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Abstract

The Knight group has been working on the synthesis of substituted heterocycles via 5-endo-d\g 

cyclisation for some time. In particular, the use of metals [M]n+ such as silver(I) and copper(I) 

have been employed to catalyse these cyclisations to give heterocyclic products in near 

quantitative yields and cleanly without any need for purification. In a continuation of these 

studies into metal-catalysed 5-endo-d\g cyclisations, we investigated their application to the 

synthesis of a range of TV-heterocycles: indoles, pyrazoles and pyrroles.

The second chapter describes an investigation of the application of silver(I) cyclisation 

methodology to the synthesis of 1,2-disubstituted indoles. Our methodology was applicable to a 

range of functional groups in both positions, allowing for terpenes, alkenes, aromatic, alkyl, and 

alcohol substituents in position two. Additionally, a range of nitrogen protecting groups were 

tolerated, including sulfonamides, carbamates, amides, and even methyl groups. A few 

substrates would not cyclise; the current hypothesis is this is due to pKa differences, however, 

this is insufficient to explain the differing reactivities. This is supported by computational work 

carried out by a collaborator. Also reported is a successful synthesis of an indole in a flow 

system; this was achieved using silver nitrate on silica as the stationary phase.

Chapter three focuses on the synthesis of pyrazoles from hydrazines prepared using the 

Mitsunobu alkylation. A regioselective Mitsunobu alkylation has been defined using non- 

symmetrical disubstituted hydrazines to give a single regioisomer. Exposure of these hydrazines 

to silver(I) met with limited success with steric hindrance explaining why some for the 

hydrazines would not cyclise

Chapter four reports the synthesis of pyrroles using silver(I) and copper(II). The first part 

focuses on the improvement of Sharland’s copper(I)-catalysed pyrrole synthesis which, upon 

improvement, gave pyrroles cleanly in high yields. Also reported are the successful silver(I)- 

catalysed synthesis of fused pyrroles such as annulated pyrroles and A-fused pyrrolizines and 

indolizines by use of silver(I). Finally the silver(I) cyclisation methodology was applied to the 

successful synthesis of a natural product, pyrrolostatin.



Chapter One

Introduction
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1.1 Introduction to metal-catalysed heterocyclic synthesis.

Heterocycles form the core of a large number of potent drugs and natural products. Their 

prevalence and potency have led to a growing need to develop methods that access these 

important structures and descriptions of many of these methods can be found in the latest 

edition of Comprehensive Heterocyclic Chemistry, 2008.la Many of the methods entail the 

nucleophilic attack of a heteroatom onto an electron deficient carbon atom.

1.2 Previous work in the Knight group.

Initial work carried out by the Knight group on heterocyclic synthesis involved the use of 

molecular iodine as a stoichiometric reagent for the 5-endo-d\% cyclisation of 3-alkyne-l,2-diols 

1. The reaction involved using three equivalents of iodine with sodium hydrogen carbonate to 

give p-iodofurans 2 in good yields (Scheme l) .lb

NaHCO

1 2

Scheme 1: Iodocyclisation o f alkyne-1,2-diols 1.

This method was later used to synthesise a range of other heterocycles including Song’s 

iodocyclisation of hydrazines 3 to yield 4-iodo pyrazoles 4.lc The reaction again required three 

equivalents of iodine and three equivalents of potassium carbonate in dichloromethane at 0 °C 

for 16 h (Scheme 2). The reaction involved a two-step process of iodocyclisation and 

decarbonoylation with yields of 97% (where R1 = Ph) and only 29% (where R1 = Bu).

Prs  3 eq l2,
N-NH Boc 3 eq K2C 0 3

P h ^ ^ W  0 °C, DCM
R1

3

Scheme 2: Song’s synthesis o f 4-iodo pyrazoles 4.

The added benefit of this method was that with the introduction of an iodine in the 4-position,

further chemistry such as palladium-catalysed couplings could be carried out. However, there
2



was an obvious drawback to the chemistry, this being the use of three equivalents of iodine, 

making large scale reactions impractical.

With this in mind the need for a method that was practical and scalable became apparent. This 

led to an investigation into catalytic methods to synthesise heterocycles in this way. Many 

catalysts have been used to synthesise heterocycles,la many of which involve using metals 

[Mn+] such as palladium, mercury, etc (see reviews in Chapters 2, 3 and 4). It was during this 

investigation that Sharland came across Marshall’s report (See section 2.4) on the use of 

silver(I) as a catalyst for furan synthesis. Sharland found that upon exposure of pyrrole 

precursors 5 to 10 % silver(I) nitrate on silica (Scheme 3), pyrroles 6 were formed in near 

quantitative yields which were clean by 'H-NMR analysis with no need for purification, aside 

from a simple filtration through silica to remove the silver(I) catalyst.2

p 3
^  1°%

HO ^  A gN 03.S i0 2 [f \ _ R 3

R 1'  ''N H R 2 DCM' RT R '

5 6

Scheme 3: Sharland’s silver(I)-catalysed synthesis o f pyrroles.

During Sharland’s investigation into the synthesis of pyrroles, he attempted to synthesise 

dihydropyrrole dimers in the hopes of building porphyrin analogues. His synthesis involved the 

Eglington coupling of acetylenes 7 to give the diynes 8 which would then be followed by 

cyclisation using to give the dihydropyrrole dimer 9 (Scheme 4).

^  1 eq Cu(OAc)2
1:1 pyridine:ether

E t0 2C —\ f - C 0 2Et
E t0 2C ^ N H T s  NHTs TsHN

E t0 2(T j g  ^g C 0 2Et 

9

Scheme 4: Sharland's proposed synthesis o f dihydropyrrole dimer 9.
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However, upon attempted Eglington coupling of acetylene 7 the diyne 8 was not isolated. 

Suprisingly, the attempted coupling resulted in the formation of the dihydropyrrole 10 (Scheme 

5). In other words, Sharland had accidently discovered a new copper-catalysed pyrrole

synthesis.2
1 eq Cu(OAc)2 

1:1 pyridine:ether C \

E t0 2C '  "NHTs reflux 168 h E t0 2C

7 10

Scheme 5: Sharland's successful copper-mediated cyclisation.

He then set out to achieve the same result with a small range of analogues of acetylene 7. 

Unfortunately no pyrrole 12 was observed with substrates 11 (Scheme 6) and this led Sharland 

to the assumption that a propargylic alcohol group (See Scheme 3) was required to facilitate 

cyclisation, and that the example 7 was an exception.
r 1

1 eq Cu(OAc)2 __
1:1 pyridine:ether __p i

E t0 2C ^ N H T s  reflux 168 h E t0 2C

11 12

w here R1 = thiophene 
w here R1 = Ph 
w here R1 =

Scheme 6: Sharland’s failed attempted cyclisations using copper method.

It was then that Sharland synthesised a range of p-hydroxy amino esters 13 using Kazmier’s 

method (See section 4.2.1.2) and by exposure to one equivalent of copper(I) acetate in a 1:1 

mixture of ether and pyridine in a sealed tube (Scheme 7), achieved successful cyclisations to 

give predominantely hydroxydihydropyrrole 14a with little elimination to pyrrole 14b.2

1 eq CuOAc, r2  r2
1:1 Et20:Pyridine ^ -U 'O H  J.

----------------   [| ) — C 0 2Et + [| / —C 0 2Et
R1C 0 2EtTsHN reflux d i N o i ^ ^ N

Ts "  Ts

14a 14b

Scheme 7: Examples o f copper(I) acetate cyclisation o f a -hydroxy amino ester.

Hayes3, Proctor4 and Songlc further expanded the silver(I)-catalysed methodology and applied

it to a range of heterocycles, including pyrazoles, isoxazoles and furans and equally found the
4



method to yield these heterocycles cleanly and without the need for column chromatography. 

Hayes developed this method further by investigating Marshall’s use of silver(I) in a flow 

system and by developing a new and highly successful silver(I) flow system for the cyclisation 

of pyrrole and furan precursors which proved highly successful (See section 2.7). With previous 

work in mind, we set out to expand this current methodology to other types of heterocycles, in 

particular, nitrogen-based examples and also to optimise some of the foregoing methodology.

1.3 Current work.

The main aims of this project were to improve and to expand the metal-catalysed 5-endo-<\\g 

cyclisations. The current silver(I)-catalysed cyclisation methodology using commercially 

available 10% silver nitrate on silica gel is applied to the synthesis of indoles, pyrroles and 

pyrazoles.

1.3.1 Indoles

The synthesis of indoles from 2-alkynyl anilines using 10% silver nitrate on silica is reported in 

Chapter 2. Also included are investigations into a possible synthesis of indoles in flow using 

Hayes’ silver(I) flow system.

1.3.2 Pyrazoles

Song’s pyrazole synthesis by the sequential Mitsunobu coupling of trisubstituted hydrazines 

with propargylic alcohols is expanded upon in Chapter 3. Also reported are the regioselective 

Mitsunobu alkylations using unsymmetrical hydrazines with propargylic alcohols, which 

provide a new and useful approach to unsymmetrically substituted pyrazoles.

1.3.3 Pyrroles

Sharland’s copper(I)-catalysed synthesis of hydroxydihydropyrroles is improved upon resulting 

in a safer and much more scalable method. The result of this change in method is that it has 

become a method for synthesising pyrroles, as in most cases no hydroxydihydropyrrole was 

observed. Also reported are the syntheses of both TV-fused pyrroles and annulated pyrroles using 

silver(I). This methodology is then applied to the synthesis of the natural product pyrrolostatin. 

All this is reported in Chapter 4.

5



Chapter Two

Indoles



2.1 Aims

The importance of indoles and their application to the treatment of a wide range of diseases is 

widely noted. Therefore of equal importance is the development of new methods that allow a 

broad and efficient synthesis of substituted indoles. Upon searching the literature a large 

number of methods exist (c./ Section 2.2), some requiring harsh conditions and in many cases 

having limitations. The aim of this project was to develop a widely applicable method to 

synthesise 2-substituted indoles under a common set of conditions in high yields and ultimately 

achieve this synthesis using a flow system.

Previous work by Hayes3, Sharland2 and Procter4 had shown that a varied number of 

heterocyclic precursors could be cyclised using a catalytic amount of 10% AgN0 3 .Si02  and in 

high yields; these include 3-alkyne-l,2-diols 15, 3-alkyne-2-hydroxy-l-sulfonamides 17, 

iV-nitroso-propargylamines 19 and propargylhydroxylamines 21 to give furans 16, pyrroles 18, 

pyrazole iV-oxides 20 and isoxazoles 22 respectively (Scheme 8).

R NHTs

19 20 21 22

Scheme 8: Compounds synthesised by AgNO^.SiO2 mediated cyclisation.

The common feature of the majority of these precursors is the presence of a propargylic oxygen 

atom that can coordinate with the silver and bring it in close proximity to the acetylene. 

However, it was felt that even without the presence of a propargylic alcohol group the 

cyclisation would still be successful. Evidence of this was found in work done by Song 

involving the successful cyclisation of propargylic hydrazines 23 using 0.1 equivalents of 10% 

AgN0 3 .Si0 2  to give dihydropyrazoles 24 and pyrazoles 25 respectively (Scheme 9) in near 

quantitative yields and reasonably short reaction times (5-19 h).lc
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>1
N -N H ;

R2

10%
A gN 03.S i02

R3

RJ R 1s
N -N  N -N

r2"^O^r3 r2̂ O ^ r 3

23 24 25

Scheme 9: Synthesis o f pyrazoles from propargylic hydrazines.

With this in mind it was felt that 2-alkynyl anilines could undergo successful cyclisation using a 

silver salt and that this could be extended to a successful cyclisation of these substrates in a 

flow system.

2.2 Literature review

A search through the literature shows numerous methods, both specific and general, for the 

synthesis of indoles. This is hardly surprising considering the importance of indoles to the 

pharmaceutical industry, their prevalence in nature and the high biological activities often 

associated with the ubiquitous indole core.

2.2.1 Fischer Indole synthesis5-7

The Fischer indole synthesis is one of the most common and widely used methods for the 

synthesis of indoles, which provides a simple and economical method to access indoles. The 

reaction involves heating a ketone or aldehyde 27 with an aryl hydrazine 26 and is often 

catalysed by an acid or metals that have Lewis-acid character (Scheme 10).
R1

a . . NH,

26

O

A
R

27

-R2

(X-n H+

28

N NH2 H

R2

«:H N © H
H

29

R2

NH,

32 31

Scheme 10: Mechanism for Fischer Indole synthesis.

NH

30

The reaction involves condensation of an aldehyde or ketone 27 with a hydrazine 26 to form a 

hydrazone 28 which under acidic conditions converts to the protonated ene-hydrazine 29. It is

8



worth noting that tautomerisation can result in a mixture of ene-hydrazines, and hence a 

mixture of indoles if the ketone is unsymmetrical The hydrazine 29 then undergoes a [3,3]- 

sigmatropic rearrangement to give a Zu's-iminobenzyl ketone 30 which then undergoes 

cyclisation to give a 2-3 dihydroindole 31. Aromatisation by loss of ammonia gives the final 

indole product 32.

The Fischer indole synthesis has proven to be quite adaptable and highly useful since its 

discovery in the late nineteenth century. Many modifications exist including the 

Japp-Klingemann reaction8'9 (Scheme 11); this involves an alternative route to the aryl 

hydrazone by the use of diazonium salts 33 which are reacted with P-ketoesters or p-ketoacids 

34 to form the hydrazone 35. These then undergo deacylation (if a P-ketoester is used) or 

decarboxylation (if a p-ketoacid is used) and finally lead to the indole 36 by a similar 

mechanism.

33 34 35 36

Scheme 11: Japp-Klingemann modification using a p-ketoester.

The limitations of the Fischer indole synthesis are the availability of starting hydrazines and 

hydrazones which as mentioned were synthesised by condensation of aryl hydrazines with 

carbonyls or using the Japp-Klingemann reaction. However, in recent years metal-mediated 

syntheses of hydrazones have been reported giving rise to a greater range of hydrazines and 

hydrazones for the Fischer indole synthesis.

Buchwald reported a synthesis of indoles (Scheme 12) by the formation of hydrazones 39 from 

commercially available benzophenone hydrazone 38 and aryl bromides 37 catalysed by 

palladium.10 The hydrazones were then reacted with ketones 40 and then underwent Fischer 

cyclisation to form indoles 41 in yields ranging 5-95%. When unsymmetrical 

N,N-diarylhydrazones were employed the Fischer cyclisation occurred largely on the more 

electron rich arene.11 Similarly hydrazines were prepared from the palladium coupling of 

tert-butyl carbazate and aryl halides.12

9



Cat Pd/Binap R

pTSA, 
EtOH, reflux

39 40 41

Scheme 12: Synthesis o f hydrazones from beznophenone hydrazone and aryl bromides.

Some of the more recent modifications have allowed for the synthesis of indoles from the 

metal-catalysed hydroamination of alkynes as reported by Odom13 (Scheme 13). The 

hydroamination involves the reaction of alkynes 42 with aryl hydrazines 43 using titanium 

catalysts to give hydrazones 44, followed by subsequent Fischer cyclisation by the addition of 

Lewis acids such as zinc(II) chloride while maintaining the temperature to give indoles 45 in 

good to excellent yields (69-95 %).

Ti(NMe)2(dap)2 
100 °C

R1

45

Scheme 13: Odom’s Lewis acid catalysed Fischer cyclisation.

2.2.2 From 2-alkynyl anilines.

There are many methods for the synthesis of indoles 48 via intramolecular cyclisation of 

2-alkynyl anilines 47 which are typically synthesised via the palladium catalysed coupling of 2- 

halo anilines 46 with alkynes (Scheme 14).14' 15

10



X Sonogashira ^
pd fi Cyclisation / “ r2

NHR1 ^ ' N H R 1 Nf,,

46 47 48

Scheme 14: General example o f synthesis o f indoles from 2-alkynyl anilines.

2.2.2.1 Alkoxide mediated cyclisation16*18

This cyclisation involves the use of bases such as sodium ethoxide or potassium tert butoxide 

for the conversion of 2-alkynyl anilines to indoles (Scheme 15). The reaction is typically 

carried out in a protic solvent at variable temperatures. The reaction allows for the cyclisation 

of either carbamates 49 or free amines, however, upon cyclisation the carbamate is cleaved 

under the basic conditions to give the free indole 50. The method allows for the inclusion of 

many groups around the benzene ring including halides, amines and oxygen bearing 

substituents making the chemistry highly practical for the development of synthetically useful 

targets.

NHCO,Me

Base
Protic solvent p  JJ_

49 50

Scheme 15: Example o f indole synthesis using a base.

Wang and coworkers used this methodology to develop a precursor to a rebeccamycin 

analogue19 and Sendzik and Hui reported the tetrabutylammonium hydroxide mediated 

cyclisation of 2-alkynyl aniline 51 (Scheme 16) in aqueous media for the synthesis of indole 52 

in 89 % yield, a precursor to a uPA/urokinase inhibitor 53.20

11



CON Me-

PhO-N
OMEM

CONMe-

40 wt% aq. Bu4NOH, 
THF, reflux Ph

NH OMEM

51 52

CONMe-

Ph
NH OH

53

Scheme 16: Sendzik and Hui’s indole precursor to a uPA inhibitor

Dai has also extended the method by the conversion of 2-amino phenols 54 into 2-alkynyl 

anilines 56 via triflates 55 (Scheme 17).21 Conversion of the triflate 55 to the alkynyl aniline 56 

proceeded with excellent yields as did the cyclisation using base to give indoles 57 with yields 

in the range of 76-93%.

Tf,0

NHCOPr Et3N, DCM, 
0 °C, 4-6 h

RCC
OTf

NHCOPr

54 55

Pd cat, Cul, 
nBu4NI, = — ph
Et3N:MeCN (1:5)

20 °C to reflux, 
3-36 h

R-n-
NHCOPr

71-98%

KOt-Bu
NMP

60 °C, 6 h
R ir

76-93%

Scheme 17: Dai and coworkers synthesis o f indoles from 2-amino phenols.

22.2.2 Copper-mediated synthesis22-23

One important method known as the Castro-indole synthesis (Scheme 18) involves the 

conversion of 2-alkynyl anilines 60 to indoles 61 using an excess of copper(I) salts such as



copper(I) iodide in DMF. The reaction can also be carried out in one-pot starting from 

2-iodoanilines 58 using cuprous acetylides 59.23

RCC Cu-
NH,

58 59

DMF 120 °C
Rif

61

Cul, DMF 
Heat

60

Scheme 18: Castro indole synthesis.

There have been a few recent developments in this area allowing for the use of catalytic copper 

allowing for some scalability. Farr reported the kilogram-scale preparation of an important 

intermediate 62 from 2-alkynyl aniline 61 (Scheme 19) to a ganantropin releasing hormone 

antagonist 63.24 Purification of indole 62 by crystallisation allowed for the reaction to become 

scalable resulting in 88% yield.

NH-

61

Cul (0 .5eq) 
DMF, Toluene

HN

N

63

Scheme 19: Farr and coworkers synthesis o f drug intermediate.

The Castro indole synthesis has also been employed by Cook and co-workers for the synthesis 

of L-isotryptophan.25 It was found that upon using DMF as solvent, the stereocentre was 

epimerised; however, it was found that if ethylene glycol was used then no epimerisation was 

seen.
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In a similar manner, Cacchi and co-workers attempted cyclisation of 2-phenylethynyl aniline 64 

using catalytic copper iodide (5 mol%) and potassium phosphate (Scheme 20) but found only 

trace amounts of indole 65 were formed after 24 h.26

Cul (5 mol%), 
K3PO4 (2 eq)
 X -

Dioxane, 110 °C
24 h

Ph

64 65

Scheme 20: Cacchi attempted cyclisation o f 2-phenylethynyl aniline.

Upon the addition of chelating ligand l,2-fra/*5-cyclohexanediamine (CHDA), the yield of 

indole 65 increased to 50%. This was a major improvement, however it was felt that the yield 

could be further improved by increasing the acidity of the ‘NH’ by means of a protecting group. 

The group they chose to protect the nitrogen with was a trifluoroacetamido group. Treatment of 

the TV-protected aniline 66 with the current conditions did not improve the yield, however, upon 

replacement of CHDA with triphenylphosphine the yield increased to 88% possibly owing to 

the formation of a more active copper phosphine species (Scheme 21).

NHCOCF3

66

Cul (5 mol %), 
K3PQ4 (2 eq)

PPh3 Dioxane, 
110°C , 24 h

N 
H

88%

65

Ph

Scheme 21: Cacchi’s improved method for cyclisation o f 2-phenylethynyl aniline.

Using this improved method a range of 2-substituted indoles with both alkyl and aryl alkynes

were synthesised in moderate to good yields (49-88 %). In all cases exposure of the TV-acyl
26protected anilines to these conditions resulted in cleavage of the protecting group.

They also reported a one-pot synthesis of indoles 67 from 2-iodo anilines (Scheme 22) initially 

by protection with a trifluoroacetamido group to give TV-protected 2-iodoanilines 66 followed 

by coupling of an acetylene, cyclisation and deprotection of the acetamide group to give indoles 

67 in good to excellent yields (62-96%). The chemistry, however, appears to be limited to 

acetylenes with aromatic substituents as aliphatic alkynes such as hexyne gave low yields 

( 1 1 %).
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NHCOCF3

Ar
[Cu(Phen)(PPh3)2]N03

K3P 0 4, Tol, 110°C
Ar

66

H
62-96%

67

Scheme 22: Cacchi’s synthesis 2-aryl indoles via a one-pot method.

Ackermann reported the one-pot synthesis of 1,2-substituted indoles 70 from o-alkynyl bromo 

arenes 68 (Scheme 23) and aromatic amines 69.27 The reaction involves copper(I) iodide but is

different in that it is alkoxide-mediated and proceeds via an Ullmann-Goldberg/Castro type 

reaction. The reaction successfully furnished 2-substituted A-aryl indoles 70 in good to 

excellent yields (69-84%).

Recently Hiroya reported the synthesis of A-substituted and unsubstituted indoles from

2-alkynyl anilines using copper(II) salts.28 They found the best catalyst for A-substituted 

anilines was copper(II) acetate and for A-unsubstituted reactants the ideal catalyst was found to 

be copper(II) trifluoroacetate. Unlike the other methods reported above, which largely involve 

temperatures above 100 °C, the method involves refluxing in 1,2-dichloroethane (~84 °C). The 

reactions were also found to work in other solvents such as toluene and were insensitive to 

moisture. Reaction times were found to vary between 2-48 h but gave excellent yields ranging 

from 84-100%. Other Lewis acids such as zinc(II) chloride and tin(IV) chloride were also 

screened but found to give much poorer results.

ArNH
Toluene, 105 °C

10 mol%, Cul, 
KOt-Bu (3 eq),

Ar

69-84%
7068 69 70

Scheme 23: Ackermann synthesis o f indoles from alkynyl halo-arenes.
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2.2.2.3 Palladium-mediated synthesis.

As with the copper-mediated indole syntheses, there are a number of examples of palladium- 

catalysed processes allowing for a range of substituents to be tolerated. The disadvantages of 

using palladium over copper include the high cost of the necessary palladium complexes and 

although required in catalytic quantities, this does limit the scalability of the reactions. Also the 

high temperatures needed can limit the reaction to substrates that are temperature tolerant.

Typically, the one-pot synthesis of indoles using palladium involves extended Sonogashira 

reaction times (Scheme 24). It is thought that the first step involves Sonogashira coupling of a 

halo-arene 71 to an acetylene to give the 2-alkynyl aniline 73 followed by coordination of the 

palladium species to the acetylene. This coordination activates the acetylene towards 

nucleophilic attack by the amine by making the acetylene more electron poor. This is then 

followed by cyclisation to give the indole 72.

R2

71 72 73

Scheme 24: Typical one/two step synthesis o f indoles using palladium catalyst.

Larock and co-workers reported the microwave assisted synthesis of 2-substituted and

2.3-substituted indoles from iodoanilines 74 by a one-pot method via a typical Sonogashira 

reaction (Scheme 25).29a Introduction of an aryl iodide into the mixture gave the

2.3-disubstituted indoles 75. The reaction gave indoles 75 in good to moderate yields (33-94%) 

and could accommodate both electron-withdrawing and donating groups on both the arene and 

the acetylene. Microwave reactions are generally limited by scalability and reactions are usually 

limited to a few hundred milligram quantities, however, recent publications have circumvented 

the issue associated with scalability by development of a flow reactor attached to a microwave, 

which have been used by Bagley and co-workers for the synthesis of pyridines by the 

intramolecular condensation of aminodienones.29b
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R l . . ,R 2

PdCI2(PPh3)2

Cul, Et3N, 
MW 60 °C R4 J

Arl, MeCN, 
MW 90 °C

74
33-94%

Scheme 25: Larock's microwave synthesis o f indoles.

Recently Cacchi and co-workers showed the selective synthesis of indoles from

3-(o-trifluoroacetamidoaryl)-1 -propargyl esters 76.30 It was shown that by changing the 

conditions and reagents 2-aminomethylindoles 77, 2-vinylic indoles 78 and 2-alkylindoles 79 

could be isolated (Scheme 26).

where R3 = Ph 
45-98% 

77

0.05 eq Pd(PPh3)4, 
3 eq HNR2, THF,

THF, 80 °C, 
Argon

R1tt

OCOR2
0.05 eq Pd(PPh3)4, 
2 eq HCOOH,
3 eq Et3N, MeCN, r 1—

NHCOCF3 80 °C, Argon

76

50-99%

79

0.05 eq Pd(OAc)2 
3 eq Et3N,
0.2 eq PPh3, THF, 
80 °C, Argon

63-95%

Scheme 26: Cacchi’s selective synthesis o f indoles starting from alkynyl anilines.

Although a number of the methods involve expensive palladium catalysts such as PdCl2(PPh3)2 

and Pd(OAc)2, Pal and co-workers reported the one-pot synthesis of indoles 81 from 

W-(2 -iodophenyl) methanesulfonamides 80 using the less expensive 10% palladium on carbon 

(3 mol%) in water (Scheme 27).31 Though this catalyst is more commonly used in the 

hydrogenation of alkenes,32 it provides an inexpensive alternative, resulting in formation of 

indoles in moderate to good yields (40-89%). The reaction provides a simple and inexpensive 

alternative that lends itself well to possible large-scale indole synthesis.
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N H S02Me

10% Pd/C, PPh3, 
2-amino ethanol,

water, 80 °C 
= —R2 Ms

40-89% 
81

Scheme 27: Pal's one-pot synthesis o f indoles.

2.2.2.4 Methods using other metals.

Sakai and co-workers demonstrated the cyclisation of 2-alkynyl anilines 82 using 

stoichiometric indium tribromide in refluxing toluene (Scheme 28), with quantitative yields 

achieved after only 10 minutes.33 By using catalytic indium(III) bromide (5 mol%), quantitative 

yields were still achieved but required extending the reaction to 1 h. They also found that 

prolonged heating (24 h) resulted in a dramatic decrease in the yield of indoles 83.
R

lnBr3 (5 mol%)

Toluene, reflux
H

82 83

Scheme 28: Indium(III) bromide synthesis o f indoles.

Another more recent method by Kurisaki involves the synthesis of 2-substituted A-tosyl indoles 

85 from 2-alkynyl sulfonamides 84 using catalytic mercury(II) triflate (Scheme 29).34 The 

cyclisations were carried out under mild conditions (in DCM at room temperature) and resulted 

in highly variable yields (20-100%) with the catalyst being reusable over 100 times. The 

reaction, however, was limited to iV-sulfonamides with the corresponding carbamates and acyl 

derivatives resulting in little or no indole formation. A comparison of p-tolueunesulfonamide 

with o-nitro and /7-nitro-benzenesulfonamide was also carried out with /7-toluenesulfonamide 

giving the best results. Another problem with this chemistry is that although the mercury is 

catalytic (5 mol%), it is still extremely toxic and attempts to scale the reaction would inevitably 

lead to issues of containment and disposal.

5mol% r f ^ T ^ _ Ri 
Hg(OTf)2

Ts 
20- 100%

84 85

Scheme 29: Kurisaki and coworkers synthesis o f 2-substituted N-tosyl indoles.

NHTs
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Rutjes and co-workers reported the synthesis of isotryptophan 87 in 75% yield from the A-Boc 

protected amino acid derivative 86  using silver(I) triflate (Scheme 30).35 They also successfully 

cyclised the racemic A-tosyl derivative of aniline 86  resulting in racemic isotryptophan in 86% 

yield.

C° 2Me 10 mol% AgOTf, 
MeCN, reflux, 

20 hNHBoc

86

C 0 2Me 

NH NHBoc

(S)-lsotryptophan 75% 
racemic isotryptophan 86% 

87

Scheme 30: Rutjes et al’s synthesis of indoles using silver(I) triflate.

An interesting point about this reaction is that there was no competing cyclisation and no 

pyrrole 88  derivative observed (Scheme 31) with only the tryptophan derivatives being formed.

CO2M©

I c ° 2 Me

86 88

Scheme 31: Competing 5-endo-dig cyclisation (not observed).

2.2.2.5 Iodocyclisations.

Knight and co-workers reported the iodocyclisation of 2-alkynyl anilines 89 using 3 equivelants 

of molecular iodine and potassium carbonate at 0 °C (Scheme 32) to give 3-iodo-indoles 90.36 

The reaction was shown to work for both Boc-carbamates and sulfonamides with good to 

excellent yields. A range of alkynes were screened and both aliphatic and aromatic groups 

proved successful as did bulky groups such as trimethylsilyl.

I2, k2c o 3,
MeCN, 0 °C

NHTs/Boc

89

R 1 
N
Ts/Boc

75-96%
90

Scheme 32: Knight’s synthesis o f indoles using iodine.
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Yue and Larock similarly reported the synthesis of A-methyl-3-iodoindoles 92 by 

iodocyclisation of Ar,A^-dimethyl-2-alkynylanilines 91 using molecular iodine in 

dichloromethane at room temperature (Scheme 33).37 The reaction proceeded with 

demethylation. They found that the reaction gave 7V-methyl-3-iodoindoles 92 in good to 

excellent yields (73-100%) with a range of alkyl and aryl alkynes, although the reaction was 

limited to dimethyl protected anilines.

Ip. PCM.

73-100%

Scheme 33: Yue and Larock's iodocyclisation o f 2-alkynyl anilines.

2.2.3 By reductive cyclisation.

Despite the availability of other methods, reductive cyclisation is still a commonly used method 

to scale-up the synthesis of indoles. The reaction involves the reduction of a nitro group 

followed by cyclisation. The reduction is carried out by catalytic hydrogenation using Pd/C, 

Raney-nickel and hydrazine, or zinc in acetic acid, etc (See examples below).

2.2.3.1 Leimgruber-Batcho indole synthesis38'39

The Leimgruber-Batcho indole synthesis involves the condensation of o-nitrotoluenes 93 with 

dimethyl formamide dimethyl acetal (DMF DMA) 94 to give enamines 95. The reaction is 

usually carried out in DMF (heated to 140 °C) or toluene (reflux). The resulting enamines 95 

then undergo reductive cyclisation to give indoles 96. The reaction usually involves using 

Raney-nickel as catalyst (Scheme 34).

-a.NO,

MeO
y—n

MeO x

/  Pyrrolidine
Rtr

Heat

Raney-nickel,
nh2nh2) h2o

NO,

93 94 95

Scheme 34: Leimgruber-Batcho indole synthesis.

96
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The benefits of the Leimgruber-Batcho indole synthesis are that the o-nitrotoluenes are readily 

available and the enamines that result are usually quite stable due to the presence of electron- 

withdrawing and electron-donating groups on either end of the olefin creating a push-pull 

effect. This method has proven useful for the synthesis of a great number of biologically active 

indoles including Simig and co-workers synthesis of the antimigrane drug naratriptan40 and 

Ohkubo and co-workers synthesis of indolopyrrolocarbazole alkaloids known as acryriaflavins 

98 from nitro-toluenes 97 (Scheme 35).41

HO

98

NO-

97
Acryriaflavin C R1 = H, R2 = OH 
Overall yield = 68%
Acryriaflavin D R1 = OH, R2 = H 
overall yield = 75%

Scheme 35: Ohkubo’s synthesis o f indole alkaloids using Leimgruber-Batcho.

Other reductive methods are similar and vary in substrates that are condensed with the

o-nitrotoluenes, including the Reissert indole synthesis42 which involves the reductive 

cyclisation of o-nitrobenzylcarbonyl compounds to give indole-2 -carboxylic acids which 

decarboxylate upon heating.

2.2.4 Other methods.

2.2.4.1 Bartoli indole synthesis43'44

The reaction provides a short and flexible route to 7-substituted indoles 101 from o-substituted 

nitroarenes 99 and vinyl Grignard reagents 100 (Scheme 36). A particular drawback of this 

chemistry is the poor atom economy due to the requirement of three equivalents of Grignard 

reagent.

N 0 2 R2
R

BrMg
3 THF, -40 °C

99 100

Scheme 36: Bartoli’s indole synthesis. 
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2.2.4.2 Madelung indole synthesis45

The reaction involves the synthesis of indoles 103 by the intramolecular cyclisation of A-amide 

anilines 102 using bases such as sodium ethoxide at high temperatures (Scheme 37). The 

drawbacks of this chemistry are the high temperatures used and the use of base limiting its use 

to alkyl substituted indoles.

Base 
200-400 °C

102 103

Scheme 37: Madelung's indole synthesis

The high temperatures were circumvented by Houlihan who reported the cyclisation of 

iV-acylated o-alkylanilines at low temperatures by using «BuLi as base at temperatures between 

15-20 °C.46

2.2.4.3 Gassmann indole synthesis47'48

This method involves the one-pot synthesis of indoles via the initial oxidation of the aniline 104 

using tert-butyl hypochlorite to give the chloramine 105 followed by addition of the methyl 

thio-ketone 106 to give the sulfonium ion 107. Addition of a base such as triethylamine 

deprotonates the sulfonium ion to give the sulfonium ylide 108 and is followed by 

[2,3]-sigmatropic rearrangement and loss of water to give the 3-thiomethylindole 109. The 

thiomethyl group could then be cleaved using Raney-nickel to give the 3-unsubstituted indole 

(Scheme 38). One of the drawbacks of this method is that electron rich anilines usually do not 

participate.
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f-BuOCI

Et,N

O
© I^R 2
M

[2,3]-sigmatropic
rearrangement

O Y r2

^ N H

108

109

Scheme 38: Gassmann indole synthesis.

2.2.4.4 Intramolecular Heck cyclisations.

An example of an intramolecular Heck cyclisation is reported by Chen, involving the 

palladium-catalysed coupling of 2 -iodoanilines 110  with ketones 111 to give enamines 112 that 

then undergo intramolecular Heck cyclisation to give indoles 113 (Scheme 39).49 It was found 

that the choice of base and solvent was important with non-oxidisable bases such as DABCO 

often being the most suitable.

I __R3 ^ S J 0)2, RV ^Pdl ^R3 RV xr3DMF
d 1 ^  p h i  R 3 r 1 ^  p

If 'Rd(Q) ry Y — if
DMFNH2 R2 105 °C, 3-12 h \ ^ n ^ R2 DMF ^ ^ N^ R2

H H
53-82%

110 111 112 113

Scheme 39: Intramolecular Heck cyclisation.

2.2.5 Azaindole synthesis.

There are fewer examples of azaindole synthesis and this is attributed to the difficulty in their 

synthesis due to the electron-deficient nature of the aza-benzene ring and the strong metal
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binding affinity of the aromatic nitrogen. Methods towards the azaindoles are often limited to 

cyclisations of 2-alkynyl anilines,50 Heck cyclisations51 and examples based on Suzuki 

couplings.52 A few of the more important examples of azaindole synthesis will be highlighted.

2.2.S.1 Copper-catalysed synthesis of azaindoles

There are a few examples of this method; recently copper(I) iodide was used by Ohno and 

coworkers for the synthesis of indoles and was shown to be effective for the synthesis of aza­

indoles (Scheme 40).53 They found that they were able to control which products were formed 

by the changing of conditions and additives, to give mono-cyclisation 115 or Zu's-cyclisation 

116 of symmetrical 2-alkynyl anilines 114.

/ N . __ _
i Y S

N
Ms Ms

3 mol % Cul,
2 eq Et3N, dioxane,

110 °C, 45min MsHNy x 's U IN I  ‘ M U IR

3 mol % Cul,
2 eq Et3N, dioxane,

NHMs 60 °C, 20 min MsHN

100%

116 114 115

Scheme 40: Ohno’s synthesis o f (aza)-indoles.

2.2.5.2 Palladium-catalysed synthesis of azaindoles

Ackermann and co-workers reported the cyclisation of 2-alkynyl halo-arenes 117 with hindered 

amines such as 1-aminoadamantane (example shown) or /er/-butyl amine in the presence of 

palladium(II) acetate to give aza-indoles 119 (Scheme 41) in moderate to excellent yields 

(46-95%).54 The reaction often involves high temperatures and extended reaction times 

providing 1,2 -substituted aza-indoles.

NH,
0.05 eq Pd(OAc)2, 
0.05 eq ligand 118

KOfBu, Toluene, 
120 °C, 14h

M

Ph

117

Cl©

118

N 
1-Ad

46-95%
119

Scheme 41: Ackermann’s synthesis o f azaindoles using hindered amines.
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Other methods involving palladium include Kumar’s report on the one-pot synthesis of aza­

indoles synthesis using a Suzuki cross-coupling55 (Scheme 42) of 2-iodo aminopyridines 120 

and boranes 121 (where R = H or methyl) to give vinyl ethers that upon stirring with 2M 

hydrochloric acid for 48 h cyclised to give azaindoles 122 in 78% yield (for R = H) and 40% 

yield (for R = methyl).

OEt R Pd(PPh3)4l 
NaOH, THF

2M HCI

120 121

R = H 78%
R = Me 40%

122

Scheme 42: Kumar’s synthesis o f azaindoles using Suzuki coupling.

Another interesting synthesis highlights a palladium-catalysed cascade reaction involving an 

intermolecular and intramolecular amination to give 7-azaindoles as reported by Willis and co­

workers (Scheme 43) .56 Starting from commercially available 2-halonicotinaldehyde 123, a 

Wittig reaction was carried out to give the (2-haloalkenyl)-pyridylhalide 124 that would then 

undergo the tandem reaction to give azaindoles 125 in poor to excellent yields. The issues with 

the chemistry include the difficulty in synthesising 4- 5- and 6 -azaindoles due to the instability 

of many of the (2-haloalkenyl)-pyridylhalides 124. The catalyst used is also not general in that a 

single catalyst could not be found to work in all examples.

[Ph3PCH2Br]Br, 
KOfBu, THF,

0 °C to rt

123

R4NH2, Pd(OAc)2, 
C sC 0 3, Toluene,

110 °C, 6 h r

70-80%

124

Scheme 43: Willis and co-workers synthesis o f 7-azaindoles.

18-96%

125

Similar to the Heck chemistry for indole synthesis reported by Chen and co-workers 

{cf. Scheme 39, pg. 23), Lachance reported a one-pot microwave synthesis of aza-indoles57 

(Scheme 44) involving an initial condensation of a 2-halo azaaniline 126 with a ketone 127, 

followed by tautomerisation to the enamine 128 and intramolecular Heck cyclisation using a 

palladium catalyst to form the aza-indoles 129.
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X Condensation

5 mol % Pd(PPh3)4,

.  a  /  Condensation r f  r f

* O  ‘  ^ V *
126 127 128

R2

1.2 eq CyNMe2, f| 

pyridine, MW 160 °C H
27-87%
129

Scheme 44: Lachance’s synthesis o f aza-indoles using Heck chemistry.

2.3 Indoles: Results and Discussion

The proposed strategy for indole synthesis was to develop a range of indole precursors that 

displayed a range of functionality and to test the scope and limitations of the silver(I) 

cyclisation for indole synthesis. Commercially available 2-iodoaniline was protected with 

various protecting groups followed by a Sonogashira reaction with various alkynes (See 

following Schemes). This would then be followed by cyclisation using 10% silver nitrate on 

silica. All but one of the alkynes were commercially available. Terpenoid 132 (Scheme 45), 

was synthesised from citronellyl iodide 131 using a lithium acetylide-ethylene diamine 

complex. The iodide 131 was formed from citronellol 130.

PPh3i
Imidazole,

DMSO, 8 °C

130 131 (88%) 132(93%)

Scheme 45: Synthesis o f citronellyl acetylene 132.

2.3.1 Synthesis of 2-alkynyl anilines and aza-anilines

The 2-alkynyl aniline 135 was prepared by initial Boc protection of 2-iodoaniline 133 to give 

the Boc-protected aniline 134 in 92% yield followed by a Sonogashira reaction with 

phenylacetylene to give the 2-phenyl ethynyl aniline 135 in 98% yield (Scheme 46).
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10% Pd-C(0.04 equiv), 
Cul (0.05 equiv)

NaHMDS ' PPh3 (0.2 equiv),

NH2 BoC 20 ,-78°C  ^ ^ n HBoc P h— - (1.5 equiv), \ ^ NHBoc 
THF H20 -E t3N, reflux, 18h

133 134(92%) 135(98%)

Scheme 46: Synthesis o f N-tert-butyloxycarbonyl 2-alkynyl aniline 135.

The carbamate protected 2-alkynyl aniline 137 was prepared by protection of 2-iodoaniline 133 

with methyl choroformate to give the carbamate 136 in 87% yield followed by a Sonogashira 

reaction withl-hexyne to give the 2-alkynyl aniline 137 in 98% yield (Scheme 47).

10% Pd-C(0.04 equiv), 
Cul (0.05 equiv) 

Pyridine PPh3 (0.2 equiv),

NH2 MeOCOCI ^ ^ N H C 0 2Me Bu— (1.5 equiv), NHC02Me
DCM, 0 °C H20 -E t3N, reflux, 18h

133 136 (87%) 137 (98%)

Scheme 47: Synthesis ofN-methoxycarbonyl 2-alkynyl aniline 137.

Acylation of 2-iodoaniline 133 using acetyl chloride to give TV-acyl 2-iodoaniline 138 in 85% 

yield which underwent a Sonogashira reaction with phenylacetylene gave the 2-alkynyl aniline 

139 in 67% yield (Scheme 48).
10% Pd-C(0.04 equiv),

Cul (0.05 equiv)
Pyridine, PPh3 (0.2 equiv),

NHAc

139 (67%)

NH2 AcCI ^ ' ^ N H A c Ph— (1.5 equiv),
DCM, 0 °C H20 -E t3N, reflux, 18h

133 138 (85%)

Scheme 48: Synthesis ofN-acyl 2-alkynyl aniline 139.

Aniline 141 was prepared by methyl protection of 2-iodoaniline 133 to give the methyl

protected aniline 140 in a good yield of 68%, followed by a Sonogashira reaction with 1-hexyne

to give the 2-alkynyl N-methyl aniline 141 in 76% yield (Scheme 49).

10% Pd-C(0.04 equiv),
Cul (0.05 equiv)

1.MeLi-LiBr PPh3 (0.2 equiv),

NH2 2 Mel ^ ^ ^ N H M e  Bu (1.5 equiv), ^ ^ ^ N H M e
THF, -78 °C H20-E t3N, reflux, 18h

133 140 (68%) 141 (76%)

Scheme 49: Synthesis o f N-methyl 2-alkynyl aniline 141.
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The iV-tosyl derivatives were prepared by initial Sonogashira to give the 2-alkynyl anilines 

142a-f which was followed by iV-tosylation to give the sulfonamides 143a-f (Scheme 50) in 

variable yields (40-98%). The reason for the reversal in steps was due to the lower yields 

associated with Sonogashira coupling of the iV-tosylated aniline with acetylenes. In some cases 

where an iV-tosylated aniline was used, the Sonogashira coupling with the acetylene and 

cyclisation occurred in one-pot; this was particularly the case with substrates 143c and 143d.

R2 .R2
Pyridine,

Pd pTsCI, ~  ^

. . . .  ...... DCM, RT.
NH2 v  NH2 ^ ^ N H T s

133 142a-f 143a-f

For 142 and 143 for a where R2 = Bu, b where R2 = Ph ( = 64), 
c where R2 = CH2OH, d where R2 = (CH2)4bH,

II
e  where R2 = f where R2 =

Scheme 50: Synthesis ofN-tosyl 2-alkynyl anilines (yield and Sonogashira conditions varied).

The 2-alkynyl-amino-pyridine derivative 146 was prepared by initial acetyl protection of the 

pyridine 144 to give the iV-acyl derivative 145 in 92% yield, followed by a Sonogashira reaction 

with 1-hexyne to give the 2-alkynyl pyridine 146 in 61% yield. The free amino-pyridine 147 

was prepared in a very low yield of 20% by the Sonogashira coupling of pyridine 144 with

1-hexyne (Scheme 51).

Bu
^  Pd(PPh3)4 

Cul, Et3N

NH2 1-Hexyne 
THF, 50 °C

Ac20

147 (20%)

N ' 'N H 2 

144

reflux

Pd(PPh3)2CI2 
Cul, Et3N

Bu

N NHAc 1-Hexyne N NHAc 
THF, 50 °C

145 (92%) 146 (61%)

Scheme 51: Synthesis o f 2-alkynyl amino-pyridines.

Preparation of 2-alkynyl pyrazine 150 was attempted by initial acylation of pyrazine 148 to give 

the iV-acyl pyrazine 149, followed by a Sonogashira coupling with phenylacetylene 

(Scheme 52).
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AC2O (excess)

Pd(PPh3)4 (0.04 equiv) 
Cul (0.05 equiv), 

Et3N (2.00 equiv),

reflux, 20 h ■— Ph (2.00 equiv) 
THF, 60 °C, 2 h

Ph
NHAc Ac

148
74%
149

36%
151

Ph

(
N

N NHAc 
(not isolated) 

150

Scheme 52: One-pot Sonogashira and cyclisation with palladium.

Unfortunately attempted Sonogashira coupling resulted in no detectable 2-alkynyl pyrazine 

150. In fact only aza-indole 151 was isolated in 36% yield due to the 2-step one-pot coupling 

and cyclisation catalysed by palladium.

that displayed a wide range of functionality. Therefore, by varying both the nitrogen protecting 

group and the alkyne, the robustness and limitations of the silver(I)-catalysed cyclisations could 

then be properly assessed.

2.3.2 Cyclisation of indole and aza-indole precursors

Upon exposure to 0.1-0.2 equivalents of 10% AgN0 3 .SiC>2 in dichloromethane in a 

foil-wrapped flask, a large variety of indoles were synthesised in near quantitative yields from 

the corresponding 2-alkynyl anilines (Table 1). The indoles were shown to be clean by 1H- 

NMR analysis with no need for further purification. The silver cyclisation was even shown to 

work in the presence of impurities showing the method was robust. Reaction times varied with 

most requiring overnight stirring; thus, such cyclisations were significantly slower than was the 

case with the related furan and pyrrole syntheses.2,3

The result of this methodology was that a wide variety of 2-alkynyl anilines were synthesised
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Table 1: Silver (I)-catalysed synthesis o f indoles and aza-indoles.

2-a lk y n y l an ilin e T im e (h) In d o le Iso la ted  yield  (% )

.Bu

c C
143a

18 CcvB"
Ts

152a

99

.Ph

o f
^ ^ N H T s

143b

18 O ' "
Ts

152b

99

. c h 2o h

c c
143c

3 CXVch’oh
Ts

152c

99

.(C H 2)4OH

c c
143d

18
| T j 3 ^ ( C h 2)4o h

Ts

152d

99

^ ^ N H T s

143e

18 O M
Ts

152e

99

143f

18
\ — ( 

Ts \

152f

99

.Bu

c C
^ ^ ^ N H C 0 2Me

137

18 0 ^ bu
C 0 2Me

153

99
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Ph

c e l 24 C O - 1'
Boc 99

135 154

o i ; 48 C C *
Me 99

141
155

. ph

c C
24

.cCL

/
z

*
99

139
156

.Bu

c C 24
O ”

H 0

142a 157a

.Ph

c C^ ^ n h 2
24 C O - " 1

H 0

142b (=64)
157b

.Bu

c CN NHAc
5

f X V Bu
99

146
158

.Ph

( " X ^ ph
N NHAc

“ N N "  Ac “

1501 151

.Bu

c CN NH2
24

o > -
N H 502

147 159

Product cyclised during SornDgashira. 2 Prod uct not isolated; crude yie d from ’H-NMR

integration.
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As can be seen from Table 1, a wide variety of indoles have been successfully synthesised with 

the key cyclisation step producing indoles in mostly quantitative yields. The method has 

displayed great flexibility with a wide range of protecting groups being tolerated, including 

carbamates, amides, alkylamines and sulfonamides, as well as a wide variety of acetylenes

A result of particular interest was the successful cyclisation of 2-alkynyl aniline 143d 

(Scheme 53). It was felt that as the cyclisation of the 2-alkynyl anilines was slow, there would 

be an increased chance of a competing 6-exo-d\g cyclisation taking place as it is favoured by 

Baldwin’s rules. However, upon exposure of 143d to 0.1 equivalents of 10% silver nitrate on 

silica gel over 18 hours, only clean indole 152d was observed. Even upon using stoichiometric 

silver(I) there were no observable side products and no pyrane 160 was observed. As can be 

seen from comparison of the ‘H-NMR of aniline 143d and indole 152d (Figure 1) the CH2 next 

to the OH does not shift a great deal going from 3.73 ppm in the starting aniline 143d to 3.63 

ppm in the indole product 152d. The CH2 next to the acetylene in the aniline 143d is at 2.46 

ppm and in the indole 152d is at 2.94 ppm. More importantly what can clearly be seen is the 

appearance of the 3-H indole proton at 6.32 ppm in the product 152d. The indole 152d was 

isolated without any purification aside from a quick filtration through Celite, clearly showing 

the benefit of the silver(I) methodology.

NH
NHTs Ts

143d 160

Scheme 53: Competing 6-exo-dig cyclisation.

Another highlight included the successful cyclisation of aniline 141 to give the iV-methyl indole 

155. As A-methyl is very different to A-carbamates and sulfonamides it is a result that 

highlights the methods robustness and indicates that the synthesis of other TV-alkyl indoles could 

be possible using this methodology.

Other highlights include the successful cyclisation of 7V-Acyl-2-alkynyl amino-pyridine 146 to

give aza-indole 158 in a nearly quantitative yield. As can be seen from the 'H-NMR analysis

(Figure 2) the silver(I) cyclisation methodology can be applied successfully to the synthesis of
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aza-indoles as well as indoles. Analysis of the 'H-NMR shows only minor impurities with 

almost complete conversion to azaindole. This can be clearly seen by the appearance of the 3-H 

indole proton at 6.23 ppm and the shifting of the Acyl CH3 from 2.42 ppm for the amino- 

pyridine 146 to 2.99 ppm for the azaindole 158.

What was also intriguing was the difference in reaction times between aniline 139 and 

amino-pyridine 146 with 139 taking more than 24 hours for complete conversion to products, 

yet amino-pyridine 146 reached complete conversion after only four hours. This is perhaps due 

to the electron deficient nature of the pyridine ring resulting in a lowering of the pKa of the NH 

of A-acyl amino-pyridine 146 when compared to the A-acyl aniline 139. By comparison of 

these two examples one could assume that pKa plays an important role in these cyclisations. 

Another interesting result came from the successful cyclisation of the free amino-pyridine 147 

which gave 50% conversion into aza-indole 159 after exposure to 0.1 equivelants of silver(I) 

over 24 h. Increasing the amounts of catalyst and reaction time did not improve the yield 

greatly, resulting in only an increase to a 60% conversion to aza-indole 159.
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Figure 1: IH-NMR o f starting aniline 143d and crude indole 152d.



Figure 2: ]H-NMR o f amino-pyridine 146 and crude aza-indole 158.

2.4 Mechanistic elucidation.

With a large number of indoles synthesised (Table 1) from a wide range of acetylenes and 

containing a wide range of nitrogen protecting groups it was of interest to try to ascertain a
• • co

possible mechanism. Marshall had previously shown the successful cyclisation of allenones 

161 using 10% w/w silver nitrate on silica gel to give furans 162 and it was during this 

synthesis that he began assessing the mode of action of the silver salt. He performed deuterium 

labelling studies and was able to show that the silver coordinated with the allene allowing ring 

closure by donation from the lone-pair of the carbonyl (Scheme 54).



Scheme 54: Marshall’s synthesis o f furans from allenones.

It is believed that the silver coordinates in a similar manner to the acetylene. How this helps 

facilitate cyclisation can be explained by the Dewar-Chatt-Duncanson model (Figure 2).

a)

M R

•  - - i £ o
R

Figure 3: Dewar-Chatt-Duncanson model for alkyne-metal bonding, 

a) n-electron donation to a-orbital b) d orbital backbonding to alkyne n*-orbital.

The alkyne donates 7i-electron density to the LUMO (a-orbital) of the silver, also the silver 

donates electron density from its d-orbital into an empty 7i*-orbital of the alkyne which results 

in a stronger interaction (known as back-bonding). Both of these effects result in an elongation 

of the carbon-carbon bond and a rehybridisation of the sp centres to sp2. The result of the 71- 

electron donation from the acetylene to the metal results in carbon centres of the acetylene 

becoming electron deficient and slightly positive (5+). It is this electron deficiency that 

activates the acetylene to attack by the nucleophile (in this case the heteroatom) and this results 

in ring closure.

Scheme 55: Proposed catalytic cycle (loss o f amine H  probably not concerted).



As can be seen from the proposed mechanism (Scheme 55), the initial ring closure appears to 

be driven by the activation of the acetylene by the silver resulting in an electron deficient 

carbon centre. Additionally the nucleophile is activated by the initial loss of a proton. This is of 

course a pKa argument in that in order for the nitrogen to lose a proton the NH would have to 

be acidic enough. With the proposed mechanism in mind the results for the silver(I) cyclisation 

(Table 1) suggest that an NH2 is not acidic enough for cyclisation to take place. An NH tosyl on 

the other hand successfully cyclised and when considering pKa values, this was hardly 

suprising; a comparison between the acidity of aniline with a pKa of 30.6 and JV-methylsulfonyl 

aniline with a pKa of 12.9 clearly shows a pATa difference of 17.7 units.

In order to quantify the pKa values for various A-protecting groups, as well as for that of the 

aza derivatives computational studies were carried out in order to ascertain pKa values in 

relation to the pKa of aniline which has a value of 30.6 in dimethylsulfoxide. The following 

computational studies were carried out by L. Goldman, a member of the Carpenter group at 

Cardiff University, for which we are very grateful.59

2.5 Computational Studies.

Acidity calculations were carried out by Goldman using the Gaussian0360 suite of programs. All 

calculations were carried out at two levels of theory, the first was 03LYP/6-31+G(d) which is a 

commonly used density functional theory (DFT) method. The second level of theory was G2 

which is a composite method defined in Gaussian. The G2 method is meant to be one of the 

most accurate methods available, however, it is also very expensive computationally (very 

labour intensive).

The first stage in the acidity calculations was to benchmark these two methods against literature 

pKa values for anilines.61 The benchmark values can be found in Table 2.
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Table 2: Comparative computational results fo r  known compounds.

Literature

compound

Lit pKa 

(DMSO)

pKa 

before fit

PKa after 

fit

pKa before fit pKa after fit

DFT DFT G2 G2

Aniline 30.6 30.6 30.2 30.6 30.5

3-Methyl aniline 31.0 31.1 30.6 30.8 30.7

2-Chloro aniline 27.6 28.1 28.4 28.3 28.5

2-Fluoro aniline 28.7 28.5 28.7 28.7 28.8

3-Cyano aniline 27.5 27.0 27.5 27.2 27.5

4-Cyano aniline 25.3 24.2 25.4 24.7 25.2

A-acetyl aniline 21.5 18.8 21.4 20.7 21.6

2-amino

pyridine

27.7 26.9 27.4 26.7 27.0

RMS error 1.2 0.35 0.63 0.45

All pKa results are calculated in DMSO. RMS = root mean square.

The column labelled “before fit DFT” gives the raw results of the DFT calculation and shows 

an average error of 1.2 pKa units. While this error is not very large, it can be improved by 

fitting the data to the line: new pKa = A x old pKa + B. The variable A (0.75) is a scaling factor 

that corrects for the fact that the computational results become less accurate as the structures get 

further away from aniline. The variable B (7.3) is a correction term which references the pKa to 

aniline. From Table 2, it can be clearly seen that the fitting method improves the accuracy of 

the pKa values. The results for the high level calculations (G2) show an initial error of 0.63 pKa 

units and in comparison to that of low level theory, these are an improvement. However, after 

the linear fit, the DFT and G2 methods have nearly identical accuracies. It is also important to 

note that the fitting for the G2 method has different variable values with A having a value of 0.9 

and variable B having a value of 3.

Now that the benchmarks have shown that the calculations were accurate for the test 

compounds, calculations were performed on analogues based around the anilines used in the 

synthesis of indoles (Table 1) and were referenced to aniline. The compounds were calculated 

for pKa values in both dimethyl sulfoxide and dichloromethane (Tables 3 and 4). DMSO was 

the solvent that the test compounds were calculated for, and was the only solvent that the linear 

fit would be correct for. In contrast, the cyclisations were experimentally carried out in DCM,
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so it was of greater interest to calculate the pKa values for anilines in DCM. Due to there being 

no literature pKa values in DCM, the numbers given are relative to aniline rather than absolute 

pKa values. Additionally they could not be scaled to a linear fit

Table 3: Calculated pKa differences (Relative to aniline) for compounds of interest using DFT

level.

Compound Compound

No

DMSO pKa 

difference 

before fit

DMSO pKa 

difference after 

fit

DCM pka 

difference

163a -1.3 -1.3 - 1.1

o f
H

163b -0.5 -0 .7 -0.4

c C .
163c -20.4 -15 .7 -18.8

c C
163d - 12.2 -9.5 -11.5

c d
163e -10.3 -8.1 -8.5

^ ^ N H A c

163f -9 .9 -7.8 - 10.6

N NH2

163g -5.7 -4 .6 -4.6

C C ^
N NHAc

163h -13.7 -10 .7 -14.0

< YN NHAc

163i -15 .9 -12.3 -16.0
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According to the DFT calculations, the difference between the pATa of aniline and that of 2- 

propynyl aniline 163a in DMSO was 1.1 pKa. units, meaning that the acidity of 2-propynyl 

aniline 163a was only about one order of magnitude more acidic than that of aniline. The fitting 

resulted in no increase in the difference of pAfa. This small difference between the acidity of 

aniline and 2-propynyl aniline 163a was not significant and this was hardly suprising. Equally 

the pATa difference between 2-propynyl aniline 163a and A-methyl 2-propynyl aniline 163b was 

also veiy small. The calculated pACa difference between aniline and A-Boc 2-propynyl aniline 

163e, A-Moc 2-propynyl aniline 163d and A-acetyl 2-propynyl aniline 163f were 10.3 (8.1),

12.2 (9.5) and 9.9 (7.8) respectively. All of them showed similiar pATa values to each other, and 

were all significantly more acidic than aniline. The A-tosyl 2-propynyl aniline 163c was much 

more acidic than all the other anilines that were calculated, and this was to be expected. The 

tosyl group is very electron-withdrawing and therefore has a significant effect on the pATa of the 

amine group. Other results of interest include the pATa values of the 2-propynyl aza-anilines, in 

particular the pATa value for 3-propynyl pyridine-2-amine 163g, which according to the 

calculations, has an acidity 4.4 pATa units more acidic than its comparable 2-propynyl aniline 

163a (3.3 units more acidic with fit). The A-acyl aza-anilines 163h and 163i were shown to be 

more acidic than their aniline counterparts and displayed values in a range between that of the 

carbamates and the sulfonamide. Another interesting result was that the substitution of a second 

nitrogen into the benzene ring increased the acidity by ~ 2 pATa units.

The differences in pATa found using both dimethyl sulfoxide and dichloromethane were very 

similar and appeared to follow the same trends, these being that A-tosyl 2-propynyl aniline 

163c was more acidic than the other anilines tested and that both the carbamate (163d and 

163e) and A-acyl derivatives (163f, 163h and 163i) were between 11.5-8.5 pATa units more 

acidic than aniline. Equally, the difference in pATa between that of aniline and 2-propynyl 

aniline 163a or A-methyl 2-propynyl aniline 163b were around 1 pATa units of difference. The 

aza derivatives equally followed a similar pattern with the free aniline having indentical pÂ a 

values in dichloromethane and in dimethyl sulfoxide with fit (both 4.6 units more acidic than 

aniline). The A-acyl aza-anilines (163h and 163i) were shown to have an even greater pKa 

difference in dichloromethane relative to its aniline counterpart, with acidities even closer to the 

sulfonamide. The pyridine derivative had a pAfa 14 units more acidic than aniline and the 

pyrazine was shown to have a pATa 16 units more acidic than aniline.

The reason for carrying out these calculations was to try to explain the overall trends of the

cyclisation. An interesting discovery was that no cyclisation of 142a and 142b was observed

even upon increasing the silver to stoichiometric amounts and prolonged reaction times of 48
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hours. Only starting material was observed. However, the attempted cyclisation of A-methyl 

aniline 141 over 48 hours proved successful resulting in complete conversion into indole 155 

after 48 hours using 0.2 equivalents of 10% silver nitrate on silica. This was suprising 

considering the pATa values of A-methyl aniline 141 and free aniline 142 were essentially the 

same. According to our p/Ca arguments, either both of those anilines should have cyclised, or 

neither should have cyclised. Instead, N-methyl aniline 141 cyclised while free anilines 142a 

and 142b did not.

This would suggest that the pXa arguments do not provide a complete picture and this suggests 

that the mechanism (See Scheme 55) cannot be completely correct and that maybe there is more 

than one mechanism taking place. Another interesting result was the successful cyclisation of 

the free amino-pyridine 147 upon exposure to 10% AgN0 3.SiC>2 resulting in 50% conversion to 

aza-indole 159 in 24 hours. However, attempts to achieve complete conversion with exposure 

to one equivalent over a further 24 hours resulting in only 60% conversion; this was a slight 

oddity. A hypothesis for this could be that pyridines have been known to be good chelators to 

metals and hence it could be that the silver was being made inactive towards cyclisation by 

coordination with the nitrogen of the pyridine.

Table 4: Calculated p/Ca differences for compunds of interest using G2 level.

Compound Compound

No

DMSO pKa 

difference 

before fit

DMSO pKa 

difference after 

fit

DCM pKa 

difference

c C
163a -1.0 -1.0 -0.9

c c T
H

163b -0.7 -0.7 -0.5

^ ^ N H T s

163c Too large Too large

^ ^ N H C 0 2Me

163d Too large Too large
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c d l
163e Too large Too large

163f Too large Too large

o c T
163g -4.9 -4.5 -4.6

N NHAc

163h Too large Too large

( i
N NHAc

1631 Too large Too large

High level theory (G2) was shown to be unable to determine the pAa values for all but three 

compounds (Table 4). This was due to the compounds being too large for the G2 method. The 

results that worked were shown to follow the trends seen in the DFT calculations. This 

suggested that DFT was a sufficient level of theory to carry out the calculations.

The computational results show that the pKa of the methyl aniline and the free aniline are 

essentially the same. This highlights that the mechanism suggested (Scheme 55) is either 

incorrect or incomplete. It is possible that the difference in reactivity between the N-methyl 

aniline 141 and the free aniline 142 could have been explained had we investigated the 

indolinium salts. In other words, cyclisation may have occurred prior to proton loss. Possible 

future work would be to carry out computational experiments using on the indolinium salts.

2.6 Significance of a propargylic alcohol.

Hayes had previously studied the mechanistic pathway of the silver catalysed cyclisation.3 He 

found that in the case of furans, a propargylic alcohol was indeed required to achieve successful 

cyclisation; it was also believed that aromatisation may have been a driving force for the 

reaction by providing a ‘thermodynamic sink’. The cyclisation of 2-alkynyl anilines, when 

compared to the silver cyclisation of pyrroles, furans, etc are in general much slower. It is 

possible that this may be due to the lack of a propargylic OH which according to previous work
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was believed to accelerate the reaction. In order to ascertain the importance of a propargylic 

alcohol, a comparison study of butyl 143a against alcohol 143c was undertaken. A 1.5:1 

mixture of 2-alkynyl anilines 143a and 143c respectively (45 mg) in 1 ml of deuterated 

chloroform was exposed to 0.1 equivelants of 10% silver nitrate on silica (-24  mg) over 45 

minutes and the cyclisation followed by ’H-NMR analysis (Figure 4).

OH

NHTs

143a143c

1.5S.S 5 0 4.5 4 0 3.5 3.0 2.5 2.07.5 7.0 &S 5.0

OH

152c 152a

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.08.0 3.0

Figure 4 : 1H-NMR o f  starting aniline 143a and 143c and product mixture after 45 mins.

As can be seen from the JH-NMR (Figure 4), the cyclisation of 143a gave -10%  conversion to 

indole 152a as could be seen from the integration of the O C -C H 2 o f the starting aniline at 2.32
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ppm and that of the product at 2.91 ppm. This can also be seen by the appearance of the 3-H at 

6.30 ppm. In stark contrast the cyclisation of alcohol 143c was drastically accelerated with 75% 

conversion to indole 152c. This can be seen by the 'H-NMR integration of the starting material 

CH2OH at 4.39 ppm and that of the product at 4.84 ppm. The product can also be clearly seen 

by the 3-H peak at 6.57 ppm. This result gives a clear indication that a propargylic alcohol 

group does increase the rate of cyclisation as previously suggested by Pale and Dalla.62'63 It is 

believed it accelerates the reaction by coordination of the silver(I) by the propargylic oxygen 

bringing it within close proximity to the acetylene.

2.7 Flow chemistry.

An additional goal for this methodology was the development of a flow system to give a highly 

efficient scale-up of the indole synthesis. Flow chemistry has become of growing importance to 

the pharmaceutical industry and its use has also been increasing outside the industry. 

Traditionally, manufacturing plants have used a method known as batch processing in a range 

of different syntheses. The process involves an almost conveyor belt-type system whereby a 

component would reach a workstation and undergo a process and then move on to another 

workstation. The process was continued until a product was reached. This process is common 

and applicable to a number of businesses including the pharmaceutical industry for the process 

of both small and large scale drug development. This process was at times inefficient, and as a 

result there is a growing need for continuous processes that are both more efficient and safe. 

This led to the development of fixed bed reactors, the most common of which is a trickle bed 

reactor,64’65 which is essentially a tube containing a catalyst. A substrate is then passed through 

the tube and the catalyst performs the transformation on the substrate which comes out the other 

end of the tube as product.

With the idea of a trickle bed reactor in mind, Hayes set out to develop a suitable flow system

for the silver cyclisation of heterocyclic precursors, thereby allowing for the continuous

processing of heterocyclic compounds and potentially efficient large scale syntheses. Initial

studies into the cyclisation of furan precursors in flow carried out by Hayes involved using

Marshall’s suggestion of 10% silver nitrate on silica in a column. Although this proved

successful, there was an issue of silver(I) leaching into the product, as was clearly seen by the

product collected turning black (Ag(0) deposition). In an attempt to avoid this issue, a number

of counter ions and supports were assessed for their suitability and cost effectiveness. It was

decided that the cheapest out of those tested, Amberlite 200c sodium form (a sulfonic acid

resin), would be chosen as the resin as both the support and as the counter-ion (mimic for the
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triflate counter-ion). It was felt that as the resin was strongly acidic, it would load the most 

efficiently and not undergo leaching. A stainless steel column (8 x 0.5 inches) packed with 

Amberlite 200c sodium form with a bed volume of 50 cm3 was successfully exchanged with 

Ag+ ions using a 10% aqueous silver nitrate solution (Figure 5). The silver nitrate solution was 

passed through the column five times to ensure complete exchange, and was followed by 

washing with water, methanol, diethyl ether and then dichloromethane to prepare the column 

for use.
AgN03 + H20

Na* Na+

t
NaN03 + H20

Figure 5: Silver exchange on an ion exchange resin.

Hayes then tested the column by passing furan and pyrrole precursors through the flow system. 

The flow system was found to be very successful in the synthesis of furans and pyrroles. What 

was also found was that the issue of silver(I) leaching was solved with very little silver(I) 

detected (<1 ppm by ICPMS). With this success in mind, it was hoped that this methodology 

could be extended to the cyclisation of 2-alkynyl anilines to give indoles cleanly, quantitatively 

and quickly. Such a method could be a significant alternative to the methods described in the 

beginning of this chapter.

Anilines 143a, 143b and 135 were passed through the Hayes amberlite flow system in an 

attempt to achieve cyclisation in flow. Unfortunately this proved fruitless resulting in 100% 

recovery of starting materials at flow rates of 0.2-2.5 ml/min in dichloromethane, ether and 

acetonitrile for all the substrates tested. These results were somewhat surprising and 

disappointing considering that slow conversion was seen when aniline 143a was stirred with 

silver-exchanged amberlite in a flask. The flow system was checked several times using furan 

precursor 164 (known to cyclise on the silver(I) Amberlite column) to determine whether the 

silver(I) had sufficiently deposited on the Amberlite resin. Upon passing the substrate 164
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through the silver(I) on Amberlite column at 0.5, 1 and 1.5 ml/min, successful cyclisations were 

observed with complete conversion into furan 165 (Scheme 56) even at 1.5 ml/min. Because of 

the above results, a successful silver-catalysed cyclisation of anilines to indoles in flow looked 

unlikely.

H°  ^  
Ph-

Bu Ag(l) Ph
on Amberlite

P h ' "OH DCM, 1.5 ml/min Ph y

164 165

Scheme 56: Furan 165 synthesis in flow.

Bu

We then decided that, despite the issue of leaching, the readily prepared 10% AgN0 3 .Si02  

could provide potential for indole synthesis in flow as suggested by Marshall.58 We used a very 

simple set-up of a glass column (20 x 2.5 cm3) primed with 10% silver nitrate on silica (60 g) 

covered in foil to protect the silver(I) from photoreduction and nitrogen as the source of 

pressure to push the compound through the column. Priming the column with substrate 135 

(0.10 g) in dichloromethane (1.00 ml) followed by a flow of dichloromethane at a rate of 1.5 

ml/min resulted in 66% conversion into indole 154 and no side-product formation after two 

passes through the column. Further passes through the column resulted in complete conversion 

into the indole 154 after seven passes (Figure 6). This can be clearly seen from the 'H-NMR 

analysis (Figure 6) by the shifting of the Boc peak from 1.47 ppm in the starting aniline 135 to 

1.23 ppm in the indole product 154, as well as the appearance of the 3-H indole proton at 6.48 

ppm in the product 154. What can also be seen from the 1 H-NMR analysis is that no 

side-products were formed despite exposure to a large amount of silver(I) catalyst. This was a 

fantastic result, showing that 2-alkynyl anilines could be converted into indoles successfully in 

flow rather quickly without any need for purification Another interesting point was that 

although the product collected from the flow system was not properly analysed for silver 

leaching, the product collected remained yellow and darkening of the oil due to silver(I) 

deposition was not observed. Overall this result shows that synthesis of indoles in a flow system 

is possible. The method allows for a much quicker conversion of 2-alkynyl anilines to indoles 

with complete conversion for aniline 135 to indole 154 after seven passes at 1.5 ml/min 

compared to 24 h exposure to 0.1 equivalents of silver(I) nitrate on silica. Although the use of 

silver(I) nitrate on silica in flow involves using a great excess of silver(I), the catalyst is re­

usable many times.
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Figure 6: 1 H-NMR o f conversion o f  135 to 154 using 10% A gN 03.S i02 column.
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A comparison o f the successful cyclisation in flow using 10% AgN0 3 .Si02  with that o f the 

unsuccessful attempt at cyclisation in the flow method using silver(I) on Amberlite lead to the 

question of why would there be such a vast difference in the conversion o f aniline 135 to indole 

154 in these two flow systems. A possible reasons could be that the silver(I) on silica has a 

greater surface area for interaction between substrate and catalyst. However, silver(I) on 

Amberlite had a lower surface area, one would expect that at a flow rate of 0.2 ml/min, some 

conversion would be expected to occur especially since the flow rate with silver(I) on silica was 

1.5 ml/min. Another possible explanation could be the difference in the stationary phases that 

the silver is embedded on. The silver on Amberlite is essentially neutral yet the silver on silica 

is slightly acidic. Perhaps the cyclisation works best with an acidic surface. Future work would 

focus on optimisation of the flow system and better understanding o f the flow process.
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2.8 Conclusions.

It has been shown that indoles can be synthesised by a three step process involving initial 

protection of the nitrogen and Sonogashira coupling followed by silver(I)-catalysed cyclisation. 

Although there are methods that require fewer steps, for example the palladium-catalysed one- 

pot synthesis of indoles (c f  Section 2.2.2.3, pg. 16), the conditions will not always be 

applicable, particularly for substrates that are sensitive to temperature and so alternative 

methods are often required. This method allows for the mild catalytic conversion to give 

indoles and azaindoles in near quantitative yields. The methodology allows for a broad range of 

nitrogen protecting groups to be tolerated, including Boc, Moc, Ac, Tosyl and methyl. 

Additionally, the alkynyl moiety could include alkyl, aryl, alcohols, terpenes and vinyl 

substituents.

A particular highlight of this synthesis has been the successful cyclisation of alkynyl aniline 

135 to indole 154 in a flow system. This indicates that the successful synthesis of indoles by 

5-endo-d\% cyclisation in a flow system is possible. The benefits are that this could lead to the 

synthesis of indoles in much shorter reaction times as well as lending itself to scale-up.

The computational results seemed to indicate that although pKa values may be important for the 

silver(I)-catalysed cyclisation of 2-alkynyl anilines, in particular the sulfonamides, they could 

not be the only factor in determining whether or not the cyclisation would occur because of the 

different reactivity of the methyl aniline 141 and the free anilines 142a and 142b. A possibility 

is that the mechanism considered (Scheme 55) is either incorrect or incomplete. Despite this 

uncertainty the silver(I) catalysed cyclisation of anilines appeared to be a good alternative for 

indole synthesis.

48



Chapter Three

Pyrazoles
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3.1 Introduction.

Another important class of heterocycles are the pyrazoles: characterised as alkaloids, they 

consist of a 5-membered ring with two neighbouring nitrogen atoms, having one pyrrole type 

nitrogen that gives the ring its aromaticity and a nitrogen that has an exposed lone pair giving it 

a basicity on a par with pyridine. Nature appears to be unable to form many compounds with 

N-N bonds, with only a few examples found, including withasomnine which was isolated from 

the root of the Indian medicinal plant Withania somnifera.66’67 Despite their absence in Nature, 

many synthetic pyrazoles form the core of drugs that are used for their analgesic, antibacterial, 

anti-inflammatory and many other medicinal properties; this is unsuprising in view of their 

varied ability to form hydrogen bonds.

Examples of some important drugs that contain a pyrazole core include celecoxib which is 

marketed by Pfizer under the brand name Celebrex 16668 which selectively inhibits the enzyme 

cyclooxygenase-2 (COX-2) that is responsible for pain and inflammation and is used as a 

treatment for arthritis. Similarly Deracoxib 16769 has been shown to display moderate COX-2 

inhibition and is a treatment for inflammation and pain in dogs. Another important drug that 

contains the pyrazole core is Sildenafil 16870 a very well known vasodilator, better known as 

Viagra. It acts by inhibiting Cgmp-specific phosphodiesterase type 5, an enzyme found in 

various tissues (Figure 7).

HoN"

CF-

H,

CF-

Celebrex
166

Deracoxib
167

NH o2
Sv.

Sildenafil
168

Figure 7: Important pyrazoles Celebrex 166, Deracoxib 167 and Sildenafil 168.

50



There are a number of established methods used to synthesise pyrazoles, many of which 

involve the use of commercially available hydrazines. The disadvantage with a number of these 

methods is a lack of regioselectivity.

3.2 Literature methods to make pyrazoles

3.2.1 Synthesis of pyrazoles from hydrazines.

One of the more common methods to make pyrazoles is by Michael addition of hydrazines 169 

to a,p-unsaturated carbonyls 170,7172 followed by attack of the second nitrogen onto the 

carbonyl forming the ring which tautomerizes. This is followed by oxidation of the 

dihydropyrazoles 171a and 171b to yield the pyrazoles 172a and 172b (Scheme 57).

* r2^ h  —  RY> + 27 5
R2 R2

169 170 171a 171b

R1
 .  r ' n - n * N 'N

172a 172b

Scheme 57: Synthesis o f pyrazoles from a, fi-unsaturated carbonyls and hydrazines.

There is usually a lack of regioselectivity with unsymmetrical hydrazines resulting in a mixture 

of regioisomers which can be difficult to separate. This chemistry is therefore often limited to 

symmetrical reagents.

3.2.2 By reaction between Huisgen zwitterions and electron-deficient alkenes.

Nair and co-workers showed that pyrazoles could be synthesised from Huisgen zwitterions 175 

and allenic esters 176 (Scheme 58). The reaction involved the initial formation of a Huisgen 

zwitterion 175 from azodicarboxylates 173 and triphenylphosphine 174. It was shown that 

pyrazolines 177 could be obtained from the addition of the zwitterion 175 to the electron- 

deficient double bond of the terminal allenic ester 176 to give a tetrahedral intermediate that 

then eliminates triphenylphosphine oxide via a mechanism reminiscent of that which occurs in
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the last step in a Wittig olefination to give the pyrazolines 177 in moderate to good yields (33-

74%).73

ro2ctnV c02R + PPh3

173 174

p ^ - Ni 0R
VO

__  X 0 2R
r o 2c  n  2

2 ©

175

ll C 0 2Et
R02C"Nx y ^ x Rl

©

r
C 0 2Et

176

II C 0 2Et
ro2c ^ ^ ^ X - \ r1

fe P o R
Ph3P £ 0

I) C 0 2Et 
R02C^m̂ \

n - x >r

177

Scheme 58: Nair and co-workers synthesis o f pyrazolines 177 from terminal allenes.

Exchanging the terminal allenic ester 176 for a terminally substituted allenic ester 178 results in 

formation of a pyrazole 179 in moderate to good yields (35-72%). It is believed that the 

pyrazole is formed by a slightly different mechanism (Scheme 59).

Ro2crNV c°2R + PPh3

173 174

Q

r o 2c ^ n X /

Ph3? ^ ° Et
o

OEt

©
PPh3

__ X 0 2Rr o 2c  N 2
2 ©

175

Ox
^ O E t

178

PPh
OEt

N-PPh.
si'
C02R

EtO'

OEt

RO2C

1 CO2R

ROX 9Et
H

N

C02R

r o 2c
OEt

1 C02R

179

Scheme 59: Nair’s synthesis o f pyrazoles 179 from disubstituted allenes.
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Similarly Lui and co-workers showed that a reaction between an a,P-unsaturated acyl cyanide 

180 and Huisgen zwitterions 181 could give 2,5-dihydropyrazoles (Scheme 60), however there 

was only one example of a 2,5-dihydropyrazole 182 with a moderate yield of 50%.74

CN

O

(EtO)3PN C 0 2/Pr

N - /
P r/02C u

Toluene, 90 °C, 
1 h

Pr/° 2CxN-N
C 0 2/Pr

180 181 182

Scheme 60: Lui and coworkers synthesis o f a 2,5-dihydropyrazole 182.

3.2.3 Palladium-catalysed synthesis

Mori and co-workers reported a regioselective pyrazole synthesis by the four component 

coupling of mono-substituted hydrazines 169, terminal alkynes, aryl iodides 183 and carbon 

monoxide (Scheme 61). The reaction is catalysed by 1-5 mol% palladium as [(P dC ^P P l^] in 

the presence of copper iodide (2 mol%). The reaction proceeds by the palladium-catalysed 

coupling of the alkyne, aryl iodide 183 and carbon monoxide to form the propargylic ketone. 

The ketone then reacts with the hydrazine 169 and cyclises to form the pyrazole 184. The yields 

for the reaction are moderate to excellent (59-93%).75 This route is limited because the reaction 

only seems to work with aryl iodides.

H
R1' N 'N H , Arl

1-5 mol % PdCI2(PPh3)2, 
2 mol % Cul, 1atm CO, N • N

Ar
THF:H20  (1:1), RT. R2 

169 183 R2- =  184

Scheme 61: Mori and co-workers four component coupling for pyrazole synthesis.

3.2.4 Silver(I)-cataIysed pyrazole synthesis.

With the successful cyclisations of pyrroles using catalytic (0.1 equiv) 10% AgN0 3 .Si0 2 ,

Knight and Song assessed its potential application to pyrazole synthesis, starting from the

condensation between commercially available aldehydes 185 and amines 186 to give imines

187 in excellent yields (Scheme 62).lc The next step involved the addition of lithio-acetylides to

the imines in the presence of the Lewis acid BF3.0Et2 to form propargyl amines 188 with yields

in the range 65-75%. This was then followed by iV-amination using oxaziridine 189 to give the
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propargyl hydrazine 190. The Boc-group of the propargyl hydrazine was then removed using 

formic acid to give the free hydrazine 192. The free hydrazines 192 were not isolated due to 

their relative instability but were instead carried through to cyclisation using 10% AgN0 3 .Si0 2 . 

The cyclisation resulted in variable mixtures of 4,5-dihydropyrazole 193 and pyrazole 194 in 

reasonable yields over the two steps.10 The pyrazoles 194 appeared to be formed by an, as yet, 

obscure oxidation process.

p 2  r-i3 —  p 2
O N NH

v K  * R2' NH* -------------   R '^HR1 H '  F T 'H  BF3.OEt2 R

185 186 187 188

^ -N B o c  R2"N-NHBoc 10%AgNO3.SiO2 r 2 Boc 
°  I DCM k 'm -N

R3

R1
"  R3 R1

N' v

189 190 191

hco2h

R l N-NH, 10%AgNO3.SiO2
DCM

R3

R' r N R^ n .N

r1I > r3 + r , ^ r3

192 193 194

where R1 = Ph, R2 = Pr, R3 = Bu: 48% 193 and 9% 194 
where R1 = Ph, R2 = Pr, R3 = Ph: 0% 193 and 10
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3.3 Pyrazoles: Results and Discussion

3.3.1 Origins of the current work.

Knight and Song also found that 4,5-dihydropyrazoles 199 could be accessed by use of the 

Mitsunobu reaction.10 They found that jV-alkyloxycarbonylaminophthalimides made good 

substrates for alkylation using primary and secondary alcohols as previously shown by 

Jamart-Gregoire and co-workers.76 For example, Song showed that coupling of 

benzyloxycarbonylaminophthalimide 195 with propargylic alcohol 196 provided propargylic 

phthalimide 197 in a good yield (73%). This was followed by deprotection to give the free 

hydrazine 198 (68%) and successful cyclisation using 0.1 equivalents of 10% AgNCb.SiC^ to 

give the 4,5-dihydropyrazole 199 cleanly in a moderate yield (57%) after 1 h (Scheme 63).10

OH

Bu

DIAD

PPh,

195

NH2NHj

EtOH

196

Ph

Bu

197

Ph O

O
A N NH' Ag+

Bu

198 199

Scheme 63: Song’s synthesis o f a 4,5-dihydropyrazole 199.

As Song did only this one example we decided to expand this methodology towards a number 

of examples and to determine whether there were any limitations with the chemistry.
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3.3.2 Synthesis of 4,5-dihydropyrazoles via Mitsunobu coupling of phthalimides and 

alcohols.

O Phthalic 0  ° V ^ \  A
R A  Nh2 anhydride’DCC>

O N Et3N, AcOH 0  N \\H

200a-c

a where R3 = Benzyl, 
b where R3 = Me, 
c where R3 = tBu

201 a-c

a (*195) where R3 = Benzyl (85%) 
b where R3 = Me (90%) 
c where R3 = tBu (99%)

Scheme 64: Synthesis o f phthalimides.

The first step involved the phthalimide protection of a carbazate 200 using phthalic anhydride 

to give a trisubstituted hydrazine 201. This resulted in isolation of clean phthalimides after 

recrystalisation with yields ranging between 85-97% (Scheme 64). The next step was the 

synthesis of propargylic alcohols 202 from the addition of lithioacetylides to aldehydes 185 to 

give the propargylic alcohols 202 cleanly (Scheme 65) and in high yields (>90%).

OH

R1'

O nBuLi

= - R 2

185a-b

a where R1 = /Bu 
b where R1 = /Pr

202a-c

a where R1 = /Bu, R2 = Bu (93%) 
b (= 196) where R1 = /Pr, R2 = Bu (93%) 
c where R1 = /Pr, R2 = Ph (96%)

Scheme 65: Synthesis o f propargylic alcohols.

This was followed by the key Mitsunobu coupling of a propargylic alcohol 202 and a 

phthalimide 201 to introduce the hydrazine functionality to give propargylic hydrazines 203 

after chromatography with good yields ranging between 69-78% (Scheme 66).

202

+

201

DIAD

PPh?

203a-c

a where R1 = /Bu, R2 = Bu, R3 = Me (69%) 
b where R1 = /Pr, R2 = Bu, R3 = fButyl (78%) 
c w here R1 = /Pr, R2 = Ph, R3 = Benzyl (76%)

Scheme 66: Mitsunobu Synthesis o f propargylic hydrazines 203.
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One significant limitation with this step were that attempted Mitsunobu coupling of the 

phthalimides 201b with propargylic alcohol 204 with aromatic substituents in the P-position 

resulted in no product 205 being isolated and in complete recovery of starting material 201b 

(Scheme 67).

OH

P h '  " V

204

Bu

DIAD

P P h,

201b

Scheme 67: Failed Mitsunobu reaction

Ph
Bu

205

The next step was the phthalimide deprotection by refluxing the hydrazines 203 with hydrazine 

hydrate in ethanol to give the free hydrazines 206 in around 1.5 h (Scheme 68). Yields for this 

step ranged between 72-94%. The free hydrazines 206 were not purified but were used crude in 

the next step as they still contained small amounts of phthalimide residues and chromatography 

resulted in decomposition.

Hydrazine

203a-c

EtOH, reflux

206

a w here R1 = /Bu, R2 = Bu, R3 = Me (86%) 
b where R1 = /Pr, R2 = Bu, R3 = ffiutyl (72%) 
c  where R1 = /Pr, R2 = Ph, R3 = Benzyl (94%)

Scheme 68: Phthalimide deprotection using hydrazine hydrate.

The key final step in the reaction involved the 5-endo-d\g cyclisation of the free hydrazines 206 

using catalytic (0.1 equivalents) 10% AgN0 3 .Si02  which gave the 4,5-dihydropyrazoles 207 in 

high yields (83-96%).
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Table 5: Silver (I)-catalysed synthesis o f  4,5-dihydropyrazoles.

rv V nh=
R1'

R2

O
10% R l  

AgN03.S i02 0  j^ Jy -R 2
DCM

N

206 207

Hydrazine

206
R1 R2 R3

4,5-

Dihydropyrazole

207

Yield (%)

206a /Bu Bu Me 207a 96

206b /Pr Bu /Butyl 207b 83

206c /Pr Ph Benzyl 207c 94

As can be seen, a small variety of 4,5-dihydropyrazoles 207a-c were synthesised successfully 

and regioselectively allowing for the inclusion of alkyl groups in both positions three and five 

and for aromatic groups in position three. For all three examples above there was no oxidation 

to the pyrazole observed with only 4,5-dihydropyrazoles isolated. This is in stark contrast to 

Song’s synthesis of pyrazoles from imines in which he obtained a mixture of pyrazole and 

dihydropyrazole (c f  Section 3.2.4, Pg 51). The method has also allowed for benzyl, methyl and 

tert-butyl carbamates to be incorporated into the ring. Exposure of 207a to three equivalents of 

DDQ in toluene77 at reflux for 18 h resulted in oxidation of the 4,5-dihydropyrazole to pyrazole 

208 in 71% yield (Scheme 69). This indicated that the 4,5-dihydropyrazoles could be easily 

oxidised to the pyrazoles.

O

DDQ (3.0 equiv)

Toluene, Reflux

Bu

(71%)
207a 208

Scheme 69: Oxidation of207a using DDQ.

3.3.3 Limitations.

One particular issue associated with this chemistry was that aryl groups could not be introduced 

in the 5-position. Under the current conditions this resulted in complete recovery of starting 

phthalimide 201b during the Mitsunobu step. Another issue with this methodology is that of
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atom economy: The introduction of a large group such as phthalimide that has to be removed is 

very atom uneconomical, as is the use of excess reagents such as triphenylphosphine and DIAD 

during the Mitsunobu alkylation.

3.3.4 A change in hydrazine: hopes for a regioselective Mitsunobu.

Due to the issue associated with using phthalimide as a protecting group, it was decided that 

during my industrial placement at Glaxo-Smith-Kline in Stevenage, the phthalimide group 

would be abandoned and that a group that would not require removal such as tosyl would be 

incorporated. The new route would involve tosylation of tert-butyl carbazate 200c. It was found 

that mono-tosylation could be achieved at -78 °C with 1.01 equivalents of pyridine and only 

one equivalent of /?-toluenesulfonyl chloride to give clean tosylate 209 after recrystalisation 

typically in 75% yield (Scheme 70).

BocHN-NH2 -----------► BocHN-NHTs

200c 209

Scheme 70: Tosylation o f tert-butyl carbazate.

A range of propargylic alcohols were then prepared with propargylic alcohol 210 (where R1 =
2 • • • • •/Bu, R = Ph) prepared by the lithioacetylide addition of phenylacetylene to isovaleraldehyde

(cf Table 8, pg. 58 for structure). The remaining propargylic alcohols 213a, 213b, and 213c 

were prepared by Sonogashira coupling of 3-butyn-2-ol 212 with aryl halides 211 (Table 6).
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Table 6: Synthesis o f propargylic alcohols 213 by Sonogashira.

on  Pd j "

Ar

Ar-X +

211 212 213

Ar-X Alcohol 213 Yield (%)

CV'
211a

OH

213a

70

O '"N

OH

V . N 66
211b

213b

O r"N

211c

OH

213c

78

This was then followed by Mitsunobu alkylation using the tosylate 209 and the propargylic 

alcohols. It was believed that the p£a difference between the NHTs and NHBoc groups of the 

hydrazine 209 would be different enough that the Mitsunobu reaction would proceed 

regioselectively at the more acidic JV-tosyl nitrogen, to give a single product selectively. 

Although exact comparisons of NHTs and NHBoc for hydrazine 209 could not be made, a look 

at the Bordwell pAfa table61 allows for an interesting comparison between sulfonyl hydrazines 

and acyl hydrazines (Table 7).

Table 7: Bordwell pKa values o f some common hydrazines.

No Substrate pKa in DMSO

214 PhS02NHNH2 17.1

215 Et02CNHNH2 22.2

216 AcNHNH2 21.8

217 AcNHNHAc 16.7

218 PhS02NH2 16.1

The pKa values quoted are of the hydrogens in bold.
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A direct comparison of the values for hydrazines 214, 215 and 216 highlights that sulfonamide 

groups as predicted are more acidic than those of TV-acetyl and A-CC^Et. The sulfonamide 214 

is 4.7 pÂ a units more acidic than iV-acetyl 216 and 5.1 pATa units more acidic than 

ethylcarbazate 215. Another interesting result is that the 6/s-acetyl hydrazine 217 has a pÂ a 

comparable to that of the sulfonamide. Having another electron withdrawing group such as that 

found in substrate 217 increases the overall acidity as expected. However, it was believed that 

the relative acidities when comparing a sulfonamide to an acyl or a carbamate group should not 

change. Another interesting point is that upon comparing the sulfonamide of a hydrazine 214 

with that of an amine 218 it seems that the differences between the pATa of the mono-substituted 

hydrazines and mono-substituted carbamates is small.

These results are of course for solutions in dimethylsulfoxide and although results may change 

in tetrahydrofuran, they should remain qualitatively the same. With these results in mind it is 

believed that the Mitsunobu alkylation should occur preferentially on the more acidic NHTs as 

opposed to the NHBoc of the hydrazine 209.

Table 8: Mitsunobu alkylation o f hydrazine 209 with propargylic alcohols.

OH
PPh3 (1.5 equiv)
DIAD (1.5 equiv) TsN-NHBoc BocN-NHTs

R1‘ \  209 (1.5 equiv)
r 2 THF, RT, 24 h 

202, 210, 213

R2

a n d /o r

219

R2

Alcohol R1 R2 Hydrazine

219

Yield (%)

202a /Bu Bu 219a 91

210 /Bu Ph 219b 59

213a Me 219c 44

213b Me

D vN

219d 44

213c Me

c TN

219e 12
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Although the yields of some of the Mitsunobu alkylations (Table 8) were low only a single 

product was isolated with the remaining material recovered being starting materials. The 

question was which nitrogen was alkylated: the A-tosyl or the A-Boc group? It was believed as 

previously mentioned that alkylation should occur at the more acidic nitrogen, this being the 

A-tosyl nitrogen. Unfortunately this could not be determined by ID or 2D NMR, but could be 

determined by X-ray crystallography. Fortuitously, both products 219a and 219b were 

recrystallised to give ideal crystals for X-ray analysis. It was found that alkylation for hydrazine 

219a occurred on the A-tosyl only as predicted as can be seen in the X-ray crystal structure in 

Figure 8 and has an R-value of 0.0467 (c f  Appendix for X-ray crystal data, data can also be 

found in the Cambridge structure database78 CCDC No:783430).

Equally the X-ray crystal structure of hydrazine 219b in Figure 9 (c f Appendix for X-ray 

crystal data, CCDC No78: 783431, R-value = 0.0537) showed that Mitsunobu alkylation also 

occurred on only the A-tosyl group as predicted, thus confirming the regioselectivity of the 

alkylation.

TsN-NHBoc

Figure 8: X-ray crystal structure o f hydrazine 219a.
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Figure 9: X-ray crystal structure o f  hydrazine 219b.

The next step in the sequence was to be the central silver(I)-catalysed cyclisation of substrates 

219. Exposure of 219a to 0.1 equivalents of 10% AgN0 3 .Si02  over 48 h resulted in no pyrazole 

being formed and only recovered starting material 219a. This was very disappointing and 

similarly substrates 219b-219e would not undergo cyclisation. Exposure of substrate 219a with 

1, 2 and even 3 equivalents of silver(I) resulted in only starting hydrazine 219a recovery. 

Equally, attempted cyclisation of hydrazine 219a using 0.1 and 1 equivalents o f silver(I) 

trifluoromethanesulfonate over 24 h resulted in no desired product being detectable but mainly 

hydrazine 219a (Scheme 71) together with a small amount of indistinguishable products. 

Attempted iodocyclisation of hydrazine 219a resulted in only starting material being isolated.

TsN-NHBoc Boc
I  _____X .  TsN \ 2

R,^ V  1T ^ “ r2
R2 R1

219 220

Scheme 71: Unsuccessful cyclisation o f hydrazines 219.

These results were disappointing but a possible explaination for this was that the hydrazines 

219 were too sterically hindered for the silver(I) to access the acetylene moiety. It was also 

possible that the cyclised product would be thermodynamically unfavourable due to steric
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impact. A possible solution to the problem of sterics was the removal of the Boc-group; this 

was achieved using 20% trifluoroacetic acid in dichloromethane. Boc removal of substrate 219a 

gave free hydrazine 219f successfully. Attempted cyclisation using 0.1 equivalents of 10% 

AgN0 3 .SiC>2 resulted in initial formation of the desired 4,5-dihydropyrazole 220 as indicated by 

the appearance of a multiplet at 3.62-3.58 ppm that was due to the C-5 hydrogen, however, the 

product was unstable resulting in degradation and the formation of indistinguishable products. 

Attempted Boc removal of substrates 219b-219e resulted in degradation with possible 

detosylation as one of the possible reactions. These substrates were therefore not suitable as 

precursors to pyrazoles as they were shown to not cyclise with the Boc group attached and were 

shown to be perhaps surprisingly unstable upon Boc removal. It was therefore decided that this 

route was to be abandoned.

It was then decided that a sterically less demanding group than Boc could allow for cyclisation. 

It was then decided that acyl was to be used, starting from the commercially available acetyl 

hydrazide 221 (Scheme 72). Using the same methodology mono-tosylation of acetic hydrazide 

221 gave the tosylate 222 successfully (98% yield).

O

H

221

pTsCI (1 equiv) 
Pyr (1.01 equiv)

DCM, -78 °C to RT

H Ox

O
oH

(98%)
222

PPh3 (1.5 equiv) 
PI AD (1.5 equiv)

222 (1.5 equiv) 
THF, RT, 24 h

TsN-NHAc AcN-NHTs
and/or

202a (where R1 = Bu) 223a (where R1 = Bu) (77%)
210 (where R1 = Ph) 223b (where R1 = Ph) (57%)

Scheme 72\ Mitsunobu alkylation using tosylate 222.

Similarly to the Mitsunobu alkylation using hydrazine 222, only a single product was isolated 

when R1 = butyl (77%) 223a and R1 = phenyl (57%) 223b. Crystallisation followed by X-ray 

analysis of 223a (cf. Appendix for X-ray crystal data, CCDC No78: 783434, R-value = 0.0586) 

showed the single product was that of Mitsunobu alkylation on the A-tosyl nitrogen (Figure 10), 

indicating that these alkylations showed identical regioselectivity to the previous examples 

219a and 219b.
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TsN-NHAc

Figure 10: X-ray crystal structure o f hydrazine 223a.

Exposure of substrate 223a to 3 equivalents o f 10% AgN0 3 .Si02  over 18 h and exposure of  

substrate 223b to 2 equivalents of silver(I) over 18 h gave 2,5-dihydropyrazoles 224a (R1 = Bu, 

50% yield) and 224b (R1 = Ph, 40% yield) cleanly after column chromatography with the 

remaining material recovered being starting material (Scheme 73). This was in stark contrast to 

substrates 219a-219f which would not undergo 5-endo-<3\g cyclisation upon exposure to 

silver(I).

TsN-NHAc 10% AgN03.Si02 (2-3 equiv)
DCM, RT, 18 h

TsN-N

223a (R1=Bu) 224a (R1=Bu) (50%)
223b (R1=Ph) 224b (R1=Ph) (40%)

Scheme 73: Cyclisation o f substrates 223a and 223b.

As a comparison with hydrazines 223a and 223b, hydrazine 206a was acylated using acetyl 

chloride and triethylamine at -78 °C to give the acylated hydrazine 225 in a good yield (63%) 

after column chromatography (Scheme 74). As with all the carbamate protected propargylic 

hydrazines, the hydrazine 225 was rotomeric with three separate rotomers out of the four 

rotomers separating out. This could be seen by the three NH peaks at 7.11 ppm (2 rotomers by 

integration), 7.00 ppm (one rotomer) and 6.89 ppm (one rotomer), aswell as three methoxy
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peaks at 3.82 ppm (one rotomer), 3.79 ppm (one rotomer) and 3.76 (two rotomers by 

integration) being detectable by 'H-NMR analysis (Figure 11) at 300 kelvin in deuterated 

chloroform. Heating the sample to 367 Kelvin in DMSO showed that the rotomers had 

converged and only a single compound was detectable, with the NH peak at 9.43 ppm and a 

broad methoxy peak at 3.63 ppm. Exposure of the hydrazine 225 to 0.2 equivalents of 10% 

AgN03.Si02 resulted in clean 2,5-dihydropyrazole 226 after 18 h as detected by the appearance 

of an apparent singlet at 5.05 ppm for the vinylic proton and a multiplet around 4.64-4.58 ppm 

for the 5-H proton.

Et3N (1.05 equiv) M e02CN-NHAc 10% AgN03.Si02 
AcCI (1.01 equiv) (0.2 equiv)

On n - r  I

M e02CN-NH2

DCM,-78 °C to RT, I ^ Bu DCM, RT, 18 h
24 h

206a 225 (63%) 226 (39%)

Scheme 74: Acylation and catalytic cyclisation of206a.

Column chromatography resulted in isolation of the dihydropyrazole 226 in 39% yield with the 

remainder being recovered starting material 225.
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Hydrazine 225 at 300 K (in chloroform):

225

10.8 10.0 0.8 0.0 0.0

Li

ISttS
Hydrazine 225 at 367 K (in DMSO):
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X
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Figure 11: H-NMR comparison o f starting hydrazine 225 at 300 k and 367 k and o f

dihydropyrazole 226 at 300 k.
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3.4 Conclusions.

The Mitsunobu alkylations with Boc hydrazine 209 and acetyl hydrazine 222 were shown to be 

regioselective resulting in alkylation of the more acidic nitrogen (jV-tosyl) as confirmed by 

X-ray crystallography of 219a, 219b and 223a. Although the iV-tosyl nitrogen of the hydrazine 

is the more acidic it is not the most nucleophilic with the carbonyl end being the most 

nucleophilic. These successful alkylations suggest that pXa is important for these reactions and 

therefore breaking of the “N-H” bond is key. The regioselective Mitsunobu reaction for many 

of the substrates gave variable yields (12-91%). A partial explaination for some of the poor 

yields could be due to the pXa of the Mi-tosyl not being acidic enough, with reports by 

Ragnarsson79 suggesting that an ideal pXa for a good Mitsunobu reagent was <13.5 units and 

perhaps the pXa of the hydrazines 209 and 222 were somewhat above this (although this of 

course could not be confirmed).

These reactions were unoptimised but what could be seen was that in general tosylates 219a- 

219f are not good substrates for pyrazole synthesis. When there were two large groups (tosyl 

and Boc), no cyclised product was observed. When the Boc group was replaced with a smaller 

acetyl group, the cyclised product was observed in moderate yield (50% for 224a and 40% for 

224b using an excess of silver(I)). When the tosyl group was subsequently replaced with the 

smaller moc group, the yield was 39% with catalytic silver. These results suggest that steric 

hindrance was the primary factor in determining which pyrazole cyclisations would be 

successful.
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Chapter Four

Pyrroles
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4.1 Introduction

Pyrroles are an important class of compounds in the context of this thesis and in Nature, 

forming the components of large macrocycles known as porphyrins such as those found in 

chlorophyll which is made in plants from succinyl-CoA and glycine.80a This light harvesting 

porphyrin provides the basis for the majority of life on Earth and gives the Earth its luscious 

green colour. Another important porphyrin is heme which is made from the trisubstituted 

pyrrole Porphobilinogen 227 (Figure 12) by a series of enzymatic processes, and is responsible 

for all mammalian life on earth by its efficient transfer of oxygen to tissue for the conversion of 

sugars such as glucose to energy by total oxidation.806 Due to the highly conjugated nature of 

porphyrins they have intense absorptions in the visible region and hence are intensly coloured, 

Examples include heme B 228 which is deep red in colour. Due to their importance and 

prevalence in nature porphyrins are also important to the synthetic chemist. Pyrrole also forms 

the core of many important biologically active pharmacophores.

HO

HO

O

227 Porphobilinogen
H 02C

HN
OH OH OH

228 Heme B

0H

N O
\

229 Atorvastatin 230 A/-Methyl- 
pyrrole 2-carboxylic acid

Figure 12: Some important pyrroles.

A number of important pyrroles include the current number one selling drug Atorvastatin 

commercially known as Lipitor 229,80c a statin used to lower cholesterol by acting as a 

competitive inhibitor of the enzyme HMG-CoA in man. Another important pyrrole is A-methyl 

pyrrole carboxylic acid 230 which is an important building block in the pharmaceutical industry 

along with many others.
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Pyrrole itself is a clear colourless oil with any colour being attributed to impurities such as 

polypyrroles, and is produced industrially by the reaction of furan with ammonia in the 

presence of solid phase acid catalysts.80d Another synthetic route to pyrrole involves the thermal 

decarboxylation of ammonium mucate 231 (Scheme 75) to give pyrrole 232. 

kilj OH OH O

® 4 0 0  4  Heat «» ( T ^  + 2 C 0 2 + 4H20  + NH3

O OH OH H

231 232

Scheme 75: Synthesis ofpyrrole from the decarboxylation o f ammonium mucate 231.

When considering the synthesis of pyrroles it can be seen that there are various possibilities to 

build the skeleton, although there are mainly four types that are commonly used (Figure 13).

H

r T V
iAAA/ /

H
&

H
0  f  N
* H

233 234 235 236

Figure 13: Possible double disconnections for the synthesis ofpyrroles.

4.2 Literature methods

4.2.1 Some classical methods

A few classical methods for the synthesis of pyrroles are available: these include the 

Hantzsch,81 Knorr82 and the Paal-Knorr83 pyrrole syntheses (Scheme 76). All of these reactions 

involve the condensation of an amine with a ketone to form an imine that then tautomerises to 

the corresponding enamine. This is usually then followed by cyclisation and finally dehydration 

to the pyrrole. In the case of the Hantzsch synthesis, the disconnection 235 (Figure 13) involves 

P-keto esters 237, ammonia or amines and a-halo ketones 238 as reactants to give pyrroles 239 

and 240. The Knorr pyrrole synthesis uses the same disconnection but involves the reaction 

between an a-amino ketone 241 and a ketone 242 to give pyrroles 243 and 244. The Paal-Knorr 

method uses a different disconnection approach 233 and involves the condensation of a 1,4- 

dicarbonyl 245 with ammonia or a primary amine to give pyrroles 246. All these methods have 

their limitations. One common issue with these “textbook” methods is a requirement for an 

ester or similar electron-withdrawing group around the ring. In the case of the Knorr pyrrole 

synthesis, this helps reduce the self condensation of a-amino ketones. Another issue is the
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difficulty in preparation of the starting materials and this can often be a limitation to the 

chemistry.

0  0  9  rO ^ - 9  9 A _ ^ r4p-v r,K .r.ri
R4 R N R K N K

H H

237 238 239 240

R1̂ n ^ R 3 R1̂ n ^ R 3
H H

241 242 243 244

R1 NH2 O R3 r  N k k N
H H

O
R

nh2r [ f p

R
o  R

245 246

Scheme 76: Hantzsch, Knorr and Paal-Knorr pyrrole synthesis.

Due to the limitations of these methods, additional routes to pyrroles are of great importance 

There are a number of less well known methods to synthesise pyrroles that provide a broader 

applicability and which have been used to synthesise a number of important synthetic targets 

that in many cases would be inaccessible by these classical methods.

4.2.2 Iodocyclisation

Knight’s successful iodocyclisation of furan precursors84 led to an interest in the possible 

cyclisation of 2-alkynyl-2-hydroxy-1-sulfonamides 247 to give pyrroles (Scheme 77). The 

reactions proceeded successfully to give 3-iodopyrroles 248 regioselectively and in high yields 

(65-85%).85 The downside of this chemistry was the requirement for a large amounts of iodine 

(3 equivalents), making the reaction atom inefficient.

R2. O H ^  h (3 equiv),
R s K  K2C03 (3 equiv) r2

Me02(T 'NHTs DCM

247 248

Scheme 77: Iodocyclisation o f 3-alkyne-2-hydroxy-l-sulfonamides.
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The benefit of this chemistry is that iodine is cheap and a range of chemistry can be carried out 

at iodine, for example, palladium-catalysed cross coupling reactions could be carried out 

between the 3-iodopyrrole and a vinyl or aryl group to give fully substituted pyrrole derivatives.

4.2.3 Metal-catalysed pyrrole synthesis

Gevorgyan and coworkers86 reported the synthesis of pyrroles 252 by heating a mixture of 

propargyl imine 249 and catalytic copper(I) iodide in A(7V-dimethylacetamide (Scheme 78). The 

key step in the reaction is believed to be the 1,2-migration of SR4 from the sp2 centre in the 

allenyl intermediate 250 to give the intermediate 251. The nucleophilic nitrogen then attacks the 

episulfenium ion 251 and subsequently forms the pyrrole 252.

249 250 251

252

Scheme 78: Gevorgyan’s copper(I) iodide catalysed synthesis ofpyrroles from alkynyl imines.

Similarly, Gevorgyan and co-workers87 showed the successful cyclisation of acetylenic imines 

253 using 30 mol% copper iodide in a mixture of triethylamine and dimethylacetamide at 

110 °C to give pyrroles 254 with yields ranging between 50-93% (Scheme 79).

R

r 2 30 mol% Cut,
r3  Et3N/DMA,

1 N' -110°C

253
R3

254

Scheme 79: Synthesis o f pyrroles 254from propargylic imines 253.

It was revealed by mechanistic studies that the reaction proceeded via isomerisation of the

propargyl imine to give the corresponding allenyl imine. This was followed by nucleophilic
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attack of the imine nitrogen onto the electron deficient carbon of the allene, isomerisation and

protonation or possible [l,5]-hydride shift along with regeneration of the copper catalyst. This 

method has been used in the highly diastereoselective synthesis of (+/-)-tetraponerine T6 256

Scheme 80: Application o f Gevorgyan’s pyrrole synthesis towards (+/-)-tetraponerine T6.

reaction between halo-enynes 257 and /-butyl carbamate 258 by substitution in the presence of 

5 mol% copper(I) iodide, N,N’-dimethylethylenediamine and cesium carbonate (Scheme 81). 

The reaction gave pyrroles with yields in the range 52-92%. A limitation of the reaction is that 

terminal alkynes would not react to give a-unsubstituted pyrroles.

copper(II) chloride and dimethylacetamide to give, in particular, C-3 substituted pyrroles 261 

(Scheme 82) in good to excellent yields (63-91%). Another interesting observation was that for 

C-3 unsubstituted pyrroles, copper(II) chloride was not the best choice, but replacement with 

palladium(II) chloride and in the presence of potassium iodide gave C-3 unsubstituted pyrroles 

in good yields.

from diyne 25588 using copper(I) bromide instead of copper(I) iodide as catalyst (Scheme 80).

255 256

Buchwald and coworkers89 reported the synthesis of 2,4,5-trisubstituted pyrroles 259 from the

5 mol% Cul, 20 % N,N'- 
dimethylethlenediamine,

Ri NHBoc
BocNH-

257 258 259

Scheme 81: Buchwald’s synthesis o f substituted pyrroles using copper (I) iodide.

Gabriele and co-workers90 reported the cyclisation of (Z)-(2-en-4-ynyl)amines 260 using

R2 R1 

260 261

Scheme 82: Gabriele and coworkers synthesis o f C-3 substituted pyrroles.
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Gold has also proven to be a good catalyst for the synthesis of pyrroles. An example of this can 

be seen in the successful cyclisation of 2 -propyny 1- 1,3-dicarbonyl 262 compounds with primary 

amines 263 using a gold(III) catalyst (Scheme 83).91 The reaction involves the initial formation 

of an imine followed by tautomerisation to give the enamine 264. This was then followed by a 

gold(III)-catalysed 5-exo-dig cyclisation to give 3-carbonylpyrroles 265. The yields of the 

reaction were moderate to excellent (49-100%).

O O 
R ^ R  + R’NHj

NaAuCI4.2H20 ,
EtOH.

R

O

N
R1

262 263 264 265

Scheme 83: Synthesis o f pyrroles from amines and 2-propynyl-1,3-dicarbonyls.

The limitation of this chemistry is the issue of regioselectivity with the reaction often requiring 

symmetrical 1,3-dicarbonyls. The reaction was also only carried out with terminal alkynes 

resulting in a methyl in the 5 position of the pyrrole product 265.

Similarly Toste and co-workers92 used both gold(I) and silver(I) to catalyse the intramolecular 

acetylenic Schmidt-type reaction (Scheme 84) of homopropargyl azides 266 under mild 

conditions to give pyrroles 267 in moderate to excellent yields (41-93%).

R2

R1

3 2.5% (dppm)Au2CI2,
5% AgSbFg, DCM, 

35 °C
R2,

-R3

N3 n
266 267

Scheme 84: Synthesis ofpyrroles from homopropargyl azides.

Gold(III) has also been used to synthesise TV-fused pyrrole derivatives 269 from pyridine-2- 

propargylic silyl-ethers 268 (Scheme 85).93 The reaction involves the cascade isomerisation of 

the propargylic derivative resulting in a vinyl carbene complex, with 1,2-migration of the “Y” 

group followed by nucleophilic attack of the pyridine nitrogen onto the allene and subsequent 

1,2-hydride shifts to give the C-2 substituted fused pyrroles 269 in good to excellent yields (63- 

92%). The poorest result was found when Y = trimethylsilyl and the best result was seen when 

Y = GeMe3.
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268
OTBS 

Y

269

Scheme 85: Gold(lI)-catalysed synthesis o f N-bridgeheadpyrroles.

Similarly, Dovey and coworkers94 reported the synthesis of 7V-bridgehead pyrroles 271 of the 

type shown (Scheme 8 6 ) via the silver(I)-catalysed intramolecular hydroamination of amino 

alkynes 270 using microwave irradiation.

( r f t
20% AgN03, 
MeCN, MW.

N C 0 2Et 
H

270

C 0 2Et

271

Scheme 86: Synthesis o f pyrrolizines by Dovey and coworkers.

The reaction involves a 5-exo-dig cyclisation and proceeds via an intermediate that undergoes 

tautomerisation to give the pyrrolizine. Yields for the reaction are good resulting in pyrrolizines 

with yields in the range of 71-75%. There are a few other methods to synthesise W-bridgehead 

pyrroles, these include: using a mixture of gold(III) chloride and silver trifluoromethansulfonate 

to facilitate cyclisation of P-alkynyl ketones and amines95 and [l,3]-dipolar cycloadditions 

between an azomethine ylide and a dipolarophile.96

Kirsch and coworkers97 have carried out the one-pot synthesis of pyrroles from propargyl vinyl 

ethers 272 and aromatic amines using a mixture of silver(I) and gold(I). The reaction is 

effectively a silver(I)-catalysed Claisen rearrangement 273 followed by amine condensation

274 and finally gold(I)-catalysed 5-exo-dig heterocyclisation to give the pyrrole-3-carboxylate

275 (Scheme 87).
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. 1. 5% AgSbF6
?  9  2 . r 4nh2

C T ^ ^ O E t  3. 5% (PPh3)4AuCI

R3
R2

272

Et02C

273

R2

274

R1 ^ N  R3 
R4

275

Scheme 87: Kirsch and co-workers synthesis o f pyrroles from propargyl vinyl ethers.

Palladium has also found uses for the catalytic synthesis of pyrroles 278. An example is the 

reaction between methyleneaziridines 276 and o, p  or m-acetylpyridines 277 (Scheme 88).98

O

N

30% Pd(PPh3)4, 
120 °C

N

278276 277

Scheme 88: Palladium catalysed synthesis o f 4-methyl pyrrole-2-pyridines.

The mechanism (Scheme 89) is believed to begin with oxidative insertion of palladium(O) into 

the a-CH bond of the acetyl pyridine 277 to give the hydridopalladium 279. This is then 

followed by hydropalladation 280 between the hydridopalladium 279 species and the 

methyleneaziridine 276. This is then followed by reductive elimination of the palladium species 

to give palladium(O) and an intermediate 281 which undergoes cyclisation and dehydration to 

give the pyrrole 282.
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-H+
-HoO
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Scheme 89: Palladium-catalysed cycle for the synthesis ofpyrrole-2 -pyridines.

Another example of a palladium-catalysed multi-component reaction involves the coupling of 

alkynes, imines and acyl chlorides (Scheme 90)." The reaction involves the initial formation of 

a l,3-oxazolium-5-oxide 285 which is formed from the coupling of the imine 283, acyl chloride 

284 and carbon monoxide catalysed by palladium. The l,3-oxazolium-5-oxide 285 then 

undergoes cycloaddition with an alkyne to form the pyrrole 286 after loss of carbon dioxide.

n -r1
2aR2 H

283

O

r3^ ci

284

Pd cat, 4 atm, 
EtN/Pr2, CO Vo.

R2^N±>
R1

285

R4- -R5

R1 
N R2

R4r V
R5

-CO,
R5

d3
R2̂ N

R1 

286

Scheme 90: Palladium catalysed multi-component coupling involving a cycloaddition.
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Other methods include the titanium-catalysed intermolecular hydroamination of 1,4-diynes and 

1,5-diynes with primary amines, 100 followed by 5-endo-d\g and 5-exo-dig cyclisations 

respectively to give 1,2,5-substituted pyrroles in good to excellent yields.

4.2.4 Synthesis from isocyanides.

Examples of syntheses of pyrroles from isocyanides also often involve the use of metals. One 

example uses copper(I) oxide101 in the reaction between an isocyanide 287 with an electron 

withdrawing substituent such as a carboxylate group p to the isocyano group and an alkyne 288, 

also with an electron withdrawing substituent (Scheme 91). A mixture of copper(I) oxide and 

1,10-phenanthroline gave the best results.

EWG 1̂

C = N
© ©

287

cat Cu2O,1,10- 
Phenanthroline, 

1,4-dioxane,

EWG

CuLn
A ©  ^T  M  (=1

N»c EWG

EW G 2 288

CuLn

EWG

EWG

289

Scheme 91: Copper (I)-catalysed synthesis ofpyrroles from isocyanides and alkynes.

The reaction involves the 1,4-addition of a nucleophilic intermediate to the alkyne 288. The 

copper enolate that is formed then intramolecularly attacks the isonitrile carbon to generate the 

cyclised intermediate. This is then followed by isomerisation and protonation along with 

regeneration of the copper catalyst to give the pyrrole 289 in good to excellent yields 

(79-100%).

Another synthesis of pyrroles from isocyanides was reported by Murahashi and coworkers 

(Scheme 92).102 The reaction involves a rhodium-catalysed pyrrole formation from isonitriles 

290 and 1,3-dicarbonyl compounds 291. This involves activation of the a-H bond of the 

isonitrile followed by addition to the 1,3-dicarbonyl to give the a,P-unsaturated formamides 

292. The rhodium then catalyses the decarbonylation of the formamide followed by
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cyclocondensation to give the pyrrole 293. Much like the Knorr pyrrole synthesis this method is 

also limited by the availability of starting materials.

©  © .  . •
C*N C 0 2Et

O O
A_A Rh4(CO)12

C 0 2Et

290

C 0 2Et
^45s^C02Et

NHCHO

291

-CO

H3CO C.
J . O K

Ei02C ^ y '
NSC© O

C 0 2Et

C 0 2Et
A x o 2Et 

A 0  n h 2

C 0 2Et

C 0 2Et

292 293

Scheme 92: Murahashi’s Rhodium-catalysed synthesis o f pyrroles from isocyanides.

4.3 Pyrroles: Results and Discussion

4.3.1 Aims

Due to the successful synthesis of substituted pyrrole-2-carboxylates and the 

hydroxydihydropyrrole analogues reported by Sharland2 requiring extreme and somewhat 

impractical reaction conditions (c f  following Section 4.3.2.1), it was deemed wise to improve 

the methodology to provide a more practical means to synthesise such pyrroles. This would 

then provide an opportunity to extend the chemistry to a wider range of substrates including 

ones without carboxylate groups in the 2 position. It was also prudent to determine whether 

other TV-protecting groups can be incorporated as only iV-tosyl was tested during the original 

studies. Other aims include the extension of the S-endo-d\g cyclisation using transition metal 

salts to fused ring systems such as annulated pyrroles including tetrahydroindoles and to Ad­

junction fused systems such as pyrrolizines. Attempts were also made to extend the cyclisation 

methodology to a synthesis of the natural product pyrrolostatin.
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4.3.2 Copper(II)-catalysed 5-endo-d'\g cyclisation

4.3.2.1 Sharlands original method

The main focus of this project was to improve on Sharland’s procedure for the copper(I)- 

catalysed synthesis of pyrroles. Sharland’s method involved the heating of a solution of p- 

hydroxyamino ester 294 and copper(I) acetate in a mixture of diethyl ether:pyridine (1:1) 

at 90 °C in a sealed tube (Scheme 93). This resulted in predominantly hydroxydihydropyrrole 

295 with pyrrole 296 as a minor product in the mixture. The combined yields for this reaction 

were typically in the range of 56-88%.

pH  R2
HQ, R2 1 equiv CuOAc

COzEt ----- :-------------.. l| >—C0 2Et + II V - c o 2Et
1 1:1 Et20:Pyr r 1 N r 1 N

R1 NHTs 2 7  K Ts Ts
90 °C

294 295 296

Scheme 93: Sharlands copper (I)-catalysed hydroxydihydropyrrole synthesis.

4.3.2.2 Synthesis of p-hydroxy amino esters

Following on from the approach work carried out by Sharland towards the synthesis of (3- 

hydroxy amino esters 294, we set out to synthesise a range of substrates as a means to assess 

and improve upon Sharland’s recipe. The first step involved protection of the nitrogen of 

commercially available glycine ethyl ester hydrochloride 297 (Scheme 94) using either /7-nitro 

benzenesulfonyl chloride or />-toluenesulfonyl chloride in the presence of two equivalents of 

triethylamine to yield the protected amine 298 (>95%).

H2N HCI 2 eq Et3N, R3HN

E t0 2C R3CI E t0 2C

297 298

a where R3 = Ts (96%) 
b where R3 = Ns (98%)

Scheme 94: Protection o f glycine ethyl ester hydrochloride.
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The next step involved the synthesis of acetylenic carbonyls, which were prepared by 

deprotonation of a terminal acetylene 299 with «BuLi followed by reaction with 

dimethylformamide to yield alkynyl aldehydes 300 (Scheme 95). The procedure involved a 

reverse quench using 10 % aqueous potassium dihydrogen phosphate as a means to prevent the 

formation of undesirable side-products.103

nB DMFHF’ U a where R1 = Bu (66%)'
b w here R = Ph (74% )- 

R1̂  c  where R1 = Me(C=CH2)C (60%),
d w here R1 = TMS (66%),

299a-e 300a-e e  where R1 = (CH2)2OTBS (87%)

Scheme 95: Synthesis o f acetylenic aldehydes.

The alkynyl ketone 301 was prepared by the oxidation of propargylic alcohol 202c with 

pyridinium dichromate (Scheme 96).

PDC
’V

Ph uo m  I 'P h

202c 301 (88%)

Scheme 96: Synthesis o f acetylenic ketone 301.

Oxidation of the propargylic alcohol 202c gave the propargylic ketone 301 cleanly with no need 

for purification. Synthesis of the acetylenic aldehydes 300 gave predominantly the desired 

product but contained some minor inpurities. Purification was not required as these side- 

products were minor and would presumably not affect the next step in the reaction.

The following step involved Sharland’s coupling of the alkynyl carbonyls with an TV-protected 

glycine ethyl ester 298.104 This method was first employed by Kazmier, who reported the 

coupling of aldehydes with amino esters such as glycine and valine. The reaction involves the 

formation of a tin(II) enolate by the initial deprotonation of the glycine 298 using lithium 

diisopropylamide followed by the addition of 2.5 equivalents of tin(II) chloride to give the 

tin(II) enolate, which is then coupled with the acetylenic aldehydes 300 or ketone 301 to yield 

the P-hydroxy amino ester 294. Following this procedure we synthesised a range of P-hydroxy 

amino esters (Table 9).
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Table 9: Tin (II) chloride-mediated coupling o f acetylenic carbonyls with glycine. 

O
II R3HN 2.2 equiv LDA ' ,' V ' ' r n

E t0  c  2.5 equiv SnCI2 Rl ^ ^ j T
1 K  M U T e

300a-e (R2 = H) 298

or 301 where 
R ' = Ph, R2 > /Pr

HO, R2

T
NHTs 

294

a m in o  e s te rs  294 R 1 R 2 R 3

R a t

A n ti

io (a)

S y n

Y ield

(% )

A n ti(b)

OH

Bu NHTs 

294a

Bu H Ts 86 14 79

OH
^ ^ J \ ^ C 0 2Et 

Ph NHTs

294b

Ph H Ts 91 9 82

OH
A x o 2b

TMS NHTs 

294c

TMS H Ts 85 15 83(c)

OH
^ ^ X ^ c° 2e\.

TBSO(H2C)2̂  NHTs 

294d

(CH2)2OTBS H Ts 86 14 83(c)

OH
X 0 2Et

NHTs

294e

H Ts 93 7 71

HO. /  /Pr

> ^ x r C02Et
Ph NHTs 

294f

Ph z'Pr Ts 84 16 82
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OH

Bu NHNs

294g

Bu H Ns NA NA

OH

^ ^ Y c ° 2Et
Ph NHNs

294h

Ph H Ns NA NA

Substrates synthesised following Sharland’s protoco (a)By 'H-NMR analysis of crude.(b) After
recrystalisation.(c) these were oils so yield is of syn + anti for these examples.

As can be seen from Table 9 by using Sharland’s method for the coupling of acetylenic 

carbonyls to amino esters a range of p-hydroxy amino esters were synthesised with a high 

degree of stereoselectivity. The minor isomer was detected by 1 H-NMR analysis of the crude 

and could be seen by the integrations of the CHOH, CHNH, OH and NH (where minor peaks 

were visible). A large number of the p-hydroxy amino esters had been previously synthesised 

by Sharland and were confirmed to show the correct stereochemistry by comparison using *H- 

NMR analysis. The chemistry was further expanded upon with the successful coupling of silyl 

protected acetylenic carbonyls 300c and 300d with A-tosyl glycine ethyl ester 298a. These 

examples were not crystalline solids like those previously synthesised but were viscous oils so 

purification was carried out using column chromatography and therefore the isolated yields 

were diastereomeric mixtures.

We also attempted to expand the chemistry further by attempting to incorporate a stronger 

electron withdrawing sulfonamide such as an A-nosyl group. This unfortunately was not 

possible under these conditions as coupling of acetylenic carbonyls 300a and 300b with 

A-nosyl glycine ethyl ester 298b were unsuccessful as LDA deprotonation of A-nosyl glycine 

ethyl ester resulted in a black solution. Upon 1 H-NMR analysis of the black solution an 

indeterminate mixture of products were observed. This is unsurprising in light of things as this 

is a common problem with nitro groups and alkyl lithiums and is most probably due to cleavage 

of the nosyl group.105 Attempts were also made to optimise the conditions by reducing the 

amount of tin(II) chloride to one or one and a half equivalents. This proved unsuccessful as 

reducing the tin(II) chloride for the synthesis of both 294a and 294b resulted in very little 

product being isolated and a large amount of A-tosyl glycine ethyl ester being present in the 

mixture.

84



4.3.2.4 Stereochemistry

As previously mentioned, the approach work of coupling aldehydes with amino esters is not 

new; Kazmaier and co-workers had previously reported on the synthesis of P-hydroxy amino 

esters from the tin(II) chloride-mediated coupling of the enolate of amino esters such as glycine

and valine with aldehydes and found a high degree of diastereoselectivity. 106 He proposed that 

the high anti diastereoselectivity was due to the fixed enolate geometry and chelation control 

(Scheme 97).
.OEt

Sn(ll)

Sn(ll)' Fast

OEt

S n (ll)d

Sn(ll)TsN

H

R1‘
TsHN£

H
OH

C 0 2Et

Anti

OEt
Sn(ll)

Sn(ll)' Slow

OEt

S n (ll)d

Sn(ll)TsN

R* OH

------------- R ' . T H
T s H N ^ X 0 2Et

Syn

Scheme 97: Stereoselectivity o f Kazmaier’s synthesis using chelation control.

As can be seen in Scheme 97 the high anti-diastereoselectivity can be explained by the 

unfavourable steric clash between the A-tosyl group and R2 in the resulting tin(II) complex for 

the syn geometry. The methodology of Kazmaier and co-workers was also used by Sharland 

for the synthesis of the P-hydroxy amino esters 294, and a similar degree of stereoselectivity 

was observed. Upon synthesis of 294a, Sharland showed that by examination of the 1 H-NMR 

analysis of the crude product, a high degree of stereoselectivity was observed. It was seen that 

by ’H-NMR integration the ratio was 1 to 7.5 respectively, seen from the aromatic protons of 

the N-tosyl moiety. To add further proof that the anti diastereoismoner was the major product, 

recrystallisation of compound 294a was confirmed to have the anti-geometry and comparison 

with ’H-NMR of the crude confirmed it to be the major. Sharland’s recrystalisation of the major 

isomer of 294b and X-ray crystallography also confirmed the major product to be anti as did 

the recrystalisation of 294f, providing further evidence that the reaction proceeds to give anti as 

the major product.
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4.3.2.4 Assessing and improving Sharland’s copper-mediated cyclisations.

The method set out by Sharland for the synthesis of hydroxydihydropyrroles and pyrroles 

proved both impractical and unsafe due to the use of one equivalent of copper(I) acetate, the use 

of high temperatures in a sealed system and the use of toxic pyridine as a cosolvent. Due to the 

impractical nature of this method we felt it prudent to investigate alternative reaction conditions 

that alleviate these issues and allow for potential large scale synthesis.

One of the first issues to be dealt with was the need for a sealed tube. In order to overcome this 

we felt that as the reaction required a temperature of approximately 90 °C as determined by 

Sharland, a range of suitable solvents would have to be screened. Several solvents were 

screened as a 1:1 mixture with pyridine (Table 10); these included THF, acetonitrile, toluene 

and even water was assessed. All reactions were carried out using 1 equivelant of copper(I) 

acetate in a flask attached to a condenser at a temperature of 90 °C or reflux. In the case of 

tetrahydrofuran and acetonitrile which have lower boiling points than 90 °C (66  °C and 81 °C 

respectively) we decided to assess these solvents in order to confirm whether a solvent with a 

boiling point of 90 °C or above was indeed required

Table 10: Solvent screening for the copper (I) acetate mediated cyclisation of294a.

TsHN

Cu(l)OAc, 
90 °C

Solvent: Pyr 
C 0 2Et (1;1) Bu

OH

COzEt
N
Ts Bu

C 0 2Et
N
Ts

294a 295a 296a

Solvent 294a 295a 296a

THF 100 0 Negligible

Acetonitrile 100 0 0

Water 100 0 0

Toluene 0 89 11

In all the a :>ove cases the reaction was carried out overnight (18 h)

The results of the solvent screening test revealed that both water and acetonitrile gave the worst 

results. In the case of water this was largely due to the insolubility of the substrate 294a which 

tended to clump together and stick to the sides of the reaction flask despite the presence of 

pyridine. The solubility of the copper(I) acetate was not an issue due to the presence of 

pyridine. Acetonitrile gave poor results with no products observed and recovery of starting
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material. Tetrahydrofuran did not give that much of an improved yield as still only a very small 

amount of pyrrole was observed as determined by 1 H-NMR analysis. Tetrahydrofuran was only 

heated to its boiling point (66  °C) and this poor result may have been due to the lower 

temperature. It would seem that from the select solvent screening that was carried out, a solvent 

suitable that could be heated to temperatures in excess of 90 °C was required for successful 

cyclisation.

The solvent of choice was therefore toluene as it gave much better results for conversion of the 

P-hydroxy amino ester 294a to the cyclised products, but in a ratio of 9:1 for 

hydroxydihydropyrrole 295a to pyrrole 296a. The other variables that needed to be tested were 

the copper species being used and the amount of copper to be used, the importance of base as a 

co-solvent to the reaction as well as the reaction temperature (Table 11).

TsHN C 0 2Et

Table 11: Assessing conditions for pyrrole synthesis.

OH

Cucat » f ^ y - C 0 2E\ [  ^
r^ tNs r^ '

C 0 2Et
N
Ts

295 296

a where R = Bu 
b where R = Ph

294 Copper (eq) Solvent Amount pyr Time (h) Temp °C 295 296

294a1 CuOAc (leq) Et20 1:1 co-solvent 6 90 86 14

294b1 CuOAc (leq) Et20 1:1 co-solvent 1 90 95 5

294a CuOAc (1 eq) toluene 1:1 co-solvent 4 90 89 11

294b CuOAc (leq) toluene 1:1 co-solvent 4 90 67 33

294a CuOAc (1 eq) toluene 2 equiv 4 Reflux 17 83

294a Cu(OAc)2 (leq) toluene 1:1 co-solvent 4 90 20 80

294a Cul (leq) toluene 1:1 co-solvent 18 90 0 0

294a Cul (leq) toluene 1:1 co-solvent 18 Reflux 0 0

294a Cu(OAc)2 (leq) toluene None 8 90 0 100

294a Cu(OAc)2 (leq) toluene None 1 Reflux 0 100

294a Cu(OAc)2 (O.leq) toluene None 1 Reflux 0 100

294a Cu(OAc)2 (O.leq) toluene None 18 70 0 80
Original recipe by Sharland. In cases where total yield < 100% the remaining was starting material as 

determined by 'H-NMR analysis. Ratios determined by 'H-NMR integration of crude material.
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Although not mentioned in the results quoted (Table 11), very small amounts of glycine ethyl 

ester were present in the product mixture (<5 %) when the reaction was carried out at reflux and 

it was felt that this was due to a retro-aldol reaction taking place (Scheme 98). It was therefore 

important to determine whether the copper species or the pyridine played a role in formation of 

this glycine ethyl ester 298a. In the absence of pyridine and copper(I/II) acetate but with 

heating substrate 294a at reflux for 4 hours in toluene a small amount of retro-aldol was still 

taking place, and it was therefore determined that the heating was causing the retro-aldol 

reaction, confirming that this was a purely thermal phenomenon. No JV-tosyl glycine ethyl ester 

was detected by 'H-NMR analysis when the reactions were carried out at 90 °C. The 

importance of the copper catalyst was also confirmed by no products being detected in the 

absence of copper (I)/(II) acetate at both 90 °C and reflux.

Bu

TsHN

294a

Retro-aldol 

Toluene, reflux
Bu

O
H

NHTs

C 02Et 

300a 298a

Scheme 98: Retro-aldol o f substrate 294a.

Changing the copper species from copper(I) acetate to copper(II) acetate in the presence of 

pyridine showed a reversal in the ratio of products, with copper(II) resulting in predominantly 

the formation of pyrrole 296 as opposed to hydroxydihydropyrrole 295, which is the major 

product when copper(I) is used. This may have been a result of the ability of the copper(II) 

acetate to encourage the elimination of water from the hydroxydihydropyrrole 295 to give 

pyrrole 296. It is also important to note that in the absence of pyridine, both copper(I) and 

copper(II) acetate displayed the same activity in cyclisation of 294a resulting in isolation of 

only pyrrole 296a within the same time period. The presence of oxygen was also unimportant 

as reactions carried out under nitrogen or open to the air gave pyrrole 296 exclusively in much 

the same yields. The elimination of water appears to be thermally induced, again confirming 

that high temperatures favoured the entropic products. Although the copper(II) acetate was 

purified, the presence of copper(I) in copper(II) acetate and vice versa is possible and therefore 

the reactive copper species cannot be determined with any great certainty. At present we do not 

fully understand the differing behaviours of copper(I) and copper(II) salts in the reaction. 

Another possible facet is that in the presence of pyridine we are not dealing with simple 

copper(I) and copper(II) acetate salts but possible complexes that form with the pyridine.
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By simply exchanging the ether for toluene as solvent, the requirement for a sealed tube was

was unnecessary has both decreased the health hazards of the reaction and has simplified the 

workup procedure drastically requiring only a straightforward filtration. The cost has been 

reduced by the use of 0.1 equivelants of copper(II) acetate as opposed to one equivalent of the 

more expensive copper(I) acetate.

4.3.2.5 Synthesis of other pyrrole precursors

In order to fully assess this method and to determine if pyrrole precursors other than p-hydroxy 

amino esters are applicable to this methodology a range of other substrates were synthesised in 

preparation for the copper(II)-catalysed cyclisation. Substrates 303a and 303b were synthesised 

by the reaction of three equivalents of lithio-acetylides with TV-tosyl glycine methyl ester 302 

(Scheme 99) by a double addition reaction onto the ester group. The third equivalent was 

required to deprotonate the amine. Athough this may be viewed as wasteful, when compared to 

the alternative of using a second protecting group for the amine which would involve a further 

two steps it can be regarded as much more atom efficient.

happily removed, making the reaction safer and more easily scalable. Finding that the pyridine

TsHN CO,Me

alkyne (3 eq), 
nBuLi (3 eq) TsHN

302 303a where R = Bu (98%) 
303b where R = Ph (77%)

Scheme 99: Synthesis o f substrates 303a and 303b.

Substrates 307a and 307b (Scheme 100) were synthesised by the amino hydroxylation of the 

corresponding symmetrical alkenes 304 followed by oxidation to give the p-keto sulphonamide 

306 and then attack by a lithio-acetylide to give the P-alkynyl sulfonamide 307.



R
K20 s0 4 ,

(DHQ)2PHAL, NHTs PDC, DCM R NHTs

fBu0H:H20  (1:1) H0HO R

305a (70%) 
305b (73%)

Chloramine-T
306a (88%) 
306b (89%)

304a and b

Alkyne,
nBuLi HO

NHTs

307a where R = Ph, R1 = Bu (73%)
307b where R = CH2OTBS, R1 = Bu (63%)

Scheme 100: Synthesis o f substrates 307a and 307b. a is where R = Ph, b is where R =

CH2OTBS.

Substrates 314 and 315 (Table 12) were synthesised in a similar manner to the synthesis of 

307a and 307b (c f  Section 4.3.3.1, Pg 91). Substrates 311a and 311b were synthesised from 

(+/-)-2-amino-1 -butanol 308 (Scheme 101) which underwent carbamate protection (309) and 

then oxidation to the aldehyde 310, which was then followed by attack onto the aldehyde 310 

by a lithium acetylide to give the products 311a and 311b.

R
310 (77%) 311a where R = Bu (85%)

311b where R = Ph (93%)

Scheme 101: Synthesis o f substrates 311a and 311b from 2-amino-l-butanol 308.

4.3.2.6 Assessing the optimised copper(II)-catalysed methodology

With a range of substrates synthesised the next step in the synthesis was the key step to test our 

optimised copper(II)-catalysed methodology. This was important in order to determine whether 

there were any limitations with the chemistry. The results of this new optimised method can be 

seen in Table 12.

NHBoc IBX (2 eq), 
DMSO

308 309 (99%)

alkyne (2 eq), 
nBuLi (2 eq)

NHBoc
NHBoc

90



Table 12: Synthesis o f pyrroles by optimised copper-catalysed cyclisations.

R2
0.1 equiv Cu(OAc)2HO. R2

OH 
R2

R3 

NHR4
Toluene
reflux

R1
R3

SM

N 
R4

312

+ ll / —R3
R' N 
R R"

313

SM R 1 R2 R3 R4 Time entry
312

Ra

313

itio

Yield

(%)
294a Bua H C 02Et Ts 0.7 h a 0 100 91

294b Pha H C 02Et Ts 1.2 h b 0 100 97

294c TMS H C 02Et Ts 18 h c 0 0 0 b

294i H H C 02Et Ts 12 h
d

0 100 85°

294i Hd H C 02Et Ts 18 h 0 100 79°

294e H C 02Et Ts 3.5 h e 25 75 84

294d (CH2)2OTBS H C 02Et Ts 0.8 h f 0 100 95

294j (CH2)2OH H C 02Et Ts lh g 0 100 98

294f Ph fPr C 02Et Ts 24h h 0 0 0b

303a Bu BuC=C H Ts 0.7 h i 0 100 87

303b Ph PhC=C H Ts 0.8 h j 0 100 98

307a Bu Ph Ph Ts 24h k 0 0 0 b

307b Bu c h 2o t b s c h 2o t b s Ts 24h I 0 0 0b

314 Bu -(CH2)4- Ts 4h m 0 100 50e

315 (CH2)2OTBS -(CH2)4- Ts 18h n 0 0 0e

311a Bu H Et Boc 24h
o

0 0 0b

311a Bu1 H Et Boc 24h 0 0 0b

311b Ph H Et Boc 24 P 0 0 0b
3 Contained very small amounts of retro-aldol product.b Starting material recovered.c Remaining yield 
was retro-aldol product.d Reaction involves using one equivalent of copper(II) acetate and carried out at 

90°C.e Decomposition products observed. fReaction using one equivalent of copper(II) acetate.

As can be seen from Table 12, a large selection of P-hydroxysulfonamides were successfully 

cyclised to give pyrroles. In particular, both the silyl-protected alkynol 294f and the free 

alkynol 294g were successfully cyclised to give pyrroles 313f and 313g in 95% and 98% yield 

respectively. Another result of great interest was the successful cyclisation of cyclohexyl 

derivative 314 to give a tetrahydroindole 313m in 50% yield. This reduced yield was due to

91



decomposition with the only other detectable product in the mixture that was distinguishable 

from 'H-NMR analysis was £w-coupled 1-hexyne believed to be from the loss of hexyne from 

the substrate 314 followed by coupling by the copper(II) acetate. What can also be seen from 

Table 12 is that in all but one example (294e) only pyrrole 313 was isolated, which was in stark 

contrast to Sharland’s results whereby the major product was the corresponding 

hydroxydihydropyrrole 312. Attempts were made to isolate the hydroxydihydropyrroles 312 by 

reducing the temperature to 90 °C, however, only pyrrole 313 and P-hydroxyamino ester 294 

was observable by ’H-NMR analysis. In the case of p-hydroxyamino ester 294e there was no 

increase in hydroxydihydropyrrole formation at 80 °C or at 90 °C with only slower conversion 

observed.

4.3.2.7 Scope and Limitations

This method has allowed for the synthesis of a wide range of pyrroles, although some 

limitations have come to light, as is often the case. The attempted coupling of A-nosyl glycine 

ethyl ester (as opposed to A-tosyl glycine ethyl ester) with acetylenic aldehydes was 

unsuccessful as attempted deprotonation of the glycine moiety using LDA or NaHMDS resulted 

in black sludge. The coupling also proved sensitive to the amount of tin(II) chloride used, as 

attempts to reduce the tin(II) chloride resulted in lower yields or no reaction. Another important 

caveat about the cyclisation reaction was the method only seemed to work for iV-sulfonamides 

and did not give any products from carbamates 311a and 311b. When using other solvents such 

as tetrahydrofuran or acetonitrile, no products were observed and only starting material was 

recovered. The reaction would also not allow the inclusion of bulky groups such as those found 

with substrates 294c, 294h, 307a and 307b (Figure 14); this was perhaps due to steric hindrance 

preventing copper complexation with the acetylene. The yield from cyclisation of substrate 314 

was also low with possible degradation to starting materials indicated by the presence of diyne 

which was identified in the 1 H-NMR spectrum.
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Figure 14: Limitations o f the Copper(II) acetate mediated cyclisations.

4.3.2.8 Silver(I)-cataIysed cyclisation and comparisons with Copper(II).

It was felt that due to the successful cyclisation of indoles (See Chapter 2) and other pyrroles2,3 

using 10% silver nitrate on silica that the substrates that would not undergo cyclisation using 

copper(II) acetate (Figure 14) might successfully undergo 5-endo-&\% cyclisation using silver(I). 

Upon exposure to 10% silver nitrate on silica gel we found that the substrates successfully 

cyclised to give pyrroles in high yields (Table 13). The results showed that the silver-catalysed 

cyclisation was useful where copper(II) failed although reaction times were generally longer for 

silver-catalysed cyclisations. For example, a comparison study of both the silver(I) and 

copper(II) methods for the cyclisation of p-hydroxy sulfonamide 294a gave clean pyrrole 294a 

in 18 hours with 10% silver(I) nitrate on silica and only 0.75 hours using copper(II) acetate. The 

yield for the pyrrole 313a using the silver(I)-catalysed method appeared to be quantitative 

whereas the copper(II)-catalysed method gave pyrrole 313a in 90% yield. Another important 

factor is the cost of using 0.1 equivalents of copper(II) acetate which is much cheaper than 

using 0.1 equivalents of 10% AgN0 3 .Si0 2 . The important point to make is that in the cases 

where the copper(II) acetate reaction proved unsuccessful, 10% silver(I) nitrate on silica was an 

excellent alternative and had its own advantages. These include the silver catalyst is 

heterogenous making recovery of it much easier. Another advantage is that the silver(I)- 

catalysed reaction is carried out at room temperature, whereas the copper(II)-catalysed method 

is carried out at reflux in toluene. This could be seen from the attempted cyclisation of amino 

alcohols 314 and 315 which under the reflux conditions with copper led to decomposition, but 

with silver(I) at ambient temperature led only to pyrrole 313.
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Table 13: Silver(I)-catalysed cyclisation on substrates that failed with Cu(OAc)2-

R2

R

R4H N . .R 3

R2 
OH 

SM

S '

1 0 %
AgN03.S i02

RT, DCM N
R4

313

•R3

SM R 1 R2 R3 R4
Equiv

AgN03.SiC>2

Time

(h)

Pyrrole

313

Yield

(%)

294a Bu H C 02Et Ts 0.2 18 313a 98

294f Ph iPr C 02Et Ts 0.1 8 313h 95

303a Bu Bu-C=C H Ts 0.1 24 313i 98

307a Bu Ph Ph Ts 0.2 30 313k 94

307b Bu CH2OTBS CH2OTBS Ts 0.2 24 3131 98

314 Bu -(CH2)4- Ts 0.5 27 313m 85

315 CH2OTBS -(CH2)4- Ts 1.0 48 313n 74

311a Bu H Et Boc 0.2 4 313o 96

311b Ph H Et Boc 0.2 4 313p 98
The reactions were carried out in dichloromethane in the dark and at ambient temperature. 8 Result was reported by

Sharland.

As can be seen from Table 13, the silver(I)-catalysed cyclisations proved successful in the cases 

that were unsuccessful using the copper(II) acetate reaction. These included examples having 

bulky groups (substrates 294h, 307a and 307b) which gave pyrroles in nearly quantitative 

yields. Equally, carbamates 311a and 311b also successfully underwent 5-endo-dig cyclisation 

using 10% silver nitrate on silica in 4 hours. The cyclisations of both substrates 314 and 315 

also proved successful to give anulated pyrroles cleanly. The successful synthesis of annulated 

pyrroles led us to wonder what other fused ring pyrroles could be made using this very effective 

method.

4.3.3 Extension of silver-cyclisation methodology: Synthesis of annulated pyrroles.

The synthesis of substituted pyrroles is of great interest to the synthetic chemist. Methods that 

give access to a range of substitution patterns around the pyrrole ring are also very important. In 

particular, the sponsors at GlaxoSmithKline showed a great deal of interest in pyrroles that have 

aliphatic groups around the ring especially those that are fused to carbocyclic rings 316 

(Figure 15).
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Figure IS: General structure o f annulated pyrroles.

With the successful cyclisation of 314 and 315 using 10% silver nitrate on silica the 

methodology used to access these intriguing and uncommon ring systems was extended to a 

wider range of substrates.

4.3.3.1 General method towards annulated pyrroles.

The first step involved the amino-hydroxylation of symmetrical cyclo-alkenes 317 using 

Osmium(VIII) tetroxide to give |3-hydroxyamines 318 in moderate yields (36-59 %). This was 

then followed by oxidation using Jones reagent to give the (3-keto amines 319 (Scheme 102) in 

good to excellent yields (70-99 %).

Scheme 102: Synthesis off-keto amines (a is where n =7, b where n = 2, c where n = 4 andd

where n = 8).

The subsequent step involved addition of lithio-acetylides to the (3-keto sulfonamides resulting 

in the 2-alkynyl-2-hydroxy amines 314, 315 and 320a-g with a high degree of 

diastereoselectivity observed in most cases (Scheme 103).

Jones ox

Benzyltriethyl- 
ammonium chloride NHTs NHTs

Chloramine-T, PH O

1:1 H20:fBuOH
317a-d 318a (36%) 

318b (44%) 
318c (59%) 
318d (50%)

319a (73%) 
319b (99%) 
319c (70%) 
319d (73%)

NHTs

nBuLi

NHTs

319 314, 315, 320a-g

Scheme 103: Lithio-acetylide addition to f-ketosulfonamides.



4.3.3.2 Stereochemistry

The addition of the lithium acetylides to the keto-amines 319 gave the 2-alkynyl-2-hydroxy 

amines 314, 315 and 319a-g in moderate to excellent yields, with a high degree of 

diastereoselectivity observed for examples where the ring size was 5 and 6 carbons. The 

selectivity was reduced where the ring size was larger (8 and 12 carbons). The ratio of 

diastereoisomers was determined by 1 H-NMR from the integration of the NH peaks and the 

CHNH peaks and these were therefore relatively rough estimates (Table 14).

Table 14: Product ratios for the addition o f lithium acetylides to ketones.

OH OH - R1
■R1

(( Tn

O

NHTs nBuLi NHTs

319a-d
H

( Q n  A
: NHTs 
H

314, 315 and 320

Product (n) R1 Major: Minor 

Ratio

Yield (%)

320a 1 Bu 91:9 70

320b 1 Ph 84:16 85

320c 1 (CH2)2OTBS 98:2 53

314 2 Bu 86:14 83

320d 2 Ph 86:14 73

315 2 (CH2)2OTBS 94:6 43

320e 4 Bu 50:50 77

320f 4 Ph 73:27 52

320g 8 Bu 70:30 92

The major isomers of 2-alkynyl-2-hydroxyamines 320b and 320d were isolated by 

recrystalisation and were confirmed to be the major diastereomer by 1 H-NMR analysis. In the 

case of the cyclohexane 320d, the 1 H-NMR spectrum for the major isomer shows a CHNH with 

coupling constants of 4 Hz and 12 Hz. This is consistent with the unsurprising conclusion that 

the hydrogen is in an axial position which implies that the sulfonamide is in the equatorial 

position as the 12 Hz value is consistent with that of an axial-axial coupling. The major isomer 

was confirmed to be that of the <3«//-diastereoisomer by X-ray crystallography which has an 

R-value of 0.0674 (Figure 16), showing indeed that the CHNH is in the axial position and the 

sulfonamide is in the equatorial position. What could also be determined from the X-ray crystal
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data for 2 -alkynyl-2 -hydroxyamine 320d was the bond length between the O-H-N was 1.8 A 
indicating possible hydrogen bonding. The distance between the N-H-O was 2.6 A and was too 

large to indicate any possibility for hydrogen bonding. The major isomer for the cyclopentyl 

derivative 320b was also confirmed to be that of the tfn/z-diastereoisomer by X-ray 

crystallography and has an R-value of 0.0735 (Figure 17). In this case the distance between the 

O-H-N and the N-H-O was around 3.2 A and was too large to indicate any possibility for 

hydrogen bonding (c f  Appendix for X-ray crystal data, data can also be found at the Cambridge 

structure database78).

NHTs

OH Ph
Figure 16: X-ray crystal structure o f320d (CCDC No7S:783432).

N1

-'NHTs

HO

Figure 17: X-ray crystal structure o f320b (CCDC No78: 783433).
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Previously the addition of lithium acetylides to P-hydroxy ketones107 displayed a high degree of 

stereoselectivity resulting in predominantly chelation control product by Lewis acid lithium 

(Li+). Similarly these reactions should also involve a variation of chelation control where the 

lithium coordinates the amine in the equatorial position to bring it in close proximity to the 

carbonyl. This would then be followed by axial attack of the acetylide onto the carbonyl at an 

angle of 107 0 (Biirgi-Dunitz angle) to give the major product with the hydroxide and 

sulfonamide in equatorial positions, i.e the anti diastereoisomer (Figure 18). This explaination 

is consistent with the X-ray crystal data which shows the major isomer to be that of the anti 

diastereoisomer.

Axial attack  
R ©

H

Q — z Li 

NTs

©

OH

NHTsN H Ts

Equitorial attack Major-Anti Minor-Syn

Figure 18: Axial vs equatorial attack on cyclohexyl ketone.

As with cyclohexyl the cyclopentyl derivatives displayed a similar degree of 

diastereoselectivity with the major isomer having the hydroxy group and the amine anti to each 

other. This cannot be explained using the above model as axial and equatorial cannot be applied 

to the cyclopentyl ring due to fast ring flipping.

4.3.3.3 Cyclisation.

The cyclisations of P-hydroxysulfonamides 314, 315, and 320a-g were very successful resulting 

in annulated pyrroles with fused carbocyclic rings of various sizes. The reaction times were 

slow and in the order of 48 hours when using 0.1 equivalents of silver(I) in the form of 10% 

silver nitrate on silica gel. The cyclisations could be accelerated by using quantitative silver(I) 

catalyst but still often required overnight stirring. The successful cyclisations shows just how 

versatile this methodology can be (Table 15). The cyclisations were carried using the 

diastereomeric mixture (both syn and anti) and so the rate of cyclisation of the syn vs the anti 

diastereoisomer was not determined. It is expected that the syn diastereoisomer would cyclise
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faster than that of the anti as work carried out previously by Hayes3 on the cyclisations on both 

syn and anti diastereoisomers of furan precursors determined that syn cyclised faster than anti.

Table 15: Results for the silver-mediated synthesis o f annulated pyrroles.

OH
NHTs

314, 315, 320 313, 321

Amino-

alcohol

N R 1 Equiv

Silver(I)

Time (h) Pyrrole Product 

yield (%)

320a 1 Bu 1 18 321a 92

320b 1 Ph 1 3.5 321b 96

320c 1 (CH2)2OTBS 1 18 321c 99

314 2 Bu 0.5 27 313m 85

320d 2 Ph 1 3 321d 99

315 2 (CH2)2OTBS 1 48 313n 74

320e 4 Bu 1 18 321e 91

320f 4 Ph 1 23 321f 83

320g 8 Bu 3 3 321g 84

As can be seen from the results in Table 15, a wide range of annulated pyrroles have been 

synthesised in high yields ranging between 74-99%. This method has allowed for the 

incorporation of 5, 6 , 8 and even 12 carbon carbocycles fused to a pyrrole. This suggests that 

this methodology represents a rather general strategy for the synthesis of annulated pyrroles as 

well as a range of substituted pyrroles. There is a high degree of interest in compounds of this 

kind to the pharmaceutical industry and the success of this methodology could be further 

explored to allow for a range of ring sizes and alkynes.

4.3.4 Extension towards the synthesis of A-bridgehead pyrroles.

This also led to the question that if C-fused pyrroles could be synthesised using 10% silver 

nitrate on silica then what about A-fused heterocycles? A look at the literature108' 114 highlights 

the importance of A-j unction heterocycles in nature and to the pharmaceutical industry; this 

idea was strongly encouraged by the project sponsors at Stevenage. The specific heterocycles
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that we chose to target due to their potential ease of access were pyrrolizines and indolizines 

(Figure 19)

322 323

Figure 19: A parent pyrrolizine 322 and indolizine 323,

4.3.4.1 General method towards iV-bridgehead pyrroles

With the success of the silver cyclisation method in synthesising the indoles, pyrroles arid in 

particular annulated pyrroles, it was felt that this methodology could be extended to the 

synthesis of pyrrolizines and indolizines. Using an approach outlined by Reed and 

coworkers, 108 a range of p-hydroxycarbamates were synthesised in preparation for the putative 

silver-mediated cyclisation (Scheme 104).

( ^ f - C 0 2H - ^ ! ^ ( ^ C02h
N 
H

324 where n = 1

N 
Boc

325 where n = 1 (94%)

N 
Boc

326 where n -  1 (99%)

326 (n = 1)
327 similiar but 

where n = 2

1.DMSO, (COCI)2,
2. ffr,NB (

N
Boc MgBr

328 where n = 1 (96%) 330
329 where n = 2 (93%)

THF,
0 °C, ~3 h

53-91% N'
Boc OH

33 ia-f where 115 1 
332a-b where n % 2

TFA, DCM, 
0 ° C

(0-99%)

.R1 10% AgN03 S i0 2, ( sr
( / f i n  H /  DCM

0- 100%

333a-f where n = 1 
334a-b where n = 2

R1

335a-f where n = 1 
336a-b where n = 2

Scheme 104: Synthetic route to pyrrolizines and indolizines.

The method involved the initial protection of the amine of (»S)-proline 324 with Boc anhydride

to give iV-Boc (*S)-proline 325, which was then reduced to 7V-Boc (.S^-prolinol 326 using borane-

dimethyl sulphide, as this provided the easiest method of reduction and gave the prolinol 3 2 6  in
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high yields (~98%). The (<S)-prolinol 326 was then oxidised using the Swem method to give 

(^-prolinal 328. Oxidation by other methods such as those using PDC or IBX gave lower 

yields. The next step involved the coupling of acetylides to the aldehyde 328 to give the 

propargylic prolinol 331. This was achieved by the addition of Grignard reagents 330 obtained 

from the deprotonation of acetylenes using ethyl magnesium bromide as base. The usual 

reagent used for deprotonation of acetylides in preparation for coupling is butyl lithium. This 

method was less suited as the lithium acetylides gave a significant reduction in yields, possibly 

due to enolisation, as a large amount of the starting aldehyde was detected by 1 H-NMR analysis 

of the crude product mixtures in these cases. The same route (See Scheme 104) was carried out 

using piperidine-2-methanol 337 to gain access to the 6,5-fused systems (Scheme 105).

Et3N

N ^  Boc20

337 327 (89%)

Scheme 105: Boc-protection o f piperidine-2-methanol 337.

The key addition of Grignard reagents to the aldehydes resulted in a mixture of 

diastereoisomers with good to excellent overall yields (Table 16).

Table 16: Substrates synthesised using Reed’s method.

i H P
N
Boc 

328, 329

0 °C, -  3 h

MgBr

330

N
Boc OH

331,332

Product (n) R1
Major

diastereoisomer

Minor

Diastereoisomer

Overall 

Yield (%)

331a 1 Me 63 37 83

331b 1 Bu 56 44 91

331c 1 Ph 63 37 75

331d 1 TMS 67 33 66

331e 1 CH2OTBS 60 40 68

331f 1 C02Et 73 27 51

332a 2 Bu 85 15 72

332b 2 Ph 76 24 68
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The major and minor product ratios were determined by 1 H-NMR analysis from integration of 

the OH group resonances of the major and minor diastereoisomers and as a result are rough 

estimates. The presence of rotamers made this determination difficult and uncertain when using 

other resonances.

4.3.4.2 Stereochemistry.

As reported by Reed and co-workers,108 the alkynylation of (5)-prolinal 328 using the Grignard 

of trimethylsilylacetylene resulted in a major and a minor diastereomer. It was found that this 

was a 2:1 ratio for 331d in favour of the awft'-Felkin-Ahn product, or the (S,S) diastereoisomer. 

This was also believed to be the case for all the alkynylations of (Sj-prolinal resulting in 

predominantly the (S,S) diastereomer as predicted by a chelation control model (Scheme 106).

B ocRN' BocRN'

Chelation product 
(S ,S)

NRBoc

NRBoc

Polar Felkin-Ahn product
(S.R)

Scheme 106: Chelation control vs Felkin-Ahn for the addition o f Grignard reagents to

(S)-prolinal.

X-ray analysis of the major isomer of product 332b showed this to be that of the chelation 

control product (Figure 20). In the example of piperidine-2-methanol (purchased as a racemate) 

chelation control gave the major diastereoisomer as two enantiomers (1S,2S) and (1R,2R), both 

of which were detected in the X-ray. The X-ray crystal structure shown is that of the 1S,2S 

enantiomer and has an R-value of 0.0586 {cf Appendix for X-ray crystal data, CCDC No78: 

783435).
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,0H
loc

Ph
Figure 20: X-ray crystal structure o f332b showing the (S,S) diastereoisomer, the other major 

product was the mirror image: the (R,R) diastereoisomer.

The next step involved the Boc deprotection of 2-propargyl prolinols 331 and 2-propargyl 

piperidinols 332 using 20% trifluoroacetic acid in dichloromethane. The prolinols 331 a-d 

underwent Boc deprotection successfully and after column chromatography the free prolinols 

333a-d were isolated in excellent yields (87-99%). Attempted Boc deprotection of 2-propargyl 

prolinols 33le  and 33If  was unsuccessful resulting in great loss and an indistinguishable 

mixture in the 1 H-NMR spectrum. The piperidinols 332a and 332b underwent Boc deprotection 

to give the free piperidinols 334a and 334b, attempted column chromatography on the 

piperidinols 334a and 334b resulted in great loss and so they were used crude in the next step. 

The next step being the key silver(I)-catalysed cyclisation.

4.3.4.3 Silver cyclisation of 2-propargylic pyrrolidines and piperidines

Exposure of these free prolines/pyrrolidines 333 and 334 to 0.1 equivalents of 10% 

AgN03.Si02 in dichloromethane resulted in successful cyclisation to give 2-substituted 

pyrrolizines and indolizines in near quantitative yields in under 4 hours (Table 17). There was 

of course one example that would not cyclise, this being the TMS-protected propargylic 

prolinol 333d. Attempts to prolong reactions times to 30 h resulted in no conversion to product
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and only starting material isolated. The reason for this was unclear but may have been due to 

either steric or electronic effects.

Table 17: Cyclisation o f substrates using 0.1 eq 10% AgN0 3 .Si0 2.

y R' 10% AgN03 Si02, J ~ \
DCM . < ^ n^ R '

H OH

333 and 334 335 and 336

Starting R1 n Time (h) Product Yield (%)

333a Me 1 4 335a 80

333b Bu 1 3 335b >98

333c Ph 1 2 335c >98

333d TMS 1 30 335d 0

334a Bu 2 4 336a 86'

334b Ph 2 4 336b 711

’Yield over 2 steps.

As can be seen from Table 17, the cyclisation of pyrrolidines 333a-333d and piperidines 334a 

and 334b was highly successful resulting in clean pyrrolizines and indolizines respectively in 

good to excellent yields and in relatively short reaction times. The versatility of this method can 

be clearly seen in the 1 H-NMR spectrum of 2-propargyl prolinol 333c which upon cyclisation 

gave pyrrolizine 335c cleanly and in 98% yield without any purification (Figure 21). Upon 

analysis of the 1 H-NMR spectrum of both starting pyrrolidine 333c and product 335c, the 

disappearance of the CHOH peak at 4.57 ppm (minor diastereoisomer) and 4.27 ppm (major 

diastereoisomer) as well as the disappearance of the 2-H peak at 3.36-3.29 (Major and minor) in 

the product 335c ’H-NMR spectrum can be clearly seen. What can also be seen is the 

appearance of the pyrrole peaks at 6.33 ppm and 5.81 ppm in the pyrrolizine 335c 1 H-NMR 

spectra. What can also be seen from the 'H-NMR spectrum of the crude pyrrolizine 335c is that 

there are no impurities in the product. This is a common feature with many of the silver 

cyclisations of a range of heterocyclic precursors and highlights the elegance of the reaction 

towards these heterocycles.
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Figure 21:1 H-NMR o f starting pyrrolidine 333c and pyrrolizine 335c.

Equally the Boc-protected piperidine 332a was successfully deprotected and cyclised crude to 

give the indolizine 336a in 86% yield over two steps, highlighting the flexibility of this method 

towards the cyclisation of impure precursors with no detriment to yield (Figure 22).
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Figure 2 2 :1 H-NMR o f starting Boc-piperidine 333a andfinal product 335a (Indolizine).

Another interesting and yet suprising observation came from the successful cyclisation of both 

substrates 333b and 333c using copper(II) acetate in toluene at reflux. The cyclisations were 

achieved in 4 hours and gave only the pyrrolizines in high yields of 89% and 90% repectively 

for 335b and 335c (Table 18).

106



Table 18: Cyclisations under reflux using copper(II) acetate in toluene. 

R1
^  0.1 eq Cu(OAc)2

OH
Toluene, reflux

333 335

Starting material R1 Product Yield (%)

333b Bu 335b 89

333c Ph 335c 90

4.3.4.4 Limitations.

The attempted Boc deprotection of both 331e and 331f were unsuccessful using trifluoroacetic 

acid (Scheme 107) resulting in an indistinguishable mixture of products and great loss. A 

solution to this problem could be found by changing the method of Boc removal to a milder or 

non acidic method such as heating, or by changing the protecting group to an Alloc group 

which can be removed using a palladium(O) catalyst and in the presence of a nucleophilic trap.

R1 20% TFA, .R1✓ dgm r \  /
N 1 N
Boc OH H OH

331 e where R1 = CH20TBS 333e and 333f
331f where R1 = C 02Et

TMS 10 %
^  AgN03. Si02 j r \

333d 335d
TMS

, /  qy jar qy
Boc OH Me0H Boc OH H OH

8 1 %

331 d 338 339

Scheme 107: Some unsuccessful results.
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Another limitation is that exposure of pyrrolidine 333d to 0.1 equivalents of 10% AgNC>3.Si02 

gave no pyrrolizine 335d, even after prolonged exposure (30 h). Increasing the silver(I) to 0.5 

equivalents and even to one equivalent no product 335d was observable by ‘H-NMR analysis. 

Removal of the trimethylsilyl group proceeded successfully to give the terminal alkyne 338 in 

81% yield, however, attempts to remove the Boc group resulted in an ill-defined mixture of 

products and great loss.

4.3.4.5 Future work.

Future avenues for the chemistry include the synthesis of 3,5-disubstituted pyrrolizines 346 and 

indolizines 347 (Scheme 108), This would involve oxidising the 2-hydroxy-2-propargylic 

pyrrolidines 334 or piperidines 334 to give the propargylic ketones 340 or 341, followed by 

addition of a Grignard reagent such as methyl magnesium bromide to give the tertiary 

propargylic alcohol 342/343. This would then be followed by removal of the Boc group to give 

the free amines 344/345 which could be an issue with a sensitive tertiary propargylic alcohol. If 

this were to be an issue then maybe changing the protecting group would be a good strategy 

such as replacing the Boc group with an Alloc group.

' O - /
Boc OH

333 (n = 1)
334 (n = 2)

[O]

Boc o

340 (n = 1)
341 (n = 2)

R2MgBr

N
Boc OH

342 (n = 1)
343 (n = 2)

Deprotect

344 (n = 1)
345 (n = 2)

1 0 %
A g N 0 3 . S i 0 2

DCM <̂ b r R 2
R1

346 (n = 1)
347 (n = 2)

Scheme 108: Proposed synthesis o f 3,5-substitutedpyrrolizines 346 and indolizines 347.

108



Other possibilities (Figure 23) include allowing for functionality around the saturated ring 348 

to be incorporated, as well as a possible extention of the chemistry into smaller or larger ring 

systems such as pyrrolo-azepines 349 (7,5-fused rings) and pyrrolo-azocines 350 (8,5-fused 

rings) which would be of great interest.

R1 R1
351 352

Figure 23: Future avenues for the pyrrolizine and indolizine chemistry.

Another interesting facet was the successful cyclisations of pyrrolidines 333b and 333c using 

copper(II) acetate in toluene (Table 18) to give pyrrolizines 335b and 335c. Due to the success 

of these reactions, further examples would need to be assessed. This success also suggests that 

isolation of hydroxydihydropyrrolizines 351 and hydroxydihydroindolizines 352 (Figure 23) by 

use of Sharland’s chemistry2 may be possible. All this of course opens up a wide area of 

chemistry waiting to be explored giving possible access to new structures, natural targets and 

potential drugs.

4.3.4.6 Possible applications to natural products.

The chemistry that leads to the core structure of the pyrrolizines and indolizines can give access 

to a wide range of polycyclic compounds many of which can be found in nature. Many of these 

compounds possess potent biological activity and have found uses for the treatment of many 

diseases.
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Epohelmin A and B 
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(+/-)-Monomorine
357a

Ph
NH2

Br
.HCI

O
Dibromophakellstatin

354

Br
ML-3000

356

Dibromoisophakellin
353

Figure 24: Some important biologically active natural and synthetic fused-pyrroles.

Examples include the phakellin family of compounds including dibromoisophakellin 353109 

isolated from the sponge Accmthella carteri and dibromophakellstatin 354110 which was isolated 

from Phakellia mauritiana, which showed potent anti-tumor activity in a large range of human 

cells. Others include Epohelmin A and B 355111'112 that display lanosterol synthase inhibition, 

as well as ML-3000 356113 that is a cyclooxygenase and 5-lipoxygenase inhibitor and 

Monomorine 357a114 (Figure 24).

As can be seen upon inspection of the structures of the pyrroles (Figure 24), the core of these 

compounds contains a pyrrole or pyrrolidine ring that is fused at the nitrogen and at C-l to a 

saturated cyclohexane or cyclopentane ring that has some functionality attached. By elaboration 

of the chemistry used to synthesise the pyrrolizines and indolizines reported in this thesis, 

access to these highly biologically active compounds could be achieved. In particular a 

similarity between Monomorine 357a and 357b and substrate 336a can be clearly seen so 

extension of this chemistry should lead to this natural product (Figure 25).



Figure 25: Comparison o f Monomorine 349a/349b and indolizine 335a.

The alkaloid Monomorine is an important indolizine alkaloid, two isomers in particular: 

Monomorine I 357a as above was isolated from the ant Monomorium phataonis and its epimer 

357b was isolated from the skin of the poisonous frog Dentrobates histrionicus (Figure 25). A 

seven step synthesis of (+/-)-Monomorine I was carried out by Echavarren and co-workers.115 

Starting from 2-methylpiperidine 358, the synthesis (Scheme 109) involves TROC (2,2,2- 

trichloroethoxycarbonyl) protection with the chloroformate (TROC-C1), followed by oxidation 

using ruthenium(III) chloride to give the lactam 359.

This is then followed by ring opening hydrolysis by heating in water to give the acid 360, 

followed by formation of acid chloride using thionyl choride and then palladium-catalysed 

reductive coupling with a (3-stannyl enone to give the dione 361. The reductive-coupling was 

believed to be catalysed by the palladium species and promoted by tributyltin(I) chloride (a by 

product of the coupling reaction). The reduction does, however, appear to be in part thermally 

induced as reduction of the temperature to 40 °C for the coupling resulted in isolation of the 

a,P~unsaturated diketone (an intermediate in the reaction step). The reductive cleavage of the 

TROC protecting group was then carried out using cadmium in a 1:1 mixture of acetic acid and 

dimethyl formamide to give the indolizine 362. Finally, hydrogenation using ruthenium on 

carbon resulting in a 2:2:1 mixture of Monomorine I 357a and two of its diastereomers 357c 

and 357d respectively with an overall yield of 20% for the mixture.



1. TROC-CI

NHTROC

Cd,
Bu HOAc-DMF

2. (E)-Bu3SnCH=CHCOBu, 
Pd(PPh3)4, dioxane, 100 °C NHTROC

357a 357c 357d

Scheme 109: Echavarren and coworkers synthesis o f Monomorine I  and two o f its

diastereomers.

Similarly Mori and coworkers116 reported a three step synthesis of (+/-)-Monomorine I using 

nitrogen fixation as a key step to give Monomorine I 357a in 6% overall yield as a mixture with 

other diastereoisomers to give a total overall yield of 10%.

Using the disconnection approach (Figure 26) it would seem that the route used for the 

synthesis of pyrrolizines and indolizines developed herein could be applied to the synthesis of 

the natural product Monomorine. A look at the commercial compounds found a suitable starting 

material, this being 6-methyl piperidine-2-carboxylic acid 363 which is available as a 

diastereomeric mixture. This would of course result in a racemic mixture of monomorine and 

its isomers.

OH

H

Figure 26: Retrosynthesis o f monomorine.
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Starting from commercially available 6-methylpiperidine 2-carboxylic acid 363 (Scheme 110), 

Boc protection to give the carbamate 364 would be followed by conversion into the aldehyde 

365. Care to prevent epimerisation would not need to be taken as cyclisation would result in all 

but one of the stereocentres being removed. Addition of the Grignard reagent derived from 1- 

hexyne would give A-Boc protected l-(6-methylpiperidin-2-yl)hept-2-yn-l-ol 366 which would 

then undergo deprotection to give l-(6-methylpiperidin-2-yl)hept-2-yn-l-ol. Cyclisation would 

then be carried out using 10% silver nitrate on silica gel to give the indolizine 362 as previously 

reported. Subsequent reduction using a catalyst such as ruthenium on carbon would produce the 

natural product monomorine I and its diastereomers 357. The advantages of this suggested route 

are that the preparation of the indolizines has proven to be very successful and high yielding 

with the synthesis of the indolizine 336a having an overall yield of 41% in 5 steps starting from 

piperidine 2-methanol 337. The subsequent and final step would be the hydrogenation using the 

ruthenium catalyst which in the example shown by Echavarren gave monomorine I and its 

isomers in a yield of 60% (for the one step). Another possibility would be to start from 6- 

methyl-pyridine-2-methanol and apply the same methodology, however attempts to cyclise onto 

aromatic systems using this method has yet to be carried out and is a possibility for future work.

Red/Ox(Boc)20

364
Deprotect 
then Ag(l)Grignard Reduce

366 362 357

Scheme 110: Proposed route to monomorine I  and its diastereomers.

Another possible application of the chemistry could be towards the synthesis of the drug 

ML-3000. A non-steroidal dual inhibitor of both cyclooxygenase and 5-lipoxygenase it has 

shown great potential for the treatment of arthritis. Previous methods for the synthesis have 

proven low yielding with an original method resulting in 5% yield of ML-3000 356.117 Cossy 

and coworkers118 improved upon the synthesis by using an 8 step process to give ML-3000 356 

in 19% overall yield, with the key step being the acid-promoted bicyclisation of a co-acetylenic 

amino-ester.
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Scheme 111: A proposed synthesis o f ML-3000 356.

The new proposed synthesis (Scheme 111) would involve starting from cheap commercially 

available isopropyl cyanide 367 (£17.40 per 100 ml). Deprotonation using a base such as LDA 

followed by addition with allyl bromide 368 would give the 2,2-dimethylpent-4-enenitrile 369. 

This would then be followed by reduction using lithium aluminium hydride to give the amine 

370 which would then be protected using Boc anhydride to give the carbamate 371. This would 

be followed by epoxidation using /wCPBA to give the epoxide 372. Then deprotonation of the 

carbamate 372 with a hindered base such as LDA would then result in attack on the epoxide to 

give the alcohol 373, which would then be oxidised to the aldehyde 374. The aldehyde would 

then be reacted with an acetylenic Grignard reagent followed by oxidation to give the 

propargylic ketone 375. Addition of phenylmagnesium bromide to the ketone would give the 

tertiary alcohol 376. The tertiary alcohol would then undergo deprotection, followed by
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cyclisation using catalytic (0.1 eq) 10 % AgNC>3.SiC)2 to give the disubstituted pyrrolizine 377. 

Iodination in the C-4 position of pyrrolizine 377 followed by palladium catalysed coupling with 

the Grignard of 1,4-dichlorobenzene to give the trisubstituted pyrrolizine 378. The alcohol 

moiety of the pyrrolizine 378 could then undergo deprotection and oxidation to give the final 

product ML-3000 356.

4.3.5 Application of the silver-mediated cyclisation towards a natural product.

4.3.5.1 Introduction to pyrrolostatin

A wide range of heterocycles have been synthesised by silver-based 5-ewdo-dig cyclisation. Its 

wide ranging application has allowed for the synthesis of pyrroles, pyrrolizines, 

tetrahydroindolizines, indoles and pyrazoles in generally high yields (>95%).

Due to the success of the cyclisation of a wide range of model substrates, this raised the 

question of whether this could be applied to the synthesis of a specific target such as a natural 

product. There has been a hive of activity of late in the area of lipid peroxidation119 and an ever 

growing interest in its inhibition by antioxidants. This growing interest has been fuelled by an 

increase in the number of sufferers of heart disease due to a combination of a bad diet and a 

sedentary lifestyle. This has therefore become big business for the pharmaceutical industry. One 

drug in particular which is known to treat this condition is Atorvastatin,80 the highest selling 

drug of 2006 grossing Pfizer $12.9 billion. One particular compound which we will be focusing 

on was isolated from Streptomyces chrestomyceticus120 was shown to display lipid peroxidation 

inhibition activity on a par with Vitamin E (a-Tocopherol). This novel compound known as 

pyrrolostatin 379 (Figure 27) is a 2,4-disubstituted pyrrole with a carboxylic acid in position 2 

and a geranyl residue in position 4.

379

Figure 27: Natural lipid peroxidation inhibitor pyrrolostatin 379.

Syntheses of 2,4-disubstituted pyrroles are few and far between and only a handful of methods 

have been established.121'122 The silver(I) and copper(II)-mediated cyclisation methodologies
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have been shown to be suitable for the synthesis of 2,4-disubstituted pyrroles as the synthesis of 

313i and 313j has shown {cf. Section 4.3.2.6, pg. 87-88 and Section 4.3.2.8, pg 89-90).

4.3.5.2 Previous synthesis of pyrrolostatin

Ono and coworkers123 reported the only previous synthesis of pyrrolostatin 379 by a seven step 

sequence starting from geraniol 380 (Scheme 112). The sequence involved conversion of 

geraniol 380 into homo-geraniol 381 followed by substitution to give the iodide 382 in 90% 

yield. This was then converted to the nitroalkane 383 in 66% yield, which underwent coupling 

with formaldehyde to give the p-nitro-alcohol 384 in 68% yield. This was then treated with 

acetic anhydride to give the p-nitro-acetate 385 in 98% yield. The next step was a Barton-Zard 

reaction122 to give the pyrrole-2-carboxylate 386 in a very low yield of 18%. Finally, hydrolysis 

using lithium hydroxide gave the pyrrolostatin 379 in 73% yield as a yellow crystallisable solid 

resulting in an overall yield of 5%.

380

1. (COCI)2, DMSO, 
DCM,

2. CH2=PPh3l THF

3. (Sia)2BH,H20 2, 
NaOH, THF

NaN 02, urea, 
phlorogrucinol,

DMSO, 66 %

381

1. MsCI, Et3N

2. Nal, 
acetone, 90 %

HCHO, Et3N. 

68%

382 383

OH

NO

384

Ac^O,
Pyridine

98%

LiOH
aq dioxane 

73%

385

OAc CNCH2C 0 2Et, 
DBU

18%

386 379

Scheme 112: Ono and co-workers synthesis o f pyrrolostatin 379.
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4.3.5.3 Proposed syntheses of pyrrolostatin

Using the silver-mediated approach to pyrrole synthesis, it was necessary that a key step for our 

projected pyrrolostatin synthesis be the nucleophilic attack of an amine onto the sp centre (an 

alkyne). A look at the disconnection of pyrrolostatin (Scheme 113) shows that in order get the 

2,4-disubstituted pattern the required structure of the pyrrole precursor would have to be that of 

the mono-protected diol 387. It was then important to consider the nature of the acetylide. The 

acetylide would of course have to be introduced as the nucleophile and the electrophile would 

therefore be the ketone 388. But in what form would the acetylide be introduced? If the 

acetylide was introduced as the acid then it probably would not cyclise due to it being too 

electron deficient. A means of overcoming this issue would be to have the acetylene introduced 

as the protected alcohol 389 as it was believed that this group would have no issues in regards 

to cyclisation with silver(I). The acetylide would be deprotonated by means of a nucleophilic 

base such as ethylmagnesium bromide or wbutyl lithium, which would then be added to the 

ketone. With the acetylene 389 and ketone 388 decided upon it was then necessary to ascertain 

how the geranyl group would be introduced and two possible pathways were determined. The 

geranyl group would either need to be introduced as an electrophile or as a nucleophile.

H

TBDMSO,

TBDMSO

NHR + ^r^O T B D M S

388 389

Scheme 113: Retrosynthesis o f pyrrolostatin: ketone 388 as electrophile and alkyne 389 as

nucleophile
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An obvious choice would be by disconnection to introduce the geranyl as a nucleophile. This 

route could start from a masked glycinate derivative, which would undergo protection and 

oxidation to give the A-protected amino aldehyde 390. Introduction of the geranyl group as a 

nucleophile would require either the lithium or Grignard reagent 391 (Figure 28). This at first 

glance looks like an ideal method to access pyrrolostatin; however, upon closer inspection 

problems with introducing this part as a nucleophile can be clearly seen. The geranyl moiety is 

an allylic nucleophile, in other words a negative charge next to an alkene. This could present 

problems as the negative charge could be displaced across the allylic system and upon 

nucleophilic attack onto the amino aldehyde (masked glycinate) would result in a mixture of 

regioisomers which are likely to be inseparable. Due to sterics it is likely that the desired 

Grignard would be the major product from the transmettalation. However, we felt that due to 

the possible issue of regioselectivity this was perhaps not the best route.

  RHN^ ^ 0

O

388 391 390

Figure 28: Geranyl bromide as a nucleophile-possible route to pyrrolostatin.

In order to eliminate the issue of regioselectivity the other possible route would be to have the 

geranyl moiety as the electrophile and hence the amino alcohol component would be the 

nucleophile. Examination of the literature revealed a possible solution in the form of a masked 

glycinate. Work carried out by Seebach and co-workers124 showed the use of the desired amino 

aldehyde masked as a dithiane which by lithiation of the dithiane, resulted in generation of the 

required nucleophile (an example of an Umpolung reagent). The nucleophile (intermediate) 

probably exists as a tight monomeric complex 392 (Figure 29) or possibly a dimeric species.

/ — S / N I

C y - 6' — S Li—’O
\

392

Figure 29: Monomeric complex o f nucleophile 392.

This was followed by the addition of DMPU (a safe alternative to HMPA) which complexes 

strongly with lithium breaking up the intermediate complex 392 rendering it much more 

nucleophilic. This was then reacted with an appropriate electrophile with a good leaving group 

to give a product. A range of electrophiles have been used with this chemistry including
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triflates, sulfonates, epoxides alkyl, aryl and allyl halides.125 In other words having the geranyl 

bromide as the electrophile seems much more attractive and we therefore set out to incorporate 

this methodology into our synthesis of pyrrolostatin.

4.3.5.4 Our synthesis of pyrrolostatin

Our proposed synthesis of pyrrolostatin involved the initial protection of commercially 

available aminoacetaldehyde dimethyl acetal (effectively a masked glycinate) 393 

(Scheme 114) with methyl chloroformate which gave methyl 2,2-dimethoxyethylcarbamate 394 

as a pure orange oil in 93% yield. This was then followed by exchange of the acetal group with 

a dithiane using propane-1,3-dithiol and the Lewis acid boron trifluoride-diethyl etherate to 

give the dithiane 395 as a colourless solid (93%). This was then followed by the chemistry 

outlined by Seebach, which involved coupling of the dithiane 395 and an electrophile with a 

good leaving group which in this case was geranyl bromide 396. This successfully gave the 

desired product 397 in 88% yield as an orange oil. It is important to note that not using the 

DMPU resulted in no product being formed and a large amount of starting dithiane being 

recovered with a mixture of unidentified by-products. The benefits of the method were that with 

the dithiane in place, a simple cleavage using a mixture of silver nitrate and 

^V-chlorosuccinimide with a reaction time of only three minutes resulted in the free ketone 398 

in 90-98% yield that was neatly set up ready for the acetylide addition. However, this turned out 

not to be a “simple cleavage”: extension of the reaction time resulted in a very significant 

reduction in yield and by-products formation apparently from the addition of chlorine to the 

alkene groups. It is also worth noting that purification of the ketone 398 was not required and 

any attempt to purify it resulted in a roughly 50% drop in yield. It was only after some 

experimentation that these very specific conditions were discovered. The upside of this is that 

the resulting ketone samples 398 were remarkably clean and suitable for direct coupling with an 

acetylide.

MeCO,CI
Propane- 

1,3-dithiol,
RF« OFt M e02CHN

393 394(96%) 395(88%)

1. 2.1 eq nBuLi
2. DMPU AgN03,

3. Geranial \  § )
bromide (388) Me 0 2CHN

397(89%) 398(96%)

Scheme 114: Proposed synthesis ofpyrrolostatin- the first four steps.
119



The next step was then the addition of the silyl-protected propargyl alcohol 389 to the ketone 

398 and this step also proved to have its own issues. Initial attempts to react the lithium 

acetylide of the propargylic alcohol 389 with the ketone 398 resulted in complete recovery of 

starting material and no detectable product being formed at -78 °C. Although the reaction was 

not fully optimised, by investigation of various set of conditions, the best result for the addition 

of the acetylide 389 to the ketone 389 was found to be addition of the Grignard reagent at 

-15 °C which after 4 hours gave 45% conversion to products according to *H-NMR analysis 

(Table 19).

Table 19: Conditions attempted for the addition o f acetylide 389 to ketone 398.
TBDMSO

X—»
o

NHCCLMe

398

A
OTBDMS

389 HO

399

X Temperature (°C) % conversion to product

Li to CeCh -78 0

Li -78 0

MgBr -78 0

MgBr to ZnCl2 0 0

MgBr 0 Indistinguishable Mixture

MgBr3, -40 25

MgBr3, -15 45

Remaining yield was recovered starting material. % conversion is a crude estimate based on H- 

NMR analysis and are not isolated yields. Results are taken after 4 h.

With this in mind, the best conditions for the acetylide 389 addition to the ketone 389 was 

chosen to be -15 °C as it gave the best result for acetylide coupling and no by-products. Under 

these conditions by extension of the reaction time to 18 hours an increase in yield to 51 % was 

achieved as indicated by !H-NMR analysis of the crude mixture. Upon passing the crude 

mixture through a plug of silica using hexane to pure ethyl acetate as eluent the silyl protected 

diol 399 was isolated, still as a crude mixture with a ratio of 67% diol 399 and 33% ketone 398. 

Further attempts were not made to purify the silyl protected diol 399 due to its sensitivity. This 

gave the mono-protected propargylic diol 399 in a crude yield of 49%. If the starting material 

could be recovered then the yield would increase to 83% (based on recovered starting material),
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although this is based on there being no loss of the diol 399 upon column chromatography, 

which is unlikely.

The next step was initially planned to be the silver-mediated cyclisation of the silyl-protected 

diol 399. However, exposure of this mono-protected diol 399 to 0.1 equivalents of 10% 

AgN0 3 .Si02  gave negligible amounts of pyrrole 400. Worryingly, even exposure to one 

equivalent of the silver reagent gave very poor results (Scheme 115).

HO 1.0 eq 
10% AgN03 SiO:

DCM TBDMSO

399 400

Scheme 115: Unsuccessful silver(I) cyclisation o f protected diol 399.

It was hoped that upon deprotection of the silyl group using tetrabutylammonium fluoride, the 

resulting diol should cyclise successfully. The deprotection strategy proved successfully 

resulting in cleavage of the silyl group to give the deprotected diol 401, albeit with a large 

amount of TBAF in the mixture (Scheme 116).

HO
TBAF (1.0 equiv)MeOoCHN

0 °C to RT

CH2OTBDMS

HO
M e02CHN

CH2OH

399 401 (54%)

Scheme 116: Deprotection o f silyl protected diol 399.

Due to the sensitive nature of tertiary propargylic alcohols, it was felt that column 

chromatography could result in great loss so cyclisation was attempted on this crude mixture. 

Unfortunately the crude mixture would not cyclise even upon exposure to an equivalent of 

silver(I). It was therefore decided that the TBAF residue must be interfering with the 

cyclisation, and this may have been due to the TBAF reacting with the 10% silver nitrate on 

silica to give silver(I) fluoride which it appears is unreactive towards the diol. It was therefore
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decided that, despite the worry of loss, purification became necessary. Upon column 

chromatography, pure diol 401 was isolated in 54% yield. The isolated diol 401 was then 

immediately treated with 0.1 equivalents of 10% silver nitrate on silica gel, which we were 

delighted to find that after three hours the pyrrole 402 was isolated cleanly in >98% yield after 

passing through a plug of celite (Scheme 117). This was a clear case of “rubbish in-rubbish 

out.”

HO
M e02CHN

1.0 eq 
10% AgN03.Si02,

DCM HO

401 402 (100%)

Scheme 117: Cyclisation o f diol 401.

With the core pyrrole now synthesised, it was then necessary to oxidise the pyrrole 2-methanol 

402 to give the corresponding pyrrole-2-carboxylate. A look through the literature led us to one 

particular method as reported by both Corey126 and later expanded upon by Taylor,127 

displaying the successful and experimentally direct oxidation of alcohols to esters by a tandem 

oxidation using manganese(IV) dioxide. The reaction involves the initial oxidation of a 

conjugated alcohol 403 with manganese dioxide to give a conjugated aldehyde 404. The 

aldehyde was then exposed to a mixture of manganese dioxide and sodium cyanide in methanol 

in the presence of acetic acid to give the ester 407 (Scheme 118).

H NaCN,
MnQ2 ^ L AcOH

MnOs CN
MeOH

404

FT ^  'O

406 407

Scheme 118: Corey’s oxidation o f alcohols to conjugated esters.

The reaction involves nucleophilic attack of cyanide anion at the carbonyl centre of the 

aldehyde to form a cyanohydrin 405 thereby effectively regenerating an allylic alcohol. The 

manganese dioxide would then futher oxidise the cyanohydrin 405 to the acyl cyanide 406. The 

acyl cyanide 406 then undergoes acid-catalysed methanolysis to give the conjugated methyl
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ester 407. In the absence of acetic acid yields were found to be lower and reaction times 

extended due to slower methanolysis.

Oxidation of pyrrole-2-methanol 402 with activated manganese(IV) dioxide in hexane gave the 

pyrrole-2-aldehyde 408 very cleanly in three hours at ambient temperature in near quantitative 

yields. The following oxidation using manganese dioxide and sodium cyanide in the presence 

of acetic acid was unexpectedly unsuccessful. Extention of the reaction time to 96 hours 

resulted in no product 409 being formed and only aldehyde 408 being recovered (Scheme 119).

M n02, NaCN, 
MeOH

'2
Hexane

RT, 3 h RT, 96 h
COoMeC 0 2MeC 0 2Me

402 408(100% ) 409(0% )

Scheme 119: Attempted oxidation using Corey’s method.

This was disappointing and it was somewhat suprising that no reaction took place; this may 

have been in part due to resonance reducing its reactivity towards the nucleophile which as a 

result shifts the equilibrium towards the starting materials. In effect by the principle of 

vinylogy, the aldehyde 408 more resembles a formamide (Figure 30).

Figure 30: Resonance of pyrrole-2-aldehyde 408.

As we had the aldehyde 408 in hand which proved to be quite stable (stable to air, weak acid 

and nucleophilic attack by cyanide), we decided to continue and attempt to oxidise the aldehyde 

to the acid. By examination of the literature, a possible method was the oxidation of the pyrrole- 

2-aldehyde to the acid by the use of silver(I) oxide (a harsh oxidant). The procedure proved to 

be applicable to pyrrole-2-aldehydes as an example in the literature proved.128 The in situ 

generation of silver(I) oxide by reaction of silver nitrate with sodium hydroxide gave the
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silver(I) oxide as a brown solid. Addition of the pyrrole-2-aldehyde 408 to the mixture and 

stirring proved to be unsuccessful resulting in an unfortunate indistinguishable mixture of 

products after just three hours. The desired pyrrole 2-carboxylic acid 410 was not detected by 

’H-NMR analysis but only a very small amount of starting aldehyde 408 was detected 

(Scheme 120).

AgN03 

 X—
COoMe

OH
NaOH

408 410

Scheme 120: Unsuccessful oxidation o f pyrrole-2-aldehyde 408 with silver (I) oxide.

It was a case of back to the drawing board to find a more suitable method for oxidising the 

pyrrole 2-aldehyde 408 to the acid 410. A look in the literature found a method that was much 

milder than silver(I) oxide. The reaction known as the Pinnick oxidation129 involved using 

sodium chlorite as the oxidant and potassium dihydrogen phosphate as buffer and in the 

presence of 2-methyl-2-butene as a chlorine scavenger. Under these very popular conditions, 

we were delighted to find the oxidation to be very successful to give almost clean pyrrole 

2-carboxylic acid 410 in 80% yield contaminated with negligible amounts of chlorinated 2- 

methyl 2-butene as a result of trapping the hypochlorite by-products (Scheme 121).

C 0 2Me

408

NaCIQ2 (1.53 equiv.)
KH2P 0 4 (1.76 equiv.)

2-Methyl-but-2-ene
(excess),tBuOH,

0 °C to RT

N
C 0 2Me

410 (80%)

Scheme 121: Pinnick oxidation o f aldehyde 408.

The final step in the synthesis was the removal of the carbamate group to give pyrrolostatin

379. Following on from Ono’s synthesis, we felt that as the use of lithium hydroxide dihydrate

was successful in the cleavage of the pyrrole 2-carboxylate 386, it should successfully cleave

the carbamate of the pyrrole 2-carboxylic acid 410 (Scheme 122). Using this methodology we

were delighted to find that lithium hydroxide successfully cleaved the carbamate at 40 °C to

give clean pyrrolostatin 379 (Figure 31) after work up in 18 hours and in excellent yield (70%).
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Li0H.H20, 
aq dioxane
40 °C to RT

OH OH

410 379 (70%)

Scheme 122: Final step in the synthesis o f  pyrrolostatin 379.

HO,

379

Figure 3 1 :1H-NMR o f  the natural product pyrrolostatin 379.

Analysis of the rH-NMR of the synthesised pyrrolostatin 379 agreed with literature values as 

quoted by Ono and co-workers.123 The melting point of the pyrrolostatin that we synthesised 

was 110-112 °C which was similar to that reported by Ono (Lit. m.p. 117-119 °C). The overall 

yield of the reaction was 15% over ten steps, and when compared with Ono’s result of 5% 

overall yield over seven steps this proves to be a fantastic result and a major improvement in 

yield over Ono’s synthesis.
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4.4 Conclusions.

In conclusion, Sharland’s method for the synthesis of hydroxydihydropyrroles 312 and pyrroles 

3132 has been improved by removal of pyridine as co-solvent and by using the cheaper 

copper(II) catalyst as opposed to copper(I). This made the reaction both much less hazardous 

and also more scalable. The new reaction conditions, although unsuitable for the synthesis of 

hydroxydihydropyrroles 312, gave pyrroles 313 cleanly in relatively short reaction times and in 

high yields (50-98%). The reaction did have some limitations in that so far it only seemed 

applicable to sulfonamides and the pyrolizines 335. The reaction also seemed to be 

incompatible with large bulky groups which can hinder the cyclisation.

In the cases where the copper(II) reaction gave no reaction or very little product 10% 

AgN0 3 .Si0 2  was used giving pyrroles in high yields at ambient temperature. The silver(I)- 

catalysed cyclisation was also shown to be applicable to the synthesis of fused pyrroles 

including anulated pyrroles and the A-junction pyrrolizines 335 and indolizines 336 resulting in 

clean products in high yields with only work-up of a simple filtration. Equally, the 10% 

AgN0 3 .SiC>2 protocol was applicable to the synthesis of the natural product pyrrolostatin 379 

with the key cyclisation step resulting in clean pyrrole in near quantitative yields.

Of course, there are issues that need to be addressed including finding a more suitable method 

for Boc removal of the pyrrolidines 331, in particular those that decomposed. Further extension 

of the A-junction ring systems to include a wider variety of ring sizes and substitution patterns 

would also be of interest for future work. It seems that this method could, using the right 

starting materials, be used to access biologically active compounds such as Monomorine I 357, 

as well as new potentially biologically active compounds.
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Chapter Five

Experimental
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Experimetal

5.1 General experimental:

Solvents and reaction conditions:

All non-aqueous reactions were, unless otherwise stated, conducted using oven or flame-dried 

glassware with dry solvents and under an atmosphere of dry nitrogen. Dry dichloromethane was 

obtained by fresh distillation from calcium hydride. Dry tetrahydrofuran was obtained by fresh 

distillation from sodium wire and benzophenone as indicator. All other dry solvents were 

obtained commercially from Fisher Scientific Ltd.

Reactions conducted at -78 °C were cooled using an acetone-solid carbon dioxide bath. 

Reactions carried out at 0 °C were cooled using an ice-water bath. Heated reactions were 

conducted in a stirred oil bath or heating mantle heated on a hotplate. Unless otherwise stated, 

reactions were stirred magnetically. Evaporated refers to solvent removal using a Buchi rotary 

evaporator with water pump vacuum and water bath at 25 °C. Overnight refers to stirring for 

18-24 hours.

Purifications and TLC\

Silica gel chromatography and filtration was performed using Matrex Silica (35-70 pm). All 

reactions were monitored by tic, using Merck silica gel 60 F254 pre-coated aluminium-backed 

plates and were visualised using ultraviolet light, potassium permanganate or ammonium 

molybdate.

M.p. data:

All melting points (m.p. °C) were determined on a Kofler hot-stage apparatus and are 
uncorrected.

IR data:

Infrared spectra were obtained using a Perkin Elmer 1600 series FourierTransform Infrared 

Spectrometer as a solution in dichloromethane (DCM), chloroform (CHC13) or neat.
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NMR data:

8h refers to proton ('H)-NMR and 8c refers to carbon (13C)-NMR and unless otherwise stated, 

NMR spectra were recorded on a Bruker DPX 400 instrument with 'H-NMR recorded at 400 

MHz and 13C-NMR recorded at 100 MHz. NMR spectra recorded at 500 MHz were recorded 

using a Bruker DRX 500 instrument with *H-NMR recorded at 500 MHz and ,3C-NMR 

recorded at 125 MHz. Unless otherwise stated spectra were obtained from dilute solutions in 

deuteriochloroform and at 300 K. The abbreviations used for multiplicity are: singlet (s), 

doublet (d), triplet (t), quartet (q), pentet (pent.), septet (sept.), hextet (hex.), unresolved 

multiplet (m) or combinations. Apparent (app.) refers to overlapping peaks appearing to display 

a given multiplicity. Coupling constants (J values) are expressed in Hertz. Chemical shifts are 

reported relative to residual, undeuterated solvent (e.g.residual chloroform, 7.27 ppm in proton 

NMR).

Mass spectrometry

Mass spectra were recorded on a Waters GCT premier instrument using electron ionisation [El], 

and recorded on a Waters LCT premier XE instrument using atmospheric pressure chemical 

ionisation [APCI] and electrospray techniques [ES]. Accurate high resolution mass 

spectrometric data were determined using the HRMS Service at Cardiff University, with the 

molecular formula corresponding to the observed signal using the most abundant isotopes of 

each element. The molecular formulae is quoted as either molecule (M), molecule + hydrogen 

(M+H)+, molecule + potassium (M+K)+, molecule + sodium (M+Na)+ or molecule - water 

(M-H20).

X-ray crystallography

X-ray crystal data were obtained from Dr Benson Kariuki at Cardiff University. Data was 

recorded on a Nonius Kappa CCDD diffractometer equipped with an Oxford Cryosystem 

cryostat. In general structures were solved by direct methods with additional light atoms found 

by Fourier methods. Hydrogen atoms were added at calculated positions and refined using a 

riding model. Anisotropic displacement parameters were used for all atoms other than 

hydrogen; hydrogen atoms were given isotropic displacement parameters equal to 1.2 or 1.5 

times the equivalent isotropic displacement of the atom to which the hydrogen atom is attached.
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Literature compounds

Compounds with references associated within the title compound are known compounds and 

any data recorded in this thesis matches well with those reported in the associated references.
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5.2 Experimental for the synthesis of indoles

General procedure A for Sonoeashira coupling130

Palladium on carbon (0.04 equiv), copper iodide (0.05 equiv), triphenylphosphine (0.2 equiv) 

and an aromatic halide (1.00 equiv) were suspended in a mixture of triethylamine (~1-1.5 ml 

per mmol of halide) and water (2-3 ml per mmol of halide) and stirred for 20 min. This was 

followed by the addition of a 1-alkyne (1.50 equiv) and the solution was then refluxed 

overnight. Upon cooling to ambient temperature, the resulting mixture was passed through a 

plug of silica to remove the metal and the silica was washed with ethyl acetate. The combined 

filtrates were washed with 2M hydrochloric acid (2 x volume of mixture), water (2 x volume of 

mixture) and brine (1 x volume of mixture) then dried over sodium sulphate, filtered and 

evaporated to yield the 2-alkynyl aniline which was usually sufficiently pure for use in the next 

step.

General procedure B for TV-tosvlation of2-alkvnvl anilines131

A solution of a 2-alkynyl aniline (1.00 equiv) in dichloromethane (-5-6 ml per mmol of aniline) 

was stirred for ten minutes before the addition of pyridine (2.00 equiv). The reaction was stirred 

for 15 minutes followed by the addition of /?-TsCl (1.10 equiv). The reaction mixture was 

allowed to stir for a further 18h at room temperature, then was diluted with ethyl acetate (2 x 

volume of mixture) and washed with concentrated aqueous copper(II) sulphate (2 x volume of 

mixture). The aqueous layer was then back-extracted with ethyl acetate (3 x volume of 

mixture). The combined organic solutions were then washed with brine (1 x volume of mixture) 

then dried over sodium sulphate, filtered and evaporated. The crude mixture was then purified 

by column chromatography to yield the pure vV-tosyl protected 2-alkynyl aniline.
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General procedure C for Cyclisation using 10% AgNOi.SiO?

In a flask wrapped with metal foil, 10% w/w silver nitrate on silica gel (0.10 equiv) was added 

to a stirred solution of an ^-protected 2-alkynyl aniline (1.00 equiv) in dry dichloromethane (20 

mL g'1). The resulting suspension was stirred for 18-48 h then filtered through celite and the 

solvent evaporated to yield the indole.

l-Iodo-3,7-dimethy!oct-6-ene 131

130 131

A solution of triphenylphosphine (7.40 g, 28.1 mmol) and imidazole (3.92 g, 57.6 mmol) in dry 

dichloromethane (40 ml) was stirred at ambient temperature until the solids dissolved. Iodine 

(6.82 g, 26.9 mmol) was added and the mixture was stirred for 15 min and was followed by the 

addition of citronellol 130 (2.00 g, 12.8 mmol). The mixture was then allowed to stir for 3 h, 

then quenched by the addition of water (10 ml) and extracted with diethyl ether (3 x 20 ml). 

The combined organic solutions were then washed with saturated aqueous sodium thiosulphate 

( 2 x 1 0  ml) the mixture stirred and then dried, filtered and evaporated to give a white solid. 

Hexane (2 x 40 ml) was added and the solution was decanted from the solid and then 

evaporated to leave a clear oil of citronellyl iodide 131 (3.01 g, 88%); 5h 5.11 (1H, app t, J  7.1, 

6-H), 3.27 (1H, td, J5 .8 , 4.4, 1-HA), 3.22-3.16 (1H, m, 1-HB), 2.07-1.86 (2H, m, 5-CH2), 1.71 

(3H, s, 7-Me), 1.70-1.64 (1H, m, 3-H), 1.63 (3H, s, 7-Me), 1.41-1.28 (2H, m, 2-CH2), 1.28-1.15 

(2H, m, 4-CH2), 0.91 (3H, d, J 6 .5, 3-Me).
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5,9-Dimethyldec-8-en-l-yne 1321

131 132

According to the established procedure,132 lithium acetylide-diethylamine (0.90 g, 9.70 mmol) 

and dry dimethyl sulfoxide (10 ml) was stirred for 10 min to make a slurry. This was then 

cooled to 8 °C and citronell iodide 131 (2.00 g, 7.51 mmol) was added then the reaction was 

allowed to warm to room temperature and stirred for a further 1 h. Water (20 ml) was then 

added carefully and the product was extracted with hexane (3 x 20 ml) The combined extracts 

were dried, filtered and evaporated to give the 1-alkyne 132 as a clear oil (1.15 g, 93%); 5h 

5.05-5.00 (1H, app. t, J  7.1, 8-H), 2.21-2.05 (2H, m, 3-CH2), 1.98-1.87 (2H, m, 7-CH2), 1.86 

(1H, t, J2.6, 1-H), 1.61 (3H, s, 9-Me), 1.54 (3H, s, 9-Me), 1.53-1.44 (2H, m, 4-CH2), 1.32-1.19 

(2H, m, 6-CH2), 1.13-1.03 (1H, m, 5-H), 0.82 (3H, d, J6.6, 5-Me).

tert- Butyl 2-iodophenylcarbamate 134133

NH2 NHBoc

133 134

According to the established procedure134 a solution of 2-iodoaniline 133 (3.00 g, 13.7 mmol) 

in tetrahydrofuran (80 ml) was cooled to -78 °C and a 2M solution of NaHMDS in 

tetrahydrofuran (13.70 ml, 27.39 mmol) was added dropwise. The mixture was allowed to stir 

for 0.5 h at -78 °C before warming to room temperature for 0.5 h. The solution was then re­

cooled before the dropwise addition of Boc20  (3.02 g, 13.8 mmol) in tetrahydrofuran (20ml). 

The mixture was stirred at -78 °C for 0.25 h before being quenched with saturated aqueous 

ammonium chloride. The solution was then allowed to warm to room temperature, followed by 

extraction with ethyl acetate (3 x 20 ml). The organics were washed with brine (2 x 20 ml), 

dried with sodium sulphate, filtered and evaporated to give crude orange oil. Column 

chromatography using 10% ethyl acetate in hexane afforded the Boc-protected aniline 134 as a 

yellow oil (4.00 g, 92%); tW cm '1 (DCM): 3395, 3054, 2984, 2303, 1734, 1588, 1516, 1432,
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1369, 1265, 1156, 1062; 6H 7.89 (1H, d, 78.1, CH (Ar)), 7.58 (1H, d, 78.0, CH (Ar)), 7.15 (1H, 

t, 78.0, CH (Ar)), 6.66 (1H, s, NH), 6.61 (1H, t, 77.9, CH (Ar)), 1.38 (9H, s, 3 x CH3C).

terf-Butyloxycarbonyl 2-(2-phenylethynyl)aniline 135135

NHBocNHBoc

134 135

According to the general procedure A, phenylacetylene (0.50 ml, 4.70 mmol) was added to a 

solution of /butyl 2-iodophenylcarbamate 134 (1.00 g, 3.13 mmol), triphenylphosphine (0.17 g, 

0.63 mmol), copper iodide (0.03 g, 0.18 mmol), and 10% palladium on carbon (0.13 g, 0.12 

mmol) in a 1:2 mixture of water and triethylamine (15 ml) to give the 2-alkynyl aniline 135 as a 

yellow solid (0.90 g, 98%); m.p. 58-59 °C (lit. m.p.134 62-65 °C) Dmax/cm1 (neat) 3406 (NH), 

2978, 1734 (C=0), 1579, 1516, 1449, 1367, 1305, 1241, 1220, 1155, 1049, 753; 5H 8.09 (1H, d, 

7  8.4, CH (Ar)), 7.49-7.44 (2H, m, 2 x CH (Ar)), 7.33-7.23 (5H, m, 5 x CH (Ar)), 6.92 (1H, t, 7

8.0, CH (Ar)), 1.47 (9H, s, 3 x CH3C); 6C 152.7 (C=0), 139.5 (C), 132.5 (CH (Ar)), 131.6 (CH 

(Ar)), 129.7 (2 x CH (Ar)), 128.8 (CH (Ar)), 128.5 (2 x CH (Ar)), 122.2 (CH (Ar)), 121.8 (C),

117.6 (CH (Ar)), 96.1 (C=C), 84.6 (C), 80.9 (C), 28.4 (3 x CH3C).

Methyl 2-iodophenylcarbamate 136

NHCOoMe

133 136

A solution of 2-iodoaniline 133 (2.00 g, 9.13 mmol) and pyridine (2.20 ml, 27.4 mmol) in

dichloromethane (50 ml) was cooled to 0 °C before the addition of methyl chloroformate (0.70

ml, 9.13 mmol). The reaction mixture was allowed to warm to ambient temperature and stirred

overnight. The mixture was then diluted with dichloromethane (100 ml) washed with 0.2M

hydrochloric acid (2 x 20 ml), water (3 x 20 ml) and brine (20 ml), dried with sodium sulphate,

filtered and evaporated to give the carbamate 136 as an orange oil (2.20 g, 87%); Dmax/cm'1

(DCM): 3396, 3054, 2980, 2303, 1740, 1587, 1522, 1439, 1265, 1217, 1078; 5H 8.07 (1H, d, 7
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8.2, CH (Ar)), 7.78 (1H, dd, J  8.0, 1.5, CH (Ar)), 7.36 (1H, td, J  7.9, 1.5, CH (Ar)), 6.98 (1H, s, 

NH), 6.82 (1H, td, J7 .9 , 1.6, CH (Ar)), 3.83 (3H, s, Me); 5C 153.9 (C=0), 138.9 (CH (Ar)), 

138.4 (C), 129.3 (CH (Ar)), 125.2 (CH (Ar)), 120.4 (CH (Ar)), 88.9 (C), 52.6 (CH3); m/z (El) 

277 (M+, 100%), 245 (100%), 217 (90%) [Found: [M]+, 276.9602. C8H8N 02I required: M, 

276.9600].

A-Methyloxycarbonyl 2-(hex-l-yn-l-yl)aniIine 137

NHC02MeNHC02Me

136 137

According to the general procedure A, 1-hexyne (0.60 ml, 5.41 mmol) was added to a solution 

of methyl 2-iodophenylcarbamate 136 (1.00 g, 3.61 mmol), triphenylphosphine (0.19 g, 0.72 

mmol), copper iodide (0.03 g, 0.18 mmol), and 10% palladium on carbon (0.15 g, 0.14 mmol) 

in a 1:2 mixture of water and triethylamine (15 ml) followed by work-up to give the 

2-alkynyl aniline 137 as a yellow oil (0.82 g, 98%); Vmax/cm’1 (neat) 3396, 2957, 2872, 1744, 

1581, 1522, 1452, 1308, 1233, 1065, 754; 5H 8.04 (1H, d, J  8.2, CH (Ar)), 7.37 (1H, s, NH), 

7.27-7.18 (2H, m, 2 x CHAr), 6.88 (1H, t, J7.6, CH (Ar)), 3.71 (3H, s, Me02C), 2.41 (2H, t, J

7.0, l ’-CH2), 1.55 (2H, quintet, J 1  A, 2’-CH2), 1.43 (2H, sextet, J 12,  3’-CH2), 0.89 (3H, t, J  

12, 4’-CH3); 5c 153.8 (C=0), 139.0 (C), 131.7 (CH (Ar)), 128.7 (CH (Ar)), 122.4 (CH (Ar)),

117.3 (CH (Ar)), 112.2 (C), 97.8 (C=C), 75.8 (C=C), 52.4 (Me02C), 30.8 (1 ’-CH2), 22.1 (CH2),

19.3 (CH2), 13.6 (4’-CH3); m/z (ES) 232 (M+H+, 100%); [Found: [M+H]+, 232.1340. 

Ci4H18N 02 requires: M+H, 232.1338].

iV-(2-Iodophenyl)acetamide 138136

NH2 NHAc

133 138

A solution of 2-iodoaniline 133 (1.00 g, 4.56 mmol) and pyridine (0.80 ml, 9.13 mmol) in 

dichloromethane (25 ml) was cooled to 0 °C before the addition of acetyl chloride (0.35 ml,
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4.56 mmol). The reaction mixture was allowed to warm to ambient temperature and stirred 

overnight. This was followed by the addition of aqueous sodium carbonate (5 ml), followed by 

washing with water (2 x 20 ml) and brine (20 ml). The solution was then dried over sodium 

sulphate, filtered and evaporated to give the amide 138 as a white solid (1.01 g, 85%); m.p. 

104-106 °C (lit. m.p.137 109-110 °C); 8H 8.24 (1H, d, J  8.2, CH (Ar)), 7.80 (1H, d, J  8.1, CH 

(Ar)), 7.43 (1H, s, NH), 7.37 (1H, t, J  7.9, CH (Ar)), 6.87 (1H, t, J7 .9 , CH (Ar)), 2.27 (3H, s, 

CH3Ac).

A-Acyl 2-(2-phenylethynyl)aniline 139138

^ ^ ^ N H A c

138 139

According to the general procedure A, phenylacetylene (0.60 ml, 5.70 mmol) was added to a 

solution of 7V-(2-iodophenyl)acetamide 138 (1.00 g, 3.80 mmol), triphenylphosphine (0.20 g, 

0.76 mmol), copper iodide (0.04 g, 0.19 mmol), and 10% palladium on carbon (0.16 g, 0.15 

mmol) in a 1:2 mixture of water and triethylamine (15 ml) to give the 2-alkynyl aniline 139 as a 

white solid (0.60 g, 67%); m.p. 119 °C (lit. m.p.131 119-120 °C); 8H 8.33 (1H, d, J  8.4, CH 

(Ar)), 7.91 (1H, s, NH), 7.48-7.45 (2H, m, 2 x CH (Ar)), 7.43-7.40 (1H, m, CH (Ar)), 7.34-7.31 

(3H, m, 3 x CH (Ar)), 7.30-7.25 (1H, m, CH (Ar)), 7.00 (1H, t, J  7.6, CH (Ar)), 2.17 (3H, s, 

CH3Ac); m/z (El) 235 (M+, 40%), 193 (100%); [Found: [M]+, 235.0999. Ci6H13NO requires: M, 

235.0997].

NHAc

2-Iodo-A-methylbenzenamine 140139

•' ^  / I

133 140

According to the established procedure140 a solution of 2-iodoaniline 133 (2.00 g, 9.10 mmol) 

in tetrahydrofuran (40 ml) was cooled to -78°C before the addition of MeLi-LiBr (1.5 M in 

tetrahydrofuran, 6.07 ml, 9.10 mmol). The mixture was stirred for a further 1.5 h maintaining
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the temperature at -78°C. Methyl iodide (0.60 ml, 9.10 mmol) was then added slowly and the 

reaction was warmed to room temperature over 2 h. Water (10 ml) was then added, followed by 

neutralisation with 2M HC1. The solution was then extracted with diethyl ether (2 x 30 ml), then 

dried, filtered and evaporated to give a crude orange oil. The product was purified by column 

chromatography (90:10 hexane-ethyl acetate) to give the N-methyl aniline 140 as an orange oil 

(1.45 g, 68%); U Jc m '1 (DCM): 3365, 2931,2871, 1582, 1471, 1367, 1338, 1117,919; 5H 7.57 

(1H, d, J7.S, CH (Ar)), 7.16 (1H, t, J 7.7, CH (Ar)), 6.48 (1H, d, J7.8, CH (Ar)), 6.37 (1H, t, J  

7.7, CH (Ar)), 4.12 (1H, app s, NH), 2.80 (3H, d, J5 .1 , Me); 6C 148.2 (C), 138.9 (CH (Ar)),

129.6 (CH (Ar)), 118.5 (CH (Ar)), 110.0 (CH (Ar)), 85.2 (C), 31.0 (CH3).

2-(Hex-l-yn-l-yl) 7V-Methyl aniline 141

NHMe NHMe

140 141

According to the general procedure A, 1-hexyne (1.00 ml, 9.01 mmol) was added to a solution 

of 2-iodo-A-methylbenzenamine 140 (1.40 g, 6.00 mmol), triphenylphosphine (0.32 g, 1.20 

mmol), copper iodide (0.06 g, 0.30 mmol), and 10% palladium on carbon (0.26 g, 0.24 mmol) 

in a 1:2 mixture of water and triethylamine (24 ml) to give the 2-alkynyl aniline 141 as a yellow 

oil (0.85 g, 76%); \W crn '1 (neat): 2930, 2870, 1637, 1589, 1511, 1461, 1425, 1320, 1287, 

1168, 1067; 6H 7.19-7.14 (2H, m, 2 x CH (Ar)), 7.10 (1H, app dd, J1.6,  1.5, CH (Ar)), 7.02 

(1H, app dt, J  7.8, 1.6, CH (Ar)), 2.74 (3H, s, 1-Me), 2.32 (2H, t, J 1 A ,  3’-CH2), 1.46 (2H, 

quintet, J l . \ ,  4’-CH2), 1.33 (2H, sextet, J  7.0, 5’-CH2), 0.80 (3H, t, J  7.2, 6’-CH3); 5C 146.3 

(C), 133.9 (CH (Ar)), 128.5 (CH (Ar)), 113.8 (CH (Ar)), 117.2 (C), 116.4 (CH (Ar)), 96.2 

(C=C), 79.6 (C=C), 31.1 ( l ’-CH2), 30.7 (NMe), 22.1 (CH2), 19.4 (CH2), 13.6 (4’-CH3); m/z 

(APCI) [Found: [M+H]+, 188.1434. Ci3H18N requires: M+H, 188.1439].
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2-(Hex-l-yn-l-yI)aniline 142a141

133 142a

According to the general procedure A, 1-hexyne (0.80 ml, 6.85 mmol) was added to a solution 

of 2-iodoaniline 133 (1.00 g, 4.56 mmol), triphenylphosphine (0.24 g, 0.91 mmol), copper 

iodide (0.04 g, 0.23 mmol), and 10% palladium on carbon (0.19 g, 0.18 mmol) in a 1:2 mixture 

of water and trethylamine (15 ml) to give the 2-alkynyl aniline 142a as a yellow oil (0.78 g, 

99%); Omax/crn'1 (neat) 3382, 3054, 2959, 2932, 2873, 2306, 1699, 1615, 1493, 1456, 1306, 

1266, 1159, 1092; 6H 7.29-7.20 (2H, m, 2 x CH (Ar)), 7.17 (1H, app. d, J1.6  CH (Ar)), 7.00 

(1H, app. t, y  7.7, CH (Ar)), 4.09 (2H, s, NH2), 2.40 (2H, t, J7 .2 , 3’-CH2), 1.54 (2H, quintet, 

J1.5, 4’-CH2), 1.42 (2H, sextet, J 1 .4, 5’-CH2), 0.88 (3H, X,J1A, 6’-CH3).

2-Phenylethynyl aniline 142b138

133 142b

According to the general procedure A, phenylacetylene (0.80 ml, 6.85 mmol) was added to a 

solution of 2-iodoaniline 133 (1.00 g, 4.56 mmol), triphenylphosphine (0.24 g, 0.91 mmol), 

copper iodide (0.04 g, 0.23 mmol), and 10% palladium on carbon (0.19 g, 0.18 mmol) in a 1:2 

mixture of water and trethylamine (15 ml) to give the 2-alkynyl aniline 142b as a yellow solid 

(0.83 g, 94%); m.p. 90-92 °C (lit m.p.138 91-92 °C); 5H 7.48-7.41 (2H, m, 2 x CH (Ar)), 7.31-

7.24 (4H, m, 4 x CH (Ar)), 7.14-7.10 (1H, m, CH (Ar)), 6.65-6.57 (2H, m, 2 x CH (Ar)), 4.21 

(2H, s,NH2).
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3-(2-Aminophenyl)prop-2-yn-l-ol 142c142

133 142c

According to the general procedure A, propargyl alcohol (0.60 ml, 9.13 mmol) was added to a 

solution of 2-iodoaniline 133 (1.00 g, 4.56 mmol), triphenylphosphine (0.24 g, 0.91 mmol), 

copper iodide (0.04 g, 0.23 mmol), and 10% palladium on carbon (0.19 g, 0.18 mmol) in a 1:2 

mixture of water and triethylamine (15 ml) to give the 2-alkynyl aniline 142c as a yellow oil 

(0.60 g, 90%); Umax/cm'1 (neat) 3455, 3054, 2987, 2305, 1615, 1422, 1265, 1159; SH 7.20 (1H, 

d, J8.4, CH (Ar)), 7.06 (1H, t, J8.4, CH (Ar)), 6.62 (1H, d, J8.4, CH (Ar)), 6.61 (1H, t, J  8.4, 

CH (Ar)), 4.47 (2H, s, 1-CH2), 4.15 (3H, br s, OH, NH2).

3-(2-Aminophenyl)hex-5-yn-l-ol 142d143

.OH

133 142d

According to the established procedure,138 a solution of 2-iodoaniline 133 (4.00 g, 18.3 mmol), 

palladium &/s(triphenylphosphine) dichloride (0.64 g, 0.91 mmol) and copper iodide (0.17 g, 

0.91 mmol) in triethylamine (45 ml) was stirred at ambient temperature for 0.5 h. After which 

hex-5-yn-l-ol (2.00 ml, 18.4 mmol) was added and the solution was heated to 50 °C for 5 h. 

The solution was cooled and the solvent was evaporated. The residue was then partitioned 

between water (30 ml) and ether (50 ml). The aqueous layer was extracted with ether (2 x 20 

ml) and the combined organic solutions were washed with water (3 x 20 ml) and brine (2 x 20 

ml), then dried, filtered and evaporated to give the alcohol 142d as an orange oil (3.00 g, 87%); 

Umax/cm'1 (neat) 3465, 3383, 3053, 2942, 2866, 2305, 1614, 1493, 1456, 1266, 1158, 1058; 5H 

7.26 (1H, d, J 7.7, CH (Ar)), 7.09 (1H, t, J 7.7, CH (Ar)), 6.71-6.66 (2H, m, 2 x CH (Ar)), 3.68 

(2H, t, J6 .3 , 1-CH2), 3.52 (3H, br s, NH2 and OH), 2.51 (2H, t, J6 .3 , 4-CH2), 1.76-1.68 (4H,
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m, 2 and 3-CH2); 5C 147.6 (C=0), 132.0 (CH (Ar)), 128.9 (CH (Ar)), 118.0 (CH (Ar)), 114.4 

(CH (Ar)), 108.9 (C), 95.4 (C=C), 77.4 (C=C), 62.2 (1-CH2), 31.9 (CH2), 25.2 (CH2), 19.5 

(CH2).

2-(Hex-l-yn-l-yl) A-tosyl aniline 143a138

NHTs

142a 143a

According to the general procedure B, a solution aniline 142a (1.00 g, 5.77 mmol) was stirred 

with /?-TsCl (1.16 g, 6.07 mmol) and pyridine (0.93 ml, 11.5 mmol) in dry dichloromethane (30 

ml) followed by column chromatography (90:10 hexane-ethyl acetate) gave the 2-alkynyl N- 

tosyl aniline 143a as a light yellow oil (1.70 g, 89%); Umax/cm'1 (neat) 3312, 2958, 2932, 2872, 

2225, 1599, 1575, 1491, 1454, 1400, 1340, 1168, 1092; 5H 7.68 (2H, d, J  8.2, 2 x CH (Ar)), 

7.58 (1H, d, J  8.2, CH (Ar)), 7.28-7.24 (2H, m, 2 x CH (Ar)), 7.24-7.21 (3H, m, 2 x CHAr, 

NH), 7.02-6.98 (1H, m, CH (Ar)), 2.32 (2H, t ,J7.0,  3’-CH2), 2.39 (3H, s, CH3Ar), 1.59 (2H, 

quintet, J 1.2, 4’-CH2), 1.48 (2H, sextet, J 1 .4, 5’-CH2), 0.99 (3H, t, J  7.4, 6’-CH3); 5C 143.9 

(C), 137.5 (C), 136.1 (C), 131.9 (CH (Ar)), 129.6 (2 x CH (Ar)), 128.8 (CH (Ar)), 127.2 (2 x 

CH (Ar)), 124.2 (CH (Ar)), 119.3 (CH (Ar)), 114.9 (C), 97.9 (C=C), 75.3 (C=C), 30.7 (CH2),

22.1 (CH2), 21.6 (CH3Ar), 19.2 (CH2), 13.7 (CH3).

2-(PhenyIethynyl) iV-tosyl aniline 143b138

NHTs

142b 143b

According to the general procedure B, a solution of aniline 142b (1.30 g, 6.73 mmol) was

stirred with /?-TsCl (1.35 g, 7.07 mmol) and pyridine (1.08 ml, 13.5 mmol) in dry

dichloromethane (40 ml) followed by column chromatography (90:10 hexane-ethyl acetate)

gave the 2-alkynyl N-tosyl aniline 143b as a yellow solid (2.10 g, 90%); m.p. 110-112 °C (lit

m.p.138 112-113 °C); 6H 7.69 (2H, d, J8.3, 2 x CH (Ar)), 7.65 (1H, d, J8.2, CH (Ar)), 7.51-7.48
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(2H, m, 2 x CH (Ar)), 7.43-7.38 (4H, m, 4 x CH (Ar)), 7.34-7.30 (1H, m, CH (Ar)), 7.23 (1H, s, 

NH), 7.19 (2H, d, J 8.2, 2 x CH (Ar)), 7.11-7.07 (1H, m, CH (Ar)), 2.36 (3H, s, CH3Ar); 8C

144.1 (C), 137.5 (C), 136.0 (C), 132.0 (CH (Ar)), 131.6 (2 x CH (Ar)), 129.6 (3 x CH (Ar)),

129.1 (CH (Ar)), 128.6 (2 x CH (Ar)), 127.3 (2 x CH (Ar)), 124.6 (CH (Ar)), 122.0 (C), 120.3 

(CH (Ar)), 114.6 (C), 96.1 (C^C), 83.7 (C=C), 21.6 (CH3Ar).

3-(2-TosyIaminophenyl)prop-2-yn-l-ol 143c138

NHTs

142c 143c

According to the general procedure B, a solution of aniline 142c (0.60 g, 4.08 mmol) was 

stirred with /?-TsCl (0.86 g, 4.49 mmol) and pyridine (0.66 ml, 8.16 mmol) in dry 

dichloromethane (20 ml) followed by work-up and recrystalisation using ethyl acetate:hexane 

to give 2-alkynyl N-tosyl aniline 143c as a white solid (1.20 g, 98%); m.p. 161-162 °C (lit 

m.p.138 159-160 °C); iW o m '1 (DCM)3419, 3054, 2987, 2305, 1492, 1422, 1267, 1167, 1091; 

5h 7.62 (2H, d, J  8.4, 2 x CH (Ar)), 7.49 (1H, d, J  8.2, CH (Ar)), 7.24-7.18 (2H, m, 2 x CHAr),

7.15 (2H, d, J 8.3, 2 x CH (Ar)), 6.95 (1H, t, J7.8, CH (Ar)), 4.41 (2H, br. s, 1-CH2), 2.30 (3H, 

s, CH3Ar), 1.99 (2H, br. s, OH, NH); 5C 144.2 (C), 137.8 (C), 136.0 (C), 132.3 (CH (Ar)), 129.8 

(CH (Ar)), 129.7 (2 x CH (Ar)), 127.4 (2 x CH (Ar)), 124.5 (CH (Ar)), 120.2 (CH (Ar)), 113.9 

(C), 94.3 (C=C), 80.3 (C=C), 51.5 (1-CH2), 21.6 (CH3Ar); m/z (El) 301 (Nf, 60%), 145 (60%), 

91 (100%); [Found: [M]+, 301.0775. C,6H,5N 03S requires: M , 301.0773].

3-(2-7V-Tosylaminophenyl)hex-5-yn-l-ol 143d34

NHTs

142d 143d

According to the general procedure B, a solution of the alcohol 142d (1.50 g, 7.93 mmol) was 

stirred with /?-TsCl (1.66 g, 8.72 mmol) and pyridine (1.30 ml, 15.9 mmol) in dichloromethane 

(50 ml) overnight, followed by work-up and column chromatography using 30% ethyl acetate
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in hexane to give the 2-alkynyl N-tosyl aniline 143d as an orange oil (1.10 g, 40%); Umax/cm'1 

(neat) 3544, 3319, 3056, 2939, 2867, 2305, 2226, 1599, 1575, 1398, 1337, 1166, 1091; 8H 7.68 

(2H, d, J  8.3, CH (Ar)), 7.53 (1H, d, J 8.2, CH (Ar)), 7.50 (1H, s, NH), 7.25-7.17 (4H, m, 4 x 

CH (Ar)), 6.97 (1H, t, J8 .2 , CH (Ar)), 3.73 (2H, t, J6 .2 , 1-CH2), 2.46 (2H, t, J 62, 4-CH2), 

2.32 (3H, s, CH3Ar), 1.77-1.66 (4H, m, 3 and 2-CH2); 5C 144.1 (C), 137.6 (C), 136.0 (C), 131.9 

(CH (Ar)), 129.6 (2 x CH (Ar)), 128.8 (CH (Ar)), 127.2 (2 x CH (Ar)), 124.3 (CH (Ar)), 119.5 

(CH (Ar)), 115.0 (C), 97.6 (C=C), 75.7 (C=C), 62.1 (1-CH2), 31.8 (CH2), 24.9 (CH2), 21.6 

(CH3Ar), 19.3 (CH2); m/z (El) 343 (NT, 40%), 225 (60%), 188 (100%); [Found: [M]+, 

343.1235. Ci9H21N 03S requires: M, 343.1242].

2-(3-Methylbut~3-en-l-yn-l-yl) TV-tosyl aniline 143e

NHTs

According to the general procedure A, 2-methylbut-l-en-3-yne (0.75 ml, 11.4 mmol) was added 

to a solution of 2-iodoaniline 133 (1.00 g, 4.56 mmol), triphenylphosphine (0.24 g, 0.91 mmol), 

copper iodide (0.04 g, 0.23 mmol), and 10% palladium on carbon (0.19 g, 0.18 mmol) in a 1:2 

mixture of water and triethylamine (15 ml) to give the 2-alkynyl aniline 142e as a yellow oil 

(0.65 g); 5h 7.20 (1H, d, J  8.2, CH (Ar)), 7.00 (1H, t, J  8.2, CH (Ar)), 6.62 (1H, d, J  8.2, CH 

(Ar)), 6.61 (1H, t, JS.2,  CH (Ar)), 5.31-5.30 (1H, m, 4’-HA), 5.22-5.21 (1H, m, 4’-HB), 4.13 

(2H, br s, NH2), 1.94 (3H, app s, CH3). According to the general procedure B, a solution of the 

crude precursor 142e (0.60 g, 3.82 mmol) was stirred with /?-TsCl (0.77 g, 4.01 mmol) and 

pyridine (0.61 ml, 7.63 mmol) in dry dichloromethane (20 ml) followed by work-up and 

column chromatography (89:11 hexane-ethyl acetate) gave the 2-alkynyl N-tosyl aniline 143e as 

a yellow solid (0.81 g, 68%); m.p. 104 °C; iW c n f1 (DCM) 3322, 3055, 2983, 2924, 2306, 

1598, 1490, 1401, 1341, 1265, 1166, 1092, 907, 813, 736; 6H 7.67 (2H, d, J8.2, 2 x CH (Ar)), 

7.61 (1H, d, J  8.2, CH (Ar)), 7.31-7.27 (2H, m, 2 x CH (Ar)), 7.22 (2H, d, J8.3, 2 x CH (Ar)), 

7.11 (1H, s, NH), 7.05 (1H, t,77.8, CH (Ar)), 5.42-5.41 (1H, m, 4’-HA), 5.40-5.38 (1H, m, 4’-
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Hb), 2.39 (3H, s, CH3Ar), 1.99 (3H, s, CH3); 5C 144.1 (C), 137.7 (C), 136.2 (C), 131.9 (CH 

(Ar)), 129.6 (3 x CH (Ar)), 127.2 (2 x CH (Ar)), 125.9 (C), 124.5 (CH (Ar)), 123.4 (4’-CH2),

120.1 (CH (Ar)), 97.2 (C=C), 82.7 (C^C), 23.4 (CH3), 21.6 (CH3Ar); m/z (ES) 312 (M+H\ 

100%); [Found: [M+H]+, 312.1053. Ci8H,8N02S requires: M+H, 312.1058].

2-(5,9-Dimethyldec-8-en-l-yn-l-yl) A-tosyl aniline 143f

NH, NHTs

133 142f 143f

According to the general procedure A, 5,9-Dimethyldec-8-en-l-yne 132 (0.75 ml, 4.53 mmol) 

was added to a solution of 2-iodoaniline 133 (1.00 g, 4.56 mmol), triphenylphosphine (0.24 g, 

0.91 mmol), copper iodide (0.04 g, 0.23 mmol), and 10% palladium on carbon (0.19 g, 0.18 

mmol) in a 1:2 mixture of water and triethylamine (15 ml) to give the crude 2-alkynyl aniline 

142f as a yellow oil (1.09 g) which was carried through to the next step. According to the 

general procedure B, a solution of the crude free aniline 142f (0.60 g, 2.35 mmol) was stirred 

with /?-TsCl (0.49 g, 2.58 mmol) and pyridine (0.38 ml, 4.70 mmol) in dry dichloromethane 

(15 ml), followed by work-up and column chromatography (95:5 hexane-ethyl acetate) gave the 

2-alkynyl N-tosyl aniline 143f as a sweet smelling oil (2.01 g, 86%); Umax/cm'1 (neat) 3263, 

2920, 2223, 1599, 1574, 1491, 1453, 1399, 1341, 1290, 1168, 1092, 1044, 1019, 912; 5H 7.68 

(2H, d, J  8.2, 2 x CH (Ar)), 7.57 (1H, d, J8.2, CH (Ar)), 7.27-7.22 (2H, m, 2 x CH (Ar)), 7.22 

(2H, d, J  8.2, 2 x CH (Ar)), 7.00 (1H, t, J  7.7, CH (Ar)), 5.14 (1H, t, J  7.1, 8’-H), 2.48-2.39 

(2H, m, CH2), 2.39 (3H, s, CH3Ar), 2.12-1.96 (2H, m, CH2), 1.71 (3H, s, 9-Me), 1.68-1.58 (2H, 

m, CH2), 1.64 (3H, s, 9-Me), 1.48-1.36 (2H, m, CH2), 1.28-1.18 (1H, m, 5’-H), 0.97 (3H, d, J

6.5, 5’-CH3); 5c 143.9 (C), 137.5 (C), 136.1 (C), 131.9 (C), 131.5 (CH (Ar)), 129.6 (2 x CH 

(Ar)), 128.8 (CH (Ar)), 127.3 (2 x CH (Ar)), 124.6 (CH (Ar)), 124.2 (CH (Ar)), 119.3 (8-CH), 

114.9 (C), 98.0 (C=C), 75.2 (C=C), 36.7 (CH2), 35.7 (CH2), 31.9 (5-CH), 25.8 (CH3), 25.4 

(CH2), 21.6 (CH3Ar), 19.1 (CH3), 17.7 (CH3), 17.3 (CH2); m/z (ES) 427 (M+NlV, 100%), 410 

(M +ff, 20%); [Found: [M+H]+, 410.2152. C25H32N 02S requires: M+H, 410.2154]^
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7V-(3-Iodopy ridin-2-y l)acetamide 145

N NHAc

144 145

According to the established procedure144 solution of pyridine 144 (l.OOg, 4.54 mmol) in acetic 

anhydride (15 ml, excess) was refluxed for 20 h. The reaction mixture was cooled and poured 

into water (50 ml), followed by the addition of aqueous sodium bicarbonate (10 ml). The 

reaction mixture was then extracted with dichloromethane (3 x 30 ml). The combined organics 

were dried over sodium sulphate, filtered and evaporated to give clean amide 145 as a white 

fluffy solid (1.10 g, 92%); m.p. 88-89 °C ; 5H 8.30 (1H, d, J4.6, CH (Ar)), 8.04 (1H, app dd, J  

7.9, 1.5, CH (Ar)), 7.83 (1H, br s, NH), 6.76 (1H, dd, J  7.9, 4.6, CH (Ar)), 2.32 (3H, s, CH3Ac); 

5C 176.0 (C=0), 150.9 (C), 148.2 (CH (Ar)), 147.9 (CH (Ar)), 121.3 (CH (Ar)), 86.2 (C), 24.4 

(CH3Ac).

7V-(3-(Hex-l-ynyl)pyridine-2-yl)acetamide 146

N NHAc N NHAc

145 146

According to the established procedure138 a solution of pyridine 145 (0.50 g, 1.91 mmol),

palladium bis(triphenylphosphine) dichloride (0.05 g, 0.08 mmol), copper iodide (0.02 g, 0.10

mmol) and triethylamine (0.53 ml, 3.82 mmol) were stirred in tetrahydrofuran (30 ml) for 30

min. Followed by the addition of 1-hexyne (0.70 ml, 5.70 mmol) and heating the mixture to 50

°C. After 2 h the mixture was cooled and passed through a plug of celite and the solution was

evaporated. This was followed by the addition of diethyl ether (20 ml) and water (10 ml). The

aqueous layer was extracted with ether (3 x 20 ml) and the combined organics were washed

with brine (2 x 20 ml), dried over sodium sulphate, filtered and evaporated to give the crude

product. The crude material was then purified by column chromatography using 15-40% ethyl

acetate in hexane to give the 2-alknynyl amino-pyridine 146 as an orange oil (0.25 g, 61%);

D m a x /crn ' 1 (neat) 3373, 2957, 2932, 2872, 2227, 1683, 1575, 1484, 1374, 1301, 1112; 5H 8.18

(1H, dd, J 4.8, 1.8, CH (Ar)), 8.13 (1H, br s, NH), 7.57 (1H, dd, J  7.6, 1.8, CH (Ar)), 6.88 (1H,
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dd, 7  7.6, 4.8, CH (Ar)), 2.42 (3H, s, CH3Ac), 2.40 (2H, t, J  7.2, l ’-CH2), 1.54 (2H, quintet, 

77.2, 2’-CH2), 1.41 (2H, sextet, J  12, 3’-CH2), 0.88 (3H, t, 7  7.2, 4’-CH3); 5C 170.9 (C=0),

151.6 (C), 146.6 (CH (Ar)), 140.3 (CH (Ar)), 118.4 (CH (Ar)), 109.2 (C), 99.8 (C=C), 74.4 

(C=C), 30.5 ( l ’-CH2), 25.0 (CH3Ac), 22.1 (CH2), 19.3 (CH2), 13.6 (4’-CH3); m/z (El) 216 (IVT, 

20%), 174 (40%), 132 (100%); [Found: [M]+, 216.1264. C13H16N20  requires: M, 216.1263].

2-Amino-3-(hex-l-ynyl)pyridine 147145

144 147

A solution of pyridine 144 (0.50 g, 2.27 mmol), palladium(O) tetrakis triphenylphosphine (0.06 

g, 0.09mmol), copper iodide (0.02 g, 0.11 mmol) and treithylamine (0.63 ml, 4.54 mmol) was 

stirred for 30 min. This was followed by the addition of 1-hexyne (0.78 ml, 6.82 mmol) and 

heating to 50 °C for 18 h. The resulting solution was filtered through celite and evaporated. The 

resulting residue was taken up in ether and washed with water (3 x 20 ml) and brine (2 x 20 

ml), followed by dring over sodium sulphate, filtration and evaporation to give the crude 

product. Column chromatography using 50% ethyl acetate in hexane resulted in clean 2-alkynyl 

amino-pyridine 147 as an orange oil (0.08 g, 20%); 8h 7.96 (1H, br s, CH (Ar)), 7.45 (1H, dd, J

7.5, 1.7, CH (Ar)), 6.56 (1H, dd, 77.5, 5.1, CH (Ar)), 5.17 (2H, br s, NH2), 2.45 (2H, t, 7  7.1, 

l ’-CH2), 1.59 (2H, quintet, J 12, 2’-CH2), 1.47 (2H, sextet, J 12, 3’-CH2), 0.94 (3H, t, 77.2, 

4’-CH3).

7V-(3-Chloropyrazin-2-yl)acetamide 149

,N̂ Ĉl XINYC l x.N NH2 N NHAc

148 149

According to the established procedure144 solution of pyrazine (l.OOg, 7.72 mmol) 148 in acetic 

anhydride (15 ml, excess) was refluxed for 20 h. The reaction mixture was cooled and poured 

into water (50 ml), followed by the addition of aqueous sodium bicarbonate (10 ml). The
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reaction mixture was then extracted with dichloromethane ( 3x30  ml). The combined organics 

were dried over sodium sulphate, filtered and evaporated to give clean amide 149 as a white 

fluffy solid (0.98 g, 74%); m.p. 93 °C; 8H 8.22 (1H, d, 72.5, CH (Ar)), 8.04 (1H, d, 72.5, CH 

(Ar)), 2.40 (3H, s, CH3Ac); 5C 170.1 (C=0), 145.1 (C), 140.7 (CH (Ar)), 138.4 (CH (Ar)), 

138.0 (C), 25.0 (CH3Ac).

7V-Acetyl-l-(6-phenyl-5//-pyrrole[2,3-Z>]pyrazin-5-yI) 151

( T —- . ( X^ph
k N ^N H A c "  54,

149 151

According to the established procedure138 a solution of amino-pyrazine 149 (0.50 g, 2.92 

mmol), palladium(O) tetrakis triphenylphosphine (0.14 g, 0.12 mmol), copper iodide (0.03 g, 

0.15 mmol) and triethylamine (0.81 ml, 5.83 mmol) were stirred in tetrahydrofuran (25 ml) for 

20 min. This was followed by the addition of phenylacetylene (0.64 ml, 5.83 mmol) and heating 

to 60 °C for 2 h. The resulting solution was passed through a plug of celite and the resulting 

solution was evaporated. The residue was taken up in ether and washed with water (3 x 20 ml) 

and brine (20 ml), followed by drying with sodium sulphate, filtration and evaporation to give 

crude product. Column chromatography using 30% to 40% ethyl acetate in hexane resulted in 

aza-indole 151 as a yellow solid (0.25 g, 36%); m.p. 128 °C; Umax/cm'1 (DCM) 3054, 2933, 

2857, 1734, 1553, 1490, 1381, 1371, 1360, 1301, 1257, 1163; 5H 8.38 (1H, d,72.6, CH (Ar)),

8.16 (1H, d, 72.6, CH (Ar)), 7.36-7.29 (5H, m, 5 x CH (Ar)), 6.70 (1H, s, 3-H), 2.93 (3H, s, 

CH3Ac); 8c 169.5 (O O ), 146.3 (C), 143.3 (C), 141.5 (C), 140.9 (CH (Ar)), 137.3 (CH (Ar)),

132.8 (C), 128.8 (CH (Ar)), 128.3 (2 x CH (Ar)), 128.2 (2 x CH (Ar)), 109.0 (3-CH), 27.8 

(CH3Ac); m/z (El) 237 (]Vf, 40%), 195 (100%); [Found: [M]+, 237.0902. C14HnN30  

requires: M, 237.0902].
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2-Butyl-l-tosyl-///-ind ole 152a138

NHTs

143a 152a

According to the general procedure C, 10% AgN03.Si02 (0.08 g, 0.05 mmol) was stirred with a 

solution of precursor 143a (0.15 g, 0.46 mmol) in dichloromethane (3 ml) for 18 h to give 

indole 152a as a yellow oil (0.15 g, 99%); 8h; 8.09 (1H, d, J8.3, CH (Ar)), 7.54 (2H, d, J  8.4, 2 

x CH (Ar)), 7.33 (1H, d,J7.4, CH (Ar)), 7.18-7.12 (2H, m, 2 x CH (Ar)), 7.11 (2H, d, J8.4, 2 x 

CH (Ar)), 6.30 (1H, s, 3-H), 2.91 (2H, t, J l . l ,  l ’-CH2), 2.26 (3H, s, CH3Ar), 1.66 (2H, quintet, 

J 7.8, 2’-CH2), 1.37 (2H, sextet, J  1.1, 3’-CH2), 0.88 (3H, t, J7 .5 , 4’-CH3); 5C 144.6 (C), 142.5 

(C), 137.2 (C), 136.2 (C), 129.9 (C), 129.8 (2 x CH (Ar)), 126.3 (2 x CH (Ar)), 123.8 (CH 

(Ar)), 123.5 (CH (Ar)), 120.1 (CH (Ar)), 114.8 (CH (Ar)), 108.6 (CH (Ar)), 31.0 (CH2), 28.8 

(CH2), 22.5 (CH2), 21.6 (CH3Ar), 14.0 (CH3).

2-Phenyl-l-tosyI-///-indole 152b138

NHTs

143b 152b

According to the general procedure C, 10% AgN03.Si02 (0.05 g, 0.03 mmol) was stirred with a 

solution of precursor 143b (0.10 g, 0.29 mmol) in dichloromethane (2 ml) for 18 h to give 

indole 152b as a yellow oil (0.10 g, 99%); m.p. 144-145 °C (lit m.p.138 146-147 °C); 5H 8.24 

(1H, d, J  8.3, CH (Ar)), 7.45-7.41 (2H, m, 2 x CH (Ar)), 7.39-7.34 (4H, m, 4 x CH (Ar)), 7.31-

7.25 (1H, m, CH (Ar)), 7.19-7.17 (3H, m, 3 x CH (Ar)), 6.97 (2H, d, J 8.3, 2 x CH (Ar)), 6.47 

(1H, s, 3-H), 2.21 (3H, s, CH3Ar); 5C 144.6 (C), 142.2 (C), 138.3 (C), 134.6 (C), 132.4 (C),

130.6 (C), 130.4 (2 x CH (Ar)), 129.2 (2 x CH (Ar)), 128.7 (CH (Ar)), 127.5 (2 x CH (Ar)),

126.8 (2 x CH (Ar)), 124.8 (CH (Ar)), 124.4 (CH (Ar)), 120.7 (CH (Ar)), 116.7 (CH (Ar)),

113.7 (CH (Ar)), 21.6 (CH3Ar).
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(1-T osyl-i//-indol-2-yl)methanol 152c138

NHTs

143c 152c

According to the general procedure C, 10% AgN03.SiC>2 (0.06 g, 0.03 mmol) was stirred with a 

solution of precursor 143c (0.10 g, 0.33 mmol) in dichloromethane (2 ml) for 3 h to give indole 

152c as a white solid (0.10 g, 99%); m.p. 88-90 °C (lit m.p.138 91-92 °C); 8h; 7.98 (1H, d, J  8.7, 

CH (Ar)), 7.65 (2H, d, JS.4, 2 x CH (Ar)), 7.41 (1H, d, J8.4, CH (Ar)), 7.23 (1H, t, 7  8.4, CH 

(Ar)), 7.18-7.12 (3H, m, 3 x CH (Ar)), 6.57 (1H, s, 3-H), 4.83 (2H, d, J 1 2 ,  CH2OH), 3.05 (1H, 

t, J 7.3, OH), 2.27 (3H, s, CH3Ar); 5C 145.2 (C), 140.3 (C), 137.0 (C), 135.5 (C), 130.0 (2 x CH 

(Ar)), 129.1 (C), 126.4 (2 x CH (Ar)), 125.0 (CH (Ar)), 123.8 (CH (Ar)), 121.2 (CH (Ar)),

114.4 (CH (Ar)), 111.2 (CH (Ar)), 58.6 (CH2OH), 21.6 (CH3Ar).

4-(l-Tosyl-l//-indol-2-yl)butan-l-ol 152d34

NHTs

143d 152d

According to the general procedure C, 10% AgN03.Si02 (0.03 g, 0.02 mmol) was stirred with a 

solution of precursor 143d (0.05 g, 0.15 mmol) in dichloromethane (2 ml) for 18 h to give 

indole 152d as a yellow oil (0.05 g, 99%); Umax/cm'1 (neat) 3231, 2940, 2862, 1593, 1569, 1450, 

1371, 1242, 1173, 1093; 5H 8.08 (1H, d,JS.2,  CH (Ar)), 7.52 (2H, d, J 8.4, 2 x CH (Ar)), 7.32 

(1H, d, J8.2, CH (Ar)), 7.20-7.11 (2H, m, 2 x CH (Ar)), 7.09 (2H, d, J8 .4 , 2 x CH (Ar)), 6.32 

(1H, s, 3-H), 3.63 (2H, t, J7.0,  l ’-CH2), 2.94 (2H, J  7.0, 4’-CH2), 2.24 (3H, s, CH3Ar), 1.77 

(2H, quintet, J 7.0, 2’ or 3’-CH2), 1.61 (2H, quintet, J 7.0, 2’ or 3’-CH2), 1.56 (1H, s, OH); 8C

144.7 (C), 142.0 (C), 137.2 (C), 136.0 (C), 129.8 (C), 129.8 (2 x CH (Ar)), 126.2 (2 x CH (Ar)),

123.9 (CH (Ar)), 123.6 (CH (Ar)), 120.2 (CH (Ar)), 114.9 (CH (Ar)), 109.1 (CH (Ar)), 62.5 

( l ’-CH2), 32.3 (CH2), 28.8 (CH2), 25.3 (CH2), 21.6 (CH3Ar); m/z (El) 343 (IVT, 50%), 170 

(60%), 130 (100%); [Found: [M]+, 343.1249. C19H21N 03S requires: M, 343.1242].
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2-(Prop-l-en-2-yl)-tosyl-7/7-indole 152e

OH
Ts

143e 152e

According to the general procedure C, 10% AgN03.Si02 (0.05 g, 0.03 mmol) was stirred with a 

solution of precursor 143e (0.10 g, 0.32 mmol) in dichloromethane (2 ml) for 18 h to give the 

indole 152e as a clear oil (0.10 g, 99%); Dmax/crn'1 (neat): 2921, 1631, 1597, 1451, 1367, 1192, 

1121, 1090, 1016, 908, 812, 750; 5H; 8.14 (1H, d, J8 .3 , CH (Ar)), 7.51 (2H, d, J8.4, 2 x CH 

(Ar)), 7.33 (1H, d, J1.7,  CH (Ar)), 7.25 (1H, t, J  7.4, CH (Ar)), 7.16 (1H, t, J  7.5, CH (Ar)),

7.03 (2H, d, J8.4, 2 x CH (Ar)), 6.41 (1H, s, 3-H), 5.26-5.25 (1H, m, 2’-HA), 5.14-5.13 (1H, m, 

2’-Hb), 2.22 (6H, s, CH3Ar and CH3); 8C 144.6 (C), 144.2 (C), 139.2 (C), 137.9 (C), 134.4 (C),

130.7 (C), 129.3 (2 x CH (Ar)), 126.8 (2 x CH (Ar)), 124.7 (CH (Ar)), 124.2 (CH (Ar)), 120.8 

(CH (Ar)), 117.4 (2’-CH2), 116.1 (CH (Ar)), 112.2 (CH (Ar)), 24.1 (CH3), 21.5 (CH3Ar); m/z 

(ES) 329 (M+NH/, 20%), 312 (M+H+, 100%); [Found: [M+H]+, 312.1068. C18H18N 02S 

requires: M+H, 312.1058].

2-(3,7-Dimethyloct-6-en-l-yl)-l-tosyl-///-indole 152f

NTs

NHTs

143f 152f

According to the general procedure C, 10% AgN03.Si02 (0.04 g, 0.02 mmol) was stirred with a 

solution of precursor 143f (0.10 g, 0.24 mmol) in dichloromethane (2 ml) for 18 h to give the 

indole 152f as a clear oil (0.10 g, 99%); iW cm '1 (neat): 2924, 1597, 1452, 1369, 1219, 1175, 

1146, 1119, 1091, 1050, 1022, 911,811, 745, 706; 5H 8.09 (1H, d, JS.2, CH (Ar)), 7.53 (2H, d, 

J  8.4, 2 x CH (Ar)), 7.31 (1H, d, J  7.6, CH (Ar)), 7.18-7.10 (2H, m, 2 x CH (Ar)), 7.08 (2H, d, J

8.3, 2 x CH (Ar)), 6.29 (1H, s, 3-H), 5.03 (1H, tt, J  7.1, 1.3, 6’-H), 2.98-2.81 (2H, m, CH2), 

2.23 (3H, s, CH3Ar), 1.92 (2H, m, CH2), 1.73-1.62 (2H, m, CH2), 1.61 (3H, s, 8’-Me), 1.53 (3H, 

s, 8’-Me), 1.52-1.44 (2H, m, CH2), 1.37-1.28 (1H, m, 3’-H), 0.87 (3H, d, J  6.2, 3’-Me); 5C
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144.6 (C), 142.8 (C), 137.2 (C), 136.3 (C), 131.2 (C), 129.9 (C), 129.8 (2 x CH (Ar)), 126.3 (2 

x CH (Ar)), 124.9 (CH), 123.8 (CH), 123.5 (CH), 120.1 (CH), 114.8 (CH), 108.5 (CH), 37.0 

(CH2), 36.0 (CH2), 32.3 (3’-CH), 26.7 (CH2), 25.8 (CH3), 25.5 (CH2), 21.6 (CH3Ar), 19.5 

(CH3), 17.7 (CH3); m/z (ES) 427 (M+NH,+, 55%), 410 (M+H+, 100%); [Found: [M + H]+, 

410.2171. C25H32N 02S requires: M+H, 410.2154].

Methyl 2-butyl-7//-indole-l-carboxylate 153

.Bu

 .  rrveu
NHC02Me C 0 2Me

137 153

According to the general procedure C, 10% AgN03.Si02 (0.07 g, 0.04 mmol) was stirred with a 

solution of precursor 137 (0.10 g, 0.43 mmol) in dichloromethane (2 ml) for 24 h to give indole 

153 as a yellow c v‘ ? g, 99%); Dmax/cm'1 (neat): 8h; 7.98 (1H, d, J  7.7, CH (Ar)), 7.35 (1H, d, 

J  7.6, CH (Ar)), 7.15 (1H, t, J7 .7 , CH (Ar)), 7.10 (1H, t, J7 .4 , CH (Ar)), 6.27 (1H, s, 3-H), 

3.93 (3H, s, Me02C), 2.90 (2H, t, J7 .6 , l ’-CH2), 1.59 (2H, quintet, J  7.7, 2’-CH2), 1.36 (2H, 

sextet, J l . 6, 3’-CH2), 0.88 (3H, t, J1.5, 4’-CH3); 8C 152.6 (C=0), 142.6 (C), 136.4 (C), 129.6 

(C), 123.4 (CH (Ar)), 122.9 (CH (Ar)), 119.8 (CH (Ar)), 115.6 (CH (Ar)), 107.6 (CH), 53.4 

(Me02C), 31.6 (CH2), 29.6 (CH2), 22.4 (CH2), 14.0 (CH3).

terr-Butyl-2-phenyl-///-indole-l-carboxylate 154137

NHBoc

135 154

According to the general procedure C, 10% AgN03.Si02 (0.06 g, 0.04 mmol) was stirred with a 

solution of precursor 135 (0.11 g, 0.37 mmol) in dichloromethane (2 ml) for 24 h to give the 

indole 154 as a yellow oil (0.11 g, 99%); 8H 8.14 (1H, d, J 8.3, CH (Ar)), 7.48 (1H, d, J7.6, CH 

(Ar)), 7.34-7.24 (6H, m, 6 x CH (Ar)), 7.17 (1H, t, J1A,  CH (Ar)), 6.48 (1H, s, 3-H), 1.23 (9H, 

s, 3 x CH3C); 8c 150.2 (C=0), 140.5 (C), 137.5 (C), 135.0 (C), 129.3 (CH (Ar)), 128.8 (2 x CH 

(Ar)), 127.8 (2 x CH (Ar)), 127.6 (C), 124.3 (CH (Ar)), 122.9 (CH (Ar)), 120.5 (CH (Ar)),
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115.2 (CH (Ar)), 109.9 (CH (Ar)), 83.4 (C/Butyl), 27.6 (3 x CH3C); m/z (ES) 293 (M+, 20%), 

237 (50%), 193 (100%); [Found [M]\ 293.1425. C„H i,N 02 requires: M, 293.1416],

2-Butyl-l-methyk7//-indole 155

.Bu

^  ^ — Bu 
N
\

141 155

According to the general procedure C, 10% AgN0 3 .Si02  (0.27 g, 0.16 mmol) was stirred with a 

solution of precursor 141 (0.30 g, 1.60 mmol) in dichloromethane (6 ml) for 48 h to give indole 

155 as a yellow oil (0.30 g, 99%); 8H; 7.45 (1H, d, J  7.7, CH (Ar)), 7.18, (1H, d, J7 .8 , CH 

(Ar)), 7.07 (1H, t, J7 .5 , CH (Ar)), 6.98 (1H, t, J7.5, CH (Ar)), 6.17 (1H, s, 3-H), 3.58 (3H, s, 

Me), 2.65 (2H, t, J  7.6, l ’-CH2), 1.63 (2H, quintet, J  7.6, 2’-CH2), 1.39 (2H, sextet, J  1.6, 

3’-CH2) 0.90 (3H, t, J7 .5 , 4’-CH3); 5C 141.5 (C), 137.3 (C), 127.9 (C), 120.4 (CH (Ar)), 119.7 

(CH (Ar)), 119.2 (CH (Ar)), 108.7 (CH (Ar)) 98.6 (CH (Ar)), 30.8 (NMe), 29.4 ( l ’-CH2), 26.6 

(2’-CH2), 22.6 (3’-CH2), 14.0 (4’-CH3); m/z could not be obtained.

7V-Acetyl-l-(2-phenyl-lH-indol-l-yl) 156146

NHAc

139 156

According to the general procedure C, 10% AgN03.Si02 (0.10 g, 0.06 mmol) was stirred with a 

solution of precursor 139 (0.13 g, 0.55 mmol) in dichloromethane (3 ml) for 24 h to give the 

indole 156 as a white solid (0.13 g, 99%); m.p. 77-79 °C (lit. m.p.141 80-82 °C); SH 8.29 (1H, d, 

JS.3, CH (Ar)), 7.49 (1H, d, J 7.6, CH (Ar)), 7.41-7.35 (5H, m, 5 x CH (Ar)), 7.29 (1H, t, /8 .0 , 

CH (Ar)), 7.22 (1H, t, J1.5, CH (Ar)), 6.56 (1H, s, 3-H), 2.00 (3H, s, CH3Ac); 8C 171.5 (C=0),

139.7 (C), 137.7 (C), 134.2 (C), 129.0 (C), 129.1 (2 x CH (Ar)), 129.0 (2 x CH (Ar)),

128.8 (CH (Ar)), 125.1 (CH (Ar)), 123.7 (CH (Ar)), 120.4 (CH (Ar)), 116.0 (CH (Ar)), 111.6 

(CH (Ar)), 28.0 (CH3).
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A-AcetyH-(2-butyl-l//-pyrrolo[2,3-£]pyridine-l-yl) 158

N NHAc

146 158

According to the general procedure C, 10% AgN0 3 .Si02  (0.24 g, 0.14 mmol) was stirred with 

a solution of precursor 146 (0.30 g, 1.39 mmol) in dichloromethane (6 ml) for 5 h to give the 

aza-indole 158 as a clear oil (0.30 g, 99%); Umax/cm'1 (neat) 3054, 2960, 2933, 2873, 1713, 

1589, 1563, 1406, 1378, 1302, 1195; 5H 8.17 (1H, dd, J4.9, 1.6, CH (Ar)), 7.64 (1H, dd, 77.8,

1.6, CH (Ar)), 7.04 (1H, dd, J7.8, 4.9, CH (Ar)), 6.23 (1H, s, 3-H), 2.99 (2H, t, J1.6, l ’-CH2), 

2.99 (3H, s, CH3Ac), 1.58 (2H, quintet, J  7.6, 2’-CH2), 1.36 (2H, sextet, J  7.6, 3’-CH2), 0.88 

(3H, t, J7.6, 4’-CH3); 6c 171.5 (C=0), 149.3 (C), 144.6 (C), 142.2 (CH (Ar)), 127.5 (CH (Ar)),

122.2 (C), 118.6 (CH (Ar)), 104.5 (CH (Ar)), 30.7 (CH2), 30.3 (CH2), 28.4 (CH3Ac), 22.6 

(CH2), 14.0 (4’-CH3); m/z (El) 216 (M+, 20%), 174 (30%), 132 (100%); [Found: [M]+, 

216.1262. Ci3H]6N20  requires: M, 216.1263].

2-ButyI-l//-pyrrolo[2,3-/>]pyridine 159145

147 159

According to the general procedure C, 10% AgN03.Si02 (0.03 g, 0.02 mmol) was stirred with a 

solution of precursor 147 (0.03 g, 0.17 mmol) in dichloromethane (1 ml) for 24 h to give a 1:1 

crude mixture of starting material 147 and aza-indole 159 as a dark orange oil (0.03 g, 99%); 

5h 7.95 (1H, br d, J5 .2 , CH (Ar)), 7.74 (1H, d, J  7.6, CH (Ar)), 6.88 (1H, dd, J7.6, 5.3, CH 

(Ar)), 6.05 (1H, s, 3-H), 5.52 (1H, br s, NH), 2.71 (2H, t, J7.6, l ’-CH2), 1.42-1.24 (4H, m, 2’ 

and 3’-CH2), 0.82 (3H, t, J 7.6, 4’-CH3).
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5.3 Pyrazole experimental

General procedure D for the preparation of propargylic alcohols from aldehydes

To an ice-cold solution of an alkyne (1.05 equiv) in dry tetrahydrofuran (2-3 ml per mmol 

of alkyne) was added «-BuLi (2.5 M in hexanes, 1.05 equiv). The reaction mixture was 

allowed to stir at 0 °C for 0.5 h. The solution was then cooled to -78 °C and an aldehyde 

(1.00 equiv) was added dropwise, the resulting mixture was then stirred for 1.5 h. This was 

followed by the dropwise addition of water (1 x volume of mixture), and the 

tetrahydrofuran was evaporated. The residue was partitioned between aqueous ammonium 

chloride (1 x volume of mixture) and diethyl ether (1 x volume of mixture), and the 

separated aqueous layer was extracted with diethyl ether (2 x volume of mixture). The 

combined organics solutions were washed with brine (2 x volume of mixture), then dried 

with magnesium sulphate, filtered and evaporated to give the propargylic alcohol.

General procedure E for the preparation of propargylic alcohols by Sonogashira 

coupling

A suspension of halide (1.00 equiv), &/s-triphenylphosphine palladium dichloride (0.06 

equiv), copper iodide (0.03 equiv) and triethylamine (4.15 equiv) was stirred in dry 

tetrahydrofuran (2 ml per mmol halide) for 0.25 h. This was followed by the addition of 3- 

butyn-2-ol (1.20 equiv) and the reaction was heated to 40 °C for 5 h followed by cooling to 

an ambient temperature. The cooled reaction mixture was passed through a pad of celite 

and the tetrahydrofuran was evaporated. The residue was partitioned between diethyl ether 

(1 x volume of mixture) and water (1 x volume of mixture), and the separated aqueous layer 

was extracted with diethyl ether (3 x volume of mixture). The combined organics solutions 

were washed with brine (2 x volume of mixture), then dried with magnesium sulphate, 

filtered and evaporated to give the propargylic alcohol.

General procedure F for the phthalimide protection of a carbazate

A solution of phthalic anhydride (1.00 equiv) and carbazate (1.00 equiv) in dry 

tetrahydrofuran (12 ml per mmol of carbazate) was stirred at room temperature for 0.2 h, 

before the addition of Â Af’-dicyclohexylcarbodiimide (1.20 equiv). The resulting reaction
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mixture was stirred for a further 1 h. The white precipitate of dicyclohexylurea was 

removed by filtration. Acetic acid (2.00 equiv) and triethylamine (2.00 equiv) were added 

to the filtrate and the resulting mixture was refluxed for 1- h. The bulk of the solvent was 

then evaporated and the residue was partitioned between diethyl ether (50 ml per mmol of 

product) and water (50 ml per mmol product). The separated aqueous layer was extracted 

with diethyl ether (2 x volume of mixture), and the combined organic solutions were dried 

with sodium sulphate, filtered and evaporated to give the crude product as a white solid, 

which was purified by reciystalisation from ethyl acetate and hexane to give pure 

phthalimide.

General procedure Gt for the Mitsunobu reaction for the preparation of propargylic 

hydrazines76

To an ice-cold solution of triphenylphosphine (1.50 equiv) in dry tetrahydrofuran (15 ml 

per mmol of alcohol) diisopropyl azodicarboxylate (1.50 equiv) was added. The resulting 

mixture was allowed to stir for 0.25 h resulting in a white precipitate. This was followed by 

the addition of propargylic alcohol (1.00 equiv) and a further stirring period of 0.25 h. The 

phthalimide (1.50 equiv) was then added in one portion resulting in the disappearance of 

precipitate and the solution becoming clear orange in colour. The reaction mixture was then 

allowed to warm to room temperature overnight. The solvent was evaporated and the 

residue was partitioned between ethyl acetate (50 ml per mmol product) and water (50 ml 

per mmol product). The separated aqueous layer was extracted with ethyl acetate (2 x 

volume of mixture) and the combined organic solutions were dried with sodium sulphate, 

filtered and evaporated to give the crude product, which was then purified by column 

chromatography using the solvent specified to give clean propargylic phthalimide.

General procedure H for phthalimide deprotection using hydrazine

A solution of a phthalimide (1.00 equiv) and hydrazine hydrate (1.00 equiv) in ethanol (10 

ml per mmol phthalimide) was refluxed for 1.5 h and then cooled. The solution was then 

further cooled to 0 °C and diethyl ether (1 x volume of mixture) was added. The resulting 

precipitate was filtered off and the filtrate was evaporated. The residue was then taken up in 

diethyl ether (50 ml per mmol product) and the solution washed with water (2 x volume of
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mixture) and brine (1 x volume of mixture), then dried with sodium sulphate, filtered and 

evaporated to give the free hydrazine.

General procedure I for the 10% AgNOi.SiO?-catalvsed cvclisation

In a flask wrapped with metal foil, 10% w/w silver nitrate on silica gel (0.10-1.00 equiv)

the solvent evaporated to yield the dihydropyrazole.

General procedure J for the mono-tosvlation of a hydrazine

A solution of a monosubstituted hydrazine (1.00 equiv) in dichloromethane (2.6 ml per 

mmol of monosubstituted hydrazine) was stirred at -78 °C and pyridine (1.01 equiv) was 

added. The mixture was stirred for 0.2 h before the addition of /?-TsCl (1.00 equiv) in one 

portion. The solution was allowed to warm up slowly over 8 h, then diluted with 

dichloromethane (1 x volume of mixture) and washed with water (4 x volume of mixture) 

and brine (2 x volume of mixture). The solution was then dried with sodium sulphate, 

filtered and evaporated to give crude tosylate. The crude product was then purified by 

recrystalisation from hot ethyl acetate and hexane to give pure mono-tosylate.

Benzyl oxycarbonylaniinophthalimide 201a76

According to the general procedure F, benzyl carbazate 200a (4.00 g, 24.1 mmol), phthalic 

anhydride (3.57 g, 24.1 mmol), N, AT-dicyclohexylcarbodiimide (5.97 g, 28.9 mmol), acetic 

acid (2.77 ml, 48.2 mmol) and triethylamine (6.72 ml, 48.2 mmol) were added sequentially 

to dry tetrahydrofuran (290 ml). This was followed by work-up and recrystalisation to give 

pure phthalimide 201a as a white solid (6.12 g, 85%); m.p. 141-142 °C (lit m.p.76 140°C);

was added to a stirred solution of hydrazine (1.00 equiv) in dichloromethane (20 mL g'1). 

The resulting suspension was stirred for 4-8 h then filtered through a thin pad of celite and

O O O

O
200a 201a

5h (500MHz) 7.88-7.82 (2H, m, 4-CH); 7.78-7.70 (2H, m, 2 x CH (Ar)); 7.35-7.20 (5H, m, 

5 x CH (Ar)); 5.15 (2H, s, CH2Ph); 5C (125MHz) 165.3 (C=Q), 154.7 (C O ), 135.1 (C),
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134.8 (2 x CH (Ar)), 129.8 (C), 128.6 (3 x CH (Ar)), 128.4 (2 x CH (Ar)), 124.1 (2 x CH 

(Ar)), 68.6 (CH2Ar).

Methyl oxycarbonylaminophthaliiiiide 201b

O
200b 201b

According to the general procedure F, methyl hydrazinocarboxylate 200b (5.00 g, 55.5 

mmol), phthalic anhydride (8.22 g, 55.5 mmol), N.iV’-dicyclohexylcarbodiimide (13.75 g, 

66.63 mmol), acetic acid (6.30 ml, 111 mmol) and triethylamine (15.90 ml, 111.0 mmol) 

were added sequentially to dry tetrahydrofuran (660 ml). This was followed by work-up 

and recrystalisation to give pure phthalimide 201b as a white solid (11.00 g, 90%); m.p.

According to the general procedure F, tert-butyl carbazate 200c (5.00 g, 37.8 mmol), 

phthalic anhydride (5.60 g, 37.8 mmol), N, N ’-dicyclohexyl-carbodiimide (9.35 g, 45.4 

mmol), acetic acid (4.30 ml, 75.7 mmol) and triethylamine (5.60 ml, 75.7 mmol) were 

added sequencially to dry tetrahydrofuran (450 ml). This was followed by work-up and 

recrystalisation to give pure phthalimide 201c as a white solid (9.80 g, 99%); mp 210-212

5C (DMSO) 165.9 (C O ), 154.4 (C O ), 135.8 (2 x CH (Ar)), 129.7 (C), 124.2 (2 x CH 

(Ar)), 81.6 (C/Butyl), 28.3 (3 x CH3C).

159-169 °C; vmJ c m l (DCM) 3383, 2959, 2873, 1742, 1716, 1702, 1523, 1468, 1267, 

1196, 1122; 5h 7.87-7.85 (2H, m, 2 x CH (Ar)), 7.76-7.73 (2H, m, 2 x CH (Ar)), 6.75 (1H, 

br s, NH), 3.77 (3H, br s, Me); 5C (DMSO) 165.2 (C O ), 165.0 (C O ), 155.5 (C O ), 135.4 

(2 x CH (Ar)), 129.2 (C), 123.8 (2 x CH (Ar)), 52.9 (CH3).

terf-Butyloxycarbonylaminophthalimide 201c147

O
200c 201c

°iC; 8h (DMSO) 9.90 (1H, s, NH), 7.95-7.97 (4H, m, 4 x CH (Ar)), 1.44 (9H, s, 3 x CH3C);
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3-Methyldec-5-yn-4-ol 202a148

O

185a

According to the general procedure D, isovaleraldehyde 185a (1.25 ml, 11.6 mmol) was 

added to a solution of 1-hexyne (1.40 ml, 12.2 mmol) and «-BuLi (2.5 M in hexanes, 4.88 

ml, 12.2 mmol) in tetrahydrofuran (36 ml) at -78 °C, followed by work-up to give the 

propargylic alcohol 202a as a yellow oil (1.82 g, 93%); 5h 4.44-4.38 (1H, m 4-H), 2.21 

(2H, td,76.8, 1.8, 7-CH2), 1.89-1.78 (1H, m, 2-H), 1.71 (1H, d, 75.3, OH), 1.65-1.57 (2H, 

m, 3-CH2), 1.56-1.37 (4H, m, 8 and 9-CH2), 0.93 (3H, t, 77.7, IO-CH3), 0.93 (6H, d, 77.8, 

2-Me, I-CH3).

2-Methylnon-4-yn-3-ol 202b149

O

H

185b 202b

According to the general procedure D, isobutyraldehyde 185b (3.18 ml, 55.5 mmol) was 

added to a solution of 1-hexyne (6.69 ml, 58.2 mmol) and 77-BuLi (2.5 M in hexanes, 23.30 

ml, 58.24 mmol) in tetrahydrofuran (150 ml) at -78 °C, followed by work-up to give the 

propargylic alcohol 202b as a yellow oil (7.93 g, 93%); 5H 4.16 (1H, app dt, 75.7, 2.0, 3- 

H), 2.22 (2H, td, 76.9, 2.0, 6-CH2), 1.88-1.79 (1H, m, 2-H), 1.66 (1H, br s, OH), 1.50 (2H, 

quintet, J  6.9, 7-CH2), 1.42 (2H, sextet, J  6.9, 8-CH2), 0.99 (3H, d, 76.9, 2-Me), 0.97 (3H, 

d, 76.9, I-CH3), 0.91 (3H, t, 76.9, 9-CH3).

4-Methyl-l-phenylpent-l-yn-3-ol 202c150
O OH

   y V
1 Ph

185b 202c

According to the general procedure D, isobutyraldehyde 185b (1.26 ml, 13.9 mmol) was 

added to a solution of phenylacetylene (1.60 ml, 14.6 mmol) and w-BuLi (2.5 M in hexanes, 

5.82 ml, 14.6 mmol) in tetrahydrofuran (30 ml) at -78 °C, followed by work-up to give the
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propargylic alcohol 202c as an orange oil (2.31 g, 96%); 8h 7.32-7.29 (2H, m, 2 x CH 

(Ar)), 7.20-7.17 (3H, m, 3 x CH (Ar)), 4.27 (1H, app t, J5.6, 3-H), 1.85 (1H, hept, J 6 .5, 4- 

H), 1.81 (1H, d, J5.6, OH), 0.95 (3H, d, J 6.5, 4-CH3), 0.93 (3H, d, J6.5, 5-CH3).

A/-M ethyloxycarbonyl-7V -(2-m ethyldec-5-yn-4-yl)am inophthalim ide 203a

203a202a

According to the general procedure G, triphenylphosphine (7.38 g, 28.1 mmol), diisopropyl 

azodicarboxylate (5.50 ml, 18.1 mmol), phthalimide 201b (5.40 g, 28.1 mmol) and 

propargylic alcohol 202a (3.15 g, 18.8 mmol) were added sequentially to tetrahydrofuran 

(280 ml), followed by work-up and purification by column chromatography using 20% 

ethyl acetate in hexane to give the hydrazine 203a as a clear oil (4.40 g, 69%); Umax/cm'1 

(neat) 3056, 2959, 2935, 2872, 2305, 2241, 1799, 1740, 1618, 1445, 1335, 1309, 1266, 

1215, 1109, 1081; 5H 7.81-7.78 (2H, m, 2 x CH (Ar)), 7.70-7.67 (2H, m, 2 x CH (Ar)), 

5.18-4.96 (1H, br m, 4-H), 3.72-3.53 (3H, br s, CH30), 1.94-1.89 (2H, m, 7-CH2), 1.79- 

1.43 (3H, m, 3-CH2, 2-H), 1.22-1.02 (4H, m, 8 and 9-CH2), 0.85 (6H, br d, J 6 3 ,  1-CH3, 2- 

Me), 0.62 (3H, br t, J1 A , 10-CH3); 5C 165.8 (C=0), 154.2 (C=0), 134.7 (CH (Ar)), 130.1 

(C), 123.9 (CH (Ar)), 123.8 (2 x CH (Ar)), 86.8 (C=C), 75.7 (C=C), 53.2 (CH30), 51.4 (4- 

CH), 43.9 (CH2), 30.4 (CH2), 25.1 (2-CH), 21.8 (CH2), 21.5 (CH3), 18.3 (CH2), 13.5 (CH3); 

m/z (El) 370 (M+, 20%), 315 (50%); [Found: [M]+, 370.1881. C2iH26N20 4 requires: M, 

370.1893].

A-fe/tf-Butyloxycarbonyl-A-(2-methylnon-4-yn-3-yI)amiiiophthalimide 203b

202b 203b

According to the general procedure G, triphenylphosphine (2.04 g, 7.79 mmol), diisopropyl 

azodicarboxylate (1.51 ml, 7.79 mmol), phthalimide 201c (2.04 g, 7.79 mmol) and
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propargylic alcohol 202b (0.80 g, 5.20 mmol) were added sequentially to tetrahydrofuran 

(80 ml), followed by work-up and purification by column chromatography using 20% ethyl 

acetate in hexane to give the hydrazine 203b as a clear oil (1.62 g, 78%); Umax/cm'1 (neat): 

2960, 2932, 2872, 2361, 2239, 1799, 1741, 1608, 1466, 1399, 1369, 1317, 1297, 1258, 

1161; 5h 7.86-7.87 (2H, m, 2 x CH (Ar)), 7.7-7.72 (2H, m, 2 x CH (Ar)), 4.80 (1H, s, 3-H), 

1.98-1.99 (3H, m, 2-H and 6-CH2), 1.61-1.24 (9H, br. s, 3 x CH3C), 1.11-1.24 (4H, m, 7 

and 8-CH2), 1.09 (6H, br d, J  6.4, 1-CH3, 2-Me), 0.70 (3H, t, J  7.0, 9-CH3); 5C 165.9 

(C=0), 165.3 (C=0), 152.9 (C=0), 135.8 (2 x CH (Ar)), 129.9 (C), 129.7 (C), 124.1 (CH 

(Ar)), 124.0 (CH (Ar)), 92.1 (C=C), 82.3 (C=C), 74.8 (C/butyl), 59.3 (3-CH), 33.4 (2-CH),

30.4 (CH2), 28.1 (3 x CH3C), 21.5 (CH3), 20.0 (CH2), 17.9 (CH2), 13.4 (CH3); m/z (APCI) 

399 (M+H\ 10%), 384 (60%), 357 (100%).

Ar-Benzyloxycarbonyl-AL(4-methyl-l-phenylpent-l-yn-3-yl)aminophthalimide 203c

Ph

Ph

203c

Ph

202c

According to the general procedure G, triphenylphosphine (1.81 g, 6.90 mmol), diisopropyl 

azodicarboxylate (1.34 ml, 6.90 mmol), phthalimide 201a (2.04 g, 6.90 mmol) and 

propargylic alcohol 202c (0.80 g, 4.60 mmol) were added sequentially to tetrahydrofuran 

(70 ml), followed by work-up and purification by column chromatography using 20% ethyl 

acetate in hexane to give the hydrazine 203c as a white solid (1.54 g, 76%); m.p. 89-93°C; 

Umax/cm'1 (DCM): 3063, 2963, 2872, 2362, 2233, 1955, 1798, 1745, 1598, 1490, 1442, 

1381, 1287; 5H 7.89 (2H, d, J 4.4, 2 x CH (Ar)), 7.80 (2H, d, J  4.5, 2 x CH (Ar)), 7.4-7.19 

(10H, m, 10 x CH (Ar)), 5.25 (3H, s, 3-H, CH2Ph), 2.20-2.21 (1H, m, 4-H), 1.27 (3H, d, J

6.1, 5-CH3), 1.21 (3H, d, J  6.54, 4-Me); 6C 166.1 (C=0), 165.2 (C=0), 154.2 (C=0), 135.5 

(C), 134.7 (CH (Ar)), 131.5 (CH (Ar)), 130.0 (C), 128.5 (C), 128.5 (CH (Ar)), 128.3 (CH 

(Ar)), 123.9 (CH (Ar)), 122.5 (CH (Ar)), 87.1 (C=C), 84.2 (C=C), 68.5 (CH2Ph), 59.6 (3- 

CH), 33.3 (4-CH), 19.9 (5-CH3), 19.3 (4-Me); m/z (ES) 453 (M+H+, 100%); [Found: [M + 

H]+, 453.1801. C28H25N20 4 requires: M+H, 453.1814].
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l-MethyIoxycarbonyl-l-(2-Methyldec-5-yn-4-yl)hydrazine 206a

0,

N-NHo

203a 206a

According to the general procedure H, a solution of phthalimide 203a (2.80 g, 8.19 mmol) 

and hydrazine hydrate (0.41 g, 8.19 mmol) in ethanol (80 ml) was refluxed for 1.5 h, 

followed by work-up resulted in crude hydrazine 206a as a clear oil (1.50 g, 86%); umax/cm' 

1 (neat) 3410, 3054, 2987, 2959, 2872, 2305, 1696, 1447, 1385, 1266, 1104; 5H 3.86-3.78 

(1H, m, 4-H), 3.77 (3H, s, CH30), 2.20 (2H, td, 7  7.1, 2.1, 7-CH2), 1.72-1.55 (3H, m, 3- 

CH2, 2-H), 1.48 (2H, quintet, J 1  A, 8-CH2), 1.40 (2H, sextet, J 1 .1, 9-CH2), 0.93 (6H, d, J

6.2, 1-CH3, 2-Me), 0.91 (3H, 10-CH3); 8C 159.1 (C=0), 53.3 (CH3O), 48.8 (4-CH),

42.5 (CH2), 30.8 (CH2), 24.9 (2-CH), 22.4 (CH3), 22.0 (CH2), 18.4 (CH2), 13.6 (CH3); m/z 

(El) 240 (M \ 50%), 197 (30%), 183 (100%); [Found: [M]+, 240.1832. C13H24N20 2 

requires: M, 240.1838]. Compound taken straight through to next step due to instability to 

column chromatography. C=C quaternaries could not be detected in the ,3C-NMR possibly 

due to rotamers.

l-te/'f-ButoxycarbonyI-l-(2-methylnon-4-yn-3-yl)hydrazme 206b

O,

203b 206b

According to the general procedure H, a solution of phthalimide 203b (0.40 g, 1.04 mmol) 

and hydrazine hydrate (0.05 ml, 1.04 mmol) in ethanol (10 ml) was refluxed for 1.5 h, 

followed by work-up resulted in crude hydrazine 206b as a clear oil (0.20  g, 72%); SH 4 .34-

4.19 (1H, br m, 3-H), 3.66 (2H, br s, NH2), 2.14 (2H, td, J 7.0, 2.1, 6-CH2), 2.03-1.93 (1H, 

m, 2-H), 1.46-1.39 (2H, m, 7-CH2), 1.41 (9H, s, 3 x CH3C), 1.33 (2H, hex J  7.1, 8-CH2), 

0.98 (3H, d, J  7.0, I-CH3), 0.83 (3H, t, J  7.1, 9-CH3), 0.79 (3H, d, J7.0, 2-Me). Compound 

taken through to next step due to instability to column chromatography.
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l-BenzyloxycarbonyI-l-(2-Methyldec-5-yn-4-yl)hydrazine 206c

Ph

Bu

203c 206c

According to the general procedure H, A solution of phthalimide 203c (0.65 g, 1.48 mmol) 

and hydrazine hydrate (0.07 ml, 1.48 mmol) in ethanol (15 ml) was refluxed for 1.5 h, 

followed by work-up resulted in crude hydrazine 206c as a clear oil (0.45 g, 94%); 5h 7.38- 

7.22 (10H, m, 10 x CH (Ar)), 5.14 (2H, s, CH2Ph), 4.55-4.51 (1H, m, 3-H), 3.88 (2H, br s, 

NH2), 2.21-2.12 (1H, m, 2-H), 1.08 (3H, d, J  6.7, 1-CH3), 0.86 (3H, d, J  6.7, 2-Me). 

Compound taken through to next step due to instability to column chromatography.

Methyl 3-butyl-5-isobutyl-4,5-dihydropyrazole-l-carboxylate 207a

N-NH.

Bu

206a

N -N

207a

According to the general procedure I, 10% AgN03.Si02 (0.35 g, 0.21 mmol) was stirred 

with a solution of precursor 206a (0.25 g, 1.04 mmol) in dichloromethane (5 ml) for 4 h to 

give the dihydropyrazole 207a as a clear viscous oil (0.24 g, 96%); Umax/cm'1 (neat) 2957, 

2933, 2872, 2362, 2342, 1699, 1467, 1406, 1366, 1301, 1194, 1123, 1097; 8H 4.27 (1H, app 

ddd, J  15.0, 10.0, 4.4, 5-H), 3.77 (3H, s, CH30), 2.93 (1H, dd, J  17.9, 10.9, 4-HA), 2.43 

(1H, dd, J  17.9, J 4.8, 4-Hb), 2.34 (2H, td, J l . l ,  2.4, l ’-CH2), 1.84-1.73 (1H, br m, 2” -H), 

1.64-1.55 (1H, m, 1” -HA), 1.50 (2H, quintet, J  7.7, 2’-CH2), 1.32 (2H, sextet, J l . l , 3’- 

CH2), 1.25 (1H, ddd, J  13.2, 10.0, 4.8, 1” -HB), 0.91 (6H, dd, J6 .6 , 1.3, 3” -CH3, 2” -Me), 

0.88 (3H, t, J 7.7, 4’-CH3); 5c 159.5 (C), 153.3 (C), 56.2 (CH30), 52.7 (5-CH), 43.0 (CH2),

40.5 (CH2), 30.0 (CH2), 28.7 (CH2), 25.0 (2” -CH), 23.5 (CH3), 22.4 (CH2), 21.6 (CH3),

13.7 (CH3); m/z (APCI) 503 (2M+Na+, 100%), 304 (M+MeCNNa+, 30%), 241 (80%).
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Methyl 3-butyl-5-isobutyl-l/7-pyrazole-l-carboxyIate 208

207a 208

To a stirred solution of 4,5-dihydropyrazole 207a (0.10 g, 0.42 mmol) in toluene (40 ml) 

was added 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (0.28 g, 1.25 mmol) and the mixture 

was refluxed for 18 h. The mixture was then cooled to room temperature and the resulting 

precipitate was filtered off and the filtrate evaporated. The crude residue was then separated 

by column chromatography using 20% ethyl acetate in hexane to give the pyrazole 208 as a 

clear oil (0.07 g, 71%); iW c n f 1 (neat) 2957, 2931, 2871, 1750, 1576, 1467, 1441, 1373, 

1306, 1208, 1115, 1075; 5H 5.94 (1H, s, 4-H), 3.94 (3H, s, CH30), 2.75 (2H ,d,J6 .9 , 1” - 

CH2), 2.55 (2H, t, J7 .6 , l ’-CH2), 1.90 (1H, nonete, J 6.8, 2” -H), 1.55 (2H, quintet, J l . 6, 

2’-CH2), 1.30 (2H, sextet, J1.6, 3’-CH2), 0.88 (6H, d, J6.9, 3” -CH3, 2” -Me), 0.85 (3H, t, 

J  7.6, 4’-CH3); 5c 157.2 (C), 150.8 (C), 148.7 (C), 109.6 (4-CH), 54.4 (CH30), 36.6 (CH2), 

31.2 (CH2), 28.1 (CH2), 27.5 (2” -CH), 22.5 (CH2), 22.3 (CH3), 13.9 (CH3); m/z (ES) 499 

(2M+Na+, 25%), 302 (M+MeCNNa\ 100%), 239 (M+fT, 15%); [Found: [M+H]+, 

239.1759. Ci3H23N20 2 requires: M+H, 239.1760].

te/7-Butyl 3-butyl-5-isopropyl-4,5-dihydropyrazole-l-carboxylate 207b

Y \
1 Bu

206b 207b

According to the general procedure I, 10% AgN03.Si02 (0.04 g, 0.02 mmol) was stirred 

with a solution of precursor 206b (0.06 g, 0.22 mmol) in dichloromethane (1 ml) for 4 h to 

give clean dihydropyrazole 207b as a clear viscous oil (0.5 g, 83%); Umax/cm’1 (DCM): 

2958, 2932, 2872, 1719, 1685, 1421, 1365, 1320, 1280, 1254, 1224, 1168; 5H 4.17-4.18 

(1H, m, 5-H), 2.70 (1H, dd, J17.9, J6.4, 4-HA), 2.50 (1H, dd, J  18.0, J  4.8, 4-HB), 2.30-

2.31 (3H, m, l ’-CH2, 1” -H), 1.48-1.45 (2H, m, 2’-CH2), 1.48 (9H, s, 3 x CH3C), 1.30-1.31 

(2H, m, 3’-CH2), 0.89 (3H, t, J  7.0, 4’-CH3), 0.80 (3H, d, J  6.0, 2” -CH3), 0.69 (3H, d, J

6.0, 1” -Me); 5C 158.7 (C=0), 152.3 (3-C), 80.5 (C/Butyl), 62.1 (5-CH), 34.9 (4-CH2), 30.1
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(CH2), 29.6 (1” -CH), 29.4 (CH2), 28.2 (3 x CH3C), 22.6 (CH2), 17.5 (CH3), 14.7 (CH3),

13.8 (CH3); m/z (El) 268 (M+, 5%), 168 (10%), 125 (100%); [Found: [M]+, 268.2152. 

Ci5H2gN20 2 requires: M, 268.2151].

Benzyl 5-isopropyI-3-phenyl-4,5-dihydropyrazole-l-carboxyIate 207c

206c 207c

According to the general procedure I, 10% AgN03.Si02 (0.26 g, 0.16 mmol) was stirred 

with a solution of precursor 206c (0.50 g, 1.55 mmol) in dichloromethane (10 ml) for 4 h to 

give clean dihydropyrazole 207c as a clear viscous oil (0.47 g, 94%); ^max/cm'1 (DCM): 

2961, 2932, 1693, 1447, 1425, 1391, 1369, 1272; 8H 7.68-7.69 (2H, m, 2 x CH (Ar)), 7.31-

7.32 (2H, m, 2 x CH (Ar)), 7.29-7.19 (6H, m, 6 x CH (Ar)), 5.22-5.23 (2H, m, CH2Ph), 

4.34-4.35 (1H, m, 5-H), 3.10 (1H, dd, J  17.6, 6.0, 1H, 4-HA), 2.89 (1H, dd, J  17.7, 4.9, 4- 

Hb), 2.40-2.33 (1H, m, l ’-H), 0.82 (3H, d, J 6.9, 2’-CH3), 0.69 (3H, d, J  6.8, l ’-Me); 5C

154.8 (C=0), 153.1 (C), 136.5 (C), 131.4 (C), 130.1 (CH (Ar)), 128.6 (4 x CH (Ar)), 128.1 

(3 x CH (Ar)), 126.7 (2 x CH (Ar)), 67.4 (CH2), 63.2 (5-CH), 32.9 (CH2), 29.7 ( l ’-CH),

18.4 (CH3), 15.3 (CH3); m/z (ES) 323 (M+Ff, 100%), 279 (30%); [Found: [M + H]+, 

323.1766. C20H23N2O2 requires: M+H, 323.1760].

7V-tert-Butoxycarbonyl-./V,-(p-toluenesuIfonyl)hydrazine 209

h*n'(AcX  ------
H

200c 209

According to the general procedure J, te/7-Butyl carbazate 200c (12.50 g, 94.69 mmol), 

pyridine (7.70 ml, 95.6 mmol) and/?-TsCl (18.05 g, 94.69 mmol) were added sequentially 

to dichloromethane (250 ml). Work-up and recrystalisation resulted in clean tosylate 209 as 

a white solid (20.20 g, 75%); m.p. 98-99 °C; W c m ’1 (CHC13) 3325, 3250, 2981, 2932, 

1718, 1598, 1495, 1370, 1341, 1290, 1256, 1160, 1092; 5H 7.81 (2H, d, J8.2, 2 x CH (Ar)),

7.32 (2H, d, J8 .2 , 2 x CH (Ar)), 6.57-6.49 (2H, br s, 2 x NH), 2.43 (3H, s, CH3Ar), 1.25
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(9H, s, 3 x CH3C); 8c 153.9 (C=0), 144.6 (C), 129.4 (2 x CH (Ar)), 128.9 (C), 128.5 (2 x 

CH (Ar)), 82.1 (C/Butyl), 27.3 (3 x CH3C), 21.6 (CH3Ar). m/z (El) 286 (M+, 2%), 230 

(100%), 186 (90%); [Found: [M]+, 286.0993. C ^ H ^ C ^ S  required: M, 286.0987]

5-Methyl-l-phenylhex- 1-y n-3-ol 210149 

0

/ "  -  

185a

According to the general procedure D, isovaleraldehyde 185a (1.25 ml, 11.6 mmol) was 

added to a solution of phenylacetylene (1.34 ml, 12.2 mmol) and w-BuLi (2.5 M in hexanes, 

4.88 ml, 12.2 mmol) in tetrahydrofuran (30 ml) at -78 °C, followed by work-up to give the 

propargylic alcohol 210 as a yellow oil (1.99 g, 91%); 5h 7.31-7.29 (2H, m, 2 x CH (Ar)), 

7.21-7.17 (3 x CH (Ar)), 4.52 (1H, app td, 77.5, 5.8, 3-H), 1.80 (1H, app hept, J 6.7, 5-H), 

1.69 (1H, d, J5.8, OH), 1.65-1.50 (2H, m, 4-CH2), 0.86 (3H, d, J 5.8, 6-CH3), 0.84 (3H, d, 

J 5.8, 5-Me).

213a

1-(Thiophen-3-yl)but-2-yn-3-oI 213a151
OH

^  — -

211a

According to the general procedure E, bis triphenylphosphine palladium dichloride (0.19 g, 

0.27 mmol), copper iodide (0.03 g, 0.14 mmol), 3-butyn-2-ol 212 (0.43 ml, 5.43 mmol),

2-iodothiophene 211a (0.95 g, 4.52 mmol) and triethylamine (2.60 ml, 18.8 mmol) were 

stirred in dry tetrahydrofuran (10 ml), this was followed by work-up which gave clean 

propargylic alcohol 213a as an orange oil (0.48 g, 70%); 8H 7.28 (1H, dd, J  5.1, 1.1, CH 

(Ar)), 7.22 (1H, dd, J3.6, 1.1, CH (Ar)), 6.99 (1H, dd, J5.3, 3.6, CH (Ar)), 4.79 (1H, app 

q, J  6.0, 3-H), 2.05 (1H, d, J  6.0, OH), 1.57 (3H, d, J  6.0, 4-CH3); 8C 132.6 (CH (Ar)),

127.6 (CH (Ar)), 127.3 (CH (Ar)), 121.9 (C), 120.4 (C), 95.1 (C), 59.4 (3-CH), 24.6 (4- 
CH3).
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l-(Pyridine-2-yl)but-2-yn-3-ol 213b
OH

N

Br

N

211b 213b

According to the general procedure E, bistriphenylphosphine palladium dichloride (0.22 g, 

0.31 mmol), copper iodide (0.03 g, 0.16 mmol), 3-butyn-2-ol 212 (0.49 ml, 6.23 mmol), 3- 

bromopyridine 211b (0.50 ml, 5.19 mmol) and triethylamine (3.00 ml, 21.5 mmol) were 

stirred in dry tetrahydrofuran (10 ml), this was followed by work-up which gave clean 

propargylic alcohol 213b as a dark orange oil (0.50 g, 66%); 8 8.77 (1H, app. s, CH (Ar)), 

8.52 (1H, app. s, CH (Ar)), 7.72 (1H, app. d, J7.8, CH (Ar)), 7.27 (1H, app. dd, J  7.6, 4.9, 

CH (Ar)), 4.78 (1H, q, J6.6, 3-CH), 4.65-4.62 (1H, br. s, OH), 1.57 (3H, d, J  6.6, 4-CH3); 

5C 151.2 (CH (Ar)), 147.3 (CH (Ar)), 138.1 (CH (Ar)), 131.2 (C), 122.4 (CH (Ar)), 94.9 

(C=C), 79.2 (C=C), 57.3 (3-CH), 23.3 (4-CH3).

l-(Pyrazin-3-yl)but-2-yn-3-oI 213c

According to the general procedure E, bis triphenylphosphine palladium dichloride (0.53 g, 

0.76 mmol), copper iodide (0.07 g, 0.38 mmol), 3-butyn-2-ol 212 (0.85 ml, 15.1 mmol), 2- 

iodopyrazine 211c (2.00 g, 12.6 mmol) and triethylamine (7.28 ml, 52.2 mmol) were stirred 

in dry tetrahydrofuran (25 ml), this was followed by work-up which gave clean propargylic 

alcohol 213c as a brown oil (1.45 g, 78%); SH 8.68 (1H, app.d, J  1.4, CH (Ar)), 8.55 (1H,

142.9 (CH (Ar)), 139.6 (C), 96.0 (C=C), 79.9 (C=C), 58.0 (3-CH), 23.7 (4-CH3).

OH

211c 213c

app. t, J  1.5, CH (Ar)), 8.51 (1H, app d, J  2.4, CH (Ar)), 4.82 (1H, app q, J  5.9, 3-CH),

2.20 (1H, d, J5 .9 , OH), 1.61 (3H, d, J5.9, 4-CH3); 6C 147.4 (CH (Ar)), 144.2 (CH (Ar)),
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7V-terf-Butyloxycarbonyl-7V-(2-inethyIdec-5-yn-4-yl)-/MoIuenesulfonylhydrazine 219a

219a202a

According to the general procedure triphenylphosphine (11.71 g, 44.64 mmol), 

diisopropyl azodicarboxylate (8.80 ml, 44.6 mmol), hydrazine 209 (11.52 g, 44.64 mmol) 

and propargylic alcohol 202a (5.00 g, 29.8 mmol) were added sequentially to 

tetrahydrofuran (450 ml), followed by work-up and purification by column chromatography 

using 10% ethyl acetate in hexane to give the substituted hydrazine 219a as a yellow solid 

(12.14 g, 91%); m.p. 59-60 °C; iw /cm ’1 (CHC13) 3314, 2958, 2871, 1759, 1710, 1598, 

1469, 1366* 1233, 1165, 1092; 6H 7.76 (2H, d, J8.0, 2 x CH (Ar)), 7.41 (2H, d, J  8.0, 2 x 

CH (Ar)), 4.65 (1H, app. t, J  1 A, 4-H), 2.42 (3H, s, CH3Ar), 2.05-1.97 (2H, m, 7-CH2), 

1.95-1.81 (1H, m, 2-H), 1.56 (2H, quintet, J1A , 8-CH2), 1.49-1.28 (4H, m, 9-CH2, 3-CH2), 

1.37 (9H, s, 3 x CH3C), 0.89 (3H, t, J 7.1, 10-CH3), 0.88 (6H, d, J7 .0 , 1-CH3, 2-Me); 6C

144.3 (C), 129.5 (C), 129.2 (2 x CH (Ar)), 128.5 (2 x CH (Ar)), 89.1 (C=C), 81.3 (C=C),

50.4 (4-CH), 43.1 (CH2), 30.4 (CH2), 27.9 (3 x CH3C), 24.0 (2-CH), 21.9 (CH2), 21.6 

(CH2), 21.4 (CH3Ar), 18.1 (CH3), 13.5 (CH3); m/z (ES) 454 (M+NH/, 100%), 381 (25%); 

[Found: [M+NH4]+, 454.2732. C23H4oN30 4S requires: M+NH4, 454.2740]. Boc

quaternaries C=0 and Ctbutyl could not be seen in the 1SC-NMR due to rotamers.

yV-terfbutyloxycarbonyl-7V-(5-methyl-l-phenylhex-2-yn-3-yl)-/>toluenesulfonylhydrazine 219b

219b210

According to the general procedure G, triphenylphosphine (2.47 g, 9.40 mmol), diisopropyl 

azodicarboxylate (1.83 ml, 9.40 mmol), hydrazine 209 (2.69 g, 9.40 mmol) and propargylic 

alcohol 210 (1.18 g, 6.27 mmol) were added sequentially to tetrahydrofuran (90 ml), 

followed by work-up and purification by column chromatography using 10% ethyl acetate
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in hexane to give the substituted hydrazine 219b as a white solid (1.40 g, 59%); m.p. 

134-135 °C; vmJ c m l (CHC13) 3357, 3056, 2960, 2866, 2359, 1754, 1718, 1598, 1479, 

1367, 1265, 1166, 1091; 6H 7.96 (1H, br. s,NH), 7.81 (2H, d, J 8.5, 2 x CH (Ar)), 7.38 (2H, 

d, J  8.5, 2 x CH (Ar)), 7.34-7.22 (5H, m, 5 x CH (Ar)), 4.90 (1H, t, J  7.4, 3-H), 2.44-2.38 

(1H, m, 5-H), 2.36 (3H, s, CH3Ar), 1.44-1.38 (2H, m, 4-CH2), 1.39 (9H, s, 3 x CH3C), 0.97 

(3H, d, J6.6, 6-CH3), 0.93 (3H, d, J6.6, 5-Me). 5C 144.1 (C), 131.4 (CH (Ar)), 129.2 (CH 

(Ar)), 129.1 (C), 128.9 (3 x CH (Ar)), 128.4 (2 x CH (Ar)), 127.9 (2 x CH (Ar)), 85.6 

(C=C), 85.1 (C=C), 77.8 (C/butyl), 50.4 (3-CH), 42.1 (4-CH2), 27.7 (3 x CH3C), 23.8 (5- 

CH), 22.7 (CH3), 21.7 (CH3), 21.6 (CH3Ar); m/z (ES) 520 (M+MeCNNa+, 15%), 474 

(M+NH4+, 100%); [Found: [M+NH4]+, 474.2426. C25H36N30 4S requires: M+NH4,

474.2427]. Boc C=0 could not be seen in the ,SC-NMR due to rotamers.

7V-fe/,/butyloxycarbonyl-./V-(l-(thiophen-3-yl)biit-2-yn-3-yl)-ptoluenesulfonylhydrazine 219c

219c

According to the general procedure G, triphenylphosphine (0.62 g, 2.37 mmol), diisopropyl 

azodicarboxylate (0.46 ml, 2.37 mmol), hydrazine 209 (0.68 g, 2.37 mmol) and propargylic 

alcohol 213a (0.24 g, 1.58 mmol) were added sequentially to tetrahydrofuran (25 ml), 

followed by work-up and purification by column chromatography using 20% ethyl acetate 

in hexane to give the substituted hydrazine 219c as a white solid (0.29 g, 44%); m.p. 98-99 

°C; Umax/cm'1 (CHC13) 3355, 3055, 2985, 2494, 2305, 1752, 1714, 1365, 1265, 1170, 1089; 

5h (DMSO, 392 K) 8.29 (1H, s, NH), 7.80 (2H, d, J8.4, 2 x CH (Ar)), 7.49 (1H, dd, J5.2,

1.2, CH (Ar)), 7.38 (2H, d, J  8.4, 2 x CH (Ar)), 7.13 (1H, dd, J3 .6 , 1.2, CH (Ar)), 7.01 

(1H, dd, J 5.1, 3.6, CH (Ar)), 5.06 (1H, q, J6.9, 3-H), 2.39 (3H, s, CH3Ar), 1.44 (3H, d, J

6.8, 4-CH3), 1.36 (9H, s, 3 x CH3C); 5C (MeOD) 157.7 (C=0), 146.2 (C), 134.1 (C), 133.2 

(CH (Ar)), 130.8 (CH (Ar)), 129.9 (2 x CH (Ar)), 128.7 (2 x CH (Ar)), 127.9 (CH (Ar)),

122.9 (C), 90.5 (D C ), 82.1 (C=C), 79.9 (C/butyl), 50.1 (3-CH), 28.4 (3 x CH3C), 21.6 

(CH3Ar), 20.8 (4-CH3); m/z (ES) 484 (M+MeCNNa+, 20%), 459 (M+K+, 10%), 438 

(M+NH/, 100%); [Found: [M+NR,]+, 438.1515. C20H28N3O4S2 requires: M+NH4, 
438.1521].
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A/-ter/butyloxycarbonyl-/V-(l-(3-pyridinyI)but-2-yn-3-yl)-/>toluenesulfonylhydrazine 219d

219d213b

According to the general procedure G, triphenylphosphine (0.67 g, 2.55 mmol), diisopropyl 

azodicarboxylate (0.50 ml, 2.55 mmol), hydrazine 209 (0.73 g, 2.55 mmol) and propargylic 

alcohol 213b (0.25 g, 1.70 mmol) were added sequentially to tetrahydrofuran (25 ml), 

followed by work-up and purification by column chromatography using 30-50% ethyl 

acetate in hexane to give the substituted hydrazine 219d as a white solid (0.31 g, 44%); 

m.p. 90-92 °C; i)max/cm'' (CHC13) 3432, 2980, 2931, 2367, 1745, 1704, 1640, 1476, 1363, 

1166, 1089; 6H(DMSO, 392 k) 8.51 (1H, dd, J4.8, 1.6, 6-H), 8.44 (1H, d, J  1.9, 5-H), 8.40 

(1H, br. s, NH), 7.81 (2H, d, J  8.3, 2 x CH (Ar)), 7.64 (1H, dt, J  7.9, 1.9, CH (Ar)), 7.36 

(2H, d, J8.2, 2 x CH (Ar)), 7.36-7.31 (1H, m, CH (Ar)), 5.08 (1H, q, /6 .9 , 3-H), 2.36 (3H, 

s, CH3Ar), 1.46 (3H, d, J6 .9 , 4-CH3), 1.36 (9H, s, 3 x CH3C); 5C (CDC13) 157.1 (C=0), 

152.7 (CH (Ar)), 149.2 (CH (Ar)), 146.3 (C), 140.6 (CH (Ar)), 134.5 (C), 130,7 (2 x CH 

(Ar)), 130.1 (2 x CH (Ar)), 124.6 (CH (Ar)), 121.2 (C), 90.1 (C=C), 82.2 (C=C), 79.8 

(C/butyl), 54.2 (3-CH), 28.5 (3 x CH3C), 21.5 (CH3Ar), 20.5 (4-CH3); m/z (ES) 479 

(M+MeCNNa+, 25%), 457 (M+MeCNFf, 25%), 416 (M+H\ 100%); [Found: [M+H]+, 

416.1657. C2iH26N3C>4S requires: M+NH4, 416.1644].

/V-terfbutyloxycarbonyl-/V-(l-(2-pyrazinyl)but-2-yn-3-yl)-p-toluenesuIfonyIhydrazine 219e

219e213c

According to the general procedure G, triphenylphosphine (0.53 g, 2.02 mmol), diisopropyl 

azodicarboxylate (0.39 ml, 2.02 mmol), hydrazine 209 (0.58 g, 2.02 mmol) and propargylic 

alcohol 213c (0.20 g, 1.35 mmol) were added sequentially to tetrahydrofuran (20 ml), 

followed by work-up and purification by column chromatography using 30-50% ethyl
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acetate in hexane to give the substituted hydrazine 219e as a dark orange oil (0.07 g, 12%); 

Umax/cm'1 (CHCb) 3225, 2979, 2349, 2240, 1748, 1710, 1365, 1163, 1090; 5H (MeOD) 8.51 

(2H, d, J6.8, 2 x CH (Ar)), 8.38 (1H, s, CH (Ar)), 7.81 (2H, d, J  7.9, 2 x CH (Ar)), 7.33- 

7.26 (2H, m, 2 x CH (Ar)), 5.23-5.20 (1H, m, 3-H), 2.24 (3H, s, CH3Ar), 1.48 (3H, d, J7.1,

4 -CH3), 1.46 (9H, s, 3 x CH3C); 5c (CDC13) 157.6 (C=0), 148.9 (CH (Ar)), 146.2 (C),

145.4 (CH (Ar)), 144.8 (CH (Ar)), 140.8 (C), 135.2 (C), 130.6 (2 x CH (Ar)), 130.2 (2 x 

CH (Ar)), 91.9 (C=C), 82.1 (C=C), 78.9 (C/butyl), 51.2 (3-CH), 28.5 (3 x CH3C), 21.5 

(CH3Ar), 20.5 (4-CH3); m/z (ES) 417 (M+H\ 10%), 361 (100%); [Found: [M+H]\ 

417.1588. C20H25N4O4S requires: M+H, 417.1597].

iV-(2-methyldec-5-yii-4-yl)p-toluenesulfonylhydrazide219f

TsN-NHBoc

219a 219f

Boc-protected hydrazine 219a (0.06 g, 0.14 mmol) was dissolved in dichloromethane (0.1 

ml) and cooled to 0 °C. This was followed by the dropwise addition of 20% trifluoroacetic 

acid (0.03 ml, 0.41 mmol) in dichloromethane (0.12 ml) and allowed to stir at 0 °C for 4 h. 

The solution was diluted with dichloromethane (10 ml) and 2M sodium hydroxide (few 

drops) was added to neutralise. The organic layer was separated and was then washed with 

water ( 2 x 1 0  ml) and brine (10 ml). The organics were then dried over sodium sulphate, 

filtered and evaporated to give the free hydrazine 219f as a crude yellow oil (0.03 g, 65%); 

Umax/cm'1 (Neat) 3368, 2958, 2933, 2871, 2256, 1598, 1467, 1349, 1159, 1091; 6H (500 

MHz) 7.73 (2H, d, J  8.1, 2 x CH (Ar)), 7.24 (2H, d, J  8.1, 2 x CH (Ar)), 4.72 (1H, app t, J  

7.6, 4-H), 3.51 (2H, br s, NH2), 2.36 (3H, s, CH3Ar), 1.76 (2H, app br t, J  6.6, 7-CH2),

1.73-1.66 (1H, m, CH), 1.66-1.58 (1H, m, CH), 1.43-1.36 (1H, m, CH), 1.12-1.06 (4H, m, 2 

x CH2), 0.91 (3H, d, J  6.6, 1-CH3), 0.87 (3H, d, J  6.6, 2-Me), 0.75 (3H, t, J  6.6, 10-CH3). 

Compound decomposed as was unstable.
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(V’-Tosylacetohydrazide 222152 

O

^ n- nh2
H

221 222

According to the general procedure J, Acetic hydrazide 221 (5.00 g, 67.5 mmol), pyridine 

(5.50 ml, 68.2 mmol) and /?-TsCl (12.74 g, 67.50 mmol) were added sequentially to 

dichloromethane (175 ml). Work-up and recrystalisation resulted in clean tosylate 222 as a 

clear solid (15.10 g, 98%); m.p. 160-162 (lit m.p.152 159 °C); 5H 7.80 (2H, d, J8.2, 2 x CH 

(Ar)), 7.33 (2H, d, J8.2, 2 x CH (Ar)), 2.45 (3H, s, CH3Ar), 1.87 (3H, s, CH3Ac).

7V,-(2-Methyldec-5-yn-4-yl)-A’-tosylacetohydrazide 223a

OH

r^v
Bu

202a 223a

According to the general procedure G, triphenylphosphine (3.51 g, 13.4 mmol), diisopropyl 

azodicarboxylate (2.63 ml, 13.4 mmol), hydrazine 222 (3.06 g, 13.4 mmol) and propargylic 

alcohol 202a (1.50 g, 8.93 mmol) were added sequentially to tetrahydrofuran (130 ml), 

followed by work-up and purification by column chromatography using 30% ethyl acetate 

in hexane to give the Mitsunobu product 223a as a white solid (2.60 g, 77%); m.p. 62-63 

°C; Umax/cm' 1 (DCM) 3196, 3107, 2958,2933, 2871, 1688, 1598, 1362, 1163, 1090; SH 7.78 

(2H, d, J 8.2, 2 x CH (Ar)), 7.37 (2H, d, J8.2, 2 x CH (Ar)), 6.42 (1H, s, NH), 4.81 (1H, tt, 

J  7.6, 2.1, 4-H), 2.47 (3H, s, CH3Ar), 2.22 (3H, s, CH3Ac), 1.83 (1H, nonete,J 6 .6 , 2-H), 

1.77 (2a td, J  7.2, 1.5, 7-CH2), 1.60-1.52 (la m, 3-HA), 1.49-1.41 ( 1H, m, 3-HB), 1.22-
1.08 (4H, m, 8 and 9-CH2), 1.00 (3H, d, J  6 .6 , 1-CH3), 0.96 (3H, d, J 6 .6 , 2-Me), 0.85 (3H, 

t, J  7.2, IO-CH3); 5C 175.5 (C=0), 145.1 (C), 131.4(C), 129.4 (2 x CH (Ar)), 129.0 (2xCH 

(Ar)), 89.2 (C=C), 72.5 (C=C), 52.5 (4-CH), 42.9 (CH2), 30.3 (CH2), 24.7 (2-CH), 22.4 

(CH3), 22.0 (CH3), 22.0 (CH2), 21.7 (CH3), 20.6 (CH3), 17.9 (CH2), 12.9 (CH3); m/z (APC1) 

420 (M eCN a, 100%), 379 (M+a, 20%); [Found: [M+H]4, 379.2068. C20H3,N2O3S 

requires: M+H, 379.2055].

N-NH

O.
V -N H  Q

H N -S —" 
O
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^-(S-Methyl-l-phenylhex-l-yn-S-yO-TV’-tosylacetohydrazide 223b
Ox

° 'X '°  y -
N-NH

210 223b

According to the general procedure G, triphenylphosphine (3.14 g, 12.0 mmol), diisopropyl 

azodicarboxylate (2.35 ml, 12.0 mmol), hydrazine 222 (2.73 g, 12.0 mmol) and propargylic 

alcohol 210 (1.50 g, 7.97 mmol) were added sequentially to tetrahydrofuran (120 ml), 

followed by work-up and purification by column chromatography using 30% ethyl acetate 

in hexane to give the Mitsunobu product 223b as a yellow solid (1.82 g, 57%); m.p. 150- 

151 °C; Umax/cm’1 (DCM) 3306, 3193, 2958, 2871, 2233, 1685, 1597, 1491, 1361, 1162, 

1090; 5h 7.80 (2H, d, J  8.2, 2 x CH (Ar)), 7.31-7.18 (5H, m, 5 x CH (Ar)), 6.93 (2H, d, J

8.2, 2 x CH (Ar)), 6.75 (1H, s, NH), 5.03 (1H, t, J7.5, 3-H), 2.29 (3H, s, CH3), 2.24 (3H, s, 

CH3), 1.90 (1H, nonete,J6.6, 5-H), 1.68 (1H, dt, J  13.2, 7.5, 4-HA), 1.59 (1H, dt, J  13.2,

7.5, 4-Hb), 1.03 (3H, d, J  6.6, 6-CH3), 1.00 (3H, d, J  6.6, 5-Me); 5C 175.6 (C O ), 145.5 

(C), 131.6 (2 x CH (Ar)), 131.2 (C), 130.0 (2 x CH (Ar)), 129.2 (2 x CH (Ar)), 128.8 (CH 

(Ar)), 128.1 (2 x CH (Ar)), 121.1 (C), 88.1 (C=C), 81.6 (C=C), 52.7 (3-CH), 42.5 (CH2),

24.8 (5-CH), 22.5 (CH3), 22.1 (CH3), 21.5 (CH3), 20.0 (CH3); m/z (APCI) 462 

(M+MeCNNa+, 50%), 440 (M+MeCNH+, 100%), 399 (M+H\ 15%); [Found: [M+H]+, 

399.1740. C22H27N20 3S requires: M+H, 399.1742].

l-Tosyl-2-acetyl-3-butyl-5-isobutyl-2,5-dihydropyrazole 224a

TsN-NHAc
N-N

224a223a

According to the general procedure I, 10% AgN03.Si02 (2.69 g, 1.59 mmol) was stirred 

with a solution of precursor 223a (0.20 g, 0.53 mmol) in dichloromethane (4 ml) for 18 h to 

give the dihydropyrazole 224a as a clear viscous oil (0.10 g, 50%); Umax/cm'1 (neat) 2957, 

2932, 2871, 1704, 1683, 1597, 1468, 1357, 1167, 1090; 5H 7.70 (2H, d, J8.3, 2 x CH (Ar)),

7.28 (2H, d, J8.3, 2 x CH (Ar)), 4.57 (1H, dt, J3 .0 , 1.6, 4-H), 4.44 (1H, dddd, J9.0, 6.4,

2.8, 1.6, 5-H), 2.60-2.47 (2H, m, l ’-CH2), 2.45 (3H, s, CH3), 2.43 (3H, s, CH3), 2.13-2.06
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(1H, m, 1” -Ha), 1.95-1.85 (lH,m, 1” -HB), 1.37-1.28 (1H, m, 2” -H), 1.19-1.05 (4H, m, 2’- 

CH2, 3’-CH2), 1.02 (3H, d, J 6.4, 3” -CH3), 0.97 (3H, d, J  6.4, 2” -Me), 0.81 (3H, t, J7.0, 

4’-CH3); 5c 176.7 (C=0), 145.5 (C), 145.0 (C), 131.8 (C), 129.5 (2 x CH (Ar)), 129.1 (2 x 

CH (Ar)), 109.7 (4-CH), 64.4 (5-CH), 43.4 (CH2), 29.7 (CH2), 29.4 (CH2), 24.8 (2” -CH),

23.8 (CH3), 23.1 (CH3), 22.3 (CH2), 22.0 (CH3), 21.6 (CH3Ar), 14.0 (CH3); m/z (APCI) 420 

(M+MeCNlT, 50%), 379 (M+H+, 100%); [Found: [M+H]+, 379.2063. C20H3iN2O3S 

requires: M+H, 379.2055].

l-Tosyl-2-acetyl-3-phenyl-5-isobutyl-2,5-dihydropyrazole 224b

TsN-NHAc
N -N

224b223b

According to the general procedure I, 10% AgN03.Si02 (1.74 g, 1.03 mmol) was stirred 

with a solution of precursor 223b (0.20 g, 0.51 mmol) in dichloromethane (4 ml) for 18 h to 

give the dihydropyrazole 224b as a clear viscous oil (0.08 g, 40 %); Umax/cm' 1 (neat) 3054, 

2987, 2305, 1708, 1422, 1355, 1266, 1168, 896; 5H 7.68 (2H, d, J8 .0 , 2 x CH (Ar)), 7.16 

(5H, app s, 5 x CH (Ar)), 7.02 (2H, d, J  8.0, 2 x CH (Ar)), 5.17 (1H, br s, 4-H), 4.56-4.50 

(1H, m, 5-H), 2.43 (3H, s, CH3Ar), 2.16 (3H, s, CH3Ac), 1.98-1.87 (1H, m, 2’-H), 1.42-

1.33 (1H, m, 1 ’-Ha), 1.25-1.14 (1H, m, l ’-HB), 0.99 (3H, d, J6 .5 , 3’-CH3), 0.94 (3H, d, J

6.5, 2’-Me); 5C 177.3 (C=0), 145.0 (C), 144.2 (C), 131.6 (C), 131.1 (C), 129.5 (2 x CH 

(Ar)), 128.8 (2 x CH (Ar)), 128.6 (CH (Ar)), 127.6 (2 x CH (Ar)), 126.6 (2 x CH (Ar)),

113.3 (4-CH), 65.0 (5-CH), 43.0 ( l ’-CH2), 25.0 (2’-CH), 23.4 (CH3), 23.1 (CH3), 22.0 

(CH3), 21.5 (CH3); m/z (APCI) 462 (M+MeCNNa+, 80%), 399 (M+H", 100%); [Found: 

[M+H]+, 399.1747. C22H27N20 3S requires: M+H, 399.1742].
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7V’-(5-Methyl-l-phenylhex-l-yn-3-yl)-./V’-methyloxycarbonylacetohydrazide 225

A solution of free hydrazine 206a (0.35 g, 1.46 mmol) in dichloromethane (15 ml) was 

stirred at -78 °C, followed by the dropwise addition of triethylamine (0.21 ml, 1.53 mmol). 

After 5 min acetyl chloride (0.10 ml, 1.47 mmol) was added and the solution was allowed 

to warm to room temperature overnight. The solution was then cooled to 0 °C and saturated 

aqueous sodium carbonate (5 ml) was added, followed by water (10 ml) and 

dichloromethane (20 ml). The separated solution was washed with water ( 3 x 1 0  ml) and 

brine (10  ml), then dried over sodium sulphate, filtered and evaporated to give crude 

product. The crude material was then purified using column chromatography using 40% 

ethyl acetate in hexane to give the acyl hydrazine 225 as a clear viscous oil (0.26 g, 63%); 

Umax/cm' 1 (neat) 3392, 3055, 2960, 2872, 2306, 1719, 1705, 1446, 1387, 1266, 1196, 1109,

7.0, 10-CH3); 5C (CHCI3) 176.5 (C=0), 155.7 (C O ), 85.4 (C=C), 75.3 (C O ), 53.7 

(CH3O), 50.0 (4-CH), 42.4 (CH2), 30.7 (CH2), 24.8 (2-CH), 22.7 (CH3), 22.0 (CH3), 21.0 

(CH3), 19.2 (CH2) 18.3 (CH2), 13.6 (CH3); m/z (ES) 321 (M+K+, 100%), 305 (M+Na+, 

70%), 283 (M+Fr, 50%); [Found: [M+H]+, 283.2025. CisH27N203  requires: M+H, 
283.2022].

206a 225

909; 5h (DMSO, 367 K) 9.43 (1H, s, NH), 4.85 (1H, br t, J  6.9, 4-H), 3.63 (3H, br s, 

CH3O), 2.17 (2H, br t, J  7.0, 7-CH2), 1.88 (3H, s, CH3Ac), 1.74 (1H, nonete,J6.9, 2-H), 

1.57-1.33 (6H, m, 8 and 9-CH2, 3-CH2), 0.92 (6H, d, J  6.9, 1-CH3, 2-Me), 0.89 (3H, t, J
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Methyl 2-acetyl-3-butyl-5-isobutyl-2,5-dihydropyrazole-l-carboxylate 226

225 226

According to the general procedure I, 10% AgN0 3 .SiC>2 (0.22 g, 0.13 mmol) was stirred 

with a solution of precursor 225 (0.18 g, 0.64 mmol) in dichloromethane (4 ml) for 18 h to 

give the dihydropyrazole 226 as a clear viscous oil (0.07 g, 39%); Umax/cm' 1 (neat) 2958, 

2932, 2872, 1713, 1530, 1447, 1393, 1368, 1277, 1126; 5H 5.05 (1H, app s, 4-H), 4.64-4.58 

(1H, m, 5-H), 3.75 (3H, s, CH30), 2.68 (1H, app pent d, J l . l ,  1.6, 1” -HA), 2.52 (1H, app 

quintet, J l . l ,  1” -HB), 2.17 (3H, s, CH3AC), 1.66 (1H, nonete, J  6.1, 2’-H), 1.43 (2H, t, J  

7.4, l ’-CH2), 1.30-1.15 (4H, m, 2” -CH2, 3” -CH2), 0.92 (3H, d, J6.1, 3’-CH3), 0.87 (3H, d, 

J 6.1, 2’-Me), 0.83 (3H, t, J l . l ,  4” -CH3); 6C 173.4 (C=0), 159.8 (C=0), 144.8 (C), 111.0 

(4-CH), 62.9 (CH3O), 53.8 (5-CH), 42.8 (CH2), 29.4 (CH2), 29.2 (CH2), 24.7 (2” -CH),

22.8 (CH3), 22.7 (CH3), 22.1 (CH3) 22.1 (CH2), 13.9 (CH3); m/z (APCI) 283 (M+ff, 

100%), 241 (50%), 210 (25%).
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5.4 Experimental for the synthesis of pyrroles

General procedure K for the preparation of acetvlenic aldehydes103

To a stirred solution of an acetylene (1.00 equiv) in dry tetrahydrofuran (approx 3-4 ml per 

mmol) at -78 °C was added «-BuLi (2.5 M in hexanes, 1.00 equiv) and the resulting mixture 

was stirred for 0.5 h. This was followed by the dropwise addition of anhydrous dimethyl 

formamide (2.00 equiv). The cooling bath was removed and the reaction was allowed to warm 

to room temperature over 0.5 hours. The reaction was then quenched by pouring into a 

vigorously stirred biphasic mixture of 10% aqueous solution of potassium dihydrogen 

phosphate (4.00 equiv) and ether as a 1:1 v/v mixture at 0 °C. The separated organic solution 

was dried and evaporated under reduced pressure to give the crude acetylenic aldehyde that was 

purified by passing through a thin pad of silica using 10% ether in hexane as eluent or by 

Kugelrohr distillation.

General procedure L for the 7V-tosvlation of glvcinates

To a stirred solution of glycine ethyl ester hydrochloride (1.00 equiv) in dry dichloromethane 

(2-3 ml per mmol glycine) at ambient temperature was added either p-nitrobenzenesulfonyl 

chloride or />-TsCl (1.10 equiv) and a few crystals of DMAP. This was followed by the 

dropwise addition of triethylamine (2.50 equiv). The mixture was allowed to stir overnight 

before being diluted with DCM (2 ml per mmol glycine). The organics were then washed with 

1M HC1 (2 x volume of reaction mixture), water (3 x volume of reaction mixture) and brine (2 

x volume of reaction mixture) before being dried over sodium sulphate, filtered and evaporated 

to give a viscous oil that solidified upon standing. The crude product was then purified by 

recrystalisation using ethyl acetate/hexane to give clean product.
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General procedure M for the preparation of B-hvdroxv amino esters using chelated 

glycine enolates106

To a stirred solution of diisopropylamine (2.20 equiv) in dry tetrahydrofuran (4-5 ml per mmol) 

at 0 °C w-BuLi (2.5 M in hexanes, 2.20 equiv) was added dropwise. The resulting mixture was 

allowed to warm to room temperature over 0.5 h. The solution was cooled to -78 °C and A-tosyl 

glycine ethyl ester (1.00 equiv) in tetrahydrofuran (1.00 ml per mmol) was added dropwise 

followed by the dropwise addition of tin(II) chloride (2.50 equiv) in tetrahydrofuran (0.50 ml 

per mmol). The mixture was allowed to stir at -78 °C for 0.5 h before the dropwise addition of 

acetylenic aldehyde or ketone (1.10 equiv) in tetrahydrofuran (1.00 ml per mmol). The reaction 

mixture was then allowed to stir at room temperature overnight. The resulting cloudy yellow 

solution was quenched with phosphate buffer (pH 7) and passed through a pad of silica. The 

bulk of the tetrahydrofuran was then evaporated, and the resulting residue extracted with ether 

(3 x volume of reaction mixture). The combined organic solutions were then dried over sodium 

sulphate, filtered and evaporated to give the crude (3-hydroxy amino ester that was purified by 

recrystalisation or column chromatography.

General procedure N for the copper(II) acetate-catalysed cvclisation

A solution containing precursor (1.00 equiv) and Cu(OAc)2 (0.10 equiv) in toluene (10 ml g'1) 

was refluxed. The resulting brown solution was allowed to cool followed by filtration through 

silica and washing through with ether to give clean pyrrole.
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Hept-2-ynal 300a153

O

H

299a 300a

According to the general procedure K, «-BuLi (2.5 M in hexanes, 14.6 mL, 36.3 mmol) and 

dimethylformamide (5.65 ml, 73.2 mmol) were added sequencially to 1-hexyne 299a (4.20 ml,

36.3 mmol) in dry tetrahydrofuran (120 ml). Dipotassium hydrogen phosphate (25.29 g, 145.2 

mmol) in water (250 ml) was added to quench. The work-up yielded the aldehyde 300a as an 

orange oil (2.80 g, 66%); bp: 80 °C (at 0.5-0.75 mmHg); Umax/cnT1 (neat): 2960, 2930, 2871, 

2281, 2235, 2202, 1715, 1669, 1463, 1422, 1385, 1325, 1268, 1138, 1071, 980; 5H 9.05 (1H, s, 

1-H), 2.29 (2H, t, J  7.3, 4-CH2), 1.45 (2H, quintet, J 13,  5-CH2), 1.35 (2H, sextet, J 13, 6- 

CH2), 0.81 (3H, t, J 1 3 ,  7-CH3).

3-Phenylprop-2-ynaI 300b153

According to the general procedure K, w-BuLi (2.5 M in hexanes, 11.6 ml, 29.0 mmol) and 

dimethylformamide (4.49 ml, 58.0 mmol) were added sequencially to phenylacetylene 299b 

(3.23 ml, 29.0 mmol) in dry tetrahydrofuran (90 ml). Dipotassium hydrogen phosphate (20.20 

g, 116.0 mmol) in water (220 ml) was added to quench. The work-up yielded the aldehyde 

300b as an orange oil (2.81 g, 74%); bp; 190°C (at 0.5-0.75 mmHg); Umax/cnT1 (neat): 3298, 

3056, 2855, 2518, 2239, 2188, 1959, 1725, 1658, 1572, 1488, 1443, 1387, 1261, 1159, 1069, 

1002; 5h 9.30 (1H, s, 1-H), 7.49-7.26 (5H, m, 5 x CH (Ar)).

O

299b 300b
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4-Methyi-pent-4-en-2-ynal 300c154

299c 300c

According to the general procedure K, «-BuLi (2.5 M in hexanes, 18.20 ml, 45.45 mmol) and 

dimethylformamide (7.04 ml, 90.9 mmol) were added sequencially to 3-methyl but-3-en-l-yne 

299c (3.00 g, 45.5 mmol) in dry tetrahydrofuran (150 ml). Dipotassium hydrogen phosphate 

(31.67 g, 181.8 mmol) in water (310 ml) was added to quench. The work-up yielded the 

aldehyde 300c as an orange oil (2.60 g, 60%); 5H 9.29 (1H, s, 1-H), 5.60 (1H, s, 5-HA), 5.53 

(1H, s, 5-Hb), 1.96 (3H, s, 4-Me).

3-(Trimethylsilyl)prop-2-ynal 300d155

Me3Si— ^   ►

Me3Si

299d 300d

According to the general procedure K, «-BuLi (2.5 M in hexanes, 8.10 ml, 20.4 mmol) and 

dimethylformamide (3.10 ml, 40.7 mmol) were added sequencially to trimethylsilylacetylene 

299d (2.90 ml, 20.4 mmol) in dry tetrahydrofuran (60 ml). Dipotassium hydrogen phosphate 

(14.18 g, 81.44 mmol) in water (140 ml) was added to quench. The work-up yielded the 

aldehyde 300d as a orange oil (1.705 g, 66%); SH 9.01 (1H, s, 1-H), 0.11 (9H, s, 3 x CH3Si).

5-(terr-Butyldimethylsilyloxy)pent-2-ynal 300e156

TBDMSO—'
TBDMSO

299e 300e

According to the general procedure K, «-BuLi (2.5 M in hexanes, 4.30 ml, 10.8 mmol) and 

dimethylformamide (1.70 ml, 21.7 mmol) were added sequencially to tert-butyltrimethylsilyl- 

butyn-l-ol 299e (2.00 g, 10.8 mmol) in dry tetrahydrofuran (50 ml). Dipotassium hydrogen 

phosphate (7.60 g, 43.4 mmol) in water (76 ml) was added to quench. The work-up yielded the

178



aldehyde 300e as a yellow oil (2.10 g, 87%); 5h 9.09 (1H, s, 1-H), 3.72 (2H, t, J  6.7, 5-CH2), 

2.54 (2H, t, 76.7, 4-CH2), 0.82 (9H, s, 3 x CH3C), 0.00 (6H, s, 2 x CH3Si).

TV-Tosy 1-glycine ethyl ester 298a157

E t0 2C ^ N H 3CI  ^  E tO z C ^ N H T s

297 298a

According to the general procedure L, a solution of glycine ethyl ester hydrochloride 297 

(5.00 g, 35.8 mmol), /?-TsCl (7.51 g, 39.4 mmol), triethylamine (12.48 ml, 89.55 mmol) and a 

few crystals of DMAP were stirred in dry dichloromethane (100 ml) overnight. This was 

followed by work-up and recrystalisation to give the tosyl-protected glycinate 298a as a white 

solid (8.87 g, 96%); m.p. 60-61 °C (lit. m.p.26 59-61 °C); vmJ c m l (DCM): 3290, 2985, 1741, 

1599, 1445, 1334, 1162, 1093; 5H 7.74 (2H, d, J  8.2, 2 x CH (Ar)), 7.33 (2H, d, J  8.2, 2 x CH 

(Ar)), 5.11 (1H, t, J ,  NH), 4.09 (2H, q, 77.1, CH20), 3.77 (2H, d, J 5.5, CH2N), 2.42 (3H, s, 

CH3Ar), 1.19 (3H, t, 7  7.1, CH3CH20); 5C 168.8 (C=0), 143.9 (C), 136.1 (C), 129.8 (2 x CH 

(Ar)), 127.3 (2 x CH (Ar)), 62.0 (CH20), 44.2 (CH2N), 21.6 (CH3Ar), 14.0 (CH3CH20).

7V-Nosyl-glycine ethyl ester 298b158

E t0 2C ^ N H 3CI 

297

According to the general procedure L, a solution of glycine ethyl ester hydrochloride 297 

(10.00 g, 71.64 mmol), /?-NsCl (17.47 g, 78.81 mmol), triethylamine (25.00 ml, 179.1 mmol) 

and a few crystals of DMAP were stirred in dry dichloromethane (200 ml) overnight. This was 

followed by work-up and recrystalisation to give the nosyl-protected glycinate 298b as an 

orange solid (20.31 g, 98%); m.p. 112-114 °C (lit. m.p.156 118-120 °C); iw /c rn 1 (DCM): 3419, 

2980, 2873, 1723, 1645, 1526, 1352, 1312, 1249, 1174, 1091; 5H 8.31 (2H, d, 7  8.2, 2 x CH 

(Ar)), 7.98 (2H, d, 78.2, 2 x CH (Ar)), 5.23 (1H, t, 75.5, NH), 4.14 (2H, q, 77.2, CH20), 3.77 

(2H, d, 7  5.5, CH2N), 1.12 (3H, t, 7  7.2, CH3CH20); 6C 168.5 (C O ), 145.3 (C), 138.9 (C),

128.5 (2 x CH (Ar)), 124.4 (2 x CH (Ar)), 62.3 (CH20), 44.1 (CH2N), 14.1 (CH3CH20); m/z 

(El) 288 (M+, 2%), 215 (70%), 103 (20%), 85 (100%); [Found: [M]+, 288.0409. C,0H12N2O6S 

requires: M, 288.0416].
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(2SR, 3SR)-Ethyl 2-(4-toIuenesulfonylamino)-3-hydroxynon-4-ynoate 294a4’104

H C02Et

NHTs

300a 294a

According to the general procedure M, to a stirred solution of diisopropylamine (3.80 ml, 27.3

mmol) and «-BuLi (2.5 M in hexanes, 10.90 ml, 27.3 mmol) in tetrahydrofuran (200 ml), 

iV-tosyl glycine ethyl ester (3.19 g, 12.4 mmol) in tetrahydrofuran (13 ml), tin(II) chloride (5.88 

g, 31.0 mmol) in tetrahydrofuran (15.5 ml) and heptynal 300a (1.50 g, 13.6 mmol) in 

tetrahydrofuran (14 ml) were added sequencially. After workup the crude product was 

recrystalised from ethyl acetate/petrol to give the (5-hydroxy amino ester 294a as a single 

diastereoisomer and as a yellow crystalline solid (3.60 g, 79%), m.p. 66-67 °C (lit m.p4 66°C). 

5h 7.69 (2H, d, J, 8.3, 2 x CH (Ar)), 7.25 (2H, d, J  8.3, 2 x CH (Ar)), 5.45 (1H, d, J 9.3, NH), 

4.59 (1H, br. m, 3-CH), 4.05 (1H, dd, J9.3, 3.8, 2-H), 4.01-3.95 (2H, m, OCH2), 2.70 (1H, d, J  

10.3, OH), 2.41 (3H, s, CH3Ar), 2.12 (2H, td, 7  7.0, 2.0, 6-CH2), 1.43-1.28 (4H, m, 7 and 8- 

CH2), 1.09 (3H, t, J7.0, CH3CH20), 0.83 (3H, t, J l . l ,  9-CH3).

(2SR, 3SR)-Ethyl 3-hydroxy-2-(toluenesulfonylamido)-5-phenyIpent-4-ynoate 294b4’104

According to the general procedure M, to a stirred solution of diisopropylamine (1.28 ml, 9.06 

mmol) and «-BuLi (2.5 M in hexanes, 3.62 ml, 9.06 mmol) in tetrahydrofuran (100 ml), A-tosyl 

glycine ethyl ester (1.06 g, 4.12 mmol) in tetrahydrofuran (4 ml), tin(II) chloride (1.95 g, 10.3 

mmol) in tetrahydrofuran (5 ml) and 3-phenylpropiolaldehyde 300b (0.91 g, 4.28 mmol) in 

tetrahydrofuran (4.3 ml) were added sequencially. After workup the crude product was purified 

by recrystalisation using ethyl acetate and hexane to give the /3-hydroxy amino ester 294b as a 

single diastereoisomer and as a white solid (1.31 g, 82%), m.p. 119 °C (lit m.p.4 118-119°C). 5H

O OH

NHTs

300b 294b

7.79 (2H, d, J  8.3, 2 x CH (Ar)), 7.42-7.31 (5H, m, 5 x CH (Ar)), 7.33 (2H, d, J  8.2, 2 x CH 

(Ar)), 5.60 (1H, d, J  9.5, NH), 4.92 (1H, dd, J  10.7, 3.9, 3-H), 4.24 (1H, dd, J  9.5, 3.9, 2-H),
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4.08 (2H, q, 7 12, OCH2), 2.93 (1H, d, 7 10.7, OH), 2.45 (3H, s, CH3Ar), 1.17 (3H, t, 7 12, 

CH3CH2O); 167.9 (0=0), 144.1 (C), 136.2 (C), 131.8 (2 x CH (Ar)), 129.8 (2 x CH (Ar)),

129.0 (CH (Ar)), 128.4 (2 x CH (Ar)), 127.3 (2 x CH (Ar)), 121.4 (C), 87.5 (C=C), 84.2 (C=C),

63.6 (2 or 3-CH), 62.4 (OCH2), 60.7 (2 or 3-CH), 21.6 (CH3Ar), 14.0 (CH3CH20).

(2SR, 3SR)-Ethyl-2-amino-3-hydroxy-2-(4-toluenesulfonylamino)-5-(trimethylsilyl)pent-4- 

ynoate 294c

O OH

^ V 0zEt
Me3Si NHTs

300d 294c

According to the general procedure M, to a stirred solution of diisopropylamine (1.80 ml, 12.7 

mmol) and w-BuLi (2.5 M in hexanes, 5.10 ml, 12.7 mmol) in tetrahydrofuran (100 ml), A-tosyl 

glycine ethyl ester (1.48 g, 5.77 mmol) in tetrahydrofuran (5.8 ml), tin(II) chloride (2.73 g, 14.4 

mmol) in tetrahydrofuran (7 ml) and 3-(trimethylsilyl)propiolaldehyde 300d (0.80 g, 6.34 

mmol) in tetrahydrofuran (6.3 ml) were added sequencially. After workup the crude product 

was purified by column chromatography using 10% ethyl acetate in hexane to give the p- 

hydroxy amino ester 294c as a 85:15 mixture of diastereoisomers and as a yellow oil (2.21 g, 

83%); Umax/cm' 1 (DCM): 3343, 3055, 2986, 2358, 2341, 2307, 1740, 1421, 1347, 1266, 1164, 

1093; 5h 7.60 (2H, d, 78.2, 2 x CH (Ar)), 7.16 (2H, d, 78.2, 2 x CH (Ar)), 5.34 (1H, d, 79.5, 

NH), 4.88-4.84 (1H, m, 3-CH), 4.52 (1H, dd, 710.6, 3.9, 2-CH), 3.97-3.91 (2H, m, OCH2), 2.63 

(1H, d, 7  10.6, OH), 2.28 (3H, s, CH3Ar), 1.04 (3H, t, 7  7.1, CH3CH20), 0.00 (9H, s, 3 x 

CH3Si); 168.8 (C=0), 143.8 (C), 136.2 (C), 129.8 (2 x CH (Ar)), 127.3 (2 x CH (Ar)), 100.3 

(C=C), 93.0 (C=C), 63.4 (2 or 3-CH), 62.3 (OCH2), 60.3 (2 or 3-CH), 21.6 (CH3Ar), 14.0 

(CH3CH20), -0.4 (3 x CH3Si); m/z (ES) 401 (M+NH/, 100%), 384 (M+H+, 30%); [Found: 

[M+H]+, 384.1294. Ci7H26N 05SiS requires: M+H, 384.1301].

8h (distinguishable minor peaks (2SR/3RS)) 5.23 (1H, d, 79.1, NH), 4.47 (1H, dd, 78.0, 4.1, 2- 

H), 2.58 (lH,d,  78.1, OH).
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(2SR,3SR)-Ethyl-7-(r-butyldimethylsilyloxy)-3-hydroxy-2-(4-toIuenesulfonyIamino)hept-4-

ynoate 294d

O
C02ct

N H T s^  ^  H
T B D M S O ^ ^ ^  T B D M S O

300e 294d

According to the general procedure M, to a stirred solution of diisopropylamine (1.20 ml, 8.55 

mmol) and «-BuLi (2.5 M in hexanes, 3.40 ml, 8.55 mmol) in tetrahydrofuran (80 ml), A-tosyl 

glycine ethyl ester (1.00 g, 3.89 mmol) in tetrahydrofuran (4 ml), tin(II) chloride (1.84 g, 9.72 

mmol) in tetrahydrofuran (5 ml) and 5-(/er/-butyldimethylsilyloxy)pent-2-ynal 300e (0.91 g,

4.28 mmol) in tetrahydrofuran (4.3 ml) were added sequencially. After workup the crude 

product was purified using column chromatography using 25% ethyl acetate in hexane to give 

the ft-hydroxy amino ester 294d as a 86:14 mixture of diastereoisomer and as a clear colourless 

oil (1.51 g, 83%), Umax/cm'1 (neat): 3490, 2925, 2357, 1736, 1654, 1598, 1458, 1338; 6H 7.69 

(2H, d, J8.2, 2 x CH (Ar)), 7.24 (2H, d, J  8.2, 2 x CH (Ar)), 5.50-5.47 (1H, br. m, NH), 4.60- 

4.57 (1H, m, 3-H), 4.07-3.90 (3H, m, OCH2, 2-H), 3.59 (2H, t, J  7.1, 7-CH2), 2.75 (1H, d, J

10.1, OH), 2.36 (3H, s, CH3Ar), 2.32 (2H, td, J  7.1, 2.0, 6-CH2), 1.07 (3H, t, J6 .0, CH3CH20), 

0.83 (9H, s, 3 x CH3C), 0.00 (6H, s, 2 x CH3Si); 5C 167.9 (C=0), 144.0 (C), 136.3 (C), 129.8 

(2 x CH (Ar)), 127.4 (2 x CH (Ar)), 85.5 (C=C), 76.7 (C=C), 63.2 (3-CH), 62.2 (7-CH2), 61.5 

(OCH2), 60.7 (2-CH), 25.9 (3 x CH3C), 23.0 (6-CH2), 21.6 (CH3Ar), 18.1 (C-Si), 13.9 

(CH3CH20), -5.3 (2 x CH3Si); m/z (ES) 487 (M+NlV, 100%), 470 (M+H\ 35%); [Found: 

[M+H]+, 470.2010. C22H36N 06SSi requires: M+H, 470.2033].

5h (distinguishable minor peaks (2SR/3RS)) 2.64 (1H, d, J7.5, OH).
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(2SR, 3SR)-Ethyl 3-hydroxy-6-methyl-2-(4-toluenesulfonylamino)hept-6-en-4-ynoate

294e4,104

O OH

NHTs

300c 294e

According to the general procedure M, to a stirred solution of diisopropylamine (4.50 ml, 31.9 

mmol) and w-BuLi (2.5 M in hexanes, 19.90 ml, 31.91 mmol) in tetrahydrofuran (200 ml), 

TV-tosyl glycine ethyl ester (3.73 g, 14.5 mmol) in tetrahydrofuran (14.5 ml), tin(II) chloride 

(6.87 g, 36.3 mmol) in tetrahydrofuran (18 ml) and 4-methyl-pent-4-en-2-ynal 300c (1.50 g,

16.0 mmol) in tetrahydrofuran (16 ml) were added sequencially. After workup the crude 

product was recrystalised from ethyl acetate/petrol to give the /3-hydroxy amino ester 294e as a 

yellow crystaline solid (3.60 g, 71%), m.p. 74°C (lit m.p.4 72-73°C). 5h 7.78 (2H, d, J  8.2, 2 x 

CH (Ar)), 7.33 (2H, d, J  8.2, 2 x CH (Ar)), 5.54 (1H, d, J  9.0, NH), 5.31-5.28 (1H, br. m, 7- 

Ha), 5.29 (1H, m, 7-HB), 4.80 (1H, dd, J  10.1, 3.9, 3-H), 4.16 (1H, dd, J9.0, 3.9, 2-H), 4.05 

(2H, m, OCH2), 2.82 (1H, d, J  10.1, OH), 2.45 (3H, s, CH3Ar), 1.86 (3H, app s, 6-Me), 1.16 

(3H, t, J7.0, CH3CH2O).

4-Methyl-l-phenylpent-l-yn-3-one 301159

OH O

202c 301

To a mixture of propargylic alcohol 202c (3.00 g, 17.2 mmol) and 4 A molecular sieves (5.00 

g) in dichloromethane (90 ml), pyridinium dichromate (12.97 g, 34.50 mmol) was added and 

the mixture was stirred overnight, then passed through a thick pad of silica and eluted with 

dichloromethane. The combined filtrates were evaporated to yield the ketone 301 as a yellow 

oil (2.60 g, 88%); 7.45 (2H, d, J  7.6, 2 x CH (Ar)), 7.36-7.24 (3H, m, 3 x CH (Ar)), 2.63 (1H, 

sept, J  7.0, 4-H), 1.14 (6H, d,J7.0, 5-CH3 and4-Me).
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(2SR,3SR)-Ethyl 3-hydroxy-3-(isopropyl)-5-phenyl-2-(4-toluenesulfonyIamino)-pent-4-

ynoate 294f4,104

294f301

According to the general procedure M, to a stirred solution of diisopropylamine (3.30 ml, 23.3 

mmol) and w-BuLi (2.5 M in hexanes, 9.30 ml, 23.3 mmol) in tetrahydrofuran (150 ml), jV-tosyl 

glycine ethyl ester (3.05 g, 10.6 mmol) in tetrahydrofuran (10.6 ml), tin(II) chloride (5.00 g,

26.4 mmol) in tetrahydrofuran (13.2 ml) and ketone 301 (2.00 g, 11.6 mmol) in tetrahydrofuran 

(11.6 ml) were added sequencially. After work-up the crude product was recrystalised from 

ethyl acetate/petrol to give the fi-hydroxy amino ester 294f as an orange crystaline solid (4.02 g, 

82%), m.p. 126-127 °C (lit m.p.4 127 °C). 5H 7.76 (2H, d, JS.2, 2 x CH (Ar)), 7.38-7.27 (7H, 

m, 7 x CH (Ar)), 5.63 (1H, d, J  10.7, NH), 4.21 (1H, d, J  10.7, 2-H), 3.90 (1H, dq, J  10.8, 7.2, 

OCHfl), 3.76 (1H, dq, J  10.8, 7.2, OCH6), 3.25 (1H, br s, OH), 2.43 (3H, s, CH3Ar), 2.28 (1H, 

sept, J 6.7, CH-iPr), 1.15 (3H, d, J 6.7, CH3-/Pr), 1.05 (3H, d, J6 .7, CH3-iPr), 1.05 (3H, t, J l . l ,  

CH3CH2O).

(2SR, 3SR)-Ethyl 3-dihydroxy-2-(4-toluenesulfonamino)pent-4-ynoate 294i

OH OH

NHTs NHTs

294c 294i

Potassium carbonate (0.02 g, 0.14 mmol) was added to a solution of |3-hydroxy aminoester 294c 

(0.28 g, 0.73 mmol) in ethanol (3 ml) at 0 °C. The solution was stirred for 1.5 hours before 

warming up to room temperature. The solution was filtered and evaporated before being taken 

up in ether (10 ml). The organic layer was washed with water and brine followed by drying 

over sodium sulphate, filtered and then evaporated to give the crude desilylated product. The 

product was then purified by column chromatography using 30% ethyl acetate in hexane to give 

clean p-hydroxy amino ester 294i as a clear oil (0.20g, 88%); Umax/cm' 1 (neat): 3277, 2961, 

2898, 2346, 1736, 1453, 1310, 1266, 1162, 1093; 5H 7.77 (2H, d, J8.3, 2 x CH (Ar)), 7.32 (2H,
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d, JSA,  2 x CH (Ar)), 5.42 (1H, d, J  8.0, NH), 4.69 (1H, ddd, J  16.0, 8.0, 4.0, 3-H), 4.08-4.17 

(3H, m, OCH2, 2-H), 2.73 (1H, d, J  8.0, OH), 2.49 (1H, d, J  4.0, 5-H), 2.44 (3H, s, CH3Ar), 

1.18 (3H, t, J  8.0, CH3CH20); 8C 168.7 (C=0), 143.8 (C), 136.9 (C), 129.6 (2 x CH (Ar)),

127.4 (2 x CH (Ar)), 80.2 (CH=C), 75.5 (C=C), 63.7 (3-CH), 62.5 (OCH2), 60.1 (2-CH), 21.6 

(CH3Ar), 13.9 (CH3CH20); m/z (APCI) 329 (M+NH,+, 70%), 312 (M+H+, 100%), 294 (M- 

H20, 25%); [Found: [M+H]+, 312.0920. Ci4Hi8N 05S requires: M+H, 312.0906].

8h (distinguishable minor peaks (2SR,3RS)) 5.56 (1H, d, J  9.4, NH), 2.96 (1H, d, J  10.8, OH), 

2.51 (1H, d, J2.3, 5-H).

(2SR, 3SR)-EthyI 3,7-dihydro xy-2-(4-toluenesufonylamino)hept-4-ynoate 294j

OH OH
Jv^X 02Et   ̂ ^X^X02Et

T B D M S O ^ ^ ^  NHTs H O ' ^ ^  NHTs

294d 294j

A solution of tetrabutylammonium fluoride (1.0 M in tetrahydrofuran, 1.17 ml, 1.17 mmol) was 

added dropwise to a stirred solution of p-hydroxyaminoester 294d (0.50 g, 1.07 mmol) in dry 

tetrahydrofuran (10 ml) at 0 °C. The reaction was allowed to stir overnight without further 

cooling. The solution was then evaporated and the residue taken up in ether (20 ml) and the 

organic layer was washed with water (2x10 ml) and brine (10 ml). The solution was then dried 

over sodium sulphate, filtered and evaporated to give the crude product, which was then 

purified by column chromatography using 50% ethyl acetate in hexane to give the alcohol 294j 

as a colourless oil (0.32 g, 85%); Umax/cm' 1 (neat): 3482, 2927, 2358, 1734, 1654, 1598, 1458, 

1338, 1162; SH 7.69 (2H, d, JS.2, 2 x CH (Ar)), 7.33 (2H, d, .78.2, 2 x CH (Ar)), 6.01-5.83 (1H, 

app s, NH), 4.62-4.59 (1H, m, 3-H), 4.10 (1H, app d, J3.6, 2-H), 3.99-3.90 (2H, m, OCH2),

3.74-3.69 (2H, m, 7-CH2), 2.59 (2H, dt, /7 .5 , 5.7, 6-CH2), 2.33 (3H, s, CH3Ar), 1.02 (3H, t, J

7.1, CH3CH20); 8C 168.9 (C=0), 143.9 (C), 136.2 (C), 129.6 (2 x CH (Ar)), 127.1 (2 x CH 

(Ar)), 86.0 (C=C), 77.8 (C=C), 63.2 (3-CH), 62.3 (7-CH2), 61.0 (2-CH), 60.6 (OCH2), 22.9 (6- 

CH2), 21.6 (CH3Ar), 13.9 (CH3CH20); m/z (APCI) 378 (M+Na+, 5%), 177 (60%), 130(100%); 

[Found: [M+Na]+, 378.1002. Ci6H21N 06SNa requires: M+Na, 378.0987]

The minor diastereoisomer could not be clearly distinguished.
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7-Hydroxy-7-(4-toluenesulfonyIaminomethyI)trideca-5,8-diyne 303a

TsHN
|^OH

TsHN COoMe --------------- -

Bu Bu

302 303a

A solution of 1-hexyne (1.70 ml, 14.4 mmol) in dry tetrahydrofuran (60 ml) was cooled to 

-78 °C and w-BuLi (2.5 M in hexanes, 5.80 ml, 14.4 mmol) was added dropwise and the 

mixture was then allowed to stir for 0.5 h at -78°C. This was followed by the dropwise addition 

of A-tosyl glycine methyl ester 302 (1.00 g, 4.11 mmol) in dry tetrahydrofuran (10 ml). The 

reaction mixture was then allowed to warm up to room temperature overnight. The reaction was 

then quenched by the addition of saturated ammonium chloride solution (5 ml) and the 

tetrahydrofuran was evaportated. The residue was then taken up in ether (30 ml) and washed 

with water (2 x 20 ml) and brine (20 ml). The solution was dried over sodium sulphate, filtered 

and evaporated to give clean diyne 303a as an orange oil (1.51 g, 98%). Umax/cm1 (neat): 3456, 

3283, 2931, 2872, 2360, 2239, 1686, 1598, 1455, 1331, 1161, 1094; 5H 7.65 (2H, d, 7  8.1, 2 x 

CH (Ar)), 7.18 (2H, d, J  8.1, 2 x CH (Ar)), 4.82 (1H, t, J6.7, NH), 3.14 (2H, d, J6.7, CH2N),

2.30 (3H, s, CH3Ar), 2.05 (4H, t, 7  7.1, 4 and 10-CH2), 1.51 (1H, br.s, OH), 1.38-1.20 (8H, m, 

2, 3, 11 and 12-CH2) 0.77 (6H, t ,J7 A , 1 and 13-CH3); 5C 143.9 (C), 137.1 (C), 129.7 (2 x CH 

(Ar)), 127.2 (2 x CH (Ar)), 86.0 (C=C), 78.2 (C=C), 62.7 (7-C), 53.9 (CH2N), 30.3 (4 and 10- 

CH2), 22.0 (CH2), 21.6 (CH3Ar), 18.3 (CH2), 13.6 (1 and 13-CH3); m/z (ES) 439 

(M+MeCNNa+, 90%), 414 (M+K+, 30%), 393 (M+NH4+, 80%), 358 (M-H20 , 100%); [Found: 

[M+NH4]+, 393.2208. C2,H33N20 3S requires: M+NH4, 393.2212].

3-Hydroxy-3-(4-toluenesulfonylaminomethyl)l,5-diphenylpenta-l,4-diyne 303b

TsHN.

T s H N ^ C 0 2Me -----------------

Ph

302 303b

A solution of phenylacetylene (1.60 ml, 14.4 mmol) in dry tetrahydrofuran (60 ml) was cooled

to -78 °C and «-BuLi (2.5 M in hexanes, 5.80 ml, 14.4 mmol) was added dropwise and the

mixture was then allowed to stir for 0.5 h at -78°C. This was followed by the dropwise addition

of A-tosyl glycine methyl ester 302 (1.00 g, 4.11 mmol) in dry tetrahydrofuran (10 ml). The
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reaction mixture was then allowed to warm up to room temperature overnight. The reaction was 

then quenched by the addition of saturated ammonium chloride solution (5 ml) and the 

tetrahydrofuran was evaportated. The residue was then taken up in ether (30 ml) and washed 

with water (2 x 20 ml) and brine (20 ml). The solution was dried over sodium sulphate, filtered 

and evaporated to give crude diyne that was purified by column chromatography using 10% 

ethyl acetate in hexane to give the diyne 303b as an orange oil (1.31 g, 77%). Umax/cm' 1 (neat): 

3404, 3287, 3059, 2984, 2931, 2234, 1598, 1470, 1443, 1374, 1332, 1257, 1161, 1092, 1044, 

936; 5h 7.69 (2H, d, J  8.1, 2 x CH (Ar)), 7.38-7.31 (4H, 4 x CH (Ar)), 7.22-7.19 (4H, m, 4 x 

CH (Ar)), 7.18 (2H, d, 78.1, 2 x CH (Ar)), 7.06 (2H, d, 78.1, 2 x CH (Ar)), 5.52-5.48 (1H, t, J  

6.7, NH), 3.66 (1H, s, OH), 3.44 (2H, d, J  6.7, CH2N), 2.20 (3H, s, CH3Ar); 5C 143.6 (C),

137.0 (C), 132.0 (CH (Ar)), 129.8 (CH (Ar)), 129.0 (CH (Ar)), 128.3 (CH (Ar)), 127.2 (CH 

(Ar)), 121.5 (C), 86.5 (C=C), 85.1 (C=C), 63.6 (3-C), 53.7 (CH2N), 21.5 (CH3Ar); m/z (APCI) 

433 (M+NH/, 30%), 243 (40%), 229 (100%); [Found: [M+NHj]*, 433.1598. C25H25N20 3S 

requires: M+NH4, 433.1586].

Ethyl 5-butyl-l-tosyl-lH-pyrrole-2-carboxyIate 313a4 

OH
J ^ , C 0 2Et 

NHTs

294a 313a

According to the general procedure N, a solution containing P-hydroxy-a-amino ester 294a 

(0.15 g, 0.41 mmol) and Cu(OAc)2 (0.005 g, 0.04 mmol) in toluene (2 ml), was refluxed for 40 

minutes. This was then followed by workup to give clean pyrrole 313a (0.13 g, 91%); Umax/cm' 1 

(neat): 3055, 2961, 1721, 1496, 1368, 1318, 1264, 1176, 1106, 895; 6H 7.85 (2H, d, 7 8.3, 2 x 

CH (Ar)), 7.25 (2H, d, J  8.3, 2 x CH (Ar)), 6.73 (1H, d, 73.6, 3-H), 5.92 (1H, d, J3.6, 4-H), 

4.21 (2H, q, 7  7.1, OCH2), 2.76 (2H, t, 77.8, l ’-CH2), 2.36 (3H, s, CH3Ar), 1.54-1.46 (2H, m, 

2’-CH2), 1.32-1.22 (2H, m, 3’-CH2), 1.24 (3H, t, 77.1, CH3CH20), 0.83 (3H, t, 77.4, 4’-CH3); 

5C 160.8 (C=0), 144.8 (C), 143.8 (C), 136.8 (C), 129.6 (2 x CH (Ar)), 127.9 (C), 127.4 (2 x CH 

(Ar)), 120.3 (3-CH), 110.8 (4-CH), 61.1 (OCH2), 30.9 (CH2), 29.7 (CH2), 28.3, 22.5 (CH3),

21.7 (CH3Ar), 14.1 (CH3), 13.8 (CH3).
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Ethyl 5-phenyl-l-tosyl-l//-pyrrole-2-carboxylate 313b4

OH
CO2E1

NHTs C02Et

294b 313b

According to the general procedure N, a solution containing P-hydroxy-a-amino ester 294b 

(0.24 g, 0.62 mmol) and Cu(OAc)2 (0.008 g, 0.06 mmol) in toluene (2 ml), was refluxed for 

70 minutes. This was then followed by workup to give clean pyrrole 313b. (0.22 g, 97%) 

Umax/cm' 1 (neat): 3058, 2987, 1719, 1550, 1470, 1369, 1237, 1139, 1092; 5H 7.32 (2H, d,78.2, 

2 x CH (Ar)), 7.29-7.08 (5H, m, 5 x CH (Ar)), 7.05 (2H, d, J8.2, 2 x CH (Ar)), 6.28 (1H, d, J  

3.4, 3-H), 6.04 (1H, d, J3A , 4-H), 4.33 (2H, q, J1.2, OCH2), 2.28 (3H, s, CH3Ar), 1.35 (3H, t, 

J7 .1 ,C H 3CH20).

Ethyl l-tosylpyrrole-2-carboxylate 313d

OH
,C 0 2Et 

NHTs

160

CLN C 0 2Et 
Ts

294i 313d

According to the general procedure N, a solution containing P-hydroxy-a-amino ester 294i 

(0.05 g, 0.16 mmol) and Cu(OAc)2 (0.03 g, 0.16 mmol) in toluene (1 ml), was heated to 90 °C 

for 18 h. This was then followed by workup to give almost clean pyrrole 313d as a yellow oil 

(0.037 g, 79%); rw /cm ' 1 (neat): 3055, 2986, 2927, 1726, 1598, 1446, 1330, 1266, 1166, 1147, 

1089; 5h 7.86 (2H, d, J 8.2, 2 x CH (Ar)), 7.70 (1H, dd, J3.2, 1.8, CH), 7.25 (2H, d, /8 .2 , 2 x 

CH (Ar)), 7.04 (1H, dd, J3.1, 1.8, CH), 6.30 (1H, m, CH), 4.19 (2H, q, J1.0, OCH2), 2.42 (3H, 

s, CH3Ar), 1.26 (3H, t, CH3CH20).
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Ethyl 3-hydroxy-5-(2-propenyl)-l-(4-toluenesulfonyl)-2,3-dihydropyrrole-2-carboxylate 

312e4 and Ethyl 5-(prop-l-en-2-yl)-l-tosyl-l//-pyrrole-2-carboxylate 313e4:

9H pH
fj y n y.

NHTs ] / % C° 2Et i T  ¥s ° 2B

294e 312e 313e

According to the general procedure N, a solution containing |3-hydroxy-a-amino ester 294e 

(0.15 g, 0.43 mmol) and Cu(OAc)2 (0.01 g, 0.04 mmol) in toluene (2 ml), was refluxed for 3.5 

h. This was then followed by workup to give a mixture of hydroxydihydropyrrole 312e and 

pyrrole 313e in a 1:3 ratio respectively (0.12 g, 84%); Ethyl 3-hydroxy-5-(2-propenyl)-l-(4- 

toluenesulfonyl)-2,3-dihydropyrrole-2-carboxylate 312e: 5h 7.65 (2H, d, 78.3, 2 x CH (Ar)), 

7.28 (2H, d, 78.2, 2 x CH (Ar)), 5.31 (1H, d, 73.4, 4-H), 5.27 (1H, app. s, 2’-HA), 5.13 (1H, br. 

m, 2’-Hb), 4.41 (1H, app. s, 2-H), 4.37 (1H, dd, 79.7, 3.4, 3-H), 4.02 (2H, q, 77.3, OCH2), 2.36 

(3H, s, CH3Ar), 2.02 (3H, s, l ’-Me), 1.22 (3H, t, 7  7.3, CH3CH20), 0.52 (1H, d, 7  9.7, OH). 

Ethyl 5-(prop-l-en-2-yl)-l-tosyl-l//-pyrrole-2-carboxylate 313e: 5H 7.71 (2H, d, 7  8.2, 2 x 

CH (Ar)), 7.17 (2H, d, 7  8.2, 2 x CH (Ar)), 6.75 (1H, d, 7  3.6, 3-H), 5.96 (1H, d, 7  3.7, 4-H), 

5.11 (1H, m, 2’-Ha), 4.86 (1H, m, 2’-HB), 4.25 (2H, q, 77.1, OCH2), 2.34 (3H, s, CH3Ar), 1.91 

(3H, s, l ’-Me), 1.28 (3H, t ,77.1, CH3CH20).

Ethyl 5-(2-(te/T-butyldimethylsilyloxy)ethyl)-l-tosyl-l//-pyrrole-2-carboxylate 313f

OH

_________ -  TBDMSO'
TBDM SO"''''"'-^ NHTs

294d 313f

According to the general procedure N, a solution containing p-hydroxy-a-amino ester 294d 

(0.20 g, 0.44 mmol) and Cu(OAc)2 (0.009 g, 0.04 mmol) in toluene (2 ml), was refluxed for 1.5 

h. This was then followed by workup to give clean pyrrole 313f as a yellow viscous oil (0.18 g, 

95%); Umax/cm’1 (neat): 2980, 2949, 2835, 2607, 1710, 1667, 1458, 1113, 1031; 5H 7.90 (2H, d,

78.4,2 x CH (Ar)), 7.35 (2H, d, 78.4,2 x CH (Ar)), 6.77 (1H, d, 73.3, 3-H), 6.08 (1H, d, 73.3,

4-H), 4.29 (2H, q, 7  7.0, OCHj), 3.83 (2H, t, 7  6.5, 2’-CH2), 3.08 (2H, t, 7  6.5, l ’-CH2), 2.42 

(3H, s, CH3Ar), 1.30 (3H, t, 7  7.0, CH3CH20), 0.85 (9H, s, 3 x CH3C), 0.00 (6H, s, 2 x CHjSi); 

5C 161.0 (C=0), 144.5 (C), 140.0 (C), 137.0 (C), 129.9 (2 x CH (Ar)), 127.3 (2 x CH (Ar)),
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120.5 (3-CH), 112.4 (4-CH), 62.2 (CH2), 61.2 (CH2), 32.4 ( l ’-CH2), 25.9 (3 x CH3C), 21.8 

(CH3Ar), 18.1 (C/Butyl), 14.3 (CH3CH20), -5.3 (2 x CH3Si); [Found: [M+H]\ 470.2010. 

requires: M+H, 470.2033].

Ethyl 5-(2-hydroxyethyl)-l-tosyl-l FT-pyrrole-2-carboxylate 313g

NHTs

294j 313g

According to the general procedure N, a solution containing j3-hydroxy-a-amino ester 294j 

(0.14 g, 0.39 mmol) and Cu(OAc)2 (0.008 g, 0.04 mmol) in toluene (2 ml), was refluxed for 1 h. 

This was then followed by workup to give clean pyrrole 313g as a yellow viscous oil (0.13g, 

98%); Umax/cm' 1 (neat): 3427, 3057, 2962, 2921, 1733, 1638, 1493, 1265, 1109; 6H 7.82 (2H, d, 

J8.4, 2 x CH (Ar)), 7.23 (2H, d, J8.1, 2 x CH (Ar)), 6.71 (1H, d, J3.6, 3-H), 6.02 (1H, d, J,

3.6, 4-H), 4.19 (2H, q, J  7.1, OCH2), 3.79-3.78 (2H, m, 2’-CH2), 3.07 (2H, t, J6 .3 , l ’-CH2),

2.31 (3H, s, CH3Ar), 1.94-1.85 (1H, m, OH), 1.16 (3H, t, 7  7.1, CH3CH20); 6C 160.7 (C=0),

145.0, 139.6 and 136.6 (all C), 129.8 (2 x CH (Ar)), 128.4 (C), 127.4 (2 x CH (Ar)), 120.4 

(3-CH), 112.4 (4-CH), 61.6 (CH2), 61.3 (CH2), 32.0 ( l ’-CH2), 21.7 (CH3Ar), 14.1 (CH3CH20); 

m/z (APCI) 360 (M+Na+, 50%), 355 (M+NH/, 100%), 338 (M+H+, 100%); [Found: [M+H]+, 

338.1062. Ci6H2oN05S requires: M+H, 338.1067].

2-butyl-4-(hex-l-ynyl)-l-tosyl-l//-pyrrole 313i

TsHN

Bu Bu Ts

303a 313i

According to the general procedure N, a solution containing diyne 303a (0.36 g, 0.96 mmol) 

and C u(O A c)2 (0.02 g, 0.10 mmol) in toluene (4 ml), was refluxed for 0.75 h. This was then 

followed by workup to give clean pyrrole 313i as an orange oil (0.30 g, 87%); Umax/cm' 1 (neat): 

2931, 2871, 2754, 1596.4, 1464, 1367, 1174, 1091; 5H 7.58 (2H, d, 7  8.2, 2 x CH (Ar)), 7.30
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(1H, d, J  1.7, 2-H), 7.21 (2H, d, J 8.2, 2 x CH (Ar)), 5.91 (1H, m, 3-H), 2.52 (2H, t, J 7.7, either 

3” or l ’-CH2), 2.34 (3H, s, CH3Ar), 2.29 (2H, t, J6.9, either 3” or l ’-CH2), 1.50-1.18 (8H, m, 

2’, 3’, 4” and 5” -CH2), 0.86 (3H, t, J 13, either 4’ or 6 ” -CH3), 0.79 (3H, t, J 7.3, either 4’ or 

6 ” -CH3); 5c 145.0 (C), 136.0 (C), 135.8 (C), 130.0 (2 x CH (Ar)), 126.9 (2 x CH (Ar)), 124.5 

(C), 114.5 (C), 108.2 (C), 91.0 (C=C), 30.8 (CH2), 30.5 (CH2), 26.6 (CH2), 22.3 (CH2), 22.0 

(CH2), 21.7 (CH3Ar), 19.2 (CH2), 13.8 (CH3), 13.7 (CH3); m/z (El) 357 (M+, 10%), 218 (30%), 

171 (100%); [Found [M]+, 357.1761. C2iH27N 02S requires: M, 357.1763].

2-Phenyl-4-(2-phenylethynyl)-l-tosyl-l//-pyrrole 313j

TsHN

303b 313j

According to the general procedure N, a solution containing diyne 303b (0.10 g, 0.24 mmol) 

and Cu(OAc)2 (0.005 g, 0.02 mmol) in toluene (1 ml), was refluxed for 0.75 h. This was then 

followed by workup to give clean pyrrole 313j as an orange oil (0.098 g, 98%); Umax/cm' 1 

(neat): 3060, 2926, 2853, 1597, 1475, 1443, 1377, 1307, 1226, 1172, 1091, 1064, 909; 5H 7.61 

(1H, app d, J  1.8, CH), 7.43-7.40 (2H, m, 2 x CH (Ar)), 7.31-7.21 (6H, m 6 x CH (Ar)), 7.17- 

7.13 (4H, m, 4 x CH (Ar)), 7.02 (2H, d, J8.2, 2 x CH (Ar)), 6.19 (1H, app d, J  1.8, CH), 2.28 

(3H, s, CH3Ar); 5C 145.2 (C), 136.0 (C), 135.1 (C), 131.5 (2 x CH (Ar)), 131.0 (2 x CH (Ar)),

130.5 (C), 129.6 (2 x CH (Ar)), 128.7 (CH (Ar)), 128.4 (2 x CH (Ar)), 128.2 (CH (Ar)), 127.4 

(2 x CH (Ar)), 126.7 (2 x CH (Ar)), 126.7 (CH (Ar)), 123.2 (C), 117.8 (CH (Ar)), 108.2 (C),

90.3 (C=C), 82.4 (C=C), 21.7 (CH3Ar). m/z could not be obtained.
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tert-Butyl l-hydroxybutan-2-yIcarbamate 309161

308 309

To a stirred solution of 2-aminobutan-l-ol 308 (10.00 g, 112.0 mmol) in dichloromethane (100 

ml) at 0 °C dry triethylamine (17.08 ml, 123.0 mmol) was added dropwise. This was followed 

by the dropwise addition of di-/er/-butyldicarbonate (24.72 g, 113.0 mmol) in dichloromethane 

(10.00 ml) and the reaction mixture was allowed to warm up overnight. The solution was then 

diluted with dichloromethane (100 ml) and washed with water (2 x 50 ml), brine (50 ml), 

followed by drying with sodium sulphate, filtration and evaporation to give the boc-protected 

amino alcohol 309 as a yellow oil (21.98 g, 99%); Umax/cm' 1 (neat): 3855, 3356, 2970, 2877, 

1694, 1679, 1540, 1503, 1454, 1367, 1285, 1246, 1172, 1073; 6H4.63 (1H, br s, NH), 3.61-3.46 

(1H, m, 2-H), 3.48 (2H, d, J7.4, 1-CH2), 2.73 (1H, s, OH), 1.56-1.47 (1H, m, 3-H a), 1.42-1.33 

(1H, m, 3-H6), 138 (9H, s, 3 x CH3C), 0.88 (3H, t, J 7.4, 4-CH3).

tert-Butyl l-oxobutan-2-ylcarbamate 310162

309 310

To a solution of IBX (3.05 g, 10.8 mmol) in dimethylsulfoxide (50 ml), was added a solution of 

boc aminoalcohol 309 (0.80 g, 5.40 mmol) in dimethylsulfoxide (5 ml) and the reaction was 

allowed to stir for 2 h. The mixture was poured into a stirred biphasic mixture of diethyl ether 

(100 ml) and water (50 ml) at 0 °C and the solution was allowed to continue stirring for a 

further 15 mins. The layers were separated and the aqueous layer was extracted with ether (2 x 

50 ml). The combined organics were then washed with water (3 x 50 ml) and brine (2 x 50 ml) 

and the solution was dried over sodium sulphate, filtered and evaporated to give clean aldehyde 

310 as a viscous yellow oil (0.61 g, 77%); Umax/cm' 1 (neat): 3348, 2974, 2934, 1697, 1508, 

1459, 1392, 1367, 1248, 1168, 1070; 5h 9.37(1H, s , 1-CH), 3.99 (1H, br s, 2-CH), 3.88 (1H, br
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s, NH), 1.48-1.39 (2H, m, 3-CH2), 1.23 (9H, s, 3 x CH3C), 0.75 (3H, t, 77.4, 4-CH3); 5C 200.1 

(1-CHO), 155.6 (C=0), 79.8 (6-C), 60.8 (2-CH), 27.9 (3 x CH3C), 22.2 (3-CH2), 9.4 (4-CH3).

ter/-Butyl 4-hydroxydec-5-yn-3-ylcarbamate 311a

^ \^ N H B o c

cr

310 311a

According to the procedure,1 to a stirred solution of 1-hexyne (0.68 ml, 5.88 mmol) in 

tetrahydrofuran (20 ml) at 0 °C a 2.5M solution of «-BuLi (2.5 M in hexanes, 2.35 ml, 5.88 

mmol) was added dropwise. The solution was the allowed to stir at this temperature for 0.5 h 

before cooling to -78 °C. A solution of aldehyde 310 (0.50 g, 2.67 mmol) in tetrahydrofuran (10 

ml) was then added dropwise to the mixture and the mixture was allowed to warm up overnight. 

The solution was then cooled to 0 °C and was quenched with concentrated hydrochloric acid 

(1.2 ml, 2 ml g'1) and the solution was allowed to warm to room temperature. The crude product 

was extracted into ether (2  x 20  ml) and the combined organics were washed with water (2 x 20 

ml) and brine (20 ml), dried with sodium sulphate, filtered and evaporated to yield crude 

alcohol. The crude product was purified by column chromatography using 20% ethyl acetate in 

hexane to yield clean propargylic alcohol 311a as a clear viscous oil of diastereoisomers with a 

4:1 ratio (0.61 g, 85%); iw /c n f 1 (neat): 3390, 2964, 2933, 2875, 2359, 1694, 1504, 1456, 

1392, 1251, 1170, 1056; 5H 5.01 (1H, br s, NH minor) 4.54 (1H, br s, NH major), 4.34 (1H, app 

s, 4-H minor), 4.25 (1H, d, 75.0, 4-H major), 3.64-3.56 (1H, m, 3-H minor), 3.53-3.44 (1H, m,

3-H major), 2.11 (2H, app t, 7  7.0, 3’-CH2), 1.74-1.49 (2H, m, 2-CH2), 1.45-1.27 (4H, m, 4’- 

CH2, 5’-CH2), 1.36 (9H, s, 3 x CH3C), 0.88 (3H, app t, 77.5, 1 or 6 ’-CH3), 0.81 (3H, t, 77.2, 1 

or 6 ’-CH3); 5c 66.0 (4-CH), 65.4 (4-CH), 57.2 (3-CH), 56.9 (3-CH), 30.7 (CH2), 30.6 (CH2),

28.4 (3 x CH3C), 28.3 (3 x CH3C), 23.8 (CH2), 23.7 (CH2), 22.4 (CH2), 22.0 (CH2), 18.4 (CH2),

14.2 (CH3), 13.6 (CH3), 10.7 (CH3), 10.5 (CH3). m/z (APCI) 561 (2M+Na+, 30%), 333 

(M+MeCNNa+, 20%), 270 (M+Ff, 15%), 237 (100%); [Found: [M+H]+, 270.2075. Ci5H28N 03 

requires: M+H, 270.2069]. The quaternary boc peaks were not detected by 1SC-NMR due to 

rotomers.

NHBoc
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NHBoc

HO

311b

terf-Butyl 4-hydroxy-6-phenyIhex-5-yn-3-yIcarbamate 311b

NHBoc

Cr

310

According to the procedure, 1 to a stirred solution of phenylacetylene (0.65 ml, 5.88 mmol) in 

tetrahydrofuran (20 ml) at 0 °C a 2.5M solution of «-BuLi (2.5 M in hexanes, 2.35 ml, 5.88 

mmol) was added dropwise. The solution was the allowed to stir at this temperature for 0.5 h 

before cooling to -78 °C. A solution of aldehyde 310 (0.50 g, 2.67 mmol) in tetrahydrofuran (10 

ml) was then added dropwise to the mixture and the mixture was allowed to warm up overnight. 

The solution was then cooled to 0 °C and was quenched with concentrated hydrochloric acid 

(1.2ml, 2 ml g'1) and the solution was allowed to warm to room temperature. The crude product 

was extracted into ether (2 x 20 ml) and the combined organics were washed with water (2 x 20 

ml) and brine (20  ml), dried with sodium sulphate, filtered and evaporated to yield crude 

alcohol. The crude product was purified by column chromatography using 20% ethyl acetate in 

hexane to yield clean alcohol 311b as a clear viscous oil of diastereoisomers with a 7:3 ratio 

(0.72 g, 93%); tw /cm ’1 (neat): 3396, 2971, 2934, 2877, 1695, 1505, 1456, 1393, 1367, 1249, 

1168, 1057; 8H 7.38-7.34 (2H, m, 2 x CH (Ar)), 7.26-7.21 (3H, m, 3 x CH (Ar)), 4.68 (1H, br d, 

J 8 .6 , NH), 4.61 (1H, d, 72.7, 4-H minor), 4.53 (1H, d, J5.0, 4-H major), 3.80-3.71 (1H, m, 3- 

H minor), 3.70-3.59 (1H, m, 3-H major), 1.85-1.65 (1H, m, 2-HA), 1.55-1.34 (1H, m, 2-HB), 

1.39 (9H, s, 3 x CH3C minor), 1.38 (9H, s, 3 x CH3C major), 0.96-0.91 (3H, m, 1-CH3); 5C

131.8 (2 x CH (Ar)), 131.8 (2 x CH (Ar)), 128.6 (CH (Ar)), 128.5 (CH (Ar)), 128.3 (2 x CH 

(Ar)), 128.3 (2 x CH (Ar)), 66.4 (4-CH), 65.6 (4-CH), 57.3 (3-CH), 56.9 (3-CH), 28.4 (3 x 

CH3C), 24.5 (2-CH2), 23.7 (2-CH2), 10.8 (1-CH3), 10.6 (1-CH3); m/z (APCI) 290 (M+Ff, 

15%), 216 (60%), 172 (100%); [Found: [M+H]+, 290.1746. C17H24N 03 requires: M+H, 

290.1756]. The quaternary bocpeaks were not detected by 1SC-NMR due to rotomers.
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General procedure O for the 10% AgNOi.SiO? cvclisation

In a flask wrapped with foil, 10% w/w silver nitrate on silica gel (0.10-1.00 equiv) was added to 

a stirred solution of precursor (1.00 equiv) in dichloromethane (10 mL g '1). The resulting 

suspension was stirred for 4-24 h then filtered through celite and the solvent evaporated to yield 

the pyrrole.

tert-Buty\ 2-butyl-5-ethyl-l//-pyrrole-l-carboxylate 313o

NHBoc

311a 313o

According to the general procedure O, 10% AgN0 3 .Si02  (0.23 g, 0.14 mmol) was stirred with a 

solution of precursor 311a (0.18 g, 0.67 mmol) in dichloromethane (4 ml) for 4 h to give clean 

pyrrole 313o as a clear viscous oil (0.16 g, 96%); Umax/cm'1 (neat): 2971, 2933, 2873, 1738, 

1534, 1457, 1323, 1266, 1171, 1123, 1024; 5H 5.76 (2H, app s, 3-H, 4-H), 2.71 (4H, m, l ’-CH2, 

1” -CH2), 1.55.1.46 (2H, m ,2 ’-CH2), 1.31 (2H, sextet, J7.6, 3 ’-CH2), 1.12 (3H, t, J1.6, 4’-CH3 

or 2” -CH3), 0.85 (3H, t, J 7.6, 2” -CH3 or 4 -CH3); 5C 150.5 (C=0), 137.6 (C), 136.1 (C), 109.0 

(3 or 4-CH), 108.1 (3 or 4-CH), 83.2 (Cfbutyl), 31.4 (CH2), 29.4 (CH2), 28.0 (3 x CH3C), 22.9 

(CH2), 22.6 (CH2), 14.1 (CH3), 13.5 (CH3); m/z (El) [Found: [M]+, 251.1887. C15H25N02 

requires: M, 251.1885].

N
Boc

tert- Butyl 2-phenyl-5-ethyl-l//-pyrrole-l-carboxylate 313p

NHBoc

HO-

311b 313p

According to the general procedure O, 10% AgN03.Si02 (0.13 g, 0.08 mmol) was stirred with a 

solution of precursor 311b (0.11 g, 0.38 mmol) in dichloromethane (2 ml) for 4 h to give clean 

pyrrole 313p as a clear viscous oil (0.1 g, 98%); iw /c m '1 (neat): 3063, 2978, 2934, 2878,
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1739, 1606, 1527, 1483, 1370, 1311, 1258, 1146, 1078; 5H 7.27-7.15 (5H, m, 5 x CH (Ar)),

6.02 (1H, d, J 3.3, 3-H) 5.91 (1H, d, J 3.3, 4-H), 2.79 (2H, q, 77.5, l ’-CH2), 1.19 (3H, t, 77.5, 

2’-CH3), 1.16 (9H, s, 3 x CH3C); 5C 150.3 (C=0), 139.4 (C), 135.5 (C), 134.9 (C), 128.3 (2 x 

CH (Ar)), 127.8 (2 x CH (Ar)), 126.6 (CH (Ar)), 112.1 (3-CH), 108.3 (4-CH), 83.4 (C/butyl), 

27.3 (3 x CH3C), 22.0 ( l ’-CH2), 13.3 (2’-CH3). m/z (El) 271 (M \ 10%), 251 (IVf, 50%), 215 

(30%), 156 (100%), 196 (100%); [Found: [M]+, 271.1578. C,7H2,N02 requires: M, 271.1572].

General procedure P for the amino hvdroxvlation of alkenes163

A solution of alkene (1.00 equiv), chloroamine-T-hydrate (3.00 equiv), potassium osmate 

dehydrate (0.05 equiv) and (DHQ)2PHAL (0.04 equiv) were stirred in /er/-butanol:water (3-4 

ml per mmol of alkene combined as a 1:1 mixture) for 24-48 h. The resulting solution was then 

quenched by the addition of 1% sodium hydroxide in brine (1 x volume of mixture) and ethyl 

acetate (2 x volume of mixture) was also added. The organic phase was separated and washed 

with a further portion of 1% sodium hydroxide in brine (1 x volume of mixture) before passing 

through a pad of silica. The resulting solution was evaporated to yield crude amino alcohol that 

was purified by column chromatography using 20-30% ethyl acetate in hexane to give clean 

amino alcohol.

General procedure O for the amino hvdroxvlation of alkenes164

To a stirred solution of alkene (1.00 equiv) in fi3u0H:H20  (1-2 ml per mmol of alkene as a 1:1 

mixture) potassium osmate (0.01 equiv) was added resulting in a brown solution. A solution of 

chloroamine-T hydrate (1.50 equiv) and benzyltriethylammonium chloride (0.05 equiv) in 

water was added resulting in the dark brown solution turning green. The mixture was then 

allowed to stir overnight. The solvent was then evaporated and the residue was partitioned 

between water (1 x volume of mixture) and ethyl acetate (1 x volume of mixture). The aqueous 

layer was washed with ethyl acetate (2 x volume of mixture) and the combined organics were 

washed with water (2 x volume of mixture), followed by brine containing 1% sodium 

hydroxide (1 x volume of mixture). The organics were dried over sodium sulphate and filtered. 

The solvent was then evaporated to give the crude product as a solid. The crude product was
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then purified by column chromatography or recrystalisation from hot chloroform to give clean 

P-hydroxy sulfonamide.

General procedure R for the pyridinium chlorochromate oxidation of amino alcohols

To a solution of amino alcohol (1.00 equiv) and 4 A molecular sieves in dichloromethane (10 

ml per mmol amino alcohol) pyridinium chlorochromate (1.80 equiv) was added and the 

mixture was stirred overnight. The resulting mixture was passed through a thick pad of silica 

and eluted with dichloromethane, followed by evaporation to yield the ketone.

General procedure S for the Jones oxidation of amino alcohols

The P-hydroxy sulfonamide (1.00 equiv) was dissolved in acetone (2.3 ml per mmol) and the 

solution was cooled to 0 °C. This was followed by the dropwise addition of Jones reagent 

(2.67 M, 1.30 equiv) and the reaction mixture was stirred for 1.5 hours. The reaction mixture 

was then quenched with saturated potassium carbonate solution (~ 1 x volume of mixture). The 

organic layer was separated and the aqueous layer was extracted with dichloromethane (2 x 

volume of reaction mixture). The combined organic solutions were then washed with water (2 x 

volume of reaction mixture), followed by brine (1 x volume of reaction mixture). The organics 

were dried over sodium sulphate, filtered and evaporated resulting in clean p-keto sulfonamide.

General procedure T for the lithio-acetvlide addition to amino ketones

A solution of w-BuLi (2.5 M in hexanes, 2.20 equiv) was added dropwise to a stirred solution of 

alkyne (2.20 equiv) in tetrahydrofuran (~5 ml per mmol alkyne) at -78 °C. The reaction mixture 

was then allowed to stir for 30 minutes with the temperature was maintained. The resulting 

lithio-acetylide was then added dropwise to a stirred solution of P-keto sulfonamide (1.00 

equiv) in tetrahydrofuran (~5 ml per mmol ketone) at -78 °C. The reaction mixture was then 

allowed to warm to room temperature overnight. The reaction was then quenched using 

saturated ammonium chloride solution (~ 1 x volume of mixture). The tetrahydrofuran was the 

evaporated and the resulting residue was extracted with diethyl ether (3 x volume of mixture).
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The combined organics extracts then washed with water (2 x volume of mixture) and brine (1 x 

volume of mixture), followed by drying using sodium sulphate and filtration. The solvent was 

then evaporated to give the crude 2 -alkynyl sulfonamide, which was then purified using column 

chromatography to give clean sulfonamide.

7V-(2-Hydroxy-l,2-diphenylethyl)-4-toluenesulfonamide 305a165

NHTs

HO'

304a

According to the general procedure P, trans-stilbene 304a (1.00 g, 5.55 mmol), 

chloramine-T-hydrate (3.79 g, 16.6 mmol), potassium osmate dihydrate (0.10 g, 0.28 mmol) 

and (DHQ)2PHAL (0.18 g, 0.22 mmol) were stirred in a solution of /BuOH (20 ml) and water 

(20 ml) overnight. Upon aqueous workup the crude product was purified by column 

chromatography using 15% ethyl acetate in hexane to give the amino alcohol 305a as a fluffy 

white solid (1.42 g, 70%); m.p. 117-118 °C; Umax/cm' 1 (DCM): 3408, 3054, 2987, 1641, 1421, 

1265, 1161, 1093; 5H 7.45 (2H, d, J  8.2, 2 x CH (Ar)), 7.31-7.27 (4H, m, 4 x CH (Ar)), 

7.12-7.01 (6H, m, 6 x CH (Ar)), 6.96-6.93 (2H, m, 2 x CH (Ar)), 5.42 (1H, d, J6.2, NH), 4.72 

(1H, app dd, J6 .1 , 2.1, CHOH), 4.35 (1H, t, J6 .0 , CHNH), 2.40 (1H, br d, J2.6, OH), 2.26 

(3H, br s, CH3Ar); 6C 142.9 (C), 139.5 (C), 137.8 (C), 137.4 (C), 129.2 (CH (Ar)), 128.7 (CH 

(Ar)), 128.3 (CH (Ar)), 127.7 (CH (Ar)), 127.6 (CH (Ar)), 127.4 (CH (Ar)), 126.5 (CH (Ar)),

126.4 (CH (Ar)), 76.9 (CHOH), 64.1 (CHNH), 21.4 (CH3Ar); m/z (ES) 431 (M+MeCNNa+, 

100%), 406 (M+K+, 10%); [Found: [M+K]+, 406.0896. C2iH2iN03SK requires: M+K, 

406.0879].
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yV-(l,4-Bis(ter/-butyldimethylsilyloxy)-3-hydroxybutan-2-yl)-4-toIuenesuIfonamide 305b

NHTs

304b 305b

According to the general procedure P, alkene 304b (10.00 g, 31.59 mmol), chloramine-T- 

hydrate (21.57 g, 94.76 mmol), potassium osmate dihydrate (0.58 g, 1.58 mmol) and 

(DHQ)2PHAL (0.98 g, 1.26 mmol) were stirred in a solution of /BuOH (100 ml) and water (100 

ml) overnight. Upon aqueous workup the crude product was purified by column 

chromatography using 20% ethyl acetate in hexane to give the amino alcohol 305b as a yellow 

viscous oil (11.65 g, 73%); Umax/cm' 1 (neat): 3510, 3280, 2929, 2857, 2872, 1599, 1472, 1407, 

1336, 1255, 1164, 1090; 6H 7.70 (2H, d, J  8.2, 2 x CH (Ar)), 7.25 (2H, d, J  8.2, 2 x CH (Ar)), 

5.25 (1H, d, J  8 .6 , NH), 3.82 (1H, dd, J  10.2, 2.5, CH), 3.61 (1H, dd, J  10.2, 5.6, CH), 3.57 

(1H, dd, J  10.2, 5.6, CH), 3.52-3.45 (1H, m, CH), 3.29 (1H, dd, J  10.2, 4.3, CH), 3.25-3.19 (1H, 

m, CH), 2.83 (1H, d, J 6.3, OH), 2.38 (3H, s, CH3Ar), 0.83 (9H, s, 3 x CH3C), 0.80 (9H, s, 3 x 

CH3C), 0.00 (6H, s, 2 x CH3Si), -0.04 (6H, s, 2 x CH3Si); 5C 143.4 (C), 137.8 (C), 129.7 (2 x 

CH (Ar)), 127.0 (2 x CH (Ar)), 70.7 (CHOH), 64.4 (CH2), 62.0 (CH2), 55.6 (CHNH), 25.9 (3 x 

CH3C), 25.8 (3 x CH3C), 21.5 (CH3Ar), 18.2 (C/butyl), 18.1 (C/butyl), -5.5 (2 x CH3Si), -5.6 (2 

x CH3Si); m/z (ES) 504 (M+H, 100%), 526 (M+Na, 80%), 567 (55%), 372 (10%); m/z (ES) 567 

(MeCNNa+, 50%), 526 (M+Na+, 80%), 504 (M+H", 100%); [Found: [M+H]+ 504.2639. 

C23H46N0 5 Si2S requires: M+H, 504.2635].

4-MethyWV-(2-oxo-l,2-diphenylethyl) toluenes ulfonamide 306a

NHTs

HO

NHTs

305a 306a

According to the general procedure R, a solution containing amino alcohol 305a (1.50 g, 4.09

mmol), pyridinium chlorochromate (1.59 g, 7.36 mmol) and 4 A molecular sieves were stirred

in dichlromethane (40 ml) for 24 h. Workup resulted in clean amino ketone 306a as a white

solid (1.31, 88%); m.p. 144-146 °C (lit. m.p.164 141-143 °C) iw /c n f 1 (DCM): 3348, 3054,
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2987, 2305, 1687, 1422, 1265, 1161, 1092; 8H 7.81 (2H, d, J  S.2, 2 x CH (Ar)), 7.54 (2H, d, J

8.2, 2 x CH (Ar)), 7.52 (1H, t, J7.6, CH (Ar)), 7.38 (2H, t, J7.6, 2 x CH (Ar)), 7.20 (5H, s, 5 x 

CH (Ar)), 7.08 (2H, d, J  8.2, 2 x CH (Ar)), 6.23 (1H, br d, J  7.4, NH), 6.01 (1H, d, J  7.4, 

CHNH), 2.32 (3H, s, CH3Ar).

7V-(l,4-bis(te/T-butyldimethylsilyIoxy)-3-oxobutan-2-yl)-4-toluenesuIfonamide 306b

HO NHTs O NHTs

TBSO— OTBS ---------------- TBSO— ^-O T B S

305b 306b

According to the general procedure R, a solution containing amino alcohol 305b (1.00 g, 1.98 

mmol), pyridinium chlorochromate (0.77 g, 3.57 mmol) and 4 A molecular sieves were stirred 

in dichlormethane (20 ml) for 48 h. Workup resulted in clean amino ketone 306b as a yellow 

viscous oil (0.89 g, 89%); vmJ c m l (neat): 3286, 2929, 2873, 2857.3, 1736, 1598, 1471, 1341, 

1257, 1166, 1092, 982; 5H 7.69 (2H, d, J  7.9, 2 x CH (Ar)), 7.27 (2H, d, J  7.9, 2 x CH (Ar)), 

5.60 (1H, d, J 7.6, NH), 4.23 (1H, m, CHNH), 4.16 (2H, s, CH2C=0), 4.08 (1H, dd, J 3.3, 10.3, 

CHaCHNH), 3.75 (1H, dd, J3 .8 , 10.3, CHBCHNH), 2.41 (3H, s, CH3Ar), 0.88 (9H, s, 3 x 

CH3C), 0.82 (9H, s, 3 x CH3C), 0.01 (6H, s, 2 x CH3Si), 0.00 (6H, s, 2 x CH3Si); 5C 205.4 

(C=0), 143.7 (C), 136.7 (C), 129.8 (2 x CH (Ar)), 127.2 (2 x CH (Ar)), 68.1 (CHACHNH),

63.8 (CHbCHNH), 60.5 (CHNH), 25.7 (2 x (3 x CH3C)), 21.5 (CH3Ar), 18.2 (2 x C/butyl), -5.7 

(4 x CH3Si); m/z (ES) 565 (M+MeCNNa\ 100%), 540 (M+K+, 50%), 519 (M+NH/, 60%), 

502 (M+H", 40%); [Found: [M+H]+ 502.2470. C z ^ N C ^ S  requires: M+H, 502.2479].
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A^2-Hydroxy-l,2-diphenyloct-3-ynyI)-4-toIuenesulfonamide 307a166

Bu

NHTs

HO

NHTs

306a 307a

According to the general procedure T, amino ketone 306a (0.45 g, 1.23 mmol) in 

tetrahydrofuran (6.2 ml) was added dropwise to a solution of 1-hexyne (0.40 ml, 3.10 mmol) 

and «-BuLi (2.5 M in hexanes, 1.24 ml, 3.10 mmol) in tetrahydrofuran (16 ml). Following 

workup the crude amino alcohol was purified by column chromatography using 10% ethyl 

acetate in hexane to give clean alcohol 307a as a yellow viscous oil as what appeared to be a 

single diastereoisomer (0.40 g, 73%); Umax/cm' 1 (DCM): 3375, 3283, 3065, 3033, 2960, 2932, 

2873, 2362, 2253, 1455, 1329, 1162, 1091; 8H 7.23 (2H, d, J7.8, 2 x CH (Ar)), 7.13-7.00 (6H, 

m, 6 x CH (Ar)), 6.95 (2H, t, J  7.8, 2 x CH (Ar)), 6.89 (2H, d, J7.8, 2 x CH (Ar)), 6.80 (2H, d, 

J  7.8, 2 x CH (Ar)), 5.08 (1H, d, J  7.9, NH), 4.33 (1H, d, J7.9, CHNH), 2.21 (1H, s, OH), 2.14 

(3H, s, CH3Ar), 2.13 (2H, t, J 7.1, 3’-CH2), 1.38 (2H, quintet, J1  A, 4’-CH2), 1.25 (2H, sextet, J  

7A, 5’-CH2), 0.76 (3H, t, J7A,  6 ’-CH3); 5C 142.7 (C), 140.9 (C), 137.0 (C), 136.1 (C), 129.1 (2 

x CH (Ar)), 128.9 (2 x CH (Ar)), 128.1 (CH (Ar)), 127.9 (2 x CH (Ar)), 127.7 (CH (Ar)), 127.5 

(2 x CH (Ar)), 126.9 (2 x CH (Ar)), 126.5 (2 x CH (Ar)), 90.5 (C^C), 79.3 (C=C), 75.3 (COH),

66.9 (CHNH), 30.4 (CH2), 22.1 (CH2), 21.4 (CH3Ar), 18.5 (CH2), 13.6 (CH3); m/z (El) 429 (M- 

H20, 50%), 274 (100%), 232 (90%); [Found: [M-H20], 429.1761. C27H27N 02S requires: 

M-H20, 429.1763].

7V-(l-(r^-butyIdimethylsilyloxy)-3-((/er/-butyldimethylsilyloxy)methyI)-3-hydroxynon-4- 

yn-2-yl)-4-toluenesulfonamide 307b

NHTs
TBDMSO y NHTs 1 5,OTBDMS

d  6TBDMSO
O '—OTBDMS H0 JL

306b 307b

According to the general procedure T, amino ketone 306b (1.40 g, 2.79 mmol) in 

tetrahydrofuran (14 ml) was added dropwise to a solution of 1-hexyne (1.00 ml, 8.38 mmol)
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and w-BuLi (2.5 M in hexanes, 3.30 ml, 8.38 mmol) in tetrahydrofuran (42 ml). Following 

workup the crude amino alcohol was purified by column chromatography using 15% ethyl 

acetate in hexane to give clean alcohol 307b as a viscous yellow oil as what appeared to be a 

single diastereoisomer (1.02 g, 63%); Umax/cm' 1 (CHCI3): 3485, 3286, 2943, 2910, 2857, 2238, 

1597, 1470, 1409, 1338, 1252, 1161, 1080, 1004; 6H 7.73 (2H, d, 78.2, 2 x CH (Ar)), 7.23 (2H, 

d, 78.2, 2 x CH (Ar)), 5.24 (1H, d, 78.8, NH), 4.20 (1H, dd, 72.5, 10.5, 5-HA), 3.82 (2H, s, 2- 

CH2), 3.74 (1H, dd, 74.1, 10.5, 5-HB), 3.54-3.41 (1H, m, 4-H), 2.37 (3H, s, CH3Ar), 2.12 (2H, 

t, 76.4, 3’-CH2), 1.40 (2H, quintet, J 63, 4’-CH2), 1.34 (2H, sextet, 76.4, 5’-CH2), 0.84 (9H, s, 

3 x CH3C), 0.83 (9H, s, 3 x CH3C), 0.87-0.80 (3H, t, 7  6.4, 6 ’-CH3), 0.00 (6H, s, 2 x CH3Si), 

-0.04 (6 H, s, 2 x CH3Si); 5C 143.1 (C), 138.3 (C), 129.6 (2 x CH (Ar)), 127.0 (2 x CH (Ar)),

87.2 (C=C), 79.8 (C=C), 73.8 (3-C), 66.4 (2-CH2), 65.4 (5-CH2), 56.4 (4-CH), 30.5 (3’-CH2),

25.8 (3 x CH3C), 25.7 (3 x CH3C), 22.0 (4’-CH2), 21.5 (CH3Ar), 18.4 (5’-CH2), 18.2 (C/butyl),

18.1 (C/butyl), 13.6 (6 ’-CH3), -3.58 (4 x CH3Si); m/z (APCI) 584 (M+H+, 80%), 395 (100%); 

[Found: [M+H]+, 584.3254. C29H54N0 5Si2S requires: M+H, 584.3261].

5-Butyl-2,3-diphenyl-l-tosyl-l//-pyrrole 313k

NHTs

HO
Ts

307a 313k

According to the general procedure O, 10% AgN03.Si02 (0.04 g, 0.02 mmol) was stirred with a

solution of precursor 307a (0.10 g, 0.22 mmol) in dichloromethane (2 ml) for 18 h to give clean

pyrrole 313k as a clear oil (0.09 g, 94%); iW c n f 1 (neat): 3062, 3028, 2959, 2928, 2857, 1597,

1536, 1495, 1442, 1361, 1264, 1170, 1150, 1095; 5H 7.26-7.21 (1H, m, CH (Ar)), 7.19 (2H, d ,7

8.2, 2 x CH (Ar)), 7.15 (2H, t, 77.6, 2 x CH (Ar)), 7.06 (2H, d, 7  8.2, 2 x CH (Ar)), 7.04-6.99

(5H, m, 5 x CH (Ar)), 6.91-6.88 (2H, m, 2 x CH (Ar)), 6.20 (1H, s, 4-H), 2.92 (2H, t, 77.6, 1’-

CH2), 2.29 (3H, s, CH3Ar), 1.69 (2H, quintet, 7 7.6, 2’-CH2), 1.40 (2H, sextet, J 1.6, 3’-CH2),

0.91 (3H, t, 77.6, 4 ’-CH3)-, 6C 144.3(C), 138.7 (C), 137.0 (C), 134.5 (C), 132.5 (2 x CH (Ar)),

132.0(C), 131.8(C), 129.4 (2xCH(Ar)), 128.1 (CH (Ar)), 128.0 (4xCH  (Ar)), 127.4(2xCH

(Ar)), 127.0 (C), 126.6 (2 x CH (Ar)), 126.2 (CH (Ar)), 113.1 (4-CH), 31.6 ( l ’-CH2), 29.2
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(2’-CH2), 21.6 (3’-CH2), 21.6 (CH3Ar), 14.1 (4’-CH3); m/z{APCI) 430 (M+H\ 100%); [Found: 

[M+H]+, 430.1823. C27H28N 02S requires: M+H, 430.1841].

5-Butyl-2,3-bis((te/7-butyldimethylsilyloxy)methyl)-l-tosyl-l//-pyrrole 3131

NHTs / —OTBDMS

T B D M S ^ ^ X ^ 0180^     \ ^ _ j T ^ O T B D M S

Bu Ts

307b 3131

According to the general procedure O, 10% AgN03.Si02 (0.13 g, 0.08 mmol) was stirred with a 

solution of precursor 307b (0.11 g, 0.38 mmol) in dichloromethane (2 ml) for 4 h to give clean 

pyrrole 3131 as a clear viscous oil (0.1 g, 98%); Umax/cm'1 (CHC13): 2928, 2894, 2856, 1597, 

1460, 1428, 1365, 1254, 1180, 1090, 837, 777, 704; 5H 7.71 (2H, d, 7  8.3, 2 x CH (Ar)), 7.15 

(2H, d, 7  8.3, 2 x CH (Ar)), 5.95 (1H, s, 4-H), 4.84 (2H, s, CH20), 4.53 (2H, s, CH20), 2.58 

(2H, t, 77.6, 1 ’-CH2), 2.32 (3H, s, CH3Ar), 1.45 (2H, quintet, J  7.6, 2’-CH2), 1.26 (2H, sextet, J

7.6, 3’-CH2), 0.84 (18H, s, 2 x (3 x CH3C)), 0.81 (3H, t, 77.6, 4’-CH3), 0.03 (6H, s, 2 x CH3Si), 

0.00 (6H, s, 2 x CH3Si); 5C 144.1 (C), 137.5 (C), 130.7 (C), 129.5 (2 x CH (Ar)), 127.3 (C),

126.8 (2 x CH (Ar)), 111.5 (4-CH), 57.9 (CH20), 55.3 (CH20), 30.8 ( l ’-CH2), 28.1 (2’-CH2),

26.0 (2 x (3 x CH3C)), 22.4 (3’-CH2), 21.6 (CH3Ar), 18.5 (C/butyl), 18.4 (C/butyl), 13.9 (4’- 

CH3), -3.98 (4 x CH3Si); m/z molecular ion is not observed.

(1 S,2R)-/?-T oluenesulfonylamino(cyclopentan-2-ol) 318a

o  — -

317a 318a

According to the general procedure Q, cyclopentene 317a (1.36 g, 20.0 mmol), potassium 

osmate dihydrate (0.07 g, 0.20 mmol), chloramine-T-hydrate (6.82 g, 30.0 mmol) and 

benzyltriethylammonium chloride (0.23 g, 1.00 mmol) were stirred in a mixture of /BuOH (25 

ml) and water (25 ml) overnight. Following aqueous workup the crude product was purified by 

column chromatography using 40% ethyl acetate in hexane to give clean amino alcohol 318a as 

a powdery white solid (1.81 g, 36%); 8H 7.71 (2H, d, 7  8.2, 2 x CH (Ar)), 7.25 (2H, d, 78.2, 2 x 

CH (Ar)), 4.81 (1H, d, 7  7.6, NH), 3.94-3.90 (1H, m, 2-H), 3.34 (1H, app ddt, 7  12.1, 7.5, 4.8,
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1-H), 2.37 (3H, s, CH3Ar), 1.79-1.64 (3H, m, 3 of 3-HaMb and 5-Ha/Hb), 1.72 (1H, d, 73.7, 

OH), 1.60-1.53 (1H, m, 1 of 3-Ha/HZ> and S-Ra/Rb), 1.48-1.33 (2H, m, 4-CH2); 5C 143.6 (C),

137.4 (C), 129.8 (2 x CH (Ar)), 127.1 (2 x CH (Ar)), 72.2 (2-CH), 57.9 (1-CH), 30.1 (3-CH2 or

5-CH2), 29.3 (3-CH2 or 5-CH2), 21.6 (CH3Ar), 19.9 (4-CH2).

(lS,2R)-/)-Toluenesulfonylamino(cycIohexan-2-ol) 318b164

NHTs

317b 318b

According to the general procedure Q, cyclohexene 317b (1.64 g, 20.0 mmol), potassium 

osmate dihydrate (0.07 g, 0.20 mmol), chloramine-T-hydrate (6.82 g, 30.0 mmol) and 

benzyltriethylammonium chloride (0.23 g, 1.00 mmol) were stirred in a mixture of /BuOH (25 

ml) and water (25 ml) overnight. Following aqueous workup the crude product was purified by 

column chromatography using 40% ethyl acetate in hexane to give clean amino alcohol 318b as 

a powdery white solid (2.36 g, 44%); m.p. 154-156 °C (lit m.p.164 158-159 °C); 8h 7.78 (2H, d,

78.2, 2 x CH (Ar)), 7.32 (2H, d, 78.2, 2 x CH (Ar)), 4.79 (1H, d, 77.3, NH), 3.82-3.77 (1H, m,

2-H), 3.28-3.22 (1H, m, 1-H), 2.36 (3H, s, CH3Ar), 1.74-1.67 (1H, m, CH), 1.67 (1H, d, J 4.6, 

OH), 1.63-1.49 (3H, m, 3 x CH), 1.48-1.41 (1H, m, CH), 1.41-1.31 (1H, m, CH), 1.30-1.22 

(2H, m, 2 x CH).

(lS,2R)-/7-Toluenesulfonylamino(cyclooctan-2-ol) 318c164

NHTs

317c 318c

According to the general procedure Q, cyclooctene 317c (2.20 g, 20.0 mmol), potassium osmate 

dihydrate (0.07 g, 0.19 mmol), chloramine-T-hydrate (6.82 g, 30.0 mmol) and 

benzyltriethylammonium chloride (0.23 g, 1.00 mmol) were stirred in a mixture of /BuOH (25 

ml) and water (25 ml) overnight. Following aqueous workup the crude product was purified by 

column chromatography using 40% ethyl acetate in hexane to give clean amino alcohol 318c as 

a powdery white solid (3.52 g, 59%); 120-121 °C (lit. m.p.164 118-119 °C); 5H 7.70 (2H, d, 7
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8.2, 2 x CH (Ar)), 7.24 (2H, d, J8.2, 2 x CH (Ar)), 4.80 (1H, d, J 8.1, NH), 3.70 (1H, app ddd, 

J  10.0,4.5, 3.2, 2-H), 3.45-3.39 (1H, app ddt, J  10.0, 7.9, 2.9, 1-H), 2.37 (3H, s, CH3Ar), 1.74- 

1.64 (3H, m, 3 x CH), 1.63-1.56 (1H, m, CH), 1.47-1.38 (5H, m, 5 x CH), 1.37-1.29 (3H, m, 3 x 

CH); 5C 143.2 (C), 137.8 (.C), 129.8 (2 x CH (Ar)), 127.0 (2 x CH (Ar)), 72.4 (2-CH), 56.2 (1- 

CH), 31.4 (CH2), 29.4 (CH2), 27.1 (CH2), 25.6 (CH2), 25.3 (CH2), 22.4 (CH2), 21.6 (CH3Ar).

(lS,2R)-p-ToIuenesuIfonylamino(cyclododecan-2-ol) 318d

*OH

NHTs

317d 318d

According to the general procedure Q, cyclododecene 317d (0.85 g, 5. 11 mmol), potassium 

osmate dihydrate (0.02 g, 0.05 mmol), chloramine-T-hydrate (1.74 g, 7.50 mmol) and 

benzyltriethylammonium chloride (0.06 g, 0.25 mmol) were stirred in a mixture of /BuOH (25 

ml) and water (25 ml) overnight. Following aqueous workup the crude product was purified by 

column chromatography using 40% ethyl acetate in hexane to give clean amino alcohol 318d as 

a yellow viscous oil (0.90 g, 50%); 5H 7.75 (2H, d, J  8.2, 2 x CH (Ar)), 7.25 (2H, d, J  8.2, 2 x 

CH (Ar)), 5.55 (1H, br d, J6.7, NH), 4.02-3.95 (2H, m, 1-H, 2-H), 2.37 (3H, s, CH3Ar), 2.07-

2.01 (2H, m, 2 x CH), 1.40-1.17 (18H, m, 9 x CH2).

p-Toluenesulfonylamino(cyclopentan-2-one)319a167

NHTs NHTs

318a 319a

According to the general procedure S, amino alcohol 318a (0.57 g, 2.33 mmol) in acetone 

(5.3 ml) and Jones reagent (1.09 ml, 2.90 mmol) were stirred for 1.5 h. Following this workup 

was carried out resulting in clean ketone 319a as a white powdery solid (0.41 g, 73%); m.p. 93- 

95 °C; iw /c m ' 1 (DCM): 3419, 3057, 2985, 1752, 1640, 1421, 1335, 1266, 1163, 1094; 5H7.70 

(2H, d, J 8.2, 2 x CH (Ar)), 7.25 (2H, d, J 8.2, 2 x CH (Ar)), 5.01 (1H, app s, NH), 3.37 (1H, 

ddd, J  11.9, 8.2, 2.9, 1-H), 2.53-2.42 (1H, m, CH), 2.36 (3H, s, CHjAr), 2.29 (1H, app dd, J

18.8, 8.9, CH), 2.04 (1H, app dd, J  19.0, 9.6, CH), 2.00-1.93 (1H, m, CH), 1.74-1.56 (2H, m,
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CH2); 5c 212.1 (C=0), 142.9 (C), 135.2 (C), 128.7 (2 x CH (Ar)), 126.2 (2 x CH (Ar)), 59.2 (1- 

CH), 33.2 (CH2), 29.9 (CH2), 20.5 (CH3Ar), 16.6 (4-CH2).

/;-Toluenesulfonylamino(cyclohexan-2-one) 319b168

NHTsNHTs

318b 319b

According to the general procedure S, amino alcohol 318b (2.36 g, 8.76 mmol) in acetone 

(20.1 ml) and Jones reagent (4.30 ml, 11.5 mmol) were stirred for 0.5 h. Following this workup 

was carried out resulting in clean ketone 319b as a white powdery solid (2.32 g, 99%); m.p. 

120-121 °C (lit. m.p.168 116-118 °C); vmJ c m l (DCM): 3306, 3054, 2987, 2358, 1718, 1422, 

1265, 1165, 1093; 8H 7.65 (2H, d, J  8.2, 2 x CH (Ar)), 7.21 (2H, d, J  8.2, 2 x CH (Ar)), 5.71 

(1H, d, J 4.8, NH), 3.68 (1H, app dt, J 11.9, 5.5, 1-H), 2.47 (1H, app ddd, J  12.9, 6.1, 3.0, CH), 

2.44-2.39 (1H, m, CH), 2.35 (3H, s, CH3Ar), 2.16 (1H, tdd, J  13.6, 6 .6 , 0.9, CH), 2.00 (1H, app 

ddt, J  13.0, 6.5, 2.8, CH), 1.83-1.77 (1H, m, CH), 1.67-1.46 (3H, m, 3 x CH); 5C 205.8 (C=0),

143.6 (C), 136.9 (C), 129.8 (2 x CH (Ar)), 127.0 (2 x CH (Ar)), 60.6 (1-CH), 40.8 (CH2), 36.9 

(CH2), 27.4 (CH2), 23.9 (CH2), 21.6 (CH3Ar).

p-Toluenesulfonylamino(cyclooctan-2-one) 319c

NHTs NHTs

318c 319c

According to the general procedure S, amino alcohol 318c (3.50 g, 11.8 mmol) in acetone 

(27.1 ml) and Jones reagent (5.70 ml, 15.3 mmol) were stirred for 1.5 h. Following this workup 

was carried out resulting in clean ketone 319c as a white powdery solid (2.44 g, 70%); m.p. 68- 

69 °C; iW c ra '' (DCM): 3304, 3056, 2958, 2930, 2867, 1707, 1453, 1335, 1266, 1164, 1093; 

8h 7.65 (2H, d, 78.2, 2 x CH (Ar)), 7.21 (2H, d, 78.2,2 x CH (Ar)), 5.65 (1H, br d, 74.6, NH),

3.75 (1H, ddd, 77.3, 4.6, 3.0, 1-H), 2.42-2.35 (1H, m, CH), 2.34 (3H, s, CH3Ar), 2.25 (1H, ddt,

714.8, 11.4, 3.4, CH), 2.10 (1H, ddd, 712.7, 6.7, 3.5, CH), 1.97 (1H, dddd, 716.6,9.6, 5.7, 3.8, 

CH), 1.88-1.81 (1H, m, CH), 1.75-1.48 (4H, m, 4 x CH), 1.34-1.17 (3H, m, 3 x CH); 8C 212.7
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(C=0), 143.7 (C), 136.4 (C), 129.7 (2 x CH (Ar)), 127.0 (2 x CH (Ar)), 60.9 (1-CH), 38.9 

(CH2), 29.3 (CH2), 28.2 (CH2), 26.0 (CH2), 24.2 (CH2), 22.5 (CH2), 21.6 (CH3Ar); m/z (El) 295 

(M+, 20%), 267 (90%), 224 (85%), 210 (100%); [Found: [M]+, 295.1241. C15H21N 03S requires: 

M, 295.1242].

p-T oluenesulfonylamino(cyclod odecan-2-one) 319d

OH .0

NHTs NHTs

318d 319d

According to the general procedure S, amino alcohol 318d (0.57 g, 2.33 mmol) in acetone 

(5.4 ml) and Jones reagent (1.09 ml, 2.90 mmol) were stirred for 1.5 h. Following this workup

26.1 (CH2), 26.0 (CH2), 23.9 (CH2), 22.7 (CH2), 22.4 (CH2), 22.0 (CH2), 21.4 (CH3Ar), 21.3 

(CH2), 18.7 (CH2); m/z (APCI) [Found: [M+H]\ 352.1943. Ci9H30NO3S requires: M+H, 

352.1946].

(1S,2R) and (1S,2S) 4-toluenesulfonyIamino-2-(hex-l-yn-l-yl)cycIopentan-2-ol 320a

According to the general procedure T, amino ketone 319a (0.40 g, 1.58 mmol) in dry 

tetrahydrofuran (8 ml) was added droppwise to a solution of 1-hexyne (0.40 ml, 3.47  mmol) 

and «-BuLi (2.5 M in hexanes, 1.39 ml, 3.47 mmol) in tetrahydrofuran (18 ml) at -78 °C. 

Following workup the crude product was purified by column chromatography using 33% ethyl 

acetate in hexane to give clean amino alcohol as a yellow oil and a 91:9 mixture of

was carried out resulting in clean ketone 319d as a clear viscous oil (0.41 g, 73%); Umax/cm' 1

(CHC13): 3387, 2958, 2930, 2867, 1715, 1454, 1406, 1305, 1274, 1166, 1091; 5H 7.61 (2H, d, J

8.2, 2 x CH (Ar)), 7.20 (2H, d, J%2,  2 x CH (Ar)), 5.55 (1H, d, J6.1, NH), 4.00 (1H, m, 1-H), 

2.69 (2H, m, 3-CH2), 2.38 (3H, s, CH3Ar), 2.05-1.00 (18H, m, 9 x CH2); 8C 213.0 (C=0), 139.5 

(C), 137.2 (C), 129.7 (2 x CH (Ar)), 127.0 (2 x CH (Ar)), 61.3 (1-CH), 34.3 (CH2), 30.7 (CH2),

NHTs NHTs NHTs

319a 320a
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diastereoisomers (0.36 g, 70%); Umax/cm' 1 (CHCI3): 3489, 3278, 2957, 2933, 2872, 2240, 1452, 

1379, 1322, 1305, 1161, 1094, 988; 5H (Major 1S,2R) 7.73 (2H, d, 7  8.2, 2 x CH (Ar)), 7.24 

(2H, d, 78.2, 2 x CH (Ar)), 4.78 (1H, d, 79.2, NH), 3.33 (1H, app q, 79.3, 1-H), 2.75 (1H, s, 

OH), 2.36 (3H, s, CH3Ar), 2.18 (2H, t, 77.1, 3’-CH2), 2.02 (2H, app ddd, 717.5, 8.7, 4.6, CH2), 

1.86-1.73 (2H, m, CH2), 1.67-1.55 (2H, m, CH2), 1.44 (2H, quintet, J 7.2, 4’-CH2), 1.35 (2H, 

sextet, 7  7.1, 5’-CH2), 0.86 (3H, t, 7  7.2, 6 ’-CH3); 5C (Major) 143.7 (C), 137.3 (C), 129.7 (2 x 

CH (Ar)), 127.3 (2 x CH (Ar)), 88.9 (C=C), 79.4 (C=C), 77.1 (2-C), 63.5 (1-CH), 38.1 (CH2),

30.7 (CH2), 29.6 (CH2), 22.0 (CH2), 21.6 (CH3Ar), 18.5 (CH2), 18.4 (CH2), 13.6 (6 ’-CH3); m/z 

(APCI) 318 (M-H20 , 100%); [Found: [M]-H20, 318.1529. C,8H24N 02S requires: M-H20, 

318.1528].

5h(distinguishable minor peaks 2S,1S) 4.90 (1H, br d, 78.3, NH), 3.50 (1H, q, 78.4, 1-H).

(1S,2R) and (1S,2S) 4-Toluenesulfonylamino-2-(phenylethynyl)cyclopentan-2-ol 320b

Ph

.0  . '

NHTs - NHTs NHTs

319a 320b

According to the general procedure T, amino ketone 319a (0.30 g, 1.18 mmol) in dry 

tetrahydrofuran (6 ml) was added droppwise to a solution of phenylacetylene (0.28 ml, 2.60 

mmol) and w-BuLi (2.5 M in hexanes, 1.04 ml, 2.60 mmol) in tetrahydrofuran (13 ml) at -78 

°C. Following workup the crude product was purified by recrystalisation using ethyl 

acetate/hexane to give pure amino alcohol 320b as a yellow crystalline solid and a 84:16 

mixture of diastereoisomers (0.36 g, 85%), m.p. 135-138 °C; Umax/cm' 1 (CHC13): 3491, 3272, 

2924, 2854, 2254, 1634, 1599, 1495, 1456, 1335, 1261, 1160, 1093, 1019; 5H (Major 1S,2R)

7.75 (2H, d, 7  8.3, 2 x CH (Ar)), 7.73-7.59 (3H, m, 3 x CH (Ar)), 7.27-7.20 (4H, m, 4 x CH 

(Ar)), 4.75 (1H, d, 79.7, NH), 3.38 (1H, ddd, 712.7, 7.8, 2.4, 1-H), 3.01 (1H, s, OH), 2.36 (3H, 

s, CH3Ar), 1.84-1.44 (6H, m, 6 x CH); 5C (Major) 143.6 (C), 137.1 (C), 131.9 (2 x CH (Ar)),

129.9 (2 x CH (Ar)), 128.9 (CH (Ar)), 128.4 (2 x CH (Ar)), 127.4 (2 x CH (Ar)); 81.9 (C), 77.2 

(2-C), 63.9 (1-CH), 38.2 (CH2), 29.9 (CH2), 21.6 (CH3Ar), 18.6 (CH2); m/z (APCI) 338 (M-
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H20 , 100%), 238 (35%); [Found: [M]-H20, 338.1208. C20H20NO2S requires: M-H20, 

338.1215].

SH (distinguishable minor peaks 2S,1S) 4.90 (1H, br s, NH).

(1S,2R) and (1S,2S) 4-Toluenesulfonylamino-2-(te/tfbutyldimethylsilyIoxy-but-l-yn-l- 

yl)cyclopentan-2-ol 320c

According to the general procedure T, amino ketone 319a (0.40 g, 1.58 mmol) in dry 

tetrahydrofuran (8 ml) was added droppwise to a solution of silyl protected alkyne (0.73 g, 3.95 

mmol) and «-BuLi (2.5 M in hexanes, 1.58 ml, 3.95 mmol) in tetrahydrofuran (20 ml) at 

-78 °C. Following workup the crude product was purified by column chromatography using 

33% ethyl acetate in hexane to give clean amino alcohol 320c as a yellow oil as a 98:2 mixture 

of diastereoisomers (0.37 g, 53%); Vmax/cmf1 (CHCI3): 3483, 3276, 2955, 2928, 2883, 2857, 

2362, 2432, 1599, 1472, 1387, 1335, 1161, 1095, 1006, 918; 8H (Major 1S,2R) 7.70 (2H, d, J

8.2, 2 x CH (Ar)), 7.22 (2H, d, J  8.2, 2 x CH (Ar)), 4.87 (1H, d, J  9.6, NH), 3.66 (2H, ddd, J  

13.5, 6 .8 , 2.8, 4’-CH2), 3.32 (1H, td, J  9.7, 7.5, 1-H), 2.87 (1H, s, OH), 2.38 (2H, t, J  6 .8, 

3’-CH2), 2.34 (3H, s, CH3Ar), 2.01 (1H, ddd, J  15.1, 8 .6 , 4.4, CH), 1.81-1.72 (2H, m, 2 x CH), 

1.62-1.53 (1H, m, CH), 1.43-1.35 (2H, m, 2 x CH), 0.82 (9H, s, 3 x CH3C), 0.00 (6H, s, 2 x 

CH3Si); 8C (Major) 143.7 (C), 137.3 (C), 129.7 (2 x CH (Ar)), 127.3 (2 x CH (Ar)), 86.0 (C=C),

80.7 (C=C), 76.9 (2-C), 63.7 (1-CH), 61.8 (4’-CH2), 37.9 (CH2), 29.6 (CH2), 25.9 (3 x CH3C),

23.2 (CH2), 21.6 (CH3Ar), 18.4 (Qbutyl), 18.4 (CH2), -5.1 (2 x CH3Si); m/z (APCI) 438 

(M+H", 15%), 420 (100%); [Found: [M+H]+, 438.2140. C22H36N 04SiS requires: M+H, 

438.2134].

8H (distinguishable minor peaks 2S,1S) 5.05 (1H, br s, NH).

NHTs

.OTBDM S.OTBDM S

NHTsNHTs

319a 320c
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(1S,2R) and (1S,2S) 4-Toluenesulfonylamino-2-(phenylethynyI)cycIohexan-2-ol 320d

■ Ph ^Ph
.0

NHTs ^  NHTs q  NHTs

319b 320d

According to the general procedure T, amino ketone 319b (0.21 g, 0.79 mmol) in dry 

tetrahydrofuran (4 ml) was added droppwise to a solution of phenylacetylene (0.19 ml, 1.73 

mmol) and «-BuLi (2.5 M in hexanes, 0.69 ml, 1.73 mmol) in tetrahydrofuran (9 ml) at -78 °C. 

Following workup the crude product was purified by column chromatography using 33% ethyl 

acetate in hexane to give clean amino alcohol 320d as a crystalline white solid and a 86:14 

mixture of diastereoisomers (0.21 g, 73%), m.p. 139-141 °C; Umax/cm' 1 (CHCI3): 3821, 3475, 

3263,2936, 2860, 2238, 1598, 1490, 1442, 1328, 1161, 1082, 1037,919; 5H(Major IS,2R) 7.74 

(2H, d, J  8.2, 2 x CH (Ar)), 7.39-7.36 (2H, m, 2 x CH (Ar)), 7.29-7.24 (5H, m, 5 x CH (Ar)), 

4.62 (1H, d, J  9.9, NH), 3.08 (1H, ddd, J  11.8, 9.9, 4.1, 1-H), 2.37 (3H, s, CH3Ar), 2.14-2.10 

(1H, m, CH), 1.64-1.54 (3H, m, 3 x CH), 1.43-1.32 (2H, m, 2 x CH), 1.23-1.11 (2H, m, 2 x 

CH); 6c (Major) 143.8 (C), 137.5 (C), 131.8 (2 x CH (Ar)), 129.9 (2 x CH (Ar)), 128.8 (CH 

(Ar)), 128.4 (2 x CH (Ar)), 127.1 (2 x CH (Ar)), 122.0 (C), 88.2 (C=C), 87.5 (C=C), 72.3 (2-C), 

61.6 (1-CH), 38.4 (CH2), 31.4 (CH2), 24.8 (CH2), 23.0 (CH2), 21.6 (CH3Ar); m/z (APCI) 

[Found: [M]+-OH, 352.1382. C2iH22N 02S requires: M-OH, 352.1371].

5H(distinguishable minor peaks 2S,IS) 5.19 (1H, br d, J 7.4, NH).

(1S,2R) and (1S,2S) 4-ToluenesulfonyIaniino-2-(hex-l-yn-l-yl)cyclohexan-2-ol 314

NHTs NHTs NHTs

319b 314

According to the general procedure T, amino ketone 319b (0.40 g, 1.50 mmol) in dry 

tetrahydrofuran (7.5 ml) was added droppwise to a solution of 1-hexyne (0.38 ml, 3.29 mmol) 

and 77-BuLi (2.5 M in hexanes, 1.31 ml, 3.29 mmol) in tetrahydrofuran (17 ml) at -78 °C. 

Following workup the crude product was purified by column chromatography using 25% ethyl
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acetate in hexane to give clean amino alcohol 314 as a yellow oil and as a 86:14 mixture of 

diastereoisomers (0.33 g, 83%); aw /cm '1 (CHCb): 3489, 3270, 2935,2860, 2238, 1599, 1559, 

1496, 1448, 1328, 1290, 1266, 1160, 1090, 1038, 931; 8H (Major 1S,2R) 7.72 (2H, d ,J8 .2 , 2x  

CH (Ar)), 7.24 (2H, d, J 8.2, 2 x CH (Ar)), 4.59 (1H, d, J9.9, NH), 2.98 (1H, ddd, J  11.8, 9.9,

4.0, 1-CH), 2.77 (1H, br s, OH), 2.36 (3H, s, CH3Ar), 2.16 (2H, t, J  7.1, 3’-CH2), 1.59-1.50 

(5H, m, 5 x CH), 1.47-1.39 (3H, m, 4’-CH2, 1 x CH), 1.38-1.25 (4H, m, 5’-CH2, 2 x CH), 0.85 

(3H, t, c/7.1, 6’-CH3); 8c (Major) 143.6 (C), 137.9 (C), 129.8 (2 x CH (Ar)), 127.2 (2 x CH 

(Ar)), 88.4 (C=C), 79.3 (C=C), 71.8 (2-C), 61.5 (1-CH), 38.6 (CH2), 31.5 (CH2), 30.7 (CH2),

24.8 (CH2), 23.0 (CH2), 22.0 (CH2), 21.5 (CH3Ar), 18.3 (CH2), 13.6 (6’-CH3); m/z (APCI) 

[Found: [M]-H20 , 332.1682. Ci9H26N 02S requires: M-H20, 332.1684].

8H (distinguishable minor peaks 2S,1S) 4.88 (1H, d, J  7.0, NH), 3.19 (1H, ddd, J  9.1, 7.0, 4.1, 

1-H).

(1S,2R) and (1S,2S) 4-Toluenesulfonylamino-2-(terfbutyldimethylsilyloxy-but-l-yn-l- 

yI)cyclohexan-2-ol 315

a

_  O TB D M S  Q H ^O TB D M S

U sN HTs p, NHTs ^  NHTs

319b 315

According to the general procedure T, amino ketone 319b (0.29 g, 1.08 mmol) in dry

tetrahydrofuran (5 ml) was added droppwise to a solution of silyl protected alkyne (0.44 g, 2.39

mmol) and «-BuLi (2.5 M in hexanes, 0.95 ml, 2.39 mmol) in tetrahydrofuran (12 ml) at

-78 °C. Following workup the crude product was purified by column chromatography using

25% ethyl acetate in hexane to give clean amino alcohol 315 as a yellow solid and a 94:6

mixture of diastereoisomers (0.21 g, 43%); m.p. 88-90 °C; iw /c m '1 (CHC13): 3501, 3270,

2936, 2861, 2349, 2251, 1599, 1495, 1449, 1328, 1289, 1160, 1090, 1038; 5H (Major 1S,2R)

7.71 (2H, d, J 8.1, 2 x CH (Ar)), 7.23 (2H, d, J8.1, 2 x CH (Ar)), 4.63 (1H, d, J9.8, NH), 3.64

(2H, t, J6 .9 , 4’-CH2), 2.97 (1H, ddd, J  12.0, 9.7, 3.9, 2-CH), 2.36 (2H, t, J6.8, 3’-CH2), 2.35

(3H, s, CH3Ar), 2.13-1.88 (2H, m, 2 x CH), 1.61-1.12 (6H, m, 6 x CH), 0.81 (9H, s, 3 x CH3C),

0.00 (6H, s, 2 x CH3Si); 5C (Major) 143.6 (C), 137.9 (C), 129.8 (2 x CH (Ar)), 127.1 (2 x CH
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(Ar)), 71.9 (2-C), 61.8 (4’-CH2), 61.5 (1-CH), 38.5 (CH2), 31.6 (CH2), 25.9 (3 x CH3C), 24.8 

(CH2), 23.1 (CH2), 22.9 (CH2), 21.6 (CH3Ar), 18.1 (C/butyl), -5.2 (2 x CH3Si); m/z (APCI) 

[Found: [M+H]+, 452.2278. C23H38N 04SiS requires: M+H, 452.2291].

8h (distinguishable minor peaks 2S,1S) 4.83 (1H, br d, J l.S , NH), 3.23-3.13 (1H, m, 1-H).

(IS,2R) and (1S,2S) 4-ToIuenesulfonylamino-2-(hex-l-yn-l-yl)cyclooctan-2-ol 320e

NHTsNHTs

319c 320e

According to the general procedure T, amino ketone 319c (0.40 g, 1.35 mmol) in dry 

tetrahydrofuran (7 ml) was added droppwise to a solution of 1-hexyne (0.34 ml, 2.97 mmol) 

and H-BuLi (2.5 M in hexanes, 1.19 ml, 2.97 mmol) in tetrahydrofuran (15 ml) at -78 °C. 

Following workup the crude product was purified by column chromatography using 33% ethyl 

acetate in hexane to give a the clean amino alcohol 320e as a yellow oil and a 1:1 mixture of 

diastereoisomers (0.39 g, 77%); (CHC13): 3501, 3274, 2928, 2859, 2251, 1918, 1598,

1466, 1446, 1332, 1290, 1240, 1162, 1093, 1040, 913; 5H (1S,2R and 1S,2S) 7.77-7.71 (2H, m, 

2 x CH (Ar)), 7.28-7.22 (2H, m, 2 x CH (Ar)), 5.12 (1H, d, J  8.0, NH), 4.72 (1H, d, J  10.1, 

NH), 3.43 (1H, t, J  8.0, 1-H), 3.36 (1H, t, J  10.1, 1-H), 2.37 (3H, br s, CH3Ar), 2.11 (2H, t, J

7.0, 3’-CH2), 2.00-1.25 (16H, m, 8 x CH2), 0.84 (3H, t, 7  7.0, 6 ’-CH3); 8C (1S,2R and 1S,2S)

143.6 (C), 142.8 (C), 138.3 (C), 137.5 (C), 129.9 (2 x CH (Ar)), 129.4 (2 x CH (Ar)), 127.2 (2 x 

CH (Ar)), 127.2 (2 x CH (Ar)), 85.9 (C=C), 85.4 (C=C), 81.7 (C=C), 80.6 (C=C), 73.4 (2-C),

73.1 (2-C), 60.8 (1-CH), 59.7 (1-CH), 38.9 (CH2), 36.9 (CH2), 36.6 (CH2), 32.4 (CH2), 31.1 

(CH2), 30.7 (CH2), 29.3 (CH2), 28.2 (CH2), 26.0 (CH2), 25.8 (CH2), 24.6 (CH2), 24.2 (CH2),

22.7 (CH2), 22.5 (CH2), 22.0 (CH2), 22.0 (CH2), 21.6 (CH3Ar), 21.5 (CH3Ar), 18.3 (CH2), 18.2 

(CH2), 13.6 (6 ’-CH3), 13.6 (6 ’-CH3); m/z (El) 359 (M-H20 , 10%), 335 (35%), 222 (100%); 

[Found: [M]-H2Q, 359.1912. C2iH29N 02S requires: M-H2Q, 359.1919].
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(1S,2R) and (1S,2S) 4-ToluenesuIfonylamino-2-(phenylethynyl)cyclooctan-2-ol 320f

NHTs NHTsNHTs

319c 320f

According to the general procedure T, amino ketone 319c (0.40 g, 1.35 mmol) in dry 

tetrahydrofuran (7 ml) was added droppwise to a solution of phenylacetylene (0.33 ml, 2.97 

mmol) and «-BuLi (2.5 M in hexanes, 1.19 ml, 2.97 mmol) in tetrahydrofuran (15 ml) at - 

78 °C. Following workup the crude product was purified by column chromatography using 

25% ethyl acetate in hexane to give amino alcohol 320f as a white solid and a 73:27 mixture of 

diastereoisomer (0.28 g, 52%); m.p. 140-142 °C; Umax/cm' 1 (CHCI3): 3487, 3268, 3062, 2925, 

2856, 2251, 1598, 1574, 1490, 1465, 1443, 1332, 1162, 1092, 1049, 911; SH(Major IS,2R) 7.75 

(2H, d, J  8.2, 2 x CH (Ar)), 7.36-7.32 (2H, m, 2 x CH (Ar)), 7.28-7.22 (5H, m, 5 x CH (Ar)),

4.76 (1H, d, J  10.0, NH), 3.47 (1H, td, /9 .9 , 1.4, 1-H), 3.13 (1H, d, J 2.0, OH), 2.37 (3H, s, 

CH3Ar), 2.11 (1H, m, CH), 1.98-1.90 (1H, m, CH), 1.88-1.70 (2H, m, 2 x CH), 1.83-1.69 (1H, 

m, CH), 1.64-1.58 (2H, m, 2 x CH), 1.54-1.49 (1H, m, CH), 1.42-1.22 (4H, m, 4 x CH); 5C 

(Major) 144.0 (C), 137.2 (C), 131.8 (2 x CH (Ar)), 130.0 (2 x CH (Ar)), 128.6 (CH (Ar)), 128.3 

(2 x CH (Ar)), 127.3 (2 x CH (Ar)), 122.1 (C), 89.5 (C=C), 85.2 (C=C), 73.5 (2-C), 59.7 (1- 

CH), 36.7 (CH2), 32.5 (CH2), 28.3 (CH2), 25.7 (CH2), 24.6 (CH2), 21.6 (CH3Ar), 21.1 (CH2); 

m/z (APCI) 380 (M-H20 , 20%), 296 (100%); [Found: [M]-H20 , 380.1679. C23H26N 02S 

requires: M-H20, 380.1684].

5h (distinguishable minor peaks 2S,1S) 5.19 (1H, br d, J 8.4, NH), 3.59 (1H, t, J8.4, 1-H).

(1S,2R) and (1S,2S) 4-ToluenesuIfonylamino-2-(hex-l-yn-l-yl)cyclododecan-2-ol 320g

NHTs NHTs NHTs

319d 320g

According to the general procedure T, amino ketone 319d (0.30 g, 0.85 mmol) in dry

tetrahydrofuran (5 ml) was added droppwise to a solution of 1-hexyne (0.39 ml, 3.41 mmol)

and «-BuLi (2.5 M in hexanes, 1.36 ml, 3.41 mmol) in tetrahydrofuran (17 ml) at -78 °C.
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H0 ^

Following workup the amino alcohol 320g was isolated as a crude yellow oil and a 7:3 mixture 

of diastereoisomers (0.34 g, 92%); (CHC13): 3471, 2930, 2861, 2246, 1598.22, 1495,

1468, 1236, 1179, 1119, 1093,957; 6H7.73 (2H, d, J  8.3, 2 x CH (Ar)), 7.24 (2H, d, 78.3, 2 x 

CH (Ar)), 4.46 (1H, d, 79.7, NH), 3.11 (1H, ddd, 7  18.6, 12.3, 2.9, 1-H), 2.36 (3H, s, CH3Ar),

2.28 (2H, t, 77.3, 3’-CH2), 2.00-1.20 (24H, m, 12 x CH2), 0.85 (3H, t, 77.3, 6’-CH3). Product 

was carried through crude to the next step.

8h (distinguishable minor peaks 2S,1S) 4.78 (1H, d, J  8.4, NH).

2-Butyl-l-tosyl-l,4,5,6-tetrahydrocyclopent[/>]pyrrole 321a

.Bu

H NHTs Ts

320a 321a

According to the general procedure O, 10% AgN03.Si02 (0.73 g, 0.46 mmol) was stirred with a 

solution of precursor 320a (0.15 g, 0.46 mmol) as a 91:9 mixture of diastereoisomers in 

dichloromethane (5 ml) for 18 h to give clean pyrrole 321a as a clear oil (0.13 g, 92%); 

Umax/cm'1 (CHC13): 2956, 2861, 2360, 2342, 1598, 1521, 1495, 1487, 1418, 1365, 1174, 1126, 

1089, 1032; 5H 7.53 (2H, d, J 8.2, 2 x CH (Ar)), 7.20 (2H, d, 78.2, 2 x CH (Ar)), 5.75 (1H, s, 3- 

H), 2.88 (2H, t, 76.5, CH2Ar), 2.61 (2H, t, J1.6, CH2Ar), 2.43 (2H, tt, 75.4, 1.6, CH2Ar), 2.33 

(3H, s, CH3Ar), 2.28 (2H, quintet, J  7.2, CH2), 1.46 (2H, quintet, J  7.1, 2’-CH2), 1.28 (2H, 

sextet, J l . \ ,  3’-CH2), 0.82 (3H, t, 77.1, 4’-CH3); 5C 144.3 (C), 139.8 (C), 138.4 (C), 137.2 (C), 

129.9 (2 x CH (Ar)), 129.7 (C), 126.4 (2 x CH (Ar)), 107.9 (3-CH), 30.5 (CH2), 28.3 (CH2),

28.0 (CH2), 27.8 (CH2), 25.3 (CH2), 22.4 (CH2), 21.6 (CH3Ar), 13.9 (4’-CH3); m/z (El) 317 

(M+, 40%), 274 (100%); [Found [M]+, 317.1457. Ci8H23N 02S requires: M, 317.1450].
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2-Phenyl-l -tosyl-1,4,5,6-tetrahyd rocyclopent[Z>] pyrrole 321 b

NHTs

320b 321b

According to the general procedure O, 10% AgN03.Si02 (0.34 g, 0.20 mmol) was stirred with a 

solution of precursor 320b (0.07 g, 0.20 mmol) as a 84:16 mixture of diastereoisomers in 

dichloromethane (2 ml) for 3.5 h to give clean pyrrole 321b as a clear oil (0.06 g, 96%); 

D m ax/crn ' 1 (CHC13): -U m ax/cm ' 1 (CHCI3): 2955, 2924, 2854, 1598, 1451, 1337, 1162; 6H7.47 (2H, 

s, 78.2, 2 x CH (Ar)), 7.28-7.18 (5H, m, 5 x CH), 7.17 (2H, d, J  8.2, 2 x CH (Ar)), 5.91 (1H, s,

3-H), 3.01 (2H, tt, J  7.1, 1.5, 6 or 8-CH2), 2.48 (2H, tt, J  7.1, 1.5, 8 or 6-CH2), 2.29 (CH3Ar), 

1.79-1.72 (2H, m, 2 x CH); 5C 144.4 (C), 140.9 (C), 139.8 (C), 136.1 (C), 132.5 (C), 131.3 (C),

130.8 (2 x CH (Ar)), 129.4 (2 x CH (Ar)), 127.9 (CH (Ar)), 127.3 (2 x CH (Ar)), 126.8 (2 x CH 

(Ar)), 112.4 (3-CH), 28.8 (CH2), 27.9 (CH2), 25.2 (CH2), 21.6 (CH3Ar). m/z could not be 

obtained.

2-(2-(tert-ButyIdimethylsiIyloxy)ethyI)-l-tosyl-l,4,5,6-tetrahydrocycIopent[Z>]pyrrole 321c

,OTBDMS
HO ^

^ 1^ /^O T B D M S
H NHTs Vs

320c 321c

According to the general procedure O, 10% AgN0 3 .Si0 2 (1.00 g, 0.59 mmol) was stirred with a 

solution of precursor 320c (0.26 g, 0.59 mmol) as a 98:2 mixture of diastereoisomers in 

dichloromethane (5 ml) for 18 h to give clean pyrrole 321c as a clear oil (0.25 g, 99%); 

Umax/cm-1 (CHC13): 2957, 2928, 2858, 1598, 1519, 1495, 1471, 1463, 1368, 1306, 1252, 1174, 

1093, 1033; 5H 7.58 (2H, d, J 8.2, 2 x CH (Ar)), 7.26 (2H, d, J 8.2, 2 x CH (Ar)), 5.87 (1H, s, 3- 

H), 3.77 (2H, t, J 7.0, 2’-CH2), 2.95-2.89 (4H, m, 2 x CH2Ar), 2.48 (2H, t, J 7.0, l ’-CH2), 2.39 

(3H, s, CH3Ar), 2.34 (2H, quintet, J  12, 7-CH2), 0.86 (9H, s, 3 x CH3C), 0.00 (6H, s, 2 x 

CH3Si); 6C 147.3 (C), 138.7 (C), 137.1 (C), 135.7 (C), 130.0 (C), 127.7 (2 x CH (Ar)), 126.4 (2 

x CH (Ar)), 110.0 (3-CH), 63.0 (2’-CH2), 32.1 (CH2), 28.3 (CH2), 27.8 (CH2), 25.7 (3 x CH3C),
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21.6 (CH3Ar), 18.3 (Cfbutyl), -3.6 (2 x CH3Si); m/z (APCI) 420 (M+H+, 100%); [Found: 

[M+H]+, 420.2036. C22H35N 03SiS requires: M+H, 420.2029].

2-Phenyl-l-tosyl-4,5,6,7-tetrahydro-l//-indole 321d

Ph

321 d

H NHTs 

320d

According to the general procedure O, 10% AgN03.Si02 (0.09 g, 0.05 mmol) was stirred with a 

solution of precursor 320d (0.02 g, 0.05 mmol) as a 86:14 mixture of diastereoisomers in 

dichloromethane (2 ml) for 3 h to give clean pyrrole 321d as a clear oil (0.02 g, 99%); Umax/cm'1 

(CHC13): 2927, 2851, 2257, 1914, 1803, 1598.22, 1532, 1495, 1403, 1372, 1175, 1092; 5H 7.30-

7.28 (5H, m, 5 x CH (Ar)), 7.24-7.19 (2H, m, 2 x CH (Ar)), 7.07 (2H, d, JS.3, 2 x CH (Ar)), 

5.88 (1H, s, 3-H), 2.86 (2H, tt, J 6.2, 1.9, CH2Ar), 2.29 (3H, s, CH3Ar), 2.19 (2H, tt, J6.3, 1.9, 

CH2Ar), 1.75-1.69 (2H, m, 2 x CH), 1.64-1.58 (2H, m, 2 x CH); 5C 130.5 (2 x CH (Ar)), 129.4 

(2 x CH (Ar)), 127.8 (CH (Ar)), 127.2 (2 x CH (Ar)), 126.5 (2 x CH (Ar)), 117.1 (3-CH), 25.3 

(CH2), 23.3 (CH2), 23.2 (CH2), 22.6 (CH2), 21.6 (CH3Ar); m/z (APCI) [Found: [M+H]\ 

352.1355. C2,H22N 02S requires: M+H, 352.1371].

2-Butyl-l-tosyl-4,5,6,7-tetrahydro-l//-indole 313m

NHTs

314 313m

According to the general procedure O, 10% AgN03.Si02 (0.39 g, 0.21 mmol) was stirred with a 

solution of precursor 314 (0.15 g, 0.42 mmol) as an 86:14 mixture of daistereoisomers in 

dichloromethane (2 ml) for 27 h to give clean pyrrole 313m as a clear oil (0.12 g, 85%); 

Umax/cm'1 (CHC13): 2924, 1597, 1539, 1495, 1465, 1410, 1363, 1251, 1200, 1159, 1139, 1092, 

1019, 936; SH 7.44 (2H, d, J  8.2, 2 x CH (Ar)), 7.19 (2H, d, J  8.2, 2 x CH (Ar)), 5.72 (1H, s, 3- 

H), 2.70 (4H, m, 2 x CH2Ar), 2.29 (2H, tt, J 6.1, 1.6, CH2Ar), 1.70-1.66 (2H, m, 2 x CH), 1.63- 

1.56 (2H, m, 2 x CH), 1.50 (2H, quintet, J 12, 2’-CH2), 1.30 (2H, sextet, J 12, 3’-CH2), 0.84
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(3H, t, 7  7.2, 4’-CH3); 8c 144.1 (C), 137.8 (C), 136.5 (C), 130.5 (C), 129.8 (2 x CH (Ar)), 126.0 

(2 x CH (Ar)), 122.1 (C), 112.0 (3-CH), 31.0 (CH2), 28.3 (CH2), 24.7 (CH2), 23.4 (CH2), 23.2 

(CH2), 22.7 (CH2), 22.5 (CH2), 21.6 (CH3Ar), 14.0 (4’-CH3); m/z (APCI) [Found: [M+H]+, 

332.1676. Ci9H26N 02S requires: M+H, 332.1684].

2-(2-7er/-butyldimethylsilyloxy)ethyI)-4,5,6,7-tetrahydro-l//-indole 313n

,OTBDMS

OTBDMS
N' '

H NHTs Ts

315 313n

According to the general procedure O, 10% AgN03.Si02 (0.43 g, 0.26 mmol) was stirred with a 

solution of precursor 315 (0.12 g, 0.26 mmol) as an 94:6 mixture of diastereoisomers in 

dichloromethane (2 ml) for 48 h to give clean pyrrole 313n as a clear oil (0.08 g, 74%); 

D m a x / c r n 1 (CHC13): 2929, 2855, 1914, 1538, 1471, 1367, 1306, 1291, 1180, 1093, 1059, 1018, 

1007, 987; 8H 7.50 (2H, d, J 8.2, d, 2 x CH (Ar)), 7.24 (2H, d, J 8.2, 2 x CH (Ar)), 5.84 (1H, s, 

3-H), 3.81 (2H, t, J  6.7, 2’-CH2), 2.98 (2H, t, J  6.8, CH2Ar), 2.74 (2H, t, J  6.2, CH2Ar), 2.38 

(3H, s, CH3Ar), 2.33 (2H, tt, J 6.0, 1.6, CH2Ar), 1.74-1.68 (2H, m, 2 x CH), 1.64-1.58 (2H, m,

2 x CH), 0.86 (9H, s, 3 x CH3C), 0.00 (6H, s, 2 x CH3Si); 5C 143.1 (C), 136.6 (C), 131.4 (C),

129.7 (C), 128.8 (2 x CH (Ar)), 125.0 (2 x CH (Ar)), 121.3 (C), 113.0 (3-CH), 62.0 (2’-CH2),

31.3 (CH2), 25.4 (CH2), 24.9 (3 x CH3C), 23.7 (CH2), 22.4 (CH2), 22.1 (CH2), 21.6 (CH3Ar),

17.3 (Cfbutyl), -3.7 (2 x CH3Si); m/z (APCI) [Found: [M+H]+, 434.2171. C23H36N 03SiS 

requires: M+H, 434.2185].

2-Butyl-l-tosyl-4,5,6,7,8,9-hexahydro-l//-cycloocta[Z>]pyrroIe 321e

 . CH
V _ > N H T s  BU

H Ts

320e 321e

According to the general procedure O, 10% AgN03.Si02 (1.03 g, 0.61 mmol) was stirred with a 

solution of precursor 320e (0.23 g, 0.61 mmol) as a 1:1 mixture of diastereoisomers in 

dichloromethane (5 ml) for 18 h to give clean pyrrole 321e as a yellow solid (0.20 g, 91%);
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m.p. 61 °C; Vmax/cm'1 (CHC13): 2926, 2857, 1914, 1598, 1535, 1461, 1406, 1362, 1179, 1151, 

1093; §H; 7.41 (2H, d, 78.3, 2 x CH (Ar)), 7.17 (2H, d, 78.3, 2 x CH (Ar)), 5.73 (1H, s, 3-H), 

2.82 (2H, t, 7  6.3, 2 x CH), 2.69 (2H, app t, 7  7.7, 2 x CH), 2.37-2.31 (2H, m, 2 x CH), 2.31 

(3H, s, CH3Ar), 1.59-1.44 (6H, m, 6 x CH), 1.36-1.25 (6H, m, 6 x CH), 0.83 (3H, t, 77.3, 4’- 

CH3);5C 144.0 (C), 136.5 (C), 131.6 (C), 126.0(C), 112.8 (3-CH), 31.5 (CH2),31.2 (CH2), 30.0 

(CH2), 28.6 (CH2), 26.7 (CH2), 26.4 (CH2), 25.6 (CH2), 24.0 (CH2), 22.5 (CH2), 21.6 (CH3),

14.2 (4’-CH3); m/z (El) 359 (M+, 40%), 331 (50%), 204 (50%); [Found; [M]+, 359.1922. 

C2,H29N 02S requires: M, 359.1919].

2-Phenyl-l-tosyl-4,5,6,7,8,9-hexahydro-l//-cycloocta[£]pyrrole 321f

OH

NHTs

321f320f

According to the general procedure O, 10% AgN03.Si02 (0.81 g, 0.48 mmol) was stirred with a 

solution of precursor 320f (0.19 g, 0.48 mmol) as an 73:27 mixture of diastereoisomers in 

dichloromethane (5 ml) for 23 h to give clean pyrrole 321f as a yellow solid (0.15 g, 83%); m.p. 

112 °C; Umax/cm'1 (CHC13): 3062, 2925, 2854, 1597, 1450, 1368, 1291, 1187, 1176, 1092, 1071; 

5h 7.28-7.20 (7H, m, 7 x CH (Ar)), 7.07 (2H, d, 7  8.2, 2 x CH (Ar)), 5.89 (1H, s, 3-H), 2.98 

(2H, t, 76.3, CH2Ar), 2.35 (2H, t, J 5.7, CH2Ar), 2.29 (3H, s, CH3Ar), 1.70 (2H, quintet, 76.1, 

CH2), 1.49 (2H, ddt, 7 13.4, 5.9, 3.3, CH2), 1.37 (2H, quintet, 7  5.1, CH2), 1.29-1.22 (2H, m, 

CH2); 5c 144.0 (C), 137.0 (C), 136.7 (C), 133.9 (C), 133.5 (C), 130.5 (2 x CH (Ar)), 129.3 (2 x 

CH (Ar)), 128.0 (C), 127.6 (CH (Ar)), 127.2 (2 x CH (Ar)), 126.4 (2 x CH (Ar)), 117.9 (3-CH),

31.4 (CH2), 30.1 (CH2), 26.6 (CH2), 26.3 (CH2), 25.7 (CH2), 24.5 (CH2), 21.6 (CH3Ar); m/z 

(El) 379 (IVf, 10%); 224 (50%), 171 (60%); [Found: [M]+, 379.1597. C23H25N 02S requires: M, 

379.1606].

218



2-Butyl-l-tosyl-4,5,6,7,8,9,10,ll,12,13-decahydro-l/7-cyclododeca[£]pyrrole 321g

Bu

— -
Ts

320g 321g

According to the general procedure O, 10% AgN03.Si02 (2.34 g, 1.38 mmol) was stirred with a 

solution of precursor 320g (0.20 g, 0.46 mmol) as a 7:3 mixture of diastereoisomers in 

dichloromethane (10 ml) for 3 h followed by column chromatography using 10% ethyl acetate 

in hexane to give the clean pyrrole 321g as a clear oil (0.16 g, 84%); Dmax/cm'1 (DCM): 2930, 

2860, 1676, 1466, 1341, 1162, 1092; 5H 7.34 (2H,d, 78.2, 2 x CH (Ar)), 7.15 (2H, d ,7 8 .2 ,2 x  

CH (Ar)), 5.78 (1H, s, 3-H), 2.69 (2H, t, 7  7.2, CH2Ar), 2.62 (2H, t, 7  7.5, CH2Ar), 2.41-2.32 

(2H, m, CH2Ar), 2.31 (3H, s, CH3Ar), 2.24-2.11 (6H, m, 6 x CH), 2.08-2.02 (2H, m, 2 x CH), 

1.76-1.60 (6H, m, 6 x CH), 1.56-1.26 (6H, m, 6 x CH), 0.82 (3H, t, 7  7.0, 4’-CH3); 8C 143.8 

(C), 137.6 (C), 133.5 (C), 129.7 (2 x CH (Ar)), 126.2 (C), 125.6 (2 x CH (Ar)), 113.1 (3-CH),

106.9 (C), 32.7 (CH2), 31.0 (CH2), 28.9 (CH2), 28.8 (CH2), 26.3 (CH2), 26.1 (CH2), 25.6 (CH2),

25.4 (CH2), 25.0 (CH2), 24.4 (CH2), 23.8 (CH2), 23.0 (CH2), 22.5 (CH2), 21.6 (CH3Ar), 14.00 

(4’-CH3); m/z (El) 415 (IVf, 15%), 260 (30%), 171 (55%); [Found: [M]+, 415.2536. 

C25H37N 02S requires: M, 415.2545].

General procedure U for the Swern oxidation of alcohol to aldehyde108

A solution of DMSO (2.20 equiv) dissolved in dichloromethane (0.2 ml per mmol DMSO) was 

added dropwise to a stirred solution of oxalyl chloride (1.20 equiv) in dichloromethane (2 ml 

per mmol oxalyl chloride) at -63 °C. After 10 min a solution of prolinol (1.00 equiv) in 

dichloromethane was added dropwise over 15 min followed by 30 min of stirring. DIPEA (4.00 

equiv) was then added over 4 min and the mixture was allowed to warm to room temperature 

over 30 min. The mixture was then washed with 0.5 % HC1 (3 x volume of mixture), water (3 x 

volume of mixture), brine (1 x volume of mixture), dried over sodium sulphate, filtered and 

evaporated to give an oil.

NHTs
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General procedure V for the Addition of Grignard to aldehyde108

Alkyne (1.20-1.30 equiv) was added dropwise to a stirred solution of ethyl magnesium bromide 

(1.0 M in tetrahydrofuran, 1.20-1.30 equiv) dissolved in etrahydrofiiran (~3 ml per mmol of 

alkyne) at 0 °C and stirred at this temperature for 1 h. The reaction was then allowed to warm to 

room temperature over 15 min, followed by addition of prolinal (1.00 equiv) in tetrahydrofuran 

(2 ml per mmol aldehyde) over 30 min. The reaction was then allowed to stir for 0.5-1.5 h 

before being quenched with aq NH4CI (~1 x volume of mixture) and concentrated. The 

resulting residue was dissolved in diethyl ether (3 x volume of mixture) and washed with aq 

NH4CI (2 x volume of mixture), brine (2 x volume of mixture), dried over sodium sulphate, 

filtered and evaporated to give product that was purified by column chromatography.

General procedure W for Boc-deprotection

To a stirred solution of N-Boc compound (1.00 equiv) in dichloromethane (1-2 ml per mmol of 

Boc compound) at 0 °C a 20% v/v TFA (4.00 equiv) in dichloromethane was added dropwise. 

The mixture was stirred at 0 °C and monitored by TLC and upon completion was basified with 

2M sodium hydroxide solution. The solution was the extracted with dichloromethane (3 x 

volume of mixture), washed with brine (2 x volume of mixture), water (1 x volume of mixture), 

dried over sodium sulphate, filtered and evaporated. The crude material was then purified by 

column chromatography with a mixture of DCM: MeOH: EtsN resulting in a pungent smelling 

free amine

A-Boc-(L)-proline 325

(L)-Proline 324 (3.00 g, 26.1 mmol) was dissolved in dichloromethane (60 ml) and 

treithylamine (4.70 ml, 33.9 mmol) was added dropwise, followed by the addition of B0C2O 

(8.25 g, 37.8 mmol) in dichloromethane (3 ml). The reaction was stirred at room temperature 

for 2.5 h and then quenched with sat citric acid solution (15 ml). The mixture was then washed
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with water (2 x 20 ml) and the brine (1 x 20 ml), dried, filtered and evaporated to give a white 

semi solid. The residue was then dissolved in hot ethyl acetate (7 ml) and hexane was added 

dropwise (60 ml). The mixture was then cooled to -25 °C and the crystals that formed were 

filtered resulting in the boc-protectedproline 325 as white crystalline solid (5.30 g, 94%); m.p. 

131-132 °C (lit m.p.169 133-134 °C); vmJ c m '  (DCM): 3419, 3055, 2986, 1694, 1422, 1267, 

1162, 1131; 5h 4.40-4.25 (1H, br m, 2-H), 3.60-3.33 (2H, br m, CH2), 2.45-2.28 (1H, br m, 

CH), 2.10-1.89 (3H, br m, CH, CH2) two singlets at 1.51 and 1.45 (9H, s, 3 x CH3C).

A-Boc-(L)-prolinol 326108

^ N ^ C 0 2H ^ j ^ C H 2OH
Boc Boc

325 326

A solution of A-boc proline 325 (2.00 g, 9.30 mmol) in tetrahydrofuran (50 ml) was cooled to 

0 °C and BH3.SMe2 (1.10 ml, 12.1 mmol) was added dropwise over 30 min. As soon as gas 

evolution had ceased the mixture was gently warmed to reflux for 1 h. Followed by cooling to 

room temperature and evaporation of solvent. The residue was dissolved in a mixture of 

dichloromethane (100 ml) and water (30 ml). The organic layer was isolated and washed with 

NaHC03 (30 ml), brine (2 x 30 ml), dried filtered and evaporated to give prolinol 326 as a clear 

oil (1.85 g, 99%); rw /cm '1 (DCM): 3382, 3054, 2980, 2882, 1742, 1683, 1408, 1368, 1266, 

1168, 1112; 5h 3.92-3.85 (1H, m, 2-H), 3.56 (1H, dd, J  11.2, 3.6, 1-Ha), 3.51 (1H, dd, J  11.2, 

7.4, 1-Hb), 3.43 (1H, br. s, OH), 3.39 (1H, dt, J  10.8, 7.0, 4-HA), 3.24 (1H, dt, J  10.8, 6.7, 4- 

Hb), 1.94 (1H, ddd, J  14.9, 12.4, 7.3, 6-HA), 1.83-1.66 (2H, m, 5-CH2), 1.59-1.48 (1H, m, 6- 

Hb), 1.40 (9H, s, 3 x CH3C).
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jV-Boc-(L)-prolinal 328108

o .N 'CH2OH N
Boc Boc o

326 328

According to the general procedure U, a solution of DMSO (7.90 ml, 111 mmol) in 

dichloromethane (25 ml) was added dropwise to a stirred solution of oxalyl chloride (5.30 ml,

61.0 mmol) in dichloromethane (125 ml) at -63 °C. After 10 min N-boc prolinol 326 (10.16 g, 

50.50 mmol) in dichloromethane (50 ml) was added dropwise over 15 min and the reaction was 

stirred for a further 30 min. Quenching with DIPEA (35.00 ml, 202.0 mmol) and work-up 

resulted in prolinal 328 as a clear oil (9.70 g, 96%) as a 2:1 mixture of rotomers; 8h 9.49 and 

9.39 (1H, d, J 2.6, 1-CHO), 4.16-4.11 and 4.01-3.95 (1H, m, 2-H), 3.54-3.33 (2H, m, 4-CH2), 

.210-1.86 (2H, m, CH2), 1.85-1.76 (2H, m, CH2), 1.41 and 1.36 (9H, s, (3 x CH3C).

(2S,IR) and (2S,1S) 2-(l-Hydroxybut-2-yn-l-yl)7V-Boc-pyrrolidine 331a

Me

H ' ‘
N 1\ f\f
Boc o  Boc OH

328 331a

A solution of (L)-prolinal 328 (1.50 g, 7.54 mmol) in tetrahydrofuran (15 ml) was added 

dropwise over 30 min, to a stirred solution of 1-propynyl magnesium bromide (0.5 M, 30.14 ml,

15.07 mmol) in tetrahydrofuran followed by column chromatograpghy (70:30 hexane-ethyl 

acetate) resulted in 2-propargylic pyrrolidine 331a as a 63:37 mixture of diastereoisomers 

(1S:1R) as a yellow oil (1.40 g, 83%); W c m -1 (CHC13): 3423, 2976, 2934, 2885, 2289, 2243, 

1668, 1412, 1367, 1166, 1126, 1064, 1038; 5H (500 MHz) (Major, 2S,1S) 5.21 (1H, s, OH), 

4.30-4.26 (1H, br m, CHOH), 4.00-3.94 (1H, m, 2-H), 3.57-3.30 (2H, m, 5-CH2), 2.11-1.71 

(4H, m, 3-CH2, 4-CH2), 1.84 (3H, br s, 3’-CH3), 1.47 (9H, s, 3 x CH3C); (2S,1R) 5H (Minor, 

2S,1R) 5.87 (1H, s, OH), 4.41-4.38 (1H, br m, CHOH), 4.05-4.00 (1H, m, 2-H), 3.57-3.30 (2H, 

m, 5-CH2), 2.11-1.71 (4H, m, 3-CH2, 4-CH2), 1.83 (3H, br s, 3’-CH3), 1.47 (9H, s, 3 x CH3C); 

5C (125MHz) (2S,1S and 2S,1R) 157.6 (C=0), 157.1 (C=0), 81.2 (C), 81.1 (C), 80.6 (C), 80.3 

(C), 78.7 (C), 77.5 (C), 67.5 (CHOH), 67.1 (CHOH), 63.1 (2-CH), 63.0 (2-CH), 48.3 (CH2),
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47.7 (CH2), 29.0 (CH2), 28.9 (CH2), 28.4 (3 x CH3C), 28.4 (3 x CH3C), 24.0 (CH2), 23.8 (CH2), 

3.6 (3’-CH3), 3.6 (3’-CH3).

(2S,IR) and (2S,1S) 2-(l-Hydroxyhept-2-yn-l-yl)A-Boc-pyrrolidine 331b

Bu

328 331b

According to the general procedure V, a solution of (L)-prolinal 328 (0.50 g, 2.51 mmol) in 

tetrahydrofuran (5 ml) was added to a solution of 1-hexyne (0.35 ml, 3.01 mmol) and ethyl 

magnesium bromide (1.0 M in tetrahydrofuran, 3.10 ml, 3.10 mmol) in tetrahydrofuran (10ml) 

at 5°C. This was followed by aqueous workup and column chromatography (70:30 hexane- 

ethyl acetate) to give the clean 2-propargylic pyrrolidine 331b as a 56:44 mixture of 

diastereoisomers (1S:1R) as a yellow oil (0.64 g, 91%); 8h (500MHz) (Major, 2S,1S) 5.96 (1H, 

d, J8.7, OH), 4.39 (1H, d, J8.7, CHOH), 4.03 (1H, app t, J 6 .8, 2-H), either 3.56-3.51 (1H, m, 

5-Ha) or 3.46-3.40 (1H, m, 5-HA), 3.36-3.28 (1H, m, 5-HB), 2.22-2.18 (2H, m, 3’-CH2), 2.13-

1.68 (4H, m, 3-CH2, 4-CH2), 1.52-1.37 (4H, m, 4’-CH2, 5’-CH2), 1.50 (9H, s, 3 x CH3C), 0.90 

(3H, t, J  7.4, 6’-CH3); (2S,1R) 5h (Minor 2S,1R) 5.09 (1H, app s, OH), 4.33-4.30 (1H, m, 

CHOH), 4.00-3.96 (1H, m, 2-H), either 3.56-3.51 (1H, m, 5-HA) or 3.46-3.40 (1H, m, 5-HA), 

3.36-3.28 (1H, m, 5-HB), 2.22-2.18 (2H, m, 3’-CH2), 2.13-1.68 (4H, m, 3-CH2, 4-CH2), 1.52- 

1.37 (4H, m, 4’-CH2, 5’-CH2), 1.50 (9H, s, 3 x CH3C), 0.90 (3H, t, J 7.4, 6’-CH3); 6C (125MHz) 

(2S,1S and 2S,1R) 157.6 (C=0), 157.1 (C=0), 85.7 (C), 85.6 (C), 80.5 (C), 80.31 (C), 79.5 (C),

78.4 (C), 67.4 (CHOH), 67.2 (CHOH), 63.3 (2-CH), 63.0 (2-CH), 48.3 (CH2), 47.7 (CH2), 30.8 

(CH2), 30.6 (CH2), 29.2 (CH2), 28.8 (CH2), 28.4 (3 x CH3C), 28.4 (3 x CH3C), 24.0 (CH2), 23.8 

(CH2), 21.9 (CH2), 21.8 (CH2), 18.4 (CH2), 18.4 (CH2), 13.6 (6’-CH3), 13.6 (6’-CH3); m/z 

(APCI) 282 (M+FT, 30%), 267 (50%), 249 (100%); [Found: [M+H]+, 282.2060. C16H28N 03 

requires: M+H, 282.2069].
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(2S,IR) and (2S,1S) 2-(Hydroxy-3-phenylprop-2-yn-l-yl)7V-Boc-pyrrolidine 331c170

Ph

328 331c

According to the general procedure V, a solution of (L)-prolinal 328 (1.50 g, 7.54 mmol) in 

tetrahydrofuran (15 ml) was added to a solution of phenylacetylene (0.91 ml, 8.29 mmol) and 

ethyl magnesium bromide (1.0 M in tetrahydrofuran, 8.30 ml, 8.29 mmol) in tetrahydrofuran 

(60 ml) at 5 °C. This was followed by aqueous workup and column chromatography (70:30 

hexane-ethyl acetate) to give the 2-propargylic pyrrolidine 331c as a 63:37 mixture of 

diastereoisomers (1S,1R) as a viscous orange oil (1.70 g, 75%); Umax/cm' 1 (CHCI3): 3395, 3078, 

2977, 2931, 2882, 2230, 1671, 1490, 1407, 1367, 1255, 1165, 1123, 1048, 910; 6h (500MHz) 

(Major, 2S,1S) 7.47-7.41 (2H, m, 2 x CH (Ar)), 7.33-7.30 (3H, m, 3 x CH (Ar)), 6.26 (1H, d, J  

8.9, OH), 4.65 (1H, d, J8.9, CHOH), 4.19-4.14 (1H, m, 2-H), 3.61-3.38 (2H, m, 5-CH2), 2.22-

1.73 (4H, m, 3-CH2, 4-CH2), 1.50 (9H, s, 3 x CH3C); (2S,1R) 6H (Minor) 7.47-7.41 (2H, m, 2 x 

CH (Ar)), 7.33-7.30 (3H, m, 3 x CH (Ar)), 5.31 (1H, s, OH), 4.62-4.58 (1H, m, CHOH), 4.15-

4.11 (1H, m, 2-H), 3.61-3.38 (2H, m, 5-CH2), 2.22-1.73 (4H, m, 3-CH2, 4-CH2), 1.50 (9H, s, 3 

x CH3C); 5c (125 MHz) (2S,1S and 2S,1R) 157.6 (C), 157.3 (C), 131.7 (4 x CH (Ar)), 128.3 (2 

x CH (Ar)), 128.2 (4 x CH (Ar)), 123.0 (C), 122.8 (C), 88.7 (C), 87.7 (C), 85.0 (C), 80.7 (C),

80.5 (C), 67.8 (CHOH), 67.6 (CHOH), 63.4 (2-CH), 62.9 (2-CH), 48.4 (5-CH2), 47.7 (5-CH2),

29.3 (CH2), 28.8 (CH2), 28.5 (3 x CH3C), 24.0 (CH2), 23.9 (CH2); m/z (APCI) 302 (M+H*, 

10%), 269 (50%), 228 (100%), 184 (70%); [Found: [M+H]+, 302.1762. C,8H24N03 requires: 

M+H, 302.1756].
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(2S,IR) and (2S,1S) 2-(l-Hydroxy-3-trimethylsilylprop-2-yn-l-yl)Ar-Boc-pyrrolidine 

331d108

JM S

H / \ ^  ✓
N \\ N' ,
Boc o  Boc OH

328 331d

According to the general procedure V, a solution of (L)-prolinal 328 (1.50 g, 7.54 mmol) in 

tetrahydrofuran (15 ml) was added to a solution of trimethylsilyl acetylene (1.40 ml, 9.80 

mmol) and ethyl magnesium bromide (1.0 M in tetrahydrofuran, 9.80 ml, 9.80 mmol) in 

tetrahydrofuran (60ml) at 5 °C. This was followed by aqueous workup and column 

chromatograpghy (70:30 hexane-ethyl acetate) to give clean 2-propargylic pyrrolidine 331d as 

a 67:33 mixture of diastereoisomers (1S.1R) as a yellow oil (1.47 g, 66%); Umax/cm'1 (CHC13): 

3403, 2975, 2882, 2172, 1696, 1673, 1407, 1367, 1166, 1053, 843; 5H (500 MHz) (Major,

2S,1S) 4.98 (1H, s, OH), 4.23-4.14 (1H, m, CHOH), 3.91-3.82 (1H, m, 2-H), 3.46-3.12 (2H, m, 

5-CH2), 2.00-1.53 (4H, m, 3-CH2, 4-CH2), 1.33 (9H, s, 3 x CH3C); 0.00 (9H, s, 3 x CH3Si); 

(2S,1R) 5h (Minor, 2S,1R) 6.02 (1H, s, OH), 4.48-4.39 (1H, m, CHOH), 3.98-3.93 (1H, m, 2- 

H), 3.46-3.12 (2H, m, 5-CH2), 2.00-1.53 (4H, m, 3-CH2, 4-CH2), 1.33 (9H, s, 3 x CH3C); 0.00 

(6H, s, 2 x CH3Si); m/z (APCI) 298 (M+H\ 5%), 242 (100%), 224 (20%), 180 (50%); [Found: 

[M+H]+, 298.1836. Ci5H28N03Si requires: M+H, 298.1838].

(2S,IR) and (2S,1S) 2-(l-Hydroxy-4-teMmtyIdimethylsilyloxybut-2-yn-l-yI)Ar-Boc- 

pyrrolidine 33 le171

,c h 2o t b d m s

H  ^  /  \.*H

Boc o  Boc OH

328 331e

According to the general procedure V, a solution of (L)-prolinal 328 (1.50 g, 7.54 mmol) in 

tetrahydrofuran (15 ml) was added to a solution of TBDMS-protected propargyl alcohol 

(1.28 g, 7.54 mmol) and ethyl magnesium bromide (1.0 M in tetrahydrofuran, 7.54 ml, 7.54 

mmol) in tetrahydrofuran (60 ml) at 5 °C, followed by aqueous workup and column 

chromatograpghy (70:30 hexane-ethyl acetate) resulted in 2-propargylic pyrrolidine 331e as a
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6:4 mixture of diastereoisomers (1S,1R) as a yellow oil (1.90 g, 68%); Umax/cm'1 (CHC13): 3415, 

2957, 2930, 2859, 2341, 1696, 1672, 1458, 1404, 1363, 1255, 1167, 1126, 1090, 837; 8H(500 

MHz) (Major, 2S,1S) 5.02 (1H, br s, OH), 4.42-4.26 (1H, br m, CHOH), 4.23 (2H, s, 3’-CH2), 

3.97-3.88 (1H, br m, 2-H), 3.44-3.22 (2H, m, 5-CH2), 2.03-1.57 (4H, m, 3-CH2, 4-CH2), 1.36 

(9H, s, 3 x CH3C), 0.79 (9H, s, 3 x CH3CSi), 0.00 (6H, s, 2 x CH3Si); 5H (Minor, 2S,1R) 5.93 

(1H, d, J  8.1, OH), 4.42-4.26 (1H, br m, CHOH), 4.22 (3H, s, 3’-CH3), 3.97-3.88 (1H, br m,

2-H), 3.44-3.22 (2H, m, 5-CH2), 2.03-1.57 (4H, m, 3-CH2, 4-CH2), 1.36 (9H, s, 3 x CH3C), 0.79 

(9H, s, 3 x CH3CSi), 0.00 (6H, s, 2 x CH3Si); 5C (125MHz) (2S,1R and 2S,1S) 157.6 (C=0), 

157.3 (C=0), 84.2 (C), 83.7 (C), 83.1 (C), 80.6 (C), 80.5 (C), 67.2 (2 x CHOH), 63.0 (2-CH),

62.6 (2-CH), 51.8 (3’-CH2), 51.7 (3’-CH2), 48.3 (5-CH2), 47.6 (5-CH2), 29.0 (CH2), 28.7 (CH2),

28.4 (3 x CH3C), 25.8 (3 x CH3C), 23.9 (CH2), 23.8 (CH2), 18.2 (C/butyl), -5.1 (2 x CH3Si), - 

5.2 (2 x CH3Si); m/z (APCI) 370 (M+H", 10%), 337 (20%), 314 (100%); [Found: [M+H]+, 

370.2401. Ci9H36N0 4 Si requires: M+H, 370.2414].

(2S,IR) and (2S,1S) 2-(l-Hydroxy-3-methoxycarbonylprop-2-yn-l-yl)7V-Boc-pyrrolidine 

331f

,C 0 2Me

H
N 1\ N'
Boc o  Boc OH

328 331f

According to the general procedure V, a solution of (L)-prolinal 328 (1.50 g, 7.54 mmol) in 

tetrahydrofuran (15 ml) was added to a solution of methyl propiolate (0.80 ml, 9.04 mmol) and 

ethyl magnesium bromide (1.0 M in tetrahydrofuran, 9.00 ml, 9.00 mmol) in tetrahydrofuran 

(60ml) at -30 °C, followed by aqueous workup and column chromatograpghy (70:30 hexane- 

ethyl acetate) resulted in clean 2-propargylic pyrrolidine 331f as a 73:27 mixture of 

diastereoisomers (1S,1R) as a yellow oil (1.10 g, 51%); vm!lJcmA (CHC13): 3404, 2978, 2878, 

2237, 1719, 1696, 1670, 1406, 1368, 1253, 1165, 1124, 1062, 911; 5H (500 MHz) (Major,

2S,1S) 5.46 (1H, s, OH), 4.47 (1H, br d, ^  8.1, CHOH), 4.15-4.07 (1H, m, 2-H), 3.79 (3H, s, 

CH30 2C), 3.59-3.35 (2H, m, 5-CH2), 2.19-1.75 (4H, m, 3-CH2, 4-CH2), 1.49 (9H, s, 3 x CH3C); 

(2S,1R) 5h (Minor, 2S,1R) 6.48 (1H, d, J7.4, OH), 4.55-4.53 (1H, m, CHOH), 4.15-4.07 (1H, 

m, 2-H), 3.78 (3H, s, CH30 2C), 3.59-3.35 (2H, m, 5-CH2), 2.19-1.75 (4H, m, 3-CH2, 4-CH2),
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1.49 (9H, s, 3 x CH3C); 5c (125MHz) (2S,1R and 2S,1S) 157.7 (C=0), 157.4 (C=0), 153.7 

(C=0), 86.7 (C), 86.2 (C), 81.1 (C), 67.3 (CHOH), 67.0 (CHOH), 62.9 (2-CH), 62.0 (2-CH),

52.8 (CH30 2C), 52.7 (CH3O2C), 48.3 (5-CH2), 47.7 (5-CH2), 29.2 (CH2), 28.6 (CH2), 28.4 (3 x 

CH3C), 23.8 (CH2); m/z (ES) [Found: [M+Na]+, 306.1317. Ci4H2iN05Na requires: M+Na, 

298.1838].

(2S,IR) and (2S,1S) 2-(l-Hydroxybut-2-yn-l-yI)pyrrolidine 333a

331a 333a

According to the general procedure W, a solution of 2-propargylic pyrrolidine 331a (0.55 g,

2.29 mmol) in dichloromethane (2.5 ml) was cooled to 0 °C and a solution of trifluoroacetic 

acid (0.71 ml, 9.17 mmol) in dichloromethane (2.83 ml) was added dropwise, and stirred for 

8 h. Followed by column chromatography (85:14:1 DCM-methanol-triethylamine) resulted in 

free amine 333a as a 63:37 mixture of diastereoisomer (1S,1R) as a pungent orange oil (0.31 g, 

96%);umax/cm'1 (CHC13): 3292, 2966, 2929, 2873, 1624, 1540, 1411, 1355, 1143, 1036, 922; 5H 

(500 MHz) (Major, 2S,1S) 4.76 (2H, br s, OH, NH), 4.02 (1H, dq, J  7.5, 2.2, CHOH), 3.20 

(1H, app q, J7.5, 2-H), 2.94-1.85 (2H, m, 5-CH2), 1.89-1.51 (4H, m, 3-CH2, 4-CH2), 1.77 (3H, 

app d, J2.2, 3’-CH3); (2S,1R) 5h (Minor, 2S,1R) 4.76 (2H, br s, OH, NH), 4.33 (1H, app sextet> 

/2 .1 , CHOH), 3.25 (1H, app td, J 7.3, 4.3, 2-H), 3.01-2.94 (2H, m, 5-CH2), 1.89-1.51 (4H, m,

3-CH2, 4-CH2), 1.78 (3H, app d, J2.1, 3’-CH3); 5C (125MHz) (2S,1R and 2S,1S) 81.0 (C), 80.4 

(C), 79.2 (C), 78.6 (C), 64.3 (CH), 63.9 (CH), 63.5 (CH), 63.1 (CH), 46.8 (5-CH2), 46.0 (5- 

CH2), 27.8 (CH2), 26.7 (CH2), 25.6 (CH2), 25.2 (CH2), 3.5 (3’-CH3), 3.5 (3’-CH3); m/z (El) 121 

(M-H20 , 40%), 84 (100%); [Found: [M]-H20, 121.0894. CgHnN requires: M-H2Q, 121.0891].
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(2S,IR) and (2S,1S) 2-(l-Hydroxyhept-2-yn-l-yl)pyrrolidine 333b

Bu/
N
Boc OH

331b 333b

According to the general procedure W, a solution of 2-propargylic pyrrolidine 331b (0.40 g, 

1.42 mmol) in dichloromethane (2.00 ml) was cooled to 0°C and a solution of trifluoroacetic 

acid (0.43 ml, 5.67 mmol) in dichloromethane (1.77 ml) was added dropwise, and stirred for 8 

h. Followed by column chromatography (85:14:1 DCM-methanol-triethylamine) resulted in 

free amine 333b as a 56:44 mixture of diastereoisomer (1S,1R) as a pungent orange oil (0.25 g, 

99%); Umax/cm'1 (CHC13): 3294, 2960, 2934, 2873, 2243, 1459, 1431, 1380, 1328, 1300, 1140, 

1037, 909; 5H (500 MHz) (Major, 2S,1S) 5.18 (2H, br s, OH, NH), 4.10 (1H, dt, J  7.9, 1.6, 

CHOH), 3.25 (1H, app q, J  7.9, 2-H), 3.04-2.89 (2H, m, 5-CH2), 2.15-2.11 (2H, m, 3’-CH2), 

1.92-1.53 (4H, m, 3-CH2, 4-CH2), 1.44-1.38 (2H, m, 4’-CH2), 1.33 (2H, sextet, J 1 .4, 5'-CHz), 

0.83 (3H, t, J1A ,  6’-CH3); (2S,1R) 6h (Minor, 2S,1R) 5.18 (2H, br s, OH, NH), 4.44 (1H, app 

dt, J3 .6 , J 1.8, CHOH), 3.34 (1H, app td, 7  7.1, J 4.0, 2-H), 3.04-2.89 (2H, m, 5-CH2), 2.15-

2.11 (2H, m, 3’-CH2), 1.92-1.53 (4H, m, 3-CH2, 4-CH2), 1.44-1.38 (2H, m, 4’-CH2), 1.33 (2H, 

sextet, J1A,  5'-CH2), 0.83 (3H, t, J1A,  6’-CH3); 6C (125MHz) (2S,1R and 2S,1S) 5C 85.7 (C),

85.1 (C), 79.8 (C), 78.9 (C), 64.2 (CHOH), 64.1 (CHOH), 63.1 (2-CH), 63.1 (2-CH), 46.8 (5- 

CH2), 45.9 (5-CH2), 30.6 (CH2), 30.6 (CH2), 27.9 (CH2), 26.5 (CH2), 25.5 (CH2), 25.1 (CH2),

21.8 (CH2), 21.8 (CH2), 18.3 (CH2), 18.3 (CH2), 13.4 (6’-CH3) 13.4 (6’-CH3); m/z (El) 163 (M- 

H20 , 8%), 120 (40%); [Found: [M]-H20, 163.1360. CUH17N requires: M-H20, 163.1361].

(2S,IR) and (2S,1S) 2-(Hydroxy-3-phenylprop-2-yn-l-yl)pyrrolidine 333c

Ph

N
Boc OH

331c 333c

According to the general procedure W, a solution of 2-propargylic pyrrolidine 331c (0.50 g, 

1.66 mmol) in dichloromethane (2.00 ml) was cooled to 0°C and a solution of trifluoroacetic 

acid (0.51 ml, 6.62 mmol) in dichloromethane (2.04 ml) was added dropwise, and stirred for
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8 h. Followed by column chromatography (85:14:1 DCM-methanol-triethylamine) resulted in 

free amine 333c as a 63:37 mixture of diastereoisomer (1S,1R) as a pungent orange oil (0.29 g, 

87%); Umax/cm'1 (CHC13): 3298, 3259, 2966,2243, 1598, 1489, 1441, 1324, 1200, 1072, 909; 8H 

(500 MHz) (Major, 2S,1S) 7.33-7.30 (2H, br m, 2 x CH (Ar)), 7.18-7.14 (3H, br m, 3 x CH 

(Ar)), 4.73 (2H, br s, OH, NH), 4.27 (1H, d, J7.6, CHOH), 3.36-3.29 (1H, m, 2-H), 2.99-2.80 

(2H, m, 5-CH2), 1.88-1.56 (4H, m, 3-CH2, 4-CH2); (2S,1R) 8H (Minor, 2S,1R) 7.33-7.30 (2H, br 

m, 2 x CH (Ar)), 7.18-7.14 (3H, br m, 3 x CH (Ar)), 4.73 (2H, br s, OH, NH), 4.57 (1H, d, J  

4.3, CHOH), 3.36-3.29 (1H, m, 2-H), 2.99-2.80 (2H, m, 5-CH2), 1.88-1.56 (4H, m, 3-CH2, 4- 

CH2); 8c (125MHz) (2S,1R and 2S,1S) 8C 131.7 (4 x CH (Ar)), 128.2 (6 x CH (Ar)), 122.8 (2 x 

C), 89.7 (C), 89.2 (C), 84.9 (C), 84.4 (C), 64.9 (CHOH), 64.2 (CHOH), 63.8 (2-CH), 63.1 (2- 

CH), 47.1 (5-CH2), 46.2 (5-CH2), 28.0 (CH2), 27.1 (CH2), 25.9 (CH2), 25.4 (CH2); m/z (APCI) 

243 (M +MeCNH+, 10%), 202 (M+H4, 100%); [Found: [M+H]+, 202.1224. Ci3Hi6NO requires: 

M+H, 202.1232].

(2S,IR) and (2S,IS) 2-(l-Hydroxy-3-trimethylsilyIprop-2-yn-l-yl)pyrrolidine 333d108

TMS TMS
T h /

Boc OH H OH

331d 333d

According to the general procedure W, a solution of 2-propargylic pyrrolidine 331d (0.35 g,

1.17 mmol) in dichloromethane (2 ml) was cooled to 0 °C and a solution of trifluoroacetic acid 

(0.36 ml, 4.69 mmol) in dichloromethane (1.45 ml) was added dropwise, and stirred for 8 h. 

Followed by column chromatography (85:14:1 DCM-methanol-triethylamine) resulted in free 

amine 333d as a 67:33 mixture of diastereoisomers (1S,1R) as a pungent orange oil (0.21 g, 

90%); Umax/cm'1 (CHC13): 3280, 2961, 2898, 2875, 2171, 1559, 1409, 1250, 1053, 843; 8H(500 

MHz) (Major, 2S,1S) 5.06 (2H, br s, OH, NH), 4.01 (1H, d, J l . l ,  CHOH), 3.19 (1H, app q, J  

7.7, 2-H), 2.85 (2H, app ddt, J  19.5, 10.4, 7.0, 5-CH2), 183-1.46 (4H, m, 3-CH2, 4-CH2), 0.00 

(9H, s, 3 x CH3Si); (2S,1R) SH (Minor, 2S,1R) 5.06 (2H, br s, OH, NH), 4.34 (1H, d, J3.9, 

CHOH), 3.28 (1H, app td, J13 ,  3.9, 2-H), 2.95-2.89 (2H, m, 5-CH2), 183-1.46 (4H, m, 3-CH2,

4-CH2), 0.00 (9H, s, 3 x CH3Si); 8C (125MHz) (2S,1R and 2S,1S) 8C 105.9 (C), 105.2 (C), 89.5 

(C), 88.9 (C), 64.4 (CH), 63.7 (CH), 63.4 (CH), 62.7 (CH), 46.9 (5-CH2), 46.0 (5-CH2), 27.9
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(CH2), 26.6 (CH2), 25.6 (CH2), 25.1 (CH2), -0.2 (3 x CH3Si), -0.2 (3 x CH3Si); m/z (ES) 198 

(M+H\ 100%), 180 (20%); [Found: [M+H]+, 198.1313. Ci0H20NOSi requires: M+H, 

198.1314].

5-Methyl-2,3-dihydro-l//-pyrrolizine 335a172

Me

333a 335a

According to the general procedure O, 10% AgN03.Si02 (0.08 g, 0.57 mmol) was stirred with a 

solution of precursor 333a (0.10 g, 0.06 mmol) as a 63:37 mixture of diastereoisomers in 

dichloromethane (2 ml) for 24 h to give clean pyrrolizine 335a as a clear oil (0.07 g, 80%); 5H 

5.80 (1H, d, J 3.0, 3-H or 4-H), 5.61 (1H, d, 73.0, 3-H or 4-H), 3.72 (2H, t, 77.3, CH2), 2.76 

(2H, t, 77.3, CH2), 2.40 (2H, app quintet, 7 7.3, CH2), 2.13 (3H, s, 1 ’-CH3).

5-Butyl-2,3-dihydro-l//-pyrroIizine 335b

Bu

333b 335b

According to the general procedure O, 10% AgN03.Si02 (0.07 g, 0.04 mmol) was stirred with a 

solution of precursor 333b (0.07 g, 0.38 mmol) as a 56:44 mixture of diastereoisomers in 

dichloromethane for 3 h gave the pyrrolizine 335b as a yellow oil (0.06 g, 100%); Umax/cm'1 

(CHC13): 2959, 2931, 2874, 2861, 2253,2235, 1505, 1466, 1428, 1379, 1305, 1290, 1097, 907; 

(500MHz) 5h 5.80 (1H, d, 73.1, 4-H), 5.63 (1H, d, 73.1, 3-H), 3.73 (2H, t, 77.1, 6-CH2), 2.74 

(2H, t, 7  7.1, 8-CH2), 2.45 (2H, t, 77.6, l ’-CH2), 2.40 (2H, quintet, 7  7.1, 7-CH2); 1.51 (2H, 

quintet, J l . 6, 2’-CH2), 1.32 (2H, sextet, 77.6, 3’-CH2), 0.86 (3H, t, 77.6, 4’-CH3); (125 MHz) 

6c 135.1 (C), 128 (C), 108.2 (3-CH or 4-CH), 97.9 (3-CH or 4-CH), 44.3 (6-CH2), 31.5 (CH2),

27.9 (CH2), 26.6 (CH2), 24.3 (CH2), 22.5 (CH2), 14.0 (4’-CH3); m/z (El) 163 (M+, 30%), 120 

(100%); [Found: [M]+, 163.1361. CnHnN requires: M, 163.1361].
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5-Phenyl-2,3-d ihyd ro-1//-pyrrolizine 335c

Ph

333c 335c

According to the general procedure O, 10% AgN0 3 .Si02  (0.11 g, 0.06 mmol) was stirred with a 

solution of precursor 333c (0.13 g, 0.62 mmol) as a 63:37 mixture of daistereoisomers in 

dichloromethane (5 ml) for 2 h to give a the pyrrolizine 335c as a clear viscous oil (0.12 g, 

100%); iw /c m ' 1 (CHC13): 2960, 2926, 2853, 1603, 1512, 1452, 1389, 1283, 1168, 1072, 908; 

(500MHz) 5h 7.37 (2H, dd, 78.2, 1.4, 2 x o-CH (Ar)), 7.25 (2H, t, 78.2, 2 x m-CR (Ar)), 7.09 

(1H, tt, 77.4, 1.4 , / 7-CH (Ar)), 6.33 (1H, d, 73.4, 4-H), 5.81 (1H, d, 73.4, 3-H), 4.02 (2H, t, 7  

7.1, 6 -CH2), 2.79 (2H, t, 7  7.1, 8-CH2), 2.41 (2H, quintet, J 1 A, 7-CH2); (125 MHz) 5C 139.0 

(2-C), 133.9 (z-C), 128.7 (2 x o-CH (Ar)), 128.6 (5-C), 125.6 (2 x m-CR (Ar)), 125.6 (2 x o-CH 

(Ar)), 110.9 (4-CH), 100.1 (3-CH), 46.8 (6-CH2), 26.8 (7-CH2), 22.8 (8-CH2); m/z (APCI) 184 

(M+H", 100%); [Found: [M+H]+, 184.1130. Ci3H14N requires: M+H, 184.1126].

5-(T rimethylsilyI)-2,3-dihydro-l//-pyrrolizine 335d

333d 335d

According to the general procedure O, 10% AgN03.Si02 (0.05 g, 0.03 mmol) was stirred with a 

solution of precursor 333d (0.10 g, 0.29 mmol) as a 67:33 mixture of diastereoisomers in 

dichloromethane for 24 h to give predominantly starting material 333d.
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(2S,IR) and (2S,1S) 2-(l-Hydroxyprop-2-yn-l-yl)7V-Boc-pyrrolidine 338

TMS

N \ 
Boc OH

331 d 338

To a stirred solution of 331d (1.00 g, 3.35 mmol) in methanol (10 ml) cooled to 0 °C solid 

potassium carbonate (0.07 g, 0.50 mmol) was added. The mixture was stirred for 3 h, followed 

by the addition of water (10  ml) and extraction with diethyl ether, then dried, filtered and 

evaporated to give terminal acetylene 338 as a yellow oil (0.61 g, 81%); Umax/cm' 1 (DCM):

47.7 (5-CH2), 29.1 (CH2), 28.7 (CH2), 28.4 (3 x CH3C), 28.4 (3 x CH3C), 23.9 (CH2), 23.8 

(CH2); m/z (APCI) 226 (M+H\ 40%), 211 (100%); [Found: [M+H]\ 226.1451. Ci2H20NO3 

required: M+H, 226.1443].

A-Boc piperidine 2-methanol 327173

To a stirred solution of piperidine 2-methanol 327 (2.00 g, 17.4 mmol) in dichloromethane (40 

ml) at 0 °C triethylamine (3.20 ml, 24.3 mmol) was added dropwise, followed by the dropwise 

addition of /butyl dicarbonate (5.31 g, 22.6 mmol). The reaction was then allowed to warm to 

room temperature overnight. The solution was then diluted with dichloromethane (100 ml) and 

washed with 0.2M hydrochloric acid (3 x 20 ml), water (2 x 20 ml) and brine (20 ml). Followed 

by drying with sodium sulphate, filtration and evaporation to yield clean boc-protected amine

3383, 3055, 2982, 2885, 2305, 1658, 1408, 1368, 1266, 1166, 1107, 1047; (2S,1S) 5H (Major)

5.18 (1H, br d, J3.2, OH), 4.20-4.16 (1H, br m, CHOH), 3.94-3.77 (1H, br m, 2-H), 3.43-3.17 

(2H, m, 5-CH2), 2.29 (1H, d, J2A,  3’-CH), 2.02-1.56 (4H, m, 3-CH2, 4-CH2), 1.32 (9H, s, 3 x 

CH3C); (2S,1R) 5h (Minor) 6.09 (1H, d, /8 .9 , OH), 4.27 (1H, app d, J8.9, CHOH), 3.94-3.77 

(1H, br m, 2-H), 3.43-3.17 (2H, m, 5-CH2), 2.21 (1H, d, J  1.9, 3’-CH3), 2.02-1.56 (4H, m, 3- 

CH2, 4-CH2), 1.32 (9H, s, 3 x CH3C); (2S,1R and 2S,1S) 5C 83.4 (3’-CH), 82.4 (3’-CH), 80.9 

(C), 80.7 (C), 73.2 (C), 67.1 (CHOH), 67.0 (CHOH), 63.0 (2-CH), 62.6 (2-CH), 48.4 (5-CH2),

H Boc

337 327
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327 (3.32 g, 89%) as a yellow oil; vmJ c m l (DCM): 3443, 3054, 2982, 2942, 2869, 1741, 1676, 

1420, 1366, 1266, 1164, 1050; 6H 4.23 (1H, ddt, J l l . l ,  5.9, 2.6, 2-H), 3.90-3.85 (1H, m, OH),

3.74 (1H, dd, J  11.1, 9.1, CHAOH), 3.54 (1H, J  11.1, 5.9, CH„OH), 2.80 (1H, t, J  12.1, CH), 

2.21-2.18 (1H, m, CH), 1.66-1.49 (4H, m, 2 x CH2), 1.46 (4H, s, CH3C), 1.42-1.34 (2H, m, 

CH2), 1.39 (5H, s, CH3C); 5c 146.7 (C=0), 85.2 (C/butyl), 61.8 (CH2OH), 52.5 (2-CH), 40.0 

(CH2), 28.4 (3 x CH3C), 27.4 (3 x CH3C), 25.3 (CH2), 25.2 (CH2), 19.6 (CH2).

Tert-Butyl 2-formylpiperidine-l-carboxylate 329173

327 329

According to the general procedure U, a solution of DMSO (2.90 ml, 40.9 mmol) in 

dichloromethane (10 ml) was added dropwise to a stirred solution of oxalyl chloride (1.90 ml,

22.7 mmol) in dichloromethane (45 ml) at -63 °C. After 10 min N-boc piperidine 2-methanol 

327 (4.00 g, 18.6 mmol) in dichloromethane (20 ml) was added dropwise over 15 min and the 

reaction was stirred for a further 30 min. Quenching with triethylamine (10.60 ml, 74.36 mmol) 

followed by aqueous workup gave clean aldehyde 329 (3.67 g, 93%) as a yellow oil; 8h 9.52 

(CHO), 4.59-4.40 (1H, m, 2-H), 4.00-3.78 (1H, m, 6-HA), 2.91-2.75 (1H, m, 6-HB), 2.13-2.07 

(1H, m, 3-Ha), 1.66-1.51 (5H, m, 3-HB, 4-CH2, 5-CH2), 1.46 (9H, s, 3 x CH3C).

2-(l-Hydroxyhept-2-yn-l-yI)iV-Boc-piperidine 332a

329 332a

According to the general procedure V, a solution of piperidine 2-aldehyde 329 (2.00 g, 9.38 

mmol) in tetrahydrofuran (20 ml) was added to a solution of 1-hexyne (2.15 ml, 18.8 mmol) 

and ethyl magnesium bromide (1.0 M in tetrahydrofuran, 18.76 ml, 18.76 mmol) in 

tetrahydrofuran (80 ml) at 5 °C, followed by aqueous workup and column chromatography 

(70:30 hexane-ethyl acetate) resulted in 2-propargylic piperidine 332a (2.00 g, 72%) as a 85:15
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mixture of diastereoisomers as a yellow oil; Umax/cm' 1 (DCM): 3418, 3053, 2934, 2867, 2246, 

1739, 1674, 1422, 1366, 1276, 1166, 1032; 6H 4.62 (1H, app d, J 6 .8 , CHOH), 4.20-4.15 (1H, 

m, 2-H), 4.06-3.95 (1H, m, 6-HA), 3.05-2.93 (1H, m, 6 -HB), 2.20 (2H, td, J 7.0, 1.9, 3’-CH2), 

2.06-1.95 (2H, m, OH, 3-HA), 1.74-1.57 (6H, m, 4-CH2, 5-CH2, 3-HB), 1.54-1.46 (2H, m, 

4’-CH2), 1.49 (9H, s, 3 x CH3C), 1.40 (2H, sextet, J7.0, 5’-CH2), 0.92 (3H, t, J7.0, 6 ’-CH3); 5C 

155.5 (C=0), 86.1 (C), 79.9 (C), 79.4 (C), 62.6 (CHOH), 55.4 (2-CH), 40.2 (6-CH2), 30.7 

(CH2), 28.4 (3 x CH3C), 24.8 (CH2), 24.3 (CH2), 22.9 (CH2), 19.2 (CH2), 18.5 (CH2), 13.5 (6 ’- 

CH3); m/z (APCI) 296 (M+I-T, 10%), 263 (100%), [Found: [M+H]+, 296.2227. Ci7H30NO3 

requires: M+H, 296.2226].

5h distinguishable minor peak (1S,2R and 1R,2S) 4.52-4.46 (1H, m, CHOH).

2-(Hydroxy-3-phenylprop-2-yn-l-yl)7V-Boc-piperidine 332b

329 332b

According to the general procedure V, a solution of piperidine 2-aldehyde 329 (2.00 g, 9.38 

mmol) in tetrahydrofuran (20 ml) was added to a solution of phenylacetylene (1.10 ml, 10.3 

mmol) and ethyl magnesium bromide (1.0M in tetrahydrofuran, 10.32 ml, 10.32 mmol) in 

tetrahydrofuran (80 ml) at 5 °C, followed by aqueous workup and column chromatograpghy 

(70:30 hexane-ethyl acetate) resulted in 2-propargylic piperidine 332b (2.01 g, 68%) as a 76:24 

mixture of diastereoisomer as a yellow solid; m.p. 91-92 °C; Umax/cm' 1 (DCM): 3396, 3054, 

2987, 2305, 1735, 1681, 1421, 1266, 1162, 1038; 6H 7.47-7.42 (2H, m, 2 x CH (Ar)), 7.35-7.30 

(3H, m, 3 x CH (Ar)), 4.88-4.82 (1H, m, CHOH), 4.47-4.31 (1H, m, 2-H), 4.09-3.96 (1H, m, 6- 

Ha), 3.13-2.99 (1H, m, 6-HB), 2.17-2.02 (2H, m, OH, 3-HA), 1.75-1.62 (5H, m, 4-CH2, 5-CH2,

3-Hb), 1.50 (3H, s, CH3C), 1.44 (6H, s, 2 x CH3C); 5C 155.6 (C=0), 131.7 (2 x CH (Ar)), 128.2 

(3 x CH (Ar)), 122.8 (C), 91.3 (C), 80.2 (C), 79.6 (C), 63.0 (CHOH), 55.5 (2-CH), 40.4 

(6-CH2), 28.4 (3 x CH3C), 24.8 (CH2), 24.5 (CH2), 19.4 (CH2); m/z (APCI) 316 (M+PT, 50%), 

283 (80%), 242 (100%); [Found: [M+H]+, 316.1901. Ci9H26N 0 3 requires: M+H, 316.1913].

5h distinguishable minor peaks (1S,2R and 1R,2S) 4.83-4.78 (1H, m, CHOH).
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3-butyl-5,6,7,8-tetrahydroindolizine 336a

332a 336a

According to the general procedure W, a solution of 2-propargylic piperidine 332a (0.35 g, 1.18 

mmol) in dichloromethane (2 ml) was cooled to 0 °C and a solution of trifluoroacetic acid (0.36 

ml, 4.73 mmol) in dichloromethane (1.46 ml) was added dropwise, and stirred for 8 h. The 

reaction then underwent a typical workup procedure for boc-deprotection to give crude free 

amine (0.18 g, 80% crude) as a yellow oil and the crude product was used directly in the next 

step. Using the general procedure E, 10% AgN0 3 .Si02  (0.15 g, 0.09 mmol) was stirred with a 

solution of the crude free amine 334a (0.18 g, 0.92 mmol) in dichloromethane (2 ml) for 4 h to 

give crude product that was then purified by column chromatography using 7% ethyl acetate in 

hexane to give clean indolizine 336a (0.14 g, 86%) as a yellow oil; Umax/cm' 1 (CHC13): 2934, 

2862, 2234, 1508, 1449, 1424, 1334, 1290, 1253, 1159, 909; 5H 5.75 (1H, d, y  3.4, 3-H or 4-H),

5.68 (1H, d, J 3.4, 3-H or 4-H), 3.69 (2H, t, J6 .2, 6-CH2), 2.69 (2H, t, J6.2, 9-CH2), 2.41 (2H, 

t, J7.6,  l ’-CH2), 1.86 (2H, dtd, J 8 .8, 6.2, 2.6, 7-CH2 or 8-CH2), 1.70 (2H, dtd, J  8 .8, 6.2, 2.6,

7-CH2 or 8-CH2), 1.52 (2H, quintet, J7.6, 2’-CH2), 1.34 (2H, sextet, J 7.6, 3’-CH2), 0.86 (3H, t, 

J  7.6, 4’-CH3); 5c 131.6 (C), 128.2 (C), 104.0 (3-CH or 4-CH), 102.9 (3-CH or 4-CH), 42.7 (6- 

CH2), 30.8 (CH2), 25.9 (CH2), 23.8 (CH2), 23.7 (CH2), 22.7 (CH2), 21.1 (CH2), 14.0 (4’-CH3); 

m/z (APCI) 178 (M+H+, 100%); [Found: [M+H]+, 178.1589. C12H20N requires: M+H, 

178.1596].

3-Phenyl-5,6,7,8-tetrahydroindolizine 336b174

332b 336b

According to the general procedure W, a solution of 2-propargylic piperidine 332b (0.30 g, 0.95 

mmol) in dichloromethane (3 ml) was cooled to 0 °C and a solution of trifluoroacetic acid (0.29 

ml, 3.80 mmol) in dichloromethane (1.17 ml) was added dropwise, and stirred for 8 h. The
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reaction then underwent a typical workup procedure for boc-deprotection to give crude free 

amine (0.20 g, 98% crude) as a brown solid and the crude product was used directly in the next 

step. Using the general procedure O, 10% AgN0 3 .Si02  (0.16 g, 0.09 mmol) was stirred with a 

solution of the crude free amine 334b (0.20 g, 0.93 mmol) in dichloromethane (2 ml) for 4 h to 

give crude product that was then purified by column chromatography using 7% ethyl acetate in 

hexane to give clean indolizine 336b (0.13 g, 71%) as a yellow oil; iw /c n f 1 (CHC13): 2948, 

2872, 2253, 2238, 1601, 1510, 1479, 1449, 1334, 1226, 1027, 908; 5H7.56-7.49 (4H, m, 2xo-  

CHAr, 2 x m-CH (Ar)), 7.39 (1H, tt, J 7.2,.1.4,/?-CH (Ar)), 6.40 (1H, d, J3.4, 4-H), 6.09 (1H, 

d, J3 .4 , 3-H), 4.08 (2H, t, J 6.1, 6-CH2), 3.03 (2H, t, J 6.1, 9-CH2), 2.07-2.01 (2H, m, 7-CH2), 

2.00-1.95 (2H, m, 8-CH2); 5C 133.7 (C), 132.5 (C), 130.5 (C), 128.6 (2 x CH (Ar)), 128.3 (2 x 

CH (Ar)), 126.3 (CH (Ar)), 108.0 (3-CH or 4-CH), 104.7 (3-CH or 4-CH), 44.8 (6-CH2), 24.1 

(CH2), 23.8 (CH2), 21.0 (CH2); m/z (APCI) 198 (M+H", 100%); [Found: [M+H]+, 198.1286. 

Ci4Hi6N requires: M+H, 198.1283].

Methyl 2 ,2-dimethoxyethylcarbamate 394175

O

393 394

To a solution of amino acetaldehyde dimethyl acetal 393 (20.72 ml, 190.2 mmol) in 

dichloromethane (500 ml) at 0 °C triethylamine (58.30 ml, 418.5 mmol) was added dropwise, 

followed by the dropwise addition of methyl chloroformate (17.64 ml, 228.3 mmol). The 

solution was allowed to warm to room temperature overnight. The solution was then diluted by 

the addition of dichloromethane and the organics were washed with 0.2M hydrochloric acid (3 

x 50 ml), water (4 x 50 ml) and brine (20 x 50 ml). The organics were then dried over sodium 

sulphate, filtered and evaporated to give clean carbamate 394 as an orange oil (29.85 g, 96%); 

rw /cm ' 1 (DCM): 3355, 3057, 2992, 2949, 2837, 1717, 1538, 1464, 1367, 1267, 1194, 1131, 

1065; 5h 4.92 (1H, br s, NH), 4.31 (1H, app t, J  5.4, CH 02), 3.61 (3H, br s, CH30 2C), 3.33 

(6H, s, 2 x OCH3), 3.25 (2H, app td, J5.4, 2.1, CH2N).
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Methyl (l,3-dithian-2-yl)ethylcarbamate 395124

O O
A

H

394 395

To a stirred solution of carbamate 394 (16.32 g, 100.0 mmol) in dichloromethane (200 ml) at 

0 °C propanedithiol (10.04 ml, 100.0 mmol) was added dropwise followed by the addition of 

boron trifluoride diethyl ethearate (24.61 ml, 200.1 mmol). The mixture was allowed to stir for 

6 h before warming to room temperature. The mixture was then poured into a 2M potassium 

hydroxide solution (400 ml) and the organic layer was separated. The organic layer was washed 

with brine (3 x 100 ml), dried with sodium sulphate, filtered and evaporated to give dithiane 

395 (18.15 g, 88%) as a chalky white solid; m.p. 73-75 °C (lit. m.p.9 79-80 °C); Umax/cm'1 

(DCM): 3441, 3054, 2987, 2305, 1724, 1518, 1422, 1266, 1072; 5H 5.49 (1H, br s, NH), 3.95 

(1H, t, 7  7.1, CHS2), 3.57 (3H, s, CH30 2C), 3.46 (2H, t, J 6.4, CH2N), 2.81 (2H, ddd, J  14.0,

7.0, 2.4, 2 x SCHAx), 2.66 (2H, td, J 9.6, 2.4, 2 x SCHEq), 2.01-1.94 (1H, m, SCH2CHA), 1.87- 

1.79 (1H, m, SCH2CHb); 6c 156.9 (C=0), 52.2 (CH30 2C), 45.4 (CHS2), 44.3 (CH2N), 28.0 (2x 

CH2), 25.6 (CH2).

(E)-l-Bromo-3, 7-dimethylocta-2,6-diene 396

A solution of geraniol 380 (5.60 ml, 32.4 mmol) in dichloromethane (80 ml) was stirred at 

-30 °C before the addition of triphenylphosphine (9.35 g, 35.7 mmol). This was followed by the 

addition of TV-bromo-succinimide (6.35 g, 35.7 mmol) in portions over 20 min and followed by 

allowing to warm to room temperature overnight. The solution was then evaporated and the 

triphenylphosphine oxide by-product was separated by the addition of petrol (150 ml) at 0 °C. 

The resulting mixture was filtered and the filtrate was washed with water (3 x 50 ml), followed 

by drying, filtering and evaporating to give the bromide 396 as a yellow oil (6.00g, 86%); 8H 

5.46 (1H, app tq, J 8.5, 1.2, 2-H), 5.03-4.98 (1H, m, 6-H), 3.96 (2H, d, J  8.5, 1-CH2), 2.08-1.96

380 396
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(4H, m, 4-CH2, 5-CH2), 1.66 (3H, d, J  1.2, 3a-CH3), 1.62 (3H, br s, 7a-CH3), 1.53 (3H, s, 1b- 

CH3).

(E)-Methyl (2-(3, 7-dimethylocta-2,6-dienyl)-l, 3-dithiane-2-yl)methylcarbamate 397

395 397

To a stirred solution of dithiane 395 (2.86 g, 13.8 mmol) in tetrahydrofuran (75 ml) at -40 °C 

was added 2.5M solution of «-BuLi in hexanes (11.40 ml, 28.55 mmol). The resulting solution 

was stirred for 2 h with the temperature maintained at -40 to -20 °C. The solution was then 

cooled to -78 °C and DMPU (6.65 ml, 55.3 mmol) was added dropwise and the solution was 

stirred for a further 1 h at this temperature. The solution was then carefully transferred by 

cannula to a solution of the bromide 380 (2.00 g, 9.21 mmol) in tetrahydrofuran (40 ml) at 

-78 °C. The reaction mixture was stirred at this temperature for 4 h followed by warming 

slowly to -20 °C and stirring for 12 h. The reaction mixture was then poured into ice water (200 

ml) and the aqueous layer was extracted with ether (5 x 50 ml). The combined organics were 

dried over sodium sulphate then filtered and evaporated to give the crude dithiane. The crude 

mixture was separated by column chromatography using 15 % ethyl acetate in hexane as eluent 

to give clean dithiane 397 (2.81 g, 89%) as a pungent viscous orange oil; Umax/cm'1 (neat): 3353, 

2913,2856, 1729, 1511, 1447, 1375, 1244, 1194, 1109, 1061,908; 5h 5.28(1H, app t, J6.9, 2- 

H), 5.11-5.07 (1H, m, 6-H), 5.02 (1H, s, NH), 3.69 (3H, s, CH30 2C), 3.66 (2H, app d, J  6.0, 

CH2N), 3.01 (2H, app t, J  12.9, 2 x SCHAx), 2.66 (2H, dq, J  15.0, 3.2, 2 x SCHEq), 2.45 (2H, d, 

J7.2, I-CH2), 2.13-2.03 (6H, m, CH2(CH2)2S, 4 and 5-CH2), 1.68 (3H, s, 3-Me), 1.64 (3H, s, 7- 

Me), 1.61 (3H, s, 7-Me); 6C 157.0 (C=0), 139.5 (3-C), 131.5 (7-C), 124.1 (6-CH), 117.1 (2- 

CH), 53.2 (CS2), 52.2 (CH3C02C), 45.1 (CH2N), 39.9 (CH2(CH2)2S), 37.0 (1-CH2), 26.5 (2 x 

CH2S), 26.1 (4 or 5-CH2), 25.7 (7-Me), 24.93 (4 or 5-CH2), 17.7 (7-Me), 16.5 (3-Me); m/z 

(APCI) 344 (M+Yt, 80%), 170 (45%); [Found: [M+H]+, 344.1735. Ci7H30NO2S2 required: 

M+H, 344.1718].
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(E)-Methyl 5 ,9-dimethyl-2-oxadeca-4,8—dienylcarbamate 398

397 398

To a vigorously stirred solution of silver nitrate (2.22 g, 13.1 mmol) and TV-chlorosuccinimide 

(1.75 g, 13.1 mmol) in a mixture of acetonitrile (160 ml) and water (40 ml) a solution of 

dithiane 397 (1.00 g, 2.91 mmol) in acetonitrile (60 ml) was added in one portion. The mixture 

was then stirred for 3 min as the solution went from a clear to a milky white solution. After 3 

min the solution was quenched by the addition of aqueous brine (130 ml) and the resulting 

mixture was passed through a plug of celite. This was followed by passing brine (150 ml), 

water (150 ml) and ethyl acetate (300 ml) through the celite. The resulting biphasic mixture was 

separated and the organic layer was washed with 10% aqueous sodium sulphite solution (50 

ml), water (4 x 50 ml) and brine (2 x 50 ml) before drying with sodium sulphate, followed by 

filtration and evaporation to give clean ketone 398 (0.71 g, 96%) as a yellow oil; Umax/cm'1 

(neat): 3361, 2966, 2924, 2856, 1717, 1520, 1452, 1356, 1257, 1195, 1107, 1045, 915; 8H 5.37 

(1H, br s, NH), 5.22 (1H, app tq, 77.3, 1.2, 4-H), 5.00 (1H, app tt, 76.8, 1.2, 8-H), 4.03 (2H, d, 

74.8, 1-CH2), 3.61 (3H, s, CH3C02C), 3.09 (2H, d, 77.3, 3-CH2), 2.05-1.96 (4H, m, 6 and 7- 

CH2), 1.61 (3H, app d, 71.2, 5-Me), 1.57 (3H, s, 9-Me), 1.53 (3H, s, 9-Me); 5C 203.9 (2-C=0),

156.8 (C=0), 140.7 (5 or 9-C), 131.8 (5 or 9-C), 123.8 (8-CH), 114.4 (4-CH), 52.3 

(CH3C 02C), 50.0 (1-CH2), 40.1 (3-CH2), 39.6 (6 or 7-CH2), 26.4 (6 or 7-CH2), 25.6 (5-Me),

17.7 (9-Me), 16.4 (9-Me); m/z (El) 253 (M*, 5%), 184 (20%), 88 (100%); [Found: [M]+, 

253.1686. Ci4H23N 03 requires: M, 253.1678].
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(E)-Methyl-2-(3-(ter*-butyldimethylsiIyloxy)prop-l-ynyl)-2-hydroxy-5,9-dimethyldeca-4,

8-dienylcarbamate 399

OTBDMS

398 399

A solution ethyl magnesium bromide (1.0 M in tetrahydrofuran, 6.23 ml, 6.23 mmol) was 

added dropwise to a stirred solution of TBDMS-protected propargyl alcohol 389 (1.06 g, 6.23 

mmol) in tetrahydrofuran (18 ml) at -15 °C and the solution was allowed to stir for 0.75 h. This 

was followed by the dropwise addition of ketone 398 (0.75 g, 2.96 mmol) in tetrahydrofuran 

(15 ml) at -15 °C. The solution was allowed to stir maintaining the temperature for 12 h. The 

solution was then quenched by the dropwise addition of glacial acetic acid (0.36 ml, 6.23 

mmol) and the solution was evaporated. The resulting residue was dissolved in ethyl acetate (30 

ml) and washed with aqueous ammonium chloride (10 ml), water (2  x 20  ml) and brine (10 ml). 

The solution was then dried over sodium sulphate, filtered and evaporated. The residue was 

dissolved in dichloromethane and passed through a plug of silica using pure hexane to pure 

ethyl acetate as eluent to give a 2:1 mixture of desired alcohol 399 and starting ketone 398 as a 

yellow oil (0.92 g, 49% crude yield); 5h 5.21-5.15 (1H, m, 4 or 8-H), 4.99-4.91 (2H, br m, 4 or

8-H and NH), 4.22 (2H, app s, CH20), 3.57 (3H, s, CH3C02C), 3.29-3.25 (2H, m, 1-CH2), 2.33 

(1H, dd, J  14.1, J  8.5, 3-Ha), 2.24 (1H, dd, J  14.4, J  7.2, 3-HB), 2.01-1.94 (4H, m, 6 and 

7-CH2), 1.56 (3H, s, 5-Me), 1.51 (3H, s, 9-Me), 1.48 (3H, s, 9-Me), 0.79 (9H, s, 3 x CH3CSi), 

0.00 (6H, s, 2 x CH3Si).

(E)-lMethyl 2-hydroxy-2-(3-hydroxyprop-l-ynyl)-5,9-dimethyldeca-4,8-dienylcarbamate 

401

OH

OTBDMS

O —

OH

OH

o—

399 401

To a stirred solution of the crude tertiary alcohol 399 (0.70 g, 1.65 mmol) in dichloromethane 

(7 ml) at 0 °C a solution of tetrabutylammonium fluoride (1.0 M in tetrahydrofuran, 1.65 ml,



1.65 mmol) was added dropwise. The solution was allowed to warm to room temperature 

overnight and the solution was then evaporated. The crude mixture was separated using column 

chromatography (30-100% ethyl acetate in hexane) to give the diol 401 (0.28g, 54%) as a 

yellow viscous oil; 8H 5.46 (1H, app t, J  6.0, 4 or 8-H), 5.20 (1H, app t, J7.2, 4 or 8-H), 5.02- 

4.97 (1H, br s, NH), 4.17 (2H, br s, CH2OH), 3.60 (5H, br s, CH3C02C and 2 x OH), 3.37-3.22 

(2H, m, 1-CH2), 2.37-2.26 (2H, m, 3-CH2), 2.04-1.94 (4H, m, 6 and 7-CH2), 1.59 (3H, s, 5-Me),

1.54 (3H, s, 9-Me), 1.51 (3H, s, 9-Me); 5C 158.1 (C=0), 140.2 (5 or 9-C), 131.7 (5 or 9-C),

124.1 (4 or 8-CH), 117.7 (4 or 8-CH), 86.5 (C=C), 83.4 (C=C), 70.9 (2-C), 52.5 (CH3C02C),

50.7 (CH2OH), 49.9 (1-CH2), 39.9 (CH2), 38.1 (CH2), 26.5 (CH2), 25.7 (5-Me), 17.7 (9-Me),

16.4 (9-Me); m/z (ES) 348 (M+K+, 50%), 332 (M+Na+, 100%), 310 (M+H+, 50%); [Found: 

[M+H]+, 310.2018. Ci7H28N 04 requires: M+H, 310.2018].

(E)-Methyl 4-(3, 7-dimethylocta-2, 6-dienyl)-2-(hydroxymethyl)-l//-pyrrole-l-carboxylate 

402

HO,

C 0 2Me

OH

OH

o—

401 402

According to the general procedure O, 10% AgN03.Si02 (0.07 g, 0.04 mmol) was stirred with a 

solution of diol 401 (0.12 g, 0.38 mmol) in dichloromethane (2 ml) for 3 h to give clean pyrrole 

402 as an orange oil (0.11 g, 100%); x)mJ c r n l (CHC13): 3408, 2962, 2919, 2854, 1733, 1444, 

1349, 1280, 1252, 1100; 5H6.95 (1H, s, 5-H), 6.09 (1H, s, 3-H), 5.29 (1H, t, J 6 J ,  2’-H), 5.12 

(1H, t, J  6 .8, 6 ’-H), 4.64 (2H, s, CH2OH), 3.97 (3H, s, CH3C02C), 3.70 (1H, br s, OH), 3.10 

(2H, d, J 7.2, l ’-CH2), 2.16-2.02 (4H, m, 4’ and 5’-CH2), 1.71 (3H, s, 3’ or 7’-Me), 1.67 (3H, s, 

3’ or 7’-Me), 1.63 (3H, s, 3’ or 7’-Me); 5H 151.9 (C=0), 136.4 (C), 135.1 (C), 131.5 (C), 126.4 

(C), 124.2 (CH), 121.9 (CH), 118.0 (CH), 115.3 (CH), 57.6 (CH2OH), 54.1 (CH30 2C), 39.6 

( l ’-CH2), 26.5 (4’ or 5’-CH2), 25.7 (CH3), 25.3 (4’ or 5’-CH2), 17.7 (CH3), 16.0 (CH3); m/z 

(APCI) 274 (M-H20 , 100%); [Found: [M]-H20, 274.1811 Ci7H24N 02 requires: M-H20, 

274.1807].
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(E)-Methyl 4-(3,7-dimethylocta-2,6-dienyl)-2-formyl-li/-pyrrole-l-carboxylate 408

HO,

402 408

A solution of pyrrole-2-methanol 402 (0.05g, 0.17 mmol) and activated manganese dioxide 

(0.30 g, 3.44 mmol) in hexane (8 ml) was stirred for 3 h. The solution was then filtered and 

evaporated to give the pyrrole-2-aldehyde 408 (0.05 g, 100%) as a yellow oil; umax/cm 1 

(CHCI3): 2958, 2923, 2854, 1756, 1721, 1444, 1353, 1255, 1138, 1104; 6H 10.24 (1H, s, CHO), 

7.14 (1H, s, 5-H), 5.20 (1H, t, J 7.2, 2’ or 6 ’-H), 5.02 (1H, t, J7.3, 2’ or 6 ’-H), 7.00 (1H, s, 3- 

H), 3.95 (3H, s, CH3CO2C), 3.08 (2H, d, J7.3, l ’-CH2), 2.07-1.95 (4H, m, 4’ and 5’-CH2), 1.62 

(3H, s, 3’ or 7’-Me), 1.59 (3H, s, 3’ or 7’-Me), 1.54 (3H, s, 3’ or 7’-Me); m/z (APCI) 290 

(M+hT, 10%), 115 (100%); [Found: [M+H]+, 290.1762. C17H24NO3 requires: M+H, 290.1756].

(E)-4-(3,7-Dimethylocta-2, 6-dienyl)-l-(methoxycarbonyl)-l//-pyrroIe-2-carboxyIic acid 

410

HO

408 410

According to a reported procedure,129 a solution of sodium chlorite (0.02 g, 0.26 mmol) and 

potassium dihydrogen phosphate (0.04 g, 0.30 mmol) in water (0.5 ml) was added dropwise to a 

stirred solution of aldehyde 408 (0.05 g, 0.17 mmol) and 2-methyl-but-2-ene (0.09 ml) in 

r-butanol (2 ml) at 0 °C and the solution was allowed to warm to room temperature overnight. 

The tert-butanol was evaporated and water (5 ml) was added, followed by the addition of a few 

drops of 2M hydrochloric acid. The aqueous layer was then extracted with dichloromethane (4 

x 10 ml) and the combined extracts dried over sodium sulphate, filtered and evaporated to give
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the pyrrole-2-carboxylic acid 410 as a yellow oil (0.04 g, 80%). Purification was deemed 

unnecessary as the product was clean. Umax/cm' 1 (CHCI3): 3367, 2962, 2922, 2854, 1755, 1709, 

1443, 1373, 1337, 1260, 1073, 1018; 8H7.21 (1H, s, 3-Hor5-H), 7.12 (1H, s, 3-H or 5-H), 5.18 

(1H, t, y  7.3, 2’-H), 5.02 (1H, t, J 6 .8, 6 ’-H), 4.00 (CH3O2C), 3.06 (2H, d, J 7.3, l ’-CH2), 2.07- 

1.94 (4H, m, 4’ and 5’-CH2), 1.62 (3H, s, 3’ or 7’-Me), 1.59 (3H, s, 3’ or 7’-Me), 1.54 (3H, s, 3’ 

or 7’-Me); 5C 159.6 (C O ), 152.2 (C O ), 137.5 (C), 131.7 (C), 129.0 (2 x CH (Ar)), 127.5 (C),

126.4 (C), 124.0 (CH (Ar)), 120.7 (CH (Ar)), 55.7 (CH3C02C), 39.6 ( l ’-CH2), 26.5 (4’ or 5’- 

CH2), 25.7 (CH3), 25.0 (4’ or 5’-CH2), 17.7 (CH3), 16.1 (CH3).

(E)-4-(3,7-Dimethylocta-2,6-dienyl)-l//-pyrroIe-2-carboxyIic acid (Pyrrolostatin) 379123

HOHO

410 379

According to the known procedure,123 to a solution of lithium hydroxide (0.007 g, 0.30 mmol) 

in water (0.2 ml) a solution of pyrrole 410 (0.04 g, 0.12 mmol) in dioxane (0.2 ml) was added 

dropwise. The mixture was then warmed to 40 °C under nitrogen overnight. The solution was 

then allowed to cool to room temperature and buffer solution (pH 3.5, 3 ml) was added 

dropwise. This was followed by the addition of diethyl ether (10 ml) and saturated brine (5 ml). 

The separated aqueous layer was then extracted with ether (3 x 10 ml) and the combined 

organic solutions were washed with water (2 x 10 ml) and brine (10  ml), then dried over sodium 

sulphate, filtered and evaporated to give pyrrolostatin 379 as a dark yellow solid (0.02 g, 70%); 

m.p. 110-112 °C (lit m.p.123 117-119 °C); 8H 8.97 (1H, br s, OH), 6.80 (1H, s, 3 or 5-H), 6.72 

(1H, s, 3 or 5-H), 5.26 (1H, m, 2’ or 6 ’-H), 5.03 (1H, m, 2’ or 6 ’-H), 3.13 (2H, d, J  7.2, 

l ’-CH2), 2.07-1.94 (4H, m, 4’ and 5’-CH2), 1.62 (1H, s, 3’ or 7’-Me), 1.61(1H, s, 3’ or 7’-Me),

1.54 (1H, s, 3’ or 7’-Me); 8C 165.2 (C=0), 136.0 (C), 131.5 (C), 126.4 (C), 124.3 (CH), 122.8 

(CH), 121.4 (C), 116.8 (CH), 39.6 ( l ’-CH2), 26.6 (4’ or 5’-CH2), 25.8 (CH3), 25.3 (4’ or 

5’-CH2), 17.7 (CH3), 16.0 (CH3). Data given matches the data reported for pyrrolostatin in the 

literature.123

243



References

244



References

la. Katritzky, A. R.; Taylor, R. J. K.; Ramsden, C. A.; Scriven, E. F. V.

Comprehensive Heterocyclic Chemistry III, 2008. 

lb. El-Taeb, G M. M.; Evans, A. B.; Jones, S.; Knight, D. W. Tetrahedron Lett.

2001, 42,5945. 

lc. Song, C. PhD Thesis. Cardiff University, 2005.

2. Sharland, C. M. PhD Thesis. Cardiff University, 2003.

3. Hayes, S. PhD Thesis. Cardiff University, 2007.

4. Proctor, A. J. PhD Thesis. Cardiff University, 2007.

5. Fischer, E. F.; Jourdan, F. Ber. Dtsch. Chem. Ges. 1883,16, 2241.

6 . Robinson, B. Chem. Rev. 1969, 69, 227.

7. Robinson, B. The Fischer Indole synthesis. Wiley. New York, 1982.

8 . Nischizawa, M.; Skwarczynski, M.; Imagawa, H.; Sugihara, T. Chem.

Lett. 2002, 12-13.

9. Philips, R. R. Org. React. 1959,10, 143.

10. Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 

120, 6621.

11. Ishii, H.; Takeda, H.; Hagiwara, T.; Sakamoto, M.; Kosgusuri, K.; 

Murakami, Y. J. Chem. Soc., Perkin Trans. 1 1989, 2407.

12. Zhang, P.; Lui, R.; Cook, J. M. Tetrahedron Lett. 1995, 36, 9133.

13. Cao, C.; Shi, Y.; Odom, A. L. Org. Lett. 2002, 4, 2853.

14. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 

4467.

15. Chinchilla, R.; Najera, C. Chem. Rev. 2007,107, 874.

16. Sakamoto, T.; Kondo, Y.; Yamanaka, H. Heterocycles 1986, 24, 31

17. Sakamoto, T.; Kondo, Y.; Iwashita, S.; Yamanaka, H. Chem. Pharm. 

Bull. 1987,35,1823.

18. Yasuhara, A.; Kanamori, Y.; Kaneko, M.; Numata, A.; Kondo, Y.; 

Sakamoto, T. J. Chem. Soc., Perkin Trans. 1 1999, 529.

245



19. Wang, J.; Soundarajan, N.; Liu, N.; Zimmermann, K.; Naidu, B. N.

Tetrahedron Lett. 2005, 46, 907.

20. Sendzik, M,; Hui, H. C. Tetrahedron Lett. 2003, 44, 8697.

21. Dai, W-M.; Guo, D-S.; Sun, L-P. Tetrahedron Lett. 2001, 42, 5275.

22. Castro, C. E.; Stephens, R. D. J. Org. Chem. 1963, 28, 2163.

23. Soloducho, J. Tetrahedron Lett. 1999, 40, 2429.

24. Farr, R. N.; Alabaster, R. J.; Chung, J. Y. L.; Craig, B.; Edwards, J. S.; 

Gibson, A. W.; Ho, G-J.; Humphrey, G. R.; Johnson, S. A.; Grabowski, E. J.

J. Tetrahedron: Asymm. 2003,14, 3503.

25. Ma, C.; Liu, X.; Li, X.; Flippen-Anderson, J.; Yu, S.; Cook, J. M. J.

Org. Chem. 2001, 66, 4525.

26. Cacchi, S.; Fabrizi, G.; Parisi, L. M. Org. Lett. 2003, 5, 3843.

27. Ackermann, L. Org. Lett. 2005, 7, 439.

28. Hiroya, K.; Itoh, S.; Sakamoto, T. J. Org. Chem. 2004, 69, 1126.

29a. Chen, Y.; Markina, N. A.; Larock, R. C. Tetrahedron 2009, 65, 8908.

29b. (a) Bagley, M. C.; Fusillo, V.; Jenkins, R. L.; Lubinu, M. C.; Mason, C. Org.

Biomol. Chem. 2010, 8, 2245. (b) Bagley, M. C.; Jenkins, R. L.; Lubinu, M.

C.; Mason, C.; Wood, R. J. Org. Chem. 2005, 70, 7003.

30. Ambrogio, I.; Cacchi, S.; Fabrizi, G.; Prastaro, A. Tetrahedron 2009, 65, 891.

31. Pal, M.; Subramanian, V.; Batchu, V. R.; Dager, I. Synlett. 2004, 1965.

32. (a) Valnier, G. S. Synlett 2007, 131. (b) Mori, A.; Miyakawa, Y.; Ohasi, E.;

Haga, T.; Maegawa, T.; Sajiki, H. Org. Lett. 2006, 8, 3279.

33. Sakai, N.; Annaka, K.; Konakahara, T. Org. Lett. 2004, 6, 1527.

34. Kurisaki, T.; Naniwa, T.; Yamamoto, H.; Imagawa, H.; Nishizawa, M.

Tetrahedron Lett. 2007, 48, 1871.

35. Van Esseveldt, B. C. J.; Van Delft, F. L.; Smits, J. M. M.; de Gelder, 

R.; Schoemaker, H. E.; Rutjes, F. P. J. T. Adv. Synth. Catal. 2004, 346, 

823.

36. Amjad, M.; Knight, D. W. Tetrahedron Lett. 2004, 45, 539.

37. Yue, D.; Larock, R. C. Org. Lett. 2004, 6, 1037.

38. Clarke, R. D.; Repke, D. B. Heterocycles 1984, 22, 195.

246



39. Batcho, A. D.; Leimgruber, W. Org. Synth. 1985, 63 214.

40. Fetter, J.; Bertha, F.; Poszavacz, L.; Simig, G. J. Heterocyclic Chem. 

2005, 42, 137.

41. Ohkubo, M.; Nishimura, T.; Jona, H.; Honma, T.; Morishima, H. 

Tetrahedron 1996, 52, 8009.

42. Reissert, A.; Heller, H. Chem. Ber. 1904, 37, 4364.

43. Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. Tetrahedron Lett. 

1989, 30,2129.

44. Bartoli, G.; Bosco, M.; Dalpozzo, R.; Palmieri, G.; Marcantoni, E. J. 

Chem. Soc., Perkin Trans. 1 1991, 2757.

45. Madelung, W. Chem. Ber. 1912, 45, 1128.

46. Houlihan, W. J.; Parrino, V. A.; Uike, Y. J. Org. Chem. 1981, 46, 4511.

47. Gassman, P. G.; Gruetzmacher, G.; van Bergen, T. J. J. Am. Chem. Soc. 1973, 

95, 6508.

48. Gassman, P. G.; van Bergen, T. J. J. Am. Chem. Soc. 1974, 96, 5495.

49. Chen, C-Y.; Lieberman, D. R.; Larsen, R. D.; Kerhoeven, T. R.; Reider, P. J.

J. Org. Chem. 1997, 62, 2676.

50. Layek, M.; Gajare, V.; Kalita, D.; Islam, A.; Mukkanti, K.; Pal, M.

Tetrahedron 2009, 65, 4814.

51. Xu, Z.; Hu, W.; Zhang, F.; Li, Q.; Lii, Z.; Zhang, L.; Jia, Y. Synthesis

2008, 3981.

52. Fang, Y-Q.; Yuen, J.; Lautens, M. J. Org. Chem. 2007, 72, 5152.

53. Suzuki, Y.; Ohta, Y.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem.

2009, 74, 4246.

54. Ackermann, L.; Sandmann, R.; Schinkel, M.; Kondrashov, M. V. Tetrahedron 

2009, 65, 8930.

55. Kumar, V.; Dority, J. A.; Bacon, E. R.; Singh, B.; Lesher, G. Y. J. Org. 

Chem. 1992, 57, 6995.

56. Hodgkinson, R. C.; Schulz, J.; Willis, M. C. Tetrahedron 2009, 65,

8940.

57. Lachance, N.; April, M.; Joly, M-A. Synthesis 2005, 2571.

247



58. Marshall, J. A.; Bartley, G. S. J. Org. Chem. 1994, 59, 7169.

59. Unpublished results.

60. http://www.gaussian.com/g_misc/g03/citation_g03 .htm.

61. Bordwell, F. G. pKa tables: http://www.chem.wise.edu/areas/reich/pkatables.

62. Dal la, V.; Pale, P. New J. Chem. 1999, 23, 803.

63. Pale, P.; Chuche, J. Tetrahedron Lett. 1987, 28, 6447.

64. Valerius, G.; Zhu, X.; Hofman, H.; Haus, A. T. Chem. Eng. Proc. 1998, 35,

11 .

65. Valerius, G.; Zhu, X.; Hofman, H.; Haus, A. T. Chem. Eng. and Proc. 1998,

35, 1.

66. Schroter, H. B.; Neumann, D.; Katritzky, A. R.; Swinboume, F. J. 

Tetrahedron 1966, 22, 2895.

67. Ragnanathan, D.; Bamezai, S. Synth. Commun. 1985,15, 259.

68. Celebrex [Article] (2nd July 2010) [Online] Wikipedia:

http://en.wikipedia.org/wiki/celecoxib [Accessed 11th July 2010].

69. Deracoxib [Article] (21st April 2010) [Online] Wikipedia: 

http://en.wikipedia.org/wiki/Deracoxib [Accessed 11th July 2010].

70. sildenafil [Article] (11th July 2010) [Online] Wikipedia:

http://en.wikipedia.org/wiki/sildenafil [Accessed 11th July 2010].

71. Ioffe, B. V.; Tsibul’skii, V. V. Chemistry o f Heterocyclic Compounds 

1972, 5, 801.

72. Haunert, F.; Bolli, M. H.; Hinzen, B.; Ley, S. V. J. Chem. Soc, Perkin 

Trans. 1 1998, 2235.

73. Nair, V.; Biju, A. T.; Mohanan, K.; Suresh, E. Org. Lett. 2006, 8, 2213.

74. Liu, X-G.; Wei, Y.; Shi, M. Org. Biol. Chem 2009, 7, 4708.

75. Ahmed, M. S. M.; Kobayashi, K.; Mori, A. Org. Lett. 2005, 7, 4487.

76. Brosse, N.; Pinto, M. F.; Jamart-Gregoire, B. Tetrahedron Lett. 2002, 43, 
2009.

77. Bianchi, G.; Deamici, M. J. Chem. Res. 1979,19, 311.

78. Cambridge Crystallographic Data centre: http://www.ccdc.cam.ac.uk.

79. Koppel, L.; Kopppel, J.; Degerbeck, F.; Ragnarsson, G. U. J. Org. 
Chem. 1991, 56, 7172.

80a. Wettstein, D. V.; Gough, S.; Kannangara, C. G. The Plant Cell. 1995, 7, 1039.

248

http://www.gaussian.com/g_misc/g03/citation_g03
http://www.chem.wise.edu/areas/reich/pkatables
http://en.wikipedia.org/wiki/celecoxib
http://en.wikipedia.org/wiki/Deracoxib
http://en.wikipedia.org/wiki/sildenafil
http://www.ccdc.cam.ac.uk


80b.

80c.

80d.

81.

82.

83.

84.

85.

86 .

87.

8 8 .

89.

90.

91.

92.

93.

94.

95.

96.

Heme [Article] (30th October 2010) [Online] Wikipedia:

http://en.wikipedia.org/wiki/heme [Accessed 25th November 2010] 

Atorvastatin [Article] (25th June 2010) [Online] Wikipedia:

http://en.wikipedia.org/wiki/Atorvastatin [Accessed 11th July 2010].

Vogel, A. I. Practical Organic Chemistry (3rd Edition), 1956, 837.

(a) Hantzsch, A. Chem. Ber. 1890, 23, 1474. (b) Feist, F. Chem. 

Ber. 1902, 35, 1538.
(a) Knorr, L. Chem. Ber. 1884, 17, 1635. (b) Knorr, L. Liebigs Ann. 

Chem. 1886, 236, 290. (c) Knorr, L.; Lange, H. Chem. Ber. 1902, 35, 

2998.

(a) Paal, C. Chem. Ber. 1885, 18, 367. (b) Knorr, L. Chem. Ber. 1885, 

18, 1565.

Bew, S. P.; Knight, D. W. J. Chem. Soc., Chem. Commun. 1996, 1007.

Knight, D. W.; Redfem, A. L.; Gilmore, J. J. Chem. Soc., Chem. 

Commun. 1998,2207.

Kim, J. T.; Kelin, A. V.; Geverogyan, V. Angew. Chem. Int. Ed. 2003, 

42, 98.

Kelin, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 

123, 2074.

Kim, J. T.; Gevorgyan, V. Org. Lett. 2002, 4, 4697.

Martin, R.; Rivero, M. R.; Buchwald, S. L. Angew. Chem. Int. Ed. 
2006, 45, 7079.

Gabriele, B.; Salerno, G.; Fazio, A. J. Org. Chem. 2003, 68, 7853.

Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 
2001, 343, 443.

Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 
11260.

Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006,128, 12050.

(a) Robinson, R. S.; Dovey, M. C.; Gravestock, D. Tetrahedron Lett

2004, 45,6787. (b) Gravestock, D.; Dovey, M. C. Synthesis 2003, 523. 

(c) Robinson, R. S.; Dovey, M. C.; Gravestock, D. Eur. J. Org. Chem.
2005, 505.

Harrison, T. J.; Kozak, J. A.; Corbella-Pane, M.; Dake, G. R. J. Org. 
Chem. 2006, 71, 4525.

Kathiravan, K.; Ramesh, E.; Raghunathan, R. Tetrahedron Lett. 2009, 
50, 2389.

249

http://en.wikipedia.org/wiki/heme
http://en.wikipedia.org/wiki/Atorvastatin


97.

98.

99.

100 .

101 .

102.

103.

104.

105.

106.

107.

108.

109.

110 . 

11 1 .

112.

113.

114.

115.

Binder, J. T.; Kirsch, S. F. Org. Lett. 2006, 8, 2151.

Siriwardana, A. L.; Kathriarachchi, K. K. A. D. S.; Nakamura, I.; Gridnev, L.

D.; Yamamoto, Y. J. Am. Chem. Soc 2004,126, 13898.

Dhawan, R.; Amdtsen, B. A. J. Am. Chem. Soc. 2004,126, 468.

Ramanathan, B.; Keith, A. J.; Armstrong, D.; Odom, A. L. Org. Lett. 

2004, 6, 2957.

Kamijo, S.; Kanazawa, C.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 

9260.

Takaya, H.; Kojima, S.; Murahashi, S. I. Org. Lett. 2001, 3, 421.

Joumet, D.; Cai, D.; DiMichele, L.; Larsen, R. D. Tetrahedron Lett. 1998, 39, 

6427.

Gridley, J. J.; Coogan, M. P.; Knight, D. W.; Abdul, M. K. M.; Sharland, C. 

M.; Singkhonrat, J.; Williams, S. Chem. Commun. 2003, 2550.

Tandel, S.; Wang, A.; Holdeman, T. C.; Zhang, H.; Biehl, E. R. 

Tetrahedron 1998,54,15147.

(a) Grandel, R.; Kazmaier, U.; Nuber, B. Liebigs Ann. 1996,1143.

(b) Grandel, R.; Kazmaier, U. Eur. J. Org. Chem. 1998, 1833.

Knight, D. W.; Dunford, D. G.; Guyader, M.; Jones, S.; Hursthouse, M. 

B.; Coles, S. J. Tetrahedron Lett. 2008, 49, 2240.

Reed, P. E.; Katzenellenbogen, J. A. J. Org. Chem. 1991, 56, 2624.

Fedoreyev, S. A.; Utkina, N. K.; Ilyin, S. G.; Reshetnyak, M. V.; Maximov, O. 

B. Tetrahedron Lett. 1986, 27, 3177.

Pettit, G. R.; McNulty, J.; Herald, D. L.; Doubek, D. L.; Chapuis, J. C.; 

Schmidt, J. M.; Tackett, L. P.; Boyd, M. R. J. Nat. Prod. 1997, 60, 180.

(a) Sakano, Y.; Shibuya, M.; Yamaguchi, Y.; Masuma, R.; Tomada, H.; 

Omura, S.; Ebizuka, Y. J. J. Antibiot. 2004, 57, 564. (b) Omura, S.; 

Kyoda, H.; Masuma, R.; Ebizuka, Y.; Shibuya, M. Japan Kokai 

Tokkyo Koho JP 200496680, Chem. Abstr. 2004,141, 122412.

Snider, B. B.; Gao, X. Org. Lett. 2005, 7, 4419.

Rabasseda, X.; Mealy, N.; Castaner, J. Drugs o f the future. 1995, 20,
1007.

(a) Ritter, F. J.; Rotgans, I. E. M.; Talman, E.; Verwiel, P. E. J.; Stein, 

F. Experientia 1973, 29, 539. (b) Numata, A.; Ibuka, T. The Alkaloids. 
1987, 31, 193.

Castano, A. M.; Cuerva, J. M.; Echavarren, A. M. Tetrahedron Lett. 
1994, 35, 7435.

250



116.

117.

118. 

119.

120.

121 .

122.

123.

124.

125.

126.

127.

128. 

129.

130.

131.

132.

133.

134.

135.

Mori, M.; Hori, M.; Sato, Y. J. Org. Chem 1998, 63, 4832.

Laufer, S. A.; Augustin, J.; Dannhardt, G.; Kiefer, W. J. Med. Chem. 

1994, 37, 1894.

Cossy, J.; Belotti, D. J. Org. Chem. 1997, 62, 7900.

(a) Esterbauer, H.; Gelbicki, J.; Puhl, H.; Jurgen, G. Free Radical 

Biology and Medicine 1992, 13, 341. (b) Bowry, V. W.; Ingold, K. V. 

Acc. Chem. Res. 1999, 32, 27. (c) Burton, G. W.; Ingold, K. U. Acc. 

Chem. Res. 1986,19, 194.

Kato, S.; Shindo, K.; Kawai, H,; Odagawa, A.; Matsuoka, M.; Mochizuki, J.

J. Antibiot. 1993, 46, 892.

Kiren, S.; Hong, X.; Leverett, C. A.; Padwa, A. Org. Lett. 2009, 11, 

1233.

(a) Barton, D. H. R.; Zard, S. Z. J. Chem. Soc., Chem. Commun. 1985, 1098.

(b) Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. Tetrahedron. 1990, 46, 7587. 

Fumoto, Y.; Eguchi, T.; Uno, H.; Ono, N. J. Org. Chem 1999, 64, 6518.

(a) Maestro, M. A.; Sefkow, M.; Seebach, D. Leibigs. Ann. 1994, 7, 701.

(b) Seebach, D.; Maestro, M. A.; Sefkow, M.; Neidlein, A.; Stemferd, F.; 

Adam, G.; Sommerfeld, T. Helv. Chem. Acta 1991, 74, 2112.

Yus, M.; Najera, C.; Foubelo, F. Tetrahedron. 2003, 59, 6147.

Corey, E. J.; Gilman, N. W.; Ganem, B. E. J. Am. Chem. Soc. 1968, 90, 

5616.

Foot, J. S.; Kanno, H.; Giblin, G. M. P.; Taylor, R. J. K. Synthesis. 2003 

7, 1055.

(a) Hodge, P.; Richards, R. W. J. Org. Chem. 1963, 2543. (b) Sun, Z-N.; 

Lui, F-Q.; Chen, Y.; Tam, P. K. H.; Yang, D. Org. Lett. 2008,10, 2171. 

Haginoya, N.; Kobayashi, S.; Komoriya, S.; Yoshino, T.; Suzuki, M.; 

Shimada, T.; Watanabe, K.; Hirokawa, Y.; Furugori, T,; Nagahara, T.

J. Med. Chem. 2004, 47, 5167.

Batchu, V. R.; Subramanian, V.; Parasuraman, K.; Swamy, N. K.; Kumar, S.; 

Pal, M. Tetrahedron 2005, 61, 9869.

Alayrac, C.; Schollmeyer, D.; Witulski, B. Chem. Commun. 2009, 1464.

Smith, W. N.; Beumel, O. F. Synthesis 1974, 441.

Jana, G. K.; Sinha, S. Tetrahedron Lett. 2010, 51, 1994.

Guthrie, D. B.; Curran, D. P. Org. Lett. 2009, 11, 249.

Yashuhara, A.; Kanamori, Y.; Kanek, M.; Numata, A.; Kondo, Y. Sakamoto,

T. J. Chem. Soc. Perkin Trans. 1 1999, 529.
251



136. Gimbert, C.; Vallribera, A. Org. Lett. 2009,11, 269.

137. Kuwano, R.; Kashiwabara, M. Org. Lett. 2006, 8, 2653.

138. Yin, Y.; Ma, W.; Chai, Z.; Zhao, G. J. Org. Chem. 2007, 72, 5731.

139. Le Pera, A.; Leggio, A.; Liguori, A. Tetrahedron, 2006, 62, 6100.

140. Yamagishi, U.; Song, D.; Konta, S.; Yamamoto, Y. Angewandte Chemie 

Int. Ed. 2007, 46, 2284.

141. Saito, T.; Nihei, H.; Otani, T.; Suyama, T.; Furukawa, N.; Saito, M. Chem. 

Commun. 2008, 172.

142. Villemin, D.; Goussu, D. Heterocycles 1989, 29, 1255.

143. Sakai, N.; Annaka, K.; Fujita, A.; Sato, A.; Konakahara, T. J. Org. Chem. 

2008, 73, 4160.

144. Sudha, L. V.; Manogaran, S.; Sathyanarayana, D. N. J. Mol. Structures 1985,

129. 137

145. Carlos De Mattos, M.; Alatorre-Santamaria, S.; Gotor-Femandez, V.; 

Gotor, V. Synthesis 2007, 2149.

146. Praveen, C.; Karthikeyan, K.; Perumal, P. T. Tetrahedron 2009, 65, 9244.

147. Abbas, C.; Pickaert, G.; Didierjean, C.; Jamart-Gregoire, B. J.; Vanderesse,

R. Tetrahedron Lett. 2009, 50, 4158.

148. Ma, S.; Wu, B.; Jiang, X.; Zhao, S. J. Org. Chem 2004, 70, 2568.

149. Lettan, R. B.; Scheidt, K. A. Org. Lett. 2005, 7, 3227.

150. Sakai, N.; Kanada, R.; Hiiasawa, M.; Konakahara, T. Tetrahedron 2005, 61, 

9298.

151. Zhang, X.; Lu, Z.; Fu, C.; Ma, S.; Org. Biomol. Chem 2009, 7, 3258.

152. Dzhidzhelava, A. B.; Zhur. Obshchei. Khim. 1966, 36, 1368.

153. Vallet, A.; Romanet, R. Bull. Soc. Chim. Fr. 1970, 3616.

154. Pattenden, G.; Weedon, B. C, L. J. Chem. Soc. 1968, 1984.

155. Novokshonova, I. A.; Novokshonov, V. V.; Medveda, A. S. Synthesis 2008, 

23, 3797.

156. Sneddon, H. F.; Gaunt, M. J.; Ley, S. V. Org. Lett. 2003, 5, 1147.

157. Olier, C.; Azzi, N.; Gil, G.; Gastaldi, S.; Bertrand, M. P. J. Org. Chem. 

2008, 73, 8469.

158. Horst, B.; Horst, P. Archiv Pharm. Berichte der Deutschen Pharm. 

Gesellschaft 1956, 289, 262.

159. Parker, K. A.; Ledeboer, M. W. J. Org. Chem. 1996, 61, 3214.

252



160. Nyasse, B.; Grehn, L.; Maia, H. L. S.; Monteiro, L. S.; Ragnarsson, U.

J. Org. Chem. 1999, 64, 7135.

161. Benalil, A.; Carboni, B.; Vaultier, M. Tetrahedron, 1991, 47, 8177.

162. Moller, M. ERASMUS Project, 2008, Cardiff University.

163. Li, G.; Angert, H. H.; Sharpless, K. B. Angew. Chem. Int. Ed. 1996, 35,

2813.

164. Herranz, E.; Sharpless, K. B. J. Org. Chem. 1978, 43, 2544.

165. Choundary, B. M.; Chowdari, N. S.; Jyothi, K.; Kantam, M. L. Mol. Cat. A

2003,196, 151.

166. Knight, D. W.; Rost, H. C.; Sharland, C. M.; Singkhonrat, J. Tetrahedron 

Lett. 2007, 48, 7906.

167. Liang, J-L.; Yu, Z-Q.; Che, C-M. Chem. Commun. 2002, 124.

168. Luo, Z-B.; Wu, J-Y.; Hou, X-L.; Dai, L-X. Org. Biomol. Chem. 2007,

5, 3428.

169. Wagger, J.; Groselj, U.; Meden, A.; Svete, J.; Stanovnik, B. Tetrahedron 

2008, 64, 2801.

170. Ciive, D. L.; Yang, W.; MacDonald, A. C.; Wang, Z.; Cantin, M. J.

Org. Chem. 2001, 66, 1966.

171. Koskinen, A. M. P.; Paul, J. M. Tetrahedron Lett. 1992, 45, 6853.

172. Harrison, T. J.; Kozak, J. A.; Corbella Pane, M. Dake, G. R. J. Org. Chem.

2006, 71, 4525.

173. Molander, G. A.; Romero, J. A. C. Tetrahedron 2005, 61, 2631.

174. Gracia, S.; Cazorla, C.; Metay, E.; Pellet-Rostaing, S.; Lemaire, M. J.

Org. Chem. 2009, 74, 3160.

175. Bal'on, Y. G.; Paranyuk, V. E. Zhur. Org. Khim. 1979,15, 1203.

253



Appendix 

X-ray Data
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X-ray crystal structure o f hydrazine 219a

C 2 3 H 3 6 N 2 O 4 S  

CCDC number 783430
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Table 1. Crystal data and structure

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.44° 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F^

Final R indices [I>2sigma(I)]

R indices (all data)

Extinction coefficient 

Largest diff. peak and hole

a= 70.3660(10)c 

P= 79.3600(10)° 

y = 86.1940(10)°

refinement for dwk0913. 

dwk0913

C23 H36 N2 04 S 

436.60 

150(2) K 

0.71073 A 
Triclinic 

P-l

a = 8.58800(10) A 
b = 11.8690(2) A 
c= 13.1390(2) A 
1239.70(3) A3 

2

1.170 Mg/m3 

0.159 mm'1 

472

0.25 x 0.25 x 0.15 mm3

3.02 to 27.44°.

-11 <=h<= 11,-15 <=k<= 15,-15<=1<= 17 

8998

5592 [R(int) = 0.0317]

98.8 %

0.9765 and 0.9612

Fu 11-matrix least-squares o n  F^

5592/0/278

1.030

R1 =0.0467, wR2 = 0.1174 

R1 =0.0592, wR2 = 0.1257 

0.092(8)

0.332 and -0.378 e.A' 3
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X-ray crystal structure o f hydrazine 219b

C25H32N 2O4S 

CCDC number 783431
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Table 1. Crystal data and structure

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.36° 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit o n  F^

Final R indices [I>2sigma(I)j 

R indices (all data)

Largest diff. peak and hole

a= 90°.

P= 104.3920(10)c 

y = 90°.

refinement for dwk0914. 

dwk0914 

C25 H32 N2 04 S 

456.59 

150(2)K 

0.71073 A 
Monoclinic 

P21/a

a = 8.9670(2) A 
b = 22.3460(6) A 
c = 12.9480(4) A
2513.06(12) A3 

4

1.207 Mg/m3 

0.161 mm"l 

976

0.50 x 0.50 x 0.40 mm3

2.52 to 27.36°.

-1 l<=h<=l 1, -28<=k<=28, -16<=1<=16 
10414

5584 [R(int) = 0.0340]

98.2 %

0.9386 and 0.9240 

Full-matrix least-squares on F^ 

5584/0/295

1.025

R1 =0.0537, wR2 = 0.1362 

R1 =0.0727, wR2 = 0.1476 

0.404 and -0.529 e.A"3
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X-ray crystal structure o f hydrazine 223a

C 2 0 H 3 0 N 2 O 3 S  

CCDC number 783434
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Table 1. Crystal data and structure refinement for dwkl008.

Identification code dwkl008

Empirical formula C20 H30N2 03 S

Formula weight 378.52

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Monoclinic

Space group P21/n

Unit cell dimensions a = 15.7349(4) A oc= 90°. 

b= 13.4711(2) A p= 94.4130(10)° 

c = 20.1130(6) A y = 90°.

Volume 4250.64(18) A3

Z 8

Density (calculated) 1.183 Mg/m3

Absorption coefficient 0.173 mm'1

F(000) 1632

Crystal size 0.30 x 0.30 x 0.25 mm3

Theta range for data collection 1.59 to 27.49°.

Index ranges -20<=h<=20, -17<=k<=15, -26<=1<=26
Reflections collected 17617

Independent reflections 9712 [R(int) = 0.0505]
Completeness to theta = 27.49° 99.3 %
Max. and min. transmission 0.9581 and 0.9500

Refinement method Full-matrix least-squares on F^
Data / restraints / parameters 9712/0/479

Goodness-of-fit on F ^ 1.035
Final R indices [I>2sigma(I)] R1 =0.0586, wR2 = 0.1291
R indices (all data) R1 =0.1001, wR2 = 0.1495

Largest diff. peak and hole 0.244 and -0.408 e.A' 3



X-ray crystal structure o f 2-alkynyl-2-hydroxysulfonamide 320b

tL n h t s

C2oH21N 0 3S 

CCDC number 783433
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Table 1. Crystal data and structure refinement for dwkl007.

Identification code dwkl007

Empirical formula C20 H21N03 S

Formula weight 355.44

Temperature 296(2) K

Wavelength 0.71073 A
Crystal system Triclinic

Space group P-l

Unit cell dimensions a = 9.6896(8) A <x= 

b= 10.2208(8) A p= 

c=  11.3278(7) A y =
Volume 945.23(12) A3

Z 2

Density (calculated) 1.249 Mg/m3

Absorption coefficient 0.189 mm'1

F(000) 376

Crystal size 0.30 x 0.12 x 0.12 mm3

Theta range for data collection 2.36 to 27.48°.

Index ranges -10<=h<=12, -13<=k<=13, -T
Reflections collected 6377

Independent reflections 4245 [R(int) = 0.0424]

Completeness to theta = 27.48° 97.8 %

Absorption correction Empirical
Max. and min. transmission 0.9777 and 0.9455

Refinement method Full-matrix least-squares on F̂
Data / restraints / parameters 4245/0 / 228

Goodness-of-fit on

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

1.025

R1 =0.0735, wR2 = 0.1550 

R1 =0.1496, wR2 = 0.1913 

0.267 and -0.271 e.A-3
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X-ray crystal structure of 2-alkynyl-2-hydroxysulfonamide 320d

H>NHTs

C21H23NO3S 

CCDC number 783432
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Table 1. Crystal data and structure refinement for dwkl005.

Identification code dwkl005

Empirical formula C21 H23N03 S

Formula weight 369.46

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Monoclinic

Space group P21/c

Unit cell dimensions a = 11.3142(6) A 0C=

b= 16.4417(4) A P=
c= 11.6442(5) A Y =

Volume 1896.08(14) A3

Z 4

Density (calculated) 1.294 Mg/m3

Absorption coefficient 0.191 mm'1

F(000) 784

Crystal size 0.20 x 0.20 x 0.06 mm3

Theta range for data collection 2.35 to 27.46°.

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 27.46°

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

-14<=h<= 14, -21 <=k<= 16,-15<=1<= 15 

7572

4277 [R(int) = 0.0627]

98.9 %

0.9886 and 0.9628

Full-matrix least-squares on F^

4277/ 1 /241 

1.017

R1 =0.0674, wR2 = 0.1509 

R1 =0.1154, wR2 = 0.1777 

0.598 and -0.444 e.A"3
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X-ray crystal structure o f piperidine 332b

.OH
Eoc

Ph

C19H25NO3 

CCDC number 783435
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Table 1. Crystal data and structure

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated) 

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.53° 

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on F^

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

refinement for dwkl009. 

dwkl009 

C19H25N03 

315.40 

150(2)K 

0.71073 A 
Monoclinic 

P21/c

a = 9.7653(4) A oc= 90°.

b = 18.2683(5) A 0= 109.434(2)c

c=  10.4167(5) A y = 90°.

1752.42(12) A3 

4

1.195 Mg/m3 

0.080 mm-1 

680

0.35 x 0.30 x 0.20 mm3 

3.05 to 27.53°.

-12<=h<=7, -19<=k<=23, -12<=1<=13 

9220

3972 [R(int) = 0.0493]

98.4 %

0.9841 and 0.9725

Full-matrix least-squares on F^ 

3972/0/212

1.052

R l=  0.0586, wR2 = 0.1283 

R1 =0.0982, wR2 = 0.1486 

0.229 and -0.279 e.A' 3
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