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Abstract

Traditionally, infrastructure modelling of logistics network design is driven by a need
to reduce costs. However, many real-world cases may involve dealing with multiple and
sometimes conflicting objectives, especially when climate change and environmental con-
cerns have been increasingly discussed worldwide.

In this thesis we devise and investigate a multi-objective evolutionary optimization frame-
work together with Lagrangian Relaxation to solve a large size Facility Location Problem
(FLP) where ‘green issues’ (('O,) and traditional objectives are solved simultaneously,
offering the decision maker a choice of trade-off solutions. Lack of benchmark data for
multi-objective FLLP with environmental objectives created initial difficulties in our re-
search. However, the opportunity to work with a leading UK supermarket supply chain
provided a good basis for generating large artificial data sets and to test our techniques
with a good range of parameter setting. The analysis of the research indicates that more
facilities could be desirable to reduce the environmental impact and that it is possible
to offer the decision maker good compromise solutions. Two variants of the FLP are
considered during the investigation for building multi-objective decision tools: the unca-
pacitated and the capacitated.

Additionally, we investigate the optimization of a single source assignment problem as
part of our collaborative work with industry. In this way we explore exact and heuristic
approaches based on cost optimization as well as considering the environmental impact
from vehicles in the two-objective approach on the models with realistic constraints. The
trade-off solutions demonstrate to the decision maker how a small increase in cost could

equate to a considerable decrease in the distance travelled by the vehicle.
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Chapter 1

Introduction

1.1 Research motivation

Over the last few decades interest in man’s impact on the environment has moved from
the local to a global level of concern. There is a general consensus that rising temperature
is contributing to disappearing glaciers and increasingly unstable weather patterns around
the globe [129]. It is very likely that greenhouse gasses, such as carbon dioxide (C"O,),
methane (("f{4), nitrous oxide (:V,()) raise the temperature near the surface of our planet
[129]. The greenhouse gasses produced by transport and other activities need to be re-
duced. Some companies are already trying to help the environment through the use of rail
[19] and other methods, such as shipment consolidation. Under the Kyoto Protocol, the
UK is now legally required to reduce greenhouse gas emissions by about 12.5% by 2012.
The threat of climate change has been increasingly discussed at an international level,
with greenhouse gas emissions from fossil energy sources being at the forefront of gov-
ernmental concerns. Transportation, industrial processes and other commercial sectors
have been linked to an increase in the greenhouse effect through their release of carbon
dioxide, even though the influence of other gases should not be under estimated. The
annual carbon dioxide (('0),) emissions from all transport increased by 17 million tonnes
of carbon in the UK during the period from 1970 to 2004 [34]. Although the growth rate
has slowed down considerably since 1990, clearly the Government would like to see the
trend reversed and emissions cut. Figure 1.1 shows a particular concern in the rise of ('O,
emissions over the past decade from heavy goods vehicles (HGV) and light duty vehicles

(LDV), by 19% and 33% respectively [37].
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Figure 1.1: UK carbon dioxide emissions for road transport [37].

Historically a supply chain or logistics network has been defined as “a system whose con-
stituent parts include material suppliers, production facilities, distribution services and
customers linked together by the feed forward flow of materials and the feedback flow of
information” [106]. The main features of a traditional supply chain {9] are illustrated in
Figure 1.2, where the solid arrows represent material flows and the dotted arrow represents
information flow. When designing a supply chain network, different levels of decisions
need to be considered, from strategic through to operational. Strategic decisions typically
have a planning period of many years and fong lasting effects. The identification of the
number, locations and capacities of serving facilities, such as distribution centres (DCs)
and warehouses, in a supply chain network, would normally be regarded as strategic plan-
ning. Tactical decisions involve a shorter planning horizon, and they are usually revised
monthly or quarterly. Tactical activities include the selection of suppliers, assignment of
products to DCs, and determining the distribution channel and the type of transportation
mode. Finally, operational decisions, such as scheduling and routing activities, consider

the day-to-day flow of products through the network, the amount of the inventory to be
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Distribution centres

Suppliers Manufacturers Retailers Customers

Information flow

Material flow

Based on Beamon [9].

Figure 1.2: Traditional logistics network.

held by the facilities and so on. These decisions can be modified easily within a short

period of time, for instance on a daily or weekly basis.

In the last ten years several major companies have restructured their storage and distribu-
tion systems with a view to reducing their costs, and have subsequently reduced their CO;
emissions as a result of those changes. The factory gate pricing (FGP) concept, where the
retailer is responsible for transportation of the product from the supplier, has been ana-
lysed for the UK grocery [91] and the Dutch retail industry [67]. Both studies show that
cost reductions have brought significant environmental benefits, such as reduced conges-
tion and transport kilometres/miles. Potter et al. [91] analyse the Tesco supply chain and
suggested that by implementing FGP with consolidation centres for inbound deliveries,
a reduction of 28 per cent in vehicle-miles required to transport products to DCs could
be achieved, equating to over 400,000 miles per week. Aronsson and Huge Brodin |3]
describe three case studies, where companies had undergone changes in their distribution
structures that had a positive effect not only on costs but also on the environment (reduced
cmissions). Among some of the typical changes made are new distribution structures with
fewer nodes, larger warehouses, the introduction of new information systems, consolid-
ation of flows, standardized vehicles and load carriers, and changes in transport mode.

Therefore a reduced environmental impact frequently results as a by-product of a more
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efficient distribution system. In such cases improvements in environmental performance
can be viewed as positive side effects of traditional methods, without having a fully integ-

rated ’green’ supply chain.

But not all infrastructure changes lead to a positive impact on the environment. Kohn
[64] describes a case study of a manufacturer of submersible pumps and mixers where he
analyses the effects of changing from a decentralised to a centralised network and reveals
that lowering costs and improving service performance produce a negative impact on the
environment. The overall analysis of direct effects from road transport indicates increase
in both tonne-kilometres and ("), emissions. These findings correlate UK statistics, that
the centralisation of warehousing which was done to reduce inventory has had a direct
impact on transportation, increasing the average length of haul from 79 km in 1990 to
87 km in 2004 [33]. The same time, the analysis also opened new opportunities for the
company to consider decisions that improve environmental performance of the network,
such as shipment consolidation, change of transportation mode (e.g. from road transport
to rail) and a reduction in emergency deliveries. Obviously, there are constraints and diffi-
culties that can prevent companies from fully exploiting these opportunities. For example,
a switch from road to rail would be difficult for many companies, as in the case discussed
by Kohn and Huge Brodin [65], due to limitations imposed by the rail infrastructure of
the European Union, but for other companies modal change may be more realistic and
beneficial. Hence, the structural changes revealed an opportunity to make environmental
improvements in its logistics operations. However, it is clear that environmental benefits
are frequently a welcome result of an infrastructure redesign process aimed at reducing
costs, this is not always the case as can be seen from the research discussed in Kohn [64].
For this reason, there is a need to address environmental objectives explicitly as part of

the logistics design process by integrating economic and ’green’ objectives.

1.1.1 Infrastructure modelling

Strategic design of a logistics network focuses on infrastructure modelling, which is not
new to academia and has a very rich literature. It is the strategic decision processes which

influence both tactical and operational level decisions for the long term efficient opera-
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tion of a network. It determines the optimum number, capacity, location and allocation
of facilities (such as warehouses, distribution centres and consolidation centres) to ensure
cfticient commodity flows from the service providers to the market. Infrastructure model-
ling techniques can be used with single or multiple objectives for simple single or multiple
product networks. A large range of techniques have been applied to infrastructure model-
ling, from integer, dynamic, mixed-integer linear programming to heuristic methods and
genetic algorithms. Coyle et al. [21] describe the principle modelling approaches such
as mathematical optimization, simulation and heuristic models. Mathematical optimiza-
tion aims to find optimum solutions based on precise mathematical procedures. Heuristic
approaches, on the other hand, do not guarantee optimal solutions but can produce an
acceptable solution in a reasonable amount of time. Simulation allows a user to test the

effect of alternative locations on costs and service levels.

Traditionally, infrastructure modelling mainly focuses on a single objective function such
as cost minimization or profit maximization, with all customer demands satisfied to a cer-
tain minimum level, and without exceeding the capacities of the facilities. With increasing
environmental concerns and/or high levels of commercial competition, there is a need to
deal with objectives to minimize the environmental impact and improve customer service
simultaneously with that to reduce cost or maximize profits. When multiple objectives are
involved then, conventionally, companies will try to adjust the various parameters under
their control in order to simultaneously maximize profit (or minimize costs) and optimize
customer service, for example. But, the two objectives are frequently in conflict and de-
vising a single performance measure that weights the two objectives in a satisfactory way
is a challenge. An added complication arises when we wish to incorporate appropriate

quantifying environmental measures into the model.

There are several different approaches to dealing with multiple objectives. Traditional
methods require user input to prioritize or weight the various objectives, in advance of
any optimization. In recent years, however, a new approach has been developed that
involves no such judgments and produces a set of viable alternatives (a Pareto set) from
which a decision maker can make an informed selection at a later stage. This approach

has the advantage that excellent solutions can be found that may be missed by the other
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methods. The disadvantage is that it may generate a large number of potential solutions.

1.1.2  OR and environmentally friendly network design

Operations Research (OR) uses mathematical or heuristic methods for analysis, optimiza-
tion and decision making for solving real-world problems. A problem is normally formu-
lated as a set of mathematical expressions with objective function(s) and constraints. The
objective function, such as cost minimization, measures a system’s performance whereas
the constraints enforce realistic conditions, such as service level, to generate feasible solu-
tions. Today the need for ‘desirable’ environmentally friendly networks is becoming ever
more urgent. Bloemhof-Ruwaard et al. [14] address the need for an integrated assess-
ment model to consider all aspects of the system, to identify the causes, measure the
emissions, and assess the efficiency of transportation systems from a global perspective.
They claim that the added value of OR consists of evaluation (efficiency) and improve-
ment (effectiveness) of emission and waste reduction scenarios. It is also important to
model environmental issues as objectives, rather than as constraints, because modelling
them as objectives will generate more information regarding cost and implications of en-

vironmental impact [18].

This thesis focuses on three research areas: infrastructure modelling, environmentally
friendly logistics design and multi-objective optimization. Infrastructure modelling at
strategic and tactical level, is also known in OR as the Facility Location-Allocation Prob-
lem (FLP) and determines the optimum number, location and allocation of facilities. On
the other hand, the Generalized Assignment Problem (GAP) focuses only on the alloca-
tion of customers to the facilities, and not the location of facilities. We are interested in
both the FLP and the GAP in this thesis. Environmentally friendly logistics implies “an
environmentally friendly and efficient transport distribution system” [95] and the focus of
this thesis is on designing such a system that integrates transport operations into infra-
structure modelling and minimises the environmental impact in terms of (), emissions

from running transport and depot operations.
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1.2 Research Hypothesis and contribution

The physical infrastructure of logistics networks identifies the number, locations and al-
location of open distribution centres, and has a direct effect on freight transport operations
[72]. Traditionally, changes in logistics infrastructure have been driven by a need to re-
duce total costs and improve customer service levels and until recently environmental

benefits have not been a major concern.

The aim of the current research is to investigate the feasibility of building multi-objective
optimization (MOO) decision support tools for modelling the physical infrastructure of
medium and large size logistics networks with special focus on the environment. Min-
imizing the environmental impact from the transport and depots is incorporated into the
modelling as well as traditional objectives, such as minimizing cost and improving cus-
tomer service level simultaneously. We explore a range of approaches to multi-objective
optimization on different supply chain models from the traditional weight-based method,
which transforms the problem into a single objective optimization and requires the user’s
input to prioritize or weight different objectives, to the latest multi-objective evolutionary
algorithms (MOEA), which generate a large number of non-dominated solutions simul-
taneously. New approaches that are based on MOEAs, but constrain the size of the solu-
tion set will also be investigated. The method involves using empirical data in conjunction
with industry. A particular interest of the project is the close integration of transport man-
agement within supply chains, with a view of having more control over the environmental
impact of goods transport. Throughout the research presented in this thesis, we are trying

to answer following two research questions:

e Is it possible to build multi-objective optimization decision tools for strategic mod-
elling of large size traditional logistics networks where financial and environmental

objectives are solved simultaneously?

e [s the optimum design of a particular logistics network based on cost the same as

the optimum design based on (’(), emissions?

We will come back to these research questions in the conclusion chapter and discuss how
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they have been addressed through out the research presented in this thesis.

The contribution of the research presented in this thesis summarised below:

89

. We have demonstrated on a case study of a Pan-European automotive network based

on Hammant [ 124] that the optimum design based on cost for infrastructure mod-
elling (number of open depots) is sensitive to the vehicle utilization ratios when

optimized by cost or ("(), emissions.

. We have undertaken a sensitivity analysis on Sainsbury’s secondary distribution

network into the effect of changes in various key variables on the allocation of the
stores to depots. It allowed us to understand the relationship between transportation
and warehousing factors and the allocation of stores. An environmental impact in
terms of ('O, emissions from total vehicle-km travelled was calculated for a cost-
based and distance-based optimization as a single-objective function. The analysis
showed that single-objective optimization based on cost or distance generate dif-
ferent results with different allocations therefore multi-objective approach could be

applied to generate trade-off solutions.

A prototype of multi-objective optimization tool for assignment problem based on
the Sainsbury case study was developed where two objectives are solved simultan-

eously: minimizing costs and minimizing environmental impact (C'O;, emissions).

. We have developed new heuristic techniques for capacitated allocation of customers

to open depots, focussing on large size problems with two capacity constraints.
This technique is also utilized in the multi-objective capacitated facility location
problem. The heuristic focuses on generating feasible solutions as part of an upper

bound assignment procedure for single and multiple products.

Software for generating large size data instances has been developed for the capa-
citated allocation problem and the capacitated facility location problem. Our data

sets reflect the real-life supply chain and based on Sainsbury’s network model.

A prototype of the multi-objective optimization tool was developed for uncapacit-

ated and capacitated facility location problems where economic costs and envir-
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onmental (('(); emissions) impact from energy consumption in depots and trans-
portation are considered. For the capacitated model, economic costs consist of

transportation and depots components with time and distance based formulations

are considered.

1.3 Note on Implementations

All algorithms used in this thesis are implemented in the Java programming language.
This encapsulated using custom-based classes, functions as well as standard packages
and classes with built in functions of the Java 2 platform, standard edition. Chapters 5,
6, 7 and 9 also use the CPLEX®) optimization engine and associated packages with the
Java programming language. This approach allowed the flexibility of implementing the

user interface in Java and the power of CPLEX®) for solving data instances to optimality.

As part of the evaluation throughout our research we compared the quality of our heurist-
ically generated solutions either with previously published results in the literature or with
the best known solutions produced by CPLEX(R) optimization software. Where it was not
possible to do, the solution was compared to the known lower bound (LB) solution. As
well as looking at the solution quality, the computational times for finding those solutions
were analysed for some of the instances because current research focuses on large size
data instances, and run time can easily become an issue. When applying MOO techniques
for the capacitated facility location problem, each heuristic algorithm run 10 independ-
ent times for each data instance to obtain the final set of trade-off solution to ensure the

reliability of the technique.

1.4 Thesis Structure

Chapter 1 describes the research motivations and hypothesis for the research presented
in the thesis. The contribution and achievements of the research are documented and the

structure of the thesis is presented.
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Chapter 2 introduces the area of logistics modelling in an operational research context,
and covers a literature review of the FLP and GAP. ‘Green’ formulations of supply chains
are also presented in the chapter, together with different performance measures that are
discussed in terms of their respective objective functions for green and traditional supply

chains and their application in the literature.

Chapter 3 provides background information on the different approaches in the area of
multi-objective optimization and its application within logistics design. The evolution-
ary multi-objective optimization algorithms NSGA-II and SEAMO?2 are presented in the

chapter in detail.

Chapter 4 documents the findings of the analysis on the simulation model of a Pan-
European network from the automotive sector which is based on the case study by Ham-
mant [124]. The research analyses the ‘optimum design’ based on costs and on CO,
emissions from transportation and energy usage when decisions are made regarding the

number of open depots and the vehicle utilization ratio.

Chapter S documents our investigation into the impact of changes to key variables, such
as fuel price and labour costs, on the allocation of the stores to depots based on a Sains-
bury’s case study. A sensitivity analysis is performed using the CPLEX({®) optimization

engine which uses techniques to solve problems to optimality.

Chapter 6 extends the single-objective Sainsbury’s study to a two-objective optimization
approach using classic weight based optimization. The distance based and cost functions
are considered with different weights to give a decision maker a set of valuable trade-off

solutions for the assignment problem (assigning stores to distribution centres).

Chapter 7 introduces two mathematical formulations of a Lagrangian Relaxation tech-
nique for a single and for multiple products where one capacity constraint is relaxed. The
formulation for a single product is used for solving large size assignment instances. Large
data sets were generated for assessing the effectiveness of the technique. The emphasis of

this chapter is on finding feasible solutions as part of the assignment routine.

Chapter 8 documents an exploratory study into multi-objective uncapacitated facility

location for environmentally friendly design. Customer service level, economic cost and
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green objectives are incorporated into the framework. The evolutionary multiobjective
algorithms NSGA-II and SEAMO2 are compared in terms of execution times and solution

quality for the strategic design of an uncapacitated network.

Chapter 9 presents the capacitated facility location problem where economic costs and
('O, objectives are considered simultaneously using the evolutionary algorithm SEAMO2.
The data instances used for the analysis are generated randomly and based on industrial
data. Langrangian Relaxation technique discussed in Chapter 7 is utilized in assigning the

customers to the depots after identifying which depots are open.

Chapter 10 summarises the research contributions and evaluation of the related findings
across all research. Future direction with suggestions for extending the current work is

also presented here.

Appendix A presents a mathematical formulation of a Lagrangian Relaxation procedure

where two capacity constraints are relaxed (number of cases and number of stores).

1.5 Publications

The work in this thesis contributed to the following publications.

Journal Papers: Fully refereed
Harris 1., Naim M., Palmer A., Potter A. and Mumford C., "Assessing the Impact of
Cost Optimization Based on Infrastructure Modelling on C'O, Emissions”, International

Journal of Production Economics, 2010, http://dx.doi.org/10.1016/j.ijpe.2010.03.005

Conference Papers

e Harris 1., Mumford C., Naim M.(2009), "Multi-objective uncapacitated facility loc-
ation model for Green Logistics", IEEE Congress on Evolutionary Computation
(IEEE CEC 2009), Trondheim, Norway, May 18-2, pp. 2732-2739. (Fully refer-
eed)

e Harris I., Naim M., Palmer A., Potter A. and Mumford C. (2008), "Assessing the

Impact of Cost Optimization Based on Infrastructure Modelling on CO; Emis-
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sions”, 15th International Working Seminar on Production Economics, Innsbruck,

March 3-7, Pre-prints volume 3, pp 151-161.

e Harris 1., Naim M. and Mumford C. (2007), "A review of infrastructure model-
ling for Green Logistics", Proceedings of the Logistics Research Network Annual

Conference 2007, 5th - 7th September, pp 694-699.

Chapters in books
Harris 1., Sanchez Rodriguez V., Naim M. and Mumford C.,"Restructuring of logistics
systems and supply chains.”, in "Green Logistics: Improving the Environmental Sustain-

ability of Logistics ", eds. McKinnon A., Cullinane S, Browne M., Whiteing A., Kogan
Page, 2010, ISBN: 0749456787.
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Chapter 2

Logistics modelling

2.1 Introduction

This chapter reviews traditional and *“green” logistics network design at both strategic and
tactical levels, so that decisions regarding facility location and allocations of the customers
to depots can be considered simultaneously, to allow an integrated approach to infrastruc-
ture modelling. Facility location problem formulations, appropriate traditional objective
functions and cost structures are discussed for a traditional network design. In addition,
the related generalized assignment problem is introduced, paying particular attention to
single source formulation, in which each customer is assigned to only one facility. From
a green perspective, the added activities to the close loop supply chain formulation are
discussed as well as green performance measures (objectives) for logistics modelling. Fi-
nally, commercially available software packages for network design such as CAST [8]
and IBM® ILOG LogicNet Plus®) XE [68] are briefly discussed in terms of their func-
tionality and relationship to the current research. The current chapter focuses on single
objective optimization, whereas Chapter 3 describes a multi-objective optimization ap-

proach to network design.

2.2 Facility Location Problem

The Facility location problem (FLP) (also known as the location analysis problem) is a
well-known problem in Operations Research and considers decisions concerned with de-

termining the number of open facilities, their location, capacity, type of service/product
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they provide and could also consider which customers are assigned to which facilities
to ensure that their demand is satisfied. It has wide application in both the private and
the public sector where distribution centers, hospitals, retail points, fire stations, chem-
ical plants etc. are under consideration. Depending on the application area, different
objective functions and constraints are considered, varying from minimizing overall costs
to maximizing the number of clients served. In the business environment and within a
logistics context, minimizing overall cost is the most commonly used objective which
would consist of the running cost of open serving facilities (fixed costs for operating fa-
cilities, production, storage, picking activities, etc) and a transportation element to deliver
those goods to their customers. Facility location decisions could be strategic, if for ex-
ample major long-term investment in new facilities is required. On the other hand, when
the businesses are able to acquire or hire a facility for a shorter term, decisions could
be deemed tactical rather than strategic. Some of the early models in location analysis
date back to the last two centuries, and there is a rich literature of models and solution
techniques. A detailed overview of facility location formulations and solution techniques
is presented in Daskin [27], Drezner and Hamacher [28], Owen and Daskin [85]. Klose
and Drexl [63] review some contributions to the current state-of-the art in facility loca-
tion models for distribution system design, and below some of the classification types are

considered as follow:

e Discrete vs Continuous location models. In the continuous models, it is feasible to
locate the facilities anywhere of the plane whereas discrete models have an explicit

sets of possible locations.

e The objective function in the problem formulation may be of the minsum or min-
max type. Minsum models minimize the average distances while minmax models

minimize maximum distance.

e Uncapacitated vs Capacitated models. The uncapacitated facility location problem
(UFLP) assumes that facilities have unlimited capacity, whereas the capacitated

facility location problem (CFLP) imposes capacity constraints on each facility.

e Single-source vs Multiple-source. Each customer will be assigned to just one facil-
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ity in a single-source problem or to several facilities in a multiple-source problem.

e Single vs Multiple objective models. Single objective formulations dominate loc-
ation analysis research ( e.g. [50, 10, 57, 7, 4]), and involve the optimization of
a single objective, such as minimizing cost or or maximizing profit. However,
problems in real-world are frequently multi-objective nature, for example it may
be desirable to simultaneously minimize cost and maximize customer service. Des-
pite its relevance in the real world, published research on multi-objective location
problems seems to be rather limited. Multi-objective optimization for facility loca-
tion/allocation is a key topic of research in this thesis. An overview of the different
approaches and their application to logistics design is described in detail in the
Chapter 3

o Single-stage vs Multi-stage models. Multi-stage models consider the flow of goods
from several hierarchical stages; whereas single-stage focuses on one stage expli-

citly, e.g. depot-customer.

e Single vs Multiple product. If the nature of the products are homogeneous they
could be considered as a single product, e.g. chill product. On the other hand, if we
have, for example, chill, ambient and frozen product types, the problem becomes a

multiple-product formulation.

e Static vs Dynamic models. Static models consider a design over a single period of

time, whereas dynamic models take account of variation over several time periods.

e Deterministic vs Probabilistic models. Deterministic models use averaged data
based on past history or future forecasts, which is assumed to be exact and cor-

rect, whereas probabilistic models consider data under uncertainty.

e Location-routing problems combine location analysis with routing aspects of the

design.

As can be seen from the classification, the field of FLP formulation and solution tech-
niques is large. This thesis focuses on single source deterministic design models, and

covers both uncapacitated and capacitated formulations with single and multiple product
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types. It also considers single and multiple objective variants, in which traditional eco-
nomic and environmental objectives are balanced for a large size network. Chapter 3
provides a detailed overview of different techniques for multi-objective optimization and
their application to facility location and allocation, and Section 2.4 in the present chapter

gives background information on the green performance measures.

For most of this thesis we are concerned with the capacitated facility location problem,
with single source customer assignment (CFLPSS). The CFLPSS is a combinatorial op-
timisation problem that belongs to the class of NP-hard problems [105], therefore solving
it using exact algorithm poses difficulty for instances of a large size. Lagrangian relaxa-
tion techniques are leading methods for solving large CFLP and CFLPSS problems ([7],
[10], [57], [4]). Other techniques, such as approximation algorithms and metaheuristic

approaches are also applied to solving those model formulations.

In this thesis, we use the IBM® ILOG® CPLEX® (v12.1) optimization engine to
solve a single objective formulation of the CFLPSS. CPLEX®) formulates the CFLPSS
as a mixed integer programming (MIP) problem which balances optimality and feasibility
in its search using a dynamic search methodology [24]. The dynamic search algorithm
consists of LP relaxation, branching, cuts, and heuristics to find an optimal solution. The
problem formulation for CFLPSS is discussed in Chapter 9 where we use the results of
CPLEX®) optimization to compare the solutions produced by our multi-objective optim-

ization algorithm.

2.3 Generalized Assignment Problem

An initial assignment of customers to serving facilities is carried as an integral part of
solving a FLP formulation. However, the serving facilities usually remain in place for
many years, in which circumstance may change. It is common therefore, to regularly
re-optimise the allocation of customers to serving facilities, to take account of changes in
demand and/or supply patterns etc. This assignment problem is known as the generalized
assignment problem (GAP) and was first introduced by Ross and Soland [93]. Since then

many papers have been published on the GAP in the literature. It has a wide applica-
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tion, including assigning workers to jobs, staff scheduling, assigning stores to the serving
facilities and project assignment with the solution techniques are discussed in the sur-
vey by Cattrysse and Van Wassenhove {22] and Oncan [84]. The former authors discuss
the solution algorithms and relaxations of them, and the latter author focuses on real-life

applications and recent solution approaches.

The solution procedures for solving the GAP consists of exact and heuristic algorithms
and new solution methods appear frequently in the literature. In logistics network design,
examples are included in the following papers. Neebe and Rao [81] formulate a fixed
charge model assigning the users to sources as a set partitioning problem with a solution
based on linear programming relaxation. Foulds at el [44] present a mathematical model
of an allocation problem arising in the New Zealand dairy industry with heuristic and
integer programming techniques to solve it. Benjaafar et al. [12] consider the problem
of allocating demand arising from multiple products to multiple production facilities with
finite capacity and load-dependent lead times. They consider two types of demand al-
location: in the first one they allow the demand for a product to be split among multiple
facilities and in the second one demand from each product must be entirely satisfied by a
single facility. Their solution procedures determine the optimal allocation of demand to
facilities and the optimal inventory level for products at each facility. Freling et al. [45]
consider the Multi-Period Single Sourcing Problem (MPSSP) where a set of customers
is assigned to exactly one facility. They reformulate MPSSP as a GAP with a convex

objective function and extend a branch-and-price algorithm to this problem.

Lagrangian relaxation is one of the techniques which could be used to solve the assign-
ment problem, and is a relaxation technique where a hard constraint is moved into the
objective function, thus imposing a (heavy) penalty if that constraint is not satisfied. The
technique usually provides high-quality upper and lower bounds within a few iterations
[48]. There are two possible constraints which can be relaxed as Lagrangian Relaxation
bounds: the capacity constraint and the assignment constraint. For the capacitated facil-
ity location problem, several algorithms were developed based on Lagrangian Relaxation
techniques ([10], [7], [53], [48), [134], [135]). Ghiani [48] provide an excellent descrip-

tion of the application of this technique to the capacitated plant/facility location problem
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CFLP. Klincewicz and Luss [135] describe a LR heuristic algorithm for a single source
FLP where the capacity constraint is relaxed. Their LR procedure uses ADD heuristic to
find initial feasible solution for upper bound and a final adjustment heuristic technique
to improve reassignment of customers to open facilities. In the ADD procedure, facil-
ities are added one at a time to the set of open facilities and customers are assigned to
the minimum assignment cost if capacity is not violated. If such assignment is not feas-
ible, than another facility is open and reassignment is done again. In the tinal adjustment
procedure, customers are reassigned to the lowest “true” cost from assignment based on
augmented costs if there is a sufficient capacity at that particular facility. Darby-Dowman
and Lewis [134] use the same Lagrangian relaxation to identify problems for which the
optimum solution to the relaxed problem produces not feasible solution to the unrelaxed
problem through establishing relationships between fixed and assignment costs. Fisher
|39] illustrates Lagrangian Relaxation on the example of GAP because of its rich struc-
ture. Jornsten and Nasberg [136] propose a new LR approach based of a reformulation of
GAP by introducing new substitution decision variables and new constraints. They show
that the bounds from Lagrangian dual of their approach are at least as strong as the bounds

from traditional LR approaches.

In this thesis, we present three mathematical formulations of a Lagrangian Relaxation
technique which are discussed in Chapter 7 and in Appendix A for assigning customers
to serving facilities. The formulations are for a single and multiple products with two
constraints (cases and num of stores) and are based on the traditional lagrangian relaxation
of the capacity constraints of GAP as stated in Jornsten and Nasberg [136]. We extend
them to include extra constraints and multiple products which we discuss in more details

in Chapter 7.

2.3.1 Transportation and warehousing costs in logistics modelling

In logistics network design, transportation and warehousing models should be considered
as part of the process. The validity of the model formulations depend on the correctness of
any assumptions made, and it is important to reflect the realistic cost structure of the par-

ticular business environment under consideration. Factors such as utilization of vehicles,
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cost per case and many other considerations will vary considerably depending on the par-
ticular scenario. Nevertheless, it is important to understand the fundamental components
of transportation and warehousing costs. Sussams [104] provides an excellent overview

of transportation and warchousing models which are briefly discussed here:

1. Transportation model is the first key component in logistics design and reflects all
activities associated with the vehicle, and could consist of fixed costs per day, driver
cost per hour, variable cost per mile and other factors. Therefore those costs could

be differentiated into:

e Time dependent costs, which may include drivers wages and related costs and

depend on the vehicle type and working hours.
¢ Distance dependent costs which may include fuel, tyres and depreciation.

e Overhead costs which may include administration, management and supervi-

sion

2. Warehousing model is the second main cost component and is dictated by the spe-
cific purpose of the warehouse: as a transhipment point (no inventory costs) or as
a storage place for goods. Typical costs associated with warehousing model would

be as follows:
e Warehouse operations costs associated with receiving, replenishing, picking
orders depending on the throughput.

e Warehouse administration include costs associated with order processing sys-

tems, accounts, wages and salaries of the management and other staff
e Occupancy costs relate to costs associated with rent, insurance, maintenance.

e Inventory carrying costs depends on the value of the stock, amount of the

safety stock, lead times of the supplier.

The majority of formulations of the FLP at a strategic level do not consider decisions
associated with replenishment of the inventory, and transportation costs are estimated by

direct shipping [112]. Shen and Qi {112] argue that if inventory and transportation costs
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are not integrated together into the network design, it could produce sub-optimal solutions.
For this reason some researchers have started incorporating those decisions into strategic
modelling (Shen and Qi [112], Nozick and Turnquist. [80]). For example, Shen and Qi
[112] model shipment costs from a DC to its customers using a vehicle routing model
(routing costs approximation - non-linear routing costs) instead of direct linear costs and
non-linear inventory costs. The authors also assessed the benefits of integrating routing
decisions in different ways: a fully integrated approach (inventory, routing and location),
a partially integrated approach (location and inventory with direct shipping costs) and a

sequential approach (location first then inventory and routing decisions).

2.4 Performance measures for traditional supply chain

To ensure the efficient running of the supply chain, a range of performance measures have
been developed over the years. Shepherd and Gunter [101] present a taxonomy and critical
evaluation of performance measurements and various metrics of supply chains identified
from 42 journal articles and books and from online resources published between 1990 and
2005. From their review, it is clear that different research studies classify the measures
in very different ways. Nevertheless a taxonomy is presented according to the following

classification:

e According to processes identified in the supply chain operations reference (SCOR)
model which provides common metrics to analyse supply chain performance [128]:
i.e., plan, source, make, deliver or return (customer satisfaction). This allows the
identification of measures which are appropriate at the strategic, operational and

tactical levels.

e Whether the measures used are cost, time, quality, flexibility or innovation. It is
important to differentiate between cost and non-cost measures such as time, qual-
ity etc., because if a supply chain relies only on cost measures, it can produce a

misleading picture of supply chain performance [20].

e Whether the measures are qualitative or quantitative. Qualitative measures, such as



2.4 Performance measures for traditional supply chain 21

customer satisfaction, reflect the happiness of the customers with the service and
can not be measured using a single numeric measure. Quantitative measures, such

as cost, fiexibility or customer responsiveness can be directly described numerically.

Their review identified a total of 132 performance measures across different processes in
the SCOR model. A very small proportion was related to the process of return or to cus-
tomer satisfaction (5%), compared to other processes such as plan (30%), source (16%),
make (26%) and deliver (20%). Regarding the cost classification, the major proportion
focussed on cost (42%) over non-cost measures such as quality (28%), time (19%), flex-
ibility (10%) and innovation (1%). The quantitative measures (82%) were dominating
qualitative (18%). One of the main problems with the all metrics discussed is that they do

not capture the performance of the supply chain as a whole.

Current er al. [18] classify the objectives specifically for facility location into four cat-
egories: cost minimization, demand oriented, profit maximization and environmental con-
cerns. Environmental objectives such as air quality, risk to surrounding population, qual-
ity of life are included in their literature review. In this thesis we consider two traditional
objectives: minimizing the cost and ensuring high customer service levels, which are rel-
evant to any network design. Zhang and Huo [127] point out that there are various ways
to define customer service and the perception would be different from a customer’s and
supplier’s point of view. The infrastructure of the network has an enormous impact on
the customer service level. They define the customer service for a facility location from a

transportation and an inventory point of view:

e Transportation perspective - customers located near the serving facility receive their
orders faster from those facilities, therefore elapsed time between placing an order
and its shipment will be shorter for those customers. The customer service level in

this case is represented by the distance between a serving facility and the customer.

e Inventory perspective - out of stock rate and order fulfillment rate would be ex-
amples of the measures used in this viewpoint. The out of stock rate relates to

the percentage of the customers’ orders that cannot be filled at the serving facility,



2.5 Green supply chains 22

whereas the order fulfillment rate is the percentage of orders filled. A lower out of

stock rate means a higher customer service level.

2.5 Green supply chains

The location analysis for facilities that produce hazardous materials, such us nuclear react-
ors and chemical plants, has been studied since the 1970’s, when the environmental impact
of airborne pollutants first became an issuc. Today the need for *desirable’ environment-
ally friendly networks is becoming ever more urgent. Beamon [9] recognized the essential
objective of the green or extended supply chain as the evaluation of the total direct and
eventual environmental effects of all processes and all products. A fully integrated supply
chain Figure 2.1) is described by Beamon as a supply chain having all the elements of the
traditional configuration (Figure 1.2), but extended to incorporate product and packaging
recycling as well as reuse and/or remanufacturing operations within a semi-closed loop.
Consequently, it incorporates the elements of a reverse supply chain, reflecting the entire
life cycle of the goods. Therefore, the main focus of a green supply chain is reducing

energy consumption, emissions and waste, and increasing recycling and reuse.

To help deal with of the additional complexity of the extended supply chain, Beamon

identified a new set of potential strategic and operational considerations including:

the number and locations of facilities for product/packaging collection and re-use;

the effects of traditional supply chain strategies (e.g., decentralised versus central-

ised functions, facility location decisions) on environmental performance;

e simultaneous operational and environmental supply chain optimization;

incorporating environmental and operational goals into traditional analysis.

An example where a closed loop supply chain was considered could be seen from Pak-
soy et al. [89] who propose a multi-objective linear programming model to solve the

green supply chain optimization problem with forward and reverse flows on a small size
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Figure 2.1: The extended supply chain.

study with hypothetical data. The model aims to minimize total cost through minimising
transportation costs in forward and reverse logistics, minimising total purchasing costs,
penalty costs for extra ('), emissions and also total CO, emissions. They use LINDO

6.1 to obtain the optimal solution.

2.6 Green performance measures

A review of performance measurement systems and metrics under development for green
supply chains is given by Hervani, Helms and Sarkis [52]. The selected list of metrics they
identified range from atmospheric emissions to energy recovery. They include measures
for on-site and off-site energy recovery, recycling and treatment; spill and leak preven-
tion; and pollution prevention. Additional general measures include total energy use,

total electricity use, total fuel use, other energy use, total water use, habitat improvements



2.6 Green performance measures 24

and damages due to enterprise operations, cost associated with environmental compliance,
and others. Hervani, Helms and Sarkis point out that organizations may choose their en-
vironmental performance measurements specifically to meet new government regulations

on emissions, energy consumption or the disposal of hazardous waste.

Bloemhof-Ruwaard ez al. [14] address the increasing need to incorporate quantitative
environmental measures into OR modelling. Beamon [9] outlines a range of sustainable
performance measures, such as emissions, total energy consumed and others for green
supply chains. Taplin et al. [107] propose a list of indicators for a sustainable metal
production system for the simulation of production, transportation and recycling activities.
More cfficient use of energy and raw materials, reducing ('), emissions, scrap and waste

and higher productivity made sustainable development practical and measurable.

From a logistics perspective, Aronsson and Huge Brodin [3], in their comprehensive lit-
erature review, identified the measurement of emissions as one of the most popular ways
of assessing environmental impact. They noted, however, that even though the direct en-
vironmental impact can be assessed in terms of emissions, it is the root causes of these
emissions that need to be addressed. Exactly what action to take needs to be determined
by an appropriate analysis of the supply chain as a whole. Determining which sustain-
able measures to use and the difficulty of calculating them has been discussed by several

researchers ([3], [52], [9]).

Potter et al. [90] propose a list of potential performance indicators for sustainable distri-
bution which they refine using a quasi-delphi study. This study is a variation of the Delphi
approach where a quasi Delphi group of people is brought together for a structured dis-
cussion |132]. In the research, presented by Potter et al. [90], a group of academic and
industrial experts considered and refined performance measures and a questionnaire that
has been developed for leading practitioners. As a result of this study, emission rate per
item, amount of payload used (measure of vehicle utilization) and energy use per item are
the top three ranked performance indicators. Khoo et al. [62] use low transport pollution
with faster deliveries between plants, promotion of recycling of scrap metal and conser-
vation of energy in the modelling of a supply chain concerned with the distribution of

aluminum metal.
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Some researchers have noted that an improved environmental impact sometimes follows
a supply chain redesign exercise based on traditional performance measures, such as cost
or customer service. However, as discussed in detail in Chapter 1, we note that this is not
always the case. Therefore we strongly believe there is a need to consider environmental
measures explicitly during the optimization process at the same time as traditional object-
ives. Khoo et al. [62] use a simulation approach to select plant locations that balance low
total market costs and low transport pollution, fast deliveries between plants, promotion
of recycling of scrap metal and conservation of energy, in a supply chain concerned with
the distribution of raw aluminum metal. The simulation model was used to demonstrate
the consequences of ignoring resource preservation and recycling activities as part of the
network design. Paksoy [88] proposed multi-period supply chain design model which
aims to minimize total transportation costs, ('(J), emissions from transportation and man-
ufacturing, total penalty cost as a result of exceeding the emission limit. The model was

validated using hypothetical data and solved using the LINGO package.

Other studies ([61]; [83]) use multi-objective optimization techniques for evaluating the
trade-offs between different objectives. From our research we identify only a small num-
ber of papers which explicitly relate to multi-objective infrastructure modelling for Green
Logistics with some of these specifically address hazardous network structures. Multi-

objective optimization is discussed in more detail below and in the Chapter 3.

As well as using individual sustainability measures, there is an increasing need to incor-
porate these measures into an assessment framework/methodology that will include en-
vironmental measures alongside economic and social metrics. Singh et al. [103] provide
an overview of various sustainability indices that have been included. In their paper, they
consider sustainability in its broadest sense, covering aspects other than the environment,
such as product-based sustainability and quality of life. In total, 70 indices were grouped
under 12 categories, including the following environmental indices: Eco-system-based
indices (Eco-Index Methodology, Living Planet Index, Ecological Footprint); Compos-
ite Sustainability Performance Indices for Industry (composite sustainable development
index, ITT Flygt Sustainability Index, G Score method); Product-based Sustainability in-

dex (Life Cycle Index, Ford of Europe’s Product Sustainability Index); Environmental
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Indices for Industries (Eco-Points, Eco-compass, Eco-indicator 99); Social and Quality of

Life-based Indices (e.g., Index for sustainable society) and others.

An example of a sustainable methodology use during supply chain design is described in
Hugo and Pistikopoulos [61]. They present a generic mathematical programming model
for assisting the strategic long-range planning and design of a bulk chemical network.
Their multi-objective mixed integer programming problem is formulated to minimize the
environmental impact resulting from the operations of the entire network whilst simul-
tancously maximizing the network’s profitability. The method for impact assessment, the
Eco-Indicator 99 method [111], is incorporated within the quantitative life cycle assess-
ment model to formulate an appropriate environmental performance objective to guide
strategic decision making. The Eco-Indicator 99 method attempts to model potential en-
vironmental impact on a European scale according to three categories: Human Health,

Ecosystem Quality and Resource Depletion.

Another example involving the trading off of cost against environmental impact is de-
scribed in Quariguasi Frota Neto et al. [83], where the reorganization of a European pulp
and paper logistic network is described. The environmental impact was assessed using
an environmental index proposed in Bloemhof et al. [123]. This index uses life cycle
analysis (LCA) and considers the diverse emissions produced in the supply chain: namely
global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, ni-

trification and solid waste.

To assess the environmental impact of supply chains, there is a pressing need for decision-
making/support tools that incorporate green performance measurements. Hervani, Helms
and Sarkis [52] point out that, although environmental performance measures are being
incorporated into existing tools at an increasing rate, current availability is far from ad-
equate. They discuss the various tools that are available, including the analytical hierarchy
process, balanced scorecard, activity-based costing, design for environmental analysis and
life cycle analysis. Some of the tools could be directly applied to aspects of green sup-
ply chain management and performance, while others require adjustments and extensions.
The authors point out that on the whole there is no perfect tool for traditional or green per-

formance measurement systems, and that their usage is greatly dependent on acceptance
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by organizations. However, introducing new tools or tools with an “unfamiliar feel” into a
busy commercial environment can be challenging, if their adoption involves large capital

investment. significant staff retraining or an unacceptable clement of risk.

2.7 Environmental impact from transportation and facil-
ities

Bloemhof-Ruwaard et al. [14] point out that the extent of environmental problems over
the last few decades has shifted from the local and regional level to a continental and
global level. The environmental changes expand from the air quality and health at the local
level to climate change and depletion of the ozone layer on the global level. Greenhouse
gases, such as carbon dioxide ((’0,), methane (('//4) and nitrous oxide (/Vo()) contribute
to climate change and the temperature rise near the surface of our planet. Therefore the

greenhouse gasses from transport and energy need to be addressed urgently.

Carbon dioxide emissions are produced by burning fossil fuel, and from a transportation
point view are caused by different modes of transport such as road, rail, water and air.
Different factors have an impact on the actual levels of emissions from road transportation
and can be grouped under the following categories according to the National Research

Council [82]:

e Travel-related factors - these depend on the trip taken and distances travelled and
vary for different vehicle operating modes. The speed and acceleration of the

vehicle and load on the engine over the distance of the trip also have impact.
e Driver behaviour, such as smoothness and consistency of vehicle speed.

e The physical highway network characteristics, such as long grades, signalized in-

tersections and volumes of traffic entering the traffic flow.

e Vehicle characteristics such as fuels, engine size, vehicle condition.
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Methodology Reference

Carbon dioxide emissions per tonne-kilometre Kohn [64]

(The Network for Transport and Environment (Sweden))

Life cycle assessment model Hugo and Pistikopoulos [61}
Quariguasi Frota Ncto er al. [83]

Bojarski et al. {16]

Table 2.1: Examples of papers using different methods for calculating environmental

impact.

There are different formulations available for calculating road related emissions. The
National Atmospheric Emissions Inventory (NAEI) (78] provides a spreadsheet which
contains a complete sct of speed-emission factor coefficients for ('(), and other green-
house gases for different types and sizes of vehicles in the UK fleet travelling at average
speeds. The Department for Environment, Food and Rural Affairs (DEFRA) [32] provides
greenhouse gas (GHG) conversion factors to convert existing data sources, e.g. freight
fuel consumption, electricity/gas consumption etc. into ('(J, equivalent data. Their car-
bon dioxide formulation also takes into account the diesel lorry type and percent of laden
weight of the lorry (i.e. the maximum carrying capacity of the vehicle). Kohn [64] uses an
equation from the The Network for Transport and Environment (Sweden), which allows
the calculation of carbon dioxide emissions per tonne- kilometre for a particular vehicle
type. Some researches calculate O, emissions directly [64] and others use different
methods for assessing the potential environmental damage. Table 2.1 shows examples of
papers which include different methodologies for assessing environmental impact. Also
the importance of monitoring green supply chain management practices with factors such
as green purchasing, design of products for reduced consumption of material/energy and
others is discussed by Zhu et al. [126]. For the present study we are using the DEFRA [32]
formulation because it is widely used as a guideline to help UK businesses to calculate
('0), emissions and thus identify and address their environmental impact. Our environ-

mental model takes into account ("), emissions from both transportation and depots.

McKinnon [74] presents an analytical framework incorporating all the factors which in-

fluence traffic level and related energy consumption, to review the opportunities for the
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reduction of ('), emissions from the freight sector at a macro level. The framework links
the weight of the goods produced/ consumed to ('(), emissions from freight operations.
Handling factor (no. of links in the supply chain), average length of haul, modal split,
average load on laden trips, average % empty running, fuel efficiency and ('O, intensity
of energy source (fuel-specific) are seven critical key ratios which affect the overall ('O,
intensity of the freight sector. Determinants such as supply chain structure, choice of
transportation mode, vehicle utilization on laden trips and others have a direct impact on
the respective key ratios for reducing ('(), emissions. The report illustrates the sensitivity
to total ('), emissions from the freight sector when hypothetical changes have been ap-
plied to the key ratios. McKinnon [74] observes that modal split, average payload weight,
the proportion of empty running and fuel efficiency have been moving in a direction which

reduces ( '(), emissions per tonne-km over the period 1990-2004.

Depots have a very important role in logistics network design. They are used for stock-
ing products or as an exchange point for transportation modes to service their stores or
customers. Greenhouse gas emissions in buildings arise from the direct burning of fossil
fuels to produce electricity and heat. The energy consumption of non-domestic build-
ings, such as depots or warehouses depends on the type of the product being stored. The
storage of frozen and chilled goods would involve having a special storage space, which
would involve higher energy consumption. DEFRA [32] provide UK conversion factors
for different fuel types, such as electricity and natural gas to convert available energy data
into ('O, equivalent data. In the UK electricity is generated mainly by the burning fossil
fuels such as coal, natural gas and oil; whereas in other countries the main supply could
come from different sources. For example, nuclear power dominates electricity produc-
tion in France. Therefore, different electricity conversion factors need to be applied to the

available energy data.
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2.8 Benchmarking data sets for multi-objective formula-

tion with environmental objectives

In this thesis we consider traditional and environmental objectives simultaneously as part
of the multi-objective facility location-allocation modelling. Our research confirmed find-
ings published by Villegas et al. [109] that there are no multi-objective optimization prob-
lem instances available in the public domain, which created initial modelling challenges
in our research. To address this problem, we generated random instances for bi-objective
problems and the methodology for creating those instances is discussed in the Chapter
9. The generated problem instances reflect realistic features of the major retail supply
chain in UK and considered as one of the contributions of this thesis to encourage further
work in multi-objective design. In addition, we generated random data instances for the
capacitated allocation problem which also have realistic characteristics and are suitable

for bi-objective design. This methodology is discussed in Chapter 7.

2.9 Commercial Software for Strategic Modelling

Modelling of logistic networks at the strategic level is supported by specialized commer-

cial computer tools such as CAST [8] and IBM®) ILOG LogicNet Plus® XE [68].

(’AST is a commercially available supply chain network design application available
from Barloworld [8] for modelling global or regional logistics networks. The software is
used by third party logistics, manufacturing, retail and consultancy sectors on a world-
wide scale to model different supply chain strategies to improve service and reduce costs.
CAST allows the user to “build mathematical models of their supply chain network in-
frastructure from the points of sourcing to the points of consumption (supply side to de-
mand side)”, and all elements are considered as a single integrated model. The func-
tionality of the software includes running network strategy modelling, centre of gravity
modelling, mixed integer programming optimisation, and provides a display map of the
network, locations and roads in different countries across the world. CAST offer the addi-

tional functionally through a carbon emissions modelling for a particular network design
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in ("AST — (’O, module. This module allows comparisons of costs and ('(), emis-
sions across different scenarios taking into account different modes of transportation and
warehouse operations by country. The software allows optimization by carbon footprint,

carbon cost, supply chain cost or service level.

IBM® ILOG LogicNet Plus® XE [68] allows the modelling of manufacturing and dis-
tribution strategies: number and locations of plants, distribution centres, allocation of
products to plants, assignment of customers to depots etc. The optimization focuses on
the lowest total cost or the maximum total profit of the supply chain and calculates ('(),
emissions associated with supply chain activities or while adhering to the constraints on
the carbon footprint. The software combines a graphical interface with advanced optim-
ization software for modelling complex supply chains. The functionality of the software
includes all-in-one network design and planning, flexible mapping, and integration with

Microsoft Excel and Access tools.

On the whole, the commercially available software applications for supply chain network
design are well accepted by different sectors of industry and provide efficient solutions
to cover different formulations of network design. The use of the optimization techno-
logy based on the simulation approach and visualization of the network provide excellent
support for decision makers. However, the real world consists of more complex (and not
necessary standard) problem formulations, for which available commercial tools may not
always be suitable. The main focus of this thesis is to formulate a framework for multi-
objective optimization where financial cost and ('O, emissions objectives are solved sim-
ultaneously to produce a set of trade-off solutions in one optimization run, for large size

networks, and it seems that available software packages do not support such functionality.

2.10 Summary

This chapter provides a review of traditional and ‘green’ supply chain design where FLP
and GAP problems are discussed together with the challenges of modelling environmental
objectives as part of the design. Throughout the review, lack of benchmarking data for

the environmentally friendly design of networks provides a challenge, and it is clear that
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the creation of this type of data is essential, in order to encourage future research into
this area. Environmental objectives, such as emissions from transportation and energy
consumption in the warehouse, have to be calculated using appropriate methodologies
and this is further discussed in Chapter 4. Although, it seems that available commercial
toolkits for network design have begun to incorporate ‘green’ objectives, this tends to be
mostly as a byproduct of a cost based optimization process. This approach allows the
decision maker to assess the impact of the particular design, but very many simulations
will probably be needed to see the full picture of the trade-off solutions, using a traditional
cost-based approach. This indicates a gap in commercially available software, for which
we propose multi-objective optimization techniques, as this approach will better allow the
decision maker to see important trade off solutions that are easily missed if traditional
methods are used. Furthermore, the trade-off solutions can often be obtained much more
quickly, in a single run, simultaneously considering all objectives as they are, without
the need to assign relative importance or weights, or convert them to another unit, for
example carbon cost. The next chapter describes in great detail the various approaches to

multi-objective optimization and their current application in network design.
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Chapter 3

Multi-objective Optimization

3.1 Introduction

There are many real-life situations where a decision-maker needs to consider more than
one objective. It is often the case that a problem with multiple objectives will be converted
into a single objective problem, by combining the objectives as a weighted sum which we
explore in Chapter 6.1 on the problem of allocation of the stores to depots. We will use
an alternative approach in the facility location problem, which allows a decision maker to
evaluate a range of different trade-off solutions, for example between cost and distance,
as a trade-off or (Pareto front). When more than one objective is considered, the problem
will have multiple distinct goals. The current research aims to minimize economic costs
for one objective and minimize the environmental impact for the another objective, in the

design of a logistics network.

Figure 3.1 illustrates a trade-off front in considering a range of hypothetical designs for
a distribution network. If the company is interested only in obtaining the lowest pos-
sible cost solution, solution 6 would be chosen. On the other hand, if the emphasis is on
minimizing the pollution into the environment, solution / would be considered. In either
case, a particular single objective has high priority for the logistics modeller which does
not reflect the multi-objective thinking process. In reality, the question we will have to
ask is how can we design our network for a traditional supply chain where we can simul-
taneously minimize cost and minimize the impact on the environment? In our example,
solutions 3 and 4 have lower impact by 50%-60%, yet the cost does not appear to be very

much greater than solution 6. Thus, solutions 3 and 4 could provide the decision maker
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Cost
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Figure 3.1: Trade off solutions to balance financial and environmental objectives.

with good compromise solutions.

Following the discussion above, there are noticeable fundamental differences between
single and multi-objective optimization approaches. Firstly, there is more than one solu-
tion present in the final set of solutions when a multi-objective approach is used. This can
be clearly seen in our example illustrated in Figure 3.1 where we have conflicting object-
ives. Secondly, there are three clear goals in multi-objective optimization (MOO) [117]:
the solution set should be of good quality (as close as possible to the true Pareto front),
broadly spread (with a wide range of solutions) and evenly spread over the Pareto front.
Finally, there are different search spaces: objective space and decision space. This means
that for each solution in the decision space there is a corresponding point in the objective

space.

This chapter aims to introduce important concepts and techniques which are used in multi-
objective optimization and will be applied to the operations research (OR) problems in-
vestigated in this thesis: facility location and allocation problems. Sections 3.2-3.4 are

based on the book by Deb [31].
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Figure 3.2: Different approaches to MOQ.

3.2 Approaches to multi-objective optimization

There are different approaches to MOO and Deb [31] classifies them into two main cat-
egories:  preference-based and ideal multi-objective optimization procedures. Figure
3.2 illustrates the differences between these approaches. In the preference-based MOO
approach, firstly. based on the high-level information the decision-maker will need to
determine a relative importance vector (u:yr) for each of the objectives. For example, in
Figure 3.1, solution 5 has a higher emphasis on reducing the cost compared to the environ-
mental impact. On the other hand, in solution 2, minimizing environmental impact is more
important compared to cost reduction. In the preference-based case, relative weighings

will be assigned to the objectives which will form a composite objective function. This
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method is also known as a method of scalarising an objective vector into a single com-
posite objective function. The composite objective function is then optimized using an
appropriate technique and as a result of the optimization, one particular trade-off solution
1s produced. Sometimes, this procedure can be repeated with different preference vectors
to obtain multiple trade-off solutions. It it important to point out that the solution obtained
using this approach is very sensitive to the preference importance vector. One of the chal-
lenges with this approach is to decide on accurate preference vectors, and this tends to
make this method somewhat subjective. On the other hand, in the ideal MOO procedure,
all the objectives are treated equally and considered to have the same importance. Using
an appropriate technique will generate a set of trade-off solutions simultaneously. After
the solutions are found, the decision-maker chooses one of the generated solutions using
high-level information. Treating all objectives equally, makes this approach less sub-
jective because a user does not need to decide on the relative preference vector before the
optimization. Choosing a particular solution available from a large pool of solutions could
itself be considered a challenge, however. In practice, although the ideal MOO approach
is generally preferable, as it is less subjective. On the other hand, if the decision-maker
is confident regarding the weighting vector, then the preference-based approach could be

adequate 1o find an acceptable solution.

3.3 Dominance and non-dominated solutions

Domination is an important concept in MOO. In particular, multi-objective algorithms
aim to find non-dominated solutions, such that no solution can be considered better than
another. yet all the solutions are different. MOO allows the comparison of any two given
solutions in the objective space to whether one solution is “better’ compared to another
solution. In this section, we define all the related terminology and notations for finding

non-dominated solutions.

The concept of domination refers to the idea where two solutions are compared to each
other on the basis of whether one solution dominates another solution or not. To demon-

strate this concept, let us consider a problem with A/ objectives. Definition | (below) is
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taken from Deb’s book [31]. It is equally appropriate for minimization or maximization
objective functions. The notion in the definition 7 < j implies that the solution / is bet-
ter than solution ; on a particular objective. Equally, the expression / > j means that the
solution 7 is worse than solution j for a particular objective. One of the examples in this
thesis considers two minimization functions: minimizing financial cost and minimizing
environmental impact. Therefore in this case. the symbol = would mean the same as the

operator e

Definition 1. A solution .y is said to dominate another solution »y (ry < ), if both

conditions 1 and 2 are true {31]:

1. The solution r; is no worse than ., in all objectives, or f;(ry) ¢ [, (r,) for all

g {200

2. The solution .ry is strictly better than r, in at least one objective. or f;{.ry) < f;(1r2)

for at leastone j = {1.2.... M}

If one of the conditions above is violated, then the solution .r; does not dominate the
solution . If .y dominates the solution .r» (.r; < ), this means that r, 1s dominated

by .y and ry is non-dominated by .

The following example of a two-objective minimisation optimization problem will allow
us to illustrate the concept of dominance. Figure 3.3 shows six different solutions in an
objective space with two objective functions, f, and f,. which need to be minimized.
Because we have more than one objective function in this example, it can be difficult
to find a solution which is better with respect to both objectives, when those objectives
conflict with cach other. However, the definition of domination will allow us to make a
decision on which solution is better when any two solutions are compared when we have
a two-objective problem. Let us compare solutions 4 and 5. As can be seen from the
Figure, solution 4 is better than solution S for both objectives. This means that solution 4
dominates solution 5. In the another example, let us take a look at solutions 2 and 4. In
this case. solution 2 is better than solution 4 for the first objective function and solution
2 is not worse (they have the same value) than solution 4. Therefore. both conditions of

Definition 1 are satisfied, and solution 2 dominates solution 4. As a result of comparing
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Figure 3.3: Example.

any two solutions .y and r, for dominance, there are three different outcomes can be
concluded: solution .y dominates solution .2, solution 5 is dominated by solution .r; or

solutions .r1 and .r, are mutually non-dominating.

Another important notion of multi-objective optimization is a non-dominated set. To un-
derstand this concept better, let us take another look at our example in Figure 3.3. Con-
sider solution 2 and solution 3, where solution 2 is better for objective one and worse for
the second objective. Thus, the first condition in the Definition 1 is not satisfied for these
solutions. When two objectives are equally important, it is usually said that solutions 2
and 3 are mutually non-dominating with respect to each other. Therefore, we cannot say
which solution is better or worse. Solutions 2 and 3 are part of the non-dominated set from
the six solutions available. Identifying non-dominated sets allows the decision maker to
consider a set of trade-off solutions. Therefore, for a given set of solutions, making all
possible pair-wise comparisons, will allow us to identify the solutions which are of the
non-dominated set. Definition 2 and Definition 3 also taken from Deb’s book [31] and

define a non-dominated set and the globally Pareto-optimal set:

Definition 2. Non-dominated set: Among a set of solutions I’, the non-dominated set of

solutions /I’ are those that are not dominated by any other members of the set P.



3.4 Classical techniques for multi-objective optimization 39

Definition 3. Globally Pareto-optimal set: The non-dominated set of the entire feasible

search space S is the globally Pareto-optimal set.

Many multi-objective evolutionary algorithms (MOEAs) such as NSGA-II [30] and

SEAMO2 [76]. which are used in the current research and discussed later. need to identify
non-dominated solutions in a particular population. SEAMO2 outputs a non-dominated
set at the end of the algorithm, whereas NSGA-II algorithm sorts the population accord-
ing to the different non-domination levels. The technique of identifying solutions which
belong to a non-dominated set, involves comparing all possible pairs of solutions using a

dominance operator, <.

To summarise, the goal of the MOO algorithms is to find Pareto optimal solutions which
are non-dominated solutions of the entire feasible space. Unfortunately, the complexity
of some MO problems make the achievement of this goal almost impossible because of
the problem size. In some cases for the combinatorial optimization problems this could
be proven as computationally unachievable, therefore it is practical to analyse a set of the
best known non-dominated solutions which is as close as possible to the Pareto optimal
set. Therefore. the following conflicting goals need to be achieved in order to obtain a
reasonable solution to a MOO problem [117]: 1)The solution set should converge to the
Pareto optimal set which means that solutions should be of a good quality; 2) Solutions in
the Pareto set should be evenly spread; and 3)The Pareto front should be widely spread to

maximize the coverage.

3.4 Classical techniques for multi-objective optimization

The following two sections describe some of the popular approaches which are used in
solving multi-objective optimization tasks, specifically focusing on techniques which are
used in our current research and our reasons for choosing them behind it. There exist a
variety of techniques for dealing with multiple objectives, where some of them are well

established and others are fairly new in the research community.

The classical multi-objective optimization methods were developed in the last five dec-

ades. Different researchers refer to the the definition of classical methods to distinguish
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them from evolutionary methods. The majority of the methods convert a multi-objective
problem into a single objective function by using user-defined parameters. Thus. the use-
fulness of the single solution obtained following the transformation, depends on making

suitable choices of the parameters in the conversion model.

The weight-based method is the most popular classical method and converts a MOO prob-
lem into a single objective problem by using a weighted sum of the objectives, where the
relative importance vector is defined by the user. This method is described below in the
section 3.4.1. As mentioned earlier, the success of this approach depends on making ap-
propriate choices for the weights. To generate multiple solutions simultaneously. on one
run. Hajela and Lin [59] proposed a weight-based genetic algorithm for MOO where each
solution in the population has a different weight vector in the calculation of the summed
objective function. To promote diversity in the population of solutions, the weight vector
could be adjusted as well. In contrast. the ¢-constraint method converts all the objectives
into constraints except for one objective. The user in this case would have to define the
limits that constrain the objectives. The goal programming method, which was origin-
ally introduced for single-objective applications [23], suggests a way of transforming the
multiple objectives into a single one before solving the problem using a single objective
optimization algorithm. The method uses a goal value which needs to be achieved for

each conflicting objective.

3.4.1 Classical weight-sum approach

One of the most popular approaches used in MOO due to its simplicity is called a weighted-
sum method. The technique scalarizes a set of objectives by multiplying each objective
with a user-defined weight [31]. This method is applied to solve an allocation problem
with two-objective functions (min cost and min travelled distance) in Chapter 6 where we
have the dilemma of balancing two objectives: minimizing overall costs and minimizing
total distance for the allocation of stores to depots. The objectives have different units: [/
and A, with different numerical ranges, making it difficult to choose appropriate weights
to control the relative contribution of each objective to the weighted total. To help matters.

we normalize the objectives so that each one typically produces values between 0 and 1.
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The formulation of the objective function can be seen as a sum of the weighed normalized
objectives, which converts the problem into single-objective optimization problem. The

following formulation was taken from |31]:
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Where the weight of the 7:th objective function in in the range w,, € [0, 1] and the weights

are chosen in the such way that their sum is equal to 1, therefore S°%_ w,,, = 1.

As mentioned earlier, this method is applied to solve an allocation problem with two-
objective function, where A/ = 2. Having two weights w; and w;, where only one weight
is independent and the other one calculated by simple subtraction. Therefore, the sum of
two weights added together is always equal to 1. The procedure for converting objective
values to a single normalized value which is used for the objective function is discussed

in Chapter 6.

3.5 Evolutionary multi-objective techniques

The inspiration from the principles of biological evolution and natural selection led to the
development of a particular type of optimization technique in the 1950s and 1960s (Fraser
[41], Rechenberg [119], Fogel[43]). John Holland in 1975 established the foundation for
genetic algorithms (GAs) which was one of the starting points for a growing interest in
the development of natural evolution inspired algorithms [60]. These days, a GA is a
very popular metaheuristic method for solving many difficult problems in optimization,

and belongs to the larger category of evolutionary algorithms (EA). GAs are applied in
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many disciplines including engineering, manufacturing, physics, computational science

and other areas.

Biological evolution and natural sclection means that the fittest organisms survive within
the natural environment. In the natural world. individuals compete for selecting com-
panions for reproduction and it is believed that combining fitter individuals in terms of
genetic material, will lead to fitter offspring. When this process occurs over several gen-
crations, the combination of fine characteristics from their predecessors could lead 1o the
creation of an offspring which is better than its parents. This natural evolution allows
the individuals to adapt better to the environment they are in. GAs operate in the similar
way. on a population of solutions to a particular problem. The population consists of in-
dividuals which are usually represented as a population of strings and could be encoded
as binary (1100101) or in other way. Those strings are also called chromosomes, and each
have a fitness value associated it. which is derived from the objective function value for
the solution that the particular chromosome represents. This value determines how fit a
particular individual is to stay alive and breed. Individuals with better fitness are favoured
in the mechanism for selection and reproduction and they could be selected several times
during evolution. As a result of selecting better individuals through several generations,
the final population of the solutions should converge to a near optimum solution or even

the optimum solution.

The reproduction process of GAs involves taking two individuals which are recombined
to create offspring. This is also knows as applying crossover operators on two individuals
or recombination. The crossover is undertaken on the selected members of the popula-
tion and a selection probability could be used to choose the proportion of the population
selected. Recombination allows the offsprings to inherit good features from the parents.
To ensure that the offspring adds the diversity to the population in exploring the search
space. a random mutation operator may be applied to one or more positions of the off-
spring string following (or independently of) the crossover. This will alter the offspring
chromosome, usually in a small way, which will introduce the randomness in the search

space. The basic GA is outlined in Algorithm 3.1.

The selection of two individuals for the recombination could be done using different se-
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Algorithm 3.1: Genetic Algorithm.
Begin:
Initialization: Initialize a random population (chromosomes)
repeat
Evaluation: Evaluate the objective function of each chromosome
Selection: Select chromosomes (parents) from the population for reproduction.
The selection criterion is based on the fitness assignment (or objective function)
of the selected members of the population
Recombination: Apply crossover to selected chromosomes to produce offsprings,
which will hopefully have better solutions. The probability rate could be used
to select the chromosomes for the recombination.
Mutation: Apply mutation locally to some genes of the offsprings with a particular
probability or alternatively to particular chromosomes.
Replacement: The new population is created by replacing selected members of the
population with the offsprings
until terminating condition
End

lection methods. For example, tournament selection chooses two chromosomes at random
which are used in the tournament against each other [31]. As a result of the tournament,
the fittest chromosome is selected as a parent to be used in the recombination. This means
that to choose n parent, n different tournaments will be undertaken. Roulette-wheel selec-
tion is similar to a roulette wheel in the casino. It assigns each individual in the population
a fitness function value and then apportions that individual percentage based on the over-
all fitness [31]. The probability function is used to select chromosomes which will lead to

chromosomes with better fitness tending to be selected more often.

Crossover and mutation operators are applied in traditional GAs to ensure that diversity
is present within the solving environment [131]. Below, a few general crossover oper-
ators are described which are suitable for binary string representations. However, there
are a great variety of crossovers in the literature, and the ones illustrated here would not
be suitable for representations such as real numbered strings and permutation strings, for
example. Also, bear in mind that there are many variants of genetic algorithms, using

different selection methods and different criteria for replacing population members by
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offspring. In addition, crossover operators are sometimes used to produce just one off-

spring each time, and sometimes two offspring are produced each time. There are very

many choices.

The most popular crossover operators for simple binary strings are one-point, two-point
and uniform crossover. In one-point crossover, the chromosome of the parents are cut at
a randomly chosen point and the resulting parts of the chromosome are swapped [31]. In
two-point crossover, the chromosome of the parents are cut at two points [31]. In uniform
crossover, a random pattern is generated, in which each bit is provided by one of the two
parents. A second pattern is automatically generated by exchanging the source of each bit

[31 ]. Figure 3.4(a)-3.4(c) illustrates these three types of the crossover.

Parent] 1 1 101001 Parent 1 1 110 10 01

Parent 00110 0j10 Parent2 0 0 1 1(0 0 ;77

Child 1 10160 Child 1 01

Child2 0i° 1 1 0 0 Chiidz o o T o1 o 1lo
(a) One point crossover (b) Two point crossover

01100110

Pattern
ParentllllOIOOI

i 11101010
Parent2 0 0 0010 Child 1

chiar 10 10 1T o=y '

11100010
chigz 0 i11 llo 0 00

(¢) Uniform crossover (d) Mutation

Figure 3.4: Crossover and mutation.

One of the most popular mutation operators is point mutation where the gene (one bit in
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the chromosome) in the solution is flipped either from 0 to 1 or 1 to 0. This is illustrated
in the Figure 3.4(d). The mutation can be applied either to one gene or a number of genes

across different solutions which are determined by the mutation probability (p,,).

Genetic Algorithms are very popular intelligent heuristic search methods, which are used
as a foundation to many optimization evolutionary algorithms to solve problems with
single and multiple objectives. One of the first multi-objective GAs, was the Vector Eval-
uated Genetic Algorithm (VEGA) proposed by Schaffer [120] in 1985. Following VEGA,
the development of many new MOO techniques has taken place which includes the Multi-
Objective Genetic Algorithm (MOGA) [121], elitist Nondominated Sorting Genetic Al-
gorithm II (NSGA-II)[30], elitist Strength Pareto Evolutionary Algorithm 2 (SPEA2)
[118], Pareto-Archived Evolution Strategy (PAES) [122], Simple Evolutionary Algorithm
for Multi-objective Optimization 2 (SEAMO?2) [76] and other techniques. Different tech-
niques have adopted specific mechanisms to ensure that diversity is present in the final set
of solutions, and this has often brought with it a cost of greater complexity when imple-
menting these algorithms. For example, SPEA2 [118] uses a population and an archive
with a fine-grained fitness assignment strategy. The algorithm preserves extreme points
and the diversity mechanism is based on k-th nearest neighbour, whereas NSGA-II uses

crowding distance and solution ranking is based on non-domination sorting.

As a result of our initial investigation of the different techniques, the following section
introduces in detail two evolutionary multi-objective algorithms (MOEAs): NSGA-II and
SEAMOQO?2 which are used in the current research for solving the multi-objective uncapa-
citated facility location problem (Chapter 8) and the capacitated facility location problem
in Chapter 9. The reasons behind choosing those techniques are also explained in the

following sections.

3.6 Multi-objective optimization formulation

Before discussion of the chosen evolutionary algorithms, we need to present formally the
mathematical formulation of MOO in a general form. Let us consider a decision maker

who requires to optimize M objective functions which can be minimized or maximized
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[31]:

Muimize/Maximize fp,(r), m=123..M 3.2)
subjoct o
g(r) >0
h(r) =0

1ISISIu

where ¢(r) and h(.r) are inequality and equality constraints and a solution x is a vector of
decision variables r = (z,, z,,....). A set of Pareto solutions is the solution of the above

problem.

3.6.1 The Evolutionary Multi-Objective Algorithm: NSGA-II

The evolutionary Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) [30] was chosen
for implementation in the research for modelling the facility location problem because it
has all the qualities which are needed to be taken into consideration when solving a multi-
objective problem. It is a well tested algorithm in academia. It is elitist (preserving the
best solutions) and uses a ranking procedure for fitness assignment of the solutions based
on the fast nondominated sorting algorithm (see Algorithm 3.3). The algorithm uses a
diversification mechanism, called a crowding distance, to ensure the solutions are widely

and evenly distributed (see Algorithm 3.4).

The NSGA-II algorithm that we use for a multi-objective uncapacitated facility location
problem (UFLP) is based on [109] and [30] and is illustrated in Figure 3.5 and outlined
in Algorithm 3.2. Firstly, an initial parent population /°(0) of size N is created, at ran-
dom. Each parent solution is encoded as a binary string. For each chromosome in /°(0)),
the objectives are evaluated by applying the assignment procedure. Then, a fast non-
dominated sort is applied to P(0) (see Algorithm 3.3), which assigns a “front number”

to each solution which is equal to its non-dominated level, starting with 1 (1 is the best).

Binary tournament selection in the parent population P(0) is followed by crossover and
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mutation to generate the child population C(0) of size N. Each child solution in C (0) is
then evaluated.

New Parent
population

Crossover & Crot«over &
assignment

S Rejected

New child

population population

Based on Deb [31]

Figure 3.5: Overview of NSGA-IL

Next, the following elitist procedure for £ > | described below is repeated for 7 genera-
tions. At the start of this, the parent and child populations are combined to form R(7) =
P(t)UC(t) of size 2 * N and a fast non-dominated sort is applied to R(?). A new parent
population, P(? + 1), is then formed from R(?) by adding solutions beginning with the
first front onward to make up a population of size N. Crowding distance is used to help
make the last few selections, if addition of all individuals from a particular front would
produce a population greater than N. Then, the child population C(? + 1) of size N is
created from P(7 + 1) by applying binary tournament selection, crossover and mutation.

The overall complexity of the algorithm is 0 (m N 2), where m is the number of objectives

and N is the population size [30].

The fast non-dominated sort procedure (see Algorithm 3.3) uses the concept of domin-
ation (see Definition 7), where two chromosomes are compared on the basis of whether
one chromosome p dominates another chromosome ¢ or not. The algorithm works as fol-
lows. Initially, each chromosome p in population P is compared to each other and the
algorithm calculates and stores two parameters for each chromosome: a set of solutions
Sp that p dominates and the number of the solutions (np) that dominate the chromosome

p. If no solutions in the population dominate p then it joins the first nondominated front
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Algorithm 3.2: NSGA-II algorithm for MOFLP ({30], [109]).
Begin:
Randomly generate parent population /’(0) of size N
Evaluate /°(0) - calculate/record the value of objectives
Fast non-dominated sort (/°(0)) (see Algorithm 3.3)
Generate child population (’(0) of size N from P(0) by applying binary tournament
selection with the selection criterion based on <,,,,,, crossover and mutation
Evaluate ('(0) - calculate/record the value of objectives
while / < 7T do
R(t) = P(t)uC (1)
F=fast non-dominated sort R(t) (see Algorithm 3.3)
Crowding-distance assignment (F') (see Algorithm 3.4)
Sort R(t) using <,,44, (see Definition 4)
Select P, from sorted R, [0 : N]
Generate child (’(t + 1) of size N from P(t + 1) by applying binary tournament
selection with the selection criterion based on <,,44, crossover and mutation
Evaluate (’(/ + 1) - calculate/record the value of objectives
t=1t+1
Return all non-dominated solutions

which will have their domination count equal to zero. The first part of the algorithm finds
the first nondominated front and the second part is repeated until all solutions are classi-
fied and assigned higher nondominated fronts. To do so, the algorithm iterates through
each solution which has a domination count as zero (p € F;) and each member ¢ of its set
(S,) and reduces chromosome’s ¢ domination count by one. When the domination count
becomes equal to zero, then the solution ¢ is added to a separate list //, which belong to
the second nondominated front and so on. The procedure continues for each member of

I1 to identify a third nondominated front until all solutions are assigned to nondominated

fronts.

In Algorithm 3.2, the crowding comparison operator (<,4,) compares two solutions and
returns the fitter of the two as the “winner” (a binary tournament selection). It assumes
that every solution i in the population has a non-domination rank r; and a local crowding
distance cd;.

Definition 4. Crowded Tournament Selection Operator [31]: A solution : wins a tourna-

ment with another solution j if either of the two conditions below are true:
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Algorithm 3.3: Fast non-dominated sort (P) [30].
Input Parameters: population (P), consisting of chromosomes, e.g. p, g
Begin:
for eachp € Pdo
for each g € Pdo
if (p < q) then
Sp = S, U {q} {if p dominates ¢ - save it in set of solutions S,, which p domin-
ates }
else if (¢ < p) then
n, = n, + 1 {if ¢ dominates p - keep the count of the solutions dominating p}
if n, = O then
Fy = F; U {p} {if nobody dominates p then it joins the first front }
t=1
while F; # 0 do
H=0
for eachp € F; do
for eachg € S, do

Ng =mng— 1

if n, = 0 then
H = H U {q} {q joins list H}
t=t+1

F; = H {form current front with members of H }
Return a list of non-dominated fronts F’

1. If solution : has a better rank, that is, 7; < r;

2. If they have the same rank but solution 7 has a better crowding distance than solution

7 that is, 7; = Tj and Cd,’ > l,‘dj

As can be seen in Definition 4, the NSGA-II algorithm integrates a density mechanism
as part of crowded tournament selection operator. This technique calculates the crowding
distance (see Algorithm 3.4) of each solution of the same front and serves as an indication
of how widely spread the solutions are. It works on solutions in the objective space
and measures a distance between the two nearest neighbours of a particular solution. At
first, the algorithm initialises the distance values to zero for each point. The second for

loop selects each objective function m at a time and sorts the population of the solutions
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according to the objective values. A very large value is assigned to the distance of the
first and last position of the sorted population to ensure that those solutions are preserved.
For all other solutions, the distance is calculated by adding the difference between two

neighboring solutions on either side of the solution in question. The variables f** and

min

" represent the maximum and minimum values of the objective function m.

Algorithm 3.4: Crowding-distance assignment (1) [31].
Input Parameters: solutions in set 7
Begin:
! = |7| {number of solutions in front 7}
for eachi do
set 7[i)distance = O {initialize distance for each solution}
for each objective m do
T = sort(r, m) { sort using each objective value}
7[1aistance = T{l]aistance = 0O {assign large values to the boundary solutions}
fori=2to (I —1)do
. . [i+1] _ (i 1]
7[i)distance = T[i)distance + Lozt
Return crowding distance of each point in set 7

Crossover. Binary tournament selection was used to choose the parents for crossover.
Two individuals are randomly selected from the parent population P(t) and the fitter one
of the two is chosen as a parent, i.e., the one which wins the crowded tournament selection
(see Definition 4). This means that the chromosome wins if it has higher non-domination
level or if two chromosomes have the same non-domination level, then we choose the one

that has a better crowding distance.

Mutation. For each solution (chromosome), a random mutation pattern is generated. A
uniform random number between 0 and 1 is generated for each position in the solution. If
this random number is less than mutation probability (p,), the gene is flipped either from

OtolorltoO.

3.6.2 The Evolutionary Multi-Objective Algorithm: SEAMO2

A Simple Evolutionary Algorithm for Multi-objective Optimization (SEAMO?2) [76], was

chosen for implementation due its simplicity and good reported results in the earlier stud-
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ies (761, [77] and [113]). The algorithm uses uniform selection and does not use a fitness
function to select the parents. The survival decision for the offspring is based on a straight
comparison between the solution generated by a child with the solution produced by its

parents or other members.

The SEAMO?2 algorithm is described in Algorithm 3.5. The approach sequentially selects
an individual from the population to be a parent once and pairs it with a second parent
that is selected randomly (uniformly). A crossover is applied on those two parents which
produces one offspring. Four different crossover patterns are compared for tuning the
algorithm: one point, two point, uniform and no crossover. After the crossover, the muta-
tion is applied to the offspring, where one random bit of the child solution mutates from 0
to 1 (or 1 to 0). The resulting child will either replace a member of the population or die,

depending on the fitness of the child.

3.7 Applications of supply chain infrastructure techniques

The purpose of this section is to provide an overview of infrastructure modelling (facility
location-allocation) research available in the literature in terms of multiple objectives and
techniques. As can be seen from the Table 3.1, selected academic papers are presented in
terms of the objective function and the techniques which are used to generate solution(s)
which depend on the classical or evolutionary method. For example, the analytic hierarchy
process (AHP) is a well known technique and has been used to assign different weightings
to quantitative and qualitative measures for strategic modelling. Min and Melachrinoudis
[71] use the AHP method to evaluate multiple objectives: minimization of relocating
cost, quality of living, traffic accessibility, maximization of market opportunities, local

incentives and site characteristics to relocate manufacturing/distribution facility.

Classical multi-objective optimization methods such as the e-constraint have been used
to transform a multi-objective problem into a single objective one, producing just one
solution per simulation run. For example, Sabri and Beamon [102] develop an integrated
multi-objective model involving strategic and operational planning under production, de-

livery and demand uncertainty. This method is used to consider cost, customer service
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Algorithm 3.5: SEAMO2 algorithm [76].
Begin:
Generate N random individuals
Evaluate the objective for each population member and store it
while stopping condition not satisfied do
for each member of the population do
This individual becomes a member
Select a second parent at random
Apply crossover to produce single offspring
Apply single mutation to the offspring
Evaluate each objective vector produced by the offspring
if offspring harbors a new best-so-far Pareto component then
a)it replaces a parent, if possible
b) else it replaces another individual at random
else if offspring dominates either parent then
it replaces it
else if offspring is neither dominated by nor dominates either parent then
it replaces another individual that it dominates at random
else
otherwise it dies
Print all non-dominated solutions in the final population
End

level(fill rate) and flexibility (volume or delivery). Guillen et al. [49] use the e -constraint
method with a branch and bound technique to solve a multi-objective stochastic mixed
integer linear programming model to determine an optimal supply chain configuration.
The multiple objectives are the maximization of the net present value (NPV) and demand
satisfaction, and the minimization of the financial risk. Hugo and Pistikopoulos [61] use
a multi-objective optimization framework with the e-constraint method for environment-
ally friendly network design with two objectives: maximising the NPV and minimizing

impact that the network has on the environment.

Recently, an evolutionary approach to solving MOO problems, which is based on Pareto-
optimal solutions, has been considered by a small number of researchers for infrastructure

modelling. This method allows the decision makers to investigate trade-offs and select a
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Model description References

711 | 11023 | 80y | 1621 | 1611 | 493 | 1100y | 1109} | 123

Traditional objectives

Min costs * * * * * * *

Service level * * * * * *

Max the net present value * *

Min investment in opening facilities *

Min capacity utilization ratio *

Min financial risk *

Fast deliveries between plants *

Quality of living *

Traffic access *

Market opportunity *

Local incentives *

Site characteristics *

Flexibility (volume or delivery) *

Green objectives

Min transport pollution *

Promotion of recycling *

Conservation of energy *

Min impact on environment

from entire sc (inc. transp. emissions) *

MOO techniques

Classical * * * * * * *

Evolutionary * *

Table 3.1: Examples of multi-objective infrastructure modelling with techniques as
applied to specific scenarios.

particular network design that best satisfies their compromise. For example, Altiparmak
et al. [2] use a new approach based on genetic algorithms to design a supply chain for
a product with three objectives: minimizing total costs, maximizing customer services
and the maximization of capacity utilization balance for DCs for the producer of plastic

products in Turkey.

Villegas et al. [109] present the bi-objective (minimizing overall cost and maximizing
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coverage) uncapacitated facility location problem to redesign a Colombian coffee net-
work. They design an algorithm based on the Non-dominated Sorting Genetic Algorithm,
an algorithm based on a Pareto Archive Evolution Strategy and an algorithm based on
mathematical programming with one of the objectives treated as a constraint and they

compare the two approaches for quality of their approximation to the Pareto frontier.

An example involving the trading off the cost against environmental impact is described
in Quariguasi Frota Neto et al. [83], where the reorganization of a European pulp and
paper logistic network is described. They use a techniques based on multi-objective pro-

gramming to determine “optimal” configurations of the network.

From the literature review we identify the need to create environmentally friendly logist-
ics systems where strategic decisions and the transport distribution system are considered
together as part of the design. In our literature review we found only a small number of
multi-objective infrastructure modelling in an environmentally friendly logistics context
(e.g. [61], [62], [83], [92])). Pati et al. [92] uses goal programming to balance economic
and environmental goals through increased wastepaper recovery for paper recycling lo-
gistics system. Khoo et al. [62] uses simulation approach in modelling of a supply chain
concerned with the distribution of raw aluminum metal whereas Hugo and Pistikopoulos
[61] use a classic multi-objective optimization method. Thus we highlight a fruitful area
for our future research where environmental and economic concerns need to be modelled
as explicit objectives to generate more information about cost and the implications on eco-
logical impact. Multi-objective optimization techniques, such as evolutionary algorithms,
are available to generate alternative solutions which allow the decision makers to investig-
ate trade-offs between economic and environmental objectives. In practice, there is a wide
range of algorithms that come under the Pareto-based category. Therefore there is a need
to investigate these techniques for efficient infrastructure modelling for environmentally

friendly networks.
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3.8 Summary

The main aim of this chapter is to introduce the reader to the important concept of multi-
objective optimization through different approaches which are based on the classical pref-
erence based methods or evolutionary techniques such as NSGA-II and SEAMO2. It also
covers a brief literature review of previous work using multi-objective techniques for net-

work design where environmental and economic costs are balanced.

The main conclusion of this section is that if environmental assessment is incorporated
as part of infrastructure modelling then there is a possibility of achieving both economic
and environmental savings. Every logistics design should include industry specific en-
vironmental assessment to prevent pollution and save the environment. Some tools and
techniques are already available to researchers to help achieve this goal, but there is still

much work to be done.
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Chapter 4

Assessing the impact of cost
optimization based on C'O9 emissions of

infrastructure modelling

4.1 Introduction

This chapter describes a study where a simulation based approach of a European case
study from the automotive industry by Hammant et al. [124] considers strategic and oper-
ational level decisions simultaneously for logistics network modelling. The study aims to
assess the impact of the traditional cost optimization approach to strategic modelling on
overall logistics costs and CO, emissions by taking into account the supply chain struc-
ture (number of depots) and different freight vehicle utilization ratios (90%, 75% and
60%). This data was previously evaluated from an economic perspective only and iden-
tified the optimum network design at two distribution centres. Taking an environmental
perspective gives us new insights. We will consider the impact of strategic and operational
level decisions simultaneously, focusing on inventory and transportation costs versus the
environmental impact in terms of CO, emissions from transportation and non-domestic
buildings such as depots. The calculation of CO, emissions from transportation considers
vehicle type, utilization and vehicle speed. We use a supply chain network design applic-
ation for our simulation with optimization based on costs alone. Attention is also paid to
the sensitivity of our solutions when changes in key model parameters, such as vehicle

utilization ratios (90%, 75% and 60%) and network structure (number of depots), occur.
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4.2 Background information

The past 20-30 years have seen a significant restructuring of logistics networks for many
companies, as they strive to reduce costs while improving customer service levels. In
the context of transport, there has been a particular focus on improving vehicle fill and
reducing the distance vehicles travel. While traditionally, attention has concentrated on
outbound logistics, increasingly inbound distribution is also considered [25]. Not only do
these changes bring about internal benefits to companies, but they also create wider bene-

fits to society, leading to a reduction in external costs and its impact on the environment.

Since the 1980s, the development of supply chain management has resulted in managers
becoming increasingly focused on the demands of their customers. Initiatives such as lean
production have resulted in companies looking to deliver ever higher levels of customer
service, while minimising the cost impact [108]. Logistics operations have been required
to handle smaller and smaller shipments through their networks while maintaining effi-
ciency. As a consequence of this, it has been necessary for companies to reconfigure their

logistics operations. These have been categorised by McKinnon [75] into four main areas:

Logistics structures - relates to the configuration of the distribution network and the

choice of distribution channel. Control of this network also comes within this area.

e Pattern of trading links - determines the geographical spread of the logistics struc-

ture. Recently, moves towards outsourcing abroad have seen supply chains lengthen.

o Scheduling of product flow - affects the movement of products through the network
and determines the size of the shipments to be made. Developments in this area

include continuous replenishment and just-in-time deliveries.

e Management of transport resources - decides the actual transport requirements for

particular shipments, and may include issues relating to modal choice.

All of the above decisions are likely to affect the transport requirements for an individual
organisation, in terms of the distance, speed, frequency and timing of deliveries [26].

Traditionally, such changes would only influence the outbound logistics operations of a
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business [51], with inbound movements being viewed as the responsibility of the supplier.
However, nowadays, there is a focus on this inbound network, as companies recognise the

potential synergies that exist between them [25).

There are a number of examples within the published literature of how the efficiency of
logistics operations can be improved, while also delivering environmental benefits. The
consolidation of small shipments is a popular approach to reducing transport costs, and
has particularly been used within the grocery industry in the UK [42]. Consequently, load
consolidation has resulted in a reduction in the distance vehicles travel of around 20%

{751

4.3 Method

To explore the relationship between total logistics costs and environmental impact in terms
of CO, emissions for strategic modelling in the logistics network, there is a need for an
appropriate methodology for both assessments. The method and data we use for evalu-
ating economic costs is based on the case first presented in Hammant ef al. [124]. One
of the objectives of that study was to describe the use of a simulation-based decision
support system to establish the impact of restructuring the physical infrastructure of a
Pan-European supply chain. The authors indicated the benefits of using a simulation ap-
proach for assessing network design. The optimum network design at two distribution
centres was determined by minimizing the total overall logistics costs (transportation and
inventory costs) while ensuring an appropriate customer service level. Subsequently Lal-
wani et al. [125] used the data to present a new method, which combines simulation and
the Taguchi technique [130] to identify the factors that the structure of the distribution
network is sensitive to. Their analyses indicated that the optimum design is highly at risk
from the uncertainties associated with inventory holding stocks and delivery frequencies

rather than customer demand and transport costs.
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4.3.1 Modelling economic costs

To model our logistics networks, we use a commercially available supply chain design
application CAST-dpm®) (by Radical, nowadays known as CAST-NV by Barloworld
Optimus). This is the same package that was used in the original study by Hammant et
al. [124] and Lalwani et al. [125]. The software allows the decision-maker to evaluate
different scenarios and aims to identify the optimum network infrastructure, such as the
location and number of depots. It uses a heuristic approach to estimate the transportation
costs of the network, distance run by the vehicles and the number of the vehicles needed
for the particular output period. The Square Root Law [69] was used to estimate the costs
of the inventory that is needed in the network.

As previously mentioned, the simulation model is based on the case study of an auto-
motive aftermarket Pan-European distribution network. The network operates through
different countries such as the UK, France, and Spain involving a large number of busi-
nesses and substantial operating distance. Throughout Europe, the company has around
550 suppliers and 10,000 customers. The case study is purely road transport based and
does not take into account freight movements by sea or rail, although to join up with the
UK road network a ferry or rail/tunnel journey would be used. All the input data, which
was used in our model, was taken from the original case study, apart from the transport-
ation data that we generated ourselves, as it was not available from the original source.
Table 4.1 summarizes the input data used for the simulation model. Note that the total lo-
gistics costs derived from our design, are different to the original paper because we used
different transportation data. The aim of the research presented in this chapter is not to
replicate the precise data from the original case study but to reproduce general principles
of the research by Hammant ez al. [124] where the optimum network design based on
costs was identified as two depots. This approach allowed us to analyse the trade-offs

between the total costs and their environmental impact of a cost based optimization.

To analyse the relationship between total logistics costs and their environmental impact
from transportation and depots, two different scenarios were considered for strategic mod-
elling. For the first scenario, we used a centre of gravity method to determine the centroid

locations of the distribution centres in the network. For the second scenario, the original
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Customer Name, location
(original data) Annual demand by product group
Number of deliveries per year

Transportation mode

Supplier Name, location
(original data) Annual supply by product group
Number of deliveries per year

Transportation mode

Transport Vehicle information: physical
and distance constraints:

Transportation costs functions

Warchouse locations Location

(original data) | Throughput, total area (square meters)

Table 4.1: Simulation model’s input data based on Hammant ef al. [124].

locations from Hammant et al. [124] were used to derive network related costs and dis-
tances travelled. The original locations are the real physical depots existing in the network.
In this scenario, we aimed to replicate the total logistics costs curve from the original case
study, which identifies the optimum network design at two depots. The simulation model
is not intended to find the optimum solution; it evaluates different options, which are input

into the system.

4.3.2 Centre of gravity modelling

Two different scenarios were considered for the current study for strategic modelling: ori-
ginal published locations with an optimum design of two depots and a centre of gravity
scenario. The centre of gravity approach is one of the well-known heuristic methods in
facility location analysis. It indicates the centroid locations that minimize the total trans-
portation cost. Traditionally, the transportation rate and the point of volume are the only
location factors in this approach [6]. The method provides a good estimation to the least-
cost solution. However, a certain amount of location flexibility has to be cxercised by
the decision-maker because of geographical obstacles, such as sea, mountains etc. The

current network modelling software offers two alternatives for centre of gravity model-
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ling: cost centre of gravity and volume centre of gravity. The cost centre of gravity model
attempts to minimize the total cost; whereas the volume centre of gravity attempts to
minimize the total tonne-kilometres travelled [96]. The cost based centre of gravity was
used with a limited number of scenarios, but these generated similar results to the volume
centre of gravity. Therefore, due to time constraints and the similarity of results the latter
technique was used. As can been seen from Figure 4.1 the centroid depots locations for
the UK and France have not moved too far from the original locations, due to the high
supply and demand volumes in those areas. The other distribution centres have changed

locations, which reflect current customer’s and supplier’s demands.

. depots original locations
0 depo

> A

4 depots centre-of-gravity locations
A depots centre-of gravity location

/

Figure 4.1: Depots locations (five depots scenario),

4.3.3 Modelling C 0 2emissions

After establishing the base design for each scenario, we used two determinants, supply
chain structure and vehicle utilization factor as key decision variables for this research, to
analyse the potential for reducing C (2 emissions at the micro level. These factors and
others impact on the respective key ratios identified by McKinnon [74] to influence C 02
from freight transport. Supply chain structure has a direct impact on the two key ratios:
handling factor and average length of haul. Handling factor is a crude measure of the
number of the links in the supply chain, where the weight of the goods is converted into

freight tonnes-lifted. Therefore, for our research, the supply chain structure was reflected
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in the reduction of the total number of depots in the network: from five depots down to
one depot. decrementing in steps of one. Vehicle utilization has a direct impact on re-
ducing vchicle traffic. Increasing vehicle utilization allows businesses to cut the number
of vehicles on the road. which brings both economic and environmental advantages. The
average weight-based utilization in 2006 in UK of rigid lorries on laden trips was 52%
and for articulated vehicles 58% [35]. Average deck utilization of the vehicles, for pallet
networks was 73%, for non-food 51%, and for food retail 53% [36]. Therefore, as the
purpose of this research is to analyse the trade-offs between total costs and emissions,
we used vehicle utilization factors at 90% (the 'ideal’ vehicle utilization); at 75% (ap-
proximation from the average deck utilization for pallet network) and at 60% (average

weight-based utilization for articulated vehicles).

Transportation costs per vehicle type
(delivery, supply and inter-depot movements)
Total economic cost
Economic .
Inventory costs per depot ssment
Distance travelled per vehicle type/per road type
Fuel consumption per vehicle type/per road type Environmental Total environmental impact
Fud type Assessment
(CO, emissions)
Electricity consumption per depot
——r——]

Figure 4.2: Input/Output diagram of the method for each scenario.

When using strategic modelling techniques to calculate ('O, emissions from transporta-
tion and depots, it is important to establish boundaries for those estimations. To calculate
('(), emissions from transportation, we will only consider the amount of goods being
transported over the distance travelled. Our method does not take into account the life
cycle assessment of the product from “the cradle to grave". For the present work, we use
the outputs from the supply chain network design application, which runs over a partic-
ular period of time and establishes the network related costs and travelled distances for
different vehicles types for a particular output period of 52 weeks. Hence, our estimates

for ('O, emissions cover the same period of 52 weeks. As mentioned previously, the
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case study described in this chapter is purely road transport based and does not take into
account freight movements by sea or rail. Figure 4.2 represents the overall method with

data requirements for each scenario.

Chapter 2, Section 2.7 provides an overview of the different formulations used for cal-
culating road related emissions as part of logistics modelling. Due to the complexity of
correctly estimating ('(), emissions from transportation, some assumptions and simpli-
fications have to be made with respect to driver’s behaviour, volume of the traffic on the
road, and so on. It is very difficult to take account of all the described factors which have
an impact on fuel consumption to calculate ('), emissions from road freight. Assume
that two types of diesel lorry are used for delivering goods across the network: a 5 tonne
gross weight lorry and a 40 tonne gross weight lorry. To calculate ('(), emissions from
transportation for each vehicle type and vehicle payload, we used a distance-based formu-
lation 4.1 from DEFRA [32] where the emissions from all road types (motorway, rural,

urban and minor) are summed together:

Total C'Ox(per vehicle type /payload) = Z (total kmtravelled * LFPK *
road type
x  fuel conversion factor) 4.1

where a fuel conversion factor of 2.63 kg/litre was used for diesel fuel; litres fuel per km

(LFPK) is the fuel consumption (litres/km) of the vehicle.

Road type | Road traffic (HGV) | Average speed limit | % difference in fuel consumption
compared to driving at 54mph

Motorway 42% 54 mph 0
Rural "A" roads 35% 45 mph -5.53
Urban "A" roads 10% 36 mph -5.55 N
Minor roads 13% i 30 mph -2.91 J

Table 4.2: Road traffic, speed and fuel consumption articulated for HGVs.

The fuel consumption (litres/km) figure for equation 4.1 is calculated depending on the

vehicle speed (which is derived from the road type), vehicle type and vehicle payload. As
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can be seen from the Table 4.2, road types are classified as motorways (42 % of roads),
rural "A" roads (35 %), urban "A" roads (10%) and minor roads (13 %) [37]. For each
road type, for example a motorway, there is an average speed of 54 mph for HGV vehicles
which was used establish the base case for our methodology. In addition, the table presents
data for the road traffic which shows the allocation of the total distance travelled on the
particular type of road, for example motorway road is 42 per cent of overall distance

travelled. The following methodology was used to define fuel consumption accordingly:

1. Establish fuel consumption (litres/km) for the base case (for motorway road with
average vehicle speed at 54 mph) for two types of vehicle and different vehicle
payload. For a 40 tonne lorry we used data from Kohn [64], where a figure of 0.27
litres/km for fuel consumption unladen and 0.38 litres/km for fuel consumption
with a full load was used for a vehicle speed of 54 mph. For a 5 tonne lorry we
estimated that fuel consumption unladen is 0.157 litres/km and 0.275 litres/km for
fuel consumption with a full load from the statistics of fuel consumption data by
vehicle type from DfT [33]. Equation 4.2 presents a formulation which we used for
calculating fuel consumption depending on the vehicle payload. Linear correlation
between payload and fuel consumption correspond to the recent investigation by

DFT [38].

LFPK = LFPK(unladen)+ (LFPK(fullload) — LFPK (unladen)) *

*  (Yweight laden) (4.2)

As the result of all calculations, Table 4.3 presents fuel consumption for the base
case for our study for different vehicle types with different vehicle payload, where

an average speed of 54 mph is used for motorway road.

2. Calculate fuel consumption (litres/km) from the base case (vehicle speed of 54 mph)
to a vehicle speed of 45 mph (rural "A road"), 36 mph (urban "A" road) and 30 mph
(minor roads) for different vehicles and payload. To calculate the percentage dif-
ference in fuel consumption between different vehicle speeds we used data from

NAEI [78], where the user can estimate CO, emissions depending on the vehicle
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Weight Fuel consumption (litres’km) | Fuel consumption (litres/km)
laden(%) 40 tonne lorry S tonne lorry
9% 0.369 0.263
75% 0.353 0.245
60% 0.336 0.228

Table 4.3: Fuel consumption (vehicle speed 54 mph).

Weight laden (%)

40 tonne lorry 5 tonne lorry
Roadtype | 90% | 75% | 60% || 90% | 75% | 60%

Motorway 0.369 | 0.353 | 0.336 || 0.263 { 0.245 | 0.228
Rural "A" road | 0.349 | 0.333 | 0.317 || 0.249 | 0.232 | 0.215
Urban "A" road | 0.349 | 0.333 | 0.317 || 0.249 | 0.232 | 0.215

Minor road 0.358 | 0.342 | 0.326 || 0.255 | 0.238 | 0.221

Table 4.4: Fuel consumption (litres/km) for different settings for vehicles, payload
and road type.

type and the vehicle speed. The conversion of vehicle speeds from miles per hour
to kilometres per hour was performed to calculate the emissions. For example, an
articulated heavy goods vehicle with Euro II engine class produces around 5.53%
less CO, emissions travelling at 45 mph compared to travelling at 54 mph. Because
C O, emissions are determined mainly by fuel consumption [97], we assumed the
same percentage difference for fuel consumption for each vehicle type in our model
(Table 4.2). The same assumptions were applied to data generated for other coun-
tries. Therefore, the fuel consumption for each vehicle type, vehicle payload and
road class was adjusted accordingly to the percentage of difference shown in Table
4.2 from the base case described in step 1. Table 4.4 represent resulting fuel con-

sumption data for different vehicle types, weight laden and road types.

To calculate ('O, emissions from electricity used at depots we need to estimate the av-
erage annual electricity consumption (kW’h/m;) per depot. In our automotive network,
the product is of a nature that does not need a specialised storage environment requiring

cooling or heating. The depot data was only available regarding the size of the buildings
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in m?. Therefore, an average figure of 2 kW h/m? was used from the British Land Com-
pany PLC [15]. To convert energy data to CO, emissions for a UK-based depot, we used
a conversion factor of 0.54 kgC'0,/kWh [32], which gives CO, emissions of 1.08 kg/m?.
For depots in other countries we used the following conversion factors: in France we
used 0.083 kgC'0,/kWh, in Italy 0.525 kgC0,/kWh, in Germany 0.539 kg(C0,/kWh,[40]
in Spain 0.4556 kg(C'0./kWh [66].

4.4 Results

Identifying the optimum number of depots and their positions is of fundamental import-
ance, if one is to lower total costs and ensure an appropriate level of customer service. In
the current study, delivery, collections and inter depot movements are taken into account
for calculating overall transportation costs and distances. There is a trade-off between
inventory and transportation. Figure 4.3(a) and 4.3(b) show the results of Pan-European
distribution network modelling and the effect that decreasing the number of the depots in
the logistics network has on the transportation and inventory costs. The results in Figures
4.3, 4.4, 4.5 on costs, total distance traveled and CO; emissions are presented as relat-
ive values to make actual values anonymous. Transportation costs are a function of both
distance and time related factors, which include fixed and operational (distance related)
costs. We can observe that the transportation costs decrease as the number of facilities
decreases due to the reduction in the inter-depot movements until it is reaches the point
when it starts increasing again, due to the longer travel distances to the nearest depot. The
inventory costs decline as the number of facilities decrease due to the lower levels of in-
ventory. As you can see from Figure 4.3(a), the optimum number of depots for cost-based
optimization in the centre of gravity scenario equated to three depots. Figure 4.3(b) shows
the optimum number of depots for cost-based optimization equated to two in the original
locations scenario, where depots are located at the real physical locations. By changing
the vehicle utilization from 60% to 90% for the optimum design in the centre of gravity
scenario we observe a decrease in total logistics costs of 8.9%. A slightly larger decrease
of 12.9% is seen in the optimum design for original locations scenario. Unfortunately,

90% vehicle utilization is not a very realistic figure in the real world. By comparing the
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more practical levels of 60% and 75% vehicle utilization, we can see a 5.5% total logist-
ics cost decrease for the centre of gravity locations scenario and 7.5% decrease for the

original locations scenario.
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Figure 4.3: Logistics costs related to number of depots and vehicle utilization para-

meters.

Figure 4.4(a) and 4.4(b) represent an overview of the transportation distances related to
the number of depots and 90% vehicle utilization parameters for both case studies. The
figure shows that inter depot distance is reducing as the number of depots decreases and
the supplier and delivery distance travelled is increasing. Note that the optimum design
based on travelled vehicle kilometres is three depots for both scenarios and all vehicle
utilization parameters; while the optimum based on distribution costs is three depots for
the centre of gravity locations scenario and two depots for the original locations scenario.
Similar observations are produced for 75% and 60% vehicle utilization. Note, that in the
original locations scenario, for 90% vehicle utilization the difference between the three
and two depots design resulted in a reduction of total logistics costs by s .« %; transport
costs decreased by .« % and total vehicle kilometres travelled based on % laden weight

of the vehicle increased by 0.67% , which is almost negligible.

Earlier we discussed the impact of vehicle utilization on total logistics costs. Now we will

assess the impact of cost-based optimum network design on the total vehicle kilometres
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Figure 4.4: Transportation distance breakdown related to number of depots and
90% vehicle utilization.
travelled based on % laden weight of the vehicle. For the centre of gravity locations

scenario, changing from 60% to 90% in vehicle utilization show a decrease of 22% in
distance travelled (km) and 27% for the original locations scenario. Changing the vehicle

utilization from 60% to 75% has produced a reduction of 13.1% in distance travelled (km)

for the centre of gravity scenario and 16.1% for original scenario.

number of depots number of depots

90% vehicle utMzrtkm -*-75% vehicle utilotion +90% vehicle utMotlon —*—75% vehicle utHlotton

60% vehicle utilizelion 60% vehicle utM otion
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Figure 4.5: Total C 02 emissions from transport and electricity related to number of

depots and vehicle utilization parameters.

As discussed in Section 2.7, levels of emissions directly relate to different factors, in-
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cluding distances travelled, the load of the engine over the distance and the speed of the
vehicle. The described factors are incorporated into our calculations of the emissions
which give a more accurate figure for estimating the impact. As you can see from Figure
4.5(a) the optimum design based on total ('(), emissions for the centre of gravity scen-
ario is three depots for all vehicle utilization ratios. The increase in vehicle utilization
from 60% and 90% shows a reduction of 10.6% in transport related ('O, emissions and
for vehicle utilization from 60% to 75% a reduction of 6.8% can be observed. Figure
4.5(b) shows that for the original locations scenario the optimum design based on ('O,
emissions is two depots for 90% vehicle utilization and three depots for 60% and 75 %
vehicle utilization. Analysing the difference in ('(), emissions between three and two
depots for the original scenario, we can see that there is only a 0.57% decrease for 90%
vehicle utilization, which is almost negligible. For 75% vehicle utilization, an increase of
0.55% in ( '(), emissions can be seen and for 60% vehicle utilization an increase of 1.62%
can be observed. The analysis shows that for cost-based optimum design at two depots
for the original locations scenario, the changes from 60% and 90% in vehicle utilization
produce a reduction of 16.3% in transport related ('(); emissions. For vehicle utilization

from 60% to 75% there is a reduction of around 10%.

From our analysis we identified that environmental impact from electricity in depots in
our case study was negligible and had little effect on the overall result of calculating
('O, emissions. This was mainly due to the product not requiring any spectfic storage

temperature.

4.5 Discussion of results and main conclusions

To analyse the relationship between total logistics costs and their environmental impact
from transportation and depots we considered two different scenarios for strategic mod-
elling: a centre of gravity locations scenario and a scenario using the original published
locations with optimum network design consisting of two depots. The cost-based optim-
ization for the centre of gravity scenario identifies the optimum number at three depots

based on total logistics costs and ("), emissions. In the original locations scenario, the
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optimum design of cost-based optimization equated to two depots for total logistics costs
and two/three depots for ('O, emissions. The latter proved to be sensitive to the vehicle
utilization ratios, even though there is a very small difference in transportation costs and
vehicle kilometers between three and two depots. The methodology for calculating ('O,
emissions takes into consideration speed of the vehicle, vehicle type and vehicle utiliz-
ation. The study based on original locations also indicates that increasing vehicle util-
ization by 15% could bring economic savings in total logistics costs (7.5%) as well as
environmental benefits reflected in reduction of total vehicle kilometers traveled (16.1%)
and reductions of transport related ('(), emissions of around 10%. Therefore. due to the
increasing environmental concerns, it is important to incorporate environmental object-
ives as part of logistics design and correctly estimate vehicle utilization ratio factors for
emissions calculations, to allow the decision-maker to make an informed and objective

decision regarding network design.

The current study has several limitations. Firstly, only one case study has been analysed.
Secondly, the assumptions regarding transportation data also limits the study because in a
realistic supply chain a wider variety of vehicles are used to transport commodities. Also,
the lack of specific fuel consumption figures for transportation makes the study dependent

on information available in the public domain.

This chapter considers a single objective optimization model based on costs where ('O
emissions are calculated as a result of the cost-based optimization. This study allowed us
to analyse factors that have an impact on the strategic model and demonstrated that the
optimum solution based on costs is not necessarily the same for emissions which high-
lights the importance of incorporating environmental concerns as objectives. In Chapters
8 and 9 we are investigating the building of a multi-objective optimization decision sup-
port tool for strategic modelling (facility location-allocation problem), where traditional
objectives, such as cost and improving service level and environmental impact are con-
sidered simultaneously. The approach will allow the decision maker to evaluate a set of
viable alternatives, in contrast to traditional methods where environmental impact is cal-
culated as a constraint or the user is required to prioritize objectives. The approach could

potentially find excellent solutions which could be missed by other methods, but generat-
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ing a large number of solutions could be also considered as a disadvantage. Therefore it
is important to involve the decision-maker in the evaluation of the solutions according to

the potential criteria needed.

4.6 Summary

This chapter aimed to analyse the relationship between total logistics costs and their envir-
onmental impact in terms of ('), emissions from transportation and electricity usage in
depots when using a traditional cost-based optimization approach. Our simulation model
was based on a Pan-European network from the automotive sector taken from an original
study by Hammant er al. [124]. The present chapter describes a specific case study and
does not attempt to generalize the results of the analysis. Nevertheless, we believe that
our results highlight the following issue: the optimum solution for reducing costs does not
necessarily equate to the optimum solution for reducing ('O, emissions. Furthermore, our
findings indicate the optimum design of a distribution network is highly sensitive to the
level of vehicle utilization. Due to increasing global climate change, the chapter makes a

case for considering environmental and economical objectives simultaneously.
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Chapter 5

Cost-Based Optimization for a
Capacitated Allocation Model Using
Sainsbury’s Data

5.1 Introduction

John Sainsbury PLC (Sainsbury’s) is one of the five leading supermarket retailers in the
UK. It began in 1869 as a butchers, and has now grown into a leading UK company with
convenience stores and pharmacies as well as the supermarket chain. Sainsbury’s also
includes a thriving online business within its portfolio. In this study we focus on the
logistics network concerned with delivering groceries from the distribution centers to the
supermarket stores. The convenience stores, pharmacies and online store have separate
distribution networks which are not considered here. The present chapter describes an
investigation into the potential effect of changes in various key factors on the allocation of
the stores to depots, undertaken with collaboration of Sainsbury’s Central Strategy team
during 2009. In addition, the environmental impact in terms of CO, emissions based on
the total vehicle-km travelled of a cost-based optimization was undertaken to analyse the

relationship of the changes in costs on the total distance of a particular allocation.

The study focuses on the secondary distribution network with three different goods move-
ments: ambient, chill and produce, from the distribution centres to their stores. The con-
straints of the network include depot capacities for each product type in terms of 1) num-

ber of cases and 2) number of stores. The purpose is not to replicate Sainsbury’s regular
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"best fit" exercise, but instead to explore a number of "what if?" scenarios and identify
their potential impact on store allocation and total cost. Warehousing hourly rate, direct
work rate and driver’s hourly rate were analysed for sensitivity on five depots (out of ten
depots): depot A, depot B, depot C, depot D and depot E. Due to the privacy issues the
depots names in the network were made anonymous and abbreviated to a capital letter,
e.g. depot A, B etc. The analysis examines behavioral changes to the number of stores
assigned to the particular depot where changes to variables have been made; we look at
the number of stores lost to that depot, the number of stores newly assigned to that depot
and the total number of stores allocated differently across the entire network. The fuel rate
scenario, analysing the potential effects of fuel price changes, has been undertaken across
all ten depots simultaneously and looked at the total number of stores allocated differently

from our baseline scenario.

5.2 Background information

Assigning customers to appropriate serving facilities is known as the Generalized As-
signment Problem (GAP) and is an NP-hard combinatorial optimization problem. Within
logistics network design, the GAP could be referred to as one of the tactical decisions
which need to be re-evaluated every few months to ensure the continued competitiveness
of the network. The variant of the GAP that interests us in the present study can be ex-
pressed as follows. For 1) a given set of customers with known demand for different types
of products and 2) a given set of open facilities with volume constraints and limitations on
the number customers that each facility is capable of servicing, the objective is to minim-
ize the total cost of assigning the customers to the facilities. Furthermore, each customer’s
demand has to be satisfied by one facility only, which is referred to as a single source, and
the constraints limiting each facility in terms of volume and numbers of customers must

be adhered to.

The current Sainsbury’s network used in this study consists of 10 depots and 520 stores.
Each depot is characterized by a number of attributes, including its location and its ca-

pacity constraints, and each customer makes specific demands for the products supplied
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by the depots. The locations of depots and stores are fixed. The main depots under in-
vestigation are A, B, C, D and E; whereas other depots in the network are F, G, H, K and
L. Each depot can supply three types of products: ambient, chill and produce, except for
two depots: depot F, which serves only chill products, and depot G which serves ambient
and produce (but not chill). Every depot has a certain capacity for each type of product
in terms of the number of cases and the numbers of stores it is capable of serving. In
reality the Sainsbury’s logistic network also serves a small number of stores in Northern
Ireland, which involves a sea crossing. While the demands of the Irish stores are taken
into consideration in our model, for simplicity we do not include them in our cost and
assignment analysis, which concentrates only on the mainland UK. We assign the volume

requirement for the Irish stores to depot H, as this is Sainsbury’s current practice.

Our allocation model consists of transportation and depot components. The transportation
costs include distance-based (using stem-distances) and time-based formulations. In this
chapter, we refer to stem distances, that is the distance travelled by the vehicle to deliver
goods from a depot to a particular store and return back to the point of origin. The vehicle
only visits one store at a time due to the high volume of the demand and does not un-
dertake milk-round trips, visiting other stores as well. The depot component consists of
the variables associated with running the depot, such as warehouse hourly rate and direct

work rate. The fixed costs are not taken into account as part of the modelling.

Each store has a certain demand for each product type, and this is expressed as a weekly
volume. The demand data we use was acquired in September 2009 and gives the number
of cases per week per product averaged across a 26 week (6 month) period. The direct
work rate (DWR) data for each depot is also averaged across this six month period (April -
September). The scope of this study does not include inter-depot movements and excludes
frozen and slow moving ambient products. In order to allow for some fluctuation in
demand, we built some ‘slack’ into the system by capping all the depot capacities to 90%

of the maximum number of cases quoted for each depot and product.
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5.2.1 Objective

As mentioned previously, the objective is not to replicate Sainsbury’s regular "best fit"
exercise but to identify the impact of key factors on the allocation of the stores to depots.
The different key elements (variables) come from the depot and transportation model. The
overall labour costs of a depot, which include all staff functions, are represented by the
warehouse hourly rate (WHR), and the work rate efficiency of staff directly associated
with picking and loading is measured by the direct work rate (DWR). WHR and DWR
reflect the depot model. The fuel costs, drivers’ hourly rate and cases per load are the
important components of the transportation model, and the transport hourly rate (THR) is

the key measure that reflects all the time-related costs (e.g., drivers’ pay).

An additional analysis was undertaken to understand the impact of the cost-based optim-
ization on the distance based ('), emissions: e.g., does a decrease in cost equate to a

reduction in vehicles-km and therefore to (' (), emissions?

A sensitivity analysis was performed to analyse the impact of various changes to the
key variables on the allocation model and overall cost structure. Five different “what
if?" scenarios were performed (see below) where WHR, DWR and THR situations were
analysed for sensitivity at five depots in turn: depot A, B, C, D and depot E. The fuel
rate scenario was undertaken across all ten depots simultaneously and looked at the total
number of stores allocated differently compared to our benchmarking scenario (described

below).

The following five scenarios were considered for analysis:

1. The uniform scenario was used as a ‘proof of concept’, and the allocations and
costs compared to the Company allocations in their latest “best fit" exercise. This
scenario is characterised by uniform costs applied throughout the network. The
average vehicle load is used at 1243 cases for each product with fuel related costs
of £0.35 per km. The DWR for each depot was set at 97.6 for ambient, 100.13
for chill and 136.02 for produce. THR (£18.48) and WHR (£16.03) were the same

across all depots.
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2. The fuel related scenario is used to analyse the impact of changes in the fuel rate
(fuel cost per km) across the network as a whole. We applied rates between £0.1
to £1.00 with a step size of £0.01; from £1 to £10 with a step size of £0.25; from
£10 to £100 with a step size of £10 and at £500. We analysed a wide range of fuel
rate values, from small to very large numbers on either side of the benchmarking
rate value of £0.35 per km. This range is not necessarily very realistic in the current
economic climate. The aim of this analysis is to understand the behavior of the

network between different extreme points.

3. The direct work rate scenario investigates the impact of the work rate efficiency of
pickers and loaders in the warehouses on the allocation of the stores to a particular
depot. This is analysed by changing the DWR from 10% below the benchmarking
rate for all products, and up to 15% above the benchmark with steps at 2.5%.

4. The transport hourly rate scenario investigates the impact of changes in drivers’
hourly rate on the store allocation, with rate changes from £10 to £33 with a £1

step.

5. The warehouse hourly rate scenario investigates the impact of warehouse related
costs, such as picking and loading, on the store allocation, with the rate changes

from £10 to £33 with a £1 step.

In addition, we refer in our study to ‘baseline’ or ‘benchmarking’ scenario which uses the
same data (September 2009) as we use for Scenarios 2-5. We also refer in our study to the
Company allocation which is the model obtained in the most recent “best fit" exercise by
the company. The Company allocation is carried out using stem distances only, and does
not account for warehouse costs or transport hourly costs. We compare our allocation from
Scenario 1 with the Company allocation where we equalize warehouse costs and transport
hourly costs throughout the network, so that our allocation is based essentially on distance
related costs only, similar to the Company model. On the other hand, the “benchmarking’
allocation, or baseline, uses the original September 2009 data, maintaining the variable
warehouse and transport costs which is used for Scenarios 2-5. It shows the allocation

obtained using the CPLEX®) optimization engine. In scenarios 2-5 we make “what if?”
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changes to the original data, to observe their effects on the baseline network structure.

5.3 Methodology

The network was modelled using the Java programming language and the CPLEX®) op-
timization engine. CPLEX®) uses algorithms to solve given problems to optimality. This
approach gave us great flexibility in implementation, utilizing the power of CPLEX®)
together with the visual display capabilities which we customized in the user interface
using Java. Visualization of the results allows us to see beyond the numbers, and observe
how the results are translated to geographical information. We have also implemented our
own model based on Lagrangian relaxation (LR), which is faster but does not guarantee
to obtain the optimum solution (although it is excellent in practice). Although we do not
make use of LR in the present chapter, this approach is utilized extensively in the other
chapters (7 and 9), when speed is more critical (e.g., for really large problems, multiple

experiments and for considering multiple criteria simultaneously).

5.4 Mathematical formulation

For a given a set of stores with known demands for different type of product, and a set
of open facilities (depots) with known volumes (numbers of cases) and maximum store
allocation capacities, the objective is to minimize the cost of assigning the stores to the
facilities. Each store’s demand has to be satisfied by a single facility, e.g. one store is
allocated to only one depot and the capacity of that facility must not be exceeded. The
problem can be modelled using a complete directed graph, where the vertices in Vpe
represent the facilities (distribution centres) and the vertices in V¢ represent the stores

(customers). The arcs are associated with the flow of goods between facilities and stores.

Glossary

Vbe set of depots

Vo set of stores
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P set of products
a5 demand of store j for productp, 7 € Vo,pe P
v;-’ number of vehicles needed to deliver demand of store j for product p, j € V¢,
peEP
I average vehicle load of product p, p € P
f distance related cost (fuel cost) per km
¢ capacity of cases of facility : of productp,7 € Vpc ,p€ P
n? number of stores assigned to facility i for product p, i € Vpc ,p € P
tc; transportation cost of total demand d;’ for product p of store j
from facility ¢
dcf; depot cost of total demand d?, of product p of store j
from facility :
dist;; distance between store j from facility ¢
time;; time to travel between store j from facility i
THR; transport hourly rate (drivers cost) for facility ¢
WHR,; warehouse hourly rate for facility ¢
DWR? direct work rate for facility ¢ for product p
Tij is the decision variable for the problem, z;; = 1, if store j is allocated
to facility ¢, and O otherwise
Minimize
387N i+ dday (5.1)
i€Vpc jeVe peP
subject to
Y om=1Vielk (5:2)
i€Vpe
S &y < ¢f,Vi€ Voo, VpE P (5.3)
jeVe
> @iy <nfVjEVo,VpEP (5.4)

jeVe
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T;; € {0, 1},i € Vpc,] € Ve (5.5
by setting:

tch; = (disty; * f + time;; * THR;) % 2 xv i€ Vpe,j€Ve,pe P (5.6)

de&; = (&/DW RP) s WHR,,i € Vipe,j € Vo,p€ P (5.7)

! = d8/IP,i € Vpo,p € P (5.8)

where formulation (5.1) aims to minimize the transportation and depot costs of satisfying
the total demand of all the stores, and constraints (5.2) with (5.5) guarantee that the de-
mand for each store must be satisfied by one depot. Constraints (5.3) and (5.4) ensures
that the capacity constraints for the facilities for each product type are not violated and
(5.5) specifies that allocation is indivisible for the decision variable. Formulation (5.6)
calculates the transportation costs of product p to satisfy the demand of store j, and (5.7)
calculates the depot costs associated with demand of product p and store j. Finally, (5.8)
calculates the number of vehicles needed to satisfy demand of store j and product p. We
use a real number for the number of vehicles for each product type p as our business
partners requested to ensure that exact values are used in the modelling without rounding
those values. This is due to a large number of deliveries for each product type and if every

value is an integer, the precision of the work will be lost as part of the calculations.

To calculate the total distance travelled (km), the following equation was used on the

resulting allocation from the cost-based optimization based on the formulation 5.1:

totalDistance = > > > (disti; ¥ 2x1¥)zi;,i € Vpe,j € Ve,p € P (5.9)

i€eVpc jeVe peP
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Product type Ratio of total Ratio of total

demand in cases / depot capacity | num of stores / depot capacity

Ambient 0.77 0.75
Chill 0.81 0.79
Produce 0.69 0.77

Table 5.1: Ratio of total demand versus available capacity across network .
5.5 Analysis

5.5.1 Benchmarking allocation of stores to depots

The benchmarking allocation uses the above mentioned September 2009 data, and the
result of this allocation serves as our base or “benchmark” for comparing with the results
from scenarios 2-5. The “best fit” Company’s allocation model is based on stem distances
(like our study), but we incorporate warehouse costs and time related transport costs which

are not included in the Company “best-fit" study.

It is worth noting that the Sainsbury network has spare capacity, and is quite “loose" in
terms of the capacity constraints in relation to total demand. Table 5.1 shows the ratio of
total demand (in cases) to total capacity (second column) and the ratio of number of the
stores versus total depot capacity (in number of stores) across the entire network. As you
can see from the table, the chill product type is the tightest in terms of capacity. These

ratios tell us that more than one feasible solution is likely to exist.

Figures 5.1(a) and 5.1(b) show screenshots of the optimum allocations produced by CPLEX®
using the September 2009 data with fuel cost at £0.35 per km. The results of this alloc-
ation are used as our benchmark for comparison in the sensitivity analysis carried out in
scenarios 2-5 (excluding the uniform scenario). As can be seen from Figure 5.2 and 5.3,
the depot costs form the larger component (67.9%) and the transport costs account for
only 32.1%. There are only 50 stores (9.6% of all stores) for which the transportation

costs account for 50% or more.
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(a) Overview (b) Close up
Figure 5.1: Benchmarking scenario.
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When our benchmarking allocation is compared to the “current” Company’s allocation
using the September 2009 data, the following results were produced. Table 5.2 compares
the solution produced by CPLEX® with the actual allocation used by company using
September 2009 data. The difference in solution is very small at 0.72%. Only 61 stores
(11. % of all stores) have different allocations, and this can be seen from the screenshots

in Figures 5.4(a) and 5.4(b). The blue dots represent those stores which are allocated
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(a) Overview (b) Close up

Figure 5.4: Comparison of benchmarking scenario to company’s allocation.

Solution using Total cost (£) % transport % depot Comments
SEPTEMBER 2009 data costs costs
CPLEX® 3,006,318 321 67.9 ->61 stores allocated

differently comparing
to Company’s.
Company’s allocation 3,027,945 321 67.9 ->not feasible if 90%
volume capacity;
feasible-if full capacity;
->0.72% diff. compare

to CPLEX® solution

Table 5.2: Results for the September 2009 data .

differently, compared with the Company allocation. As can be seen from the figures, all
the stores which are assigned differently, are located on the edges of the intersection with
other depots which could easily win those stores with a slightly lower cost. Table 5.2
illustrates that the cost value between both scenarios is very similar and this is because we
applied our cost model to the “best fit” allocation to calculate the actual company’s alloc-
ation cost. The company provided us with the “best fit” allocation (not the cost solution
but the allocation of stores) where they use an iterative approach in Microsoft Excel and

in each iteration they reallocate stores manually to the minimum cost to ensure that the
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capacity constraints are not violated. The similarity between the Company’s assignment
and our results provide mutual reinforcement of our modelling and the Company’s “best
fit” allocation solution which was given to us by the company. Scenario 1 also reinforces
those findings. The results obtained here serve as the base for the sensitivity analysis in

scenarios 2-5.

5.5.2 Scenario 1. Uniform scenario

The “best fit” Company’s allocations are made on the basis of stem distances (i.e., fuel
related costs) only. On the other hand, our benchmarking allocations 5.5.1 depend on
warehouse costs and time related transport costs as well as stem distances. While it is
encouraging to note the similarities between the allocations made by the Company and by
us using CPLEX®) in Part 5.5.1, on the September 2009 data, we are clearly not com-
paring “like with like". For this reason we include Scenario 1 which effectively allocates
stores to depot on the basis of fuel related costs (i.e., stem distances) alone, to make a
fairer comparison with the Company allocation, and thus provide mutual validation for

the models.

The uniform scenario uses the same costs and productivity rates across all depots and
vehicles, and the result of this allocation is also used for comparison with the results
from “best fit” company’s allocations. The following average data was used: the average
vehicle load (ambient=chill=produce=1243) with fuel related costs of £0.35 per km. DWR
for each depot was set at 97.6 for ambient product, 100.13 for chill and 136.02 for produce.
WHR was equal to £16.03 and THR was equal to £18.48 for each depot. Because the same
rates are applied across all the depots, the depot related costs will be the same for each
store, and so will the time dependent transport costs (e.g., drivers’ pay), regardiess of its
allocation. Thus, just like the Company exercise, our optimization will be based on stem

distances only, as these are the only variables used in the modelling.

The cost structure of the optimal solution for the uniform scenario consists of depot and
transport costs. As expected, the majority of the costs in the solution are (once again)

allocated to depot costs. Furthermore, there are only 44 stores for which the transporta-
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Solution using Total cost (£) | % transport | % depot Comments
SEPTEMBER 2009 data costs costs
CPLEX® 2,912,529 304 69.6 —>54 stores allocated

differently comparing

to Company's.

Company’s allocation 2,925,700 304 69.6 —>not feasible if 90%
volume capacity;
feasible-if full capacity.
—0.45% diff. compare
to CPLEX®) solution.

Table 5.3: Results for average scenario.

tion costs matches or exceeds S0% among the 520 stores. The overall percentage of depot
costs is 69.6% with transport costs responsible for just 30.4%. Table 5.3 compares the op-
timum solution produced by CPLEX®) with the actual allocation used by the Company.
The difference in solution cost equates to 0.45%, which is almost negligible. These fig-
ures reinforce our confidence in our modelling approach and our solution quality. There
are only 54 stores (10.4% of all stores) allocated differently compare to the Company’s

allocation.

5.5.3 Scenario 2. Fuel scenario

The fuel-related scenario is used to understand the impact of fuel-related costs on the
allocation of the stores to depots. Several experiments were performed with different
values and steps: from £0.10 to £1.00 with step £0.01; from £1 to £10 with step £0.25;
from £10 to £100 and with step £10 and at £500 for the final experiment. The analysis
was performed on the September 2009 data. Only the fuel-related costs were changed and

these were varied across all depots simultaneously.

As expected, the overall costs increase linearly, because the fuel cost increases across all
the depots at the same rate. Figures 5.5(a)-5.5(c) clearly show the increase in overall costs
across all depots as the fuel rate increases for all the experimental ranges. In this chapter,

we use a notation of a relative cost or distance on the y-axes to make the actual values
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Figure 5.5: Total cost for a range of fuel related cost.

anonymous. For example, in Figure 5.5(a), on the y-axes we assign the relative total cost
of the particular network configuration to oo units of financial cost when the value of the

fuel cost per km as equal to £0 .. 0.

As the fuel rate increases, therefore the proportion of transport costs increases relative to
the depot costs, which can be seen from Figure 5.6. When the fuel rate equated to £0.10,
around 24% of the overall cost were allocated to transportation costs. As the fuel rate in-
creased, the break point for cost allocation was at around £ ..., per km with transportation

and warehousing costs equating to around 50% at this point.

For this scenario, the total distance travelled by the vehicles (Figure 5.7) decreases as the
overall cost increase as a result of the changes in the fuel costs. This happens due to the

increase in the proportion in the overall transport costs, therefore the optimized allocation
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Figure 5.6: Proportion of transport costs to depot costs, fuel cost range from £0.1 -

£500, overview.
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Figure 5.7: Total distance (km) travelled for fuel cost from £0.1 - £500 .

becomes slowly influenced mostly by the transportation costs as fuel costs increase. When
the fuel rate is low, stores may be assigned to depots that are a long way away, if the depot
cost is low enough. Figures 5.8 and 5.9 visualize the screenshots of the allocations where

you can see the impact of the lowest and the highest fuel rates on the distribution pattern.

The purpose of the experiments in this scenario is to understand the impact of the fuel rate
changes on the number of stores which are assigned differently compared to the bench-
marking scenario of £0.35 per km. As a result of the analysis, it seems that a decrease in
rate has a larger proportional impact on the number of stores allocated differently com -
pared to an increase in the fuel rate, which can be observed from Figure 5.10. Although
the number of stores which are differently allocated is relatively marginal, reaching a

maximum of only 43 stores (8.3% of overall stores) at a fuel rate of £500.0 per km, the
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Figure 5.8: Comparison of benchmarking  Figure 5.9: Comparison of benchmarking
allocation to fuel rate at £0.10 (33 different  allocation to fuel rate at £1.00 (22 different

stores). stores).

slope of the curve is much steeper for a decreasing fuel rate (on the left of £0.35) than for
an increasing fuel rate (on the right of £0.35). At £0.11 there are 38 different allocations
(7.3% of all stores). A similar impact for increasing fuel rate does not occur until the cost

has reached about £7.00.

. 8. "S8S8
Fuel cost per km (£)

Figure 5.10: Number of stores differently allocated compared to the basic scenarios

at £ 0.35 per km for fuel cost from £0.1 - £500.

An interesting observation comes from analyzing which depots have attracted more stores
as aresult of the fuel rate change. Figures 5.8 and 5.9 show the stores in blue colour which

are allocated differently compared to the benchmarking allocation:
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1. When the fuel rate is below £0.35 per km, depot C is affected the most and “attracts”
extra stores on the border with depot B (Figures 5.8-5.9). The total number of
stores increases to 62 stores for depot C for a fuel rate of £0.10, compared to the
benchmarking allocation with 39 stores (with available capacity of 80 stores). That

represents an increase of 59% in the number of stores.

2. When the fuel rate increases above £0.35 per km, depot A is affected the most,
“attracting” stores from surrounding areas: depot E, depot F, depot G, depot D for
a fuel rate up to £1.00. For example, at a fuel rate of £1.00, the total number of
stores assigned to depot A increased to 57 stores (18.8%) compared to 48 stores in

the benchmarking scenario.

As can be seen from our analysis, although the total number of stores allocated differently
is quite small compared to the store total, the impact of even relatively small changes
in the fuel rate could have a significant impact on particular depots as described above.

Figures 5.8 and 5.9 visualize the impact of the changes.

5.5.4 Scenario 3 - Direct Work Rate scenario

The direct work rate (DWR) scenario aims to analyse the impact of the labour associated
costs within the depot, such as picking and loading, on the assignment of the stores. The
analysis was performed on the September 2009 data, with only the DWR rate changing
for the purposes of these experiments. DWR changes from 10% below the benchmarking
data across all products and up to 15% above the base with step of 2.5%, on five depots,
taking one depot at the time. The following depots were considered: depot A, depot B,
depot C, depot D and depot E. The analysis involved investigating the impact according

to the following criteria:

e Number of stores assigned to a particular depot
e Number of stores ‘lost’ to the particular depot

o Number of stores newly assigned to the particular depot
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Total number of stores differently allocated across the entire network
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Figure 5.11: Total cost for five depots, Figure 5.12: Proportion of transport costs
DWR changes from -10% to +15%, step  to depot costs, DWR changes from -10%
2.5% for each depot. to +15%, step 2.5% for each depot.

The impact of the changes of DWR on the overall costs can be seen from Figure 5.11 for
each depot. As expected, when the DWR rate increases, the overall costs decrease across

all experiments. Around 67% of the costs in the optimum solution were allocated to the

depot costs (see Figure 5.12).
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Figure 5.13: Total distance (km) travelled for a particular depot, DWR changes from

-10% to +15% with step 2.5% in relation to benchmarking data.

The changes in total distance travelled by the vehicles is different depending on the geo-
graphical locations of depots under investigation (see Figure 5.13) where the costs are

influenced by the depot cost component. The distances for depot A and depot B decrease
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as well as the overall costs when DWR rate increase. The reassignment of the stores loc-
ated on the border with other depots is balanced by lower costs and lower distances due
to the geographical locations of the depots and surrounding stores (Figure 5.14(a) and
5.14(b)), where the stores are allocated to the furthers depots by distance at the beginning
of the experiments when DWR=-10%. On the other hand, the distances for depot C in-
crease while the overall costs decrease due its geographical location. This is because the
stores which are located on the border with depot B, are closer to depot B distance-wise
and reassigned to depot C due to the lower cost which is influenced by the depot compon-
ent (Figure 5.15(a) and 5.15(b)). As can be seen from the Figure 5.13, the overall travelled
distances for depots D and £ do not change when the rate changes in DWR experiments.
Strategically, both depots are located closely to each other and almost at full capacity,
therefore any changes in rate will bring them to the full capacity very rapidly which is

discussed in more detail below.

(2) DWR=-10% (b)DWR=15%

Figure 5.14: Depot A.

The number of stores assigned to a depot steadily increases in the cases of depot 4 and de-
pot B (Figure 5.16). This pattern would be expected throughout the entire network because
as DWR increases at particular depot, that facility becomes more attractive (cheaper) for
surrounding stores. For depot A, the number increases to 63 stores when DWR=15%
above compared to 48 stores for to the base rate at DWR=0% above, representing an in-

crease of 31% in the number of stores. For depot B, the increase in number of stores
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(a) DWR=-10% (b)DWR=15%

Figure 5.15: Depot C.
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Figure 5.16: Number of stores assigned to a particular depot, DWR changes from

-10% to +15% with step 2.5% in relation to benchmarking data.

equates to 25%, from 52 to 65 stores. A different pattern can be observed for depot C,
depot D and depot £ (Figure 5.16). For depot C, changes in the number of stores only
had an impact up to DWR=7.5%. For depot D, changes in the number of stores did not
occur after DWR= - 5% (i.e., 5% below benchmark rate), whereas for depot £ changes in
the number of stores did not happen after DWR= -7.5%. There could be two possible ex-
planations why store allocations fail to increase as the depot becomes more cost effective:

the overall physical capacity of the depot was reached for one of the products or because
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of specific geographical location characteristics. Geographically, depot D and depot £
are located closely to each other. Depot E almost reached its maximum capacity for chill
products with respect to the number of cases (989,205 assigned cases for 990,000 capa-
city) at DWR= - 2.5%, therefore it has no more physical capacity to accept more stores.
Looking at Figure 5.16, the number of stores has not changed after -7.5%, but an almost
full capacity was reached at -2.5%. This could happen because of two stores: one was
assigned to depot D and another to depot £ and when depot £ became more attractive,
those stores swapped their assignments to better fit the capacities of the depots. Similar
observations regarding the capacity can be seen for depot D, which reached almost max-
imum capacity for the number of cases and the number of stores assigned at DWR=-5%
(38 assigned stores to capacity of 40 stores; 448,320 cases assigned to capacity 0f450,000

cases for chill products).

S r 25

Depot A DepotB DepotC Depot D DepotE
DWR (%)

Figure 5.17: Number of stores lost at particular depot as a result of DWR changes

from -10% to +15% with step 2.5% in relation to benchmarking data.

The number of stores lost at a particular depot decreases as expected (see Figure 5.17),
because each depot becomes more attractive for stores due to DWR increasing. Depot 4,
depot C and depot £ stop losing stores at DWR=-2.5%; depot B at 0% and depot D at -5%.
All depots follow the same pattern except depot D, which has 2 lost stores when DWR=
+5%. As well as loosing two stores to depot FE, at the same time depot D acquired two
new stores from depot £ (Figure 5.18). As the stores are located on the border between

both depots, their allocation is likely to be highly sensitive to small changes in costs or
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productivity.

Depot A Depot B Depot C DepotD Depot E

DWR (%)

Figure 5.18: Number of stores newly assigned to a particular depot as a result of

DWR changes from -10% to +15% with step 2.5% in relation to benchmarking data.

The number of newly assigned stores to a particular depot increases due to the depot cost
decrease. The “attractiveness" of the depot is characterized by a cheaper assignment for
stores, as long as there is enough capacity in terms of the number of stores and volume
for each product type. Figure 5.18 represents an overview of changes to DWR and the
associated number of newly assigned stores. For depot A and depot B, a steady increase in
newly assigned stores is observed for DWR above +0%. Depot C attracts new stores when
DWR is more than + 0% and less than +10%. From DWR > +10%, the depot reaches the
demand needed for ambient products of 584,149 cases with capacity of 585,000. Depot
D has one new store when DWR= -10% and two new stores when DWR= +5%. The
former comes from the store which is located on the border with depot £ and is a result of
optimization. As discussed above, depot D and depot £ do not have enough spare capacity
to attract new stores, therefore the pattern of newly assigned stores for them is different

compared to other depots.

The total number of stores differently allocated compare to the benchmarking scenario
can be seen in Figure 5.19. Depot A and depot B produce V-shaped curves, where the
depot is either too “expensive” or more “attractive” to other stores; also a small impact of
those changes can be observed for the other depots. Depot C has a similar curve shape

with a slight difference: it reaches almost maximum capacity at DWR=+7.5% and after
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Figure 5.19: Total number of stores different as a result of DWR changes from -10%

to +15% with step 2.5% in relation to benchmarking data.

that cannot physically attract more stores. Thus the changes in rate have no impact on
other depots. The changes in DWR have no significant impact on depot D and depot E.
Although a slight fluctuation can be observed in the number of stores assigned differently
for both depots, this can be mostly attributed to the stores located on the border between
the depots H and L. The only significant difference in the number of stores was for Depot
D when DWR= -10%, which resulted in stores located on the border with other depots to

be allocated to a much “cheaper” option.

5.5.5 Scenario 4. Warehouse Hourly Rate scenario

The warehouse hourly rate (WHR) scenario aims to analyse the impact of changes to the
warehouse associated costs within a depot. The analysis was performed on specific de-
pots with WHR changing from £10 - £33 with step of £1. The following depots were
considered: depot A, depot B, depot C, depot D and depot E. The investigation was per-

formed according to the following criteria:

* Number of stores assigned to a particular depot
* Number of stores lost at the particular depot

e Number of stores newly assigned to the particular depot
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e Total number of stores different across the entire network
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Figure 5.20: Total cost for five depots, Figure 5.21: Proportion of transport costs
WHR changes from £10 - £33, step 1 for to depot costs, WHR changes from £10 -
each depot. £33, step L.

The impact of the changes to WHR on the overall costs can be seen from Figure 5.20 for
each depot. As expected, when the WHR rate increases for a particular depot, the overall
costs increase across all experiments. Looking at the curve in Figure 5.20, we can see that
for the four depots at some point, the curve stabilizes, which indicates that at a particular
rate that depot becomes too expensive to be part of the network and is not presented as
part of the final optimum solution. For more discussion regarding breakpoints please see
below. Around 64-67% of the costs in the optimum solution were allocated to the depot

costs (see Figure 5.21).
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Figure 5.22: Total distance (km) travelled for a particular depot when WHR changes
from £11 - £33, step 1 for each depot.
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(a) WHR=£11 (b) WHR=£21
Figure 5.23: Depot C.

As overall costs increase for all depots, the total vehicle-km also increase but with a dif-
ferent gradient of increase (see Figure 5.22). WHR rate is the depot-based component of
the cost therefore as it increase, the depots under investigation will be less attractive to the
stores located on the edges, which could change their assignment to depots further away
in terms of vehicle-kilometers. Some of the depots will “disappear" from the network
due to the high WHR rate and their stores will be reassigned to the other depots. Figure

5.23(a)-5.23(b) visualize this impact on the depot C depot changes in rate.

The number of stores assigned to a depot steadily decreases for depot B and depot C
(Figure 5.24). This pattern would be expected throughout the entire network because as
WHR increases at a particular depot, that facility becomes more expensive for surrounding
stores. Depot A loses all the stores when WHR > £32, depot B when WHR > £26, depot
C when WHR> 22, depot D when WHR> 25. However, depot £ does not lose all its
stores over the range of WHR analysed. Depot D (Figure 5.24) has a relatively stable
number of stores assigned to it, which is between 38 and 40 until WHR=£20. This is
because the depot is serving up to full capacity for chill product (for example, assigned
demand is 448,320 cases with available capacity of 450,000). Depot £ also has a stable

number of assigned stores of 83-84 until WHR=£19 due to the capacity constraints on

chill products.
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Figure 5.24: Number of stores assigned to a particular depot when WHR changes

from £10 - £33, step 1 for each depot.
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Figure 5.25: Number of stores lost to a particular depot, WHR changes from £10 to

£33, step £1.

The number of stores lost at a particular depot increases as expected (see Figure 5.25), be-
cause each depot becomes less attractive for stores due to WHR increasing. As discussed
earlier, we can see from Figure 5.25, depot A loses all the stores when WHR > £32, depot
B when WHR > £26, depot C when WHR> 22, depot D when WHR> 25. On the other

hand, depot E still has not lost all its stores when WHR=£33.

The number of stores newly assigned to a particular depot is characterized by the “attract-

iveness" of that depot where the cheapest assignment is used to allocate the stores, as long
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Figure 5.26: Number of stores newly assigned to a particular depot, WHR changes
from £10 to 33 with step £1.

as there is enough available capacity. Figure 5.26 represent an overview of changes in
WHR and the associated number of newly assigned stores. As we can see from the figure,
for depot 4, there are no newly assigned stores after WHR >£18 (at around the base rate
of 17.98), for depot B when W HR>16 (just above the base rate of £15.56), for depot C
when WHR >13 (just below the base rate of £13.11), depot D when WHR >16 (below

the base rate of £18.11) and depot £ when WHR>12 (below the base rate of £16.55).

140 ,

Depot A Depot B Depot C Depot D Depot E
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Figure 5.27: Total number of stores different, WHR changes from £10 to 33 with

step £1.
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The total number of stores differently allocated compared to the benchmarking scenario
can be seen in Figure 5.27. All the depots produce V-shaped curves, where the depot
is either too “expensive” or more “attractive” to other stores. The impact of the WHR

increase is described as follows for each participating depot:

e Depot A. When WHR is below £19, the depot attracts more stores surrounding it,
with the reallocation of stores also affecting depot D, depot E, depot L, depot G and
depot F. As WHR increases above £19 - the depot start losing stores to depot K,
depot L, depot C, depot D, depot E and depot B following the reallocation of the

stores.

e Depot B. When WHR is below £15, the depot attracts surrounding stores from depot
L and depot C. As WHR increases above £15, it starts loosing stores to depot C
(majority of the lost stores), depot K, depot L, depot A, depot D, depot E and depot

G/depot F until it loses all the stores.

e Depot C. When WHR is below £13, the depot attracts surrounding stores from
depot B (majority of the lost stores) and depot D. When WHR is above £15, the
depot start losing stores to depot D, depot B, depot A, depot K, depot E, depot L and
depot F/depot G until it loses all the store.

e Depot D. When WHR is below £15, it attracted small number of stores from depot
E and depot A. Depot C and depot E also attracted a very small number of stores.
Above £15, it starts loosing stores to surrounding depots such as depot A, depot C,

depot E until it loses all the stores.

e Depot E. When WHR is below £17, it does not attract many stores but other depots
such as depot C, depot D and depot A had lost a small number of stores to depot E.
Above £17, reassignment of the stores involve the following depots: depot D, depot

A, depot C, depot B, depot K, depot L and depot G/depot F.
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5.5.6 Scenario 5. Transport Hourly Rate Scenario

The Transport hourly rate (THR) scenario aims to analyse the impact of changes in trans-
port associated costs for each participating depot. The analysis was performed on specific
depots with THR changing from £10 - £33 with a step of £1. The following depots were
considered: depot A, depot B, depot C, depot D and depot E. The investigation was per-

formed according to the following criteria:

Number of stores assigned to a particular depot

Number of stores lost at the particular depot

Number of stores newly assigned to the particular depot

Total number of stores different across the entire network

-% of transport COI
-% ofdtpot costs

Dot C Depot A Depot B DepotC Depot D DepotE
THR« THR (£)

Figure 5.28: Total cost for five depots, Figure 5.29: Proportion of transport costs

THR changes from £10 - £33, step 1 for to depot costs, THR changes from £10 -

each depot. £33, step 1.

The impact of the changes of THR on the overall costs can be seen from Figure 5.28 for
each depot. As expected, as the THR rate increases for a particular depot, the overall
costs increase across all experiments. Looking at the curve in Figure 5.28, we can see that
for all depots the curve is still growing as THR increases and does not stabilize, which
indicates that there is still available capacity to assign to the stores. Around 32-33% of

the overall costs in the optimum solution are allocated to transport costs (Figure 5.29).

The impact of the increasing overall cost has a different influence on the total vehicle-

km depending on the geographical location, surrounding demand and available capacity
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Figure 5.30: Total distance (km) travelled for a particular depot when THR changes

from £11 - £33, step 1 for each depot.

(a) Depot B, THR=£27 (b) Depot D,THR=£31

Figure 5.31: Impact on allocation of THR changes.

(Figure 5.30). For depot A and depot B, the overall distance and associated costs increase
as the THR rate goes up. Again, we can see a different picture for depot C, where the
distance decreases as cost increases due to its geographical location. The reason for the
decrease is that the stores surrounding depot B are re-assigned to depot B, with lower
distances when the rate increases at depot C. Depot D and depot £ do not have such sharp
decreases/increases in overall distance as other depots. Figures 5.31(a)-5.31(b) visualize

the impact on the some of the depots.
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Figure 5.32: Number of stores assigned to a particular depot when THR changes

from £10 - £33, step 1 for each depot.

The number of stores assigned to a depot steadily decreases for depot C, depot B and depot
C (Figure 5.32). This pattern would be expected throughout the entire network because as
THR increases at a particular depot, that facility becomes more expensive for surrounding
stores. For depot D (Figure 5.32), the number of assigned stores does not change much
until THR=£27, after that the number of stores starts steadily to decrease as well. The
same pattern can be observed for depot £, with a breakpoint at around £28. None of
the depots lose all the stores, which is due to the fact that a smaller part of the costs is
apportioned to transport costs than warehouse costs, and the variable under investigation

reflects the drivers hourly rate.

The number of stores lost at a particular depot increases as expected for depot A, depot B
and depot C ( Figures 5.33), because each depot becomes less attractive for stores due to
THR increasing. Depot D and depot £ have a V-shaped curve where each side represents
that depot loses the stores to the surrounding depots. One of the explanations why this is
happening is because of the geographical location of these two depots, which are located
closely to each other. As well as attracting new stores, those depots also lose some of
the stores to the surrounding depots, which could be due to the capacity constraints. The

breakpoint for depot D would be at around £ 16-£ 18 and for depot £ at £20-£23.

The number of stores newly assigned to a particular depot can be seen in Figure 5.34.

The number of newly assigned stores decreases for depot A, depot B and depot C, as THR
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Figure 533: Number of stores lost to a particular depot, THR changes from £10 to
£33, step £1.
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Figure 5.34: Number of stores newly assigned to a particular depot, THR changes

from £10 to 33 with step £1.

increases. For depot D and depot E, the curve resembles a V-shape, with a breakpoint at
which no new stores are assigned, and on both sides of that point there are newly assigned
stores. We would expect the number of new stores to increase when THR is cheaper, but at
the same time an increase in the number of new stores when THR is more expensive. This
could happen because the stores are located closely to each other and as well as attracting
new stores, those depots also lose some of the stores to the surrounding depots, perhaps
due to the capacity constraints. The breakpoint for depot D would be between £16 and

£18 and for depot £ between £20 and £24.
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Figure 5.35: Total number of stores different, THR changes from £10 to 33 with step
£1.

The total number of stores differently allocated compared to the benchmarking scenario
can be seen in Figure 5.35. All the depots produce V-shaped curves, where the depot
becomes either more “expensive" or more “attractive” to other stores. The impact of the

THR increase is described as follows for each participating depot:

e Depot A. When THR is below £19, the depot attracts more stores from depot D
and depot F/depot G. As THR increases above £19 - the depot start losing stores to

depot K, depot D, depot C, depot F/depot G.

* Depot B. When THR is below around £18, the depot attracts surrounding stores
from depot L. As THR increases above £18, it starts losing stores to depot C (ma-

jority of the lost stores) and depot K.

e Depot C. When THR is below £17, the depot attracts surrounding stores from depot
B (majority of the lost stores) and depot D). When THR is above £17, the depot start
losing stores to depot A, depot D, depot B, depot E, depot K, depot L and depot

F/depot G.

e Depot D. When THR is below £17, it attracts stores from depot £ and depot B.
Above £17, it starts losing stores to surrounding depots such as depot E, depot 4,

depot B, depot L and depot G/depot F.
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e Depot E. When THR is below £21, the following depots are affected: depot D, depot
A and depot C. Above £21, reassignment of the stores involve following depots:

depot D, depot A, depot C and depot G/depot F.

5.6 Calculating C'O, emissions

Previous sections of this chapter dealt with a cost-based optimization and the impacts
of the changes in various key factors (DWR, THR, WHR and fuel-related costs) on the
allocation, overall cost and distance. To calculate CO, emissions from the network, only
the vehicle based emissions were considered. The emissions from running the depots
were not taken into account because they would be considered as fixed emissions for each
depot, which is the same as depots fixed costs which has not been taken into account either
during modelling. Adding the fixed cost will not have an impact on the final allocation
solution. The purpose of the current investigation is not to calculate total emissions from

the network but to evaluate relevant factors which have an impact on the solution.

In this chapter we use a formulation to calculate CO, emissions of the particular network
configuration from DEFRA [32] following the company’s usual practice. We do not con-
sider vehicle speed as part of calculations as we did in the Chapter 4 because the DEFRA
formulation is an accepted guideline for UK business to calculate carbon dioxide emis-

sions and it does take into account the diesel lorry type and percent of laden weight of the

lorry.

COy = Z Z Z(totl)isiij*fuel(i'onsump*fuelFactor)xij,i €Vpe,j€Ve,pe P

i€Vpe jeVe peP

(5.10)

where fuelConsump is the figure which was provided by the Company and is an average
fuel consumption of a truck, fuelFactor is a fuel conversion factor for a particular fuel
type and totDist;; is the total distance travelled by the vehicles to depot ¢ to satisfy a
particular demand of a customer j which is a stem distance multiplied by 2. We used a

figure of 0.33 litres per km for fuelConsump, which is the average figure over 12 months
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(April 09 - March 10) across all depots. For the fuelFactor parameter, a fuel conversion
factor of 2.63 kg/litre was used for diesel fuel. Figures 5.36(a)-5.36(c) visualize CO:
emission results for all scenarios, where the shape of the curve is the same as the curve

for the total vehicles-km travelled.
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Figure 5.36: CO: emissions for all scenarios.

5.7 Discussion of results and main conclusions

The main conclusion of the analysis is that the current network configuration is robust to
small fluctuations in the rates investigated due to spare capacity in the depots. Further-
more, the findings show that the effects of making changes to various costs or productivity
parameters vary considerably and depend on the geographical location and available ca-
pacity of the depots involved as well as on the local topology of the network. In some

cases relatively large changes to variables associated with an individual depot have very
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little impact, even locally, whereas in other situations similar changes when applied to a

different depot may result in a large number of reallocations, throughout the network.

The fuel-based scenario looks at the impact of changes to fuel-related costs on the alloc-
ation of the stores. Our analysis investigates the impact of increasing and decreasing the
fuel rate from a benchmarking cost of £0.35 per km. Although the overall difference in
the way stores are allocated is small (for example, 8.3% of all stores at £500 per km),
some interesting observations can be made more locally. When the rate is below £0.35
per km, we find that depot C is affected the most and attracts many stores from depot B
(at £0.10, for example, the depot has an extra 39 stores, which equates to an increase of
59% stores for depot C). When the rate is above £0.35 per km, on the other hand, depot A
is affected the most, followed by depot E, depot F/depot G, and depot D. For example, at
a fuel rate of £1.00, the total number of stores assigned to depot A increased to 57 stores

compared to 48 stores in the benchmarking scenario (an 18.8% increase).

The direct work rate (DWR) scenario investigates the impact of the work rate efficiency
on the allocation of stores to a particular depot. We vary the DWR from -10% to +15%
from the benchmarking values with step 2.5% for all products. Our analysis shows that the
results for the number of the stores allocated differently compared to the benchmarking
scenario differ according to the depot we choose to investigate. Depot A and depot B
demonstrate predictable patterns in terms of the number of stores assigned: the higher
DWR (i.e., productivity)- the more attractive a particular depot becomes for surrounding
stores. Depot C follows a similar trend but reaches its maximum capacity early at DWR=
+7.5%, and at this point it cannot physically accept any more stores. For depot D and
depot E, only slight variations in store allocations result from the imposed changes to
DWR with one exception: if DWR is decreased by 10% for depot D - this makes the

depot too expensive, and as a result it ‘loses’ some of its stores.

The warehouse hourly rate (WHR) scenario analyses the impact of the changes in the
warehouse associated costs within a particular depot under investigation. An increase in
WHR would imply that as the rate increases at a particular depot, that facility will become
less attractive/ more expensive for the surrounding stores. Indeed this pattern of steadily

decreasing numbers of stores assigned to a depot is observed for almost all depots, until
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a particular rate when the depot looses all the stores. Depot A loses all its stores after
WHR > £32, depot B when WHR > £26, depot C when WHR> 22, depot D when
WHR?> 25. On the other hand, depot E maintains some stores over the complete range of
WHR analysed in our study. Our findings suggest that in situations where depot costs are
high in comparison to transport costs, depots tend to ’lose’ all their stores more readily
as WHR increases. On the other hand, the total number of stores allocated differently
compared to the benchmarking scenario produces a V-shaped curve for each depot under
the investigation. In the centre of the ‘V’ we have the benchmarking case that gives the
expected number of stores allocated to a depot, thus representing zero deviation from
expectation. To the left of this, stores are gained by a depot as WHR is decreasing making
the depot cheaper and more “attractive”. To the right, WHR is increasing, making a depot

more “expensive”. In this case, stores will be lost from the depot (Figure 5.24).

The transport hourly rate (THR) scenario analyses the impact of changes in the trans-
port associated costs within a particular depot under investigation. As THR increases for
a particular depot, it not surprisingly becomes less attractive for the surrounding stores.
However, changes in THR do not seem to have quite such a drastic effect as we observed
when studying the WHR scenario. As mentioned above, depot costs generally tend to be
higher than transport costs. Thus it is perhaps not surprising to note that the network is
more sensitive to changes in warehouse costs than it is to changes of similar magnitudes
to transport costs. Nevertheless, in THR scenario, as THR increases, the number of stores
assigned steadily decreases for depot A, depot B and depot C depots. For depot D, the
number of stores does not change a great deal until THR=£27, after which the number
of stores starts steadily to decrease as well. The same pattern can be observed for de-
pot E, with a breakpoint at around £28. The total number of stores allocated differently
compared to the benchmarking scenario produces similar V-shaped curves to those ob-
served for changes in WHR, where the depot either ‘loses’ stores as the depot becomes

too expensive, or gains stores more as it becomes more cost effective.

The investigation into allocation allowed us to cover different scenarios for network design.
In some cases the depot costs dominated the cost function and in other the transportation

element was the greatest. Having real store and depot locations allowed an insight of
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real-world design. The geographical locations have a drastic impact of the behavior on
the allocations, where the overall cost of the allocation could increase as the changes in
various key factors occur and at the same time the overall distance travelled may decrease.

Without detailed analysis of the network, it would be very hard to predict that behaviour.

In an attempt to generalise results presented in this study, the findings show that etfects
vary considerably and depend on the geographical location and available capacity of the
depots involved as well as on the local topology of the network. In some cases relatively
large changes to variables associated with an individual depot have very little impact, even
locally, whereas in other situations similar changes applied to a different depot may result
in a large number of reallocations, throughout the network. The decision maker needs to
be aware that changes in one facility will have a ripple impact on other serving facilities
as stores which are located mainly on boundaries will be reallocated. Also, the proximity
of depots need to be considered because it will have a direct impact on which depots are
likely to be affected. The results presented in this chapter confirmed findings by Lalwani
et al. [125] where authors undertaken the sensitivity analysis on the strategic network
design (locatio-allocation) that the optimum design is overall less sensitive to transport
cost changes due to its smaller proportion contribution to the overall logistic costs. On
the other hand, in this research we also show that changes in transport related costs could

have a significant impact on the allocation of individual depots.

5.8 Summary

This chapter presents a case study based on Sainsbury’s data with multiple products,
where the impact of changes of key variables such as fuel costs, transport and ware-
house associated costs is analysed based on the allocation of the stores to depots. The
main conclusion of the analysis is that the current network configuration is robust to small
fluctuations in the rates investigated due to spare capacity in the depots. This seems to
reflect current practices company deploy to ensure that there is enough spare capacity to

deal with uncertainty.
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Chapter 6

Optimizing Dual Objectives for a
Capacitated Allocation Model Using
Sainsbury’s Data

6.1 Introduction and Motivation

In the previous chapter a cost-based capacitated allocation model based on Sainsbury’s
data was investigated, for which the optimization was undertaken using a single objective
function based on cost. The present chapter extends the study to include distance-based
optimization. Given current concerns about the environment, we consider that a reduction
in the total distance travelled in a distribution network will be likely to equate with a
reduction in greenhouse gas emissions, such as C'O,, thus providing a simple way to

explore the trade-off between “cost versus carbon emissions”.

We begin with a simple distance only optimization of the network, and compare these
results with the “cost only” model from the previous chapter, observing any differences
between the distribution networks optimized on the two different criteria: cost and dis-
tance/environmental impact. We wish to ascertain whether cost and distance based op-
timization on our data set will produce the same (or similar) solutions in terms both of the

allocation and the objective values for the capacitated allocation problem.

Next we try a slightly more sophisticated approach: we combine the two objectives, cost
and distance, in a simple weighted sum, and by varying the weights we produce a set of

trade-off solutions that balance economic and environmental objectives. In this way we
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are able to solve the allocation problem and offer the decision-makers alternative solutions
from which to make a choice. We also apply multi-objective evolutionary algorithms in

Chapters 8 and 9 for multi-objective facility location problems.

Although there is clearly a close relationship between cost and distance, insofar as trav-
elling greater distances requires more fuel, and more fuel costs more money, the relation-
ship is not as straightforward as it may seem, because there are many additional elements
included in the cost model, that may make it cost effective to travel further in some cir-
cumstances. The cost-based formulation includes both a transportation and a warehousing
component, and staff related costs normally form a significant part, associated with pick-
ing and loading the products, as well as driving the delivery vehicles. Some warehouses
are more efficient than others, and staff costs vary according to the location, for example

they are higher in the South East of England than elsewhere.

The work in this chapter was undertaken only on the benchmarking values to solve the
allocation problem at a fuel-related cost of £0.35, which was discussed in more detail in
Chapter 5. The data we use is the September 2009 data used in the previous chapter. Re-
call that Sainsbury’s secondary distribution network consists of 10 depots and 520 stores,
where each store has a certain demand for three different product types, and the depots
have capacity constraints on the number of cases and also the maximum number of stores
which it can serve. The data for the demand is averaged across a 6 month period and

reflects the market situation during 2009.

6.2 Distance-based optimization

The cost-based allocation model described in Chapter 5 was modified for the distance-
based formulation as follows:
Mathematical formulation

We are given a set of stores with known demands for different types of product. We

are also given a set of open facilities with capacity constraints for maximum volumes
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(numbers of cases) and maximum numbers of store allocation capacities, for each product

type at each facility. The objective is to minimize the total distance travelled each week,

assigning each of the stores to exactly one facility, adhering to all the capacity constraints.

This is a single source problem, in which each store obtains all of its product from a single

facility.

Glossary
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Minimize

set of depots

set of stores

set of products

demand of store j of productp, j € Vo, p€ P

number of vehicles needed to deliver demand of store j of product p, j € V¢,
peP

average vehicle load of product p, p € P

distance related cost (fuel cost) per km

capacity of cases of facility ¢ of product p,: € Vpc ,p € P

number of stores assigned of facility ¢ of product p, i € Vpe ,p € P
transportation cost of total demand d;’ of product p of store j

from facility :

depot cost of total demand df of product p of store j

from facility ¢

distance between store j from facility :

time to travel between store j from facility ¢

transport hourly rate (drivers cost) for facility ¢

warehouse hourly rate for facility ¢

direct work rate for facility ¢ for product p

is the decision variable for the problem, z;; = 1, if store j is allocated

to facility 7, and O otherwise

Z Z Z(distij 2% 07) T (6.1)

i€eVpeo j€EVe peP
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subject to

Z I = 1,V_} S VC (62)
ieVpe

> &z < gfVi€ VpeVpe P (6.3)

jeve
Dz <nl Vi€ Vpe,VpeP (6.4)

jeVe
Ti; € {0, 1},i € Vpe,j € Ve (6.5)

by setting:

W = d/IP,i € Vpe,p € P (6.6)

where formulation (6.1) aims to minimize the total distance to satisfy the total demand
of all the stores, and constraints (6.2) with (6.5) guarantee that the demand for each store
must be satisfied by one depot. Constraints (6.3) and (6.4) ensure that the capacity con-
straints for the facilities for each product type are not violated and (6.5) specifies that
allocation is indivisible for the decision variable. Formulation (6.6) calculates the number

of vehicles needed to satisfy demand of store j and product p.

To calculate the total cost, the following equation was used on the resulted allocation from

distance-based optimization in formulation 6.1:

3o D0 (i +dd)ay (6.7)

ieVpe jeEVe peP

by setting:

1¥ = (dist; x [ + timneg; x THR;) x2x 9% ,i € Vpe,j € Vo,pe P (6.8)

LY}

d?, = (& /DWRY) « W R;,i € Ve, j € Vo,p € P 6.9)
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Optimization Optimization
based on costs | based on distance
Cost (£) 3,006,318.25 3,019,889.81
Distance (km) 1,418,938.40 1,405,138.95
Difference in cost 0 13,571.56
% Difference in cost 0 0.45
Difference in distance 0 -13,799.44
% Difference in distance 0 -0.97

Table 6.1: Results for the benchmarking scenario with fuel-related costs at £ 0.35 .

6.2.1 Results and analysis

The optimum allocation of the stores to the depots is based on minimizing overall distance.
This involves calculating the total distance travelled by vehicles to satisfy the particular
demand of the store and this is multiplied by two because the network uses stem distances
and the vehicle needs to get back to the original depot. The total distance travelled is
calculated for all stores and added together. Therefore, the distance-based optimization is
purely based on distances and any cost fluctuations in the market will have no impact on

the optimum solution.

Table 6.1 shows the results of the optimization by cost and by distance when optimized
separately. The cost value is slightly increased in the distance-based formulation com-
pared to the cost approach by 0.45%, which equates to a monetary value of £ 13,571.56.
On the other hand, the distance is actually decreased by 13,799.44 km (0.97%) as was ex-
pected for the optimization based on distance. Another important point to take from this
analysis is that if we consider the percentages when looking at the difference between the
cost and distance based formulations, the difference seems insignificant at 0.97% decrease
in total km travelled. In reality however, this would nevertheless equate to 13,799.44 km
saved per week which is the significant amount of the CO, emissions from the transport-

ation per week and across the year.

A comparison between the allocations of stores to distribution centres for the cost and the
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distance-based optimizations show that different allocations are made and different totals
for cost and distance are produced. This is not surprising as there is an obvious differ-
ence between two formulations for this particular case study. The economic model has
transportation and warehousing models combined together, and the transportation model
has distance-related and time-related elements. Recall from the previous chapter that the
cost structure for this particular case study is heavily influenced by the warehousing com-
ponent which contributes a higher proportion of the overall costs than the transportation
component. Additionally, the transport costs include driver wages which are time related.
On the other hand, the optimization based on the distance only considers a transportation
model with distance-related costs only. This study supports the idea that it is possible to
balance economic and environmental objectives using multi-objective optimization tech-
niques and one of those approaches, a simple weight-based technique is discussed in the

next section.

6.3 Multi-objective weighted sum approach

To allow a decision maker to evaluate the different trade-off solutions between cost and
distance based optimization in our allocation problem, we used a multi-objective (MO)
optimization approach. When there is more than one objective considered, the problem
will have multiple distinct goals, in our case this involves minimizing costs for one ob-

jective and minimizing distance for the other objective:

Minimize [; = z Z Z(I»C%—{-d(%)fl!ij

i€EVpe jeVe peP

Minimize fo = Z Z Z(distij * 2 x v;’) Zij (6.10)

i€Vpe jeVe peEP

subject to:

Z T = I,Vj e Vo

i€Vpe
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jeve

E z;; < nf Vi€ Vpe,Vp e P

jeVe

Tij € {0,1},i € Vpe.j e Ve

There exist many different methods for dealing with multiple objectives which are dis-
cussed in detail in Chapter 3. The approach we use here is a simple weighted-sum method.
This is a widely used approach in multi-objective optimization due to its simplicity [31].
The technique scalarizes a set of objectives by multiplying each objective with a user-
supplied weight [31] and the formulation of the technique is presented in the equation
(6.11). In our allocation problem, we have the dilemma of balancing two objectives: min-
imizing overall costs and minimizing total distance for the allocation of stores to depots.
The objectives have different units: £ and km, with different numerical ranges, making
it difficult to choose appropriate weights to control the relative contribution of each ob-
jective to the weighted total. Therefore, we normalize the objectives to bring them so that
each one typically produces values between 0 and 1. The formulation of the objective
function can be seen as a sum of the weighed normalized objectives, which converts the

problem into single-objective optimization problem:

F = wff +waf; 6.11)

The two weights w, and w, are chosen in such way where one weight is independent
and the other one is calculated by simple subtraction. Therefore, the sum of the weights
is equal to 1, where Zfr{:l w,, = 1. To convert each objective f, and f, to a single
normalized value which is used for the composite objective function (6.11), the following

procedure was used for each function, which generates a number between 0 and 1:

1. Find rinV al value which represent the lowest number in the data set.

2. Find maxV al value which represent the highest number in the data set.
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3. Calculate the normalized objective value for each store to each depot:
normValue = abs((aValue — minVal)/(mazxVal — minVal)), where aValue
is the corresponding value used for the optimization function, either total cost for

all products from a store to the depot or the overall distance.

As a result of the above procedure after applying weights to the normilized values, a mat-
rix of the normalized values is produced, for which each element of the matrix correspond

to the value of the assignment between each store and each depot.

The experiments were conducted using Java 2 and CPLEX(®) optimization engine, on a

PC with Intel Xeon E5345 and 4 GB RAM.

6.3.1 Results and analysis

The modelling and evaluation of the results was carried out on the allocation of stores to
depots with fuel-related costs at £ 0.35. As discussed in the previous section, the cost and
distance values were normalized to the same units between 0 and 1, then multiplied by

the appropriate weight and added together to get the total objective value.

Table 6.2 displays the results of the optimization based on different weights for cost (w.)
and distance (w,). As we can see from this table, the results are compared to the op-
timization purely based on costs only. Weighting both objectives allowed us to generate
trade-off solutions and understand the relationship between cost and distance to effectively
minimize environmental impact from the distance related emissions without a detrimental
impact on the financial objective. For example, balancing cost and distance objectives
with weights w,. = 0.5 and wq = 0.5 allowed us to reduce total vehicle-km travelled by
around 10,207 km by increasing cost by only £ 1,576 a week compare to the optimization
based only on costs. This equate to around 530,764 km a year (52 weeks), which con-
tributes to a significant amount of C'O, emissions in a year. If the decision maker only
considers the percentage increase, the reduction of 0.72% in km travelled appears insig-
nificant compared to the number of km saved of 10,207. Therefore, looking at only %

increase/decrease in the trade-off solutions may hide valuable information on the impact
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Weight | Weight for Ob;j. Cost Difference | % diff. Distance Difference % diff.
for distance (Normal. (£) in for (km}) in for
COSt W, wy value) cost cost distance distance
0 1 17.62 3,019,889.81 13,571.56 0.45 1.405,138.95 | -13,799.44 -0.97
0.1 0.9 21.20 3,014,219.61 7.901.36 0.26 1,405,622.87 | -13.315.53 -0.94
0.2 0.8 24.77 3.011,532.45 5.214.20 0.17 1,406,213.11 | -12,725.29 -0.90
03 0.7 2834 3,009,836.96 3.518.72 0.12 1,406,991.03 | -11,947.37 -0.84
0.4 0.6 31.90 3.009.178.52 2,860.27 0.10 1,407,438.55 | -11,499.85 -0.81
0.5 a5 35.46 3.007,894.59 1.576.35 0.05 1,408.731.10 | -10.207.29 -0.72
0.6 0.4 39.02 3,007,894.59 1,576.35 0.05 1,408,731.10 | -10,207.29 -0.72
0.7 03 42.58 3,007,467.07 1,148.83 0.04 1,410,159.03 | -8,779.37 -0.62
0.8 0.2 46.13 3.007,102.90 784.65 0.03 1,411,761.46 | -7.176.94 -0.51
09 0.1 49.68 3.006,607.62 289.37 0.01 1,415,033.40 | -3,904.99 -0.28
1 0 53.22 3,006,318.25 0 0.00 1,418,938.40 0 0

Table 6.2: Results of the optimization with different weights for w. and w, which
compared to the optimization purely based on costs (v, =1, ws=0) .

1,420,000
.
1,418,000 A
1.416,000 4 w05, w05
—_ P'S Cost difference=£ 1,676.36
5 1:414,000 4 Distance difference= - 10,207.29 km
b 1412000
A12] 1 Y
&
'2 1,410,000 - L 4 w =04, w,=0.6
Cost difference= £ 2,860.27
1,408,000 | . "
* A Distance difference= - 11,499.85 km
*
1,406,000
. *
1,404,000 . — v , T v — -
s & 8 g § & &§ &8 8 ¢
o o~ - w
g g 8 2 s 3 2 2 g 8
™ ) ) ™ o) ® ™ ™ ™ )
Cost (£)

Figure 6.1: Trade-off solutions for the allocation problem.

on the overall vehicle-km. Figure 6.1 visualizes the different choices for the allocation

which are available to the decision-maker.

Figure 6.1 visualizes the non-dominated solutions obtained by the simple weighted - based

approach which are presented in the Table 6.2 and discussed earlier. This allows the
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decision-maker to see straight away good compromise solutions. For example, solutions
which are circled in the figure have relatively low distance travelled just before the curve
steepens towards high overall distance travelled. The good compromise solutions were
already discussed earlier where a large number of the kilometers could be saved for a

relatively small economic cost.

To conclude, the analysis shows that single objective optimizations based either on cost
or distance, generate different results with different allocations, costs and total distances.
Even though these differences were relatively small percentagewise, we note that nev-
ertheless significant savings can be made in reducing the total distance travelled, at a
very small cost. A simple weighted sum approach gave the desirable trade-off solutions
between both objectives. When comparing the trade-off solutions to the cost-based op-
timization, we can see that even a small decrease in distance (0.72%) equates to around
10,000 km a week. This decrease in vehicle-km also equate to the small increase in
costs at around £ 1,500. If we only used the analysis based on percentages, there would
have been a tendency to underestimate the real impact on the reduction in distance. This
approach allows us to generate a good set of compromised solutions and analyse their

impact.

6.4 Summary

In this chapter we extend our Sainsbury’s case study to focus on balancing the economic
costs versus the environmental impact of transport, using a simple distance-based model
as a rough assessment of the environmental impact. Firstly, we optimized on distance
alone and compared our results with those obtained previously optimizing economic cost.
In addition, a weighted sum two-objective model was presented to produce a trade-off
front for overall costs and distances. Java was used as our implementation language,
together with the CPLEX®) optimization engine. The weighted sum approach for the
multi-objective optimization produced a set of non-dominated solutions by re-running the
optimization several time, each time applying different weights to the cost and distance

values. The approach allowed to produce good trade-off solutions that can be found using
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this technique. An investigation into the impact of the trade-off solutions is discussed in

relation to absolute values, in terms of £s and km, as well as percentages.
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Chapter 7

Lagrangian relaxation for a single

source facility allocation problem

7.1 Introduction

Logistics network design involves making decisions at different levels to ensure the con-
tinued competitiveness and responsiveness of the network. At the strategic level an op-
timum number, location and capacity for the depots is determined and may be evaluated
every few years. At the tactical level decisions, such as customer assignment (to depots),
supplier selection and transportation mode may be reconsidered every few months, as
demand patterns or other factors change. In this chapter we are concerned with the pro-
cess of assigning customers to appropriate depots which extends our allocation study in
Chapter 5 and 6 to large size instances. We consider the strategic problem of capacitated
facility location in Chapter 9. Assigning customers to the most appropriate depot is also
performed as a sub-routine of the the strategic facility location problem, because it is not
possible to assess the quality of a particular facility location problem (i.e., with certain fa-
cilities identified as “open”, and others as “closed"), without carrying out a full customer
allocation to evaluate the costs of serving the customers and satisfying their demand. Re-
cently issues, such as fuel prices and climate change and its impact on the network design,
have recently been discussed in the press. Gilmore [47] reports the finding of Dr. David
Simchi-Levi who volunteered to take a look at the impact of rising oil prices using data
from a real consumer goods company. He reported that the optimum network design stays

the same with five distribution centres for this particular case until the price reached $150,
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then the optimal network changed to seven depots, where one depot is closed and three
new facilities are open. These findings show the importance of periodically evaluating the
network design when any factors that may influence the design change. Clearly, the op-
timum number of facilities and their location is very sensitive to many variable factors. In
practice, however, building new warehouses, or closing or resizing them is a very costly
business and will be considered only occasionally. On the other hand, it could be pos-
sible to make significant savings simply by re-allocating customers to fixed facilities, on

a regular basis, to reflect changes in circumstances.

This chapter describes two Lagrangian Relaxation (LR) approaches to solving the single
source facility allocation problem for a single and multiple products. The motivation for
this research is to apply a Lagrangian Relaxation technique as part of a multi-objective
capacitated facility location problem, where economic costs and environmental impact
are solved simultaneously. Multi-objective optimization techniques allow the decision
maker to evaluate different trade-off solutions of the design. Obviously optimization soft-
ware packages, such as CPLEX(®) exist, to calculate the optimum assignment. Even
though developers can embed CPLEX®) optimizers into Java applications to solve com-
plex optimization problems, for our research we need an efficient technique to produce
a good solution within a reasonable amount of time as part of the development of our
multi-objective optimization tool for strategic modelling. Many thousands evaluations

are typically required for multi-objective optimization and CPLEX®) would be too slow.

Our single source mathematical model for the allocation of customers to facilities involves
two capacity constraints: 1) number of cases and 2) number of customers assigned to a
particular depot. We use a notation of an average case in the problem formulation which
consists of a number of items packed together in one box. Inheritably, different products
have different weights and different numbers of items packed in the case, therefore it is
common to use the notation of the average case. Single source terminology implies that
a customer is assigned to just one serving facility. The objective of this study is to de-
velop an efficient heuristic procedure, which provides an effective solution for large-scale
data instances for a single-echelon assignment problem, consisting of number facilities

and customers. Although the technique does not guarantee to obtain the optimum solu-
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tion, it has proven excellent in practice, and is very useful when speed is critical (e.g., for
really large problems, multiple experiments and for considering multiple criteria simul-
taneously). We apply Lagrangian Relaxation with relaxed capacity constraints to obtain
a lower bound solution, and a set of multipliers is used to ensure that if the facility has
spare capacity, then it is more attractive for assignment in the next iteration. The current
technique was adapted from Ghiani {48] where it was applied to CFLP. The formulations
presented in this chapter are based on the traditional lagrangian relaxation of the capa-
city constraints of GAP [136] and extended to incorporate extra constraints and multiple
products. The heuristic algorithm for solving each relaxed formulation is discussed as
part of the development of the LR technique in this chapter and focuses on obtaining a
feasible solution for upper bound for an assignment problem and not for the facility loca-
tion problem as presented in the study by Klincewicz and Luss{135] where fixed costs are

present in the relaxed formulation.

Section 7.2 describes a LR approach based on a traditional formulation for a single
product where the capacity (number of cases) constraint is relaxed. We also present in
the Appendix A, a new LR procedure where two capacity constraints are incorporated
into relaxed formulation. The results of the technique in the Section 7.2 are compared to
the optimum solutions produced by CPLEX(®) in terms of the quality of solution and ex-
ecution time on the benchmarking data available in the public domain (ORLIB [11]) and
also on some large-size problem instances which were randomly generated by ourselves.
The benchmarking data available from ORLIB was used for testing the technique on the
model with one capacity (cases) constraint and the data created by us was used to assess
the performance of the solution technique on the model with two capacity constraints:

number of cases and number of stores.

Section 7.3 introduces multiple product formulation with LR solution technique based on
Sainsbury’s data. The emphasis of the discussion in this section is on finding feasible
solutions in the multiple product formulation. The LR technique for multiple products
will need to have further investigation on randomly generated data sets which are outside

the scope of this project and addressed in the future work chapter 10.
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7.2 Problem Definition for a single product

For a given a set of customers with known demand for a product and a set of open facilities

with known capacities, the objective is to minimize the cost of assigning the customers to

the facilities. The customers’ demand has to be satisfied by a single facility, and capacity

constraints have to be adhered to. The problem can be modelled by a complete directed

graph, GG, where the vertices in V¢ represent the facilities and the vertices in V> represent

the customers. The arcs are associated with the flow of goods between facilities and

customers.

Glossary

Vpe  set of facilities;

Ve set of customers;

d; demand (cases) of customer j, j € V;

; capacity (cases) of facility ¢, 7 € Vp¢;

T capacity (number of customers) of facility 7, 7 € Vpc;

Cij is the cost of satisfying the total demand of customer j, d;, from facility ;

Tij is the decision variable for the problem, x;; = 1, if customer j is allocated

to facility 7, and O otherwise.

Mathematical formulation

Minimize
E E (Tij.’lfz‘j
1€Vpe jeVe
subject to

Z SCij = 1,\/) S VC

i€Vpe

Z djzi; < g, Vi € Vpeo

jeVe

Z z;; < ny, Vi € Vpe

jeVe

7.1)

(7.2)

(7.3)

(7.4)
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zi; € {0,1},i € Vpe,j € Ve (7.5)

(7.1) aims to minimize the costs of satisfying the total demand of all the customers, and
constraint (7.2) specifies that the demand of each customer must be satisfied by a single
facility. (7.3) and (7.4) ensure that the capacity constraints for demand (cases) and number
of stores for the facilities are not violated and finally, (7.5) specifies that allocation y for

the decision variable z;; and the demand is satisfied by one facility.

7.2.1 Solution Formulation 1 for relaxing one constraint: number of

cases

The first solution formulation of LR techniques relaxes only one constraint: the number
of cases. This is a simple approach, yet we found the solution quality and efficiency
comparable to a more complex two constraint LR model, which we developed later and
further work will be needed to test the approach on our own generated data sets. We
also present the two constraint model in the Appendix A. Please note that by relaxing
only one constraint initially we were making the assumption that the number of cases is a
harder constraint compare to the number of stores constraint, and this seemed appropriate
on close examination of the data. Nevertheless, the feasibility of the LB and UB solu-
tions was checked for violation of both constraints to ensure only feasible results were

produced.

The main step in the Lagrangian relaxation is the determination of a lower bound obtained
by relaxing the capacity (cases) satisfaction constraint using Lagrangian multipliers. Let

/\2' e R,VZ E VDC.
Minimize

Z Z CiTij + Z )‘i(z djxi; — ;) (7.6)

ieVpe jeVe i€Vpe JEVe
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subject to
Y oz =1Vje Ve (7.7)
i€Vpe
Z Iij S ni,Vi € VDC (78)
jeVe

In (7.6) the term in brackets on the right, (3., d;z;; — g;), calculates the difference
between the total demand on a facility i imposed by the relaxed formulation, and its
ability to meet that demand (i.e., its capacity(cases), ¢;). If the capacity is violated, or

underutilized, the value of total cost in (7.6) will change, depending on the value of A;.

One issue that needs to be considered regarding the right-hand side of formula (7.6),
is that normally a Lagrangian Relaxation technique will make adjustments to the cost
only when a constraint is violated. Thus, in the case of (7.6) we would expect the term
(Zjevc djz;; — ¢;) to equal zero, for any facility for which its capacity has not been
exceeded. However, this is not the case, as underutilized capacities will produce non-zero
values. Later on in this chapter we will make some suggestions as to how the Lagrangian
scheme can be adapted to cope with this issue, by constraining the A; values: if A; = 0, it

follows that 3., Ai(3- ey, 45755 — gs) also equals zero.

Problem (7.6) - (7.9) can be decomposed into | V| subproblems. For a given set of multi-
pliers, A; € R, the optimal lower bound of the problem (7.6) - (7.9), LB(), can be found

by solving the following subproblem for each customer j € V.

Minimize

Z (Cij + dj)\i)l‘,;j (710)

iE€Vpe

subject to
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Y ry=1Vjel (7.11)

€Vpe
Y 2y < ni Vi € Vipe (7.12)

jeve
.’L‘,‘j (S {0, 1},2 € Vnc,j S L’(* (713)
and then by setting
B =Y LB - > \a (7.14)
jeVe 1€Vpe

(7.10) is easily solved for the relaxed problem simply by applying a greedy algorithm
to allocate each customer along the lowest cost arc, according to the augmented costs,
¢ij + d;A;. By suitably modifying the Lagrangian multipliers, it is possible to obtain a
feasible solution to the original capacity constrained problem. To provide a good updating
formula for the Lagrangian multipliers, we will need an upper bound, in addition to the

lower bound in (7.14).

For an upper bound (UB) we will use a feasible solution obtained on the basis of the
allocations of customers to facilities discovered in the evaluation of LB()). However, it is
likely that the allocation made for the lower bound calculation will produce some capacity
violations. In order to obtain the best possible upper bound (i.e., with the lowest cost), we
need to establish a good way of reallocating customers when facilities are over-subscribed.
For an upper bound, it is best to allocate customers with high demand first, to try to ensure
that individual depots have sufficient unused capacity. One possible way of doing this is to
sort customers in non-increasing order of demand level (highest demand first), then work
through the list, assigning customers in the same way as the LB, whenever possible.
When capacity constraints are violated for LB assignment, we try to assign to the next
lowest augmented cost depot without violating the capacity constraints etc. If all facilities

are overcapacity, then we assign to the lowest available cost value (non-augmented cost).
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Updating the Lagrangian multipliers

For each facility at time step, k

sk = Z :I:fjdj — (7.15)

Jjeve

where xfj is the solution of the Lagrangian relaxation (7.6) - (7.9) using \¥ € R.Vi € Vp¢

as the Lagrangian multipliers. Now set

Mg gksk if sk >0
PLARIE P /s (7.16)

0 otherwise

where 3* is a suitable scalar coefficient. We will start the procedure by seeding all the
Lagrangian multipliers to zero. Formula (7.16) can be explained in the following way. If
for a certain facility ¢, s¥ is positive, it means that demand outstrips supply for that
facility, and thus the corresponding value of A; should be increased to increase the cost of
assigning customers to that facility in the next round. Similarly, if s¥ is negative, it
means that there is spare capacity, so A; should be reduced to make that facility more
attractive for assignment in the next iteration. However, as we pointed out earlier, it may
not be appropriate to make adjustments to the multipliers when the capacity has not been

violated for a facility. Formula (7.16) ensures that the A* are always positive.

Tuning of the Lagrangian heuristic technique

To ensure that the algorithm is robust and performs efficiently, several experiments were
performed in order to tune the 3* coefficient and also to determine how many iterations
to perform between updates for the constant «. The coefficient ,3* was tested with two
different settings (7.17) and (7.18), where the difference between two formulations was
insignificant therefore the equation (7.17) was chosen and incorporated into our final

algorithm.
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a(UB — LB(\¥))

k ey
Y ZieVDC(Sf)Q

(7.17)

a(UB(X) — LB(AK))
/3’( N Zf&\f ,(sl'c)z 719

Parameter « is a constant in the interval (0. 2] [48]. Here, « is used starting with 2 and

halved whenever the iteration’s feasible upper bound failed to improve on the best known
feasible upper bound for n iterations. Parameter n was tested in the range from [1,100]
with step 1 for all benchmarking problems to identify the best value for n. As a result, a
value of 100 was used for n in the smaller problems (Beasley data sets and our own data
sets with 10 depots) and a value of 70 for larger sized problems. Those values of n were
chosen because our algorithm produced its best solutions (or very close) for most of the

instances tested with these values.

The total number of iterations was tested at: 500, 1000 and 2000. We discovered no
difference in the final results, so a value of 500 was used for the total number of the
iterations to minimize the computational time. Finally, the algorithm for the Lagrangian

relaxation is described in Algorithm 7.1.

7.2.2 Test instances

Benchmarking data

The quality of the solution produced by our Lagrangian heuristic was tested on the
benchmark data instances available in the literature for single source capacitated facility
location problems (SSFLP) for single product available from the OR-library [11]. The
benchmarking data sets available do not necessary reflect all real-life situations, however,
where additional constraints may apply. For example, in our model described above, we
have an extra capacity constraint in terms of a maximum number of stores that can be
served by a particular depot (Equations (7.4), (7.8) and (7.12)). Thus, the “number of
stores” constraint did not apply and was dropped from our model for the OR-library

benchmark sets.
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Algorithm 7.1: Lagrangian heuristic algorithm for a single source capacitated alloca-
tion problem, single product.

1:

18:
19:

20:

e A o

Begin
(initialization)
Select a tolerance level ¢ > 0
Setdif ference = +00, LB = —00, UB = +00, k = 1and A¥ = 0,i € Vj)¢
while (dif ference > ¢) OR (k <number of iterations) do
(Computation of a new lower bound)
Solve the Lagrangian relaxation (7.6) - (7.9) using /\f € R, Vi € Vp¢ multipliers (Greedy
algorithm with on uncapacitated version based on augmented costs). Let LB(\*) be its
cost.
if LB(\¥) solution is feasible then
STOP algorithm and return cost L B(\¥)
else if LB(\*) > LB then
set LB = LB(\F)
(Computation of a new upper bound)
Determine the corresponding upper bound (modified greedy algorithm, as described in
the text). Let U B(A¥) be its cost.
if UB(\*) < UB then
set UB = UB(XF)
Calculate dif ference = (UB — LB)/LB
Update parameters sf, B* and compute Lagrangian multipliers )\f“ (7.15)-(7.17), Vi €
Vbe
Update k=k+1
Return cost of the U B feasible solution

End

Recall that this chapter covers facility allocation only (and not facility location) and is

focussed on comparing run times and solution quality for CPLEX®) versus LR, the goal

begin to develop a fast routine that we can incorporate into our multi-objective

approaches, where it will be necessary to repeat the allocation procedure many times.

The chosen benchmarks however, are all facility location/allocation problems. Thus it

was necessary to begin with solutions to the location problems, with the open facilities

defined at the start, before we attempted to solve the allocation problems, and carry out

the timings and solution quality comparisons for CPLEX® and LR. Unfortunately,

although optimum solutions in terms of cost are given for small and medium instances,
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for large problems which were are used for testing there was no available cost solutions,
only information on LB. Also, there is no information available to identify which depots
are open and which closed in the optimum solutions. To determine which depots are
open and which are closed in the optimum solutions as well as their solutions, all

instances were solved by us to optimality using CPLEX®).

Because the Lagrangian relaxation was developed for a large-size instances, only the 12
largest sets of the Beasley ([10],[11]) instances were used for comparing the CPLEX®)
solution to the Lagrangian relaxation. The description of the data instances from
Beasley, which is suitable for a single source problem formulation are presented in the
Table 7.1. For example, instances from the set A (capal.txt, capa2.txt, capa3.txt,
capad4.txt) were randomly generated by Beasley and consist of 100 potential facilities and
1,000 customers. The locations of the customers/warehouses were generated within an
1000 by 1000 Euclidean square. The cost was calculated per unit of demand supplied as
proportional to the Euclidean distance between the customer and the warehouse,
multiplied by a real random number in range [1.00,1.25]. The demand for each customer
was generated as a random integer the range [1,100]. The capacity of the serving facility
is equal to 8000 for capal.txt, 10000 for capa2.txt an so on. For more information how

the data was generated, please refer to the original paper [10].

Problem Number of | Number of Facility Fixed cost per
set facilities | customers capacity facility
A (e.g. capal.txt) 100 1000 8000/10000/12000/14000 Random
B (e.g. capbl.txt) 100 1000 5000/6000/7000/8000 Random
C (e.g. capcl.txt) 100 1000 5000/5750/6500/7250 Random

Table 7.1: Data sets from Beasley [10] for a single source problem formulation.

Our Data

As discussed earlier, the benchmarking data sets do not match our case study data, where

constraints also exist limiting the number of stores for each serving depot. To refiect this
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situation, an extra constraint (7.4) is used in the model formulation (7.1) for the

allocation problem.

Because there is no available published data sets for the model formulation with the two
constraints in the public domain, we generated some new data. The methodology for
generating data was inspired by Sainsbury’s case study (see Chapter 5), where the cost
structure has transportation and warehousing models. The transportation model consists
of distance and time related costs and the warehousing (depot) model of the labour costs
of picking and loading goods and the picking productivity rate. The single commodity
version of the algorithm for creating data sets is described in the Algorithm 7.2, where
randomly generated parameters are uniformly distributed. A variety of problem sizes
were generated with different numbers of depots, stores, and different ratios of total
available demand to total available capacity in terms of the number of cases and also in

terms of the number of stores.

The purpose of developing a Lagrangian relaxation technique is to develop a heuristic
technique capable of producing “good” solutions to large-sized instances within a
reasonable amount of time: faster than linear programs tools such as CPLEX®).
Therefore, two type of test instances were generated: setl and set2. Setl instances have
a ratio of overall demand to capacity of 0.9 for the number of cases and number of stores
and set2 instances have a ratio of 0.8. We used large sized networks for our instances,
which we based on our observations of major national/international supply chain
networks, where the number of customers can be 5,000 or more. For each type of
problem (i.e., with ratio 0.8, and 0.9), we generated instances with 10 and 50 depots, and
for each ratio-depot configuration, a following numbers of stores was generated: 100,
500, 1000, 2000,...10000, e.g. set1_10_1000_r0.9.txt, set2_10_100070.8.tzxt. The
locations for stores and depots were randomly generated within a square of 700 by 700
units. The following parameters for each depot which were used for calculating the
transportation depot cost structure were generated: THR rate in the range of [1.7,2];
WHR rate in the range of {1.3,1.8] and DWR rate in the range of [7,12]. The value of
0.04 was used for the cost of the fuel per unit of distance and the average truck load was

equal to 130. A value of 40 was used as travel speed to calculate travelling times
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between two points. The latter values were used in calculation of the transportation
costs. We generated the demand for each store in the range of {30, 3000] and the
capacity for each depot was calculated taking into account the overall demand in the

network (see Algorithm 7.2).

In total, 24 instances were created covering different possibilities of size, cost structure
and the ratio of the overall demand over available capacity for cases and number of

stores.

All the experiments were conducted on a PC with an Intel(R) Pentium(R) D CPU 3.4
GHz and 2 GB RAM.

7.2.3 Results

To make a fair comparison between CPLEX®) and our LR approach, the stopping
condition for the termination of techniques was set to different values for the tolerance
gaps which indicates how close a solution should be to optimality. To set the stopping
criterion for the tolerance gap, the following parameters were changed in the solution
techniques. In CPLEX, a relative MIP gap tolerance, which is an important criterion for
the termination, was changed to the values below. A relative MIP gap tolerance is
commonly used as a stopping criterion and indicates that CPLEX®) should stop when
the integer feasible solution has been proved to be within a particular distance from
optimality. The default gap tolerance value is 1e10~* [24]. In the Lagrangian relaxation
technique, the difference between the U B and LB solution was used as a tolerance gaps
for our stopping criteria. The tolerance level in the experiments was set at following
values 0.05, 0.04, 0.03, 0.02 and 0.0001. The information regarding the solution for each
setting of the stopping criteria gave us an opportunity to compare our heuristic to the
optimum solution in each run as a percentage difference which was rounded to 2 decimal

places.

Tables 7.2 and 7.3 show the summary of the test results of the Beasley benchmarking
instances: the solution quality and the execution times of both techniques. For all

tolerance levels, the LR technique proved to find good quality solutions, which came at
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Algorithm 7.2: Algorithm for generating data sets for the allocation problem, single
product, single source.
Begin:
SET parameters:
number of depots (Num Dep)
number of stores(Num.Stores)
min coordinates X and Y(MinCoordX, MinCoordY)
max coordinates X and Y (MaxCoordX ,MaxCoordY’)
min and max demand for stores (MinDemand, MaxDemand)
multiplyerCapacityCases value which controls the ratio of the overall demand over
the available capacity for all depots to make network “looser’ or "tighter”
multiplyer CapacityNumO f St is similar to multiplyer CapacityCases with the
difference that it controls the ratio of overall number of stores over available capacity for all depots
travelSpeed is the speed with with a vehicle travels one Euclidian unit of distance
avgTruckLoad is the average number of cases per truck
fuelCost is the fuel related cost for one Euclidian unit of distance
Generate random X and Y coordinates for each depot in the range [MinCoordX,
MaxCoordX], [MinCoordY , MaxCoordY )
Generate random X and Y coordinates for each store in the range [MinCoordX,
MaxCoordX]), [MinCoordY, MaxCoordY]
Calculate Euclidian distance between each store i to depot j: distanceli](j] =
V/(zStore; — zDepot;)? + (yStore; — yDepot;)?

Calculate travelling time for an Euclidian distance between each store ¢ and depot j:

timeli]|j] = distanceli]|j]/travel Speed

Generate random demand in cases for each store, range [MinDemand, M ax Demand)]
Calculate capacity (cases) for each depot j: depotCapacityCases|j|=(total Demand/NumDep)
* multiplyerCapacityCases

Calculate capacity (num of stores) for each depot j: depotCapacityNumO fStores[j]=
(NumStores/ Num Dep)*multiplyer CapacityNumO f St

Generate random T H R rate for each depot in the range [MinT HR, MaxT H R]

Generate random W H R rate for each depot in the range [MinW HR, MaxW H K]

Generate random DW R rate for each depot in the range [MinDW R, MaxDW R]

Calculate transport cost between each store i and depot j: transportCostli|lj] =
(distanceli][§] * fuelCost + time[i][j] x TH R[j]) * 2 * (demandli]/avgTruckLoad)
Calculate depot cost between each store i and depot j:  depotCostli][j] =
(demand|i]/ DW R]j]) * W HR][j]

Calculate total connection cost between each store i and depot j: totalCost[i]j] =
transpotCost[i][j] + depotCost[i]|j]

End
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around 0-1.99% difference from the solution found by the CPLEX®) optimization
engine. The LR technique also proved to be more efticient in computational times. Table
7.3 presents an analysis of how fast the LR technique finds the solutions withing the set
tolerance level. It is expressed as the % of time needed to solve a data sets using LR
compared to the CPLEX(®) solving times. For example, for test instance capa2.tut,
CPLEX(®) takes 797 ms and LR takes 47 ms to solve the data, which is equated to 5.9%
of CPLEX(®) running time. In fact LR performs better for all tolerance levels except for
0.01%, when the algorithm tries to find the true “optimum”. Out of 48 experiments (12
data sets and four tolerance levels: 0.05, 0.04, 0.03, 0.02), only 8 were above 10% of
CPLEX®) running times for the LR heuristic. This gives us a very promising results,

indicating that LR could be useful on large data sets.

The next step of the analysis was to compare the solution quality and running times for
large data sets which were created by us and described earlier in the chapter. To recap,
we created two types of the data: ratio of 0.9 (set1) and ratio 0.8 (set2) of overall
demand (cases/number of stores) to the available capacity in the depots. As a result of
the initial testing, ratio 0.9 is proved to be too tight for the LR technique to find feasible
solutions. From the experience working with a real data sets from Sainsbury’s, in their
network, the tightest ratio was 0.81 for chill products (see Chapter 5), therefore it seems
to be more sensible to use ratio of 0.8 for all experiments. This information also gave us
an insight into the limitations of the heuristic, where a very high ratio prevents the

algorithm from finding feasible solutions.

Tables 7.4, 7.5, 7.6 and 7.7 present the solution quality and execution times for set2 with
10 and 50 depots, where the ratio is equal to 0.8. Looking at the CPLEX®) solutions, we
can see that there is no information available for some of the data sets, which was due to
the limitations in technology: CPLEX(®) ran out of memory for those data sets. On the
other hand, the LR approach found feasible solutions to all data sets within a reasonable
amount of time. For the tolerance levels of 5%, 4% and 3%, 2% and 1%, the solutions
produced by the technique were less than 5.01% different compared to the solutions
found by CPLEX®) and the majority were less than 2.5%. For a tolerance level of

0.01%, again LR produced excellent quality solutions compared to CPLEX and on the



Tolerance level
Test 5% 4% 3%
instance CPLEX Lagr. % diff CPLEX Lagr. % diff CPLEX Lagr. % diff
capal.txt | 19,242,450.15 | 19,501,820.92 | 1.35% | 19,242,450.15 | 19,501.820.92 1.35% 19,242.450.15 | 19.430,478.52 | 0.98%
capa2.txt | 18,451,166.16 | 18,702,263.38 | 1.36% | 18.451,166.16 | 18,702,263.38 1.36% 18,451,166.16 | 18.,600,101.24 | 0.81%
capa3.txt | 17,765,201.95 | 17,765,201.95 | 0.00% | 17,765,201.95 | 17,765,201.95 | 0.00% 17,765,201.95 | 17,765,201.95 | 0.00%
capad.txt | 17,160,815.54 | 17,275,620.41 | 0.67% | 17,160,815.54 | 17,275,620.41 0.67% 17,160,815.54 | 17,275,620.41 | 0.67%
capbl.txt | 13,668,638.07 | 13,886,676.18 | 1.60% | 13,668,638.07 | 13,886,676.18 1.60% 13,668,638.07 | 13,839,765.34 | 1.25%
capb2.txt | 13,385,143.32 | 13,616,417.76 | 1.73% | 13,385,143.32 | 13,616,417.76 1.73% 13,385,143.32 | 13,543,257.11 | 1.18%
capb3.txt | 13,255,296.35 | 13,470,793.28 | 1.63% | 13,255,296.35 | 13,470,793.28 1.63% 13,255,296.35 | 13,393,444.42 | 1.04%
capb4.txt | 13,086,451.48 | 13,347,108.06 | 1.99% | 13,086,451.48 | 13,347,108.06 1.99% 13,086,451.48 | 13,166,476.57 | 0.61%
capcl.txt | 11,709,354.71 | 11,756,281.83 | 0.40% | 11.709,354.71 | 11,756,281.83 0.40% 11,709,354.71 | 11,756,281.83 | 0.40%
capc2.txt | 11,570,437.68 | 11,591,895.27 | 0.19% | 11,570,437.68 | 11,591,895.27 | 0.19% 11,570.437.68 | 11.591,895.27 | 0.19%
capc3.txt | 11,536,854.31 | 11,660,534.33 | 1.07% | 11,536,854.31 | 11,660,534.33 1.07% 11,536.854.31 | 11.660,534.33 | 1.07%
capcd.txt | 11,516,656.16 | 11,520,064.91 | 0.03% | 11,516,656.16 | 11,520,064.91 0.03% 11,516,656.16 | 11,520,064.91 | 0.03%
Tolerance level
Test 2% 1% 0.01%
instance CPLEX Lagr. % diff CPLEX Lagr. % diff CPLEX Lagr. % diff
capal.txt | 19,242,450.15 | 19,367,902.86 | 0.65% | 19,242,450.15 | 19,298,972.84 | 0.29% 19.241,057.80 | 19.249,966.47 | 0.05%
capa2.txt | 18,451,166.16 | 18,600,101.24 | 0.81% | 18,451,166.16 | 18,527,533.53 0.41% 18,438,329.78 | 18.439,832.15 | 0.01%
capald.txt | 17,765,201.95 | 17,765,201.95 | 0.00% | 17,765,201.95 | 17,765,201.95 0.00% 17,765,201.95 | 17,765,201.95 | 0.00%
capad.txt | 17,160,815.54 | 17,275,620.41 | 0.67% | 17,160,815.54 | 17,203,715.43 0.25% 17,160,815.54 | 17,161,398.06 | 0.00%
capbl.txt | 13,668,638.07 | 13,753,023.75 | 0.62% | 13,668,638.07 | 13,718,399.01 0.36% 13,657,482.15 | 13,686,246.45 | 0.21%
capb2.txt | 13,385,143.32 | 13,462,352.07 | 0.58% | 13,385,143.32 | 13,430,862.85 0.34% 13,363,068.68 | 13,388,609.35 | 0.19%
capb3.txt | 13,255,296.35 | 13,260,432.75 | 0.04% | 13,255,296.35 | 13,260,432.75 0.04% 13,199,420.27 | 13,213,813.63 | 0.11%
capb4.txt | 13,086,451.48 | 13,166,476.57 | 0.61% | 13,086,451.48 | 13,155,211.49 | 0.53% 13,083,451.13 | 13,091,906.73 | 0.06%
capcl.txt | 11,709,354.71 | 11,756,281.83 | 0.40% | 11,709,354.71 | 11,705,838.65 | -0.03% * | 11,647,531.06 | 11,654,099.05 | 0.06%
capc2.txt | 11,570,437.68 | 11,591,895.27 | 0.19% | 11,570,437.68 | 11,591.895.27 | 0.19% 11,570.437.68 | 11.570,437.68 | 0.00%
capc3.txt | 11,536,854.31 | 11,567,564.46 | 0.27% | 11,536,854.31 | 11,567.564.46 | 0.27% 11,519.413.38 | 11.520,815.85 | 0.01%
capcd.txt | 11,516,656.16 | 11,520,064.91 | 0.03% | 11,516,656.16 | 11,520,064.91 0.03% 11,505.861.86 | 11.505,861.86 | 0.00%

Table 7.2: Beasley data sets, cost solution.

* due 1o the tolerance levels associated with both solutions
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Tolerance level

Test 5% 4% 3%
instance | CPLEX | Lagr. | Lagr % of CPLEX | CPLEX | Lagr. | Lagr % of CPLEX | CPLEX | Lagr. | Lagr % of CPLEX
capal.txt 984 906 92.07% 968 875 90.39% 953 890 93.39%
capa2.txt 797 47 5.90% 781 47 6.02% 812 63 7.76%
capa3.txt 703 47 6.69% 703 47 6.69% 704 47 6.68%
capad.txt 609 47 7.72% 625 47 7.52% 609 63 10.34%
capbl.txt 1469 47 3.20% 1422 47 331% 1422 63 4.43%
capb2.txt 1250 47 3.76% 1219 62 5.09% 1219 891 73.09%
capb3.txt 1063 47 4.42% 1093 47 4.30% 1047 62 5.92%
capb4.txt 953 62 6.51% 953 62 6.51% 937 78 8.32%
capcl.txt 1531 47 3.07% 1563 47 3.01% 1703 47 2.76%
capc2.txt 1421 47 3.31% 1391 47 3.38% 1578 47 2.98%
capc3.txt 1344 47 3.50% 1359 47 3.46% 1484 47 3.17%
capcd.txt 1359 47 3.46% 1328 63 4.74% 1547 47 3.04%
Tolerance level
Test 2% 1% 0.01%

instance | CPLEX | Lagr. | Lagr % of CPLEX | CPLEX | Lagr. | Lagr % of CPLEX | CPLEX | Lagr. | Lagr % of CPLEX
capal.txt 1109 875 78.90% 985 953 96.75% 1109 3984 359.24%
capa2.txt 890 63 7.08% 828 63 7.61% 922 3969 430.48%
capa3.txt 797 47 5.90% 703 47 6.69% 703 47 6.69%
capad.txt 609 47 7.72% 609 63 10.34% 610 297 48.69%
capbl.txt 1422 921 64.77% 1469 953 64.87% 1828 4125 225.66%
capb2.txt 1266 922 72.83% 1234 954 77.31% 1625 4078 250.95%
capb3.txt 1094 94 8.59% 1078 94 8.72% 1625 4016 247.14%
capb4.txt 1000 78 7.80% 953 93 9.76% 1375 4078 296.58%
capcl.txt 1547 46 2.97% 1547 62 4.01% 1984 | 4125 207.91%
capc2.txt 1406 47 3.34% 1453 47 3.23% 1391 94 6.76%
capc3.txt 1344 62 4.61% 1422 63 4.43% 1469 4015 273.32%
capcd.txt 1344 47 3.50% 1390 47 3.38% 1438 375 26.08%

Table 7.3: Beasley data sets, execution time (ms).
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larger data sets it was impossible to compare solutions due to CPLEX®) limitations.
Regarding execution times, again for the tolerance levels between 5% and 1%, LR found
good solutions within a fraction of CPLEX®) running time for the majority of the data
sets and on the larger data sets, the technique found the solutions within a reasonable
time whereas CPLEX(®) ran out of memory. The results obtained from these
experiments, gave us confidence in the LR approach for large data sets, and provided the
way forward for solving allocation for multiple products and to be used as a subroutine

in CFLP where the optimum assignment needs to be determined for open facilities.

7.3 Lagrangian relaxation for a multi-commodity

allocation problem

Previous sections presented a model formulation and a solution technique for a single
source, single commodity large-size assignment problem with very promising results for
solution quality and computational times using LR technique which relaxes a capacity
constraint. In this section, an investigation is carried out into multi-commodity
assignment problem based on Sainsbury’s data by extending the LR technique to the
multi-commodity variant of the assignment model. The simplified version of the single
source, multi-commodity model formulation is presented in this chapter where
constraints for capacities for cases and number of stores are taken into consideration.
Due to the multiple products nature of the requirements, the discussion of the approach
put a great emphasis on finding feasible solutions. Therefore different settings were
tested to ensure that technique finds feasible U B solutions. Because there is no available
benchmarking data in the public literature and due to the time constraints of the project,
the LR technique is only tested on Sainsbury’s data and will need further assessment on
randomly generated large data sets for this particular model formulation. The current
study provides very promising results which could be very efficient, especially for

large-size data sets.



Tolerance level

Test 5% 4% 3%
instance CPLEX Langr. % diff CPLEX Langr. % diff CPLEX Langr. % diff
set2_10_100.txt 46,524.15 46,822.07 | 0.64% | 46,524.15 46,822.07 | 0.64% | 46,524.15 46,822.07 0.64%
set2_10_500.txt 220,224.89 226,584.95 | 2.89% | 220,224.89 225,466.25 | 2.38% | 220,224.89 224,529.89 1.95%
set2_10_1000.txt | 479,074.37 489,183.23 | 2.11% | 479,074.37 489,183.23 | 2.11% | 479,074.37 489,183.23 2.11%
set2_10_2000.txt | 892,089.76 913,079.05 | 2.35% | 892,089.76 913,079.05 | 2.35% | 892.089.76 | 913.079.05 2.35%
set2_10_3000.txt | 1,328,056.13 | 1,359,290.89 | 2.35% | 1,328,056.13 | 1,359,290.89 | 2.35% | 1.328,056.13 | 1,359.290.89 | 2.35%
set2_10_4000.txt | 1.824,948.12 | 1,898.723.42 | 4.04% | 1,824,948.12 | 1,876,980.40 | 2.85% | 1,824,948.12 | 1,871.286.23 | 2.54%
set2_10_5000.txt | 2.429,097.51 | 2,490.337.79 | 2.52% | 2.429,097.51 | 2,490.337.79 | 2.52% | 2,429,097.51 | 2,455.507.51 | 1.09%
set2_10_6000.txt | 2,980,322.13 | 3,043,027.75 | 2.10% | 2,980,322.13 | 3,043,027.75 | 2.10% | 2,980,322.13 | 3,014.317.33 | 1.14%
set2_10_7000.txt | 3,286,944.54 | 3,321,522.91 | 1.05% | 3,286,944.54 | 3,321,522.91 | 1.05% | 3.286,944.54 | 3,321,52291 | 1.05%
set2_10_8000.txt | 3,723,125.46 | 3,852,259.43 | 3.47% | 3,723,125.46 | 3,795,938.78 | 1.96% | 3,723,125.46 | 3,795938.78 | 1.96%
set2_10_9000.txt | 4,391,346.93 | 4,544,417.09 | 3.49% | 4,391,346.93 | 4,515,789.68 | 2.83% | 4,391,346.93 | 4,486,984.47 | 2.18%
set2_10_10000.txt | 4,491,745.86 | 4,491,745.94 | 0.00% | 4,491,745.86 | 4,491,745.94 | 0.00% | 4,491,745.86 | 4,401.745.94 | 0.00%
set2_50_100.txt 41,479.32 42,772.61 3.12% | 41,479.32 42,772.61 3.12% | 41,479.32 42,772.61 3.12%
set2_50_500.txt 180,748.70 181,853.18 | 0.61% | 180,748.70 181,469.19 | 0.40% | 180,748.70 180,731.79 | -0.01%*
set2_S0_1000.txt | 351,997.41 359,841.79 | 2.23% | 351,997.41 357,03247 | 1.43% | 35199741 355,600.41 1.02%
set2_50_2000.txt | 727,648.28 743,725.13 | 2.21% | 727.648.28 743,725.13 | 2.21% | 727.648.28 738,984.36 1.56%
set2_50_3000.txt | 1,103,652.63 | 1,136,542.75 | 2.98% | 1,103,652.63 | 1,125,551.29 | 1.98% | 1.103,652.63 | 1.124.034.69 | 1.85%
set2_S0_4000.txt | 1,408,338.74 | 1,454,711.67 | 3.29% | 1.408,338.74 | 1,448,162.59 | 2.83% | 1.408,338.74 | 1,439.706.80 | 2.23%
set2_50_5000.txt | 1,831,451.55 | 1,887,660.70 | 3.07% | 1,831,451.55 | 1.877.437.09 | 2.51% | 1,831,451.55 | 1,866.449.06 | 1.91%
set2_50_6000.txt | 2,154,781.36 | 2,237,995.46 | 3.86% | 2,154,781.36 | 2,237,995.46 | 3.86% | 2,154,781.36 | 2,237.995.46 | 3.86%
set2_50_7000.txt N/A 2,504,221.68 | N/A N/A 2,484,323.62 | N/A N/A 2,477,674.21 N/A
set2_50_8000.txt N/A 3,090,608.12 | N/A N/A 3,071,766.41 | N/A N/A 3,056,062.35 N/A
set2_50_9000.txt N/A 3,378,361.33 | N/A N/A 3,361,194.31 N/A N/A 3,340,116.48 N/A
set2_50_10000.txt N/A 3,867,393.77 | N/A N/A 3,846,414.95 | N/A N/A 3,817,126.58 N/A

Table 7.4: Our data sets, cost solution.

* due to the tolerance levels associated with both solutions
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Tolerance level

* due to the tolerance levels associated with both solutions

Test 2% 1% 0.01%
instance CPLEX Langr. % diff CPLEX Langr. % diff CPLEX Langr. % diff
set2_10_100.txt 46,524.15 46,496.20 | -0.06%* | 45,843.42 46,164.98 | 0.70% | 45,805.58 46,164.98 | 0.78%
set2_10_500.txt 220,224.89 221,333.50 0.50% 220,224.89 221,102.54 | 0.40% | 218,854.20 221,102.54 | 1.03%
set2_10_1000.txt | 479,074.37 484,905.92 1.22% 479,074.37 483,220.77 | 0.87% | 478,894.53 479,238.74 | 0.07%
set2_10_2000.txt | 892,089.76 903,142.45 1.24% 892,089.76 898.32791 | 0.70% | 891,882.17 892,512.80 | 0.07%
set2_10_3000.txt | 1,328,056.13 | 1,344,953.56 | 1.27% | 1,328,056.13 | 1,337,577.29 | 0.72% | 1,327,894.85 | 1.328,510.50 | 0.05%
set2_10_4000.txt | 1.824,948.12 | 1,855.723.00 | 1.69% | 1,824,948.12 | 1,841,194.04 | 0.89% | 1,824,543.5]1 | 1,826,182.54 | 0.09%
set2_10_5000.txt | 2,429,097.51 | 2,455,507.51 1.09% | 2,429,097.51 | 2,447,757.09 | 0.77% | 2,428,823.47 | 2,429,205.15 | 0.02%
set2_10_6000.txt | 2,980,322.13 | 3,014,317.33 | 1.14% | 2,980,322.13 | 3,001,659.07 | 0.72% | 2,980,322.13 | 2,983,707.72 | 0.11%
set2_10_7000.txt | 3,286,944.54 | 3,321,522.91 | 1.05% | 3,286,944.54 | 3,311,550.37 | 0.75% | 3,286,525.85 | 3,291,404.22 | 0.15%
set2_10_8000.txt | 3,723,125.46 | 3,782,589.61 | 1.60% | 3,723,125.46 | 3,753,535.65 | 0.82% | 3,722,635.87 | 3,724,247.28 | 0.04%
set2_10_9000.txt | 4,391,346.93 | 4,464,858.49 | 1.67% | 4,391,346.93 | 4,429,306.27 | 0.86% | 4,390,885.28 | 4,392,558.85 | 0.04%
set2_10_10000.txt | 4,491,745.86 | 4,491,745.94 | 0.00% | 4,491,745.86 | 4,491,745.94 | 0.00% | 4,491,745.86 | 4,491,745.94 | 0.00%
set2_S0_100.txt 40,996.44 42,772.61 4.33% 40,730.67 42,772.61 501% | 40,646.71 42.772.61 5.23%
set2_50_500.txt 177,094.67 180,731.79 2.05% 177,094.67 180,731.79 | 2.05% | 176,861.96 180,731.79 | 2.19%
set2_50_1000.txt | 351,997.41 352,704.67 0.20% 348,125.90 352,671.24 | 1.31% N/A 352,671.24 N/A
set2_50_2000.txt | 727.648.28 733,804.68 0.85% 727,648.28 733,804.68 | 0.85% N/A 733.804.68 N/A
set2_50_3000.txt | 1,103,652.63 | 1,119,391.12 | 1.43% | 1,103,652.63 | 1,113,577.70 | 0.90% N/A 1.113,577.70 | N/A
set2_50_4000.txt | 1,408,338.74 | 1,430,353.09 | 1.56% | 1,408,338.74 | 1,423,726.57 | 1.09% N/A 1,423,726.57 | N/A
set2_50_5000.txt | 1,831,451.55 | 1,864,618.96 | 1.81% | 1,831,451.55 | 1.864,618.96 | 1.81% N/A 1.864,618.96 | N/A
set2_50_6000.txt | 2,154,781.36 | 2,237,995.46 | 3.86% | 2,154,781.36 | 2,237,995.46 | 3.86% N/A 223799546 | N/A
set2_50_7000.txt N/A 2,462,018.33 N/A N/A 2,449,246.83 N/A N/A 2,449,246.83 N/A
set2_50_8000.txt N/A 3,044,801.36 N/A N/A 3,044,801.36 | N/A N/A 3,044,801.36 | N/A
set2_50_9000.txt N/A 3,322,044.53 N/A N/A 3,318,690.60 | N/A N/A 3,318,690.60 | N/A
set2_50_10000.txt N/A 3,816,505.59 N/A N/A 3,816,505.59 | N/A N/A 3,816,505.59 | N/A
Table 7.5: Our data sets, cost solution.
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Tolerance level

Test 5% 4% 3%
instance CPLEX | Langr. | Lagr % of CPLEX | CPLEX | Langr. | Lagr % of CPLEX | CPLEX | Langr. | Lagr % of CPLEX
set2_10_100.txt 62 16 25.81% 62 0 0.00% 62 0 0.00%
set2_10_500.txt 203 16 7.88% 203 0 0.00% 203 16 7.88%
set2_10_1000.txt 375 46 12.27% 359 31 8.64% 359 47 13.09%
set2_10_2000.txt 547 0 0.00% 578 0 0.00% 578 16 2.77%
set2_10_3000.txt 844 16 1.90% 953 0 0.00% 953 16 1.68%
set2_10_4000.txt 1,734 15 0.87% 1,609 31 1.93% 1,609 796 49.47%
set2_10_5000.txt 1,796 16 0.89% 1,891 15 0.79% 1,891 16 0.85%
set2_10_6000.txt 2,312 16 0.69% 3,469 0 0.00% 3,469 15 0.43%
set2_10_7000.txt 2,610 15 0.57% 3,422 47 1.37% 3,422 31 091%
set2_10_8000.txt 2,984 16 0.54% 3,204 78 2.43% 3,204 31 0.97%
set2_10_9000.txt 3,922 16 0.41% 4,797 47 0.98% 4,797 47 0.98%
set2_10_10000.txt | 3,125 0 0.00% 3,672 16 0.44% 3,672 16 0.44%
set2_S50_100.txt 735 250 34.01% 625 250 40.00% 610 234 38.36%
set2_50_500.txt 1,438 171 11.89% 1,187 282 23.76% 1,141 1,000 87.64%
set2_50_1000.txt 5,016 453 9.03% 4,360 500 11.47% 3,500 1.234 35.26%
set2_50_2000.txt 9,766 1,422 14,56% 6,922 2,203 31.83% 7,203 2,328 32.32%
set2_50_3000.txt 9,203 1,594 17.32% 8,250 1,781 21.59% 7,000 3.156 45.09%
set2_50_4000.txt | 12,765 94 0.74% 10,250 | 1453 14.18% 9,782 1,390 14.21%
set2_50_5000.txt | 19,813 | 4,969 25.08% 14,796 | 4,656 31.47% 17,219 | 4,250 24.68%
set2_50_6000.txt 23,344 | 14,141 60.58% 17,703 | 14,843 83.84% 17,922 | 15,609 87.09%
set2_50_7000.txt N/A 125 N/A N/A 2422 N/A N/A 3,047 N/A
set2_50_8000.txt N/A 6,297 N/A N/A 6,219 N/A N/A 9,343 N/A
set2_S0_9000.txt N/A 7,266 N/A N/A 8,250 N/A N/A 7,938 N/A
set2_S0_10000.txt N/A 7,922 N/A N/A 8,625 N/A N/A 10,375 N/A

Table 7.6: Our data sets, execution time (ms).
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Tolerance level

Test 2% 1% 0.01%
instance CPLEX | Langr. | Lagr % of CPLEX | CPLEX | Langr. | Lagr % of CPLEX | CPLEX | Langr. | Lagr % of CPLEX
set2_10_100.txt 47 47 100.00% 109 94 86.24% 187 94 50.27%
set2_10_500.txt 234 16 6.84% 312 250 80.13% 563 281 49.91%
set2_10_1000.txt 500 47 9.40% 516 47 9.11% 859 594 69.15%
set2_10_2000.txt 718 16 2.23% 734 16 2.18% 1,125 1,313 116.71%
set2_10_3000.txt 1,109 0 0.00% 1,109 31 2.80% 2,141 2,188 102.20%
set2_10_4000.txt 1,984 781 39.36% 1,593 828 51.98% 4,703 3,234 68.76%
set2_10_5000.txt | 2,000 16 0.80% 2,188 31 1.42% 3,500 3,765 107.57%
set2_10_6000.txt | 2,906 63 2.17% 3,031 31 1.02% 3,125 4,625 148.00%
set2_10_7000.txt | 3,125 32 1.02% 3,281 125 3.81% 8,188 5.265 64.30%
set2_10_8000.txt | 3,844 47 1.22% 3,954 125 3.16% 6,094 6,172 101.28%
set2_10_9000.txt | 3,922 62 1.58% 4,953 172 3.47% 7,516 6,985 92.94%
set2_10_10000.txt | 3,437 0 0.00% 3,218 0 0.00% 3,984 62 1.56%
set2_50_100.txt 703 234 33.29% 718 250 34.82% 1,250 250 20.00%
set2_50_500.txt 3,453 1,032 29.89% 3,328 1,031 30.98% 599,718 | 1,031 0.17%
set2_50_1000.txt | 3,812 1,875 49.19% 6,703 2,563 38.24% N/A 2,656 N/A
set2_50_2000.txt | 7,031 2,594 36.89% 8,609 | 4,687 54.44% N/A 5.063 N/A
set2_50_3000.txt | 7,172 | 4,703 65.57% 6,828 | 6,828 100.00% N/A 7,297 N/A
set2_50_4000.txt | 10,640 | 4,000 37.59% 9344 | 8907 95.32% N/A 8,875 N/A
set2_50_5000.txt | 16,031 | 11,188 69.79% 15,063 | 12,703 84.33% N/A 12,234 N/A
set2_50_6000.txt | 18,438 | 16,469 89.32% 18,062 | 15,078 83.48% N/A 14,843 N/A
set2_50_7000.txt N/A 3,625 N/A N/A 14,015 N/A N/A 14,468 N/A
set2_50_8000.txt N/A 17,938 N/A N/A 17,031 N/A N/A 17,968 N/A
set2_50_9000.txt N/A 11,531 N/A N/A 19,172 N/A N/A 19,766 N/A
set2_50_10000.txt N/A 23,594 N/A N/A 23,000 N/A N/A 24,344 N/A

Table 7.7: Our data sets, execution time (ms).
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7.3 Lagrangian relaxation for a multi-commodity allocation problem 143

7.3.1 Problem Definition

The full problem formulation for a multi-commodity assignment problem is described in
Chapter 5, Section 5.4. In this section, for simplicity we assume that connection cost ({’]
is equal to overall transport and depot costs (tc}; + dc%;) for each customer j to each

facility ¢ of product p,i € Vpe, 3 € Vg, p€ P

Glossary

Ve set of depots

Ve set of customers

P set of products

d5 demand of customers j of productp, j € Vo ,p€ P

q’ capacity of cases of facility i of product p, i € Vpc ,p € P

n? number of stores assigned of facility ¢ of product p, i € Vpc ,p € P

ch is the connection cost consisting of transporting and depot cost function based on
the total demand of product p of customer j, d’;’ from facility 2

Tij is the decision variable for the problem, z;; = 1, if store j is allocated

to facility 7, and O otherwise

Mathematical formulation

Minimize
BB ILAS .19
i€Vpce j€Ve peVp
subject to
Z zi; = 1,Vj € Ve (7.20)
i€eVpe
> &z < g, Vi€ Vpe.Vp € Vp (7.21)
JEVC
Z 2, <P Nj € Ve, Vpe P (7.22)

jeVe
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I;; € {0, 1},i € Vpe.j € Ve (7.23)

where formulation (7.19) aims to minimize the total connection cost of satisfying the
total demand of all the stores, and constraints (7.20) with (7.23) guarantee that the
demand for each store must be satisfied by one depot. Constraints (7.21) and (7.22)
ensures that the capacity constraints for the facilities for each product type are not

violated and (7.23) specifies that allocation is indivisible for the decision variable.

7.3.2 Solution Formulation

The solution formulation presented in this section is based on the LR formulation 1 in
section 7.2.1 where only a single constraint is relaxed and lagrangian multipliers are used
to determine a lower bound value as a main step in the Lagrangian relaxation. Let

A € R.Vi € Vpe.Vp € Vp. The relaxed model formulation is presented as follow:

Minimize
Do D Byt Yo Y N Ay —d) (7.24)
i€Vpe jEVe pEVP i€Vpc peVp jeVe
subject to
d z;=1VjeVe (7.25)
i€Vue
>y <nlVj€Ve,VpeP (7.26)
Jjeve
Tyj € {07 1},’& € VDC).]. € VC (727)

The relaxed formulation computes the difference between the total demand assigned to
the facility i for a particular product p and its capacity of that product q7 on the right side
of the formulation. The value of the total cost in the equation (7.24) will change if the
capacity of facilities is violated or has not been exceeded. As part of the solution
procedure, we only want to make adjustment to costs if a capacity is violated , therefore

we would expect the term (3 ,cy,. d7xij — q%) to equal zero, for any facility which has a
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spare capacity. Therefore, we constraint A? values to 0 if the capacity is not violated for a
facility i.

To obtain the optimum lower bound to the relaxed formulation (L B*), we decompose
problem (7.24) - (7.27) into | V(| subproblems. For a given set of multipliers, \? € R, we

solve subproblem (1. B?(P)) for each customer j € V. This will assign each customer

to the facility with minimal (augmented) connection cost, summed over all products,

pe P

For each customer j, minimize

> O (& + Ny (7.28)
ieVpe peP
subject to
Z ri; = 1,Yj € Ve (7.29)
i€Vpe
Z z;; <nf VjeVe,Vpe P (7.30)
JEVE
z;; € {0,1},1 € Vipe,j € Ve (7.31)
Then by setting:
LB\ =Y LB\ - Y Y N (7.32)
JeEVe i€Vpc peP

The relaxed problem (7.28) is solved by applying a greedy heuristic where each
customer is allocated to the lowest total augmented cost ) plch; + d5A7) and the lower
bound is calculated in (7.32) for a particular iteration of A values. The allocation made
for LB(\) is used to obtain a feasible upper bound U B()), where those two values are
used in the formula to update the Lagrangian multipliers. It is unlikely that the allocation
used for the lower bound will be feasible, especially in a multi-product problem, such as
we have here. Therefore, we need to construct a procedure of reallocating customers
when facilities are over capacity.

For a single product problem, the customers were sorted in non-increasing order

according to their demand, and then assigned to facilities based on the lower bound
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assignment without violating capacity constraints. When capacity constraints are
violated for I.B assignment, the customer is assigned to the next lowest augmented cost
etc. If all facilities are overcapacity then the customer is allocated to the lowest true
(non-augmented cost). However, the current model formulation have multiple products
where each customer will have a certain demand for each product type, and each DC with
have a maximum capacity for each product. Therefore, different settings were devised to
ensure that allocating the customers produces feasible solutions when calculating U B

assignment. Following settings were tested for finding feasible U B assignment:

1. (Sorting using normalized demand.) The customers are sorted in non-increasing
sequence of the sum of the normalized demand over all products. The customers

with highest value are assigned first to the appropriate depot. Thus, for customer j:

. dj
normalized Demand; = Z S P (7.33)
peP ZJEVC J

2. (Sorting using highest fraction of normalized demand across all products.) The
highest fraction of normalized demand across all product types for each customer
is chosen for sorting customers in non-increasing order. The customers with

highest value are assigned first. Thus, for customer j:

&
highFractNormDemand; = maz{for eachp € P : ——J—-d;} (7.34)
ZjEVc J

3. (Sorting using normalized demand and the depot load ratio.) The depot load ratio

per product type is defined as the ratio of total demand of all customers per product

type and total capacity of all depots for that product type. Thus, for each product p:

4
ratio? = Zseve h (7.35)
ZiEVDC q:z

The highest fraction of normalized demand across all product types (Setting 2) per
customer is multiplied by the load ratio of that particular product. This value is
used to sort customers in non-increasing order, where the customer with highest

value is assigned first for U I3 assignment.

4. (Sorting using highest demand.) The highest demand across all product types per
customer is used to sort customers in non-increasing order, where the customer

with highest value is assigned first.
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5. (Sorting using highest demand and the depot load ratio.) The highest demand
across all product types per customer is multiplied by the load ratio of that
particular product. This is used to sort customers in non-increasing order, where

the customer with highest value is assigned first for U/ B assignment.

Updating the Lagrangian multipliers

To update a set of Lagrangian multipliers for each product, following formulations are

used for each facility and each product at time step, k

20 = Z dh - (7.36)

jeVe

where :rfJ is the solution of the Lagrangian relaxation (7.24) - (7.27) using

/\fp € R.Vi € Vpe,Vp € Vp as the Lagrangian multipliers. Now set

(k (k) - (k
iy _ ) OB i s >0 3
’ 0 otherwise

where 3* is a suitable scalar coefficient. The procedure will start by setting all the
Lagrangian multipliers to zero. Formula (7.36) demonstrates that if a certain facility ©
and product p, sf‘(k) is positive, it means that demand is higher than available capacity
for that facility, and thus the corresponding value of A? will be increased to increase the
cost of assigning customers to that facility in the next time, step k + 1. If 7 *) is a
negative number, it means that there is spare capacity, therefore A” should be reduced to
make that facility more attractive for assignment in the next iteration. This means that
there is no need to adjust the multipliers if the facility is under capacity, therefore

formula (7.37) ensures that the /\f’(k) are always positive.

Formula (7.38) is used to update proportionality coefficient 37, which is used for
updating each set of A” values; where o could be a constant in the interval (0, 2]. In this
research, « starts with 2 and after 20 or 30 iterations « value is halved if U B cost does

not decrease.
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) a(UB(X) — LB(X)
Zie Ve (Sl")(k))z

The algorithm for the Lagrangian relaxation for multiple products is very similar to the

(7.38)

Algorithm 7.1 described for a single product in section 7.2. Therefore it would be very
easy to adopt the algorithm to the description of the solution formulation for multiple

products described in this chapter.

7.3.3 Discussion of the results

The main aim of this section is to analyse five different settings described in section 7.3.2
which are used for testing the allocation routine to determine a feasible solution for [/ I3
assignment. Determining a feasible U I3 assighment for a multi-product problem
formulation is the key issue to ensure that a feasible solution is found to the stated
problem. Because of the multi-product nature of the problem, sorting customers
according to the demand of a single product does not incorporate characteristics of all
other products, therefore more advanced approaches were introduced. The technique is
tested on the Sainsbury’s data and the results of the different settings are presented in
Table 7.8. The solutions of different settings are not presented in terms of the execution
times or compared to optimum solutions with different tolerance levels as in Section
7.2.3 for a single product because the aim of this section is to identify the best setting for
the allocation of the customers in the multi-product setting. The results are compared
among each other according to the difference between global lower and upper bounds,
which provides a good indication to the quality of the solution.

The setting 1, where the customers are assigned in with the highest value of the
normalized demand first, for the current case study produced a feasible solution with the
highest gap difference between I.B and U B solution of 3.19%. The reason could be that
normalized demand is not a true representation of the real demand from the customers
due to the multiple product configuration. Settings 2-5 produced feasible solutions
(=20) with the gap difference between LB and U B solution less than 0.25%. By

analysing the solutions quality in the table, we can see that Settings 2-5 produce similar
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Setting { Number of iterations Solution (UB — LB)/LB (%) | Is solution
for a cost feasible
1 20 3,103,028.32 3.19 yes
2 20 3,011,984.71 0.20 yes
2 30 3,010,055.49 0.13 yes
3 20 3,011,984.71 0.20 yes
3 30 3,011,984.71 0.20 yes
4 20 3,013,512.88 0.25 yes
5 20 3,012,745.33 0.22 yes
5 30 3,007,899.02 0.06 yes

Table 7.8: Multi-commeodity allocation problem - results of different settings for U B

assignment.

solutions among those settings, with difference of around 0.20%. Furthermore, after
further tuning, where the parameter o was updated after 30 iteration in setting 5, the
quality of the solution improved by 0.16% for setting 5 which is a good improvement on

the solution quality.

As can be seen from the Table 7.8, the initial results are very encouraging and the
technique produces good quality solutions, specially for setting 5. It needs further testing
on the randomly generated test data for multiple products. Due to lack of benchmarking
data in the literature for multiple products and the time constraints, further work will
need to be done to better assess the quality of the generated solutions. In the current
research our aim is to explore multi-objective optimization for facility location-allocation
and allocation problem, for a single product where economic and environmental

objectives are balanced.

7.4 Summary

This chapter presents two new Lagrangian Relaxation solution techniques to solve the
capacitated allocation of customers to serving facilities with different relaxation

procedures for single and multiple products, single source.
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In the first LR procedure, the relaxation is done on the number of cases for a single
product. The quality of the solutions and execution times of the LR were compared to the
solutions found by CPLEX(®) for a number of the tolerance levels on the benchmarking
instances and some new randomly generated larger data sets. As a result of the above
analysis, the first LR approach finds good quality solutions within a reasonable amount
of time. Where CPLEX(®) failed to find the solutions to the large data sets, the LR
heuristic had no problems at all. The results show that LR is an efficient technique,
which will be used for developing a multi-objective capacitated facility location problem

tool, where the assignment is a sub-routine of the approach and presented in Chapter 9.

The second LR solution technique considers a situation where multiple products are
available to the customers and relaxes the capacity (number of cases) constraint. The
approach was tested on Sainsbury’s data and will need further investigation on the
randomly generated large size benchmarking instances to explore a wide range of

situations.



d

Chapter 8

Multi-Objective Uncapacitated Facility

Location Problem

8.1 Introduction

Previous chapters described model formulations and solutions techniques for the
allocation of customers to distribution centres. Assignment is an essential part of the
periodical re-evaluation needed to maintain the continued economic viability of a
distribution network. In the present chapter we consider the facility location problem
(FLP), which has a much longer planning horizon. The goal is to identify the optimum
number and locations of depots or warehouses, in a distribution network, in which
deliveries are made to local customers and/or goods are collected from local suppliers
(see Figure 8.1). In addition, each customer (or supplier) can be assigned to exactly one
depot. In practice there are many variations of the FLP, for example, storing inventory
before it is transported to customers, or including transshipment points, where the goods
are reloaded from the supplier to be forwarded to the retail stores. Also the FLP is easily
adapted to identify the optimum number of recycling or collection facilities in a network.
The facility location problem is not new to academia and has a very rich literature. For
example, [70] describes the role of facility location models within a supply chain context

as “an extremely interesting and fruitful application area domain”.

Typical formulations for the FLP aim to minimize cost as a single objective. In this
approach, the total cost is frequently expressed as a sum of various component expenses,

most simply as transportation and fixed costs. However, in many practical situations, the
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customers

Figure 8.1: The Uncapacitated Facility Location Problem.

optimum design may involve dealing with multiple and sometimes conflicting objectives.
In a recent survey [70], 98 articles published in the last decade were categorized: 75%
had a single cost minimization objective, 16% had a single profit maximization objective
and only 9% were modelled with multiple and conflicting objectives. The multiple
objectives mentioned include resource utilization and customer responsiveness, in

addition to the standard economic objectives.

Recent concerns regarding climate change, however, have shifted the focus of modelling
to incorporate environmental objectives. For example, [61] present a generic
mathematical programming model for assisting the strategic long range planning and
design of a bulk chemical network. Their multi-objective mixed-integer programming
problem is solved using an approach which applies the e -constraint method [99] as part
of their multi-objective solution. The model minimizes the environmental impact
resulting from the operations of the entire network, and simultaneously maximizes the
profitability of the network. Another example, [83] develop a framework for the design
and evaluation of sustainable logistics networks, in which profitability and environmental
impacts are balanced. The re-organization of a European pulp and paper logistic network

is used to illustrate proposed methodology.
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There are different techniques for solving problems involving multiple objectives which
are discussed in detail in Section 3. We can see that some recent multi-objective models
which incorporate environmental measures are solved using classical methods. For
example, [92] formulate a mixed integer goal programming model which captures
economic and environmental goals through increased wastepaper recovery for a paper

recycling logistics system.

From our recent review [54], like [70], we identified only a very small number of
multi-objective models with environmental objectives, and these are solved
predominantly using classical multi-objective methods. Classical techniques rely on a
priori judgements regarding the relative importance of the various component objectives.
In contrast, there are other approaches that do not rely on such assumptions and treat all
objectives equally. Such techniques will generate a set of solutions, with the objectives
traded off in different ways, instead of a single optimum with respect to a predefined
(perhaps arbitrary) trade-off situation. In this way it is possible to provide a decision
maker with sufficient choices to make an informed judgement when trading off the
relative merits of the conflicting objectives. In this research we explore elitist
multi-objective evolutionary algorithms for the strategic modelling of a logistics

network, where economic and environmental objectives are considered simultaneously.

In this chapter, two evolutionary algorithms are explored on a multi-objective

uncapacitated facility location problem (MOUFLP):

e Non-Dominated Sorting Genetic Algorithm (NSGA-II) [30] (Algorithm[3.2]). It is
a well tested algorithm, where elitism is preserved and has a diversity mechanism
in terms of calculating crowding distance. It is much more complex to implement

than other evolutionary algorithms like SEAMO2.

e Simple Evolutionary Algorithm for Multi-Objective Optimization (SEAMO?2) [76]
(Algorithm[(3.5]). This algorithm is simple to implement and includes a specific
mechanism to improve the quality and range of the solutions set. Known
weakness: there is no specific mechanism to ensure an even spread of solutions

across the Pareto front.
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Both algorithms are described in full details in Chapter 3, section 3.6.

The uncapacitated facility location problem (UFLP) is the simplest form of FLP, and
involves identifying which depots to open, assigning the customers to open depots, and
has no constraints regarding the capacity of the facilities (Figure 8.1). Our
multi-objective model has two different settings: two-objectives (min cost - min
environmental impact) and three-objectives (min cost, min environmental impact and
min uncovered demand). For this simple model, our environmental objective is
formulated in a similar way to our objective measuring economic cost, and is made up of
two components: depot costs and transportation costs. However, we weight these
components differently for assessing the environmental impact, working under the
assumption that the environmental cost of transport is large in comparison to the impact
involved in operating distribution centres or warehouses (in terms of CO, emissions, for
example). We further conjecture that the full impact on the environment is not reflected
in the costs incurred by logistics operators. Based on these ideas, we investigate a
number of “what if 7" scenarios, by varying the relative weighting of the impact of
transport versus depots on the environment to provide sets of non-dominated solutions to
some test instances. This is an exploratory study aimed at investigating the potential of

multi-objective optimization techniques for the FLP.

8.2 Our Multi-objective optimization model

The main drivers in traditional logistics network design are to reduce total costs and
improve customer service levels. Due to recent concerns regarding climate change,
minimizing the environmental impact from depots and transport needs to be addressed as
well. Our proposed multi-objective uncapacitated facility location problem incorporates
those three goals. Therefore, the problem definition in this chapter is a mixture of three
mathematical programming formulations: the uncapacitated facility location problem, a
revised UFLP with environmental weightings, and the maximal covering location
problem (MCLP). The MCLP involves first asserting a global (ideal) maximum distance

between customer and serving depot. Once customers have been assigned to depots,
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covered demand can be measured as the percentage of customer demand met within the
given distance radius. Customers assigned to depots that are further away than this
maximum, represent uncovered demand which is equivalent to (100 - percentage of

covered demand)%.

The UFLP and MCLP models we use have been adapted from Villegas et al. [109] who
originally based their formulation on [94]. Villegas et al. [109] present a bi-objective
UFLP (min cost - max coverage) in their paper. To solve the problem, they designed and
implemented three different algorithms to obtain a good approximation of the Pareto
frontier. The algorithms are based on the Non-Dominated Sorting Genetic Algorithm,

the Pareto Archive Evolution Strategy and on mathematical programming.

8.2.1 Problem formulation and objective functions

We will assume that the customers each have a certain demand and that transportation
costs and fixed costs for the open depots. We further assume that at least one depot from
a set of depots will be open, and that each depot will serve its customers directly. The
model does not include inter-depot movements of transport to ensure the goods flow
between depots. The problem is to determine how many depots to locate, where to locate
them and which depot serves which customer, in order to satisfy the two or three
objectives: minimize cost, minimize environmental impact and minimize uncovered
demand. Solving this problem requires two main routines: one to determine which
depots to open, and the other to assign the customers to the open depots (the assignment
rule), where each customer is assigned to exactly one depot. The values of the two or

three objectives can be computed once a network configuration has been defined.

The following notation is used in the formulation of the model:

Vpe = {1...1}  set of potential depots;
Ve ={1...5}  setof customers;

Cij transportation cost of attending demand from customer j to depot ¢;
fi fixed cost for operating a depot ¢;

d; demand of customer j that could not be attended within D,
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by particular depot i;
hi; distance between depot i and customer j;
Diar maximal covering distance - the customers within this distance to an

open depot are considered well served;
Vine set of depots that could not attend customer ¢ within the maximal

covering distance D,,,.;

The decision variables are:

z;; equals 1 if the whole demand of customer j is attended by depot ¢
and O otherwise;

y;  equals 1 if depot is chosen to operate and 0 otherwise;

The following objectives functions are considered simultaneously as part of the location

design:

e Minimising costs. The objective is to find the best number and location of depots
that minimizes total transportation and fixed costs. The first term represents the
cost of attending demand of customers by the open depots and the second term

represents the fixed facility cost of operating depots.

minimize| Z Z cijTij + Z fivil 8.1)

i€Vpe JEVe i€Vpe
e Minimising uncovered demand.

The objective measures total uncovered demand as a sum of the demand of

customers which could not be attended by depot within maximal covering distance.

mim’mize[z d; Z 5] 8.2)

jch ievun{:
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e Minimizing the environmental impact from transport and depots. The objective is
to find the best number and location of facilities that minimizes the total
environmental impact from transportation and depots. This is essentially the same
formulation as we use to minimize economic costs, but we introduce W and Wy
to weight the transport and fixed costs, respectively, for environmental impact. In

this model, higher values of W imply worse pollution from transport.

mim'mize[ Z Z Cij * Wr * Tij + Z fix Wg yi] (8.3)

i€Vpc jeVe i€Vpe
where Wy is the factor which derives the environmental impact from transport in
relation to transportation costs and W is the factor which derives the

environmental impact from depots in relation to fixed costs. For the present study

we used following values: Wp = 1 and

Wr € [1,2,4,6,8,10,12, 14, 16, 18,20, 22, 24]. Those particular values for Wr

were chosen to explore different “what if 7 scenarios.

e Subject to following constraints:

Y my=1j€Ve (8.4)
‘iEVDc

Tij < qu € VC)i € VDC (85)

zi; € {0,1},5 € Vi € Vpe (8.6)

Y; € {0, 1},i € Vpe 8.7)

Constraints 8.4 and 8.6 ensure that each customer is attended by only one depot.
Constraint 8.5 assigns the customers to open depots. Constraints 8.6 and 8.7 define

decision variables as binary.

For our analysis we looked at two different objective settings:
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1. for the two-objective UFLP: minimizing costs and minimizing environmental

impact;

2. for the three-objective UFLP: minimizing cost, minimizing environmental impact

and minimizing uncovered demand.

8.2.2 Test data.

From our research, we confirmed findings published in Villegas et al. [109]: that there
are no available MOUFLP test instances in the public domain for benchmarking.
Especially for our research, we needed instances which consider environmental
information. To begin our research, we obtained bi-objective problem instances (min cost
and max coverage) from [109] of two different types: instance A and instance B. The
difference between the instances is that the locations have been generated in two different
ways: uniformly distributed locations within a square (instance A) or depot locations
chosen from customer locations (instance B). A and B instances come in three different
sizes: 10 depots-25 customers, 30 depots-75 customers and 50 depots-150 customers.
Each size also differs in its fixed depot cost structure (uniformly distributed (C1-C3) or
the same fixed costs for all depots (C4-C6)). For example, instance A10-25C3 is an
instance of type A with 10 available depots, 25 customers and a uniformly distributed
fixed depot cost structure. In total, 26 different problem instances are provided. For our
analysis, we have chosen a representative sample consisting of one instance of each type,
size and cost structure - in total 12 test instances. For example, the following instances of

type A are used for analysis: A10-25C3, A10-25C6, A30-75C3, A30-75C6 etc.

The data sets described above model economic costs and coverage but not environmental
costs. To include an environmental objective, we used the simple weighted model
described above, and applied it to the fixed costs and transportation costs of the
“standard" UFLP. We know that the environmental impact from transport is closely
related to fuel consumption. However, there are other factors that have an impact on the
actual levels of emissions from transportation, such as the speed and acceleration of the

vehicle; the load on the engine over the distance traveled; the type of fuel used, vehicle
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condition, engine size etc. [82]. Of course, all of these factors will also impact on
economic cost. On the other hand, other expenses, such as vehicle maintenance, road
tax, training costs, drivers’ wages etc., will not directly impact on the environment in the
same way. Regarding depot costs, the environmental impact from depots comes from the
electricity and gas consumption by the buildings. Economic costs for depots also include
rent/rates and staffing costs. In this chapter we will assume that transport has a relatively
greater impact on the environment than depots, relative to economic costs, and we will
use our simple model to explore various scenarios related to different weightings of the

environmental impact of transport.

8.3 Solution encoding and assignment procedure

Solution encoding. Each solution for MOUFLP is encoded as a binary string of length
equal to the total number of (potential) depots, where each bit indicates whether depot is
open (value of 1) or closed (value of 0), e.g. 1101100100 represents 10 potential depots
with depot 1,2,3,4,5 and 8 open. However, a solution also involves the assignment of

customers to depots at the minimum transportation costs.

Assignment procedure. In a location models it is very important to decide how the
customers are assigned to the particular facilities. In some circumstances, the assignment
depends on the distance or travel time, in other cases it could depend on the range or
quality of the products dispatched or collected. Our model incorporates a customer
service level objective, therefore we used the assignment procedure described in [109],
which tries to minimize cost without impacting on coverage. Provided a customer is
located within a given maximum distance radius, D, .., then that customer is assigned to
the depot at the minimum transportation cost. If a customer cannot be covered (i.e., the
nearest depot is further than D,,,.) then it is assigned to the depot with the smallest

transportation cost, regardless of its distance. Ties are broken on a first-come-first-served

basis.
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8.4 Comparing and tuning evolutionary algorithms

The two evolutionary algorithms NSGA-II (Algorithm 3.2) and SEAMO2 (Algorithm
3.5) are implemented in Java and adopted for MOUFLP to obtain a good approximation
of the Pareto frontier. Chapter 3 discusses both evolutionary algorithms in details. Two
test problems from Villegas et al. [109] (A30-75C3 and A30-75C6) are used to compare
the algorithms on the quality of the non-dominated solutions using the S metric

[114, 115]. The difference between the C3 and C6 problems is that the latter has the
same fixed costs for all open depots and the former has different costs. The S metric or
hypervolume measure is a measure of the volume of the dominated space determined by
the number of objectives which are enclosed by the nondominated points and the point of
origin. This is a measure of the quality of solution set for a given nondominated set A.

Definition 5 defines the hypervolume metric and taken from Zitzler’s thesis [115]:

Definition 5. (Size of the dominated space) Let A = (z;,z3,...,7;) € X beasetof [
decision vectors. The function S(A) gives the volume enclosed by the union of the
polytopes p1, ps, ...p1 , Where each p; is formed by the intersections of the following
hyperplanes arising out of z; , along with the axes: for each axis in the objective space,
there exists a hyperplane perpendicular to the axis and passing through the point
(fi(zi), f2(;), -, fe(zi)). In the two-dimensional case, each p; represents a rectangle

defined by the points (0, 0) and ( f;(z;), fa(z:))-

Definition 5 assumes a maximazation problem and since then other models were
developed for the problem where all objectives are minimized [31, 115, 133]. For
example, a reference point (vector of a worst objective function values) could be used to
calculate a hypercube for each solution which is after used to calculate a hypervolume
metric [31]. In this thesis, we use Zitzler’s definition and convert our model to a
maximization problem to calculate the S metric with following units: maximizing
‘unspent’ cost, covered demand and *unspent’ environmental impact. Maximizing
‘unspent’ cost represents maximizing the difference between upper bound limit for costs
and overall costs for a particular open depot and lowest assignment combination. The
upper bound limit is calculated as a result of assigning stores to the furthest depot while

all depots are open and consist of fixed and connection costs. Similar procedure was
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done to convert minimizing environmental impact to maximizing ‘unspent’
environmental impact, where we maximize the difference between upper bound limit for
impact and overall impact from the open depots/lowest assignment combination.
Covered demand represents the percentage of the total demand which has been covered

within given distance D,,,.. The maximazation units discussed above are used in the

Figures 8.3, 8.4, 8.5.

Before comparing evolutionary algorithms, a fine tuning of the algorithms was carried
out involving an exploration of a range of settings such as different crossovers, crossover
probabilities, population sizes etc. Twenty independent runs of each test problem and
setting are conducted for each algorithm and the final result (per problem instance and
algorithm) is the approximate Pareto frontier obtained by aggregating the fronts of the 20
independent runs. The two algorithms were compared under the same number of
iterations (10,000) and under equal execution time (10,000 ms) to ensure fairness in

comparing algorithms.

Tuning the individual evolutionary algorithm. Before comparing the NSGA-II and
SEAMO?2 algorithms for MOUFLP, each algorithm was tuned to its best performance. In
order to make comparisons fair, we used the same number of evaluations (10,000
iterations) for each algorithm. For the experiments, two different combinations for
population size and numbers of generations are used: smaller population/bigger

iterations (pop=40 gen=250) and bigger population/smaller iterations (pop=250 gen=40).

Figure 8.2 illustrates a flow chart of all experiments which were undertaken for fine
tuning and comparing different settings for both algorithms. In the step 1, each algorithm
is run 20 times for different types of crossover: one-point, two-point, uniform and no
crossover on two instances with population size of 40 and number of generations of 250.
The mutation was applied after the crossover was performed. After the best crossover
was chosen, the number of generations was changed to 40 and the population size to 250
and different population and generation sizes were compared. The step 2 in Figure 8.2
illustrates a flow of different experiments when NSGA-II and SEAMO?2 algorithms are
compared under equal number of the evaluations and equal number of execution times.

The next subsection describes this process in more detail. One-way analysis of variance
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Step 1. Identify the best
setting for each algorithm

NSGA-II

SEAMO2

Step 2. Compare algorithms on
best-tuned settings from Step 1

| =<7\

NSGA-II

SEAMO2

=<7l

2 objectives 3 objectives 2 objectives 3 objectives
Instance: instance: Instance: Instance:
A30-75C3 A30-75C6 A30-75C3 A30-75C6
Pop=40 Gen=250 | Use the best setting for
{ crossover, num of Pop & Gen.
One point ; Two point l ‘><J
Uniform ; No
crossover | Compare Compare
Pop=250 Gen=40 and compare :Sﬁ‘e:)fequal ::gzlt?:: 2
based on best crossover tterations times (10,000
} (10,000) ms)

Apply S metric to identify the best
setting for each combination

Figure 8.2: Tunable settings for MOEA.

on the S metrics was used to compare different crossovers and the best-tuned settings,
depending on the number of objectives, which are statistically significant, are presented

in the Table 8.1.

Comparing NSGA-1I and SEAMO2. Tuned to the best performance, NSGA-II and
SEAMO?2 algorithms are compared (maximization of two/three objectives) under two
requirements: 1)the same number of evaluations of 10,000 and 2) equal execution time
of 10,000 ms for each run. In Chapter 3, we discuss a selection probability for
parameters of evolutionary algorithms where the crossover probability (p) is used to
determine the number of chromosomes participating in the crossover and the mutation
probability (p.,) determines the number of bits that will be mutated. When the value of
the probability is equal to 0% then no crossover or mutation has been performed and
offspring has the same properties as it’s parent. After initial experiments, p. = 0.7 and

pm = 0.06 were used as final parameters in NSGA-II.
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Algorithm | Number | Best-tuned settings

of obj. for algorithms
NSGA-II | 2obj. | Two-point crossover
pop=40, gen=250
3 ob;j. No crossover

pop=250, gen=40
SEAMO2 | 2 obj. Uniform crossover

pop=40, gen=250

3 obj. Uniform crossover

pop=40, gen=250

Table 8.1: Best-tuned settings for NSGA-II and SEAMO2.

Figure 8.3(a) and 8.3(b) show the approximate Pareto frontier for two and three
objectives under equal numbers of evaluations obtained by both algorithms. Table 8.2
shows the execution time and the number of non-dominated solutions for each algorithm.
In both cases NSGA-II outperformed SEAMO?2 by obtaining statistically significant
results as a result of undertaking one-way analysis of variance on the S metrics.
However, SEAMO?2 algorithm was much faster than NSGA-II. SEAMO?2 is an algorithm
which is much simpler to implement compare to NSGA-II and preserves best solutions
during the execution time. Therefore, by running SEAMO2 and NSGA-II algorithms
under the same execution time, the SEAMO?2 algorithm could find an approximate

Pareto frontier of the same (perhaps better) quality as the NSGA-II algorithm faster.

Figure 8.4(a) and 8.5(a) show the approximate Pareto frontier for two and three
objectives under equal execution time of 10,000 ms for each run obtained by both
algorithms. The final approximate Pareto frontiers visually indicate very little difference
for two and for three objectives. The reason could be that SEAMO?2 has a simple and fast
search strategy that obtains a good quality approximate frontier quickly. But the
interesting results you can see in Figure 8.4(b) and 8.5(b) which show box plots for the S
metric for the two algorithms. Each plot represent the distribution of the non-dominated

space for 20 independent runs and results are statistically significant in favor of
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Figure 8.3: Non-dominated solutions from 20 runs on A30-75C3, NSGA-II and

SEAMO2 under equal number of evaluations of 10,000 for each run.

NSGA-II. Furthermore, the gap between two algorithms is bigger for two objectives.

Also, Table 8.3 shows that NSGA-II produces a larger number of non-dominated

solutions compared to SEAMO02.

To summarize, we observed from the pilot experiments, that the NSGA-II algorithm

performed generally better than the SEAMO02 algorithm in terms of quality of the
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NSGA-II SEAMO2
time (ms) | Non-dominated || time(ms) | Non-dominated
solutions solutions
Two objectives:
cost, coverage
A30-75C3 53,909 50 532 22
A30-75C6 53,951 73 606 29
Three objectives:
cost, impact coverage
A30-75C3 190,859 | 397 564 111
A30-75C6 187,965 120 622 33

Table 8.2: NSGA-II and SEAMO?2 under equal number of evaluations of 10,000 for

each run, 20 runs.

NSGA-II SEAMO2
time (ms) | Non-dominated || time(ms) | Non-dominated
solutions solutions
Two objectives:
cost, coverage
A30-75C3 200,000 52 200,000 44
A30-75C6 200,000 75 200,000 63
Three objectives:
cost, impact coverage
A30-75C3 200,000 443 200,000 254
A30-75C6 200,000 116 200,000 72

Table 8.3: NSGA-II and SEAMO2 under equal execution time for 20 runs .

approximation of Pareto front. However, the SEAMO2 algorithm was very efficient in
terms of execution time. This means that for large size data sets, SEAMO2 would be
able to find non-dominated solutions more quickly and provide the decision-maker with
an initial set of solutions, which can be explored further if desired. The SEAMO2
algorithm is used in Chapter 9 for modelling capacitated facility location problem for
large size data sets, where execution time could be challenging. However, for the current

data sets, NSGA-II was chosen for the experimental analysis described in the rest of this
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Figure 8.4: Instance A30-75C3, comparison of NSGA-II and SEAMO?2 under equal

execution time of 10,000 ms for each run (two objectives).

chapter where two-point crossover was used for the two-objective problem and no

crossover for the three objective problem.
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Figure 8.5: Instance A30-75C3, comparison of NSGA-II and SEAMO02 under equal

execution time of 10,000 ms for each run (three objectives).

8.5 Experimental method

The purpose of our experiments is to answer the following questions for each MOUFLP,
the two-objective problem (min cost and min environmental impact) and the

three-objective problem (min cost, min uncovered demand and min environmental
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impact):

1. Does this approach hold promise — do we obtain a reasonable trade-off front?

2. What happens to the solution set as we explore scenarios in which the

environmental impact of transport increases disproportionately to its cost?

3. How do we select suitable trade-off solutions from the approximate Pareto front?

As previously mentioned, six instances of type A and six similar instances of type B are
selected from the test data taken from [109]. Recall that these instances have data for a
two-objective problem (economic cost, coverage), and we applied our environmental
weightings, W and W, to transport and fixed costs, respectively. The plan is to assess
the environmental impact for a range of “what if?” scenarios, in which Wy = 1 in all
cases, and Wr € [1.2,4,6,8,10,12, 14, 16, 18,20, 22, 24]. We assume that the
environmental impact of transport outweighs the environmental cost of maintaining
depots. For each problem instance we performed 12 experiments, one for each of the
above environmental factors for transport (Wr). In each run, the initial solution was

created randomly at the start.

The NSGA-II algorithm creates a child population from its parent population using fast
non-dominated sort, crossover and mutation. The parent population (F;) and child
population (C,) is set to the same size N=40 for our experiments, and for each run, on
every instance, the number of generations was 250. After the initial experiments, we
settled on the crossover probability p. = 0.7 for all the tests. Two-point crossover was
used for the two-objective problem and no crossover for the three objective problem, due
to results which are discussed in Section 8.4. A mutation probability of p,, = 0.06 was
used across all the settings and all the test instances. Experiments are conducted using

Java 2, on a PC with an Intel Pentium D CPU 3.4 GHz and 2 GB RAM.
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8.6 Results

In this section we shall attempt to answer the questions posed in the previous section.
Consider a situation in which W7 = Wp = \. This corresponds to identical objectives
for environmental impact and economic cost. For this special case, there is only one
global optimum for the economic cost versus environmental impact model, because the
problem reduces to a single objective. On the other hand, as the value of WT is allowed
to increase, one would expect to obtain sets of non-dominated solutions in which high
transport impact favours higher numbers of open depots than are cost effective when

considered from the point of view of economic cost.

235
[ 900
0 20
o5
#66 13
A3075C3
- - - A3075CH
o1

environmental factor for transport

Figure 8.6: Total number of non-dominated solutions for different environmental

factors from transport for two-objective problem (cost-impact).

Figure s .« shows how the number of non-dominated solutions obtained by NSGA-II
changes as the environmental factor increases from 1 to 24. This diagram illustrates the
situation for two of our instances (A30-75C3 and A30-75C6). However, the pattern is
similar for the other . instances. We can see that when W71 = 1, there is a single
solution, as expected. As WT increases, however, so does the size of the non-dominated
set. In the case of A30-75C6, the size of the solution set stabilizes at about 15, while
A30-75C3 settles at about 35. Due to the exploratory nature of the current research, the
curves of the Pareto frontier represent single runs for each WT setting; hence, their lack

of smoothness. The solutions depend on the scale - more solutions are found as the
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environmental impact from transport increases. Visual representation of the approximate
Pareto fronts can be seen in Figure 8.7 and Figure s « where a transport factor of ¢ was
used in the former and a transport factor of 16 in the latter case. As expected, we observe
that more depots need to be opened to mitigate the environmental impact than is
desirable from the point of view of economic cost. For example, in Figure 8.7 (WT = «)
the extreme solutions require : depots for minimizing cost, and s depots for minimizing
the environmental impact. In Figure s s (WT = 16) even more depots (s ) are required to
mitigate the environmental cost of transport.

5200 Wdmbtr of ctetomere absfried to eacft fepbfc

5000
1- depotopen
4800 0 - depot closed

4600
4400
4200
4000

3800

3600 Number of customers asslyved to each depot

18 122 124 1.26 128 132 134
Environmental impact le

Figure 8.7: Instance A10-25C3 with environmental impact factor from depot of 1

and impact factor from transport of 6.

Now we are going take a more detailed look at how increases in the environmental factor
from transport impacts on the required number of the open depots, for the two-objective
and three-objective problems. For each of the 12 settings for /T we will examine the
extreme solution that minimizes environmental impact at the expense of economic cost
(top left of Figures 8.7 and s .+ ). A similar pattern can be seen in Figure 8.9 for three
objective problem. Figure 8.10 shows how the number of depots increase with increasing
WT for two-objective problem, and Figure 8.11 shows similar findings for the

three-objective problem.

Now, to answer the three questions posed in Section 8.5.
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Figure 8.8: Instance A10-25C3 with environmental impact factor from depot of 1

and impact factor from transport of 16.
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Figure 8.9: Instance A10-25C3 with environmental impact factor from depot of 1

and impact factor from transport of 16.

1. We do obtain a reasonable trade-off front with a range of solutions, indicating that
this approach is worth pursuing further, until such time that environmental cost is

fully absorbed into the economic costs incurred by the stakeholders.

2. As the environmental impact of transport increases disproportionately with the
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Figure 8.10: Total maximum number of depots open depending on environmental

impact factor from transport for two-objective problem.
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cost of operating depots, the environmentally friendly solution will require more

open depots than is cost effective from an economic point of view.

3. We can spot good compromise solutions, for example as indicated in Figures 8.7,

s . ,and 8.9. We can select solutions with relatively low environmental impact, just

before the curve steepens towards very high economic costs. At this stage there are

only very small environmental gains to be made at very high economic cost.

To conclude, from the two and three objective studies it may be desirable to open more

depots than may be optimal from a cost only perspective, in order to reduce the
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environmental impact of transport. This is not a surprising observation, but our studies
indicate that an evolutionary algorithm is a useful way to obtain trade-off solutions to

present to a human decision maker. It is possible to spot good compromise solutions in

this way.

8.7 Summary

This chapter describes a MOUFLP with an environmental objective. The model includes
traditional objectives: minimizing cost and improving customer service levels
(minimizing uncovered demand) and an environmental objective: minimizing the
environmental impact from transportation and depots. Two multi-objective evolutionary
algorithms, NSGA-II and SEAMO?2 are discussed and adopted for the MOUFLP.
Furthermore, as a result of comparing both algorithms on the benchmarking data,
NSGA-II is used to investigate a range of “what if 7 scenarious to provide a set of
non-dominated solutions to some test instances where the relative weighting of the
impact of transport versus depot on the environment is being varied. In this study we
assume that the environmental impact of transport is not truly reflected in the economic
costs of running a fleet of vehicles. The analysis was performed on two different settings:
a two-objective model (min cost - min environmental impact) and a three-objective
model (min cost, min environmental impact and min uncovered demand). The
investigation also included the evaluation of the impact of the different scenarios on the

number of open depots.

The next chapter extends our exploratory study to a capacitated FLP and a more realistic
model using some randomly generated data instances based on Sainsbury’s data. In the
new study, the environmental impact from transportation and depot management is
properly evaluated using a relevant carbon footprint methodology and the environmental

information for the generated data instances is based on real figures from the industry.
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Chapter 9

Multi-Objective Capacitated Facility

Location Problem

9.1 Introduction

In this chapter we extend the UFLP formulation to the two-objective Capacitated
Facility Location Problem (CFLP). The CFLP model formulation described in this
chapter is based on Sainsbury’s logistics network and has two capacity constraints: one
for the number of cases and one for the number of stores. Recall that the UFLP has no
constraints on the capacity at all, and was based on data sets available from the public
domain adapted by adding a component for environmental impact. The two-objective
CFLP model aims to balance the financial cost and the environmental cost, taking into
account activities such as moving, picking, and loading the goods as well as transporting
them and opening the depots needed to serve the customers’ needs. The environmental
impact is extracted from running the logistics network in terms of C'O, emissions from
transportation and the emissions caused by energy use for the day-to-day running the
depots. Because of the lack of multi-objective data sets with environmental aspects for
the CFLP in the public domain, we have generated our own large size data problems,
based on data from industry. Locations, capacities and levels of demand etc. have been
randomly generated, but within reasonable upper and lower bounds observed from our

real-world data sets. We have used Government sources to obtain correct environmental

information regarding energy consumption.

To solve the multi-objective CFLP and generate a set of trade-off solutions for our
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benchmark data, we use a solution technique which is based on the elitist evolutionary
multi-objective algorithm SEAMO2 and adapted it for capacitated formulation. We
utilized the Lagrangian Relaxation technique which was discussed in Chapter 7 and

allows the assignment of customers to open depots for each individual in the population

of the solutions.

9.2 Problem formulation and objective functions

We assume that customers have a certain demand in cases and associated transportation
and warehousing costs for a particular depot. Each depot has a given capacity in cases
and the number of stores it able to serve. The customers are served directly by a depot,
and transportation costs are based on stem distances and reflect time and distance based
components. The warehouse costs reflect any associated costs with picking and loading

the goods.

The problem is to determine how many facilities to open in order to satisfy all customers
demand while solving both objectives simultaneously: minimise the environmental
impact from operating depots and transport in terms of CO, emissions and minimise the
overall financial cost. As in UFLP, the capacitated version of this problem is also divided
into two sub-problems: determine which depots to open and assign customers to the
open facilities without violating the number of cases or the number of customers

capacity constraints.

The following notation is used in the formulation of the model:

Glossary

Vpe = {1...i}  set of potential depots;
Ve ={1..5}  setof customers;

Cij cost of attending demand from customer j to depot i consisting of overall
transportation and depot costs;

fi fixed cost for operating a depot 7;

d; demand of customer j;
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€_Gi

€_¢€;

capacity (cases) of facility ¢, 7 € Vp¢;

capacity (number of customers) of facility i, i € Vpc;

CO, emissions from transport between depot i and customer j to satisfy
customer demand d;;

CO, emissions from gas consumption for each depot 1, i € Vp¢;

CO, emissions from electricity consumption for each depot ¢, 1 € Vpge;

The decision variables are:

Tij

Yi

is the decision variable for the problem, z;; = 1, if customer j is allocated
to facility ¢, and O otherwise;

equals 1 if depot is chosen to operate and O otherwise;

The following economic and environmental objective functions are considered

simultaneously as part of the network design:

e Minimising costs. This financial objective finds the best combination of open

depots that allows cost minimization of overall cost of the network. It consists of
overall cost (associated transport and depots) of servicing a demand of customers

by open depots and fixed cost of operating depots

minimize| Z Z CijTij + Z fiyil 9.1

i€Vpe jEVC i€Vbo
Minimizing the CO, emissions from transport and running depots. The
environmental objective is expressed as CO, emissions and aims to find the best
number of open facilities that minimizes the total CO, emissions from
transportation and energy consumption for running facilities. The first term of the
formulation represents the emissions from transport to attend the demand of
customers by the open depots, and the second term represents the total emissions

from the electricity and gas usage of open depots.
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manimaze ) Y e_tyzi;+ Y (e_gi+e_e)y 92)
i€Vpc jEVe i€Vpe
e Subject to following constraints:
Y mi=1jeV 9.3)
1€Vpe
zi; < Yi,J € Ve, € Vpe 9.4)
Z dj.’E,‘j < qi,Vi € Vpe 9.5)
jeVe
Z Tij S n,-,Vi c VDC (96)
JEVC
T;j € {O, 1},i € Vpe,j € Vo 9.7)
Y; € {07 1}17' € VDC (9.8)

Constraints 9.3 and 9.7 ensure that each customer is attended by only one depot and the
demand is satisfied by that facility. Constraint 9.4 assigns the customers to open depots

only. (9.5) and (9.6) ensure that the capacity constraints for demand (cases) and number
of stores for the depots are not violated and finally, constraints 9.7 and 9.8 define

decision variables as binary.

9.3 Test data

Due to the lack of environmental test data for MO CFLP in the public domain, we
generated randomly data sets based on the company data, which we used in Chapter 5 to

investigate the impact of key variables on the allocation of stores to depots.
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The ranges for all values, such as the demand (weekly volume), productivity and costs
are based on the industry data. To generate the environmental data for each depot, one
way of dealing with it is to base the figures on average consumption of electricity and gas
across some real depots. Having that information from the company allowed us to
generate this environmental data which was absolutely invaluable for our research. This
information allowed us to derive a formula for calculating energy consumption in kWH
for a particular capacity of a depot. We use a value of 0.0933 kWh per a case of demand
(weekly) for electricity consumption and a value of 0.0045 kWh for gas. Depending on
the available capacity of the serving facilities, each of those values is multiplied by the
total capacity to calculate a total energy consumption in kWh which were converted to
('O, emissions using conversion factors from DEFRA[32] (0.54 kgCO, per kWh for
electricity and 0.19 kgC O, for gas). To calculate C'O, emissions from the transport we
calculated the total distance travelled by a vehicle to satisfy a demand of a particular
customer to a depot, which was multiplied by a fuel conversion factor (2.63) and then

multiplied by fuel consumption (of 0.35 litres per km) [32].

The financial costs consist of both transportation and depot related costs, where
transportation costs have distance and time related components as per Sainsbury’s data.
We assume that ¢;; = (tc;; + dc;;), where tc;; is the transportation costs and dc;; is the
related depot costs between customer j and depot . Also, to reflecting the fact that costs
can vary, depending on geographical locations (e.g., labour costs tend to be higher in
London and the South East), each depot has its own rates for transport and warehousing

components.

The capacity of each depot was calculated taking into account the overall demand across
all depots. Therefore, to calculate a capacity for each depot, the total demand was
multiplied by a capacity ratio value and then divided by a total number of depots. For the
initial experiments, the following capacity ratio values were tested, when data sets were
first generated: 2, 3,4, 5, 6,7, 8,9 and 10. A similar procedure was used to calculate a
capacity for the maximum number of stores which each depot could serve. As a result,
all depots have the same capacity for cases and number of stores. The fixed costs for

each depot were calculated taking into account the capacity of that particular depot. The
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various fixed cost ratio values of 0.5, 0.75, 1.25 and 1.5 were used for generating fixed
costs for all depots in each scenario. For example in the scenario where the ratio value is

0.5, this number was applied across all depots and it was used to multiply the depot

capacity.

The different ratios for capacities and fixed costs were initially tested to determine the
effect it has on the number of non-dominated solutions when the MOO technique was
applied. The SEAMO?2 algorithm was used to explore non-dominated solutions for
CFLP. As a result of those initial tests the capacity ratio values of 4 and 8 and the fixed
cost ratios values of 0.75 and 1.5 were used to generate larger data instances for CFLP.
The instances had 10 depots and five different settings for the following number of
customers: 2000, 4000, 6000, 8000 and 10000. The name given to each data problem
reflects different values generated for that particular problem. For example, problem
set]_10_2000_r4.0_fc1.25 has 10 depots, 2000 customers, a capacity ratio of 4 and fixed
costs ratio of 1.25. In total, 20 different test instances were generated for analysis of the

MO CFLP where financial and environmental objectives are solved simultaneously.

9.4 Solution encoding and assignment procedure

The solution encoding procedure was the same as for MO UFLP and encoded as a binary
strings, where / represents an open depot, and 0 a closed depot, e.g. 0011011011
indicated that depots 3,4,6,7,9 and 10 are open, and the others are closed.

The assignment procedure for the capacitated model is an extremely important procedure
which ensures that assigned customers do not violate capacities in those depots in terms
of cases and numbers of stores. Here, we utilize the Lagrangian Relaxation technique for
assigning the customers to open depots without violating either capacity constraints. The
assignment procedure could be undertaken based on cost or environmental impact. In
this research, we are solving the allocation problem using LR technique based on the
financial cost because it is still a common practice among practitioners to use a cost
function as a main objective during modelling and analysis. Figure 9.1 illustrates the

assignment procedure. As a result of applying this procedure, the customers are assigned
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to the minimum possible cost objective function, depending on the capacity constraints.

The LR technique is discussed in detail in Chapter 7.

Lagrangian
Relaxation
technique

Figure 9.1: The assignment for Capacitated Facility Location Problem.

9.5 Multi-Objective Evolutionary Algorithm for CFLP

The evolutionary MO algorithm SEAM 02 was used for modelling the CFLP and it
obtained a good approximation of the Pareto front. We found that this algorithm is
considerably faster in computational times compared to the better known NSGA-II
algorithm, as was discussed in Chapter 8 for the UFLP. It is very important for larger
data instances to provide the decision maker with an initial set of trade-off solutions
which can be investigated further if needed. Another reason for choosing SEAM02 is
that the quality of the approximated Pareto frontier seems to be of similar quality in
comparison to NSGA-II for UFLP. The uncapacitated version of the SEAM 02 algorithm
was adapted to the capacitated version where the open facilities and the customer

assignment produced by Lagrangian Relaxation technique was used to calculate both

objective functions.

Figure 9.2 presents an evolutionary multi-objective optimization framework where the
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SEAMO?2 algorithm and LR approach are integrated together for the CFLP. Initially, a
population of solutions (binary strings) is randomly generated and for each solution we
apply LR heuristics to allocate stores to open depots and as a result of the allocation, we
could evaluate multiple objective functions simultaneously based on the generated
solution. Consideration needs to be taken at this stage to make sure that the randomly
generated solutions with open depots are feasible, e.g. the total capacity of open depots
is larger than total available demand. To produce a feasible solution, one could undertake
a repair procedure to the chromosome that is infeasible or generate another random
string that is feasible. The latter routine is implemented as part of the procedure. The
objective functions are evaluated for each member of the population and the best-so far
values are stored for each objective. Now, the algorithm steps through each member of
the population in turn, selecting it as a first parent and the second parent is selected at
random for a crossover and mutation operation to produce a single offspring. The
SEAMO?2 algorithm is steady state where an offspring is considered to enter the
population depending on a number of comparisons. If an offspring produces best-so far
for either objective with appropriate best-so-far objective updated, then it replaces the
parent if possible otherwise it replaces an individual at random that it dominates. If the
offspring is not a duplicate in the current population, it dies if the match is found to
preserve the diversity of the population. If the offspring survives, then we check if it
dominates either parent and the parent will be replaced if it is being dominated by an
offspring. Finally, if there is no decision made so far regarding an offspring, then the last
condition checks if it has a mutually non-dominating relationship with both of its parents
and will enter the population if a suitable member has been identified which is dominated
by the new offspring. The algorithm will repeat until the stopping condition is satisfied

and at the end, it will produce a set of non-dominated solutions from the final population.

Before running the experiments on the generated data sets, the algorithm was tuned to its
best performance on three data instances: setl_10_2000_r4.0_fc0.75,
setl_10_2000_r4.0_fc1.25 and set]_10_8000_r4.0_fc1.25. The minimization problem
was converted to a maximization problem for both objectives (‘unspent‘ cost and
‘unspent‘ impact) to compare different types of crossover on the quality of the

non-dominated solutions using the S metric. A population size of 40 was used and run
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Figure 9.2: Multi-Objective evolutionary framework combining SEAMO02 and LR.

for 250 generations for tuning purposes. Three different combinations of crossover and
mutation were tested: no crossover/no mutation, one-point crossover/mutation, two-point
crossover/mutation, and uniform crossover/mutation. In total, 12 different experiments
were undertaken for tuning purposes. The § metric and final approximate Pareto frontier
were obtained from 20 independent runs for each data instance and settings for
mutation/crossover. As a result of undertaking one-way analysis of variance on the §
metrics for different set of experiments, results indicate no statistical significance among
all settings. Nevertheless, we choose uniform crossover with mutation to bring the
diversity into the population of solutions. This crossover operator is the same as it was
used when SEAMO2 was tested for modelling the UFLP with two objectives. As a final
step before undertaking experiments on randomly generated data sets, the size of the
population and number of generations were increased to ensure that the algorithm runs a

sufficient amount of time to find good quality solutions. Therefore, a population of 100,
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Figure 9.3: Approximate Pareto frontier for instance: setl_10_2000_r4.0_fc0.75,

with 1000 generations was used with uniform crossover and mutation as the final settings
for the SEAMO2 algorithm. The final Pareto frontier for each data instance was obtained
by aggregating the fronts of 10 independent runs for the MO algorithm (see Figures 9.3,
9.4).

9.6 Discussion of the results

This section considers the analysis of the solution set produced by SEAMO02 for an
environmentally friendly network design. To compare the quality of solutions located an
the edges produced by the MOO technique, we attempted to solve each of the instances
as two separate single objective problem (min cost and min impact) using CPLEX® to
acquire the best known solution for each of the individual objective functions.
Unfortunately, due to the large size of the data instances, it was impossible to determine
the best solution using CPLEX® for all instances. In the optimization by cost, all
instances with 2,(XX) customers were solved which took between 10 and 30 hours to
solve each set; and only one instance with 4,000 customers was solved. Some of

instances with 4,000 customers were taking more than 2 days. This means that it was
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Figure 9.4: Approximate Pareto frontier for instance: setl 10 6000 r4.0 fcl.25,

unreasonable to try and solve all the data sets by cost using CPLEX®. The complexity
of the cost function, which consists of transport and depot costs and fixed costs for
operating depots, makes the cost problem much more complicated than the C 02
emission problem, for which CPLEX®), solved all the instances within a reasonable
amount of time. For example, one of data set with 10,000 customers took only around 2
hours to solve for C 0 2 emissions. Thus, all instances were solved for C 0 2 emissions,
but only one set with 4,000 customers and all instances with 2,000 customers or less

were solved by CPLEX® for cost.

Figure 9.3 illustrates the approximate Pareto frontier obtained by SEAMO2 for instance
setl 10 2000 _r4.0Jc0.75. The technique found very good solutions for both edge
points of the front. The solution which was found by CPLEX® for the optimization by
cost alone, is identical to the solution found by SEAMO2, and the solution found in the
CPLEX® optimization by C 02 is very close to the other extreme solution on the edge
of the Pareto front. The trade-off solutions do not appear to be very evenly spread across

the approximated Pareto set, which could be due to the problem configuration. It could
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—
Data SEAMO2 CPLEX®
instance Num of non-dominated By Cost By CO,
solutions Time(sec) | Time(sec) | Time(sec)
setl_10_2000_r4.0_fc0.75 9 1,640 94,535 26
setl_10_2000_r4.0_fc1.25 9 1,676 107,544 24
setl_10_2000_r8.0_fc0.75 5 200 58,606 65
setl_10_2000_r8.0_fc1.25 5 166 33,451 77
set]_10_4000_r4.0_fc0.75 6 5,326 5,730 149
setl_10_4000_r4.0_fc1.25 6 5,118 n/a 157
set!_10_4000_r8.0_f{c0.75 4 232 n/a 962
setl_10_4000_r8.0_fc1.25 4 250 n/a 1,066
setl_10_6000_r4.0_fc0.75 10 5.525 n/a 505
setl_10_6000_r4.0_fc1.25 10 5,309 n/a 533
setl_10_6000_r8.0_fc0.75 6 444 n/a 1,674
setl_10_6000_r8.0_fc1.25 6 409 n/a 1,671
setl_10_8000_r4.0_fc0.75 7 9,702 n/a 630
setl_10_8000_r4.0_fc1.25 7 9,840 n/a 564
set1_10_8000_r8.0_fc0.75 4 819 n/a 3,640
set]_10_8000_r8.0_fc1.25 4 817 n/a 3,662
set1_10_10000_r4.0_fc0.75 10 9,957 n/a 1,831
set1_10_10000_r4.0_fc1.25 10 9,641 n/a 3,277
setl_10_10000_r8.0_fc0.75 4 402 n/a 8,093
setl_10_10000_r8.0_fc1.25 4 440 n/a 8,063

Table 9.1: Comparison between SEAMO2 and CPLEX®) optimization .

be that the two capacity constraints (for cases and numbers of stores) combine to reduce
the number of solutions in the search space. A similar pattern can be observed for all the
data sets. Figure 9.4 illustrates trade off solutions for problem
set]_10_6000_r4.0_fc1.25. For some of the instances, as for example for problem
set]_10_2000_r4.0_fc0.75 in Figure 9.3 it is not so straight forward for the
decision-maker to spot good compromise solutions which should be located in the
middle of the approximate Pareto front. But at the same time the solutions nearest to the

middile of the frontier could offer that choice to the decision maker.

Analysing the trade-off solutions for the current data sets which are based on the data
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from the industry, and what it means for the number of open depots across approximated
Pareto front allowed us to confirm the findings which were made for UFLP. The low cost
solution produces highest C'O, emissions with smaller number of depots open, where as

the best solution for environmental impact needs more depots to be open.

Table 9.1 shows execution times and the total number of non-dominated solutions in the
approximate Pareto frontier for all instances using the SEAMO2 multi-objective
algorithm, and also execution times when instances were solved by a single objective
function based on costs or emissions using the CPLEX(®) optimization software. As can
be seen from the table, the MOO algorithm finds a set of non-dominated solutions much
faster than CPLEX®), which solves a particular problem to optimality based on
single-objective function. These results show us that in terms of execution times,
SEAMO?2 (combined with LR for allocation of customers to stores) is computationally

very fast, and can provide a good set of trade-off solutions to a decision maker.

To conclude, through our the analysis on our large data sets it was demonstrated that the
MOO technique is able to find efficient trade-off solutions balancing cost and CO,
emissions for network design very quickly. For some data instances, it was easy to spot
compromise solutions and in other cases it was not so straight forward. This is probably
due to having two capacity constraints which make it harder for the technique to find

feasible solutions to balance both objectives.

9.7 Summary

This chapter presents the a MO CFLP problem which balances two objectives: financial
cost and CO, emissions. The emissions from transportation and the energy consumption
from running depots allowed us to model a sophisticated network based on real industrial
data. We generated random data sets based on real-life data to use in experiments. In
addition, an evolutionary multi-objective optimization algorithm is discussed in this
chapter to solve MO CFLP, which uses a Lagrangian relaxation technique to find the best
assignment of stores to open depots for any particular individual of the population. Thus

the MOO algorithm determines which depots are open, and the LR takes care for the
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allocation of customers to depots. The results are compared to the single-objective
optimization based on cost or environmental impact using CPLEX(®) optimization
software whenever possible. The analysis of the findings confirmed the results from our
earlier study on UFLP which are discussed in the previous chapter. It illustrates again

that it could be more desirable to open more depots for more environmentally friendly

network design.
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Chapter 10

Conclusions

This chapter summarises our research findings in answer to the research questions posed
in Chapter 1 and establishes some possible directions for future research in the area of
environmentally friendly logistics design, focusing on the facility location-allocation and
generalized assignment problems. The chapter aims to critically evaluate our
contribution and explore the limitations of the presented research study. There are three
sections in this chapter. Section 10.1 presents a summary of the research findings
presented in this thesis. Section 10.2 summarises how research questions set out in this

thesis have been addressed. Those questions were:

e Is it possible to build multi-objective optimization decision tools for strategic
modelling of large size traditional logistics networks where financial and

environmental objectives are solved simultaneously?
e Is the optimum design of a particular logistics network based on cost the same as

the optimum design based on CO, emissions?

Finally, Section 10.3 presents suggestions for future research.

10.1 Research Summary

The main focus of current research has been to build a foundation for future research in
the area of multi-objective optimization for the strategic and tactical design of traditional
supply chains in times of increased environmental concerns. We do not envisage trying

to force industry to change its day to day running operations in network design. Their
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primary focus will remain financial costs, as they have to stay in business. Instead we
suggest that extending the use of multi-objective optimization techniques can offer
industry a straightforward way to generate a range of the trade-off solutions, which will
frequently offer a decision maker an opportunity to select an option that will
considerably reduce emissions or pollution, yet will do so at a very modest financial cost.
To achieve Government targets on reducing CO, emissions will mean that future
legislations could force industry into higher savings for different pollutants including
carbon dioxide emissions. The popularity of multi-objective optimization techniques is
on the increase at present, and together with the research presented in this thesis should
develop a foundation for incorporating those techniques into commercial software for

strategic and tactical modelling of logistics networks.

At the initial stages into our research, we aimed to understand the relationship between
total logistics costs and C'O, emissions from transportation and energy usage for a
single-optimization approach. We created a simulation model based on a Pan-European
network from automotive sector based on the case study by Hammant [124]. During
modelling attention is paid to the sensitivity of our solutions when changes in supply
chain structure (number of depots) and vehicle utilization ratios (90%, 75%, 60%) occur.
The limitations of the study is that only one case study was analysed and also we had to
rely on the data from the public domain with assumptions regarding transportation data.
Nevertheless, the study allowed us to see that vehicle utilization ratio could be one of the
factors that has an impact on the optimum supply chain structure, when optimized by
cost or CO, emissions. This research was published in the International Journal of

Production Economics [56].

In our research, we focused on the development of a simple multi-objective optimization
framework that could be easily understood to solve large size problem instances. In
recent years there has been an explosion of academic interest into the development of
MOO algorithms due to the advances into the computational power and clear need for
the decision maker to have a choice among solutions. There exist a number of different
approaches to MOO and in this thesis we explored an evolutionary approach to solving

MOO problems where objectives are solved simultaneously. Evolutionary algorithms are
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becoming more complex which bring the challenge of replicating them to analyse their
performance. In our research, we analysed two MOEA’s: NSGA-II (widely used
algorithm in academia) and SEAMO2 (due to it’s simplicity) from computational
complexity and quality of solutions as part of MOO framework for solving CFLP.
Because the focus of the research is on the large data sets, we need an algorithm which
obtains a good quality approximate frontier quickly. Therefore, SEAMO2 was chosen to
solve CFLP formulation where the algorithm runs in the population of the decision
variables to obtain a set of open facilities. The presented framework in Chapter 9 has two
levels of decisions: identifying which facilities to open and how to assign stores to open
depots where we used LR technique to solve the assignment problem. As a result of our
experiments, we have developed and tested a prototype for multi-objective optimization
algorithm for capacitated FLP which produces trade-off solutions between economic and
('O, emissions. The analysis of the findings on more realistic data confirmed the
findings from the study on UFLP which indicated that more facilities may be needed to

balance economic and environmental objectives.

The single source assignment problem was also investigated separately from CFLP
formulation when we have engaged in collaborative research with an industrial partner
from a major UK food supply chain from financial and environmental aspects. This
allowed us to understand the impact of different variables such as fuel and depot
associated costs on their current network configuration (allocation of stores to depots).
Our sensitivity analysis shows the effect of those changes depends on the geographical
location of the depots under investigation and that their current structure is robust
because it has enough current capacity to deal with rate fluctuations. A prototype of the
software was developed which uses a single objective function where overall
transportation and depot associated costs are minimized which was extended further to
focus on balancing financial and environmental impact from transport using a simple
distance-based approach when greater distance indicates higher fuel usage and more
CO, emissions. Firstly, we compared the results from the optimization based on distance
(CO, emissions) to those obtained previously from optimisation by cost which generated
different results with different allocations. Secondly, we produced a weighted sum

two-objective allocation model to produce trade off solutions for costs and distances.
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The trade-off solutions allowed us to illustrate to the decision maker how small increase

in cost could equate to a considerable decrease in the distance travelled by the vehicles,

thus reducing the environmental impact.

The collaborative research with industry helped us to develop the LR technique which is
used in MOO framework for strategic design. The lagrangian heuristic was developed
for two problem formulations to solve the single product capacitated assignment problem
with two capacity constraints for the number of cases and number of stores. The
approaches differ according to how the user treats the constraints. If one of the
constraints such as the number of stores is not as highly regarded as another, e.g.
capacity constraint for demand, the approach relaxes only one constraint (the capacity
for demand). This is could be computationally more efficient compared to relaxing both
constraints. This approach was tested on our benchmark data and the results are
compared to the optimization by CPLEX®) in Chapter 7. The quality of solutions and
executional times shows the effectiveness of our LR approach. The second formulation
of the LR approach where both capacity constraints are relaxed is presented in Appendix
A as a mathematical formulation and future work will be needed to analyse the
technique. As an extension of the problem formulation, the LR approach was extended
to the multiple product formulation with relaxing demand capacity constraints and was
tested on the Sainsbury’s data with great emphasis on the discussion of different
approaches to finding feasible solutions. We have generated large size data instances for
a single product, single source assignment problem because there are no available
problem instances in public domain. It allowed the comparison of the solution technique

between CPLEX®) optimization engine and our LR technique.

One of the challenges we encounted during the investigation into environmentally
friendly design was a lack of multi-objective data instances with environmental data in
literature. As a result, initially, we have undertaken an exploratory study to investigate
the potential of multi-objective optimization techniques for a simple model of UFLP
where we derive the environmental impact from economic costs by varying the relative
weighting. A prototype was developed to consider traditional objectives: minimizing

cost and improving customer service level (minimizing uncovered demand) and an
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environmental objective: minimizing the environmental impact from transportation and
depots. Despite the limitations of the study, this research gave us an insight into
generated trade-off solutions and also suggested that it could be more desirable to open
more depots for an environmentally friendly design. This research was published in the
IEEE Congress on Evolutionary Computation [55]. Limitations of the availability of the
data sets were addressed when the exploratory study into MO UFLP was extended to a
more sophisticated supply chain model (CFLP) with two capacity constraints. We have
written the software to randomly generate test data based on the data from industry
which considers networks with depot and transportation elements of the logistics
modelling which aims to encourage future research in multi-objective optimization in the

academic environment.

10.2 Evaluation of Research Questions

In this section, we discuss each of the research questions presented at the beginning of
this chapter and how they have been addressed through out the research presented in this

thesis.

Research question 1 addresses the feasibility of building MOO decision tools for a large
size traditional logistics network where financial and environmental objectives are solved
simultaneously. In this thesis, we present an evolutionary MOO framework for solving
large size CFLP where we aim to generate a good quality set of solutions for the decision
maker within a reasonable amount of time. We consider CO, emissions from transport
and serving facilities as environmental objectives and one of the challenges we
encountered is to identify an appropriate methodology for calculating carbon footprint
and the way of estimating emissions from a particular design because there was no
available appropriate data instances in the public domain. Guidelines for company
reporting on greenhouse gas emissions from Defra [32] were used as a way of calculating
carbon dioxide emissions and collaborative work with industry allowed us to estimate
energy consumption figures which are used in our data sets. The presented MOO

framework could be extended to different model formulations as well as using different
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approaches to the solution representation which are discussed in the next Section 10.3.

Research question 2 considers if the network design based on costs and on CO,
emissions is the same. This question was analysed for the assignment and capacitated
facility location allocation problems separately. In both cases, the answer to this question
is "no” - the design based on cost is different to the network design based on CO,
emissions. For the assignment problem, Chapter 6 considers a case study from industry
where the analysis shows that single objective optimization based either on cost or
distance ('), emissions related to the distance traveled) produces different results with
different customer allocations, costs and distances. In the strategic design, where CFLP
model formulation was considered as part of the multi-objective optimization, we
demonstrated in Chapter 9 that the low cost solution needs less depots to be open and
produces highest CO2 emissions where as the best solution for carbon dioxide emissions

needs more depots to be open at a higher cost.

10.3 Future Work

This section presents future work suggestions, to extend the research presented in the

thesis:

10.3.1 Extension of Lagrangian Relaxation technique

The Appendix A presents a mathematical formulation of the LR technique where two
capacity constraints (number of cases and number of stores) are relaxed. The technique
needs to be investigated further and tested on large size data instances for single and
multiple products to ensure that the formulation is correct and finds feasible solutions.
Extending the formulation to multiple products would reflect real-life scenarios where
the businesses have demand for multiple products. In Chapter 7 we tested multiple
product formulation on Sainsbury’s data, but further work is needed to analyse the

technique on appropriate benchmark data sets for multiple products to encourage further

research.
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10.3.2 Modelling location and assignment decisions simultaneously
in MOO framework.

In this thesis, we consider the assignment of stores to depots based on cost only as a
subroutine of the facility location problem where objectives are solved simultaneously.
In Chapter 6 we show that optimization of the allocation problem based on costs produce
different solutions compared to optimization based on the environmental impact and
have higher distance travelled for cost based optimization and vice verse. This means
that if we use cost based assignment optimization in FLP formulation, then our solutions
in the multi-objective framework are skewed towards the financial objective while both
objectives are solved simultaneously. To avoid this bias towards one objective, the
location and allocation decision parts could be combined together in one solution
encoding and multiple objectives solved simultaneously. One way of dealing with it is to
represent the solution encoding as a two-part string where the first part would present
which depots are open and the second part will display assignment of each store to a
depot. For example if we have three depots and five stores, then in the integer
representation, 01123323, first three numbers illustrate that depots 2 and 3 are open and
other five numbers represent allocation where the first store is assigned to depot 2,
second store to depot 3 etc. Due to the challenge of modeling large data sets, this would
bring an issue of the computational complexity, especially when we have a population of
long solution encodings over a number of iterations where the length of our string could
be a size of 10,000 bits long. Also, when applying crossover and mutation operators, a
repair mechanism would be implemented to avoid stores being assigned to closed
facilities. Another way of avoiding bias towards one objective is to solve the allocation
routine as a weight based approach for multiple objectives but in this case, suitable
weights will have to be considered as part of the decision making process. Both
approaches would need to be investigated further as part of the future work from

computational time and the quality of the solutions perspectives.
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10.3.3 Multi-objective network design under uncertainty

We consider deterministic models in this thesis where the average data is used as part of
the model formulation. Those models do not include any stochastic elements which
reflect different factors of uncertainty in the supply chain. Different sources of
uncertainty, such as delivery operations, demand uncertainty, or customer’s behavior
could be analysed by undertaking the sensitivity analysis of the design of those
stochastic elements and will allow to deal with uncertainty to an extend as we did in
Chapter 5. Another way of dealing with the design under uncertainty is to incorporated
those factors into the strategic design, therefore appropriate solution techniques need to
be developed for multi-objective optimization framework to ensure the robustness of the

solutions at the strategic level.

10.3.4 Improving MOO for supply chain design

The analysis of the allocation of the customers to depots based on the financial cost or
environmental impact for MO CFLP will need to be investigated in terms of the impact
on the trade-off solutions. Another extension would be to improve the prototype for our
multi-objective optimization algorithms incorporating other traditional and green
objective functions such as capacity utilization ratio and traffic access. We would also
plan to explore the opportunities for integrating our MOO approach with commercially

available software for strategic modelling like CAST.

10.3.5 Extension of MOO to other supply chain problems

Different types of logistics network design problems are discussed in Chapter 2 which
extend our current static single echelon network design. The approach taken would
depend on which of the alternative facility location models was selected. Models with
multi-echelon structures consider suppliers and manufacturers as part of the design.
Dynamic location models, in contrast to static models, reflect modelling data changing

over different planning periods. On the other hand, probabilistic models have elements
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of uncertainty based on forecasting. Location routing problems, which reflect the
position of the facilities depending on the routing choices, would also make an

interesting field for future research.

10.3.6 Extension of MOO to closed loop supply chains

Current research focuses on the traditional supply chain where the physical flow of the
goods in the supply chain stops at the consumers end. Extending the traditional network
to semi-closed loops will also allow us to incorporate recycling facilities as part of the
MOO network design. This will need different objective functions which will consider
recycling and re-manufacturing objectives. In this model the locations of the recycling

facilities as well as serving facilities could be considered as part of the design.

To conclude, the research presented in this thesis contributes to the area on MO facility
location-allocation analysis where economic and environmental objectives are
considered simultaneously. The ideas and techniques presented here could be extended
further and integrated within logistics modelling to give a decision-maker a scientific
choice which is expressed as a set of trade-off solutions. It also shows a knowledge

transfer and positive collaboration between industry and academia.
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Appendix A: Solution formulation for
relaxing two constraints: number of

cases and number of stores

This appendix presents a new LR solution technique where two capacity constraints
(number of cases and number of stores) are relaxed as part of the formulation to
determine a lower bound solution using Lagrangian multipliers. Let \; € R, Vi € Vp¢
and ¢; € R,Vi € Vpe.

Minimize

E Z Cij L5 + Z A,(Z djiL'ij - qi) + Z ’l/),(z Ty — n,) (101)

i€eVpc jeEVe 1€Vpe JEVC i€Vpe j€EVe
subject to
S oz =1Vj€Ve (10.2)
1€Vpe
x;; € {0,1},4 € Vpe,j € Vo (10.3)

In (10.1) the term in brackets in the middle, (3 _,cy,, 4;Ti; — ¢;), calculates the difference
between the total demand on a facility i and capacity(cases), g;. The term in brackets in
the right, (3 ey, Tij — n;), calculates the difference between the number of stores
allocated to a facility ¢ imposed by the relaxed formulation, and its ability to meet that
demand (i.e., its capacity(number of stores), n;). If the capacity is violated, the value of

total cost in (10.1) will change, depending on the value of ); and ;.
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One issue that needs to be considered in the formula (10.1), is that normally a
Lagrangian Relaxation technique will make adjustments to the cost only when both
constraints are violated. Formula (10.1) will make adjustments to the costs when one of
the constraints is violated, therefore if the capacity has not been exceeded then the term
(2_jeve dizij — gi) will be equal to zero for any facility. The same will apply for the
other term (3 .y, i — n;) as well. On the other hand, when the facility is
underutilized, then this formulation will also produce non-zero value. To ensure that this
is not the case, we constraint the A; and ); values: if \; = 0, it follows that

Y ievpe M2 jev, diti; — qi) also equals zero; if ¢; = 0, it then

ZieVDC /\i(zjevc x;j — m;) is also equals to zero.

Problem (10.1) - (10.3) can be decomposed into | V| subproblems. For a given set of
multipliers, \; € R, ¢; € R, the optimal lower bound of the problem (10.1) - (10.3),
LB(\y), can be found by solving the following subproblem for each customer j € V.

Minimize
Z (cij + didi + i)y (10.4)
i€Vpce
subject to
Z zi; =1,Yj € Vo (10.5)
i€Vpe
Tij (S {0, 1},1 € VDC,j € VC (106)
and then by setting
LBOW) = S LB (W) = > hai— Y win 10.7)
jGVC ‘ieVDC iGVDC

(10.4) is easily solved for by applying a greedy algorithm to allocate each customer along
the lowest cost according to the augmented costs, ¢;; + d;Ai+ ¥i. By suitably modifying

the Lagrangian multipliers, it is possible to obtain a feasible solution to the original
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capacity constrained problem. To provide a good updating formula for the Lagrangian
multipliers, we will need an upper bound, in addition to the lower bound in (10.7).

The UB will represent a feasible solution obtained on the basis of the evaluation of the
LB(Ay) solution. To obtain the best possible upper bound (i.e., with the lowest cost), we
could allocate customers with high demand first to ensure that individual depots have
sufficient unused capacity. This could be done by sorting customers in decreasing order
of demand (highest demand first), then assign customers in the same way as the LB,
whenever possible. When capacity constraints are violated for LB assignment, we could
assign the customer to the next lowest augmented cost depot without violating the
capacity constraints etc. If all facilities are overcapacity, then we assign to the lowest

available cost value (non-augmented cost).

Updating the Lagrangian multipliers

For each facility at time step, k

k= akdi—a (10.8)
J€Ve

k=" —n (10.9)
j€Ve

where :rf] is the solution of the Lagrangian relaxation (10.1) - (10.3) using )\i-c € Rand

¥F € R,Vi € Vpc as the Lagrangian multipliers. Now set

)\f-}-ﬂksf ifsf>0

Ak — (10.10)

0 otherwise

k4 ~kpk ok
g = T tfri >0 (10.11)

0 otherwise

where 3% and v* are suitable scalar coefficients.
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The procedure will start by seeding all the Lagrangian multipliers to zero. Formula
(10.10) shows that if for a certain facility ¢, s¥ is positive, it means that demand outstrips
supply for that facility, and thus the corresponding value of A; should be increased to
increase the cost of assigning customers to that facility in the next round. Similarly, if s¥
is negative, it means that there is spare capacity, so A; should be reduced to make that
facility more attractive for assignment in the next iteration. However, the adjustments to
the multipliers when the capacity has not been violated for a facility do not need to be
done and formula (10.10) ensures that the /\i-c are always positive. Formula (10.11) could

be explained in the same way as above.

We will use the following proportionality coefficients 3* and v* in equations 10.12 and
10.13, where « is a constant in the interval (0, 2]. Here, a could used used starting with 2
and halved whenever the iteration’s lower bound failed to improve on the best known

lower bound for every n iterations.

K a(UB — LB()\’“))
AR S P

(10.12)

¢ @UB = LBWY)) (10.13)
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