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Abstract

In studies towards the synthesis o f substituted pyrroles, the Knight group have adapted an 

aldol reaction, originally developed by Kazmaier, as a highly diastereoselective method for 

the synthesis o f the cyclisadon precursors. Both acetylenic and a,f3-unsaturated aldehydes 

have been successfully utilised in this reaction to afford a variety of 0 -hydroxy-a-amino 

ester precursors. This project centred around establishing the optimum conditions for the 

iodocyclisations o f these precursors, and highly substituted pyrrolidines were obtained in 

the majority o f cases. Also it was noted that these aldol adducts were structurally similar 

to Sphingosine, and via a series o f selective reductions, a formal diastereoselective 

synthesis o f Sphingosine was accomplished.

In addition, silver-nitrate catalysed 5-e/idb-dig cyclisations were also applied towards the 

total synthesis o f both Preussin and Codonopsinine.

Finally, studies were conducted to establish the selectivity of 5-exo-trig cyclisations in the 

synthesis o f iodo-lactones, and using this methodology, the piperidine core of 

Pseudodistomin was successfully synthesised.
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Abbreviations

Ac Acetyl

APCI Atmospheric pressure chemical ionisation

Ar Aryl

Boc Tertiarybutyloxycarbonyl

BOP-C1 Bis(2-oxo-3-oxazolidinyl)phosphinic chloride

Bu Butyl

DABCO l,4-Diazabicyclo[2.2.2]octane

DCC 1,3 dicyclohexylcarbodiimide

DCM Dichloromethane

DEAD Diethyl azodicarboxylate

DIAD Diisopropyl azodicarboxylate

Dibal-H Diisobutylaluminium hydride

DMAP 4-(dimethylamino)pyridine

DME ethylene glycol dimethyl ether

DMF N, A^-dimethylformamide

DMSO dimethyl sulphoxide

e.g. exempli gratia

eq. Equivalents

ES Electrospray

Et Ethyl

Ether diethyl ether

GOESY Gradient ID difference Nuclear Overhauser effect

Hunigs Base N,N’-diisopropylethylamine

i.e. id est

J  coupling constant

LDA Lithium diisopropylamide

LiAlRj/LAH Lithium aluminium hydride

Lindlars Catalyst Pd/CaC03  poisoned with lead acetate

L-selectride Lithium tri-sec-butyl borohydride

m.p. Melting point

Me Methyl



MS Mass spectrometry

NaBFL* Sodium borohydride

NMR Nuclear magnetic resonance

NOE Nuclear Overhauser effect

P para

Ph phenyl

R aryl or alkyl group

Red-al bis(2-methoxyethoxy)aluminium hydride

SES 2-trimethylsilylethanesulfonyl

Superhydride Lithium triethyl borohydride

t tertiary

TBS Dimethyl Tertiary butyl silyl

Tf Triflate

TFA trifluoroacetic acid

THF tetrahydrofuran

THP Tetrahydropyran

TIPS Triisopropylsilyl

Tic thin layer chromatography

Ts/ tosyl /?ara-toluenesulfonyl group

TsCl Tosyl chloride
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Chapter I: Introduction

Chapter One

Introduction

With a variety of natural products containing a heterocycle core, such as anisomycin1 1, 

bulgecinine2 2, (-)-codonopsine3 3 and (+)-preussin4 4 there is an obvious need to 

synthesise such compounds highly selectively (Figure 1.10). This project centres around 

the synthesis of pyrrolidines via 5-endo-Xng cyclisations of amino alcohol derivatives.

Figure 1.10

1.10. Baldwin’s Rules

The synthesis of various heterocycles is frequently via an electrophilic cyclisation of 

unsaturated molecules containing an internal nucleophile. In these cyclisations, the ring 

formation can occur in either an exo or endo manner (Figure 1.11).

^  A . v IP ) E® 5 *  o
E \  V /  v  Jr  * E

E

Figure 1.11

Exo describes the cyclisation when the bond that is broken is exocyclic to the smallest ring 

formed, while endo is when the bond that is broken is endocyclic to the smallest ring 

formed. The description of ring closure is subdivided further into three types of atoms; 

tetrahedral (Tet.) for sp , trigonal (Trig.) for sp and digonal (Dig.) for sp systems. In 

1976, J. E. Baldwin5 developed a series of rules that predicts whether a cyclisation 

proceeds via an exo or endo pathway. These rules predict whether a reaction is favoured or 

disfavoured by taking into account the geometry of the transition state and also the balance
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Chapter I: Introduction

of electronic and steric factors. The rules for ring closures of 3- to 7-membered rings are 

as follows: -

1. Tetrahedral systems

a) 3 to 7-Exo-Tet are all favoured processes

b) 5 to 6-Endo-Tet are disfavoured

2. Trigonal systems

a) 3 to 1-Exo-Trig are all favoured

b) 3 to 5-Endo-Trig are disfavoured

c) 6 and 1-Endo-Trig are favoured

3. Digonal systems

a) 3 to 4-Exo-Dig are disfavoured

b) 5 to 7 -Exo-Dig are favoured

c) 3 to 1 -Endo-Dig are favoured

Favoured cyclisations are those in which the atoms can achieve the correct geometries, 

while disfavoured cyclisations require severe distortions of both the bond angles and 

distances. However, it is noteworthy that just because a cyclisation is labelled 

“disfavoured”, does not necessarily mean it cannot occur, it is just more difficult than a 

favoured case.

1.20. 5-endo-trig Cyclisations in the Synthesis of Tetrahydrofurans

Barlett and Myerson6 first recorded the use of 5-endo-trig cyclisations in the synthesis of 

tetrahydrofurans in 1978. They conducted an iodolactonisation on methyl ester 5, which 

furnished a 2:1 mixture of the desired lactone 7 and an iodotetrahydrofuran 6 , via a 

competing iodoetherification reaction (Scheme 1.10).

5 6 7

Scheme 1.10. Reagents: I2, MeCN, 0°C.
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Chapter 1: Introduction

In addition to the iodotetrahydrofiiran 6 being the result of a disfavoured 5-endo-ing 

cyclisation, the reaction also involved the cleavage of the methyl ether moiety, hence it 

was the minor product. When the corresponding free alcohol was treated with the same 

reagents, the cyclisation afforded exclusively the iodotetrahydrofuran 6 .

Other approaches utilising novel iodonium ion sources have also afforded 

iodotetrahydrofurans. In 1984, Mechoulam and Srebnik7 cyclised (£)-hex-3-en-l-ol 8 

using a mixture of sodium iodide and m-chloroperbenzoic acid (mCPBA), while Schauble8 

cyclised the same homoallylic alcohol 8 with bis(5>>m-collidine)iodine(I)perchlorate 

(Scheme 1.11).

oh - t -
i r

9 8 10

Scheme 1.11. Reagents: a) Nal, mCPBA, 18-crown-6, CH2CI2, 20 °C-0 °C; b)

I(collidine)2+C104\  CH2C12, 20 °C.

It was during the early 1990s that the Knight9,10 group commenced research in this field.

In model studies towards the valerolactone moiety of Mevinic acids, the Knight group 

discovered that iodolactonisations of 3-hydroxyalk-5-enoic acid derivatives 11, gave 

predominately the /ra«s-3,5-disubstituted lactones 12 (Scheme 1.12)11,12. This result was 

unexpected since normally, such cyclisations give the 3,5-cis diastereoisomers via a chair-
13like transition state . This divergence from the trend was presumed to be due to 

intramolecular hydrogen bonding between the 3-oxygen function and the carboxylic acid.

OR' OR’

o o 
R 12

Scheme 1.12. Reagents: I2, NaHCC>3, MeCN-FkO.

A trace of by-product (<5%) was also observed and when R was alkyl, these by-products 

were determined to be single diastereoisomers of P-iodo-tetrahydrofurans 13 (Figure 1.12).

3



Chapter 1: Introduction

OR' OR1

O '  'O H ' Y  o 
R 12

c o 2h
•O + R̂ v S

13

Figure 1.12

These P-iodo-tetrahydrofurans 13 were believed to arise from a 5-endo-trig cyclisation of 

the precursor with a loss of either a proton or a silyl group, which appeared to contravene 

Baldwin’s rules. However, a literature search suggested that such cyclisations were viable 

and so further investigations were conducted.

The (^-hydroxy-acid 14 was thus subjected to the kinetic iodolactonization conditions 

developed by Bartlett6, three equivalents of iodine and sodium hydrogen carbonate in 

aqueous acetonitrile. The tetrahydrofuranacetic acids 15 were isolated in a 7:1 (a:b) ratio 

in approximately 80% yield (Scheme 1.13).14

♦
ph"‘ V tHO COaH 

14

Scheme 1.13. Reagents: I2, NaHCC>3, MeCN-H2 0 , 80%.

c o 2h  c o 2h

15a 15b

However, when the phenyl group was substituted with alkyl groups, the cyclisation yielded 

valerolactones with only traces of iodotetrahydrofurans evident. Hence this initial 

cyclisation was a special case arising because the phenyl group was able to stabilize the 

electron deficient benzylic centre and consequently favour the overall 5-e«do-cyclisation at 

the expense of the 6-exo lactonization.

To prevent this unwanted 6-exo cyclisation, the corresponding methyl ester 16 was 

cyclised, again using Bartlett’s6 conditions, largely a single isomer of the 

iodotetrahydrofuran 17 was obtained (Scheme 1.14).

4



Chapter 1: Introduction

HO COzMe Et'“
C02Me

16 17

Scheme 1.14. Reagents: I2, NaHC03, MeCN, 10% H20 , 67%.

Once again this was a special case since exposure of (£)-hex-3-en-l-ol 8 to Bartlett’s 

standard conditions afforded 5% of iodotetrahydrofuran 9, in addition to iodohydrins 19, 

formed by intermolecular attack by water (Scheme 1.15; a). However, in anhydrous 

solvents, the cyclisation rapidly proceeded to give virtually quantitative yield of the trans- 

iodotetrahydrofuran 10 (Scheme 1.15; b), while the corresponding (Z)-hex-3-en-l-ol 20 

cyclised at a much slower rate (72 h), to afford the product 21a in 60% yield (Scheme 

1.15; c).

+ +
OHOHOH OH

19a 19b

OH

20

o f t  C N
' OH OH 1

9 19a 19b 8 10

Scheme 1.15. Reagents: a) I2, NaHC03, MeCN-H20 , 5%, 9; b) I2, NaHC03, anh MeCN, 

5 mins, 0°C, 95%, 10; c) I2, NaHCQ3, anh MeCN, 72 h, 0°C, 60%, 21a.

These 5-endo-tdg cyclisations were also successful for a variety of substrates including 

secondary homoallylic alcohols (21b), tertiary alcohols (23) and trisubstituted olefins (25) 

(Scheme 1.16).

O H  E T V ^ B u  HO A o ^

OH

25 26

r

Et

21b 22 23 24

Scheme 1.16. Reagents: a) I2, NaHCG3, anh MeCN, 3 h, 0°C, 90% 22; b) I2, NaHC03, 

anh MeCN, 1 h, 0°C, 90% 24; c) I2, NaHCQ3, anh MeCN, 1 h, 0°C, 85% 26.
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Chapter 1: Introduction

To explain the difference in rates of the cyclisations of the (E)- and (Z)-olefins 27, 

chair-like transition state diagrams 28 can be drawn, arising from the addition of 

iodine across the double bond followed by the rearside attack of the oxygen (Figure 

1.13).

OH
R — (  ^ - R '

OH

27a 28a 27b 

Figure 1.13

R'

28b 29

The high stereoselectivity obtained resulted because 5-endo-trig cyclisations are 

unfavourable and, as such, the process will be more demanding in terms of transition 

state geometry, since the favoured 5-exo-trig cyclisations are frequently non- 

stereoselective.14 In the proposed transition states, substituent R1 can be positioned 

pseudo-equatorially or in the less favourable pseudo-axial position, depending on the 

geometry of the olefin. Presumably this unfavourable position of the substituent R1 is 

why cyclisations of (Z)-olefins 27a are generally slower than the (£)-olefins 27b. With 

a (Z)-olefin 27a, this substituent is in the axial position which presumably permits the 

intermolecular attack by small amounts of water (arising from the neutralisation of 

hydrogen iodide by the base), to compete. In addition, due to the strain involved in 

forming such a transition state in these 5-endo-trig ring closures, this explains why 

water frequently competes to give iodohydrins (Scheme 1.15). It is presumed that in 

cyclisations of p-hydroxy esters, hydrogen bonding between the ester and hydroxyl 

group, may assist the O-H cleavage as depicted by transition state 29, which 

inevitably means that this cyclisation can then compete with the intermolecular 

attack by water.15

6



Chapter 1: Introduction

1.30. 5-Endo-Trig Cyclisations in Pyrrolidine Synthesis

The success of 5-endo-trig cyclisations of both (E)- and (Z)-homoallylic alcohols led the 

Knight group to apply this methodology to homoallylic amines to afford pyrrolidines. 

Naturally, the conditions that were previously successful for the corresponding homoallylic 

alcohols, three equivalents of iodine, sodium hydrogen carbonate in anhydrous acetonitrile, 

were tested. However, precursor 30 cyclised, but with little stereocontrol to afford a 60:40 

(a:b) mixture of diastereoisomers 31 (Scheme 1.17; a).16 A more substituted derivative 

32, however encouragingly cyclised to furnish exclusively the /r<ww-2,3-iodopyrrolidine 33 

(Scheme 1.17; b).

- O - h  _ § _  r i  * r \  h - O - e  —  d
NHS02Ph 00̂ N  NHTs n /Et

SOzPh SOaPh Ts

30 31a 31b 32 33

Scheme 1.17. Reagents: a) NaHCC>3, 12, anh. MeCN, 1 h, 42%; b) NaHCOa, I2, anh.

MeCN, 10 mins, 84%.

Unlike the related alcohol derivatives, less stereoselectivity was observed in the synthesis 

of trisubstituted pyrrolidines. Improvements were not observed despite lowering the 

temperature from 0°C to -78°C, or by changing the solvent to ether or dichloromethane. It 

was discovered that by changing the base to slightly stronger potassium carbonate, this 

selectivity was greatly increased to afford predominately the 2,5-trans isomer 35a (Scheme 

1.18; b).

J  J

b-^O-bu -2̂ 5. r ) . ♦ r i
n h t s  o r c  B ^ % /  Bu

Ts Ts
34 35a 35b

Scheme 1.18. Reagents: a) NaHC03 , 12, MeCN, 0.25 h, 76%, 74:26 (a:b); b) K2CO3, 12, 

MeCN, 0.5 h, 74%, 94:6 (a:b); c) I2, MeCN, 3 mins, 78%, 0:100 (a:b).

Interestingly, the addition of small amounts of water to the reaction mixture improved the 

yields, which was in contrast to the results observed in tetrahydrofuran synthesis. The 

group assumed that under these conditions, the hydrogen iodide formed is more quickly

7



Chapter 1: Introduction

neutralised by the base and consequently cannot isomerise the initial products. Thus in 

theory, in the absence of base, complete isomerisation of the initial products should occur 

and thus sulfonamide 34 was treated with iodine in acetonitrile to afford the 2,5-cis isomer 

35b (Scheme 1.18; c). This isomerisation was not observed with the methanesulfonamide 

derivatives.

The cyclisations o f the (Z)-sulfonamides unfortunately gave lower yields and selectivities 

than the related (/^-derivatives, despite the use of different conditions, which can be again 

reasoned by considering the transition states. Again, as observed with the (£)-homoallylic 

alcohols, the disfavoured ring closure of the sulfonamides requires a more demanding 

transition state, and as such the cyclisation occurs selectively. With the corresponding (Z)- 

derivatives, a substituent will be in the unfavourable axial position again allowing for 

competing reactions to occur.

1.40. Synthesis of Cyclisation Precursors: Introduction to the Kazmaier aldol 

Reaction

Throughout the previous research conducted by Sharland17 and the present research, an 

aldol reaction developed by Kazmaier1* had been used extensively in the synthesis of 

amino alcohol derivatives used in cyclisation studies. Accordingly, the methodology 

developed by Kazmaier is described below, in addition to the modifications of the 

procedure conducted by Sharland.

Research by Kazmaier, Grandel and Nuber showed that deprotonation of the JV-protected 

ester of various amino acids 36 using LDA followed by addition of a metal salt resulted in 

the formation of probably a chelated metal enolate 37 (Figure 1.14). Subsequent aldol 

reactions involving this enolate 37 and aldehydes were found to be highly 

diastereoselective, yielding anti isomers 38a of a-amino-p-hydroxy acids (Figure 1.14; b). 

The synthesis of such compounds is synthetically useful since they are sub-structures of 

biologically active molecules such as myricoin19, lactacysin20 and sphinogofungins E and 

F.

8



Chapter 1: Introduction

D2 R2 o r 1 „ o h  OH
1  ► W  ^ 5 .  ♦ ^-C^COjR'

x h n ^ c o 2r ’ x n .m , 0  R^NH X  A hx

36 37 38a 38b
anti syn

Figure 1.14

Kazmaier reported that the relative configuration of the aldol product depends on the 

configuration of the enolate. It was also found that the configuration of the double bond in 

a lithium ester enolate was related to the polarity of the medium.21

1.41. Optimisation Studies: Metal Salt Employed (MXn)

Various optimisation studies were undertaken by Kazmaier18 to determine how to increase 

the selectivity of the reaction. In the initial studies, V-(benzyloxylcarbonyl)alanine tert- 

butyl ester 39 was condensed with either pivalaldehyde 42 or isobutyraldehyde 43 in the 

presence of a variety of metal salts (Table 1.10).

OH OH
C 0 2/BuX   »• p3̂ \^ C 02®U + d3'̂ vs /

ZHN^COzSu R X  R X
R2 NHZ R2 NHZ

39 40-41a 40-41 b

Aldehyde (MXn) Eq Product Crude 
anti:syn ratio (%)

Isolated yield

A nti (%) Total
(%)

1 /-BuCHO 42 Li / 40 79:21 30 /
2 /- BuCHO 42 MgCl2 1 40 76:24 48 /
3 /-BuCHO 42 MgCl2 2 40 77:23 40 /
4 /BuCHO 42 Al(OzPr>3 1 40 76:24 58 /
5 /-BuCHO 42 Al(OzPr>3 2 40 78:22 51 /
6 /-BuCHO 42 ZnCl2 1 40 81:19 49 /
7 /-BuCHO 42 ZnCl2 2 40 90:10 60 /
8 /-BuCHO 42 TiCl(OzPr)3 1 40 83.17 40 /
9 /-BuCHO 42 TiCl(OzPr)3 2 40 97:3 70 /
10 z-PiCHO 43 Li / 41 60:40 / 60
11 /- PrCHO 43 TiCl(Oz*Pr)3 1 41 72:28 / 76
12 /-PrCHO 43 TiCl(OzPr)3 2 41 92:8 / 87
13 z-PrCHO 43 TiCl(Oz’Pr)3 3 92:8 / 84
14 z-PrCHO 43 TiCl(OzPr>3 4 41 93:7 / 55

Table 1.10

9



Chapter 1: Introduction

From Table 1.10 it is clear that the metal salt and the number of equivalents used effects 

greatly the observed diastereoselectivity. When lithium was employed, the reaction was 

low yielding and low diastereoselectivity was obtained, while the use of magnesium or 

aluminium failed to increase this selectivity. However, both zinc and titanium showed an 

increase in diastereoselectivity. With regards to the yield, Kazmaier and co-workers 

reported that the yield greatly increased when two equivalents of the metal salt was 

employed (Table 1.10 entries 9 and 12), while no significant improvement was observed 

when three equivalents was employed and the use of four equivalents led to a lower yield. 

The optimum conditions however were found to be two equivalents of TiCl(OzPr)3.

The explanation given by Kazmaier to account for the need for two equivalents of the 

metal salt (MXn) was that one metal atom is required to form the chelated enolate, while 

the other coordinates and activates the aldehyde. This has yet to be proven and the precise 

structure of the enolate is unknown.

1.42. Optimisation Studies: Reaction Time and Temperature

The standard conditions used were stirring the reaction mixture for half and hour at -78°C 

before quenching the reaction with aqueous hydrochloric acid, but what would be the 

affect on the selectivity and yield by raising the temperature? When the reaction time was 

increased and the mixture was warmed to 0°C, the yield and the selectivity was not 

affected. However, when the reaction time was increased to one day and the mixture was 

warmed to room temperature an oxazolidinone 44 side product was formed 

(Scheme 1.19; a).

°  fti A A
I a r O ^ N H  HO HN OBz

ZHN C O jfiu " s — >M e 3—

A  C 0 2©u Y  C° 2® U 

39 44 45

Scheme 1.19. Reagents: a) LDA, TiCl(Oz-Pr)3, /-BuCHO, -78-RT°C; b) TiCl(Oz-Pr)3,

Toluene, 70°C

nOe
7%

b

46

Interestingly, this occurrence was only observed with a-alkyl, P-hydroxy-a amino acids. 

nOe and X-Ray diffraction data was collected for 46 which confirmed that the

10



Chapter 1: Introduction

stereochemistry of the major isomer of the aldol reaction was the anti diastereoisomer 45 

(Scheme 1.19; b).

1.43. Optimisation Studies: Nature of the Substituent (R), Aliphatic or Aromatic

Next, experiments were conducted to determine if the substituent (R) on the aldehyde 

influenced the reaction in any way. Kazmaier determined that when the aldol reaction 

involves aliphatic aldehydes, the reaction proceeds irreversibly. Also it became apparent 

that the nature o f the substituent (R) influenced the diastereoselectivity, in that aromatic 

aldehydes showed no significant diastereoselectivity unlike the alkyl ones with N- 

(benzyloxylcarbonyl)alanine ter/-butyl ester 39.

1.44. Optimisation Studies: Size of the substituent (R1) on the amino acid

Aldol reactions were conducted using the more bulkier amino acids including the tertiary- 

butyl esters of ethyl glycine 47, valine 48 and phenylalanine 49, using two equivalents of 

TiCl(0 /Pr)3 and with wo-butyraldehyde 43, to determine whether the aldol reaction was 

limited to small amino acids such as alanine. These experiments using more hindered 

amino acid substrates showed that the diastereoselectivity increases with the size of the a  

alkyl substituent (Table 1.11).

11
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R OH OH
. ^BuCHO cOzfflu + \ A x 0 2fBu

ZHN C02»u | Rc NHZ | R- NHZ

39,47-49 40a, 50-51 a 40a, 50-51 b

R TiCI(OiPr)3
(eq) Product Ratio

Anti:syn
Yield (%)

Mixture A nti isomer
Ethyl 47 0 50 69:31 75 /
Ethyl 47 1 50 84:16 73 /
Ethyl 47 2 50 95:5 85 /
/-Pr 48 0 51 84:16 40 /
/- Pr 48 1 51 95:5 60 /
/-Pr 48 2 51 98:2 60 /
Bzl 49 0 52 72:28 / 60
Bzl 49 1 52 75:25 / 65
Bzl 49 2 52 90:10 / 78
Me 39 2 40 92:8 87

Table 1.11

1.45. Proposed Mechanism

The mechanism proposed by Kazmaier to account for the diastereoselectivity observed in 

this aldol reaction is illustrated in Figure 1.15.

A

m ' I  / % ,  ff  o h

j£ v r~ ~ o®u ~ ~ ~  ^ iC v ^ o iB u  — - r 2' V c° 2« u
" 7 ? "  R' NHZ

Figure 1.15

53b

syn

In a-amino acid ester enolates, the chelation with lithium leads predominately to the Z  

configuration of the enolate. Since transmetalation reactions occur usually with retention

12
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of this configuration, the enolate geometry resulting from the initial deprotection would 

determine the configuration of the metal enolate formed. Kazmaier proposed that 

transition state A is favoured over transition state B due to the interactions between R1 and 

R2 in transition state B (Figure 1.14). The results obtained proved that these interactions 

are stronger in the reaction involving pivalaldehyde 42 than isobutyraldehyde 43 because 

R2 exerts a more stronger steric influence. This was deduced by the higher selectivity 

observed in the aldol condensation utilising pivalaldehyde 42 than isobutyraldehyde 43 

(Table 1.10). In addition, from the results Kazmaier proposed that the interactions between 

R2 and the ester moiety in transition state A appear not be so crucial as those between R1 

and R2 in transition state B. This was deduced by comparison of the reactions of the amino 

acids ethylglycine 47 and valine 48 with the aldol reaction involving alanine, since as R1 

increases, the interactions between R and R disfavour transition state B, and thus the 

amount of anti diastereoisomer formed increases (Table 1.11).

1.46. Influence of Nitrogen-Protecting Group

The highest reported selectivity was 92% when using Z-alanine butyl ester 39, 

isobutyraldehyde 43 and 2.5 equivalents of TiCl(OZ-Pr)3. However, this was limited to 

alkyl substituted aldehydes. Further experiments were conducted to determine the 

influence o f the nitrogen protecting group (Table 1.12).23

RHN^COzBzl

Where R=Z = 54 
R=Ts = 55

,CHO OH
C 02Bzl + 

NHR

COoBzl

56a
57a

56b
57b

R MXn (eq) Product A nti: Syn  ratio Total Yield
(%)

Z 54 1.2 eq. TiCl(Oz-Pr)3 56 72:28 76
Z 54 2.5 eq.TiCl(Oz-Pr)3 56 92:8 87
Ts 55 1.2 eq.TiCl(Oz-Pr)3 57 63:35 86
Ts 55 2.5 eq TiCl(Oi-Pr)3 57 65:35 90
Ts 55 1.2 eq TiCl(Oz-Pr)3 57 60:40 70
Ts 55 2.5 eq SnCfe 57 98:2 80

Table 1.12
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Table 1.12 shows that the nature of the protecting group is also a factor that contributes to 

the diastereoselectivity. For example, when the protecting group was Z 54, 92% 

diastereoselectivity was observed using TiCl(0 /-Pr)3, however, no significant 

diastereoselectivity was observed for the corresponding tosyl derivative 55. All the 

various chelating metals tested including ZnCl2, MgCl2, NiCl2, CoCl2 and Al(OZ-Pr)3, gave 

similar results. However, when 2.5 equivalents of SnCl2 (entry 6) was used, this resulted 

in an excellent 98% diastereoselectivity. One further experiment was conducted using 

acetaldehyde 55 where the product 59 was obtained in 82% yield with a 

diastereoselectivity of 95%.

X  Ct̂ CHO ^ X r ; 02Bzl
TsHN COjBzl T  4

1 ''NHR

55 59

Scheme 1.20. Reagents: LDA, SnCl2, THF, 82%.

To widen the scope of the aldol reaction, the problem of high diastereoselectivities 

involving the use of aromatic aldehydes had to be solved. As previously described when 

the nitrogen protection group was Z, the aldol reactions conducted with aromatic aldehydes 

displayed no significant diastereoselectivity, irrespective of the metal salt used.

RHN^COzBzl
C c x

54-55 62-64a 62-64b

R X eq. MXn Aldehyde
X= Product A nti: Syn 

ratio
Total Yield 

(%)
Z 54 2.5eq. TiCl(0/-Pr)3 H 60 62 51:49 54
Z 54 1.2 eq. TiCl(0/-Pr)3 N 0261 63 48:52 61
Z 54 2.5 eq.TiCl(0/-Pr)3 N 0261 63 49:51 69
Z 54 2.5 eq SnCl2 NQ26I 63 58:42 74
Ts 54 2.5eq TiCl(Oi-Pr)3 N 0261 64 70:30 58
Ts 54 2.5 eq SnCl2 N 0261 64 99:1 60

Table 1.13
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However, experiments conducted on the same substrate but with a tosyl protecting group 

displayed 99% diastereoselectivity with SnCh, but only 70% ds was recorded for 

TiCl(Oi-Pr)3 (Table 1.13). Kazmaier proposed that the lower diastereoselectivities 

observed in the presence of other metal salts (e.g. TiCl(0 /-Pr)3) may be the result of 

retroaldol reaction.

1.47. Substituents on the Aromatic ring of the Aldehyde

With this excellent result, further reactions were conducted with a tosyl nitrogen protecting 

group. Next, it was decided to test the diastereoselectivity of the reaction by altering the 

substituents on the aromatic side chain of the aldehyde (Table 1.14).

OH OH
C 0 2Bzl*C H O  X x O j B z l  + X j

TsH N ^ C 0 2Bz» Ar X  ** S\
-  NHTs NHTs

55 77-89a 77-89b

RCHO Product A nti: Syn  ratio Total Yield (%)
1 Benzaldehyde 60 77 98:2 91
2 4-methylbenzaldehyde 65 78 97:3 66
3 4-methoxybenzaldehyde 66 79 98:2 70
4 4-bromobenzaldehyde 67 80 98:2 70
5 4-chlorobenzaldehyde 68 81 98:2 87
6 4-nitrobenzaldehyde 69 82 98:2 60
7 2-nitrobenzaldehyde 70 83 99:1 60
8 3,4-dichlorobenzaldehyde 71 84 98:2 65
9 2,6-dichlorobenzaldehyde 72 85 99:1 70
10 3,4,5-trimethoxybenzaldehyde 73 86 90:10 75
11 2,4,6-trimethoxybenzaldehyde 74 87 85:15 (crude) 77
12 9-anthranyl carbaldehyde 75 88 99:1 87
13 3-(JV-Boc-indol)carbaldehyde 76 89 96:4 84

Table 1.14

These results suggest that neither the different substituents nor their position on the 

aromatic ring has any effect on the diastereoselectivity originally observed (Table 1.14, 

entry 1). The only notable difference was observed with the trimethoxy-substituted 

aldehydes (entries 10 and 11), which showed a marginal decrease in diastereoselectivity.
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1.48. Detosylation Problem: the Search for Alternative Protecting Groups

Early indications showed that the best nitrogen protecting group for the aldol reaction was 

the tosyl group (Table 1.14). However, despite numerous literature methods for removal 

of this protecting group, such transformations are often problematic. So an alternative 

protecting group, which is easier to remove, but still gives the high diastereoselectivity and 

yields was necessary. Numerous sulphonyl groups were tested including 2- 

nitrobenzenesulfonyl, which did not survive the reaction conditions, presumably 

deprotection occurred during the reaction. The protecting group of choice was found to be 

the SES (2-trimethylsilylethanesulfonyl) group, developed by Weinreb24 et. al. (Scheme 

1.21).

COzBzl

NHSES

I AfCHO
SESHN C 0 2BzI

90 91

Scheme 1.21. Reagents:LDA, THF, -78°C, 88%, 99% de.

Highly basic conditions are necessary to cleave the SES group, so to prevent a retroaldol 

reaction, the P-hydroxy substituent was protected as the corresponding THP ether, before 

cleaving the SES group using TBAF and refluxing in THF. Thus the problem of 

detosylation was solved by substituting the tosyl group for a SES group, which gave the 

same desired high yield and diastereoselectivity.23

1.49. Desymmetrising the Aldol Reaction: the Use of Chiral Aldehydes

With the optimum conditions established for the aldol reaction, Kazmaier naturally felt it 

was desirable for the reaction to be enantioselective. Hence, in studies towards the 

synthesis o f a-unsubstituted pipecolinic acids, the enolate of alanine ester was condensed 

with the chiral aldehyde 93, using the standard conditions previously established, to form 

the polyhydroxylated amino acids 94 in a 4:1 ratio (Scheme 1.22; a).25
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o K
CHO BnO

TsHN' ^COztBu
a TsHN

92 93

TsHN
COotBuC 02tBu

^ o

I X  i X'
HO ?SX o 2tBu H0^ N 8̂ C 02tBu

95a 96b

Scheme 1.22. Reagents: a) LDA, THF, -78°C, 90%; b) i) H2, Pd/C, MeOH, ii) PPh3, 

DEAD, THF, RT, 92%; c) i) H2, Pd/C, MeOH, ii) PPh3, DEAD, THF, RT, 75%.

The major isomer 94a was recrystallised from the mixture while the minor isomer 94b was 

obtained from the residue by flash chromatography. In both cases the a-methylated 

pipecolinic acid derivatives 95a and 95b were synthesised in high yields (Scheme 1.22). 

These cyclic derivatives were subjected to nOe experiments to confirm the configuration of 

the two stereogenic centres formed in the aldol reaction.

The same reaction was carried out this time using glycine ester 96. The induced 

diastereoselectivity (p-C) was greater than 95%, but unfortunately epimerisation occurred 

at the a-centre, producing a 1:1 mixture, believed to be due to the labile nature of this 

proton. However, the aldol product was used successfully for the azasugar synthesis 

(Figure 1.16).

TsHN C 0 2Bn
CHOOTBDMS

OTBDMS OH
TsHN

pH
HO OH

H O ' 'N '  '/7| 
Ts OH

96 97 98 99

Figure 1.16
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In an attempt to synthesise optically active polyhydroxylated amino acids, Kazmaier, 

Grandel and Rominger used the aldehydes shown in Figure 1.17, the results of which are 

shown in Table 1.15.26

OBn OTBS o '  ' q  o '  'O

BnO— CHO CHO
100 101 102 103

Figure 1.17

R* CHO
T  pH OH

I _2L  R ^ ^ X O j R 1 ♦
T»HN COzR jT  / \ HTs » NHTs

Where R1=/-Bu 92 105-108a 105-108b
R1=Bn 94

Aldehyde Ester (R) MXn Product anti:syn Yield %
OBn

^ C H O

100
/-Bu 92 2.5 eq Zi1CI2 105 55:45 /

OBn

^ ^ C H O

100
/-Bu92 1.2 eq SnCl2 105 59:41 /

OBn

X^CHO
100

/-Bu 92 2.5 eq SnCl2 105 81:19 88

OTBS

- ^ C H O

101
Bn 94 2.5 eq SnCl2 106 89:11 85

f tBnO— '  CHO 
102

/-Bu 92 1.2 eq SnCl2 107 67:33 /

X

BnO— ^  ^CHO 
102

/-Bu92 2.5 eq SnCl2 107 78:22 90

CHO
103

Bn 94 2.5 eq SnCl2 108 80:20 87

Table 1.15
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From the Table, it is clear that the simple diastereoselectivities shown were nearly 

independent of the aldehyde used. However, the highly oxygenated aldehydes 102 and 

103 displayed exceptional induced selectivities. Hence this method can be used as a simple 

and highly selective route to a-alkylated polyhydroxylated amino acids, provided alanine 

esters are used instead of the glycine derivatives, which undergo epimerisation.

1.50. Application of the Kazmaier Aldol Reaction to the Synthesis of Pyrroles

Sharland’s17 research centred around the synthesis of pyrroles, however problems arose 

with the synthesis of the starting materials in some o f the original strategies. A new route 

was envisaged utilising the Kazmaier18 aldol reaction, previously described, provided that 

the condensation of a tin(II) enolate of ethyl N-tosyl glycinate would be successful with a 

variety of acetylenic aldehydes and ketones (Figure 1.18).

1 kN/ ^C 02Et 
Ts

109

1̂ ' C02Et 
Ts

110

OH
C 0 2Et 

NHTs 

111

-CHO

112

T sH N ^ C O zEt

113

Figure 1.18

Kazmaier reported that the use of a glycine ester 96 in such a tin(II) mediated aldol 

reaction resulted in epimerisation of the a-position due to the presence of the ester 

functionality, while the level of control at the new p-position was excellent (Figure 1.16). 

At this stage, it was not clear whether any diastereoselectivity would be obtained in the 

proposed condensation (Figure 1.18), since Kazmaier did not conduct experiments with 

any acetylenic aldehydes. However, the selectivity was not important since, inevitably, to 

form the corresponding pyrroles 109, both stereogenic centres would be destroyed (Figure 

1.18).

To prepare the acetylenic aldehydes 112, the corresponding terminal acetylenes were 

formylated using A^-dimethylformamide following a procedure devised by Joumet27 and 

co-workers (Scheme 1.23; a). Excellent yields were obtained provided a reverse quench 

into a biphasic solution of 10% aqueous potassium dihydrogen phosphate was utilised. For 

example, hept-2-yn-l-al 115 was obtained in 81% yield following purification (Scheme 

1.23; a). Next, this was reacted with the tin enolate of ethyl JV-tosyl glycinate at -78°C
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which following the work-up, afforded the crude fl-hydroxy-a-amino ester 116 in a yield 

of 83% (Scheme 1.23; b). Surprisingly, the reaction was quite diastereoselective, affording 

a 7.5:1 mixture of diastereoisomers, which following recrystallisation, afforded the product 

116 in 54% yield.

OH
Bu—^  3 -  Bu —  CHO — b -  - ^ ^ C O z E t

NHTs

114 115 116

Scheme 1.23. Reagents: a) n-BuLi, DMF, THF, 1 h, 81%; b) 113, LDA, SnCb, THF, -

78°C, 16 h, 83%.

From Kazmaier’s18 research, the major product was believed to be the anti diastereoisomer 

116. This was confirmed when the product 119 resulting from the condensation of phenyl 

substituted aldehyde 117 with the enolate of ethyl A-tosylglycinate, was subjected to X-ray
Oftdiffraction. The results obtained are summarised in Table 1.16.

OH

R =  CHO    ^ ^ r C° 2 Et

R NHTs

115-116 111a

Aldehyde (R) Product Ratio (anti:syn) anti diastereoisomer (%)

Bu 115 116 88:2 54

Ph 117 119 93:7 58

Y u s 120 94:6 63

Table 1.16
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1.51. Extending the tin(II)-mediated aldol reaction methodology to ketones

With the success of this aldol reaction with a range of acetylenic aldehydes, the next 

logical step was to test if the same high diastereoselectivity would be obtained with the 

corresponding ketones 124, and if the resulting products 123 could be used in the synthesis 

of more highly substituted pyrroles 121 (Figure 1.19).

X  -  X  -  J V *R '< N>-C 02Et R^S^CO jEt jZ ?  T
Ts Ts R NHTs
121 122 123

Figure 1.19

1 ftHowever, Kazmaier had not conducted studies with ketones, so no examples were 

available for comparison. A variety of ketones were thus subjected to the tin(II)-mediated 

aldol reaction when the effect of the size o f the substituent in the (3-position on the 

diastereoselectivity of the reaction could be deduced. The results are shown in Table 1.17.

TsHN' 'COzEt 

113

R1 R2 Starting
Material

Product Ratio 
(anti:syn)

Yield anti diastereoisomer 
(%)

Ph Me 125 130 92:8 79

Ph C 7 H 1 5 126 131 90:10 80

Ph /-Pr 127 132 84:16 76

H Me 128 133 88:12 81

Bu 129 134 / /

Table 1.17

Delightfully, the selectivity of the reaction was still high when the aldehydes were 

substituted by acetylenic ketones and clarification that the major products formed were the

9 H OR2

*  , / r
R1 NHTs

125-9 130-134

- h ;

124
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anti diastereoisomers was once again obtained by conducting X-ray diffraction on the 

products. Also, it can be seen that as the size of the group in the p position increases, the 

stereoselectivity decreases marginally. This observation can be explained by taking into 

account the transition state models proposed by Kazmaier,18 since the difference in the 

stability between transition state A and B becomes less distinct, and thus the 

diastereoselectivity falls (Figure 1.14). In addition, it was noteworthy that the same anti 

diastereoselectivity was observed with the ketones as the aldehydes, regardless of the fact 

that the substituent (R2) is now larger than the alkyne functionality.

The findings from Sharland’s study were in agreement with Kazmaier’s results, with 

regards to the fact that the major isomer obtained was the anti diastereoisomer. However, 

the success with the glycine enolate was not consistent with Kazmaier’s previous study 

where epimerisation was observed. Accordingly, the structure of the tin enolate needs to 

be verified.

1.52. Expanding the methodology to a,P~unsatu rated Aldehydes and Ketones

With the high selectivity obtained in the tin(II)-mediated aldol condensation, between 

acetylenic aldehyde and ketones, it was desirable to test the selectivity with a variety of 

a,P-unsaturated aldehydes and ketones. Thus, in the latter stages of his research, Sharland 

conducted a brief study with aldehydes and ketones of this type to use the products in the 

synthesis of highly substituted pyrrolidines.29 The initial substrate tested was (2s)- 

cinnamaldehyde 135 which gave the desired p-hydroxy-a-amino ester 136, but as a 

mixture of diastereoisomers in the ratio of 4:1 which could not be separated completely 

(Scheme 1.24).

OH

p* J r c"°  —  Pĥ A r co2E«
NHTs

135 136

Scheme 1.24. Reagents: 113, LDA, THF, SnCl2, -78°C-0°C, 66%.

By analogy with the products of the previous reactions, the major diastereoisomer should 

be the anti diastereoisomer. This was confirmed by the coupling constants. This lower 

diastereoselectivity was disappointing and believed to be due to either an increase in the
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steric hindrance between the phenyl group and the ester or a reduced steric hindrance 

between the phenyl group and the ester moiety, since either of these factors would lower 

the selectivity. With this successful addition, the reaction was repeated with various 

commercially available (£)-a-p-unsaturated aldehydes and ketones (Table 1.18).

Aldehyde 
or ketone Product % A n ti %  Syn Combined 

Yield (%)
/CHO

J
135

OH
ph/^55̂ \^ C 0 2Et

NHTs
136

80 20 67

137

OH

NHTs

140

63 37 69

0
138

Bu-^X^COzEt
NHTs

141

71 29 79

- K
139

HCV/CX^CO zEt 
' NHTs 

142

53 47 91

Table 1.18

It can be seen from Table 1.18 that as the two groups on the alkene become equal in size, 

the selectivity of the reaction approaches zero. Overall, the results show that the selectivity 

decreased from 9:1 when acetylenic aldehydes and ketones were used to approximately 4:1 

when (£)-a,p-unsaturated aldehydes and ketones were utilised. However, this ratio was 

still synthetically useful for the synthesis of a variety of cyclisation precursors.
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Chapter Two 

Synthesis of Cyclisation Precursors

2.10. Introduction

The aim of the present research was to synthesise a range of pyrrolidines both aryl and 

alkyl, with different stereochemistries (Figure 2.10).

L OH I  P H I, PH 1, OH

Ts Ts
R| , ^ N^ '' 'R ’ Where R= aryl or alkyl

Ts Ts

143a 143b 143c 143d

2,5-tra/ts 3,4-c/s all c is  

Figure 2.10

2,5 -c/s

Previously in the Knight group, Sharland1 utilised a tin(II) mediated aldol condensation of 

the enolate of ethyl jV-tosyl glycinate with various acetylenic aldehydes and ketones to 

furnish the anti amino alcohol precursors highly diastereoselectively. These anti 

diastereoisomers 111 were reacted with iodine and following elimination, the 

corresponding pyrrole 109 was isolated (Scheme 2.10a).

NHTs

111 110 109

Scheme 2.10a

Following reduction of the alkyne moiety of these aldol precursors 111, a (Z)-amino 

alcohol derivative would be obtained which following a 5-endo-trig cyclisation should 

afford a pyrrolidine. Hence, this previously developed methodology was utilised in the 

quest for cyclisation precursors, but in the aldol condensation the methyl ester glycine 

derivative was used in preference to the previously used ethyl ester 113, to prevent any of 

the ethyl ester protons obscuring the pyrrolidine ring protons.
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2.20. Kazmaier aldol reaction2

CO2M6
NHTs

CO9M6
NHTs

The acetylenic aldehydes hep-2-ynal 115 and phenyl-propynal 117 and were prepared in 

excellent yields by formylation of the corresponding lithium acetylides with DMF 

followed by a reverse quench procedure in the work-up (Scheme 2.10b).3 Formation of 

these aldehydes was evident by the new singlets at around 9.0 ppm in the *H NMR 

spectrum.

Bu—=  * Bu — = CHO

114 115

Ph—=  P h - = —CHO

145 117

Scheme 2.10b. Reagents: a) THF, -40°C, n-BuLi, 89%; b) 152, SnCl2, LDA, THF, -78°C, 

41%; c) THF, -40°C, n-BuLi, 98%; d) 152, SnCl2, LDA, THF, -78°C, 45%.

Condensation of phenyl propynal 117 with the enolate of methyl A-tosylglycinate in the 

presence of tin(II) chloride afforded a 9:1 mixture of diastereoisomers, and following 

chromatography and recrystallisation, the major anti isomer 146a was obtained in 45% 

yield, as apparent from a molecular ion of 376 (M+ + Na) and the new C//OH and C//N 

protons in the range 4.10 to 4.60 ppm, with a coupling constant of 3.9 Hz (the syn isomer 

was not isolated). When the reaction was repeated using hept-2-ynal 115, following 

chromatography and recrystallisation, the anti diastereoisomer 144a was isolated in 41% 

yield, as apparent from the new C//OH and C//N protons in the range 4.15 to 4.90 ppm, 

also with a coupling constant of 3.9 Hz. In both cases, following chromatography, the 

aldol adducts were isolated in approximately 60% yield, which was lowered to 

approximately 40% following recrystallisation to remove the methyl A-tosyl glycinate 

starting material. Numerous recrystallisations were necessary to obtain pure material for 

use in the subsequent Lindlar reductions, to prevent the impurities poisoning the catalyst 

further.

In the initial Lindlar4 reduction of the phenyl aldol adduct 146a, the catalyst (5% palladium 

on calcium carbonate) was poisoned by the addition of quinoline. However, over-
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poisoning of the catalyst frequently occurred. So, in later experiments, commercially 

available Lindlar’s catalyst (5% palladium on calcium carbonate poisoned with lead 

acetate) was purchased to obviate this problem. Unfortunately, despite this the Lindlar 

reduction of the phenyl substrate 146a was capricious and so complete reduction was not 

achieved (Scheme 2.11). Despite the poisoning of the catalyst, some (Z)-olefin 147 was 

reduced to the alkane 148, before all the alkyne 146a had been reduced, hence various 

mixtures of the alkyne 146a, (Z)-olefin 147 and alkane 148 were used “crude” in the 

subsequent cyclisations (Section 3.21a, Chapter 3). Formation of the (Z)-olefin 147 was 

confirmed by the new olefin peaks at 5.55 and 6.60 ppm, with a cis coupling of 11.7 Hz.

Fortunately, in the case of the butyl derivative 144a, after a few teething problems, 

complete reduction was achieved to afford the cw-olefin 149 in quantitative yield, as 

confirmed by the new olefin resonances in the range 5.25-5.60 ppm, with a typical cis 

coupling of 10.9 Hz (Scheme 2.11).

COoMe

NHTs

Ph
HO COzMe

NHTs

147

NHTs

Bu

OH

Ph

HO CQ2Me

NHTs

NHTs

+ 146a

148

149

Scheme 2.11. Reagents: Lindlar’s catalyst, EtOAc, H2.

With the (Z)-precursors synthesised, next the corresponding (^-precursors were required. 

Obviously, reduction of the alkyne to the (2s)-olefin would also reduce the ester so another 

approach was necessary. In the latter stages of Sharland’s5 PhD, condensations were 

conducted with the enolate of A-tosyl glycine ethyl ester and various a,P-unsaturated 

aldehydes and ketones to afford p -hydroxy-a-amino esters but with reduced 

diastereoselectivity (Section 1.52). Separation of the diastereoisomers was not conducted 

in most cases. Accordingly, the enolate derived methyl A-tosylglycinate by deprotonation 

using LDA was condensed with (£)-crotonaldehyde 137 to afford a 5:1 mixture of 

diastereoisomers in the crude product, according to *H NMR integration of the C//N 

protons. Based on the previous results, the major isomer 150 was presumed to be the anti 

diastereoisomer 150. Following chromatography and recrystallisation, this major
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diastereoisomer was isolated in 36% yield while the minor diastereoisomer 253 together 

with methyl A-tosyl glycinate 152 starting material was in the mother liquors. The 

proposed anti diastereoisomer 150 was characterised by a new C//N proton at 4.00 ppm 

with a coupling of 9.2 Hz to the NH and a 4.2 Hz coupling to the CHOH proton. Despite 

numerous recrystallisations to remove the starting material 152, the minor isomer 253 

could not be isolated cleanly and hence, alternatives methods were used to synthesise this 

precursor. A later route afforded the minor isomer 253 (Scheme 2.47) and the coupling 

between the C/fOH and CHN protons was revealed to be 3.5 Hz.

137

'O +

117

TsHN COzMe 

152

TsHN^COzMe

152

OH

NHTs
150a

Ph

OH

NHTs 
151a

Ph

OH
C 02Me 

NHTs 

150b
OH

C 02Me 

NHTs 

151b

Scheme 2.12. Reagents: a) SnCfe, 137, LDA, THF, -78°C, 150a 36%; b) SnCL, 117,
LDA, THF, -78°C, 57%.

By considering the Newman projections illustrated in Figure 2.12, when the dihedral angle 

is 180°, that is when the OH and NH groups are in an anti relationship, from the Karplus 

equation it can be seen that the coupling constant is at its largest since the orbitals are 

overlapping most efficiently, while when these two groups have a syn relationship, this 

dihedral angle is reduced to 60° resulting in a smaller coupling constant. However, with a 

dihedral angle of 180°, one would expect the coupling constant to be greater than the 4.2 

Hz observed. With only about 1 ppm difference in the J values of the diastereoisomers, 

X-ray diffraction studies previously conducted by Sharland6 confirmed the stereochemistry 

of the major isomer was in fact the anti diastereoisomer as proposed. It is possible that due 

to hydrogen bonding, the dihedral angle is closer to 60°, explaining the small magnitude of 

the coupling constant, but this is purely speculation.
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NHTs

OH
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144b

C 02Me

Figure 2.12

When the enolate of methyl Af-tosyl glycinate was treated with (£)-cinnamaldehyde 135 

the NMR spectrum of the crude product, displayed a 4:1 mixture of diastereoisomers 151, 

based on the integration of the methyl ester signals. The major isomer 151a showed a 

coupling between the C//OH and C//N protons of 4.2 Hz while for the minor isomer 151b, 

slightly smaller coupling of 3.3 Hz was recorded. So, since anti couplings are larger than 

syn couplings, as expected, the major isomer was the anti diastereoisomer 151a. Complete 

separation of the diastereoisomers could not be achieved, but the quantity of the anti 

diastereoisomer could be increased by repeated recrystallisations.

2.21. Desymmetrising the Aldol Reaction Using Chiral Auxiliaries

This aldol reaction was proving to be a very useful synthetic method for synthesising a 

range of cyclisation precursors, but could it be made enantioselective? The use of chiral 

aldehydes was not an option, unlike in Kazmaier’s7 research, but as an alternative, it was 

hoped to introduce chirality by using an auxiliary as the ester on the TV-protected amine. 

Numerous auxiliaries were tested which are shown in Figure 2.13.

153 154

Figure 2.13

155

The initial auxiliary8 153 was synthesised from D-camphor, but recrystallisation failed due 

to its sticky gum-like consistency, despite the use of numerous solvent systems.
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Chromatography was also unsuccessful and consequently, an alternative auxiliary was 

employed, as complete purification was never completely acheived.

The next auxiliary tested was tram  2-phenylcyclohexanol 155, which though expensive 

was commercially available. Accordingly, jV-tosyl glycine 156 and /ratts-2-phenyl- 

cyclohexanol 155 were reacted with dicyclohexylcarbodiimide 157 (DCC) in the presence 

of catalytic DMAP in tetrahydrofuran (Scheme 2.13; a). The resonances in the NMR 

spectrum of the crude product were broad and as such coupling constants could not be 

deduced accurately. Following chromatography, an 8:1 mixture of the alcohol 155 and the 

bis-sulfonamide 159 was obtained as deduced from the downfield shift of the AB system 

of doublets at 3.25 and 3.45 ppm corresponding to the CH2 group adjacent to the nitrogen. 

No mono-sulfonamide 158 was identified in any of the fractions and the yield of 159 was 

not determined.

Next the coupling reaction was repeated but using BOP-C1 as the coupling agent in 

pyridine, but frustratingly only starting material 155 was recovered (Scheme 2.13; b). 

DCC 157 was once again used as the coupling agent but in dichloromethane, following a

1-Hydroxybenzotriazole hydrate (HOBt) 160 is often used as an additive in reactions

coupled with the free amino group of another. Usually, the activated ester 161 is formed 

using a coupling reagent such as DCC 157. However, when this activated ester 161 is 

attacked directly with the amino group of the second amino acid, racemization often occurs 

(Figure 2.14, red scheme). To prevent this, HOBt 160 is added to react with the activated

Ph Ph

( - y Y - N H T ,HO2C NHTs +

156 158 159

Scheme 2.13. Reagents: a) DCC, DMAP, THF, 15 h; b) BOPC1, anh. py, 0.5 h, 0°C, 

DMAP, 24 h, R.T.; c) DMAP, DCC, CH2C12, -20°C, 17.5 h, R.T.; d) DMAP, DCC,

CH2C12, HOBt, -20°C, 17.5 h, R.T.

procedure by Steglich,10 but only a small degree of coupling was observed (Scheme 2.13;

c).

where an activated ester of an amino acid (i.e. one containing a good RO' leaving group) is
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ester first (Figure 2.14, blue scheme). This new intermediate does not racemize because 

the reaction is highly accelerated due to the addition of HOBt11 160.

NHBoc
BocHN

BocHN

BocHN R

BocHN R

BocHN BocHNBocHN

Figure 2.14

Despite the addition of one equivalent of HOBt 160 to the reaction mixture, no increase in 

the level of coupling was observed. Since no significant coupling was observed, despite 

the use of different coupling agents, an alternative catalyst, 4-pyrrolidino-pyridine, was 

tested. Regrettably, sufficient quantity of mono-tosylate 158 was not isolated to allow 

continuation of the sequence on realistic scale. This lack of coupling was believed to be 

due to the tosyl group, presumably due to the lability of the NH in the sulfonamide given 

that Hamon12 et al., successfully coupled 8-phenylmenthol 163 with A-Boc-glycine 162a 

in 93% using DCC 157 and DMAP (Scheme 2.14).

H02C ^ N H B o c  + \ ^ * 0 H  J>*0 J ^ N H B o c
o

Ph

162 163 164

Scheme 2.14. Reagents: DCC, DMAP, 93%.
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Regrettably, following chromatography of the crude product, a 3.6:1 mixture of bis- 

sulfonamide 169 and mono-sulfonamide 168, was obtained, which due to similar Rf s, 

were only partially separated. Clearly optimisation was required, but at this time it was 

desirable to test 168 to verify if a mixture of diastereoisomers would be obtained, as the 

previous reaction of the Boc derivative 165 suggested (Scheme 2.15; b).

Ph NHBoc Ph NH2 Ph Ph

O ' Y  C r V  O ' V ™  '  O ' Y ' s "

165 167 168 169

Scheme 2.16. Reagents: a) TFA, CH2C12, 1 h, 81%; b) TsCl, DMAP, CH2C12, 16 h.

So a 4:1 mixture of the bis-sulfonamide 169 and mono-sulfonamide 168 was reacted with 

phenyl propynal 117 in the presence of tin(II) chloride (Scheme 2.17). Following 

chromatography and the recovery of the bis-sulfonamide 169, the methanol fraction 

appeared to contain the desired product 170 as a single diastereoisomer, as apparent from 

the two new broad resonances at 3.40 and 4.10 corresponding to the C//OH and C//N 

protons respectively, and disappearance of the doublets of the ABX system. The yield of 

170 was not obtained.

Ph NHTs

6Y
NHTs Ph

168 169 170

Scheme 2.17. Reagents: SnCl2, LDA, -78°C, THF, 117, 0.5 h.

Despite these promising results, the expense of the auxiliary precursor 155 was evidently a
11problem. The Oguni group reported the synthesis of trans 2-phenyl-cyclohexanol 155 in 

90% enantiomeric excess from epoxide 172 using phenyllithium in the presence of a chiral 

Schiff reagent 171 (Scheme 2.18).
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OH

OH
170

o - a►Ph

'OH

171 155

Scheme 2.18. Reagents: PhLi, 5 mol% chiral Schiff Base, 100% yield, 90% ee.

However this Schiff base 171 was not commercially available and as such the Oguni group 

prepared it from relatively expensive (L)-tert-leucinol. Due to the uncertainty regarding 

the aldol reaction with this auxiliary 168, it would have been prudent to purchase (Lytert- 

leucinol at this stage. Instead, being keen to reduce the number of steps in the sequence, L- 

menthol 154 was employed as a cost effective alternative, since both the racemate and the 

single enantiomers are inexpensive.

L-Menthol 154 and TV-Boc glycine 162a were coupled together in the presence of DCC 157 

and 4-pyrrolidino-pyridine to afford the ester 173 in 75% yield, consistent with the 

appearance of two carbonyl signals at 8c 155.6 and 170.0 ppm (Scheme 2.19; a). 

Condensation with phenyl propynal 117 in the presence of tin(II) chloride failed, but would 

the reaction be successful with the tosyl derivative 175? Subsequent deprotection of the 

carbamate 173 with a 20% solution of trifluoroacetic acid in dichloromethane afforded 

174, as apparent from the loss of the t-Bu singlet. Treatment of 174 with triethylamine and 

/7-tosyl chloride in dichloromethane furnished the sulfonamide 175 in 60% yield after 

chromatography, as apparent from the new doublets at 7.20 and 7.85 (AA’BB’ system) 

with a typical ortho coupling of 8.4 Hz (Scheme 2.19; c).

NHBoc NHTs

154 173 174 175

Scheme 2.19. Reagents: a) DCC, 4-pyrrolidino pyridine, CH2CI2, 16 h, 75%; b) TFA, 

CH2CI2, 3 h, 84 h; c) Et3N, CH2C12, DMAP, TsCl, 16 h, 51%.

Following treatment of 175 with phenyl propynal 117 in the presence of tin(II) chloride 

and base, only starting material was isolated. So unlike the /nms-2-phenyl-cyclohexanol
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derivative 168, this aldol reaction under these conditions was not successful with the 

menthol ester 175, irrespective of the nitrogen-protecting group employed. Presumably, 

the isopropyl group of the menthol ester 175 exerted a greater steric influence than the 

phenyl group of the cyclohexanol auxiliary 168 and so, seemingly, sterically hindered 8- 

phenyl menthol 163 would also not have been suitable as a chiral auxiliary. Clearly, a 

number of options would need to be examined to prove this.

Finally, the menthol auxiliary 173 was treated with phenyl propynal 117 in the absence of 

tin(II) chloride, but although condensation occurred, as expected low selectivity was 

obtained to furnish the product 176 as a 1:1 mixture o f diastereoisomers, as judged from 

the integrations of the broad C//N signals at 4.50 and 4.60 ppm (Scheme 2.20). Following 

chromatography, the product was isolated in 45% yield, but once again, the presence of the 

Boc protecting group resulted in unresolved resonances. Consequently, differentiation 

between the syn and anti diastereoisomers was not achieved.

OH

NHBoc Ph

176

NHBoc

Scheme 2.20. Reagents: LDA, THF, -78°C, 117, 0.5 h, 45%.

2.22. Conclusion

Under these conditions therefore, this aldol reaction was not be made enantioselective 

using menthol as a chiral auxiliary. However, the promising results obtained from the use 

of the /r<ms,-2-phenyl-cyclohexanol based auxiliary 168 should be further studied and 

hopefully in the future, by following Oguni’s research, the trans-l-phenyX based auxiliary 

168 should successfully furnish the aldol products as single diastereoisomers.

2.30. Introduction: Alternative Route to Cyclisation Precursors

The aldol reaction was limited since no (Z)-syn precursors could be synthesised, and the 

(E)-syn precursors were only obtainable in low yields, due to the diastereoselectivity of the 

reaction. Hence, alternative strategies to the cyclisation precursors were required. Ideally,
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these routes would afford the desired cyclisation precursors as single enantiomers, and 

with the disappointing results obtained for the asymmetric aldol reaction (Section 2.21), 

routes to single enantiomers of all precursors were necessary. In addition, a route was 

required that did not incorporate an ester moiety, which would also be reduced in the 

conversion of the alkyne into the (FT)-olefin. The second route tested was based on 

research conducted by the Dondoni14 group in their synthesis of P-D-galactosyl ceramide 

methylene isostere; a portion of the route is illustrated in Scheme 2.21.

i ,R nhNHBoc 

CHO

NHBoc X « ,H

R
R=BnO

13n 27 b,c
NHBoc X 13H 27

OH 
syn:anti 5:95syn:anti 70:30

177 178a 178b

Scheme 2.21. Reagents: a) 1-pentadecynyllithium, THF, 65%; b) oxalyl chloride, DMSO, 

/-Pr2EtN, CH2C12, -78°C, 90%; c) THF, -78°C, L-Selectride, 0.5 h, 90%.

Due to the single protection of the amino group, addition of the organometal to the 

aldehyde 177 should give the undesired syn stereochemistry. To obtain the anti 

diastereoisomer 178b, their previously developed oxidation-reduction sequence was used 

(Scheme 2.21; b and c). The optimum reagent for the reduction of the aldehyde was 

established to be L-selectride, which afforded predominately the anti diastereoisomer 

(Table 2.10).

Conditions Solvent Temperature
(°C)

Yield
(% )

Anti:syn ratio in 
crude product

5 eq NaBFL* THF/MeOH
4:1 -60 60 60:40

5 eq NaBHU, +1 eq 
CeCl3 EtOH -60 90 73:27

1 eq Red-Al THF -78 60 70:30
1 eq LABOH THF -78 24 48:52
3 eq DIBAH THF -78 43 78:22

2 eq L-Selectride THF -78 90 95:5
2 eq L-Selectride with 

1 eq ZnBr2 THF -78 65 85:15

Table 2.10
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jV-Protected a-amino alcohols are prone to racemization if they contain epimerisation 

enhancing features such as an a-aryl group or a strongly electron-withdrawing ^-protecting 

group. Research by Myers15 has shown that Swem16 oxidation of the sensitive precursor 

179 afforded the aldehyde 180 in only 50% ee, compared to the excellent 99% ee recorded 

for the Dess-Martin periodinane17 (Scheme 2.22).

OH O
l^NHFmoc aor£ HA^N H Fm oc

Ph Ph

179 180

Scheme 2.22. Reagents: a) Swem Oxidation, (/-P^NEt), 50% ee; b) Dess-Martin

periodinane, 99% ee.

In light of these discoveries the route devised by Dondoni was adapted to include a Dess- 

Martin oxidation in place of the Swem oxidation, to lessen the chance of epimerisation. In 

addition to the high enantioselectivity, the Dess-Martin oxidation is more suitable for use 

in larger scale reactions, due to the unpleasant odour of dimethyl sulfide generated in 

Swem oxidations.

2.31. Results and Discussion

2-Amino-1 -butanol 181 was treated with triethylamine and Boc anhydride in 

dichloromethane for 16 h to afford the carbamate 182 in 56% yield, as confirmed by the 

new visible carbonyl stretch at 1692 cm' 1 in the infra red spectrum in addition to 

appearance of a /-butyl singlet at 8h 1.35 ppm and also a molecular ion of 190 (M+ + H), 

consistent with carbamate formation was apparent. Treatment with the Dess-Martin 

periodinane in dichloromethane furnished the aldehyde 183 in 68% yield, as apparent from 

a resonance at 9.50 ppm (Scheme 2.23; a and b). Reaction of the aldehyde 183 with 1- 

hexynyllithium furnished the amino alcohol 184. In the NMR spectrum of the crude 

product, all significant protons appeared as broad resonances and there were too many to 

be purely due to a mixture of diastereoisomers. The remaining peaks must have been due 

to the presence of rotamers, hence the selectivity of the reaction was not determined. 

Instead, the crude product 184 was immediately subjected to a Swem oxidation to afford 

the ketone 185, as confirmed by the new carbonyl signal at 5c 185.0 ppm. The crude
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ketone 185 was then reacted with L-selectride to afford the amino alcohol 186 in a 

disappointing 10% yield, following chromatography (Scheme 2.23; d and e). According to 

Dondoni’s research, this amino alcohol should be the anti diastereoisomer 186, but both 

the C//OH and C//N protons were broad resonances, hence coupling constants could not 

be calculated, to confirm this.

NHBoc
NHBoc R' NHBoc R'

181 183 184 186

Scheme 2.23. Reagents: a) Et3N, CH2CI2, cat DMAP, B 0 C2 O ,  16 h, 56%; b) CH2CI2,

Dess- Martin periodinane, 2 h; c) 114, n-BuLi, THF, -78°C, 2 h; d) oxalyl chloride,

DMSO, CH2CI2, Hiinigs base; e) L-Selectride, -100°C, THF, 0.5 h, 10% over 4 steps.

Due to the acid sensitivity of the Boc group, problems were encountered in the removal of 

the L-selectride residues and so the quantity of material obtained was low. All previous 

cyclisations in the Knight group had been conducted on tosylated precursors, so for 

continuity, the Boc group needed to be replaced with a tosyl group. With the limited 

amount of material from the L-selectride step (Scheme 2.23; e), test reactions were 

conducted on readily available 2-amino-1-butanol 181 to determine the optimum 

conditions for tosylation of a free amine in the presence of a hydroxyl group (Scheme 

2.24).

Treatment of the amino alcohol 181 with triethylamine and p-tosyl chloride furnished the 

monotosylate 187 in a moderate 43% yield, following recrystallisation as apparent from 

the two AA’BB’ doublets at 7.20 and 7.70 ppm and the presence of an OH signal at 2.55 

ppm (Scheme 2.24; a). When the reaction was repeated, using pyridine as the base, a 1.5:1 

mixture of mono-sulfonamide 187 and tosylate 188 was obtained. Formation of the 

tosylate 188 was apparent from the two aryl methyl singlets at 2.30 and 2.35 ppm and the 

NH signal at 5.30 ppm (Scheme 2.23). Disappointingly, following deprotection of 

substrate 186 and treatment with triethylamine and /?-tosyl chloride, no product was 

isolated, presumably due to the small scale, thus alternative routes were researched.
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NHTs NHTs

181 187 188

Scheme 2.24. Reagents: a) Et3N, CH2Cl2, DMAP, TsCl, 43%; b) Pyridine, CH2C12,

DMAP, TsCl.

2.40. Route 3

2.41. Introduction

Previous methods for the asymmetric synthesis of optically active propargylic alcohols 

involved either nucleophilic addition of metallated acetylenes to aldehydes, or ynone 

reduction.18'22 However, only some of the catalysts and reagents are commercially 

available and as such, the known methods require the synthesis of one of the starting 

materials since neither metallated terminal alkynes (stannyl, boryl or zinc for example) nor 

ynones are accessible commercially. Aldehyde addition procedures are advantageous over 

ynone reduction methods since they result in the formation of a new carbon-carbon bond 

and stereogenic centre in one step.23,24

In initial studies, the Carreira group observed that terminal alkynes undergo addition to 

aldehydes in excellent yields in the presence of zinc triflate and an amine base at ambient 

temperature (Scheme 2.25). This reaction was made asymmetric by adding N- 

methylephedrine, the results of which are shown in Table 2.11.

Ph Me
RCHO + = —Ri + ) — (     R

HO NMe2

189a-e 190a-e 191 192a-n

Scheme 2.25. Reagents: 1.1 eq. Zn(OTf)2, 1.2 eq. Et3N, 1.2 eq A-methylephedrine, 23 °C,

Toluene, 2-20 h.

Excellent enantiomeric excesses were obtained with both aromatic and aliphatic aldehydes 

and in addition, either enantiomer could be accessed depending on which enantiomer of the 

chiral additive was utilized. Changing the solvent to dichloromethane or tetrahydrofuran 

resulted in a slight decrease in enantioselectivity and crucially, unlike conventional 

methods employing pyrophoric organozinc reagents (Me2Zn, for example) anhydrous
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conditions were not essential in this procedure. A plethora of alkynes and aldehydes were 

tested (Table 2.11).

Aldehyde
(R)

189 Alkyne
(R1)

190 Time
(h)

Product
192

Yield
(%)

Enantiomeric 
excess (%)

c-C6Hn a Ph a 1 a 99 96
c-CgH i i a Ph(CH2)2 b 4 b 98 99

f'-Pr b Ph(CH2)2 b 2 c 90 99
z-Pr b Ph a 2 d 95 90

PhCH=CH c Ph(CH2)2 b 20 e 39 80
/-Bu d Ph(CH2)2 b 2 f 84 99
/-Bu d Ph a 2 g 99 94
Ph e Ph(CH2)2 b 20 h 52 96
Ph e Ph a 20 i 53 94

c-C6H,, a Me3Si c 2 j 93 98
Me3CCH2 f Ph(CH2)2 b 2 k 72 99
Me3CCH2 f Ph a 2 1 90 97
o C 6Hi, a Me3SiCH2 d 4 m 84 98
c-C6Hn a t b s o c h 2 e 5 n 83 98

Table 2.11

2.42. Results and Discussion

(S)-2-Aminopropan- 1 -ol 193 was reacted with Boc anhydride to afford the carbamate 194 

as apparent from the /-butyl singlet at 1.35 ppm and carbonyl signal at 1730 cm' 1 (Scheme 

2.26; a). The crude carbamate 194 was then treated with Dess-Martin periodinane in 

dichloromethane for 3.45 h to afford the aldehyde 195 as confirmed by the signal at 9.50 

ppm in the proton NMR spectrum in addition to a molecular ion of 174 (M+ + H), 

consistent with oxidation, in a disappointing 18% yield, due to the problems with the work

up (Scheme 2.26; b). Unfortunately, treatment of this aldehyde 195 with 1-hexyne 114 in 

the presence of (1R, 25)-A-methylephedrine failed, even after 48 h (Scheme 2.26; c and d). 

This was presumably due to the MfBoc moiety of the aldehyde, since the Carreira group’s 

research did not include aldehydes of this type (Table 2.11).
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NHBoc RNHBoc NHBoc

193 194 195 196

Scheme 2.26. Reagents: a) B0C2O, CH2CI2, DMAP, 24 h, 100% crude; b) Dess-Martin 

oxidation, 3.45 h, 18%; c) Zn(OTf)2, Et3N, (1R,2S)-A-methylephedrine, 1-hexyne, toluene,

0.25 h, 0°C; d) Zn(OTf)2, Et3N, (IR,2<S)-A-methylephedrine, 1-hexyne, toluene, RT, 48 h.

2.50. Route 4: Use of the Mitsunobu Reaction

With the problems experienced previously in the quest for the syn cyclisation precursor, an 

obvious answer to the problem was the Mitsunobu26 reaction. If the anti precursors from 

the aldol reaction (Section 2.10) were subjected to this classic inversion of stereochemistry 

reaction, the desired syn precursor would be obtained, ready for cyclisation studies. 

Hence, the readily available phenyl aldol adduct 146a was treated with /?-nitrobenzoic acid, 

DIAD (diisopropyl azodicarboxylate) and triphenylphosphine, but no product or starting 

material was recovered (Scheme 2.27; a).

C 02Me

NHTs NHTs

146a 197

Scheme 2.27. Reagents: a) /7-NO2C6H4CO2H, PI13P, DIAD, THF, 16 h, 0%; b) p- 

NO2C6H4CO2H, Ph3P, THF, 24 h, DEAD, 0%.

A scan of the literature revealed a procedure using DEAD (diethyl azodicarboxylate) on a
97substrate 198 also bearing an ester moiety (Scheme 2.28).

I OH | OH
> ^ ^ C 02Et / A ^ I Vv̂ C02Et

198 199

Scheme 2.28. Reagents: /7-NO2C6H4CO2H, PI13P, DEAD b) NaOH, EtOH, 70%.

This method was applied to substrate 146a, but, the NMR spectrum of the crude product 

revealed only starting material among the DEAD residues (Scheme 2.27; b).
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The Mitsunobu reaction has been proven to be sensitive to the steric environment of the 

alcohol. Frequently, hindered alcohols give low yields of the adduct or starting material is 

recovered. Zbiral reported that in these instances, changing the solvent from THF to 

benzene gave higher yields of the products for steroid-derived compounds. However, 

when Martin and Dodge applied this to their substrates, the Mitsunobu products were 

only formed in 27% yield. They discovered that on replacing benzoic acid with p-nitro 

benzoic acid, dramatically increased yields were obtained. However, despite using p -nitro 

benzoic acid in the Mitsunobu reaction of substrate 146a, no reaction was observed with 

either DIAD or DEAD. No reactions were conducted however in anhydrous benzene, so it 

is possible that by trying alternative solvents, the reaction may have afforded the desired 

product, so further study is necessary.

2.60. Route 5: Synthesis of Syn Cyclisation Precursors Using Garner’s Aldehyde

2.61. Introduction

Due to the disappointing enantioselectively and diastereoselectivity observed with the aldol 

reaction using the menthol based auxiliary 175 (Section 2.21), it was decided to use 

conventional auxiliaries, in the hope that this would afford single enantiomers of the 

cyclisation precursors and ultimately the pyrrolidines.

Herold30 used Gamer’s aldehyde31 201 in his enantioselective synthesis of L-threo 

sphingosine 202b. The key acetylide attack on the aldehyde 201 showed that the 

stereochemistry of the product obtained could be controlled by the conditions employed in 

the condensation. With zinc dibromide, chelation occurs between the TV-Boc group and the 

aldehyde 201, which favours addition from the sf-face, to give predominantly the syn 

isomer 200b (95:5) while in its absence, predominately the anti isomer 200a is isolated 

(95:5), by addition from the re-face (Scheme 2.29).
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OH CHO OH OH

^^NBOC C13H27 NBoc
b

NBoc C 13H27
HO

C13H27

200a 201 200b 202b

Scheme 2.29. Reagents: a) 1-pentadecynyllithium, Et20 , -78°C-R.T., 71%; 

b)l-pentadecynyllithium, ZnBr2, Et2 0 , -78°C-R.T., 87%;

2.62. Results and Discussion

Gamer’s aldehyde 201 was synthesised according to literature precedent, but unfortunately

Kugelrohr was also attempted, but disappointingly, the products obtained were only 

marginally purer than the crude product. Separation of the precursor ester from the 

aldehyde 201 could be achieved using careful chromatography, despite similar Rf values. 

However, in practise, the alkylation was usually carried out on the crude aldehyde 201 and 

chromatography was conducted following deprotection, since the separation was easier. 

The formation of the propargylic alcohol 204 from Gamer’s aldehyde 201 was conducted 

according to literature precedent (Scheme 2.30). Cmde Gamer’s aldehyde 201 was thus 

treated with lithiophenyl acetylide in the presence of zinc dibromide to afford the desired 

product 203, as confirmed by the disappearance of the aldehyde singlet, a new CH signal 

and a molecular ion of 332 (M+ + H), consistent with alkylation. The cmde product was 

then treated with Amberlyst 15 resin for 64 h to afford the propargylic diol 204 in 53% 

yield, as confirmed by the loss of the two acetyl methyls and molecular ion of 292 (M+ + 

H), consistent with deprotection (Scheme 2.30; b). Comparison of the optical rotation 

recorded {[oc]d -15.74 (c 3.39, CHCI3}, with the literature32 value {[a]o -19.36 (c 1.1, 

CHCI3)} suggested that the product was indeed the syn diastereoisomer 204.

Scheme 2.30. Reagents: a) Ph-=-CHO 117, Et20 , BuLi, -20°C, 1 h, 0°C, ZnBr2, 1 h, 0°C-

'y 1
could not be purified by distillation, as reported in the literature. Purification using a

NBoc NBoc NHBoc Ph

201 203 204

R.T., -78°C, 201, -78°C- R.T., 8 h, 77%; b) Amberlyst 15, MeOH, 41 h, 53%.
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With the syn stereochemistry established, the next step was to convert the primary alcohol 

into an ester, to prevent the possibility of precursor 204 cyclising through the oxygen 

(Figure 3.27, Chapter 3). This functioned group interchange was problematic and test 

reactions were conduced on crude material. Protection strategies were not an option, as the 

primary alcohol would be protected in preference to the secondary alcohol. However, 

Rodriguez33 et. al., reported a Swem oxidation in which the primary triethylsilyl protected 

alcohol was oxidised to the aldehyde in the presence of a protected secondary alcohol. 

Accordingly, the crude amino alcohol 204 was treated with triethylsilyl triflate for 2 h to 

afford the bis-triethylsilyl ether 205 in 34% yield over 4 steps, as apparent from the new 

ethyl resonances in the *H NMR spectrum (Scheme 2.31; a). Exposure of the silyl ether 

205 to standard Swem oxidation conditions, unfortunately furnished at least four aldehydes 

(Scheme 2.31; b).

OH OTES OTES

NHBoc Ph NHBoc PhNHBoc Ph

204 205 206

Scheme 2.31. Reagents: a) THF, Et3N, TESOTf, 2 h, 34%, over 4 steps; b) CH2CI2, oxalyl 

chloride, DMSO, -75°C, 0.25 h, 205 in CH2C12, 20 mins, -40°C, 20 mins, -70°C, Et3N,

-70°C-R.T., 0.5 h.

Once again, the precursor 204 bore the undesirable Boc protecting group, so it was treated 

with a solution of trifluoroacetic acid in dichloromethane, but no product was isolated. 

This is hardly surprising considering the product would be a water-soluble amino diol. 

Despite the fact that precursor 204 contained a Boc protecting group and a primary 

alcohol, which could both influence the type of cyclisation observed, reductions of the 

alkyne moiety were conducted, so that at a later stage the manner in which the precursors 

207 and 208 cyclised upon treatment with iodine could be determined.

Exposure of the amino alcohol 204 to Red-Al in diethyl ether, successfully afforded the 

(is)-olefin 207, as confirmed by the new olefin signals at 6.10 and 6.55 ppm, with a trans 

coupling of 15.9 Hz (Scheme 2.32; a). However, when the amino alcohol 204 in ethyl 

acetate was stirred under an atmosphere of hydrogen, despite numerous attempts, sufficient
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quantity of the (Z)-olefin 208 was not isolated and no further attempts were conducted 

(Scheme 2.32; b).

OH OH OH Ph

NHBoc NHBoc Ph NHBoc

207 204 208

Scheme 2.32. Reagents: a) Red-Al, Et20 , 24 h, 70%; b) Lindlar’s catalyst, EtOAc, H2,

0%.

2.70. Route 6: Asymmetric Aminohydroxylations (AA) of Dienes

2.71. Introduction

Sharpless34 reported that the p-hydroxyamino group frequently found in biologically active 

molecules, can be synthesised directly from alkenes to give amino alcohols in 

enantiomerically enriched form. The use of different ligands in this asymmetric process 

can lead to different enantiomers 209 (Scheme 2.33).

NHTs NHTs
p ^ \^ ,C 0 2 M e  —  p ^ / ^ ^ C 0 2Me —!!_*.

OH OH

210a 209 210b

Scheme 2.33. Reagents: a) 4% K20sC>2(0 H)4, 5% (DHQD^PHAL , 3 eq Chloramine-T- 

trihydrate, 1:1 MeCN/H20 , 71% ee; b) 4% K20 s 0 2(0H)4, 5% (DHQ)2PHAL, 3eq 

Chloramine-T-trihydrate, 1:1 MeCN/H2 0 , 66%, 81% ee.

For trans disubstitued olefins, the same face selection rule for the related asymmetric 

dihydroxylations (AD)35 applies. That is, (DHQD^PHAL directs addition to the p-face, 

while (DHQ)2PHAL directs addition to the a-face. From the initial mechanistic studies 

conducted, evidence suggests that there is more than one catalytic cycle involved. Four 

key points have been established:

1. The asymmetric aminohydroxylation reaction is an asymmetric version of the 

catalytic aminohydroxylation process reported by Sharpless in 197636;
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2. The ligand not only leads to enantioselectivity, but in some cases accelerates
2*7catalytic turnover, a process termed ligand-accelerated catalysis (LAC);

3. The ligand suppresses the formation of the diol by-product.

4. The ligand influences the regioselectivity.

Some further examples are illustrated in Table 2.12. In many cases the enantiomeric 

excess can be greatly enhanced following recrystallisation.

Olefin Product
ee Values (%) prior to 

recrystallisation Yield
(%)(DHQ)2PHAL (DHQD)2PHAL

1
^ ^ C 02Et

211

NHTs 
^ ^ C 0 2 Et

6h
212

74 60 52

2 H3C02C ^ ^ C°2Me
213

NHTs

OH
214

77 53 65

3 P h ^ - Ph
215

NHTs
P̂ v Ph

6h
216

62 50 52

4
/ = \  Ph Ph
217

TsHN OH
MPh Ph 
218

33 48 48

5 o
219

TsHN OH

8
220

45 64 64

Table 2.12

In entry one, the ligand steers the nitrogen centre to the (3-carbon atom, that is, in 

electronically unsymmetrical olefins, the nitrogen becomes attached to the carbon atom 

distal to the strongest electron-withdrawing group (Table 2.12). Interestingly, generally 

the DHQ series gives higher enantiomeric excesses, which is the reverse of the trend in the 

AD reaction. One downside of the reaction is that it can be difficult to separate the p- 

toluenesulfonamide by-product from the desired product by chromatography.
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2.72. Results and Discussion

Surprisingly, there was no literature precedent for the asymmetric aminohydroxylation 

reactions on dienes. Depending on the regioselectivity, the AA reaction would provide a 

rapid route to the required cyclisation precursors, perhaps as single enantiomers. The 

study commenced with commercially available ethyl sorbate 221. Four isomers were 

possible and to be a suitable route for the synthesis of cyclisation precursors, it was 

desirable for isomer 223 to be the sole product (Scheme 2.34).

NHTs OH OH TsHN
^ ^ ^ ^ C 0 2Et —► /^ N v xx55s1̂ C02Et or or x^ \ / 55̂ 'C 0 2Et or^ / - ^ / ^ ^ C 0 2Et

OH NHTs NHTs OH

211 222 223 224 225

Scheme 2.34. Reagents: (DHQD^AQN, Chloramine-T-hydrate, K20s02(0 H)4, 1:1

MeCN/H20 , 8%.

Frustratingly, the NMR spectrum of the crude product revealed that the product was either 

222 or 224 since the olefin resonances at 5.70 and 6.60 ppm were a doublet and double 

doublet respectively. If the product was 223 or 225, one of the olefin resonances would be 

a quartet of doublets (Scheme 2.34). Unfortunately further speculation about the product 

was not possible since the C//NH and C//OH resonances were coincidental. According to 

Sharpless’s research, the amino alcohols are formed with a syn relationship between the 

two new groups, but formation of the enantiomers shown in Scheme 2.34 is purely 

speculative. Difficulities were experienced with separating the Chloramine-T by-product, 

TsNH2, from the product and so the yield obtained was very low. In an attempt to separate 

these coincidental resonances, a mixture of the product and by-product was treated with 

acetic anhydride in pyridine (Scheme 2.35). As expected, a shift of ca 1 ppm for the CHO 

proton was observed, and since this signal was a quartet of doublets (qd), the product of the 

aminohydroxylation reaction had to be 224 since the quartet splitting is caused by the 

adjacent methyl group (Scheme 2.34).
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OH

NHTs

224

OAc
/ \ ^ ^ C 02Et

NHTs

226

Scheme 2.35. Reagents: Acetic anhydride, pyridine, 16 h.

The aminohydroxylation reaction was repeated on ethyl sorbate 221 but using 

(DHQ)2PHAL as the ligand, but the yield was only 6%, and complete separation of the by

product (TSNH2) from the product was not achieved (Scheme 2.36). According to 

Sharpless’s research, substituting a (DHQD)2 ligand for a (DHQ) ligand results in the 

formation of the other enantiomer (Scheme 2.33), thus the other enantiomer should have 

been formed in this reaction, as Scheme 2.36 suggests.

OH

Mê ^ !̂ co2Et    Me/ *sY ^ ^ C° 2Et
NHTs

221 227

Scheme 2.36. Reagents: (DHQ^PHAL, Chloramine-T-hydrate, K.20sC>2(0 H)4, 1:1

MeCN/H20 .

Despite the undesired regioselectivity of the asymmetric amino hydroxylation reactions, it 

would have been interesting to clarify if different enantiomers were afforded by the use of 

different ligands, via the use of optical rotations. Disappointingly, due to the impure 

nature of the products, determination of the enantiomeric excess of the reaction or 

measurement of the optical rotation was not attempted.

Although poor results were recorded for the alkyl derivative, it was important to determine 

if the amino hydroxylation reaction was successful with other substrates, in particular one 

bearing an aryl group adjacent to the olefin. The corresponding phenyl derivative 229 was 

not commercially available. Subsequently, the corresponding carboxylic acid 228 was 

treated with acetyl chloride in methanol at reflux to afford the methyl ester 229, as 

confirmed by the ester singlet at 3.70 ppm, in 78% yield (Scheme 2.37).
o o

228 229

Scheme 2.37. Reagents: 0°C, Acetyl chloride, MeOH, 0.5h, reflux, 8 h, 78%.
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The methyl ester 229 was then subjected to the standard asymmetric aminohydroxylation 

conditions using both (DHQ^PHAL and (DHQD^PHAL ligands, but the NMR spectrum 

of the crude products showed mainly starting material, by-product and only a trace of 

product, even though the same colour changes were observed as the previous example. 

Unfortunately, sufficient quantity of the product could not be isolated to ascertain the 

regioselectively of the reaction.

2.73. Conclusion

The lack of literature precedent, suggested that the asymmetric aminohydroxylation 

reaction cannot be applied to dienes. So once again, alternative routes were researched.

2.80. Route 7: Use of The Evans Auxiliary in the Synthesis of Cyclisation Precursors

2.81. Introduction

Evans38 and co-workers created an isothiocyanate 230 that can be used as a chiral glycine 

equivalent in the synthesis of p-hydroxy-a-amino acids. They reported that when a 

stannous enolate mediated aldol reaction was conducted with a variety of aldehydes, 

predominately the syn diastereoisomer 232 (>90:10) was formed in excellent yields (Table 

2.13).39

A .
K

u

n NCSBn 

230

a !  ?H
 ̂ C *CS 

Bn

232

0  o  

\ n H* Y
S

233a-f

O OH

nh2

234a-f

R-CHO Ratio 233 Yield (%) R-CHO Ratio Yield (%)
R=

231a
94:6 73 r = A /

231 d
99:1 92

R=

231b
97:3 71

R=

231 e 91:9 75

231c 93:7 81 R= P h ' ^ f  
231 f 99:1 91

Table 2.13
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A literature search revealed that (is)-crotonaldehyde 137 and phenyl propynal 117 had not 

been used in this aldol reaction. Nevertheless, it was evident that the a , p-unsaturated 

aldehydes utilised by Evans (Table 2.14) were similar to (E)-crotonaldehyde 137, and as 

such, similar results were expected to solve the problems associated with synthesising the 

syn precursors.

2.82. Results and Discussion

The chiral glycine synthon 231 was prepared from commercially available («S)-phenyl 

alaninol 235 in 53% overall yield, according to the procedure outlined by Evans (Scheme 

2.38).

o o o o o
( A m  Z n A  A A

n h 2 \_ _ / \ _ / 1 \__ / I
\>n V , N’ Bn NCS

235 236 237 231

Scheme 2.38. Reagents: K 2 C O 3 ,  diethyl carbonate, 135°C, 2 h, 76%; b) n-BuLi, THF, 

-78°C, chloroacetyl chloride, 0.25 h, -78°C, 0.25, 0°C; c) CH2C12, NaN3, H20 , 

[{CH3(CH2)3}4N]2S0 4, 1 h, 84%; d) 10% Pd/C, MeOH, perchloric acid, H2; e) 

thiophosgene, H20 , CHC13, NaHS04, 10 mins, 83%.

In Evans’ research, the aldehydes used were not commercially available and were not used 

in stoichiometric amounts. However, in order to afford the aldol products in high yields, it 

was decided to use one equivalent of the aldehydes, which were easier to obtain than the 

isothiocyanate 231. Accordingly, the isothiocyanate 231 was treated with tin(II) triflate, 

A-ethyl piperidine and 1.1 equivalents of (2s)-crotonaldehyde 137, to afford the assumed 

syn diastereoisomer 238 in 33% yield, as confirmed by the loss of the C//2NCS singlet, and 

in addition to the appearance of new CHO and C//N protons at 4.85 and 5.65 ppm. Further 

clarification was obtained from the molecular ion of 374 (M+ + H), which was consistent 

with the proposed structure (Scheme 2.39).
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s
J1

O NH ? n

238
O

Bn

231
Ph O ptf

239a 239b

Scheme 2.39. Reagents: a) A-ethyl piperidine, THF, Sn(OTf)2, 33%; b) A-ethyl

piperidine, THF, Sn(OTf)2, 29%.

The reaction was repeated using phenyl propynal 117 as the aldehyde, but unfortunately, 

although the reaction was successful, the desired product 239 was isolated as a 7:3 mixture 

of diastereoisomers in a low 29% yield, as apparent from the loss of the C//2NCS singlet 

and a molecular ion of 407 (M+ + H), consistent with a successful aldol reaction was 

apparent. According to Evans, the reaction should afford predominately the syn 

diastereoisomer 239a, however, the coupling constant between the CHO and C//N of the 

new ring of the major isomer was 9.7 Hz, while for the minor isomer, this value was 4.2 

Hz. This suggested that the minor isomer was the syn diastereoisomer 239a, which 

contradicts what Evans reported. However, the Evans group did not conduct 

condensations with acetylenic aldehydes (Table 2.14). In addition, the coupling in the 

product 238 from the condensation with (£)-crotonaldehyde 137, was 4.4 Hz between the 

CHO and C//N protons, indicating that this was the syn diastereoisomer 238, which was in 

agreement with Evans’ findings. Since the major isomer formed in the condensation with 

phenyl propynal 117 with isothiocyanate 230 was the anti diastereoisomer 239a, it is 

possible that acetylenic aldehydes do not follow the same trends as alkenyl aldehydes. 

Evans reported that the diastereoselectively could be reduced by the quality of the stannous 

triflate, which could explain the surprising lack of diastereoselectivity from the 

condensation with phenyl propynal 117 with the enolate of the isothiocyanate. The Evans 

group prepared the reagent from anhydrous stannous chloride and trifluoromethanesulfonic 

acid, using a modified literature procedure40, involving prolonged heating. Since stannous 

triflate was extremely sensitive to moisture, the reagent was purchased, and due to its 

expense, the reactions were conducted on a small scale. In initial experiments, the 

stannous triflate was weighed out under a stream of nitrogen, but despite extreme care 

during handling, the reagent rapidly degraded, which could explain the low yields 

experienced. Consequently, due to these low yields, in later experiments, the stannous 

triflate was used in 1 gram quantities, to eliminate exposure to moisture during weighing.
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Also it became apparent that careful control of the cold bath temperature was mandatory to 

achieve high selectivity.

From the general procedure outlined by Evans, the quantities of reagents varied, and as 

such to determine the optimum conditions, numerous conditions would have to be tested 

and with the expense of the stannous triflate this was not fully investigated. A search of 

the literature revealed that Herbert41 also experienced disappointing yields and selectivity 

when applying the Evans methodology to his substrates, despite various optimisation 

reactions, but by changing the base to LHMDS, the aldol product 241 was obtained in 

good yield and highly selectively (Table 2.14).

BnO CHO

240

Bn"'

230

BnO.

COXc
BnO

241

Xc =
Bn''

Base Lewis 
Acid (eqs)

NCS
(eqs)

Temp
(°C)

Diastereoisomer ratio of 
Crude Product

Yield
(%)

1.5 eq A-ethyl 
piperidine 1.1 1.3 -78 Not reported

1.5 eq N-ethyl 
piperidine 1.2 1.2 -78 to 

-50 to 0 Not reported

1.4 eq LHMDS 1.4 -78 4:1 52
1 eq LHMDS 1.0 1.0 -78 Not reported 34

1.3 eq LHMDS 1.3 1.3 -78 10:1 50
2.0 eq LHMDS 2.0 2.0 -78 20:1 81

Table 2.14

When the isothiocyanate 230 was treated with (£)-crotonaldehyde 137, in the presence of 

tin triflate and LHMDS, the aldol adduct 238 was isolated in a modest yield of 35% 

(Scheme 2.40). This yield was calculated by taking into account the recovered starting 

material. The NMR spectrum of the crude product displayed only starting material and 

product. Subsequently, in future experiments, the aldol product 238 was used crude in the 

cleavage reaction.
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NCS
0 NHBn

238

Bn 

230

Scheme 2.40. Reagents: a) LHMDS, THF, -78°C, 137, 35%.

The Herbert group also reported a sequence to the amino alcohol 246, which hopefully 

could be adapted for use in the present research to give the desired cyclisation precursor 

(Scheme 2.41).

Where Xc:= / ~ A o
Bn''

BnO

BnO

BnO

NBoc

CO2M6 GO2M©

CO2M0

F OH
BnO'v//^ « /> l/ C02We

NHNHBoc

246 245

Scheme 2.41. Reagents: a) MeOMgBr, THF, MeOH, 0°C, 20 mins, 88%; b) B0C2O, 

DMAP, CH2CI2, 40 mins, 86%; c) Hg(OAc)2, CH2C12, 0°C, 1 h, R.T. 2.5 h, 96%;

d) Cs2C 03, MeOH, 3.5 h, 83%.

As explained previously, the precursor would have to contain a tosyl group, not a Boc 

group as in Herbert’s route. The only foreseeable problem with this change in protecting 

group, was the mercury acetate step (Scheme 2.41; c), but it was believed that the tosyl 

sulfur would not be targeted in preference to the sulfur of the thiocarbamate.

The auxiliary cleavage reaction proceeded cleanly and following chromatography, the ester 

247 was obtained in a moderate yield of 52%, as deduced from the appearance of a new 

methyl ester singlet at 3.75 ppm, the loss of the auxiliary peaks in the *H NMR spectrum 

and a molecular ion of 202 (M+ + H), consistent with the proposed structure (Scheme 

2.42). The auxiliary 236 was recovered in a marginally greater 65% yield, but was not 

clearly visualised on the tic plate by UV or various stains. Consequently, complete
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separation of the two entities was problematic. However an important property of a chiral 

auxiliary is recovery, so in future work, this issue should be addressed.

s
X  O

O NH ?n X
) — (  ► + O NH

H \r v >  s
247

s  Y w
238 247 236

Scheme 2.42. Reagents: MeMgBr, MeOH, THF, 20 mins, 52% 247 and 65% 236.

In an attempt to increase the yield of the aldol reaction, as previously mentioned, the crude 

aldol product 238 was cleaved using identical conditions and following chromatography, 

the thiocarbamate 247 was obtained in an overall 46% yield over two steps and the 

oxazolidine auxiliary 236 in 84% yield. When these two reactions were conducted on 

clean material, the overall yield of the methyl ester 247 over two steps was 18% (Scheme 

2.42). This was considerably lower than the 46% yield recorded when the crude aldol 

product was used in the cleavage reaction. Hence, as suspected, the aldol product 238 was 

unstable to chromatography.

ox
O NH

H o

239

NH

Ph

248a

/  (T V
236 239b

Scheme 2.43. Reagents:MeOH, MeMgBr, THF, 0°C, 20 mins, 62% 248a and 22% 236.

The auxiliary was substituted by a methoxy group using magnesium methoxide, prepared 

from methylmagnesium bromide and methanol. Interestingly, on treatment of a 7:3 

(anti.syn) mixture of diastereoisomers 239 from the condensation of the enolate of 

isothiocyanate with phenyl propynal 117 with freshly prepared magnesium methoxide, it 

was apparent that only the minor syn isomer had reacted, to give the methyl ester 248b and 

auxiliary 236 in 62% and 22% yield respectively (Scheme 2.44). The auxiliary 236 was 

only recovered in low yield, due to the problems previously described.
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s
q A nh  Bn

d  ' f  '
Y

Ox
O NH 

^ B n

s
O^NH I”

f t Y

NH

PhPh O Ph

239b 236 239b 248b

Scheme 2.44. Reagents: MeMgBr, MeOH, THF, 20 mins, 62% 248a and 22% 236.

However, when the recovered anti diastereoisomer 239b, was treated with magnesium 

methoxide even after 3.5 h, the reaction had not gone to completion. Hence, the 

stereochemistry of the thiocarbamate influences the speed of the cleavage reaction. 

Optimisation of the aldol reaction (Scheme 2.44) is required, but since a sample of the syn 

precursor 249 from an alternative route (Scheme 3.35, Chapter 3) did not cyclise, this route 

was not continued.

With the separation problems previously described, a 1.9:1 mixture of the methyl ester 247 

and auxiliary 236 were treated with tosyl chloride in the presence of triethylamine to afford 

the desired sulfonamide 250, characterised by new doublets at 7.30 and 7.95 ppm and a 

molecular ion of 356 (M* + H), consistent with formation of the tosylate in 61% yield. A 

diene 251 was also isolated in 2% yield as confirmed by the new olefin signal at 7.10 ppm, 

with a cis coupling of 11.3 Hz to 4-H and a molecular ion o f 296 (M+ + H), consistent with 

ring opening and elimination (Scheme 2.45).

NH

247

CO2M6
NHTs

Ox
O NH -

236 251

Scheme 2.45. Reagents: CH2CI2, EtsN, DMAP, TsCl, 61% 250 and 2% 251.

NTs

Next, the thiocarbamate 250 was treated with mercury(II) acetate in dichloromethane to 

afford the carbamate 252, in quantitative yield (Scheme 2.46). Both the thiocarbamate 250 

and carbamate 252 had identical *H NMR spectra. However, the disappearance of the C=S 

resonance and two C=0 peaks at 150.8 and 168.5 ppm in addition to a molecular ion of 

340 (M+ +H), consistent with carbamate formation, confirmed that the reaction had been 

successful.
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NTs

250

NTs

252

Scheme 2.46. Reagents: Hg(OAc)2, CH2CI2, 0°C, 1 h, R.T. 2.5 h, 100%.

The final step was to ring open the carbamate 252 using cesium carbonate in methanol. 

Herbert reported that the ring opening sequence was complete in 3.5 h at ambient 

temperature, but when substrate 252 was subjected to these conditions, only starting 

material was recovered. After an additional 21 h, the syn amino alcohol 253 was obtained 

in a disappointing 9% yield, in addition to the diene 251 in 43% yield (Scheme 2.47). 

Formation of the syn amino alcohol 253 was apparent by the loss of one of the C=0 signals 

in the 13C NMR spectrum and a molecular ion of 314 (M+ + H), consistent with a 

successful reaction. The syn stereochemistry was confirmed by a coupling of 3.5 Hz, 

between the CHO and C//N protons. In an attempt to decrease the level of elimination, the 

reaction was cooled to -10°C using a methanol bath for two days, but no reaction was 

observed. Optimisation was again required, but due to the length of the entire reaction 

sequence and low yields experienced, shorter alternative approaches were investigated.

OH
CO2M0NTs

252

CO2M6
NHTs

253 251

Scheme 2.47. Reagents: CS2CO3, MeOH, 24 h, 9% 253 and 43% 251.

Determination of the enantiomeric excess of the precursor 253 was attempted, but a 

suitable solvent system was not discovered and the results obtained were inconclusive. 

Also the product obtained was not pure enough to warrant an optical rotation, hence this 

data is not present in the experimental section.
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Although the desired syn precursor 253 was isolated, the quantity of material was low. 

This together with the length of the route once again lead to the exploration of alternative 

sequences.

2.90a. Route 8 : Lowering the Selectivity of the Aldol Reaction 

2.91a. Introduction

The Kazmaier2 aldol reaction utilising acetylenic aldehydes and ketones provided an 

excellent route to anti precursors (Section 1.50). When this reaction was applied to <x,P- 

unsaturated aldehydes, the selectivity was reduced from 9:1 to around 5:1 but still 

sufficient quantity of the syn precursors was not obtained and so alternative routes were 

explored, but with limited success. Due to this it was decided to repeat the aldol reaction 

but to make it less selective and then separate the resultant two isomers. In order to make 

this reaction less selective, Kazmaier’s initial research was studied. He revealed that the 

selectivity varied depending on the Lewis acid used. However, Kazmaier’s studies did not 

include acetylenic aldehydes or a , p-unsaturated aldehydes, and so experiments were 

conducted to establish the effect on the stereoselectivity of the reaction. In Kazmaier’s 

initial studies, it was discovered that in the absence of a Lewis acid, the product 40 was 

isolated as a 79:21 mixture of diastereoisomers, but only in 30% yield (Chapter 1, Table

1.10). However, when two equivalents of zinc chloride was used, the selectivity was 

reduced from 100:1 to 9:1 and furnished the anti diastereoisomer 40a in 60% yield 

(Scheme 2.48). These results suggested that the 9:1 selectivity obtained previously from 

the condensation of acetylenic aldehydes with the enolate of methyl A-tosyl glycinate 

(Section 2.10) could be lowered. Accordingly, zinc chloride, being readily available in the 

laboratory, was used in the initial studies.

OH OH
f-BuCHO +

* NHZ

42 39 40a 40b

Scheme 2.48. Reagents: LDA, anh. ZnCh, THF, 60%.
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2.92a. Results and Discussion

When phenyl propynal 117 and hept-2-ynal 115 were treated with the enolate of methyl A- 

tosyl glycinate in the presence of anhydrous zinc chloride, in both cases, the NMR 

spectrum of the crude product revealed only a hint of product among starting material 

residues.

It was hoped that in the absence of any Lewis acid, two diastereoisomers would be isolated 

in sufficient yield to perform the key cyclisation. However, when phenyl propynal 117, 

was treated with the enolate of methyl A-tosyl glycinate in the absence of a Lewis acid, a 

1:1 mixture of diastereoisomers 146 was obtained in 15% yield, as determined from the 

ratio of the methyl ester singlets (Scheme 2.49; a).

.co2M6 •C02mbTsHN C 0 2Me
NHTs NHTs

146 152 144

Scheme 2.49. Reagents: a) LDA, THF, -78°C, 117, 0.5 h, 15%; b) LDA, THF, -78°C,

115, 0.5 h, 25%.

When hept-2-ynal 115 was treated with the enolate of methyl A-tosyl glycinate, a 1:1 

mixture of diastereoisomers 144 in a slightly higher 25% yield, was isolated following 

chromatography (Scheme 2.49; b). Complete separation of diastereoisomers was not 

achieved in either case. So, interestingly, in the absence of a Lewis acid the selectivity 

decreased substantially from 9:1 to 1:1. With the low yield obtained of the syn precursor 

253 and lengthy sequence from route 7 (Scheme 2.47), it was decided to repeated the aldol 

reaction of the enolate of methyl A-tosyl glycinate with (£)-crotonaldehyde 137 in the 

absence of a Lewis acid, in an attempt to isolate sufficient material for cyclisation. The 

NMR spectrum of the crude product revealed a 1:1.3 {anti:syn) ratio of diastereoisomers 

150 in a crude yield of 19%. Following chromatography, partial separation of the 

diastereoisomers was achieved and the product was isolated in 10% yield (Scheme 2.50). 

Accordingly, in the presence of tin(II) chloride, the anti diastereoisomer 150a is the 

predominant isomer (4:1), but in the absence of a Lewis acid, the selectivity is lowered to 

1:1.3, in favour of the syn diastereoisomer.
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+ TsH N ^C 0 2Me ------ -
OH

NHTs
137 152 150

Scheme 2.50. Reagents: LDA, THF, -78°C, 0.5 h, 10%.

2.90b. Route 9: Preparation of Amino alcohols Devoid of the Ester Moiety 

2.91b. Introduction

Cyclisation of the amino alcohols bearing an ester functionality revealed that in certain 

cases, lactones were formed in preference to and also in addition to the desired pyrrolidines 

(Figure 2.15). In the absence of an ester group, would pyrrolidines be isolated and what 

level of selectivity would be observed?

HQ NHTs I OH
H O P C M .  w

Y t c r ° 0
Bu M Ts

149 254 255 256

Figure 2.15 

2.92b. Results and Discussion

The study commenced with aldehyde 195 synthesised in a previous route (Scheme 2.26;

b). Before this aldehyde 195 was alkylated, experiments were conducted to optimise the 

oxidation of the precursor 195. This oxidation had previously been conducted with Dess- 

Martin periodinane (Scheme 2.26; b), but due to the work-up the yield recorded was low, 

but this was subsequently optimised. Despite the straightforward preparation of this 

reagent, large quantities were necessary for oxidation, as such the reaction could not be 

conducted on large scales. Literature precedent indicated that both TEMPO42 and Swem43 

oxidations on this substrate were high yielding. Accordingly, the alcohol 194 was exposed 

to a mixture of the TEMPO free radical, sodium bromide and NaOCl in a biphasic mixture 

of toluene, water and ethyl acetate, but the NMR spectrum of the cmde product revealed 

only a trace of aldehyde 195 among starting material resonances. Rapid stirring of the 

biphasic mixture is mandatory for TEMPO oxidations, so it is possible that this may have 

caused the lack of reaction or the quality of the reagents. Accordingly, the amino alcohol
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194 was subjected to standard Swem oxidation conditions to afford the aldehyde 195 in a 

cmde yield of 80% as an alternative method. Pyridinium chlorochromate oxidations are 

used extensively in organic synthesis and despite no literature precedent, substrate 194 was 

treated with pyridinium chlorochromate (PCC) in dichloromethane. The only drawback 

with this oxidation is the tedious chromatography required to removed the chromium 

residues. Disappointingly, despite careful chromatography, some polymerised PCC was 

evident in the NMR spectrum of the product, hence alternative oxidation procedures were 

investigated.

NHBoc NHBoc

194 195

Scheme 2.51. Reagents: a) TEMPO, NaBr, EtOAc, H20 , Toluene, NaHCOa, NaOCl, KI; 

0%; b) Swem Oxidation, 80%; c) PCC, CH2C12, NaOAc, 2 h, 55%; d) IBX, DMSO, 16 h, 

0%; e) Dess-Martin periodinance, 16 h. CH2C12, 16 h, 57%.

IBX44 (1 -hydroxy-1,2-benziodoxol-3 (1 //)-one 1-oxide) is the precursor to Dess-Martin 

periodinane, and being neither moisture or air sensitive, it does not have to be used under 

anhydrous conditions. The disadvantage of this mild chemoselective oxidant is that it is 

insoluble in most conventional organic solvents, and consequently oxidations are usually 

conducted in dimethyl sulfoxide (DMSO), which requires the use of copious quantities of 

water in the work-up to remove the solvent45. The carbamate 194 in dimethyl sulfoxide 

was treated with 1.1 equivalents of IBX for 16 h, but disappointingly, no reaction was 

observed. The rate of oxidation has been reported to be accelerated by the use of excess 

IBX, typically 5-10 equivalents. However, such a large excess would again limit the 

amount of material used in the oxidation and so would not solve the original problem. 

However, it has been reported that alcohols can be oxidised in the presence of amines in 

excellent yields, when 1-1.5 equivalents of trifluoroacetic acid is added to protonate the 

amine, which speeds up the oxidation. But to make use of this, the oxidation would have 

to be carried out prior to the Boc protection. So ultimately, in light of the problems 

discussed, it was decided that the best conditions for oxidation was the Dess-Martin 

periodinane (Scheme 2.26; b), since it was discovered that by increasing the reaction time, 

the yield of the aldehyde 195 had been increased from 18% to 57% (Scheme 2.51; e).
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Next, the aldehyde 195 was treated with lithio phenylacetylide to furnish the propargylic 

alcohol 257 as a 3:1 (X:Y) mixture of diastereoisomers, in 68% yield, as apparent from the 

loss of the aldehyde singlet, in addition to a molecular ion of 276 (M+ + H), which 

correlated with alkylation. Again due to the presence of the Boc protecting group, 

determination of the stereochemistry was not established, but from Dondoni’s research, the 

major isomer was likely to be the syn isomer (Scheme 2.21). Herold reported that in the 

synthesis of D-threo-sphingosine 202b, when Gamer’s aldehyde 201 was alkylated with 1- 

pentadecynyllithium, in the presence of anhydrous zinc dibromide, predominantly the syn 

diastereoisomer 200b was obtained (Scheme 2.29). Accordingly, to increase this quantity 

of the syn diastereoisomer 257a, the aldehyde 195 was treated with lithio phenylacetylide, 

in the presence of zinc dibromide. The NMR spectrum of the cmde product revealed a 

1:1.2 (X: Y) mixture of diastereoisomers 257 in a cmde yield of 85%. The selectivity this 

time was reversed, again broad resonances were observed in both spectra.

OH OH

+NHBoc ^  I  I
NHBoc Ph NHBoc

195 257a 257b

Scheme 2.52. Reagents: a) Phenylacetylene 145, THF, n-BuLi, -20°C, 0.5 h, 78°C, 195, 2

h, 68%; b) Phenylacetylene 145, -20°C, Et20 , n-BuLi, 1 h, 0°C, ZnBr, 1 h, R.T. 1 h, -

78°C, 195, R.T., 16 h, 85%.

For comparison with the initial studies, a tosyl JV-protecting group was required, hence the 

carbamate 257 was treated with 20% solution of trifluoroacetic acid in dichloromethane for

1.5 h. Following the work-up, the cmde amine was immediately treated with triethylamine 

and /7-tosyl chloride in dichloromethane, but unfortunately, very little sulfonamide 258 was 

isolated. Tests on a model substrate revealed that in the tosylation of amino alcohols, 

triethylamine generated the desired compound, while pyridine furnished a mixture of 

sulfonamide 187 and tosylate 188 (Scheme 2.24). Fortunately, when 2,4,6-collidine was 

employed as the base, the sulfonamide 258 was isolated as a 1.8:1 mixture of 

diastereoisomers in 23% yield (over three steps), as confirmed by the two new aiyl methyl 

singlets at 2.25 and 2.30 ppm and a molecular ion at 330 (M* + H), consistent with 

tosylation. Although the CHH protons were coincidental, the CHO protons were 

adequately separated and consequently from coupling constants, the predominant isomer

62



Chapter2: Synthesis o f Cyclisation Precursors

was established to be the syn diastereoisomer 258b. This confirmed that alkylation in the 

presence of zinc dibromide, did afford the syn diastereoisomer as the major isomer, but in a 

poorer selectivity than reported in the literature. Hence, excellent selectivities were only 

obtained using Gamer’s aldehyde 201 which has a more rigid conformation than aldehyde 

195. Further optimisation was not attempted due to lack of time. Separation of the anti 

diastereoisomer 258a was possible by careful chromatography, but typically, only small 

amounts were isolated, thus reduction was carried out on mixtures.

OH OH OH
a, b

Ph NHBoc Ph NHTs Ph" NHBoc

257 258a 258b

Scheme 2.53. Reagents: a) TFA, CH2CI2, 1.5 h, 83%; b) CH2CI2, 2,4,6-collidine, DMAP,

p-TsCl, 16 h, 23%.

Next, reduction of the alkyne moeity was required and with the lack of an ester group, no 

problems were envisaged. Accordingly, a 1.8:1 (symanti) mixture of diastereoisomers of 

the propargylic alcohol 258 was treated with Red-Al in diethyl ether for 24 h to afford the 

(£)-olefin as a 1.6 :1 (symanti) mixture of diastereoisomers 259, in an excellent 83% yield 

as confirmed by the new olefin signals in the 5.92-6.45 ppm region of the NMR 

spectrum, (Scheme 2.54; a).

NHTs NHTsNHTs NHTs

259 258 260 261

Scheme 2.54. Reagents: a) Red-Al, Et2 0 , R.T., 86%; b) Lindlar’s catalyst, EtOAc, H2.

The transformation of alkyne 258 to the (Z)-olefin 160 was more tedious. When a 1:1 

mixture of diastereoisomers of the propargylic alcohol 258 and Pd/C catalyst in ethyl 

acetate was stirred under an atmosphere of hydrogen, although the catalyst absorbed the 

required volume of hydrogen, reduction to the (Z)-olefin 260 had not occurred. The 

reaction was repeated numerous times, without success and so instead to generate the (Z)- 

olefin, the reaction was purposely left until approximately double the required volume of 

hydrogen had been absorbed by the catalyst, which ultimately produced some alkane 261.
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Formation of the (Z)-olefins 260 was confirmed by the olefin signals at 5.55-6.55, all with 

a cis coupling of 11.7 Hz, but due to the impurities an accurate yield was not recorded.

For the cyclisation studies, an alkyl derivative was also required. Thus, the aldehyde 195 

was treated with 1-hexynyllithium in tetrahydrofuran to afford the propargylic alcohol 262, 

as a 3.5:1 mixture of diastereoisomers in 70% yield, as deduced from an observed 

molecular ion of 256 (M* + H), which was consistent with alkylation in addition to the loss 

of the aldehyde singlet (Scheme 2.55; a). In the presence of anhydrous zinc dibromide, the 

selectivity was reduced to 3:1, in a crude yield of 85% and again due to the ill-defined 

resonances, determination of the stereochemistry of the major isomers could not easily be 

established at this stage (Scheme 2.55; b).

OH OH

NHBoc „  ^  I  I
Da■ kii in___ n . .— in irNHBoc Bu NHBoc

195 262a 262b

Scheme 2.55. Reagents: a) 115, THF, n-BuLi, -20°C, 0.5 h, -78°C, 262, 2 h, 70%; b) 115,

-20°C, Et20 , n-BuLi, 1 h, 0°C, ZnBr, 1 h, R.T. 1 h, - 78°C, 262, R.T., 16 h, crude 85%.

Again a tosyl A-protecting group was necessary for comparison with the initial substrates. 

So the a 2:1 mixture of diastereoisomers of the carbamate 262 was treated with 20% 

solution of trifluoroacetic acid in dichloromethane to afford the amine in 62% yield 

(Scheme 2.56; a), as confirmed by the loss of the /-butyl singlet. With the previous 

problems of tosylation of the amino alcohol 257 using triethylamine as the base (Scheme 

2.24), instead the amine was treated with 2,4,6-collidine and /7-tosyl chloride to afford the 

sulfonamide 263 as a 2.7:1 mixture of diastereoisomers (antiisyn), in a much greater yield 

of 46% as confirmed by two new aryl methyl singlets and a molecular ion of 310 (M+ + 

H), which was consistent with tosylation (Scheme 2.56; b).

NHTsNHBoc NHTs

262 263a 263b

Scheme 2.56. Reagents: i) TFA, CH2CI2, 1.5 h, 62%; ii) CH2CI2, 2,4,6-collidine, DMAP,

p-TsCl, 16 h, 46%.
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The next step was to reduce the alkyne moiety to both (E)- and (Z)-olefins. From 

experience, when the alkyne moiety bears an alkyl substituent in these systems, elimination 

occurs during reduction to form an allene (Scheme 5.14; b, Chapter 5). As expected, when 

a 6:2 {anti.syn) mixture of diastereoisomers 263 was treated with Red-Al, an allene 265 

was isolated as a 7:1 mixture o f diastereoisomers in 11% yield. The formation of the 

allene 265 was determined by the characteristic absorbance at 1965 cm-1 in the infrared 

spectrum and a resonance at 6c 201.8 ppm (-= ). In addition, a 3:1 mixture of starting 

material 263 and (iT)-olefm 264 was also isolated, but only in 12% yield, as apparent by the 

molecular ion of 334 (M+ + Na), and olefin signals at 5.20, 5.25 and 5.60 ppm in the 

NMR spectrum (Scheme 2.57; a).

V * V " (
Bu NHJ 8 NHTsNHTs

265 264 263 266
Scheme 2.57. Reagents: a) Red-Al, Et20 , 24 h, 11% 265 and 12% 264; b) LAH, THF,

17.25 h, R.T. 0%; c) Red-Al, THF, reflux, 22.25 h; 20% 264; d) 3 eq LAH, 20 h, 52% 264

and 16% 265; e) Lindlar’s catalyst, EtOAc, H2.

The lack of (£)-olefin 264 isolated led to the use of alternative reducing agents. Treatment 

of the alkyne 263 with LAH in tetrahydrofuran for 17.25 h at ambient temperature, 

afforded only starting material. In a bid to increase the amount of (£)-olefm 264 isolated, 

the reduction with Red-Al was repeated, but at an elevated temperature. When a 1.2:1 

mixture of diastereoisomers (anti.syn) of the sulfonamide 263 in tetrahydrofuran was 

treated with Red-Al and the reaction mixture refluxed for 19.25 h followed by 

chromatography, the (^-olefin was obtained as a 5:1 mixture of diastereoisomers 264 

{anti: syn), in 20% yield, together with the allene as 3:1 mixture of diastereoisomers 265, in 

15% yield. In light of these results, once again LAH was used as the reducing agent, but 

elevated temperatures, were employed in a bid to initiate the reaction. When a 5:4.5 

mixture of diastereoisomers {anti:syn) of the sulfonamide 263 was treated with lithium 

aluminium hydride in tetrahydrofuran and refluxed for 20 h, the (£)-olefm was isolated as 

a 1.3:1 {antiisyn) mixture of diastereoisomers 264, in an improved 52% yield. Again, 

some allene 265 was isolated in the same ratio of diastereoisomers, but in 16% yield. No 

further optimisation experiments were conducted at this stage. Next, reduction to the cis- 

olefin 265 was conducted but, as expected, the reduction was capricious. When the anti
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amino-alcohol 263 in ethyl acetate was treated with catalytic Pd/C, and stirred under an 

atmosphere of hydrogen, after numerous attempts, partial reduction had occurred to furnish 

a 3:1 mixture of the cis-olefln 265 and starting material 263. Formation of an olefin was 

confirmed by the molecular ion of 294 (M* - H2O) and two new multiplets in the olefin 

region. Although no coupling constant data could be obtained, due to overlapping 

resonances, since Lindlar reductions afford (Z)-olefins, this was presumed to be the case 

here.

2.93b. Conclusion and Future Work

Despite numerous routes being undertaken, the required syn precursors were never 

satisfactorily synthesised as single diastereoisomers. However the synthesis of similar 

olefin containing syn precursors has been extensively reported in the literature. In 

particular, the synthesis of a-vinyl-P-aminoalcohols via the addition of vinyl anions to N- 

protected a-alaninals has been intensively studies, but unfortunately the 

diastereoselectivities observed were low.50 Yamamoto51 reported that following DIBAL 

reduction of A-Boc-alanine methyl ester 267 and in situ addition of vinylmangnesium 

chloride to the intermediate, the product was obtained in 52% yield as an 8:1 {syn:anti) 

mixture of diastereoisomers 268 (Scheme 2.58). Separation was achieved following 

conversion to the corresponding TBS ethers.

Scheme 2.58. Reagents: i) DIBAL, CH2C12, -78°C; ii) C2H3MgCl, THF, -78°C-R.T., 52%.

In their proposed synthesis of (+)-carpamic acid 268, Randl and Blechert52 aimed to 

synthesise amino alcohol 271 from (L)-alanine utilising Yamamoto’s research (Figure 

2.16) but the additional deprotection of the Boc and reprotection steps lead them to 

research conducted by Taddei and co-workers.

NHBoc NHBoc

267 268

66



Chapter2: Synthesis o f Cyclisation Precursors

HO,

^ n^ ( ch2)7co2h

269

RO, (CHzJtCO^
NHCBz

270

NHCBz

271

O
(CH2)7CO2R0

272

Figure 2.16

The Taddei group synthesised various a-vinyl-p-aminoalcohols with excellent syn 

selectivities (20:1) from the reaction of A-Boc-protected amino aldehydes with the 

Seyferth-Fleming ylide54, Ph3P=CHCH2TMS and subsequent desilylation of the resultant 

TMS ether. When Randl and Blechert applied this methodology to A-Cbz protected 

alaninal 275, they isolated the required precursor 276 in a disappointing 15% yield, 

presumably due to the enhanced lability of the Cbz group compared to the Boc group. 

Luckily, by slightly altering step c, by stirring the reaction mixture at 0°C for only 1 h, the 

precursor 276 was isolated as a 12:1 mixture of diastereoisomers in a more satisfactory 

64% yield (Scheme 2.59).

c o 2h

A .
a,b

NH, NHCbz

Me3Si

NHCbz

TBSO d ,Hy *
*^NHCbz NHCbz

273 274 275 276 277

Scheme 2.59. Reagents: ai) MeOH, SOCI2; ii) CbzCl, NaHCOs, 71%; b) DIBAL, toluene, 

-78°C, 68%; c) Ph3P=CHCH2TMS, THF, -78°C to 0°C, NH4CI, 64%; d) TBAF, THF,

90%.

Unfortunately, only vinyl precursors were synthesised by the Taddei group. Hopefully this 

research could be adapted to include the use of different ylides which would then 

incorporate the desired R groups i.e. phenyl and methyl, into the syn precursors ready for 

cyclisation. The route could not be adapted to include A-tosyl amino aldehydes since they 

have previously been proven difficult to handle within the Knight group.
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Chapter Three

Iodocyclisations of Amino Alcohol Derivatives

3.10. Introduction: Background to Previous W ork

Previously, the Knight group showed that (£)-homoallylic alcohols 8 undergo 5-endo trig 

cyclisations to afford tetrahydrofurans 10 in excellent yields and selectivities, while the 

corresponding (Z)-homoallyclic alcohols 20 cyclised in the same manner, but in lower
1 Oyields (Figure 3.11). However, when an additional hydroxyl moiety, beta to R , was 

present, p-hydroxytetrahydrofurans were isolated (Figure 3.10). Interestingly, the (Z)-anti 

alkene diols 284 underwent 5-endo trig cyclisations with the highest degree of selectivity 

(Section 1.20, Chapter 1 and Figure 3.10).2

8 10 20 21

278 279a
83

279b
17

280 281a
51

281b
49

HQ

282 283a
67

283b
33 

HQ. J

P h ^ 0/ " ,Bun
285b
8

284 285a
92

Figure 3.10
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In the cyclisations of (is)-homoallylic sulfonamides, high selectivities were observed 

(Figure 3.11), while the corresponding (Z)-homoallylic sulfonamides, cyclised to afford 

pyrrolidines in moderate yields and disappointing selectivities. These observations have 

led to work being undertaken using amino-alcohols to investigate if with an additional p 

hydroxyl group present, this would lead to improved yields and selectivities as previously 

observed with the tetrahydrofuran derivatives (Figure 3.11).

h  -  r \  ♦ r i  — - /—C.'
NHS02Ph NHTs % T  " Et

S 0 2Ph S 0 2Ph J s

30 31a 31b 32 33

OH .

RiA  X r 2
TsHN Vs

286 287
(£)- and  (Z)-

Figure3.11

The introduction of an additional hydroxyl group could affect the stability of the products. 

Elimination of hydrogen iodide and water could occur to furnish pyrroles and, in addition, 

the centre adjacent to the ester may epimerise, thus affecting the stereoselectivity observed 

(Figure 3.12).

PH

288

r1—'' y—r 2
NHTs

! OH

, u yN
Ts

R2

289 

Figure 3.12

1 N 
Ts

290

R2

In the later stages of Sharland’s4 PhD, a limited study was conducted on readily available 

diastereoisomeric mixtures of p-hydroxy-a-amino esters obtained from the Kazmaier5 aldol 

reaction. When a 4:1 mixture of diastereoisomers of the amino alcohol 136 was treated 

with a set of standard conditions used by the Knight group, iodine monobromide, sodium 

hydrogen carbonate in dichloromethane at -20°C for 4 h, a 19:13:7:5 mixture of 

diastereoisomers 291 was obtained (Scheme 3.10).
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o h  U __ P H
Ph/ ^ ^ Nv '̂0O2Et -----► /  \
Ph |  P h ^ K j ^ C O j E t

NHTs j s

136 291

Scheme 3.10. Reagents: IBr, NaHC03, anh CH2CI2, 4 h, -20°C, crude 83%.

Separation of the isomers was not attempted. Confirmation of the cyclisation was apparent 

from the loss of the olefin signals, a molecular ion of 515 Daltons and the appearance of 

new richly detailed resonances in the region 3.90-5.20 ppm, consistent with previously 

synthesised pyrrolidines. The selectivity of the cyclisation was not ascertained, but the 

principle that such cyclisations could be viable had been established. The next two 

experiments conducted by Sharland were again on mixture of diastereoisomers but, aspects 

of the stereochemistry were ignored. Cyclisation of both 140 and 141 was successful 

utilizing iodine and potassium carbonate in acetonitrile at room temperature (Scheme

3.11).

NHTsNHTs

140 292 141 293

Scheme 3.11. Reagents: a) I2, K2CO3, MeCN, 16 h, 86%; b) I2, K2CO3, MeCN, 16 h,

87%.

These promising results warranted further study and this was the starting point of the 

present research. Thus, the original concept was to synthesis highly substituted 

pyrrolidines 143a-e with various stereochemistries from precursors containing both E and 

Z double bonds, with an anti and syn relationship between the hydroxyl and ester 

functionalities (Figure 3.13 and Figure 2.10, Chapter 2). Methyl esters were used in 

preference to the ethyl esters previously studied, to prevent overlap of the pyrrolidine 

resonances by some of the ethyl ester peaks.

OH O OH O 'w °H
and. lurT _ R ^Ki/ ''~C02Me

NHTs NHTs m

R= aryl and alkyl
o u 2rvie

Ts
294 295 143a-d

(£)- and (Z)-

Figure 3.13
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3.20. Results and Discussion: Cyclisations of Amino Ester Derivatives

3.21a. Cyclisation of an aryl, cisjinti Precursor

The study commenced with the phenyl anti diastereoisomer 146a obtained from the 

Kazmaier aldol reaction (Scheme 2.10, Chapter 2). To obtain the (Z)-olefin 147a, the aldol 

product 146a was reduced with 5% palladium on calcium carbonate poisoned with 

quinoline (modified Lindlar’s catalyst6), but unfortunately, the reaction was capricious and 

despite numerous attempts, complete reduction was never achieved.

An initial reduction afforded an in inseparable 8:3:1.5 mixture of c/s-alkene 147a: alkyne 

147b: alkane 147c (Scheme 3.12). New olefin signals were apparent in the NMR 

spectrum at 5.55 and 6.60 ppm, with a coupling constant of 11.7 Hz, indicating a (Z)- 

alkene.

OH O Ph OH O OH O
I J J  a L f JJ ^  ! U

Ph NHTs NHTs NHTs

146a 147a 148a
I b II------------------------------>-------------------------------- 1

Scheme 3.12. Reagents: a) cat 5% Pd/ CaCC>3, 0.3 eq quinoline, H2 , EtOAc; b) cat 5% PdJ

CaCC>3, quinoline, H2, EtOAc, 16 h, 80%.

To identify the relevant resonances in the *H NMR spectrum, the alkyne 146a was 

deliberately reduced to the alkane 148a in 80% yield, as confirmed by the absence of olefin 

protons and two new CH2 resonances in the 1.75-3.00 ppm region of the spectra (Scheme

3.12).

Being a new substrate 147a, obviously there were numerous conditions to be tested to 

determine the optimum conditions for yield and selectivity. A plethora of iodonium 

sources7 including iodine itself, iodine monochloride, iodine monobromide, NIS and 

Py2lBF4 can be used in various solvents including dichloromethane, acetonitrile, methanol 

and ethers. A wide range of temperatures have been successful, ranging from -78°C to 

ambient temperature and in addition, a choice of carbonate bases have been utilised. Based
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on the previous successful 5-endo-Xng cyclisations conducted in the Knight group1,3, the 

conditions tested were narrowed down to either dichloromethane or acetonitrile as the 

solvent, iodine or iodine monobromide as the iodonium source and potassium carbonate as 

the base. When iodine was used the temperature was maintained at 0°C, while the 

temperature was lowered to -20°C when iodine monobromide was employed. Finally, due 

to the problems experienced with Boc protection in previous cyclisations3, the use of the 

tosyl group was continued despite problems associated with its removal.

The initial substrate 147a tested, in retrospect, was probably not the easiest since (Z)- 

olefins are known to isomerise in the presence of iodine. In addition, with the adjacent 

phenyl group, there was the possibility of forming a stable benzylic carbocation, so this 

position was significantly activated and hence more reactive than an alkyl chain, for 

example. The resultant weak C-I bond could also affect the selectivity of the cyclisation, 

and hence, these theories had to be clarified. Surprisingly, treatment of the crude cw-olefin 

147a with iodine and potassium carbonate in acetonitrile, had failed to induce reaction and 

purely starting material was obtained (Scheme 3.13).

Ph o h  o k PH

i  UMe P h ^ M ^ C O z M e
NHTs f s

147a 296

Scheme 3.13. Reagents: I2, K2CO3, anh MeCN, 2 h, 0°C, 0%.

Consequently, the 8:3:1.5 mixture of cis-alkene 147a: alkyne 146a: alkane 148 was treated 

with the more reactive iodine monobromide and potassium carbonate in dichloromethane, 

at -20°C for 4 h (Scheme 3.14). Following chromatography, a 9:1 mixture of 

diastereoisomers was isolated, in addition to the recovered alkane 148a thereby 

overcoming the foregoing, rather worrying result. The 9:1 ratio was tentatively determined 

from the integrals of the methyl ester singlets. The alkyne 146a starting material would 

also have given rise to a dihydropyrrole, which was removed during chromatography.
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3.22a. Structure Elucidation

The disappearance of the olefin signals was convincing evidence that cyclisation had 

occurred to afford either a pyrrolidine 296 via a 5-endo-Xng cyclisation, or an azetidine 297 

via a 4-exo-trig ring closure. Also, addition of iodine to the double bond could have 

occurred, or if water was present, iodohydrins 298a and 298b could have been formed, so 

confirmation of the iodopyrrolidine structure 296 was first pursued (Figure 3.14).

i
Ph— y 0 H  

TsN—I
C 02Me

297

OH OH O

Ph Y  OMe
I NHTs

298a

Ph OH O

k A A OMe
NHTs

147a

i \

i o h

P h ^ N̂ C 0 2Me
Ts
296

I OH O I OH O

Ph" Y  ; OMe ph | : OMe
OH NHTs I NHTs

298b 

Figure 3.14

299

The infrared spectrum showed the presence of an ester by the carbonyl stretch at 1747 cm’1 

and an O-H stretch at 3488 cm’1. LRMS using a very mild ionisation technique, APcI, 

perhaps surprisingly gave a molecular ion at 502 (M+ +H, 100%), with no loss of HI. 

Therefore, the major product could not be iodohydrin 298a or 298b or the diiodide 299. In 

the 13C NMR spectrum, four methine groups were evident. One might expect all to be at 

around 70 ppm, but due to the heavy atom effect8 one is at around 30 ppm. For the major 

product, the CHI resonance was at 35.5 ppm which correlated to the apparent triplet at 4.20 

ppm in the NMR spectrum. In the azetidene 297, the CHI proton would be a doublet, 

hence the evidence suggested that the product was indeed an iodo-pyrrolidine 296. 

correlation spectrum revealed that the CM proton was coupled to two others protons, a 

doublet at 4.90 ppm and a rounded, ill-defined resonance at 4.65 ppm. This clarified that 

the product was not the azetidine 297 since the CM proton could only couple to one other 

resonance in that structure. The CM proton in the pyrrolidine 296 would be coupled to the 

C//OH and the CHPh protons. The doublet at 4.90 ppm was therefore the CM>h proton 

and the ill-defined resonance at 4.65 ppm was the C//OH proton. By elimination, the 

remaining doublet at 4.30 ppm had to correspond to the CHCO2MQ proton.
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Ph oh o  I  yPH K >OH

" P h ''C02Me + P h ^ % Y '/C02Me
NHTs js  Ts

147a 296a 296b
9 1

Scheme 3.14. Reagents: IBr, K2CO3 , CH2CI2 , -20°C, 4 h, 63%.

3.23a. Determination of Stereochemistry of the Pyrrolidine 296a

All the products should be formed by anti addition of the iodine and the nitrogen to the 

olefin, according to the proposed mechanism. Since the original mixture was exclusively 

anti with respect to the ester and hydroxyl groups, the stereochemistry of the 2- and 3- 

positions should theoretically remain trans in the product. In addition, epimerisation of the 

acidic proton adjacent to the ester moiety was unlikely since the adjacent hydroxyl group 

was trans to the ester. Finally, provided no isomerisation of the (Z)-olefin 147a occurred 

in the reaction, the phenyl and iodide moieties should remain cis in the product. Thus, the 

two possible isomers are shown in Figure 3.15.
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Me02C ^ N̂ P h
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296a
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Me02C * ^ N^ ,'P h
Ts

300

Figure 3.15

Unlike, 6-membered rings, the coupling constants of 5-membered rings cannot be used 

with confidence to determine the stereochemistry9. In addition, due to the close proximity 

of the CM  and CHCO?Mq resonances, nOe experiments could not be conducted to 

ascertain the stereochemistry. Another approach was necessary, was it possible to 

establish the stereochemistry by chemical correlation.
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3.24a. Establishing the Stereochemistry via Epoxide Formation

Previously in the Knight group, when iodotetrahydrofuran 301 was treated with aqueous 

sodium hydroxide in dichloromethane, an epoxide 302 was formed, provided there was a 

trans relationship between the iodine and hydroxyl moieties (Scheme 3.15).2

h°h ' —  A

301 302

Scheme 3.15. Reagents: CH2CI2, aq. NaOH, 95%.

With this trans relationship, an Sn2 displacement of the iodine with the oxygen from the 

hydroxyl group could occur (Figure 3.16). With the corresponding cis stereochemistry the 

nucleophile cannot attack from the front face by the same mechanism because it is not in 

the correct orientation, thus a ketone is formed (Figure 3.16).

a  ^iPH ©o^H^Base

R , r t , R —  ( S  —  r A
R1 X 2 ,R2 1 X

v L v ^ °h H ^ OH _  r - r

R r i" - ^ X^ R 2  R T S ĉ

R 2

Where X= O or NTs

O

x ^2

Figure 3.16

Being very different systems to tetrahydrofurans, there was no guarantee that this 

methodology could be applied to iodo-pyrrolidines to afford epoxy-pyrrolidines. 

Treatment of the 9:1 mixture of pyrrolidines 296a and 296b with aqueous sodium 

hydroxide in dichloromethane for 24 h, failed to induce any reaction (Scheme 3.17; a). 

Hence, the reaction was repeated but using a stronger base, sodium hydride but complete 

degradation of the precursor pyrrolidines 296 occurred (Scheme 3.17; b). Fetizon10 et. al. 

reported that silver carbonate on celite yields epoxides from halohydrins, provided there is 

a trans relationship between the halide and the hydroxyl moiety. If the relationship is cis, 

then a ketone is formed in virtually quantitative yield (Scheme 3.16). This “reverse” tactic 

succeeds by the initial removal of the iodide by silver (I) in contrast to its displacement by
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an adjacent alkoxide. Despite this apparent change to an SnI mechanism, it is evident 

from Scheme 3.16 that stereochemistry is retained, presumably the alcohol begins to attack 

the Cl carbon as the iodine begins to leave.

1 jo i
*OH

c h 2o h  c h 2o h  c h 2o h  c h 2o h

303 304 305 306

Scheme 3.16. Reagents: 6 eq 50% by weight silver carbonate on celite, anh CH2CI2, 24 h.

The 9:1 mixture of iodopyrrolidines 296a and 296b was therefore treated with 50% silver 

carbonate on celite, to yield a 9:1 mixture of diastereoisomers 307a and 307a in 97% yield 

(Scheme 3.17; c). The NMR spectrum of the major isomer 307a revealed the loss of the 

CHI signal at 4.25 ppm, the absence of new CHaCHb resonances, expected a to the new 

carbonyl and no protons in the olefin region; thus elimination had not occurred. In
13addition, no ketone resonance was evident in either the C NMR spectrum or infrared 

spectrum and LRMS detected a molecular ion at 374 (M+ + H), which was consistent with 

epoxide formation. All this evidence indicated that the product was an epoxide 307a, not a 

ketone and so this implied that there was a trans relationship between the 3- and 4- 

positions of the major iodopyrrolidine 296 (Scheme 3.13). The epoxide 307a was 

characterised by two new apparent singlets at 4.65 and 4.95 ppm corresponding to the new 

CHO protons. The remaining ring protons were both doublets, but the coupling constants 

were very small, 2.8 Hz, indicative perhaps of a relatively symmetrical structure 307a.

I  o h  1. o h  p  o

r t  ♦ x s -  ■ A  J SPh"' ''C 0 2Me Ph N "C 02Me c r  ph'° n  'C 02Me P \ n > u  'C 02Me
Ts Ts Ts Ts

296a 296b 307a 307b

Scheme 3.17. Reagents: a) CH2CI2, aq. NaOH, 24 h, 0% b) NaH, THF, 16 h, 0°C; c) 6 eq 

50% wt/ wt Ag2C 03 on celite, CH2CI2, 24 h, 97 %.

In order to sharpen and separate the overlapping resonances in the NMR spectrum of the 

iodopyrrolidines 296a and 296b, an 8:1 mixture of diastereoisomers 308a and 308b from 

another cyclisation was treated with pyridine and acetic anhydride (Scheme 3.18). It was
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anticipated that a shift in the C//OH proton would be observed of ca 1 ppm, without 

significantly affecting the other signals. The formation of the acetate 308a was confirmed 

by the disappearance of the O-H stretch in the infrared spectrum, a new methyl group at 

1.95 ppm and the expected shift in the 3-H signal, from 4.65 to 5.70 ppm, was observed. 

Following recrystallisation via vapour diffusion, a pure sample of the major isomer 308a 

was obtained, but disappointingly, the C//CC>2Me and C//I signals were still too close 

together for unambiguous analysis of the stereochemistry by nOe experiments.

29 6 a  2 9 6 b  3 0 8 a  308b

Scheme 3.18. Reagents: acetic anhydride, pyridine, 24 h, R.T, 72%.

Fortuitously, the acetate 308a was crystalline, thus the structure of the major isomer 308a 

was confirmed by the X-ray diffraction (Figure 3.17). The structure obtained was in 

agreement with the structure deduced from epoxide formation (Scheme 3.17; c). All 

observed bond angles and lengths were consistent with the literature and the structure 

adopted is dependent on the stereochemistry of the various groups in the precursor.

\

Figure 3.17: Crystal Structure of the 2,5-cis iodo-pyrrolidine 308



Chapter3: Iodocyclisation Results and Discussion

3.25a. Explanation of the Observed Stereochemistry

The most stable transition state will be chair-like, with the majority of the (largest) groups 

equatorial. The “boat-like” transition state in Figure 3.15 is severely crowded, particularly 

when one considers the phenyl and tosyl substituents, thus transition state A is more likely 

to be adopted and hence, the predominant isomer should be the 2,5-cis diastereoisomer 

296a.

To recap, the cyclisation afforded a 9:1 mixture of diastereoisomers 296 in 63% yield 

(Scheme 3.14). At the time, the structure of the minor isomer 296b was not deduced. 

However, later work revealed it to be the 2,5-trans pyrrolidine 296b, by comparison with 

an authentic sample (Figure 3.22). Therefore, unsurprisingly, slight isomerisation of the 

olefin 147a to the more stable trans geometry had occurred, prior to cyclisation.

Ph oh o  t  P H U PH
W ^ A om.  aofb. .O. - j r \UMe Ph N "C 02Me P h * ^ Ny , / C 02Me

NHTs Ts Ts

147a 296a 296b

Scheme 3.19. Reagents: a) IBr, K2CO3, anh CH2CI2, -20°C, 4 h, 63 %; b) IBr, K2CO3,

anh MeCN, 2.5 h, -20°C, 19 %.

3.26a. Optimisation of the Iodocyclisation Reaction

The iodocyclisation was repeated on the 8:3:1.5 mixture of (Z)-olefin 147a, alkyne 146a 

and alkane 148a, but using acetonitrile as the solvent. Following chromatography, the 2,5- 

cis isomer 296a was isolated largely as a single isomer, in a disappointing 19% yield 

(Scheme 3.19; b). In another fraction, an elimination product was evident, which was 

determined to be the iodopyrrole 109 from the cyclisation of the alkyne starting material 

146a and subsequent dehydration of the product 309 as deduced from the lack of any 

pyrrolidine ring protons in the *H NMR spectrum and the characteristic resonance at 6.92 

ppm, corresponding to the (3 pyrrole proton (Figure 3.18).lla In addition, two methyl ester 

singlets were apparent and so in addition to the iodopyrrole 109, the other product was 

believed to be the diiodide 310, since the NMR spectrum revealed only protons in the 

aromatic region and protons corresponding to the ester. However, this theory would have
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been confirmed by LRMS but no further study was necessary since both these products 

were from the cyclisation of residual starting material 146a, which was covered in the 

research conducted by Singkhonrat. lla

NHTs

146a 309 109 310

Figure 3.18a

3.27a. Summary of Results

Ph OH O

NHTs
147a

Conditions Time (h) Yield (%) Major
Product

I2, MeCN, K2C 03, 0°C 2 0 No cyclisation

IBr, CH2CI2, K2CO3, -20°C 4 63

I  OH

Ph'“ N "C°2 Me 
Ts

296a

EBr, MeCN, K2C 03, -20°C 1.5 19

>w OH

Ph" N "C°2 Me 
Ts

296a
Table 3.10
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From this initial study, the (Z)-phenyl anti amino alcohol 147a cyclised highly selectively 

in good yield, but only under one set of conditions, iodine monobromide and potassium 

carbonate in anhydrous dichloromethane at -20°C. Surprisingly, when the (Z)-olefin 147a 

was treated with iodine and potassium carbonate in anhydrous acetonitrile after 2 h at 0°C, 

only starting material was recovered (Table 3.10). It is plausible that leaving the reaction 

for longer would yield the desired product 296a, but further optimisation of the reaction 

was not conducted during this study, but these results were encouraging and warranted 

further study with a variety of substituents (R).

3.21b. Cyclisation of an alkyl, cis, anti Precursor

Cyclisation studies were conducted on the alkyl, cis, tf«/z-derivative 147a, to determine if 

the substituent (R) affects the cyclisation. The precursor 144a obtained from the aldol 

condensation of hept-2-ynal 115 with the enolate of JV-tosyl glycinate (Scheme 2.10; a, 

Chapter 2) was treated with Lindlar’s catalyst, but like the aryl precursor 146a, the Lindlar 

reduction was capricious, but eventually the c/s-alkene 149 was obtained cleanly in 

quantitative yield, as apparent from the two new olefin resonances in the range 5.25 to 5.50 

ppm with a coupling constant of 10.9 Hz, corresponding to a cis double bond (Scheme

3.20).

OH O Bu OH O

Bu NHTs NHTs

144a 149a

Scheme 3.20. Reagents: Lindlar’s Catalyst, EtOAc, H2, 1 h, 100%.

An initial reaction revealed that, like the previous example, use of iodine monobromide 

was necessary to effect reaction. When dichloromethane was employed as the solvent, 

numerous products were evident in the NMR spectrum of the crude product, together with 

some starting material, so further investigation was not conducted. However, with 

acetonitrile as the solvent, after some optimisation, followed by NMR spectroscopy and 

purification by chromatography, it became apparent that the major product was not a
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pyrrolidine. The NMR spectrum revealed the loss of the olefin resonances and the methyl 

ester. In addition, a molecular ion of 468 and the retention of the NH signal indicated that 

cyclisation through the nitrogen to yield a pyrrolidine 312 had not occurred. A 

characteristic carbonyl stretch of 1767cm'1 in the infrared spectrum, together with the loss 

of the methyl ester singlet suggested the product was a butyrolactone 254. The CHI signal 

at 30.1 ppm in the I3C NMR spectrum correlated to the resonance at 4.20 ppm in the *H 

NMR spectrum. correlation showed that this CHI proton was coupled to the CHO

proton at 4.45 ppm and also a methylene in the butyl side chain. This CHO proton in 

addition was coupled to the C//OH proton at 4.62 ppm, which was also coupled to the 

CHN proton at 3.80 ppm. Once again because the CHI proton coupled to two different 

protons, the product was not the azetidine 311 and the data obtained indicated the presence 

of a lactone 254 (Scheme 3.21).

yBu _  Bu OH O HO NHTs

TsN \  NHTs ,
C 0 2Me I

311 149 254 312

' y v " o

. OH

B u ^ N̂ C 0 2Me
Ts

Scheme 3.21. Reagents: IBr, K2C 03, MeCN, -20°C-R.T., 29.25 h, 14%.

Therefore, a 5-exo-trig cyclisation gave rise to a 5-ring lactone 254, largely as a single 

diastereoisomer, but in only 14% yield (Scheme 3.21). Further inspection of the NMR 

spectrum of the crude product revealed the presence of two sulfonamide groups. In 

addition to the lactone 254 resonances, a singlet at 3.70 ppm together with numerous 

resonances characteristic of pyrrolidine ring protons in the region 3.50-4.30 ppm of the 

spectra were present. This suggests that pyrrolidines 312 were formed in the reaction, but 

were not isolated after chromatography at this time.

3.22b. Determination of Stereochemistry

Due to the suitably separated ring protons, this lactone 254 was a perfect candidate for 

determination of stereochemistry by nOe. A relatively new technique in Cardiff, 

GOESYllb_d was used which revealed that on irradiation of the C//OH resonance 

enhancement of both the CHN, and CHO signals was observed, with no enhancement of 

the CHI resonance. This suggested that the CHOH, CHN, and CHO protons were cis to
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each other (Figure 3.18). The data obtained from this technique is contained in the 

appendix. However, the stereochemistry of the CHI proton is dependent on the 

conformation of the lactone and since it was not in a ring, nOe experiments could not 

confirm the stereochemistry.

However, the Chamberlin group conducted a plethora of iodocyclisations of 3-hydroxyl- 

4-alkenoic acids 313 to form the butyrolactones 314, and deduced the stereochemistry of 

the major products by subjecting these to methanolysis to furnish epoxides 315, which 

were then compared with an authentic sample produced from an epoxidation reaction on 

the corresponding allylic alcohol esters 316 (Scheme 3.22).

314b

316

Scheme 3.22. Reagents: a) I2, 0°C, Et20 /THF/aq bicarbonate, 96:4 (a:b); b) K2CO3, 

MeOH, 96:4 (a:b); c) /-BuOOH, VO(acac)2, (3:97) a:b.

The iodolactonisation of substrate 317, conducted by the Chamberlin group, proceeded 

with retention of the trans geometry, J  (5H-1 ’/ /  = 10.8 Hz) to yield the iodolactone 318 in 

a 95:5 ratio in 49% yield, in addition to some 8-lactone 319 (Scheme 3.23).

317 318 319

Scheme 3.23. Reagents: I2, 0°C, Et20 /THF/aq bicarbonate.

This lactone 318 was similar in structure to lactone 254 arising from the iodocyclisation of 

the butyl anti-ammo alcohol 149a (Scheme 3.21), and thus was used for comparison. 

Lactone 254 displayed a coupling constant of 10.1 Hz between the CHI and CHO protons,
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which being of similar magnitude to Chamberlin’s example (Scheme 3.23), implied a trans 

relationship (Figure 3.18b).

TsHN TsHN OH

I
254

Figure 3.18b

This trans relationship between the CM and the CHO protons suggests that prior to 

cyclisation, isomerisation of the cis olefin occurred and the trans olefin 320 then 

underwent a 5-exo cyclisation to afford the lactone 254 (Figure 3.19).

Bu o h  o
k A A OMe

NHTs
149

OH O

"OMe
NHTs

320

NHTs

254

Figure 3.19

3.23b. Summary Table

Conditions Time (h) Yield (%) Product

I2, CH2C12, K2CO3, o°c 16 / Mixture of 
products

Bu OH O

NHTs

149

I2, MeCN, K2CO3, 0°C / 0 No cyclisation

IBr, CH2CI2, K2CO3, -20°C / 0 No cyclisation

IBr, MeCN, K2C 03, -20°C 29.25 14

HO NHTs

Bu
254

Table 3.11
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The study showed that the nature of the alkene substituent (R) was instrumental to the 

success of the iodocyclisation, with the phenyl derivative 147a afforded a pyrrolidine 296a 

in good yield and high selectivity, while the butyl derivative 149, gave a lactone 254 in low 

yield in addition to a mixture of pyrrolidines. However, some similarities were apparent 

between the two. For example, neither substrate cyclised upon treatment with iodine, only 

in the presence of the more reactive iodine monobromide. For the butyl cis, anti precursor 

149, only one set of conditions was successful, IBr, MeCN, K2CO3, at -20°C, which 

yielded predominately a lactone 254, as a single diastereoisomer in only 14% yield. 

Initially, the lactone result appeared to be a special case, however when the phenyl cis, anti 

precursor 147a was subjected to identical conditions (Table 3.10), the pyrrolidine 296a 

was isolated in only 19% yield. So it is plausible that the remaining material was a 

lactone, which at the time was not isolated. Also, when Sharland4 conducted his 

iodocyclisations on the butyl trans, anti precursor 141, preliminary findings suggested that 

the product was a pyrrolidine 293 not a lactone (Scheme 3.11; b). Hence, it is feasible that 

in addition to forming the lactone 254 via the 5-exo cyclisation, a competing 5-endo trig 

cyclisation of the isomerised olefin 149 yielded a pyrrolidine 312 where the phenyl and 

iodine had a trans relationship. Due to other unknown impurities in the NMR spectrum of 

the crude product, the quantity of the assumed pyrrolidine 312 was not determined. 

Further optimisation of the iodocyclisations is required. Later, optimisation of the lactone 

254 formation was achieved by cyclising the corresponding carboxylic acid 370 (Section 

3.44).

3.21c. Cyclisation of an alkyl, trans, anti Precursor

When the precursor 150a derived from the aldol reaction of (£)-crotonaldehyde 137 with 

the enolate of methyl A-tosyl glycinate (Scheme 2.12, Chapter 2), was treated with iodine 

and potassium carbonate in dichloromethane for 24 h, a 6:1 mixture of diastereoisomers 

321 and 322 was obtained (Scheme 3.24). Again, confirmation that cyclisation had 

occurred was apparent by the disappearance of the alkene resonances, and new 

characteristic ring protons in the range 3.60-4.45 ppm. In addition, the methyl ester was 

intact and a molecular ion at 462 (M* + Na, 100%), was observed, which was consistent
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with an iodo-pyrrolidine and thus confirming that the product was not a lactone, 

iodohydrin or diidodide. The CM signal at 33.4 ppm in the 13C NMR spectrum correlated 

to a double doublet at 3.65 ppm in the proton NMR spectrum. This indicated that the 

major isomer 321 was indeed a pyrrolidine, not an azetidine, where the CM signal would 

be a double quartet. The CHCO^Aq was instantly recognisable as the only doublet at 4.40 

ppm, and so the remaining doublet doublet at 4.45 ppm was the C//OH. Thus the 

cyclisation afforded the iodopyrrolidines in 80% yield (Scheme 3.24).

NHTs

150a 321 322
6 1

Scheme 3.24. Reagents: I2, K2CO3, CH2CI2, 0°C, 24 h, 80%.

3.22c. Determination of Stereochemistry

The issue of stereochemistry between the 3- and 4- positions had to be addressed, hence 

Fetizon’s10 previously successful methodology was applied to substrate 321. The major 

isomer 321 was treated with silver carbonate on celite, to afford the epoxide 323 cleanly in 

quantitative yield, as confirmed by the loss of the CM resonance and also a molecular ion 

of 312 (M+ + H) which was consistent with epoxide formation. Also the lack of new 

CHaCHb protons expected a  to the carbonyl and the absence of a ketone signal in either the 

infrared or 13C NMR spectrum confirmed the formation of the epoxide 323. Once again 

the epoxide 323 exhibited very small couplings, with both the CHO protons appearing as 

apparent singlets at 3.55 and 4.65 ppm (Scheme 3.25; a).

The formation of the epoxide 323 suggested the stereochemistry in the precursor 321 

between the 3- and 4- positions was trans. The results of nOe experiments conducted on 

the iodopyrrolidine 321 were inconclusive. However, previously when iodopyrrolidine 

296a was an oil, fortuitously the corresponding acetate derivative 308a (Scheme 3.18) was 

crystalline and as such, X-ray diffraction could be used to determine the stereochemistry. 

The major iodopyrrolidine 321 was thus treated with acetic anhydride and pyridine, to 

afford the acetate 324, in an excellent 88% yield as confirmed by the shift in the 3-H signal 

from 4.45 to 5.40 ppm, the new methyl singlet at 2.05 ppm and a molecular ion of 482
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(Scheme 3.25; b). While the new carbonyl stretch in the infrared spectrum was masked by

Scheme 3.25. Reagents: a) Ag2C0 3  50% by wt on celite, CH2C12, 24 h, 100%; b) Ac20,

py, 24 h, 8 8  %.

Despite the evidence obtained proposing the stereochemistry of the major isomer 321 from 

the cyclisation of the (£)-methyl anti precursor 150a (Scheme 3.24), the fact that the 

acetate derivative 324 was crystalline, allowed the use of X-ray diffraction to further 

clarify the stereochemistry (Figure 3.20). As expected, the data obtained was in agreement 

with the structure proposed by the epoxide forming reaction (Scheme 3.25; a). From 

Figure 3.20 it can be seen that as expected the trans geometry is retained in the product.

the carbonyl stretch of the ester, the presence of two carbonyls was apparent in the 13C 

NMR spectrum at 169.9 and 170.5 ppm.

Ts

323

Ts

321

Ts

324

\

Figure 3.20: Crystal Structure of the 2,5-trans iodo-pyrrolidine 324

Ts
324
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3.23c. Transition States

The most stable chair-like transition state will be achieved where all the large substituents 

are in the equatorial position as in transition state A, hence the major isomer should be the 

2,5-trans isomer 321 (Figure 3.21)

OH
Me02C.

NHTs

OH
MeO20 .

NHTs 

R= Me And R=Ph

Me02C
H Ts 

A="CHAIR-LIKE

W S T l S . ©
Ts H ^ S t  . 

B="BOAT-LIKE"

Figure 3.21

3.24c. Optimisation Experiments

h q .  J

Me02C ^ N^  "R 
Ts

321 R=Me 
2 9 6 b  R=Ph

M e02C

HO. J

Ts
32 5 a  R=Me 
3 2 5 b  R=Ph

Reaction of the precursor 150a with iodine and potassium carbonate, in acetonitrile for

1.5 h, gave the same iodo-pyrrolidine 321 as a single diastereoisomer in 8 6 % yield 

(Scheme 3.26). The yield was greater than in the previous example, and the reaction was 

considerably faster and more selective, from just a change in solvent. So what would be the 

influence of a change in the iodine source? Thus, the amino alcohol 150a was treated with 

iodine monobromide in anhydrous acetonitrile in the presence of base (Scheme 3.26; c). 

The NMR spectrum of the crude product revealed a reduction in the size of the methyl 

ester resonance, indicating the formation of a lactone, as seen previously with the (Z)-butyl 

example 266, (Scheme 3.21), using identical conditions (MeCN, IBr, K2CO3, -20°C). 

Following chromatography, the desired iodopyrrolidine 325 was isolated, but in a 

15:1.5:1.5 ratio, as judged from the methyl doublets, in an overall low yield of 27%. The 

major isomer 321 was the same as previously isolated (Scheme 3.24), while a minor 

fraction also contained a lactone 326, but in only 8 % yield, whose stereochemistry was not 

determined.
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t  OH HO NHTs QH 0  (. .OH

^ V  ''C 02Me * ^  '̂ Q > "'M ,;C 02M6
Ts I n m i s  f s

321 326 150a 321

Scheme 3.26. Reagents: a) I2, K2C 03, MeCN, 0°C, 1.5 h, 86%; b) IBr, K2C 03, CH2C12,

-20°C, 2 h, 61%; c) anh MeCN, IBr, K2C 03, -20°C, 27% 321 and 8% 326.

Finally, treatment with iodine monobromide, potassium carbonate and dichloromethane for 

2 h, following chromatography, furnished the iodopyrrolidine as a 6:1 mixture of 

diastereoisomers 321 and 322 in 61% yield (Scheme 3.26; b).

Conditions Yield
(% )

Time Product

I2, CH2C12,
k 2c o 3, o°c 80 24

, o h

* ^ N^ '" C 0 2Me
Ts
321

OH

NHTs
150a

I2, MeCN, K2C 03, 
0°C 86 1

'w OH

* ^ N^ " C 0 2Me
Ts
321

IBr, CH2C12, 
K2C 03, -20°C 61 2

I , O H  I O H

7 ~ \  + jT ~ V.
^ - N/ " C 0 2Me ' ^ • N^ C 0 2Me 

Ts Ts 
321 322

IBr, MeCN, 
K2C 03, -20°C

(326) 8 
and 

(321) 27
3.25

I OH H O __ NHTs

^ N^ ~ C 0 2Me + V ^ o ^ °
Ts I 
321 326

Table 3.12

3.25. Conclusion

Once again, the conditions employed in the cyclisations were not trivial; they affected the 

yield, selectivity and the product isolated. Early indications suggested that the geometry of 

the double bond was instrumental to the success of these cyclisations, with the (£)-amino 

alcohols yielding pyrrolidines in higher yields than the corresponding (Z)-derivatives. One 

set of conditions, iodine monobromide and potassium carbonate in acetonitrile, again 

furnished a mixture of pyrrolidine 321 and lactone 326 (Scheme 3.26; c).
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l  ,OH HO NHTs 0H 0  I  OH

- ^ V ^ 0Me ^  ^Q-COjMe
Ts | NHTs j s

321 326 150a 321

Scheme 3.26. Reagents: a) I2, K2CO3, MeCN, 0°C, 1.5 h, 86%; b) IBr, K2CO3, CH2CI2,

-20°C, 2 h, 61%; c) anh MeCN, IBr, K2CO3, -20°C, 27% 321 and 8% 326.

Finally, treatment with iodine monobromide, potassium carbonate and dichloromethane for 

2 h, following chromatography, furnished the iodopyrrolidine as a 6:1 mixture of 

diastereoisomers 321 and 322 in 61% yield (Scheme 3.26; b).

OH

NHTs
150a

Conditions Yield
(%)

Time
«

Product

I2, CH2CI2, 
K2CO3, 0°C 80 24

1 on

* ^ N/ '" C 0 2Me
Ts
321

I2, MeCN, K2CO3, 
0°C 86 1

I  OH

* ^ N/" 'C 0 2Me
Ts
321

IBr, CH2CI2, 
K2CO3, -20°C

61 2

I, OH I OH

^ \ N/ " C 0 2Me - ^ N^ C 0 2Me 
Ts Ts 
321 322

IBr, MeCN, 
K2CO3, -20°C

(326) 8 
and 

(321) 27
3.25

I OH HO NHTs

' ^ N^ C 0 2Me + 0  
Ts |
321 326

Table 3.12

3.25. Conclusion

Once again, the conditions employed in the cyclisations were not trivial; they affected the 

yield, selectivity and the product isolated. Early indications suggested that the geometry of 

the double bond was instrumental to the success of these cyclisations, with the (2s)-amino 

alcohols yielding pyrrolidines in higher yields than the corresponding (Z)-derivatives. One 

set of conditions, iodine monobromide and potassium carbonate in acetonitrile, again 

furnished a mixture of pyrrolidine 321 and lactone 326 (Scheme 3.26; c).
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3.2Id. Cyclisation of aryl, trans, anti Precursor

Separation of the diastereoisomers 151a and 151b from the aldol condensation of (E)-

cinnamaldehyde 137 with the enolate of A-tosyl glycine could not be achieved (Scheme

2.12, Chapter 2). The cyclisations were therefore conducted on various mixtures, with the

aim of separating these isomers later. With two diastereoisomers in the cyclisation, a

minimum of two iodopyrrolidines would likely be produced. A 5.8:1 (<anti.syn) mixture of

diastereoisomers 151 was treated with iodine and potassium carbonate in dichloromethane

for 3.5 h at 0°C to afford a 9:2.5:1 (A:B:C) mixture of diastereoisomers 327 (Scheme

3.27). Following chromatography, isomer A 327a and B 327b were isolated in a combined

yield of 39%, but no trace of the minor isomer was evident in any of the fractions. Again

confirmation of cyclisation was evident from the loss of the olefin signals. Major isomer A

327a was characterised by a CM resonance at 33.1 ppm, a molecular ion of 524 (M* + Na)

and new pyrrolidine resonances in the range 4.00-5.10 ppm. Identification of the

individual protons was achieved by the use of coupling constants. However, despite all the
1

evidence suggesting that the product was a pyrrolidine, since no H- C correlation data 

was obtained, the possibility that the product was an azetidine could not be eliminated, but 

was believed to be unlikely since none of the other precursors afforded an azetidine.

3.22d. Determination of Stereochemistry of Isomer A 296b

Frustratingly, the results obtained from nOe experiments conducted on the major isomer A 

327b were unambiguous, thus it was treated with silver carbonate on celite as a means to 

determine if the product was a pyrrolidine, and if so, to ascertain the stereochemistry 

between the 3- and 4- positions. Treatment of major isomer A 327b with silver carbonate 

on celite afforded the epoxide 307b in quantitative yield, as indicated from the loss of the 

CM signal, the new apparent singlets corresponding to the CHO protons at 4.80 and 5.00 

ppm, a molecular ion at 374 and the absence of any ketone signals in either the 13C NMR

o h  o

NHTs

151
Ts

327a-c

Scheme 3.27. Reagents: I2, K2CO3, CH2CI2, 0°C, 3.5 h.
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spectrum or infrared spectrum (Scheme 3.28). All this evidence suggested that isomer A 

327b could not be an azetidine, but a 3A-trans iodo-pyrrolidine 296b.

Ph ng J 0 2Me Ph N " C 02Me 
Ts

3 07 b
Ts

2 96 b
Ts

Scheme 3.28. Reagents: 6 eq Ag2CC>3 on celite, CH2CI2, 24 h, 100 %.

This predicted stereochemistry of isomer A 296b was in agreement with the structure 

deduced by X-ray diffraction (Figure 3.22). From Figure 3.22, it can clearly be seen that 

the trans geometry has been retained in the product and also that the structure exhibits n- 

stacking of the two phenyl rings. The data obtained indicates a centroid-centroid distance 

of 3.66 A, consistent with 71-stacking. 13

So isomer A 296b was the cyclisation product from the anti diastereoisomer 151a (Scheme

3.27). By taking into account the quantity of the anti diastereoisomer 151a in the starting 

material, the yield of the major (2,5-trans) isomer 296b was determined to be 39%, 

suggesting that the reaction was not very selective (Scheme 3.27).

Figure 3.22: Crystal Structure of the 2£-trans iodo-pyrrolidine 296b

Ts
296 b
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3.23d. Explanation of the Observed Stereochemistry

Once again, the most stable chair-like transition state is one where the largest groups are in 

the equatorial positions (transition state A, Figure 3.21), thus the predominant isomer from 

the cyclisation of the anti diastereoisomer 151a should be the 2,5-trans pyrrolidine 296b, 

which is in accordance with the structure deduced by X-ray diffraction (Figure 3.22).

3.24d. Determination of the Structure of Isomer B 327b

Isomer B 327b was characterised by the appearance of new CM  resonance at 38.2 ppm, 

new pyrrolidine resonances in the 4.25-5.15 ppm region of the NMR spectrum and a 

molecular ion of 502. This time, the coupling constants were too similar to differentiate 

between the various ring proton signals in the NMR, and hence correlation experiments 

were employed to confirm that isomer B 327b was a pyrrolidine, not an azetidine via the 

same methods as used previously.

Treatment of isomer B 327b with silver carbonate on celite afforded a 1:1 mixture of 

products 328. Due to the two new pairs of diastereotopic CFfe ring protons at 2.55, 2.65,

3.05 and 3.30 ppm and lack of the singlets that had become characteristic of these epoxy

pyrrolidines, the products were not epoxides. In addition, the I3C NMR spectrum showed 

two CH2 resonances at 46.9, 47.1 ppm, but no ketone signal was evident, which could be 

due to the length of the relaxation time. However, two carbonyl peaks were evident in the 

infrared spectrum. Unfortunately, after the sample had been left overnight in deuterated 

chloroform, decomposition occurred, so further characterisation data was not obtained. 

From this limited data, it was apparent that the product was a 1:1 mixture of keto 328a and 

enol 328b tautomers (Scheme 3.29).

'C02Me C02Me
Ts

327b
Ts

328a
Ts

328b

Scheme 3.29. Reagents: 6 eq 50 % wt/wt Ag2CC>3 on celite, CH2CI2, 24 h, 72%.
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3.25d. Explanation of the Observed Stereochemistry of Isomer B 327b

The most stable transition state adopted will be chair-like transition state A to afford the 

3,4-cis isomer 327b as the predominant isomer (Figure 3.23). These findings are in 

agreement with the stereochemistry deduced from the silver carbonate reaction (Scheme

Thus, isomer B (3,4-cis isomer) 327b from the initial cyclisation was the product from the 

cyclisation of the syn diastereoisomer 151b, and by taking into account the quantity of syn 

isomer 151b in the starting material, the yield of the 3,4-cis isomer 327b was determined 

to be 40% (Scheme 3.27). Therefore, in the course of the reaction, the original 5.8:1 ratio 

had been reduced to 9:2.5:1, so, optimisation of the iodocyclisations was conducted.

3.26d. Optimisation Experiments

An 8:1.5 (anti’.syn) mixture of diastereoisomers 151 was treated with iodine and potassium 

carbonate in acetonitrile at 0°C and was then gradually allowed to warm to room 

temperature over 21 h to give 3 distinct products in a ratio of 5:1.4:1 (X:Y:Z) (Scheme

3.30). Complete separation of these three components was not achieved. The major 

product X 307b was not a pyrrolidine, due to the absence of a CHI signal. Comparison 

with genuine samples from a previous experiment revealed product Y to be the 2,5-trans 

pyrrolidine 296b and product Z, the 3,4-cis pyrrolidine 327b.

This odd result was initially dismissed, but later the major product X 307b was determined 

to be the 2,5-trans epoxide 307b (Scheme 3.28). So, why were these the only conditions

3.29).

3 2 7 b  X= Ts R= C 0 2Me, R'=Ph;
3 2 9  X= Ts R= C 0 2Me, R -M e;
3 3 0  X=Boc R= CH2OH, R =Ph

A="CHAIR-LIKE

3 3 1  X= Ts R= C 0 2Me, R’=Ph;
3 3 2  X= Ts R= C 0 2Me, R'=Me; 

R' 3 3 3  X=Boc R= CH2OH, R‘=Ph

B="BOAT-LIKE'

Figure 3.23
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for any substrate that resulted in the formation of the epoxide in situ? It is plausible that 

the cyclisation was complete after a few hours, and once the reaction vessel had reached 

ambient temperature, Sn2 displacement of the iodine occurred to afford the epoxide 307b. 

Closer inspection of the NMR spectrum of the crude product revealed small double 

doublets in the region 2.00-3.00 ppm, which corresponded to the diastereotopic CH2 

protons on the pyrrolidinone ring. No trace was observed in any of the column fractions, 

because this ketone 328a had previously been proved to be unstable (Scheme 3.29). From 

the yields based on the integrals of the NMR spectrum of the crude product, only a small 

portion of the 3,4-cis pyrrolidine 327b reacted to give the ketone 328a, while the majority 

of the 2,5-trans pyrrolidine 296b underwent the subsequent Sn2 displacement reaction, to 

furnish the epoxide 307b.

In retrospect, these conditions were one of the best for this substrate. If the reaction time 

was reduced, and the temperature maintained at 0°C, the desired pyrrolidines 296a and 

327b would probably have been isolated as single diastereoisomers. The fact that the 

iodocyclisation and epoxide formation reactions can be carried out in “one pot” is very 

encouraging and further investigation is warranted, for all substrates. Potassium carbonate 

being considerably cheaper than silver carbonate, also makes this “one pot” method more 

viable financially, on a large scale.

'C 02Me Ph'
NHTs

151 307b 296b 327b

Scheme 3.30. Reagents: I2, K2C 03, MeCN, 21 h, 0-21°C, 72% 307b, 20% 296b and 79%

327b.

A 2.3:1 mixture of diastereoisomers 151 {anti:syn) was treated with iodine monobromide 

and potassium carbonate in acetonitrile for 2.5 h to give a 3:1 mixture of iodopyrrolidines. 

Following chromatography, the 2,5-trans pyrrolidines 296b and 3,4-cis pyrrolidines 327b 

were isolated in 83% and 75% yield respectively (Scheme 3.31; a).
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o h  o K ,0H U P H
—  J l \  * X \Ph N C°2 Me P h * ^ N/ " C 0 2Me

Ts Ts

151 296b 327b

Scheme 3.31. Reagents: a) IBr, K2C 03, MeCN, 2.5 h, -20°C, 83% 296b, 75% 327b; b) 

IBr, K2C 03, CH2CI2, 2.5 h, -20°C, 67% 296b, 78% 327b.

Finally, a 2.3:1 mixture of diastereoisomers 151 (anti:syn) was treated with iodine 

monobromide and potassium carbonate in dichloromethane for 2.5 h to furnish a 4:1.8:1 

(2,5-trans 296b:3,4-cis 327b:minor) mixture of iodopyrrolidines in 84% yield (Scheme 

3.31; b). Following chromatography, the 2,5-trans pyrrolidine 296b was isolated in 67% 

yield and the 3,4-cis pyrrolidine 327b in 78% yield. Sufficient quantity of the minor 

isomer was not obtained for characterisation.

3.27d. Summary Table

OH O

P h ^ ^ ^ V ^ O M e
NHTs

151

Conditions

Yield (%)
I  ,OH

Jn.
P h * ^ N^  "C 0 2Me 

Ts
296b

Yield (%)
1, PH

P h * ^ j ^ " C 0 2Me
Ts

327b

Yield (%)
A

Ph N "C ° 2 M e  
Ts

307b
I2, CH2CI2, 

K2CO3, 
3.5 h, 0°C

39 40 /

I2, MeCN, 
K2CO3, 

21 h, 0°C
20 79 72

IBr, CH2CI2, 
K2CO3, 

2.5 h, -20°C
67 78 /

IBr, MeCN, 
K2CO3, 

2.5 h, -20°C
83 75 /

Table 3.13

98



3.28d. Conclusion

Chapter3: Iodocyclisation Results and Discussion

The results obtained for the (£)-phenyl amino alcohols 151 mirror the results obtained for 

the corresponding (£)-methyl anti amino alcohols 150, since in both cases the selectivity 

and yield is dependent on the reaction conditions. Unlike the methyl derivative 150, iodine 

monobromide and potassium carbonate in acetonitrile afforded the pyrrolidines in excellent 

yields, without any observed lactone formation.

3.21e. Cyclisation of an alkyl, trans, syn Precursor 150b

A 1:1.2 antiisyn mixture of diastereoisomers, obtained from the aldol reaction in the 

absence of tin(II) chloride (Scheme 2.12, Chapter 2), was treated with iodine and 

potassium carbonate in acetonitrile, i.e. the optimum conditions for the anti 

diastereoisomer 150a (Table 3.12). Following optimisation of the reaction time using tic 

and NMR, a 1.6:1 (A:B) mixture of iodopyrrolidines was obtained. The isomers were 

separated by chromatography to give 2,5-trans pyrrolidine 321 in 42% yield.

Unfortunately, in the NMR spectrum of the major isomer A 329 two protons were 

coincidental. The CM resonance was identified at 38.1 ppm but was coincidental with 

another resonance. The C/ZCC^Me signal at 4.80 ppm was easily identifiable as the only 

doublet, while correlation identified the C//OH proton as the multiplet at 4.25-4.30 

ppm and revealed that one of the coincidental resonances was coupled to the CHOU 

proton. In the azetidine, the C//OH proton would not show coupling to either the C/ZMe 

or CM protons, therefore the product was a pyrrolidine 329, not an azetidine.

OH O l'  P H \  %PH

OMe * ^ C / - ' 'C 0 2Me + • ^ V ^ ,/C 02Me
NHTs Ts Ts

150 321 329

Scheme 3.32. Reagents: U, K2CO3, MeCN, 0°C 2,5-trans 42% 321 and 3,4-cis 57% 329.
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3.22e. Determination of Stereochemistry

Isomer A was believed to be the 3,4-cis iodopyrrolidine 329, since the same transition state 

should apply for both (E)-syn precursors 150b and 151b (Figure 3.23).

To hopefully separate the coincident signals, a 7:1 mixture of iodopyrrolidines 329 and 321 

(A:B) was treated with acetic anhydride in pyridine to furnish a 7:1 mixture of acetates 334 

and 324 in 50% yield (Scheme 3.33). Following repeated recrystallisations, a sample of 

the major acetate 334 was isolated. The acetate was characterised by new carbonyl signals 

at 168.7 and 169.4 ppm, a molecular ion at 482 ppm and a shift in the C//OH signal by 

approximately 1 ppm.

I  OH K  P H  l  OAc \ ,  OAc

H  ♦ XS- —* X\  ♦ Xi"COzMe "C02Me "COzMe Me*’̂ N^ ' '<C02Me
Ts Ts Ts Ts
329 321 334 324

Scheme 333 . Reagents: AC2O, py, 16 h, 50%.

Disappointingly, separation of the coincidental protons was not achieved. nOe 

experiments were again conducted on pyrrolidine 334, but using a new program. On 

irradiating the C/fOAc signal, enhancement of the CMDC^Me resonance was apparent, 

indicating that these groups were cis to each other. When the methyl resonance was 

irradiated, no enhancement was evident in either the C/fOAc or CMCC>2Me signal, while 

enhancement was evident in the coincidental resonance. This indicated that neither the 

CMOAc or CMC02Me groups were cis to the methyl. Since the methyl and iodine groups 

would have been trans to each other due to the cyclisation being of a trans olefin, the 

structure was deduced to be the 3,4-cis isomer 334 (Figure 3.24), as expected.

I  PA c

X
334 

Figure 3.24
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3.21f. Cyclisation of Aryl, cis, syn Precursor 151b

The final pyrrolidines to be synthesised were those from (Z)-syn precursors. A 1:1 mixture 

of diastereoisomers 146 arising from the aldol reaction in the absence of tin(II) chloride 

(Scheme 2.49; a, Chapter 2), were subjected to Lindlar reduction, to give the cis-olefin as a 

1:1 mixture of diastereoisomers 147 as confirmed by the four olefin double doublets 

between 5.55 and 6.55 ppm, which all exhibited a typical cis coupling of 11.7 Hz (Scheme 

3.34). A small amount o f alkanes 148 was also evident.

OMe

Ph OH O

k A A , OMe
NHTs

147

NHTs
OMe

Scheme 334. Reagents: Lindlar’s catalyst, EtOAc.

The crude product was treated with iodine monobromide and potassium carbonate in 

dichloromethane, to give a vast array of isomers. Following chromatography, as expected, 

one of the fractions contained predominately the 2,5-cw-iodopyrrolidine 296a in 

approximately 45% yield. In two of the more polar fractions, the major iodopyrrolidine 

was determined to be 3,4-cis iodopyrrolidine 327b in approximately 25% yield, based on 

the integrals in the NMR spectra (Scheme 3.35). The stereochemistry of the remaining 

isomers was not determined.

Ph o h  o  l  ,o h  U jp n

—  : r \ .  ♦ r \
. OMe Ph'*’ "COzMe P h ^ Ny  ,,C 0 2Me

NHTs Ts Ts

147 296a 327b

Scheme 335 . Reagents: IBr, K2C 03, CH2C12, 45% 296a, 25% 327b.

Thus, the cyclisation o f the cis, syn 147b precursor was not selective and some 

isomerisation to the trans derivative occurred prior to cyclisation. Fortunately, authentic 

samples of the 2,5-cis iodopyrrolidine 296a and 3,4-cis iodopyrrolidine 327b were 

available from previous experiments for comparison and were essential in determining the 

selectivity of the syn diastereoisomer. Cyclisation of the butyl derivative was not carried
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out due to the difficulties perceived in interpreting the spectra with a lack of pyrrolidines 

for comparison.

3.22f. Conclusions and Trends

The cyclisations o f the (£}-phenyl trans amino alcohols 151 were successful to a certain 

degree with a range o f conditions, while the (Z)-analogues only cyclised on exposure to the 

more reactive iodine monobromide (Tables 3.13 and 3.10). Thus, the geometry of the 

double bond is critical to the success o f the cyclisations. Due to the problems encountered 

with the Lindlar reductions, direct comparisons were difficult. The poor results obtained 

for the (Z)-phenyl, anti amino alcohol 146a cyclisations were presumably due to the large 

phenyl group being in the unfavourable axial position in the transition state (Figure 3.15), 

while for the trans derivatives, all the large groups are in equatorial positions (Figure

3.21).

It is noteworthy that in all cases, the conditions employed in the reaction are critical to its 

success in terms of yield, selectivity and in some cases the product formed. For example, 

only iodine monobromide and potassium carbonate in acetonitrile, furnished a lactone by a 

competing 5-exo cyclisation when the substituent (R) was alkyl.

Finally, this additional P-hydroxyl group does not seem to have had an adverse or 

beneficial affect on the yield or selectivity of the cyclisations of the (£)-amino alcohols, 

unlike the corresponding (£)-homoallylic alcohols (Chapter 1). However, previous 

cyclisations o f (Z)-homoallylic sulphonamides afforded pyrrolidines with poor selectivity3, 

while from this limited study involving the (Z)-phenyl anti amino alcohol 146a, an 

improved selectivity (7:1) and yield was obtained, with the minor isomer 296b resulting 

from isomerisation o f the precursor, prior to cyclisation. However, the (Z)-butyl anti 

amino alcohol 149a gave an apparent mixture of products. The pyrrolidine coupling 

constants are summarised in Table 3.13, but unfortunately, any difference between cis and 

trans couplings was marginal.
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Pyrrolidine
74-5H

(Hz)

/4-3H

(Hz)

J3-2H

(Hz)
Pyrrolidine

/4-5H

(Hz)

/4-3H

(Hz)

73-2H

(Hz)
i  p n

'CO2M®
Ts
321

8.9 7.3 5.1

1, PH

•^^ '"C O zM e
Ts

329

/ / 6.2

Relationship Trans Trans Trans Relationship Trans Cis Cis
I, .OH

Ph*^jjj^'"C02M«

296b

6.7 Ay. 6.7 av. 6.3

U PH 

Ph*^3"/C02Me
IS

327b

8.0 5.7 4.0

Relationship Trans Trans Trans Relationship Trans Cis Cis
1 OH

ph“‘\y ^ " c° 2Me
IS

296a

8.2 * 00 5.8

Relationship Cis Trans Trans

Table 3.14
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3.30. 5-enifo-trig Cyclisations of Amino Alcohol Derivatives Devoid of an
Ester Moiety

3.31. Introduction

Previously, 5-endo-irig cyclisations were conducted on substrates bearing an ester moiety 

(Section 3.20). In the case o f the (Z)-butyl, anti precursor 149, treatment with iodine

numerous other resonances. In the absence o f this ester group, lactone formation would be 

eliminated. Therefore, a limited number of cyclisations were conducted on substrates that 

lacked the ester moiety. With the absence o f such a group, this would determine if these 

precursors that previously gave lactones, formed iodopyrrolidines and also to ascertain the

the ester group is essential for high selectivity in these reactions, by hydrogen bonding for 

example. Once again the same conditions were tested as in the previous cyclisations, that 

is iodine or iodine monobromide in acetonitrile or dichloromethane (Table 3.10). The 

starting materials were synthesised from the condensation o f aldehyde 195 with either 

1-hexyne 114 or phenylacetylene 145 (Schemes 2.52 and 2.55, Chapter 2).

Due to the problems previously discussed (Chapter 2) regarding the synthesis of the 

starting materials, cyclisations were conducted on various mixtures of diastereoisomers 

and so the results reported are the basis for future work.

monobromide and potassium carbonate in acetonitrile yielded a lactone 254 in addition to

selectivity o f such cyclisations (Figure 3.25). The results obtained should also indicate if

Bu
C 0 2Me

NHTs

HO. NHTs

NHTs

?

149a 254 335
Ts

336

Figure 3.25
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3.32. Results and Discussion

3.33a. Cyclisation of an Alkyl trans Derivative

In the previous cyclisations of (£)-methyl anti amino alcohol 150a lactone formation was 

only observed when iodine monobromide in acetonitrile was used (Table 3.12). In the 

cyclisations of the (Z)-ester derivative 149, iodine failed to induce cyclisation (Scheme 

3.10), this was also found to be the case with the (£)-methyl substituted derivative 337 

(Scheme 3.26; a). In order to afford a sample o f the desired pyrrolidine 338, conditions 

were used which had previously proved successful with the (£)-ester derivative 150a, 

iodine monobromide in dichloromethane (Table 3.12). This would then be useful for 

comparisons.

Thus, a 5:1 mixture of diastereoisomers 337a and 337b of the amino alcohol was treated 

with iodine monobromide and potassium carbonate in dichloromethane for 2.5 h, to furnish 

the product 338, largely as a single diastereoisomer (Scheme 3.26; b). Confirmation of the 

cyclisation was evident from the loss of the olefin resonances, the appearance of new 

pyrrolidine resonances in the 3.65-4.40 ppm region and a new CM  signal at 36.4 ppm. 1H- 

I3C correlation identified the double doublet at 4.40 ppm as the CM  proton, hence the 

product could not be an azetidine, where the CM  would have been a double triplet. Thus 

the cyclisation afforded the pyrrolidine 338 in a yield of 50% (Scheme 3.26; b).

NHTs NHTs

337 338 337a 339

Scheme 336 . Reagents: a) I2, CH2CI2, K2CO3, 0°C, 2 h, 0%; b) IBr, CH2CI2, K2CO3,

-20°C, 2.5 h, 50%.

Since the starting material was largely the (E)-anti diastereoisomer 337a, it is reasonable to 

assume that these trans relationships were retained in the product. nOe experiments were 

not conducted to ascertain the stereochemistry due to the close proximity of the 

resonances. From the previous constructed transition states (Figure 3.21), the predominant 

isomer was believed to be the 2,5-trans 3,4-trans isomer 339 (Scheme 3.36), however,
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confirmation is necessary. Since coupling constants cannot be relied upon to determine the 

stereochemistry o f pyrrolidines, comparisons with the original series of pyrrolidines (Table 

3.14) were not be used to confirm the suggested stereochemistry.

3.33b. Cyclisation of an Aiyl trans Derivative

Again as in the previous study with the corresponding esters, it was important to test 

different substituents on the olefin. In the cyclisation of the corresponding ester 

derivatives 151, no lactone was isolated under any conditions (Table 3.13), so no problems 

were perceived in isolating pyrrolidines 341 from the cyclisations o f the corresponding 

methyl substituted derivatives 340. Thus, a 2.9:1 (anti: syn) mixture o f diastereoisomers 

340 of the amino alcohol was treated with iodine monobromide and potassium carbonate in 

dichloromethane, to furnish a 3.8:1 (A:B) mixture of diastereoisomers 341 (Scheme 3.37a). 

Cyclisation was once again confirmed by the loss of the olefin signals in addition to the 

appearance of new (pyrrolidine) resonances at 6h 3.70-5.25 ppm region of the spectrum. 

Also a molecular ion of 458 (M* + H) consistant with cyclisation was apparent, further 

clarifying that the reaction was indeed successful, however, once again it was important to 

confirm the structures o f the cyclised products. The CHI signal o f the major isomer was an 

apparent triplet, hence the major product was a pyrrolidine, not an azetidine. The 

pyrrolidines 341 were isolated in a yield o f 21%. These conditions were deemed too harsh, 

hence milder conditions were explored in subsequent reactions.

Scheme 337a. Reagents: a) IBr, CH2C12, K2C 0 3, 2 h, 21%; b) I2, CH2C12, K2C 03, 10 h,

70%.

Again due to the closeness o f resonances, nOe experiments were not conducted. By 

considering the most stable chair-like transition state, the predominant isomer from the 

cyclisation of the anti diastereoisomer 340a should be the 3,4-trans isomer 341a (Figure

3.21), while the syn diastereoisomer 340b should afford the 3,4-czs isomer 341b (Figure

OH

NHTs

340
Ts

341

3.23).
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OH PH OH

NHTs

340a 341a 340b
Ts

341b

Scheme 337b

Since the previous conditions were deemed too harsh (Scheme 3.38; a), accordingly, the 

reaction was repeated, but using iodine. After some optimisation by NMR and tic to 

determine formation o f the product, a 1.6:1 {syn.anti) mixture o f diastereoisomers 340 

afforded an inseparable 4.6:1:6.7 (A:B:C) mixture of diastereoisomers 341 of the 

iodopyrrolidine in an excellent 70% yield. Unfortunately, separation of these three isomers 

was not achieved and so determination of stereochemistry was not accomplished. 

Interestingly, major isomer (C) was not isolated in the preceding reaction, instead isomer A 

was the major isomer in that example. Therefore, it is plausible that isomer C is the result 

of the cyclisation of the syn diastereoisomer 340b and hence as explained previously 

should be the 3,4-cis isomer 341b, not isomer B as previously suggested (Figure 3.23), 

however clarification is necessary.

333c. Conclusion

When the corresponding cis olefins were subjected to iodocyclisation conditions (iodine 

monobromide and potassium carbonate in dichloromethane, -20°C), the results obtained 

were inconclusive, and pyrrolidine formation could not be ascertained. However, once the 

problems associated with synthesising the starting materials have been resolved, a more 

thorough study can be conducted.

However, the corresponding trans derivatives 337 and 340 did afford the desired 

pyrrolidines. A more thorough study is however necessary, in particular the conditions 

which had previously gave lactones needed to be tested, to determine if pyrrolidines could

be isolated.
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334a. Introduction: Substrates Bearing an Alcohol side chain

From the previous chapter, it can be seen that various routes were attempted in order to 

synthesise amino alcohol derivatives for cyclisation. The route involving the use of 

Gamer’s aldehyde 201 as a chiral auxiliary furnished an amino alcohol derivative with a 

primary alcohol side-chain (Scheme 2.30, Chapter 2). This substrate 207 could cyclise 

either via 5-endo-\n%9 as desired, through the nitrogen, or through the oxygen o f the 

secondary alcohol, either via a 5-exo-trig or a 6-endo-trig cyclisation (Scheme 3.37c). 

Despite being a deviation from the original theme, the material 207 was cyclised.

334b. Results and Discussion

Since 5-endo-trig cyclisations are disfavoured, the substrate 207 should preferentially 

undergo a 6-exo cyclisation to form cyclic carbamates, via loss o f the /-butyl group, as 

previously observed in the Knight3 group (Figure 3.26). Consequently, in all our 

iodocyclisations a tosyl group was employed.

BocHN

OH
BocHN

343

Scheme 337c

344 345 346

Figure 3.26
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Following treatment with iodine in dichloromethane, the product 330 was isolated largely 

as a single diastereoisomer, with the Boc group intact. Again loss of the olefin resonances 

indicated that cyclisation had occurred, but unfortunately the new ring protons were 

coincidental with only the C/fPh doublet being distinguishable. The lack of CHaCHb 

resonances in the 2-3 ppm region, strongly suggested that the cyclic structure did not 

consist o f a CH2 group in the ring, ruling out both the tetrahydrofuran 342 and 

tetrahydropyran 343 (Figure 3.27). So surprisingly, it appeared that precursor 207 had 

cyclised through the nitrogen to give rise to the desired pyrrolidine 330 in 84% yield 

(Scheme 3.40). Once again, since the precursor was an (E)-syn diastereoisomer 307, the 

most stable chair-like transition state with all large groups equatorial (Figure 3.23) should 

afford the 3,4-cij-pyrrolidine 330 (Scheme 3.38).

OH 

NHBoc
207 330

Scheme 338 . Reagents: I2, K 2 C O 3 ,  C H 2 C I 2 ,  84%.

To further clarify the gross structure o f the cyclisation product, the proposed pyrrolidine 

330 was treated with silver carbonate on celite (Scheme 3.39; a). If one assumed the 

product to be the 3,4-cis pyrrolidine 330, a ketone should form. If the cyclisation product 

was the tetrahydrofuran 342, by the proposed mechanisms in Figure 3.16, no displacement 

o f the iodine would occur. However, depending on the stereochemistry of the 

tetrahydropyran 343, treatment with silver carbonate on celite should afford either the 

corresponding ketone or epoxide. Treatment with silver carbonate on celite afforded a 

ketone 347 in an excellent 6 8 % yield (Scheme 3.39; a) as confirmed by the new C=0 

signal at 210.5 ppm, new C H 2  resonance at 46.2 ppm, new C H a C H b  resonances adjacent to 

the new carbonyl group and a molecular ion of 292 (VT + H), consistent with loss of HI. 

In addition an absorbance at 1761 cm ' 1 was apparent in the infrared and retention of the 

broad resonance at 3444 cm' 1 was observed.

Slight separation o f the resonances was observed in the *H NMR spectrum, but due to the 

hindered rotation around the C-N bond o f the Boc protecting group, the resonances were
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still broad. !H-lH correlation revealed that the CHPh proton was coupled to the new 

diastereotopic CH2 protons in the ring, confirming that the cyclisation product could not be 

the tetrahydropyran 343 where the C//Ph proton is not adjacent to a diastereotopic CH2 

group (Figure 3.27). Further confirmation was apparent from the present o f an 

exchangeable OH signal at 3.60 ppm because the only structure that retained such a group 

after treatment with silver carbonate would again be the pyrrolidinone 347. This time the 

ketone 347 was stable, and its formation confirmed the predicted 3,4-cis stereochemistry of 

the pyrrolidine 330.

347 330 349

Scheme 33 9 . Reagents: a) Ag2C0 3 , CH2 CI2 , 24 h, 6 8  %; b) AC2 O, pyridine, 20 h, 71%.

Previously, acetates were prepared to hopefully separate any overlapping resonances 

(Scheme 3.18). Thus, iodopyrrolidine 330 was treated with acetic anhydride in pyridine 

for 20 h, to afford the diacetate 349 in 71% yield (Scheme 3.39; b). Despite the separation 

o f the resonances, no coupling data was obtained, due to broad resonances. High 

temperature NMR spectroscopy also failed to sharpen the signals. Confirmation o f the 

structure was obtained by the lack o f an O-H stretch, an addition carbonyl stretch at 

1748cm'1 and two new carbonyls signals at 169.4 and 170.5 ppm.
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3.41. Introduction

Removal o f an iodide group from tetrahydrofurans can be achieved using tri-n-butyl 

stannane with catalytic AIBN (Scheme 3.42).14 However, is often more desirable due 

to the toxicity o f tin hydride and problems with removal o f the tin residues, to use 

hydrogenolysis.

HO, I HO,

'Ph

349 350

Scheme 3.40. Reagents: Tri-n-butylstannane (3 eq), AIBN (cat), benzene, reflux 4 h.

3.42. Results and Discussion

When the 2,5-trans pyrrolidine 321 was subjected to standard hydrogenolysis15 

conditions, (Pd/C, triethylamine and methanol as the solvent) a separable mixture of 

hydroxy pyrrolidine 351 and epoxide 323, were isolated (Scheme 3.41). The 

formation o f the hydroxy pyrrolidine 351 was evident by the loss o f the CHI 

resonance, new CHaCHb resonances at 1.65 and 2.40 ppm and a molecular ion o f 314. 

The formation o f the epoxide 323 was not completely unexpected since treatment of 

3,4 /nms-iodopyrrolidines with base yields epoxides as previously illustrated (Scheme 

3.25; a).
, on oh o

M e * ^ N^ " /C 02Me ** M e * ^ N/ ' ,C 02Me M e * ^ N^ " /C 02Me
Ts Ts Ts
321 351 323

Scheme 3.41. Reagents: Pd/C, Et3N, MeOH, 16 h, 36% 351 and 57% 323.

The hydrogenolysis o f 3,4-cis iodopyrrolidine 327b was considerably slower, 

proceeding only after 64 h, to afford the hydroxy pyrrolidine 352 as the sole product 

in 63% yield (Scheme 3.42). Once again, loss o f the CHI resonance was apparent in 

both the ‘H and 13C NMR spectra.
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I, xOH PH HO I HO.

jr\. —5—  r\ hôjC~\ \‘'CC>2Me COjMe >ptl Ph
Ts Ts Boc Boc
327b 362 330 363

Scheme 3.42. Reagents: a) Pd/C, Et3N, MeOH, 64 h, 63%; b) Pd/C, Et3N, MeOH, 46 h,

48%.

Finally hydrogenolysis o f the 3,4-cw iodopyrrolidine 330 for 46 h, following 

chromatography, afforded the hydroxy pyrrolidine 353 in a moderate 48% yield, as 

confirmed by the loss o f the CHI signal, two new CHaCHb resonances and a molecular ion 

o f294.

3.43. Conclusion

Predictably, the stereochemistry o f the pyrrolidine o f the 3- and 4- positions affected the 

rate, and also the product formed in the hydrogenolysis reaction. When this 

stereochemistry was trans the reaction was considerably faster than the corresponding cis 

derivatives (Table 3.15). This difference in rates correlates with what was observed in the 

Lindlar reductions, the anti species were reduced rapidly, while for the syn substrates 

complete reduction was rarely achieved. The results are summarised in Table 3.15.

Precursor Time (h) Produces) Yield (%)
1,__PH
jr\.Me^s'N̂ ,,C02Me

Ts
321

16 j t T  ♦ J S"COjMe Me*^N/"'C 02M© 
Ts Ts 
361 323

36 (351) 
57 (323)

1 pH pH

Ph*'̂ N^'''C02Me
Ts

64 Ph*''^^"#C02Me
Ts

63

327b 352
1 pH PH

"'^OH
Boc

46
Boc

48

362 363
Table 3.15
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3.50. Nucleophilic Attack on the Epoxides

3.51. Introduction

With a variety o f epoxy pyrrolidines formed, it was desirable to test the regioselectivity of 

opening these epoxides with various nucleophiles. Studies were conducted using epoxy

pyrrolidine 323, being the easiest to synthesis in large quantities (Scheme 3.25; a).

3.52. Results and Discussion

3.53. Nucleophilic attack by Azide

There are numerous examples for the use o f azide in the regioselective opening of 

epoxides16-21. However, many require elevated temperatures and long reaction times. 

Wang and Jimenez22 reported that epoxides could be opened using mild conditions; sodium 

azide in a 1:1 mixture o f acetone and water at room temperature (Scheme 3.43).

:o

354 355

Scheme 3.43. Reagents: NaN3 , Acetone and water (1:1), 12 h, R.T., 78 %.

Unfortunately, when this method was applied to substrate 323, no reaction was observed. 

To avoid the use o f harsh conditions, an attractive method proposed by Kobayashi , 

involving the use o f trimethylsilylazide and zinc chloride in refluxing 1 ,2 -dichloroethane, 

was employed (Scheme 3.44).

* T f
COzMe N3 v / ^ \ - * C 0 2Me

   HO"

° i ,  ° 1 >
356 357

Scheme 3.44. Reagents: a) TMSN3 , ZnCh, C2H2CI2 , reflux, 1.5 h; b) cat. HCl/MeOH,

99%.
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Exposure o f the epoxide 323 to TMSN3 in the presence of zinc chloride in refluxing 

dichloroethane afforded predominately a single diastereoisomer, which decomposed on 

exposure to silica. A non-polar fraction, however, contained the product with only traces 

o f decomposition products (Scheme 3.45).

HO £1 Cl. OH 0 3  N3 OH

j ~\. or jr i  c,e"7 A  J H
"COjM. • ^ ' N-^ 'C 0 2Me *^v N̂ 'C 0 2M«

Ts Ts Ts Ts

358a 358b 323 359

Scheme 3.45. Reagents: TMSN3 , ZnCk, CICH2CH2CI, reflux, 16h, cat. HCl/MeOH, 80%.

Confirmation o f the opening o f epoxide 323 was obtained by the disappearance of both 

CHO signals and the appearance o f an OH stretch in the infrared spectrum. The 13C NMR 

spectrum also showed four methine resonances in the region 62.8 to 79.9 ppm. The gross 

structure was confirmed by mass spectrometry, where a 3:1 ratio o f molecular ions was 

observed which was characteristic o f a monochloride. Thus from the HRMS the product 

was deduced to be a chlorohydrin 358b. Attack o f the chloride ion from the back face is 

more likely to occur on the side o f the methyl since the methyl ester shields the back face, 

so one can assume that the product is chlorohydrin 358b. Coupling constant data was 

unfortunately not available, due to broadened resonances, to compare with the 

corresponding 2 ,5 -rnmy-iodopyrrolidine 321 (Table 3.12). Interestingly, comparisons of 

the NMR spectrum with that o f the corresponding 2,5-/rans-iodopyrrolidine 321 revealed a 

similar pattern o f resonances but, the positions o f specific protons was different. 

Unfortunately, as this was one o f the reactions conducted in the latter stages o f the 

research, lack o f material meant that no further experiments were conducted, with different 

azide sources.

114



Chapter3: Iodocyclisation Results and Discussion

3.54. Nucleophilic Attack by Amines

Conventional methods for synthesising p-amino alcohols from epoxides involve harsh 

conditions; often an excess o f amine and elevated temperatures are mandatory. Due to 

sensitivity o f some functional groups to high temperatures, often expensive or corrosive 

catalysts are required. To combat this, Ollevier24 et. al, reported that meso-epoxides could 

be regioselectively opened with anilines using catalytic bismuth (III), at ambient 

temperature (Scheme 3.46).

.  o »  _  " S J - O

360 361 362

Scheme 3.46. Reagents: cat BiCb, CH2 CI2 , 7-11 h, 78%.

Bismuth compounds are generally thought o f as being relatively environmentally friendly, 

and with the drive towards so-called “green chemistry this research was applied to 

substrate 323, but, unfortunately, no reaction was observed under any conditions.

A  —  O t <oh

Ts Ts
323 363

Scheme 3.47. Reagents: cat. BiCb, CH2CI2 , 24 h, 0%.

3.55. Nucleophilic Opening of Epoxides with Water

In the synthesis o f codonopsine 3, Wang25 and Calabrese treated an epoxide 457 with a 

mixture o f concentration sulphuric acid, water and dioxane, in a ratio o f 9.8:1:14.7 to yield 

a diol 458 (Figure 4.15, Chapter 4). When this method was applied to substrate 323, 

unfortunately the reaction was not regioselective and a 1 .6 : 1  mixture of diastereoisomers 

was formed in a low 16% yield, due to isolation problems (Scheme 3.48). Formation of 

the diol 366 was confirmed by the disappearance o f the CHO signals, a molecular ion o f 

352 (M* + Na, 100%) and the presence o f a new O-H stretch in the infrared spectrum.
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HQ OH

J t S ''CO2M6
Ts
366

Scheme 3.48. Reagents: dioxane, concentrated. H2SO4, water, 90°C, 6 h, 16%.

3.56. Conclusion

Frustratingly, opening o f the epoxide 323 was not very successful in terms of yield and 

regioselectivity. In particular, the use of azide nucleophiles failed to afford the desired 

azido pyrrolidine 359, instead an unstable chlorohydrin 358b was isolated (Scheme 3.45). 

Therefore, further study with different azide nucleophiles is necessary. In addition, the use 

o f water as a nucleophile did not afford the diol 366 selectively. In Wang's synthesis of 

Codonopsine 3, the epoxidation reaction was conducted on a mixture o f olefins, and the 

mixture of epoxides 457 were not separated prior to treatment with the nucleophile (Figure

4.15, Chapter 4), thus the regioselectivity of this reaction (Scheme 3.48) could not be 

compared with Wang's example.

116



Chapter3: Iodocyclisation Results and Discussion

3.60. Iodolactonisations

3.61. Introduction

During the previous iodocyclisations on amino alcohols, two of these compounds gave rise 

to a lactone, via a 5-exo-trig cyclisation, but only when the substituent (R) was alkyl 

(Tables 3.11 and 3.12). To optimise the lactone formation, iodolactonisation was 

encouraged by converting the ester into a carboxylic acid. Thus, during the cyclisation, the 

unfavourable loss o f the methyl moiety will be omitted.

3.62. Results and Discussion 

3.63a. Cyclisation of an alkyl, trans, anti Precursor

The ester 150a derived from the aldol condensation o f the enolate o f A^-tosyl glycinate with 

croton aldehyde 137 (Scheme 2.12, Chapter 2), was converted into the corresponding acid 

367 in 81% yield as apparent by the loss o f the methyl ester singlet and a molecular weight 

o f 317 (M* + N H 4 )  (Scheme 3.49; a).

150a 367 326

Scheme 3.49. Reagents: a) 2M KOH, MeOH, 16 h, 81%; b) IBr, K2CO3, MeCN, 2 h,

70%.

Treatment o f the acid 367 with iodine monobromide, potassium carbonate in acetonitrile 

furnished a 6.4:1:2.4 mixture o f diastereoisomers 326, in 70% yield, Fortuitously, on 

addition of chloroform to the crude product, the major isomer A 326a, precipitated from 

solution. Major isomer A 326a exhibited a carbonyl stretch at 1811 cm' 1 in the infrared, 

and a molecular ion at 426 (M* + H), which suggested the reaction was successful. The 

13C NMR spectrum contained four methine groups with the CHI signal at 19.0 ppm, 

corresponding to the double quartet at 4.15 ppm in the NMR spectrum. Thus, the 

product could not be a pyrrolidine, where the CHI signal would be a double doublet.
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3.64a. Determination of Stereochemistry

For major isomer A 326a, a trans coupling constant of 10.8 Hz between the C//1 and CHO 

protons was apparent. Further information regarding the stereochemistry of the remaining 

ring protons was not attempted by nOe since all the ring protons were in close proximity to 

each other. However after recrystallisation of isomer A 326a from ethyl acetate and 

pentane via vapour diffusion, X-ray diffraction of the crystal obtained confirmed the 

predicted trans relationship between the C//I and CHO protons in the lactone 326a (Figure 

3.27).

Figure 3.27: Crystal Structure of the isomer A 326a

"NHTs 

3 2 6 a

The proposed mechanism is shown in Figure 3.28.
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HO NHTs HO NHTs HQ. NHTs

O O

326a

Figure 3.28

3.65a. Optimisation Studies

Based on the ratio in the NMR spectrum o f the crude product, isomer A 326a was obtained 

in 46% overall yield (Scheme 3.51). Treatment o f the (is)-acid 367 with iodine and 

dichloromethane in the presence o f base afforded lactone A 326a, largely as a single 

diastereoisomer in 61% yield. These conditions were obviously superior in terms of 

selectivity, but could the yield be increased further?

Scheme 3.50. Reagents: a) I2, CH2CI2, K2CO3, 2.5 h, 61%; b) I2, K2CO3, MeCN, 2.5 h,

56%; c) IBr, K2C 0 3, CH2C12, 2.5 h, 75%.

Treatment o f the acid 367 with iodine, potassium carbonate in acetonitrile for 2.5 h gave a 

5 .4:2.4:1 mixture o f diastereoisomers 326 in 56% yield, while iodine monobromide and 

potassium carbonate in dichloromethane, gave a 1.4:1.5:1.6 mixture of diastereoisomers 

326 in 75% yield (Scheme 3.50). Unlike, in previous experiments, 326a was not the most 

abundant isomer, but interestingly, following recrystallisation, 326a was isolated in 35% 

yield, despite the NMR spectrum of the crude product revealing the yield to be 23%. 

Therefore, at some stage isomerisation had occurred. The results are summarised in Table

OH HQ NHTs

NHTs

367 326

3.16.
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fiHTs
367

Conditions Time
(h)

Ratio in 
crude 

product

CrudeYield of 
lactone 326a

(%)

Combined 
yield (%)

IBr, K2C 0 3, 
MeCN, -20°C 2 6.4:1:2.4 46 70

i2, k 2c o 3,
CH2CI2, 0°C

2.5 1 61 61

I2, K2CO3, 
MeCN, 0°C 2.5 5.4:2.4:1 35 56

IBr, K2CO3, 
CH2CI2, -20°C

2.5 1.4:1.5:1.6 23 75

Table 3.16

3.66a. Conclusion

So by changing the ester for an acid group, formation of the lactone 326 was increased. 

Once again, the conditions employed were crucial to the selectivity o f the reaction. In the 

cases where three diastereoisomers were obtained, it is possible that the minor isomers 

could have been the iodopyrrolidines, but this was not investigated (Table 3.16).

3.63b. Cyclisation of an aryl, trans, Precursor

The next precursor tested was the phenyl trans acid 368. In the cyclisations of the 

corresponding ester 151, no lactone was isolated under any o f the conditions employed, 

accordingly, it was unlikely that any lactone would be formed by the cyclisation of the (E)- 

acid 368. A 17:4 mixture of diastereoisomers o f the ester 151, obtained from the aldol 

reaction o f cinnamaldehyde 135 with the LDA derived enolate of JV-tosyl glycinate 

(Scheme 2.12, Chapter 2), was treated with a 2M solution of potassium hydroxide in 

methanol, to afford the carboxylic acid 368 in excellent yield as confirmed by the loss o f 

the methyl ester singlet and HRMS (Scheme 3.51).

OH OH

NHTs NHTs

151 368 369

Scheme 3.51. Reagents: 2M KOH in MeOH, 16 h, 88%.

m3 NHTs

y v ^ o
i
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The acid 368 was then reacted with a range of conditions previously utilised in the 

cyclisations of the ester derivative 151 (Table 3.13), however, the yields were low and no 

conclusive evidence was obtained for lactone 369 formation. As a result, no further 

experiments were conducted.

3.64b. Conclusion

These results mirror what was previously observed with the corresponding ester 

derivatives (Table 3.13). It is possible that lactone formation failed due to the activated 

benzylic position causing the degradation o f the cyclisation product, or that a suitable 

transition state could not be adopted to afford the desired lactone 369.
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3.63c. Cyclisation of an alkyl, cis, anti Precursor

Unlike the trans precursors, the corresponding cis derivatives were difficult to synthesise 

cleanly. The Lindlar reduction was capricious and, hence, an accurate comparison of 

conditions could not be established. In the case of the butyl derivative 370, only two 

cyclisation conditions were directly compared, iodine and potassium carbonate in 

dichloromethane and iodine monobromide and potassium carbonate in acetonitrile. This 

was because these were the only two conditions in which the previous Lindlar reduction 

successfully afforded predominately the (Zyolefin 370 with no unknown contaminants.

A 7:1 mixture o f c/s-alkene 149 and alkyne 144a obtained from a Lindlar reduction of the 

butyl aldol product 144a (Scheme 3.20) was treated with a 2M solution of potassium 

hydroxide to give the corresponding carboxylic acids 370 and 371 (Scheme 3.52; b). Once 

again the loss o f the methyl ester was apparent and an accurate mass of 359.1635, which 

corresponded to the expected value, was obtained by HRMS. Treatment o f the crude acid 

with iodine and potassium carbonate in dichloromethane gave what was presumed to be 

the lactone, in quantitative yield. Following recrystallisation, it was clear that the product 

was a different isomer to that obtained from the previous cyclisation of the (Z)-ester 149 
(Figure 3.19) which gave 254.

HQ
Bu

COzMe

NHTs
149

HO C 0 2H 
Bu ) — C

NHTs
370

- OH a , - OH
X ^ C C h M e A ^ C O zH

Bu NHTs Bu NHTs
L 144a - 371

Bu

HO NHTs 

372a

Scheme 3.54. Reagents: a) Lindlar’s catalyst, EtOAc, H2; b) 2M KOH, MeOH, 16 h; c) I2,

CH2CI2, 3 h, 100%.

The product was established to be a lactone 372a by the characteristic carbonyl absorption 

at 1784 cm"1 and a molecular ion at 468. The CHI proton was a ddd and so the product 

could not have been a pyrrolidine and a coupling constant of 5.0 Hz was recorded between 

the CHI and CHO protons. This value was approximately half the magnitude of that
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recorded for the previous lactone 254 with trans geometry between the CHI and CHO 

protons, suggesting a cis relationship (Figure 3.19).

3.64c. Explanation of the Proposed Stereochemistry

In the cyclisations o f the methyl ester 149, only iodine monobromide in acetonitrile 

furnished the lactone 254, but only after a lengthy reaction time. Obviously, cyclisation of 

the ester involves the loss o f the methyl group of the ester at some stage, while for the 

carboxylic acid proton abstraction occurs readily so cyclisation should progress at a faster 

rate. Thus cyclisation of the acid 370 should occur with retention of the double bond 

geometry. However, due to the close proximity o f the ring protons in the NMR spectrum, 

nOe experiments could not confirm the stereochemistry, but the J  (5H-1’H) value of 5.0 

Hz, suggested a cis relationship between the CHI and CHO protons (Figure 3.29). The 

proposed structure o f the lactone is thus:

3.65c. Optimisation Experiments

Interestingly the corresponding (Z)-methyl ester 149 cyclised only on treatment with the 

more reactive iodine monobromide. Accordingly, the conditions that previously afforded 

the lactone 254 from the cyclisation of the (Z)-methyl ester 149 were used to test which 

lactone would be formed (Scheme 3.21). When the carboxylic acid 370 was treated with 

iodine monobromide and potassium chloride in acetonitrile, a vast mixture of isomers was 

obtained in a disappointing 14% yield. Interestingly, the major product was the lactone 

254 from the initial cyclisation on the corresponding (Z)-methyl ester 149 (Figure 3.18). 

So one set o f conditions, iodine monobromide in acetonitrile, seemed to have given rise to 

the same product in the cyclisation o f the ester 149 and acid 370. In both cases, the 

products were grubby, which could have been due to incomplete isomerisation during the 

reaction or 6-lactone formation.

HQ. NHTs

Figure 3.29
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As explained previously, when the Lindlar reduction was repeated, incomplete reduction 

occurred and another substance was also apparent in the NMR spectrum. This mixture was 

treated with a 2M solution of potassium hydroxide in methanol to give the corresponding 

carboxylic acid 370 which was treated with iodine monobromide, potassium carbonate in 

dichloromethane to furnish the lactone as a 6:1.5 mixture of diastereoisomers, in 85% 

yield. No purification was conducted, but it was tangible from the NMR spectrum of the 

crude product, that the major isomer was lactone 372a (Figure 3.29).

HQ COzH 
Bu / —{  -  Bu

NHTs
I

371 372

Scheme 3.53. Reagents: a) IBr, CH2Cl2, K2C 0 3, 1.75 h, 85%; b) I2, MeCN, 2.75 h, 74%.

Finally, iodine and potassium carbonate in acetonitrile gave a 4.5:1.5 mixture of 

diastereoisomers in 74% yield, the major isomer of which was lactone 372a. Once again, 

the conditions employed in the cyclisations, greatly affect the yield and 

diastereoselectivity. The results are summarised in Table 3.17.

HO C02H 
Bu ) — £

NHTs
370

Conditions Time
0 0

Ratio in 
crude NMR

Major
Product

Crude 
Yield (%)

IBr, K2C 0 3, 
MeCN, -20°C

2 Mixture

HO NHTs

Bu _372a

14

i2, k 2c o 3, 
c h 2c i2, o°c

3 1

HO NHTs

' r f r o
Bu 372a

100

i2, k 2C03,
MeCN, 0°C 2.75 4.5:1.5

HO NHTs 

372a

74

IBr, K2C 0 3, 
CH2C12, -20°C

1.75 6:1.5

HQ NHTs

' - r Q * o
Bu 372a

85

Table 3.17

HO> NHTs

V V ^ o
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From Table 3.17 it is apparent that these results were very different to what was observed 

with the corresponding (Z)-methyl ester derivative 144a, since iodine failed to initiate 

cyclisation to the pyrrolidine (Table 3.10). In addition, only one set of conditions 

furnished any product, while the corresponding acid derivative 370 cyclised to lactones 

with all the conditions tested. Interestingly, the conditions that afforded a lactone 254 with 

trans relationship between the CM  and CHO protons, iodine monobromide in acetonitrile, 

from the cyclisation of the methyl ester 149 also gave the same lactone 254 with the 

corresponding acid 370, but in addition to other isomers. The major isomer isolated in 

these cyclisations however was the lactone 372a with a cis relationship between the CM 

and CHO protons, which was not previously isolated in the cyclisations o f the methyl ester 

(Table 3.11).

3.63d. Cyclisation of aryl, trans, anti Precursor

The alkyne 146a from the aldol condensation of the enolate o f N-tosyl glycine with 

phenylpropynal 117 (Scheme 2.10, Chapter 2) was exposure to Lindlar’s catalyst in ethyl 

acetate to give a 3:1 mixture o f the czs-alkene 147a and saturated product 148a (Scheme 

3.54; a). The crude product was treated with a 2M solution of potassium hydroxide in 

methanol to form the corresponding carboxylic acids 373 and 374 in a 10:3 ratio, with 

retention o f the (Z)-geometry o f the olefin ( J 11.7 Hz) (Scheme 3.54; b). The product was 

reacted crude with iodine monobromide, potassium carbonate in acetonitrile (Scheme 3.54; 

c). Formation o f a lactone 375 was suggested by the classic carbonyl signal at 1790 cm'1 

in the infrared spectrum, a molecular ion of 488 together with the CM  signal at 28.5 ppm 

and carbonyl signal at 171.8 ppm. The NMR spectrum of the proposed lactone 374 
displayed a series o f doublets and lacked the expected two double doublets. Presumably, 

the second coupling value was very close to zero. A coupling of 5.4 Hz was observed 

between the CM  and CHO protons, suggesting a cis relationship. nOe experiments were 

attempted, but unfortunately, decomposition o f the lactone 375 occurred, prior to analysis.
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HO NH
HO COaMe HO COaH

P*'\==) ~ ^ ' Ph\==̂ C  n°v >NHT*
NHTs NHTs

147a b 373

Ph v  ^  Ph
NHTs NHTs

148a 374

i
PH

OH OH
^ ^ A ^ C O jM e  D h '^ A ^ 'C°JH 376

Scheme 3.54. Reagents: a) H2, Lindlar’s catalyst, EtOAc, 75% 147a and 25% 148a b) 2M 

KOH, MeOH, R.T., 16 h, 57% 373 and 50% 374; c) IBr, MeCN, K2C 0 3, 20%.

Despite being a single diastereoisomer, following the workup, the lactone 375 was isolated 

in only 20% yield (Scheme 3.54; c). No other material was isolated and due to the 

problems highlighted by the corresponding trans derivative 369, it was unclear if this 

reaction could be optimised. Sufficient quantity o f the carboxylic acid 373 was 

synthesised and was divided into three batches, with each batch subjected to different 

conditions. When iodine or iodine monobromide in dichloromethane was used, the NMR 

data was inconclusive. However, iodine and potassium carbonate in acetonitrile delivered 

the lactone 375 in 69% yield, as the sole product.

^  n o — p o jt

^=1  NHTs 
373

Conditions Timescale (h) Crude Yield (%)

IBr, K2CO3, MeCN, -20°C 2 20

I2, K2CO3, CH2CI2, o°c 19 0

I2, K2CO3, MeCN, 0°C 3 69

IBr, K2CO3, CH2CI2, -20°C 2.75 11

Table 3.1!

With regards to the stereochemistry, it was assumed that the cis relationship in the olefin 

was retained in the lactone 375. Previously, to deduce the stereochemistry between the 

CHO and CM  protons, coupling constants were used. In this example 375, this coupling 

constant was found to be 5.4 Hz. In the case of the lactone 326a, where there was a trans 

relationship between these two groups, the coupling constant was 10.8 Hz, while a much 

smaller value o f 5.0 Hz was observed with the cis substituted latone 372a. Thus, it can be 

assumed that there was a cis relationship between the CHO and CM protons in lactone
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375. To confirm this, nOe experiments were conducted, but unfortunately, the sample 

degraded prior to analysis.

5.64d. Conclusion

Interestingly, the best conditions for the pyrrolidine 296a formation, iodine monobromide 

and potassium carbonate in dichloromethane only afforded the lactone 375 in 11% yield, 

the optimum conditions being iodine in acetonitrile, which failed to give the pyrrolidine 

296a in the previous series o f cyclisations (Table 3.10). In addition, the geometry of the 

olefin appears to be crucial in these cyclisations with the (Z)-phenyl acid 373 affording a 

lactone 375 while the corresponding (£)-phenyl acid 368 did not. This is a stark contrast 

to what was observed previously with the cyclisations of the methyl esters (Tables 3.10 

and 3.13). Generally, in comparison with the iodopyrrolidines, the yields were lower and 

the cyclisations less selective.
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3.70. Methodology towards the core of Pseudodistomin

3.71. Introduction

Pseudodistomins A 376 and B 377 isolated from the Okinawan tunicate 

Pseudodistoma kanoko are potent antineoplastic piperidine alkaloids which exhibit 

calmodulin antagonistic activity, the proposed structures of which are shown in 

Figure 3.26.26

 ________________ (5 - ! -

378

Figure 332

However, further work by the Naito group revealed these structures were 

inaccurate. Pseudodistomin B acetate 379, prepared from a natural sample was 

subjected to ozonolysis, followed by reduction and acetylation to furnish the 

tetraacetate 380. FABS mass spectroscopy of 378 revealed the side chain was 6 \ 8’- 

tridecadiene, not 3’-5’-tridecadiene as originally believed (Scheme 3.55).

r V
a  or b or c

379 380

Scheme 3.55. Reagents: a) O3; b) NaBR*; c) AC2O, py.

The structure o f pseudodistomin B was revised to 378 (Figure 3.32) following the total 

synthesis o f its acetate 383b (Scheme 3.56). Tosylation of the known alcohol 381, 

following by a coupling reaction gave a 2:1 mixture o f 383b and 383c. Acylation of 

383c gave the acetate 383b the data obtained for which was identical with natural 

pseudodistomin B acetate 383b (Scheme 3.56).
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OAc

■ U'N '  
Ac
381

&
Ac
382

NHAc

OAcstr'N
Ac
383b

OH
^A^NHAc

'N
Ac
383c

Scheme 3.56. Reagents: a) TsCl, DMAP, Et3N, 70%; b) Li2CuCl4, -20°C, 61%.

Gross et. al., reported that lactones bearing a secondary iodide can be converted into 

piperidones 386, after treatment with sodium azide, hydrogenation and rearrangement of 

the amine in the presence of catalytic sodium methoxide (Scheme 3.57).

OMe

a,b

OMe

MeO

OMe

384

OMe

MeO

OMe

385

MeO
c,d OMe

-OH

386

Scheme 3.57. Reagents: a) NaN3, DMF, 100°C, 3 h, 95%; b) LiHMDS, THF, Mel, 60%,

c) H2, Pd/C, 60 psi, EtOH, 100 %; d) NaOMe (cat), MeOH, 65°C, 2 h, 75%.

The developed lactone methodology was to be used to synthesise the pseudodistomin core, 

involving a rearrangement o f the amino lactone II to lactam I, as the key step (Figure 

3.33).
OH

HO^J^/NKTs

FT^N^O
H
I

^  h2n

HO NHTs

y - V ^ o

HO NHTs HO NHTs

III IV

Figure 3.33
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3.72. Results and Discussion

Problems arose early on in the synthesis with the azide displacement. When the methyl 

lactone 326a derived from the iodolactonisation of the (£)-methyl anti acid 367 (Scheme 

3.58; a) was treated with sodium azide according to the conditions reported by Gross, 

detosylation occurred (p 117). Accordingly, milder conditions were necessary. With the 

destruction of the starting material the next test reaction was conducted on the available 

butyl lactone 327a (Scheme 3.58; c). The temperature was lowered to 60°C for 2 h to give 

a mixture of products. Following chromatography, the azide 398 was isolated as a single 

diastereoisomer, but in very low yield, 6% as apparent from the characteristic azide 

absorbance in the infrared spectrum at 2106 cm"1, the loss of the CM signal and HRMS 

(Scheme 3.58; b). The mechanism of azide displacement is Sn2, therefore inversion of the 

CM proton should occur, but due to coincidental resonances, verification of the new trans 

relationship between the CHN and CHO protons was not determined. Olefin resonances 

due to elimination were also apparent in the NMR spectrum of the crude product, but 

confirmation was not ascertained.

HO. NHTs HO. NHTs HO.___NHTs HC>___NHTs

y & o  * N: r ^ °
326a 397 “ 327a 398

Scheme 3.58. Reagents: a) NaN3, DMF, 100°C, 3h, 0%; b) NaN3, DMF, 60°C, 3 h, 8%; c)

NaN3, DMF, 60°C, 2 h, 6%.

Further optimisation reactions were conducted on the methyl substituted lactone 326a, 

being easier to synthesise. When lactone 326a was treated with sodium azide in DMF at 

60°C for 3 h the crude product contained an elimination product. Following purification, 

the azide 397 was formed in 8% yield, together with some tosyl impurity, as confirmed by 

HRMS, the distinctive azide peak at 2094 cm"1 in the infrared spectrum and loss of the CM 

signal (Scheme 3.58; b). This time the new C//N3 signal was easily identifiable and a 

coupling of 9.1 Hz between the C//N3 and CHO protons, which was only slightly smaller 

than the 10.8 Hz trans coupling for the iodolactone 326a.

The iodolactone 326a precipitated out of chloroform, but the azide 397 was soluble so this 

gave an early indication that the reaction was successful, but made comparison of the
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NMR spectra more difficult. The abysmal yield meant that an alternative strategy was 

required. Labelle29 et. al., reported that tetrahydrofurans containing a secondary iodide, 

gave an azide on treatment with sodium azide in DMSO (Scheme 3.59), but since lactones 

are different systems, the methodology might not be successful.

When the temperature was lowered to 45°C using DMSO as the solvent, numerous 

products were formed; accordingly, the reaction using DMF as the solvent continued to be 

optimised in view of this. Since the reaction proceeded at 45°C, this suggested that the 

temperature could be lowered further from 60°C and hopefully reduce the amount of 

elimination observed.

Subsequently, the azide displacement step was repeated using 15-crown-5 initially at 45°C 

for 16 h, but unfortunately no reaction was observed, suggesting that the ideal temperature 

range was 45-60°C. The optimum temperature range was discovered to be 60°C, but the 

yield was still very poor, 8%. The low crude yields obtained in the reaction, were believed 

to be due to ring opening of the lactone. To test this theory, after the initial ether 

extraction, the combined aqueous phases were acidified to pH 1 to hopefully re-close the 

lactone, and re-extracted with ether, but no product was isolated.

When the reaction time was lengthened from 3 h to 16 h, a marginal increase in the yield 

was observed (Scheme 3.60). Disappointingly, reduction in the level of elimination 

observed was not achieved in any of the conditions employed.

399 400

Scheme 3.59. Reagents: DMSO, 45°C, 4 h, NaN3.
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HO. NHTs

326a 397

Scheme 3.60. Reagents: a) NaN3, DMF, 100°C, 16h, 12%.

The azide displacement was repeated at 60°C for 5.5 h, but starting material remained. So, 

complete reaction could not have occurred in the previous 3 h experiments. Following 

optimisation, the azide 397 was obtained in 12% yield. As this was only a sideline, no 

significant time was spent on further optimisation.

When the azide 397 and impurity apparently containing a tosyl group was subjected to 

hydrogenation for 16 h, only starting material was isolated (Scheme 3.61; a). This was not 

unexpected, since Bemsmann conducted the experiment under pressure (60 psi). The 

reaction was repeated but for 64 h, and, fortuitously, when deuterated chloroform was 

added to the residue, a fine white precipitate was formed. This precipitate was too fine to 

collect by normal filtration, so instead, the product dissolved in chloroform was filtered 

through a plug of cotton wool and the remaining solid was washed with more chloroform. 

The solid was then dissolved in methanol and filtered through the plug. The two fractions 

were evaporated separately and following NMR analysis, the methanol fraction contained 

the product 402 as a single diastereoisomer, while the chloroform fraction contained the 

impurity (Scheme 3.64; b).

HO. NHTs

401

NHTsHQ.

397

NHTs

402

Scheme 3.61. Reagents: a) H2, Pd/C, MeOH, 16 h, 0%; b) H2, Pd/C, MeOH, 64 h, 83%.

The NMR spectrum of the product 402 in deuterated acetone showed two NH resonances 

at 5.80 and 6.40 ppm and two OH resonances at 4.55 and 4.65 ppm, all of which 

exchanged with D20 . The ring protons were unresolved; hence the sample was rerun in 

deuterated methanol to determine the coupling constants. In addition, to the loss of the
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azide peak at 2106 cm'1, a carbonyl resonance at 1658 cm"1 was apparent in the infrared 

spectrum, corresponding to a 6-ring lactam. All this evidence indicated that the amine 401 

underwent rearrangment to afford the desired lactam 402, highly selectively (Scheme 3.61;

b). By taking into account the amount of tosyl impurity recovered, it was discovered that 

the hydrogenation and subsequent rearrangement had occurred in an excellent 83% yield, 

despite being on such a small scale (Scheme 3.61; b).

The coupling constants for 6-membered rings, unlike the 5-membered rings can be used to 

define the stereochemistry. From Table 3.19, it is apparent that the couplings are in the 

range 3-5 Hz, that is axial-equatorial couplings and/or equatorial-equatorial couplings.

Coupling /va lu e
/(3-4-H) 3.2
/(4-5-H) 4.4
/(5-6-H ) 3.1

Table 3.19

3.73. Conclusion

Despite the high yield and excellent selectivity for the key step, optimisation of the 

cyclisation and azide displacement is required (Scheme 3.50 and 3.60). However, the fact 

that sodium methoxide was not necessary to induce the rearrangement, was advantageous 

since it shortens the synthetic route. Also the stereochemistry of the lactam 402 needs to 

be verified and once optimisation of the azide displacement step is achieved, these results 

could be applied to the synthesis of pseudodistomins.
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Chapter Four

Silver Catalysed Cyclisations and Natural Product Synthesis

4.10. Introduction: Alternatives to Iodine in 5-Endo-dig Cyclisations

4.11. Copper(I) Mediated Cyclisations

Previous work in the Knight group by Sharland1 involved 5-endo-dig cyclisations using 

acids and transition metal salts as alternatives to iodocyclisations for pyrrole syntheses.1 

Treatment of the amino alcohols 403 derived from the aldol condensation of the enolate of 

ethyl N-tosyl glycinate with various aldehydes or ketones (Section 1.40, Chapter 1) with 

copper(I) acetate in a refluxing mixture of pyridine and diethyl ether gave dihydropyrroles 

404a-e in high yields, with only traces of pyrroles 405a-e (Table 4.10).

H O  R ' HO R'

-co^t — _ + - d -
NHTs R Vs 2E'  R ^  C° 2E'

403 404a-e 405a-e

Scheme 4.10. Reagents: 1.0 eq Cu(I)OAc, 1:1 pyridine/ether, 90°C.

R R’ 403 Timescale (h) Dihydropyrrole Pyrrole
(% ) 404 (%) 405

1 Butyl H 116 6 86 a 14 a
2 H 120 4.5 71 b 29 b
3 Ph H 119 1 95 c 5 c
4 Ph Me 130 16 100 d 0 d
5 Ph z-Pr 132 16 100 e 0 e

Table 4.10

The rates varied considerably; in particular when there was conjugation of the acetylene to 

the R group, the rate of the reaction is greatly increased provided there are no steric 

constraints. It was surprising that the dihydropyrroles 404 could be isolated especially 

when one considers that in the iodocyclisations of alkyne diols 406, conversion to the 

iodofrirans 407 was observed, but the intermediate could not be isolated (Figure 4.10).2,3 

However, when the related alkyne sulfonamides 408, dihydroxypyrroles 409 were isolable,
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sometimes as the sole product, which following an elimination reaction afforded the 

corresponding pyrroles 410 (Figure 4.10)1.

NHTs

406 407 408 409 410

Figure 4.10

4.12. Palladium Catalysts

This success led Sharland to test various other metal salts in these cyclisations using 

identical conditions used in the copper(I) cyclisation, in a sealed tube at 90°C with one 

equivalent of the metal salt. Tetrakis(triphenylphosphine)palladium(0), dichloro-fcw- 

(triphenylphosphine)-palladium(H) and palladium(II) acetate were all tested. No reaction 

occurred with the Pd(0) species, while dichloro-te-(triphenylphosphine)-palladium® 

gave the dihydropyrrole 404a, together with large amounts of triphenylphosphine residues. 

Palladium® acetate and chloride both gave the desired product after extended reaction 

times. However, the reactions of these palladium ® salts were not as clean as those of 

copper© acetate and traces of jV-tosyl glyine ethyl ester 113, presumably due to 

palladium-catalysed side reactions and subsequent decomposition, were evident in the 

NMR spectrum of the crude product. These factors, coupled with the high cost of 

palladium salts made these reactions less than attractive.

4.13. Mercury (II) Acetate

Mercury® acetate has been used for 5-endo dig cyclisations in the synthesis of (+)- 

preussin 4 (Figure 4.36).4 However, when a variety of substrates 403 were subjected to the 

same conditions as used for the cyclisations with copper© acetate, all the reactions were 

successful, yielding mixtures of dihydropyrroles 404a-e and pyrroles 405a-e, but again not 

as cleanly as when using copper© acetate (Table 4.10). Also, more decomposition of the 

precursor to ethyl 7V-tosyl glycinate 113 was observed. With the demand for green 

chemistry, the toxicity of mercury©) acetate was clearly a highly negative factor. In
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addition nickel(U) acetate, tin(IV) chloride and zinc(II) bromide, all failed to induce 

cyclisation, while lead(IV) acetate gave similar results to mercury acetate, (Table 4.11).

HQ R’ H<?  ,R'
'CQ2Et ---- „ + f t

NHT. R ?8 2B R ¥ , 2E'
403 404a-e 404a*e

R R’ 403 M(L). Tlmescale Dihydropyrrole Pyrrole
(h) (%) 404 <%) 405

1 Butyl H 116 Pd(OAc)2
Hg(OAc)2 6 74

77 a 26
23 a

2 H 120 Pd(OAc>2
Hg(OAc>2 5 54

61 b 49
39 b

3 Ph H 119 Pd(OAc>2
Hg(OAc>2

2 66
72 c 34

28 c

4 Ph Me 130 Pd(OAc)2
Hg(OAc)2 16 >95

>95 d >5
>5 d

5 Ph i-Pr 132 Pd(OAc)2
Hg(OAc)2 16 >95

>95 e >5
>5 e

Table 4.11

4.14. Mineral Acids

With the success of the previous cyclisations, Sharland conducted cyclisation studies with 

both 4-toluenesulfinic acid and 4-toluenesulfonic acids. Precursor 119 in benzene was 

refluxed with half an equivalent of 4-toluenesulfonic acid for 6 h, to give the pyrrole 405c 

in 86% yield (Scheme 4.11; a). When the reaction was repeated using 4-toluenesulfinic 

acid, again the pyrrole 405c was isolated, but in 72% yield (Scheme 4.11; b)

, ^ \ X 0 2Et a o r £  R l^ N^ - C 0 2Et

PYi NHTs Ts
119 405c

Scheme 4.11. Reagents: a) 0.5 eq 4-toluenesulfinic acid, toluene, 110°C, 6 h, 86%;

b) 0.5 eq 4-toluenesulfonic acid, toluene, 110°C, 6 h, 72%.

The reaction was repeated with the same variety of substrates 403a-e previously used in 

the cyclisation studies, but in all cases, the pyrroles 405a-e were isolated, with no trace of
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the desired dihydropyrroles 404a-e (Figure 4.11). This result was not totally unexpected, 

since these acids had previously been investigated in the dehydration of iodo- 

dihydropyrroles (Figure 4.10), but although the reaction was deemed successful, some 

degradation of the product led to the use of methansulfonyl chloride and pyridine as an 

alternative.

NHTs NHTs

403 405a-e 411 412

Figure 4.11

The presence of the 3-hydroxyl group appears to be crucial in these reactions. The related 

homopropargylic sulfonamides 411 did not cyclise under identical conditions to form the 

corresponding dihydropyrroles 412 (Figure 4.11). The process is believed to be in 

equilibrium and hence the irreversible dehydration of the dihydropyrroles could be 

responsible for driving the reaction to completion.

4.15. Background: Silver(I) Nitrate-Induced Cyclisations

In studies towards the synthesis of 2,3,5-trisubstituted furans, Marshall and Sehon5 

discovered that a base-catalysed isomerisation of a- and p-alkynyl allylic alcohols 413 

occurred to form furans 414 in yields ranging from 65-95% (Scheme 4.12; a). Clearly, this 

method would be inappropriate in the synthesis of furans containing base sensitive groups. 

Fortunately, related research6 revealed that 10 mol% of silver nitrate in anhydrous acetone 

successfully catalysed the isomerisation of allenones 415 to furans 416, but in variable 

yields (10-80%) (Scheme 4.12; b).

413 414 415 416

Scheme 4.12. Reagents: a) KO-f-Bu, 18-crown-6, /-BuOH, 3-6 h, 65-95%; b) AgNC>3,

Acetone-water, CaCC>3.
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Marshall and Bartley conducted further experiments to determine if the presence of water 

and calcium carbonate was mandatory for the silver catalysed cyclisation to occur. 

Accordingly, substrate 417 was treated with 0.2 equivalents of 10% silver nitrate on silica 

gel, but using various ratios o f acetone to water and also in anhydrous solvents (Table 4.13, 

entries 4 and 5). Research revealed that the reactions proceeded more efficiently in the 

absence of calcium carbonate, and also that accelerated rates of reaction were achieved by 

decreasing the water content (Table 4.13).

417 418

Conditions Tim e(h) Yield (%)
1 Me2C0-H20  (60:40yCaC03, (0.2 eq) AgN03 72 73
2 Me2C0-H20  (75:25)/CaC03, (0.2 eq) AgN03 36 84
3 Me2C0-H20  (90:10)/CaCO3, (0.2 eq) AgNOs 4.5 84
4 Acetone, (0.2 eq) AgN03 <1 90
5 Tetrahydrofuran, (0.2 eq) AgNQ3 3 84

Table 4.13

With the success of these silver nitrate-catalysed cyclisations, experiments were conducted 

on a more readily accessible substrate 419 (Table 4.14). However, unlike the cyclisations 

of the allenes7, the reaction time scale was much greater and so in a bid to decrease this, 

alternative sources of the Ag(I) ion were tested5 (Table 4.14).

419 420

Catalyst (eq) Timescale (b) Yield (%)
1 AgNOa (0.2) 12 86
2 AgOTf (0.2) 12 91
3 AgBF4 (0.2) 2 97
4 AgOCOCF3 (0.2) 2 93
5 AgNCVsilica gel (0.1) 12 92

Table 4.14

From Table 4.13, it can be seen that the best catalysts were silver tetrafluoroborate and 

trifluoroacetate, both in terms of timescale and yield and, in addition, commercially 

available 10% AgNCVsilica gel yielded the desired furan 420 in 92% over a 12 h period.
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These reactions were proving to be virtually quantitative, but was it possible to reduce the 

reaction time? Consequently, Marshall and Sehon conducted further experiments utilising 

commercially available 10% AgNCVsilica gel, in a variety of solvents (Table 4.15). It was 

discovered that the rate was significantly slower using diethyl ether, acetonitrile or 

tetrahydrofuran. Marshall believed that a non-polar solvent would increase the affinity of 

the polar alcohol towards the surface of the silica gel, hence, hexane was tested.

CgH, Acetone,  /
/ t

419 420

Solvent Timescale (h) Eq of catalyst Yield (%)
1 Me2CO 12 0.2 92
2 MeOH 12 0.2 96
3 CH2C12 12 0.2 87
4 Hexane 1 0.1 96
5 Hexane 2* 0.1 91

Table 4.15

Marshall’s hypothesis proved correct but in addition the catalyst could be reused (entry 5, 

Table 4.15). A flow system was developed where this cyclisation was performed 

repeatedly by passing the alcohol in hexane through a stainless steel column packed with 

the catalyst. To date, no work has been published using this methodology to form 

nitrogen-containing heterocycles.

The final set of experiments conducted by Sharland on the 5-endo dig cyclisations of the 

amino alcohol derivatives 403 exploited Marshall’s silver catalysed cyclisation
C Z *1

methodology. * ’ If 10% w/w silver nitrate on silica gel could give the desired 

dihydropyrroles 404a-e, then hopefully the use of pyridine and heating would not be 

necessary. Hence the same precursors 403, used in the previous studies (Section 4.10) 

were treated with one equivalent of 10% w/w silver nitrate on silica gel in anhydrous ether 

and delightfully, the dihydropyrroles 404a-e were isolated cleanly and in virtually 

quantitative yield (Table 4.16). Hence, 10% w/w silver nitrate on silica gel could be used 

as an alternative to sealed tube reactions in 5-endo-dig cyclisations on these substrates 403. 

These dihydropyrroles 404a-e were sensitive to elimination and dehydration to the 

corresponding pyrroles 405a-e was observed when these dihydropyrroles 404a-e were left 

standing in deuteriochloroform overnight. The reaction times again depended upon the
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nature of the R group, less reactive bulky precursors required extended reaction times 

(Table 4.16).

HQ. R' H? ^ p,
3C ^co2Et — „ j r X^  T R ^ N̂ C 0 2Etr  NHTs !j?8 2

403 404a-e

R R’ 403 Timescale (h) Yield
<%) 404

1 Butyl H 116 3 98 a
2 H 120 3 96 b
3 Ph H 119 2 87 c
4 Ph Me 130 48 91 d
5 Ph i-Pr 132 48 94 e

Table 4.16

Based on Sharland’s results, 10% silver nitrate on silica gel appeared to be an excellent 

choice of reagent for the cyclisations of amino alcohol derivatives 403, affording the 

products cleanly without the need for any purification, which is in contrast to several of the 

previously tested reagents. However, it was unclear whether due to the instability of the 

dihydropyrroles 404, this methodology be further exploited in the synthesis of pyrrolidines.
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4.20. Results and Discussion: Silver(l) Nitrate Cyclisations in the
Synthesis of Pyrrolidines

4.21. Cyclisation of an Aryl Substituted Amino Alcohol

Previously, in the silver-catalysed cyclisations of the amino alcohols, Sharland had used 

one equivalent of 10% silver nitrate on silica gel in anhydrous ether (Table 4.16), but could 

the reactions proceed using a catalytic amount of 10% w/w silver nitrate on silica gel? 

Accordingly, 146a was treated with 0.5 equivalents of 10% silver nitrate on silica gel for 1 

h to afford the dihydropyrrole 421 in 93% yield, as apparent from the loss of the alkyne 

signals in the 13C NMR spectrum and the appearance of a new olefin doublet at 5.40 ppm 

(Scheme 4.13). This suggested that a stoichiometric amount of the silver reagent was not 

necessary for complete reaction. Presumably, the amount of silver reagent could be 

lowered further, but experiments were not conducted at this stage. For convenience, the 

products are drawn in enantiomeric form to those drawn in the introduction.

-  j c ?P h ^ N/  "COzMe 
Ts 
421

Scheme 4.13. Reagents:0.5 eq AgNCVSiCh, CH2CI2, 1 h, 93%.

NUTS

The reality that these dihydropyrroles were isolated is less surprising when one considers 

that Paquette8 synthesised a dihydrofuran 424 from D-mannose and manipulated this to 

form the corresponding hydroxy tetrahydrofuran 425, by stereo-directed catalytic 

hydrogenation (Scheme 4.14).
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OTBS MOMO

OSEM

OH MOMO
OH

a - d
MOMO, MOMO,

e

O
422 424 425

MOMO
OMOM

423

Scheme 4.14. Reagents: a) f-BuLi, THF, -78°C; b) 423, THF, -78°C, 52%; c) SEMC1, 

(/-Pr)2NEt, CH2C12, 85%; d) TBAF, THF, 0°C, 66%; e) [Rh(NBD)(Dn>HOS-4)]BF4, H2,

(800 psi), NaH, THF, 68%.

A hydroxyl-directed hydrogenation procedure was used to establish the third stereogenic 

centre of the tetrahydrofuran ring and since the dihydrofuran 424 had a tendency to 

eliminate water, a considerable amount o f pressure was mandatory (800 psi).

In order to synthesise the desired pyrrolidines from the dihydropyrroles using this 

methodology, it was necessary to perform an addition reaction to the double bond to 

discourage elimination to the corresponding pyrrole. It was decided to exposure the 

dihydropyrrole to hydroboration conditions, using borane-tetrahydrofuran complex. The 

dihydropyrrole 421 contained an ester group, which under normal circumstances would not 

be reduced by borane. However, the presence of a hydroxyl group p to this ester meant 

that reduction of the methyl ester might occur. This is because an intermediate is formed 

which following electron donation, results in nucleophilic activation of the B-H bond, 

which ultimately makes this intermediate a stronger reducing agent than borane, hence 

reduction of the ester moiety can occur. This reduction would overtly be advantageous 

since this would reduce the likelihood of elimination to the corresponding pyrrole and thus 

increase the stability of the product.

When the dihydropyrrole 421 was treated with a 1M solution of borane-tetrahydrofuran 

complex in tetrahydrofuran for 16 h, followed by oxidation using sodium hydroxide and 

hydrogen peroxide, the *H NMR spectrum of the crude product revealed that absence of 

the alkene resonance at 5.5 ppm and also that incomplete reduction of the methyl ester had 

occurred (Scheme 4.15). There were at least three signals in the methyl ester region of the 

spectrum indicating that either a mixture of diastereoisomers had formed or that the
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reaction gave a mixture of products. At this stage no purification was attempted. However 

if the product was a mixture of diastereoisomers, the selectivity of the reaction could in 

theory be improved by sterically shielding the top face of the olefin to encourage attack of 

the electrophile from the back face of the olefin. Hence to shield the top face of the olefin, 

it was decided to protect the hydroxyl group as a sterically hindered silyl ether, in an 

attempt to obtain the desired product 426.

'CC>2Me

421 426

Scheme 4.15. Reagents: a) 4 eq. BH3-THF, THF, H2O2, NaOH.

The dihydropyrrole 421 was treated with triethylamine and TBS triflate in tetrahydrofuran 

to afford the TBS ether 427 in 86% yield, as deduced by the new /-butyl singlet at 0.75 

ppm in addition to the two SiMe singlets at -0.0 and 0.0 ppm and the slight shift of the 

CHO and CZ/CC^Me protons (Scheme 4.16). It was hoped that this protection of the 

hydroxy group would reduce the likelihood of elimination occurring, but it was decided not 

to purify the crude product.

.OH OTBS

jr\.  -  jr\
P h 'COzMe P h ^ N/  "C 02Me

Ts Ts
421 427

Scheme 4.16. Reagents: TBSOTf, EtsN, THF, 2 h, 86%.

The TBS ether 427 was then subjected to hydroboration using four equivalents of borane- 

tetrahydrofuran complex and following oxidative workup and chromatography, the product 

was obtained as a single diastereoisomer 428a (Scheme 4.17). Other than the obvious loss 

of the olefin signal and methyl ester singlet, the *H NMR spectrum was unfortunately not 

very informative, while the 13C NMR spectrum revealed four methine resonances at 71.9, 

75.3, 83.0 and 84.1 ppm, characteristic of a pyrrolidine ring. An observed molecular ion of 

478 (M+ + H), further clarified the formation of the desired pyrrolidinol. Unfortunately, 

the pyrrolidine ring protons in the region 3.95-4.95 ppm were all apparent singlets, and as 

such no coupling data could be obtained, to differentiate between the ring protons. Also
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their close proximity meant that nOe experiments could not be conducted to deduce the 

stereochemistry and being an oil, X-ray diffraction was also not an option.
PTBS HO___ OTBS

Borb. jr \ oh
P t r s'N^ ,'/C02Me

Ts Ts
427 428a

Scheme 4.17. Reagents: a) 4 eq. BH3-THF, THF, H20 2, NaOH, 44%; b) 2 eq. BH3-THF,

THF, H20 2, NaOH, 23%.

Despite being unable to determine the stereochemistry, the structure of the product could

be determined by considering the mechanism of the reaction. Hydroboration is

regioselective and so the boron always adds to carbon of the alkene that is less substituted.

Following a controlled oxidation, to convert the C-B bond into a C-O bond, overall it can

be seen that cis addition of water to the olefin occurs, with the new hydroxyl group

attached to the less substituted end of the alkene. So there are two possible isomers,

depending on the face of the alkene to which addition occurs (Figure 4.12).

Ts Ts
Where R1= Ph, R=H 426a Where R1= Ph, R=H 426b
Where R1= Ph. R=OTBS 428a Where R1= Ph. R=OTBS 428b

Figure 4.12

In addition, borane-tetrahydrofuran complex is a relatively small electrophile, so high 

selectivity was not necessarily expected to occur. When substituent (R1) was hydrogen, a 

mixture of products was formed, while when the substituent (R1) was a much larger TBS 

group, a single diastereoisomer was obtained (Figure 4.12). So it seems logical to assume 

that in the presence of the sterically hindered TBS group, the front face of the alkene is 

shielded and so addition to the boron occurs from the back face o f the alkene and following 

a controlled oxidation using alkaline hydrogen peroxide, the 3,4-trans isomer 428a had 

been obtained. In the absence of this large protecting group, either face of the alkene can 

add to the electrophile, to give a mixture of isomers, as observed.

With a view to eliminating the use of excess reagents, the hydroboration of the 

dihydropyrrole 421 was repeated with two equivalents of the borane-tetrahydrofuran 

complex, but the NMR spectrum of the crude product revealed only partial reduction of the
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methyl ester and following chromatography, the pyrrolidinol 428a was obtained in a 

reduced 23% yield, confirming that four equivalents of the borane reagent was necessary to 

reduce the ester in addition to the hydroboration of the olefin (Scheme 4.17; b).

4.22. Cyclisation of an Alkyl Substituted Amino Alcohol 144a

To be a useful synthetic method for the synthesis of pyrrolidines, the reaction must be 

compatible with a variety of R groups, so would the same success be achieved when the 

phenyl substituent was replaced with a butyl group? With the analogous phenyl derivative 

146a, the number of equivalents utilised in the silver catalysed cyclisation were halved, 

without impairing the yield (Scheme 4.13). Accordingly, the butyl anti amino alcohol 

144a derived from the tin(II) mediated condensation of the enolate of methyl JV-tosyl 

glycinate with hept-2-ynal 115 (Scheme 2.10;a , Chapter 2) was treated with 0.5 

equivalents of 10% silver nitrate on silica gel for 1.5 h, to give a 5:1 mixture of the 

dihydropyrrole 429 and pyrrole 430 (Scheme 4.18). The pyrrole 430 was characterised by 

the new olefin doublets at 5.95 and 6.75 ppm and a molecular ion of 336 (M* + H), 

consistent with cyclisation and elimination, was observed. Confirmation of the formation 

of the dihydropyrrole 429 was apparent from the OH stretch in the infrared spectrum and a 

new olefin resonance at 134.7 ppm in the 13C NMR spectrum. From the ratio in the NMR 

spectrum of the crude product, the dihydropyrrole 429 was formed in approximately 79% 

yield.

'C 0 2Me
NHTs

144a 429 430

Scheme 4.18. Reagents: a) CH2CI2, 0.5 eq 10% w/w AgN03 /Si02 , 1.5 h, R.T., 79% 429

and 16% 430.

No purification was attempted to prevent further dehydration of the dihydropyrrole 429. In 

an attempt to reduce the level of elimination observed, the precursor 144a was protected as 

the TBS ether 431, prior to cyclisation. Subsequent treatment of the aldol product 144a 

with triethylamine and TBS triflate in tetrahydrofuran for 2 h afforded a 3:1 mixture of 

diastereoisomers of the TBS ether 431 in 70% yield. The appearance of a new /-butyl

147



Chapter4: Silver Catalysed Cyclisations and Natural Product Synthesis

singlet at 0.75 ppm, new SiMe singlets at -0.05 and 0.00 ppm and a molecular ion of 468 

(M* + H), all indicated the presence of a TBS ether (Scheme 4.19; a). No purification was 

performed to avoid any epimerisation of the sensitive centre, and so the TBS ether 431 was 

immediately exposed to 10% silver nitrate on silica gel for 1 h. Following filtration 

through celite and evaporation of the solvent, the dihydropyrrole 432 was obtained as the

sole product in 43% yield (Scheme 4.19; b). Formation of the dihydropyrrole 432 was
11apparent from the loss of the alkyne signals in the C NMR spectrum and new olefin 

signal at 5c 110.9 ppm. Again, since the product had an identical molecular weight to the 

starting material, mass spectrometry data was not informative.

Scheme 4.19. Reagents: a) TBSOTf, Et3N, THF, 100%; b) 0.5 eq AgN03/ SiC>2, 4 h, 43%;

c) 4 eq BH3-THF, THF, 16 h, NaOH, H20 2, 1 h, 24%.

The silyl ether was then treated with four equivalents o f a 1M solution of borane- 

tetrahydrofuran complex for 16 h, followed by addition of alkaline hydrogen peroxide. 

Despite careful chromatography, the pyrrolidinol 433 was obtained in only 24% yield, 

deduced from a molecular ion of 458 (M* + H), consistent with the proposed structure in 

addition to the loss of both the olefin and methyl ester signals (Scheme 4.19; c). This time 

the C/fCH2OH and C//OTBS protons showed some degree of coupling, but both the 

C//OH and C//Bu protons were apparent singlets. Again, the ring protons were in close 

proximity to each other and so nOe experiments could not be conducted to ascertain the 

stereochemistry, but it was assumed that due to the large TBS group, as previously 

observed with the phenyl derivative 428a, the product would be the 3,4 trans isomer 

(Figure 4.12).

However, this limited study showed that there was a significant difference in the yield of 

the hydroboration reaction depending on the nature of the substituent. In addition, this 

substituent does affect the degree of p-elimination observed in the silver catalysed

C 02Me _ bC 02Me _ a
'C 0 2Me

NHTs NHTs Ts
432

Ts
433144a 431
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cyclisation, with the butyl dihydropyrrole 432 being more susceptible than the phenyl 

derivative 427.

4.23. Hydroboration: Optimisation Studies

Before this methodology could be applied to natural product targets, optimisation of the 

hydroboration reaction was required. Clearly, protection of the hydroxyl group was 

necessary for the reaction to be diastereoselective as previously determined, but could the 

yield be increased by using alternative protecting groups? Optimisation studies were 

conducted on the phenyl substituted dihydropyrrole 421, being similar to the natural 

product (-)-codonopsinine 3 (Figure 4.13). The dihydropyrrole 421 was treated with TIPS 

triflate and 2,6-lutidine in dichloromethane for 16.5 h and following chromatography, the 

TIPS ether 424 was isolated in 64%, as illustrated by the isopropyl multiplet in the *H 

NMR spectrum (Scheme 4.20; a). Thankfully, upon treatment of the TIPS ether 424 with a 

1M solution of borane-tetrahydrofuran complex in tetrahydrofuran followed by addition of 

alkaline hydrogen peroxide afforded the desired pyrrolidinol 435 as a single 

diastereoisomer in an improved 64% yield, without the need for purification. Formation of 

the pyrrolidinol 435 was confirmed by the expected disappearance of both the olefin signal 

and methyl ester singlet and also a molecular ion of 520 (M+ + H), consistent with the 

proposed structure (Scheme 4.20; b). As observed previously with the TBS derivative 427, 

all the ring protons were apparent singlets and due to their close proximity, nOe 

experiments were not conducted. However, it was believed that the product was the 3,4- 

trans isomer 435 (Scheme 4.20; b).

OH OTIPS HQ. OTIPS

Ph" ^ N  c ° 2Me P h - ^ N/  "COzMe Ph’̂ N^ " " '
Ts Ts Ts
421 434 435

Scheme 4.20. Reagents: a) 2,6-lutidine, TIPSOTf, CH2C12, 16.5 h, 64%; b) BH3-THF,

THF, 16 h, NaOH, H20 2, 1 h, 72%.
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4.24. Conclusion

So the silver catalysed cyclisation successfully afforded the dihydropyrroles which 

following protection as the silyl ether, were sufficiently stable to undergo the 

hydroboration reaction to form the desired pyrrolidines. With the hydroboration reaction 

optimised, the results could be applied to the natural product, but would the additional 

methoxy group on the benzene ring influence the chemistry? Also, the stereochemistry of 

the pyrrolidinol 435 needed to be established and to be a viable synthetic route to the 

natural product, it was essential that the product from the hydroboration reaction was the 

3,4-trans isomer (Figure 4.12).
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4.30. Studies Towards the Total synthesis of Codonopsinine

4.31. Introduction: Isolation and Biological Activity

(-)-codonopsine 436b and (-)-codonopsinine 3b are members of a class of pentasubstituted 

pyrrolidine alkaloids isolated from Codonopsis clematidea (Figure 4.13).9 (-)-

codonopsinine 3b possesses antibiotic and hypotensive pharmacological activity and does 

not affect the central nervous system.10

436a R=OMe 436b R=OMe
3a R=H 3b R=H 3c

Figure 4.13

In 1972, Matkhalikova11 originally assigned the stereochemistry to be 2R, 3S, 4S, 5S 3a, 

an assumption based on analyses of JH NMR coupling constants using the Karplus

equation. However, vicinal coupling constants can be unreliable when assigning the
10configuration of substituted pyrrolidines, as apparent from Table 3.14 (Chapter 3).

4.32. Previous Synthetic Approaches

11Iida , Yamazaki and Kibayashi conducted the first attempted synthesis of the natural 

product 3b in 1985. Their route commenced from L-tartaric acid which was converted into 

aldehyde 437 over 4 steps. Following treatment of aldehyde 437 with /?-methoxy- 

phenylmagnesium bromide, a 3.3:1 mixture of diastereoisomers was obtained. This 

mixture was then subjected to a Mitsunobu reaction using phthalimide and DEAD to afford 

a separable 1:1 mixture of epimers 438. What was believed to be the syn diastereoisomer 

438a following various deprotection, oxidation, alkylation and protection steps was 

converted into the mesylate 439. Upon exposure of the mesylate 439 to catalytic 

hydrogenolysis in situ cyclisation occurred to afford 440. Finally, A-methylation and 

deprotection of the resultant substrate afforded what was assumed to be the natural isomer 

of (-)-codonopsinine 3a. It was only upon comparison of the optical rotation of the
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synthetic material with that of the natural product that the group established that they had 

synthesised the enantiomer of the apparent naturally occurring isomer 3c (Figure 4.14).

OMOM

> V y hBnO
MOMO O

437

MOM ,OMe

MOMO

MOM .OMe

H Y
MOMO N

438a

MOMO. MOMO
OMs O

/T^OMe-^OMeMe
MOMO NHCbz 

439 440

Figure 4.14a

However, later in 1986, work by Iida14, Yamazaki and Kibayashi revealed that what was 

previously believed to be the syn, syn isomer in the initial synthesis (Figure 4.14a) was in 

fact the syn, anti diastereoisomer 438b (Figure 4.14b). Hence their previously deduced 

relative configuration of the natural product was incorrect. Accordingly, the structure of 

natural (-)-codonopsinine was revised from 3a to 3b (Figure 4.13).

MOM .  OMe M O M O '  >MOMO HO'- yPH
OMs O' f  Y  ____ /— \   ► /— \

43811 ' M e ' V v U  a  O - O M
MOMO RHCbz H Me

441 442 3b

Figure 4.14b

Later in 1991, Wang15 and Calabrese reported the first total synthesis of (-)-codonopsine 

436b, (Figure 4.15). The sequence commenced with trans-3,4-dimethoxycinnamic acid 

443, which was converted into (£)-vinyl bromide. The vinyl anion of the bromide was 

subsequently reacted with the dianion generated from the treatment of A-(ethoxycarbonyl)- 

D-alanine with n-BuLi to afford the enone 444. Reduction, followed by cyclisation using 

sodium hydride afforded the cyclic carbamate 445 as a 2:1 mixture (cisitrans). Next 

decarboxylative cyclisation with boron trifluoride etherate, followed by addition of 

ClCC^Me gave the product 446 as a 1.3:1 mixture (trans:cis). Epoxidation using m-CPBA 

afforded a mixture of epoxides 447 which upon hydrolysation with concentrated sulphuric
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acid in a mixture of dioxane and water at 95°C gave the desired product 436a in 30% yield 

in addition to other isomers (23%) (Figure 4.15).

MeO Ar

"  ^ ° y > °  t i s .t r a n s  2:1
COzH NHC02Et V-NH

443 444 ' 445 Where Ar = 3,4-(MeO)2C6H3

^ ^ O M e  + c/s isomer

436a 447 446

Figure 4.15

In 1996, Yoda16 and Takabe reported a 9-step synthesis of (-)-codonopsinine 3b from 

D-tartaric acid in 33% overall yield. The sequence involved the formation of a quaternary 

a-hydroxylactam intermediate 450, which was subjected to reduction deoxygenation to 

afford a single stereoisomer of a homochiral lactam. Following protecting group exchange 

and addition of/7-methoxyphenylmagnesium bromide the labile quaternary 

a-hydroxypyrrolidine 450 was formed. Sodium borohydride reduction using SmC13 as the 

additive gave alcohol 451 as virtually a single diastereoisomer. Mesylation of the syn 

diastereoisomer 451, followed by cyclisation using f-BuOk gave the pentasubstituted 

pyrrolidine 452. Finally, lithium aluminium hydride reduction of 452, in refluxing 

tetrahydrofuran gave the natural product 3b (Figure 4.16).

TIPSO. PTIPS
OBn NHBoc

3b 452

Figure 4.16
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In 1999 the Correia17 group conducted studies towards the synthesis of the pyrrolidine 

alkaloids (-)-codonopsine 436b and (-)-codonopsinine 3b utilising a Heck reaction of 

endocyclic enecarbamates with diazonium salts. When endocyclic enecarbamate 453 was 

treated with the diazonium salt 454, the product 455 was formed largely as a single 

diastereoisomer. After deprotection of the trityl group and mesylation of the alcohol, the 

substrate was deoxygenated using sodium borohydride to afford the C-5 methyl pyrrolidine 

446. This substrate was identical to the intermediate previously synthesised by Wang and 

Calabrese (Figure 4.15), hence a formal synthesis of (-)-codonopsinine 436b had been 

accomplished. Accordingly, the group theorized that substrate 456 could be converted into 

(-)-codonopsinine 3b using the same sequence as Wang15 and Calabrese.

L -Pyrogfutom ic
acid /TrtO

. . oN
C02Me

453

MeO—f ~ V-®=N0 BF4
MeO

454
OTrt COzMe 

455

^'OMeCO0M6

OTrt C02Me

OMe

OMe

OMe

6o2M e ^ " OMe 
446

Figure 4.17

However, optimisation was necessary since Heck arylation of the enencarbamates using 

traditional conditions {i.e. aryl triflates and or aryl iodides in the presence of phosphine 

ligands) afforded the desired pyrrolidines in typically 10-20% yield, together with 

recovered starting material. Accordingly, the group deduced that benzene-diazonium 

tetrafluoroborates could act as suitable aiylating agents for enecarbamates to successfully 

afford the desired products highly selectively in yields ranging from 90-95% (Figure 

4.18a).18
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M e O - /" " V -® = N e .

I n i t i a l , , o
bf4

C o n d i t i o n s  Trto
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C o n d i t i o n s
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Ni
G 02M©

4 5 3

Q 1
C 02Me

4 5 3
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EtOH 55°C
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N *\\ V Anti.syn 88:12
OTrt C02MeL̂ ' OMe

Yield 79%
4 5 6

N *\\ V Anti.syn 90:10
° Trt C 02M e ^ ^ OMe

Yield 90-95%
4 5 6

Figure 4.18a

With the optimisation complete the group used the previously developed methodology of 

the Wang and Calabrese group and applied it to substrate 456 to afford (-)-codonopsinine 

3b in 16% overall yield from enecarbamate 453 (Scheme 4.18b).

1 "" Y  \ \
0Trt C 02Me

4 5 6

OMe
CO2M6

HO OH

OMe

4 5 7
CO2MG

3 b
OMe

Figure 4.18b

In 2002, Ishibashi19 and co-workers completed the most recent synthesis of 

(-)-codonopsinine 3b in thirteen steps from lactol 460 in 41% overall yield (Figure 4.19). 

The sequence commenced with lactal 459 which was treated with trichloroethanol and 

catalytic TsOH to afford a 3:1 mixture of a- and p-anomers. The product was then 

protected as its MOM ether and following reductive cleavage of the trichloroethyl group, 

lactol 460 was obtained. Exposure of lactol 460 to NH2OTBDPS and mesyl chloride 

furnished mesyloxyoxime 461, which then underwent desilyative nitrone formation to 

generate the key cyclic nitrone 462. Treatment of nitrone 462 with 4- 

methyoxyphenylmagnesium bromide gave the hydroxylamine 463 as a single 

diastereoisomer. Next reduction followed by protection of the secondary amine afforded 

the corresponding carbamate, which was subsequently hydrolysed and the resulting alcohol 

protected as the tosylate 464. Finally by refluxing the tosylate 464 in THF in the presence 

of lithium aluminium hydride and deprotection of the MOM group the natural product 3b 

was obtained (Figure 4.19).
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Bn9  o  Bn9  o  Bn°v PM® OTBDPS Bn° ^ \
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BnO° OH BnO OMOM BnO OMOM
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I
HO OH MOMO J3Bn MOMC) PBn

M eO^N css^ Me M e O " \ ^  cO zMe M e O ^ X ^  q H

3b 464 463

Figure 4.19

In addition the group also used the key nitrone intermediate 462 to synthesise the novel 

pyrrolizidine alkaloids Hyacinthacines Ai 465 and A2 466 (Figure 4.20).20

HO*
• I p

BnO

BnO1

HO H

465
A1

MOMO
462

Figure 4.20

4.33. Results and Discussion

The optimum conditions for the silver cyclisation and hydroboration steps had been 

established for the model (Scheme 4.20) and these were applied to the synthesis of (-)- 

codonopsinine 3b. However, the model substrate 435 contained a tosyl protecting group 

and later in the synthesis this would have to be replaced with a methyl group. Tosyl

groups are notoriously difficult to remove, despite various literature procedures, and
01frequently harsh conditions are required. To obviate this problem, it was decided to use a 

Boc group as an alternative, since this can be easily converted into a methyl group upon 

treatment with lithium aluminium hydride. First the carbamate 469 needed to be 

synthesised. 1 -Ethynyl-4-methoxybenzene 467 was treated with n-BuLi and NJV-

dimethylformamide to afford the acetylenic aldehyde 468 in an excellent 96% yield, as 

confirmed by the appearance of a new aldehyde singlet at 9.65 ppm in addition to a 

carbonyl stretch at 1650 cm'1 in the infrared spectrum (Scheme 4.21; a). Also a melting 

point of 43-45°C, consistent with the literature value (lit22 m.p. 47-48.5°C) was observed.
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CHO
OH

R' R R

.̂COjMb

NHBoc MeO'

467 468 469

Scheme 4.21. Reagents: n-BuLi, DMF, THF, -40°C, 96%; b) 162b, LDA, S11CI2, 468,

THF, 21%.

presence of tin(II) chloride to give the desired amino alcohol 469, but in a disappointing 

21% yield, together with some recovered aldehyde 468 (Scheme 4.21; b). Formation of

NMR spectrum, in addition to the appearance of new C//N and CHO protons as multiplets

in the range 8h 4.55-4.95 ppm. Interestingly, in subsequent reactions, if the scale of this

aldol reaction was relatively small e.g. 1.25 mmol of aldehyde 468, no reaction was

observed. Now that the required carbamate 469 had been synthesised, the crucial silver-

catalysed cyclisation could be attempted. Treatment of the amino alcohol 469 with 0.5

equivalents of 10% silver nitrate on silica gel for 2 h, afforded the pyrrole 470, with no

trace of the desired dihydropyrrole. Confirmation of cyclisation to the pyrrole 470 was
11deduced from the disappearance of the alkyne resonances in the C NMR spectrum and 

the emergence of new olefin signals at 8h 6.00-7.00 ppm. In addition, a molecular ion of 

332 (M+ + H) was observed by APcI, which correlated with the proposed structure 

(Scheme 4.22a).

Scheme 4.22a. Reagents: 0.5 eq 10% w/w AgNCVSiCh, CH2CI2, 2 h, 100%.

This result was not totally unexpected, due to the electron donating /?-methoxy group on 

the benzene ring perfectly setting up the compound for elimination (Scheme 4.22b).

Next, this aldehyde 468 was reacted with the enolate of methyl A-Boc glycine in the

the desired carbamate 469 was tangible by the loss of the aldehyde singlet in the proton

OH

C 02Me
NHBoc

(OH

. y w y "'0°2Me
Boc

BocfcÔ O o
‘C02M6

Scheme 4.22b
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This result is very useful in pyrrole syntheses since this obviates the need for an extra 

(3-elimination step. In the parallel synthesis of (+)-preussin 4, the key silver-catalysed 

cyclisation of the carbamate 471 also gave the pyrrole 472 (Scheme 4.34). This result 

suggested that the Boc protecting group caused the observed [3-elimination, hence 

alternative ^/-protecting groups were investigated. An obvious choice was the 

/7-nitrobenzenesulfonyl protecting group (nosyl), due to the pioneering work conducted by 

Fukuyama.23 However, when the aldol reaction was repeated using the enolate of methyl 

JV-nosyl glycinate and aldehyde 468 in the presence of tin(II) chloride, only starting 

material was recovered. Accordingly, the previously successful tosyl group was tested and 

the detosylation issue would be addressed at a later stage.

To conserve the expensive aldehyde 468, rather than repeat the tin(II) chloride-mediated 

aldol reaction with the enolate of methyl W-tosyl glycinate to obtain the tosylate, it was 

decided to first deprotect the N-Boc amino alcohol 469 and then tosylate the free amine 

473. When the carbamate 469 was treated with a 20% solution of trifluoroacetic acid in 

dichloromethane, from the *H NMR of the crude product, it was visible that, in addition to 

deprotection, cyclisation to the pyrrole 474 had occurred in situ, in quantitative yield, as 

deduced from the loss of the /-butyl singlet and the appearance of an additional olefin 

signal at 5h 6.40-6.90 ppm. A molecular ion of 231 (M+ + H) which was consistent with 

the pyrrole 474 was observed in addition to a new NH stretch in the infrared spectrum at 

3324 cm’1, both providing further clarification for the proposed structure (Scheme 4.23).

Sharland previously conducted cyclisations on similar substrates using acids, but not using 

trifluoroacetic acid (Scheme 4.11). This result was indeed a special case since in the 

parallel synthesis of (+)-preussin 4, no pyrrole was isolated, following the deprotection of 

the carbamate 471 (Scheme 4.35). So to obtain the desired sulfonamide 475 to test the key 

cyclisation, the aldol reaction was repeated using the enolate of methyl vV-tosyl glycinate 

and aldehyde 468, to afford the sulfonamide 475 in 59% yield, as illustrated by an

OH OH

C 02Me
NHBoc

Scheme 4.23. Reagents: TFA, CH2CI2, 16 h, 100%.
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observed molecular ion o f 404 (IvT + H), consistent with the structure and the emergence 

of new C//OH and CHH signals at 4.20 and 4.80 ppm (Scheme 4.24; a). Now the key 

cyclisation could be conducted, and treatment of the sulfonamide 475 with 0.2 equivalents 

of 10% silver nitrate on silica gel for 1.5 h, afforded the dihydropyrrole 476 in 98% yield, 

as evident from only one olefin doublet at 6h 5.30 ppm and also the loss of the alkyne 

resonances in the 6c NMR spectrum (Scheme 4.24; b). Consequently, the accelerated rate 

of p-elimination observed in the previous cyclisation of the f-butyloxycarbonyl derivative 

469 was due to the vV-Boc protecting group, not the /?-methoxyl benzene functionality as 

expected (Scheme 4.22a).

R
CO^e

/C02M6
NHTs

 r % "C 02Me 
Ts R= (CeH4)OMe

468 475 476 476b

Scheme 4.24. Reagents: a) LDA, SnCh, THF, -78°C, 0.5 h, 59%; b) AgNC>3, CH2CI2,

1.5 h, 98%.

This dihydropyrrole 476 was very unstable, due to the /?-methoxy moeity and dehydrated 

to the corresponding pyrrole 476b in a few hours at room temperature. To be a viable 

route to the natural product 3b, it was mandatory that the hydroxyl group could be 

protected as the TIPS ether 477, before complete dehydration happened. Thankfully, rapid 

treatment of the dihydropyrrole 476 with TIPS triflate and 2,6-lutidine in dichloromethane 

successfully afforded the TIPS ether 477 (Scheme 4.25; a). Confirmation of the successful 

protection was obtained by the new /50-propyl resonances in the NMR spectrum of the 

crude product and also the loss of the O-H stretch in the infrared spectrum.

HQ OTIPS

TsTs OH

OTIPSOH

476 477 478

Scheme 4.25. Reagents: a) TIPSOTf, THF, 2,6-lutidine, 18.5 h; b) BH3-THF, THF, 16 h,

Na0H/H20 2, 1 h, 30%.

Due to the perceived instability o f the product 477, limited characterisation data was 

obtained. Around two thirds of the crude material 477 was chromatographed, to test the
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compound’s stability to silica. Unsurprisingly, slight isomerisation occurred to give a 7:1 

mixture of diastereoisomers and on leaving the product in deuteriochloroform overnight, 

complete isomerisation to 479 was observed (Figure 4.22). This was deduced since all the 

ring protons had become apparent singlets. This same sample was analysed by lH NMR 

spectroscopy after the weekend, after which time the pyrrole 480, with the OTIPS group 

intact had formed (Figure 4.22). This was deduced since the *H NMR spectrum showed 

retention of the /-propyl signals of the protecting group, and that the spectrum was very 

different to that o f the disubstitued pyrrole 476b, suggesting that the presence of the /- 

propyl signals was not due to presence of excess reagent. In addition the 13C NMR 

spectrum showed only one olefin CH signal at 117.7 ppm and seven quaternary carbons, 

confirming that the product was not the disubstituted pyrrole, but the TIPS protected 

pyrrole 480 (Figure 4.21).

OTIPS

/ 'C02Me

OTIPS

C 02Me

OTIPS

1̂ ' 0O 2Me 
Ts

480

Figure 4.21

With the instability o f the TIPS ether 477 established, the TIPS protection of the 

dihydropyrrole 476 was repeated, but the silyl ether 477 was immediately treated with a 

1M solution of borane-tetrahydrofuran complex, followed by alkaline hydrogen peroxide 

after 16 h at room temperature. The crude product was chromatographed to afford the 

desired pyrrolidine 478, in only 30% yield, but as a single diastereoisomer (Scheme 4.25; 

b). Once again formation of this product was apparent from the loss o f both the olefin and 

methyl ester resonances and this pyrrolidinol 478 displayed many of the characteristic 

traits previously seem with these systems, with all the new ring protons at 5h 3.90-4.75 

ppm, being apparent singlets. This yield was lower than that obtained on the model 

substrate 465, (Scheme 4.20; b), just with an additional methoxy group on the benzene 

ring. It was hoped that by using a slightly smaller silicon protecting group, the yield of the 

hydroboration reaction would be increased and since a TBS group had proven to be 

successful in the model, (Scheme 4.17; b) it was tested here. Consequently, the 

dihydropyrrole 476 was treated with triethylamine and TBS triflate in tetrahydrofuran, to 

afford the TBS ether 481 in 92%, as evident from the new /-butyl singlet and SiMe singlets
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in the *H NMR spectrum, with both corresponding to the new TBS protecting group 

(Scheme 4.26). The crude product 481 was immediately treated with a 1M solution of

borane-tetrahydrofuran complex and stirred for 16 h, prior to the addition of alkaline 

hydrogen peroxide. Following chromatography, the pyrrolidinol 482 was isolated as a 

single diastereoisomer in an improved yield of 47% over two steps (Scheme 4.26). Again 

the success of the reaction was evident due to the loss of the olefin and methyl ester 

resonances. Further confirmation for the proposed structure was obtained by LRMS where 

a molecular ion of 530 (M+ + Na), corresponding to the sodium adduct, was observed and 

again the new pyrrolidine ring protons were visible as apparent singlets. Due to the close 

proximity o f these resonances. nOe experiments were not conducted to ascertain the 

stereochemistry, but it was believed that due to the large TBS group, the back face of the 

alkene attacked the electrophile, thus the product formed should be the 3,4-trans isomer 

482 (Figure 4.12). It was essential that this was the stereochemistry to enable the synthesis 

of the nature isomer, (-)-codonopsinine 3b.

Scheme 4.26. Reagents: a) TBSOTf, THF, Et3N, 2 h, 92%; b) BH3-THF, THF, 16 h,

Na0H/H20 2, 1 h, 47%.

Further optimisation was attempted, but unfortunately both the protection and 

hydroboration reactions were dreadfully capricious. In addition, the stability of the 

dihydropyrrole 476 meant that cyclisation and protection had to be conducted on the same 

day to prevent dehydration to the pyrrole 476b, which left very little room for error where 

purity o f reagents was concerned.

4.18. Functional Group interchange: Primary Alcohol to Methyl

The next step was to convert the primary alcohol into a methyl group, for which there are 

many ways documented in the literature. With a view to minimising the number of 

synthetic steps, first it was decided to selectively derivatise the primary alcohol as the 

tosylate 483 and then using a hydride source to displace it to generate the desired methyl

'COzMe

476 481 482
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substituted pyrrolidine 484. To tosylate an alcohol, pyridine is often used as the base. 

However, following treatment of the pyrrolidinol 482 for 4 h at 0°C, only starting material 

was recovered, even with the addition of catalytic DMAP. However, by increasing the 

reaction time to 16 h and conducted the reaction at room temperature, partial protection 

occurred. Following chromatography, the mono-tosylate 483 was isolated in 20% yield. 

The reaction was deemed successful due to the observation of a molecular ion of 662 

(M+ + H) by LRMS, which was in agreement with the structure. The retention of an O-H 

stretch in the infrared spectrum in addition to one extra methyl singlet at 8h 2.35 ppm 

strongly implied that only the primary alcohol had been protected. This low conversion 

was due to the presence of the large TBS group, shielding the primary alcohol. So in 

retrospect, the use of the larger TIPS group would have reduced this yield further still. 

This reaction needed optimisation, but first it was desirable to see if the super hydride 

reaction would successfully furnish the methyl substituted pyrrolidine 484. Also, in the 

absence of the silicon protecting group, there was the possibility that all three alcohol 

groups would be protected, hence protection of the secondary alcohol was mandatory.

When the monotosylate 483 was reacted with superhydride in tetrahydrofuran, early 

indications were encouraging due to the disappearance of one of the tosyl groups. 

However, the lack of a new methyl doublet at around 8h 1-2 ppm indicated that the product 

formed was not the desired methyl substituted pyrrolidine 484. Instead it became apparent 

that displacement o f the OTs group had occurred, but by the secondary alcohol to form a 

bicyclic species 485, as determined by a molecular ion of 490 (M+ + H), which was in 

agreement with this structure, in addition to the retention of the CH2 group at 69.4 ppm and 

also the lack of an O-H stretch in the infrared spectrum (Scheme 4.27).

where

482 483 485

Scheme 4.27. Reagents: a) Py, TsCl, DMAP, 16 h, 20%; b) Superhydride, THF, 2 h,

100%.

With these types of pyrrolidines, the interpretation of the NMR spectrums was onerous, 

most of the resonances corresponding to the ring protons were apparent singlets;
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consequently, coupling data was unavailable. nOe measurements on the precursors 482 

and 478 were not attempted due to the close proximity of the ring protons, but the 

formation of this bicyclic compound 485, confirmed that the stereochemistry of the 

hydroboration product 482 was indeed the 3,4-trans isomer, as predicted (Figure 4.12), 

since this is the only stereochemistry where the hydroxyl group is in the correct orientation 

for such a displacement reaction to occur (Figure 4.22).

HQ, U I D O  T R S n  HU O T B 5

n o , .  n f L £ .  - V v  ^
483 485 486

Figure 4.22

This result led to the use of a new strategy to form the desired product 484. Several 

alternative routes were feasible: -

•  Protect the secondary alcohol and thus prevent the displacement reaction;

• Use triphenylphosphine to convert the primary alcohol directly into the iodide;

• Displace the tosylate with iodide and then perform a hydrogenolysis reaction on the 

resultant iodide;

• Barton McCombie24, deoxygenation procedure using tin hydride and catalytic 

AIBN.

Next, it was decided to protect the secondary alcohol as the TBS ether and then treat the 

product with superhydride to hopefully access the desired product, since both steps seemed 

plausible and would involve minimum purification. When the mono-tosylate 483 was 

treated with triethylamine and TBS triflate in tetrahydrofuran for 20 h, the bis-TBS ether 

487 was obtained in 60% yield, as determined from the extra methyl singlets and /-butyl 

singlet observed and also the loss of the O-H stretch in the infrared spectrum (Scheme 

4.28; a). Despite the protection of all o f the hydroxyl groups, the pyrrolidine ring protons 

remained as apparent singlets. The lengthy reaction time was required due to the hindered 

nature of the substrate, but would this affect the subsequent superhydride™ reaction? 

When the bis-TBS ether 487 was treated with superhydride™ in tetrahydrofuran, even after 

16 h, only starting material was recovered, so as expected, the hindered nature of the 

substrate was preventing the hydride nucleophile from displacing the OTs group. Finally,

163



Chapter4: Silver Catalysed Cyclisations and Natural Product Synthesis

the reaction mixture was refluxed for 3 h, but only mild degradation of the starting material 

487 was observed (Scheme 4.28; b) and so an alternative approach was undertaken.

TBSQ, TBSQ

'•>ii
Ts OTs

DTBS.OTBSHO .OTBS

OTs
483

Scheme 4.28. Reagents: a) TBSOTf, EtaN, THF, 20 h, 60%; b) Super-hydride™, 16 h, 

NaOH, H20 2, 0%; c) Superhydride™, 3 h reflux, NaOH, H20 2, 0%.

Garegg25 and Samuelsson reported that primary alcohols could be converted into iodides 

using triphenylphosphine and iodine in the presence of imidazole. Accordingly, the 

hydroboration product 482 was treated with triphenylphospine and iodine, but even after 

16 h, only starting material was isolated (Scheme 4.29).

HQHQ

TsOH

OTBSOTBS

482 489

Scheme 4.29. Reagents: Imidazole, PPI13,12, CH2C12, 1 h, 0°C, 1.5 h R.T., 0%.

An exceptionally useful protocol for the removal of a (primary) alcohol group is known as 

the Barton-McCombie deoxygenation method and consists of derivatisation to give the 

corresponding xanthate and radical-mediated reduction using a tin hydride. However, a 

signification drawback of this procedure is the difficulty in complete removal of the 

inevitable tin residues. A much cleaner procedure features hydrogenolysis of the derived 

halides, especially iodides, which would be applicable in this case, given that cleavage of 

the benzylic C-N bond did not occur. However, first more of the monotosylate 483 had to 

be synthesised. Problems were experienced previously with the tosylation of the primary 

alcohol due to the hindered nature of the substrate. Instead of reducing the size of the 

silicon protecting group, would an increase in the yield of the product be observed by using 

a smaller oxygen derivatising group? Hence, experiments were conducted, but using 

mesyl chloride. There was a concern however, that being such a small protecting group, 

protection of the secondary alcohol may also occur and so the reaction was tested on the 

model substrate 428a from the original hydroboration studies (Scheme 4.17). Paquette26
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et. al., reported the selective protection of a primary alcohol in the presence of another 

species bearing a secondary alcohol. Treatment of the diol 428a with mesyl chloride with 

Htlnigs base in dichloromethane, afforded the dimesylate 490 in 78% yield. This was 

confirmed by the appearance o f two new singlets at 3.00 and 3.05, corresponding to the 

new mesyl methyl groups, in addition to the lack of an O-H stretch in the infrared 

spectrum. Further evidence for this structure was obtained from mass spectrometry using 

electrospray where a molecular ion of 656 (M+ + Na), consistent with the protection of 

both the alcohols was observed (Scheme 4.30). Due to the small scale (0.083 mmol) it was 

plausible that excess mesyl chloride had been added, resulting in the protection of both 

alcohol functionalities.

Scheme 430. Reagents: MsCl, Hunigs Base, CH2CI2, -78°C, 3 h, 16 h, R.T.

It was believed that by dissolving both the mesyl chloride and HUnigs base separately in 

dichloromethane in known concentrations, that one equivalent o f each reagent could 

accurately be administered. Accordingly, the reaction was repeated on the natural product 

derivative 482, but from the NMR spectrum of the crude product it was apparent that a 

mixture of products had been formed and although the chemistry was compatible with the 

model substrate 428a, incorporation of the p-methoxy group on the benzene ring clearly 

had a detrimental influence on the reaction (Scheme 4.31; b). Due to these results, it was 

decided to optimise the tosylation reaction, which had previously been selective, but only 

partial protection had been observed. Literature precedent27 has shown that DABCO can 

be used as a substitute to pyridine in the tosylation of alcohols. In particular, where 

tosylation using pyridine had failed to afford the tosylate in sufficient yield, it was found 

that the use o f two equivalents of DABCO in place of the pyridine gave the desired product 

in greater yield. However, this research was only conducted on substrates bearing only one 

hydroxyl group, and so in substrate 482 it was decided to reduce the number of equivalents 

of the base to hopefully prevent over-tosylation. Subsequent treatment of the diol 482 with 

1.3 equivalents o f DABCO and p-tosyl chloride in dichloromethane for 48 h at ambient 

temperature, following purification by chromatography, furnished a 9:2 mixture of mono-
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tosylate 483: 6/s-tosylate 492, in addition to the recovery of 40% of the starting material 

482. Formation of the to-tosylate 492 was deduced from an observed molecular ion of 

816 (M+ + H) which was in accordance with protection of both alcohols, in addition to 

three aryl methyl singlets at 8h 2.45, 2.55 and 2.60 ppm and the lack of an O-H stretch in 

the infrared spectrum. From the integrals of the fH NMR spectrum, the approximate 

quantity of the mono-tosylate 483 was 20% and the 6w-tosylate 492 6%. So no increase 

was apparent in the yield, but the selectivity of the reaction had been lowered considerably.

To reduce the level of protection of the secondary alcohol witnessed, the temperature was 

lowered to 0°C, but to achieve an increased, yield longer reaction times would be 

mandatory. Hence, following numerous experiments, after 24 h at -20°C and 96 h at 0°C, 

the desired mono-tosylate 483 was eventually obtained in an excellent 67% yield, 

following chromatography, together with only trace quantities of the to-tosylate 492 (4%) 

and starting material (3%), this was found to be the optimum conditions for the reaction 

(Scheme 4.31; b).

ho. HO, TsO,

Ts TsO TsOH O Ts

OTBSOTBSOTBS

482 483 492

Scheme 4.31. Reagents: a) DABCO, CH2C12, TsCl, 48 h, 20% 483 and 6% 492; b) 

DABCO, CH2C12, TsCl, -20°C, 24 h, 64 h, 0°C, 67% 483 and 4% 492.

With the tosylation step optimised, displacement of this OTs group with iodide was 

examined. Literature28 precedent suggested the use of 1.5 equivalents of iodide, but tests 

on substrate 482 were unsuccessful. Ultimately it was found that the use of four 

equivalents o f sodium iodide in distilled acetone was necessary to obtain the iodide 489 but 

in quantitative yield. The reaction was proven successful due to an observed molecular ion 

of 618 (M+ + H) consistent with displacement of the tosylate with iodine and the loss of the 

OTs methyl singlet in the *H NMR spectrum. In addition, a shift in the position of the CH2 

to 7.1 ppm in the 13 C NMR spectrum, further indicated that the reaction had been 

successful (Scheme 4.32; a). In early experiments, the iodide 489 was purified by 

chromatography, but was found to be unstable. Later, it was determined that the
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anhydrous quality o f the sodium iodide rapidly degraded, hence greater quantities were 

ultimately used.

The next step in this sequence was to use hydrogenolysis to cleave the C-I bond using 

catalytic 10% palladium on carbon in the presence of triethylamine. However, when this 

method was applied to the iodide 489, the NMR spectrum of the crude product was not 

very informative due to overlapping resonances and so it was difficult to determine if the 

reaction had been successful. Following purification using chromatography, the methyl- 

substituted pyrrolidine 484 was obtained in only 27% yield (Scheme 4.33; b). Formation 

of the desired product 484 was instantly recognizable from the appearance of a new methyl 

doublet at 1.50 ppm and the loss o f the CH2 resonance, in addition to a molecular ion of 

492 (M+ + H) which correlated with the substitution of a hydrogen for an iodine atom. 

Due to the small scale, the NMR spectra of the remaining column fractions were too weak 

to determine the structures o f the additional products. Previously, during hydrogenolysis 

of iodopyrrolidines using identical conditions, some epoxide 323 was formed (Table 3.15, 

Chapter 3). Thus it was plausible that the presence of base resulted in the formation of 

some of the previously obtained bicyclic product 485 (Scheme 4.27; b). However, due to 

the similar positions of the resonances of the ring protons of both the product 484, bicyclic 

485 and the iodide 489 it was not possible to determine if any bicyclic product 485 had 

been formed in the reaction from the NMR spectrum of the crude product. However, in a 

bid to reduce the possibility of this alternative pathway to the bicyclic 485, Htinigs base 

was used instead, which being sufficiently hindered should not abstract the proton of the 

secondary alcohol. This time only a small amount of product 484 was isolated (15%), and 

on scaling up the reactions problems were again experienced with the iodide displacement 

due to the quality of sodium iodide, and also the hydrogenolysis step.

HQ.HQ

,OTs

OTBSOTBS HQ OTBS

b
Ts

484

Scheme 4.32. Reagents: a) anh Nal, Me2CO, reflux, 100%, 20 h; b) H2, Pd/C, MeOH,

EtOH, 20 h, 27%.
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Despite the synthesis o f the methyl substituted pyrrolidine 484 as a single diastereoisomer, 

the low yield obtained meant that optimisation was required, but due to lack of material 

and time, no further studies were conducted. To complete the total synthesis, detosylation 

of the nitrogen followed by iV-methylation is required in addition to the removal of the 

TBS protecting group at some stage. Ultimately, the presence of this tosyl group is 

disadvantageous in this synthetic route and so new routes need to be explored using 

alternative nitrogen protection groups that can easily be replaced with a methyl substituent. 

However, the present research shows that to isolate the dihydropyrrole intermediate 482 in 

the silver catalysed cyclisation, a tosyl protecting group was essential. Hence a new 

approach is necessary to eliminate the problems highlighted in this research.
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4.40. Silver Cyclisations: Studies towards the total Synthesis of
(+)-Preussin

4.41. Discovery and Biological Activity

The antifungal antibiotic (+)-preussin (L-657, 398) 4 was first isolated in 1988 from 

fermentation broths of Aspergillus ochraceus29 ATTCC 22947 and Preussia sp30 which 

inhibits the growth of the bacteria, Candida and filamentous fungi such as Microsporum 

canis and Trichophyton menta. (+)-preussin 4 and its acetate ester 493 exhibit a wider 

spectrum o f antifungal activity against both yeasts and filamentous fungi than structurally 

similar anisomycin 1. In addition, (+)-preussin 4 has recently been shown to be a potent 

inhibitor o f cyclin E kinase in human tumour cell lines31 as well as an inhibitor of cell 

growth in yeast mutants with defective cdc 2 regulatory genes.32 The absolute 

configuration o f (+)-preussin 4 was determined by Johnson et. al., to be 25, 35, 5R.

pH

CsHiq'" C X
Me ^

R= H 4 
R= H 493

4.42. Previous Miscellaneous Synthetic Approaches to (+)-Preussin 4

These biological properties and structural features have resulted in numerous total 

syntheses. Summaries o f the key steps in each synthesis are outlined. Pak and Lee 

accomplished the first synthesis in 1991, over 17 steps starting from D-glucose to give 

(+)-preussin 4 in 31% yield from 494 (Figure 4.24). Despite the lengthy sequence, the 

majority o f the steps gave virtually quantitative yields with the key steps involving 

sequential reduction and cyclisation of the azidotriflate 496 to establish the pyrrolidine 

ring. Epoxyfuranose 494 obtained from D-glucose via known literature procedures was 

then subjected to a copper catalysed Grignard reaction. Tosylation of the resultant 

secondary alcohol followed by displacement with sodium azide afforded azide 495 in 

addition to a small quantity o f the corresponding elimination product. Exposure of 495 to 

a solution of methanolic hydrogen chloride furnished a separable mixture of anomers 496

HQ OAc

N 
H
1

Figure 4.23
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(P/a = 5.3:1). After separation, each anomer was subjected to the same sequence of 

reactions, hence the lack of stereochemistry illustrated in Figure 4.24. Next the 

corresponding triflates were synthesised and following hydrogenation it became apparent 

that cyclisation had occurred to afford a mixture of exo and endo bicyclic amines 497. 

Following carbomethoxylation and demethylation, identical mixtures of equilibrated 

hemiacetal-aldehyde 498 were obtained, irrespective of which anomer 496 had been 

utilised in the previous steps. Next a Wittig reaction on the isomeric mixture gave a 

mixture of Z:E (81:9) 499 isomers. Finally the unseparated olefins were subjected to 

hydrogenation and following reduction using lithium aluminium hydride, (+)-preussin 4 

was obtained (Figure 4.24).

D-glucose

C7H15 — , '° H   HO A s .

MeO n
H 'P h

497

JO

hY>S ^ ph h o ^Ph u !  i
Me 
9

Figure 4.24

Me Ph C C ^M e™  °  CO’M e Ph
4 499 498

In 1996 the Yoda34 group reported a 13 step asymmetric synthesis employing 2,3,5-tri-O- 

benzyl-p-D-arabinofuranose 500 as the starting material, with no separation of 

stereoisomers, to give (+)-preussin 4 in 18% overall yield. Their approach involved 

formation of A-Boc lactam 501 via protecting group exchange. After removal of the 

benzyl groups, the substrate underwent a highly regioselective acylation reaction, followed 

by radical deoxygenation with tin hydride to afford 502. Silylation and subsequent 

addition of nonylmagnesium bromide afforded the labile quaternary a-hydroxy iV-Boc 

intermediate, which upon exposure to reductive deoxygenation afforded 503. Finally 

reduction using lithium aluminium hydride afforded the natural product 4 (Figure 4.25).
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500 501 502 503

Figure 4.25

Two years later, Dong35 and Lin synthesised the natural product 4 utilising the Sharpless 

asymmetric epoxidation and oxidative cyclisation as key steps. This route involved 

separation of isomers to give (+)-preussin 4 in 10 steps in overall 14% yield from epoxide 

505 (Figure 4.26). The route commenced with the Sharpless36 asymmetric epoxidation of 

divinylcarbinol 504, followed by benzyl protection to afford epoxide 505. The epoxide 

was ring-opened with phenylmagnesium bromide and the resultant product 506 was 

mesylated prior to exposure to sodium azide in TV^V-dimethylformamide. The azide was 

reduced and the amino group Boc protected using standard conditions. The carbamate was 

then hydroborated to give 507, which upon treatment with PDC cyclised to generate 

pyrrolidine 508. Next 508 was reacted with «-C9Hi9MgBr to afford 509, which when 

treated with LiA^OBu^H gave a separable 3.3:1 mixture of diastereoisomers 510. 

Mesylation of 510a followed by the addition KOBu1 afforded pyrrolidine 511. Finally 

deprotection then lithium aluminium hydride reduction furnished the desired product 4 

(Figure 4.26).

NHBoc 

507

OH OBn OH OBn

NHBoc NHBoc NHBoc

W here R=CV419
509

Figure 4.26

Also in 1997, Yamamato37 and co-workers reported the synthesis of (+)-preussin 4 from 

L-aspartic acid in 16 steps, in 2% overall yield (Figure 4.27). Their route involved Boc 

protection of 512 followed by treatment with HOSu/DCC then sodium borohydride 

reduction to furnish the corresponding alcohol. This was converted into the acetonide, the

171



Chapter4: Silver Catalysed Cyclisations and Natural Product Synthesis

ester group of which was reduced with lithium aluminium hydride and then the alcohol 

moiety, silyl protected to afford 513. Selective hydrolysis with PdCl2(CH3CH)2 furnished 

the alcohol with was then tosylated prior to alkylation with CsHnLi to give 514. Next 

allylation of the amino group and deprotection of the silyl group gave 515. The anion of 

which was trapped with «-Bu3SnCl to afford 516 together with recovered starting material. 

Next oxidation with S0 3 .py/DMS0 /Et3N followed by thermal cyclisation gave an 

inseparable 1:1 diastereoisomer mixture of pyrrolidines, which were separable when they 

were converted into their TBS ethers 517. Ozonolysis of 517a afforded the aldehyde with 

was subsequently reacted with PhMgBr. Then treatment with thiocarbonyldiimidazole 

gave the corresponding imidazole which was then deoxygenated. Finally deprotection of 

the TBDMS group and reduction with lithium aluminium hydride furnished 4 (Figure 

4.27).
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Figure 4.27

Greene’s38 approach in 1998 involved a novel dichloroketene chiral enol ether 

cycloaddition and a Beckman ring expansion to form the pyrrolidinone 521. Thus (+)- 

preussin 4 was synthesised in 15% overall yield, in 10 steps (Figure 4.28). The synthesis 

commenced with the conversion of 518 into the benzylated ynol ether, followed by partial 

reduction with hydrogen to give the (Z)-enol ether 519. Addition of dichloroketene to 519, 

gave dichlorocyclobutanone 520 largely as a single diastereoisomer. Next the group used 

Tamura’s Beckmann reagent39, 0 -(mesitylenesulfonyl)hydroxyl-amine (MSH), to convert 

this cyclobutanone 520 into the pyrrolidinone 521. Boc protection followed by addition of 

nonyl-magnesium bromide generated the all-cis pyrrolidine 522, which following 

treatment with trifluoroacetic acid and subsequent A-methylation afforded (+)-preussin 4 

(Figure 4.28).
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Also in 1998, Bach40 and Brummerhop published a 9 step synthesis of (+)-preussin 4 from 

(5)-pyroglutaminol 523. There approach utilised a Patem6-Btichi reaction41 between 

benzaldehyde 60 and a dihydropyrrole 526 and thus the natural product was obtained in 

10% overall yield (Figure 4.29). Commercially available (*S)-pyroglutaminol 523 was 

tosylated and then nucleophilic addition of Li2Cu(«-CgH 17>2CN led to the incorporation of 

the desired side chain. The product was acylated, and then reduced to the hemiaminal with 

LiBEtsH, which was subsequently converted into the N,0-acetal 525 using 

dimethoxypropane. Next, elimination using NzP^Et/TMSOTf gave the dihydropyrrole 

526 which underwent the Patemd-Biichi reaction, to give three products, an unstable 2- 

aminooxetane in addition to two diastereoisomers of 3-aminooxetane 527. The major 

isomer 527a was hydrogenated to afford pyrrolidinol 528, which following treatment with 

lithium aluminium hydride, gave 4 (Figure 4.29).

C9H19  ̂ -  MeO-^N^CaH^----- ►
H C 0 2Me COzMe C 0 2Me

523 524 525 526

Ph

C 0 2Me
N C9Hi9 Ph Ct i Ph u
■ H C 02Me M COzMe

4.4 1

528 527a 527b

Figure 4.29

Verma and Ghosh42 reported a 19 step synthesis of (+)-preussin 4 from 3-hydroxyglutaric 

anhydride 528, in 1997. From the homochiral half ester 531 the overall yield was 17%
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(Figure 4.30). The sequence commenced with the opening of anhydride 528 with the 

lithium anion of Evans’ oxazolidinone to give a mixture of diastereoisomers 529 which 

were separated on conversion to their corresponding terf-butyl esters. Next the 

oxazolidone group was removed and following hydrogenolysis and esterification, the 

methyl ester was obtained. The tert-butyl moiety was removed and the product 530 was 

converted into the corresponding acid chloride and reacted with nonylmagnesium bromide 

to give the keto ester. This keto ester was then protected as the corresponding acetal 531 

which was alkylated and the product hydrolysed and converted into the primary amide 533. 

The resultant product was treated with lead tetraacetate and benzyl alcohol and following 

removal o f the acetyl group, the ketone 534 was obtained. Following hydrogenolysis, 

cyclisation occurred to give the pyrrolidine. Next the NH functionality was protected to 

give the ethoxycarbonyl derivative, and the silyl group was converted into a hydroxyl 

group which was subsequently protected as an acetate 536. Finally lithium aluminium 

hydride reduction afforded 4 (Figure 4.30).

SitozPh

o o o 
528

HO

Ph
Si Hi

CgHie

534

N^OBn

Ph°

Ph
O — Si— O 

529a

r  b  o

C9H19

O SiMe2Ph 

529b

O SiMe2Ph
X 0 2Me

530

NHz
r-p SiMezPh

CO^e

533 Ph

O
C9H19

532 Ph

NSiMe2Ph OAc

C9H19’, 0 ,N
H

535

.Ph

PH
; / Ph

C9H191, 0 , .Ph

COzEt

536
Me

4

r \  SiMe2Ph 
° '7 0 A /C 02Me

C9H19
531

O
R= ^ N ^ O

v_y
Bn

Figure 430

Later, in 2001, the Kitahara43 group accomplished a short stereoselective synthesis of 

(+)-preussin 4 in 5 steps in an overall yield of 16%, where the key step was a 

stereoselective aldol reaction utilising zinc chloride to give predominately the syn adduct 

538 (10:1) (Figure 4.31). The sequence commenced with the lithium aluminium hydride 

reduction of Weinreb amide 537 to the aldehyde which was then used in a chelation 

controlled aldol reaction using zinc chloride to afford predominately the syn
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diastereoisomer 538a. TBS protection followed by treatment with Et3GeH in the presence 

of BF3.0 Et2 caused reductive cyclisation and desilylation to occur to form the pyrrolidine 

528. Finally, reduction with lithium aluminium hydride afforded 4 (Figure 4.31).

9 o h  o  o h  o  h o
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Figure 431

Finally in 2003 Raghaven44 and Rasheed synthesised (+)-preussin 4 in an overall yield of 

7% over 12 steps utilising regio- and stereospecific bromohydration of the olefin 539 and a 

Pummerer reaction45 (Figure 4.32). Alcohol 539 was protected as the TBS ether prior to 

treatment with jV-bromosuccinimide in toluene to afford a bromohydrin. Reaction of the 

bromohydrin with methyl isocyanate afforded the carbamate 540, which was treated with 

NaHMDS to give oxazolidinone 541. Oxazolidinone 541 was then subjected to the 

Pummerer reaction to give intermediate 542, which was then reduced to the alcohol 543. 

Hydrolysis afforded the corresponding aldehyde that was condensed with a dithane derived 

anion to give 544 as a mixture of epimers. The dithane moiety was deprotected and the 

resultant keto alcohol was acetylated to give the ketoacetate, which upon treated with Na- 

Hg under buffered conditions gave 545. Finally, exposure of 545b to Pd(OH)2 under a 

hydrogen atmosphere afforded the TBS protected pyrrolidine, that was reacted with TBAF 

to furnish the desired product 4 (Figure 4.32).
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4.43. (+)-Preussin 4 Synthesis from Phenylalanine 547

One of the first syntheses of (+)-preussin 4 from D-phenylalanine 547a was conducted by 

Shimazaki46 and co-workers in 1993. Their synthetic sequence utilised an 

asymmetric 1,3-dipolar-cycloaddition reaction as the key step, but involved separation of 

stereoisomers. Thus (+)-preussin 4 was obtained in 3% yield from 548 in 9 steps (Figure 

4.33). D-phenyl alanine 547 was converted into 548 according to literature precedent47, 

following TBS protection and DIBAL reduction the corresponding aldehyde was obtained. 

This was reacted with methyltriphenylphosphonium bromide to give the alkene which was 

deprotected to afford 549. Next the key cycloaddition reaction was performed between 

549 and iV-methylhydroxylamine hydrochloride 550 to give a mixture of four 

cycloadducts, which were separable by chromatography. The desired adduct 551 was then 

mesylated and the product hydrogenolysed to afford the natural product 4 (Figure 4.33).
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Figure 433

Also in 1993, Livinghouse48 and McGrane synthesised (+)-preussin 4 in 19% overall yield 

over 10 steps via an imidotitanium-alkyne [2+2] cycloaddition (Figure 4.34). The 

synthesis commenced with the addition of a 1:1 mixture of / - B U 2 A I H  and / - B U 3 A I  to 

methyl A-(diphenylmethylene)-L-phenylalaninate 552 to give a separable 3.2:1 mixture of 

isomers 553. Next 553a was O-benzylated and the imino ether produced hydrolysed to 

afford 554. Reaction with CpTi(CH3)2Cl followed by treatment with octanoyl cyanide in 

situ, afforded an a,p-unsaturated nitrile 555. N-methylation of 555 followed by reduction 

gave pyrrolidine 556 and subsequent reduction of the olefin using Mg in methanol gave a 

mixture of pyrrolidines 557. Finally, reductive cleavage of the cyano group, reductive O- 

benzylation and hydrogenation of the resultant crude product gave the natural product 4 

(Figure 4.34).
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A year later, Overman49 and Deng published a synthesis o f (+)-preussin 4 again from a 

(5)-phenylalanine derivative 558. Overall the natural product was obtained in 11% yield in 

6 steps from the readily available ketone 559. Af-Cbz-(S)-Phe 558 was converted into 

ketone 559 via a Weinreb amide intermediate. Treatment of the ketone with 

vinylmagneisum bromide gave 6:1 separable mixture of diastereoisomers. Hydrolysis of 

the syn diastereoisomer afforded the primary alcohol 560 which, following treatment with 

decanal using an Aza-Cope-Mannich reaction50 gave oxazolidine 561. When this was 

treated with CSA in CF3CH2OH, the all cw-pyrrolidine 562 was obtained, which was then 

treated with ethyl chloroformate to give the corresponding carbamate. To complete the 

synthesis a Baeyer-Villiger oxidation51 was utilised to give 563 which when reduced gave 

the natural product 4 (Figure 4.35).
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In the same year, Hecht4 and Overhand synthesised (+)-preussin 4 from /-Boc (S)- 

phenylalanine 564 in 5 steps, the key step being a Hg(II) mediated 5-endo dig ring closure 

o f the ynone 565 to form an 8:1 mixture of pyrrolidinones 566 in excellent yield. The
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synthesis commence with conversion of /-Boc (^-phenylalanine 564 into the 

corresponding Weinreb amide using DCC and Af,0-dimethylhydroxylamine. The Weinreb 

amide was then reacted with undecynyllithium to afford the ynone 565 which upon 

exposure to mercury acetate underwent a 5-endo-dig cyclisation to give an 8:1 mixture of 

pyrrolidines 566 (a:b). This mixture was reduced using sodium borohydride, to afford the 

pyrrolidinol as the sole product which was subsequently upon exposure to lithium 

aluminium hydride gave the natural product 4 (Figure 4.36).

BocHN^X BocHN

564 566 566a 566b 4

Figure 4.36

Schaumann50 and Beier reported the synthesis of (+)-preussin 4 in 28% overall yield in 12 

steps from epoxide 567, in 1997. In their approach epoxide 567 derived from 

(S)-phenylalanine was ring opened to afford a 1:1 mixture of diastereoisomers 577. 

Following TBS protection of the alcohol and oxidation, the corresponding 5-oxide was 

obtained. This was subjected to a [2,3]-sigmatropic rearrangement to generate 578 which 

was subjected to a Sharpless epoxidation reaction gave a mixture of the epoxide 579 and 

pyrrolidine 580. To afford additional pyrrolidine 580, the epoxide 579 was subjected to 

hydrogenolysis and the product was immediately re-protected. Next, the diol unit was 

cleaved using periodate to give the aldehyde which was the used in a Wittig olefination. 

The silyl group was. deprotected and the following lithium aluminium hydride reduction, 

pyrrolidine 581 was obtained. Finally, hydrogenation of 581 gave 4 (Figure 4.37).
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NHCbz NHCbz NHCbz NHCbz

567 577 578 579

HO. HO. TBSQ

OH + 680

C9H19 - C7H,5
Ph Me Pti Cbz Cbz OH

4 581 580

Scheme 437
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In 1998, Veeresa51 and Datta reported a 10 step synthesis of (+)-preussin 4 in 9% overall 

yield from L-Phenylalanine 547b. The synthetic sequence commenced with the reduction 

of L-phenylalanine 547b with lithium aluminium hydride followed by a Swem oxidation to 

give the corresponding aldehyde which when reacted in situ with allylmagnesium bromide 

afforded the homoallylic alcohol 582 as a 6:1 mixture of diastereoisomers (syn.anti). The 

separated syn diastereoisomer 582a was converted into the oxazolidine derivative and 

following oxidative cleavage, the aldehyde 583 was obtained. Reaction of the aldehyde 

583b with the Grignard reagent derived from 1-bromononane gave an inseparable 7:3 

mixture o f isomers which were oxidised to the ketone 584. The stereoselective reduction 

of 584 using L-Selectride gave a primary alcohol moiety that was mesylated to give a 

separable 9:1 mixture of diastereoisomers 585. Finally, deprotection of the acetonide 

group generated the pyrrolidine derivative 586 which was readily converted into the 

natural product 4 (Figure 4.38).

Ph
NHz

' ^ ^ co2h 

547b

NHBoc

OH
6

582a

NHBoc

OH
1

582b

CHO

583

586 585 584

Figure 438

In the same year, the De Armas group reported the diastereoselective formal synthesis of 

(+)-preussin 4 in 13 steps, (9% overall yield) from commercially available l,2:3,5-di-0- 

isopropylidene-a-D-mannofuranose. The sequence commenced with the ring opening of 

epoxide 587 with PhMgCl to give a secondary alcohol that was converted into the 

corresponding trifluoromethanesulphonate ester, prior to treatment with sodium azide. 

Following reduction of the azide moiety and benzyloxy-carbonylation, the carbamate 588 

was obtained. The anomeric protecting group was removed and following ionic cyclisation 

promoted by PhlO/h, 589 was isolated. Next, the bicyclic ketal 589 was reacted with 

allyltrimethylsilane in the presence of BF3OEt2 to give a 95:5 (anti:syn) ratio of
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diastereoisomers o f 590. Finally, oxidative cleavage of the alkene followed by a Wittig 

reaction and hydrogenation gave 4 (Scheme 4.39).

587

Ph '  OCOH HQ. QCOH

C O # n f \  N
'V '  COjBn ^  CQ2Bn

688 689 690
95:5 a n ti: s y n

Figure 439

Finally, in 200053, Lee and co-workers reported an enantioselective synthesis of (+)- 

preussin 4, in 13% overall yield, over 10 steps (Scheme 4.10). The synthesis commenced 

with the Dess-Martin oxidation of 591 followed by the addition of vinylmagnesium 

bromide to the resultant aldehyde to give a 1.1:1 (syn:anti) mixture of diastereoisomers. 

Following acetate protection of the hydroxyl group and a standard oxazoline ring forming 

reaction, the /raras-oxazoline 592 was obtained. The alkene was then oxidised to the 

alcohol with 9-BBN which was then further oxidised to the carboxylic acid using 

ruthenium chloride. Conversion to the Weinreb amide followed by treatment with 

nonylmagnesium bromide gave the ketone 593. Hydrogenolysis under 70 psi pressure led 

to hydrogenolysis o f the oxazolidine in addition to cyclisation to give pyrrolidine 594, 

which following methylation afforded (+)-preussin 4 (Figure 4.40).

P h ^ ^ ^ O H
NHBz — Ny° ___

Ph

C9H19

_̂Phxxi>. Y  ‘

P H

.r\.  ̂ —
C9H19'-

H

—  4

591 592 593 594

Figure 4.40
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4.44. Results and Discussion: Silver Nitrate Cyclisations

The stability of the dihydropyrroles, from the silver induced cyclisation of the aldol 

products, suggested that it may be possible to synthesise (+)-preussin 4 from 

(iS)-phenylalanine 547b, in a route analogous to that of Hecht4 and Overhand (Figure 4.36), 

utilising the novel silver nitrate-cyclisation as the key step (Figure 4.41).

<voH1 ^  OMe

Ph
NHz

547b

p^NHBoc
Ph

595

NHBoc

Figure 4.41

HO

C9H19 - r V >
Ph Me

c « h 19

The sequence commenced with commercially available (S)-phenylalanine 547b, which was 

treated with Boc anhydride and triethylamine in an biphasic mixture of 1M sodium 

hydroxide solution and 1,4-dioxane to afford the carbamate 597 as a rotameric mixture, in 

92% yield, as apparent from the /-butyl singlets at 1.15 and 1.35 ppm and the new carbonyl 

signal at 8c 155.7 ppm (Scheme 4.33; a). The crude product was then reacted with 

MO-dimethylhydroxylamine using DCC as the coupling agent. Following 

chromatography, the Weinreb amide 595 was isolated in a disappointing 33% yield, 

together with some starting material (Scheme 4.33; b). Formation of the Weinreb amide 

595 was confirmed by the new methyl singlets at 3.10 and 3.60 ppm and the observed 

optical rotation (+ 22.7 [CH2CI2, c 10.75]), was comparable with the literature4 data (+ 

28.7 [CH2CI2, c 1.0]).. Next, an ice-cold solution of the Weinreb amide 595 in diethyl ether 

was treated with lithium aluminium hydride for 10 minutes, to afford the desired aldehyde 

598, in 68% yield. The successful reaction was confirmed by the presence of a new 

aldehyde singlet at 9.50 ppm and a melting point of 86-87°C, which was consistent with 

the literature54 value (m.p. 86-88°C) (Scheme 4.32; c).
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M®

T  — 9—► T  _ b _  V  'OM e c ^ I d.
r ^ N H a  r ^ N H B o c  r ^ N H B o c  I ^ N H B o c  P h ^ f N
Ph Ph I NHBoc Ph NHBoc

Ph
547b 597 595 598 596

Scheme 4.33. Reagents: a) B0C2O, 1,4-dioxane, NaOH, 4.25 h, 92% 597; b) DCC, 

N,O-dimethylhydroxylamine, CH2C12, 33% 595; c) LAH, 10 mins, Et20 , 68%; 

d) 1-undecynyllithium, Et20 , ZnBr2, 0%.

The next stage was to alkylate the aldehyde 598, to afford the syn diastereoisomer 596a, 

ready for the key cyclisation. In the synthesis o f L-threo Sphingosine 203b Herold55 had 

alkylated Gamer’s aldehyde 201 with 1 -pentadecynyllithium, in the presence of anhydrous 

zinc dibromide, to afford predominately the syn diastereoisomer 200b (Scheme 2.29, 

Chapter 2). Hence, the aldehyde 598 was treated with 1-undecynyllithium in diethyl ether 

in the presence o f anhydrous zinc bromide, but disappointingly, only starting material was 

recovered (Scheme 4.33; d). It is possible that the zinc dibromide had degraded over time, 

explaining the lack of reaction. With the expense of A^Odimethylhydrochloride and low 

yield obtained in the Weinreb amide formation (Scheme 4.33; b), it was more practical and 

financially viable to use the commercially available aldehyde 598, to test if the proposed 

chemistry would successfully afford the desired dihydropyrrole 566b (Figure 4.41).

With the failure o f the alkylation under chelation control, it was decided to alkylate the 

aldehyde 598 directly with a large excess of the 1-undecynyllithium and then separate the 

resultant diastereoisomers. Treatment of the aldehyde 598 with 1-undecynyllithium in 

tetrahydrofuran, afforded a 1.4:1 mixture of diastereoisomers 596, in 61% yield as 

confirmed by the loss o f the aldehyde singlet, and the appearance of new CH protons in the 

range 3.85-4.30 ppm. In addition, a molecular ion of 402 (M* + H) was observed by ApCI 

which was consistent with alkylation. As previously experienced, the presence of the Boc 

protecting group meant that the relevant resonances in the NMR spectrum were unresolved 

and hence determination of the stereochemistry o f the major isomer could not be achieved. 

At a later stage this selectivity would be addressed, but first it was important to establish if 

the key silver catalysed cyclisation was successful.

The previous study had involved an adjacent ester moiety together with a tosyl nitrogen- 

protecting group (Scheme 4.13), so would a change in the electronic properties of the
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protecting group affect the isolation of the dihydropyrrole 566b? It was believed that the 

absence of an ester functionality would be advantageous in that the ^-elimination would 

occur to a lesser extent. Also with the difficulties foreseen in tosyl group removal, 

alternative protecting groups were essential and the advantage of the N-Boc group was that 

it could be easily converted into a methyl upon treatment with lithium aluminium hydride 

in refluxing tetrahydrofuran.

The precursor 596 was treated with silver nitrate (0.2 equivalents) for 2 h to give the 

pyrrole 599 in quantitative yield, as apparent from the observed molecular ion of 384 

(M+ + H), which was consistent with the proposed structure (Scheme 4.44; b). In addition, 

new characteristic olefin doublets at 5.60 and 5.75 ppm were evident and a shift in the CH- 

Ph proton from 2.90 to 4.05 ppm was apparent as well as change in the multiplicity of the 

CH-Ph proton from a multiplet to singlet, further clarifying that the product was indeed the 

2,5-disubstituted pyrrole 599.

o oh f—,

NHBoc NHBoc X«Hie 000
598 596 599

Scheme 4.34. Reagents: a) 1-undecynyllithium, THF, -20°C, 2 h, 61%; b) 0.1 eq 10%

w/w AgNCVSiCh, 2 h, 100%.

It was originally believed that this rapid elimination was due to the Af-Boc protecting 

group, and so alternative nitrogen protecting groups were tested. This sequence was 

carried out prior to the codonopsinine methodology (Section 4.33) and so the findings 

previously reported regarding the nitrogen protecting group were not applied here.

4.45. The Influence of Protecting G roup on the Silver Cyclisation.

A plethora of nitrogen protecting groups were contemplated, but was a N- protecting group 

necessary? The absence of a protecting group would be advantageous in terms of atom 

efficiency. Accordingly, a mixture o f diastereoisomers of the amino alcohol 596 was 

treated with a 20% solution of trifluoroacetic acid in dichloromethane, to afford the amine 

in 86% yield, as deduced from the loss o f the /-butyl singlet in the NMR spectrum, and 

a molecular ion of 302 (M+ + H), in agreement with deprotection. In studies towards the
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synthesis of (-)-codonopsinine 3b, when the jV-Boc amino alcohol 469 was deprotected 

using trifluoroacetic acid in dichloromethane, cyclisation had occurred in situ, to generate 

the pyrrole 474 (Scheme 4.23). The results found here, suggested that this result was a 

special case, perhaps due to the presence of the ester moiety.

The free amine 600 was then treated immediately with 0.2 equivalents of silver nitrate on 

silica gel, and cyclisation occurred (Scheme 4.35; b). After filtration through a plug of 

silica, the pyrrole 601 was obtained in 43% yield, as apparent from an absorbance at 

3380cm'1 in the infrared spectrum corresponding to the NH and the change in multiplicity 

and shift in the C //2-Ph signal. Also new olefin signals at 5.60 and 5.70 ppm were 

observed and further clarification was obtained from LRMS where a molecular ion of 284 

(M+ + H) consistent with cyclisation and elimination was witnessed.

NHBoc C*H19
596 600 601

Scheme 435a. Reagents: a) TFA, CH2CI2, 16 h, 86%; b) 0.2 eq AgNCVSiC^, CH2CI2, 2

h, 43%.

With the presence of a free amine, the lone pair is much more available and so it is 

plausible that with the desire to establish an aromatic system elimination takes place 

(Figure 4.42).

Figure 4.42

With the problems associated with tosyl removal, the nosyl protecting group was tested 

which can be removed with the use o f mercaptoacetic acid in N, jV-dimethylformamide. 

Treatment of the amine 600 with /7-nitrobenzenesulfonyl chloride, DMAP and 

dichloromethane, disappointingly furnished the nosylate 602 in only 24% yield, mirroring 

the problems previously experienced with tosylation of an amine in the presence of a
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hydroxy functionality (Scheme 2.24, Chapter 2). The major isomer was characterised by 

new doublets at 7.60 and 8.05 ppm, which a typical ortho coupling of 8.8 Hz. Despite the 

yield, sufficient material was obtained to carry out the crucial cyclisation. However, on 

treatment o f the precursor with 10% silver nitrate on silica gel, the NMR spectrum of the 

crude product revealed a mixture o f products (Scheme 4.36), hence it was decided to test 

the previously successful tosyl group.

C9H19
N CqHib

NHNs CoH19
602b

Scheme 4.36. Reagents: a) NsCl, DMAP, CH2CI2, 16 h, 24%; b) AgNC>3, CH2CI2, 0%.

A mixture o f the diastereoisomers of the amine 600 was treated with /?-tosyl chloride, 

triethylamine and DMAP in dichloromethane. Following chromatography of the crude 

material, the sulfonamide 604 was obtained as a 4:1.5 mixture o f diastereoisomers, in 62% 

yield, as deduced from the molecular ion o f 302 (M* + H), consistent with tosylation and 

the appearance of new aryl methyl singlets at 2.25 ppm (Scheme 4.37). Due to the 

overlapping multiplets in the proton NMR spectrum, differentiation between the syn and 

anti isomers could not be achieved.

N H 2  C 9 H 1 9  

600
NHTs C9H19 
604

Scheme 437. Reagents: a) /?-TsCl, DMAP, CH2CI2, 16 h, 62%.

When this sulfonamide 604 was treated with 0.5 equivalents of 10% silver nitrate on silica 

for 2 h, the NMR spectrum of the crude product revealed that interestingly, one 

diastereoisomer appeared to have cyclised faster than the other isomer. Also, the 

cyclisation product 601 was deduced to be the deprotected pyrrole 601, on comparison 

with a genuine sample (Scheme 4.35). The remaining resonances in the spectrum 

suggested a single diastereoisomer o f the starting material, as deduced from the two 

distinct double doublets at 2.60 and 2.80 ppm. By considering Figure 4.43, it can be seen 

that in the case of the anti diastereoisomer 604a, the two largest groups are positioned 

equatorially in the transition state while for the corresponding syn diastereoisomer, one of
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these groups is in the unfavoured axial position. This suggests that since the diequatorial 

transition state is more favourable, this will lead to a faster rate of reaction (Figure 4.43).

NHTs
604a

NHTs

604b

Figure 4.43

Hence, this suggests that the anti diastereoisomer 604a had cyclised faster than the syn 

diastereoisomer 604b. Accordingly, in a bid to encourage cyclisation of the syn 

diastereoisomer 604b, the crude reaction mixture was treated with a further 0.3 equivalents 

of 10% silver nitrate on silica gel for 2 h, but no further reaction was observed. At this 

stage chromatography was conducted to afford the deprotected pyrrole 601, in 37% yield, 

together with the recovered syn diastereoisomer 604b. In order to synthesise (+)-preussin 

4, it was fundamental that the syn diastereoisomer 604b cyclised and that the resulting 

dihydropyrrole 566b was isolatable. Accordingly, the recovered syn diastereoisomer 604b 

was treated with the same equivalents o f the silver reagent for a further 16 h where partial 

cyclisation (15%) and elimination was observed, but with the protecting group intact, as 

apparent from the characteristic pyrrole doublets at 5.60 and 5.80 ppm and the retention of 

the aryl methyl singlet at 2.35 ppm, corresponding to the tosyl group. With the failure of 

the cyclisation, optimisation of the tosylation was not conducted.
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4.46. Conclusion

Despite the use of a variety o f nitrogen protecting groups, the desired syn intermediate 

dihydropyrrole was not isolated after the silver-catalysted cyclisation, elimination always 

occurred to afford the corresponding pyrroles, even with the previously successful tosyl 

group. Interestingly, with this tosyl protecting group the rate o f cyclisation of the two 

diastereoisomers 604 was different, but cyclisation of the required syn diastereoisomer 

604b was very slow and could not be stopped at the dihydropyrrole stage (Figure 4.42). In 

the absence o f an ester group, it was believed that the elimination previously experienced 

with the dihydropyrroles from the cyclisation o f the aldol adducts (Scheme 4.13), would 

occur to a lesser extent. So the fact that in the absence of the ester group, elimination 

occurred very rapidly, was startling and consequently the promising silver catalysed 

cyclisation could not be used to synthesise the core pyrrolidine ring of (+) preussin 4. 

Ultimately, a new approach is required. However, these findings are useful for pyrrole 

synthesis since elimination occurs rapidly, obviating the need for the extra elimination 

step.
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4.50. Miscellaneous Silver Cyclisations

4.51. Introduction

Various amino alcohol derivatives were synthesised in the quest for cyclisation precursors. 

A thorough study was not conducted but any available amino alcohol derivative were 

treated with 10% silver nitrate on silica gel, to hopefully afford dihydropyrroles 606 or 

pyrroles 607, so as to determine the scope and limitations of these cyclisations, as the basis 

for future work (Figure 4.44). In the studies towards the synthesis o f (-)-codonopsinine 3b 

and (+)-preussin 4, it was discovered that the nitrogen protecting group was fundamental to 

the success o f the reaction and the presence of an ester in the 2 -position allowed the 

dihydropyrrole intermediate to be isolated. The lack of this ester group, lead to rapid 

elimination in situ to afford the corresponding pyrroles 607.

605 606 607

Figure 4.44

4.52. Results and Discussion

The initial substrate tested was derived from the condensation of Gamer’s aldehyde 201 

with lithio phenylacetylide (Scheme 2.30, Chapter 2). This amino alcohol 204 bore a 

primary alcohol side chain in place of the ester moiety and so, there was a possibility that 

on treatment with silver nitrate on silica gel, a 5-exo-dig cyclisation could occur. When 

this substrate 204 was treated with 0.2 equivalents o f 10% silver nitrate on silica gel for 1 

h, delightfully, the pyrrole 608 was obtained in quantitative yield, with no trace of the 

product from a 5-exo-dig cyclisation. This was verified by the loss of the alkyne signals 

and also the new but familiar olefin doublets at 6h 6.05 and 6.15 ppm.
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OH
HO,

Ph

NHBoc Ph 
204

Boc

608

Scheme 4.38. Reagents: 0.2 eq AgNC>3, CH2CI2, 1 h, 100%.

In a later route to the required cyclisation precursors, substrates were synthesised that bore 

a methyl side chain in place o f the methyl ester from the alkylation of aldehyde 195 with 

either lithiophenylacetylide or 1-hexynyllithium (Scheme 2.52 and 2.55, Chapter 2). 

Bearing a Boc protecting group, it was assumed from the previous research that these 

precursors 258 and 262 would afford pyrroles. When this phenyl derivative 258 was 

treated with 10% silver nitrate on silica gel, the cyclisation was expectedly very slow and 

proceeded to completion after 64 h. Following purification using chromatography, the 

pyrrole 609 was isolated in 48% yield, as deduced from the molecular ion o f 258 (M* + H), 

consistent with cyclisation and dehydration o f the intermediate together with two new 

olefin signals at 6c 110.3 and 112.2 ppm (Scheme 4.39; a).

The corresponding butyl derivative 262 also cyclised slowly and after 64 h, the pyrrole 610 

was isolated as the only isolated product (Scheme 4.39; b). Confirmation of this structure 

was again obtained from the loss o f the alkyne signals in addition to the appearance of new 

olefin resonances at 109.0 and 110.1 ppm in the ,3C NMR spectrum. However, this time, 

mass spectrometry failed to produce a molecular ion that corresponded to this pyrrole 610, 

but sufficient evidence for this structure had nevertheless been obtained.

OH ' n — \  OH

P tiT  NHBoc 800 Bu NHBoc 8 0 0

258 609 262 610

Scheme 439. Reagents: a) 0.5 eq AgNC>3, CH2CI2, 64 h, 48%; b) 0.5 eq AgNC>3, CH2CI2,

64 h, 50%.

So, from these two reactions, whereas cyclisation with a substrate bearing a methyl ester 

proceeded on average after two hours, if  this ester is substituted with a methyl side chain, 

the cyclisation takes considerably longer and the yields obtained are lower (Scheme 4.39).
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4.23. Summary of Silver Cyclisations

To summarise, all the substrates exposed to 10% silver nitrate on silica gel are illustrated in 

Table 4.16

Precursor Cyclisation
conditions Product(s) Yield

(%)

1

OH

-Ph NHTs 

146a

0.5 eq AgN03, 
CH2C12, 1 h

j c T
Ph N C° 2 Me 

Ts 
421

93

2

OH

Bu NHTs 
144a

0.5 eq AgN03, 
CH2CI2, 1.5 h

OH

B ^ Q - C O ^ ,  +
Ts

429 430

79
(429) 

and 16
(430)

3
OTBS

J s ^ C O a M e
-

Bu NHTs 
431

0.5 eq AgN03, 
CH2CI2, 1.5 h

OTBS

j r \ .
B u - ^ N^  "C 0 2Me 

Ts 
432

43

4

OH
X ^ C O a M e

NHTs

M e O " ^  476

0.2 eq AgN03, 
CH2CI2, 1.5 h

OH

j f <V ^ N^ " ,C0 2Me

476

98

5

OHJL XOoMe

f | * |  NHBoc 

M e O ^ ^  469

0.5 eq AgN03, 
CH2CI2, 1.5 h

tf"<V ' ' ^ N^ C 0 2Me
MeO Boc 

470
92

6
OH

A r “CgH-ig NHBoc 
596

0.1 eq AgN03, 
CH2CI2, 2 h

CsH .A n 6"
Boc

599
100

7

OH

Bu NHBoc 
262

0.5 eq AgN03, 
CH2CI2, 64 h

X X
Boc

610
50

8
OH

APh NHBoc 

258

0.5 eq AgN 03, 
CH2CI2, 64 h

X X
Boc
609

48

9
OH

NHBoc Ph 
204

0.2 eq AgN 03, 
CH2CI2, 1 h

"kX ^ ,
Boc

608
100

10
OH

A v -
CflH^ NH2 

600

0.2 eq AgN 03, 
CH2CI2, 2 h

C*H19̂ N^ B n
H

601
43

Table 4.16
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4.54. Conclusion

Interestingly, the presence of an ester group adjacent to the nitrogen is essential for 

successful isolation o f the dihydropyrroles, provided that the nitrogen-protecting group is a 

tosyl group. In the absence of the ester, regardless of the nitrogen-protecting group, the 

product o f the silver-catalysed cyclisation was the pyrrole. Thus, despite the excellent 

yields obtained, the restrictions regarding the nitrogen protection group mean that the 

silver-catalysed cyclisation is not a synthetically viable means of synthesising pyrrolidines, 

due to the problems associated with the removal o f tosyl protecting groups. However, the 

present research has shown that when a Boc protecting group is implemented, the silver 

catalysed cyclisation provides an excellent route to 2,5-pyrroles since it obviates the need 

for an additional elimination step in the synthetic sequence. However, it can be seen from 

Table 4.16 that the length of the side-chain adjacent to the NHBoc moiety influences the 

timescale o f the reaction considerably, with longer chains leading to a rapid reaction.
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Chapter 5: Sphingosine Results and Discussion

Chapter Five 

Studies Towards the Total Diastereoselective Synthesis of 

Sphingosine

5.10. Introduction

5.11. Discovery and Structure Elucidation

In 1882, Thudichum isolated sphingosine 202a as a waxy substance from the hydrolysis of 

a lipid fraction o f brain tissue.1 In the early nineteen hundreds, various investigators2'4 

identified sphingosine 202a as a dihydroxyaminooctadecene, but it was not until 1947 that 

the position o f the three functioned groups was proven by Carter and co-workers.5-6 

Several researchers7"11 confirmed the (2S,3R) relationship between carbons 2 and 3, while 

Mislow12, Marinetti and Stotz13 verified that the geometry of the double bond to be trans. 

Thus, the structure o f sphingosine was deduced to be trans-D-erythro-\,3-dihy(koxy-2- 

amino-4-octadecene 202a (Figure 5.10).

Sphingosines are a group of related long-chain aliphatic 2-amino 1,3-diols. The most 

abundant of which in animal glycosphingolipids, ceramides or glycosides of N- 

acylsphingosines is (2S,3R)-erythro-sphingosine 202a (Figure 5.10).14

OH

^  C 1 3 H 2 7

OH R- 0  OH

HO HO

202a
D-erythro-sphingosine

202b
L-threo-sphingosine

NH(CO)R2

611

Figure 5.10
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Glycosphingolipids consist o f carbohydrate and ceramide structural units and are found in 

all the cell membranes o f animal and plant cells. The ceramide unit comprises of a 

sphingoid base and an amide-linked fatty acyl chain such as stearoyl or palmitoyl.15 

Subsequently, due to the structural variation of sphingosines, carbohydrates and the V-acyl 

moiety o f fatty acids there is a vast number o f chemically distinct glycosphingolipids14.

In these cell membranes, glycosphingolipids regulate cellular recognition, development 

and growth, in addition to acting as identifying markers. They are believed to act by 

anchoring the hydrophobic ceramide constituent in the plasma membrane, thereby 

exposing the hydrophilic carbohydrate functionality to the surrounding area, which 

specifies the proposed biological function.15 Sphingolipids are involved in virtually all 

aspects of cell regulation and consequently, defects in sphingolipid metabolism leads to 

numerous inherited human diseases.16

The numerous biological roles o f glycosphingolipids include: -

• HIV binding to galactosyl ceramide receptor sides in cells devoid of the principal 

CD4 cellular receptor;

• A link between specific sphingolipids and malignant tumours, allows them to be 

used as ‘biological markers’ for the possible early detection of cancer15;

• Transfer o f information between developing cells in vertebrates14;

•  Various cell growth processes including, differentiation, neuronal repair and 

adhesion15;

•  Reversible inhibition o f protein kinase C via their breakdown products, 

sphingosine, sphinganine and lysosphingolipids and since protein kinase C 

mediates cell responses for hormones, growth factor and tumour promoters, its 

reversible inhibition is significant.

It is due to these biological properties, that there is an ongoing interest in this field of 

research14.
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5.13. Synthetic Approaches

There are a large number o f known sphingolipids 611 where R1, R2 and R3 can vary, and as 

such, isolation o f homogeneous material is problematic (Figure 5.10).16 In addition, the 

allylic alcohol moiety undergoes epimerisation readily and, consequently, synthetic 

approaches are an attractive alternative. In these synthetic strategies, it is important to 

control the geometry o f the olefin, since the trans derivatives exhibit the desired activity.

Following the first synthesis o f sphingosine in 1954 by Shapiro and Segal17, there have 

been numerous approaches to this natural product.18 In 1970, Reist19 was the first chemist 

to synthesise sphingosine 202a utilising a carbohydrate building block. Sphingosine

synthesis from chiral sources of this type has become commonplace for both the natural
*)(\erythro and threo isomer and, later in 1973, Newman became the first to synthesise the 

natural isomer 202a from L-serine. Since then, there have been numerous approaches to
I

sphingosines from L-serine, in particular, Polt’s approach afforded L-f/ireo-sphingosine 

202b in five steps in an excellent 60% overall yield. However, there are numerous novel 

approaches to the natural isomer, for example in 1983, Vasella22,23 synthesised sphingosine 

in 6 steps in an overall yield o f 50%, by utilising a Katsuki-Sharpless asymmetric 

epoxidation reaction as the key step.

5.20. Results and Discussion

5.21. Initial Studies: Sphingosine Model

Much of the present research has utilised the tin(II) mediated aldol reaction24 to afford the 

desired cyclisation precursors. These aldol adducts clearly resemble sphingosine 202a, 
and as a side-line, research was conducted to ascertain if, following reduction of both the 

methyl ester and alkyne and then detosylation, this would provide a rapid route to the 

natural product (Figure 5.11). If these reductions could be conducted in one step this 

would overtly be advantageous. The retrosynthesis is shown in Figure 5.11.
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OH OH OH

r / ^ ^ V ^ O H  = >  R ^ s ^ V ^ O H  = >  ^ ^ ^ C°2 Me ==> M e02C ^ N H T s  + R = ■ CHO 
NH2 NHTs R NHTs

202 612 613 152 614

where R=CH3(CH2)i2

Figure 5.11

With the expense of 1 -Pentadecyne 615, it was more viable to conduct experiments to 

determine the optimum reduction conditions using a readily available substrate 144a from 

the condensation of the enolate o f methyl W-tosyl glycinate with hept-2ynal 115 (Scheme 

2.10; a, Chapter 2).

5.22. Red-Al Reduction

In Herald’s25 synthesis o f sphingosine, Red-Al was used to reduce the alkyne moiety and 

hence, this was an obvious first choice o f reagent (Scheme 2.29, Chapter 2). Treatment 

with Red-Al afforded a 1:1 mixture of diastereoisomers of the (2s)-amino alcohol 616 in 

85% yield, together with a trace of what was assumed to be an allene 617 on comparisons 

with products from later experiments (Scheme 5.13). Reductions of both the ester and 

alkyne moieties were evident from the loss o f the methyl ester singlet and the appearance 

of four new olefin signals at 5h 5.0-6.0 ppm. Therefore, due to the observed epimerisation, 

the reductions could not be conducted in “one pot” as desired.

o h  o
Bu

Bu NHTs

144a 616 617

Scheme 5.11. Reagents: Red-Al, Et2<D, 24 h, 85%.

Adversely, the acidic nature o f the proton adjacent to the carbonyl compound caused 

racemisation, hence in subsequent reactions, the ester was reduced, prior to the alkyne 

reduction, to eliminate this possibility. Again various reducing agents were employed, and 

to conserve pure substrate 144a, the remaining test reactions were carried out on a mixture 

of the heptynal aldol product 144a and methyl A-tosyl glycinate 152 (Scheme 2.10; a, 

Chapter 2).

NHTs

h^ - ^ Y ^ oh
T  NHTs 
Bu
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Treatment o f a 1 . 7 5 : 1  mixture of the heptynal aldol product I44a and methyl Af-tosyl 

glycinate 152 with 3  equivalents of DIBAL for 2  h at - 7 8 ° C ,  only gave a minor trace of 

aldehyde, but after 16 h, all the methyl N-tosyl glycinate ester had been reduced, and the 

resulting alcohol subsequently removed via aqueous work-up. Next, a further 4 

equivalents o f DIBAL was added to the crude product and the mixture was refluxed for 4 

h. Following chromatography, it was apparent that transesterification had occurred to form 

the iso-butyl ester 618 in 2 5 %  yield over 3  steps. This structure 618 was deduced from the 

loss o f the methyl ester singlet at 3 . 5 0  ppm, in addition to the appearance of two new 

resonances representing the new C H a C H b  protons of the new ester group at 3 . 6 5  and 3 . 7 5  

ppm and a doublet at 0 . 7 5  ppm, integrating for 6 protons corresponding to the two methyl 

groups o f the wo-butyl ester (Scheme 5 . 1 2 ) .

o h  o  o h  o

NHTs

144a 618

Scheme 5.12. Reagents: i) DIBAL, 2 h, -78°C, toluene; ii) DIBAL, 16 h, R.T.; iii)

DIBAL, 4 h, reflux, 25%.

5.24. Lithium Aluminium Hydride (LAH) Reduction

Exposure o f the 1.75:1 mixture of the heptynal aldol product 144a and methyl AMosyl 

glycinate 152 to LAH in THF for 3 h, followed by quenching with a 1 M sodium 

hydroxide solution and standard aqueous work-up, gave the amino diol 619 as the only 

isolated product in 30% yield. The NMR spectrum of the product 619 showed the absence 

of the methyl ester singlet at 3.50 ppm and the appearance of two new double doublets at 

3.50 and 3.95 ppm, corresponding to new C H a C H b  protons of the new alkyl chain and 

APcI confirmed a molecular ion o f 326 (M* + H), which was in agreement with the 

proposed structure (Scheme 5.13; a).

The reduction of the ester 144a was repeated but after 3 h, an extra equivalent of LAH was 

added, to hopefully reduce the alkyne moeity, and the reaction mixture was stirred for a
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further 16 h. Alternatively, the excess reagent was decomposed with ethyl acetate, 

followed by water and finally 10% sulphuric acid, in an attempt to optimise the yield. 

Following optimisation using NMR spectroscopy to determine product formation and 

chromatography of the crude product, the diol 619 was isolated in an improved 62% yield 

over 2 steps, in addition to 10% allene 617. The presence of the allene 617 was deduced 

from the characteristic absorption at 1965 cm '1 in the infrared spectrum, together with a 

resonance at 202.3 ppm, corresponding to the new carbon (C=C=C).

a and b
OMe

NHTs
r  NHTs 

Bu
NHTs

617

Scheme 5.13. Reagents: a) LAH, THF, 3 h, 30%; b) LAH, THF, 62% 619 and 10% 617.

5.25. Sodium Borohydride Reduction

Since complete reduction to the alcohol was very slow and variable, one final reagent 

sodium borohydride, was tested. Sodium borohydride being a mild reducing agent does 

not usually reduce less reactive carbonyl compounds like esters. However, when a 

hydroxy ester reacts with sodium borohydride, an alkoxy borohydride intermediate 621 is 

formed (Figure 5.12). The electron donation by this alkoxy group results in a nucleophilic 

activation of the B-H bond, which makes the alkoxy borohydride a stronger reducing agent 

than uncoordinated sodium borohydride. Hence sodium borohydride can be an effective 

reducing agent o f hydroxy esters.26

OR

620 621 622

Figure 5.12

Treatment o f a pure sample o f the heptynal hydroxy-ester 144a with sodium borohydride 

in ethanol, gave a single diastereoisomer of the diol 616a in an excellent 74% yield
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(Scheme 5.14; a), and therefore some optimum conditions for the reduction were 

established.

o h  o OH OH

Bu NHTs
OMe

a
OH

b
Bu NHTs

619
NHTs

144a 616a 617

Scheme 5.14. Reagents: a) NaBUj, EtOH, 16 h, 74%; b) Red-Al, Et20 , 24 h, 72% 616a
and 25% 617.

With the ester functionality reduced, the diol 619 was treated with a solution of Red-Al in 

diethyl ether, and in the absence of the ester, no epimerisation occurred to afford the (E)- 

olefin 616a cleanly in 72% yield, together with 25% allene 617 (Scheme 5.14; b). The 

(£)-olefin 616a displayed a molecular ion of 328 (M+ + H), consistent with reduction of 

the alkyne and two new olefin resonances at 5.25 and 5.65 ppm with a typical trans 

coupling of 15.4 Hz.

5.26. Conclusion

The optimum strategy therefore involved two separate reductions, the first employing 

sodium borohydride to reduce the ester, followed by Red al to reduce the alkyne. With 

optimisation complete, the reductions were carried out on the target substrate 613 (Section 

5.30).
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5.30. Initial Route to sphingosine: Results and Discussion

1 -Pentadecyne 615 was formylated according to Joumet’s27 method to furnish the 

acetylenic aldehyde 614 which was isolated in 99% yield, as apparent from the singlet at 

9.10 ppm (Scheme 5.15; a). The aldehyde 614 was reacted with the enolate of methyl N- 

tosyl glycinate in the presence of tin(II) chloride to give the amino alcohol 613 in 47% 

yield, following chromatography and recrystallisation, as deduced by a molecular weight 

of 480 (M+ +H) corresponding to the desired structure and the new CHOH and CZ/CChMe 

protons in the range 8h 4.05-4.60 ppm.

OH

CH3(CH2)i2— =  CH3(CH2)12 —  CHO — ^ A s ^ C O z M e

CH3(CH2)i2̂  NHTs 

615 614 613

Scheme 5.15. Reagents: a) n-BuLi, DMF, THF, -40°C, 99%; b) 152, SnCl2, LDA, THF,

-78°C, 0.5 h, then add 614,47%.

Treatment o f the aldol product 613 with sodium borohydride in ethanol furnished the 

desired alcohol 623, as a single diastereoisomer in exemplary 77% yield as confirmed by 

the loss o f the methyl ester singlet in the proton NMR spectrum in addition to the presence 

of new C H a C H b  protons at 8h 3.50 and 3.95 ppm (Scheme 5.16; a). Finally, LRMS using 

APcI generated a molecular ion of 452 (M+ + H ) ,  corresponding to the specified structure. 

Subsequent treatment o f the diol 623 with a solution o f Red-Al in toluene for 24 h afforded 

the (E)-amino alcohol 624, together with a small quantity of allene 625 in 51% and 8% 

respectively (Scheme 5.16; b). The presence o f the (^-olefin  624 was evident by the new 

olefin signals at 5.25 and 5.60 ppm in the proton NMR spectrum with a trans coupling of 

15.4 H z .  Formation of the allene 625 was deduced by the distinctive absorbance at 

1965cm’1 in the infrared spectrum in addition to the characteristic new quaternary carbon 

( C = C = C )  at 8c  202.6 ppm. It is possible that by lowering the temperature, the degree of 

allene formation would have been deduced, but no studies were conducted.
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NHTs 
613

Where R= CH3(CH2)i2- 

Scheme 5.16. Reagents: a) NaBRt, EtOH, 16 h, 77%; b) Red-Al, Et20 , 24 h, 51%.

5.31. The Detosylation Predicament

Detosylation is a common problem for synthetic chemists, despite literature precedent.28 

The conditions employed are often harsh, commonly involving dissolving metal 

reductions. With the removal o f the tosyl group, a water-soluble amino-diol 202a would 

have to be isolated, and with the isolation problems previously experienced, could this be 

achieved? Since dissolving metal reductions are commonly used to remove tosyl groups, a 

“one pot” reaction using sodium in liquid ammonia was tested, to carry out the two 

reductions and detosylation. It was hoped that the speed of the reaction would lower the 

risk of epimerisation of the centre adjacent to the ester. No aqueous workup was 

conducted, due to the perceived problems with isolation. Instead, following the quenching 

of the reaction by ammonium chloride, the salt was immediately treated with acetic 

anhydride in pyridine (Scheme 5.17).

OAc

CH3(CH2)12'
CH3(CH2)12'

613

Scheme 5.17

Regrettably, following the workup and purification by chromatography, the desired 

product 626 was not isolated in any o f the fractions, thus alternative reagents were sought. 

Another commonly used procedure is the use of sodium naphthalenide in DME. An 8:1 

(antiisyn) mixture of diastereoisomers o f the (2T)-amino diol 624 was therefore treated with 

freshly prepared sodium naphthalenide and the crude product was immediately exposed to 

excess acetic anhydride in pyridine for 88 h. Following chromatography, the diacetate 627 
was isolated as an 8:1 mixture of diasteroisomers (antiisyn) in 57% yield, but with the tosyl 

group intact (Scheme 5.18). The major isomer was characterised by the new acetate

NHAc
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methyl singlets at 1.75 and 1.80 ppm and the two tosyl doublets at 7.25 and 7.65 ppm in 

the *H NMR spectrum.

OH OAc

CH3(CH2)12 OH CH3(CH2)12 ^ OAc
NHTs NHTs

624 627

Scheme 5.18. Reagents: i) Sodium Naphthalenide, DME, -78°C; ii) AC2O, py, 88 h, 57%.

5.27. Conclusion

Unfortunately, despite the success o f the aldol condensation and the reductions, the 

detosylation issue was still a problem, and was not successfully achieved. Obviously there 

was still reagents left to try, but instead it was decided to explore the possibility of 

different protection groups to obviate this hurdle.

5.40. Alternative Nitrogen Protecting Groups: Formal Synthesis of Sphingosine

5.41. Introduction

At this stage the possibility o f alternative nitrogen protecting groups was explored. An 

obvious choice would have been the 4-nitro benzene sulfonyl group, since these are easier 

to remove that the tosyl group.29 However, Kazmaier reported that this group did not 

survive the tin(II) mediated aldol condensation, and so turned to the SEM group as an 

alternative.30 Unfortunately, the synthesis o f the SEM group involves the use of carbon 

tetrachloride and due to the new restrictions regarding its use, this protecting group was not 

an option.

5.42. Results and Discussion

In the previous Chapter, the A-Boc group survived the aldol reaction and so was used as an 

alternative to the tosyl group, in this second route to sphingosine 223a. In the aldol 

condensation of the enolate o f methyl A-Boc glycinate with hexadec-2-ynal 614, the NMR 

spectrum of the crude product showed a single diastereoisomer of the product 628 together 

with starting material (Scheme 5.19; a). Chromatography failed to separate the methyl N-
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Boc glycinate 162b from the desired product 628 and since both compounds were oils, 

recrystallisation was not an option. Consequently, the yields were calculated from the ratio 

in the *H NMR spectrum to give the product 628 in 41%, taking into account the recovered 

starting material. Formation of the desired aldol product 628 was tangible from the 

molecular ion o f 426 (M+ + H), visible in the mass spectrum which was consistent with the 

product as well as the appearance of new C/ZCChMe and C//OH protons at 8h 4.50 and 

4.70 ppm.

The same strategy that was successful for the initial route was adopted here. Accordingly, 

a 1:1.15 mixture o f methyl Af-Boc glycinate 162b and amino alcohol 628 was treated with 

sodium borohydride in ethanol. After chromatography of the crude product, the diol 629 
was isolated as a single diastereoisomer in 50% yield (Scheme 5.19; b). Formation of the 

desired product was apparent from the observed molecular ion of 398 (M+ + H), which was 

consistent with the product, in addition, a new CFfe signal at 63.0 ppm was observed in the 

13C NMR spectrum and together with the disappearance of the methyl ester singlet, this 

was strong evidence for structure 629. This diol 629 was an intermediate in the synthesis 

of sphingosine 203a by Herold.25 Hence, a concise, diastereoselective formal synthesis of 

sphingosine 203a in an overall yield of 16% was achieved.

CH3(CH2)12 3 =  c h o  —2-

o h  o
OMe 

NHBoc CH3(CH2)12 NHBocCH3(CH2)12"

614 628 629

Scheme 5.19. Reagents: a) SnCh, LDA, THF, -78°C; b) NaBH4, EtOH, 16 h, 50%.
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5.51. Introduction

A literature search of detosylation methods revealed an interesting observation by the 

Chandrasekhar group.31 They reported that when a sulfonamide 630 with an adjacent ester 

group was treated with 2,2-dimethoxypropane in refluxing toluene with catalytic PPTS, 

detosylation occurred simultaneously, with only 10% of the undesired product 632 
obtained (Scheme 5.20).

HN

631

+

632

OH

NHTs 

630

Scheme 5.20. Reagents: 2,2-Dimethylpropane, PPTS, Toluene, 70°C, 4 h.

If this reaction proved successful when applied to the aldol adduct (Scheme 5.15), then this 

would solve the detosylation problem.

5.52. Results and Discussion

When the aldol adduct 613 was treated with a mixture of 2,2-dimethoxypropane and 

catalytic PPTS in refluxing toluene for 6 h, no reaction was observed. In fact, prolonged 

heated was necessary to initiate reaction, but even after 24 h at reflux, only 44% 

conversion had occurred, to furnish the acetal 633 in 85% yield, but unfortunately with the 

tosyl group still intact, which was confirmed by the retention of the tosyl doublets at §h 

7.20 and 7.65 ppm along with two aryl methyl singlets at 1.55 and 1.75 ppm (Scheme 

5.21). Again the yield was calculated based on the amount of starting material recovered.

CO2M6
NHTs

613

.NTs

633

Scheme 5.21. Reagents: 2,2-Dimethylpropane, PPTS, Toluene, 70°C, 24 h, 633 85%.
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5.53. Conclusion

In summary, the sphingosine backbone was successfully formed using the tin(II) mediated 

aldol reaction as the key step (Scheme 5.15; b). However, the detosylation issue still needs 

to be addressed. In addition, a N-Boc protecting group was suitable for use with this aldol 

reaction, but unfortunately, separation of the methyl jV-Boc glycinate 162b starting 

material from the amino alcohol product 628 could not satisfactorily be achieved. 

Reduction of this adduct 628 gave the alcohol 629 previously reported by Herold , and 

thus, a formal diastereoselective synthesis o f sphingosine 202a was achieved in 16% 

overall yield.
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Chapter Six 

Experimental Section

General Procedures

All non-aqueous reactions (unless stated otherwise) were carried out in flame or oven-dried 

glassware under a dry nitrogen atmosphere with magnetic stirring. To obtain low 

temperatures solid carbon dioxide and an acetone bath (-78°C), an ice-water bath (0°C) or 

solid carbon dioxide and an acetonitrile bath (-40°C) were employed. Elevated 

temperatures were achieved using a stirred oil bath (either paraffin or silicon oil) on a 

magnetically stirred hotplate.

Solvents and reagents were dried and purified according to standard procedures1 

Tetrahydrofuran was distilled from sodium benzophenone ketal. Dichloromethane was 

distilled from calcium hydride. Diisopropylamine, N-ethyl-piperidine and pyridine were 

dried over and distilled from potassium hydroxide. Acetonitrile and N,N- 

dimethylformamide were dried over 4A molecular sieves. Methanol was dried over and 

distilled from potassium carbonate. All solutions of crude products were dried by brief 

exposure to dried magnesium sulfate (MgSC>4), unless stated otherwise, then filtered and 

evaporated under reduced pressure using a Biichi rotary evaporator under water pump 

pressure and a warm water bath. Column chromatography was conducted using Fisher 

silica gel 60A (35-70 micron) as the stationary phase, (using gradient elution with the 

solvent system used to elute the product indicated in brackets). Reactions were monitored 

by tic using Merck silica gel 60 F254 precoated aluminium backed plates that were 

visualised using either ultraviolet light, ammonium molybdenate, potassium permanganate 

or vanillin stains. Retention factor values (Rf) are reported in the appropriate solvent 

system.

Melting points (m.p.°C) were measured using an Electrothermal 9100 melting point 

apparatus and are uncorrected. Infrared spectra were recorded using a Perkin Elmer 1600 

series Fourier Transform Infra-red Spectrometer as either liquid films on sodium chloride
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plates [Film] or as a solution in dichloromethane [CH2CI2]. The signals are described with 

the following abbreviations: strong (s), medium (m), weak (w) or broad (br).

Proton ( 8 h )  NMR spectra were recorded on a Bruker DPK 400 instrument at 400 MHz as 

dilute solution in deuteriochloroform, unless otherwise stated, at 298 K. The chemical 

shifts are recorded relative to residual chloroform (7.27ppm) as the internal standard. The 

multiplicity symbols used throughout are s (singlet), d (doublet), t (triplet), q (quartet) quin 

(quintet), br. (broad), m (unresolved multiplet), app. (apparent) or dd (double doublet etc). 

All coupling constants (J) are measured in Hertz (Hz). Carbon (8c) NMR spectra were 

recorded on the same instrument and conditions, but operating at 100.6 MHz and the 

chemical shifts are recorded relative to residual chloroform (77.0 ppm) as the internal 

standard in a broad band decoupled mode. The assignments made were on the bases of 

chemical shift and coupling constant data using DEPT-135, COSY and HMQC 

experiments where necessary.

Mass spectra were recorded on a Fisons VG Platform Quadrapole Mass Spectrometer 

using atmospheric pressure chemical ionisation [ApcI] at Cardiff University, m/z Values 

are reported with the percentage abundance in parentheses, only for peaks with intensities 

of 10% or more. Electrospray [ES] and accurate high resolution data were recorded by the 

EPRSC Mass Spectrometry Service Centre at University of Wales Swansea and the 

molecular formula corresponds to the observed signal using the most abundant isotopes of 

each element. All the molecular formulae given for the value are quoted either as 

molecular + hydrogen (M+ + H), molecular + sodium (M+ + Na) or molecular + 

ammonium ion (M+ + NH4). Microanalysis data was recorded on a Perkin Elmer 

Elemental analyser and are quoted as atom percentages.

Optical rotations ( c c d )  were measured using an Optical Activity Limited AA 1000 

Polarimeter using a path length o f 0.5 cm at 294 K. The solvent employed and 

concentration of the solutions are shown in brackets. UV/VIS data (A ,m ax) was recorded 

using a Perkin Elmer UV/VIS lambda 20 Spectrometer.

High performance liquid chromatography (HPLC) was carried out on a HPLC Agilent 

1100 Series using a Chiralcel OD column.
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General Procedure A: Lithium diisopropylamide / Lithium hexamethyldisilazane 
Preparation

In a flame-dried flask, freshly distilled diisopropylamine (2.5 equivalents) was dissolved in 

anhydrous tetrahydrofuran (2 ml mmol'1 of amine). The solution was stirred and cooled in 

an ice bath before adding dropwise a 2.5 M solution of BuLi in hexanes (2.5 equivalents). 

The resulting mixture was stirred for 0.5 h at this temperature and then cooled to -78°C 

prior to use.

Lithium hexamethyldisilazane was also prepared by the same procedure but using 

1,1,1,3,3,3-hexamethyldisilazane in place of diisopropylamine

General Procedure B: Preparation of pH 7 Phosphate Buffer

The phosphate buffer was prepared by dissolving potassium dihydrogen phosphate (1.75 g) 

in 0.1 M potassium hydroxide (73.75 ml) and then adding water to achieve a total volume 

of 250 ml.

General Procedure C: Kazmaier Aldol Reaction2

The Af-protected glycinate (1 equivalent) was added to a suspension of anhydrous tin(II) 

chloride (2.5 equivalents) in dry tetrahydrofuran (12 ml g '1 of tin(II) chloride) maintained 

at -78°C before adding dropwise freshly prepared LDA (2.5 equivalents) in tetrahydrofuran 

(2 ml mmol'1) via cannula. After 10 minutes, a solution o f the aldehyde (1.2 equivalents) in 

dry tetrahydrofuran (10 ml g '1) was added slowly via syringe. After stirring the resulting 

mixture for 0.5 h, the reaction was quenched with pH 7 phosphate buffer and diluted with 

ether (10 ml g '! o f glycinate). The solution was allowed to warm to room temperature 

before being filtered through a pad o f celite. The layers were separated, the aqueous layer 

was extracted twice with ether (20 ml g"1 of glycinate) and the combined organic solutions 

were washed with brine (50 ml g '1 o f glycinate), then dried and evaporated to yield the 

aldol product which was purified by column chromatography or recrystallisation.
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To the acetylenic aldol product (1 equivalent) in ethyl acetate (5 ml g '1) was added 

Lindlar’s catalyst (palladium on calcium carbonate, poisoned with lead acetate) (1.2 mg 

per ml of H2) and the mixture was stirred vigorously under a hydrogen atmosphere until 

hydrogen (22.5 ml mmol"1 of acetylene) was absorbed. The suspension was then filtered 

through a pad of celite, the solid washed with diethyl ether and the filtrate and washings 

evaporated to yield the cis product, which was used without further purification.

General Procedure E: Dicyclohexylcarbodiimide Coupling Procedure3

To a stirred solution o f the alcohol (1 equivalent) and 4-pyrrolidino-pyridine (0.09 

equivalents) in anhydrous dichloromethane (10 ml g '1 of alcohol) was added 

dicyclohexylcarbodiimide (1.1 equivalents) in dichloromethane (10 ml g '1). The resulting 

solution was cooled to -20°C, the acid (1 equivalent) in dichloromethane (10 ml g*1) was 

added and immediately a white precipitate formed. The reaction was stirred overnight at 

room temperature and the precipitate was filtered off, washed with dichloromethane and 

the filtrate washed with water (3 x 40 ml g '1 o f alcohol), 5% acetic acid solution (3 x 40 ml 

g’1 of alcohol) and water (3 x 40 ml g '1 of alcohol). The organic layer was then dried and 

evaporated to yield the ester.

General Procedure F: Boc Deprotection Using Trifluoroacetic acid

To an ice-cold solution o f the jV-Boc protected amine in dichloromethane (8 m l g'1) was 

added trifluoroacetic acid (2 ml g '1) dropwise. When the reaction was judged to be 

complete by tic (1-2 h), the solvent was evaporated. The residue was partitioned between 

saturated aqueous sodium carbonate and dichloromethane (20 ml g '1). The separated 

organic phase was washed with saturated aqueous sodium carbonate (2 x 10 ml g"1) then 

dried and evaporated to yield the amine.
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General Procedure G: Tosylation of Secondary Amines

To an ice-cold solution of the crude amine (1 equivalent) in dichloromethane (10 ml g'1) 

was added the base (either triethylamine, pyridine or 2,4,6-collidine) (various equivalents) 

as specified in the individual experiment. After 0.25 h DMAP (catalytic) was added 

followed by a solution o f tosyl chloride (various equivalents) indichloromethane (10 ml g' 

*). The ice bath was removed and the reaction mixture was stirred for 16 h. 2M 

hydrochloric acid (10 ml g '1 o f amine) was added, the resultant two layers were separated 

and the aqueous phase was extracted with dichloromethane (3 x 10 ml g '1 of amine). The 

combined organic phases were dried and evaporated to furnish the crude sulfonamide.

General Procedure H: Reduction of Alkynes using a 65% w/w solution of Red-al4

A solution o f the alkyne (1 equivalent) in anhydrous ether (10 ml g '1) was added dropwise 

to a 65% w/w solution of Red-al (5 equivalents) in anhydrous ether (3 mmol ml*1 of Red- 

al) cooled in an ice-bath. The colourless solution was then stirred at room temperature for 

24 h before adding methanol (0.14 ml mmol*1 of Red-al) dropwise at 0°C. The solution 

was diluted with ether (8 ml mmol'1 o f alkyne), saturated aqueous potassium sodium 

tartrate (8 ml mmol'1 of alkyne) was added and the mixture was stirred vigorously for 3 h 

at room temperature. The separated aqueous layer was extracted with ether (2 x 8 ml 

mmol'1 of alkyne) and the combined organic solutions were washed with saturated aqueous 

potassium sodium tartrate (20 ml mmol'1 o f alkyne), saturated brine (20 ml mmol'1 of 

alkyne) and were then dried and evaporated to yield the (E)-alkene, which was purified 

using column chromatography.

General Procedure I: Iodocyclisation Using Iodine Monobromide

Potassium carbonate (3 equivalents) was added to a stirred solution of the alkene (1 

equivalent) in acetonitrile or dichloromethane (10 ml g"1 of alkene) maintained at -10°C. 

After stirring the mixture for 0.25 h, iodine monobromide (3 equivalents) was added, and 

the mixture was maintained at this temperature until tic showed the reaction to be 

complete. Saturated aqueous sodium thiosulfate (10 ml g '1 o f alkene) was added and after 

separating the layers, the aqueous layer was extracted with dichloromethane (3 x 10 ml g '1
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of alkene). The combined organic layers were dried and evaporated to yield the crude 

product.

General Procedure J: Epoxide Forming Reaction Using Silver Carbonate (50% w/w 
on celite)5

Silver carbonate on celite (50% by weight, 6 equivalents) was added to a stirred solution of 

the iodopyrrolidine (1 equivalent) in freshly distilled dichloromethane (30 ml g'1). The 

reaction was stirred for 24 h at room temperature before filtering the mixture through a 

plug of celite. The solid was washed with dichloromethane and the combined filtrate and 

washings evaporated to yield the epoxide.

General Procedure K: Acetate Formation

The pyrrolidine (1.0 equivalent) was dissolved in anhydrous pyridine (10 ml g'1), acetic 

anhydride (1.0 equivalent) was added and the reaction was stirred at room temperature for 

24 h. The reaction mixture was then diluted with water (50 ml g '1 o f pyrrolidine), the 

aqueous layer extracted with ether (2 x 50 ml g '1 of pyrrolidine) and the combined ether 

extracts were washed with saturated aqueous copper(II) sulfate solution (3 x 50 ml g"1 of 

pyrrolidine). The ether layers were then dried and concentrated to give the acetate.

General Procedure L: Iodocyclisation using Iodine

Potassium carbonate (3 equivalents) was added to a stirred solution of the alkene (1 

equivalent) in anhydrous acetonitrile or dichloromethane (10 ml g 1 of alkene) cooled in an 

ice bath. After stirring the mixture for 0.25 h, iodine (3 equivalents) was added. The 

reaction was maintained at this temperature until tic showed the reaction to be complete. 

Saturated aqueous sodium thiosulfate (10 ml g"1 o f alkene) was added and after separating 

the layers, the aqueous layer was extracted with dichloromethane (3 x 10 ml g '1 of alkene). 

The combined organic layers were dried and evaporated to yield the crude product.
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General Procedure M: Hydrogenolysis to remove Iodine

To a solution of the iodopyrrolidine (1 equivalent) in methanol (0.2 g m l1) was added 

triethylamine (1 equivalent) and 10% palladium on carbon (1.2 g per ml of hydrogen) and 

the mixture was stirred vigorously under an atmosphere of hydrogen for the specified time. 

The suspension was then filtered through a pad of celite and the solid was washed with 

diethyl ether. The filtrate was washed with an equal volume o f 1 M hydrochloric acid and 

the organic layer was dried and evaporated.

General Procedure N: Saponification

The ester (1 equivalent) was dissolved in an ice-cold solution o f 2 M potassium hydroxide 

in methanol (64 ml g '1) and the solution stirred overnight. The bulk o f the solvent was 

evaporated and the residue was acidified using 2M hydrochloric acid to pH 1. An equal 

volume of dichloromethane was added, the layers were separated and the aqueous phase 

was extracted with dichloromethane (x 4). The combined organic phases were dried and 

evaporated.

General Procedure O: Silver Cyclisation using 10% w/w Silver Nitrate on Silica Gel6

In a flame dried flask containing the alkyne in anhydrous dichloromethane (30 ml g '1) was 

added 10% by weight silver nitrate on silica (various equivalents), as specified in the 

individual experiment. After the specified time at room temperature, the mixture was 

filtered through a plug o f  celite, the solid washed with dichloromethane and the combined 

filtrate and washings were evaporated to yield the cyclised product.

General Procedure P: TBS protection of secondary alcohols

The alcohol (1 equivalent) in tetrahydrofuran (10 ml g’1) was cooled in an ice bath prior to 

the addition o f triethylamine (1.1 equivalent) and TBS triflate (1.1 equivalent), the ice bath 

was removed and the reaction mixture stirred for the specified time. Water (5 ml g '1 of 

alcohol) was added, followed by diethyl ether (5 ml g '1 o f alcohol) and the resulting two 

layers were separated. The aqueous phase was extracted with diethyl ether (3 x 5 ml g "f of
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alcohol) and the combined ether layers were washed with saturated aqueous sodium 

bicarbonate (2 x 15 ml g '1 of alcohol), then dried and evaporated.

General Procedure Q: Hydroboration

To an ice-cold solution of the dihydropyrrole (1 equivalent) in tetrahydrofuran (10 ml g 1) 

was added a 1M solution of borane-tetrahydrofuran complex in tetrahydrofuran (4 

equivalents). The ice-bath was removed and the solution was stirred for 16 h. The 

reaction mixture was re-cooled in an ice bath prior to the addition of a 10% aqueous 

solution of sodium hydroxide (equal volume to borane-THF complex) followed by a 30% 

by weight aqueous solution of hydrogen peroxide (equal volume to borane-THF complex) 

and the resulting solution stirred vigorously for a further 1 h. The solvent was evaporated 

then water (5 ml g '1) was added followed by dichloromethane (5 ml g '1). The layers were 

separated and the aqueous layer was extracted with dichloromethane (3 x 10 ml g'1). The 

combined organic layers were dried and evaporated.

General Method R: Synthesis of Acetylenic Aldehydes7

The terminal acetylene (1 equivalent) was dissolved in anhydrous tetrahydrofuran (10 ml 

g’1) and the stirred solution cooled to -40°C. To this, a 2.5 M solution of BuLi in hexanes 

(1.1 equivalent) was added dropwise over a period of 5 minutes. Next, anhydrous N,N 

dimethylformamide (2 equivalents) was added, the cooling bath removed and the solution 

stirred for 0.5 h. This mixture was then poured into a rapidly stirred biphasic solution of 

10% aqueous potassium dihydrogen phosphate (4.4 equivalents) and diethyl ether (11 ml 

g 1) at 5°C. The two layers were separated, the organic layer washed twice with water (15 

ml g '1 o f acetylene) and then the combined aqueous layers were back extracted with diethyl 

ether (2 x 20 ml g '1). The combined organic layers were dried and evaporated to yield the 

a ,p  acetylenic aldehyde which was purified using column chromatography.
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For ease o f differentiation, and to avoid confusion, each pyrrolidine has a name and 

number which is used throughout the text (Figure 6.10).

I, OH I  OH nOHT~f Jri Jri
R ' ' £ ' N ' 2 ' ,C 0 7M e  R ^ N^ " /C 02Me R* ^ N  "C 0 2Me

T8 T8 Ts

2 ,5 -cis i s o m e r  2 ,5 -tmns i s o m e r  3 ,4 - c / s  i s o m e r

Figure 6.10

218



Chapter 6: Experimental

(2AS,i/lS)-Methyl 3-hydroxy-2-(tosylamino)-non-4-ynoate 144a

OH O

TsHN CC>2Me 

152

NHTs
OMe

Methyl iV-tosyl glycinate 152 (5.52 g, 22.70 mmol) and hept-2-ynal 115 (3.0 g, 27.23 

mmol) were reacted together according to general procedure C. The residue, following 

chromatography (40% ethyl acetate/petroleum ether) and recrystallisation (10% ethyl 

acetate/petroleum ether), gave the aldol product 144a (3.30 g, 41%) as a colourless solid. 

The data obtained was in accordance with that previously reported in the literature: m.p. 

68-69°C [lit8 m.p. 64-65°C]; Rf 0.47 (50% ethyl acetate/petroleum ether); Vmax/cm' 1 

[CH2C12] 3468 (br), 2925 (s), 2825 (s), 2863 (s), 1745 (m), 1456 (s), 1342 (m); 6h 0.75 

(3H, t, J  7.3, Me), 1.20-1.40 (4H, m, 2 x CH2), 2.10 (2H, app. dt, J  7.0 and 2.0, 6-CH2), 

2.35 (3H, s, Ar-Me), 2.70 (1H, d, J  10.5, OH), 3.50 (3H, s, CC^Me), 4.10 (1H, dd, J9 .6  

and 3.9, 2-H), 4.50-4.60 (1H, m, 3-H), 5.45 (1H, d, J  9.6, NH), 7.20 (2H, d, J  8.2, 2 x Ar- 

H) and 7.65 (2H, d, J  8.2, 2 x Ar-H); 6c 13.9 (9-Me), 18.6 (CH2), 22.0 (Ar-Me), 22.19, 

30.1 (both CH2), 53.2 (CCfeMe), 61.2, 63.5 (both CH), 75.9, 89.2 (O C ), 127.6, 130.1 

(both ArCH), 136.8, 144.3 (both AiC) and 169.0 (C=0); m/z [ES] 376 (M+ + Na, 90%) and 

336(100).

(2RSr3RS)-Methyl 3-hydroxy-5-phenyI-2-(tosylaiiiiiio)-peiit-4-yiioate 146a

OH O

TsHN COjMe 

152

NHTs
OMe

The TV-protected glycinate 152 (5.52 g, 21.4 mmol, 1.0 eq) and phenylpropynal 117 (3.35 

g, 25.7 mmol) were reacted together according to general procedure C. The residue 

following chromatography (40% ethyl acetate/petroleum ether) and recrystallisation (10% 

ethyl acetate/petroleum ether) gave the anti-aldol diastereoisomer 146a (3.37 g, 45%), as 

cream crystals: m.p. 135-138°C [lit9 m.p. 133-134°C]; Rf 0.58 (40% ethyl
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acetate/petroleum ether), Vnua/cm' 1 3269 (br), 1742 (s), 1598 (m), 1490 (m), 1339 (s) and 

1163 (s); 8h 2.35 (3H, s, Ar-Me), 2.90 (1H, d, J  10.2, OH), 3.55 (3H, s, C 0 2Me), 4.15 (1H, 

dd, J  9.5 and 3.9, 2-H), 4.90 (1H, dd, J  10.2 and 3.9, 3-H), 5.6 0 (1H, d, J  9.5, NH), 7.20- 

7.30 (7H, m, Ph and 2 x Ar-H) and 7.70 (2H, d, J  8.3, 2 x Ar-H); 8c 22.0 (Ar-Me), 53.5 

(CH3), 61.1, 64.0 (both CH), 84.6, 88.0 (both C=C), 121.9 (ArC), 127.8, 128.8, 129.5,

130.2, 132.3 (all ArCH), 136.5, 144.6 (both ArC) and 168.9 (C=0); m/z [ES] 396 (M* + 

Na, 80%) and 356 (100). [Found: C, 61.16; H, 5.44, N, 3.67. C 19H19NO5S requires C, 

61.11; H, 5.13; N, 3.75%].

(£',2iS,i/?)-Methyl 3-hydroxy-5-phenyl-2-(tosylamino)pent-4-enoate 147 and (2S,3R)- 

Methyl 3-hydroxy-5-phenyl-2-(tosylamino)pentanoate 148

COzMe
HO CQ2Me

Ph } — (
\ = /  \NHTs

147

COoMe

NHTs

The alkyne 146 (500 mg, 1.34 mmol) was reduced using Lindlars’ catalyst as described in 

general procedure D to give an inseparable 8:3:1.5 mixture of i) c/s-alkene 147 ii) alkane 

148 and starting material 146a. The (Z)-alkene was characterised by characterised by: R f  

0.27 (40% ethyl acetate/petroleum ether); Vmax/cm"1 [CH2CI2] 3474 (br), 2957 (s), 1738 (s), 

1598 (s), 1494 (s), 1435 (s), 1339 (s), 1162 (s), 815 (s) and 763 (m); 8H2.35 (3H, s, Ar- 

Me), 2.75 (1H, d, J  7.7, OH), 3.30 (3H, s, C 0 2Me), 4.00 (1H, dd, J  8.8 and 4 .0 ,2-H), 4.70-

4.80 (1H, m, 3-H), 5.55 (1H, dd, J 11.7 and 9 .6 ,4-H), 5.60 (1H, d, J 8.8, NH), 6.60 (1H, d, 

J 11.7, 5-H), 7.15-7.30 (7H, m, Ph and 2 x Ar-H) and 7.65 (2H, d, J  8.1,2 x Ar-H); 8c 21.6 

(Ar-Me), 52.6 (C 02Me), 60.7, 68.7 (both CH), 127.7 (ArCH), 127.7, 127.9 (both CH), 

128.5, 128.7, 129.7 (all ArCH), 134.0 (CH), 135.8, 136.4, 143.9 (All ArC) and 169.3 

(C=0); m/z [APcI] 358 (M* - H20 , 100%). The data obtained for the alkane 148 is 

reported later (p 247).
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(4Zy2RS, JJU)-Methyl 3-hydroxy-2-(tosylamino)-non-4-enoate 144a

C 02Me Bu
HOa C 0 2Me

NHTs

149

The alkyne 144a (100 mg, 0.28 mmol) was subjected to Lindlar reduction according to 

general procedure D to give the cis-alkene 149, (100 mg, 100%) as a brown oil: Rf 0.2 

(40% ethyl acetate/petroleum ether); Vmax/cm"1 [Film] 3508 (br), 2955 (s) 1742 (s), 1434 

(m), 1341 (m), 1163 (s) and 1092 (m); 8h 0.80 (3H, br. res., 9-Me), 1.20-1.25 (4H, br. res, 

2 x CH2), 1.80-2.00 (2H, br. res., CH2), 2.35 (3H, s, Ar-Me), 3.45 (3H, s, C 02Me), 3.9 

(1H, dd, J  8.8 and 3.9, 2-H), 4.70 (1H, dd, J9 A  and 3.9, 3-H), 5.25 (1H, dd, J  10.9 and 9.1, 

4-H), 5.45-5.50 (1H, m, 5-H), 5.60 (1H, d, J  8 .8, NH), 7.20 (2H, d, J  8.1, 2 x Ar-H) and

7.80 (2H, d, J  8.1, 2 x Ar-H); 8c 12.9 (9-Me), 20.6 (Ar-Me), 21.3, 26.5, 30.5 (all CH2), 

51.6 (CChMe), 59.5, 67.4 (both CH) 125.0 (=CH), 126.3 128.7 (both ArCH), 134.5 (=CH),

135.3, 142.9 (both ArC) and 168.6 (C=0); m/z [ES] 378 (M* + Na, 100%), 338 (60). 

[Found M+ + NH4: 373.1809. C,7H29N20 5S requires A/, 373.1797].

{4Ey2RS,3RS)- and (4E92SRr3RSyM ethy\ 3-hydroxy-2-(tosylamino)-hex-4-enoate 150a

and 150b

TsHN C 0 2Me 

152

iV-tosyl glycinate 152 (5.0 g, 20.55 mmol) and (£)-croton aldehyde 137 (1.73 g, 2.0 ml, 

24.68 mmol) were reacted together according to general procedure C. The residue was 

purified by column chromatography (40% ethyl acetate/ petroleum ether) and 

reciystallisation (10% ethyl acetate/petroleum ether) to give the anti-diastereoisomer 150a 

(1.88 g, 36%), as a white solid. The syn isomer 150b together with impurities was isolated 

from the mother liquors (1.08 g) as a yellow oil. The anti diastereoisomer 150a showed: 

m.p. 108-109.5°C; Rf 0.2 (40% ethyl acetate/petroleum ether); Vmax/cm1 [CH2C12] 3274

CO2M©
NHTs

Me

OH
C 0 2Me 

NHTs 

150b
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(br), 1739 (s), 1599 (s), 1337 (s), 1162 (s) and 969 (s); 8H 1.70 (3H, d, J6 .5 , 6-Me), 2.45 

(1H, s, Ar-Me), 2.60 (1H, d, J8 .1 , OH), 3.50 (3H, s, CO2CH3), 4.00 (1H, dd, J 9.2 and 4.2, 

2-H), 4.35-4.40 (1H, m, 3-H), 5.25-5.30 (1H, m, 4-H), 5.50 (1H, d, J  9.2, NH), 5.80 (1H, 

dq, J 15.2 and 6.5, 5-H), 7.30 (2H, d, J  8.3,2 x Ar-H), and 7.80 (2H, d, J  8.3,2 x Ar-H); 8c 

18.2 (6-Me), 22.0 (ArMe), 53.0 (CO2CH3), 60.8, 73.2 (both CH), 127.8 (ArCH), 128.0 

(C=C), 130.1 (ArCH), 130.6 (C=C), 136.6, 144.4 (both ArC) and 170.0 (C=0); m/z [APcI] 

378 (M* + H, 10%), 296 (100) and 236 (55). [Found: C, 53.74; H, 6.36, N, 4.49. 

C14H19NO5S requires C, 53.66; H, 6.11; N, 4.47%].

{4E,2RS,3RS)- and (4E92RS^SR)-M ethy\ 3-Hydroxy-5-phenyl-2-(tosylamino)-pent-4-

enoate 151a and 151b

TsHN^COaM e 

152

The iV-tosyl glycinate 152 (5.0 g, 20.55 mmol) was reacted with (2s)-cinnamaldehyde 117 

(3.26 g, 24.6 mmol, 3.1 ml) according to general procedure C. The residue was 

chromatographed (30% ethyl acetate / petroleum) and recrystallised (10% ethyl acetate / 

hexane) to give the amino alcohol adduct 151 (4.43 g, 57%), as a mixture of 

diastereoisomers in a ratio o f 9:5:1, as colourless crystals, (the syn diastereoisomer is the 

minor isomer): m.p. 119-120°C; R f  0.11 (40% ethyl acetate / petroleum ether); Vmax/cm' 1 

[CH2C12] 3490 (br), 3270 (br), 1738 (s), 1598 (m), 1494 (m), 1338 (s), 1162 (s) and 969 

(s); 8h (400 MHz) 2.30 (3H, s, syn, Ar-Me), 2.35 (3H, s, anti, Ar-Me), 2.40 (1H, d, J  4.9, 

syn , OH), 2.75 (1H, d, J  7.9, anti, OH), 3.45 (3H, s, anti, C02Me), 3.50 (3H, s, syn, 

C 02Me), 3.95 (1H, dd, J  9.5 and 3.3, syn, 2-H), 4.05 (1H, dd, J  9.1 and 4.2, anti, 2-H), 

4.55—4.60 (1H, m, both, 3-H), 5.55 (1H, d ,J  9.0, both, NH), 6.0 (1H, dd, J  15.9 and 6.1, 

anti, 4-H), 6.10 (1H, dd, J  15.9 and 6 .8, syn, 4-H), 6.55 (1H, d, J  15.9, both, 5-H), 7.10- 

7.25 (7H, m, both, Ph and 2 x Ar-H) and 7.65 (2H, d, J  8.3, both, 2 x Ar-H);); 5c 22.0 (Ar- 

Me), 53.2 (C02Me), 60.8, 73.4 (both CH), 126.0, 127.1, 127.8, 128.6, 129.0, 130.2, 133.5 

(all CH), 136.3, 136.5, 144.5 (all ArC) and 169.9 (C=Q); m/z [ES] 398 (M" + Na, 80%),

NHTs

151a

Ph

OH

NHTs 

151b
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358 (100) and 298 (30). [Found: C, 61.07; H, 5.58, N, 3.76. C,9H2iN05S requires C, 60.78; 

H, 5.64; N, 3.73%].

(I /&S',2S/J>)-2-Pheny Icy clohexy 1 JV-(f-butoxycarbonylammo)acetate 165

pj, Ph NHBoc

*  CX. — (YY
162a 156 165

The alcohol 155 (231 mg, 1.31 mmol) was reacted with the JV-Boc glycine 162a (192 mg, 

1.19 mmol, Lancaster) according to the method outlined in general procedure E, for 64 h, 

to furnish the ester 165 (324 mg, 74%), as a colourless oil: Rf 0.69 (60% ethyl 

acetate/petroleum ether); 8h 1.30 (9H, s, f-Bu), 1.15-2.05 (8H, m, cyclohexane resonances), 

2.60 (1H, td, J  12.3 and 3.6, 2-H), 3.35 (1H, dd, J  18.3 and 4.9, CHaCHbN), 3.65 (1H, d, J

18.3 and 5.9, CHaCHbN), 4.70 (1H, br. res., NH), 4.95-5.00 (1H, m, 1-H), 7.05-7.20 (5H, 

m, Ph); 8C 24.7, 25.7 (both CH2), 28.3 (/-Bu), 32.2, 33.4 (both CH2), 42.3 (CH2-N), 49.7,

77.3 (both CH), 126.6, 127.5, 128.4 (both ArCH), 142.7 (ArC), 155.5 (N-C=0) and 169.5 

(C=0); m/z [APcI] 279 (M+ - X ,  12%), 226 (55), 160 (100), 121 (72) and 108 (40).

Tin(II) Chloride Aldol Reaction of (lRS,2SR)-2-Fheny\cyclohexy\ N-(t- 

butoxycarbonylamino)acetate 165

oe
0 'S O'

NHBoc NHBoc 'P h

165 166

The ester 165 (56 mg, 0.17 mmol) was condensed with phenyl propynal 117 (26 mg, 0.20 

mmol) according to general procedure C. The residue was chromatographed (10% ethyl 

acetate/petroleum ether) to give the aldol adduct 166 (21 mg, 28%), in a 5:2 ratio, as a 

yellow oil (product A is the major product): Rf 0.58 (40% ethyl acetate/petroleum ether);
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Vmax/cm' 1 [CH2C12] 2936 (s), 2858 (s), 1738 (s), 1716 (s), 1600 (s), 1509 (s), 1450 (m) and 

1368 (s); Sh 1.35 (9H, s, f-Bu), 1.15-2.15 (8H, m, cyclohexane residues), 2.65 (2H, app. td, 

J  11.8 and 3.4, 2-H, both products), 3.20 (1H, br. d, J  8.6, OH, exchanges with D2O, 

product A), 3.55 (1H, br. res., OH, exchanges with D2O, product B), 4.25-4.35 (1H, m, 

CHN, product A), 4.40 (1H, br. d, J  5.9, CHN, product B), 4.65 (1H, br. res., J  4.2, CHO, 

product B), 4.80 (1H, br. d, J  5.3, CHO, product A), 4.90-5.15 (2H, m, 1-H, both 

products), 5.25 (1H, br. d, J  6.7, NH, product B), 5.35 (1H, br. d, J  7.7, NH, product A) 

and 7.05-7.30 (20H, m, 2 x Ph, both products); 8c (two products) 24.7, 25.7 (both CH2),

28.3 (f-Bu), 32.2, 34.1 (both CH2), 49.5, 49.7, 58.0, 58.5, 59.3, 64.4, 65.0, 77.3 (all CH, 

both products), 78.4 (C-(CH3)3), 126.8, 126.9, 127.3, 127.4, 127.5, 128.2, 128.3, 128.5,

131.8, 131.8 (all ArCH, both products), 142.5 (N-C=0, both products) and 167.9 (C=0, 

both products), (All ArC and acetylene resonances missing); m/z [APcI] 464 (M* H, 22%), 

463 (100 ), 408 (17) and 390 (29). [Found M* + H: 464.2433. C28HS4N05  requires M, 

464.2431].

Tosylation of (7i25,,25iy-2-Phenylcyclohexyl A-(/-butoxycarbonylamino)acetate 167

cc _ oc_oc .a;
o ^ |O'

NHBoc NH2 NHTs NTSz

165 167 168 169

i) Deprotection using TFA

The crude ester 165 (324 mg, 0.97 mmol) was deprotected using trifluoroacetic acid (0.7 

ml) according to general procedure F, for 1 h to give the amine 167 (183 mg, 81%) as a 

brown oil.

ii) N-Tosylation

The crude amine 167 (183 mg, 0.78 mmol) was tosylated using triethylamine (79 mg, 0.11 

ml, 0.78 mmol, 1.0 eq) and /?-tosyl chloride (150 mg, 0.78 mmol, 1.0 eq) according to 

general procedure G. Following chromatography (20% ethyl acetate/petroleum ether) a 

3.6:1 mixture of i) the bis-sulfonamide 169 and ii) the mono-sulfonamide 168, (64 mg),
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were obtained as a pale yellow oil. The bis-sulfonamide 169 was characterised by: 

V m a x / c m '1 [CH2CI2] 3366 (br), 2930 (s), 2857 (s), 1740 (s), 1600 (s), 1494 (m), 1450 (s), 

1340 (s), 1163 (s), 815 (m), 737 (s) and 701 (s); 8H 0.65-2.20 (8H, m, cyclohexane 

resonances), 2.40 (3H, s, Ar-Me), 2.50-2.65 (1H, m, CH-Ph), 3.90 (1H, d, J  18.5, CH,CHb- 

N), 4.10 (1H, d, J  18.5, CHaCHb-N), 4.85 (1H, td, J  10.6 and 4.4, CHO), 7.05-7.25 (9H, m, 

Ph and 2 x Ar-H) and 7.70 (4H, d, J  8.4,4 x Ar-H); 8 c  21.8 (Me), 24.7,25.7,31.0, 33.7 (all 

CH2), 48.2 (CH2-N), 49.4, 77.8 (both CH), 126.6, 127.5, 128.4, 128.7, 129.5 (all ArCH),

136.1, 142.6, 145.0 (all ArC) and 166.8 (C=0) (only one set o f tosyl peaks evident).

The mono-sulfonamide 168 was characterised by: 8h 1.20-2.10 (8H, m, cyclohexane 

resonances), 2.35 (3H, s, Ar-Me), 2.50-2.60 (1H, m, 2-H), 3.30 (1H, dd, J  17.8 and 4.8, 

CHaCHb-N), 3.50 (1H, d, J  17.8 and 5.8, CHaCHb-N), 4.65-4.70 (1H, m, NH), 4.80 (1H, td, 

J  10.7 and 4.4, 1-H), 7.00-7.30 (7H, m, Ph and 2 x Ar-H) and 7.55 (2H, d ,J  8.3,2 x Ar-H).

(7/f,25',5if)-2-isopropyl-5-methylcyclohexyl 2-(tosylamino)acetate 175

NHTs

175174

NHBoc

154

i) Deprotection Using Trifluoroacetic acid

The menthol ester 154 (1.00 g, 3.19 mmol, 1.0 eq) was deprotected using trifluoroacetic 

acid (2 ml) according to general procedure F, for 3 h to furnish the trifluoroacetate 174 
(575 mg, 55%) as a brown oil: 8h 0.70 (3H, d, J  7.0, 5-Me), 0.80 (6H, app. t, Jmr0\  7.2, i- 

Pr), 1,85-2.00 (10H, m, cyclohexane protons and CH(Me)2), 3.20-3.35 (2H, m, CH2-N) and

4.65 (1H, td, J  10.8 and 4.20, 1-H).

ii) Tosylation

The crude trifluoroacetate 174 (288 mg, 0.88 mmol, 1.0 eq) was tosylated using 

triethylamine (163 mg, 0.23 ml, 1.60 mmol, 1.8 eq) as the base and p-tosyl chloride (308 

mg, 1.60 mmol, 1.8 eq) according to general procedure G. The residue was 

chromatographed (20% ethyl acetate/petroleum ether) to give the sulfonamide 175 (297 

mg, 51%, over two steps), as a pale yellow oil: Rf 0.58 (40% ethyl acetate/petroleum 

ether); 5H 0.65 (3H, d, J  6.9, 5-Me), 0.70-1.90 (15 H, m, cyclohexane protons and
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CH(Me)2), 2.35 (3H, s, Ar-Me), 4.25 (1H, d, J  18.4, CHaCHb-N) 4.35 (1H, d, J  18.4, 

CHaCHb-N), 4.55 (1H, td, J  10.9 and 4.4, 1-H), 7.20 (2H, d, J  8.4, 2 x Ar-H) and 7.85 (2H, 

d, J  8.4,2 x Ar-H).

(1RS,2SR,5RS) tert-butyl 1 - [ {-2-isopropy 1-5-methy Icy clohexy loxy } carbonyl] -2- 
hydroxy-4-pheny lbut-3-yny lcarbamate 176

NHBoc

154

OH

NHBoc Ph

176

Phenyl propynal 117 (897 mg, 6.89 mmol) was reacted with the menthol auxiliary 173 
(1.80 g, 5.74 mmol) according to general procedure C, except in the absence of tin(II) 

chloride. The residue was chromatographed (10% ethyl acetate/petroleum ether) to give 

aldol product 176 (1.136 g, 45%), as a 6:4 mixture of diastereoisomers. The major 

diastereoisomer was characterised by: Rf 0.68 (40% ethyl acetate/petroleum ether); 

V m a x / c m '1 [CH2C12] 2960 (s), 2868 (s), 1721 (s), 1491 (m), 1454 (m), 1368 (s) and 757 (m); 

8h 0.55-1.95 (19H, complex, cyclohexane resonances and 3 x Me), 1.35 (9H, s, /-Bu), 3.50 

(1H, br. res., OH), 4.50 (1H, br. dd, J  9.0 and 2.9, CHN), 4.65-4.75 (1H, m, 1-H), 4.85 

(1H, br. res, CHO), 5.40 (1H, d, J  9.0, NH), 7.10-7.20 (3H, m, 3 x Ar-H) and 7.25-7.30 

(2H, m, 2 x Ar-H); 8c (certain signals rotameric*) 16.2*, 16.3, 20.7*, 20.9, 21.9*, 22.3 (all 

Me), 23.1*, 23.3 (CH2), 26.0, 26.1 (both CH), 28.3 (/-Bu), 31.3, 31.4 (CH), 34.1*, 34.5, 

40.8*, 40.8 (CH2), 46.8, 58.4*, 58.5, 63.9*, 64.0, 76.3*, 76.3, (CH), 80.3 (C-(CH3)3), 86.1,

86.4 (C=C), 122.0 (ArC), 128.3, 128.8, 131.9 (all ArCH), 155.6 (N-C=0), 169.4* and 

169.6* (both C=0); m/z [APcI] 444 (M+ + H, 35%), 388 (28), 326 (21), 232 (60) and 74 

(100). [Found M+ + H: 444.2744. C26H38N 0 5 requires M, 444.2746].
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(3SRt4RS)-tert-(butoTycnrbonylskmino)-dec-5-yn-l-oi 186

Bu

i) Alkylation o f ±-2-(t-butoxycarbonylamino)butanal 183

To a -20°C solution o f 1-hexyne 114 (2.19 g, 3.1 ml, 26.66 mmol, 3.33 eq) in 

tetrahydrofuran (20 ml) was added a 2.5 M solution of n-BuLi (11.75 ml, 29.38 mmol, 

3.67 eq) and the resultant solution stirred for 0.5 h. The reaction mixture was cooled to 

-78°C and then the crude aldehyde 183 (1.50 g, 8.01 mmol, 1.0 eq) in tetrahydrofuran (15 

ml) was added dropwise to the solution and which was then stirred for 2 h. The reaction 

was quenched with phosphate buffer (5 ml), filtered through a pad of celite and the solid 

was washed with ethyl acetate. The resulting filtrate was separated and the aqueous layer 

was extracted with ethyl acetate ( 2 x 1 0  ml). The combined organic solutions were dried 

and evaporated to give the alcohol 185 (1.82 g), as a yellow oil, which was used crude in 

the next step: R f  0.69 and 0.54 (40% ethyl acetate/petroleum ether); V m ax/cm '1 [CH2C12] 

3356 (br), 2965 (s), 2875 (s), 1688 (s), 1455 (s), 1392 (s) and 1366 (s); 8c 10.9, 14.0 (both 

Me), 18.8,22.3, 24.0 (all CH2), 28.7 (/-Bu), 31.0 (CH2), 57.3,65.3 (both CH), 82.4 

(C-(CH3)3), 86 .8 , 102.8 (both C=C) and 156.9 (C=0); m/z [APcI] 214 (M+ - A ,  100%).

ii) Swern Oxidation

A solution of oxalyl chloride (569 mg, 0.39 ml, 4.48 mmol, 1.51 eq) in anhydrous 

dichloromethane (11.4 ml) was cooled to -78°C prior to the addition of anhydrous 

dimethylsulfoxide (698 mg, 0.63 ml, 8.94 mmol, 3.0 eq) in anhydrous dichloromethane 

(5.36 ml). The resultant solution was stirred for 0.5 h and then the crude alcohol 184 (800 

mg, 3.0 mmol, 1 eq) in dichloromethane (3.2 ml) was added and the reaction mixture 

stirred for an addition hour. N, A-Diisopropylethylamine (2.34 g, 3.2 ml, 18.1 mmol, 6.1 

eq) was added and the reaction was allowed to warm to 0°C over a 1 h period, then an ice- 

cold 1M solution of hydrochloric acid (3.2 ml) was added. The layers were separated and 

the aqueous phase was extracted with dichloromethane ( 3 x 1 0  ml). The combined organic 

solutions were washed with pH 7 phosphate buffer (30 ml) then dried and evaporated to 

yield theynone 185 (697 mg) as a yellow oil: Vmax/cm"1 [CH2CI2] 3356 (br), 2969 (s), 1713 

(br), 1461 (s) and 1367 (s); 5H 0.85 (6H, t, J  7.3, 1-Me and 10-Me), 1.05-1.55 (4H, m, 2 x

NHBoc
NHBoc Bu NHBoc Bu NHBoc

227



Chapter 6: Experimental

CH2), 1.40 (9H, s, /-Bu), 1.55-1.70 (1H, m, CHaCHb), 1.90-2.00 (1H, m, CHaCHb), 2.30 

(3H, t, J7 .0 , 5-CH2), 4.25-4.35 (1H, m, 3-H) and 5.15 (1H, br. d, J7 .1 , NH); 6c 7.4, 17.6 

(both Me), 16.9, 18.3, 23.0 (all CH2), 26.5 (/-Bu), 27.7 (CH2), 60.3 (CH), 77.9 (C=C), 81.0 

(C-(CH3)3), 96.12 (C=C), 153.5 (N-C=0) and 185.0 (C=0)

Hi) Reduction

To a solution o f the crude ketone 185 (547 mg, 2.00 mmol, 1.0 eq) in anhydrous 

tetrahydrofuran (12 ml) at -100°C was added a 1 M solution of L-selectride in 

tetrahydrofuran (4.1 ml, 4.01 mmol, 2.0 eq). The reaction was stirred for 0.5 h and was 

then quenched with methanol (2 ml). The cold bath was removed and the reaction vessel 

was allowed to warm up to room temperature. The product was extracted into diethyl ether 

( 3 x 1 5  ml) and the combined ether solutions were washed with saturated brine (20 ml). 

The organic layers were dried and evaporated. The residue was purified (10% ethyl 

acetate/petroleum) to furnish the alcohol 186 (91 mg, 10%, over 4 steps) as a yellow oil. Rf 

0.6 (40% ethyl acetate/petroleum ether; Vmax/cm"1 [CH2C12] 3390 (br), 2966 (s), 2874 (s), 

1692 (s), 1458 (s) and 1366 (s); 8H 0.90 (6H, t, J7 .4 , 1-Me and 10-Me), 1.35 (9H, s, /-Bu),

1.50-1.65 (1H, m, CHaCHb), 1.65-1.80 (1H, m, CHaCHh), 3.95 (1H, br. d, J5 .1 , OH), 4.00-

4.10 (1H, m, 4-H), 4.55 (1H, br. d, J  5 2 , 3-H) and 4.95 (1H, br. d, J  8.0, NH); 6c 11.1,

14.0 (both Me), 18.8, 22.3, 24.7 (all CH2), 28.8 (/-Bu), 31.1 (CH2), 57.6, 62.2 (both CH),

78.1 (C=C), 80.2 (C-(CH3)3), 87.5 (O C )  and 157.3 (C=0); m/z [APcI] 196 (M+ CO-/-B11, 

20%), 170 (22) and 152 (100).

2-(T osy lam ino)butan-1 -ol 187

NH2
181

NHTs

187

NHTs
OTs

i) Method A

2-amino-1-butanol 181 (500 mg, 5.61 mmol) was tosylated using /?-tosyl chloride (1.07 g, 

5.61 mmol) and triethylamine (680 mg, 6.73 mmolaccording to general procedure G. 

Following recrystallisation (10% ethyl acetate/petroleum ether) of the residue the 

sulfonamide 187 was obtained (585 mg, 43%, first recrystallisation), as an off-white solid. 

The data obtained was in accordance with that reported in the literature for (S)-2-
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(tosylamino)butan-l-ol, with the exception of the chemical shifts for the ]H NMR. Rf 0.13 

(40% ethyl acetate/petroleum ether); m.p. 65-67°C [lit10 m.p. 73°C]; Vnwx/cm' 1 [CH2CI2] 

3473 (br), 2950 (s), 2950 (s), 1598 (s), 1431 (s), 1313 (s), 1157 (s) and 810 (s); 8H 0.60 

(3H, t, J  7.5, 4-Me), 1.25-1.45 (4H, m, 3-CH2), 2.35 (3H, s, Ar-Me), 2.55 (1H, br. res, 

OH), 3.00-3.10 (1H, m, 2-CH), 3.40 (1H, dd, J  11.3 and 5.2, 1-CHaCHb), 3.50 (1H, dd, J

11.3 and 3.8, l-CHaCHb), 5.30 (1H, br. res., NH), 7.20 (2H, d, J  8.1, 2 x Ar-H), and 7.70 

(2H, d, J  8.1, 2 x Ar-H); 8c 10.6 (4-Me), 22.0 (Ar-Me), 25.0 (3-CH2), 57.6 (CH), 64.7 (1- 

CH2OH), 127.5, 130.1 (both ArCH), 138.0 and 143.87 (both ArC); m/z [APcI] 244 (M* + 

H, 100%), 226 (35), 184 (25) and 155 (22). [Found: C, 54.25; H, 7.09, N, 5.94 

C11H17NO3S requires C, 54.30; H, 7.04; N, 5.76%].

ii) Method B

The amino alcohol 181 (500 mg, 5.61 mmol) was tosylated using an identical procedure to 

that above except utilising pyridine (530mg, 6.73 mmol) as the base to give a 1.5:1 mixture 

of i) the sulfonamide 187 and ii) the tosylate 188 (1.37 g). The sulfonamide 188 was 

characterised by: 8H 0.55-0.65 (3H, m, 4-Me), 1.20-1.45 (2H, m, 3-CH2), 2.30 (3H, s, Ar- 

Me), 2.35 (3H, s, Ar-Me), 3.15-3.25 (1H, m, 2-CH), 3.75 (1H, dd, J  10.0 and 5.1, 1- 

CHaCHb), 3.85 (1H, dd, J  10.0 and 3.8, l-CHaCHb), 5.30 (1H, d, J  8.3, NH), 7.15-7.25 

(4H, m, 4 x Ar-H) and 7.55-7.65 (4H, m, 4 x Ar-H).

The data obtained for the sulfonamide 187 was in aggrement with that reported above. 

(^£',25,,J5)-2-(/-butoxycarbonylamiiio)-5-phenyipeiit-4-eii-13-diol 207

OH OH

NHBocNHBoc Ph

204 207

The amino alcohol 204 (222 mg, 0.76 mmol) was reduced using a 35% Red-al in toluene 

according to general procedure H. The residue was purified by chromatography (50% 

ethyl acetate/petroleum ether) to furnish the (E)-olefm 207 (157 mg, 70%), as a colourless 

oil: Rf 0.11 (40% ethyl acetate/petroleum ether); Vmax/cm' 1 [CH2CI2] 3396 (br), 2977 (s), 

1692 (s), 1504 (s), 1451 (s), 1392 (s), 1367 (s), 967 (s), 755 (s) and 694 (s); 8H 1.30 (9H, s, 

/-Bu), 2.70 (1H, br. res, OH), 3.00 (1H, br. res, OH), 3.65 (1H, br. res, 2-H), 3.80 (2H, br.
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res., CH2), 4.50 (1H, br. res, 3-H), 5.25 (1H, d, J  8.2, NH), 6.10 (1H, dd, J  15.9 and 5.8, 4- 

H), 6.55 (1H, d, J  15.9, 5-H) and 7.10-7.25 (5H, m, Ph); 6C 28.3 (/-Bu), 55.5 (CH), 63.9 

(CH2), 73.0 (CH), 80.0 (C(CH)3)3), 126.6 (ArCH), 127.8 (=CH), 128.6, 128.7 (both 

ArCH), 131.4 (=CH), 136.5 (ArC) an 156.6 (C=0). The data obtained was in agreement 

with the literature14 (except that the literature proton data was reported in d^-DMSO).

(4S)j (1 * *E,4 'S,5 7?)-4-Benzyl-3-(5-propenyl-2-thioxo-oxazolidme-4-carbonyl)-
oxazolidin-2-one 238

A f
o  N ' V - N C S  

Bn

231

i) Method A

To a flame dried flask purged with nitrogen was added tin triflate (1.0 g, 2.40 mmol, 1.0 

eq), which was dissolved in anhydrous tetrahydrofuran (12.6 ml), which on cooling to 

-78°C gave a cloudy solution. Next A-ethylpiperidine (407 mg, 0.49 ml, 3.60 mmol, 1.5 

eq) was added and the solution was stirred for 5 minutes prior to the addition of a -78°C 

solution of the isothiocyanate 231 (729 mg, 2.64 mmol, 1.1 eq) in tetrahydrofuran (10 ml), 

to give a yellow solution which was stirred for a further 1.5 h at this temperature. Freshly 

distilled (2T)-croton aldehyde (185 mg, 0.22 ml, 2.64 mmol, 1.0 eq) was added slowly and 

the mixture was stirred for an additional 4 h. The reaction was quenched with pH 7 

phosphate buffer (8 ml) and the resultant white suspension was then filtered through celite, 

and the solid was washed with dichloromethane. The filtrate and washings were diluted 

with dichloromethane and washed with 1M NaHS03 (2 x 20 ml). The organic phase was 

dried over sodium sulfate and the solvent was evaporated. The residue was purified by 

chromatography (30% ethyl acetate/petroleum ether) to yield the aldol product 238 (223 

mg, 33%) as a yellow oil, together with some recovered isothiocyanate 231 (182 mg): Rf 

0.23 (40% ethyl acetate/petroleum ether); vmax/cm_I[CH2Cl2] 3327 (br), 2921 (s), 1778 (s), 

1706 (s), 1604 (m), 1494 (s), 1392 (s), 1178 (s), 975 (s), 735 (s) and 703 (s); SH 1.65 (3H, 

d, J  6 .6 , Me), 2.80 (1H, dd, J  13.6 and 8.9, CHaCHb-Ph), 3.15 (1H, dd, J  13.6 and 3.3,

O NHBn

238

230



Chapter 6: Experimental

CHaCHb-Ph), 4.20-4.45 (2H, m, OCH2), 4.60-4.70 (1H, m, CHN), 4.85 (1H, d, J  4.4, 

CHN), 5.55 (1H, dd, J  14.9 and 7.5, =CH), 5.65 (1H, dd, J  7.5 and 4.4, CHO), 5.95 (1H, 

dq, J  14.9 and 6.6, =CHMe), 7.10-7.35 (5H, m, Ph) and 7.70 (1H, br. res., NH, exchanges 

with D20); 8c  17.8 (Me), 37.5 (CH2-Ph), 55.3,63.2 (both CH), 67.7 (CH2-CH), 84.1,121.3 

(both CH), 129.2, 129.5 (both ArCH), 133.5 (=CH), 134.2 (ArC), 153.7,166.3 (both C=0) 

and 188.9 (C=S); m/z [APcI] 347 (M + + H, 100%), 178 (93), 117 (38) and 110 (43). 

[Found M* +H: 347.1060. C ,7H,9N204S requires M, 347.1060].

ii) Method B

To a flame dried flask purged with nitrogen was added tin triflate (1.0 g, 2.40 mmol, 2.2 

eq), isothiocyanate 231 (624 mg, 2.26 mmol, 1.9 eq) followed by anhydrous 

tetrahydrofuran (10 ml) and the resulting solution was cooled to -78°C. Next a -78°C 

solution o f freshly prepared Lithium hexamethyldisilazane (425 mg, 2.64 mmol, 0.56 ml, 

2.2 eq) was added via canula and the solution was stirred for 0.5 h. Freshly distilled (E)- 

croton aldehyde (84 mg, 0.1 ml, 1.20 mmol, 1.0 eq) was added slowly and the mixture was 

stirred for a further 1.5 h. The reaction was quenched with a 1:1 solution of pH 7 

phosphate buffer / saturated aqueous ammonium chloride solution (10 ml) and the white 

suspension produced was filtered through celite. The filtrate and washings were poured 

onto dichloromethane and the resultant two layers were separated. The organic solutions 

were washed with 1M NaHSC>3 (2 x 10 ml). The combined organic solutions were dried, 

and evaporated. The residue was purified by chromatography (30% ethyl/petroleum ether) 

and the mixed fractions recolumned using the same solvent system to furnish the aldol 

adduct 238 (145 mg, 35%) together with some recovered isothiocyanate 231 (232 mg). 

The data obtained was in accordance with that reported previously.
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(4S), (^,‘S)-4-Benzyl-3-(5-phenylethyiiyl-2-thioxo-oxazoiidme-4-carboiiyl)-oxazolidiii-

2-one 239

11
o N-A^NCS

Bn

2 3 1

S
Jl

O NHBn-

/ " r f y
P h  2 3 9  °

A solution of tin triflate (333 mg, 0.80 mmol, 1.30 eq) dissolved in tetrahydrofuran (4.16 

ml) was cooled to -78°C, to give a cloudy solution. Next distilled JV-ethylpiperidine (104 

mg, 0.13 ml, 0.92 mmol, 1.5 eq) was added and the solution was stirred for 5 minutes 

before adding a -78°C solution of the isothiocyanate 231 (187 mg, 0.68 mmol, 1.1 eq) in 

tetrahydrofuran 1.35 ml), to give a yellow solution which was stirred for 1.5 h at this 

temperature. The acetylenic aldehyde 117 (104 mg, 0.80 mmol, 1.3 eq) dissolved in 

tetrahydrofuran (2 ml) was added slowly and the mixture was stirred for a further 4 h. The 

reaction was quenched with pH 7 phosphate buffer (3 ml) and the white suspension 

produced was then filtered through celite. The filtrate was diluted with dichloromethane 

and washed with 1M sodium bisulfate solution (2 x 10 ml). The organic phase was dried 

over sodium sulfate and the solvent was evaporated. The residue was purified using 

column chromatography (30% ethyl acetate/petroleum ether) to yield the aldol product 239 

(80 mg, 29%) as a 7:3 mixture o f diastereoisomers, (B is the minor isomer) as yellow oil: 

Rf 0.29 (40% ethyl acetate/petroleum ether); Vmax/cm' 1 [CH2CI2] 3390 (br), 1779 (s), 1709 

(s), 1490 (s), 1393 (s), 1117 (s) and 759 (s); 5H 2.75 (1H, dd, J  13.5 and 9.6, CHaCHb-Ph, 

major isomer), 2.90 (1H, dd, J  13.6 and 8.6, CHaCHb-Ph, minor isomer), 3.15 (1H, dd,

13.6 and 3.4, CHaCHb-Ph, minor isomer), 3.25 (1H, dd, J  13.5 and 3.2, CHaCHb-Ph, major 

isomer), 3.75 (1H, app t, J  8.6 , CHaCHhO. major isomer), 4.05 (1H, dd, J  9.4 and 3.0, 

CHaCHbO, major isomer), 4.25 (1H, dd, J 9.1 and 3.3, CHaCHbO, minor isomer), 4.35 (1H, 

app t, J  9.1 and 8 .6 , CHaCHbO, minor isomer), 4.45-4.55 (1H, m, CHN, major), 4.70-4.75 

(1H, m, CHN, minor), 5.25 (1H, d, J4 .2 , CHN minor), 5.80 (1H, d, J  9.7, CHN, major),

6.0 (1H, d, J  9.7, CHO, major), 6.25 (1H, d, J  4.2, CHO, minor), 7.05-7.40 (10H, m, 2 x 

Ph), 7.95 (1H, br. res., NH, min) and 8.15 (1H, br. res, NH, maj); 8c (major isomer) 37.8, 

(CH2), 55.4, 62.7 (both CH), 67.5 (CH2), 73.6 (CH), 80.0, 90.7 (both C=C), 127.7, 128.7,

129.1, 129.4, 130.0, 131.8 (all ArCH), 134.4, 153.6 (both ArC), 166.5 (C=0) and 188.8
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(C=S); m/z [APcI] 407 (M + + H, 100%). [Found M+ +H: 407.1061. C22H19N2O4S requires 

A/, 407.1060].

Cleavage of Auxiliary from (4S), (1 ’ ’E ,4 ’S,5  7?)-4-Benzyl-3-(5-propenyl-2-thioxo- 

oxazolidine-4-carbonyl)-oxazolidin-2-one 238

2 3 8

NH

2 4 7

Ox
O NH

H n
2 3 6

To an ice-cold solution o f 3M methyl magnesium bromide in diethyl ether (0.07 ml, 0.22 

mmol, 1.5 eq) was added anhydrous tetrahydrofuran (0.69 ml), followed by anhydrous 

methanol (1.38 ml) dropwise. The resultant solution was stirred for 5 minutes before 

adding the aldol product 238 (50 mg, 0.14 mmol, 1.0 eq) in tetrahydrofuran (2 ml). The 

yellow solution was stirred for a further 20 mins at this temperature. The reaction was 

quenched by the addition of a 1M solution of KHSO4 and then the solvent was evaporated. 

The aqueous solution was diluted with water (1 ml) and the product was extracted into 

dichloromethane ( 3 x 2  ml) and the combined organic solutions were dried and evaporated. 

The residue was purified by column chromatography (30% ethyl acetate/petroleum ether) 

to yield i) the ester 247 (15 mg, 52%) as a pale yellow oil and ii) the auxiliary 236 (17 mg, 

65%). The ester 247 was characterised by: Rf 0.23 (40% ethyl acetate/petroleum ether); 5h

1.70 (3H, app dd, J  6.6  and 1.4, Me), 3.75 (3H, s, C 0 2Me), 4.25 (1H, d, J  6.2, CHN), 5.25 

(1H, app t, J 7 A  and 6.2, CHO), 5.55 (1H, app ddd, J  15.2, 7.4 and 1.6, =CH), 5.90 (1H, 

dq, J  15.2 and 6 .6 , =CH-Me); 8c 17.8 (Me), 53.4 (C02Me), 62.5, 85.6 (both CH), 125.6,

134.3 (both =CH), 168.5 (0= 0) and 189.0 (C=S); m/z [APcI] 202 (M* + H, 100%). The 

data obtained for the auxilary 236 was identical to that reported in the literature.
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Cleavage of Auxiliary from (4S),(4,tS)-4-Benzyl-3-(5-phenylethynyl-2-thioxo- 

oxazolidine-4-carbonyl)-oxazolidin-2-one 239

Ph
2 3 9

NH

Ph
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O NH 

2 3 6

s
JJ

Q NH
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A 3M solution o f methylmagnesium bromide in diethyl ether (0.08 ml, 0.24 mmol, 1.5 eq) 

in tetrahydrofuran (0.8  ml) was cooled in an ice-bath, prior to the careful addition of 

distilled methanol (1.53 ml). The solution was stirred for 5 mins and a 7:3 mixture of 

diastereoisomers o f the aldol product 239 (66  mg, 0.16 mmol, 1 eq) was added dropwise as 

a solution in tetrahydrofuran (1 ml). The reaction mixture was stirred for 20 mins and was 

then quenched with a 1M solution of sodium hydrogen sulfate. The solvent was 

evaporated, the aqueous solution was diluted with water (0.5 ml) and the aqueous phase 

was extracted with dichloromethane ( 3 x 2  ml). The combined organic solutions were 

dried and evaporated. The residue was chromatographed (20% ethyl acetate/petroleum 

ether) to give i) thiocarbamate 248a (8 mg, 62%), as an orange oil: Rf 0.21 (40% ethyl 

acetate/petroleum ether); Vmax/cm' 1 [CH2CI2] 3320 (s), 2954 (s), 2233 (s), 1748 (s), 1491 (s), 

1442 (s), 1216 (s), 758 (s) and 736 (s); 8H 3.80 (3H, s, C 02Me), 4.60 (1H, d, J5 .1 , CHN),

5.80 (1H, d, J  5.1, CHO), 7.15-7.55 (5H, m, Ph) and 7.65 (1H, br. res., NH); 8c 53.7 (Me),

63.4, 74.2 (both CH), 82.0, 90.1 (both C=C), 120.9 (ArC), 128.5, 129.7, 132.0 (all ArCH),

167.5 (C=0) and 188.3 (C=S); m/z [APcI] 262 (M + + H, 19%), 230 (20), 202 (38), 170 

(78), 167 (28) and 149 (100). [Found M+ +H: 260.0532. C13H12NO3S requires M, 

262.0532]. ii) Evans’ Auxiliary 236 (2 mg, 22%) the data obtained for which is in 

accordance with the liteature12 and iii) the recovered major isomer 239b (35 mg).
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Tosylation of ( /  5-(prop-l-enyI)-2-thiooxazolidine-4-car boxy late

5-propenyl-2-thioxo-oxazolidine-4-carboxylate 247

11
O NH

COjM e

NTs

C 02Me

+
NHTs

0O2Me

2 4 7 2 3 6 2 6 0 2 5 1

A 1.9:1 mixture o f the methyl ester 247 and auxiliaiy 236 (60 mg) was tosylated according 

to general procedure G with /7-tosyl chloride (63 mg, 0.33 mmol, 1.1 eq) and triethylamine 

(33 mg, 0.045 ml, 0.33 mmol, 1.1 eq). The residue was purified using chromatography 

(20% ethyl acetate/petroleum ether) to give i) sulfonamide 250 (44 mg, 61%) as a 

colourless oil and ii) the diene 251 (1 mg, 2%). The sulfonamide 250 was characterised 

by: Rf 0.25 (40% ethyl acetate/petroleum ether); [a]o +30.53 (CH2CI2, c 0.76); Rf 0.25 

(40% ethyl acetate/petroleum ether); Vmax/cm'1 [CH2CI2] 2955 (m), 1757 (s), 1595 (m), 

1375 (s), 1171 (s), 1087 (m) and 813 (m); 6H 1.70 (3H, app. dd, J  6.6 and 1.3, Me), 2.40 

(3H, s, Ar-Me), 3.80 (3H, s, C 0 2Me), 4.85 (1H, d, J  5.1, CHN), 4.95 (1H, dd, J  7.5 and

5.1, CHO), 5.45 (1H, app ddd, J  15.2, 7.5 and 1.5, =CH), 5.85 (1H, dq, J  15.2 and 6.6, 

=CH-Me), 7.30 (2H, d, J  8.4, 2 x Ar-H) and 7.95 (2H, d, J  8.4, 2 x Ar-H); Sc 17.8 (Me), 

21.8 (Ar-Me), 53.6 (C 02Me), 66.2, 82.8 (both CH), 124.6 (=CH), 129.3, 130.3 (both 

ArCH), 133.1 (ArC), 135.0 (=CH), 146.2 (ArC), 168.3 (C=0) and 182.6 (C=S); m/z [APcI] 

356 (M + + H, 100%). [Found M+ +H: 356.0623. Ci5Hi8N 0 5S requires M, 356.0621]. The 

data obtained for the diene 251 is reported later (p 237).

(7 ’E,4S,5S) Methyl 2-oxo-5-(prop-l-enyl)-3-tosyloxazolidine-4-carboxylate 252

To an ice-cold solution of the thiocarbamate 250 (18 mg, 0.050 mmol, 1.0 eq) in 

dichloromethane (0.5 ml) was added mercury acetate (24 mg, 0.076 mmol, 1.5 eq) in one 

portion. The reaction was stirred at this temperature for 1 h, and then was allowed to warm

s o

2 5 22 5 0
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to room temperature and stirred for an additional 2.5 h. The white suspension was 

recooled in an ice-bath and quenched with a 1 M solution of potassium carbonate (1 ml). 

The resultant layers were separated and the aqueous phase was extracted with 

dichloromethane ( 3 x 2  ml). The combined organic layers were washed with saturated 

brine (5 ml), dried and evaporated. The residue was purified by chromatography (20% 

ethyl acetate/petroleum ether) to give the carbamate 252 (17 mg, 100%): [a]o +22.69 

(CH2CI2, c 0.52); Rf 0.39 (40% ethyl acetate/petroleum ether); Vmax/cm'1 [CH2CI2] 2956 

(m), 1790 (s), 1758 (s), 1674 (w), 1597 (m), 1494 (w), 1439 (m), 1365 (s), 1309 (m), 1173 

(s), 1090 (m), 966 (m) and 816 (m); 8h 1.70 (3H, app dd, J  6.6 and 1.4, Me), 2.40 (3H, s, 

Ar-Me), 3.75 (3H, s, C 0 2Me), 4.60 (1H, d, J  5.0, CHN), 4.70 (1H, dd, J  7 A  and 5.0, 

CHO); 5.45 (1H, app ddd, J  15.2, 7.4 and 1.6, =CH), 5.85 (1H, dq, J  15.2 and 6.6, =CH- 

Me), 7.30 (2H, d, J  8.4, 2 x Ar-H) and 7.90 (2H, d, J  8.4, 2 x Ar-H); 8c 17.8 (Me), 21.8 

(Ar-Me), 53.4 (C 02Me), 62.6, 77.8 (both CH), 125.1 (=CH), 129.1, 129.6 (both ArCH),

134.1 (=CH), 134.3, 146.0 (both ArC), 150.8 and 168.5 (both C=0); m/z [APcI] 340 (M + 

+ H, 100%) and 296 (20). [Found M* +NH4: 357.1115. C15H21N2O6S requires M, 

357.1115].
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Ring Opening of ( /  *E,4S,SR) Methyl 2-oxo-5-(prop-l-enyl)-3-tosyloxazolidine-4-

carboxylate 252

o
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NHTs
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COzMe NHTs

253 251

C02Me

Cesium carbonate (5 mg, 0.015 mmol, 1.0 eq) was added to a solution of the cyclic 

carbamate 252 (24 mg, 0.071 mmol, 4.75 eq) in distilled methanol (1 ml) and the reaction 

mixture was stirred for 3.5 h. Next, the reaction mixture was cooled in an ice-bath and 1 

M hydrochloric acid (2 ml) was added. The solvent was evaporated and the product was 

taken up in dichloromethane. The two layers were separated and the aqueous phase was 

extracted with dichloromethane ( 2 x 3  ml). The combined organic solutions were dried 

and evaporated. The NMR of the crude product revealed that the reaction was incomplete, 

so the residue was treated with the same quantities of reagents for an additional 21 h at

room temperature. The residue was purified by chromatography (40% ethyl 

acetate/petroleum ether) to furnish i) the (E)-alkene 253 (2 mg, 9%) and ii) the diene 251 

(9 mg, 43%). The (£)-alkene 253 was characterised by: Rf 0.13 (40% ethyl 

acetate/petroleum ether); vma3i/c m x [CH2CI2] 3499 (br), 3280 (br), 2923 (m), 1738 (s), 1598 

(s), 1495 (m), 1435 (m), 1337 (s), 1162 (s), 1040 (s), 968 (s) and 816 (s); 8H 1.60 (3H, app. 

dd, J  6.6 and 1.3, 6-Me), 2.10 (1H, br. res., OH, exchanges with D2O), 2.35 (3H, s, Ar- 

Me), 3.45 (3H, s, C 0 2Me), 3.85 (1H, dd, J9 .1  and 3.5, 2-H), 4.30 (1H, br. res., 3-H), 5.35 

(1H, d, J  9.7, NH), 5.40 (1H, ddd, J  15.2, 7.3 and 1.6, 4-H), 5.70 (1H, dq, J  15.2 and 6.6, 

5-H), 7.20 (2H, d, J  8.2, 2 x Ar-H) and 7.65 (2H, d, J8 .2 , 2 x Ar-H); 8c 17.8 (6-Me), 21.6 

(Ar-Me), 52.7 (C 02Me), 60.2, 73.4 (both CH), 127.3 (ArCH), 128.4 (=CH), 129.6 (ArCH),

130.9 (=CH), 136.7, 143.7 (both ArC) and 170.3 (0=0); m/z [APcI] 314 (M + + H, 18%), 

296 (100) and 236 (48). [Found M+ +NH4: 331.1326. Ci4H23N20 5S requires M, 331.1322]. 

The diene 251 was characterised by: Rf 0.37 (40% ethyl acetate/petroleum ether); Vmax/cm"1 

[CH2C12] 3278 (br), 2927 (m), 2854 (m), 1736 (s), 1598 (m), 1494 (w), 1338 (m), 1166 (s), 

and 814 (m); 8h 1.85 (3H, app dd, J  6.9 and 1.5, 6-Me), 2.35 (3H, s, Ar-Me), 3.35 (3H, s, 

C 02Me), 6.10 (1H, s, NH), 6.15 (1H, qd, J  15.1 and 6.9, 5-H), 6.65 (1H, app ddd, J  15.1,

11.3 and 1.7, 4-H), 7.10 (1H, d, J  11.3, 3-H), 7.20 (2H, d, J  8.2, 2 x Ar-H); and 7.60 (2H, 

d, J  8.2, 2 x Ar-H); 8C 19.2, 21.6 (both Me), 52.3 (C02Me), 120.1, (=CH), 127.3 (C),
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127.6, 129.4 (both ArCH), 136.0 (ArC), 139.8, 141.9 (both =CH), 143.9 (ArC) and 165.1 

(C=0); m/z [APcI] 296 (M + + H, 100%), 291 (47) and 276 (37).

(2AS)-Methyl 3-hydroxy-5-phenyl-2-(tosyIamino)pent-4-ynoate 146

T s H N ^ C 0 2Me 

152

A-tosyl glycine 152 (6.35 g, 26.1 mmol) was reacted with phenyl propynal 117 (4.08 g,

31.3 mmol) according to general procedure C except in the absence of tin(II) chloride. The 

residue was purified by chromatography (30% ethyl acetate/petroleum ether) to yield the 

aldol adduct 146 (1.45 g, 15%) as a 1:1 mixture of diastereoisomers, as a brown oil: Rf 

0.58 (40% ethyl acetate/petroleum ether), Vmax/cm'1 3298 (br), 2930 (m), 1715 (s), 1598 

(m), 1491 (s), 1443 (m), 1383 (m), 1335 (s), 1164 (s), 848 (m), 814 (m), 758 (s) and 691 

(s); 6c (both diastereoisomers) 21.5, 21.6 (Ar-Me), 53.1, 53.1 (C 02Me), 60.6, 60.7 (CH),

63.5, 64.3 (CH), 84.3, 85.2, 87.2, 87.6 (all C=C), 121.5, 121.7 (ArC), 127.2, 127.4, 128.3,

128.3, 128.9, 129.0, 129.6, 129.8, 131.9, 132.0 (all ArCH), 136.1, 136.9, 143.7, 144.1 (all 

ArC), 168.6 and 169.5 (both C=0); m/z [APcI] 356 (M+ - H20 , 100%). The syn 

diastereoisomer 146b was characterised by: 5h 2.25 (3H, s, Ar-Me), 3.45 (3H, s, C 02Me),

4.15-4.25 (2H, m, 2-H), 4.90 (1H, d, J  3.5, 3-H), 5.85 (2H, br. res., NH), 7.05-7.35 (7H, m, 

Ph and 2 x Ar-H) and 7.70 (2H, d, J  8.3, 2 x Ar-H). The data obtained for the anti 

diastereoisomer 146a is identical with that previously reported (p 219).

'CO2M0
NHTs
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(^/^/fc^-M ethyl 3-hydro xy-2-(tosylamino)hex-4-enoate 150

OH

+ T s H N ^ C 0 2Me --------► ^ ^ x ^ V ' C° 2Me

fiHTs
137 152 150

jV-tosyl glycinate 152 (1.0 g, 4.11 mmol) and (£)-croton aldehyde 137 (0.41 g, 0.48 ml,

5.85 mmol) were reacted together according to general procedure C, except for the absence 

of tin(II) chloride. The residue was purified by column chromatography (40% ethyl 

acetate/ petroleum ether) to give the amino alcohol 150 (132 mg, 10%) as an inseparable 

mixture of anti and syn diastereoisomers in the ratio of 1:1.6 respectively, as a pale yellow 

oil, together with a trace of impurities. The data obtained for the both the diastereoisomers 

was identical to that previously reported (p 221).

(2/?)-terf-butyl-3-hydroxy-5-phenylpent-4-yn-2-ylcarbamate 257

OH
.

NHBoc
P h ' NHBoc

195 257

i) Method A- Alkylation using lithioalkyne

Phenylacetylene 145 (391 mg, 0.42 ml, 1.53 mmol, 2.5 eq) was dissolved in distilled 

tetrahydrofuran (6 ml) and the resulting solution was cooled to -20°C. A 2.5 M solution of 

n-BuLi in hexanes (1.68 ml, 4.21 mmol, 2.75 eq) was added drop-wise and the solution 

was stirred at this temperature for 0.5 h. The reaction mixture was cooled to -78°C for 10 

mins prior to the dropwise addition o f the aldehyde 195 (265 mg, 1.53 mmol, 1.0 eq), in 

tetrahydrofuran (3 ml). The reaction mixture was stirred for 2 h at -78°C and was then 

quenched with pH 7 phosphate buffer (3 ml). The solution was filtered through celite and 

the solid was washed with ethyl acetate. The aqueous layer was extracted ethyl acetate (2 

x 10 ml). The combined ethyl acetate solutions were dried, filtered and evaporated. The 

residue was purified by column chromatography (20% ethyl acetate/petroleum ether) to 

give the alkyne 257 (286 mg, 68%), as a 3:1 mixture of diastereoisomers, as a yellow oil:
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Rf 0.31 (40% ethyl acetate/ petroleum ether); Vmax/cm'1 [Film] 3355 (br), 2977 (s), 1694 

(s), 1505 (s) and 1470 (s); 8h 1.15-1.20 (3H, m, 2-Me, major isomer), 1.25 (3H, d, J 6 .8 ,2- 

Me, minor isomer), 1.40 (18H, s, 2 x t-Bu, both isomers), 3.05 (1H, br. res., OH, major 

isomer), 3.40 (1H, br. res., OH, minor isomer), 3.85-3.95 (1H, br. res., 2-H, major isomer), 

3.95 (1H, br. res., 2-H, minor isomer), 4.50 (1H, d, J5 .4 , 3-H, major isomer), 4.60 (1H, br. 

res., 3-H, minor isomer), 4.70 (1H, d, J  8.5, NH, major isomer), 4.75 (1H, br. res., NH, 

minor isomer), 7.20-7.30 (6H, m, 6 x Ar-H, both isomers) and 7.30-7.40 (4H, m, 4 x Ar-H, 

both isomers); 5C 16.2 (Me), 28.4 (/-Bu), 50.9, 51.3, 66.2, 66.5 (all CH), 79.8, 79.9 (both 

C-(CH3)3), 85.7, 86.1, 87.1, 87.6 (all O C ), 112.4, 112.5 (both ArC), 128.2, 128.3, 128.5,

128.5, 131.8, 131.8 (all ArCH), 156.0 and 156.3 (both C=0); m/z [APcI] 276 (M+ + H, 

100%), 260 (18), 220 (15), 202 (17) and 53 (32).

ii) Method B- Alkylation in the presence o f zinc bromide.

A solution o f the alkyne 145 (1.24 g, 12.14 mmol, 1.3 eq) in distilled diethyl ether (12 ml) 

was cooled to -20°C in a salt-ice bath. A 2.5 M solution of n-BuLi (5.24 ml, 13.1 mmol,

1.4 eq) was added and the resultant solution was stirred for 1 h. The solution was warmed 

to 0°C and anhydrous zinc bromide (2.95 g, 13.1 mmol, 1.4 eq) was added and the reaction 

mixture was stirred for an additional hour at this temperature and then an hour at room 

temperature. The reaction mixture was cooled to -78°C and then the racemic aldehyde 195 

(1.62 g, 9.35 mmol, 1.0 eq) was added as a solution in diethyl ether (16 ml). The cold bath 

was removed and the reaction mixture was stirred for 16 h. The solution was cooled to - 

20°C and the reaction was quenched by the addition , o f saturated aqueous ammonium 

chloride (6 ml). Water (10 ml) was added, the two layers were separated and the aqueous 

layer was extracted with diethyl ether ( 3 x 1 0  ml). The combined ether layers were dried 

and evaporated to furnish the amino alcohol 257 (approx. 2.60 g), as a 1.2:1 mixture of 

diastereoisomers together with some phenyl acetylene as a yellow oil. The data obtained 

was in accordance with that previously reported.
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(4RS)-1 -pheny l-4-(tosy lamino)pent-1 -y n-3-ol 258

OH OH

Ph NHBoc Ph NHTs

257 258

i) Deprotection with trifluoroacetic acid

The crude mixture o f TV-Boc protected amine 257 and phenylacetylene 145 (2.60 g, ca 9.44 

mmol) was deprotected using trifluoroacetic acid (5.2 ml) according to general procedure 

F, for 1.5 h to furnish the crude amine (1.16 g), as a brown oil which was used without 

further purification.

ii) Tosylation

The crude amine (1.16 g, 6.61 mmol) was tosylated using a mixture of 2,4,6 collidine 

(1.38 g, 11.39 mmol) and /7-toluene sulphonyl chloride (2.16 g, 11.3 mmol) according to 

general procedure H. The residue was purified by column chromatography (20% ethyl 

acetate/petroleum ether) to yield the sulfonamine 258 (698 mg, 23%, over 3 steps), as a 

mixture o f diastereoisomers in the ratio 1.8:1 (syn 258b: anti 258a) as a brown oil: Rf 0.33 

and 0.25 (40% ethyl acetate/petroleum ether); Vmax/cm'1 [CH2CI2] 3500 (br), 3273 (s), 2926 

(m), 1598 (m), 1491 (s), 1442 (s), 1382 (m), 1334 (s), 1164 (s), 814 (m), 758 (s) and 691 

(s); 8h 1.05 (3H, d, J  6.7, 2-Me, syn isomer), 1.10 (3H, d, J  6.1, 2-Me, anti isomer), 2.25 

(3H, s, Ar-Me, anti isomer), 2.30 (3H, s, Ar-Me, syn isomer), 3.10-3.25 (2H, m, 2 x OH, 

exchanges with D2O), 3.35-3.55 (2H, m, 2-H, both isomers), 4.40 (1H, d, J  5.5, 3-H, anti 

isomer), 4.45 (1H, br. d, J  2.1, 3-H, syn isomer), 5.35 (1H, d, J  8.2, NH, exchanges with 

D2O, anti isomer), 5.40 (1H, d, J  8.9, NH, exchanges with D2O, syn isomer), 7.05-7.30 

(14H, m, 2 x Ph and 4 x Ar-H, both isomers) and 7.65-7.70 (4H, m, 4 x Ar-H); m/z [APcI] 

330 (M+ + H, 10%) and 312 (100). [Found M+ + NH4: 347.1423. C18H23N2O3S requires 

M, 347.1424].

The anti diastereoisomer 258a was isolated as a single diastereoisomer from a previous 

experiment and was characterised by: [a]o -31.43 (CHCI3, c 1.26 ); 8c 17.0 (2-Me), 21.5 

(Ar-Me), 54.1, 66.2 (both CH), 88.5 (C^C, only one evident), 122.0 (ArC), 127.1, 128.3,

128.5,129.8, 131.7 (all ArCH), 137.5 and 143.5 (both ArC).
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{E,4RS)~ 1 -pheny l-4-(tosy lamino)pent-l -en-3-ol 259

OH OH

Ph NHTs NHTs
258 259

A 1.8:1 (synianti) mixture of diastereoisomers of the alkyne 258 (406 mg, 1.23 mmol) was 

reduced using a 70% solution of Red-al in toluene (1.85 ml, 6.16 mmol, 5.0 eq) according 

to general procedure H to give the alkene 259 (0.283 mg, 86%) as a yellow oil, as a 

mixture of diastereoisomers in the ratio 1.6:1 (synianti) which was used without 

purification: Rf 0.36 and 0.31 (40% ethyl acetate/petroleum ether); Vmax /cm"1 [CH2CI2] 

3500 (br), 3277 (s), 2976 (s), 2930 (s), 1598 (s), 1494 (s), 1449 (s), 1327 (s), 1160 (s), 967 

(s), 814 (s), 751 (s) and 694 (s); 5h 0.90 (3H, d, J, 6.9, 2-Me, syn isomer), 1.00 (3H, d, J ,

6.7, 2-Me, anti isomer), 2.25 (3H, s, Ar-Me, anti isomer), 2.30 (3H, s, Ar-Me, syn isomer), 

3.25 (1H, qd, J  6.1 and 5.1, 2-H, anti isomer), 3.40 (1H, qd, J  6.9 and 2.6, 2-H, syn 

isomer), 4.00-4.05 (1H, m, 3-H, anti isomer), 4.15-4.25 (1H, m, 2-H, syn isomer), 5.92 

(1H, dd, J  16.0 and 6.9, 4-H, anti isomer), 6.00 (1H, dd, J  16.0 and 6.2, 4-H, syn isomer),

6.45 (2H, app t, J  16.0, 5-H, both isomers), 7.15-7.30 (14H, m, 14 x Ar-H, both isomers),

7.65 (2H, d, J  8.2, 2 x Ar-H, anti isomer) and 7.70 (2H, d, J  8.2, 2 x Ar-H, anti isomer); 6c

14.5 (Me, syn isomer), 17.1 (Me, anti isomer), 20.4 (Ar-Me both isomers), 53.1 (CH, both 

isomers), 73.8 (CH, syn isomer), 74.3 (CH, anti isomer), 125.5, 125.6, 126.0, 126.7, 126.8,

127.3, 127.4, 127.5, 128.6, 128.7 (all ArCH, both isomers), 130.9, 131.3 (both =CH, both 

isomers), 135.3, 135.4, 136.6, 136.7, 142.2 and 142.3 (all ArC, both isomers); m/z [APcI] 

314 (M+ - H20 , 100%). [Found M+ +NH4 349.1576. C18H25N2O3S requires M, 349.1580].
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(2R)-tert- butyl 3-hydroxynon-4-yn-2-ylcarbamate 262

OH

NHBoc
Bu NHBoc

195 262

i) Method A

1-hexyne 114 (314 mg, 0.44 ml, 3.82 mmol, 2.5 eq) was dissolved in distilled 

tetrahydrofuran ( 6  ml) and the solution was cooled to -20°C. A 2.5 M solution of n-BuLi 

in hexanes (1.68 ml, 1.53 mmol, 2.75 eq) was added drop-wise and the solution was stirred 

for 0.5 h. The solution was cooled to -78°C for 10 mins before the aldehyde 195, in 

tetrahydrofuran (3 ml) was added slowly. The reaction mixture was stirred for 2 h at -78°C 

and was then quenched with pH 7 phosphate buffer (3 ml). The solution was filtered 

through celite and the aqueous phase was extracted ethyl acetate (2 x 10 ml). The 

combined ethyl acetate solutions were dried, filtered and evaporated. The residue was 

purified by column chromatography (2 0 % ethyl acetate/petroleum ether) to give the alkyne 

262 (272 mg, 70%), as a 3.5:1 mixture of diastereoisomers, as a yellow oil: Rf 0.54 (40% 

ethyl acetate/ petroleum ether); Vmax/cm' 1 [Film] 3388 (br), 2974 (s), 2932 (s), 1694 (s), 

1455 (s), 1392 (s) and 1367 (s); 8 h 0.85 (6 H, t, J7 .2 , 9-Me, both isomers), 1.15 (1H, d, J

7.2, l ’-Me, minor isomer), 1.18 (1H, d, J 7.2, l ’-Me, major isomer), 1.30-1.45 (26H, m, t- 

Bu and 2 x CH2 , both isomers), 2.15 (6 H, 2 x t, J  7.1 and 7.1, 6 -CH2 , both isomers), 3.30 

(1H, br. res., OH, major isomer), 3.40 (1, br. res., OH, minor isomer), 3.40 (1H, br. res, 2- 

H, major isomer), 3.85 (1H, br. res., 2-H, minor isomer), 4.30 (1H, br. res., 3-H, major 

isomer), 4.35 (1H, br. res, 3-H, minor isomer), 4.75 (1H, d, J  8.7, NH, major isomer) and

4.85 (1H, br. res., NH, minor isomer); 5c 13.5 (9-Me, both isomers), 15.9, 16.1 (both l ’- 

Me), 18.3 (CH2 , minor isomer), 18.3 (CH2, major isomer), 21.9 (CH2 , both isomers), 28.2 

(r-Bu, both isomers), 30.6, 30.6 (CH2 both isomers), 50.8, 51.1, 65.7, 66.0 (both isomers),

77.9, 78.4 (both C-(CH3)3, both isomers), 79.5, 80.0, 86.4, 8 6 . 8  (all O C , both isomers),

155.5 and 155.8 (C=0, both isomers); m/z [APcI] 256 (M+ +H, 15%), 200 (35), 185 (43), 

182 (100) and 138 (78). [Found M+ +NH4 : 327.1737. Ci6H2 7N2 0 3S requires M, 327.1737].

ii) Method B

To a -20°C solution of the alkyne 262 (998 mg, 1.40 ml, 12.14 mmol, 1.3 eq) in distilled 

diethyl ether (12 ml) was added a 2.5 M solution of n-BuLi (5.24 ml, 13.1 mmol, 1.4 eq) 

and the resultant solution was stirred for 1 h. The solution was warmed to 0°C and
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anhydrous zinc bromide (2.95 g, 13.1 mmol, 1.4 eq) was added, the reaction mixture was 

stirred for 1 h at this temperature and then a further h at ambient temperature. The reaction 

vessel was cooled to -78°C and then the racemic aldehyde 195 (1.62 g, 9.35 mmol, 1.0 eq) 

was added in diethyl ether (16 ml). The cold bath was removed and the reaction mixture 

was stirred for 16 h. The solution was re-cooled to -20°C, saturated aqueous ammonium 

chloride (6  ml) was added followed by water (10 ml). The resultant two layers were 

separated and the aqueous layer was extracted with diethyl ether (3 x 10 ml). The 

combined ether layers were dried and evaporated to furnish the amino alcohol 262 (2.08 g, 

87%), as a 3:1 mixture o f diastereoisomers. as a yellow oil. The data obtained was in 

accordance with that previously reported.

(2if)-2-(tosylamino)non-4-yn-3-ol 263

OH OH

NHBoc NHTs
262 263

i) Deprotection using Trijluoroacetic acid

A 2:1 mixture o f diastereoisomers o f the N -Boc protected amine 262 (1.08 g, 4.21 mmol,

1.0 eq) was deprotected using trifluoroacetic acid (2.0  ml) according to general procedure 

F to yield the amine (407 mg, 62%), as a mixture o f diastereoisomers in the approximate 

ratio 2 :1, as a brown oil which was used without further purification and showed: Vmax/cm' 1 

[Film] 3400-3000 (br), 2874 (s), 1460 (s) and 1391 (m); SH 0.80 (6H, t, J  9-Me, both 

isomers), 1.15-1.45 (10H, m, 2-Me and 2 x CH2, both isomers), 2.05-2.15 (4H, m, 6-CH2, 

both isomers), 3.10 (1H, br. t, J  6.5, 2-H, major isomer), 3.20 (1H, br. res., 2-H, minor 

isomer), 4.15 (1H, d, /7 .8 ,  3-H, major isomer) and 4.40 (1H, br. res, 3-H, minor isomer); 

6c (major isomer only) 13.5 (9-Me), 16.2 (2-Me), 18.3, 21.9, 30.5, (all CH2), 52.9, 64.7 

(both CH), 87.6 and 88.5 (both C^C).

ii) Tosylation o f  (S)~2-aminonon-4yn-3-ol 263

The crude amine (407 mg, 2.62 mmol, 1.0 eq) was tosylated according to general 

procedure G. The residue was purified by column chromatography (10% ethyl 

acetate/petroleum ether) and the mixed fractions re-columned to yield the sulfonamide 263
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(371 mg, 29% over 2 steps), as a mixture of diastereoisomers in the ratio of 2.7:1 (antiisyn) 

as an orange oil: Rf 0.43 (40% ethyl acetate/petroleum ether); Vmax /cm' 1 [CH2CI2] 3490 

(br), 3282 (br), 2932 (s), 2872 (s), 1598 (m), 1495 (m), 1428 (s), 1328 (s), 1161 (s) and 815 

(s); 8h 0.85 (6H, 2 x t, J  7.2 and 7.1, 9-Me, both isomers), 1.00 (3H, d, J  6 .8, 2-Me, syn 

isomer), 1.05 (3H, d, J  6 .6, 2-Me, anti isomer), 2.05-2.15 (4H, m, 2 x 6-CH2, both 

isomers), 2.35 (6H, s, Ar-Me, both isomers), 3.35 (1H, m, 2-H, anti diastereoisomer), 3.35-

3.45 (1H, m, 2-H, syn diastereoisomer), 4.15-4.20 (2H, m, 3-H, both isomers), 4.55 (1H, d, 

J  8.1, NH, exchanges with D20 ), 4.65 (1H, d, J  9.3, NH, exchanges with D20), 7.30-7.35 

(4H, m, 4 x Ar-H, both isomers) and 7.70 (4H, 2 x d, J  8.3 and 8.3, 4 x Ar-H, both 

isomers); 8c 13.6 (9-Me, both isomers), 16.6, 16.6 (2-Me both isomers), 18.3 (CH2, both 

isomers), 21.6 (Ar-Me, both isomers), 22.0 (CH2, both isomers), 30.5, 30.5 (CH2, both 

isomers), 53.9, 54.2, 65.6, 65.9 (all CH, both isomers), 77.2, 87.9, 88.2 (all O C , both 

isomers), 127.1, 127.1, 129.7, 129.8 (all ArCH, both isomers), 137.6, 143.5, 143.6 (all 

ArC, both isomers); m/z [APcI] 310 (M+ + H, 23%) and 292 (M+ - H20 , 100%). [Found 

M+ + NH4] 327.1737. C16H27N2O3S requires M, 327.1737].

Reduction of 2-(tosylamino)non-4-yn-3-ol 263

OH

Bu NHTs NHTs
!u NHTs

263 264

NHTs

265

i) Method A

A 1.2:1 mixture o f diastereoisomers 263 (antiisyn) of the amino alcohol (116 mg, 0.38 

mmol) was reduced using a 35% by weight solution of Red-al in toluene according to 

general procedure H, except that the reaction mixture was refluxed for 19.25 h in 

tetrahydrofuran. The residue was chromatographed (10% ethyl acetate/petroleum ether) to 

furnish i) the allene 265 (17 mg, 15%) as a 3:1 mixture of diastereoisomers and ii) (£)- 

alkene 264 (23 mg, 20%) as a 5:1 mixture of diastereoisomers (antiisyn). The allene 265 

was characterised by: Rf 0.63 (40% ethyl acetate/petroleum ether); vmax /cm*1 [CH2C12] 

3269 (br), 2926 (s), 1965 (s), 1599 (s), 1495 (s), 1454 (s), 1377 (s), 1328 (s), 1162 (s) and 

815 (s); 8H 0.75-0.95 (6H, m, 9-Me, both isomers), 1.15 (6H, d, J  6 .6 ,2-Me, both isomers),

1.15-1.35 (12H, m, 3 x CH2, both isomers), 1.80-1.95 (4H, m, 6-CH2, both isomers), 2.35
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(6H, s, Ar-Me, both isomers), 3.75-3.85 (2H, m, 2-H, both isomers), 4.45 (2H, d, J  7.7, 

NH, exchanges with D2O, both isomers), 4.95-5.00 (1H, m, 3-H, both isomers), 5.05 (1H, 

app. qd, J  6.6 and 3.0, 5-H, major isomer), 5.15 (1H, app. qd, J  6.1 and 3.3, 5-H, minor 

isomer), 7.20 (4H, d, J  8.5, 4 x Ar-H, both isomers) and 7.65 (4H, d, J  8.5, 4 x Ar-H, both 

isomers); 8c 13.9 (9-Me, both isomers), 21.6 (Ar-Me, both isomers), 22.2 (CH2, both 

isomers), 22.3 (2-Me, both isomers), 28.3 (CH2, both isomers), 29.7 (CH2, minor isomer),

31.1 (CH2, major isomer), 48.0 (CH, major isomer), 48.1 (CH, minor isomer), 94.4 (=CH, 

both isomers), 95.6 (=CH, minor isomer), 95.8 (=CH, major isomer), 127.1, 129.6 (ArCH, 

both isomers), 137.9, 143.3 (ArC, both isomers) and 201.8 ( -= , both isomers).

The (£)-alkene 264 was characterised by: Rf 0.39 (40% ethyl acetate/petroleum ether); vmax 

/cm'1 [CH2CI2] 3500 (br), 3278 (br), 2926 (s), 1598 (m), 1495 (m), 1434 (m), 1328 (s), 

1161 (s) and 815 (m); 8h 0.75-0.85 (6H, m, 9-Me, both isomers), 0.90 (3H, d, J  6.8, 2-Me, 

syn diastereoisomer), 1.00 (3H, d, J6 .8 , 2-Me, major isomer), 1.10-1.30 (6H, m, 2 x CH2, 

both isomers), 1.80-1.20 (4H, m, 4-CH2, both isomers), 2.35 (6H, s, Ar-Me, both isomers),

3.10 (1H, app sext, J  6.8, 2-H, anti diastereoisomer), 3.25-3.35 (1H, m, 2-H, syn 

diastereoisomer), 3.75 (1H, app. t, ./approx- 6.5, 3-H, anti diastereoisomer), 3.95 (1H, br. res.,

3-H, syn diastereoisomer), 4.60-4.65 (1H, m, NH, syn diastereoisomer), 4.65 (1H, d, J1.6 , 

NH, exchanges with D2O, anti diastereoisomer), 5.20 (1H, dd, J  15.4 and 7.6, 4-H, anti 

diastereoisomer), 5.25 (1H, dd, J  15.4 and 6.6, 4-H, syn diastereoisomer), 5.60 (2H, dt, J

15.4 and 7.6, 5-H, both diastereoisomers), 7.20 (4H, J  8.2, 4 x Ar-H, both 

diastereoisomers) and 7.70 (4H, J  8.2, 4 x Ar-H, both diastereoisomers); m/z [ES] 334 (M+ 

+ Na, 100%), 294 (65), 198 (25) and 155 (65). [Found M+ + NH4 329.1892. C16H29O3N2S 

requires M, 329.1893].

iii) Method B

To an ice-cold solution o f a 5:4.5 mixture o f diastereoisomers {anti:syn) of the alkyne 263 

(99 mg, 0.32 mmol, 1.0 eq) in tetrahydrofuran was added lithium aluminium hydride (36 

mg, 0.96 mmol, 3.0 eq) slowly. The grey suspension was then refluxed for 20 h. The 

solution was then cooled in an ice bath and the reaction was quenched by the slow addition 

of ethyl acetate (7 ml), followed by water (7 ml) and a 10% solution of sulphuric acid (10 

ml). Diethyl ether (10 ml) was added, the resultant layers were separated and the aqueous 

phase was extracted with diethyl ether (3 x 20 ml). The combined organic layers were 

dried and evaporated and the residue was purified by chromatography ( 10% ethyl 

acetate/petroleum ether) to furnish i) the {E)-alkene 264 (51 mg, 52%), as a mixture of
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diastereoisomers in the ratiol.3:l (anti:syn\ as a brown oil and ii) the allene 265 (15 mg, 

16%), as a mixture o f diastereoisomers in the ratio 3:1 as a brown oil. The data obtained 

for both is in accordance with that previously reported.

(2RS, iAS)>Methyl 3-hydroxy-5-phenyl-2-(tosylamino)pentanoate 148a

OH

NHTs 

148a

To the alkyne 146a (200 mg, 54 mmol, 1.0 eq) in methanol (0.2 ml) was added 5% 

palladium on calcium carbonate (13 mg) poisoned with quinoline (20 mg, 0.02 ml, 0.16 

mmol, 0.3 eq) and the reaction mixture was stirred under a hydrogen atmosphere for 16 h. 

The reaction mixture was filtered through celite, and the solid was washed with diethyl 

ether. The combined filtrates were washed with 0.5 M hydrochloric acid (5 ml) and the 

aqueous phase was extracted with ether ( 2 x 1 0  ml). The combined organic phases were 

dried and evaporated to give the alkane 148a (180 mg, 80%), as a white solid: m.p. 102- 

103°C; Rf 0.40 (40% ethyl acetate/petroleum ether); Vmax/cm1 [CH2CI2] 3281 (br), 2954 

(s), 1738 (s), 1599 (m), 1496 (m), 1454 (s), 1337 (s) and 1162 (s); 8H 1.75-1.85 (2H, m, 4- 

CH2), 1.95 (1H, br. res, OH), 2.50 (3H, s, Ar-Me), 2.60-2.70 (1H, m, 5-CHaCHb), 2.80-3.0 

(1H, m, 5 -C H aQ y, 3.50 (3H, s, C 0 2Me), 3.90 (1H, app. quint, J  4.3, 3-H), 4.0-4.01 (1H, 

br. res, 2-H), 5.60 (1H, br. res, NH), 7.10-7.35 (7H, m, Ph and 2 x Ar-H) and 7.90 (2H, d, J

8.3, 2 x Ar-H); 6c 22.0 (Ar-Me), 32.2, 35.2 (both CH2), 53.1 (C02Me), 60.4, 72.4 (both 

CH), 126.5, 127.7, 128.9, 128.9, 130.2 (all ArCH), 135.0, 141.5, 144.4 (all ArC) and 170.5 

(C=0); m/z [ES] 400 (VC + Na, 100%), 378 (90), 318 (10) and 300 (10). [Found: C, 59.97; 

H, 6.09, N, 3.72. C19H23NO5S requires C, 60.46; H, 6.14; N, 3.71%].

C 02Me

NHTs
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(2RS,3SR,4SR,5RS) and (2RSf3SR,4SR,5SR)M ethy\ 3-hydroxy-4-iodo-5-phenyl-l- 

tosylpyrrolidine-2-carboxylate 296a and 296b

Ph
HOa CQ2Me

NHTs
Ph

147a

OH

NHTs 

148a

Ph"’

■ OH

'<C° 2 M e
Ts

296a

Ph

I  OH

* ^ N̂ "C02Me
Ts

296b

a) Iodocyclisation

The crude 8:3:1.5 mixture o f the cw-alkene 147a, alkane 148a and alkyne 146a (200 mg, 

0.53 mmol) prepared according to page 220 was reacted with iodine monobromide (330 

mg, 1.60 mmol) in dichloromethane for 4 h according to general procedure I. The residue 

was purified (30% ethyl acetate/petroleum ether) to yield a 7:1 mixture of the 2,5-cis 

pyrrolidine 296a and 2,5-trans pyrrolidine 296b (108 mg, 16%) as an orange oil together 

with some recovered alkane and iodopyrrole (88 mg). The iodopyrrolidines 296 were 

characterised by: Rf 0.35 (40% ethyl acetate/petroleum ether); Vmax/cm"1 (both isomers) 

[Film] 3489 (br), 2955 (m), 1747 (s), 1598 (m), 1495 (m), 1343 (m) and 1159 (s); m/z 

[APcI] 502 (M* + H, 100%) and 374 (25). [Found M* + H: 502.0190. C,9H2oINS05 

requires M, 502.0185].

The 2,5-cis iodopyrrolidine 296a was characterised by: 5h 2.50 (3H, s, Ar-Me), 3.10 (1H, 

s, OH), 3.80 (3H, s, C 0 2Me), 4.20 (1H, app. t, J7 .8 , 4-H), 4.30 (1H, d, J5 .8 , 2-H), 4.60-

4.70 (1H, br. res, 3-H), 4.90 (1H, d, J  8.2, 5-H), 6.85-7.45 (7H, m, both diastereoisomers, 

Ph and 2 x Ar-H) and 7.50 (2H, d, J  8.30, 2 x Ar-H). 6c 22.0 (Ar-Me), 35.5 (4-CH-I), 53.5 

(C 02Me), 65.9 (5-H), 66.61 (2-H), 80.17 (3-H), 128.2, 128.5, 128.6, 128.8, 129.8 (all 

ArCH), 134.5, 139.8, 144.6 (all ArC) and 171.1 (C=0).

The 2,5-trans iodopyrrolidine 296b was characterised by: 8h 2.50 (3H, s, Ar-Me), 3.80 

(3H, s, C 02Me), 3.90-4.10 (1H, m, 4-H), 4.55 (1H, d, J 3.9, 2-H), 4.60-4.70 (1H, br. res, 3- 

H), 5.05 (1H, d, J  8.0, 5-H) 6.85-7.45 (7H, m, Ph and 2 x Ar-H) and 7.50 (2H, d, J  8.30, 2 

x Ar-H). The data obtained for the alkane 148a was identical with that previously 

reported.

b) Iodocyclisation

An 8:3:1.5 mixture o f the cw-alkene 147a, alkane 148a and alkyne 146a (300 mg, ca 0.80 

mmol) were reacted with iodine monobromide (330 mg, 1.60 mmol) in acetonitrile for 2.5 

h, after which time the reaction was judged to be complete by tic, according to general
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procedure I. The residue was purified (30% ethyl acetate/petroleum ether) to yield the 2,5- 

cis pyrrolidine 296a (48 mg, 19%), largely as a single diastereoisomer, as an orange oil. 

The data for the iodo-pyrrolidine 296a was identical to that previously reported.

(1SR,2RS,4RS,5RS) and (1SR,2RS,4SR,5RS)-Methyl 4-phenyl-3-tosyl-6-oxa-3-aza- 

bicycIo[3.1.0]hexane-2-carboxylate 307a and 307b

1 OH

. r ~ \  +
W  N C°2 Me 

Ts

296a

Ph

I, OH

'COJMe
Ts

296b

A  *Ph"‘ 'COzMe 
Ts

307a

I k
Ph*^N̂ ' ,C02Me

Ts
307b

Following general procedure J, a 9:1 mixture of 2,5-cis and 2,5-trans iodo-pyrrolidine 

296a and 296b (51 mg, 0.10 mmol) was reacted with 50% w/w of silver carbonate on 

celite (448 mg, 0.81 mmol, 8.0 eq) to give the epoxide as a 91:9 mixture of 

diastereoisomers 307a and 307b, (37 mg, 97%) as a brown oil. The major product 307a 

was characterised by: Rf 0.34 (40% ethyl acetate/petroleum ether); Vmax/cm' 1 [CH2CI2] 3058 

(br), 2955 (s), 1757 (s), 1598 (s), 1495 (s), 1342 (s), 1166 (s), 1038 (s), 738 (s) and 700 (s); 

5h 2.30 (3H, s, Ar-Me), 3.55 (1H, d, J  2.8, 5(1)-CH), 3.70 (3H, s, C 02Me), 3.80 (1H, d, J

2.8, 1(5)-CH), 4.65 (1H, app. s, 2-H), 4.95 (1H, app. s, 4-H), 7.15-7.25 (5H, m, Ph) and 

7.40 (2H, d, J  7.3, 2 x Ar-H) and 7.55 (2H, d, J  8.2, 2 x Ar-H); 6c 20.6 (Ar-Me), 51.8 

(C02Me), 56.6, 59.0, 61.5, 63.6 (all CH), 126.2, 126.8, 127.2, 127.6, 128.5 (all ArCH),

133.9, 135.2, 143.0 (all ArC) and 167.9 (C=0); m/z [APcI] 374 (M+ + H, 100%), 324 (85) 

and 314 (30), 202. (48), 170 (56). [Found M+ + H: 374.1059. C19H20NO5S requires M, 

374.1057]. The 2,5-trans epoxide 307b data is reported later.
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(2/fcS,.?£/?,45/?,5/LS)-Methyl-3-acetoxy-4-iodo-5-phenyl-l-tosylpyrrolidme-2-

carboxylate 308a

\,t OH

r y  +
^  N C° 2 Me 

Ts

296a

OH

Ph N 
Ts

296b

I, OAc

Ph' - L \ ,N
Ts

COzMe Ph

I  OAc

• ^ N̂ "'C02Me 
Ts

308a 308b

A 9:1 mixture of 2,5-cis and 2,5-trans iodo-pyrrolidines 296 (50 mg, 0.1 mmol) was 

protected using acetic anhydride (0.02 ml, 0.1 mmol) as described in general procedure K 

to yield the acetate 308 (39 mg, 72%) as a mixture of diastereoisomers in the ratio 5.7: 1 

(4,5-cis: 4,5-trans), as a colourless solid. An analytical sample was prepared by 

recrystallisation using vapour diffusion (10% ethyl acetate/pentane) to give the 2,5-cis 

pyrrolidine 308a as a single diastereoisomer: m.p. 132-133°C; Rf 0.78 (40% ethyl 

acetate/petroleum ether); Vmax/cm' 1 [CH2CI2] 2950 (w), 1749 (s), 1598 (m), 1359 (s), 1220 

(s) and 1164 (s); 5h (major diastereoisomer) 1.95 (3H, s, OAc), 2.30 (3H, s, Ar-Me), 3.80 

(3H, s, CO2CH3), 4.40 (1H, dd, J  7.1 and 4.5, 4-H), 4.55 (1H, d, J3 .4 , 2-H), 4.85 (1H, d, J

7.1, 5-H), 5.65 (1H, dd, J4 .5  and 3.4, 3-H), 7.05-7.25 (7H, m, Ph and 2 x Ar-H) and 7.50 

(2H, d, J  8.3, 2 x Ar-H); 6c 21.0, 21.9 (both Me), 32.1 (4-CHI), 53.5 (CO2CH3), 65.4, 66.4,

80.7 (all CH), 127.8, 128.2, 128.3, 128.3, 129.3 (all ArCH), 135.0, 139.4, 144.5 (all ArC)

169.7 and 169.8 (both C=0); m/z [ES] 566 (M+ + Na, 100%) and 484 (60).
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(3/?S,4Sf?,5/?S)-(7.SR,)-dihydro-4-hydroxy-(l-iodopentyl)-3-(tosylamino)furan-2(3//)-

one 254

HO. NHTs

HO C 02Me 
Bu ) — (

NHTs
O

149 254

The (Z)-alkene 149 (100 mg, 0.28 mmol) was treated with iodine monobromide (175 mg, 

0.84 mmol) in acetonitrile according to general procedure I, for 29.25 h. The residue was 

purified by chromatography (20% ethyl acetate/petroleum ether) to give the lactone 254 

(18 mg, 14%): m.p. 144-145°C; Rf 0.52 (40% ethyl acetate/petroleum ether); Vmax/cm'1 

[KBr] 3515 (br), 2924 (s), 1767 (s), 1458 (s), 1340 (s), 1161 (s) and 813 (s); 6H0.85 (3H, t, 

J  7.2, 5’-Me), 1.20-1.80 (6H, m, 3 x CH2), 2.35 (3H, s, Ar-Me), 2.55 (1H, br. res., OH),

3.80 (1H, app. t, J  3.9, 3-H), 4.20 (1H, app. td, J  10.1 and 2.9, CHI), 4.45 (1H, dd, J  10.1 

and 3.0, 5-H), 4.62 (1H, dd, J3 .9  and 3.0, 4-H), 5.14 (1H, d, J3 .3 , NH), 7.30 (2H, d, J8 .2 , 

2 x Ar-H) and 7.70 (2H, d, J  8.2, 2 x Ar-H); 6c 14.2 (5’-Me), 21.7 (Ar-Me), 21.7 (CH2),

30.1 (CHI), 31.6, 33.7 (both CH2) 59.1, 69.5, 86.1 ( all CH), 127.4 (ArCH), 130.3 (ArCH 

and ArC), 134.2 (ArC) and 170.3 (C=0); m/z [APcI] 468 (M+ + H, 63%), 422 (20), 107 

(100). [Found M* + H: 468.0341. C,6H23IN 05S requires M, 468.0349].

Iodocyclisation of (4E,2RS,3RS)-M ethy\ 3-hydroxy-2-(tosylamino)hex-4-enoate 150a

i) Method A

The alkene 150a (50 mg, 0.16 mmol) in anhydrous dichloromethane was cyclised using 

iodine (121 g, 0.48 mmol) for 24 h, as described in general procedure L. The crude 

product was purified by chromatography (30% ethyl acetate/petroleum ether) to furnish the 

iodopyrrolidine (46 mg, 80%), as a 6:1 mixture of diastereoisomers (321:352), as a pale 

yellow oil. The major isomer 321 was characterised by: Rf 0.44 (40% ethyl acetate/

OH

NHTs

150a

HQ. NHTs

Ts

321 326
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petroleum ether); Vmax/cm' 1 [Film] 3475 (br), 2956 (br), 1745 (s), 1598 (m), 1335 (s), 1155 

(s), 1091 (s) and 816 (m); 6H 1.30 (3H, d, J 6.4, Me), 2.35 (3H, s, Ar-Me), 3.65 (1H, dd, J

8.9 and 7.3, 4-H), 3.75 (3H, s, C 02Me), 3.95 (1H, dq, J  8.9 and 6.4, 5-H), 4.40 (1H, d, J

5.1, 2-H), 4.45 (1H, dd, J 1 3  and 5.1, 3-H), 7.25 (2H, d J  8.3, 2 x Ar-H) and 7.70 (2H, d, J

8.3, 2 x Ar-H); 6c 17.8, 22.0 (both Me), 33.4 (4-CHI), 53.4 (C 02Me), 64.1 (5-CH), 68.3 

(2-CH), 81.9 (3-CH), 127.8, 130.1 (both ArCH), 138.8, 144.3 (both ArC) and 172.0 

(C=0); m/z [ES] 462 (M+ + Na, 100%), 440 (80), 334 (50) and 312 (30). [Found M+ +H: 

440.0031. C14H19INSO5 requires M, 440.0028].

ii) Method B

The alkene 150a (516 mg, 1.65 mmol) dissolved in anhydrous acetonitrile was cyclised 

using iodine (1.25 g, 4.94 mmol) for 1 h, as described in general procedure L. The residue 

was purified by column chromatography (30% ethyl acetate/petroleum ether) to give the 

iodopyrrolidine 321 (619 mg, 86%) as a yellow oil. The data obtained was identical with 

that reported previously.

iii) Method C

The alkene 150a (100 mg, 0.32 mmol) dissolved in anhydrous acetonitrile was cyclised 

using iodine monobromide (197 mg, 0.96 mmol) for 3.25 h, as described in general 

procedure I. The residue was purified (30% ethyl acetate/petroleum ether) to furnish i) the 

lactone 326 (10 mg, 8%) and ii) the iodopyrrolidine 321 (38 mg, 27%) as a mixture of 

diastereoisomers in the ratio 15:1.5:1.5. The data obtained for the pyrrolidine was in 

agreement with that previously reported. The data for the lactone is reported later (p 268).

iv) Method D

The alkene 150a (100 mg, 0.32 mmol) dissolved in anhydrous dichloromethane was 

cyclised using iodine monobromide (198 mg, 0.96 mmol) for 2 h, as described in general 

procedure I. The residue was purified by chromatography (30% ethyl acetate /petroleum 

ether) to yield the iodopyrrolidine 321 (85 mg, 61%), as a 6:1 mixture of diastereoisomers, 

as a yellow oil. The data obtained was in agreement with that previously reported.
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(/SR,2/f5,4£/?,5R,S)-methyl-4-inethyl-3-tosyl-6-oxa-3-aza-bicyclo [3.1.0] hexane-2-

carboxylate 323

\_ P H A
M e* ^N^ " /C02Me * "COaMe

Ts Ts
321 323

Following general procedure J, the iodo-pyrrolidine 321 (55 mg, 0.13 mmol) was reacted 

with 50% w/w AgzCOs on celite (414 mg, 0.75 mmol) to give the epoxide 323 (48 mg, 

100%), as a yellow oil: Vmax/cm"1 [Film] 2955 (s), 1755 (s), 1598 (s), 1495 (s), 1334 (s), 

1265 (s), 1156 (s), 916 (s) and 856 (s); 6H 1.20 (3H, d, J  6A, Me), 2.35 (3H, s, Ar-Me),

3.55 (1H, app. s, 5-H), 3.65 (1H, app. d, J3 .0 , 1-H), 3.80 (3H, s, C 0 2Me), 4.15 (1H, app. 

quart, J  6.4, 4-H), 4.65 (1H, app. s, 2-H), 7.20 (2H, d, J  8.3, 2 x Ar-H) and 7.60 (2H, d, J

8.3, 2 x Ar-H); 5c 14.7, 21.6, 52.9 (all Me), 55.1, 55.9, 59.5, 64.2 (all CH) 126.6, 129.6 

(both ArCH), 139.3, 143.4 (both ArC) and 170.0 (C=0); m/z [APcI] 312 (M+ + H, 50%), 

249 (45) and 71 (100). [Found M + H: 312.0900. C14H,8N05S requires M, 312.0899].

(2RS,3SR,4SR,5SR) Methyl-3-acetoxy-4-iodo-5-methy 1-1 -tosy 1 -pyrrolidine-2-

carboxylate 324

'COzMe

321 324

The pyrrolidine 321 (131 mg, 0.30 mmol) was protected using acetic anhydride (0.03 ml, 

0.30 mmol) according to general procedure K, to yield the acetate 324 (124 mg, 88%) as a 

yellow solid: m.p. 94-95°C; Rf 0.51 (40% ethyl acetate/petroleum ether) Vmax/cm' 1 

[CH2C12] 2953 (br), 1748 (s), 1598 (m), 1496 (m), 1343 (m), 1159 (s) and 816 (m); 5H 1.30 

(3H, d, J  6.5, Me), 2.05 (3H, s, OAc), 2.30 (3H, s, Ar-Me), 3.70 (3H, s, CO2CH3), 3.75 

(1H, dd, J 7.2 and 5.4, 4-H), 4.00 (1H, app. quin, J 6.5, 5-H), 4.45 (1H, d, J3.5, 2-H), 5.40 

(1H, dd, J  5.4 and 3.5, 3-H), 7.25 (2H, d, J  8.3, 2 x Ar-H) and 7.75 (2H, d, J  8.3, 2 x Ar- 

H); 6c 18.7, 21.0, 22.0 (all Me), 27.2 (4-CM), 53.3 (OCH3), 65.0 (5-CH), 66.8 (2-CH),
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81.6 (3-CH), 127.9, 130.5 (both ArCH), 138.1, 144.3 (both ArC) 169.9 and 170.5 (both 

C=0); m/z [APcI] 482 (M* + H, 100%) and 422 (18).

Cyclisation of (2jtS,£)-methyl 3-hydroxy-5-phenyl-2-(tosylamino)pent-4-enoate 151

NHTs

151 296b 327b 307b

i) Method A

A 5.8:1 (<anti.syn) mixture of diastereoisomers of the alkene 151 (100 mg, 0.27 mmol) 

were cyclised with iodine (202 mg, 0.80 mmol) in dichloromethane for 3.5 h according to 

general procedure L to give three diastereoisomers in the ratio 9:2.5:1 (3,4-trans:3,4- 

cis.min). The residue was purified (30% ethyl acetate/petroleum ether) to give i) 2,5-trans 

pyrrolidine 296b (44 mg, 39%) and ii) 3,4-cis pyrrolidine 327b (8 mg, 40%). The minor 

isomer was not isolated. The 2,5-trans pyrrolidine 296b was characterised by: m.p. 140- 

147°C; Rf 0.50 (40% ethyl acetate/petroleum ether); Vmax /cm' 1 [CH2CI2] 3468 (br), 2950 

(m), 1747 (s), 1596 (s), 1495 (m), 1329 (s), 1153 (s) and 1049 (s); 6H2.25 (3H, s, Ar-Me),

3.80 (3H, s, C 0 2Me), 4.00 (1H, dd, J8 .0  and 5.7, 4-H), 4.55 (1H, d, J4 .0 , 2-H), 4.65 (1H, 

dd, J  5.7 and 4.0, 3-H), 5.10 (1H, d, J  8.0, 5-H) and 6.70-7.20 (9H, m, Ph and 2 x Ar-H); 

8c 21.9 (Ar-Me), 33.1 (CH-I), 53.5 (C02Me), 66.9, 73.1, 82.1 (all CH), 127.5, 128.6,

128.9, 129.3, 129.6 (all ArCH), 135.0, 138.5, 143.3 (all ArC) and 171.8 (C=0); m/z [ES] 

524 (M+ + Na, 90%) and 502 (100).

The 3,4-cis pyrrolidine 327b was characterised by: m.p. 153-154°C; Rf 0.33 (40% ethyl 

acetate/petroleum ether); Vmax/cnT1 [CH2CI2] 3469 (m), 1743 (m), 1337 (m), 1153 (m) and 

1044 (w); 5h 2.30 (3H, s, Ar-Me), 3.80 (3H, s, C 02Me), 4.25 (1H, app. t, J6 .3 , 2-H), 4.40 

(1H, app. t, J  6.1, 4-H), 4.85 (1H, app. d, J  6.7, 3-H), 5.15 (1H, d, J  6.7, 5-H) and 6.85-7.20 

(9H, m, Ph and 2 x Ar-H); 8c 21.9 (Ar-Me), 38.2 (CH-I), 53.3 (C 02Me), 65.4 (3-CH), 69.8 

(2-CH), 71.7 (5-CH), 127.8, 128.8, 128.8, 129.0, 129.4 (all ArCH), 135.9, 137.9, 143.6 (all 

ArC) and 170.3 (C=0); m/z [APcI] 502 (M* + H, 100%). [Found M+ + H: 502.0182. 

C19H20INSO5 requires M, 502.0185].
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ii) Method B

An 8:1.5 (anti.syn) mixture of diastereoisomers of the alkene 151 (156 mg, 0.42 mmol) 

was cyclised using iodine (316 mg, 1.28 mmol) in anhydrous acetonitrile according to 

general procedure L for 21 h to give an inseparable 5:1.4:1 mixture of i) the epoxide 307b

ii) 2,5-trans pyrrolidine 296b and iii) 3,4-cis pyrrolidine 327b (155 mg). The data 

corresponding to the epoxide 307b is reported later, and the data obtained for the 

pyrrolidines 296b and 327b is in accordance with that previously reported.

iii) Method C

A 2.3:1 (anti. syn) mixture of diastereoisomers of the alkene 151 (100 mg, 0.27 mmol) was 

cyclised using iodine monobromide (165 mg, 0.80 mmol) and anhydrous acetonitrile as 

described in general procedure I for 2.5 h. The residue was purified using chromatography 

(30% ethyl acetate/petroleum ether) to give i) the 2,5-trans pyrrolidine 296b (77 mg, 83%) 

and ii) the 3,4-cis pyrrolidine 327b (30 mg, 75%). The data obtained is in agreement with 

that previously reported.

iv) Method D

A 2.3:1 (anti: syn) mixture of diastereoisomers of the amino alcohol 151 (100 mg, 0.27 

mmol) was cyclised using iodine monobromide (165 mg, 0.80 mmol) and anhydrous 

dichloromethane as described in general procedure I for 2.5 h to give the iodopyrrolidines 

as a mixture of diastereoisomers in the ratio 4:1.8:1 (2,5-trans: 3,4-cis:min). The residue 

was purified using chromatography (30% ethyl acetate/petroleum ether) to give i) the 2,5- 

trans pyrrolidine 296b (60 mg, 67%) ii) the 3,4-cis pyrrolidine 327b (31 mg, 78%). The 

data obtained is in agreement with that previously reported for the 2,5-trans 296b and 3,4- 

cis 327b pyrrolidines, no data was obtained for the minor isomer.
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(1SR,2RS,4SR,5RS)-M ethy\ 4-Phenyl-3-tosyl-6-oxa-3-aza-bicyclo [3.1.0] hexane-2-

carboxylate 307b

CX̂Me
Ts Ts
296b 307b

Following general procedure J, the 2,5-trans pyrrolidine 296b (50 mg, 0.10 mmol) was 

reacted with 50% w/w of silver carbonate on celite (330 mg, 0.59 mmol) to give the 

epoxide 307b, (41 mg, 100%) as a brown solid: m.p. 140-144°C; Rf 0.37 (40% ethyl 

acetate/petroleum ether); Vmax/cm'1 [CH2CI2] 3057 (m), 2964 (s), 2368 (m), 1747 (m), 1599 

(m), 1495 (m), 1344 (m), 1264 (s) and 1159 (s); 8h 2.25 (3H, s, Ar-Me), 3.70-3.80 (2H, m,

3-H and 4-H), 3.85 (3H, s, C 02Me), 4.80 (1H, app. s, (5)1-H), 5.00 (1H, app. s, (1)5-H), 

6.90 (2H, d, J 8.1, 2 x Ar-H) and 6.9-7.2 (7H, m, Ph and 2 x Ar-H); 6c21.4 (Ar-Me), 53.0 

(C 02Me), 55.2, 59.8, 62.8, 64.3 (all CH), 126.8, 127.8, 128.5, 128.8, 129.8 (all ArCH),

133.2, 138.4, 142.8 (all ArC) and 170.4 (C=0); m/z [APcI] 374 (M* + H, 100%). [Found 

M* +H: 374.1061. C19H20NO5S requires M, 374.1062].

(2RS,5RS)-M ethyl 3-oxo-5-phenyl-l-tosylpyrrolidine-2-carboxylate 328a and (5RS)- 

methyl 4,5-dihydro-3-hydroxy-5-phenyl-l-tosyl-l//-pyrrole-2-carboxylate 328b

\, vOH O OH

XS- — jX> * jtL'COzMe P h * ^ N/  'CC^Me P h * ^ N^ C 0 2Me
Ts Ts Ts
327b 328a 328b

A 10:1 mixture of iodo-pyrrolidines 327b (38 mg, 0.075 mmol) was reacted with 50% w/w 

Ag2C0 3 on celite (250 mg, 0.45 mmol) as described in general procedure J to yield a 1:1 

mixture of keto and enol tautomers 328 (28 mg, 72%), as a brown oil: 8h 2.20-2.30 (3H, m, 

Ar-Me, both isomers), 2.55 (1H, dd, J  18.5 and 3.6, CH„CHh. isomer A), 2.65 (1H, dd, J

18.8 and 7.5, CHaCHb, isomer B), 3.05 (1H, dd, J  18.8 and 8.8, CHaCHb, isomer B), 3.30 

(1H, dd, J  18.8 and 8.8, CHaCHb, isomer A), 3.70-3.90 (3H, m, CC^Me, both isomers), 

4.50 (1H, s, 2-H, keto tautomer), 5.00-5.05 (1H, m, 5-H isomer B), 5.40 (1H, dd, J  9.3 and
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3.6, 5-H isomer A) and 6.85-7.40 (9H, m, Ph and 4 x Ar-H, both isomers); 6c 21.5, 21.6 

(both Ar-Me), 46.9, 47.1 (both CH2), 53.4, 53.6 (C02Me), 59.7, 60.2, 67.2, 67.3 (all CH),

127.1, 127.3, 127.9, 128.0, 128.1, 128.3, 128.7, 128.7, 129.0, 129.1 (all ArCH), 136.0, 

138.7 and 143.4 (all ArC). Limited characterisation was obtained due to decomposition of 

the product.

(2RS,3SR,4SR,5SR) and (2RSJRS,4SR,5SR)-M ethyl 3-hydroxy-4-iodo-5-methyl-l- 

tosyl-pyrrolidine-2-carboxylate 321 and 329

COzMe
NHTs

150 321 329

A 1:1.2 mixture diastereoisomers (antiisyn) of the amino alcohol 150 (86 mg, 0.27 mmol) 

was treated with iodine (209 mg, 0.82 mmol) in anhydrous acetonitrile (1 ml) for 2.25 h, 

according to general procedure L, after which time the reaction was judged to be 

approximately 50% complete. The residue was treated with the same quantities of reagents 

for a further 4.25 h. The residue was purified by chromatography (30% ethyl 

acetate/petroleum ether) to give i) the 3,4-cis pyrrolidine 329 (27 mg, 50%) and ii) the 2,5- 

trans pyrrolidine 321 (30 mg, 46%), both as pale yellow oils. The data obtained for the 2,5 

trans pyrrolidine 321 was identical to that previously reported. The 3,4 cis pyrrolidine 329 

was characterised by: Rf 0.51 (40% ethyl acetate/ petroleum ether); Vmax/Cm * [CH2C12] 

3500 (br), 2952 (s), 1745 (s), 1598 (m), 1437 (m), 1335 (s), 1158 (s) and 816 (m); SH (500 

MHz) 1.30 (3H, d, J  6.2, 5-Me), 2.35 (3H, s, Ar-Me), 2.50 (1H, d, J  5.2, OH, exchanges 

with D2O), 3.75 (3H, s, C 0 2Me), 3.85-3.90 (2H, m, 4-H and 5-H), 4.25-4.30 (1H, m, 3-H),

4.80 (1H, d, J  6.2, 2-H), 7.25 (2H, d J  8.2, 2 x Ar-H) and 7.70 (2H, d, J  8.2,2 x Ar-H); 5c

17.5 (5-Me), 22.0 (Ar-Me), 38.1 (4-CM), 53.0 (CO2CH3), 62.1, 64.6, 70.3 (all CH) 128.2,

130.1 (both ArCH), 138.3, 144.3 (both ArC) and 169.9 (C=0); m/z [APcI] 440 (M+ + H, 

100%), 296 (20), 287 (15), 243 (15) and 107 (12). [Found M* +H: 440.0020. C14H19INSO5 

requires M, 440.0028].
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(2/?5',J/f4y,^*S'/?,5S/f)-Methyl-3-acetoxy“4-iodo-5-methyl-l-tosylpyrrolidine-2-

carboxylate 334

P H

Me< ^ . ^ " C 0 2Me MeN
T s

329

. O H

* ^ N̂ "C02Me 
Ts

321

\, P A c  I  OAc

"COzMe M e * ^ N^  "C 02Me
Ts Ts

334 324

A 7:1 ratio o f 3,4-cis pyrrolidine 329 and 2,5-trans pyrrolidine 321 (20 mg, 0.046 mmol) 

were treated with acetic anhydride (1 drop) as described in general procedure K. The 

residue was purified using column chromatography (25% ethyl acetate/petroleum ether) to 

give the a 7:1 mixture o f acetates 334 and 324 (11 mg, 50%) as a pale yellow solid. An 

analytical sample o f 334 was prepared by recrystallisation from 10% ethyl 

acetate/petroleum ether: m.p. 135-137°C; Rf 0.58 (40% ethyl acetate/petroleum ether); 

Vmax/cm"1 [CH2CI2] 1757 (s), 1338 (m), 1220 (m), 1159 (s) and 1071 (s); 8H 1.35 (3H, d, J

6.1, Me), 2.05 (3H, s, C 0 2Me), 2.35 (3H, s, Ar-Me), 3.70 (3H, s, C 0 2Me), 3.85-3.95 (2H, 

m, 4-H and 5-H), 4.90 (1H, d, J  6 .8, 2-H), 5.55 (1H, d, J  6.8 and 4.6, 3-H), 7.25 (2H, d, J

8.1, 2 x Ar-H) and 7.80 (2H, d, J  8.1, 2 x Ar-H); 8C 17.5, 21.3, 22.0 (All Me), 30.8 (4- 

C/fl), 52.9 (Me), 63.2, 63.9, 70.1 (all CH), 128.1, 130.1 (both ArCH), 138.3, 144.4 (both 

ArC), 168.7 and 169.4 (both C=0); m/z [APcI] 482 (M+ + H, 100%) and 287 (35). [Found 

M+ +H: 482.0132. Ci6H2iINS06 requires M, 482.0134].
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(2RS,3SR,4SR,5RS) and (2RS,3RS,4SR,5SR)-WLethyl 3-hydroxy-4-iodo-5-phenyl-l- 

tosylpyrrolidine-2-carboxylate 296a and 327b

OH O

Ph OH O

OMe

NHTs
OMe

NHTs
147b

Ph OH O

k A A OMe
NHTs

147a

OH O

"OMe
NHTs

148b

Ph

OH O

OMe
NHTs

148a

U PH
Pĥ C 0 2Me

Ts
327b

U / 0H

Ph'“ ^ N^ " ,C 02Me
Ts
296a

i) Lindlar Reduction

A 1:1 mixture o f diastereoisomers of the aldol adduct 146 (103 mg, 0.28 mmol) was stirred 

under an atmosphere o f hydrogen in the presence of Lindlar’s catalyst according to general 

procedure D, until complete reduction of the double bond had occurred as determined by 

lH NMR, to furnish a mixture of the cis alkenes 147 and the alkanes 148 as an orange oil. 

The (Z)-syn alkene 147b was characterised by: 8h 2.25 (3H, s, Ar-Me), 2.95 (1H, br. res., 

OH, exchanges with D20 ), 3.30 (3H, s, Ar-Me), 3.90 (1H, dd, J  9.9 and 2.9, 2-H), 4.70-

4.85 (2H, m, 3-H), 5.75 (1H, dd, J  11.7 and 9.3), 5.90 (1H, d, J9 .8 , NH), 6.50 (1H, d, J

11.7, 5-H), 7.05-7.25 (7H, m, Ph and 2 x Ar-H) and 7.55-7.70 (2H, m, 2 x Ar-H).

ii) Cyclisation

The crude product (100 mg, 0.27 mmol) was reacted with iodine monobromide (165 mg, 

0.80 mmol) according to general procedure I. The residue was purified by 

chromatography (30% ethyl acetate/petroleum ether) to furnish the iodopyrrolidine (68 mg, 

51%) as an inseparable mixture of isomers. The two major isomers were i) the 2,5-cis 

pyrrolidine 296a (approx. 30 mg, 45%) and ii) the 2,5-trans pyrrolidine 327b (approx. 17 

mg, 25%). The data obtained for both was in accordance with that previously reported.
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5-Butyl-4-iodo-2-methyl-l-tosyl-pyrrolidin-3-ol 338

NHTs

337 338

The a 5:1 (antiisyn) mixture of diastereoisomers of the amino alcohol 337 (16 mg, 0.051 

mmol) was cyclised with iodine monobromide in dichloromethane according to general 

procedure I, for 2.5 h to furnish the iodopyrrolidine 338 (11 mg, 50%), largely as a single 

diastereoisomer, as a brown oil: Vmax/cm' 1 [CH2CI2] 3488 (br), 2926 (s), 2860 (s), 1598 

(m), 1495 (m), 1454 (s), 1379 (s), 1330 (s), 1161 (s) and 813 (s); 6H 0.75-0.85 (3H, m, 4’- 

Me), 1.15-1.30 (5H, m, 3’-CH2 and 2-Me), 1.45-1.55 (2H, m, 2’-CH2), 1.90-2.05 (2H, m, 

l ’-CH2), 2.30 (3H, s, Ar-Me), 3.65 (1H, br. res., 3-H), 3.95 (1H, app. quin, ./approx* 6 .8, 2- 

H), 4.20 (1H, dt, J 9.7 and 3.0, 5-H), 4.40 (1H, dd, J 5.1 and 2 .9 ,4-H), 7.20 (2H, d, J 8 .3 ,2 

x Ar-H) and 7.65 (2H, d, J  8.3, 2 x Ar-H); 8C 14.0, 14.7 (both Me), 21.6 (Ar-Me), 22.6,

27.9, 35.1 (all CH2), 36.4 (CH-I), 57.6, 69.7, 71.3 (all CH), 127.2, 129.5 (both ArCH), 

139.2 and 143.3 (both ArC); m/z [ES] 460 (M+ + Na, 55%), 455 (30), 438 (100). [Found 

M+ + H: 438.0600. C16H25INO3S requires M, 438.0594].

4-Iodo-2-methyl -5-phenyl-l-tosylpyrrolidin-3-ol 341

NHTs

340 341

i) Method A

A  2 . 9 : 1  (iantiisyn) mixture of diastereoisomers of the amino alcohol 340 ( 3 5  mg, 0 . 1 1  

mmol) was cyclised using iodine monobromide ( 6 5  mg, 0 . 3 2  mmol) in dichloromethane, 

according to general procedure I, for 1 . 5  h. The residue was chromatographed ( 2 0 %  ethyl 

acetate/petroleum ether) to furnish the iodopyrrolidine 341a (10 mg, 21%), largely as a 

single diastereoisomer ( 7 . 5 : 1 ,  A : B )  as a pale orange oil: R f  0 . 3 4  ( 4 0 %  ethyl 

acetate/petroleum ether). The major isomer was characterised by: Vmax/cm' 1 [CH2CI2] 3 3 3 4  

(br), 2 9 2 2  (s), 1 6 0 0  (m), 1 4 6 3  (s), 1 2 6 4  (s), 1 1 5 9  (s), 9 6 4  (s), 8 4 9  (s) and 8 1 5  (s); 8H 1 . 4 5
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(3H, d, J  6.9, 2-Me), 2.05 (1H, d, J 8 .1, OH), 2.30 (3H, s, Ar-Me), 3.70-3.80 (1H, m, 3-H),

4.25 (1H, app. quin, J  6.7, 2-H), 4.35 (1H, app. t, J  4.5, 4-H), 5.25 (1H, d, J  4.2, 5-H), 

7.05-7.25 (7H, m, Ph and 2 x Ar-H) and 7.45 (2H, d, J  8.3, 2 x Ar-H); 8C 15.1 (Me), 21.6 

(Ar-Me), 39.6 (CH-I), 59.2, 71.3, 72.7 (all CH), 126.4, 127.2, 128.4, 128.7, 129.3 (all 

ArCH), 138.8, 140.2 and 143.1 (all ArC); m/z [APcI] 458 (M+ +H, 100%), 440 (12), 330 

(25). [Found M* + NH4: 475.0543. C18H24IN2O3S requires M, 475.0547].

ii) Method B

A 1.6:1 (syn: anti) mixture of diastereoisomers of the amino alcohol 340 (283 mg, 0.85 

mmol) was cyclised using iodine (650 mg, 2.56 mmol) in dichloromethane, according to 

general procedure L, for 5 h. A trace of starting material was evident in the NMR of the 

crude product and hence the crude product was treated with the same quantities of reagents 

for a further 5 h. The residue was chromatographed (20% ethyl acetate/petroleum ether) to 

furnish the iodopyrrolidine 341 (272 mg, 70%) as a 4.6:1.0:6.7 (A:B:C) mixture of 

diastereoisomers. The data obtained for isomer A 341a was in accordance with that 

previously reported. 5h (isomers B and C) 1.45 (3H, d, J  6 .8, 2-Me, isomer B), 1.55 (3H, 

d, J  6 .6 , 2-Me, isomer C), 2.25 (3H, s, Ar-Me, isomer C), 2.32 (3H, s, Ar-Me, isomer B),

2.35 (1H, d, J8 .7 , OH, isomer B), 3.00 (1H, br. res, OH, isomer C), 3.50 (1H, br. res., 3-H, 

isomer B), 3.80-3.90 (2H, m, 3-H and 4-H, isomer C), 3.95 (1H, qd, J  6.1 and 2.7, 2-Me, 

isomer B), 4.15 (1H, dd, J  7.8 and 3.5, 4-H, isomer B), 4.70 (1H, d, J  7.8, 5-H, isomer B),

5.00 (1H, d, J  6.7, 5-H, isomer C) and 6.95-7.25 (18H, m, 2 x Ph, 8 x Ar-H).

(2S,iJ?^5,55)-te/t-butyl-3-hydroxy-2-(hydroxymetliyl)-4-iodo-5-phenyl-pyrrolidme-l-

carboxylate 330

NHBoc

207 330

The alkene 207 ( 1 5 0  mg, 0 . 5 1  mmol) was cyclised using iodine ( 3 8 9  mg, 1 . 5 3  mmol) 

according to general procedure L for 3  h. The residue was purified using column 

chromatography ( 3 0 %  ethyl acetate/petroleum ether) to give the iodo-pyyrolidine 330 ( 1 8 0  

mg, 8 4 % )  as a yellow oil which showed: [ a ] o  + 2 . 3 5  ( C H C I 3 ,  c 0 . 3 4 ) ;  R f  0 . 2 7  ( 4 0 %  ethyl 

acetate/petroleum ether); vmax/cm_1 [ C H 2C I 2 ]  3 4 4 4  (br), 2 9 7 7  (m), 1 7 6 1  (s), 1 6 9 3  (s), 1 4 5 6
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(m), 1392 (s) and 772 (m); 8H 0.95 (9H, s, t-Bu), 3.95-4.15 (3H, m, CH2 and 4-H), 4.15-

4.20 (2H, m, 2-H and 3-H), 4.90 (1H, d, J8 .5 , 5-H), 7.10-7.30 (5H, m, 5 x Ar-H); 8c 27.8 

(t-Bu), 38.5 (4-CHI), 63.1 (CH2), 65.0, 70.4, 73.7 (all CH), 81.0 (C-(CH3)3), 126.1, 127.8,

128.6 (all ArCH), 141.5 (ArC) and 154.9 (C=0); m/z [APcI] 420 (M* + H, 28%), 364 

(100) and 346 (32). [Found M* + H: 420.0674. C16H23INO4 requires M, 420.0666].

(25,5i^-tert-butyl-2-(hydroxymethyl)-3-oxo-5-phenyIpyrrolidine-l-carboxylate

347

330 347

The iodopyrrolidine 3 3 0  ( 3 2  mg, 0 . 0 7 6  mmol) was reacted with 5 0 %  w/w silver carbonate 

on celite (337mg, 0 . 6 2  mmol, 8 . 0  eq) according to general procedure J  to give the ketone 

3 4 7  ( 1 5  mg, 6 8 % )  as a pale oil: [a]o + 1 0 . 4 2  ( C H C 1 3 ,  c 0 . 4 7 ) ;  R f  0 . 5 1  ( 4 0 %  ethyl acetate/ 

petroleum ether), v j c m '1 [ C H 2C 1 2 ]  3 4 4 4  (br), 2 9 7 7  (m), 1 7 6 1  (s), 1 6 9 3  (s), 1 4 5 6  (m), 

1 3 9 2  (s) and 7 7 2  (m); 6 H  1 . 2 0  ( 9 H ,  s, /-Bu), 2 . 4 5  ( 1 H ,  d, 7  1 8 . 5 , 4 - C H a C H b ) ,  3 . 0 0  ( 1 H ,  dd, 

7  1 8 . 5  and 1 0 . 0 ,  4 - C H . C H h l .  3 . 6 0  ( 1 H ,  br. res., O H ,  exchanges with D 20 ) ,  3 . 7 5 - 3 . 9 0  ( 1 H ,  

m, 2 - C H a C H b O H ) ,  4 . 1 0 - 4 . 1 5  ( 1 H ,  m, 2 - C H a C H „ O H ) ,  4 . 2 0  ( 1 H ,  br. res., 2 - H ) ,  5 . 1 5  ( 1 H ,  d, 

7  9 . 5 ,  5 - H ) ,  7 . 0 5  ( 2 H ,  d, 7  8 . 2 ,  2 x Ar-H) and 7 . 1 5 - 7 . 3 0  ( 3 H ,  m, 3 x Ar-H); 5h ( D 2 O  shake) 

1 . 1 5  ( 9 H ,  s, /-Bu), 2 . 4 5  ( 1 H ,  d, 7  1 8 . 5 ,  4 - C H a C H b ) ,  3 . 0 0  ( 1 H ,  dd, 7  1 8 . 5  and 1 0 . 0 ,  4 -  

C H a C H h ) ,  3 . 7 5 - 3 . 9 0  ( 1 H ,  m, 2 - C H a C H „ O H , ) ,  4 . 1 0  ( 1 H ,  dd, J 1 1 . 4  and 2 . 1 ,  2 - C H a C H b O H ) ,

4 . 2 0  ( 1 H ,  br. res., 2 - H ) ,  5 . 1 5  ( 1 H ,  br. d , 7 9 . 0 ,  5 - H ) ,  7 . 0 5  ( 2 H ,  d, 7 7 . 4 ,  2 x Ar-H) and 7 . 1 5 -  

7 . 3 0  ( 3 H ,  m, 3 x Ar-H); 5H ( 5 0 ° C )  1 . 2 5  ( 9 H ,  s, /-Bu), 2 . 5 0  ( 1 H ,  d, 7 1 8 . 5 , 4 - C H a C H b ) ,  3 . 0 5  

( 1 H ,  dd, 7 1 8 . 5  and 1 0 . 0 ,  4 - C H a C H b ) ,  3 . 8 5 - 3 . 9 5  ( 1 H ,  m, 2 - C H a C H b O H ) ,  4 . 2 0  ( 2 H ,  br. res.,

2 - C H „ C H b O H  and 2 - H ) ,  5 . 1 5  ( 1 H ,  br. d, 7  9 . 0 ,  5 - H ) ,  7 . 0 5  ( 2 H ,  d, 7  7 . 4 ,  2 x Ar-H) and

7 . 1 5 - 7 . 3 0  ( 3 H ,  m, 3 x Ar-H); 5c 2 8 . 0  (/-Bu), 4 6 . 2  ( 4 - C H 2 ) ,  6 0 . 8  ( C H ) ,  5 8 . 3  ( C H ) ,  6 3 . 8  

(CH2), 6 6 . 6  (CH), 8 1 . 4  (C-(CH3)3), 1 2 5 . 3 ,  1 2 7 . 6 ,  1 2 8 . 9  (all ArCH), 1 4 3 . 6  (ArC), 1 5 5 . 4  ( N -  

C = 0 )  and 2 1 0 . 5  ( 3 - C = 0 ) ;  m/z [APcI] 2 9 2  (M+ + H ,  2 2 % ) ,  2 3 6  ( 1 0 0 )  and 2 1 8  ( 3 9 ) .  [Found 

Nf^+H: 2 9 2 . 1 5 3 9 .  C i 6H 22N 0 4  requires M, 2 9 2 . 1 5 4 3 ] .
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(2S,3R,4S,5R)-tert-buty\ -3-acetoxy-2-(acetoxymethyl)-4-iodo-5-phenyl-pyrrolidine-l

carboxylate 349

330 349

The iodo-pyrrolidine 330 (24 mg, 0.06 mmol) was reacted with acetic anhydride (0.01ml, 

0.12 mmol, 2.0 eq) for 20 h according to general procedure K. The residue was purified by 

flash chromatography (20% ethyl acetate/petroleum ether) to give the diacetate 349 (20 

mg, 71%): [< x ]d  +3.82 (CHCI3, c 1.0); Rf 0.53 (40% ethyl acetate/petroleum ether); 

Vmax/crn1 [CH2CI2] 2978 (s), 2930 (s), 1748 (s), 1695 (s), 1455 (s), 1368 (s), 767 (m) and 

737 (m); 6H 0.95 (9H, s, t-Bu), 1.95 (3H, s, OAc), 2.10 (3H, s, OAc), 4.25 (1H, br. res., 4- 

H), 4.40 (1H, br. res., CHaCHb), 4.55 (1H, br. res., 2-H), 4.80 (1H, br. res., CHaCHb), 4.95 

(1H, br. res., 5-H), 5.35 (1H, br. res., 3-H), 7.05 (2H, d, J6 .9 , 2 x Ar-H) and 7.20-7.30 

(3H, m, 3 x Ar-H); 6C 20.9, 21.0 (both Me), 27.7 (f-Bu), 31.2 (4-CHI), 58.4 (2-CH), 61.7 

(CH2), 71.3 (3-CH and 5-CH), 80.7 (C-(CH3)3), 125.8, 128.0, 128.8 (all ArCH), 141.3 

(ArC), 153.2 (N-C=0), 169.4 and 170.5 (both 0-C=0); m/z [APcI] 504 (M+ + H, 45%), 

448 (97) and 91 (100). [Found M+ + H: 504.0875. C20H27INO6 requires M, 504.0878].

Hydrogenolysis o f (2RS,3SR,4SR,5-Sif)-Methy13-hydroxy-4-iodo-5-methyl-l- 

(tosylamino)-pyrrolidine-2-carboxylate 321

'COzMe "C 02Me

321 351 323

The 2,5-trans iodopyrrolidine 321 (39 mg, 0.089 mmol) was subjected hydrogenolysis as 

described in general procedure M for 16 h. The residue was chromatographed (20% ethyl 

acetate/petroleum ether) to give i) hydroxy pyrrolidine 351 (10 mg, 36%) and ii) the 

epoxide 323 (16 mg, 57%), both as yellow oils. The hydroxy pyrrolidine 351 was 

characterised by: Rf 0.11 (40% ethyl acetate/petroleum ether); vmJ c m x [CH2C12] 3500
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(br), 2953 (s), 1743 (s), 1598 (m) and 1495 (m); 8H 1.25 (3H, d ,J6 .5 , 5-Me), 1.65 (1H, d9J

13.7, CHaCHb), 2.25 (1H, br. res., OH), 2.35 (3H, s, Ar-Me), 2.40 (1H, ddd, J  13.7,9.1 and

5.0, CHaCHb), 3.65 (3H, s, C 0 2Me), 4.10-4.20 (1H, m, 5-H), 4.30 (1H, br. res., 3-H), 4.40 

(1H, app. s, 2-H), 7.20 (2H, d, J  8.3, 2 Ar-H) and 7.70 (2H, d, J  8.3, 2 Ar-H); 6c 21.6, 22.3 

(both Me), 40.8 (CH2), 52.6 (C 02Me), 56.1, 71.2, 74.6 (all CH), 127.2, 129.5 (both ArCH) 

and 171.1 (C=0); m/z [APcI] 314 (M* + H, 88%), 254 (100), 158 (48) and 156 (68). 

[Found M+ + H: 314.1059. CmH2oNS05  requires M, 314.1057]. The data obtained for the 

epoxide 323 was in agreement with that previously reported.

(2RS,3SR,5RS)-M ethy\ 3-hydroxy-5-phenyl-l-tosylpyrrolidine-2-carboxylate 352

I, PH PH

'  J / S :P h * ^ N^  ''C 0 2Me 'C 0 2Me
Ts Ts

327b 352

The iodopyrrolidine 327b (26 mg, 0.052 mmol) was subjected to hydrogenolysis according 

to general procedure M for 64 h. Following chromatography (60% ethyl acetate/petroleum 

ether) the hydroxy pyrrolidine 352 (12 mg, 63%) was obtained, as a yellow oil: m.p. 148.5- 

151.3°C; Rf 0.47 (70% ethyl acetate /petroleum ether); vmax/cm-1 [CH2C12] 3499 (br), 1716 

(s), 1337 (s), 1263 (s), 1156 (s) and 808 (s); 6H 2.00-2.15 (2H, m, CHaCHb and OH), 2.30 

(3H, s, Ar-Me), 2.55-2.70 (1H, m, CHaCHb), 3.70 (3H, s, C 02Me), 4.60 (1H, d, J  7.7, 2- 

H), 4.75-4.90 (1H, m, 3-H), 5.20 (1H, d, J  8.8, 5-H) and 6.90-7.25 (9H, m, 9 x Ar-H); 6C

21.5 (Ar-Me), 41.2 (CH2), 52.5 (C 02Me), 62.1, 64.9, 70.2 (all CH), 126.7, 127.1, 127.4, 

128.4, 129.0 (all ArCH), 137.2, 141.5, 143.1 (all ArC) and 170.8 (C=0); m/z [APcI] 376 

(M* + H, 100%) and 358 (35). [Found M+ + H: 376.1210. Ci9H22NSOs requires M, 

376.1213].
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(2S,3S,5R)-tert- Butyl 3-hydroxy-2-(hydroxymethyl)-5-phenyl-pyrrolidine-l-

carboxylate 353

h o  .

Boc
330

HC>N̂ 3 ' ' 'P hN
Boc
353

The iodopyrrolidine 330 (69 mg, mmol) in methanol (0.5 ml) was exposed to standard 

hydrogenolysis conditions (General procedure M) for 46 h. The residue was 

chromatographed (40% ethyl acetate/petroleum ether) to give the hydroxy pyrrolidine 353 

(23 mg, 48%): m.p. 104-105°C; R f  0.28 (60% ethyl acetate/petroleum ether), Vmax/cm'1 

[ C H 2 C 1 2 ]  3399 (s), 2976 (s), 1667 (s), 1454 (s), 1402 (s), 1264 (s), 1149 (s) and 737 (s); 8H

1.05 (9H, s, /-Bu), 1.85-2.00 (1H, m, C H a C H b ) ,  2.20-2.35 (1H, m, C H a C H b ) ,  2.90 (1H, br. 

res., O H ,  exchanges with D 2 O ) ,  3.75 (1H, br. res., O H ,  exchanges with D 2O ) ,  3.90 (1H, br. 

res., C H a C H b O H ) ,  4.05 (2H, br. res., C H a C H b O H  and 2-H), 4.50 (1H, br. res., 3-H), 4.85 

(1H, dd, J  8.1 and 4.9, 5-H), 7.00 (2H, d, J  8.1, 2 x Ar-H) and 7.10-7.25 (3H, m, 3 x 

ArCH); 6c 27.9 (/-Bu), 42.6 ( C H 2 ) ,  60.8 ( C H ) ,  62.0 ( C H 2 O H ) ,  63.2, 71.1 (both C H ) ,  80.3 

(C-(CH3)3), 125.2, 126.8, 128.4 (all ArCH), 145.0 (ArC) and 155.4 ( C = 0 ) ;  m/z [APcI] 294 

(M* + H, 48) and 238 (100%). [Found \ T  +H: 294.1701. C i 6 H 2 3 N 0 4  requires M, 

294.1700].

(2RS,3SR,4SR,5SR)-M ethy\ 4-chloro-3-hydroxy-5-methyl-l-tosyIpyrrolidine-2-

carboxylate 358b

O  Cl, OH

* ^ N ^ ' ' C 0 2M e - ^ N/ ' /C 0 2Me
Ts Ts

323 358b

To a stirred solution o f the epoxide 323 (130 mg, 0.47 mmol, 2.88 eq) in anhydrous 1,2- 

dichloroethane (1.2 ml) was added trimethylsilyl azide (58 mg, 0.07 ml, 0.50 mmol, 2.86 

eq) followed by a 1M solution of zinc chloride in diethyl ether (0.18 ml, 0.18 mmol, 1.0 

eq). The reaction mixture was then refluxed for 21.5 h. The solution was poured onto
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saturated brine (2 ml), the resultant two layers were separated and the aqueous phase was 

extracted with dichloromethane ( 3 x 2  ml). The combined organic phases were washed 

with water (5 ml) and saturated brine (5 ml). The organic phases were dried and 

evaporated and then the residue was dissolved in methanol (1 ml) and to this solution was 

added 6 M hydrochloric acid (1 drop). The solution was stirred for 10 mins at ambient 

temperature, and then the solvent was evaporated. The residue was chromatographed 

(20% ethyl acetate/petroleum ether) to yield the epichlorohydrin 358b (28 mg, 19%), as a 

brown oil: Rf 0.44 (50% ethyl acetate/petroleum ether); Vmax/cm' 1 [CH2CI2] 3480 (br), 2954 

(s), 1749 (s), 1598 (s), 1496 (s), 1437 (s), 1339 (s), 863 (s), 816 (s) and 740 (s); SH 1.30 

(3H, d, J  6 .6 , 5-Me), 2.35 (3H, s, Ar-Me), 3.25 (1H, br. res, OH), 3.60-3.65 (1H, m, 4-H),

3.70 (3H, s, C 0 2Me), 3.80 (1H, app. q, J 6 .6 , 5-H), 4.35 (1H, br. res., 3-H), 4.40 (1H, d, J

4.0, 2-H), 7.20 (2H, d, J  8.2, 2 x Ar-H) and 7.70 (2H, d, J8 .2 , 2 x Ar-H); 5c 17.7 (5-Me), 

21.6 (Ar-Me), 52.9 (C 02Me), 62.8, 66.6 (both CH), 67.9 (2-CH), 79.9 (3-CH), 127.4,

129.7 (both ArCH), 138.3, 143.8 (both ArC) and 171.2 (C=0); m/z [APcI] 370 (M* + Na, 

100%) and 348 (73). [Found M + NH4: 365.0925 (±5 ppm). C14CIH22N2O5S requires M, 

365.0938].

{2RS, 5<S/?)-Methy 13,4-dihydroxy-5-methyl-l-tosylpyrrolidine-2-carboxylate 366

O HQ. OH

-  ' Q  " C 0 2M e
Ts Ts
323 366

The epoxide 323 (96 mg, 0.31 mmol) was dissolved in a mixture of dioxane (0.98 ml), 

water (0.66 ml) and concentrated sulphuric acid (0.07 ml). The reaction mixture was 

heated at 95°C for 6 h. The oil bath was removed and the reaction vessel was allowed to 

reach room temperature. A 10% aqueous solution of sodium hydroxide (0.8 ml) was 

added, followed by toluene (1 ml) and the solvent was evaporated. The residue was 

purified by chromatography (50% ethyl acetate/petroleum ether) to furnish the pyrrolidine 

366 (16 mg, 16%) as a mixture o f diastereoisomers in the ratio 1.6 :1, with a trace of 

starting material, as a yellow oil: Rf 0.31 (70% ethyl acetate/petroleum ether); vmax/cmA 

[CH2CI2] 3477 (br), 2931 (s), 1732 (s), 1598 (s), 1496 (m), 1454 (s), 1329 (s), 1153 (s) and
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815 (s); 8h 1.05 (3H, d, J  6 .6 , 5-Me, minor isomer), 1.15-1.20 (3H, m, 5-Me, major 

isomer), 2.30-2.35 (6H, m, 2 x Ar-Me, both isomers), 3.70 (6H, s, 2 x CC^Me, both 

isomers), 3.75 (1H, app. s, CH, major isomer), 3.80-3.90 (3H, m, 2 x 5-H and CH minor 

isomer), 4.20 (1H, app. s, CH, major isomer), 4.35-4.40 (2H, m, CH, both isomers), 4.45 

(1H, app. s, CH, minor isomer), 7.15-7.25 (4H, m, 4 x Ar-H, both isomers) and 7.65 (4H, 

d, J  8.3, 4 x Ar-H, both isomers); 5c 17.6 (5-Me, minor isomer) 18.2 (5-Me, minor isomer),

21.6, 21.6 (Ar-Me, both isomers), 53.3 (CC^Me, both isomers), 637 (CH, minor isomer),

64.2, 68.7 (both CH, major isomer), 69.4, 79.1 (CH, minor isomer), 79.2 (CH, major 

isomer), 82.1 (CH, minor isomer), 82.6 (CH, major isomer), 127.2 (ArCH, minor isomer),

127.3, 129.7 (both ArCH, major isomer), 129.8 (ArCH, minor isomer), 137.9 (ArC, major 

isomer), 138.4 (ArC, minor isomer), 143.7 (ArC, major isomer), 143.8 (ArC, minor 

isomer) and 173.2 (C=0, both isomers); m/z [APcI] 352 (M* + Na, 100%), 330 (10), 270 

(85) and 155 (48). [Found Mr + NFL*: 347.1271. C14H23IN2O6S requires M, 347.1271].

(-^ls,2&S,.?ifiS)-3-hydroxy-2-(tosylamino)hex-4-enoic acid 367

.COzMe

NHTs
150a

c o 2h

NHTs
367

The amino alcohol 150a (1.00 g, 3.19 mmol) was treated with potassium hydroxide (7.18 

g, 128.0 mmol) according to general procedure N to give the carboxylic acid 367 (770 mg, 

81%) as a white solid: m.p. 150-152°C; W c m ' 1 [KBr] 3321 (br), 2962 (s), 1728 (s), 1597 

(s), 1496 (s), 1456 (s), 1345 (s), 1168 (s), 1046 (s), 974 (s), 845 (s) and 812 (s); 8H(MeOD)

1.55 (3H, d, 76 .4 , 6-Me), 2.35 (3H, s, Ar-Me), 3.70 (1H, d, 7 6 .3 ,2-H), 4.05 (1H, app. t ,7

6.3, 3-H), 5.25 (1H, dd, 7  15.2 and 7.2, 4-H), 5.60 (1H, qd, 715.2 and 6.4, 5-H), 7.30 (2H, 

d, 7  8.1, 2 x Ar-H) and 7.60 (2H, d, 7  8.1, 2 x Ar-H); 8c (MeOD) 18.8 (6-Me), 22.2 (Ar- 

Me), 62.4, 73.0 (both CH), 127.8 (ArCH), 128.3 (=CH), 130.5 (ArCH), 132.3 (=CH),

139.7, 143.6 (both ArC) and 172.6 (C=0); m/z [Cl] 317 (M' + NH4, 100%) and 299 (15). 

[Found M* +N H 4: 317.1164. C 13H21N2O5S requires M, 317.1166].
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(.3RS,4SR,5RS), ( / ,tS/f)-dihydro-4-hydroxy-5-(l-iodoethyI)-3-(tosylamino)furan-2(3/0"
one 326a

c o 2h

NHTs

HO NHTs HQ. „ NHTs

367 326

i) Method A

The carboxylic acid 367 (80 mg, 0.27 mmol) in anhydrous acetonitrile (20 ml) was 

cyclised using iodine monobromide (166 mg, 0.80 mmol) for 2 h, according to general 

procedure I to give the lactone 326 (80 mg, 70%) as a 6.4:1.0:2.4 mixture of 

diastereoisomers. The crude mixture was recrystallised from hot chloroform to give the 

lactone 326a (35 mg, 31%) as a white solid: m.p. 182.4-184.4°C; Rf 0.49 (40% ethyl 

acetate/petroleum ether); Vmax/cm1 [KBr] 3556 (br), 3229 (s), 2950 (m), 2924 (m), 1811 

(s), 1654 (w), 1596 (m), 1494 (m), 1448 (m), 1406 (m), 1379 (m), 1358 (m), 1323 (s), 

1189 (s), 1157 (s), 1055 (m) and 819 (s); 6H(MeOD) 1.90 (3H, d , . / 6 .8, 2’-Me), 2.30 (3H, 

s, Ar-Me), 4.15 (1H, dq, J  10.8 and 6 .8, CHI), 4.30 (1H, dd, J4 .5  and 2.7, 4-H), 4.41 (1H, 

dd, J  10.8 and 2.7, 5-H), 4.45 (1H, d, J  4.5, 3-H), 7.25 (2H, d, J8 .3 , 2 x Ar-H) and 7.75 

(2H, d, J  8.3, 2 x Ar-H); 6c (MeOD) 19.0 (CHI), 20.1, 23.6 (both Me), 58.1, 70.5, 85.1 (all 

CH), 126.8, 129.2 (both ArCH), 138.3, 143.3 (both ArC) and 174.53 (C=0); m/z [APcI] 

426 (M* + H, 100%), 380 (30) and 107 (42). [Found M+ + NR*: 358.1180. C13H20N5O5S 

requires M, 358.1180]. [Found: C, 36.12; H, 3 .70 ,1, 29.5, N, 3.10. S, 7.26. Ci3H,6IN05S 

requires C, 36.72; H, 3.79; I, 29.84, N, 3.29, S, 7.54%].

ii) Method B

The carboxylic acid 367 (100 mg, 0.33 mmol) in distilled dichloromethane (10 ml) was 

treated with iodine (251 mg, 0.10 mmol) for 2.5 h according to general procedure L. 

Following the workup, the lactone 326a (87 mg, 61%) was isolated largely as a single 

diastereoisomer. The residue was recrystallised (hot chloroform) to furnish the lactone 

326a (65 mg, 46%). The data obtained was in accordance with that previously reported.

Hi) Method C

A solution of the carboxylic acid 367 (100 mg, 0.33 mmol) in acetonitrile (20 ml) was 

treated with iodine (251 mg, 0.10 mmol) for 2.5 h according to general procedure L, to 

furnish the lactone 326 (80 mg, 56%) as a mixture of diastereoisomers in the ratio
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5.4:2.4:1. The mixture was recrystallised (hot chloroform) to give the lactone 326a (29 

mg, 30%). The data obtained is in accordance with that previously reported. 

iv) Method D

The carboxylic acid 367 (100 mg, 0.33 mmol) in distilled dichloromethane (10 ml) was 

reacted with iodine monobromide (207 mg, 0.10 mmol) according to general procedure I, 

for 2.5 h, to give the lactone 326 as a mixture of diastereoisomers in the ratio 1.4:1.5:1.6. 

The residue was recrystallised (hot chloroform) to furnish the lactone 326a (50 mg, 35%).

(Z,21?*S)-3-hydroxy-5-phenyl-2-(tosylamino)pent-4-enoic acid 368

OH
pĥ ^ * \ ^ C°2Me 

NHTs 
151

To a 17:4 mixture of diastereoisomers of the ester 151 (802 mg, 2.14 mmol) was treated 

with potassium hydroxide (7.18 g, 0.13 mol) according to general procedure N to yield the 

carboxylic acid 368 (772 mg, 88%), as a mixture of diastereoisomers in the ratio 17:4, as a 

cream solid: m.p. 130-132°C; v ^ /c m ' 1 [CH2C12] 3252 (br), 1729 (s), 1332 (s), 1160 (s) 

and 814 (m); 8h (MeOD) 2.20 (3H, s, Ar-Me, minor), 2.25 (3H, s, Ar-Me, major), 3.75 

(1H, app. d, J6 .7 , 2-H, major) 3.85 (1H, app. d, J 3.0, 2:H, minor), 4.25 (1H, app. t, J 6.7, 

3-H, major) 4.50 (1H, br. res., 3-H, minor), 6.00 (1H, dd, J  15.9 and 7.0, 4-H, both), 6.50 

(1H, d, J  15.9, 5-H, both), 7.15-7.25 (8H, m, 7 x Ar-H and N H )  and 7.60 (2H, d, J  8.2, 2 x 

Ar-H); 8C (MeOD) 20.2 (Ar-Me), 61.2, 72.8 (both CH), 126.3, 126.8 (both ArCH), 127.5 

(=CH), 128.2, 129.2 (both ArCH), 131.5 (ArC), 132.4 (=CH), 136.6, 137.5 and 143.4 (all 

ArC), no C =0 evident; m/z [APcI] 344 (M* - H2O, 48%), 133 (40) and 107 (100%). 

[Found M+ + N H 4 : 379.1320. C 18H 23N 2O 5 S  requires M, 379.1322].

c o 2h

NHTs
368
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(£'Z,2/f»S',Jl£S)-3-Hydroxy-2-(tosylammo)non-4-enoic acid 370

Bu
HO C 0 2Me

NHTs

149

OOoMO
HO C 0 2H 

Bu ) — (  +
X= /  NHTs

370
NHTs

To a solution of a 7:1 mixture of the cw-amino alcohol 149 and alkyne 144a (118 mg, 0.33 

mmol) in methanol (5 ml) was added potassium hydroxide (529 mg, 9.42 mmol) and the 

solution was stirred for 16 h, according to general procedure N to furnish the carboxylic 

acid 370 (101 mg) as a brown oil: Vmax/cm1 [CH3OH] 3964 (br), 3917 (br), 2956 (s), 1729 

(s), 1598 (m), 1331 (s), 1161 (s), 814 (s) and 668 (s); 6h (MeOD) 0.80 (3H, app. s, 9-Me),

1.15-1.30 (4H, m, 2 x CH2), 1.85-2.05 (2H, m, CH2), 2.30 (3H, s, Ar-Me), 3.75 (1H, br. 

res., 2-H), 4.55 (1H, br. res., 3-H), 5.30 (1H, br. t, J9 .5 , 4-H), 5.35-5.50 (1H, m, 5-H), 7.20 

(2H, d, J  8.1, 2 x Ar-H) and 7.65 (2H, d, J  8.1, 2 x Ar-H); 6c (MeOD) 13.0 (9-Me), 20.2 

(Ar-Me), 22.0, 27.1, 31.5 (all CH2), 67.8 (CH, only one evident), 126.9, (ArCH), 127.6 

(=CH), 129.2 (ArCH), 133.8 (ArC), 137.8 (=CH) and 143.3 (ArC), no C=0 evident; m/z 

[APcI] 325 (M* - H20 , 100%) and 278 (25). [Found M+ + NH4: 359.1635. C,6H27N20 5S 

requires M, 359.1637].

(3RS,4SR,5RS), ( / ’&S)-dihydro-4-hydroxy-5-(l-iodopentyl)-3-(tosylamino)furan-

2(3H)-one 372

^  OH HQ. NHTs HO^ NHTs HO NHTs

NHTs I Bu Bu
370 372 372a 254

i) Method A

To an ice-cold solution of the carboxylic acid 370 (40 mg, 0.12 mmol) in distilled 

dichloromethane (2 ml) was added iodine (89 mg, 0.35 mmol) according to general 

procedure L, for 3 h to furnish the lactone 372a (55 mg, 100%): m.p. 129-128°C; vmax/cm_1 

[CH2C12] 3275 (br), 2958 (s), 2930 (s), 2872 (m), 1784 (s), 1599 (s), 1494 (m), 1331 (s), 

1162 (s) and 814 (s); 6H 0.80 (3H, X ,J1A , 5’-Me), 1.15-1.35 (2H, m, CH2), 1.60-1.70 (1H,
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m, CH,CH„), 1.80-1.90 (1H, m, CH,CHb), 2.35 (3H, s, Ar-Me), 3.20 (1H, d, J  2.2, OH, 

exchanges with D20 ), 4.10-4.15 (1H, ddd, J  9.4, 5.0, 2.9, CHI), 4.30 (1H, dd, J  6.1 and

2.2, 4-H), 4.37 (1H, d, J2 .6 , 3-H), 4.40 (1H, app. t, J6 .1  and 5.0, 5-H), 5.25 (1H, d, J  4.7, 

NH, exchanges with D20 ), 7.30 (2H, d, J  8.3, 2 x Ar-H) and 7.75 (2H, d, J  8.3,2 x Ar-H); 

8c 13.9 (5’-Me), 21.7 (Ar-Me), 31.6 (CH2), 34.3 (CHI), 36.9 (CH2), 55.5, 71.3, 88.7 (all 

CH), 127.6, 130.2 (both ArCH), 134.4, 144.9 (both ArC) and 172.1 (C=0) (only 2 CH2 

apparent); m/z [APcI] 468 (M+ + H, 100%), 155 (22), 107 (85) and 83 (71). [Found M+ + 

H: 468.0339. C |6H23IN 05S requires M, 468.0336],

ii) Method B

To an ice-cold solution of the carboxylic acid 370 (80 mg, 0.23 mmol) in anhydrous 

acetonitrile (3 ml) was added iodine monobromide (145 mg, 0.70 mmol) according to 

general procedure I, for 2 h to yield the lactone 372 (15 mg, 14%), as a vast mixture of 

diastereoisomers. Further investigation was not conducted.

Hi) Method C

A 7:2 mixture o f the carboxylic acid 370 and saturated product 371 (94 mg, 0.28 mmol) in 

dichloromethane (3 ml) was cooled to -10°C prior to the addition of iodine monobromide 

(171 mg, 0.83 mmol) according to general procedure I for 1.75 h, to give the lactone 372 

(85 mg, 85%), as a 6:1.5 mixture o f diastereoisomers, as a cream solid. The data obtained 

for the major isomer 254 was in accordance with that previously reported.

iv) Method D

To an ice-cold solution of a 7:2 mixture of the carboxylic acid 370 and saturated product 

371 (160 mg, 0.47 mmol) in acetonitrile (5 ml) was added iodine (290 mg, 1.41 mmol) 

according to general procedure L for 2.75 h, to give the lactone 372 (126 mg, 74%), as a 

4.5:1.5 mixture o f diastereoisomers, as a cream solid. The data obtained for the major 

isomer 372a was in accordance with that previously reported.
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(3/£S',4*S'/?,5/fcS),(i,S/?)-dihydro-4-hydroxyl-5-(iodo(phenyl)methyl)-3- 

(tosylamino)furan-2(3//)-one 375

NHTs

OH O

Ph

147a

NHTs 

148a

HO NHTs

NHTs Mi ri

I
ph

373 375

i) Saponification

To an ice-cold solution of a 3:1 mixture of the c/s-alkene 147a and alkane 148a (101 mg), 

in methanol (8 ml) was added solid potassium hydroxide (900 mg, 16 mmol) according to 

general procedure N to give predominatley the acid 373, as an orange oil (53 mg). The 

acid 373 was characterised by: 5h (MeOD) 2.25 (3H, s, ArMe), 3.85 (1H, d, J  5.5, 2-H), 

4.60 (1H, dd, J  9.7 and 5.5, 3-H), 5.65 (1H, dd, J 11.7 and 9.7, 4-H), 6.55 (1H, d, J 11.7, 5- 

H), 7.10-7.30 (7H, m, 7 x Ar-H) and 7.60 (2H, d, J8 .3 , 2 x Ar-H).

ii) Iodolactonisation-Method A

A solution o f the crude acid 373 (53 mg) at -10°C in anhydrous acetonitrile (5 ml) was 

cyclised using iodine monobromide (91 mg, 0.44 mmol) for 2 h according to general 

procedure I to yield the lactone 375 (11 mg, 20%, over 3 steps) as an orange oil: Rf 0.12 

(20% ethyl acetate/petroleum ether); Vmax/cm1 [CH2CI2] 3272 (s), 2962 (s), 1790 (s), 1598 

(s), 1494 (s), 1453 (s), 1334 (s), 1160 (s) and 814 (s); 5H2.40 (3H, s, Ar-Me), 3.10 (1H, br. 

res., OH), 3.30 (1H, app. t, J4 .3 , 4(3)-H), 4.35 (1H, app. d, J  5.6, CHOH), 4.80 (1H, d, J

5.4, 3(4)-H), 5.05 (1H, br. res, NH), 5.10 (1H, d, J 5 A , CH-I), 7.15-7.35 (7H, m, 7 x Ar-H) 

and 7.55 (2H, d, J  8.3, 2 x Ar-H); Sc 21.7 (Ar-Me), 28.5 (CH-I), 55.3, 69.2, 89.4 (all CH),

127.4, 128.8, 129.2, 130.1 (all ArCH), 134.5, 137.1, 144.8 (all ArC) and 171.8 (C=0); m/z 

[APcI] 488 (M* + H, 100%). [Found M+ + H: 488.0019. Ci8Hi9IN 05S requires M, 

488.0023].

iii) Iodolactonisation-Method B

An ice-cold solution o f the crude acid 373 (89 mg) in anhydrous acetonitrile (5 ml) was 

treated with iodine (188 mg, 0.74 mmol) for 3 h according to general procedure L, to yield 

the lactone 375 (58 mg, 69%, over 3 steps), as an orange oil. The data obtained was in 

accordance with that previously reported.
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(3RS,4SR,5SR) (7,S/?)-(l-azidopentyl)-dihydro-4-hydroxy-3-(tosylammo)furaii-2(3î )-
one 398

HO NHTs 

Bu
254

To a solution o f the iodolactone 254 (102 mg, 0.22 mmol, 1.0 eq) in anhydrous 

dimethylformamide (1 ml) was added sodium azide (21 mg, 0.33 mmol 1.5 eq) and the 

solution was then heated to 60°C for 2 h. The oil bath was removed, the solution was 

allowed to cool and saturated aqueous sodium thiosulfate (2.5 ml) was added. Diethyl 

ether (2.5 ml) was added and the resultant two layers were separated. The aqueous phase 

was extracted with diethyl ether (3 x 2.5 ml) and the combined organic phases were 

washed with water ( 3 x 8  ml). The residue was purified (10% ethyl acetate/petroleum 

ether) to furnish the azide 398 (5 mg, 6%) as a pale green solid: m.p. 133-134°C; Rf 0.55 

(40% ethyl acetate/petroleum ether); Vmax/cm' 1 [CH2CI2] 3270 (s), 2925 (s), 2106 (s), 1789 

(s), 1598 (m), 1454 (s), 1336 (s), 1161 (s) and 814 (s); 5H0.90 (3H, d, J7 .1 , 5’Me), 1.10-

1.65 (6H, m, 3 x CH2), 2.40 (3H, s, Ar-Me), 3.70-3.80 (2H, m, l ’-H and 3-H), 4.25 (1H, 

dd, J  7.7 and 3.2, 4(5)-H), 4.55 (1H, app. t, J  7.7, 5(4)-H), 5.25 (1H, d, J  6.2, NH, 

exchanges with D2O), 7.30 (2H, d, J  8.2, 2 x Ar-H) and 7.75 (2H, d, J  8.3, 2 x Ar-H); 5c 

(Acetone) 13.3 (5’-Me), 20.5 (Ar-Me), 22.1, 28.6, 29.0 (all CH2), 60.5, 63.0, 72.5, 82.0 (all 

CH), 127.0, 129.3, (both ArCH), 139.3, 143.0 (both ArC) and 170.3 (C=0); m/z [APcI] 

355 (M* - N2, 32%), 113 (48) and 65 (100). [Found M+ + NH4: 400.1651. C i ^ ^ O s S  

requires M , 400.1649].

HO. NHTs
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( 5 / ^ , ^ / ? , 5-dihydro xy-6-methyl-3-(tosylammo)-piperidin-2-one 402

3 2 6 a  3 9 7  4 0 2

i) Azide displacement
To the iodo-lactone 326a (135 mg, 0.32 mmol, 1.0 eq) in anhydrous N,N- 
dimethylformamide (5 ml) was added sodium azide (41 mg, 0.63 mmol, 2.0 eq) and 15- 

crown-5 (1 drop). The mixture was heated to 60°C for 11.5 h. The reaction mixture was 

allowed to cool to ambient temperature, saturated aqueous sodium thiosulfate (2 ml) was 

added, the resulting two layers were separated, the aqueous phase was extracted with 

diethyl ether ( 4 x 2  ml) and the combined organic layers were washed with water (2 x 10 

ml) and saturated brine (10 ml). The organic layers were dried and evaporated. The 

residue was chromatographed (30% ethyl acetate/petroleum ether) to give i) the azide 397 
(13 mg, 12%) together with some inseparable tosyl impurity. The azide 397 was 

characterised by: Rf 0.18 (40% ethyl acetate/petroleum ether); Vmax/crn' 1 [CH2C12] 3266 

(br), 2926 (m), 2094 (s), 1789 (s), 1598 (m), 1454 (m), 1331 (s), 1160 (s) and 814 (m); 6H

1.25 (3H, d, J  6 .6 , 2 ’-Me), 2.35 (3H, s, Ar-Me), 3.05 (1H, br. res., OH), 3.85 (1H, d, J4A,
3-H), 3.95 (1H, dq, J 9.1 and 6 .6 , l ’-H), 4.10 (1H, dd, J 9.1 and 3.0, 5-H), 4.45 (1H, dd, J
4.1 and 3.0, 4-H), 5.35 (1H, br. res., NH), 7.25 (2H, d, J8 .2 , 2 x Ar-H) and 7.75 (2H, d, J
8.2, 2 x Ar-H); 6C 15.1 (2’-Me), 21.7 (Ar-Me), 56.8, 57.9, 69.0, 84.4 (all CH), 127.4, 130.2 

(both ArCH), 139.0, 144.9 (both ArC) and 171.5 (C=0); m/z [ES] 363 (M* + Na, 100%), 

358 (75), 341 (20). [Found M+ + NH4: 358.1180. C13H20N5O5S requires M, 358.1180].

i) Hydrogenation
To the azide 397 (13 mg, 0.038 mmol,) in methanol (0.5 ml) was added 10% palladium on 

carbon (5 mg) and the suspension was stirred under an atmosphere of hydrogen for 64 h. 

The suspension was filtered through a plug of celite, the solid was washed with ether (10 

ml) and the combined filtrates were evaporated. Chloroform was added and the precipitate 

was filtered off to give the piperidinone 402 (10 mg, 83%, over 3 steps) as a white solid: 

m.p. 166.3-170°C; W c m ' 1 [KBr] 3328 (br), 2935 (s), 1658 (s), 1438 (br), 1384 (s), 1324 

(s), 1165 (s) and 818 (s); 6H(MeOD) 1.00 (3H, d, J  6 .8, 6-Me), 2.30 (3H, s, Ar-Me), 3.60 

(1H, dd, J  4.4 and 3.1, 5-H), 3.66 (1H, q d ,./ 6.8  and 3.1, 6-H), 3.95 (1H, app. t , ./ 4.4 and

NHTs

274



Chapter 6: Experimental

3.2, 4-H), 3.99 (1H, d, 73.2 , 3-H), 7.25 (2H, d, 7 8 .3 ,2  x Ar-H) and 7.70 (2H, d ,7 8 .3 ,2 x 

Ar-H); 8H (Acetone) 1.05 (3H,d, 7  6.7, Me), 2.25 (3H, s, Ar-Me), 3.70-3.80 (2H, m, 6-H 

and 5(4)-H), 3.85 (1H, br. t, 7  3.1, 4(5)-H), 4.15 (1H, br. q, 73.5, 3-H), 4.55 (1H, d, 7  5.0, 

OH, exchanges with D2O), 4.65 (1H, d, 7  3.6, OH, exchanges with D2O), 5.80 (1H, br. res., 

NH, exchanges with D2O), 6.40 (1H, br. res., NH, exchanges with D2O), 7.25 (2H, J  8.3,2 

x Ar-H) and 7.65 (2H, 7  8.3,2 x Ar-H); 8H (Acetone, D2O shake) 1.00 (3H, d, 7  6 .8, 6-Me),

2.25 (3H, s, Ar-Me), 3.65-3.70 (1H, m, 6-H), 3.70 (1H, app. t, 74 .5  and 3.1, 5-H), 3.85 

(1H, d, J2 .9 , 3-H), 4.10 (1H, dd, 74.4 and 3.1,4-H), 7.25 (2H, d ,78 .1 ,2  x Ar-H) and 7.65 

(2H, d, 7  8.1, 2 x Ar-H); 8c (MeOD) 16.5, 21.5 (both Me), 49.4, 54.7, 70.7, 72.7 (all CH),

128.5, 130.6 (both ArCH), 138.8, 144.7 (both ArC) and 171.1 (C=0); m/z [ES] 337 (M* + 

Na, 100%) and 315 (40). [Found M+ + H: 315.0998. C^HisNzOsS requires M, 315.1009],

(27fcS',3/tS)-Methyl-23-dihydro-3-hydroxy-5-phenyl-l-tosyl-l//-pyrrole-2-carboxylate
421

NHTs

1 4 6 a  4 2 1

The alkyne 146a (200 mg, 0.54 mmol) was cyclised using 10% by weight AgNOj on Si02 

(456 mg, 0.27 mmol, 0.5 eq) for 1 h according to general procedure O to yield the 

dihydropyrrole 421 (185 mg, 93%), as a colourless solid: m.p. 97.5-98.6°C; Rf 0.18 (40% 

ethyl acetate/petroleum ether); Vmm/crn’1 [CH2CI2] 2955 (m), 1754 (s), 1638 (m), 1597 (m), 

1492 (s), 1447 (m), 1358 (s), 1167 (s), 1090 (s), 815 (m) and 761 (s); 8H 0.95 (1H, dd, J

9.3, OH, exchanges with D2O), 2.35 (3H, s, Ar-Me), 3.75 (3H, s, C02Me), 4.55 (1H, dd, J

9.3 and 3.1, 3-H), 4.65 (1H, app. s, 2-H), 5.40 (1H, d ,7 3 .1 ,4-H) and 7.15-7.50 (9H, m, Ph 

and 4 x Ar-H); 8c 21.7, 53.1 (both Me), 71.8, 74.2 (both CH), 115.0 (4-CH), 127.9, 128.2,

128.6, 129.6, 129.8 (all ArCH), 131.3, 131.9, 144.7, 149.2 (all C) and 169.6 (C=0); m/z 

[APcI] 356 (M+ - H20 ,  100%), 324 (20). [Found M+ + NIL,: 391.1323. C19H23N2SO5 

requires M, 391.1322].
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(/-Si?,257?,.?£/?,4iS/?,55i?)“4-(/er/-butyldimethyl-silyloxy)-5-hydroxymethyl-2-phenyl-l-
(tosyl)-pyrrolidine-3-ol 428a

4 2 1  4 2 7  4 2 8 a

i) TBS protection

The dihydropyrrole 421 (180 mg, 0.48 mmol) was protected using TBSTriflate according 

to general procedure P to yield the TBS ether 427 (204 mg, 86%) together with some 

silicon residues as a cream solid which was used without further purification: m.p. 95- 

97°C; Rf 0.65 (40% ethyl acetate /petroleum ether); Vmax/cm'1 [CH2CI2] 2952 (s), 2854 (s), 

1760 (s), 1599 (s), 1471 (s), 1360 (s), 1169 (s), 1091 (s), 839 (s) and 778 (s); 6H -0.05 (3H, 

s, SiMe), 0.00 (3H, s, Si-Me), 0.75 (9H, s, /-Bu), 2.35 (3H, s, Ar-Me), 3.80 (3H, s, 

C 0 2Me), 4.55-4.60 (2H, m, 2-H and 3-H) 5.20 (1H, d, J  3.0, 4-H) and 7.20-7.60 (9H, m, 

Ph and 4 x Ar-H); 6C -3.5, -3.4 (both SiMe), 17.9 (C(CH3)3), 21.6 (Ar-Me), 25.6 (/-Bu),

52.8 (C 02Me), 72.2, 74.5 (both CH), 115.2 (=CH), 127.7, 128.2, 128.8, 129.4, 129.5, (all 

ArCH), 131.6, 133.4, 143.9, 147.5 (all C) and 170.3 (C=0); m/z [APcI] 356 (M+ - HOTBS, 

100%) and 488 (5%).

ii) Hydroboration

The crude silyl ether 427 (200 mg, 0.41 mmol) was hydroborated according to general 

procedure Q to yield the pyrrolidine 428a (87 mg, 40%, over two steps) as a white solid: 

mp 127-130°C; Rf 0.56 (40% ethyl acetate/petroleum ether); Vmax/cm'1 [CH2CI2] 3624 (br), 

2928 (s), 2856 (s), 1599 (m), 1496 (m), 1462 (s), 1336 (s), 1158 (s), 1104 (s), 838 (m), 780 

(m) and 701 (m); 5h 0.00 (3H, s, Si-Me), 0.10 (3H, s, Si-Me), 0.85 (9H, s, /-Bu), 2.35 (3H, 

s, Ar-Me), 2.30 (3H, s, Ar-Me), 3.85 (1H, app. d, J  12.3, CHaCHb), 3.95 (1H app. s, 4-H),

4.00 (1H, app. s, 5-H), 4.25 (1H, app. s, 3-H), 4.50 (1H, dd, J  12.3 and 3.2, CH„CHh). 4.95 

(1H, app. s, 2-H), 7.00-7.20 (5H, m, 5 x Ar-H), 7.25 (2H, d, J8 .4 , 2 x Ar-H) and 7.30 (2H, 

d, J  8.2, 2 x Ar-H); 6C -5.0, -5.0 (both SiMe), 17.8 (C-(CH3)3), 21.5 (Ar-Me), 25.5 (/-Bu),

63.4 (CH2), 71.9, 75.3, 83.0, 84.1 (all CH), 127.0, 127.1, 127.7, 128.7, 129.0 (all ArCH),

137.6, 138.6 and 143.0 (all ArC); m/z [APcI] 478 (M* + H, 100%) and 460 (10). [Found 

M+ + H: 478.2082. C24H36N05SSi requires M , 478.2078].
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Silver Cyclisation of (2RS,3RS)-M ethy\ 3-hydroxy-2-(tosyIamino)non-4-ynoate 144a

Bu

144a

OH

NHTs
'COzMe

The alkyne 144a (33 mg, 0.093 mmol) was cyclised using 10% silver nitrate on silica gel 

(79 mg, 0.047 mmol, 0.5 eq) for 1.5 h according to general procedure O to give a 5:1 

mixture of i) the dihydropyrrole 429 and ii) the pyrrole 430 both as a colourless oils (31 

mg). The dihydropyrrole 429 was characterised by: Rf 0.35 (40% ethyl acetate/petroleum 

ether); vmsx/c m l [CH2C12] 3514 (br), 2957 (m), 2872 (m), 1736 (s), 1598 (m), 1495 (m), 

1437 (m), 1356 (s), 1166 (s), 814 (m) and 666 (s); 6H 0.85 (3H, t, J7.3 , 4’-Me), 1.15-1.55 

(4H, m, 2 x CH2), 2.20-2.40 (4H, m, CHaCHb and Ar-Me), 2.40-2.50 (1H, m, CHaCHb),

3.70 (3H, s, Ar-Me), 4.40-4.50 (2H, m, 2-H and 3-H), 5.0 (1H, app. s, 4-H), 7.20-7.30 (2H, 

m, 2 x Ar-H) and 7.65-7.75 (2H, m, 2 x Ar-H); 6c 13.8 (Me), 21.6 (Ar-Me), 22.2, 28.7,

29.4 (all CH2), 52.8 (C 02Me), 71.6, 74.4 (2-CH and 3-CH), 110.7 (4-CH), 127.6, 129.9 

(both ArCH), 134.7 (=C), 144.4, 149.8 (both ArC) and 169.9 (C=0). The pyrrole 430 was 

characterised by: m.p. 76-78.7°C; Rf 0.69 (40% ethyl acetate/petroleum ether); Vmm/cm' 1 

[CH2C12] 2956 (s), 1729 (s), 1491 (s), 1369 (s), 1324 (s), 1176 (s), 114 (s) and 802 (m); 8H 

0.85 (3H, t, J7 .3 , 4 ’-Me), 1.25-1.40 (2H, m, CH2), 1.50-1.60 (2H, m, CH2), 2.35 (3H, s, 

Ar-Me), 2.75 (2H, t, J  7.8, l ’-CH2), 3.75 (3H, s, C 0 2Me), 5.95 (1H, d, J  3.5, 4-H), 6.75 

(1H, d, J3 .5 , 3-H), 7.25 (1H, d, J8 .3 , 2 x Ar-H) and 7.85 (1H, d ,7 8 .3 ,2 x Ar-H); 8c 13.9 

(Me), 21.7 (Ar-Me), 22.5, 28.3, 30.9 (all CH2), 52.2 (C 02Me), 110.9, 120.8, 127.4, 129.7, 

(all ArCH), 136.8, 144.2, 144.8 and 161.2 (all ArC); m/z [APcI] 336 (M+ + H, 100%), and 

304 (93).

277



Chapter 6: Experimental

(2RS,3RS) Methyl 5-butyl -3-(/er/-butyIdimethyl-silyloxy)-l-tosyl-2,3-dihydro-l/f-

pyrrole-2-carboxylate 432

OH OTBS OTBS

Bu NHTs

C 0 2Me

Bu NHTs

OO2M0
Bu- "COzMe

Ts 
432144a 431

i) TBS protection

The amino alcohol 144a (300 mg, 0.85 mmol) was protected using TBS-triflate according 

to general procedure P, for 2 h to furnish the TBS ether 431 (397 mg, 100%) as a 3:1 

mixture o f diastereoisomers. The product was not suitable for chromatography and so was 

used without further purification. The TBS ether 431 was characterised by: Rf 0.74 (40% 

ethyl acetate/petroleum ether); Vmax/cm' 1 [CH2CI2] 2948 (s), 2242 (m), 1747 (s), 1599 (m), 

1434 (s), 1350 (s), 1114 (s) and 839 (s); 8H -0.05 (3H, s, SiMe, both isomers), 0.00 (3H, s, 

SiMe, both isomers), 0.75 (9H, s, /-Bu, both isomers), 1.25-1.40 (4H, m, 2 x CH2, both 

isomers), 1.95-2.05 (1H, m, 6-CH2, minor isomer), 2.10 (2H, app. td, J  6.9 and 1.9, 6-CH2, 

major isomer), 2.35 (3H, s, Ar-Me, both isomers), 3.30 (3H, s, CC>2Me, minor isomer),

3.45 (3H, s, CC>2Me, major isomer), 3.95 (1H, d, J4 .6 , 2-H, major isomer), 4.00 (1H, br. 

res., 2-H, minor isomer), 4.50-4.55 (1H, m, 3-H, major isomer), 4.65-4.70 (1H, m, 3-H, 

minor isomer), 5.20 (1H, br. res., NH), 7.20 (2H, d, J  8.0, 2 x Ar-H) and 1.60-1.70 (2H, m, 

2 x Ar-H); 8c (Major isomer only) -4.5, -4.7 (both SiMe2), 13.6 (Me), 17.9 (CH2), 18.0 (C- 

/-Bu), 21.5 (Ar-Me), 21.8 (CH2), 25.6 (/-Bu), 27.1 (CHZ), 52.5 (C02Me), 61.4, 64.5 (both 

CH), 87.8, 88.2 (C=C), 127.3, 129.6 (both ArCH), 137.0, 143.5 (both ArC) and 169.1 

(C=0); m/z [APcI] 468 (M* + H, 18%) and 337 (100).

ii) Silver Cyclisation

To the crude silyl ether 431 (397 mg, 0.85 mmol) in dichloromethane (4 ml) was added 

10% silver nitrate on silica gel (720 mg, 0.42 mmol, 0.5 eq) and the reaction was stirred for

1.5 h, according to general procedure O. Following chromatography (20% ethyl acetate 

/petroleum ether) the dihydropyrrole 432 (171 mg, 43%), was isolated as a yellow oil: Rf 

0.74 (40% ethyl acetate/petroleum ether); Vmax/cm'1 [CH2CI2] 2957 (s), 2864 (s), 1764 (m), 

1599 (s), 1462 (m), 1360 (s), 1168 (m), 1067 (m) and 840 (m); 8H -0.05 (3H, s, SiMe), 0.00 

(3H, s, SiMe), 0.75 (9H, s, /-Bu), 0.90 (3H, t, J1.2, Me), 1.20-1.60 (4H, m, 2 x CH2), 2.25-

2.35 (1H, m, CHaCHb), 2.40 (3H, s, Ar-Me), 2.55-2.65 (1H, m, CHaCHb), 3.80 (3H, s, 

C 02Me), 4.45 (1H, d, J  1.6, 2-H), 4.55 (1H, app. s, 3-H), 4.89-4.92 (1H, m, 4-H), 7.25
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(2H, d, J  8.4, 2 x Ar-H) and 7.70 (2H, d, J  8.4, 2 x Ar-H); §c -4.6, -4.5 (both SiMe), 13.9 

(Me), 17.8 (C-(CH)3)3), 21.6 (Ar-Me), 22.2 (CH2), 25.6 (/-Bu), 28.7, 29.4 (both CH2), 52.7 

(C 02Me), 71.9, 74.8 (both CH), 110.9 (=CH), 127.5, 129.6 (both ArCH), 135.1, 143.8,

148.0 (all C) and 170.4 (C=0); m/z [APcI] 468 (M* + H, 100%) and 336 (53). [Found M+ 

+ H: 468.2235. C23H37NOsSSi requires M9 468.2234].

(2£R,354^5J?,551?)-2-Butyl-4-(te/f-butyl>dimethyl-silanyloxy)-§-hydroxymethyl-l-

(tosyl)-pyrrolidme-3-ol 433

432 433

The TBS ether 432 (150 mg, 0.32 mmol) was treated with a 1M solution of borane- 

tetrahydrofuran complex in tetrahydrofuran according to general procedure Q to give the 

pyrrolidine 433 (35 mg, 24%), as a yellow oil: Rf 0.45 (40% ethyl acetate/ petroleum 

ether); v ^ /c m ' 1 [CH2C12] 2955 (s), 2863 (s), 1471 (m), 1331 (m), 1157 (s), 1103 (s), 839 

(m) and 814 (m); 8H -0.05 (3H, s, SiMe), 0.00 (3H, s, SiMe), 0.75 (9H, s, /-Bu), 0.80 (3H, 

t, J6 .9 , Me), 1.15-1.35 (4H, m, 2 x CH2), 1.60-1.70 (1H, m, CHaCHb), 1.85-2.00 (1H, m, 

CHaCHb), 2.35 (3H, s, Ar-Me), 3.40 (1H, app. d, J  3.1, 4-H), 3.55 (1H, app. d, J  12.3, 

CHaCHbO), 3.75 (1H, app. s, 2(3)-H), 3.90 (1H, app. dd, J  11.7 and 3.6, 5-H), 4.05 (1H, 

app. s, 3(2)-H), 4.15 (1H, dd, J  12.3 and 3.6, CHaCHbO), 7.20 (2H, d, J 8 .1 ,2 x Ar-H) and

7.70 (2H, d, J  8.1, 2 x Ar-H); 8c -5.1, -4.9 (both SiMe), 14.0 (Me), 17.7 (C-(CH3)3), 21.5 

(Ar-Me), 22.6 (CH2), 25.5 (/-Bu), 28.5, 31.5 (both CH2), 62.5 (CH2OH), 69.9, 72.2, 77.5,

83.3 (all CH), 127.0, 129.7 (both ArCH), 137.9 and 143.4 (both ArC); m/z [APcI] 458 (M+ 

+ H, 100%) and 440 (19). [Found M 1 + H: 458.2390. C22H4oNOsSSi requires M, 

458.2391].
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(2S/?,3<S'/?,4£/?,4iS'/?,5S/?)-5-Hydroxymethyl-2-phenyl-l-tosyl-4-triisopropylsilanyloxy-

pyrrolidin-3-ol 435

pTIPS pTIPS

'CC^Me

421 434 435

i) TIPS protection

To an ice-cold solution o f the dihydropyrrole 421 (489 mg, 1.31 mmol, 1.0 eq) in 

anhydrous dichloromethane (5 ml) was added 2,6-lutidine (351 mg, 0.38 ml, 3.27 mmol,

2.5 eq) followed by triisopropylsilyltriflate (522 mg, 0.46 ml, 1.70 mmol, 1.3 eq) and the 

solution was stirred for 16.5 h at room temperature. The solvent was evaporated, water (2 

ml) was added and the product was extracted into dichloromethane ( 3 x 5  ml). The 

dichloromethane solutions were washed with saturated aqueous sodium bicarbonate 

solution (20 ml) and the solutions were dried and evaporated. The residue was purified by 

chromatography (10% ethyl acetate/ petroleum ether) to give the TIPS ether 434 (446 mg, 

64%) as a pale yellow oil: Rf 0.53 (40% ethyl acetate/petroleum ether); Vmax/cm' 1 [CH2C12] 

2948 (s), 2867 (s), 1761 (s), 1599 (s), 1464 (s), 1366 (s), 1170 (s) and 813 (s); 6H0.95-1.00 

(21H, m, 3 x z-Pr), 2.30 (3H, s, Ar-Me), 3.75 (3H, s, C 02Me), 4.60-4.63 (1H, m, 2-H), 

4.65-4.70 (1H, m, 3-H) and 5.20 (1H, d, J3 .2 , 4-H), 7.10 (2H, d, J8 .2 , 2 x Ar-H) and 7.25-

7.45 (7H, m, Ph and 2 x Ar-H); 6C 12.1 (CHMe3), 17.7 (z-Pr), 21.5 (Ar-Me), 52.9 

(C02Me), 72.6, 74.5 (both CH), 115.1 (=CH), 127.7, 128.1, 128.8, 129.4, 129.5 (all 

ArCH), 131.6, 133.6, 143.9, 147.5 (all C) and 170.4 (C=0); m/z [APcI] 356 (M+ -OTIPS, 

100%). [Found M* + NH4: 547.2663. C28H43N20sSSi requires M , 547.2656].

ii) Hydroboration

The silyl ether 434 (440 mg, 0.83 mmol) was treated with a 1M solution of borane- 

tetrahydrofuran complex in tetrahydrofuran (3.32 ml, 3.32 mmol) according to general 

procedure Q, to furnish the pyrrolidine-2-methanol 435 (309 mg, 72%), as a pale white oil: 

Rf 0.37 (40% ethyl acetate/petroleum ether); Vmax/cm-1 [CH2CI2] 2942 (s), 2860 (s), 1599 

(m), 1495 (m), 1462 (m), 1330 (s), 1159 (s), 1068 (s) and 811 (m); 6H0.85-1.00 (21H, m, z- 

Pr), 2.20 (3H, s, Ar-Me), 3.70 (1H, app. d, J 11.9, CHaCHb), 3.85 (1H, app. s, 3(4)-H), 4.05 

(1H, app. s, 5-H), 4.15 ( 1H, app. s, 4(3)-H), 4.35 (1H, dd, J  11.9 and 5.0, CHaCHb), 4.75 

(1H, app. s, 2-H) and 6.80-7.10 (9H, m, 4 x Ar-H and Ph); 8C 11.8 (CHMe2), 17.8 (z-Pr),
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21.5 (Ar-Me), 63.8 (CH2), 73.0, 75.3, 83.1, 85.0 (all CH), 126.8,127.0, 127.5,128.8,129.0 

(all ArCH), 138.2, 138.3 and 142.3 (all ArC); m/z [APcI] 520 (Mf +H, 100%). [Found M* 

+ H: 520.2548. C iy^N O sS S i requires M, 520.2547].

(4-Methoxy-phenyl)-propynal 468

467 468

1 -Ethynyl-4-methoxy-benzene 467 (1.00 g., 7.57 mmol, Maybridge) was condensed with 

N, iV-dimethylformamide according to general procedure R, to give the aldehyde 468 (1.16 

g, 96%), as an orange solid which was used without further purification. The data obtained 

was in accordance with that previously reported in the literature: m.p. 43-45°C (lit13 m.p. 

47-48.5°C); Rf 0.41 (40% ethyl acetate/petroleum ether); Vmax/cnT1 [CH2CI2] 2180 (s), 

1650 (s), 1599 (s) and 1509 (s); 6H 3.80 (3H, s, OMe), 6.85 (2H, d, J8 .9 , 2 x Ar-H), 7.45 

(2H, d, J  8.9, 2 x Ar-H) and 9.65 (1H, s, CHO); 6C 55.5 (Me), 88.8, 96.6 (both ArCH),

162.1 (ArC) and 176.8 (C=Q).

(7/?*S,,2/fiS,)-Methyl 2-te/f-Butoxycarbonylamino-3-hydroxy-5-(4-methoxy-phenyl)-

pent-4-ynoate 469

NHBoc

N-Boc glycine methyl ester 162b (2.60 mmol, 492 mg, 2.60 mmol) and (4-methoxy- 

phenyl)propynal 468 (500 mg, 3.12 mmol) were reacted together according to general 

procedure C. The residue was purified by flash chromatography (30% ethyl acetate/
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petroleum ether) to yield the amino alcohol 469 (158 mg, 21%), as a brown oil together 

with some aldehyde 468 (95 mg, 19% recovered). The aldol adduct 469 was characterised 

by: R f  0.30 (40% ethyl acetate/petroleum ether); Vmax/cm' 1 2976 (s), 1720 (s), 1606 (s), 

1510 (s), 1438 (s) and 1368 (s); 8H 1.35 (9H, s, /-Bu), 3.70 (6H, s, C 02Me and OMe), 4.55-

4.65 (1H, br. m, 2-H), 4.90-4.95 (1H, br. m, 3-H), 5.50 (1H, br. d, J  7.8, NH), 6.75 (2H, d, 

J  8 .8, 2 x Ar-H) and 7.25 (2H, d, J  8 .8, 2 x Ar-H); 6c (rotameric) 28.0 (/-Bu), 52.8 and

52.9, 55.3 and 55.3 (all OMe), 58.4 and 58.9, 64.1 and 64.5 (all CH), 80.3 and 80.9 (C- 

(CH3)3), 83.6 (C=C), 86.5 and 87.0 (C^C), 113.9,133.4 (both ArCH), 156.4 and 160.0 (N- 

C=0), 169.7 and 170.4 (C=0), no ArC evident; m/z [APcI] 332 (M+ - H20 , 17%), 277 

(20), 251 (65) and 233 (100).

Methyl l-(/-butoxycarbonyl)-5-(4-methoxyphenyI)-pyrrole-2-carboxylate 470

OH
.COsMe

NHBoc

The amino alcohol 469 (82 mg, 0.24 mmol) was subjected to silver catalysed cyclisation 

(0.5 eq, 2 h), according to general procedure O. The residue was chromatographed (10% 

ethyl acetate/petroleum ether) to yield the pyrrole 470 (72 mg, 92%), as a yellow oil which 

showed: R f  0.51 (40% ethyl acetate/petroleum ether); Vm^/cm-1 [CH2C12] 2930 (m), 2854 

(m), 1766 (s), 1713 (s), 1614 (m), 1552 (m), 1511 (m), 1395 (m), 1371 (s) and 835 (m); 8h

1.35 (9H, s, t-Bu), 3.76 (3H, s, OMe), 3.78 (3H, s, OMe), 6.10 (1H, d, J  3.6, 4-H), 6.80-

6.85 (3H, m, 2 x Ar-H and 3-H) and 7.30 (2H, d, J  8.7, 2 x Ar-H); 6c 27.3 (/-Bu), 51.7,

55.3 (both OMe), 85.3 (C(CH3)3), 110.0 (4-CH), 113.6 (2 x Ar-H), 118.2 (3-CH), 123.9,

124.1 (both C), 130.2 (2 x Ar-H), 139.5, 149.8 (both ArC), 159.8 and 160.8 (both C=0); 

m/z [APcI] 332 (M* +H, 62%), 276 (100%) and 232 (18%). [Found M* + H: 332.1488. 

Ci8H22N05  requires M, 332.1492].
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Methyl 5-(4-methoxyphenyl)-pyrrole-2-carboxylate 474

OH
CO2M© 

NHBoc

469

OH
CO2M6

473

C 02Me

The aldol product 469 (136 mg, 0.34 mmol) was treated with trifluoroacetic acid in 

dichloromethane for 16 h, as described in general procedure F to yield the pyrrole 474 (90 

mg, 100%), as a yellow crystalline solid: m.p. 147-149°C; Rf 0.30 (40% ethyl 

acetate/petroleum ether); Vmax/cm1 [CH2CI2] 3324 (s), 1694 (s), 1478 (m), 1277 (s), 1191 

(s), 1149 (s) and 796 (m); SH 3.76 (3H, s, OMe), 3.79 (3H, s, OMe), 6.40 (1H, app. dd, J

3.6 and 2.9, 4-CH), 6.80-6.90 (3H, m, 3-CH and 2 x Ar-H), 7.45 (2H, d, J 8.8, ArCH) and

9.40 (1H, br. res., NH); 6C 51.5, 55.4 (both OMe), 107.1 (4-CH), 114.5 (2 x Ar-H), 117.0 

(3-CH), 122.7, 124.2 (both C), 126.2 (2 x Ar-H), 137.0, 159.4 (both C) and 161.70 (C=0); 

m/z [APcI] 231 (M* + H, 100%). [Found M+ + H: 232.0968. CbHhNOs requires M, 

232.0968].

(2£S,iAS)-M ethyI 3-hydroxy-5-(4-methoxyphenyl)-2-(tosylamino)pent-4-ynoate 475

469

C 02Me

NHTs

475

Methyl A-tosyl glycinate 156 (1.58 g, 6.49 mmol) and (4-methoxy-phenyl)propynal 468 

(1.25 g, 7.82 mmol) were condensed together according to general procedure C. The 

residue was purified by column chromatography (40% ethyl acetate/petroleum ether) and 

recrystallisation (10% ethyl acetate/petroleum ether) to give the amino alcohol 475 (2.53 g, 

59%), as an orange solid: m.p. 126-129°C; R f  0.23 (40% ethyl acetate/petroleum ether); 

V m a x / c m '1 [CH2CI2] 3638 (s), 2964 (s), 1746 (m), 1606 (s), 1511 (s), 1434 (m), 1341 (s), 

1163 (s) and 832 (m); 8h 2.40 (3H, s, Ar-Me), 2.80 (1H, d, J  10.5, OH, exchanges with 

D20), 3.55 (3H, s, OMe), 3.75 (3H, s, OMe), 4.20 (1H, dd, J 9 .5 and 3.9, 2-H), 4.80 (1H,
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dd, J  10.5 and 3.9, 3-H), 5.50 (1H, d, J 9.5, NH, exchanges with D2O), 6.80 (2H, d, J 8 .6, 2 

x Ar-H), 7.20-7.30 (4H, m, 4 x Ar-H) and 7.70 (2H, d, J 8 .6, 2 x Ar-H); 6c 21.6, 53.1, 55.3 

(all Me), 60.7, 63.6 (both CH), 82.8, 87.8 (both C=C), 113.5 (ArC), 114.0, 127.4, 129.8,

133.4 (all ArCH), 136.2, 144.1, 160.1 (all ArC) and 168.5 (C=0); m/z [APcI] 404 (M* +H, 

18%), 386 (100) and 333 (25). [Found + NH4: 421.1427. C20H25NO6S requires M, 

421.1427].

(2AS,JHS)-Methyl 2,3-dihydro-3-hydroxyl-5-(4-methoxyphenyl)-l-tosyl-l//-pyrrole-

2-carboxylate 476

OH

476

NHTs

475

The amino alcohol 475 (1.22 g, 3.01 mmol) was cyclised using 10% silver nitrate on silica 

gel (1.02 g, 0.60 mmol, 0.2 eq) for 1.5 h according to general procedure O, to give the 

dihydropyrrole 476 (1.20 g, 98%), as an orange solid which showed: m.p. 46-48°C; Rf 

0.17 (40% ethyl acetate/petroleum ether); Vmax/cm' 1 [CH2CI2] 3500 (br), 2956 (m), 1754 

(s), 1607 (s), 1511 (s), 1357 (s), 1169 (s) and 814 (m); 6H 2.35 (3H, s, Ar-Me), 3.76 (3H, s, 

OMe), 3.79 (3H, s, OMe), 4.50 (1H, br. res, 3-H), 4.65 (1H, app. s, 2-H), 5.30 (1H, d, J

3.3, 4-H), 6.80 (2H, d, J  8 .8, 2 x Ar-H), 7.25 (2H, d, J  8.2, 2 x Ar-H) and 7.45 (4H, 2 x d, J  

8.8 and 8.2, 4 x Ar-H); 6c 20.6 (Ar-Me), 51.9, 54.5 (both OMe), 71.4, 73.0 (both CH),

112.2 (ArCH), 112.5 (CH), 122.6 (ArC) 127.1, 128.5, 129.1 (all ArCH), 132.0, 143.6,

147.7, 167.4 (all ArC) and 168.7 (C=0); m/z [APcI] 386 (M+ -H20 , 100%).
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Methyl 5-(4-methoxyphenyl)-l-tosyl-l//-pyrrole-2-carboxylate 476b

‘|g ,;C02M6
Ts
476 476b

At room temperature overnight, the dihydropyrrole 476 as a solution in deuteriochloroform 

dehydrated to form the corresponding pyrrole 476a as an orange oil: R f  0.56 (40% ethyl 

acetate/petroleum ether); v ^ /c ra ' 1 [CH2C12] 2957 (s), 1730 (s), 1607 (s), 1511 (s), 1481 

(s), 1354 (s), 1167 (s) and 814 (s); 8H 2.30 (3H, s, Ar-Me), 3.75 (3H, s, OMe), 3.85 (3H, s, 

OMe), 5.95 (1H, d, J  3.5, 4-H), 6.75 (2H, d, J  8.7, 2 x Ar-H), 6.85 (1H, d, J  3.5, 3-H),

7.00-7.05 (4H, m, 4 x Ar-H) and 7.25 (2H, d, J  8.3,2 x Ar-H); 8c  21.7 (Ar-Me), 52.5, 55.4 

(both OMe), 113.1 (ArCH), 113.9, 122.3 (both =CH), 123.7 (C), 127.5, 129.1 (both 

ArCH), 130.3 (C), 131.5 (ArCH), 135.4, 143.9, 144.9, 160.2 (all ArC) and 162.0 (C=0); 

m/z [APcI] 386 (M+ + H, 100%).

(2RS,3RS) Methyl 5-(4-methoxy-phenyl)-l-tosyl-3-triisopropylsilanyloxy-2,3-dihydro-

lH-pyrrole-2-carboxylate A ll

MeO
'CO^Me

OTIPS

M e O " \ ^  Ts 

477

i) TIPS protection

To an ice-cold solution o f the dihydropyrrole 476 (206 mg, 0.51 mmol, 1.0 eq) in 

dichloromethane (2 ml) was added 2,6-lutidine (136 mg, 0.15 ml, 1.28 mmol, 2.5 eq) 

followed by TIPS triflate (203 mg, 0.18 ml, 0.66 mmol, 1.3 eq). The ice-bath was 

removed and the reaction mixture was stirred for 18.5 h. The solvent was evaporated, 

water (1 ml) was added and the product was extracted into dichloromethane ( 3 x 5  ml). 

The combined dichloromethane layers were washed with saturated aqueous sodium 

bicarbonate solution (20 ml) and the layers were dried and evaporated to furnish the TIPS 

ether 477 (336 mg, > 100%), as an orange oil: R f  0.63 (20% ethyl acetate/petroleum ether);
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V m a x / c m '1 [CH2C12] 2944 (s), 2867 (s), 1738 (s), 1639 (m), 1607 (s), 1573 (m), 1511 (s), 

1463 (s), 1362 (s), 1170 (s), 831 (s) and 813 (s); 8H 0.95-1.00 (21H, m, 3 x /-Pr), 2.45 (3H, 

s, Ar-Me), 3.75 (6H, s, 2 x OMe), 4.55-4.65 (2H, m, 2-H and 3-H), 5.10 (1H, d, J3 .1 , 4- 

H), 6.75 (2H, d, J  8 .8 , 2 x Ar-H), 6.85 (2H, d, J  7.6, 2 x Ar-H), 7.30-7.40 (4H, m, 4 x Ar- 

H); m/z [APcI] 386 (M+ -OTIPS, 100%).

Ts

OTIPSpT IP S pTIPS

477 479 480

ii) Isomerisation

Approximately two thirds o f the crude reaction mixture 477 was purified by 

chromatography (20% ethyl acetate/petroleum ether). The NMR of the product revealed 

that isomerisation had occurred to give the silyl ether as a mixture of diastereoisomers in 

the ratio 7:1. To obtain further NMR data this sample was left as a solution in deuterated 

chloroform overnight, during which time complete isomerisation to 479 had occurred: 8h 

0.85-1.00 (21H, m, 3 x /-Pr), 2.30 (3H, s, Ar-Me), 3.70 (3H, s, OMe), 3.75 (3H, s, OMe),

4.60 (1H, app. s, 3-H), 4.90 (1H, app. s, 2-H), 5.15 (1H, app. s, 4-H), 6.75 (2H, d, J8.1, 2 x 

Ar-H), 7.15 (2H, d, 78.1, 2 x Ar-H), 7.55 (2H, d, J  8.3, 2 x Ar-H), and 7.75 (2H, d, J8.3, 2 

x Ar-H); 8C 11.9 (CH-/-Pr), 17.7 (/-Pr-Me), 21.6 (Ar-Me), 52.6, 55.4 (both OMe), 77.0,

80.1, 83.6 (all CH), 113.6 (=CH), 125.5 (C), 129.3, 129:4, 131.0 (all ArCH), 134.9, 145.4,

162.1, 165.1 (all C) and 169.6 (C=0).

Hi) Elimination o f  Isomerised Product 480

The isomerised product 479 was left over the weekend, as a solution in deuterated 

chloroform and elimination occurred to generate the pyrrole 480: 8h 0.95-1.00 (21H, m, 3 

x /-Pr), 2.25 (3H, s, Ar-Me), 3.70 (3H, s, OMe), 3.75 (3H, s, OMe), 6.80 (2H, d, J8 .2 , 2 x 

Ar-H), 7.05 (2H, d, J  8.2, 2 x Ar-H), 7.25 (1H, d, J  2.8, 4-H), and 7.45-7.55 (4H, m, 2 x 

Ar-H); 8c 12.3 (CH-/-Pr), 17.9 (7-Pr-MeT 21.5 (Ar-Me), 55.1, 55.4 (both OMe), 113.7 

(ArCH), 117.7 (=CH), 121.4, 121.4, 123.6 (all C), 127.0, 129.3, 131.0 (all ArCH), 138.5,

139.7, 143.4, 160.7 (all C) and 161.3 (C=0); m/z [APcI] 386 (M+ -HOTIPS, 100%).
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(2SRf3SRf4SRf5SR)-5-Hydroxymethy\-2-(4-methoxy-pheny\)-l-tosy\-4- 
triisopropylsilanyloxy-pyrrolidin-3-ol 478

pT IP S HQ .OTIPS

\ "C 0 2Me
Vo o OH

477 478

ii) Hydroboration

The crude silyl ether 477 (629 mg, 1.12 mmol, 1.0 eq) was reacted with a 1 M solution of 

borane-THF complex in tetrahydrofiiran according to general procedure Q to furnish the 

pyrrolidine 478 (158 mg, 30%, over 2 steps), as a pale yellow oil: R f  0.40 (40% ethyl 

acetate/petroleum ether); Vmax/cm' 1 [Film] 3461 (br), 2956 (s), 2866 (s), 1612 (m), 1514 (s), 

1463 (s), 1333 (s), 1178 (s), 1179 (s), 1103 (s), 827 (s), 810 (s), 734 (s) and 704 (m); 8H 

0.90-1.10 (21H, m, OTIPS), 2.20 (3H, s, Ar-Me), 3.70 (3H, s, OMe), 3.75 (1H, app. d, J

11.6, CHaCHb), 3.90 (1H, app. s, 3-H), 4.00 (1H, app. s, 5-H), 4.15 (1H, app. s, 4-H), 4.40 

(1H, dd, J  11.7 and 2.1, CHaCHb), 4.75 (1H, app. s, 2-H), 6.45 (2H, d, J7 .9 , 2 x Ar-H), 

6.90 (2H, d, J  7.9, 2 x Ar-H), 7.05 (2H, d, J  8.1, 2 x Ar-H) and 7.15 (2H, d, J  7.9, 2 x  A t-  

H); 6C 11.9 (CH-Si), 17.8 (/-Pr), 21.4 (Ar-Me), 55.2 (OMe), 64.2 (CH2OH), 72.7, 74.8,

83.1, 85.0 (all CH), 112.9, 126.9, 128.9, 130.4 (all ArCH), 130.6, 138.2, 142.5 (all ArC) 

and 158.7 (C=0); m /z  [APcI] 549 (M+, 100%). Sample decomposed prior to HRMS 

measurement.
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(2/?5',357?,4tS7?,5S'/?)-4-(/-Butyldimethylsilanyloxy)-5-Hydroxymethyl-2-(4-methoxy-

phenyl)-l-tosyl-pyrrolidm-3-ol 482

i) TBS protection

To the dihydropyrrole 476 (155 mg, 0.38 mmol) was protected as the TBS ether according 

to general procedure P to yield the TBS ether 481 (183 mg, 92%), as an orange oil, which 

was used immediately without further purification and showed: m.p.l06-107.3°C; Rf 0.55 

(40% ethyl acetate/petroleum ether); Vm^/cnT1 [CH2CI2] 2956 (s), 2855 (s), 1758 (s), 1643 

(s), 1607 (s), 1511 (s), 1472 (s), 1360 (s), 1166 (s), 1087 (s), 837 (s) and 783; §h -0.10 

(3H, s, SiMe), 0.00 (3H, s, SiMe), 0.75 (9H, s, /-Bu), 2.35 (3H, s, Ar-Me), 3.80 (3H, s, 

OMe), 4.60 (1H, dd, J 3 .2  and 1.3, 3-H), 4.62 (1H, d, J  1.3, 2-H), 5.10 (1H, d, J3.2, 4-H),

6.85 (2H, d, J  8.8, 2 x Ar-H), 7.18 (2H, d, J  8.2, 2 x Ar-H), 7.40 (2H, d, J  8.2, 2 x Ar-H) 

and 7.55 (2H, d, J  8 .8 , 2 x Ar-H); 8c -3.6, -2.9, (both SiMe), 17.9 (C(CH3)3), 21.6 (Ar-Me),

25.6 (/-Bu), 52.8, 55.4 (both OMe), 113.2 (ArCH), 113.7 (=CH), 128.2, 129.3, 130.3 (all 

ArCH), 133.6, 144.9, 147.3, 160.6 (all ArC) and 170.4 (C=0).

ii) Hydroboration

The crude TBS ether 481 (180 mg, 0.38 mmol, 1.0 eq) was hydroborated according to 

general procedure Q. The residue was purified by column chromatography (20% ethyl 

acetate/petroleum ether) to yield the pyrrolidine 482 (92 mg, 47%, over 2 steps) as a white 

solid: Vmax/cm * [CH2C12] 3398 (br), 2929 (s), 2857 (s), 1612 (s), 1514 (s), 1496 (s), 1464 

(s), 1332 (s), 1252 (s), 1156 (s), 1103 (s), 1037 (s) and 837 (s); Rf 0.30 (40% ethyl 

acetate/petroleum ether); 8h 0.00 (3H, s, SiMe), 0.10 (3H, s, SiMe), 0.80 (9H, s, /-Bu), 

2.30 (3H, s, Ar-Me), 3.70 (3H, s, OMe), 3.80-3.85 (1H, m, CHaHb), 3.90 (1H, app. s, CH),

4.00 (1H, app. s, CH), 4.20 (1H, app. s, CH), 4.45 (1H, dd, J 11.8 and 3.3, CH,CHb), 4.80 

(1H, app. s, 4-H) 6.50 (2H, d, J  8.7,2 x Ar-H), 7.00 (2H, d, J 8 .3 ,2 x Ar-H), 7.10 (2H, d, J

8.7, 2 x Ar-H) and 7.20 (2H, d, J  8.3, 2 x Ar-H); 8c -5.0, -4.9, (both SiMe), 17.9 

(C(CH3)3), 21.4 (Ar-Me), 25.6 (/-Bu), 55.3 (OMe), 63.7 (CH2), 72.2, 74.6, 82.5, 84.4 (all 

CH), 113.0, 128.8, 130.3, 130.5 (all ArCH), 131.0, 138.1, 142.6 and 158.8 (all ArC); m/z

'COjMe ''CĈ Me
Ts

476 481 482
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[ES] 530 (M+ + Na, 100%), 525 (52) and 508 (88). [Found M* + NR,: 525.2444. 

C25H4iN20 6 SSi requires A/, 525.2449].

(2SR,3SR,4SR,5SR)-Toluene-4-sulfonic acid 3-(/-ButyldimethyIsilyloxy)4-Hydroxy-5- 

(4-methoxyphenyl)-l-tosyl-pyrrolidin-2-ylmethyl ester 483

TsO, OTBS

+

j " \Ts OTs

492

i) Method A

To an ice-cold solution of the diol 482 (83 mg, 0.16 mmol, 1.0 eq) in anhydrous pyridine 

(1 ml) was added DMAP (2 mg) and the mixture was stirred for 0.25 h. Next /?-tosyl 

chloride (31 mg, 0.16 mmol, 1.0 eq) was added and the reaction mixture was stirred at 

ambient temperature for 16 h. The reaction mixture was poured into ice-cold water (0.5 

ml), ether was added (2 ml) and the resulting two layers were separated. The aqueous 

phase was extracted with ether ( 4 x 2  ml) and the combined ether layers were washed with 

saturated aqueous copper sulfate solution ( 3 x 8  ml). The ether layers were dried and 

evaporated. The residue was chromatographed (25% ethyl acetate/petroleum ether) to 

furnish the tosylate 483 (22 mg, 20%) as a colourless oil, together with some recovered 

starting material (45 mg, 54% recovered). The tosylate 483 was characterised by: R f  0.34 

(40% ethyl acetate/petroleum ether); Vmax/cm'1 [CH2CI2] 3498 (br), 2929 (s), 2858 (s), 1613 

(m), 1599 (m), 1515 (s), 1464 (s), 1343 (s), 1252 (s), 1158 (s), 1097 (s), 1064 (s) and 839 

(s); 8h 0.00 (3H, s, SiMe), 0.10 (3H, s, SiMe), 0.75 (9H, s, /-Bu), 2.25 (3H, s, OTs-Me),

2.40 (3H, s, NTs-Me), 3.70 (3H, s, OMe), 4.05 (1H, app. s, 4-H), 4.10 (1H, dd, J  10.1 and

4.4, 2-H), 4.30 (1H, app. s, 3-H), 4.45 (1H, app. t, J9 .8 , CHaCHb), 4.50 (1H, dd, J9 .8  and

4.4 CHaCHb), 4.65 (1H, app. s, 5-H), 6.40 (2H, d, J  8.7, 2 x Ar-H), 6.85 (2H, d, J8 .2 , 2 x 

Ar-H), 7.0 (2H, d, J  8.3, 2 x Ar-H), 7.05 (2H, d, J  8.7, 2 x Ar-H), 7.30 (2H, d, J  8.2, 2 x 

Ar-H), 7.80 (2H, d, J  8.3, 2 x Ar-H); 8C -5.1, -4.9 (both Si-Me), 17.8 (C-(CH3)3), 21.4, 21.7 

(both Ar-Me), 25.6 (/-Bu), 55.3 (OMe), 68.9 (CH2), 69.0, 73.3, 78.7, 85.3 (all CH), 112.9,

126.7, 128.2, 128.7 (all ArCH), 128.7 (ArC), 130.0, 131.0 (both ArCH), 132.5, 138.2,

142.5, 145.2 and 159.1 (all ArC); m/z [APcI] 662 (M+ + H, 19%) and 435 (100).
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ii) Method B

To an ice-cold solution of the diol 482 (146 mg, 0.29mmol, 1.0 eq) and DABCO (42 mg, 

0.37 mmol, 1.3 eq) in anhydrous dichloromethane (2 ml) was added p-tosyl chloride (54 

mg, 0.29 mmol, 1.0 eq) gradually over 15 minutes. The reaction was stirred for a further h 

at 0°C, the ice-bath was removed and the solution was stirred for 48 h. The solution was 

filtered through a pad of celite and solid was washed with dichloromethane. The combined 

filtrates and washings were evaporated. The residue was purified by column 

chromatography (20% ethyl acetate/petroleum ether) to yield a 9:2 mixture of i) the 

tosylate 483 and ii) bis-tosylate 492 as a colourless oil, together with some starting 

material (58 mg, 40% recovered). The data obtained for the tosylate 483 was identical to 

that previously reported. The data corresponding to the tritosylate will be reported later. 

in) Method C

To a -20°C solution o f DABCO (157 mg, 1.40 mmol, 1.3 eq) and the diol 482 (545 mg,

1.07 mmol, 1.0 eq) in distilled dichloromethane (8 ml) was added p-tosyl chloride (205 

mg, 1.07 mmol, 1.0 eq) gradually over 15 minutes. The reaction was stirred for 24 h at - 

20°C, and the solution was then warmed to 0°C and the reaction mixture was stirred for a 

further 96 h. Following an identical work-up to that described above and purification by 

column chromatography (20% ethyl acetate/petroleum ether) a mixture of i) the tosylate 

483 (459 mg, 67%) as a colourless oil, ii) bis-tosylate 492 (33 mg, 4%) as a pale yellow oil 

and some starting material 482 (approx. 19 mg, 3% recovered) was obtained. The data 

obtained for the tosylate 483 was identical to that previously reported. The 6zs-tosylate 

492 was characterised by: Vmax/cm' 1 [CH2CI2] 2928 (s), 2856 (m), 1598 (m), 1514 (s), 1463 

(m), 1369 (m), 1190 (s), 1178 (s), 1159 (s), 1096 (m), 838 (m) and 814 (m); 5H 0.00 (3H, s, 

SiMe), 0.15 (3H, s, SiMe), 0.85 (9H, s, t-Bu), 2.45 (3H, s, Ar-Me), 2.55 (3H, s, Ar-Me),

2.60 (3H, s, Ar-Me), 3.85 (3H, s, OMe), 4.20 (1H, app. t, J  11.2 and 9.5, CHaCHb), 4.25 

(1H, dd, J 11.2 and 3.7, CHaCHb), 4.50 (1H, app. s, 3(4)-H), 4.60 (1H, app. s, 4(3)-H), 4.85 

(1H, dd, J 9.5 and 3.7, 2-H), 4.95 (1H, app. s, 5-H), 6.55 (2H, d, J 8.7, 2 x Ar-H), 6.95 (2H, 

d, J8 .7 , 2 x Ar-H), 7.05 (2H, d, J  8.2, 2 x Ar-H), 7.15 (2H, d, J  8.3, 2 x Ar-H), 7.40 (2H, d, 

J  8.2, 2 x Ar-H), 7.50 (2H, d, J  8.2, 2 x Ar-H), 7.75 (2H, d, J  8.3, 2 x Ar-H) and 7.95 (2H, 

d, J  8.2, 2 x Ar-H); 6C -5.4, -5.3 (both SiMe), 17.7 (Si-C(CH3)3), 21.4, 21.7, 21.8 (all Ar- 

Me), 25.4 (t-Bu), 55.3 (OMe), 68.1 (CH2), 68 .6, 70.7, 77.0, 90.5 (all CH), 113.0 (ArCH),

126.7 (ArC), 127.2, 128.1, 128.2, 128.8, 130.1, 130.1, 130.6 (all ArCH) 132.3, 132.6,
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137.9, 142.9, 145.3, 145.5 and 159.2 (all ArC); m/z [APcI] 816 (M* + H, 31%), 358 (22), 

340 (24), 287 (65), 186 (31), 157 (84) and 139 (100).

(7iS'/?,45'/f,6S,/f,ZS'/f)-7-(te/f-ButyI-dimethyl-silanyloxy)-6-(4-methoxy-phenyl)-5-tosyl-

2-oxa-5-aza-bicyclo [2.2.1] heptane 485

where

482 483 485

The mono-O-tosylate 483 (22 mg, 0.033 mmol, 1.0 eq) was dissolved in tetrahydrofuran (2 

ml) and the solution was purged with nitrogen while a 1.0 M solution of lithium 

triethylborohydride in tetrahydrofuran (0.10 ml, 0.10 mmol, 3.1 eq) was added dropwise. 

After 2 h, methanol (0.3 ml) was added dropwise. The solution was then cooled in an ice- 

bath and rapidly stirred as a 27% aqueous solution of hydrogen peroxide (0.11 ml) was 

added slowly. The mixture was transferred to a separating funnel and then was vigorously 

shaken with chloroform (2 ml) and the resulting layers were separated. The aqueous phase 

was extracted with chloroform ( 3 x 2  ml), and the combined organic solutions were dried 

and evaporated to give the bicyclic product 485 (16 mg, 100%), as a white solid: m.p. 

129.5-131°C; Rf 0.58 (40% ethyl acetate/petroleum ether); Vmax/cm'1 [CH2CI2] 2956 (s), 

2929 (s), 2857 (s), 1613 (m), 1514 (s), 1391 (s), 1346 (m), 1179 (s), 1154 (s), 829 (s) and 

805 (m); 5H -0.15 (3H, s, SiMe), 0.00 (3H, s, SiMe), 0.75 (9H, s, t-Bu), 2.40 (3H, s, NTs- 

Me), 3.75 (3H, s, OMe), 3.85 ( 1H, dd, J 8.6 and 1.4, CHgCHb), 3.90-4.00 (2H, m, CHgCHb 

and 7-H), 4.25-4.30 (2H, m, 1(4)-H), 4.85 (1H, app. s, 6-H), 6.65 (2H, d, J 8.6, 2 x Ar-H),

7.20 (4H, 2 x d, J  8.6  and 8.4, 4 x Ar-H), 7.60 (2H, d, J  8.4, 2 x Ar-H); 6c -6.3, -6.1 

(SiMe2), 17.1 (C-(CH3)3), 20.5 (Ar-Me), 24.5 (t-Bu), 54.2 (OMe), 63.8, 68.5 (both CH),

69.4 (CH2), 75.0, 82.0 (both CH), 112.0, 126.6 (both ArCH), 127.4 (ArC), 128.3, 128.4 

(both ArCH), 136.4, 142.5 and 157.4 (all ArCH); m/z [APcI] 490 (M + + H, 100). [Found 

M*+H: 490.2079. C25H36N 0 5SSi requires M, 490.2078].
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(2SR,2SR,4SR,5SR)-T  oluene-4-sulfonic acid 3,4-bis-(/er/butyldimethylsilyloxy)-5-(4- 

methoxyphenyl)-l-tosyl-pyrrolidin-2-ylmethyl ester 487

The alcohol 483 (13 mg, 0.020 mmol) was protected using TBS Triflate (1 drop) according 

to general procedure P for 20 h. The residue was purified using column chromatography 

(30% ethyl acetate/petroleum ether) to furnish the silyl ether 487 (9 mg, 60%) as a pale 

yellow oil: Rf 0.31 (40% ethyl acetate/petroleum ether); Vmax/cm’1 [CH2CI2] 2927 (s), 2857 

(s), 1613 (s), 1599 (s), 1514 (s), 1470(s), 1348 (s), 1252 (s), 1178 (s), 1159 (s) and 836 (s); 

8h -0.10, (3H, s, SiMe), -0.05 (3H, s, SiMe), 0.00 (3H, s, SiMe), 0.10 (3H, s, SiMe), 0.75 

(9H, s, /-Bu), 0.80 (9H, s, /-Bu), 2.25 (3H, s, Ar-Me), 2.40 (3H, s, Ar-Me), 3.70 (3H, s, 

OMe), 3.90 (1H, app. s, 4(3)-H), 4.05 (1H, dd, J  11.2 and 4.3, CHgCHb), 4.20 (1H, app. s, 

3(4)-H), 4.30 (1H, dd, J 11.2 and 9.6, CHaCHb), 4.55 (1H, app. s, 5-H), 4.60 ( 1H, dd,J9.6  

and 4.3, 2-H), 6.45 (2H, d, J  8 .8, 2 x Ar-H), 6.90 (2H, d, J  8.2, 2 x Ar-H), 7.00 (2H, d, J

8.2, 2 x Ar-H), 7.05 (2H, d, J  8 .8, 2 x Ar-H), 7.30 (2H, d, J  8.2, 2 x Ar-H) and 7.80 (2H, d, 

J  8.2, 2 x Ar-H); 8c -5.0, -5.0, -4.9, -4.7 (all SiMe), 17.8, 17.8 (both C-(CH3)3), 21.4, 21.7 

(Ar-Me), 25.4, 25.6 (both /-Bu), 55.2 (OMe) 69.0 (CH2), 69.0, 74.3, 79.3, 86.2 (all CH),

112.9, 126.7, 128.2, 128.7 (all ArCH), 129.0 (ArC), 130.0, 130.9 (both ArCH), 138.4,

142.4 and 158.9 (all ArC), one ArC not evident in spectrum.

483 487
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Mesylation of (2SR,3SR,4SR,5SR)-4-(tertbuty\dimethy\-sifyYoxy)-5-hydroxymethy\-2-

phenyl-1 -tosyl-pyrrolidine-3-ol 428a

428a

MsQ OTBS

OMs

To a mixture o f the diol 428a and unknown impurity (44 mg, 0.083 mmol, 1.0 eq) in 

anhydrous dichloromethane (2 ml) at -78°C was added Hunigs base (22 mg, 0.03 ml, 0.17 

mmol, 2.0 eq) dropwise followed by mesyl chloride (1 drop). The reaction mixture was 

stirred for 3 h at -78°C and then allowed to warm to room temperature over 16 h. The 

solution was poured into saturated aqueous ammonium chloride solution (3 ml), the two 

layers were separated and the aqueous layer was extracted with diethyl ether ( 3 x 6  ml). 

The combined organic layers were dried and evaporated. The residue was 

chromatographed (30% ethyl acetate/petroleum ether) to yield the mesylate 490 (approx. 

40 mg, 78%) as an orange oil, together with some in separable impurities. The mesylate 

490 was characterised by: Rf 0.41 (40% ethyl acetate/petroleum ether); Vmax/cm' 1 [CH2C12] 

2931 (s), 2857 (s), 1598 (m), 1495 (m), 1470 (s), 1347 (s), 1177 (s), 838 (s), 815 (s) and 

737 (s); 8h 0.00 (3H, s, SiMe), 0.10 (3H, s, SiMe), 0.75 (9H, s, t-Bu), 2.25 (3H, s, Ar-Me),

3.00 (3H, s, S 02Me), 3.05 (3H, s, S 0 2Me), 4.20 (1H, dd, J  10.2 and 4.3, 2-H), 4.40 (1H, 

app. t, J  10.0, CHaCHb), 4.55 (1H, app. s, 3(4)-H), 4.80 (1H, app. s, 4(3)-H), 4.85 (1H, dd, 

J  10.0 and 4.3, CHaCHb), 5.00 (1H, app. s, 5-H), 6.85-7.10 (9H, m, Ph and 4 x Ar-H); 8C -

5.2, -5.1 (both SiMe), 17.7 (Si-C(CH)3)3), 21.5 (Ar-Me), 25.5 (t-Bu), 37.4, 38.6 (both 

S02Me), 67.6 (CH2), 68 .6 , 71.0, 77.2, 88.9 (all CH), 126.8, 128.0, 128.1, 129.0, 129.4 (all 

ArCH), 135.0, 137.7 and 143.2 (all ArC); m/z [ES] 656 (M* + Na, 80%), 651 (78), 634 

(12) and 538 (100). [Found M* +H: 634.1636. C26H4oN0 9S3Si requires M, 634.1629].
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(2iS/?,351?,4Si?,5Si?>M -(te/,/-butyl-dimethyl-silanyloxy)-2-(4-methoxypheny)-5-methyl-

1 -tosy 1-py rrolidin-3-ol 484

no HQ, HO

Ts OTs Ts

OTBSP T B SOTBS

483 489 484

i) Displacement with Sodium Iodide.

A mixture of the mono-O-tosylate 483 (28 mg, 0.042 mmol, 1.0 eq) and sodium iodide (25 

mg, 0.17 mmol, 4.0 eq) in distilled acetone (2.5 ml) was refluxed for 20 h, then cooled to 

room temperature. Water (0.5 ml) was added and the product was extracted into diethyl 

ether ( 3 x 3  ml). The combined organic layers were washed with sodium thiosulfate 

solution ( 2 x 9  ml), saturated brine (9 ml) and dried to give the iodide 489 (26 mg, 100%) 

as an orange oil: Rf 0.60 (40% ethyl acetate/petroleum ether); Vmax/cm' 1 [CH2CI2] 3496 

(br), 2953 (s), 2928 (s), 2856 (s), 1613 (m), 1514 (s), 1463 (s), 1338 (s), 1178 (s), 1094 (s), 

840 (s), 811 (s) and 779 (s); 6H 0.00 (3H, s, SiMe), 0.10 (3H, s, SiMe), 0.75 (9H, s, t-Bu),

2.20 (3H, s, Ar-Me), 3.60 (3H, s, OMe), 3.60-3.70 (1H, m, CHaCHb), 3.85 (1H, dd, J  9.4 

and 3.7, CHaCHb), 4.00 (1H, app s, 3(5)-H), 4.15 (1H, dd, J  12.1 and 3.1, 4-H), 4.35 (1H, 

app s, 5(3)-H), 4.60 (1H, d, J  1.1, 2-H), 6.35 (2H, d, J  8.7, 2 x Ar-H), 6.80 (1H, d, J  8.2, 2 

x Ar-H), 7.0 (4H, 2 x d , 7  8.7 and 8.2, 4 x ArCH); 6C -4.6, -4.2 (both SiMe), 7.1 (CH2I), 

17.9 (C-(CH3)3), 21.4 (Ar-Me), 25.7 (/-Bu), 55.3 (OMe), 72.0, 72.8, 80.6, 85.8 (all CH),

113.0, 126.7, 128.7 (all ArCH), 128.9 (ArC), 131.0 (ArCH), 138.9, 142.3 and 159.0 (all 

ArC); m/z [APcI] 618 (M+ + H, 100%), 600 (28), 490 (18), 486 (55), 358 (80), 187 (82). 

[Found M* + H: 618.1208. C25H37lN0 5SSi requires M, 618.1201].

ii) Hydrogenolysis o f  Iodide

The crude iodide 489 (26 mg, 0.042 mmol) in methanol was subjected to standard 

hydrogenolysis conditions according to general procedure M for 19.5 h. Following 

purification of the residue by chromatography (15% ethyl acetate/petroleum ether) the 

methyl pyrrolidine 484 (6  mg, 27%) was obtained as a cream solid: m.p. 140-142°C; Rf 

0.55 (40% ethyl acetate/petroleum ether); Vmax/cm' 1 [CH2CI2] 3430 (s), 2954 (s), 2930 (s), 

2856 (s), 1613 (m), 1514 (s), 1463 (s), 1368 (m), 1178 (s), 856 (s), 838 (s) and 822 (s); 6H 

0.00 (3H, s, SiMe), 0.05 (3H, s, SiMe), 0.80 (9H, s, /-Bu), 1.50 (3H, d, J  6 .8, Me), 2.30 

(3H, s, Ar-Me), 3.70 (3H, s, OMe), 3.70-3.75 (1H, m, 4-H), 3.80 (1H, app. t, J2 .0 , 3-H),
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4.00-4.10 (1H, m, 2-H), 4.60 (1H, d, J  2.7, 5-CH), 6.50 (2H, d, J  8.8, 2 x Ar-H), 6.95 (2H, 

d, J  8.2, 2 x Ar-H), 7.05 (2H, d, J  8 .8, 2 x Ar-H) and 7.10 (2H, d, J  8.2,2 x Ar-H); 8c -4.8 

(SiMe2), 17.9 (C-(CH3)3), 18.8 (5-Me) 21.4 (Ar-Me), 25.6 (r-Bu), 55.3 (OMe), 63.2, 71.4,

82.9, 86.1 (all CH), 113.1, 126.9, 128.1, 130.2 (all ArCH), 130.3, 139.2, 142.1 and 159.0 

(all ArC); m/z [APcI] 492 (M+ + H, 100%). [Found M+ + H: 490.2237. CjsHwNOsSSi 

requires M, 490.2234].

ii) Hydrogenolysis o f  Iodide Method B

To the crude iodide 489 (30 mg, 0.049 mmol, 1.0 eq) in methanol (0.3 ml) was 

subjected to standard hydrogenolysis conditions according to general procedure M for 19.5 

h, except using Hiinigs base. The residue was chromatographed (20% ethyl 

acetate/petroleum ether) to give the methyl pyrrolidine 484 (8 mg, 15%, over 2 steps) as a 

cream solid. The data obtained was in accordance with that previously reported.

(2*S7?)-terf-butyl-3-hydroxy-l-phenyItetradec-4-yn-2-yIcarbamate 596

Ph 'H
NHBoc

598
NHBoc C9H19 

596

i) Method A

To a -20°C solution of 1-undecyne (79 mg, 0.10 ml, 0.52 mmol, 1.3 eq) in distilled diethyl 

ether (2 ml) was added a 2.5 M solution of n-BuLi dropwise (0.21 ml, 0.52 mmol, 1.3 eq). 

The resulting white suspension was stirred for 1 h at -20°C and was warmed to 0°C prior to 

the addition of a 1M solution of zinc chloride (0.56 ml, 0.56 mmol, 1.4 eq). The 

suspension was stirred for an additional hour at this temperature and then for an hour at 

room temperature. The suspension was re-cooled to -78°C and a solution of the aldehyde 

598 (lOOmg, 0.04 mmol, 1.0 eq) in diethyl ether (1 ml) was added dropwise. The reaction 

mixture was allowed to warm to room temperature over 16 h, re-cooled to -20°C and 

quenched by the addition of saturated aqueous ammonium chloride (1.1 ml). Water (1.6 

ml) was added, the two layers were separated and the aqueous phase was extracted with 

diethyl ether ( 3 x 5  ml). The combined organic solutions were dried and evaporated. The 

residue was purified by chromatography (10% ethyl acetate/ petroleum ether) to furnish the
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amino alcohol 596 (12 mg, 7%) as a mixture of diastereoisomers in the ratio 3:1, as a pale 

yellow oil: Rf 0.50 (40% ethyl acetate/petroleum ether); Vmax/cm'1 [Film] 2921 (s), 2855 

(s), 1693 (s), 1501 (s), 1454 (s), 1392 (s) and 1367 (s); 6H 0.80 (3H, 2 x t, J7.0  and 7.4,14- 

Me, both isomers), 1.10-1.35 (19H, m, /-Bu and 5 x CFbboth isomers), 1.40-1.50 (2H, m, 

7-CH2, both isomers), 2.10 (2H, app. td, J  7.1 and 1.6, 6-CH2, major isomer), 2.15 (2H, 

app. td, J  7.1 and 1.6, 6-CH2, minor isomer), 2.70-2.90 (2H, m, CH2-PI1, major isomer), 

2.90-3.05 (2H, m, CFfe-Ph, minor isomer), 3.85 (1H, br. res., 2-H, major isomer), 3.90-3.40 

(1H, m, 2-H, minor isomer), 4.25 (1H, br. res., 3-H, major isomer), 4.30 (1H, br. res., 3-H, 

minor isomer), 4.65-4.80 (1H, m, NH, both isomers) and 7.10-7.25 (5H, m, Ph, both 

isomers); 6c 14.2 (14-Me, both isomers), 18.7, 22.7 (both CH2, both isomers), 28.3 (/-Bu, 

both isomers), 28.6, 28.7, 29.0, 29.2, 29.3, 29.5, 29.6, 31.9, 36.8, 37.6 (all CH2, both 

isomers), 56.5, 56.8, 64.0, 64.9 (all CH, both isomers), 78.7 (C(CH3)3, both isomers), 79.6,

79.9, 87.0, 87.9 (all -O C -, both isomers), 126.4, 126.6, 128.5, 128.5, 129.2, 129.4 (all 

ArCH, both isomers), 137.6, 138.0 (both ArC, both isomers), 156.1 and 156.3 (both C=0, 

both isomers); m/z [APcI] 402 (M+ + H, 68%), 346 (100), 328 (38) and 117 (62); [Found 

M+ + H: 402.3004. C25H40NO3 requires M, 402.3003].

ii) Method B

To a -20°C suspension of 1-undecyne (916 mg, 1.20 ml, 6.01 mmol, 5 eq) and powdered 

molecular sieves (approx 200 mg) in tetrahydrofuran (10 ml) was slowly added a 2.5 M 

solution of n-BuLi (2.41 ml, 6.01 mmol, 5 eq). The suspension was stirred for a further 0.5 

h and then the reaction mixture was cooled to -50°C over a period of 10 mins. A solution 

of the aldehyde 598 (300 mg, 1.20 mmol, 1.0 eq) in tetrahydrofuran (3 ml) was added and 

the solution was stirred for 2 h. The reaction was quenched by the addition of pH 7 

phosphate buffer (10 ml) and the cold bath was removed. The suspension was filtered 

through a plug of celite and the solid was washed with ethyl acetate. The two layers were 

separated and the aqueous phase was extracted with ethyl acetate (3 x 10 ml). The 

combined organic solutions were dried and evaporated. The residue was purified by 

chromatography (20% ethyl acetate/ petroleum ether) to give the amino alcohol 596 (294 

mg, 61%). The data obtained was in accordance with that previously reported.
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tert-butyl 2-benzyI-5-nonyl-l//-pyrrole-l-carboxylate 599

NHBoc C9H

To a solution of the amino alcohol 5 9 6  (50 mg, 0.12 mmol) in dichloromethane (1 ml) was 

added 10% w/w silver nitrate on silica gel (21 mg, 0.012 mmol, 0.1 eq), according to 

general procedure O. The solution was stirred for 2 h and following the workup, furnished 

the pyrrole 5 9 9  (48 mg, 100%): R f  0.80 (40% ethyl acetate/petroleum ether); Vmax/cm'1 

[Film] 2962 (s), 2925 (s), 2852 (s), 2362 (m), 1739 (s), 1392 (m), 1370 (m) and 799 (s); 6H 

0.80 (3H, t, J  6.7, 9’-Me), 1.10-1.30 (12H, m, 6 x CH2), 1.35 (9H, s, /-Bu), 1.40-1.55 (2H, 

m, 2’-CH2), 2.70 (2H, t, J7 .7 , l ’-CH2), 4.05 (2H, s, CH2-Ph), 5.60 (1H, d, J3 .2 , 4-H), 5.75 

(1H, d, J  3.2, 3-H), 7.03 (2H, d, J  7.3, 2 x Ar-H), 7.10 (2H, app. t, J  7.3, Ar-H) and 7.22 

(2H, app. t, J  7.5, 2 x Ar-H); 8C 14.2 (9’-Me), 22.7 (CH2), 27.8 (/-Bu), 29.2, 29.4, 29.6,

29.6, 32.0, 35.8 (all CH2) only 8 evident, 83.4 (C-(CH3)3), 108.9, 111.6 (both =CH), 126.0, 

128.3, 128.6 (all ArCH), 133.5, 137.0, 140.3 (all C) and 150.3 (C=0); m/z [APcI] 384 (M* 

+ H, 8%), 328 (13), 285 (20), 110 (42) and 108 (100). [Found M* + H: 384.2895. 

C25H38N 02 requires M, 384.2897].

2-Benzyl-5-nonyl-lH-pyrrole 601

OH OH

NHBoc C gH ^ NH2 C9H19
596 600

i) Deprotection

To the tV-Boc protected amino alcohol 596 (47mg, 0.12 mmol) in dichloromethane (0.4 ml) 

was added trifluoroacetic acid (0.1 ml) following the method outlined in general procedure 

F to yield the amine 600 (30 mg, 86%) which was used instantaneously without 

purification.

Ph

601
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ii) Silver Catalysed Cyclisation

To the amine 600 (30 mg, 0.1 mmol, 1.0 eq) in anhydrous dichloromethane (1 ml) was 

added 10% silver nitrate on silica gel (34 mg, 0.21 mmol, 0.2 eq). The reaction was stirred 

at room temperature for 2 h in the absence of light. Following the work up described in 

general procedure O, the residue was purified using flash chromatography (30% ethyl 

acetate/petroleum ether) to yield predominantly the pyrrole 601 (12 mg, 43%) as a pale 

yellow oil. Rf 0.83 (40% ethyl acetate/petroleum ether); Vmax/cm"1 [Film] 3380 (br), 2924 

(s), 2835 (s), 1591 (m), 1494 (m), 1454 (s) and 764 (s); 8H 0.80 (3H, t, J6 .8 , Me), 1.20 

(12H, br. s., CH2 x  6), 1.40-1.55 (2H, m, 2’-CH2), 2.40 (2H, t, J 7.7, - l ’-CH2), 3.85 (2H, s, 

CH2-Ph), 5.60 (1H, app. t, J2 .7 , CH=), 5.70 (1H, app. t, J  2.7, CH=), 7.10-7.25 (5H, m, 

Ph) and 7.40 (1H, br. res., NH); 8C 14.2 (Me), 22.7, 27.8, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9,

34.2 (all CH2), 104.6, 106.3 (both =CH), 126.3, 128.6, 128.7 (all ArCH), 132.4 and 139.9 

(both C, one ArC missing); m/z [APcI] 284 (M+ + H, 100%). [Found M+ + H: 284.2376. 

C20H30N requires M, 284.2373].

(1SR) l-Phenyl-2-(nosylamino)tetradec-4-yn-3-oI 602

NHBoc C9H™ 

5 9 6

OH

NH2

6 0 0

CgH19 NHNs C9H19 

6 0 2

To an ice-cold solution of the crude amine 600 (101 mg, 0.33 mmol, 1.0 eq) in 

dichloromethane (2 ml) was carefully added triethylamine (37 mg, 0.05 ml, 0.37 mmol, 1.1 

eq) and the solution was stirred for 0.25 h. DMAP (5 mg) was added followed by a 

solution of 4-nitrobenzene sulfonyl chloride (75 mg, 0.34 mmol, 1.1 eq) in 

dichloromethane (1 ml). The ice-bath was removed and the reaction mixture was stirred 

for 19 h. A 2M hydrochloric acid solution (4 ml) was added and the resultant two layers 

were separated. The aqueous phase was extracted with dichloromethane ( 3 x 4  ml) and the 

combined dichloromethane solutions were dried and evaporated. The residue was purified 

(20% ethyl acetate/petroleum ether) to give the nosylate 602 (40 mg, 24%), as a yellow oil: 

Rf 0.58 (40% ethyl acetate/petroleum ether); 5h (major isomer) 0.80 (3H, t, J  6.8, Me),

1.10-60 (23H, m, /-Bu and 7-CH2), 2.05 (2H, app. td, J1 .2  and 1.7, 6-CH2), 2.60 (1H, dd, J
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14.0 and 7.2, CHaCHb), 3.05 (1H, dd, J  14.0 and 5.1, CH,CHb), 3.50 (1H, app septet, J  8.9 

and 5.1, 1-H), 4.45 (1H, app. s, 3-H), 4.80 (1H, d, J8 .9 , NH), 6.90 (2H, d, J  8.1,2 x Ar-H),

7.0-7.30 (3H, m, 3 x Ar-H), 7.60 (2H, d, J  8.8, 2 x Ar-H) and 8.05 (2H, d, J  8.8,2 x Ar-H); 

8c 14.2 (Me), 18.7, 22.7, 28.5, 29.0, 29.1, 29.3, 29.5, 31.9, 37.0 (all CH2), 60.8,65.0 (both 

CH), 76.9, 89.5 (both C=C), 124.0, 126.8, 128.0, 128.6, 129.1 (all ArCH), 136.9, and

145.7 (both ArC, only two ArC evident).
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2-benzyl-5-nonyl-l//-pyrrole 601

NHTs
604

i) Tosylation

The crude amine 600 (190 mg, 0.63 mmol) was tosylated using triethylamine and p-tosyl 

chloride according to general procedure G. The residue was purified by chromatography 

which failed to elute the product. The sulfonamide 604 was isolated in the methanol 

fraction (178 mg, 62%), together with some impurities in an approximate ratio of 4:1.5, 

which was used without further purification: Vmax/cm'1 [CH2CI2] 2930 (s), 2854 (s), 1606 

(m), 1496 (m), 1455 (m), 1174 (s), 815 (s), 749 (m) and 702 (s); 6H 0.70-0.85 (6H, m, Me, 

both isomers), 1.10-1.25 (24H, m, 12 x CH2, both isomers), 1.25-1.1.35 (2H, m, 7-CH2, 

major isomer), 1.35-1.50 (2H, m, 7-CH2, minor isomer), 1.95-2.05 (4H, m, 6-CH2, both 

isomers), 2.25 (6H, m, s, Ar-Me, both isomers), 2.75-2.95 (4H, m, CHaCHh-Ph. both 

isomers), 3.00-3.10 (4H, m, CHaCHb-Ph), both isomers), 3.40 (1H, app. q, J  7.0, 2-H, 

major isomer), 3.65 (1H, br. res, 2-H, minor isomer), 4.35 (2H, d, J  8.1, 3-H, both 

isomers), 7.00-7.25 (14H, m, Ph and 2 x Ar-H, both isomers) and 7.60 (2H, d, J  8.0, 2 x 

Ar-H, both isomers); 6c (major isomer) 14.2 (14-Me), 18.7 (CH2), 21.4 (Ar-Me), 22.7,

28.5, 29.2, 29.2, 29.3, 29.4, 29.4, 29.5, 35.3 (all CH2), 58.4, 61.6 (both CH), 126.2, 127.0,

128.7, 128.8, 129.7 (all ArCH), 135.3, 140.4 and 141.2 (all ArC); m/z [APcI] 302 (M^ + H, 

58%), 284 (32) and 82 (100).

ii) Silver cyclisation

The impure sulfonamide 604 (80 mg, 0.18 mmol, 1.0 eq) in dichloromethane (1 ml) was 

added 10% w/w silver nitrate on silica gel (149 mg, 0.088 mmol, 0.5 eq) and the 

suspension was stirred for 2 h, according to the procedure outlined in general method O. 

The NMR revealed cyclisation of the major diastereoisomer to furnish the deprotected 

pyrrole 601, together with the minor diastereoisomer in a ratio of 2:1 (54 mg). The 

reaction was repeated using a further 0.3 equivalents o f reagent for 2 h, but no further 

cyclisation was observed. The residue was purified (20% ethyl acetate/petroleum ether) to 

give i) the pyrrole 601 (13 mg, 37%) and i) the sulfonamide 604b (19 mg). The data 

obtained for the pyrrole 601 was in agreement with that previously reported. The
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sulfonamide 604b was characterised by: Rf 0.69 (40% ethyl acetate/petroleum ether); 8h 

0.80 (3H, t, J  6.8, Me), 1.10-1.40 (12H, m, 6 x CH2), 1.45-1.50 (2H, m, 7-CH2), 2.20 (1H, 

app. td, J7 .1  and 1.9, 6-CH2), 2.30 (3H, s, Ar-Me), 2.60 (1H, dd, J  13.9 and 7.7, CHaCHb- 

Ph), 2.80 (1H, dd, J  13.9 and 7.2, CHaCHb-Ph), 3.47 (1H, app. td, J7 .5  and 2.9, 2-H), 4.30 

(1H, br. d, J  1.9, 3-H), 4.80 (lH ,d, J8 .8 , NH), 6.85-6.95 (2H, m, 2 x Ar-H), 7.05-7.30 (5H, 

m, 5 x Ar-H) and 7.50 (2H, d, J  8.3, 2 x Ar-H).

2-Benzyl-5-nonyl-1-tosy I-1//-pyrrole 603

NHTs C9H19 
6 0 4 b 6 0 3

The syn diastereoisomer 604b (14 mg, 0.031 mmol, 1.0 eq) was treated with 10% by 

weight silver nitrate on silica gel (26 mg, 0.015 mmol, 0.5 eq) for 16 h according to 

general procedure O to yield a 4:1 mixture o f pyrrole 603 and starting material. The 

pyrrole xx was characterised by: 8h 0.80 (3H, t, J  6.7, Me), 1.10-1.30 (12H, m, 6 x CH2), 

1.45-1.55 (2H, m, 2’-CH2), 2.35 (3H, s, Ar-Me), 2.65 (2H, t, J7 .7 , l ’-CH2), 4.05 (2H, s, 

CH2-Ph), 5.60 (1H, d, J3 .2 , =CH), 5.80 (1H, d, J  3.2, =CH), 7.05-7.20 (7H, m, 7 x Ar-H) 

and 7.30 (2H, d, J  8.2, 2 x Ar-H).

/erf-butyl 2-(hydroxy m ethyl)-5-phenyl-pyrrole-l//-l-carboxy late 608

NHBoc Ph 

2 0 4 6 0 8

The acetylenic diol 204 (20 mg, 0.069 mmol) was subjected to silver cyclisation according 

to general procedure O for 1 h using 10% w/w silver nitrate on silica gel (23 mg, 0.14 

mmol, 0.2 eq) to give the pyrrole 608 (21 mg, 100%), as an orange oil. An analytical 

sample was prepared by filtering the residue through a plug of silica which showed: R f

301



Chapter 6: Experimental

0.58 (40% ethyl acetate/petroleum ether); vmax/crn' [CH2C12] 3368 (s), 2978 (s), 1746 (s), 

1605 (s) 1450 (s), 1370 (s), 759 (s) and 699 (s); 8H 1.10 (9H, s, /-Bu), 3.65 (1H, t, J  7.2, 

OH, exchanges with D20 ), 4.55 (2H, d, 77.2 , CH2), 6.05 (1H, d, J3.4,3-H ), 6.15 (1H, d, J

3.4, 4-H) and 7.15-7.30 (5H, m, Ph); 8c 27.2 (/-Bu), 58.2 (CH2), 84.7 (C-CH3)3), 112.3,

112.8 (both =CH), 127.1, 127.8, 128.7 (all ArCH), 131.8, 135.1, 136.3 (all C) and 151.0 

(C=0); m/z [APcI] 256 (M+ - H20 , 39%), 200 (100) and 156 (39). [Found M+ +NH,: 

291.1706. CisHttbfeO:) requires M, 291.1703],

tert-butyl 2-Methyl -5-phenyl-l//-pyrrole-l-carboxylate 609

/ A
 -

Ph NHBoc Boc
2 5 8  6 0 9

The alkyne 258 (62 mg, 0.23 mmol) was cyclised using 10% silver nitrate on silica gel 

(191 mg, 0.11 mmol, 0.5 eq) in anhydrous dichloromethane for 64 h as described in 

general procedure O. The residue was purified using columned chromatography (10% 

ethyl acetate/petroleum ether) to give the pyrrole 609, (27 mg, 48%) as a pale yellow oil: 

R f  0.68 (20% ethyl acetate/ petroleum ether); Vmax/cm'1 [Film] 2979 (s), 2927 (s), 1741 (s), 

1616 (m), 1445 (s), 1393 (s), 1367 (s), 787 (s), 758 (s) and 699 (s); SH 1.20 (9H, s, t-Bu),

2.40 (3H, s, CH3), 5.90 (1H, app. dd, J 3.2 and 0.8, 3-H), 6.0 (1H, d, J3.2 , 4-H) and 7.15-

7.20 (5H, m, Ph); Sc 15.4 (Me), 27.4 (/-Bu), 83.4 (C-(CH3)3), 110.3, 112.2 (both =CH),

126.6, 127.8 and 128.4 (all ArCH), 133.1, 134.8 and 135.5 (all C) and 150.3 (C=0); m/z 

[APcI] 258 (M^ + H, 72%), 202 (100) and 158 (63). [Found M+ + H: 258.1490. Ci6H2o02N 

requires M, 258.1489].
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/erf-butyl 2-butyI-5-m ethyI-///-pyrrole-l-carboxylate 610

NHBoc

2 6 2  6 1 0

The alkyne 262 (41 mg, 0.16 mmol) was cyclised using silver nitrate on silica gel (136 mg, 

0.08 mmol, 0.5 eq) in anhydrous dichloromethane for 64 h as described in general 

procedure O. The residue was purified using columned chromatography (petroleum ether) 

to give the pyrrole 610 (18 mg, 50%) as a pale yellow oil: Rf 0.73 (40% ethyl acetate/ 

petroleum ether); Vmax/cm'1 [Film] 3456 (br), 2928 (s), 2850 (s), 1738 (s), 1455 (s), 1369 

(s) and 825 (s); 5H0.85 (3H, t, J  7.3, 4 ’Me), 1.25-1.40 (2H, m, 3’-CH2), 1.4-1.55 (11H, m, 

/-Bu and 2’-CH2) 2.30 (3H, s, 5-Me), 2.70 (2H, t, J7 .7 , l ’-CH2) and 5.70 (2H, app. s, 3-H 

and 4-H); 5c 14.1, 16.5 (both Me), 22.6 (CH2), 28.1 (/-Bu), 29.4 and 31.4 (both CH2), 83.2 

(C-(CH3)3), 109.0, 110.1 (both =CH), 131.2 and 136.2 (both C) and 150.5 (C=0); m/z 

[APcI] 182 (M+ -55, 100%) and 236 (12). Accurate HRMS data could not be obtained.

Reduction of (2JW',5itS)-Methyl 3-hydroxy-2-(tosylamino)non-4-ynoate 144A

OH O OH O

NHTsNHTs

1 4 4 a  6 1 8

i) Method A

To a 1.75:1 mixture of the aldol product 144a and /V-tosyl glycine 156 (100 mg, 0.28 

mmol, 1.0 eq) in dry tetrahydrofuran (5 ml) at -78°C was added a 1.0 M solution of 

DIBAL in toluene (0.85 ml, 0.85 mmol, 3.0 eq) over a period of 20 min. The solution was 

stirred for a further 2h and then the excess reagent was quenched by the slow addition of 2 

M hydrochloric acid. The reaction mixture was allowed to warm to 0°C the two layers 

were separated and the aqueous phase was extracted with diethyl ether ( 3 x 1 0  ml). The 

combined organic phases were dried and evaporated. The NMR of the crude product
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revealed no reaction had occurred so the reaction was repeated with the same equivalents 

but stirred for 16 h at room temperature. The NMR of the crude product showed partial 

reduction of the methyl ester so the reaction was repeated using another 4 equivalents of 

Dibal and refluxing the mixture for 4 hours and quenched as previously described. The 

residue was purified (40% ethyl acetate/ petroleum ether) to give the iso-butyl ester 618 

(20 mg, 25%, over 3 steps), as a pale yellow oil: Rf 0.42 (40% ethyl acetate/petroleum 

ether); SH 0.75 (6H, d, J  6.8, 2 x Me), 0.85 (3H, t, J  7.2, 9-Me), 1.25-1.40 (4H, m, 2 x 

CH2), 1.65-1.70 (1H, m, CH(Me)2), 2.00-2.10 (2H, m, CH2), 2.35 (3H, s, Ar-Me), 2.70 

(1H, br. d, J  10.7, OH), 3.65 (1H, dd, J  10.5 and 6.6, CHaCHbO), 3.72 (1H, dd, J  10.5 and

6.6, CHaCHbO), 4.05 (1H, dd, J 9 .5  and 3.7, 2-H), 4.60 (1H, br. res., 3-H), 5.45 (1H, d, J

9.5, NH), 7.20 (2H, d, J8 .4 , 2 x Ar-H) and 7.70 (2H, d, J8 .4 , 2 x Ar-H).

Reduction of (2RS,3RS)-Methyl 3-hydroxy-2-(tosylamino)non-4-ynoate 144a

OH O

NHTs
OMe

NHTs

H ^ « ^ y ^ OH
T  NHTs 

Bu

617

i) Method B
To a solution of Lithium aluminium hydride (21 mg, 0.57 mmol, 2.0 eq) in tetrahydrofuran 

(2 ml) was cautiously added a 1.75:1 mixture of the aldol product 144a and methyl A-tosyl 

glycine 152 (100 mg, 0.28 mmol, 1.0 eq) in tetrahydrofuran (2 ml). The reaction was 

monitored by tic and was judged to be complete after 4 h. The reaction was quenched by 

the addition of a 1 M solution of sodium hydroxide (2 ml), the solid was removed by 

filtration and was washed with dichloromethane. The layers were separated, and the 

aqueous phase was extracted with dichloromethane ( 3 x 5  ml). The combined organic 

phases were dried and evaporated to yield the alcohol 619 (19 mg, 30%), as a pale yellow 

oil: Rf 0.11 (40% ethyl acetate/petroleum ether); Vmax/cm'1 [CH2C12] 3862 (br), 2937 (s), 

1331 (m), 1158 (s), 1092 (s) and 815 (s); 6H0.80 (3H, t, J7.2 , 9-Me), 1.20-1.40 (4H, m, 2 

x CH2), 2.10 (2H, app. td, J  7.1 and 1.8, 6-CH2), 2.30 (3H, s, Ar-Me), 3.25 (1H, br. res., 2- 

H), 3.50 (1H, dd, J  11.6 and 4.1, CHgHb), 3.95 (1H, dd, J  11.6 and 3.7, CUMh), 4.40 (1H, 

br, res., 3-H), 5.80 (1H, br, res., NH), 7.20 (2H, d, JS.2, 2 x Ar-H), and 7.70 (2H, d, J  8.2,
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2 x Ar-H); 8c 13.6 (Me), 18.4 (CH2), 21.6 (Ar-Me), 22.0, 30.5 (both CH2), 58.0 (CH), 62.2 

(CH2OH), 64.7 (CH), 77.0, 88.8 (both CsC), 127.1, 129.8 (both ArCH), 137.3 and 143.7 

(both ArC); m/z [APcI] 326 (M+ + H, 33%), 308 (76) and 278 (100). [Found M* + NH,: 

343.1686. C16H27N2O4S requires M, 343.1686].

ii) Method C

Lithium aluminium hydride (21 mg, 0.57 mmol, 2 eq) was dissolved in tetrahydrofuran (2 

ml) and to the resultant solution was cautiously added a solution of 1.75:1 mixture of the 

aldol product 144a and methyl A^-tosyl glycinate 152 (100 mg, 0.28 mmol, 1.0 eq) in 

tetrahydrofuran (2 ml). The solution was stirred for 4 h after which time Lithium 

aluminium hydride (11 mg, 0.29 mmol, 1.0 eq) was added and the solution was stirred for 

16 h. Ethyl acetate (1 ml) was added, followed by water (1 ml) and 10% sulphuric acid (1 

ml). The aqueous phase was extracted with diethyl ether ( 3 x 5  ml) and the combined 

organic phases were dried and evaporated. The NMR of the crude product revealed a 1:1 

mixture of product and starting material. The substrate was treated with a further two 

equivalents of Lithium aluminium hydride (21 mg) and stirred for 16 h and quenched as 

previously described. The residue was purified (20% ethyl acetate/petroleum ether) to give

i) the allene 617 (6 mg, 10%) and ii) the alcohol 619 (40 mg, 62%). The data obtained the 

allene 617 is reported later.

Hi) Method D

To a solution of the ester 144a (100 mg, 0.28 mmol, 1.0 eq) in absolute ethanol (5 ml) was 

added sodium borohydride (32 mg, 0.84 mmol, 3.0 eq) in one portion. The reaction 

mixture was stirred for 16.5 h at room temperature and then the solvent was evaporated, 

water (2 ml) was added and the product was extracted into diethyl ether ( 3 x 2  ml). The 

organic solutions were dried and evaporated to yield the alcohol 619 (68 mg, 74%) as a 

pale yellow oil. The data obtained was identical to that previously reported.
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Reduction of (2£ff,Ji£S)-2-(tosylainino)non-4-yne-l,3-diol 619

NHTs NHTs
r
Bu

"OH

616a

NHTs

617

The alkyne 619 (51 mg, 0.16 mmol) was reduced using a 65% w/w solution of Red-Al in 

toluene (0.24 ml, 0.78 mmol) as described in general procedure H. The residue was 

purified using column chromatography (30% ethyl acetate/petroleum ether) to give i) the 

allene 617 (12 mg, 25%) and ii) the (E)-olefin 616a (36 mg, 72%), both as yellow oils. 

The allene 617 was characterised by: Rf 0.32 (40% ethyl acetate/petroleum ether); Vmax/cm' 

1 [CH2C12] 3373 (br), 2926 (s), 1967 (m), 1599 (s), 1454 (s), 1328 (m), 1160 (s) and 814 

(s); 8h 0.80-0.90 (3H, m, 9-Me), 1.10-1.30 (4H, m, 2 x CH2), 1.85-1.95 (2H, m, 6-CH2),

2.00 (1H, br. res., OH), 2.35 (3H, s, Ar-Me), 3.40-3.60 (2H, m, 1-CH2), 3.70-3.80 (1H, m, 

2-H), 4.70 (1H, A ,J  7.7, NH), 4.85-4.95 (1H, m, 3-H), 5.10 (1H, app. qd, J  6.7 and 3.1, 5- 

H), 7.20 (2H, d, J  8.2, 2 x Ar-H) and 7.65 (2H, d ,J 8 .2 ,2 x Ar-H); 8c 13.6,21.6 (both Me),

22.2, 28.2, 31.1 (all CH2), 53.8. (CH), 65.5 (CH2OH), 89.7, 96.4 (both =C), 127.3, 129.7 

(both ArCH), 137.1, 143.7 (both ArC) and 202.3 (= -); m/z [APcI] 310 (M+ + H, 70%), 

292 (65), 278 (10), 172 (57), 155 (32), 139 (82) and 121 (100). The (E)-olefin 616a was 

characterised by: Rf 0.16 (40% ethyl acetate/petroleum ether); V m ax/cm '1 [CH2CI2] 3516 

(br), 2926 (s), 1328 (s), 1158 (s) and 815 (s); 8H0.80 (3H, t, J7 .1 , 9-Me), 1.15-1.30 (4H, 

m, 2 x CH2), 2.35 (3H, s, Ar-Me), 2.40-2.60 (2H, m, 2 x OH, exchanges with D2O), 3.05- 

3.15 (1H, m, 2-H) 3.40 (1H, dd, J  11.6 and 3.5, CHaHb), 3.75 (1H, dd, J  11.6 and 3.5, 

CHaHb), 4.10 (1H, br. res., 3-H), 5.25 (1H, dd, J  15.5 and 6.3, 4-H), 5.45 (1H, d, J 7.8, NH, 

exchanges with D2O), 5.65 (1H, dt, J  15.4 and 6.6, 5-H) 7.25 (2H, d, J  8.2, 2 x Ar-H), and 

7.70 (2H, d, J  8.2, 2 x Ar-H); 8C 13.9, (Me), 21.2 (CH2), 21.6 (Ar-Me), 31.1, 31.9 (both 

CH2), 57.8 (CH), 62.0 (CH2OH), 74.6 (CH), 127.1, (ArCH), 128.1 (=CH), 129.8 (ArCH),

134.6 (=CH), 136.3 and 142.6 (both ArC); m/z [APcI] 328 (M+ + H, 70%) and 117 (100). 

[Found M* + H: 328.1585. C16H26NO4S requires M, 343.1582].
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Hexadec-2-ynal 614

o

616 614

1 -pentadecyne 615 (10.0 g, 48.0 mmol) was condensed with N, A-dimethylformamide 

(7.00 g, 7.4 ml, 96.0 mmol) according to general procedure R to give the aldehyde 614 (11 

34 g, 100%), as an orange oil: Rf 0.68 (25% ethyl acetate in petroleum ether); Vm /̂cnT1 

[Film] 2928 (s), 2854 (s), 2278 (m), 2201 (s), 1674 (s), 1467 (m), 1388 (w) and 721 (w); 

SH 0.80 (3H, t, J  6.8, Me), 1.10-1.40 (22H, m, 10 x CH2), 1.50 (2H, app quin, J 7.3,4- 

CH2), 2.30 (2H, t, J  7.2, 3-CH2) and 9.10 (1H, s, CHO); 6c 14.1 (Me), 19.0, 22.7, 27.5, 

28.8, 29.0, 29.4, 29.4, 29.6, 29.6, 29.7, 31.9 (all CH2, only 11 visible), 81.6, 99.0 (both 

C=C) and 176.9 (CH). No data was reported in the literature14

(2/?5',J/fiS)-Methyl-3-Hydroxyl-2-(tosylammo)octadec-4-ynoate 613

C02Me
NHTs

614 613

Methyl A-tosyl glycinate 152 (1.72 g, 7.07 mmol) was reacted with hexadec-2-ynal 614 

(2.00 g, 7.46 mmol) according to general procedure C. The residue was chromatographed 

(20% ethyl acetate/petroleum ether) to furnish the amino alcohol 613 (1.61 g, 47%), as an 

orange solid: m.p. 77-78°C; Rf 0.39 (40% ethyl acetate in petroleum ether); Vmax/cm'1 2922 

(s), 2853 (m), 1744 (m), 1436 (m), 1340 (m), 1164 (s) and 815 (w); 6H0.80 (3H, t,76 .8 , 

18-Me), 1.10-1.30 (20H, m, 10 x CH2), 1.35 (2H, app. quin, Japprox- 7.0, 7-CH2), 2.05 (2H, 

td, J  7.0 and 1.9, 6-CH2), 2.35 (3H, s, Ar-Me), 2.65 (1H, d J  10.5, OH, exchanges with 

D20), 3.50 (3H, s, C 0 2Me), 4.05 (1H, dd, J  9.6, 3.7, 2-H), 4.55-4.60 (1H, m, 3-H), 5.45 

(1H, d, J  9.6, NH, exchanges with D20), 7.20 (2H, d, 78.2, 2 x ArCH), 7.65 (2H, d, 78.2, 

2 x ArCH); 6C 14.1 (18-Me), 18.6 (CH2), 21.6 (Ar-Me), 22.7, 28.3, 28.8, 29.1, 29.4, 29.5,

29.7, 29.7, 31.9 (all CH2, only 9 visible), 52.9 (C 02Me), 60.7, 63.1 (both CH), 75.4, 89.1 

(both C=C), 127.4, 129.8 (both ArCH), 136.3, 144.0 (both ArC) and 168.5 (0=0); m/z
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[APcI] 480 (M+ + H, 44%), 462 (35), 291 (30), 244 (100), 184 (93) and 155 (30). [Found 

M* + H: 480.2277. C26H42N 0 5S requires M, 480.2777],

(2SR, 3/£S)-2-(tosylamino)octadec-4-yne-l,3-diol 623

NHTs NHTs

613 623

To an ice-cold solution of the ester 613 (84 mg, 0.18 mmol, 1.0 eq) in absolute ethanol (1 

ml) was added sodium borohydride (13 mg, 0.35 mmol, 2.0 eq) in one portion. The ice- 

bath was removed and the reaction mixture was stirred for 16 h. The solvent was 

evaporated, and to the residue was added water (2 ml) and diethyl ether (2 ml). The 

resultant two layers were separated, and the aqueous phase was extracted with diethyl ether 

( 3 x 2  ml). The combined organic layers were dried and evaporated to yield the diol 623 

(61 mg, 77%) as a pale yellow oil: Rf 0.35 (40% ethyl acetate in petroleum ether); vmax/cm' 

1 [CH2C12] 3476 (br), 2236 (m), 1598 (m), 1462 (s), 1332 (s), 1160 (s), 1050 (s) and 815 

(m); 8h 0.80 (3H, t, J  6 .6, 18-Me), 1.10-1.30 (20H, m, 10 x CH2), 1.35-1.45 (2H, m, 7- 

CH2), 2.10 (2H, t, J  7.1, 6-CH2), 2.35 (3H, s, Ar-Me), 3.25 (1H, app. quart, Japprox 3.5, 2- 

H), 3.50 (1H, dd, J  11.6 and 4.2, CHaCHb), 3.95 (1H, dd, J  11.6 and 3.5, CHaCHb), 4.35 

(1H, br. res., 3-H), 5.90 (1H, d, J  8.03, NH), 7.20 (2H, d, J  8.0, 2 x Ar-H), 7.70 (2H, d, J

8.0, 2 x Ar-H); 5c 14.2 (18-Me), 18.7 (CH2), 21.6 (Ar-Me), 22.7, 28.462, 28.5, 29.0, 29.1,

29.4, 29.5, 29.7, 29.7, 31.9 (all CH2, only 10 visible), 57.9 (CH), 62.3 (CH2), 64.8 (CH),

77.2, 88.9 (both C=C), 127.1, 129.9 (both ArCH), 137.3 and 143.8 (both ArC); m/z [APcI] 

452 (M+ + H, 100%), 434 (33) and 404 (21). [Found M+ + H: 452.2834. C25H42N 04S 

requires M, 452.2829].
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Reduction of amino alcohol 623

W h e r e  R =  C 13H 27
NHTs

NHTs NHTs

The alcohol 623 (61 mg, 0.14 mmol) was reduced using Red-Al (0.68 mmol, 0.21 ml) as 

described in general procedure H to give i) the alkene 624 (31 mg, 51%) as a colourless oil 

and ii) the allene 625 (5mg, 8%) as a pale yellow oil. The E-olefin 624 was characterised 

by: Rf 0.16 (40% ethyl acetate/petroleum ether); Vm^/cnT1 [CH2CI2] 3334 (br), 2922 (s), 

1600 (m), 1463 (s), 1264 (s), 1159 (s), 964 (s), 849 (m) and 815 (s); 8H 0.80 (3H, t, J6 .8 , 

18-Me), 1.10-1.30 (22H, m, 11 x CH2), 1.85-1.95 (1H, m, 6-CH2), 2.35 (3H, s, Ar-Me), 

3.10 (1H, app. quart, Japprox- 3.7, 2-H), 3.45 (1H, dd, J  11.6 and 3.7, CHaCHb), 3.45 (1H, 

dd, J 11.6 and 3.4, CHaCHb), 4.10 (1H, br. t, .Approx. 5.0, 3-H), 5.25 (1H, dd, J  15.4 and 6.2, 

4-H), 5.60 (1H, td, J  15.4 and 6.8, 5-H), 7.20 (2H, d, J  8.2, 2 x Ar-H) and 7.70 (2H, d, J

8.2, 2 x Ar-H); 8C 14.2 (18-Me), 21.6 (Ar-Me), 22.7, 29.0, 29.3, 29.4, 29.5, 29.6, 29.7,

29.7, 31.9, 32.3 (all CH2, only 10 visible), 57.8 (CH), 62.0 (1-CH2), 74.6 (CH), 127.1 

(ArCH), 128.0 (=CH), 129.8 (ArCH), 134.7 (=CH), 137.3 and 143.7 (both ArC). LRMS 

failed to produce a molecular ion. No literature data was recorded for the alkene 624.

The allene 625 was characterised by: Rf 0.38 (40% ethyl acetate/petroleum ether); 

vmax/cm'1 [CH2CI2] 3500 (br), 3280 (br) 2924 (s), 2853- (s), 1965 (m) 1599 (m), 1466 (s), 

1329 (s), 1161 (s) and 814 (m); 8H0.80 (3H, t, ,76.8, 18-Me), 1.20 (1H, app. s, 11 x CH2), 

1.80-1.90 (2H, m, 6-CH2), 2.20 (1H, br. res., OH, exchanges with D20), 2.35 (3H, s, Ar- 

Me), 3.45-3.55 (1H, m, CHaCHb), 3.55-3.65 (1H, m, CHaCHb), 3.70-3.80 (1H, m, 2-H), 

4.75-4.95 (2H, m, 3-H and NH), 5.10 (1H, app. qd, J  6.1 and 3.1, 5-H), 7.20 (2H, d, .78.3, 

2 x Ar-H) and 7.70 (2H, d, J  8.3, 2 x Ar-H); 8H (D20  shake) 0.80 (3H, t, .76.8, 18-Me),

1.10-1.25 (1H, app. s, 11 x CH2), 1.80-1.90 (2H, m, 6-CH2), 2.35 (3H, s, Ar-Me), 3.55 

(1H, dd, J  11.4 and 6.5, CHaCHb), 3.55 (1H, dd, .7 11.4 and 4.1, CHaCHb), 3.75-3.80 (1H, 

m, 2-H), 4.80-4.90 (1H, m, 3-H), 4.95-5.05 (1H, qd, J  6.0 and 2.9, 5-H), 7.20 (2H, d, J  8.2, 

2 x Ar-H) and 7.70 (2H, d, J  8.2, 2 x Ar-H); 6C 14.2 (18-Me), 21.6 (Ar-Me), 22.7, 28.5,

29.1, 29.2, 29.4, 29.5, 29.6 29.7, 29.7, 31.9 (all CH2, only 10 visible), 54.2 (2-CH), 65.4 

(CH2), 89.5, 95.6 (both =CH), 127.3, 129.6 (both ArCH), 137.4, 143.5 (both ArC) and

202.6 (='=). LRMS failed to produce a molecular ion.
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Detosylation of (£',2»S7?,.?/?4S)-2-(tosyIammo)octadec-4-ene-l,3-diol 624

OAc

"OAc
NHTs NHTs

624 627

i) Reduction Using Sodium Napthalenide

Sodium (100 mg, 4.35 mmol, 39.5 eq) was added in small pieces to a solution of 

napthalene (700 mg, 5.46 mmol, 49.5 eq) in anhydrous DME (2.9 ml) and the solution was 

stirred for 3 h at ambient temperature to generate a dark green solution. In a separate flask 

an 8:1 mixture of diastereoisomers (anti.syn) o f Af-tosyl sphingosine 624 (50 mg, 0.11 

mmol, 1.0 eq) in anhydrous DME (1.46 ml) was cooled to -78°C and to this was added the 

sodium naphthalenide solution via cannula, until the green colour persisted. The solution 

was stirred for an additional 0.5 h, and then the cold bath was removed. Saturated aqueous 

sodium bicarbonate (6 ml) was added, the product was extracted into chloroform ( 3x5  ml) 

and the combined organic solutions were dried and evaporated.

ii) Acetate Formation

The crude product was reacted with acetic anhydride (3 drops) in pyridine for 88 h 

according to general procedure K. The residue was purified by chromatography 

(petroleum ether) to elute the naphthalene and then the polarity was increased (20% ethyl 

acetate/petroleum ether) to yield the diacetate 627 (34 mg, 57%), as a 8:1 mixture of 

diastereoisomers, as a pink oil: Rf 0.44 (40% ethyl acetate/petroleum ether); 8h (anti 

diastereoisomer) 0.80 (3H, t, J  6.8, Me), 1.10-1.25 (24H, m, 12 x CH2), 1.75 (3H, s, OAc), 

1.80 (3H, s, OAc), 2.35 (3H, s, Ar-Me), 3.55-3.65 (1H, m, CHN), 3.85 (1H, dd, J 11.6 and

4.9, CHaCHb), 4.05 (1H, dd, J  11.6 and 6.4, CHaCHb), 4.90 (1H, d, J  8.8, NH), 5.05 (1H, 

dd, J 13  and 4.8, CHO), 5.15 (1H, dd, J  15.2 and 7.3, =CH), 5.65 (1H, dt, J  15.2 and 6.7, 

=CH), 7.25 (2H, d, J  8.2, 2 x Ar-H) and 7.65 (2H, d, J  8.2, 2 x Ar-H); 8C 14.2 (Me), 20.6,

21.0, 21.5 (Ar-Me and 2 x COCH3), 22.7, 28.7, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 32.4 (all 

CH2, only 9 visible), 54.9 (CH), 62.6 (CH2), 73.5 (CH), 122.8 (=CH), 127.2, 129.7 (both 

ArCH), 137.9 (=CH), 169.9 and 170.7 (both C=0), no ArC evident.

310



Chapter 6: Experimental

(2£ff,JJ($)-terf*butyl-13-dihydroxyoctadec-4-yn-2-ylcarbamate 629

■OO2M0
NHBoc NHBoc

i) Aldol reaction

Hexadec-2-ynal 614 (1.0 g, 4.23 mmol) was condensed with Methyl A-Boc glycinate 162b 

(667 mg, 3.53 mmol) according to general procedure C to give an inseparable mixture of 

the amino alcohol 628 and methyl A-Boc glycinate 162b. The amino alcohol 628 was 

characterised by: Rf 0.54 (40% ethyl acetate/petroleum ether); 8h 0.80 (3H, t, J  6.9, 18- 

Me), 1.20 (22H, s, 11 x CH2), 1.40 (9H, s, t-Bu), 2.10 (2H, app. td, J7 .0  and 1.8, 6-CH2),

3.40 (1H, br. d, J6 .7 , OH, exchanges with D20), 3.70 (3H, s, C 02Me), 4.50 (1H, br. res., 

2-H), 4.70 (1H, br. res., 3-H), 5.40 (1H, br. d, J  8.2, NH); 8C 14.1 (18-Me), 18.6, 22.7,

28.2, 28.3, 28.4, 28.8, 29.1, 29.3, 29.5, 29.6, 29.7, 31.9 (all CH2), 52.6 (C02Me), 58.8, 63.6 

(both CH), 76.1 (C=C), 80.6 ((CH3)3-C), 88.0 (C=C), 156.2, 169.8 (both C=0); m/z [APcI] 

426 (M+ + H, 39%), 370 (80), 352 (39), 259 (30) and 134 (100).

ii) Sodium borohydride reduction

To a 1:1.15 mixture of methyl A-Boc glycinate 162b and the ester 628 (148 mg, 0.35 

mmol, 1.0 eq) in absolute ethanol (5 ml) was added sodium borohydride slowly (26 mg,

0.70 mmol, 2.0 eq) and the reaction was stirred for 16 h. The solvent was evaporated and 

the residue was partitioned between water (2 ml) and ether (2 ml). The two phases were 

separated and the aqueous phase was extracted with ether ( 3 x 2  ml) to give the amino 

alcohol 629 (52 mg, 50%); Rf 0.22 (40% ethyl acetate/petroleum ether); vmwJ cm l [CH2C12] 

3420 (br), 2925 (s), 2853 (s), 1694 (s), 1466 (m), and 1367 (s); 5H 0.80 (3H, t, J  6.8, 18- 

Me), 1.20 (22H, br s, 10 x CH2), 1.35-1.50 (11H, m, t-Bu and CH2), 2.15 (1H, td, J7.2  and

1.9, 6-CH2), 2.45 (1H, br. res., OH, exchanges with D20), 2.90 (1H, br. res., OH, 

exchanges with D20), 3.70 (2H, br. res., CH2OH), 4.05 (1H, br. res., 2-H), 4.50 (1H, br. 

res., 3-H) and 5.25 (1H, br. d, .7 6.23, NH); 8C 14.2 (18-Me), 18.7, 22.7, 28.4, 28.5, 28.9,

29.1, 29.4, 29.5, 29.7, 29.7, 31.9 (all CH2), 55.5 (CH), 63.0 (CH2), 64.9 (CH), 77.8 

((CH3)3-C), 80.1, 88.4 (both C=C); m/z [APcI] 398 (M+ + H, 100%).
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(4SR,5RS)-Methyl 2,2-DimethyI-5-(pentadec-l-ynyl)-3-tosyIoxazolidme-4-carboxylate

633

613

OH

NHTs

'CO2M6

633

To a 6:2 mixture of the amino alcohol 613 and Methyl A-tosyl glycine 156 (100 mg, 0.21 

mmol, 1.0 eq) in anhydrous toluene (2 ml) was added 2,2-dimethoxypropane (0.51 ml, 

4.17 mmol, 20 eq) and catalytic PPTS. The reaction mixture was then stirred at 70°C for 

24 h. The solvent was evaporated and the residue was chromatographed (10% ethyl 

acetate/ petroleum ether) to give the acetyl 633 (41 mg, 85%, 44% conversion) as a pale 

yellow oil together with some starting material 613 (42 mg, 49% recovered). The acetyl 

633 was characterised by: Rf 0.64 (40% ethyl acetate/petroleum ether); vmax/cm-1 [CH2CI2] 

2925 (s), 2854 (s), 1761 (s), 1598 (m), 1495 (m), 1457 (s), 1436 (s), 1348 (s), 1165 (s), and 

815 (s); 8h 0.80 (3H, t, J6 .8 , Me), 1.10-1.30 (20H, m, 10 x CH2), 1.35-1.45 (2H, m, CH2),

1.55 (3H, s, 2-Me), 1.75 (3H, s, 2-Me), 2.05-2.15 (2, m, l ’-CH2), 2.35 (3H, s, Ar-Me), 3.45 

(3H, s, C 02Me), 4.30 (1H, d, J6.5 ,  4-H), 4.80 (1H, app. dt, J  6.5 and 1.9, 5-H), 7.20 (2H, 

d, J  8.0, 2 x Ar-H) and 7.65 (2H, d, J  8.0, 2 x Ar-H); 5C 14.1 (Me), 18.7 (CH2), 21.5 (Me),

22.4 (CH2), 26.2, 27.2 (both Me), 27.7, 28.2, 28.6, 28.8, 29.1, 29.4, 29.6, 29.6, 29.7, 31.9 

(all CH2), 52.1 (C02Me), 63.5, 67.3 (both CH), 71.6, 90.8, 98.8 (all C), 129.6, 127.7 (both 

ArCH), 137.1, 143.9 (both ArC) and 168.7 (C=Q).
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A p p e n d ix

Appendix

X-ray data

I, OAc

N/  ' 'CG2rPh"‘ N ,C° 5Me 
Ts

308a

\

T a b l e  1 .  C r y s t a l  d a t a  a n d  s t r u c t u r e  r e f i n e m e n t  f o r  0 2 DWK7 .

I d e n t i f i c a t i o n  c o d e  

E m p i r i c a l  f o r m u l a  

F o r m u l a  w e i g h t  

T e m p e r a t u r e  

W a v e l e n g t h  

C r y s t a l  s y s t e m  

S p a c e  g r o u p  

U n i t  c e l l  d i m e n s i o n s  

9 2 . 6 4 3 6 ( 1 6 )  d e g .  

d e g .

V o l u m e

s 9 2

C 2 1  H 2 2  I  N 0 6  S

5 4 3 . 3 6

1 5 0 ( 2 )  K

0 . 7 1 0 7 3  A

M o n o c l i n i c

P 2 ( l ) / n

a  =  6 . 8 4 0 9 ( 2 )  A  a l p h a  =  9 0  
b  =  1 5 .  1 4 4 8  ( 5 )  A  b e t a  =

c  =  2 1 . 7 4 0 5 ( 6 )  A  g a m m a  =  9 0

2 2 5 0 . 0 1 ( 1 2 )  A A3

d e g .

1
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z

D e n s i t y  ( c a l c u l a t e d )

A b s o r p t i o n  c o e f f i c i e n t  

F ( 0 0 0 )

C r y s t a l  s i z e

T h e t a  r a n g e  f o r  d a t a  c o l l e c t i o n  

I n d e x  r a n g e s  

R e f l e c t i o n s  c o l l e c t e d  

I n d e p e n d e n t  r e f l e c t i o n s  

M a x .  a n d  m i n .  t r a n s m i s s i o n  

R e f i n e m e n t  m e t h o d  

D a t a  /  r e s t r a i n t s  /  p a r a m e t e r s  

G o o d n e s s - o f - f i t  o n  F A2  

F i n a l  R i n d i c e s  [ I > 2 s i g m a ( I ) ]

R i n d i c e s  ( a l l  d a t a )

L a r g e s t  d i f f .  p e a k  a n d  h o l e
A

T a b l e  2 .  A t o m i c  c o o r d i n a t e s  ( x  1 0 A4 )  a n d  e q u i v a l e n t  i s o t r o p i c  
d i s p l a c e m e n t  p a r a m e t e r s  ( A A2  x  1 0 A3 )  f o r  0 2 D W K 7 .  U ( e q )  i s

d e f i n e d
a s  o n e  t h i r d  o f  t h e  t r a c e  o f  t h e  o r t h o g o n a l i z e d  U i j  t e n s o r .

x  y  z  U ( e q )

1 ( 1 ) - 7 6 8  ( 1 ) - 1 8 5 9  ( 1 ) 2 6 7 6 ( 1 ) 2 9  ( 1 )
S ( 1 ) 3 2 7 2  ( 2 ) 1 0 3 7  ( 1 ) 3 0 5 8  ( 1 ) 2 5 ( 1 )
0 ( 1 ) 3 1 2 9 ( 5 ) 1 3 8 7  ( 2 ) 2 4 4 9 ( 2 ) 3 4 ( 1 )
0 ( 2 ) 5 1 3 7 ( 5 ) 7 9 7 ( 2 ) 3 3 3 2 ( 2 ) 3 0 ( 1 )
0 ( 3 ) - 5 4 4  ( 4 ) 1 0 5  ( 2 ) 4 1 0 4  ( 1 ) 2 4 ( 1 )
0 ( 4 ) - 3 1 8 9  ( 5 ) - 6 2 8 ( 2 ) 4 4 1 3  ( 2 ) 3 5 ( 1 )
0 ( 5 ) 3 2 2 8  ( 5 ) - 1 8 5 3  ( 2 ) 3 9 0 0 ( 2 ) 2 6 ( 1 )

0 ( 6 ) 4 4 0 2  ( 4 ) - 1 3 3 4  ( 2 ) 3 0 2 1 ( 1 ) 2 9 ( 1 )
N ( l ) 1 9 5 3  ( 5 ) 1 3 1 ( 3 ) 3 0 4 5  ( 2 ) 2 2  ( 1 )

C ( l ) 2 1 6 3  ( 7 ) 1 7 9 3 ( 3 ) 3 5 5 0  ( 2 ) 2 5 ( 1 )
C ( 2 ) 2 5 8 5  ( 8 ) 1 7 3 9  ( 3 ) 4 1 8 2 ( 2 ) 3 2 ( 1 )

C ( 3 ) 1 6 5 7  ( 8 ) 2 3 0 6  ( 4 ) 4 5 7 4  ( 2 ) 3 7 ( 1 )

C ( 4 ) 3 0 4  ( 8 ) 2 9 1 6 ( 4 ) 4 3 4 7 ( 2 ) 3 4  ( 1 )

C ( 5 ) - 7 1 ( 8 ) 2 9 7 1 ( 4 ) 3 7 1 5 ( 3 ) 3 8  ( 1 )

C ( 6 ) 8 3 6  ( 7 ) 2 4 1 2  ( 3 ) 3 3 1 4  ( 2 ) 3 2 ( 1 )

C ( 7 ) - 7 1 0 ( 1 0 ) 3 5 0 8  ( 5 ) 4 7 9 2 ( 3 ) 5 8  ( 2 )

C ( 8 ) - 1 2 9 ( 6 ) 1 8 8  ( 3 ) 2 7 9 8 ( 2 ) 2 2 ( 1 )

C ( 9 ) - 1 1 0 1 ( 6 ) - 5 9 7 ( 3 ) 3 1 1 8  ( 2 ) 2 3 ( 1 )

4

1 . 6 0 4  M g / m A3  

1 . 5 5 2  mmA- l  

1 0 8 8

0 . 2 5  x  0 . 1 5  x  0 . 1 2  mm 

3 . 0 8  t o  2 7 . 4 7  d e g .

- 8 < = h < = 8 , - 1 9 < = k < = 1 9 ,  - 2 8 < = 1 < = 2 8  

1 5 0 9 5

5 0 8 3  [ R ( i n t )  =  0 . 1 2 7 5 ]

0 . 8 3 5 6  a n d  0 . 6 9 7 6

F u l l - m a t r i x  l e a s t - s q u a r e s  o n  F A2

5 0 8 3  /  0  /  2 7 4

1 . 0 1 9

R l  =  0 . 0 5 5 2 ,  w R 2  =  0 . 1 2 6 3  

R l  =  0 . 0 8 6 5 ,  w R 2  =  0 . 1 4 2 8  

1 . 1 9 1  a n d  - 1 . 3 0 3  e . A A- 3

2
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C ( 1 0 ) 5 ( 6 ) - 6 4 6 ( 3 ) 3 7 3 7  ( 2 ) 2 3 ( 1 )
C ( l l ) 2 1 3 2 ( 6 ) - 4 5 8  ( 3 ) 3 5 8 3  ( 2 ) 2 0 ( 1 )
C ( 1 2 ) - 3 6 5 ( 7 ) 1 9 1 ( 3 ) 2 0 9 9 ( 2 ) 2 7 ( 1 )
C ( 1 3 ) 1 0 2 3 ( 8 ) - 1 5 6 ( 4 ) 1 7 2 5 ( 2 ) 3 7 ( 1 )
C ( 1 4 ) 6 8 2 ( 1 0 ) - 1 4 0  ( 4 ) 1 0 9 1 ( 2 ) 4 7 ( 2 )
C ( 1 5 ) - 1 0 4 2 ( 1 0 ) 2 0 8  ( 4 ) 8 3 2 ( 3 ) 5 1 ( 2 )
C ( 1 6 ) - 2 4 3 0 ( 9 ) 5 4 3  ( 4 ) 1 2 1 3 ( 3 ) 4 8 ( 2 )
C ( 1 7 ) - 2 0 8 6  ( 8 ) 5 3 7  ( 4 ) 1 8 4 2  ( 2 ) 3 7  ( 1 )
C ( 1 8 ) - 2 2 0 9 ( 6 ) 3 4  ( 3 ) 4 4 0 9 ( 2 ) 2 4 ( 1 )
C ( 1 9 ) - 2 6 1 4  ( 7 ) 8 8 3 ( 3 ) 4 7 3 6 ( 2 ) 2 8  ( 1 )
C ( 2 0 ) 3 3 6 7 ( 6 ) - 1 2 6 2 ( 3 ) 3 4 5 1 ( 2 ) 2 2 ( 1 )
C ( 2 1 ) 4 4 3 3 ( 8 ) - 2 6 3 4 ( 3 ) 3 8 4 9 ( 3 ) 3 7 ( 1 )

A
T a b l e  3 .  B o n d  l e n g t h s  [ A ]  a n d  a n g l e s  [ d e g ]  f o r  0 2 D W K 7 .

I 1 ) - c ( 9 ) 2 . 1 5 6 ( 4 )
S 1 )  - 0 ( 1 ) 1 . 4 2 5 ( 3 )
S 1 )  - 0 ( 2 ) 1 . 4 3 0 ( 3 )
s 1 )  - N ( 1 ) 1 . 6 4 1  ( 4 )
s 1 ) - c ( 1 ) 1 . 7 6 4 ( 5 )
0 3 )  - C ( 1 8 ) 1 . 3 4 8 ( 5 )
0 3 )  - C ( 1 0 ) 1 . 4 5 0 ( 5 )
0 4 )  - C ( 1 8 ) 1 . 2 0 6 ( 6 )
0 5 )  - C ( 2 0 ) 1 . 3 3 2 ( 5 )
0 5 )  - C ( 2 1 ) 1 . 4 4 9 ( 6 )
0 6 )  - C ( 2 0 ) 1 . 2 0 4 ( 5 )
N 1 ) - c ( 1 1 ) 1 . 4 7 1 ( 5 )

N 1 ) - c ( 8 ) 1 . 5 0 1 ( 6 )
C 1 ) - c ( 6 ) 1 . 3 8 7  ( 7 )

C 1 ) - c ( 2 ) 1 . 3 9 2  ( 7 )
C 2 )  - C ( 3 ) 1 . 3 8 4  ( 7 )

C 2 )  - H (2) 0 . 9 5 0 0

C 3 )  - C ( 4 ) 1 . 3 8 2 ( 8 )

C 3 )  - H ( 3 ) 0 . 9 5 0 0

C 4 )  - C ( 5 ) 1 . 3 8 9  ( 7 )

C 4 )  - C ( 7 ) 1 . 5 1 0  ( 8 )

C 5 )  - C ( 6 ) 1 . 3 8 3  ( 7 )

c 5 )  - H ( 5 ) 0 . 9 5 0 0

c 6 )  - H ( 6 ) 0 . 9 5 0 0

c 7 )  - H ( 7 A ) 0 . 9 8 0 0

c 7 )  - H ( 7 B ) 0 . 9 8 0 0

c 7 )  - H ( 7 C ) 0 . 9 8 0 0

c 8 )  - C ( 1 2 ) 1 . 5 2 1 ( 6 )

c 8 )  - C ( 9 ) 1 . 5 4 4  ( 6 )

c 8 )  - H ( 8 ) 1 . 0 0 0 0

c 9 )  - C ( 1 0 ) 1 . 5 1 6 ( 6 )

c 9 )  - H ( 9 ) 1 . 0 0 0 0

c 1 0 )  - C ( l l ) 1 . 5 3 5 ( 6 )

c 1 0 )  —H ( 1 0 ) 1 . 0 0 0 0

c 1 1 ) - C ( 2 0 ) 1 . 5 1 7 ( 6 )

c 1 1 ) - H ( 1 1 ) 1 . 0 0 0 0

c 1 2 )  - C ( 1 3 ) 1 . 3 8 1  ( 7 )

c 1 2 ) - C ( 1 7 ) 1 . 3 8 3  ( 7 )

c 1 3 ) - C ( 1 4 ) 1 . 3 8 8  ( 8 )

c 1 3 )  - H ( 1 3 ) 0 . 9 5 0 0

c 1 4 ) - C ( 1 5 ) 1 . 3 8 8 ( 9 )

3



c 1 4 ) - H (14) 0 . 9 5 0 0
c 1 5 ) - C ( 1 6 ) 1 . 3 8 6  (9)
c 1 5 ) - H( 1 5 ) 0 . 9 5 0 0
c 1 6 ) - C ( 17) 1 . 3 7 6 ( 7 )
c 1 6 ) - H ( 16) 0 . 9 5 0 0
c 1 7 ) - H (17) 0 . 9 5 0 0
c 1 8 ) - C ( 1 9 ) 1 . 5 0 1  (7)
c 1 9 ) - H ( 19A) 0 . 9 8 0 0
c 1 9 ) - H( 1 9 B) 0 . 9 8 0 0
c 1 9 ) - H ( 19C) 0 . 9 8 0 0
c 2 1 ) - H( 21A) 0 . 9 8 0 0
c 2 1 ) - H( 2 1 B) 0 . 9 8 0 0
c 2 1 ) - H( 21C) 0 . 9 8 0 0
0 1 ) - S ( 1 ) - 0 ( 2) 1 2 0 . 3 ( 2 )
0 1 ) - S ( 1 ) - N ( 1 ) 1 0 6 . 3 ( 2 )
0 2 ) - S ( 1 ) - N ( 1 ) 1 0 5 . 9 ( 2 )
0 1 ) - S ( 1 ) - C ( 1 ) 1 0 8 . 1  (2)
0 2) - S  (1)  -C (1) 1 0 8 . 2 ( 2 )
N 1 ) - S ( 1 ) - C ( 1 ) 1 0 7 . 5  (2)
c 1 8 ) - 0 ( 3 ) - C ( 10) 1 1 7 . 0  (4)
c 2 0 ) - 0 ( 5 ) - C ( 21) 1 1 5 . 6  (4)
c 1 1 ) - N ( 1 ) - C (8) 1 1 1 . 2 ( 3 )
c 1 1 ) - N ( 1 ) —S (1) 1 1 7 . 9 ( 3 )
c 8 ) - N ( 1 ) - S (1) 1 1 8 . 0 ( 3 )
c 6 ) - C ( 1 ) - C (2) 1 2 0 . 5  (5)
c 6 ) - C ( 1 ) - S (1) 1 2 0 . 4  (4)
c 2)  - C (1)  - S  (1) 1 1 9 . 0 ( 4 )
c 3) -C (2)  -C (1) 1 1 9 . 3 ( 5 )
c 3 ) - C ( 2 ) -H (2) 1 2 0 . 3
c 1 ) - C ( 2 ) - H (2) 1 2 0 . 3
c 4 ) - C ( 3 ) - C (2) 1 2 1 . 0  (5)
c 4 ) - C ( 3 ) - H (3) 1 1 9 . 5
c 2 ) - C ( 3 ) - H (3) 1 1 9 . 5
c 3 ) - C ( 4 ) - C (5) 1 1 8 . 8  (5)
c 3 ) - C ( 4 ) - C (7) 1 1 9 . 3 ( 5 )
c 5 ) - C ( 4 ) - C (7) 1 2 1 . 9 ( 5 )
c 6 ) - C ( 5 ) - C (4) 1 2 1 . 4 ( 5 )
c 6) - C ( 5 ) -H (5) 1 1 9 . 3
c 4 ) - C ( 5 ) - H (5) 1 1 9 . 3
c 5 ) - C ( 6 ) - C (1) 1 1 9 . 0 ( 5 )
c 5) - C ( 6 ) - H (6) 1 2 0 . 5
c 1) -C ( 6 )  -H ( 6 ) 1 2 0 . 5
c 4 ) - C ( 7 ) - H (7A) 1 0 9 . 5
c 4 ) - C ( 7 ) - H ( 7B) 1 0 9 . 5
H 7 A ) - C ( 7 ) - H( 7B) 1 0 9 . 5
c 4 ) - C ( 7 ) - H ( 7 C ) 1 0 9 . 5
H 7A ) - C ( 7 ) - H( 7C) 1 0 9 . 5
H 7 B ) - C ( 7 ) - H( 7C) 1 0 9 . 5
N 1 ) - C ( 8 ) - C (12) 114 . 4 ( 4 )
N 1 ) - C ( 8 ) - C (9) 1 0 2 . 5 ( 3 )
C 1 2 ) - C ( 8 ) - C ( 9) 1 1 5 . 1  (4)
N 1 ) - C ( 8 ) - H ( 8 ) 1 0 8 . 2
C 12)  -C (8)  -H (8) 108 . 2
C 9 ) - C ( 8 ) - H ( 8 ) 1 0 8 . 2
C 1 0 ) - C ( 9 ) - C ( 8 ) 1 0 3 . 2  (4)
c 10)  -C (9)  - I  (1) 1 0 7 . 1 ( 3 )
c 8 ) - C ( 9 ) - 1 ( 1 ) 1 1 5 . 2  (3)
c 1 0 ) - C ( 9 ) - H (9) 1 1 0 . 3
c 8 ) - C ( 9 ) - H (9) 1 1 0 . 3
I 1 ) - C ( 9 ) - H (9) 1 1 0 . 3
0 3 ) - C ( 1 0 ) - C (9) 1 0 8 . 6 ( 4 )
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0 3 ) - C ( 1 0 ) - C ( 1 1 ) 1 0 4 . 3 ( 3 )
c 9 ) - C ( 1 0 ) - C ( 1 1 ) 1 0 3 . 7  ( 3 )
0 3 ) - C ( 1 0 ) - H ( 1 0 ) 1 1 3 . 1
c 9 ) - C ( 1 0 ) - H ( 1 0 ) 1 1 3 . 1
c 1 1 ) - C ( 1 0 ) - H ( 1 0 ) 1 1 3 . 1
N 1 ) - C ( l l ) - C ( 2 0 ) 1 1 1 . 3 ( 3 )
N 1 ) - C ( 1 1 ) - C ( 1 0 ) 1 0 4 . 0 ( 3 )
C 2 0 ) - C ( l l ) - C ( 1 0 ) 1 1 5 . 7  ( 4 )
N 1 ) - C ( 1 1 ) - H ( 1 1 ) 1 0 8 . 5
C 2 0 ) - C ( 1 1 ) - H ( 1 1 ) 1 0 8 . 5
C 1 0 ) - C ( 1 1 ) - H ( 1 1 ) 1 0 8 . 5
C 1 3 ) - C ( 1 2 ) - C ( 1 7 ) 1 2 0 . 1  ( 4 )
C 1 3 )  - C ( 1 2 ) - C  ( 8 ) 1 2 2 . 9 ( 5 )
C 1 7 ) - C ( 1 2 ) - C ( 8 ) 1 1 7 . 0 ( 4 )
C 1 2 ) - C ( 1 3 ) - C ( 1 4 ) 1 1 9 . 3 ( 5 )
C 1 2 ) - C ( 1 3 ) - H ( 1 3 ) 1 2 0 . 3
C 1 4 ) - C ( 1 3 ) - H ( 1 3 ) 1 2 0 .  3
C 1 5 ) - C ( 1 4 ) - C ( 1 3 ) 1 2 0 . 7  ( 6 )
C 1 5 ) - C ( 1 4 ) - H ( 1 4 ) 1 1 9 . 7
C 1 3 ) - C ( 1 4 ) - H ( 1 4 ) 1 1 9 . 7
C 1 6 ) - C ( 1 5 ) - C ( 1 4 ) 1 1 9 . 3 ( 5 )
C 1 6 ) - C ( 1 5 ) - H ( 1 5 ) 1 2 0 . 3
C 1 4 ) - C ( 1 5 ) - H ( 1 5 ) 1 2 0 . 3
C 1 7 ) - C ( 1 6 ) - C ( 1 5 ) 1 2 0 . 1 ( 6 )
c 1 7 ) - C ( 1 6 ) - H ( 1 6 ) 1 2 0 . 0
c 1 5 ) - C ( 1 6 ) - H ( 1 6 ) 1 2 0 . 0
c 1 6 ) - C ( 1 7 ) - C ( 1 2 ) 1 2 0 . 5 ( 5 )
c 1 6 ) - C ( 1 7 ) - H ( 1 7 ) 1 1 9 . 7
c 1 2 ) - C ( 1 7 ) - H ( 1 7 ) 1 1 9 . 7
0 4 ) - C ( 1 8 ) - 0 ( 3 ) 1 2 3 . 5  ( 4 )
0 4 ) - C ( 1 8 ) - C ( 1 9 ) 1 2 6 . 5 ( 4 )
0 3 ) - C ( 1 8 ) - C ( 1 9 ) 1 1 0 . 0 ( 4 )
c 1 8 ) - C ( 1 9 ) - H ( 1 9 A ) 1 0 9 . 5
c 1 8 ) - C ( 1 9 ) - H ( 1 9 B ) 1 0 9 . 5
H 1 9 A ) - C ( 1 9 ) - H ( 1 9 B ) 1 0 9 . 5
c 1 8 ) - C ( 1 9 ) - H ( 1 9 C ) 1 0 9 . 5
H 1 9 A ) - C ( 1 9 ) - H ( 1 9 C ) 1 0 9 . 5
H 1 9 B ) - C ( 1 9 ) - H ( 1 9 C ) 1 0 9 .  5
0 6 ) - C ( 2 0 ) - O ( 5 ) 1 2 5 . 0 ( 4 )
0 6 ) - C ( 2 0 ) - C ( 1 1 ) 1 2 4 . 9 ( 4 )
0 5 ) - C ( 2 0 ) - C ( 1 1 ) 1 1 0 . 0  ( 3 )
0 5 ) - C ( 2 1 ) - H ( 2 1 A ) 1 0 9 .  5
0 5 ) - C ( 2 1 ) - H ( 2 1 B ) 1 0 9 . 5
H 2 1 A ) - C ( 2 1 ) - H ( 2 1 B ) 1 0 9 . 5
0 5 ) - C ( 2 1 ) - H ( 2 1 C ) 1 0 9 . 5
H 2 1 A ) - C ( 2 1 ) - H ( 2 1 C ) 1 0 9 . 5
H 2 I B ) - C ( 2 1 ) - H ( 2 1 C ) 1 0 9 . 5

S y m m e t r y  t r a n s f o r m a t i o n s  u s e d  t o  g e n e r a t e  e q u i v a l e n t  a t o m s :

T a b l e  4 .  A n i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  ( A A2 x  1 0 A3 )  f o r  

0 2 D W K 7 .
T h e  a n i s o t r o p i c  d i s p l a c e m e n t  f a c t o r  e x p o n e n t  t a k e s  t h e  f o r m :
- 2  p i A2  [ h A2  a * A2  U l l  +  . . .  +  2  h  k  a *  b *  U 1 2  ]

5
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U l l U 2 2 U 3 3 U 2 3 U 1 3 U 1 2

( 1 ) 3 0 1 ) 2 5  ( 1 ) 3 2 ( 1 ) - 7 1 ) 2 1 ) - 1 ( 1 )
( 1 ) 2 6 1 ) 2 3  ( 1 ) 2 6 ( 1 ) 2 1 ) 3 1 ) - 3 ( 1 )
( 1 ) 4 8 2 ) 2 8  ( 2 ) 2 7  ( 2 ) 7 2 ) 5 2 ) - 6 ( 2 )
( 2 ) 2 5 2 ) 3 2  ( 2 ) 3 5  ( 2 ) - 1 2 ) 5 2 ) - 1 ( 1 )
( 3 ) 2 9 2 ) 2 3  ( 2 ) 2 0  ( 2 ) - 7 1 ) 4 1 ) - 1 ( 1 )
( 4 ) 3 5 2 ) 3 8  ( 2 ) 3 2  ( 2 ) - 3 2 ) 1 0 2 ) - 3  ( 2 )
( 5 ) 3 1 2 ) 2 2  ( 2 ) 2 7  ( 2 ) 0 1 ) 2 1 ) 3 ( 1 )
( 6 ) 2 4 2 ) 3 5  ( 2 ) 2 9 ( 2 ) - 5 2 ) 3 1 ) 0 ( 2 )
( 1 ) 1 8 2 ) 2 7  ( 2 ) 2 1  ( 2 ) 2 2 ) 0 2 ) - 3  ( 2 )
( 1 ) 2 8 2 ) 2 2  ( 2 ) 2 6 ( 2 ) - 2 2 ) - 5 2 ) - 3  ( 2 )
( 2 ) 3 2 3 ) 2 9 ( 3 ) 3 3  ( 3 ) - 2 2 ) - 9 2 ) 1 ( 2 )
( 3 ) 4 2 3 ) 3 9 ( 3 ) 2 9 ( 3 ) - 2 2 ) - 7 2 ) - 5  ( 3 )
( 4 ) 3 8 3 ) 2 9 ( 3 ) 3 4  ( 3 ) - 5 2 ) - 8 2 ) 8 ( 2 )
( 5 ) 4 0 3 ) 3 2  ( 3 ) 4 1 ( 3 ) - 3 2 ) - 1 0 3 ) 1 4  ( 2 )
( 6 ) 4 2 3 ) 2 3  ( 3 ) 3 0  ( 2 ) 7 2 ) - 7 2 ) - 1  ( 2 )
( 7 ) 6 7 4 ) 6 1  ( 4 ) 4 4  ( 3 ) - 8 3 ) - 9 3 ) 2 7  ( 4 )
( 8 ) 2 1 2 ) 2 7  ( 3 ) 1 9 ( 2 ) 1 2 ) - 1 2 ) 1 ( 2 )
( 9 ) 2 3 2 ) 1 9 ( 2 ) 2 6 ( 2 ) - 5 2 ) 2 2 ) - 1  ( 2 )
( 1 0 ) 2 6 2 ) 1 7  ( 2 ) 2 7  ( 2 ) - 1 2 ) 3 2 ) 1 ( 2 )
( 1 1 ) 2 1 2 ) 1 7  ( 2 ) 2 1 ( 2 ) 1 2 ) - 1 2 ) 0  ( 2 )
( 1 2 ) 3 6 3 ) 2 4  ( 3 ) 2 0  ( 2 ) 1 2 ) 2 2 ) - 5  ( 2 )
( 1 3 ) 4 7 3 ) 3 5  ( 3 ) 3 0  ( 3 ) 0 2 ) 1 2 ) 0 ( 3 )
( 1 4 ) 6 9 4 ) 4 4  ( 4 ) 3 0  ( 3 ) - 1 0 3 ) 1 6 3 ) - 8  ( 3 )
( 1 5 ) 7 9 5 ) 4 9 ( 4 ) 2 4  ( 3 ) 2 3 ) - 1 1 3 ) - 2 2 ( 3 )
( 1 6 ) 5 2 4 ) 5 6 ( 4 ) 3 3 ( 3 ) 1 2 3 ) - 1 9 3 ) - 5  ( 3 )
( 1 7 ) 4 4 3 ) 3 6  ( 3 ) 2 9 ( 2 ) 6 2 ) - 2 2 ) - 6 ( 2 )
( 1 8 ) 2 3 2 ) 3 1  ( 3 ) 1 6 ( 2 ) 0 2 ) - 3 2 ) 1 ( 2 )
( 1 9 ) 2 8 2 ) 3 4  ( 3 ) 2 2  ( 2 ) - 5 2 ) 2 2 ) 5  ( 2 )
( 2 0 ) 2 1 2 ) 2 3  ( 2 ) 2 0  ( 2 ) 3 2 ) - 2 2 ) - 4  ( 2 )
( 2 1 ) 4 3 3 ) 2 2  ( 3 ) 4 5 ( 3 ) 1 2 ) - 1 3 ) 4 ( 2 )

T a b l e  5 .  H y d r o g e n  c o o r d i n a t e s  ( x  1 0 A4 )  a n d  i s o t r o p i c  
d i s p l a c e m e n t  p a r a m e t e r s  ( A A2 x  1 0 ^ 3 )  f o r  0 2 D W K 7 .

X y z U ( e q )

H ( 2 ) 3 5 0 0 1 3 1 7 4 3 4 2 3 8

H ( 3 ) 1 9 5 4 2 2 7 6 5 0 0 4 4 4

H ( 5 ) - 9 6 9 3 4 0 1 3 5 5 5 4 5

H ( 6 ) 5 5 4 2 4 5 1 2 8 8 3 3 8

H ( 7 A ) - 5 4 1 3 2 6 7 5 2 0 9 8 6

H ( 7 B ) - 2 1 0 8 3 5 4 0 4 6 7 3 8 6

H ( 7 C ) - 1 3 9 4 1 0 1 4 7 8 1 8 6

H ( 8 ) - 7 1 0 7 4 6 2 9 5 5 2 7

H ( 9 ) - 2 5 1 7 - 4 7 1 3 1 7 4 2 7

H ( 1 0 ) - 1 6 0 - 1 2 2 4 3 9 5 1 2 8

6



H ( 1 1 ) 2 7 7 9 - 1 2 5 3 9 3 3
H ( 1 3 ) 2 1 9 8 - 4 0 2 1 9 0 0
H ( 1 4 ) 1 6 4 0 - 3 7 0 8 3 2
H ( 1 5 ) - 1 2 6 9 2 1 6 3 9 7
H ( 1 6 ) - 3 6 2 1 7 7 8 1 0 4 1
8 (17} - 3 0 3 8 7 7 2 2 1 0 1
H ( 1 9 A ) - 2 9 1 8 1 3 4 7 4 4 3 2
H ( 1 9 B ) - 1 4 5 8 1 0 5 4 4 9 9 2
H ( 1 9 C ) - 3 7 2 9 8 0 2 4 9 9 8
H ( 2 1 A) 3 9 7 9 - 2 9 7 6 3 4 8 7
H ( 2 1 B ) 4 3 3 9 - 2 9 9 6 4 2 2 0
H ( 2 1 C ) 5 7 9 8 - 2 4 5 7 3 8 0 4

A

I, OAc

"C 02Me
Ts
324

v
/
\

/ "

Appendix

2 4
4 5
5 7
6 1
5 7
4 4
4 2
4 2
4 2
5 5
5 5
5 5

T a b l e  1 .  C r y s t a l  d a t a  a n d  s t r u c t u r e  r e f i n e m e n t  f o r  S 9 2 .

I d e n t i f i c a t i o n  c o d e  

E m p i r i c a l  f o r m u l a  

F o r m u l a  w e i g h t  

T e m p e r a t u r e  

W a v e l e n g t h  

C r y s t a l  s y s t e m  

S p a c e  g r o u p  

U n i t  c e l l  d i m e n s i o n s
d e g .

9 5 . 8 7 0 8 ( 6 )  d e g .

s 9 2

C 1 6  H 2 0  I  N 0 6  S

4 8 1 . 2 9

1 5 0 ( 2 )  K

0 . 7 1 0 7 3  A

M o n o c l i n i c

P 2 ( l ) / c

a  =  7 . 1 5 6 7 0 ( 1 0 )  A a l p h a  =  9 0

b  =  3 6 . 1 8 1 6 ( 7 )  A  b e t a  =

7



d e g .

V o l u m e

Z

D e n s i t y  ( c a l c u l a t e d )

A b s o r p t i o n  c o e f f i c i e n t  

F ( 0 0 0 )

C r y s t a l  s i z e

T h e t a  r a n g e  f o r  d a t a  c o l l e c t i o n

I n d e x  r a n g e s

R e f l e c t i o n s  c o l l e c t e d

I n d e p e n d e n t  r e f l e c t i o n s

M a x .  a n d  m i n .  t r a n s m i s s i o n

R e f i n e m e n t  m e t h o d

D a t a  /  r e s t r a i n t s  /  p a r a m e t e r s

G o o d n e s s - o f - f i t  o n  F A2

F i n a l  R i n d i c e s  [ I > 2 s i g m a ( I ) ]

R i n d i c e s  ( a l l  d a t a )

L a r g e s t  d i f f .  p e a k  a n d  h o l e
A

T a b l e  2 .  A t o m i c  c o o r d i n a t e s  
d i s p l a c e m e n t  p a r a m e t e r s  ( A A2

d e f i n e d
a s  o n e  t h i r d  o f  t h e  t r a c e  o f

Appendix

c  =  7 . 2 2 2 6 0 ( 1 0 )  A  g a m m a  =  9 0

1 8 6 0 . 4 2 ( 5 )  A A3  

4

1 . 7 1 8  M g / m A3  

1 . 8 6 5  mmA- l  

9 6 0

0 . 1 5  x  0 . 1 2  x  0 . 1 0  mm

2 . 9 2  t o  2 7 . 4 1  d e g .

- 9 < = h < = 9 ,  - 4  6 < = k < = 4  6 ,  - 9 < = 1 < = 9  

1 1 5 8 6

4 0 5 0  [ R ( i n t )  =  0 . 0 5 6 8 ]

0 . 8 3 5 5  a n d  0 . 7 6 7 3

F u l l - m a t r i x  l e a s t - s q u a r e s  o n  F A2

4 0 5 0  /  0  /  2 3 0

1 . 0 4 1

R 1  =  0 . 0 3 3 9 ,  w R 2  =  0 . 0 8 4 3

R l  =  0 . 0 5 2 3 ,  w R 2  =  0 . 1 1 3 1

0 . 7 7 8  a n d  - 0 . 8 0 7  e . A A- 3

( x  1 0 A 4 )  a n d  e q u i v a l e n t  i s o t r o p i c  
x  1 0 A3 ) f o r  S 9 2 . U ( e q )  i s

t h e  o r t h o g o n a l i z e d  U i j  t e n s o r .

x  y  z  U ( e q )

1 ( 1 ) 4 8 9 9 ( 1 ) 2 0 6 4  ( 1 ) 3 2 4 2  ( 1 ) 2 6 ( 1 )
S ( 1 ) 9 3 9 ( 1 ) 9 7 4 ( 1 ) 5 8 2 6 ( 2 ) 1 8 ( 1 )
0 ( 1 ) - 5 5 3  ( 4 ) 1 1 4 5  ( 1 ) 6 6 9 7 ( 4 ) 2 3 ( 1 )
0 ( 2 ) 6 1 5  ( 4 ) 8 3 4 ( 1 ) 3 9 7 0 ( 4 ) 2 6 ( 1 )
0 ( 3 ) 1 8 8  ( 4 ) 1 8 3 4 ( 1 ) 4 5 7 3  ( 4 ) 2 3 ( 1 )
0 ( 4 ) 1 4 0 1 ( 3 ) 2 2 2 6  ( 1 ) 6 8 2 0  ( 4 ) 1 7 ( 1 )
0 ( 5 ) 5 5 8 2 ( 3 ) 1 5 1 1  ( 1 ) 8 5 7 2  ( 4 ) 1 8 ( 1 )
0 ( 6 ) 8 0 6 2 ( 4 ) 1 8 9 6  ( 1 ) 8 6 0 9 ( 4 ) 2 7 ( 1 )

N ( l ) 2 6 3 3 ( 4 ) 1 2 7 5  ( 1 ) 5 9 1 7  ( 5 ) 1 8 ( 1 )
C ( l ) 2 5 7 6  ( 5 ) 1 6 1 9 ( 1 ) 6 9 3 7 ( 6 ) 1 5 ( 1 )
C ( 2 ) 1 2 3 3 ( 5 ) 1 9 0 5 ( 1 ) 5 9 3 4 ( 6 ) 1 6 ( 1 )
C ( 3 ) 1 3 6 ( 5 ) 2 5 1 4  ( 1 ) 6 0 4 0 ( 6 ) 2 3 ( 1 )
C ( 4 ) 4 6 5 1  ( 5 ) 1 7 3 7  ( 1 ) 7 0 8 2 ( 6 ) 1 6 ( 1 )
C ( 5 ) 7 3 3 3 ( 5 ) 1 6 3 0 ( 1 ) 9 2 2 8 ( 6 ) 2 1 ( 1 )
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Appendix

C ( 6 ) 8 2 0 0 ( 6 ) 1 3 8 8  ( 1 ) 1 0 7 4 9 ( 6 ) 2 6 ( 1 )
C ( 7 ) 5 3 0 8 ( 5 ) 1 6 1 1 ( 1 ) 5 2 3 4 ( 6 ) 1 7 ( 1 )
C ( 8 ) 4 1 3 4  ( 5 ) 1 2 6 8 ( 1 ) 4 6 2 6 ( 6 ) 1 8 ( 1 )
C ( 9 ) 5 2 9 6 ( 5 ) 9 1 3 ( 1 ) 4 8 4 6 ( 6 ) 2 4 ( 1 )
C ( 1 0 ) 1 7 1 7  ( 5 ) 6 0 0  ( 1 ) 7 2 9 2 ( 6 ) 1 8  ( 1 )
C ( l l ) 2 0 6 6 ( 6 ) 6 6 0 ( 1 ) 9 1 9 5 ( 6 ) 2 4  ( 1 )
c  ( 1 2 ) 2 4 4 6 ( 6 ) 3 6 1  ( 1 ) 1 0 3 7 1 ( 7 ) 2 9 ( 1 )
C ( 1 3 ) 2 4 9 2 ( 5 ) 1 ( 1 ) 9 7 0 4  ( 7 ) 2 6 ( 1 )
C ( 1 4 ) 2 1 6 7 ( 6 ) - 4 9 ( 1 ) 7 7 8 4  ( 7 ) 2 8  ( 1 )
C ( 1 5 ) 1 7 7 6 ( 6 ) 2 4 5  ( 1 ) 6 5 7 9 ( 6 ) 2 4  ( 1 )
C ( 1 6 ) 2 8 5 8 ( 6 ) - 3 1 5 ( 1 ) 1 1 0 3 6 ( 7 ) 3 7 ( 1 )

T a b l e  3 .  B o n d  l e n g t h s  [ A ]  a n d  a n g l e s  [ d e g ]  f o r  S 9 2 .

I 1 ) - c ( 7 ) 2 . 1 8 2  ( 4 )
S 1 )  - 0 ( 2 ) 1 . 4 2 9 ( 3 )
S 1 )  - 0 ( 1 ) 1 . 4 3 4 ( 3 )
s 1 )  - N ( 1 ) 1 . 6 2 6 ( 3 )
s 1 ) - c ( 1 0 ) 1 . 7 7 2  ( 4 )
0 3 )  - C ( 2 ) 1 . 2 0 1  ( 5 )
0 4 )  - C ( 2 ) 1 . 3 2 5 ( 5 )
0 4 )  - C ( 3 ) 1 . 4 5 6 ( 4 )
0 5 )  - C ( 5 ) 1 . 3 6 4  ( 5 )
0 5 )  - C ( 4 ) 1 . 4 5 7  ( 5 )

0 6 )  - C ( 5 ) 1 . 2 0 2  ( 5 )
N 1 )  - C ( 1 ) 1 . 4 5 1  ( 5 )
N 1 )  - C ( 8 ) 1 . 4  9 2 ( 4 )

C 1 )  - C ( 4 ) 1 . 5 3 8  ( 5 )

C 1 ) - c ( 2 ) 1 . 5 4 2 ( 5 )

C 1 )  - H ( 1 ) 1 . 0 0 0 0

C 3 )  - H ( 3 A ) 0 . 9 8 0 0

C 3 )  - H ( 3 B ) 0 . 9 8 0 0

C 3 )  - H ( 3 C ) 0 . 9 8 0 0

C 4 )  - C ( 7 ) 1 . 5 2 9 ( 5 )

C 4 )  - H ( 4 ) 1 . 0 0 0 0

C 5 )  - C ( 6 ) 1 . 4 9 0 ( 6 )

c 6 )  - H ( 6 A ) 0 . 9 8 0 0

c 6 )  - H ( 6 B ) 0 . 9 8 0 0

c 6 )  - H ( 6 C ) 0 . 9 8 0 0

c 7 )  - C ( 8 ) 1 . 5 3 8  ( 5 )

c 7 )  - H ( 7 ) 1 . 0 0 0 0

c 8 )  - C ( 9 ) 1 . 5 2 8  ( 5 )

c 8 )  - H ( 8 ) 1 . 0 0 0 0

c 9 )  - H ( 9 A ) 0 . 9 8 0 0

c 9 )  - H ( 9 B ) 0 . 9 8 0 0

c 9 )  - H ( 9 C ) 0 . 9 8 0 0

c 1 0 )  - C ( 1 5 ) 1 . 3 8 5 ( 6 )

c 1 0 )  - C ( l l ) 1 . 3 8 8 ( 6 )

c 1 1 )  - C ( 1 2 ) 1 . 3 8 3 ( 6 )

c 1 1 ) " H ( 1 1 ) 0 . 9 5 0 0

c 1 2 )  - C ( 1 3 ) 1 . 3 9 0 ( 6 )

c 1 2 ) - H ( 1 2 ) 0 . 9 5 0 0

c 1 3 ) - C ( 1 4 ) 1 . 3 9 4  ( 7 )

c 1 3 )  - C ( 1 6 ) 1 . 5 0 1 ( 6 )

c 1 4 ) - C ( 1 5 ) 1 . 3 8 6 ( 6 )

c 1 4  - H ( 1 4  ) 0 . 9 5 0 0

9



c 1 5 )  - 8 ( 1 5 ) 0
c 1 6 )  - 8  ( 1 6 A 0
c 1 6 ) - 8 ( 1 6 B 0
c 1 6 )  - 8  ( 1 6 C 0

0 2 )  - S ( 1 ) - 0 1 ) 1 2 0
0 2 )  - S ( 1 ) - N 1 ) 1 0 8
0 1 ) - S ( 1 ) - N 1 ) 1 0 6
0 2 )  - S ( 1 ) - C 1 0 ) 1 0 7
0 l ) - s ( 1 ) - C 1 0 ) 1 0 5
N 1 ) - S ( 1 ) - C 1 0 ) 1 0 7
c 2 )  - 0 ( 4 )  - c 3 ) 1 1 4
c 5 )  - 0 ( 5 ) - c 4 ) 1 1 4
c 1 )  - N ( 1 ) - c 8 ) 1 1 3
c 1 )  - N ( 1 ) - s 1 ) 1 2 2
c 8 )  - N ( 1 ) - s 1 ) 1 2 3
N l ) - c ( 1 ) - c 4 ) 1 0 1
N 1 ) - C ( 1 ) - c 2 ) 1 1 2
C 4 )  - C ( 1 ) - c 2 ) 1 1 3
N 1 ) - C ( 1 ) - H 1 ) 1 0 9
C 4 )  - C ( 1 ) - H 1 ) 1 0 9
C 2 )  - C ( 1 ) - H 1 ) 1 0 9
0 3 )  - C ( 2 ) - 0 4 ) 1 2 7
0 3 )  - C ( 2 ) - C 1 ) 1 2 3
0 4 )  - C ( 2 ) - C 1 ) 1 0 9
0 4 )  - C ( 3 ) - H 3 A ) 1 0 9
0 4 )  - C ( 3 ) - H 3 B ) 1 0 9
H 3 A ) - C ( 3 ) - H ( 3 B ) 1 0 9
0 4 )  - C ( 3 ) - H 3 C ) 1 0 9
H 3 A ) - C ( 3 ) - H ( 3 C ) 1 0 9
H 3 B ) - C ( 3 ) - H ( 3 C ) 1 0 9
0 5 )  - C ( 4 ) - C 7 ) 1 0 8
0 5 )  - C ( 4 ) - C 1 ) 1 0 5
C 7 )  - C ( 4 ) - C 1 ) 1 0 3
0 5 )  - C ( 4 ) - H 4 ) 1 1 2
C 7 )  - C ( 4 ) - H 4 ) 1 1 2

C l ) - c ( 4 ) - H 4 ) 1 1 2

0 6 )  - C ( 5 ) - 0 5 ) 1 2 2
0 6 )  - C ( 5 ) - C 6 ) 1 2 5

0 5 )  - C ( 5 ) - C 6 ) 1 1 1
c 5 )  - C ( 6 ) - H 6 A ) 1 0 9
c 5 )  - C ( 6 ) - H 6 B ) 1 0 9

H 6 A )  - 3 ( 6 ) - H ( 6 B ) 1 0 9
C 5 )  - C ( 6 ) - H 6 C ) 1 0 9

H 6 A )  - 3 ( 6 ) - H ( 6 C ) 1 0 9

H 6 B )  - 3 ( 6 ) - H ( 6 C ) 1 0 9

C 4 )  - C ( 7 ) - C 8 ) 1 0 6

C 4 )  - C ( 7 ) - I 1 ) 1 0 8

C 8 )  - C ( 7 ) - I 1 ) 1 1 2

C 4 )  - C ( 7 ) - H 7 ) 1 0 9

C 8 )  - C ( 7 )  - H 7 ) 1 0 9

I 1 ) - C ( 7 )  - H 7 ) 1 0 9

N 1 ) - C ( 8 ) - C 9 ) 1 1 1

N 1 )  - C ( 8 ) - C 7 ) 1 0 2

C 9 )  - C ( 8 ) - ■c 7 ) 1 1 1

N D - C ( 8 ) - ■H 8 ) 1 1 0

C 9 )  - C ( 8 ) - -H 8 ) 1 1 0

C 7 )  - C ( 8 ) - ■H 8 ) 1 1 0

C 8 )  - C ( 9 ) - ■H 9 A ) 1 0 9

C 8 )  - C ( 9 ) - ■H 9 B ) 1 0 9

H 9 A )  - 3 ( 9 ) - H ( 9 B ) 1 0 9

9 5 0 0
9 8 0 0
9 8 0 0
9 8 0 0

5 0  ( 1 8 )  
8 8  ( 1 7 )  
1 7 ( 1 6 )  
5 4 ( 1 9 )  
6 7 ( 1 8 )  
4 3 ( 1 8 )  
8 ( 3 )
4 ( 3 )  
0 ( 3 )
4 ( 2 )  
0 ( 3 )  
3 ( 3 )  
8 ( 3 )
4 ( 3 )
7
7
7
0 ( 4 )
1 ( 4 )
9 ( 3 )
5  
5 
5  
5  
5  
5
6 ( 3 )
1 ( 3 )
8 ( 3 )
9  
9  
9
8 ( 4 )  
5 ( 4 )  
6 ( 4 )
5
5
5
5
5
5
4 ( 3 )  
6 ( 3 )
7 ( 3 )
7
7
7
6 ( 3 )
4 ( 3 )  
8 ( 3 )
2
2
2
5  
5  
5



Appendix

c ( 8 )  -■C ( 9 )  - H ( 9 C ) 1 0 9 . 5
H ( 9 A - C 9 ) - -H ( 9 C) 1 0 9 . 5
H ( 9 B - C 9 ) - - H ( 9 C ) 1 0 9 . 5
C ( 1 5 - C 1 0 - C ( l l ) 1 2 0 . 2 ( 4 )
C ( 1 5 -c 1 0 - S ( l ) 1 2 0 . 3 ( 3 )
C ( 1 1 -c 1 0 - S ( l ) 1 1 9 . 1 ( 3 )
C ( 1 2 -c 1 1 - C ( 1 0 ) 1 1 9 . 4 ( 4 )
C ( 1 2 -c 1 1 - H ( l l ) 1 2 0 . 3
C ( 1 0 -c 1 1 - H  ( 1 1 ) 1 2 0 . 3
C ( l l -c 1 2 - 0 ( 1 3 ) 1 2 1 . 9 ( 4 )
C ( l l -c 1 2 - H ( 1 2 ) 1 1 9 . 1
C ( 1 3 -c 1 2 - H ( 1 2 ) 1 1 9 . 1
C ( 1 2 -c 1 3 - C ( 1 4 ) 1 1 7 . 4  ( 4 )
C ( 1 2 -c 1 3 - C ( 1 6 ) 1 2 0 . 1  ( 5 )
C ( 1 4 -c 1 3 - C ( 1 6 ) 1 2 2 . 5  ( 4 )
C ( 1 5 -c 1 4 - C ( 1 3 ) 1 2 1 . 8 ( 4 )
C ( 1 5 -c 1 4 ~ H ( 1 4 ) 1 1 9 . 1
C ( 1 3 -c 1 4 - H  ( 1 4 ) 1 1 9 . 1
C ( 1 0 -c 1 5 - C ( 1 4 ) 1 1 9 . 3 ( 4 )
C ( 1 0 -c 1 5 - H ( 1 5 ) 1 2 0 . 3
C ( 1 4 -c 1 5 ~ H ( 1 5 ) 1 2 0 . 3
C ( 1 3 -c 1 6 - H ( 1 6 A ) 1 0 9 . 5
C ( 1 3 -c 1 6 - H ( 1 6 B ) 1 0 9 . 5
H ( 1 6 A )  - C ( 1 6 ) - H ( 1 6 B ) 1 0 9 . 5
C ( 1 3 ) - C ( 1 6 ) - H ( 1 6 C ) 1 0 9 . 5
H ( 1 6 A ) - C ( 1 6 ) - H ( 1 6 C ) 1 0 9 . 5
H ( 1 6 B ) - C ( 1 6 ) - H ( 1 6 C ) 1 0 9 . 5

S y m m e t r y  t r a n s f o r m a t i o n s  u s e d  t o  g e n e r a t e  e q u i v a l e n t  a t o m s :

T a b l e  4 .  A n i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  ( A A2  x  1 0 A3 )  f o r  S 9 2 .  
T h e  a n i s o t r o p i c  d i s p l a c e m e n t  f a c t o r  e x p o n e n t  t a k e s  t h e  f o r m :
- 2  p i A2  [ h A2  a * A2  U l l  + . . .  +  2  h  k  a *  b *  U 1 2  ]

U l l U 2 2 U 3 3 U 2 3 U 1 3 U 1 2

1 ( 1 ) 2 7 ( 1 ) 2 4  ( 1 ) 2 7  ( 1 ) 1 0 ( 1 ) 7 ( 1 ) 3 ( 1 )
S ( l ) 1 3 ( 1 ) 1 6 ( 1 ) 2 4  ( 1 ) - 1 ( 1 ) - 1 ( 1 ) - 2 ( 1 )
0 ( 1 ) 1 4  ( 1 ) 2 1 ( 2 ) 3 6  ( 2 ) 2 ( 1 ) 6 ( 1 ) 1 ( 1 )
0 ( 2 ) 2 6 ( 1 ) 2 7  ( 2 ) 2 4  ( 2 ) - 3 ( 1 ) - 8 ( 1 ) - 5 ( 1 )
0 ( 3 ) 2 3 ( 1 ) 2 4  ( 2 ) 2 1 ( 2 ) 1 ( 1 ) - 5 ( 1 ) - 1 ( 1 )
0 ( 4 ) 1 9 ( 1 ) 1 4  ( 2 ) 1 8  ( 2 ) 2 ( 1 ) 1 ( 1 ) 2 ( 1 )
0 ( 5 ) 1 7 ( 1 ) 1 7 ( 2 ) 1 8  ( 2 ) 3 ( 1 ) - 2 ( 1 ) - 2 ( 1 )
0 ( 6 ) 2 3 ( 1 ) 2 8  ( 2 ) 3 1 ( 2 ) - 3 ( 2 ) - 1 ( 1 ) - 8 ( 1 )

N ( l ) 1 2 ( 1 ) 1 3 ( 2 ) 2 8  ( 2 ) - 4  ( 2 ) 6 ( 1 ) - 3 ( 1 )

C ( l ) 1 7 ( 2 ) 1 3 ( 2 ) 1 5 ( 2 ) 1 ( 2 ) 2 ( 2 ) - 2 ( 2 )

C ( 2 ) 1 6 ( 2 ) 1 5 ( 2 ) 1 6 ( 2 ) 0 ( 2 ) 5 ( 2 ) 1 ( 2 )

C ( 3 ) 2 8  ( 2 ) 1 5 ( 2 ) 2 5 ( 2 ) - 4  ( 2 ) - 2 ( 2 ) 1 3 ( 2 )

C ( 4 ) 1 8 ( 2 ) 1 2 ( 2 ) 1 8  ( 2 ) 2 ( 2 ) 1 ( 2 ) - 1 ( 2 )

C ( 5 ) 1 6 ( 2 ) 2 7  ( 2 ) 1 8  ( 2 ) - 1 0 ( 2 ) - 1 ( 2 ) 4 ( 2 )

C ( 6 ) 2 6 ( 2 ) 3 0  ( 3 ) 1 9 ( 2 ) - 1 ( 2 ) - 3 ( 2 ) 5 ( 2 )

C ( 7 ) 1 3 ( 2 ) 1 9 ( 2 ) 2 1 ( 2 ) 5 ( 2 ) 0 ( 2 ) 2 ( 2 )

C { 8 ) 1 7  ( 2 ) 2 0  ( 2 ) 1 6 ( 2 ) - 2 ( 2 ) 3 ( 2 ) 0 ( 2 )

C ( 9 ) 2 0  ( 2 ) 2 0  ( 2 ) 3 4  ( 3 ) - 6 ( 2 ) 9 ( 2 ) 3 ( 2 )
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C( 1 0 ) 1 5 ( 2 ) 1 7 ( 2 ) 2 4  ( 2 ) - 2 ( 2 ) 3 ( 2 ) - 2 ( 2 )
C ( l l ) 2 7  ( 2 ) 1 8 ( 2 ) 2 7  ( 3 ) - 4  ( 2 ) 2 ( 2 ) - 1 ( 2 )
C ( 1 2 ) 2 8  ( 2 ) 3 8  ( 3 ) 2 2  ( 3 ) 4 ( 2 ) 2 ( 2 ) 1 ( 2 )
C ( 1 3 ) 1 3 ( 2 ) 2 3  ( 2 ) 4 1 ( 3 ) 1 0 ( 2 ) 4 ( 2 ) 0 ( 2 )
c  ( 14) 2 6  ( 2 ) 1 6 ( 2 ) 4 3 ( 3 ) 1 ( 2 ) 6 ( 2 ) 0 ( 2 )
C ( 1 5 ) 2 5  ( 2 ) 1 9 ( 2 ) 2 8  ( 3 ) - 6 ( 2 ) 5 ( 2 ) - 2 ( 2 )
C ( 16) 2 7  ( 2 ) 3 3  ( 3 ) 5 0  ( 3 ) 1 4  ( 2 ) 5 ( 2 ) - 2 ( 2 )

A

T a b l e  5 .  H y d r o g e n  c o o r d i n a t e s  ( x  1 0 A4 )  a n d  i s o t r o p i c  
d i s p l a c e m e n t  p a r a m e t e r s  ( A ^ 2  x  1 0 ^ 3 )  f o r  S 9 2 .

x  y  z  U ( e q )

H ( 1 ) 2 1 9 8 1 5 7 0 8 2 0 9 1 8
H ( 3 A ) 5 6 3 2 6 0 4 4 8 7 4 3 5
H ( 3 B ) 1 3 2 2 7 1 9 6 9 2 7 3 5
H ( 3 C ) - 1 1 3 7 2 4 1 4 5 7 9 6 3 5

H ( 4 ) 4 8 3 0 2 0 0 8 7 3 0 7 1 9
H ( 6 A) 8 7 9 5 1 1 7 5 1 0 2 0 8 3 8

H ( 6 B ) 7 2 2 6 1 3 0 1 1 1 5 0 5 3 8
H ( 6 C ) 9 1 4 8 1 5 2 8 1 1 5 3 3 3 8
H ( 7 ) 6 6 6 9 1 5 4 3 5 4 2 1 2 1

H ( 8 ) 3 5 6 9 1 2 9 5 3 3 0 9 2 1

H ( 9 A ) 5 8 7 4 8 9 3 6 1 3 2 3 6

H ( 9 B ) 6 2 8 1 9 2 0 3 9 9 8 3 6

H ( 9 C ) 4 4 8 0 6 9 9 4 5 5 0 3 6

H ( 1 1 ) 2 0 4 4 9 0 3 9 6 8 5 2 9

H ( 1 2 ) 2 6 8 3 4 0 4 1 1 6 7 2 3 5

H ( 1 4 ) 2 2 1 4 - 2 9 2 7 2 8 9 3 4

H ( 1 5 ) 1 5 5 0 2 0 4 5 2 7 6 2 9

H ( 1 6 A ) 3 6 1 0 - 2 2 9 1 2 1 6 3 5 5

H ( 1 6 B ) 3 5 4 3 - 5 1 0 1 0 4 4 7 5 5

H ( 1 6 C ) 1 6 6 0 - 4 1 3 1 1 3 6 6 5 5

12
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\

U ,OH

P h ^ N^ " C 0 2Me
Ts

2 9 6 b

T a b l e  1 .  C r y s t a l  d a t a  a n d  s t r u c t u r e  r e f i n e m e n t  f o r  0 2 DWK 5 .

I d e n t i f i c a t i o n  c o d e  

E m p i r i c a l  f o r m u l a  

F o r m u l a  w e i g h t  

T e m p e r a t u r e  

W a v e l e n g t h  

C r y s t a l  s y s t e m  

S p a c e  g r o u p  

U n i t  c e l l  d i m e n s i o n s  

1 0 7 . 3 8 1 4 ( 1 2 )  d e g .  

d e g .

V o l u m e

Z

D e n s i t y  ( c a l c u l a t e d )

A b s o r p t i o n  c o e f f i c i e n t  

F ( 0 0 0 )

C r y s t a l  s i z e

T h e t a  r a n g e  f o r  d a t a  c o l l e c t i o n  

I n d e x  r a n g e s  

R e f l e c t i o n s  c o l l e c t e d  

I n d e p e n d e n t  r e f l e c t i o n s

s 9 2

C 1 9  H 2 0  I  N 0 5  S  

5 0 1 . 3 2  

1 5 0 ( 2 )  K 

0 . 7 1 0 7 3  A  

M o n o c l i n i c  

P 2  ( 1 )

a  =  7 . 3 6 0 9 ( 2 )  A  a l p h a  =  9 0  d e g  
b  =  1 1 . 7 3 4 5 ( 4 )  A  b e t a  =

c  =  1 1 . 7 8 5 4 ( 4 )  A  g a m m a  =  9 0

9 7 1 . 5 0 ( 5 )  A A3  

2

1 . 7 1 4  M g / m A3  

1 . 7 8 6  mmA- l  

5 0 0

0 . 1 2  x  0 . 1 0  x  0 . 1 0  mm

2 . 9 2  t o  2 7 . 4 7  d e g .

- 9 < = h < = 9 ,  - 1 5 < = k < = 1 2 ,  - 1 5 < = 1 < = 1 5  

8 2 9 6

3 5 9 9  [ R ( i n t )  =  0 . 0 5 1 7 ]

13
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M a x .  a n d  m i n .  t r a n s m i s s i o n  

•  R e f i n e m e n t  m e t h o d  

D a t a  /  r e s t r a i n t s  /  p a r a m e t e r s  

G o o d n e s s - o f - f i t  o n  F A2  

F i n a l  R i n d i c e s  [ I > 2 s i g m a ( I ) ]

R i n d i c e s  ( a l l  d a t a )

A b s o l u t e  s t r u c t u r e  p a r a m e t e r  

L a r g e s t  d i f f .  p e a k  a n d  h o l e
A

T a b l e  2 .  A t o m i c  c o o r d i n a t e s  
d i s p l a c e m e n t  p a r a m e t e r s  ( A A2 x

d e f i n e d
a s  o n e  t h i r d  o f  t h e  t r a c e  o f

0 . 8 4 1 6  a n d  0 . 8 1 4 2

F u l l - m a t r i x  l e a s t - s q u a r e s  o n  F A2

3 5 9 9  /  1 /  2 5 0

1 . 1 7 0

R1  =  0 . 0 2 9 5 ,  w R 2  =  0 . 0 8 7 8  

R 1  =  0 . 0 3 3 1 ,  w R 2  =  0 . 1 0 8 6  

- 0 . 0 4 ( 3 )

0 . 5 4 7  a n d  - 0 . 7 0 5  e . A A- 3

( x  1 0 A4 )  a n d  e q u i v a l e n t  i s o t r o p i c  
1 0 A3 ) f o r  0 2 D W K 5 .  U ( e q )  i s

t h e  o r t h o g o n a l i z e d  U i j  t e n s o r .

x  y  z  U ( e q )

1 ( 1 ) 1 9 5 2  ( 1 ) 1 6 8 4 ( 1 ) 1 9 0  ( 1 ) 2 0 ( 1 )
s  ( 1 ) 5 8 4 5  ( 2 ) 3 5 8 9 ( 1 ) - 2 5 5 3  ( 1 ) 1 5  ( 1 )
0 ( 1 ) 6 7 8 0 ( 6 ) 2 5 0 3  ( 4 ) - 2 5 1 6 ( 4 ) 2 1 ( 1 )
0 ( 2 ) 6 9 7 7 ( 6 ) 4 5 5 3  ( 4 ) - 1 9 6 7 ( 4 ) 2 0  ( 1 )
0 ( 3 ) 5 4 3 8 ( 7 ) 4 4 5 8  ( 5 ) 1 1 3 0 ( 4 ) 2 7  ( 1 )
0 ( 4 ) 6 3 9 5  ( 7 ) 2 9 8 2  ( 4 ) 2 3 3  ( 4 ) 2 1 ( 1 )
0 ( 5 ) 7 8 3 ( 6 ) 4 7 4 4  ( 4 ) - 1 9 3 1 ( 4 ) 1 9 ( 1 )
N ( l ) 4 1 2 4  ( 7 ) 3 4 9 4  ( 5 ) - 1 9 6 1 ( 4 ) 1 5  ( 1 )
C ( l ) 3 9 8 5  ( 8 ) 4 2 1 5 ( 6 ) - 9 8 5 ( 5 ) 1 5  ( 1 )
C ( 2 ) 5 3 5 0  ( 8 ) 3 9 0 5 ( 6 ) 2 4 2  ( 5 ) 1 6 ( 1 )
C ( 3 ) 7 5 4 3 ( 1 0 ) 2 5 9 8  ( 7 )  ■ 1 3 8 3  ( 6 ) 3 1  ( 2 )
C ( 4 ) 1 9 3 5  ( 8 ) 4 0 1 8 ( 5 ) - 9 9 8 ( 5 ) 1 4  ( 1 )
C ( 5 ) 1 5 4 0  ( 8 ) 2 7 5 9 ( 5 ) - 1 3 6 8 ( 5 ) 1 4  ( 1 )
C ( 6 ) 2 9 6 0  ( 8 ) 2 4 2 3  ( 5 ) - 2 0 6 9 ( 5 ) 1 2  ( 1 )
C ( 7 ) 2 0 4 2  ( 8 ) 2 0 9 5 ( 5 ) - 3 3 4 5  ( 5 ) 1 3 ( 1 )
C ( 8 ) 2 5 1 2 ( 9 ) 1 0 7 7 ( 6 ) - 3 7 6 5 ( 6 ) 2 0 ( 1 )
0 ( 9 ) 1 7 0 9 ( 9 ) 7 7 9 ( 6 ) - 4 9 6 2 ( 6 ) 2 2  ( 1 )
C ( 1 0 ) 4 5 4 ( 9 ) 1 5 2 7  ( 8 ) - 5 7 3 0  ( 5 ) 2 4  ( 2 )
C ( l l ) - 4 4 ( 9 ) 2 5 4 7 ( 6 ) - 5 2 9 6 ( 5 ) 2 1  ( 1 )
C ( 1 2 ) 7 2 0 ( 9 ) 2 8 2 9 ( 5 ) - 4 1 2 2  ( 5 ) 1 7  ( 1 )
C ( 1 3 ) 4 7 6 6  ( 8 ) 3 9 4 6 ( 6 ) - 4 0 4 4 ( 5 ) 1 6 ( 1 )
C ( 1 4 ) 3 7 4 0 ( 9 ) 4 9 6 4 ( 6 ) - 4 3 1 6 ( 6 ) 2 0 ( 1 )
C ( 1 5 ) 2 8 1 7  ( 9 ) 5 2 3 1 ( 6 ) - 5 4 8 8  ( 6 ) 2 1  ( 1 )
C ( 1 6 ) 2 9 2 0 ( 9 ) 4 5 0 9 ( 6 ) - 6 4 1 3 ( 5 ) 2 0  ( 1 )
C ( 1 7 ) 3 9 8 4 ( 9 ) 3 5 2 0  ( 6 ) - 6 1 2 9 ( 5 ) 2 1  ( 1 )
C ( 1 8 ) 4 9 2 6 ( 9 ) 3 2 2 1  ( 5 ) - 4 9 3 4 ( 6 ) 1 9 ( 1 )
C ( 1 9 ) 1 8 0 7 ( 1 0 ) 4 8 0 2  ( 7 ) - 7 7 0 1  ( 6 ) 2 8  ( 2 )

A
T a b l e  3 .  B o n d  l e n g t h s  [ A]  a n d  a n g l e s  [ d e g ]  f o r  0 2 D W K 5 .

I  ( 1 ) - C ( 5 )  
S (1)-O(1)

2 . 1 7 2  ( 5 )  
1 . 4 4 3 ( 5 )
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s 1) - 0 ( 2 )
s 1) - N ( l )
s 1) ~ C(13)
0 3) “C (2)
0 4) -C (2)
0 4) -C (3)
0 5) ~C (4)
0 5) ~H (5)
N 1) - C ( l )
N 1) -C (6)
C 1) -C (4)
C 1) -C (2)
c 1) -H (1)
c 3) -H(3A)
c 3) - H(3B)
c 3) -H(3C)
c 4) “C (5)
c 4) -H (4)
c 5) “C (6)
c 5) -H(5A)
c 6) “C (7)
c 6) “H (6)
c 7) “C (8)
c 7) - C (12)
c 8) -C (9)
c 8) -H (8)
c 9) - C( 1 0 )
c 9) -H (9)
c 10 ) - C ( l l )
c 10 ) - H (10)
c 11 ) - C (12)
c 11 ) - H (11)
c 12 ) - H (12)
c 13 ) - C (18)
c 13 ) - C (14)
c 14 ) - C (15)
c 14 ) - H (14)
c 15 ) - C (16)
c 15 ) - H (15)
c 16 ) - C (17)
c 16 ) - C (19)
c 17 ) - C (18)
c 17 ) - H (17)
c 18 ) - H (18)
c 19 ) - H ( 19A)
c 19 ) - H ( 19B)
c 19 ) - H( 19C)

0 1) - S ( 1 ) - 0 ( 2 )
0 1) - S ( l ) - N d )
0 2) - S ( l ) - N d )
0 1) - S ( 1 ) - C (13)
0 2) - S ( 1 ) - C (13)
N 1) - S ( 1 ) - C (13)
c 2) - 0 ( 4 ) - C (3)
c 4) - 0 ( 5 ) - H (5)
c 1) - N ( 1 ) - C (6)
c 1) - N ( l ) - S d )
c 6) - N ( l ) - S d )
N 1) - C ( 1 ) - C (4)
N 1) - C ( 1 ) - C (2)

1 . 4 5 1  ( 4 )  
1 . 6 2 3  ( 5 )  
1 . 7 5 0 ( 6 )  
1 . 2 1 6 ( 8 )  
1 . 3 3 1  ( 8 )  
1 . 4 3 9 ( 7 )  
1 . 4 4 8  ( 7 )  
0 . 8 7 ( 6 )  
1 . 4 5 6 ( 7 )  
1 . 5 0 5  ( 8 )  
1 . 5 2 2  ( 8 )  
1 . 5 3 8  ( 8 )  
1 . 0 0 0 0  
0 . 9 8 0 0  
0 . 9 8 0 0  
0 . 9 8 0 0  
1 . 5 4 3 ( 9 )  
1 . 0 0 0 0  
1 . 5 6 4 ( 8 )  
1 . 0 0 0 0  
1 . 5 0 3  ( 7 )  
1.0000 
1 . 3 7 6  ( 8 )  
1 . 4 1 3  ( 8 )  
1 . 4 0 1 ( 9 )  
0 . 9 5 0 0  
1 . 3 9 4 ( 1 1 )  
0 . 9 5 0 0  
1 . 3 9 2  ( 1 1 )  
0 . 9 5 0 0  
1 . 3 7 0 ( 9 )  
0 . 9 5 0 0  
0 . 9 5 0 0  
1 . 3 8 2  ( 8 )  
1 . 3 9 8 ( 9 )  
1 . 3 8 1 ( 9 )  
0 . 9 5 0 0  
1 . 4 0 0 ( 9 )  
0 . 9 5 0 0  
1 . 3 8 4 ( 9 )  
1 . 5 3 3 ( 9 )  
1 . 4 1 6 ( 9 )  
0 . 9 5 0 0  
0 . 9 5 0 0  
0 . 9 8 0 0  
0 . 9 8 0 0  
0 . 9 8 0 0

1 1 8 . 2 ( 3 )  
1 1 0 . 6 ( 3 )  
1 0 5 . 0 ( 3 )  
1 0 8 . 2 ( 3 )  
1 0 8 . 4 ( 3 )  
1 0 5 . 7  ( 3 )
1 1 5 . 2  ( 5 )
1 0 8  ( 4 )
1 1 2 . 3  ( 4 )  
1 2 3 . 2 ( 4 )
1 2 1 . 3  ( 4 )  
1 0 2 . 0  ( 5 )  
1 1 5 . 2 ( 5 )
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c 4 ) - C ( l ) - C 2 )
N 1 ) - C ( 1 ) - H 1 )
C 4 ) - C ( 1 ) - H 1 )
C 2 ) - C ( 1 ) - H 1 )
0 3 ) - C ( 2 ) - 0 4 )
0 3 ) - C ( 2 ) - C 1 )
0 4 ) - C ( 2 ) - C 1 )
0 4 ) - C ( 3 ) - H 3 A )
0 4 ) - C ( 3 ) - H 3 B )
H 3 A ) - C ( 3 ) - H ( 3 B )
0 4 ) - C ( 3 ) - H 3 C )
H 3 A ) - C ( 3 ) - H ( 3 C )
H 3 B ) - C ( 3 ) - H ( 3 C )
0 5 ) - C ( 4 ) - C 1 )
0 5 ) - C ( 4 ) - C 5 )
c 1 )  - C ( 4 ) - C 5 )
0 5 )  - C ( 4 ) - H 4 )
c 1 )  - C ( 4 ) - H 4 )
c 5 ) - C ( 4 ) - H 4 )
c 4 ) - C ( 5 ) - C 6 )
c 4 ) - C ( 5 ) - I 1 )
c 6 ) - C ( 5 ) - I 1 )
c 4 ) - C ( 5 ) - H 5 A )
c 6 ) - C ( 5 ) - H 5 A )
I 1 ) - C ( 5 ) - H 5 A )
c 7 ) - C ( 6 ) - N 1 )
c 7 ) - C ( 6 ) - C 5 )
N 1 ) - C ( 6 ) - C 5 )
c 7 ) - C  ( 6 ) - H 6 )
N 1 ) - C ( 6 ) - H 6 )
C 5 ) - C ( 6 ) - H 6 )
C 8 ) - C ( 7 ) - C 1 2 )
C 8 ) - C ( 7 ) - C 6 )
c 1 2 ) - C ( 7 ) - C ( 6 )
c 7 ) - C ( 8 ) - C 9 )
c 7 ) - C ( 8 ) - H 8 )
c 9 ) - C ( 8 ) - H 8 )
C 10 - C ( 9 ) -■C (8)
C 10 ~ C ( 9 ) -■H (9)
C 8 ) - -C ( 9) -H ( 9)
C 11 - C ( 1 0 - C ( 9 )
C 11 - C ( l  0 - H (10)
C 9 ) - -C( 1 0 ) - -H(10)
C 12 -C (11 - C ( 1 0 )
C 12 - C ( l l ~ H (11)
c 10 - C ( l l - H (11)
c 11 -C (12 - C ( 7 )
c 11 -C (12 - H (12)
c 7 ) - - C( 1 2 ) -- H(12)
c 18 -C (13 - C (14)
c 18 -C (13 - S ( l )
c 14 -C (13 - S ( l )
c 15 -C (14 - C (13)
c 15 -C (14 - H (14)
c 13 -C (14 - H (14)
c 14 -C (15 - C (16)
c 14 -C (15 - H (15)
c 16 -C (15 - H (15)
c 17 -C (16 - C (15)
c 17 - C  (16 - C (19)
c 15 - C  (16 - C (19)

1 1 0 . 0 ( 5 )
1 0 9 . 8
1 0 9 . 8
1 0 9 . 8  
1 2 4 . 0 ( 5 )  
1 2 2 . 4 ( 6 )  
1 1 3 . 7 ( 5 )
1 0 9 . 5
1 0 9 . 5
1 0 9 . 5
1 0 9 . 5
1 0 9 . 5
1 0 9 . 5  
1 0 5 . 8 ( 5 )  
1 0 9 . 3 ( 4 )  
1 0 4 . 5 ( 5 )
1 1 2 . 3
1 1 2 . 3
1 1 2 . 3  
1 0 6 . 9 ( 5 )
1 1 0 . 5  ( 3 )
1 1 0 . 7  ( 4 )  
1 0 9 .  6
1 0 9 . 6
1 0 9 . 6  
1 1 1 . 9 ( 5 )  
1 1 4 . 9 ( 5 )  
1 0 1 . 5 ( 4 )  
1 0 9 .  4 
1 0 9 .  4
1 0 9 . 4  
1 1 9 . 6 ( 5 )  
1 1 9 . 8 ( 5 )  
1 2 0 . 6 ( 5 )  
1 2 0 . 2 ( 6 )
1 1 9 .  9
1 1 9 . 9  
1 1 9 . 6 ( 6 )  
1 2 0 . 2  
1 2 0 . 2  
1 1 9 . 9 ( 5 )
1 2 0 . 0 
1 2 0 . 0  
1 2 0 . 4 ( 6 )
1 1 9 . 8
1 1 9 . 8  
1 2 0 . 2 ( 6 )
1 1 9 . 9
1 1 9 . 9  
1 2 1 . 0  ( 5 )  
1 1 9 . 9 ( 5 )  
1 1 9 . 1 ( 5 )  
1 1 9 . 6 ( 6 )  
1 2 0 . 2  
1 2 0 . 2  
1 2 1 . 1 ( 6 )
1 1 9 . 4
1 1 9 . 4  
1 1 8 . 5 ( 6 )  
1 2 1 . 6 ( 6 ) 
1 1 9 . 9 ( 6 )
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C ( 1 6 ) - C ( 1 7 ) - C ( 1 8 ) 1 2 1 . 4 ( 6 )
C ( 1 6 ) - C ( 1 7 ) - H ( 1 7 ) 1 1 9 . 3
C ( 1 8 ) - C ( 1 7 ) - H ( 1 7 ) 1 1 9 . 3
C ( 1 3 ) - C ( 1 8 ) - C ( 1 7 ) 1 1 8 . 4 ( 6 )
C ( 1 3 ) - C ( 1 8 ) - H ( 1 8 ) 1 2 0 . 8
C ( 1 7 ) - C ( 1 8 ) - H ( 1 8 ) 1 2 0 . 8
C ( 1 6 ) - C ( 1 9 ) - H ( 1 9 A ) 1 0 9 . 5
C ( 1 6 ) - C ( 1 9 ) - H ( 1 9 B ) 1 0 9 . 5
H ( 1 9 A ) - C ( 1 9 ) - H ( 1 9 B ) 1 0 9 . 5
C ( 1 6 ) - C ( 1 9 ) - H ( 1 9 C ) 1 0 9 . 5
H ( 1 9 A ) - C ( 1 9 ) - H { 1 9 C ) 1 0 9 . 5
H ( 1 9 B ) - C ( 1 9 ) - H ( 1 9 C ) 1 0 9 . 5

S y m m e t r y  t r a n s f o r m a t i o n s  u s e d  t o  g e n e r a t e  e q u i v a l e n t  a t o m s :

A
T a b l e  4 .  A n i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  ( A A2  x  1 0 A3 )  f o r  

0 2 D W K 5 .
T h e  a n i s o t r o p i c  d i s p l a c e m e n t  f a c t o r  e x p o n e n t  t a k e s  t h e  f o r m :
- 2  p i A2  [ h A2  a * A2  U l l  +  . . .  +  2  h  k  a *  b *  U 1 2  ]

U l l  U 2 2  U 3 3  U 2 3  U 1 3  U 1 2

I 1 ) 2 4 1 ) 2 1 1 ) 1 7 1 ) 5 ( 1 ) 9 1 ) - 1 ( 1 )
S 1 ) 9 1 ) 2 0 1 ) 1 5 1 ) - 2 ( 1 ) 4 1 ) - 2 ( 1 )
0 1 ) 1 5 2 ) 2 4 2 ) 2 3 2 ) - 3 ( 2 ) 6 2 ) 3 ( 2 )
0 2 ) 1 4 2 ) 2 4 2 ) 2 2 2 ) - 8 ( 2 ) 7 2 ) - 7  ( 2 )
0 3 ) 2 4 3 ) 3 7 3 ) 1 6 2 ) - 1 0 ( 2 ) - 2 2 ) - 3 ( 2 )
0 4 ) 1 6 2 ) 2 9 3 ) 1 5 2 ) 0 ( 2 ) 0 2 ) 5  ( 2 )
0 5 ) 1 5 2 ) 1 8 2 ) 2 4 2 ) 3 ( 2 ) 9 2 ) 1 ( 2 )
N 1 ) 1 1 2 ) 2 3 3 ) 1 1 2 ) - 6 ( 2 ) 5 2 ) - 2  ( 2 )
C 1 ) 1 3 3 ) 1 8 3 ) 1 5 3 ) ' - 8 ( 2 ) 4 2 ) - 3 ( 2 )
C 2 ) 1 0 3 ) 2 1 3 ) 1 5 3 ) 0 ( 2 ) 0 2 ) - 1 ( 2 )

C 3 ) 2 0 3 ) 4 5 5 ) 1 6 3 ) 7 ( 3 ) - 1 1 2 ) - 5  ( 3 )
C 4 ) 8 2 ) 1 8 3 ) 1 4 3 ) 3 ( 2 ) 1 2 ) 4 ( 2 )
c 5 ) 1 3 3 ) 1 7 3 ) 9 2 ) 4 ( 2 ) 0 2 ) - 3 ( 2 )
c 6 ) 1 2 3 ) 1 6 3 ) 7 2 ) 0 ( 2 ) 0 2 ) 0 ( 2 )

c 7 ) 9 3 ) 1 5 3 ) 1 2 3 ) - 3 ( 2 ) 0 2 ) - 3 ( 2 )

c 8 ) 1 7 3 ) 2 4 4 ) 2 2 3 ) 3 ( 3 ) 9 2 ) 8 ( 3 )

c 9 ) 2 7 3 ) 2 1 3 ) 2 1 3 ) - 1 2 ( 3 ) 1 1 3 ) - 7  ( 3 )
c 1 0 ) 2 5 3 ) 3 3 5 ) 1 4 2 ) - 9 ( 3 ) 7 2 ) - 8  ( 3 )

c 1 1 ) 2 0 3 ) 2 3 3 ) 1 8 3 ) 4 ( 3 ) 4 2 ) - 1 ( 3 )

c 1 2 ) 1 5 3 ) 1 8 3 ) 1 9 3 ) 2 ( 2 ) 6 2 ) 3 ( 2 )

c 1 3 ) 1 0 3 ) 2 4 3 ) 1 4 3 ) 0 ( 2 ) 4 2 ) - 1 ( 2 )

c 1 4 ) 2 4 3 ) 1 6 3 ) 2 2 3 ) - 3 ( 2 ) 1 0 3 ) - 1 ( 2 )

c 1 5 ) 2 2 3 ) 1 6 3 ) 2 6 3 ) - 2 ( 3 ) 1 2 2 ) - 1  ( 2 )

c 1 6 ) 2 2 3 ) 2 4 3 ) 1 5 3 ) - 1 ( 2 ) 9 2 ) - 5  ( 3 )

c 1 7 ) 2 7 3 ) 2 1 3 ) 1 7 3 ) - 8 ( 2 ) 1 1 2 ) - 3 ( 3 )

c 1 8 ) 1 9 3 ) 1 7 3 ) 2 2 3 ) - 2 ( 2 ) 8 2 ) 1 ( 2 )

c 1 9 ) 3 0 4 ) 3 4 4 ) 1 9 3 ) 4 ( 3 ) 7 3 ) - 2  ( 3 )

A
T a b l e  5 .  H y d r o g e n  c o o r d i n a t e s  ( x  1 0 A4 )  a n d  i s o t r o p i c  

d i s p l a c e m e n t  p a r a m e t e r s  ( A A2  x  1 0 A3 )  f o r  0 2 D W K 5 .
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x  y  z  U ( e q )

H ( 5 ) - 4 0 0 ( 9 0 ) 4 6 1 0 ( 5 0 ) - 2 0 1 0 ( 5 0 ) 0
H ( 1 ) 4 1 6 6 5 0 3 1 - 1 1 7 0 1 8
H ( 3 A ) 8 5 2 9 3 1 6 6 1 7 3 0 4 6
H ( 3 B ) 8 1 4 5 1 8 7 1 1 2 9 8 4 6
H ( 3 C ) 6 7 3 7 2 4 9 5 1 9 0 3 4 6
H ( 4 ) 1 7 4 0 4 1 8 2 - 2 1 0 1 7
H ( 5 A ) 2 0 3 2 6 7 8 - 1 8 9 7 1 6
H ( 6 ) 3 7 9 4 1 7 8 6 - 1 6 4 6 1 5
H ( 8 ) 3 3 8 3 5 7 5 - 3 2 4 2 2 5
H ( 9 ) 2 0 1 8 7 0 - 5 2 4 9 2 7
H ( 1 0 ) - 6 0 1 3 4 2 - 6 5 4 8 2 9
H ( 1 1 ) - 9 1 8 3 0 4 9 - 5 8 1 7 2 5
H ( 1 2 ) 3 5 9 3 5 2 1 - 3 8 3 0 2 1
H ( 1 4 ) 3 6 7 8 5 4 6 9 - 3 6 9 9 2 4
H ( 1 5 ) 2 0 9 9 5 9 1 5 - 5 6 7 0 2 5
H ( 1 7 ) 4 0 8 5 3 0 3 1 - 6 7 5 0 2 5

H ( 1 8 ) 5 6 5 0 2 5 3 9 - 4 7 4 8 2 2
H ( 1 9 A ) 5 4 4 5 0 9 0 - 7 7 3 1 4 1

H ( 1 9 B ) 1 6 7 0 4 1 1 7 - 8 1 9 5 4 1

H ( 1 9 C ) 2 4 9 6 5 3 8 7 - 8 0 0 1 4 1

A

18



O
".

Appendix

■NHTs
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TITL dwk0401 in P 21/c
CELL 0.71069 5.8520 26.4610 10.2180 90.000 104.118 90.000 
ZERR 4.00 0.0050 0.0050 0.0050 0.005 0.005 0.005
LATT 1
SYMM -X, 1 /2 + Y, 1 /2 -Z
SFAC C H N O S I
UNIT 52 64 4 20 4 4
CONF
BOND $H
ACTA
SIZE 0.20 0.20 0.23 
TEM P-123 
REM colourless block 
L.S. 4
WGHT 0.037100
FVAR 0.10493
C1 1 -0.206148 0.062280 1.098499 11.00000 0.03895
0.04544 =

0.02351 0.00215 0.01557 0.00201 
AFIX 137
H1A 2 -0.312564 0.090651 1.101159 11.00000 -1.50000
H1B 2 -0.071036 0.063990 1.176934 11.00000 -1.50000
H1C 2 -0.290375 0.030378 1.100337 11.00000 -1.50000
AFIX 0
C2 1 -0.120097 0.065101 0.969987 11.00000 0.03065
0.02105 =

0.01959 0.00250 0.00844 0.00277 
C3 1 0.073441 0.094487 0.964168 11.00000 0.03036
0.02833 =
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0.02127 0.00538 0.00757 0.00161
AFIX 43
H3 2 0.156648 0.111950 1.042598 11.00000
AFIX 0
C4 1 0.147702 0.098785 0.845002 11.00000
0.02153 =

0.02376 0.00551 0.00137 -0.00453
AFIX 43
H4 2 0.278668 0.119412 0.840945 11.00000
AFIX 0
C5 1 0.026077 0.072279 0.732651 11.00000
0.01887 =

0.01643 0.00002 0.00034 0.00325
C6 1 -0.167504 0.042572 0.736485 11.00000
0.01853 =

0.01952 -0.00454 0.00593 -0.00305
AFIX 43
H6 2 -0.248686 0.024440 0.658765 11.00000
AFIX 0
C7 1 -0.240588 0.039764 0.855465 11.00000
0.02519 =

0.03092 0.00237 0.01129 -0.00378
AFIX 43
H7 2 -0.375270 0.020172 0.858425 11.00000
AFIX 0
C8 1 -0.290497 0.117440 0.458470 11.00000
0.02105 =

0.02203 -0.00118 0.00331 0.00397
AFIX 13
H8 2 -0.333491 0.117792 0.547368 11.00000
AFIX 0
C9 1 -0.225354 0.170597 0.423907 11.00000
0.01752 =

0.03202 -0.00379 0.00432 -0.00119
AFIX 13
H9 2 -0.134452 0.189144 0.505321 11.00000
AFIX 0
C10 1 -0.470954 0.193598 0.368260 11.00000
0.01804 =

0.02556 -0.00113 -0.00078 -0.00137
AFIX 13
H10 2 -0.534182 0.205880 0.445060 11.00000
AFIX 0
C11 1 -0.508461 0.106792 0.346503 11.00000
0.01983 =

0.02032 0.00527 0.01120 -0.00033
C12 1 -0.491710 0.234982 0.265358 11.00000
0.02445 =

0.03531 0.00132 0.00351 0.00457
AFIX 13

- 1.20000

0.02089

- 1.20000

0.01345

0.02477

- 1.20000

0.01826

- 1.20000

0.01555

- 1.20000

0.01403

- 1.20000

0.01694

- 1.20000

0.02019

0.01524
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H12 2 -0.419163 0.223149 0.191736 11.00000 -1.20000
AFIX 0
C13 1 -0.744397 0.251668 0.202847 11.00000 0.02532
0.03418 =

0.04716 0.01731 0.00052 0.00042
AFIX 137
H13A 2 -0.832467 0.223553 0.151751 11.00000 -1.50000
H13B 2 -0.743312 0.280294 0.142147 11.00000 -1.50000
H13C 2 -0.819683 0.261873 0.274498 11.00000 -1.50000
AFIX 0
N8 3 -0.116506 0.077975 0.458772 11.00000 0.01625
0.01953 =

0.01198 -0.00597 -0.00015 0.00186
AFIX 43
H8A 2 -0.139199 0.055498 0.393390 11.00000 -1.20000
AFIX 0
01 4 0.240123 0.030318 0.562790 11.00000 0.01798
0.01892 =

0.02361 -0.00227 0.00252 0.00887
02 4 0.241423 0.123370 0.580437 11.00000 0.02047
0.01720 =

0.02408 0.00311 0.00552 -0.00318
03 4 -0.109197 0.171339 0.317924 11.00000 0.01609
0.02704 =

0.04464 0.00778 0.01294 0.00367
AFIX 147
H3A 2 0.021251 0.156562 0.342806 11.00000 -1.50000
AFIX 0
04 4 -0.583245 0.066851 0.299919 11.00000 0.02326
0.01842 =

0.03381 -0.00101 0.00726 -0.00151
05 4 -0.614524 0.151251 0.302220 11.00000 0.01392
0.01765 =

0.02844 0.00256 0.00408 0.00118
S1 5 0.119889 0.076030 0.581421 11.00000 0.01565
0.01637 =

0.02070 -0.00040 0.00495 -0.00067
11 6 -0.293084 0.299638 0.364947 11.00000 0.02760
0.02057 =

0.06649 0.00050 0.00311 0.00038
HKLF 4

REM dwk0401 in P 21/c
REM R1 = 0.0482 for 1907 Fo > 4sig(Fo) and 0.1297 for all 3450 data 
REM 193 parameters refined using 0 restraints

END

WGHT 0.0366 0.0000
REM Highest difference peak 0.747, deepest hole-1.046, 1-sigma level
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Appendix

0.175 Q1 1 -0.4350 0.0582 1.0903 11.00000 0.05 0.75 Q2 1 
-0.1029 0.1981 0.4403 11.00000 0.05 0.64 Q3 1 -0.4371 0.1483
I.1127 11.00000 0.05 0.61 Q4 1 0.4501 0.0700 0.7030 11.00000
0.05 0.60 Q5 1 -0.1435 0.0375 0.4579 11.00000 0.05 0.59 Q6
1 -0.3240 0.3216 0.4357 11.00000 0.05 0.59 Q7 1 -0.2229

0.0538 0.7397 11.00000 0.05 0.59 Q8 1 -0.4667 0.0307 0.2409
II.00000  0.05 0.59 Q9 1 -0.8725 0 .2988-0.0029 11.00000 0.05
0.58 Q10 1 -0.3854 0.1208 1.1385 11.00000 0.05 0.57 Q11 1
-0.0440 0.0570 0.7548 11.00000 0.05 0.57 Q12 1 -0.6638 0.0231 
0.3393 11.00000 0.05 0.56 Q13 1 0.1501 0.1889 0.3873 11.00000 
0.05 0.56 Q14 1 0.3559 0.1246 0.8093 11.00000 0.05 0.56 Q15
1 -0.7084 0.1623 0.2589 11.00000 0.05 0.54 Q16 1 -0.3320

0.1298 0.2522 11.00000 0.05 0.54 Q17 1 -0.4545 0.2465 0.1378
11.00000 0.05 0.54 Q18 1 0.2437 0.0592 0.7958 11.00000 0.05
0.53 Q19 1 -1.0955 0.3012 0.2047 11.00000 0.05 0.53 Q20 1
-0.0270 0.0573 1.2571 11.00000 0.05 0.53


