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Abstract

The exact role of neovascularization found in painful Achilles tendons is unknown. The
amount of the neovascularizétion is thought to be related to the clinical severity. To
investigate the quantification of neovascularization and its correlation with the clinical severity
in the symptomatic Achilles tendon, a novel 3D power Doppler ultrasound scanning system |
firstly developed to prospectively examine ten patients with twelve symptomatic Achilles
tendons, as well as twenty asymptomatic Achilles tendons as a control group. The novel 3D
evaluation system consisted of a scanning rig, a pixel analysis programme, and a 3D
reconstruction software. By scanning the entire length of the Achilles tendon, the continuous
slices of the transverse image of the tendon were acquired. The pixel analysis programmed
then selected a representated frame with maximum vascular lumen from each slice over a
normally scanning distance of 6 cm. All the frames were fed into the 3D reconstruction
software for visualization and volume calculation. The volume of the neovascularity (VON)
was then outputted. The mean volume of neovascularity (VON) in the whole Achilles
tendon was calculated during the phase of the cardiac cycle displaying maximum and
minimum vascularity. The mean VONS in the control group were found to be 0.41 mm?®
(maximum) and 0.02 mm? (minimum), respectively. The mean VONs in patients with
painful Achilles tendon were 380 mm?® (maximum) and 70.3 mm? (minimum), respectively.
The initial results showed that the novel 3D power Doppler ultrasound system could be used
to measure the mean VON in controls and in patients with symptomatic Achilles tendinopathy.
The results also demonstrated a significantly greater VON in the maximum phase compared
to the minimum phase as well as in the patient group compared with that in the control group.
The system was therefore capable of defining the degree of vascularity in the Achilles tendon.

Furthermore, to investigate the correlation between the VON and clinical severity, forty
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tendons from 30 patients with chronic painful Achilles tendons were examined. VON was
evaluated for each tendon. Visual analog scale pain (VAS) and the Victorian Institute of
Sport Assessment-Achilles questionnaire (VISA-A) were used to assess the subjective
severity of the Achilles tendinopathy. Of the 40 symptomatic tendons, neovascularization
was registered in 97.5% (n = 39). The VON ranged from 0 mm?to 618 mm?® with a mean
VON of 111 mm?®. The Spearman correlation coefficients between the VAS and the VON,
VSIA-A and VON were 0.326 (p = 0.04, power = 0.75, effect size = 0.39), -0.246 (p =
0.127, power = 0.89, effect size = 0.46), respectively. As conclusion, the VAS showed a
positive correlation with VON, while no correlation was found between VISA-A score and

VON. The VON can be used to interpret the level of the pain in Achilles tendinopathy.
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1. Introduction

Achilles tendon pathology is one of the more common conditions encountered by the foot
and ankle surgeon. While it most frequently affects the athletic population, it can also lead to
significant morbidity in the older and sedentary patient (Nicol et al. 2006; Tan and Chan 2008;
Daftary and Adler 2009; Krahe and Berlet 2009). It has been recommended that the clinical
syndrome, characterized by a combination of pain, localized tenderness, impaired

performance and swelling, is labeled “Achilles tendinopathy” (Paavola et al. 2000).

The diagnosis of Achilles tendinopathy is mainly based on a careful history and detailed
clinical examination (Longo et al. 2009). The natural history of symptomatic chronic Achilles
tendinopathy and its relationship to future pain or tendon pathology is unknown (Ohberg and
Alfredson 2002; Maganaris et al. 2008; Tan and Chan 2008). An increasing degree of
degeneration with limited or no inflammation was present. The cause of pain in chronic
Achilles tendinopathy is thought to be related to the presence of neovascularization
(Richards et al. 2005; van Snellenberg et al. 2007). However, there are always some
arguments about the correlation between the severity of symptoms and the
neovascularization score. Some studies believed that the presence of neovascularization in
the Achilles tendon was shown to correlate with pain in patients with chronic midportion
Achilles tendinosis (Ohberg and Alfredson 2002; Alfredson et al. 2003; Ohberg and Alfredson
2003; Alfredson and Ohberg 2005; Lind et al. 2006; Sengkerij et al. 2009). Though other
evidence demonstrated that a negative correlation existed between the presence of
intratendonous neovascularization and functional tests (Peers et al. 2003; Zanetti et al. 2003;

Miquel et al. 2009).
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Diagnosis of Achilles tendon disorders is often done by imaging (Schepsis et al. 2002; Harris
and Peduto 2006). Magnetic resonance imaging (MRI) is often employed to reliably indicate
the potential for measuring tendon structural changes after an injury, disease, and altered
loading(Shin et al. 2008). Some reports (Romaneehsen and Kreitner 2005; Gardin et al.
2006) interpreted the severity of pain and functional impairment was correlated to increased
mean intratendinous signal in the painful tendon in all MR sequences. High resolution
ultrasonography has been likely to be introduced in the observation of the Achilles
tendinopathy in the last decade, providing high levels of accuracy and reproducibility in the
hands of experienced examiners (Reiter et al. 2004). Additional advantages in the use of

ultrasound is that it is readily available, noninvasive, and low cost (Astrom et al. 1996).

Recently power Doppler ultrasound (PDU) has been often applied in the evaluation of
potential tendinopathy (Weinberg et al. 1998; Ohberg L 2001; Richards et al. 2001;
Premkumar et al. 2002; Richards et al. 2009), especially in correlating the PDU findings with
the clinical severity of the symptom (Breidahl et al. 1998; Reiter et al. 2004; Sengkerij et al.
2009). The preferential use of PDU is because it shows more tendon microvascularity than
colour Doppler ultrasound (CDU) in tendinopathy (Richards et al. 2005). Most of the previous
work concluded there was a non-linear relationship between Achilles tendonopathy and the
amount of microvascularity, but not between PDU and duration of symptoms (Fenwick et al.
2002; Richards et al. 2005; Richards et al. 2008). In other words, the symptomatic Achilles
tendin can exist with or without detectable neovascularization. There might be
neovascularization in all Achilles tendinopathy; however, a report indicated that a flow slower

than 4-6 mm/sec is not detectable on Doppler ultrasonography (Peers et al. 2003).

The clinical applications of vascular 3D ultrasound (3D US) imaging has been developed in
the last decades and the assessment of flow in the kidney, placenta, prostate and carotid

artery (Fenster and Downey 1996; Nelson and Pretorius 1998). The benefit of 3D US is that
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it is able to localize and visualize a functional abnormality relative to the underlying anatomy.
In addition, a study (Katamay et al. 2009) presented a new method for measurement of the
volumetric blood flow in absolute units in the ophthalmic artery by using an ordinary 3 - 12

MHz linear ultrasound transducer.

A previous study in corpses showed that the quantitative assessment of intravascular volume
and the vascular patterns of the human Achilles tendon may play an important role in the

pathogenesis of Achilles tendon rupture (Stein et al. 2000).

A special 3D PDU analysis system was therefore devised to observe the vascular conditions
in the symptomatic Achilles tendon, in order to acquire the overall neovascularization flow
pattern. In addition, by knowing the quantification of neovascularity, the thesis also aims to
correlate the neovascularization to the clinical severity in Achilles tendinopathy.

The presence of neovascularization in Achilles tendon is associated with the tendinopathy,

the VON correlates with the clinical severity.
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2. Achilles Tendon Anatomy

Atendon is a tough bundle of fibrous connective tissue that usually connects muscle to bone
and is capable of withstanding tension (Franchi et al. 2007). Tendons are similar to ligaments
and fascia as they are all made of collagen. The difference is that ligaments join one bone to
another bone, while fascia connects muscles to other muscles. Tendons and muscles work

together and can only exert a pulling force (Jozsa et al. 1980).

2.1 Tendon Structure
2.1.1 Macrostructure

Tendons are anatomic structures interposed between muscles and bones transmitting the
force created in the muscle to bone. Basically, each muscle has two tendons, proximal and
distal. The point of union with a muscle is called a myotendinous junction (MTJ), and the
point of union with a bone an osteotendinous junction (OTJ) as shown in Fig. 2.1. The
attachment of the proximal tendon of a muscle to bone is called a muscle origin, and that of

the distal tendon an insertion (Kannus 2000).

Healthy tendons are brilliant white in colour and fibro-elastic in texture, varying considerably
in shape and in the way they are attached to bone ranging from wide and flat tendons to
cylindrical, fanshaped, and ribbon-shaped tendons. The shape and properties of tendons are
significantly related to the behaviour of the entire muscle-tendon complex (Kannus 2000;

Magnusson et al. 2003; Franchi et al. 2007).
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A bunch of collagen fibres forms a primary bundle or subfascicle (15-400um in diameter),
and a group of primary bundles forms secondary fibre bundles or fascicles whose diameter
range from 150 to 1000um in human tendons. A group of secondary fibre bundles forms a
tertiary bundle (diameter from 1000 to 3000pm in human tendons), which makes up the

tendon surrounded by epitenon (Silver et al. 1992; Kannus 2000).

Inside each fibre bundle, collagen fibrils are arranged in parallel fibre bundles running
longitudinally but also transversally and horizontally, with longitudinal fibrils also crossing

each other, forming spirals and plaits (Chansky and lannotti 1991; Jozsa et al. 1991).

It is concluded that tendon is composed of collagen fibre bundles each of them resulting from
the aggregation of single collagen fibrils, namely tens of millions of collagen fibrils, each
hundreds of microns long (Canty and Kadler 2002). The collagen fibril is the basic unit of a
tendon, and the collagen fibre is the smallest tendon unit visible using light microscopy and is
aligned from end to end in a tendon. A fibre also represents the smallest collagenous
structure that can be tested mechanically, although a larger fibre bundle makes the testing

more reliable (O'Brien 1997).

2.1.3 Tendon and collagen

Tendon contains 86% collagen, 1-5% proteoglycan, and 2% elastin as measured by dry
weights, and water is responsible for 60—80% of the total wet weight of the tendon (Lin et al.
2004). The collagen portion is made up of 97-98% type | collagen, with small amounts of
other types of collagen. These include type Il collagen in the cartilaginous zones, type ll|
collagen in the reticulin fibres of the vascular walls, type 1X collagen, type IV collagen in the
basement membranes of the capillaries, type V collagen in the vascular walls, and type X
collagen in the mineralized fibrocartilage near the interface with the bone (Fukuta et al.

1998).
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The mechanical stability of the tendinous collagen is the most important factor for the
mechanical strength of a tendon. The function of elastic fibres is not entirely clear, but they
may contribute to the recovery of the wavy configuration of the collagen fibres after tendinous

stretch (Butler et al. 1978).

2.1.4 Tendon cells

The tendon cells, called tenoblasts and tenocytes, comprise about 90% to 95% of the cellular
elements of the tendon. The other 5% to 10% includes the chondrocytes found at the
pressure and insertion sites, the synovial cells of the tendon sheath on the tendon surface,
and the vascular cells, such as capillary endothelial cells and smooth muscle cells of the
arterioles in the endotenon and epitenon (Kannus 2000). In pathological conditions, many
other types of cells can be observed in the tendon tissue, such as inflammatory cells,

macrophages, and myofibroblasts.

2.1.5 Junctions

The myotendinous junction (MTJ, Fig. 2.1) is a highly specialized anatomic region in the
muscle-tendon unit. In this region, the tension generated by muscle fibres is transmitted from
intracellular contractile proteins to extracellular connective tissue proteins (collagen fibrils) of

the tendon (Trotter and Baca 1987).

Morphological studies show that at the MTJ, the collagen fibrils insert into deep recesses that
are formed between the fingerlike processes (endings) of the muscle cells (Fig. 2.3) (Trotter
et al. 1983). This type of folding of the basal membrane of the muscle cell endings markedly
increases the contact area between the muscle fibres and tendon collagen fibres, by 10- to
20-fold (Tidball 1991). This in turn can significantly reduce the force applied per surface unit

of the MTJ during muscle contraction.
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