 0.945032 -0.008992 1.868036
C -1.231435 -0.017968 2.167978
H -2.136291 0.087293 1.575405
H -1.213540 0.721840 2.965344
H -1.297689 -1.043792 2.690504

0 -1.489035 -2.231243 3.549423
H -2.010559 -1.765867 4.221649

ACOn C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 1.340398
H 0.921005 0 .0 0 0 0 0 0 -0.562935
H -0.926334 -0.010257 -0.557713
H 0.946157 0.009198 1.867201
C -1.229729 0.024126 2.170413
H -1.200049 -0.680810 2.998271

H -2.135964 -0.109444 1.586375

H -1.321463 1.054900 2.688663

0 -1.255390 2.488923 2.969937

H -0.873475 2.693654 2.101744
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Table 1 2 : Cartesian coordinates of central (C) and terminal (T) OH-addition 
transition states in A units at the [5,5]-CASPT2/cc-pVTZ level of theory.

species atom X Y Z

C C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

H 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 1.081429
C 1.184456 0 .0 0 0 0 0 0 -0.646875
H 2.117482 -0.064215 -0.108097
H 1.226882 0.050541 -1.726531
C -1.240395 -0.041119 -0.833230
H -1.004891 -0.257270 -1.873253
H -1.924121 -0.801239 -0.464812
H -1.757943 0.923958 -0.791981
0 0.185220 -2.226050 0.582902
H 0.798192 -2.464609 -0.128190

T C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

H 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 1.083983
C 1.179838 0 .0 0 0 0 0 0 -0.649534
H 2.115620 0.045134 -0.114575
H 1.220105 0.049464 -1.727131

C -1.328476 -0.032628 -0.683708
H -1.207449 -0.046603 -1.764055

H -1.897879 -0.915303 -0.393481

H -1.930128 0.841342 -0.410336

0 1.207245 -2.305627 -1.018281

H 0.844502 -2.486421 -0.138893
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Table 13: Cartesian coordinates of the ir-complex (R), and the initial propene 
and OH geometries in A units at the [5,5]-CASPT2/cc-pVTZ level of theory. 
Although the supermolecular approach was used, here the reactant structures are 
given separately.

species atom X Y z
R C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 1.339986
H 0.921173 0 .0 0 0 0 0 0 -0.563366
H -0.926226 -0.014377 -0.558680
H 0.950679 0.006784 1.860438
C -1.232008 -0.002973 2.187891
H -1.246356 -0.872446 2.844049
H -2.130195 -0.019191 1.574509
H -1.264076 0.886422 2.825628
0 -0.397375 3.244879 1.020974
H -0.213382 2.326495 0.756719

Propene C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 1.337450
H 0.920829 0 .0 0 0 0 0 0 -0.563337
H -0.925964 0.001876 -0.558392

H 0.949030 -0.000778 1.860099

C -1.234686 0.001518 2.181955
H -1.263598 -0.871498 2.833575

H -2.130209 -0.001506 1.564441

H -1.265101 0.884856 2.828867

OH 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

H 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0.968441
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Table 14: Cartesian coordinates of direct (Adir) and consecutive (Acon) allylic 
H-abstraction transition states in A units at the UCCSD(T)/cc-pVTZ level of 
theory.

species atom X Y Z

Adir C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 1.341394
H 0.924097 0 .0 0 0 0 0 0 -0.563968
H -0.928366 0.004675 -0.560600
H 0.946779 -0.013112 1.872627
C -1.233614 -0.014517 2.168414
H -2.142878 0.128413 1.584459
H -1.197723 0.679826 3.009093
H -1.326647 -1.082104 2.650589
O -1.523695 -2.254435 3.405062
H -1.949722 -1.816939 4.159556

ACOn C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 1.341818
H 0.923548 0 .0 0 0 0 0 0 -0.564949
H -0.928815 -0.011762 -0.560167

H 0.947536 0.011887 1.872006

C -1.232167 0.019071 2.170687

H -1.193408 -0.656117 3.026578

H -2.143159 -0.130208 1.591719

H -1.337540 1.078761 2.676763

0 -1.340228 2.437768 2.996473

H -1.007105 2.713772 2.127046
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Table 15: Cartesian coordinates of central (C) and terminal (T) OH-addition 
transition states in A units at the UCCSD(T)/cc-pVTZ level of theory.

species atom X Y Z

C C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

H 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 1.083757
C 1.190464 0 .0 0 0 0 0 0 -0.648690
H 2.123302 -0.098434 -0.109845
H 1.233998 0.065080 -1.731077
C -1.246367 -0.034201 -0.834975
H -1.019387 -0.314968 -1.865393
H -1.959599 -0.749275 -0.425286
H -1.721935 0.950674 -0.845805
O 0.238751 -2.102407 0.554128
H 0.561400 -2.409131 -0.307976

T C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

H 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 1.087152
C 1.185405 0 .0 0 0 0 0 0 -0.651886
H 2.122605 0.071828 -0.116281
H 1.226351 0.063763 -1.731335
C -1.331305 -0.056909 -0.685201
H -1.209129 -0.064167 -1.768901
H -1.876693 -0.959637 -0.398018
H -1.951159 0.799890 -0.406395

0 1.158212 -2.189266 -0.910212

H 1.059361 -2.374064 0.036695
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Table 16: Cartesian coordinates of the tt-complex (R), and the initial propene 
and OH geometries in A units at the UCCSD(T)/cc-pVTZ level of theory. Al­
though the supermolecular approach was used, here the reactant structures are 
given separately.

species atom X Y z
R C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 1.340520
H 0.923618 0 .0 0 0 0 0 0 -0.565407
H -0.928692 -0.015533 -0.561143
H 0.952982 0.007407 1.863247
C -1.235980 -0.002945 2.193698
H -1.244748 -0.869988 2.858779
H -2.136892 -0.030024 1.578246
H -1.272976 0.890771 2.821664
0 -0.439546 3.256058 1.028234
H -0.243768 2.342278 0.750565

Propene C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

C 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 1.338046
H 0.923527 0 .0 0 0 0 0 0 -0.565162

H -0.928282 0.001427 -0.561212

H 0.951542 -0 .0 0 2 1 0 0 1.862874

C -1.238315 0.003137 2.188068
H -1.267906 -0.874284 2.839733

H -2.137098 0 .0 0 2 1 1 2 1.568848

H -1.266698 0.884124 2.835031

OH 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0

H 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0.971116
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T able 17: RHF reference and UCCSD(T) energies used for extrapolation on 
[5,5]-CASPT2/cc-pVTZ optimized geometries. An is a shorthand notation for 
aug-cc-pVnZ bases.

level Adir ACon C T R Propene + OH
RHF/A2 -192.458085 -192.457718 -192.473409 -192.474049 -192.488437 -192.485824
RHF/A3 -192.505602 -192.505138 -192.520514 -192.521316 -192.536033 -192.533928
RHF/A4 -192.517379 -192.516906 -192.532233 -192.533072 -192.547795 -192.545825
RHF/CBS -192.521260 -192.520790 -192.536114 -192.536965 -192.551655 -192.549735
UCCSD(T)/A2 -193.157166 -193.157683 -193.167071 -193.166496 -193.167771 -193.161120
UCCSD(T)/A3 -193.331503 -193.332125 -193.340747 -193.340461 -193.341834 -193.335777
UCCSD(T)/CBS -193.400559 -193.401261 -193.409639 -193.409457 -193.410706 -193.404869

T able 18: RHF reference and UCCSD(T) energies used for extrapolation on 
UCCSD(T)/cc-pVTZ optimized geometries. An is a shorthand notation for aug- 
cc-pVnZ bases.

level Adir ACon C T R Propene + OH
RHF/A2 -192.451343 -192.451174 -192.466494 -192.467221 -192.488514 -192.485757

RHF/A3 -192.498578 -192.498321 -192.513193 -192.514136 -192.535914 -192.533645

RHF/A4 -192.510323 -192.510056 -192.524863 -192.525842 -192.547663 -192.545547

RHF/CBS -192.514210 -192.513946 -192.528751 -192.529734 -192.551535 -192.549484

UCCSD(T)/A2 -193.157523 -193.158027 -193.167696 -193.167320 -193.168349 -193.161626

UCCSD(T)/A3 -193.331533 -193.332138 -193.341019 -193.340980 -193.341985 -193.335874

UCCSD(T)/CBS -193.400544 -193.401222 -193.409893 -193.409943 -193.410757 -193.404918

103



APPENDIX

Table 19: Thermochemical data for all species calculated from [5,5]-
CASPT2/cc-pVTZ geometries and frequencies scaled by a factor of 0.958. The 
UCCSD(T)/CBS total energies ( E t o t ) ,  zero point vibrational energies (ZPVE) 
and thermal corrections at T  = 298.15K for energies ( E t h e r m { T ) ) ,  enthalpies 
( H t h e r m { T ) )  and free energies ( G t h e r m { T ) )  are in Hartree units. Energies rela­
tive to the separate Propene+OH (Erei) are in kJ/mol, and entropies (S(T)) are 
in J/molK units.

species E to t E rei Z P V E E th erm  (T') H t h e r m i T ) G t h e r m ( T ) S(T)
Adir -193.400559 11.32 0.083565 0.090089 0.091033 0.052406 340.15

Acon -193.401261 9.47 0.083831 0.090174 0.091119 0.053491 331.34
c -193.409639 -12.52 0.087122 0.093486 0.094430 0.057408 326.02
T -193.409447 -12.02 0.087089 0.093553 0.094498 0.056911 330.98
R -193.410706 -15.32 0.087042 0.094302 0.095246 0.055330 351.50
Propene +  OH -193.404869 0.00 0.085023 0.091589 0.093478 0.042364 450.11

Table 20: Thermochemical data for all species calculated from UCCSD(T)/cc- 
pVTZ geometries and frequencies scaled by a factor of 0.975. The 
UCCSD(T)/CBS total energies (Etot), zero point vibrational energies (ZPVE) 
and thermal corrections at T  = 298.15K  for energies ( E t h e r m { T ) ) ,  enthalpies 
( H t h e r m { T ) )  and free energies ( G t h e r m i T ) )  are in Hartree units. Energies rela­
tive to the separate Propene+OH (Erei) are in kJ/mol, and entropies (S(T)) are 
in J/molK units.

species E to t E re i Z P V E E t h e r m i T ) H t h e r m i T ) G t h e r m ( T ) S(T)

Adir -193.400544 11.48 0.083787 0.090136 0.091080 0.053391 331.89

A Con -193.401222 9.70 0.083953 0.090228 0.091172 0.053761 329.44

c -193.409893 -13.06 0.088374 0.094477 0.095421 0.059176 319.18

T -193.409943 -13.19 0.088305 0.094559 0.095503 0.058586 325.09

R -193.410757 -15.33 0.087857 0.095100 0.096045 0.056152 351.30

Propene 4- O H -193.404918 0.00 0.085815 0.092344 0.094232 0.043166 449.68
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T able 21: Unsealed vibrational frequencies and rotational constants fo r  the var­

ious species at the [5 ,5 ]-C A S P T 2/cc-pV T Z  level of theory.

species B (cm x) vibrational frequencies (cm *)

Adir 0.598, 0.090, 0.085 663i, 44, 81, 111, 324, 418, 577, 722, 910, 945, 968, 1011, 
1106, 1177, 1204, 1328, 1363, 1448, 1483, 1600, 1692, 3115, 
3186, 3191, 3210, 3287, 3785

A-con 0.448, 0.109, 0.097 870i, 63, 116, 166, 305, 423, 565, 773, 913, 941, 955, 990, 
1018, 1197, 1321, 1338, 1383, 1456, 1492, 1535, 1691, 3119, 
3185, 3194, 3209, 3286, 3776

c 0.283, 0.193, 0.131 217i, 105, 155, 167, 230, 421, 574, 582, 885, 938, 950, 1006, 
1055, 1203, 1314, 1403, 1457, 1488, 1507, 1644, 3031, 3134, 
3182, 3184, 3222, 3287, 3794

T 0.371, 0.146, 0.119 199i, 72, 135, 164, 219, 423, 559, 612, 922, 941, 947, 1004, 
1060, 1199, 1316, 1408, 1460, 1488, 1503, 1655, 3030, 3119, 
3172, 3192, 3202, 3300, 3800

R 0.273, 0.124, 0.094 61, 70, 123, 206, 312, 387, 422, 597, 923, 941, 950, 1025, 
1069, 1201, 1327, 1410, 1463, 1491, 1505, 1688, 3039, 3125, 
3170, 3182, 3198, 3282, 3717

Propene 1.552, 0.312, 0.273 199, 422, 581, 908, 942, 948, 1013, 1064, 1199, 1327, 1408, 
1463, 1492, 1505, 1696, 3033, 3118, 3167, 3184, 3200, 3283

OH 18.956, 18.956, 0.000 3805
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Table 22: Unsealed vibrational frequencies and rotational constants for the var­
ious species at the UCCSD(T)/cc-pVTZ level of theory.

species B (cm *) vibrational frequencies (cm x)
Adir 0.577, 0.093, 0.088 860i, 81, 96, 117, 355, 413, 582, 723, 928, 937, 960, 988, 

1011, 1125, 1195, 1318, 1321, 1436, 1464, 1492, 1680, 3071, 
3138, 3143, 3163, 3234, 3751

A Co n 0.462, 0.108, 0.097 1020i, 69, 120, 154, 329, 420, 568, 788, 926, 933, 948, 961, 
1015, 1169, 1218, 1318, 1320, 1429, 1449, 1482, 1679, 3074, 
3139, 3145, 3163, 3233, 3745

c 0.288, 0.205, 0.138 244i, 135, 160, 208, 253, 418, 580, 674, 886, 927, 944, 1005, 
1055, 1196, 1303, 1402, 1451, 1486, 1501, 1628, 3035, 3102, 
3130, 3139, 3182, 3241, 3746

T 0.379, 0.156, 0.127 222i, 93, 137, 173, 242, 419, 630, 667, 930, 940, 941, 994, 
1057, 1193, 1308, 1406, 1452, 1483, 1497, 1641, 3030, 3090, 
3121, 3145, 3162, 3251, 3752

R 0.271, 0.123, 0.094 59, 72, 120, 208, 297, 368, 419, 598, 929, 938, 945, 1025, 
1074, 1194, 1320, 1411, 1456, 1487, 1501, 1688, 3033, 3099, 
3116, 3136, 3150, 3230, 3681

Propene 1.547, 0.310, 0.271 200, 418, 583, 925, 931, 942, 1014, 1068, 1192, 1320, 1408, 
1456, 1488, 1502, 1696, 3029, 3089, 3112, 3138, 3151, 3230

OH 18.852, 18.852, 0.000 3744


