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Abstract

Traditionally, infrastructure modelling of logistics network design is driven by a need 

to reduce costs. However, many real-world cases may involve dealing with multiple and 

sometimes conflicting objectives, especially when climate change and environmental con­

cerns have been increasingly discussed worldwide.

In this thesis we devise and investigate a multi-objective evolutionary optimization frame­

work together with Lagrangian Relaxation to solve a large size Facility Location Problem 

(FLP) where ‘green issues’ (CO 2 ) and traditional objectives are solved simultaneously, 

offering the decision maker a choice of trade-off solutions. Lack of benchmark data for 

multi-objective FLP with environmental objectives created initial difficulties in our re­

search. However, the opportunity to work with a leading UK supermarket supply chain 

provided a good basis for generating large artificial data sets and to test our techniques 

with a good range of parameter setting. The analysis of the research indicates that more 

facilities could be desirable to reduce the environmental impact and that it is possible 

to offer the decision maker good compromise solutions. Two variants of the FLP are 

considered during the investigation for building multi-objective decision tools: the unca­

pacitated and the capacitated.

Additionally, we investigate the optimization of a single source assignment problem as 

part of our collaborative work with industry. In this way we explore exact and heuristic 

approaches based on cost optimization as well as considering the environmental impact 

from vehicles in the two-objective approach on the models with realistic constraints. The 

trade-off solutions demonstrate to the decision maker how a small increase in cost could 

equate to a considerable decrease in the distance travelled by the vehicle.
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Chapter 1

Introduction

1.1 Research motivation

Over the last few decades interest in man’s impact on the environment has moved from 

the local to a global level of concern. There is a general consensus that rising temperature 

is contributing to disappearing glaciers and increasingly unstable weather patterns around 

the globe [ 129]. It is very likely that greenhouse gasses, such as carbon dioxide (CO2). 

methane (CH .\), nitrous oxide (/V20 )  raise the temperature near the surface of our planet 

[129]. The greenhouse gasses produced by transport and other activities need to be re­

duced. Some companies are already trying to help the environment through the use of rail 

[19] and other methods, such as shipment consolidation. Under the Kyoto Protocol, the 

UK is now legally required to reduce greenhouse gas emissions by about 12.5% by 2012. 

The threat of climate change has been increasingly discussed at an international level, 

with greenhouse gas emissions from fossil energy sources being at the forefront of gov­

ernmental concerns. Transportation, industrial processes and other commercial sectors 

have been linked to an increase in the greenhouse effect through their release of carbon 

dioxide, even though the influence of other gases should not be under estimated. The 

annual carbon dioxide {CO 2 ) emissions from all transport increased by 17 million tonnes 

of carbon in the UK during the period from 1970 to 2004 [34]. Although the growth rate 

has slowed down considerably since 1990, clearly the Government would like to see the 

trend reversed and emissions cut. Figure 1.1 shows a particular concern in the rise of C O 2 

emissions over the past decade from heavy goods vehicles (HGV) and light duty vehicles 

(LDV), by 19% and 33% respectively [37].
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Figure 1.1: UK carbon dioxide emissions for road transport [37].

Historically a supply chain or logistics network has been defined as “a system whose con­

stituent parts include material suppliers, production facilities, distribution services and 

customers linked together by the feed forward flow of materials and the feedback flow of 

information” [ 106]. The main features of a traditional supply chain [9] are illustrated in 

Figure 1.2, where the solid arrows represent material flows and the dotted arrow represents 

information flow. When designing a supply chain network, different levels of decisions 

need to be considered, from strategic through to operational. Strategic decisions typically 

have a planning period of many years and long lasting effects. The identification of the 

number, locations and capacities of serving facilities, such as distribution centres (DCs) 

and warehouses, in a supply chain network, would normally be regarded as strategic plan­

ning. Tactical decisions involve a shorter planning horizon, and they are usually revised 

monthly or quarterly. Tactical activities include the selection of suppliers, assignment of 

products to DCs, and determining the distribution channel and the type of transportation 

mode. Finally, operational decisions, such as scheduling and routing activities, consider 

the day-to-day flow of products through the network, the amount of the inventory to be
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Figure 1.2: Traditional logistics network.

held by the facilities and so on. These decisions can be modified easily within a short 

period of time, for instance on a daily or weekly basis.

In the last ten years several major companies have restructured their storage and distribu­

tion systems with a view to reducing their costs, and have subsequently reduced their C 0 2 

emissions as a result of those changes. The factory gate pricing (FGP) concept, where the 

retailer is responsible for transportation of the product from the supplier, has been ana­

lysed for the UK grocery [91] and the Dutch retail industry [67]. Both studies show that 

cost reductions have brought significant environmental benefits, such as reduced conges­

tion and transport kilometres/miles. Potter et al. [91] analyse the Tesco supply chain and 

suggested that by implementing FGP with consolidation centres for inbound deliveries, 

a reduction of 28 per cent in vehicle-miles required to transport products to DCs could 

be achieved, equating to over 400,000 miles per week. Aronsson and Huge Brodin |3] 

describe three case studies, where companies had undergone changes in their distribution 

structures that had a positive effect not only on costs but also on the environment (reduced 

emissions). Among some of the typical changes made are new distribution structures with 

fewer nodes, larger warehouses, the introduction of new information systems, consolid­

ation of flows, standardized vehicles and load carriers, and changes in transport mode. 

Therefore a reduced environmental impact frequently results as a by-product of a more
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efficient distribution system. In such cases improvements in environmental performance 

can be viewed as positive side effects of traditional methods, without having a fully integ­

rated ’green’ supply chain.

But not all infrastructure changes lead to a positive impact on the environment. Kohn 

[64] describes a case study of a manufacturer of submersible pumps and mixers where he 

analyses the effects of changing from a decentralised to a centralised network and reveals 

that lowering costs and improving service performance produce a negative impact on the 

environment. The overall analysis of direct effects from road transport indicates increase 

in both tonne-kilometres and CO 2 emissions. These findings correlate UK statistics, that 

the centralisation of warehousing which was done to reduce inventory has had a direct 

impact on transportation, increasing the average length of haul from 79 km in 1990 to 

87 km in 2004 [33]. The same time, the analysis also opened new opportunities for the 

company to consider decisions that improve environmental performance of the network, 

such as shipment consolidation, change of transportation mode (e.g. from road transport 

to rail) and a reduction in emergency deliveries. Obviously, there are constraints and diffi­

culties that can prevent companies from fully exploiting these opportunities. For example, 

a switch from road to rail would be difficult for many companies, as in the case discussed 

by Kohn and Huge Brodin [65], due to limitations imposed by the rail infrastructure of 

the European Union, but for other companies modal change may be more realistic and 

beneficial. Hence, the structural changes revealed an opportunity to make environmental 

improvements in its logistics operations. However, it is clear that environmental benefits 

are frequently a welcome result of an infrastructure redesign process aimed at reducing 

costs, this is not always the case as can be seen from the research discussed in Kohn [64]. 

For this reason, there is a need to address environmental objectives explicitly as part of 

the logistics design process by integrating economic and ’green’ objectives.

1.1.1 Infrastructure modelling

Strategic design of a logistics network focuses on infrastructure modelling, which is not 

new to academia and has a very rich literature. It is the strategic decision processes which 

influence both tactical and operational level decisions for the long term efficient opera­
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tion of a network. It determines the optimum number, capacity, location and allocation 

of facilities (such as warehouses, distribution centres and consolidation centres) to ensure 

efficient commodity flows from the service providers to the market. Infrastructure model­

ling techniques can be used with single or multiple objectives for simple single or multiple 

product networks. A large range of techniques have been applied to infrastructure model­

ling, from integer, dynamic, mixed-integer linear programming to heuristic methods and 

genetic algorithms. Coyle et al. [21] describe the principle modelling approaches such 

as mathematical optimization, simulation and heuristic models. Mathematical optimiza­

tion aims to find optimum solutions based on precise mathematical procedures. Heuristic 

approaches, on the other hand, do not guarantee optimal solutions but can produce an 

acceptable solution in a reasonable amount of time. Simulation allows a user to test the 

effect of alternative locations on costs and service levels.

Traditionally, infrastructure modelling mainly focuses on a single objective function such 

as cost minimization or profit maximization, with all customer demands satisfied to a cer­

tain minimum level, and without exceeding the capacities of the facilities. With increasing 

environmental concerns and/or high levels of commercial competition, there is a need to 

deal with objectives to minimize the environmental impact and improve customer service 

simultaneously with that to reduce cost or maximize profits. When multiple objectives are 

involved then, conventionally, companies will try to adjust the various parameters under 

their control in order to simultaneously maximize profit (or minimize costs) and optimize 

customer service, for example. But, the two objectives are frequently in conflict and de­

vising a single performance measure that weights the two objectives in a satisfactory way 

is a challenge. An added complication arises when we wish to incorporate appropriate 

quantifying environmental measures into the model.

There are several different approaches to dealing with multiple objectives. Traditional 

methods require user input to prioritize or weight the various objectives, in advance of 

any optimization. In recent years, however, a new approach has been developed that 

involves no such judgments and produces a set of viable alternatives (a Pareto set) from 

which a decision maker can make an informed selection at a later stage. This approach 

has the advantage that excellent solutions can be found that may be missed by the other
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methods. The disadvantage is that it may generate a large number of potential solutions.

1.1.2 OR and environmentally friendly network design

Operations Research (OR) uses mathematical or heuristic methods for analysis, optimiza­

tion and decision making for solving real-world problems. A problem is normally formu­

lated as a set of mathematical expressions with objective function(s) and constraints. The 

objective function, such as cost minimization, measures a system’s performance whereas 

the constraints enforce realistic conditions, such as service level, to generate feasible solu­

tions. Today the need for ‘desirable’ environmentally friendly networks is becoming ever 

more urgent. Bloemhof-Ruwaard et al. [14] address the need for an integrated assess­

ment model to consider all aspects of the system, to identify the causes, measure the 

emissions, and assess the efficiency of transportation systems from a global perspective. 

They claim that the added value of OR consists of evaluation (efficiency) and improve­

ment (effectiveness) of emission and waste reduction scenarios. It is also important to 

model environmental issues as objectives, rather than as constraints, because modelling 

them as objectives will generate more information regarding cost and implications of en­

vironmental impact [18].

This thesis focuses on three research areas: infrastructure modelling, environmentally 

friendly logistics design and multi-objective optimization. Infrastructure modelling at 

strategic and tactical level, is also known in OR as the Facility Location-Allocation Prob­

lem (FLP) and determines the optimum number, location and allocation of facilities. On 

the other hand, the Generalized Assignment Problem (GAP) focuses only on the alloca­

tion of customers to the facilities, and not the location of facilities. We are interested in 

both the FLP and the GAP in this thesis. Environmentally friendly logistics implies “an 

environmentally friendly and efficient transport distribution system" [95] and the focus of 

this thesis is on designing such a system that integrates transport operations into infra­

structure modelling and minimises the environmental impact in terms of C()2 emissions 

from running transport and depot operations.
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1.2 Research Hypothesis and contribution

The physical infrastructure of logistics networks identifies the number, locations and al­

location of open distribution centres, and has a direct effect on freight transport operations 

|72J. Traditionally, changes in logistics infrastructure have been driven by a need to re­

duce total costs and improve customer service levels and until recently environmental 

benefits have not been a major concern.

The aim of the current research is to investigate the feasibility of building multi-objective 

optimization (MOO) decision support tools for modelling the physical infrastructure of 

medium and large size logistics networks with special focus on the environment. Min­

imizing the environmental impact from the transport and depots is incorporated into the 

modelling as well as traditional objectives, such as minimizing cost and improving cus­

tomer service level simultaneously. We explore a range of approaches to multi-objective 

optimization on different supply chain models from the traditional weight-based method, 

which transforms the problem into a single objective optimization and requires the user’s 

input to prioritize or weight different objectives, to the latest multi-objective evolutionary 

algorithms (MOEA), which generate a large number of non-dominated solutions simul­

taneously. New approaches that are based on MOEAs, but constrain the size of the solu­

tion set will also be investigated. The method involves using empirical data in conjunction 

with industry. A particular interest of the project is the close integration of transport man­

agement within supply chains, with a view of having more control over the environmental 

impact of goods transport. Throughout the research presented in this thesis, we are trying 

to answer following two research questions:

• Is it possible to build multi-objective optimization decision tools for strategic mod­

elling of large size traditional logistics networks where financial and environmental 

objectives are solved simultaneously?

• Is the optimum design of a particular logistics network based on cost the same as 

the optimum design based on C()2 emissions?

We will come back to these research questions in the conclusion chapter and discuss how
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they have been addressed through out the research presented in this thesis.

The contribution of the research presented in this thesis summarised below:

1. We have demonstrated on a case study of a Pan-European automotive network based 

on Hammant [ 124] that the optimum design based on cost for infrastructure mod­

elling (number of open depots) is sensitive to the vehicle utilization ratios when 

optimized by cost or C()2 emissions.

2. We have undertaken a sensitivity analysis on Sainsbury’s secondary distribution 

network into the effect of changes in various key variables on the allocation of the 

stores to depots. It allowed us to understand the relationship between transportation 

and warehousing factors and the allocation of stores. An environmental impact in 

terms of C(J2 emissions from total vehicle-km travelled was calculated for a cost- 

based and distance-based optimization as a single-objective function. The analysis 

showed that single-objective optimization based on cost or distance generate dif­

ferent results with different allocations therefore multi-objective approach could be 

applied to generate trade-off solutions.

3. A prototype of multi-objective optimization tool for assignment problem based on 

the Sainsbury case study was developed where two objectives are solved simultan­

eously: minimizing costs and minimizing environmental impact (C 0 2 emissions).

4. We have developed new heuristic techniques for capacitated allocation of customers 

to open depots, focussing on large size problems with two capacity constraints. 

This technique is also utilized in the multi-objective capacitated facility location 

problem. The heuristic focuses on generating feasible solutions as part of an upper 

bound assignment procedure for single and multiple products.

5. Software for generating large size data instances has been developed for the capa­

citated allocation problem and the capacitated facility location problem. Our data 

sets reflect the real-life supply chain and based on Sainsbury’s network model.

6. A prototype of the multi-objective optimization tool was developed for uncapacit­

ated and capacitated facility location problems where economic costs and envir­
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onmental (('O 2 emissions) impact from energy consumption in depots and trans­

portation are considered. For the capacitated model, economic costs consist of 

transportation and depots components with time and distance based formulations 

are considered.

1.3 Note on Implementations

All algorithms used in this thesis are implemented in the Java programming language. 

This encapsulated using custom-based classes, functions as well as standard packages 

and classes with built in functions of the Java 2 platform, standard edition. Chapters 5, 

6, 7 and 9 also use the CPLEX® optimization engine and associated packages with the 

Java programming language. This approach allowed the flexibility of implementing the 

user interface in Java and the power of CPLEX® for solving data instances to optimality.

As part of the evaluation throughout our research we compared the quality of our heurist- 

ically generated solutions either with previously published results in the literature or with 

the best known solutions produced by CPLEX® optimization software. Where it was not 

possible to do, the solution was compared to the known lower bound (LB) solution. As 

well as looking at the solution quality, the computational times for finding those solutions 

were analysed for some of the instances because current research focuses on large size 

data instances, and run time can easily become an issue. When applying MOO techniques 

for the capacitated facility location problem, each heuristic algorithm run 10 independ­

ent times for each data instance to obtain the final set of trade-off solution to ensure the 

reliability of the technique.

1.4 Thesis Structure

Chapter 1 describes the research motivations and hypothesis for the research presented 

in the thesis. The contribution and achievements of the research are documented and the 

structure of the thesis is presented.
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Chapter 2 introduces the area of logistics modelling in an operational research context, 

and covers a literature review of the FLP and GAP. ‘Green’ formulations of supply chains 

are also presented in the chapter, together with different performance measures that are 

discussed in terms of their respective objective functions for green and traditional supply 

chains and their application in the literature.

Chapter 3 provides background information on the different approaches in the area of 

multi-objective optimization and its application within logistics design. The evolution­

ary multi-objective optimization algorithms NSGA-II and SEAM02 are presented in the 

chapter in detail.

Chapter 4 documents the findings of the analysis on the simulation model of a Pan- 

European network from the automotive sector which is based on the case study by Ham- 

mant [124]. The research analyses the ‘optimum design’ based on costs and on CO 2 

emissions from transportation and energy usage when decisions are made regarding the 

number of open depots and the vehicle utilization ratio.

Chapter 5 documents our investigation into the impact of changes to key variables, such 

as fuel price and labour costs, on the allocation of the stores to depots based on a Sains­

bury’s case study. A sensitivity analysis is performed using the CPLEX® optimization 

engine which uses techniques to solve problems to optimality.

Chapter 6 extends the single-objective Sainsbury’s study to a two-objective optimization 

approach using classic weight based optimization. The distance based and cost functions 

are considered with different weights to give a decision maker a set of valuable trade-off 

solutions for the assignment problem (assigning stores to distribution centres).

Chapter 7 introduces two mathematical formulations of a Lagrangian Relaxation tech­

nique for a single and for multiple products where one capacity constraint is relaxed. The 

formulation for a single product is used for solving large size assignment instances. Large 

data sets were generated for assessing the effectiveness of the technique. The emphasis of 

this chapter is on finding feasible solutions as part of the assignment routine.

Chapter 8 documents an exploratory study into multi-objective uncapacitated facility 

location for environmentally friendly design. Customer service level, economic cost and
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green objectives are incorporated into the framework. The evolutionary multiobjective 

algorithms NSGA-II and SEAM02 are compared in terms of execution times and solution 

quality for the strategic design of an uncapacitated network.

Chapter 9 presents the capacitated facility location problem where economic costs and 

( '( ) i objectives are considered simultaneously using the evolutionary algorithm SEAM02. 

The data instances used for the analysis are generated randomly and based on industrial 

data. Langrangian Relaxation technique discussed in Chapter 7 is utilized in assigning the 

customers to the depots after identifying which depots are open.

Chapter 10 summarises the research contributions and evaluation of the related findings 

across all research. Future direction with suggestions for extending the current work is 

also presented here.

Appendix A presents a mathematical formulation of a Lagrangian Relaxation procedure 

where two capacity constraints are relaxed (number of cases and number of stores).

1.5 Publications
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Cost Optimization Based on Infrastructure Modelling on C 0 2 Emissions", International 

Journal of Production Economics, 2010, http://dx.doi.Org/10.1016/j.ijpe.2010.03.005

Conference Papers

•  Harris I., Mumford C., Naim M.(2009), "Multi-objective uncapacitated facility loc­

ation model for Green Logistics", IEEE Congress on Evolutionary Computation 

(IEEE CEC 2009), Trondheim, Norway, May 18-2, pp. 2732-2739. (Fully refer­

eed)
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Chapter 2

Logistics modelling

2.1 Introduction

This chapter reviews traditional and “green” logistics network design at both strategic and 

tactical levels, so that decisions regarding facility location and allocations of the customers 

to depots can be considered simultaneously, to allow an integrated approach to infrastruc­

ture modelling. Facility location problem formulations, appropriate traditional objective 

functions and cost structures are discussed for a traditional network design. In addition, 

the related generalized assignment problem is introduced, paying particular attention to 

single source formulation, in which each customer is assigned to only one facility. From 

a green perspective, the added activities to the close loop supply chain formulation are 

discussed as well as green performance measures (objectives) for logistics modelling. Fi­

nally, commercially available software packages for network design such as CAST [8] 

and IBM ® ILOG LogicNet Plus® XE [68] are briefly discussed in terms of their func­

tionality and relationship to the current research. The current chapter focuses on single 

objective optimization, whereas Chapter 3 describes a multi-objective optimization ap­

proach to network design.

2.2 Facility Location Problem

The Facility location problem (FLP) (also known as the location analysis problem) is a 

well-known problem in Operations Research and considers decisions concerned with de­

termining the number of open facilities, their location, capacity, type of service/product
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they provide and could also consider which customers are assigned to which facilities 

to ensure that their demand is satisfied. It has wide application in both the private and 

the public sector where distribution centers, hospitals, retail points, fire stations, chem­

ical plants etc. are under consideration. Depending on the application area, different 

objective functions and constraints are considered, varying from minimizing overall costs 

to maximizing the number of clients served. In the business environment and within a 

logistics context, minimizing overall cost is the most commonly used objective which 

would consist of the running cost of open serving facilities (fixed costs for operating fa­

cilities, production, storage, picking activities, etc) and a transportation element to deliver 

those goods to their customers. Facility location decisions could be strategic, if for ex­

ample major long-term investment in new facilities is required. On the other hand, when 

the businesses are able to acquire or hire a facility for a shorter term, decisions could 

be deemed tactical rather than strategic. Some of the early models in location analysis 

date back to the last two centuries, and there is a rich literature of models and solution 

techniques. A detailed overview of facility location formulations and solution techniques 

is presented in Daskin [27], Drezner and Hamacher [28], Owen and Daskin [85]. Klose 

and Drexl [63] review some contributions to the current state-of-the art in facility loca­

tion models for distribution system design, and below some of the classification types are 

considered as follow:

•  Discrete vs Continuous location models. In the continuous models, it is feasible to 

locate the facilities anywhere of the plane whereas discrete models have an explicit 

sets of possible locations.

• The objective function in the problem formulation may be of the minsum or min- 

max type. Minsum models minimize the average distances while minmax models 

minimize maximum distance.

•  Uncapacitated vs Capacitated models. The uncapacitated facility location problem 

(UFLP) assumes that facilities have unlimited capacity, whereas the capacitated 

facility location problem (CFLP) imposes capacity constraints on each facility.

• Single-source vs Multiple-source. Each customer will be assigned to just one facil-
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ity in a single-source problem or to several facilities in a multiple-source problem.

•  Single vs Multiple objective models. Single objective formulations dominate loc­

ation analysis research ( e.g. [50, 10, 57, 7, 4]), and involve the optimization of 

a single objective, such as minimizing cost or or maximizing profit. However, 

problems in real-world are frequently multi-objective nature, for example it may 

be desirable to simultaneously minimize cost and maximize customer service. Des­

pite its relevance in the real world, published research on multi-objective location 

problems seems to be rather limited. Multi-objective optimization for facility loca­

tion/allocation is a key topic of research in this thesis. An overview of the different 

approaches and their application to logistics design is described in detail in the 

Chapter 3

• Single-stage vs Multi-stage models. Multi-stage models consider the flow of goods 

from several hierarchical stages; whereas single-stage focuses on one stage expli­

citly, e.g. depot-customer.

•  Single vs Multiple product. If the nature of the products are homogeneous they 

could be considered as a single product, e.g. chill product. On the other hand, if we 

have, for example, chill, ambient and frozen product types, the problem becomes a 

multiple-product formulation.

•  Static vs Dynamic models. Static models consider a design over a single period of 

time, whereas dynamic models take account of variation over several time periods.

•  Deterministic vs Probabilistic models. Deterministic models use averaged data 

based on past history or future forecasts, which is assumed to be exact and cor­

rect, whereas probabilistic models consider data under uncertainty.

•  Location-routing problems combine location analysis with routing aspects of the 

design.

As can be seen from the classification, the field of FLP formulation and solution tech­

niques is large. This thesis focuses on single source deterministic design models, and 

covers both uncapacitated and capacitated formulations with single and multiple product
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types. It also considers single and multiple objective variants, in which traditional eco­

nomic and environmental objectives are balanced for a large size network. Chapter 3 

provides a detailed overview of different techniques for multi-objective optimization and 

their application to facility location and allocation, and Section 2.4 in the present chapter 

gives background information on the green performance measures.

For most of this thesis we are concerned with the capacitated facility location problem, 

with single source customer assignment (CFLPSS). The CFLPSS is a combinatorial op­

timisation problem that belongs to the class of NP-hard problems [105], therefore solving 

it using exact algorithm poses difficulty for instances of a large size. Lagrangian relaxa­

tion techniques are leading methods for solving large CFLP and CFLPSS problems ([7], 

[10], [57], [4], Other techniques, such as approximation algorithms and metaheuristic 

approaches are also applied to solving those model formulations.

In this thesis, we use the IBM ®  ILOG® CPLEX® (vl2.1) optimization engine to 

solve a single objective formulation of the CFLPSS. CPLEX® formulates the CFLPSS 

as a mixed integer programming (MIP) problem which balances optimality and feasibility 

in its search using a dynamic search methodology [24]. The dynamic search algorithm 

consists of LP relaxation, branching, cuts, and heuristics to find an optimal solution. The 

problem formulation for CFLPSS is discussed in Chapter 9 where we use the results of 

CPLEX® optimization to compare the solutions produced by our multi-objective optim­

ization algorithm.

23 Generalized Assignment Problem

An initial assignment of customers to serving facilities is carried as an integral part of 

solving a FLP formulation. However, the serving facilities usually remain in place for 

many years, in which circumstance may change. It is common therefore, to regularly 

re-optimise the allocation of customers to serving facilities, to take account of changes in 

demand and/or supply patterns etc. This assignment problem is known as the generalized 

assignment problem (GAP) and was first introduced by Ross and Soland [93]. Since then 

many papers have been published on the GAP in the literature. It has a wide applica­
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tion, including assigning workers to jobs, staff scheduling, assigning stores to the serving 

facilities and project assignment with the solution techniques are discussed in the sur­

vey by Cattrysse and Van Wassenhove [22] and Oncan [84]. The former authors discuss 

the solution algorithms and relaxations of them, and the latter author focuses on real-life 

applications and recent solution approaches.

The solution procedures for solving the GAP consists of exact and heuristic algorithms 

and new solution methods appear frequently in the literature. In logistics network design, 

examples are included in the following papers. Neebe and Rao [81] formulate a fixed 

charge model assigning the users to sources as a set partitioning problem with a solution 

based on linear programming relaxation. Foulds at el [44] present a mathematical model 

of an allocation problem arising in the New Zealand dairy industry with heuristic and 

integer programming techniques to solve it. Benjaafar et al. [12] consider the problem 

of allocating demand arising ffom multiple products to multiple production facilities with 

finite capacity and load-dependent lead times. They consider two types of demand al­

location: in the first one they allow the demand for a product to be split among multiple 

facilities and in the second one demand from each product must be entirely satisfied by a 

single facility. Their solution procedures determine the optimal allocation of demand to 

facilities and the optimal inventory level for products at each facility. Freling et al. [45] 

consider the Multi-Period Single Sourcing Problem (MPSSP) where a set of customers 

is assigned to exactly one facility. They reformulate MPSSP as a GAP with a convex 

objective function and extend a branch-and-price algorithm to this problem.

Lagrangian relaxation is one of the techniques which could be used to solve the assign­

ment problem, and is a relaxation technique where a hard constraint is moved into the 

objective function, thus imposing a (heavy) penalty if that constraint is not satisfied. The 

technique usually provides high-quality upper and lower bounds within a few iterations 

[48]. There are two possible constraints which can be relaxed as Lagrangian Relaxation 

bounds: the capacity constraint and the assignment constraint. For the capacitated facil­

ity location problem, several algorithms were developed based on Lagrangian Relaxation 

techniques ([10], [7], [53], [48], [134], [135]). Ghiani [48] provide an excellent descrip­

tion of the application of this technique to the capacitated plant/facility location problem
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CFLP. Klincewicz and Luss 1135] describe a LR heuristic algorithm for a single source 

FLP where the capacity constraint is relaxed. Their LR procedure uses ADD heuristic to 

find initial feasible solution for upper bound and a final adjustment heuristic technique 

to improve reassignment of customers to open facilities. In the ADD procedure, facil­

ities are added one at a time to the set of open facilities and customers are assigned to 

the minimum assignment cost if capacity is not violated. If such assignment is not feas­

ible, than another facility is open and reassignment is done again. In the final adjustment 

procedure, customers are reassigned to the lowest ’’true” cost from assignment based on 

augmented costs if there is a sufficient capacity at that particular facility. Darby-Dowman 

and Lewis [134] use the same Lagrangian relaxation to identify problems for which the 

optimum solution to the relaxed problem produces not feasible solution to the unrelaxed 

problem through establishing relationships between fixed and assignment costs. Fisher 

139] illustrates Lagrangian Relaxation on the example of GAP because of its rich struc­

ture. Jomsten and Nasberg [136] propose a new LR approach based of a reformulation of 

GAP by introducing new substitution decision variables and new constraints. They show 

that the bounds from Lagrangian dual of their approach are at least as strong as the bounds 

from traditional LR approaches.

In this thesis, we present three mathematical formulations of a Lagrangian Relaxation 

technique which are discussed in Chapter 7 and in Appendix A for assigning customers 

to serving facilities. The formulations are for a single and multiple products with two 

constraints (cases and num of stores) and are based on the traditional lagrangian relaxation 

of the capacity constraints of GAP as stated in Jomsten and Nasberg [136]. We extend 

them to include extra constraints and multiple products which we discuss in more details 

in Chapter 7.

2.3.1 Transportation and warehousing costs in logistics modelling

In logistics network design, transportation and warehousing models should be considered 

as part of the process. The validity of the model formulations depend on the correctness of 

any assumptions made, and it is important to reflect the realistic cost structure of the par­

ticular business environment under consideration. Factors such as utilization of vehicles,
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cost per case and many other considerations will vary considerably depending on the par­

ticular scenario. Nevertheless, it is important to understand the fundamental components 

of transportation and warehousing costs. Sussams J104] provides an excellent overview 

of transportation and warehousing models which are briefly discussed here:

1. Transportation model is the first key component in logistics design and reflects all 

activities associated with the vehicle, and could consist of fixed costs per day, driver 

cost per hour, variable cost per mile and other factors. Therefore those costs could 

be differentiated into:

• Time dependent costs, which may include drivers wages and related costs and 

depend on the vehicle type and working hours.

• Distance dependent costs which may include fuel, tyres and depreciation.

•  Overhead costs which may include administration, management and supervi­

sion

2. Warehousing model is the second main cost component and is dictated by the spe­

cific purpose of the warehouse: as a transhipment point (no inventory costs) or as 

a storage place for goods. Typical costs associated with warehousing model would 

be as follows:

• Warehouse operations costs associated with receiving, replenishing, picking 

orders depending on the throughput.

• Warehouse administration include costs associated with order processing sys­

tems, accounts, wages and salaries of the management and other staff

• Occupancy costs relate to costs associated with rent, insurance, maintenance.

•  Inventory carrying costs depends on the value of the stock, amount of the 

safety stock, lead times of the supplier.

The majority of formulations of the FLP at a strategic level do not consider decisions 

associated with replenishment of the inventory, and transportation costs are estimated by 

direct shipping [112]. Shen and Qi [112] argue that if inventory and transportation costs
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are not integrated together into the network design, it could produce sub-optimal solutions. 

For this reason some researchers have started incorporating those decisions into strategic 

modelling (Shen and Qi (112], Nozick and Tumquist. [80]). For example, Shen and Qi 

1112] model shipment costs from a DC to its customers using a vehicle routing model 

(routing costs approximation - non-linear routing costs) instead of direct linear costs and 

non-linear inventory costs. The authors also assessed the benefits of integrating routing 

decisions in different ways: a fully integrated approach (inventory, routing and location), 

a partially integrated approach (location and inventory with direct shipping costs) and a 

sequential approach (location first then inventory and routing decisions).

2.4 Performance measures for traditional supply chain

To ensure the efficient running of the supply chain, a range of performance measures have 

been developed over the years. Shepherd and Gunter [ 101 ] present a taxonomy and critical 

evaluation of performance measurements and various metrics of supply chains identified 

from 42 journal articles and books and from online resources published between 1990 and 

2005. From their review, it is clear that different research studies classify the measures 

in very different ways. Nevertheless a taxonomy is presented according to the following 

classification:

•  According to processes identified in the supply chain operations reference (SCOR) 

model which provides common metrics to analyse supply chain performance [128]:

i.e., plan, source, make, deliver or return (customer satisfaction). This allows the 

identification of measures which are appropriate at the strategic, operational and 

tactical levels.

• Whether the measures used are cost, time, quality, flexibility or innovation. It is 

important to differentiate between cost and non-cost measures such as time, qual­

ity etc., because if a supply chain relies only on cost measures, it can produce a 

misleading picture of supply chain performance [20].

• Whether the measures are qualitative or quantitative. Qualitative measures, such as
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customer satisfaction, reflect the happiness of the customers with the service and 

can not be measured using a single numeric measure. Quantitative measures, such 

as cost, flexibility or customer responsiveness can be directly described numerically.

Their review identified a total of 132 performance measures across different processes in 

the SCOR model. A very small proportion was related to the process of return or to cus­

tomer satisfaction (5%), compared to other processes such as plan (30%), source (16%), 

make (26%) and deliver (20%). Regarding the cost classification, the major proportion 

focussed on cost (42%) over non-cost measures such as quality (28%), time (19%), flex­

ibility (10%) and innovation (1%). The quantitative measures (82%) were dominating 

qualitative (18%). One of the main problems with the all metrics discussed is that they do 

not capture the performance of the supply chain as a whole.

Current et al. [18] classify the objectives specifically for facility location into four cat­

egories: cost minimization, demand oriented, profit maximization and environmental con­

cerns. Environmental objectives such as air quality, risk to surrounding population, qual­

ity of life are included in their literature review. In this thesis we consider two traditional 

objectives: minimizing the cost and ensuring high customer service levels, which are rel­

evant to any network design. Zhang and Huo [127] point out that there are various ways 

to define customer service and the perception would be different from a customer’s and 

supplier’s point of view. The infrastructure of the network has an enormous impact on 

the customer service level. They define the customer service for a facility location from a 

transportation and an inventory point of view:

• Transportation perspective - customers located near the serving facility receive their 

orders faster from those facilities, therefore elapsed time between placing an order 

and its shipment will be shorter for those customers. The customer service level in 

this case is represented by the distance between a serving facility and the customer.

• Inventory perspective - out of stock rate and order fulfillment rate would be ex­

amples of the measures used in this viewpoint. The out of stock rate relates to 

the percentage of the customers’ orders that cannot be filled at the serving facility,
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whereas the order fulfillment rate is the percentage of orders filled. A lower out of 

stock rate means a higher customer service level.

2.5 Green supply chains

The location analysis for facilities that produce hazardous materials, such us nuclear react­

ors and chemical plants, has been studied since the 1970’s, when the environmental impact 

of airborne pollutants first became an issue. Today the need for ‘desirable’ environment­

ally friendly networks is becoming ever more urgent. Beamon [9] recognized the essential 

objective of the green or extended supply chain as the evaluation of the total direct and 

eventual environmental effects of all processes and all products. A fully integrated supply 

chain Figure 2.1) is described by Beamon as a supply chain having all the elements of the 

traditional configuration (Figure 1.2), but extended to incorporate product and packaging 

recycling as well as reuse and/or remanufacturing operations within a semi-closed loop. 

Consequently, it incorporates the elements of a reverse supply chain, reflecting the entire 

life cycle of the goods. Therefore, the main focus of a green supply chain is reducing 

energy consumption, emissions and waste, and increasing recycling and reuse.

To help deal with of the additional complexity of the extended supply chain, Beamon 

identified a new set of potential strategic and operational considerations including:

•  the number and locations of facilities for product/packaging collection and re-use;

•  the effects of traditional supply chain strategies (e.g., decentralised versus central­

ised functions, facility location decisions) on environmental performance;

• simultaneous operational and environmental supply chain optimization;

• incorporating environmental and operational goals into traditional analysis.

An example where a closed loop supply chain was considered could be seen from Pak- 

soy et al. [89] who propose a multi-objective linear programming model to solve the 

green supply chain optimization problem with forward and reverse flows on a small size
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Figure 2.1: The extended supply chain.

study with hypothetical data. The model aims to minimize total cost through minimising 

transportation costs in forward and reverse logistics, minimising total purchasing costs, 

penalty costs for extra (702 emissions and also total CO 2 emissions. They use LINDO

6.1 to obtain the optimal solution.

2.6 Green performance measures

A review of performance measurement systems and metrics under development for green 

supply chains is given by Hervani, Helms and Sarkis [52]. The selected list of metrics they 

identified range from atmospheric emissions to energy recovery. They include measures 

for on-site and off-site energy recovery, recycling and treatment; spill and leak preven­

tion; and pollution prevention. Additional general measures include total energy use, 

total electricity use, total fuel use, other energy use, total water use, habitat improvements
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and damages due to enterprise operations, cost associated with environmental compliance, 

and others. Hervani, Helms and Sarkis point out that organizations may choose their en­

vironmental performance measurements specifically to meet new government regulations 

on emissions, energy consumption or the disposal of hazardous waste.

Bloemhof-Ruwaard et al. [14] address the increasing need to incorporate quantitative 

environmental measures into OR modelling. Beamon [9] outlines a range of sustainable 

performance measures, such as emissions, total energy consumed and others for green 

supply chains. Taplin et al. [107] propose a list of indicators for a sustainable metal 

production system for the simulation of production, transportation and recycling activities. 

More efficient use of energy and raw materials, reducing CO 2 emissions, scrap and waste 

and higher productivity made sustainable development practical and measurable.

From a logistics perspective, Aronsson and Huge Brodin [3], in their comprehensive lit­

erature review, identified the measurement of emissions as one of the most popular ways 

of assessing environmental impact. They noted, however, that even though the direct en­

vironmental impact can be assessed in terms of emissions, it is the root causes of these 

emissions that need to be addressed. Exactly what action to take needs to be determined 

by an appropriate analysis of the supply chain as a whole. Determining which sustain­

able measures to use and the difficulty of calculating them has been discussed by several 

researchers ([3], [52], [9]).

Potter et al. [90] propose a list of potential performance indicators for sustainable distri­

bution which they refine using a quasi-delphi study. This study is a variation of the Delphi 

approach where a quasi Delphi group of people is brought together for a structured dis­

cussion 1132]. In the research, presented by Potter et al. [90], a group of academic and 

industrial experts considered and refined performance measures and a questionnaire that 

has been developed for leading practitioners. As a result of this study, emission rate per 

item, amount of payload used (measure of vehicle utilization) and energy use per item are 

the top three ranked performance indicators. Khoo et al. [62] use low transport pollution 

with faster deliveries between plants, promotion of recycling of scrap metal and conser­

vation of energy in the modelling of a supply chain concerned with the distribution of 

aluminum metal.
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Some researchers have noted that an improved environmental impact sometimes follows 

a supply chain redesign exercise based on traditional performance measures, such as cost 

or customer service. However, as discussed in detail in Chapter 1, we note that this is not 

always the case. Therefore we strongly believe there is a need to consider environmental 

measures explicitly during the optimization process at the same time as traditional object­

ives. Khoo et al. (621 use a simulation approach to select plant locations that balance low 

total market costs and low transport pollution, fast deliveries between plants, promotion 

of recycling of scrap metal and conservation of energy, in a supply chain concerned with 

the distribution of raw aluminum metal. The simulation model was used to demonstrate 

the consequences of ignoring resource preservation and recycling activities as part of the 

network design. Paksoy [88] proposed multi-period supply chain design model which 

aims to minimize total transportation costs, (>()2 emissions from transportation and man­

ufacturing, total penalty cost as a result of exceeding the emission limit. The model was 

validated using hypothetical data and solved using the LINGO package.

Other studies ([61 ]; [83]) use multi-objective optimization techniques for evaluating the 

trade-offs between different objectives. From our research we identify only a small num­

ber of papers which explicitly relate to multi-objective infrastructure modelling for Green 

Logistics with some of these specifically address hazardous network structures. Multi­

objective optimization is discussed in more detail below and in the Chapter 3.

As well as using individual sustainability measures, there is an increasing need to incor­

porate these measures into an assessment framework/methodology that will include en­

vironmental measures alongside economic and social metrics. Singh et al. [103] provide 

an overview of various sustainability indices that have been included. In their paper, they 

consider sustainability in its broadest sense, covering aspects other than the environment, 

such as product-based sustainability and quality of life. In total, 70 indices were grouped 

under 12 categories, including the following environmental indices: Eco-system-based 

indices (Eco-Index Methodology, Living Planet Index, Ecological Footprint); Compos­

ite Sustainability Performance Indices for Industry (composite sustainable development 

index, ITT Flygt Sustainability Index, G Score method); Product-based Sustainability in­

dex (Life Cycle Index, Ford of Europe’s Product Sustainability Index); Environmental
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Indices for Industries (Eco-Points, Eco-compass, Eco-indicator 99); Social and Quality of 

Life-based Indices (e.g., Index for sustainable society) and others.

An example of a sustainable methodology use during supply chain design is described in 

Hugo and Pistikopoulos [61]. They present a generic mathematical programming model 

for assisting the strategic long-range planning and design of a bulk chemical network. 

Their multi-objective mixed integer programming problem is formulated to minimize the 

environmental impact resulting from the operations of the entire network whilst simul­

taneously maximizing the network’s profitability. The method for impact assessment, the 

Eco-indicator 99 method [111], is incorporated within the quantitative life cycle assess­

ment model to formulate an appropriate environmental performance objective to guide 

strategic decision making. The Eco-indicator 99 method attempts to model potential en­

vironmental impact on a European scale according to three categories: Human Health, 

Ecosystem Quality and Resource Depletion.

Another example involving the trading off of cost against environmental impact is de­

scribed in Quariguasi Frota Neto et al. [83], where the reorganization of a European pulp 

and paper logistic network is described. The environmental impact was assessed using 

an environmental index proposed in Bloemhof et al. [123]. This index uses life cycle 

analysis (LCA) and considers the diverse emissions produced in the supply chain: namely 

global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, ni­

trification and solid waste.

To assess the environmental impact of supply chains, there is a pressing need for decision­

making/support tools that incorporate green performance measurements. Hervani, Helms 

and Sarkis [52] point out that, although environmental performance measures are being 

incorporated into existing tools at an increasing rate, current availability is far from ad­

equate. They discuss the various tools that are available, including the analytical hierarchy 

process, balanced scorecard, activity-based costing, design for environmental analysis and 

life cycle analysis. Some of the tools could be directly applied to aspects of green sup­

ply chain management and performance, while others require adjustments and extensions. 

The authors point out that on the whole there is no perfect tool for traditional or green per­

formance measurement systems, and that their usage is greatly dependent on acceptance
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by organizations. However, introducing new tools or tools with an “unfamiliar feel” into a 

busy commercial environment can be challenging, if their adoption involves large capital 

investment, significant staff retraining or an unacceptable element of risk.

2.7 Environmental impact from transportation and facil­

ities

Bloemhof-Ruwaard et al. [14] point out that the extent of environmental problems over 

the last few decades has shifted from the local and regional level to a continental and 

global level. The environmental changes expand from the air quality and health at the local 

level to climate change and depletion of the ozone layer on the global level. Greenhouse 

gases, such as carbon dioxide ( f ’O2), methane ( ( 7 /4) and nitrous oxide (A2O) contribute 

to climate change and the temperature rise near the surface of our planet. Therefore the 

greenhouse gasses from transport and energy need to be addressed urgently.

Carbon dioxide emissions are produced by burning fossil fuel, and from a transportation 

point view are caused by different modes of transport such as road, rail, water and air. 

Different factors have an impact on the actual levels of emissions from road transportation 

and can be grouped under the following categories according to the National Research 

Council [82]:

• Travel-related factors - these depend on the trip taken and distances travelled and 

vary for different vehicle operating modes. The speed and acceleration of the 

vehicle and load on the engine over the distance of the trip also have impact.

•  Driver behaviour, such as smoothness and consistency of vehicle speed.

•  The physical highway network characteristics, such as long grades, signalized in­

tersections and volumes of traffic entering the traffic flow.

• Vehicle characteristics such as fuels, engine size, vehicle condition.
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Methodology Reference

Carbon dioxide emissions per tonne-kilometre 

(The Network for Transport and Environment (Sweden))

Kohn (64]

Life cycle assessment model Hugo and Pistikopoulos [611 

Quariguasi Frota Ncto et al. |83] 

Bojarski et al. (16]

Table 2.1: Examples of papers using different methods for calculating environmental 

impact.

There are different formulations available for calculating road related emissions. The 

National Atmospheric Emissions Inventory (NAEI) (781 provides a spreadsheet which 

contains a complete set of speed-emission factor coefficients for ('()2 and other green­

house gases for different types and sizes of vehicles in the UK fleet travelling at average 

speeds. The Department for Environment, Food and Rural Affairs (DEFRA) [32] provides 

greenhouse gas (GHG) conversion factors to convert existing data sources, e.g. freight 

fuel consumption, electricity/gas consumption etc. into (X )2 equivalent data. Their car­

bon dioxide formulation also takes into account the diesel lorry type and percent of laden 

weight of the lorry (i.e. the maximum carrying capacity of the vehicle). Kohn [64] uses an 

equation from the The Network for Transport and Environment (Sweden), which allows 

the calculation of carbon dioxide emissions per tonne- kilometre for a particular vehicle 

type. Some researches calculate C ()2 emissions directly [64] and others use different 

methods for assessing the potential environmental damage. Table 2.1 shows examples of 

papers which include different methodologies for assessing environmental impact. Also 

the importance of monitoring green supply chain management practices with factors such 

as green purchasing, design of products for reduced consumption of material/energy and 

others is discussed by Zhu et al. [126]. For the present study we are using the DEFRA [32] 

formulation because it is widely used as a guideline to help UK businesses to calculate 

C ()2 emissions and thus identify and address their environmental impact. Our environ­

mental model takes into account C ()2 emissions from both transportation and depots.

McKinnon [74] presents an analytical framework incorporating all the factors which in­

fluence traffic level and related energy consumption, to review the opportunities for the
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reduction of C 0 2 emissions from the freight sector at a macro level. The framework links 

the weight of the goods produced/ consumed to CO2 emissions from freight operations. 

Handling factor (no. of links in the supply chain), average length of haul, modal split, 

average load on laden trips, average % empty running, fuel efficiency and C 0 2 intensity 

of energy source (fuel-specific) are seven critical key ratios which affect the overall C 0 2 

intensity of the freight sector. Determinants such as supply chain structure, choice of 

transportation mode, vehicle utilization on laden trips and others have a direct impact on 

the respective key ratios for reducing CO-2 emissions. The report illustrates the sensitivity 

to total C ()2 emissions from the freight sector when hypothetical changes have been ap­

plied to the key ratios. McKinnon [74] observes that modal split, average payload weight, 

the proportion of empty running and fuel efficiency have been moving in a direction which 

reduces ( '()2 emissions per tonne-km over the period 1990-2004.

Depots have a very important role in logistics network design. They are used for stock­

ing products or as an exchange point for transportation modes to service their stores or 

customers. Greenhouse gas emissions in buildings arise from the direct burning of fossil 

fuels to produce electricity and heat. The energy consumption of non-domestic build­

ings, such as depots or warehouses depends on the type of the product being stored. The 

storage of frozen and chilled goods would involve having a special storage space, which 

would involve higher energy consumption. DEFRA [32] provide UK conversion factors 

for different fuel types, such as electricity and natural gas to convert available energy data 

into C 0 2 equivalent data. In the UK electricity is generated mainly by the burning fossil 

fuels such as coal, natural gas and oil; whereas in other countries the main supply could 

come from different sources. For example, nuclear power dominates electricity produc­

tion in France. Therefore, different electricity conversion factors need to be applied to the 

available energy data.
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2.8 Benchmarking data sets for multi-objective formula­

tion with environmental objectives

In this thesis we consider traditional and environmental objectives simultaneously as part 

of the multi-objective facility location-allocation modelling. Our research confirmed find­

ings published by Villegas et al. [ 109] that there are no multi-objective optimization prob­

lem instances available in the public domain, which created initial modelling challenges 

in our research. To address this problem, we generated random instances for bi-objective 

problems and the methodology for creating those instances is discussed in the Chapter 

9. The generated problem instances reflect realistic features of the major retail supply 

chain in UK and considered as one of the contributions of this thesis to encourage further 

work in multi-objective design. In addition, we generated random data instances for the 

capacitated allocation problem which also have realistic characteristics and are suitable 

for bi-objective design. This methodology is discussed in Chapter 7.

2.9 Commercial Software for Strategic Modelling

Modelling of logistic networks at the strategic level is supported by specialized commer­

cial computer tools such as CAST [8] and IBM® ILOG LogicNet Plus® XE [68].

C A S T  is a commercially available supply chain network design application available 

from Barloworld [8] for modelling global or regional logistics networks. The software is 

used by third party logistics, manufacturing, retail and consultancy sectors on a world­

wide scale to model different supply chain strategies to improve service and reduce costs. 

CAST allows the user to “build mathematical models of their supply chain network in­

frastructure from the points of sourcing to the points of consumption (supply side to de­

mand side)”, and all elements are considered as a single integrated model. The func­

tionality of the software includes running network strategy modelling, centre of gravity 

modelling, mixed integer programming optimisation, and provides a display map of the 

network, locations and roads in different countries across the world. CAST offer the addi­

tional functionally through a carbon emissions modelling for a particular network design
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in ('A S T  — C ()2 module. This module allows comparisons of costs and C 0 2 emis­

sions across different scenarios taking into account different modes of transportation and 

warehouse operations by country. The software allows optimization by carbon footprint, 

carbon cost, supply chain cost or service level.

IBM ® ILOG LogicNet Plus® XE [68] allows the modelling of manufacturing and dis­

tribution strategies: number and locations of plants, distribution centres, allocation of 

products to plants, assignment of customers to depots etc. The optimization focuses on 

the lowest total cost or the maximum total profit of the supply chain and calculates C ()2 

emissions associated with supply chain activities or while adhering to the constraints on 

the carbon footprint. The software combines a graphical interface with advanced optim­

ization software for modelling complex supply chains. The functionality of the software 

includes all-in-one network design and planning, flexible mapping, and integration with 

Microsoft Excel and Access tools.

On the whole, the commercially available software applications for supply chain network 

design are well accepted by different sectors of industry and provide efficient solutions 

to cover different formulations of network design. The use of the optimization techno­

logy based on the simulation approach and visualization of the network provide excellent 

support for decision makers. However, the real world consists of more complex (and not 

necessary standard) problem formulations, for which available commercial tools may not 

always be suitable. The main focus of this thesis is to formulate a framework for multi­

objective optimization where financial cost and C 0 2 emissions objectives are solved sim­

ultaneously to produce a set of trade-off solutions in one optimization run, for large size 

networks, and it seems that available software packages do not support such functionality.

2.10 Summary

This chapter provides a review of traditional and ‘green’ supply chain design where FLP 

and GAP problems are discussed together with the challenges of modelling environmental 

objectives as part of the design. Throughout the review, lack of benchmarking data for 

the environmentally friendly design of networks provides a challenge, and it is clear that
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the creation of this type of data is essential, in order to encourage future research into 

this area. Environmental objectives, such as emissions from transportation and energy 

consumption in the warehouse, have to be calculated using appropriate methodologies 

and this is further discussed in Chapter 4. Although, it seems that available commercial 

toolkits for network design have begun to incorporate ‘green’ objectives, this tends to be 

mostly as a byproduct of a cost based optimization process. This approach allows the 

decision maker to assess the impact of the particular design, but very many simulations 

will probably be needed to see the full picture of the trade-off solutions, using a traditional 

cost-based approach. This indicates a gap in commercially available software, for which 

we propose multi-objective optimization techniques, as this approach will better allow the 

decision maker to see important trade off solutions that are easily missed if traditional 

methods are used. Furthermore, the trade-off solutions can often be obtained much more 

quickly, in a single run, simultaneously considering all objectives as they are, without 

the need to assign relative importance or weights, or convert them to another unit, for 

example carbon cost. The next chapter describes in great detail the various approaches to 

multi-objective optimization and their current application in network design.
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Chapter 3

Multi-objective Optimization

3.1 Introduction

There are many real-life situations where a decision-maker needs to consider more than 

one objective. It is often the case that a problem with multiple objectives will be converted 

into a single objective problem, by combining the objectives as a weighted sum which we 

explore in Chapter 6.1 on the problem of allocation of the stores to depots. We will use 

an alternative approach in the facility location problem, which allows a decision maker to 

evaluate a range of different trade-off solutions, for example between cost and distance, 

as a trade-off or (Pareto front). When more than one objective is considered, the problem 

will have multiple distinct goals. The current research aims to minimize economic costs 

for one objective and minimize the environmental impact for the another objective, in the 

design of a logistics network.

Figure 3.1 illustrates a trade-off front in considering a range of hypothetical designs for 

a distribution network. If the company is interested only in obtaining the lowest pos­

sible cost solution, solution 6 would be chosen. On the other hand, if the emphasis is on 

minimizing the pollution into the environment, solution 1 would be considered. In either 

case, a particular single objective has high priority for the logistics modeller which does 

not reflect the multi-objective thinking process. In reality, the question we will have to 

ask is how can we design our network for a traditional supply chain where we can simul­

taneously minimize cost and minimize the impact on the environment? In our example, 

solutions 3 and 4 have lower impact by 50%-60%, yet the cost does not appear to be very 

much greater than solution 6. Thus, solutions 3 and 4 could provide the decision maker
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Figure 3.1: Trade off solutions to balance financial and environmental objectives.

with good  com p rom ise so lu tions.

F ollow in g  the d iscu ssio n  ab ove, there are noticeable fundamental d ifferences betw een  

sin g le  and m ulti-objective optim ization  approaches. Firstly, there is more than one so lu ­

tion present in the final set o f  so lu tion s when a m ulti-objective approach is used. This can 

be clearly  seen  in our exam p le illustrated in Figure 3.1 where we have conflicting object­

ives. S econ d ly , there are three clear goals in m ulti-objective optim ization (M O O ) [117]: 

the solu tion  set should  be o f  good  quality (as c lo se  as possible to the true Pareto front), 

broadly spread (w ith  a w id e range o f  solu tions) and evenly spread over the Pareto front. 

Finally, there are d ifferent search spaces: objective space and decision  space. T h is m eans 

that for each  solu tion  in the d ecision  space there is a corresponding point in the objective  

space.

T his chapter a im s to introduce important concepts and techniques w hich are used in m ulti­

ob jective optim ization  and w ill be applied to the operations research (O R ) problem s in­

vestigated  in this thesis: facility  location and allocation problem s. S ection s 3 .2 -3 .4  are 

based on the book by D eb  [31].
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Figure 3.2: Different approaches to MOO.

3.2 Approaches to multi-objective optimization

There are d ifferent approaches to  M O O  and D eb  |31 J c lassifies them into tw o  m ain cat­

egories: preference-based and ideal m ulti-objective optim ization procedures. F igure

3 .2  illustrates the d ifferen ces b etw een  these approaches. In the preference-based M O O  

approach, firstly, based  on the h igh -level inform ation the d ecision -m ak er w ill need  to  

d eterm in e a relative importance vector (u'm ) for each o f  the ob jectives. For exam p le , in 

Figure 3 .1 , so lu tion  5 has a h igher em p hasis on reducing the cost com pared  to the en v iron ­

m ental im pact. On the other hand, in solution  2, m inim izin g  environm ental im pact is m ore 

im portant com pared  to co st reduction. In the preference-based  case , relative w eig h in g s  

w ill be assign ed  to the ob jectiv es  w hich  w ill form  a com p osite  ob jective  fun ction . T his



3.3 Dominance and non-dominated solutions 36

m ethod is a lso  know n as a m ethod o f  scalarising an ob jective  vector into a sin g le  c o m ­

p osite o b jectiv e  function . The co m p o site  ob jective  function  is then op tim ized  using an 

appropriate tech n iq u e and as a result o f  the op tim ization , on e particular trade-off so lu tion  

is produced. S o m etim es, this procedure can be repeated w ith different preference vectors 

to obtain  m ultip le trad e-off so lu tion s. It it im portant to point out that the solution  obtained  

u sing  this approach is very sen sitive to the p referen ce im portance vector. O ne o f  the ch a l­

len g es  w ith  this approach is to d ecid e on accurate preference vectors, and this tends to 

m ake th is m ethod som ew h at subjective. On the other hand, in the ideal M O O  procedure, 

all the o b jectiv es  are treated eq u ally  and con sid ered  to have the sam e im portance. U sin g  

an appropriate techn iqu e w ill generate a set o f  trad e-off so lu tions sim ultaneously . A fter  

the so lu tion s are found, the d ecision -m ak er c h o o se s  one o f  the generated so lu tion s using  

h ig h -lev e l in form ation . Treating all ob jectives equally, m akes this approach less sub­

jec tiv e  b ecau se a user d o es  not n eed  to d ec id e  on the relative preference vector before the 

o p tim ization . C h o o sin g  a particular so lu tion  availab le from  a large pool o f  so lu tions cou ld  

itse lf  be con sid ered  a ch a llen g e , how ever. In practice, although the ideal M O O  approach  

is gen era lly  preferab le, as it is le ss  subjective. On the other hand, i f  the decision -m aker  

is confident regarding the w eig h tin g  vector, then the preference-based approach cou ld  be 

adequate to find an accep tab le  so lu tion .

3.3 Dominance and non-dominated solutions

D om in ation  is an im portant co n cep t in M O O . In particular, m ulti-objective a lgorithm s  

aim  to find non-dominated solutions, such that no solution can be considered  better than 

another, yet all the so lu tion s are different. M O O  allow s the com parison o f  any tw o  g iven  

so lu tio n s in the ob jective  sp ace to w hether one solution is ‘better’ com pared  to another 

so lu tion . In this section , w e define all the related term inology and notations for finding  

n on-d om in ated  so lu tion s.

T h e con cep t o f  d om in ation  refers to the idea where tw o so lu tions are com pared  to each  

other on the b asis o f  w heth er on e solution  dom inates another solu tion  or not. To d em o n ­

strate this co n cep t, let us con sid er a problem  with M  ob jectives. Definition I (b e low ) is
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taken from  D eb 's  book [31). It is eq u ally  appropriate for m inim ization or m axim ization  

ob jective  fu n ction s. The notion in the d efin ition  / c  j  im plies that the solution i is bet­

ter than so lu tion  j  on a particular ob jective. Equally, the expression  / > j m eans that the 

so lu tion  / is w orse than solu tion  j  for a particular ob jective. O ne o f  the exam p les in this 

th esis  co n sid ers tw o m inim ization  functions: m in im iz in g  financial cost and m in im izin g  

en v iron m en ta l im pact. T herefore in this case , the sym b ol < w ould mean the sam e as the 

operator ‘v

Definition 1. A so lu tion  ,/y is said to dom in ate another solution  ,/y (,/y -< , /y), i f  both 

co n d itio n s  1 and 2 are true [31):

1. T h e so lu tion  ,/y is no w orse than ,/y in all ob jectives, or _/}(./-1 ) / j ( r 2 ) for all 

J  {!•-> W

2. T h e so lu tion  ,/y is strictly  better than .r2 in at least one objective, or Jj(.r y ) < / j ( . r 2 ) 

for at least on e j  = { 1 . 2  M }

If o n e  o f  the co n d itio n s ab ove is v io la ted , then the solution ,/y d oes not dom inate the 

so lu tion  ,/y. If ,/y d om in ates the so lu tion  ,/y (,/y ^  , /y), this m eans that ,/y is dom inated  

by . / 1 and ,/y is n on -d om in ated  by r2.

T h e fo llo w in g  ex a m p le  o f  a tw o -o b jectiv e  m inim isation  optim ization problem  w ill a llow  

us to illustrate the co n cep t o f  d om in an ce. Figure 3 .3  show s six different so lu tion s in an 

o b jectiv e  sp ace w ith  tw o  ob jective  fun ctions, / j  and / 2, w hich need to be m in im ized . 

B eca u se  w e have m ore than one ob jective function in this exam ple, it can be d ifficu lt 

to find a so lu tion  w h ich  is better w ith respect to both objectives, w hen those ob jectives  

co n flic t w ith each other. H ow ever, the definition o f  dom ination w ill a llow  us to m ake a 

d ec is io n  on w hich  so lu tion  is better w hen any tw o solutions are com pared w hen  w e have  

a tw o -o b je ctiv e  prob lem . Let us com pare solu tions 4  and 5. A s can be seen  from  the 

Figure, so lu tion  4  is better than solu tion  5 for both objectives. This m eans that so lu tion  4  

d om in ates so lu tion  5. In the another exam ple, let us take a look  at so lu tion s 2 and 4 . In 

th is case , so lu tion  2 is better than solution  4 for the first ob jective function  and solu tion  

2 is not w orse (they have the sam e value) than solution  4. T herefore, both con d ition s o f  

Definition 1 are satisfied , and solution  2 dom inates solu tion  4. A s a result o f  com paring
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M i n i m i z e  f7
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M i n i m i z e  f .

Figure 33: Example.

any tw o  so lu tio n s .rj and .r2 for d om in an ce, there are three different ou tcom es can be 

con clu d ed : so lu tion  ,r.\ d o m in a tes so lu tion  .r2, so lu tion  ./;2 is dom inated  by solu tion  .n  or 

so lu tio n s  ./ I and . /2 are m utually  non-dom in atin g .

A n oth er im portant n otion  o f  m u lti-ob jective  optim ization  is a non-dominated set. To un­

derstand th is co n ce p t better, let us take another look  at our exam ple in Figure 3.3 . C on ­

sid er so lu tio n  2 and so lu tio n  3 , w here solu tion  2 is better for objective on e and w orse for 

the se c o n d  ob jective . T h us, the first con d ition  in the Definition 1 is not satisfied  for these  

so lu tio n s . W hen tw o  o b je ctiv es  are eq u ally  important, it is usually said that so lu tion s 2 

and 3 are mutually non-dominating w ith respect to each other. Therefore, w e cannot say  

w h ich  so lu tio n  is better or w orse. S o lu tion s 2 and 3 are part o f  the non-dominated set from  

the s ix  so lu tio n s availab le . Id en tify in g  non-dom inated sets a llow s the d ec is ion  m aker to 

co n s id e r  a set o f  trad e-o ff so lu tion s. Therefore, for a given  set o f  so lu tion s, m aking all 

p o ss ib le  p a ir-w ise com p arison s, w ill a llow  us to identify the so lu tion s w hich  are o f  the 

n on -d om in ated  set. Definition 2 and Definition 3 a lso  taken from D eb ’s book  |311 and 

d efine a n on-dom in ated  set and the g lob ally  Pareto-optim al set:

Definition 2. N on -d om in ated  set: A m on g a set o f  so lu tion s I \  the non-dom in ated  set o f  

so lu tio n s  V  are th ose  that are not dom inated by any other m em bers o f  the set P.
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Definition 3. G lob a lly  Pareto-optim al set: T he non-dom inated  set o f  the entire feasib le  

search sp ace >’ is the g lob a lly  Pareto-optim al set.

M any m u lti-ob jective  evolutionary a lgorithm s (M O E A s) such as N SG A -II (301 and 

S E A M 0 2  [7 6 ], w hich  are used in the current research and d iscu ssed  later, need to identify  

n on -d om in ated  so lu tion s in a particular population . S E A M 0 2  outputs a non-dom inated  

set at the end o f  the algorithm , w hereas N S G A -II algorithm  sorts the population accord ­

ing to the d ifferen t n on-dom in ation  levels . T h e techn iqu e o f  id en tify in g  so lu tions w hich  

b elo n g  to a n on-dom in ated  set, in vo lves com p arin g  all p ossib le  pairs o f  so lu tion s u sing  a 

d om in an ce  operator.

To su m m arise, the goal o f  the M O O  algorithm s is to find Pareto optimal solutions w hich  

are n on-dom in ated  so lu tio n s o f  the entire feasib le  space. U nfortunately, the com p lex ity  

o f  so m e M O  p rob lem s m ake the ach ievem en t o f  this goal a lm ost im p ossib le b ecau se o f  

the prob lem  size . In so m e ca ses  for the com binatorial optim ization  problem s this cou ld  

be proven as co m p u ta tion a lly  u nach ievab le, therefore it is practical to an alyse a set o f  the 

best k now n n on -d om in ated  so lu tio n s w hich  is as c lo se  as p ossib le  to the Pareto optim al 

set. T herefore, the fo llo w in g  con flic tin g  goa ls need to be achieved  in order to obtain a 

reason able so lu tion  to a M O O  problem  [117]: 1 )The solution  set should con verge to the 

Pareto op tim al set w h ich  m ean s that so lu tion s should  be o f  a good  quality; 2 ) S o lu tion s in 

the Pareto set sh ou ld  be ev en ly  spread; and 3)T h e Pareto front should be w id ely  spread to 

m a x im ize  the coverage .

3.4 Classical techniques for multi-objective optimization

T h e fo llo w in g  tw o  sec tio n s  d escrib e som e o f  the popular approaches w hich  are used  in 

so lv in g  m u lti-ob jective  op tim ization  tasks, sp ecifically  focusing on techn iqu es w h ich  are 

used  in our current research and our reasons for ch oosin g  them behind it. There ex ist a 

variety o f  tech n iq u es for d ea lin g  w ith m ultip le ob jectives, w here som e o f  them  are w ell 

estab lish ed  and others are fairly new  in the research com m unity.

T h e c la ssica l m u lti-ob jective  optim ization  m ethods w ere d evelop ed  in the last five d ec ­

ades. D ifferen t researchers refer to the the definition o f  c lassica l m ethod s to d istingu ish
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them  from  evolution ary  m ethods. The m ajority o f  the m ethods convert a m ulti-objective  

p roblem  into a sin g le  ob jective function  by u sing user-defined  parameters. Thus, the u se­

fu ln ess  of the s in g le  solu tion  obtained  fo llo w in g  the transform ation, depends on m aking  

su itab le c h o ic e s  o f  the param eters in the con version  m odel.

T h e weight-based m ethod is the m ost popular c la ssica l m ethod and converts a M O O  prob­

lem  into a s in g le  ob jective  problem  by using a w eigh ted  sum  o f  the ob jectives, w here the 

relative im portance vector is defined  by the user. T h is m ethod is described  b elow  in the 

section  3 .4 .1 . A s m en tion ed  earlier, the su ccess  o f  this approach depends on m aking ap­

propriate c h o ic e s  for the w eigh ts. To generate m ultip le so lu tions sim ultaneously , on one  

run. H ajela and Lin [59J proposed  a w eigh t-b ased  gen etic  algorithm  for M O O  w here each  

so lu tion  in the p opulation  has a d ifferent w eigh t vector in the calcu lation  o f  the sum m ed  

o b jectiv e  fun ction . To p rom ote d iversity  in the population  o f  so lu tions, the w eigh t vector  

cou ld  be adjusted  as w ell. In contrast, the t-constraint m ethod converts all the ob jectives  

into con strain ts excep t for on e ob jective . T he user in this case w ould  have to define the 

lim its that constrain  the o b jectiv es . T he goal programming m ethod, w hich  w as orig in ­

a lly  in troduced  for s in g le -o b je c tiv e  ap plications [23], su ggests a w ay o f  transform ing the 

m ultip le o b jectiv es  in to  a s in g le  o n e  b efore so lv in g  the problem  using a s in g le  ob jective  

op tim ization  a lgorithm . T h e m ethod  u ses a goal value w hich needs to be ach ieved  for 

each co n flic tin g  ob jective .

3.4.1 Classical weight-sum approach

O ne o f  the m ost popular ap proach es used  in M O O  due to its sim plicity  is ca lled  a w eigh ted -  

sum  m ethod . T h e tech n iq u e sca larizes a set o f  objectives by m ultip lying each  ob jective  

w ith a u ser-d efin ed  w eig h t 131]. T h is m ethod is applied to so lve an a llocation  problem  

w ith tw o -o b jectiv e  fu n ction s (m in  cost and min travelled d istance) in Chapter 6  w here w e  

have the d ilem m a o f  b alancin g  tw o objectives: m inim izing overall co sts  and m in im iz in g  

total d istan ce for the a llocation  o f  stores to depots. The ob jectives have d ifferen t units: 1‘ 

and km,  w ith  d ifferent num erical ranges, m aking it difficult to ch o o se  appropriate w eigh ts  

to control the relative contribution  o f  each objective to the w eigh ted  total. To help  m atters, 

w e n orm alize the ob jectiv es  so  that each  one typically  produces values b etw een  0  and 1 .
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T he form ulation  o f  the ob jective function  can be seen  as a sum  o f  the w eigh ed  norm alized  

o b jectiv es , w h ich  converts the problem  into s in g le -o b jectiv e  optim ization  problem . The  

fo llo w in g  form ulation  w as taken from  |31 ]:

AI
./I '')  ^  (3.1 )

i t ,  1

subj (  cl to  :

//,(•' ) >  0  j  -  1 . 2 .......... /

hk{.r)  -  0 A- -  1 . 2  K

J L) ^  < r > 1 •>J, <  i ,  <  .r, i - 1 . 2 ........ ii

W here the w eig h t o f  the r/fth ob jective  function  in in the range w7n e  [0 ,1] and the w eigh ts

are ch o sen  in the su ch  w ay that their sum  is equal to 1 , therefore ,/;™ =  1 -

A s m en tion ed  earlier, th is m ethod  is applied  to so lv e  an allocation  problem  with tw o- 

ob jective  fu n ction , w h ere M  — 2. H avin g tw o  w eigh ts il>i and tr2, w here on ly  one w eigh t 

is in depend en t and the other on e ca lcu la ted  by sim p le subtraction. T herefore, the sum  o f  

tw o  w eig h ts  added togeth er is a lw a y s equal to 1. The procedure for converting ob jective  

valu es to  a s in g le  n orm alized  va lu e w h ich  is used for the ob jective function  is d iscu ssed  

in C hapter 6 .

3.5 Evolutionary multi-objective techniques

T h e inspiration  from  the prin cip les o f  b io log ica l evolution  and natural se lec tion  led  to the 

d evelop m en t o f  a particular type o f  optim ization  technique in the 1950s and 1960s (Fraser  

1 41 ], R echenb erg  [ 119], F o g e l[4 3 ]). John H olland in 1975 estab lished  the foundation  for 

genetic algorithms (GAs) w h ich  w as one o f  the starting points for a grow in g  interest in 

the d evelop m en t o f  natural evolu tion  inspired algorithm s [60]. T h ese  d ays, a G A  is a 

very popular m etaheuristic m ethod for so lv ing  many difficult prob lem s in op tim ization , 

and b elo n g s to the larger category  o f  evolutionary algorithms (EA). G A s are applied  in
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m any d isc ip lin e s  includ ing en g in eerin g , m anufacturing, p hysics, com putational sc ien ce  

and other areas.

B io lo g ica l evo lu tion  and natural se lec tion  m eans that the littest organism s survive w ithin  

the natural en vironm en t. In the natural w orld , in d iv idu als com p ete for se lectin g  co m ­

panion s lor reproduction and it is b elieved  that com b in in g  litter individuals in term s o f  

g en etic  m aterial, w ill lead to litter o llsp rin g . W hen this process occurs over several g en ­

erations, the com b in ation  o f  line characteristics from their predecessors cou ld  lead to the 

creation  o f  an offsp ring  w hich  is better than its parents. T his natural evolution  a llow s  

the in d iv id u als to  adapt better to the en vironm en t they are in. G A s operate in the sim ilar  

w ay, on a population o f  so lu tion s to a particular problem . The population co n sists  o f  in ­

d iv id u als w hich  are u sually  represented as a population  o f  strings and cou ld  be en cod ed  

as binary (1 1 0 0 1 0 1 )  or in other way. T h o se  strings are a lso  ca lled  chromosomes, and each  

have a fitness value a sso c ia ted  it. w hich  is derived from  the objective function value for 

the so lu tion  that the particular ch rom osom e represents. This value determ ines how  fit a 

particular individual is to stay a live  and breed. Individuals with better fitness are favoured  

in the m ech an ism  for se lec tio n  and reproduction and they could  be se lected  several tim es  

during evo lu tion . A s a result o f  se lec tin g  better individuals through several generations, 

the final p opulation  o f  the so lu tio n s should  converge to a near optim um  solution  or even  

the op tim u m  so lu tion .

T he reproduction  p rocess  o f  G A s in vo lves taking tw o individuals w hich are recom bined  

to create o ffsp rin g . T h is is a lso  k n ow s as applying crossover operators on tw o  individuals  

or recombination. T h e cr o sso v er  is undertaken on the selected  m em bers o f  the p op u la ­

tion  and a selection probability cou ld  be used to ch oose  the proportion o f  the population  

se lec ted . R ecom b in ation  a llo w s the offsprings to inherit good  features from  the parents. 

To en su re that the o ffsp rin g  adds the diversity to the population in exp lorin g  the search  

sp ace , a random  mutation operator m ay be applied to one or more p osition s o f  the o f f ­

spring string fo llo w in g  (or independently  o f) the crossover. T his w ill alter the offsp ring  

ch ro m o so m e, usually  in a sm all way, w hich w ill introduce the random ness in the search  

sp ace. T he b asic G A  is ou tlin ed  in A lgorithm  3.1.

T h e se lec tio n  o f  tw o  in d iv idu als for the recom bination cou ld  be d one u sin g  d ifferent se-
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Algorithm 3.1: Genetic Algorithm.

Begin:

Initialization: In itia lize a random  population  (ch rom osom es)  

repeat

Evaluation: E valuate the ob jective  function  o f  each  chrom osom e  

Selection: S e le c t ch ro m o so m es (parents) from  the population for reproduction. 

T h e se lec tio n  criterion is based on the litness assignm ent (or ob jective function) 

o f  the se lec te d  m em bers o f  the population

Recombination: A p p ly  cro sso v er  to se lec ted  ch rom osom es to produce offsprings, 

w hich  w ill h o p e fu lly  have better so lu tion s. T he probability rate cou ld  be used  

to se lec t  the ch ro m o so m es for the recom bination .

Mutation: A p p ly  m utation loca lly  to som e gen es o f  the offsprings w ith  a particular 

probability  or a lternatively  to particular ch rom osom es.

Replacement: T h e n ew  p opulation  is created by replacing se lected  m em bers o f  the 

popu lation  w ith  the o ffsp rin gs  

until term in ating  con d ition  

End

lection m ethod s. For ex a m p le , tournament selection ch o o ses tw o ch rom osom es at random  

w hich  are used  in the tournam ent against each  other [31]. A s a result o f  the tournam ent, 

the fittest ch ro m o so m e is se lec te d  as a parent to be used in the recom bination. T h is m eans 

that to c h o o se  n parent, n d ifferen t tournam ents w ill be undertaken. Roulette-nheel selec­

tion is sim ilar to a rou lette w h eel in the casino . It assigns each individual in the population  

a fitness function  va lu e and then apportions that individual percentage based on the over­

all fitn ess [ 311. T he probability  fun ction  is used to select chrom osom es w hich  w ill lead to 

ch ro m o so m es w ith  better fitness tending to be selected  more often.

C rossover  and m utation operators are applied in traditional G A s to ensure that d iversity  

is present w ith in  the so lv in g  environm ent [ 131 ]. B elow , a few  general cro sso v er  op er­

ators are d escrib ed  w hich  are su itable for binary string representations. H ow ever, there 

are a great variety o f  crossovers in the literature, and the on es illustrated here w ou ld  not 

be su itab le  for represen tation s such  as real num bered strings and perm utation strings, for 

exam p le . A lso , bear in m ind that there are many variants o f  g en etic  a lgorithm s, using  

different se lec tio n  m eth od s and different criteria for replacing population  m em bers by
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offsp ring. In addition, crossover operators are som etim es used to produce just one o ff­

spring each  tim e, and som etim es tw o offspring are produced each tim e. There are very 

m any ch o ic es .

The m ost popular crossover operators for sim p le binary strings are one-point, two-point 

and uniform crossover. In one-poin t crossover, the chrom osom e o f  the parents are cut at 

a random ly ch o sen  point and the resulting parts o f  the ch rom osom e are sw apped [31 ]. In 

tw o-p o in t crossover, the ch rom osom e o f  the parents are cut at tw o points [31]. In uniform  

crossover, a random  pattern is generated, in w hich  each  bit is provided by one o f  the tw o  

parents. A secon d  pattern is autom atically  generated by exchanging the source o f  each  bit 

[31 ]. Figure 3 .4 (a )-3 .4 (c )  illustrates these three types o f  the crossover.

Parent 1 1 1 1 0 1 0 0 1

0  0 1 1 0  0  j 1 0Parent 

Child 1

Child 2 O i °  1 1 0  0

1 0 1 0

1 1

0  0

Parent 1 

Parent 2 

Child 1 

Child 2 0  0

1 0  1 0

1 1(0  0

r  o] 1 0

0 1

i l l
O 1

1 I o

(a) One point crossover (b) Two point crossover

Pattern
0 1 1 0 0 1 1 0

Paren t 1 1 1 1 0 1 0 0 1

Paren t 2 0 0 0 0 1 0

Child 1 1 0 1 0 1 Ho

1

Child 2 0 i l l l | o 0 0 0

Child 1 1 1 1 0 1 0 1 0

r

1 1 1 ooo 1 0

(c) Uniform crossover (d)  M uta t io n

Figure 3.4: Crossover and mutation.

O ne o f  the m ost popular m utation operators is point mutation w here the g en e (on e bit in
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the c h ro m o so m e) in the solu tion  is flipped  either from  0  to 1 or 1 to 0. This is illustrated  

in the F igure 3 .4 (d ). T h e m utation can be applied  either to on e gen e or a num ber o f  gen es  

across d ifferen t so lu tion s w hich  are d eterm ined  by the m utation probability (pm).

G en etic  A lg o rith m s are very popular in te lligen t heuristic search m ethods, w hich  are used  

as a fou n d ation  to m any op tim ization  evolu tion ary  algorithm s to so lve  problem s w ith  

s in g le  and m u ltip le  ob jectives . O ne o f  the first m u lti-ob jective G A s, w as the V ector E val­

uated G en etic  A lgorith m  (V E G A ) p rop osed  by Sch affer [120 ] in 1985. F o llow in g  V E G A , 

the d ev e lo p m en t o f  m any n ew  M O O  techn iqu es has taken p lace  w hich  in clu d es the M ulti- 

O b jectiv e  G en etic  A lgorith m  (M O G A ) [1 2 1 ], e litist N ond om inated  Sorting G enetic  A l­

gorithm  II (N S G A -II)[3 0 ] , e lit ist  Strength Pareto E volutionary A lgorithm  2 (S P E A 2)  

[1 1 8 ], P areto-A rch ived  E volu tion  Strategy (PA E S) [1 2 2 ], S im p le  E volutionary A lgorithm  

for M u lti-o b jec tiv e  O p tim ization  2  (S E A M 0 2 )  [76] and other techn iques. D ifferent tech ­

n iq u es have adopted  sp ec ific  m ech an ism s to ensure that d iversity  is present in the final set 

o f  so lu tio n s , and th is has o ften  brought w ith  it a co st o f  greater com p lex ity  w hen im p le­

m en tin g  th ese  a lgorith m s. For exam p le , S P E A 2 [118] u ses a population and an archive 

w ith  a fine-grain ed  fitn ess a ssign m en t strategy. T he algorithm  preserves extrem e points  

and the d iversity  m ech a n ism  is  b ased  on  k-th nearest neighbour, w hereas N S G A -II uses  

crow d in g  d istan ce and so lu tio n  ranking is based  on non-dom ination  sorting.

A s a result o f  our in itia l in vestiga tion  o f  the different techn iques, the fo llo w in g  section  

in trodu ces in detail tw o  evo lu tion ary  m ulti-objective a lgorithm s (M O E A s): NSGA-II and 

SEAM02  w h ich  are u sed  in  the current research for so lv in g  the m ulti-objective uncapa­

citated  fa c ility  loca tion  p rob lem  (C hapter 8 ) and the capacitated facility  location  problem  

in C hapter 9 . T h e reason s b eh ind  ch o o sin g  those techn iques are a lso  exp la in ed  in the  

fo llo w in g  sectio n s .

3.6 Multi-objective optimization formulation

B efo re  d iscu ss io n  o f  the ch o sen  evolutionary algorithm s, w e n eed  to present form ally  the 

m ath em atica l form ulation  o f  M O O  in a general form . Let us con sid er  a d ec is io n  m aker 

w h o  requires to  o p tim iz e  M  ob jective  functions w hich  can  be m in im ized  or m axim ized
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(31):

M in im ize /M a x im ize  f m{x), 7 7 1 = 1 ,2 ,3  A/ (3 .2 )

s u b j ( c l  l o  : 

g(x) > 0  

h(x) = 0

w here f/(.r) and //(./ ) are in eq uality  and eq u ality  constraints and a solu tion  jc is a vector o f  

d ecis io n  variables x  = ( x x, x 2 , . . . .) .  A  set o f  Pareto so lu tion s is the solu tion  o f  the above  

problem .

3.6.1 The Evolutionary Multi-Objective Algorithm: NSGA-II

T he evo lu tion ary  N o n -D o m in a ted  Sorting G en etic  A lgorithm -II (N S G A -II) [30J w as ch osen  

for im p lem en ta tion  in the research  for m od ellin g  the facility  location  problem  b ecau se it 

has all the q u a litie s  w h ich  are n eed ed  to b e taken into consideration  w hen so lv in g  a m ulti­

o b jectiv e  prob lem . It is  a w e ll tested  algorithm  in academ ia. It is e litist (preserving the 

b est so lu tio n s) and u se s  a ranking procedure for fitness assignm ent o f  the so lu tion s based  

on the fast n on d om in ated  sorting algorithm  (see  A lgorithm  3.3). The algorithm  u ses a 

d iversifica tion  m ech an ism , ca lled  a crowding distance, to ensure the so lu tions are w id ely  

and ev en ly  d istributed  (se e  A lgorith m  3 .4 ).

T h e N S G A -II a lgorithm  that w e use for a m ulti-objective uncapacitated facility  location  

p rob lem  (U F L P ) is b ased  on (109 ] and [30] and is illustrated in Figure 3 .5  and ou tlined  

in Algorithm 3.2. F irstly, an initial parent population P(0) o f  s ize  N  is created , at ran­

d om . Each parent so lu tion  is en cod ed  as a binary string. For each  ch rom osom e in P(0 ), 

the o b jectiv es  are evaluated  by applying the assignm ent procedure. T h en , a fast non- 

d om in ated  sort is ap p lied  to P(0) (see  Algorithm 3.3), w hich  a ssign s a “front num ber” 

to each  so lu tion  w h ich  is  equal to its non-dom inated level, starting w ith  1 ( 1  is the best). 

B inary tournam ent se lec tio n  in the parent population P(0) is fo llo w ed  by crossover  and



3.6 Multi-objective optimization formulation 47

m utation to  generate the ch ild  population C (0 )  o f  s iz e  N.  Each child solution in C (0 )  is 

then evaluated .

New Parent
population

C r o s s o v e r  & Crot«ov«r &
a s s ig n m e n t

P

S  Rejected

New child
population popu la tion

Based on Deb [31 ]

Figure 3.5: Overview of NSGA-II.

N ext, the fo llo w in g  e lit is t  procedure for t > 1  described below  is repeated for T  genera­

tions. A t the start o f  th is , the parent and ch ild  populations are com bined to form R(t) = 
P(t)UC(t)  o f  s iz e  2 * N  and a fast non-dom inated sort is applied to R(t). A new  parent 

p opulation , P(t  +  1 ), is  then form ed from  R(t) by adding solutions beginning with the 

first front onw ard to m ake up a population o f  s ize  N. Crowding distance is  used to help  

m ake the last few  se lec tio n s , i f  addition o f  all individuals from a particular front w ould  

produce a population  greater than N.  Then, the child population C(t  +  1) o f  s iz e  N  is 

created  from  P(t  +  1) by ap ply ing  binary tournament selection, crossover and m utation. 

T h e overall co m p lex ity  o f  the algorithm  is 0 ( m N 2), where m  is the number o f  ob jectives  

and N  is  the population s iz e  [30].

T h e fast non-dom inated  sort procedure (see  Algorithm 3.3) uses the con cep t o f  d om in ­

ation  (s e e  Definition 7), w here tw o  chrom osom es are com pared on the b asis o f  w hether  

o n e  ch rom osom e p d om in ates another chrom osom e q or not. The algorithm  w orks as fo l­

low s. Initially, each  ch rom osom e p in population P  is com pared to each  other and the 

algorithm  ca lcu la tes and stores tw o parameters for each chrom osom e: a set o f  so lu tions  

Sp  that p  dom in ates and the num ber o f  the solutions (np) that dom inate the ch rom osom e  

p. I f  no so lu tion s in the population dom inate p then it jo in s the first nondom inated  front



3.6 Multi-objective optimization formulation 48

Algorithm 3.2: NSGA-II algorithm for MOFLP ([30], [109]).
Begin:

R an d om ly  gen erate parent population  P(0) o f  s iz e  /V 

E valuate F ( 0 ) - ca lcu late/record  the value o f  ob jectives  

Fast n on -d om in ated  sort ( P ( 0 ) )  (se e  A lgorith m  3 .3 )

G enerate ch ild  popu lation  C’(0) o f  s ize  N  from  P{0) by applying binary tournam ent 

se lec tio n  w ith  the se lec tio n  criterion  b ased  on  crossover and m utation

E valuate ( ’(()) - ca lcu la te/record  the valu e o f  ob jectives  

while / < T  do

R(t) = P(t)UC(t)

F=fast n o n -d o m in a ted  sort R(t)  (se e  A lgorith m  3 .3 )

C ro w d in g -d ista n ce  a ssig n m en t (F ) ( s e e  A lgorith m  3 .4 )

Sort R(t)  u sin g  < n.,9„ (se e  D efin ition  4)

S e le c t  Pt+l from  sorted  R t [0 : N]
G enerate ch ild  C(t  -I- 1 ) o f  s iz e  N  from  P(t  4- 1) by ap ply ing  binary tournam ent 

se lec tio n  w ith  the se le c tio n  criterion  based  on  <nsga, crossover and m utation  

E valuate (■(! +  1) - ca lcu la te/record  the value o f  ob jectives  

t — t 1

Return all n on -d om in ated  so lu tio n s

w h ich  w ill have their d om in ation  cou n t equal to zero. T h e first part o f  the algorithm  finds 

the first n on d om in ated  front and the seco n d  part is repeated until all so lu tion s are c la ss i­

fied and a ss ig n e d  h igh er  n on d om in ated  fronts. To d o  so , the algorithm  iterates through  

each  so lu tion  w h ich  h as a d om in ation  cou n t as zero (p E F*) and each  m em ber q o f  its set 

( Sp) and red u ces c h r o m o so m e ’s q d om in ation  count by one. W hen the dom ination  cou n t  

b e c o m e s  eq u al to  zero , then the so lu tion  q is added to a separate list / / ,  w hich  b elo n g  to  

the se co n d  n on d om in ated  front and so  on . T he procedure continues for each  m em ber o f  

/ /  to  id en tify  a third n on d om in ated  front until all so lu tions are assign ed  to n ondom inated  

fronts.

In A lgorith m  3 .2 , the cro w d in g  com p arison  operator ( < n.,fla) com pares tw o  so lu tio n s and  

returns the fitter o f  the tw o  as the “winner" (a binary tournam ent se lec tio n ). It a ssu m es  

that every  so lu tion  i in the popu lation  has a non-dom ination  rank r* and a loca l crow din g  

d ista n ce  cdt.

Definition 4. C row d ed  T ournam ent S election  Operator [31 ]: A  solu tion  i w in s a tourna­

m ent w ith  another so lu tio n  j  i f  eith er o f  the tw o con d ition s b e lo w  are true:



3.6 Multi-objective optimization formulation 49

Algorithm 3.3: Fast non-dominated sort (P) [30].

Input Parameters: population (P), consisting of chromosomes, e.g. p, q 
Begin:
for each p e P  do 

for each q e P  do 

if ( p  -< q) then

Sp — Sp U {(/} {if p dominates q - save it in set of solutions Sp, which p domin­
ates } 

else if (q -< p) then

rip =  rip +  I {if q dominates p - keep the count of the solutions dominating p] 
if rip =  0 then

Fi =  F] U {p} {if nobody dominates p then it joins the first fro n t}

while Fi ^  0 do
H =  0

for each p e  F, do 

for each q e Sp do
nq — nq -  1 

if nq =  0 then
H =  H  U {g} {q joins list H} 

i =  i +  1
F{ =  H {form current front with members of H }

Return a list of non-dominated fronts F

1. If solution i has a better rank, that is, r, < r3

2. If they have the same rank but solution i has a better crowding distance than solution 

j ,  that is, 7 i =  T j and cAi >  cdj

As can be seen in Definition 4 , the NSGA-II algorithm integrates a density mechanism 

as part of crowded tournament selection operator. This technique calculates the crowding 

distance (see Algorithm 3.4) of each solution of the same front and serves as an indication 

of how widely spread the solutions are. It works on solutions in the objective space 
and measures a distance between the two nearest neighbours of a particular solution. At 

first, the algorithm initialises the distance values to zero for each point. The second for 

loop selects each objective function m at a time and sorts the population of the solutions
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according to the objective values. A very large value is assigned to the distance of the 

first and last position of the sorted population to ensure that those solutions are preserved. 

For all other solutions, the distance is calculated by adding the difference between two 

neighboring solutions on either side of the solution in question. The variables f™ax and 

/" " "  represent the maximum and minimum values of the objective function m.

Algorithm 3.4: Crowding-distance assignment (r) [31].

Input Parameters: solutions in set r  

Begin:
I =  \r\ {number of solutions in front r)  
for each i do

set T[i]distance — 0 {initialize distance for each solution) 
for each objective m do

r  =  sort(r, m ) { sort using each objective value)

t[1 j d i s t a n c e  =  t [ I ] d i s t a n c e  =  oo {assign large values to the boundary solutions)
for i =  2 to (/ — 1) do

, , ,  , xi)
7 "[^Jd i s t a n c e  —  ^ " l^ J d i s t a n c e  T "  t m a x _  t m m

J  m  J  m

Return crowding distance of each point in set r

Crossover. Binary tournament selection was used to choose the parents for crossover. 

Two individuals are randomly selected from the parent population P(t)  and the fitter one 

of the two is chosen as a parent, i.e., the one which wins the crowded tournament selection 

(see Definition 4). This means that the chromosome wins if it has higher non-domination 

level or if two chromosomes have the same non-domination level, then we choose the one 

that has a better crowding distance.

Mutation. For each solution (chromosome), a random mutation pattern is generated. A 

uniform random number between 0 and 1 is generated for each position in the solution. If 

this random number is less than mutation probability (pm), the gene is flipped either from 

0 to 1 or 1 to 0.

3.6.2 The Evolutionary Multi-Objective Algorithm: SEAM02

A Simple Evolutionary Algorithm for Multi-objective Optimization (SEAM02) [76], was 

chosen for implementation due its simplicity and good reported results in the earlier stud-
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ies ([76], [77] and [113]). The algorithm uses uniform selection and does not use a fitness 

function to select the parents. The survival decision for the offspring is based on a straight 

comparison between the solution generated by a child with the solution produced by its 

parents or other members.

The SEAM02 algorithm is described in Algorithm 3.5. The approach sequentially selects 

an individual from the population to be a parent once and pairs it with a second parent 

that is selected randomly (uniformly). A crossover is applied on those two parents which 

produces one offspring. Four different crossover patterns are compared for tuning the 

algorithm: one point, two point, uniform and no crossover. After the crossover, the muta­

tion is applied to the offspring, where one random bit of the child solution mutates from 0 

to 1 (or 1 to 0). The resulting child will either replace a member of the population or die, 

depending on the fitness of the child.

3.7 Applications of supply chain infrastructure techniques

The purpose of this section is to provide an overview of infrastructure modelling (facility 

location-al location) research available in the literature in terms of multiple objectives and 

techniques. As can be seen from the Table 3.1, selected academic papers are presented in 

terms of the objective function and the techniques which are used to generate solution(s) 

which depend on the classical or evolutionary method. For example, the analytic hierarchy 

process (AHP) is a well known technique and has been used to assign different weightings 

to quantitative and qualitative measures for strategic modelling. Min and Melachrinoudis 

[71 ] use the AHP method to evaluate multiple objectives: minimization of relocating 

cost, quality of living, traffic accessibility, maximization of market opportunities, local 

incentives and site characteristics to relocate manufacturing/distribution facility.

Classical multi-objective optimization methods such as the e-constraint have been used 

to transform a multi-objective problem into a single objective one, producing just one 

solution per simulation run. For example, Sabri and Beamon [102] develop an integrated 

multi-objective model involving strategic and operational planning under production, de­

livery and demand uncertainty. This method is used to consider cost, customer service
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Algorithm 3.5: SEAM02 algorithm [76],
Begin:
Generate N random individuals

Evaluate the objective for each population member and store it 

while stopping condition not satisfied do 

for each member of the population do 

This individual becomes a member 
Select a second parent at random 

Apply crossover to produce single offspring 

Apply single mutation to the offspring 

Evaluate each objective vector produced by the offspring 

if offspring harbors a new best-so-far Pareto component then

a)it replaces a parent, if possible

b) else it replaces another individual at random 

else if offspring dominates either parent then
it replaces it

else if offspring is neither dominated by nor dominates either parent then 

it replaces another individual that it dominates at random 

else
otherwise it dies 

Print all non-dominated solutions in the final population 

End

level(fill rate) and flexibility (volume or delivery). Guillen e ta l  [49] use the e -constraint 

method with a branch and bound technique to solve a multi-objective stochastic mixed 

integer linear programming model to determine an optimal supply chain configuration. 

The multiple objectives are the maximization of the net present value (NPV) and demand 

satisfaction, and the minimization of the financial risk. Hugo and Pistikopoulos [61] use 

a multi-objective optimization framework with the e-constraint method for environment­

ally friendly network design with two objectives: maximising the NPV and minimizing 

impact that the network has on the environment.

Recently, an evolutionary approach to solving MOO problems, which is based on Pareto- 

optimal solutions, has been considered by a small number of researchers for infrastructure 

modelling. This method allows the decision makers to investigate trade-offs and select a
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Model description References

[71] [102] [80] [62] [61] [49] [100] [109] [2]

Traditional objectives

Min costs * * * * * * *

Service level * * * * * *

Max the net present value * *

Min investment in opening facilities ♦

Min capacity utilization ratio *

Min financial risk *

Fast deliveries between plants *

Quality of living *

Traffic access *

Market opportunity *

Local incentives *

Site characteristics *

Flexibility (volume or delivery) *

Green objectives

Min transport pollution *

Promotion of recycling *

Conservation of energy *

Min impact on environment 

from entire sc (inc. transp. emissions) *

MOO techniques

Classical * * * * * * *

Evolutionary * *

Table 3.1: Examples of multi-objective infrastructure modelling with techniques as 

applied to specific scenarios.

particular network design that best satisfies their compromise. For example, Altiparmak 

et al. [2] use a new approach based on genetic algorithms to design a supply chain for 

a product with three objectives: minimizing total costs, maximizing customer services 

and the maximization of capacity utilization balance for DCs for the producer of plastic 

products in Turkey.

Villegas et al. [ 109] present the bi-objective (minimizing overall cost and maximizing
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coverage) uncapacitated facility location problem to redesign a Colombian coffee net­

work. They design an algorithm based on the Non-dominated Sorting Genetic Algorithm, 

an algorithm based on a Pareto Archive Evolution Strategy and an algorithm based on 

mathematical programming with one of the objectives treated as a constraint and they 

compare the two approaches for quality of their approximation to the Pareto frontier.

An example involving the trading off the cost against environmental impact is described 

in Quariguasi Frota Neto et al. [83], where the reorganization of a European pulp and 

paper logistic network is described. They use a techniques based on multi-objective pro­

gramming to determine “optimal” configurations of the network.

From the literature review we identify the need to create environmentally friendly logist­

ics systems where strategic decisions and the transport distribution system are considered 

together as part of the design. In our literature review we found only a small number of 

multi-objective infrastructure modelling in an environmentally friendly logistics context 

(e.g. [61], [62], [83], [92]). Pati et al. [92] uses goal programming to balance economic 

and environmental goals through increased wastepaper recovery for paper recycling lo­

gistics system. Khoo et al. [62] uses simulation approach in modelling of a supply chain 

concerned with the distribution of raw aluminum metal whereas Hugo and Pistikopoulos 

[61] use a classic multi-objective optimization method. Thus we highlight a fruitful area 

for our future research where environmental and economic concerns need to be modelled 

as explicit objectives to generate more information about cost and the implications on eco­

logical impact. Multi-objective optimization techniques, such as evolutionary algorithms, 

are available to generate alternative solutions which allow the decision makers to investig­

ate trade-offs between economic and environmental objectives. In practice, there is a wide 

range of algorithms that come under the Pareto-based category. Therefore there is a need 

to investigate these techniques for efficient infrastructure modelling for environmentally 

friendly networks.
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3.8 Summary

The main aim of this chapter is to introduce the reader to the important concept of multi­

objective optimization through different approaches which are based on the classical pref­

erence based methods or evolutionary techniques such as NSGA-1I and SEAM02. It also 

covers a brief literature review of previous work using multi-objective techniques for net­

work design where environmental and economic costs are balanced.

The main conclusion of this section is that if environmental assessment is incorporated 

as part of infrastructure modelling then there is a possibility of achieving both economic 

and environmental savings. Every logistics design should include industry specific en­

vironmental assessment to prevent pollution and save the environment. Some tools and 

techniques are already available to researchers to help achieve this goal, but there is still 

much work to be done.
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Chapter 4

Assessing the impact of cost 

optimization based on CO2 emissions of 

infrastructure modelling

4.1 Introduction

This chapter describes a study where a simulation based approach of a European case 

study from the automotive industry by Hammant et al. [124] considers strategic and oper­

ational level decisions simultaneously for logistics network modelling. The study aims to 

assess the impact of the traditional cost optimization approach to strategic modelling on 

overall logistics costs and CO 2  emissions by taking into account the supply chain struc­

ture (number of depots) and different freight vehicle utilization ratios (90%, 75% and 

60%). This data was previously evaluated from an economic perspective only and iden­

tified the optimum network design at two distribution centres. Taking an environmental 

perspective gives us new insights. We will consider the impact of strategic and operational 

level decisions simultaneously, focusing on inventory and transportation costs versus the 

environmental impact in terms of CO 2  emissions from transportation and non-domestic 

buildings such as depots. The calculation of CO 2 emissions from transportation considers 

vehicle type, utilization and vehicle speed. We use a supply chain network design applic­

ation for our simulation with optimization based on costs alone. Attention is also paid to 

the sensitivity of our solutions when changes in key model parameters, such as vehicle 

utilization ratios (90%, 75% and 60%) and network structure (number of depots), occur.
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4.2 Background information

The past 20-30 years have seen a significant restructuring of logistics networks for many 

companies, as they strive to reduce costs while improving customer service levels. In 

the context of transport, there has been a particular focus on improving vehicle fill and 

reducing the distance vehicles travel. While traditionally, attention has concentrated on 

outbound logistics, increasingly inbound distribution is also considered [25]. Not only do 

these changes bring about internal benefits to companies, but they also create wider bene­

fits to society, leading to a reduction in external costs and its impact on the environment.

Since the 1980s, the development of supply chain management has resulted in managers 

becoming increasingly focused on the demands of their customers. Initiatives such as lean 

production have resulted in companies looking to deliver ever higher levels of customer 

service, while minimising the cost impact [108]. Logistics operations have been required 

to handle smaller and smaller shipments through their networks while maintaining effi­

ciency. As a consequence of this, it has been necessary for companies to reconfigure their 

logistics operations. These have been categorised by McKinnon [75] into four main areas:

• Logistics structures - relates to the configuration of the distribution network and the 

choice of distribution channel. Control of this network also comes within this area.

•  Pattern of trading links - determines the geographical spread of the logistics struc­

ture. Recently, moves towards outsourcing abroad have seen supply chains lengthen.

•  Scheduling of product flow - affects the movement of products through the network 

and determines the size of the shipments to be made. Developments in this area 

include continuous replenishment and just-in-time deliveries.

• Management of transport resources - decides the actual transport requirements for 

particular shipments, and may include issues relating to modal choice.

All of the above decisions are likely to affect the transport requirements for an individual 

organisation, in terms of the distance, speed, frequency and timing of deliveries [26]. 

Traditionally, such changes would only influence the outbound logistics operations of a
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business [51 ], with inbound movements being viewed as the responsibility of the supplier. 

However, nowadays, there is a focus on this inbound network, as companies recognise the 

potential synergies that exist between them [25].

There are a number of examples within the published literature of how the efficiency of 

logistics operations can be improved, while also delivering environmental benefits. The 

consolidation of small shipments is a popular approach to reducing transport costs, and 

has particularly been used within the grocery industry in the UK [42]. Consequently, load 

consolidation has resulted in a reduction in the distance vehicles travel of around 20% 

[75].

4.3 Method

To explore the relationship between total logistics costs and environmental impact in terms 

of CO 2  emissions for strategic modelling in the logistics network, there is a need for an 

appropriate methodology for both assessments. The method and data we use for evalu­

ating economic costs is based on the case first presented in Hammant et al. [124]. One 

of the objectives of that study was to describe the use of a simulation-based decision 

support system to establish the impact of restructuring the physical infrastructure of a 

Pan-European supply chain. The authors indicated the benefits of using a simulation ap­

proach for assessing network design. The optimum network design at two distribution 

centres was determined by minimizing the total overall logistics costs (transportation and 

inventory costs) while ensuring an appropriate customer service level. Subsequently Lal- 

wani et al. [125] used the data to present a new method, which combines simulation and 

the Taguchi technique [130] to identify the factors that the structure of the distribution 

network is sensitive to. Their analyses indicated that the optimum design is highly at risk 

from the uncertainties associated with inventory holding stocks and delivery frequencies 

rather than customer demand and transport costs.
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4.3.1 Modelling economic costs

To model our logistics networks, we use a commercially available supply chain design 

application CAST-dpm® (by Radical, nowadays known as CAST-NV by Barloworld 

Optimus). This is the same package that was used in the original study by Hammant et 

al. [124] and Lalwani et al. [125]. The software allows the decision-maker to evaluate 

different scenarios and aims to identify the optimum network infrastructure, such as the 

location and number of depots. It uses a heuristic approach to estimate the transportation 

costs of the network, distance run by the vehicles and the number of the vehicles needed 

for the particular output period. The Square Root Law [69] was used to estimate the costs 

of the inventory that is needed in the network.

As previously mentioned, the simulation model is based on the case study of an auto­

motive aftermarket Pan-European distribution network. The network operates through 

different countries such as the UK, France, and Spain involving a laige number of busi­

nesses and substantial operating distance. Throughout Europe, the company has around 

550 suppliers and 10,000 customers. The case study is purely road transport based and 

does not take into account freight movements by sea or rail, although to join up with the 

UK road network a ferry or rail/tunnel journey would be used. All the input data, which 

was used in our model, was taken from the original case study, apart from the transport­

ation data that we generated ourselves, as it was not available from the original source. 

Table 4.1 summarizes the input data used for the simulation model. Note that the total lo­

gistics costs derived from our design, are different to the original paper because we used 

different transportation data. The aim of the research presented in this chapter is not to 

replicate the precise data from the original case study but to reproduce general principles 

of the research by Hammant et al. [124] where the optimum network design based on 

costs was identified as two depots. This approach allowed us to analyse the trade-offs 

between the total costs and their environmental impact of a cost based optimization.

To analyse the relationship between total logistics costs and their environmental impact 

from transportation and depots, two different scenarios were considered for strategic mod­

elling. For the first scenario, we used a centre of gravity method to determine the centroid 

locations of the distribution centres in the network. For the second scenario, the original
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Customer 

(original data)

Name, location 

Annual demand by product group 

Number o f deliveries per year 

Transportation mode

Supplier 

(original data)

Name, location 

Annual supply by product group 

Number o f deliveries per year 

Transportation mode

Transport Vehicle information: physical 

and distance constraints: 

Transportation costs functions

Warehouse locations 

(original data)

Location

Throughput, total area (square meters)

Table 4.1: Simulation model’s input data based on Hammant et al. [124].

locations from Hammant et al. [ 124] were used to derive network related costs and dis­

tances travelled. The original locations are the real physical depots existing in the network. 

In this scenario, we aimed to replicate the total logistics costs curve from the original case 

study, which identifies the optimum network design at two depots. The simulation model 

is not intended to find the optimum solution; it evaluates different options, which are input 

into the system.

4.3.2 Centre of gravity modelling

Two different scenarios were considered for the current study for strategic modelling: ori­

ginal published locations with an optimum design of two depots and a centre of gravity 

scenario. The centre of gravity approach is one of the well-known heuristic methods in 

facility location analysis. It indicates the centroid locations that minimize the total trans­

portation cost. Traditionally, the transportation rate and the point of volume are the only 

location factors in this approach [6]. The method provides a good estimation to the least- 

cost solution. However, a certain amount of location flexibility has to be exercised by 

the decision-maker because of geographical obstacles, such as sea, mountains etc. The 

current network modelling software offers two alternatives for centre of gravity model­
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ling: cost centre o f  gravity and volum e centre o f  gravity. The cost centre o f  gravity m odel 

attempts to m in im ize the total cost; w hereas the volum e centre o f  gravity attempts to 

m inim ize the total tonne-kilom etres travelled [96]. The cost based centre o f  gravity was 

used with a lim ited  num ber o f  scenarios, but these generated sim ilar results to the volum e 

centre o f  gravity. Therefore, due to tim e constraints and the sim ilarity o f  results the latter 

technique w as used. A s can been seen from Figure 4.1 the centroid depots locations for 

the UK and France have not m oved too far from  the original locations, due to the high  

supply and dem and vo lu m es in those areas. The other distribution centres have changed  

locations, w hich  reflect current custom er’s and supplier’s demands.

4.3.3 Modelling C 0 2 emissions

A fter estab lish ing the base d esign  for each scenario, w e used two determinants, supply  

chain  structure and veh icle  utilization factor as key decision  variables for this research, to 

an alyse the potential for reducing C 0 2 em issions at the m icro level. These factors and 

others im pact on the respective key ratios identified by M cKinnon [74 | to influence C 0 2 

from freight transport. Supply chain structure has a direct impact on the two key ratios: 

handling factor and average length o f  haul. Handling factor is a crude measure o f  the 

num ber o f  the links in the supply chain , where the w eight o f  the goods is converted into 

freight tonnes-lifted . T herefore, for our research, the supply chain structure was reflected

<
A

/
0  depots original locations 

^  depots centre-of gravity location

Figure 4.1: Depots locations (five depots scenario),
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in the reduction  o f  the total num ber o f  dep ots in the network: from  live depots down to 

on e depot, d ecrem en ting  in steps o f  on e. Vehicle utilization has a direct impact on re­

ducing v eh ic le  traffic. Increasing veh ic le  utilization a llow s busin esses to cut the num ber 

o f  v eh ic les  on the road, w hich  brings both econom ic and environm ental advantages. T he  

average w eigh t-b ased  u tilization  in 2 0 0 6  in UK  o f  rigid lorries on laden trips was 52%  

and for articulated v eh ic le s  58%  [35]. A verage deck utilization  o f  the v eh ic les , for pallet 

netw orks w as 73% , for n on -food  51% , and for food  retail 53%  [36], Therefore, as the 

purpose o f  th is research  is to an alyse the trade-offs betw een  total costs and em ission s, 

w e used veh ic le  u tiliza tion  factors at 90%  (the ’id ea l’ veh ic le  utilization); at 75%  (ap­

proxim ation from  the average d eck  utilization  for pallet network) and at 60%  (average  

w eigh t-b ased  u tiliza tion  for articulated veh icles).

Transportation costs per vehicle type 
(delivery, supply and inter-depot movements)

Total economic cost

Inventory costs per depot

Distance travelled per vehicle type/per road type

Total environmental impactFuel consumption per vehicle type/per road type

Fuel type

Electricity consumption per depot
(C02 emissions)

Environmental
Assessment

Economic
Assessment

Figure 4.2: Input/O utput diagram  of the method for each scenario.

W hen using strategic m o d e llin g  techn iqu es to calculate C 0 2 em ission s from  transporta­

tion and dep ots, it is im portant to estab lish  boundaries for those estim ations. To ca lcu late  

CO -2 em iss io n s  from  transportation, w e w ill only consider the am ount o f  good s being  

transported over the d istan ce travelled . Our method does not take into account the life  

c y c le  assessm en t o f  the product from  “the cradle to grave". For the present work, w e use  

the outputs from  the su pp ly  ch ain  netw ork design application, which runs over a partic­

ular period o f  tim e and esta b lish es the network related costs and travelled d istances for 

different v eh ic les  typ es for a particular output period o f  52  w eeks. H ence, our estim ates  

for ('()•> em iss io n s  co v e r  the sam e period o f 52  w eeks. A s m entioned previously, the
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case study d escrib ed  in this chapter is purely road transport based and does not take into 

account freight m ovem en ts by sea or rail. F igure 4 .2  represents the overall m ethod with  

data requirem ents for each  scenario.

Chapter 2, S ection  2 .7  p rovides an overv iew  o f  the different form ulations used for ca l­

cu latin g road related em iss io n s  as part o f  lo g is tic s  m od ellin g . D ue to the com p lex ity  o f  

correctly estim atin g  ('()> e m iss io n s  from  transportation, som e assum ptions and s im p li­

fications have to be m ade w ith  respect to driver’s behaviour, volum e o f  the traffic on the 

road, and so  on. It is very d ifficu lt to take account o f  all the described factors w hich  have 

an im pact on fuel con su m p tion  to  ca lcu late ( ’(J? em iss ion s from  road freight. A ssu m e  

that tw o types o f  d ie se l lorry are used  for d elivering good s across the network: a 5  tonne 

gross w eigh t lorry and a 4 0  tonne gross w eigh t lorry. To calcu late C()2 em iss io n s from  

transportation for each  v eh ic le  type and veh ic le  payload, w e used a d istance-based  form u­

lation 4.1 from  D E F R A  [32] w here the em iss io n s  from  all road types (m otorw ay, rural, 

urban and m inor) are su m m ed  together:

I oLal COiifM i vehicle type/payload) — ^  ^ (total km  travelled * L F P h  *
road type

* f  uel conversion f  actor) (4 .1 )

w here a fuel con version  factor o f  2 .6 3  kg/litre w as used for d iese l fuel; litres fuel per km  

(L F P K ) is the fuel con su m p tion  (litres/k m ) o f  the veh icle .

Road type Road traffic (HGV) Average speed limit % difference in fuel consumption 

compared to driving at 54mph

Motorway 42% 54 mph 0

Rural "A" roads 35%; 45 mph -5.53

Urban "A" roads 10% 36 mph -5.55

Minor roads 13% 30 mph -2.91

Table 4.2: Road traffic, speed and fuel consumption articulated for HGVs.

T he fuel con su m p tion  (litres/k m ) figure for equation 4.1 is calculated depending on the 

v eh ic le  speed  (w h ich  is d erived  from  the road type), veh ic le  type and veh icle payload. A s
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can be seen  from  the Table 4 .2 , road typ es are c la ssified  as m otorw ays (42  % o f  roads), 

rural "A" roads (35  %), urban "A" roads (10% ) and m inor roads (13 %) [37]. For each  

road type, for ex a m p le  a m otorw ay, there is an average speed  o f  54  mph for H G V  veh ic les  

w hich  w as u sed  es ta b lish  the b ase ca se  for our m eth od ology . In addition, the table presents 

data for the road traffic w h ich  sh o w s the a llocation  o f  the total d istance travelled on the 

particular type o f  road, for exam p le  m otorw ay road is 4 2  per cent o f  overall d istance  

travelled. T h e fo llo w in g  m eth o d o lo g y  w as used  to define fuel consum ption  accordingly:

1. E stab lish  fuel co n su m p tio n  (litres/k m ) for the base case  (for m otorw ay road w ith  

average v e h ic le  sp eed  at 5 4  m ph) for tw o  types o f  veh ic le  and d ifferent veh ic le  

payload. For a 4 0  ton n e lorry w e u sed  data from  Kohn [64], w here a figure o f  0 .2 7  

litres/km  for fu e l con su m p tion  unladen and 0 .3 8  litres/km  for fuel con su m p tion  

with a fu ll load  w as u sed  for a v eh ic le  speed  o f  5 4  mph. For a 5 tonne lorry w e  

estim ated  that fu e l co n su m p tio n  unladen is 0 .1 5 7  litres/km  and 0 .2 7 5  litres/km  for  

fuel con su m p tion  w ith  a fu ll load  from  the statistics o f  fuel con su m p tion  data by  

v eh ic le  typ e from  D fT  [3 3 ]. E quation  4 .2  presents a form ulation w hich  w e  used for  

ca lcu la tin g  fu e l co n su m p tio n  d ep en d in g  on  the veh ic le  payload. L inear correlation  

b etw een  p ay load  and fu el con su m p tion  correspond to the recent in vestigation  by  

D fT  [38].

L F P K  = L F P K  (unladen) +  ( L F P K  ( fu ll  load) -  L F P K  (unladen)) *

* (%weight laden) (4 .2 )

A s the resu lt o f  all ca lcu la tion s, Table 4 .3  presents fuel consum ption  for the base  

c a se  for our study for d ifferen t v eh ic le  typ es w ith  different veh icle  payload, w here  

an average sp eed  o f  5 4  m ph is  u sed  for m otorw ay road.

2. C a lcu la te  fuel con su m p tion  (litres/k m ) from  the base case (veh icle  speed  o f  54  m ph) 

to a veh ic le  sp eed  o f  4 5  m ph (rural "A road"), 36  m ph (urban "A" road) and 30  m ph  

(m in or roads) for d ifferen t v eh ic le s  and payload. To calculate the percentage d if ­

feren ce in fu e l con su m p tion  b etw een  d ifferent veh ic le  speeds w e used data from  

N A E I [78 ], w here the user can  estim ate C 0 2 em ission s depending on the v eh ic le
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Weight

laden(%)

Fuel consumption (litres/km) 

40 tonne lorry

Fuel consumption (litres/km) 

5 tonne lorry

90% 0.369 0.263

75% 0.353 0.245

60% 0.336 0.228

Table 43 : Fuel consumption (vehicle speed 54 mph).

Road type

Weight laden (%)

40 tonne lorry 5 tonne lorry

90% 75% 60% 90% 75% 60%

Motorway 0.369 0.353 0.336 0.263 0.245 0.228

Rural "A" road 0.349 0.333 0.317 0.249 0.232 0.215

Urban "A" road 0.349 0.333 0.317 0.249 0.232 0.215

Minor road 0.358 0.342 0.326 0.255 0.238 0.221

Table 4.4: Fuel consumption (litres/km) for different settings for vehicles, payload 

and road type.

type and the v e h ic le  sp eed . T h e con version  o f  veh ic le  speeds from  m iles per hour 

to k ilom etres per h our w as perform ed  to ca lcu late the em iss ion s . For exam p le, an 

articulated  h eavy  g o o d s  v eh ic le  w ith Euro II en g in e c lass produces around 5.53%  

le ss  C 0 2 em iss io n s  travellin g  at 4 5  m ph com pared  to travelling at 54  m ph. B ecau se  

CO 2 e m iss io n s  are d eterm in ed  m ain ly  by fuel consum ption  [97], w e assum ed the 

sam e p ercen tage d ifferen ce  for  fu e l con su m p tion  for each  veh ic le  type in our m odel 

(Table 4 .2 ). T h e sam e assu m p tion s w ere applied  to data generated for other cou n ­

tries. T herefore, the fu e l con su m p tion  for each  veh ic le  type, veh ic le  p ayload  and 

road c la ss  w as adjusted  accord in g ly  to  the percentage o f  d ifference show n in Table 

4 .2  from  the base ca se  d escrib ed  in step 1. Table 4 .4  represent resulting fuel co n ­

su m p tion  data for d ifferen t v eh ic le  typ es, w eigh t laden and road types.

To ca lcu la te  C()2 e m iss io n s  from  elec tr ic ity  used at depots w e need to estim ate the av­

erage annual e lec tr ic ity  con su m p tion  (k \V h /m 2) per depot. In our autom otive network, 

the product is  o f  a nature that d o es  not n eed  a sp ec ia lised  storage environm ent requiring  

c o o lin g  or h eating. T h e d ep ot data w as on ly  availab le regarding the s ize  o f  the b u ild in gs
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in m 2. T h erefore, an average figure o f  2 k W h / m 2  w as used from  the British Land C om ­

pany PLC  [15 ]. To convert energy data to CC)2 em iss io n s  for a U K -based  depot, w e used  

a con version  factor o f  0 .5 4  k g C 0 2/k W h  [32 ], w hich  g iv es  C 0 2 em ission s o f  1.08 kg /m 2. 

For d ep ots in other cou n tries w e used  the fo llo w in g  conversion  factors: in France w e  

used  0 .0 8 3  k g C 0 2 /k W h , in Italy 0 .5 2 5  kgC () 2 /k W h, in G erm any 0 .5 3 9  k g C 0 2/k W h ,[40] 

in Spain  0 .4 5 5 6  k g C 0 2/k W h  [6 6 ].

4.4 Results

Id en tify in g  the op tim u m  num ber o f  d ep ots and their p osition s is  o f  fundam ental im port­

an ce, i f  o n e  is to  lo w er  total c o s ts  and ensure an appropriate level o f  custom er serv ice . In 

the current study, d elivery , c o lle c tio n s  and inter depot m ovem en ts are taken into account 

for ca lcu la tin g  overa ll transportation co sts  and d istances. There is  a trad e-off b etw een  

inventory and transportation . F igu re 4 .3 (a )  and 4 .3 (b ) sh ow  the results o f  Pan-European  

distribution netw ork  m o d e llin g  and the e ffec t that d ecreasing the num ber o f  the d epots in 

the lo g is tic s  n etw ork  h as on  the transportation and inventory costs. T he results in F igures 

4 .3 , 4 .4 , 4 . 5  on  c o s ts , total d istan ce  traveled and C 0 2 em iss io n s are presented as relat­

ive va lu es to m ake actual va lu es an on ym ou s. Transportation costs are a function  o f  both  

d istan ce and tim e related  factors, w h ich  include fixed  and operational (d istan ce related) 

co sts . W e can ob serv e  that the transportation co sts  decrease as the num ber o f  facilities  

d ecrea ses due to  the red u ction  in  the inter-depot m ovem en ts until it is reaches the point 

w h en  it starts in creasin g  again , d ue to  the lon ger travel d istances to the nearest depot. The 

inventory co sts  d ec lin e  as the num ber o f  fa c ilitie s  d ecrease due to the low er lev e ls  o f  in ­

ventory. A s you  can  se e  from  F igure 4 .3 (a ) , the optim um  num ber o f  depots for cost-based  

op tim iza tion  in the centre o f  gravity scen ario  equated to three depots. F igure 4 .3 (b ) sh ow s  

the op tim u m  num ber o f  d ep ots for cost-b ased  optim ization  equated to tw o in the original 

lo ca tio n s scen ario , w here d ep ots are located  at the real physical locations. B y ch an ging  

the v eh ic le  u tilization  from  60%  to  90%  for the optim um  design  in the centre o f  gravity  

scen ario  w e ob serv e  a d ecrea se  in total lo g is tic s  costs o f  8.9% . A  slightly larger d ecrease  

o f  12.9%  is seen  in the op tim u m  d esig n  for original locations scenario. U nfortunately, 

90%  v eh ic le  u tiliza tion  is not a very  realistic figure in the real world. B y  com paring the



4.4 Results 67

more practical levels  o f  60%  and 75%  v eh ic le  utilization, w e can see a 5.5% total log ist­

ics cost d ecrease for the centre o f  gravity locations scenario and 7.5% decrease for the 

original locations scenario.
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Figure 4.3: Logistics costs related to number of depots and vehicle utilization para­

meters.

Figure 4 .4 (a ) and 4 .4 (b ) represent an overview  o f  the transportation distances related to 

the num ber o f  depots and 90%  v eh ic le  utilization parameters for both case studies. The 

figure sh ow s that inter depot d istance is reducing as the number o f  depots decreases and 

the supplier and delivery d istance travelled is increasing. N ote that the optim um  design  

based on travelled v eh ic le  k ilom etres is three depots for both scenarios and all veh icle  

utilization parameters; w h ile  the optim um  based on distribution costs is three depots for 

the centre o f  gravity locations scenario and tw o depots for the original locations scenario. 

Sim ilar observations are produced for 75%  and 60% vehicle utilization. N ote, that in the 

original locations scenario, for 90%  veh icle  utilization the difference between the three 

and tw o depots design  resulted in a reduction o f  total logistics costs by 8 .8 %; transport 

co sts  decreased by 1 .4 % and total veh ic le  k ilom etres travelled based on % laden w eight 

o f  the veh icle  increased by 0.67% , w hich  is alm ost negligible.

Earlier w e d iscu ssed  the im pact o f  veh ic le  utilization on total logistics costs. N ow  w e w ill 

assess the im pact o f  cost-b ased  optim um  network design on the total vehicle k ilom etres
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Figure 4.4: Transportation distance breakdown related to number of depots and 

90% vehicle utilization.

travelled based on % laden w eigh t o f  the veh icle. For the centre o f  gravity locations  

scenario, ch an ging  from  60%  to 90%  in veh icle  utilization show a decrease o f  22% in 

distance travelled (km ) and 27%  for the original locations scenario. Changing the veh icle  

utilization from  60%  to 75%  has produced a reduction o f  13.1% in distance travelled (km ) 

for the centre o f  gravity scenario  and 16.1% for original scenario.

num ber o f d ep o ts num ber of depots

•90% vehicle ut Mot Ion —* —75% vehicle utHlotton90% vehicle utM zrtkm  - * - 7 5 %  vehicle u t i lo t io n
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Figure 4.5: Total C 0 2 emissions from transport and electricity related to number of 

depots and vehicle utilization parameters.

A s d iscussed  in S ection  2 .7 , levels o f  em issions directly relate to different factors, in­
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elud in g  d ista n ces travelled , the load o f  the en g in e  over the d istance and the speed o f  the 

v eh ic le . T h e describ ed  factors are incorporated into our calcu lations o f  the em ission s  

w hich  g iv e  a m ore accurate figure for estim atin g  the im pact. A s you can see from  Figure 

4 .5 (a ) the op tim u m  d esign  based on total ('()> e m iss io n s  for the centre o f  gravity scen ­

ario is three d ep ots  for all v eh ic le  u tilization  ratios. T he increase in veh ic le  utilization  

from  60%  and 90%  sh o w s a reduction o f  10.6%  in transport related ('()■> em iss io n s and 

for veh ic le  u tiliza tion  from  60%  to 75%  a reduction o f  6 .8 % can be observed . Figure 

4 .5 (b ) sh ow s that for the orig inal location s scen ario  the optim um  design  based on ('()> 

em iss io n s  is tw o  d ep ots for 90%  veh ic le  u tilization  and three depots for 60%  and 75 % 

veh ic le  u tilization . A n a ly s in g  the d ifferen ce in C()2 em iss io n s betw een three and tw o  

dep ots for the orig in a l scen ario , w e  can see  that there is on ly  a 0.57%  d ecrease for 90%  

veh icle  u tilization , w h ich  is a lm ost n eg lig ib le . For 75%  veh icle  utilization , an increase o f

0.55%  in ( ' ( % 2  e m iss io n s  can  be seen  and for 60%  veh ic le  utilization an increase o f  1.62%  

can be ob served . T h e an a ly sis  sh o w s that for cost-based  optim um  d esign  at tw o depots  

for the orig inal lo ca tio n s scen ario , the ch an ges from  60%  and 90%  in v eh ic le  utilization  

produce a reduction  o f  16.3%  in transport related ( '()2 em ission s. For v eh ic le  utilization  

from  60%  to 75%  there is a reduction  o f  around 10%.

From  our an a lysis  w e  id en tified  that environm ental im pact from electricity  in depots in 

our ca se  study w as n e g lig ib le  and had little e ffec t on the overall result o f  calcu lating  

CO -2 em iss io n s . T h is w as m ain ly  due to the product not requiring any specific storage 

tem perature.

4.5 Discussion of results and main conclusions

To a n a lyse  the relationship  b etw een  total lo g istic s  costs and their environm ental im pact 

from  transportation and d ep ots w e  con sid ered  tw o different scenarios for strategic m od ­

ellin g: a centre o f  gravity loca tion s scen ario  and a scenario using the original published  

loca tion s w ith optim um  netw ork d esign  con sistin g  o f  tw o depots. The cost-based  op tim ­

ization for the centre o f  gravity  scen ario  identifies the optim um  number at three depots  

based on total lo g is tic s  co s ts  and C()2 em iss io n s . In the original locations scenario, the
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optim um  d esign  o f  cost-based  op tim ization  equated  to tw o  depots for total log istics costs  

and tw o/th ree dep ots for ('()> em iss ion s . T he latter proved to be sensitive to the veh ic le  

utilization  ratios, even  though there is a very sm all d ifferen ce in transportation costs and 

veh ic le  k ilom eters betw een  three and tw o d ep ots. The m eth od ology  for calcu lating ('()■> 

e m iss io n s  takes into consideration  speed  o f  the v eh ic le , v eh ic le  type and veh ic le  u tiliz­

ation. T h e study based on original location s a lso  in dicates that increasing veh ic le  util­

ization  by 15% cou ld  bring econ om ic  sav in gs in total lo g is tic s  costs (7 .5% ) as w ell as 

environm ental benefits reflected in reduction o f  total veh ic le  k ilom eters traveled (16.1% ) 

and reductions o f  transport related ('()■> em iss io n s o f  around 10%. T herefore, due to the 

increasing  environm ental con cern s, it is im portant to incorporate environm ental ob ject­

ives as part o f  lo g is tic s  d esign  and correctly estim ate veh ic le  utilization  ratio factors for 

em iss io n s  ca lcu la tion s, to a llow  the d ecision -m aker to m ake an inform ed and ob jective  

d ecision  regarding netw ork d esign .

The current study has several lim itations. Firstly, on ly  on e case  study has been analysed . 

S econ d ly , the assu m p tion s regarding transportation data a lso  lim its the study becau se in a 

realistic supply  chain  a w id er variety o f  veh ic les are used to transport com m od ities. A lso , 

the lack o f  sp ec ific  fuel con su m p tion  figures for transportation m akes the study dependent 

on in form ation  availab le in the p ub lic dom ain .

T h is chapter con sid ers a s in g le  o b jectiv e  optim ization  m odel based on costs w here C 0 2 

e m iss io n s  are ca lcu lated  as a result o f  the cost-b ased  optim ization. This study allow ed  us 

to an a lyse  factors that have an im pact on  the strategic m odel and dem onstrated that the 

optim um  solu tion  based  on co s ts  is  not n ecessar ily  the sam e for em ission s w hich  h igh ­

ligh ts the im portance o f  incorporating environm ental concerns as objectives. In Chapters 

8  and 9  w e are in vestigatin g  the bu ild in g  o f  a m ulti-objective optim ization d ecision  sup­

port tool for strategic m od ellin g  (fa c ility  location-allocation  problem ), w here traditional 

o b jectiv es , such  as co st and im provin g  service level and environm ental im pact are c o n ­

sidered  sim u ltan eou sly . T h e approach w ill allow  the decision  maker to evaluate a set o f  

v iab le a lternatives, in contrast to traditional m ethods where environm ental im pact is c a l­

cu lated  as a constrain t or the user is required to prioritize objectives. T he approach cou ld  

p otentia lly  find ex c e llen t so lu tion s w hich  could  be m issed by other m ethods, but generat­
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ing a large num ber o f  so lu tion s cou ld  be a lso  con sid ered  as a disadvantage. Therefore it 

is im portant to in vo lve  the d ecision -m ak er in the evaluation  o f  the solu tions according to 

the potential criteria needed .

4.6 Summary

T his chapter a im ed  to a n a ly se  the relationship  b etw een  total lo g istic s  co sts  and their envir­

onm ental im pact in term s o f  CO 2  em iss io n s  from  transportation and electricity  u sage in 

depots w hen u sing  a traditional cost-b ased  op tim ization  approach. Our sim ulation  m odel 

w as based on a P an-E uropean netw ork from  the autom otive sector taken from  an original 

study by H am m ant et al. [ 124], T h e present chapter d escribes a sp ecific case study and 

d oes not attem pt to  g en era lize  the resu lts o f  the analysis. N evertheless, w e b elieve that 

our resu lts h ig h lig h t the fo llo w in g  issue: the optim um  solu tion  for reducing costs d oes not 

n ecessarily  eq u ate to the op tim u m  so lu tion  for reducing CO 2 em ission s. Furtherm ore, our 

findings in d icate the op tim u m  d esign  o f  a distribution network is h igh ly  sensitive to the 

level o f  v eh ic le  u tiliza tion . D u e  to  in creasing  g lob al clim ate change, the chapter m akes a 

ca se  for co n sid er in g  en v iron m en ta l and econ om ica l ob jectives sim ultaneously.
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Chapter 5 

Cost-Based Optimization for a 

Capacitated Allocation Model Using 

Sainsbury’s Data

5.1 Introduction

John Sainsbury PLC  (S a in sb u ry’s) is on e o f  the five leading superm arket retailers in the 

U K . It began  in 1869  as a butchers, and has now  grow n into a leading U K  com pany with  

co n v en ien ce  stores and p h arm acies as w e ll as the superm arket chain . Sainsbury’s a lso  

in clu d es a thriving o n lin e  b u sin ess  w ith in  its p ortfolio . In this study w e focu s on the  

lo g is tic s  n etw ork  con cern ed  w ith  d eliverin g  groceries from  the distribution centers to the 

superm arket stores. T h e co n v en ie n c e  stores, pharm acies and on lin e store have separate 

distribution  n etw orks w h ich  are not con sid ered  here. T he present chapter d escribes an 

in vestigation  in to  the p otentia l e ffe c t  o f  ch an ges in various key factors on the a llocation  o f  

the stores to  d ep ots, undertaken w ith  collaboration  o f  Sainsbury’s Central Strategy team  

during 2 0 0 9 . In addition , the en vironm ental im pact in terms o f  CO 2  em iss ion s based on  

the total veh ic le-k m  travelled  o f  a cost-b ased  optim ization was undertaken to an alyse the 

relation sh ip  o f  the ch a n g es in c o s ts  on  the total d istance o f  a particular allocation .

T h e study fo cu ses  on the secon d ary  distribution network with three different go o d s m o v e­

m ents: am bient, ch ill and p rod uce, from  the distribution centres to their stores. T he c o n ­

straints o f  the netw ork in clu d e d ep ot cap acities for each product type in term s o f  1 ) num ­

ber o f  ca ses  and 2 ) n um ber o f  stores. T h e purpose is not to replicate Sainsbury’s regular
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"best fit" ex e rc ise , but instead  to exp lore a num ber o f  "what if?" scenarios and identify  

their potential im pact on  store a llocation  and total cost. W arehousing hourly rate, direct 

work rate and d river’s hourly rate w ere an a lysed  for sen sitiv ity  on five depots (out o f  ten 

depots): dep ot A , d ep ot B, depot C, d ep ot D and depot E. D u e to the privacy issu es the 

depots n am es in the netw ork  w ere m ade an on ym ou s and abbreviated to a capital letter, 

e .g . depot A , B e tc . T h e a n a ly sis  ex a m in es behavioral ch an ges to the num ber o f  stores 

assign ed  to the particu lar d ep ot w h ere ch a n g es to variables have been  m ade; w e  look  at 

the num ber o f  stores lo s t  to  that d ep ot, the num ber o f  stores n ew ly  assign ed  to  that depot 

and the total n um ber o f  stores a lloca ted  d ifferen tly  across the entire network. T h e fuel rate 

scenario , an a lysin g  the p otentia l e ffec ts  o f  fu e l price chan ges, has been  undertaken across 

all ten d ep ots s im u lta n eo u sly  and lo o k ed  at the total num ber o f  stores a llocated  d ifferently  

from  our b a se lin e  scen ario .

5.2 Background information

A ssig n in g  cu stom ers to  appropriate serv in g  fac ilities  is know n as the G eneralized  A s ­

sign m en t P rob lem  (G A P ) and is  an N P-hard  com binatorial optim ization  problem . W ithin  

lo g is tic s  n etw ork  d es ig n , the G A P  co u ld  b e  referred to  as on e o f  the tactical d ec ision s  

w h ich  n eed  to  b e re-evalu ated  every  few  m onths to  ensure the continued com p etitiven ess  

o f  the netw ork. T h e variant o f  the G A P  that interests us in the present study can be e x ­

p ressed  as fo llo w s . For 1) a g iven  set o f  cu stom ers w ith  know n dem and for d ifferent types  

o f  products and 2 ) a g iven  set o f  op en  fa c ilities  w ith vo lu m e constraints and lim itations on  

the num ber cu stom ers that each  fa c ility  is  capable o f  servicing, the objective is to m in im ­

iz e  the total co st o f  a ssig n in g  the cu stom ers to  the facilities. Furthermore, each  cu stom er’s 

dem and  has to be satisfied  by on e fac ility  only, w hich is referred to as a s in g le  source, and 

the constrain ts lim itin g  each  fa c ility  in term s o f  volum e and numbers o f  cu stom ers m ust 

be adhered to.

T h e current S ainsb u ry’s netw ork  used  in this study consists o f  10 depots and 5 2 0  stores. 

Each dep ot is characterized  by a num ber o f  attributes, including its location  and its ca ­

pacity constraints, and each  cu stom er m akes specific dem ands for the products supplied
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by the d ep ots. T h e loca tion s o f  d ep ots and stores are fixed. The main depots under in­

vestigation  are A, B, C, D and E; w hereas other d epots in the network are F, G, H, K and 

L. Each dep ot can  su p p ly  three typ es o f  products: am bient, ch ill and produce, excep t for 

tw o  depots: d ep ot F , w h ich  serves o n ly  ch ill products, and depot G w hich  serves am bient 

and produce (but not ch ill) . E very  d ep ot has a certain capacity  for each  type o f  product 

in term s o f  the n um ber o f  c a se s  and the num bers o f  stores it is  capable o f  serving. In 

reality the S ainsb u ry’s lo g is t ic  netw ork  a lso  serves a sm all num ber o f  stores in Northern  

Ireland, w hich  in v o lv es  a sea  cro ss in g . W h ile  the dem ands o f  the Irish stores are taken 

into consideration  in our m o d e l, for s im p lic ity  w e  d o  not include them  in our co st and 

assignm en t an a lysis, w h ich  con cen trates o n ly  on  the m ainland U K . W e assign  the vo lu m e  

requirem ent for the Irish stores to  d ep ot H , as th is is  Sainsbury’s current practice.

Our allocation  m odel co n sis ts  o f  transportation  and dep ot com p onents. T he transportation  

co sts  in clu d e d istan ce-b ased  (u s in g  stem -d ista n ces) and tim e-based  form ulations. In this 

chapter, w e refer to stem  d ista n ces, that is  the d istan ce travelled  by the veh ic le  to deliver  

g o o d s from  a d epot to  a particular store and return back to  the point o f  orig in . T he v eh ic le  

on ly  v isits  on e store at a tim e d u e to  th e h igh  v o lu m e o f  the dem and and d o es not un­

dertake m ilk-round trips, v is it in g  o ther stores as w ell. T he depot com p onent co n sists  o f  

the variables a ssoc ia ted  w ith  running th e d ep ot, su ch  as w arehouse hourly rate and direct 

work rate. T he fixed  c o s ts  are not taken in to  accou n t as part o f  the m odellin g .

Each store has a certain  d em and  for each  product type, and this is expressed  as a w eek ly  

volu m e. T he dem and data w e  u se w as acquired  in S eptem ber 2 0 0 9  and g iv e s  the num ber 

o f  ca ses  per w eek  per p rod uct averaged  across a 2 6  w eek  ( 6  m onth) period. T he direct 

work rate (D W R ) data for  each  d ep ot is  a lso  averaged across this six  m onth period (A pril - 

Septem ber). T h e sc o p e  o f  th is stud y d o e s  not in clu d e inter-depot m ovem en ts and exclu d es  

frozen  and s lo w  m o v in g  am b ien t products. In order to a llow  for som e fluctuation in 

dem and, w e built so m e  ‘s la c k ’ in to  the sy stem  by capping all the depot cap acities to 90%  

o f  the m axim u m  num ber o f  c a se s  quoted  for each  depot and product.



5.2 Background information 75

5.2.1 Objective

A s m en tion ed  p rev iou sly , the ob jective  is not to replicate Sainsbury’s regular "best fit" 

ex erc ise  but to id en tify  the im pact o f  key factors on  the a llocation  o f  the stores to depots. 

T he d ifferen t key e lem en ts  (variab les) co m e  from  the depot and transportation m odel. The  

overall labour c o s ts  o f  a d ep ot, w h ich  in clu d e all sta ff fun ctions, are represented by the 

w arehou se hourly  rate (W H R ), and the w ork rate effic ien cy  o f  staff d irectly  associated  

with p ick in g  and load in g  is m easu red  by the direct w ork rate (D W R ). W H R  and D W R  

reflect the depot m od el. T h e fuel c o s ts , d rivers’ hourly rate and cases per load are the 

im portant co m p o n en ts  o f  the transportation m od el, and the transport hourly rate (T H R ) is 

the k ey m easure that reflects all the tim e-related  costs (e .g ., drivers’ pay).

An additional a n a ly sis  w as undertaken  to understand the im pact o f  the cost-b ased  op tim ­

ization  on  the d istan ce  b ased  COi  em iss io n s: e .g ., d oes a d ecrease in co st equate to a 

reduction in v eh ic le s -k m  and therefore to C()2 em ission s?

A sen sitiv ity  a n a ly sis  w a s p erform ed  to  an a lyse  the im pact o f  various ch an ges to the 

key variables on the a llo ca tio n  m od el and overall co st structure. F ive different “what 

if?" scen arios w ere p erform ed  ( s e e  b e lo w ) w here W H R , D W R  and T H R  situations w ere  

an alysed  for sen sitiv ity  at five d ep o ts  in turn: depot A , B, C, D and depot E. T h e fuel 

rate scen ario  w as undertaken across all ten d ep ots sim u ltan eou sly  and look ed  at the total 

num ber o f  stores a llo ca ted  d ifferen tly  com p ared  to  our benchm arking scen ario  (described  

b elow ).

The fo llo w in g  five scen arios w ere con sid ered  for analysis:

1. T h e uniform  scen ario  w as u sed  as a ‘p roo f o f  co n cep t’, and the a llocation s and 

co sts  com pared  to the C om p an y  a llocation s in their latest “b est fit" exercise . T his  

scen ario  is characterised  b y  uniform  co sts  applied  throughout the network. T he  

average v eh ic le  load  is  u sed  at 1243 ca ses for each  product w ith fuel related costs  

o f  £ 0 .3 5  per km . T h e D W R  for each  depot w as set at 9 7 .6  for am bient, 100.13  

for ch ill and 1 3 6 .0 2  for produce. T H R  (£ 1 8 .4 8 ) and W H R  (£ 1 6 .0 3 ) w ere the sam e  

across all d ep ots.
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2. T h e fu e l related scenario  is  used  to  an a lyse  the im pact o f  changes in the fuel rate 

(fu e l co s t  per km ) across the netw ork as a w h o le . W e applied rates b etw een  £0.1  

to £ 1 . 0 0  w ith  a step  s iz e  o f  £ 0 .0 1 ; from  £ 1  to £ 1 0  w ith  a step s ize  o f  £0 .25 ; from  

£ 1 0  to  £ 1 0 0  w ith  a step  s iz e  o f  £ 1 0  and at £ 5 0 0 . W e analysed  a w id e range o f  fuel 

rate va lu es, from  sm all to very large num bers on either sid e o f  the benchm arking  

rate va lu e o f  £ 0 .3 5  per km . T h is range is not n ecessarily  very realistic in the current 

e c o n o m ic  c lim ate . T h e aim  o f  this an a lysis is to understand the behavior o f  the 

netw ork b etw een  d ifferen t extrem e points.

3. T h e direct w ork rate scen ario  in vestigates the im pact o f  the work rate e ffic ien cy  o f  

pickers and loaders in the w areh ou ses on  the allocation  o f  the stores to a particular 

depot. T h is is  an a lysed  b y  ch an g in g  the D W R  from  10% b elow  the benchm arking  

rate for all products, and up to 15% ab ove the benchm ark with steps at 2.5% .

4 . T h e transport h ourly  rate scen ario  in vestigates the im pact o f  ch an ges in drivers’ 

hourly rate on  the store a llo ca tio n , w ith  rate ch an ges from  £ 1 0  to £ 3 3  w ith  a £1 

step.

5. T h e w areh ou se hourly  rate scen ario  in vestigates the im pact o f  w arehou se related  

co s ts , su ch  as p ick in g  and load in g , on  the store a llocation , w ith  the rate ch an ges  

from  £ 1 0  to  £ 3 3  w ith  a £1 step .

In addition , w e  refer in our stud y to  ‘b a se lin e ’ or ‘benchm arking’ scenario w h ich  u ses the 

sam e data (S ep tem b er 2 0 0 9 )  as w e  u se  for S cen arios 2 -5 . W e a lso  refer in our study to the 

C om pany a llocation  w h ich  is  the m od el obtained  in the m ost recent “best fit" exerc ise  by  

the com pany. T h e C om p an y  a llo ca tio n  is carried out using stem  distances only, and d oes  

not accoun t for w areh ou se c o s ts  or transport hourly costs . W e com pare our allocation  from  

Scen ario  1 w ith  the C om p an y  a lloca tion  w here w e eq u alize  w arehouse costs and transport 

hourly co s ts  throughout the n etw ork, so  that our a llocation  is based  essen tia lly  on d istance  

related co s ts  on ly , sim ilar  to the C om p any m odel. On the other hand, the “benchm arking’ 

a llocation , or b a se lin e , u ses  the orig inal Septem ber 2 0 0 9  data, m aintaining the variable 

w arehou se and transport c o s ts  w h ich  is used  for Scenarios 2-5 . It sh ow s the allocation  

obtained  u sing  the C P L E X ®  op tim ization  en gin e. In scenarios 2-5 w e m ake ’’what if?”
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ch a n g es to  the orig in a l data, to  o b serv e  their e ffec ts  on  the b aselin e network structure.

5.3 Methodology

T h e netw ork w as m o d e lle d  u sin g  the Java program m ing lan guage and the C P L E X ®  op ­

tim ization  en g in e . C P L E X ®  u ses a lgorith m s to  so lv e  g iven  prob lem s to optim ality. T his  

approach gave us great f lex ib ility  in im p lem en tation , u tiliz in g  the p ow er o f  C P L E X ®  

together w ith  the v isu a l d isp lay  ca p a b ilit ie s  w h ich  w e  cu stom ized  in the user interface 

u sin g  Java. V isu a liza tion  o f  the resu lts  a llo w s  u s to  se e  b eyon d  the num bers, and observe  

h ow  the resu lts are translated  to  g eo g ra p h ica l in form ation . W e have a lso  im plem en ted  our 

ow n  m od el based  on  L agrangian  re laxa tion  (L R ), w h ich  is  faster but d o es not guarantee 

to  obtain  the op tim u m  so lu tio n  (a lth ou gh  it is  e x c e llen t in  practice). A lth ou gh  w e  d o not 

m ake u se o f  L R  in the p resen t chapter, th is  approach is  u tilized  ex ten siv e ly  in  the other 

chapters (7  and 9 ), w h en  sp eed  is  m ore cr itica l (e .g ., for really  large p rob lem s, m ultip le  

exp erim en ts and for co n sid er in g  m u ltip le  criteria  sim u ltan eou sly ).

5.4 Mathematical formulation

For a g iven  a set o f  stores w ith  k n ow n  d em an d s for d ifferent type o f  product, and a set 

o f  op en  fa c ilitie s  (d ep o ts) w ith  k n o w n  v o lu m e s  (num bers o f  ca ses) and m axim um  store 

a lloca tion  cap acities, the o b je c tiv e  is  to  m in im iz e  th e co s t  o f  assign in g  the stores to  the  

fa c ilities . E ach  sto re’s d em and  h as to  b e  sa tisfied  b y  a s in g le  facility , e .g . on e store is 

a llocated  to on ly  o n e  d ep ot and the cap acity  o f  that facility  m ust not b e exceed ed . T he  

problem  can b e  m o d e lle d  u sin g  a co m p le te  d irected  graph, w here the vertices in  VDC 

represent the fa c ilit ie s  (d istr ibu tion  cen tres) and the vertices in Vc  represent the stores 

(cu stom ers). T h e arcs are a sso c ia ted  w ith  the flow  o f  good s betw een  fac ilities  and stores.

Glossary

VDC set ° f  d ep ots

Vc se t o f  stores
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i”

i

9?

n *

f4 j

d<?ij

distij

timeij

T H R i

W H R i

D W R*

x  a

set o f  products

dem and o f  store j  for product p , j  G Vc ,p  G P

num ber o f  veh ic les  n eed ed  to  d eliver  dem and o f  store j  for product p, j  G Vc ,

p G P

average veh ic le  load  o f  p roduct p ,p G  P

distance related co st (fu el co s t)  per km

capacity o f  ca ses  o f  facility  i o f  product p , i €  Vdc , p  G P

num ber o f  stores assign ed  to fa c ility  i for product p , i €  Vdc , p  €  P

transportation co st o f  total dem and  d? for product p  o f  store j

from  facility  i

d epot co st o f  total dem and d* o f  product p  o f  store j  

from  facility  i

distance betw een  store j  from  fa c ility  i 

tim e to travel b etw een  store j  from  fa c ility  i 

transport hourly rate (drivers co s t)  for fac ility  i 

w arehouse hourly rate for fa c ility  i 

direct w ork rate for fa c ility  i for product p

is the d ecis io n  variable for th e p rob lem , Xij — 1 , i f  store j  is  a llocated  

to facility  i, and 0  o th erw ise

Minimize

E D 4 + ifcs ) i «
i€Voc j^Vc p€P

(5 .1 )

subject to

y :  =  i  , v j  e v e
i€ .V d c

(5 .2 )

y  (fjXij < q*, Vi G V o c ,V p  €  P

j&Vc
(5 .3 )

y  < n*, Vj g vcy P e  P
j€Vc

(5 .4 )
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x ij € {0, l } , i  G VDC,j € Vc (5 .5 )

by setting:

£c? =  (distij * f  +  timeij * T H R t)  * 2  * Vj, i G Vdc ,3 €  V c, V €  P  (5 .6 )

w here form ulation  (5 .1 )  a im s to  m in im iz e  the transportation and depot co sts  o f  sa tisfy in g  

the total dem and o f  all th e stores, and con stra in ts (5 .2 )  w ith  (5 .5 ) guarantee that the d e­

m and for each  store m u st b e  sa tisfied  b y  o n e  depot. C onstraints (5 .3 ) and (5 .4 ) ensures  

that the cap acity  con stra in ts fo r  th e  fa c ilit ie s  fo r  each  product type are not v io lated  and 

(5 .5 )  sp ec ifies  that a llo ca tio n  is  in d iv is ib le  fo r  the d ec is io n  variable. Form ulation (5 .6 )  

ca lcu la tes the transportation c o s ts  o f  p rod uct p  to  sa tisfy  the dem and o f  store j ,  and (5 .7 )  

ca lcu la tes the d ep ot c o s ts  a sso c ia ted  w ith  d em and  o f  product p  and store j .  F inally , (5 .8 )  

ca lcu la tes the num ber o f  v e h ic le s  n eed ed  to  sa tisfy  dem and o f  store j  and product p. W e 

use a real num ber for th e  n um ber o f  v e h ic le s  for each  product typ e p  as our b usin ess  

partners requested  to  en su re  that e x a c t  v a lu es are used  in  the m od ellin g  w ithou t rounding  

th ose values. T h is is  d u e  to  a large n u m b er o f  d eliver ies for each  product type and i f  every  

value is an integer, th e p rec is io n  o f  th e w ork  w ill  b e  lo st as part o f  the ca lcu lations.

To ca lcu la te  the total d istan ce  travelled  (k m ), the fo llo w in g  equation  w as used  on  the 

resu lting a llocation  from  th e c o s t-b a sed  op tim ization  based  on  the form ulation  5.1:

d(pt] =  ((fj /DWH. f) * WHRi , i e  VDC j  e  vc , p e P (5 .7 )

vf> = <Fj / F , i € V DC, p e P (5 .8 )

total Distance = * 2  * v*})xij,i e  VDC, j  e V c , p €  P  (5 .9 )

iCiVDc jgVc p p̂
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Product type Ratio of total 

demand in cases /  depot capacity

Ratio of total 

num of stores / depot capacity

Ambient 0.77 0.75

Chill 0.81 0.79

Produce 0.69 0.77

Table 5.1: Ratio of total demand versus available capacity across network.

5.5 Analysis

5.5.1 Benchmarking allocation of stores to depots

The benchmarking allocation uses the above mentioned September 2009 data, and the 

result of this allocation serves as our base or “benchmark” for comparing with the results 

from scenarios 2-5. The “best fit” Company’s allocation model is based on stem distances 

(like our study), but we incorporate warehouse costs and time related transport costs which 

are not included in the Company “best-fit" study.

It is worth noting that the Sainsbury network has spare capacity, and is quite “loose" in 

terms of the capacity constraints in relation to total demand. Table 5.1 shows the ratio of 

total demand (in cases) to total capacity (second column) and the ratio of number of the 

stores versus total depot capacity (in number of stores) across the entire network. As you 

can see from the table, the chill product type is the tightest in terms of capacity. These 

ratios tell us that more than one feasible solution is likely to exist.

Figures 5.1 (a) and 5.1 (b) show screenshots of the optimum allocations produced by CPLEX® 

using the September 2009 data with fuel cost at £0.35 per km. The results of this alloc­

ation are used as our benchmark for comparison in the sensitivity analysis carried out in 

scenarios 2-5 (excluding the uniform scenario). As can be seen from Figure 5.2 and 5.3, 

the depot costs form the larger component (67.9%) and the transport costs account for 

only 32.1%. There are only 50 stores (9.6% of all stores) for which the transportation 

costs account for 50% or more.
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(a) Overview (b) Close up

Figure 5.1: Benchmarking scenario.
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32.1 %

Figure 5.2: Proportion of depot and trans­

port costs for benchmarking scenario for 

first 50 stores.

Figure 5.3: Overall depot and transport 

costs percentage for benchmarking scen­

ario.

W hen our benchm arking allocation  is com pared to the “current” C om pany’s allocation  

using the Septem ber 2 0 0 9  data, the fo llow in g  results were produced. Table 5 .2  com pares 

the so lu tion  produced by C P L E X ®  with the actual allocation used by com pany using 

Septem ber 2 0 0 9  data. T he d ifference in solution is very sm all at 0.72% . O nly 61 stores 

( 1 1 .7 % o f  all stores) have different allocations, and this can be seen from the screenshots 

in F igures 5 .4 (a ) and 5 .4 (b ). The blue dots represent those stores which are allocated
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(a) Overview (b) Close up

Figure 5.4: Comparison of benchmarking scenario to company’s allocation.

Solution using 

SEPTEMBER 2009 data

Total cost (£) % transport 

costs

% depot 

costs

Comments

CPLEX® 3,006,318 32.1 67.9 ->61 stores allocated 

differently comparing 

to Company’s.

Company’s allocation 3,027,945 32.1 67.9 ->not feasible if 90% 

volume capacity; 

feasible-if full capacity; 

->0.72% diff. compare 

to CPLEX® solution

Table 5.2: Results for the September 2009 data .

differently, com pared w ith the C om pany allocation. A s can be seen from the figures, all 

the stores w hich are assign ed  differently, are located on the edges o f  the intersection with  

other depots w hich  cou ld  eas ily  w in those stores with a slightly low er cost. Table 5.2  

illustrates that the co st value betw een both scenarios is very sim ilar and this is because we  

applied our cost m odel to the “best fit” allocation to calculate the actual com pany’s a lloc­

ation cost. The com pany provided us with the “best fit” allocation (not the cost solution  

but the allocation  o f  stores) w here they use an iterative approach in M icrosoft Excel and 

in each iteration they reallocate stores m anually to the minimum cost to ensure that the
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capacity constraints are not violated. The similarity between the Company’s assignment 

and our results provide mutual reinforcement of our modelling and the Company’s “best 

fit” allocation solution which was given to us by the company. Scenario 1 also reinforces 

those findings. The results obtained here serve as the base for the sensitivity analysis in 

scenarios 2-5.

5.5.2 Scenario 1. Uniform scenario

The “best fit” Company’s allocations are made on the basis of stem distances (i.e., fuel 

related costs) only. On the other hand, our benchmarking allocations 5.5.1 depend on 

warehouse costs and time related transport costs as well as stem distances. While it is 

encouraging to note the similarities between the allocations made by the Company and by 

us using CPLEX® in Part 5.5.1, on the September 2009 data, we are clearly not com­

paring “like with like". For this reason we include Scenario 1 which effectively allocates 

stores to depot on the basis of fuel related costs (i.e., stem distances) alone, to make a 

fairer comparison with the Company allocation, and thus provide mutual validation for 

the models.

The uniform scenario uses the same costs and productivity rates across all depots and 

vehicles, and the result of this allocation is also used for comparison with the results 

from “best fit” company’s allocations. The following average data was used: the average 

vehicle load (ambient=chill=produce=1243) with fuel related costs of £0.35 per km. DWR 

for each depot was set at 97.6 for ambient product, 100.13 for chill and 136.02 for produce. 

WHR was equal to £16.03 and THR was equal to £18.48 for each depot. Because the same 

rates are applied across all the depots, the depot related costs will be the same for each 

store, and so will the time dependent transport costs (e.g., drivers’ pay), regardless of its 

allocation. Thus, just like the Company exercise, our optimization will be based on stem 

distances only, as these are the only variables used in the modelling.

The cost structure of the optimal solution for the uniform scenario consists of depot and 

transport costs. As expected, the majority of the costs in the solution are (once again) 

allocated to depot costs. Furthermore, there are only 44 stores for which the transporta-
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Solution using 

SEPTEMBER 2009 data

Total cost (£) % transport 

costs

% depot 

costs

Comments

C PL E X ® 2,912,529 30.4 69.6 -> 54  stores allocated 

differently comparing 

to Company’s.

Company’s allocation 2,925,700 30.4 69.6 ->not feasible if 90% 

volume capacity; 

feasible-if full capacity. 

->0.45%  diff. compare 

to CPLEX® solution.

Table 53 : Results for average scenario.

tion costs matches or exceeds 50% among the 520 stores. The overall percentage of depot 

costs is 69.6% with transport costs responsible for just 30.4%. Table 5.3 compares the op­

timum solution produced by CPLEX® with the actual allocation used by the Company. 

The difference in solution cost equates to 0.45%, which is almost negligible. These fig­

ures reinforce our confidence in our modelling approach and our solution quality. There 

are only 54 stores (10.4% of all stores) allocated differently compare to the Company’s 

allocation.

5.5.3 Scenario 2. Fuel scenario

The fuel-related scenario is used to understand the impact of fuel-related costs on the 

allocation of the stores to depots. Several experiments were performed with different 

values and steps: from £0.10 to £1.00 with step £0.01; from £1 to £10 with step £0.25; 

from £10 to £100 and with step £10 and at £500 for the final experiment. The analysis 

was performed on the September 2009 data. Only the fuel-related costs were changed and 

these were varied across all depots simultaneously.

As expected, the overall costs increase linearly, because the fuel cost increases across all 

the depots at the same rate. Figures 5.5(a)-5.5(c) clearly show the increase in overall costs 

across all depots as the fuel rate increases for all the experimental ranges. In this chapter, 

we use a notation of a relative cost or distance on the y-axes to make the actual values
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Figure 5.5: Total cost for a range of fuel related cost.

anonym ous. For exam p le, in Figure 5 .5(a), on the y-axes w e assign the relative total cost 

o f  the particular network configuration to 1 0 0  units o f  financial cost when the value o f  the 

fuel cost per km as equal to £ 0 . 1 0 .

A s the fuel rate increases, therefore the proportion o f  transport costs increases relative to 

the depot costs, w hich  can be seen  from Figure 5.6. W hen the fuel rate equated to £0 .10 , 

around 24%  o f  the overall cost w ere allocated to transportation costs. A s the fuel rate in­

creased, the break point for cost a llocation  was at around £ 1 . 1 1  per km with transportation 

and w arehousing co sts  equating to around 50% at this point.

For this scenario, the total d istance travelled by the vehicles (Figure 5 .7) decreases as the 

overall cost increase as a result o f  the changes in the fuel costs. This happens due to the 

increase in the proportion in the overall transport costs, therefore the optim ized allocation
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■ %  of transport costs 

% of depot costs

Figure 5.6: Proportion of transport costs to depot costs, fuel cost range from £0.1 - 

£500, overview.
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Figure 5.7: Total distance (km) travelled for fuel cost from £0.1 - £500 .

b ecom es s low ly  influenced  m ostly  by the transportation costs as fuel costs increase. When 

the fuel rate is low, stores m ay be assigned  to depots that are a long way away, if  the depot 

cost is low  enough. F igures 5 .8  and 5 .9  v isualize the screenshots o f  the allocations where 

you can see the im pact o f  the low est and the highest fuel rates on the distribution pattern.

The purpose o f  the experim ents in this scenario is to understand the impact o f  the fuel rate 

changes on the num ber o f  stores w hich are assigned differently compared to the bench­

marking scenario o f  £ 0 .3 5  per km. A s a result o f  the analysis, it seem s that a decrease in 

rate has a larger proportional im pact on the number o f  stores allocated differently com ­

pared to an increase in the fuel rate, w hich can be observed from Figure 5.10. Although  

the number o f  stores w hich  are differently allocated is relatively marginal, reaching a 

m axim um  o f  on ly  43  stores (8.3%  o f  overall stores) at a fuel rate o f  £500 .0  per km, the
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Figure 5.8: Comparison of benchmarking 

allocation to fuel rate at £0.10 (33 different

stores).

Figure 5.9: Comparison of benchmarking 

allocation to fuel rate at £1.00 (22 different 

stores).

slope o f  the curve is m uch steeper for a decreasing fuel rate (on the left o f  £0 .35 ) than for 

an increasing fuel rate (on the right o f  £0 .35 ). At £0.11 there are 38 different allocations 

(7.3%  o f  all stores). A  sim ilar im pact for increasing fuel rate does not occur until the cost 

has reached about £ 7 .0 0 .
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Figure 5.10: Number of stores differently allocated compared to the basic scenarios 

at £ 0.35 per km for fuel cost from £0.1 - £500.

An interesting observation  com es from analyzing which depots have attracted more stores 

as a result o f  the fuel rate change. Figures 5.8 and 5 .9  show the stores in blue colour which  

are allocated d ifferently com pared to the benchmarking allocation:
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1. When the fuel rate is below £0.35 per km, depot C is affected the most and “attracts" 

extra stores on the border with depot B (Figures 5.8-5.9). The total number of 

stores increases to 62 stores for depot C for a fuel rate of £0.10, compared to the 

benchmarking allocation with 39 stores (with available capacity of 80 stores). That 

represents an increase of 59% in the number of stores.

2. When the fuel rate increases above £0.35 per km, depot A is affected the most, 

“attracting” stores from surrounding areas: depot E, depot F, depot G, depot D for 

a fuel rate up to £1.00. For example, at a fuel rate of £1.00, the total number of 

stores assigned to depot A increased to 57 stores (18.8%) compared to 48 stores in 

the benchmarking scenario.

As can be seen from our analysis, although the total number of stores allocated differently 

is quite small compared to the store total, the impact of even relatively small changes 

in the fuel rate could have a significant impact on particular depots as described above. 

Figures 5.8 and 5.9 visualize the impact of the changes.

5.5.4 Scenario 3 - Direct Work Rate scenario

The direct work rate (DWR) scenario aims to analyse the impact of the labour associated 

costs within the depot, such as picking and loading, on the assignment of the stores. The 

analysis was performed on the September 2009 data, with only the DWR rate changing 

for the purposes of these experiments. DWR changes from 10% below the benchmarking 

data across all products and up to 15% above the base with step of 2.5%, on five depots, 

taking one depot at the time. The following depots were considered: depot A, depot B, 

depot C, depot D and depot E. The analysis involved investigating the impact according 

to the following criteria:

• Number of stores assigned to a particular depot

• Number of stores ‘lost’ to the particular depot

• Number of stores newly assigned to the particular depot
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Total number o f  stores differently allocated across the entire network
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Figure 5.11: Total cost for five depots, 

DWR changes from -10% to +15%, step 

2.5% for each depot.

Figure 5.12: Proportion of transport costs 

to depot costs, DWR changes from -10% 

to +15%, step 2.5% for each depot.

The im pact o f  the ch an ges o f  DW R on the overall costs can be seen from  Figure 5.11 for 

each depot. A s exp ected , w hen the DW R rate increases, the overall costs decrease across 

all experim ents. Around 67%  o f  the costs in the optim um  solution w ere allocated to the 

depot costs (see  F igure 5 .12 ).
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Figure 5.13: Total distance (km) travelled for a particular depot, DWR changes from 

-10% to +15% with step 2.5% in relation to benchmarking data.

The changes in total d istance travelled by the vehicles is different depending on the geo ­

graphical locations o f  depots under investigation (see  Figure 5 .13) where the costs are 

influenced by the depot cost com ponent. The distances for depot A and depot B decrease
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as w ell as the overall costs when DW R  rate increase. The reassignm ent o f  the stores lo c ­

ated on  the border w ith other depots is balanced by low er costs and lower distances due 

to the geographical locations o f  the depots and surrounding stores (Figure 5 .14(a) and 

5 . 14(b)), w here the stores are allocated to the furthers depots by distance at the beginning  

o f  the exp erim en ts w hen D W R =-10% . On the other hand, the distances for depot C in­

crease w h ile  the overall co sts  decrease due its geographical location. This is because the 

stores w hich  are located  on the border w ith depot B, are closer to depot B d istance-w ise  

and reassigned  to depot C due to the low er cost w hich is influenced by the depot com pon­

ent (Figure 5 .15(a) and 5 . 15(b)). A s can be seen  from the Figure 5 .13 , the overall travelled  

distances for d ep ots D and E do not change when the rate changes in DW R experim ents. 

Strategically, both d ep ots are located  c lo se ly  to each other and alm ost at full capacity, 

therefore any ch an ges in rate w ill bring them  to the full capacity very rapidly w hich is 

discussed  in m ore detail below .

(a) DWR=-10% (b)DWR=15%

Figure 5.14: Depot A .

The num ber o f  stores assign ed  to a depot steadily increases in the cases o f  depot A and de­

pot B (Figure 5 .1 6 ). T h is pattern w ould  be expected  throughout the entire network because  

as DW R increases at particular depot, that facility  becom es more attractive (cheaper) for 

surrounding stores. For depot A, the num ber increases to 63 stores when DW R=15%  

above com pared to 4 8  stores for to the base rate at DW R=0%  above, representing an in­

crease o f  31%  in the num ber o f  stores. For depot B, the increase in number o f  stores
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(a) DWR=-10% (b)DWR=15%

Figure 5.15: Depot C.
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Figure 5.16: Number of stores assigned to a particular depot, DWR changes from 

-10% to +15% with step 2.5% in relation to benchmarking data.

equates to 25% , from  5 2  to 65 stores. A  different pattern can be observed for depot C, 

depot D and depot E (F igure 5 .16 ). For depot C, changes in the number o f  stores only  

had an im pact up to D W R =7.5% . For depot D , changes in the number o f  stores did not 

occur after D W R = - 5%  (i.e ., 5% b elow  benchmark rate), whereas for depot E changes in 

the number o f  stores did not happen after D W R = - 7.5% . There could be tw o possib le ex ­

planations w hy store a llocations fail to increase as the depot becom es more cost effective: 

the overall p hysical capacity  o f  the depot was reached for one o f  the products or because
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o f  sp ec ific  geographical location characteristics. Geographically, depot D and depot E 

are located  c lo se ly  to each other. D epot E a lm ost reached its maximum capacity for chill 

products w ith  respect to the number o f  cases (989 ,205  assigned cases for 990 ,000  capa­

city) at D W R = - 2.5% , therefore it has no m ore physical capacity to accept more stores. 

Looking at F igure 5 .1 6 , the num ber o f  stores has not changed after -7.5% , but an alm ost 

full capacity w as reached at -2.5% . This could  happen because o f  tw o stores: one was 

assigned to depot D and another to depot E and when depot E becam e more attractive, 

those stores sw apped  their assignm ents to better fit the capacities o f  the depots. Sim ilar 

observations regarding the capacity can be seen for depot D, which reached alm ost m ax­

im um  capacity for the num ber o f  cases and the number o f  stores assigned at DW R=-5%  

(38 assigned  stores to cap acity  o f  4 0  stores; 4 4 8 ,3 2 0  cases assigned to capacity o f  4 5 0 ,0 0 0  

cases for ch ill products).

S  r  25

______

Depot A DepotB DepotC
DWR (%)

Depot D DepotE

Figure 5.17: Number of stores lost at particular depot as a result of DWR changes 

from -10% to +15% with step 2.5% in relation to benchmarking data.

The number o f  stores lo st at a particular depot decreases as expected (see  Figure 5 .17), 

because each d ep ot b eco m es m ore attractive for stores due to DW R increasing. D epot A, 

depot C  and depot E stop lo sin g  stores at DW R=-2.5% ; depot B at 0% and depot D at -5%. 

A ll depots fo llo w  the sam e pattern except depot D, w hich has 2 lost stores when DW R =  

+5%. A s w ell as lo o sin g  tw o  stores to depot E, at the sam e tim e depot D acquired two  

new stores from  depot E  (F igure 5 .18 ). A s the stores are located on the border between  

both depots, their a llocation  is likely  to be h ighly sensitive to sm all changes in costs or
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productivity.

D e p o t A D ep o t B D epo t C D ep o t D D ep o t E

DWR (%)

Figure 5.18: Number of stores newly assigned to a particular depot as a result of 

DWR changes from -10% to +15% with step 2.5% in relation to benchmarking data.

The number o f  n ew ly  a ssign ed  stores to a particular depot increases due to the depot cost 

decrease. The “attractiveness" o f  the depot is characterized by a cheaper assignm ent for 

stores, as long as there is en ou gh  capacity in terms o f  the number o f  stores and volum e  

for each product type. F igure 5 .1 8  represents an overview  o f  changes to DW R and the 

associated num ber o f  n ew ly  assign ed  stores. For depot A and depot B, a steady increase in 

new ly assigned  stores is  ob served  for D W R  above +0%. D epot C attracts new stores when  

DW R is m ore than +  0%  and le ss  than +10% . From DW R >  +10% , the depot reaches the 

dem and needed for am bient products o f  584 ,1 4 9  cases with capacity o f  585 ,000 . D epot 

D has one new  store w hen D W R =  -10%  and tw o new stores when D W R = +5% . The 

former com es from  the store w hich  is located on the border with depot E and is a result o f  

optim ization. A s d iscu ssed  above, depot D and depot E do not have enough spare capacity  

to attract new  stores, therefore the pattern o f  new ly assigned stores for them is different 

com pared to other depots.

The total num ber o f  stores d ifferently allocated com pare to the benchmarking scenario  

can be seen  in Figure 5 .1 9 . D ep ot A and depot B produce V-shaped curves, where the 

depot is either too  “ex p en siv e” or m ore “attractive” to other stores; also a small impact o f  

those ch an ges can be observed  for the other depots. D epot C  has a sim ilar curve shape 

with a slight d ifference: it reaches alm ost m axim um  capacity at D W R =+7.5%  and after
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Figure 5.19: Total num ber of stores different as a result of DWR changes from -10% 

to +15% with step 2.5% in relation to benchmarking data.

that cannot p h ysica lly  attract m ore stores. Thus the changes in rate have no im pact on  

other depots. T he ch an ges in D W R  have no significant impact on depot D and depot E. 

A lthough a slight fluctuation can be observed in the number o f  stores assigned differently  

for both depots, this can be m ostly  attributed to the stores located on the border between  

the depots H and L. T h e on ly  sign ificant difference in the number o f  stores w as for D epot 

D when D W R = -10% , w hich  resulted in stores located on the border with other depots to 

be allocated to a m uch “cheaper” option.

5.5.5 Scenario 4. Warehouse Hourly Rate scenario

The w arehouse hourly rate (W H R ) scenario aim s to analyse the impact o f  changes to the 

w arehouse associated  co sts  w ithin  a depot. The analysis was performed on specific de­

pots with W H R ch an ging  from  £ 1 0  - £33  with step o f  £1. The fo llow in g depots were 

considered: depot A, depot B, depot C, depot D and depot E. The investigation was per­

form ed according to the fo llo w in g  criteria:

•  Num ber o f  stores assigned  to a particular depot

•  N um ber o f  stores lo st at the particular depot

•  N um ber o f  stores n ew ly  assigned to the particular depot
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•  Total num ber o f  stores different across the entire network

9  t w

9 * '

S , S
I
5

s s s a r* s a
[>•,<* C 

HR (Q
d*p« d

*  ai
 % ct transport cosG
 % <i depol costs

S S H » R  =  S i 5 H S S ! t B h B n S R » B 2 5 R R  
D <v«A  D tpot 6 U fO IC  0*po«D DcpMC

WV«(«)

Figure 5.20: Total cost for five depots, Figure 5.21: Proportion of transport costs

WHR changes from £10 - £33, step 1 for to depot costs, WHR changes from £10 -

each depot. £33, step 1.

The im pact o f  the ch an ges to W H R  on the overall costs can be seen from Figure 5 .20  for 

each depot. A s exp ected , w hen  the W H R  rate increases for a particular depot, the overall 

costs increase across all experim ents. L ooking at the curve in Figure 5 .20, w e can see that 

for the four depots at so m e point, the curve stabilizes, which indicates that at a particular 

rate that depot b eco m es too  exp en sive  to be part o f  the network and is not presented as 

part o f  the final optim um  so lu tion . For m ore discussion  regarding breakpoints p lease see  

below. Around 64-67%  o f  the co sts  in the optim um  solution were allocated to the depot 

costs (see  Figure 5 .2 1 ).
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Figure 5.22: Total distance (km) travelled for a particular depot when WHR changes 

from £11 - £33, step 1 for each depot.
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(a) WHR=£ 11 (b) WHR=£21

Figure 5.23: Depot C.

A s overall costs  in crease for all d epots, the total vehicle-km  also  increase but with a d if­

ferent gradient o f  in crease (se e  F igure 5 .22). W HR rate is the depot-based com ponent o f  

the cost therefore as it in crease, the d epots under investigation w ill be less attractive to the 

stores located  on the ed g es , w h ich  cou ld  change their assignm ent to depots further away 

in terms o f  veh ic le-k ilom eters. S o m e o f  the depots w ill “disappear" from the network  

due to the high W H R  rate and their stores w ill be reassigned to the other depots. Figure 

5 .23 (a )-5 .23 (b ) v isu a lize  th is im pact on the depot C  depot changes in rate.

The num ber o f  stores a ssign ed  to a depot steadily decreases for depot B and depot C  

(Figure 5 .24 ). T h is pattern w ould  be exp ected  throughout the entire network because as 

W HR increases at a particular depot, that facility  b ecom es more expensive for surrounding 

stores. D epot A lo se s  all the stores w hen W H R >  £32 , depot B when W H R >  £26 , depot 

C when W H R >  22 , dep ot D w hen  W H R >  25. However, depot E does not lo se  all its 

stores over the range o f  W H R  analysed . D epot D (Figure 5 .24) has a relatively stable 

number o f  stores assign ed  to it, w hich  is betw een 38 and 40  until W H R =£20. This is  

because the depot is  serv in g  up to full capacity for ch ill product (for exam ple, assigned  

dem and is 4 4 8 ,3 2 0  ca ses  w ith available capacity o f  450 ,000 ). D epot E a lso  has a stable 

number o f  assigned  stores o f  8 3 -8 4  until W H R =£19 due to the capacity constraints on 

chill products.
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Figure 5.24: Number of stores assigned to a particular depot when WHR changes 

from £10 - £33, step 1 for each depot.
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Figure 5.25: Number of stores lost to a particular depot, WHR changes from £10 to 

£33, step £1.

The number o f  stores lo st at a particular depot increases as expected (see  Figure 5 .25), b e­

cause each depot b eco m es less attractive for stores due to W HR increasing. A s d iscussed  

earlier, w e  can see  from  F igure 5 .2 5 , depot A loses all the stores when W HR >  £32 , depot 

B when W H R >  £ 2 6 , d ep ot C  w hen W H R >  22, depot D when W H R >  25. On the other 

hand, depot E still has not lost a ll its stores when W H R =£33.

The num ber o f  stores n ew ly  assigned  to a particular depot is characterized by the “attract­

iveness" o f  that depot w here the cheapest assignm ent is used to allocate the stores, as long
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Figure 5.26: Number of stores newly assigned to a particular depot, WHR changes 

from £10 to 33 with step £1.

as there is en ou gh  availab le capacity. Figure 5 .26  represent an overview  o f  changes in 

W HR and the associated  num ber o f  n ew ly  assigned  stores. A s w e can see from the figure, 

for depot A, there are no n ew ly  assigned  stores after W HR > £ 1 8  (at around the base rate 

o f  17.98), for depot B w hen  W H R > 1 6  (just above the base rate o f  £15 .56 ), for depot C  

when W HR > 1 3  (just b e lo w  the base rate o f  £13 .1 1 ), depot D when W HR > 1 6  (below  

the base rate o f  £ 1 8 . 1 1 )  and d ep ot E  w hen W H R > 1 2  (below  the base rate o f  £16 .55 ).

140 ,
2

Depot A Depot B Depot C Depot D Depot E

WHR (£)

Figure 5.27: Total number of stores d ifferent, WHR changes from £10 to 33 with 

step £1.
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T h e total num ber o f  stores d ifferen tly  a llocated  com pared to the benchm arking scenario  

can b e seen  in F igu re 5 .2 7 . A ll the d ep ots produce V -shaped curves, w here the depot 

is eith er to o  “exp en sive"  or m ore “attractive" to other stores. T he im pact o f  the W H R  

in crease is d escr ib ed  as fo llo w s  for each  participating depot:

•  D ep ot A. W h en  W H R  is b e lo w  £ 1 9 , the depot attracts m ore stores surrounding it, 

w ith  the rea lloca tion  o f  stores a lso  a ffectin g  depot D, depot E, depot L, depot G and 

dep ot F. A s W H R  in creases ab ove £ 1 9  - the depot start lo sin g  stores to depot K, 

d epot L, d ep ot C, d ep ot D , d ep ot E  and depot B fo llo w in g  the reallocation  o f  the 

stores.

•  D ep ot B. W h en  W H R  is b e lo w  £ 1 5 , the depot attracts surrounding stores from  depot 

L and d ep ot C. A s  W H R  in creases ab ove £ 1 5 , it starts lo o sin g  stores to depot C 

(m ajority o f  the lo s t  stores), d ep ot K , d ep ot L, depot A, depot D , d ep ot E and depot 

G /d ep ot F  until it lo se s  all the stores.

•  D ep ot C. W h en  W H R  is b e lo w  £ 1 3 , the depot attracts surrounding stores from  

depot B (m ajority  o f  the lo s t  stores) and depot D. W hen W H R  is ab ove £ 1 5 , the 

dep ot start lo s in g  stores to  d ep o t D,  dep ot B, depot A, depot K , depot E, d ep ot L and 

depot F /d ep o t G  until it lo se s  all the store.

•  D ep ot D.  W h en  W H R  is b e lo w  £ 1 5 , it attracted sm all num ber o f  stores from  depot 

E and d epot A. D ep o t C and d ep ot E a lso  attracted a very sm all num ber o f  stores. 

A b o v e  £ 1 5 , it starts lo o s in g  stores to  surrounding depots such as depot A , depot C, 

depot E until it lo se s  all the stores.

•  D ep ot E. W h en  W H R  is b e lo w  £ 1 7 , it d oes not attract m any stores but other depots  

such as d ep ot C, d ep ot D  and d ep ot A had lost a sm all num ber o f  stores to depot E. 

A b o v e £ 1 7 , reassign m en t o f  the stores in vo lve the fo llo w in g  depots: depot D , depot 

A, depot C, d ep ot B, d ep ot K,  d ep ot L and depot G /depot F.
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5.5.6 Scenario 5. Transport Hourly Rate Scenario

The Transport hourly rate (TH R ) scenario aim s to analyse the impact o f  changes in trans­

port associated  co sts  for each participating depot. The analysis was performed on specific 

depots with TH R ch an ging  from  £ 1 0  - £33  with a step o f  £1 . The fo llow ing depots were 

considered: depot A , depot B, depot C, depot D and depot E. The investigation was per­

form ed according to the fo llow in g  criteria:

•  N um ber o f  stores assigned  to a particular depot

•  Num ber o f  stores lo st at the particular depot

•  Num ber o f  stores n ew ly  assigned  to the particular depot

•  Total num ber o f  stores d ifferent across the entire network

I " ?i ■ -»<r
v

Depot C
t h r «

-%  of transport coi 
- % ofdtpot costs

D epot A D epot B D epo tC  D epot D D epot E
T H R  (£)

Figure 5.28: Total cost for five depots, Figure 5.29: Proportion of transport costs

THR changes from £10 - £33, step 1 for to depot costs, THR changes from £10 -

each depot. £33, step 1.

The impact o f  the ch an ges o f  TH R  on the overall costs can be seen from Figure 5 .28  for 

each depot. A s exp ected , as the TH R rate increases for a particular depot, the overall 

costs increase across all experim ents. L ooking at the curve in Figure 5 .28, w e can see  that 

for all depots the curve is  still grow ing as THR increases and does not stabilize, which  

indicates that there is  still availab le capacity to assign to the stores. Around 32-33%  o f  

the overall costs in the optim um  solution  are allocated to transport costs (Figure 5 .29).

The impact o f  the increasing overall cost has a different influence on the total vehicle- 

km depending on the geographical location, surrounding demand and available capacity
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Figure 5.30: Total distance (km) travelled for a particular depot when THR changes 

from £11 - £33, step 1 for each depot.

(a) Depot B, THR=£27 (b) Depot D, THR=£31

Figure 5.31: Impact on allocation of THR changes.

(Figure 5 .30). For depot A and depot B, the overall distance and associated costs increase 

as the THR rate g o es  up. A gain , w e can see a different picture for depot C, where the 

distance decreases as co st increases due to its geographical location. The reason for the 

decrease is that the stores surrounding depot B are re-assigned to depot B, with lower 

distances w hen the rate increases at depot C. D epot D and depot E do not have such sharp 

decreases/increases in overall d istance as other depots. Figures 5 .3 l(a )-5 .31(b ) visualize  

the impact on the som e o f  the depots.
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Figure 5.32: Number of stores assigned to a particular depot when THR changes 

from £10 - £33, step 1 for each depot.

The number o f  stores assign ed  to a depot steadily decreases for depot C, depot B and depot 

C (Figure 5 .32). T h is pattern w ould  be expected  throughout the entire network because as 

THR increases at a particular depot, that facility  becom es more expensive for surrounding 

stores. For depot D (F igure 5 .3 2 ), the number o f  assigned stores does not change much 

until T H R =£27, after that the num ber o f  stores starts steadily to decrease as w ell. The 

sam e pattern can be ob served  for depot E, w ith a breakpoint at around £28 . N one o f  

the depots lose  all the stores, w h ich  is due to the fact that a sm aller part o f  the costs is 

apportioned to transport co sts  than w arehouse costs, and the variable under investigation  

reflects the drivers hourly rate.

The number o f  stores lo st at a particular depot increases as expected for depot A, depot B 

and depot C ( F igures 5 .3 3 ), b ecau se each  depot becom es less attractive for stores due to 

THR increasing. D ep ot D and depot E  have a V-shaped curve where each side represents 

that depot lo ses the stores to the surrounding depots. O ne o f  the explanations w hy this is 

happening is b ecau se o f  the geographical location o f  these tw o depots, which are located  

c lo sely  to each other. A s w ell as attracting new stores, those depots also  lose  som e o f  

the stores to the surrounding d epots, w hich could be due to the capacity constraints. The 

breakpoint for depot D w ould  be at around £  16-£  18 and for depot E at £20-£23 .

The number o f  stores n ew ly  assigned  to a particular depot can be seen in Figure 5.34. 

The number o f  new ly  assign ed  stores decreases for depot A, depot B and depot C, as THR
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Figure 533: Number of stores lost to a particular depot, THR changes from £10 to 

£33, step £1.

25 w

I fc o

i f* s
te c 
2 -  C m 3 «z

to oo
Depot A Depot B Depot C Depot D Depot E

THR (€)

Figure 5.34: Number of stores newly assigned to a particular depot, THR changes 

from £10 to 33 with step £1.

increases. For depot D and depot E, the curve resem bles a V-shape, with a breakpoint at 

which no new stores are assigned , and on both sides o f  that point there are new ly assigned  

stores. We w ould exp ect the num ber o f  new  stores to increase when THR is cheaper, but at 

the sam e tim e an increase in the num ber o f  new stores when THR is more expensive. This 

could happen b ecau se the stores are located c losely  to each other and as w ell as attracting 

new stores, those d ep ots a lso  lo se  som e o f  the stores to the surrounding depots, perhaps 

due to the capacity constraints. T he breakpoint for depot D would be between £16  and 

£18 and for depot E b etw een  £ 2 0  and £24 .
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Figure 5.35: Total num ber of stores different, THR changes from £10 to 33 with step 

£1.

The total number o f  stores d ifferently  allocated com pared to the benchm arking scenario  

can be seen in F igure 5 .3 5 . A ll the depots produce V-shaped curves, where the depot 

becom es either m ore “expensive"  or m ore “attractive" to other stores. The im pact o f  the 

THR increase is d escribed  as fo llo w s  for each participating depot:

•  D epot A. W hen T H R  is b elow  £ 1 9 , the depot attracts more stores from depot D 

and depot F /d ep ot G. A s TH R  increases above £ 1 9  - the depot start losing stores to 

depot K, depot D, depot C, d ep ot F /d ep ot G.

•  D epot B. W hen T H R  is b e lo w  around £ 18 , the depot attracts surrounding stores 

from depot L. A s T H R  in creases above £ 18 , it starts losing stores to depot C (m a­

jority o f  the lost stores) and depot K.

•  D epot C. W hen T H R  is b elow  £ 1 7 , the depot attracts surrounding stores from depot 

B (majority o f  the lost stores) and depot D. W hen THR is above £17 , the depot start 

losing stores to depot A, depot D , depot B, depot E, depot K, depot L and depot 

F/depot G.

•  D epot D. W hen T H R  is b elow  £ 1 7 , it attracts stores from depot E and depot B. 

A bove £ 1 7 , it starts lo sin g  stores to surrounding depots such as depot E, depot A, 

depot B, depot L and depot G /depot F.
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• Depot E. When THR is below £21, the following depots are affected: depot D, depot 

A and depot C. Above £21, reassignment of the stores involve following depots: 

depot D, depot A, depot C and depot G/depot F.

5.6 Calculating CO2 emissions

Previous sections of this chapter dealt with a cost-based optimization and the impacts 

of the changes in various key factors (DWR, THR, WHR and fuel-related costs) on the 

allocation, overall cost and distance. To calculate CO 2 emissions from the network, only 

the vehicle based emissions were considered. The emissions from running the depots 

were not taken into account because they would be considered as fixed emissions for each 

depot, which is the same as depots fixed costs which has not been taken into account either 

during modelling. Adding the fixed cost will not have an impact on the final allocation 

solution. The purpose of the current investigation is not to calculate total emissions from 

the network but to evaluate relevant factors which have an impact on the solution.

In this chapter we use a formulation to calculate CO 2 emissions of the particular network 

configuration from DEFRA [32] following the company’s usual practice. We do not con­

sider vehicle speed as part of calculations as we did in the Chapter 4 because the DEFRA 

formulation is an accepted guideline for UK business to calculate carbon dioxide emis­

sions and it does take into account the diesel lorry type and percent of laden weight of the 

lorry.

C 0 2 = *fuelConsump*fuelFactor)x i j , i e  VDC, j  e V Clp e  P
izVnc jcVr pcP

(5.10)

where / uclConswnp  is the figure which was provided by the Company and is an average 

fuel consumption of a truck, f  ue l Factor is a fuel conversion factor for a particular fuel 

type and totDislij is the total distance travelled by the vehicles to depot i to satisfy a 

particular demand of a customer j  which is a stem distance multiplied by 2. We used a 

figure of 0.33 litres per km for fuelConsump, which is the average figure over 12 months
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(April 0 9  - M arch 10) across all depots. For the fuelFactor  parameter, a fuel conversion  

factor o f  2 .6 3  kg/litre w as used for d iesel fuel. Figures 5 .36(a)-5 .36(c) v isualize CO2  

em ission  results for all scenarios, w here the shape o f  the curve is the sam e as the curve 

for the total v eh ic les-k m  travelled.
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(c) THR and WHR scenarios 

Figure 5.36: CO 2 emissions for all scenarios.

5.7 Discussion of results and main conclusions

The main con clu sion  o f  the an a lysis is that the current network configuration is robust to 

sm all fluctuations in the rates investigated due to spare capacity in the depots. Further­

m ore, the findings show  that the effec ts o f  m aking changes to various costs or productivity 

parameters vary con sid erab ly  and depend on the geographical location and available ca­

pacity o f  the d epots in volved  as w ell as on the local topology o f  the network. In som e 

cases relatively large ch an ges to variables associated with an individual depot have very
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little impact, even locally, whereas in other situations similar changes when applied to a 

different depot may result in a large number of reallocations, throughout the network.

The fuel-based scenario looks at the impact of changes to fuel-related costs on the alloc­

ation of the stores. Our analysis investigates the impact of increasing and decreasing the 

fuel rate from a benchmarking cost of £0.35 per km. Although the overall difference in 

the way stores are allocated is small (for example, 8.3% of all stores at £500 per km), 

some interesting observations can be made more locally. When the rate is below £0.35 

per km, we find that depot C is affected the most and attracts many stores from depot B 

(at £0.10, for example, the depot has an extra 39 stores, which equates to an increase of 

59% stores for depot Q . When the rate is above £0.35 per km, on the other hand, depot A 

is affected the most, followed by depot E, depot F/depot G, and depot D. For example, at 

a fuel rate of £1.00, the total number of stores assigned to depot A increased to 57 stores 

compared to 48 stores in the benchmarking scenario (an 18.8% increase).

The direct work rate (DWR) scenario investigates the impact of the work rate efficiency 

on the allocation of stores to a particular depot. We vary the DWR from -10% to +15% 

from the benchmarking values with step 2.5% for all products. Our analysis shows that the 

results for the number of the stores allocated differently compared to the benchmarking 

scenario differ according to the depot we choose to investigate. Depot A and depot B 

demonstrate predictable patterns in terms of the number of stores assigned: the higher 

DWR (i.e., productivity)- the more attractive a particular depot becomes for surrounding 

stores. Depot C follows a similar trend but reaches its maximum capacity early at DWR= 

+7.5%, and at this point it cannot physically accept any more stores. For depot D and 

depot E, only slight variations in store allocations result from the imposed changes to 

DWR with one exception: if DWR is decreased by 10% for depot D - this makes the 

depot too expensive, and as a result it ‘loses’ some of its stores.

The warehouse hourly rate (WHR) scenario analyses the impact of the changes in the 

warehouse associated costs within a particular depot under investigation. An increase in 

WHR would imply that as the rate increases at a particular depot, that facility will become 

less attractive/ more expensive for the surrounding stores. Indeed this pattern of steadily 

decreasing numbers of stores assigned to a depot is observed for almost all depots, until
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a particular rate when the depot looses all the stores. Depot A loses all its stores after 

WHR > £32, depot B when WHR > £26, depot C when WHR> 22, depot D when 

WHR> 25. On the other hand, depot E maintains some stores over the complete range of 

WHR analysed in our study. Our findings suggest that in situations where depot costs are 

high in comparison to transport costs, depots tend to ’lose’ all their stores more readily 

as WHR increases. On the other hand, the total number of stores allocated differently 

compared to the benchmarking scenario produces a V-shaped curve for each depot under 

the investigation. In the centre of the ‘V’ we have the benchmarking case that gives the 

expected number of stores allocated to a depot, thus representing zero deviation from 

expectation. To the left of this, stores are gained by a depot as WHR is decreasing making 

the depot cheaper and more “attractive". To the right, WHR is increasing, making a depot 

more “expensive". In this case, stores will be lost from the depot (Figure 5.24).

The transport hourly rate (THR) scenario analyses the impact of changes in the trans­

port associated costs within a particular depot under investigation. As THR increases for 

a particular depot, it not surprisingly becomes less attractive for the surrounding stores. 

However, changes in THR do not seem to have quite such a drastic effect as we observed 

when studying the WHR scenario. As mentioned above, depot costs generally tend to be 

higher than transport costs. Thus it is perhaps not surprising to note that the network is 

more sensitive to changes in warehouse costs than it is to changes of similar magnitudes 

to transport costs. Nevertheless, in THR scenario, as THR increases, the number of stores 

assigned steadily decreases for depot A , depot B and depot C depots. For depot D, the 

number of stores does not change a great deal until THR=£27, after which the number 

of stores starts steadily to decrease as well. The same pattern can be observed for de­

pot E, with a breakpoint at around £28. The total number of stores allocated differently 

compared to the benchmarking scenario produces similar V-shaped curves to those ob­

served for changes in WHR, where the depot either ‘loses’ stores as the depot becomes 

too expensive, or gains stores more as it becomes more cost effective.

The investigation into allocation allowed us to cover different scenarios for network design. 

In some cases the depot costs dominated the cost function and in other the transportation 

element was the greatest. Having real store and depot locations allowed an insight of
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real-world design. The geographical locations have a drastic impact of the behavior on 

the allocations, where the overall cost of the allocation could increase as the changes in 

various key factors occur and at the same time the overall distance travelled may decrease. 

Without detailed analysis of the network, it would be very hard to predict that behaviour.

In an attempt to generalise results presented in this study, the findings show that effects 

vary considerably and depend on the geographical location and available capacity of the 

depots involved as well as on the local topology of the network. In some cases relatively 

large changes to variables associated with an individual depot have very little impact, even 

locally, whereas in other situations similar changes applied to a different depot may result 

in a large number of reallocations, throughout the network. The decision maker needs to 

be aware that changes in one facility will have a ripple impact on other serving facilities 

as stores which are located mainly on boundaries will be reallocated. Also, the proximity 

of depots need to be considered because it will have a direct impact on which depots are 

likely to be affected. The results presented in this chapter confirmed findings by Lalwani 

et al. [1251 where authors undertaken the sensitivity analysis on the strategic network 

design (locatio-allocation) that the optimum design is overall less sensitive to transport 

cost changes due to its smaller proportion contribution to the overall logistic costs. On 

the other hand, in this research we also show that changes in transport related costs could 

have a significant impact on the allocation of individual depots.

5.8 Summary

This chapter presents a case study based on Sainsbury’s data with multiple products, 

where the impact of changes of key variables such as fuel costs, transport and ware­

house associated costs is analysed based on the allocation of the stores to depots. The 

main conclusion of the analysis is that the current network configuration is robust to small 

fluctuations in the rates investigated due to spare capacity in the depots. This seems to 

reflect current practices company deploy to ensure that there is enough spare capacity to 

deal with uncertainty.
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Chapter 6 

Optimizing Dual Objectives for a 

Capacitated Allocation Model Using 

Sainsbury’s Data

6.1 Introduction and Motivation

In the previous chapter a cost-based capacitated allocation model based on Sainsbury’s 

data was investigated, for which the optimization was undertaken using a single objective 

function based on cost. The present chapter extends the study to include distance-based 

optimization. Given current concerns about the environment, we consider that a reduction 

in the total distance travelled in a distribution network will be likely to equate with a 

reduction in greenhouse gas emissions, such as CO 2 , thus providing a simple way to 

explore the trade-off between “cost versus carbon emissions".

We begin with a simple distance only optimization of the network, and compare these 

results with the “cost only” model from the previous chapter, observing any differences 

between the distribution networks optimized on the two different criteria: cost and dis­

tance/environmental impact. We wish to ascertain whether cost and distance based op­

timization on our data set will produce the same (or similar) solutions in terms both of the 

allocation and the objective values for the capacitated allocation problem.

Next we try a slightly more sophisticated approach: we combine the two objectives, cost 

and distance, in a simple weighted sum, and by varying the weights we produce a set of 

trade-off solutions that balance economic and environmental objectives. In this way we
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are able to solve the allocation problem and offer the decision-makers alternative solutions 

from which to make a choice. We also apply multi-objective evolutionary algorithms in 

Chapters 8 and 9 for multi-objective facility location problems.

Although there is clearly a close relationship between cost and distance, insofar as trav­

elling greater distances requires more fuel, and more fuel costs more money, the relation­

ship is not as straightforward as it may seem, because there are many additional elements 

included in the cost model, that may make it cost effective to travel further in some cir­

cumstances. The cost-based formulation includes both a transportation and a warehousing 

component, and staff related costs normally form a significant part, associated with pick­

ing and loading the products, as well as driving the delivery vehicles. Some warehouses 

are more efficient than others, and staff costs vary according to the location, for example 

they are higher in the South East of England than elsewhere.

The work in this chapter was undertaken only on the benchmarking values to solve the 

allocation problem at a fuel-related cost of £0.35, which was discussed in more detail in 

Chapter 5. The data we use is the September 2009 data used in the previous chapter. Re­

call that Sainsbury’s secondary distribution network consists of 10 depots and 520 stores, 

where each store has a certain demand for three different product types, and the depots 

have capacity constraints on the number of cases and also the maximum number of stores 

which it can serve. The data for the demand is averaged across a 6 month period and 

reflects the market situation during 2009.

6.2 Distance-based optimization

The cost-based allocation model described in Chapter 5 was modified for the distance- 

based formulation as follows:

Mathematical formulation

We are given a set of stores with known demands for different types of product. We 

are also given a set of open facilities with capacity constraints for maximum volumes
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(numbers of cases) and maximum numbers of store allocation capacities, for each product 

type at each facility. The objective is to minimize the total distance travelled each week, 

assigning each of the stores to exactly one facility, adhering to all the capacity constraints. 

This is a single source problem, in which each store obtains all of its product from a single 

facility.

Glossary

VDC

Vc

P

!"

f

dê j

distij 

t i m e . j j  

T H R i  

W  H Rj 

D W R ?

Ta

set of depots 

set of stores 

set of products

demand of store j  of product p, j  £  Vc , p  £  P

number of vehicles needed to deliver demand of store j  of product p, j  £  \

p £  P

average vehicle load of product p , p  £ P

distance related cost (fuel cost) per km

capacity of cases of facility i of product p, i £  Vdc , p  £  P

number of stores assigned of facility i of product p, i £ VDc  , p  £ P

transportation cost of total demand d* of product p of store j

from facility i

depot cost of total demand of product p  of store j  

from facility i

distance between store j  from facility i 

time to travel between store j  from facility i 

transport hourly rate (drivers cost) for facility i 

warehouse hourly rate for facility i 

direct work rate for facility i for product p

is the decision variable for the problem, =  1, if store j  is allocated 

to facility i, and 0 otherwise

Minimize

^ 2 , ( d i s t i j  * 2 * V j )  Xi j  

i€V oC  j€ V c  PG-P

(6 . 1)
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subject to

=  l  , V j € V c  (6 .2 )

y  d jX i j  < <f{ , V i  €  Vd c -Vp  €  P  (6 .3 )
J i V r

y  Xtj <  7 i f , V i  G VDC,Vp G P (6 .4 )
jevc

x ij £  { 0 5 1 } 7  £ Vdc ,3 G K? (6 .5 )

by setting:

^ ^ q / F i i e V o c p e P  (6.6)

where formulation (6.1) aims to minimize the total distance to satisfy the total demand 

of all the stores, and constraints (6.2) with (6.5) guarantee that the demand for each store

must be satisfied by one depot. Constraints (6.3) and (6.4) ensure that the capacity con­

straints for the facilities for each product type are not violated and (6.5) specifies that 

allocation is indivisible for the decision variable. Formulation (6.6) calculates the number 

of vehicles needed to satisfy demand of store j  and product p.

To calculate the total cost, the following equation was used on the resulted allocation from 

distance-based optimization in formulation 6.1:

E  <6-7>
*€ V/>c j€Vc  p£P

by setting:

l(Jij  " { d t s l i j  *  J +  liiriCjj * T I I l i i )  * 2 * Vj, i G Vd c ,.) G Vc , V G P  (6.8)

=  « / ^ W 7 t ? )  * W IIP i, i G Vd c , j  £ Vc ,p  € P (6 .9 )
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Optimization 

based on costs

Optimization 

based on distance

Cost (£) 3,006,318.25 3,019,889.81

Distance (km) 1,418,938.40 1,405,138.95

Difference in cost 0 13,571.56

% Difference in cost 0 0.45

Difference in distance 0 -13,799.44

% Difference in distance 0 -0.97

Table 6.1: Results for the benchmarking scenario with fuel-related costs at £ 0.35 . 

6.2.1 Results and analysis

The optimum allocation of the stores to the depots is based on minimizing overall distance. 

This involves calculating the total distance travelled by vehicles to satisfy the particular 

demand of the store and this is multiplied by two because the network uses stem distances 

and the vehicle needs to get back to the original depot. The total distance travelled is 

calculated for all stores and added together. Therefore, the distance-based optimization is 

purely based on distances and any cost fluctuations in the market will have no impact on 

the optimum solution.

Table 6.1 shows the results of the optimization by cost and by distance when optimized 

separately. The cost value is slightly increased in the distance-based formulation com­

pared to the cost approach by 0.45%, which equates to a monetary value of £ 13,571.56. 

On the other hand, the distance is actually decreased by 13,799.44 km (0.97%) as was ex­

pected for the optimization based on distance. Another important point to take from this 

analysis is that if we consider the percentages when looking at the difference between the 

cost and distance based formulations, the difference seems insignificant at 0.97% decrease 

in total km travelled. In reality however, this would nevertheless equate to 13,799.44 km 

saved per week which is the significant amount of the C 0 2 emissions from the transport­

ation per week and across the year.

A comparison between the allocations of stores to distribution centres for the cost and the
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distance-based optimizations show that different allocations are made and different totals 

for cost and distance are produced. This is not surprising as there is an obvious differ­

ence between two formulations for this particular case study. The economic model has 

transportation and warehousing models combined together, and the transportation model 

has distance-related and time-related elements. Recall from the previous chapter that the 

cost structure for this particular case study is heavily influenced by the warehousing com­

ponent which contributes a higher proportion of the overall costs than the transportation 

component. Additionally, the transport costs include driver wages which are time related. 

On the other hand, the optimization based on the distance only considers a transportation 

model with distance-related costs only. This study supports the idea that it is possible to 

balance economic and environmental objectives using multi-objective optimization tech­

niques and one of those approaches, a simple weight-based technique is discussed in the 

next section.

6.3 Multi-objective weighted sum approach

To allow a decision maker to evaluate the different trade-off solutions between cost and 

distance based optimization in our allocation problem, we used a multi-objective (MO) 

optimization approach. When there is more than one objective considered, the problem 

will have multiple distinct goals, in our case this involves minimizing costs for one ob­

jective and minimizing distance for the other objective:

M i n i m i z e ,  f i  =  ^  ^  +  ^ j ) x v
jzVc P̂ P

M i n i m i z e  f<i —  y  y  y j d i s t i j  *  2 *  v j )  n j  (6 .1 o>
teV o c  j e V r  p£P

s u b j e c t  t o  :

^  Xij =  1 ,Vj € Vc
ieVDc
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5 2  djZij < <7?, V i 6  VD c .V p S  P
j e v c

^ 2  G VDC^P 6 P
j e v c

X i j  E {0,1},* E V d c ^J €  Vc

There exist many different methods for dealing with multiple objectives which are dis­

cussed in detail in Chapter 3. The approach we use here is a simple weighted-sum method. 

This is a widely used approach in multi-objective optimization due to its simplicity [31]. 

The technique scalarizes a set of objectives by multiplying each objective with a user- 

supplied weight [31] and the formulation of the technique is presented in the equation 

(6.11). In our allocation problem, we have the dilemma of balancing two objectives: min­

imizing overall costs and minimizing total distance for the allocation of stores to depots. 

The objectives have different units: £  and km, with different numerical ranges, making 

it difficult to choose appropriate weights to control the relative contribution of each ob­

jective to the weighted total. Therefore, we normalize the objectives to bring them so that 

each one typically produces values between 0 and 1. The formulation of the objective 

function can be seen as a sum of the weighed normalized objectives, which converts the 

problem into single-objective optimization problem:

F  =  ii>i f i  + W2fi (6.11)

The two weights w\ and w2 are chosen in such way where one weight is independent 

and the other one is calculated by simple subtraction. Therefore, the sum of the weights 

is equal to 1, where J2ni=\ wm =  1. To convert each objective J\ and j 2 to a single 

normalized value which is used for the composite objective function (6.11), the following 

procedure was used for each function, which generates a number between 0 and 1:

1. Find m i n V a l  value which represent the lowest number in the data set.

2. Find r n a x V a l  value which represent the highest number in the data set.
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3. Calculate the normalized objective value for each store to each depot:

riorrnValue =  abs((aV alue — minVal)/ {maxVal ~ minVal)), where aValue 

is the corresponding value used for the optimization function, either total cost for 

all products from a store to the depot or the overall distance.

As a result of the above procedure after applying weights to the normilized values, a mat­

rix of the normalized values is produced, for which each element of the matrix correspond 

to the value of the assignment between each store and each depot.

The experiments were conducted using Java 2 and CPLEX® optimization engine, on a 

PC with Intel Xeon E5345 and 4 GB RAM.

6.3.1 Results and analysis

The modelling and evaluation of the results was carried out on the allocation of stores to 

depots with fuel-related costs at £ 0.35. As discussed in the previous section, the cost and 

distance values were normalized to the same units between 0 and 1, then multiplied by 

the appropriate weight and added together to get the total objective value.

Table 6.2 displays the results of the optimization based on different weights for cost (wc) 

and distance (wd). As we can see from this table, the results are compared to the op­

timization purely based on costs only. Weighting both objectives allowed us to generate 

trade-off solutions and understand the relationship between cost and distance to effectively 

minimize environmental impact from the distance related emissions without a detrimental 

impact on the financial objective. For example, balancing cost and distance objectives 

with weights wc =  0.5 and wd =  0.5 allowed us to reduce total vehicle-km travelled by 

around 10,207 km by increasing cost by only £ 1,576 a week compare to the optimization 

based only on costs. This equate to around 530,764 km a year (52 weeks), which con­

tributes to a significant amount of C 0 2 emissions in a year. If the decision maker only 

considers the percentage increase, the reduction of 0.72% in km travelled appears insig­

nificant compared to the number of km saved of 10,207. Therefore, looking at only % 

increase/decrease in the trade-off solutions may hide valuable information on the impact
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Weight 

for 

cost w r

Weight for 

distance

W-’rf

Obj.

(Normal.

value)

Cost

(£)

Difference

in

cost

% diff. 

for 

cost

Distance

(km)

Difference

in

distance

% diff.

for

distance

0 1 17.62 3,019,889.81 13,571.56 0.45 1,405,138.95 -13,799.44 1 -0.97

0.1 0.9 21.20 3,014,219.61 7,901.36 0.26 1,405,622.87 -13,315.53 -0.94

0.2 0.8 24.77 3,011,532.45 5,214.20 0.17 1,406,213.11 -12,725.29 -0.90

0.3 0.7 28.34 3,009,836.% 3,518.72 0.12 1,406,991.03 -11,947.37 -0.84

0.4 0.6 31.90 3,009,178.52 2,860.27 0.10 1,407,438.55 -11,499.85 -0.81

0.5 0.5 35.46 3,007,894.59 1,576.35 0.05 1,408,731.10 -10.207.29 -0.72

0.6 0.4 39.02 3,007,894.59 1,576.35 0.05 1,408,731.10 -10,207.29 -0.72

0.7 0.3 42.58 3,007,467.07 1,148.83 0.04 1,410,159.03 -8,779.37 -0.62

0.8 0.2 46.13 3,007,102.90 784.65 0.03 1,411,761.46 -7,176.94 -0.51

0.9 0.1 49.68 3,006,607.62 289.37 0.01 1,415,033.40 -3,904.99 -0.28

1 0 53.22 3,006,318.25 0 0.00 1,418,938.40 0 0

Table 6.2: Results of the optimization with different weights for wc and wd which 

compared to the optimization purely based on costs (wc =1, wd=0 ).

1 ,420,000

1 ,418,000

1 ,416,000  -

1,406,000

1 ,404,000
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Cost difference-  £ 1,576.36
.Distance difference" -10,207.29 km

wc=0.4, w„=0.6
Cost difference® £ 2,86027
Distance difference® -11,499.85 km

1 ,414,000  -

1 ,412,000  •

1 ,410,000  -

1 ,408,000  -

Cost (£)

Figure 6.1: Trade-off solutions for the allocation problem.

on the overall vehicle-km. Figure 6.1 visualizes the different choices for the allocation 

which are available to the decision-maker.

Figure 6.1 visualizes the non-dominated solutions obtained by the simple weighted - based 

approach which are presented in the Table 6.2 and discussed earlier. This allows the
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decision-maker to see straight away good compromise solutions. For example, solutions 

which are circled in the figure have relatively low distance travelled just before the curve 

steepens towards high overall distance travelled. The good compromise solutions were 

already discussed earlier where a large number of the kilometers could be saved for a 

relatively small economic cost.

To conclude, the analysis shows that single objective optimizations based either on cost 

or distance, generate different results with different allocations, costs and total distances. 

Even though these differences were relatively small percentagewise, we note that nev­

ertheless significant savings can be made in reducing the total distance travelled, at a 

very small cost. A simple weighted sum approach gave the desirable trade-off solutions 

between both objectives. When comparing the trade-off solutions to the cost-based op­

timization, we can see that even a small decrease in distance (0.72%) equates to around 

10,000 km a week. This decrease in vehicle-km also equate to the small increase in 

costs at around £ 1,500. If we only used the analysis based on percentages, there would 

have been a tendency to underestimate the real impact on the reduction in distance. This 

approach allows us to generate a good set of compromised solutions and analyse their 

impact.

6.4 Summary

In this chapter we extend our Sainsbury’s case study to focus on balancing the economic 

costs versus the environmental impact of transport, using a simple distance-based model 

as a rough assessment of the environmental impact. Firstly, we optimized on distance 

alone and compared our results with those obtained previously optimizing economic cost. 

In addition, a weighted sum two-objective model was presented to produce a trade-off 

front for overall costs and distances. Java was used as our implementation language, 

together with the CPLEX® optimization engine. The weighted sum approach for the 

multi-objective optimization produced a set of non-dominated solutions by re-running the 

optimization several time, each time applying different weights to the cost and distance 

values. The approach allowed to produce good trade-off solutions that can be found using
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this technique. An investigation into the impact of the trade-off solutions is discussed in 

relation to absolute values, in terms of £s and km, as well as percentages.
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Chapter 7 

Lagrangian relaxation for a single 

source facility allocation problem

7.1 Introduction

Logistics network design involves making decisions at different levels to ensure the con­

tinued competitiveness and responsiveness of the network. At the strategic level an op­

timum number, location and capacity for the depots is determined and may be evaluated 

every few years. At the tactical level decisions, such as customer assignment (to depots), 

supplier selection and transportation mode may be reconsidered every few months, as 

demand patterns or other factors change. In this chapter we are concerned with the pro­

cess of assigning customers to appropriate depots which extends our allocation study in 

Chapter 5 and 6 to large size instances. We consider the strategic problem of capacitated 

facility location in Chapter 9. Assigning customers to the most appropriate depot is also 

performed as a sub-routine of the the strategic facility location problem, because it is not 

possible to assess the quality of a particular facility location problem (i.e., with certain fa­

cilities identified as “open", and others as “closed"), without carrying out a full customer 

allocation to evaluate the costs of serving the customers and satisfying their demand. Re­

cently issues, such as fuel prices and climate change and its impact on the network design, 

have recently been discussed in the press. Gilmore [47] reports the finding of Dr. David 

Simchi-Levi who volunteered to take a look at the impact of rising oil prices using data 

from a real consumer goods company. He reported that the optimum network design stays 

the same with five distribution centres for this particular case until the price reached $150,
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then the optimal network changed to seven depots, where one depot is closed and three 

new facilities are open. These findings show the importance of periodically evaluating the 

network design when any factors that may influence the design change. Clearly, the op­

timum number of facilities and their location is very sensitive to many variable factors. In 

practice, however, building new warehouses, or closing or resizing them is a very costly 

business and will be considered only occasionally. On the other hand, it could be pos­

sible to make significant savings simply by re-allocating customers to fixed facilities, on 

a regular basis, to reflect changes in circumstances.

This chapter describes two Lagrangian Relaxation (LR) approaches to solving the single 

source facility allocation problem for a single and multiple products. The motivation for 

this research is to apply a Lagrangian Relaxation technique as part of a multi-objective 

capacitated facility location problem, where economic costs and environmental impact 

are solved simultaneously. Multi-objective optimization techniques allow the decision 

maker to evaluate different trade-off solutions of the design. Obviously optimization soft­

ware packages, such as CPLEX® exist, to calculate the optimum assignment. Even 

though developers can embed CPLEX® optimizers into Java applications to solve com­

plex optimization problems, for our research we need an efficient technique to produce 

a good solution within a reasonable amount of time as part of the development of our 

multi-objective optimization tool for strategic modelling. Many thousands evaluations 

are typically required for multi-objective optimization and CPLEX® would be too slow.

Our single source mathematical model for the allocation of customers to facilities involves 

two capacity constraints: 1) number of cases and 2) number of customers assigned to a 

particular depot. We use a notation of an average case in the problem formulation which 

consists of a number of items packed together in one box. Inheritably, different products 

have different weights and different numbers of items packed in the case, therefore it is 

common to use the notation of the average case. Single source terminology implies that 

a customer is assigned to just one serving facility. The objective of this study is to de­

velop an efficient heuristic procedure, which provides an effective solution for large-scale 

data instances for a single-echelon assignment problem, consisting of number facilities 

and customers. Although the technique does not guarantee to obtain the optimum solu­
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tion, it has proven excellent in practice, and is very useful when speed is critical (e.g., for 

really large problems, multiple experiments and for considering multiple criteria simul­

taneously). We apply Lagrangian Relaxation with relaxed capacity constraints to obtain 

a lower bound solution, and a set of multipliers is used to ensure that if the facility has 

spare capacity, then it is more attractive for assignment in the next iteration. The current 

technique was adapted from Ghiani [48] where it was applied to CFLP. The formulations 

presented in this chapter are based on the traditional lagrangian relaxation of the capa­

city constraints of GAP [136] and extended to incorporate extra constraints and multiple 

products. The heuristic algorithm for solving each relaxed formulation is discussed as 

part of the development of the LR technique in this chapter and focuses on obtaining a 

feasible solution for upper bound for an assignment problem and not for the facility loca­

tion problem as presented in the study by Klincewicz and Lussf 135] where fixed costs are 

present in the relaxed formulation.

Section 7.2 describes a LR approach based on a traditional formulation for a single 

product where the capacity (number of cases) constraint is relaxed. We also present in 

the Appendix A, a new LR procedure where two capacity constraints are incorporated 

into relaxed formulation. The results of the technique in the Section 7.2 are compared to 

the optimum solutions produced by CPLEX® in terms of the quality of solution and ex­

ecution time on the benchmarking data available in the public domain (ORLIB [11]) and 

also on some large-size problem instances which were randomly generated by ourselves. 

The benchmarking data available from ORLIB was used for testing the technique on the 

model with one capacity (cases) constraint and the data created by us was used to assess 

the performance of the solution technique on the model with two capacity constraints: 

number of cases and number of stores.

Section 7.3 introduces multiple product formulation with LR solution technique based on 

Sainsbury’s data. The emphasis of the discussion in this section is on finding feasible 

solutions in the multiple product formulation. The LR technique for multiple products 

will need to have further investigation on randomly generated data sets which are outside 

the scope of this project and addressed in the future work chapter 10.
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7.2 Problem Definition for a single product

For a given a set of customers with known demand for a product and a set of open facilities 

with known capacities, the objective is to minimize the cost of assigning the customers to 

the facilities. The customers’ demand has to be satisfied by a single facility, and capacity 

constraints have to be adhered to. The problem can be modelled by a complete directed 

graph, G,  where the vertices in VDC represent the facilities and the vertices in Vc represent 

the customers. The arcs are associated with the flow of goods between facilities and 

customers.

Glossary

VDC set of facilities;

Vc set of customers;

dj demand (cases) of customer j, j  G Vc',

f/j capacity (cases) of facility /, i G Vdc \

rii capacity (number of customers) of facility i, i G Vdc\

(:tJ is the cost of satisfying the total demand of customer j ,  dj, from facility i\

j j j  is the decision variable for the problem, Xij =  1, if customer j  is allocated

to facility i, and 0 otherwise.

Mathematical formulation

Minimize

(7.1)
i&Voc j€Vc

subject to
(7.2)

ievuc

(7.3)
jevc

(7.4)
jtVc
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Xij  G { 0 , 1 } ,  i 6  Vd c -<3 £  Vc (7.5)

(7.1) aims to minimize the costs of satisfying the total demand of all the customers, and 

constraint (7.2) specifies that the demand of each customer must be satisfied by a single 

facility. (7.3) and (7.4) ensure that the capacity constraints for demand (cases) and number 

of stores for the facilities are not violated and finally, (7.5) specifies that allocation y for 

the decision variable and the demand is satisfied by one facility.

7.2.1 Solution Formulation 1 for relaxing one constraint: number of

The first solution formulation of LR techniques relaxes only one constraint: the number 

of cases. This is a simple approach, yet we found the solution quality and efficiency 

comparable to a more complex two constraint LR model, which we developed later and 

further work will be needed to test the approach on our own generated data sets. We 

also present the two constraint model in the Appendix A. Please note that by relaxing 

only one constraint initially we were making the assumption that the number of cases is a 

harder constraint compare to the number of stores constraint, and this seemed appropriate 

on close examination of the data. Nevertheless, the feasibility of the LB and UB solu­

tions was checked for violation of both constraints to ensure only feasible results were 

produced.

The main step in the Lagrangian relaxation is the determination of a lower bound obtained 

by relaxing the capacity (cases) satisfaction constraint using Lagrangian multipliers. Let

A i  G M , V z  G Vd c -

cases

Minimize

(7.6)
iCVDC jCVc iCVD(; j(zVc
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subject to

E 1 y j e V c (7.7)
itVoc

X i j  <  e  VDC (7.8)
jfzVc

Xij 6 {0,1}, i € VdciJ £ Vc (7.9)

In (7.6) the term in brackets on the right, {J2jeVr d j X lJ —  qt ) ,  calculates the difference 

between the total demand on a facility i imposed by the relaxed formulation, and its 

ability to meet that demand (i.e., its capacity(cases), qi). If the capacity is violated, or 

underutilized, the value of total cost in (7.6) will change, depending on the value of A, .

One issue that needs to be considered regarding the right-hand side of formula (7.6), 

is that normally a Lagrangian Relaxation technique will make adjustments to the cost 

only when a constraint is violated. Thus, in the case of (7.6) we would expect the term 

(YljeVc djXij — <7i) to equal zero, for any facility for which its capacity has not been 

exceeded. However, this is not the case, as underutilized capacities will produce non-zero 

values. Later on in this chapter we will make some suggestions as to how the Lagrangian 

scheme can be adapted to cope with this issue, by constraining the A; values: if A j =  0, it 

follows that Ei€VDC X̂ j e v c d3 xij ~  9») also e9uals zero-

Problem (7.6) - (7.9) can be decomposed into \ Vc\ subproblems. For a given set of multi­

pliers, Ai 6 R, the optimal lower bound of the problem (7.6) - (7.9), LB( A), can be found 

by solving the following subproblem for each customer j e Vc-

Minimize

(7.10)
icVnc

subject to
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^ 2  xij =  i,v y  g vb (7.11)

Y 2  XV -  n’ ’Vz 6 Vbc (7.12)

6 {0,1} , i £ Vnc^j £ Vc (7.13)

and then by setting

LB(X) =  ^  LB’ (A) -  ^  \ q . (7.14)
i^DC

(7.10) is easily solved for the relaxed problem simply by applying a greedy algorithm 

to allocate each customer along the lowest cost arc, according to the augmented costs, 

cij +  djXi. By suitably modifying the Lagrangian multipliers, it is possible to obtain a 

feasible solution to the original capacity constrained problem. To provide a good updating 

formula for the Lagrangian multipliers, we will need an upper bound, in addition to the 

lower bound in (7.14).

For an upper bound (UB) we will use a feasible solution obtained on the basis of the 

allocations of customers to facilities discovered in the evaluation of LB( A). However, it is 

likely that the allocation made for the lower bound calculation will produce some capacity 

violations. In order to obtain the best possible upper bound (i.e., with the lowest cost), we 

need to establish a good way of reallocating customers when facilities are over-subscribed. 

For an upper bound, it is best to allocate customers with high demand first, to try to ensure 

that individual depots have sufficient unused capacity. One possible way of doing this is to 

sort customers in non-increasing order of demand level (highest demand first), then work 

through the list, assigning customers in the same way as the LB, whenever possible. 

When capacity constraints are violated for LB assignment, we try to assign to the next 

lowest augmented cost depot without violating the capacity constraints etc. If all facilities 

are overcapacity, then we assign to the lowest available cost value (non-augmented cost).
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Updating the Lagrangian multipliers

For each facility at time step, k

2 2  4 ,,j - ' i’ (7.15)
V r

where xk is the solution of the Lagrangian relaxation (7.6) - (7.9) using Xk 6 R. Vz G Vpc 

as the Lagrangian multipliers. Now set

Lagrangian multipliers to zero. Formula (7.16) can be explained in the following way. If 

for a certain facility i, sk is positive, it means that demand outstrips supply for that 

facility, and thus the corresponding value of A, should be increased to increase the cost of 

assigning customers to that facility in the next round. Similarly, if sk is negative, it 

means that there is spare capacity, so A j should be reduced to make that facility more 

attractive for assignment in the next iteration. However, as we pointed out earlier, it may 

not be appropriate to make adjustments to the multipliers when the capacity has not been 

violated for a facility. Formula (7.16) ensures that the Xk are always positive.

Tuning of the Lagrangian heuristic technique

To ensure that the algorithm is robust and performs efficiently, several experiments were 

performed in order to tune the ftk coefficient and also to determine how many iterations 

to perform between updates for the constant r>. The coefficient was tested with two 

different settings (7.17) and (7.18), where the difference between two formulations was 

insignificant therefore the equation (7.17) was chosen and incorporated into our final

(7.16)

where /3k is a suitable scalar coefficient. We will start the procedure by seeding all the

algorithm.
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(7.17)

,t _  a (U B (\k) -  LB (A*))
(7.18)

Parameter a  is a constant in the interval (0. 2] [48]. Here, a  is used starting with 2 and 

halved whenever the iteration’s feasible upper bound failed to improve on the best known 

feasible upper bound for n iterations. Parameter n was tested in the range from [1,100] 

with step 1 for all benchmarking problems to identify the best value for n. As a result, a 

value of 100 was used for n in the smaller problems (Beasley data sets and our own data 

sets with 10 depots) and a value of 70 for larger sized problems. Those values of n were 

chosen because our algorithm produced its best solutions (or very close) for most of the 

instances tested with these values.

The total number of iterations was tested at: 500, 1000 and 2000. We discovered no 

difference in the final results, so a value of 500 was used for the total number of the 

iterations to minimize the computational time. Finally, the algorithm for the Lagrangian 

relaxation is described in Algorithm 7.1.

7.2.2 Test instances 

Benchmarking data

The quality of the solution produced by our Lagrangian heuristic was tested on the 

benchmark data instances available in the literature for single source capacitated facility 

location problems (SSFLP) for single product available from the OR-library [11]. The 

benchmarking data sets available do not necessary reflect all real-life situations, however, 

where additional constraints may apply. For example, in our model described above, we 

have an extra capacity constraint in terms of a maximum number of stores that can be 

served by a particular depot (Equations (7.4), (7.8) and (7.12)). Thus, the “number of 

stores" constraint did not apply and was dropped from our model for the OR-library 

benchmark sets.
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Algorithm 7.1: Lagrangian heuristic algorithm for a single source capacitated alloca­
tion problem, single product.

1: Begin
2: (initialization)

3: Select a tolerance level e > 0
4: Set d i  f  ference — -f oo, L B  =  — oo, U B  — -(-oo, k  =  1 and X k  =  0 , i  e  V p c

5: while ( d i f  ference > e) OR (k <number of iterations) do 
6 : (Computation of a new lower bound)
7: Solve the Lagrangian relaxation (7.6) - (7.9) using A* e R, Vi e Voc multipliers (Greedy

algorithm with on uncapacitated version based on augmented costs). Let L B ( \ k ) be its 
cost.

8: if L B ( X k ) solution is feasible then
9: STOP algorithm and return cost L B ( \ k )

10: else if L B ( X k ) >  L B  then
11: set L B  = L B ( X k )

1 2 : (Computation of a new upper bound)

13: Determine the corresponding upper bound (modified greedy algorithm, as described in
the text). Let U B ( X k ) be its cost.

14: if U B ( X k )  < U B  then
15: set U B  = U B ( X k )

16: C alculate d i f f e r e n c e  =  ( U B  — L B ) / L B

17: Update parameters sk, fik and compute Lagrangian multipliers Â +1 (7.15)-(7.17), Vi G

Vd c

18: Update k=k+l
19: Return cost of the U B  feasible solution 

20: End

Recall that this chapter covers facility allocation only (and not facility location) and is 

focussed on comparing run times and solution quality for CPLEX® versus LR, the goal 

begin to develop a fast routine that we can incorporate into our multi-objective 

approaches, where it will be necessary to repeat the allocation procedure many times. 

The chosen benchmarks however, are all facility location/allocation problems. Thus it 

was necessary to begin with solutions to the location problems, with the open facilities 

defined at the start, before we attempted to solve the allocation problems, and carry out 

the timings and solution quality comparisons for CPLEX® and LR. Unfortunately, 

although optimum solutions in terms of cost are given for small and medium instances,
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for large problems which were are used for testing there was no available cost solutions, 

only information on LB. Also, there is no information available to identify which depots 

are open and which closed in the optimum solutions. To determine which depots are 

open and which are closed in the optimum solutions as well as their solutions, all 

instances were solved by us to optimality using CPLEX®.

Because the Lagrangian relaxation was developed for a large-size instances, only the 12 

largest sets of the Beasley ([ 10],[ 11J) instances were used for comparing the CPLEX® 

solution to the Lagrangian relaxation. The description of the data instances from 

Beasley, which is suitable for a single source problem formulation are presented in the 

Table 7.1. For example, instances from the set A (capal .txt, capa2.txt, capa3.txt, 

capa4.txt) were randomly generated by Beasley and consist of 100 potential facilities and 

1,000 customers. The locations of the customers/warehouses were generated within an 

1000 by 1000 Euclidean square. The cost was calculated per unit of demand supplied as 

proportional to the Euclidean distance between the customer and the warehouse, 

multiplied by a real random number in range [1.00,1.25]. The demand for each customer 

was generated as a random integer the range [1,100]. The capacity of the serving facility 

is equal to 8000 for capal.txt, 10000 for capa2.txt an so on. For more information how 

the data was generated, please refer to the original paper [10].

Problem

set

Number of 

facilities

Number of 

customers

Facility

capacity

Fixed cost per 

facility

A (e.g. capal.txt) 100 1000 8000/10000/12000/14000 Random

B (e.g. capbl.txt) 100 1000 5000/6000/7000/8000 Random

C (e.g. capcl.txt) 100 1000 5000/5750/6500/7250 Random

Table 7.1: Data sets from Beasley [10] for a single source problem formulation.

Our Data

As discussed earlier, the benchmarking data sets do not match our case study data, where 

constraints also exist limiting the number of stores for each serving depot. To reflect this



7.2 Problem Definition fora single product 132

situation, an extra constraint (7.4) is used in the model formulation (7.1) for the 

allocation problem.

Because there is no available published data sets for the model formulation with the two 

constraints in the public domain, we generated some new data. The methodology for 

generating data was inspired by Sainsbury’s case study (see Chapter 5), where the cost 

structure has transportation and warehousing models. The transportation model consists 

of distance and time related costs and the warehousing (depot) model of the labour costs 

of picking and loading goods and the picking productivity rate. The single commodity 

version of the algorithm for creating data sets is described in the Algorithm 7.2, where 

randomly generated parameters are uniformly distributed. A variety of problem sizes 

were generated with different numbers of depots, stores, and different ratios of total 

available demand to total available capacity in terms of the number of cases and also in 

terms of the number of stores.

The purpose of developing a Lagrangian relaxation technique is to develop a heuristic 

technique capable of producing “good” solutions to large-sized instances within a 

reasonable amount of time: faster than linear programs tools such as CPLEX ® . 

Therefore, two type of test instances were generated: set l  and set2. Se l l  instances have 

a ratio of overall demand to capacity of 0.9 for the number of cases and number of stores 

and sei2 instances have a ratio of 0.8. We used large sized networks for our instances, 

which we based on our observations of major national/international supply chain 

networks, where the number of customers can be 5,000 or more. For each type of 

problem (i.e., with ratio 0.8, and 0.9), we generated instances with 10 and 50 depots, and 

for each ratio-depot configuration, a following numbers of stores was generated: 100, 

500, 1000, 2000,...10000, e.g. sefl_1 0 _ 1 0 0 0 _ r0 .9 .£ x £ , se£2_10_1000r0.8.£x£. The 

locations for stores and depots were randomly generated within a square of 700 by 700 

units. The following parameters for each depot which were used for calculating the 

transportation depot cost structure were generated: THR rate in the range of f 1.7,2]; 

WHR rate in the range of [1.3,1.8] and DWR rate in the range of [7,12]. The value of 

0.04 was used for the cost of the fuel per unit of distance and the average truck load was 

equal to 130. A value of 40 was used as travel speed to calculate travelling times



7.2 Problem Definition for a single product 133

between two points. The latter values were used in calculation of the transportation 

costs. We generated the demand for each store in the range of [30, 3000] and the 

capacity for each depot was calculated taking into account the overall demand in the 

network (see Algorithm 7.2).

In total, 24 instances were created covering different possibilities of size, cost structure 

and the ratio of the overall demand over available capacity for cases and number of 

stores.

All the experiments were conducted on a PC with an Intel(R) Pentium(R) D CPU 3.4 

GHz and 2 GB RAM.

7.2.3 Results

To make a fair comparison between CPLEX® and our LR approach, the stopping 

condition for the termination of techniques was set to different values for the tolerance 

gaps which indicates how close a solution should be to optimality. To set the stopping 

criterion for the tolerance gap, the following parameters were changed in the solution 

techniques. In CPLEX, a relative MIP gap tolerance, which is an important criterion for 

the termination, was changed to the values below. A relative MIP gap tolerance is 

commonly used as a stopping criterion and indicates that CPLEX® should stop when 

the integer feasible solution has been proved to be within a particular distance from 

optimality. The default gap tolerance value is lelO-4 [24]. In the Lagrangian relaxation 

technique, the difference between the U B and LB solution was used as a tolerance gaps 

for our stopping criteria. The tolerance level in the experiments was set at following 

values 0.05, 0.04, 0.03, 0.02 and 0.0001. The information regarding the solution for each 

setting of the stopping criteria gave us an opportunity to compare our heuristic to the 

optimum solution in each run as a percentage difference which was rounded to 2 decimal 

places.

Tables 7.2 and 7.3 show the summary of the test results of the Beasley benchmarking 

instances: the solution quality and the execution times of both techniques. For all 

tolerance levels, the LR technique proved to find good quality solutions, which came at
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Algorithm 7.2: Algorithm for generating data sets for the allocation problem, single 
product, single source.

Begin:
SET parameters:

number of depots (N u m D cp ) 

number o f stores(N u m S tores)

min coordinates X  and Y {M in C o o rd X , M in C o o rd Y )  

max coordinates X and Y (M a x C o o rd X ,M a x C o o rd Y ) 

min and max demand for stores (M in  D em an d , M a x  D em an d)  

rriu ltip lyerC apacityC ases  value which controls the ratio o f the overall demand over 

the available capacity for all depots to make network ’’looser” or ’’tighter” 

rn u ltip lye rC a p a c ityN u m O fS t  is similar to rr iu ltip lyerC a p a c ityC a ses  with the 

difference that it controls the ratio o f overall number o f stores over available capacity for all depots 

tra ve lS p eed  is the speed with with a vehicle travels one Euclidian unit o f distance 

a vg T  ruck Load  is the average number o f cases per truck 

fu e lC o s t  is the fuel related cost for one Euclidian unit of distance 

Generate random X and Y coordinates for each depot in the range [ M i n C o o r d X ,  

M a x C o o r d X ] ,  [ M i n C o o r d Y ,  M a x C o o r d Y ]

Generate random X and Y coordinates for each store in the range [ M i n C o o r d X ,  

M a x C o o r d X ] ,  [ M i n C o o r d Y , M a x C o o r d Y ]

Calculate Euclidian distance between each store i  to depot j :  d i s t a n c e [ i \ { j ]  =
y f { x S t o r e i  -  x D e p o t j )2 +  ( y S t o r e i  -  y D e p o t j ) 2

Calculate travelling time for an Euclidian distance between each store i  and depot j :

t i m e [ i ] [ j ]  =  d i s t a n c e [ i ] \ j } / t r a v e l S p e e d

Generate random d e m a n d  in cases for each store, range [ M i n D e m a n d ,  M a x D e m a n d ]  

Calculate capacity (cases) for each depot j :  d e p o t C a p a c i t y C a s e s [ j ] = ( t o t , a l  D e m a n d ! N u m D e p )  

* m u l t i p l y e r C a p a d t y C a s e s

Calculate capacity (num of stores) for each depot j : d e p o t C a p a c i t y N u m O f S t o r e s [ j } =

(N u m S t o r e s / N u m D e p ) * m u l t i p l y e r C a p a d t y N u m O  f S t

Generate random T H R  rate for each depot in the range [ M i n T H R ,  M a x T H R ]

Generate random W H R  rate for each depot in the range [ M i n W H R ,  M a x W H R ]

Generate random D W R  rate for each depot in the range [ M i n D W R ,  M a x D W R ]

Calculate transport cost between each store i  and depot j :  t r a n s p o r t C o s t [ i ] [ j ] =
(id i s t a n c e [ i ] [ j \  * f u e l C o s t  4- t i m e [ i ] [ j \  * T H R [ j ]) * 2 * ( d e r n a n d [ i ] / a v g T  r u c k  L o a d )  

Calculate depot cost between each store i  and depot j :  d e p o t C o s t [ i } \ j ] =
( d e m a n d [ i \ / D W R [ j ) )  * W H R \ j )

Calculate total connection cost between each store i  and depot j :  t o t a l C o s t [ i ] [ j ]  =
t r a n s p o t C o s t [ i ] [ j ]  +  d e p o t C o s t [ i ] [ j )

End
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around 0-1.99% difference from the solution found by the CPLEX® optimization 

engine. The LR technique also proved to be more efficient in computational times. Table

7.3 presents an analysis of how fast the LR technique finds the solutions withing the set 

tolerance level. It is expressed as the % of time needed to solve a data sets using LR 

compared to the CPLEX® solving times. For example, for test instance c a p a 2 . t x t ,  

CPLEX® takes 797 ms and LR takes 47 ms to solve the data, which is equated to 5.9% 

of CPLEX® running time. In fact LR performs better for all tolerance levels except for

0.01 %, when the algorithm tries to find the true “optimum". Out of 48 experiments (12 

data sets and four tolerance levels: 0.05, 0.04, 0.03, 0.02), only 8 were above 10% of 

CPLEX® running times for the LR heuristic. This gives us a very promising results, 

indicating that LR could be useful on large data sets.

The next step of the analysis was to compare the solution quality and running times for 

large data sets which were created by us and described earlier in the chapter. To recap, 

we created two types of the data: ratio of 0.9 ( s e t  1) and ratio 0.8 ( s e t 2 )  of overall 

demand (cases/number of stores) to the available capacity in the depots. As a result of 

the initial testing, ratio 0.9 is proved to be too tight for the LR technique to find feasible 

solutions. From the experience working with a real data sets from Sainsbury’s, in their 

network, the tightest ratio was 0.81 for chill products (see Chapter 5), therefore it seems 

to be more sensible to use ratio of 0.8 for all experiments. This information also gave us 

an insight into the limitations of the heuristic, where a very high ratio prevents the 

algorithm from finding feasible solutions.

Tables 7.4, 7.5, 7.6 and 7.7 present the solution quality and execution times for s e t 2  with 

10 and 50 depots, where the ratio is equal to 0.8. Looking at the CPLEX® solutions, we 

can see that there is no information available for some of the data sets, which was due to 

the limitations in technology: CPLEX® ran out of memory for those data sets. On the 

other hand, the LR approach found feasible solutions to all data sets within a reasonable 

amount of time. For the tolerance levels of 5%, 4% and 3%, 2% and 1%, the solutions 

produced by the technique were less than 5.01% different compared to the solutions 

found by CPLEX® and the majority were less than 2.5%. For a tolerance level of

0.01%, again LR produced excellent quality solutions compared to CPLEX and on the



Tolerance level
Test 5% 4% 3%

instance CPLEX Lagr. % diff CPLEX Lagr. % diff CPLEX Lagr. % diff

capal.txt 19,242,450.15 19,501,820.92 1.35% 19,242,450.15 19,501,820.92 1.35% 19,242,450.15 19,430,478.52 0.98%

capa2.txt 18,451,166.16 18,702,263.38 1.36% 18,451,166.16 18,702,263.38 1.36% 18,451,166.16 18,600,101.24 0.81%

capa3.txt 17,765,201.95 17,765,201.95 0.00% 17,765,201.95 17,765,201.95 0.00% 17,765,201.95 17,765,201.95 0.00%
capa4.txt 17,160,815.54 17,275,620.41 0.67% 17,160,815.54 17,275,620.41 0.67% 17,160,815.54 17,275,620.41 0.67%
capbl.txt 13,668,638.07 13,886,676.18 1.60% 13,668,638.07 13,886,676.18 1.60% 13,668,638.07 13,839,765.34 1.25%

capb2.txt 13,385,143.32 13,616,417.76 1.73% 13,385,143.32 13,616,417.76 1.73% 13,385,143.32 13,543,257.11 1.18%

capb3.txt 13,255,296.35 13,470,793.28 1.63% 13,255,296.35 13,470,793.28 1.63% 13,255,296.35 13,393,444.42 1.04%

capb4.txt 13,086,451.48 13,347,108.06 1.99% 13,086,451.48 13,347,108.06 1.99% 13,086,451.48 13,166,476.57 0.61%

capcl.txt 11,709,354.71 11,756,281.83 0.40% 11,709,354.71 11,756,281.83 0.40% 11,709,354.71 11,756,281.83 0.40%

capc2.txt 11,570,437.68 11,591,895.27 0.19% 11,570,437.68 11,591,895.27 0.19% 11,570,437.68 11,591,895.27 0.19%

capc3.txt 11,536,854.31 11,660,534.33 1.07% 11,536,854.31 11,660,534.33 1.07% 11,536,854.31 11,660,534.33 1.07%

capc4.txt 11,516,656.16 11,520,064.91 0.03% 11,516,656.16 11,520,064.91 0.03% 11,516,656.16 11.520,064.91 0.03%

Tolerance level
Test 2% 1% 0.01%

instance CPLEX Lagr. % diff CPLEX Lagr. % diff CPLEX Lagr. % diff
capal.txt 19,242,450.15 19,367,902.86 0.65% 19,242,450.15 19,298,972.84 0.29% 19,241,057.80 19.249,966.47 0.05%
capa2.txt 18,451,166.16 18,600,101.24 0.81% 18,451,166.16 18,527,533.53 0.41% 18,438,329.78 18.439,832.15 0.01%
capa3.txt 17,765,201.95 17,765,201.95 0.00% 17,765,201.95 17,765,201.95 0.00% 17,765,201.95 17,765,201.95 0.00%
capa4.txt 17,160,815.54 17,275,620.41 0.67% 17,160,815.54 17,203,715.43 0.25% 17,160,815.54 17,161,398.06 0.00%
capbl.txt 13,668,638.07 13,753,023.75 0.62% 13,668,638.07 13,718,399.01 0.36% 13,657,482.15 13,686,246.45 0.21%
capb2.txt 13,385,143.32 13,462,352.07 0.58% 13,385,143.32 13,430,862.85 0.34% 13,363,068.68 13,388,609.35 0.19%
capb3.txt 13,255,296.35 13,260,432.75 0.04% 13,255,296.35 13,260,432.75 0.04% 13,199,420.27 13,213,813.63 0.11%
capb4.txt 13,086,451.48 13,166,476.57 0.61% 13,086,451.48 13,155,211.49 0.53% 13,083,451.13 13,091,906.73 0.06%

cape 1 .txt 11,709,354.71 11,756,281.83 0.40% 11,709,354.71 11,705,838.65 -0.03% * 11,647,531.06 11,654,099.05 0.06%

capc2.txt 11,570,437.68 11,591,895.27 0.19% 11,570,437.68 11,591,895.27 0.19% 11,570,437.68 11.570,437.68 0.00%

capc3.txt 11,536,854.31 11,567,564.46 0.27% 11,536,854.31 11,567,564.46 0.27% 11,519,413.38 11,520,815.85 0.01%

capc4.txt 11,516,656.16 11,520,064.91 0.03% 11,516,656.16 11,520,064.91 0.03% 11,505,861.86 11.505,861.86 0.00%

Table 7.2: Beasley data sets, cost solution.

* due to the tolerance levels associated with both solutions
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Tolerance level

Test 5% 4% 3%
instance CPLEX Lagr. Lagr % o f CPLEX CPLEX Lagr. Lagr % of CPLEX CPLEX Lagr. Lagr % of CPLEX

capal.txt 984 906 92.07% 968 875 90.39% 953 890 93.39%
capa2.txt 797 47 5.90% 781 47 6.02% 812 63 7.76%
capa3.txt 703 47 6.69% 703 47 6.69% 704 47 6.68%
capa4.txt 609 47 7.72% 625 47 7.52% 609 63 10.34%
capbl.txt 1469 47 3.20% 1422 47 3.31% 1422 63 4.43%
capb2.txt 1250 47 3.76% 1219 62 5.09% 1219 891 73.09%

capb3.txt 1063 47 4.42% 1093 47 4.30% 1047 62 5.92%

capb4.txt 953 62 6.51% 953 62 6.51% 937 78 8.32%

capcl.txt 1531 47 3.07% 1563 47 3.01% 1703 47 2.76%

capc2.txt 1421 47 3.31% 1391 47 3.38% 1578 47 2.98%

capc3.txt 1344 47 3.50% 1359 47 3.46% 1484 47 3.17%

capc4.txt 1359 47 3.46% 1328 63 4.74% 1547 47 3.04%

Tolerance level

Test 2% 1% 0.01%
instance CPLEX Lagr. Lagr % of CPLEX CPLEX Lagr. Lagr % of CPLEX CPLEX Lagr. Lagr % of CPLEX
capal.txt 1109 875 78.90% 985 953 96.75% 1109 3984 359.24%
capa2.txt 890 63 7.08% 828 63 7.61% 922 3969 430.48%
capa3.txt 797 47 5.90% 703 47 6.69% 703 47 6.69%
capa4.txt 609 47 7.72% 609 63 10.34% 610 297 48.69%
capbl.txt 1422 921 64.77% 1469 953 64.87% 1828 4125 225.66%
capb2.txt 1266 922 72.83% 1234 954 77.31% 1625 4078 250.95%
capb3.txt 1094 94 8.59% 1078 94 8.72% 1625 4016 247.14%
capb4.txt 1000 78 7.80% 953 93 9.76% 1375 4078 296.58%
capcl.txt 1547 46 2.97% 1547 62 4.01% 1984 4125 207.91%

capc2.txt 1406 47 3.34% 1453 47 3.23% 1391 94 6.76%

capc3.txt 1344 62 4.61% 1422 63 4.43% 1469 4015 273.32%

capc4.txt 1344 47 3.50% 1390 47 3.38% 1438 375 26.08% u>-J
Table 7.3: Beasley data sets, execution time (ms).
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larger data sets it was impossible to compare solutions due to CPLEX® limitations. 

Regarding execution times, again for the tolerance levels between 5% and 1%, LR found 

good solutions within a fraction of CPLEX® running time for the majority of the data 

sets and on the larger data sets, the technique found the solutions within a reasonable 

time whereas CPLEX® ran out of memory. The results obtained from these 

experiments, gave us confidence in the LR approach for large data sets, and provided the 

way forward for solving allocation for multiple products and to be used as a subroutine 

in CFLP where the optimum assignment needs to be determined for open facilities.

7.3 Lagrangian relaxation for a multi-commodity 

allocation problem

Previous sections presented a model formulation and a solution technique for a single 

source, single commodity large-size assignment problem with very promising results for 

solution quality and computational times using LR technique which relaxes a capacity 

constraint. In this section, an investigation is carried out into multi-commodity 

assignment problem based on Sainsbury’s data by extending the LR technique to the 

multi-commodity variant of the assignment model. The simplified version of the single 

source, multi-commodity model formulation is presented in this chapter where 

constraints for capacities for cases and number of stores are taken into consideration. 

Due to the multiple products nature of the requirements, the discussion of the approach 

put a great emphasis on finding feasible solutions. Therefore different settings were 

tested to ensure that technique finds feasible UB solutions. Because there is no available 

benchmarking data in the public literature and due to the time constraints of the project, 

the LR technique is only tested on Sainsbury’s data and will need further assessment on 

randomly generated large data sets for this particular model formulation. The current 

study provides very promising results which could be very efficient, especially for 

large-size data sets.



Tolerance level
Test 5% 4% 3%

instance CPLEX Langr. % diff CPLEX Langr. % diff CPLEX Langr. % diff
set2_10_100.txt 46,524.15 46,822.07 0.64% 46,524.15 46,822.07 0.64% 46,524.15 46,822.07 0.64%
set2_10_500.txt 220,224.89 226,584.95 2.89% 220,224.89 225,466.25 2.38% 220,224.89 224,529.89 1.95%

set2_10_1000.txt 479,074.37 489,183.23 2.11% 479,074.37 489,183.23 2.11% 479,074.37 489,183.23 2.11%
set2_10_2000.txt 892,089.76 913,079.05 2.35% 892,089.76 913,079.05 2.35% 892,089.76 913.079.05 2.35%
set2_10_3000.txt 1,328,056.13 1,359,290.89 2.35% 1,328,056.13 1,359,290.89 2.35% 1.328,056.13 1,359,290.89 2.35%
set2_10_4000.txt 1,824,948.12 1,898,723.42 4.04% 1,824,948.12 1,876,980.40 2.85% 1,824,948.12 1,871,286.23 2.54%
set2_10_5000.txt 2,429,097.51 2,490.337.79 2.52% 2,429,097.51 2,490,337.79 2.52% 2,429,097.51 2,455,507.51 1.09%
set2_10_6000.txt 2,980,322.13 3,043,027.75 2.10% 2,980,322.13 3,043,027.75 2.10% 2,980,322.13 3,014.317.33 1.14%

set2_10_7000.txt 3,286,944.54 3,321,522.91 1.05% 3,286,944.54 3,321,522.91 1.05% 3,286,944.54 3,321,522.91 1.05%

set2_10_8000.txt 3,723,125.46 3,852,259.43 3.47% 3,723,125.46 3,795,938.78 1.96% 3,723,125.46 3,795,938.78 1.96%

set2_10_9000.txt 4,391,346.93 4,544,417.09 3.49% 4,391,346.93 4,515,789.68 2.83% 4,391,346.93 4,486,984.47 2.18%

set2_10_10000.txt 4,491,745.86 4,491,745.94 0.00% 4,491,745.86 4,491,745.94 0.00% 4,491,745.86 4,491.745.94 0.00%

set2_50_100.txt 41,479.32 42,772.61 3.12% 41,479.32 42,772.61 3.12% 41,479.32 42,772.61 3.12%

set2_50_500.txt 180,748.70 181,853.18 0.61% 180,748.70 181,469.19 0.40% 180,748.70 180,731.79 -0.01%*

set2_50_1000.txt 351,997.41 359,841.79 2.23% 351,997.41 357,032.47 1.43% 351,997.41 355,600.41 1.02%

set2_50_2000.txt 727,648.28 743,725.13 2.21% 727,648.28 743,725.13 2.21% 727,648.28 738,984.36 1.56%

set2_50_3000.txt 1,103,652.63 1,136,542.75 2.98% 1,103,652.63 1,125,551.29 1.98% 1,103,652.63 1,124,034.69 1.85%

set2_50_4000.txt 1,408,338.74 1,454,711.67 3.29% 1.408,338.74 1,448,162.59 2.83% 1,408,338.74 1,439,706.80 2.23%

set2_50_5000.txt 1,831,451.55 1,887,660.70 3.07% 1,831,451.55 1,877,437.09 2.51% 1,831,451.55 1,866,449.06 1.91%
set2_50_6000.txt 2,154,781.36 2,237,995.46 3.86% 2,154,781.36 2,237,995.46 3.86% 2,154,781.36 2,237,995.46 3.86%
set2_50_7000.txt N/A 2,504,221.68 N/A N/A 2,484,323.62 N/A N/A 2,477,674.21 N/A

set2_50_8000.txt N/A 3,090,608.12 N/A N/A 3,071,766.41 N/A N/A 3,056,062.35 N/A

set2_50_9000.txt N/A 3,378,361.33 N/A N/A 3,361,194.31 N/A N/A 3,340,116.48 N/A

set2_50_10000.txt N/A 3,867,393.77 N/A N/A 3,846,414.95 N/A N/A 3,817,126.58 N/A

Table 7.4: Our data sets, cost solution.
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Tolerance level
Test 2% 1% 0.01%

instance CPLEX Langr. % diff CPLEX Langr. % diff CPLEX Langr. % diff

set2_10_100.txt 46,524.15 46,496.20 -0.06%* 45,843.42 46,164.98 0.70% 45,805.58 46,164.98 0.78%

set2_10_500.txt 220,224.89 221,333.50 0.50% 220,224.89 221,102.54 0.40% 218,854.20 221,102.54 1.03%

set2_10_1000.txt 479,074.37 484,905.92 1.22% 479,074.37 483,220.77 0.87% 478,894.53 479,238.74 0.07%

set2_10_2000.txt 892,089.76 903,142.45 1.24% 892,089.76 898,327.91 0.70% 891,882.17 892,512.80 0.07%

set2_10_3000.txt 1,328,056.13 1,344,953.56 1.27% 1,328,056.13 1,337,577.29 0.72% 1,327,894.85 1.328,510.50 0.05%

set2_10_4000.txt 1,824,948.12 1,855.723.00 1.69% 1,824,948.12 1,841,194.04 0.89% 1,824,543.51 1,826,182.54 0.09%

set2_10_5000.txt 2,429,097.51 2,455,507.51 1.09% 2,429,097.51 2,447,757.09 0.77% 2,428,823.47 2,429,205.15 0.02%

set2_10_6000.txt 2,980,322.13 3,014,317.33 1.14% 2,980,322.13 3,001,659.07 0.72% 2,980,322.13 2,983,707.72 0.11%

set2_10_7000.txt 3,286,944.54 3,321,522.91 1.05% 3,286,944.54 3,311,550.37 0.75% 3,286,525.85 3,291,404.22 0.15%

set2_10_8000.txt 3,723,125.46 3,782,589.61 1.60% 3,723,125.46 3,753,535.65 0.82% 3,722,635.87 3,724,247.28 0.04%

set2_10_9000.txt 4,391,346.93 4,464,858.49 1.67% 4,391,346.93 4,429,306.27 0.86% 4,390,885.28 4,392,558.85 0.04%

set2_10_10000.txt 4,491,745.86 4,491,745.94 0.00% 4,491,745.86 4,491,745.94 0.00% 4,491,745.86 4,491,745.94 0.00%

set2_50_100.txt 40,996.44 42,772.61 4.33% 40,730.67 42,772.61 5.01% 40,646.71 42,772.61 5.23%

set2_50_500.txt 177,094.67 180,731.79 2.05% 177,094.67 180,731.79 2.05% 176,861.96 180,731.79 2.19%

set2_50_1000.txt 351,997.41 352,704.67 0.20% 348,125.90 352,671.24 1.31% N/A 352,671.24 N/A

set2_50_2000.txt 727,648.28 733,804.68 0.85% 727,648.28 733,804.68 0.85% N/A 733.804.68 N/A

set2_50_3000.txt 1,103,652.63 1,119,391.12 1.43% 1,103,652.63 1,113,577.70 0.90% N/A 1.113,577.70 N/A

set2_50_4000.txt 1,408,338.74 1,430,353.09 1.56% 1,408,338.74 1,423,726.57 1.09% N/A 1,423,726.57 N/A

set2_50_5000.txt 1,831,451.55 1,864,618.96 1.81% 1,831,451.55 1,864,618.96 1.81% N/A 1,864,618.96 N/A

set2_5 0_6000. tx t 2,154,781.36 2,237,995.46 3.86% 2,154,781.36 2,237,995.46 3.86% N/A 2,237,995.46 N/A

set2_50_7000.txt N/A 2,462,018.33 N/A N/A 2,449,246.83 N/A N/A 2,449,246.83 N/A

set2_50_8000.txt N/A 3,044,801.36 N/A N/A 3,044,801.36 N/A N/A 3,044,801.36 N/A

set2_50_9000.txt N/A 3,322,044.53 N/A N/A 3,318,690.60 N/A N/A 3,318,690.60 N/A

set2_50_10000.txt N/A 3,816,505.59 N/A N/A 3,816,505.59 N/A N/A 3,816,505.59 N/A

Table 7.5: O ur data sets, cost solution.

* due to the tolerance levels associated with both solutions O
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Tolerance level
Test 5% 4% 3%

instance CPLEX Langr. Lagr % of CPLEX CPLEX Langr. Lagr % of CPLEX CPLEX Langr. Lagr % o f CPLEX

set2_10_100.txt 62 16 25.81% 62 0 0.00% 62 0 0.00%

set2_10_500.txt 203 16 7.88% 203 0 0.00% 203 16 7.88%

set2_10_1000.txt 375 46 12.27% 359 31 8.64% 359 47 13.09%

set2_10_2000.txt 547 0 0.00% 578 0 0.00% 578 16 2.77%

set2_10_3000.txt 844 16 1.90% 953 0 0.00% 953 16 1.68%

set2_10_4000.txt 1,734 15 0.87% 1,609 31 1.93% 1,609 796 49.47%

set2_10_5000.txt 1,796 16 0.89% 1,891 15 0.79% 1,891 16 0.85%

set2_10_6000.txt 2,312 16 0.69% 3,469 0 0.00% 3,469 15 0.43%

set2_10_7000.txt 2,610 15 0.57% 3,422 47 1.37% 3,422 31 0.91%

set2_10_8000.txt 2,984 16 0.54% 3,204 78 2.43% 3,204 31 0.97%

set2_10_9000.txt 3,922 16 0.41% 4,797 47 0.98% 4,797 47 0.98%

set2_10_10000.txt 3,125 0 0.00% 3,672 16 0.44% 3,672 16 0.44%

set2_50_100.txt 735 250 34.01% 625 250 40.00% 610 234 38.36%
set2_50_500.txt 1,438 171 11.89% 1,187 282 23.76% 1,141 1,000 87.64%

set2_50_1000.txt 5,016 453 9.03% 4,360 500 11.47% 3,500 1,234 35.26%
set2_50_2000.txt 9,766 1,422 14.56% 6,922 2,203 31.83% 7,203 2,328 32.32%
set2_50_3000.txt 9,203 1,594 17.32% 8,250 1,781 21.59% 7,000 3,156 45.09%
set2_50_4000.txt 12,765 94 0.74% 10,250 1,453 14.18% 9,782 1,390 14.21%
set2_50_5000.txt 19,813 4,969 25.08% 14,796 4,656 31.47% 17,219 4,250 24.68%
set2_50_6000.txt 23,344 14,141 60.58% 17,703 14,843 83.84% 17,922 15,609 87.09%
set2_50_7000.txt N/A 125 N/A N/A 2,422 N/A N/A 3,047 N/A
set2_50_8000.txt N/A 6,297 N/A N/A 6,219 N/A N/A 9,343 N/A
set2_50_9000.txt N/A 7,266 N/A N/A 8,250 N/A N/A 7,938 N/A

set2_50_10000.txt N/A 7,922 N/A N/A 8,625 N/A N/A 10,375 N/A

Table 7.6: O ur data sets, execution time (ms).

7.3 
Lagrangian 

relaxation 
for a 

m
ulti-com

m
odity 

allocation 
problem



Tolerance level
Test 2% 1% 0.01%

instance CPLEX Langr. Lagr % of CPLEX CPLEX Langr. Lagr % of CPLEX CPLEX Langr. Lagr % of CPLEX
set2_10_100.txt 47 47 100.00% 109 94 86.24% 187 94 50.27%
set2_10_500.txt 234 16 6.84% 312 250 80.13% 563 281 49.91%

set2_10_1000.txt 500 47 9.40% 516 47 9.11% 859 594 69.15%
set2_10_2000.txt 718 16 2.23% 734 16 2.18% 1,125 1,313 116.71%
set2_10_3000.txt 1,109 0 0.00% 1,109 31 2.80% 2,141 2,188 102.20%

set2_10_4000.txt 1,984 781 39.36% 1,593 828 51.98% 4,703 3,234 68.76%

set2_10_5000.txt 2,000 16 0.80% 2,188 31 1.42% 3,500 3,765 107.57%

set2_10_6000.txt 2,906 63 2.17% 3,031 31 1.02% 3,125 4,625 148.00%

set2_10_7000.txt 3,125 32 1.02% 3,281 125 3.81% 8,188 5,265 64.30%

set2_10_8000.txt 3,844 47 1.22% 3,954 125 3.16% 6,094 6,172 101.28%

set2_10_9000.txt 3,922 62 1.58% 4,953 172 3.47% 7,516 6,985 92.94%

set2_10_10000.txt 3,437 0 0.00% 3,218 0 0.00% 3,984 62 1.56%

set2_50_100.txt 703 234 33.29% 718 250 34.82% 1,250 250 20.00%

set2_50_500.txt 3,453 1,032 29.89% 3,328 1,031 30.98% 599,718 1,031 0.17%

set2_50_1000.txt 3,812 1,875 49.19% 6,703 2,563 38.24% N/A 2,656 N/A

set2_50_2000.txt 7,031 2,594 36.89% 8,609 4,687 54.44% N/A 5,063 N/A

set2_50_3000.txt 7,172 4,703 65.57% 6,828 6,828 100.00% N/A 7,297 N/A

set2_50_4000.txt 10,640 4,000 37.59% 9,344 8,907 95.32% N/A 8,875 N/A

set2_50_5000.txt 16,031 11,188 69.79% 15,063 12,703 84.33% N/A 12,234 N/A

set2_50_6000.txt 18,438 16,469 89.32% 18,062 15,078 83.48% N/A 14,843 N/A

set2_50_7000.txt N/A 3,625 N/A N/A 14,015 N/A N/A 14,468 N/A

set2_50_8000.txt N/A 17,938 N/A N/A 17,031 N/A N/A 17,968 N/A

set2_50_9000.txt N/A 11,531 N/A N/A 19,172 N/A N/A 19,766 N/A

set2_50_10000.txt N/A 23,594 N/A N/A 23,000 N/A N/A 24,344 N/A

Table 7.7: O ur data sets, execution time (ms). 4̂NJ
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7.3.1 Problem Definition

The full problem formulation for a multi-commodity assignment problem is described in 

Chapter 5, Section 5.4. In this section, for simplicity we assume that connection cost c?- 

is equal to overall transport and depot costs (tc^j +  dcP) for each customer j  to each 

facility i of product p, i e  Vdc* j  € Vc» p € P

Glossary

Voc set of depots

Vc set of customers

P  set of products

d1* demand of customers j  of product p, j  £ Vc ,p  E P

qf capacity of cases of facility i of product p, i e  Vdc *P € P

n f number of stores assigned of facility i of product p, i G Vdc » P C P

(?. is the connection cost consisting of transporting and depot cost function based on

the total demand of product p of customer j ,  dF- from facility i

is the decision variable for the problem, Xij — 1, if store j  is allocated

to facility i, and 0 otherwise

Mathematical formulation

Minimize

(7.19)
i^ V o c  j^ V c  peVp

subject to
(7.20)

i€Vi)c

(7.21)
jevc

(7.22)
jevc
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Xij € {0,1}, i (E Vd c-J € Vc (7.23)

where formulation (7.19) aims to minimize the total connection cost of satisfying the 

total demand of all the stores, and constraints (7.20) with (7.23) guarantee that the 

demand for each store must be satisfied by one depot. Constraints (7.21) and (7.22) 

ensures that the capacity constraints for the facilities for each product type are not 

violated and (7.23) specifies that allocation is indivisible for the decision variable.

7.3.2 Solution Formulation

The solution formulation presented in this section is based on the LR formulation 1 in 

section 7.2.1 where only a single constraint is relaxed and lagrangian multipliers are used 

to determine a lower bound value as a main step in the Lagrangian relaxation. Let 

Af G l .V i  e  Vd c - Vp £ Vp- The relaxed model formulation is presented as follow: 

Minimize

E E E + E E *?( E -  <£) <7-24>
Vdc j’G itVocPtVp

subject to

£  Xij =  1 ,Vj S Vc (7.25)
i^Vuc

E  x‘i < «?, Vj € Vfc, Vp G P (7.26)
j^Vc

€ {0,1}, 2 € Vd c ,J € Vfc (7.27)

The relaxed formulation computes the difference between the total demand assigned to 

the facility i for a particular product p and its capacity of that product qpt on the right side 

of the formulation. The value of the total cost in the equation (7.24) will change if the 

capacity of facilities is violated or has not been exceeded. As part of the solution 

procedure, we only want to make adjustment to costs if a capacity is violated , therefore 

we would expect the term (J2jeVc ~ <E) to e9uaI zer0’ for any facility which has a
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spare capacity. Therefore, we constraint A? values to 0 if the capacity is not violated for a 

facility i.

To obtain the optimum lower bound to the relaxed formulation (LBX), we decompose 

problem (7.24) - (7.27) into \ Vc\ subproblems. For a given set of multipliers, Af G R, we 

solve subproblem (LBj (Ap)) for each customer j  G Vc. This will assign each customer 

to the facility with minimal (augmented) connection cost, summed over all products,

V G P.

For each customer j ,  minimize

(^ 2 ^ 3  +  t f Xi) )Xi3 (?-28)
i&Voc P&P

subject to

V  Xij =  1, V) e  Vc (7.29)
i^ oc

1 3  x>i < n pi y j e V c y p e P  (7.30)
jevc

xtj G {0,1}, i G V o c,j ^ Vc (7.31)

Then by setting:

LB{ A) =  j 2 l b w -  E (7-32)
JGVc  iGVbc

The relaxed problem (7.28) is solved by applying a greedy heuristic where each 

customer is allocated to the lowest total augmented cost Ylpepirfj +  dPjK) anc* the lower 

bound is calculated in (7.32) for a particular iteration of A values. The allocation made 

for LB{A) is used to obtain a feasible upper bound U B(A), where those two values are 

used in the formula to update the Lagrangian multipliers. It is unlikely that the allocation

used for the lower bound will be feasible, especially in a multi-product problem, such as

we have here. Therefore, we need to construct a procedure of reallocating customers 

when facilities are over capacity.

For a single product problem, the customers were sorted in non-increasing order 

according to their demand, and then assigned to facilities based on the lower bound
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assignment without violating capacity constraints. When capacity constraints are 

violated for LB  assignment, the customer is assigned to the next lowest augmented cost 

etc. If all facilities are overcapacity then the customer is allocated to the lowest true 

(non-augmented cost). However, the current model formulation have multiple products 

where each customer will have a certain demand for each product type, and each DC with 

have a maximum capacity for each product. Therefore, different settings were devised to 

ensure that allocating the customers produces feasible solutions when calculating UB 

assignment. Following settings were tested for finding feasible UB assignment:

1. (Sorting using normalized demand.) The customers are sorted in non-increasing 

sequence of the sum of the normalized demand over all products. The customers 

with highest value are assigned first to the appropriate depot. Thus, for customer j :

2. (Sorting using highest fraction of normalized demand across all products.) The 

highest fraction of normalized demand across all product types for each customer 

is chosen for sorting customers in non-increasing order. The customers with 

highest value are assigned first. Thus, for customer j:

3. (Sorting using normalized demand and the depot load ratio.) The depot load ratio 

per product type is defined as the ratio of total demand of all customers per product 

type and total capacity of all depots for that product type. Thus, for each product p:

The highest fraction of normalized demand across all product types (Setting 2) per 

customer is multiplied by the load ratio of that particular product. This value is 

used to sort customers in non-increasing order, where the customer with highest 

value is assigned first for UB  assignment.

4. (Sorting using highest demand.) The highest demand across all product types per 

customer is used to sort customers in non-increasing order, where the customer 

with highest value is assigned first.

normalized Demand j =  y ] (7.33)

highFractNorm Dem andj =  m ax{for eachp £ P  : ^ (7.34)
z-jjeVc dj

raticP (7.35)
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5. (Sorting using highest demand and the depot load ratio.) The highest demand 

across all product types per customer is multiplied by the load ratio of that 

particular product. This is used to sort customers in non-increasing order, where 

the customer with highest value is assigned first for UB assignment.

Updating the Lagrangian multipliers

To update a set of Lagrangian multipliers for each product, following formulations are 

used for each facility and each product at time step, k

spM  =  (7.36)
jevc

where xk  is the solution of the Lagrangian relaxation (7.24) - (7.27) using 

Xk E R. Vz E Vd c - Vp E Vp  as the Lagrangian multipliers. Now set

\ f w  +  Dks f k) i f  s f (k) >  0_ I  I  ^  I  j  I  y j ^

0 otherwise

where is a suitable scalar coefficient. The procedure will start by setting all the 

Lagrangian multipliers to zero. Formula (7.36) demonstrates that if a certain facility i 

and product p, s f {k) is positive, it means that demand is higher than available capacity 

for that facility, and thus the corresponding value of A? will be increased to increase the
v (k)  •cost of assigning customers to that facility in the next time, step A: 4- 1. If is a 

negative number, it means that there is spare capacity, therefore A? should be reduced to 

make that facility more attractive for assignment in the next iteration. This means that 

there is no need to adjust the multipliers if the facility is under capacity, therefore 

formula (7.37) ensures that the X1.'^  are always positive.

Formula (7.38) is used to update proportionality coefficient fiJ}̂ k\  which is used for 

updating each set of Af values; where a  could be a constant in the interval (0,2]. In this 

research, a  starts with 2 and after 20 or 30 iterations a  value is halved if UB cost does 

not decrease.
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(t) =  a W W - L B j  A) „

The algorithm for the Lagrangian relaxation for multiple products is very similar to the 

Algorithm 7.1 described for a single product in section 7.2. Therefore it would be very 

easy to adopt the algorithm to the description of the solution formulation for multiple 

products described in this chapter.

7.3.3 Discussion of the results

The main aim of this section is to analyse five different settings described in section 7.3.2 

which are used for testing the allocation routine to determine a feasible solution for IIB 

assignment. Determining a feasible UB assignment for a multi-product problem 

formulation is the key issue to ensure that a feasible solution is found to the stated 

problem. Because of the multi-product nature of the problem, sorting customers 

according to the demand of a single product does not incorporate characteristics of all 

other products, therefore more advanced approaches were introduced. The technique is 

tested on the Sainsbury’s data and the results of the different settings are presented in 

Table 7.8. The solutions of different settings are not presented in terms of the execution 

times or compared to optimum solutions with different tolerance levels as in Section

7.2.3 for a single product because the aim of this section is to identify the best setting for 

the allocation of the customers in the multi-product setting. The results are compared 

among each other according to the difference between global lower and upper bounds, 

which provides a good indication to the quality of the solution.

The setting 1, where the customers are assigned in with the highest value of the 

normalized demand first, for the current case study produced a feasible solution with the 

highest gap difference between LB and UB solution of 3.19%. The reason could be that 

normalized demand is not a true representation of the real demand from the customers 

due to the multiple product configuration. Settings 2-3 produced feasible solutions 

(o=20) with the gap difference between LB and UB solution less than 0.25%. By 

analysing the solutions quality in the table, we can see that Settings 2-5 produce similar
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Setting Number o f iterations 

for a

Solution

cost

{U B  ~ L B )I  L B  (%) Is solution 

feasible

1 20 3,103,028.32 3.19 yes

2 20 3,011,984.71 0.20 yes

2 30 3,010,055.49 0.13 yes

3 20 3,011,984.71 0.20 yes

3 30 3,011,984.71 0.20 yes

4 20 3,013,512.88 0.25 yes

5 20 3,012,745.33 0.22 yes

5 30 3,007,899.02 0.06 yes

Table 7.8: Multi-commodity allocation problem - results of different settings for U B 

assignment.

solutions among those settings, with difference of around 0.20%. Furthermore, after 

further tuning, where the parameter a  was updated after 30 iteration in setting 5, the 

quality of the solution improved by 0.16% for setting 5 which is a good improvement on 

the solution quality.

As can be seen from the Table 7.8, the initial results are very encouraging and the 

technique produces good quality solutions, specially for setting 5. It needs further testing 

on the randomly generated test data for multiple products. Due to lack of benchmarking 

data in the literature for multiple products and the time constraints, further work will 

need to be done to better assess the quality of the generated solutions. In the current 

research our aim is to explore multi-objective optimization for facility location-allocation 

and allocation problem, for a single product where economic and environmental 

objectives are balanced.

7.4 Summary

This chapter presents two new Lagrangian Relaxation solution techniques to solve the 

capacitated allocation of customers to serving facilities with different relaxation 

procedures for single and multiple products, single source.
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In the first LR procedure, the relaxation is done on the number of cases for a single 

product. The quality of the solutions and execution times of the LR were compared to the 

solutions found by CPLEX®  for a number of the tolerance levels on the benchmarking 

instances and some new randomly generated larger data sets. As a result of the above 

analysis, the first LR approach finds good quality solutions within a reasonable amount 

of time. Where CPLEX®  failed to find the solutions to the large data sets, the LR 

heuristic had no problems at all. The results show that LR is an efficient technique, 

which will be used for developing a multi-objective capacitated facility location problem 

tool, where the assignment is a sub-routine of the approach and presented in Chapter 9.

The second LR solution technique considers a situation where multiple products are 

available to the customers and relaxes the capacity (number of cases) constraint. The 

approach was tested on Sainsbury’s data and will need further investigation on the 

randomly generated large size benchmarking instances to explore a wide range of 

situations.



Chapter 8

Multi-Objective Uncapacitated Facility 

Location Problem

8.1 Introduction

Previous chapters described model formulations and solutions techniques for the 

allocation of customers to distribution centres. Assignment is an essential part of the 

periodical re-evaluation needed to maintain the continued economic viability of a 

distribution network. In the present chapter we consider the facility location problem 

(FLP), which has a much longer planning horizon. The goal is to identify the optimum 

number and locations of depots or warehouses, in a distribution network, in which 

deliveries are made to local customers and/or goods are collected from local suppliers 

(see Figure 8.1). In addition, each customer (or supplier) can be assigned to exactly one 

depot. In practice there are many variations of the FLP, for example, storing inventory 

before it is transported to customers, or including transshipment points, where the goods 

are reloaded from the supplier to be forwarded to the retail stores. Also the FLP is easily 

adapted to identify the optimum number of recycling or collection facilities in a network. 

The facility location problem is not new to academia and has a very rich literature. For 

example, [701 describes the role of facility location models within a supply chain context 

as “an extremely interesting and fruitful application area domain".

Typical formulations for the FLP aim to minimize cost as a single objective. In this 

approach, the total cost is frequently expressed as a sum of various component expenses, 

most simply as transportation and fixed costs. However, in many practical situations, the
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customers

Figure 8.1: The Uncapacitated Facility Location Problem.

optimum design may involve dealing with multiple and sometimes conflicting objectives. 

In a recent survey [70], 98 articles published in the last decade were categorized: 75% 

had a single cost minimization objective, 16% had a single profit maximization objective 

and only 9% were modelled with multiple and conflicting objectives. The multiple 

objectives mentioned include resource utilization and customer responsiveness, in 

addition to the standard economic objectives.

Recent concerns regarding climate change, however, have shifted the focus of modelling 

to incorporate environmental objectives. For example, [61] present a generic 

mathematical programming model for assisting the strategic long range planning and 

design of a bulk chemical network. Their multi-objective mixed-integer programming 

problem is solved using an approach which applies the e -constraint method [99] as part 

of their multi-objective solution. The model minimizes the environmental impact 

resulting from the operations of the entire network, and simultaneously maximizes the 

profitability of the network. Another example, [83] develop a framework for the design 

and evaluation of sustainable logistics networks, in which profitability and environmental 

impacts are balanced. The re-organization of a European pulp and paper logistic network 

is used to illustrate proposed methodology.
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There are different techniques for solving problems involving multiple objectives which 

are discussed in detail in Section 3. We can see that some recent multi-objective models 

which incorporate environmental measures are solved using classical methods. For 

example, f92] formulate a mixed integer goal programming model which captures 

economic and environmental goals through increased wastepaper recovery for a paper 

recycling logistics system.

From our recent review f541, like [701, we identified only a very small number of 

multi-objective models with environmental objectives, and these are solved 

predominantly using classical multi-objective methods. Classical techniques rely on a 

priori judgements regarding the relative importance of the various component objectives. 

In contrast, there are other approaches that do not rely on such assumptions and treat all 

objectives equally. Such techniques will generate a set of solutions, with the objectives 

traded off in different ways, instead of a single optimum with respect to a predefined 

(perhaps arbitrary) trade-off situation. In this way it is possible to provide a decision 

maker with sufficient choices to make an informed judgement when trading off the 

relative merits of the conflicting objectives. In this research we explore elitist 

multi-objective evolutionary algorithms for the strategic modelling of a logistics 

network, where economic and environmental objectives are considered simultaneously.

In this chapter, two evolutionary algorithms are explored on a multi-objective 

uncapacitated facility location problem (MOUFLP):

•  Non-Dominated Sorting Genetic Algorithm (NSGA-II) [30] (Algorithm[3.2]). It is 

a well tested algorithm, where elitism is preserved and has a diversity mechanism 

in terms of calculating crowding distance. It is much more complex to implement 

than other evolutionary algorithms like SEAM02.

•  Simple Evolutionary Algorithm for Multi-Objective Optimization (SEAM02) [76] 

(Algorilhm[(3.5]). This algorithm is simple to implement and includes a specific 

mechanism to improve the quality and range of the solutions set. Known 

weakness: there is no specific mechanism to ensure an even spread of solutions 

across the Pareto front.
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Both algorithms are described in full details in Chapter 3, section 3.6.

The uncapacitated facility location problem (UFLP) is the simplest form of FLP, and 

involves identifying which depots to open, assigning the customers to open depots, and 

has no constraints regarding the capacity of the facilities (Figure 8.1). Our 

multi-objective model has two different settings: two-objectives (min cost - min 

environmental impact) and three-objectives (min cost, min environmental impact and 

min uncovered demand). For this simple model, our environmental objective is 

formulated in a similar way to our objective measuring economic cost, and is made up of 

two components: depot costs and transportation costs. However, we weight these 

components differently for assessing the environmental impact, working under the 

assumption that the environmental cost of transport is large in comparison to the impact 

involved in operating distribution centres or warehouses (in terms of CO2 emissions, for 

example). We further conjecture that the full impact on the environment is not reflected 

in the costs incurred by logistics operators. Based on these ideas, we investigate a 

number of “what if ?" scenarios, by varying the relative weighting of the impact of 

transport versus depots on the environment to provide sets of non-dominated solutions to 

some test instances. This is an exploratory study aimed at investigating the potential of 

multi-objective optimization techniques for the FLP.

8.2 Our Multi-objective optimization model

The main drivers in traditional logistics network design are to reduce total costs and 

improve customer service levels. Due to recent concerns regarding climate change, 

minimizing the environmental impact from depots and transport needs to be addressed as 

well. Our proposed multi-objective uncapacitated facility location problem incorporates 

those three goals. Therefore, the problem definition in this chapter is a mixture of three 

mathematical programming formulations: the uncapacitated facility location problem, a 

revised UFLP with environmental weightings, and the maximal covering location 

problem (MCLP). The MCLP involves first asserting a global (ideal) maximum distance 

between customer and serving depot. Once customers have been assigned to depots,
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covered demand can be measured as the percentage of customer demand met within the 

given distance radius. Customers assigned to depots that are further away than this 

maximum, represent uncovered demand which is equivalent to (100 - percentage of 

covered demand) %.

The UFLP and MCLP models we use have been adapted from Villegas et a l [109] who 

originally based their formulation on [94]. Villegas et al. [109] present a bi-objective 

UFLP (min cost - max coverage) in their paper. To solve the problem, they designed and 

implemented three different algorithms to obtain a good approximation of the Pareto 

frontier. The algorithms are based on the Non-Dominated Sorting Genetic Algorithm, 

the Pareto Archive Evolution Strategy and on mathematical programming.

8.2.1 Problem formulation and objective functions

We will assume that the customers each have a certain demand and that transportation 

costs and fixed costs for the open depots. We further assume that at least one depot from 

a set of depots will be open, and that each depot will serve its customers directly. The 

model does not include inter-depot movements of transport to ensure the goods flow 

between depots. The problem is to determine how many depots to locate, where to locate 

them and which depot serves which customer, in order to satisfy the two or three 

objectives: minimize cost, minimize environmental impact and minimize uncovered 

demand. Solving this problem requires two main routines: one to determine which 

depots to open, and the other to assign the customers to the open depots (the assignment 

rule), where each customer is assigned to exactly one depot. The values of the two or 

three objectives can be computed once a network configuration has been defined.

The following notation is used in the formulation of the model:

Vd c  — set of potential depots;

Vc =  {1 • • -j } set ° f  customers;

Cij transportation cost of attending demand from customer j  to depot i\

f i fixed cost for operating a depot r,

dj demand of customer j  that could not be attended within Dmax
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by particular depot i\ 

hij distance between depot i and customer j ;

Dmax maximal covering distance - the customers within this distance to an

open depot are considered well served;

Vunc set of depots that could not attend customer i within the maximal

covering distance Dmax;

The decision variables are:

Xij equals 1 if the whole demand of customer j  is attended by depot i 

and 0 otherwise; 

yi equals 1 if depot is chosen to operate and 0 otherwise;

The following objectives functions are considered simultaneously as part of the location 

design:

•  Minimising costs. The objective is to find the best number and location of depots 

that minimizes total transportation and fixed costs. The first term represents the 

cost of attending demand of customers by the open depots and the second term 

represents the fixed facility cost of operating depots.

minimize[  E E CijXij E f*v*} <8-‘)
i£ V D C  jG -V c  i S V o c

• Minimising uncovered demand.

The objective measures total uncovered demand as a sum of the demand of 

customers which could not be attended by depot within maximal covering distance.

m inimize[ E ^ E  xij]
jEVc iEVunc

(8.2)
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• Minimizing the environmental impact from transport and depots. The objective is 

to find the best number and location of facilities that minimizes the total 

environmental impact from transportation and depots. This is essentially the same 

formulation as we use to minimize economic costs, but we introduce WT and Wp 

to weight the transport and fixed costs, respectively, for environmental impact. In 

this model, higher values of Wp imply worse pollution from transport.

rninimize[  E E Cij * WT * Xij + ^  f i  * Wp * ?/i] (8.3)
i^Voc j tV c  i^Voc

where Wp is the factor which derives the environmental impact from transport in 

relation to transportation costs and Wp is the factor which derives the 

environmental impact from depots in relation to fixed costs. For the present study 

we used following values: Wp =  1 and

WT £ [1 ,2 ,4 ,6 ,8 ,10,12,14,16,18,20,22,24]. Those particular values for WT 

were chosen to explore different “what if ?” scenarios.

•  Subject to following constraints:

£  Xij =  l , j  e  Vo (8-4)
itV oc

Xij < y i , j €  Vc,i € VDc  (8-5)

Xij £  { 0 ,  l } , j  £  Vc,i  £  Vdc ( 8 - 6 )

y i  £  {0,1 } , i  £ V d c  (8-7)

Constraints 8.4 and 8.6 ensure that each customer is attended by only one depot.

Constraint 8.5 assigns the customers to open depots. Constraints 8.6 and 8.7 define

decision variables as binary.

For our analysis we looked at two different objective settings:
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1. for the two-objective UFLP: minimizing costs and minimizing environmental 

impact;

2. for the three-objective UFLP: minimizing cost, minimizing environmental impact 

and minimizing uncovered demand.

8.2.2 Test data.

From our research, we confirmed findings published in Villegas et a l [109]: that there 

are no available MOUFLP test instances in the public domain for benchmarking. 

Especially for our research, we needed instances which consider environmental 

information. To begin our research, we obtained bi-objective problem instances (min cost 

and max coverage) from [109] of two different types: instance A and instance B. The 

difference between the instances is that the locations have been generated in two different 

ways: uniformly distributed locations within a square (instance A) or depot locations 

chosen from customer locations (instance B). A and B instances come in three different 

sizes: 10 depots-25 customers, 30 depots-75 customers and 50 depots-150 customers. 

Each size also differs in its fixed depot cost structure (uniformly distributed (C1-C3) or 

the same fixed costs for all depots (C4-C6)). For example, instance A10-25C3 is an 

instance of type A with 10 available depots, 25 customers and a uniformly distributed 

fixed depot cost structure. In total, 26 different problem instances are provided. For our 

analysis, we have chosen a representative sample consisting of one instance of each type, 

size and cost structure - in total 12 test instances. For example, the following instances of 

type A are used for analysis: A10-25C3, A10-25C6, A30-75C3, A30-75C6 etc.

The data sets described above model economic costs and coverage but not environmental 

costs. To include an environmental objective, we used the simple weighted model 

described above, and applied it to the fixed costs and transportation costs of the 

“standard" UFLP. We know that the environmental impact from transport is closely 

related to fuel consumption. However, there are other factors that have an impact on the 

actual levels of emissions from transportation, such as the speed and acceleration of the 

vehicle; the load on the engine over the distance traveled; the type of fuel used, vehicle
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condition, engine size etc. [82]. Of course, all of these factors will also impact on 

economic cost. On the other hand, other expenses, such as vehicle maintenance, road 

tax, training costs, drivers’ wages etc., will not directly impact on the environment in the 

same way. Regarding depot costs, the environmental impact from depots comes from the 

electricity and gas consumption by the buildings. Economic costs for depots also include 

rent/rates and staffing costs. In this chapter we will assume that transport has a relatively 

greater impact on the environment than depots, relative to economic costs, and we will 

use our simple model to explore various scenarios related to different weightings of the 

environmental impact of transport.

8.3 Solution encoding and assignment procedure

Solution encoding. Each solution for MOUFLP is encoded as a binary string of length 

equal to the total number of (potential) depots, where each bit indicates whether depot is 

open (value of 1) or closed (value of 0), e.g. 1101100100 represents 10 potential depots 

with depot 1,2,3,4,5 and 8 open. However, a solution also involves the assignment of 

customers to depots at the minimum transportation costs.

Assignment procedure. In a location models it is very important to decide how the 

customers are assigned to the particular facilities. In some circumstances, the assignment 

depends on the distance or travel time, in other cases it could depend on the range or 

quality of the products dispatched or collected. Our model incorporates a customer 

service level objective, therefore we used the assignment procedure described in [109], 

which tries to minimize cost without impacting on coverage. Provided a customer is 

located within a given maximum distance radius, Dmax, then that customer is assigned to 

the depot at the minimum transportation cost. If a customer cannot be covered (i.e., the 

nearest depot is further than Dmax) then it is assigned to the depot with the smallest 

transportation cost, regardless of its distance. Ties are broken on a first-come-first-served 

basis.
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8.4 Comparing and tuning evolutionary algorithms

The two evolutionary algorithms NSGA-II (Algorithm 3.2) and SEAM02 (Algorithm 

3.5) are implemented in Java and adopted for MOUFLP to obtain a good approximation 

of the Pareto frontier. Chapter 3 discusses both evolutionary algorithms in details. Two 

test problems from Villegas et al. [109] (A30-75C3 and A30-75C6) are used to compare 

the algorithms on the quality of the non-dominated solutions using the S metric 

[114, 115]. The difference between the C3 and C6 problems is that the latter has the 

same fixed costs for all open depots and the former has different costs. The S metric or 

hypervolume measure is a measure of the volume of the dominated space determined by 

the number of objectives which are enclosed by the nondominated points and the point of 

origin. This is a measure of the quality of solution set for a given nondominated set A. 

Definition 5 defines the hypervolume metric and taken from Zitzler’s thesis [115]:

Definition 5. (Size of the dominated space) Let A =  {x\ , x2, x i )  C  X  be a set of I 

decision vectors. The function S(A)  gives the volume enclosed by the union of the 

polytopes p i , p2, ---Pi , where each pi is formed by the intersections of the following 

hyperplanes arising out of X i , along with the axes: for each axis in the objective space, 

there exists a hyperplane perpendicular to the axis and passing through the point 

(fi(xi),  f i (*£»)? •••• fk{xi)). In the two-dimensional case, each pi represents a rectangle 

defined by the points (0, 0) and ( / i ( Xi), ./^(z*))-

Definition 5 assumes a maximazation problem and since then other models were 

developed for the problem where all objectives are minimized [31,115, 133]. For 

example, a reference point (vector of a worst objective function values) could be used to 

calculate a hypercube for each solution which is after used to calculate a hypervolume 

metric [31 ]. In this thesis, we use Zitzler’s definition and convert our model to a 

maximization problem to calculate the S metric with following units: maximizing 

‘unspent’ cost, covered demand and ’unspent’ environmental impact. Maximizing 

‘unspent’ cost represents maximizing the difference between upper bound limit for costs 

and overall costs for a particular open depot and lowest assignment combination. The 

upper bound limit is calculated as a result of assigning stores to the furthest depot while 

all depots are open and consist of fixed and connection costs. Similar procedure was
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done to convert minimizing environmental impact to maximizing ‘unspent’ 

environmental impact, where we maximize the difference between upper bound limit for 

impact and overall impact from the open depots/lowest assignment combination.

Covered demand represents the percentage of the total demand which has been covered 

within given distance Dmax. The maximazation units discussed above are used in the 

Figures 8.3, 8.4, 8.5.

Before comparing evolutionary algorithms, a fine tuning of the algorithms was carried 

out involving an exploration of a range of settings such as different crossovers, crossover 

probabilities, population sizes etc. Twenty independent runs of each test problem and 

setting are conducted for each algorithm and the final result (per problem instance and 

algorithm) is the approximate Pareto frontier obtained by aggregating the fronts of the 20 

independent runs. The two algorithms were compared under the same number of 

iterations (10,000) and under equal execution time (10,000 ms) to ensure fairness in 

comparing algorithms.

Tuning the individual evolutionary algorithm. Before comparing the NSGA-Ef and 

SEAM02 algorithms for MOUFLP, each algorithm was tuned to its best performance. In 

order to make comparisons fair, we used the same number of evaluations (10,000 

iterations) for each algorithm. For the experiments, two different combinations for 

population size and numbers of generations are used: smaller population/bigger 

iterations (pop=40 gen=250) and bigger population/smaller iterations (pop=250 gen=40).

Figure 8.2 illustrates a flow chart of all experiments which were undertaken for fine 

tuning and comparing different settings for both algorithms. In the step 1, each algorithm 

is run 20 times for different types of crossover: one-point, two-point, uniform and no 

crossover on two instances with population size of 40 and number of generations of 250. 

The mutation was applied after the crossover was performed. After the best crossover 

was chosen, the number of generations was changed to 40 and the population size to 250 

and different population and generation sizes were compared. The step 2 in Figure 8.2 

illustrates a flow of different experiments when NSGA-II and SEAM02 algorithms are 

compared under equal number of the evaluations and equal number of execution times. 

The next subsection describes this process in more detail. One-way analysis of variance
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Step 1. Identify the best
setting for each algorithm

NSGA-II SEAM 02

C  I
2 objectives 3 objectives

1~><C\
Instance. Instance:
A30-75C3 A30-75C6

J L
Pop=40 Gen=250 |

I
One point; Two point 
Uniform ; No 
crossover j

Pop=250 Gen=40 and compare 
based on best crossover

_______________ k______________
Apply S metric to identify the best 
setting for each combination

Step 2. Compare algorithms on 
best-tuned settings from Step 1

SEAM02NSGA-I

3 objectives

Instance:
A30-75C6

Instance:
A30-75C3

Use the best setting for 
crossover, num of Pop & Gen.

Compare 
under equal 
execution 
times (10,000 
ms)

Compare 
under equal 
num of 
iterations 
(10,000)

Figure 8.2: Ttinable settings for MOEA.

on the S metrics was used to compare different crossovers and the best-tuned settings, 

depending on the number of objectives, which are statistically significant, are presented 

in the Table 8.1.

Comparing NSGA-I1 and SEAM02. Tuned to the best performance, NSGA-II and 

SEAM02 algorithms are compared (maximization of two/three objectives) under two 

requirements: l)the same number of evaluations of 10,000 and 2) equal execution time 

of 10,000 ms for each run. In Chapter 3, we discuss a selection probability for 

parameters of evolutionary algorithms where the crossover probability (pc) is used to 

determine the number of chromosomes participating in the crossover and the mutation 

probability (pm) determines the number of bits that will be mutated. When the value of 

the probability is equal to 0% then no crossover or mutation has been performed and 

offspring has the same properties as it’s parent. After initial experiments, pc — 0.7 and 

pm =  0.06 were used as final parameters in NSGA-II.
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Algorithm Number 

of obj.

Best-tuned settings 

for algorithms

NSGA-II

SEAM02

•-n 
•-£>

•S 
-fi 

o 
o

(N 
CO

Two-point crossover 

pop=40, gen=250

No crossover 

pop=250, gen=40

2 obj.

3 obj.

Uniform crossover 

pop=40, gen=250

Uniform crossover 

pop=40, gen=250

Table 8.1: Best-tuned settings for NSGA-II and SEAM02.

Figure 8.3(a) and 8.3(b) show the approximate Pareto frontier for two and three 

objectives under equal numbers of evaluations obtained by both algorithms. Table 8.2 

shows the execution time and the number of non-dominated solutions for each algorithm. 

In both cases NSGA-II outperformed SEAM 02 by obtaining statistically significant 

results as a result of undertaking one-way analysis of variance on the S metrics.

However, SEAM02 algorithm was much faster than NSGA-II. SEAM02 is an algorithm 

which is much simpler to implement compare to NSGA-II and preserves best solutions 

during the execution time. Therefore, by running SEAM02 and NSGA-II algorithms 

under the same execution time, the SEAM 02 algorithm could find an approximate 

Pareto frontier of the same (perhaps better) quality as the NSGA-II algorithm faster.

Figure 8.4(a) and 8.5(a) show the approximate Pareto frontier for two and three 

objectives under equal execution time of 10,000 ms for each run obtained by both 

algorithms. The final approximate Pareto frontiers visually indicate very little difference 

for two and for three objectives. The reason could be that SEAM02 has a simple and fast 

search strategy that obtains a good quality approximate frontier quickly. But the 

interesting results you can see in Figure 8.4(b) and 8.5(b) which show box plots for the S 

metric for the two algorithms. Each plot represent the distribution of the non-dominated 

space for 20 independent runs and results are statistically significant in favor of
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(a) Two objectives
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2.1

O NSGA-II 
* SEAM02
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x1041.8 2.5

'Unspent' impact 'Unspent1

(b) Three objectives

Figure 8.3: Non-dominated solutions from 20 runs on A30-75C3, NSGA-II and 

SEAM 02 under equal number of evaluations of 10,000 for each run.

N SG A -II. Furtherm ore, the gap betw een tw o algorithm s is b igger for two objectives.

A lso , Table 8.3 sh ow s that N SG A -II produces a larger number o f  non-dom inated  

solu tions com pared to S E A M 0 2 .

To sum m arize, w e  observed from  the pilot experim ents, that the N SG A-II algorithm  

perform ed generally  better than the S E A M 0 2  algorithm in terms o f  quality o f  the
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N S G A -II S E A M 0 2

tim e (m s) N on-dom in ated tim e(m s) N on-dom inated

solu tions solutions

T w o ob jectives:  

co s t, co v era g e  

A 3 0 -7 5 C 3 5 3 ,9 0 9 5 0 532 2 2

A 3 0 -7 5 C 6 53,951 73 606 29

T hree ob jectives:  

co st, im pact co v era g e  

A 3 0 -7 5 C 3 190 ,859 397 564 1 1 1

A 3 0 -7 5 C 6 187 ,965 1 2 0 622 33

Table 8.2: NSGA-II and SEAM 02 under equal number of evaluations of 10,000 for 
each run, 20 runs.

N S G A -II S E A M 0 2

tim e (m s) N on-dom inated tim e(m s) N on-dom inated

solu tions solu tions

T w o ob jectives:  

co st, co v era g e  

A 3 0 -7 5 C 3 2 0 0 , 0 0 0 52 2 0 0 , 0 0 0 44

A 3 0 -7 5 C 6 2 0 0 , 0 0 0 75 2 0 0 , 0 0 0 63

T hree ob jectives:  

co st, im pact co v era g e  

A 3 0 -7 5 C 3 2 0 0 , 0 0 0 4 4 3 2 0 0 , 0 0 0 254

A 3 0 -7 5 C 6 2 0 0 , 0 0 0 116 2 0 0 , 0 0 0 72

Table 8.3: NSGA-II and SEAM 02 under equal execution time for 20 runs .

ap proxim ation  o f  Pareto front. H ow ever, the S E A M 0 2  algorithm  w as very efficien t in 

term s o f  execu tion  tim e. T h is m eans that for large s ize  data sets, S E A M 0 2  w ould be 

able to find n on-dom in ated  so lu tion s m ore q u ickly  and provide the d ecision-m aker with  

an in itial set o f  so lu tion s, w hich  can b e explored  further i f  desired. The S E A M 0 2  

algorithm  is used  in Chapter 9  for m od ellin g  capacitated facility  location problem  for 

large s iz e  data sets, w here execu tion  tim e cou ld  be ch allenging . However, for the current 

data sets, N S G A -II w as ch osen  for the experim ental analysis described in the rest o f  this
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(b) Dominated space for 20 runs

Figure 8.4: Instance A30-75C3, comparison of NSGA-II and SEAM02 under equal 

execution time of 10,000 ms for each run (two objectives).

chapter w here tw o -p o in t c r o sso v e r  w as u sed  for the tw o-ob jective problem  and no 

crossover  for the three o b jectiv e  p rob lem .

o NSGA-II 
♦  SEAM02
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A30-75C3

100TJc
S■o■a<L'

80

60

O NSGA-II 
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O
2.1

2.05

1.95 3.5x

x 10*
1.85

2.51.8’Unspent' impact
Unspent cost

(a) Non-dominated solutions from 20 runs

10’7 A30-75C3
7.4

7.35

7.3

7.25

7 2

NSGA-II SEAMQ2

(b) Dominated space for 20 runs

Figure 8.5: Instance A30-75C3, comparison of NSGA-II and SEAM02 under equal 

execution time of 10,000 ms for each run (three objectives).

8.5 Experimental method

T h e purpose o f  our experim ents is to answer the follow ing questions for each MOUFLP, 

the tw o-ob jective problem  (m in cost and min environmental impact) and the 

three-objective problem  (m in cost, min uncovered demand and min environmental
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im pact):

1. D o e s  th is approach h o ld  p rom ise -  d o  w e  obtain a reasonable trade-off front?

2. W hat happens to  the so lu tion  set as w e  exp lore scenarios in w hich  the 

en vironm ental im p act o f  transport in creases d isproportionately to its cost?

3. H ow  d o w e se le c t  su itab le  trad e-off so lu tion s from  the approxim ate Pareto front?

A s p rev iou sly  m en tion ed , s ix  in stan ces o f  type A  and six  sim ilar instances o f  type B are 

se lec ted  from  the test data taken from  [1 0 9 ]. R eca ll that these instances have data for a 

tw o -o b jectiv e  prob lem  (e c o n o m ic  cost, coverage), and w e  applied our environm ental 

w eig h tin g s , 44V and W F, to transport and fixed  costs , respectively. T he plan is to assess  

the environm ental im p act for a range o f  “w hat if?” scenarios, in w hich  WF = 1 in all 

ca ses, and WT E [1. 2 . 4 , 6 . 8 , 1 0 , 1 2 , 1 4 , 1 6 , 1 8 , 2 0 , 2 2 , 2 4 ] ,  W e assu m e that the 

en vironm en tal im pact o f  transport o u tw eig h s  the environm ental co st o f  m aintaining  

d ep ots. For each  p rob lem  in stan ce w e  perform ed 12 experim ents, on e for each  o f  the 

ab ove environm ental factors for transport (14V)- In each run, the in itial so lu tion  w as 

created  random ly at the start.

T h e N S G A -II algorithm  crea tes a ch ild  population  from  its parent population  u sing fast 

n on-dom in ated  sort, c r o sso v e r  and m utation. T he parent population (Pt) and ch ild  

popu lation  (Ct) is set to  the sam e s iz e  TV= 4 0  for our experim ents, and for each  run, on  

every in stance, the num ber o f  gen eration s w as 250 . A fter the initial experim ents, w e  

settled  on the crossover p rob ability  pc = 0 .7  for all the tests. T w o-point crossover w as  

used  for the tw o-ob jective  p rob lem  and n o  crossover for the three ob jective problem , due 

to  resu lts w hich  are d iscu ssed  in S ectio n  8 .4 . A  m utation probability o f  pm = 0 .0 6  was 

u sed  across all the settin gs and all the test instances. E xperim ents are con d ucted  using  

Java 2 , on  a PC with an Intel Pentium  D  C P U  3 .4  G H z and 2 G B  R A M .



8.6 Results 169

8.6 Results

In this section  w e shall attem pt to answer the questions posed in the previous section. 

C onsider a situation in w hich  Wt  = Wp = \. This corresponds to identical objectives  

for environm ental im pact and econ om ic cost. For this special case, there is only one  

global optim um  for the econ om ic cost versus environm ental impact m odel, because the 

problem  reduces to a s in g le  objective. On the other hand, as the value o f  WT is allow ed  

to increase, on e w ould  exp ect to obtain sets o f  non-dom inated solutions in w hich high  

transport im pact favours higher numbers o f  open depots than are cost effective when  

considered  from  the point o f  v iew  o f  econom ic cost.

<2 35

■£ 25
O 20

O ,5

# “ “
  A30-75C3
- - - A30-75C6

24
environmental factor for transport

Figure 8.6: Total number of non-dominated solutions for different environmental 

factors from transport for two-objective problem (cost-impact).

Figure 8 . 6  sh ow s how  the num ber o f  non-dom inated solutions obtained by N SG A -II  

changes as the environm ental factor increases from 1 to 24. This diagram illustrates the 

situation for tw o o f  our instances (A 30-75C 3 and A 30-75C 6). However, the pattern is 

sim ilar for the other 1 0  instances. W e can see that when WT =  1, there is a single  

solu tion , as exp ected . A s WT increases, however, so does the size o f  the non-dominated  

set. In the case  o f  A 3 0 -7 5 C 6 , the size  o f  the solution set stabilizes at about 15, w hile  

A 30 -7 5 C 3  settles at about 35. D ue to the exploratory nature o f  the current research, the 

curves o f  the Pareto frontier represent single runs for each WT setting; hence, their lack 

o f  sm oothness. T he solu tions depend on the scale - more solutions are found as the
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environm ental im pact from  transport increases. V isual representation o f  the approximate 

Pareto fronts can be seen  in Figure 8 .7  and Figure 8 . 8  where a transport factor o f  6  was 

used in the form er and a transport factor o f  16 in the latter case. A s expected, w e observe 

that m ore dep ots need to be opened to m itigate the environm ental impact than is 

desirable from  the point o f  v iew  o f  econ om ic cost. For exam ple, in Figure 8.7 (Wt  =  6 ) 

the extrem e so lu tion s require 2  depots for m inim izing cost, and 5  depots for m inim izing  

the environm ental im pact. In F igure 8 . 8  (Wt  =  16) even more depots ( 8 ) are required to 

m itigate the environm ental co st o f  transport.

5200 Wdmbtr of ctetomere absfried to eacft fcpbfc

5000
1 -  depot open 

0 - depot closed4800

4600

4400
■■oO 4200

4000

3800

Number of customers asslyved to each depot3600

132 134
x104

1 24 1.26 1 28
Environm ental impact

18 1 22

Figure 8.7: Instance A10-25C3 with environmental impact factor from depot of 1 

and impact factor from transport of 6.

N ow  w e are g o in g  take a m ore detailed  look  at how increases in the environm ental factor 

from  transport im pacts on  the required num ber o f  the open depots, for the tw o-objective  

and three-ob jective problem s. For each  o f  the 12 settings for WT w e w ill exam ine the 

extrem e so lu tion  that m in im izes environm ental im pact at the expense o f  econom ic cost 

(top left o f  F igures 8 .7  and 8 .8 ). A  sim ilar pattern can be seen in Figure 8 .9  for three 

ob jective problem . Figure 8 .1 0  sh ow s how  the number o f  depots increase with increasing  

WT for tw o-ob jective  problem , and Figure 8.11 show s sim ilar findings for the 

three-objective problem .

N ow , to an sw er the three q uestions posed  in Section 8.5.
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Figure 8.8: Instance A10-25C3 with environmental impact factor from depot of 1 

and impact factor from transport of 16.
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Figure 8.9: Instance A10-25C3 with environmental impact factor from depot of 1 

and impact factor from transport of 16.

1. W e do obtain a reasonable trade-off front with a range o f  solutions, indicating that 

this approach is  worth pursuing further, until such tim e that environm ental cost is 

fu lly  absorbed into the econ om ic costs incurred by the stakeholders.

2. A s the environm ental im pact o f  transport increases disproportionately with the
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Figure 8.10: Total maximum number of depots open depending on environmental 

impact factor from transport for two-objective problem.

so

45

I *
|.
% 25
i  2 0
e  15 
■
E to

5

available num ber of 
d ep o ts  for A50

1 « » I ■ 1 1 "1 ■ f  l "  1 I "

— A10-25C3 
-*-A10-25C8 

— A30-75C3 
—♦-A30-7SC8

------ A50-150C6

------ -L--------1--------1----— i-------- 1--------1--------1------- 1--------1--------1------- 1--------1—

\
avail 
of de

\
available num ber 
of depots for A30

6 8 10 12 14 18 18 20 22
environmental factor from transport

available num ber 
of depots for A10

Figure 8.11: Total maximum num ber of depots open depending on environmental 

impact factor from transport for three-objective problem.

co st o f  operating d ep ots, the environm entally  friendly solution w ill require more 

open d epots than is co st e ffec tiv e  from  an econom ic point o f  view.

3. W e can spot g o o d  com p rom ise solu tions, for exam ple as indicated in Figures 8.7, 

8 .8 , and 8 .9 . W e can  se lec t so lu tions with relatively low  environm ental im pact, just 

before the cu rve steep en s towards very high econom ic costs. At this stage there are 

on ly  very sm all environm ental gains to be m ade at very high econ om ic cost.

To con clu d e, from  the tw o  and three objective studies it m ay be desirable to open more 

depots than m ay be optim al from  a cost on ly  perspective, in order to reduce the
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environmental impact of transport. This is not a surprising observation, but our studies 

indicate that an evolutionary algorithm is a useful way to obtain trade-off solutions to 

present to a human decision maker. It is possible to spot good compromise solutions in 

this way.

8.7 Summary

This chapter describes a MOUFLP with an environmental objective. The model includes 

traditional objectives: minimizing cost and improving customer service levels 

(minimizing uncovered demand) and an environmental objective: minimizing the 

environmental impact from transportation and depots. Two multi-objective evolutionary 

algorithms, NSGA-II and SEAM 02 are discussed and adopted for the MOUFLP. 

Furthermore, as a result of comparing both algorithms on the benchmarking data, 

NSGA-II is used to investigate a range of “what if ?” scenarious to provide a set of 

non-dominated solutions to some test instances where the relative weighting of the 

impact of transport versus depot on the environment is being varied. In this study we 

assume that the environmental impact of transport is not truly reflected in the economic 

costs of running a fleet of vehicles. The analysis was performed on two different settings: 

a two-objective model (min cost - min environmental impact) and a three-objective 

model (min cost, min environmental impact and min uncovered demand). The 

investigation also included the evaluation of the impact of the different scenarios on the 

number of open depots.

The next chapter extends our exploratory study to a capacitated FLP and a more realistic 

model using some randomly generated data instances based on Sainsbury’s data. In the 

new study, the environmental impact from transportation and depot management is 

properly evaluated using a relevant carbon footprint methodology and the environmental 

information for the generated data instances is based on real figures from the industry.



Chapter 9

Multi-Objective Capacitated Facility 

Location Problem

9.1 Introduction

In this chapter we extend the UFLP formulation to the two-objective Capacitated 

Facility Location Problem (CFLP). The CFLP model formulation described in this 

chapter is based on Sainsbury’s logistics network and has two capacity constraints: one 

for the number of cases and one for the number of stores. Recall that the UFLP has no 

constraints on the capacity at all, and was based on data sets available from the public 

domain adapted by adding a component for environmental impact. The two-objective 

CFLP model aims to balance the financial cost and the environmental cost, taking into 

account activities such as moving, picking, and loading the goods as well as transporting 

them and opening the depots needed to serve the customers’ needs. The environmental 

impact is extracted from running the logistics network in terms of CO 2 emissions from 

transportation and the emissions caused by energy use for the day-to-day running the 

depots. Because of the lack of multi-objective data sets with environmental aspects for 

the CFLP in the public domain, we have generated our own large size data problems, 

based on data from industry. Locations, capacities and levels of demand etc. have been 

randomly generated, but within reasonable upper and lower bounds observed from our 

real-world data sets. We have used Government sources to obtain correct environmental 

information regarding energy consumption.

To solve the multi-objective CFLP and generate a set of trade-off solutions for our
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benchmark data, we use a solution technique which is based on the elitist evolutionary 

multi-objective algorithm SEAM 02 and adapted it for capacitated formulation. We 

utilized the Lagrangian Relaxation technique which was discussed in Chapter 7 and 

allows the assignment of customers to open depots for each individual in the population 

of the solutions.

9.2 Problem formulation and objective functions

We assume that customers have a certain demand in cases and associated transportation 

and warehousing costs for a particular depot. Each depot has a given capacity in cases 

and the number of stores it able to serve. The customers are served directly by a depot, 

and transportation costs are based on stem distances and reflect time and distance based 

components. The warehouse costs reflect any associated costs with picking and loading 

the goods.

The problem is to determine how many facilities to open in order to satisfy all customers 

demand while solving both objectives simultaneously: minimise the environmental 

impact from operating depots and transport in terms of CO 2 emissions and minimise the 

overall financial cost. As in UFLP, the capacitated version of this problem is also divided 

into two sub-problems: determine which depots to open and assign customers to the 

open facilities without violating the number of cases or the number of customers 

capacity constraints.

The following notation is used in the formulation of the model:

Glossary

set of potential depots; 

set of customers;

cost of attending demand from customer j  to depot i consisting of overall 

transportation and depot costs; 

fixed cost for operating a depot v, 

demand of customer j ;

V d c  — {I-.-*} 

V c  =  {  1 - 7 }

f i

dj
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Qi capacity (cases) of facility i , i e  VDC\

n i capacity (number of customers) of facility i , t 6  Vdc;

e—Uj C O 2 emissions from transport between depot i  and customer j  to satisfy

customer demand dj\ 

e~9i C 0 2 emissions from gas consumption for each depot i , i €  V dc;

e ~ e i  C O 2 emissions from electricity consumption for each depot i ,  i  €  V dc;

The decision variables are:

is the decision variable for the problem, xtj =  1, if customer j  is allocated 

to facility i, and 0 otherwise; 

yi equals 1 if depot is chosen to operate and 0 otherwise;

The following economic and environmental objective functions are considered 

simultaneously as part of the network design:

•  Minimising costs. This financial objective finds the best combination of open 

depots that allows cost minimization of overall cost of the network. It consists of 

overall cost (associated transport and depots) of servicing a demand of customers 

by open depots and fixed cost of operating depots

m in im ize  [ E E C-ij Xij “l-
i& V D C  i E V d c

• Minimizing the C 0 2 emissions from transport and running depots. The 

environmental objective is expressed as C 0 2 emissions and aims to find the best 

number of open facilities that minimizes the total C 0 2 emissions from 

transportation and energy consumption for running facilities. The first term of the 

formulation represents the emissions from transport to attend the demand of 

customers by the open depots, and the second term represents the total emissions 

from the electricity and gas usage of open depots.
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m inim ize! Y Y e- ^ «  + Y <e- *  +  e- e‘)»l <9-2>
iC V oC  jC V c  iZVDC

•  Subject to following constraints:

^  x ij =  1 , j  € Vc (9.3)
i c y d c

xij <  2/i, j  € Vc,i G Vdc (9.4)

^  djXij <  ft, Vi € Vdc (9.5)
jC V c

^  <  n*,Vz G Vdc (9.6)
jcvc

G {0, l} ,z  G Vdc , j  £ Vc (9.7)

2/, G {0,1}, i G Vdc (9.8)

Constraints 9.3 and 9.7 ensure that each customer is attended by only one depot and the 

demand is satisfied by that facility. Constraint 9.4 assigns the customers to open depots 

only. (9.5) and (9.6) ensure that the capacity constraints for demand (cases) and number 

of stores for the depots are not violated and finally, constraints 9.7 and 9.8 define 

decision variables as binary.

9.3 Test data

Due to the lack of environmental test data for MO CFLP in the public domain, we 

generated randomly data sets based on the company data, which we used in Chapter 5 to 

investigate the impact of key variables on the allocation of stores to depots.
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The ranges for all values, such as the demand (weekly volume), productivity and costs 

are based on the industry data. To generate the environmental data for each depot, one 

way of dealing with it is to base the figures on average consumption of electricity and gas 

across some real depots. Having that information from the company allowed us to 

generate this environmental data which was absolutely invaluable for our research. This 

information allowed us to derive a formula for calculating energy consumption in kWH 

for a particular capacity of a depot. We use a value of 0.0933 kWh per a case of demand 

(weekly) for electricity consumption and a value of 0.0045 kWh for gas. Depending on 

the available capacity of the serving facilities, each of those values is multiplied by the 

total capacity to calculate a total energy consumption in kWh which were converted to 

C()2 emissions using conversion factors from DEFRA[32] (0.54 kgC 02 per kWh for 

electricity and 0.19 k g C 0 2 for gas). To calculate C 0 2 emissions from the transport we 

calculated the total distance travelled by a vehicle to satisfy a demand of a particular 

customer to a depot, which was multiplied by a fuel conversion factor (2.63) and then 

multiplied by fuel consumption (of 0.35 litres per km) [32].

The financial costs consist of both transportation and depot related costs, where 

transportation costs have distance and time related components as per Sainsbury’s data. 

We assume that Cij =  (tcij +  dcij), where tcij is the transportation costs and dcij is the 

related depot costs between customer j  and depot i. Also, to reflecting the fact that costs 

can vary, depending on geographical locations (e.g., labour costs tend to be higher in 

London and the South East), each depot has its own rates for transport and warehousing 

components.

The capacity of each depot was calculated taking into account the overall demand across 

all depots. Therefore, to calculate a capacity for each depot, the total demand was 

multiplied by a capacity ratio value and then divided by a total number of depots. For the 

initial experiments, the following capacity ratio values were tested, when data sets were 

first generated: 2, 3, 4, 5, 6, 7, 8, 9 and 10. A similar procedure was used to calculate a 

capacity for the maximum number of stores which each depot could serve. As a result, 

all depots have the same capacity for cases and number of stores. The fixed costs for 

each depot were calculated taking into account the capacity of that particular depot. The
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various fixed cost ratio values of 0.5, 0.75, 1.25 and 1.5 were used for generating fixed 

costs for all depots in each scenario. For example in the scenario where the ratio value is 

0.5, this number was applied across all depots and it was used to multiply the depot 

capacity.

The different ratios for capacities and fixed costs were initially tested to determine the 

effect it has on the number of non-dominated solutions when the MOO technique was 

applied. The SEAM 02 algorithm was used to explore non-dominated solutions for 

CFLP. As a result of those initial tests the capacity ratio values of 4 and 8 and the fixed 

cost ratios values of 0.75 and 1.5 were used to generate larger data instances for CFLP. 

The instances had 10 depots and five different settings for the following number of 

customers: 2000, 4000, 6000, 8000 and 10000. The name given to each data problem 

reflects different values generated for that particular problem. For example, problem 

setl_10_2000_r4.0_fc 1.25 has 10 depots, 2000 customers, a capacity ratio of 4 and fixed 

costs ratio of 1.25. In total, 20 different test instances were generated for analysis of the 

MO CFLP where financial and environmental objectives are solved simultaneously.

9.4 Solution encoding and assignment procedure

The solution encoding procedure was the same as for MO UFLP and encoded as a binary 

strings, where 1 represents an open depot, and 0 a closed depot, e.g. 0011011011 

indicated that depots 3,4,6,7,9 and 10 are open, and the others are closed.

The assignment procedure for the capacitated model is an extremely important procedure 

which ensures that assigned customers do not violate capacities in those depots in terms 

of cases and numbers of stores. Here, we utilize the Lagrangian Relaxation technique for 

assigning the customers to open depots without violating either capacity constraints. The 

assignment procedure could be undertaken based on cost or environmental impact. In 

this research, we are solving the allocation problem using LR technique based on the 

financial cost because it is still a common practice among practitioners to use a cost 

function as a main objective during modelling and analysis. Figure 9.1 illustrates the 

assignment procedure. As a result of applying this procedure, the customers are assigned
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to the m inim um  p o ssib le  co st ob jective function, depending on the capacity constraints. 

T he LR tech n iq u e is  d iscu ssed  in detail in Chapter 7.

9.5 Multi-Objective Evolutionary Algorithm for CFLP

T he evolutionary M O  algorithm  S E A M 0 2  w as used for m odelling the CFLP and it 

obtained a good  approxim ation  o f  the Pareto front. W e found that this algorithm  is 

considerably  faster in com p utational tim es com pared to the better know n N SG A -II  

algorithm , as w as d iscu ssed  in C hapter 8 for the UFLP. It is very important for larger 

data in stances to p rovid e the d ec is io n  m aker w ith an initial set o f  trade-off solu tions  

w hich  can be in vestigated  further i f  needed . A nother reason for ch oosin g  S E A M 0 2  is 

that the quality  o f  the approxim ated  Pareto frontier seem s to be o f  sim ilar quality in 

com parison  to N S G A -II for UFLP. T h e uncapacitated version o f  the S E A M 0 2  algorithm  

w as adapted to  the cap acitated  version  w here the open facilities and the custom er  

assignm ent produced by Lagrangian R elaxation  technique was used to calcu late both 

ob jective fun ction s.

Figure 9 .2  presents an evolu tion ary  m ulti-objective optim ization fram ework w here the

Lagrangian
Relaxation
technique

Figure 9.1: The assignment for Capacitated Facility Location Problem.
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SEAM02 algorithm and LR approach are integrated together for the CFLP. Initially, a 

population of solutions (binary strings) is randomly generated and for each solution we 

apply LR heuristics to allocate stores to open depots and as a result of the allocation, we 

could evaluate multiple objective functions simultaneously based on the generated 

solution. Consideration needs to be taken at this stage to make sure that the randomly 

generated solutions with open depots are feasible, e.g. the total capacity of open depots 

is larger than total available demand. To produce a feasible solution, one could undertake 

a repair procedure to the chromosome that is infeasible or generate another random 

string that is feasible. The latter routine is implemented as part of the procedure. The 

objective functions are evaluated for each member of the population and the best-so far 

values are stored for each objective. Now, the algorithm steps through each member of 

the population in turn, selecting it as a first parent and the second parent is selected at 

random for a crossover and mutation operation to produce a single offspring. The 

SEAM02 algorithm is steady state where an offspring is considered to enter the 

population depending on a number of comparisons. If an offspring produces best-so far 

for either objective with appropriate best-so-far objective updated, then it replaces the 

parent if possible otherwise it replaces an individual at random that it dominates. If the 

offspring is not a duplicate in the current population, it dies if the match is found to 

preserve the diversity of the population. If the offspring survives, then we check if it 

dominates either parent and the parent will be replaced if it is being dominated by an 

offspring. Finally, if there is no decision made so far regarding an offspring, then the last 

condition checks if it has a mutually non-dominating relationship with both of its parents 

and will enter the population if a suitable member has been identified which is dominated 

by the new offspring. The algorithm will repeat until the stopping condition is satisfied 

and at the end, it will produce a set of non-dominated solutions from the final population.

Before running the experiments on the generated data sets, the algorithm was tuned to its 

best performance on three data instances: setl_10_2000_r4.0_fc0.75, 

set 1 JQ _2000_r4.0Jc 1.25 and setl J0_8000 _ r4 .0 J c l.25. The minimization problem 

was converted to a maximization problem for both objectives (‘unspent4 cost and 

‘unspent4 impact) to compare different types of crossover on the quality of the 

non-dominated solutions using the S metric. A population size of 40 was used and run
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Figure 9.2: M ulti-Objective evolutionary framework combining SEAM 02 and LR.

for 250 generations for tuning purposes. Three different combinations of crossover and 

mutation were tested: no crossover/no mutation, one-point crossover/mutation, two-point 

crossover/mutation, and uniform crossover/mutation. In total, 12 different experiments 

were undertaken for tuning purposes. The S metric and final approximate Pareto frontier 

were obtained from 20 independent runs for each data instance and settings for 

mutation/crossover. As a result of undertaking one-way analysis of variance on the S 

metrics for different set of experiments, results indicate no statistical significance among 

all settings. Nevertheless, we choose uniform crossover with mutation to bring the 

diversity into the population of solutions. This crossover operator is the same as it was 

used when SEAM 02 was tested for modelling the UFLP with two objectives. As a final 

step before undertaking experiments on randomly generated data sets, the size of the 

population and number of generations were increased to ensure that the algorithm runs a 

sufficient amount of time to find good quality solutions. Therefore, a population of 100,
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Figure 9.3: A pproxim ate Pareto frontier for instance: setl_10_2000_r4.0_fc0.75,

with 1000 generations was used with uniform crossover and mutation as the final settings 

for the SEAM02 algorithm. The final Pareto frontier for each data instance was obtained 

by aggregating the fronts of 10 independent runs for the MO algorithm (see Figures 9.3, 

9.4).

9.6 Discussion of the results

This section considers the analysis of the solution set produced by SEAM02 for an 

environmentally friendly network design. To compare the quality of solutions located an 

the edges produced by the MOO technique, we attempted to solve each of the instances 

as two separate single objective problem (min cost and min impact) using CPLEX® to 

acquire the best known solution for each of the individual objective functions. 

Unfortunately, due to the large size of the data instances, it was impossible to determine 

the best solution using CPLEX®  for all instances. In the optimization by cost, all 

instances with 2,(XX) customers were solved which took between 10 and 30 hours to 

solve each set; and only one instance with 4,000 customers was solved. Some of 

instances with 4,000 customers were taking more than 2 days. This means that it was
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Figure 9.4: Approxim ate Pareto frontier for instance: setl_10_6000_r4.0_fcl.25,

unreasonable to try and solve all the data sets by cost using CPLEX ® . The complexity 

of the cost function, which consists of transport and depot costs and fixed costs for 

operating depots, makes the cost problem much more complicated than the C 0 2 

emission problem, for which C PL E X ® , solved all the instances within a reasonable 

amount of time. For example, one of data set with 10,000 customers took only around 2 

hours to solve for C 0 2 emissions. Thus, all instances were solved for C 0 2 emissions, 

but only one set with 4,000 customers and all instances with 2,000 customers or less 

were solved by CPLEX® for cost.

Figure 9.3 illustrates the approximate Pareto frontier obtained by SEAM02 for instance 

setl_10_2000_r4.0Jc0.75. The technique found very good solutions for both edge 

points of the front. The solution which was found by CPLEX® for the optimization by 

cost alone, is identical to the solution found by SEAM02, and the solution found in the 

CPLEX® optimization by C 0 2 is very close to the other extreme solution on the edge 

of the Pareto front. The trade-off solutions do not appear to be very evenly spread across 

the approximated Pareto set, which could be due to the problem configuration. It could
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Data SE A M 02 CPLEX®

instance N um  o f non-dom inated  

solutions Time(sec)

By Cost 

Time(sec)

By C 0 2 

Time(sec)

set 1 _  10_2000_r4.0_fc0.75 9 1,640 94,535 26

set 1 _ 10_2000_r4.0_fc 1.25 9 1,676 107,544 24

set 1 _  10_2000_r8.0_fc0.75 5 200 58,606 65

set 1 _  10_2000_r8.0_fc 1.25 5 166 33,451 77

set 1 _  10_4000_r4.0_fc0.75 6 5,326 5,730 149

set 1 _  10_4000_r4.0_fc 1.25 6 5,118 n/a 157

set 1 _  10_4000_r8.0_fc0.75 4 232 n/a 962

set 1 _  10_4000_r8.0_fc 1.25 4 250 n/a 1,066

set I _  10_6000_r4.0_fc0.75 10 5,525 n/a 505

set 1 _  10_6000_r4.0_fc 1.25 10 5,309 n/a 533

set 1 _  10_6000_r8.0_fc0.75 6 444 n/a 1,674

set 1 _  10_6000_r8.0_fc 1.25 6 409 n/a 1,671

set 1 _  10_8000_r4.0_fc0.75 7 9,702 n/a 630

set 1 _  10_8000_r4.0_fc 1.25 7 9,840 n/a 564

set 1 _  10_8000_r8.0_fc0.75 4 819 n/a 3,640

set 1 _  10_8000_r8.0_fc 1.25 4 817 n/a 3,662

set 1 _  10 _ 10000_r4.0_fc0.75 10 9,957 n/a 1,831

set 1 _  10 _ 10000_r4.0_fc 1.25 10 9,641 n/a 3,277

set 1 _  10 _ 10000_r8.0_fc0.75 4 402 n/a 8,093

set 1 _  10_ 10000_r8.0_fc 1.25 4 440 n/a 8,063

Table 9.1: Comparison between SEAM 02 and CPLEX® optimization.

be that the two capacity constraints (for cases and numbers of stores) combine to reduce 

the number of solutions in the search space. A similar pattern can be observed for all the 

data sets. Figure 9.4 illustrates trade off solutions for problem 

setl_10_6000_r4.0Jcl.25. For some of the instances, as for example for problem 

setl_10_2000_r4.0_Jc0.75 in Figure 9.3 it is not so straight forward for the 

decision-maker to spot good compromise solutions which should be located in the 

middle of the approximate Pareto front. But at the same time the solutions nearest to the 

middle of the frontier could offer that choice to the decision maker.

Analysing the trade-off solutions for the current data sets which are based on the data
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from the industry, and what it means for the number of open depots across approximated 

Pareto front allowed us to confirm the findings which were made for UFLP. The low cost 

solution produces highest C O 2  emissions with smaller number of depots open, where as 

the best solution for environmental impact needs more depots to be open.

Table 9.1 shows execution times and the total number of non-dominated solutions in the 

approximate Pareto frontier for all instances using the SEAM02 multi-objective 

algorithm, and also execution times when instances were solved by a single objective 

function based on costs or emissions using the CPLEX® optimization software. As can 

be seen from the table, the MOO algorithm finds a set of non-dominated solutions much 

faster than C PL E X ® , which solves a particular problem to optimality based on 

single-objective function. These results show us that in terms of execution times, 

SEAM 02 (combined with LR for allocation of customers to stores) is computationally 

very fast, and can provide a good set of trade-off solutions to a decision maker.

To conclude, through our the analysis on our large data sets it was demonstrated that the 

MOO technique is able to find efficient trade-off solutions balancing cost and CO 2 

emissions for network design very quickly. For some data instances, it was easy to spot 

compromise solutions and in other cases it was not so straight forward. This is probably 

due to having two capacity constraints which make it harder for the technique to find 

feasible solutions to balance both objectives.

9.7 Summary

This chapter presents the a MO CFLP problem which balances two objectives: financial 

cost and C 0 2 emissions. The emissions from transportation and the energy consumption 

from running depots allowed us to model a sophisticated network based on real industrial 

data. We generated random data sets based on real-life data to use in experiments. In 

addition, an evolutionary multi-objective optimization algorithm is discussed in this 

chapter to solve MO CFLP, which uses a Lagrangian relaxation technique to find the best 

assignment of stores to open depots for any particular individual of the population. Thus 

the MOO algorithm determines which depots are open, and the LR takes care for the
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allocation of customers to depots. The results are compared to the single-objective 

optimization based on cost or environmental impact using CPLEX® optimization 

software whenever possible. The analysis of the findings confirmed the results from our 

earlier study on UFLP which are discussed in the previous chapter. It illustrates again 

that it could be more desirable to open more depots for more environmentally friendly 

network design.



Chapter 10

Conclusions

This chapter summarises our research findings in answer to the research questions posed 

in Chapter 1 and establishes some possible directions for future research in the area of 

environmentally friendly logistics design, focusing on the facility location-allocation and 

generalized assignment problems. The chapter aims to critically evaluate our 

contribution and explore the limitations of the presented research study. There are three 

sections in this chapter. Section 10.1 presents a summary of the research findings 

presented in this thesis. Section 10.2 summarises how research questions set out in this 

thesis have been addressed. Those questions were:

•  Is it possible to build multi-objective optimization decision tools for strategic 

modelling of large size traditional logistics networks where financial and 

environmental objectives are solved simultaneously?

•  Is the optimum design of a particular logistics network based on cost the same as 

the optimum design based on CO 2  emissions?

Finally, Section 10.3 presents suggestions for future research.

10.1 Research Summary

The main focus of current research has been to build a foundation for future research in 

the area of multi-objective optimization for the strategic and tactical design of traditional 

supply chains in times of increased environmental concerns. We do not envisage trying 

to force industry to change its day to day running operations in network design. Their
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primary focus will remain financial costs, as they have to stay in business. Instead we 

suggest that extending the use of multi-objective optimization techniques can offer 

industry a straightforward way to generate a range of the trade-off solutions, which will 

frequently offer a decision maker an opportunity to select an option that will 

considerably reduce emissions or pollution, yet will do so at a very modest financial cost. 

To achieve Government targets on reducing CO 2  emissions will mean that future 

legislations could force industry into higher savings for different pollutants including 

carbon dioxide emissions. The popularity of multi-objective optimization techniques is 

on the increase at present, and together with the research presented in this thesis should 

develop a foundation for incorporating those techniques into commercial software for 

strategic and tactical modelling of logistics networks.

At the initial stages into our research, we aimed to understand the relationship between 

total logistics costs and C O 2  emissions from transportation and energy usage for a 

single-optimization approach. We created a simulation model based on a Pan-European 

network from automotive sector based on the case study by Hammant [124]. During 

modelling attention is paid to the sensitivity of our solutions when changes in supply 

chain structure (number of depots) and vehicle utilization ratios (90%, 75%, 60%) occur. 

The limitations of the study is that only one case study was analysed and also we had to 

rely on the data from the public domain with assumptions regarding transportation data. 

Nevertheless, the study allowed us to see that vehicle utilization ratio could be one of the 

factors that has an impact on the optimum supply chain structure, when optimized by 

cost or C 0 2 emissions. This research was published in the International Journal of 

Production Economics [56].

In our research, we focused on the development of a simple multi-objective optimization 

framework that could be easily understood to solve large size problem instances. In 

recent years there has been an explosion of academic interest into the development of 

MOO algorithms due to the advances into the computational power and clear need for 

the decision maker to have a choice among solutions. There exist a number of different 

approaches to MOO and in this thesis we explored an evolutionary approach to solving 

MOO problems where objectives are solved simultaneously. Evolutionary algorithms are
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becoming more complex which bring the challenge of replicating them to analyse their 

performance. In our research, we analysed two MOEA’s: NSGA-II (widely used 

algorithm in academia) and SEAM02 (due to it’s simplicity) from computational 

complexity and quality of solutions as part of MOO framework for solving CFLP. 

Because the focus of the research is on the large data sets, we need an algorithm which 

obtains a good quality approximate frontier quickly. Therefore, SEAM02 was chosen to 

solve CFLP formulation where the algorithm runs in the population of the decision 

variables to obtain a set of open facilities. The presented framework in Chapter 9 has two 

levels of decisions: identifying which facilities to open and how to assign stores to open 

depots where we used LR technique to solve the assignment problem. As a result of our 

experiments, we have developed and tested a prototype for multi-objective optimization 

algorithm for capacitated FLP which produces trade-off solutions between economic and 

C 0 2 emissions. The analysis of the findings on more realistic data confirmed the 

findings from the study on UFLP which indicated that more facilities may be needed to 

balance economic and environmental objectives.

The single source assignment problem was also investigated separately ffom CFLP 

formulation when we have engaged in collaborative research with an industrial partner 

from a major UK food supply chain from financial and environmental aspects. This 

allowed us to understand the impact of different variables such as fuel and depot 

associated costs on their current network configuration (allocation of stores to depots). 

Our sensitivity analysis shows the effect of those changes depends on the geographical 

location of the depots under investigation and that their current structure is robust 

because it has enough current capacity to deal with rate fluctuations. A prototype of the 

software was developed which uses a single objective function where overall 

transportation and depot associated costs are minimized which was extended further to 

focus on balancing financial and environmental impact from transport using a simple 

distance-based approach when greater distance indicates higher fuel usage and more 

C 0 2 emissions. Firstly, we compared the results from the optimization based on distance 

(C 0 2 emissions) to those obtained previously from optimisation by cost which generated 

different results with different allocations. Secondly, we produced a weighted sum 

two-objective allocation model to produce trade off solutions for costs and distances.



10.1 Research Summary 191

The trade-off solutions allowed us to illustrate to the decision maker how small increase 

in cost could equate to a considerable decrease in the distance travelled by the vehicles, 

thus reducing the environmental impact.

The collaborative research with industry helped us to develop the LR technique which is 

used in MOO framework for strategic design. The lagrangian heuristic was developed 

for two problem formulations to solve the single product capacitated assignment problem 

with two capacity constraints for the number of cases and number of stores. The 

approaches differ according to how the user treats the constraints. If one of the 

constraints such as the number o f stores is not as highly regarded as another, e.g. 

capacity constraint for demand, the approach relaxes only one constraint (the capacity 

for demand). This is could be computationally more efficient compared to relaxing both 

constraints. This approach was tested on our benchmark data and the results are 

compared to the optimization by CPLEX® in Chapter 7. The quality of solutions and 

executional times shows the effectiveness of our LR approach. The second formulation 

of the LR approach where both capacity constraints are relaxed is presented in Appendix 

A as a mathematical formulation and future work will be needed to analyse the 

technique. As an extension of the problem formulation, the LR approach was extended 

to the multiple product formulation with relaxing demand capacity constraints and was 

tested on the Sainsbury’s data with great emphasis on the discussion of different 

approaches to finding feasible solutions. We have generated large size data instances for 

a single product, single source assignment problem because there are no available 

problem instances in public domain. It allowed the comparison of the solution technique 

between CPLEX® optimization engine and our LR technique.

One of the challenges we encounted during the investigation into environmentally 

friendly design was a lack of multi-objective data instances with environmental data in 

literature. As a result, initially, we have undertaken an exploratory study to investigate 

the potential of multi-objective optimization techniques for a simple model of UFLP 

where we derive the environmental impact from economic costs by varying the relative 

weighting. A prototype was developed to consider traditional objectives, minimizing 

cost and improving customer service level (minimizing uncovered demand) and an
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environmental objective: minimizing the environmental impact from transportation and 

depots. Despite the limitations of the study, this research gave us an insight into 

generated trade-off solutions and also suggested that it could be more desirable to open 

more depots for an environmentally friendly design. This research was published in the 

IEEE Congress on Evolutionary Computation [55]. Limitations of the availability of the 

data sets were addressed when the exploratory study into MO UFLP was extended to a 

more sophisticated supply chain model (CFLP) with two capacity constraints. We have 

written the software to randomly generate test data based on the data from industry 

which considers networks with depot and transportation elements of the logistics 

modelling which aims to encourage future research in multi-objective optimization in the 

academic environment.

10.2 Evaluation of Research Questions

In this section, we discuss each of the research questions presented at the beginning of 

this chapter and how they have been addressed through out the research presented in this 

thesis.

Research question 1 addresses the feasibility of building MOO decision tools for a large 

size traditional logistics network where financial and environmental objectives are solved 

simultaneously. In this thesis, we present an evolutionary MOO framework for solving 

large size CFLP where we aim to generate a good quality set of solutions for the decision 

maker within a reasonable amount of time. We consider C 0 2 emissions from transport 

and serving facilities as environmental objectives and one of the challenges we 

encountered is to identify an appropriate methodology for calculating carbon footprint 

and the way of estimating emissions from a particular design because there was no 

available appropriate data instances in the public domain. Guidelines for company 

reporting on greenhouse gas emissions from Deffa [32] were used as a way of calculating 

carbon dioxide emissions and collaborative work with industry allowed us to estimate 

energy consumption figures which are used in our data sets. The presented MOO 

framework could be extended to different model formulations as well as using different
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approaches to the solution representation which are discussed in the next Section 10.3.

Research question 2 considers if the network design based on costs and on C 0 2 

emissions is the same. This question was analysed for the assignment and capacitated 

facility location allocation problems separately. In both cases, the answer to this question 

is "no" - the design based on cost is different to the network design based on C 0 2 

emissions. For the assignment problem, Chapter 6  considers a case study from industry 

where the analysis shows that single objective optimization based either on cost or 

distance (C ()2 emissions related to the distance traveled) produces different results with 

different customer allocations, costs and distances. In the strategic design, where CFLP 

model formulation was considered as part of the multi-objective optimization, we 

demonstrated in Chapter 9 that the low cost solution needs less depots to be open and 

produces highest C 0 2 emissions where as the best solution for carbon dioxide emissions 

needs more depots to be open at a higher cost.

10.3 Future Work

This section presents future work suggestions, to extend the research presented in the 

thesis:

10.3.1 Extension of Lagrangian Relaxation technique

The Appendix A presents a mathematical formulation of the LR technique where two 

capacity constraints (number of cases and number of stores) are relaxed. The technique 

needs to be investigated further and tested on large size data instances for single and 

multiple products to ensure that the formulation is correct and finds feasible solutions. 

Extending the formulation to multiple products would reflect real-life scenarios where 

the businesses have demand for multiple products. In Chapter 7 we tested multiple 

product formulation on Sainsbury’s data, but further work is needed to analyse the 

technique on appropriate benchmark data sets for multiple products to encourage further 

research.
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103.2 Modelling location and assignment decisions simultaneously 

in MOO framework.

In this thesis, we consider the assignment of stores to depots based on cost only as a 

subroutine of the facility location problem where objectives are solved simultaneously.

In Chapter 6  we show that optimization of the allocation problem based on costs produce 

different solutions compared to optimization based on the environmental impact and 

have higher distance travelled for cost based optimization and vice verse. This means 

that if we use cost based assignment optimization in FLP formulation, then our solutions 

in the multi-objective framework are skewed towards the financial objective while both 

objectives are solved simultaneously. To avoid this bias towards one objective, the 

location and allocation decision parts could be combined together in one solution 

encoding and multiple objectives solved simultaneously. One way of dealing with it is to 

represent the solution encoding as a two-part string where the first part would present 

which depots are open and the second part will display assignment of each store to a 

depot. For example if we have three depots and five stores, then in the integer 

representation, 01123323, first three numbers illustrate that depots 2 and 3 are open and 

other five numbers represent allocation where the first store is assigned to depot 2 , 

second store to depot 3 etc. Due to the challenge of modeling large data sets, this would 

bring an issue of the computational complexity, especially when we have a population of 

long solution encodings over a number of iterations where the length of our string could 

be a size of 10,000 bits long. Also, when applying crossover and mutation operators, a 

repair mechanism would be implemented to avoid stores being assigned to closed 

facilities. Another way of avoiding bias towards one objective is to solve the allocation 

routine as a weight based approach for multiple objectives but in this case, suitable 

weights will have to be considered as part of the decision making process. Both 

approaches would need to be investigated further as part of the future work from 

computational time and the quality of the solutions perspectives.
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10.3.3 Multi-objective network design under uncertainty

We consider deterministic models in this thesis where the average data is used as part of 

the model formulation. Those models do not include any stochastic elements which 

reflect different factors of uncertainty in the supply chain. Different sources of 

uncertainty, such as delivery operations, demand uncertainty, or customer’s behavior 

could be analysed by undertaking the sensitivity analysis of the design of those 

stochastic elements and will allow to deal with uncertainty to an extend as we did in 

Chapter 5. Another way of dealing with the design under uncertainty is to incorporated 

those factors into the strategic design, therefore appropriate solution techniques need to 

be developed for multi-objective optimization framework to ensure the robustness of the 

solutions at the strategic level.

103.4 Improving MOO for supply chain design

The analysis of the allocation of the customers to depots based on the financial cost or 

environmental impact for MO CFLP will need to be investigated in terms of the impact 

on the trade-off solutions. Another extension would be to improve the prototype for our 

multi-objective optimization algorithms incorporating other traditional and green 

objective functions such as capacity utilization ratio and traffic access. We would also 

plan to explore the opportunities for integrating our MOO approach with commercially 

available software for strategic modelling like CAST.

10.3.5 Extension of MOO to other supply chain problems

Different types of logistics network design problems are discussed in Chapter 2 which 

extend our current static single echelon network design. The approach taken would 

depend on which of the alternative facility location models was selected. Models with 

multi-echelon structures consider suppliers and manufacturers as part of the design. 

Dynamic location models, in contrast to static models, reflect modelling data changing 

over different planning periods. On the other hand, probabilistic models have elements
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of uncertainty based on forecasting. Location routing problems, which reflect the 

position of the facilities depending on the routing choices, would also make an 

interesting field for future research.

10.3.6 Extension of MOO to closed loop supply chains

Current research focuses on the traditional supply chain where the physical flow of the 

goods in the supply chain stops at the consumers end. Extending the traditional network 

to semi-closed loops will also allow us to incorporate recycling facilities as part of the 

MOO network design. This will need different objective functions which will consider 

recycling and re-manufacturing objectives. In this model the locations of the recycling 

facilities as well as serving facilities could be considered as part of the design.

To conclude, the research presented in this thesis contributes to the area on MO facility 

location-allocation analysis where economic and environmental objectives are 

considered simultaneously. The ideas and techniques presented here could be extended 

further and integrated within logistics modelling to give a decision-maker a scientific 

choice which is expressed as a set of trade-off solutions. It also shows a knowledge 

transfer and positive collaboration between industry and academia.
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Appendix A: Solution formulation for 

relaxing two constraints: number of 

cases and number of stores

This appendix presents a new LR solution technique where two capacity constraints 

(number of cases and number of stores) are relaxed as part of the formulation to 

determine a lower bound solution using Lagrangian multipliers. Let A* G R, Vz € VDc

and ipi € R, Vi E Vdc- 

Minimize

^   ̂ ^  ^ CijXij “I" ^   ̂ d j Xi j  — qi) +  ^   ̂ ^ ( > :  — 'U’i) (10*1)
ievbc j€Vc ievuc jevc ievDC jeVc

subject to

Xu =  1 ,Vj €  Vfc (10.2)
iEVjpc

*y e { 0 , i } , f €  V o c j e V c  (10.3)

In (10.1) the term in brackets in the middle, (Y2jevc djxij ~  ft)» ca ĉu â ês difference

between the total demand on a facility i and capacity(cases), qt. The term in brackets in 

the right, (J2j€vc xa ~  n 0 » calculates the difference between the number of stores 

allocated to a facility i imposed by the relaxed formulation, and its ability to meet that 

demand (i.e., its capacity(number of stores), nt). If the capacity is violated, the value of 

total cost in ( 1 0 . 1) will change, depending on the value of A, and Vv
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One issue that needs to be considered in the formula (10.1), is that normally a 

Lagrangian Relaxation technique will make adjustments to the cost only when both 

constraints are violated. Formula (10.1) will make adjustments to the costs when one of 

the constraints is violated, therefore if the capacity has not been exceeded then the term 

(/CjeVc djxij ~ Qi) be equal to zero for any facility. The same will apply for the 

other term (J2jevc Xii ~  n*) as we^- On the other hand, when the facility is 

underutilized, then this formulation will also produce non-zero value. To ensure that this 

is not the case, we constraint the A* and y>* values: if \  =  0 , it follows that 

E i € V D C  xi(J2jevc d3xH ~  Qi) also equals zero; if y>< -  0, it then 

Y lie v DC H H j e V c  x iJ ~  n i ) i s  a l s o  e <lu a ls  to  z e r o -

Problem (10.1) - (10.3) can be decomposed into \ Vc\ subproblems. For a given set of 

multipliers, AI 6  R, ^  e  R, the optimal lower bound of the problem (10.1) - (10.3), 

LB(Xift), can be found by solving the following subproblem for each customer j  e  Vc- 

Minimize

( 1 0 .4 ) is easily solved for by applying a greedy algorithm to allocate each customer along 

the lowest cost according to the augmented costs, +  d j X i +  ifti. By suitably modifying 

the Lagrangian multipliers, it is possible to obtain a feasible solution to the original

(10.4)
i&Voc

subject to

(10.5)
i&Voc

Xij G {0, l} , i  G V o c ij € Vc (10.6)

and then by setting

LB{XiIj) =  ] T  LB j (X^) -  Xi*  “  Y1 ^iTli (10.7)
j e V c  i e V o c  ieV DC
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capacity constrained problem. To provide a good updating formula for the Lagrangian 

multipliers, we will need an upper bound, in addition to the lower bound in ( 1 0 .7 ).

The UB will represent a feasible solution obtained on the basis of the evaluation of the 

LB(Xtp) solution. To obtain the best possible upper bound (i.e., with the lowest cost), we 

could allocate customers with high demand first to ensure that individual depots have 

sufficient unused capacity. This could be done by sorting customers in decreasing order 

of demand (highest demand first), then assign customers in the same way as the LB, 

whenever possible. When capacity constraints are violated for LB  assignment, we could 

assign the customer to the next lowest augmented cost depot without violating the 

capacity constraints etc. If all facilities are overcapacity, then we assign to the lowest 

available cost value (non-augmented cost).

Updating the Lagrangian m ultipliers

For each facility at time step, k

where xk is the solution of the Lagrangian relaxation (10.1) - (10.3) using \ k G R andi]
ip* G K, G VDC as the Lagrangian multipliers. Now set

(10.8)
j^Vc

(10.9)
j’eVc

\ k +  fiksk i f  s!f > 0 (10.10)
0 otherwise

v

+  7kri i f  ri >  0  

0  otherwise
( 10.11)

where j3k and ŷk are suitable scalar coefficients.
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The procedure will start by seeding all the Lagrangian multipliers to zero. Formula

( 1 0 . 1 0 ) shows that if for a certain facility i, sk is positive, it means that demand outstrips 

supply for that facility, and thus the corresponding value of A* should be increased to 

increase the cost of assigning customers to that facility in the next round. Similarly, if s* 

is negative, it means that there is spare capacity, so Ai should be reduced to make that 

facility more attractive for assignment in the next iteration. However, the adjustments to 

the multipliers when the capacity has not been violated for a facility do not need to be 

done and formula (10.10) ensures that the Xk are always positive. Formula (10.11) could 

be explained in the same way as above.

We will use the following proportionality coefficients fik and 7 fc in equations 10.12 and 

10.13, where a  is a constant in the interval (0,2]. Here, a  could used used starting with 2 

and halved whenever the iteration’s lower bound failed to improve on the best known 

lower bound for every n iterations.

,fc _  a(U B  -  L B (Afc)) 

S ie v ^ c (s?)2
(10.12)
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