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Abstract

Being one of the most versatile, durable and cost-effective building materials in use 
today, concrete is the most widely used construction material in the world. In the 
production of concrete, cement manufacture accounts for the highest cost and is the most 
energy intensive process from all its constituents.

This research has focused on the requirement to reduce the use of cement within 
concrete by the use of a partial cement replacement material. An established cement 
replacement, Ground Granulated Blast Furnace Slag, exists but with changes in steel 
manufacture this material could soon be short in supply. Industry as a whole produces 
materials which are routinely sent to landfill as waste, through analysis of these materials, 
and logging of their properties, a select few may be regarded as possible cement 
replacement materials. Knowing the required properties of any replacement allows this 
analysis to be complete within hours and a decision made prior to performing the mixing 
and testing of concretes containing the replacement.

A fly ash has been subjected to an electrostatic precipitation process (STi) and then to 
an air swept classification process. The fly ash has been examined in its raw, processed 
and classified conditions and compared through chemical and physical analysis and 
through its performance when used in concrete. From this some basic requirements of a 
cement replacement material were documented. The ash was also inter-ground with 
clinker using a ball mill to produce a blended CEM II cement to test against the post 
blend material.

It was found that applying the STi process to the fly ash produced results comparable 
to those of the GGBS controls at 33% which were bettered when the fly ash was subject 
to a classification process. No further benefits were to be had from the inter-grinding of 
the fly ash when used in concrete. Further materials have been introduced to the study to 
test their properties against that of the fly ash and their performance as partial cement 
replacements.

A scoring matrix was produced which rated a materials properties by comparing them 
to the ideal properties of a processed fly ash. This is a novel approach which links the 
properties of a potential partial cement replacement and its compressive strength as 
concrete. A review of the physical and chemical properties of the materials used within 
this research is presented which provide guidelines against which future potential 
replacements may be compared and assessed.
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Chapter 1 -  Introduction

1. Introduction

1.1 Scope

1.2 Ordinary Portland cement

1.3 Concrete

1.4 Waste in concrete

1.5 Aims and objectives

1.1 Scope

With a plethora of legislation being introduced within the UK and the European 

Union, restricting the disposal of industrial waste, coupled with the increased costs 

associated with waste disposal, outlets are now being sought to re-use waste rather 

than landfill it. With the introduction of the EC Directive on the Landfill of Waste 

1999/31/EC [1999/31/EC,1999], stricter controls aimed at improving the standards of 

landfilling through setting specific requirements for the design, operation and 

aftercare of landfills, and for the types of waste that can be accepted in landfills have 

been introduced.

The past ten years have shown an increasing emphasis on sustainable 

development within industry throughout the UK. By the ratification of the Kyoto 

protocol, industrialised countries have targets set to lower overall emissions of 

greenhouse gases. In the UK a climate change levy has been introduced which taxes 

the use of energy in industry, commerce and the public sector, with offsetting cuts in 

employers National Insurance Contributions and additional support for energy 

efficient schemes and renewable sources of energy. The introduction of the EC 

Directive on the Landfill of Wastes 1999/31/EC requires the appropriate treatment of 

waste streams prior to landfill to reduce their hazard, volume and facilitate handling
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Chapter 1 -  Introduction

and/or enhance recovery (Davies, 2003). Industry is being encouraged to minimise its 

waste and is being penalised through landfill taxes for not doing so.

1.2 Ordinary Portland cement

In the production of concrete, cement manufacture accounts for the highest cost 

and is the most energy intensive process from all its constituents. The production of 

Ordinary Portland cement (OPC) is environmentally sensitive in two areas, first the 

mining of the materials and second its manufacture. To make 1 tonne of cement 

approximately 1.7 tonne of non-fuel raw materials are used. The bulk of this, around 

85%, is limestone or similar rocks which when blended with clay or shale and other 

minor constituents achieve the correct chemical balance to produce cement. The 

output of an individual quarry may not be substantial, as compared to the output from 

mining certain other minerals, however, the existence of thousands o f cement plants 

worldwide ensures the cumulative output of material is significant. Current world 

cement output requires almost 3 Gt/yr o f non-fuel raw materials; associated fuel 

consumption is roughly 200 Mt/yr in straight mass terms (i.e., not on a common fuel 

basis), or about 0.15 to 0.2t fuel/t clinker. The concrete and mortars (about 13 to 14 

Gt/yr) incorporating this cement require a total o f about 15 Gt/yr of raw materials, 

mostly aggregates (Van Oss 2002).

The production of OPC contributes significantly to CO2 emissions with a range of 

figures being quoted in the literature of between 0.74 tonnes CO2 / tonne cement to as 

high as 1.3 tonne (Harrison 2005). It is however, generally accepted that for every 

tonne of Portland cement produced, approximately one ton of CO2 is released into the 

atmosphere (Bouzoubaa et al., 1997). This equates to 5% of total global emissions 

originating from cement production (Hendricks et al., 2004).

Cement manufacture creates CO2 in two ways: by the conversion of calcium 

carbonate to calcium oxide inside the kilns, and by burning large quantities of fossil 

fuels to heat the kilns to the 1450°C necessary. Previous estimates for CO2 emissions 

from cement production have concentrated only on the former source. The UN's 

Intergovernmental Panel on Climate Change puts the industry's total contribution to

1-2



Chapter 1 -  Introduction

CO2 emissions at 2.4 per cent of global emissions; the Carbon Dioxide Information 

Analysis Centre at the Oak Ridge National Laboratory in Tennessee quotes 2.6 per 

cent (Pearce 1997).

As part o f the Kyoto agreement, European countries have agreed to an 8% 

reduction in Greenhouse Gas emissions, based on 1990 levels, by the year 2012. The 

cement manufacturing industry is one where quotas have been imposed by the 

European Union (EU) to cap hazardous emissions. Failure to meet the obligations of 

the agreement will result in heavy fines. However, improving on these limits can 

provide financial benefits through carbon trading (Defra, 2007). Already the industry 

has demonstrated its ability to improve its climate change performance. Between 2001 

and 2004 an improvement in energy consumption of 21.2% had been achieved and is 

well on its way to the 2010 target of 26.8% reduction (British Cement Association 

2005).

1.3 Concrete

From material extraction, processing, component assembly, transport and 

construction, to maintenance and disposal, construction products have an 

environmental impact over their entire life cycle. Some of the key sustainable issues 

within the industry at present are (BRE 2007):

o 10% of the UK CO2 emissions arise from the production and use of building 

materials.

o Each year the UK construction industry uses 6 tonnes of building materials per 

head o f population.

o Materials production and construction accounts for an estimated 122 million 

tonnes o f waste, or 30% of the total arising in the UK.

The* environmental impact of buildings and infrastructures is significantly large 

compared with other industries and concrete makes up a major part of this impact 

(Katz, 2006).
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Chapter 1 -  Introduction

Being one o f the most versatile, durable and cost-effective building materials in 

use today concrete is the most widely used construction material in the world, only 

fresh water is consumed in larger amounts and this is generally because it is wasted 

(Aitcen, 2000). Approximately 100 million tonnes of concrete is used annually in the 

UK with concrete sales amounting to £5 billion. Concrete has the obvious 

environmental impacts embodied in the quarrying of raw materials for aggregates; the 

energy used in its production and associated carbon dioxide (CO2) emissions. As with 

all products it will eventually reach the end of its useful life and require recycling too. 

Many are actively involved in activities to reduce the environmental impacts of the 

production o f concrete, including (Concrete centre, 2007):

o Reduction in the amount of polluting and 'greenhouse' gases emitted during 

the creation o f concrete 

o More efficient use of resources in concrete production, including re-used 

materials and byproducts from other industrial processes 

o Better re-use of waste and other secondary materials such as water, aggregate, 

fuel or other cementitious material 

o Lower reliance on quarrying material or sending construction and demolition 

waste to landfill by maximising the use o f recycled material where practical 

o Development of low-energy, long-lasting yet flexible buildings and structures; 

o Exploiting the thermal mass of concrete in a structure to reduce energy 

demand over the lifetime of a building 

o Environmental restoration after industrial activity has ceased.
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1.4 Waste in concrete

Traditionally the UK has been heavily reliant on landfill: of a total 23.6 million 

tonnes of (kerbside collected) municipal waste produced in 2009/10, 47% (about 11 

million tonnes) was land filled, 41% was recycled or composted and 11% was 

incinerated with energy recovery. Compared with 2008-09, where 27.3 million tonnes 

of municipal waste was collected by local authorities, 50.3% was sent to landfill; 

36.9% was recycled or composted and 12.2% was incinerated for energy recovery 

(Deffa 2011), it can be seen that municipal waste is slowly on the decrease (wwwl .1).

For every tonne o f household waste we produce, commercial, industrial and 

construction businesses produce another six tonnes. Nearly one tonne is produced by 

services (shops, banks and insurance companies); a further two tonnes by the 

industries which make the goods we buy; and three tonnes are produced by the 

construction industry (Environment agency 2007).

Announcing the review of the Governments waste policy at the Future Source 

conference, Environment Secretary Caroline Spelman said:

“There is an economic and environmental urgency to developing the right waste 

strategy. We have been slowly moving in the right direction with recycling rates. The 

direction of travel is right -  it’s the pace that’s the problem. We need to go faster and 

we need to go further.” She continued “Finding ways not just to use less energy, water 

and natural resources -  but by using the waste we do produce as the valuable raw 

material it actually is” (wwwl .2).

It would appear that the Government have realised that waste and industrial 

by-products should be regarded as potential assets and not merely discarded as a 

waste material. With suitable treatment a waste product may be improved and 

reclassified as a useable resource or valuable commodity. Now that businesses are 

being asked to take greater responsibility for the environmental impact of their
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products and operations, industry is looking into the options available for the safe 

disposal of their waste.

Concrete plays an important role in the beneficial use of these materials in 

construction. Although some of these materials may be beneficially incorporated in 

concrete, both as part of the cementitious binder phase or as aggregate, it is important 

to realise that not all waste materials are suitable for such use (Environmental 

Working Party 2003).

1.5 Aim and objectives

This thesis examines how waste material can be utilised as a cement replacement 

in the making o f concrete. It looks at materials already established and accepted in 

industry and what elements a new waste material would have to possess, both 

physical and chemical, in order for it to be a suitable cement replacement. This study 

aims to be an initial reference point in the selection of, or rejection of, a waste 

material for use as a cement replacement.

This research is being run in conjunction with an industrial partner, Minimix 

Concrete, with whom the Author has maintained a good relationship. The partnership 

has shared results and knowledge gained from the industry and results from this 

research work. The use o f waste materials within concrete was the link between both 

parties the outcome being to introduce a new material (materials) as a cement 

replacement into the standard concrete recipes used at the plant. Consideration for 

concrete quality, strength and durability, was paramount but ultimately providing an 

economic incentive to use the material was also required. The quality of the concretes 

produced is discussed within this thesis whilst the financial aspect was examined 

using the “Cost Analysis Model” which can be seen in Appendix 4. This model was 

created by the Author to examine the effect a change of material quantity and / or cost 

would have had on the sales figures at Minimix Concrete during the previous 12 

months.

The inter-grinding of the fly ash with clinker and the use of admixtures within the 

blended cement was carried out in collaboration with Lafarge cement works,
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Aberthaw. The Author worked within the technical department at the works carrying 

out much of the analysis and reporting back with results and recommendations to the 

Lafarge cement management team.
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2. Literature review

2.1 Introduction

2.2 Concrete and its constituents

2.3 Aggregates

2.4 Admixtures

2.5 Cement

2.6 Chemistry o f cement

2.7 Additives

2.8 Fly ash

2.9 Conclusion

2.1 Introduction

As presented in the introduction to this thesis, in today’s industry there is 

considerable pressure to re-use and recycle materials rather than send them to landfill. 

With an increased public awareness as to the environmental damage being caused by 

industry, political parties both locally and worldwide now place targets for CO2 

reduction and energy efficiency high on the political agenda.

The U.K. government is consulting on targets to reduce carbon emissions by 80 

per cent, following reactions by campaigners who warned that the 60 per cent target 

set out in the climate change bill was not ambitious enough to stem climate change 

(www2.1). The fact that the government is prepared to rethink its objectives in line 

with views brought about by campaigners indicates the importance of this policy. In 

view of these pressures on the concrete industry a review of waste and emissions is 

presented before consideration of issues related to concrete.

2-1



Chapter 2 -  Literature review

Waste in the UK

Waste is an ever growing problem and has been causing increasing problems since 

the industrial revolution and population explosion in the nineteenth century. This is 

due to the link between waste generation and economic growth, which is further 

exacerbated by population growth which further increases waste generation (Owen 

2007).

Landfilling is the most common form of waste disposal across Europe. However, 

differences in technical standards and operating practices between member states have 

led to numerous incidents of gross land and water pollution. In response, the 

European Commission has introduced a number of measures to regulate landfill 

disposal and to establish a common framework that promotes waste prevention, 

minimisation, re-use, recycling and recovery as alternatives to landfill disposal. The 

EC Landfill Directive introduces progressive measures to further prevent or reduce as 

far as possible the negative effects o f landfilling waste on the environment and on 

human health (www2 .1 .1 ).

In 2004 the UK produced about 335 million tonnes of waste. Figure 2.1 below, 

shows the estimated proportion produced by each sector annually. This includes 

nearly 1 0 0  million tonnes of minerals waste from mining and quarrying, which is not 

subject to control under the EU Waste Framework Directive, and 220 million tonnes 

of controlled wastes from households, commerce and industry (including construction 

and demolition wastes) (www2 .2 ).

Household waste includes household bin waste and also waste from civic amenity 

sites, other household collections and recycling sites. Although the classification of 

wastes contained within each sector is not specific it can be said that all wastes arising 

from sources other than households should be deemed as industrial or commercial 

waste as a charge is levied for their disposal. It can be seen from Figure 2.1 that 

household waste represents about 9 per cent of the total waste produced and therefore 

focus should be placed on industry in a bid to significantly reduce waste.
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<1%
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Mining and Quarrying

■  Sawagd sludge

■  Dredged materials 

Household
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|  Industrial

Construction and Demolition

12%

Total = 335 million tonnes

Figure 2.1 UK waste annual arisings by sector 2004 

(Source DEFRA www2.2)

The Environment Agency carried out a survey of some 4,500 industrial and 

commercial businesses in 2002/3. The information collected for each business 

included the type of waste, quantity of waste, the waste form, waste disposal or 

recovery method. Data collection was limited to controlled waste and relates to 

England only. The estimate of industrial waste includes power station ash, blast 

furnace and steel slag.

In 2002/3, Industrial and Commercial waste in England totalled 6 8  million tonnes. 

Of this about 38 million tonnes was attributable to industry and 30 million to 

commerce. The individual sector that produced the most waste was the retail sector, 

which generated nearly 13 million tonnes of waste. This was followed by food, drink 

and tobacco manufacturing, and the professional services and other businesses, both 

producing more than 7 million tonnes, and the coke, oil, gas, electricity and water 

industries at just over 6  million tonnes (www2.3).
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Table 2.1 shows the waste management routes employed by the various industrial 

and commercial sectors. The survey was designed to exclude wastes reprocessed on 

site and effluent which leaves the site via the sewer; effluent or other liquid or sludge 

waste removed by tanker for subsequent treatment or disposal would be included. In 

2002/3, for the first time, recycling and reuse had overtaken landfill as the most 

common method of waste management. Overall 44 per cent was sent to landfill and 

45 per cent recycled. Industrial companies are more inclined to recycle or re-use their 

waste (around 50 per cent) than are commercial companies (around 40 per cent) 

(www2.4).

It can be seen from this that whilst perhaps not so prevalent in the public 

conscience, recycling and re-use o f industrial wastes is already being undertaken to a 

much higher degree than that o f municipal waste. This is, in the large, forced by 

government policy through the introduction o f a landfill tax which penalises 

companies financially for landfilling waste materials. Landfill Tax is a tax on the 

disposal o f waste. It aims to encourage waste producers to produce less waste, recover 

more value from waste, for example through recycling or composting and to use more 

environmentally friendly methods of waste disposal. At present landfill tax stands at 

£48.00 per tonne; however, in a push to achieve future environmental targets this 

figure is set to increase by £8.00 each year rising to £80 per tonne in 2014 / 15 

(www2.5).
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Table 2.1
Waste management routes 
Source DEFRA (www2.4)
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Sector Description _l CH. OH y- h- y- 3 3 h-

Industrial
1 Food, drink and

tobacco 1,696 730 1,520 1,620 484 134 539 419 90 7,230
2 Manufacture of 

textiles, wearing 
apparel, leather, 
luggage, handbags
and footwear 496 66 69 339 24 23 159 35 24 1,234

3 Wood and wood
products 343 3 221 795 31 28 7 43 1 1,471

4 Manufacture of pulp, 
paper and paper
products 458 103 69 700 27 23 48 103 290 1,822

5 Publishing, printing
and recording 569 10 44 1,307 44 52 25 61 62 2,174

6 Production of coke, oil,
gas, electricity, water 2,897 39 43 3,011 38 14 71 41 28 6,182

7 Manufacture of 
chemicals and 
chemical products; 
cleaning products, 
man-made fibres etc; 
rubber and plastic
products 2,102 333 508 822 488 92 685 208 19 5,257

8 Other non-metatlic
mineral products 1,281 9 175 574 13 34 23 119 44 2,272

9 Manufacture of basic
metals 1,652 9 1,477 1,480 45 14 87 29 23 4,815

10 Manufacture of 
fabricated metal
products 381 10 54 868 47 31 68 61 5 1,525

11 Manufacture of 
machinery and
equipment 370 3 59 391 19 20 20 47 11 939

12 Manufacture of office 
machinery, computers, 
electrical, radio, 
television and 
communication 
equipment; medical 
and optical
instruments and clocks 218 18 186 23 17 26 25 5153 1

13 Manufacture of motor 
vehicles and other
transport equipment

405 59 846 24 32 38 55 11 1,4754
14 Furniture and other

manufacturing 327 2 41 240 16 20 5 23 0 675
Total ind. (000s)
tonnes 13,194 1,324 4,358 13,178 1,321 534 1,801 1,267 610 37,587
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Given the substantial costs involved with the transportation, and landfilling, of 

waste materials it would seem to make sense that alternatives should be sought. 

There are, however, a number of significant barriers to the sustained uptake o f 

materials recovered for recycling (www2 .6 ):

o Market demand. A lack of demand for products with increased recycled 

content means that companies have little incentive to manufacture such 

products.

o Feedstock substitution. Manufacturers are often reluctant to modify their 

production processes to use recovered materials in place of virgin materials, or 

to move from the tried and tested to the unknown.

o Price differentials. Recovered materials are not always price competitive with 

virgin raw materials, particularly when systems for collecting such materials 

are sub-optimal and the costs o f collection are high.

o Standards and specifications. The use of recovered materials is often 

constrained by the absence of recognised industry standards for such 

materials, affecting both the adoption of recovered materials as a feedstock 

and the marketing of products with recycled content.

For these reasons, efforts to develop markets are vital if recycling is to be 

substantially expanded. Market development is first and foremost a regional economic 

development issue, aimed at the creation o f new jobs and business opportunities at a 

regional/local level, using recovered materials as a raw material in the development of 

new products and processes.

The UK cement and concrete industry is continuing to contribute to UK Waste 

Strategy by consuming waste produced by other industries and recycling its own 

waste. Through a combination of market forces, government intervention and the 

industry’s own initiatives, the cement and concrete industries have steadily improved 

their environmental performance (The Concrete Centre 2007). There is considerable 

potential for use of specific wastes and by-products in each concrete component, 

including admixtures and mixing water. However, the major use, by volume, has been 

in cementitious binders or aggregates after the ‘beneficiation’, improving properties 

and reducing variability, of various inorganic waste streams (Environmental working 

party 2003).
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2.2 Concrete and its constituents

What is concrete?

Concrete is a composite mixture formed from Portland cement, water and 

aggregate. The aggregates form the bulk of the volume, typically 70 -  80%. Other 

materials, such as admixtures and partial cement replacement materials may also be 

added to the basic constituents (Illston 1994). Portland cement is a hydraulic binder 

with the term ‘hydraulic’ referring to the cement’s ability to set (stiffen and hold 

shape) and harden (develop full strength) in the presence of sufficient water. This 

makes concrete an extremely useful material in that it can be made to form or fill any 

shape that may be required. In terms of final product, concrete is arguably the most 

important construction material of the past century (Hendrick 2002).

Concrete is a two state process with each state having its own properties and 

requirements towards application needs and governing standards.

Fresh state

The first state is its ‘Fresh state’. Although fresh concrete is only of transient 

interest, as its properties are in continuous change, it should be understood that the 

strength of concrete of given mix proportions is very seriously affected by the degree 

o f its compaction. It is vital therefore, that the consistence of the mix be such that the 

concrete can be transported, placed, compacted and finished sufficiently easily and 

without segregation (Neville 1995).

Consistency is the term used in BS EN 206-1 (BS EN 206, 2005) and BS 8500 

(BS 8500, 2002) for what was known in BS 5328 as ‘workability’. Consistence is the 

measure which indicates the concrete’s ability to overcome internal friction and 

become self compacting. The consistence of concrete is the measure of three main 

qualities of plastic concrete:

2-7



Chapter 2 -  Literature review

o Compactability the ease with which the concrete can be compacted and

that air voids within the concrete are removed

o Mobility the ease with which concrete flows and can be

remoulded

o Cohesiveness the ability that the concrete has to maintain a

homogenous mass and not become segregated

While there are many ways of measuring consistence, BS EN 12350 ‘Testing 

fresh concrete’ has four standardised tests in its series. The Slump test (BS EN 12350- 

2), the Flow table test (BS EN 12350-5) the Vebe test (BS EN 12350-3) and the 

Compactability test (BS EN 12350-4).

These tests give a single measurement and are therefore commonly known as 

‘single-point’ tests. The most famous and oldest test is the Slump test. Because of its 

simplicity, this method is used extensively in site work all over the world. The 

apparatus was developed in the USA around 1910 and it is believed that it was first 

used by Chapman although in many countries the test apparatus is associated with 

Abrams (Bartos 2002).

Although work continues to find a more comprehensive measurement for the 

rheology of concrete (Li 2007), the simplicity o f the measurement and low cost are 

among the reasons why the slump test remains the most common method for quality 

control evaluations o f fresh concrete in the field (Saak 2004).

a) True slump b) Shear slump

Figure 2.2 Forms of slump as recognised by the European standards 

(Source BS EN 12350 - 2)
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Despite these benefits the Slump test is not without its drawbacks. The European 

standard only recognizes a true slump form as in Figure 2.2, the recording of values 

from shear or collapsed slump is not allowed. Also, the standard recognises that the 

test is sensitive to changes in consistency corresponding to slumps between 1 0  and 

200mm, and the test is not considered suitable beyond these extremes. As well as 

these drawbacks there are also differences in practice. The test is heavily operator 

dependent with differing styles affecting test results. Also, the European standards 

differ from the American standard as to the point from which the measurement is to 

be taken (Domone 2003).

Although slump provides a qualitative measure of workability, the relationship 

between slump and more quantitative Theological parameters is not fully understood. 

However, despite their inherent limitations, single-point workability tests continue to 

be used for the specification and quality control o f concrete (Saak 2004).

Hardened state

By far the most common test carried out on hardened concrete is the compressive 

strength test. The main reason for this is the fact that this kind of test is easy and 

relatively inexpensive to carry out. The European Standards covering the testing 

requirements use different geometries of specimens to determine the compressive 

concrete strength, fc (notation for the concrete cube strength). The geometries most 

used are cylinders with a slenderness (height / diameter ratio) equal to two and cubes 

(del Viso 2007).

Cylinders (0 1 50mm ><300 mm) are used in the United States, South Korea, 

France, Canada, Australia, whereas 150mm and 100mm cubes are the standard 

specimens used in the United Kingdom, Germany, and many other European 

countries. There are several countries (e.g. Norway), where tests are made on both 

cylinders and cubes (Yi 2006).
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Under favourable conditions the strength development of concrete increases for 

many months. This strength development is dependent on the temperature and 

humidity conditions during curing. Higher temperatures increase the rate of chemical 

reaction and thus the rate of strength development, and in order to achieve higher 

strengths at later ages loss of water from the concrete must be prevented. For test 

purposes the concrete test specimens are stored in water at a constant temperature 

until the date of testing as in BS EN 12390 -  2 (BS EN12390 2000). The compressive 

strength of concrete is determined on specimens tested at 28 days (BS EN 206 2000). 

During production there are inevitable variations in the characteristics of the materials 

used. The overall variation in the measured strength of concrete obtained during a 

project can be considered to be made up of three component sources which are (BRE 

1997):

o Variation in the quality o f the material used, 

o Variation in the mix proportions due to the batching process, 

o Variation due to sampling and testing.

From purely a mix design perspective Lydon 1982 suggests that the compressive 

strength of concrete is empirically a function of the following:

Water / cement ratio (w/c) - The influence of the water-cement ratio and cement 

content on the compressive strength is well documented. The compressive strength 

decreases with a higher water-cement ratio but is not influenced much by the cement 

content (Schulze 1999); therefore, the w/c ratio has a greater bearing on the 

compressive strength as with less water in the mix, the stronger and less porous the 

concrete. However, the rheology of low W/C ratio concretes is no longer dictated by 

the amount of water used to make them or by the shape of coarse aggregates, but 

rather by what is now called the compatibility between the cement and the admixtures 

used (Aitcin 2000). Erdogdu (2000) in his research into this compatibility concluded 

that the cement content providing the highest strength gain in concrete changes with 

the kind of cement used. This indicates that the effect of a superplasticising admixture 

depends on the composition of cement rather than the amount used.
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Compaction - In his study to determine the effect of compaction on concrete, 

Gonen (2007) found that the compaction pores seem to have a very important effect 

on carbonation and sorptivity. The maximum carbonation and sorptivity coefficient 

were observed on non-compacted specimens. The minimum carbonation and 

sorptivity coefficient were obtained on specimens compacted by vibration.

Cement type - It has been very well established that concretes prepared from fly 

ash and slag have significantly lower permeability which results in a highly durable 

concrete but the compressive strength development is slower than concrete prepared 

from normal Portland cement (Balendran et al. 1995). This is due to latent reaction 

between the silica within the fly ash and the calcium hydroxide, or lime, a by-product 

of the hydration of Portland cement, pozzolanic reaction. Little pozzolanic reaction 

occurs within the first 24 hours thus for a given cementitious content, with increasing 

fly ash content, lower early strengths are achieved (Lewis 2003).

Aggregate type -  Concrete may be considered as a kind of three-phase composite 

material with the three phases being hardened cement paste, aggregate and the 

interfacial zone between the hardened cement paste and aggregate. The strength is 

mainly determined by the properties o f the weakest phase o f a composite. In low- or 

middle-strength concrete, normal weight aggregate is the strongest phase. Failures 

always happen within the hardened cement paste and/or along the interfacial zone. 

Therefore, there is no need to pay attention to aggregate's strength (or elastic 

modulus) in the common mix design procedures regarding the strength of concrete 

(Wu et al. 2001). Dhir et al.1999, showed that the compressive strength of a particular 

concrete with 100% of the coarse aggregate and 50% fine aggregate as recycled 

aggregate was between 20% and 30% lower than that of the corresponding natural 

aggregate concrete.

Aggregate / cement ratio (a/c) -  Lydon (1982) states that for a given w/c ratio 

the higher the aggregate / cement ratio the higher the compressive strength tends to be 

for mixes of the same aggregate type.

Curing - The objective o f curing is to provide an appropriate environmental 

condition within a concrete structure (temperature and humidity) to ensure the
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progress of hydration reactions causing the filling and separation o f capillary voids by 

hydrated compounds (Bonavetti et al. 2000). Malhotra and Ramezanianpour (1995) 

stated that “ if  the potential of concrete with regards to strength and durability is to be 

fully realized, it is most essential that it be cured adequately. The curing becomes 

even more important if  the concrete contains supplementary cementing materials such 

as fly ash, or ground, granulated blast-furnace slag or silica fume, and is subjected to 

hot and dry environments immediately after casting” .

Durability

The new European standard EN 206 addresses the design and specification of 

concrete to meet specific durability requirements. Agreement has not yet been reached 

between all member countries on a single set of durability provisions that would 

apply. Each country has thus decided on its own prescriptive requirements for mix 

limitations (e.g. maximum water cement ratio, minimum cement content) for 

concretes to satisfy each exposure condition within a common classification (Marsh 

2000). Whilst considering the provision o f a durable concrete to cope with the most 

aggressive environments, the most important property is permeability. Most serious 

reactions, such as sulfate attack, alkali-aggregate reaction, corrosion o f reinforcement 

and freeze thaw problems, initially involve the ingress or movement of water 

containing aggressive solutions (Hooton 1993).

Grube and Lawrence (1984) conducted a number of studies showing that both the 

change in the concrete mix and the degree o f curing affect the permeability of 

concrete to both air and moisture. Research generally demonstrates that the effects of 

permeability on concrete falls into two broad areas, one related to external changes 

(e.g. curing and environmental conditions) and the other related to internal changes 

(e.g. mix proportions and type of materials). Both affect the capillary voids in the 

concrete and micro-structure (Tombs 2003). For this research the curing, 

environmental conditions and the mix proportions are all constants with the main 

focus being applied to the type o f materials used within the mix design.
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2.3 Aggregates

Aggregates not only make concrete economical by occupying more volume, but 

also give volume stability and an increase in the durability of the concrete. Their size, 

shape, grading and surface texture have a significant influence on the properties of 

concrete both in the fresh and hardened states (Jamkar 2004).

The UK has large resources of material suitable for use as aggregate. Historically, 

therefore, the UK has been self sufficient in the supply of primary or natural 

aggregates (crushed rock, sand and gravel). However, the distribution of these 

resources is uneven. In particular, there is an almost total absence of hard rock 

suitable for crushed rock aggregate in southern and eastern England, where demand is 

high (Highley 2005).

The usefulness o f mixing together stones, sand and some form o f binder or cement 

to form ‘concrete’ has been recognised since Stone Age times. The Romans 

developed a rather advanced appreciation of concrete technology; the stones and sand, 

or ‘aggregates’, were only included as bulking materials, but the writings of Vitruvius 

in De Architecture! demonstrate that the Romans recognised the influence of rock 

types and particle size distribution on the selection of aggregates for good quality 

concrete and mortars (Hewlett 2003).

The European standard EN 12620 ‘Aggregates for concrete’ (BS EN 12620 2002) 

differentiate between coarse and fine aggregates dependent on whether they are 

retained on a 4mm screen. Those aggregates retained are deemed ‘coarse’ whilst those 

which pass through are ‘fine’. Product sizes are now based on the respective lower (d) 

and upper (D) sieve sizes expressed as “d/D” Hence aggregates for concrete compared 

against the replaced standard BS 882 are shown as follows:

o 2 0 mm single size becomes 1 0 / 2 0  

o 10mm single size becomes 4/10 

o 20 to 5mm graded becomes 4/20 

o M (medium) sand becomes 0/4 or 0/2 (MP)
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In his study on pumice as a lightweight aggregate, Sari (2005) found that the 

gradation of aggregate has a positive effect on the concrete strength. He reported that 

the concrete strength increases with increasing fine-to coarse ratio, up to a maximum 

value. When this maximum is achieved an increase in fine material begins to have an 

adverse effect on the concrete strength.

Neville (1995) shows how the results of a sieve analysis can be better understood 

if represented graphically. Through the use of a chart it is possible to see whether the 

aggregate grading is coarse or fine. He states that the strength o f fully compacted 

concrete, with a given water / cement ratio, is independent o f the aggregate grading, 

with the grading being of importance in so far as it affects workability (To achieve the 

maximum compressive strength for a given water /  cement ratio requires full 

compaction and this can only be obtained with a sufficiently workable mix). Neville 

also recognises that the ideal grading curve must be a compromise between the 

physical requirements and economic aspects o f the concrete mix.

However, as the concrete fluidity increases, its stability decreases. This is due to 

the reduction in viscosity of the fresh concrete. To enhance its stability so that the 

paste can maintain the coarse aggregates in uniform suspension, higher powder 

content is required. The main target is to enhance the grain size distribution and 

particle packing, thus ensuring greater cohesiveness and resistance to segregation 

(Safawi, et al. 2004).

Good segregation resistance means that the distributions of aggregate particles in 

the concrete are relatively equivalent at all locations and at all levels. It also means 

that concrete should not segregate in vertical and horizontal directions (Buia et al.., 

2002).

The European product standards give two options for the selection o f sieves for 

grading and product description purposes. The UK has elected to use “basic set plus 

set 2 ” with the recommended sequence for coarse and fine aggregates as shown in 

Tables 2.2 (a) and (b).
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Table 2.2

Sieve sizes for the determination of aggregate grading to BS EN 12620

(b)

Fine aggregate 

2 .8 mm 

2 mm 

1 mm 

0.500mm 

0.250mm 

0.125mm 

0.063mm

Natural rock, sands and gravel are by far the commonest source of aggregates 

worldwide. Artificial and recycled materials account for only a tiny fraction o f the 

total aggregate produced. Sands and gravels are the products of erosion of pre­

existing rocks and are typically deposited in relatively thin layers at the foot of 

mountains, in river valleys or along shorelines. Crushed rock is obtained from rock 

quarries which imply that appropriate rock must occur at the Earth’s surface where a 

quarry can be developed (Poole, 2003).

In South Wales the Blue Lias limestone of Aberthaw was a source of hydraulic 

lime from early times, and was made famous when it was selected by John Smeaton 

for the construction o f the Eddystone Lighthouse. Blue Lias is a sequence of layers o f 

limestones and shales, laid down in Jurassic times, between 195 and 200 million years 

ago. In geology, it corresponds with the Hettangian stage of the Jurassic. It is the 

lowest of the three divisions of the Lower Jurassic period and, as such, is also given 

the name Lower Lias. It is a prevalent rock around Dorset, Somerset and South Wales 

(www2.7).
//
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(a)
Coarse aggregate 

80mm 

63mm 

40mm 

31.5mm 

2 0 mm 

16mm 

14mm 

1 0 mm 

8 mm 

6.3mm 

4mm
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Limestones belong to the group o f sedimentary rocks known as chemical 

sediments. They are formed in a marine environment from the precipitation of 

calcium carbonate, the calcium having been brought into the sea via the hydrological 

cycle. Fossil shells are often found in limestones, and show that biological activity is 

very important too. Carboniferous Limestone is a well-cemented rock of low porosity 

which occurs in thick beds. It is a very tough rock, and is commonly used as 

roadstone, but can also be used for cement making because it is often quite pure, and 

as a source of calcium carbonate for the chemical industry (www2 .8 ).

The aggregates employed in the UK reflect a rich geological record and cover a 

vast range o f different geological types of material. Typical problems encountered 

may include (Grantham 2003):

o The presence of impurities such as organic matter, sulfates, chlorides or 

sodium or potassium salts, 

o Some aggregates may have poor physical properties such as aggregate 

crushing value or flakiness. Further more, they may be shrinkable, 

expandable, porous or frost susceptible, 

o The presence of constituents which are susceptible to alkali reaction, 

o Poorly graded material.

The Aggregates Levy was introduced in April 2002 as a result of independent 

research, which verified the environmental costs associated with quarrying that are 

not already covered by regulation. These include noise, dust, visual intrusion, and loss 

o f amenity and damage to biodiversity and geo-diversity.

The aggregates levy

The Aggregates Levy Sustainability Fund (ALSF) was introduced initially as a 

two-year pilot scheme, to provide funds to tackle a wide range of problems in areas 

affected by the extraction o f aggregates. Following a three-year second round of the 

Fund, a further one year extension to the scheme was announced by the Chancellor of 

the Exchequer in the pre-Budget Statement on 6 th December 2006 (www2.9).
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The Levy is set at £1.60 per tonne of aggregates extracted and sold, and is broadly 

revenue neutral (the Levy rose to £1.95 per tonne from April 2008). Most o f the 

revenue generated has been used to fund a cut in employers National Insurance 

Contributions, but £35 million has been set aside annually to be used as a UK 

Sustainability Fund. In Wales, the Aggregates Levy Sustainability Fund has been 

devolved to the Welsh Assembly Government and under the Barnett Formula, has 

been allocated an annual budget of £1.7 million (www2.10).

It is due to this levy that in recent years the recycling o f concrete, to produce 

aggregates suitable for non-structural concrete applications, has emerged as a 

commercially viable and technically feasible operation. This situation has risen over 

two decades of intensive research, predominantly centred on laboratory crushed 

concrete. Recent advances in aggregate -  production technologies in the area of 

rubble screening and aggregate washing, and tighter regulation o f the recycling 

industry have contributed to significant improvements in aggregate quality (Sagoe- 

Crentsil, 2001).

Concrete demolition waste has been proved to be an excellent source of 

aggregates for new concrete production. There are many studies that prove that 

concrete made with this type of coarse aggregates can have mechanical properties 

similar to those of conventional concretes and even high-strength concrete is 

nowadays a possible goal for this environmentally sound practice (Evangelista, 2007).

2.4 Admixtures

Of the many innovations in concrete technology during the last century, the use of 

chemical admixtures, and in particular, that of water-reducing agents and air- 

entraining agents, would probably rank as the most relevant, appropriate and critical 

to the enhancement o f the quality of concrete. The combined use of chemical 

admixtures and mineral admixtures, such as supplementary cementitious materials, 

should then be able to bring out the unique properties of each o f these concrete 

components, and show that the synergic interaction between them can produce a
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much more durable and stronger concrete than when either of these materials is used 

alone with Portland cement (Swamy 1999).

The European standard controlling admixtures is BS EN 934-2 and defines 

admixtures as:

‘Materials added during the mixing process of concrete in a quantity not more 
than 5% by mass of the cement to modify the properties of the mix in the fresh and / or 
hardened state ’

Additive is a term often used synonymously with admixture; however, strictly 

speaking, additive refers to a substance which is added at the cement manufacturing 

stage, while admixture implies addition at the mixing stage (Neville 1987)

Admixtures are now widely accepted as materials that contribute to the production 

of durable and cost-effective concrete structures. The contributions include improving 

the handling properties of fresh concrete, making placing and compaction easier, 

reducing the permeability of hardened concrete and providing freeze/thaw resistance 

(BCA, 2000a).

The need for durable concrete with low water/cement ratios has made 

superplasticisers irreplaceable as it would not have been possible to achieve an 

acceptable fluidity (consistence) of the concrete. Today concrete is no more a three 

component system, but a multi component system with different chemical admixtures 

(i.e. superplasticisers, air entraining agent) and concrete mineral additions (i.e. fly ash, 

silica fume) (Griesser, 2005). High performance concrete with high strength, superior 

fluidity, and self compactability can only be realised because of chemical admixtures 

(Hanehara 1999).

The quantity of admixture added is usually based on the cement content and for 

most admixtures is in the range 0.2 to 2.0% by weight. In terms o f active chemical 

this equates to less than 0.15% on a typical concrete mix. Even at this low content
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they have a powerful effect, modifying the water requirement, setting time or other 

properties. Admixture use optimises a concrete mix, improving properties including 

strength and durability as well helping to reduce its environmental impact (www2 .1 1 ).

Types o f admixtures available

Almost all types of admixtures are covered by a European or National Standard 

that requires them to meet basic performance requirements, provide information on 

properties that can be used to check uniformity o f supply and to have a factory 

production control system that gives assured quality. The two main admixture 

Standards are BS EN 934 and BS 8443. Those conforming to BS EN 934 can be CE 

marked (Dransfield 2006).

BS EN 934 consists o f six parts with Part 2 being the most important to concrete.

Some of the most widely used admixture types covered by EN 934 are:

o Normal plasticizing/water reducing (WRA) EN 934-2

Often Lignosulphonate based, they are used to increase workability at constant 

water content and / or reduce water by up to 10%. This is used by most ready mix 

companies to optimise concrete performance for normal concrete.

o Super plasticizing/high range water reducing EN 934-2

Based on Sulphonated Naphthalene or Melamine Formaldehyde Condensates, 

Vinyl Polymers or Polycarboxylate Ethers. These admixtures give a much higher 

performance than the normal plasticizers. They are used to give very high levels of 

workability or water reductions from 12 to over 30%. They are used extensively on 

larger projects where congested reinforcing steel requires high workability concrete to 

penetrate between the reinforcement. They are also used in pre-cast and on site where 

the large water reduction provides very high early strength and improved durability.
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o Retarding and retarding plasticizing EN 934-2

These admixtures slow the rate of cement hydration, preventing the cement from 

setting before it can be placed and compacted. This type of admixture is mainly used 

in hot conditions and climates or on very large pours.

o Accelerating set and hardening types EN 934-2

These are used to speed up the rate of early hydration of the cement. They can 

accelerate the setting or the early strength development of concrete. These are used 

mainly in cold conditions or where very early use o f a concrete pavement is required 

to provide access.

o Air entraining EN 934-2

Based on special surfactants, these admixtures cause tiny air bubbles < 0.3mm in 

diameter to stabilise within the cement paste. This air helps to prevent the concrete 

from cracking and scaling as a result o f frost action. In low workability mixes, air 

helps lubricate the aggregate aiding compaction under vibration closing voids and 

reducing bleed water and segregation o f the aggregate before the concrete can set.

o Water resisting (water proofing) EN 934-2

These water repellent admixtures act on the capillary structure to block the pores 

and impede the flow of water through the natural capillaries in hardened concrete. 

These are generally used in structures below the water table or in water retaining 

structures.

o Retarded ready-to-use mortar admixtures EN 934-3

They increase the cohesion and retard the setting of mortar for masonry, allowing 

it to be delivered to a building site by ready mix in large volumes that can be used 

over an extended period, usually of 1 to 2 days. Setting is initiated when 

water/admixture is sucked out by the in-situ masonry unit
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o Sprayed concrete EN 934-5

These admixtures provide a very rapid set to concrete that is sprayed onto vertical 

and overhead applications, preventing it from falling off before it has time to set. This 

type is mainly used in tunnelling applications for early roof support. Dosage may 

exceed 5% (www2.12).

This research

This study has employed the use of a number of Plasticising/water reducing 

admixtures, some being designed specifically for this type o f application (i.e. with fly 

ash) and some general “offthe shelf’ admixtures.

These dispersing admixtures are usually based on refined lignosulphonate, a by­

product of the paper pulping industry. They are effective at dosages o f around 0.3 to

0.5% on cement weight but their water reducing effect is limited to about 12%. At 

higher dosage, secondary effects such as air entrainment and retardation may limit 

their use. Blending with superplasticisers may extend their dosage and performance to 

give a mid-range product.

The low dose and relatively low cost make these admixtures particularly suitable 

for a wide range of general applications. Used to reduce both water and cement 

content, they can optimise the mix design for both cost and environmental impact. 

Most will also slightly increase cohesion, reducing bleed and making placing and 

finishing easier (www2.13).
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2.5 Cement

The manufacture and use of hydraulic cements is ancient and is generally 

accredited to the Greeks and Romans; however, the use of lime as a binder dates back 

to the 6 th millennium B.C. whereby a terrazzo floor excavated in Canjenti in Eastern 

Turkey laid with a lime mortar has been dated between 12 000 and 5000 BC (Elsen J

2006).

In the mid eighteenth century whilst looking for a material with which to build the 

new Eddystone Lighthouse, John Smeaton made two important discoveries. First, the 

use of a new kind o f interlocking stone construction, and second, the development of 

a water-resistant (hydraulic) mortar to bind the blocks together by mixing blue lime 

and pozzolanic material from Civita Vecchia, near Rome. Indeed, Smeaton's seminal 

observation that the best hydraulic cements were those made from limestone 

containing certain proportions of clayey material is regarded as the starting point of 

the modem engineering use of cement and concrete (www2.14).

The term “Portland cement” was first applied by Joseph Aspdin in his British 

patent No. 5022 (1824), which describes a process for making artificial stone by 

mixing lime with clay in the form of a slurry and calcining (heating to drive off 

carbon dioxide and water) the dried lumps o f material in a shaft kiln. The calcined 

material (clinker) was ground to produce cement. The term “Portland” was used 

because of the similarity of the hardened product to that of Portland stone from Dorset 

and also because this stone had an excellent reputation for performance (Moir 2003).

There are three broad categories of cement products: Portland cement, Portland 

cement with the addition of pulverised fuel ash or blast furnace slag and special 

cements. All but certain special cements are manufactured using substantially the 

same process route. Portland cement, which is manufactured to British Standard 

BS 12:1991, is defined as an active hydraulic binder based on ground clinker formed 

from a predetermined homogeneous mixture of materials comprising lime (CaO), 

silica (SiC>2) and a small proportion o f alumina (AI2O3) and generally iron oxide 

(Fe20 3).
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The vast majority of cement used in construction work is described as being a 

Portland cement and it is this general type that this research is concentrated on. 

Portland cement is essentially a calcium silicate cement, which is produced by firing 

to partial fusion, at a temperature o f approximately 1500°C, a well homogenised and 

finely ground mixture of limestone or chalk (calcium carbonate) and an appropriate 

quantity of clay or shale (Moir 2003).

Cement process overview

The second half of the twentieth century saw significant advances made in cement 

manufacture, culminating in the development of the pre-calciner dry process kiln 

(Moir 2003). Figure 2.3 is an illustration o f the full cement manufacture process.

The raw materials are ground to a fineness which enables a satisfactory 

combination to be achieved under normal operating temperatures. The homogenised 

raw meal is introduced into the top of a pre-heater tower working its way down until it 

arrives at the Pre-calciner vessel. Here the meal is flash heated to approximately 

900°C using the hot exhaust gases from the kiln itself and , although the material is 

suspended for a few seconds only, approximately 90% of the limestone in the meal is 

de-carbonated before entering the kiln. This is the point whereby cement manufacture 

contributes greenhouse gases both directly through the production of carbon dioxide, 

when calcium carbonate is heated, producing lime and carbon dioxide (Hewlett 1998), 

and also indirectly through the use of energy, particularly if the energy is sourced 

from fossil fuels. As reported in Chapter 1, the cement industry produces 5% of global 

man-made CO2 emissions, o f which 50% is from the chemical process, and 40% from 

burning fuel (www2.14.1) with 1 0 % from ancillary operations.

In the rotary kiln the feed is heated to approximately 1500°C and as a result o f the 

tumbling action and the partial melting it is converted into the granular material 

known as clinker. A rotary kiln typically comprises a long cylinder of 50 to 150 

metres, inclined slightly from the horizontal (3% to 4% gradient) which is rotated at 

about 1 to 4 revolutions per minute. The solid material passes down the kiln as a
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result of rolling and slipping as the kiln rotates. The material flow is counter current to 

the combustion gases and fuel is fired at the lower (front) end of the kiln. Kilns are 

lined throughout with refractory bricks providing varying degrees of insulation to the 

steel shell. Brick compositions vary from around 25% to 30% alumina at the cooler 

back end, to 45% alumina in the calcining zone and rising to 70% alumina as the 

burning zone is approached. Dense magnesite or dolomite bricks are used in the 

burning zone. Heat transfer within the kiln system results from a complex interchange 

between the gas, inner kiln walls and feed surface (www2.15).

The material remains in the rotary kiln for approximately thirty minutes and exits 

as clinker at around 1200°C. The clinker immediately enters the cooler and the 

temperature is reduced to approximately 60°C before going to storage. A small 

portion, typically around 5%, of calcium sulfate in the form of gypsum is added to the 

clinker and the milling of the materials, using a ball mill, proceeds until the required 

fineness has been achieved.

Figure 2.3 The cement manufacturing process

(Source World Business Council for Sustainable Development)
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A typical pre-heater kiln processing diagram is illustrated in Figure 2.4 showing 

the broad variation in chemical composition and temperature with time and position 

within the kiln system (Environment Agency 1996). The heating of the raw materials 

follows certain stages, as follows:

o drying, with the removal of any moisture present;

o calcination at approximately 800-900°C, with the conversion of the 

limestone to free lime with the release of carbon dioxide; 

o Sintering at approximately 1450°C in a liquid state, where the free lime 

reacts with the other components to form calcium silicates, aluminates and 

aluminoferrite (the principal ingredients of Portland cement). This sintered 

product is known as cement clinker and this process stage is also referred 

to as ’burning' or 'clinkering'; and 

o Cooling where the temperature of the liquid is reduced from 1450 to 

1100°C to form stable crystals within the kiln followed by cooling to about 

250°C in a clinker cooler.
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Figure 2.4 Typical pre-heater kiln processing system 

(Source Moir 2003)
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2.6 Chemistry of Cement

The principal chemical constituents formed during cement manufacture are 

tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium 

aluminoferrite, often abbreviated to C3S, C2S, C3A and C4AF respectively. Of these, 

the first two are particularly important because they provide the cementing action -  

the higher the proportion of C3S relative to the C2S, the more quickly strength is 

gained after mixing (Moir 2003, Corish 1985). Table 2.3 shows the range of the 

principal materials that make up modem Portland cement.

Table 2.3

Ranges of principal minerals in European clinkers 

(Source Moir 2005)

Oxide Composition Cement

Notation

Common Name Concentration

(wt%)

Comment

3CaO • SiCh C3S alite 55-65 1

2CaO • Si0 2 C2S belite 15-25 2

3CaO • AI2O3 C3A aluminate 8-14 3

4CaO • AI2O3 • Fe20 3 C4AF brownmillerite 8 - 1 2 4

CaS04 • 2H20 CSH2 Gypsum 3-7 5

1. Clinker mineral; imparts early strength and set

2. Clinker mineral; imparts long -  term strength

3. Clinker mineral; contributes to early strength and set

4. Clinker mineral; acts as a flux. Imparts grey colour

5. Inter-ground with clinker to make Portland cement. Controls early set

When cement comes in contact with water a strong exothermic chemical reaction 

occurs for some minutes called the “initial period” of cement hydration. It is mainly a 

part of the clinker phase C3A, which is reacting with water and sulphate ions to form 

elongated ettringite needles. After the initial period, a relatively quiet period follows, 

the so called “dormant period” during which concrete is usually transported and 

placed (Griesser, 2005).
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The mineral C3 S (alite) hydrates quickly and so imparts early strength and set to 

the cement, whereas C2 S (belite) hydrates slowly and is the main contributor of long­

term strength. Both minerals hydrate to form tricalcium silicate hydrate gel 

(sometimes called tobermorite) plus lime; the exact reaction stoichiometries vary 

considerably in the number of waters of hydration incorporated, but a typical 

hydration reaction, shown for C3 S, would be:

2C3S + 6 H (water)

—► C3 S2 H3 (tobermorite gel) + 3CH (lime). (1)

The tobermorite (the formula shown is only representative o f a family of similar 

calcium silicate hydrates CSH) gel is the actual binder in the hydrated cement. The 

lime released in the hydration reaction is in small part taken up by hydration o f C3A 

and C4AF (reactions not shown), but most remain unreacted and thus available to 

activate any pozzolans added in the finished cement (molecular formula of Lime 

mixed with water is Ca(OH)2). Hydration of C3A is almost instantaneous and highly 

exothermic. The mineral thus speeds the development of early strength and set, 

sometimes to the point of causing flash set (which is undesirable); as noted earlier, 

gypsum is used to control this. The main function o f the aluminoferrite mineral 

(C4AF) is as a flux, that is, it acts to lower the temperature at which the clinker 

minerals form (i.e., clinkering temperature). This mineral also imparts the grey colour 

to Portland cement and for this reason its formation is avoided, through the use of 

only iron-free raw materials and higher clinkering temperatures, in the production of 

white (Portland) cement, which is a much higher priced product than grey 

(“ordinary”) Portland cement (Van Oss 2002).

Pozzolans

Pozzolanic materials can be natural in origin or artificial and are available widely. 

They have been used throughout the world to make good quality concrete. The natural 

pozzolanic materials most commonly met with are: volcanic ash which is the original 

pozzolan, pumicite, opaline shales and cherts, calcined diatomaceous earth, and burnt
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clays (Davraz et al.. 2005). Artificial pozzolanic materials are generally siliceous by­

products, such as fly ashes, condensed silica fume and metallurgical slags (blast 

furnace slag, steel slag and nonferrous slags) (Papadakis et al.. 2002).

According to ASTM C 595, a pozzolan is defined as:

‘ ‘a siliceous or siliceous and aluminous material, which in itself possesses little or 
no cementitious value but will, in finely divided form and in the presence of moisture, 
chemically react with calcium hydroxide to form compounds possessing cementitious 
properties (pozzolanic activity). ’ *

The CaO content of a pozzolanic material is generally insufficient to react with all 

the pozzolanic compounds it contains; however, it exhibits some pozzolanic activity 

(pozzolanic and cementitious materials). Thus, a pozzolanic material requires 

Ca(OH) 2  (calcium hydroxide) in order to form strength products, whereas a 

cementitious material itself contains quantities of CaO and can exhibit a self- 

cementitious (hydraulic) activity. Therefore, pozzolanic materials are often used in 

combination with Portland cement, which contain essential compounds for their 

activation, Ca(OH) 2  from cement hydration (Papadakis et al.. 2002). Lewis enhances 

this statement adding that the silica in pozzolana has to be amorphous or glassy to be 

reactive and must be finely divided in order to expose a large surface area to the alkali 

solutions for the reaction to proceed (Lewis et al.. 2003).

It has been shown that Portland cement is both resource and energy intensive. 

Every tonne (t) of cement requires about 1.5t of raw material and about 4000 to 7500 

Megajoul (MJ) of energy for production. The energy to produce a tonne of cement is 

estimated to account for 40-45 percent o f the plant production cost. Much more 

importantly, every tonne of cement releases 1 . 0  to 1 .2 t of CO2 into the environment 

by the time the material is put in place. In the world we live in, the use of resources 

and energy, and the degree of atmospheric pollution that it inflicts are most important 

(Swamy 2003).

Large volumes of by-product materials generated from industrial and post­

consumer sources are landfilled. The amount of waste generation is increasing, while

2-28



Chapter 2 -  Literature review

landfill space is decreasing. Additionally, due to stricter environment regulations, it is 

difficult to obtain approval for developing new disposal facilities. The cost of disposal 

is escalating. Recycling not only saves on huge disposal costs, but also conserves 

natural resources, and in some cases it provides technical and economic benefits. 

Various uses o f by-products generated from industrial and post-consumer sources 

exist (Naik et al.. 1999). It may be that some of this industrial waste can be used as a 

pozzolanic cement replacement in concrete. Identification o f the important elements 

and physical properties o f these wastes could be extremely cost effective for industry 

and beneficial to the environment if their use in concrete was established.

2.7 Additives

The construction industry accounts for over 90% of mineral consumption in the 

UK and, of this; one-third is used in road construction. Other uses include buildings, 

railways and manufacturing of cement, lime, plaster and a variety of other products 

such as glass and ceramics. (www2.16).

Quarry products including stone, crushed rock, aggregate and sand make up 

between 51% and 62% of the resource flow of the construction industry, Figure 2.5. 

This amounts to some 240Mt of material. According to the Quarry Products 

Association, 18% of the UK’s aggregate demand is met from recycled sources. The 

Minerals Planning Guidance (MPG 6 ) set a target of 55Mt for use o f recycled and 

secondary material by 2006 (www2.16). This equates to ~23% or an additional 12Mt 

compared with current practice. In the House Building Quick Wins guide, WRAP 

estimate that an additional 20Mt of recycled and secondary material could be used in 

place of virgin material if  best practice is adopted (Lazarus 2005).
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Figure 2.5 Resource use within the construction industry 

(Source DTI)

The need to reduce the environmental impact of cementitious materials is, and 

will continue to be, a major driver for innovation. The use of supplementary materials 

is now so well established that the average clinker content of cements in Europe is 

less than 80%. The most commonly used Supplementary Cementitious Materials 

(SCMs), blast furnace slag, fly ash, limestone, and silica fume, are industrial by­

products that, by and large, can be obtained in large and regular amounts, with a 

consistent composition. Many other materials containing reactive silica, reactive 

alumina or both can be used to similar effect. But these products are more variable or 

available in relatively small quantities (Scrivener et al. 2008).

Wastes and secondary materials are being increasingly used in the production of 

cements. They may be added as raw meal substitutes, fuels or as mineral additives 

(Johnson 2006). Although in many respects more benign than most mining and 

mineral processing activities, cement manufacture is nevertheless associated with 

important environmental issues, most notably the problem of greenhouse gas 

generation. With its huge appetite and yet flexible requirements for fuel and non-fuel 

raw materials however, cement manufacture also offers significant opportunities to
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play an environmentally beneficial role through the efficient consumption of the 

waste products o f other industries (Van Oss et al.. 2 0 0 2 ).

The advances of concrete technology show that the use of mineral admixtures 

such as silica fume (SF) and fly ash (FA) is necessary and essential for producing 

high performance concrete (Poona et al.. 2001).

The main focus of the work reported in this thesis is Fly Ash obtained from the 

process of electric generation from coal burning. There are; however, many other 

forms o f additive which can be used as a replacement for cement. What follows is an 

overview o f the cement replacements recognised by the British and European 

standards (BS EN 206 2000) followed by a more in-depth look at Fly Ash.

Ground Granulated Blast furnace Slag (GGBS)

Blast furnace slag has been widely used as a successful replacement material for 

Portland cement, improving some properties and bringing environmental and 

economic benefits. The production of pig iron has increased progressively in recent 

years. Considering that approximately 300kg of slag are generated per ton of iron 

(Escalantea et al.. 2001), it is estimated that about Some 2.2 million tonnes of GGBS 

are produced each year in the UK at five locations (ww2.16.1).

o Teesport, Cleveland 

o Scunthorpe, North Lincolnshire 

o Purfleet, Essex

o Llanwem, nr. Newport, South Wales 

o Port Talbot, South Wales
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Chemical reactions

As the chemical composition of steel slag is highly variable, the mineral 

composition of steel slag also varies. Olivine, Merwinite, C3S, C2S, C4AF, C2F, RO 

phase (CaOFeO-MnO- MgO solid solution) and ffee-CaO are common minerals in 

steel slag. Its chemical composition consists o f CaO 45-60%, Si0 2  10-15%, AI2O3 1- 

5%, Fe20 3 3-9%, FeO 7-20%, MgO 3-13%, and P2Os 1-4% (Shi et al.. 2000). The 

presence of C3 S, C2 S, C4AF and C2F endorses steel slag hydraulic properties. 

However, the C3 S content in steel slag is much lower than that in Portland cement. 

Thus, steel slag can be regarded as a low strength hydraulic material (Kourounis et al..

2007).

In the presence of water GGBS will react very slowly, making slag on its own of 

little practical use. Essentially the hydraulicity of the slag is locked within its glassy 

structure (i.e. it possesses latent hydraulicity) and in order to release this reactivity 

some form of ‘activation’ is required. The activators, which are commonly sulphates 

and/or alkalis, react chemically with the GGBS, increasing the pH of the system. This 

increase ‘disturbs’ the glassy structure resulting in activation o f the GGBS with the 

water producing its own cementitious gels. In practice, activation is achieved by the 

blending of GGBS with Portland cement as the latter contains both alkalis and 

sulphates (Lewis et al.. 2003).

As good as GGBS has proved to be since its incorporation into the concrete 

industry, environmental factors which welcome its use will also bring its demise. 

Although the efficiency of blast furnaces is constantly evolving, the chemical process 

inside the blast furnace remains the same. According to the American Iron and Steel 

Institute; "Blast furnaces will survive into the next millennium because the larger, 

efficient furnaces can produce hot metal at costs competitive with other iron making 

technologies" (www2.17). However, one of the biggest drawbacks of blast furnaces is 

the inevitable carbon dioxide production as iron is reduced from iron oxides by 

carbon and there is no economical substitute - steelmaking is one of the unavoidable 

industrial contributors of the CO2 emissions in the world (www2.18).
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The Electric Arc Furnace (EAF) is now recognised as the primary method of steel 

manufacture from scrap metal materials. The environmental benefits attached to the 

EAF such as the use of scrap steel as feedstock instead o f raw iron, low carbon 

emissions and flexibility with production, adjusting output according to local demand, 

is aiding in the reduced use of the blast furnace .The precise control of chemistry and 

temperature encourage the use of electric arc furnaces producing many grades of 

steel, from concrete reinforcing bars and common merchant-quality standard 

channels, bars, and flats to special bar quality grades used for the automotive and oil 

industry.

The main drawback with the EAF is that the process does not produce slag as a 

result of steel manufacture; therefore, GGBS reserves will begin to decline as blast 

furnace output reduces (Burridge 2008).

Silica Fume

Silica fume, or Micro-silica as it is also known, is a by-product o f the manufacture 

of silicon and ferrosilicon alloys from high purity quartz and coal in a submerged-arc 

electric furnace (Neville 1995). Its fineness and high SiC>2 content make this a very 

efficient pozzolan and, like other pozzolanic materials, it is generally more efficient in 

concretes having a high water-cement ratio. The expected reduction in compressive 

strength associated with a high water / cement ratio can be counteracted through the 

use of super plasticizers which maintain the required slump and show an increased 

compressive strength at three days and after (Malhotra et al. 1982).

A number o f problems are associated with the use of silica fume. First, due to its 

fineness and high silica content, fears are expressed over its use in the powdered form. 

Although studies have shown there to be no risk to health, silica fume is supplied 

‘pelletised’ for inter-grinding with cement or as‘slurry’ mixed with its own weight of 

water and applied directly into the concrete mix (Lewis 1996). Second, silica fume is 

a very expensive product (Neville 1995).
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Suppliers have recognised the value o f silica fume and consequently the price has 

escalated significantly. In the early 1980’s silica fume was regarded as a waste 

product but as its use has increased so has the price varying from half to twice the cost 

of normal Portland cement. Further increases in the price may limit the use of fume to 

specialised applications (Malhotra et al. 1982).

The addition o f silica fume to concrete is effective for increasing the compressive 

strength, decreasing the drying shrinkage, increasing the abrasion resistance, 

increasing the bond strength with the reinforcing steel, and decreasing the 

permeability. As a result, silica fume concrete is increasingly used in civil structures 

(Li et al. 1998). Future design demands with an increasing need for durability and 

performance o f structures will ensure its use escalates into the future (Lewis 2000).

Limestone

The reduced cost of limestone cement is mainly due to energy saving by 

substitution of a portion of the calcined clinker by a small amount of limestone. In 

many cases, this has also been facilitated by the presence of limestone deposits near 

cement kilns. Hence, the limestone additions do not have to be transported over long 

distances to cement factories (Kenai et al. 2004).

The limestone filler was considered by many as an inert filler, but it has been 

gradually accepted as contributing to the hydration process by the formation of 

calcium mono-carboaluminates (C3A . CaCC>3 . 1IH 2O) (Lewis 2003).

Although most European countries produce blended cements, limestone cement is 

mainly produced in France where, in 1990, out o f 69 brands of composite cements, 61 

brands contained limestone filler alone or with other secondary constituents. Twenty- 

nine of these had filler contents between 15% and 25% by mass of cement (Bertrandy 

et al. 1999).
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Now the new European Standard BS EN 197-1 identifies two types of Portland 

limestone cement containing 6-20% limestone (type II/A-L) and 21-35% limestone 

(type II/B-L). The limestone is inter-ground with the Portland cement clinker which 

normally produces 32.5N grade cement (Lewis 2003). This recognises that the 

addition o f limestone to Ordinary Portland cement has many benefits. Livesey (1991) 

reported that cement with 15% limestone gives a similar strength to OPC concrete if 

the cement content is increased by 1 0 %.

Kenai et al. (2004), showed that water permeability of concrete specimens was 

lower in concrete with limestone cement and that these findings were consistent with 

the findings of other research that found concrete with limestone cement has a lower 

oxygen permeability and higher resistance to sulfate attack than OPC concrete. 

Tsivilis et al. (1999) conclude that it’s the clinker quality which significantly affects 

the gas permeability and sorptivity o f the limestone cement concrete; however, the 

effect of the limestone quality on the concrete permeability is not well established. 

They state that limestone additions can improve the permeability properties of the 

concrete, especially in cements having high C3A content.

The addition of 20% limestone filler was also found to have no detrimental 

influence on the resistance to chloride penetration o f pastes and mortars (Homain et 

al.. 1995). Kenai also reports that limestone cement behaviour in an outdoor, hot 

climate is good, provided initial curing is sufficient (Kenai et al. 2004).

However, Bonavetti et al. (2003) saw some drawbacks to the use of limestone as a 

cement replacement. They state that “For low w/c ratio concrete, a large proportion 

(more than 35%) of Portland cement remains un-hydrated and acts as an expensive 

and energy-consuming filler”. They also report that a reduction in compressive 

strength, at 28 days, was measured; for concrete containing up to 18.1% of limestone 

filler a compressive strength reduction in the range o f 8 -  1 2 % was achieved.

A further drawback is the fact that limestone is a natural resource. Although 

abundant throughout Europe, preservation o f our natural resources must take 

precedence and the use of this material limited. With so many other waste materials 

available to replace Portland cement the use o f limestone may have a limited lifespan.
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Metakaolin

There is no national standard covering the use of metakaolin as a cementitious 

addition for concrete. The product Metastar Metakaolin is covered by Agrement 

Certificate Number 98/3540 which relates to a specific product used at levels up to 

20% replacement o f Portland cement (Lewis 2003).

Metakaolin (MK) is a thermally activated alumino-silicate material obtained by 

calcining kaolin clay within the temperature range of 700-850°C. It contains typically 

50-55% SiC>2 and 40-45% AI2O3 and is highly reactive.

In Portland cement concrete, MK reacts at normal temperatures with calcium 

hydroxide (lime) in the cement paste to form mainly calcium silicate hydrates (C-S- 

H), C2ASH8 (gehlenite hydrate), and C4AH13 (tetracalcium aluminate hydrate) (Rojas 

et al. 2 0 0 2 )

It has been reported that the replacement of cement by 5-15% MK results in 

significant increases in compressive strength for high-performance concretes and 

mortars at ages o f up to 28 days, particularly at early ages (Poona et al. 2001).

Replacement o f cement in concrete by mineral admixtures produces an immediate 

dilution effect such that if the replacement material was totally physically and 

chemically inert, concrete strength would be reduced in approximate proportion to the 

degree of replacement. However, finely divided mineral admixtures, even if 

chemically inert, do have a physical effect in that they behave as fillers. This is 

particularly significant in the interfacial zone regions (The region of the cement paste 

around the aggregate particles, which is perturbed by the presence of the aggregate. 

Its origin lies in the packing o f the cement grains against the much larger aggregate, 

which leads to a local increase in porosity and predominance of smaller cement 

particles in this region) where they produce more efficient packing at the cement 

paste-aggregate particle interface, reduce the amount o f bleeding and produce a 

denser, more homogeneous, initial transition zone microstructure and also a narrower 

transition zone. Thus, relative to no cement replacement, partial replacement by ultra-
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fine solids results in a reduction in the strength of pastes (due to the dilution effect) 

but an increase in the strength o f concrete (due to an improved transition zone) (Wild 

et al. 1996).

Wild et al.. (1996) reported that the filler effect is immediate, with OPC having a 

major impact in the first 24 hours and maximum effect o f the pozzolanic reaction 

occurring at between 7 and 14 days. However, Zhang et al. (1995) recognised that the 

MK concrete had higher strength properties at all ages up to 180 days compared to a 

control concrete and reiterated the fact that MK concrete showed a faster strength 

development at early ages.

Wild et al. (1996) also suggested that an optimum replacement level of 20% 

should be used to maximise the concretes’ long term strength enhancement. However, 

the increased heat o f hydration from the rapid early strength development can be as 

much as 15% more than that o f a 100% OPC mortar, it has been shown that this can 

be controlled through the use o f a replacement level of up to 10% (Frias et al. 2000).

Lagier et al. (2007) confirmed that strong exothermic reactions occurred in all 

cements blended with MK particularly in the first 24 hours. They reported that the 

reaction o f metakaolin appears to be quite sensitive to variations in total alkali content 

in the cement in particular when the alkali content increases. They proposed that an 

increasing rate of metakaolin dissolution with increasing cement alkali content may 

accelerate or intensify the reaction of the C3A phase and that the results demonstrated 

that the reaction of MK during early hydration does vary with cement type.

Municipal Solid Waste Ash (MSWA)

It is difficult to get hold of reliable up to date estimates on the amount of 

municipal waste landfilled annually. It could be assumed that trends established in the 

early part of this decade will continue; however, with recycling schemes becoming 

evermore prevalent some authorities are already reporting annual reductions in their 

2004 figures over previous years (www 2.18.1).
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The UK produces 420 million tonnes of waste each year, of which 30 million 

tonnes is municipal waste. In England the total amount of municipal waste has 

continued to rise to an estimated 28.8 million tonnes in 2 0 0 1 / 0 2  compared to 28.1 

million tonnes in 2000/01, an increase o f 2.4 per cent. The proportion of municipal 

waste being recycled or composted increased from 12.3 per cent in 2000/01 to 13.5 

per cent in 2001/02. The proportion of waste incinerated with energy recovery has 

remained roughly constant at just under 9 per cent in 2000/01 and 2001/02. The 

proportion of municipal waste being disposed in landfill has decreased from 78 per 

cent in 2000/01 to 77 per cent in 2001/02. However, the actual tonnage of municipal 

waste disposed of in landfill has still increased slightly from 2 2 . 1  million tonnes in 

2000/01 to 22.3 million tonnes in 2001/02. Past studies showed that the average 

Biodegradable Municipal Waste (BMW) content of household waste in England is 

63%. In 2009/10, English local authorities sent 8.4 million tonnes of BMW to landfill. 

This is 1 million tonnes less than the previous year and nearly 3 million tonnes less 

than local authorities could have landfilled if  all 11.2 million tonnes Landfill 

Allowance Trading Scheme (LATS) allowances had been used (www2.19).

Pan et al. (2007), in their research into the use o f MSWA as a cement 

replacement, recognised the fact that the ash is rich in heavy metals and salts and 

without proper treatment may cause serious environmental problems.

Studies by Sakai and Hiraoka (2000) indicate that there are much more volatile 

heavy metals (e.g., Hg, Pb, Cd) and toxic organic substances in fly ash than in bottom 

ash. The leaching characteristic of these hazardous materials leads to secondary 

pollution of groundwater after landfilling. Therefore, MSWA fly ash was classified as 

hazardous waste requiring additional processing in most countries worldwide.

The results from the melting treatment of fly ash collected from MSW incinerators 

are described in work carried out by Abe et al. (1996). The fly ash used had an 

average particle size of 22 pm and a melting fluidity point of 1280-1330°C and was 

melted using a Kubota melting furnace without any additives. They found that 8 8 % of 

the fly ash was turned to slag and 1 2 % to dust, which contained a lot of heavy metals 

such as Pb and Zn. The leaching levels o f heavy metals from slag was significantly 

lower than those o f bottom and fly ashes from municipal solid waste incinerators;
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however, the leaching rates were dependent on pH levels such that leachate increased 

at lower pH levels.

Lin et al. (2003), discuss the use of this MSW fly ash slag produced via heat 

treatment. They conclude that MSWA fly ash slag is non-hazardous and can thus be 

classified as general industrial waste. Thus, the recycling of MSWI fly ash slag would 

not result in further environmental pollution. They observed the crystalline structure 

revealing that all mortars with partial MSWI fly ash slag substitutions had a similar 

crystalline composition, containing 3 CaO/SiC>2 , 2 CaO/SiC>2 , Ca(OH)2 , CSH 

(Tobermolite), and C3AH6 (Calcium Aluminate Hydrate).

It has been shown that MSWA is a stable and effective cement replacement if 

subjected to a process of heat treatment. This has the effect of reducing use of a 

natural resource (limestone) in the making of cement, and for the disposal of a waste 

material; however, much energy and natural resource will be used in providing the 

temperatures needed to process the ash.

2.8 Fly Ash

The burning o f coal supplies around 40% of the UK electricity, as shown in 

Figure 2.6. With the well publicised issues of security of electricity supply relating to 

natural gas, the gradual decline of the existing nuclear power stations, the issues and 

timescales involved with building new nuclear power stations and slow development 

o f renewable forms of electricity generation and their dependence on the forces of 

nature, it would appear that pulverised coal fired power generation will be necessary 

for some years to come. Even in future years, the development of clean coal power 

stations with carbon capture will still lead to the production of ash. As there are 

estimated to be in excess of 2 0 0  years of coal in reserves around the world, such an 

energy resource cannot simply be ignored (UKQAA 2007).

Mathews (2007) in his paper “Seven steps to curb global warming” states that 

‘Coal will continue to be the largest source o f the world’s electricity generation, in the
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absence of policy change, accounting for 40% of electric power output overall. As a 

result, it is projected that coal would account for 35% of the 43.7 billion metric tonnes 

of carbon dioxide emissions by 2030, in the absence of policy interventions’. His 

views are that coal-fired power stations are ‘the greatest source of Green House Gas 

emissions’ and recommends that a moratorium on the use of coal-fired power stations 

be implemented with fines on governments persisting with the use of coal-fired power 

stations being used in the development of sustainable alternatives. However, it is the 

view of the Author that investment in coal fired generators will continue for many 

years to come in countries like China, who have extensive stocks of coal and the 

manufacturing capability to run and maintain the coal industry, yet are struggling to 

keep up with energy demand.
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Figure 2.6 Fuel sources for electricity generation 

(Source UKQAA 2007)

This fact is reflected by the proposed investments of €3.5 billion (£2.6 billion) and 

$2.0 billion (£1.0 billion) in new coal fired power stations proposed by Electrabel in 

Europe and British Petroleum (BP) / Rio Tinto in Western Austrailia (Anon 2007). 

However, with the new technology available it is possible for new power stations to
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be fully integrated with carbon capture and storage to reduce its emissions of 

greenhouse gases.

The main by-product of coal combustion is Fly Ash (FA). In the European 

Community electric power stations generate 55 million metric tons (ECOBA, 2003) 

of coal combustion by-products, 44 million tons o f which corresponds to FA. About 

50% of this annual production is used in the cement industry, given that FA contains 

large amounts of silicon dioxide (SiC>2) and aluminium oxide (AI2O3) and because of 

its pozzolanic property after reacting with lime and water. However, nitrogen oxide 

(NOx) emissions reduction, through the installation of low NOx burners, often results 

in higher unbumed carbon contents, and therefore in a decreased marketability of 

some ashes. According to BS EN 450, a loss-on-ignition (LOI) greater than 7% 

renders FA unusable for cement or concrete manufacture. It is generally accepted that 

the unbumed carbon tends to adsorb the air entrainment reagents that are added to the 

cement to prevent crack formation and propagation (Rubioa 2008). Significant 

problems in achieving the required air content, and batch to batch consistence, are 

experienced. This often results in low air content and/or much higher than expected 

admixture dose. This is due to the presence of partially burnt coal, which has an active 

surface that adsorbs the surfactants used as air-entraining admixtures (Dransfield. 

2005). A coal fired power station produces two types o f ash, Fly Ash removed from 

the flue gases using electrostatic separators and Bottom Ash (BA) withdrawn from the 

furnace (Meininger 1982), as described below:

Furnace bottom ash

Furnace bottom ash (FBA) is a waste material from coal-fired thermal power 

plants. Unlike its companion, pulverised fuel ash, it usually has no pozzolanic 

property which makes it unsuitable to be used as a cement replacement material in 

concrete. However, its particle distribution is similar to that of sand which makes it 

attractive to be used as a sand replacement material (Bai, 2005).
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The coarse, fused, glassy texture of FBA would normally make an ideal substitute 

for natural aggregates (Ramme et al.., 1998). An important use of bottom ash is as a 

base layer material in road construction (Churcill and Amirkhanian, 1999). Also, there 

has been research concerning whether FBA could partially or entirely replace natural 

gravel in the production of a concrete presenting a 28-day compressive strength of 25 

MPa (Pera et al. 1997).

The primary use for FBA has been for many years in block making. Many still 

refer to ‘breeze blocks’, with breeze being the fore-runner to FBA. Because FBA is 

flushed from the furnace by high pressure water jets, it is a far superior product to 

‘breeze’, which ceased to be available anyway as the older furnaces were replaced. 

Subsequently FBA became the preferred product by the block manufacturers as a 

lightweight aggregate. Currently 99% of UK FBA production is used in lightweight 

aggregate block manufacture (Sear, 2004).

In recent years, due to the contraction in the number o f coal burning power 

stations and changes in burner technologies to reduce emissions, there is reduced 

production and a shortage of FBA. Block manufacturers are having to source similar 

materials, ranging from recovered bottom ash, incinerator bottom ash and pumice 

from a variety of sources, including imports. Unfortunately, many o f these options 

involve greater transport distances, processing or depletion o f virgin aggregates 

adding to the environmental impact (Sear, 2007).

Fly ash

Pulverised Fuel Ash (PFA) has been used in concrete for over 50 years. It has 

been the subject o f research for over 70 years with in excess of 10,000 papers being 

published (Sear 2005). In the UK, research was carried out which led to the 

construction of the Lednock, Clatworthy and Lubreoch Dams during the 1950’s with 

fly ash as a partial cementitious material (Lewis et al. 2003).

During the 1970’s ready mix concrete suppliers were producing ever more 

technically demanding concretes o f higher strengths and lower water cement ratios. It
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was perceived that the variability in quality and the supply problems of PFA when 

taken directly from the power station were unacceptable (Sear 2001a). In line with 

Europe, PFA is now referred to as Fly Ash (FA) and its requirements for use in 

concrete and mortar are covered in the European Standard BS EN 450 (BS EN 450 

2005).

As far as the effect of FA variability on the performance of FA concrete is 

concerned, the most important aspect of physical property is the fineness of the FA, 

and the most important aspect of chemical property is the carbon content (Balendran 

et al. 1995).

Carbon content

Residual carbon content and the fineness of FA depend mainly on the condition of 

the furnace and FA collection system. Atis (2005), whilst looking at high volume fly 

ash in concrete, reported that high carbon content is believed to reduce the workability 

and increase the water demand when used in concrete. Comparing two sources of fly 

ash it was found that the ash with the increased loss on ignition required higher water 

content and, hence, produced a lower compressive strength. Neville (1995) recognised 

that carbon content was partially dependent on fineness as carbon particles tend to be 

the coarser fly ash particles. Jones et al. (2006a) in their study into the effects of fly 

ash fineness on mortar found that the greatest change noted in bulk chemistry was the 

reduction in LOI with cycloning the material to remove the coarser fraction (34% 

difference between the parent FA and the resultant finer FA).

Carbon has other detrimental effects on concrete. Ha et al. (2005) studied the 

effect of carbon content on reinforcing steel (rebar) and concluded that rebar 

embedded in Ordinary Portland cement suffered severe corrosion when the carbon 

level in fly ash was increased, especially beyond 8 %.

Residual carbon in fly ash may also interfere with air entraining admixtures 

(AEAs) added to enhance air entrainment in concrete in order to increase its 

consistence and resistance toward freezing and thawing conditions. Pedersen et al. 

(2008) showed that not only the amount, but also the properties of carbon, such as 

particle size and surface chemistry, have an impact on the adsorption capacity of
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AEAs. Owens (1979) concluded that control of the material retained on the 45pm 

sieve is the key to a less variable material. Dhir et al. (1981), however, believe this not 

to be the most suitable test but that specific surface may be a somewhat better 

measure of ash fineness in view of its stronger correlation with strength. However, it 

would appear that they are both in agreement that fineness is an important 

characteristic o f Fly Ash.

Fineness

Fly ash changes the flow behaviour o f the cement paste. With the same 

consistence, concrete with fly ash is easier to compact than concrete without fly ash, 

due to the lubricating effect of the spherical fly ash particles in the mix. Also due to 

the improved cohesiveness of the mix, arising from the contribution of the fine fly ash 

particles as aggregate supplement and in blocking the bleed water channel, there is 

less bleeding and segregation (Balendran 1995). It is generally agreed that the use of 

fine FA improves the properties of concrete. Dhir et al. (1985) regard fineness as the 

most suitable single parameter with which to classify ashes physically, since it relates 

to other important ash characteristics.

Erdogdu and Turker (1998) studied the use of various particle gradings of FA and 

found that a sieved fine FA gives an improved strength relative to that of the original 

coarser FA. Lee et al. (1999) obtained same source FA with three different fineness 

values. They concluded that the reactive calcium hydroxide Ca(OH) 2  within the fine 

FA paste was greater than that of the coarser FA cement paste. They also noted that 

the finer the material the greater the density, lower the carbon content and higher 

glass content; however, they concluded that it is the fineness of the material rather 

than the glass content that made the material more reactive.

Chindaprasirt et al. (2004) also studied the effect of FA fineness on mortar and 

concluded that the different fineness portions of FA appeared to have a slight 

variation in both physical and chemical properties. Their test results showed that 

fineness had a marked effect on the compressive strength as well as drying shrinkage 

and sulfate resistance with the finer FA being more reactive, a better void filler and 

used less water for the same consistence.
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As mentioned earlier, a pozzolanic material works when a large surface area is 

exposed to the alkaline environment; therefore, fineness of the material is an 

important property not only for the chemical interactions required but for the 

reduction in carbon content. The second most important area must be that the fly ash 

contains the correct chemistry to interact with the cement.

Chemistry

Fly ashes are complex in their range o f chemical and phase compositions. They 

consist of heterogeneous combinations of glassy and crystalline phases (ACI 

Committee 226 1987).

Fly ash consists principally of the oxides of silicon and iron with varying amounts 

of constituents containing aluminium and some unbumed carbon. Other trace 

elements such as potassium, phosphorous, cobalt, molybdenum, boron, or manganese 

may be present (Lane et al. 1982).

Two general classes of fly ash can be defined: low-calcium fly ash (FL) produced 

by burning anthracite or bituminous coal, and high-calcium fly ash (FH) produced by 

burning lignite or sub-bituminous coal. FL is categorized as a normal pozzolan, a 

material consisting of silicate glass, modified with aluminum and iron. The CaO 

content is less than 10%. FL requires Ca(OH)2  to form strength-developing products 

(pozzolanic activity), and, therefore, is used in combination with Portland cement, 

which produces Ca(OH) 2  during its hydration (Papadakis 1999).

BS EN 450 deals with siliceous fly ash only, classified by the requirement that the 

sum of the contents of silicon dioxide (Si0 2 ), aluminium oxide (AI2O3) and iron oxide 

(Fe2 0 3 ) shall not be less than 70% by mass; this is a pozzolanic material. Where the 

reactive calcium oxide exceeds 1 0 % by mass the classification becomes a calcareous 

fly ash (BS EN 450, BS EN 197).

As was mentioned previously (Section 2.6), the setting and hardening of Portland 

cement occur as a result o f the reaction between the compounds of cement and water.
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The form of the two calcium silicates are similar and differ only in the amount of 

calcium hydroxide formed as shown below (Malhotra 1994):

2C3S + 6 H -> C3S2H3 + 3CH

tricalcium silicate + water —> C-S-H + calcium hydroxide (1)

2C2S + 4H -► C3S2H3 + CH 

dicalcium silicate + water —► C-S-H + calcium hydroxide (2)

Pozzolanic reactions refer to chemical reactions between active silicon dioxide 

(S i02) within the fly ash and the calcium hydroxide (CH) produced as a by-product 

from the cement hydration. The chemical reaction is simplified as follows:

CH + S + H = C - S - H

C-S-H  gels account for the main strength of concrete, with CH contributing little 

to concrete build up; for pozzolanic reactions, fly ash combines and consumes CH and 

forms new C-S-H  gels, which contribute more to the strength build up of concrete 

(Wang 2008). It is the time spent producing the calcium hydroxide that causes this 

delayed secondary reaction.

Sulphite and sulphate in fly ash

Sulphur generally exists in two forms within concrete, as a sulphite (SO3) and as a 

Sulphate (SO4). When calculating the compound composition of cements the normal 

convention, within cement manufacture, is to assume that all the SO3 present is 

combined with Calcium Oxide (CaO) and is therefore present as calcium sulphate 

CaS0 4  (gypsum) (Moir 2003). Approximately 5% of the dehydrated form of gypsum 

(CaS0 4 ) is added to the clinker prior to the grinding process. Dehydrated gypsum 

within cement dissolves rapidly when water is added to the concrete and is beneficial 

in ensuring that sufficient Ca2+ and S0 2 4 ions are available in solution to control the 

initial reactivity o f the tricalcium aluminate (C3A) through the formation of a 

protective layer of ettringite C3A«3 CaS0 4 .
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Ettringite is one of the most important substances in conventional portland 

cement-based concrete. When water is intermixed with portland cement ettringite 

quickly forms, a reaction which allows normal-setting concrete to be produced. 

Without the ettringite concrete would set al.most instantaneously in a reaction known 

as flash set (Hime, W. Erlin, B. 2004).The reaction can be summarised as follows:

C3A + dissolved calcium (CA2+) + dissolved sulfate (S0 2 4) + water = ettringite

If, however, the supply of dehydrated gypsum is too high, then crystals of gypsum 

crystallise from solution and cause ‘false set’. As implied by its name, false set gives 

the impression that the concrete has hardened but if  mixing is continued, or resumed, 

the initial level of workability is restored (Moir 2003).

Fly ash has SO4 present at its surface which is released into the mix, delaying the 

initial setting only, further setting reactions are unaffected (Neville 1995).Typically 

fresh fly ash contains between 0.35 and 2.5% sulphate as SO3 . The sulphate in fly ash 

exists as gypsum, which has limited solubility in water. Therefore, when used as a fill 

material it has the potential to cause sulphate attack, but in practice there is no known 

case of such attack in concrete adjacent to fly ash (www2 .2 0 ).

Sulphate attack has long been recognised as responsible for concrete deterioration 

in a wide variety of structures. Sulphate attack in concrete has been known to occur 

when sulphate solutions, derived either from a constituent in the concrete such as 

aggregate or from external sources such as groundwater, react with the calcium 

aluminate hydrates present in the hardened cement to form ettringite. Formation of 

ettringite has a deteriorative effect on the mortar strength and, in addition, causes 

expansion which may result in micro-cracking o f the cement paste (Ghafoori, N. 

Kassel, S. 1999). This expansive reaction can inflict serious damage on concrete, 

leading to weakening and perhaps ultimately failure o f the affected structure.

Besides the conventional sulphate reaction in mortars and concretes involving the 

formation and the expansive properties o f ettringite, another kind o f sulphate attack 

attributed to the formation of thaumasite (CaSiC>3 .CaCC>3 .CaSC>4 .I 5 H2O) has been
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widely discussed during recent years (Skaropoulou, A. et al. 2009). Research has 

shown that Portland limestone cement pastes are susceptible to the thaumasite 

formation after only a few months exposure to sulphate solutions. This is a serious 

problem as limestone has increasingly been used as a filler or as a main cement 

constituent for many years (Tsivilis, S. et al. 2002). Thaumasite attacks the surfaces of 

concrete which come into contact with ground containing sulphates which is usually 

sea water.

Thaumasite formation requires a source of calcium silicate, sulfate and carbonate 

ions, excess humidity and preferably low temperature within the hardened cement 

paste to form the mineral. The structural similarity to ettringite allows thaumasite to 

use this as a template for its initial nucleation. However this mineral is a more 

complex salt than ettringite, forms at low temperatures (below 15°C) and is associated 

with the presence of finely divided limestone sometimes used as filler, though 

limestone aggregate may also promote the reaction. Thaumasite formation renders the 

cement paste soft with concomitant loss of strength and disintegration of the concrete 

(www2.21, Lewis et al. 2003).

Particle shape and pozzolanic activity

The shape, particle size distribution, density and composition of fly ash particles 

influence the properties of freshly mixed, unhardened concrete and the strength 

development of hardened concrete (ACI Committee 226 1987). Fly ash particles of 

less than 50 pm are generally spherical with the larger sizes being more irregular 

(Lewis 2003). It has been found that the consistence of concrete increases as the 

replacement of cement with fly ash increases. Siddique (2006) concluded this and 

reasoned that the “ball bearing” action of the spherical particles of fly ash were 

responsible for this. However, Jones et al. (2006a) reported that whilst ultra fine fly 

ash increased the flow of mortars at both 15% and 30%, its coarser parent ash had an 

adverse effect on mortar consistence, as flow decreased with increasing FA contents. 

The strength of fly ash concrete will, therefore, depend on whether a water reduction 

is achieved, plus the pozzolanic performance of the cement/fly ash combination 

(Lewis 2003).
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Therefore, it would seem that fineness affects many aspects of concrete. It affects 

the particle shape, the water demand o f the concrete which in turn affects the strength 

and the pozzolanic behaviour of the material.

Other requirements affected through the use of fly ash include setting time and 

curing which are discussed below.

It has been reported that Fly Ash retards the initial hydration of cement and 

increases the setting time of the concrete. Concrete Society Technical Report No. 40 

(Concrete Society 1991), suggests that a 30 per cent FA replacement would lengthen 

the setting time by up to 4 hours when the mix temperature is 5°C, but such 

lengthening is reduced to one hour when the mix temperature is 25°C. However, 

Balendran et al. (1995) recognised that the setting time is influenced by many other 

factors, including the cementitious content, type, fineness, composition, water 

content, the presence of admixture, and the adsorption of the admixture by the FA 

particles. Hence, if  setting time is a critical factor, trials using the materials under 

consideration should be carried out. Longer setting time may increase the chances of 

plastic shrinkage cracking or surface crusting under conditions o f high evaporation 

rates.

Since the strength of concrete depends considerably upon the hydration of the 

cement, it is essential that moisture is present to enable hydration to continue (Lydon 

1982). If concrete is allowed to dry out, hydration will cease prematurely (Soroka 

1998).

Escalante-Garcia et al. (2001) state that the high temperatures achieved in 

concrete, from hot weather or accumulated heat of hydration, have an adverse effect 

on the concrete microstructure effecting porosity and that the ultimate degree of 

hydration of the anhydrous cement phases is reduced. This has a negative effect on 

the concrete leading to inferior mechanical properties and a concrete prone to 

chemical attack.
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Kim et al. (2002) studied the effect that curing temperature and ageing had on the 

compressive strength of concrete. They concluded that compressive strength of 

concrete subject to high temperature at early ages attains higher early-age 

compressive and splitting tensile strengths, but lower later-age compressive and 

splitting tensile strength. Elastic modulus has the same tendency; the crossover effect 

of curing temperature on elastic modulus being not as obvious as the compressive 

strength. Thus, early temperature rise is detrimental to OPC concrete strength but not 

to fly ash concrete. A 60°C temperature rise can reduce strength in OPC concrete by 

up to 30% but can boost fly ash concrete strength by over 10 % (Dhir 1986).

Thermal cracks that usually occur in mass concrete are closely related to the 

thermal behavior of cement matrix, such as heat liberation, temperature rise and 

thermal shrinkage. Through the addition of mineral admixtures a reduction in the total 

heat liberation occurs and lowers the peak temperature of cement pastes, which is 

favorable for thermal crack prevention. (Lane et al. 1982, Liwu et al. 2006).This 

makes fly ash application particularly advantageous in pre-cast structural concrete 

construction and mass concrete or cement-rich concrete sections.

2.9 Conclusion

The latter part of this review has identified a small section of the research that has 

been, and is currently being, undertaken in an attempt to understand the fundamental 

use of fly ash. The properties important to its use in concrete have been considered 

here and this background has been applied to the construction o f a methodology for 

the research work presented in this thesis.

Various prospective cement replacement materials have been identified, some 

already incorporated within a British and European standard, whilst others are yet to 

have their full potential realised. Whilst a number of cement replacement materials 

have been discussed in this review much more work is being carried out on other 

materials which are not directly relevant to this research.

2-50



Chapter 2 -  Literature review

However, in carrying out this review, no literature was found comparing potential 

cement replacement materials with materials already accepted within the industry as 

being a good cement additive. This then leads to the question that if  the important 

elements of a cement replacement can be documented, will it then be possible to 

measure the potential of a new material seeking to be a cement replacement?

The research will concentrate on the material’s physical and chemical composition 

and the performance within concrete and mortar. This information will then be used to 

establish what makes it a good cement replacement.

The important factors to be investigated are:

o Fineness 

o Grading 

o Particle shape 

o Carbon content 

o Elemental make up

On completion it should be possible to analyse a material from an unknown 

source and within 24 hours have an answer to the question o f whether or not this 

material has the potential to make a good cement replacement. On establishing this, 

longer term concrete and mortar trials can then be initiated.
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3. Experimental methods

3.1 Testing regime and mix details

3.2 Materials

3.3 Traditional strength tests

3.4 Permeability test

3.5 Physical analysis

3.6 Chemical analysis

3.7 Inter-grinding

3.1 Testing regime and mix details

3.1.1 Mix designs

This research programme uses an Ordinary Portland Cement (referred to as 

CEM I in BS EN 197-1:2000) a Ground Granulated Blast Furnace Slag (GGBS), both 

conforming to BS EN 197-1:2000, and cement replacement materials obtained from 

various sources. The cement is a Blue Circle 52.5 Newton CEM I supplied by Lafarge 

cement at Aberthaw South Wales. The GGBS was supplied by Civil and Marine from 

their depot at Llanwem, South Wales.

The measure of performance for the new replacement materials was judged 

against control mixes of 100% CEM I and a blend, 50 / 50 by mass, CEM I / GGBS. 

The replacement materials were blended in the ranges 20%, 25%, 27%, 30%, 33% 

and 35% by mass replacement with CEM I. Concrete mix designs containing a range 

of cement contents, between 140kg/m3 and 450kg/m3, were produced using each of 

these replacement percentages and concrete mixed. The only variable used in the 

mixing process was the water content which was adjusted to maintain consistence. 

The S2 consistence class to BS EN 206:1-2000 has been used to achieve a target
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slump of 70mm. A Water Reducing Agent (WRA) Sika Plastiment 160 at a quantity 

of 0.4% of the cement content was used within the concrete.

3.1.2 Mix designs

The mix designs used for this research are the actual recipes taken from the 

batching plants of Lafarge Aggregates Ltd, South Wales, and can be seen in Appendix 

1. This research has had in place a comprehensive mixing and testing regime from the 

outset and mix volumes were calculated from the samples required. The initial mixes 

completed the full range of tests and required that 40 litres of concrete be produced 

whilst subsequent mixes required only 25 litres. A control mix was repeated at 25 

litres to ensure that no differences could be attributed to the reduced batch volume.

3.1.3 Mix procedure

When producing trial mixes, the most realistic procedure is to use wet rather 

than dry aggregates. In the laboratory it is usual to have air dried aggregates and these 

should be batched and soaked for about thirty minutes with sufficient water to bring 

them to a saturated condition (Lydon 1982). Ensuring that the aggregates were used in 

their saturated condition removed the requirement of carrying out moisture content 

checks before each mix as the moisture content became constant. Also, the aggregates 

were collected over a period of some years and the quality and quantity o f fine 

particles coating the aggregate may have changed, so this would have affected both 

the amount of water added to the mix and the strength of the hardened concrete. This 

issue was overcome by the soaking process removing these fine particles from the 

material leaving a clean aggregate.

After soaking for thirty minutes the coarse aggregates were sieved, to drain the 

excess water, and then reweighed to adjust for the increased weight due to water 

absorption. Mixing of the concrete was carried out using a 160kg capacity Liner 

horizontal rotary drum mixer. The coarse and fine aggregates were mixed first 

followed by the CEM I and replacement material. Admixture was weighed and added 

to a measuring cylinder containing 1 litre of clean water, this was poured into the mix 

ensuring even distribution throughout. Further water was added until the consistence
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of the mix achieved the required 70mm slump. The consistence was checked using the 

method described in BS EN 12350-2:2000, slump test.

Cube specimens were moulded using 100mm steel cube moulds and 

compacted in two uniform layers by means o f a vibrating table. After casting, 

specimens were covered with polythene to prevent moisture loss and were stored in 

the laboratory at an ambient room temperature of 20°C ± 5°C. After 24 hours, 

specimens were de-moulded and cured in a water tank, at a controlled temperature of 

20°C ±2°C, until the day of testing. Specimens were made and cured to BS EN 12390 

-  2:2000, (Making and curing specimens for strength tests).

3.2 Materials

3.2.1 Ordinary Portland Cement

The CEM I used throughout this research was a 52.5N CEM I cement 

corresponding to the requirements of BS EN 197-1. The CEM I was produced at the 

Lafarge cement works, Aberthaw, South Wales and given the product name OPCRM 

to distinguish it from other products supplied from that plant. The tests carried out on 

the cement were completed to the BS EN 196 range as required in BS EN 197-1:2000 

Cement - Part 1: Composition, specifications and conformity criteria for common 

cements. The technical data for this cement was tested for and recorded at the works 

and are shown in Tables 3.land 3.2 below.

Table 3.1
Test report results for CEM I strength class 52.5N as recorded at the LaFarge laboratory Aberthaw 
cement works

Loss on Soundness Initial Compressive strength N/mm2 Na20

ignition (mm) setting 1 2 7 28 (%)

(%) time

(mins)

day day day day

CEM I 2.55 1 . 0 155 19.7 29.7 44.3 59.2 0.62

BS EN 197 <5.0 < 1 0 >45 - > 2 0 - >52.5 Declared

Table 3.2
Additional Test report results for CEM 1 as recorded at the LaFarge laboratory Aberthaw cement works
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Free Lime Fineness SO3 Alkalis Chloride

<%) (m2/kg) (%) (%) (%)

CEM I 0.67 372 3.26 0.61 0.04

Typical Range 0.5 - 3.0 360 - 370 0.3 -1.0

BS EN 197 <4.0 < 0 . 1

Chemically, clinker is composed mostly o f calcium oxide (CaO) and silica 

(SiC>2), with lesser amounts of aluminum oxide (AI2O3) and iron oxide (Fe2C>3) In 

clinker, these oxides are within a semi-fused intimate mix of (primarily) four 

hydraulic minerals, denoted in cement industry chemical shorthand as C3 S (tricalcium 

silicate), C2S (dicalcium silicate), C3A (tricalcium aluminate), and C4AF (tetra- 

calcium aluminoferrite) (Van Oss and Padovani, 2002).

Table 3.3 presents the compounds within the CEM I used throughout this 

research as compared to the typical composition o f a grey Portland cement. These are 

the four principal chemical compounds contained in cement clinker (Moir 2003).

Table 3.3
Compounds in the CEM I used in this research

Cement Notation C3S C2S c 3a C4AF

(%) (%) (%) (%)

Common Name Alite Belite Aluminate Ferrite

CEM I 51.77 18.26 8.93 6.51

Typical

composition
57 16 9 9

The relative proportions of these minerals are adjusted to achieve the desired 

functional properties of the Portland cement. The mineral C3S (alite) hydrates quickly 

and so imparts early strength and set to the cement, whereas C2S (belite) hydrates 

slowly and is the main contributor of long-term strength. Both minerals hydrate to 

form tricalcium silicate hydrate gel (sometimes called tobermorite) plus lime. The 

tobermorite gel is the actual binder in the hydrated cement. The lime released in the 

hydration reaction is in small part taken up by hydration of C3A and C4AF, but most 

remains unreacted and thus available to activate any pozzolans added in the finished 

cement. Hydration o f C3A is almost instantaneous and highly exothermic. The
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mineral thus speeds the development o f early strength and set, sometimes to the point 

o f causing flash set, therefore gypsum is added to control this. The main function of 

the aluminoferrite mineral (C4AF) is as a flux, that is, it acts to lower the temperature 

at which the clinker minerals form (i.e. clinkering temperature). This mineral also 

imparts the grey colour to Portland cement and for this reason its formation avoided, 

through the use of only iron-free raw materials and higher clinkering temperatures, in 

the production of white Portland cement, which is a much higher priced product than 

grey (“ordinary”) Portland cement (Van Oss and Padovani, 2002).

3.2.2 Replacement materials

Ground Granulated Blast furnace Slag (GGBS)

The GGBS used throughout this research was supplied by ‘Civil and Marine’ 

from their Llanwem works, South Wales and conformed to BS EN 197 -  1: 2000.

Fly ash

The main focus of this study is the fly ash supplied by RWE npower, operators 

of the power station located at Aberthaw, South Wales. The power station is being 

upgraded and a new separation process is being installed to convert fly ash collected 

at the plant from a waste material to a usable one. A similar system is already in 

operation at Longannet power station, Scotland. The ash produced at Aberthaw power 

station was transported to Longannet in order to replicate the separation process being 

installed at Aberthaw. The ash was returned from Longannet in three forms:

• Classified

• Processed

•  High Carbon waste product

with the raw ash used coming directly from Aberthaw power station. By processing 

the ash it is expected that both the processed and the classified ash will conform to BS
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EN 450 -  1: 2005, whilst the raw fly ash and High Carbon waste ash will fall outside 

the limitations of this standard.

A second fly ash examined during this research was supplied from Didcot A 

power station, Oxforshire; also run by RWE npower. Ash from Didcot A is used to 

manufacture building blocks at a factory on the adjacent Milton Park and transported 

to Thatcham (near Newbury, Berkshire) for the manufacture o f Thermalite aerated 

breeze blocks using both decarbonized fly and raw ash, however; most is mixed with 

water and pumped via a pipeline to former quarries in Radley (www3.1). This ash had 

been subjected to a decarbonisation processing technique and conformed to BS EN 

4 5 0 -1 :2 0 0 5 .

Sewage sludge ash

The Sewage sludge ash used throughout this research was supplied by 

Yorkshire Water, Bradford, UK. The ash was produced through the incineration of the 

sludge cake following a drying process which included the use o f centrifuges and belt 

presses and sludge drying beds. The ash particles were removed from the fluidised- 

bed incinerator flue gases by an electrostatic precipitator.

Municipal solid waste ash

The municipal solid waste ash used throughout this research was supplied by Veolia 

from their Tyseley waste disposal unit, Birmingham. The waste is delivered to the 

works directly from the collection vehicles. From there the waste is manoeuvred onto 

conveyors which transport the waste to the incinerator. The particulate matter (fly 

ash) is removed from the gas stream by a bag filter before the cleaned gas is released 

to air. The fly ash was collected from the separator whilst any unbumable wastes and 

larger ash particles fell to the bottom o f the incineration plant and were removed using 

hydraulic rams.
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Industrial materials

The industrial materials used in this research were generated during a previous 

research project at Cardiff University (Davies 2003), studying cement replacements. 

Various industries supplied waste material for that project and blends were produced 

in an attempt to establish a useable cement replacement in mortar alone. Although 

none of the suppliers of this waste have been identified for this research, the blend 

used was the one that had demonstrated the potential for achieving positive results 

when used within concrete. All the materials used were wastes from industry and 

were collected and supplied by the other study group. The preparation o f the materials 

consisted of sieving and grinding the materials to achieve a required fineness. The 

required fineness for each material is shown in Table 3.4. These materials were then 

blended together with CEM I in amounts specified from results collected during the 

previous research. Table 3.5 shows the amounts o f the four industrial waste materials 

mixed with the CEM I to produce the five cement materials used for subsequent 

testing. The total per cent of the industrial products varied from 10% to 50% by mass.

The grinding of the materials was carried out by others using a Labtec ESSA, 

Vibratory Puckmill LM1-P to an exact grinding time as shown in Table 3.4. Sieving 

was carried out using a Fritsch Vibratory sieve shaker, with various intermittent mesh 

sizes to avoid clogging the finer mesh. The fineness was measured by the last sieve 

through which the material was required to pass, the coarser material was returned to 

storage for possible future use. The materials were stored in a sealed container until 

required. This was completed by the previous research group.

Table 3.4
Grinding time and required fineness of the various Industrial Materials used

Materials

Mat 1 Mat 2 Mat 3 Mat 4

Grind Time (mins) 5 2 2 2

Fineness (pm) <53 < 100 < 100 <100
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Table 3.5
Quantities of CEM I and the four industrial materials required to produce the required blend, for each 
replacement percentage, as a percentage of the total cementitious content by mass_______________
Percentage Material (%)

(%) CEM I 1 2 3 4

10 90 0 0 5 5
20 77 7 3 4 9
25 70 14 2 3 10
30 64 16 3 5 12
50 42 29 2 8 19

3.2.3 Aggregates

The fine aggregate used in this research was a locally sea dredged sand 

conforming to BS EN 12620:2002. The coarse aggregates and dust used were a 

crushed limestone quarried from a single source at Ewenny quarry, South Wales. 

Selected aggregate properties can be found in Table 3.6 while a more comprehensive 

study is located in Appendix 2. Four nominal sized coarse aggregates were used to 

achieve a well graded aggregate mix, these being 6, 10, 14 and 20mm which were 

graded in accordance with BS EN 12620:2002 Aggregates for Concrete. A limestone 

dust was also used with a grading of 1 - 5mm. The aggregates were soaked prior to 

mixing to standardise the moisture content; the dust was mixed using its surface dry 

condition (i.e. no visible signs of moisture on the surface), with the moisture content 

measured prior to each mix. Both the sand and the dust were dried using an 850 Watt 

microwave on full power at two minute maximum cycles. The material was 

considered dry when the weight remained unchanged over two further drying cycles.

Table 3.6
Selected aggregate properties
Aggregate Relative density 

(oven dry) g/m

Shape Water absorption 

(%)

Surface texture

Sand 2.58 Rounded / 

irregular

0.5 Smooth

Crushed

limestone

2.69 Angular 0.6 Rough
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3.2.4 Admixtures

Organic admixtures are added to Portland cement concrete to enhance its 

properties. Superplasticisers, for instance, produce concrete with high rheological 

requirements, that is deformation and flow of the concrete, while maintaining a low 

water/cement (w/c) ratio to guarantee excellent mechanical properties and long 

durability. There is a wide variety of superplasticiser admixtures, such as 

lignosulphonates, naphthalene and melamine-based, vinyl copolymers and the so- 

called “latest generation” of superplasticisers, polycarboxylate derivatives. These 

admixtures are adsorbed on the cement particles, causing electrostatic or steric (in the 

case of polycarboxylate admixtures) repulsion that hinders coagulation (Palacios and 

Puertas 2005).

Sika Plastiment 160

Plastiment 160 is a water reducing agent (WRA) designed for use in concrete. 

It is a purpose designed WRA and plasticizer, made with a chemical combination of 

modified lignosulphonates. This allows the manufacture o f economic high quality 

concrete without undesirable side effects. It comes as a ready to use liquid for 

producing a more uniformly cohesive, quality concrete. Plastiment 160 complies with 

BS EN 934 - 2 Table 3.1/3.2 - High Range Water Reducing / Superplasticising 

Admixtures. As the Plastiment 160 is a concrete admixture, it was added to the 

concrete at the mixing stage.

3.2.5 Mix water

All water used in this research was drinking quality tap water as supplied by 

Welsh Water.
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3.3 Traditional strength tests

3.3.1 Cubes

The cubes used in both the compressive strength tests and the permeability tests were 

produced using 100mm steel cube moulds to BS EN 12390-1:2000. Compaction of 

the concrete within the moulds was carried out to the method described in BS EN 

12390-2:2000.

3.3.2 Curing

After twenty four hours the cubes were stripped from the moulds, and placed 

fully submerged in the curing tank. The water in the tank was thermostatically 

controlled heated to, and maintained at 20°C ± 2°C as specified in BS EN 12390- 

2:2000. The curing period prior to testing varied based on the standard normal testing 

period for concrete this being 1 day, 2 day, 7 day, 28 day and 56 day.

3.3.3 Slump test

One of the basic attributes of any cementitious material, concrete or mortar, is 

its consistence or workability, defined as, the ease at which the material can be moved 

around, pushed or pulled, and a smooth level surface be achieved. This property is 

generally reliant on the water content of the mix with the wetter concrete being the 

easier to move and hence having the higher slump value.

For this research the slump test was carried out to the procedures set out in BS 

EN 12350 - 2
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3.3.4 Determination of compressive strength

Compressive strength of concrete is an excellent indicator of concrete quality 

and it invariably forms the most important basis of specifications and quality control, 

as many other properties are directly or indirectly related to it (Shibli 2007).

The compressive strength test was performed on 100mm cubes, to BS EN 

12390-3:2002, using a Contest GD10A compression testing machine at a pacer rate of 

180kN / minute. Although the compressive strengths o f the samples were established 

at various time periods the 28 day strength is the most relevant to industry (BS EN 

206-1:2000). The tests for permeability were carried out on cubes removed from the 

curing tank at 28 days.

3.4 Permeability test

The testing for the relative permeability o f the concrete samples was carried 

out using the method developed by Lydon (1993). This involved the casting of 

1 0 0 mm concrete cubes and subjecting them to 1 0  bar nitrogen gas pressure, in pairs, 

and measuring the time taken to reduce the gas pressure to 5 bar. The work was 

undertaken at Cardiff University by the concrete laboratory technician Mr Andrew 

Sweeney and the Author. The process used was as follows:

At 28 days the samples were removed from the curing tank and a 6 mm 

diameter hole was drilled through the centre o f the cube at right angles to the direction 

of casting (i.e. not through the top, exposed, face whilst in the cube mould). The 

drilling process was carried out through the centre of one face to a depth of half the 

cube, then from the opposite face until the holes met at the centre. This method was 

employed to prevent the concrete spalling when the drill forces itself out through the 

bottom of the cube. The sample cubes were then surface dried and placed in an oven 

at 105°C. Continuous monitoring of the cube weight was maintained until the weight 

loss was less than 1% the weight o f the cube over a 24 hour period. At this point the 

cubes were removed from the oven and placed in a dessicator to cool.
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Aluminium tape was adhered to the bottom of the cube to cover the hole. A 

thin layer of petroleum jelly was applied to the top and bottom surfaces of the sample, 

the drilled faces, and to this rubberised cork pads were placed, held by suction. 

Petroleum jelly was employed to create the gas tight seal required for this test as it is 

easily applied and does not require any time to set. It can also be readily removed and 

reapplied if a retest is required.

The top cork pad contained a hole in its centre which is designed to line up 

with the hole in the sample and the hole in the lid of the pressure cell, this being the 

escape route of the gas. The sample cube was placed in the pressure cell bottom face 

down and centred in line with the hole in the lid. A further seal of petroleum jelly was 

applied to the lid which was then bolted into place using twelve bolts, as shown in 

Figure 3.1, which were systematically tightened so as not to deflect the lid or shear 

any of the bolts. Bolting the lid exerts a pressure onto the cork pads and onto a rubber 

sealing ring. This pressure is sufficient to stop the gas pressure causing any movement 

of the pads and the sealing ring prevents gas escape from between the lid and cell 

body.

Figure 3.1 Pressure cell 105mm deep x 145mm Diameter into which a concrete sample is placed for 
permeability testing.
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Pressure transducer Pressure transducer

Pressure gauge
Regulator valve A I \ ^  ) Pressure gauge

Regulator valve A

Gas reservoir Gas reservoir

Stop valve B Stop valve B

Nitrogen gas 
bottle Gas flow Gas flow

Nitrogen gas 
bottle

Gas out Gas out

Computer
Pressure cells

Figure 3.2 Schematic o f apparatus for testing permeability o f concrete using nitrogen gas

The set up of the apparatus employed highlighting the main components can 

be seen in Figure 3.2 and in Figure 3.3. Nitrogen gas was allowed to enter the 

reservoir by the opening of valve ‘A’. On reaching a pressure o f 10 bar, valve ‘A’ was 

closed. Valve ‘B’ controlled the gas flow between the reservoir and the pressure cell 

and, on opening, allowed the pressurised gas to fill the pressure cell. The pressure in 

the reservoir dropped in order to fill the cell, so valve ‘B ’ was closed and the reservoir 

pressurised again. This process continued until there was no significant drop in 

pressure in the reservoir when valve ‘B’ was opened.

Before commencing the test, the computer was recalibrated to zero and valve 

‘A’ was closed, when valve ‘B’ was opened the test started. The computer was set to 

monitor the pressure drop at set intervals for the two tests which run concurrently 

being started simultaneously and recorded together on a single plot. This was 

arranged mainly to highlight any errors that may occur in the test, for example gas 

leakage or blockage, thus giving the opportunity to retest any samples that record 

irregular results.
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Figure 3.3 Permeability test in progress.

Lydon (1993) suggests three simple measures for the relative permeability of 

concrete. The three parameters, shown in Figures 3.4 and 3.5, are those which can be 

determined from a pressure-time decay curve and include:

o The half time (expressed in minutes), or the time taken for the pressure 

inside the reservoir to decrease from 10 bar to 5 bar 

o The area under the graph of pressure against time 

o The gradient of the line of the plot of log pressure against time, 

dlogio(P) / dt referred to as m (Figure 3.5)
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Figure 3.4 Typical graph showing the permeability parameters of pressure against time showing a half 
time of 48 minutes and area under the pressure-time curve

In a previous investigation by Gardner (2002), it was shown that full 

permeability tests performed on high-strength concrete lasted for more than 2  weeks 

and this time scale was considered too long. The recommendation from that study, 

was for the use of the half time and the gradient of the graph of log pressure against 

time as a measure of permeability. The data required to identify these parameters are 

obtained from the decrease of pressure from 10 to 5 bar. This has the advantage that 

the tests did not have to be continued beyond 5 bar, resulting in much reduced testing 

period.
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Figure 3.5 Typical graph of log pressure against time, the gradient of which is m.

Martin (1986) carried out a series of relative permeability tests and produced a 

series of logio plots from which the value for ‘m’ could be found. These values for 

‘m’ were then assigned to the original decay curves taken from the tests. This 

produced a series of curves, Figure 3.6, and through overlaying subsequent decay 

curves their value for ‘m’ could be recognised.

This research has been presented, on many occasions, to individuals from 

outside the University and people in management, who require results in a format that 

they can understand. For this reason, the reporting of a value for ‘m ’ in respect to 

permeability would be meaningless to some people, whilst the concept of time is 

something that most understand. Therefore, of these three methods the measurement 

of the half time was the favoured approach to reporting results.
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Figure 3.6 Martin’s exponential decay curves for different values o f m (Martin 1986)

3.5 Physical analysis

3.5.1 Determination of loss on ignition

The determination of loss on ignition (LOI) was carried out by the method

given in BS EN 196-2:2005. The analyses were carried out at Cardiff University, 

School of Engineering laboratories.

3.5.2 Determination of specific surface

The specific surface was determined using the air permeability method (Blaine

method) as described in BS EN196-6:1992 Methods of testing cement -  Part 6 : 

Determination of fineness. These analyses were carried out at the laboratories of 

Lafarge cement, Aberthaw, by the Author.
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3.5.3 Determination of particle morphology

The scanning electron microscope

The Scanning Electron Microscope (SEM) has proved to be a very important tool for 

the study of size and shape of material particles. Its high magnification power and 

depth of focus allows for the observation o f surface contours, topography and the 

interaction between the smaller and larger particles. Preparation of the samples 

required a process of ‘sputter coating’.

Sputter coating is an ultrathin coating of electrically-conducting material, deposited 

either by high vacuum evaporation or by low vacuum sputter coating of the sample. 

This is done to prevent the accumulation of static electric fields at the specimen due to 

the electron irradiation required during imaging. Such coatings include gold, 

gold/palladium, platinum, tungsten and graphite. Another reason for sputter coating, 

even when there is more than enough conductivity, is to improve contrast, a situation 

more common with the operation of a FESEM (field emission SEM). When an 

osmium coater is used, a layer far thinner than would be possible with any of the 

previously mentioned sputtered coatings is possible (www3.2).

Unlike the transmission electron microscope (TEM), see section 3.5.4, where 

electrons of the high voltage beam form the image o f the specimen, the scanning 

electron microscope (SEM) produces images by detecting low energy secondary 

electrons. These are emitted from the surface of the specimen due to excitation by the 

primary electron beam. In the SEM, the electron beam is rastered across the sample, 

with detectors building up an image by mapping the detected signals with beam 

position. Generally, the TEM resolution is about an order o f magnitude greater than 

the SEM resolution; however, because the SEM image relies on surface processes 

rather than transmission it is able to image bulk samples and has a much greater depth 

of view and so can produce images that are a good representation of the 3D structure 

of the sample. Observations were made at 30Kv using a Jeol JSM 6300 SEM, Figure 

3.7, by Mr Ravi Mitha at the Cardiff University School of Engineering laboratories.
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(a) (b)
Figure 3.7 Image of a) the Jeol JSM 6300 scanning electron microscope b) the display unit as used in 

this research

The procedure for applying the sputter coating is as follows:

o A small amount of sample is spread onto a clean sheet of paper 

o Studs for use in the SEM are labelled and double sided adhesive tape is 

applied to one end

o The stud is placed onto the sample until a light coating of the sample 

covers the adhesive tape 

o The stud is then blown to remove any large or loose particles 

o The studs are placed in a Bal-tec SCD 005 Sputter coater 

o The lid is positioned and a the vessel and vacuum is achieved inside 

o On production of the vacuum the cell is filled with Argon gas 

o The samples are then flashed with gold at a power setting of 30mA for 

150 seconds

o The application of gold minimises the effect of charging which would 

cause interference with the image.
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3.5.4 Determination of particle size distribution

The determination of particle size distribution was carried out to the method 

given in BS EN 196-6:1992 Methods o f testing cement -  Part 6 : Determination of 

fineness (sieve method). The analysis was carried out to fulfil the requirements of BS 

EN 197-1, at the laboratories o f Lafarge cement, Aberthaw, by the Author.

3.5.5 Determination of compressive strength

The determination of strength was carried out to the method given in BS EN

196-1:2005 Methods o f testing cement -  Part 1: Determination o f strength. The 

analysis was carried out at the laboratories of Lafarge cement, Aberthaw, by the 

resident technical staff.

3.5.6 Particle size distribution

The materials were graded for particle size distribution using a Malvern 

Mastersizer X equipped with a 2mW helium neon laser having a beam diameter of 

nominally 1mm. The Mastersizer was attached to a computer with the Malvern 

software loaded and the required information, related to the materials being tested, 

was input.

Samples were suspended in water and placed in a reservoir from which 

suspensions were pumped to a measurement cell where the partial scatter light from a 

2 m W He/Ne laser was focused. The scattering of the light was focused through a lens 

and picked up by a detector located behind.

Instrument preparation

This research used water as the fluid, as the relative densities of the materials 

were low enough to allow the water to transport the material through the system 

without clogging the pipes. The pipes connecting the reservoir to the Mastersizer and
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the measurement cell were renewed and the lenses, measurement cell and presentation 

tank checked for impurities and cleaned if  required. The required lens was selected 

and mounted together with the measurement cell in front of the detector. De-ionised 

water was slowly poured into the flow cell, so as to avoid the production of bubbles, 

and allowed to circulate around the system.

Computer preparation

The initial configuration of the software was set up by Mr Paul Malpas of the 

School of Engineering, Cardiff University. On opening the Malvern program, an 

“Easy button line” was used to progress the set up in the correct order. Each step was 

progressed for every new sample. The set up consists of Setup hardware, Setup 

Analysis and Presentation selection.

o Setup Hardware requires the identification of the lens being used. This 

research used the 45,100 and 300mm lenses 

o Setup analysis requires that the particle density be input 

o Presentation selection requires that the refractive index of 1.5295 for 

the fluid (used to suspend the sample distilled water in this case) be 

input

o All other settings remain at default.

The system then runs its own setup program configuring the computer with the 

laser apparatus. When the ‘Measure’ window appeared the sample was placed into the 

flow cell using small quantities. Aids for the dispersion o f the material in the reservoir 

included a cell stirrer and an ultra-sonic stirrer both set at mid power to avoid the 

production of air into the water. Material was added to the flow cell and ceased when 

the ‘Obscuration’ measure on the computer showed approximately 20% (with a range 

of -2% and +5%). At this point the scanning was started and results collected. Eight 

increments of a single sample were made by continuously cycling around the system. 

The number of measurement sweeps prior to each calculation was the default setting 

o f 2 0 0 0 .
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If the laser sizer had not already been used it was allowed to warm up to 

working temperature for 20 min before the experiments were undertaken. After each 

sample measurement on the laser sizer its flow cell, the pump and the suspension 

system were flushed several times using tap water prior to being filled with de-ionised 

water.

3.6 Chemical analysis

3.6.1 Leco Furnace for measuring sulphur and carbon

This analysis was carried out using a Leco SC-144DR furnace, Figure 3.8 

below, by Mr Ravi Mitha at the Cardiff University School of Engineering 

laboratories. The SC-144DR carbon and sulphur analyser is a software controlled 

instrument designed to determine the carbon and sulphur content in a wide variety of 

organic materials such as coal, coke and oils, as well as some inorganic materials such 

as soil, cement and limestone, by combustion and non-dispersive infrared detection. 

The method is outlined below.

o 0.35g of sample is weighed into a nickel boat container 

o The furnace is turned on and the computer set to record the sample 

o The furnace operates at a constant 1350°C and when prompted the 

sample was slid into the furnace and the door closed 

o The sulphur and carbon contents are measured and the results recorded 

on the computer

o At ten minutes the measurements are complete and the sample 

removed from the furnace 

o This was repeated with a second sample and the results compared for 

any erroneous results and errors. The average of the two was used for 

the result

When the analysis begins, the sample is placed in a pure oxygen environment 

typically regulated at 1350°C. The combination of temperature and oxygen flow 

causes the sample to combust. All sample materials go through an oxidative ion 

process which causes carbon and sulphur bearing compounds to break down and free
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the carbon and sulphur. The carbon then oxidises to form CO2 and the sulphur forms 

SO2 . From the combustion system the gases flow through two anhydrone tubes to 

remove moisture, through a flow controller that sets the flow of sample gases to 

3.51itres / minute, and then through the infrared (IR) detection cell. The carbon IR 

measures the concentration of carbon dioxide gas whilst the sulphur IR measures the 

concentration of the sulphur dioxide gas. The computer reads the cell output nine 

times a second by an interval linearization equation and the result, corrected by 

calibration and for sample weight, is the total weight percent of carbon and sulphur.

Figure 3.8 Image of the Leco SC-144DR furnace as used in this research

3.6.2 X -ray diffraction (X RD )

The instrumentation used for this analysis was a Phillips X-Ray defractometer 

with a PW3830 Generator, Figure 3.9, and was operated by Mr Ravi Mitha at the 

Cardiff University School of Engineering laboratories.

Figure 3.9 Image of the Phillips X-Ray defractometer with a PW3830 Generator 
as used in this research
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X-ray diffraction is a non-destructive analytical technique used to identify and 

quantify the various crystalline forms, known as phases, of compounds present in 

powdered and solid samples. It is not an imaging technique. X-rays have the proper 

wavelength (in the Angstrom range, ~ 1 0 ' 8 cm) to be scattered by the electron cloud of 

an atom of comparable size. Based on the diffraction pattern obtained from X-ray 

scattering off the periodic assembly of molecules or atoms in the crystal, the electron 

density can be reconstructed. Additional phase information must be extracted either 

from the diffraction data or from supplementing diffraction experiments to complete 

the reconstruction. A model is then progressively built into the experimental electron 

density, refined against the data and the result is a quite accurate molecular structure 

(www3.3).

combined
waveform
wave 1 

wave 2

Figure 3.10 Image showing the effect of destructive interference as compared to constructive 
interference

An X-ray striking an electron produces secondary spherical waves emanating 

from the electron. This phenomenon is known as elastic scattering, and the electron is 

known as the scatterer. A regular array of scatterers produces a regular array of 

spherical waves. Although these waves cancel one another out in most directions 

through destructive interference, Figure 3.10, they add constructively, Constructive 

interference, in a few specific directions, determined by Bragg’s law (www3.4):

2dsin0 = n l

r v w w'v v v v v
Constructive interference 

Two sinusoidal waves in phase

Destructive interference 
Two sinusoidal waves 180° out 

of phase
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Here d is the spacing between diffracting planes, 9 is the incident angle, n is 

any integer, and X is the wavelength of the beam. When they land on a piece of film or 

other detector these specific directions appear as spots on the diffraction pattern called 

reflections, Figure 3.11. Thus, X-ray diffraction results from an electromagnetic wave 

(the X-ray) impinging on a regular array of scatterers (the repeating arrangement of 

atoms within the crystal).

Diffracted 
rays y

Figure 3.11 Image showing the diffracted rays forming a regular array of scatters on the detector 
(source www3.5)

The instrumentation works more efficiently if the samples are in a finely 

ground state, as these samples are already in powdered form no supplementary 

grinding was required. The identification of the phases is achieved by comparing the 

x-ray diffraction pattern, diffractogram, produced with an internationally recognised 

library of reference patterns, High score expert supplied by Panalytical, containing 

patterns for more than 70,000 phases. The details of the process used for this research 

are:

o An amount of the sample was placed in the sample holder, 

o The sample is compacted, covered and lightly tapped to align the 

particles in the sample 

o The sample holder is placed into its holder in the XRD and closed, 

o The door is opened to allow the x-rays to bombard the sample 

o The computer program is then run using the power setting 35kV, 

40mA
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3 .6 .3 Inductively Coupled Plasma- Optical Emission Spectrometry

Inductively Coupled Plasma -  Optical Emission Spectrometry (ICP-OES) is a 

very powerful multi-element analysis tool for ‘trace’ (ppb -  ppm) and ‘ultra-trace’ 

(ppq -  ppb) elemental analysis. Figure 3.12 presents a diagram of the main 

components of the ICP-OES.

Radio
Frequency
Generator

Transfer Optics

Torch

Nebulizer

To Waste

Spectrometer

Spray
Chamber

Microprocessor 
and Electronics

V _ _ _ _ _ _ _

Sample
Computer

Figure 3.12 Major components and layout of a typical ICP-OES instrument (Source www3.6)

In ICP-OES, the sample is usually transported into the ICP as a stream of 

liquid sample. Inside the instrument the liquid is converted into an aerosol, a very fine 

mist of sample droplets, through a process known as nebulization. Nebulization is a 

critical step, as the sample must be delivered to the plasma in a form that the plasma 

could reproducibly desolvate, vaporise, atomise, ionise and excite. A typical nebulizer 

is shown in Figure 3.13. In this nebulizer the solution is introduced through a capillary 

tube to a low pressure region created by a gas flowing rapidly past the end of the 

capillary. The low pressure and high speed gas combine to break up the solution into 

an aerosol.
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Concentric Nebulizer Pump tubing

Sample

Clamp

Argon line

Figure 3.13 Image showing the concentric nebulizer used for ICP-OES

Once the aerosol has been created it must be transported to the torch so it can 

be injected into the plasma. Because only very small droplets in the aerosol are 

suitable for injection into the plasma the aerosol must first pass through a spray 

chamber, Figure 3.14. Spray chambers are designed to allow droplets of around 10pm 

or smaller to pass through to the plasma. This constitutes around 1 - 5% of the sample 

with the remaining 95 - 99% being drained into a waste container.

To torch t

Nebulizer 

 >

\  To drain

HI
Figure 3.14 Image showing the spray chamber which filters the aerosol from the nebulizer

The ICP torch consists of 3 concentric quartz glass tubes. In Figure 3.15, these 

are shown as the outer tube, middle tube, and sample injector. The torch can either be 

one-piece, with all three tubes connected, or it can be a demountable design in which 

the tubes and the sample injector are separate. The gas (usually argon) used to form 

the plasma (plasma gas) is passed between the outer and middle tubes at a flow rate of 

12-17 1/min. A second gas flow, the auxiliary gas, passes between the middle tube
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and the sample injector at 1 1/min, and is used to change the position of the base of the

plasma relative to the tube and the injector. A third gas flow, the nebulizer gas, also 

flowing at 1 1/min carries the sample, in the form of a fine-droplet aerosol, from the 

sample introduction system and physically punches a channel through the centre of 

the plasma (www3.6).

Figure 3.15 Image showing the torch assembly used for ICP-OES (source www3.6)

The radio frequency (RF) generator is the device that provides the power for 

the generation and sustainment of the plasma discharge. This power, typically ranging 

from about 700 to 1500 Watts, is transferred to the plasma gas through a load coil 

surrounding the top of the torch. With argon gas flowing through the torch, a high- 

voltage spark is applied to the gas, which causes some electrons to be stripped from 

their argon atoms. These electrons, which are caught up and accelerated in the 

magnetic field, then collide with other argon atoms, stripping off still more electrons. 

This collision induced ionization of the argon continues in a chain reaction, breaking 

down the gas into argon atoms, argon ions, and electrons’, forming what is known as 

an inductively coupled plasma discharge. The ICP discharge is then sustained within 

the torch and load coil as RF energy is continually transferred to it through the 

inductive coupling process (Boss and Fredeen 2004).

The sample aerosol is then introduced and immediately collides with the 

electrons and charged ions in the plasma and is itself broken down into charged ions. 

The various molecules break up into their respective atoms which then lose electrons 

and recombine repeatedly in the plasma, giving off radiation at the characteristic 

wavelengths of the elements involved.

interface Outer P,ss™-v ^ ,l,ary 
tube 935 \  955

Plasma | Middle \  ±

Netufzergas 
Sample sector

RF pjw er
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The next step is the differentiation o f the emission radiation from one element 

from the radiation emitted by other elements and molecules. This is carried out 

through the use of a diffraction grating. This is simply a mirror with closely etched 

lines on its surface. When light strikes a grating it is diffracted at an angle that is 

dependant on its wavelength and the line density o f the grating. In general, the longer 

the wavelength and the higher the line density, the higher the angle of diffraction will 

be. To separate polychromatic light predicably, the grating is incorporated in an 

optical instrument called a spectrometer. Its function is to form the light into a well 

defined beam, disperse it according to wavelength with a grating and focus the 

dispersed light onto an exit plane or circle where the optical detector sits.

Within the optical chambers), after the light is separated into its different 

wavelengths (colours), the light intensity is measured with a photomultiplier tube 

(PMT) or tubes physically positioned to view the specific wavelength(s) for each 

element line involved. The PMT is a vacuum tube which contains a photosensitive 

material called the photocathode that ejects electrons whenstruck by light. These 

electrons are accelerated towards a dynode which when struck releases two to five 

secondary electrons. These electrons then strike a second and a third dynode which 

releases further electrons each time. The final step is the collection of the secondary 

electrons by the anode. As many as 106 secondary electrons may be collected as a 

result of a single photon strike on the photocathode. The electrical current measured at 

the anode is then used as a relative measure of the intensity o f the radiation reaching 

the PMT. The intensity is then compared to previously measured intensities of known 

concentrations of the elements, and their concentrations are then computed by 

interpolation along the calibration lines (Boss and Fredeen 2004).

To achieve the accurate results that the ICP- OES can deliver the preparation 

and digestion of the samples is paramount. Two methods of sample preparation have 

been used for this research namely Fusion Flux and Acid Digestion and a description 

of each process follows:
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1. Fusion Flux method: performed by Mr Ravi Mitha at the Cardiff University 

School of Engineering laboratories. The main steps are:

o 0 . 1  g of the material was weighed onto a platinum crucible

o 0 .6 g of lithium metaborate was added to form a bead

o 1 0  drops of lithium iodide was added to the sample to prevent sticking 

o The crucible was supported in the Claisse Fluxer (M4)

o The propane gas burner was lit beneath the crucible

o The crucible was rotated as the heat was applied achieving approximately

1050°C

o On achieving a molten state the mixture was dropped into a beaker 

containing nitric acid at 2% concentration 

o The solution was stirred with magnetic stirrers on a heated block for 

approximately 30 minutes 

o The solution was poured into conical sample jars and made up to 100ml 

with de-ionised water

2. Acid Digestion using a microwave: Performed by Mr Ravi Mitha at the Cardiff 

University School of Engineering laboratories. The main steps are:

o O.lg of sample was weighed into a clean dry polytetrafluoroethylene 

(PTFE) microwave tube, 

o 2ml of hydrofluoric acid (HF) was added to the microwave tube, 

covered and allowed to stand overnight, 

o 6 ml of aquaregia (a 50/50 mix o f nitric acid (HNO3) and hydrochloric 

acid (HCI)) was added to the microwave tube and allowed to stand for 

30 minutes

o The microwave tube was then heated in the microwave for 30 minutes 

and allowed to cool for 2 0  minutes 

o 6 ml of saturated boric acid (B(OH)3) was added to the tube to 

neutralise the HF

o The mixture was re-heated in the microwave for a further 15 minutes 

and allowed to cool for 2 0  minutes
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Samples for testing were made up to 50ml using de-ionised distilled 

water

The maximum temperature in the microwave was set at 200°C with a 

maximum pressure of 40 bar

Calibration and use of the ICP

The calibration of the Perkin Elmer Optima 2100 DV ICP was carried out by 

Mr Ravi Mitha prior to running the tests. The procedure was as follows:

o A commercial spectroscopic standard was run containing each of the 

required elements. Dilutions o f the standard were made using distilled 

water at 0 . 1  ppm, 1 . 0  ppm, 1 0  ppm and 1 0 0  ppm 

o These dilutions were run through the ICP together with a blank sample, 

of de-ionised water only, to check for errors in the analysis 

o A correction coefficient accuracy o f 1.0 is expected, this analysis gave 

an accuracy of 0.999986 

o One sample of each digestion method was analysed 

o On completion of calibration the samples were analysed

Conversion of returned information to Oxides

The ICP returns a numerical amount for the element content which then 

requires converting to an oxide. To get the percentage of the element in the sample the 

following formula is used:

R x  V / W x  10000 = P %

Where:

R = result from the analysis (mg/L)

V = liquid volume after digestion (ml)

W = weight o f the sample digested within the liquid (g)

This result is multiplied by the ratio o f its element mass to the relative oxide mass. 

For example using aluminium oxide AI2O3 :

o

o
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(((2 x Al) + (3 x O)) / (2 x Al)) x P = percent of oxide in sample

Where Al and O are the atomic masses (g/mol)

The full analysis results are shown in Appendix 3.

3.6.4 Transm ission E lectron M icroscopy (TEM )

Transmission electron microscopy (TEM) is a microscopy technique whereby 

a beam of electrons is transmitted through an ultra thin specimen, interacting with the 

specimen as it passes through it. An image is formed from the electrons transmitted 

through the specimen, magnified and focused by an objective lens and appears on an 

imaging screen. The image can be magnified to identify individual particles and an 

elemental analysis carried out using an Energy Dispersive Analysis of X-rays 

(E.D.A.X) technique.

The apparatus used for the analysis was a Tecnai 12 TEM, shown in Figure 

3.16, operating at 80kV supplied by F.E.I. and Phillips Company used in conjunction 

with the Tecnai User Interface software and the E.D.A.X. micro-analysis system 

software.

Figure 3.16 Image showing the Tecnai 12 TEM as used in this research
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The samples were prepared by Mr Ravi Mitha at the Cardiff University School 

o f Engineering laboratories. The main steps are outlined below:

o A tiny amount of the sample is placed in a test tube 

o To this several drops of de-ionised water are added 

o To ensure that there are no clusters in the sample it is subjected to an 

ultra-sonic bath until no visible clusters are seen 

o De-ionised water is heated in a beaker to boiling point 

o Carbon coated mica is floated in the water until the carbon separates 

and floats to the surface 

o Gold gilded grids with 150 mesh are coated with the carbon 

o The sample is dropped on to the carbon using a fine pipette 

o This is left until all the moisture has evaporated and only the sample 

remains on the mesh 

o The samples are then ready for use with the Electron Microscope

3.7 Inter-grinding

Inter-grinding of the material is a process whereby the cement replacement 

material is added to the cement at the clinker grinding stage. This can achieve benefits 

such as the production of a finer material, a shorter grinding time and control over the 

elemental make-up of the finished product. To establish whether any physical benefits 

could be achieved through inter-grinding a CEM II material was produced using a 

laboratory based ball mill grinder in an attempt to reproduce a representative material 

that would be produced at the cement works. The grinding of the materials was 

carried out using a Labtec ESSA, Vibratory Puckmill LM1-P

The constituents and quantities required to produce a CEM I cement were 

acquired from the cement works at Aberthaw. Table 3.7 gives the exact quantities of 

each material used to produce 7.6kg o f CEM I, this amount being chosen so as not to 

overload the ball mill and keep the amount of grinding required to a minimum. When 

adding the fly ash to the blend only the total mass of the clinker was reduced to allow 

for this.
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Table 3.7
Quantities required for the inter-grinding of the fly ash
Limestone Gypsum Grinding Total 27% 33% Total

agent clinker replacement Replacement

Clinker Fly ash Clinker Fly ash

(kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg)

0.243 0.342 0.006 7.015 5.121 1.894 4.700 2.315 7.600

The clinker and limestone were first reduced in size by crushing using firstly a 

jaw crusher followed by a gyratory crusher. This was done to decrease the overall 

grinding time as the larger elements took a considerable amount of time to reduce in 

size. The materials were then accurately weighed and placed in a plastic container 

large enough so as not to lose any material from the top. If the material was to remain 

in the container for any length of time a lid was attached to avoid contamination. The 

ball mill was loaded with approximately 60 steel balls varying in size between a 

maximum of 30mm and a minimum of 25mm and the material added. The ball mill, 

shown in Figure 3.17, had a diameter of 390mm and ran at a speed of 143rpm. The lid 

was securely fitted to the mill and the grinding started.

Drum

Figure 3.17 Image of the Ball mill used for the grinding of materials to produce CEM I
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Figure 3.18 Determination of grinding time from plotting the Blaine fineness of the cement to the time 
in the ball mill

To achieve a grinding time which sufficiently replicated the CEM I produced 

at the cement works, a trial grinding was undertaken. The grinding for this trial was 

stopped at regular intervals and a sample removed for sizing using the Blaine method. 

After surpassing the required fineness of 365m2/kg a couple of times a graph, 

presented in Figure 3.18, was produced of the Blaine fineness plotted against the time 

taken to achieve this fineness. At 365m /kg the associated grinding time was plotted 

as 255 minutes. To confirm this a control CEM I was ground in the ball mill for 255 

minutes and the resulting material checked for fineness using the Blaine method. It 

was found that the results were within 5m2/kg and hence the time selected was 

deemed adequate for the successful reproduction of a CEM I cement.
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4. Results - fly ash

4.1 Introduction

4.2 The processing of Fly Ash

4.3 Results from processing Fly Ash

4.4 The effect of processing Fly Ash

4.5 Principal identifiable characteristics o f a cement replacement material

4.6 Conclusions

4.1 Introduction
This chapter deals with the analysis o f a Fly Ash (FA) which the partner company, 

Minimix Concrete, has sourced locally at Aberthaw, South Wales. Minimix wishes to 

blend this FA with its Ordinary Portland cement (OPC) to produce a CEM II cement 

and needs to know that firstly, it conforms to the standards; second, performs within 

the concrete and third, that it is cost effective. This third part is not dealt with in this 

thesis but the cost analysis model produced and used by the Author for the purpose of 

analysing costs can be seen in Appendix 4. The supplied FA, the Raw FA, was then 

subject to an Electrostatic separation process, Processed FA, and an air swept 

classification process, Classified FA, and the analysis completed again. This was 

carried out to identify the physical and chemical changes which occurred due to the 

processing and the benefits achieved.

The chapter begins with a look at the controls used and provides values against 

which the test materials can be measured. The chapter continues by looking at the use 

of fly ash as a cement replacement and the effect that processing the fly ash producing 

a finer ash has on the concrete produced. The research studies the materials’ 

performance, chemical and physical characteristics and tries to identify the 

characteristics which either enhance the concrete in which it is used or impair the 

concrete from achieving its full potential.
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Further materials are then introduced as possible cement replacement materials 

and their physical and chemical properties scrutinised to ascertain which aspects of a 

material provides the perfect condition for a cement replacement material.

4.1.1 Errors

Due to the high estimate of samples required and the number of concrete mixes 

necessary to provide these samples it was decided from the outset to standardise the 

mixing and testing procedure. It was hoped that maintaining a routine would reduce 

errors and provide a narrow spread o f results; however, potential sources of errors 

need to be identified.

The materials used were obtained and stored in a room with climate control, thus 

ensuring that the cement remained useable with no change to its properties for 

example moisture ingress causing the cement to harden. The cement (Ordinary 

Portland Cement Ready Mix (OPCRM)) was supplied from one manufactured batch 

direct from the cement works (Lafarge Aberthaw) and stored in sealed containers 

within the laboratories at the University. The aggregate proved to be a problem due to 

the quantities required and a number of deliveries were necessary during the period of 

mixing. Although the aggregates remained within the grading as required by the 

British Standards (BS EN 12620) there is room for variability within the aggregate 

size having a possible effect on the aggregate grading within each mix.

Achieving the correct slump was fundamental to obtaining accurate compressive 

strength results. This research relied on the fact that when the coarse aggregates were 

soaked for an exact period of time the moisture content would standardise for each 

mix. Periodical random moisture content checks showed little difference in the 14mm 

to 2 0 mm aggregate between tests with the 6 mm to 1 0 mm being the most inconsistent. 

Both the sand and dust were tested prior to each set o f tests, as these materials could 

not be brought to an exact moisture content through soaking. Having been dredged 

from the Severn estuary, the sand was saturated; however, being stored indoors 

ultimately dried the material, whilst the dust being stored indoors at the quarry
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showed little difference in moisture content prior to mixing. The total amount of sand 

which would be used for a day’s mixing was weighed and blended so that a 

representative figure for the particle grading and moisture content for the sand could 

be achieved prior to concrete mixing. Three samples of sand were used to determine 

the moisture content and, after checking for any anomalies within the moisture 

content, the average taken. A similar approach was use for the dust. The 

determination of the moisture content was carried out using the following formula:

Wet weight = A

Dry weight = B

Moisture content = A-B / B x 100

The range of moisture contained within each o f the aggregates is presented in 

Table 4.1. Finally, the same equipment was used at the University to measure all the 

quantities required, to mix the concrete, to compact the concrete in the moulds, cure 

the samples and test the hardened properties o f the concrete for every mix produced.

Table 4.1
Range of moisture contents of the aggregates as measured during this research
Material Moisture content 

(minimum)

Moisture content 

(Maximum)

Coarse aggregate 20mm and 14mm 2.2 2.2

Coarse aggregate 6mm and 10mm 3.2 3.6

Dust 1.0 1.0

Sand 3.1 4.3
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4.1.2 Control mixes

To establish a measure for the viability of any potential material, control mixes 

were required. These control mixes were taken from the designs of the company 

partner, Minimix concrete, and for ease seven designs were initially selected:

1) Low cement content 140kg/m

2) High cement content 450kg/m3

3) 5 intermediate cement contents o f 200, 250, 300, 350 and 400kg/m3

These designs are given in Table 4.2 below whilst the full compliment of mix 

designs used for this research can be seen in Appendix 1.

Table 4.2
Component materials required to produce lm3 concrete as used in this research

Batch weights for lm (kg)

Material Cement content (kg/m3)

140 200 250 300 350 400 450

Cementitious material 140 200 250 300 350 400 450

Coarse aggregate 20mm 407 403 400 404 393 393 397

Coarse aggregate 14mm 407 403 400 404 393 393 397

Coarse aggregate 10mm 184 182 169 185 181 164 152

Coarse aggregate 6mm 184 182 169 185 181 164 152

Dust 500 490 465 438 425 415 411

Sand 388 380 387 348 336 308 287

Different types and classes of cement are produced for various purposes. BS EN

197-1:2000 catalogues a number o f cement specifications together with any 

restrictions on their use. The following cements were chosen as controls for this study 

as being the most commonly supplied from the partner company:

1) CEM I (OPC)

2) CEM IH/A (Blended OPC and Ground Granulated Blast Furnace Slag (GGBS)

in the ratio 50/50)
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The mixes were produced adding enough free water to achieve a mid range slump 

of typically 70mm. This falls within the S2 classification as set out in BS EN 206:1- 

2000, with a range of between 50 and 90mm with a tolerance of +- 20mm. Although 

some discrepancy is to be expected between each mix due to the nature of concrete 

and the tester’s slumping technique, every effort was made to achieve the 70mm 

slump.

Admixture to aid workability, whilst reducing the addition of free water, was 

added to the mix in the quantity (as recommended by the supplier) of 0.4% by mass of 

the cement content.

BS EN 206 has a requirement that the designed compressive strength of concrete 

be recorded at 28 days; this has therefore been used to establish the suitability of the 

material as a cement replacement within this research as within industry.

CEM I - Ordinary Portland cement control

Figure 4.1 presents the compressive strength results at 28 days for three CEM I 

control mixes of identical designs. These mixes contain 100% Ordinary Portland 

cement (OPCRM) at 300kg/m cement content containing no cement replacement 

material. The mixes were produced to study the variability encountered between 

identical mix designs repeated at varying times. This information will highlight the 

range of strengths achieved within a single mix which can be allowed for in the 

research samples. This means that samples recording a low result will not necessarily 

be removed from the research if  they fall within a range higher than the control. In 

practice this variability in compressive strength is dealt with by the Quality Scheme 

for Ready Mixed Concrete (QSRMC). This standard uses a statistical analysis of a 

running test regime to apportion a mean strength to a selected mix design and then 

reduce this strength by a margin which ensures the required strength is always 

achieved. For this research the compressive strength achieved has a bearing only as a 

comparison to subsequent mixes and not, at this point, as a commercial product in the 

sense that QSRMC regulations are required to be followed.
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OPC Compressive results

□  mix 1 B  mix 2 Dmix 3 □  Average

05

o 1
1 I 2 7 28 56

Hmix 1 19.4 | 31.2 35.8 45.9 55.6
■  mix 2 19.4 30.0 35.0 ' 51.0 56.0
□  mix 3 18.3 29.2 34.7 49.5 54.0
□  Average 19.0 | 30.1 35.2 48.8 55.2

Time (days)

Figure 4.1 Variation in compressive strengths between three identical concretes as a function of time 
curing - cement content 300kg/m3

A large number of factors affect the strength of ready mixed concrete making it a 

highly variable product. A coefficient of variation for the compressive strength of 

concrete is typically between 10 per cent and 20 per cent (Sear L 2003). As this is a 

laboratory mix it should be expected that the higher control available would achieve a 

variability in strength lower than 10 per cent.

It can be seen from Figure 4.1 that there is a variation in strength between each of 

the mixes at different time periods. Figure 4.1 shows that there is a strength variation 

between the weakest and strongest of l.IN/mm2 at 7 days giving a variability from 

the average of 2.8 per cent. The strength difference increases to 5.1N/mm2 at 28 days 

but drops to 2N/mm2 at 56 days. This gives a strength variability of 5.9 per cent and 

2.2 per cent respectively.

It can also be seen that not one of the mixes is continuously the weakest or 

strongest throughout and that the compressive strength increase varies between each 

of the mixes at 7, 28 and 56 days. This difference may be due to the concrete make up 

actually placed into the moulds (well graded as opposed to a higher percentage of
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larger aggregate) or compaction differences between the test cubes leading to a higher 

level of voids. Either way, this needs to be recognised and allowed for when studying 

the results of this work.

As this research is looking to match the control mix designs, the lowest value for 

the compressive strength will be used as a measure. At 28 days, which has already 

been mentioned as the requirement o f BS EN 206 for the testing of concrete, the 

lowest compressive strength result for 100% cement content can be seen as 

45.9N/mm2. This will, therefore, become one o f the control compressive strengths for 

this research.

CEM III/A Ground Granulated Blast furnace Slag (GGBS)

The second control being used throughout this research is a 50/50 blend of GGBS 

and OPC, as this is one of the most commonly used Supplementary Cementitious 

Materials (SCMs) in industry (Scrivener et al. 2008).

GGBS cements have been in use for a reasonably long period due to the overall 

economy in their production as well as their improved performance characteristics in 

aggressive environments. Also, the use o f pozzolans as additives to cement, and more 

recently to concrete, is well accepted in practice. GGBS is one such pozzolanic 

material (termed by a few as a supplementary or complimentary cementitious 

material) which can be used as a cementitious ingredient in either cement or concrete 

composites. Research work to date suggests that these supplementary cementitious 

materials improve many of the performance characteristics of the concrete, such as 

strength, workability, permeability, durability and corrosion resistance (Babu et al. 

2000). This blended cement has been chosen as a control due to the fact that the 

company partner supplies this as common practice. The majority o f the concrete 

supplied now contains GGBS.

As with the OPCRM tests, a number o f concrete mixes were produced using an 

identical mix design and their 28 day compressive strengths compared to find a 

minimum and maximum value. Unlike the OPCRM mix, a selection o f cement
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contents was also introduced. This was to assess the effect that a cement replacement 

may have on compressive strength as the cement content increases or decreases. The 

mix designs chosen have cement contents of 140kg/m3, 300kg/m3 and 450kg/m3, the 

material quantities for each of these mix designs as used in this research are shown in 

Table 4.2 above. The mix comprised 50 per cent GGBS and 50 per cent OPCRM.

□  140 cement content 1300 cement content □ 4 5 0  cement content

M ix  2 M ix  3

0 1 4 0  c e m e n t  c o n t e n t

3 0 0  c e m e n t  c o n t e n t

□ 4 5 0  c e m e n t  c o n t e n t

Mix D esignation

Figure 4.2 The 28 day compression strength results for the GGBS control mix showing the variation in 
strength through identical mix designs at different cement contents

Figure 4.2 presents the results of the compressive strength tests on the GGBS 

control samples. It can be seen from the chart that the there is a wide range of results 

from each mix. The 140kg/m3 mix shows a difference between the weakest and 

strongest mix as 3.5N/mm2 with a 12 per cent deviation from the average. The 

300kg/m3 mix shows an 11.5N/mm2 difference with a 13 per cent deviation from the 

average, whilst the 450kg/m3 mix has the highest variation between the weakest and 

strongest mix at 15.5N/mm2 the deviation from the average being 14 per cent. The per 

cent deviation for each of these mixes is much higher than for the OPCRM mix but 

within the maximum of 20 per cent as provided by Sear (Sear L 2003).
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□ GGBS
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Figure 4.3 The 28 day compression strength results for the GGBS control mix showing the 
compressive strength of mix designs using varying cement contents

Figure 4.3 displays the compressive strength of a blended 50% GGBS with 50% 

OPCRM mix at varying cement contents. It can be seen that the compressive strengths 

for the 140kg/m\ 300kg/m3and the 450kg/mJ are similar to the average compressive 

strengths shown in Figure 4.2. The variations are 7 per cent for the 140kg/m3, 1 per 

cent for the 300kg/m3 and 3 per cent for the 450kg/m3 mix.

Table 4.3
GGBS control mix minimum strengths achieved at the varying cement contents to be used as 
comparisons to research materials. __________________________________ _____________
Cement content (kg/m3) Target compressive strength (N/mm2)

140 18.5

200 28.4

250 37.6

300 47.2

350 55.7

400 59.1

450 63.6
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From this information a decision has to be made on which compressive strength 

values should be used as the comparison to the research samples. For research 

purposes if  the samples achieve the lower strength values then this could be classed as 

a comparison, however; if the sample material is to be used in industry the reduction 

as required by the QSRMC will have to be accounted for. For this initial research the 

values achieved and shown in Figure 4.3 will be used as the comparative values with 

the knowledge of the variability previously found with the compressive strengths. 

Table 4.3 records the compressive strength values taken from Figure 4.3.
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4.2 The Processing of fly ash

Electrostatic separator

Fly ash received directly from the power plant is a very unstable material. One 

consequence of high carbon is that it adversely affects workability while variable 

carbon content leads to erratic behaviour with respect to air entrainment (Neville, 

1995). One method of reducing the carbon content is through the use of an 

electrostatic separator. Electrostatic separation technology is relatively new and there 

are few commercial applications worldwide. It, therefore, presents a unique 

opportunity to look at the effect that the processing of a fly ash has on its use as a 

cement replacement.

POSITIVELY
CHARGED
PARTICLES
(CARBON)

FEED RATE 
40 TONS/HR.

RAW ASH 
SILO

VIBRATING
SCREEN

NEGATIVELY
CHARGED
PARTICLES
(MINERAL)

AIRSLIDE

STI SEPARATOR

SAMPLER

HIGH
CARBON

SILOPRODUCT
STORAGE

SILOS

BLOWER

ASH PUMP

TO COAL CONVEYOR 
FOR REBURN

DRY TRUCK L0AD0UT

Figure 4.4 Schematic of the separation process (www4.2)
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The electrostatic separator used for this research was of the type supplied by 

Separation Technology Incorporated (STi), USA. illustrated in Figure 4.4. The 

process uses positive and negative charge to separate the carbon rich material from 

the mineral with continuous sampling and adjustment to achieve the targeted carbon 

content.

Operation

Fly ash was introduced into the separator from the storage silo above. The 

material was fed into the thin gap between two parallel planar electrodes. The 

particles are triboelectrically charged. Triboelectric charging is when two different 

materials are pressed or rubbed together, the surface o f one material will generally 

steal some electrons from the surface o f the other material. The material that steals 

electrons has the stronger affinity for negative charge o f the two materials, and that 

surface will be negatively charged after the materials are separated. (Of course the 

other material will have an equal amount o f positive charge)(www4.1). Which 

material becomes negative and which becomes positive depends on the relative 

tendencies of the materials involved to gain or lose electrons. Some materials have a 

greater tendency to gain electrons than most others, in the same way that there are 

others which tend to lose electrons easier than others. Unbumed carbon particles in 

ash take on positive (+) charges; minerals take on negative (-) charges through 

particle-to-particle contact (www4.2).

On entering the separator, the ash was subjected to a positively charged plate 

at the top and a negatively charged plate at the bottom. The carbon rich particles 

having taken on a positive charge are attached to the negatively charged bottom plate 

whilst the mineral particles take on a negative charge and are attached to the 

positively charged top plate. A high speed open mesh belt running the length o f the 

separator, in a clockwise direction, scrapes both the top and bottom plates. The ash is 

collected in the mesh and dropped into storage silos at either end, carbon rich at one 

end mineral at the other. Access to allow safe sampling of the material is located at 

the ends of the belt so as monitoring o f the material properties can be carried out at 

intervals during the operation. The separator used during this research is shown in 

Figure 4.5.
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Figure 4.5 Separator in use at the Longannet power station in Scotland

Air swept classifier

The air swept classification is performed by a forced vortex classifier designed 

to disperse, then classify, fine particles into coarse and fine fractions. High energy 

dispersing air enters the rotor radially around the entire outer edge at the dispersion 

tips, while feed particles enter the 360 degree dispersing air zone through an inlet in 

the rotor ring. In the classification zone, particles are acted upon by outwardly 

directed centrifugal force and an inwardly directed drag force. Air carries the 

dispersed fine particles spirally inward to the central fine fraction outlet. Coarse 

particles move outward around the rotor periphery to the coarse fraction outlet. 

Entrained fines are recycled from the coarse cyclone collector back to the classifier. 

The desired cut off point is selected by adjustment of the airflow rate, rotor speed or 

both (www4.3).
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4.3 Results from processing Fly Ash

As mentioned in Section 2.8, fly ash in its various forms has been known as a 

useful cementitious material for hundreds of years. One of the primary concerns with 

its use has been the variation in source quality, fineness of the material and carbon 

content, all of which affect the quality of mortar and concrete. Through the use of a 

new electrostatic processing unit, devised and supplied by Separation Technologies 

Incorporated (STi), it is hoped that the fineness and carbon content of the fly ash can 

be controlled sufficiently to result in a consistently high quality fly ash giving 

concrete properties and strengths at least comparable to that of GGBS. The fly ash 

used was supplied by Aberthaw Power Station in its raw form which was then subject 

to electrostatic processing.

(a) (b)
Figure 4.6 Images taken at the STi processing plant Longannet in Scotland a) computer controlled

process showing feed rate, weights, delivery routes and final storage location, b) sampling 
of the final processed fly ash taken from the separator for analysis

Approximately 60 tonnes of raw fly ash was transported in two tankers from 

Aberthaw to Longannet, Scotland, to be fed through the electrostatic processor. This 

is a relatively new process with only seven of these systems operational in the world, 

six in North America and one in Scotland. The process was attended by the Author 

who oversaw the processing operation. The whole process was computer controlled 

with regular sampling of the product to ensure compliance to requirements (Figure 

4.6a and 4.6b). This process separated out the larger particles, which tend to consist
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of mainly carbon, and the finer more useful material. The set up of the STi plant for 

the purpose of this research yielded 62 per cent “processed ash” as a usable product 

with the required loss on ignition. Figure 4.7 shows the processed ash, the raw ash and 

the waste ash with loss on ignition values of 3.7%, 19.04% and 44.39% respectively.

Figure 4.7 Image comparing the three products within the separation process, the processed ash, the 
raw feed ash and the waste, high carbon, ash.

27 per cent processed fly ash and 73 per cent OPCRM

The levels of fly ash used to replace the OPCRM for these tests were 25%, 27%, 

30%, 33% and 35% on a mass basis. At these percentages the blended cement would 

be categorise as a CEM II B-V and hence conform to BS EN 197 which restricts the 

percentage of fly ash used to between 21 and 35 per cent. As a starting point 27% was 

used to get a feel as to how the fly ash would perform. Figure 4.8 compares the 28 day 

compressive strength of the processed fly ash to the GGBS control at cement contents 

of 140,200,250,300,350,400 and 450 kg/m3.
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□  GGBS 127% Fly ash
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□  GGBS 18.5 28.4 37.6 47.2 55.7 59.1 63.6

■  27% Fly ash 13.7 29.9 36 9 49.0 54.8 61.6 65.1

Cem ent con ten t (kg/m3)

Figure 4.8 28 day compressive strength results using STI Processed fly ash at 27% fly ash to 73% 
OPCRM compared to a blended 50% GGBS 50% OPCRM

Overall the cement blended with 27% processed fly ash and 73% OPCRM gave 

positive results when compared to the GGBS control mixes at 28 days. The 200kg/m3, 

300kg/m3, 400kg/m3 and 450kg/m3 cement contents exceed the compressive strengths 

of their respective GGBS controls whilst the mixes containing the 250kg/m3 and 

350kg/m3 cement contents failed to achieve the strengths of the GGBS controls. 

However the results remain within 5% of each other. The mix containing the 

140kg/m3 cement content failed to achieve the compressive strength of the GGBS 

control and showed a 25% difference in strength.

Processed fly ash at various replacement levels

Following on from the positive results gained at the 27% replacement level, the 

trials of the processed fly ash progressed to cover the selected replacement levels 

within the classification of the CEM II B-V group as discussed above. At this point 

the focus was placed on only three cement contents 140kg/m3, 300kg/m3 and the 

450kg/m3.
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The results of the 28 day compressive strength tests are presented in Figure 4.9. It 

can be seen that at 28 days the mix designs containing the 140kg/m3 cement content 

are, on average, giving 5.5 N/mm2 less strength than the GGBS control. As the 

cement content increases to 300kg/m3 this difference is reduced, however, the 25%, 

30% and 35% fail to match the strength of the GGBS mix, with only the 27% and 

33% mixes exceeding the GGBS compressive strength. At 450kg/m3 cement content, 

all but the 25% replacement mix show an improvement on the compressive strength 

of the GGBS control. As discussed earlier a variance of 5 per cent has been identified 

between similar mixes from different batch mixes and this should be taken into 

account here. If it can be assumed that the lower compressive strength values are at 

the bottom of the strength range then this could increase with subsequent mixes. This 

would mean that at 450kg/m3 cement content the 25% mix could easily surpass the 

strength of the GGBS mix if the 5% were to be added. At the 300kg/m3 cement 

content the lowest strength achieved is by the 30% fly ash replacement at 6.5% lower 

than the GGBS control. An increase by 5% would however reduce the margin 

between the fly ash and GGBS to 0.72N/mm2. The 140kg/m3 having a 5.9N/mm2 

lower compressive strength means at 31% this is well outside the 5% allowance, and 

with all the results being similar it shows that the lower cement content is having a 

significant effect on the rate of strength gain.

□  GGBS ■ 25% B27%  D30%  B33%  D35%

O

■ ■

0
140 200 250 300 350 400 450

□  GGBS 18.5 2 8 4 47.2 55.7 59.1 63.6

■  25% 12.6 0.0 0.0 44.6 0.0 0.0 62.8

■  27% 13.7 29.9 36.9 49.0 54.8 61.6 65.1

■  30% 12.9 0.0 0.0 44.1 0.0 0.0 67.6

■  33% 13.1 0.0 0.0 47.9 0.0 0.0 66.2

□  35% 12.9 0.0 0.0 I 0.0 0.0 64.6

Cem ent conten t (kg/m )

Figure 4.9 28 day compressive strength results comparing the processed fly ash blended with OPCRM 
at varying levels to the GGBS controls
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Previous research has shown that it would be expected to see a drop in 28 day 

compressive strength as the fly ash content increases (Sear 2007, Siddique 2004). 

Figure 4.9 should therefore show that at 25% replacement a stronger mix is achieved 

than the other fly ash mixes. However, in all cases there is an increase in strength at 

some point above the 25% replacement. For example, at 450kg/m3 cement content the 

strength increases from 62 to 65 to 67 N/mm as the amount of FA increase from 25% 

to 27% to 30%. At replacement levels above 30% the strength is reduced but these 

reduced values still remain higher than for the 25% mix.

4.2.1 Water / Binder ratio

The water / binder ratio (w/b) is an important factor for two main reasons. First, it 

is well documented that the w/b ratio has a direct effect on the compressive strength 

of concrete, i.e. the higher the ratio the more water has been added and the weaker the 

concrete will be (Balendran et ai. 1995, Lydon 1982, Lewis 2003). Second, the British 

and European standards have set limits for certain mix designs to ensure that 

durability requirements are met. As discussed in Chapter 2, Lydon (1982) suggested 

that the water / cement ratio (water / cement ratio is used when 100% OPC has been 

used, therefore without a replacement material) is one o f the main variables which can 

affect the compressive strength of concrete. A report issued by the Concrete Society 

concluded that the cement content has no significant influence on compressive 

strength; w/b ratio appears to be the main parameter (Concrete Society Working 

party, 1999). This highlights the importance o f the w/b ratio with respect to 

maximising the strength of a concrete mix.

Table 4.4
Water / binder ratios required to achieve a 70mm slump for the various fly ash percentages, GGBS 
control and cement contents

Cement 
binder content 
(kg/m3)

Replacement (%) BS
8500
Limit

GGBS
(50%)

25 27 30 33 35

140 1.43 1.22 1.26 1.27 1.3 1.19 -

300 0.56 0.6 0.59 0.62 0.57 0.53 0.6
450 0.41 0.44 0.42 0.4 0.4 0.41 0.45
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Table 4.4 shows the w/b ratios for the three main cement contents used for the 

processed fly ash comparison with GGBS and the associated British Standard limit. It 

is well recorded (Owens, 1979) that the partial replacement of CEM I by fly ash will 

result in a reduction in water demand with a consequent increase in strength. This 

increase in strength partially offsets the lower early strengths associated with the 

delayed reaction of the fly ash. Table 4.4 shows that the mixes containing the lower 

cement content, of 140kg/m3, achieve a lower w/b ratio than the GGBS control at all 

replacement levels. This, however, does not relate to the compressive strengths as 

none of these mixes reach the compressive strength o f the GGBS control. At this level 

of cement content there is no British Standard limit as the cement content is regarded 

as too low to meet any durability requirements. At 300kg/m3 cement content the 27% 

fly ash replacement achieves the highest compressive strength yet the w/b ratio 

exceeds that of the GGBS control. The 30% fly ash mix is higher than the British 

Standard limits at 0.62, which could explain the dip in the compressive result at this 

position whilst at 450kg/m cement content the 30% fly ash mix, having the lowest 

w/b ratio, out performs all the other mixes in that group. At 450kg/m cement content 

the results begin to follow the expected pattern with the lower w/b ratios achieving the 

greater compressive strengths and the higher w/b ratio at the 25% replacement, 

achieving the lowest. The 27% replacement shows a higher w/b ratio but exceeds the 

GGBS control strength.

The finer the fly ash, the greater the water reducing effect and, by increasing the 

quantity of fly ash in the cement, the demand for water will further decrease (Owens, 

1979). The results of the water / binder ratios do not follow this statement exactly as 

it can be seen that with the 30% fly ash replacement both the 140kg/m3 and the 

300kg/m3 mixes give higher w/b ratios than their preceding fly ash mixes as does the 

33% fly ash replacement at 140kg/m3. Therefore, judging the compressive strength on 

w/b alone seems to be inadequate, as it ignores other factors, particle shape and 

grading for example (Balendran and Pang 1995), which also have a bearing on 

performance.

4-19



Chapter 4. Results - Fly Ash

4.2.2 Perm eability results

The relative permeability test measures the rate at which nitrogen gas passes 

through a concrete sample. This is indicative of the rate that moisture may be 

absorbed into the concrete and, hence, has a bearing on the concrete’s durability, the 

main factor determining the lifespan of the concrete and possible repair costs 

throughout its life. The relative permeability of the concretes was carried out using the 

method engineered by Lydon, (1993) described in Chapter 3. The samples were 

removed from the curing tank at 28 days and oven dried at 105°C until a steady mass 

was achieved. On cooling the samples were tested. The 100mm cube specimens were 

subject to 10 bar pressure of nitrogen gas and the time taken to reduce the pressure to 

5 bar was used as the measure of permeability for the sample. For this test both the 

lowest value and the highest value of each control have been used to establish a range 

for the comparison.
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Figure 4.10 Permeability results of a blended GGBS / OPC concrete using 250kg/m3 cement content at 
various replacement levels. Measure o f permeability is taken at 5 bar pressure

Both the CEM I (OPCRM) and CEM III/A (GGBS) controls were tested three 

times using two cubes per test; therefore six results from each material were used. 

Both the lowest and highest results have been used for the controls to form an 

envelope into which the blended concrete samples should fall. Samples exceeding the 

highest values are less permeable and hence a better product whilst samples beneath
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the lowest control are more permeable and likely to have problems associated with 

water penetration.

Figure 4.10 presents the permeability results of blended OPC / GGBS samples 

produced at the outset of the research. The samples were made using 250kg/m 

cement content with a variable cement replacement o f 10%, 20%, 25%, 30% and 50% 

GGBS. It can be seen that the permeability o f the samples improves as the percentage 

of cement replacement reduces, as the 50 per cent mix records the shortest time to 

achieve the 5 bar pressure.

This would appear to follow the correct course as Kourounis et al. (2007) found 

that “Slag cements develop lower strength, at all ages, compared to the pure cement 

(OPC), and the strength decrease is higher, the higher the slag content”. Their 

research studied the pore structure o f hardened cement and concluded that the 

addition o f steel slag slows down the hydration o f the blended cements. This 

phenomenon was mainly attributed to the crystal size and structure of the C2S 

contained in slag which have a size more than 70 pm and are characterized by clusters 

of finger type structure with no well formed rounded crystals. This makes C2 S, known 

to react slowly, react even slower.

Dhir et al. (1996) found that concrete containing blended cement with varying 

GGBS percentages showed at 28 days that the intrinsic permeability was decreasing 

as the GGBS increased. This is despite using the same w/b ratio and the lower 

compressive strengths of the GGBS concrete compared to the control. At 90 days, the 

intrinsic permeability of the GGBS cements became similar.

The Author appreciates that testing a concretes permeability at 28 days is early in 

its life span when there is potential for carbonation, within the concrete, to increase its 

permeability. This research is, however, a comparison between various concretes at a 

point in time. It has been said (Lewis 2003) that the carbonation of fly ash is not 

significantly different from Portland cement-only concrete at the same grade (28 

days) as its low permeability compensates for its reduced lime contents.
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Figure 4.11 Permeability results of a blended fly ash / OPC concrete using 250kg/m3 cement content at 
various replacement levels. Measure of permeability is taken at 5 bar pressure

Figure 4.11 presents the results from the series of permeability tests carried out on 

a blended fly ash / OPC mix. As with the GGBS, a 250kg/m3 design mix was used 

with varying percentages of fly ash replacement. When compared with the GGBS 

results it can be seen that the concrete made using the fly ash retains the gas pressure 

for a longer period, making it a less permeable concrete. It is widely accepted that fly 

ash can reduce concrete permeability, although its magnitude is determined by the 

water / binder ratio and gel formation. If the physical and chemical properties of the 

fly ash are such that a significant reduction in the w/b ratio can be achieved without 

loss of workability as compared to an equivalent mix, then a reduction in permeability 

may be expected from the corresponding reduction in the number of large pores (BRE 

1987).

Table 4.5
Water / binder ratios required to achieve a 70mm slump for the various fly ash percentages, GGBS 
control and cement contents ___
Replacement 10 20 25 30 50 BS 8500 

limit
Fly ash 0.57 0.55 0.55 0.55 0.56 0.6
GGBS 0.6 0.58 0.59 0.6 0.58 0.6
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12 Permeability results of 27% fly ash at cement contents of200kg/m3, 250kg/mJ and 
300kg/m3 as compared to the maximum and minimum values for the CEM I and GGBS 
controls.
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Figure 4.13 Permeability results of 27% fly ash at cement contents of 350kg/m3, 400kg/m3 and
450kg/m3 as compared to the maximum and minimum values for the CEM I and GGBS 
controls.
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Figure 4.12 and 4.13 present the results of the permeability tests taken at 28 days. 

A processed fly ash was used blended 27% fly ash with 73% CEM I by mass. The 

concrete produce retains this blend, but has increasing cement contents, similar to the 

earlier compression tests. It must be noted that throughout this research the 140kg/m3 

cement content mix produced extremely poor results with regards to permeability 

with gas pressure reducing within a minute in some cases. On removal from the 

permeability cell, cracking through the sample was visible. It could be assumed that 

the compressive pressure being exerted on the sample from the test apparatus, in order 

to retain the gas pressure within the cell, was too much for a concrete of such a low 

strength. However, Owens (1980) quotes work carried out by Powers, Copeland and 

Mann, who showed that there is a relationship between the w/b ratio and the time 

required to close the capillaries within the concrete sufficiently to prevent the ingress 

of deleterious agents. Their research shows that concretes with a w/b ratio exceeding 

0.6 are very suspect as far as durability is concerned. Each o f the 140kg/m3 mixes 

produced within this research required a w/b ratio exceeding 0.6. This may also be the 

reason that concretes at this low level of cementitious material failed to produce 

reasonable values.

Table 4.6
Permeability results of blended 27% fly ash / 73% OPCRM at various cement contents as compared to 
the 100% OPCRM and blended 50% GGBS / 50%OPCRM controls

Materials

OPC GGBS 200 250 300 350 400 450
Time Min 75 Min 34 100 70 123 90 85 55

(mins) Max 127 Max 57

Table 4.6 presents a clearer representation of the results. It can be seen here that at 

28 days GGBS is producing permeability results much lower than that of the CEM I 

control samples. The results from the fly ash tests show that only the sample 

containing 450kg/m3 cement content falls into the GGBS envelope and this is
• . _ i i

marginal. The 250 kg/m cement content lies in the region between the higher GGBS 

value and the lower OPC value while the rest of the samples lie within the OPC 

permeability envelope. This shows that at 28 days the fly ash samples generally fall 

into an acceptable range for durability. As discussed in Chapter 2, fly ash involves a
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secondary reaction between active silicon dioxide (SiC>2) within the fly ash and the 

calcium hydroxide (CH) produced as a by-product from the cement hydration. This 

increases the time required to reach its full potential and is probably not realised here. 

However, these results show that the durability o f concrete containing fly ash is not an 

issue.

4.2.3 Discussion

The processed ash has performed well at the replacement levels used. At 27% the 

use of the processed fly ash has compared well with the GGBS controls except at the 

lowest strength of 140N/mm where a 25% drop in strength was recorded. Concrete at 

this cement content is seldom supplied anymore as it is a very low grade, weak 

concrete. The low level of cement content and the high water /  binder ratio may not be 

providing the alkali rich environment that the fly ash requires to become a 

contributing factor. Also, the lower level o f fine material makes this mix a coarse 

looking mix and the particle grading may not produce the particle packing necessary 

for a strong concrete. An awareness of this is required if  concrete at this cement 

content is to be supplied; plant trials must be produced and cement contents adjusted 

accordingly. Both the 33% and 35% replacement levels give good values for 

compressive strength. This is in line with a study carried out by Oner et al. (2004) 

who concluded the optimum value of fly ash is about 40% beyond which compressive 

strength starts to decrease.

The results of the water / binder ratios show that although in theory lower w/b 

ratios will produce a higher strength concrete the inclusion o f fly ash may be having 

an effect on this. Therefore, further research is required to identify other factors 

involved in producing a good cement replacement.
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4.4 The effect of processing fly ash

A significant part of this research was looking at the effect that the processing of a 

fly ash has on its use as a cement replacement. The question that needs to be asked is:-

‘To what extent is processing of fly ash necessary, and what are the changes 

within the material that improves its performance?’

As was mentioned previously, fly ash from Aberthaw power station has been 

subject to an electrostatic separation (STi) process which separates the coarse and fine 

fly ash particles. This separation process has resulted in the production of a processed 

fly ash (processed), a high carbon (waste) material and the raw ash (no processing) for 

analysis. The processed ash was then passed through an air swept classifier which 

provided a fourth material in the form of a finer fly ash (classified). The raw, 

processed and classified materials were all individually blended with OPCRM and 

concrete produced using these blends. The waste material was also analysed both 

chemically and physically in an attempt to identify what was being removed from the 

fly ash during the processing of the material. This material was not used as a cement 

replacement because of its high carbon content and, hence, was not incorporated 

within any concrete produced.

2>1 I <o I O(o 

'Viec.o
G Z 7 .

Figure 4.14 Fly ash samples from the separation process (left to right) processed, raw and waste (see 
also Figure 4.7)
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Figure 4.14 is an image showing the fly ash at three different stages, processed, 

raw and waste. The image shows how the material becomes lighter in colour as 

carbon is removed. A field inspection confirmed that the lighter material was 

considerably finer and less abrasive than that of the darker materials. The quality of 

the processed ash can be adjusted to suit the requirements of its destination; this will 

ultimately have an effect on the yield, however; the yield achieved will depend on the 

original particle size characteristics of the parent ash (Jones et al. 2006b). The yield of 

the processed material from the STi plant for the present research was 62%. The 

classification of the fly ash was performed at a later date when the Author was not in 

attendance. The plant can not measure the yield for this process however this may not 

be required as the coarser fraction of this separation can be reinstated with the 

processed ash as this remains a useable material and not a waste.

4.3.1 Compressive strength

■  GGBS ■  Classified 33% ■  Processed 33% ■  Raw 33%

Processed 33%

D Raw 33%

C em ent con ten t (kg/m )

Figure 4.15 28 day compressive strength results o f concrete using various blended 67% OPCRM with 
classified, processed and raw fly ash as compared to GGBS 50% / OPCRM 50%

Figure 4.15 presents the 28 day compressive strength results of concretes containing 

fly ash in its raw, processed and classified state at cement contents of 140kg/m3, 

300kg/m3 and 450kg/m3. The mixes have used blended 33% fly ash to 67% OPCRM
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by mass, this replacement percentage being based on the positive results gained from 

the previous trials (Section 4.2). The graph shows that there are no compressive 

strength benefits from the inclusion of the raw ash into the blend. When the fly ash 

has been processed the compressive strength shows improvement above the 

140N/mm2 concrete strength. By classifying the fly ash a further strength gain is 

realised comparable to GGBS blended concrete at low cement contents but surpasses 

this at the higher cement contents.

4.3.2 Water / Binder ratio

Table 4.7 presents the results of the w/b ratios for the various fly ash grades, the 

GGBS control and the British Standard maximum for designated concretes to BS 

8500-2:2002. As discussed previously the water is the required amount to achieve a 

slump of 70mm. It is clear that the w/b ratios for the fly ash reduce as the material 

becomes finer. This is the case at all cement contents. The 140kg/m cement content 

has no limit under the British standards as this low cement content does not produce a 

durable concrete.

Table 4.7
Water / binder ratios required to achieve a 70mm slump

Cement binder 
content (kg/m3)

GGBS
(50%)

Raw
(33%)

Processed
(33%)

Classified
(33%)

BS 8500 
Limit

140 1.43 1.31 1.30 1.23 -

300 0.56 0.59 0.57 0.48 0.6
450 0.41 0.47 0.40 0.37 0.45

Examining the 140kg/m3 mix first as compared to the GGBS control, it can be 

seen that each fly ash mix requires considerably less water then the control. Also, as 

the fly ash becomes processed and then classified the demand for water reduces. From 

a compressive strength point the reduced w/b ratios achieved do not enhance the 

strength of the mix enough to surpass that o f the control mix. This situation changes 

as the cement content increases. At 300kg/m3 cement content only the mix containing 

the classified fly ash improves on the w/b ratio, whilst the others show a slight 

increase. The higher w/b ratios do not, however, stop the fly ash from competing with 

the control with the weaker raw fly ash mix being less than 1% lower in strength. All 

of these mixes remain within the British standards requirement. At 450kg/m cement
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content the control is only superseded by the raw fly ash mix. This mix is not only 

above the British standards required limit but also 12% weaker than the control mix. 

Both the processed and classified mixes show a reduction in w/b ratio and an increase 

in strength against the control.

4.3.3 Physical analysis

Grading

It has been discussed in Chapter 2 about the importance that the material fineness 

has on the reactivity and strength development o f the cementitious material (Erdogdu 

and Turker 1998, Lee et al. 1999). BS EN 450-1:2005 recognises two categories of fly 

ash fineness which are expressed as the mass proportion in percent of ash retained 

when wet sieved on a 0.045mm mesh sieve. The categories and associated limits are 

presented below:

o Category N: The fineness shall not exceed 40% by mass, and it shall not 

vary by more than ±10 percentage points from the declared value, 

o Category S: The fineness shall not exceed 12% by mass. The ±10 

percentage points fineness variation limits are not applicable.

Figure 4.16 presents the grading curves produced by the Malvern Mastersizer X, 

as discussed in Chapter 3, for the three fly ash samples and the waste high carbon 

material compared to the controls o f OPCRM (CEM I) and GGBS. The graph is 

presented to show that the finer the material the further left the grading line will be, a 

vertical grading curve indicates a lot o f material at that fineness whilst a more 

horizontal curve would indicate a more even spread o f sizes.

The graph in Figure 4.16 shows that the processing o f the fly ash has removed the 

coarser fraction, as the waste is to further to the right of the graph. Also, the raw 

material is to the right of the processed which indicates that the processed ash has 

become finer than its parent raw ash. Classifying the ash has produced a finer ash 

again as the grading curve moves to the left of the processed ash.
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Figure 4.16 Particle size distribution results from the Malvern Mastersizer X for the Raw, Processed 
and Classified fly ash with the GGBS and OPCRM as controls. The 45pm measure is 
shown in red

It can be seen from Figure 4.16 that the controls are of similar fineness to each 

other to approximately 80% of their mass, whereby GGBS becomes slightly coarser. 

In comparing the fly ash to the controls it can be seen that the processed fly ash is the 

closest match being slightly finer than both controls up to 90% of its mass. At this 

point the particles become coarser than OPCRM but not quite as coarse as GGBS.

Both the classified fly ash and the OPCRM contain a maximum particle size of 

83 pm, however the classified fly ash grading line is more vertical with a sharp bend 

above 90% which indicates there is less of the coarser material. The grading line of 

the OPCRM is not as vertical as the fly ash grading line showing that it is a more 

evenly graded material through all particle sizes.

Using Figure 4.16 a judgement as to the fineness category, stipulated in BS EN 

450-1, that each material fits into can be made. The position of the 45 pm sieve has 

been shown on the graph with any material to the right of this line being coarser than 

45 pm. A category N material should not retain more than 40% of its mass on the
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45pm sieve. Therefore, if the 45pm line cuts through the grading curve at a point 

below 60% the material is outside this limit. Similarly, the Category S material 

limited to 12% should not see the 45 pm line cut below 88%.

Figure 4.16 shows that both the classified and processed materials can be 

considered as category S as there is less than 12% of the material above 45 pm. The 

raw material is border line category N however as the curve is not smooth the “benefit 

of the doubt” will be given and the category N applied. The waste material is outside 

the grading limits of the standard.

Particle shape:

Figures 4.17 and 4.18, present images of the materials produced by scanning 

electron microscopy (SEM). The scale line on each of the images is 10pm and an 

attempt has been made to capture a representative image of how the material is made 

up. It can be seen in Figure 4.17 that both the OPCRM (a) and GGBS (b) are non- 

spherical materials being made entirely with angular shaped particles. The majority of 

the particles are smaller than 10pm in both materials with only a few individual 

particles larger than 20pm. The GGBS is estimated to be slightly coarser agreeing 

with the Mastersizer data presented in Figure 4.16. (Note that the Mastersizer data 

percentages are on a mass or volume basis whilst the SEM observation is based on 

number)

(a) (b)
Figure 4.17 SEM images of the control materials a) OPCRM, b) GGBS
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(c) (d)
Figure 4.18 SEM images of the fly ash a) Classified, b) Processed, c) Raw, d) Waste

Images in Figure 4.18 (a) through to (d) are the fly ash samples classified, 

processed, raw and waste respectively. Generally, the particle shapes are spherical 

with a number of angular particles in amongst them. The classified fly ash has 

spherical particles of 10pm or less with a small quantity of larger more angular 

particles showing in this image. The processed fly ash again shows angular particles 

as part of its make up and also that the spherical particles range up to approximately 

20pm. The raw fly ash continues this trend with particles ranging up to approximately 

20pm however; the non-spherical particles are more prevalent. The waste sample is 

dominated by non-spherical particles, the image showing vary few particles under the 

10pm range with the larger spherical particles being contaminated by fragments 

adhering to their surfaces.
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4.3.4 Chemical analysis

Loss on Ignition and Leco Sulphur and carbon analysis:

It is normal for the carbon content to be ascertained from the use of Loss on 

Ignition. However, this method measures the weight loss of the sample which would 

include moisture and any organic matter in the sample. Also, on removing the sample 

from the furnace certain materials will begin to re-absorb moisture from the 

surrounding environment. Both o f these aspects will produce inaccuracies within the 

results and, therefore, the Loss on Ignition test will give an approximate figure for 

carbon content. The Leco apparatus (Detailed in Chapter 3) uses a sealed unit to heat 

the sample at 1400°C and records the carbon emitted as a gas by the sample and 

expresses the result as a percentage o f the weight o f the sample tested. This gives a 

more accurate measurement of carbon content and also measures sulphur content. 

Table 4.8 gives the results from the Leco apparatus.

Table 4.8
Results from the Leco analysis for Sulphur and Carbon and the converted values to S03 and S04 from 
the calculation in Table 4.9 ___________

Material Sulphur % S 0 3 % SO4 % Carbon %
GGBS 1.74 4.33 5.20 0 .1 1

Raw FA 0.31 0.78 0.93 18.38
Processed FA 0.25 0.63 0.75 3.43
Classified FA 0.38 0.94 1.13 2.42

Carbon FA 0.40 1 .0 0 1.21 44.01

The results show the total quantity contained in the fly ash alone. Blending the fly 

ash with OPCRM will reduce this figure and hence this is the maximum amount 

which if below the British standards requirements will conform within the blended 

cement. Table 4.8 presents the results o f the carbon and sulphur analysis together with 

the calculated SO3 and SO4 contents. The details of the calculation for the amount of 

SO3 and SO4 within the sample are shown in Table 4.9.
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BS EN 197-1 limits the sulphate content for the production of cement. There are 

two limits dependant on the cement strength and cement class and are compared to the 

sulphate SO4 content being expressed as a sulphite SO3 . Therefore, the figure in the 

SO3 column has been used to ascertain conformity against this requirement. Table 

4.10 presents the requirements of BS EN 197.

Table 4.9
Calculation of SP3 and SQ4 quantity within the fly ash samples

Description Mass Percentage per sample

Sulphur atomic mass (u) = 32.066

Oxygen atomic mass (u) = 15.9994

Sulphite SO3 = 32.066 + 3 x 15.9994 (Sulphur % / 32.066) x 80.06

= 80.06

Sulphate SO4 = 32.066 + 4 x 15.9994 (Sulphur % / 32.066) x 96.06

= 96.06

It can be seen that the values for SO3 in Table 4.8 are well within the limiting 

values required by BS EN 197-1 although the sulphate content should be calculated as 

the total from the various constituents o f the mix. This requires that the SO3 in both 

the OPC and the aggregate be taken into account when producing a blended 

cementitious material for concrete. The sulphate levels in the GGBS are higher than 

the requirements of the standard; however, as this is blended with CEM I the sulphate 

content for the total mass of the material would be lowered. It is for this reason that 

the cement manufacturers must be aware o f the chemical make up o f all additions to 

the concrete and produce their CEM I accordingly.
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Table 4.10
Requirements of BS EN 197-1 regarding Sulphate limits

Property Test reference Cement type Strength class Requirements

32.5 N

CEM I 32.5 R <3.5%

CEM II 42.5 N

CEM IV

CEM V 42.5 R

52.5 N <4.0%

Sulphate content EN 196-2 52.5 R

(as S03)

CEMID/A ALL <4.0%

CEMIH/B

CEM m/c ALL <4.5%

Loss on ignition (LOI) is related to the presence o f carbonates, combined water in 

residual clay minerals, and combustion o f free carbon. Carbon is the most important 

component of LOI with the water required for workability o f concrete dependant on 

it. The higher the carbon content of fly ash the more water is required to achieve the 

normal consistency (Malhotra and Ramezanianpour 1994).

BS EN 197-1 and BS EN 450-1 have strict limits on the amount of carbon cement 

can contain as measured by its Loss on Ignition. The procedure used for this research 

is detailed in BS EN 196-2:2005. The procedure states that the sample must remain in 

a furnace at 950°C for 15 minutes. BS EN 450-1 2005, which defines fly ash for 

concrete, increases the ignition time for fly ash to 1 hour. BS EN 450-1:2005 

recognises three categories of fly ash defined by their LOI value which must fall 

within the limits specified below:

o Category A: Not greater than 5.0% by mass 

o Category B: Between 2.0% and 7.0% by mass 

o Category C: Between 4.0% and 9.0% by mass
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BS EN 197-1:2000 states, however, that the LOI o f fly ash shall not exceed 5.0% 

by mass. It will allow fly ash with a LOI o f up to 7.0% to be accepted provided that 

requirements for durability, especially frost resistance, and compatibility with 

admixtures are met according to the appropriate standards. There are no specified 

limits for the blended cements CEM II, Pozzolanic cement CEM IV and Composite 

cement CEM V within BS EN 197-1; however, Portland cement CEM I and Blast 

furnace cement CEM III are restricted to a limit o f 5.0% LOI.

Table 4.11
Carbon content (LOI) of the OPCRM and cement replacement materials used

Material

LOI (%)

BS EN 196-2 Leco (%)

OPCRM 4.9 0.6

GGBS 0.85 0.11

Raw FA 20.1 18.38

Processed FA 4.1 3.43

Classified FA 3.3 2.42

Waste FA 46.3 44.01

Table 4.11 presents the results for the LOI carried out on the controls and the fly 

ash using both the BS EN 196-2 2005 method (LOI) and the Leco analysis. First, it 

can be seen that there is a difference in results between each method. It was expected 

that the LOI results would be slightly higher as this method measures anything in the 

sample that is burnt off in the furnace whilst the Leco analysis measures only the 

carbon emitted from the burning.

It can be seen that the controls are within the requirements of the standard whilst 

the ash material varies depending on the degree processing it has received. The raw 

fly ash is the feed into the separator which has come directly from the power plant; its 

high LOI is the reason that it can not be used directly as a cement replacement. LOI 

contents consist of unbumed carbon that is generally present in the form of cellular 

particles larger than 45 pm (Atis 2005). Therefore, it would be expected that the LOI 

would decrease as the material becomes finer.
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This becomes evident from the LOI results. The classified FA is showing a carbon 

content lower than that o f the processed fly ash, which in turn is lower than that of the 

Raw material, both of which fit the expected result. Comparing these results to the 

required European standard, BS EN 197-1, it can be said that both the processed fly 

ash and the fine fly ash are compliant with the standards regarding LOI.

It should be mentioned that at an ignition time o f lhour the waste material 

achieved a LOI o f only 20%. This did not correspond to the Leco analysis or the 

analysis supplied by the processing plant. The LOI was repeated at an ignition time of 

24 hours and the result o f this is presented in Table 4.11, page 4-36. A mass balance 

check found the error to be 2.5%, Appendix 3.1.

Inductively Coupled Plasma Analysis (ICP)

The results o f the ICP chemical analysis are shown in Table 4.12 below. The 

principal elements have been presented here with the full analysis, including the 

minors, available to view in Appendix 3. This analysis has been carried out to look at 

the chemical differences between the fly ash as it undergoes the refining process and 

to look at how they compare, or differ from, the OPCRM and GGBS controls. The 

elements have been converted to oxides as the sum o f the oxides should come close to 

100% (Moir 2003). The sum o f the oxide results are all within 5% o f 100% expected, 

with the mass balance check o f the error being within 2%, Appendix 3.1. The controls 

have been shown for completeness.

The main elements within the fly ash samples are those o f SiC>2 , AI2O3, CaO and 

Fe2C>3 . The amount o f silicon increases with the processing o f the raw material rising 

from 41.7% up to 54.7%. At this point no further increase in silicon content is gained 

from further classification o f the material. The carbon waste material contains a 

considerable amount o f silicon at 27.5%. Silicon in its reactive form is a beneficial 

element o f fly ash and its removal from the waste material into the processed may 

enhance the strength properties o f the concrete (Lewis et al. 2003). This would require 

optimisation of the STi process varying feed rates and belt speeds etc. separating the 

valuable elements from the waste elements. However, should the particles have been
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removed because it contains a high level o f  carbon, then this may negate the benefits 

o f the silicon.

Table 4.12

Oxide (%)
Material

CEMI GGBS Raw Processed Classified Waste
Na20 0.2 0.2 0.5 0.5 0.5 0.3
P2O5 0.0 0.0 0.2 0.2 0.2 0.1
Si02 20.3 34.7 41.7 54.7 53.4 27.5
ai2o 3 4.2 12.2 21.6 24.5 22.1 12.7
CaO 66.3 38.5 3.1 2.9 4.3 2.8
Fe20 3 2.2 0.3 4.0 3.6 3.6 3.8
k 2o 0.6 0.6 1.7 2.1 2.2 1.1
MgO 2.5 9.4 1.4 1.4 1.8 1.3
Mn20 3 0.1 0.7 0.2 0.2 0.1 0.2
Minors 0.1 1.7 2.6 3.7 5.7 2.7
LOI 4.90 0.85 18.38 4.07 3.25 44.01
Total (%) 101.4 99.1 95.4 97.8 97.3 96.4
Si02 + A120 3 + Fe20 3 67.3 82.8 79.1 44.0
Na + K 2.2 2.6 2.8 1.4

The aluminium content follows a similar pattern to that o f the silicon, whereby the 

processed material contains more than the raw and slightly more than the classified. 

This would seem to suggest that some o f the more minor elements are found in the 

finer particles which are altering the elemental balance as the larger particles are 

removed. The calcium content drops when the material is processed but increases as 

the material further classified. Once again this may be due to the calcium tending to 

be in the finer particles. The iron content drops slightly due to the processing, but no 

change is recorded when the material is classified further.

Transmission Electron Microscopy (TEM)

When coal bums in a power station furnace between 1250°C and 1600°C, the 

incombustible materials coalesce to form spherical glassy droplets of silica (SiCh), 

alumina (AI2O3), iron oxide (Fe2 0 3 ) and other minor constituents (Lewis 2003). The 

grading o f the materials showed that on completion of the separation process the raw 

fly ash became a finer material. When this material was subject to the classification 

process it became finer again. It is, therefore, important to know what elements are 

being removed during each o f these processes and any possible effect they may have
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on the concrete mix. Through transmission electron microscopy (TEM) it is possible 

to magnify the various sized particles within each material and carry out an elemental 

analysis using an Energy Dispersive Analysis of X-rays (E.D.A.X) technique, details 

in Chapter 3.

Small

L a rg e

Medium

Figure 4.19 Image showing the various size groups used in the elemental analysis

The viewing area of the microscope shows two concentric circles which, at a 

magnification of 23,000 times, sizes them at 0.25pm and 2.0pm. The particle sizes 

were judged on where they fell in relation to these circles therefore:

o Small particles <0.25pm 

o Medium particles <2.0pm and >0.25 pm 

o Large particles >2.0pm

An image showing the various sizes of fly ash analysed can be seen in Figure 4.19 

above.

A range of analyses were carried out on the raw fly ash at each size and the 

elemental results compared. Only the raw material was analysed, as it is this same 

material which produces the processed and the classified with the larger element 

removed. In general, the spectra were very similar for the particles in a given size 

range and typical spectra are presented as Figures 4.20 (a) and (b) and Figure 4.21(a) 

for the raw fly ash as large, medium and small particles.
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(a) (b)
Figure 4.20 TEM analyses of the (a) large particles and (b) medium particles within the raw fly ash

It can be seen that the analysis of the large particle identifies the main elements of 

silicon, calcium, aluminium and iron with some other minor elements as oxygen, 

potassium and magnesium. The medium spherical particles, Figure 4.20b, again show 

that the main elements silicon, calcium and aluminium being similar to the large 

particles with iron giving a higher reading. The spectra for the minor elements are 

similar to that of the large particle the change in the element labelling being due to the 

software. Spectra of the small spherical particles, Figure 4.21a, show a similar pattern 

to that of the medium particle with peaks for all the main elements. The analysis 

shows an increase in the calcium peak and the addition of phosphorous to the spectra 

of the waste particle.

It has been shown from the Loss on Ignition and the Leco analysis that there is 

carbon present in the raw material, yet none has appeared on any particle analysis. 

The analysis was carried out on the waste material and the resulting spectra can be 

seen in Figure 4.21b. This analysis produced consistent results showing high carbon, 

some phosphorous and very little of the other elements. However, the fly ash analysis 

had concentrated the analysis on the spherical particles, as this is a main characteristic
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of fly ash, the waste samples contained mainly irregular shaped particles and so the 

original fly ash samples were re-analysed examining the presence of the irregular 

shaped particles.
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(a) (b)
Figure 4.21 TEM analyses of the (a) Raw small spherical particles and (b) Waste material particles

It was assumed that the waste fly ash would include the larger particles containing 

the carbon taken from the raw material during processing. This analysis showed that 

the majority of particles in this material were irregular in shape (see for example 

Figure 4.22b). These irregular particles were larger than 4.0pm and gave the spectra 

typical of that presented in Figure 4.22a. It was also seen that the waste fly ash 

contained a large quantity of larger spherical particles but no small particles were 

seen. It was also noted that, although the majority of the irregular particles were 

similar to the spectra in Figure 4.21a, a number of these contained quantities of 

silicon, aluminium and iron.
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(a) (b)
Figure 4.22 TEM analyses of (a) the irregular particles in the raw ash and (b) an image of a non- 

spherical carbon particle

From the analysis of the raw fly ash it could be concluded that carbon was only to 

be found in the irregular sized particles, as none has been seen within the spherical 

particles. Figure 4.23a shows the spectrum for a large spherical particle which shows 

a high reading for titanium an increase in vanadium and also carbon content. 

Conversely Figure 4.23b shows the spectrum of a non-spherical particle where it can 

be seen that the elements available are similar to that of a medium spherical particle 

as shown in Figure 4.20b. It has to be acknowledged that the positioning of the 

particle during the analysis can have an influence the results. Intriguing results may be 

produced due to the distribution of the particle, the orientation of the element within 

the particle, interference from neighbouring particles or simply that the particle does 

contain what the analysis shows. Also, it must be noted that the electron beam only 

penetrates the surface of the particle and does not perform a deep analysis (i.e. not to 

the centre of the particle). This may result in further elements, not identified through 

this analysis, being released during hydration of the cement.
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(a) (b)
Figure 4.23 TEM analyses on the raw fly ash showing (a) large spherical particle containing carbon and 

(b) a non-spherical particle not containing carbon

BS EN 450 requirements

The chemical requirements as described in the British and European Standard for 

fly ash BS EN 450-1:2005 are shown in Table 4.13. The analysis up to and including 

soluble phosphate was carried out at RWE Power International Central Support 

Laboratories in North Yorkshire. This laboratory is set up to analyse fly ash to the 

accepted standard whereas the University is not; hence for speed and ease RWE were 

asked to perform the analysis.

Table 4.13
Fly ash analysis results and the requirements of BS EN 450
Analysis Classified Processed Raw EN 450

Chloride (Cl) <0.005 0.007 0 . 0 1 1 <0 .1 % mass
Sulfuric anhydride (SO3 ) 0.46 0.48 0.62 <3.0 % mass
Free calcium oxide <0 . 0 2 <0 . 0 2 <0 . 0 2 <1 . 0  % mass
Reactive silicon dioxide 36.83 37.47 32.84 >25 % mass
Total alkalis Na + K 3.28 3.67 2.69 <5.0 % mass
Soluble phosphate (P2O5) 0.0003 0.0006 0.0014 <0 . 1  % mass
SiCb + AI2O3 + Fe2C>3 79.1 82.5 67.2 >70.0%
Magnesium Oxide (MgO) 1 . 8 1.4 1.4 <4.0%
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It can be seen from the results that both the processed ash and the classified ash 

satisfy the requirements of this Standard. The raw ash is generally compliant; 

however, it is below the required minimum of 70% for the collective sum of silicon, 

aluminium and iron oxides.

4.3.5 D urability

Figure 4.24 and Figure 4.25 show the results of the relative permeability of the 

two controls and three states of Aberthaw fly ash, classified, processed and raw, at 

300kg/m3 and 450kg/m3. As the high carbon waste material has not been mixed, since 

this is the waste component of the fly ash and not suitable as a cement replacement, 

no results have been produced for this material. As was discussed in Chapter 3, 

“Experimental Methods”, the method of measurement chosen for this research work is 

that of time taken for the nitrogen gas pressure to decay from lObar to 5bar. The 

results are measured against the average results of the OPCRM control. The results of 

the fly ash samples are the average of two permeability tests. Table 4.14 records the 

results of the permeability test as numerical values.

OPCRM — Classified — Processed — Raw
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Figure 4.24 Results from the relative permeability test on 300kg/m3 cement content concrete 33% 
fly ash replacement with 67% OPCRM
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Figure 4.25 Results from the relative permeability test on 450kg/m3 cement content concrete 33% 
Fly ash replacement with 67% OPCRM

Table 4.14
Measure of permeability at 28 days for the fly ash in its three states of raw, processed and classified at

Cement

content

(kg/m3)

Time (mins)

OPCRM Raw Processed Classified

300 104 44 86 94

450 78 82 98 102

The particle shape and finer fractions of fly ash are capable of reducing the water 

content needed for a given workability. These effects are felt to be due to void filling 

on a microscopic scale replacing water within the concrete mix (Lewis 2003). This 

can improve the packing density of the particle mixture and further influence the 

compactness of fresh paste. It is well known that the compactness of fresh paste 

greatly influences its properties as a hardened paste (Long et al. 2003).

It can be seen from the permeability results that concrete incorporating fly ash 

show the improvement in durability as the decay time increases between the raw, the 

processed and the classified fly ash. The results from the 300kg/m3 cement content
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samples show that, although the durability increases as the fineness o f the fly ash 

reduces, the OPCRM control produces the higher decay time and therefore no 

improvement is realised from the inclusion o f the fly ash. Research has shown that 

permeability o f concrete is directly related to the quantity of hydrated cementitious 

material at any given time. At 28 days, limited pozzolanic activity would have 

occurred within the fly ash, making it a more permeable concrete than the control 

(Malhotra and Ramezanianpour 1994). The extremes o f the OPCRM, established 

through a series o f test results, were ±9 minutes. This means that the OPCRM results 

continue to remain higher than the fly ash even at the lowest result recorded for the 

OPCRM.

At 450kg/m3 the complete fly ash range shows improved results over that of the 

OPCRM control, although none betters the OPCRM at 300kg/m3 cement content. The 

range of results for the OPCRM control was ±13 minutes which at the higher decay 

time, 92 minutes, would surpass that o f the raw fly ash and follow closely behind the 

processed fly ash. The raw fly ash has shown the best improvement in relation to the 

300kg/m3 cement content mix which may highlight the variability in quality inherent 

with fly ash in the raw condition. The OPCRM comparison shows that the higher 

cement content provides the lower permeability. Research has shown that both 

oxygen diffusion and oxygen permeability increase with increasing cement content 

(Buenfeld and Okundi 1998. Dutron 1987); this agrees with the result found within 

this research. Overall, the concluding comment is that, from these results, 

incorporating the finer fly ash as a cement replacement benefits the concrete with 

respect to its durability.

4.3.6 Discussion

The benefits of reducing the fineness o f fly ash can be seen from the increase in 

compressive strength and a lower permeability with respect to the other states of fly 

ash. These properties have benefits not only from a concrete point (i.e. a stronger 

more durable concrete), but from a financial aspect in that less of the expensive 

OPCRM can be used blended with fly ash to achieve the required 28 day compressive
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strength. However, a balance has to be achieved between performance of the material 

and the amount of usable fly ash which will be rejected as being too coarse for the 

required material properties. For a general use concrete, the processed fly ash state 

produces an enhanced concrete, in comparison to the GGBS concrete, at replacement 

percentages o f up to 33%. The strength and permeability are both improved, which 

leaves a margin for either the reduction in cement content within the mix or fine- 

tuning the STI electrostatic precipitator to increase the yield reducing the quality 

slightly but reducing wastage. The former o f these requires care as certain concretes, 

Designated and Designed concrete, have a minimum cement or combination content 

which must conform to BS EN 8500-2:2002.

The ICP analysis has shown that there is very little difference between the 

chemical analyses o f the processed ash and the classified ash. There is, however, a 

marked difference with the compressive strengths between the two. Therefore, the 

increased compressive strength must have some bearing on another aspect of the 

material at this level of processing. The fine-tuning o f the STi process as mentioned 

earlier could also be used in an attempt to remove more o f the silicon from the waste 

carbon material. It has been shown that carbon is generally localised to one type of 

particle and therefore could be separated from the silicon particles. This is an area that 

requires an in-depth study of the STi process and its capabilities.

An attempt at listing the main attributes o f fly ash which may potentially enhance 

its use as a cement replacement material will now be made. This information will then 

be used to consider any future waste materials and assess the likelihood of their 

suitability as a cement replacement material. The advantage o f this is that an initial 

assessment may be completed within 24 hours prior to any mixing. From this initial 

assessment a judgement can be made as to whether or not trials of the mortar and 

concrete should proceed to establish the compressive strength, etc., from which initial 

results take days rather than hours to achieve.
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4.5 Principal identifiable characteristics of a cement 

replacement material

Grading

The fineness of the material is important, in that surface area exposed to the 

alkaline environment within the concrete should be as great as possible (Lewis 2003). 

As the processed fly ash has produced compressive strength results in excess of the 

controls, it would be fair to say that the materials which follow this grading have the 

prospect of being a good cement replacement. OPCRM and GGBS samples were seen 

to be slightly coarser than the processed fly ash, see Figure 4.26. However, it could be 

expected that samples with as fine as these could also make satisfactory cement 

replacement materials. Gradings found to be coarser then those shown here should be 

considered complimentary to other characteristics as, for example, if the particles 

demonstrate a more rounded smoother surface texture this would aid in the reduction 

of free water required which ultimately influences the concrete strength.

CEM I — GGBS — Processed
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Figure 4.26 Target grading for a potential cement replacement.
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Particle shape

Water in concrete has two purposes, to hydrate the cementitious particles and to 

allow the concrete to flow (i.e. affects consistence). The spherical shape of fly ash 

acts as lubrication for the particles in a concrete mix; hence, aiding the movement of 

the concrete leading to a reduction in the water requirement. Therefore, the ideal 

particle shape should be smooth and spherical see Figure 4.27a, or at least have a 

rounded form to help create a rolling effect between the particles. Coarser, flatter or 

squarer particles will have the opposite effect which will ultimately increase the water 

demand and reduce the concrete compressive strength. However, it can be seen from 

the image, Figure 4.27b, that GGBS does not follow this requirement but is never the 

less a successful cement replacement material. This material property is not deemed 

relevant by the standards as no guidelines are in place to limit a material based on is 

particle shape. Nevertheless, it is thought that the spherical shape of the fly ash aids 

the workability and, hence, reduces the water demand required to motivate the mix; 

this spherical shape would therefore be viewed as a beneficial characteristic.

(a) (b)
Figure 4.27 SEM images a) Idealised particle shape and b) GGBS.
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Loss on Ignition

Chapter 2 discussed the effect that carbon content has on the reduction in 

workability within concrete. This is overcome by the addition of water which in turn 

leads to concrete with lower compressive strengths due to the higher water / cement 

ratio. There are strict limits set by the British and European standards on values for 

the loss on ignition within cements. As a general rule, in the present study it has been 

found that with fly ash the amount of water required to achieve the target slump value 

reduces as the LOI of the binder is reduced. Table 4.11 shows the LOI decreasing as 

the material is processed, whilst Table 4.7 presents the corresponding w/b ratios of the 

fly ash mixed as concrete. The compressive strength results have shown, Figure 4.15, 

the expected rise brought about due to the lowering o f the w/b ratio. This would imply 

that the LOI is an important measure o f the material’s ability to perform as a cement 

replacement This is reflected by the British and European standards which impose 

limits on carbon content.

Chemical analysis

Table 4.15
Composite cement constituents 
Source Moir 2003

Reaction type Pozzolanic Latently hydraulic

Constituent Siliceous fly ash Natural pozzolana GGBS

Typical composition Range Range Range

Si02 38-64 60-75 30-37

AI2O3 20-36 1 0 -2 0 9-17

F62O3 4-18 1 - 10 0.2 - 2

CaO 1 - 10 1-5 34-45

MgO 0.5-2 0 .2 - 2 4-13

S - - 0.5-2

S 0 3 0.3 - 2.5 <1 0.05 - 2

LOI 2 -7 2 - 12 0.02 - 1

k2o 0.4-4 1 - 6 0.3-1

Na20 0.2- 1.5 0.5-4 0.2 - 1
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The chemical analysis carried out has produced results for the processed and fine 

fly ash and the GGBS. It has been found that the processed and fine fly ash provides 

comparable, if  not better, results than that o f GGBS and that GGBS is an accepted 

cement replacement widely used in industry today. There is, however, a vast 

difference between the chemical analysis o f the fly ash and the GGBS.

The main differences are between the silicon oxide content and the calcium oxide 

content. In the GGBS both silicon oxide and calcium oxide are 34% and 38% 

respectively, while in the fly ash the silicon oxide content is 54% and the calcium 

oxide 2.9%. Both o f these materials work, yet the chemical make up is different. This 

means that waste materials looked at as part o f this research, or at some time in the 

future, may not match the chemical make up o f the fly ash yet could prove to be 

adequate cement replacement materials. Therefore, it is sensible to present an 

acceptable range o f the cement constituents from which a judgement on the new 

materials elemental analysis can be made. Table 4.15 presents ranges for both 

pozzolanic and latently hydraulic materials as produced by Moir (2003) which the 

Author views as an adequate aid in making an initial judgement on the suitability of a 

new material as a partial cement replacement material.

Transmission Electron Microscopy (TEM)

This work has shown that individual particles vary with respect to their element 

composition. Numerous analyses were undertaken on individual particles with the 

establishment of an elemental composition being made on the basis of a specific 

elemental pattern re-occurring on several occasions (further results from this analysis 

can be viewed in Appendix 3). If a representative sample o f the material is ensured 

and enough analyses are completed, then it would be expected that an accurate image 

of the elemental make up can be established. Materials that show separation of 

elements can be better manipulated to produce the required material, so a careful 

study o f the particles at various sizes should be carried out. With respect to fly ash, 

knowing which particles contain carbon will influence the method used to remove it.
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4.6 Conclusions

From the work carried out in this chapter the main conclusions are;

o Applying the STi process to the fly ash is a quick and easy method of 

lowering the carbon content within the ash, producing a material which 

satisfies both British and European standards.

o The compressive strength results o f the processed fly ash at 33% 

replacement showed an improvement in strength over the blended GGBS. 

Therefore, there remains scope for adjustment of the STi process to 

increase the yield up from 62% which will provide an economic benefit 

and a reduction in waste sent to landfill.

o No single property o f fly ash can readily predict its performance in the 

concrete mix.

o Reducing the particle size o f the fly ash through classification provides 

further benefits with regards to compressive strength of the concrete 

containing the fly ash.

4-52



Chapter 5 -  A study into possible cement replacement materials

5. Results - additional candidate 
cem ent replacem ent materials

5.1 Introduction

5.2 Compressive strength

5.3 Physical properties

5.4 Chemical analysis

5.5 Discussion

5.6 Conclusions

5.1 Introduction
Chapter 4 established the main properties o f a processed fly ash that contribute to 

its successful application as a cement replacement material. This chapter considers 

other materials, available in a form which can successfully be added as a cement 

replacement, to determine their effect on concrete strength when used as a cement 

replacement material. Their physical and chemical properties will then be examined 

and a comparison made to the findings in the previous chapter. The research studies 

the performance o f materials’, chemical and physical characteristics and seeks to 

identify the characteristics which either enhance the concrete or impair the concrete 

from achieving its full potential. There are four materials being studied in this section, 

their origins are described in Chapter 3, and are listed below:

o Sewage Sludge Ash (SS) 

o Municipal Solid Waste Ash (MSW) 

o Fly ash (FA2) supplied from Didcot A Power station 

o A blended selection o f Industrial Materials (IM)
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The mix designs were produced and tested by the Author at the University using a 

cement content of 270kg/m3. This amount was chosen as at that time this concrete 

design was the highest selling concrete at Minimix Concrete LTD and any successful 

material would be introduced into the company designs for economical benefit. The 

range of cement replacement percentages used were 10%, 20%, 25%, 30% and 50%. 

A target quantity of 100kg per mix was designed for, which gave more than enough 

concrete for the samples required and sufficient to produce a consistent mix.

This section begins by looking at the compressive strengths of the materials and 

how they compare to the control of a blended GGBS and OPCRM at similar 

replacement levels to the research materials. Physical and chemical properties are then 

examined and compared to the results in Chapter 4 and a discussion on the positive 

and negative attributes of the materials, as compared to the Processed Fly Ash, will 

then be presented. The mix procedure can be seen in Chapter 3.

5.2 Compressive strength

I GGBS B SS  MSW ■ FA2 ■ IM

£ .  40 0

Ia
Eoo

0.0
10% 20% 25% 30% 50%

■ GGBS 51.6 502 51.9 49.0 47.0

■  SS 41.0 35.2 38.6 31.3 19.0

MSW 32.3 26.1 23.8 23.3 16.6

■ FA2 47.7 45.9 40.7 40.3 28.3

- IM 43.6 31.2 30.4 27.7 20.0

Replacem ent (%)

Figure 5.1 Compressive strength comparisons at 28 days of the replacement materials blended with 
OPCRM at various percentages and a blended mix 50% GGBS 50% OPCRM

Three GGBS control mixes using identical designs were produced as a 

comparison for the test samples with the average value for compressive strength used.
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The spread o f compressive strength results between each o f the repeat GGBS mixes 

varied by less than lN/mm2. A single concrete mix has been produced using each 

sample with the compressive strength being the average o f three cubes crushed from 

this mix at 28 days. The complete set o f results can be seen in Appendix 3.

Figure 5.1 presents the results from the compressive strength tests taken at 28 

days. Generally, it can be seen that, whereas the GGBS mix maintains a steady 

compressive strength value over the complete range o f replacement percentages, the 

other materials do not. At 10% replacement all the materials achieve their highest 

compressive strength, which generally decreases as the replacement percentage 

increases. The exception to this is the SS material which shows a slight improvement 

in strength between the 20% and 25% replacement levels. At 10% replacement FA2 is 

achieving good results which are maintained at 20% and continues to perform well up 

to 30% where at only 8.7N/mm2 weaker than the GGBS is still a strong mix. At 50% 

the compressive strength o f FA2 drops considerably; however, it does remain the best 

o f the test samples having the highest compressive strengths at each replacement 

percentage.

IM also performs well in comparison to the GGBS control mix at the 10% 

replacement level. At 20% there is a rapid reduction in the compressive strength and 

this material does not recover from this strength loss and proves to be a poor 

comparison to GGBS at the higher replacement levels.

SS is only 10.6N/mm2 lower than the GGBS sample on compressive strength at 

10% replacement and 6.7N/mm2 lower than the FA2 sample. A dip in the 

compressive strength is seen at 20% replacement, but picks up slightly at 25% being 

only 2.1N/mm2 lower than the FA2 material. At 30% and 50%, the reduction in 

strength follows the same pattern as the FA2 material and does not compete with the 

GGBS.

MSW provides the worst case at all replacement levels. The strengths achieved do 

not compare favourably with the GGBS and are generally well below the other 

materials being researched.

5-3



Chapter 5 — A study into possible cement replacement materials

Water / Binder ratio

The water / binder ratio (w/b) is one o f the controlling factors when dealing with 

the strength of concrete. The British standard BS 8500 -2:2002 has a requirement for 

a maximum w/b ratio when producing a designated concrete (Table 8 in the standard). 

This maximum is dependant on cement content and m aximum aggregate size. The 

mixes produced here contain 270kg/m3 cement content and have a maximum 

aggregate size of 20mm. Table 8 considers cement contents in multiples o f 20kg/m3 

and, hence, 270kg/m3 does not appear on this table. In this case it would be reasonable 

to interpolate between the 260kg/m3 figure and the 280kg/m3 figure and argue that 

this should be the correct w/b ratio to use or the smaller value could be used and err 

on the side of caution. At 280kg/m3 the maximum specified w/b ratio is 0.60 for a 

maximum size aggregate of 20mm, whereas at 260kg/m3 with a m axim um  aggregate 

size o f 20mm the ratio is 0.65. Therefore, the figure used to test compliance with the 

standards will be the lower value o f 0.6 w/b ratio. Table 5.1 presents the water / 

binder ratios measured for each of the mixes completed on each material.

Table 5.1
Water binder ratios of the various blended cements at increasing replacement levels

Replacement %
Material 10 20 25 30 50

GGBS 0.60 0.56 0.58 0.6 0.58

SS 0.59 0.53 0.54 0.52 0.51

MSW 0.67 0.67 0.65 0.62 0.51

FA2 0.57 0.53 0.48 0.51 0.55

IM 0.66 0.70 0.76 0.73 0.71

BS EN 8500 limit 0.60

The GGBS has been included in Table 5.1 to show that the mix used complies 

with the standard at all replacement levels. The majority o f the SS material produces 

results well below the limit, with values ranging between 0.5 and 0.59. It can be seen 

that as the replacement level increases the w/b ratio decreases. MSW does not 

produce such positive results, with all but one ratio being above the limit. The results 

for MSW show a maximum o f 0.67 and it can be seen that, as with the SS material, as 

the replacement percentage increases the w/b ratio reduces until at 50% replacement 

the w/b ratio is 0.51 being well below the limit. FA2 produces good results all within
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the limit and achieving the lowest w/b ratio o f 0.48 at 25% replacement. The results 

for the FA2 fall as the replacement increases until, at 30%, an increase can be seen 

which continues on to the 50% replacement level. The IM material produces the 

highest w/b ratios with the lowest result measuring 0.66 whilst subsequent results 

exceed 0.7.

The influence o f the water-cement ratio and cement content on the compressive 

strength is well documented with the compressive strength decreasing with a higher 

water-cement ratio (Schulze 1999); therefore, the less water in the mix, the stronger 

and less porous the concrete. When comparing the results to the compressive 

strengths, it can be seen that the materials requiring the higher water demand, MSW 

and IM blends, both produce low compressive strength results.

FA2 shows a decrease in water demand until the 25% replacement level. From 

this point the water demand increases and it is the only material which shows this 

behaviour. This may be attributed to the amount o f material being introduced into the 

mix as a result o f the differences in particle densities. The particle density of fly ash is 

typically 2300kg/m3, which is significantly lower than OPC at 3120kg/m3. Table 5.2 

reports the specific gravities of the materials used in this research as determined using 

the method laid out in BS EN 196-6:1992 Methods o f testing cement (National annex 

NC - Method of testing cement for density).This method determined the density of 

cement by displacement o f a non-reactive liquid (pure water) in a pyknometer. Two 

separate determinations, on different portions o f the sample, using two calibrated 

pyknometers achieved the average figure used in this research. Therefore, for a given 

mass of OPC a direct mass substitution o f fly ash will give a greater volume of 

cementitious material. Table 5.2 shows that the density o f the fly ash is lower than 

that o f the OPC. However; density alone does not explain the trend for FA2, as SS has 

a lower density than FA2.

Table 5.2
Specific gravity of the controls and the researched materials
Material OPCRM GGBS SS MSW FA2 IM

Specific gravity 3268 2942 1705 2496 2207 2734

(kg/m3)
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5.3 Physical properties

Material grading

OPCRM — GGBS — Processed FA - * - S S  * MSW -©-FA2 — IM

0.1 1 10 100 1000

Size (pm)

Figure5.2 Particle grading results of the OPCRM, GGBS and Processed fly ash as compared to the 

SS, MSW, FA2 and IM cement replacement material

Figure 5.2 presents the results from the particle size analysis whilst Figure 5.3 has 

been derived from it focusing on the OPCRM, Processed fly ash and IM. 

Chindaprasirta et al (2009) found that the reduction in fineness of a fly ash resulted in 

higher compressive strength, lower total porosity and capillary porosity than when a 

coarser fly ash was used. EN 450-1 (2005) requires that the finer classification of fly 

ash, Category S, shall not retain more than 12% of its mass on a 45pm sieve, the 

coarser Category N shall not exceed 40%. In Chapter 4 it was discussed that a 

successful cement replacement should have grading characteristics similar to that of 

the OPC control as this retained less than the 12% limit. The vertical line shown in 

both Figures 5.2 and 5.3 show the position of the 45pm sieve, the amount passing is 

found by reading across to the percentage axis at the point that the grading line cuts 

through it. The retained amount is the amount passing per cent deducted from 100%.
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It can be seen from the Figure 5.2 that the coarsest material is the SS containing 

particles of a size in excess o f 490pm, whilst the maximum particle size for OPC is 

100pm. The next coarsest material is the MSW, also having a maximum particle size 

in excess of 490pm. The difference between these two materials is the total content of 

the finer particles within the materials. The MSW begins with a steep slope indicating 

that the material contains a higher percentage o f the finer material, but at 90 per cent 

the line levels out showing that the last 10% of the material is coarse. The SS material 

on the other hand does not have such a steep slope in the finer region although 

approximately 70% is finer than 90 microns. The final 30% is a coarse well graded 

material. FA2 follows a similar pattern to that of the MSW; however, the curve does 

not begin to level out until after approximately 95% indicating that only 5% of the 

material is coarse with the particle size not exceeding 400pm.

With respect to the 45pm sieve size, it can be seen that both the MSW and FA2 

materials fall into the category N fineness as they both retain approximately 24% of 

their mass on this sieve size this being in excess o f the 12% maximum. The SS 

material retains approximately 65% o f its mass on the 45 pm sieve and, therefore, falls 

outside the limit for category N and outside o f the scope for fly ash. IM, however, 

retains approximately 12% of its mass on the 45 pm sieve and, therefore, can be 

classified as category S. The IM is the finest material o f  those researched being o f a 

similar fineness to both the processed fly ash and the OPCRM.

Figure 5.3 removes the data from the materials previously discussed and the 

GGBS control so as to focus on the finer materials of OPC, processed fly ash and the 

IM material. It can be seen that the grading o f the IM falls between the grading of 

both the OPC control and the processed fly ash although the IM does contain a small 

percentage of coarser particles around 120pm. It was discussed in Chapter 4 that the 

ideal cement replacement should have a grading within this range and IM is the only 

material which fits into this.

5-7



Chapter 5 -  A study into possible cement replacement materials

OPCRM Processed FA IM

100

90

80

TO

TO

TO3

1
3

1
40

30

20

0.1 1 10 100 1000

Size (pm)

Figure 5.3 Material particle grading focusing on the finer materials o f OPC, processed fly ash and 

the IM material

Particle shape

Figure 5.4 presents the particle images as viewed through the scanning electron 

microscope. It was discussed in section 4.5 that the idealised particle shape would be 

spherical or at least smooth and rounded, which would act as a lubricant, allowing the 

concrete constituents to move with a lower resistance. However, Bullard and 

Garboczi (2006) reported that spherical shapes have the minimum possible ratio of 

surface area to volume; the greater the departure from sphericity, the greater this ratio 

becomes. Therefore, compared to spherical particles, the kinetics of hydration at early 

ages may be enhanced for pastes formed from non-equiaxed particles. So a spherical 

particle may enhance the “ball bearing effect”, which in turn reduces the w/b, ratio but 

non-spherical particles promote early hydration.

It can be seen from the images that SS is a very angular material containing no 

recognisable spherical shaped particles at any particle size. The majority of the 

particles are below 50pm with a few individual particles larger than 100pm. MSW is 

also an angular material, but the smaller particles and those particles which are not 

clumped together give a rounded appearance. All the particles in this image are below
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100pm. The image for the IM material is similar to that of the SS with the particles 

being angular in appearance with no identifiable spherical particles. The majority of 

the particles are below 10pm with a few individual particles above 20pm. Both the SS 

and IM particles have well defined edges giving the appearance of a crushed rock 

conducive to particle interlock rather than the lubrication associated with rounded 

particles. The FA2 image shows the spherical shapes with which fly ash is associated. 

However, non-spherical particles are also visible in this image which may have an 

adverse effect on the benefits achieved from the spherical particles. The particle sizes 

range from a few above 30pm to the majority below 10pm. It is estimated that the SS 

material would be the coarser material whilst the IM material is the finest. This agrees 

with the results from the Mastersizer in Figure 5.2. Further images can be viewed in 

Appendix 3.

(c) (d)
Figure 5.4 SEM images showing the particle shapes of the replacement materials a) SS, 

b) MSW, c) FA2, and d) IM
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Loss on ignition and sulphur analysis

As previously reported, the highest limiting value for S 0 3 in cement is 4.0% 

(3.5% in lower strength cements). The results for the materials in this research are 

presented in Table 5.3 and give the values for sulphur, SO3 and S 04. It can be seen 

that the SO3 values for SS, FA2 and IM are within the limits for the British and 

European standards. The value for the MS W material is more than double the limiting 

value. As was mentioned previously, this value may be taken as a sum total of the 

blended material and not just as an individual value. Therefore, this material may not 

be problematic unless it is blended at a high volume. However, the suggested limits 

for SO3 , presented in the previous section, placed a limiting range o f 0.3% to 2 .5 % for 

a siliceous fly ash, <1.0% for a natural pozzolan and 0.005% to 2% for GGBS. This 

now puts MSW outside any o f these acceptable ranges.

BS EN 197-1:2000 requires that cement types CEM I and CEM III have a loss on 

ignition value smaller than 5.0% but does not state a value for CEM II cement. The 

standard deals with other materials separately to the cement therefore the carbon 

content o f each material would be restricted prior to its addition to the CEM I. As SS, 

MSW and FA2 are all ashes the maximum value given in the standard is 7%. The IM 

sample does not have a category within BS EN 197 so for this research the limiting 

value will be taken as that of the fly ash. The carbon contents in Table 5.3 show very 

little carbon in the SS material with a small amount in the IM sample. The higher 

values produced are in the MSW with the highest being the FA2 material. However, 

both are within the 7% limit.

Table 5.3
Results for Sulphur and Carbon analysis - Leco

Name Sulphur % SO3 % S0 4 % Carbon %
SS 0.53 1.33 1 .6 0.28

MSW 3.87 9.65 11.58 4.70

FA2 0.32 0.79 0.95 5.65

IM 0.71 1.77 2.13 1.23
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Table 5.4 presents the loss on ignition values as achieved using the British 

standard test method to BS EN 196-2:2005. This method subjects a sample with a 

known weight to be heated to 950° C for 15 minutes then re-weighed the difference 

between the two weights being the carbon content. The Leco test uses a method which 

analyses the atmosphere within the apparatus and records the amount of carbon 

detected which is then expressed as a percentage. The main issue with the British 

Standard test is that any inorganic material within the material plus any water content 

within the sample is removed due to the heat and taken into the calculation. Therefore, 

the result is a percentage of everything that was burnt off during the firing o f the 

material.

It can be seen from the comparisons o f  the data in Tables 5.3 and 5.4 that the 

losses on ignition vary considerably between the Leco test and the British standard 

test in all but the FA2 results. Where the Leco analysis permits all the materials to be 

used, being below the limiting value o f 7%, the British Standard method does not. 

The loss on ignition carried out to BS EN 196-2:2005 prohibits the use of both MSW 

and IM as having too high a value however the SS material remains within the 

acceptable limit.

As the British standards method is the industry standard for the determination of 

the carbon content, this is the figure which should be used when reporting on the 

material.

Table 5.4
Carbon content (LOI) of the replacement materials

Material LOI (%) Leco (%)

SS 2.82 0.28

MSW 34.67 4.70

FA2 5.69 5.65

IM 9.08 1.23
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5.4 Chemical analysis

Inductively Coupled Plasma Analysis (ICP)

Tables 5.5 and 5.6 present the results from the ICP chemical analysis. It was 

proposed in Section 4.5 that the comparison from the chemical analysis should lie 

within a range o f values rather than just achieve a singe value. Tables 5.5 and 5.6 

show the chemical analysis results o f the research materials along with the proposed 

idealised chemical ranges. The calculations used to produce the table are shown in 

Chapter 3 with the full analysis results in Appendix 3.

Table 5.5
Nature of composite cement constituents (Moir 2003)
as compared to the chemical analysis of SS and MSW

Oxide (%)

Acceptable ranges Material

Siliceous 

fly ash

Natural

pozzolana

GGBS SS MSW

Si02 38-64 60-75 30-37 32.40 6.06

A120 3 20-36 10-20 9 - 1 7 13.82 1.12

Fe2C>3 4 - 1 8 1 - 10 0. 2 - 2 9.39 0.64

CaO 1 -10 1 -5 34-45 12.67 34.43

MgO 0.5-2 0. 2 - 2 4 -1 3 2.19 0.55

P 2 O 5 4.22 0.11

k 2o 1.90 4.34

Na20 0.46 2.08

Mn20 3 0.24 0.04

Minors 11.50 19.09

LOI 2 -7 2 - 12 0.02 - 1 2.82 34.67

Total (%) 91.62 103.12

A1 + Si + Fe >70 55.62 7.82

Na + K <5.0 2.36 6.42

Ca + Mg / Si >1.0 0.46 5.77
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It can be seen that the amount o f  silicon and aluminium within SS places this 

material in the GGBS class. The other elements are, however, not compliant with this 

classification. The silicon value is fairly high, although not as high as required by the 

fly ash classification, and the calcium low; therefore, it would be expected that this 

material will act as a pozzolanic material. The loss on ignition is within the range 

specified for the pozzolanic material but the sum o f the oxides for A1 + Si + Fe does 

not achieve the specified value for a fly ash o f 70%.

When considering the MSW material, it can be seen that the high level of calcium 

and iron place this under the GGBS category. The most important element on which 

the chemical reaction in cement relies, silicon, is in short supply. At only 6 %, this 

value falls well short of any o f the suggested values and, together with the low 

aluminium and iron contents, remains well below the required minimum of 70% for 

the sum of these elements within fly ash.

Table 5.6
Nature of composite cement constituents (Moir 2003) 
as compared to the chemical analysis of FA2 and IM

Oxide (%)
Acceptable ranges Material

Siliceous 

fly ash

Natural

pozzolana

GGBS FA2 IM

SiQ, 38-64 60-75 30-37 53.92 40.00
a i2o 3 20-36 10-20 9 - 1 7 27.47 10.17

Fe20 3 4- 18 1 - 10 0. 2 - 2 2.05 0.92
CaO 1 -10 1 -5 34-45 6.37 20.99
MgO 0.5-2 0. 2 - 2 4 - 1 3 2.08 11.28
P 2 O 5 0.27 0.06
k2o 0.53 0.92
Na20 0.14 0.40
Mn20 3 0.07 0.39
Minors 6.29 1.98
LOI 2 -7 2 - 12 0.02 - 1 6.76 9.08
Total (%) 105.94 96.19
A1 + Si + Fe >70 83.44 51.09
Na + K <5.0 0.67 1.32

Ca +■ Mg / Si------- ------->T0------- 0.14 0.81
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Table 5.6 compares the remaining two materials, FA2 and IM, to ascertain 

whether either falls into a standard category. FA2 is a fly ash material and it would be 

expected that this will follow the requirements o f the siliceous fly ash. There are only 

two slight differences between the material and the requirements, these being Fe2 0 3  

which is slightly lower in FA2 and the MgO which is slightly higher. The sum of the 

oxides for A1 + Si + Fe at 83% is above the minimum 70% and sum of the alkalis at 

0.67% is lower than the maximum 5.0%. This then falls into the classification of a 

siliceous fly ash.

IM is a blend of industrial waste materials mixed in a way as to try and emulate an 

ideal cement replacement material. A number o f blends were available to test, but this 

blend was used as it had shown positive results in a previous study on mortar. As with 

the other three materials in this study, the IM material conforms to some o f the 

requirements of each of the classifications but does not give a clear preference. The 

silicon content conforms to the range o f the siliceous fly ash but this is where the 

conformity ends. The aluminium, iron and magnesium conform to the requirements of 

the GGBS, but the calcium lies midway between the two specifications. Both the 

sums of A1 + Si + Fe and (Ca + Mg)/Si are below the requirements o f their respective 

specification; however, the sum of the alkalis conforms to the requirements of fly ash.

Transmission Electron Microscopy (TEM)

The particles of each material have been observed by the TEM using identical 

settings, magnification and sizing o f the particles as small, medium and large:

o Small particles <0.25pm 

o Medium particles <2.0pm and >0.25pm 

o Large particles >2.0pm

An image showing these various sizes can be seen in Section 4.34, Figure 4.19. 

The TEM was used in an attempt to identify the elemental differences between the 

various sizes of particles within each material. By establishing this it will be possible 

to determine whether the removal o f a certain size particle would make a difference to
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the material’s performance as a cement replacement. The results from the analysis of 

the materials are now discussed:

Fe

Ca

Cu

1.06 2.00 3.00 4.00 5 00 6 00 7.00 9.00 10 .0(

Figure 5.5 TEM particle analyses on a large SS particle.

ca

Cu

7.00 «.oo 9.005.002.00 3.00

Figure 5.6 TEM particle analyses on a medium SS particle
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Figure 5.7 TEM particle analyses on a small SS particle

SS: The analyses of the large, medium and small particles for the SS material are 

shown in Figures 5.5, 5.6 and 5.7 respectively. The analysis on the three particle sizes 

shows that generally the elemental make up is consistent throughout with the same 

elements appearing at each size. The differences are that the large particle displays 

titanium which the other particle sizes do not; the medium sized particle shows a 

significant increase in silicon, potassium and calcium over the large and small 

particles and the small particle displays a large proportion of iron.
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Figure 5.8 TEM particle analyses on a large MSW particle
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Figure 5.9 TEM particle analyses on a medium MSW particle
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Figure 5.10 TEM particle analyses on a small MSW particle

MSW: The analyses of the large, medium and small particles for the MSW 

material are shown in Figures 5.8, 5.9 and 5.10 respectively. As with the SS material 

the analysis of the three particle sizes generally shows consistency throughout with 

each containing similar elements including the main research elements of calcium, 

silicon, aluminium and iron. The calcium is the dominating element throughout the 

three sizes whilst the amount of phosphorous increases as the particles become finer 

the chlorine content decreases as the particles become finer.

Silicon is not labelled in the analysis of the large particle although there is a peak 

in the silicon position and therefore is assumed that this is a labelling issue inherent 

with the software. Similarly, iron is only labelled on the large particle analysis 

although peaks are visible in the same region (between Zn and O) on the small and 

medium spectra.
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Figure 5.11 TEM particle analyses on a large FA2 particle
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Figure 5.12 TEM particle analyses on a medium FA2 particle
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Figure 5.13 TEM particle analyses on a small FA2 particle

FA2: The analyses of the large, medium and small particles for the FA2 material 

are shown in Figures 5.11, 5.12 and 5.13 respectively. It can be seen that the analysis 

on each particle size returns similar results with the main research elements of silicon, 

calcium, aluminium and iron each being present. The only notable difference is the 

reduction in aluminium within the finer fraction of the material. It is interesting to 

note that although the Leco carbon analysis gave this material the highest carbon 

content, Section 5.3, Table 5.4; carbon was not detected on any of these analyses.
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Figure 5.14 TEM particle analyses on a large IM particle
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Figure 5.15 TEM particle analyses on a medium IM particle
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Figure 5.16 TEM particle analyses on a small IM particle

IM: The analyses of the large, medium and small particles for the IM material are 

shown in Figures 5.14, 5.15 and 5.16, respectively. As this is a material made up of a 

selection of other materials specifically selected for the task as a cement replacement, 

it would be expected that all the required elements be available at each particle size. 

The large particle has significant amounts of aluminium silicon and potassium with 

calcium and iron barely visible on the spectra. The medium particle displays similar 

results with a decrease in aluminium content and an increase in magnesium. The small 

particle shows a significant increase in the calcium content with a reduction in the 

potassium content.
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5.5 Discussion

Traditionally, the compressive strength of concrete has been used as a tool for a 

measure of the quality. The purpose of this section of experimental workwas to judge 

the quality o f blended cements through an analysis of the properties, both physical 

and chemical, o f the cement replacement material. It has shown that the properties 

that make up a material are not so predictable that they can be put into a simple 

classification o f good replacement material or bad replacement material.

Much research has been committed to the use of fly ash as a cement replacement 

material with good cause as was proved in the present research by the impressive 

results achieved, up to 33% replacement, using a processed fly ash (Chapter 4). It 

would be expected that FA2, being a similar material, in that it is a fly ash produced 

from the burning o f coal, should perform close to if not as well as the control using 

GGBS. However, the compressive results are disappointing when the replacement 

level increases above 20%. What could be done to this material to improve its worth 

as a cement replacement? Looking at the grading, it can be seen that FA2 is coarser 

than that recommended, so increasing the fineness could improve performance. IM on 

the other hand is a fine material which follows the assumed requirements for a 

material and yet its compressive strength is only competitive at 1 0 % replacement.

The SEM images show that FA2 contains an amount of both spherical and, to a 

lesser extent, irregular shaped particles. If  these irregular particles were removed 

would the resulting mix become more fluid requiring less water and the associated 

increase in strength? Possibly; however, the SS material has achieved similar w/b 

ratios as that of FA2 and the SEM images show there to be only non-spherical 

particles available.

The Loss on Ignition and the chemical analysis have shown that the FA2 material 

has a relatively low LOI at 5.69%. Dhir et al (1981) demonstrated that there is 

strength reduction as the LOI of fly ash increases with approximately 3N/mm being 

lost between 2% and 6 % LOI. The MSW and IM materials follow this prediction with
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the MSW having the higher LOI giving the lower strength. This is not true o f the FA2 

and SS materials, with the FA2 material having the higher LOI and also the higher 

strength. The chemical analysis of FA2 confirms that this is a siliceous fly ash as it 

conforms to the requirements of EN 450-1 2005, whilst the other materials conform 

only partly to this specification. To use this information to guess the success of a 

particular material as a cement replacement will require some knowledge of the 

reactions within cement and its relationship to the replacement material.

This research has shown the fly ash FA2 to be the best replacement material from 

the four samples tested, with SS, IM and MSW following in descending order of 

quality. This material has consistently bettered the strengths o f the other samples, 

although it has not improved on the strength produced by the GGBS control. As 

discussed in Chapter 4, the properties of the material follow the recommended pattern 

with the fineness, particle shape and elemental make up all being within the vicinity 

of each of the suggested ranges. The SS material is a coarse material with 65% 

retained on the 45pm sieve (procedure to BS EN 196-6 Determination o f fineness, 

sieving method) and particles illustrating a rough irregular shape. The carbon content 

is low and the SiC>2 content is not far short from that of siliceous fly ash. Even with 

the low w/b ratio, the material does not compare to the GGBS control or the FA2 

material. Kiattikomol et al (2001) showed that the fineness of the fly ash, not the 

chemical composition, had a significant effect on the strength of mortar. This material 

may perform better if  it were processed to remove the coarser particles.

The MSW material is also a coarse material with an angular irregular particle 

shape. Although the fineness improves over the SS material, the high carbon content, 

high w/b ratio and low Si(> 2  content contribute to it being the worst performer out of 

the four materials. None of the elemental properties of this material compare with the 

idealised ranges, as shown in Table 5.6.

The IM sample has the potential to work well as a replacement material. It is a 

fine material, although its particles are rough and irregular, with a high SiC>2 content. 

This material showed positive results at low replacement levels however high w/b 

ratios and high LOI results prove detrimental to the compressive strengths of the 

concrete. The results from the analysis would have shown the potential for this
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material as a cement replacement, noting the high carbon content, with further trials 

being recommended.

Table 5.7 presents a scoring system which scores the candidate replacement 

material based on how it performed relative to the idealised cement replacement 

through each o f the analysis. The scoring system is based upon the judgement of the 

reviewer who must accurately assess the candidate material performance. The scoring 

system uses a 4 point scale:

o A score of 4 indicates that the material fits the idealised requirement for a 

cement replacement material. A score of 1 indicates that the material has 

very little, if  anything, in common with the idealised material requirement. 

Scores of 2 or 3 can be used for intermediate scoring.

o A weighting is applied to the chemical analysis score as there are a number 

o f comparisons to be made, which if are all matched exactly, will have a 

greater benefit to the replacement material greater than, for example, the 

fineness which can be manipulated through grinding.

Table 5.7
Performance ratings of the candidate materials using a scoring system as an indictor to the materials 
effectiveness as a cement replacement based on results from the analysis_____________________

Property Weighting

factor

Material

FA2 SS IM MSW

Fineness 1 3 1 4 3

Shape 1 4 1 1 2

LOI 1 3 4 1 1

Chemical

components

2 4 3 2 1

Score 18 1 2 1 0 8

Rank 1 2 3 4

Ratings:

1 - Poor 2 - Moderate 3 - Good 4 - Excellent
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Reviewing the fineness property in Table 5.7, studying the IM and FA2 materials, 

it can be seen in the material grading, Figure 5.2, that the grading curve of the IM 

material follows that of the CEM I and the processed fly ash whilst the FA2 material 

is coarser. Therefore, the IM material receives a score of 4, being the idealised 

grading, whilst FA2 receives a score of 3 being just below the idealised grading.

With respect to shape, the SEM images show that the majority o f the particles in 

the FA2 material are spherical therefore a score of 4 is awarded as this is the ideal 

particle shape. The MSW achieves a score of 2 because the particles are generally 

angular with a few having a spherical appearance. The SS and IM materials are both 

angular with no spherical particles visible and hence receive the lowest score.

With regards to the LOI scores, a score of 4 would be awarded to a material with a 

LOI o f less than 5%, a score of 3 would have a LOI of less than 7% but larger than 

5%, whilst a score o f 2 would have a LOI result larger than 7% but less than 9%, with 

a score o f 1 being greater than 9%.

The chemical analysis scores are based on how closely the material analysis 

matches that of the idealised chemical composition as presented in Table 4.15. FA2 

gets a score of 4 as this material follows the requirements o f the siliceous fly ash 

fairly accurately with iron being the only anomaly. SS receives a score o f 3 as this 

material is fairly close to the siliceous fly ash however the material is slightly low on 

the main element o f silicon and the A1 + Si + Fe value is also lower than required. The 

IM material is similar to that of the SS, however, this material gives closer 

resemblance to GGBS. The results show that the calcium level is significantly lower 

than required for GGBS and the value for (Ca + Mg)/Si is also too low therefore the 

IM material scores a 2. MSW compares to the GGBS through its iron content and (Ca 

+ Mg)/Si values being higher than required and its calcium content being the 

minimum acceptable amount for GGBS. All other elements are low, with the major 

element of silicon being a fifth of the content required for GGBS. These low values 

necessitate the lowest score of 1 for the chemical components of MSW.
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The performance ratings have been introduced in order to rate and compare 

candidate cement replacement materials and predict their suitability prior to any 

further investigation. This method has the advantage that it is fairly simple to use and 

researchers with some knowledge of the essential properties of a cement replacement 

material can make accurate judgements for the scoring.

It can be seen from Table 5.7 that the ranking of the materials reflect those of the 

majority o f the compressive strength results as presented in Figure 5.1. For this 

research Table 5.7 has proved to be a suitable method for assessing the results. 

However, other materials may not be so clear cut and Table 5.7 may require 

reviewing to improve its accuracy.
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5.6 Conclusions

In summary the conclusions from this chapter are:

o An indication as to whether an unknown material will work as a cement 

replacement can be gained from the analysis performed within this 

chapter. With some knowledge of the use o f cement and cement 

replacements, it is possible to compare the physical and chemical, 

properties of an unknown material to those researched here and get an 

indication as to the materials potential as a cement replacement prior to 

mixing as a concrete.

o A performance table with a scoring system is an accurate method of 

scrutinising the results from the analyses to predict the candidate materials 

worth as a cement replacement.

o The ideal candidate for a quality cement replacement must possess a 

chemical composition similar to one of those in the acceptable ranges and 

be of a comparable fineness to OPC.

o Particle shape does not necessarily reduce the free water requirement.
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6. Results - inter-grinding fly 
ash with clinker

6 .1 Introduction

6.2 Grinding

6.3 Test results o f the inter-ground material

6.4 Cost analysis

6.5 Conclusions

6.1 Introduction

The vast majority o f cement produced throughout the world is ground in ball or

rod mills. These are rotating tubes which contain steel balls or rods in a range o f sizes

through which the clinker passes (Moir 2003). The sizing action required to regulate

the performance o f ball mills is obtained by operating the mill in a closed circuit with

a classifier, (Gaudin 1939). Although vast changes have been made through natural

evolution and technology, the principle of closed circuit grinding has not changed for

many years. A closed-circuit mill, illustrated in Figure 6.1 below, contains two

separate chambers divided by a slotted diaphragm wall through which the partially

ground material is allowed to pass. Each of the chambers contain steel balls, the first

having a diameter range of generally 60-90mm and the second a diameter range of

generally 19-3 8 mm, Figure 6.2 shows the actual ball mill used at Aberthaw cement

works. The cement is discharged through a separator which divides the particles that

have been reduced to the requisite size from those that have not yet been sufficiently

reduced (i.e. oversize), the fine particles being stored whilst the coarser particles are

returned to the mill once again (Moir 2003). Closed-circuit grinding delivers tight

control of particle size whilst open-circuit mills, which do not contain the separating
2 .

stage, are less efficient especially at high cement finenesses (above 350m /kg) (Moir 

2003).
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Figure 6.1 Schematic diagram of a closed-circuit grinding mill 
Source Moir 2003

(a) (b)
Figure 6.2 Photographs taken at Aberthaw cement works showing (a) the ball mill grinder, (b) the 

inside of a replacement ball mill

There are a number of benefits available for the producer of CEM II cement by 

the on-site blending of the materials, as opposed to the blending of the materials being 

achieved in the batching mixer at the concrete plant. The first is that the producer will 

have controls, unavailable to mixer combinations, to improve the performance of the 

cement. These could include the optimisation of the sulphate content to regulate 

setting without compromising strength development and / or using additives to 

improve water demand or early-age strength. There is a substantial body of evidence 

from the UK and elsewhere that, because the cement manufacturer can optimise the 

properties of the Portland cement component and control the grinding regime, as well
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as the proportioning o f the constituents, the performance o f a CEM II cement can, if 

well designed, outstrip that of an 'equivalent' mixer combination (Price 2007).

Issues of compatibility between additions and specific sources of cement (CEM I) 

are resolved at source by the cement producer as the properties and performance of 

the final CEM II cement are measured on site. This removes any concerns about, for 

example, how cement 'A' might react with addition 'B' when the individual 

components are mixed in the concrete plant, thus reducing the need for the concrete 

producer to present extensive trial mixes to guarantee the performance of the concrete 

produced.

Pandey et al. (2003) observed that, when inter-grinding with clinker, an increasing 

addition of fly ash produced an increase in the Blaine fineness of all samples. This 

was put down to the increase in ‘grindability’ o f clinker as well as the crushing and 

disagglomeration of the fly ash particles. Tsvilis et al. (1999a) reported that materials 

having different grindabilities influence the particle size distribution, which in turn 

influence cement hydration and finally performance. However, an excessive amount 

o f secondary material inhibits the grinding of both clinker and limestone resulting in a 

coarser grading o f these materials.

Elkhadiri et al. (2002) found that, during the grinding stage, results showed that 

increasing the amount of added fly ash in the blended cement significantly reduced 

the grinding time. This indicated that fly ash enhances the grinding operation. So, 

inter-grinding clinker and fly ash promotes the grinding process and yields an increase 

in fineness in less time, hence less grinding energy is consumed, consequently, an 

energy saving is obtained. Further studies have also indicated that, for the blended 

cements when the fly ashes were ground together with the clinker, the time required 

to obtain the same Blaine fineness as the laboratory produced Portland cement was 

reduced (Stoltenberg-Hanson 1984, Bouzoubaa 1998). This would effectively 

increase output from the shorter grinding time required; as more grinding could be 

achieved in the same time period, leading to reduced costs as output increases, not just 

from the addition o f fly ash, but from this reduced grinding time.
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The aims of this chapter are to study whether there is a benefit to the cement 

works at Aberthaw to introduce the Aberthaw fly ash to the ball mill during the 

cement manufacture process. Each of the three states of fly ash, (raw, processed and 

classified) were subjected to inter-grinding with clinker and further studied to see the 

effect that this process had on the resulting CEM II.

6.2 Grinding

Times — Poly. (Times)

y = -0.0009X2 + 1,2198x + 115.06
500

450

TARGET 365

O  350

300

250

200
100 150 200 250 400 450300 350

Time (mins)

Figure 6.3 Graph plotting Time against Blaine specific surface area to establish a grinding time which 
achieves a material surface area of 365m2/kg

The grinding of the constituents of the cement (clinker, limestone and gypsum), 

together with the fly ash and grinding aid was carried out by the Author at Cardiff 

University, using a ball mill as described in Chapter 3. The clinker and limestone 

were reduced in size by crushing firstly using a jaw crusher followed by a gyratory 

crusher in order to reduce the grinding time. The constituents were then weighed into 

a container mixed and poured into the ball mill. The grinding time for the constituents 

was found by comparing the Blaine Specific Surface Area (SSA) of the CEM I 

ground in the laboratory to that as produced by Aberthaw cement works. This was 

achieved by measuring the SSA of the material over periods of time and plotting the
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results on to a chart. The target SSA was 365m2/kg and the time required to achieve 

this was calculated as 258 minutes (4hours 18minutes), Figure 6.3 presents the results 

from this. The full method can be found in Chapter 3, Experimental Methods.

The mix designs used for researching the inter-grinding of the materials were 

identical to the designs used throughout this research. Two replacement percentages 

were used that of 27% and 33%, as these gave good results in the previous work, the 

33% being mixed with concrete whilst the 27% material was tested as mortar only.
3 3The cement contents used for the concrete mix designs were 140kg/m , 300kg/m and 

450kg/m3.

6.3 Test results of the inter-ground material

CEM I control - Ground

•j
The target SSA of 365m /kg was achieved from the Blaine analysis on the CEM I 

control as used within this research. The stated range used at the cement works is 

between 375m /kg and 385m /kg, the results gained from this test are, however, 

dependent on the technique and experience of the tester. For this reason, the Blaine 

test was reproduced several times by the Author and it was recorded that the results
■j

achieved a constant 365m /kg. This figure became the target for fineness with a 

tolerance used of plus or minus 5m /kg as used within the industry. The average SSA 

for the ground CEM I has been reported as 360m2/kg which is within the accepted 

range.
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Figure 6.4 Grading comparison between CEM I produced at the cement works and the CEM I ground 

using the ball mill within the laboratory

The grading of the CEM I and the laboratory Ground CEM I (GRD CEM I) 

controls was carried out using the Mastersizer X laser sizer as per the method 

described in Chapter 3, and the results can be seen in Figure 6.4. It can be seen from 

Figure 6.4 that the grading curves do not exactly match each other and that the GRD 

CEM I is coarser than the CEM I. The difference between the two materials appears 

marginal and it can be seen that the ground CEM I is in the region of 10% coarser 

than the CEM I. The effect of this difference in fineness, if any, would be in the 

increase in ffee water requirement which would then affect the compressive strength 

of the concrete made using this material due to the increased water / binder ratio.

Table 6.1
Compressive strength of concrete comparison between the CEM I control and the laboratory ground 
CEM I (Grd CEM I)__________________________________________________________________

Compressive strength (N/mm2)

Cement content (kg/m3) CEM I Grd CEM I

140 14 16

300 50 51

450 68 65
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Table 6.1 presents the compressive strengths achieved by the concretes produced 

using both the commercially produced CEM I (CEM I) and the laboratory ground 

CEM I (Grd CEM I) produced for this research. The mix method for producing 

concrete can be seen in Chapter 3. It can be seen that although the grading shows that 

the Ground CEM I is coarser the strengths achieved are similar, if  not slightly 

improved, on that of the commercially produced CEM I. Therefore, as long as it is 

acknowledged that there may be differences in the cement produced for the research, 

the grinding time can be considered as giving a cement representative of that 

produced in industry.

Grading:

On establishing the grinding time, the fly ash was mixed with the clinker, limestone 

and gypsum and inter-ground in the ball mill to produce a blended CEM II cement. 

The grinding method is detailed in Chapter 3. Figures 6.5 and 6 . 6  show the grading of 

the blended materials at both 27% replacement and 33% replacement respectively. It 

can be seen that in both instances the blended materials produce a finer material than 

that of the ground CEM I control. The outstanding feature of this is the fact that the 

raw fly ash, when inter-ground at 33%, produces a much finer mid range material than 

that of the processed fly ash and is comparable with the grading of the classified fly 

ash. The grading o f the raw fly ash, detailed in Chapter 4, showed it to be the coarsest 

of all the researched materials; however, the process of inter-grinding has produced 

this fine material. At 27% replacement, the grading of the CEM II cements have a 

wider spread than those at the 33% replacement and their order tends to match that of 

their individual grading, i.e. classified being the finest material with the raw being the 

coarsest. However, both cases show an improvement on the fineness of the CEM I.
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Figure 6.5 Grading of inter-ground CEM II cement at 27% fly ash replacement 73% OPCRM
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Table 6.2 Fineness o f  the cements at 33% replacement using the Blaine test

Inter-ground

(m2/kg)
Post blend 

(m2/kg)

CEM I 360 365

Classified 421 386

Processed 436 374

Raw 461 338

The fineness of the materials established using the Blaine test are shown in Table 

6.2. It can be seen that when the fly ash is post blended the resulting CEM II becomes 

finer than the control when using the processed and classified fly ash and becomes 

coarser when using the coarser grade o f the raw fly ash. This reflects the particle size 

distribution of the individual fly ash materials, whereby the classified material is finer 

than the CEM I the processed fly ash is generally finer than the CEM I and the raw fly 

ash is coarser than the CEM I, refer to Chapter 4.

This order is not reflected when the materials are inter-ground, as there is a 

reversal of results. All the CEM II cements produced are finer than that of the control; 

however, the inter-ground raw CEM II is finer than the inter-ground processed CEM 

II which is finer than the inter-ground classified CEM II. This emulates the 

conclusions drawn by Erdogu et al. (1999) who stated that interactions through inter­

grinding is more pronounced for higher particle size ranges and are not significant for 

small particle sizes. This may explain why the larger particles within the raw fly ash 

produce a finer finished product. Erdogu et al. (1999) also conclude that inter-ground 

cements become relatively finer than separately ground cements (post blend) and 

again this research follows this trend.
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Compressive strength

Ultimately, any cementitious material will be required to produce concrete, so a 

measure of the compressive strength within concrete requires examination. The 

blended 33% fly ash produced through inter-grinding has been used to produce 

concrete using the method stated in Chapter 3. Three concrete strengths have been 

studied, namely 140kg/m3, 300kg/m3 and 450kg/m3, and the 28 day compressive 

strength results are presented in Table 6.3 below.

Table 6.3
Compressive strength comparison of concretes containing CEM I a blended GGBS 50% /50% and the 
inter-ground fly ash at 33% fly ash 67% CEM I______________________________________

Compressive strength (N/mm2)

Cement

content

(kg/m3)

CEM I GGBS 

50% 

CEM I 

50%

Ground 

CEM I

Inter-ground

Classified

ash

33%

Inter- 

ground 

Process ash 

33%

Inter­

ground 

Raw ash

33%

140 14 15 16 14 10 10

300 50 40 51 50 41 37.5

450 68 59 65 66 62 54

The inter-ground classified ash blend produces the best results from all the fly ash 

blends. The blend competes with the CEM I controls at each cement content and 

generally betters that of the blended GGBS control. The inter-ground processed fly 

ash shows a compressive strength in the region o f 33% lower than the control mixes 

at the 140kg/m3 cement content. The higher cement contents slightly improve on that 

of the blended GGBS mix, but only compete with the CEM I controls at the 450kg/m3 

cement content. The inter-ground raw fly ash fails to compete with the CEM I 

controls at any of the cement contents being in the region of 33% weaker throughout. 

This blend compares more favourably to the blended GGBS control and even though 

it fails to match the strength of the GGBS the results fall within 5N/mm2 at each 

cement content.
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Figure 6.7 Comparison between compression strength of post blend and inter-ground (Ground) 
concrete at 33% fly ash replacement 67% CEM I

Figure 6.7 examines the compressive strength of the concrete produced using the 

inter-ground CEM II and the post blend CEM II. From Figure 6.7 it can be seen that, 

with the exception of the 450kg/mJ cement content containing the raw fly ash, the 

post blend material out performs that of the inter-ground material at each cement 

content and blend. Although there is generally little difference between the 

compressive strengths at the lower cement content, the differences are more 

significant as the cement contents increase, with a 10N/mm2 improvement by the 

classified over the ground classified at 450kg/m3 cement content.
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Table 6.4
Compressive strength of mortar prisms on the CEM I controls the post blend fly ash and the inter-
ground fly ash at 33% replacement

Compressive strength (kN/mm2)

Inter-ground Post blend

CEM I 62.3 62.4

Classified 58.1 47.3

Processed 58.3 46.3

Raw 51.8 43.6

Compressive strength tests on the mortar, produced using the same blended CEM 

II as used for the concrete tests, were carried out at Lafarge cement works, Aberthaw, 

to BS EN 196-1:2005 Methods o f testing cement Part 1: Determination of strength. 

The results are presented in Table 6.4. The results show that the inter-ground control 

CEM I produces a similar result to that o f the post blend CEM I increasing confidence 

in the grinding procedure employed. The inter-ground material shows improved 

compressive strength at each state of fly ash over their post blend comparison. This is 

in stark contrast to the compressive strength results o f the concrete, where the post 

blend material gave the best performance. It is interesting to see that whilst the post 

blend material follows the expected pattern of the classified material giving the 

stronger mortar, the inter-ground does not. Both the classified and processed materials 

give similar results to each other, with the processed slightly improved on that of the 

classified, whilst the expected drop in compressive strength is recorded for the raw 

material.

Water / binder ratio

The water / binder ratios for the concrete produced using the inter-ground material 

are presented in Table 6.5 below. Examining the control CEM I and the laboratory 

ground CEM I it can be seen that the water requirements are similar to each other at 

each cement content. Again, these similar results shows that the laboratory ground 

CEM I produces a satisfactory cement to use a comparison.
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It can be seen from Table 6.5 that the inter-ground material shows lower w/b 

ratios than the GGBS in all cases. The classified material shows improvement on both 

the CEM I and ground CEM I, whilst the processed fly ash gives identical results to 

those of the CEM I with the slight variation when compared to the ground CEM I. 

The raw material gives similar results to those of the processed fly ash being slightly 

lower at the 140kg/m3 cement content, but slightly higher as the cement content 

increases. The higher cement contents o f 300kg/m3 and 450kg/m3 are all within their 

respective limits as required by the British Standards.

Table 6.5
Water / binder comparison between concrete mixes using CEM I controls and the inter-ground fly ash 
at 33% fly ash 67% CEM I____________________________________________________
Cement

content

(kg/m3)

Water / binder ratio

CEM I GGBS Ground 

CEM I

Inter-ground (33%) BS 8500 
Limit

Classified Processed Raw

140 1.06 1.43 1.09 0.94 1.06 1.02 -

300 0.47 0.56 0.46 0.40 0.47 0.48 0.6

450 0.34 0.41 0.36 0.31 0.34 0.36 0.45

Table 6.6 presents a comparison o f the w/b ratios between the inter-ground 

material and the post blend. It can be seen that all o f the inter-ground results have 

lower w/b ratios than their respective post blend results. This lower water content 

would normally have been a major factor to the compressive strength; however, it has 

been shown that the compressive strength o f the post blend material exceeds that of 

the inter-ground at all cement contents.

Table 6.6
Water / binder ratios comparison between concrete mixes using inter-ground and post blend fly ash

Cement
content
(kg/m3)

Inter-ground (33%) Post blend (33%)
Classified Process Raw Classified Processed Raw

140 0.94 1.06 1.02 1.23 1.30 1.31

300 0.40 0.47 0.48 0.48 0.57 0.59

450 0.31 0.34 0.36 0.37 0.40 0.47
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The mortar tests were carried out to BS EN 196-1 Methods of testing cement - 

Part 1: Determination of strength. This standard has a requirement that the water 

cement ratio be fixed at 0.5.

Durability

Figures 6.8 and 6.9 show the graphical results of the permeability tests on 

concrete containing the three inter-ground fly ash mixes (classified, processed and 

raw), with the ground CEM I and the control CEM I. The results are tabulated in 

Table 6.7 giving a clearer indication as to the value achieved, in time, by the various 

samples. Table 6.6 includes the results from the previous work on the post blend fly 

ash for completion. This work was carried out using the procedure described in 

Chapter 3.
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Figure 6.8 Permeability results for the CEM I as compared to the inter-ground fly ash at 300kg/m3 
cement content and 33% replacement 67% CEM I
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Figure 6.9 Permeability results for the CEM I as compared to the inter-ground fly ash at 450kg/m3 
cement content and 33% replacement 67% CEM I

It can be seen in Figure 6.8 and 6.9 that in this test, the ground CEM I and control 

CEM I do not achieve similar results. The ground CEM I is more permeable at 

300kg/nT and 450kg/m3 cement contents, with the former being the worst case.

Examining the results of the inter-ground material, it can be seen that the concrete 

containing the classified material is the least permeable material at both cement 

contents. This is shown by requiring the longest time for the gas to pass through the 

sample. Both the processed and raw fly ash concretes produce similar results to each 

other and that of the ground CEM I at both cement contents. The classified fly ash 

concrete exceeds the performance of the control CEM I at 450kg/m3 but fails to repeat 

this at 300kg/m3. When compared to the post blended concrete, it can be seen that 

only the raw material containing 300kg/m3 cement content improves its durability 

over the post blend material, all other inter-ground blends at both cement contents fail 

to better the post blend results and are, therefore, less durable.
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Table 6.7
Permeability results o f  the inter-ground fly ash in its three states at 33% replacement
Cement

content

(kg/m3)

Time (mins)

CEM I Grd 

CEM I

Inter-ground Post blend

Classified Processed Raw Classified Processed Raw

300 104 56 86 55 56 94 86 44

450 80 62 94 53 60 102 98 82

Research into the permeability o f concrete carried out by Gardner (2005) 

concluded that Normal Strength Concrete (NSC) and High Strength Concrete (HSC) 

conditioned at 105°C were more permeable than NSC and HSC conditioned at 85°C. 

Conditioning at a temperature o f 105°C has the advantage of a reduction in the 

conditioning time; however, the main disadvantage is that strength and permeability 

tests suggest that some damage is caused within the specimen due to the high 

temperature. It must, therefore, be borne in mind that the samples produced for this 

study were all conditioned using a temperature o f 105°C and may, therefore, be prone 

to this internal damage.

6.4 Cost analysis

The cost of a product is often the overriding consideration in its marketability and 

general customer satisfaction. Consequently, all costs involved in manufacturing a 

high quality product must be fully analysed. The total cost of manufacturing a product 

includes materials, plant and equipment, labour and fixed costs. The material costs are 

generally the largest percentage o f the total manufacturing costs and should be 

monitored to control wastage and also to ensure value for money. The possibility of 

substituting materials is an important consideration in minimising costs (Kalpakjian 

2001).

As with all commercially led projects, the financial implications on the company 

need to be explored along with the materials performance. This section reports upon 

cost analysis software, designed and produced by the Author, which analyses the cost 

of a concrete mix, by exploring its constituents, and projects cost implications based 

on past sales data. Through manipulation o f the material quantities within a mix, and
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the costs associated with each material, a decision as to whether a new material 

should be implemented within the mix design can be made.

The concept of the model was to allow the investigation of different cost scenarios 

within the mix design, and supplier cost range, to predict financial changes associated 

with each scenario. For example, if  a new supplier, or new material, became available, 

the new cost rate for the material can be substituted for the existing rate and the 

projected potential savings in cost between the two rates analysed from the previous 

twelve months sales.

The Results Summary sheet, which can be viewed in Appendix 4, on the disc and 

as a hard copy at the back o f this thesis, collates all the information and presents it on 

two pages as a confirmation of input and its associated output. Sheet one presents the 

input displayed as input for Mix 1 at the top and Mix 2 below this. This confirms the 

costs, the description and the replacement percent of the cement and the replacement 

material. The average cost, per cubic metre, of each concrete designation is displayed 

enabling the differences to be viewed. The total saving for each of these designations 

is then presented as a breakdown o f concrete categories and total.

Sheet two breaks the results down further identifying the savings to be made from 

each individual mix design. These costs are based on past sales; therefore, showing 

the potential available if the material had been introduced into production twelve 

months earlier. The cement addition column tells you if additional cement has been 

added, possibly to make up the strengths if  the performance of a particular cement 

replacement is not quite good enough. The next column shows the cost difference 

from the perspective of mix 2, as this would be the comparative mix. The best 

combination is then shown with the material producing the more cost effective mix 

identified in the last column. If the mix 1 material produces the more cost effective 

mix then the best combination column becomes zero as no benefit has been gained 

and the variance from mix 2 becomes a negative value as by its introduction a loss 

would be made from incorporating this material into these mix designs. The material 

column has been introduced so as to help recognise those mix designs into which the 

company will benefit from the introduction o f the new cement replacement.
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This model is by no means the completed article as the final user will no doubt 

have thoughts on its progression and continual improvement. At this point the model 

serves its purpose and achieves what is required for this research.

A copy of the model and user manual can be found in Appendices 3 on the disc 

accompanying this Thesis.
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Table 6.8
Results summary sheet one as output from the cost analysis showing input data and collated results

Results Summary
Page 1 of 2

Mix 1

Cost (ton) Material Percentage
Designed Proprietary Designated Standardised

Cement 63.7 Blue Circle 50 50 50 40
Replacement 53.33 GGBS 50 50 50 60
Cost (mA3) £164.72 £65.54 £168.87 £78.46

Mix 2

Cost (ton) Material Percentage
Designed Proprietary Designated Standardised

Cement 63.7 Blue Circle 70 70 70 70
Replacement 19 PFA 30 30 30 30
Cost (mA3) £141.57 £56.32 £145.14 £68.65

Total saving per mix £57,273.46 £26,749.10 £26,654.95 £3,754.12

Total concrete sales (mA3) 56240.35
Total concrete cost mix 1 £ 817,410.75
Total concrete cost mix 2 £ 702,979.13

Variance £ 114,431.62

Designed Proprietary Designated Standardised Total
Variance from mix 2 £57,273.46 £26,749.10 £26,654.95 £3,754.12 £114,431.62

Best combination of mix 1 and 2 £57,273.46 £26,749.10 £26,654.95 £3,754.12 £114,431.62

Notes :
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Table 6.9
Results summary sheet two as output from the cost analysis examining the cost implications of various mix 
designs

Results Summary
Page 2 of 2 _________________ ______________

Mix Mix 1 Mix 2 Cement Variance from Best Material
Total

Designed Total cost cost Addition mix 2 only Combination
£ £

C8/10 3,137.57 2,696.55 0 £ 441.02 £ 441.02 PFA
£ £

C12/15 1,328.00 1,141.33 0 £ 186.67 £ 186.67 PFA
£ £

C16/20 104,209.36 89,561.46 0 £ 14,647.90 £ 14,647.90 PFA
£ £

C20/25 20,349.47 17,489.10 0 £ 2,860.37 £ 2,860.37 PFA
£ £

C25/30 43,758.25 37,607.49 0 £ 6,150.76 £ 6,150.76 PFA
£ £

C28/35 112,557.00 96,735.73 0 £ 15,821.26 £ 15,821.26 PFA
£ £

C32/40 43,144.57 37,080.07 0 £ 6,064.50 £ 6,064.50 PFA
£ £

C35/45 733.78 630.64 0 £ 103.14 £ 103.14 PFA
£ £

C25/30 P 10,199.46 8,765.80 0 £ 1,433.66 £ 1,433.66 PFA
£ £

C28/35 P 61,674.81 53,005.66 0 £ 8,669.15 £ 8,669.15 PFA
Proprietary £ 57,273.46 £ 57,273.46

£ £
RCM 78,595.01 67,547.52 0 £ 11,047.49 £ 11,047.49 PFA

£ £
GPM 371.28 319.09 0 £ 52.19 £ 52.19 PFA

£ £
HFM 15,766.87 13,550.64 0 £ 2,216.23 £ 2,216.23 PFA

£ £
LFM 56,995.07 48,983.72 0 £ 8,011.36 £ 8,011.36 PFA

£ £
PQM 38,572.50 33,150.67 0 £ 5,421.84 £ 5,421.84 PFA

Designated £ 26,749.10 £ 26,749.10
£ £

RC 30 2,848.39 2,448.02 0 £ 400.38 £ 400.38 PFA
£ £

RC 35 98,307.69 84,489.34 0 £ 13,818.35 £ 13,818.35 PFA
£ £

RC 40 10,855.70 9,329.80 0 £ 1,525.90 £ 1,525.90 PFA
£ £

RC 35 P 23,270.25 19,999.33 0 £ 3,270.92 £ 3,270.92 PFA
£ £

Gen 1 23,179.84 19,921.63 0 £ 3,258.21 £ 3,258.21 PFA
£ £

Gen 2 5,665.42 4,869.08 0 £ 796.34 £ 796.34 PFA
£ £

Gen 3 18,688.81 16,061.87 0 £ 2,626.94 £ 2,626.94 PFA
£ £

PAV 1 6,215.02 5,341.43 0 £ 873.60 £ 873.60 PFA
£ £

FND2 105.33 90.52 0 £ 14.81 £ 14.81 PFA
£ £

FND3 389.12 334.43 0 £ 54.70 £ 54.70 PFA
£ 26,654.95 £ 26,654.95

Totals = £ 114,431.62 £ 114,431.62
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6.5 Conclusions

From the work carried out in this Chapter the conclusions are:

o It is possible to reproduce CEM I using a ball grinder in a laboratory which 

reflects the properties and characteristics of a CEM I produced in industry

o Inter-grinding fly ash with the raw materials required to make a CEM I 

material increases the fineness of the finished product when ground for the 

same period o f time. To produce a similar fineness to the CEM I would 

necessitate a reduction in the grinding time which would provide time and 

cost benefits

o Inter-grinding fly ash with the raw materials required to make a CEM I 

material has no benefit over a similar post blend fly ash mix with respect 

to compressive strength.

o Mortar benefits from increased compressive strength when the fly ash is 

inter-ground
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7. Conclusions and
Recommendations

7.1 Conclusions

7.2 Recommendations for further study

7.1 Conclusions

The conclusions established from this thesis which looks to advance the 

understanding and use o f waste materials as cement replacements within concrete are 

summarised below:

o Applying the STi process to the fly ash is a quick and easy method of

lowering the carbon content within the ash producing a material which 

satisfies both British and European standards. Utilising this process has 

produced a usable fly ash which, when blended at 33% fly ash to 67% 

OPC, has shown a concrete compressive strength improvement over that 

of the industry standard 50% GGBS blended with 50%OPC.

o Reducing the particle size o f the fly ash further through classification

provides additional compressive strength benefits to the concrete 

containing the CEM II cement.

o Some indication as to whether an unknown material will work as a cement 

replacement can be gained from the analysis performed within this thesis. 

Materials can be judged on their suitability to perform as cement 

replacement materials through the analysis of certain material properties. 

These properties have been established through the work on the processed 

fly ash. The measured properties are the chemical constituents, 

concentrating mainly on Si02, AEC^ CaO and Fe2 0 3 , and the acceptable
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ranges o f a candidate material have been presented. Loss on ignition as 

required by the British and European standards is to be below 7%, whilst 

the material fineness is required to match that of the OPC.

o It is possible to reproduce CEM I using a ball grinder in a laboratory which 

accurately reflects the properties and characteristics o f a CEM I produced 

in industry. Whilst inter-grinding fly ash with the raw materials required to 

make a CEM I an increase in material fineness, of the final CEM II, was 

observed this provides economic advantages to the cement manufacture 

industry. However, the inter-grinding o f fly ash in this way has no benefit, 

when mixed as concrete, over a similar post blend fly ash mix with respect 

to compressive strength. This was found not to be the case with the 

compressive strength o f mortar, however, as there is benefit from 

increased compressive strength when the fly ash is inter-ground.

7.2 Recommendations for further study

This research is viewed as a first step into producing a workable specification for 

the requirements of a cement replacement material. Further work required to progress 

this research further is discussed below:

o It is well known in the cement and concrete industry that laboratory trials 

are the results o f idealised circumstances and generally do not reflect 

exactly that which happens in industry. Therefore, full scale plant trials 

should be initiated using various mix designs to assess a more realistic 

performance o f the materials being trialled.

o Fly ash and GGBS are just two materials that industry has accepted for use 

as a cement replacement. It has been shown that the properties of these two 

materials vary considerable yet both contribute to, and improve, cement 

properties. Other established materials, such as metakaolin and silica fume,
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should be examined and their attributes documented alongside the findings 

of this research. This could offer a further dimension to the properties of a 

cement replacement or improve the requirements already highlighted. 

Further work needs to be done to examine the variables documented and 

judge them against other accepted cement replacement materials.

o The Industrial mix (IM) was included in this research as it had compared 

favourably with CEM I when tested as a mortar. As a concrete, the 

material failed to produce comparable compressive strength results to the 

controls and, therefore, is not suitable as a cement replacement in its 

present form. The analysis identified that the elemental make up of the 

material did not match any o f the suggested forms. If this matter is 

addressed, the resulting blended material produced may show enhanced 

performance becoming a functional material.
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ABSTRACT

This paper presents the experimental results of 
an ongoing investigation into various 
properties related to the performance and 
durability of concretes made using existing 
and new cement replacements. The process of 
cement and concrete production is investigated 
focusing on product performance and 
environmental performance. The overriding 
factor for the progression of a material will be 
product performance however; each material 
selected will have many intrinsic 
environmental benefits.

The study combines Ordinary Portland 
Cement (OPC) with each cement replacement 
candidate using the most common replacement 
percentages, 10, 20, 25, 30 and 50 percent. A 
35N/mm concrete is then prepared and 
analysed in the fresh and hardened state. In 
addition, a chemical and physical analysis of 
each replacement material has been performed 
and results compared to the control samples 
containing OPC only and Ground Granulated 
Blast Furnace Slag (GGBS) as a replacement.

The results show that in their present form 
the replacements used in this research do not 
compare with the strengths achieved by the 
controls. The right balance o f chemical 
composition and particle grading needs to be 
achieved to produce a realistic replacement 
material. The processes required to achieve 
this must strike a balance between monetary 
and environmental cost.

1. INTRODUCTION

The past ten years have shown an increasing 
emphasis on sustainable development within 
industry throughout the UK. By the 
ratification o f the Kyoto protocol, 
industrialised countries have targets set to 
lower overall emissions o f greenhouse gases. 
In the UK a climate change levy has been 
introduced which taxes the use of energy in 
industry, commerce and the public sector, with 
offsetting cuts in employers National 
Insurance Contributions and additional 
support for energy efficient schemes and 
renewable sources of energy. The introduction 
o f the EC Directive on the Landfill o f wastes 
1999/31/EC requires the appropriate treatment 
of waste streams prior to landfill to reduce 
their hazard, volume and facilitate handling 
and/or enhance recovery (Davies, 2003). 
Industry is being encouraged to minimise its 
waste and is being penalised through landfill 
taxes for not doing so.

In the production of concrete, cement 
manufacture accounts for the highest cost and 
is the most energy intensive process from all 
its constituents. The production of OPC 
contributes significantly to CO2 emissions. For 
every tonne o f Portland cement produced, 
approximately one ton of CO2 is released into 
the atmosphere (Bouzoubaa et al, 1997). This 
equates to 5% of global emissions originating 
from cement production (Hendricks et al, 
2004).

As part of the Kyoto agreement, European 
countries have agreed to an 8% reduction in



Greenhouse Gas emissions, based on 1990 
levels, by the year 2012. The cement 
manufacturing industry is one where quotas 
have been imposed by the European Union 
(EU) to cap hazardous emissions. Failure to 
meet the obligations of the agreement will 
result in heavy fines however; improving on 
these limits can provide financial benefits 
(Defra, 2006). Already the industry has 
demonstrated its ability to improve its climate 
change performance. Between 2001 and 2004 
an improvement in energy consumption of 
21.2% had been achieved and is well on its 
way to the 2010 target of 26.8% reduction 
(BCA). Short term actions are to include 
maximising the use of waste as fuels and 
replacement materials for the principal cement 
raw material, limestone.

The European standard BS EN 450-1 
covers a range of fly ash produced by the 
combustion o f hard coal. Co-combustion with 
certain materials is allowed within this 
standard, however fly ash produced from the 
burning o f other materials alone is not. It has 
been reported that the use of hard coal 
produced fly ash has turned out to be 
beneficial with regards to the properties of the 
concrete, especially in relation to its resistance 
to aggressive species (Bertolini, 2004). This 
being the case, could other ashes, at present 
being condemned to landfill sites, also be of 
benefit to the properties of concrete.

On completing this initial study it will be 
possible to identify if  a particular ash is 
acceptable as a safe replacement material for 
cement and if so the environmental benefits 
gained from its use.

2. MATERIALS

Three types of ash, a blend of industrial wastes 
and a GGBS have been selected for this study 
and compared with a control mix of neat OPC. 
The OPC has been produced to meet the 
specification as required by BS EN 197 while 
the GGBS, also used as a control due to its 
already proven benefits within concrete, 
complies with the requirements of BS 6699.

The three ashes used in the study are from a 
coal fired power plant (FA), a municipal solid 
waste incineration plant (MSW), and a sewage 
sludge incineration plant (SS). Only FA has 
been processed and prepared for supply back 
into industry, the remaining two are raw 
materials direct from the incinerator.

IM combines several industrial wastes each 
chosen for their chemical compositions. Each 
o f these waste materials contain elements 
similar to those found in OPC and hence could 
be viewed as being a substitute rather than a 
replacement.

Coarse aggregates used are crushed lime 
stone quarried locally with marine sand used 
as fine aggregate both conforming to BS EN 
12620:2002.

A Portland cement (CEM I) 52.5N was 
used conforming to BS EN 197.

A water reducing and plasticizing agent 
(Sika Plastiment 160) was mixed with potable 
water (Cardiff city supply) quantified at 0.4% 
o f the cement content. The use o f additives 
within concrete is an accepted norm within the 
industry and any detrimental effects from their 
use need to be identified.

3. EXPERIMENTAL PROGRAM

3.1 Mix designs

The object o f mix design is to determine the 
most appropriate proportions in which to use 
the constituent materials to meet the needs of 
the work. This research has based itself around 
a single design for a standard concrete with a 
cement content of 275kg/m3. This design is 
used within industry and has been fashioned 
through the production of trial mixes. Its 
selection was based on its popularity through 
sales and having a cement quantity large 
enough to highlight the differences between 
materials and mix proportions.

3.2 Experimental procedure

There are two main variables within this 
study. Firstly, the amount of replacement 
material blended with the cement. BS 8500-2 
gives an allowable range of 6 -  55%



combination fly ash/CEM I. Mixes used in this 
research contain 10, 20, 25, 30 and 50% 
replacement, by mass, as this is most 
representative o f actual use.
Secondly, the amount of water required to 
obtain a controlled workability or consistency. 
Workability is the ease at which the concrete 
can be compacted, the ease at which the 
concrete can flow and ability of the concrete 
to remain a homogenous mass without the 
constituents segregating. The measure of 
consistency for this research was the slump 
test to BS EN 12350-2. BS EN 206-1 gives 
five consistency classes, SI to S5, each with a 
range of slumps measured in millimetres. For 
general use the industry standard is an S2 with 
a range 50mm to 90mm the target being 
70mm. Adding water to the mix reduces yield 
but also reduces cohesion. The addition of a 
dispersing admixture causes the cement 
particles to distribute more uniformly, 
therefore increasing the fluidity of the mix at a 
given water content. All of the mixes used 
within this research achieved a slump of 
70mm.

3.3 Compressive strength

Traditionally, the compressive strength of 
concrete has been used as a tool for a measure 
of the quality. Both strength and durability are 
controlled by the ratio of cement contained 
within the mix design and water used to 
hydrate the mix. By ensuring an adequate 
strength has been achieved and the 
water/binder (w/b) ratio remains within British 
Standard limits a sufficient level of durability 
is also ensured. Testing for compressive 
strength has been carried out in accordance 
with BS EN 12390-3 at 1, 2, 7 and 28 days 
using concrete cubes of 100 x 100 x 100 mm, 
w/b ratio limits are taken from BS EN 8500-2.

3.4 Particle distribution

The particle distribution and size are of 
particular significance to the use of a cement 
replacement material. To achieve a high 
strength low permeability and durable 
concrete, it is necessary to reduce the porosity

of the cement paste. It is well know that the 
incorporation of a pozzolanic material as a 
partial replacement of cement refines the 
porosity and pore size distribution of the paste 
(Chindaprsirt, 2005).

4. RESULTS AND DISCUSSION

4.1 Compressive strength

BS EN 206-1 states that the compressive 
strength o f the concrete shall exceed the 
design strength by an adequate margin at 28 
days. The margin given by the standard is 
twice the expected standard deviation and 
should fall between the values of 6 -  
12N/mm . The standard deviation used for this 
research is 3.5N/mm2, that of the company 
supplying the mix design. Therefore, the 
compressive strength at 28 days should be 
42N/mm2 for conformity.

Figure 1 (a-e) shows the compressive 
strength o f the concretes at 10, 20, 25, 30 and 
50% replacement respectively together with 
the standard OPC mix. It is well recorded that 
concrete containing combination cements tend
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combination fly ash/CEM I. Mixes used in this 
research contain 10, 20, 25, 30 and 50% 
replacement, by mass, as this is most 
representative of actual use.
Secondly, the amount of water required to 
obtain a controlled workability or consistency. 
Workability is the ease at which the concrete 
can be compacted, the ease at which the 
concrete can flow and ability of the concrete 
to remain a homogenous mass without the 
constituents segregating. The measure of 
consistency for this research was the slump 
test to BS EN 12350-2. BS EN 206-1 gives 
five consistency classes, SI to S5, each with a 
range of slumps measured in millimetres. For 
general use the industry standard is an S2 with 
a range 50mm to 90mm the target being 
70mm. Adding water to the mix reduces yield 
but also reduces cohesion. The addition of a 
dispersing admixture causes the cement 
particles to distribute more uniformly, 
therefore increasing the fluidity of the mix at a 
given water content. All of the mixes used 
within this research achieved a slump of 
70mm.

3.3 Compressive strength

Traditionally, the compressive strength of 
concrete has been used as a tool for a measure 
of the quality. Both strength and durability are 
controlled by the ratio of cement contained 
within the mix design and water used to 
hydrate the mix. By ensuring an adequate 
strength has been achieved and the 
water/binder (w/b) ratio remains within British 
Standard limits a sufficient level of durability 
is also ensured. Testing for compressive 
strength has been carried out in accordance 
with BS EN 12390-3 at 1, 2, 7 and 28 days 
using concrete cubes of 1 0 0  x 1 0 0  x 1 0 0  mm, 
w/b ratio limits are taken from BS EN 8500-2.

3.4 Particle distribution

The particle distribution and size are of 
particular significance to the use of a cement 
replacement material. To achieve a high 
strength low permeability and durable 
concrete, it is necessary to reduce the porosity

of the cement paste. It is well know that the 
incorporation of a pozzolanic material as a 
partial replacement of cement refines the 
porosity and pore size distribution of the paste 
(Chindaprsirt, 2005).

4. RESULTS AND DISCUSSION

4.1 Compressive strength

BS EN 206-1 states that the compressive 
strength of the concrete shall exceed the 
design strength by an adequate margin at 28 
days. The margin given by the standard is 
twice the expected standard deviation and 
should fall between the values of 6  -  
12N/mm . The standard deviation used for this 
research is 3.5N/mm2, that of the company 
supplying the mix design. Therefore, the 
compressive strength at 28 days should be 
42N/mm2 for conformity.

Figure 1 (a-e) shows the compressive 
strength of the concretes at 10, 20, 25, 30 and 
50% replacement respectively together with 
the standard OPC mix. It is well recorded that 
concrete containing combination cements tend
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Figure 1.Compression strength development for 
concretes with varying amounts of replacements

to gain strength slower than that of OPC alone, 
this is due to the pozzolanic reaction required 
between the Si02 and Ca(OH)2. Kiattikomol 
reported on the effect of fineness of materials 
on setting times. It was found that mortars 
containing finer materials enhance early 
strength and achieve higher compressive 
strengths than mortars containing coarser 
materials (Kiattikomol, 2001). The results of 
the present study appear to follow that pattern 
with only the GGBS surpassing the OPC on 
day one. The coarser materials, SS and MSW

are both slow to start the strength gain and 
although progress, fail to achieve the strengths 
of OPC or GGBS. Remembering that the 
target strength is 42N/mm2 it can be seen that 
at 10% replacement MSW falls well short of 
the target at 32N/mm2 while SS is low at 
41N/mm2 these are therefore non-conforming.

At 20% replacement the compressive 
strength of IM drops considerably to 
31N/mm2. This now becomes non- 
conforming.

FA performs well up to 25% replacement 
where its compressive strength falls to 
41N/mm2. There is very little change when the 
percentage of FA is increased to 30% with the 
strength reducing to 40N/mm2.

4.2 Water / binder ratio, w/b

There are two reasons for adding water to 
concrete, first to hydrate the cement and 
second to make the concrete workable. The 
water of hydration chemically binds in the 
cement hydrates while the water added for 
workability occupies a system of capillary 
pores. The more of these pores produced the 
weaker and less durable the final concrete will 
be. The w/b ratio will determine the capillary 
porosity of the cement paste. A lower w/b 
ratio will see more cement distributed in the 
mixing water through the aggregate particles 
and the larger part of space occupied by 
mixing water will be filled by cement reaction. 
Table 1 shows the w/b ratios for each mix and 
the limit from BS EN 8500-2. A higher ratio 
indicates that more water has been used to 
achieve the required workability.

Table 1. Water / binder ratios for all mixes

Replacement %
Replacement 1 0 2 0 25 30 50

OPC Neat 0.59
GGBS 0.60 0.56 0.58 0.60 0.58

FA 0.57 0.53 0.48 0.51 0.55
IM 0 . 6 6 0.70 0.76 0.73 0.71

MSW 0.67 0.67 0.65 0.62 0.51
SS 0.59 0.53 0.54 0.52 0.51

BS EN 8500 
limit

0.60 0.60 0.60 0.60 0.60



As can be seen, the OPC, GGBS, FA and SS 
all achieve a ratio lower than the standard 
specifies with FA and SS being considerably 
lower in all cases. IM exhibits values much 
higher than the specified maximum while 
MSW only conforms at fifty percent 
replacement.

4.3 Chemical compositions

The chemical compositions of the materials 
were analysed using Inductively Coupled 
Plasma Optical Emission Spectroscopy (ICP) 
and the results are presented in Table 2. 'With 
the exception of MSW these analysis can be 
considered reliable. The MSW sample showed 
some unexpected behaviour when heated and 
requires further investigation.

GGBS is widely used in the concrete 
industry as a standard constituent in concrete 
production. This research uses GGBS as a 
control and hence knows that the GGBS used 
adheres to all specifications. The analysis 
carried out here is to help make comparisons 
with the new materials.

Large similarities exist between GGBS and 
IM, reflecting the choice of waste materials 
that were blended to create IM. Fly ash is 
controlled by BS EN 450-1 within which are 
the limits by which ash replacement materials 
must adhere. Loss on ignition (LOI) has three 
categories of which the maximum value is 9%, 
SiC>2 shall not be less than 25%, and the sum 
of Si02? AI2O3 and Fe2C>3 shall not be less than 
70% all of these by mass.

Studying the three ashes, FA, MSW and 
SS, we can see that FA and MSW fall outside 
the LOI boundary. Further to this MSW fails 
to achieve the sum of 70% by mass of the 
three elements by a considerable amount. The 
FA and SS samples exceed the minimum Si0 2  

content, however again MSW falls well short 
of the target figure.

4.4 Grading

BS EN 450-1 Section 5 identifies two 
categories, N and S. Category N requires that 
no more than 40% be retained on a 45 pm 
sieve while category S requires no more than

Table 2. Chemical analysis of replacements

12% be retained. Grading of the materials was 
carried out using a Mastersizer X laser sizer 
from Malvern Instruments; the results are 
shown in Figure 2. GGBS, IM and FA all fall 
within category S. MSW is coarser and falls 
into category N. However SS, retaining more 
than 65% on the 45pm sieve, is therefore the 
coarsest material and is outside the boundaries 
of the British standards.

-  GGBS — IM -  FA ■ - MSW -  SS — OPC

100

50

*  s*  v? *  # +
Particle size (microns)

Figure 2. Particle size distribution of the replacements 
as received

Having identified from the particle size 
analysis that the MSW and SS ashes are 
coarse materials producing the lower 
compressive strengths, the available options to 
produce a finer ash must be considered. A 
finer ash would bring the materials in line with 
British standards, reduce the water content and 
w/b ratio and have an effect on the strength

OPC GGBS IM FA MSW SS
Si02 20.3 32.8 39.6 50.1 2.5 33.5
AI2O3 4.2 12.8 12.2 27.3 0.8 15.8
FeaOj 2.2 0.3 1.6 2.7 0.9 20.8
MgO 2.5 7.9 11.5 1.6 0.6 1.8
MnO 0.1 0.4 0.3 0.0 0.0 0.2
CaO 66.3 39.3 25.7 7.2 41.0 9.8
K20 0.6 0.5 0.8 0.6 3.2 1.5
Na20 0.2 0.3 0.7 0.2 3.9 0.9
Ti02 0.2 0.7 0.3 1.3 0.2 0.9
BaO 0.0 0.1 0.2 0.2 0.0 0.1
LOI 4.9 1.0 2.9 10.3 9.8 5.5



gain of the concrete. Grinding the material 
produces an additional cost in both monetary 
and environmental terms and measures should 
be put in place to assess both the positive and 
negative effects gained from the use and 
processing of these materials (Bijen, J, 1999).

IM on the other hand is the finest of all the 
materials and yet does not produce 
compressive strengths that conform to 
standard requirement at replacement 
concentrations above 10% m/m.

5. DISCUSSION AND CONCLUSIONS

According to the experimental results, 
conclusions can be drawn as follows:

1. The grading of the materials are 
important, too coarse a material will 
not have any pozzolanic reaction while 
too fine a material might have an 
adverse effect on strength.

2. Reproducing the chemical makeup o f 
OPC and grinding to achieve the same 
fineness does not necessarily make a 
new cementitious material (see 
conformity of IM in Table 2).

3. The measure of concrete strength is 
recorded at 28 days. The present study 
here finds that in addition to the well 
known blast furnace slags (GGBS), 
and PFA, the ash derived from sewage 
sludge incinerator ashes has attractive 
properties. The FA required upgrading 
from the raw material in order to 
achieve its performance and it is 
therefore likely that by using a similar 
process on the SS its performance 
might be even better.

4. Achieving the right balance of 
chemical composition and particle 
grading is the basis to producing a 
credible cement replacement material.
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