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I    — „-T . Abstr a c t

In this thesis is presented a description of studies concerning the molecular modelling 

and biological evaluation of a set of novel antiviral agents for the helicase and 

polymerase proteins of Flaviviridae.

Viruses in this family are enveloped, have positive-sense RNA and are responsible for 

a variety of life threatening diseases. To date neither specific antiviral treatments exist 

nor are there any vaccines available for Flaviviridae infection. Thus there is an urgent 

need for new therapies.

The ultimate aim of this project was to design a coordinated in  silico & in  vitro 

protocol for the design and evaluation of novel Fla viviridae inhibitors.

That was achieved initially by establishing the three-dimensional structures of 

various Flaviviridae members by homology-based molecular modelling. In 

continuation, a set of small compound libraries was designed using a de novo 

structure-based drug design approach. Those compounds were screened in silico with 

the aid of molecular docking and a set of scoring algorithms. The best candidates were 

chosen to be chemically synthesised (not part of this thesis).

The genes of Hepatitis C and Dengue helicases as well as the Dengue NS3 domain 

(helicase and protease) were cloned in expression vectors and the proteins were 

produced and purified.

A novel biological assay was then established for the Hepatitis C helicase in order to 

evaluate the potency of the designed inhibitors in vitro. An attempt was finally made 

to feedback the computer model using the biological activity data of those 

compounds, in order to improve the cooperation levels between the in  silico and the 

in  vitro parts of this research.
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Chapter 1. Introduction

1.1 Flaviviridae.

Flaviviridae is a family of viruses that infect vertebrates m. Virions of the 

flaviviridae family are enveloped and slightly pleomorphic during their life cycle. 

They are spherical in shape and usually 40-60 nm in diameter. Their nucleocapsids 

are isometric and sometimes penetrated by stain. The usual size of the 

nucleocapsids is 25-30 nm in diameter and they have polyhedral symmetry [2].

Flaviviridae consists of three characterised genera and the unclassified ones [3]. The 

main representatives of each family are summarised below (Figure 1.1).

Flavivirus

Yellow fever virus [YFV] 
Dengue fever virus [DENV] 

Japanese encephalitis virus [JEV] 
Tick-borne encephalitis virus [TBEV]

s  X

Pestivirus

Bovine viral diarrhoea virus [BVDV] 
Classical swine fever virus [CSFV] 

Border disease virus [BDV]

Flaviviridae ^ ) y

\  /

Hepacivinis

hepatitis C virus [HCV]

Unclassified

Hepatitis G virus [HGV]

Figure 1.1. The Three genera that constitute the viral family of Flaviviridae. 
Hepatitis C virus was recently discriminated from the rest of the Flaviviridae, due 
to its distinct properties and clinical manifestations. More details about the most 
representative members of each family can be found in Appendices 1.1 to 1.4.
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Chapter 1. Introduction

It is remarkable that even though the above viruses are separated to different 

genera, and they do not have common biological properties and do not show 

serological cross-reactivity, they manage to retain high similarity in the 

morphology of the virion, the organisation of the viral genome, and the estimated 

life cycles and replication patterns that they follow w.

1.2 Epidemics of Flaviviridae

More than 170 million people worldwide are currently chronically infected with 

the Hepatitis C virus pj. They are all considered to be at risk of developing cirrhosis 

and some of them will develop liver cancer. Hepatitis C has spread all over the 

world and for every person who has the aids virus, 4 have the Hepatitis C Virus. 

Today, hepatitis C causes ten thousand deaths per year and is the main cause for 

more than half of the four thousand liver transplantations that are performed 

annually [6].

Infections that mosquitoes carry or more generally arthropod-borne flaviviridae 

have reached epidemic dimensions in some parts of the world. Dengue fever 

infects 50 million people per year in central Africa. According to the World 

Health Organisation (WHO) there are 6.5 billion inhabitants on this planet that 

live in areas of high risk of acquiring dengue. For example only for 2006 the 

Philippines reported 197 deaths and 14,738 cases of dengue fever [7]. Indonesia’s

Dimitrios Vlachakis, PhD 2006 14
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Dengue deaths reached 634 and Malaysia has already confirmed 74 deaths due to 

Dengue virus in the first 9 months. In Thailand more than 32,000 Thais have been 

infected with dengue fever and currently Singapore is going through its worst 

dengue fever outbreak ever on record, since the officially reported Dengue cases 

are nearing 11,000 m.

According to the WHO of South-East Asia since November 10*h, 2005, a total of 

5737 cases of Japanese Encephalitis with 1334 deaths (fatality rate of 23.3%) have 

been reported from Uttar in India since the outbreak started in July 2005. 

Moreover, since the 2nd of January 2006, a total of 2824 individuals have been 

infected with Japanese Encephalitis, 316 of these infections have already resulted 

in deaths (fatality rate of 11.2%). The Government in despair has employed both 

anti-larval and anti-adult measures by distributing 200,000 mosquito nets. The 

government after evaluating the situation decided to establish a law, by which all 

children between the ages of 1-12 years must be vaccinated and immunised 

against Japanese Encephalitis. The law will take action in January 2007, in schools 

and kindergartens [9].

West Nile Virus (WNV) first hit New York with 77 deaths in 1999. Moreover, the 

United States were alarmed and action was taken to stop the virus from spreading. 

But this year West Nile virus is again on the front covers of the newspapers. This 

year WNV has hit Illinois harder than any other state, with 399 cases so far, 21 of 

which resulted in death. The humid and full of swamps Louisiana comes second 

with 11 deaths in 2006 no].

Dimitrios Vlachakis, PhD 2006 15
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Farming and agriculture have both seriously suffered in the past from the impact 

that pestiviruses had on livestock. Many economies depend on primary production 

that comes from farming and agriculture and as a result most of these countries 

take preventative action against Pestiviruses [11-12].

Disproportionaly to the severity of an infection with almost all members of 

Flaviviridae, no specific antiviral therapy is available today. [13-14-15-16]

1.3.1 Hepaciviruses

Envelope Glycoprotein 
El

• • tapsid Protein
C

• • • Nudek Acid

• • * Envelope Lipid

••Envelope Glycoprotein 
12

FULL VIEW CUT-A-WAY

Figure 1.2. A model of the Human Hepatitis C Virus [in.

Before 1989, when the HCV agent was identified (Figure 1.2), all HCV infections 

were referred to as non-A, non-B hepatitis [isj. According to the World’s Health 

Organization more than 3% of the world's population is currently infected with 

HCV [i9]. Convert that in numbers and almost 170 million people are chronic
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Chapter 1. Introduction

carriers of the Hepatitis C virus (Figure 1.3) [20]. Without exceptions, they all 

belong to the high risk group for developing initially liver cirrhosis and potentially 

at a later stage, liver cancer [211. Statistics reveal that a great portion of the HCV 

carriers are using or have used in the past drugs intravenously. Another large 

portion of HCV carriers are those who needed blood transfusion at some stage in 

their life [22]. The latter is not a problem anymore in developed countries after the 

law for blood donor screening for HCV was introduced. The HCV infection of 

post-transfusion patients is under control and has eclipsed in the last few years. 

Other routes of transmission are needles, body piercing, tattooing, scarification 

and circumcision in some countries [23]. Still there is always a number of cases 

where the cause of the infection cannot be identified.

Upon infection with HCV the acute phase will follow. Twenty days later the 

copies of the Hepatitis C virus have already reached high levels that allow 

biochemists to detect the viral RNA. It is then that the first symptoms of the 

disease will become apparent [24]., although in some cases, the infection could be 

asymptomatic. Nine in ten acutely infected patients will develop chronic HCV 

infection [25] and eventually liver cirrhosis in 40% of the patients. [26].

If the transmission rate of the HCV infection remains as it is today, it is estimated 

that the number of patients with chronic hepatitis C will rise dramatically in the 

next ten years. Today, for example, the number of HCV victims only in the USA is 

estimated to be 8,800 annually. Statistics reveal that this number will rise to 

35,000 in 3 year’s time im.
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Hepatitis G virus (HGV) infections have not been so extensively studied as HCV 

infection. It has been found though that the GB viruses (GBV-A, GBV-B, and 

GBV-C) are related phylogenetically to the Hepatitis C virus. Humans are the 

natural host for GBV-C, whereas tamarins are the natural hosts for GBV-A and 

GBV-B. GBV-C is transmitted in a pattern similar to HCV and is quite often found 

in co-infection with HCV [28].

Figure 1.3. The world prevalence of the HCV infection per country
Anti HCV Prevalence

Red >5% High
1.1-5% Intermediate

Green 0 .2 -1% Low
Orange <0.1% Very Low
White Unknown

(Adapted from WHO, 1995 [29])
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Chapter 1. Introduction

1.3.2 Flaviviruses

Up to date the genera of flaviviruses 

counts more than seventy members in its 

ranks. Many of them are very dangerous 

human pathogens po]. Human flaviviruses 

are transmitted primarily with ticks and 

mosquitoes. This is making it very hard 

to deal with the disease, especially at 

some parts of the world, where 

eliminating mosquitoes is not possible

[31].

According to phylogenetic data, there 

are 72 species of flaviviruses, which have 

been further sub-divided into 14 groups. 

Those groups have been characterised 

and grouped into 3 main categories [32]. 

First is the mosquito-borne category,

Figure 1.4. The spread of the Dengue 
Virus from the 50’s until today. Even 
highly-developed areas of the planet are 
under threat (USA-EU).

1950 900

• • •

■m*
i f  ^  >k-

196° 15497

f
v - \  ' \  iS%

¥

Zr • - >
1970 J 3 L  122174

* • -  ¥  v

>  ' W  ' %  ; ,
/*" ‘C '"I >

1980 295591

1990 514139

1

The Dengue Virus infects 
approximately 50.000.000 
people per year.

Dimitrios Vlachakis, PhD 2006 19



Chanter 1. Introduction

second is the tick-borne, and the final category is the no-vector one. Flaviviruses 

that affect humans are grouped in the first two categories [33]. A very dangerous 

and representative member of the Flaviviruses genera is the Yellow Fever Virus 

(YFV). Even though there is available vaccination against YFV, the fatality rates 

are very high [34].. YFV causes hemorrhagic fever upon infection and has a 

mortality rate that reaches fifty percent worldwide [34].

Dengue and dengue hemorrhagic fever (DHF) are caused by infection with one of 

four antigenically distinct, virus serotypes (DEN-1, DEN-2, DEN-3, and DEN4) [35]. 

Once infected with one of these serotypes, the individual develops specific 

immunity. However, cross-immunity does not develop. It is theoretically possible, 

therefore, for an individual to be infected four times, each time with a different 

serotype [35]. Dengue is mostly seen in tropical urban areas. As with other members 

of the Flaviviridae family, the virus is transmitted through mosquito bites, 

specifically Aedes aegypti, a domestic, day-biting mosquito that prefers to feed on 

humans [35]. Dengue is the most important mosquito-bome viral disease, affecting 

humans with a distribution comparable with that of malaria. Approximately 2.5 

billion people are living in areas at risk for epidemic transmission [36]. Tens of 

millions of cases of dengue fever occur annually along with up to hundreds of 

thousands of cases of DHF (Figure 1.4). DHF is the most serious manifestation of 

the disease, caused by an immunologic reaction that occurs for the most part in 

individuals already sensitized to the disease, either actively through infection or 

passively in infants through placental transfer of immunoglobulin from mother to

Dimitrios Vlachakis, PhD 2006 20
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child [37]. Initially, DHF appears the same as dengue but after several days the 

patient deteriorates with prostration, restlessness, signs of circulatory collapse 

(diaphoresis, cold extremities, dyspnea, circumoral and peripheral cyanosis, and 

hemorrhagic manifestations) [38]. Available laboratory tests cannot identify who 

will ultimately develop this manifestation [39].

Back in August 1999 an encephalitis outbreak in New York claimed the lives of 6 

humans, after 77 officially reported cases of infection m . Initially the outbreak was 

characterised serologically as St. Louis encephalitis virus. Further studies and 

sequence analysis revealed that the virus had higher similarity with the West Nile 

virus. West Nile virus is a mosquito-bome vims found most commonly in Africa, 

France, India, Indonesia, the Middle East, and Soviet countries [4i]. In 1999, a 

West-Nile-like vims was identified in patients living in the Northeast United 

States. The bird is the primary host and the principal vector is Culex univittatus [42] 

However, other mosquitoes are known to carry the vims, including Culex pipiens, 

Culex antennatus, and Culex tritaeniorhynchus (Asia). Other animal reservoirs are 

not part of the virus’s normal life cycle [43]. West Nile fever is common in the 

Middle East with most individuals exposed as children. Children experience a 

nondescript viral illness with fever that is rarely diagnosed. Neighbouring Israel 

also experiences infection although there, it is more likely to be the young adult 

than the child who becomes infected. Spread occurs primarily in the summer 

months when the mosquito population increases [44].
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Finally, another very important member of the Flavivirus genus is Japanese 

Encephalitis Virus (JEV) [45]. JEV is the major cause of viral encephalitis worldwide. 

Almost fifty thousand infections happen in Asia every year. JEV has a very high 

mortality rate that reaches thirty percent. Another thirty percent of the infected 

patients will develop long-lasting neurological conditions [46-t7].
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1.3.3 Pestiviruses

Pestiviruses are mainly viruses that affect animals. The most representative 

members of the Pestivirus genera are the Classical Swine Fever Virus (CSFV), 

Bovine Viral Diarrhoea Virus (BVDV) and Border Diarrhoea Virus (BDV) [48]. 

There are two different routes of infection known today [49], the first is the nasal 

route and the second is the transplacental route. The transplacental route is very 

dangerous to livestock, since it retains the infection into the livestock and poses a 

constant thread to the rest of the animals. These viruses cause severe disease that 

will lead to death, but before that happens, it is very easy to cross species, infect 

and cause a milder version of the same disease to the other hosts [50-51-52]. Bovine 

Diarrhoea Virus causes a severe mucosal disease in cattle. Other species, such as 

swine and various ruminants have been found to be susceptible to the virus [53-54]. 

There are cytopathic and non-cytopathic biotypes according to their proliferation 

patterns in cell culture. Infection with BVDV has high morbidity and low 

mortality rates [55]. This mild disease is marked by ulceration of the nose, mouth, 

and gastrointestinal mucosa, which causes the virus to spread quickly because of 

continuous salivation, nasal discharge, coughing, or diarrhoea [56]. The major 

organs that the viruses attack and use for their replication are the lymphoid 

tissues, epithelial and all major lymphocyte cells. It has also been found that cells 

of the gastrointestinal tract, glands, and neurons can provide the host that viruses
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need to replicate [57 58]. Changing from the primary infecting non-cytopathic strain 

(or biotype) into the cytopathic strain is closely related to the mucosal disease. 

There are two scenarios to describe this conversion. The first one is that an 

insertion appears in a cleavage site in the NS2-3 protein. The second scenario is 

that there is duplication of the NS2-3 gene. As a result the NS3 protein will be 

expressed instead of the NS2-3 gene [59-60-61-62-63].

Humans are affected from Pestiviruses in an indirect way. Many countries base 

their economies on agriculture and farming. A Pestivirus infection can cause great 

damage to economies and as a result, especially in countries with weak economies, 

suffering to people m . The economic losses upon BVDV infection depends on the 

size of the epidemic [65].

CSFV or hog cholera virus is another important and extremely contagious 

pathogen of swine [66]. CSFV is transmitted by aerosols, clothes and direct contact 

[67-68]. This virus too, has shown in the past that it can lead to great economic losses 

[69]. Sheep and goat BDV will develop in a mild clinical disease that will then be 

followed by an acute postnatal infection m . Following the behaviours of BVDV 

and CSFV, BDV too, can be sub-divided into non-cytopathic and cytopathic 

biotypes. Here the cytopathic version is due to the production of the NS3 non- 

structural domain instead of the NS2-3 protein [7ij.

Upon pestivirus infection, the infected animal is isolated and slaughtered, which 

will eventually prevent further virus transmission. Killing the animal seems to be a 

much easier way to eradicate the infection rather than trying to cure it.
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Vaccination for BVDV is available and may lead to a much more controlled 

situation, where no animals have to be killed [72-73-74].

Dimitrios Vlachakis, PhD 2006 25



Chapter 1. Introduction

1,4 Flaviviridae Genome.

Genus Flavivirus genomes consist of a single piece of linear, single-stranded, 

positive sense RNA [75], because the viral RNA has positive sense, the nucleic acid 

itself is capable of causing an infection in the appropriate host cells. The total 

genome can range from 10 to 12 kilobase (kb) pairs [76]. The 3' terminus of the viral 

genome is not polyadenylated and the 5' end has a methylated nucleotide cap, 

which allows the translation process to occur. Sometimes it is possible to have a 

genome-linked protein (VPg) in place of the methylated nucleotide cap.

The genome of the Pestivirus family, like the Flavivirus gene, is reported to be 

approximately 12.5 kb in length [77]. The Pestivirus family has no poly-A tail on the 

3' end of the RNA and also lack a 5' methylated nucleotide cap. In both genera, 

structural genes are located towards the 5' end of the RNA (Figure 1.5).

The Pestivirus and the Hepacivirus genus have internal ribosomal entry sites 

(IRES), which are responsible for providing a site for the initiation of the 

translation process for host ribosomes [78]. On the other hand the Flavivirus genus 

does not have IRES, but is capable of scanning the ribosomes to begin protein 

synthesis.
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(A)
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Figure 1.5. Top (A): The organisation of the genetic material of the three genera 
that constitute Flaviviridae. This family of viruses carry a copy of a linear single
stranded, positive sense RNA Bottom (B): The generic break down of the 
Flaviviridae genome and the function of each of the proteins that it encodes [79].
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1.5 Viral Replication

In order to identify targets for antivirals the life cycle of the Flaviviridae has to be 

thoroughly examined and understood. The replication process takes place in the 

cytoplasm and lasts approximately 20-30 hours for flaviviruses m . First the virus 

identifies the host cell by a set of special and unique for each virus membrane 

proteins. Only then is the virus capable of initiating its life cycle and reproducing. 

Very little is known about how the natural processes of hepatitis C virus infection 

develops, but with the limited data available the life cycle of Hepatitis C can be 

summarised in 5 different steps (also summarised in figure 1.6):

STEP 1: First the virus has to find and attach itself to a liver cell. Then the 

Hepatitis C virus will utilise special proteins present on its protective lipid coat in 

order to help it attach to a receptor site on the host liver cell [8i], For example HCV 

is looking for the CD81 (a tetraspanin, present on liver cells and lymphocytes) on 

cell membranes. Dengue virus is looking for heparan sulfate [82 83]. This will enable 

the virus to concentrate on the outer cell membrane.

STEP 2: The viral protein core will penetrate the host cell’s plasma membrane and 

will enter into the cytoplasm of the liver cell [8ij. In order to penetrate the host cell 

membrane HCV will make use of its protective lipid (fatty) coat [8i]. HCV will 

attempt to merge its lipid coat with the host’s outer membrane. As soon as the 

lipid coat has successfully fused to the plasma membrane, the membrane of the
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host will engulf the virus, a process identical to endocytosis, also known as 

receptor-mediated endocytosis. The difference in pH in the endosome of the cell 

will initiate the fusion between the envelope of the virus and the membrane of the 

endosome. The nucleocapsid will be left in the cytosol, where the viral genetic 

material, the positive single-strand of RNA will be uncoated [si]. When the virus is 

inside the host its protein coat dissolves. As a result the viral RNA is now released 

into the cell. It is not clear yet if the virus first enters the host and then 

dissociation of its protein coat occurs or if during penetration of the cell 

membrane the protein coat is broken open (after fusion with the liver host cell) 

and then the contents of the virus are released into the cytoplasm. There is the 

possibility that there may be enzymes on the liver cells cell membrane that the 

HCV may utilise to dissolve its protein coat.

STEP 3: Now that the viral RNA is in the cytoplasm it will find the cell’s 

ribosomes and it will begin the process of the production of materials necessary for 

viral reproduction [si]. Hepatitis C has a positive strand of RNA, so the nucleic acid 

can be directly read by the host cell's ribosomes -  as if it was normal mRNA. It is 

the 5’ untranslated region (5'UTR) of the viral genome that will find its way to the 

ribosomes, where translation will take place. The viral genome is firstly translated 

as a single polyprotein, which is later cleaved into individual-mature proteins by 

viral and host enzymes (signalases [85]). Flaviviruses have a short 5’ UTP with a 

type I m7GpppNlmpN2 cap structure [86]. On the other hand Pestiviruses [87] and 

Hepaciviruses (HCV [88] and HGV [89]) carry with them an IRES, which will take
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the ribosome to the first coding triplet in order to express the viral polyprotein. 

During this process two things take place simultaneously. First the virus begins to 

produce the materials coded in its RNA, and second it also influences most of the 

normal functions of the cell, in an attempt to disorganise the host cell cycle. 

Another interesting feature of HCV is that it will also try to push the host cell to 

reproduce, in an attempt to create a new host for viral reproduction m. This may 

be why HCV infection is directly associated with hepatocellular carcinoma. The 

first product of the viral RNA is the RNA transcriptase that it will use for 

reproduction [8ij.

STEP 4: As soon as the RNA transcriptase is made, it will make the negative strand 

of the viral RNA, to be used later on as a template for the generation of new viral 

RNA [8i]. The complementary negative strand of the RNA is synthesised by non 

structural proteins, the RNA-dependent RNA polymerase, with the aid of various 

cofactors poj. This strand is then used, again by the RNA-dependent RNA 

polymerase, as a template for the synthesis of the genomic HCV RNA. Viral RNA 

will be copied thousands of times in order to make genetic material for new 

viruses and it is certain that this new RNA will contain various point mutations

[90]. This is a powerful weapon of the HCV to escape from the host’s immune 

system response. The viral RNA will drive the production of protein-based 

capsomeres to be used for the new viruses’ protein coats. As soon as replication is 

over, the viral RNA is encapsidated and moves towards the endoplasmic reticulum 

of the host cell. The final product is known as nucleocapsid.
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STEP 5: The viral assembly takes place during budding, into cytoplasmic vacuoles 

and not as it was until recently thought in the cell surface as occurs with its 

arbovirus relative, the togavirus [si]. The new viruses go to the inside of the plasma 

membrane, where they interact, attach and finally establish a bud. The plasma 

membrane surrounds the virus and releases it on the outside of the cell. During 

the release the virus will take with it a lipid coat from the host’s cell membrane. 

When the virus is about to be ejected from the host cell, the envelope protein will 

become glycosylated, and the virus will leave the host towards the extracellular 

matrix m. This will help the virus to attach to another liver cell further down. 

This process will continue until complete lysis of the host cell occurs.
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THE VIRAL LIFE CYCLE OF FLAVIVIRIDAE
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Figure 1.6. The life cycle of the members of Flaviviridae, starts with the 
adsorption (1) then the receptor-mediated endocytosis (2) takes place. The 
difference in pH in the cytoplasm will trigger the low-pH fusion in lysosomes 
(3), which will be followed by the uncoating of the genetic material of the 
virus (4). The linear piece of +ve sense ssRNA will move to the ribosomes to 
initiate translation (5). Translation will produce the polyprotein the viral 
genome codes for (6). The polyprotein is going through some proteolytic phases 
using both viral and host proteases. Eventually a set of structural and non- 
structural viral proteins is available (7). In the mean time, under the host’s cell 
membrane, the synthesis of copies of -ve sense RNA takes place, followed by 
+ve sense progeny ssRNA synthesis (8). The nucleocapsid is assembled (9) and 
the virions bud in the endoplasmatic reticulum (10). They are soon transported 
to the Endoplasmatic Reticulum (ER) and to the Goldgi Apparatus (GA), where 
they mature (11). Eventually the mature virions are released (12).
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1.6 Targets for Antiviral Research

Significant Research has taken place during the last few years in the area of new 

antivirals against flaviviruses. New targets have been identified and various 

experiments have been conducted in the area of drug development, in pursuit of a 

new and efficient cure to the diseases that flaviviruses are responsible for.

1.6.1 Vaccination

Prevention of the disease is always the best option. Preventing a harmful 

condition, such as a viral infection, is much more preferred than trying to cure it

[9i]. Epidemiologically, immunising people against a virus would reduce the 

number of carriers and therefore the spread of the disease would dramatically 

decrease after a few generations. The drawback for vaccine development against 

Flaviviridae is that those viruses are highly mutagenic. [92]. Another problem is to 

which viral strain the vaccine is aimed for. An example here is Dengue virus, 

where all tested vaccines so far are against a particular serotype and not against all. 

Efficient broad-spectrum vaccines do not exist, and administering limited 

vaccination can be even more catastrophic, since any infections will another 

serotype different to the one that host is immune, could yield a much worse 

infection [8ij. A great number of HCV and Dengue II broad-spectrum formulas 

have been tested so far, with no much success [93].
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1.6.2 Viral IRES Blocking

The replication of the Hepatitis C virus depends on the IRES. IRES will direct the 

ribosomes to the RNA material of the virus in order for translation to take place 

and the viral polyprotein to be produced [94]. If the IRES area on the viral RNA was 

blocked then the process of translation would not be feasible. Merck and Roche 

have joined in a common attempt to develop an approach of blocking the viral 

IRES site. Many inhibitory compounds have been suggested and a few very 

promising antisense oligonucleotides have been produced [95]. Characteristic 

examples are the peptide nucleic acids that are capable of inhibiting translation at 

ECso of 50 nM [95]. Biaryl guanidines have been shown to inhibit translation with a 

dose of 2 pM [95].

1.6.3 Viral Proteases

Viral proteases are employed by the virus for parts of the polyprotein processing 

[96]. The protease that codes in the NS3 region of the viral genome has been 

identified as a major target for antiviral research [96]. Flaviviridae protease belongs 

to the chemotrypsin superfamily of proteases. It has a heterodimeric structure and 

complexes with NS4a proteins in order to be activated [96]. Serine protease activity 

at four different sites of the viral genome and its crucial contribution to the 

formation of the viral polymerase give the viral protease high importance and
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priority in the list of targets for antiviral agents. Small molecules and peptides 

have been tested as potential inhibitors of this enzyme. The most promishing have 

been reported to exhibit activities in pM or nM concentrations [97].

1.6.4 Capping Inhibition

Another promising antiviral target is capping inhibition [98]. Flaviviridae do not 

have a terminal IRES site on their genome. As a result they must achieve 5’ 

capping in order to retain activity. After RNA triphosphorilation (by an RNA 

triphosphatase), guanylyl transferase adds a guanine base on the last phosphate 

group. In the next step the site will be methylated by an enzyme called methyl- 

transferase [99]. Unfortunately, even though capping inhibition is a promising 

approach, no inhibitor has been reported to date.

1.6.5 Inhibition of the Viral Polymerase

Inhibition of the RNA-dependant RNA-polymerase (RdRp) is a very popular 

approach that many scientists choose for their research [100]. Viral polymerase is an 

enzyme whose structure is very common to all Flaviviridae members [101]. The 

RNA-dependant RNA-polymerase is coded in the NS5B region of the viral
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genome. Research has produced a few active compounds against the HCV RNA- 

dependant RNA-polymerase.

Ribavirin, which is one of the oldest ones, works via the 5’ triphosphate 

formation; 5-ethynyl-l-p-dribofuranosylimidazole-4-carboxamide (El CAR) is 

another active derivative of Ribavirin [102].

The 2 ’-C-methyloadenosine and 2 ’-C-methyloguanosine ribonucleosides are also 

two potent inhibitors of the HCV RNA replication in vitro [103]. Their inhibitory 

potency (IGo) was determined to be 1.9 pM and 0.13 pM respectively, in the HCV 

NS5B enzymatic assay. Unfortunately, 2-C-methyloadenosine is not orally 

bioavailable in rats [104].

In an attempt to improve the bioavailability of both 2’-C-methyloadenosine and 

2’-C-methyloguanosine a series of nucleosides modified in the purine heterobase 

were synthesised and biologically evaluated, achieving IGo values as low as 0.12

p M  [103].

Figure 1.7. The chemical structures of Ribavirin (A), 2’-C-methyloadenosine (B) 
and 2’-C-methyloguanosine (C).

HO
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1.6.6 Inhibition of the Viral Helicase

Inhibition of the viral helicase is a very promising approach that is becoming 

increasingly popular [iosj. Helicases are capable of unwinding double stranded DNA 

and RNA to single strands by breaking the series of hydrogen bonds that keep the 

two strands together. The unwinding activity of the viral helicase is essential to 

the virus during its replication process. Mutated inactive helicases in Dengue and 

Bovine Diarrhea viruses led to reduced proliferation of the virus [106]. It is believed 

that inhibition of the viral helicase will be an effective tool for the reduction of 

the replication rates of the Flaviviridae viruses. The viral Helicase is coded in the 

NS3B region of the viral genome next to the NS3A gene, which codes for the viral 

Protease. A summary of the Flaviviridae Helicase inhibitors is reported below.
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1.7 Current Research & Known Inhibitors for Flaviviridae Helicases

Virofarma reported a series of compounds with benzimidazole derivatives with 

ICso values within 0.7 to 10 pM (Table 1) [107]. The mechanism of action of these 

drugs is unclear, but based on their shape one could assume that they should act in 

the RNA biding site of the helicase, competing with the single-stranded RNA for 

binding to the protein.

Table 1. The 7 compounds reported by Virofarma and their activities.___________

H

Compound Linker (R) Linker (R) Name ICso

1 H,C---^  ---CHj Benzene 10

2 A 0.7

3 C2 0.7

4 C4 0.7

5 C8 0.7

6 CIO 0.7

7 C12 0.7

The aminophenylbenzoxazole- and the aminophenylbenzothiazole- containing 

compounds showed no inhibitory effect, whereas the aminobenzimidazole- 

derived diamides produced a rather moderate 13% inhibition. The
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aminophenylbenzimidazole derived diureas showed inhibition in the range 

between 20 and 28%. In general it was noted that there is significant decrease of 

potency when the benzimidazole moiety is removed and substituted with 

benzoxazole or benzothiazole moieties. The same is observed for the removal of 

the benzene ring. Activity drops when the benzene ring is removed.

Figure 1.8. Some of the compounds suggested by Virofarma as Hepatitis CHelicase 
Inhibitors.

A series of nucleotide compounds were suggested as potential inhibitors of the 

helicase of Hepatitis C  mainly targeting the ATP site on the protein [no]. The 

theory is that since the unwinding process is energy-dependent, even competition 

for the ATP, induced by any compound, would result in less energy being 

available for the system and as a result reduced unwinding function of the 

helicase. So, a wide range of competitive NTPase inhibitors was suggested. These 

include ribavirin-5 triphosphate (RTP), ribavirin-5 diphosphate (RDP), adenosine- 

5-thiotriphosphate (ATP-S) or ADP. These compounds were all tested against

R = C4 or C6 R = C2, C4, C6, C7

R = C4 or C6
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Hepatitis C helicase and were found to be moderate inhibitors of the unwinding 

activity of the HCV Helicase enzyme (summarized in figure 1.9).

Structure Inhibition Potency

ATPase Helicase

HO-
RTP IC50= 40 pM IC = 180mM

Competitive

NM* ROP ICcn = 90 pM IC™ = 250hM
Competitive 50

Paclitaxel ICi-q = 17 pM 
Competitive

IC50 > 1 mM

„CHi

‘"V

< ' 2*0 Trifluoperazine IC ^ = 105 pM IC ^ = 0.6-0.7 mM 
Noncompetitive
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Figure 1.9. The series of compounds suggested by Borowski tin]

The effect of N7-chloroethylguanine and N9-chloroethylguanine in the helicase 

activity of the WNV was investigated. These compounds were found to be 

activators of the helicase activity by 850 and 220% respectively [iu]. Similar 

patterns in activation were observed with the Hepatitis C  helicase as well (Figure

1.10).

Structure Activator? Potency 

He^caseATPase

C!

ED20P > 1 mM ED/0v « 18 jiM

Nr-cMo*cethylguanir?e

0

H

-chtoroethylguantne

Figure 1.10. N7 chloroethyl guanine and N9-chloroethyl guanine
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A series of ring-expanded (“fat”) nucleoside analogues with the 6-aminoimidazo 

[4,5] [1,3] diazepine-4,8-dione ring system was synthesised and tested against the 

NTPase/helicase WNV (Table 2) [nsj. Some compounds were found to be potent 

inhibitors of the NTPase/helicase of the WNV. It was also found that the same 

compound that was active against the helicase activity of the protein was inactive 

against the NTPase activity. It was supposed that this series of compounds binds to 

the major or minor groove of dsDNA or dsRNA, affecting the stability of the 

double helix.

NH

HO

HO OH OHHO

NH

\
CH 2-Ph-O M e

Table 2. The IGo values of the above compounds

Compound Number WNV - ICso (pM)
1 10
2 1.5
3 1-3
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Two series of ring-expanded (“fat”) heterocycles, nucleoside and nucleotide 

analogues were prepared and tested against the NTPase/helicase activity of the 

Flaviviridae family of viruses. The first series contained the imidazo [4, 5-e][l,3J 

diazepine ring system and the other series contained the imidazo [4,5-e][l,2,4] 

triazepine ring system. They were tested against the helicases of WNV, HCV and 

JEV, with some of these compounds quite potent inhibitors of the helicases (Table 

3). Their inhibitory effect is mainly exerted on the ATPase activity of the enzymes 

[116].

NH

NH

OH1

NH

2

Table 3. The IC50 values of the above compounds
Compound

Number
WNV 

ICso (pM)
WNV 

ICso (pM)
WNV 

ICso (pM)
1 5.7 >500 2
2 3.3 5.5 >500
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1.8 Aims and Objectives

The main objective of this project is to develop a research methodology to 

facilitate the design and the discovery of novel antiviral agents. The strategy 

followed can be broken down into the following steps:

• The first step is the identification of a suitable target. The helicase and the 

polymerase proteins of Flaviviridae were chosen.

• The three-dimensional structures of the new targets were modelled by 

homology based molecular modelling techniques.

• Then using de novo structure -  based drug design algorithms a series of 

lead compounds was generated.

-> At  this stage som e of  those  lead c o m p o u n d s  will  he c h e im c a l h  svnihesisee.  

by o t h e r  m e m b e r s  of t h e  group.

• The genes of Hepatitis C helicase, Dengue helicase and Dengue NS3 

(helicase + protease) domain were cloned into expression vectors and the 

proteins were produced and purified.

• Finally an enzymatic assay was developed in order to biologically evaluate 

the potency of the designed inhibitors. The experimental results obtained 

from the biological assay were fed back to the computer in order to refine 

and improve the in silico model.
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2.1 Molecular Modelling

Molecular modelling is very useful for investigating, comparing, analysing and 

visualizing chemical structures and for giving qualitative and quantitative 

information about biological systems [117].

^  S tenc^

Figure 2.1. Steric hinderance of a small organic compound

Figure 2.1 shows a characteristic example of steric hinderance. Two dimensional 

models like this only contain qualitative information. Quantitative information 

can arise through molecular mechanics and in conjunction with a computer, 

where the physical properties of the molecules can be evaluated and analysed 

based on a set of predefined criteria concerning various chemical properties (such 

as bonding, charges, steric hinderance...) ms]. Molecular Modelling can be used to 

study the geometry, the energy and the chemical properties in  silico so efficiently 

that nowadays it is possible to predict the outcome of chemical reactions, design 

reactions, determine the unknown three dimensional structures of proteins, screen 

and design new and effective drugs [nsj. In this part, the basic principles and 

theory of the methods that have been used in this chapter will be presented.
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2.1.1 Molecular Properties

The geometry and the overall structure of a molecule are described by its bond 

distances, dihedral angles and bond angle [119]. This unique set of angles and 

distances create a set of coordinates that define the positioning of each atom in 

that molecular structure in three dimensional (3D) space. The energy condition of 

this molecule can also be assessed and evaluated. The energy of a molecule 

includes all forms of energies, such as kinetic motion (described by vibration, 

rotation and translation) and forms of the potential energy of the molecule [120]. 

The potential energy of a molecule can be defined by the analysis of the 

electrostatic interaction between charges, the magnetic interactions between 

spinning charges and finally the potential energy of the bonds of the molecule. 

The total energy is indicative of the reactivity and stability of that a molecule or a 

system. Below is a reaction coordinate diagram that indicates the energy changes 

during the course of a chemical reaction [1213.

Transition State

Energy

Kinetics

Reactant

x

i
Thermodynamics

Product

Reaction Coodinate

Figure 2.2. Energy changes during the course of a chemical reaction.
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Here the products are in the lowest or global minimum, the transition state is at 

energy maximum and the reactants are at an energy minimum. The dotted lines in 

the above diagram are indicative of the reactivity of the system (its kinetics) and 

the thermodynamic stability of the system. Through molecular modelling it is 

possible to quantify the above characteristics of the system and, for example, 

predict its reactivity. There are two fields in molecular modelling that attempt to 

do this: molecular mechanics and quantum mechanics [122].
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2.1.2 Molecular Mechanics 8c Forcefields

Molecular mechanics are based on the ball and spring representation of molecular 

systems. Here, the atoms are considered to be little balls, with varying properties 

according to the element, and the bonds are considered to be the springs that 

make the two interconnecting balls interact with each other. The ball and spring 

model is described by Hook's law, which evaluates and quantifies the energy of 

the stretching of the spring [123].

The force constant is the constant k. The energy that is contained in the spring 

and the restoring force of the spring are proportional to the force constant. The 

force constant will determine the strength of the bond that the spring represents 

[124]. The vibrational frequency of the spring is described as:
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The vibrational frequency (n) has been estimated to be proportional to the square 

root of the force constant (k) and inversely proportional to the reduced mass of the 

atoms that participate in a bond [125].

All of the above can be combined and through potential energy functions of 

various structural features, such as bond lengths, bond angles and non-bonded 

interactions, can describe a forcefield (figure 2.3) [1263. There are many different 

ways to set a forcefield depending on the needs of the system under investigation. 

Usually the factors affecting the energy of a molecular system (bonds, angles, 

dihedrals, non-bonded, etc), are evaluated separately and they will contribute to 

the value of the total energy of the system [127]. The most popular forcefields are 

the MM2, which is suitable for small molecules, hydrocarbons and some simple 

heteroatom functional groups, AMBER or CHARMM, which are parameterised to 

be used for peptides, nucleic acids and generic macromodels [128].

H3C

Figure 2.3. Total energy is affected by bond distances, bond angles, dihedral angles 
and finally non-bonded interactions

Bond Angle
(Dihedral Angle

H ^  ►CH3
non-bonded interaction

CH3
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Overall through molecular mechanics the total energy of a molecule is described 

as a sum of all the contributions that may arise from loss of equilibrium in bond 

distances, also known as stretching contribution, bond angles, known as bending 

contribution, dihedral angles, the torsion contribution and finally non-bonded 

interaction contributions [129].

The energy that is stored in chemical bonds of a molecule can describe the stretch, 

bend, and torsion energy whereas it is the steric attraction or repulsion that 

represents the non-bonded energy [130]. The latter is broken down to two different 

categories: the van der Waals (VDW) and electrostatic interactions [131].

bonds
stretch

+

dihedral angles non-bonded atoms
V   ̂ torsion V  '  V  "*• non-bonded

van der Waals radius
E VDW

0

where,
rij° is the distance at the minimum 
eij is the energy at the minimum 
s =  2 -1/6 rij° is the van der Waals radius

8 . .
1J

Figure 2.4. The van der Waals interactions plot and formula.
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A very steep energy barrier is generated at the van der Waals radius of each atom. 

Moreover a very shallow energy well is produced at larger separations (figure 2.4). 

The inherent steric size of atoms and elements is dictated by their VDW radii. The 

same metric is used to describe weak attractive forces between atoms in close 

proximity [132]. A trivial example of the weak van der Waals attractive forces is the 

condensation of a gas into liquids. Furthermore it is the van der Waals radii of 

each element that is used for its visualisation purposes in space filling models of 

the molecule they participate. Steric repulsion takes place only in the case where 

two atoms come closer than the sum distance of their VDW radii [133].
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2.1.3 Energy Minimisation

As soon as the set of the internal coordinates of a molecular system has been 

determined, computer algorithms can be used to help find those coordinates 

which will account for the lowest energy of the system [134]. All bond angles, 

lengths, dihedral angles and the relative energy between various different 

conformations of a given system will be evaluated in order to determine the 

minimum energy conformation [135]. It is crucial to understand that reducing the 

strain energy of a given molecular system does not mean that the system will 

reach energy minimum (also known as global minimum). An example is the 

following figure (figure 2.5) with two different conformations of butane:

HsC Global H3C Local

Figure 2.5. Two different conformations of butane

An energy minimisation algorithm will allow the rotation of groups, when their 

bonding allows. The rotation of the groups will give the molecule the opportunity 

to explore different conformations that will account for different energy values, 

thus allowing the compound to move towards its global minimum conformation

[136].
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2.1.4 Quantum Mechanics

Quantum mechanics are useful for the evaluation of electronic properties that may 

influence physical and chemical reactions between different groups of a biological 

system [137]. The estimation of energy conformational profiles and that of 

intermolecular interactions in various cases can be achieved through quantum 

mechanical calculations. The quantum mechanics arise from the Schroendinger 

equation [i38j. In a very simplistic representation the latter equation can be 

described as:

H p s i  — E p s i

Where: H is the Hamiltonian operator,
Psi is the wave function 
E is the total energy of the system

Using the Schroendinger equation and the above operators a complete description 

of any molecular system can be achieved.

At a given molecular system the Schroendinger equation can be solved in two 

different ways [139]. First is the no approximation or ab initio  approach [i40]. 

Secondly, the Schroendinger equation could be solved by the introduction of some 

approximations, which is a method also known as semi-empirical approach [i4 i].  

The main advantages of ab initio  methods is that all electrons are explicitly 

included and they do not requiring any specific parameterization, thus making ab 

initio  calculations a universal tool for all molecular systems [142]. On the other hand 

in semi-empirical calculations it is the valence electrons that are explicitly
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included. Here most of the integrals are neglected or approximated by a set of 

parameters that arose from experimental work [i43j. Choosing the most suitable 

approach to investigate a given system does not solely depend on the size of the 

molecular system, but on the type of unique parameters and molecular properties 

of the system. For example, the conformation, electrostatic potential and, electron 

density of the given molecular system.

The most popular semi-empirical calculation algorithms are the AMI, MNDO, 

CNDO and MINDO, whereas for ab initio  calculations the Gaussian program is 

very representative. AMPAC and MOPAC on the other hand are very widely used 

for ab initio  calculations [143].
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2,1,5 Molecular D ynam o

Molecular dynamics simulations are used to describe the patterns, strength 

and properties of drug-receptor interactions, the solvation of molecules, the 

conformational changes that a molecule may undergo under various conditions 

and other events that require the systematic evaluation of molecular properties in 

dynamic molecular systems [i**]. Molecular dynamics are concerned with the 

motion of atoms and molecules [145]. An example is the normal mode analysis, 

where the dynamic motion of a molecular system is evaluated from its total 

energy. According to Hook’s law, the total energy of a small and simple diatomic 

molecule should be given by:

E(r) = \  k(r - i°)2 € F(r) = - ^  = -k (r - r°)

Where: E = energy, F = force, r = distance, r° = initial distance, k = Hook’s constant

Here, the forces on the atoms are estimated by the derivative of the energy [146]. 

When the forces have been assigned the Newton law of motion can be used to 

solve the molecular motion (F = m x a, force = mass x acceleration). In the case of 

the small and simple diatomic molecule the displacement from the equilibrium 

bond length (x) will be given by the formula:

me mo
x = r - r° and u =

r  m e + m o

Where: p is the effective mass of the vibrating diatomic molecule.
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In molecular dynamics simulations the kinetic energy of the system will depend 

on the temperature of the system [U7]. The total energy will be the sum of the 

kinetic and potential components of the system. The acceleration of each atom is 

estimated from the set of forces it accepts, under the given forcefield. The results 

generated can be used to estimate the configurational and momentum information 

for each atom of the system (i.e. energy, pressure). Molecular mechanics therefore 

can be used to further optimise a model generated by homology modelling as well 

as docking results, where the protein / ligand interactions can be analysed for their 

stability during a specific time [i4sj.

Dimitrios Vlachakis, PhD 2006 57



Chapter 2 Molecular Modelling

2.1.6 Homology Modelling

Homology modelling is used in order to predict the 3 dimensional structures of 

proteins with unknown 3D structure, using solved homologous proteins as 

templates im .

Homology modelling claims that the biological structure of a protein is more 

related to its biological properties and function than its sequence [iso]. A 

homologous protein is a protein that belongs to the same family, has the same 

function and shares more than thirty percent similarity with the protein of 

interest.

The first step of a homology modelling algorithm is to set up and optimise the 

sequence alignment between the query protein and its template. Sequence 

alignment is broken down into four steps usij. Firstly, it uses rapid alignment 

methods to calculate all pairwise similarity scores. The second step is the 

generation of a similarity matrix. Then the sequences are clustered according to 

the generated similarity matrix with the aid of an algorithm. The next step is the 

generation of a cluster alignment using a consensus method and finally a multiple- 

progressive alignment is generated. The groups of the sequences are aligned 

according to their cluster branch order.

After that the algorithm will perform an initial partial geometry alignment for the 

sequence of the template protein with the unknown structure [152]. The initial
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geometry will be copied from various regions of one or more template proteins. If 

there is residue identity, between the alignments, then all coordinates are copied. 

That includes backbone and sidechain. If there is not residue identity but still 

residue similarity is retained, only the coordinates from the backbone atoms will 

be passed on. In cases of zero identity or similarity a gap will be left on the model, 

which is also known as loop. A loop will be modelled by borrowing coordinates 

from any protein (from the Protein Data Bank) that matches the required 

sequence. The sidechain is generated automatically using a build-in rotamer 

explorer module fisai-

Finally, the new models must adequately meet and satisfy a scoring function that 

ensures that the degrees of the non-polar sidechain groups that are buried are 

within range and that all hydrogen bonding capabilities have been explored [i54].
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2.1.7 Model Evaluation

The N-Ca and the Ca-C bonds in a protein are capable of rotating. The rotation of 

these bonds can be described by the phi and psi torsion angles (figure 2.6 -  bottom 

right) [155]. The values of these angles define the secondary element that each set of 

residues will form. To visualise phi and psi angles in a protein a Ramachandran 

plot is constructed. Psi angles are found in the YY* axis, whereas phi angles are 

found in the XX’ axis (figure 2.6).

The Ramachandran Plot.
180

Beta-sheet.

+psi Left
handed
alpha-helix.

Right handed 
alpha-helix.

—  c-psi

+ phi- phi

Figure 2.6 The layout of a generic Ramachandran plot. Indicating the major 
secondary element areas of a protein. Bottom-right: a typical residue with the phi, 
psi and omega angles designated.
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The white space on the diagram above describes the pairs or groups of atoms that 

have distance smaller than the sum of their van der Waals radii, because of the 

conformation of the backbone. As a result a sterically unreal conformation will be 

generated, thus making the combination of those atoms disallowed. The area with 

no steric clashes is represented in red color. The residues in the red area are 

considered to be in the allowed regions and this is where the alpha helices and 

beta sheet conformations are usually found. The yellow areas include the pairs or 

groups of atoms with radii a fraction less than the sum of their van der Waals 

radii. This is the area that the motif of the left handed alpha helix would be found, 

where the atoms are allowed to come a little closer. The generously allowed areas 

of the Ramachandran plot are areas with pairs or groups of atoms with radii quite 

less than the sum of their van der Waals radii, but not significantly clashing with 

each other. Glycine is a versatile amino acid, because it does not have a side chain. 

Glycine can take phi/psi angles in each of the four quadrants in the Ramachandran 

plot. As a result glycines are usually encountered in loop regions in the protein, 

where it would be impossible for any other residue to be, because of the steric 

hindrance.
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2.1.8 Molecular Docking

Molecular Modelling

The last molecular modelling technique that is extensively used in this project is 

molecular docking [i56]. The docking algorithm is basically split into two main 

parts: the searching algorithm and the scoring algorithm [157].

The searching algorithm will explore all conformations of the ligand within the 

space available [is#]. Practically, it is impossible to perform all these calculations for 

every compound so most of the rotational and translational states of each 

compound will be explored within a given threshold of identical conformations. 

Each compound is not a rigid body, but is a dynamic structure that exists in an 

ensemble of different conformations. The user can define how fine the docking 

algorithm will be by altering the various parameters of the task. Very fine 

calculations are much more accurate, but also much more time consuming. The 

most popular docking algorithm approaches can involve a coarse grained 

molecular dynamics simulation or a linear combination of many structures or a 

genetic algorithm that generates new conformations as it moves along.

The second feature of the docking algorithm is its scoring function [159]. The 

scoring function must be able to accurately evaluate each different conformation 

using certain forcefields and rules from physics, and return a value that will 

describe the energy of the system at the given conformation. Low energies 

indicate better, more stable interactions.
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2 X 9 Ping design

In the last few years the number of biological targets suitable for drug discovery 

has increased enormously and, at the same time, computer-aided drug design 

techniques are becoming more popular everyday, sustained by the need to 

accelerate the drug discovery process [i60]. Structure-based methodologies are now 

widely used to design and optimise new potential drugs and, in particular, de novo 

approaches (structure based novel inhibitor design) remain very attractive to 

researchers as a time and cost efficient methods to design novel entities, despite 

the challenges associated with them [i6i].

Basically, three questions have to be addressed by a de novo design program: how 

to assemble the candidate compounds; how to evaluate their potential quality; and 

how to sample the search space effectively.

In answering the first of these questions, we can consider two main approaches to 

build the desired structures [i6i]. The first (figure 2.7-top) is the linking procedure, 

where the algorithm selects the most suitable moieties to interact with the active 

site of the protein and then starts to link them together in a chemically 

appropriate way. The second approach is the growing procedure (figure 2.7), 

which involves the determination of a group as a starting point and then the 

growing of a larger compound that would fit in the active site and that would be 

capable of establishing interactions with it. The first approach requires that the
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user must supply the docking/interaction points of the moieties that will be used 

as anchors to the final structure.

HO,

HN

The linking approach

\H

N-

HO,

N“

The growing appoach 

Figure 2.7. LigBuilder’s approaches to structure-based drug design.

The second approach requires that the user selects a suitable “seed” as a starting 

point, and that the user directs the growing process. The best results will be 

obtained from the combination of these two procedures.

Evaluation of the results obtained could be done by different methods [i62i: 

receptor-based scoring functions: explicit force-field methods; empirical scoring 

functions; and knowledge-based scoring functions. All of these approaches attempt
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to approximate the binding free energy. Force fields are computationally more 

costly than the other two types of scoring functions.

The last issue related to the de novo drug design methods is the sampling of the 

chemical space associated with the growing compounds [i«]. There are many 

different search algorithms implemented in the variety of software programs 

available, and new ones are continuously developed.

It is also important to mention the nature of the “building blocks” used to 

construct the structures: some programs connect single atoms, others use a library 

of chemical fragments. The size and the diversity of the fragment library is 

fundamental for a broad search of the chemical space [164]. The main problem 

associated with the de novo methodologies is represented by the chemical 

feasibility of the structures generated: unfortunately, computers do not know 

organic chemistry, yet.

In our project, we have used a de novo approach for the design of some helicase 

inhibitors using a software called LigBuider. This package can use both the “link” 

and the “grow” approaches and implements a genetic algoritmm based search for 

the determination of the best structures. Once the compounds are drawn from the 

population, the new population is formed by combining the information from 

groups of selected individuals. This is done by randomly splitting the 

representative strings of the parents and recombining them to form new entities. 

This operation is called Crossover [i65]. Because the parents have been selected for 

their fitness, the children of these parents will, statistically, be more fit than the
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parents. This is done until a new population has been built from the old one. The 

final step is the evaluation of the new population, which may result in starting the 

whole process over again by changing a single or groups of parameters. The cycle 

described in figure 2 . 8  is continued until a solution that is good enough for the 

experiment’s criteria has been obtained.

Build, initial 
population 

(often random)

Stop looping and. 
cluster results Evaluate

population
members

Repeat for the 
given number o f 

generations
Perform  fitness 
based selection

Form new 
population with 

crossover operator

Figure 2.8 The steps of the genetic algorithm of LigBuilder
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2.2 Introduction to the Homology Modelling Project

The aim of this project was to design the 3D models of the Helicase and 

Polymerase enzymes of the Dengue, Yellow Fever, West Nile and Japanese 

Encephalitis virus using homologous proteins as templates, all members of the 

flaviviridae viral family. The models are to be used for structure based drug design, 

in order to design inhibitors for these enzymes. However, priority was given to 

the HCV helicase, firstly due to the available X-ray solved structure (co

crystallised with ssRNA [166]), and secondly due to the availability of the HCV 

helicase gene in the molecular biology lab.
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2,2,1 Homology Modelling of the Flaymridag H elices

The initial DNA sequences of the genes encoding for the Dengue-type II, West 

Nile, Yellow Fever and Japanese Encephalitis Viral Helicase proteins were 

downloaded from GenBank [i»j. The DNA sequences were translated on the on

line Expasy DNA/Protein translator [167].

The on-line Blast-P search revealed that the best template for the homology 

modelling experiments was the corresponding Hepatitis C Helicase, which has 

been solved by X-ray crystallography (PDB entries: 1A1V & 80HM).

The sequence alignment was performed with the multiple alignment program 

ClustalW [168]. It revealed an average 30% homology identity between the HCV 

Helicase and the model sequences. The percentage identity between the Dengue 

Primary sequence and the HCV sequence was 31.2%, the West Nile virus 29.8%, 

the Japanese Encephalitis 30% and the Yellow Fever 31%. The sequence 

alignments are shown in figure 2.9.

The Helicase Homology Experiments were performed by a traditional homology 

modelling approach (i.e. using a single protein template only), since the 30 % 

homology identity is marginally acceptable by the algorithm. The homology 

modelling algorithm would divide the sequence into Structurally Conserved 

Regions (SCRs) and Structurally Variable Regions (SVRs).

Dimitrios Vlachakis, PhD 2006 68



Chapter 2____________________________________________ Molecular Modelling

HCV
DEN
YEL-F
JA P -E
WEST-N

HCV
DEN
YEL-F
JA P-E
WEST-N

HCV
DEN
YEL-F
JA P -E
WEST-N

HCV
DEN
YEL-F
J A P -E
WEST-N

HCV
DEN
YEL-F
JA P -E
WEST-N

HCV
DEN
YEL-F
JA P -E
WEST-N

HCV
DEN
YEL-F
JA P-E
WEST-N

HCV
DEN
YEL-F
JA P-E
WEST-N

— P-PAVPQS FQVAHLHAPI 
I-E-DDIFRKRRLTIMDLHE 
LQEIPTMLKKGMTTVLDFHE 
AYT-PNMLRKRQMTVLDLH 
GFE-PEMLRKKQITVLDLH

3TKVPAAY AAQGY KVLVLNPS VAATLGFGAYMS KA- 
ITKRYLPAIVREAIKRGLRTLILAPTRWAAEMEEAL 
’RRFLPQILAECARRRLRTLVLAPTRWLSEMKEAF 
RKILPQIIKDAIQQ RLRTAVLAPT R WAAEMAEAL 

tTRKILPQI IKEAINKRLRTAVLAPTRWAAEMS EAL

KGVDPNIRT-GVRTITTGSPIT--------Y STYGKFLADGGXSGGAYDIIIC
RGLPIRYQTPAIRAEHTGREIVDLMCHAT FTMRLLSPIRVPN-YNLII 
HGLDVKFHTQAFSAHGSGREVIDAMCHATLTY RMLEPTRWN-WEVI If 
RGLPVRY QT SAVQREHQGNEIVDVMCHATLTHRLMS PNRVPN-YNLFVf 
RGLP IRY QT SAVHREH SGNEIVDVMCHAT LTH RLMS P HRVPN-YNLF If

3TDATSI
TDPASI
PLDPASI
TDPASI
TDPASI

LGIGTVLDQAETAGARLWLATAT PPGSVTVPHPNIEEVALS TTGEIPFY GKAIPLEVIK 
AARGYISTRVE-MGEAAGIFMTATPPGS-RDPFPQSNAPIMDEEREIPERSWNSGHEWVT 
AARGWAAHRAR-ANESATIIMTATPPGT-SDEFPHSNGEIEDVQTDIPSE PWNTGHDWIL 
AARGY IATKVE-LGEAAAIFMTATPPGT-TDPFPDSNAPIHDLQDEIPDRAWSSGYEWIT 
AARGY I ATKVE-LGEAAAI FMTAT PPGT- SDPFPESNAPISDMQTEIPDRAWNTGY EWIT

G— GRHLIFCE 
DFKGKTVWFVE 
ADKRPTAWFLE 
EYAGKTVWFV/ 
EYVGKTVWFVE

TG-DF— DS|
MGANFKAE
MGANLCVE
MGANFGAS
MGANFKAS

393  <11-412
Kk k c d e l a a k l v a l g in a v a y y Bg l d v s v i p t — s g d v - v w a B d a l f
[KTGNDIAACLRKNGKRVIQLslKTFDSEYVKTRTNDWDFVVTfclSE 
[RAANVMAASLRKAGKSVWLnI kTFEREY PTIKQKKPDFI LAplIAE  
pKMGNEIAMCLQRAGKKVIQLNiKSYDTEYPKCKNGDWDFVI'lfelSE 
bKMGNE I ALCLQRAGKKVIQLNlKS Y ETEY PKCKNDDWDFVITE) ISE

TXVTQTVDFSLDPTFTIETTTLPQDAV|R1PRRGRIGR 
PRRCMKPVILTDGEERVILAGP-MPVTHSgA./ 2RRGRI GR 

RTAFKPVLVDEGR-KVAIKGP-LRISA S g /V QRRGRI GR 
RKSVKPTILEEGEGRVILGNP-SPITSAB. .. 2RRGR GR 

ISRKSVKPT11EEGDGRVILGEP-SAITA^1/ / I0RRGR : GR

3KPGIYRF
j ---------------

I--------------
j----------
I---------------

VAPGERPSGMFDSSVLCECYDA© 
— PRNENDQYIYMGEPLENDEDC 
— PNRDGDSYYYSEPTSENNAHHVC 
— PNQVGDEYHYGGATSEDDSN]
— PSQVGDEYCYGGHTNEDDSNF/

fELTPAETTVRLRAYMNTPGLPVCQDHLEFWEGV 
jLDNINTPEGIIPSMFEPEREKVDAIDGE 

jEASMLLDNMEVRGGMVAPLY GVEGTKTPVS PGE 
[’EAKIMLDNIHMPNGLVAQLYGPEREKAFTMDGE 
"EARIMLDNINMPNGLVAQLYQPEREKVYTMDGE

FTGLTHIDAHFLSQTKQSGENFPY LVAY QATVCARAQAPP------------ PSWDQMWKCLIR-L
Y RLRGEARKTFVDLMRRG— DLFVWLAYKVAAEGINYADRRWCFDGTRNNQILEENVE-V 
MRLRDDQRKVFRELVRNC— DLPVWLSWQVAKAGLKTNDRKWCFEGPEEH EILNDSGETV 
YRLRGEEKKNFLELLRTA— DL PVWLAY KVASNGIQY TDRRWCFDGPRTNAILEDNTE-V
Y RLRGEEEIKNFLEFLRTA— DL PVWLAY KVAAAGISY HDRKWCFDGPRTNTILEDNNE-V

KPTLHGPTPLLYRLGAV(^JEVTLTHPITKY IMTCMS------
EIWTKEGERKKLKPRWLDARIY SDPLALK------EFAAGRK
KCRAPGGAKKPLRPRWCDERVS SDQSALSEFIKFAEGRR 
EIVTRMGERKILKPRWLDARVY ADHQALKWFKDFAAGKR 
EVITKLGERKILRPRWADARVY SDHQALKSFKDFASGKR

Figure 2.9. Multiple sequence alignment among the 5 Flaviviridae Helicases. The 
four known motifs to the Flaviviridae helicases are colour coded and enclosed in 
boxes. Key residues to homology modelling are also highlighted.
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The SCRs are obtained from the coordinates of the template and the SVRs are 

obtained from direct access of the algorithm to its built-in PDB database. The 

initial models were obtained from COMPOSER [169], a module of the Tripos Sybyl 

[170] suite running on a SGI workstation [m]. The primary sequence of each of the 

unknown structures was imported in COMPOSER and the structure of the 

corresponding HCV template protein was added in the database of the software. 

The database of COMPOSER at that time numbered 1850 structures. In order to 

assist the database of COMPOSER to become more efficient with the two 

helicases, a group of 125 helicases was downloaded from the PDB web site and 

were imported into COMPOSER’S database. All loops were eliminated and the 

four models for the four flaviviridae virus members were built. To further 

optimise the models, the DNA from the template was added to the structures and 

the resulting complexes were initially energetically minimised and then subjected 

to short molecular dynamics simulations.

Energy minimisation was done in MOE (Molecular Operating Environment suite 

[172]) initially using the Amber forcefield implemented into the same package, up to 

a RMSd gradient of 0.0001. Molecular dynamics were performed after that at 

300K, 1 atm for 1000 picoseconds with 2 fsecond step size, using the NVT 

ensemble in a canonical environment. NVT stands for Number of atoms, Volume 

and Temperature that remain constant throughout the calculation. The results of 

the molecular dynamics simulation were collected into a database by MOE and 

can be further analysed.
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Dengue Helicase Model West Nile Helicase Model

Jap. Encephalitis Helicase Model Yellow Fever Helicase Model

Figure 2.10. The four Helicase Models: the Dengue virus (top left), the West Nile 
virus (top right), the Japanese Encephalitis virus (bottom left) and the Yellow 
Fever virus (bottom right). The above conformations were obtained after the 1 
nanosecond molecular dynamics simulation.

In order to assess and evaluate in more detail the quality of the four Helicase 

models they were initially superimposed with the HCV template and the 

coordinates of the ssRNA were copied to the models and subjected to another 

course of molecular dynamics for 1000 picoseconds with the oligonucleotide
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present. This way the cooperativity between each model and the ssRNA would be 

assessed. After the MD simulation, the ssRNA fragment of all four models did not 

move significantly (low RMSD < 0.5 A). Indicating that the ssRNA fragments 

established interactions with each model, which stabilised them in the same 

pattern as in their template.

Figure 2.11. The superimposition of the final helicase models with the HCV + 
ssRNA structure (top -  left) and that of the ssRNA conformation in each of the 
models upon MD simulation (top -  right). Red is the HCV, in Yellow the Dengue, 
in Blue the Yellow Fever, in Magenta the West Nile and in Orange the Japanese 
encephalitis. Their corresponding RMSd (all atoms) with HCV are 1.9, 2.2, 1.1 and 
1.4. In Green is the ssRNA from the HCV helicase. The ssRNA interacting residues 
have been conserved from the template to the model (bottom -  left/right).
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2.2.2 Evaluation of the Helicase Models

In a homology modelling experiment the fact that structure is more conserved 

than sequence is always an assumption that has to be taken into consideration. 

Here, the structural elements of the models are not significantly different to those 

of HCV helicase. The quality of the models was tested with PROCHECK [173]. The 

templates 1A1V and 8 OHM were found to have 100% and 99.7% of their residues 

in the allowed regions of the Ramachandran plot, respectively.

Ramachandran plot results for the Dengue model before minimisation and 

molecular dynamics showed that 82.2 % of its amino acids were in the allowed 

area of the Ramachandran plot (RP), 13.9% were in the additionally allowed 

regions and 2.5% were in the generously allowed regions, whereas 1.4% of the 

residues of the model were found to be in the disallowed area of the 

Ramachandran Plot (table 2.1). The Procheck evaluation was repeated after the 

molecular dynamics and in this case the percentage of residues in the allowed area 

of the RP was increased to 92.5%. Moreover 5.3% were in the additional allowed 

regions and 2.2% in the generously allowed area. There were no residues in the 

disallowed area (table 2 .1 ).

The results for the accuracy of the model of the WNV showed that 80.9% of the 

model's residues were found in the core region of the RP, 13.6% were in the 

additional allowed regions, 3.7% of the residues were found in the generously
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allowed area of the RP and 1.8% of the model's residues were located in the 

disallowed region (table 2.1). After Molecular Dynamics the Ramachandran 

statistics for the WNV model were 86.1% of residues in the core area of the RP, 

1 1 .3 % of residues in the additional allowed areas, 2 .6 % in the generously area and 

again the number of residues in the disallowed area was eliminated.

In the same way the Ramachandran statistics for the Japanese Encephalitis 

helicase were improved from 79.9% of residues in the core region (rough model) 

to 94.2% in the model after molecular dynamics. The percentage was also 

decreased from 15.1% to 5.1% in the allowed regions, from 3.3% to 0.7% in the 

generously allowed regions of the RP and from 1.6% to 0% in the disallowed 

region.

Finally, the Ramachandran statistics for the Yellow Fever helicase were improved 

from 81.5% of residues in the core region (initial model) to 96.7% in the model 

after molecular dynamics. The percentage was also decreased from 13.4% to 3.2% 

in the allowed regions, from 3.2% to 0.1% in the generously allowed regions of the 

RP and from 1.9% to 0% in the disallowed region.

Table 2.1. The Ramachandran plot values of the each model after homology and 
after optimization and re-evaluation.

After Homology
After Energy M inimisation & Model 

Optimisation
Project Model Core Allowed Generous Disallowed Core Allowed Generous Disallowed

H
el

ic
as

e
Pr

oj
ec

t DenV 82.2 13.9 2.5 1.4 92.5 5.3 2.2 0
W NV 80.9 13.6 3.7 1.8 86.1 11.3 2.6 0
JEV 79.9 15.1 3.3 1.6 94.2 5.1 0.7 0
YF 81.5 13.4 3.2 1.9 96.7 3.2 0.1 0
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2.2.3 Discussion of the Helicase Models

Ramachandran plot evaluation is not enough to confirm the practical quality of 

the model. Even if the geometry, phi, psi and omega angles of a model are perfect, 

the model could be unreliable if it does not satisfy the known functional criteria of 

the family of proteins it comes from. All of the known functional motifs of the 

flaviviridae helicases are present in the HCV template and have been inherited by 

all models (see sequence alignment - figure 2.9).

There are certain motifs conserved among the different helicases of the 

flaviviridae family. The Hepatitis C, Dengue, West Nile, Yellow Fever and 

Japanese Encephalitis helicases belong to the superfamily II of helicases and share 

seven common motifs within their domains. RNA binds to the helicase at the 

Arginine-rich site of the 2nd domain. There are two supposed mechanisms of 

action for the flaviviridae helicases. The “sliding theory”, suggests that the enzyme 

binds to the edge of the double stranded RNA of the virus and slides along, 

separating the two strands, by breaking all the hydrogen bonds between 

corresponding bases [i74]. According to this theory the helicase is using its leading 

edge for unwinding. On the other hand another theory suggests that the helicase 

may be using its trailing edge [175]. Movement of the helicase along RNA takes 

place from 3’ to 5’ and is described by its periodicity (i.e. unwinding is not 

continuous, but occurs between brakes). The flexibility of the enzyme allows it to 

undergo significant conformational changes that are essential for its motion. The
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energy requirement for the motion of the helicase is supplied by the hydrolysis of 

ATP. The ATP binding site is located between domains I & II, where it initiates an 

allosteric effect that will eventually change the conformation of the helicase thus 

allowing it to move on the viral RNA. ATP must complex with a divalent cation in 

order to produce its effect. The extreme importance of the helicase enzymes in the 

survival of the viruses was demonstrated by mutagenesis experiments that led to 

inactive helicases. No virus that was carrying an inactive helicase survived [175-176].

Figure 2.12. The HCV Helicase co-crystallised with a ssRNA fragment [177]
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The flaviviridae helicases have three domains in total, which are separated by two 

channels (Figure 2.13). The first and third domains are interacting much more 

together than they do with domain two. The outcome of this is that the channel 

between domains 1-2 and 2-3 is larger than the channel between domains 1-3 and 

2-3. Domain two is supposed to undergo significant movements compared to the 

other two domains, during the unwinding of double-stranded nucleic acids.

Figure 2.13. The NS3 Helicase domain from HCV complexes with ssRNA. There 
are two suggested channels for the ssRNA.

So, the positioning of domain two is very flexible relative to that of the other two 

domains. As a result the Helicase acquires the form of a dynamic “hinge” that 

moves according to the needs of the protein and the process it is involved in [vm. 

The topology of the first and the second domains is very similar. These two 

domains contain the structurally conserved regions of helicases of this family. This
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is confirmed by the superimposition of the two domains, which gives an RMSd of 

2.0 A for 76 Ca atoms.

Domain 3 includes a 40 amino-acid long region, just before the helix in the C 

terminus that does not contain any secondary structures This may contribute 

to the flexibility required by the protein during its cleavage from the NS4A 

domain during polyprotein processing. On the other hand towards the N-terminus 

of the protein there is the highly conserved “Walker A box” or “P-loop” motif. 

This motif is very often found among helicases and consists of a glycine rich 

region of the protein that provides a quite flexible loop between strands and 

helices [in]. The “Walker A box” has phosphate-binding properties and is found in 

most ATPases. In the HCV helicase crystal structure the sulphate ion interacts 

with the nitrogens Gly207 and Gly209, and the side-chains of Ser208, Lys210 and 

Ser211. Lys210 establishes a H2O mediated interaction with As290 of the DExH 

motif (Asp-Glu-x-His). The position of the sulphate ion was found to be very 

similar to the position that the (3-phosphate of ADP would take in the PcrA 

helicase-ADP complex. So, it is suggested that this is the space that p-phosphate 

should take when NTP or nucleotide diphosphate (NDP) is bound to the HCV 

helicase. The residues Gln460, Arg464 and Arg467 are highly conserved residues 

from domain 2 that are exposed to solvent in the major channel of the Helicase. 

Arg461 and Arg462 are buried amino-acids in the core of the 2nd domain \ \ t t \-
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Figure 2.14. The residues Gln460, Arg464 and Arg467, which are highly conserved 
residues from domain 2.

The single strand of RNA is located in the main channel of the helicase between 

domains 3 and 1-2 (figure 2.15). The size of the channel is approximately 16 A in 

diameter. The 5' end of the oligonucleotide is towards the part of the channel 

between domains 2 and 3 and the 3' end of the oligonucleotide is towards the part 

of the channel between domains 1 and 3 [i78].The ssRNA and the Helicase 

interaction occur mainly between the backbone of the RNA, since it is a non

specific protein-RNA interaction. The 

majority of the established interactions are 

located towards the two ends of the ssRNA. 

Most interactions arise from regions lacking 

secondary structures in domains one and 

two. The positioning of the interaction- 

participating amino acids is symmetric and 

as a result it appears to be a symmetric

Figure2.15. The size available for 
the ssRNA in the HCV helicase is 
approx. 16 A.
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distribution of the interactions between the RNA and the protein. Quick 

superimposition of the first and the second domains revealed that the residues 

involved in the phosphate contacts are structurally equivalent. Furthermore the 

phosphate-binding amino acid series of Ser231, Thr269, Ser370 and Thr411 are 

conserved in NS3 domains and this is evidence that these two domains may be 

derived from a gene duplication event. Val432 and Trp501 are also highly 

conserved residues among HCV NS3 sequences, nevertheless neither seems to play 

any role in nucleic acid binding or duplex unwinding 1177].

The second domain has two extended antiparallel strands (residues 430-452), 

which interact with the 5’ of the oligonucleotide. This is also known as the L-45 

loop and it belongs to the family of nucleic-acid binding motifs. The positioning of 

the domains that make the channel for the RNA in the helicase is very similar to 

that of the domains in the replication protein A (RPA) [177]. In both cases 

interactions are better formed towards the ends of the oligonucleotide and only 

minor interactions occur with the nucleotides in the middle.

There are no sequence-specific interactions with the RNA bases and the helicase. 

This was anticipated from the biological activity of the helicase and its behavior 

during enzymatic assays 1177J. Any differences in the binding affinity between 

different nucleotides may be due to differences in RNA distortion and base 

stacking.

HCV strains appear to have very high sequence conservation among them. The 

percentage identity of the sequence alignments is calculated to be greater than
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eighty percent. Comparison of the sequences of Bacillus stearothermophilus [179] 

and Escherichia coli DNA helicase [iso] showed that there is an overall structure 

similarity between the domains 1A-2A of the above strains and 1-2 domains on 

the HepC helicase. The alignment of the primary amino-acid sequence may not be 

identical, but the alignment of the motifs is evidence that the arrangement of 

these different proteins in space and function must be similar to each other [isi]. 

Site-specific mutagenesis has revealed that the function of the residues in these 

motifs of various helicases (including HepC) is crucial to the function of the 

helicases. Any change of these amino-acids will result in a protein mutant with 

lower affinity in unwinding dsRNA and dsDNA [1823.

The fold of domain 1 is very similar structurally to that of common ATP 

transphosphorylases (for example adenylate and thymidine kinases).

Figure 2.16. The GSGKST motif in domain 1 is conserved in kinases.
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The GSGKST motif in domain 1 is conserved to the same loop in kinases, where its 

role involves binding of the p-phosphate of ATP [i83i. Site mutagenesis studies of 

that motif have reported that the mutant protein is inactive.

Another crucial motif for the helicase is the DExH motif (motif II). The DExH 

motif is responsible for the binding of the Mg2+-ATP substrate. Studies in 

adenylate and thymidine kinases revealed that an aspartate binds the Mg2+ and 

helps to establish the optimum orientation of ATP for nucleophilic attack [i«i. 

Mutating this aspartate to any other amino acid will produce a helicase incapable 

of hydrolysing ATP. Also His293 is involved in the hydrolysis of ATP. Mutation of 

His293 will lead to an inactive helicase, but still capable of hydrolysing ATP. It is 

suggested that this residue plays a key role between the ATP hydrolysis and

nucleotide binding process [i85].

Figure 2.17. The DExH motif, which is responsible for the binding of the Mg2+-  
ATP substrate.
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The role of the QRxGRxGR motif is not clear yet, but this motif appears in most of 

the helicases of this family. Site mutagenesis studies revealed that mutation of this 

motif in vaccinia virus helicase will produce a helicase that posses much less 

ATPase activity [i87].

Motif VI consists of three conserved arginines [iss]. All three arginines are involved 

in the binding of ssRNA in the helicase’s channel between domains 1 and 2. Kim 

suggested that Arg461 is hydrogen bonded to Asp412 and Asp412 interacts with 

ssRNA. So, there is an indirect importance of the Arg461, which is to keep the 

Asp412 in the correct orientation for the RNA to be able to interact with it. 

Mutagenesis studies of the arginines revealed that the resulting helicase has 

decreased RNA binding affinity [i77j.

Arg464 and Arg467 are expected to interact with ATP from mutation studies. 

Mutating the arginines to alanine or glutamine in vaccinia NPH-II or eIF-4A 

reduced the ATPase activity by 20% [i89]. Arg467 is found to be conserved among 

all the superfamilies of helicases [i9o].

Motif III is located in-between the first and the second domains. Its role is to 

operate as a “hinge” offering the all important flexibility to the helicase protein 

ti9i]. The la motif constitutes part of the beta sheet in the 1st domain, while 

interacting with the oligonucleotide too. Motif V is also in contact with the 

oligonucleotide. Thr411 hydrogen bonds to a phosphate of an oligonucleotide. The 

usually conserved motif IV (from known helicases) is absent from the HepC 

helicase though.
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There has been extensive work done on the motif IV of the superfamily I and II of 

helicases, but it was either done using weak criteria for the alignments or the 

HepC helicase evolved in a different fashion than the rest of the members of the 

two superfamilies. In the rest, of the DNA helicases of these superfamilies of 

helicases, motif IV is involved in the binding of ATP [192].

Residues in the HepC helicase that would be expected to constitute part of motif 

IV are the residues Ser370 and Lys371. Ser370 interacts with the oligonucleotide 

via a water-mediated hydrogen bond and Lys371 establishes a backbone 

interaction [193].
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2.2.4 The Proposed function of the HCV Helicase

The conserved motif VI is found across the inner part of the channel in 

flaviviridae helicases and it extends into the ATP site. The same pattern is seen in 

the structures of the adenylate kinases [imj. In the group of adenylate kinases the 

conserved motif starts from the channel, where the oligonucleotide binds and 

extends into the ATP binding site. The purpose for this is that the binding of ATP 

or ATP analogues will have an immediate and direct allosteric effect on the 

helicase [i«]. So, the energy of the hydrolysis of ATP is utilised directly for the 

purposes of the enzyme, without losing any of it in exchanges between different 

motifs or “loose connections” [i96].

The binding of the ATP (or its analogues) will result in a conformational change in 

the structure of the enzyme. The most significant movements include the burial of 

the phosphates that were exposed to the solvent. Mutation studies on the ATP 

interacting residues, which lead to helicases incapable of ATP hydrolysis, have 

resulted in a wider configuration of the helicase molecule with much lower 

affinity for unwinding double stranded nucleotides [197].

Upon ATP binding, the domains one and two get together by the conformational 

change initiated originally in motif VI. This pattern would be expected to be 

common in all superfamily I and II members due to the consistency of the 

conserved motif VI [i98].

The residues Gln460 and His293 belong to the motif VI and stand on opposite sites
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in the oligonucleotide-binding channel. These two residues may be the ones 

responsible for regulating the equilibrium between the “tense” and “relaxed” states 

upon binding of the polynucleotide. The importance of these two amino acids was 

suspected by the fact that helicases with the DExH motif II often have a glutamine 

residue in motif VI, whereas helicases that have a DEAD motif often come with a 

histidine residue in this position [i98].

ATP

ADP

Figure 2.18. The schematic mechanism of RNA unwinding with the HepC 
Helicase. The binding of ATP will initiate the movement of domains one and two 
and the opening of the RNA binding channel, so that the ssRNA can translocate in 
the 5’ to 3’ direction
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The suspicion that the 2nd domain is flexibly linked to the rest of the protein was 

confirmed from the work of Yao et al{\99\. The 2nd domain of the hepatitis C virus 

interacts directly with the polynucleotide. The movement of the above domain 

could influence a relative movement of the polynucleotide as well (compared to 

the rest of the protein). The residues Val432 and Thr448 may interact with the 

nucleotide bases at the 5' end of the single-stranded nucleic acid, and this can 

result in a movement of the polynucleotide from the 5’ towards the 3’ direction -  

during the closure of the 2nd domain [200]. Trp501 helps the single stranded nucleic 

acid to give up on its interaction with its surrounding residues. The positioning of 

Trp501 will only help the movement of the polynucleotide towards the 5’ 

direction. The hydrolysis of ATP and the release of ADP will result in a slight 

opening of the polynucleotide channel and a coordinated movement of the whole 

domain 2 of the helicase towards the 5’ direction [201].

So the hydrolysis of ATP will result in the movement of the polynucleotide 

relative to the rest of the helicase. Apparently, it has been found that helicases are 

capable of moving several bases from the polynucleotide per ATP molecule that is 

hydrolysed to ADP [202].

As mentioned before, the HepC helicase is very similar to other helicase 

(structurally), from superfamilies I and II [203]. So, instead of just sharing sequence 

similarities amongst them, the HCV helicase shares many conserved common 

motifs in its structure. There are two motifs that have been found to be extremely 

vital for the winding of the double stranded nucleic acids in the helicases [204]. The
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first motif is the YRGADV structurally conserved motif and the second one is the 

DFSLDPTF structurally conserved motif. The YRGADV motif is the link between 

the IV and the V motifs in the superfamily II helicases. At the end of this loop lies 

the residue Arg393. Mutagenesis studies have shown that upon mutation of the 

residue of Arg393 to Ala, the recombinant protein is incapable of unwinding 

double stranded polynucleotides [205]. Combined with the fact that this arginine 

residue (Arg393) is fully exposed to the solvent and the nature of the arginine 

amino acid, makes it a very good target for drug design experiments in an attempt 

to design compounds that will inhibit the function of the HCV helicase. The 

affinity of RNA winding is not completely lost to the mutant helicase, but it is 

extensively reduced pt*].

Motif DFSLDPTF is the link of the two anti-parallel beta sheets between the V 

and VI motifs. Mutagenesis studies for this motif involve the manipulation and 

mutation of the residue Phe444. Mutating Phe444 to Ala will produce a protein 

that is capable of hydrolysing ATP, but incapable of unwinding dsRNA. The 

affinity for unwinding dsDNA has dropped to half compared to the original 

helicase [207].

These two motifs are known as Arg-clamp and Phe-loop respectively among all 

helicases of HCV (including various genotypes and quasispecies). What makes 

these two motifs unique, is the fact that they only appear on HepC helicases and 

not on the other helicases of the superfamily I and II [208].
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ssRNA

Figure 2.19. The HepC helicase with the Arg393 residue shown in stick 
representation. It can be seen that the function of this Arginine residue is to hold 
the oligonucleotide in place.

This characteristic gives these two motifs special value, since they constitute ideal 

drug targets for structure-based drug design. The position of the two key residues 

(Arg393 and Phe444) is shown in figure 2.19. The side chain of the residues 

Arg393 is only 2.5 A away from the phosphate backbone of the RNA. On the 

other hand the distance of Phe444 is almost 15 A away from the phosphate 

backbone of the RNA. It was not clear whether the RNA strand that is located in 

the channel of the HepC helicase (figure 2.19) was the translocating or the 

complementary strand. The interactions between the Arg393 residue and the 

oligonucleotide (figure 2.19) reveal that the binding is too tight and this implies 

that the strand in the channel of the helicase is probably the translocating one [209]. 

The helicase in figure 2.20 is in its ground-state configuration with the single

stranded oligonucleotide located in the major channel of the helicase protein. The 

oligonucleotide is picking many interactions from the protein and this does not 

seem to favour the unwinding process.
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Figure 2.20. A and B show the locations of the Arg-clamp and the Phe loop in the 
helicase structure of HCV. C is another attempt to explain the mechanism of 
action of the HCV helicase (Domain 1 is red, domain 2 is blue and domain 3 is 
gray). When ATP is not present the helicase is interacting with the 
oligonucleotide so strongly that it is impossible for it to slide through. After ATP 
binding though, Domains 1 and 2 come closer and the channel between domains 
1-2 and 3 becomes bigger and this allows the oligonucleotide to slide towards the 
3’ direction p u g .

The problem is that the residues of the surrounding amino acids are too close to 

the ssRNA and this probably stabilises it in the protein p i n .  The loosening of the 

interactions between the protein and the ssRNA is achieved by the contribution of 

ATP. ATP or any ATP analogues bind to the ATP binding site, which is on the 

same motif with the RNA binding site, the energy released by the hydrolysis to
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ADP will initiate an allosteric effect in the helicase that will eventually result in 

the movement of the second domain and the loosening of the interaction with the 

oligonucleotide. This will last until the effect from the hydrolysis of the ATP is 

finished. Then the helicase will go back to its “closed” or “ground” state. To sum 

up it appears that offering energy to the helicase drives the protein to its “excited” 

state, and enables it to slide along the polynucleotide chain [212].

The structures of x-ray data of two helicases, one with the bound oligonucleotide 

and the other without it, were compared. Both structures came from the same 

HCV genotype and the sequence alignment proved that they are identical. It was 

proven that the channel of the helicase without the bound oligonucleotide is 

tighter than the one with the oligo. Moreover it was found that in the helicase 

with the bound oligonucleotide, Arg393 is further away from the ssRNA and the 

Trp501 is further too. This proves that there is a coordinated action and movement 

of amino acids in the helicase during the oligonucleotide binding with a general 

loosening of interactions during the sliding of the helicases [213].

It is demonstrated in figure 2.19 that the Arg393 residue interacts with the bound 

ssRNA molecule both when ATP is present and not. It has also been shown that 

the AG of the RNA binding to the helicase in the presence of ADP is weaker when 

Arg393 is absent (mutated to Ala). Focusing on residue 393 in the wild type 

helicase and in the mutated one (Arg393 to Ala393), the AG contribution of the 

393 residue was found to be ten times stronger in the wild type one when the
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Arg393 is present. That is another proof of the fact that the Arg393 is an excellent 

target for drug design experiments puj.

The Phe loop is basically focused on the amino acids Phe438 and Phe444, but it 

also involves the following four amino acids, which are located in close proximity: 

His528, Phe531, Trp532 and Phe536. The vitality of the existence of these amino 

acids is confirmed by mutagenesis studies on the helicase. The mutation of any of 

these residues will lead to a mutant with no helicase unwinding capabilities [215]. 

Neighbouring amino acids should also be considered. For example Arg393 next to 

the conserved Tyr392, which is thought to work in a similar function with Trp501 

[2i6]. Tyr392 is thought to hold nucleotide chain from backsliding towards the 3’ 

direction. Mutating Tyr392 to Ala though does not change the unwinding 

capabilities of the helicase at all [216].

Another vital amino acid that was found after examining the binding mode of 

ssRNA in the HepC helicase is the Cys431. This amino acid was shown to have 

bonded with a small molecule, probably from the crystallisation process. The 

capability of this residue to interact with a molecule alien to the protein-ssRNA 

complex is proof that Cys431 is a good target for drug design. Furthermore the 

accessible area of the residue (to the solvent) is large (~75%) and the position of 

the residue in the helicase’s channel is strategic. As will be described later on, the 

positions of residues Arg393 and Cys431 will be exploited by structure-based drug 

design experiments.
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2.2.5 De novo drug design for the HCV helicase

Cys431 has established a S-S bond with a mercaptoethanol (HS-CH2-CH2-OH) in 

the HCV helicase x-ray structure. That can only mean that the Cys431 is accessible 

to the solvent, even when ssRNA is present, and could potentially establish 

interactions with a future inhibitor. Cys431 is located in a very strategic position 

for the blocking of the passage of the ssRNA through the helicase (figure 2.21).

Figure 2.21. Choosing the right starting point for the growing algorithm is a very 
crucial step. Here the seed was included in the PDB file (1A1V).

Further examination of the helicase for exposed to the solvent residues revealed 

two arginine residues (Arg393 and Arg481), positioned in such a way that the 

ssRNA was crossing the space between them. These residues were set to define a 

possible active site of the helicase that could be targeted for the design of novel 

inhibitors: the arginine residues could establish H-bonds, whereas the Cys431
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residue could possibly react with the compound, maybe establishing a S-S or a 

Hydrogen bond. Ideally, such an inhibitor would interact with the two Arg393, 

Arg481 and the Cys431, thus forming a bridge in the middle of the RNA channel 

in the helicase. If the compound covalently bonds to the receptor, then it is 

expected to be strong enough to block the passage of the ssRNA thus inhibiting 

the helicase.

A variety of different seeds was tested, the most suitable one was a small 

compound attached to the Cys431. First the S-S bond was broken and missing 

hydrogens were restored on both sulphur atoms (one of the compound and the 

other of the Cys431 residue). Then the oxygen was removed, since its existence 

would significantly reduce the number of fragments suitable for that seed-receptor 

arrangement. The remaining compound was used as a starting point for the 

“growing” algorithm of LigBuilder.

kWKKKmm
Figure 2.22. The co-crystallised fragment was firstly released from Cys431 by 
breaking the S-S bond and then the p-mercaptoethanol OH was removed, since an 
-OH group would dramatically limit the diversity of the generated compounds.

Dimitrios Vlachakis, PhD 2006 94



Chapter 2 Molecular Modelling

The complex was energetically minimised using a molecular mechanics algorithm, 

having fixed the backbone of the protein. The detached compound was entered as 

the starting point of the drug design algorithm and thus it was expected that this 

moiety would be present in this position on all the new compounds.

Figure 2.23. The Active site analysis of LigBuilder prior to the analysis of the seed. 
The receptor is examined and probable (predicted) electron-donating regions are 
coloured blue whereas probable electron-accepting regions are coloured red. In 
the next steps the algorithm will position the “seed” in space and depending on the 
area that it falls in, the algorithm will attempt to combine the suitable fragments 
from its database, trying to satisfy all user and built-in criteria.

The algorithm used the small compound as a starting point and started to grow 

structures by combining different chemical fragments that it stores in its database. 

The criteria are to optimally utilise the available space of the receptor and to
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establish the maximum amount of interactions with the adjacent residues of the 

helicase (Figure 2.23). All the different compounds that were designed were 

deposited in a folder for further investigation. A similarity cut-off of 90% was used 

in order to make sure that structurally all the different compounds in that folder 

would be at least 90% different. The space available (Figure 2.24) was filled with 

newly designed compounds, with the only size-limiting parameter being the pre

defined molecular weight of the compound. For all drug design experiments the 

Lipinsky’s drug-likeness rules were applied [217].

Figure 2.24. Distances and the available space in the Helicase’s active site
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After many iterations of the genetic algorithm of LigBuilder a possible lead was 

obtained, which had all the moieties that could interact with the given active site 

on the helicase and met all algorithm’s criteria, but, unfortunately, it cannot be 

considered a suitable drug. The lead compound from LigBuilder had 16 chiral 

centres and would not be feasible to synthesise (Figure 2.25).

,OH

HOj

Figure 2.25. The lead compound generated by LigBuilder docked into the helicase
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From the observation of the ligand/protein complex it is evident that the computer 

program tried to fill all available space and, in order to obtain useful results, we 

had to force the software to use only the space defined by the three target 

residues. That was achieved by physically incorporating a tube-like structure that 

encloses all key residues and restricts considerably the search space (figure 2.26). 

The tube was originally made from carbon atoms and the PDB file pw] was edited 

converting the carbon atoms to “Dummy” atoms (Du). Du atoms do not have any 

atomic properties, they are incapable of establishing interactions of any nature and 

they have no charge. In this way the tube acts as an inert wall, limiting noticeably 

the search space.

Figure 2.26. The application of the tube simplified the task of LigBuilder.
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The structures that LigBuilder generated (Figure 2.27) proved to be considerably 

simpler and more drug-like. The novel structure was isolated and then docked 

again into the original receptor, where it originated from. Only this time the 

“tube” was not present and the full receptor was available to be explored by the 

docking algorithm.

The result of the docking confirmed that this compound, that had been 

specifically designed for the particular area (between Arg481-Cys431-Arg393) on 

the helicase found its way to the suggested site and managed to establish the 

interactions that it was supposed to (figure 2.27). The second best lead from 

LigBuilder was the same compound with an extra CH3 substitution on one of the 

phenyl rings. That C H 3  was able to interact with the sulphur of the Cys431 and 

further stabilise the docking.

It is obvious that the presence of the extra carbon has pushed the compound a bit 

lower, which is evidence that the extra carbon successfully established an 

interaction with the nearby available sulphur from the Cys431 residue.

Following these promising results, we decide to use this structure as our basic 

scaffold for the design of a potential inhibitor capable of reacting with the desired 

cysteine (figure 2.27). To achieve this, our initial step was to include a chemical 

moiety able to react with the sulphur atom of Cys431. Michael acceptors, like the 

vinyl ketone, are known to react quickly with thiols and we decide to include this 

moiety in our compound replacing one of the acid groups (Figure 2.27b). The
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ketone should be still able to form the hydrogen bond with Arg481 while the 

cysteine should be close enough to react with the double bond.

Figure 2.27. The new lead compounds using LigBuilder and the “tube”
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We were not able to dock successfully compound B (Figure 2.28) into the active 

site, simply because the structure was now too big to fit between the two 

arginines, but a simple change in the position of the vinyl ketone to the meta 

position led to compound C which was able to dock in the desired position. 

Although the obtained molecule has all the desired properties, we have further 

modified the structure by replacing one of the carbon atoms of the linking double 

bond with a nitrogen atom, to simplify the synthetic procedure (Figure 2.29).

A

HO

OH

OH

OH

OH

o

// \
\  //

Figure 2.28. Route followed for the design of the final compound. 
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Compound D can be further functionalised by adding a side chain that could 

stabilise the ligand / protein complex by establishing new interactions with the 

enzyme. Those interactions mainly involve new hydrogen bonds, possibly with 

Cys431. It is important to mention that the last two modifications were “chemistry 

driven” and an already established synthetic methodology could be applied to 

obtain compound E in 3 steps [219-221]. (figure 2.29) .

D M S O

M e O N a

Figure 2.29. Proposed synthetic scheme.

Observing the minimised docking result of the compound E/helicase complex 

(figure 2.30), we can appreciate how the carboxylic acid moiety nicely interacts 

with Arg393 while the ketone forms a hydrogen bond with Arg482. The sulphur 

atom is just 4A  away from the carbon atom and it should react with it, since it is 

correctly placed for a nucleophilic attack to the double bond of the vinyl ketone 

moiety (Figure 2.30).
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Figure 2.30. The combined lead from all different LigBuilder Experiments.

In conclusion, we have designed a series of compounds (figure 2.28) as potential 

inhibitors of the HCV helicase. These molecules have all the desired properties: 

they interact with the proposed key residues (Arg393, Cys431 and Arg481) and 

their structural simplicity should allow a simple synthesis. At this point, all 

compounds in figure 2.28 are currently being prepared by other members of the 

group.
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2.2.6 A Comparison between two X-ray Resolved Polymerases

The HCV and BVDV polymerases have both been resolved by x-ray 

crystallography, and their 3D coordinates have been deposited at the PDB web 

site. Initially, the obtaining homology models for the Dengue, West Nile, Japanese 

Encephalitis and Yellow Fever viruses seemed impossible due to the low sequence 

identity between the available templates and the model sequences, which is 

approximately 17% with both HCV and BVDV as templates (Figure 2.31). 

Generally, such low identity does not allow homology modelling but considering 

that our aim is to design models that could be used later on as templates for the 

drug design experiments, the overall accuracy of the generated structures is not as 

significant as the local reliability of the RNA-binding site, which is going to be 

used as the target area for the inhibitor design experiments. Furthermore, 

structural comparison between the HCV and BVDV polymerase proteins revealed 

that even though their overall sequence alignment score is very low (11% 

homology), the area around the co-crystallised oligonucleotide is very much 

conserved (figure 2.32). Structural superimposition between the polymerases of 

HCV and BVDV reveals that structure is more conserved than sequence. This also 

means that even though the overall alignment score is not satisfactory, the HCV 

and BVDV could be used as templates for the rest of the Flaviviridae models 

focusing on an accurate modelling of the active site area and the conservation of 

all known structural motifs vital for the function of the Flaviviridae polymerases.
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Figure 2.32. The 3D structures of the HCV and BVDV polymerases. Green is 
the HCV and Red the BVDV polymerase. Blue is the RNA oligonucleotide. 
Both structures have been resolved by x-ray crystallography. Although they 
only share 10% sequence identity, their structure, and structural elements are 
much more conserved. Superimposition of the two structures yields an RMSD 
of 1.9 A. It becomes apparent that it is not the alignment score that mostly 
influences the accuracy of the homology models, but the conservation of the 
vital motifs for the enzyme to be functional. Here is can be seen that the RNA 
interacting residues are conserved between the HCV and BVDV polymerases. 
The RNA binding site should be conserved to all new models.
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The theoretical structure of the polymerase proteins for each of the species of 

Dengue, West Nile virus, Japanese Encephalitis and Yellow Fever were modelled 

using the HCV and BVDV polymerases as a template structures. The alignment 

identity of the models against the template was calculated to be approximately 

17%. It can be seen from the structural alignment of figure 2.31 that even though 

the sequence alignment between Dengue, West Nile Virus, Japanese encephalitis, 

yellow fever and either of the HCV or BVDV templates is very low, the alignment 

score between the four sequences to be modeled exceeds 50%.

All four polymerase models were expected to bind the ssRNA oligonucleotide in 

the same way that HCV polymerase does. In order to ensure that the models will 

have by default a properly shaped active site and to further provide a scaffold to 

the algorithm, the ssRNA fragment found in the HepC X-Ray file was 

incorporated as part of the template structure during the building of the homology 

model.
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2.2.7 The ligand supported homology modelling using MODELLER

The design of the initial model was done using MODELLER [222], which is a 

complete homology modelling software package that generates 3D structures of 

models based on the information from the initial sequence alignment. Spatial 

restraints are attempted to be satisfied according to the rules imposed by the 

CHARMM22 built-in forcefield. The 3D protein model is obtained by optimising 

the molecular probability density function while simultaneously minimising input 

restraint violations [222]. To guarantee sufficient conformational sampling of each 

active-site residue, several homology models are generated in this step. 

Preliminary tests showed that a number between 10 and 100 models provides a 

satisfactory sampling. To optimise the local interactions, all models obtained are 

subjected to a crude simulated annealing refinement protocol available in 

MODELLER (Figure 2.33). Positioning the “ligand” ssRNA into the homology 

model was done from the information obtained from the Hepatitis C template 

polymerase. Here it is assumed that ssRNA will bind the model in a mode similar 

to the one in the template protein. As a result, the ssRNA fragment was copied and 

moved into the resulting model whilst keeping its orientation and initial 

conformation to be used as a restraint for the model building process (Figure 2.34). 

The ssRNA fragment was kept fixed in all steps of the homology modelling 

experiment using user-defined restraints (Figure 2.35).
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The Dengue Virus Polymerase The West Nile Virus Polymerase

The Jap. Encephalitis Polymerase The Yellow Fever Polymerase

Figure 2.33. The four Helicase Models: the Dengue virus (top left), the West Nile 
virus (top right), the Japanese Encephalitis virus (bottom left) and the Yellow 
Fever virus (bottom right).
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Figure 2.34. (a) The three dimensional structure of HepC polymerase determined 
by X-ray crystallography (pdb code: 1HB7). (b) The predicted three dimensional 
structure of the dengue polymerase by homology modelling and (c) the 
superimposition of (a) and (b). 1HB7 is in Green and the dengue model is in Red.
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I

Figure 2.35. The superimposifion of the key residues that interact with the ssRNA. 
For example this Arg (Si) residue is located at the exact same position, with the 
exact same geometry and orientation on all 4 models as in the template protein. 
The key residues of a Flaviviridae polymerase have been highlighted in circles. 
Those ssRNA interacting residues have been conserved during homology 
modelling from template to models.
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2.2.8 Model Evaluation for the Polymerase

The models were initially checked with the built-in model evaluation function of 

the MOE package and was found to be perfect in dihedrals, angles and bond 

lengths. Minor atom-atom proximity contact errors were reported, but none of 

them was disturbing the 3D structure of the model or was contributing to an 

elevation of the overall energy of the complex, thus destabilising it. The 

polymerase models were then checked with a Ramachandran plot evaluation. The 

same energy minimisation and molecular dynamics process as in the Helicases 

section was performed. The results are summarised in the table below (table 2.2):

Table 2.2. The Procheck values of the polymerase models after homology and after 
optimization and re-evaluation.

After Homology After Energy Minimization & Model 
Optimization

Project Model Gore Allowed Generous Disallowed Gore Allowed Generous Disallowed

V
DenV 79.7 16.9 2.0 1.4 80.9 16.7 2.4 0

g% WNV 68.2 24.6 6.1 1.0 89.8 8.4 1.8 0
t
3 JEV 68.7 24.1 6.4 0.8 92.1 4.9 3.0 0

YF 67.5 25.3 6.6 0.6 89.4 8.5 3.1 0
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2.2.9 Homology Modeling of the Dengue Polymerase using MQE

The homology modelling of the Dengue polymerase was also performed using the 

homology function of MOE. MOE homology algorithm allows the incorporation 

of multiple templates and this time both BVDV and HCV templates were used. 

Figure 2.36 shows the new alignment from MOE

Figure 2.36. The sequence Alignment of Dengue, HCV and BVDV used in MOE:

DENGUE ESETPNLDIIGKRIEKIKQEHETSWHY DQDHPY KTWAY HGSY ETKQTGSAS SMVNGWRL
HCV- H C V -1 NB --------------------------------------------------------------------SM SYTW T-GALITPCAAEESKLPINPLSNS
B V D V -IS  4 F VIREHNKW IL-KKI -RFQGNLNTK KMLNPGKLSE-QLDREGRKRNIYNHQIGTIMSS

DENGUE LTKPWDIIFMVTQMAMTDTTPFGQQRVFKEKVDTRTQEPKEGTKKIJHKITAEWLWKELGK
H C V -1N B 7 LLRHHNMV-YAT— TSRSASLR-QKKVTF DRLQVLDDHYRDVLKEMKAKAS--------------
B V D V -1 S 4 F  AG IR LEK LPIVR— AQT DTKTF- HEAIRDKIDKSENRQN PELHNKLLEIFHTIAQPTL—

DENGUE KKTPRMCTREEFTRKVRS-NAALGAIF-TDENKWKSAREAVEDSGFWELVDKERNLHLEG
H C V -1N B7 TVKAKLLSIEEACKLTPPHSAKSKFGYGAKDVRNLSSRAVNHIRSVWEDLLEDTETPIDT
B V D V -1S 4 F KHTYGEVTWEQLEAGVNR-KGAAGFLEKKNIGEVLDSEKHLVEQLVRDLKAGRKIKYYET

DENGUE KCETCVYNMMGKREKKLGEFGKAKGSRAIWYMWLGARFLEFEALGFLNEDHWFSRENSLS
H C V -1N B7 TIMAKSEVFC VQPEKGGRKP-ARLIVFPDLGVRVCEKMALYDWSTLPQAVMGSSY
B V D V -IS  4 F AIPKNEKRDVSD-DWQAGDLWEKRPRVIQY PEAKTRLAITKVMYNWVKQQPWIP— GY

DENGUE GVEGE GLHKLGYILRDVSKKEGGAMYADDTAGWDTRITLEDLKNEEMVTNHMEGEHKKLA
H C V -1N B7 GFQYSPKQRVEFLVNTWKSKKCPMGFSYDTRCFDSTVTESDIRVEESIYQCCD— LAPEA
B V D V -1 S 4 F  EGKTPLFNIFDKVRKEWDSFNEPVAVSFDTKAWDTQVTSKDLQLIGEIQKYYY— KKEWH

DENGUE EAIFKLTY QNKWRVQRPTPRGTVMDIISRRDQRGSGQWTY GLNTFTNMEAQLIRQMEG
H C V -1N B7 RQAIRSLTERLYIGGPLTNSKG QNCGYRRCRASGVLTTSCGNTLTCYLKATAACRAA
BVDV- 1 S 4 F  KFIDTITDHM TEVPVI TAD— G EVYIRNGQRGSGQPDTSAGNSMLNVLTMMYAFCES

DENGUE EG V- FKSIQH LTVTE EIAVKNWLVRVGRERLSRMAIS GDDCW  KPL DDRFASAL
H C V -1N B 7 KLQ------------------------------------------------------------- DCTMLVNGDDLWICE SAGTQEDAAALRAF
B V D V -1 S 4 F TGVPY KS FN---------------------------------------------RVAR IH VCGDDGFLITEKGL------- GLKFANKG

DENGUE T -  ALNDMGKVRKDIQQWE PS RGWNDWTQ VP FCS HH FHE LIMKDGRVL W PCRNQDE LIGR
H C V -1N B7 TEAMTRY SAPPGDP PQPEY-DLELITSCSSNVSVAHDASGKRVYYLTRDPTTPLAR
B V D V -IS  4 F MQILHEAGKPQKITEGEKMKVAY -R  FED IE  FCS HT PVPVRWS DNT S SHMAGRDTAVILSK

DENGUE A R IS  QGAGWS LRETACLGKSYAQMWS LMY FHRRDLRLAANAICS A -V P S  HWVPT SR
H C V -1N B7 AAWETARHTPINS-------------------------WLGNIIMYAPTLWARMILMTHFFSILLAQEQLEKAL
B V D V -1S 4 F MATR LDSSGE-RGTTAYEKAVAFSFLLMYSWNPLVRRICLLVLS— QQPETDPSKH

DENGUE TTWSIHATHEWMTTEIMLTVWNRVWIQENPVJMEDKTPVESWEEIPY LGKREDQWCG— SL
H C V -1N B7 D C Q IYG ACYS-IEPLDLPQ IIERL-H G LSAFTLH SYSPG EINRVASCLR KLGVPPL
B V D V -1S  4 F ATY------------------Y Y KGDPI GAY KDV-1GRNLSELKRTGFEKLANLNLSLSTLGVWTKHT SK

DENGUE IGLT S RATWAKNIQTAINQVRS LIGNEE Y T DYMPSMKR FR REE E E1AGVL---------- W------------
HCV- 1NB7 RTWRHRARSVRAKLLSQGGRAATCGRYLFNWAVRT-KLKLTPIPAASQLDLSGWFVAGYS
B V D V -1 S 4 F  RIIQDCVAIGKEEGNWLVKPDRLISSKTGHLYIPD-KGFTLQGKHY--------------------------------
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In yellow are the conserved residues among the Dengue, HCV and BVDV. The 

main template for the homology experiment is the BVDV and the HCV template 

has only been used for the RNA binding site alignment (HCV residues: 218-226 

corresponding to BVDV residues: 532-540). The Mn++ atoms were pasted from the 

HCV template into the model. The same was done with the ssRNA 

oligonucleotide. MOE generated a series of possible conformations for the model, 

which was saved in a database, and then averages were saved in a single pdb file. 

The best model as ranked by the algorithm was chosen to be further optimized by 

molecular dynamics.

The molecular dynamics calculations were done using GROMACS 3.2 

[www.gromacs.com]. There are two important parameters that define the molecular 

system in a dynamics simulation. Those are the coordinates and the topology of 

the system. The coordinates are the ensemble of the Cartesian (x, y, z) position of 

each atom in the system. The topology of the system contains all the atomic 

parameters, such as charges, bond lengths, bond angles and dihedrals. The 

GROMACS suite contains a database with all amino acid and nucleotide 

topologies. In this study, not only the topology of the protein residues had to be 

defined, but the RNA too. The ssRNA of the template consists of four uridines and 

although GROMACS has the residue “URA” (a standard uridine) already defined 

in its database, two new residues had to be defined: the “URD”, which is the first 

uridine and the “URF”, which is the last one. “URD” is a uridine without its 

phosphate group at the 5’ position and “URF” is a uridine monophosphate, but
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with a hydrogen in the position of the 3’ -OH. In GROMACS the URA nucleotide 

is defined as N-0-Uridine-P03*N, where N is the next heterocyclic base of the 

RNA It means that there is no clear topology for terminal bases, but only for those 

in the middle of the nucleic acid strain.

Another issue was that after defining the URD and URF nucleotides the molecular 

dynamics program would not connect the 4 bases, but position them as individual 

nucleotides in space (URD URA URA URF). The topology was edited again and 

the correct type of bonds, angles and dihedrals were defined. Finally the four 

nucleotides were bonded together forming a small oligonucleotide chain (URD- 

URA-URA-URF), corresponding to the ssRNA taken from the template. 

Furthermore, the correct parameters for Mn++ where not included in GROMACS. 

Thus the ions where substituted with Mg++ ions, which are correctly parameterised 

by GROMACS. Having defined everything in the molecular system, the latter was 

ready to proceed to a geometry and energy optimisation by molecular dynamics. 

The molecular dynamics were initiated by generating a periodic box enclosing the 

system, which was then filled with water and the system was neutralised, by 

exchanging water molecules with the appropriate ions. The system was 

energetically minimised using the steepest descent algorithm, in an attempt to give 

the system the opportunity to optimise its conformation in the ssRNA area. The 

molecular dynamics simulation was run having constrained all the bond lengths of 

the molecular system for 1 nanosecond in an NVT environment. After that time, 

the water was removed and the system was energetically minimised using a
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Figure 2.37. The three Aspartic Acids 
coordinated around the Mn++ atoms in the 
Dengue Polymerase Model.

an attempt to allow the 

system to improve its 

geometry without moving 

too far away from its original conformation. Figure 2.37 shows the two models and 

the 3 Asp residues coordinated against the two Mg+t atoms. Figure 2.38 shows the 

Dengue polymerase model and the ssRNA (in Green) in very close proximity to 

the three Asp residues (in spacefill representation).

Chapter 2 Molecular Modelling

steepest descent initially 

and a conjugate gradient 

algorithm later from

within GROMACS.

The restrains were used in

Figure 2.38. The model of the Dengue Polymerase by GROMACS (in green is 
ssrna and in spacefill representation are the three Asp residues.

the
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2.2.10 Discussion of the Helicase Models

There are 5 conserved motifs that are highly conserved in all Flaviviridae 

Polymerases [223]. Those motifs are found in the two x-ray resolved models and 

were also inherited by the four models.

Motif I is used for Magnesium coordination or sugar selection. There are three 

highly conserved ASPs in this motif. Motif II is supposed to participate in the 

sugar selection process with the sequence GxxxTxxxNTxT. Motif III is used to 

coordinate the magnesium atoms as well, and is made of GDD. Motif IV completes 

the palm structure and must contain either an R or a K. Motif V establishes 

hydrophobic interaction with the thumb and is made of a conserved CS and an 

overall hydrophobic patch around it.

The function of the Flaviviridae polymerase N-terminal domain is not known. The 

C-terminal residues are highly hydrophobic and predicted to be membrane- 

anchoring region. The Flaviviridae polymerases present a deep cleft in the middle 

with the palm at the base. The fingers and thumb domains are both important for 

correctly positioning the substrates for catalysis by the palm domain. Like 

poliovirus polymerase and calicivirus RNA polymerase, their structure shows an 

elaborate arrangement of polymerase domains that have been termed “fingers,” 

“palm,” and “thumb,” on the basis of its resemblance to a right hand. The overall 

topology of the flaviviridae polymerase models has a typical ’right hand' 

polymerase structure, with catalytic sites in the base of the palm domain,
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surrounded by thumb and finger domains (Figure 2.39). These latter domains fully 

encircle the active site, creating a channel for binding to a ssRNA template. In 

addition, a &-hairpin structure protrudes from the thumb toward the active site 

and is likely to be involved in correct positioning of the template. The overall 

structure of NS5B is remarkably similar to the RNA dependent RNA polymerases 

(RdRp) of bacteriophage PHI 6. NS5B also has a low-affinity GTP-binding site, 

distal from the active site, which is thought to be an allosteric regulator of the 

finger-thumb interaction (Figure 2.40). NS5B is tethered to membranes by a C- 

terminal peptide anchor and interacts with itself to form higher-order RdRP 

complexes.

PALM

FINGERS

THUMB

Figure 2.39. Ribbon diagram of predicted three dimensional structure of Dengue 
polymerase showing the conserved fingers, palm and thumb domains common to 
all Flaviviridae polymerases.
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The fingers domain contributes to binding both the incoming NTP and the 

template-strand. The fingers domain of the flaviviridae polymerases can be divided 

into a palm-proximal region that is an a-helix-rich subdomain called a  fingers, 

and a distal region that is a ^-strand-rich subdomain, which we have named the 

“fingertips” or p fingers. The fingertips subdomain is composed of seven p-strands 

and three a-helices. There are three conserved sequence motifs (F-H) shared by 

all RdRps in the fingers domain that play an important functional roles in the 

mechanism of polymerization [223]. Motif F contains several conserved positively 

charged residues (KxxRxxxxxxxxxR). It forms a p-strand and two a-helixes, and 

combines the fingers and the thumb to help build the nucleotide import tunnel 

and help position the incoming templates. Motif G also contains several conserved 

positively charged residues (xxxKxExxx). Motif H contains an a-helix and a p- 

strand in Dengue RdRp, while in most RdRp structures, the motif H forms a loop 

and an a-helix. This structural element lies at the gate of the template tunnel, and 

is also predicted to be involved in orientation of incoming template [223].

The palm is the catalytic domain and contains a folding motif that is highly 

conversed among polymerases. It consists of a three-stranded antiparallel p-sheet, 

a small helix, three supporting a-helices and a p-strand. The antiparallel p-sheet 

exists in all RdRps and is the catalytic core of the palm domain. At the interface 

with the thumb domain, a long loop followed by the pair of p-strands belonging to 

the thumb domain completes the palm domain. This pair of p-strands region is 

similar in all RdRps and in HIV-1 Reverse Transcriptase (RT). The palm domain,
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the catalytic domain of RdRp, contains the four-amino acid sequence motifs found 

in all classes of polymerases, named A-D, plus a fifth motif, E. The A-D motifs are 

highly conversed in RdRp, and motif A and C are also found in the DNA 

polymerase, whereas motif D, like motif B, is conserved in sequence only in the 

RNA-directed polymerases. Motif E occurs only in RdRps and RTs. Motif A 

contains three aspartic acid residues (DTxxxDxxxTxxDxxxxxxx), which are 

responsible for binding the catalytic metal ions. The Aspartic acid near the end of 

the p-strand is completely conserved in all classes of polymerases. Motif C contains 

the highly conserved GDD motif that coordinates the catalytic metal ions (Figure 

2.40). This structure is very similar in all classes of polymerases and positions the 

two aspartates (xxxxxGDDxxx) close to the conserved aspartate of motif A. In 

motif E, the hydrophobic residues are important for the interactions with the palm 

core structure and account for the conservation of several hydrophobic residues in 

motifs A, C and D of RNA-dependent polymerases.

The thumb domain of the flaviviridae RNA-dependent RNA polymerases contain 

motif I, consisting of an a-helix and a p-strand. An arginine is a strictly conserved 

residue in the motif, and is essential for enzymatic efficiency. The corresponding 

thumb region in HCV is mainly a-helical, containing eight a-helices and four p- 

strands. In Dengue RdRp there is a long loop rich in positively charged residues 

near the gate of the template tunnel. Moreover, Dengue RdRp, similar to HCV 

RdRp, has a long p-hairpin connecting two a-helices and occluding the active site 

cleft. This hairpin acts as a discriminator for distinguishing the single-stranded
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RNA templates from double-stranded RNA. Without the p-hairpin structure, 

calicivirus, poliovirus and 0 6  enzymes are consistent with the ability of these 

enzymes to utilise double-stranded RNA as templates [223]. Another function of this 

domain is to form a hydrophobic binding pocket near the domain core with the 

help of the palm domain and two long loops of the fingers domain [223].

Figure 2.40. Catalytic residues (drawn in ball and stick conformation) of predicted 
three-dimensional structure of Dengue Polymerase and crystal structure of HCV 
Polymerase.
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3.1 Introduction

The genes encoding for the HCV helicase protein, Dengue type 2 NS3 domain (full 

length -  1.8kb) and helicase protein (alone -  1.3kb) were obtained from a cDNA 

library, from the Pasteur Institute in Paris, in order to produce the corresponding 

recombinant proteins. The cDNA product was amplified by PCR and ligated into the 

pGEM-T plasmid [224] and later on the pET28a and pET23b+c plasmids [225], which 

encode ampicillin resistance. The plasmid was transformed into E. Coli bacteria (DH5- 

a) strain [226] and the bacteria were plated out on ampicillin containing plates. The 

only surviving bacteria the next day should be those carrying the pGEM-T plasmid. 

Single colonies were picked and cultured overnight in liquid suspensions. Then the 

cells were lysed and their plasmid was extracted (mini-prep). The molecular weight of 

the plasmids was confirmed by gel electrophoresis. The DNA was then purified and 

concentrated to be sequenced with custom-made primers that had to be designed for 

complete sequencing of the insert. Then the inserts were re-cloned into the 

expression vectors pET28a and pET23b+c, in order to prepare for protein expression.
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3.1.1 Polymerase Chain Reaction

The sequences encoding (i) the full length NS3 and (ii) the helicase domain alone 

were amplified by PCR. Gene specific (custom-made) forward and reverse primers 

were used:

NS3F: AAGCTTGCCGGAGTATTGTGGGATG
NS3R: AAGCTTCTACTTT CTTCCGGCT GC AAATT C
HELF: AAGCTTAGTGCTATAGCCCAGACTG

NS3F > HELF >

<  NS3R

Figure 3.1. The annealing of the custom-made primers for the two genes in PCR.

The two primers annealed at each end on the NS3 & the helicase genes and the PCR 

reaction went on for 30 cycles. The cycle used was the default one involving the 

denaturing of DNA at 95 °C for one minute then the temperature was decreased to 58 

°C for one minute in order to initiate primer annealing and then increased to 72 °C for 

five minutes to allow the DNA polymerase to extend the DNA (Figure 3.2).

npevtedfcr 30 cycles

72 “C

Figure 3.2. The PCR conditions for the amplification of the NS3 & Helicase Domains.
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3.1.2 Plasmid Preparation & Phosphatase Reaction

Restriction enzymes are the main tools used for cloning. These enzymes are able to 

cut DNA at specific recognition sites. Here, the plasmid of pET23b was cut at its 

unique Hind III [227].

Hind  III Hind III

5’XXAAGC TTXXXXXXXXXXXXXXXXXXXX \GCTTXX 
3 XXTTCGA AXXXXXXXXXXXXXXXXXXXX f XGA \XXf

XXA
XXTTCGA

DNA igase AGCTTXX
AXX

XXAAGCTTXX 
XXTTCGA AXX

To stop the plasmid religating to its original circular form a phosphatase reaction was 

performed straight after digestion. The phosphatase reaction removed the phosphate 

groups from the 5’ ends of the restricted plasmid so that the overhanging ends could 

not get back together. The insert has phosphate groups at both of its ends and this 

way when the insert was applied there was no problem for it to ligate to the plasmid. 

The insert was capable of ligating to the vector, since it was carrying its own 

phosphate groups at both its 5’ ends. Self-ligation of the insert is possible, but since it 

would not encode Amp resistance it will not be able to survive the antibiotics.
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3.1.3 Gene Insertion - Ligation

The process of joining DNA fragments together with covalent bonds is known as 

ligation. In a ligation reaction a phosphodiester bond is formed between the 3' 

hydroxyl end of one nucleotide chain and the 51 phosphate end of another. The 

enzyme used in the experiment was the T4 DNA ligase (from T4 bacteriophage [228]). 

The plasmid and the inserts were digested with the appropriate restriction 

endonucleases. Gel electrophoresis was used to separate the fragments and they were 

isolated by gel purification (Figure 3.3). The mix of the ligation reaction was 1:4 

molar ratio (vector : insert). The mixture contained 1 x DNA ligase buffer (Promega 

Ltd., Southampton, UK) in a final reaction volume of lOpL and 3 units of DNA ligase 

(Promega Ltd., Southampton, UK). The ligation mixture was incubated for 16 hours at 

17°C.

Initially the PCR products of the genes were ligated into the pGEM-T vector 

(Promega Ltd, Southampton, UK.). The pGEM-T vector is a linearised vector with a 

5’ thymidine overhang at each end. The 5’ thymidine overhangs will improve the 

efficacy and success of ligation experiment. This is achieved firstly by preventing the 

re-circularisation of the vector and secondly, by providing an overhang that is 

compatible for the ligation of PCR products, that have been made by thermostable 

polymerases.

Dimitrios Vlachakis, PhD 2006 126



Chapter 3. Molecular Biology -  Enzymatic Assay

M
Kb

5.8

4 ----
2

1.8  -

1.8 NS3 gene M V V (V+NS3)

Figure 3.3. Gel electrophoresis of the NS3 gene before and after ligation. The plasmid 
was also run in a lane to confirm its size (M=Marker, V=Vector).
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3.1.4 Transformation -  mini prep

Bacterial transformation is the process where competent bacteria take up DNA 

(usually in the form of plasmids) from their environment (Figure 3.4). The term 

competent means that bacteria have been treated and their cell membranes are more 

permeable to genetic material than before. Here the E. Coli strain DH5-a was used, 

because of its versatility, short replication times, that it can sustain a high plasmid

content and most importantly for its 

compatibility with the chosen plasmids. 

The transformation was done by the “heat 

shock” method [229]- According to this 

method the plasmid is added to thawed 

cells (4 °C) and they are kept on ice for 45

minutes, and then they are heat-shocked 

for 2 minutes at 42 °C. This will permealize 

their membranes and will allow to the plasmids to enter the cytoplasm. Finally, LB 

medium is added and the cells are placed in a 37 °C waterbath for approximately sixty 

minutes. After a short incubation the cells are inoculated overnight on a petri dish 

with LB agar and ampicillin antibiotic (at 100 pg/mL). The cells were lysed and their 

plasmids were isolated.
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3.1.5 DNA Purification & Concentration

For the purification and cleaning of the isolated plasmid DNA, the DNA /  plasmid 

purification kit from Qiagen was used (see experimental). The DNA precipitant is a 

combination of phenol chloroform and isoamyl alcohol. After the addition of a 

solution of phenol-chloroform the DNA solution was centrifuged at 13000 rpm for 10 

minutes. Cell debris should stay at the bottom of the centrifuge tube, while pure DNA 

will be in the supernatant fraction.

For the concentration of the DNA a combination of isopropanol and sodium acetate 

was used. DNA is left at 4 °C for a few hours in a solution containing the above 

reagents (reagents will help it precipitate faster). Then it is spinned at 13000 for 20 

minutes and subsequently 70% ethanol is added and the solution is spinned for 

another 5 minutes. The eppendorf is heated in a PCR block to evaporate ethanol at 52 

°C.

M: (k)  (<p) V B A

► pGEM-T
► 1,8 (A )
* 1,3 (B)

V=vector
B=helicase
A=NS3

Figure 3.5. Gel Electrophoresis 
of the pGEM-T plasmid, the 
helicase protein and the full 
NS3 domain after isolation and 
concentration.

V is the pGEM-T vector at 4 
A is the full NS3 domain at 1,8 
B is the helicase protein at 1,3

(all above are in kb)
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3.1.6 Cloning

NS3F
HELF

- r e W - i .y

/ PCR with High Fidelity 
Taq Polymerase

(<- 1st PCR: NS3F -  NS3R)
(2nd PCR: HELF -  NS3R -») \

HCVNS3 Domain

NS3R

c z z u r
Clone into pGEM-T

pGEM-T

agctt
i ttcga 
la

Hind ID

pGEM-T

Digest with Hind III
ttcga

agctt

ttcga
agctt

pET23b

ttcga
agctt

pET23b

ILigation \# h  T4 ligase Ligation wwi T4 ligase

pET23b

NS3 domain

Helicase and full NS3 
genes are ready to 

transform an 
expression vector

Figure 3.6. Illustration of the method of cloning the Dengue genes in pET23b.

pET23b

Helicase
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The genes for the Dengue helicase and Dengue NS3 domain were cloned into the

pGEM-T vector using the single cut Hind III restriction site. As a result, orientation of

the insert had to be 

confirmed by a PCR screen 

(Figure 3.7). The PCR was 

setup using 50 pL of lOx 

Taq buffer, 50 pL MgCh, 20 

pi dNTPs, 5 pi of each 

primer, 365 pi of H2O and 

5 pi of Taq polymerase. 

The PCR mix was enough 

for 20 different PCR 

reactions. The PCR cycles 

were set as: an initial 95 °C 

denaturing step for 5 min 

and then 95 °C for 1 min, 

58 °C for 1 min and 72 °C 

for 2 min. Each cycle was 

repeated 30 times. Final 

temperature was set to 4°C.

M I—helicase gene—

1.3 k b

1 iNS3 domain-----------

helicase gene

Figure 3.7. Electrophoresis gels of the Dengue helicase and 
Dengue NS3 domains after PCR -  screening for positive 
colonies.
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3.1.7 Primer Design

The sequencing reactions are only accurate for 400-500 bases one way. There are two

available primers for both genes:

NS3F = AAGCTTGCCGGAGTATTGTGGGATG
HelF = AAGCTTAGTGCTATAGCCCAGACTG
NS3R -  AAGCTTCTACTTTCTTCCGGCTGCAAATTC

The full NS3 gene that is 1.8 kb long requires an internal primer for its sequencing.

The region of interest was identified and the primer was designed using the 

approximation: Tm = [4 (G + C) + 2 (A + T)] and making sure that there is a C=G base 

pair at the 3’ end. The annealing temperature of the newly designed primer was 

estimated to be 60 °C.

T h e d esig n ed  prim er se q u e n c e  w as: gcagagacccatttcctcag

Figure 3.7. The primer setup for the NS3 gene used for cloning (in red). The primer in 
green is the primer that was manually designed to allow the sequencing of the centre 
of the helicase gene.

| NS3F

----

v.

|
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3.1.8 Site Directed Mutagenesis (Quick Exchange)

Sequencing of the transformed pET vector revealed that both the NS3 domain and the

helicase genes contain a stop codon at the end. There is a TAG triplet in frame that

stops the transcription machinery prematurely (see below). By that it is assumed that

the inserts were not prepared having protein isolation in mind. Site Directed

Mutagenesis was used to mutate the T base of the TAG triplet to A. This way the

specific triplet would not code for a stop codon anymore, but for a lysine. The choice

for lysine was made because of the existence of the two neighbouring lysines on

either side of the TAG triplet, thinking that a third lysine would not change

significantly the amino-acid environment of the area.

The original seq: cagccggaagaaagTagaagcttgcggcc
The mutated seq: cagccggaagaaagAagaagcttgcggcc

In red are the gene’s bases before the stop codon
In blue are the stop codon triplets (top) and the mutated one (bottom)
In green are the vector’s bases after the stop codon

The side-directed mutagenesis was performed following the quick-change approach 

as described by Nelson and McClelland [230]- Specific oligonucleotide primers were 

designed in a manner that they encoded the desired mutation, along with 14 

nucleotides complementary to the region around the desired mutation point. These 

oligonucleotide primers (or cassettes) should not exceed 20 nucleotides on either side 

of the mutation point. The oligonucleotides will amplify DNA around the desired 
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location and will induce the desired mutation. About lOOng of the NS3 domain gene 

in pGEM-T vector was used as a template for the PCR reaction (Figure 3.8). The 

reaction mix contained lpg of each oligonucleotide primer, and 0.1 mM dNTPs in a 

final reaction volume of 50pL. The reaction was performed in l x  Pfu Turbo reaction 

buffer (containing lOmM MgCh) with 1 unit of Pfu Turbo DNA polymerase 

(Stratagene, La Jolla, CA, USA).

l94°C )  3°seconds^> 55 °C 30 seconds£>i 68 °C

repeated for 22 cycles

Figure 3.8. The conditions for the Polymerase Chain Reaction for the site directed 
mutagenesis experiment

After PCR, the sample was finally used to transform competent DH5oc cells. Positive 

clones were isolated by sequencing after mini-prep. Site directed mutagenesis is a 

PCR based application that involves the extension of a mismatched oligonucleotide, 

thus incorporating a mutation. The primer designed for SDM was prepared with the 

criteria that its melting temperature would be well above the 76 °C, that it would span 

at least 12 bases either way of the base to be replaced and finally that there would be 

a CCG base pair rather than an A=T.

SDM primer 1 = AAGCTTAGTGCTATAGCCCAGACAG 
SDM primer2 = GGATCCAGTGCTATAGCCCAGACAG
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3.1.9 Re-Cloning of the stop-free genes

The new genes were digested with Hind III and then re-ligated in phosphatase- 

treated pGEM-T vector. The mixture of the overnight ligation at 17 °C was then used 

to transform DH5a E.Coli cells using the heat-shock method. The colonies that grew 

on ampicillin (100 pg/mL) plates were PCR screened for the existence and the 

directionality of the insert (see gel below). Positive colonies were picked up and 

inoculated for overnight cultures with 10 mL LB. The cells were then lysed and their 

plasmids were isolated (mini-prep). Sequencing results confirm the correct mutation 

to lysine and the removal of the stop codon. The genes were then restricted out of the 

pGEM-T vector with Hind III and ligated into the pET23b vector. The ligation was 

used to transform BL21 DE3 plysS E.Coli that were screened for insert-directionality 

using vector-forward and gene -reverse primers.

Figure 3.9. The following figure shows the electrophoresis gel of the final screen for 
directionally correct insert of the full NS3 domain on pET23b in BL21 DE3 plysS 
E.Coli cells. The helicase gene can be extracted by PCR from any of the above positive 
colonies. Then the amplified helicase genes are re-ligated into the pET23b vector and 
re-transformed into BL21 DE3 plysS E.Coli cells. (Experimental Data in Appendix)
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3.2 Protein Expression

Protein expression is a general term to describe how information encoded in a 

segment of DNA (a gene) is converted into a functioning protein in a cell. As such, 

protein expression covers the processes of transcription (converting the DNA 

sequence of a gene into a messenger RNA molecule) and translation (converting the 

information in the messenger RNA into an amino acid sequence) as well as all of the 

methods a cell uses to regulate these processes.

A very common and representative protein expression system in E. coli is the pET 

vector system [231]. The pET system is based on the T7 phage promoter (T7 RNA 

polymerase expression system). T7 polymerase has the unique characteristic that it is 

specific for T7 promoters and will not recognise any other promoters within the cell. 

The latter combined with the facts that those T7 promoters are very rare and that 

termination sequences for T7 promoters are also rare, make it possible to have very 

long transcripts with no interruption. Finally it has been found that the T7 RNA 

polymerase is roughly five times faster than the host {E.Coli) RNA polymerase. As a 

result, genes controlled by the T7 RNA polymerase can be overexpressed.

Special E.Coli strains have been developed that contain the T7 RNA polymerase. 

Responsible for the operation of the T7 RNA polymerase gene is the lacUV5 

promoter. This promoter can be induced by the addition of isopropyl beta D
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thiogalactopyranoside (IPTG) [232].

So, if the system was perfect the insert (gene of interest) should only be expressed in 

the presence of IPTG, by the induction of the lacUV5 promoter that will initiate the 

production of the T7 RNA polymerase.

Figure 3.10. 750 ml cultures in 2 L flasks were used at 280 rpm in expression flasks. A 
lot of different expression conditions were tested in order to achieve the optimal 
expression conditions and establish an expression protocol.

3.2.1 Cloning and expression vectors

The pGEM-T vector that was purchased from Promega Ltd (Southampton, UK), was 

used for cloning. For the expression part of the Dengue proteins, pET23b vector was 

purchased from Novagen (AMS Biotechnology, Milton Keynes, UK). The vector 

pET28a, was a kind gift from Dr Klump, Roche Biosciences, Palo Alto, USA.
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3.2.2 Preparation of competent E  c o li cells

A glycerol stock of each of the BL21 (DE3) plysS and C41 (DE3) plysS E. coli strains 

were used to inoculate lOmL of LB medium with and without the corresponding 

antibiotics. The culture was grown overnight in a shaking incubator at 250 rpm, at 

37°C for 16 hours. A 1:200 fold dilution was made in fresh LB medium and that was 

grown too in a shaking incubator at 250 rpm at 37°C. This time the culture was grown 

until its optical attenuance at 600nm reached 0.4. Cells were centrifuged at 2000 g for 

10 minutes and the pellets were re-suspended in half the culture-volume of lOOmM 

CaCIV 15 % (v/v) glycerol. After that they were incubated on ice for 30 minutes. The 

cells were centrifuged as before, only this time they were re-suspended in 1/10th 

culture-volume of a mixture of CaClz/glycerol. The cell suspension was aliquoted and 

snap frozen in liquid nitrogen. The frozen aliquots were stored at -80°C.

Dimitrios Vlachakis, PhD 2006 138



Chapter 3. Molecular Biology -  Enzymatic Assay

3.2.3 SDS-polvacrvlamidg gel electrophoresis (SDS-PAGE)

The SDS-PAGE protocol is described by Laemmli [233]. The mix for the running gel is 

12.5% (w/v) acrylamide solution (acrylamide and N, N’- methylene bisacrylamide in a 

ratio of 37:1 (w/w)). Moreover, the gel contains 375mM Tris-HCl buffer, pH8.8, 0.1% 

(w/v) SDS, 0.225% (w/v) ammonium persulphate, 13.2 mM TEMED and water so that 

the final volume is adjusted to lOmL. On the other hand the stacking gel contains 5% 

(w/v) acrylamide, 0.14% (w/v) N-N’ methylene bisacrylamide, 0.1% (w/v) SDS in 

125mM Tris-HCl buffer, pH 6.8, 0.45% (w/v) ammonium persulphate, 13.2mM 

TEMED and was made to a final volume of 5 mL. The electrolyte running buffer 

contains 0.1% (w/v) SDS, 192mM glycine and 25mM Tris-HCl at pH 8.3.

The protein sample buffer consists of 80mM Tris-HCl buffer at pH 6.8. It also 

contains 0.2% SDS, 8% glycerol, 0.003% (w/v) Bromophenol Blue, 10% v/v 

(3-mercaptoethanol. p-mercaptoethanol must be added freshly just before use. The 

gels were run at 200 V. Coomassie Blue stain solution was used (0.03% w/v in 50% 

v/v methanol and 10% v/v acetic acid). The stain phase lasts for 1—2 hours and the de

stain phase follows in a wash solution containing methanol (25% v/v) and acetic acid 

(7% v/v). Pre-stained protein markers (New England BioLabs) were used in 

electrophoresis along with the samples in order to determine molecular weights of 

samples.
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3.2.4 Recombinant protein immunological detection (Western blotting)

After SDS-PAGE, the resolved proteins were transferred to a moistened nitrocellulose 

membrane (Amersham International pic, Bucks, UK) [235]. The protein transfer was 

done by electro-blotting the membrane at 145mA for 45 minutes using a semi-dry 

blotter (Sartorius Ltd, Epsom, Surrey, UK). After the completion of the transfer, the 

membrane was blocked in tris buffer solution (TBS), (20mM Tris-HCl, pH 8.0, 50mM 

NaCl), containing 1% (w/v) skimmed milk powder for over an hour at room 

temperature. Then the membrane was washed 3 times for 5 minutes each in TTBS 

(TBS with 0.05% (v/v) Tween 20). After that they were left shaking for 1 hour at 

room temperature in 5ml of TTBS containing 1% (w/v) skimmed milk powder and 

the primary antibody. The membrane was washed 3 times for 5 minutes each in 

TTBS and then agitated for 1 hour with TTBS containing 1% (w/v) skimmed milk 

powder and the second antibody. The second antibody is an alkaline phosphatase 

conjugate (Sigma Chemical Company, Poole, UK) that is applied at a dilution of 

1/5000. The membrane was washed 3 times for 5 minutes each in TTBS and was 

stained with Nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate (Bio- 

Rad Laboratories, Watford, Herts, UK). Continuous shaking will initiate the colour 

reaction (usually within 2-5 minutes). Washing the developed membrane with 

distilled water will stop the colour reaction.
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The immunological detection of proteins the anti hexa-histidine conjugated 

antibody, requires washing 3 times for 10 minutes each in TBS (lOmM Tris-HCl pH 

7.5, 150mM NaCI) of the membrane after transfer. The membrane is then blocked for 

1 hour in TBS-His containing 3% BSA. It is then washed 3 times for 10 minutes each 

in TTBS-His (20mM Tris-HCl pH 7.5, 500mM NaCI, 0.05% Tween 20). Then the anti 

hexa-histidine conjugated antibody (Qiagen Ltd., Crawley, West Sussex, UK) is added 

for 1 hour at a 1:1000 dilution (in TTBS-His). Excess antibody is removed by washing 

3 times for 10 minutes in TTBS-His after the one-hour incubation. The membrane is 

stained as before using nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl 

phosphate.
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3.2.5 The Expression of the Dengue full NS3 protein

The full-length Dengue NS3 domain (including the helicase and protease coding 

regions) was incorporated into the pET23b vector (Novagen, Madison, WI, USA). The 

difference between this recombinant protein and the native HCV NS3 protein 

consists of the presence of the six-histidine residues at the C-terminus of the 

expressed protein. The nucleotide sequence was verified prior to protein production. 

The primers used for PCR in order to amplify the NS3 domain of the Dengue vims 

were:

NS3F: AAGCTTGCCGGAGTATTGTGGGATG 

NS3R: AAGCTTCTACTTTCTTCCGGCTGCAAATTC.

The recombinant E. Coli strain BL21 (DE3) plysS (Novagen) was used for protein ex

pression. Cultures were induced at an attenuance (600 nm) of 0.4, upon addition of 

isopropyl-(3-D-thiogalactopyranoside (IPTG, Sigma, St-Louis, MO, USA) at a 

concentration of 0.25 mM in Luria Bertani medium containing 100 pg ampicillin / ml 

and 34 pg chloramphenicol / mL. Protein expression was allowed to proceed for 5 h at 

16°C. All subsequent steps were performed at 4°C. The total pellet from a 750 mL 

culture was resuspended in 10 mL of 20 mM sodium phosphate pH 7.5, 300 mM NaCI, 

100 pg/mL lysozyme and Triton X-100 was added to 0.1% final concentration. 

Following a 60-min incubation on ice, the suspension was sonicated four times for 10
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s with 30 s intervals (Branson sonifier 450, Branson Ultrasonics, Danbury, CT, USA). 

Then it was centrifuged at 17 000 x  g for 20 min.

The Dengue NS3 
protein at 79 kDalton

Figure 3.11. The expression of the full-length Dengue NS3 domain after elution. The 
Left gel is coomasie stained whereas the right one is a western blot. Lanes represent 
hours after induction with IPTG.

M In. Sol. lh 2h 3h 4h

Figure 3.12. Dengue NS3 domain (at 78 kDalton). First lane is the marker, second 
the insoluble fraction, third the soluble fraction and forth-seventh lanes are the 1st 
to 4th hours of incubation after the addition of IPTG (0.5 mM) at 16 °C
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3.2.6 The Expression of the Dengue helicase

0.5M IPTG 
M lh 2h 3h 4h

The Dengue helicase coding region was incorporated into the pET23c vector 

(Novagen, Madison, WI, USA). The difference between this recombinant protein and 

the native Dengue NS3 protein consists of the presence of the six-histidine residues at 

the C-terminus of the expressed protein. The insert was copied from the previous 

Dengue full NS3 domain using the primers: AAGCTTAGTGCTATAGCCCAGACTG 

and AAGCTTCTACTTTCTTCCGGCTGCAAATTC. The recombinant E. Coli strain 

BL21 (DE3) (plysS) (Novagen) was used for protein expression. Luria Bertani medium 

was prepared containing 100 pg/mL ampicillin and 34 pg/mL chloramphenicol. The 

inoculated cultures (from overnights 1:50 v/v) were induced with 0.5 mM IPTG at an 

attenuance (600 nm) of 0.4. The protein expression was allowed to proceed for 4 h at 

18°C. Then the culture was centrifuged at 8000 rpm for lOmin and the cell pellet was 

resuspended in phosphate buffer.

Figure 3.13. The SDS gel from the expression of the Dengue helicase. Here the hours 
are reported after inoculation of IPTG.
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3.2.7 The Expression and purification of HCV helicase

The full-length HCV helicase coding region was incorporated into the pET28a vector 

(Novagen, Madison, WI, USA). The difference between this recombinant protein and 

the native HCV NS3 protein consists of the presence of the six-histidine residues at 

the N-terminus of the expressed protein. The nucleotide sequence was verified prior 

to protein production. The HCV helicase gene was generously provided by Roche 

laboratories in Palo Alto, USA (through dr Klump).

750 mL cultures containing LB, chloramphenicol 34 pg/mL and kanamycin 25 pg/mL 

were prepared. The initial inoculation was taken from an overnight culture with a 

1/50 ratio. The recombinant E. Coli strain C41 (DE3 - plysS) (Novagen) was used for 

protein expression. Cultures were induced at an attenuance (600 nm) of 0.45 with 

0.5mM IPTG. The culture was allowed to grow for 3 hours upon induction at 18 °C. 

The total pellet from 4 x 750 mL cultures was resuspended in 30 mL of 20 mM sodium 

phosphate pH 7.5, 300 mM NaCI, 100 pg/mL lysozyme and Triton X-100 was added to 

0.1% final concentration. Following a 30-min incubation on ice, the suspension was 

sonicated four times for 20 s with 15 s intervals (Branson sonifier). Then it was 

centrifuged at 15 000 x g for 20 min. Clarified homogenates were adjusted to 10 mM 

imidazole (Sigma), filtered through a 0.45 pm membrane and loaded twice on a nickel 

affinity column. After washing the column with five column volumes of buffer S (20
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mM sodium phosphate pH 7.4, 500 mM NaCI) containing 10 mM imidazole, NS3 was 

eluted with buffer S containing 300 mM imidazole. To avoid precipitation, and 

immediately after elution, the buffer in helicase-containing fractions was exchanged 

for 25 mM Tris-HCl pH 7.5, 0.05% CHAPS (3-[(3-cholamidopropyl)-

dimethylammonio]-l-propane sulphonate), 20% glycerol, 5 mM DTT (dithiothreitol) 

(buffer P). Protein concentration was evaluated using the Bradford protein assay (Bio- 

Rad Laboratories, Hercules, CA, USA) with bovine serum albumin (BSA) as standard.

- 4 -  175 

83

4 -  62 
47

4 -  32 

"

Figure 3.14. The SDS (gel on the left) with the HCV helicase after a quick binding 
experiment in order to run a western blot (gel on the right) to confirm the existence 
of the His-tagged protein

Purified NS3 protein was aliquoted and stored at -  80°C. This protein preparation was 

estimated to be greater than 75% pure by sodium dodecyl sulphate-polyacrylamide 

gel electrophoresis and Coomassie blue staining. The purification procedure yields 

approximately 1.6 mg of HCV NS3 per 3 litres of E. Coli cultures.
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la elution with pH (3.5) 2^  elution (imidazole)
M 1st 2nd 3rd M 1st 2nd 3rd

graph of volume eluted v s  A280nm

volume eluted (mil

Figure 3.15. The SDS gels from the first and second elutions for the HCV helicase. 
Only the 2nd tube of the 2nd elution contains the HCV helicase. The contamination 
could not be removed and it was decided to proceed with the assay

Dimitrios Vlachakis, PhD 2006 147



Chapter 3. Molecular Biology -  Enzymatic Assay

3.3 The Enzymatic Assay

A novel assay for measurement of Hepatitis C virus (HCV) NS3 helicase activity was 

developed using modified Flashplate™ technology [236]. This assay involves the use of a 

DNA duplex substrate and recombinant HCV NS3 produced in E. Coli. The DNA 

duplex consisted of a pair of oligonucleotides, one biotinylated, the other DIG- 

labelled at their respective 5’ termini. This DNA duplex was immobilised, via the 

biotin molecule, on the surface of a neutravidin-coated 96 well plate (Pierce) 

Helicase activity results in the release of the DIG labelled oligonucleotide, which 

translates in signal (luminescence) reduction with respect to control wells. 

Biochemical characterisation of the HCV NS3 helicase activity was performed using 

this assay. It was demonstrated that the NS3-mediated unwinding is proportional to 

both the amount of DNA substrate in the well, and to the NS3 concentration in the 

reaction. Most of the NS3-mediated unwinding was achieved in the initial 60 min of 

incubation. As expected the reactions were ATP-dependent. We found this assay to 

be highly reproducible since only slight variation was observed when a total of 98 

helicase reactions (including controls) were performed on one plate. Therefore, this 

Flashplate™ helicase assay is fast, convenient and reproducible. These criteria make it 

suitable for high throughput screening of potential NS3 helicase inhibitors.
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Double stranded DNA. 
One strand is DIG 
labelled [D] & the other 
Biotin Labelled [B]

R eleased  strand 
caries the DIG label 

and can be 
detected  

and quantified

Biotin will bind to the 
plate, immobilising the 
DNA fragment

The fDl labelled strand is now released

m i

Helicase will unwind 
the dsDNA to ssDNA

Figure 3.16. The enzymatic Assay setup for testing the activities of novel compounds 
against the HCV helicase.
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3.3.1 The HCV Helicase Assay

Two DNA oligonucleotides were prepared. The S’-biotin-GCTGA- 

CCCTGCTCCCAATCGTAATCTATAGTGTCACCTA (39-mer template strand) and 

the 5’-DIG-CGATTGGGAGCAGGGTCAGC (20-mer release strand). The release 

strand was DIG-labelled at the 5-end.

The helicase substrate was prepared by annealing the template to the release strands. 

Both strands were mixed in a 1:1 molar ratio in 2 mM HEPES (N-[2-hydroxyethyl] 

piperazine-Ar-[2-ethanesulphonic acid]), 0.05 M NaCl, 0.1 mM EDTA, and 0.01% SDS 

(w/v) and subjected to a denaturation-renaturation process in which the 

oligonucleotides were heated at 100°C for 5 min., followed by a 30 min incubation at 

65°C and then a slow renaturation step at 22°C for 4 h. The hybridised NS3 helicase 

substrate was kept at -  20°C. A stock solution of neutravidin (Pierce, Rockford, IL, 

USA) was prepared at a final concentration of 1 mg/mL in phosphate buffered saline 

(PBS). The Flash-plate™ (NEN Life Science Products Inc., Boston, MA, USA) was 

coated overnight at 4°C with 100-pL/well of a 5-pg/mL neutravidin solution in a 0.5- 

M sodium carbonate buffer pH 9.3. Wells were subsequently blocked upon addition 

of 100 pL of a 0.1% (w/v) BSA solution followed by an incubation at 22°C for 2 h. 

Plates were then washed three times with 200 pL/well of PBS, air-dried at room 

temperature and stored at 4°C with desiccant. For standard assays, 75 pL of 1 M phos
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phate buffer pH 7.0, containing 1 M NaCl and 2.5 ng of the partially annealed DNA 

duplex was applied to each well, followed by an incubation at 22°C for 4 h. The wells 

were then washed twice with 200 pL PBS and once with 200 pL of 50 mM Tris HC1 

pH 7.5, 50 mM NaCl solution, pre-warmed at 37°C.

Helicase reactions were initiated upon addition of 90 pL of a reaction mix consisting 

of 11 nM of purified full-length HCV NS3 protein, 25 mM 4-morpholine- 

propanesulphonic acid (MOPS) pH 7.0, 5 mM ATP, 2 mM DTT, 3 mM MnCh, and 

100 pg/mL of BSA to the wells in which 2.5 ng of DNA substrate was previously 

applied. For negative controls, the reaction mix contained no ATP. Moreover, in 

experiments where the effect of metal cations was investigated, either MgCh or 

MnCh was used as the metal co-factor. Reactions were allowed to proceed for 60 min 

at 37°C. Wells were then washed twice with 200 pL of a 150-mM NaCl solution and 

dried at room temperature for 15 min.

The wells of the multi-well plate were washed for 5 min with detection washing

buffer (0.1 M maleic acid, 0.15 M NaCl, pH 7.5, 0.3% tween20). Then each well was

incubated in 100 pi of Blocking Solution (Blocking reagent: 10% BSA (w/v) in Maleic

acid buffer -same as washing buffer without tween20) for 30 min followed by a 30

min incubation in 20 pL Antibody solution (1:10000 solution of the antibody -75

mU/mL- in Blocking solution). The wells were washed twice with 100 pL of

detection washing buffer (0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5). Then 20 pL of

detection buffer were applied for equilibration. 1 pL of chemiluminescence substrate 
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(CSPD) working solution was applied to each well and the plates were incubated for 5 

minutes at 17 °C. The wells were drained and after a quick incubation at 37 °C, in 

order to dry the wells completely, the plate was exposed to a luminescent imager for 

10 minutes. The luminescence continues for almost 48 hours. The constant-intensity 

phase lasts for the first 24 hours.

Remaining DIG label in each well of the 96 well-plate was counted against controls 

(one with no protein and one with no ATP) in a luminescence multi-well plate reader 

(luci II).
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3.3.2 Results from the Assay & Compounds Tested

Each activity test was repeated three times on different plates (different batches of 

coating). The results were then all averaged and the average luminescence reading is 

used as an indication of the inhibitory action of each compound. The following table 

summarises the results only from the active compounds.

Table 3.1 The results from the enzymatic assay are summarised in the following table 
Here, active compounds are considered to be all compounds that have at least slightly 
blocked the unwinding efficiency of the HCV helicase.:

STRUCTURE NAME M.W.
A MeOOC. COOMe

“ O u u j U X
H

CF-AB
14

398.41

B ^ ^ \^ ^ C O O M e

M e O O C ^ ^ ^ ^ CF-AB
2 1

384.38

C

CF-AB
23

412.44

D

HOOC COOH

X u u j u c r
H CF-AB

25
370.36

E

^ \ ^ C O O H

HOOC
CF-AB

26
356.33

I F

r^ Y c o o oH

^ ^ h n ^ C ^ ^ y ' n h -y ^ .

CF-AB
27

384.38
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A
1 st 2 nd 3** Average % inhibition

10 mM 0.168 0.169 0.175 0.171 3.2
1 mM 0.164 0.165 0.171 0.167 2 . 6

No Inhibitor 0.152 0.153 0.154 0.153 —

B
1 st 2 nd 3* Average % inhibition

10 mM 0.218 0.208 0.207 0 . 2 1 1 8.4
1 mM 0.175 0.171 0.170 0.172 1 .1

No Inhibitor 0.165 0.166 0.166 0.166 —

C
1 st 2 nd 3rd Average % inhibition

10 mM 0.247 0.247 0.253 0.249 16.2
1 mM 0.217 0.223 0.218 0.219 1 0 . 6

No Inhibitor 0.165 0.159 0.164 0.163 —

D
1 st 2 nd 3rd Average % inhibition

10 mM 0.371 0.360 0.361 0.364 36.1
1 mM 0.240 0.241 0.235 0.239 1 2 . 6

lpM 0.182 0.187 0.185 0.185 2.5
No Inhibitor 0.173 0.168 0.175 0.172 —

E
1 st 2 nd 3rd Average % inhibition

10 mM 0.401 0.388 0.406 0.398 47.3
1 mM 0.264 0.255 0.276 0.265 22.3
1 |iM 0.165 0.167 0.169 0.167 3.9

No Inhibitor 0.148 0.144 0.147 0.146 —

F
1 st 2 nd 3rd Average % inhibition

10 mM 0.455 0.446 0.461 0.454 56.7
1 mM 0.305 0.309 0.311 0.308 29.3
1 |iM 0.169 0.171 0.172 0.171 3.6

No Inhibitor 0.154 0.151 0.152 0.152 —
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The % inhibition for each compound is produced by the equation:

(a -b )  * 1 0 0

% inhibition = ----------------------------
c

where, a = Average luminescence at given concentration

b = Average luminescence without compound 

c = Average luminescence without protein (lumi-max)

The above luminescence values are correlated to the calibration runs of the 

luminecensce plate reader before the assay. So, maximum luminescence averages 

0.532 (0.525-0.537) over lOwells. Wells without DNA substrate have an average of 

0.048 (0.047-0.05), wells without ATP substrate have an average of 0.052 (0.045- 

0.056) and wells without anything else but the neutravidin coating have an average 

luminescence of 0.039 (0.037-0.041). All compounds were subjected to a 60-min 

assay.

The following table summarises all compounds that were tested against the HCV 

helicase in comparison with the results obtained from the replicon assay for each 

compound.
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Table 3.2 Comparison of Active Compounds in the Enzymatic and Replicon Assays
Enzymatic Replicon 
Activity ActivityStructure Name

MeOOC

' Q j u j u a
COOMe

MeOOC

HN
NH

Me0 0 GN ^ X
COOMe

CF-AB 14

CF-AB 16

CF-AB 18

3.2%
(lOmM)

NO

NO

COOMe

HN

COOMe

COOMe

NH NO

CF-AB 19
COOMe

COOMe

HN

COOMe O

HN
NH

O
M eOOC

CF-AB 20

CF-AB 21

NO

8.4%
(lOmM)

a
 .COOMe MeOOC.

H

a
 .COO Me

CF-AB 22 NO

COOMe

O
M eOOC.UUUIV

r  ii o

MeOOC^^^

CF-AB 23

CF-AB 24

16.2%
(lOmM)

NO

YES

NO

NO

NO

NO

YES

NO

YES

NO
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HN' CF-AB 17
COOHHOOC.

HN CF-AB 25
COOH

NH
HN

CF-AB 26
HOOC

.COOH

NH
HN

CF-AB-27HOOC

NO

36.1%
(lOmM)

47%
(lOmM)

57%
(lOmM)

NO

YES

3.3.3 Discussion

Altogether 13 different compounds were tested in this assay. Even though the 

number of compounds does not allow positive conclusions to be drawn and is only a 

limited basis for SAR analysis, they are satisfactory for some basic observations.

R R

Figure 3.17. The structural scaffold of the family of compounds tested is shown here. 
Side Group (R) -  linker (L) -  Side Group (R). Given the symmetry Rleft=Rright. 
Multiple substitutions have not been tested.
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All of the above compounds belong to the same family of compounds described by the 

symmetry: side group -  linker -  side group. Looking at the linker it was found that all 

three aliphatic chain combinations that were used, carrying single bonds gave both 

active and non-active results. In this experiment the linkers that were used were the 

C2, C3, C4 and once a C2 double bond. The latter was not active and that may be an 

indication that rigid compounds are not favourable for the helicase. CF-AB24 with 

the double bond is not very different to CF-AB23 compound, which was found to be 

active (16.2% at 10 mM). That is something that was expected from the docking of 

the compounds from previous in silico experiments. The supposed site of interaction 

of this family of compounds on the helicase seems to be very sensitive in efficiently 

accommodating a more restrained compound such as CF-AB24 (due to its double 

bond in the linker region). Enough flexibility must be allowed to the linker region of 

all helicase potential inhibitor compounds. The linker region must be capable of full 

rotation, giving the compound optimal geometries that would optimize the 

interactions established with the enzyme.

It was also observed that the substitution on the phenyl ring of the side-groups should 

not contain a CONH2. That is demonstrated from the comparison between CF-AB 17, 

CF-AB25 and CF-AB 14, where the only structural difference is the CONH2 

substitution instead of the COOH or COOMe and this is responsible for the loss of 

activity in the assay (generally: CO2H > C0 2 Me > CONH2).

Dimitrios Vlachakis, PhD 2006 158



Chapter 3. Molecular Biology -  Enzymatic Assay

It is difficult to interpret a comparison of CF-AB21, CF-AB22 and CF-AB23. These 

compounds have the same side groups and different linkers. Although, both C2 and 

C4 linkers produced active compounds C3 did not. CF-AB23 is twice as active as CF- 

AB21, and it was expected that C3 would be even more active (based on the C3 

compounds CF-AB25 and CF-AB27 that are all active). The assay was repeated again, 

and the same results were obtained. Finally, it was found that the acids of the active 

esters (CF-AB21 and CF-AB23) increased activity. Docking results favoured acids 

anyway, but since esters were easier to be chemically synthesised they were tested 

first. The conversion of the CF-AB23 to CF-AB27 (from ester to acid) increased the 

activity of the compound by 3.5-fold.
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3.3.4 Conclusion

The setup of the assay makes it a very quick and efficient tool to evaluate the 

activities of novel compounds as potential inhibitors against the HCV helicase. It was 

found that the results from the above HCV assay were in full agreement with the 

results from the replicon assay, suggesting that the activities observed in the latter are 

the effect of the given compounds on the helicase proteins.

To sum up, it was confirmed that the HCV helicase enzymatic assay is reliable and is 

suitable for use as a quick testing method for the identification of novel inhibitors for 

the HCV helicase.

Figure 3.18. Up to 96 compounds can be simultaneously evaluated for their biological 
activities against the HCV helicase.
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4.1 General Conclusions & Future Work

The homology models of both the Helicase and the Polymerase family series have 

been established, tested and evaluated for the Dengue, West Nile, Japanese 

Encephalitis and Yellow Fever viruses. After the development of the protein models a 

series of compounds, derived from a single lead compound with few modifications 

(based on de novo structure-based drug design methods), were screened and tested by 

docking, molecular mechanics & molecular dynamics simulations. From this study, 

conclusions were drawn as to which moiety was more favourable that are, the type of 

substitutions that are preferred and the binding mode of these compounds. This data 

was essential for selecting compounds for synthesis. It was found in silico that long, 

flexible linkers and side-group substitutions with benzimidazole or carboxylic groups 

increased the binding affinity of the compound candidates.

The verification of the in silico experiments came from the molecular biology and 

biochemistry experiments that followed. The lead and some of the most promising 

compounds were prepared. These new compounds were then subjected to an 

enzymatic inhibition test in the biological assay for the HCV helicase that was 

developed. The genes of the Dengue helicase, NS3 domain and HCV helicase were 

cloned and expressed. The HCV helicase was purified and an enzymatic assay was 

established that would estimate the efficacy of the HCV helicase to unwind double 

stranded DNA. The compounds were tested against the enzymatic assay of the HCV
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helicase and the results compared to data from the replicon assay. Data from both 

assays was fed back into the model in an attempt to optimise the accuracy of the 

prediction of activity/inhibition of candidate compounds from the drug design 

algorithms.

Future work on both projects will involve the use of new algorithms for compound 

docking. Virtual screening of large databases is now feasible. The process of virtual 

screening has already started using the National Cancer Institute (NCI) database and 

even though there are no results available yet, it will be very interesting to see the 

results of this experiment as this will give new ideas for ligand design.

Synthesis of new leads and promising candidate compounds has been planned to start 

soon. Results from the biological assays of these compounds will provide vital 

information that can be used in molecular modelling and lead optimisation.

The proteins of the Dengue helicase and the full NS3 domains have already been 

expressed and purified. An enzymatic assay similar to the HCV helicase one should 

be established using the Dengue proteins. The data from the Dengue assays can then 

be correlated to the ones from the HCV and replicon assays, in order to provide more 

information for the molecular modelling experiments.

The ultimate future aim would be to establish a parallel in silico /  in vitro testing 

model that will be capable of accurately predicting and evaluating the activities of 

novel compounds against the above viral helicases. Moreover, another very
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interesting future modification would be to replace dsDNA with dsRNA from the 

HCV assay and repeat the test of the same compounds.
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The Hepatitis C Virus

The genom e of HCV w as first cloned in 1989. The genom e of the  

HCV is 9 .4  kb long, contains a single long open reading fram e which 

is responsible for encoding a polyprotein of 3,010 am ino acids [15]. 

There is a non-coding region (NCR) of 324-341 nucleotides a t th e  5* 

end & on the  3' end there  is a NCR of variable length including a 

poly (U) tract. The 5' NCR contains an IRES th a t is very similar in 

function (not structure) to  th a t of picornaviruses. The nucleotidic 

sequence of the  Hepatitis C virus is highly variable; the  m ost d istan t 

strains have only 60%  nucleotide sequence homology. Strains from 

around th e  world have now been classified into 6  main categories, 

each with several subtypes, based on sequencing properties. 

Categories 1, 2 and3 account for alm ost all infections in Europe. 

Category 4 is prevalent in Egypt & Zaire, category 5 is prevalent in 

South Africa finally category 6  is found in Hong Kong. It is not clear 

yet if immunity to one category autom atically defends infection with 

ano ther strain from ano ther category. There is though evidence th a t 

various genom e types are  pretty  much different in the ir biological 

properties.

The non-structural region of th e  NS3 dom ain of the  HCV 

ranges betw een 1027 and 1657 of th e  polyprotein [38]- The genom e 

of the  HCV is a positive-stranded RNA virus [133. The 3010 amino
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acid long polyprotein of the  virus is processed by cellular and virus- 

encoded p ro teases.

5'

V/

4A 4B

HNAbi ill ;> 
c.3|iS4C to ->tr ue- i 

tv "  nii-t. i s'- - tm'tdi'w
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Figure A p p l. Hepatitis C genom e organization, polyprotein 
processing and protein properties. On the  top th e re  is a schem atic 
representation of th e  HCV genom e, below are  the  polyprotein 
cleavage products and defined functions as described underneath
(re feren ce : ©  1 9 9 9  B lackw ell S c ie n c e  ltd. Journal of Viral Hepatitis, 6 , 1 6 5 - 1 8 1 ) .
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The W est Nile Virus

W est Nile fever is caused by a virus th a t is part of th e  Flaviviridae 

family. There are  nearly 70 different viruses in th is group, formerly 

term ed group B arboviruses, of which nearly half a re  known to 

cause illness in hum ans. The World Health Organization defines 

arboviruses (arthropod-borne viruses) as  a group a s  those  "which 

are  m aintained in nature principally, or to  an im portant ex tent, 

through biological transm ission betw een susceptible verteb rate  

hosts by hem atophagous arthropods; they  multiply and produce 

viremia in th e  vertebrates, multiply in th e  tissues of arthropods, and 

are passed on to new verteb ra tes by the  bites of arthropods after a 

period of extrinsic incubation" (Sanford, 1991). Common viruses in 

th is classification, in addition to W est Nile, include yellow fever, 

dengue, Japanese  encephalitis, St. Louis encephalitis, and tick- 

borne encephalitis viruses. These viruses a re  generally spread  by 

m osquitoes or ticks; hum an-to-hum an spread  does not occur. 

Infection with th ese  viruses does not produce a unique clinical 

picture. Therefore, travel to an endem ic area  and laboratory te s ts  

are  im portant for identifying a specific infection.

W est Nile virus is a m osquito-borne virus found m ost commonly in 

Africa, France, India, Indonesia, th e  Middle East, and Soviet 

countries. In 1999, a West-Nile-like virus w as identified in patients 

living in th e  N ortheast United S ta tes. The bird is the  primary host
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and the  principal vector is Culex univittatus. However, o ther 

m osquitoes are  known to  carry the  virus, including Culex pipiens, 

Culex antennatus, and Culex tritaeniorhynchus (Asia). O ther animal 

reservoirs a re  not part of the  virus's normal life cycle.

W est Nile fever is common in the  Middle East with m ost individuals 

exposed as  children. Children experience a nondescript viral illness 

with fever th a t is rarely diagnosed. Neighboring Israel also 

experiences infection although there , it is m ore likely the  young 

adult than the  child who becom es infected. Spread occurs primarily 

in the  sum m er m onths when th e  m osquito population increases.
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The PenqueVirus

Dengue fever is caused by a virus th a t is part of the  Flaviviridae 

family. There a re  nearly 70 different viruses in th is group, formerly 

term ed  group B arboviruses, of which nearly half a re  known to 

cause illness in hum ans. Other common viruses in th is classification 

include yellow fever, W est Nile, Japanese encephalitis, St. Louis 

encephalitis, and tick-borne encephalitis viruses. The m ost comm on 

infection in hum ans is caused by the  dengue virus, of which there  

are four types. Flaviviruses a re  generally spread  by m osquitoes or 

ticks; hum an-to-hum an spread  does not occur. Infection with these  

viruses does not produce a unique clinical picture. Therefore, travel 

to  an endem ic area and laboratory te s ts  a re  im portant for 

identifying specific infection.

Dengue and dengue hem orrhagic fever (DHF) are  caused by 

infection with one of four antigenically distinct, virus sero types 

(DEN-1, DEN-2, DEN-3, and DEN4). Once infected with one of th ese  

sero types, the  individual develops specific immunity. However, 

cross-im m unity does not develop. It is theoretically possible, 

therefore, for an individual to be infected four tim es, each tim e with 

a different serotype.

Dengue is mostly seen in tropical urban areas. As with other members of the 

Flaviviridae family, the virus is transmitted through mosquito bites, specifically 

Aedes aegypti. This mosquito, a domestic, day-biting mosquito, prefers to 

feed on humans (Gubler and Clark, 1995). In some parts of the world (mostly
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Asia and Oceania) other vectors have been implicated: A. albopictus, A. 

scutellaris, and A. polynesiensis.

Dengue is th e  m ost im portant m osquito-borne viral disease, 

affecting hum ans with a distribution com parable to  th a t of malaria. 

Approximately 2.5 billion people are  living in a reas  a t risk for 

epidem ic transm ission (Gubler and Clark, 1995). Tens of millions of 

cases  of dengue fever occur annually along with up to  hundreds of 

thousands of cases of dengue hem orrhagic fever.

Dengue hem orrhagic fever is the  m ost serious m anifestation of the  

disease. This process, an immunologic reaction, occurs for the  m ost 

part in individuals already sensitized to  the  d isease, e ither actively 

through infection or passively in infants through placental transfer 

of immunoglobulin from m other to  child. Initially, dengue 

hem orrhagic fever appears the  sam e as dengue but after several 

days the  patient deterio rates with prostration, restlessness, signs of 

circulatory collapse (diaphoresis, cold extrem ities, dyspnea, 

circumoral and peripheral cyanosis, and hem orrhagic 

m anifestations). Available laboratory te s ts  cannot identify who will 

ultimately develop th is m anifestation.
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The Yellow Fever Virus

Yellow fever Is a viral hem orrhagic fever which strikes an estim ated 

200 000 persons worldwide each year and causes an estim ated  30 

000 d ea th s . The case  fatality rate  may reach 20%  to  80% ; however, 

th ese  figures a re  based on the  m ost severe cases th a t a re  

hospitalized and the  overall case  fatality rate  is lower.

The yellow fever virus is small (35 to 45 nm ) and consists of a core 

containing single-stranded RNA surrounded by a lipid envelope. The 

genom e has been completely sequenced and found to  contain 10 862 

nucleotides (Rice et al. 1985). The envelope contains a single 

glycoprotein with type and group-specific antigenic determ inants. 

Yellow fever virus can be inactivated with lipid solvents (ether, 

chloroform), heat (56°C for 30 m inutes), and ultraviolet light 

(Monath 1990).

Antigenic differences have been shown betw een stra ins of yellow 

fever virus. Antibody-absorption techniques can distinguish betw een 

strains from South America and Africa (Clarke 1960). S trains can 

also be differentiated on the  basis of virulence characteristics for 

mice (Fitzgeorge, Bradish 1980). RNA oligonucleotide m apping has 

shown th ree  genetically distinct geographical varian ts in Africa:
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Senegal-G am bia; Ivory Coast-Burkina Faso-Nigeria; Central and East 

Africa (Deubel e t al. 1986).

The d isease yellow fever w as first distinguished from m alaria, 

dengue, and o ther tropical d iseases during th e  1647 to  1649 

epidem ics in Barbados, Cuba, Guadeloupe and Mexico (Bres 1986). 

Since th en , it has raged as periodic epidem ics in the  Americas and 

Africa. In 1900, a commission headed by W alter Reed confirmed th a t 

the  d isease w as transm itted  from hum an to hum an by the  m osquito 

Aedes aegypti, a finding earlier theorized by th e  Cuban physician 

Carlos Finlay in 1881. This information led to  efforts a t m osquito 

control in the  Americas, with excellent results in eliminating the  

disease from many areas.

There are  two epidemiologic patterns of yellow fever virus 

transm ission: the  urban cycle and the  forest cycle (also known as the  

jungle or sylvatic cycle). The two epidemiologic pa ttern s lead to  clini

cally identical d isease, since they  are produced by the  sam e virus. In 

som e instances, sp read  from forest to urban cycles has been 

docum ented. Today, th e  yellow fever virus circulates in an endem ic, 

fo rest cycle in the  Am ericas, resulting in up to  500 reports of 

infections of unimmunized forest workers per year. In Africa, yellow 

fever virus circulates in both urban and forest cycles, and th e  d isease
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periodically explodes out of its endem ic pa ttern  to  infect large 

num ber of unimmunized persons during m ajor epidem ics.

In the  urban pattern , the  virus is tran sm itted  by m osquito from 

infected hum ans to  susceptible hum ans. For th e  urban cycle, the  

m osquito vector is usually A. aegypti, a dom estic  m osquito th a t 

breeds near houses, with the  fem ale preferring to  lay eggs in w ater 

collected in w ater jars, old tires, gu tte rs , or d iscarded tin or plastic 

containers. In 1978, it w as found th a t A. aegypti fem ales could 

transm it yellow fever virus transovarially to  a small proportion of 

their offspring and these  eggs can thus m aintain th e  virus during the  

dry season (Aitken e t at. 1979). The virus m ultiplies in th e  m osquito 

vector. About 12 to  21 days after biting an infected person or 

m onkey the  m osquito becom es infective and  it rem ains infective for 

the  rest of its life.

The d isease  in hum ans is characterized by sudden  o n se t of fever, 

headache, backache, general muscle pain, n au sea , and  vomiting. As 

the  d isease continues, album inuria, oliguria (even anuria), and 

jaundice occur. Hemorrhagic sym ptom s m ay include epistaxis, 

hem atem esis, and m elena.
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Table appl. Ramachandran Plot stats for HepC Helicase (1A1V) & Dengue Model.

Ramachandran Plot statistics for HepC Helicase (1A1 Va)

No. o f  r e s id u e s % -tage
Most favoured regions [A,B,L] 316 89.5%*
Additional allowed regions [a,b,l,p] 37 10.5%
Generously allowed regions [~a, ~b, ~1, ~p] 0 .0%
Disallowed regions [XX] 0 .0%

Non-glycine and non-proline residues 353 100.0%
End-residues (excl. Gly and Pro) 7
Glycine residues 38
Proline residues 31
Total number of residues 429

Ramachand ran Plot statistics for Dengue Virus (Model)

No. o f  r e s id u e s  % -tage
Most favoured regions [A, B, L] 296 82 .2%*
Additional allowed regions [a, b, 1, p] 50 13. 9%
Generously allowed regions [~a, ~b, -1, ~p] 9 2.5%
Disallowed regions [XX] 5 1.4%*

Non-glycine and non-proline residues 360 100.0%
End-residues (excl. Gly and Pro) 2
Glycine residues 40
Proline residues 27
Total number of residues 429

Table app2. Ramachandran Plot stats for the Dengue Model after Molecular Dynamics

Ramachandran Plot statistics for Dengue Virus (Model) after miminisation

No. o f  r e s id u e s % -tage
Most favoured regions [A,B,L] 333 92.5%
Additional allowed regions [a,b,l,p] 19 5.3%
Generously allowed regions [~a, ~b,-1, ~p] 8 2.2%
Disallowed regions [XX] 0 0%

Non-glycine and non-proline residues 360 100.0%
End-residues (excl. Gly and Pro) 2
Glycine residues 40
Proline residues 27

Total number of residues 429

Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms and i?-factor no greater than 20.0 a 
good quality model would be expected to have over 90% in the most favoured regions [A,B,L].
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Table app3. Ramachandran Plot statistics for HepC Helicase (80HM) & West Nile Virus (Model)

Ramachandran Plot statistics for the HepC Helicase (80HM)

No. of residues %-tage
Most favoured regions [A, B,L] 323 88.5%*
Additional allowed regions [a,b,l,p] 39 10.7%
Generously allowed regions [~a,~b,~1,~p] 2 .5%
Disallowed regions [XX] 1 .3%*

Non-glycine and non-proline residues 365 100.0%
End-residues (excl. Gly and Pro) 1
Glycine residues 39
Proline residues 30

Total number of residues 435

Ramachandran Plot statistics for West Nile Virus (Model)

No. of residues %-tage
Most favoured regions [A,B,L] 309 80.9%*
Additional allowed regions [a,b,l,p] 52 13. 6%
Generously allowed regions [~a, ~b, ~1, ~p] 14 3.7%
Disallowed regions [XX] 7 1.8%*

Non-glycine and non-proline residues 382 100.0%
End-residues (excl. Gly and Pro) 1
Glycine residues 27
Proline residues 25

Total number of residues 435

Table app4. Ramachandran Plot statistics for the improved West Nile Virus Models

Ramachandran Plot statistics for West Nile Virus (Model)

No. of residues %-tage
Most favoured regions [A,B,L] 329 86.1%
Additional allowed regions [a,b,l,p] 43 11.3%
Generously allowed regions [~a,~b,~1,~p] 10 2.6%
Disallowed regions [XX] 0 0%

Non-glycine and non-proline residues 382 100.0%
End-residues (excl. Gly and Pro) 1
Glycine residues 27
Proline residues 25

Total number of residues 435
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Table App5a. The Yellow Fever Helicase Model's Ramachandran plot 
analysis summary.

+---------- « <  P R O  C H E C K  S U M M A R Y  » > ---------- +
I YF 2.2 435 residues |
I Ramachandran plot: 81.5% core 13.4% allow 3.2% gener 1.9% disall i
I Gly & Pro Ramach: 5 labelled residues (out of 60) I
I Chil-chi2 plots: 1 labelled residues (out of 242) I

+ -

Table App5b. The Yellow Fever Helicase Model's Ramachandran plot 
analysis summary. AFTER MOLECULAR DYNAMICS

+------ « <  P R O  C H E C K  S U M M A R Y  » > ---------------- +
I YF 2.2 435 residues |
I Ramachandran plot: 96.7% core 3.2% allow 0.1% gener 0% disall I

I Gly & Pro Ramach: 5 labelled residues (out of 60) I
I Chil-chi2 plots: 1 labelled residues (out of 242) I+----------------------------------------------------------------------------------------------------------+

Table App6a. The Japanese Encephalitis Helicase Model Ramachandran 
plot analysis summary.

+----------< «  P R O  C H E C K  S U M M A R Y  > » ----------- +
I je 2.2 435 residues I
I Ramachandran plot: 79.9% core 15.1% allow 3.3% gener 1.6% disall I
I Gly & Pro Ramach: 11 labelled residues (out of 69) I
I Chil-chi2 plots: 2 labelled residues (out of 233) I+----------------------------------------------------------------------------------------------------------+

Table App6b. The Japanese Encephalitis Helicase Model Ramachandran 
plot analysis summary. AFTER MOLECULAR DYNAMICS

+---------- « <  P R O  C H E C K  S U M M A R Y  » > ----------- +
I je 2.2 435 residues |
I Ramachandran plot: 94.2% core 5.1% allow 0.7% gener 0% disall I

I Gly & Pro Ramach: 11 labelled residues (out of 69) I
I Chil-chi2 plots: 2 labelled residues (out of 233) I+----------------------------------------------------------------------------------------------------------+
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Figure App2. Structural motifs, accessibility and PROCHECK summary. 
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Table App7a. The
analysis summary.

Dengue Polymerase Model's Ramachandran plot

+---------- < «  P R
I den 2.2 
I Ramachandran plot:
I Gly & Pro Ramach:
I Chil-chi2 plots:
+ -----------------------------------------

0 C H K U M M A

79.7% core 16.9% allow 2.0% gener 
4 labelled residues (out of 56)
0 labelled residues (out of 360)

» >  +
566 residues I 
1.4% disall !

Table App7b. The Dengue Polymerase Model's Ramachandran plot 
analysis summary. AFTER MOLECULAR DYNAMICS

---------- « <  p r o c h e c k  s u m m a r y  » > -----------+
den 2.2 566 residues |
I Ramachandran plot: 80.9% core 16.7% allow 2.4% gener 0% disall I
Gly & Pro Ramach: 4 labelled residues (out of 56) |
Chil-chi2 plots: 0 labelled residues (out of 360) |

+ -

Table App8a. The West Nile 
analysis summary.

Polymerase Model's Ramachandran plot

r o H E K U M M A
I c:\dimitris\pdbs\wnv 2.0 566 residues
I Ramachandran plot: 68.2% core 24.6% allow 6.1% gener 1.0% disall
I Gly & Pro Ramach: 4 labelled residues (out of 76)
I Chil-chi2 plots: 8 labelled residues (out of 34 6)

Table App8b. The West Nile Polymerase Model's 
analysis summary. AFTER MOLECULAR DYNAMICS

Ramachandran plot

+ -------------------- « <  P R O
I c:\dimitris\pdbs\wnv 
I Ramachandran plot:

I Gly & Pro Ramach:
I Chil-chi2 plots:
+-------------------------------

E K U M M AC H 
2 . 0

89.8% core 16.7% allow 2.4% gener 
4 labelled residues (out of 76)
8 labelled residues (out of 34 6)

» >  +
566 residues | 

0% disall i
I
I

Table App9a. The Japanese Encephalitis 
Ramachandran plot analysis summary

Polymerase Model's

+---------- « <  P R
I je 2.2
1 Ramachandran plot:
I Gly & Pro Ramach:
I Chil-chi2 plots:+---------------------------

H E K U M M A

68.7% core 24.1% allow 6.4% gener 
6 labelled residues (out of 78)

11 labelled residues (out of 341)

» >  +
566 residues | 

.8% disall !
I

Table App9b. The Japanese Encephalitis Polymerase Model's
Ramachandran plot analysis summary AFTER MOLECULAR DYNAMICS

+---------- « <  P R O  C H E C K  S U M M A R Y  » > ---------- +
I je 2.2 566 residues |
I Ramachandran plot: 92.1% core 4.9% allow 3.0% gener 0% disall !

I Gly & Pro Ramach: 6 labelled residues (out of 78) I
I Chil-chi2 plots: 11 labelled residues (out of 341) |+ +
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Table ApplOa. The Yellow Fever Polymerase Model's Ramachandran 
plot analysis summary.

+---------- « <  P R O  C H E C K  S U M M A R Y  » > -----------+
I c:\dimitris\pdbs\yf 2.0 566 residues I
j Ramachandran plot: 67.5% core 25.3% allow 6.6% gener .6% disall I
I Gly & Pro Ramach: 5 labelled residues (out of 63) I
I Chil-chi2 plots: 4 labelled residues (out of 348) I
+ +

Table ApplOb. The Yellow Fever Polymerase Model's Ramachandran 
plot analysis summary. AFTER MOLECULAR DYNAMICS

+---------- « <  P R O  C H E C K  S U M M A R Y  » > -----------+
I c:\dimitris\pdbs\yf 2.0 566 residues I
I Ramachandran plot: 89.4% core 8.5% allow 3.1% gener 0% disall !

I Gly & Pro Ramach: 5 labelled residues (out of 63) I
I Chil-chi2 plots: 4 labelled residues (out of 348) I
+  +
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Analytic Protein-DNA/RNA Contacts
The list of contacting atom pairs:

•'11 P R O  ( 2-iG j A G •135 GURA ) D C 5 D= 2.82 (0-5) 2 2 3  ALA ( 4 13 A CB A* •133 G URA ( 5 0 G P 2  D= 3 .0 3  ^s-S )

43VAL ( 2 3 2 ) A CG2 <> 435 0URA 7 B P 0= 3.97 (S-B) 238 VAL (4 3 2 A CG1 <> 431 OURA 3 B C4' D= 3.73 (S-S)

43 VAL ( 2 3 2 )  A CG2 o 435 0URA 7 B C3‘ D= 3 5 7  (S-8) 238 VAL (4 3 2 A CG2 c> 431 OURA 3 B C5' D= 3.55 (S-S)
43VAL (2 3 2 )  A CG2 <> 435 0URA 7 B 0 5 ’ D= 3.18 (S-S) 238 VAL (4 3 2 A CG2 <> 431 OURA 3 B C4' D= 3.54 (S-S)

43VAL (2 3 2 )  A CG2 <> 436 OURA 8 B P D= 3.70 (S-B) 240 GLN (4 3 4 A CG <> 432 OURA 4 B C4 D= 3.82 (S-S)

4 3  VAL ( 2 3 2 )  A C 6 2 <> 4 3 6  OURA 8 B O P1 D“  3  1 0  (S-B) 2 4 0  GLN  ( 4 3 4 A C G <> 4 3 2  O U RA 4 B CH £ >  2  72  (S-S)

66 GLY ( 2 5 5 ) A N <> 436 OURA 8 B P D= 3.60 (B-B) 240 GLN (4 3 4 A CD <> 432 OURA 4 B 0 4 D= 3.02 (S-S)

6 6 GLY ( 2 5 5 ) A N <> 436 OURA 8 B OP2 D= 3.06 (B-S) 240 GLN (4 3 4 A NE2 <> 432 OURA 4 B 0 4 D= 2.89 (S-S)

6 6  GLY ( 2 0 5 ) A CA <> 436 OURA 6 B P D - 3.93 (B-B) 254 THR (4 4 6 A CG2 <> 432 OURA 4 B C 5 D - 3.75 (S-S)

80THR ( 2 6 9 )  A CB <> 436 OURA 8 B OP2 D= 3.28 (S-S) 254 THR (4 4 8 A CG2 <> 432 OURA 4 B C4 D= 3.83 (S-S)

80 THR ( 269.) A OG1 <> 436 OURA 8 B OP2 D= 2.42 (S-S) 254 THR (4 4 8 A CG2 <> 432 OURA 4 B 0 4 D= 3.35 (S-S)

82 GLY (271 ) A CA <> 436 OURA 8 B C5' D= 3.39 (B-S) 256 THR (4 5 0 A OG1 <> 430 OURA 2 B 03' D= 2.95 (S-B)

82 GLY (271 ) A C <> 436 OURA 8 B C5' D= 3.00 (B-S) 306 TRP (501 A CG <> 436 OURA 8 B C2 D= 3.81 (S-S)

82 G! Y ( 271 ) A o <>■ 436 OURA 6 R C4‘ D= 3 59 (R-S) 306 TRP (5 0 1 . A c n ? . 436 OURA R R Ml r*= 3.67 (S-R>
83LYS (2 7 2 )  A N « 436 OURA 8 B C5‘ D= 2.94 (B-S) 306 TRP (501 A CD2 <> 436 OURA 8 B C2 D= 3.53 (S-S)

83LYS ( 2 7 2 )  A CA <> 436 OURA 8 B C5' D= 3.52 (B-S) 306 TRP (501 A NE1 <> 436 OURA 8 B N3 D= 3.45 (S-S)

86 ALA ( 2 7 5 )  A CB <> 436 OURA 8 B 03' D= 3.34 (S-B) 306 TRP (501 A CE2 <> 436 OURA 8 B C4 D= 3.55 (S-S)

179 HIS (3 6 9 )  A CD2 <> 431 OURA 3 B C5' D= 3.64 (S-S) 306 TRP (501 A CE2 <> 436 OURA 8 B N3 D= 3.33 (S-S)

179 HIS ( 3 6 9 )  A NE2 o 431 OURA 3 B P D= 3.61 (S-B) 306 TRP (501 A CE2 <> 436 OURA 8 B C2 D= 3.55 <S-S)

179 HIS (3 6 9 )  A NE2 <> 431 OURA 3 B OP2 D -  2.76 (S-S) 306 TRP (501 A CE3 <> 436 OURA 8 B C1' D= 3.73 (S-S)

179 HIS ( 3 6 9 )  A NE2 <> 431 OURA 3 B C5' D= 3.73 (S-S) 306 TRP (501 A CE3 <> 436 OURA 8 B N1 D= 3.59 (S-S)

179 HIS ( 3 6 9 )  A O <> 432 OURA 4 B C6' D= 2.96 (B-S) 306 TRP (501 A CE3 <> 436 OURA 8 B C6 D= 3.85 (S-S)

179 HIS ( 3 6 9 )  A O <> 432 OURA 4 B C4' D= 3.37 (B S ) 306 TRP (501 A CZ2 <? 436 OURA 8 B C6 D= 3.75 (S-S)
180 SER ( 3 7 0 )  A CA <> 432 OURA 4 B OP2 D= 3.17 (B S ) 306 TRP ( 501 A CZ2 <> 436 OURA 8 B C5 D= 3.35 (S-S)

180 SER ( 3 7 0 ) A CA <> 432 OURA 4 B C5' D= 3.67 (B S ) 306 TRP (501 A CZ2 <> 436 OURA 8 B C4 D= 3.21 (S-S)
180 SER ( 3 7 0 ) A CB <> 432 OURA 4 B OP2 D= 3.12 (S-S) 306 TRP (501 A CZ2 <> 436 OURA 8 B N3 D= 3.54 (S-S)

181 LYS (371 ) A N <> 432 OURA 4 B OP2 D= 2.93 (B-S) 306 TRP (501 A CZ3 <> 436 OURA 8 B N1 0= 3.75 (S-S)
203 ARG ( 3 9 3 )  A N <> 433 OURA 5 B P D= 3.90 (BB) 306 TRP (501 A CZ3 <> 436 OURA 8 B C6 D= 3.48 (S-S)

203 ARG ( 3 9 3 )  A N o 433 OURA 5 B OP2 D= 2.80 (B S ) 306 TRP (501 A CH2 <> 436 OURA 8 B C6 D= 3.44 (S-S)

203 ARG ( 3 0 3 )  A CB <> 433 OURA 5 B P D= 3.66 (B B ) 306 TRP ( 501 A CH2 <> 436 OURA 6 B 6 5 D= 3.29 (S-S)

203 ARG ( 3 9 3 )  A CB <> 433 OURA 5 B OP1 D= 3.36 (S-B) 306 TRP (501 A CH2 <> 436 OURA 8 B C4 D= 3.72 (S-S)

203 ARG ( 3 9 3 )  A CB <> 433 OURA 5 B OP2 D= 3.41 (S-S) 307 TYR (5 0 2 A OH <> 436 OURA 8 B 0 2 D= 2.93 (S-S)
203 ARG ( 3 9 3 )  A NE <> 433 OURA 5 B C2' D= 3.08 (S-S) 361 ASN (5 5 6 A OD1 <> 433 OURA 5 B 0 4 D= 2.83 (S-S)

203 ARG (3 9 3  ) A NE <> 434 OURA 6 B OP1 D= 3.06 (S-B)
203 ARG (3 9 3 )  A NE o 434 OURA 6 B C5 D= 3.68 (S-S)

203 ARG (3 9 3  ) A CZ <> 434 OURA 6 B OP1 D= 3.30 (S-B)

203 ARG ( 3 9 3 )  A CZ <> 434 OURA 6 B C6 0=  3.47 (S-S)
203 ARG (3 9 3 )  A CZ <> 434 OURA 6 B C5 D= 3.48 (S-S)
203 ARG (3 9 3 )  A NH2 <> 434 OURA 6 B P D= 3.71 (S-B)

203 ARG (3 9 3 )  A NH2 <> 434 OURA 6 B OP1 D= 2.92 (S-B) :
203 ARG (3 9 3 )  A NH2 <> 434 OURA 6 B 05' D= 3.28 ( S S )
203 ARG (3 9 3 )  A NH2 <> 434 OURA 6 B C2’ D= 3.50 (S-S)
203 ARG ( 3 9 3 )  A NH2 <> 434 OURA 6 B C6 D= 3.00 (S-S)
203 ARG ( 3 9 3 )  A NH2 <> 434 OURA 6 B C5 D= 3.52 (S-S)
221 THR ( 4 1 1 )  A CB <> 432 OURA 4 B 03 ' D= 3.43 (S-B)
221 THR (411 ) A OG1 <> 433 OURA 5 B P D= 3.46 (S-B)

221 THR (411 ) A OG1 <> 433 OURA 5 B OP2 D= 2.54 (S-S)

223 ALA ( 4 1 3 )  A N <>. 433 OURA 5 B C5‘ D= 3.48 (B S )
223 ALA ( 4 1 3 )  A CA <> 433 OURA 5 B C3' D= 3.56 (B B )

223 ALA ( 4 1 3 )  A CA <> 433 OURA 5 B C5' D= 3.76 (B S )

223 ALA ( 4 1 3 )  A CA <> 433 OURA 5 B C4' D= 3.77 (B S )

223 ALA (4 1 3 )  A CB <> 433 OURA 5 B C3' D= 3.82 (S-B)
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Figure App6. Interactions between single nucleic acids of the ssRNA and the 

helicase’ s channel -  maps 4-10
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BACTERIAL TRANSFORMATION:

1. 1 pL of plasmid DNA added to cells

2. Leave on ice for 45 m inutes

3. Heat in w aterbath  a t 42 °C for 2 m inutes

4. Add 0 .5  pL of LB medium with no antibiotic

5. Leave on ice for 1  hour a t 37 °C

6 . Microcentrifuge a t 8000 rpm for lm inu te

7. Take off and discard 0 .5  mL of su p ern a tan t

8 . Re-suspend gently in rem aining volum e

9. Plate on LB agar + AMP Petri dishes

E.COLI CULTURE

1. Pick up a healthy looking (round, consistent) colony with a 

loop

2. Inoculate in a universal tu b e  with 10 mL of LB + AMP

3. Incubate in shaking centrifuge a t  37 °C for 13 to  14 hours

MINI-PREP PREPARATION

1. Add 1.5 mL of overnight culture of E.Coli in an  eppendorf and 

spin a t  13000 for 1  m inute

2. Repeat 3 tim es for each tu b e  passing a to tal of 4 .5  mL of 

cell suspension from each tu b e

3. Each tim e discard su p ern a tan t
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MINI -  PREP

using a m icrocentrifuge

This protocol is designed for purification of up to  20 pg of high-copy

plasmid DNA fro m l-5  mL overnight cultures of E. coli in LB (Luria-

Bertani) m edium .

Note: All protocol steps should be carried out a t room tem pera tu re .

Procedure

1. Resuspend pelleted bacterial cells in 250 jjL Buffer PI and 

tran sfe r to  a m icrocentrifuge tube.

2. Ensure th a t RNase A has been added to  Buffer P I. No cell 

clum ps should be visible after resuspension of th e  pellet.

3. Add 250 pL Buffer P2 and gently invert th e  tube  4 -6  tim es to  

mix.

4. Mix gently by inverting th e  tube. Do not vortex, a s  th is will 

resu lt in shearing of genom ic DNA. If necessary , continue 

inverting th e  tube  until the  solution becom es viscous and 

slightly clear. Do not allow th e  lysis reaction to  proceed for 

m ore than  5 min.

5. Add 350 pL Buffer N3 and invert th e  tu b e  im m ediately but 

gently 4 -6  tim es.

Dimitrios Vlachakis, PhD 2006 193



Chapter 5. Appendix

6. To avoid localized precipitation, mix th e  solution gently but 

thoroughly, im m ediately a fte r addition of Buffer N3. The 

solution should becom e cloudy.

7. Centrifuge for 10 min a t  13.000 rpm  (~  17.900 x g) in a 

tab le-top  microcentrifuge.

8. A com pact white pellet will form.

9. Apply th e  supernatan ts from s tep  4 to  th e  QIAprep Spin 

Column by decanting or pipetting.

10. Centrifuge for 3 0 -6 0  s. Discard th e  flow -through.

1 1 .(Optional): Wash the  QIAprep Spin Column by adding 0.5 mL 

Buffer PB and centrifuging for 3 0 -6 0  s. Discard th e  flow

through.

12 .This step  is necessary to  rem ove trace  nuc lease  activity when 

using endA+ strains such a s  th e  JM series , HB101 and its 

derivatives, or any wild-type stra in , which have  high levels of 

nuclease activity or high carbohydrate  con ten t. Host strains 

such a s  XL-1 Blue and DH5a™ do not require  th is additional 

wash step.

13. Wash QIAprep Spin Column by adding 0 .75  mL Buffer PE and 

centrifuging for 3 0 -6 0  s.

14. Discard the  flow-through, and  centrifuge for an  additional 1 

min to rem ove residual w ash buffer.

15. IMPORTANT: Residual w ash buffer will not be completely 

rem oved unless th e  flow-through is discarded before this
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additional centrifugation. Residual ethanol from Buffer PE 

m ay inhibit su b seq u en t enzym atic reactions.

16. Place the  QIAprep colum n in a clean 1.5 mL microcentrifuge 

tube. To elute DNA, add  50 pL Buffer EB (10 mM Tris-CI, pH 

8 .5 ) or w ater to  th e  cen te r o f each  QIAprep

17. Spin Column, let stand  for 1 min, and  centrifuge for 1 min.
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DNA CONCENTRATION PROTOCOL

Materials:

1. TE solution

o 10 mM Tris (pH to  7 .5) 

o 1 mM EDTA (pH to  8 .0  to  dissolve)

2. DNA sam ple

3. SYBR Green I(R) nucleic acid gel stain  (Molecular Probes)

4. Plastic wrap

5. distilled w ater

6. DNA m arker stock (10 m g/mL)

Supplies:

1. Tubes

2. Polaroid setup  (with proper filter - SYBR Green/Gold gel stain 

photographic filter) and UV light box

3. Micropipetter and tips

Procedures:

1. Prepare 6 DNA standards from DNA m arker stock:

o standard  I (5 ug/u l): 1 :2  dilution of DNA m arker stock 

o standard  II (2 .5  ug /u l): 1:2  dilution of standard  I 

o standard  III (1 .25  ug /u l): 1 :2  dilution of standard  II 

o standard  IV (0 .625  ug/u l): 1:2 dilution of standard  III

Dimitrios Vlachakis, PhD 2006 196



Chapter 5.___________________________________________________Appendix

o standard  V (0 .313  ug/ul): 1:2 dilution of standard  IV 

o standard  VI (0 .156  ug/u l): 1 :2  dilution of standard  V

2. Make a 1:5000 dilution of th e  SYBR Green I(R) with TE 

solution.

3. Mix 5 ul of the  DNA sam ple  and  each  of th e  6 standards with 

5 ul of th e  diluted SYBR G reen I(R) dye.

4. Place a sh ee t of plastic w rap sm oothly  on to  th e  UV light box.

5. Spot th e  m ixtures individually onto  p lastic wrap.

6. Spot th e  se t of 6 s tandards.

7. Turn on th e  UV light and  ta k e  a photo  (Polaroid 667 black- 
and-w hite print film).

8. Com pare the  brightness of th e  DNA sam ple  with th e  DNA 
standards and estim ate  concentra tion .

LIGATION - PCR

• Add 1 pL of the  vector

• Add 1 pL of lOx buffer

• Add PCR product (1 pL)

• Add 8 pL of SIGMA w ater

• Add 1 pL of Ligase 

LIGATION -  OVERNIGHT

• Add 0 .5  pL of th e  vector

• Add 5 pL of lOx buffer

• Add 3.5 pL In se rt DNA

• Add 1 pL of Ligase (last)
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• Incubate overnight a t  17 °C 

LIGATION -  BENCHTOP

Add 0.5  |j L of th e  vecto r 

Add 5 pL of lOx buffer 

Add 3.5 pL Insert DNA 

Add 1 pL of Ligase (last)

Leave a t room tem p era tu re  for 2 hours + 30 m inutes. 

SDS-Paoe Gel Preparation

10%  Running Gel Stacking

Solution

Acrylamide 3.3 mL 696 ul

1.5M Tris-HCI pH8.8 2 .5  mL

0.5M Tris HCI pH6.8 —  650 pi

10% SDS 100 pi 100 ul

10% APS 50 pi 50 pi

TEMED 20 pi 10 pi

W ater (D) 4 .0  mL 3.65 mL

-> The Running Buffer is made by preparing 200 mL SDS Page 
Buffer (containing 288g Glycine and 80g Tris). 20 mL of SDS 
10% buffer into 2000mL of dH20  will give the SDS buffer.
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2.1.1 Molecular weight standards

Prestained high range molecular weight protein standards were purchased from 
Bio-Rad Laboratories, Hertfordshire, U.K or New England BioLabs, Beverly, MA, 
USA. The X Hind ID and <|>X174 Hae in  DNA markers were purchased from 
PromegaLtd., Southampton, UK.

High range protein molecular weight markers (Bio-Rad)

Myosin (H chain) 200.000 Da

Phosphorylase B 97.400 Da

Bovine serum albumin 68.000 Da

Ovalbumin 43.000 Da

Carbonic Anhydrase 31.000 Da

P Lactoglobulin 18.400 Da

Lysozyme 14.300 Da

High range protein molecular weight markers -(New England Biolabs)

MBP-p-galactosidase 175.000 Da

MBP-paramyosin 83.000 Da

Glutamic dehydrogenase 62.000 Da

Aldolase 47.500 Da

Trisosephosphate isomerase 32.500 Da

p-Lactoglobulin A 25.000 Da

Ly sozy me 16.500 Da

Aprotinin 6.500 Da
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>DENGUE— NS3
a g v lw d v p s p  p p v g k a e l e d  g a y r i k q k g i  l g y s q i g a g v  y k e g t f h t m w  h v t r g a v l m h
k g k r i e p s w a  d v k k d l i s y g  g g w k le g e w k  e g e e v q v l a l  e p g k n p r a v q  t k p g l f r t n t
g t i g a v s l d f  s p g t s g s p i v  d k k g k v v g l y  g n g v v t r s g a  y v s a i a q t e k  s i e d n p e i e d
d i f r k r r l t i  m d lh p g a g k t  k r y l p a i v r e  a i k r g l r t l i  l a p t r v v a a e  m e e a l r g l p i
r y q t p a i r a e  h t g r e i v d l m  c h a t f t m r l l  s p i r v p n y n l  i i m d e a h f t d  p a s i a a r g y i
s t r v e m g e a a  g i f m t a t p p g  s r d p f p q s n a  p i m d e e r e i p  e r s w n s g h e w  v t d f k g k t v w
f v p s i k t g n d  i a a c l r k n g k  r v i q l s r k t f  d s e y v k t r t n  d w d f v v t t d i  s e m g a n f k a e
r v id p r r c m k  p v i l t d g e e r  v i l a g p m p v t  h s s a a q r r g r  i g r n p r n e n d  q y i y m g e p l e
n d e d c a h w k e  a k m L ld n in t  p e g i i p s m f e  p e r e k v d a i d  g e y r l r g e a r  k t f v d l m r r g
d l p v w l a y k v  a a e g i n y a d r  r w c f d g t r n n  q i l e e n v e v e  i w t k e g e r k k  l k p r w l d a r i
y s d p l a l k e f  a a g r k

> Y e l l o w  f e '  
s g d v l w d i p t  
v r n g k k l i p s  
r n g g e i g a v a  
lq e ip t m L k k  
h g l d v k f h t q  
a r g w a a h r a r  
r p t a w f l p s i  
n l c v e r v l d c  
p t s e n n a h h v  
v r n c d l p v w l  
c d e r v s s d q s

r e r  v i r u s — 1 
p k i i e e c e h l  
w a s v k e d l v a  
l d y p s g t s g s  
g m t t v l d f h p  
a f s a h g s g r e  
a n e s a t i l m t  
r a a n v m a a s l  
r t a f k p v l v d  
c w le a s m L ld  
s w q v a k a g lk  
a l s e f i k f a e

e d g i y g i f q s  
y g g s w k l e g r  
p i v n r n g e v i  
g a g k t r r f l p  
v i d a m c h a t l  
a t p p g t s d e f  
r k a g k s v v v l  
e g r k v a i k g p  
n m e v r g g m v a  
t n d r k w c f e g  
g r r

t f l g a s q r g v  
w d g e e e v q l i  
g l y g n g i l v g  
q i l a e c a r r r  
t y r m L e p t r v  
p h s n g e i e d v  
n r k t f e r e y p  
l r i s a s s a a q  
p l y g v e g t k t  
p e e h e i l n d s

g v a q g g v f h t  
a a v p g k n v v n  
d n s f v s a i s q  
l r t l v l a p t r  
v n w e v i i m d e  
q t d i p s e p w n  
t i k q k k p d f i  
r r g r i g r n p n  
p v s p g e m r l r  
g e t v k c r a p g

m w h v t r g a f l  
v q t k p s I f k v  
t e v k e e g k e e  
v v l s e m k e a f  
a h f l d p a s i a  
t g h d w i l a d k  
l a t d i a e m g a  
r d g d s y y y s e  
d d q r k v f r e l  
g a k k p lr p r w

> J a p a n e s e  <
g g v f w d t p s p
g e g k l t p y w g
g e v g a v s l d y
p n m L rk rq m t
v r y q t s a v q r
i a t k v e l g e a
w f  v a s v k m g n
s r v i d c r k s v
e d d s n l a h w t
a d l p v w l a y k
v y a d h q a lk w

s n c e p h a l i t i :  
k p c s k g d t t t  
s v k e d r i a y g  
p r g t s g s p i l  
v l d l h p g s g k  
e h q g n e i v d v  
a a i f m t a t p p  
e i a m c l q r a g  
k p t i l e e g e g  
e a k im L d n ih  
v a s n g i q y t d  
f k d f a a g k r

; v i r u s — NS! 
g v y r i m a r g i  
g p w r fd r k w n  
d s n g d i i g l y  
t r k i l p q i i k  
m c h a t l t h r l  
g t t d p f p d s n  
k k v i q l n r k s  
r v i l g n p s p i  
m p n g l v a q l y  
r r w c f d g p r t

l g t y q a g v g v  
g t d d v q v i v v  
g n g v e l g d g s  
d a i q q r l r t a  
m s p n r v p n y n  
a p i h d l q d e i  
y d t e y p k c k n  
t s a s a a q r r g  
g p e r e k a f t m  
n a i l e d n t e v

m y e n v f h t  l w  
e p g k a a v n i q  
y v s a i v q g d r  
v l a p t r v v a a  
l f v m d e a h f t  
p d r a w s s g y e  
g d w d f v i t t d  
r v g r n p n q v g  
d g e y r l r g e e  
e i v t r m g e r k

h t t r g a a i m s  
t k p g v f r t p f  
q e e p v p e a y t  
e m a e a l r g l p  
d p a s i a a r g y  
w i t e y a g k t v  
i s e m g a n f g a  
d e y h y g g a t s  
k k n f l e l l r t  
i l k p r w l d a r

> w e s t  n i l e  
g g v l w d t p s p  
g e g r l d p y w g  
g e i g a v t l d y  
p e m L r k k q it  
i r y q t s a v h r  
i a t k v e l g e a  
w f  v p sv k m g n  
s r v i d s r k s v  
e d d s n f a h w t  
a d l p v w l a y k  
v y s d h q a l k s

— N S3  
k e y k k g d t t t  
s v k e d r l c y g  
p t g t s g s p i v  
v l d l h p g a g k  
e h s g n e i v d v  
a a i f m t a t p p  
e i a l c l q r a g  
k p t i i e e g d g  
e a r im L d n in  
v a a a g i s y h d  
f k d f a s g k r

g v y r i m t r g l  
g p w k lq h k w n  
d k n g d v i g l y  
t r k i l p q i i k  
m c h a t l t h r l  
g t s d p f p e s n  
k k v i q l n r k s  
r v i l g e p s a i  
m p n g l v a q l y  
r k w c f d g p r t

l g s y q a g a g v
g h d e v q m iv v
g n g v im p n g s
e a i n k r l r t a
m s p h r v p n y n
a p i s d m q t e i
y e t e y p k c k n
t a a s a a q r r g
q p e r e k v y t m
n t i l e d n n e v

m v e g v f h t l w  
e p g k n v k n v q  
y i s a i v q g e r  
v l a p t r v v a a  
I f i m d e a h f t  
p d r a w n t g y e  
d d w d f v i t t d  
r i g r n p s q v g  
d g e y r l r g e e  
e v i t k l g e r k

h t t k g a a l m s  
t k p g v f k t p e  
m e e p a p a g f e  
e m s e a l r g l p  
d p a s i a a r g y  
w i t e y v g k t v  
i s e m g a n f k a  
d e y c y g g h t n  
r k n f l e f  l r t .  
i l r p r w a d a r

> H e p a t i t i s  C— N S3
MVDFIPVENLETTMRSPVFTDNSSPPAVPQSFQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAA 
TLGFGAYMS KAHGVDPNIRTGVRTITTGS P IT Y  STYGKFLADGGCSGGAY D IIIC D EC H STD A TSIL G I 
GTVLDQAETAGARLVVLATATPPGSVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKK  
KCDELAAKLVALGINAVAYYRGLDVSVIPTSGDWWATDALMTGFTGDFDSVIDCNTCVTQTVDFSLD 
PT FT IETTTLPQDAVSRTQRRGRTGRGKPGIY RFVAPGERPSGMFDSSVLCECYDAGCAWY ELTPAETT 
VRLRAYMNTPGLPVCQDHLE FWEGVFTGLTHIDAH FLS QT KQS GENFP YLVAY QATVCARAQAPPPSWD 
QMWKCLIRLKPTLHGPTPLLYRLGAVQNEVTLTHPITKYIMTCMSADLEWTGSGSHHHHHH

> w e s t  n i l e —N S5
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GGAKGRTLGEVWKERLNQMTKE E FT RY RKEAIIEVDRS AAKHARKEGNVTGGH PVS RGTAKLRWLVERRF 
LEPVGKVIDLGCGRGGWCYYMATQKRVQEVRGYTKGGPGHEEPQLVQSYGWNIVTMKSGVDVFYRPSECC 
DTLLCDIGESSSSAEVEEHRTIRVLEMVEDWLHRGPREFCVKVLCPYMPKVIEKMELLQRRYGGGLVRNP 
LSRNSTHEMYWSRASGNWHSVNMTSQVLLGRMEKRTWKGPQYEEDVNLGSGTRAVGKPLLNSDTSKIK 
NRIERLRREYSSTWHHDENHPYRTWNYHGSYDVKPTGSASSLVNGWRLLSKPWDTITNVTTMAMTDTTP 
FGQQRVFKEKVDTKAPEPPEGVKYVLNETTNWLWAFLAREKRPRMCSREEFIRKVNSNAALGAMFEEQNQ 
WRSAREAVEDPKFWEMVDEEREAHLRGECHTCIYNMMGKREKKPGEFGKAKGSRAIWFMWLGARFLEFEA 
LGFLNEDHWLGRKNSGGGVEGLGLQKLGYILREVGIRPGGKIYADDTAGWDTRITRADLENEAKVLELLD 
GEHRRLARAIIELTYRHKWKVMRPAADGRTVMDVISREDQRGSGQWTYALNTFTNLAVQLVRMMEGEG 
VIGPDDVEKLTKGKGPKVRTWLFENGEERLSRMAVSGDDCWKPLDDRFATSLHFLNAMSKVRKDIQEWK 
PSTGWYDWQQVPFCSNHFTELIMKDGRTLWPCRGQDELVGRARISPGAGWNVRDTACLAKSYAQMWLLL 
YFHRRDLRLMANAICSAVPVNWVPTGRTTWSIPIAGGEWMTTEDMLEVWNRVWIEENEWMEDKTPVEKWSD 
VPYSGKREDIWCGSLIGTRARATWAENIQVAINQVRAIIGDEKYVDYMSSLKRYEDTTLVEDTVL

> Y e l lo w  f e v e r  v i r u s —NS5
GT AN GKT LGEVWKRE LNLLDKQQFE LY KRT DIVEVDRDTARRH LAEGKVDTGVAV S RGTAKLRWFH ERGY 
VKLEGRVIDLGCGRGGWCYYAAAQKEVSGVKGFTLGRDGHEKPMNVQSLGWNIITFKDKTDIHRLEPVKC 
DTLLCDIGESSSSSVTEGERTVRVLDTVEKWLACGVDNFCVKVLAPYHPDVLEKLELLQRRFGGTVIRNP 
LSRNSTHEMYYVSGARSNVTFTVNQTSRLLMRRMRRPTGKVTLEADVTLPIGTRSVETDKGPLDKEAIEE 
RVERIKSE YMTSWFY DNDNPY RTWH Y CGS Y VT KTS GSAASMVNGVIKILT Y PWDKIEEVTRMAMTDTT PF 
GQQRVFKEKVDTRAKDPPAGTRKIMKWNRWLFRHLAREKNPRLCTKEEFIAKVRSHAAIGAYLEEQEQW 
KTANEAVQDPKFWELVDEERKLHQQGRCRTCVYNMMGKREKKLSEFGKAKGSRAIWYMWLGARYLEFEAL 
GFmEDHWASRENSGGGVEGIGLQYLGYVI RDLAAMDGGGFYADDTAGWDTRITEADLDDEQEILNYMSP 
HHKKLAQAVMEMTY KNKWKVLRPAPGGKAYMDVISRRDQRGS GQWTYALNTITNLKVQLIRMAEAEMV 
IHHQHVQDCDESVLTRLEAWLTEHGCNRLRRMAVSGDDCWRPIDDRFGLALSHLNAMSKVRKDISEWQP 
SKGWNDWENVPFCSHHFHELQLtCDGRRIWPCREQDELIGRGRVSPGNGWMIKETACLSKAYANMWSLMY 
FHKRDMRLLSLAVSSAVPTSWVPQGRTTWSIHGKGEWMTTEDMLEVWNRVWITNNPHMQDKTMVKEWRDV 
PY LTKRQDKLCGSLIGMTNRATWASHIHLVIHRIRTLVGQEKYTDYLTVMDRY SVDADLQPGELI

> J a p a n e s e  e n c e p h a l i t i s  v i r u s —NS5
GRPGGRTLGEQWKEKLNAMSREEFFKYRREAIIEVDRTEARRARRENNIVGGHPVSRGSAKLRWLVEKGF 
VS PIGKVIDLGCGRGGW SY Y AATLKKV QEVRGY TKGGAGH EE PMLMQS Y GF^NLV S LKS GVDVFY KP S E PS 
DT LFCDIGE S S PS PE VEEQRTLRVLEMTS DWLHRGPRE FCIKVLC PYMPKVIE KMEVLQRRFGGGLVRLP 
LSRNSNHEMYVJVSGAAGNWHAVNMTSQVLLGRMDRTVWRGPRTYEEDVNLGSGTRAVGKGEVHSNQEKIK 
KRIQKLKEEFATTWHKDPEHPYRTWTYHGSYEVKATGSASSLVNGVVKLMSKPWDAIANVTTMAMTDTTP 
FGQQRVFKEKVDTKAPE PPAGAKEVLNETTNWLWAHLS REKRPRLCTKEE FI KKVNSNAALGAVFAEQNQ 
WSTAREAVDDPRFWEMVDEERENHLRGECHTCIYNMMGKREKKPGEFGKAKGSRAIWFMWLGARYLEFEA 
LGFLNEDHWLSRENSGGGVEGSGVQKLGYILRDIAGKQGGKMYADDTAGWDTRITRTDLENEAKVLELLD 
GE HRMLARAIIELTY RHKWKVMRPAAEGKTVMDVIS REDQRGSGQWT Y ALNT FTNIAVQLVRLMEAEG 
VIGPQHLEQLPRKTKIAVRTWLFENGEERVTRMAISGDDCWKPLDDRFATALHFLNAMSKVRKDIQEWK 
PSHGWHDWQQVPFCSNHFQEIVMKDGRSIWPCRGQDELIGRARISPGAGWNVKDTACLAKAYAQMWLLL 
Y FHRRDLRLMANAICSAVPVDWVPTGRTSWSIHSKGEWMTTEDMLQVWNRVWIEENEWMMDKT PI T SWTD 
VPY VGICREDIWCGSLIGTRS RATW7\EN IY AAINQVRAVIGKENY VDYMTS LRRYE DVLIQEDRVI

> H e p a t i t i s  C— NS5
SMSYTWTGALITPCAAEESKLPINPLSNSLLRHHNMVYATTSRSASLRQKKVTFDRLQVL 
DDHY RDVLKEMKAKASTVKAKLLSIEEACKLT PPH SAKSKFGY GAKDVRNLS S RAVNHIR 
SVWEDLLEDTETPIDTTIMAKSEVFCVQPEKGGRKPARLIVFPDLGVRVCEKMALYDWS 
TLPQAVMGSSYGFQY SPKQRVEFLVNTWKSKKCPMGFSYDTRCFDSTVTESDIRVEESIY 
QCCDLAPEARQAIRS LT ERLYIGGPLTNS KGQNCGY RRCRASGVLTT S CGNTLTCYLKAT 
AACRAAKLQDCTMLVNGDDLWICESAGTQEDAAALRAFTEAMTRY SAPPGDPPQPEYDL 
ELITSCSSNVSVAHDASGKRVYYLTRDPTTPLARAAWETARHTPINSWLGNIIMYAPTLW 
ARMILMTHFFSILLAQEQLEKALDCQIYGACY S IE  PLDLPQIIERLHGLSAFT LH SY S PG 
EINRVAS CLRKLGVP PLRTWRHRARS VRAKLL S QGGRAAT CGRY L FNWAVRT KLKLT P IP  
AASQLDLSGWFVAGYSGGDIYHSLSRARPR

>BVDV — NS5
AY LKLKDFIEEEEKKPRVKDTVIREHNKWILKKIRFQGNLNTKKXLNPGKLSEQLDREGR 
KRNIYNHQIGTIXSSAGIRLEKXPIVRAQTDTKTFHEAIRDKIDKSENRQNPELHNKLLE 
IFHTIAQPTLKHTY GEVTWEQLEAGVNRKGAAGFLEKKNIGEVLDSEKHLVEQLVRDLKA 
GRKIKYYETAIPKNEKRDVS DDWQAGDLWEKRPRVIQY PEAKTRLAITKVXYNWVKQQP 
WIPGYEGKTPL FNIFDKVRKEWDS FNE PVAVS FDTKAWDTQVTS KDLQLI GE IQKY Y Y K 
KEWHKFI DT ITDHXTEVPVITADGEVYIRNGQRGSGQPDTSAGNSXLNVLTXXYAFCEST 
GVPY KS FNRVARIHVCGDDGFLITEKGLGLKFANKGXQILHEAGKPQKITEGEKXKVAY R
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FED IE FCS HT PVPVRWS DNT S S HXAGRDTAVILS KXAT RLDS S GE RGTTAY EKAVAFS FL 
LXY SWNPLVRRICLLVLSQQPETDPSKHAT Y Y Y KGDPI GAY KDVIGRNLS ELKRTGFEKL 
ANLNLSLSTLGVWTKHTSKRIIQDCVAIGKEEGNWLVKPDRLISSKTGHLYIPDKGFTLQ 
GKHY EQLQL

> D en gue -N S 5
g t g n t g e t l g  e k w k n r ln a l  g k s e f q iy k k  s g i q e v d r t l  a k e g i k r g e t  d h h a v s r g s a
k l r w f v e r n l  v t p e g k v v d l  g c g r g g w s y y  c g g lk n v k e v  k g l t k g g p g h  e e p ip m s t y g
w n lv r l q s g v  d v f f t p p e k c  d t l l c d i g e s  s p n p t v e a g r  t l r v l n l v e n  w l n n n t q f c i
k v ln p y m p sv  ie k m e a lq r k  y g g a lv r n p l  s r n s th e m y w  v s n a s g n i v s  sv n m is r m L i
n r f tm r h k k a  t y e p d v d lg s  g t r n i g i e s e  t p n l d i i g k r  i e k i k q e h e t  sw h y d q d h p y
k t w a y h g s y e  t k q t g s a s s m  v n g v v r l l t k  p w d iip m v tq  m a m t d t t p f g  q q r v f k e k v d
t r t q e p k e g t  k k lm k ita e w  lw k e lg k k k t  p r m c t r e e f t  r k v r s n a a l g  a i f t d e n k w k
s a r e a v e d s g  f w e lv d k e r n  l h l e g k c e t c  vyrunm gkrek k l g e f g k a k g  s r a iw y m w lg
a r f l e f e a l g  f l n e d h w f s r  e n s l s g v e g e  g l h k l g y i l r  d v s k k e g g a m  y a d d ta g w d t
r i t l e d l k n e  em vtn h m ege h k k l a e a i f k  l t y q n k v v r v  q r p t p r g t v m  d i i s r r d q r g
s g q v v t y g l n  t f t n m e a q l i  r q m e g e g v fk  s i q h l t v t e e  i a v k n w l v r v  g r e r l s r m a i
s g d d c v v k p l  d d r f a s a l t a  ln d m g k v rk d  iq q w e p sr g w  n d w t q v p f c s  h h f h e l im k d
g r v lv v p c r n  q d e l i g r a r i  s q g a g w s lr e  t a c l g k s y a q  m w s lm y fh r r  d l r l a a n a i c
sa v p s h w v p t  s r t t w s i h a t  hewmttediriL tv w n r v w iq e  n p w m ed k tp v  e s w e e i p y l g
k r e d q w c g s l  i g l t s r a t w a  k n iq t a in q v  r s l i g n e e y t  d y m p sm k r fr  r e e e e a g v l w
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G. Virtual screening -  lead optimisation
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The sym bols used stand for:

V picks up high interaction with the protein (H bonds) 
and hydrophobic interaction too . It has a good conformation 
on the protein as w ell.

~V  -»Does not H-bond but it estab lish es hydrophobic 
interaction and has a good docking conform ation.

X ->Was im possible to  dock th e  com pound in a successful 
way. No interaction estab lished  + th e  conformation of the  
compound is bad.

STRUCTURE Number HepC Dengue WNV

1 X X X

2 X X X

dpt 3 X X X

: i X X j  ■1
4 X X X

5 X X X

ĉr
6 X X X

^ O U J O r ^
7 X X X

€ h  r p 8 X X X

9 X X X

10 X X X
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STRUCTURE Number HepC Dengue WNV

d4X ' a % 1 1 X X X

1 2 X X X

c x  ym: p
q £

13 X X X

/-CXX20
14 V X X

15 X X X

JQe x  y4 16 ~V X X

a
c V x _ 0 $ 17 ~V ~v X

<V v O * > 18 X X X

r&°Z. l0^<y 19 X X X

2 0 X X
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STRUCTURE Number HepC Dengue WNV

2 1 X X X

j ?
2 2 X X X

Q0X>^P
23 X X X

: • CP
x x x  x /~ 24 X X X

✓0
/
y 0 _€ h ^ O ^ O

25 ~V X X

_rD-0O
26 X X X

<P l1O L :2 t ' ' O 0 6 0 27 X X X

28 X X X

% 29 ~V V V

• y P b

d ^ ’ ^ 30 X X X

31 V ~v
...
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WNVHepC DengueNumberSTRUCTURE

34

37
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WNVHepCSTRUCTURE DengueNumber

44

47

48

48

49

■VX
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Evaluation of the dockings:

The above compounds have been designed by applying a variety of modifications 
to the following reported compounds by Virofarma Inc.:

CHEMICAL STRUCTURE No. ICso
1 10

2 0.7

_ r -0 -@ 0 3 0.7

4 0.7

r f r ® 1 S s 5 0.7

6 0.7

7 0.7

The Virofarma compounds were subjected to a LigBuilder run using a variety of 
user defined seeds. A seed is the part of the compound that remains unchanged. 
The final compound will contain the seed and a variety of different substitutions 
added by the genetic algorithm of LigBuilder.
The 51 modifications of the original Virofarma compounds were docked using 
MOE to the HepC X-ray solved helicase and to the Dengue and West Nile helicase 
models. The docking parameters were kept constant to all dockings (same active 
site = same aligned residue number, 8000 iterations for 6  cycles). The aim of this 
study was to generate a wide variety of compounds in  silico, dock them and look 
for a consensus pattern and behaviour in those compounds.
The only conclusion that could be drawn was the same as established by the 
enzymatic assay in chapter 3 of this work: long and flexible “linker” regions 
behave better than rigid ones. Still though, the number of compounds tested is not 
large enough to be able to draw more useful conclusions (such as different 
preferences of the three different receptors). A wider range of compounds has to 
be designed and a more sensitive and exhaustive molecular docking protocol has to 
be established in order to be able to distinct small differences in ligand preference 
between the three viral helicases.
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