
The role of complement and 

complement regulatory proteins in 

the progression of atherosclerosis

PhD Thesis

Ruth D Lewis



UMI Number: U567228

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U567228
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Declaration and Statements

DECLARATION

This work has not previously been accepted in substance for any degree and is not concurrently 
submitted in candidature for any degree.

Signed ...   ...(candidate) Date

STATEMENT 1

This thesis^is beirite submitted in partial fulfillment of the requirements for the degree of PhD 

Signed    (candidate) Date ... .(j.... .1 .Q..'. \ . \ .....

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where otherwise 
stated.
Other sources are acknowledged^ explicit references.

Signed ....................... (candidate) D ate....... (O ...'. \  Q . .. \ . .1...

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter- 
library loan,^and foAthe title^aod summary to be made available to outside organisations.

Signed ...L/. ......................................... (candidate) Date . . .^ ) ...*..1.0.......1.A...

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter- 
library loans after expiry of a bar on access previously approved by the Graduate 
Development Committee.

Signed.................................................................. (candidate) Date........................................

2



Acknowledgments

I would like to thank both my supervisors, Professor B Paul Morgan and Dr Timothy 

Hughes, for their help and guidance throughout this thesis. The support and 

encouragement they have provided me with has been invaluable.

1 thank my collaborator, Dr Christopher Jackson, for all his technical help and 

expertise during the project. I would also like to thank Dr Mark Perry for assisting 

with the DEXA measurments, Dr Irina Guschina for helping with the NEFA analysis, 

Dr James Neal for his help with the immunohistochemistry and the staff at Clinical 

Biochemistry Laboratories, Cardiff University Hospital for lipid analysis. To all my 

colleagues working on the 3rd floor of the Henry Welcome building and the 

Complement Biology Group that have provided help during this thesis, I am forever 

grateful. 1 would particularly like to thank Dr Claire Harris, Dr Valeria Ramaglia, Dr 

Marietta Ruseva, Dr Svetlana Hakobyan, Dr Meike Heurich, Dr Danielle Paixao- 

Cavalcante, Dr James Hindley, Dr Rhodri Turner and Dr Natalie Hepburn for all the 

help and advice you gave during my thesis.

To my father and mother, thank you for all your support within and outside the realms 

of this thesis. Thank you also to my father and mother in law for the support you have 

provided me with.

Finally I dedicate this thesis to my beloved husband, Philip, and my two little angels, 

Amelie and Zoe, for you are my everything.

3



Contents

Abstract 1 4

Publication list 15

List of abbreviations 16

Company address list 20

Chapter 1: Introduction 21

1. Atherosclerosis 21

1.1 An overview 21

1.2 A historic perspective 22

1.3 Risk factors for atherogenesis 22

1.4 Atherosclerotic lesion initiation 23

1.4.1 Theory fo r  atherosclerotic lesion initiation 23

1.4.2 Healthy arterial wall 23

1.4.3 Endothelial dysfunction 24

1.4.4 Intimal thickening 25

1.5 Development of the fatty streak 27

1.5.1 The role o f innate immunity during fa tty  streak formation 27

1.5.2 Adaptive response o f the immune system during fatty streak formation 29

1.6 Progression towards a complex plaque 31

1.6.1 Vascular smooth muscle cells (SMCs) 31

4



1.6.2 Macrophages 31

1.6.3 T-cells 32

1.6.4 Other inflammatory cells involved 34

1.6.5 Cellular necrosis and breakdown 36

1.7 Plaque rupture and thrombosis 37

1.8 Animal models of atherosclerosis 39

1.9 Assessment of atherosclerosis in mice 43

1.9.1 Quantitative assessment o f atherosclerosis in mice 43

1.9.2 Qualitative assessment o f atherosclerosis in mice 44

1.10 Therapeutic perspectives 47

1.10.1 Surgery' 47

1.10.2 Statins 47

1.10.3 Anti-inflammatory drugs 47

1.10.4 Inflammatory biomarkers 48

1.10.5 Summary 49

2. The Complement system 50

2.1 Overview 50

2.2 Activation 51

2.2.1 Classical pathway 51

2.2.2 Alternative pathway 51

2.2.3 MBL pathway 52

2.2.4 Other mechanisms o f complement activation 52

2.2.5 Complement activation products 52

2.3 Central component of the activation pathway 52

2.4 Terminal pathway 53

5



2.5 Function 54

2.6 Regulation 55

2.7 Complement receptors 57

2.8 Pathological role 58

3. The role of Complement in atherosclerosis 60

3.1 Initiation of complement activation during atherosclerosis 60

3.2 Effects of activation pathways of complement during atherosclerosis 62

3.3 Role of the terminal pathway 64

3.3. J Localisation o f MAC in the atherosclerotic plaque 64

3.3.2 MAC and endothelial cells 65

3.3.3 MAC and SMCs 66

3.3.4 MAC and macrophages 67

3.4 Complement regulation and atherosclerosis 67

3.4.1 Fluid phase regulators 67

3.4.2 Membrane bound regulators 69

3.5 Complement in animal models of atherosclerosis 71

3.6 Autoimmune disease and atherosclerosis 73

3.6.1 SLE and atherosclerosis 73

3.6.2 RA and atherosclerosis 74

4. Lipid Metabolism 75

4.1 Introduction 75

4.2 Lipoprotein structure and function 75

4.2.1 Lipoprotein structure 75

4.2.2 Function o f lipids and lipoproteins 75

6



4.3 Lipid metabolism: an overview 76

4.3.1 Exogenous pathway 76

4.3.2 Endogenous pathway 78

4.4 The role of C3adesArg in lipid metabolism 80

4.5 Lipid metabolism alteration in atherosclerosis 84

4.6 Lipid metabolic disorders associated with the complement system 84

4.6.1 Obesity 85

4.6.2 Acquired partial lipodystrophy (PLD) 86

5. Summary and hypothesis 87

Chapter 2: Materials & Methods 91

1. Buffers and reagents 91

2. Mice 91

3. Induction of atherosclerosis 93

3.1 Experimental procedure 93

3.2 Termination procedure 93

4. Assessment of atherosclerosis 95

4.1 Antibodies 96

4.2 Immunohistochemistry 96

4.3 Fluorescence immunohistochemistry 96

4.3.1 Total C3 and C9/MAC immunostaining within the plaque using a 

fluorescent detection antibody 96

4.3.2 Plaque macrophage and smooth muscle-actin fluorescent staining 99

1



4.4 Histology 99

4.4.1 Plaque lipid content 99

4.4.2 Elas tin and collagen 100

4.4.3 Morphometric analysis 100

5. Assessment of adiposity, plasma lipids and metabolites 101

5.1 Serum triglyceride, cholesterol and serum turbidity measurements 101

5.2 NEFA concentrations 102

5.3 Glucose levels 104

5.4 Measurement of C3adesArg by ELISA 104

5.5 In vivo quantification of fat content in mice using dual X-ray absorptiometry 

(DEXA) 106

6 . Functional analysis of Complement activity 106

6.1 Production of mouse anti-rabbit erythrocyte antibody 106

6.2 Preparation of sensitised rabbit erythrocytes 107

6.3 Titre of mouse serum 108

6.4 CH50 assay 109

7. Protein analysis 110

7.1 Protein concentration 110

7.2 SDS-PAGE analysis 110

7.3 Coomassie staining 111

8 . Statistical analysis 112

Chapter 3: Generation of genetically modified animals 113

8



1. Introduction 113

2. Specific methods 117

2.1 Screening of apoE, CD55 and CD59a deficiency 117

2.1.1 DNA isolation 117

2.1.2 PCR 118

2.1.3 Agarose gel electrophoresis 118

2.2 Screening of C6 deficiency 122

3. Results 123

3.1 Generation of apoE7 /Cd59a7 mice and their litter-matched apoE / /Cd59a+/+ 

controls 123

3.2 Generation of apoE7 /CD557 mice and the apoE 7 controls 123

3.3 Generation of apoE7 /C6 7 mice and apoE7 /C6 +/+ controls 126

4. Discussion 131

Chapter 4: Role of the terminal pathway during atherosclerosis 134

1. Introduction 134

2. Unregulated MAC during atherosclerosis 137

2.1 A brief introduction 137

2.2 Specific methods 138

2.2.1 Histochemical staining of CD3+T-cells in atherosclerotic lesions 138

2.2.2 Macrophage immunostaining in atherosclerosis 138

2.2.3 SMC immunostaining in atherosclerosis 139

9



2.2.4 Immunostaining for complement regulators Crry, CD55 and CD59a 140

2.2.5 Nuclear staining using Mayer’s haematoxylin 141

2.3 Results 141

2.3.1 Pathological observations 141

2.3.2 Plaque area is increased in apoE 7/C d59a7 mice 142

2.3.3 Plaque lipid content 146

2.3.4 CD59a deficiency causes increased deposition of MAC in plaques 147

2.3.5 Infiltrating inflammatory cells in the atherosclerotic plaque 147

2.3.6 The absence of Cd59a is not compensated by up-regulation of other 

complement regulators 151

2.3.7 In the absence of Cd59a the MAC influences SMC proliferation and survival 

in atherosclerosis 151

2.3.8 Co-localisation of MAC on SMCs in an atherosclerotic artery of an apoE 7 

mouse 153

2.3.9 Co-localisation of MAC with macrophages within the plaque 154

3. The role of complement C6 in atherosclerosis 158

3.1 A brief introduction 158

3.2 Results 159

3.2.1 Deficiency of C6 inhibits atherosclerotic plaque progression in apoE 7 mice

159

3.2.2 Terminal pathway activation is abolished in atherosclerotic plaques from 

apoE 7 /C 6 7 mice 163

3.2.3 Altered lipid metabolism in apoE 7 /C6 7 mice 163

10



4. Complement therapy for the treatment of atherosclerosis 166

4.1 A brief introduction 166

4.2. Specific methods 167

4.2.1 BB5.1 Purification 167

4.2. L I  Antibody preparation 167

4.2.1.2 Purification o f BB5.1 using Protein G affinity chromatography 168

4.2.2 Mouse Ig purification 169

4.2.2.1 Preparation o f mouse Ig using Protein G affinity chromatography 169

4.2.2.2 In vitro characterisation o f BB5.1 and mouse Ig 169

4.2.2.3 In vivo characterisation o f BB5.1 and mouse Ig 169

4.2.3 Experimental protocol 170

4.3 Results 171

4.3.1 Purification of anti-mouse C5 mAb and mouse Ig 171

4.3.2 BB5.1 inhibits complement haemolysis in mouse serum in vitro 172

4.3.3 Pilot experiment to determine function of purified BB5.1 on complement 

haemolytic activity in vivo 173

4.3.4 Treatment with C5 mAb inhibits complement activation in high fat fed apoE 7 

mice 175

4.3.5 Treatment with anti-mouse C5 mAb has no effect on body weight, cardiac 

hypertrophy or lipid levels in apoE 7 mice 177

4.3.6 Complement inhibition at the level of C5 does not protect apoE 7 mice against

atherosclerosis 178

4.3.7 Administration of BB5.1 anti-C5 mAb reduces terminal MAC deposition 

without affecting C3 deposition in atherosclerotic plaques 178

11



5. Discussion 183

Chapter 5: The effect of CD55 deficiency on atherosclerosis in apoE 

deficient mice 190

1. Introduction 190

2. Specific methods 193

2.1 Mean plaque area measurement 193

2.2 Activated C3 immunostaining 193

3. Results 194

3.1 Pathological observations 194

3.2 CD55 deficiency slows the progression of atherosclerosis 196

3.3 Infiltrating SMCs and macrophage 196

3.4 Complement C3 activation and MAC deposition correlate with severity of 

disease 199

3.5 CD55 deficiency causes altered triglyceride profile and total serum cholesterol 

levels in a cholesterol rich environment 201

3.6 CD55 deficiency is associated with increased C3 turnover and plasma 

C3adesArg levels 202

3.7 CD55 regulates C3adesArg causing enhanced NEFA clearance 203

3.8 CD55 deficiency is associated with increased body fat 206

4. Discussion 209

Chapter 6: Discussion and Conclusions 214

12



1. Summary of main findings 214

1.1 Studies on the Terminal Pathway and Atherosclerosis 214

1.2 CD59a is strongly anti-atherogenic 215

1.3 MAC deposition within the plaque is strongly pro-atherogenic 215

1.4 Therapeutic blockade of the terminal pathway 215

1.5 Regulation of C3 activation 216

2. Issues raised by thesis findings, and future directions 218

2.1 C6  and lipid metabolism 218

2.2 The use of apoE mouse model in studying the role of complement in 

atherosclerosis 220

2.3 Activation of C3 during lipid metabolism is regulated by CD55 221

2.4 Genetic factors affecting the complement system and knock on effects on 

obesity and cardiovascular disease 225

2.5 Targeting the terminal pathway as a therapy for atherosclerosis 228

2.6 Therapeutic targeting of C3 229

3. Conclusion 230

References 232

Appendices 293

Papers: Molecular Immunology (primary research)

American Journal of Pathology (primary research)

Abstracts and posters: Cardiff University Postgraduate Research Day 2006

11th European Complement Meeting 2007

i3-IRG Annual Summer Meeting 2009

XXIII International Complement Workshop 2010

13



Abstract

It is now accepted that atherosclerosis is an inflammatory disease involving both the 

innate and adaptive immune responses. Components of the complement system, a 

central component of the innate arm, have been found in the milieu of human coronary 

plaques and its exact role during the course of the disease is currently being 

investigated. Whilst evidence from human studies suggests that complement activation 

is pro-atherogenic, studies using animal models of the disease, including the low 

density receptor deficient (ldlr_/) and apolipoprotein E deficient (apoE7 ) mouse models, 

contradict one another. The hypothesis underpinning this thesis is that the complement 

system contributes to disease pathology in atherosclerotic plaques of apoE 7 mice. The 

work focussed on the membrane attack complex (MAC) of the terminal pathway and 

the central component of the complement system, C3. I have shown that in the absence 

of the MAC regulator CD59a, apoE7 mice had accelerated atherosclerosis compared to 

controls, accompanied by increased MAC activation within the plaques. In accordance, 

C6  deficiency was protective against atherosclerosis in apoE7 mice, a result of absence 

of MAC in these mice. However, MAC inhibition using an anti-C5 antibody in apoE7 

mice did not inhibit progression of atherosclerosis. Surprisingly, in the absence of 

CD55, apoE7 mice had smaller atherosclerotic lesions together with an anti

atherogenic lipoprotein profile and increased C3 activation product, C3adesArg, in their 

plasma. The data reveal a novel role for CD55 during lipid metabolism and, together 

with published data on the metabolic role of C3adesArg, highlight the need for further 

investigations into the role of complement during lipid metabolism.
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Chapter 1: Introduction

1. Atherosclerosis

1.1 An overview

Atherosclerosis is the leading cause of death in the western world. Researchers in the 

field have been studying the pathology of atherosclerotic lesions for more than two 

centuries, charting the course of the disease and the factors affecting its progression 

from early lesions through to advanced, complex plaque formation which often results 

in myocardial infarction or stroke and death (Glass and Witztum, 2001). With the 

proven involvement of numerous inflammatory cells and an array of pro-inflammatory 

signalling molecules, atherosclerosis is now accepted as an inflammatory disease 

(Galkina and Ley, 2009; Hansson et al., 2002; Packard et al., 2009; Ross, 1999). 

Discovery of biomarkers in the disease have helped to identify the individuals at risk, 

whilst also helping in discovering therapeutic drugs in the clinic (Koenig and 

Khuseyinova, 2007; Ridker, 2007; White et al., 2010). Nevertheless, despite all efforts, 

the perfect drug to cure the disease is yet to be discovered. However, risk factors of 

atherosclerosis are being determined through epidemiological studies, highlighting both 

genetic and environmental risk factors involved in initiating the disease (Lusis et al., 

2004a; Lusis et al., 2004b).
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1.2 A historic perspective

The term “atheroma” was first proposed by Albrecht von Haller in 1755 to describe the 

degenerative process observed in the intima of arteries in the elderly. Later, in 1815, 

London surgeon Joseph Hodgson published his work on “Disease of Arteries and 

Veins”, and proposed that the underlying cause of atheromatous arteries was 

inflammation. Soon after, this view was discarded and most pathologists of the 19th 

century believed that atherosclerosis was a degenerative process, involving 

proliferation of connective tissue and calcification within the intima. This process was 

described by the term arteriosclerosis proposed by French pathologist Jean Lobstein in 

1833.

However, German pathologist Rudolf Virchow continued to consider atheroma as a 

chronic inflammatory disease of the intima, that he called "chronic endarteritis 

deformans" (Virchow, 1856). In his opinion, the accumulation of lipids was a late 

manifestation of atheroma (Ratnoff et al., 1969; Sim et al., 1979). Finally in 1904, Felix 

Marchand introduced the term “atherosclerosis” , which since has been widely adopted 

and replaced arteriosclerosis, he suggested that atherosclerosis was responsible for 

almost all obstructive processes in the arteries (Marchand, 1904).

1.3 Risk factors for atherogenesis

Fatty streaks form in early childhood, never cause symptoms and present no direct 

threat to life. These early lesions either disappear with time or progress and develop 

into complex atherosclerotic plaques (Stary et al., 1992). Epidemiological studies have 

shown that the latter process is under the influence of various genetic and 

environmental risk factors, which can trigger further changes within the early fatty
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streak lesion resulting in the formation of an advanced atherosclerotic plaque. Risk 

factors for atherosclerosis with a significant genetic component include hypertension, 

disorders of lipid metabolism and diabetes mellitus (Lusis et al., 2004b). In addition 

smoking, diet and exercise are examples of environmental risk factors that contribute to 

the development of the disease (Lusis et al., 2004a).

1.4 Atherosclerotic lesion initiation

1.4.1 Theory fo r  atherosclerotic lesion initiation

The “response to injury” hypothesis, proposed by Russel Ross, is the most widely 

accepted of various theories for the initiation of atherosclerosis to date (Ross et al., 

1977). This hypothesis was the first to describe endothelial denudation as an initiating 

event in atherosclerosis. In the 1990’s this hypothesis was updated and endothelial 

dysfunction is now widely regarded to be the initial step of atherosclerosis (Ross,

1993).

1.4.2 Healthy arterial wall

The vascular wall is comprised of three layers; intima, media and adventitia. The intima 

is the innermost layer of the artery wall, which is separated from the vascular lumen 

and blood components by only one layer of endothelial cells. The endothelial layer 

resides at the critical interface between the blood flow and the artery wall and functions 

by maintaining haemostatic functions. These include haemocompatibility, anti

inflammatory actions and regulation of vascular tone through the production of NO, 

prostacyclin and endothelin-1 (Libby et al., 2006). The intima of an artery is comprised 

of a proteoglycan-rich layer and a deeper musculoelastic layer and a continuous inner 

elastic lamina (IEL) separates the intima from the media. The latter consists of elastic
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tissue and smooth muscle cells (SMCs) which are tightly arranged in a uniform manner. 

The outer elastic lamina (OEL) creates a boundary between the media and adventitia. 

Unlike the media, the adventitia consists mainly of fibroblasts, not SMCs.

Even though a healthy artery wall possesses numerous protective mechanisms, it can 

asymptomatically thicken in response to small physiological changes, including 

disturbance of laminar sheer stress. This process of intimal thickening can begin early 

in life (Stary et al., 1992).

1.4.3 Endothelial dysfunction

Atherosclerotic lesions are prone to develop at specific sites in the vascular tree. These 

sites tend to lie at bifurcations of the arteries where blood flow is turbulent and the 

effects of undisturbed laminar flow are lost.

Endothelial dysfunction triggers an inflammatory response causing infiltration of 

leukocytes, in particular monocytes and lymphocytes, into the subendothelial space, 

initiating the development of atherosclerosis. Recruitment of leukocytes into the vessel 

wall relies upon endothelial-leukocyte interactions which are mediated by the 

production of chemokines and adhesion molecules within the vessel wall. These factors 

are critical in atherogenesis since genetic deletion of endothelial adhesion molecules, 

leukocyte integrins or chemokines and their receptors result in attenuation of 

atherosclerosis in animal models (Boring et al., 1998; Cybulsky et al., 2001; Dansky et 

al., 2001; Dong et al., 2000; Dong et al., 1998; Gu et al., 1998; Shih et al., 1999; 

Veillard et al., 2005).
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Leukocyte attachment to the endothelium of rabbit vessel wall occurs shortly after the 

introduction of an atherogenic diet (Poole and Florey, 1958). Initially, leukocytes bind 

to endothelial P- and E- selectins which results in the tethering and rolling of the cells 

along the vessel wall (Dong et al., 1998). Subsequently, the attachment to the 

endothelium of the rolling leukocyte becomes much more firm. A process which 

depends on the activation of leukocytes by chemoattractants, released from the tissue 

followed by binding of leukocyte integrins. The leukocyte integrins very late antigen-4 

and lymphocyte function-associated antigen- 1 bind to their endothelial counterparts, 

vascular adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 

(ICAM-1) respectively. In the context of atherosclerosis, both VCAM-1 and ICAM-1, 

have been shown to be expressed on endothelial cells located in atherosclerotic prone 

regions of the vasculature (Cybulsky and Gimbrone, 1991; Nakashima et al., 1998). In 

addition, VCAM-1 and ICAM-1 are strongly expressed in the endothelial layer 

overlying an atherosclerotic plaque and weakly in the endothelium overlying the non

inflamed arterial wall (Davies et al., 1993a; Nakashima et al., 1998). Finally, in vitro 

studies have shown that oxidized low density lipoprotein (oxidised LDL) in the sub- 

endothelial space and haemodynamic stress can trigger the expression of adhesion 

molecules (Berliner et al., 1990; Libby et al., 2006; Vora et al., 1997; Walpola et al., 

1995).

1.4.4 Intimal thickening 

Once firmly attached to the vascular wall, leukocytes receive chemoattractant signals 

allowing penetration into the intima. For example, macrophage chemoattractant 

protein-1 (MCP-1) produced by the vascular wall directs the migration and diapedesis 

of adherent monocytes by binding to its receptor, chemokine receptor 2 (CCR2)
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(Boring et al., 1998; Gu et al., 1998). Other chemokines are involved in this process 

namely, interleukin (IL)-8 , eotaxin and fractalkine (Boisvert et al., 2000; Haley et al., 

2000; Lesnik et al., 2003). In addition, matrix metalloproteinase 9 (MMP-9), which is 

secreted by monocytes, degrades the collagen within the extracellular matrix, allowing 

movement into the intima (Amorino and Hoover, 1998).

Once leukocytes are firmly attached to the endothelium, leukocytes transmigrate 

through the endothelial lining into the intima a process which involves numerous 

chemotactic molecules. These include chemokines, anaphylatoxins C3a and C5a and 

modified lipoproteins. Chemokines exert their biological effects by interacting with 

their receptors that are selectively found on the surfaces of their target cells. A wide 

repertoire of chemokines (for example, monocyte chemoattractant protein-1 (MCP-1), 

chemokine ligand 5 (CCL5), macrophage inflammatory protein (M lP)-la, M IP-lp, 

growth regulated oncogene (GRO)-a, IL-8 , interferon y-induced protein (IP)-10, 

fractalkine, eotaxin) and their respective receptors (chemokine receptor (CCR)2, 

CCR3, C-X-C chemokine receptor type (CXCR)2, CX3CR1) have been shown to be 

involved in atherosclerosis (Hristov and Weber, 2009; Sheikine and Hansson, 2004). In 

addition, circulating platelets that interact with activated endothelial cells can release 

chemokines resulting in increased leukocyte recruitment onto the inflamed or 

atherosclerotic endothelium (von Hundelshausen et al., 2001). Furthermore, studies 

have shown a link between chemokine expression and increased atherosclerotic stimuli 

such as minimally modified low density lipoprotein (Miller et al., 2005), complement 

activation products (Torzewski et al., 1996) and alterations in shear stress (Shyy et al.,

1994).
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1.5 Development of the fatty streak

Fatty streaks are early lesions of atherosclerosis, which consist mainly of fat-filled 

macrophages known as foam cells. Fatty streaks are clinically silent; however, they 

have the potential to progress into more advanced lesions of atherosclerosis.

1.5.1 The role o f innate immunity during fa tty streak formation

Cellular and soluble components of innate immunity provide a fast but blunt response 

and serve as the first line of defence against infectious agents. Cells of the innate 

system respond to pathogens via pattern recognition receptors (PRRs). These receptors 

are able to recognise a restricted pattern of ligands called pathogen-associated 

molecular patterns (PAMPs). PRR are mainly expressed on macrophages and dendritic 

cells. Other components of innate immunity include the complement system, acute 

phase proteins, and cytokines.

Activated endothelial cells produce pro-inflammatory molecules such as macrophage 

colony-stimulating factor (M-CSF). This particular cytokine plays a critical role within 

the intima during fatty streak development, where it promotes proliferation and 

differentiation of monocytes into macrophages. The critical role of this pro- 

inflammatory molecule during atherosclerosis has been supported by a study showing 

that mice lacking M-CSF, on an atherosclerotic prone background (either 

apolipoprotein E (apoE) or low density lipoprotein receptor (ldlr) deficiency) show 

attenuation of plaque development with reduced macrophage accumulation when 

compared to their litter-matched controls (Rajavashisth et al., 1998; Smith et al., 1995).

M-CSF also has an influence on the expression of PRRs involved in innate immunity. 

Members of the PRR family include scavenger receptors, toll like receptors (TLRs),
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pentraxins and natural antibodies. M-CSF induced expression of scavenger receptors, 

scavenger receptor A (SR-A) and CD36 on macrophages has been shown to be 

involved in the uptake of modified lipoproteins and hence, the transformation of 

macrophages to foam cells within the intima (see figure 1.1) (Febbraio et al., 2000; 

Goldstein et al., 1979; Suzuki et al., 1997). In addition, the uptake process by SR-A can 

also lead indirectly to inflammation through the presentation on MHC class II 

molecules for further recognition by cells of the adaptive immune system (Nicoletti et 

al., 1999). Furthermore, scavenger receptors can also recognise other antigens apart 

from modified lipoproteins, for example apoptotic cells and pathogenic organisms 

(Peiser et al., 2002).

TLRs, have also gained attention in recent studies of atherosclerosis. In a healthy 

arterial wall TLR-2 and TLR-4 are expressed on endothelial cells, and in an inflamed 

vessel macrophages also express TLRs (Janeway and Medzhitov, 2002). The increased 

expression of both TLR-2 and TLR-4 can result from either LPS or IFN- y induced 

activation of human endothelial cells (Faure et al., 2001). Activation of TLRs can be 

triggered by various ligands within the fatty streak, including heat shock protein 60 

(HSP60) (Ohashi et al., 2000), minimally modified LDL (Miller et al., 2003) and 

bacterial antigens (Hajishengallis et al., 2002; Prebeck et al., 2001). Subsequent ligation 

of TLRs elicits various effects that stimulate the progression of atherosclerosis through 

NF-kB and the mitogen activated protein kinase (MAPK) pathway (Faure et al., 2000; 

Guha and Mackman, 2001). TLR activation also directly stimulates leukocyte 

recruitment, phagocytosis, production of reactive oxygen species (ROS), expression of 

MMPs (Janeway and Medzhitov, 2002) and cytokine production in human monocytes 

(Guha and Mackman, 2001). The detrimental role of PRRs in atherosclerosis has been
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highlighted by animal studies showing that deletion of either scavenger receptors or 

TLR4 attenuates the progression of atherosclerosis (Bjorkbacka et al., 2004; Febbraio et 

al., 2000; Michelsen et al., 2004; Suzuki et al., 1997).

1.5.2 Adaptive response o f the immune system during fatty streak formation

The adaptive arm of the immune system also plays an important role during the 

development of the fatty streak within the atherosclerotic vascular wall. In a normal 

healthy artery, T lymphocytes reside within the adventitia (Galkina and Ley, 2007). 

However, shortly after up-regulation of adhesion molecules (including VCAM-1), and 

in the presence of cytokines (such as M-CSF), T-cells migrate towards the intima where 

they can undergo antigen-dependent activation. Such antigens include fragments of 

oxidised LDL digested by macrophages (Stemme et al., 1995), HSP60 (Benagiano et 

al., 2005), P2-glycoprotein I (George et al., 2000) and the fragments of bacterial 

antigens (de Boer et al., 2000; Mosorin et al., 2000). T-cell-macrophage cross talk 

requires the presence of CD40 receptor on the surface of macrophage and CD40 ligand 

on the surface of T-lymphocytes (Phipps, 2000). The fatty streak contains only CD4+ T 

cells expressing ap T-cell receptor (TCR), which is indicative of an activation response 

to a limited set of local antigens (Hansson and Libby, 2006).
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Figure 1.1 Development of a fatty streak. Initial injury to the endothelium wall leads 

to the expression of adhesion molecules, allowing circulating monocytes to attach and 

migrate into the intima, where they differentiate into macrophages. Within the intima, 

LDL may undergo oxidative modification, resulting in the production of either 

minimally modified low density lipoprotein (mmLDL) or oxidised LDL (ox LDL), 

causing the binding and uptake into macrophages via their scavenger receptors, which 

leads to the formation of fatty-filled foam cells. Figure taken from Atherosclerosis: The 

Road Ahead (Glass and Witztum, 2001).
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1.6 Progression towards a complex plaque

1.6.1 Vascular smooth muscle cells (SMCs)

One of the characteristic features of plaque progression is the proliferation and 

migration of SMCs from the media into the intima (see figure 1.2). Although other cell 

types contribute to the production of the extracellular matrix of the intima, the vascular 

SMC is the main cell type responsible. In a healthy artery wall the extracellular matrix 

is composed mostly of types I and III collagen; in contrast, atherosclerotic matrix 

contains a mixture of proteoglycans together with type I collagen and fibronectin (Ross, 

1999). In response to stimuli, including secreted growth factors and cytokines from 

surrounding inflammatory cells, SMCs also produce proinflammatory signalling 

molecules such as platelet derived growth factor, transforming growth factor p (TGFp), 

IFN- y,  MCP-1 and IL-1, exacerbating the inflammatory response within the vessel 

wall (Doran et al., 2008). During plaque progression, SMC proliferation also occurs 

w ithin the media causing increased medial thickness and contributing to vascular re

modelling. Although the adventitia lack SMCs, it does contain fibroblasts and other 

progenitor cells, which during plaque progression can differentiate to migratory 

myofibroblasts having a similar phenotype to SMCs (Siow and Churchman, 2007) and 

thus providing another source of cellular material for the inflamed intima.

1.6.2 Macrophages

Depending on their function, macrophages can be classified into two types: M 1 and M2 

(Gordon and Taylor, 2005). Both Ml and M2 macrophage sub-types reside within 

intima, where they exert pro- and anti-atherosclerotic effects respectively. The 

classically activated macrophage Ml exacerbates atherosclerosis by producing pro-
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inflammatory cytokines such as TNFa, IL-16, IL12, and ROS. Conversely, the M2 

macrophage produces anti-inflammatory cytokines, including IL-10 and TGF-p, which 

exert anti-atherogenic effects by promoting resolution of inflammation within the 

plaque (Shimada, 2009; Tabas, 2010).

1.6.3 T-cells

T cells constitute approximately 5-207r of the cells in an advanced atherosclerotic 

plaque (Hansson et al., 1989b; Jonasson et al., 1986). Interestingly, the percentage of T 

cells increases in the culprit lesions of patients with unstable angina and acute 

myocardial infarction (Flosono et al., 2003). Furthermore, there is evidence to suggest 

that the activation of T-lymphocytes may play an important role in plaque de- 

stabilisation since the T cells of unstable plaque showed signs of specific, antigen- 

driven activation (De Palma et al., 2006). In addition, the T cell response in unstable 

angina patients is directed against plaque antigens (Caligiuri et al., 2000). In agreement 

with these human findings, evidence from animal studies also found a correlation 

between T cell infiltration and the progression of atherosclerosis. Thus, apoE /CD 4+7 

mice showed attenuation of the disease in comparison to the apoE7 controls (Zhou et 

al., 2005), while transfer of CD4+ T cells into immuno-deficient apoE 7 mice 

accelerated atherosclerosis (Zhou et al., 2000).

As with macrophages, CD4+ T cells are grouped into sub-types. The sub-group of 

CD4+ T cells is defined according to the cytokines they secrete. In the context of the 

early atherosclerotic lesion, T cells largely have properties of Thl sub-type and secrete 

the cytokines IL-2, IFN- / ,  TNF-a, and TNF-(k These cytokines are pro-inflammatory 

and pro-atherogenic, causing activation of macrophages and vascular cells and
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contributing to worsening of the disease. The Thl sub-type dominates in early lesions 

of atherosclerosis, while in contrast, Th2 cytokines (IL-4, IL-13 and IL-10) are scarce 

and have anti-atherogenic properties (see figure 1.2) (Frostegard et al., 1999; Uyemura 

et al., 1996). Animal studies have shown a shift from Thl to Th2 dominance within 

lesions as they progresses towards an advanced phenotype. Thus, atherosclerotic 

lesions in the apoE knockout mouse model contain Th2 subtype only in extreme 

hypercholesterolemic conditions, as reflected by increased Th2 cytokines within the 

plaque and in the spleen (Zhou et al., 1998).
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Figure 1.2 Progression towards a complex plaque. As the lesion progresses a chronic 

inflammatory process evolves, caused by further influx of inflammatory cells, including 

Thl and Th2 cells. SMCs also migrate and proliferate from the media into the intima 

where they secrete extracellular matrix proteins that form a fibrous plaque. Figure taken 

from Atherosclerosis: The Road Ahead (Glass and Witztum, 2001).
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1.6.4 Other inflammatory cells involved

Within the setting of advanced atherosclerosis, the lesion becomes more complex, with 

increased recruitment and stimulation of inflammatory cells including, B cells, 

dendritic cells, Natural killer (NK) cells, mast cells and neutrophils. These cells 

encourage cell-mediated cytotoxicity and release numerous cytokines, enzymes or 

antibodies, all of which are likely to contribute towards the progression of 

atherogenesis.

B cells produce natural antibodies that circulate in a healthy individual even in the 

absence of exogenous antigenic stimulation. Natural antibodies are mostly of the IgM 

isotype. They contain highly conserved sequences that recognise a wide range of 

exogenous antigens, as well as altered self structures. Natural antibodies are thus 

capable of providing protection against invading pathogens and in addition have been 

implicated in removal of senescent and apoptotic cells, thus providing protection from 

autoimmunity (Baumgarth et al., 2005). Within spleens of apoE7 mice, natural 

antibodies against oxidised LDL were identified and cloned. Subsequently researchers 

showed that these monoclonal antibodies (mAbs) were able to immunostain 

atherosclerotic lesions in rabbit and human and recognise epitopes of oxidised LDL in 

human plasma (Palinski et al., 1996).

NK cells are large lymphocytes derived from bone marrow. They function by releasing 

small cytoplasmic granules of proteins called perforin and granzyme which cause direct 

cell-mediated cytotoxicity by activating apoptosis. In addition, they can also produce 

pro-inflammatory cytokines such as ILN- y . In the context of atherosclerosis, NK cells 

have been detected in early lesions in young adults (Millonig et al., 2002) and increased
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circulating NK cells have been shown to correlate with severity of the disease (Clerc 

and Rouz, 1997).

Dendritic cells are highly effective antigen presenting cells, expressing both MHC class 

II molecules and co-stimulatory molecules on their surface for the activation of naive T 

cells. Within a healthy artery w all, a small number of dendritic cells are present 

particularly within atherosclerotic prone areas of the vascular tree, and their numbers 

increase during the progress of atherosclerosis (Bobryshev and Lord, 1995). The role of 

dendritic cells within the atherosclerotic plaque is not well understood. However, 

dendritic cells have been detected w ith T cells in human aortic intima (Bobryshev and 

Lord, 1995), an observation which suggests that dendritic cells may play a role in 

antigen processing and presentation in vivo in atherosclerotic tissue. In addition, a 

histological analysis of human carotid artery specimens detected dendritic cells co

localised w ith T cells in the shoulder region of vulnerable plaques which were prone to 

rupture (Yilmaz et al., 2004), suggesting that dendritic cells may contribute to plaque 

destabilisation by activating T cells.

Mast cells are cells of the innate immune system which play a major role in allergy and 

host defence response (Galkina and Ley, 2009). Activation of mast cells generates a 

w ide range of pro-inflammatory' molecules, including, vasoactive substances such as 

histamine, cytokines (IFN- y , TNF-alpha, IL-6), proteases and growth factors (Galkina 

and Ley, 2009). Although small in number, mast cells have been detected in the 

adventitia and within atherosclerotic lesions, in particular at the shoulder regions where 

they may contribute to plaque destabilisation (Lindstedt et al., 2007).
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Neutrophils are phagocytic cells of the innate immune system and secrete a wide range 

ot biologically active molecules such as ROS, myeloperoxidase, proteases and 

chemokines (Galkina and Ley, 2009). Neutrophils are rare in stable human 

atherosclerotic lesion, but abundant in unstable plaques which are prone to rupture 

(Naruko et al., 2002).

1.6.5 Cellular necrosis and breakdown

In order to resolve increased inflammation within the lesion, a series of processes must 

take place, including inhibition of inflammatory cell recruitment (Tabas, 2010), 

promotion of inflammatory cell egress (Llodra et al., 2004) and clearance of apoptotic 

cells by phagocytes (efferocytosis) (Lawrence and Gilroy, 2007; Serhan et al., 2007). 

These effects are mediated by anti-inflammatory cytokines (including IL-10 and TGF- 

P) (Mosser and Zhang, 2008), signalling molecules (such as lipoxins, and resolvins) 

(Serhan et al., 2008) and transcription factors (such as PPAR) (Huang et al., 1999). 

These inflammatory resolution responses are critical in preventing the progression of an 

early lesion to an advanced complex plaque where these processes are impaired.

Decreased resolution of inflammation within atherosclerosis indicates defective 

efferocytosis, impaired egress of inflammatory cells and a persistent inflammatory state 

within the plaque. Animal studies have shown that in apoE7 mice, in a cholesterol rich 

environment, inflammatory cell egression is halted in atherosclerotic plaques. 

Conversely, normal cholesterol levels were found to promote migration of 

inflammatory cells out through adventitial lymph vessels towards local lymph nodes 

(Trogan et al., 2(X)6). This inability of an atherosclerotic plaque to clear apoptotic 

inflammatory cells leads to the enlargement of the necrotic core within the plaque.
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Animal studies looking at the effects of macrophage apoptosis on lesion size have 

suggested that the necrotic core of an advanced plaque develops from the combined 

effect of defective efferocytosis and cellular apoptosis (Arai et al., 2005; Gautier et al., 

2009; Liu et al., 2005; Tabas, 2010; Thorp et al., 2009). Further studies looking at 

efferocytosis impairment using mouse models of atherosclerosis have identified a few 

genes involved in this process (Ait-Oufella et al., 2007; Bhatia et al., 2007; Boisvert et 

al., 2006). These include C lq, a component of the early activation pathway of the 

complement system, which binds to apoptotic cells and plays an important role in their 

disposal, thus bridging the gap between apoptosis and efferocytosis (Korb and Ahearn, 

1997; Nauta et al., 2002b; Navratil et al., 2001; Taylor et al., 2000). Human studies 

have shown that efferocytosis is impaired in advanced human atherosclerotic plaques 

(Schrijvers et al., 2005).

1.7 Plaque rupture and thrombosis

The worst clinical scenario produced from an advanced plaque is the sudden thrombotic 

occlusion of an artery (Libby and Aikawa, 2002), an event which is likely to be caused 

from rupture of the fibrous cap that overlies the lipid core of the plaque (Libby and 

Aikaw a, 2002). Hence, the ability of a plaque to maintain stability is critical to avoid 

rupturing of the fibrous cap. Results from plaque rupture studies suggest that the culprit 

plaques in these instances may not be the largest, but rather those which are vulnerable 

to rupture. Hence, vascular events leading to damage to the heart, brain and lower 

extremities can occur without warning and may result in tragic consequences.

Pathological studies on plaques in human aorta and coronary arteries that have 

undergone unstable angina have been used to identify various characteristics of
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vulnerable plaques (Annex et al., 1995; Davies et al., 1993b; Falk, 1989; Moreno et al., 

1994). These characteristics of vulnerable plaques include; increased plaque 

macrophage content, decreased SMC content, a thin fibrous cap, large lipid core which 

occupies at least 509f of the overall plaque volume and increased tissue factor content.

Accumulation of these factors greatly increases the risk of plaque rupture, and the 

plaque is then termed “vulnerable”. Further studies on advanced plaques have identified 

various immunological factors that can cause or exacerbate these characteristics of a 

vulnerable plaque. For example, in a stable atherosclerotic plaque vascular SMCs 

secrete interstitial collagens, providing stability for the extracellular matrix; however, 

pro-inflammatory mediators within advanced plaques can favour destabilisation of the 

fibrous cap. IFN- y , secreted by Thl cells, effects extracellular matrix de-stabilisation, 

through inhibiting the production of collagen by SMCs (Amento et al.) and by 

inhibiting the proliferation of vascular SMCs within the intima (Hansson et al., 1989a). 

In addition activated macrophages produce proteases, including members of the MMP 

family, which contribute to the breakdow n of collagen w ithin the matrix, further 

contributing to plaque de-stabilisation (Galis et al., 1994; Henney et al., 1991) (see 

figure 1.3).

Plaque rupture exposes the lipid core of the lesion to coagulation factors which then can 

cause the formation of a thrombus (as shown in figure 1.3). Tissue factor, a potent pro

coagulant expressed by a subpopulation of macrophages, aids platelet aggregation and 

thrombosis (Libby and Aikawa, 2(X)2). In addition to T-cells, endothelial cells and 

SMCs, platelets also express CD40 ligand (Henn et al., 1998). In addition to its role in 

stimulating an immune response, CD40- CD40 ligand interaction between platelets can
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cause platelet activation and hence, enhance thrombosis causing an increase in the rate 

of clot formation (Inwald et al., 2003; Prasad et al., 2003).

1.8 Animal models of atherosclerosis

Atherogenesis is a very complex and multi-factorial disease, and thus by its very nature 

it is difficult to define the molecular mechanisms behind the progression of the disease. 

Another problem is the inability to follow the changing characteristics of lesions within 

an individual patient, despite progress in imaging techniques (Hansson and Libby,

2006). Our current know ledge and understanding of the underlying mechanisms of 

atherosclerosis has grown rapidly in recent years ow ing to the generation and use of 

genetically modified mouse models of atherosclerosis. These have allowed researchers 

in the field to evaluate existing therapeutic drugs as well as discover new7 therapeutic 

targets (Jackson, 2007; Kinderlerer et al., 2006; Mason et al., 2002; Nakamura et al., 

2009).

There are obvious drawbacks in using mice to study atherosclerosis. These include 

body si/e, lifespan, weight and importantly in terms of creating an animal model to 

study human atherosclerosis, the mouse has very different lipoprotein profiles. In 

humans, 75ff of the cholesterol is carried around the body by LDL; in contrast, 

cholesterol in the mouse is carried by high density lipoprotein (HDL), which is 

protective against atherosclerosis in humans. Indeed, non-genetically modified mice on 

a normal chow diet, resist the pathological consequences of atherosclerosis.

Before the availability of gene targeting, the mouse model used to study atherosclerosis 

involved feeding inbred strains of mice with a very high fat diet. Some strains ot mice,
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such as C3H/HeJ, were resistant to atherosclerosis, while others, including the inbred 

strain C57BL/6, developed pathology, including several layers of fatty foam cells 

within the intima (Breslow, 1996; Liao et al., 1993; Paigen et al., 1985).
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Figure 1.3 Plaque rupture and thrombosis. The final stage of atherosclerosis is 

initiated by necrosis of macrophage and fat-filled SMCs resulting in the production of a 

necrotic core. The fibrous plaque weakens as a result of MMP secretion (including 

MMP-1,-2, -3, -9 and -12) from residing macrophages and eventually the plaque will 

rupture, exposing blood components to tissue factor, initiating coagulation, recruitment 

of platelets, and the formation of a thrombus. Figure taken from Atherosclerosis: The 

Road Ahead (Glass and Witztum, 2001).

There were several disadvantages with this mouse model. Firstly, lesions were limited 

to the fatty streak stage of the disease and did not proceed to the more complex 

phenotype of advanced human plaques. Secondly, lesion formation was restricted to the
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aortic valve leaflets whereas in humans plaques are formed at all branch points of major 

vessels. Thirdly, the diet used to induce atherosclerosis in these mice was 

unphysiological with regard to its extremely high cholesterol content ( 1 0 -2 0  times 

more than in westernised diet) and the presence of cholic acid.

In 1992, the apoE 7 mouse was generated simultaneously by two independent research 

groups (Plump et al., 1992; Zhang et al., 1992). ApoE is a glycoprotein produced 

mainly in the liver and brain of humans and mice. It is a surface constituent of all 

lipoprotein particles apart from LDL and functions as a ligand for receptors that clear 

chylomicrons and very low density lipoprotein (VLDL) remnants. Hence, apoE7 mice 

have delayed clearance of lipoprotein particles and even on a normal chow diet have 

increased cholesterol and triglyceride levels compared to their normal litter-matched 

controls (Jawieri et al., 2004; Nakashima et al., 1994). This mouse model also shows 

progression of atherosclerosis beyond the fatty streak stage with lesions developing at 

vascular sites typically affected in human atherosclerosis (Nakashima et al., 1994).

In the apoE 7 mouse the initial stages of atherosclerosis develop after 5-6 weeks on a 

normal chow diet, with attachment of monocytes to the endothelial wall followed by 

infiltration into the subendothelial space. At 10 weeks, fatty streaks appear and fibrous 

plaques develop at around 20 weeks of age. The progression of atherosclerosis in this 

model is accelerated when fed a high fat diet. The popularity of this model is due not 

only to its rapid plaque formation but also to the morphological similarity of these 

plaques to human lesions.
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The characteristics of atherosclerosis shared by the apoE 7 mouse model and humans 

are listed below:

■ Distribution and size of lesion increases with age

■ Lesions progress from fatty streak to advanced plaques

■ Advanced intact plaques containing a necrotic core surrounded by a fibrous cap 

of SMCs, together with collagen and elastin fibres.

■ Events demonstrating evidence of plaque rupture including;

1. Formation of an acellular necrotic core

2. Erosion of the necrotic core through to the lumen with 

exposure to the lumen

3. Appearance of intraplaque haemorrhage

4. Disruption of the fibrous cap

■ Layering within the plaque implying multiple events (buried fibrous caps)

The second most widely used model of atherosclerosis is the ldlr7 mouse. This model 

was generated in 1993 by Ishibashi et al. (Ishibashi et al., 1993). Whilst both apoE7 

and ldlr7 mouse models produce similar atherosclerotic lesions that progresses from 

the initial fatty streak to an advanced complex lesion, plasma lipid profiles differ 

between the two models during a high cholesterol diet. In the ld lr7 mice, triglyceride 

and cholesterol levels are increased during a high cholesterol diet, whilst in the apoE7 

model, although cholesterol levels are increased, triglyceride levels do not change 

(Joven et al., 2007).
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Some of the advantages of using atherosclerotic mouse models as a research tool are 

listed below.

■ Reproducible pattern of plaque development

■ Ability to use normal or modified diet

■ Ability to control for environmental and genetic factors

■ Rapid breeding

■ Rapid onset of disease and progression

■ Economical

Using mouse models of atherosclerosis as a research tool is pivotal in further 

understanding the complex pathophysiology and signalling mechanisms underlying this 

disease and will lead us closer towards a clinical breakthrough in the prevention and 

treatment of atherosclerosis.

1.9 Assessment of atherosclerosis in mice

1.9.1 Quantitative assessment o f atherosclerosis in mice

Assessment of atherosclerosis has generally been made by quantifying the area of 

plaques, most often those present in the aorta or aortic root. Interestingly, studies 

mapping areas of atherosclerosis have shown that lesions at the aortic valve leaflet 

develop faster than in the aorta (Veillard et al., 2004), thus the location for assessing 

atherosclerosis is critical in determining the outcome of the analysis. Cross section 

analysis and en face  methods are used to measure the extent of atherosclerosis. The en 

face  method usually involves splitting the aorta open, exposing the luminal
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endothelium and pinning it onto a standard black wax dissection pan before staining for 

lipid deposition with dyes such as Sudan IV. Cross sectional lesion area in the aortic 

root and brachiocephalic artery are also commonly quantified as a measure of 

atherosclerosis. Histology and immunohistochemistry for various markers can then be 

performed on cross sections for a multi-quantitative assessment of these arteries. 

Imaging software is then used in detailed and accurate quantification of atherosclerotic 

lesions for both enface  and cross section methods.

1.9.2 Qualitative assessment o f atherosclerosis in mice

While an assessment of plaque size yields useful information, this kind of analysis 

gives no indication as to the stability of the plaques present. Plaque stability is a critical 

parameter since it governs the likelihood of a rupture occurring, which could lead to 

occlusive thrombosis and death. Over the last few years, a growing body of data has 

indicated that the brachiocephalic artery may be a useful site to examine plaque 

stability in mice. The brachiocephalic artery, a known site of lesion development in 

humans (Krinsky et al., 2001; Nakajima et al., 2008), is a very short vessel arising from 

the arch of the aorta and branching into the right common carotid artery and the right 

subclavian artery (See figure 1.4). Typical length of a brachiocephalic artery from a 13 

week old apoE 7 mouse is approximately 660pm which doubles at 23 weeks of age 

(McAteer et al., 2004). High turbulence likely makes this vessel a site of predilection 

for plaque formation. The characteristics of an unstable human plaque include the 

presence of a large necrotic core surrounded by a thin fibrous cap (Rosenfeld et al.,

2002). The brachiocephalic artery in the atherosclerosis-prone mouse has been shown 

to consistently provide advanced plaques (Seo et al., 1997), which have unstable
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phenotypes similar to that seen in humans, including formation of a necrotic core, 

erosion of the necrotic mass through to the lumen, thrombotic occlusion (Williams et 

al., 2002). It has also been shown to develop spontaneous plaque rupture (where 

rupture has not been induced mechanically) (Johnson and Jackson, 2001) which some 

argue is an unqualified generic advantage of the model since it lacks end-stage 

atherosclerosis (Lutgens et al., 2003). However mouse model of spontaneous plaque 

rupture allows researchers in the field to determine the events which lead up to and 

trigger spontaneous plaque rupture.

Several different groups have published evidence of plaque rupture in mouse models of 

atherosclerosis (Rosenfeld et al., 2000; Williams et al., 2002). However, this is 

currently in dispute as some argue against the histopathologic criteria used for plaque 

rupture identification and disagree with interpretation of buried fibrous caps as indirect 

evidence for previous plaque ruptures (Falk et al., 2007; Schwartz et al., 2007).

In humans plaque rupture is defined as “an area of fibrous cap disruption whereby the 

overlying thrombus is in continuity with the lipid core” (Virmani et al., 2000) and in 

mice a rupture is defined as “disruption of the fibrous cap accompanied by the intrusion 

of blood products into the plaque itself’ (Williams et al., 2002). The definition allows a 

true plaque rupture to be distinguished from artefacts caused during histological 

processing.

In apoE 7 mice, evidence of plaque rupture has been reported with disturbed continuity 

of the fibrous cap, intraplaque haemorrhage and buried fibrous caps as evidenced by the 

presence of erythrocytes (Williams et al., 2002).
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Neovasucularisation, a key event which arises from the adventitia owing to the 

abundance of vasa vasorum at this location, in advanced plaques may cause intraplaque 

hemorrhage which may result in plaque destabilisation and rupture. Of note, intraplaque 

haemorrhage is not necessarily associated with plaque rupture and is defined as the 

deposition of blood products within an atherosclerosclerotic lesion (Lutgens et al.,

2003).
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Figure 1.4 Localisation of the brachiocephalic artery. A schematic diagram showing 

the location of the brachiocephalic artery arising from the arch of the aorta and dividing 

into the right common carotid artery and right subclavian artery. Adapted from the 

original version: www.daviddarling.info/images/subclavian_artery.png
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1.10 Therapeutic perspectives

1.10.1 Surgery

Typically; surgery is only performed in severe cases of atherosclerosis, and includes 

minimally invasive angioplasty procedures, for example insertion of stents to physically 

expand narrowed arteries, and major invasive surgery, such as bypass surgery, to create 

additional blood supply connections that go around the most severely narrowed areas.

1.10.2 Statins

Treatment with statins reduces levels of both LDL cholesterol and triglycerides, while 

increasing HDL cholesterol, by inhibiting 3-hydroxyl-3-methylglutaryl coenzyme A 

reductase, an enzyme involved in cholesterol synthesis. The benefits of statin treatment 

were initially thought to be solely due to their lipid lowering properties. However, it is 

now clear that statins also have anti-inflammatory activity (Crisby et al., 2001), which 

could account at least partially for their dramatic beneficial effects. Such functions 

include the inhibition of pro-inflammatory cytokines and adhesion molecules (Steffens 

and Mach, 2006) and up-regulation of complement regulators (Kinderlerer et al., 2006; 

Mason et al., 2002), which will be discussed in more detail later. This anti

inflammatory effect is also supported by a recent clinical trial where atorvastatin was 

found to be beneficial in patients with rheumatoid arthritis (RA) (McCarey et al., 2004).

1.10.3 Anti-inflammatory drugs

The current systemic anti-inflammatory approach, which includes glucocorticoids and 

non-steroidal anti-inflammatory drugs, exerts many unwanted side effects rendering
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them poor candidates for a long term therapeutic approach which is needed for the 

treatment of atherosclerosis (Libby et al., 2009). However, more specific anti

inflammatory agents are being considered, with lipoprotein associated phospholipase 

A2 (PLA2) inhibition currently in clinical trials (Boekholdt et al., 2008). PLA2 releases 

fatty acids from phospholipids resulting in the production of arachidonic acid and 

lysophospholipids (Dennis, 1994). In the context of atherosclerosis, PLA2is bound to 

LDL whilst being transported around the body and thus enters the inflamed 

atherosclerotic lesion as a consequence of LDL transmigration into the vessel wall. 

Subsequently, LDL is oxidised and PLA2 acts on the oxidised LDL releasing oxidised 

fatty acids and lysophosphatidylcholine that promotes inflammatory responses, 

including increasing monocyte adhesion, migration of vascular SMCs and up- 

regulating expression of growth factors, adhesion molecules, cytokines and chemokines 

by macrophages, T-cells and endothelial cells (Garza et al., 2007; Khakpour and 

Frishman, 2009).

Vaccination strategies are also being considered to induce protective immunity. In 

particular, animal studies have shown that vaccination with oxidised LDL, bacteria 

containing modified phospholipids or HSP60 are beneficial in preventing 

atherosclerosis (Binder et al., 2003; Maron et al., 2002; Palinski et al., 1995).

1.10.4 Inflammatory biomarkers

Work on specific anti-inflammatory drugs has not yet produced an ideal candidate for 

the clinic; however, inflammatory biomarkers have been identified and used to predict 

risk, monitor treatment and aid therapy. Such biomarkers include myeloperoxidase, Lp- 

PLA2, pentraxin-3, various cytokines, proteases, C-reactive protein (CRP) and
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complement proteins C3 and C4 (Engstrom et al., 2007; Libby et al., 2009). The most 

studied of these is CRP, which has been tested in many large-scale cohort studies, and 

reported to predict incidence of myocardial infarction, stroke and cardiovascular death 

(Ridker, 2007); however, this remains controversial (Mosca, 2002; Nordestgaard,

2009).

1.10.5 Summary

There remains an urgent need both for new inflammatory therapeutics targeted against 

atherosclerosis and also for more basic research aimed at unravelling and understanding 

the complex web of inflammatory interactions that give rise to atherosclerosis. Such an 

enhanced understanding of this multi-factorial disease can only help in the discovery of 

new therapeutics to aid in combating the increasing healthcare burden of 

atherosclerosis.
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2. The Complement system

2.1 Overview

The complement system is part of the innate immune response. Originally described as 

a “complement” to adaptive immunity, today we understand it as a central effector 

mechanism of the innate immune system, defending the host against infections, 

bridging innate and adaptive immunity and disposing of immune complexes and 

apoptotic cells (Walport, 2001a; Walport, 2001b).

To date there are more than 30 soluble and membrane bound proteins which mediate 

activation and regulation of the proteolytic complement cascade to finely balance the 

elimination of invading pathogens and the protection of the host by limiting 

complement deposition on healthy tissue. However, if this delicate balance is 

disrupted, the complement system may cause injury and contribute to the pathogenesis 

of various diseases (Ffrench-Constant, 1994; Mead et al., 2004; Szeplaki et al., 2009; 

Williams et al., 2004).

Activation of the complement system is rapid and efficient. Soluble complement 

components are present in the blood, body fluids and tissues to readily trigger a defence 

reaction against external (i.e. pathogens) or internal (i.e. autoimmunity) danger signals.
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2.2 Activation

The complement system consists of three activation pathways: classical, mannose 

binding lectin (MBL) and the alternative pathway (see figure 3) (Morley and Walport, 

2000).

2.2.7 Classical pathway

The classical pathway is activated by the recognition of an antigen-antibody complex 

by C lq , however other molecules can also trigger its activation including CRP (Siegel 

et al., 1974), nucleic acids (Jiang et al., 1992) or apoptotic cells (Nauta et al., 2002b). 

Upon binding, C lr  cleaves C ls  which in turn cleaves C2 and C4 into a small (C2b, 

C4a) and a large fragment (C2a, C4b) (as shown in figure 1.5). C2a and C4b together 

form the classical pathway C3 convertase, C4b2a.

2.2.2 Alternative pathway

The alternative pathway starts with spontaneous low-rate hydrolysis of C3 generating 

C3 (H2 0 ) which binds to factor B (fB), permitting cleavage by factor D (fD) to form the 

fluid-phase C3 alternative pathway convertase C3 (H2 0 )Bb. This enzyme cleaves C3 

and deposits C3b on surfaces where, in the absence of complement inhibitors such as 

factor H (fH), it binds and catalyses cleavage of fB to form surface bound alternative 

pathway C3 convertase C3bBb. The alternative pathway C3 convertase is stabilised by 

properdin (as shown in figure 1.5) (Morley and Walport, 2000) which promotes further 

cleavage of C3 molecules, thus creating a positive feedback. This C3b-Bb-fD loop is 

known as the “amplification loop” and is necessary for efficient activation of 

complement.
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2.2.3 MBL pathway

Activation of the MBL pathway involves the binding of mannose-binding lectin or 

ficolins, which are typical pattern recognition receptors, to carbohydrate groups present 

on the surface of bacteria. Following this recognition process, MBL-associated serine 

proteases (MASPs) become activated and cleave C4 and C2 exactly as described for the 

classical complement pathway (as shown in figure 1.5) (Fujita et al., 2004).

2.2.4 Other mechanisms o f complement activation

Recently, additional routes of complement activation have been proposed, including, 

direct cleavage of C3 and C5 by non-complement proteins such as lysosomal enzymes 

released from neutrophils, kallikrein (part of the kinin and fibrinolysis systems), or 

tlirombin, the so-called “extrinsic protease’’ pathway (Markiewski and Lambris, 2007).

2.2.5 Complement activation products

Complement activation results in the production of biologically active molecules such 

as anaphylatoxins, opsonins and MAC that exert multiple functions which may lead to 

extensive cell triggering and to activation of cellular responses ranging from 

proliferation to cell death (Walport, 2001a).

2.3 Central component of the activation pathway

Irrespective of the pathway involved, complement activation leads to the cleavage of 

C3 resulting in two functionally different molecules: C3a and C3b. C3a is an 

anaphylatoxin, and in the context of atherosclerosis, it promotes the adhesion and 

infiltration of inflammatory cells into the vessel wall. However, C3a is rapidly
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inactivated in plasma through the removal of the carboxy-terminal arginine by serum 

carboxypeptidase N (seen in figure 1.5). The cleavage of C3a results in the formation of 

C3adesArg, which is identical to acylation stimulating protein (ASP), a potent anabolic 

activator of triglyceride synthesis and glucose uptake (Maslowska et al., 2005). The 

larger cleavage product, C3b, is essential for terminal pathway activation and acts as an 

opsonin, which during atherosclerosis can promote the clearance of lipids and other 

debris.

2.4 Terminal pathway

At this stage, lack of regulation of the activation pathway may cause the cascade to 

proceed to the terminal pathway. This involves the cleavage of C5 into C5a and C5b by 

either the classical or alternative pathway C5 convertases, C4b2a3b and C3bBbC3b, 

respectively. Newly formed C5b, still attached to membrane bound C3b within the 

convertase, presents an acceptor site for the next sequential complement component,

C6 . Unlike the activation pathway where each step relies on enzymatic cleavage, the 

terminal pathway is dependent on conformational changes induced by binding. Thus, 

one molecule of C5b, C6 , C7 bind to form a C5b67 complex which is released from the 

convertase enzyme and attaches to the adjacent cell membrane. C8 then binds forming 

the C5b678 complex which is then followed by binding and polymerisation of as many 

as 10-16 molecules of C9 to form a pore which is inserted within the lipid bilayer of the 

plasma membrane, the membrane attack complex (MAC) (as shown in figure 1.5). 

Insertion of MAC on cell membranes of invading pathogens causes cellular damage 

and death (Nauta et al., 2004). An overview of the complement system is shown in 

figure 1.5.
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2.5 Function

The complement system has varied and wide-ranging functions for example it can act 

as a stimulus to inflammation through the production of small anaphylatoxic fragments 

C3a and/or C5a which bind to their receptors, expressed on target cells (Guo and Ward, 

2005; Kohl, 2001). For example, anaphylatoxins can activate mast cells to release 

histamine, TNF-a, cytokines and chemokines, mediating vasodilation and leukocyte 

migration from the bloodstream to the site of inflammation (Lee et al., 2002). In 

addition C5a is a powerful chemoattractant for cells of both the innate and adaptive 

immune system, including macrophages (Aksamit et al., 1981), neutrophils 

(Ehrengruber et al., 1994), activated B cells (Ottonello et al., 1999) and T cells (Nataf 

et al., 1999), basophils (Lett-Brown and Leonard, 1977) and mast cells (Hartmann et 

al., 1997).

Recent findings provide evidence that complement also regulates adaptive immune 

responses (Carroll, 2004; Hawlisch and Kohl, 2006). In particular C3 breakdown 

products have been shown to regulate B cell immunity (Fearon and Locksley, 1996). 

Further studies showed that complement receptor 1 (CR1) and complement receptor 2 

(CR2) are both involved in mediating the elimination of self-reactive B cells and 

amplification of the humoral responses to both thymus dependent and independent 

antigens (Carroll, 2004; Klos et al., 2009).

Another function of complement is to dispose of immune complexes, necrotic and 

apoptotic cells generated during an inflammatory reaction (Manderson et al., 2004; 

Walport, 2001a; Walport, 2001b). The clearance of immune complexes is facilitated by 

maintaining their solubility through the binding of C l, and fragments of C4 and C3,
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opsonising the complex. This prevents a growth in the size of the immune complex 

stopping precipitation, and allows their recognition and removal by phagocytes. This 

complement aided process limits inflammation and the propagation of injury on 

neighbouring tissues. The removal of necrotic and apoptotic cells is critical for the 

termination of inflammation and prevention of autoimmunity. Dying cells undergo 

several changes to signal their removal to phagocytic cells. These changes involve 

modifications of the plasma membrane resulting in the exposure of self-antigens, 

normally sequestered within the viable cell, and the internalisation of proteins normally 

expressed on the cell surface. The presentation of “eat me” signals and the down- 

regulation of “don’t eat me” signals trigger the binding of a number of complement 

opsonins such as C4b and C3b to mediate the removal of dying cells. This is a key 

process in the maintenance of tissue homeostasis (Cole and Morgan, 2003; Flierman 

and Daha, 2007; Nauta et al., 2003).

2.6 Regulation

Sophisticated regulatory mechanisms allow the complement system to rapidly attack 

invading pathogens whilst protecting host cells from its detrimental effects. Regulation 

of the complement system exists at each level through the action of several complement 

regulators and inhibitors. Both membrane bound and fluid phase regulators control the 

complement cascade, ensuring cell and tissue integrity (Morley and Walport, 2000).

See table 2.1 for specific functions of complement regulatory proteins.
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Complement System: an overview

Classical Pathway

M A C  |  CD59Factor H

C l inhibitor

Mannose-binding 
lectin pathway

Properdin 

Factors B, D

CD55
MCP
CrryAlternative Pathway

C ell activation via 
C3aR and C5aR

Factor I, Factor H

Figure 1.5 Complement activation cascade. The classical and mannose-binding 

lectin pathways are initiated by PAMPs (pathogen-associated molecular patterns) such 

as foreign antigens and mannose, respectively. The Cl complex of classical pathway 

consists of Clq, C lr and Cl s. The alternative pathway is activated by spontaneous 

hydrolysis of C3 and is dependent on the presence of factor B (fB), D and properdin. 

The central component of the cascade, C3, is controlled by numerous regulators 

including factor I, factor H, CD55, MCP (membrane cofactor protein) and Crry 

(complement-receptor 1-related gene/protein y). Activation of C3 can also lead to the 

activation of the terminal pathway via C5. Subsequent binding of C6, Cl, C8 and C9 

leads to the formation of the pore like structure, membrane attack complex (MAC). 

CD59 is the sole inhibitor of the MAC complex which prevents the binding of C9 to 

C8.
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There are multiple fluid phase complement regulators which function at different level 

of the cascade depending on their specific target. Plasma based alternative pathway 

regulators are fH, fH like-1 (FHL1) and the activator protein properdin, whilst 

carboxypeptidase N, is involved in all three activation pathways (Zipfel and Skerka, 

2009). The soluble classical and lectin pathway inhibitors include Cl inhibitor (C1INH) 

and C4 binding protein (C4BP). Soluble regulators of the terminal pathway include 

vitronectin and clusterin. Membrane bound complement regulators also have a crucial 

role in sustaining tissue homeostasis and protecting cells from self harm. These include 

the glycosyl-phosphatidylinositol (GPI) anchored membrane proteins, CD55 (otherwise 

known as decay-accelerating factor (DAT)) and CD59, and transmembrane proteins, 

complement receptor 1 (CR1) and membrane cofactor protein (MCP) (also known as 

CD46) (Harris et al., 1999; Wiesmann et al., 2006; Zipfel and Skerka, 2009). More 

recently, complement receptor of the immunoglobulin superfamily (CRig) has been 

shown to inhibit alternative pathway activation in a mouse model of intestinal 

ischemia/reperfusion induced injury (Chen et al., 2009). The complement regulators 

each act at specific points of the cascade. Thus, whilst CD55 is involved at the early 

stages of complement activation where it accelerates the decay of both C3 and C5 

convertases (Fujita et al., 1987; Nicholson-Weller et al., 1982), CD59 acts on the 

terminal portion of the complement cascade where it binds to the forming MAC, 

blocking recruitment of multiple C9 molecules necessary for the formation of the MAC 

pore (Meri et al., 1990).

2.7 Complement receptors

Most of the potent biological effects of complement activation products require 

receptors; these include CR1, CR2, CR3 and CR4, through which C3 fragments induce
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and modulate inflammation, control inflammatory and cellular responses and induce 

effector functions, such as tagging of cell surfaces and activation of phagocytosis 

(Zipfel and Skerka, 2009). Numerous receptors exist to elicit the responses of effectors 

such as C3a and C5a, C3b opsonised surfaces and tagged microorganisms. The intrinsic 

actions of anaphylatoxins C3a and C5a are mediated by receptors belonging to the 

seven transmembrane domain receptor family, C3aR, C5aR and the recently described 

C5a-receptor like 2 (C5L2) (Klos et al., 2009). The precise role of the latter remains to 

be determined, however it is thought to be a receptor for C5a, C5adesArg (Monk et al.,

2007) and C3adesArg (Kalant et al., 2003). Currently the latter is a controversial topic.

2.8 Pathological role

Despite tight regulation of the complement system it can still cause self-harm and has 

been implicated in the pathogenesis of several inflammatory and immunological 

diseases, including RA (Linton and Morgan, 1999), multiple sclerosis (Morgan et al., 

1984; Storch et al., 1998), glomerulonephritis (Welch, 2002) and atherosclerosis 

(Seifert and Kazatchkine, 1988). Although it may not be the initiating factor in these 

conditions, it is thought to promote and perpetuate inflammation resulting in 

acceleration of disease pathology. In such pathological conditions, whilst cell death is 

common, lysis may not be the dominant feature of complement activation in vivo. 

Instead complement activation may trigger cellular signalling events that contribute to 

worsening disease pathology.
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Complement regulators Complement mediated function Reference

L /i
VO

Soluble regulators

C 1NH Binds and inactivates C 1 r and C 1 s and MASP2

C4BP Accelerates the decay of the classical pathway C3 convertase and is a cofactor for factor I

Factor H Accelerates the decay of the alternative pathway C3 convertase and is a cofactor for factor 1

FHL1 Accelerates the decay of the alternative pathway C3 convertase and is a cofactor for factor I

Properdin Stabilises the alternative pathway C3 convertases

Factor I Cleaves and inactivates C3b and C4b in the presence of cofactor

Clusterin Inhibits MAC assembly

Vitronectin Inhibits MAC assembly

Membrane-bound regulator

MCP Cofactor for factor I

CD55 Decays the acceleration of C3 convertase

CD59 Inhibits MAC assembly

CR1 Decays the acceleration of the alternative and classical pathway C3 and C5 and is a

cofactor for factor I

(Davis et al., 2008)

(Blom et al., 2004)

(Jozsi and Zipfel, 2008)

(Zipfel and Skerka, 1999) 

(Hourcade, 2006)

(Seya et al., 1995)

(Tschopp and French, 1994) 

(Milis et al., 1993)

(Seifert and Hansson, 1989a)

(Davitz, 1987; Kim and Song, 2006) 

(Kim and Song, 2006; Meri et al., 199( 

(Saito et al., 1992)

Table 1.1 Complement regulatory proteins and their function



3. The role of Complement in atherosclerosis

3.1 Initiation of complement activation during atherosclerosis

Normal arterial intima lacks complement activation products, however, several 

activators of the complement system are known to reside within the vessel wall during 

the progression of atherosclerosis. These include enzymatically modified LDL (E- 

LDL), immune complexes containing IgG or IgM, apoptotic cells and pentraxins 

(including CRP). In addition, other complement activators found within atherosclerotic 

lesions include bacterial pathogens Chlamydia pneumoniae (Campbell and Kuo, 2003; 

Megran et al., 1985), cholesterol crystals (Seifert and Kazatchkine, 1987) and cell 

debris (Pinckard et al., 1975).

Immune complexes are the most well defined activators of the classical pathway of 

complement but also they have been found to accelerate activation of the alternative 

pathway by stabilising the alternative pathway C3 convertase (Ji et al., 2002). Since 

there are antigens present within the atherosclerotic wall, against which a humoral 

response is generated, it is then reasonable to presume that immune complexes also 

reside within the lesion. In fact, both IgG and IgM have been detected in human 

atherosclerotic lesions (Hollander et al., 1979; Vlaicu et al., 1985b). In addition, 

autoimmune complexes against oxidised LDL are present within the atherosclerotic 

lesion and are able to activate the classical pathway of the complement cascade (Freire 

de Carvalho et al., 2007; Saad et al., 2006).

During the progression of atherosclerosis, lipoproteins that become trapped within the 

subendothelial space undergo modifications and trigger local complement activation.
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Within human atherosclerotic plaques modified lipoproteins have been shown to 

activate complement via the alternative pathway and these lipids extracted from 

atherosclerotic lesions were bound to MAC (Seifert et al., 1990). In addition, LDL 

treatment with enzymes such as trypsin, cholesterol esterase, and neuraminidase 

transforms LDL to particles with properties akin to those of lipid extracted from 

atherosclerotic lesions (E-LDL), able to activate the alternative pathway of complement 

through to activation of the terminal pathway resulting in MAC formation (Bhakdi et 

al., 1995). Co-localisation of MAC with E-LDL has been found even at early stages of 

the disease (Torzewski et al., 1998b).

Another activator of the complement system, CRP, has also been shown to be present 

in human atherosclerotic lesions (Reynolds and Vance, 1987). CRP can bind to 

phosphocholine expressed on the surface of dead or dying cells in order to activate the 

classical complement activation pathway, via C lq  (Gershov et al., 2000; Thompson 

et al., 1999). In early atherosclerotic lesions, re-modelling of LDL exposes 

phosphocholine head groups for CRP binding, which in turn activates the classical 

pathway (Bhakdi et al., 1999). In both instances, the effect of CRP mediated classical 

activation in the plaque results in the clearance and the removal of target structures by 

phagocytosis.

More recently the monomeric form of CRP (mCRP) has been implicated in 

modulating complement activation during atherosclerosis. mCRP is formed from 

native, pentameric CRP in certain conditions such as low pH, which may be found at 

sites of inflammation (Diehl et al., 2000). Activation of the classical pathway occurs 

by immobilisation of mCRP to modified lipoproteins, in contrast, fluid phase mCRP
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prevents activation of the terminal pathway by binding to C lq  and thus inhibiting its 

binding to other complement activators (Ji et al., 2006).

3.2 Effects of activation pathways of complement during atherosclerosis

All three activation pathways of the complement system have now been implicated in 

the pathogenesis of atherosclerosis (Niculescu and Rus, 2004). Evidence of 

complement proteins, regulators and receptors deposited in human atherosclerotic 

lesions is abundant. C3 was the first complement component to be detected in human 

atherosclerosis (Hollander et al., 1979). Since then, studies have shown deposition of 

numerous classical and alternative components and effector molecules within the upper 

intimal layer. These include C3a, C5a (Oksjoki et al., 2007c), C lq , C4 and C3c (Vlaicu 

et al., 1985b). Whilst the regulators of the classical and alternative pathways, C4b- 

binding protein (C4bBP) and fH respectively, are only present in the upper intimal 

layer, alternative pathway modulators including properdin have also been found in the 

deeper intimal layer (Torzewski et al., 1998b). Whilst CRP and immunoglobulins are 

thought to initiate the classical pathway at the upper intimal layer, E-LDL has been 

suggested to activate the alternative pathway at deeper sites within the lesion (Szeplaki 

et al., 2009).

Anaphylatoxins C3a and C5a, key products of the activation pathways, have been 

shown to have important roles within the progressing atherosclerotic plaque. Both 

cause downstream signalling events by binding to their respective receptors, C3aR and 

C5aR. These receptors are expressed on many of the cellular lineages found within the 

plaque including macrophages, T cells, mast cells, endothelium and SMCs (Oksjoki et 

al., 2007c). Both C5a and C3a have potent chemotactic properties where they are
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known to attract immune cells including monocytes, mast cells and T cells to the site of 

injury (Guo and Ward, 2005; Zwirner et al., 1998a; Zwimer et al., 1998b).

Other roles have been suggested for C5a and C3a during atherosclerosis apart from 

chemotaxis. These include the role of C5a in plaque stabilisation by up-regulating 

plasminogen activator inhibitor-1 (PAI-1) expression in human macrophages (Kastl et 

al., 2006). In vitro studies have also demonstrated a role for C3a in plaque growth, 

where C3a was shown to induce cellular proliferation in both macrophages and 

vascular SMCs (Verdeguer et al., 2007). However, in contrast to these results animal 

studies on C3 deficiency in an atherosclerotic prone mouse model showed a protective 

role for C3 in atherosclerosis (Buono et al., 2002; Persson et al., 2004).

Opsonins are products of the activation pathways of the complement system involved 

in facilitating the clearance of foreign particles and pathogens by phagocytic cells. This 

mechanism, also used to help maintain healthy tissues by clearing unwanted matter 

such as cell debris, involves coating the target surface with opsonins (breakdown 

products of both C4 and C3 such as C4b, C3b and iC3b) and subsequent binding and 

activation of complement receptors present on phagocytes, triggering phagocytosis (see 

table 3.1 for a list of complement receptors and ligands). In the context of 

atherosclerosis, CR1, CR3 and CRig are all expressed on macrophages (Saito et al., 

1992; Seifert and Hansson, 1989a; Zipfel and Skerka, 2009). CRig has recently been 

implicated in causing plaque inflammation during atherosclerosis by stimulating MMP- 

9 and IL-8 secretion from macrophages through the binding of C3b (Lee et al., 2006).
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3.3 Role of the terminal pathway

3.3.1 Localisation o f MAC in the atherosclerotic plaque

In atherosclerosis, MAC deposition has been shown to correlate with disease severity 

(Niculescu et al., 1987a) and has been detected in atherosclerotic lesions of all stages of 

the disease (Oksjoki et al., 2007a; Torzewski et al., 1997; Vlaicu et al., 1985c). Similar 

to the early activation products of complement, MAC is absent from normal arterial 

wall. However, as first shown in hypercholesterolemic rabbits, MAC deposition within 

the intima is an early event during atherosclerosis, since in the subendothelium MAC 

deposition occurs temporally with cholesterol accumulation and this occurs before 

monocyte infiltration and foam cell formation (Seifert et al., 1989).

In the upper intima layer, several components of the early activation pathways but not 

the terminal pathway have been shown to localise. The absence of the terminal pathway 

at this locality is thought to be due to the presence of regulators of the activation 

pathways (Oksjoki et al., 2003; Oksjoki et al., 2007b; Szeplaki et al., 2009), acting at 

the C3 stage, consequently preventing activation proceeding to the terminal pathway. 

Instead, complement activation is thought to only proceed to the terminal stage at 

deeper sites within the mucoelastic layer of the intima, (Torzewski et al., 1998b) where 

MAC was found to co-localise with the positive regulator of the alternative pathway 

properdin (Oksjoki et al., 2007a). A strong correlation was found between localisation 

of properdin and MAC deposition. In contrast, only weak staining for IgM or C4 was 

seen in areas that showed MAC deposition, suggesting that the terminal pathway is 

activated through the alternative pathway. Within the deep area of the intima, MAC has 

also been found to co-localise with SMCs (Torzewski et al., 1997), CRP (Torzewski et 

al., 1998a), apoptotic cells (Niculescu et al., 2004) and modified lipoproteins
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(Torzewski et al., 1998b). SMCs may be the first target of MAC attack, since these 

cells are suggested to lack the MAC inhibitor, CD59 (Seifert et al., 1992); however, 

CRP, apoptotic cells and modified lipoproteins are all potential complement activators 

within the plaque (discussed in section 3.1 “Initiation of complement activation during 

atherosclerosis”).

Lysis of nucleated cells by MAC is a rare event in vivo since several protective 

mechanisms exist including the widespread expression of the MAC inhibitor CD59 

(Meri et al., 1990) and exo- and endo-cytosis of the MAC complex (Morgan et al., 

1987). However, most frequent, is the effect of non-lytic deposition of MAC, which 

may trigger several signalling cascades (Cole and Morgan, 2003; Fosbrink et al., 2006). 

In the context of atherosclerosis, cell signalling studies on the effects of sub-lytic MAC 

deposition have implied several roles for the terminal pathway in atherosclerotic plaque 

formation (see figure 1.6).

3.3.2 MAC and endothelial cells 

Studies have demonstrated that sublytic amounts of MAC on endothelial cells induce 

the expression of the P- and E-selectins, intracellular adhesion molecules (such as 

ICAM-1 and VCAM-1), together with MCP-1 secretion, all of which are involved in 

recruitment of monocytes to the atherosclerotic vessel wall (Kilgore et al., 1997;

Kilgore et al., 1995; Tedesco et al., 1997; Tran et al., 2002). The cytokines IL-lp and 

IL-8 are also up-regulated in response to MAC on endothelial cells, contributing further 

to the inflammatory process (Kilgore et al., 1997; Saadi et al., 2000).
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MAC is also thought to play a role in plaque neovascularisation, where a study using 

cultured aortic endothelial cells showed that pre-incubation with sublytic doses of MAC 

caused cell proliferation and migration (Fosbrink et al., 2006). Furthermore, with the 

use of specific inhibitors, they showed that this effect occurred through activation of the 

Akt pathway, and was dependent on the inactivation of the transcription factor forkhead 

box (subclass o l) (Fosbrink et al., 2006). Further evidence of the involvement of MAC 

in endothelial proliferation was suggested by studies which showed that the MAC 

caused the release of basic fibroblast growth factor and platelet derived growth factor 

(Benzaquen et al., 1994).

In addition, in vitro studies have shown that sublytic amounts of MAC on cultured 

human endothelial cells induce the release of both von Willebrand factor (vWF)

(Hattori et al., 1989) and tissue factor (Tedesco et al., 1997), implicating a role for 

MAC in promoting platelet aggregation and thrombosis.

3.3.3 MAC and SMCs

The assembly of the MAC on vascular SMCs causes the release of MCP-1 (Torzewski 

et al., 1996) and IL-6 (Viedt et al., 2000). MAC was also found to promote SMC 

proliferation via Phosphoinositide 3-kinase (PI3K)/Akt pathway (Niculescu et al.,

1999), and inhibit apoptosis of vascular SMC secreting insulin like growth factor 1 

(Zwaka et al., 2003). In contrast, at high concentrations, MAC is capable of stimulating 

caspase activation and apoptosis (Nauta et al., 2002a), in addition, MAC co-localises 

with apoptotic cells in atherosclerotic lesions (Niculescu et al., 2004), thus implying 

that MAC may be involved in apoptosis of vascular cells.
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3.3.4 MAC and macrophages

Macrophages, the ubiquitous cell type within a lesion, have also been found to co- 

localise with MAC within the plaque (Rus et al., 1988). Studies on the effect of MAC 

on phagocytes, such as macrophages, have shown that sublytic doses of MAC can 

cause profound activation, with the production and secretion of inflammatory mediators 

including, prostaglandins, leukotrines and ROS (Hansch et al., 1984), all of which are 

known to be involved in atherosclerosis (Cipollone, 2005; Jala and Haribabu, 2004; 

Kaneto et al., 2010).

3.4 Complement regulation and atherosclerosis

Both soluble and membrane bound regulators exist within atherosclerotic plaques 

(Niculescu et al., 1990; Seifert and Hansson, 1989a; Seifert et al., 1992; Yasojima et al., 

2001). These regulators are critical to prevent complement from attacking host cells and 

protect host tissue from damage caused by uncontrolled complement activation. 

Regulators of the complement system that are involved in atherosclerosis are listed in 

table 1.2.

3.4.1 Fluid phase regulators

Fluid phase inhibitors of both the activation and terminal stages of the complement 

system have been detected within atherosclerotic lesions. The fluid phase inhibitor of 

the classical pathway C4bBP is found in the upper intimal layer (Oksjoki et al., 2007b), 

while, deeper within the intimal layers, regulators of the alternative and terminal 

pathway can be found, including properdin, clusterin and S-protein (Mackness et al., 

1997; Niculescu et al., 1987b; Oksjoki et al., 2007b).
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Figure 1.6 Summary of the diverse roles of MAC during the progression of 

atherosclerosis. A diagram illustrating the range of cellular effects of MAC during the 

progression of atherosclerosis.
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3.4.2 Membrane bound regulators

Immunohistochemical studies showed the presence of membrane regulators of the 

complement system such as CD59, CD55 and MCP, in almost all cell types within the 

atherosclerotic lesion (Seifert et al., 1992; Yasojima et al., 2001). In particular, the 

vascular endothelium is a site where up-regulation of complement regulators offers 

protection from anaphylatoxin-mediated inflammatory injury and/or MAC attack. In 

vitro studies on cultured endothelial cells have shown increased expression of CD55 by 

cytokines, the MAC and growth factors such as basic fibroblast growth factor and 

vascular endothelial growth factor (Mason et al., 2001; Mason et al., 1999). 

Interestingly, statins have been shown to increase the expression of CD55 and CD59 on 

the vascular endothelium (Kinderlerer et al., 2006; Mason et al., 2002). Furthermore, 

CRP can induce over-expression of CD55, CD59 and MCP in cultured endothelial cells 

(Li et al., 2004). In addition, vascular SMCs express membrane regulators of the 

complement system (Seifert and Hansson, 1989a; Seifert and Hansson, 1989b). While 

early regulators of the complement system, such as CD55 and MCP are constitutively 

expressed on vascular SMCs, regulator of the terminal MAC, CD59 was not found on 

all Vascular SMCs within the atherosclerotic plaque (Seifert et al., 1992), thus implying 

that Vascular SMCs are more prone to MAC mediated effects (see section 3.3.3).
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Complement regulators Atherosclerotic cell type Reference

CD55

Endothelial cells 

Macrophages 

Vascular SMCs

(Seifert and Hansson, 1989a) 

(Oksjoki et al., 2007a) 

(Seifert and Hansson, 1989b)

CD59

Endothelial cells 

Macrophages 

Vascular SMCs 

T cells

(Meri et al., 1991; Seifert et al., 199  ̂

(Ross, 1999; Seifert et al., 1992) 

(Oksjoki et al., 2007a)

(Seifert et al., 1992)

CR1

Macrophages (Saitoetal., 1992)

CRig

Macrophages (Lee et al., 2006)

MCP

All nucleated cells (Liszewski et al., 1991)

Table 1.2 Membrane bound complement regulators are present within cells that 

are involved in atherosclerosis.
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3.5 Complement in animal models of atherosclerosis

Human studies have provided strong evidence of the involvement of complement 

during the progression of atherosclerosis; however, data from animal studies contradict 

one another (Bhatia et al., 2007; Buono et al., 2002; Geertinger and Soerensen, 1977; 

Lewis et al., 2010; Matthijsen et al., 2009; Pang et al., 1979; Patel et al., 2001; Persson 

et al., 2005; Persson et al., 2004; Schepers et al., 2006; Schmiedt et al., 1998; Seifert et 

al., 1989; Tanhehco et al., 2000; Thorbjornsdottir et al., 2005; Verdeguer et al., 2007). 

From early studies in hypercholesterolemic rabbits to the more recent apoE A and ldlr7 

mouse models of atherosclerosis, scientists fail to agree on whether complement overall 

plays an anti-atherogenic role, a pro-atherogenic role, or indeed if it plays any role at all 

in atherosclerosis.

In 1977, Geertinger and Sorensen were the first to demonstrate a pro-atherosclerotic 

role for complement, when they found that hypercholesterolemic rabbits on a C6 

deficient background displayed reduced atherosclerosis compared to C6 sufficient 

animals (Geertinger and Soerensen, 1977). This was confirmed much later with data 

from another study using C6 deficient rabbits and with better controlled conditions 

(Schmiedt et al., 1998).

C5 deficiency had no effect on atherosclerosis in the aortic root of apoE'A mice after 18 

weeks on a high fat diet in comparison to the control group. Lipoprotein profiles also 

remained the same between the two groups (Patel et al., 2001). In contrast, New 

Zealand white rabbits in an ex vivo model of ischemia and reperfusion showed a 

cardioprotective effect of C5a. In this study isolated hearts, mounted on a Langendorff 

apparatus, were subjected to 30 minutes of ischemia and one hour reperfusion prior to
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20 minutes of treatment with either normal human plasma alone or in addition to anti- 

C5a monoclonal antibody (mAb), or recombinant C5a. They showed that sub-lytic 

doses of complement in human plasma increased protection against infarcts, which was 

abolished with anti-C5a antibody (Tanhehco et al., 2000).

C3 deposition was found in atherosclerotic lesions of hypercholesterolemic rabbits as 

early as 1979 (Pang et al., 1979). More recently however, deletion of C3 in both apoE'7 

/ l d l r a n d  in ld lr7' mice was shown to cause a worsening of the disease, implying that 

C3, the central orchestrator of all complement activation pathways, has an anti

atherogenic role (Buono et al., 2002; Persson et al., 2004). In addition, C3 deficiency 

caused altered lipoprotein profiles in the apoE 7'/ld lr7 deficient mouse model. To 

delineate which activation pathway of the complement system was involved, the effect 

of fB deficiency in apoE7 /ldlr'7' mice was examined (Persson et al., 2004). Whether at 

the aortic root or in en face  preparations of the aorta, the extent of atherosclerosis was 

similar between test and control, and there was no difference in lipoprotein profiles. 

Taken together these data suggest that the atheroprotective C3 is either independent of 

complement or produced via the classical or MBL pathways, and causes alterations in 

lipid metabolism resulting in a reduction in plasma lipid levels, consequently reducing 

the amount of lipid build up within the vascular wall. In contrast, another group 

demonstrated a pro-atherosclerotic role for C3 during vein graft thickening in 

hypercholesterolemic apolipoprotein E3-leiden transgenic mice (Schepers et al., 2006).

The first component of the classical pathway, Clq,  has also been shown to have a 

protective role in atherosclerosis in the aortic root of ld lr7 mice (Bhatia et al., 2007).

In this study there was no significant difference in lipoprotein profiles between C l q a 7
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/ldlr 7" and the ldlr"7' controls. The authors concluded that the protective effect of C lq  

during atherosclerosis might be through accelerating the clearance of apoptotic cells.

3.6 Autoimmune disease and atherosclerosis

Atherosclerosis is now acknowledged as a common cause of mortality in patients 

suffering from autoimmune diseases such as systemic lupus erythematosus (SLE) and 

RA (Abou-Raya and Abou-Raya, 2006). In both SLE and RA, the classical risk factors 

of atherosclerosis such as smoking and hypertension, have been found to further 

increase the incidence of atherosclerosis (Dessein et al., 2007; Urowitz et al., 2007). In 

both SLE and RA patients increased systemic inflammatory modulators are present and 

are thought to be the mechanism linking these diseases to atherosclerosis (Abou-Raya 

and Abou-Raya, 2006).

3.6.1 SLE and atherosclerosis

SLE is an autoimmune rheumatic disease that has a late mortality phase owing mainly 

to accelerated atherosclerosis. Patients with deficiencies of components of the classical 

pathway of complement, such as C l, C2 and C4 develop an SLE-like illness 

(Manderson et al., 2004). This has been suggested to result, at least partly, from failure 

of complement dependent B-cell tolerance, and ineffective clearance of apoptotic cells 

and immune complexes (Carroll, 2004; Pickering et al., 2000). A study on the effect of 

C2 deficiency in the Swedish population found a significant increase in atherosclerosis; 

indeed, the correlation between atherosclerosis and C2 deficiency was greater than 

between atherosclerosis and the presence of SLE in the patients (Jonsson et al., 2005).
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Of other complement deficiencies, genetic defects of MBL have also been associated 

with arterial events in SLE (Rugonfalvi-Kiss et al., 2002; 0hlenschlaeger et al., 2004).

3.6.2 RA and atherosclerosis

RA is another example of an autoimmune disease which is associated with higher risk 

of cardiovascular complications, including atherosclerosis, resulting in early mortality 

and excess morbidity (Tanasescu et al., 2009). In 1989, researchers looking into the role 

of complement in RA and its association with vascular complications found that RA 

patients with vasculitis, also called malignant RA, have increased consumption of 

complement compared to RA patients without vascular complications. In this study, 

malignant RA patients had decreased levels of complement components C3 and C4 in 

their serum, and an increase in the activation product of C3, C3d, compared to RA 

patients (Tomooka, 1989). Another study analysed the rate of increase of carotid 

intima medial thickness in patients with RA according to disease duration, showing a 

higher rate in more prolonged disease (Del Rincon et al., 2007).
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4. Lipid Metabolism

4.1 Introduction

To fully understand and appreciate the role of complement during the pathogenesis of 

atherosclerosis, we must also look at its role in lipid metabolism since a defect in lipid 

metabolism is the most significant risk factor for coronary artery disease and stroke 

(Lusis et al., 2004b).

4.2 Lipoprotein structure and function

4.2.1 Lipoprotein structure

Lipoproteins are globular complexes and vary in size, density, lipid composition and 

apolipoprotein composition (Feher and Richmond, 2001) (see figure 1.7). The outer 

membrane is made of polar lipids such as phospholipids and unesterified (free) 

cholesterol and the inner core contain hydrophobic lipids (such as triglycerides and 

esterified cholesterol). They also contain apolipoproteins, which span from the inner 

core to the outer membrane, and a variety of enzymes, such as PLA2 and cholesterol 

acyltransferase.

4.2.2 Function o f lipids and lipoproteins

The main function of lipoproteins is to transport lipids such as cholesterol and 

triglycerides around the body. Both of these lipids have a variety of important roles in 

biological functions. Cholesterol is an integral component of cell membranes and a 

precursor for many biologically active molecules such as vitamin D, steroid hormones
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and bile acid (Hegele, 2009). It has also been implicated in activating neurological 

signalling cascades involved in memory and learning (Kotti et al., 2006). Triglycerides 

provide a source of energy for the body (Hegele, 2009). Thus, due to the critical 

functions of these lipids, an efficient transport system within the body is crucial to 

maintain a balanced and well regulated system (Feher and Richmond, 2001).

The lipid transport system is thus made of several different lipoproteins, namely, 

chylomicrons, VLDL, intermediate low density lipoprotein (IDL), LDL and HDL, all of 

which have specific functions to carry out during lipid metabolism.

4.3 Lipid metabolism: an overview

4.3.1 Exogenous pathway

Lipid metabolism consists of two major pathways; exogenous and endogenous (see 

figure 1.8). Both are equally important but very different in their function.

Exogenous transport begins at the epithelial lining of the small intestine where lipids 

are absorbed from the diet. Eventually entering enterocytes, reconstituted triglycerides 

are packaged with cholesterol esters and apoB48 into chylomicrons. These 

chylomicrons are then secreted from the intestinal epithelial cells and enter the 

circulation. Subsequently, HDL particles present in the blood transfer apoC and apoE to 

the chylomicrons rendering the chylomicrons mature.
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Figure 1.7 Lipoprotein composition. The approxim ate percentage composition o f cholesterol, 

triglyceride, phospholipid and protein in chylomicrons, VLDL, IDL, LDL and HDL are shown. 

Adapted from (Feher and Richmond, 2001).
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Lipoprotein lipase (LPL) present on endothelial cells of the blood vessel wall is 

activated by mature chylomicrons. Upon activation, LPL causes the hydrolysis of 

triacylglycerol, releasing glycerol and non esterified fatty acids (NEFA) from the 

chylomicrons. These are then taken up into the peripheral tissues, such as adipose and 

muscle, where they can either be stored or used for energy (Hegele, 2009).

At this point, hydrolysed chylomicrons become chylomicron remnants and continue to 

circulate around the body. Circulating chylomicron remnants may bind via apoE with 

chylomicron remnant receptors which are found mostly in the liver. After binding to 

their receptors, chylomicron remnants are internalised and subsequently undergo 

lysosomal degradation, resulting in the release of glycerol and fatty acids into the cell 

(Hegele, 2009).

4.3.2 Endogenous pathway 

In the liver, cholesterol and triacylglycerol together with apoB-100 are assembled to 

form VLDL particles, which are then released into the blood stream in an apoB-100 

dependent manner. Once in the circulation, VLDL absorbs apoE and apoC from HDL 

and VLDL is then rendered “mature” (Havel et al., 1973). Mature VLDL particles in 

the circulation engage with LPL expressed on endothelial cells. ApoC present on the 

surface of VLDL (and chylomicrons) is responsible for the activation and regulation of 

LPL, causing hydrolysis of the VLDL particle and the release of glycerol and NEFA 

(Alipour et al., 2008). As mentioned above, these products can be absorbed for tissue 

utilization or storage and the hydrolysed VLDL particles become IDLs (or VLDL 

remnants). Circulating IDLs are absorbed by the liver via an interaction between apoE 

and the remnant receptor ldlr, or they can be further hydrolysed by hepatic lipase. In
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this latter case, glycerol and fatty acids are released, leaving behind IDL remnants, or 

LDL particles, containing high amounts of cholesterol. Circulating LDL can be 

absorbed by the liver and peripheral cells by binding ldlr. Once within the cell LDL 

undergoes lysosomal degradation; the apoB of the complex is hydrolysed to its 

constituent amino acids and the cholesteryl esters are hydrolysed to free cholesterol.

Exogenous
Dietary fat

Endogenous
LDL

Bile acids and
LDLR

Endogenous
Cholesterol

Extrahepatic tissueLDLR
Liver

Dietary cholesterol

Chylomicrons Rem
recept

VLDL
Remnants

C a p i l la r ie s

Free fatty acids

A d ip o s e  t i s s u e  /  m u s c l e

ree fatty acids

A d ip o s e  t i s s u e  / m u s c l e

Figure 1.8 Overview of lipoprotein metabolism. A schematic diagram of the 

exogenous and endogenous lipoprotein transport system. Adapted from (Feher and 

Richmond, 2001).
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4.4 The role of C3adesArg in lipid metabolism

Adipose tissue is the main site of the body for storing energy in the form of triglyceride 

(Lafontan, 2008). It also serves as an endocrine organ by producing hormones such as 

leptin, resistin and adiponectin (Hamdy, 2005). Until recently, the hormone insulin was 

believed to be the sole regulator of triglyceride synthesis in adipocytes. The action of 

insulin via the insulin receptor causes increased LPL activity (Sadur and Eckel, 1982), 

glucose transport and inhibition of lipolysis (Stralfors and Honnor, 1989). However, in 

1989, a 76 amino acid peptide named acylation stimulating protein (ASP), was purified 

from human serum and shown to play an important role in triglyceride synthesis 

(Cianflone et al., 1999; Cianflone et al., 1989a). Studies from Cianflone’s laboratory 

showed that ASP increased the rate of triglyceride synthesis by increasing net fatty acid 

uptake, accelerating the rate of glucose uptake, and inhibiting triglyceride lipolysis 

(Cianflone et al., 2003; Van Harmelen et al., 1999). A few years later, studies from the 

same laboratory showed that ASP was identical to the complement component 

C3adesArg, which is the inactive (non-inflammatory) form of C3a (see section 2.2.2) 

(Baldo et al., 1993).

C3 is expressed in adipose tissue along with other components of the complement 

system, including fB and fD, the latter is also termed adipsin in the context of lipid 

metabolism (Choy et al., 1992). Whilst, C3adesArg has lost the anaphylatoxic and 

chemotactic activities of its precursor C3a, it has gained new roles in triglyceride 

synthesis. Firstly, C3adesArg is responsible for stimulating triglyceride synthesis by 

activating the enzyme involved in the final step of triglyceride synthesis, diacylglycerol 

acyl transferase (DGAT) (Yasruel et al., 1991). Secondly, it increases glucose uptake 

into the cell (Germinario et al., 1993; Maslowska et al., 1997b) by causing translocation
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of the glucose transporters (GLUT) 1, GLUT 3 and GLUT 4 from the cytoplasm to the 

plasma membrane (Germinario et al., 1993). Glucose is essential for triglyceride 

synthesis, since it is required for the production of glycerol-3-phosphate to which the 

free fatty acid is linked. Moreover, a series of in vitro experiments showed that 

exposure of cultured human skin fibroblasts, rat L6 muscle cell line and cultured human 

adipocytes to C3adesArg caused an increase in glucose uptake in an insulin 

independent manner (Germinario et al., 1993; Maslowska et al., 1997b; Tao et al.,

1997). This research also provides evidence that the effect of C3adesArg on triglyceride 

synthesis occurs in both adipose tissue and muscle (Tao et al., 1997).

However, the exact mechanism by which C3adesArg stimulates its activities during 

triglyceride synthesis is unclear. Whilst some research groups are of the opinion that 

C3adesArg mediates its effects by binding to C5L2 receptor (Kalant et al., 2003); 

others suggest that C5L2 is merely a decoy receptor (Johswich et al., 2006).

However, signalling studies on the interactions between C3adesArg and C5L2 have 

shown that C3adesArg increased triglyceride synthesis by activating PI3K and 

phospholipase C, with downstream activation of PKC, Akt, MAPK/ERK(l/2), and 

PLA2 (Maslowska et al., 2006). Using cultured human adipocytes, the same group have 

also shown that whilst insulin is able to stimulate the production of C3 and C3adesArg 

in the medium up to two fold, chylomicrons are able to increase their production by 

more than 100 fold (Maslowska et al., 1997a).

In humans, an increase in plasma C3adesArg is detected in several conditions such as 

obesity, insulin resistance, cardiovascular disease and dyslipidaemia (Cianflone et al.,
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2008). In contrast, weight loss, increased exercise and hypothyroidism are all 

associated with decreased levels of plasma C3adesArg (Cianflone et al., 2008). Human 

studies have also demonstrated a direct correlation between fasting plasma C3adesArg 

levels and postprandial triglyceride and NEFA clearance (Cianflone et al., 2004).

In vivo, the effects of C3adesArg on lipid metabolism have also been highlighted in 

animal models of obesity. C3adesArg levels were increased in the obese rat model 

when compared with its lean control, suggesting that adipose tissue served as a 

generator from which increased amounts of C3adesArg could be produced (Boggs et 

al., 1998). In accordance with this, plasma C3adesArg levels were also significantly 

increased in the obese leptin deficient mouse model, when compared to C57BL/6 

controls (Paglialunga et al., 2008).

Mouse models of obesity, including ob/ob mice and db/db mice (obese diabetic) have 

changes in their plasma lipid profiles (Nishina et al., 1994a; Saleh et al., 2001). Db/db 

mice have increased baseline levels of both triglyceride and glucose while total 

cholesterol and insulin levels are similar to their C57BL/6 controls, whilst ob/ob mice 

have increased baseline levels of total cholesterol, glucose and insulin levels compared 

to their C57BL/6 controls. To explore the cause of the altered plasma lipid profiles in 

these mice, the effects of C3adesArg on postprandial lipid levels were measured and 

compared to their C57BL/6 controls (Saleh et al., 2001). Both models of obese mice 

had delayed postprandial triglyceride and NEFA clearance after an oral fat feed. 

However, both postprandial plasma triglyceride and NEFA clearance were increased 

following an intraperitoneal injection (i.p) with C3adesArg (Saleh et al., 2001). In fact, 

the rate of clearance of both triglyceride and NEFA were comparable to the rate of
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clearance in the C57BL/6 controls. Of interest, both db/db and ob/ob mice have 

increased resistance to the development of atherosclerosis when fed a high fat diet 

compared to the C57BL/6 controls (Nishina et al., 1994b).

The importance of C3adesArg in lipid metabolism is further highlighted in C3 deficient 

mice. These mice, also deficient in C3adesArg, have delayed postprandial plasma 

triglyceride clearance and increased fasting triglyceride levels (Murray et al., 1999a; 

Paglialunga et al., 2008). The mice also have delayed NEFA clearance (Murray et al.,

1999a) and increased energy intake with modest changes in insulin/glucose 

metabolism, implying increased insulin sensitivity. The mice are lean and specific 

adipose tissue depots are reduced by up to 26% in comparison to control mice on both 

low and high fat diets (Murray et al., 1999b).

Animal studies from Cianflone’s research laboratory have shown further evidence 

implicating a role for C5L2 receptor in lipid metabolism (Paglialunga et al., 2007). 

They demonstrated that the C5L27" mice on a high fat diet had delayed postprandial 

triglyceride, insulin and leptin clearance, with increased fasting levels of triglyceride, 

insulin and leptin when compared with litter-matched controls. Of note, the same study 

also revealed that the C5L27 mice on a low fat diet displayed no difference in 

postprandial triglyceride clearance and fasting lipid levels when compared with litter- 

matched controls (Paglialunga et al., 2007).

As for the regulation of C3 and C3adesArg in adipose tissue, complement regulatory 

proteins such as Complement receptor 1 related protein (Crry) and fH are expressed in 

pre-adipocytes and were found to be down regulated post-adipocyte differentiation
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(Choy and Spiegelman, 1996). Thus the pathway of regulation of C3adesArg 

production during lipid metabolism is still unknown.

4.5 Lipid metabolism alteration in atherosclerosis

The major lipid alterations associated with the progression of atherosclerosis include 

increases in concentrations of total and LDL cholesterol, and serum triglycerides, and a 

decrease in HDL cholesterol (Austin et al., 1998; Feher, 2003). Raised triglyceride 

levels have pro-atherogenic effects, including increased postprandial lipaemia and a 

shift in lipoprotein size and density (Alipour et al., 2008). An alteration in the size of 

LDL particles, from large less dense (anti-atherogenic) to small, dense particles (pro- 

atherogenic), allows movement of lipoprotein particles through the endothelium and 

into the vessel wall (Karpe et al., 1994). Furthermore, LDL, IDL, and chylomicron 

remnants that have high triglyceride content can more readily undergo oxidative 

modification, thus increasing foam cell production within the artery wall. Finally, 

increased susceptibility to oxidative modification in small/dense LDL particles 

attenuates the rate of clearance by its receptor, ldlr, consequently allowing prolonged 

residence in the plasma and exposure to the artery wall.

4.6 Lipid metabolic disorders associated with the complement system

Complement is known to play a key role in initiation and maintenance of inflammation 

and there is an increasing body of evidence to suggest that activation can have a 

profound effect on lipid metabolism. Components of the classical and alternative 

pathway are expressed in adipose tissue (Choy et al., 1992; Zhang et al., 2007), and all
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three activation pathways of the complement system have been implicated in numerous 

disorders of lipid metabolism.

4.6.1 Obesity

Obesity, the most prevalent disease found in the western world, is closely associated 

with atherosclerosis. It is a chronic inflammatory disease that involves both innate and 

adaptive arms of the immune system (Rocha and Libby, 2009). Indeed, complement 

activation is thought to play a role, where activation of both the classical and alternative 

pathways has been implicated in the disease.

Whilst expression of the classical pathway C lq  was up-regulated in adipose tissue in 

animal models of obesity (Zhang et al., 2007), mRNA levels of fD, of the alternative 

pathway, was drastically reduced in mouse models of obesity including, ob/ob, db/db 

and monosodium glutamate injected mice (Flier et al., 1987; Rosen et al., 1989).

Human studies have found increased expression of C ls  and C lr  detected in the adipose 

tissue of insulin-resistant humans when compared to insulin-sensitive control group 

(Zhang et al., 2007). In addition, serum levels of C3, fB, factor I (fl), fH and alternative 

pathway haemolytic activity (AP50) were increased in obese patients when compared 

to normal body weight controls (Pomeroy et al., 1997). Another study looking at the 

effect of obesity in young children found a positive correlation between plasma levels 

of C3 and its breakdown product C3adesArg and obesity (Cianflone et al., 2005).
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4.6.2 Acquired partial lipodystrophy (PLD)

Another complement associated disease of lipid metabolism is PLD (also known as 

Barraquer-Simons syndrome). PLD is a rare form of lipodystrophy associated with fat 

loss around the face, upper trunk, and upper extremities. Simultaneously, fat 

hypertrophy occurs in the lower extremities. PLD is associated with activation of the 

alternative pathway and C3 deficiency (McLean and Hoefnagel, 1980), driven by an 

IgG autoantibody called C3 nephritic factor (C3Nef). C3Nef can bind and stabilise 

C3bBb, consequently accelerating both tickover and the alternative pathway 

amplification loop. In vitro studies showed that lysis of adipocytes can occur in the 

presence of both complement and C3Nef (Choy et al., 1992). Adipocytes synthesise 

C3, fB and fD allowing local production of the C3bBb without activating the lytic 

terminal pathway. However, C3NeF prevents the normally labile C3bBb from 

inactivation resulting in adipocyte lysis (Choy et al., 1992; Mathieson et al., 1993). The 

odd distribution pattern of fat loss is unexplained. However, fD, the limiting component 

of the alternative complement pathway (cleaves C3-bound fB to its active enzymatic 

form) (Choy et al., 1992), is expressed to a higher extent in adipose tissue in the upper 

half of the body than in the lower half. Regional differences in fD expression might 

thus explain why the pattern of fat loss is restricted to the upper half of the body 

(Mathieson and Peters, 1997). More recently, another form of PLD has been found 

with activation of the classical pathway and low levels of C4 (Savage et al., 2009).
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5. Summary and hypothesis

Atherosclerosis, the leading cause of death in the western world, is a disease driven by 

chronic inflammation within the artery wall. Both the innate and adaptive immune 

systems are involved throughout disease progression; from initial stages of the disease 

where fatty streaks are formed within the artery wall, to the advanced stages where 

increased inflammation along with a large necrotic core and a thin fibrous cap causes 

the plaque to become “vulnerable” consequently leading to plaque rupture, thrombosis 

and even death.

Research into the field has greatly been aided through the use of animal models of 

atherosclerosis. In particular the apoE and ldlr deficient mouse models which, when fed 

appropriate diets, develop lesions with many of the characteristics of human 

atherosclerotic plaques. There are differences between the two mouse models of 

atherosclerosis. In particular plasma lipoprotein levels differ between the two models. 

On a normal chow, apoE7 mice have hypercholesterolaemia (~600mg/dl) in 

comparison with a slight increase in cholesterol levels in the ldlr'7' mice (~250mg/dl). In 

addition, distribution of cholesterol differs between the two mouse models, with 

cholesterol accumulating in VLDL and IDL particles of apoE7 mice while in ldlr'7" 

mice cholesterol is elevated in LDL particles. Metabolic response to dietry cholesterol 

is also different between the two mouse models of atherosclerosis (Joven et al., 2007).

In addition to genetic backgrounds, differences in strain, site of lesion and diet can also 

influence disease outcome. For instance, BALB/c mice are more resistant to 

atherosclerosis than C57BL/6 mice (Paigen et al., 1985). In addition, cholesterol
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absorption can differ between various strains. For example, 129/Sv mice can more 

readily absorb cholesterol from their diet compared to C57/BL6 mice, thus resulting in 

hypercholesterolaemia which in turn influences the progression of atherosclerosis 

(Jolley et al., 1999). Differences in diet content can also influence progression of the 

disease. Joven et al. showed that changes in plasma cholesterol and triglyceride levels 

were dependent on the diet and strain (either apoE'7' or ldlr'7') used (Joven et al., 2007). 

In addition, site of analysis at which atherosclerotic lesions are studied will also have an 

impact on the data. Lesion progression at the aortic sinus is evident in young apoE '7 

mice, whilst at 8 to 9 months of age, disease progression is throughout the arterial tree 

(Reddick et al., 1994).

Initially, this study set out to determine the role of complement during plaque rupture. 

Thus, a mouse model of atherosclerotic plaque rupture was chosen. Dr. Christopher 

Jacskon’s laboratory at Bristol University has established this model using apoE '7 mice. 

They have shown that the brachiocephalic arteries of these mice, which are on a mixed 

background (71% C57BL/6 and 29% 129/Sv), develop plaque rupture after 8 weeks of 

fat feeding (Johnson and Jackson, 2001). Of note, since the completion of this study it 

has been published that apoE '7 mice on the C57BL/6 background can also be used as a 

model for plaque rupture (Reimers et al., 2011).

The involvement of complement in atherogenesis is evident from human studies that 

show deposition of complement proteins and activation products within the 

atherosclerotic plaque. However, data generated from animal studies have produced 

conflicting results. Whilst C3 deficient animals on an atherosclerotic prone background
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have accelerated atherosclerotic plaque formation compared to their litter-matched 

controls, C6 deficient rabbits are protected against the disease.

Atherosclerosis is highly associated with defects in lipid metabolism. Both 

environmental and genetic risk factors can cause lipid disorders including familial 

combined hyperlipidemia (FCHL), obesity and type II diabetes. Such disorders usually 

present with increased LDL-cholesterol and triglyceride levels and decreased HDL- 

cholesterol levels allowing LDL cholesterol to build up in the artery wall. Complement 

has been associated with lipid metabolism. In particular C3adesArg is a key adipokine, 

increased levels of which are associated with elevated fasting and postprandial plasma 

triglyceride levels along with lipid disorders including obesity.

Pharmacological agents available for the treatment and prevention of atherosclerosis, 

such as statins, have many side effects. Thus the demand for a better drug is critical 

particularly with an increase in morbidity caused by vascular complications of obesity 

in the Western world.

The hypothesis for this study therefore is:

Both early activation and terminal pathways of the Complement system 

contribute to disease pathology in atherosclerotic plaques of apoE'7' mice
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The specific aims are twofold:

Part 1 aims to investigate the role of the MAC and its regulation in the progression of 

atherosclerosis. Firstly, by looking at the effect of dysregulated MAC formation in 

atherosclerosis, by generating apoE^'/CDSQa7' mice and secondly, by studying the 

effect of suppression of MAC formation, by generating apoE'^/Cb'7' mice and by 

looking at the therapeutic effect of anti-C5 mAb.

Part 2 investigates the role of CD55 in regulating C3 activation in atherosclerosis and 

its involvement in lipid metabolism through the generation of apoE‘7/CD55 '7 mice.
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Chapter 2: Materials & Methods

1. Buffers and reagents
All standard laboratory chemicals were purchased from Sigma or Fisher Scientific.

2. Mice
Animals used for the thesis are listed below.

• B6 . (Cd59a_/_ ) mice were generated as previously described

(Holt et al., 2001) and back-crossed onto the C57BL/6 background for eight 

generations.

• C6 -deficient mice, originally identified as a natural mutation in a wild mouse 

strain and bred onto the C3H/He background were back-crossed five 

generations onto C57BL/6 (Morgan et al., 2006).

•  CD55 knockout (CD55-/_) mice, were provided by Prof. Wenchao Song 

(University of Philadelphia) and back-crossed onto C57BL/6 for nine 

generations (Sun et al., 1999).

• ApoE knockout mice (apoE 7) mice were originally generated by J. Breslow 

(The Rockefeller University, New York) (Plump et al., 1992). The strain 

background of the apoE 7 mice was 71% C57BL/6 and 29% 129/Sv.
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Buffer name Composition

PBS 8.2 mM Na2H P04,1.5mM KH2P 0 4,137mM NaCl, pH 7.4

Oil red 0  (stock solution) 0.5% oil red O/isopropanol

Haematoxylin 50g aluminium potassium alum, 5g haematoxylin, 0.4g sodium iodate, 20ml glacial acetic acid make up to 
lL dH 20

Anti-coagulant solution 0.5M Ethylene diamine tetra-acetic acid (EDTA) pH8

CFD (Oxoid) 2.8mM Barbituric acid, 145.5mM NaCl, 0.8mM MgCl2,CaCl2, 0.9mM Sodium Barbital, pH 7.2

Diaminobenzidine (DAB) To 5.0 ml of dH20 , add 2 drops of Buffer Stock Solution. Next add 4 drops of DAB Stock Solution.

(Vector laboratories) Finally, add 2 drops of the H20 2 Solution. Between each step vortex the solution.

ELISA coating buffer 0.2M Na2C 0 3, pH9.6

SDS stacking buffer 0.5M Tris, 0.4% (w/v) SDS, pH 6.8

SDS resolving gel buffer 1.5M Tris, 0.4% (w/v) SDS, pH8.8

Non-reduced loading buffer 0.1M Tris, 10% (v/v) glycerol, 2% (w/v) SDS, 0.01% (w/v) bromophenol blue, pH6.8

Reduced loading buffer 5% (v/v) p mercaptoethanol in non-reduced loading buffer

Coomassie staining 0.2% (w/v) Coomassie blue R250 in 40% (v/v) methanol, 10% (v/v) acetic acid in dH20

De-staining solution 20% (v/v) methanol, 8% (v/v) acetic acid in dH20

Gel drying buffer 4% (v/v) glycerol, 20% (v/v) methanol in dH20
Table 2.1 Composition of buffers and reagents



ApoE'7* mice were crossed with either CD 59a7, C6 7 or CD 557 mice to generate apoE'

7 /CD 59a7, apoE7/C6 7 or apoE 7/CD55 '7 double knockout mice (see chapter 3 for the 

generation of these double knockouts).

Animals were housed in a specific pathogen-free environment. All studies and 

protocols were approved by the institutional Ethics Review Committee and by the 

United Kingdom Home Office and conformed to the Guide for the Care and Use of 

Laboratory Animals published by the US National Institutes of Health (NIH Publication 

No. 85-23, revised 1996).

3. Induction of atherosclerosis

3.1 Experimental procedure

Male mice were fed a high-fat diet containing 21 % (wt/wt) pork lard and supplemented 

with 0.15% (wt/wt) cholesterol (Special Diet Services) for 8 or 12 weeks starting at 8 

weeks of age.

3.2 Termination procedure

Animals were anaesthetised by i.p injection of sodium pentobarbitone and weighed 

before exsanguination by cardiac puncture followed by arterial perfusion via the left 

cardiac ventricle with phosphate buffered saline (PBS) at a constant pressure of 100 

mmHg, with outflow through the incised jugular veins. Brachiocephalic arteries were 

removed with a piece of the aortic arch and the stump of the right subclavian artery still 

attached to aid orientation during histological processing. These were immediately
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embedded in OCT compound (Raymond A Lamb Limited, Eastbourne, UK) and snap- 

frozen in liquid nitrogen (figure 2.1). The heart, spleen, kidney, liver and tibia were 

removed from each animal. The weight of each organ was recorded and the length of 

the tibia measured. These were then used to determine organ hypertophy either by 

calculating organ: body weight or organ: tibia length ratio. In the initial experiments 

organ: body weight ratios were used to assess organ hypertrophy, however since body 

weight varied between animals, the more constant tibia length was used (Yin et al., 

1982).

Frozen
stand

Right carotid

Brachiocephalic
artery

Aortic arch

Figure 2.1 Photograph of a brachiocephalic artery isolated from the mouse 

and a schematic illustration of the mounting procedure. The freshly isolated 

brachiocephalic artery is rapidly mounted in OCT by suspending the artery over 

a frozen stand before carefully applying OCT.
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4. Assessm ent of atherosclerosis

OCT embedded brachiocephalic artery tissue was mounted on a cryostat set at -22°C 

with the aorta facing towards the cryostat cutting blade. Sections through the aorta 

were then cut (20pm thickness) until the proximal end of the brachiocephalic artery 

was reached. This was identified by visual closure of the brachiocephalic trunk, along 

with a cutting of the aorta as shown in figure 2 .2 .

Intact brchiocephalic artery (proximal end)

Aorta vessel wall

Figure 2.2 Cross section of the proximal end of the brachiocephalic artery.

Once at the proximal end of the brachiocephalic artery, 26 serial transverse sections, 

7pm thickness, were cut and each placed on a separate glass slide clearly labelled with 

animal identification and section numeration from A to Z. Each glass slide contained a 

section from both control (apoE'7') and test group (apoE'77complement protein'7') which 

were cut at the same point along the brachiocephalice artery. Sections were allowed to 

air dry before being stored at -80°C. Sections were subsequently stained for the protein 

of interest.
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4.1 Antibodies

The primary and secondary antibodies used for immunohistochemistry are detailed in 

tables 2.2 and 2.3 respectively.

4.2 Immunohistochemistry

Negative controls, where the primary antibody was replaced with an isotype control at 

the same dilution, were always included. For MAC immunostaining a secondary only 

control was included.

4.3 Fluorescence immunohistochemistry

4.3.1 Total C3 and C9/MAC immunostaining within the plaque using a 

fluorescent detection antibody

Immunostaining was performed for complement components C3 (rat anti-mouse C3 

mAb 11H9 (20pg/mL); Hy-Cult Biotechnology), and C9 (rabbit anti-rat C9 (2pg/mL); 

prepared in-house using standard immunisation procedures). For these, sections were 

blocked using 2% bovine serum albumin in PBS and bound antibodies were detected 

with either Alexa fluor 594-labelled donkey anti-rat IgG (20pg/mL) or Alexa fluor 594- 

labeled goat anti-rabbit IgG (20pg/mL) (both from Molecular Probes Inc). All sections 

were counter-stained using DAPI. For C3 staining, a negative control, where the 

primary antibody was replaced with rat IgG (of the same isotype) at the same 

concentration, was always included. Whilst a secondary only control was incuded for 

MAC staining.
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Name Antigen recognised Species Isotype Supplier

MOMA2 mouse macrophage Rat IgG2b Serotec

clone 1A4 mouse actin, a-Smooth 
muscle

Mouse IgG2a Sigma Aldrich

F4/80 mouse macrophage Rat IgG2a Serotec

48-2B mouse CD3 T-cells Armenian Hamster IgGl Santa Cruz Biotechnology, Inc

mCD59a.7 mouse CD59a Rat IgGl Dr. C. L. Harris (Cardiff University)

2C6 mouse CD55 Rat IgG Ik Prepared In house using standard techniques

5D5 mouse Crry Rat IgGl Dr. M. Holers (Denver, USA)

11H9 mouse native C3 Rat IgG2a Prepared In house using standard techniques

2/11 mouse C3b/iC3b/C3c Rat IgGl Hy-Cult Biotechnology

MAC 
ffinity purified)

Rat/mouse MAC Rabbit Polyclonal Prepared In house using standard techniques

Table 2.2 List of prim ary antibodies used for immunohistochemistry



Name Antigen recognised Species Isotype Supplier

Biotinylated anti-rat IgG Rat IgG

Biotinylated anti- mouse IgG reagent Mouse IgG 
(M.O.M kit)

Biotinylated anti- Armenian Armenian hamster
Hamster IgG IgG

Alexa Fluor 594-labelled anti-rat Rat IgG 
IgG

Alexa Fluor 488- labelled anti-rat Rat IgG 
IgG

Alexa fluor 594-labeled anti-rabbit Rabbit IgG 
IgG___________________________________

Goat Polyclonal Vector laboratories

Vector laboratories

Goat Polyclonal Abeam pic,

Donkey Polyclonal Invitrogen Life Technologies

Goat Polyclonal Invitrogen Life Technologies

Goat Polyclonal Invitrogen Life Technologies

Table 2.3 List of secondary antibodies used for immunohistochemistry



4.3.2 Plaque macrophage and smooth muscle-actin fluorescent staining

Macrophages and smooth muscle cells were identified using anti-murine macrophage 

antibody (F4/80, Serotec; diluted 1:100) and anti-a-smooth muscle actin (clone a-l-A4; 

Sigma-Aldrich; diluted 1:100). In brief, sections were fixed in ice-cold acetone and 

blocked using an avidin/biotin blocking kit (Vector Laboratories) followed by either 

10% goat serum or the M.O.M mouse Ig blocking reagent (Vector Laboratories). 

Sections were then incubated with the appropriate biotinylated secondary antibodies: 

biotinylated goat anti-rat IgG (Vector Laboratories; 3.5pg/ml in 10% mouse serum) or 

biotinylated anti-mouse Ig reagent (diluted as instructed by vector M.O.M kit). 

Immunopositive cells were detected using Fluorescein Avidin D diluted 1:200 in 

2%BSA in PBS (Vector Laboratories) and cell nuclei were stained using DAPI.

4.4 Histology

4.4.1 Plaque lipid content

Oil red O-stained sections were used to determine plaque lipid content. Sections were 

allowed to air dry at room temperature for 30 minutes prior to staining, then immersed 

in distilled H2O (dH2 0 ) three times for 5 minutes each before being washed with 60% 

(v/v) isopropanol/dPLO for 5 minutes at room temperature. Sections were then stained 

with oil red O working solution (stock oil red O diluted 2:3(v/v) in dH20 ) for 15 

minutes at room temperature before being washed again with 60% (v/v) 

isopropanol/dFLO. Sections were then rinsed well under running tap water for 5 

minutes before being stained with haematoxylin for 3 minutes. Finally, the sections 

were ‘blued’ in tap water before being rinsed in dFLO and mounted in aquamount. The 

total stained area in the plaque was expressed as a percentage of the total plaque area to 

give the fractional plaque lipid content.
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4.4.2 Elastin and collagen

Firstly, sections were allowed to air dry at room temperature for 30 minutes before 

being dehydrated in a 5 step procedure for 5 minutes at each step as follows:

1) dH20

2) 70%ethanol

3) 90%ethanol

4)100%ethanol

5)100%ethanol

Sections were then immersed in Miller’s Elastin Van Gieson (EVG) stain for 40 

minutes at room temperature before being rinsed in absolute ethanol twice, (30 seconds 

each). This was followed by rinsing in dH20  for a further 30 seconds before being 

placed into van Gieson solution for 2 minutes. The sections were then rinsed twice in 

absolute ethanol (1 minute each). Sections were then dehydrated (as procedure above) 

before being placed into histoclear solution twice (5 minutes each). Slides were then 

mounted with histomount.

4.4.3 Morphometric analysis

Morphometric analyses were carried out on elastin-stained sections. One section was 

quantified per mouse at the same position along the brachiocephalic artery, following 

the established method of Johnson et al. (Johnson et al., 2005) as decribed in section 

4.0. Morphometry was performed using Image ProPlus™ software version 4.0 (Media 

Cybernetics). The lengths of the internal and external elastic lamina were traced and 

recorded. These were used to derive the media area by assuming them to be the 

circumferences of perfect circles. The plaque area was measured directly, by tracing 

either EVG/oil red O or fluorescently stained sections, this value was subtracted from
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the area enclosed by the internal elastic lamina to derive the true lumen area see figure 

2.3.

Percentage staining for specific antigens within the plaque was assessed using Image 

ProPlus™ software version 4.0. Plaque area for each section was measured as above 

and the area of staining was analysed by setting detection threshold and staining above 

threshold scored as positive. The percentage of the plaque area stained was then 

calculated by using the following equation:

% stain in the plaque = Sum of area stained/Total plaque area x 100 

Intensity of staining throughout plaque was not measured.

5. Assessment of adiposity, plasma lipids and metabolites

5.1 Serum triglyceride, cholesterol and serum turbidity measurements

Mouse blood (~ 1 mL) was collected into tubes without anticoagulant, allowed to clot at 

room temperature and then incubated on ice for one hour. Serum was separated by 

centrifugation and analysed for triglyceride, cholesterol and serum turbidity on an 

automated analyser (Clinical Biochemistry Laboratories, Cardiff University Hospital).

In brief, cholesterol esters were enzymatically hydrolysed by cholesterol esterase to 

cholesterol and free fatty acids. Free cholesterol, including that originally present, was 

then oxidised by cholesterol oxidase to cholest-4-ene-3-one and hydrogen peroxide.

The hydrogen peroxide combines with hydroxybenzoic acid and 4-aminoantipyrine to 

form a chromophore (quinoneimine) which was quantitated by absorbance at 500nm.
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Triglycerides were enzymatically hydrolysed by lipase to free fatty acids and glycerol. 

The glycerol was phosphorylated by ATP with glycerol kinase to produce glycerol-3- 

phosphate and ADP. Glycerol-3-phosphate was oxidised to dihydroxyacetone 

phosphate by glycerol phosphate oxidase, producing H2O2. In a colour reaction 

catalysed by peroxidase, the H2O2 reacts with 4-aminoantipyrine and 4-chlorophenol to 

produce a red-coloured dye.

The absorbance of this dye is proportional to the concentration of triglyceride present in 

the sample. The triglyceride assay was also read at 500nm.

Both VLDL and chylomicrons effectively scatter light, causing turbidity. Serum 

turbidity, a measurement of circulating chylomicrons and VLDL particles, was 

determined as the difference between absorbance at 660 and 700 nm.

5.2 NEFA concentrations

Measurement of NEFA concentrations in the plasma was carried out by Dr. Irina 

Gushina, Cardiff University. In brief, lipids were extracted from plasma samples by a 

modified Folch method (Garbus et al., 1963). Non-polar lipids were separated using 1- 

dimensional thin layer chromatography. Free fatty acids were visualised with 0.05% 

(w/v) 8-anilino-4-naphthosulphonic acid in methanol and their compositions and 

contents were determined by gas chromatography.
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Figure 2.3 Morphometric analysis of atherosclerotic arteries. Using the above equations morphometric analyses of 

arteries can be made. OEL = Outer elastic lamina; IEL = Inner elastic lamina



5.3 Glucose levels

A blood glucose meter (Glucomen, A. Menarini Diagnostics) was used for measuring 

blood glucose level. Approximately 5pl of blood was placed on a disposable test strip 

which interfaces with a digital meter. After several seconds, the level of blood glucose 

was shown on the digital display and recorded.

5.4 Measurement of C3adesArg by ELISA

To obtain an estimate of C3adesArg levels in mouse plasma, approximately 1ml of 

mouse blood was collected by cardiac puncture into tubes containing 40pl of anti

coagulant solution on ice before being centrifuged at 4°C at 10,000 rpm for 10 minutes. 

The plasma was then collected and C3adesArg was measured by sandwich ELISA, 

described below (see figure 2.3 for a schematic diagram).

Nunc-Immuno™ ELISA plates were first coated with 50pl of purified monoclonal rat 

anti-mouse C3a (0.5mg/ml; BD pharmingen) in ELISA coating buffer (0.2M Na2CC>3, 

pH 9.6) overnight at 4°C, then blocked with 100 pi per well of blocking buffer (2% 

(w/v) BSA in PBS), incubated at 37 °C for 1 hour. The plasma samples to be tested 

were diluted either at a dilution of 1:10 or 1:50 in blocking buffer and 50pl per well of 

each was placed on the plate in triplicate. As a control plasma from C 3 7 mice was used 

at the same dilution to show specificity of the assay. On each plate a linear standard 

curve was generated using 50pl per well of purified mouse C3a diluted in blocking 

buffer and carried out in duplicate (lOOng/ml -  0.78ng/ml, and blocking buffer only as 

a negative control; BD pharmingen). This step was carried out at 37 °C for 1 hour. 

Subsequently, 50pl per well of biotinylated rat anti-mouse C3a antibody, diluted in
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blocking buffer (2ug/ml; BD pharmingen) and incubated at 37 °C for 1 hour, was used 

to detect bound C3adesArg.

Following this step, the plate was incubated with 50pl per well of streptavidin- 

peroxidase diluted in blocking buffer (1:5000; Jackson ImmunoResearch Laboratories, 

Inc) and incubated for 37 °C for 30 minutes. Between incubations, plates were washed 

three times with 150pl per well of 0.1% (v/v) Tween in PBS. The ELISA was 

developed with lOOpl per well of ELISA developing solution (TMB Substrate Reagent 

Set, BD Pharmingen) and stopped with lOOpl per well of 10% (v/v) H2SO4 when 

background began to increase. Absorbance was read at 450 and 590nm using FLUOstar 

Optima (BMG LABTECH). Read out values at 450nm were then subtracted from 

590nm using Excel.

Values were firstly subtracted from background value (negative control) and these 

values were then transferred into GraphPad Prism and a standard curve was generated 

by plotting known C3adesArg values on the x axis against absorbance values on the y 

axis. Unknown x values were determined for all unpaired y values by using lowess 

curve fitting model. The interpolated values were multiplied by the dilution factor in 

order to calculate C3adesArg concentrations. A typical standard curve is shown in 

figure 2.4.
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Representative mouse C3adesArg standard curve
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Figure 2.4 Representative graph of C3adesArg standard curve

5.5 In vivo quantification of fat content in mice using dual X-ray 

absorptiometry (DEXA)

Total percentage body fat was measured by DEXA using a PDCImus scanner with 

Lunar small animal software (version 1.45) (GE Lunar Corporation).

6. Functional analysis of Complement activity

6.1 Production of mouse anti-rabbit erythrocyte antibody

BALB/c mice were injected s.c with lOOpl of rbE (packed cells) in Alsever’s solution 

(an isotonic, balanced salt solution which comprises of NaCl (4.2g/L), citric 

Acid*3Na*2H20 (8.0g/L), citric Acid»H20 (0.55g/L), D-Glucose (20.5g/L)) at two 

different sites. Four weeks post-immunisation, the mice were administered a booster 

immunisation with 200pl of rbE (packed cells) given by i.p injection. The succeeding
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third and fourth immunisations were also given i.p one to two weeks apart from each 

other. After the final boost, the mice were terminated by a schedule 1 method and blood 

was collected for plasma. Each batch of polyclonal mouse anti-rabbit erythrocyte 

antibody was tested in a standard haemolytic assay, to monitor polyclonal batch 

variability. Of note, the laboratory now uses a monoclonal anti-rabbit erythrocyte 

antibody, recently produced in house, for haemolysis assays.

6.2 Preparation of sensitised rabbit erythrocytes

Sensitised rbE for use in various tests of mouse complement activity was prepared as 

follows: whole blood obtained by cardiac puncture from a rabbit under terminal 

anaesthesia was centrifuged at lOOOrpm for 5 minutes. RbE from the cell pellet were re

suspended in 15ml of PBS and washed twice by centrifugation at lOOOrpm for 5 

minutes. A 2% suspension of rbE was made by taking 200pl of the packed, washed rbE 

pellet and re-suspending in 10ml of complement fixation diluent (CFD) was prepared 

from complement fixation diluent tablets (Oxoid). Mouse anti-rabbit erythrocyte 

antiserum (40pl) was diluted in 10ml CFD and mixed with the 2% suspensionof rbE. 

This mixture was incubated at 37°C for 30 minutes on a rotator. Following incubation, 

the cells were washed three times in CFD (20ml each time) by centrifugation at 

2000rpm for 5min to remove any unbound antibody. An illustration of the C3adesArg 

ELISA method is shown in figure 2.5.
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TMB

Streptavidin-
HRP Biotinylated rat anti-mouse C3a

C3adesArg

Rat anti-mouse C3a

Figure 2.5 Schematic diagram of C3adesArg sandwich ELISA.

6.3 Titre of mouse serum

For lysis assays 96 well round bottomed plates were used. Sera under test were diluted 

1:10 in CFD and aliquoted 50pl per well. Sensitized rbE-A (50pl) were added to each 

well, agitated briefly and the mixture incubated for 30 minutes at 37°C. The plate was 

then centrifuged at 1400rpm for 5 minutes and 80pl of supernatant transferred into 

wells of a 96 well flat bottomed plate. Controls of background lysis (CFD buffer) and 

100% lysis (cells lysed in equivalent volume of H2O) were also carried out. The
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absorbance at 415nm was measured using a FLUOstar Optima plate reader and the 

percentage lysis calculated after subtraction of background controls.

Percent lysis was calculated using the equation below:

% lysis = Abs (test)-Abs(negative control) x 100

Abs (positive control) -  Abs(negative control)

6.4 CH50 assay

CH50 is the measurement of total haemolytic complement activity in the serum. This 

assay was used to detect levels of complement proteins in mouse serum.

For each animal the serum was first diluted to 10% (v/v) in CFD, this diluted serum 

was further diluted in 96 well round bottomed plates by doubling dilution (v/v). These 

samples of serum (50pl) were each incubated with 50pl of a 2% suspension of antibody 

coated rbE-A in round bottomed 96 well plates for 30 minutes at 37°C. 0% lysis was 

established by incubation of 50pl rbE-A with 50pl CFD and 100% lysis was achieved 

by incubation of 50pl of rbE-A and 50pl H2O. Following the incubation period, the 

cells were pelleted by centrifugation at 1400 rpm for 5 minutes. 80 pi of supernatant 

from each well was transferred to a flat-bottomed 96 well plate and the absorbance at 

415nm was determined using FLUOstar Optima plate reader. To calculate CH50 values 

for the various sera under test, plots of log x against log(y/(l-y)) were made where x 

was the volume of serum added (pi) and y the % haemolysis. The intercept on the x 

axis is log K, where K is the volume of serum giving 50% haemolysis.
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The number of CH50 units (U/ml) of each mouse serum was determined from the 

following equation:

CH50 = 10 x (1000/K) (U/ml)

The first multiplier corrects for the 1:10 original dilution.

7. Protein analysis

7.1 Protein concentration

The concentration of purified proteins was obtained by measuring their absorbance at 

280nm in a spectrophotometer (Jenway). The concentration was calculated using the 

following equation: C = A /e Where C is concentration (mg/ml), A is absorbance and 8 

is the extinction coefficient when the pathlength is 1cm. Extinction coefficient for both 

mouse Ig and anti-mouse C5 mAb is 1.4.

7.2 SDS-PAGE analysis

Electrophoretic separation of proteins was carried out using Biorad gel apparatus. All 

gels poured were with a 5% acrylamide stacking gel and a 10% acrylamide resolving 

gel. Recipes for the gels are found in table 2.4. lOpil of pre-stained protein marker, 

broad range (New England Biolabs, Inc) was run along side protein of interest.
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Percentage gel
5% 10%

(Stacking) (Resolving)

Stacking gel buffer (ml) 1.2

Resolving gel buffer (ml) 3.75

40% Acrylamide (ml) 0.63 3.75

10% ammonium
50 150Persulphate (til)

dH20  (ml) 3.07 7.25

TEMED (pi) 5 15

Table 2.4 Recipe for SDS-PAGE gels

The protein of interest was mixed (1:1) with either non-reducing or reducing loading 

buffer. All samples were boiled for 5 minutes and loaded into the wells of a prepared 

SDS-PAGE gel within a running tank containing running buffer. The gels were 

subjected to electrophoresis at 100V for approximately 90 minutes.

7.3 Coomassie staining

Coomassie blue gel staining solution was used to detect pg quantities of protein in 

SDS-PAGE gels. Following electrophoresis, the gels were soaked in Coomassie stain 

for 1 hour with agitation. Unbound stain was removed by soaking gels in destain 

solution with agitation until background staining was minimal and the bands were 

clearly visible. Gels were then soaked in gel drying buffer for approximately 30
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minutes before being placed between pre-soaked acetate gel drying films (Promega) 

and stretched within a gel drying frame until ready.

8. Statistical analysis

All calculations were carried out using Microsoft Excel and/or GraphPad Prism 

software version 5. Significance was tested by two-tailed unpaired Student’s t-test, with 

significance assumed at p < 0.05.
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Chapter 3: Generation of genetically modified 
animals

1. Introduction

The development of atherosclerosis in humans is a complex process and involves 

various genetic and environmental factors. Thus, the very nature of the disease impedes 

progress in its field of research. Animal models of atherosclerosis are therefore an 

obvious choice as a tool for researching into the field of atherosclerosis. Mouse models 

of atherosclerosis, including apoE7', ldlr7' and apoE/ldlr double knockouts, have helped 

in elucidating atherosclerotic lesion development (Ishibashi et al., 1993; Ishibashi et al., 

1994; Piedrahita et al., 1992), and are used to assess drug treatment of the disease 

(Zadelaar et al., 2007). These atherosclerosis prone mouse models have also proven 

useful in studying the effects of complement in atherosclerosis (Bhatia et al., 2007; 

Buono et al., 2002; Patel et al., 2001; Persson et al., 2004).

In our study we chose to use the apoE deficient mouse model to determine the role of 

complement during the progression of atherosclerosis. In 1992, Piedrahita and 

colleagues inactivated the endogenous apoE gene by using gene targeting in mouse 

embryonic stem cells through homologous recombination (Piedrahita et al., 1992) (see 

figure 3.1). These mice appeared to be healthy at three months old but upon further 

examination phenotypic changes in their lipid and lipoprotein profiles were revealed 

(Zadelaar et al., 2007).
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ApoE gene
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ApoE locus after homologous recombination

*
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Figure 3.1 Targeting of the apoE gene. C onstruction o f a gene-targeting vector, in which 

exon 2 and the m ajority o f exon 3, the m ajor coding portion o f the protein were replaced by the 

neom ycin resistance gene (Neo). Figure adapted from  (Plum p et al., 1992).

Complement regulator deficient mice have also been generated using the gene targeting 

approach. These include CD 597 (Holt et al., 2001; Qian et al., 2000) and CD 557 mice 

(Sun et al., 1999). Two genes exist in the mouse which encode for CD59 protein;

Cd59a and Cd59b. In our laboratory, Cd59 deficient mice were generated by targeting 

the deletion of the widely expressed Cd59a gene (Holt et al., 2001) as opposed to 

Cd59b which is expressed mostly in the testis (Baalasubramanian et al., 2004).

Standard gene-targeting methods in mouse embryonic stem cells were used, and the 

targeting vector designed removed the majority of the mature protein sequence by 

eliminating exon 3 (see figure 3.2) (Holt et al., 2001). Male Cd59a‘7 mice were 2-3g 

lighter in weight when compared with their Cd59a+/+ litter-matched controls however 

this difference was not observed in the females (Holt et al., 2001). Furthermore, Cd59a 

7 mice of both sexes exhibited increased haemoglobin concentration in plasma and 

urine, indicating that these mice have spontaneous intravascular haemolysis and 

haemoglobinuria (Holt et al., 2001).
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Cd59a gene

C d59a locus after hom ologous 
recom bination

Neo

Figure 3.2 Targeted deletion of the Cd59a gene (adapted from Holt et al. 2000)

C onstruction o f a gene-targeting vector, in which exon 3, the m ajor coding portion o f the 

protein, was replaced by the neom ycin resistant gene (Neo).

Similar to CD59, mice also contain two genes for CD55 encoding transmembrane and 

GPI anchored forms of CD55. Due to the wider distribution of the latter, Sun and 

colleagues targeted the deletion of this gene by using homologous recombination in 

embryonic stem cells (See figure 3.3) (Sun et al., 1999). The mice used for the work 

detailed in this thesis were obtained from this laboratory and hence deficient in the GPI 

anchored form of CD55.1 refer to these mice here after as CD 557. This knockout 

mouse model shows no sign of haemolytic anaemia or overt phenotypic abnormalities 

(Sun et al., 1999).
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CD55 gene

CD55 locus after homologous 
recombination------------------ Neo

Figure 3.3 Targeted deletion of CD55 GPI gene (adapted from Sun et.al 1999).

Construction of a gene-targeting vector, in which the first 3 exons, were deleted and replaced 

with the NEO gene.

Complement protein deficient mice also exist including the C3H/He C6 deficient 

mouse strain which was established more than two decades ago (Orren et al., 1988). In 

2004, Bhole and colleagues identified 7 point mutations within the C6 gene of these 

mice, four of which lead to amino acid substitutions causing disruption of the tertiary 

structure of the protein resulting in C6 deficiency (Bhole and Stahl, 2004). In our 

laboratory we have back-crossed these mice for six generations onto the C57BL/6 

strain.
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The aims of the work described in this chapter were to generate the following mouse 

strains from the knockouts described above, and establish breeding colonies for each:

• ApoE 7/CD557 and apoE 7/CD55+7+ controls

• ApoE"7/C6 ’7’ and apoE 7VC6+7+ controls

• ApoE7/Cd59a'/+

Of note, apoE’7/Cd59a7+ and apoE‘7VCd59a+7+ mice generated from the apoE"7 /Cd59a"/+ 

breeding colony were pooled for controls.

The generation of these breeding colonies was core to the project and allowed further 

characterisation and assessment of atherosclerosis to be carried out in these mice.

2. Specific methods

2.1 Screening of apoE, CD55 and CD59a deficiency

2.1.1 DNA isolation

Tail tips were digested overnight at 65°C in 500pl of tail buffer (50mM Tris- 

hydrochloric acid (HC1) pH8 , lOOmM EDTA, lOOmM NaCl, 1% (w/v) SDS) 

containing 15pl proteinase K. 250pl of 6M NaCl was mixed into the sample and 

centrifuged at 13,000 rpm for 10 minutes. Supernatant was removed, into a fresh tube 

containing 500pl isopropanol, mixed and centrifuged. The pellet was washed in ethanol 

and resuspended in lOOpl TE buffer (lOmMTris pH 7.5, ImM EDTA).
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2.1.2 PCR

Isolated DNA was amplified by standard PCR conditions using various primers (see 

table 3.1). The following reagents were added into a PCR tube:

• 10 x NH4 reaction buffer (Bioline Ltd; 160mM (NH4)2S 0 4, 670mM Tris-HCl,

0.1% (v/v) Tween-20)

• 200pM deoxy-nucleotide-tri-phosphates (dNTPS) (Bioline Ltd)

• lpl 50mM MgCl2 (Bioline Ltd)

• lOpmol of each primer

• dH20  added to bring the reaction volume to 22.5pl

• 2pl Isolated mouse DNA

The reaction was heated at 95°C for 5 minutes to denature the DNA and then 0.5pi 

TAQ polymerase (Bioline Ltd, 5U/ pi) was added.

The following PCR steps employed were dependent on the gene of interest. Table 3.2 

and 3.3 show the PCR cycles optimised for CD55 wild type primers and CD55 NEO 

gene primers respectively. Table 3.4 and 3.5 show the PCR cycles optimised for ApoE 

and CD59 primers respectively.

2.1.3 Agarose gel electrophoresis

DNA fragments and PCR products were visualised by agarose gel electrophoresis. 2% 

(w/v) agarose (Invitrogen Life Technologies) in 1 x TAE buffer was melted in a 

microwave and allowed to cool before the addition of ethidium bromide (lOOng/ml 

final concentration). Agarose gel was poured into a gel casting tray (Thermo Electron
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Corporation), an appropriate size comb was inserted and the gel was allowed to set. The 

comb was removed and the gel immersed in 1 x TAE in an electrophoresis tank 

(Thermo Electron Corporation). DNA samples containing 10% (v/v) agarose gel 

loading dye were loaded along with DNA standard size markers. Gels were run at 60V 

for approximately 1 hour. The DNA within the gel was visualised using a 

transilluminator (Chemi-Doc (Bio-Rad laboratories), the images were captured on a 

digital camera using the Bio-Rad Gel Documentation system.

Primer name Primer Sequence 5’ -  3’

ApoE 901 CGC CGC TCC CGA TTC GCA GCG CAT CGC

ApoE 1753 CTC TGT GGG CCG TGC TGT TGG TCA CAT TGC TGA <

ApoE 1754 CTC GAG CTG ATC TGT CAC CTC CGG CTC TCC C

Cd59 PI GGT GAC CAA CTG GTG TTA ACA AAG GG

Cd59a P2 GAA CCT GCG TGC AAT CCA TCT TG

Cd59a P3 GCT ACC ACT GTT TCC AAC CGG TG

CD55 2A TCA ATT AAC TGC GGC TCA AA

CD55 2B GGA CAG CAG CAA CAG AGA CA

CD55 4A CAG AAA GCG AAG GAG CAA AG

CD55 4B TTC ATC CTC TGA GCC ACT GA

Table 3.1 Primer sequences used to amplify murine apoE, Cd59a and CD55.
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Step # Protocol for CD55 wild type primers

1. Incubate at 95°C for 1 minute

2. Incubate at 58°C for 1 minute

3. Incubate at 72°C for 30 seconds

4. Cycle to step 2 for 4 more times

5. Incubate at 95°C for 1 minute

6. Incubate at 60°C for 30 seconds

7. Incubate at 72°C for 30 seconds

8. Cycle to step 6 for 35 more times

9. Incubate at 4°C for 1 hour

Table 3.2 Protocol for CD55 wild type primers

Step # Protocol for CD55 NEO gene primers

1. Incubate at 95°C for 1 minute

2. Incubate at 64°C for 30 seconds

3. Incubate at 72°C for 2 minutes

4. Cycle to step 2 for 39 more times

5. Incubate at 72°C for 10 minutes

6. Incubate at 4°C for 1 hour

Table 3.3 PCR Protocol for CD55 NEO gene primers
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Step # Protocol for apoE gene primers

1. Incubate at 95°C for 1 minute

2. Incubate at 64°C for 1 minute

3. Incubate at 72°C for 3 minutes

4. Cycle to step 2 for 34 more times

5. Incubate at 72°C for 10 minutes

6. Incubate at 4°C for 1 hour

Table 3.4 Protocol for apoE gene primers

Step # Protocol for Cd59a gene primers

1. Incubate at 95°C for 1 minute

2. Incubate at 60°C for 1 minute

3. Incubate at 72°C for 1 minutes

4. Cycle to step 2 for 394more times

5. Incubate at 72°C for 10 minutes

6. Incubate at 4°C for 1 hour

Table 3.5 Protocol for Cd59a gene primers
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2.2 Screening of C6 deficiency

Mouse serum was collected to test for C6 deficiency. Both dot blot and haemolytic 

assay were then employed to confirm C 6 7, C6+/ and C6+/+ animals. In order to carry 

out the haemolytic assay, mouse anti-rabbit erythrocyte antibody was generated. See 

chapter 2 for detailed methodology.

Results from the haemolysis assay was able to distinguish between C6+/+ and C6+/ 

mice, but not between C 6 /+ and C6+/+ mice. Thus, to confirm C6 deficiency sera was 

also tested by dot blot. A grid was drawn on nitrocellulose membrane and 5 pi of a 

dilution of mouse serum was carefully placed in the centre of each square. The 

nitrocellulose membrane was then placed in a dot blot 96 system, which dries the 

membrane using a vaccum pump. Subsequently, the membrane was blocked with 

blocking buffer (5% non-fat dried milk in PBS) for 30 minutes before being incubated 

for an hour with the primary antibody, goat anti-human C6 (CompTech) (1:1000 

diluted in 2.5% blocking buffer). The membrane was washed three times in 0.05% (v/v) 

Tween 20 in PBS then incubated with the secondary antibody, rabbit anti-goat IgG 

(Dako UK Ltd) (diluted 1:2000 in 2.5% (w/v) blocking buffer) for 30 minutes. Washing 

steps were then repeated before the detection of positive staining for C6 using chloro- 

naphthol (lx  tablet in 10ml methanol, 40ml lxTBS and 5pl H2O2). The reaction was 

left to develop for 30 minutes and stopped by washing with distilled H2O.
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3. Results

3.1 Generation of apoE'/7Cd59a'7' mice and their litter-matched apoE'7' 

/Cd59a+/+ controls

ApoE 7‘ and Cd59a7 mice (four pairs) were mated to generate FI double heterozygote 

mice, which were subsequently crossed to produce F2 mice (n = 153) (figure 3.4). 

Screening of F2 mice was carried out successfully to identify gene deletions (figure. 3.5 

and figure 3.6), and allowed the generation of an apoE'7/Cd59a/+ breeding colony. F2 

generation mice revealed no significant deviation from anticipated Mendelian ratios for 

either apoE or Cd59a alleles [apoE-/-: + /-: +/+ = 1.3 : 2.6 : 1.0; Cd59a -/- : + /-: +/+ = 

1.0 : 3.1 : 1.4], indicating that the combination of two mutations (apoE and Cd59a) was 

not fatal. F3 generated mice were used for experimental procedures with subsequent 

screening for Cd59a gene post-termination. This breeding strategy provided test and 

litter-matched control animals for a blinded experiment.

3.2 Generation of apoE^/CDSS*7’ mice and the apoE*7' controls

In order to reduce animal numbers and to cut down the amount of genotyping needed 

for the study, it was decided to slightly alter the breeding strategy. Hence, colonies of 

test and control mice were generated from the F2 screening. Initially, apoE'7' and CD55 

7 mice (three pairs) were mated to generate FI mice, which were then crossed to 

produce F2 mice (n = 101) (figure 3.7).
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Used for high fat feeding experimental protocol (see chapter 2)

Figure 3.4 Mice breeding strategy. FO apoE 7’ mice were crossed with Cd59a"/‘ mice to 

generate FI progeny that were heterozygous for both apoE and Cd59a gene. FI mice 

were then crossed to produce the F2 generation which were subsequently screened for 

both genes and breeding colonies of apoE'7'/ Cd59a /+ mice were set up. These produced 

apoE7 / Cd59a /+, apoE7'/ Cd59a7+, and apoE7 / Cd59a7+ mice which were subsequently 

used as experimental mice for the study.
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Figure 3.5 PCR genotvping of genomic DNA derived from the progeny of ApoE*7'.

The 600-base pairs (bp) fragment amplified from the wild type allele (with primers 

ApoE 901 and ApoE 1754) and the 350-bp fragment amplified from the targeted allele 

(with primers ApoE 1754 and ApoE 1753) are seen in the appropriate lanes.

. j  +  ■+ +

Figure 3.6 PCR genotyping of genomic DNA derived from the progeny of CD59'/+ 

mice. The 200-bp fragment amplified from the wild type allele (with primers PI and 

P3) and the 450-bp fragment amplified from the targeted allele (with primers P2 and 

P3) are seen in the appropriate lanes.
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Screening of F2 mice was subsequently carried out and was successful in identifying 

gene deletions (see figure 3.8), allowing the generation of breeding colonies for both 

apoE'7/CD55‘7' and apoE’7/CD55+7+ mice. F2 generation mice revealed no significant 

deviation from anticipated Mendelian ratios at apoE or CD55 alleles [apoE -/-: + /-: 

+/+ = 1.4 : 2.9 : 1.0; CD55 -/-: + /-: +/+ = 1 : 1.3 : 1.8], indicating that the 

combination of two mutations (apoE and CD55) had no effect on fertility. Animals 

produced from the test and control breeding colonies were used in the experimental 

procedure (see chapter 2).

3.3 Generation of apoE*/7C6'/* mice and apoE'/7C6+/+ controls

The breeding strategy employed for the generation of apoE'7/C6‘7‘ and apoE / /C6+/+ 

mice was identical to that used for apoE’7/CD55’7' and apoE‘7/CD55+7+ above and was 

initiated for exactly the same reasons as stated in section 3.2. Consequently, apoE7 and 

C 6 7 mice (four pairs) were mated to generate FI mice, which were then crossed to 

produce F2 mice (n = 65) (figure 3.9). Screening of F2 mice was subsequently carried 

out successfully identifying gene deletions (figure 3.10 and figure 3.11), allowing the 

generation of breeding colonies for both apoE'7 /C6‘7' and apoE'7 /C6+7+ mice. F2 

generation mice revealed no significant deviation from anticipated Mendelian ratios at 

apoE or C6 alleles [apoE-/-:+/-:+/+ = 1.5:3.3:1.0; C6 -/-:+/-:+/+ = 0.9:2.4:1.0], 

indicating that the combination of two mutations (apoE and C6) was not fatal.

Since C6 deficiency can arise from 7 point mutations, screening for C6 deficiency by a 

molecular method is virtually impossible. Thus, screening for C6 deficiency was 

carried out by two methods.
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Figure 3.7 Mice breeding strategy for apoE / /CD55 7. FO apoE7 mice were crossed 

with CD55‘7 mice to generate FI progeny that were heterozygous for both apoE and 

CD55. FI progeny consisted of heterozygote apoE‘/+/ CD55‘/+ mice which were back- 

crossed to produce F2 generation. The F2 generation were subsequently screened for both 

genes and breeding colonies of apoE'7'/ CD55"7' mice and apoE"7'/ CD55+/+ mice were set 

up to provide F3 progeny which were subsequently used as experimental mice for the 

study.
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15lbp—

Figure 3.8 PCR genotyping of genomic DNA derived from the progeny of CD55'/+ 

mice. For this, separate PCR reactions were carried out. (A) The 151-bp fragment 

amplified from the wild type allele (with primers CD55 2A and CD55 2B) and (B) the 

699-bp fragment amplified from the targeted allele (with primers CD55 4A and CD55 

4B).
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Firstly, measurement of complement activity in mouse serum was assessed by 

haemolysis assay, followed by a dot blot. Whilst homozygote for C6 along with C6 

deficiency and heterozygotes can be detected by haemolysis assay (see figure 3.10), the 

dot blot method was employed to definitively determine C6 deficiency (see figure3.11). 

Since complement levels in the serum differ between male and female, two separate 

haemolysis assays were carried out.
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A poE 7 /C6 +/ 
A poE 7+ /C6 /+ 
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A poE 7+ /C6 +/+ 
ApoE+/+/C6 /+ 
ApoE+/+/C6 7 
ApoE+/+/C6 +7+

F3 A p o E '/C 6 '

------------

ApoEJ7C6+/+

t

Used for high fat feeding experimental protocol (see chapter 2)

F igure 3.9 Mice breeding strategy for apoE /7C6'/‘ mice. FO apoE mice were crossed 

with C 6 7 mice to generate FI progeny that were heterozygous for both apoE and C6. 

FI progeny were crossed to produce F2 generation. The F2 generation were 

subsequently screened for both apoE and C6 genes and breeding colonies of 

upoE77C6'A mice and d^oEl'IC6+l+ mice were set up. The subsequent generation, F3, 

were used in the experimental protocol for the study.
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Figure 3.10 Percentage haemoiytic activity in serum samples of (A) male apoE /7C6' \  

apoE';7C6+/+ and (B) female apoE‘77C6+/' mice. X-axis denotes sample numbers and 

control animals.
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Controls

Figure 3.11 Representative dot blot result of C6 screening to generate apoE7VC67' 

mice and their apoE7* controls. Sample letters are noted on each corner (A-F) and 

serum control samples from C6+/+ and C6 7 are always included.

4. Discussion

This thesis describes studies on the effect of complement and complement regulator 

deficiency on the progression of atherosclerosis in mice. Since mice are highly resistant 

to developing atherosclerosis, due to naturally low plasma cholesterol and triglyceride 

levels (Paigen et al., 1985), genetically modified mouse models of atherosclerosis has 

been a crucial and successful tool in the progress of the research to date. In particular, 

the apoE7' and ldlr7’ mice are popular amongst researchers in the cardiovascular field 

due to their ability to rapidly produce atherosclerotic lesions within the vascular wall.

In this study the apoE 7' mouse model was chosen since it has been shown to develop 

complex plaques with the formation of an acellular necrotic core, erosion of the 

necrotic mass through to the lumen and intraplaque haemorrhage (Rosenfeld et al.,

2000). These features mirror those seen in human atherosclerosis. In addition, when fed 

a diet containing 21% pork lard and 0.15% cholesterol spontaneous plaque rupture was



observed in the lesions present in the brachiocephalic artery (Johnson and Jackson,

2001). Thus, the use of this animal model allows the study of complement and its 

regulators during plaque progression and in plaque stability.

Naturally deficient C6 mice have 7 different point mutations (Bhole and Stahl, 2004) 

rendering PCR strategy unfeasible and thus genotyping was not employed for 

screening. Instead, haemolysis assay was used to detect any C6 activity and secondly 

C6 deficiency was confirmed by utilising the dot blot method. The apoE7' mice used 

were on a mixed background, 71% C57BL/6 and 29% 129/Sv, which are grey, white or 

black in appearance. All other mice used were on the C57BL/6 background.

The breeding strategy changed over the course of the project. In the first instance, 

during the generation of apoE7 /Cd59a7', all F2 generation were put on a high fat diet 

and were used as experimental animals. Consequently both apoE7 /Cd59a+/+ and apoE7' 

/Cd59a+/ animals were generated and used in the control group. This strategy had two 

drawbacks, firstly there were always more animals in the control group compared with 

the numbers of apoE7VCd59a7' mice and secondly it involved more time in genotyping 

and was less cost effective due to housing costs of the F2 generated animals. Following 

careful consideration the breeding strategy was revised so that two parallel colonies of 

F2 animals, test (apoE7/X7") and control (apoE77X+/+) were generated. This breeding 

strategy reduced both the amount of time spent on genotyping and the number of 

animals used which is in line with a commitment to the principles of the 3R’s 

( ‘Replacement, Refinement, and Reduction’) in animal research in reducing the overall 

numbers of mice used.
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All male mice from the colonies (test and control) were subjected to a period of high fat 

feeding as detailed in chapter 2. Group sizes were initially set at 10, though large 

experimental variation forced an increase in group size to around 15. It is possible that 

experimental variation may have been increased due to the use of mice on a mixed 

background and thus obtaining apoE7 on the C57BL/6 background may be of 

beneficial use for future experiments. However, the data produced in this thesis is in 

line with all published studies so far exploring the role of complement in murine 

atherosclerosis models. Thus the effect of strain background on disease outcome in this 

particular case is minimal.
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Chapter 4: Role of the terminal pathway during 
atherosclerosis

1. Introduction

Over the last two decades it has become clear that atherosclerosis is associated with 

chronic inflammation (Fan and Watanabe, 2003; Nilsson and Hansson, 2008; Ross, 

1999; Seifert and Kazatchkine, 1988). While the causes of the initial insult to the artery 

wall remain unclear, evidence has accumulated implicating both early and terminal 

complement activation during disease progression (Meuwissen et al., 2006; Niculescu 

et al., 2004; Vlaicu et al., 1985b; Yasojima et al., 2001).

Terminal pathway activation results in the production of C5a and C5b. Whilst, the latter 

associates with C6, C7, C8 and multiple C9 molecules (C5b-9) to form the MAC, C5a 

is a potent anaphylatoxin which regulates vasodilation, increases the permeability of 

small blood vessels and stimulates contraction of SMCs. It also acts as a 

chemoattractant for monocytes, B- and T-lymphocytes (Nataf et al., 1999; Schulman et 

al., 1988). In human atherosclerotic lesions, C5a was located around cholesterol clefts 

and necrotic cell debris where it was suggested to play an active role in plaque de- 

stabilisation by up-regulating the expression of MMP-1 and MMP-9 in macrophages 

(Speidl et al., 2010). C5a has also been shown to exert inflammatory responses through 

up-regulation of cytokines and related receptors (e.g. IL-6, IL-18 receptor) and 

adhesion molecules (e.g. P- selectin, E-selectin, ICAM-1 and VCAM-1) on endothelial 

and SMCs (Albrecht et al., 2004; Foreman et al., 1994; Monsinjon et al., 2003; 

Shagdarsuren et al., 2010). In addition, C5a also stimulates the release of TNF-a, IL-1

134



and oncostatin M from cultured macrophages (Kastl et al., 2008; Okusawa et al., 1987; 

Okusawa et al., 1988), and promotes activation of the coagulation cascade by 

stimulating the secretion of vWF and tissue factor by endothelial cells (Ikeda et al.,

1997; Platt et al., 1991).

MAC is found deposited on atherosclerotic vessel walls in both early and advanced 

stages of the disease (Oksjoki et al., 2007b; Vlaicu et al., 1985a). Similar to the early 

activation products of complement, MAC is absent from normal arterial wall. However, 

as First shown in hypercholesterolemic rabbits, MAC deposition within the intima is an 

early event during atherosclerosis, since in the subendothelium MAC deposition occurs 

temporally with cholesterol accumulation and this occurs before monocyte infiltration 

and foam cell formation (Seifert et al., 1989). Complement activation is thought to only 

proceed to the terminal stage at deeper sites within the mucoelastic layer of the intima 

(Torzewski et al., 1998b), where MAC deposition was found co-localised with 

properdin (a positive regulator for the alternative pathway) in human coronary arteries 

(Oksjoki et al., 2007a).

Within the deep area of the intima, MAC has also been demonstrated to co-localise 

with SMCs (Torzewski et al., 1997), CRP (Torzewski et al., 1998a), apoptotic cells 

(Niculescu et al., 2004) and modified lipoproteins (Torzewski et al., 1998b). From these 

studies it can be seen clearly that MAC formation takes place in areas of the artery wall 

rich in moieties which activate complement. The effects of MAC deposition on cultured 

nucleated cells are many and varied depending on the cell type under examination; 

however, lysis of nucleated cells by MAC is a rare event in vivo, since several 

protective mechanisms exist including the widespread expression of CD59 (Meri et al.,
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1990) and the ability of nucleated cells to exo- or endo-cytose the MAC complex 

(Morgan et al., 1987). In spite of this there are many important “non-lethal” events 

which can occur due to the deposition of the MAC on a nucleated cell.

MAC can trigger signalling cascades that lead to smooth muscle and endothelial cell 

proliferation (Fosbrink et al., 2006; Halperin et al., 1993; Niculescu et al., 1999). In the 

context of atherosclerosis, these processes can result in SMC infiltration into and 

proliferation within the intima and endothelium neovascularisation. Sublytic MAC 

formation on endothelial cells has also been shown to induce the release of growth 

factors (Benzaquen et al., 1994), increase expression of adhesion molecules (Kilgore et 

al., 1995), tissue factor (Saadi et al., 1995) and cyclooxygenase-2 (COX-2) (Bustos et 

al., 1997) and stimulate production of inflammatory cytokines (Kilgore et al., 1997). 

MAC deposition on SMCs can induce protection from apoptosis (Niculescu et al.,

1999) and in macrophages MAC has been shown to promote foam cell formation in the 

presence of Cu-oxidized LDL (Wu et al., 2009).

Despite ample evidence suggesting a role for terminal pathway activation during 

progression of atherosclerosis, studies using animal models have so far produced 

conflicting results (Geertinger and Soerensen, 1977; Patel et al., 2001; Schmiedt et al.,

1998). C5 deficiency had little or no effect in the apoE-deficient mouse model, leading 

the authors to suggest that MAC had no role in this model of atherosclerosis (Patel et 

al., 2001). However, contrasting data were obtained from studies in C 6 7 rabbits which, 

when fed a high-fat diet, developed less atherosclerosis than their C6+/+ controls 

(Geertinger and Soerensen, 1977; Schmiedt et al., 1998). MAC formation is blocked in 

C 5 7 mice and C6 7 rabbits, suggesting that there may be species differences in the roles
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of MAC in atherosclerosis; alternatively, it is possible that C5a, the other product of C5 

cleavage, has a hitherto unrecognised protective role in atherosclerosis.

The work described in this chapter was initiated to clearly define the role of the 

terminal pathway during atherosclerosis. Section 2 and 3 of this chapter describe the 

role of MAC during the development of atherosclerosis by characterising the effect of 

CD59a and C6 deficiency on the progression of the disease in the apoE'7' mouse model. 

Section 4 of this chapter details an investigation into the efficacy of anti-C5 treatment 

in apoE7 mice as a potential complement-mediated therapy for atherosclerosis.

2. Unregulated MAC during atherosclerosis

2.1 A brief introduction

Animal studies carried out so far investigating the role of the terminal pathway in 

atherosclerosis using the apoE7 mouse model have focused on individual complement 

components rather than complement regulators.

It was hypothesised that:

1. defective complement regulation in the vessel wall would enhance local 

complement activation.

2. the resultant increase in inflammation would exacerbate atherosclerosis.

To test these hypotheses, Cd59a 7 mice were back crossed onto the apoE7' mouse 

background and the resulting double knock-outs (and their litter-matched controls) fed
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a high fat diet at 8 weeks of age for 8 weeks. Atherosclerosis was assessed in the 

brachiocephalic artery.

2.2 Specific methods

2.2.1 Histochemical staining of CD3+T>cells in atherosclerotic lesions

T-cell staining was carried out on sections fixed in 4% formaldehyde and blocked with 

10% goat serum in 2% (w/v) BSA in PBS. The presence of T-cells was revealed using 

hamster anti-mouse CD3 antibody (20pg/ml), followed by biotinylated goat anti

hamster IgG (18.5pg/ml), each diluted in PBS containing 2% (w/v) BSA and 

subsequent detection using a streptaviding-alkaline phosphatase conjugated antibody 

(BD Bioscience) followed by New Fuchsin solution (New Fuchsin Kit; Dako UK Ltd). 

Between each step, sections were washed in PBS three times (5 minutes each). Sections 

were finally washed in dfUO for 2 minutes and counterstained with Mayer’s 

haematoxylin. Subsequently, sections were mounted using aquamount (BDH 

Laboratory Supplies).

2.2.2 Macrophage immunostaining in atherosclerosis

Sections to be stained for macrophages were fixed in ice-cold acetone for 10 minutes. 

Endogenous peroxidase activity was inhibited by incubation with 3% hydrogen 

peroxide solution for 20 minutes at room temperature. Sections were then blocked with 

avidin/biotin blocking kit (Vector laboratories) incubated at room temperature for 10 

minutes in each solution followed by a second blocking step using a mixture of 10% 

(v/v) goat and 2.5% (v/v) mouse serum diluted in PBS incubated at room temperature 

for 1 hour. Macrophages were detected using anti-murine macrophage antibody (0.1
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pg/mL) (MOMA-2, Serotec) for 1 hour at room temperature. Sections were then 

incubated with biotinylated goat anti-rat Ig (Vector Laboratories) (diluted 1:250 in 1% 

(w/v) bovine serum albumin (BSA) in PBS) for 45 minutes at room temperature, 

followed by horseradish peroxidase-labelled Extravidin (Sigma-Aldrich) (diluted 1:500 

in 1% (w/v) BSA in PBS) for 30 minutes at room temperature. Immunopositive cells 

were detected using diaminobenzidine (DAB) (Vector laboratories). All sections were 

counterstained with Mayer’s haematoxylin.

2.2.3 SMC immunostaining in atherosclerosis

Sections to be stained were fixed in ice-cold acetone for 10 minutes at room 

temperature. Endogenous peroxidase activity was inhibited by incubation with 3% 

hydrogen peroxide solution at room temperature for 20 minutes. Sections were 

subsequently blocked with avidin/biotin blocking kit (Vector laboratories) and 

M.O.M mouse Ig blocking reagent (Vector laboratories).

Sections were incubated with 50pl of mouse actin a-smooth muscle antibody diluted 

1:400 in PBS containing 2% (w/v) BSA) at room temperature for 1 hour. Sections were 

then incubated with 50pl of biotinylated goat anti-rat (Vector Laboratories) (diluted 

1:250 in PBS containing 2% (w/v) BSA) and detected using Vectastain Elite ABC kit 

(Vector Laboratories). All sections were washed between each step in PBS for 5 

minutes three times.

Finally sections were rinsed in dFLO for 2 minutes before detection with DAB substrate 

(Vector laboratories). Brown colour was allowed to develop and the reaction was
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stopped by rinsing in tap water. All sections were counterstained with Mayer’s

haematoxylin.

2.2.4 Immunostaining for complement regulators Crry, CD55 and CD59a

Sections to be stained for complement regulators were fixed in ice-cold acetone for 10 

minutes. Endogenous peroxidase activity was inhibited by incubation with 3% 

hydrogen peroxide solution for 20 minutes at room temperature. Sections were then 

blocked with avidin/biotin blocking kit (Vector laboratories) (incubated at room 

temperature for 10 minutes in each solution) followed by a second blocking step using 

a mixture of 10% (v/v) goat and 2.5% (v/v) mouse serum in PBS, incubated at room 

temperature for 1 hour. Complement regulators Crry, CD55 and CD59a were 

subsequently detected using: rat anti-mouse Crry mAb 5D5 (2.6 pg/mL; a generous gift 

from Dr. M. Holers, Denver, USA) ; (Li et al., 1993); rat anti-mouse CD55 mAb 2C6 

(13 pg/mL; prepared in house using standard immunisation procedures) (Spiller et al.,

1999); and rat anti-mouse CD59a mAb mCD59a.7 (0.1 pg/mL; a kind gift from Dr. C. 

L. Harris, Cardiff University) respectively. Primary antibodies were incubated for 1 

hour at room temperature. Sections were then incubated with biotinylated goat anti-rat 

(Vector Laboratories) (diluted 1:250 in 1% (w/v) bovine serum albumin (BSA) in PBS) 

for 45 minutes at room temperature, followed by horseradish peroxidase-labelled 

Extravidin (Sigma-Aldrich) (diluted 1:500 in 1% (w/v) BSA in PBS) for 30 minutes at 

room temperature. Immunopositive cells were detected using DAB (Vector 

laboratories). All sections were counterstained with Mayer’s haematoxylin.
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2.2.5 Nuclear staining using Mayer’s haematoxylin

Sections were counterstained with Mayer’s haematoxylin for 3 minutes and blued in 

running tap water. Sections were then dehydrated using a five step procedure, 5 minutes 

at each step:

1) dH20 ,

2) 70%ethanol

3) 90%ethanol

4) 100%ethanol

5) 100%ethanol.

Slides were placed into histoclear solution (National Diagnostics Ltd) twice for 5 

minutes before mounted with histomount (National Diagnostics Ltd).

2.3 Results

2.3.1 Pathological observations

To examine the role of CD59 during atherosclerosis I generated mice deficient in both 

apoE and CD59a and subjected them (together with their controls) to a period of high 

fat feeding. These two groups of mice, (apoE'/7Cd59a‘/ and apoE 7') were then 

characterised and compared, analysing various parameters including body weight, 

heart: body weight ratio (as a measurement of cardiac hypertrophy) and lipid profiles 

(cholesterol, triglyceride and serum turbidity) (see table 4.1).
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2.3.2 Plaque area is increased in apoE*/7Cd59a'A mice

Next the role of the MAC and its regulator, CD59, was examined in relation to the 

development of atherosclerosis. Morphometric analyses of atherosclerotic plaques were 

carried out comparing fat-fed apoE/ /Cd59a‘/ and their litter-matched apoE7 controls. 

For this, one section of the brachiocephalic artery was taken at the same position for 

each mouse from the proximal end of the vessel and stained with EVG revealing that 

the average plaque size in apoE/7Cd59a/‘ mice was double that seen in gender, age, 

strain and litter-matched apoE'7 controls on an identical diet. Figures 4.1 A and B show 

representative sections from apoE / /Cd59a‘/’ and apoE A mice respectively. The pooled 

data are shown in figure 4.1C (59.9 ± 13.1 xlO3 pm2 versus 28.2 ± 7.9 xlO3 pm2; P < 

0.05). Table 4.2 summarises the morphometric analyses, including plaque, lumen, 

media and vessel area. Mean lumen area, media area and total vessel area were not 

significantly different between the groups.
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Group Body weight 
(g)

Heart: body 
(xlO'1)

Cholesterol
(mmol/L)

Triglyceride
(mmol/L)

Serum turbidity

ApoE/7Cd59a/' 41 ±2.3 4.8 ±0.2 29.0± l .7 2.7 ±0.3 25.0 ±3.7
(n=12) (n=l2) (n=2l) (n=22) (n=l4)

ApoE’’ 44 ±2.1 4.3 ±0.2 34.0 ± l.9 3.2 ±0.3 36.8 ± 5.4
(n=16) (n=l6) (n=25) (n=28) (n=l6)

P value 0.240 0.140 0.080 0.230 0.090

Table 4.1 Body weight, heart: body weight ratio, lipaemia index, total cholesterol and triglyceride levels in 16 week old 

apoE‘/7Cd59a"/'a n d  apoE'/_ mice. All animals were fed a high fat diet from 8 weeks old for 8 weeks. Data are shown as mean ± 

SEM.



Group
Vessel Area 

(xlO3 pm2)

Plaque Area 

(xlO3 pm2)

Media Area 

(xlO3 pm2)

Lumen Area 

(xlO3 pm2)

ApoE/7Cd59a'/'

(n=14)
345.0 ±25.0 *59.9 ± 13.1 97.0 ± 7.6 188.0 ± 10.8

ApoE7'

(n=15)
325.0 ±20.0 28.2 ±7.9 90.0 ±8.1 207.0 ± 9.8

P value 0.520 0.045 0.530 0.200

Table 4.2 Brachiocephalic artery morphometric data in 16 week old apoE' VCdSQa" ' and apoE_/*mice.

All animals were fed a high-fat diet from 8 weeks of age for 8 weeks. *P<0.05 versus apoE' ’ control.



ApoE'/7Cd59a'/' ApoE7'

Figure 4.1 Mean plaque area measurement in brachiocephalic arteries of apoE7 

/Cd59a7' and apoE7' mice after 8 weeks of high-fat feeding. S ections o f  the 

b rach io cep h a lic  arte ry  w ere stained  w ith  E V G . T h e  bars show  group  m ean s ±  SEM . 

S cale  bars: 200pm .

(A) S ing le  large p laque o ccu p y in g  h a lf o f  the vessel from  an ap o E 7 /C d 5 9 a 7 m ouse.

(B ) A  sm all p laque (arrow ed) from  an ap o E 7 m ouse.

(C) M ean p laque area in ap o E 7 /C d 5 9 a7' (n= 14) and  ap o E 7 (n=15) m ice.
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2.3.3 Plaque lipid content

As another index of plaque development, plaque lipid content and the effect of MAC on 

these parameters were measured in apoE'7VCd59a'7' and apoE7 mice. Brachiocephalic 

artery sections were stained with oil red O to visualise neutral triglyceride and lipid 

content. No difference was observed in plaque lipid content between apoE 7'/Cd59a7 

and apoE7 mice as demonstrated in figure 4.2.

ApoET7Cd59a

Figure 4.2 Measurement of plaque lipid content. C o m parison  o f  percen tage o f  

p laque area  sta in ing  fo r lipid w ith  oil red O  b etw een  apoE  7 /C d 5 9 a '7 and  apoE '7' 

an im als  a fte r 8 w eeks o f  h igh-fa t diet. S ections o f  the b rach iocepha lic  artery  w ere 

sta ined  w ith  oil red  O  (red) and  co u n ters ta in ed  w ith  haem atoxy lin  (blue). B ars show  

group  m eans ±  S E M . S cale bars: 200pm .

(A ) R ep resen ta tiv e  sec tion  from  an ap o E '7V C d59a‘7" m ouse. (B) R epresen ta tive  section  

from  an apoE*7' m ouse. (C ) M ean percen tage s ta in in g  w ith  oil red  O in the lesion area 

in ap o E '7VCd59a"7' (n=9) and ap o E '7'(n = 1 0 )  m ice.
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2.3.4 CD59a deficiency causes increased deposition of MAC in plaques

The extent of terminal complement pathway activation was examined by staining for 

C9 deposition as a surrogate marker of MAC. Complement activation was also assessed 

by staining for C3 fragment deposition. MAC staining was absent from unaffected 

vessel walls (i.e. those vessels with no plaque), but clearly present in early and late 

stage plaques obtained from both apoE'7/Cd59a7" (figure 4.3 A) and apoE'7' mice (figure 

4.3B). To better visualise and analyse the expected increase in MAC staining in apoE7 

/Cd59a7 mice, fluorescence intensity detection limits were set at a high sensitivity 

level, hence the apparently low levels of MAC staining recorded in apoE controls.

MAC deposits were more than 10-fold increased in the apoE 77Cd59a‘A mice compared 

to the apoE7' controls (figure 4.3C; 28.9 ± 9.4% versus 2.7 ± 0.8%; P < 0.05). C3 

deposition was detected weakly in unaffected artery walls and strongly in plaques from 

the brachiocephalic arteries of both apoE'7/Cd59a'7‘ and apoE7' mice (figures 4.3D and 

E respectively). There was no significant difference in levels of C3 between the apoE7 

/Cd59a 7‘ mice and their apoE7 controls (figure 4.3F).

2.3.5 Infiltrating inflammatory cells in the atherosclerotic plaque

To assess whether increased MAC deposition in apoE 7 /Cd59a 7‘ mice would cause an 

increase in the numbers of inflammatory cells, plaques were stained for macrophages 

and T cells. There were no significant differences in the proportion of plaque area 

staining for macrophages or T cells (as revealed by staining with MOMA-2 and CD3 

respectively) between the two groups (figures 4.4 and 4.5 respectively).
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ApoE/ Cd59a'/' ApoE''

20-.

A poE 'vC d59a'' A poE 7

Figure 4.3 MAC deposition and lesional C3 levels in atherosclerotic brachiocephalic 

arteries. Comparison of percentage MAC staining (Panels A, B, C) or C3 staining (Panels D, 

E, F) in apoE*//Cd59a'/ and apoE7' animals at 16 weeks after 8 weeks of high-fat diet. Sections 

of the brachiocephalic artery were stained with rabbit anti-rat C9 for MAC or rat anti-mouse 

native C3 (red) and nuclei were stained with DAPI (blue). The bars show group means ± SEM. 

Scale bars: 200pm.

(A) Representative section from an apoE/7Cd59a A mouse.

(B) Representative section from an apoE'7' mouse. Inset shows negative control.

(C) Mean percentage of lesional MAC staining in apoE'7/Cd59a'7' (n=l 1) and apoE'7' (n=9) 

mice.

(D) Representative section from apoE//Cd59a/" mouse.

(E) Representative section from apoE'7' mouse. Inset shows negative control.

(F) Mean percentage of lesional C3 staining in apoE 7/Cd59a'7' (n=l 1) and apoE'7' (n=l 1) mice.
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ApoE 7Cd59a'

Figure 4.4 Macrophage staining in plaques. Comparison of percentage of plaque area 

staining with a macrophage marker in apoE77Cd59a'' and apoE7' animals after 8 weeks 

of high-fat diet. Sections were stained with MOMA-2 (brown) for macrophages and 

counterstained with haematoxylin (blue). The bars show group means ± SEM. Scale 

bars: 50pm. (A) Representative sections from an apoE7VCd59a7' and (B) apoE7' mouse 

stained for MOMA-2, inset shows an isotype control stained section. (C) Mean 

percentage of plaque stained with MOMA-2 in apoE7'Cd59a7' (n=7) and apoE7' (n=4) 

mice.
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ApoE/ /Cd59a ApoE7'

Figure 4.5 Measurement of T-cell staining in plaques. Comparison of percentage 

CD3-positive staining within the lesions of apoE7VCd59a'7~ and apoE7 mice after 8 

weeks of high-fat diet. Sections of the brachiocephalic artery were stained with anti- 

CD3 antibody (red) and counterstained with haematoxylin (blue). Bars show group 

means ± SEM. Scale bars for A and B: 50pm. Scale bars for D and E: 200pm

(A) Representative section from an apoE'7VCd59a'7' mouse.

(B) Representative section from an apoE'7 mouse. Inset shows an isotype control 

stained section.

(C) Mean percentage CD3-stained lesion area in apoE'7VCd59a'7' (n=5) and apoE‘7‘ 

(n=7) mice.
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2.3.6 The absence of Cd59a is not compensated by up-regulation of other 

complement regulators

Expression of the membrane-bound complement regulators Crry, CD55 and Cd59a 

were examined and compared in atherosclerotic vessels of both apoE'7VCd59a'7' and 

apoE A controls. Crry and CD55 were expressed in normal vessel walls and plaques in 

both groups of mice (figures 4.6 A, B, D and E). There was no obvious difference in 

immunostaining by casual examination of either Crry or CD55 between the groups. 

Cd59a expression was absent from apoE/7Cd59a'/' mice and present within the 

brachiocephalic arteries of apoE7 mice (figures 4.6 C and F respectively).

2.3.7 In the absence of Cd59a the MAC influences SMC proliferation and 

survival in atherosclerosis

The MAC has been shown to co-localise with SMCs in human atherosclerotic plaques, 

where it is plays a major role in SMC proliferation (Niculescu et al., 1999; Torzewski et 

al., 1997). To examine the role of the MAC and its regulator CD59 on plaque SMC 

content sections from the brachiocephalic arteries of apoE’7' mice lacking the inhibitor 

of MAC formation, Cd59a were stained for a-actin (a marker of SMCs). Firstly SMC 

content in the plaques from apoE"7VCd59a'7' versus apoE'7’ controls was compared. In 

this case, the absence of Cd59a did not appear to alter plaque SMC content (figure 4.7).
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anti-mouse Crry anti-mouse CD55 anti-mouse CD59a

Figure 4.6 Immunolocalisation of complement regulators. ApoE /Cd59a7 and 

apoE " mice were fed a high-fat diet for 8 weeks from 8 weeks of age. Sections of the 

brachiocephalic artery were stained for complement regulators using specific 

monoclonal antibodies (brown) and nuclei were stained with haematoxylin (blue). Scale 

bars: 50pm. Lumen is indicated by L.

(A), (B) and (C) Staining of Crry (rat anti-mouse Crry mAb (5D5)), CD55 (rat anti

mouse CD55 mAb (2C6)) and CD59a (rat anti-mouse CD59a mAb (mCD59a.7)) 

respectively in apoE'/7Cd59a'/' mice. (D), (E) and (F) Staining of Crry, CD55 and 

CD59a respectively in apoE*' mice. Inset shows a negative stained section of an 

atherosclerotic brachiocephalic artery from an apoE' mouse for Crry (D) and CD55 (E) 

staining respectively.
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However, it was noted that plaque size varied greatly within both groups, thus it was 

decided to compare the percentage of SMC content in both small and large plaques 

between the two groups. After grouping the plaques into “early” (fatty streaks and 

fibrous plaques with cross sectional areas <80 x 103 pm2) and “advanced” (complex 

plaques with cross sectional areas >80 x 103 pm2), a significant increase in the SMC 

content of “early” plaques from apoE'7/Cd59a'7' mice as compared to apoE'7'mice (%  a- 

actin staining 62.0% ±7.1%  versus 21.4 ± 6.1 %; P < 0.01) was found. Figures 4.8 A 

and B show representative pictures of early plaques stained for SMC a-actin. By 

contrast, in “advanced” plaques SMC content was significantly reduced in apoE'7' 

/Cd59a"7" mice versus apoE'7' controls (% a-actin staining 15.3 ± 4.8% versus 36.6 ± 6.7 

%; P < 0.05). Figures 4.8 C and D show representative pictures of advanced plaques 

stained for SMC a-actin. Combined data are presented in figure 4.8 F. The proportion 

of plaque staining for a-actin in the apoE'7' /Cd59a'7’ mice fell more than three-fold 

between “early” and “advanced” plaques (62.0% ± 7.1% versus 15.3 ± 4.8%; P < 0.01).

2.3.8 Co-localisation of MAC on SMCs in an atherosclerotic artery of an 

apoE*7* mouse

To further interrogate the relationship between MAC and SMC plaque content in 

the mouse, brachiocephalic artery sections of high fat fed apoE’7' mice were double 

stained with rat anti-rabbit C9 and a-smooth muscle actin. The data clearly show 

that MAC co-localises with SMC in the plaque, which is depicted in yellow (figure 

4.9).
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ApoE'7Cd59a'

Figure 4.7 Percentage of SMC content in apoE /7Cd59a'/‘ versus apoE'7' mice. Mice 

were fed a high fat diet at 8 weeks of age for 8 weeks. Brachiocephalic artery sections 

were stained with a-actin smooth muscle antibody. Graph shows percentage of plaque 

stained for smooth muscle a-actin in apoE‘/ /Cd59a‘/" (n=10) and apoE*7* (n= 13) mice.

2.3.9 Co-localisation of MAC with macrophages within the plaque

Although no difference was observed in percentage plaque macrophage content 

between apoE'77Cd59a‘7~ and apoE'7' mice, we investigated whether there was any 

relation between MAC formation and resident macrophages within the plaque. We 

observed co-localisation of MAC with macrophages (figure 4.10 (depicted in yellow)) 

at deep intimal sites within the lesion.
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Figure 4.8 SMC content in early and advanced lesions. Comparison of percentage smooth 
muscle a-actin staining in early plaques (< 80 x 103 pm2) or advanced plaques (complex 
plaques with areas >80 x 103 pm2) of apoE'/7Cd59a'/ and apoE'7 animals at 16 weeks, after 8 
weeks of high-fat diet. Brachiocephalic artery sections were stained for SMCs with anti-smooth 
muscle a-actin and counterstained with haematoxylin (blue). The bars show group means ± 
SEM. Scale bars = 200pm. (A) Representative section of an early lesion from an apoE‘7Cd59a' 
7 mouse. (B) Representative section of an early lesion from an apoE'7 control. (C) 
Representative section of an advanced lesion from an apoE‘7/Cd59a'7 mouse. (D) 
Representative section of an advanced lesion from an apoE'7' control. (E) A negative stained 
section of an atherosclerotic brachiocephalic artery from an apoE7 mouse. (F) Percentage of 
plaque stained for smooth muscle a-actin in early and advanced plaques of apoE'7/Cd59a7' (n=3 
and 8 respectively) and apoE'7' (n=5 and 5 respectively) mice.
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Figure 4.9 An atherosclerotic vessel from an apoE A mouse showing MAC 

deposition co-localised in regions of SMCs. Images show cell nuclei (blue), 

MAC (red) or smooth muscle a-actin (green) (A - C respectively). Merged images 

correspond to the overlay of cell nuclei, MAC and smooth muscle a-actin (Figure 

D). Co-localisation of MAC with smooth muscle a-actin staining appears in 

yellow. Inset shows negative control. Scale bar: 100pm.



Figure 4.10 An atherosclerotic vessel from an apoE'7' mouse showing MAC 

deposition co-localised in regions of macrophages. Images show cell nuclei (blue), 

MAC (red) or macrophage marker F4/80 (green) (A - C respectively). (D) Merged 

images correspond to the overlay of cell nuclei, MAC and macrophages, inset shows 

negative control. Co-localisation of MAC with macrophage is shown in yellow. Scale 

bar: 100pm.
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3. The role of complement C6 in atherosclerosis

3.1 A brief introduction

In the first part of chapter 4, it is shown that MAC formation plays an important role in 

atherosclerotic plaque growth since in the absence of the MAC regulator, CD59a, the 

rate of progression of atherosclerosis was greatly accelerated in the apoE7’ mouse 

model. To further explore this relationship, atherosclerotic burden was studied in the 

absence of functional terminal lytic pathway activation, using C6 7 mice on the apoE7' 

background. C67 mice are particularly relevant for investigating the pathogenic role of 

MAC, since they have previously been used to implicate MAC as a causative agent in a 

wide range of diseases, including reperfusion injury, glomerular damage, and xenograft 

hyperacute rejection (Falk et al., 1983; Fondevila et al., 2008; McCurry et al., 1995).

I hypothesised that: deficiency of C6 would result in diminished terminal pathway 

activation in apoE7' mice causing protection against atherosclerosis.

Two independent studies have already shown that deficiency of C6 was protective in a 

rabbit model of atherosclerosis (Geertinger and Soerensen, 1977; Schmiedt et al.,

1998). However, studies using mouse models of atherosclerosis to determine the effect 

of terminal pathway activation have been controversial. Whilst C5 deficiency had no 

effect on atherosclerotic burden in apoE7" mice (Patel et al., 2001), inhibition of C5 

using a neutralising anti-mouse C5 antibody (BB5.1) slowed the progression of 

atherosclerosis, assessed in aortic roots and by enface staining, of apoE7 /Cd59a/b7‘ 

mice (Wu et al., 2009).
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3.2 Results

3.2.1 Deficiency of C6 inhibits atherosclerotic plaque progression in apoE'

7‘ mice

To delineate the role of MAC during atherosclerosis apoE'7' mice were crossed with Cb 

A mice generating apoE /7C6'/' and controls (apoE'/7C6+/+). Having no C6, these mice 

were incapable of MAC formation from birth. The mice were fed a high-fat diet for 12 

weeks to induce severe disease, in the expectation that this would more clearly reveal 

differences between the test and control groups. Analyses of the brachiocephalic 

arteries revealed that the mean plaque cross-sectional area in apoE'7/Cb'7' mice was 

significantly decreased compared to the apoE / /C6+/+ controls. Figures 4.11 A and B 

show representative sections from apoE'7/Cb‘7' and apoE'7 mice respectively, while 

figure 4.11 C shows the pooled data (bb.O ± 23.2 versus 179.5 ± 14.1 xlO3 pm2; P < 

0.001). Table 4.3 summarises the morphometric analyses, including plaque, lumen, 

media and vessel area. The mean lumen and media areas were not different between the 

groups. However, the total vessel area was significantly decreased in the apoE'7 /Cb‘7' 

mice compared to apoE'7' controls (Table 4.3; 349.9 ± 39.b versus 4b9.8 ± 28.2 xlO3 

pm2; P<0.05). There were no significant differences in body weight, heart: tibia, 

kidney: tibia or spleen: tibia ratio between apoE'7 /Cb'7' and apoE'7' mice (Table 4.4).
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Figure 4.11 Mean plaque cross sectional area in brachiocephalic artery of apoE7 

/C6'/‘ and apoE' * control mice after 12 weeks of high-fat feeding. Sections of the 

brachiocephalic artery were stained with EVG. The bars show group means ± SEM. 

Scale bars: 200pm.

(A) A small plaque (arrowed) from an apoE7VC67‘ mouse.

(B) Single large plaque occupying half of the vessel from an apoE7' mouse.

(C) Mean plaque area in apoE' 7C6‘ ' (n=8) and apoE7' (n=10) mice.
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Vessel Area 

(xlO3 pm2)

Plaque Area 

(xlO3 pm2)

Media Area 

(xlO3 pm 2)

Lumen Area 

(xlO3 pm 2)

ApoE~7C6‘‘

(n=8)
*349.9 ± 39.6 ***66.01 ±23.2 100.2 ± 11.7 183.7 ± 15.9

ApoE'7'

(n=10)
469.8 ± 28.2 179.5 ± 14.1 97.5 ± 10.1 192.8 ± 17.2

P value 0.022 0.001 0.865 0.708

Table 4.3 Brachiocephalic artery morphometric data in 20 week old apoE^/Cb"7" and apoE'/_ mice.

All animals were fed a high-fat diet from 8 weeks of age for 12 weeks.



Group Body weight 
(g)

Heart: tibia
(xlO"3)

kidney: tibia

(xlO"3)

Spleen: tibia

(xlO"3)

ApoE‘7C 6" 39.7 ± 1.5 9.6 ± 0.6 13.7 ±0.6 8.1± 1.0
(n=25) (n=5) (n=5) (n=5)

ApoE"" 42.85 ± 1.2 10.7 ±0.5 12.2 ±0.5 9.3 ± 0.5
n=25 (n=15) (n=10) (n=10)

P value 0.103 0.244 0.128 0.347

Table 4.4 Body weight and heart, kidney and spleen: tibia data in 20 week old apoE'^/Cb ^and apoE"7'mice. In order to 

assess organ hypertrophy, tibia length was measured and used to normalise heart, spleen and kidney weights. All animals were 

fed a high-fat diet from 8 weeks of age for 12 weeks.



3.2.2 Terminal pathway activation is abolished in atherosclerotic plaques 

from apoE'/7C6'/‘ mice

It was hypothesised that attenuation of plaque progression observed in apoE"7/Cb‘7‘ 

mice was due to absence of terminal complement activation and MAC formation within 

the plaque. To address this hypothesis, plaques were stained for the presence of MAC. 

MAC deposition was abundant in plaques of control apoE’7' mice, both on the 

endothelium (inset, thick white arrow) and in the necrotic core (inset, large non-cellular 

area) (figure 4.12 B). In contrast, no staining for MAC above background levels was 

found in plaques from apoE'7/Cb'7' mice (figure 4.12 A). Figure 4.12 C shows the 

pooled data for MAC deposition (apoE'7VCb'7~: 12.8 ± 3.5% versus apoE'7": 43.0 ± b.5%; 

P<0.01).

3.2.3 Altered lipid metabolism in apoE '77C6‘7' mice

Lipid profile measurements were carried out to assess whether lack of MAC formation 

in the plaque was solely responsible for attenuation of disease progression in apoE'7'

/Cb 7* mice. Since alteration of lipid profile can influence disease progression, serum 

cholesterol, triglyceride and serum turbidity were measured in apoE'7 /Cb'7' mice. 

Glucose levels were also assessed for this reason. Surprisingly, a significant decrease in 

cholesterol, triglyceride and serum turbidity was observed in the serum of apoE‘7 /Cb'7' 

mice when compared to apoE’7' controls (Figure 4.13 A; 33.0 ± 3.bmmol/L versus 44.0 

± 2.3mmol/L; P<0.05; B; 2.7 ± 0.7mmol/L versus 4.4 ± 0.4mmol/L; P<0.05; C; 31.4 ± 

5.5mmol/L versus bl.77 ± 5.9mmol/L; P<0.01 respectively). Cb deficiency had no 

effect on glucose levels (figure 4.13 D).
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ApoET/7C6'/* ApoE-7'

Figure 4.12 Terminal complement activation in apoE'/7C6'/‘ and apoE'7' mice

Brachiocephalic artery sections were stained with rabbit anti-rat C9 (red) for MAC 

deposition and nuclei were stained blue with DAPI.

(A) Minimal MAC staining in a large plaque from an apoE'77C6'7' mouse.

(B) MAC staining is abundant in an advanced plaque of an apoE'7' mouse. Insets show 

higher magnification of areas where MAC deposition is localised within the plaque: 

lining the endothelial wall (arrowed) and within the necrotic core of the plaque. (Inset 

scale bar: 50pm).

(C) Brachiocephalic artery section stained with secondary antibody only.

(D) Comparison of percentage MAC staining in apoE 77C6'7' (n=8) and apoE7' (n=9) 

mice.
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Figure 4.13 Serum lipid and glucose levels of apoE'77C6*7* and apoE'7' mice after 

12 weeks of high-fat feeding. (A) Serum cholesterol (n=8 and 16 respectively) (B) 

triglyceride (n=9 and 16 respectively) (C) serum turbidity (n=9 and 16 

respectively) and (D) glucose levels (n=6 and 5 respectively) were measured at 20 

weeks of age after 12 weeks of high fat diet in apoE 7'/C6'7 mice and apoE7 

controls.
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4. Complement therapy for the treatment of atherosclerosis

4.1 A brief introduction

The role of the terminal pathway during the progression of atherosclerosis in apoE_/' 

mice has been confirmed in Chapter 4 section 2 and 3 with the disease worsening 

significantly in the absence of the MAC regulator CD59a and by contrast, being 

ameliorated in the absence of C6, vital for the formation of MAC . These results 

provide a strong background for the development and testing of strategies which target 

the terminal complement pathway as a therapeutic approach to mitigate the progression 

of atherosclerosis.

The anti C5 mAb, Eculizumab, is already on the market as a therapeutic reagent for the 

treatment of paroxysmal nocturnal hemoglobinuria (PNH). Thus, a practical approach 

to test the effect of inhibition of the terminal complement pathway as a therapy for 

atherosclerosis might be to target the fifth component of the complement cascade 

(Ricklin and Lambris, 2007).

It was hypothesised that: inhibiting activation of the terminal pathway by 

administration of a C5 mAb in vivo would reduce disease severity in an 

atherosclerotic-prone mouse model.

This study was carried out using the anti-mouse C5 mAb, BB5.1. This antibody, similar 

to Ecluzimab, prevents cleavage of complement factor C5, thereby preventing C5b 

generation and MAC formation. In other mouse models, administration of BB5.1 has 

been shown to attenuate disease progression in experimental autoimmune uveoretinitis,
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myocardial ischemia and reperfusion injury and antibody-induced glomerulonephritis 

(Busche and Stahl, 2010; Copland et al., 2010; De Vries et al., 2003; Huugen et al., 

2007).

4.2. Specific methods

4.2.1 BB5.1 Purification

4.2.1.1 Antibody preparation

Anti-mouse C5 neutralising antibody, BB5.1, producing hybridoma cells (a kind gift 

from Professor B. Stockinger) were maintained in CELLine 1000 Integra flasks 

(Integra Bioscience). The flask consists of a lower cell compartment and an upper 

compartment for nutrient medium separated by a lOkDa semi-permeable membrane.

Cell compartment medium contained 15% v/v heat inactivated low bovine IgG foetal 

calf serum (Invitrogen Life Technologies) in RPMI-1640 (Invitrogen Life 

Technologies), 50U/ml penicillin/streptomycin, 2mM L-glutamine, ImM sodium 

pyruvate and 1% non-essential amino acids (Invitrogen Life Technologies ).

Nutrient medium contained RPMI-1640 (Invitrogen Life Technologies), 50U/ml 

penicillin/streptomycin, 2mM L-glutamine, 1 mM sodium pyruvate and 1 % non- 

essential amino acids (Invitrogen Life Technologies ).

Initially, approximately 2 x 107 cells in 20 ml of tissue culture media were inoculated 

from static culture into the cell compartment of the CELLine 1000 integra flask.
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Nutrient medium (1L) was placed in the nutrient medium compartment and the flask 

placed into a 5% CO2, 37 0 C humidified tissue culture incubators.

During cell harvesting the nutrient medium was discarded and the contents of the cell 

compartment were then removed with a pipette. Cell numbers were determined by 

diluting and counting samples using a standard haemocytometer. Cells were diluted 3-4 

fold determined by cell numbers in fresh cell compartment medium to 20 ml and 

returned to the cell compartment. Nutrient medium was removed and replaced by 

pouring during cell compartment harvest.

The residual harvested cell and antibody containing supernatant was centrifuged to 

remove cells and debris (6000g for 30 minutes at 4°C) and subsequent filtration, 

through a 0.45pm Stericup filter unit (Millipore).

4.2.1.2 Purification o f BB5.1 using Protein G affinity chromatography

Culture supernatant prepared as above was applied to a HiTrap Protein G column on 

the Akta Prime chromatography system. All steps were performed at 4°C in order to 

minimise the loss of functional activity of BB5.1. The HiTrap column was connected 

to the AKTA prime, equilibrated with binding buffer (50mM NaPhosphate, 500mM 

NaCl, pH6) then the supernatant was loaded onto the column. The run-through 

supernatant was retained and the column washed with binding buffer. Bound antibody 

was eluted from the column using elution buffer (0.1 M glycine/HCl pH 2.5) and 1ml 

fractions were collected into neutralising buffer (300pl 1M Tris/HCl pH9). Eluted 

antibody was pooled and dialysed in PBS overnight at 4°C. The dialysed antibody was
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then concentrated using an Amicon concentration system and stored at -20°C until use. 

Purity of antibody was assessed by SDS PAGE.

4.2.2 Mouse Ig purification

4.2.2.1 Preparation o f mouse Ig using Protein G affinity chromatography

Mouse serum (25ml; Gene Tex Inc.) was centrifuged at 10,000 RPM for 20 minutes at 

4°C, filtered through a 0.45pm Stericup filter unit, and diluted 1:1 in PBS, to give a 

final volume of 50ml prior to application to a protein G column for antibody 

purification as above.

4.2.2.2 In vitro characterisation ofBB5.1 and mouse Ig

The functional activity of BB5.1 and mouse Ig were tested in vitro. 50pl of rbE-A were 

incubated with 50pl mouse serum pre-treated with doubling dilutions of either BB5.1 

or mouse Ig control starting at a concentration of 5pg/ml. After incubating for 30 

minutes at 37°C cells were pelleted by centrifugation at 2400rpm for 5 minutes and the 

percentage haemolysis was calculated (for method see chapter 2). Measurement of 

haemoglobin release was expressed relative to 100% control comprising erythrocytes 

lysed using H2O.

4.2.2.3 In vivo characterisation ofBB5.1 and mouse Ig

A pilot experiment was set up in order to assess the dose of antibody required to inhibit 

complement lysis in apoE 7 mice. 8 week old male apoE7’ mice were given a single i.p 

injection of either 1.5mg/ml or 2mg/ml of BB5.1 or mouse Ig. 3 days post injection,
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mice were sacrificed and blood harvested by cardiac puncture. Blood was allowed to 

clot, and the serum was obtained by centrifugation at 10,000rpm for 10 minutes at 4°C. 

Serum from the animals was then tested in a haemolysis assay using rbE-A.

4.2.3 Experimental protocol

Male apoE7" mice were placed on a high fat diet at 8 weeks of age for 8 weeks 

concurrent with antibody treatment before termination (see Chapter 2 for termination 

protocol). During the treatment period mice were given either 500pl of BB5.1 (2mg/ml) 

or 500pl of mouse Ig (2mg/ml), twice weekly by i.p injection. Blood samples were 

taken on days 0 (prior to administration of BB5.1), 3 and 7 (post BB5.1 treatment). This 

protocol is shown below in diagrammatic form. Subsequently, both percentage 

haemolysis and CH50 values were calculated in order to ensure complement inhibition 

was achieved in these animals (see chapter 2 for detailed method).

HIGH FAT DIET

Day 0

i.p injection

Day 3 
Tail bleed 

+
i.p injection

Day 7 
Tail bleed 

+
i.p injection

IP injections given 
twice weekly

Day 56 
Termination
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4.3 Results

4.3.1 Purification of anti-mouse C5 mAb and mouse Ig

In order to assess the efficacy of a strategy to block the terminal complement pathway 

through the use of therapeutic monoclonal antibodies, the anti C5 mAb BB5.1 was 

produced in large quantities and purified to homogeneity on Protein G column; mouse 

IgG was similarly purified (figure 4.14). One clear peak was visible in the elution 

fractions at 280nm, and the relevant fractions were collected. After 3 runs of the 

supernatant over the Protein G column, 88mg of BB5.1 was purified in a total volume 

of 14 ml, and 1 lOmg of mouse Ig in a total volume of 22ml.

To assess the purity of the eluted BB5.1 and mouse Ig samples, SDS-PAGE was 

performed. Figure 4.14 A shows that one band was detected in the non-reduced BB5.1 

sample and two bands were visible in the reduced BB5.1 sample of a Coomassie 

staining of an SDS-PAGE gel. Similarly, figure 4.14 B shows that one band is detected 

in the non-reduced mouse Ig sample and two bands were seen in the reduced mouse Ig 

sample. These results show that both BB5.1 and mouse Ig samples are pure with the 

native protein forming a band at 150 kDa. The reduced gel of both samples show a 

heavy chain band at 50kDa and a light chain at 25kDa.
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Figure 4.14 Purification of BB5.1 and mouse Ig. BB5.1 and mouse Ig was purified 

by using protein G chromatography (A) Coomassie stained 10% SDS-PAGE gel 

showing a band of 150kDa MW for non-reduced BB5.1 and two bands of 50kDa and 

25kDa for reduced BB5.1. (B) Coomassie stained 10% SDS-PAGE gel showing a 

major band of 150kDa MW for non-reduced mouse Ig and two bands of 50kDa and 

25kDa for reduced mouse Ig.

4.3.2 BB5.1 inhibits complement haemolysis in mouse serum in vitro

Before using BB5.1 to neutralise C5 in vivo, haemolysis assay was carried out to 

determine its functional activity. The haemolytic assay was carried out using mouse 

serum, which had been titrated to give 100% lysis of rb-EA at a dilution of 1:20. As 

shown in figure 4.15 addition of mouse Ig to mouse serum had no inhibitory effect on
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the percentage haemolysis. However, the addition of 3.33pg/ml of BB5.1 to mouse 

serum resulted in a 72.5% inhibition of complement mediated haemolysis.

IOO-i

80-

*35
■s 6 ° -o
Eo>

jS 40-

20 -

0.001 0.01 0.1 1 10

BB5.1 
Mouse Ig

Final concentration (|ig/ml)

Figure 4.15 BB5.1 inhibits complement activation in vitro. RbE-A were incubated 

with mouse serum pre-treated with doubling dilutions of either the monoclonal anti 

mouse-C5 antibody BB5.1 or mouse Ig control. Measurement of haemoglobin release 

was expressed relative to 100% control erythrocytes lysed with H20.

4.3.3 Pilot experiment to determine function of purified BB5.1 on 

complement haemolytic activity in vivo

A pilot experiment was carried out in order to determine the optimal concentration of 

the antibody required to inhibit complement activation in vivo. ApoE; mice received 

0.75 mg (500pl of 1.5 mg/ml) or lmg (500pl of 2 mg/ml) of either mouse Ig or BB5.1 

by i.p injection. Three days post injection the animals were sacrificed and blood 

harvested by cardiac puncture. Blood was allowed to clot and the serum was collected 

after centrifugation. Doubling dilutions of the serum were added to rbE-A and
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percentage haemolysis was calculated. The data from this experiment is shown in figure 

4.16. Administration of mouse Ig in vivo, at either 1.5mg/ml or 2mg/ml, did not affect 

complement activity. In contrast, i.p injection of BB5.1 at either 1.5mg/ml or 2mg/ml 

resulted in inhibition of complement activation. Since almost complete inhibition was 

reached with 2mg/ml of BB5.1, this concentration was used for the following 

therapeutic experiment.

100-

0 2 4 6

Mouse Ig 1.5mg/ml 
Mouse Ig 2mg/ml 
BB5.1 1.5 mg/ml 
BB5.1 2 mg/ml

% mouse serum

Figure 4.16 Neutralisation of C5 in mouse serum with BB5.1. To test the ability of 

BB5.1 to neutralise C5 in vivo different concentrations of BB5.1 or control mouse Ig 

were given to apoE'/_ mice. Treatment with BB5.1 inhibited the complement activity of 

mouse serum as reflected by the dramatic decrease of the percentage haemolysis.
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4.3.4 Treatment with C5 mAb inhibits complement activation in high fat 

fed apoE'7' mice

At 8 weeks of age apoE'7' mice were placed on a high fat diet concurrent with 

administration of either BB5.1 (1 mg/mouse) or control Ig at the same concentration. 

Mice were treated twice weekly with i.p injections of antibody. During the first week of 

treatment 50pl blood samples were collected from the tails of each mouse. Blood was 

allowed to clot and the serum was obtained by centrifugation. Following 8 weeks of 

high fat diet and antibody treatment, animals were terminated and tissue was processed 

for disease analysis. The mouse serum collected was taken at day 0, 3 and 7 and 

subjected to haemolysis assay using rbE-A. Figure 4.17 shows the mean haemolysis 

curves for apoE'7* mice at day 0 (A), 3 (B) and 7 (C) post treatment. As expected, mice 

that were treated with mouse Ig control had normal functional haemolytic activity at 

days 0, 3 and 7. In contrast BB5.1 treated mice had minimal haemolysis at day 3 (18%) 

(3 days post i.p injection) whilst at day 7 (4 days post i.p injection) haemolysis 

increased to 60%. CH50 values were calculated for each group (figure 4.18), and 

showed that at day 3 BB5.1 treatment inhibited complement haemolytic activity by 

98% when compared with the Ig control treatment (figure 4.18; 19.7 ±11.1 U/ml 

versus 670.5 ± 82.8 U/ml; P<0.0001). At day 7, inhibition of haemolytic activity was 

less in the BB5.1 treated mice compared to that seen on day 3. These data confirm that 

BB5.1 administration inhibits complement haemolytic activity in apoE'7' mice.

However treatment must be given every 3-4 days, to prevent restoration of complement 

activity.
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Figure 4.17 Effect of BB5.1 on haemolysis in apoE'/- mice. 8 week old apoE A mice were fed 

a high fat diet for 8 weeks in parallel with either BB5.1 or mouse Ig treatment. 100% 

haemolysis of rbE-A was achieved by substituting mouse serum with H20. A-C show 

haemolysis curves for BB5.1 (n=6) and mouse Ig (n=7) treated animals at day 0 (A), 3 (B) and 

7 (C). Results are expressed as mean haemolysis ± SEM.
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Figure 4.18 CH50 in apoE'7' mice treated with BB5.1 or mouse Ig.

CH50 values were determined by using the haemolysis data from figure 4.17. ApoE'7' 

mice fed a high fat diet were administered either BB5.1 (n=6) or mouse Ig (n=7) 

treatment (1 mg/mouse) twice weekly. Blood samples were taken at day 0, day 3 and 

day 7 post-treatment. Results are expressed as mean ± SEM; apoE'7 + BB5.1 treatment 

(n=6) and mouse Ig treatment (n=7).

4.3.5 Treatment with anti-mouse C5 mAh has no effect on body weight, 

cardiac hypertrophy or lipid levels in apoE'7' mice

After 8 weeks of concurrent treatment with antibody and high fat diet mice were 

terminated and body and heart weights recorded. Cardiac hypertrophy was assessed by 

calculating the heart: body weight ratio for each mouse. Blood was also collected at 

termination by cardiac puncture, allowed to clot and serum obtained by centrifugation.
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No significant differences in either body weight or cardiac hypertrophy were observed 

between BB5.1 treated animals and their mouse Ig treated controls (Table 4.5). 

Similarly treatment with BB5.1 had no effect on lipid levels in these mice compared to 

Ig controls.

4.3.6 Complement inhibition at the level of C5 does not protect apoE'7' 

mice against atherosclerosis

Brachiocephalic arteries from apoE 7* mice treated with either BB5.1 or mouse Ig 

controls, were collected upon termination. 7pm cross sections of the vessel were 

stained with EVG and plaque morphology was analysed (Table 4.6). There was no 

significant difference in plaque area between the two groups. Figures 4.19A and B 

show representative pictures from each group. Figure 4.19 C shows pooled data: 34.7 ± 

18.3 xlO3 pm2 versus 29.7 ± 9.6 xlO3 pm2.

4.3.7 Administration of BB5.1 anti-C5 mAh reduces terminal MAC 

deposition without affecting C3 deposition in atherosclerotic plaques

In order to assess the effect of BB5.1 treatment on complement levels within the plaque 

immunofluorescent staining for C3 and MAC deposition were carried out. C5 depletion 

by BB5.1 treatment did not alter C3 levels within atherosclerotic plaques of apoE'7' 

mice when compared to controls (figures 4.20 A-C). However depletion of C5 by 

administration of BB5.1 antibody caused a ten-fold reduction in MAC deposition in the 

plaques of apoE'7' mice when compared to mouse Ig treated controls. Figures 4.20D and 

E show representative plaques from each group, while figure 4.20 F shows the pooled 

data (3.1 ± 2.8% versus 26.0 ± 7.3%; P < 0.05).
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Group Body weight 
(g)

Heart: body
weight
(xl0‘3)

Cholesterol
(mmol/L)

Triglyceride
(mmol/L)

ApoE'' + BB5.1 
(n= 10)

43.1 ±4.2 4.3 ±0.8 41.4 ± 10.2 4.957 ± 1.2

ApoE' " + mouse Ig 
(n=10)

42.2 ± 4.2 3.9 ±0.5 37.7 ± 15.3 4.9 ± 1.8

P value 0.640 0.200 0.590 0.940

Table 4.5 Body weight, cardiac hypertrophy and lipid measurements in 16 week old ap o E /_ mice after 

complement inhibitory treatment (BB5.1) or control (mouse Ig). All an im als  w ere  fed a h igh-fa t  diet from 8 

w eeks  of age for 8 w eeks  and  trea tm ent w as  given.



Group
Vessel Area 

(xlO3 pm2)

Plaque Area 

(xlO3 pm2)

Lumen Area 

(xlO3 pm 2)

Media Area 

(xlO3 pm2)

ApoE'/_ + BB5.1 

(n=10)
355.6 ±51.8 34.7 ± 18.3 216.4 ±28.2 104.5 ± 17.1

ApoE' + mouse Ig 

(n=10)
341.4 ±37.7 33.0 ± 10.0 195.7 ±24.6 112.7 ± 15.7

P value 0.830 0.940 0.580 0.730

Table 4.6 Brachiocephalic artery morphometric data in 16 week old apoE'^mice after complement inhibitory treatment 

(BB5.1) or control (mouse Ig). All animals were fed a high-fat diet from 8 weeks of age for 8 weeks and treatment was given.



ApoE + Mouse Ig

Figure 4.19 Atherosclerotic plaque area following administration of BB5.1 or 

mouse Ig controls in apoE’7* mice. Sections of the brachiocephalic artery were 

stained with EVG. The bars show group means ± SEM. Scale bars: 200pm.

(A) Atherosclerotic plaque from an apoE 'mouse following BB5.1 administration.

(B) A plaque from an apoE7' control mouse.

(C) Mean plaque area in apoE'7' mice treated with BB5.1 (n=9) or mouse Ig control 

(n=9).
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Figure 4.20 Lesional C3 levels and MAC deposition in atherosclerotic 

brachiocephalic arteries. Comparison of percentage plaque area stained for total C3 or 

MAC in apoE'7' animals at 16 weeks of age after 8 weeks of high-fat diet in parallel 

with antibody treatment. Sections of the brachiocephalic artery were stained with rat 

anti-mouse C3 or rabbit anti-rat C9 for MAC (red) and nuclei were stained with DAPI 

(blue). The bars show group means ± SEM. Scale bars: 200pm. (A) and (D) 

Representative section from an apoE'7' mouse + BB5.1. (B) and (E) Representative 

section from an apoE'7 mouse + mouse Ig, inset shows negative control. (C) and (F) 

Mean percentage area of lesional C3 or MAC staining respectively in apoE'7' mice 

treated with BB5.1 (n=5) or mouse Ig (n=6).
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5. Discussion

MAC deposition is a characteristic feature of human atherosclerotic lesions and the 

pattern of MAC deposition in murine plaques closely resembles that seen in humans 

(Rus et al., 1988). It is therefore reasonable to propose that complement terminal 

pathway activation contributes to plaque formation and progression in human 

atherosclerosis.

At the time when the work presented in this chapter was begun no animal studies had 

been carried out on CD59 deficiency and atherosclerosis. However as the work was 

nearing completion three independent studies were published (An et al., 2009; Wu et 

al., 2009; Yun et al., 2008) observing a protective role for CD59 during the 

development of atherosclerosis, these confirmed initial results that I had published 

(Lewis et al., 2007).

These studies employed different models of the disease, utilising either the ldlr'A or the 

apoE7' mouse model (An et al., 2009; Wu et al., 2009; Yun et al., 2008). Mice have two 

genes for CD59: Cd59a and Cd59b. Cd59a is widely expressed and the main regulator 

of MAC assembly in the mouse (Baalasubramanian et al., 2004) whilst Cd59b is highly 

expressed only in testis (Donev et al., 2008). Yun et al. tested ldlr'7' mice deficient in 

Cd59a and showed increased plaque formation (Yun et al., 2008). Wu et al. examined 

apoE'A mice deficient in Cd59a and CD59b similarly demonstrating increased 

atherosclerotic burden in these mice, whilst protection was restored in transgenic 

endothelial and hematopoietic cell-selective over expression of CD59 in apoE~A mice 

(Wu et al., 2009).
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During the first part of this chapter, the effect of MAC dysregulation was examined in 

apoE7' mice. ApoE77Cd59a7' mice were generated by crossing Cd59a7’ mice with 

apoE7' mice. After 8 weeks of high-fat feeding the brachiocephalic arteries of these’ 

mice were found to contain plaques more than twice as large as those present in the 

apoE7’ controls. To strengthen this observation and further probe the role of the 

complement terminal pathway in atherosclerosis, the effect of C6 deficiency was 

examined. ApoE7‘/C67 mice were generated and fed a high fat diet for 12 weeks. The 

number of weeks on high fat diet was increased in order to observe maximum effect of 

MAC inhibition on plaque development. This experiment showed clearly, for the first 

time, that deficiency of C6 is strongly protective against progression of atherosclerosis 

in apoE7’ mice. This result is consistent with published studies in fat fed C67 rabbits 

and strongly implicates the MAC in both of these models of atherosclerosis (Geertinger 

and Soerensen, 1977; Schmiedt et al., 1998). Together these data illustrate the 

contrasting effects of C6 and CD59a deficiencies on plaque development in apoE7’ 

mice and clearly support the hypothesis that the MAC is an important contributor to 

atherosclerotic plaque development in the apoE7' mouse model.

It is well known that, as in humans (Hamasaki et al., 2000), atherosclerotic arteries of 

apoE7’ mice can undergo remodelling, which maintains the lumen area of the vessel 

and consequently increases the total vessel area (Bentzon et al., 2003; Jackson, 2007). 

Complement has been implicated in this process, whereby sublytic doses of MAC on 

endothelial cells caused proliferation (Fosbrink et al., 2006). In agreement with these 

studies, we found the lumen area of apoE77Cd59a7’ mice remain unchanged, despite a 

significant increase in plaque area, suggesting that remodelling had taken place in these
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animals. Accordingly, total vessel area had an upward trend however this did not reach 

significance.

In fat fed apoE7'/C67' mice, where plaque size was markedly reduced, staining for 

MAC deposition within the plaques was also significantly reduced; the converse was 

true in apoE7VCd59a7‘ mice with much larger plaques compared to controls and 

increased MAC deposition per unit area. Thus, the extent of disease in these mice 

correlated with the extent of MAC deposition. In contrast to the markedly elevated 

MAC deposition over controls seen in apoE7'/Cd59a7' mice, C3 fragments were 

abundant in plaques from both apoE7VCd59a7' and apoE7' mice. This is an observation 

which has been previously noted (An et al., 2009).

These results imply that the acceleration of disease progression observed in the apoE7’ 

/Cd59a7' mice was due to increased activation of the terminal complement cascade. 

MAC deposition was observed in non-cellular regions of the plaque, where cell nuclei 

were absent. In this case MAC in the plaque is most likely to be associated with 

extracellular debris and lipid, which accumulate in the core of advanced plaques. 

Activation of complement at this location is probably due to the presence of oxidised 

and enzymatically modified LDL, known to activate complement through the 

alternative pathway (Bhakdi, 1998). O f note, staining for the other broadly expressed 

murine membrane complement regulators CD55 and Crry was not different between the 

groups, indicating that deficiency of CD59a was not compensated for by increased 

expression of these regulators. Plaque lipid content and macrophage and T cell 

infiltration were also similar in test and control groups.
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Strong MAC deposition was also observed in regions of SMC accumulation in the 

plaque and much less frequently on macrophage cells. Co-localisation of MAC with 

macrophages has previously been reported in human atherosclerotic plaques (Rus et al., 

1989). SMC proliferation is a characteristic feature of plaque formation. In early 

plaques from apoE"/7Cd59a'/' mice, SMC accumulation was markedly increased 

compared to apoE'7' controls, suggesting accelerated proliferation or infiltration arising 

from unregulated MAC formation. In addition an association between MAC deposition 

and regions of SMC within atherosclerotic plaques was observed. The MAC has 

previously been shown to cause aortic SMC proliferation in vitro (Niculescu et al., 

1999) strengthening the hypothesis that the increases in SMC seen in the small early 

plaques from apoE'/7Cd59a /‘ mice was a MAC triggered event. In contrast, larger and 

more advanced plaques in apoE'7/Cd59a'7' mice contained fewer SMCs than similar 

sized plaques from apoE'7' controls, likely due to MAC-induced cytolysis. Reduced 

SMC number in these plaques will render them unstable and vulnerable to rupture. 

These observations are compatible with those of Wu et al, who noted that the plaques 

present in their apoE‘7 /Cd59a‘77Cd59b‘7' mice had a more vulnerable phenotype than 

those of the apoE'7' controls (Wu et al., 2009).

Inhibition of MAC formation in fat-fed apoE'7' mice by administration of a blocking 

anti-C5 mAb gave contradictory results in that, despite a highly significant reduction in 

MAC deposition in plaques, plaque size was not significantly affected, suggesting that 

MAC inhibition in this context had little affect on disease progression. Notably, a 

previous study had showed no effect of C5 deficiency on the levels of atherosclerosis in 

fat-fed apoE'7' mice (Patel et al., 2001).Taken together with the results from apoE~7C6'
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7~ mice, these data suggest that there are important differences between blockade of 

MAC at the stages of C5 and C6 which have significant effects on disease. This 

difference is not absolute because inhibition of C5 can be protective in some contexts 

as was apparently the case when anti-C5 was administered to fat-fed apoE'7/Cd59a'7' 

/Cd59b'7" mice, significantly reducing plaque development (Wu et al., 2009). However, 

there are clear gaps in available data here since the effects of anti-C5 on disease 

severity induced by fat feeding in the apoE'/7Cd59a'/' mice in this study was not tested. 

Similarly, the study of Wu et al. did not examine the effect of BB5.1 treatment in apoE' 

7~ mice undergoing high fat diet.

It is possible that the effect of CD59 deficiency on plaque progression in apoE'7' mice is 

due to a complement independent mediated effect. For instance, CD59 has been shown 

to inhibit T-cell activity in vivo and in vitro (Longhi et al., 2005). Thus, it is possible 

that the increase in lesion progression observed in apoE'/7CD59a'/‘ is due to 

enhancement of T-cell activity in these mice. In order to delineate this hypothesis, one 

approach would be to generate T-cell specific CD59 depleted mice on the apoE'7" 

backround. The exact mechanism of the protective effect of CD59 during lesion 

progression could then be further examined.

However, the question remains as to why C6 deficiency is apparently more protective 

than either deficiency of C5 or C5 inhibition. Lack of either protein should block MAC 

formation, and indeed, MAC deposition in plaques was absent in apoE‘7 /C6 7‘ and 

markedly reduced in anti-C5 treated apoE'7' mice. It is possible that antibody-mediated 

MAC inhibition is incomplete in the tissues and the residual MAC deposition is 

sufficient to drive disease. However, this is unlikely given the very low levels of MAC
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deposition in plaques of anti-C5-treated mice. Another explanation is that C6 plays a 

role in lipid metabolism, since apoE7 /C67~ mice had lowered lipid levels in comparison 

to apoE7’ controls, consequently inducing protection against atherosclerosis. The only 

other difference is that C5 inhibition or deficiency will block not only MAC formation 

but also C5a generation, unaffected by C6 deficiency. A speculative interpretation of 

these findings would be that C5a plays a hitherto unsuspected anti-atherogenic role 

during the progression of the disease. Such “protective” roles have already been 

ascribed to C5a in other contexts (Addis-Lieser et al., 2005; Strey et al., 2003;

Tanhehco et al., 2000). In atherosclerosis, important recent observations support this 

speculation: firstly, the C5a receptor is expressed in atherosclerotic plaques in man 

(Oksjoki et al., 2007c), secondly, C5a has been shown to up-regulate expression of 

MMP-1 and MMP-9 in plaque macrophages and PAI-1 in macrophages, smooth muscle 

cells and in human mast cells associating C5a in defence against plaque destabilisation 

and rupture (Kastl et al., 2006; Shagdarsuren et al., 2010; Speidl et al., 2010; Wojta et 

al., 2002).

Recently, it has been shown that in apoE7' mice, blocking C5a receptor with a specific 

antagonist or blocking mAb treatment for one week after carotid denudation injury 

caused a strong protective effect against atherosclerosis (Shagdarsuren et al., 2010). In 

contrast, long term (3 weeks) treatment promoted plaque stability through PAI-1, thus 

no difference was seen in neointimal plaque formation between the treated group and 

controls (Shagdarsuren et al., 2010). Since C5a receptor is known to bind to C5a with 

high affinity, it is plausible that the effect seen with long term blocking of C5a receptor 

was mirrored in this study, as the anti-C5 mAb treatment in this study was given for 8
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weeks. This would further explain why deficiency of C5 in apoE'7' mice had no affect 

on plaque size.

It can be further suggested that, in mice lacking CD59a, the amplification of damage 

caused by the MAC outweighs any protective effect of C5a and in this case inhibition 

of MAC formation by blockade of C5 is protective.

Another issue in comparing C6 deficiency with C5 inhibition is the fact that the 

deficient mice are never exposed to MAC formation, while for anti-C5, the mice are 

treated only for the 8 week duration of the experiment. In the latter case, MAC-induced 

damage to vessels may already have occurred in these atherosclerosis-prone mice prior 

to the start of treatment with anti-C5 and this might abrogate to some extent the 

protective effect of MAC inhibition.

Since MAC deposition is a characteristic feature of atherosclerotic lesions in both mice 

and humans (An et al., 2009; Lewis et al., 2010; Rus et al., 1988; Wu et al., 2009) it is 

reasonable to propose that MAC contributes to plaque formation and progression in 

human atherosclerosis in a similar manner to that which I and others have now 

demonstrated occurs in mice. Inhibition of MAC formation therefore remains a 

potential strategy for therapy of atherosclerosis and a realistic one given that terminal 

pathway inhibitors are already in use in the clinic (Davis, 2008) with more under 

development (Song et al., 2003). However, these results may suggest that inhibition of 

the MAC in this particular context should be targeted at C6 or later in MAC assembly 

rather than at the level of C5.
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Chapter 5: The effect of CD55 deficiency on 
atherosclerosis in apoE deficient mice

1. Introduction

Although hypercholesterolemia has had significant attention in the pathogenesis of 

coronary artery disease, hypertriglyceridemia is also a key factor in the development of 

atherosclerosis (Austin et al., 1998; Ginsberg, 2001). Firstly, high circulating levels of 

triglycerides predict increased risk for atherosclerosis (Hokanson and Austin, 1996). 

Secondly, triglyceride-rich lipoproteins have been shown to penetrate the sub- 

endothelial layer of artery walls (Rapp et al., 1994) and initiate or aggravate 

atherosclerosis in a variety of ways, including promotion of endothelial dysfunction 

(Zhao et al., 2001), stimulation of MCP-1 expression (Shin et al., 2004), enhanced 

monocyte adherence (Kawakami et al., 2002), increased foam cell formation 

(Kawakami et al., 2005), oxidative modification (McEneny et al., 2002) and promotion 

of inflammatory response (de Man et al., 2000). Thirdly, hypertriglyceridemia is 

known to be associated with low levels of HDL and high levels of abnormally small 

dense LDL (Ginsberg, 2002).

The complement system has been shown to be important in lipid metabolism 

homeostasis through the action of its central component C3. When C3 is activated it is 

cleaved into two fragments C3a and C3b. The latter is involved in opsonisation and 

removal of bacterial cells and other unwanted particles. C3a, the smaller fragment is a
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crucial player in the inflammatory response. The potent pro-inflammatory properties of 

C3a require that it is rapidly inactivated in the serum by carboxypeptidase N to form 

C3adesArg. C3adesArg, also known as acylation stimulating protein (ASP), is a stable 

product of C3 activation and a potent adipokine that stimulates uptake of triglycerides, 

glucose and NEFA, enhances triglyceride synthesis and storage and inhibits triglyceride 

lipolysis in adipose tissue, (Cianflone et al., 1989a; Germinario et al., 1993; Maslowska 

et al., 1997b).

Since postprandial hypertriglyceridemia is a risk factor for atherosclerosis (Cohn,

1998) and increased generation of C3adesArg through activation of C3 is an important 

factor aiding postprandial triglyceride clearance, complement activation may thus play 

a role in maintaining healthy arterial walls.

There is evidence to suggest that CD55, a 70kDa membrane protein that inhibits C3 

activation by accelerating the decay of the C3 cleaving enzymes of the alternative 

(C3bBb) and classical/lectin (C4b2a) pathways, is present in the endothelium. Statins 

and thrombin have been shown to induce endothelial CD55 (Lidington et al., 2000; 

Mason et al., 2002). In particular, statins have been shown to act as inducers of 

membrane complement regulatory proteins on endothelial cells, thus increasing the 

resistance of these cells to anaphylatoxin-mediated inflammatory injury and/or C5b-9- 

induced activation (Mason et al., 2002). In addition, exposure of thrombin to cultured 

endothelial cells induced CD55 expression six hours post-stimulation, with maximal 

expression reached at 24 hours. Thrombin induced up regulation of CD55 and thus 

caused reduced C3 deposition and complement mediated lysis of endothelial cells 

(Lidington et al., 2000). Both sets of data suggest that endothelial cells, lining the artery
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wall, up-regulate CD55 to offer extra protection of the vascular wall from complement

injury.

However mouse studies examining the role of C3 in atherosclerosis have reported that 

deficiency of C3, but not fB, exacerbated plaque formation and caused hyperlipidemia 

on ldlr7' and apoE'Mdlr7' backgrounds, (Buono et al., 2002; Persson et al., 2004).

CD55 knockout (CD557') mice are healthy, fertile, and do not develop spontaneous 

intravascular haemolysis, likely due to the presence of CD59a on erythrocytes which 

prevents MAC assembly and lysis (Sun et al., 1999). In humans, there is a single CD55 

gene located on chromosome 1 (Lublin and Atkinson, 1989), whilst in the mouse two 

CD55 genes exist, these are named dafl and daft which are located sequentially on 

chromosome 1 (Fukuoka et al., 1996; Song et al., 1996; Spicer et al., 1995). The mouse 

dafl gene encodes a GPI-anchored CD55 protein and is broadly expressed (Harris et 

al., 1999; Lin et al., 2001; Song et al., 1996; Spicer et al., 1995; Sun et al., 1999). In 

contrast daft gene encodes a transmembrane CD55 variant (Spicer et al., 1995) which 

is predominately expressed in the testis (Lin et al., 2001; Spicer et al., 1995; Sun et al.,

1999) and splenic dendritic cells (Lin et al., 2001).

In order to test the effect of CD55 deficiency on progression of atherosclerosis, CD557 

mice were back-crossed onto the apoE7* background and fed an atherogenic diet.

Based on the findings with the apoE7VCD59a7‘ mice, I hypothesised that CD55 

deficiency would exacerbate disease pathology in the apoE7' mouse model.
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2. Specific methods

2.1 Mean plaque area measurement

Five sections were taken per mouse at the same relative position along the 

brachiocephalic artery, and mean plaque area assessed via image analysis using an 

established method (Johnson et al., 2005). See chapter 2 for detailed methodology.

2.2 Activated C3 immunostaining

Immunostaining for complement C3 activation utilised rat anti-mouse C3b/iC3b/C3c 

mAb clone 2/11 (5pg/mL; Hy-Cult Biotechnology). Firstly, sections were fixed in 

acetone at 4°C for 10 minutes prior to 1 hour incubation at room temperature in 10% 

goat serum diluted in 2% BSA/PBS. Sections were then incubated with the primary 

antibody diluted in 2% BSA/PBS for 1 hour at room temperature. The sections were 

then washed before incubation with Alexa fluor 488-labeled goat anti-rat IgG 

(20pg/mL) (Invitrogen Life Technologies). Nuclei were stained using DAPI. Negative 

controls included replacement of primary antibody with isotype control IgG.

193



3. Results

3.1 Pathological observations

To examine the role of CD55 during atherosclerosis I generated mice deficient in both 

apoE and CD55 and subjected them (together with their controls) to 12 weeks of high 

fat feeding. In order to characterise and compare the pathology of apoE7 /CD557‘ and 

apoE7' mice, various parameters were studied. These included measurements of body, 

heart, spleen and kidney weight. I expressed these as both ratios of organ: body weight 

and also organ: tibia length, which is more consistent than body weight (Yin et al., 

1982).

There were no significant differences in body weight between apoE7 /CD557' and apoE 

A control mice (see table 5.1). In addition, CD55 deficiency did not affect heart or 

kidney size in these mice (see table 5.1). In contrast, spleen weight was significantly 

reduced in apoE7 /CD557‘ mice when compared to apoE7' controls when normalised 

against both body weight (table 5.1; 4.4 ± 0.2 xlO'3 versus 7.22 ± 1.0 xlO 3; P=0.003) or 

tibia length (table 5.1; 8.9 ± 0.4 xlO 3 versus 14.7 ±1.6 xlO’3; P=0.0004).
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APOE/CD55' P value

Body weight (g) 38.5 ± 1.6n= 19 40.6 ± 1.4 n = 20 0.312

Heart: body weight (xlO'3) 5.3 ± 0.2 n=19 5.2 ±0.2 n=18 0.562

Heart weight: tibia length 
(xlO'3)

10.7 ±0.4 n=19 10.7 ± 0.5 n=10 0.967

Kidney:body weight (xlO'3) 6.5 ±0.3 n=14 7.1 ±0.4 n=10 0.229

Kidney weight:tibia length 
(xlO3)

13.1 ±0.6 n=14 14.9 ± 1.2 n=10 0.153

Spleen: body weight (xlO'3) 4.4 ± 0.16 n=14 7.2 ± 1.0 n=10 0.003

Spleen weight:tibia length 
(xlO3)

8.9 ±0.4 n=14 14.7 ± 1.6 n=10 0.001

Table 5.1 Pathological observations in 20 week old apoE/7CD55 /'and apoE'/_ mice. All animals were fed a high fat diet from 8 

weeks old for 12 weeks. Data are shown as mean ± SEM.



3.2 CD55 deficiency slows the progression of atherosclerosis

In order to assess atherosclerosis in the brachiocephalic arteries of apoE~77CD55"7" mice 

versus apoE"7' controls mean plaque area was measured and analysed at multiple points 

along the vessel. Surprisingly, analysis revealed a three fold decrease in mean plaque 

cross sectional area from apoE'7/CD55'7' versus controls (54.7 ± 11.2 x 103 pm2 versus 

155.2 ± 16.8 x 103 pm2; P<0.001; figures 5.1A-C).

3.3 Infiltrating SMCs and macrophage

To further explore differences in plaque character, SMC content and macrophage 

infiltration into plaques were assessed. I found significantly less plaque SMCcontent in 

apoE‘7/CD55‘7' mice versus apoE'7' control. Representative pictures of SMC staining in 

both apoE'7 /CD55'7' and apoE’7' mice are shown in figures 5.2A and B respectively. 

Pooled data is shown in figure 5.2C (9.3 ± 2.0% versus 18.0 ± 2.8%; P<0.05). 

However, there was no significant change in percentage macrophage plaque content 

between the two groups. Figure 5.2D and E show representative staining of 

macrophage in apoE‘7/CD55'7~ and apoE'7' mice respectively. Pooled data is shown in 

figure 5.2F (19.4 ± 6.5% versus 18.8 ± 4.2%). Of note, percentage plaque macrophage 

content was lower in the apoE'7' controls after 12 weeks of high fat feeding (figure 5.2 

F; 18.8 ± 4.2%) compared with apoE'7' mice after 8 weeks of high fat feeding (figure 

4.4; 60.1 ± 3.2%). This is consistent with the notion that advanced plaques have lower 

percentage macrophage content compared with smaller sized plaques.
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ApoET 7CD55

Figure 5.1 Plaque area measurement in brachiocephalic arteries of apoE'7/CD55‘7 

and apoE'7' control mice after 12 weeks of high-fat feeding. Sections of the 

brachiocephalic artery were stained with Miller’s elastin/van Gieson. The bars in C 

show group means + SEM. Scale bars in A and B represent 200pm.

(A) A small plaque (arrowed) from an apoE'7/CD55'7 mouse.

(B) Single large plaque occupying half of the vessel from an apoE'7 mouse.

(C) Mean plaque area in apoE'7 /CD55'7' (n= 13) and apoE7 (n= 12) mice.
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ApoK'/CDSS' ApoE''

ApoE'/CD55

ApoE'/CD55-

Figure 5.2 Smooth muscle cell and macrophage content in atherosclerotic lesions 

in apoE7' /CD557' and apoE7' mice. Comparison of percentage smooth muscle a-actin 

and macrophage staining in plaques of apoE' 7CD557' and apoE7' animals at 20 weeks, 

after 12 weeks of high-fat diet. Brachiocephalic artery sections were stained for smooth 

muscle cells w ith anti-smooth muscle a-actin (green) (A-C) or macrophage (green) (D- 

F) and counterstained with DAPI (blue). Scale bars: 200pm. The bars show group 

means ± SEM. (A-B) Representative section of smooth muscle a-actin stained section 

from apoE7'/CD557 mice and apoE7' control mice respectively, inset showing negative 

control. (C) Mean percentage of plaque stained for smooth muscle a-actin in apoE7' 

/CD557' (n=9) and apoE7' (n=7) mice. (D-E) Representative section of macrophage 

stained vessel from apoE7VCD557' mice and apoE7' control respectively, inset showing 

negative control. (F) Mean percentage of plaque stained for macrophage of apoE7 

/CD557' (n=8) and apoE7' (n=6) mice.
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3.4 Complement C3 activation and MAC deposition correlate with 

severity of disease

Next I examined the extent of complement activation within the plaques, as CD55 

deficiency may cause altered local complement activation within the plaque. To address 

this question, plaques were stained for C3 activation products and MAC (figure 5.3).

C3 product deposition was assessed using two different antibodies, mAb 2/11, which is 

fragment-specific (does not recognise intact C3) and detects C3b, iC3b and C3c in 

tissues (figures 5.3A-C), and 1 lh9, which recognise total C3; intact C3, C3b and iC3b 

fragments (figures 5.3D-F). The percentage of plaque area stained for C3b/iC3b/C3c 

fragments in apoE7 /CD557 mice was significantly less than in the apoE'A controls. 

Figure 5.3A and B show representative sections from apoE7VCD557‘ and apoE7’ mice 

respectively. The pooled data are shown in figure 5.3C (28.0% ± 8.2%, versus 57.3% ± 

7.7%; P<0.05). In contrast, total C3 was present at similar levels in plaques of apoE7" 

/CD557' animals and their controls (20.7% ± 4.8%, versus 19.9% ± 3.6%; P=0.89).

MAC deposition was also markedly reduced in plaques from apoE7'/CD557‘ compared 

to controls. Figure 5.3G and H show representative images of apoE7VCD557' mice and 

apoE7' controls. Figure 5.31 shows pooled data (17.9 ± 3.5%, (n=7) versus 30.5 ±4.1; 

P<0.05).
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Figure 5.3 Complement activation in atherosclerotic brachiocephalic arteries. Comparison 

of C3 activation products (A-C), total C3 (D-F) or MAC staining (G-I) in apoE'^/CDSS'7" and 

apoE'A animals at 20 weeks of age after 12 weeks of high-fat diet. Sections of the 

brachiocephalic artery were stained with rat anti-mouse C3b/iC3b/C3c mAb (green), rat anti

mouse C3 (red) or MAC (red) and nuclei were stained with DAPI (blue). The bars show group 

means ± SEM. Scale bars: 200pm. (A, D, G). Representative section from an apoE^/CDSS A 

mouse. (B, E, H) Representative section from an apoE A mouse, inset showing negative control. 

(C, F, I) Mean percentage of lesional staining in apoE‘/7CD55 /" (n=7 in each group) and apoE/_ 

(n=6, 10 and 7 respectively) mice.
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3.5 CD55 deficiency causes altered triglyceride profile and total serum 

cholesterol levels in a cholesterol rich environment

To test whether the observed effect on plaque progression was caused by altered lipid 

handling, I measured serum triglyceride and cholesterol levels in apoE7' and apoE7' 

/CD557 mice. The effect of CD55 deficiency on triglyceride and cholesterol levels in 

apoE7' mice was investigated at both 8 and 20 weeks old (Pre and post a 12 week high 

fat diet). At 8 weeks a significant reduction in triglyceride levels was found in apoE7' 

/CD557' mice when compared to the apoE7' group (figure 5.4A; 2.1 ±0.1 mmol/L 

versus 5.1 ± 0.6 mmol/L; P<0.01). Similarly, triglyceride levels in the 20 week old high 

fat fed apoE7 /CD557' mice were halved when compared to their apoE7' controls (figure 

5.4A; 1.7 ± 0.3 mmol/L versus 3.6 ± 0.5 mmol/L; P < 0.01). There were no significant 

differences in triglyceride levels after high fat feeding for 12 weeks compared with 

before within either group, an observation which has previously been noted in the apoE' 

A mice (Joven et al., 2007).

Cholesterol levels were not significantly different in 8 week old apoE7 /CD557' mice 

when compared to apoE7' controls (figure 5.4B; 16.1 ± 1.4mmol/L versus 18.2 ± 0.8). 

After 12 weeks of high fat feeding, cholesterol levels significantly increased in both 

groups. However levels in apoE7' /CD557 mice at this point were significantly below 

those present in their apoE7' controls (figure 5.4B; 29.0 ±1.8  mmol/L versus 38.3 ± 2.5 

mmol/L; P<0.01). Thus, in apoE7' /CD557' mice at 8 weeks serum cholesterol levels 

were 16.1 ± 1.4mmol/L while at 20 weeks serum cholesterol levels reached 29.0 ± 

1.8mmol/L (P<0.01). At 8 weeks, apoE7' mice serum cholesterol levels were 29.0 ± 

1.8mmol/L, compared with 38.3 ± 2.5mmol/L at 20 weeks.
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3.6 CD55 deficiency is associated with increased C3 turnover and plasma 

C3adesArg levels

C3adesArg, while losing any inflammatory activity, has significant roles in lipid 

metabolism (Cianflone et al., 2008). To investigate the possibility that CD55 deficiency 

affects C3adesArg levels during lipid metabolism, I compared serum C3adesArg levels 

in apoE77CD557' and apoE7' mice at both 8 and 20 weeks of age (pre- and post-high fat 

diet respectively). A sandwich ELISA revealed a high fat diet dependent increase in 

C3adesArg levels in apoE7 /CD557' mice when compared to the apoE7’ control mice. 

Thus, after 12 weeks of high fat feeding serum C3adesArg levels were significantly 

increased in 20 week old apoE7 /CD557" mice when compared to their apoE7‘controls 

(figure 5.5A; 1.6 ± 0.1 pg/ml versus 1.0 ± 0.2 fxg/ml; P<0.01). However, C3adesArg 

levels in 8 week old apoE77CD557‘mice, which were fed normal chow, showed no 

difference when compared to the apoE7’ controls (figure 5.5A). Thus, CD55 deficiency 

caused an increase in serum C3adesArg levels after 12 weeks of high fat diet, which 

correlated with decreased cholesterol and decreased levels of disease.

To explore the relationship between fat intake and C3 turnover, levels of C3adesArg 

were also measured in fat-fed apoE7 /CD557' and apoE7' mice after an overnight fast; 

C3adesArg levels were reduced 5-fold compared to non-fasted mice and there was no 

difference between fasted apoE7 /CD557' and apoE7' groups (figure 5.5B).
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3.7 CD55 regulates C3adesArg causing enhanced NEFA clearance

C3adesArg has been shown to increase NEFA clearance (Van Harmelen et al., 1999) 

and stimulate glucose uptake (Germinario et al., 1993; Maslowska et al., 1997b; Tao et 

al., 1997) into adipose tissue. Furthermore, C3'7' mice have significant delays in 

triglyceride and NEFA clearance (Murray et al., 2000; Murray et al., 1999b). Thus, it 

was hypothesised that the increase in C3adesArg levels caused by CD55 deficiency 

would lower circulating NEFA and glucose levels in the apoE'7' mice.

Circulating NEFA levels were measured from 20 week old apoE'7/CD55'7" mice and 

apoE7' control mice (post a 12 week high fat diet). In keeping with the hypothesis, 

plasma NEFA levels were significantly lower in apoE'7‘CD55’7' mice compared with 

apoE'7' controls (0.34 ± 0.04 mg/ml versus 0.52 ± 0.04 mg/ml; P<0.001; figure 5.6A).

Fasting and non-fasting blood glucose levels were measured in 20 week old apoE'7' 

/CD55'7' mice and apoE'7'control mice after 12 weeks of high fat feeding. However, no 

significant difference was found in fasting or non-fasting glucose levels between the 

groups (figure 5.6B). Conversely, glucose measurements almost doubled in both groups 

when comparing fasting (4.3 ± 0.5mmol/L versus 10.2 ± 0.8mmol/L; P<0.0001) and 

non-fasting blood samples (4.9 ± 0.3mmol/L versus 9.3 ± 0.7mmol/L; P<0.0001).
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Figure 5.4 Triglyceride and cholesterol levels in apoE7' /CD557' mice pre-and 

post- high fat diet. (A) Serum Triglyceride and (B) cholesterol levels were 

measured at 8 weeks of age, pre-high fat diet (Pre-HFD) and at 20 weeks of age 

after 12 weeks of high fat diet (Post-HFD) in apoE'/7CD55‘/’ mice (n=4 and 12 

respectively) and apoE'7’ controls (n=6 and 15 respectively).
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Figure 5.5 Assessment of circulating C3adesArg levels in apoE'7'/CD55‘7' and apoE 7' mice.
(A) Non-fasting C3adesArg levels were compared between apoE'/7CD55'/' and apoE'7' mice at £ 

weeks old, pre-high fat diet (Pre-HFD) (n=8 and 8 respectively), and at 20 weeks after 12 

weeks on high fat diet (Post-HFD) (n=l 1 and 12 respectively). (B) Comparison of C3adesArg 

levels in 20 week old (post-HFD) apoE‘7VCD55"7 and apoE'7' mice in both fasting (n=l 1 in both 

groups) and non-fasting state (n=l 1 and 12 respectively).
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3.8 CD55 deficiency is associated with increased body fat

It has previously been shown that 16 and 26 week old C37' mice on the ldlr^/apoE7' 

background have approximately two thirds lower body fat compared to control mice 

(Persson et al., 2004). Therefore, to further explore the hypothesis that CD55 is 

involved in regulating lipid metabolism through control of C3 activation, percentage 

body fat in high fat fed apoE'^/CDSS'7' deficient mice was compared with apoE7' 

controls. After 12 weeks of high fat feeding, apoE7 /CD557' mice had significantly 

more body fat by comparison with the apoE7' controls (figure 5.7; 28.6 ± 4.2% versus 

19.5 ± 1.8 % respectively; p<0.05).
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Figure 5.6 Circulating NEFA and glucose levels. NEFA and glucose measurements 

were compared between apoE‘/7CD55"/" and apoE^ mice at 20 weeks after 12 weeks on 

high fat diet. (A) Non-fasting NEFA levels (n=12 and 14 respectively). (B) Comparison 

of glucose levels in both fasting (n=12 and 11 respectively) and non-fasting state (n=6 

and 10 respectively).
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Figure 5.7 Percentage body fat in apoE‘77CD55'7' and apoE'7' mice. DEXA 

measurements of percentage body fat compared between apoE~7VCD55'7' and apoE'7' 

mice at 8 weeks old, pre-high fat diet (Pre-HFD) (n=6 and 8 respectively), or at 20 

weeks after 12 weeks on high fat diet (Post-HFD) (n=6 and 9 respectively).

(A) Mean percentage body fat in apoE‘7VCD55'7 and apoE7' mice. The bars show group 

means ± SEM.

(B) A representative DEXA image of an apoE‘7VCD55'7‘ mouse.

(C) A representative DEXA image of an apoE'7' mouse.
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4. Discussion

In the previous chapter, it was demonstrated that by removing the complement 

regulator, CD59, activation of the terminal complement pathway was increased in 

atherosclerotic plaques of apoE7' mice which led to worsening of the disease. On this 

basis, it was hypothesised that by increasing the activation of the complement system 

earlier on in the pathway, at the C3 stage, disease progression would similarly 

accelerate in the apoE knock out mouse model. However in apoE7'/CD557’ mice, 

generated by crossing CD557 mice with apoE7' mice, less disease was found.

These results, while initially surprising, are in accordance with two other independent 

studies. Buono et al. were first to demonstrate that C3 deficient mice on an ldlr7" 

background had a greater burden of atherosclerotic plaques, present in both the aortic 

arch and descending aorta (Buono et al., 2002). Another group using the apoE771dlr7' 

mouse model similarly demonstrated that C3 was protective in atherosclerosis and by 

using fB deficient mice they also demonstrated that this was independent of the 

alternative pathway (Persson et al., 2004).

In the early stages of atherosclerosis, the dominant cell occupying the plaque is the 

macrophage, which differentiates into foam cells. However, no difference in 

macrophage cell content was found between apoE7VCD557‘ and apoE7' controls, 

despite a significant difference in plaque size between the two groups. This may have 

resulted from increased local production of C3b in CD55 deficient mice causing 

increased C3b opsonisation and hence clearance of apoptotic foam cells within the 

plaque. Foam cells in human atherosclerotic plaques are known to express C3b 

receptors such as CRig and CR1 together with the iC3b receptor, CR3 (Lee et al., 2006;
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Saito et al., 1992). Further characterisation of the vessels revealed that the small 

plaques from apoE^/CDSS'7' mice had less smooth muscle cell infiltration implicating 

that these plaques were early in composition.

However, when complement activation was assessed in the plaques of apoE^'/CDSS'7' 

a decrease in deposited MAC and C3 activation fragments were found when compared 

to apoE 7' controls. This apparent reduction in complement activation is likely due to 

the fact that plaques formed in the absence of CD55 are early lesions and thus probably 

have less necrotic debris together with less free oxidized and modified lipid all known 

to activate complement (Bhakdi et al., 1999; Mevorach et al., 1998; Torzewski et al., 

1998b). In contrast those plaques found in CD55-sufficient mice are larger, more 

advanced and complex and thus likely contain more complement activating material. 

These data implied that enhanced clearance of apoptotic foam cells through increased 

complement activation within the plaques was not the primary cause of the smaller 

plaques present in the apoE^'/CDSS'7' mice of this study.

The apoE^'/CDSS"7' mice in this study had smaller spleens compared to apoE'7* controls, 

thus indicative of reduced disease in this model. During atherosclerotic disease 

progression, there is increased activation of adaptive immunity including B-cell 

dependent antibody production which occurs in the spleen. Hence an enlarged spleen 

within apoE 7' mouse model may correlate with disease state.

Alongside the decreases in disease levels, apoE ^/CDSS'7' mice had significantly altered 

levels of circulating lipids. Both hypercholesterolemia and hypertriglyceridemia are 

recognised as independent risk factors for atherogenesis in man and models (Lusis et
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al., 2004b). It was therefore hypothesised that the observed anti-atherogenic effect of 

CD55 deficiency was due to the combined effects of lower plasma lipid levels; 

however, the exact mechanism linking CD55 deficiency and altered lipoprotein profile 

remained to be defined. The rate of triglyceride clearance from plasma correlates 

directly with plasma levels of C3adesArg (Cianflone et al., 1989b). Thus, sustained 

changes in plasma levels of C3adesArg would be predicted to affect lipid profiles. In 

this study chronically elevated levels of C3adesArg were found in fat-fed apoE'^/CDSS' 

A mice (50% increase compared to CD55-sufficient controls) and were accompanied by 

markedly decreased plasma triglyceride and cholesterol levels. These findings support 

studies ex vivo and in vivo that has implicated chylomicrons and/or VLDL as the 

primary physiological trigger for C3 activation resulting in C3adesArg production in 

adipose tissue (Maslowska et al., 1997a; Scantlebury et al., 1998). Ex vivo, exposure 

of adipose tissue to purified chylomicrons caused markedly increased synthesis of C3 

and generation of C3adesArg, while in vivo, chylomicronaemia acutely increased 

plasma C3 and C3adesArg levels. The amount of C3adesArg generated will depend on 

the local activity and regulation of C3 convertase, in turn dependent on the presence 

and abundance of complement regulators. CD55 is expressed on adipose cells (Festy et 

al., 2005; Gronthos et al., 2001), and will therefore contribute to local regulation of the 

convertase; in its absence, the convertase will persist and generate more C3adesArg.

While triglycerides were lowered regardless of diet significantly lower levels of 

cholesterol in apoE ^/CDSS7" mice only became apparent after 12 weeks of high fat 

diet. Together with these observations it was found that NEFA levels were also 

significantly lowered.
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The data indicate that the observed lowering of lipid plasma in the apoE'7'/CD55'7' mice 

was due to increased cholesterol uptake and triglyceride synthesis occurring locally by 

adipocytes, and as a result an increase in percentage body fat was observed. In 

agreement with this finding, apoE'771dlr'7'/C3'7' mice had reduced body fat (Persson et 

al., 2004) which correlated with increased triglyceride levels; in this study the mice 

were fed normal chow and therefore there was no alteration in their cholesterol levels.

These results are surprising in that absence of an important complement regulator 

would be predicted to exacerbate injury in a disease characterised by complement 

activation. Two recently published studies tested effects of CD55 deficiency in mouse 

atherosclerosis models (An et al., 2009; Leung et al., 2009). In the first of these, female 

CD557 mice on the ldlr'7' background showed exacerbated disease and increased plaque 

size when compared to the ldlrv_ controls. These contradictory results may be due in 

part to the different atherosclerosis-prone backgrounds; others have shown that results 

obtained from apoE'7' and ldlr'7' mice are often not comparable, perhaps because of the 

more generalised metabolic derangement accompanying ldlr deficiency (Joven et al., 

2007). In particular, apoE'7' mice have much higher serum triglyceride levels when 

compared to ldlr'7' mice on the same diet (Joven et al., 2007). The use of female mice 

likely also contributes; it is well documented that complement levels are much greater 

in male mice than female in many inbred mouse strains (Beurskens et al., 1999; Holt et 

al., 2001). For this reason, when studying roles of complement in disease models, it is 

advantageous to use male mice only. In the second published study, apoE'7'/CD55'7' 

mice were generated and both male and female groups placed on a high fat diet for 8 or 

16 weeks; plaque area was measured at end-point in the aortic arch. There was no 

significant difference in plaque size when apoE'7'/CD55'7' and apoE'7' groups were
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compared; however, when separated based on sex, there was a clear trend, un-remarked 

upon by the authors, towards smaller plaques in male apoE 7/CD55'7' mice at 8 and 16 

weeks. Group sizes after dividing by sex were small, and the differences observed were 

not significant. These published findings support the observation in this chapter, likely 

made significant in this study by the use of larger group sizes.

This chapter has demonstrated that CD55 deficiency in fat fed male apoE'7' mice 

markedly attenuated the progression of atherosclerosis. Plaques were infrequent and 

small in comparison with their apoE7' controls; complement activation in the plaques 

was decreased with lower deposition of C3 fragments and MAC, likely reflecting the 

early plaque stage. ApoE~77CD55'7‘ mice had a markedly altered lipid profile, 

dominated by low circulating triglyceride, NEFA and cholesterol levels. These changes 

in lipid levels likely reflect increased triglyceride uptake into adipose tissue and fat 

synthesis in the apoE'7/CD55'7‘ mice. All of these changes were likely to be caused by 

diminished capacity, in the absence of CD55, to regulate the C3 convertase, resulting in 

dysregulation of the ASP pathway and increased production of C3adesArg locally in 

adipose tissue in response to circulating chylomicrons or VLDL particles. The chain of 

events demonstrated here explains both atheroprotection and increased adiposity in the 

mice and also provides an explanation for the enigmatic observation that C3 deficient 

mice -  lacking the capacity to generate C3adesArg -  show accelerated disease in 

models of atherosclerosis (Buono et al., 2002; Persson et al., 2004). The data show that 

C3adesArg itself, or agents mimicking its lipid-modulating effects, might be of benefit 

in the treatment of atherosclerosis and related diseases.
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Chapter 6: Discussion and Conclusions

The studies presented in this thesis describe my work to test the hypothesis 

outlined in the introduction that: “The Complement system contributes to 

disease pathology in atherosclerotic plaques of apoE’7' mice”.

This was investigated by observing the effects of both the terminal and activation 

pathways of the complement system during plaque progression using the apoE A mouse 

model of atherosclerosis.

1. Summary of main findings

1.1 Studies on the Terminal Pathway and Atherosclerosis

My work on the involvement of the terminal pathway of complement set out to 

unequivocally define the roles of the MAC and its regulator, CD59a in atherosclerotic 

plaque formation in the apoE'7' mouse model. The data presented here demonstrating 

the contrasting effects of C6 and CD59a deficiencies on plaque development in apoE'7' 

mice clearly support the hypothesis that:

“The MAC is an important contributor to atherosclerotic plaque 

development in the apoE'7' mouse model”.
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1.2 CD59a is strongly anti-atherogenic

ApoE'/7Cd59a'/' mice developed much larger plaques on fat feeding compared to 

closely matched apoE'7' controls; MAC deposition in the plaques was also markedly 

increased in apoE'7/Cd59a'7' mice. Of note, the data from these experiments show that 

the SMC content of advanced plaques was significantly less in apoE'7/Cd59a'7' mice 

than that seen in apoE'7' controls. This finding suggests a possible mechanism whereby 

MAC formation could contribute not only to plaque development but also to plaque 

instability and hence the incidence of vessel ruptures and consequent acute infarcts or 

strokes.

1.3 MAC deposition within the plaque is strongly pro-atherogenic

For the first time, I have presented clear evidence that deficiency of C6 and lack of a 

functioning terminal pathway is strongly protective against the progression of 

atherosclerosis in apoE'7’ mice. This result is consistent with published studies both in 

fat fed C6-deficient rabbits and with other mouse models of atherosclerosis where 

Cd59a has been deleted (An et al., 2009; Geertinger and Soerensen, 1977; Schmiedt et 

al., 1998; Wu et al., 2009; Yun et al., 2008).

1.4 Therapeutic blockade of the terminal pathway

The therapeutic effect of an anti-C5 mAb was tested in the model. Anti-C5 treatment 

eliminated MAC deposition in the plaques of fat fed apoE'7' mice, but did not 

significantly alter plaque size, suggesting that C5 and the MAC had little effect on the 

development of atherosclerosis. These data are not consistent with the above findings
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and contrast with a recent report showing that the same anti-C5 reagent, BB5.1, did 

inhibit plaque formation in apoE7’ mice deficient in Cd59a and Cd59b (Wu et al.,

2009). However, it was notable that in this paper no data were presented from apoE7' 

mice rendering a direct comparison difficult. While these data conflict with my findings 

in CD59a and C6 deficiency, they are in line with the findings of Patel et al who failed 

to find any significant effect of C5 deficiency on the progression of atherosclerosis in 

the apoE7' mouse model (Patel et al., 2001). Taken together, these findings imply an 

anti-atherogenic role of C5 or its activation fragments. In our therapeutic model and in 

the apoE7‘/C57‘ mice of Patel et al it can be hypothesised that the absence of such a 

beneficial mechanism is balanced by blockade of the terminal pathway leading to no 

MAC production; hence, there is no net effect on disease levels.

1.5 Regulation of C3 activation

In the second part of my thesis, I describe investigations into the role of CD55 during 

the progression of atherosclerosis in apoE7' mice. Given that CD55 is up-regulated on 

both vascular SMC and macrophages in advanced plaques, and is functionally 

competent as a complement regulator ex vivo (Niculescu et al., 1990; Seifert and 

Hansson, 1989b), my initial hypothesis was that:

“CD55 deficiency will exacerbate disease pathology in apoE7' mice.”

However, strikingly, fat fed male apoE7VCD557~ mice were strongly protected from 

developing atherosclerosis compared to apoE7' controls. Plaques were infrequent, small 

and morphologically simple by comparison with those present in apoE7* controls; 

complement activation in the plaques was decreased with lower deposition of C3
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fragments and MAC, likely reflecting the early plaque stage and lack of complement 

activating material.

A second surprising finding from this experiment was that apoE7 /CD557 mice had a 

markedly altered lipid profile, dominated by low circulating levels of triglycerides, 

NEFA and cholesterol. Alongside these changes in lipid levels there were significant 

rises in the systemic levels of C3adesArg, the metabolically active fragment of C3a, 

and also increased total body adiposity. Given the literature on this moiety (Baldo et al., 

1993; Cianflone et al., 1989b; Cianflone et al., 2003; MacLaren et al., 2008) it was 

hypothesised that the observed beneficial changes in the absence of CD55 are due to 

increased lipid uptake into adipose tissue and/or increased triglyceride synthesis within 

adipocytes leaving less lipid available systemically to be taken up into the artery walls. 

It was further hypothesised that these changes were due to increased C3 activation and 

the increased systemic levels of C3adesArg arising through the lack of CD55 in these 

animals. Currently reagents are not available in my laboratory to test this hypothesis. 

However, the chain of events demonstrated here, may explain the atheroprotection and 

the increased adiposity observed in these mice. In addition it may also provide an 

explanation for the observation that C37' mice -  lacking the capacity to generate 

C3adesArg -  show accelerated disease in models of atherosclerosis (Buono et al., 2002; 

Persson et al., 2004). Together, the data imply that, whilst agents targeted at inhibiting 

C3adesArg itself might be of benefit in the prevention of obesity, treatment with 

C3adesArg or agents mimicking its effects may help control atherosclerosis.
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There are two other possible explanations for the observed protective effect; firstly 

the absence of CD55 may have caused accelerated activation of C3 within the 

atherosclerotic plaque, leading to increased production of C3b and iC3b. This effect 

causes better opsonisation of apoptotic cells, debris and immune complexes and 

phagocytosis via complement receptors CR1, CR3 and CR4 (Ricklin et al., 2010; 

Trouw et al., 2008) resulting in attenuation of plaque growth. Secondly, CD55 itself 

may exert a pro-atherogenic response directly. Both possibilities are reasonable and 

deserve further investigation, however, of note, there was no evidence of increased C3 

activation within the plaques, in fact the reverse was true: significantly less C3 

activation fragment deposition was seen in plaques from apoE7'/CD557' mice in 

comparison with those from apoE7' controls (see figure 5.3C). Nevertheless there is a 

possibility that the activation fragments of C3 may have been consumed in the plaque; 

however, given that this is a model where exaggerated plasma cholesterol level drives 

disease pathology, it is likely that changes in lipid profiles would be the most obvious 

cause for protection against atherosclerosis.

2. Issues raised by thesis findings, and future directions

A number of interesting questions have been raised by the data generated in this thesis.

2.1 C6 and lipid metabolism

In addition to data implicating C6, and hence the terminal pathway, in the progression 

of atherosclerosis, it was also intriguingly found that the apoE7'/C67' animals had 

altered serum lipid levels. In particular, serum triglyceride, and cholesterol levels and 

serum turbidity were significantly reduced in apoE7'/C67' mice when compared to 

controls. Of note, serum cholesterol levels were not different in C67' rabbits when
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compared to C6 sufficient controls, however, serum triglyceride levels were not tested 

in these animals. These findings implicate a role for C6 in lipid metabolism in the apoE’ 

A mouse model. In humans, complement component C6 expression was shown to be 

down regulated in omental adipose tissue of obese subjects when compared with lean 

controls (Hurtado Del Pozo et al., 2010). Unfortunately, measurements of percentage 

body fat in the a p o E m i c e  and controls were not carried out in this instance due 

to reasons that were out of my control. Given that C6 has never previously been shown 

to have any effect on lipid metabolism this clearly warrants further investigation in both 

mice and humans into the mechanisms behind this phenomenon.

To determine the extent to which other complement components are involved in lipid 

metabolism in the apoE 7' mouse model, further studies are warranted. Given that the 

effects might be diet dependent, such studies should include thorough investigations 

into the effect of different complement components on lipid levels in mice fed on diets 

with normal and high levels of fat. It is envisaged that this work would utilise various 

complement deficient mice whose lipid levels would be analysed after being fed either 

ad libitum or by giving a fat bolus by gavage. DEXA analysis would further reveal 

percentage body fat and fat distribution in these animals. To further delineate the 

mechanism involved in complement mediated lipid metabolism, microarray analysis 

could be utilised to compare the various knockouts with wild type background 

controlled animals. This would reveal differences in metabolic pathways existing in 

complement deficient strains.
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2.2 The use of apoE mouse model in studying the role of complement in 

atherosclerosis

Since 1992, the apoE and ldlr mouse models have proved very useful in aiding 

experimental atherosclerosis research (Ishibashi et al., 1993; Piedrahita et al., 1992). Of 

note, the plasma lipid profiles vary widely between the two models, revealing 

differences in their metabolic activities (Joven et al., 2007). These differences between 

two key animal models of atherosclerosis may be one of the reasons behind the 

contradictory results from experiments investigating the role of complement in 

atherosclerosis.

In vivo, animal studies, using both the ldlr'7' and apoE'7'mouse models which have 

studied the role of Cd59a deficiency on the progression of atherosclerotic plaques are 

all in agreement that unregulated MAC caused worsening of the disease (An et al., 

2009; Lewis et al., 2010; Wu et al., 2009; Yun et al., 2008). These studies are also in 

agreement in that Cd59a deficiency did not alter lipid levels in either mouse model.

In contrast, studies looking at the effect of altered C3 activity, either by the removal of 

CD55, C3 or C3aR, on plaque size in atherosclerotic-prone mouse models contradict 

one another. In the ldlr'7' mouse model, CD55 and C3 deficiency caused increased 

plaque size (Buono et al., 2002; Leung et al., 2009), whilst in the absence of apoE, I 

have shown that CD55 deficiency resulted in smaller plaque size. This is also in 

accordance with C3 deficiency, which caused an increase in lesion size (Persson et al., 

2004). Of note the latter study was on a double apoE and ldlr deficient background. 

However, what is clear from these studies is that the removal of apoE along with either 

CD55 or C3 alters triglyceride levels and when a high fat diet is administered,
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subsequent changes in cholesterol levels are observed. In contrast, despite differences 

in disease outcome, ldlr deficiency had no effect on lipid levels in the absence of CD55 

or C3. It must be emphasised that another study using apoE"7/CD55'7‘ versus apoE'7' 

controls observed no difference in plaque size when fed a high fat diet; however, there 

was a clear trend towards a protective effect of CD55 deficiency which may have 

become significant had they used larger groups (An et al., 2009). Unfortunately, this 

group did not measure lipid levels in the mice. Another complication is that fB 

(required for alternative pathway activation) deficiency had no effect on lipid levels in 

apoE'7'/ldlr‘7' mice (Persson et al., 2004).

In summary, the contrasting reports on the role of complement in atherosclerosis in 

different mouse models maybe due to the fact that one mouse model highlights the role 

of complement in lipid metabolism whereas the other does not. It may be that during 

lipid metabolism the beneficial effect of complement activation in reducing plasma 

lipid levels, and therefore protecting against atherosclerosis is dependent either on the 

presence of ldlr, hence in ldlr'7' mice the role of complement in lipid metabolism is 

blocked, or has more of a role in the absence of apoE. Either way it is clearly important 

for both models to be used to study the role of complement during progression of 

atherosclerosis and lipid metabolism.

2.3 Activation of C3 during lipid metabolism is regulated by CD55

In this study, C3adesArg levels were significantly elevated in non-fasted apoE'77CD55‘ 

7~ mice after 12 weeks on a high fat diet. It was also noted that plasma C3adesArg levels 

were increased more than 10-fold in the non-fasted state when compared to fasting 

levels in both apoE'7' and apoE‘7/CD55‘7‘ mice. These data imply that C3 activation
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takes place post-prandially and that after a prolonged period of high fat feeding this 

increase in C3 activation is sustained. These findings are in accordance with those of 

Cianflone’s group (Cianflone et al., 2003; Murray et al., 1999a; Saleh et al., 1998) who 

have demonstrated post prandial rises in C3adesArg levels which concomitantly affect 

lipid uptake and metabolism.

The exact mechanism of post-prandial C3 activation is not clearly defined. In vitro, 

both chylomicrons and insulin have been shown to stimulate the production of C3 and 

the generation of C3adesArg in cultures of differentiated human adipocytes and murine 

adipocyte cell line (3T3-L1) (Gao et al., 2011; Maslowska et al., 1997a). In addition, 

isolated human post-prandial chylomicrons have been shown to directly cause 

production of C3adesArg in normal human serum by accelerating C3 tick-over, 

resulting in activation of the alternative amplification loop (Fujita et al., 2007). Taken 

together these data suggest that in the post-prandial state local adipocyte production of 

C3 is increased and secreted locally into the plasma where it is activated by 

chylomicrons, increasing systemic levels of C3adesArg.

Little is known about the regulation of post-prandial C3 activation; one group has 

postulated that fH may play a role (Fujita et al., 2007), while other studies using 

differentiated 3T3-L1 cells have shown that sex hormones, such as testosterone and 

progesterone, may indirectly regulate the effect of C3adesArg on lipid metabolism by 

down regulating mRNA levels of C5L2, the proposed receptor for C3adesArg (Gao et 

al., 2010; Kalant et al., 2003; Kalant et al., 2005; Wen et al., 2008).
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Based on published data to date regarding C3 activation and its role in lipid 

metabolism, together with the knowledge that CD55 is expressed on mature human 

adipocytes (Festy et al., 2005), I have proposed a mechanism for the anti-atherogenic 

effects observed in this study, summarised in figure 7.1.

To further examine the concept that CD55 regulates chylomicron induced production of 

C3adesArg in adipocytes the murine 3T3-L1 cell line which is often used in adipocyte 

studies, could be utilised as a model. The levels of CD55 could be determined and 

modified by transfection with expression plasmids or knock-down technology, 

followed by differentiation into adipocytes and stimulation with chylomicrons. A 

number of mechanistic issues could then be explored, including the effect of adipocyte 

CD55 on regulating C3 activation during chylomicron load, and induced adipocyte 

production of C3 in response to chylomicron uptake. Signalling events delineating the 

mechanism involved C3adesArg regulation by CD55 both intracellularly and at the cell 

surface could then be explored.

To support the hypothesis that increased C3 activation regulates lipid metabolism, 

which in turn protects apoE^'/CDSS'7' mice from atherosclerosis, a further study would 

be required.

Definitive experiments would involve giving apoE^'/CDSS'7' mice blocking antibodies 

against C3adesArg whilst on a high fat diet. In parallel, an isotype control antibody 

would be given to apoE^'/CDSS'7' mice at equal dose and for the same duration.
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C3adesArg 

LPL. Lipoprotein lipase

Figure 7.1 CD55 regulates local adipose C3 activation during lipid metabolism

1. High fat diet causes an increase in chylomicron production

2. Increased circulating chylomicrons stimulate the production of C3 and generation of 

C3adesArg

3. In apoE '̂/CDSS '̂ mice, local alternative pathway activation is dysregulated causing 

increased production of C3adesArg in the plasma

5. C3adesArg binds to C5L2 receptor on adipocytes which activates diacylglycerol 

acyltransferase (DGAT) thus stimulating triglyceride synthesis

6. C3adesArg indirectly activates LPL by protecting LPL from NEFA inhibition
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Currently, researchers are using polyclonal rabbit antibody against human C3adesArg 

for in vivo murine experiments (Saleh et al., 1998). The disadvantage of this is that 

after 4 weeks of treatment antibody levels were reduced, suggesting immune mediated 

clearance. Thus, producing an anti-mouse C3adesArg mAb in C37' mice would be the 

ideal intervention tool for generating antibodies which were non-immunogenic and thus 

providing reagents which could be used for long term treatment in mice without raising 

an immune response.

Converse to these experiments, recombinant human C3adesArg binds C5L2, stimulates 

triglyceride synthesis in adipocytes ex vivo and, when delivered at constant rate in vivo 

for up to 4 weeks, reduces plasma triglyceride and NEFA levels (Paglialunga et al.,

2010). Thus, treating apoE7" mice with a recombinant murine C3adesArg over a longer 

period and examining the effects on atherosclerosis, body fat and blood lipid levels 

would further strengthen the hypothesis and delineate whether C3adesArg treatment can 

inhibit progression and/or reverse established disease in this model.

2.4 Genetic factors affecting the complement system and knock on effects

on obesity and cardiovascular disease

Human studies in genetic deficiencies of complement proteins have associated certain 

complement polymorphisms with increased risk for cardiovascular disease (Berg and 

Heiberg, 1976; Dissing et al., 1972; Elston et al., 1976; Jylhava et al., 2009; Kardys et 

al., 2006; Kristensen and Petersen, 1978). These common polymorphisms result in 

individuals having complement systems of varying activity. Given some of the findings 

presented in this thesis, this could offer an explanation as to why some individuals 

within the population are more at risk for obesity and/or cardiovascular disease.
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Complement deficiencies might also predispose. A study in Sweden examining health 

records of C2 deficient patients found an association with increased rate of coronary 

heart disease which was independent of rheumatic manifestations (Jonsson et al., 2005; 

Nityanand et al., 1999). C4 deficiency and deficiency of the C4B variant have been 

implicated with a higher risk for myocardial infarction or stroke in Hungarian and 

Icelandic populations respectively (Arason et al., 2003; Kramer et al., 1994). However 

a population based study in Sweden, found no correlation between C4 null alleles and 

myocardial infarction patients compared to healthy controls (Lefvert et al., 1995). 

Subtotal MBL deficiency is common within the population and is associated with 

increased risk of infection but also increased incidence of cardiovascular disease and 

atherosclerotic plaque formation (Best et al., 2004; Hegele et al., 2000; Madsen et al., 

1998).

Several studies have identified a polymorphism in fH, 1Hy402h, as a predicative 

indicator for age-related macular degeneration (AMD) (Edwards et al., 2005; Hageman 

et al., 2005; Haines et al., 2005; Klein et al., 2005). Further studies on this 

polymorphism showed a positive correlation of the H variant with myocardial 

infarction (Jylhava et al., 2009; Kardys et al., 2006). However, this is under debate as a 

study in the USA found an inverse correlation between the H variant of fHY402H and 

myocardial infarction, and no association was found in a meta-analysis of 48,000 

participants (Pai et al., 2007; Sofat et al., 2010). Interestingly, within the meta-analysis 

study the authors did find a correlation between triglyceride levels and the fH 

polymorphic variants. Homozygote individuals who had the common Y402 allele had 

increased triglyceride levels compared to homozygote H402 allele.
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Polymorphic variation is also found within the C3 gene. The substitution of a single 

DNA base pair in the C3 protein defines two allelic variants; C3S and C3F, named for 

their migration on an electrophoretic gel (slow and fast respectively), the result of an 

amino acid substitution C3rio2g • Whilst there is no evidence that this polymorphic 

variation causes altered plasma C3 levels, there are studies which have shown C3F 

variant may more readily activate (Welch et al., 1990). Interestingly, C3F variant has 

been associated with atherosclerosis, hypertension and hypercholesterolemia (Berg and 

Heiberg, 1976; Dissing et al., 1972; Elston et al., 1976; Kristensen and Petersen, 1978). 

However, the effect of this C3 polymorphism on C3adesArg production remains to be 

investigated.

Dr Claire Harris’s laboratory at Cardiff University, has examined common polymorphic 

variants of complement proteins. The functional activities of C3, fH and fB 

polymorphic variants have been studied and compared (Heurich et al., 2011; Montes et 

al., 2009; Schmidt et al., 2008; Tortajada et al., 2009). Polymorphic risk variants in 

AMD (C 3 io 2 g , fB 32R , fH 6 2 v ) showed increased alternative pathway activation and thus 

if a complotype (combination of complement polymorphisms) of an individual can be 

determined, then their susceptibility to alternative pathway driven diseases can also be 

defined (Heurich et al., 2011). In the context of atherosclerosis, alternative pathway 

activation is almost certainly involved (Malik et al., 2010; Oksjoki et al., 2007b). 

Although studies have looked at polymorphic variation of certain individual 

complement proteins and risk of coronary heart disease, no one has yet examined the 

effects of the complotype that confers most risk for atherosclerosis. Obesity and 

cardiovascular disease are growing problems in the Western population. Given that the 

alternative pathway of complement activation is involved in lipid metabolism and
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components of the classical pathway are found in adipose tissue of obese subjects 

(Paglialunga et al., 2008; Xia and Cianflone, 2003; Zhang et al., 2007), it is reasonable 

to suggest that by determining the polymorphic risk variants in the population through 

screening individuals for their complotype, the likelihood of an individual becoming 

obese or developing cardiovascular complications could be predicted, such information 

would prove useful to general practitioners and cardiovascular specialists in advising 

patients and informing clinical decisions.

2.5 Targeting the terminal pathway as a therapy for atherosclerosis

Complement activation has been shown in vulnerable plaques which are prone to 

rupture and patients that present with unstable angina pectoris have been found to have 

increased plasma C5b-9 in comparison to patients with stable angina pectoris 

(Hoffmeister et al., 2002). In addition, evidence from animal studies have shown that 

deficiency of CD59 causes occlusive coronary disease, increased rate of mortality and 

vulnerable plaque phenotype (Wu et al., 2009). In agreement I have shown that that 

accelerated MAC formation in advanced lesions coincided with decreased SMC 

content, a characteristic of vulnerable plaques. The vulnerable plaque is more prone to 

rupture leading to cardiovascular complications including myocardial infarction and 

death. Developing therapeutic drugs targeted for the treatment of chronic 

cardiovascular disease is challenging. However, one strategy might be to inhibit the 

terminal pathway of complement to prevent identified vulnerable plaques from 

rupturing.

Eculizumab, a humanised anti-C5 mAb, is the first complement specific antibody on 

the market (Ricklin and Lambris, 2007) and provides the only approved therapy for
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paroxysmal nocturnal hemoglobinuria (PNH), an acquired disorder of haematopoiesis 

(Rother et al., 2007). In the context of cardiovascular disease, Pexelizumab, a short- 

acting, single chain of Eculizumab, has been clinically tested for use in coronary artery 

bypass graft surgery and myocardial infarction (Whiss, 2002). At first the drug showed 

promising therapeutic effects, with a decrease in the rate of major cardiac events after 

myocardial infarction or coronary bypass surgery (Granger et al., 2003; Verrier et al., 

2004). However, the APEX AMI trial, which included 5745 patients with acute ST- 

elevation myocardial infarction, showed no improvement in mortality or recurrent 

myocardial infarction with Pexelizumab (Armstrong et al., 2007). Similarly, I have 

shown that, targeting inhibition of the terminal pathway with an anti-C5 mAb failed to 

attenuate progression of the disease in apoE7' mice. Thus, targeting activation of the 

terminal complement pathway at the C5 level may not provide the ideal treatment for 

the prevention of the detrimental effects of end-stage atherosclerotic plaque.

In contrast, the terminal pathway at the level of C6 may provide a more inviting target 

since, as the data in this thesis demonstrate, apoE7'/C67' deficient mice show a clear 

reduction in levels of atherosclerosis. Generation of an anti-C6 mAb in C67' mice and 

the ability to therapeutically test this reagent in apoE7* animals might be a next logical 

step to be undertaken as a follow up from this project.

2.6 Therapeutic targeting of C3

I have shown that dysregulation at the C3 level slowed the progression of 

atherosclerosis in high fat fed apoE7' mice. This was paralleled by decreases in plasma 

lipid levels together with increased body fat. The role of C3 in obesity has also been 

highlighted in other studies. In rodents, obese Zucker rat model have significantly 

higher levels of plasma C3 compared to lean controls (Boggs et al., 1998). Furthermore,
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C3a receptor’7' mice have been shown to be protected from obesity when fed a high fat 

diet (Mamane et al., 2009). Human studies have similarly demonstrated a relationship 

between increased C3 and C3adesArg levels with body mass index and obesity 

(Cianflone et al., 2003; Pomeroy et al., 1997; Yang et al., 2006).

Therapeutically this poses a difficult problem in that design and use of agents to block 

the action of C3adesArg and thus prevent or reduce obesity may result in increased 

blood cholesterol and triglyceride levels in patients with a concomitant increased risk of 

atherosclerosis. In order to avoid this obvious problem, one strategy might be to 

combine blocking C3adesArg therapy with a stringent low fat diet regime

3. Conclusion

Atherosclerosis is a chronic inflammatory disease where the adaptive and innate arms 

of the immune system are activated in response to stress or damage of the endothelium. 

Complement activation has long been seen as critical during the progression of 

atherosclerosis and it is now emerging that its role in lipid metabolism may be equally 

important.

In this thesis, I have clearly demonstrated the importance of the terminal complement 

pathway in the progression of atherosclerosis and the vital role played by Cd59a in 

attenuating this effect. A second major finding was that enhanced C3 activation in the 

absence of CD55 was beneficial in attenuating disease progression. The mechanisms 

behind the latter effects remain to be definitively determined but the existing evidence

230



from this study strongly point towards C3 fragment, C3adesArg, and its role in 

modulating lipid homeostasis.

Further work is clearly warranted to understand the mechanistic implications of the 

discoveries made during this thesis and its relevance to human atherosclerosis which is 

a growing problem throughout the developed and developing world. Such 

investigations should allow a definitive analysis of the potential for using complement 

based therapeutics in a clinical setting to treat cardiovascular disease.
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A B S T R A C T

Aims: To ex a m in e  th e  roles o f  th e  m em b ran e attack  co m p lex  o f  com p lem en t and its so le  m em brane  
regulator, CD59, in  a th erosclerosis.
M ethods: C6 (C6_ /_ ) d e fic ien t and CD59a (C d59a_ /_ ) kn ock out m ice  w e re  sep arately  crossed  onto  the  
ap o lip op rote in  E k n ock ou t (ap oE _ /_ ) background. The d ou ble  knockout m ice w ere  fed high-fat d iet in 
order to  stu d y  th e  e ffec ts  o f  a b sen ce  o f  C6 or CD59a on th e  progression  o f  atherosclerosis.
Results: C6 d efic ien cy  s ign ifican tly  red u ced  p laq ue area and d isea se  severity . CD59a had th e  opp osite  
effec t in th a t d e fic ien cy  w a s  a sso c ia ted  w ith  a sign ifican t increase in plaque area, correlating w ith  
increased  m em b ran e  attack  c o m p lex  (MAC) d ep o s itio n  in th e  p laque and increased  sm ooth  m u scle  cell 
p roliferation  in  early  p laq ues.
Conclusions: Our resu lts  d em o n stra te  th at th e  MAC contribu tes to  th e  d ev e lo p m en t o f  atherosclerosis, C6 
defic ien cy  b e in g  p ro tec tiv e  and CD59a d efic ien cy  exacerb atin g  d isease.
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1. I n t r o d u c t io n

Over the last two decades it has become increasingly clear that 
atherosclerosis is associated with chronic inflammation (Fan and 
Watanabe. 2003; Nilsson and Hansson, 2008; Ross, 1999; Seifert 
and Kazatchkine, 1988). While the causes of the initial insult to 
the artery wall remain unclear, evidence has accumulated impli
cating the complement system in disease progression (Meuwissen 
et al., 2006; Niculescu et al„ 2004; Vlaicu et al., 1985; Yasojima et 
al., 2001). Despite these findings, studies on the role of the com
plement system in atherosclerosis using animal models have so 
far produced conflicting results (Bhatia et al., 2007; Patel et al., 
2001; Persson et al., 2004; Schmiedt et al„ 1998). The deletion of 
G in apolipoprotein-E-deficient (apoE-/~) and Clq in low density 
lipoprotein receptor (ldl-r)-deficient mice caused a worsening of 
the disease in both cases, implying that Clq which initiates the 
classical pathway of complement, and C3. the central orchestrator 
of all complement activation pathways, have anti-atherogenic roles 
(Bhatia et al., 2007; Persson et al., 2004). In contrast a recent paper 
by Leung et al. looked at the effect of DAF deficiency in the ldl-r 
mouse model of atherosclerosis. They found a worsening of dis
ease in the absence of DAF (Leung et al., 2009). C5 deficiency had

* Corresponding author at: Department of Medical Biochemistry and Immunol
ogy, School of Medicine, 3rd Floor Henry W elcome Building, Heath Park, Cardiff 
University. Cardiff CF14 4XN, UK. Tel.: +44 2920687304.

E-mail address: HughesTR@cf.ac.uk (T.R. Hughes).

little or no effect in the apoE-deficient model, leading the authors 
to suggest that the membrane attack complex (MAC) had no role in 
this model of atherosclerosis (Patel et al., 2001). Contrasting data 
were obtained from studies in C6-deficient rabbits which, when fed 
a high-fat diet, developed less atherosclerosis than their C6 suffi
cient controls (Schmiedt et al., 1998). MAC formation is blocked 
in both C5-deficient mice and C6-deficient rabbits, suggesting that 
there may be species differences in the roles of MAC in atheroscle
rosis; alternatively, it is possible that C5a, the other product of C5 
cleavage, has a hitherto unrecognised protective role in atheroscle
rosis.

Regulation of the terminal pathway has also recently been 
examined in mice through the generation of animals deficient 
in CD59a. the major regulator of MAC formation in the mouse. 
CD59 functions by blocking the interaction of the C5b-8 complex 
with C9, thereby preventing the formation of the lytic membrane 
attack complex (MAC). These laboratories employed different mod
els of the disease, utilising either the ldl-r or the apoE knockout 
mouse respectively (Wu et al., 2009; Yun et al., 2008; An et al., 
2009). Mice have two genes for CD59: Cd59a and Cd59b. Cd59a is 
widely expressed and the main regulator of membrane attack com
plex assembly in the mouse (Baalasubramanian et al., 2004), while 
Cd59b is highly expressed only in testis (Donev et al., 2008). Yun 
et al. (2008) tested ldl-r-/_ mice deficient in Cd59a and showed 
increased plaque formation, while Wu et al. (2009) examined 
apoE~/_ mice deficient in Cd59a and Cd59b and similarly demon
strated a worsening of disease. The latter paper also showed that 
treatment of the triple-deficient mice while on high-fat diets with

0161 -5890/S -  see front matter © 2009 Elsevier Ltd. All rights reserved, 
doi: 10.1016/j.molimm.2009.10.035
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the anti-C5 monoclonal antibody BB5.1 caused a significant less
ening of disease severity. This result contradicts the finding that 
deficiency of C5 in the apoE-/~ mouse did not inhibit progression 
of atherosclerosis (Patel et al., 2001).

This study was initiated to clearly define the role of MAC during 
the development of atherosclerosis by characterising the effect of 
C6 deficiency on the progression of atherosclerosis in the apoE_/_ 
mouse model. We have undertaken a direct comparison of the 
effects of C6 and CD59a deficiency in the same colony of apoE~/_ 
mice. C6-deficient mice are particularly relevant for investigat
ing the pathogenic roles of MAC, since they have previously been 
used to implicate MAC as a causative agent in a wide range of 
diseases, including reperfusion injury, glomerular damage, and 
xenograft hyperacute rejection (Falk et al., 1983; Fondevila et al., 
2008; McCurry et al., 1995). ApoE deficient mice lacking C6 were 
markedly protected from atherosclerosis compared to C6 sufficient 
controls. In contrast, CD59a deficiency significantly exacerbated 
atherosclerosis, in agreement with recent published studies and 
supportive of a key role of MAC in disease progression.

2. Methods

Additional methods are provided in Supplementary material.

2.1. Anim als

Male apoE~/~/C6-/ - ; apoE_/_/Cd59a~/_ mice together with 
litter-matched controls were fed high-fat diet containing 21% 
(wt/wt) pork lard and supplemented with 0.15% (wt/wt) choles
terol (Special Diet Services, Witham, UK) for 8 or 12 weeks starting 
at 8 weeks of age. Animals were housed in a specific pathogen- 
free environment. All studies and protocols were approved by the 
institutional Ethics Review Committee and by the United Kingdom 
Home Office and conformed to the Guide for the Care and Use 
of Laboratory Animals published by the US National Institutes of 
Health (NIH Publication No. 85-23, revised 1996).

2.2. Termination

Animals were anaesthetised and processed as previously 
described (Rosenfeld et al., 2002). Brachiocephalic arteries were 
removed with a piece of the aortic arch and the stump of the right 
subclavian artery still attached to aid orientation during histolog
ical processing. These were immediately embedded in optimum 
cutting temperature (OCT) compound (Raymond A Lamb Limited, 
Eastbourne, UK) and snap-frozen in liquid nitrogen.

2.3. H istology and im m unohistochem istry

Serial transverse sections, of 7 p.m thickness, were cut along the 
brachiocephalic artery, starting from the proximal end. Sections 
were stained with Miller’s elastin/van Gieson or oil red O (both 
from Sigma-Aldrich, Poole, UK). Sections were immunostained for 
the following complement regulators: DAF (13|xg/mL) (rat anti
mouse DAF, 2C6, prepared in-house using standard immunisation 
procedures) (Spiller et al., 1999); Crry (2.6 p,g/mL) (rat anti-mouse 
Crry mAb 5D5, a generous gift from Dr. M. Holers, Denver, USA) 
(Li et al., 1993); and Cd59a (10p,g/mL) (rat anti-mouse CD59a 
mAb, mCD59a.7, a kind gift from Dr. C.L. Harris, Cardiff University). 
Macrophages, smooth muscle cells and T cells were identified using 
anti-murine macrophage antibody (0.1 |xg/mL) (MOMA-2, Serotec, 
Oxford, UK), anti-a-smooth muscle actin (diluted 1:400) (clone a- 
1-A4; Sigma-Aldrich) and hamster anti-CD3 (20p,g/mL) (48-2B; 
Santa Cruz) respectively.

Immunostaining was also performed for complement com
ponents C3 (20|xg/mL) (rat anti-mouse C3 mAb 11H9; Hy-Cult

Biotechnology, The Netherlands), and C9/MAC (2 |xg/mL) (rabbit 
anti-rat C9 prepared in-house using standard immunisation 
procedures).

In each case positive staining was expressed as a percentage 
fractional area of the lesion as analysed by a computerised image- 
analysis program (Image ProPlus™ software version 6.3, Media 
Cybernetics, Carlsbad, CA, USA).

2.4. H istom orphom etry

Morphometric analyses were carried out on elastin-stained sec
tions. One section was quantified per mouse at the same position 
along the brachiocephalic artery, following the established method 
of Johnson et al. (2005). Morphometry was performed using Image 
ProPlus™ software as above. The lengths of the internal and exter
nal elasticae were recorded. These were used to derive the media 
area by assuming them to be the circumferences of perfect circles. 
The plaque area was measured directly and was subtracted from 
the area enclosed by the internal elastic lamina to derive the true 
lumen area.

2.5. Serum triglyceride and cholesterol concentrations

Mouse blood (~1 mL) was collected into tubes without antico
agulant, allowed to clot at room temperature and then incubated 
on ice for 1 h. Serum was separated by centrifugation and analysed 
for triglyceride, cholesterol and lipaemia index on an automated 
analyser (Clinical Biochemistry Laboratories, Cardiff University 
Hospital).

2.6. Plaque lipid con ten t

Oil red O-stained sections were used to determine plaque lipid 
content. The total stained area in the plaque was expressed as a per
centage of the total plaque area to give the fractional lipid content.

2.7. Statistical analysis

Data are expressed as mean ± SEM and significance tested by 
two-tailed unpaired Student’s t-test (GraphPad Prism software ver
sion 3.0), with significance assumed at P<0.05.

3. Results

3. J. Deficiency o f  C6 inhibits atherosclerotic plaque progression

To delineate the role of the MAC during atherosclerosis we 
crossed apoE~/~ mice with C 6 m i c e  generating apoE- /~/C6-/~ 
and litter-matched controls (apoE~/_/C6+/+). Having no C6, these 
mice were incapable of MAC formation from birth. The mice 
were fed a high-fat diet for 12 weeks to induce severe disease, 
in the expectation that this would amplify differences between 
the test and control groups. Analyses of the brachiocephalic 
arteries revealed that the mean plaque cross-sectional area in 
apoE-/~ /C6_/_ mice was significantly decreased compared to the 
apoE~/_ /C6+/+ controls. Fig. 1A and C shows representative sections 
from apoE_/~/C6~/~ mice while Fig. IB and D shows represen
tative sections from a p o E c o n tro l  mice. Additionally, (C) and 
(D) shows the area defined as “plaque”, superimposed onto the 
image. While Fig. IE shows the pooled data(66.01 ±23.2 x 103 |xm2 
versus 179.5 ± 14.1 xlO3 p,m2; P<0.001). Table 1 summarises the 
morphometric analyses, including plaque, lumen, media and ves
sel area. The mean lumen and media areas were not different 
between the groups. However the total vessel area was signifi
cantly decreased in the apoE~/~/C6- /- mice compared to apoE~l~ 
controls (349.9 ± 39.6 x 103 p,m2 versus 469.8 ± 28.2 x 103 }xm2;
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j. 1. Analysis of atherosclerosis in apoE-/_ /C6~,~ mice. Plaque area measurement in brachiocephalic arteries of apoE_,_/C6~,_ and apoE_/_ mice fed a high-fat diet from 8 
;eks of age for 12 weeks. Sections of the brachiocephalic artery were stained with Miller’s elastin/van Gieson. The bars show group means ±  SEM. Scale bars: 200 p-m unless 
herwise stated. (A and C) Small plaques (arrowed) from the brachiocephalic arteries of apoE-,_ /C6- ^  mice. (C) Area defined as plaque using Image ProPlus™ software. (B 
d D) Large plaques from the brachiocephalic arteries of apoE_/_ mice. (D) Area defined as plaque using Image ProPlus™ software. (E) Mean plaque area in apoE~/ - /C6-/~ 
d apoE_,_ mice. Brachiocephalic artery sections were stained with rabbit anti-rat C9 (red) for MAC deposition and nuclei were stained blue with DAPI. (F) Minimal C9 
lining in a large plaque from an apoE~,_/C6_,_ mouse. (G) MAC staining is abundant in an advanced plaque of an apoE_/_ mouse. Insets show higher magnification of areas 
iiere C9 deposition is localised within the plaque: lining the endothelial wall (arrowed) and within the necrotic core of the plaque (inset scale bar: 50 pm). (H) Comparison 
percentage membrane attack complex staining in apoE_,_/C6_/_ and apoE_,_ mice.

<0.05). MAC deposition was abundant in plaques of control mice, 
Jth on the endothelium (inset, thick white arrow) and in the 
;crotic core (inset, large non-cellular area) (Fig. 1G). In contrast, 
5 staining for MAC above background levels was found in plaques 
om apoE- /- /C6-/~ mice (Fig. IF). Fig. 1H shows the pooled data 
ir MAC deposition (apoE-/- / C 6 12.8±3.5% versus apoE_/_: 
1.0 ± 6.5%; P < 0.01). Note that the absence of MAC staining in the 

mice provides verification for the use of the anti-C9 anti- 
:rum as a MAC marker because these mice have normal plasma 
vels of C9 (data not shown).

2. Plaque cross-sectional area is increased in apoE/Cd59a 
mble knockout mice

To examine the role of regulation of MAC formation 
uring atherosclerosis we generated mice deficient in both

apoE and Cd59a and subjected them (together with their 
controls) to a period of high-fat feeding. Analysis of the 
brachiocephalic arteries revealed that average plaque size in 
apoE-/_/Cd59a_/_ mice was double that seen in gender, age, 
strain and litter-matched apoE- /- controls on an identical diet. 
Fig. 2A and B shows representative sections from apoE- /- /Cd59a~l~ 
and apoE-/-  mice respectively. The pooled data are shown 
in Fig. 2C (59.9 ± 13.1 x  103 |xm2 versus 28.2 ± 7.9 x  103 |xm2; 
P<0.05). Table 2 summarises the morphometric analyses, includ
ing plaque, lumen, media and vessel area. The mean lumen area, 
the media area and the total vessel area were not different 
between the groups. There were no significant differences in body 
weight, heartrbody weight ratios, serum triglyceride or choles
terol levels, the lipaemia index, or plaque lipid content between 
apoE-/- /Cd59a- /- and apoE~l~ mice (supplemental data, Table 1 
and Fig. 1).

i b l e  1
achiocephalic artery morphometric data in 20-week-old apoE~/_/C6~/_ and apoE_,_ mice.

Croup Vessel area ( x 103 p.m2) Plaque area ( x 103 p.m2) Media area (x lO 3 p.m2) Lumen area ( x 103 p,m2)

apoE i IC6-I- (n » 8) '349.9 ±  39.6 ”'66.01 ±  23.2 100.2 ± 11.7 183.7 ±  15.9
apoE ' (n -1 0 ) 469.8 ± 28.2 179.5 ±  14.1 97.5 ± 10 .1 192.8 ±  17.2

1 animals were fed a high-fat diet from 8 weeks of age for 12 weeks. 
‘ P<0.05 versus apoE_/" control.
’ P<0.001 versus apoE-'- control.
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Fig. 2. Plaque area measurement in brachiocephalic arteries of apoE-^/CdSSa^-  and apoE_/-  control mice after 8 weeks of high-fat feeding. Sections of the brachiocephalic 
artery were stained with Miller's elastin/van Gieson. The bars show group means ±SEM. Scale bars: 200 p,m. (A) Single large plaque occupying half of the vessel from an 
apoE-/-/Cd59a_/~ mouse. (B) A small plaque (arrowed) from an apoE_/~ mouse. (C) Mean plaque area in apoE-,_ /Cd59a-/_ and a p o E m i c e .
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Table 2
Brachiocephalic artery morphometric data in 16-week-old apoE- , - /Cd59a_/_ and apoE_,_ mice.

Group Vessel area (x 103 p,m2) Plaque area ( x 103 |xm2) Media area (x lO 3 p.m2) Lumen area (xlO 3 p.m2)

apoE ' /Cd59a-'- (n = 14) 345.0 ±  25.0 ‘59.9 ±  13.1 97.0 ±  7.6 188.0 ±  10.8
apoE-'- (n = 15) 325.0 ±  20.0 28.2 ±  7.9 90.0 ±  8.1 207.0 ±  9.8

All animals were fed a high-fat diet from 8 weeks of age for 8 weeks. 
P< 0.05 versus apoE_,_ control.

3.3. CD59a deficiency causes increased deposition o f  MAC in 
plaques

The extent of terminal complement pathway activation was 
examined by staining for C9 deposition as a surrogate marker of 
MAC (verified as described above). Complement activation was also 
assessed by staining for C3 fragment deposition. MAC staining was 
absent from unaffected vessel walls (i.e. those with no plaque), 
but clearly present in early and late stage plaques obtained from 
both apoE-/- /Cd59a_/~ (Fig. 3A) and apoE~l~ mice (Fig. 3B). To 
better visualise and analyse the expected increase in MAC staining

in apoE- /- /Cd59a-/~ mice, fluorescence intensity detection limits 
were set at a high sensitivity level, hence the apparently low lev
els of MAC staining recorded in apoE controls. MAC deposits were 
more than 10-fold increased in the apoE_/_/Cd59a_/_ mice com
pared to the apoE_/_ controls (Fig. 3C; 28.9 ± 9.4% versus 2.7 ± 0.8%; 
P<0.05). C3 deposition was detected weakly in unaffected artery 
walls and strongly in plaques from the brachiocephalic arteries of 
both apoE~/-/Cd59a-/~ and apoE- /- mice (Fig. 3D and E, respec
tively). There was no significant difference in levels of C3 between 
the apoE- /- /Cd59a- /-  mice and their apoE~l~ controls (Fig. 3F). 
To assess whether increased MAC deposition in apoE-/- /Cd59a- /-

ApoE ^/Cd59a-/

ApoE'7Cd59a" ApoE"'

Fig. 3. MAC deposition and lesional C3 levels in atherosclerotic brachiocephalic arteries. Comparison of percentage MAC staining (panels A-C) or C3 staining (panels D-F) in 
apoE-'-Cd59a-'- and apoEH- animals at 16 weeks after 8 weeks of high-fat diet. Sections of the brachiocephalic artery were stained with rabbit anti-rat C9 for MAC or rat 
anti-mouse C3 (red) and nuclei were stained with DAP1 (blue). The bars show group means ±  SEM. Scale bars: 200 p-m. (A) Representative section from an apoE-'-/Cd59a-/- 
mouse. (B) Representative section from an apoE- -̂  mouse. (C) Mean percentage of lesional MAC staining in apoE- -̂ /Cd59a- ^  and apoE-,_ mice. (D) Representative section 
from apoE_/_/Cd59a_/_ mouse. (E) Representative section from apoE-'- mouse. (F) Mean percentage of lesional C3 staining in apoE-^/CdSBa-'- and apoE-'- mice.
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:ig. 4. Immunolocalisation of complement regulators. apoE/Cd59a and apoE deficient mice were fed a high-fat diet for 8 weeks from 8 weeks of age. Sections of the 
irachiocephalic artery were stained for complement regulators using specific monoclonal antibodies (brown) and nuclei were stained with haematoxylin (blue). Scale bars: 
50p.m. Lumen is indicated by L (A-C) Staining of Crry (rat anti-mouse Crry mAb (5D5)). decay accelerating-factor (DAF) (2C6) and Cd59a respectively in apoE"/-/Cd59a-,“ 
nice. (D-F) Staining of Crry, DAF and Cd59a respectively in apoE_/~ mice.

nice would cause an increase in the numbers of inflammatory 
:ells within the plaque we stained for macrophages and T cells, 
rhere were no significant differences in the proportions of plaque 
area staining for macrophages or T cells (as revealed by stain- 
ng with MOMA-2 and CD3, respectively) between the two groups 
Supplemental Data Figs. 2 and 3).

3.4. Absence ofCD59a is not com pensated by up-regulation of 
other com plem ent regulators

The membrane-bound complement regulators Crry and decay 
accelerating factor (DAF) were expressed in normal vessel walls 
and plaques in both groups of mice (Fig. 4A, B. D and E). There 
ms no gross difference in the pattern or abundance of expression 
of either Crry or DAF between the groups. Cd59a expression was 
absent from apoE_/~/Cd59a_/_ mice and present within the bra- 
ohiocephalic arteries of apoE_/_ mice (Fig. 4C and F. respectively).

35. In the absence o f  CD59a the MAC influences sm ooth muscle 
:ell proliferation and survival in atherosclerosis

Because of the known effect that the MAC has on smooth muscle 
:ell proliferation (Benzaquen et al., 1994) we decided to quan- 
nfy smooth muscle cell content by staining for a-actin in plaques 
rom the brachiocephalic arteries of apoE-/-mice lacking the MAC 
?gulator CD59a. Grouping the plaques into “early” (fatty streaks 
and fibrous plaques with cross-sectional areas <80xl03p.m2) 
and “advanced" (complex plaques with cross-sectional areas 
:80 x 103 |xm2) we found a significant increase in the smooth mus- 
de cell content of “early" plaques from apoE_/_/Cd59a- -̂ mice as 
ompared to apoE-/-mice (% a-actin staining 62.0% ±7.1% versus 
21.4 ± 6.1 %; P< 0.01). Fig. 5A and B shows representative pictures of 
early plaques stained for smooth muscle cell a-actin. By contrast, 
n “advanced” plaques smooth muscle cell content was signifi- 
:antly reduced in the plaques from apoE~/- /Cd59a-/- mice versus 
ipoE~l~ controls (% a-actin staining 15.3 ± 4.8% versus 36.6 ± 6.7%; 
P<0.05). Fig. 5C and D shows representative pictures of advanced 
ilaques stained for smooth muscle cell a-actin. Combined data are 
presented in Fig. 5E. The proportion of plaque staining for a-actin 
nthe apoE_/_/Cd59a_/_ mice fell more than three-fold between 
early” and “advanced” plaques (62.0%±7.1% versus 15.3±4.8%;

P<0.01). Fig. 5F-I shows C9 deposition in smooth muscle cell 
regions of an atherosclerotic plaque from an apoE deficient mouse.

4. Discussion

In this paper we set out to unequivocally define the roles 
of the MAC in atherosclerotic plaque formation in the apoE- /- 
mouse model. Importantly, we clearly show, for the first time, 
that deficiency of C6 is strongly protective against progression 
of atherosclerosis in apoE- /- mice. This result is consistent with 
published studies in fat fed C6-deficient rabbits and strongly impli
cates the MAC in both of these models of atherosclerosis (Schmiedt 
et al., 1998). Secondly, we tested the effects of deficiency of the 
major murine regulator of MAC formation, CD59a, and showed 
that apoE_/_/Cd59a_/_ mice developed much larger plaques on 
fat feeding when compared to closely matched apoE- /- controls; 
MAC deposition in the plaques was also markedly increased in 
apoE_/- /Cd59a-/~ mice. Of note we have also shown in these mice 
that the smooth muscle cell content of advanced plaques is signifi
cantly less than that seen in apoE- /- controls. This finding suggests 
a possible mechanism whereby MAC formation could contribute 
not only to plaque development but also to plaque instability and 
hence the incidence of vessel rupture and consequent acute infarcts 
or strokes.

The data that we have presented here on the contrasting effects 
of C6 and CD59a deficiency on plaque development in apoE- /- 
mice clearly support the hypothesis that the MAC is an important 
contributor to atherosclerotic plaque development in the apoE-/- 
mouse model. In fat fed apoE_/_/C6_/_ mice, plaque size was 
markedly reduced and staining for MAC deposition within the 
plaques was also significantly reduced; the converse was true in 
apoE~/~/Cd59a- /~ mice with much larger plaques compared to 
controls and increased MAC deposition. The mean total vessel area 
in apoE- /- /C6~/_ mice was significantly smaller than that seen in 
apoE- /- controls, while the lumen area remained the same between 
the two groups. This is due to arterial remodelling which occurs 
during atherosclerosis and maintains the lumen area in the face of 
increased obstruction caused by plaque growth. The extent of dis
ease in these mice correlated with the extent of MAC deposition. 
In contrast to the markedly elevated MAC deposition, C3 stain
ing was seen strongly in plaques from both apoE_/~/Cd59a_/_ and
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Fig. 5. Smooth muscle cell content in early and advanced lesions. Comparison of percentage smooth muscle a-actin staining in early plaques (<80 x 103 p,m2) or advanced 
plaques (complex plaques with areas >80 x 103 p,m2) of apoE-/'/Cd59a_/_ and apoE_/_ animals at 16 weeks, after 8 weeks of high-fat diet. Brachiocephalic artery sections 
were stained for smooth muscle cells with anti-smooth muscle a-actin and counterstained with haematoxylin (blue). The bars show group means ±SEM. Scale bars for 
(A-D): 200 p.m. (A) Representative section of an early lesion from an apoE_/~/Cd59a_/_ mouse. (B) Representative section of an early lesion from an apoE_/_ control. (C) 
Representative section of an advanced lesion from an apoE_/_/Cd59a_/_ mouse. (D) Representative section of an advanced lesion from an apoE_/_ control. (E) Percentage 
of plaque stained for smooth muscle a-actin in early and advanced plaques of apoE-^/CdSga- '-  and apoE-/_ mice. (F-I) An atherosclerotic vessel from an apoE deficient 
mouse showing C9 deposition co-localised in regions of smooth muscle cells. Images show cell nuclei (blue), C9 (red) or smooth muscle a-actin (green) (F-H respectively). 
(I) Merged images correspond to the overlay of cell nuclei, C9 and smooth muscle a-actin (Fig. 1). Co-localisation of C9 with smooth muscle a-actin is shown in yellow. Scale 
bar= 100 p.m.
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apoE controls, an observation which has been previously noted 
(An et al., 2009). Most of the MAC deposited in the plaques is asso
ciated with extracellular debris and lipid, which accumulate in the 
core of advanced plaques. Activation of complement at this loca
tion is probably due to the presence of oxidised and enzymatically 
modified LDL, known to activate complement through the alterna
tive pathway (Bhakdi, 1998). Of note, the expression of the other 
broadly expressed murine membrane complement regulators DAF 
and Crry was not different between the two groups, indicating that 
deficiency of CD59a was not compensated by increased expres
sion of other regulators. Plaque lipid content and macrophage 
and T cell infiltration were also similar in test and control 
groups.

Smooth muscle cell proliferation is a characteristic feature of 
plaque formation. In small, simple plaques from apoE- / - /Cd59a~/- 
mice, smooth muscle cell accumulation was markedly increased 
compared to apoE-/_ controls, suggesting accelerated plaque 
development. In addition we observed an association between C9 
deposition and regions of smooth muscle cell within atheroscle
rotic plaques. The MAC has previously been shown to cause 
aortic smooth muscle cell proliferation in vitro (Niculescu et al., 
1999), which strengthens our impression that this is a MAC trig
gered event. In contrast, larger and more advanced plaques in 
apoE- “/Cd59a_ f_ mice contained fewer smooth muscle cells than 
similar sized plaques from apoE-/~ controls, likely due to MAC- 
i nduced cytolysis. Reduced smooth muscle cell number in these late 
plaques in apoE- ,- /Cd59a-|,~ mice will render the plaques unsta
ble and vulnerable to rupture. These observations are compatible 
with those of Wu et al. (2009) who noted that the plaques present 
in their apoE_/_/Cd59a_/_/Cd59b_/- mice had a more vulnerable 
phenotype than those of the apoE_/~ controls.

MAC deposition is a characteristic feature of human atheroscle
rotic lesions; the pattern of MAC deposition in murine plaques 
closely resembles that seen in humans (Rus et al., 1988). It is 
therefore reasonable to propose that MAC contributes to plaque 
formation and progression in human atherosclerosis in a simi
lar manner to that which we and others have now demonstrated 
occurs in mice. Our data are in agreement with Wu et al., 
who also implicated the terminal pathway in the progression of 
atherosclerosis. More recently, Leung et al. (2009) have shown 
that DAF deficiency exacerbates disease in the ldl-r mouse model 
of atherosclerosis again implying that unregulated complement 
activation accelerates the progression if atherosclerosis. How
ever. these findings are at odds with a previous study which had 
showed no effect of terminal pathway disruption (at the level 
of C5) on the progression of atherosclerosis in fat fed apoE~/_ 
mice (Patel et al., 2001). These contrasting findings highlight 
the need for further investigation into the role of C5 and C6 in 
atherosclerosis.

Inhibition of MAC formation is a potential strategy for therapy 
of atherosclerosis and a realistic one given that terminal pathway 
inhibitors are already in use in the clinic (Davis, 2008), with more 
under development (Song et al., 2003).
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Supplemental Methods

Reagents

All standard laboratory chemicals were purchased from Sigma (Poole, Dorset, 

UK) or Fisher Scientific (Loughborough, UK).

Animals

B6.129-Cd59atm1Bpm (Cd59a_/~) mice were generated as previously 

described,(Holt et al., 2001; Morgan et al., 2006) and back-crossed onto the 

C57BL/6 background for eight generations. C6-deficient mice, originally 

identified as a natural mutation in a wild mouse strain and bred onto the 

C3H/He background, were back-crossed five generations onto 

C57BI/6.(Morgan et al., 2006) ApoE7' mice were originally provided by J. 

Breslow (The Rockefeller University, New York). The strain background of the 

apoE-/- mice was 71% C57BL/6 and 29% 129. These apoE7' mice were 

crossed with either Cd59a7' or C67' mice to generate apoE7VCd59a7' or apoE'

' ICQ'1' double knockout mice. In both cases, apoE7's ing le knockout gender, 

strain, age and litter-matched mice provided the appropriate controls.

Genomic DNA was extracted from tail tips for genotyping by polymerase chain 

reaction (apoE, Cd59a), while C6 deficiency was identified either by 

assessing serum haemolytic activity in a classical pathway assay or detecting 

C6 protein in immunoblots using a cross-reactive anti-C6 antiserum.(Morgan, 

2000)



Termination

Animals were anaesthetised by intraperitoneal injection of sodium 

pentobarbitone and weighed before exsanguination and arterial perfusion via 

the abdominal aorta with phosphate-buffered saline (PBS) at a constant 

pressure of 100 mmHg, with outflow through the incised jugular veins. The 

heart was removed from each animal to calculate the heart:body weight ratio. 

The brachiocephalic artery was chosen as the site for evaluation of plaque 

progression because it has been demonstrated to be a site of predilection for 

plaque development in the apoE'7' mice, particularly prone to development of 

late plaques and plaque rupture.

Histology and Immunohistochemistry

Sections to be stained for macrophages and a-smooth muscle actin 

were fixed in ice-cold acetone and endogenous peroxidase activity was 

inhibited by incubation with 3% hydrogen peroxide solution. Sections were 

blocked with either an avidin/biotin blocking kit (Vector laboratories, 

Peterborough, UK) followed by a mixture of 10% goat serum and 2.5% mouse 

serum, or with the Mouse-On-Mouse kit (Vector Laboratories). Sections were 

then incubated with the appropriate biotinylated secondary antibodies: 

biotinylated goat and rat (Vector Laboratories) (diluted 1:250 in 1 % (wt/vol) 

bovine serum albumin (BSA) in PBS) followed by horseradish peroxidase- 

labeled Extravidin (Sigma-Aldrich) (diluted 1:500 in 1% (wt/vol) BSA in PBS), 

Vectastain Elite ABC (Vector Laboratories). Immunopositive cells were 

detected using diaminobenzidine (DAB) (Vector laboratories), a-smooth 

muscle actin was also detected using Fluorescein Avidin D (Vector



Laboratories)(1:100). T-cell staining was carried out on sections fixed in 4% 

formaldehyde and blocked with 10% goat serum. The presence of T-cells was 

revealed with hamster anti-mouse CD3 antibody followed by biotinylated goat 

anti-hamster IgG and subsequent detection using avidin-biotin 

(DakoCytomation) followed by New Fuchsin solution (New Fuchsin Kit; 

DakoCytomation). All sections were counterstained with Mayer’s 

haematoxylin. Negative controls, where the primary antibody was replaced 

with either mouse or rat IgG at the same dilution, were always included.

Sections were also Immunostained for complement components C3 

(rat anti-mouse C3 mAb 11H9; Hy-Cult Biotechnology, The Netherlands) and 

C9/MAC (rabbit anti-rat C9 prepared in-house using standard immunisation 

procedures). In this case, sections were blocked using 2% bovine serum 

albumin in PBS and bound antibodies were detected with either Alexa fluor 

594-labelled donkey anti-rat IgG (20 pg/mL) or Alexa fluor 594-labeled goat 

anti-rabbit IgG (20 pg/mL) (both from Molecular Probes Inc, Eugene, OR, 

USA). All sections were counter-stained with DAPI. A negative control, where 

the primary antibody was replaced with either rabbit or rat IgG (of the same 

isotype) at the same concentration, was always included.

In each case positive staining was expressed as a percentage 

fractional area of the lesion as analysed by a computerised image-analysis 

program (Image ProPlusTM software version 4.0, Media Cybernetics, 

Carlsbad, California, USA).
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Figure I. Measurement of lipid content in plaques. Comparison of percentage 

of plaque area staining for lipid with oil red O between apoE'VCdSOa7' and 

apoE'7’ animals after 8 weeks of high-fat diet. Sections of the brachiocephalic 

artery were stained with Oil Red O (red) and counterstained with 

haematoxylin (blue). Bars show group means ± SEM. Scale bars: 200pm.

(A) Representative section from an apoE^'/CdSOa'7' mouse.

(B) Representative section from an apoE A mouse.



(C) Mean percentage staining with oil red O in the lesion area in apoE'7' 

/Cd59a‘7’ and apoE'7' mice.

Figure II. Macrophage staining in plaques. Comparison of percentage of 

plaque area staining with a macrophage marker in apoE'7'/Cd59a'7' and apoE'7 

animals after 8 weeks of high-fat diet. Brachiocephalic artery sections were 

stained with MOMA-2 (brown) for macrophages and counterstained with 

haematoxylin (blue). The bars show group means ± SEM. Scale bars: 50pm. 

Representative sections from an apoE‘7VCd59a'7' and apoE'7' mouse stained 

for MOMA-2 (A and B respectively). Mean percentage of plaque stained with 

MOMA-2 (C) in apoE'7 Cd59a'7' and apoE'7' mice.

Figure III. Measurement of T-cell staining in plaques. Comparison of 

percentage CD3-positive staining within the lesions of apoE‘7'/Cd59a'7' and 

apoE'7' mice after 8 weeks of high-fat diet. Sections of the brachiocephalic 

artery were stained with anti-CD3 antibody (red) and counterstained with 

haematoxylin (blue). Bars show group means ± SEM. Scale bars: 50pm.

(A) Representative section from an apoE'7VCd59a'7‘ mouse.

(B) Representative section from an apoE'7' mouse.

(C) Mean percentage CD3-stained lesion area in apoE‘7VCd59a'7' and apoE'7' 

mice.



le I. Body weight, heart:body weight ratio, lipaemia index, total cholesterol and triglyceride levels in 16 
k old apoE'7VCd59a'7' and apoE'7' mice. All animals were fed a high fat diet from 8 weeks old for 8 
ks. Data are shown as mean ± SEM.

up Body Weight
(g)

Heart: Body 
Weight Ratio 

(xIO"3)

Cholesterol
(mmol/L)

Triglyceride
(mmol/L)

Lipaemia Inde

E'VCDSQa-'- 41 ±2 .3  
(n=12)

4.7 ± 0.2 
(n=13)

29.0 ± 1.7 
(n=21)

2.7 ±0 .3  
(n=22)

25.0 ± 3 .7  
(n=14)

ApoE7' 44 ±2.1 
(n=16)

4.4 ± 0.2 
(n=18)

34.0 ± 1.9 
(n=25) 
P=0.08

O 
00 

CM 

CO 36.8 ± 5 .4  
(n=16)

P = 0.09
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CD55 Deficiency Protects against Atherosclerosis in 
ApoE-Deficient Mice via C3a Modulation of Lipid 
Metabolism
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A n a to m y /  U n iversity  o f  B ristol V eterin ary School, Bristol; a n d  the  
B risto l H eart In stitu te ,s U n iversity o f  Bristol, Bristol, U n ited  
K in g d o m

Atherosclerosis, the leading cause o f death in the 
Western world, is driven by chronic inflammation 
within the artery wall. Elements o f the complement 
cascade are implicated in the pathogenesis, because 
complement proteins and their activation products 
are found in the atherosclerotic plaque. We examined 
the role o f CD55, a membrane inhibitor o f the com
plement component 3 (C3) convertase, which con
verts C3 into C3a and C3b, in atherosclerosis. CD55- 
deficient (CD55 / ~) mice were crossed onto the 
atherosclerosis-prone apolipoprotein E (apoE>defi- 
cient (ttpoE~/ ~) background. High fat—fed male 
apoE~/ ~/CD55~/ ~ mice were strongly protected from 
developing atherosclerosis compared with apoE~/ ~ 
controls, lip id  profiling showed significantly lower 
levels o f triglycerides, nonesterified fatty acids, and 
cholesterol in apoE~y~/CD55~y~ mice than that in 
controls after high-fat feeding, whereas body fat 
in apoE~/ ~/CD55~/ ~ mice content was increased. 
Plasma levels o f C3 fell, whereas concentrations o f  
C3adesArg (alias acylation stimulating protein; 
ASP), produced by serum carboxypeptidase N-me- 
diated desargination o f C3a, increased in nonfasted  
high fat-fed apoE~/ ~/CD55~/ ~ mice, indicating 
com plem ent activation. Thus, com plem ent dysregu- 
lation in the absence o f CD55 provoked increased  
C3adesArg production that, in turn, caused altered 
lipid handling, resulting in atheroprotection and 
increased adiposity. Interventions that target com 
plem ent activation in adipose tissue should be ex 

plored as lipid-decreasing strategies. (Am J  Pathol 
2011, 179:1601-1607; DOI: 10.10l6/j.ajpath.2011.06.015)

Atherosclerosis, long considered a passive process of 
accumulation of lipid in blood vessel walls accompanied 
by smooth muscle proliferation and culminating in loss of 
endothelial integrity, is now recognized as an active pro
cess with immune cells and mediators accumulating in 
forming plaques from the earliest stages, and inflamma
tion central to disease progression.12 Both innate immu
nity and adaptive immunity play roles, with mediators of 
both arms of the immune system present in the plaque.3 
Among the innate immune components, complement (C) 
and its activation products are abundant and suggested 
to play critical roles in atherogenesis, both directly 
through local cell damage and indirectly by attracting 
and activating immune cells.4-9 C comprises three acti
vation pathways, alternative, classical, and lectin, and 
activation of each has been shown in atherosclero
sis.10-12 Effector molecules generated during C activa
tion include anaphylactic and chemotactic fragments 
(C3a, C5a), opsonic fragments (C4b, C3b), and the cy
totoxic membrane attack complex (MAC). C3a and C5a 
may promote infiltration of inflammatory cells into the 
plaque1314; this activity is regulated by carboxypepti
dase N, which clips the carboxy-terminal arginine. Al
though C3adesArg is inactive as an inflammatory medi
ator, a growing body of literature reports that it has potent 
adipogenic activity, promoting lipid uptake, triglyceride 
synthesis, and storage in adipocytes.1516 C3-deficient 
mice, which cannot generate C3adesArg, have delayed 
postprandial triglyceride clearance, together with higher
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levels of nonesterified fatty acids (NEFAs), and signifi
cantly reduced adiposity than do wild types.17,18

Animal models have contributed to establishing the rele
vance of C to atherosclerosis. Almost 40 years ago, studies 
in fat-fed C6-deficient rabbits showed that absence of C6, 
an essential component of the MAC, markedly inhibited 
plaque formation,19 findings replicated and extended more 
recently.20 Atherosclerosis-prone mouse strains back- 
crossed onto C-deficient strains have been used to further 
explore roles of C. Fat-fed apolipoprotein E (apo£)-deficient 
(apoE~y~) mice lacking C6 showed significantly attenuated 
disease, replicating findings in rabbits, whereas absence of 
CD59a, the principle murine regulator of MAC assembly, 
exacerbated disease.21-23 In contrast, deficiency of C5, 
removing the capacity to form C5a and MAC, had no effect 
on atherosclerosis progression in apoE~y~ mice 24 whereas 
deficiency of C3, but not factor B, exacerbated plaque 
formation and caused hyperlipidemia on apoE~y~ /ld iry~ or 
ldlr~/~ backgrounds 25,26

CD55 (decay accelerating factor) is a 70-kDa mem
brane-bound C regulator that accelerates decay of the 
C3 convertase. To test the effect of CD55 deficiency on 
progression of atherosclerosis, CD55- / -  mice were 
back-crossed onto the apoE-/_  background and fed an 
atherogenic diet. Informed by our findings with CD59a 
deficiency, we anticipated that CD55 deficiency would 
exacerbate disease. Instead, deficiency of CD55 was 
highly protective for atherosclerosis; plaques were 
smaller and remained structurally simple. We here show 
that altered lipid handling resulting from C dysregulation 
is responsible for reduced atherogenesis in CD55~y~ 
mice. The demonstration that C activation products mark
edly affect lipid handling and plaque formation will influ
ence future strategies for treatment of atherosclerosis.

Materials and Methods

Reagents and Animals

All chemicals were purchased from Sigma-Aldrich (Poole, 
UK) or Fisher Scientific (Loughborough, UK). Fatty acid and 
lipid standards were from Nu-Chek-Pre Inc. (Elysian, MN) 
and Sigma-Aldrich, respectively. Silica gel G plates were 
from Merck KGaA (Darmstadt, Germany).

CD55 knockout (CD55- / - ) mice were provided by Prof 
Wenchao Song (University of Philadelphia, Philadelphia, 
PA) and back-crossed onto C57BL/6 for nine genera
tions. ApoE~y~ mice were originally provided by J. 
Breslow (Rockefeller University, New York, NY). The 
strain background of these original mice was 71% 
C57BL/6 and 29% 129. The apoE~y~ mice were crossed 
with CD55- / -  mice to generate apoE~y~/CD55~y~ dou
ble knockouts along with apoE~y~ single knockouts; 
these sex-, strain-, and age-matched littermates provided 
the appropriate controls. Mice were genotyped by poly
merase chain reaction with the use of genomic DNA 
extracted from tail tips.

Male mice aged 8 weeks were fed a high-fat diet, 
containing 21% (wt/wt) pork lard and supplemented with 
0.15% (wt/wt) cholesterol (Special Diet Services, Witham,

UK), for 12 weeks. Animals were housed in a specific 
pathogen-free environment. Some mice were deprived of 
food for 16 hours overnight to obtain baseline levels of 
various parameters. All studies and protocols were ap
proved by the institutional ethics review committee and 
the United Kingdom Flome Office and conformed to the 
Guide for the Care and Use of Laboratory Animals (NIH 
Publication No. 85-23, revised 1996).

Histology and Immunohistochemistry

Mice were anesthetized by intraperitoneal injection of so
dium pentobarbitone and weighed before exsanguination 
by arterial perfusion via the abdominal aorta with PBS at a 
constant pressure of 100 mmPIg, with outflow through the 
incised jugular veins. Brachiocephalic arteries were re
moved with a piece of the aortic arch and the stump of the 
right subclavian artery still attached to aid orientation during 
processing, immediately embedded in optimum cutting 
temperature compound (RA Lamb Ltd, Eastbourne, UK), 
and snap-frozen in liquid N2.

Serial transverse 7-ju,m sections were cut along the 
brachiocephalic artery, starting from the proximal end. 
Sections were stained with Miller’s Elastic/Van Gieson 
(Sigma-Aldrich). Macrophages and smooth muscle cells 
were identified with anti-murine macrophage mAb (di
luted 1:100; F4/80; Serotec, Oxford, UK) and anti-a- 
smooth muscle actin mAb (diluted 1:100; clone c*-1-A4; 
Sigma-Aldrich), respectively. Sections were fixed in ice- 
cold acetone and blocked with either avidin/biotin block
ing kit (Vector Laboratories, Peterborough, UK) followed 
by 10% goat serum or Mouse-on-Mouse kit (Vector Lab
oratories). Blocked sections were incubated with appro
priate biotinylated secondary antibodies: goat anti-rat Ig 
(Vector Laboratories; 3.5 /xg/mL in 10% mouse serum) or 
anti-mouse Ig diluted as directed (Mouse-on-Mouse kit). 
Staining was developed with Fluorescein-Avidin D (di
luted 1:200 in 2% bovine serum albumin in PBS; Vector 
Laboratories), and cell nuclei were counterstained with 
DAPI (Sigma-Aldrich).

Immunostaining for C activation used either rat anti
mouse C3b/iC3b mAb clone 2/11 (5 /xg/mL; Hycult Bio
tech) or affinity-purified rabbit anti-rat/mouse C9 gener
ated in house, proven reactive with MAC in mouse tissues 
(2 /xg/mL) 23 For C3 and C9 staining, sections were fixed 
in acetone at 4°C, blocked in 2% bovine serum albumin 
in PBS, and, after staining with primary antibody, devel
oped with either Alexa Fluor 488-labeled goat anti-rat 
(20 ixg/mL; Invitrogen, Carlsbad, CA) or Alexa Fluor 594- 
labeled goat anti-rabbit IgG (20 pig/mL; Molecular 
Probes, Eugene, OR) respectively. Nuclei were counter
stained with DAPI.

Negative controls included replacement of primary an
tibody with IgG isotype control. Staining was expressed 
as the percentage of lesion area staining positive, as
sessed by computerized image analysis (Image ProPlus 
4.0; Media Cybernetics, Carlsbad, CA).
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Histomorphometry

Five sections were taken per mouse at the same relative 
positions along the brachiocephalic artery and were as
sessed for the presence of plaque with the use of an 
established method.25 Plaque area was calculated with 
image analysis as above.

Measuring Serum Triglycerides, Cholesterol, 
and NEFAs

Mice were sacrificed between 9 AM and 11 AM, blood 
(1 ml_) was collected into tubes with or without EDTA, and 
serum or plasma was separated by centrifugation. Tri
glyceride and cholesterol levels were measured at the 
Clinical Biochemistry Laboratories, University Hospital 
Cardiff, on an Aeroset automated analyzer (Abbott Diag
nostics, Berkshire, UK). For NEFAs, lipids were extracted 
and separated by one-dimensional thin-layer chromatog
raphy on 10 x  10-cm silica gel G plates, double devel
oped with toluene/hexane/formic acid (140:60:1, v/v/v) for 
the entire plate, followed by hexane/diethyl ether/formic 
acid (60:40:1, v/v/v) to half height. Plates were sprayed 
with 0.05% (wt/v) 8-anilino-4-naphthosulphonic acid in 
methanol and viewed under UV light to show lipids. Free 
fatty acids were scraped from the plate and were identi
fied and quantified by gas chromatography.

Measuring C3adesArg

C3adesArg was measured in a sandwich ELISA with the 
use of a pair of anti-mouse C3a mAbs, one unlabeled as 
capture (0.2 /xg/mL), the other biotinylated as detection (0.5 
/xg/mL), and recombinant mouse C3a (100 to 0.78 ng/mL) 
as standards (all from BD Pharmingen, San Diego, CA). 
Appropriately diluted plasma samples were included. The 
assay was developed with streptavidin-peroxidase (1:5000; 
Jackson ImmunoResearch, West Grove, PA).

Measuring Mouse C3

Serum C3 levels were measured by ELISA essentially as pre
viously described,27 except that rat anti-mouse C3 (2 /xg/mL; 
clone 11H9; Hycult Biotech) was used as the capture anti
body. A standard curve of known concentrations, starting from 
0.5 /xg/mL, was produced with the use of purified mouse C3 (a 
kind gift from Dr Claire Harris; Cardiff University).

Body Fat Measurement

Percentage of body fat was measured by dual-energy 
X-ray absorptiometry scanning of whole animals with the 
use of a PIXImus scanner (Lunar Corp, Madison, Wl) with 
small animal software.

Statistical Analysis

Data are expressed as mean ± SEM, and significance was 
tested by two-tailed unpaired Student’s f-test (GraphPad 
Prism software, version 3.0; GraphPad Software Inc., San 
Diego, CA), with significance assumed at P <  0.05.

Results

Deficiency of CD55 Protects from 
Atherosclerosis in apoE_/_ Mice

Matched a p o E and apoE~/~/CD55~/ ~ mice were sacri
ficed at 20 weeks of age after 12 weeks on a high-fat diet, 
and the extent of atherosclerosis was assessed in the bra
chiocephalic arteries, a known site of predilection for 
plaque development28 Plaque cross-sectional area, as
sessed at multiple sites along the vessel, was reduced 
threefold in apoE~/~/CD55~/ ~ mice compared with 
apoE~y~ controls (54.7 ±  11.2 x  103 /xm2 versus 155.2 ± 
16.8 x  103 /urn2; P <  0.001; Figure 1, A-C). Plaque stage 
and complexity were further explored by measuring smooth 
muscle cell content and macrophage infiltration; smooth 
muscle cells as a proportion of total cell number in apoE 
CD55~/~ plaques were significantly lower than in apoP_/_ 
plaques (9.3% ± 2.0% versus 18.0% ± 2.8%; P <  0.05; 
Figure 1, D-F). Plaque macrophage content was simi
lar in the groups (19.4% ± 6.5% versus 18.8% ± 4.2%; 
Figure 1, G-l).

To address whether CD55 deficiency influenced local C 
activation, plaques were stained for C3 fragments and 
MAC. C3 fragment deposition was assessed with mAb 
3/26, a neoepitope-specific mAb that specifically detects 
C3b, iC3b, and C3c in tissues, whereas MAC was detected 
with affinity-purified anti-rat/mouse C9. Percentages of 
plaque area stained for C3b/iC3b/C3c and MAC were two
fold reduced in plaques from apoE^/CDSS- ^  mice com
pared with a p o E controls (C3b/iC3b/C3c: 28.0% ± 8.1 % 
versus 57.3% ± 7.7%; P <  0.05; Figure 1, J-L; MAC: 
17.9% ± 3.5% versus 30.5% ± 4.0%; P <  0.05; Fig
ure 1, M-O).

CD55 Deficiency Is Associated with Reduced 
Serum Triglyceride and Cholesterol Levels

To test whether the absence of CD55 affected lipid han
dling, lipid levels were measured in apoE~/ ^/CD55~/ ~ 
mice and in apoE~y~ controls at 8 weeks old on normal 
diet and at 20 weeks old after 12 weeks on a high-fat diet. 
At 8 weeks, triglyceride levels were markedly reduced in 
the apoE~/ ~/CD55~/ ~ mice than in the apoE“ /_ controls 
(2.1 ± 0.1 mmol/L versus 5.1 ± 0.6 mmol/L; P <  0.01; 
Figure 2A); cholesterol levels were not significantly differ
ent between these groups (16.1 ± 1.4 mmol/L versus
18.2 ±  0.8 mmol/L; Figure 2B). After 12 weeks of fat 
feeding, triglyceride levels were little changed, as ex
pected in the apoF-7" model,29 and remained signifi
cantly lower in the apoE~/ ~/CD55~/ ~ mice compared 
with the apoE~y~ controls (1.7 ±  0.2 mmol/L versus 3.6 ± 
0.5 mmol/L; P <  0.01; Figure 2A). Cholesterol levels were 
increased after 12 weeks of fat feeding in both groups but 
were significantly lower in the apoE~/ ~/CD55~/ ~ mice 
than in the apoE~/ ~ controls (29.0 ± 1.8 mmol/L versus
38.3 ±  2.5 mmol/L; P <  0.01; Figure 2B). Plasma levels of 
NEFAs were measured in mice before and after being fed 
the high-fat diet. Significant increases in NEFA concen
trations were seen in both groups after 12 weeks of a
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Figure 1. Assessment o f atherosclerosis in bra
chiocephalic arteries o f apoE~/~/CD55~/~ and 
apoE~/~ control mice after 12 weeks o f high-fat 
feeding. Histologic appearance of representa
tive sections of brachiocephalic arteries from a 
single experiment that compared apoE' 
CD55~ ~ mice (A, D, G, J, and M) with 
apoET ~ control mice (B, E, H ,  K, and N); both 
groups had been fed a high-fat diet for 12 
weeks. Sections were stained with Miller’s/Elas
tic Van Gieson (A and B; n =  13 and 12, respec
tively); immunostained for a-smooth muscle ac
tin (smooth muscle cells; D  and E; n =  7 and 7, 
respectively); F, 480 (macrophages; G  and H ;  
n =  8 and 6, respectively); C3 fragments (J and 
K; n =  7 and 6, respectively), or MAC deposi
tion (M and N; n =  7 and 7, respectively). Scale 
bars: 200 p.m (A, B, D, E, G, H ,  J, K, M, and N). 
C, F, I, L, and O; Composite data from each 
group compiled from digital analyses of individ
ual sections as described in Materials and Meth
ods. C: Average plaque size for the two groups 
as determined from five individual sections 
taken from each mouse F, I, L, and O: Mean 
percentage o f plaque area staining for smooth 
muscle cells, macrophages, C3b/iC3b/C3c, and 
MAC, respectively. Mean values ±  SEM are rep
resented. *P <  0.0001, **P <  0.05.

mpoE^‘ lC 0 5 S apoE-

high-fat diet (apoE~/ ~/CD55~/ ~: 0.153 ±  0.016 mg/mL 
versus 0.333 ±  0.041 mg/mL before and after the high-fat 
diet, respectively; P <  0.001; a p o E 0.121 ± 0.006 
mg/mL versus 0.505 ± 0.046 before and after the high-fat 
diet, respectively; P <  0.001; Figure 2C). Although no 
significant differences were observed in NEFA levels be
tween apoE~/ ~CD55~/~ and apoE/  mice before fat 
feeding, levels were significantly lower in apoE~/~l 
CD55- / -  mice than in apoE~y~ controls after 12 weeks on 
a high-fat diet (0.333 ± 0.041 mg/mL versus 0.505 ± 
0.046 mg/mL; apoE~'~ ICD55~'~ and apoE~/~, respec
tively; P <  0.01; Figure 2C).

CD55 Deficiency Is Associated with Increased 
C3 Turnover and Plasma C3adesArg Levels
C3adesArg, also known as ASP, is a stable product of C3 
activation and a potent adipokine that stimulates uptake 
of triglycerides and NEFAs, enhances triglyceride syn
thesis and storage, and inhibits triglyceride lipolysis in

adipose tissue.30-32 Circulating nonfasting C3 and its 
activation product C3adesArg (Figure 2, D and E, re
spectively) were measured before and after the high-fat 
feeding in apoE~y~/CD55~/ ~ and a p o E mice. C3 lev
els were significantly reduced in both a p o E ^ '10055^* 
and apoE- / -  mice after 12 weeks of high-fat feeding 
compared with before the high-fat feeding values (apo£- / - / 
CD55- / - ; 0.42 ± 0.03 mg/mL versus 0.3 ±  0.04 mg/mL; 
P <  0.01, respectively; apoE~y~ 0.48 ± 0.05 mg/mL 
versus 0.22 ± 0.05 mg/mL; P <  0.05, respectively). C3 
levels were not significantly different between a p o E ^ 'l 
CD55- / -  and apoE~y~ mice at either time point (Figure 
2D). Plasma C3adesArg levels were markedly lower after 
being deprived of food overnight compared with not be
ing deprived of food regardless of age, diet, and geno
type of the mice (compare Figure 2, E with F). Fasting 
C3a levels were similar in all groups of mice (Figure 2F); 
in contrast, nonfasting C3adesArg levels were signifi
cantly higher in apoE~/~1 0 0 5 5 ^  mice than in apoE- / -  
mice but only on the high-fat diet (Figure 2E; 1.58 ±  0.14
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Figure 2. Assessment o f lipid profile, C3 and C3adesArg levels in apoE~ ~ /  
CD55~/~ and apoE~'~ mice. Serum levels of triglycerides, cholesterol, NEFAs, 
C3, and plasma C3adesArg were assayed in apoE~/~/CD55~/~ and apoE~'~ 
mice at 8 weeks of age (before high-fat diet; Pre-HFD) and at 20 weeks after 12 
weeks of high-fat diet (Post-HFD). A: Serum triglyceride levels (Pre-HFD, n =  4 
and 6, respectively; Post-HFD, n =  12 and 15, respectively). B: Serum cholesterol 
levels (Pre-HFD, n =  4 and 6, respectively, Post-HFD, n = 12 and 15, respec
tively). C: Serum NEFA levels (Pre-HFD, n =  6 and 6, respectively; Post-HFD, 
n = 12 and 14, respectively). D: Total serum C3 levels (Pre-HFD, n = 6 and 6, 
respectively; Post-HFD, n =  6 and 4, respectively). E: Plasma nonfasting 
C3adesArg levels (Pre-HFD, n = 6 and 8, respectively; Post-HFD, n =  11 and 12, 
respectively). F: Plasma fasting C3adesArg levels (Pre-HFD, n =  8 and 7, re
spectively; Post-HFD, n =  11 and 11, respectively). Mean values ±  SEM are 
represented. *P <  0.05, **P< 0.01, and ***P< 0.0001.

jxg/mL versus 1.00 ±  0.16 /xg/mL; P <  0.01). The data 
show that high-fat feeding in apoE~y~/CD55~y~ mice is 
associated with increased C3 turnover and higher circu
lating levels of C3adesArg compared with apoE~y~ con
trols.

ApoE~/- /CD55_/~ Mice Have Increased 
Adipose Tissue Content
To test whether the observed changes in circulating lipid 
levels and C3 activation in high fat-fed apoE~y~ ICD55~y~ 
mice affected fat storage, body weight and composition 
were compared between the groups. The high-fat diet 
caused significant increases in body weight for both 
groups, without any significant differences between 
apoE~y~ICD55~y~ mice and apoE~y~ controls {apoE~y~l

CD55~/~: 27.32 ±  0.6 g versus 38.16 ±  2.12 g; P <  
0.0001; apoE~y~. 30.64 ± 0.39 g versus 41.38 ±  1.17 g; 
P <  0.0001).

Both adipose mass and percentage of body fat were 
measured with dual-energy X-ray absorptiometry (Figure 
3, A and B, respectively). After 12 weeks of high-fat 
feeding CD55 deficiency was associated with increased 
adipose tissue mass and percentage of body fat, signif
icant in the latter case, in apoE~y~ICD55~y~ mice com
pared with apoE~y~ controls (Figure 3B; before high-fat 
diet: 17.43% ± 0.64%; 17.8% ±  1.11% apoE~y~l 
CD55~y~ versus apoE~y~, respectively; after high-fat 
diet: 28.63% ±  4.18%; 19.54% ± 1.77% apoE~y~l 
CD55~y~ versus apoE~y~, respectively; P <  0.05).

Discussion

We here demonstrate that CD55 deficiency in fat-fed 
male apoE~y~ mice markedly attenuated the progression 
of atherosclerosis. Plaques were infrequent, small, and 
structurally simple, having fewer smooth muscle cells 
and less neo-intimal thickening in comparison with their 
apoE~y~ controls, which displayed large, advanced 
plaques at the same time point.

We previously showed that MAC deposition correlates 
with plaque stage, probably reflecting the increased 
amount of C-activating cell debris in advanced lesions.23 
The data show that, despite global absence of the C 
regulator CD55, C activation is reduced in the early, 
simple plaques formed in apoE~y~ICD55~y~ mice. These 
results are surprising in that the absence of an important 
C regulator would be predicted to exacerbate injury in a 
disease characterized by C activation; indeed, defi
ciency of CD59a markedly exacerbated MAC formation 
and disease in atherosclerosis-prone mice 21-23 Two re
cent studies tested effects of CD55 deficiency in athero
sclerosis models. Leung et al27 showed exacerbated dis
ease and increased plaque size in female CD55~y~/ 
ldlr~y~ mice compared with the ldlr~y~ controls. This 
contradictory result is probably because of the different 
atherosclerosis-prone background; deficiency of Idlr 
causes a more severe metabolic derangement and de
ranged lipid profiles compared with apoE deficiency.29
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F i g u r e  3 .  Measurement of adipose tissue mass and percentage o f body fat in 
apoE~/~/CD55c~ ~ and apoE~ ~ mice. Adipose tissue mass ( A )  and per
centage o f body fat (B) were measured by dual-energy X-ray absorptiometry 
in apoE~/~/CD55~/~ and apoE~/_ mice at 8 weeks of age (before high-fat 
diet; Pre-HFD; n =  6 and 8, respectively) and at 20 w eeks o f age after 12 
weeks o f high-fat diet (Post-HFD, n = 6 and 9, respectively). Mean values ±  
SEM are represented. *P <  0.05.
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An et al33 placed male and female apoE_/~ ICD55~y~ 
mice on a high-fat diet for 8 or 16 weeks. Plaque area, 
measured at end point in the aortic arch, was not signif
icantly different in apoE~y~1 0 0 5 5 ^  and apoE~y~ 
groups; however, when separated according to sex, 
there was a clear trend, not remarked on by the investi
gators, toward smaller plaques in male apoE~y~l 
CD55~y~ mice after 16 weeks of the high-fat diet. Group 
sizes after dividing by sex were small, and the differ
ences observed were not significant. These published 
findings support our observation, probably made signif
icant in our study by the use of larger group sizes and 
male mice. Indeed, many inbred mouse strains, including 
C57BL/6, have a constitutively more active hemolytic C 
system because of differences in activation and lytic 
pathways.34-36 Remarkably, apoE~y~ICD55~/ ~ mice had 
a markedly altered lipid profile, dominated by low circu
lating triglyceride, NEFA, and cholesterol levels; in
creased triglyceride uptake into adipose tissue and fat 
synthesis resulted in increased adiposity. Two hypothe
ses were considered to explain the above findings: first, 
that CD55 played a direct role in lipid metabolism inde
pendent of its role in regulating C, and, second, that the 
absence of CD55 caused increased C3 turnover that in 
turn influenced lipid handling. Others have shown that C3 
deficiency on atherosclerosis-prone backgrounds exac
erbated hyperlipidemia and atherogenesis 25,26 This ob
servation favored a role for C3, provoking us to ask 
whether C3 turnover was altered in CD55- / -  mice and 
contributed to the observed lipid profile and atheropro- 
tection. C3 levels were significantly reduced in both 
apoE-7- and apoE~/ ~CD55~/ ~ mice when fed a high-fat 
diet, suggesting that a high-fat diet provoked C3 con
sumption. Remarkably, although C3adesArg levels were 
low in all mice after being deprived of food overnight, 
levels in mice not deprived of food were markedly higher 
and were significantly increased in high fat-fed apoE~/~l 

mice compared with apoE-7- controls. These 
data imply that the observed changes in lipid profile were 
caused by diminished capacity, in the absence of CD55, 
to regulate the C3 convertase, resulting in dysregulation 
of the ASP pathway and increased production of 
C3adesArg/ASP in response to circulating chylomicrons 
or very low density lipoprotein particles.37-39 Although 
hypercholesterolemia has been the focus of most atten
tion in atherosclerosis, elevated triglyceride and NEFA 
levels are recognized as independent risk factors for 
atherogenesis in humans and models.40,41 Indeed, the 
antiatherogenic effects of lipoic acid in the apoE~x~ 
model were shown to be due to its triglyceride-lowering 
properties 42 It is therefore probable that the observed 
antiatherogenic effect of CD55 deficiency is due to the 
combined effects of lower plasma levels of triglycerides, 
cholesterol, and NEFAs.

These findings support in vitro and in vivo studies that 
implicate chylomicrons and/or very low density lipopro
tein as the primary physiological trigger for C3adesArg/ 
ASP production from adipose tissue.43,44 In vitro, expo
sure of adipose tissue to purified chylomicrons switched 
on the ASP pathway, markedly increasing synthesis of 
precursor C3 and generation of C3adesArg, whereas, in

vivo, chylomicronemia acutely increased plasma C3 and 
C3adesArg/ASP levels 43,44 The amount of C3adesArg/ 
ASP generated will depend on the local activity and reg
ulation of C3 convertase, in turn depending on the pres
ence and abundance of C regulators. CD55 is expressed 
on adipose cells45,46 and will therefore contribute to local 
regulation of the convertase; in its absence, the conver
tase will persist and generate more C3adesArg/ASP.

Because C3adesArg/ASP is such a critical factor in 
maintaining lipid homeostasis, a persistent increase in 
local and circulating levels could be predicted to affect 
lipid profiles in precisely the manner observed in the 
apoE~/ ~ICD55~/ ~ mice of the current study by provoking 
increased uptake of triglycerides and NEFAs into adi
pose tissue, resulting in reduced plasma levels. We 
chose to use male mice in this study because of proven 
differences in C activity and have suggested that failure 
to detect this effect of CD55 in previous studies was due 
to inclusion of female mice. A further potential confounder 
is the effect of sex hormones on the ASP pathway. Pro
gesterone down-regulates the expression of C5L2, the 
receptor for C3adesArg, in 3T3 adipocytes, potentially 
rendering female mice less responsive to C3adesArg 
and blunting the atheroprotective effect of CD55 defi
ciency seen in male apoE~y~ICD55~/~ mice.47

The chain of events shown here explains both athero- 
protection and increased adiposity in the mice and also 
provides an explanation for the enigmatic observation 
that C3-deficient mice, lacking the capacity to generate 
C3adesArg, show accelerated disease in models of ath
erosclerosis.25,26 The data show that C3adesArg itself, or 
agents mimicking its lipid-modulating effects, might be of 
benefit in the treatment of atherosclerosis and related 
diseases.
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To study the role o f complement and complement regulatory proteins on the  
progression o f  atherosclerosis and atherosclerotic plaque stability  in the  
apolipoprotein E-knockout mouse model

Atherosclerosis:

Introduction

• I s  th e  leading cause o f  d ise a se  and d ea th  in th e  USA and m ost W estern  
countries

• I s  an inflam m atory d isea se  involving b oth  th e  innate and adaptive immune 
sy stem

• C onsists o f  3 p hases ( s e e  figure. 1, 2 and 3):

1. Early a th ero sc lero tic  lesion

2. Lesion progression

3. Plaque rupture and throm bosis

Complement:

Figure 1. (Glass Ck. e t a l  2001)

Healthy Coronary artery

Coronary artery with 60-70% 
occlusive atherosclerosis

Coronary artery with 
occlusive atherosclerosis and 
evidence of prior thrombus

Figure 2. In itiatin g  ev e n ts  in th e  developm ent o f  a  fa t t y  strea k  lesion
(Glass Ck. etal. 2001)

• Plays a centra l role in innate immunity and in th e  modulation o f  inflam m atory  
resp on se

• C onsists o f  th r e e  activation  pathw ays th a t  con verge into th e  term inal pathw ay  
leading to  th e  assem bly  o f  a membrane a tta ck  com plex (s e e  figu re  4.)

• I t s  activation  can lead to  cell lysis or m ore commonly in n ucleated  ce lls  a lte red  
cell function

• I t  is regu lated  by com plem ent regu latory proteins such a s  C D59 and d ecay  
acceleratin g  fa c to r  (DAF)

• has been  im plicated in th e  p a th ogen esis  o f  numerous d ise a se s  including 
a th ero sc lero s is

Atherosclerosis and Complement: The evidence

Human s tu d ie s

• Complement proteins have b een  shown to  co -loca lise  w ith known a c tiv a to rs  o f  
Complement within th e  a th ero sc lero tic  wall

Animal s tu d ie s

• W h ilst s tu d ie s  using C67  rab b its found th a t  com plem ent plays an in tegral part 
to  th e  progression  o f  a th e r o sc le r o s is , animal s tu d ie s  involving a th ero sc lero tic  
prone m ouse m odels, low d en sity  lipoprotein (LDLR) and apolipoprotein (apoE)

Figure 3. Lesion progression , plaque rupture and throm bosis
(Glass Ck. e t a! 2001)

Figure 4.

Lftctln (MBL) pathw ay

Immune complexes

Cl (Clq. Ctr. C ts)

Microbal
cartiohydralM<♦)

MBL ♦ (MASP-V MASP-2)

C3bBbC3b
<-CS)

<->,  I * 0 7 ,1 - )  5  protein
;C 8  C kjitertn

A ctiv a tio n  a n d  re g u la tio n  o f th e  c o m p le m e n t  s y s te m

Animal models:

• ApoE /  /D A F-/

• A poE / /C D 5 9 a /

•A p o E //C D 5 9 a / /D A F  /

• ApoE / /C6-/-

Experim ental animals are fe d  a high f a t  
d ie t  fo r  8 w eeks from  th e  a ge  o f  8 w eeks

Experimental parameters:

• Blood p ressure

• Cardiac hypertrophy

• T riglyceride and ch o le stero l levels

Figure 5. (Johnson J. e ta l  2005)

Fat feeding rapidty provokes plaque rupture in the 
brachiocephalic a r te ry  of apoE~/~ mice

t

Thm elostin-rich cap (indicated by black arrowhead) over an 
advanced lesion in brachiocephalic a rte ry  of male apoE- 
knockout mouse th a t had been fa t fed  fo r 6 weeks, then 
euthanized and perfusion fixed. There is acute plaque 
rupture (arrow) with hemorrhage into lesion (asterisk) W hite 
arrowhead points to buried fibrous cap. In se t shows higher- 
power view

H aem olytic activ ity

Complement deposition  in brachiocephalic artery  and aorta  

Frequency o f  plaque rupture in brachiocephalic ar tery  (s e e  figu re  5 )

Results
Figure 6.
•Triglyceride and ch o le stero l levels, lipaemia index and h eart:body w eigh t ratio  
o f  apoE 7 and apoE h  /  DAF 7  m ice th a t  had been  f a t  f e d  fo r  8 w eeks

!A p o E -/-  
A p o E -/-D A F -

Male Female Mole Female Male Female
Unpaired t-test showed no significant differences between test and control groups £•

Figure 7.
•Thin elastin -r ich  cap (ind icated  by black arrow) over  
an advanced lesion in brachiocephalic artery  o f  male 
apoE7  m ouse th a t had b een  f a t  f e d  fo r  8 w eeks

Male Female

Summary
A poE'/'/DA F /- and apoE/"/C D 59a -/- m ouse m odels have b een  es ta b lish ed  and placed  
on a high f a t  d ie t. D ata co llection  and an alyses from  th e s e  ongoing s tu d ie s  are  
currently underway.
ApoE / /C D 59a  /-/D A F '/'an d  apoE'/ /C 6  •/■ m ouse m odels are  being gen erated .
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o d u c tio n
sclerosis is th e  leading cause o f  death  
Itestern world.
flam mat ory d isease involving both  th e  
bd adaptive immune system .

atherosclerotic lesion: |
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of pro-inf lammatory m ediators 
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f  mto th e  plaque which acquires a /
leap* and becom es adablised. ^

k  rupture and throm fwsis: core o f th e  
jradually becom es necrotic, and th e  th e  stru ctu re  
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rating fa cto r  (DAF). •
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Atherosclerosis and complement: the  
evidence

Human studies
• C 5b-9 (MAC) found in a th erosclero tic  plaques 

•OxLDLand E-LDL have been shown to  activa te  complement

Animal studies
•Rabbits d efic ien t in C6 g e t  le ss a th erosclerosis  

•C3 d efic ien t mice g e t more a th ero sc lero sis  (apoE/ldlr)

•C5 d efic ien t mice show no change. (apoE)

•Clq d efic ien t mice g e t more a th ero sc lero sis  (/dir)

Figure 1. Initiating even ts  in th e  development o f  a 
fa t ty  streak  lesion (Glass Ck. eta l. 2001)

Our Aim: to examine the role of  
Complement and its Regulators in the Apol 

mouse model o f Atherosclerosis. 
Knockout Anim als g e n e r a t e d  o r  in p r o g r e ss :

•Early Activation Pathways ApoE A/D A F  / '

•Terminal Pathway Regulation ApoE */_/C D 5 9 a /_

•W hole Terminal Pathway ApoE ~A/C6"/_

•A bsence o f  regulation in both
activation and Terminal Pathways ApoE A/C D 59a  V DA F /

Nwcrotte
c<J*%

e x tra c e llu la rUpkf
’G ruel*

Figure 2. Lesion progression, plaque rupture and 
ThromboSiS (6loss Ck e t a l  2001)

rimental Design:
iold ApoE */ -/CD59a'/ ' mice and th eir  controls were 
*n a high fa t  d iet for  8  w eeks (25%  lard +cholesterol). 

•as co llected  fo r  asse ssm en t o f  lipid levels and 
len t activity.

locephallic ar ter ies  w ere co llected  and frozen  into OCT 
V sectioning and analyses.

Experimental Parameters:
•Cardiac hypertorphy 

•Triglyceride and cholesterol levels 

•Plaque s ize  (and incidence o f  rupture) 

•A rtery S ize  and Lumen Area

•Haemolytic activ ity

•Complement deposition in brachiocephalic artery  and aorta

•Maccrophage, sm c, T -cell, collagen and e la s t in c o n te n t  o f  h arvested  
plaques

Blood Lipid Indices all show 
downward trends a fter  8 

weeks on a High Fat Diet.

Plaque S izes in the Bracheocephallic arteries of ApoE_/ 
/ C D 5 9 a a r e  more than doubled by comparison with 

ApoE*/_ mice.xliac hypertrophy is 
ffected by CD59 
iciency in mice a fte r  8 
iks of High Fat Diet.

Cholesterol
Early plaque: 
Macrophage rich 
fatty streak

/Ct>59a

Lipaemia Index
T Almost Manificent)Tri-glycerides

Advanced plaque

Evidence of previo 
rupture

Co Hagen rich cap 
And

'  /CD59o '>

tery Remodelling a fter  8 
weeks of high fa t  diet 
maintains Lumen Area

ue Lumen Area Total v e s s e l Area

r
: n=16 n=15

*o£ ApoE cow apoE apoECDSS

T “

 a i  — a  3=
Blood Lipid Indices a fte r  22 
weeks on Normal Chow Diet

Cholesterol

s*a

Tri-glycerides

Apo€ '  (n=8)

ApoE /- /C 0 5 9 a  (n=5)

Lipaemia Index

X.

ApoE '  /  CD59a

Conclusions/Summary
•Mice d efic ien t in ApoE and CD59 mouse have b een  gen erated .

A fte r  8 w eeks o f  high fa t  d iet th e  A poE/CD 59 cross  has shown an increased ra 
o f  plaque growth by comparison with th e  control ApoE mice.

Data implies th a t CD59 has a protective role in th e  early developm ent o f  th e  
a th erosclero tic  plaque.

| Future Work
•Frequency o f  plaque rupture in brachiocephalic artery  
•Blood Pressure  
•Ind ices o f  Apoptosis 
•T -cell infiltration
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Aims To examine the roles of the membrane attack complex of complement and its sole 
membrane regulator, CD59, in atherosclerosis and to test whether terminal pathway inhibition 
has therapeutic potential.
Methods C6 (C6-/-) deficient and CD59a (Cd59a-/-) knockout mice were separately crossed 
onto the apolipoprotein E knockout (apoE-/-) background. The double knockout mice were fed 
high-fat diet in order to study the effects of absence of C6 or CD59a on the progression of 
atherosclerosis. The therapeutic potential of terminal pathway inhibition was investigated 
through the administration of a neutralising antibody against C5 to apoE-/- mice fed a high-fat 
diet.
Results C6 deficiency significantly reduced plaque area and disease severity. CD59a had the 
opposite effect in that deficiency was associated with a significant increase in plaque area, 
correlating with increased membrane attack complex (MAC) deposition in the plaque and 
increased smooth muscle cell proliferation in early plaques. Terminal pathway inhibition 
through the administration of an anti-C5 antibody dramatically reduced MAC deposition in the 
plaques of apoE-/- mice but did not affect disease progression.

Conclusions Our results demonstrate that the MAC contributes to the development of
atherosclerosis, C6 deficiency being protective and CD59a deficiency exacerbating disease.
Therapeutic intervention by blockade of MAC formation at the level of C5 was ineffective.
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►rosclerosis
rosclerosis  is th e  leading cause o f death  in th e  W estern world, 
an mf lammatory d isease involving both th e  innate and adaptive J
ve. system .
s t s  o f th ree  phases; Early, lesion progression, and plaque 

r e  and throm bosis.
element System
verten t activation resu lts  in death  or damage to  s e lf  cells 
r*g drastically a ltered  cell function, 
ca ted  in th e  pathogenesis o f  numerous d iseases including
©sclerosis.
rolled by regulatory proteins such as CD59 and CD55. 
rosclerosis ana complement: the evidence

studies:
? (MAC) found in a th erosclerotic  plaques.
L and E-LDL have been shown to  activate complement, 
stud ies

t s  d efic ien t in C6 are a th erosclerosis-resistan t  
f  icient mice are atherosclerosis-prone (apoE/ldlr) 
f  icient mice show no change (apoE) 
e f  icient mice are atherosclerosis-prone (/<f/r) 
a  d efic ien t mice are atherosclerosis-prone (apoE/ldlr)

Figure JL Initiating events 
in the development of a 
fa t ty  s treak

(Glass CK e t a /  2001)

Lipid metabolism
•D ietary  lipids are packed into chylomicrons, secre ted  and primarily 
redistributed  betw een adipose tissue fo r  storage, immediate use in 
muscle and uptake into th e  liver.

•A lteration  in lipid metabolism is an important risk factor  fo r  
atherosclerosis.
•C 3a is inactivated in plasma by carboxypeptidase N, which e ffic ien tly  
removes th e  carboxy-terminal arginine generating C3adesArg 
(also known as acylating stimulating protein (ASP))

•C 3adesA rg, is a potent anabolic activator o f  triglyceride synthesis  
and glucose uptake.

im  • to test the e ffec t of CD55 deficiency on progression of atherosclerosi

Figure 2 Lesion 
Progression, plaque 
Rupture and thrombosis

~  ^  (Glass CK e ta !  2001)

Methods
Experimental Design:
•8 week old apoE /‘/CD55~/‘ mice and th e ir  controls were 
placed on a high fa t d ie t (HFD) fo r l2  w eeks (0.15% cholesterol) 
Assessment of lipid metabolism:
•Triglyceride and ch olesterol levels 
•Circulating C3adesArg concentration  
•Adiposity

Assessment of atherosclerosis in 
the brachiocephalic artery:
•Plaque cross-sectional area 
•Complement deposition in brachiocephalic arter  
•Maccrophage and sm ooth muscle content o f  
harvested  plaques

>SultS
iciency of CD55 limits progression of 
erosclerosis in apoE_/* mice

Fat fed apoE"/-/CD55_/~ 
mice are obese with 
increased adiposity

’ /C D 5 5 /_

i  o

Fat fed apoE^'/Ctodb'- mice have 
reduced serum triglyceride and 
cholesterol levels

iplement activation proceeds 
the terminal pathway in 
anced stages of atherosclerosis

ApoE / ApoE
: :  f; : :££

■■■filDBfll

ESSl'wapr

Deficiency of CD55 causes increased turnover of C3 and 
increased plasma C3adesArg during the postprandial state

toaE son ■ I ApoE v ApoE ApoE / ApoE
CD55 CD55

ired cellular composition in 
meed atherosclerotic plaques
' /C D 55 ■ ApoE

si1

Summar
•CD55 deficiency in male apoE'7 mice markedly a ttenuated  th e  progression o f  ath erosclerosis  while on high 
fa t  d iet for  12 weeks.

•C3 deposition in th e  plaques from apoE'7~/C D 55A mice was similar to  control but MAC deposition was signif icantly 
reduced.

•Plaques from apoE /'/C D 55 /' mice contained less infiltrating cells, indicative o f early lesions.

•ApoE‘7 /C D 5 5 A mice have increased adiposity with a ltered  lipoprotein profile which is dominated by low 
triglyceride levels.

Conclusions
•Chylomicrons stim ulate C3 synth esis, and local production o f  C3adesArg which in turn causes increased triglyceride 
clearance. W e propose th a t  absence o f CD55 increases alternative pathway cycling in adipose t issu e , increasing 
C3adesArg production and furth er increasing triglyceride clearance. T hese changes explain increased adiposity and 
decreased plasma triglyceride levels.

•T h e marked decrease in triglyceride levels is highly p rotective for atherosclerosis.

•O th ers  have proposed th a t complement m ediated therapy might provide a novel stra teg y  for  th e  treatm ent o f  
ath erosclerosis. Here we show th a t C3adesArg itse lf  or agents mimicking its lipid-modulating e f f e c t s  may be o f  
b en efit.
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