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Anti-Epidermal Growth Factor Receptor (EGFR) Therapy Modelled In The Mouse.

Student ID No. 0163081344 

Abstract

Despite advances in response prediction to  epidermal growth factor receptor (EGFR) 

targeted therapy in colorectal cancer there remain unknown factors determining the clinical 

outcome in patients w ith K-RAS wild type tumours in the absence of mutations activating B- 

RAF or PIK3CA/PTEN signalling. In addition, therapeutic agents for K-RAS mutant colorectal 

cancer and advances in the treatment of K-RAS wild type tumours are needed. Here the 

Apcm,n/+ mouse has been used to define mRNA transcripts altered in response to  Egfr 

receptor inhibition based upon the hypothesis that early gene expression changes will 

predict response to  EGFR targeted therapy in K-RAS wild type colon cancer and thus identify 

novel biomarkers o f response. In addition, the Apcmm/+ mouse and a model including 

endogenous K-ras activated colon tumourigenesis have been used to examine the 

consequences o f dual E g fr/lg flr signalling inhibition, short term interruption o f the 

Ras/Raf/Mek/Erk pathway w ith Mek inhibition and Egfr signalling inhibition combined w ith  

the induction o f apoptosis.

Gene expression microarray analysis and qRT-PCR validated 3 genes (IKBKG, CXCL9 

and CCNE2) which, upon probing of transcript datasets from patients w ith K-RAS wild type 

colorectal cancer, identified their discriminatory value in terms of clinical responses to 

cetuximab monotherapy. Apcmm/+ intestinal adenomas acutely exposed to  a small molecular 

inhibitor of Egfr (gefitinib) showed concurrent suppression of downstream signalling and 

induction of Igf signalling. To test the hypothesis that blockade of Egfr signalling was 

tempered by compensatory activation of the Igf pathway, the effect of chronic suppression 

of Ig flr  using AZD12253801, a small molecular tyrosine kinase inhibitor o f IGF1R, was 

examined alone and in combination w ith gefitinib. Compared to either drug alone, 

combined dosing w ith gefitinib and AZ12253801 suppressed small intestinal tumourigenesis 

more effectively, but this failed to translate into a survival advantage possibly due to an 

increased incidence of intra-abdominal abscess formation. Nonetheless, this data provides 

preliminary evidence in support o f combinatorial therapy. Examination of Mek inhibition 

using AZD6244 revealed induction o f immediate cell death and perturbation of the cell cycle
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in intestinal tumours. These changes were not limited to  K-ras mutant tumours suggesting a 

potential application to  K-ras wild type intestinal cancer. Finally the addition of a BH3 

mimetic, ABT737, to  gefitinib induced a 3-fold increase in cell death indicating that short 

term pathway inhibition combined w ith induction o f apoptosis is a rational treatment 

strategy for malignancy, and should also be extended in future experiments w ith Mek 

inhibition. This work has demonstrated the value of these mouse models in relation to 

target validation, biomarker prediction, resistance mechanisms and therapeutic utility.
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Chapter 1

1 Introduction

1.1 Advanced colorectal cancer

Bowel cancer is the 2nd most common cause of cancer death in the UK, with 16,000 

deaths pa. Approximately 9% of patients present with Dukes stage D disease at diagnosis 

with a 5 year survival figure of only 7%1.Furthermore 50% of patients who have undergone 

potentially curative surgery for early stage disease will relapse with metastatic disease 

making it a significant burden of disease2.

1.1.1 Cytotoxic chemotherapy

Standard chemotherapy for metastatic colorectal cancer includes three active drugs 

-  fluoropyrimidines, irinotecan and oxaliplatin. With current evidence, patients with 

unresectable metastasis may be treated with fluoropyrimidine monotherapy to maintain 

quality of life provided close therapeutic monitoring is possible to avoid missing a 

therapeutic window of combination treatm ent3. For patients with resectable metastases, 

and possibly those with a heavy tumour burden or significant symptoms, first line 

combination therapy is most appropriate to achieve higher response rates and durable 

treatment responses3.

1.1.2 Epidermal growth factor receptor (EGFR) targeted therapy

Evidence is emerging to show the clinical benefit of EGFR targeted monoclonal 

antibody therapy using cetuximab in advanced colorectal. In the first line setting of 

advanced colorectal cancer adding cetuximab to the FOLFIRI (Irinotecan-infused 5-FU/LV) 

regimen demonstrates a small improvement in median progression free survival, but not 

overall survival4. In the second line setting, treatment with cetuximab and irinotecan 

improves progression free survival and response rates without an improvement in overall 

survival, most probably due to control arm subjects receiving cetuximab at a later tim e5. 

Finally in refractory metastatic colorectal cancer, cetuximab monotherapy demonstrates an 

improvement in overall survival compared with best supportive care6. In August 2009,
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cetuximab was subsequently sanctioned by NICE for the first line therapy of advanced 

colorectal cancer under certain conditions7.

Interestingly, two randomised controlled trials of small molecule tyrosine kinase 

inhibitors against the EGF receptor have shown little clinical benefit in advanced colorectal 

cancer3. This is thought to be due to the absence of activating mutations in the EGF 

receptor3 which have been shown to confer sensitivity to tyrosine kinase inhibition in the 

setting of NSCLC8.

1.2 Personalised medicine

Paul Ehrlich coined the term 'magic bullet' back in the late 1800's for targeted 

microbial therapy9. Contemporary science has adopted this concept and applied it to cancer 

therapy built on the hypothesis that cancer cells are 'addicted' to a particular oncogene or 

pathway10. Targeting of such aberrant pathways, it is argued, will lead to therapeutic 

responses. Clinical evidence for this concept has been demonstrated based upon the 

success of antibodies or small molecules targeting specific oncogenes in human cancers, for 

example trastuzumab which targets the HER2 receptor in breast cancer, and imatinib which 

targets the oncogenic BCR/ABL fusion protein and the product of the oncogene c-kit, in 

gastrointestinal stromal tumours11. Such examples raise expectations that greater 

understanding of deregulated molecular pathways driving malignant phenotypes will 

increase the prospects of new targeted drugs.

Patients with malignancy are traditionally treated with standardised regimens which 

have proven efficacy in population-based randomised controlled clinical trials for a given 

stage and primary cancer site12. As a result, conventional approaches to treatment 

development are effective in only identifying therapy that works 'on average' for a 

population of patients similar to those in whom it was tested13. The low success rate of 

phase III trials is complicated by such a 'blanket' treatment approach for patients with 

heterogenous tumours, without the identification of individuals most likely to respond. This 

results in outcomes which are too small to be detected in the sample sizes used and an 

increased likelihood of false negative outcomes13. Unfortunately, in the absence of 

predictive markers of response to therapy, this approach exposes patients to potentially 

toxic treatment effects, with the risk of no benefit. However, given the recent identification
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of molecular drug targets in cancer and developments in targeted therapy, there is an 

increasing desire to practice personalised medicine, facilitated by the identification of 

markers of response to therapy. There is a clear need to develop predictive markers that are 

specific for a particular therapy, that will save unnecessary exposure to toxic drugs and 

inconvenience to patients, and facilitate the receipt of effective drugs to patients most likely 

to gain benefit.

1.3 Predictive biomarkers

Biomarkers can relate to toxicity, biological effect and efficacy. A pharmacodynamic 

biomarker is associated with the biological effect of a compound14. A predictive marker 

predicts the clinical benefit of a particular treatment approach based on marker status and 

can therefore be used to guide the choice of therapy. This differs from a prognostic marker 

which classically identifies patients at risk of a particular outcome such as relapse or death 

and can be used to guide whether treatment is appropriate but not the choice of therapy15.

1.3.1 Gene expression microarray technology

Hybridization to high density arrays of oligonucleotides to access genetic variation 

has become possible since the mid-nineties16 and such microarray technology has become 

widely applied to medicine and oncology in particular. With the advent of microarray 

technology, multi-gene expression signature classifiers are now able to classify tumours 

based on the expression level of its component genes17. Genomic classifiers require internal 

validation in developmental studies using data independent from that used to develop the 

model and external validation using independent data in a prospective planned study17.

The microarray technique uses gene-specific probes representing thousands of 

different genes, which are arrayed on inert substrates. Levels of gene expression from target 

tissue are then assayed. RNA is extracted from the tissue of interest, labelled and then 

hybridised to the arrays by associating with complimentary gene-specific probes. Labelled 

RNA is detected by confocal laser scanning and images are produced which show the 

intensity of each gene-specific probe. A greater degree of hybridisation results in a more 

intense signal, implying a higher relative level of gene expression 18.
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Genomic signatures can be developed by measuring features on a body of training 

data, and then selecting features (gene expression levels) which are most significantly 

correlated with outcome (clinical response). Then having selected the features most 

correlated with outcome, those features can be combined into a multivariate signature 

classifier which is reproducible and accurate in predicting outcome13.

1.3.2 Gene expression microarray studies in colorectal cancer and treatment response 

prediction

Microarray technology has been applied to colorectal cancer to exploit 

transcriptome changes related to carcinogenesis and the prediction of prognosis and 

treatment responses19. Basal gene expression profiles of colorectal cell lines showing 

correlation with apoptosis induced by 5-FU and camptothecin have been determined in a 

panel of 30 colon cancer cell lines20 as have expression profiles for the prediction of 

response to oxaliplatin21. Pertinently, clinical samples obtained from primary colon tumours 

have been used to define genes which discriminate response to leucovorin, fluorouracil and 

irinotecan (FOLFIRI)22 and pre-treatment rectal cancer biopsies have been used to define 

transcripts associated with response to preoperative chemo-radiotherapy in rectal 

adenocarcinomas23. Transcriptional profiling of pre-treatment metastatic colorectal cancer 

biopsies have also allowed the identification of genes whose expression is correlated with 

clinical responses to cetuximab monotherapy. From this work increased expression of 

epiregulin and amphiregulin mRNA was first described to be associated with disease control 

in response to a monoclonal antibody, cetuximab, targeting the EGF receptor24.

Most recently the transcriptional profile of baseline rectal cancer biopsies have been 

compared to profiles after cetuximab monotherapy (Day 6-8) leading to the identification of 

16 genes that were differentially expressed25. Although microarray analysis did not identify 

simple predictive signatures for pathological response, the authors noted that tumoural 

EGFR up-regulation after the initial dose of cetuximab was associated with improved disease 

free survival25. This research is similar in design to the Xerxes study (1.3.5) however the time 

at which rectal cancer transcriptomes are explored differ, being examined 4 hours following 

cetuximab, on the basis that detected gene changes will reflect the primary influence of the 

drug alone.
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The current status of microarray -based testing in cancer patients, regardless of site, 

does not extend to selection of treatments guided by microarray platform data. Progress is 

being made however as AmpliChip CYP450 and MammaPrint are the first FDA approved 

microarray-based tests for assessments of drug metabolising enzymes and prognosis of 

node negative invasive breast cancer respectively26.

1.3.3 Predictive biomarkers in metastatic colorectal cancer

Already, a number of studies including conventional cytotoxics have probed the 

relationship between genes and their association with drug metabolism, treatment 

outcomes and toxicity3. For example, translational research emerging from the FOCUS trial 

has led to the discovery that moderate or high levels of Topol, a molecular target of SN38, 

is a predictive biomarker associated with benefit from either oxaliplatin or irinotecan27. 

Thus in due course, independent validation and prospective randomised trials, such as 

FOCUS-3, which plans incorporation of molecular-guided therapy decisions, will continue to 

push forward biomarkers for personalised therapy of colorectal cancer27.

During the last 4 years research efforts have been directed towards the discovery of 

predictive markers with a particular emphasis on treatments targeting the EGF receptor in 

metastatic colorectal cancer. The pivotal studies in bowel cancer introducing cetuximab, a 

chimeric monoclonal antibody against the epidermal growth factor receptor (EGFR), 

revealed response rates ranging from 9-23%, but no correlation was found between 

response and degree of EGFR immuno-histochemical (IHC) staining28,29. This was somewhat 

surprising in view of HER2 over-expression in breast cancer and responses to trastuzumab30. 

Colon cancers seemingly negative for EGFR IHC evidently still responded to EGFR 

monoclonal antibodies presumably through high affinity binding sites (10-1000 per cell31) 

below the threshold of IHC detection32,33.

In light of data establishing the relationship between NSCLC EGFR tyrosine kinase 

mutations and response to EGFR targeted therapy with tyrosine kinase inhibitors 8, a search 

for similar mutations in colorectal cancer was undertaken as a means establishing molecular 

criteria for response prediction. A screen for DNA alterations in the EGFR kinase domain 

(exons 17-24) from 293 colorectal tumours only found one single mutation identical to an 

activating mutation previously reported in lung cancer, showing that EGFR mutations occur
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at a very low frequency in colon cancer34. Other reports corroborated this finding35, 36 

leading to the conclusion that EGFR kinase domain mutations were not the basis of 

response to monoclonal antibodies targeting EGFR in colorectal cancer. The observation 

that mutant EGFR kinases significantly increase the binding affinity of gefitinib 37 has been 

suggested to explain the improved sensitivity to EFGR kinase inhibition in a subset of lung 

cancers. This is of relevance in terms of a drugs therapeutic index given that the balance of 

anti-tumour effects relative to normal tissue toxicity will be more favourable. This is also 

emphasised by EGFR/HER2 genomic amplification in breast cancer38 and response to 

trastuzumab therapy (monoclonal antibody targeting HER2).

Simultaneous reports were made of the association between EGFR induced skin rash 

and clinical responses in colon cancer patients treated with EGFR antagonists, suggesting 

that rash may be a surrogate marker for treatment response39. From a molecular biology 

standpoint, interest was growing in the relevance of increased EGFR copy number and its 

association with treatment responses, following the publication of data showing that more 

than 3 copies or EGFR per nucleus identified by Fluorescent In-Situ Hybridisation (FISH), was 

more likely to indicate response to anti-EGFR monoclonal therapy35. However this story was 

by no means clear cut given reports that EGFR gene copy assessed by qRT-PCR did not share 

the same relationship with response36. Increasingly however, it appears that EGFR copy 

number, analysed by FISH or chromogenic in situ hybridization, is a promising biomarker for 

response to EGFR targeted therapy. Patients with <3 copies of EGFR per nucleus have a 

relatively low level of response to anti-EGFR therapy, but increased EGFR copy number is 

associated with higher response rates and longer progression free survival40.

Finally, there is a limited relationship between EGFR IHC protein expression and gene 

copy number, as only a small proportion of colon cancers expressing EGFR protein detected 

by IHC were associated with gene amplifications41. Similarly, a poor correlation between 

different methods of measuring EGFR status at DNA, RNA and protein level, has been 

described in colon cancer42. This contrasts with the situation in breast cancer where over­

expression of HER2 detected by IHC in carefully fixed, processed and embedded samples 

correlates well with gene copy status43, and goes some way towards explaining why a simple
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relationship between target expression and treatment response (c.f. trastuzumab in breast 

cancer), is not evident for colorectal cancer and EGFR targeted therapy.

1.3.4 Mutations in downstream EGFR signalling pathways and response to EGFR targeted 

therapy in metastatic colon cancer

An emerging story of great importance unfolded during 2006 with the first full report 

that Kirsten rat sarcoma viral oncogene homolog (K-RAS) mutation was significantly 

associated with the absence of response to cetuximab in the setting of metastatic colorectal 

cancer44. Subsequent retrospective evaluation of K-RAS mutations in metastatic colorectal 

cancer confirmed its presence in approximately 40% of cases and a negative outcome in 

terms of response prediction in monotherapy trials24,45,46. Others extended these findings 

to combination studies of cytotoxics and cetuximab in first line therapy4,47. It became clear 

that antagonism of EGF receptor signalling w ith monoclonal antibodies, in the presence of 

K-RAS mutations constitutively activating the RAS/RAF/MEK/ERK pathway, was futile. 

Indeed there is emerging evidence that EGFR-targeted agents in this setting is detrimental, 

impairing the efficacy of the cytotoxic components of combination treatment reducing 

progression free survival47.

K-RAS mutation status however is not the whole story as only 40% of K-RAS wild type 

metastatic colorectal cancer patients receiving treatment with cetuximab obtain objective 

responses48. Autocrine loops involving ligands for EGFR such as epiregulin and amphiregulin 

have been suggested to promote tumour growth in colorectal cancer24. Moreover it is now 

known that high tumoural epiregulin expression in K-RAS wild type colorectal tumours is 

associated with improved outcome to cetuximab treatment (vs. best supportive care)49. 

Therefore monoclonal antibodies targeting EGFR appear to inhibit ligand-dependent tumour 

growth, potentially explaining their association with monoclonal antibody induced tumour 

responses .

The finding that K-RAS wild type status does not guarantee sensitivity to anti- EGFR 

targeted therapy led the search for other oncogenic mutations associated within 

downstream EGFR signalling cascades. As a consequence activating mutations in the v-raf 

murine sarcoma viral oncogene homolog b (B-RAF) (10% colorectal cancer50), PI3-kinase 

p llO  a subunit (PIK3CA; 20% colorectal cancer51) or loss of function in phosphatase and
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tensin homologue {PTEN; 30% colorectal cancer51) have been incriminated in the lack of 

response to EGFR targeted therapy50'54. Recent estimates report that 70% of patients' 

likelihood of response to EGFR targeted monoclonal antibodies can be predicted based on 

the mutational status of K-RAS and PIK3CA/PTEN pathways51. This still however leaves a 

large gap where our understanding of response mechanism to EGFR targeted therapy is 

unknown. In light of this the Apcmm/+ mouse model has been used to explore and identify 

novel putative biomarkers capable of predicting response to EGFR targeted therapy 

(Chapter 3).

1.3.5 Xerxes clinical trial

The Xerxes study was designed to examine the role of early neo-adjuvant and 

synchronous cetuximab therapy in pre-operative chemo-radiotherapy using capecitabine 

(5FU prodrug) followed by excisional surgery. This translational study intended to provide 

rectal cancer specimens at baseline and 4 hours following the first infusion of cetuximab to 

enable probing of transcript changes induced by EGFR targeted therapy, to generate 

hypotheses regarding biomarkers of response prediction guided by data obtained from the 

Apcm,n/+ model of colon cancer.

The Xerxes trial postulated the addition of cetuximab to radiotherapy would improve 

pathological response and clinical outcomes as demonstrated in the setting of locally 

advanced head and neck cancer55. Subsequent studies have found that complete 

pathological response (pCR) rates to pre-operative radiotherapy combined with 

capecitabine and cetuximab (ioxaliplatin), in locally advanced rectal cancer, were poor (5- 

9%)56' 57, compared to pathological responses seen without cetuximab (pCR 16% in pre­

operative radiotherapy plus capecitabine and oxaliplatin)58. It has been suggested that 

cetuximab compromises the efficacy of capecitabine/radiotherapy, through a reduced 

tumour cell turnover, which is required for the uptake of capecitabine to enable its cytotoxic 

and radiosensitising effects25.

As a consequence of these findings, trial recruitment to XERXES was halted and 

clearly impacted the availability of rectal cancer samples for assessment of gene expression 

changes in tumour specimens. This has made planned comparisons between transcript
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changes induced by anti-EGFR therapy in Apcmm/+ mouse colon tumours and human rectal 

cancers, very limited, highlighting the difficult nature of translational research.

1.4 Epidermal growth factor receptor (EGFR)

In the 1950's extracts of sub-maxillary glands from mice were directly injected into 

newborn animals inducing early opening of eyelids and eruption of incisors59,60. The same 

extract was later found to stimulate epidermal growth and keratinisation61. This 'epidermal 

growth factor' was isolated and a homologous polypeptide, human EGF was detected 

shortly thereafter60. The receptor for EGF was subsequently detected using crude 

membrane fractions prepared from different animal tissues62, however it was not until 1984 

that Ullrich et al isolated and characterised the cDNA sequence of EGFR63.

1.4.1 Signal transduction

EGFR (ERBB or HER-1) is a 170-kDa membrane protein64 and a member of the 

subclass I receptor tyrosine kinase (RTK) super family along with v-erb-b2 erythroblastic 

leukaemia viral oncogene homolog 2, ERBB2 (HER-2), v-erb-b2 erythroblastic leukaemia viral 

oncogene homolog 3, ERBB3 (HER-3), and v-erb-a erythroblastic leukaemia viral oncogene 

homolog 4, ERBB4 (HER4) 65. Each member has an extracellular ligand binding region, a 

short membrane spanning region and intracellular protein-tyrosine kinase containing 

domain65. Ligand binding results in the formation of homo-and hetero receptor dimers and 

activation of the cytoplasmic tyrosine kinase domain resulting in auto-phosphorylation of 

specific tyrosine sites, which subsequently act as docking sites for downstream intracellular 

signalling pathways66. The two main signal transduction pathways stimulated are the 

mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)-AKT 

pathways (fig 1). Other pathways involved in transmitting ErbB signals include 

phospholipase C67, signal transducer and activator of transcription (STAT); SRC tyrosine 

kinase, which is stimulated in response to EGFR and ERBB2, and mammalian target of 

rapamycin (mTOR), a serine/threonine protein kinase activated beyond PI3K-AKT66. 

Different ERBBs preferentially modulate certain downstream signalling pathways owing to 

receptor binding to specific effector proteins. As a result cells harbouring EGFR tyrosine 

kinase mutations tend to activate PI3K-AKT and STAT pathways, whereas ERBB2 couples to
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Figure 1. EGF receptor signalling
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Fig 1. Signalling downstream of EGFR showing the two key pathways activated. The MAPK 
pathway stimulates proliferation and the PI3K/AKT pathway promotes cell survival. Gefitinib is 
an ATP analogue and competes w ith ATP binding w ithin the catalytic kinase domain o f RTKs. 
Cetuximab binds to the L2 domain of EGFR.GSK3(3, glycogen synthase kinase 3(3; NF-KB, nuclear 
factor-KB; PDK1, pyruvate dehydrogenase kinase 1; PIP2, phosphatidylinositol biphosphate; 
PIP3, phosphatidylinositol triphosphosphate; RTK, Receptor tyrosine kinase. Adapted from 
Baselga and Swain Nature Reviews Cancer (2009) and Imai and Takaoka Nature Reviews Cancer 
(2006)



the MAPK pathway, and ERBB3 associates with the p85 adapter subunit of PI3K through its 

numerous p85 docking sites to signal through PI3K-AKT cascades 66.

It is interesting to note that no ligand binds ERBB2, but it is the preferred 

dimerisation partner for all other ERBB members and, that ERBB3 has no functioning 

tyrosine kinase activity and only transmits a signal when it pairs with another ERBB 

receptor66. ERBB2 is normally only activated following hetero-dimerisation with another 

ligand bound ERBB receptor or when over-expressed due to constitutive activation 

presumably as a result of increased membrane receptor concentration66, 68. Conventional 

wisdom has recently been challenged based on the finding that ERBB2 shows striking 

similarity to a tightly ligand-regulated invertebrate EGF receptor, suggesting that ERBB2 has 

activating ligands69. Alvadaro and colleagues conclude that identifying these possible 

membrane associated ligands and understanding their role in human cancers may provide 

new therapeutic directions for targeting ERBB receptor signalling.

1.4.2 Deregulated function

In vivo functions of the ERBB family are crucial for embryogenesis and development 

of epithelial organs such as the skin, lung and gastrointestinal tract. Egfr gene knock out 

studies in mice have shown embryonic lethality or impaired development of skin, heart, 

lungs and gastrointestinal tract, whereas knock out of Erbb2, Erbb3 or Erbb4 causes defects 

in cardiac and neural development70. Given their central role in development, it is of no 

surprise that deregulation of the ERBB receptor family occurs in cancer, evidenced by over­

expression and mutation in the various family members. Pertinently EGFR was the first 

tyrosine kinase receptor directly linked to tumour development in humans66, 70. EGFR is 

over-expressed in head and neck, NSCLC, breast, bladder, kidney, prostate and colon 

cancer71, 72. Over-expression of EGFR also occurs in gliomas and is often associated with 

structural re arrangements that produce in-frame deletions in the extracellular domain of 

the receptor; the most frequent being the EGFR variant III66. The remaining family members 

ERBB2, ERBB3 and ERBB4 are implicated in a range of other cancers such as breast, lung, 

pancreas, oesophagus, endometrium, cervix and stomach cancer71.

Deregulated ERBB signalling activates key processes involved in tumour growth and 

progression, including proliferation and survival. The main effector pathway mediating cell
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survival is the PI3K-AKT pathway since several AKT substrates control various apoptotic 

processes68. Signalling through the MEK/ERK pathway is linked to cell growth, survival and 

invasion in cancer and its pattern determines whether activation favours mitogenesis (short 

duration) or differentiation (long duration)73. By disturbing ERBB2 signalling activity, using a 

variety of methods such as antagonistic antibodies, small molecule kinase inhibitors and 

antibodies causing functional inactivation of the receptor in endoplasmic reticulum, ERBB2 

has been shown to be important in promoting proliferation of malignant cells. The nuclear 

effectors of such proliferative activity include G1 regulators Myc, D-type cyclins, cyclin 

E2/cdk2 complexes and the cyclin dependent kinase inhibitor p27 (KIP1)68.

1.4.3 Therapeutic targeting

The main approaches in the clinic to counter aberrant signalling through EGF 

receptor tyrosine kinases include monoclonal antibodies (mABs) and small molecule 

tyrosine kinase inhibitors. mABs have been created against the extracellular domain of the 

EGF receptor (fig 1) and have their effect by recruiting cytotoxic lymphocytes as well as 

interfering with cancer cell signalling (see below). Such drugs include Cetuximab (Erbitux " ; 

Bristol Myers Squibb/lmclone) or Panitumumab (Vectibix; Amgen)71. Small molecule 

tyrosine kinase inhibitors (ATP mimetics) block ERBB function by competing for the ATP- 

binding pocket9 located on the intracellular portion of its receptor71 (fig 1) thereby 

disrupting mitotic signalling downstream. Two examples include Gefitinib (Iressa; 

AstraZeneca) and Erlotinib (Tarceva; Genentech/OSI) which are active in NSCLC expressing 

catalytically active EGFR. Drugs with activity against both EGFR and ERBB2 have been 

developed and may represent a more attractive strategy (Lapatinib, GlaxoSmithKline; Cl- 

1033, Pfizer and EKB-569, Wyeth-Ayerst Research)71.

The putative mechanisms of monoclonal antibody based cancer therapies are 

mediated through direct or indirect actions9. Direct effects include blockade of ligand 

receptor binding, increased receptor internalisation, inhibition of cell cycle progression or 

DNA repair, regression of angiogenesis and pro-apoptotic effects. Indirect effects of 

monoclonal antibodies mediated by the immune system include eradication of tumour cells 

by Ig-mediated complement-dependent cytotoxicity and antibody-dependent cellular 

cytotoxicity.
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Small molecule tyrosine kinase inhibitors by contrast do not have indirect effects on 

the immune system. Gefitinib targets EGFR selectively and unlike mABs is able to translocate 

cell membranes to interact with the cytoplasmic domain of the receptor tyrosine kinase9(fig 

1). Gefitinib has been shown to inhibit growth mainly through cytostatic effects, but also 

through increased programmed cell death74. Recent studies have shown that gefitinib 

induced apoptosis, at least in gefitinib sensitive NSCLC cell lines, is dependent upon the 

transcription and post-translational modification of BIM, a BH3-only pro-apoptotic protein75.

1.4.4 Resistance to EGFR targeted agents

Understanding the mechanisms of drug resistance in tumours is a crucial component 

of treating any cancer. Primary drug resistance may occur in patients who have not achieved 

stable disease or who progress within 6 months of therapy after an initial response, whereas 

resistance after prolonged treatment is termed secondary resistance, for which several 

molecular mechanisms may be responsible76.

In terms of understanding resistance to small molecule therapy a number of 

mechanisms have been proposed76. These include structural alteration of the kinase domain 

resulting in an inability of the inhibitor to bind to the intracellular catalytic domain, 

secondary activating mutations in the kinase domain, or the development of a 'kinase 

switch' activating a kinase other than the primary targeted kinase, in cancer cells. Other 

possible mechanisms include gene amplifications leading to higher expression levels of 

receptor and a higher required dose of inhibitor to produce a sustained effect.

A further mechanism accounting fo r resistance to tyrosine kinase inhibition is up- 

regulated expression of ERBB3 and consequent enhanced PI3K-AKT signalling77 through the 

ability of ERBB3 to dock with the p85 alpha regulatory subunit of PI3K78. This highlights the 

ability of tumour cells to enhance signalling pathways to circumvent drug effects. Additional 

mechanisms which have yet to be defined, but are potentially important in determining 

resistance to small molecular tyrosine kinase inhibitors include extracellular sequestration 

of drug by plasma proteins, and increased drug efflux by trans-membrane pump proteins.

When considering targeted treatments relating to metastatic colorectal cancer it is 

possible some of the mechanisms accounting for resistance to tyrosine kinase inhibition
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may have a role in mediating resistance to mABs against EGFR. Several primary mechanisms 

of resistance have already been mentioned including mutations in K-RAS, B-RAF, PIK3CA and 

PTEN loss (1.3.4). However it is likely that these signalling molecules will be targeted in the 

future. Genome wide RNAi screens have already identified synthetic lethal interactions with 

the RAS oncogene which can be targeted. For example, inhibition of PLK1 (using BI-2536) 

which has a role in mitosis, has shown profound G2/M accumulation in RAS mutant cells79.

Signalling through another member of the receptor tyrosine kinase family, IGF1R has 

also been shown to confer resistance to EGF family blockade80"82 and is activated in 

response to chemotherapy for treatment of colorectal cancer83. Hence cross­

communication between members of receptor tyrosine kinases is likely to be a route 

exploited by cancer cells to overcome targeted drugs against EGFR.

Finally, parallel signalling pathways can become activated as a means of inducing 

tumour growth to counter anti-tumour drug effects, as exemplified by increased AKT activity 

in cancer cells resistant to the MEK inhibitor, AZD624484. Tumours are therefore poised to 

exploit established circuitry links between RAS and PI3K/AKT, evidenced by GTP-bound RAS 

interacting directly with PI3K to create an effector pathway for RAS signalling85, thus 

enabling parallel pathway activation.

1.5 Insulin-like growth factor 1 receptor (IGF1R)

IGF1R and insulin receptors have tetrameric structures and are composed of two half 

receptors, comprising a predominantly extracellular a-chain, involved with ligand binding, 

and, a principally intracellular p-chain including the tyrosine kinase domain. Hybrid 

receptors can form between insulin and IGF-1 receptors expressed in cells that possess both 

receptors86(Fig 1.1) and given this, the specificity of IGF1R targeting is biologically 

challenging. As a consequence of receptor activity, AKT and MAPK transmit mitogenic 

signals downstream. Interestingly the IGF-2 receptor is not implicated in signal 

transduction but sequesters IGF-2 and in doing so regulates ligand bioavailability86. The 

bioavailability of IGF-1 and IGF-2 is also modulated by the binding affinities of various 

IGFBPs and in general limit the access of IGFs to IGF1R suppressing biological activity86. IGF-1 

and IGF-2 are both manufactured in the liver but are also produced in tumours allowing 

them to act locally and influence tumour dynamics at this level86.
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Fig 1.1 Insulin -like growth factor (IGF) signalling
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Fig 1.1 The ligands IGF-1, IGF-2 and insulin bind to various members o f the insulin receptor 
(IR)-IGFIR family. IGF2 binds w ith a greater affinity to  IRA than IRB. The bioavailability o f IGF-1 
is lim ited by IGF binding proteins (IGFBP) and that o f IGF-2 is governed by IGFBPs and the IGF- 
2R. The IR and IGF-1R receptors are tetrametric and composed of 'half receptors'. The 
intracellular domain of each receptor has tyrosine kinase activity regulated by ligand binding. 
Receptors may form into pure insulin receptors, pure IGF-1 receptors or hybrids. Downstream 
signalling is mediated by PI3K/AKT and MAPK. Adapted from Poliak, Nature Reviews Cancer 
(2008).



The type 1 insulin-like growth factor receptor has been implicated in various aspects 

of tumour development and metastasis86,87. Expression of IGF1R has been demonstrated in 

cancer cell lines and human malignancies and mitogenic responses have been observed in 

cell lines at physiological levels of IGF-1 ligand86. Specifically increased levels of IGF1R at 

transcript and protein level have been documented in colon cancers relative to adjacent 

normal colonic mucosa88 suggesting its relevance in the pathogenesis of colon cancer. 

Indeed IGF-2 was found to be the uppermost differentially regulated transcript in colon 

tumour tissue compared with normal colonic epithelium89.

The IGF system has also been shown to be important and relevant to intestinal 

physiology and tumourigenesis in the Apcmm/+ mouse which models familial adenomatous 

polyposis. Expression of lgf-2 and Ig flr  has been demonstrated in Apcmm/+ intestinal 

adenomas and genetic manipulation of lgf-2 availability modifies their growth90. 

Furthermore expression of a soluble Igf2r transgene has been shown to rescue lgf-2 

dependent normal intestinal and intestinal adenoma phenotypes in Apcmm/+ mice91.

A very recent publication has demonstrated increased expression of Ig f lr  in a mouse 

model of mammary cancer driven by over-expression of a constitutively active oncogenic K- 

ros allele. Interestingly, ablation of Ig f lr  expression increased tumour latency in this model, 

suggesting Ig f lr  had a causal role in mammary tumourigenesis92. This may be a context 

dependent effect, restricted to subtypes of mammary cancer, but it could imply IGF1R has a 

role in the genesis of colorectal cancer carrying K-RAS mutations, and that therapeutic 

manipulation of IGF1R signalling in this setting may be advantageous.

IGF1R drug targeting has emerged over the last two decades using monoclonal 

antibodies and small molecule inhibitors in a range of malignancies93. Reliable biomarkers 

for the prediction of sensitivity to IGF1R targeted agents however appear biologically 

complicated. So far, evidence suggests that receptor and ligand levels together with 

differentiation markers may be required to help define tumours predisposed to IGF1R 

inhibition93. Clinical evidence supporting IGF1R as a treatment target for Ewing's sarcoma, 

adrenocortical cancer and non-small cell lung cancer94 highlights the need to understand the 

resistance pathways which will emerge in response to antagonism of the IGF1R receptor. 

Interestingly, resistance to IGF1R targeted therapies has been demonstrated in a reciprocal
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fashion, with up-regulation of EGFR and its ligands, suggesting EGFR pathway activation may 

be an alternative route for growth signals to be transmitted in the presence of inhibition of 

IGF1R signalling95, 96. Given the possible bidirectional cross communication between EGFR 

and IGF1R pathways, it is not surprising that research, in response, has been directed 

towards combined targeted therapy against both these pathways97.

1.6 Genetically engineered mouse models of colon tumourigenesis

Murine models of cancer have expanded our understanding of basic cancer biology 

and many genetically engineered mouse models (GEMMs) have been created to explore 

intestinal tumourigenesis in detail98. GEMMs have desirable qualities allowing tumour 

development in the presence of an intact immune system and also permit tumour-stromal 

interactions that influence tumour progression (angiogenesis/matrix degradation)99. 

Furthermore GEMMs attempt to faithfully m irror the genetic events occurring in human 

malignancies making them pertinent to the study of the cancers they model. The two 

models used in this work include the Apcmm/+ mouse and AhCreT/+ Apc?/+ K-rasvl2/+ and 

AhCreT/+ ApcP/+ K-ras+/+ conditional transgenic models.

1.6.1 Apcmin/+ mouse

Apcmm/+ mice were established from ethylnitrosurea-treated C57BL/6 male mice, 

whose offspring were noted to develop adult onset anaemia, transmitted as an autosomal 

dominant trait. Further enquiry established chronic blood loss due to multiple small and 

large intestinal adenomas and consequently the mutant gene responsible was named 

multiple intestinal neoplasia (Min)100. Further work in William Dove's laboratory determined 

that the Min phenotype was a result of a germ-line nonsense mutation in the murine 

homologue of the APC gene101 which gives rise to familial adenomatous polyposis, an 

inherited colorectal cancer syndrome characterised by multiple colorectal tumours102. 

Extensive loss of Ape was subsequently shown in adenomas from Apcmm/+ mice103 and 

furthermore, deregulation of Wnt signalling has been found to be pivotal in intestinal 

tumourigenesis as truncating mutations in APC lead to constitutive nuclear 0 catenin/TCF 

complexes driving a proliferative genetic programme104, 105. The Apcm,n/+ mouse is 

considered a relevant model of human colon cancer as more than 80% of adenomas and 

colorectal cancers have at least one mutation in the APC gene associated with the
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development of the majority of colorectal cancers106. Despite this the Apcmm/+ mouse is 

limited in its ability to mirror genetic events that follow mutations in Ape and has given an 

impetus to the development of better models of colon cancer.

The number of intestinal tumours in Apcmm/+ mice is strongly influenced by genetic 

background and genetic mapping identified the Mom-1 (Modifier of Min-1) locus as a 

dominant modifier of the intestinal phenotype, accounting for 50% of the genetic variance 

in tumour number107. A phospholipase A2, Pla2g2a transgene, derived from within the 

Mom-1 region, has been shown to act as a resistance modifier in Apcmm/+ intestinal 

phenotypes and closely reproduced the quantitative reduction in tumour numbers seen in 

Mom-1 heterozygotes, suggesting that the Mom-1 locus is in fact Pla2g2a108. It is worth 

noting that the gene expression experiments, using Apcmm/+ mice to identify putative genes 

indicative of response to anti-EGFR targeted therapy, were performed using in-bred 

C57BL/6 mice homozygous for Mom-1. This enabled the identification of gene changes in 

genetically similar tumours, thus removing a source of genetic variation which could 

obscure any induced transcript changes (Chapter 3).

Of relevance to this project, studies have shown evidence of Egfr activity in Apcmm/+ 

intestinal tumours. Increased total Egfr protein expression in Apcmm/+ adenomas relative to 

wild type enterocytes has been demonstrated, as has the level of phospho-Egfr from 

membrane preparations of intestinal adenomas relative to the same fraction from normal 

Apcmm/+ colon109. Further work supporting Egfr in adenoma pathogenesis comes from work 

showing Apcmn/+ mice carrying a homozygous Egfrwa2 hypomorphic allele demonstrate a 

marked reduction in intestinal polyp number110. Pharmacological inhibition of the Egf 

receptor using the Egfr tyrosine kinase inhibitor EKI-785 also produced similar results in 

ApcM,n/+ mice110. Less dramatic reductions in tumour multiplicity following exposure to EKI- 

785 have however been reported111 and controversially, an alternative Egfr inhibitor, A/-[4- 

(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-acrylamide (CFPQA), failed to demonstrate 

suppression of intestinal adenomas at levels sufficient to abolish phospho-Egfr, leading the 

authors to conclude that Egfr mediated signalling was not critical for early stages of 

intestinal carcinogenesis112. The role of Egfr signalling in ApcM,n/+ intestinal tumourigenesis is 

examined in detail in acute and chronic dosing studies of gefitinib described in Chapter 5.
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1.6.2 AhCreT/+ Apc?/+ K-rasvl2/+ conditional transgenic mouse model

The limitation of the Apcmm/+ mouse to recapitulate the genetic changes following 

mutation in Ape has driven investigators to develop and characterise mouse models which 

include the common mutations seen in human colorectal cancer beyond Ape. Work to 

develop genetically engineered mouse models of colorectal cancer displaying the full 

features of human colorectal cancers is progressing and invasive models are now 

available113, 114. However, models displaying the full metastatic phenotype of colorectal 

cancer continue to remain elusive. This is important to tackle if we aim to use in-vivo 

platforms closely resembling metastatic cancers as a preclinical test bed for therapeutic 

manipulation.

The presence of K-RAS, and other mutations which predict lack of response to EGFR 

targeted agents in metastatic colorectal cancer, represent areas of unmet clinical need. To 

address this therapeutic challenge, a conditional transgenic mouse model of accelerated 

and invasive colon tumourigenesis has been used, in this project, as an in vivo platform, by 

inducing intestinal expression of an oncogenic K-rasv12 allele in the context of Ape deficiency 

(,AhCrev * Ap<?h  K-rasvl2/* )114.

This model of K-ras mutant colorectal cancer was made possible by conditional gene 

targeting using Cre-loxP recombination115 which permits cell-type specific and inducible 

mutagenesis. By crossing mice bearing the targeted allele (Apc580S)116 onto mice carrying the 

transgenic line AhCre, ere expression was inducible from a cytochrome P450 promoter 

element which is transcriptionally up-regulated in response to (3-napthoflavone117, resulting 

in loss of Ape exon 14 throughout the intestine114. Simultaneously the intestinal expression 

of the oncogenic K-rasvl2/+ allele was achieved by ere due to the loss of a STOP 

transcriptional cassette118. The loss of this STOP cassette also permitted expression of a 

reporter stain, LacZ, to confirm recombination114.

This clinically relevant model of K-ras mutant intestinal cancer has been subject to 

investigation using novel therapy targeting the constitutively activated MAPK pathway, via 

inhibition of MEK using AZD6244 (Chapter 7). It is hoped this in vivo platform will have pre­

clinical utility, overcoming some of the disappointments xenograft studies present, and thus 

demonstrate an improved correlation between therapeutic activity of compounds tested
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and efficacy in humans. To date, little drug evaluation has been carried out in well designed 

GEMMs of cancer that faithfully mimic the genetic and biological evolution of their 

counterpart diseases".

1.7 Mitogen activated protein kinase (MAPK) signalling and colorectal cancer

Human tumours frequently possess activating mutations in one of the RAS genes119 

and downstream effector signalling pathways include Raf kinases, type I phosphoinositide 3- 

kinases, Ral-guanine nucleotide exchange factors, Rac exchange factor Tiam 1 and 

phospholipase Ce120. The most intensively studied effector is the protein serine/threonine 

kinase RAF, which is activated by GTP-bound RAS and consequently phosphorylates and 

activates mitogen-activated protein kinase kinases 1 and 2 (MEK1 and MEK2). Activated 

MEK1/2 subsequently activates the mitogen-activated protein kinases (MAPKs) ERK1 and 

ERK2 (extracellular signal-regulated kinases 1 and 2) which interact with transcription 

factors regulating cell cycle proteins120.

The MAPK pathway is activated in colorectal cancer and is involved in the regulation 

of apoptosis, cell proliferation, tumour invasion and metastasis73. In keeping with this, 

human primary colorectal cancers demonstrate increased expression of phosphorylated 

MEK in 76% of cases, highlighting the potential importance of the RAF-MEK-ERK signalling in 

colorectal tumour development121. As K-RAS mutations are frequently observed in 

colorectal cancer (approx. 40%46) strategies to counter constitutive signalling activity are 

under development, including drugs which target MEK1/2.

1.7.1 Pharmacological manipulation by inhibition of MEK1/2

AZD6244, previously known as ARRY-142886, is a potent, selective and ATP 

uncompetitive inhibitor of mitogen-activated protein kinase/extracellular signal-regulated 

kinase kinase 1/2 kinases (MEK1/2)122. MEK inhibition has been shown to produce cell cycle 

arrest and BCL-2 regulated apoptosis in B-RAF mutant tumour cells. In addition MEK 

inhibitor-induced apoptosis has been found to be dependent upon BIM (BH3 only pro- 

apoptotic protein) expression, in B-RAF mutant colorectal cancer cells123. Other studies 

have also demonstrated that MEK inhibition induces down-regulation of cyclin D1 with 

induction of G1 arrest124.
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In vitro cell viability inhibition screening studies have shown that tumour cells 

harbouring B-RAF and K-RAS mutations are likely to be sensitive to AZD6244122. 

Furthermore, chronic dosing with AZD6244 results in growth suppression of tumour bearing 

xenografts which harbour Colo-205, Calu-6 and SW-620 transplants possessing either K-RAS 

or B-RAF mutations. This contrasts with previously published work showing that mutant B- 

RAF cell lines are associated with heightened sensitivity to MEK inhibition using Cl 1040, 

compared to cell lines carrying wild type or K-RAS mutations, which were resistant124. These 

data may arise due to differences between the MEK inhibitors AZD6244 and Cl 1040, 

however it does raise the possibility that MEK inhibition is perhaps a more appropriate 

therapy for B-RAF rather than K-RAS mutant colorectal cancer.

Pharmacodynamic studies have confirmed that the unique substrate of MEK, ERK, 

and its subsequent phosphorylation, is inhibited by AZD6244 and is therefore a potential 

biomarker for target inhibition122. However defining the molecular determinants that 

identify patient tumours responsive to MEK inhibition appears more complicated than at 

first thought. A recent report has shown that the majority of colorectal cancers carrying B- 

RAF or K-RAS (but not wild-type) cancer cell lines show growth inhibition with MEK 

inhibition (using U0126 andCI-1040)125. However, despite there being a correlation between 

ERK activation and B-RAF mutation status in colorectal cell lines and patient colorectal 

tumour samples, there was no correlation with K-RAS mutations125. In addition MEK 

inhibitor suppression of soft agar colony formation was not correlated with ERK activity125. 

As a consequence ERK activity appears to be an unreliable biomarker of therapeutic 

response to MEK inhibition. However, K-RAS and B-RAF mutation status may be useful to 

reliably predict patient response to MEK inhibition125.

It will be of interest to observe how these findings relate to in vivo dosing studies of 

AZD6244 in AhCreT/+ ApcP/+ K-rasvl2/+ GEMMs (Chapter 7). Crucially, and in light of the poor 

correlation between K-RAS mutation status and ERK activity125, K-RAS can clearly influence 

distal mitogenic signalling independent of ERK activity through alternative pathways120 

(e.g.PI3K/AKT). As a result these pathways may need to be targeted alone or in combination 

with MEK inhibition if therapy in K-RAS mutant colorectal cancer is to be effective in.
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Interestingly, recent work in the context of B-RAF melanoma has shown on-target 

resistance to MEK inhibition arising through reduced drug binding affinity, or enhanced 

MEK1 kinase activity (e.g. MEK1P124L )126, which could also have implications for any future 

therapeutic role of MEK inhibition in colorectal cancer.

1.8 Apoptotic cell death

There are three major pathways of cell death - apoptosis, necrosis and autophagy, 

with the predominant mode of cell death being dependent upon cell type and injury127. In 

contrast to swelling of the cell and its organelles that defines necrosis, the primary 

morphological feature of apoptosis is shrinkage of the cell and its nucleus (condensation of 

chromatin and nuclear fragmentation). In addition the integrity of the plasma membrane is 

lost early in the course of necrosis, whereas with apoptosis, the plasma membrane remains 

intact until late in the process127.

Two major pathways of cellular apoptosis are present in cells: the extrinsic death 

receptor pathway mediated through activation of death receptors, and the BCL-2 regulated 

mitochondrial pathway. The intrinsic (mitochondrial) pathway is activated by intracellular 

reactive oxygen species, DNA damage and loss of growth factors, which leads to activation 

of pro-apoptotic BH3 proteins which interact with and inhibit anti-apoptotic BCL-2 and BCL- 

XL proteins. As a result BAX and BAK are free to increase mitochondrial permeability 

resulting in the release of cytochrome c, which activates caspase 9 and subsequently 

caspase 3, 6 and 7 proteases that herald destruction of the cell by cleaving proteins and 

activating DNases127.

The balance between pro-apoptotic and pro-survival proteins ultimately dictates cell 

fate. The intrinsic pathway is controlled by three subgroups of BCL-2 family members. The 

pro-survival members include B-cell CLL/lymphoma 2 (BCL-2), BCL2-like 1 (BCL-XL), BCL2-like 

2 (BCL-W), myeloid cell leukemia sequence l(MCL-l), A1 and BCL2-like 10 (BOO/DIVA). 

Members of this subgroup have up to four BCL-2 homology regions127. The pro-apoptotic 

BCL-2 family members BCL2-associated X protein (BAX) and BCL2-antagonist/killer 1 (BAK) 

have three BCL-2 homology domains127. The final pro-apoptotic family members have only 

the BLC-2 homology 3 (BH3) domain. These BH3 only proteins including BCL2-like 11 (BIM), 

BCL2 binding component 3 (BBC3/PUMA), BCL2-associated agonist of cell death (BAD),
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phorbol-12-myristate-13-acetate-induced protein (NOXA) and BH3 interacting domain death 

agonist BID128, bind to pro-survival BCL-2 family members and inhibit their function, 

liberating pro-apoptotic BAX and BAK proteins127. BIM and PUMA can sequester all anti- 

apoptotic proteins with high affinity and are therefore powerful killers128.lnterestingly, 

different apoptotic stimuli preferentially stimulate certain BH3 only proteins; BIM is 

necessary for apoptosis induced by deprivation of growth factors, whereas PUMA is 

essential for apoptosis induced by DNA damage127.

1.8.1 BH3 mimetics

BH3 mimetics are small molecules that mimic the effects of pro-apoptotic BH3 only 

proteins by binding to and inhibiting pro-survival proteins included In the BCL-2 family129. 

ABT-737 is the best characterised BH3 mimetic and has a similar binding profile to BAD128 

and crucially is unable to kill cells which lack both BAK and BAX, showing that it mediates 

cell death through the intrinsic apoptotic pathway128.

The anti-tumour effects of ABT-737 and its ability to induce apoptosis is dependent 

upon tumour cell type. It has efficacy against certain small cell lung cancers and various 

haematological malignancies as a single agent, all of which are dependent upon BCL-2 

expression, however it is less effective in other tumours128. It has been discovered that 

sensitivity of a tumour to ABT-737 is dependent upon the levels of apoptotic family 

members. Increased expression of BCL-2, BCL-XL, NOXA and BIM indicates sensitivity, 

whereas increased MCL-1 indicates resistance130.

Combination studies of ABT-737 with targeted agents have given rise to encouraging 

results. For example experiments have demonstrated enhanced apoptotic cell killing of 

NSCLC cell lines when ABT-737 is combined with gefitinib75 and similar effects when ABT- 

737 is combined with MEK inhibition in the setting of Colo205 cell lines123. This documented 

synergy in cell killing between oncogenic kinase inhibitors and ABT-737 is associated with 

loss of ERK1/2 activity resulting in inhibition of BIM phosphorylation128. As a consequence 

BIM accumulation is thought to exert pro-apoptotic effects by enhanced association with 

BCL-2 family members, rather than being targeted for proteosomal degradation. As a result, 

ABT-737 is available to bind and saturate BCL-2, BCL-XL and BCL-W anti-apoptotic proteins, 

freeing up induced BIM to bind MCL-1 and A l128. The combination therefore effectively
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Fig 1.2 Central role of MEK-ERK signalling and BCL-2 homology domain 3 (BH3) -on ly  protein 
BIM in mediating the efficacy of gefitinib and MEK inhibition in the presence of ABT-737
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Fig 1.2 The pink boxes represent oncogenic kinases that are targeted with kinase inhibitors 
and demonstrate synergy in cell killing w ith ABT-737. The kinase inhibitors reduce ERK 1/2 
activity suppressing BIM phosphorylation. The loss of ERK 1/2 mediated phosphorylation of 
BIM results in increased apoptotic activity o f BIM due to reduced targeted destruction by 
ubiquitinylation (Ub) and proteosomal degradation. ABT-737 binds to  and saturates the 
available BCL-2, BCL-Xl and BCL-W pro-survival proteins freeing up accumulated BIM to 
promote apoptosis by saturating available BCL-2 and MCL-1. Combined treatment results in 
blockade of all pro-survival proteins and efficient apoptosis. Adapted from Cragg et al Nature 
Reviews Cancer (2009).



blocks all of the pro-survival family members in tumours resulting in enhanced apoptosis128 

(fig 1.2). This data precipitated investigation of combined dosing with ABT-737 and gefitinib 

in Apcmin/+ mice to document it effects in vivo (Chapter 6).
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1.9 Aims and Objectives

Interest in personalised medicine, targeted oncological therapy and an inherent 

need for predictive biomarkers in routine oncological practice, has acted as a catalyst for the 

expansion of translational research in cancer medicine. Furthermore, with developments in 

targeted therapies, the sceptre of drug resistance continues to emerge, requiring focused 

research efforts to increase our understanding of tumoural molecular pathways which 

overcome anti-tumour drug activity. In addition, an increasing number of novel molecularly 

targeted agents, developed by pharmaceutical industries, need a research driven approach 

to define how best to combine drugs, especially in relation to the avoidance of tumour drug 

resistance.

These issues are at the forefront of this project which focuses on translational 

research in colorectal cancer and has incorporated genetically modified mouse models of 

colon tumourigenesis in an attempt to address some of the difficulties facing oncologists 

and their patients with metastatic colorectal cancer. In particular, and as discussed (1.3.4), 

recent estimates report that 70% of patients' likelihood of response to EGFR targeted 

therapy can be predicted based on the mutational status of known mutations in K-RAS, B- 

RAF, PIK3CA/PTEN pathways, leaving a gap in our understanding of the response 

mechanisms determining outcome to EGFR targeted therapy. Here it is hoped data from 

Apcmm/+ mouse colon tumours will be useful in expanding our understanding and 

identification of new putative biomarkers capable of predicting treatment responses to 

EGFR targeted therapy in K-RAS wild type colorectal cancer.

Patients with metastatic colorectal cancer in the absence of K-RAS mutations receive 

EGFR targeted therapy, but will inevitably develop drug resistance. In order to model 

tumour resistance in vivo, the Apcmm/+ mouse has been exposed to Egfr blockade to explore 

activated pathways of potential importance. The lgf-1 receptor pathway is specifically 

investigated as a potential resistance mediator of EGFR targeted therapy. In addition, the 

timing of molecular responses to acute Egfr blockade is examined to assess whether drug 

induced changes can be identified early in a treatment schedule, which would have clear 

benefits for personalised drug targeting. I have also explored the effect of Egfr blockade
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(using gefitinib) in the Apcmm/+ mouse, with and without additional antagonism of Ig flr 

signalling using another small molecular tyrosine kinase inhibitor, AZ12253801.

As patients with K-RAS mutant metastatic colorectal cancer are at a disadvantage in 

terms of EGFR monoclonal antibody treatment (1.3.4), novel targeted therapy is explored in 

vivo, using conditional transgenic mouse models of colon cancer (AhCreJ/+ AprP/+ K-rasvl2/+) 

harbouring the same mutations seen in human colorectal cancer. Given that tumours 

carrying mutant K-ras alleles will have constitutive pathway activation of Raf/Mek/Erk 

signalling, AZD6244, an inhibitor of Mek, is explored as a new therapeutic option.

Finally, in order to investigate new options of therapy which build upon the benefits 

of targeted EGFR monotherapy, Apcmm/+ mice have been exposed to Egfr inhibition 

combined with a BH-3 mimetic, ABT-737. The acute anti-tumour phenotypic changes in 

response to the drug combination may support longer term studies in mice, which if positive 

may guide future early phase clinical trials and could build upon the success of EGFR target 

monoclonal antibody therapy in patient with K-RAS wild type advanced colorectal cancer.

The aims of this research can therefore be summarised as follows:

•  To validate the Apcm,n/+ mouse as a useful model of K-ras wild type colon cancer.

•  To define putative predictive biomarkers of response to Egfr targeted therapy in K- 

ras wild type colon tumours from Apcmm/+ mice.

•  To relate the identified mouse transcripts to human rectal cancer transcriptome data 

to validate their significance in terms of patient outcomes to EGFR targeted therapy.

• To generate hypotheses regarding the biological significance of mouse transcript 

changes and inferences regarding their expression patterns in patients' colorectal 

cancer specimens in response to EGFR blockade.

•  To propose novel or reinforce previously identified mechanisms of resistance to 

EGFR targeted therapy using the Apcm,n/+ mouse.

• To specifically investigate Ig flr  pathway activity in Apcmm/+ K-ras wild type colon 

polyps as a resistance mechanism to Egfr blockade.

•  To test the in vivo proof of concept that early molecular pathway changes may be 

useful biomarkers for response/resistance prediction.
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• To investigate inhibition of Egf and lgf-1 receptors in the Apcm,n/+ mouse.

• To explore the acute therapeutic potential of BH3 mimetics combined with Egfr

blockade in the Apcmm/+ mouse.

• To explore the immediate effect of Mek inhibition in intestinal tumours from Apcm'n/+ 

and conditional transgenic mice harbouring an endogenously activated K-ras mutant 

allele.

In summary this project uses genetically modified mouse models of colon

tumourigenesis and describes their broad application in terms of biomarker discovery,

target validation, therapeutic trials and modelling resistance to targeted agents.
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Chapter 2

2. Materials and Methods

2.1 Animal experiments and reagents

2.1.1 Animals

Apcmm/+ mice were in-bred on a C57BL/6 background whereas the AhCreT/+ 

Apcfl/+Kros+/+ and AhCreT/+ ApcP/+KrosvU/+ mouse models were maintained on an out-bred 

background. The Min pedigree was maintained by crossing Min/+ males with B6 wild type 

females whereas AhCreT/+ ApcP/+Kras+/+ and AhCreT/+ Apc?/+Krasvl2/+ mice were produced by 

mating male AhCre+/+ ApcP/fl Krasvl2/+ with AhCreT/+ Apc+/+ Krasvl2/+ females. All experimental 

mice were housed in colony specific cages (max 3/cage) with a 12 hr day/light cycle. Mice 

received expanded RM(3) diet (Special Diet Services) and tap water ad libitum. Weaning 

took place at approximately 4 weeks of age at which time ear marking was also performed. 

All procedures that involved animals and their welfare were conducted in accordance with 

the institutional guidelines complying with United Kingdom national policies [Animals 

(Scientific Procedures) Act 1986].

2.1.2 Animal genotyping

Mice were genotyped at 6-8 weeks of age using tail tip material and re-genotyped at 

death to corroborate the initial genotyping. Genomic DNA was extracted using Puregene" 

cell lysis solution containing 2% proteinase K (Qiagen, UK). Samples were incubated 

overnight at 37°C or at 55°C for three hr. Puregene" protein precipitating solution (Gentra 

systems, UK) was added to the tube and inverted 3-4 times and centrifuged at full speed for 

10 min. Supernatants were subsequently placed in 500pl of Isopropanol (Sigma, UK) and 

inverted 3-4 times followed by centrifugation at full speed for 15 min. Supernatant was 

removed leaving each DNA pellet to air dry for 1 hr prior to the addition of 500|il of nuclease 

free water. Extracted genomic DNA was used for subsequent PCR and the reagents for a 

single reaction are detailed in table 2 .1 .
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Reagent Quantity

5x GoTaq Reaction buffer lOpI

MgCI2 (25mM) 5pl

dNTPs (25mM) 0.4pl

Primer (lOOpM) O.lpl (of each)

GoTaq DNA polymerase (5u/|il) 0 .2pl

Template DNA 2.5|il

Nuclease-free water To total 50pl

Table 2.1 Reagents included in each PCR genotyping reaction (reagents supplied by Promega 

except primers [Sigma-Genosys] and water [Sigma-Aldrich])

The primer sequences used to genotype animals were designed using primer 3 

software (http://frodo.w i.m it.edu/prim er3/) or from previous publications. The primer 

sequences, genotyping PCR conditions and expected PCR products for each reaction are 

detailed in table 2 .2 .

Each PCR product (20pl) was loaded into either 2% or 4% TBE/agarose gels (2.11.1) 

immersed in IX TBE running buffer and electrophoresed at 120 volts for approximately 30 

min. The addition of safe-view nucleic acid stain (NBS biological, UK) to gels made it possible 

to view bands using a contained UV light source (BioRad GelDoc 2000). Bands were 

identified based on size with reference to a lOObp DNA ladder (Promega).

2.1.3 Animal experiments

2.1.3.1 Materials for injection

2.1.3.1.1 Gefitinib

Gefitinib (AstraZeneca, Alderley Edge, UK) is a synthetic anilinoquinazoline 

compound (4-[3-chloro-4-fluroanilino]-7-methoxy-6-[3-morpholinopropoxy]quinazoline) 

that displays selective reversible inhibition of the EGF receptor by competitive inhibition of 

the tyrosine kinase domain ATP binding site131. The drug was suspended in purite water 

containing either 0.5% or 1% Tween80 (Sigma Chemical Co., St. Louis. MO.) and dosed at 

75mg/kg via the intra peritoneal route132. Gefitinib is a potent sub-micromolar inhibitor of
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Table 2.2 Primers used to genotype experimental mice, PCR conditions and expected products

Allele
detected

Primer sequences (5'-3') PCR program Product size

Ape floxed (1) GTT CTG TAT CAT GGA AAG ATA GGT GGT C

(2) CAC TCA AAA CGC TTT TGA GGG TTG ATT C 

AhCre/LacZ CRE (1) TGA CCG TAC ACC AAA ATT TG

CRE (2) ATT GCC CCT GTT TCA CTA TC 
LACZ (1) CTG GCG TTA CCC AAC TTA AT 
LACZ (2) ATA ACT GCC GTC ACT CCA AC 
(FI) AGG GTA GGT GTT GGG ATA GCKras

vl2

A !iApe

Mom

(Rmt) CTG CTC TTT ACT GAA GGC TC 

(Rwt) CTC AGT CAT TTT CAG CAG GC

(1) TCT CGT TCT GAG AAA GAC AGA AGC T

(2) TGA TAC TTC TTC CAA AGC TTT GGC TAT

(1) GCT TGC TTT AGG AGT GTG CC

(2) TAT TTG CTC TCC ATT TCC CC 
Responder (1) AGG TTC CCT GGG ACT TGT TT

(2) TCA CCA AAC CCT CCA TCA GT

580s.

94°C, 2min (94°C; lm in ; 55°C, lm in ; 72°C w t 226bp
2m in )35 72°C, lOmin

targeted (ApcJOU3) allele 314bp

95°C, 3 min (95°C, 30s; 55°C; 30s; 72°C lminjao CRE lOOObp 
72°C, 5min

LacZ 500bp

94°C, 5min (94°C, lm in ; 60°C, lm in ; 72°C, lm in  w t 403bp 
25s)so 72°C, lOmin

94°C, 2min (94°C, lm in ; 60°C, lm in ; 72°C, 
lm in )3o 72°C, lOmin

targeted Kras allele 621bp

Hindlll digest o f PCR product 
Min allele 144bp, w t 123bp

(4% Gel)

94°C, 2min (94°C, 45s; 60°C, 45s; 72°C, lm in )3o B6 194bp 
72°C, 5min

C3H 164bp
94°C, 5min (94°C, 20s; 57°C, 20s; 72°C, 30s)3o Responder 196bp 
72°C, 5min

Non responder178bp 

_____________(4% Gel)

References for primer sequences (i) Shibata, H et al. Science Vol 278 pp. 120-3,1997. (ii) Guerra, C et al. Cancer Cell Vol 4 pp. 111-20, 2003. (iii) Ireland, H et al. 
Gastroenterology Vol 126 ppl236-46, 2004. (iv) Luongo, C et al. Cancer Res Vol 54 pp5947-52, 1994. wt, wild type.



EGFR tyrosine kinase in vitro (IC50 0.033pM) with activity against ErbB2 tyrosine kinase 100 

fold less (IC5o >3.7pM )133 than that against EGFR. It does not inhibit the activity of Raf, MEK-1 

and ERK-2. Cmax for a single lOOmg/kg oral dose of gefitinib in L0V0 xenographs was 2.5 

(pg/ml) 133 whereas the half-life of gefitinib has been calculated as 3.1-3.3 hr in plasma, in a 

range of tumour xenografts following oral gefitinib at a dose level of 50mg/kg134. The 

fraction of the total amount of gefitinib eliminated per unit of time (elimination rate 

constant, Kd) using a mouse glioblastoma xenograft was estimated at 0.85 per hr135. In 

mouse studies doses extending to 200mg/kg/day have been well tolerated for up to 42 days 

(Investigators brochure). In a human L0V0 xenograft model oral gavage of gefitinib 

lOOmg/kg once daily resulted in a 40% inhibition of tumour growth133.

2.1.3.1.2 AZ12253801

AZ12253801 (AstraZeneca, Alderley Edge, UK) is a potent and selective small 

molecule inhibitor of the kinase domain of IGF-1R and was suspended in 1% Tween80 and 

dosed at 12.5mg/kg via the intra-peritoneal route. In vitro activity of AZ12253801 has 

demonstrated inhibition of IGF-1R: IC50 2nM; inhibition of IR phosphorylation: IC50 45nM; 

inhibition of IGF-driven proliferation: IC50 20nM; inhibition of EGF-driven proliferation: IC50 

250nM. In vivo anti-tumour activity has been demonstrated at oral doses ranging from 

6.25mg/kg/day to 25mg/kg/day. A dose of 25mg/day generates significant anti-tumour 

activity and also begins to effect blood glucose levels; 12.5mg/kg administered twice daily 

(12 hr apart) maintains glucose homeostasis (Investigators brochure). A single oral dose of 

AZD12253801 dose at 12.5mg/kg has a peak plasma concentration (Cmax) at 2 hr of 6.13 pM 

(Personal communication, Roger Ferguson, Astra Zeneca). The conserved nature of the ATP- 

binding cleft of IGF-1R and the IR has made development of small molecule inhibitors 

specific for the IGF-1R over the IR a significant challenge136.

2.1.3.1.3 ME1

ME1, a rat monoclonal antibody targeting mouse Egfr (ImClone systems, New York) 

was administered at a dose of lm g  (in lOOpI of lxPBS) by the intra-peritoneal route137. This 

dose has been shown to suppress phosphorylation of Egfr in regenerating murine 

hepatocytes137.
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2.1.3.1.4 AZD 6244

6-(4-Bromo-2-chloro-phenylamino)-7-fluoro-3-methyl-3H-benzoimidazole-5- 

carboxylic acid (2-hydroxy-ethoxy)-amide or AZD 6244125, is a potent selective ATP 

uncompetitive inhibitor of MAPK/ERK kinase 1/2 and demonstrates increased sensitivity 

against tumour cells harbouring mutations in B-RAF or K-RAS122. AZD 6244 was dosed at 

30mg/kg in 0.5% hydroxypropyl methyl cellulose (Sigma) plus 0.1% Tween80 vehicle138 via 

intra-peritoneal injection or oral gavage. Pharmacokinetic data from a phase I study 139 

demonstrates a Cmax value of 528ng/ml and t % range of between 6.6-8.7 hr following oral 

dosing (50mg/kg).

2.1.3.1.5 ABT-737

ABT-737 (Abbott Laboratories) is a BH-3 mimetic capable of inhibiting anti-apoptotic 

proteins129. Based on in vivo experiments showing SCLC xenograft anti-tumour activity, a 

dose of 75mg/kg was chosen for acute experiments to assess pharmacodynamic effects. The 

drug was suspended in a mixture of 30% propylene glycol, 5% Tween80 and 65% D5W (5% 

dextrose in water) (Personal communication, Alex Shoemaker). ABT-737 binds with high 

affinity to (Ks < InM ) to Bcl-XL, Bcl-2 and Bcl-w, but not to the less homologous proteins Bcl- 

B, Mcl-1 and A l (Kj = 0.46± O .llp iM , > lp M  and > lp M  respectively)129. The median 

inhibitory concentration IC 5 0  = 35± 1 nM and '103± 2 nM for Bcl-XLand Bcl-2 respectively129. 

A single lOmg/kg i.p dose of ABT-737 has a half life of 2.9 hr and Cmax of 0.52pg/ml (Emma 

Arriola, Abbott Laboratories)

2.1.3.1.6 Vehicle injections

Control (vehicle) injections 0.5% Tween80, 1% Tween80, 0.5% Hydroxypropyl methyl 

cellulose in 0.1% Tween80 and 30% propylene glycol/5%Tween80/65%D5W were dosed 

according to the volume administered for the active drug counterpart, lx  PBS was dosed at 

a fixed volume of lOOpl.

2.1.3.1.7 (B-napthoflavone

Induction of the Ah promoter (and Cre activity) was initiated by 3 intra-peritoneal 

injections of 80mg/kg (3-napthoflavone (Sigma, UK) dissolved in corn oil (Sigma, UK) over 24

55 | P a g e



hr114 between 10-12 weeks of age. All drugs were administered using 1ml x 29G insulin 

needles (B&D insulin needles, Medisave, UK). Bromodeoxyuridine (Brdu, GE Healthcare) S 

phase cell labelling experiments were undertaken using a single i.p. dose of 200pl 2 hr 

before death.

2.1.3.2 Acute drug exposure

2.1.3.2.1 Gefitinib and ME1

Single test doses of the drugs and vehicle used were administered by intra- 

peritoneal injection in Apcmm/+ mice to check for adverse effects and safety prior to 

conducting study experiments. Subsequently Apcmm/+ mice with an intestinal tumour burden 

indicated by pale feet with or w ithout rectal bleeding, piloerection or hunching were chosen 

for drug exposure. In acute gene expression experiments Apcmm/+ mice were exposed to 

gefitinib 75mg/kg or 0.5% Tween80 and culled after a series of time points (0, 4, 8,12 and 24 

hr; further detail see 2.3.2.1). Similarly to probe gene expression and/or protein changes, 

Apcmm/+ mice with an intestinal tum our burden were exposed to either ME1 lm g (or lx  PBS 

control) for 4 hr or gefitinib 75mg/kg (or 0.5% Tween80) for 8 hr prior to cull {23.2.2 and

2.5.6.2).To probe gene expression changes in AhCreT/+ Apcfl/+Kras+/+ and AhCreJ/+ 

ApcP/+KrasvU/+, mice with an intestinal tumour burden were exposed to an intra-peritoneal 

dose of gefitinib (75mg/kg) and culled after 4 hr.

2.1.3.2.2 ABT-737

To examine the effects of ABT-737, Apcmm/+ mice with an intestinal burden were 

administered either a single intra-peritoneal 75mg/kg dose of ABT-737, ABT-737 vehicle 

(30% propylene glycol/5%Tween80/65%D5W, dosed as for active drug), gefitinib 75mg/kg in 

0.5% Tween80 or ABT-737 75mg/kg in combination with gefitinib 75mg/kg in 0.5% 

Tween80. Mice were culled after a four hr drug exposure period. Gefitinib in these 

experiments was purchased commercially in keeping with material transfer agreements.

2.1.3.2.3 AZD 6244

In AZD 6244 experiments Apcmin/+ or AhCrev+ Apc?/+Kras+/+ and AhCreJ/+ 

ApcP/+KrasvU/+ mice w ith a tumour burden were dosed at 30mg/kg in 0.5% Hydroxypropyl
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methyl cellulose in 0.1% Tween80 or administered vehicle (0.5% Hydroxypropyl methyl 

cellulose in 0.1% Tween80) at an equivalent volume and culled following 4 or 24 hr exposure.

To assess the early pharmaco-dynamic effects of respective drugs on tumour cell 

death, cell proliferation, immune-reactive staining and signalling pathway protein changes, 

at least 3 mice (unless otherwise stated) were used to obtain appropriate tumour tissue.

2.1.3.3 Chronic drug exposure

Initial pilot studies were performed to examine:

1) Long term tolerance and effect of once daily intra-peritoneal injections of gefitinib 

75mg/kg and 0.5% Tween80 vehicle in 7 Apcmm/+rr\ice.

2) Acute tolerance of a single 25mg/kg intra-peritoneal injection of AZ12253801 in 3 

Apcmin/*m ice (for blood sugar levels).

3) Long term tolerance of twice daily intra-peritoneal injections of AZ12253801 

12.5mg/kg (8 hr apart) in 3 further Apcmm/+m\ce.

This data was used to help determine the chronic dosing schedules for experimental 

mouse cohorts exposed to vehicle, gefitinib, AZ12253801 and combined 

gefitinib/AZ12253801. Each cohort included 15 Apcmm/+ mice (range 15-17) to assess long 

term once daily intra-peritoneal administration of gefitinib 75mg/kg, 1% Tween80, 

AZ12253801 12.5mg/kg and combination gefitinib 75mg/kg with AZ12253801 12.5mg/kg. 

Each mouse cohort (except vehicle controls, cohort D) was exposed to once daily i.p. 

gefitinib (75mg/kg) for eight weeks to allow the development of gefitinib resistant intestinal 

tumour clones. Cohort (A) continued once daily gefitinib thereafter dosed at 75mg/kg; 

Cohort (B) continued once daily gefitinib 75mg/kg after 8 weeks treatment with the addition 

of once daily i.p. AZ12553801 dosed at 12.5mg/kg (combination); Cohort (C) stopped 

gefitinib following 8 weeks treatment and started once daily AZ12553801 as a single agent 

dosed at 12.5mg/kg and finally Cohort (D) received continuous once daily i.p. injections of 

vehicle 1% tween80 from the outset, dosed according to body weight (fig 2.1). Body weights 

were recorded weekly (or daily if concern over welfare) and drug doses adjusted 

accordingly. The primary endpoint of the study was the development of tumour burden as
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Cohort:

Figure 2.1 Chronic dosing strategy to examine antagonism of the Ig f- lr  in the context o f Apc™1̂ *  gefitinib resistant intestinal 
tumourigenesis

Primary questions addressed by each 
8 weeks cohort:

Does gefitinib have a therapeutic effect? 
—— Do gefitinib resistant tumours develop?

Is Ig f- lr  up-regulated in these tumours?

Is it advantageous to antagonise up- 
regulated Ig f- lr  at 8 weeks in addition to 
continued Egfr blockade?

Is it advantageous to antagonise up- 
regulated Ig f- lr  at 8 weeks in the absence 
of continued Egfr blockade?

D

Gefitinib 75mg/kg o.d.

AZ12253801 12.5mg/kg o.d.

Gefitinib 75mg/kg and 
AZ12253801 12.5mg/kg o.d.

1% Tween80 Vehicle

What is the baseline effect o f vehicle 
dosing?

Survival & 
Tumour burden

Nb. Mice 8 weeks of age at start of treatment.



evidence by pale feet. However mice which developed a hunched posture or loss of >10% of 

their starting body weight were also culled immediately and included in the final analysis.

2.1.3.4 Animal dissection and tissue preparation

Mice with an intestinal tumour burden indicated by pale feet with or without rectal 

bleeding, piloerection or hunching were culled by cervical dislocation following drug 

administration (2.1.3.2 and 2.1.3.3). Following midline excision, small and large intestines 

were identified, removed and flushed using cold tap water. The large bowel was incised 

along the mesenteric border to open the luminal surface to permit resection of colon polyps 

proximal to any polyps related to rectal prolapse. Colon polyps were immediately placed 

into a 5ml tube containing RNAIater™ (Sigma-Aldrich, UK) or a 1.5ml eppendorf tube and 

snap frozen in liquid nitrogen for storage at -80°C. The small intestine was sectioned in the 

transverse plane at three 1 cm intervals, lOcms distal to the gastro-duodenal junction and 

placed in a fixing parcel of 3M surgical tape prior to overnight fixation in 10% formalin along 

with any organs of interest (e.g. colon polyps or skin samples). The remaining small intestine 

and large intestine was placed on Whatman paper and sectioned along the mesenteric 

border to open the luminal surface to facilitate fixation using methacarn solution overnight 

(Methanol: Chloroform: Acetic acid; 4:2:1, Fisher Scientific). Small and large intestine 

tumour counts, size measurements and location were recorded prior to rolling gut tissue 

into a Swiss roll, securing and placing in 96% ethanol prior to paraffin embedding (2.7.1).

Experiments exposing Apcmm/+ or AhCreT/+ Apc?/+Kras+/+ and AhCreT/+ Apcfl/+Krasvl2/+ 

with an intestinal tumour burden to short term ABT-737 or AZD 6244 or appropriate vehicle 

were similarly dissected and included skin samples (AZD 6244 experiments) fixed overnight 

in 10% formalin

2.2 Patients' tumour specimens

2.2.1 Xerxes trial

The Xerxes study is examining the role of early neo-adjuvant and synchronous 

cetuximab therapy in pre-operative chemo-radiotherapy using Xeloda followed by excisional
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surgery (http://public.ukcrn.org.uk/search/StudvDetail.aspx?StudvlD=1680). This study 

provided rectal cancer biopsies at baseline and 4 hr following the first intravenous infusion 

of cetuximab (400mg/m2) for triplePrep extraction of gDNA and RNA (2.5.3 and 2.5.4) and 

histological assessment by a consultant histopathologist to estimate the percentage of 

tumour contributing to each rectal biopsy specimen. Given the availability of tumour tissue 

4 hr after cetuximab exposure, mouse experiments were designed to incorporate a similar 

exposure time to Egfr blockade to maximise the translational relevance. Tumour sample 

gDNA was screened for K-RAS and B-RAF mutations (2.8) and RNA processed as described 

(2.3.2.5) to search for transcripts of interest.

2.3 RNA handling and processing

Extreme care was taken when handling RNA to minimise the risk of RNase 

contamination and degradation of samples. Disposable powder-free gloves were used when 

handling samples, and changed frequently. RNase-free sample tubes, filter tip pipettes and 

reagents were used. All laboratory surfaces were regularly wiped with RNaseZap 

decontamination solution (Ambion) to decontaminate work areas. RNA samples were stored 

at -80°C. Samples were prepared in parallel whenever possible and master mixes made to 

minimise variability.

2.3.1 Extraction of RNA

RNA from colon polyps was obtained using standardised phenol-chloroform 

extraction facilitated by Precellys (Bertin technologies, Fr) homogenisation. Individual polyps 

were retrieved from RNAIater™ and washed in DEPC treated water prior to being placed in 

2ml homogenisation tubes containing ceramic beads and 1ml Trizol™ reagent (Invitrogen, 

UK). Samples were homogenized for 45 sec (x2) and then immediately placed on ice prior 

to being centrifuged for 10 min at 13000 x g. Supernatants from each sample were then 

placed on ice in new 1.5ml eppendorf tubes and incubated for 15 min with 200pl 

chloroform and gently agitated occasionally. Following this, samples were centrifuged for a 

further 10 min at 13000 x g to permit separation of the supernatant which was removed and 

placed into fresh 1.5ml eppendorf tubes. 500pl of absolute Propanol-2-ol was added, mixed
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and left to incubate overnight at 4°C. Samples were then centrifuged at 13000 x g for 15 min 

and supernatant removed to leave an RNA pellet which was re-suspended in 100% ethanol 

and centrifuged at 13000 x g for a further 8 min. Finally, the supernatant was removed and 

discarded and each pellet allowed to air dry for 5 min at room temperature prior to the 

addition of 50pl of molecular biology grade water (Sigma). Samples were heated to 65°C for 

5 min to ensure RNA was in solution.

Qiagen RNeasy™ Kits were used to purify each RNA sample and also permit on 

column DNAase (DNase set, Qiagen, UK). The purification protocol required each sample to 

be adjusted to a total volume of lOOpI using molecular grade water (Sigma). 350pl of RLT 

buffer was added to each sample and mixed by inverting the tube. 250pl of molecular grade 

ethanol (96%) was next mixed gently into each sample and the contents transferred to an 

RNeasy Mini spin column and centrifuged for 15 sec at 8000 x g. The flow through was 

discarded. On-column DNase required the preparation of DNase I stock by dissolving 1500 

Kunitz units in 550pl of RNase-free water. 350pl of Buffer RW1 was added to the spin 

column of each sample and centrifuged for 15s at 8000 x g to wash the column. Following 

discarding the flow through lOpI of DNase stock solution was added to 70pl of Buffer RDD 

and then mixed gently prior to adding 80pl directly to teach spin column and left to incubate 

on the bench top for 15 min. 350pl of Buffer RW was added to each spin column and again 

centrifuged for 15 sec at 8000 x g. Having discarded the flow through 500pl of buffer RPE 

was added to each spin column and centrifuged for 15 sec to wash the column. A further 

500pl of buffer RPE was added to each spin column and centrifuged for 2 min at 8000 x g to 

ensure drying of the membrane and to avoid ethanol being carried over during RNA elution. 

Finally 30pl of RNase free water was added directly to each spin column before 

centrifugation for 1 min at 8000 x g to elute RNA. This final step was repeated using the 

eluate from the previous step to increase RNA concentrations.

RNA extraction from AhCreT/+Apc+/Kras+/+ and AhCreT/+Apc+/Krasvl2/+ autochthonous 

mouse colon polyps and human rectal cancer specimens was done using the illustra 

triplePrep kit (GE Healthcare, UK).

2.3.1.1 RNA quantification and quality
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Spectrophotometric analysis (NanoDrop ND-3300 Fluorospectrometer) at 260nm 

and 280nm was used for quantification and purity assessment of the eluted RNA. High 

quality RNA was judged to have an A 2 6 o /2 8 0 n m  ratio between 1.9 and 2.1. The integrity of RNA 

was also assessed by electrophoresis using a non-denaturing 1% Tris-acetate-EDTA 

(TAE)/Agarose gel stained with ethidium bromide to visualise 28S and 18S ribosomal RNA 

(rRNA). Intact RNA had sharp and clear 28S and 18S rRNA bands with a ratio of 

approximately 2:1.

2.3.2 Pooling RNA samples.

2.3.2.1 Microarray

For each Affymetrix GeneChip, RNA was pooled from 10 polyps (range 6-11) 

obtained from at least 1 mouse. As arrays were run in triplicate a minimum of 6 mice were 

required for each time point (0, 4, 8, 12, 24hours) and treatment (vehicle or gefitinib). 

Individual polyps contributed an equivalent amount of RNA to give lOpg total pools of RNA 

for each array. In total 49 mice were used to obtain sufficient polyps for each treatment 

time point; n=7 at time 0 hr, n=7 at time 4 hr, n = l l  at time 8 hr, n = ll  at time 12 hr and 

n=13 at time 24 hr (appendix 2.1).

RNA used for microarrays was also used in qRT-PCR to test the accuracy of the array 

predictions. For this a selection of the time-series fold changes induced by gefitinib were 

chosen with reference to gefitinib at baseline (time zero). To undertake this lp g  aliquots of 

RNA were pooled as follows: time-zero (immediately following gefitinib injection) 18 polyps 

(n=4 mice), 4 hr post gefitinib 28 polyps (n=3 mice), 12 hr post gefitinib 30 polyps (n=7 mice) 

and 24 hr post gefitinib 30 polyps (n=7 mice) (appendix 2.1). Aliquots of RNA from each the 

time points were used in qRT-PCR.

2.3.2.2 Biological replicates for qRT-PCR

To validate gefitinib induced transcript changes identified by the microarray analysis 

at 4 hr, polyp RNA for qRT-PCR was obtained from biological replicate mouse experiments. 

RNA from 30 polyps and 24 polyps was obtained for gefitinib (4 hr; n=3 mice) and vehicle (4 

hr; n=5 mice) treated mice respectively. Similarly to explore the transcript changes induced 

by a monoclonal antibody against the Egfr, Apcmm/+ mice were administered ME1 (lmg; n=5)

61 | P a g e



or 1XPBS (lOOpI; n=7) and culled 4 hr post dosing giving 30 polyps for each treatment 

(appendix 2.2 ). RNA was extracted as described (2.3.1). For each of the experimental 

approaches equivalent amounts of RNA from each individual polyp were pooled prior to 

reverse transcription reactions to produce cDNAfor qRT-PCR.

2.3.2.3 Chronic gefitinib induced transcripts

To examine the relationship between transcript changes in colon polyps following 

acute and chronic gefitinib exposure, RNA was extracted from Apcmm/+ mice exposed to 

chronic vehicle and chronic gefitinib (75mg/kg/day) until the development of an intestinal 

tumour burden requiring cull (2.1.3.3). 10 polyps were extracted from n=2 and n=3 mice 

respectively for vehicle and gefitinib treated mice (appendix 2.3), and lpg  aliquots of RNA 

were pooled for each experimental cohort prior to reverse transcription for qRT-PCR.

A small pilot study was undertaken prior to the above in 7 Apcmm/+ mice exposed to 

long term gefitinib 75mg/kg/day (2.1.3.3) to examine tolerance and transcript expression of 

Ig flr in colon polyps upon the development resistant disease. Nine polyps were available 

from 2 mice treated with 0.5% Tween 80 vehicle and 9 polyps from 3 mice treated with 

gefitinib. Again lp g  of RNA from each polyp contributed to each experimental RNA pool.

2.3.2.4 Transcripts from autochthonous mouse models

RNA was extracted using the illustra triplePrep kit (2.5.4) from individual colon 

polyps from autochthonous AhCreT/+Apc+/'Kras+/+ and Ah CreT/+Apc+/Krasvl 2/+ mouse models 

exposed to gefitinib 75mg/kg for 4 hr. RNA was pooled according to K-ras mutation status 

with each polyp contributing lp g  of RNA prior to subsequent reverse transcription for qRT- 

PCR. As detailed (appendix 2.4) 10 polyps were available from Apc+/~Kras+/+ mice (n=2) and 

Apc+/~Krasvl2/+ mice (n=3) treated w ith gefitinib.

2.3.2.5 Human rectal cancer specimen transcripts

Paired rectal cancer specimens (Xerxes trial 2.2.1) obtained at baseline and following 

4 hr exposure to cetuximab (a monoclonal antibody against the EGF receptor) were washed 

in DEPC treated water prior to RNA extraction using the illustra triplePrep kit (2.5.4).

62 | P a g e



Samples were not pooled to allow individual comparison of transcripts from patients' 

tumours between the paired tissues (appendix 2.5).

2.3.3 Reverse transcription

lp g  of DNased total RNA (from individual RNA samples or RNA pools) was used in 

the reverse transcription reaction to synthesise cDNA for qRT-PCR. The total volume was 

adjusted to 9pl by the addition of an appropriate volume of RNase free water (Sigma) and 

samples were heated to 70°C for 10 min and then allowed to equilibriate at 42°C for 1-2 

min. lOpI of a stock solution containing the necessary constituents for the reverse 

transcription reaction (table 2.3) was freshly prepared and added to each sample including 

lp l (200u/pl) of Superscript™ II Reverse transcriptase (Invitrogen, UK). Negative control (-ve 

RT) samples excluded Superscript II. Samples were then incubated for 50 min at 42°C. The 

reverse transcriptase enzyme was inactivated by heating to 70°C for 15 min. Finally 200pl of 

RNase-free water was added to each labelled cDNA sample and stored at -20°C. The reverse 

transcriptase reactions were performed in a PTC-100 programmable thermal controller (MJ 

research, Inc.)

Table 2.3 Reverse transcription reagents

Reagent Volume(pl) per sample Manufacturer/catalogue#

Random primers (0.5pg/pl) 

(hexadeoxynucleotides)

2pl (O.lpg/pl Promega, Madison, Wl.

5x First-strand buffer 

(250mM Tris-HCL, pH 8.3; 

375mM KCL; 15mM MgCI2)

4pl Invitrogen, UK.

0.1M DTT 2pl Invitrogen, UK.

25mM dNTPs 0.4pl Fermentas, York, UK.

RNase free water 1.6|il Sigma, UK.
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2.3.4 Target preparation, hybridisation and scanning of Affymetrix GeneChips

RNA samples were sent on dry ice to the Patterson Institute for Cancer Research for 

target preparation prior to hybridisation to the array and scanning. All the protocols are 

available at http://bioinformatics.picr.man.ac.uk/vice/DesiEnProiect.vice?pid=159.

2.4 Real-Time Qualitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

Real-Time Qualitative Reverse Transcription Polymerase Chain Reaction is a sensitive 

method for the detection of mRNA expression levels. This technique allowed cDNA obtained 

from the reverse transcriptase reaction to act as a template for subsequent PCR 

amplification using primers specifically designed to detect one or more genes of interest. 

The SYBR Green method was used where double-stranded DNA dye in the PCR reaction 

binds to newly synthesized double-stranded DNA causing the release of fluorescence which 

is detected140. It was performed using a MJ Research PTC-200 Chromo 4 continuous 

fluorescence detection unit.

Individual wells in each PCR plate (Bioplastics, Netherlands) received:

8.5pl cDNA

12.5pl of DyNAmoM HS SYBR® qPCR mix (Finnzymes, Oy.)

•  Hot start version of a modified Thermos brockianus

•  Syber green I dye

• Optimised PCR buffer

•  5mM MgCI2

• dNTP mix including dUTPs.

4pl (lm mol) forward and reverse primer mix for gene of interest (Sigma-Genosys) 

25pl total volume/well
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A master mix containing the required quantity of DyNAmo™ HS SYBR® qPCR mix and 

cDNA for the specified number of samples was made and stored on ice prior to pipetting 4pl 

of appropriate primer mix to each PCR well. For each gene and time point 3 duplicates were 

used and gave average CT values for three identical samples.

The qRT-PCR protocol consisted of a denaturing step of 95°C for 30 sec, followed by 

a 30 sec annealing temperature of 60°C and extension period of 30 sec at 72°C. An anti­

dimer step of 30 sec was also included at 75°C. Forty cycles were completed prior to melting 

curve generation between 53°C -  95°C with plate reading every 0.2°C. Melting curve 

analysis for each primer pair yielded sharp peaks at the melting temperature of the 

amplicon and, in the absence of significant fluorescent signals from negative controls, 

indicated that the generated products were specific and SYBER green I fluorescence a direct 

measure of the gene of interest. The threshold cycle (CT) value was determined by 

identifying a significant increase in fluorescent signal associated with exponential growth of 

PCR product. The data generated was transferred to an Excel worksheet to enable further 

processing and calculation of fold changes. This was done using the comparative threshold 

AACT approach141 which enabled the relative quantification of template. This required 

calculating the difference (ACT) between the average CT values of the target and 

endogenous housekeeping reference gene (B-actin or Gapdh) for triplicate paired samples. 

The average ACT value once calculated was then used to obtain the AACT value (average 

ACT control experiment - average ACT experimental treatment) which was then used to 

calculate the fold change difference by using the formula 2-AACT.

2.4.1 Primer design for qRT-PCR

Primer design was facilitated with use of primer 3 software

(http ://frodo.w i.m it.edu/prim er3/) and the mouse ensemble

(http://www.ensembl.org/index.html) website. Primers (Sigma-Genosys, UK; table 2.4) were 

designed across adjacent coding exons for the gene of interest with intervening intronic 

sequences sufficiently large (> 2000bp where possible) to impede product amplification 

arising from inadvertent genomic DNA contamination. Amplicons approximately 100-150 

base pairs in length were produced and each primer pair was validated in silico using the 

UCSC website (http://genome.ucsc.edu/index.html) to ensure correct mapping to the gene
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Table 2.4 Murine (5'-3') prim er sequences for qRT-PCR Product

Gene______________Forward primer sequence_______ Reverse primer sequence________size (bp)
Areg CC AT CAT CCT CG CAG CTATT CGAAGCCTCCTTCTTTCTTC 106
Arhgef9 TCAGAAGAGACAGGCTGCAA GTTTAACGGGTCCTGTGGTG 109

Arid3b ACC AA AG AT G CTT CCA AG G CAT CAG CAT CGT C ACT CC AG 115
Bakl ATG G CAT CT G G ACA AG G AC G CTT CG AAAG ACCT CCT CT G 105
Bax CCAAGAAGCTGAGCGAGTGT C ACCCG G AAG AAG ACCTCTC 119
Bcl-2 GAGCGTCAACAGGGAGATGT CATGCTGGGGCCATATAGTT 139
Bcl-XL (BCL-2 LIKE 1 
protein) AGTCGGATTGCAAGTTGGAT G CTG C ATT GTTCCCGTAG AG 110
Bim (BCL-2 LIKE 11) GCGGATCGGAGACGAGTT CAGTT GT AAG AT AACC ATTT G AGG 100
Bmf ATCACAACTCGGAGGCTGAG CCTCTG ACT G G AAC AC AT CAT C 102
BmplO CACAGACCGGACCTCCAT AGGATATTTCCGGAGCCCATT 100
Cbl ACGGTGGACAAGAAGATGGT TATAAGGCGGGCTGTTCTTG 103
Ccndl AGTGCGTGCAGAAGGAGATT AGCGGGAAGACCTCCTCTT 103
Ccnd2 TGATGAAGTGAACACACTCACG AG CAG AG CTT CG ATTT G CTC 111
Ccnel GATGGGAAGTTCCAAGCTCA TTCTTTGCTTGGGCTTTGTC 111
Ccne2 C ATT CTG ACCTG G AACC AC A GGGCAAGGTAAAATGTCTCC 100
CxcllO AAGT G CTG CCGT C ATTTT CT CCTAT G G CCCT C ATT CT C AC 129
Cxcl9 CG ATCCACTACAAATCCCTCA AGTCCGGATCTAGGCAGGTT 117
Egfr CTGCCAGAATGTGAGCAGAG ATTCTGGATGGCACTGGATG 110
Empl CTGGCTGGTCTCTTTGTGGT C ACC AGTG CAGTT CTT CC AA 127
Epha3 TTGCAATGCTGGGTATGAAG TG G G C ACTTAG C AC ACTTAG C 100
Erbb3 AATACC AACT CC AG CC AT G C TTGTATCCATGTGGCAAAGTT 112
Erbb4 TGGCAAGATATTGTTCGGAAT GGCCAGTGCAAGACTTATGG 100
Ereg G G ACGG CTACT G CTTG CAT AGAAGTGCTCACATCGCAGA 104
Fabp2 ACAGTCTAGCAGACGGAACG AG AAACCT CT CG G AC AG C A A 119
Gng4 AGGAAAGCCGTGGAGCAG G CACGTG GG CTT CACAGTAG 100
Hbegf CAGGACTTGGAAGGGACAGA TGAGGCATGGGTCTCTCTTC 145
H ip l AGTTGGTGCTGGGATGGA TTT CTCTTT CACG G CCACTT 106
Ig f- lr GTGGGGGCT CGT GTTT CT CAGCTGCT GATAGT CGTT GC 100
Ikbkg C AGTT G CAG G CAG CCTAT C CTCAGCTTGCTGGAGCTGTT 108
lig p l CTATGACTTCCCCGTCCTGA TCAGAAATTGCCGCTTCTTT 125
Nov TCGCCAGTGTGAGATGGTAA ATTTCTTGGTGCGGAGACAC 113
Oxtr TTCTTCGTGCAGATGTGGAG GTTGCAGCAGCTGTTGAGG 102
Phox2b G AC AT CTAC ACC AG G G A AG AG C CCTG CTTG CG A A ACTTAG CC 100
Pi4kb C A A AG CTGTG CTG G CTACT G TCGATGTGGATGATGTGACC 104
Plc64 CT G ACCT CG CT CT G G A ACT C GTTTCCATCCTTCGAGCAGA 113
Ptprd TATGAATGTGTGGCCTCGAA T CAAT CGTAG G G AACCCTCT 101
Rassf2 T G AACTT CT CCTACAT CT G AAG ACC TGTT CAGTAACCCCT CCACA 110
Retnlb CGCAATGCTCCTTTGAGTCT GTCTGCCAGAAGACGTGACA 105
Ubd CACCTGTGTTGTCCGTTCAG GAGACCTTGGTTTGGGACCT 108
B-actin ACAGCT TCT TTGCAGCTCCTT TGG TAACAAT G CCAT GTT CAAT 300
Gapdh CACTGAGCATCTCCCTCACA GTGGGTGCAGCGAACTTTAT 111



of interest. Each set of primers was tested using serial dilutions of cDNA to check that 

primer pairs and subsequent qRT-PCR accurately predicted target template quantities by 

plotting serial cDNA dilution against expected and calculated fold changes141 (e.g. fig 2.2). 

Negative controls for each RT-PCR reactions included water, and where possible '-ve RV  

samples (RNA samples without reverse transcriptase enzyme and hence no cDNA) if 

sufficient RNA was available. Control samples containing genomic DNA (gDNA) were 

included in qRT-PCR to ensure primers were not able to amplify product originating from 

gDNA. The primers used for B-actin and Gapdh were designed and provided by Dr L Parry 

(ARC group). These two endogenous reference genes were chosen based on the absence of 

microarray detected fold change differences across the respective probes in response to 

gefitinib exposure at 4 hr. The qRT-PCR products were electrophoresed on 2.0% 

TAE/Agarose gels (2.11.2) and inclusion of a lOObp DNA ladder permitted confirmation of 

the appropriate sized primer products.

Figure 2.2. Expected and calculated fold changes (AACT method) for Cbl product using qRT- 

PCR primer pairs AND serial dilutions of template cDNA.
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2.4.2 Human primers for qRT-PCR

Primers were designed in the same way as described for mouse primers (2.4.1) with 

the exception that the ensemble genome browser was referenced for human sequences 

(http://www.ensembl.org/Homo sapiens/lnfo/lndex). The primers used are outlined in
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Table 2.5 Human (5'-3') primer sequences for qRT-PCR 

Gene Forward primer sequence

BMF TCAGTGCATTGCAGACCAGT

CBL GACGGTGGACAAGAAGATGG

EPHA3 GTTCCTG CAATG CTG GCTAT

ERBB3 G CTG G G CTT G CTTTT CAG

HIP-1 CCAGTTAACAGTGGAGATGTTTG

IKBKG GCACCTGCCTTCAGAACAG

GAPDH AAGGTGAAGGTCGGAGTCAAC

Reverse primer sequence
Product 
size (bp)

AAGGTTGTGCAGGAAGAGGA 100

G ATATA AG GTG G G CTATT CTTTAG C 106

CG G G C ACTTAG C AC ACTT C 104

GGTATTGGTTCTCAGCATCG 113

G CCG TC ACG G AC AC AG AG 102

GCAGAATCTGGTTGCTCTGC 101

AT G G GTG G A AT C ATATT G G AAC 153



table 2.5. GAPDH was used as the endogenous housekeeping reference gene and qRT-PCR 

conditions were as described (2.4).

2.5 TriplePrep extraction (extraction of gDNA, RNA and protein)

Protein (along w ith genomic DNA and RNA) was extracted from individual colon 

polyps using the illustra™ triplePrep kit (GE Healthcare, Amersham) following the 

manufacturer's instructions. In essence samples were lysed (using a Precellys homogeniser) 

in lysis buffer 15 which contains a large amount of chaotropic salts and immediately 

inactivates DNase, RNase and proteases (samples were not allowed to thaw before the 

addition of lysis buffer). On following the protocol DNA became bound to the first column in 

the presence of a chaotropic solution and contaminants were removed prior to elution of 

DNA. The remaining flow-through contained RNA and protein. The addition of acetone 

bound RNA to the second column and facilitated on column DNase digestion. Following 

removal of contaminants RNA was eluted in appropriate buffer. Finally the remaining 'flow- 

through' solution contained protein which was precipitated, washed and re-suspended in 2- 

D DIGE buffer prior to SDS-PAGE and western blotting.

2.5.1 TriplePrep working solutions 

These are described in 2.11.4

2.5.2 Sample homogenisation and lysis

Snap frozen colon polyps or polyps stored in RNAloter solution were not permitted 

to thaw but immediately placed in 2ml soft tissue homogenisation tubes with 1.4mm 

ceramic breads (Omni Inti, US) containing 1ml of lysis buffer type 15 (+10pl 2- 

Mercaptoethanol) prior to homogenisation using a Precellys (Bertin technologies, Fr) 

machine. Samples were completely lysed after 2 separate 30sec 3D motions at 6500rpm. 

Following this samples were left to rest on the bench for 5 min to allow frothing to settle.

2.5.3 Genomic DNA isolation

The supernatant above was transferred by pipette into a gDNA isolation spin column 

housed in a 2ml collecting tubes. Each sample was centrifuged (for 1 min at 11,000 x g 

unless otherwise stated) and flow-through saved at room temperature for subsequent RNA
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and protein isolation. The column was transferred to a new 2ml collecting tube and 500 jj.1 of 

wash buffer type 15 added (DNA wash 1) followed by a further spin. Flow-through was 

discarded. 500pl of wash buffer type 6 was added for DNA wash 2 followed by a spin and 

discarding of flow-through. The column was transferred to a 1.5ml eppendorf tube and 

lOOpI of DNA elution buffer type 5 added. DNA was eluted by the final spin, samples 

labelled and stored at -80°C.

2.5.4 Isolation of RNA

The flow through described received 350pl of absolute acetone and was mixed by 

pipetting the solution up and down several times. The entire mixture was transferred to a 

new RNA spin-column in a new 2ml collecting tube. After a spin as above the flow-through 

was saved at room temperature fo r later protein extraction. The column was transferred to 

a new 2ml collecting tube and DNase treatm ent performed. In a separate 2ml eppendorf 

tube a master mix of lOpI reconstituted DNase I, 20pl of DNase reaction buffer type I and 

70pl RNase free water was prepared for each sample being processed. lOOpI of the diluted 

DNase master mix was applied directly to  each sample membrane and incubated at room 

temperature for 10 min. Following this 500pl of wash buffer type 6 was added to the 

column and samples centrifuged 1 minute. The collection tube and contents were 

discarded and column transferred to a fresh RNase free 1.5ml eppendorf tube. 50pl of RNA 

elution buffer was added to the column and centrifuged to collect the purified RNA flow ­

through. Sample were immediately labelled and stored at -80°C.

2.5.5 Precipitation of protein

The entire flow-through described above was transferred to a new 1.5ml eppendorf 

tube and 600pl of protein precipitation buffer type 1 added. Samples were vortexed for 10 

sec and then incubated at room temperature for 5 min to precipitate proteins. Each sample 

was then centrifuged for 10 min at full speed (>16,000 x g). Supernatants were carefully 

removed by decanting. 1ml of distilled water was added to the pellet and dispersed by 

pipetting up and down several times. The sample was then centrifuged again at full speed 

for 1 minute. Supernatant was removed as completely as possible (discarded) and protein 

re-suspended in 50pl of 2-D DIGE buffer. Samples were incubated at room temperature for 

5 min prior to labelling and storage at -80°C.
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2.5.6 Determination of protein concentration (2-D Quant Kit)

The 2-D Quant kit was used to accurately quantify protein samples. The procedure 

uses a combination of precipitant and co-precipitant to precipitate protein whilst leaving 

contaminants, which can otherwise interfere with protein estimation, in solution. The 

precipitated protein pellet is re-suspended in an alkaline solution of cupric ions which bind 

to the polypeptide backbone of proteins present. A colorimetric agent which binds to 

unbound cupric is added and therefore the resulting colour density is inversely related to 

the concentration of protein present in the sample. The protein concentration can be 

subsequently estimated by comparison to a standard curve.

2.5.6.1 Protocol

Accurate pipetting of standard curve and sample solutions is a pre-requisite for the 

accuracy of this assay. An appropriate volume of working colour reagent was prepared by 

mixing 100 parts colour reagent A w ith 1 part colour reagent B. Each individual assay 

required 1ml. Typically 24 samples would be assayed together.

A standard curve was prepared according to the table:

Tube No. 1 2 3 4 5 6

Vol of 2mg/ml BSA standard solution Opl 5pl lOpI 15 pi 20pl 25pl

Protein quantity Opg lOpg 20pg 30pg 40 pg 50pg

Tubes containing 5pl of sample were prepared to be assayed. To each sample 500pl of 

precipitant was added including the standard curve tubes. Samples were vortexed briefly 

and incubated for 2-3 min at room temperature. 500pl of co-precipitant was next added to 

each tube and again briefly vortexed. Tubes were then centrifuged at >10,000 x g for 5 min 

to sediment protein. Supernatant was then decanted from the protein pellet immediately 

following completion of centrifugation to avoid re-suspension of protein. Tubes were 

repositioned in the centrifuge for a short spin to help remove any remaining solution which 

was removed using a pipette. lOOpI of copper solution and 400pl of distilled water was next 

added to each sample and vortexed to dissolve the precipitated protein. Finally 1ml of

69 | P a g e



working colour reagent was added to samples which were left on the bench to incubate for 

20 min. The absorbance of each sample and standard was read at 480nm using water as a 

reference. A standard curve was generated (figure 2.3) by plotting the absorbance of the 

standards against the quantity of protein and was used to calculate the quantity of protein 

in each sample.

Figure 2.3 A typical standard curve
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Appendix 2.6 presents the protein quantities extracted from colon polyps from Apcmm/+ mice 

exposed to various drugs over short or long term experiments.

2.5.6.2 Colon polyp protein pooling

Once the protein content of each sample was determined (appendix 2.6) it was 

possible to pool equivalent amounts of protein from individual colon polyps (30pg) for 

different experimental treatments. Table 2.6 outlines the experimental approaches, 

numbers of mice and polyps obtained for pooling and subsequent western blot.

Table 2.6 Numbers of mice and colon polyps retrieved for each drug exposure time
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Drug Duration No. mice No. polyps

1% Tween 80 4 hr 3 19

Gefitinib (75mg/kg) 4 hr 3 26

AZ12253801 (12.5mg/kg) 4 hr 2 9

Gefitinib (75mg/kg)+ AZ12253801 (12.5mg/kg) 4 hr 3 17

IX PBS 4 hr 4 20

ME1 (Img) 4 hr 2 20

Gefitinib (75mg/kg) 8 hr 3 22

0.5% Tween 80 8 hr 3 16

1% Tween 80 Chronic 2 7

Gefitinib (75mg/kg/day) Chronic 3 8

AZ12253801 (12.5mg/kg/day) Chronic 3 14

Chronic exposure refers to daily treatm ent until the development of tumour burden 

(resistant disease)

From each of the protein pools 30pg samples were used for loading SDS PAGE.

2.6 Western blotting

This technique relies upon the separation of sample proteins according to molecular 

weight using SDS PAGE (Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis) and 

transfer to PVDF membrane for subsequent protein interrogation, identification and 

estimation of quantity.

2.6.1 Sodium dodecyl sulphate polyacrylamide gel electrophoresis

The Mini-PROTEAN 3 system (Bio Rad, CA) was used to undertake gel 

electrophoresis. Dependent upon the size of the protein of interest resolving gels contained 

either 7.5% or 9.4% acrylamide content. The gel formulations are described in table 2.7
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Table 2.7 Gel formulations for SDS PAGE

Resolving gel Stacking gel

Reagent 7.5% 9.4% 4.5%

Upper buffer - - 2.5ml

Lower buffer 5ml 5ml -

Acrylamide/Bis (30%) 5ml 6.25ml 1.5ml

dH20 10ml 8.5ml 6.14ml

10% APS 200pl 200pl 100|il

TEMED 20pl 20|il lOpI

Casting gels:

Checks were made to ensure the casting stand, casting frames and glass plates were 

all clean and dry before starting. The Gel cassette sandwich was assembled in the casting 

frame and placed in the casting stand and checked for a tight seal. A comb was placed into 

the assembled gel cassette and a mark made 1cm below the comb teeth to note the level 

the resolving gel will reach when poured into the cassette. The comb was removed and the 

appropriate % resolving gel prepared, adding the 10% APS and TEMED to the final mixture. 

The monomer solution was poured to the desired mark and overlaid with a small quantity of 

butanol. The gel was left to set for 30 min. Once set a small piece of filter paper removed 

any remaining liquid on the surface of the resolving gel taking care not to disturb it. Next the 

stacking gel mixture was prepared again adding the 10% APS and TEMED to the final mixture 

and poured into the cassette sandwich until the top of the short plate was reached. 

Immediately the comb was carefully inserted between the spacers. The stacking gel was left 

to polymerise for 30 min. Once set the comb was removed and the wells rinsed with dH20. 

Next the gel cassette assembly was removed from the casting stand and the gel cassette 

sandwich released from the casting frame. The gel cassette sandwich was then place behind 

slots on the electrode assembly and carefully loaded into the clamping frame which ensured 

the sandwich was clamped in place to  form an inner chamber which was sealed. The inner 

chamber assembly was then lowered into the mini tank and IX running buffer was poured 

into the inner chamber permitting overflow to reach the mid level of the gel cassette.
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Sample loading:

Each sample consisted of 30pg aliquots of protein from pooled colon polyps (see

2.5.6.2) for a specific experimental approach, 0.5 volume of 10% SDS and an appropriate 

volume of Laemmli buffer. Samples were incubated at 70°C for 5 min and then placed on ice 

before gel loading. Samples were loaded in triplicate when possible. A 10-250KDa Protein 

marker (10|il; Bio Rad All Blue Precision Plus) was loaded into the first well of each gel.

Gel electrophoresis:

The lid was placed on the mini tank ensuring correct alignment of the colour coded 

banana plugs and jack. The electrical leads were connected to a power supply initially set at 

50volts during migration through the stacking gel (30 min) and increased to 150volts during 

migration through the resolving gel (30-45 min). The reagents used and working solutions 

are described in 2.11.5

2.6.2 Protein transfer

Once electrophoresis was complete the power supply was turned off and electrodes 

disconnected. The inner chamber assembly was removed from the tank and running buffer 

discarded. The gel cassette sandwich was released and the two glass plates separated. The 

gel was removed from its glass plate by inverting both gel and plate in transfer buffer 

(2.11.6) and helping it float away w ith gentle agitation. The gel was left to equilibriate in 

transfer buffer for 10 min. A piece of polyvinylidine difluoride PVDF membrane (Hybond-P, 

Amersham) was cut to size (5cm x 8cm) and dipped in methanol before soaking in transfer 

buffer for 10 min. The gel was then placed on whatman paper supported by sponge (all pre­

soaked in transfer buffer) and PVDF membrane was carefully positioned onto the gel 

forming a gel-membrane sandwich once covered by further pre-soaked whatman paper and 

overlying sponge. A stripette was used to  roll over the sandwich to remove air bubbles. The 

sandwich was held together in a loading cassette and fully submerged into transfer buffer 

contained in a transfer tank which was kept cool by surrounding ice. The tank lid was placed 

onto the correct banana plugs and connected to a power supply and left to transfer at 

lOOvolts for 1.5 hr.

2.6.3 Membrane probing

73 | P a g e



2.6.3.1 Membrane incubation

Following protein transfer to PVDF membrane the latter was soaked in appropriate 

blocking buffer (guided by primary antibody protocol) and agitated gently on a rocking 

platform for lh r  at room temperature. Primary antibodies (Table 2.8) were incubated 

overnight at 4°C at various dilutions in the recommended blocking buffer. HRP-labelled 

secondary antibodies (GE Healthcare, UK) raised against the source animal primary antibody 

were incubated at room temperature for 1 hr at a 1:2000 dilution with blocking buffer. 

Membranes were washed 3 times for 5 min each using 0.1% TBST following both primary 

antibody and secondary antibody incubations. All buffers used in membrane incubations are 

described in section 2.11.7

2.6.3.2 Chemi-luminescent signal and protein identification

Once membranes were washed ECL™ standard and ECL™ Plus western blotting 

detection reagents (GE Healthcare, UK) were used to produce chemi-luminescent light 

which was detected on Fuji film  and developed by Xograph imaging systems. For the ECL 

standard protocol 3ml of solution A and Solution B was pipetted into separate universal 

tubes (For ECL plus the ratio of solutions A:B was 40:1). Once in the dark room a weighing 

boat was used to place the PVDF membrane and solutions A and B were mixed and evenly 

distributed across the membrane and incubated for 1 min (5 min for ECL plus). Following 

this the membrane was swiftly wrapped in cling film protein side down noting the position 

of the protein ladder and then transferred to a developing cassette housing unexposed 

autoradiography film. After a series of exposure times the film was developed and viewed. 

The autoradiography film was viewed on a slide viewing box aligned on top of the 

membrane to trace its outline and help mark the location of the protein ladder. This enabled 

the identification of protein bands of a particular molecular weight corresponding to the 

protein targeted by the specific primary antibody used.

2.6.3.3 Densitometric measurements

Autoradiography films were scanned and processed using Quantiscan software vl.O 

(Biosoft, kindly loaned by Dr James Matthews). Discrete blots were analysed after being 

defined manually and densitometric volumes reported following background subtraction.

74 | P a g e



Table 2.8 Primary antibodies used to probe protein blot membranes.

Primary Antibody Protein molecular 
weight (KDa)

Source
Species

Dilution Blocking Catalogue
buffer No/Manufacturer

Akt 60 R 1/1000 B # 9272 CST

Bmf 17 R 1/1000 B # 4692 CST

c-Cbl 120 R 1/1000 B # 2747 CST

Cycline E2 48 R 1/1000 B #4132 CST

Egfr 175 R 1/1000 B # 2232 CST

Epha3 100 R 1/2000 M ab52986 Abeam

Erbb3 185 R 1/500 B #4754 CST

Hip-1 116 Mo 1/2000 M 905-134 Assay 
designs

Ig f-lrp 95 R 1/1000 B # 3027 CST

Ikbkg 48 R 1/500 B # 2685 CST

p44/42 Mapk (E rk l/2 ) 42/44 R 1/1000 B # 9102 CST

Phospho-Akt (Ser473) 60 R 1/300 B # 3787 CST

Phospho-Egfr
(Tyrl068)

175 R 1/300 B # 2234 CST

Phospho-lgf-lr
(Tyrl316)

90 R 1/300 BG AstraZeneca
(MTA)

Phospho-p44/42 
Mapk (E rkl/2  
Thr202/Tyr204)

42/44 R 1/1000 B # 4376 CST

Phosph-S6 
(Ser240/244) 
ribosomal protein

32 R 1/1000 B #2215 CST

Plcd4 90 R 1/200 M sc-30063 SCB

S6 ribosomal protein 32 R 1/1000 B #2217 CST

Tubulin 55 Rat 1/2000 M ab6160 Abeam

(3 actin 42 Mo 1/12500 M A2228 (AC-74 
clone) Sigma

B. 5% BSA in 0.1% TBST
M. 5% M ilk in 0.1% TBST
BG. 3% BSA:2% NGS in 0.1% TBST;
BSA bovine serum albumin; NGS normal goat serum.
R rabbit; Mo mouse
CST Cell Signalling Technology ,MA; SCB Santa Cruz Biotechnology Inc., CA 
Sigma-Aldrich Co., UK; Assay Design Inc., Ml 
MTA Material transfer arrangement.



For each densitometric volume a normalised value was calculated with reference to the 

loading control and subsequent average densitometric values produced across duplicate or 

triplicate samples. Averaged densitometric values were obtained for each experimental 

approach and compared accordingly. Phosphorylated proteins were expressed as the total 

amount rather than as a proportion of the total protein in question.

2.7 Histology

2.7.1 Preparation of tissue for light microscopy

Fixed tissue samples were paraffin processed on a Leica TP 1050 fully enclosed 

automatic tissue processor using the following schedule:

70% Ethanol lh r

90% Ethanol lh r

100% Ethanol 1.5hr

100% Ethanol 2hr

100% Ethanol 2hr

This was followed by 2x 60 min washes in xylene to clear and replace the alcohol. 

The samples were infiltrated with paraffin wax at 60°C in 3 separate intervals overnight to 

replace xylene (60 min, 90 min x2; w ith the last 2 infiltrations under vacuum). Each sample 

was embedded in paraffin wax using a Leica EG1140H embedding centre. Sections were cut 

to a thickness of 5p with a Leica RM2235 rotary microtome and floated on warm water and 

mounted on polysine microscope slides (Thermo Scientific, UK) prior to be dried overnight 

at 45°C. Slides were stained for Haematoxylin and Eosin (H+E) using an RA Lamb Histomate 

staining machine (see protocol in appendix 2.7). Sections were mounted under a cover glass 

using DPX mountant. All reagents and consumables were obtained from Thermo Fisher 

Scientific.

2.7.2 Immuno-histochemical staining
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Histological sections (5p thickness) obtained from formalin or methacarn 

fixed/paraffin embedded tissues were initially washed in xylene (5 min x2) to de-wax. 

Sections were then rehydrated by sequential bathing in 100% ethanol (2 min), 95% ethanol 

(2 min x2), 70% ethanol (2 min) and finally distilled water prior antigen retrieval. At no point 

were slides allowed to dry. The primary antibodies used for immuno-histochemistry and the 

peculiarities of each protocol are summarised in table 2.9. Slides underwent epitope 

retrieval in llitre  of the appropriate buffer solution which was pre-heated in a microwave 

(900W) until boiling (10 min). Slides placed in plastic racks were immersed into a pressure 

cooker chamber before sealing the lid and brought up to pressure by heating for 5-10 min in 

a microwave (900W) until the yellow pressure indicator became elevated. At this point the 

microwave power was reduced to 300W and left to heat for a further 15 min. On 

completion the pressure cooker was removed and left to cool on the bench top for 30-60 

min.

The general schema for the immuno-histochemical stain process is outlined in table 

2.10 with an emphasis on the different wash buffers used (2.11.8). After antigen retrieval 

slides underwent endogenous peroxidise block using hydrogen peroxide and subsequent 

outlining of fixed tissue with a DAKO delim iting pen. As indicated in table 2.10 certain IHC 

protocols required a signal amplification step using the ABC method (Vectorstain ABC 

systems, Vector laboratories, Inc., CA). Here biotin labelled secondary antibodies were used 

introducing biotin into the section at the location of the primary antibody. The avidin: 

biotinylated enzyme complex (ABC) became bound to biotinylated secondary antibody and 

was localised by incubation with substrate for the enzyme. The alternative method used was 

the DAKO envision* system horseradish peroxidise (HRP) IHC staining technique (DAKO 

North America, Inc.) where an HRP labelled polymer conjugated with secondary antibody 

resulted in staining when incubated w ith 3,3'-diaminobenzidine (DAB)+ substrate 

chromogen. All slides were counter stained with haematoxylin for approximately 30 sec and 

washed in running tap water before sequential dehydration in increasing concentrations of 

alcohols (70% ethanol x 5 m in - 95% ethanol x5 min -  100% ethanol x2 5 min) and two 

washes in xylene x5 min prior to cover slip mounting. Immuno-histochemistry working 

solutions and reagents are described in 2.11.8.
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Table 2.9 Primary antibodies and summary protocols for immuno-histochemistry

Primary
antibody

Source Antibody 
dilution

Antigen
retrieval

Blocking
buffer

Secondary
antibody

EDTA 5% NGS Anti Rabbit HRP
Pressure TBST labelled polymer
cooker (Envision™+ kit,
15mins Dako)

CITRATE 5% NGS Anti Rabbit HRP
buffer TBST labelled polymer

Pressure (Envision™+ kit,
cooker
15mins

Dako)

CITRATE 10% NGS biotinylated goat
buffer TBST anti-rabbit (Dako)

Pressure 1:200 in 5% NGS
cooker
15mins

TBST

CITRATE 5% NGS biotinylated goat
buffer TBST anti-rabbit (Dako)

Pressure 1:200 in 5% NGS
cooker
15mins

TBST

CITRATE 5% NGS biotinylated anti
buffer TBST rabbit (Vector

Pressure stain ABC kit;
cooker Vector Labs) in 5%
15mins NGS TBST

CITRATE 1% BSA Anti Mouse HRP
buffer PBS labelled polymer

Pressure (Envision™+ kit,
cooker
15mins

Dako)

CITRATE 20% NRS biotinylated
buffer TBST rabbit anti-mouse

Pressure (Dako) 1:200 in
cooker
15mins

20% NRS TBST

Catalogue/
Manufacturer

Phospho-Egfr
(Tyrl068)

Igf-lrP

R 1/50

1/150

Phospho- 
p44/42 Mapk 
(E rkl/2
Thr202/Tyr204)

Phospho-Akt
(Ser473)

1/75

1/50

Anti cleaved 
caspase-3

1/200

Anti-BrdU Mo 1/150

Anti Ki67 Mo 1/200

# 2234 CST

# 3027 CST

# 4376 CST

# 3787 CST

#9661 CST

N347580 BD

VP-K452 Vector 
Labs, UK

R Rabbit BD Becton Dickinson Immunocytometry
Mo Mouse CST Cell signalling technology
EDTA IX  EDTA epitope retrieval solution TBST 0.1% TBS Tween 20
NGS Normal goat serum PBS IX  Phosphate buffered saline
NRS Normal rabbit serum Blocking buffer left for lh r  on bench
BSA Bovine serum albumin
All primary antibody incubations were overnight at 4°C.



Table 2.10 Primary antibodies for IHC and overview of protocols highlighting endogenous peroxidase blocks, washes and ABC signal amplifications

Antibody Antigen Wash 1 Prevent Wash 2 Block Primary Wash 3 Secondary Wash 4 Signal Wash 5 Visualisation Wash 6
retrieval endogenous antibody Antibody amplific o fpositiv ity

__________________________________________ staining__________________________________________________ ation_____________________________
Phospho-Egfr (Tyrl068)

dH ,0 x3
3% H20 2 
xlOmins

dH20  x2; 
TBST x l

lh r
RT o/n 4°C TBST x3 lh r  RT TBST x3

DAB stain 
5-10min

dH20
x l

Ig f-lrp
dH,Ox3

3% H20 2 
xlOmins

dH20  x2; 
TBST x l

lh r
RT o/n 4°C TBST x3 lh r  RT TBST x3

DAB stain 
5-10min

dH20
x l

Phospho-p44/42 Mapk 
(E rk l/2  Thr202/Tyr204)

dH70 x l
1.5% H20 2 
xl5m ins TBST x3

lh r
RT o/n 4°C TBST x3 lh r  RT TBST x3

ABC
x30mins

RT TBST x3
DAB stain 
5-10min TBST x3

Phospho-Mekl/2
(Ser221)

dH ,O x l
1.5% H20 2 
xl5m ins TBST x3

lh r
RT o/n 4°C TBST x3 lh r  RT TBST x3

ABC
x30mins

RT TBST x3
DAB stain 
5-10min TBST x3

Phospho-Akt (Ser473)

dH ,O x l
3% H20 2 
x20mins

dH20  x2; 
TBST x l

lh r
RT o/n 4°C TBST x3 lh r  RT TBST x3

ABC
x30mins

RT TBST x3
DAB stain 
5-10min

dH20
x3

Anti cleaved caspase-3

dH ,0 x3
3% H20 2 
xlOmins

dH20  x2; 
TBST x l

lh r
RT o/n 4°C TBST x3 lh r  RT TBST x3

ABC
x30mins

RT TBST x3
DAB stain 
5-10min

dH20
x2

Anti-BrdU Envision+ 
H ,0 , sol. PBS x3

lh r
RT o/n 4°C PBS x3 lh r  RT PBS x3 *

DAB stain 
5-10min PBS x3

Anti Ki67
dH20  x l;  
TBST x l

0.5% H20 2 
x20mins d H ,O x l

lh r
RT o/n 4°C TBST x3 lh r  RT TBST x3

ABC
x30mins

RT TBST x3
DAB stain 
5-10min TBST x3

TBST 0.1% TBS Tween 20 ; dH20  distilled water; PBS IX Phosphate buffer solution; ABC Avidin: Biotinylated enzyme Complex; DAB Diaminobenzidine 
Chromagenic substrate system. A single wash was 5mins. RT room temperature, o/n overnight incubation



2.7.3 Scoring apoptosis and cell proliferation

Haematoxylin and eosin or alternatively stained sections of tumour tissue using anti­

cleaved caspase-3 or anti-Brdu antibodies were viewed using the x40 objective of an 

Olympus BX41 microscope attached to a U-CMAD3 digital camera utilizing Olympus colour 

view imaging software. Representative areas of tumour tissue were scored for the average 

number of epithelial cells per x40 objective field usually over 3 separate regions of a 

tumour. Phenotypic scoring (apoptotic bodies, cell mitoses and positive immune-reactive 

staining for cleaved capsase-3 or Brdu positivity) was performed by one person in a blinded 

fashion and the results were expressed as a percentage of the average number of epithelial 

cells per x40 objective field. For each experimental mouse tumour at least 1000 epithelial 

cells were counted in as many fields as necessary using the x40 objective and most 

commonly 3 tumours were scored from each animal. The average values for each 

phenotypic score were calculated using 3 experimental mice treated identically unless 

otherwise stated.

2.8 Detection of K-ras and B-raf mutations in Apcmm/+ colon polyps

Genomic DNA was extracted from 30 individual colon polyps harvested from 29 

Apcmm/+ mice using the triplePrep kit (2.5.3). Samples were then processed by the Institute 

of Medical Genetics at Cardiff University. Genomic DNA from rectal cancer specimens (2.2.1) 

was also extracted using the same technique.

2.8.1 Pyrosequencing for K-ras mutations

To detect murine K-ras mutations in codons 12/13 and 61 pyrosequencing 

technology was employed. Codons 12/13 and 61 were initially amplified by PCR using the 

following primers sequences:-

Codon 12+13

Forward: GGCCTGCTGAAAATGACTGA 

Reverse: CGCAGACTGTAGAGCAGCGTTAC 

Codon 61
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Forward: TGTTTCTCCCTTCTCAGGACTC

Reverse: AGAAAGCCCTCCCCAGTTC

The sequencing primers for codon 12/13 were CTTGTGGTGGTTGGAG and codon 

61 GGATATTCTCGACACAGC. Pyrosequencing was semi-automated using the Pyromark ID 

Qiagen System and both assays were designed to detect all possible mutations in the 

codons examined.

codon 12/13 from human rectal cancer specimens were PCR amplified using 
forward primer sequence GGCCTGCTGAAAATGACTGA and reverse primer sequence 
AGAATGGTCCTGCACCAGTAATA, whereas K-RAS codon 61 was amplified using Forward 
primer TGI I ICTCCCTTCTCAGGATTC and reverse primer sequence 
AAGAAAGCCCTCCCCAGTC. The sequencing primers for codon 12/13 and 61 were 
CTTGTGGTAGTTGGAG and GGATATTCTCGACACAGC respectively.

2.8.2 Allelic discrimination assay for B-raf V600E mutation

The allelic discrimination assay permitted the detection of B-raf specific PCR product 

by measuring the increase in fluorescence of dye-labelled DNA probes. Amplification of a 

specific sequence of target DNA within the B-raf gene was achieved using forward 

(TTCATGAAGACCTCACAGTAAAAATAGG) and reverse (TCGATGGAGTGGGTCCCA) primer 

sequences. Thereafter TaqMan probes fo r hybridization to the target sequence within the 

PCR product were used to detect wild type or V600E B-raf mutation. The probes sequences 

were:-

B-raf wild typeVIC-AGCTACAGTGAAATC

B-raf V600E 6FAM-CTACAG AG AAATCTC

The same probes sequences were used for human tumours as the primer annealing 

region and area to amplify were the identical

2.9 Statistical analysis
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The Mann-Whitney statistic was used to detect significant differences between 

control and experimental conditions in relation to (i) tumour phenotype scoring (apoptotic 

bodies and mitoses) (ii) tumour immuno-phenotypic scoring (cleaved caspase 3, Anti Brdu 

and Ki67 positivity) (iii) densitometric assessments of western blots (iv) scores for total 

tumour numbers and volumes (v) ACT values for genes of interest and (vi) the detection of 

significant differences in the median expression values of IKBKG, CXCL9 and CCNE2 genes in 

patients with either disease control or no response to cetuximab treatment (based on data 

from GSE5851; 2.10.5). Kaplan Meier survival curves were generated for Apcmm/+ cohorts 

receiving long term treatm ent and the Log Rank test was used for statistical comparisons 

between treatment arms.

All statistical tests and box plots to demonstrate small and large intestinal tumour 

counts and volumes were facilitated using Minitab 15 software. The error bars on charts 

represent ±1 standard deviation from the mean value and are assumed to be significant 

when non-overlapping and P values of <.05 were accepted as statistically significant.

2.10 Microarray analysis

Microarray technology permits the comparison of gene expression profiles on a 

genomic scale across multiple RNA samples142. For this purpose biotin labelled cRNA was 

generated using established protocols

http://bioinformatics.picr.man.ac.uk/mbcf/protocols.isp. Mouse Genome 430 2.0

Affymetrix GeneChip arrays were run in triplicate at the Cancer Research U.K. facility at the 

Patterson Institute for Cancer Research for each time point and treatment (gefitinib or 

vehicle) using pooled RNA (see 2.3.2.1). As 2 treatments were used at 5 time points a total 

of 30 Affymetric GeneChips were used. Different approaches were used to analyse the 

microarray data generated and the results for each analysis were compared to identify 

genes which were similarly differentially regulated enabling the creation of a target gene list 

for qRT-PCR.

2.10.1 AffylmGUI
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AffylmGUI is a graphical user interface (GUI) permitting the analysis of Affymetrix 

GeneChip data143. The package (http://bioinf.wehi.edu.au/affylmGUI) incorporates pre­

processing methods for Affymetrix CEL files including quality assessment, background 

correction, normalisation and summarization of probe-set expression values. The output of 

the analysis provided differential expression and associated moderated t- statistic which is 

similar to an ordinary t- statistic and log-odds of differential expression, or B-statistic which 

is essentially equivalent to the moderated-t for ranking purposes. A table of top genes for 

the contrast gefitinib vs. vehicle at 4 hr provided the ranked order of log2 fold change. 

Genes were chosen from this list if they were biologically relevant in terms of EGFR 

signalling, related to apoptotic and/or proliferative pathways or linked to the mechanism of 

action of gefitinib irrespective of t-statistic.

2.10.2 Time series regression analysis

BRB-ArrayTools is a software package developed by the Biometric Research Branch 

of the Division of Cancer Treatment & Diagnosis of the National Cancer Institute 

(http://linus.nci.nih.gov/BRB-ArravTools.html). CEL files were uploaded and the RMA 

method used to compute probe set summaries. The RMA method used all the arrays 

simultaneously to compute the normalization and probe set summaries. Probe sets with a 

large percentage of detection cells that had an absent (A) value were filtered out in order to 

exclude probe sets considered unreliable or uninteresting because too many of the 

expression values were absent. A logarithmic (base 2) transformation was applied to the 

signal intensities before median normalisation. The time series regression analysis plug-in 

model was used to identify genes whose variation over time was dependent upon 

treatment. Once identified it was then possible to calculate gene expression fold changes 

taking the ratio of geometric gene signal intensities for gefitinib at 4-24 hr relative to either 

time zero or vehicle at 4-24 hr.

2.10.3 Fold change and ranked products analysis

Raw intensity signals generated from the microarray were initially processed using 

MaxD/View (http://www.bioinf.manchester.ac.uk/microarrav/maxd/download.html) to
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remove false negative and positive signals (using a cut off of at least one P value for each 

transcript <0.2). The data were then normalized by using the global geometric mean (GGM) 

normalization option within the MaxD/View-Program, as described previously114. Fold 

change and ranked product computations were performed and the two-sample t test to 

calculate P values for differences between vehicle and gefitinib treatment at 4 hr. 

Differentially expressed genes with the greatest fold change difference (top or bottom 50 

genes <.5 or > 2 fold change with P value <.05) or ranked position (top or bottom 50; P value 

<.05) were favourably filtered and searched for biologically relevant candidates, in a similar 

fashion as for the affylmGUI analysis.

2.10.4 Significance analysis of microarrays (SAM)

The data processed using MaxD/View was also subject to SAM analysis144 

(http://www-sat.stanford.edu/~tibs/SAM/). Here contrast was made between gene 

expression for each of the experimental treatments at the various time points (gefitinib vs. 

vehicle) and for gefitinib at time 4 hr relative to time zero to identify significant genes. The 

cut off for significance was determined by the tuning parameter delta, which was 

determined by me based upon the acceptance of a defined false positive rate.

2.10.5 Analysis of the GSE5851 dataset

The GSE5851 data (http://www.ncbi.nlm.nih.gov/geo/querv/acc.cgi?acc=GSE5851) is 

from a phase II exploratory pharmacogenomics study of cetuximab monotherapy in patients 

with advanced metastatic CRC24. Here transcriptional profiling of RNA from pre-treatment 

metastatic colorectal cancer biopsies identified genes correlated with best clinical outcome 

in patients treated with cetuximab monotherapy. This data was then probed for qRT-PCR 

validated mouse candidate genes hypothesised to be predictive of response to Egfr 

blockade, using the equivalent human probe identities, to enquire if they dichotomise 

response category in patients (disease control group/ non responder). Transcripts with a 

P<.05 were considered discriminatory for treatment outcome and if present explored in 

more detail by collecting individual Affymetrix expression values for the genes of interest 

from each patient with K-RAS wild type tumours. The median expression values were 

calculated for each gene for disease control and non-responder groups and compared using
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the Mann-Whitney test to  gain insight into how the direction of expression correlates with 

outcome.

2.11 Working solutions, materials and reagents

2.11.1 TBE/Agarose gels fo r DNA electrophoresis 

5X Tris-Borate-EDTA (TBE) buffer (Sigma,UK)

0.445M Tris borate 

0.5mM EDTA (pH 8.3)

Made w ith water for injection 

2.0% Agarose gel:

200mls IX TBE buffer (40ml 5X TBE buffer: 160mls dH20.)

4g agarose (Eurogentech, UK)

5pl Safeview Nucleic Acid Stain (NBS biologicals, UK)

4.0% Agarose gel:

8g agarose used, otherwise as for 2% gel.

TBE electrophoresis running buffer (1000ml)

200ml 5X TBE buffer stock 

800ml dH20

The TBE buffer/agarose mix was heated in a conical flask in a microwave until boiling 

and allowed to cool slightly before the addition of nucleic acid stain and poured into an 

electrophoresis cast to set. Gels were immersed in IX TBE electrophoresis running buffer 

and electrophoresed at 120v for 30 min.

2.11.1.1 Orange G loading dye 

lOx Orange G loading dye
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40ml 30% glycerol (Fisher Scientific, UK)

lOOmg Orange G (Sigma, UK)

10ml dH20

Sample loading per well:

5pl IX  Orange G loading dye (Track the position of 50bp DNA molecules)

lOpI qRT-PCR product

2.11.2 TAE/Agarose gels for RNA electrophoresis

10X Tris-Acetate EDTA (TAE) buffer (Sigma, UK)

0.4M Tris acetate 

0.01M EDTA 

pH 8.3

made up w ith nuclease free water

1% TAE/Agarose non-denaturing RNA gel:

25ml IX TAE

0.25g agarose (Sigma, UK)

lp l ethidium bromide solution (Sigma,UK)

IX TAE electrophoresis running buffer (lOOOmls)

100ml 10X TAE buffer: 900mls dH20

The mixture of TAE/Agarose was heated in a conical flask for 30 sec using a 

microwave, stirred and then re heated until boiling. Ethidium bromide was added once the 

solution had cooled slightly and was then poured into the electrophoresis cast to set. Gels 

were immersed in IX TAE electrophoresis buffer and electrophoresed at 50volts for 20 min.

2.11.2.1 RNA loading buffer
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lOOpI saturated bromophenol blue (Sigma,UK)

80|il 0.5M EDTA (pH 8.0) (Sigma,UK)

720pl formaldehyde (38%) (Sigma,UK)

2ml glycerol (Fisher Scientific, UK)

3.1ml formamide (Sigma,UK)

4ml 10X MOPS

lm l aliquots stored at -20°C.

10X MOPS (All reagents from Sigma, UK)

41.8g 4-Morpholinepropanesulfonic acid (free acid)

Up to 800ml with nuclease free water

pH to 7.0 with NaOH

Add 16.6ml 3M NaOHc (sodium acetate)

Add 20ml 0.5M EDTA pH 8.0 

Made up to 1L and autoclaved.

Sample loading per well: 

lp l RNA sample 

2pl RNA loading buffer 

6pl Nuclease free water (Sigma, UK)

2.11.3 Solutions for drug suspensions

2.11.3.1 Vehicle solutions
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0.5% Tween80

50ml purite water 

250pl Tween80 (Sigma, UK)

1.0% Tween80

50ml purite water 

500pl Tween80 (Sigma, UK)

IX Phosphate buffered saline (PBS)

5ml 10X PBS (Gibco, Invitrogen, UK)

45ml purite water 

(Vehicle for ME1)

All vehicle solutions stored at 4°C.

2.11.3.2 Drug suspensions

Gefitinib stock (stored at room temperature for 24 hr)

15mg gefitinib (AstraZeneca, UK)

lm l 0.5% or 1.0% Tween80

Vortexed thoroughly before administered.

AZ12253801 stock (stored at room temperature for 24hr)

5mg AZ12253801 (AstraZeneca, UK)

2ml 1.0% Tween80

Vortexed thoroughly before administered.

ME1 provided as stock solution ready for injection (ImClone systems, New York) 

lOOpI (lmg) aliquots stored at -20°C.
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2.11.4 TriplePrep kit reagents and working solutions

Lysis buffer type 15 (for each sample being processed)

Aliquot lOOOpI lysis buffer type 15 into DNase/RNase-free 2ml tube 

Add lOpI 2-Mercaptoethanol (Sigma,UK)

Wash buffer type 6

48ml of absolute ethanol added and mixed 

Absolute acetone (Sigma, UK)

DNase 1

540|il RNase free water (supplied) added to DNase vial 

Aliquot and stored at -20°C 

2-D DIGE buffer (40ml)

40ml dH20 

42g Urea 

15.2g Thiourea 

0.36g Tris-HCI

4g CHAPS (3-3-Cholamidopropyl) dimethylammonio-l-propanesulfonate

(All reagents from Sigma, UK)

2-D DIGE Reagents mixed well and not heated beyond 37°C. Final pH adjusted to 8.5 

and total volume of 40ml with distilled water. Dispensed into 5ml aliquots and stored at - 

20°C.

2.11.5 SDS PAGE

2.11.5.1 Upper buffer
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6.6g Tris base 2-Amino-2-(hydroxymethyl)-l,3-propanediol; Roche, UK) 

0.4g SDS (sodium dodecyl suphate; Fisher Scientific, UK) 

pH 6.8 w ith HCI (made up to 100ml dH20)

2.11.5.2 Lower buffer

19.8g Tris base 

0.4g SDS

pH to 8.8 w ith HCI (made up to 100ml with dH20)

10% Ammonium persulfate (APS) solution 

lOOmg APS

Made up to 1ml w ith dH20

2.11.5.3 Running buffer (10X Stock)

30.3g Tris base 

144.4g Glycine

Made up to 1000ml w ith dH20

Before use 5ml of 10% (w/v) solution of SDS added to IX solution

2.11.5.4 Laemmli buffer

1.4g Tris base 

4g SDS 

20g sucrose

4mg bromophenol blue

pH to 6.8 with HCI (made up to 100ml with dH20)
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For use: 50pl 3-Mercaptoethanol (Sigma, UK) added to 950pl sample buffer 

prior to use.

Reagents:

Acrylamide/Bis, 19:1 mixture (30%) (BioRad, CA)

APS (ammonium persulphate) (Fisher Scientific, UK)

TEMED (N,N,N',N'-Tetramethylethylenediamine) (Sigma, UK)

Glycine (Fisher Scientific, UK)

Methanol (Fisher Scientific, UK)

2.11.6 Protein transfer buffer 

Transfer buffer (1000ml)

200ml 10X Running buffer (2.11.5.3)

200ml Methanol (Fisher Scientific, UK)

600ml dH20

Mixed well using magnetic flea stirrer

2.11.7 PVDF Membrane incubation buffers

0.1% TBS Tween20 (TBST) Membrane wash buffer

1000ml IX TBS (100ml 10X TBS made up to 1000ml with dH20) 

lm l Tween20 (Sigma, UK)

5% Milk in TBST Blocking buffer (500ml)

25g Marvel non fat dried milk powder 

made up to 500ml with TBST

Heated to 37°C and mixed to help form solution (stored at 4°C)
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5% BSA in TBST Blocking buffer (500ml)

25g Bovine serum albumin (Sigma, UK) replaces skimmed milk

3% BSA/2% NGS in 0.1% TBST Blocking buffer (20ml)

0.6g BSA 

0.4ml NGS

Made up to 20ml w ith TBST

Reagents:

10XTBS (Tris buffered saline; Sigma, UK)

NGS (Normal goat serum, Dako.)

2.11.8 Immuno-histochemistry

2.11.8.1 Antigen retrieval

EDTA buffer antigen retrieval (EDTA buffer, Thermo Fisher Scientific)

10X EDTA epitope retrieval solution (lOmM EDTA buffer, pH 8.0)

100ml (10X EDTA buffer stock) diluted in 900ml dH20  

Citrate buffer antigen retrieval (Citrate buffer, Thermo Fisher Scientific)

10X Sodium Citrate buffer (lOOmM Sodium Citrate buffer, pH 6.0)

100ml (10X Citrate buffer stock) diluted in 900ml dH20

2.11.8.2 Wash buffers

TBST (0.1% TBS Tween20)

1000ml TBS 

lm l Tween 20
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PBS (phosphate buffered saline)

10X stock PBS (pH 7.0; Invitrogen) 

100ml PBS diluted in 900ml dH20

2.11.8.3 Blocking buffers 

1% BSA in PBS

0.2g BSA bovine serum albumin (Sigma) 

20ml PBS 

5% NGS (Normal goat serum)

500pl NGS (Dako)

10ml TBST 

20% NRS (Normal rabbit serum)

2ml NRS 

10ml TBST

2.11.8.4 Endogenous peroxidase block

3% H20 2 solution (Hydrogen peroxide)

Stock 30% H20 2 (Sigma)

lm l 30% H20 2 diluted in 9ml dH20

2.11.8.5 Signal amplification and DAB staining

ABC reagents (Vectastain, Vector laboratories) 

5ml TBST

Add 2 drops reagent A, mix 

Add 2 drops reagent B



(Left for 30 min at room temperature before incubating on sample for 30 min 

at room temperature)

DAB (diaminobenzidine) +Chromogen Envision™ system (DAKO)

DAB substrate buffer solution (1ml)

Add DAB chromogen solution (1 drop)

Staining complete in 5-10 min
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Chapter 3

3. Gene expression changes in Apcmm/+ K-ras wild type colon polyps in response to EGFR 

blockade: Identification of novel putative biomarkers of response to anti-EGFR therapy.

3.1 Introduction

Despite advances in response prediction to EGFR targeted therapy in colorectal 

cancer, there remain unknown factors determining outcome in patients with K-RAS wild 

type tumours in the absence of genetic events leading to pathway activation of B-RAF or PI3 

kinase signalling45' 46' 52 (1.3.4). It was hypothesised therefore that the Apcmm/+mouse would 

model K-ras wild type colorectal tumours sufficiently well to be informative in terms of gene 

expression changes detected in response to Egfr targeted agents and consequently increase 

our insight of molecular factors influencing treatment outcome. To achieve this, microarray 

technology has been used to identify genes differentially expressed in colon polyps 

harvested from Apcmm/+ mice acutely exposed to gefitinib (2.3.2.1) and subsequently, 

transcripts similarly altered in response to a specific monoclonal antibody against the 

murine Egf receptor, ME1 {23.2.2). This work has discovered new putative molecular 

targets which may contribute towards predicting the outcome of EGFR targeted therapy in 

K-RAS wild type advanced colorectal cancer, in the absence of other mutations known to 

influence responses.
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3.2 Results

Light

3.2.1 Colon polyp K-ras and B-raf mutation status

Given the intention to use the Apcmm/+ mouse as a model of K-ras wild type colon 

cancer, I initially sought to exclude the presence of the common known mutations in K-ras 

and B-raf occurring in colorectal cancer. Subsequent pyrosequencing (2.8.1) and allelic 

discrimination (2.8.2) PCRs failed to identify mutations in K-ras codons 12/13 and 61 or the 

presence of B-raf M600E in genomic DNA samples from 30 colon polyps harvested from 29 

Apcmm/+rc\ice. Figure 3.1 demonstrates a typical pyrogram result for K-ras codon 12/13. This 

supports the applicability of the Apcm,n/frnouse model to K-RAS and B-RAF wild type colon 

cancer.

§#sl GfG

E S G C T  A C G A C T  C A G A T G C G T A G
5 10 15 20

nucleotides

Fig 3.1 Pyrogram result from a colon polyp (sample 28D) demonstrating wild type status 

(GGT and GGC) of K-ras gene codons 12/13.

3.3 Pharmacodynamic effects of Egfr blockade in Apcmm/+ intestinal tumours

As gene expression changes in response to acute Egfr exposure were to be explored 

in intestinal tumours from Apcmm/+ mice, I next probed the immediate phenotypic effects of 

gefitinib and ME1 exposure. This was to ensure the doses administered induced relevant 

biological effects potentially associated with anti-tumour responses.

3.3.1 Small intestine and colon tumours

3.3.1.1. Gefitinib

I initially exposed mice to a single dose of gefitinib 75mg/kg and obtained intestinal 

tumours at a 4 hour time point. The immediate pharmacodynamic consequences of gefitinib 

exposure in small intestinal tumours resulted in increased scoring of apoptosis assessed by
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H and E (0.45% ± 0.15 [Veh] vs. 1.96% ± 0.36 [Gef], P=0.04, Mann-Whitney, fig 3.2A) and 

cleaved capsase-3 staining (4.4% ± 0.7 [Veh] vs. 10.1% ± 0.7 [Gef], P=0.04, Mann-Whitney, 

fig 3.2B). This was combined with increased mitotic scoring (1.4% ± 0.2 [Veh] vs. 2.1% ± 0.4 

[Gef], P=0.04, Mann-Whitney, fig 3.2C) w ithout change in Brdu cell labelling (32.4% ± 5.5 

[Veh] vs. 28.6% ± 1.4 [Gef], P=0.3, Mann-Whitney, fig 3.2D). These findings suggest there is 

an accumulation of cells during M phase given the failure to demonstrate increased cell 

cycling and cell proliferation. Examination of colon polyps however showed evidence of 

reduced Brdu tumour cell labelling at 4 hours (21.1% ± 3 [Veh] vs. 12.3% ± 5.2 [Gef], P=0.04, 

Mann Whitney, fig 3.2F) w ithout a change in mitotic index (0.60% ± 0.4 [Veh] vs. 0.57% 

±0.24 [Gef], P=0.5, Mann-Whitney, fig 3.2E). These findings suggest that cell proliferation is 

suppressed without alteration in M phase, perhaps due to slower cell cycling. Apoptosis was 

not induced in colon polyps by gefitinib (data not shown).

3.3.1.2ME1

I next wished to determine if exposure to a monoclonal antibody raised against Egfr 

would alter the phenotype of intestinal tumours in a manner parallel to gefitinib exposure. 

To achieve this I exposed mice to lm g  of ME1, an antibody raised in rats against murine 

Egfr, and then harvested samples at 4 hours. In small intestinal tumours Ki67 scoring to 

mark cycling cells showed a decrease (56.2% ± 9.6 [Veh] vs. 42.4% ± 3.5 [ME1], P0.04, Mann 

Whitney; fig 3.3D). However, there was no change in mitotic index (0.76% ± 0.3 [Veh] vs. 

0.61 ± 0.06 [ME1], P0.33, Mann Whitney; fig 3.3C). These data suggest reduced 

proliferation, but that this does not result in changed M phase, possible reflecting slower 

cell cycle passage. In colonic tumours an increased mitotic count was observed (0.40% 

±0.0003 [Veh] vs. 0.55% ± 0.1 [ME1], P=0.04, Mann Whitney; fig 3.3G) w ithout a change in 

Brdu cell labelling (23.8% ± 1.2 vs. 24.7% ± 0.09, P=0.38, Mann Whitney; fig 3.3H). These 

data suggest that cells may be accumulating during M phase as there is there is no apparent 

increase in cell transit through the cell cycle. No changes in H and E scoring for apoptosis 

(0.94% ± 1 [Veh] vs. 0.60% ± 03 [ME1], P=0.5, Mann-Whitney, fig 3.3A; 1.24% ± 0.46 [Veh] 

vs. 1.82 ± 0.2 [ME1], P=0.06, Mann-Whitney, fig 3.3E) or cleaved caspase 3 (2.4% ± 1.3 [Veh] 

vs. 3.6 ± 1.5 [ME1], P=0.18, Mann-Whitney, fig 3.3B; 8.3% ± 1 [Veh] vs. 7.7% ± 4.9 [ME1],
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Figure 3.2 Phenotypic consequences of acute (4 hr) gefitinib exposure on Apcmin/+ small and large
intestinal tumours
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Figure 3.3 Phenotypic consequences of acute (4 hr) ME1 exposure on Apcmin/+ small and large
intestinal tumours
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P=0.3, Mann-Whitney, fig 3.3F) staining were detected in either small or large intestinal 

tumours respectively in response to ME1.

3.3.2 Apoptotic and cell cycle transcript changes in colon polyps

My next task was to investigate some of the molecular alterations induced by Egfr 

antagonism in order to explain the immediate phenotypic changes. This was done by 

examining colon polyp transcript changes in response to acute Egfr inhibition by gefitinib 

and ME1.

3.3.2.1 Gefitinib

Following 4 hour exposure to gefitinib 75mg/kg there was an approximate 2-fold 

induction of the pro-apoptotic genes Bakl, Bax and almost 4-fold increase in Bcl2 modifying 

factor (Bmf) expression. This was associated with an approximate 2-fold reduction in the 

expression of cyclin E2, {Ccne2) a component of cell cycle control (fig 3.4 A). These findings, 

although only examined at the mRNA level, may indicate that pro-apoptotic events are 

driven by changes in Bakl, Bax and Bmf and anti-proliferative effects influenced by reduced 

expression of cyclin E2.

3.3.2.2 ME1

Similar transcript changes were search for in colon tumours in response the Egfr 

blockade driven by targeted monoclonal antibody. Here, ME1 lm g induced a 2-fold 

increased expression of Bmf and led to an approximate 2-fold decreased level of cyclin E2 

expression in colon polyps following 4 hour exposure (fig 3.4 B). Again, these changes may 

be important in driving the phenotypic alterations seen following acute Egfr antagonism in 

intestinal tumours. The pro-apoptotic transcript changes appear to be more selective in 

response to ME1 compared to gefitinib.

3.3.3 Downstream signalling changes in colon polyps

I next sought to identify the molecular changes in response to Egfr blockade, in 

terms of the acute effects upon Egfr signal transduction in Apcmm/+ mouse intestinal 

tumours, to provide further pharmacodynamic evidence that the chosen agents were
1 3 2administered at an appropriate dose based upon previous work . This work was
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Figure 3.4. Apoptotic and cell cycle transcript changes induced in Apcmin/+ colon polyps 
by 4 hr exposure to gefitinib or ME1
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Figure 3.5 Signalling changes in Apcmin/+ colon polyps following 4 hr Egfr antagonism with gefitinib 
or ME1
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undertaken following acquisition of material for the microarray analysis, but ideally should 

have been performed beforehand to ensure suitable dose administration in this setting.

3.3.3.1 Gefitinib

Egfr blockade using gefitinib 75mg/kg reduced the level of phosphorylated Egfr in 

colon polyps and consequently suppressed downstream phosphorylation of Erk and Akt (fig

3.5 A-D). In addition there was activation of the Ig fl receptor indicated by an increased level 

of Ig flr phosphorylation at tyrosine 1316 position (fig 3.5 A, E).

3.3.3.2 ME1

The monoclonal antibody raised against Egfr, ME1 (lmg), resulted in suppression of 

Apcmm/+ colon polyp Erk phosphorylation. However this was demonstrated in the absence of 

a detected reduction in the level of Egfr phosphorylation (fig 3.5 F-H). Signalling through Akt 

and Ig flr activation was not probed in response to ME1.

3.4 Microarray analysis

My next step was to identify Apcm,n/+ colon polyp transcript changes in 

response to acute Egfr exposure. This is based on the hypothesis that any induced gene 

alterations may represent novel candidate biomarkers indicative of clinical outcome to EGFR 

targeted therapy in K-ras wild type colorectal cancer. As described in methods (section

2.1.3.2.1 and 2.3.2.1), Apcmm/+ mice with an intestinal tumour burden were exposed to acute 

Egfr inhibition for defined time periods prior to cull. This was followed by colon polyp RNA 

extraction and pooling, with subsequent RNA labelling and hybridisation to Affymetrix gene 

chips. Although professional bioinformatics input was not available for analysis of the 

microarray level data, Dr Karen Reed was of great assistance, and provided excellent 

support for aspects of the analysis.

3.4.1 Fold change and ranked product computations

A clear strategy for choosing potential targets for qRT-PCR validation was required 

given the hundreds of genes potentially differentially expressed. As described (2.10), the 

approach I adopted to identify targets for subsequent validation was to search transcripts 

repeatedly differentially expressed by different methods of microarray data enquiry. I then
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Table 3.1. Top 50 up- and down-regulated genes (fold change <.5 or >2; P <.05) based on microarray
fold changes in Apcmin/+ colon polyps in response to gefitinib at 4 hours

Probe Set IP Gene Symbol Gene Title
Fold
change P value

1453925_at
1439379_x_at
1426132_at
1443126_at

1447626_x_at 

1433145_at 

1448514 at

1446352_at

1436258_at 
1425574_at 

1429933_at 

1431764_at 

1432049 at

1445592_at 

1417943 at

14462 l l_ a t  

143763l_ a t

1423328_at
1422214_at
1451861_at

1456248_at

1445187_at
1438870_at

1456814_at

1421561_at

1453526_at
1416196_at

1449380 at

4930429F24Rik
Prml

Arid3b
4933431Cl ORik 

Cox5b

Arhgef9 
Epha3 

Agtpbpl 
2310067P03Rik 

4930422l22Rik

Gng4

Kcnip4

Gdopl
Npffr2
Nxnl2
Lce3f / / /
LOC630971
9430070013Rik
Fbnl

Rrp7a

Bhlhe23
4930503E14Rik
Rpsa

Pacsinl

RIKEN cDNA 4930429F24 gene 10.22 0.05
protamine 1 10.06 0.00
methylase mRNA 9.92 0.04
Unclassifiable product 7.62 0.02
AT rich interactive domain 3B
(BRIGHT-like) 7.48 0.04

RIKEN cDNA 4933431C10 gene 7.34 0.01

cytochrome c oxidase, subunit Vb 7.27 0.01
hypothetical Alanine-rich 
region/Treacher Collins syndrome 
protein 6.96 0.03
CDC42 guanine nucleotide
exchange factor (GEF) 9 6.79 0.02
Eph receptor A3 6.72 0.02

ATP/GTP binding protein 1 6.36 0.01

RIKEN cDNA 2310067P03 gene 6.35 0.02

RIKEN cDNA 4930422122 gene 6.10 0.01
No transcript currently supports 
this probe set, though EST 
sequences are available from the 
design information, 
guanine nucleotide binding protein 
(G protein), gamma 4

No transcript currently supports
this probe set, though EST
sequences are available from the
design information. 5.57 0.00

Kv channel interacting protein 4 5.45 0.03
ganglioside-induced differentiation-
associated-protein 1 5.32 0.03
neuropeptide FF receptor 2 5.25 0.03
nucleoredoxin-like 2 5.22 0.04
late cornified envelope 3F / / /
hypothetical protein LOC630971 5.20 0.01

RIKEN cDNA 9430070013 gene 5.05 0.04
fibrillin 1 4.82 0.04
ribosomal RNA processing 7
homolog A (S. cerevisiae) 4.55 0.01
basic helix-loop-helix family,
member e23 4.50 0.03

RIKEN CDNA4930503E14 gene 4.49 0.00
ribosomal protein SA 4.46 0.02
protein kinase C and casein kinase 
substrate in neurons 1 4.41 0.02

5.90 0.01

5.86 0.00

Top 50 up-regulated genes in colon polyps in response to gefitinib exposure



Table 3.1. Top 50 up- and down-regulated genes (fold change <.5 or >2; P <.05) based on microarray
fold changes in Apcmin/+ colon polyps in response to gefitinib at 4 hours

Probe Set ID

1430018 at

1443155_at 

1454298_at 

1438324_at

1419220_at

1430306_a_at

1438884_at

1445817_at

1419294_at
1454054_at

1444605_at 

1443599 at

1444253_at

1426150_at

1438194_at 

1433165 at

1444359_at

1442022_at

1435618_at

1431436_a_at

1421422_at 

1420418 at

Gene Symbol

Cdc42ep5

4932430A15Rik

9330182L06Rik

Xirpl

Atp6vlc2
Shisa3

BB168181

1700011H14Rik
4930459l23Rik

1700061F12Rik

Adamtsl8

Gipc3

Sic la  2

4930570E01 Rik

Tsepa
Pnma2
Katnal2

5033411D12Rik 
Syt2__________

Fold
Gene Title change P value
CDC42 effector protein (Rho
GTPase binding) 5 4.40 0.02
probes do not match the 

transcript presumably because 
the 3' end of the transcript is
truncated in the record 4.24 0.01

RIKEN cDNA 4932430A15 gene 4.24 0.05

RIKEN cDNA 9330182L06 gene 4.22 0.03
xin actin-binding repeat containing 
1 4.16 0.02

ATPase, H+ transporting, lysosomal
V I  subunit C2 4.16 0.02

shisa homolog 3 (Xenopus laevis) 4.10 0.02

expressed sequence BB168181 4.10 0.04

RIKEN cDNA 1700011H14 gene 4.07 0.03

RIKEN cDNA 4930459123 gene 3.95 0.00

RIKEN cDNA 1700061F12 gene 3.93 0.05

Hypothetical protein 3.92 0.02
a disintegrin-like and 
metallopeptidase (reprolysin type) 
with thrombospondin type 1 motif,
18 3.87 0.02

GIPC PDZ domain containing
family, member 3 3.76 0.02

solute carrier family 1 (glial high 
affinity glutamate transporter),
member 2 3.75 0.03

RIKEN cDNA 4930570E01 gene 3.71 0.02
No transcripts are known to 
correspond to this probe set at this 
time, but a UniGene Cluster is
known to correspond to it 3.70 0.03
thymocyte selection pathway
associated 3.70 0.00

paraneoplastic antigen MA2 3.69 0.02

katanin p60 subunit A-like 2 3.66 0.02

RIKEN cDNA 5033411D12 gene 3.65 0.02

synaptotagmin II 3.62 0.02

Top 50 up-regulated genes in colon polyps in response to gefitinib exposure



Table 3.1. Top 50 up- and down-regulated genes (fold change <.5 or >2; P <.05) based on microarray
fold changes in Apcm,n/+ colon polyps in response to gefitinib at 4 hours

Fold
Probe Set ID Gene Symbol___________ Gene Title_________________ change P value
1455907_x_at Phox2b paired-like homeobox 2b 0.04 0.01

1459995_at 1700015GllRik RIKEN cDNA 1700015G11 gene 0.07 0.04

1447292_at Actrlb ARP1 actin-related protein 1 
homolog B, centractin beta 
(yeast)

0.08 0.0001

1432877_at 4930544N03Rik RIKEN cDNA 4930544N03 gene 0.09 0.001

1437899_at Lyg2 lysozyme G-like 2 0.11 0.05

1430233_a_at Nhedcl Na+/H+ exchanger domain 
containing 1

0.11 0.002

1440888_at Oxtr oxytocin receptor 0.13 0.02

1441695_at — Unclassifiable product 0.14 0.01
1444889_at Rassf2 Ras association (RalGDS/AF-6) 

domain family member 2
0.14 0.02

1446115_at — Unclassifiable product 0.15 0.02
1421699_at Enam enamelin 0.15 0.02
1432481_a_at Lyzl6 lysozyme-like 6 0.15 0.002
1444168_at Xprl xenotropic and polytropic 

retrovirus receptor 1
0.15 0.05

1427393_at F9 coagulation factor IX 0.15 0.02
1422349_at Ccrlll chemokine (C-C motif) receptor 

1-like 1
0.15 0.0006

1431976_at 4930526F13Rik RIKEN cDNA 4930526F13 gene 0.16 0.05

1430112_at Wdr66 WD repeat domain 66 0.16 0.0002
1437523_s_at Sgcg sarcoglycan, gamma

(dystrophin-associated
glycoprotein)

0.16 0.02

1440534_at ENSMUSG00000056615 predicted gene, 
ENSMUSG00000056615

0.16 0.02

1443780_at No transcripts are known to 
correspond to this probe set at 
this time, but a UniGene 
Cluster is known to correspond 
to it

0.17 0.0005

1449704_at C80171 expressed sequence C80171 0.17 0.03

1443377_at Adam la a disintegrin and 
metallopeptidase domain la

0.17 0.004

1453444_at 5730437C12Rik RIKEN cDNA 5730437C12 gene 0.18 0.02

1429791_at A930004D18Rik RIKEN cDNA A930004D18 gene 0.18 0.001

1434614_at — hypothetical protein 0.18 0.02

Top 50 down-regulated genes in colon polyps in response to gefitinib exposure



Table 3.1. Top 50 up- and down-regulated genes (fold change <.5 or >2; P <.05) based on microarray
fold changes in Apcmin/+ colon polyps in response to gefitinib at 4 hours

Fold
Probe Set ID Gene Symbol Gene Title change P value

1445412_at Ccdc73 coiled-coil domain containing 
73

0.19 0.005

1441852_x_at A tg l6 ll autophagy-related 16-like 1 
(yeast)

0.19 0.02

1420321_at Rsadl Radical S-adenosyl 
methionine domain 
containing 1, mRNA (cDNA 
clone MGG170901  
IMAGE:8862296)

0.19 0.03

1444249_at No transcripts are known to 
correspond to this probe set 
at this time, but a UniGene 
Cluster is known to 
correspond to it

0.20 0.005

1457769_at H60a histocompatibility 60a 0.20 0.005

1458853_at No transcript currently 
supports this probe set, 
though EST sequences are 
available from the design 
information.

0.20 0.01

1457876_at D9Ertd496e DNA segment, Chr 9, ERATO 
Doi 496, expressed

0.21 0.04

1458102_at — Hypothetical protein 0.21 0.02
1430209_at 4930404H21 Rik RIKEN cDNA 4930404H21 

gene
0.21 0.02

1443549_at 4930579E17Rik RIKEN cDNA 4930579E17 
gene

0.21 0.0002

1449378_at Krt27 keratin 27 0.22 0.005
1425717_at Lrba LPS-responsive beige-like 

anchor
0.22 0.004

1430739_at 4930471M09Rik RIKEN cDNA 4930471M09 
gene

0.22 0.003

1442242_at C79127 expressed sequence C79127 0.22 0.02
1419224_at Cecr6 cat eye syndrome 

chromosome region, 
candidate 6 homolog 
(human)

0.22 0.02

1452437_at U10021J02Rik RIKEN cDNA 1110021J02 
gene

0.22 0.01

1451600_s_at EG13909 / / /  Es31 predicted gene, EG13909 I I I  
esterase 31

0.22 0.003

Top 50 down-regulated genes in colon polyps in response to gefitinib exposure



Table 3.1. Top 50 up- and down-regulated genes (fold change <.5 or >2; P <.05) based on microarray
fold changes in Apcmin/+ colon polyps in response to gefitinib at 4 hours

Probe Set ID

1455119 at

1437407_at 
1444873 at

1419390_at 
1442715_at 
1454114_a_at

1454308_at

1421763 at

Gene Symbol

Ppapdcla

Rnf222

PdelOa

Nhedcl

1 700030C10Rik 

BmplO

Gene Title
Fold
change P value

phosphatidic acid 0.22 0.008
phosphatase type 2 domain 
containing 1A
ring finger protein 222 0.22 0.008
No transcript currently 0.22 0.05
supports this probe set,
though EST sequences are
available from the design
information.
phosphodiesterase 10A 0.22 0.05
Unclassifiable product 0.23 0.008
Na+/H+ exchanger domain 0.23 0.003
containing 1
RIKEN cDNA 1700030C10 0.23 0.003
gene
bone morphogenetic protein 0.23 0.00004
10

Top 50 down-regulated genes in colon polyps in response to gefitinib exposure



chose candidates based on the magnitude of differential expression whilst also considering 

their biological relevance in the context of EGFR signalling biology and published literature. 

Fold change analysis (2.10.3) revealed 148 up- and 210 down-regulated transcripts (>2 fold 

up or down-regulation with an associated P value of P<.05) in colon polyps in response to 4 

hour gefitinib exposure. Table 3.1 is a selection of these genes, presenting the top 50 most 

up and down-regulated genes. This list of genes is complemented by table 3.2a and 3.2b 

which presents the top and bottom 50 genes differentially expressed according to ranked 

product computation (2.10.3) following 4 hour gefitinib exposure. By comparing the genes 

listed in these tables I searched for similarly expressed transcripts identified by both 

analyses. As a result AT rich interactive domain 3B (BRIGHT-like) (Arid3b), Cdc42 guanine 

nucleotide exchange factor (GEF) 9 (Arhgef9), bone morphogenetic protein 10 (BmplO), EPH 

receptor A3 (Epha3), guanine nucleotide binding protein (G protein), gamma 4 (Gng4), 

oxytocin receptor (Oxtr), paired-like homeobox 2b (Phox2b) and Ras association (RalGDS/AF- 

6) domain fam ily member 2 (Rassf2) were chosen for further assessment as potential 

indicators of response to EGFR blockade.

3.4.2 Time series regression analysis

The time-series regression analysis (2.10.2) provided details of temporal gene 

expression changes in colon polyps over 24 hours resulting from gefitinib exposure (Fig 3.6).

□ Fold change
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Table 3.2a. Top 50 ranked genes in Apcmin/+ colon polyps in response to gefitinib 

Probe Set ID________Gene Symbol_______ Gene Title______________________

1430306_a_at

1439390_at

1425574_at

1437631_at

1439379_x_at

1447626_x_at

1438274_at

1422214_at

1416776_at

1421561_at

1417943_at

1456248_at

1420418_at

1431436_a_at

1445187_at

1426150_at

1423328_at

1438194_at

1419220_at

1416196_at

1449380_at

1436258_at 

1453526 at

Atp6vlc2

1300018ll7Rik

Epha3

Kcnip4

Prml

ATPase, H+ transporting, lysosomal V I subunit C2

RIKEN cDNA 1300018117 gene

Eph receptor A3

Kv channel interacting protein 4

protamine 1

Arid3b

Ikzf4

Npffr2

Crym

Bhlhe23

Gng4

Lce3f

LOC630971

Syt2

Katnal2

9430070013Rik

AT rich interactive domain 3B (BRIGHT-like) 

IKAROS family zinc finger 4 

neuropeptide FF receptor 2 

crystallin, mu

basic helix-loop-helix family, member e23

guanine nucleotide binding protein (G protein), 
gamma 4

late cornified envelope 3F 

hypothetical protein LOC630971 

synaptotagmin II 

katanin p60 subunit A-like 2 

RIKEN cDNA 9430070013 gene

Gipc3

Gdapl

Sic la  2

Xirpl

Rpsa

Pacsinl

GIPC PDZ domain containing family, member 3

ganglioside-induced differentiation-associated- 
protein 1

solute carrier family 1 (glial high affin ity glutamate 
transporter), member 2

xin actin-binding repeat containing 1

ribosomal protein SA

protein kinase C and casein kinase substrate in 
neurons 1

Arhgef9 CDC42 guanine nucleotide exchange factor (GEF) 9

4930503E14Rik RIKEN cDNA 4930503E14 gene



Table 3.2a. Top 50 ranked genes in Apcmin/+ colon polyps in response to gefitinib

Probe Set ID Gene Symbol Gene Title
1444950_at Zfp509 zinc finger protein 509

a disintegrin-like and metallopeptidase (reprolysin
1444253_at Adamtsl8 type) w ith thrombospondin type 1 motif, 18

1426132_at methylase mRNA

ribosomal RNA processing 7 homolog A (S.
1456814_at Rrp7a cerevisiae)

1438324_at 9330182L06Rik RIKEN cDNA 9330182L06 gene

1432049_at 4930422l22Rik RIKEN cDNA 4930422122 gene

1454298_at 4932430A15Rik RIKEN cDNA 4932430A15 gene

1444605_at 1700061F12Rik RIKEN cDNA 1700061F12 gene

1451861_at Nxnl2 nucleoredoxin-like 2

1445930_at Fndc7 fibronectin type III domain containing 7

1443599_at Hypothetical protein

1438870_at Fbnl fibrillin  1

1438884_at Shisa3 shisa homolog 3 (Xenopus laevis)

1433165_at 4930570E01Rik RIKEN cDNA 4930570E01 gene

1431764_at 2310067P03Rik RIKEN cDNA 2310067P03 gene

1453925_at 4930429F24Rik RIKEN cDNA 4930429F24 gene
Hypothetical Alanine-rich region/Treacher Collins

1446352_at syndrome protein

1429933_at Agtpbpl ATP/GTP binding protein 1

1443126_at Unclassifiable product

1447553_x_at Ric3 CDNA clone IMAGE:40090175

1433145_at 493343lClORik RIKEN cDNA 4933431C10 gene

1440945_at Glccil Testhymin

14462l l_ a t CLONE=L0267B04, EST

1448514_at Cox5b cytochrome c oxidase, subunit Vb 
No transcripts are known to correspond to  this 
probe set at this time, but a UniGene Cluster is

1442480_at known to correspond to it.
No transcripts are known to correspond to this 
probe set at this time, but a UniGene Cluster is

1444359_at known to correspond to it.
No transcript currently supports this probe set, 
though EST sequences are available from  the design

1445592 at information.



Table 3.2b. Bottom 50 ranked genes in Apcmin/+ colon polyps in response to gefitinib

Probe Set ID Gene Symbol Gene Title

1451600_s_at EG13909 predicted gene, EG13909

Es31 esterase 31

1441852_x_at A tg l6 ll autophagy-related 16-like 1 (yeast)

1421763_at Bmp 10 bone morphogenetic protein 10

1449378_at Krt27 keratin 27

1445412_at Ccdc73 coiled-coil domain containing 73

1419390_at PdelOa phosphodiesterase 10A

1422349_at Ccrlll chemokine (C-C m otif) receptor 1-like 1

1443549_at

1421699_at

1444889_at

1432481_a_at

1455119 at

4930579E17Rik

Enam

Rassf2

Lyzl6

Ppapdcla

RIKEN cDNA 4930579E17 gene 

enamelin

Ras association (RalGDS/AF-6) domain family member 
2

lysozyme-like 6

phosphatidic acid phosphatase type 2 domain 
containing 1A

1443377_at

1455907_x_at

1427393_at

1419224_at 

1437407 at

Adam la

Phox2b

F9

Cecr6

Rnf222

a disintegrin and metallopeptidase domain la  

paired-like homeobox 2b 

coagulation factor IX

cat eye syndrome chromosome region, candidate 6 
homolog (human)

ring finger protein 222

1430209_at

1430112_at

1437523_s_at 

1437899_at 

1425717 at

4930404H21Rik

Wdr66

Sgcg

Lyg2

Lrba

RIKEN cDNA 4930404H21 gene 

WD repeat domain 66

sarcoglycan, gamma (dystrophin-associated 
glycoprotein)

lysozyme G-like 2

LPS-responsive beige-like anchor

1454308_at 

1440888 at

1700030C10Rik RIKEN cDNA 1700030C10 gene 

Oxtr oxytocin receptor



Table 3.2b. Bottom 50 ranked genes in Apcmin/+ colon polyps in response to gefitinib

Probe Set ID Gene Symbol Gene Title
1442242_at C79127 expressed sequence C79127
1452437_at 1110021J02Rik RIKEN cDNA 1110021J02 gene
1430233_a_at Nhedcl Na+/H+ exchanger domain containing 1
1454114_a_at Nhedcl Na+/H+ exchanger domain containing 1
1457769_at H60a histocompatibility 60a

1459995_at 1700015GllRik RIKEN cDNA 1700015G11 gene
ARP1 actin-related protein 1 homolog B, centractin

1447292_at Actrlb beta (yeast)
1442715_at unclassifiable product

1444168_at Xprl xenotropic and polytropic retrovirus receptor 1
1441695_at unclassifiable product
1458102_at hypothetical protein

1429791_at A930004D18Rik RIKEN cDNA A930004D18 gene

1453444_at 5730437C12Rik RIKEN cDNA 5730437C12 gene

1430739_at 493047lM09Rik RIKEN cDNA 4930471M09 gene
1434614_at hypothetical protein
1446115_at

ENSMUSG000000
unclassifiable product

1440534_at 56615 predicted gene, ENSMUSG00000056615
1431976_at 4930526F13Rik RIKEN cDNA 4930526F13 gene

1432877_at 4930544N03Rik RIKEN cDNA 4930544N03 gene
1449704_at C80171 expressed sequence C80171

No transcripts are known to correspond to this
probe set at this time, but a UniGene Cluster is

1444249_at known to correspond to it.
No transcript currently supports this probe set, 
though EST sequences are available from  the design

1458853 at information.

1420321 at Rsadl

1444873 at

1443780 at

Radical S-adenosyl methionine domain containing 1, 
mRNA (cDNA clone MGC:170901 IMAGE:8862296) 
No transcript currently supports this probe set, 
though EST sequences are available from  the design 
information.
No transcripts are known to correspond to this 
probe set at this time, but a UniGene Cluster is 
known to correspond to  it.

1457876 at D9Ertd496e DNA segment, Chr 9, ERATO Doi 496, expressed



Fig 3.6 Transcript changes in Apcmm/+ colon polyps induced by gefitinib over 24 hours (time 

series regression analysis; gene false discovery rate <0.055). Plots show the gene fold 

changes calculated by expressing the ratio of mean geometric gene intensity values for 

gefitinib at 0-24 hours relative to time zero for each probe. Similar fold changes were also 

found by expressing the ratio of mean geometric gene intensity values for gefitinib and 

vehicle at each time point (data not shown). Nov, nephroblastoma over-expressed; Fabp2, 

fatty acid binding protein 2; Cxcl9, chemokine receptor ligand 9; Slc26o3, solute carrier 

family 26, member 3; CxcllO, chemokine receptor ligand 10; Tgtp, Tcell-specific GTPase; 

Retnlb, resistin like beta; ligp l, Interferon inducible GTPase 1.

I next wished to test the accuracy of the microarray data by confirmatory qRT-PCR 

using a sample of genes identified by time series regression analysis, and the same 

microarray mRNA. This affirmed the capability of the microarray to detect expression 

changes in 5/6 genes tested by qRT-PCR (Fig 3.7).

RT PCR validation of microarray time-series data

Nov(12 hr) Fabp2(12hr) Cxcl9(4hr) Cxcll0(4hr) Retnlb(24 ligpl(4hr)
hr)

■ fold change

Fig 3.7 Validation of microarray transcript changes (time series regression model) by qRT- 

PCR using microarray mRNA. Primer design failed for Tgtp and Slc26o3. Fold changes all 

reach P values of 0.04 (Mann-Whitney) with the exception of ligp l which did not reach this 

level of significance.

As the time series regression analysis had identified differentially expressed genes 

related to gefitinib exposure, chemokine (C-X-C motif) ligand 9 (Cxcl9), chemokine (C-X-C 

motif) ligand 10 (CxcllO), T cell specific GTPase (Tgtp) and Interferon inducible GTPase 1
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Table 3.3. Apcmin/+ colon polyp genes changes in response to gefitinib identified by SAM
analysis _ _

Geom mean Geom mean
Gene intensity TO intensity T4 Fold-

Probe set symbol Description_____________ Gefitinib Gefitinib change
1442786_s_at Rufy3 RUN and FYVE domain 

containing 3
54.35 9.60 0.18

1424402_at Rufy3 RUN and FYVE domain 
containing 3

151.97 29.07 0.19

1443746_x_at Dmpl dentin matrix protein 1 96.55 28.07 0.29
1455886_at Cbl Casitas B-lineage 

lymphoma
413.60 120.57 0.29

1452730_at Rps4y2 ribosomal protein S4, Y- 
linked 2

152.68 52.45 0.34

1427515_at A530088IRIKEN cDNA A530088I07 
07Rik gene

190.31 50.69 0.27

AFFX-BioC-5_at NA NA 743.50 274.67 0.37

1443745_s_at Dmpl dentin matrix protein 1 165.65 53.68 0.32
AFFX-BioC-3_at NA NA 841.14 327.05 0.39

1418652_at Cxcl9 chemokine (C-X-C motif) 
ligand 9

381.33 2318.67 6.08

1420437_at Indo indoleamine-pyrrole 2,3 
dioxygenase

125.52 872.97 6.95

1419734_at Actb actin, beta, cytoplasmic 476.91 2232.84 4.68

1417654_at Sdc4 syndecan 4 415.35 1817.47 4.38

1417462_at Capl CAP, adenylate cyclase- 
associated protein 1 
(yeast)

112.29 479.67 4.27

1419762_at Ubd ubiquitin D 186.27 857.90 4.61
1435906_x_at Gbp2 guanylate nucleotide 

binding protein 2
569.06 2644.60 4.65

AFFX-
18SRNAMur/X0068
6_5_at

NA NA 443.83 2498.81 5.63

1417461_at Capl CAP, adenylate cyclase- 
associated protein 1 
(yeast)

238.53 885.77 3.71

1418240_at Gbp2 guanylate nucleotide 
binding protein 2

398.13 1674.11 4.20

1439197_at Pi4kb phosphatidylinositol 4- 
kinase, catalytic, beta 
polypeptide

54.56 178.35 3.27

1429509_at Lsml2 LSM12 homolog (S. 
cerevisiae)

78.69 249.27 3.17

1449859_at Goltlb golgi transport 1 homolog 58.30 
B (S. cerevisiae)

182.65 3.13



Table 3.3. Apcmin/+ colon polyp genes changes in response to  gefitin ib identified by SAM 
analysis

Probe set Gene symbol Description

Geom mean Geom mean 
intensity intensity T4 Fold-
TO Gefitinib Gefitinib______change

1416497 at Pdio4

1423411 at BC013481

1431804_a_at Sp3

protein disulfide 383.86 
isomerase associated 
4

cDNA sequence 
BC013481

237.81

trans-acting 314.16
transcription factor 3

1167.22 3.04

716.24

933.09

3.01

2.97

1439831_at EG240327 predicted gene,
EG240327

1419042_at lig p l

83.24

interferon inducible 339.03 
GTPase 1

315.66 3.79

1315.63 3.88

1418930_at CxcllO 

1418392_a_at Gbp3

chemokine (C-X-C 259.98 
m otif) ligand 10

guanylate nucleotide 325.96 
binding protein 3

1027.44 3.95

1120.22 3.44

1438676_at Mpa2l

1449009_at Tgtp

macrophage activation 155.88 
2 like

546.18 3.50

T-cell specific GTPase 1570.79 5428.20 3.46

1449496_at 2010109l03Rik RIKEN cDNA 83.47
2010109103 gene

1438403_s_at Ramp2

253.29 3.03

receptor (calcitonin) 1594.34 5205.58 3.27
activity modifying 
protein 2

1427679 at Latsl large tum or 38.69 119.31 3.08
suppressor



Table 3.3. Apcmin/+ colon polyp genes changes in response to gefitinib identified by SAM 
analysis

Geom mean Geom mean
in tPncitvTn intPncitvTd

Probe set Gene symbol Description Gefitinib Gefitinib Fold-change
14189 ll_ s _ a t Acsl4 acyl-CoA synthetase 

long-chain family 
member 4

171.22 447.08 2.61

1435653_at NA NA 1061.63 3052.24 2.88
1422845_at Canx calnexin 919.39 2468.22 2.68

1418908_at Pam peptidylglycine alpha-
amidating
monooxygenase

68.48 177.39 2.59

1418536_at H2-Q8 histocompatibility 2, Q 
region locus 8

598.81 1801.27 3.01

1426164_a_at Usfl upstream transcription 
factor 1

169.86 438.28 2.58

1449018_at Pfnl profilin 1 2996.31 7650.52 2.55

1437904_at Rbm45 RNA binding m otif 
protein 45

61.49 167.27 2.72

1417705_at Otubl OTU domain, ubiquitin 
aldehyde binding 1

249.87 615.28 2.46

1415801_at Gjal gap junction membrane 152.52 
channel protein alpha 1

432.10 2.83

AFFX- NA
18SRNAMur/X0
0686_3_at

NA 483.00 1298.97 2.69

1426226_at Dyrkla dual-specificity 
tyrosine-(Y)- 
phosphorylation 
regulated kinase la

134.20 346.29 2.58

1417764_at Ssrl signal sequence 
receptor, alpha

417.63 1029.61 2.47

1421106_at Jagl jagged 1 42.08 102.73 2.44

1432646_a_at 2900097C17Ri RIKEN cDNA 
k 2900097C17 gene

71.40 201.03 2.82

1421341_at Axin2 axin2 179.31 429.77 2.40

1447927_at Mpa2l macrophage activation 
2 like

529.63 1592.47 3.01

1456907_at Cxcl9 chemokine (C-X-C 
motif) ligand 9

116.60 336.36 2.88

1424101_at Hnrpl heterogeneous nuclear 387.43 
ribonucleoprotein L

910.47 2.35

The estimated false discovery rate among the 54 significant genes is 0.0087 and associated 
delta value used to identify the significant genes is 0.0469.



(ligpl) were chosen as candidates for qRT-PCR validation in biological replicate experiments. 

This was because these genes displayed altered expression levels at 4 hours, reflecting the 

same time point clinical samples would be available to interrogate the transcriptome, in 

response to cetuximab (Xerxes trial, 2.2.1).

3.4.3 AffymlGui and SAM analysis

AffylmGUI analysis (2.10.1) identified a number of genes with less robust fold 

changes at 4 hours which did not all reach statistical significance but remained candidates in 

view of their potential biological relevance to EGFR signalling or blockade. Unfortunately 

SAM analysis (2.10.4) failed to identify gene changes with an acceptable FDR when 

comparing gefitinib induced changes at 4 hours relative to vehicle; 4 genes were each down- 

regulated including ribosomal protein S4, Y-linked 2 (Rps4y2), protease, serine, 22 [Prss22), 

aquaporin 4 (Aqp4) and G protein-coupled receptor, family C, group 5, member A (Gprc5a) 

(FDR 0.48 and delta value of 0.89). As none of these genes were obviously related to EGFR 

signalling and due to the poor FDR, they were disregarded as candidates for further 

assessment. However SAM analysis was extended to compare gefitinib induced gene 

changes at 4 hours relative to time zero (Table 3.3). This pragmatic approach led to the 

identification of Cbl (fold change 0.3; estimated FDR .009 and delta value .047) as a potential 

candidate of interest given its documented role in EGFR turnover145'147. It is worth noting 

that table 3.3 includes a number of genes first identified by the time series analysis (Cxcl9, 

CxcllO, ligpl and Tgtp) and also Ubd (Ubiquitin D) which was identified as an up-regulated 

gene by the AffylmGUI analysis and has biological relevance in terms of EGFR 

degradation148. The SAM analysis also highlighted Pi4kb as a gene of potential interest given 

its association with phosphatidylinositol signal transduction downstream of EGFR.

As a consequence of the various analyses described above I have identified a list of 

candidate genes which are hypothesised to be potentially relevant in the prediction of 

response to EGFR targeted therapy in K-RAS wild type colorectal cancer (table 3.4). Target 

genes in this table have been expressed as 4 hour fold changes in response to gefitinib 

(relative to vehicle), indicating the method of microarray analyses used to identify
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Table 3.4: Microarray detected gene expression fold changes in K-ras wild type Apcmin/+ colon polyps
response to gefitinib at 4 hours: Candidates for qRT-PCR validation

Gene Name Probe Set
Fold
change t test Analysis

Areg amphiregulin
CDC42 guanine nucleotide exchange factor

1421134_at 0.54 0.100 A

Arhgef9 (GEF) 9 1436258_at 6.79 0.022 F/R

Arid3b AT rich interactive domain 3B (BRIGHT-like) 1447626_x_at 7.48 0.037 F/R

Bcl2 B-cell leukemia/lymphoma 2 1437122_at 1.32 0.152 A

Bel2 LI 1 BCL2-like 11 (apoptosis facilitator) 1435448_at 1.23 0.058 A

Bmf BCL2 modifying factor 1422995_at 1.46 0.015 A

BmplO bone morphogenetic protein 10 1421763_at 0.23 0.00004 F/R

Cbl casitas B-lineage lymphoma 1455886_at .879 0.173 S

Ccndl cyclin D1 1417419_at 0.88 0.308 A

Ccnd2 cyclin D2 1416124_at 0.55 0.026 A

Ccnel cyclin E l 1441910_x_at 0.79 0.036 A

Ccne2 cyclin E2 1422535_at 0.65 0.037 A

CxcllO chemokine (C-X-C m otif) ligand 10 1418930_at 2.50 0.257 T

Cxcl9 chemokine (C-X-C m otif) ligand 9 1418652_at 2.77 0.135 T

Egfr epidermal growth factor receptor 1418349_at 0.74 0.013 A

Empl epithelial membrane protein 1 1459171_at 0.49 0.044 F

Epho3 eph receptor A3 1425574_at 6.72 0.022 a / f/ r

v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 2, neuro/glioblastoma

Erbb3 derived oncogene homolog (avian) 
v-erb-a erythroblastic leukemia viral

1434606_at 1.20 0.069 A

Erbb4 oncogene homolog 4 (avian) 1427783_at 1.90 0.476 R

Ereg epiregulin 141943l_ a t 0.63 0.260 A



Table 3.4: Microarray detected gene expression fold changes in K-ros wild type Apcmin/+ colon polyps
in response to gefitinib at 4 hours. Candidates for qRT-PCR validation

Gene Name Probe Set
Fold
change t test Analysis

Gng4
guanine nucleotide binding protein (G 
protein), gamma 4 1417943__at 5.86 0.0004 F/R

Hbegf heparin-binding EGF-like growth factor 1418350,_at 0.64 0.018 A

Hipl huntingtin interacting protein 1 1434557,.at 1.27 0.064 A

ligpl interferon inducible GTPase 1 1419042,.at 2.50 0.124 T

Ikbkg inhib itor of kappaB kinase gamma 1435647,.at 2.41 0.017 F

Oxtr oxytocin receptor 1440888,.at 0.13 0.022 F/R

Phox2b paired-like homeobox 2b 1455907,_x_at 0.04 0.011 F/R

Pi4kb
Phosphatidylinositol 4-kinase,catalytic, 
beta polypeptide 1439197,.at 1.08 0.367 S

Plcd4 phospholipase C, delta 4 1437030,.at 2.02 0.007 F

Ptprd
protein tyrosine phosphatase, receptor 
type, D 1444492,_at 0.43 0.014 F

Rossf2
ras association (RalGDS/AF-6) domain 
family member 2 1444889,_at 0.14 0.023 F/R

Tgtp T-cell specific GTPase 2 1449009,.at 2.41 0.111 T

Ubd ubiquitin D 1419762 at 2.44 0.106 A/S

Shown are the calculated fold changes (Gefitinib: vehicle at 4 hours) for each gene along w ith  its 
associated P value. Candidates were selected from genes identified by analysis o f microarray data 
using AffylmGUI, time series regression analysis, fold change, ranked products and SAM analysis and 
were chosen based on their repeated differential expression by different analysis methods, 
magnitude of differential expression and/or biological relevance to EGFR signalling/blockade. 
Microarray analysis method leading to target identification, A, AffylmGui; F, fold change; R, ranked 
products; S, SAM; T, time-series regression analysis.



Table 3.5 qRT-PCR validation of targets identified by microarray using biological replicate 
experiments of 4 hour gefitinib and ME1 exposure

M icroarray qRT-PCR
Fold change of colon polyp transcript

Gene_______________ Gef:Veh (4hr)__________ Gef:Veh (4hr)__________ MEl:Veh (4hr)
Areg 0.54 0.5 0.8
Arhgef9 6.79 3.3 1.9
Arid3b 7.48 1.2 -

Bcl2 1.32 1.4 1
B cl2L ll 1.23 0.8 -

Bmf 1.46 3.8 1.9
BmplO 0.23 fP fp
Cbl 0.879 2.4 1.4
Ccndl 0.88 1 -

Ccnd2 0.55 1 -

Ccnel 0.79 1 -

Ccne2 0.65 0.6 0.6
CxcllO 2.5 0.2 1.27
Cxcl9 2.77 0.2 0.7
Egfr 0.74 1.4 1.6
Empl 0.49 1.37 -

Epha3 6.72 2.1 2
Erbb3 1.2 2.1 0.4
Erbb4 1.9 fP fP
Ereg 0.63 0.4 0.7
Gng4 5.86 1.2 -

Hbegf 0.64 0.7 -

H ip l 1.27 1.7 1.2
ligp l 2.5 0.2 -

Ikbkg 2.41 3.4 1.5
Oxtr 0.13 1 -

Phox2b 0.04 fp fp
Pi4kb 1.08 1.2 -
Plcd4 2.02 2.2 2.3
Ptprd 0.43 1.7 1.3
Rassf2 0.14 1.9 1
Tgtp 2.41 fp fp
Ubd 2.44 0.3 0.6

Bold red text indicates fold changes that reached P values of 0.04 (Mann-Whitney). Unless 
target expression was significantly altered by gefitinib it was not selected for detection of 
altered expression in response to ME1 (with the exception of EGFR). Genes w ith altered 
expression following exposure to both agents became definitive candidates of response 
to EGFR blockade (highlighted), fp  failed primers. See 2.3.2.2 for fu rther details o f 
methods



transcripts. As transcripts have been expressed in this way, some of the gene fold changes 

no longer appear remarkable and/or have non-significant P values.

3.5 qRT-PCR validation of microarray candidate genes

My next task was to validate the candidate genes identified by the various 

microarray analyses. The genes altered in response to Egfr blockade (table 3.4) underwent 

evaluation by qRT-PCR, using colon polyp RNA from biological replicate animal experiments 

exposed to gefitinib and monoclonal antibody raised against murine Egfr, ME1 (23.2.2). 

Gene targets which displayed altered expression on qRT-PCR across such replicate 

experiments were deemed definitive candidates of response to EGFR blockade (table 3.5). In 

essence if a candidate gene in table 3.5 demonstrated significantly altered expression in 

response to gefitinib by qRT-PCR it was similarly assessed for transcript change in response 

to ME1. By taking this approach it was possible to identify 11 transcripts differentially 

expressed in response to EGFR blockade by either gefitinib or ME1 exposure. These genes 

included Bmf, Cas-Br-M (murine) ecotropic retroviral transforming sequence (Cbl), Ccne2, 

Cxcl9, Epha3, ErbB3, Epiregulin (Ereg), huntingtin interacting protein 1 (Hipl), inhibitor of 

kappa light polypeptide gene enhancer in B-cells, kinase gamma (Ikbkg), phospholipase C, 

delta 4 (Plcd4) and ubiquitin D (Ubd). As indicated it was not possible to design primers for 

all possible transcripts under scrutiny (BmplO, ErbB4, Phox2b and Tgtp) due to: (i) failure to 

map to the specific gene in silico (Tgtp and BmplO), (ii) failure of primers to amplify a 

product (ErbB4) and (iii) failure of primers to amplify PCR product due to insufficient sample 

template (Phox2b). Iigp2 was not assessed in response to ME1.

3.6 Colon polyp transcript expression following chronic gefitinib exposure

I next sought to examine the relationship between immediate transcript responses 

to gefitinib and those induced after long term exposure as a means of exploring novel 

mechanism potentially mediating resistance to Egfr blockade. Table 3.6 shows the transcript 

changes in Apcmm/+ colon polyps after chronic exposure to gefitinib 75mg/kg in relation to 

acute transcripts changes, for each of the 11 candidate genes, induced by gefitinib 75mg/kg 

and ME1 lmg. Bmf, Cbl, ErbB3, Hipl and Ikbkg are each up-regulated after 4 hour exposure 

to gefitinib and remain up-regulated after chronic dosing when tumours have become 

resistant to Egfr blockade, following increased Apcmm/+ longevity (5.3.1). Cxcl9 and Ubd are
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Table 3.6 Acute and chronic transcript changes in Apcmin/+ colon polyps following short term  gefitin ib 
or ME1 and long term gefitinib exposure.

Fold change (qRT-PCR)

Acute Chronic

Gene Gef:Veh MEl:Veh* Gef:Veh**

Bmf 3.8 1.9 3.6

Cbl 2.4 1.4 3.2

Ccne2 0.6 0.6 -

Cxcl9 0.2 0.7 9.2

Epha3 2.1 2 -

Erbb3 2.1 0.4 5.8

Ereg 0.4 0.7 -

H ip l 1.7 1.2 3.6

Ikbkg 3.4 1.5 4.1

Plcd4 2.2 2.3 -

Ubd 0.3 0.6 2.8

qRT-PCR transcript fold changes are presented for the definitive hypothetical candidate 
biomarkers of response to anti-EGFR therapy in Apcmin/+ colon polyps . The mice 
receiving chronic daily gefitinib (75mg/kg) are described in section 2.1.3.3 (cohort A) 
and 2.3.2.3. Acute refers to transcript changes at 4hrs in response to geftinib 75mg/kg 
(Gef) or M E l lm g  dose. Chronic transcripts were assessed in colon polyps obtained 
from Apcmin/+ mice culled following long term gefitinib. indicates transcript not yet 
assessed by qRT-PCR. Veh, 0.5% Tween 80 ; Veh* 1XPBS; Veh**, 1% Tween80.



initially down-regulated in response to acute gefitinib exposure and subsequently up- 

regulated in colon polyps after chronic gefitinib treatment. Results are not yet available for 

Ccne2, Epha3, Ereg and Plcd4 transcripts following chronic treatment with gefitinib.

3.7 Protein validation of candidate transcripts of response to EGFR blockade

Given the identification of prospective candidate biomarkers for response to Egfr 

antagonism (table 3.5), I next wanted to validate these changes at the protein level. This 

was achieved by western blotting (2.6). Of the specific antibodies available and that worked 

against the total proteins of interest (table 2.7) no differences were identified on blots 

comparing 4 hour ME1 exposure to vehicle (fig 3.8 A,B). In light if this, I probed protein 

changes at 8 hours in response to gefitinib on the basis there may be a delay between 

transcript alterations and protein translation. Protein probing at 8 hours induced by gefitinib 

compared to vehicle (fig 3.9 A) identified increased Cbl expression (1.06±0.48 [Veh] vs 

2.27±0.35 [Gef], P=0.04, Mann-Whitney; fig 3.9C) and decreased protein expression of 

Ccne2 (0.81±0.12 [Veh] vs 0.33±0.12 [Gef], P=0.04, Mann-Whitney; fig 3.9D), in keeping with 

the transcript changes demonstrated at 4 hours by Egfr blockade.

3.8 Probing human transcriptome data (GSE5851) for mouse candidate genes which 

dichotomise patient outcome

I next wished to find evidence that the Apcmm/+ mouse candidate biomarkers of 

response to Egfr blockade might be retrospectively applied to human colorectal cancer 

transcriptome data, and predict the outcome of cetuximab monotherapy. Fortuitously, the 

Khambata-Ford GSE 5851 dataset24 provided Affymetrix expression level data from rectal 

cancer specimens and response outcome to cetuximab monotherapy in 68 patients with 

metastatic colorectal cancer (2.10.5). Thirty-nine patients were K-RAS wild type, 20 K-RAS 

mutant and 9 of unknown K-RAS status. I found that of the 11 mouse colon tumour 

transcripts hypothesised to predict response to Egfr targeted therapy (table 3.5) IKBKG 

(P0.043), CXCL9 (P0.017) and CCNE2 (P0.032) were found to be differentially expressed in 

the disease control versus non-responder (to cetuximab) groups in K-RAS wild type 

colorectal cancer patients (table 3.7). These transcripts may therefore represent novel 

biomarkers of response prediction to anti-EGFR therapy.
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Fig 3.8 Protein validation of Apcmin/+ colon polyp transcript changes induced by ME1 (4 hr)
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Fig 3.8 (A) Western blots of respective proteins ; t4 Veh, 4 hr exposure to IX  PBS; t4 ME1, 4 hr 
exposure to monoclonal antibody targeting EGFR, M El(lm g). (B) Densitometry for each protein. See 
table 2.7 for protein molecular weights. Ba, beta actin. See methods 2.5.6.2 for details of colon polyp 
pooling. Error bars represent ±1 standard deviation.



Fig 3.9 Protein validation of Apcmin/+ colon polyp transcript changes induced by gefitinib (8 hr)
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Table 3.7 Human rectal cancer transcriptome (GSE5851) probing by novel mouse candidate 

genes. The included mouse transcripts were present amongst the 17137 probe sets 

expressed in at least 10% of liver metastases samples24. Bold text highlights human 

transcripts, identified using Apcm,n/+ colon polyp transcript expression changes in response 

to Egfr antagonism, which dichotomise response outcome to cetuximab. Disease status 

refers to outcomes following cetuximab monotherapy. DCG, disease control group; NR, non 

responder group. P value is for two-sided unequal-variance test performed on all 17137 

probe sets24

Gene Symbol Affymetrix 

probe set

P value

(t test DCG vs NR)

Gene title

CXCL9 203915_at 0.017 Chemokine (CXC type) ligand 9

CCNE2 211814_s_at 0.032 Cyclin E2

EREG 205767_at 1.474E-05 Epiregulin

EPHA3 20607l_s_at 0.794 Ephrin receptor A3

ERBB3 202454_s_at 0.434 v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 3 (avian)

IKBKG 209929_s_at 0.500 Inhibitor of kappa light polypeptide 
gene enhancer in B-cells, kinase gamma

IKBKG 36004_at 0.043 Inhibitor of kappa light polypeptide 
gene enhancer in B-cells, kinase 
gamma

HIP1 205425_at 0.502 Huntingtin interacting protein 1

HIP1 205426_s_at 0.720 Huntingtin interacting protein 1

UBD 205890_s_at 0.140 Ubiquitin D

3.9 Affymetrix expression values for genes discriminating patient outcome (GSE5851 

dataset)
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Figure 3.10 Affymetrix expression values for genes discriminating patient outcome in response 
to cetuximab monotherapy.
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Fig 3.10 Transcripts were identified by searching K-RAS wild type metatstatic colorectal cancer 
transcriptomes (GSE5851 dataset) for 11 mouse candidate genes altered in response to  anti -EGFR 
exposure in Apcmin/+ colon polyps. Median expression values were calculated using data from patients 
w ith K-RAS wild type colorectal metastases w ith either disease control (DCG) or non response to 
cetuximab (NR). Statistical comparisons used the Mann-Whitney te s t .



Having identified 3 genes which indicate response outcome to cetuximab therapy in 

colorectal cancer, I next wished to identify the median expression values for each of the 

genes in relation to outcome. The calculated median gene expression values for CXCL9, 

CCNE2 and IKBKG from patients with K-RAS wild type metastatic colorectal cancer (2.10.05) 

are presented in figure 3.10. In the disease control groups IKBKG (P=0.0086) and CXCL9 

(P=0.0339) transcripts were both suppressed whereas CCNE2 (P=0.0508) was increased 

relative to the non responding patients.

3.10 Probing Xerxes trial rectal cancer specimens for the expression of putative candidates 

of response to targeted anti-EGFR therapy identified using the Apcmin/+ mouse.

My initial intention was to examine the expression of candidate genes, identified by 

the Apcm,n/+ mouse, in multiple rectal cancer specimens following a four hour infusion of 

cetuximab. However, in view of the difficulties recruiting to the Xerxes trial, a limited 

amount of tissue was available for such purposes. Despite this, paired human rectal cancer 

specimens (2.3.2.5) pre and post exposure to neo-adjuvant cetuximab were probed for 6/11 

putative mouse colon tumour candidate genes postulated to be biomarkers of response to 

anti-EGFR exposure. Satisfactory rectal cancer biopsy samples were only available from two 

Xerxes trial patients harbouring K-RAS and B-RAF wild type rectal cancer (table 3.8). 

Unfortunately RNA quantity limited the number of transcripts that could be analysed by 

qRT-PCR. A 5-fold reduction in the level of tumoural BMF was induced at 4 hours by 

cetuximab infusion in patient 1 (pyT3N0 rectal cancer) whereas a 3-fold reduction in BMF 

was accompanied by a 5 and 3-fold reduction in EPHA3 and IKBKG respectively in patient 2 

(pyTONO rectal cancer) in response to cetuximab. Both subjects, when last assessed, were 

free from disease recurrence at 3.5 years post diagnosis.
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Table 3.8 Apcmin/+ directed transcript expression levels in rectal cancer specimens from the Xerxes trial

Date of K-RAS/B-RAF % Tumour in Pathol. Last alive and Apcmin' + directed transcript expression fold change
Pat diagnosis status sample stage well (Cetuximab 4 hours: Baseline)

______________________________ baseline 4 hr______________________ BMF CBL CCNE2 CXCL9 EPHA3 ERBB3 EREG HIP1 IKBKG PLCD4 UBD

1 14/10/2005 w t 70 40 pyT3N0 01/02/2009 0.2 0.4 - - 0.6 0.5 2 3.1

2 21/11/2005 w t 40 40 pyTONO 01/03/2009 0.3 0.9 - - 0.2 0.4 - 2.1 0.3

qRT-PCR was undertaken to obtain cetuximab induced transcript changes in rectal cancer specimens at 4 hours relative to baseline (time 
zero). Bold red figures signify fold changes reaching P=0.04. Limited RNA yield has prevented testing all transcripts of interest. Pat, 
patient; wt, wild type mutation status.



3.11 Discussion

The failure to identify common mutations in either K-ros or B-raf in colon polyps 

from Apcm,n/+ mice underscores the suitability of this mouse for the study of K-RAS and B- 

RAF wild type colon cancer. This has therefore offered an opportunity to translate the acute 

gene expression changes in response to Egfr blockade, to patients with K-RAS and B-RAF 

wild type colorectal cancer, in terms of hypothetical response prediction.

3.11.1 Acute pharmacodynamic effects of Egfr inhibition in Apcmm/+ intestinal tumours

3.11.1.1 Apoptosis and cell proliferation

To be confident that the doses of tyrosine kinase inhibitor gefitinib (75mg/kg) and 

rat monoclonal antibody against Egfr, ME1 (lmg) administered to Apcmm/+ mice were 

relevant, in terms of induced tumour gene expression changes, it was important to 

document phenotypic changes in intestinal tumours consequent upon drug administration. 

The single 4 hour dose of gefitinib 75mg/kg was sufficient to induce apoptosis as evidenced 

by increased H and E and elevated cleaved caspase-3 scoring in small intestinal 

microadenomas. In addition evidence of mitotic arrest was suggested by an increase in 

mitotic index without a demonstrable change in Brdu cell labelling (fig 3.2 A-D;G). 

Furthermore, in colon polyps, acute exposure to gefitinib inhibited cell cycling based upon 

reduced Brdu tumour cell labelling, in the absence of a change in m itotic activity (fig 3.2 E 

and F). These finding are in keeping with pro-apoptotic and anti-proliferative effects of 

gefitinib described in vitro using A431 cell lines132.

The only published report exploring the therapeutic effects of the monoclonal 

antibody targeting mouse Egfr, ME1, describes its effects on murine liver regeneration137. 

Hence this is the first description of its in vivo anti-tumour effects. In small intestinal 

tumours, a single lm g dose of ME1, at 4 hours leads to a decrease in Ki67 cell immuno- 

staining (fig 3.3 D), indicative of reduced cell cycle progression and proliferation, w ithout 

changes in cell death (fig 3.3 A,B). In colon tumours, ME1 resulted in increased mitotic 

scoring in the absence of change in Brdu cell labelling, suggestive of M phase arrest (fig 3.3 

E-H). ME1 therefore has a predominant effect on the cell cycle in intestinal tumours w ithout 

induction of apoptosis, at least at 4 hours following a single dose of lm g.
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Transcript changes were next sought to help understand the mechanism of pro- 

apoptotic and anti-proliferative changes seen in tumour tissue as a result of anti-Egfr 

exposure. This was achieved by examining gene expression in colon polyps (fig 3.4). It is 

attractive to speculate that the pro-apoptotic genes Bakl, Bax and Bmf, and reduced 

expression Ccne2, a component of cell cycle control, account at least in part for the 

phenotypic changes seen in small and large intestinal tumours in response to gefitinib. 

Furthermore, as these transcripts are from colon tumours, one might anticipate similar 

phenotypic change in small and large intestinal tumours, but failure to demonstrate 

increased apoptosis in colon tumours in response to gefitinib, may be explained by altered 

post transcriptional dynamics between these two tissues.

When examining the same transcripts in colon polyps exposed to ME1, only Bmf and 

Ccne2 show altered expression. This would naturally lead to a prediction of induced 

apoptosis and inhibition of cell cycle/proliferation. However, given the demonstration of 

only altered cell cycling in both small and large intestinal tumours it may be that Bmf alone 

is not sufficient to induce apoptosis, or reflect a failure to detect apoptotic change in 

response to increased Bmf as a consequence of a single time point being examined.

Despite these observations, it has been shown that acute exposure of Apcmm/+ mice 

to gefitinib and ME1 leads to morphological and transcriptional changes in intestinal 

tumours indicative of either increased apoptosis or decreased cell cycling, confirming the 

biological appropriateness of the chosen drug doses. Furthermore is it attractive to suppose 

that early light microscopic assessments of tumour responses to treatment may act as a 

surrogate for long term treatment outcome, such that prolonged treatment with gefitinib or 

ME1 would suppress the Apcmm/+ phenotype and translate into a survival advantage. Indeed 

this has been shown for the long term treatment with gefitinib 75mg/kg (5.3.1).

3.11.1.2 Egfr signalling

As anticipated, Egfr antagonism with gefitinib 75mg/kg resulted in reduced 

phosphorylation of Egfr, Erk and Akt in colon polyps from Apcmm/+ mice (fig 3.5 A-D). This 

supports previous publications showing reduced auto-phosphorylation of EGFR by 

gefitinib131 and similar effects on normal mouse intestine149. Interestingly, gefitinib also gave 

rise to increased phosphorylation of Ig flr in keeping w ith reports citing this as an escape

105 | P a g e



mechanism in response to EGFR antagonism80"82 (figure 3.5 E) and forms the basis of further 

experiments in chapter 5.

Despite ME1 having previously been shown, at a dose of lm g, to suppress Egfr 

phosphorylation in regenerating hepatocytes at tyrosine residue 992137, no difference in 

Egfr phosphorylation was documented at tyrosine residue 1068, although Erk 

phosphorylation was inhibited downstream (fig 3.5 F-H). It is probable therefore that 

tyrosine residues other than 1068 display altered phosphorylation in response to ME1 

leading to alterations in Erk phosphorylation, at least in colonic polyps.

3.11.2 Transcript expression changes in Apcm,n/+ colon polyps induced by Egfr antagonism

3.11.2.1 Microarray

In an attempt to maximise the amount of useful data provided by the microarray 

platform, different approaches to the analysis were adopted as described (3.4). As a 

consequence of this process, genes identified by the microarray were chosen as potential 

candidates of response prediction to Egfr targeted therapy in K-ras wild type colon polyps 

and by inference K-RAS wild type colorectal cancer (table 3.4).

All of the microarray gene expression analyses considered fold change differences in 

response to 4 hour exposure to gefitinib (75mg/kg) relative to vehicle (0.5% Tween80) 

except, in an extended SAM analysis, where the comparison in transcript expression was 

between 4 hour gefitinib exposure relative to transcripts at time zero, immediately 

following an injection of gefitinib. This was undertaken as SAM analysis results were 

disappointing given the failure to identify genes with an acceptable false discovery rate 

(only 4 genes discovered with FDR of 0.48) in response to gefitinib. It could be argued that 

as the translational end-point is to relate transcripts from mouse to rectal cancer 

transcripts, this latter comparison is a closer reflection of what is happening in patients: 

sequential tumour transcript examination, without vehicle controls. However, this clearly 

makes no allowance for gene expression changes induced by vehicle, which is taken into 

consideration when transcript changes are expressed relative to 4 hour vehicle exposure, 

which was the preferred approach. Given that professional bioinformatics assistance was 

not used in the analysis of the microarray data, it is possible that further examination will
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reveal important gene expression changes related to gefitinib exposure. Future analyses 

may include gene set enrichment analysis to identify pathway activation or suppression in 

response to Egfr blockade and a search for common transcription factors which regulate the 

expression of genes.

The fold change computations revealed 148 up- and 210 down-regulated genes in 

colon polyps following acute gefitinib 75mg/kg exposure. This relatively modest number of 

differentially expressed genes reflects the pooling methodology chosen which is reported to 

reduce the number of transcripts identified (by up to 50%) when compared to individual 

sample analysis150. The time series regression analysis enabled identification of 4 genes 

differentially expressed at 4 hours including Cxcl9, CxcllO, Tgtp and lig p l (fig 3.6) and also 

served as the basis for validation of the microarray by qRT-PCR using the same RNA. It is 

interesting to note that these genes were transiently increased at the 4 hour time point and 

thereafter, expression levels rapidly fell over 8-24 hours. This supports the existence of 

auto-regulatory pathways151, activated in response to Egfr blockade, which are capable of 

suppressing transcript expression. Auto-regulatory pathways have been observed in 

intestinal tumours expressing K-RasG12D, where despite the presence of Mek activity, 

downstream Erk phosphorylation is not detected due to elevated concentrations of Mkp3, 

an Erk phosphatase152. Despite the limitations of primer design for Tgtp and Slc26a3, the 

array correctly identified 5 of 6 genes with altered expression over 24 hours (fig 3.7).

All of the candidate genes of response to Egfr blockade, identified by the various 

microarray analyses (table 3.4), underwent evaluation by qRT-PCR using colon polyps from 

biological replicate animal experiments, exposed to gefitinib and subsequently ME1. This 

enabled the creation of a definitive list of putative biomarkers of response to Egfr exposure 

including Bmf, Cbl, Ccne2, Cxcl9, Epha3, Erbb3, Ereg, H ipl, Ikbkg, Plcd4 and Ubd (table 3.5).

3.11.2.1.1 Comparison of microarray and qRT-PCR results for gefitinib.

Of the definitive candidate genes of response to Egfr blockade listed in table 3.5 

there is agreement between the fold change direction predicted by microarray and qRT-PCR 

results for gefitinib with the exception of Cbl, Cxcl9 and Ubd. It is worth noting however that 

when these three genes are presented in the format of microarray fold changes (table 3.4; 4 

hours gefitinib: 4 hour vehicle) none of the P values reached statistical significance showing
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that the microarray failed to identify true differences in expression regardless of its 

direction based on qRT-PCR findings.

3.11.2.1.2 Comparison of qRT-PCR transcript changes for gefitinib and ME1.

The fold change direction of qRT-PCR data obtained for gefitinib and ME1 biological 

replicates are in agreement except for ErbB3 where there is increased ErbB3 expression 

following 4 hour gefitinib exposure and a decreased expression post- ME1 exposure. Given 

recent reports, it was anticipated that gefitinib and ME1 would both increase ErbB3 

transcripts, in keeping with ErbB3 acting as an escape mechanism to EGFR blockade77' 145. It 

is a challenge to interpret this observation but may reflect the different mechanisms of 

action between the two drugs.

3.11.2.1.3 Contextualization of identified transcripts

To put the qRT-PCR validated transcripts into context, a low induction of gene 

expression changes has been reported in vitro when HT29 and Caco-2 cell lines are exposed 

to EGFR blockade in combination with EGF ligand153. Based on microarray analysis from this 

study, only 10 genes were up-regulated for gefitinib + EGF exposure and none for cetuximab 

+ EGF, whereas 32 genes were down-regulated for gefitinib + EGF and only 3 were down- 

regulated for cetuximab + EGF. Thus the number of genes differentially regulated in vivo as a 

consequence of my research appears quite respectable.

The relatively small magnitude fold change differences identified by my efforts 

should not detract from their potential physiological significance. Two-fold increases in gene 

expression have been shown to result in strong phenotypes in the arena of imprinted 

genes154' 155 and furthermore 1.5 fold global changes in mRNA levels are of potential 

importance in contributing to the development or progression of cancer156. This suggests 

small detected changes in the expression level of critical genes in response to an agent may 

be important in determining a biological outcome. Of related interest very small but 

significant microarray transcript expression changes (personal communication157) have also 

been seen in rectal cancer specimens pre and post cetuximab treatm ent25. It appears 

therefore, in keeping with published studies, that this work confirms gene fold changes
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which are quite modest following acute Egfr blockade, but nonetheless, may still have 

biological significance.

Finally, it is worth noting that recent experiments examining transcript changes in 

cells lines exposed to EGFR inhibition have also revealed similar gene expression changes, to 

those identified by my research, although the cell type and genetic make-up of tumours 

differ. Down-regulation of Ccne2 and up-regulation of Bmf has been described in the 

gefitinib sensitive cell line, Bamla, which originated from a mammary tumour (in BALB-NeuT 

mouse)158. In addition PLCD4 has previously been reported to be differentially expressed at 

the transcript level in HT-29 cell lines (K-RAS wild type, p53 mutant 159) in response to 

cetuximab exposure153.

3.11.2.1.4 Protein validation of transcripts induced by Egfr blockade

Of the colon polyp transcripts it was possible to probe for at the level of protein, it 

was disappointing that none could be validated for their response to ME1 exposure at 4 

hours (fig 3.8). This may be explained by attempts to examine both transcript and protein 

changes at the same time (4 hours), when it is possible insufficient time had elapsed to 

allow transcriptional changes to impact protein dynamics. In view of this, assessment of 

protein levels was repeated following an 8 hour exposure to gefitinib. At this time it was 

possible to validate transcript changes for Cbl and Ccne2 at the protein level (fig 3.9). 

Minimal validation of transcripts at the protein level is not ideal. However, expectations may 

be too great, as it is possible that subtle alterations in gene expression translated into 

protein changes are beyond the sensitivity and detection of western blot technology. 

Developments in nano-fluidic proteomics are likely to be helpful in the fu ture160 and would 

have been potentially useful in this setting.

3.11.3 Probing human rectal cancer transcriptome data (GSE5851) for 'mouse' candidate 

genes

Searching human metastatic rectal cancer transcriptome data from the Khambata- 

Ford publication24 (GSE5851) for qRT-PCR validated mouse candidate genes of response to 

EGFR exposure (table 3.5), was encouraging as it identified 3 genes, which were 

differentially expressed, between patients achieving disease control, and no response to
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cetuximab monotherapy. These genes included IKBKG (also known as NEMO or NF-kappa B 

essential modifier), CXCL9 (chemokine ligand 9) and CCNE2 (Cyclin E2; table 3.7). Expression 

of IKBKG and CXCL9 was reduced whereas CCNE2 was increased in patients achieving 

disease control with cetuximab relative to non responding patients (fig 3.10). The fact that 

only 11 genes have been searched for in the GSE5851 dataset demonstrates attempts were 

made to counter over-fitting the transcript data.

3.11.3.1 IKBKG

The EGFR family of receptors have been implicated in the initiation of NF-kappaB 

activation161 and IKBKG is a essential regulator of NF kappaB activity162 thus providing a link 

between EGFR blockade and IKBKG. NF-kappaB is retained in the cytoplasm as an inactive 

complex of the inhibitory kappaB (IB), p65 and p50 mammalian rel family proteins. When 

activated, by phosphorylation of inhibitory kappaB by the inhibitory kappaB kinase (IKK), the 

p65-p50 complex is released, and translocated into the nucleus, leading to anti-apoptotic 

and proliferative signals161. Recent evidence that NF-kappaB signalling is inhibited in vitro by 

short hairpin RNA mediated knock down of IKBKG163, reinforces the essential role IKBKG 

plays in NF-kappaB pathway activity. In light of this it is reasonable to interpret the finding 

of a reduced level of IKBKG, in patients achieving disease control w ith cetuximab (fig 3.10), 

as biologically relevant and possibly explained by reduced NF-kappa B activation, leading to 

reduced cell proliferation and increased apoptosis, thus accounting for the favoured clinical 

response. Indeed the clinical importance of IKBKG being a potential predictor of response to 

EGFR targeted therapy, is strengthened by the publication of data showing that decreased 

NF-Kappa B immuno-reactivity is correlated with improved survival, in irinotecan-refractory 

patients receiving cetuximab and irinotecan, for second line treatment fo r metastatic 

colorectal cancer164. The Apcmin/+mouse model of colon cancer has therefore independently 

identified a biologically and clinically relevant gene, which appears to have a plausible role 

in determining the outcome of EGFR targeted therapy in colon cancer.

3.11.3.2 CCNE2

The finding that CCNE2 expression levels are increased in patients w ith metastatic 

colorectal cancer achieving disease control with cetuximab, is somewhat confusing in 

biological terms. It is known that cetuximab mediates, at least some of its clinical effects,
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through changes in cell proliferation, specifically up-regulation of p27(Kipl)/ which binds to 

and inactivates cyclin-dependent kinase-2 activity giving rise to G1 cell cycle arrest165. One 

might therefore predict that any functional role CCNE2 has in tumour responses would 

equate to a fall in its expression levels, due to its effects on the cell cycle166: Up-regulation of 

CCNE2 has been demonstrated in HCT116 colorectal cells resistant to 5-fluorouracil167. 

Unless the association of increased CCNE2 expression in patients achieving a clinical 

response to cetuximab is a chance finding, a biological explanation for this is lacking. 

Nevertheless, Ccne2 remains a validated candidate of response to anti-EGFR exposure in 

Apcmm/+ colon polyps based upon qRT-PCR and protein changes, and has been associated 

with response to treatment in breast cancer168 and should remain as a candidate transcript 

potentially able to predict response to EGFR therapy in K-RAS wild type colorectal cancer 

despite a lack of biological insight in this setting.

3.11.3.3 CXCL9

CXCL9 (chemokine [CXC motif] ligand 9) is a member of the chemokine family which 

are best known for inducing directional cellular migration of leukocytes during 

inflammation169. Chemokines have also been associated with tumour development by way 

of influencing angiogenesis, tumour-leukocyte interactions and tumour transformation, 

survival, growth, invasion and metastases. However, the role of chemokines in tumour 

evolution is not straight forward as some favour tumour growth whereas others enhance
•i g o

anti-tumour activity .

It is known that CXCL9 interacts with its receptor CXCR3 and has been shown to be 

associated with tumour growth, migration and metastasis in mouse models of colon cancer7, 

17°. Furthermore the potential importance of CXCR3 in colon cancer is reinforced by its 

constitutive expression in human colon cancer cell lines, CXCR3 immuno-staining in 34% of 

colon cancer specimens, the association of CXCR3 with lymph node metastases and 

significantly poorer prognosis compared to CXCR3-negative colon tumours170. In addition a 

recently 'inflammatory gene card' array study examining 8 surgical colorectal tumour 

samples has demonstrated CXCL9 ligand expression in colon cancer, albeit in the absence of
1 7 1its receptor

111 | P a g e



With this background in mind it is feasible that cetuximab may interfere with the 

CXCR3-CXCL9 axis by reducing CXCL9 levels. This may inhibit tumour growth, and thereby 

provide a therapeutic response in keeping with the reduced expression of CXCL9, and its 

apparent association with disease control in response to cetuximab (fig 3.10). EGFR 

signalling has been linked to regulation of certain chemokines172 and their receptors173 and 

use of a monoclonal antibody against EGFR in an EGFR-expressing SCCHN model has been 

shown to alter expression of several cytokines and chemokines174. Given the absence of 

published data specifically detailing interactions between EGFR inhibition and the CXCL9- 

CXCR3 axis, the evidence presented here may indicate a novel mechanism of action of 

cetuximab and should be explored in more detail and possibly exploited. Promotion of 

metastases by over-expression of CXCR3 mRNA in colorectal cancer models and the ability 

to inhibit metastatic colon cancer by targeting CXCR3 with AMG487 in mouse models7, 

suggests that combined EGFR/CXCR3 antagonism may have greater therapeutic potential 

than cetuximab or AMG487 alone. This would be an exciting combination to explore in 

genetically engineered mouse models of colon cancer, using a monoclonal antibody raised 

against murine Egfr.

3.11.4 Exploring the potential biological significance of mouse candidate genes proposed to 

indicate putative response to EGFR targeted therapy

Having discussed IKBKG, CXCL9 and CCNE2 in the context of transcriptome 

information obtained from a clinical trial, the remaining mouse transcripts (Bmf, Cbl, Epha3, 

Hipl, Plcd4, ErbB3, Ereg and Ubd) required further exploration. This next section aims to 

describe how their unique biology and acute alterations in expression may contribute 

towards understanding their potential influence on clinical outcome to targeted anti- EGFR 

therapy in colon cancer. The genes were all selected by a rational approach at the initial 

step of sifting through the microarray data to include those that had at least some biological 

relevance to EGFR blockade and its downstream consequences. This was done in the belief 

that validated targets should be relevant rather than obscure without current biological 

application. Admittedly such an approach was less blue sky and more pragmatic, but it is in 

keeping with the set goal of attempting to translate research findings to patients.

3.11.4.1 Bmf
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BMF or BCL2 modifying factor is a pro-apoptotic protein that binds to pro-survival 

BCL-2 and triggers apoptosis through its BH3 domain175. Gefitinib has previously been 

shown to promote apoptosis in human NSCLC by inducing the expression of pro-apoptotic 

BCL2 associated X protein (BAX) and BCL2-likell apoptosis facilitator (BIM) proteins75 and 

Bmf is up-regulated in a gefitinib sensitive breast cancer cell line158 in response to gefitinib 

as previously mentioned. Increased expression of pro-apoptotic proteins in response to 

EGFR inhibition is therefore expected.

Although Bcl2 antagonist killer (Bakl), Bax and Bmf transcripts were all up-regulated 

in colon polyps after acute gefitinib exposure in Apcmm/+ mice, only Bmf was up-regulated 

following acute ME1 exposure (fig 3.4) and therefore identified as a candidate gene. This 

naturally led to the hypothesis that alteration in the levels of Bmf would result in either pro- 

apoptotic or anti-apoptotic effects dependent upon the direction of change, assuming the 

balance of other determinants of apoptosis were not altered. The acute increased 

expression of Bmf following Egfr antagonism may therefore indicate a positive tumour 

response to long term Egfr blockade as a result of increased apoptosis.

3.11.4.2 Cbl (c-Cbl)

Casitas B-lineage lymphomas comprise 3 family members, (c-CBL, CBL-b and CBL-3), 

and are important for the internalisation of EGFR, by virtue of their RING finger containing 

E3 ubiquitin ligases, that mediate ubiquitination of the receptor176. Given the demonstration 

of a transformed cell phenotype owing to prolonged EGFR signalling with failure of EGFR 

receptor down-regulation177, and CBL's role in EGFR turnover145 147 it is interesting that CBL 

expression in colon polyps appeared to be altered in response to EGFR blockade. It is 

suggested that CBL is biologically capable of influencing receptor signalling and response to 

targeted therapy through its effect on EGF receptor degradation. Thus the observed 

increased level of Cbl in colon polyps following Egfr blockade may predict reduced Egfr 

signalling (due to increased ubiquitination of EGFR) and be indicative of a favourable tumour 

response outcome in patients with K-RAS wild type colorectal tumours.

3.11.4.3 Epha3
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The Eph receptors are part of the receptor tyrosine kinase family and interact with 

ephrin ligands in a promiscuous fashion within each A or B class178. There are several lines of 

evidence linking Eph/Ephrin and EGF receptor. It has recently been shown in glioma that 

ephrin A5-transfected glioma cells mediate ephrin A5 enhanced CBL binding to EGFR thus 

promoting degradation of the EGF receptor179. Conversely, EPHA2 has been shown to 

physically interact and amplify ERBB2 signalling promoting adenocarcinoma development 

and progression in transgenic mice with breast cancer180.

Mutations in EPHA3 have been shown to play a significant role in tumourigenesis 

and been found in colorectal181 and lung cancers182, as has high expression of Eph receptors 

in a variety of cancers183. In addition, the recent demonstration that EPHA2 acts as an 

oncogene in the intestine, based on the suppression of intestinal tumour development in 

Apcmm/+ mice carrying a genetic knockout of the EPHA2 gene184, raises the possibility that 

EPHA3 may play a similar role. The documented increased level of Epha3 in colon polyps 

exposed to EGFR blockade may influence response to therapy and represent a tumour 

escape mechanism to EGFR blockade (through cross-talk with ERBB2180). Thus increased 

expression of Epha3 could theoretically predict response outcome to EGFR targeted 

therapy. Interestingly as part of their Anti-EPHA3 program Kalobios is undertaking pre- 

clinical studies targeting the EPHA3 receptor with an IgG antibody based upon the 

hypothesis that it will disrupt tumour neovascularisation, and cause tumour cell kill through 

antibody dependent cell cytotoxicity and stimulation of apoptosis 

(http://www.kalobios.com/kb pipeline 004.php.).

3.11.4.4 Ubd

UBD (ubiquitin D or FAT 10) is a ubiquitin-like protein that has been shown to 

induce apoptosis when expressed148. UBD also has a role in ubiquitin independent 

proteosomal degradation, mediated by fatylation148. Given that Ubd was decreased in colon 

polyps following acute exposure to gefitinib or ME1, the reduction in Ubd may represent an 

attempt by tumour cells to maintain EGFR signalling, by reduced fatylation of EGFR. This 

may translate into continued tumour growth. It is possible therefore, in response to Egfr 

blockade, that Cbl and Ubd represent competing responses that together determine the 

effect of Egfr inhibition in a tumour. This potential interaction raises the possibility that it
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may be inappropriate to base response predictions on individual transcript changes, as 

competing biological mechanisms are likely to be of consequence.

3.11.4.5 Hipl

Huntingtin interacting protein 1 is an endocytic protein predominantly expressed in 

the brain and known to have a role in vesicle transport185. HIP1 has been shown to stabilise 

EGFR by influencing receptor endocytosis and enhance the phosphorylation of downstream 

effectors to effectively increase the half life of EGF receptor signalling186,187. These findings 

have been extended by Bradley et al who reported HIP1 may up-regulate or maintain EGFR 

over-expression in tumours by direct interaction with the EGF receptor in addition to any 

indirect effects of HIP1 upon receptor endocytosis188. In view of this relationship the finding 

of Hipl as a transcript altered in response to EGFR blockade is of potential significance. The 

documented increase in Hipl, following acute exposure to EGFR blockade in colonic polyps, 

may indicate a potential mechanism of resistance (by altering the ratio of EGFR exposed to 

gefitinib), and would select elevated Hipl as a biomarker trying to overcome the effects of 

EGFR blockade. Of significance it has been demonstrated that colon polyps from Apcmm/+ 

mice chronically treated with gefitinib have elevated Egfr protein expression (5.5.1) in 

combination with increased Hipl expression (table 3.6). Thus it is attractive to speculate 

that this increase in Egfr protein may have been mediated by Hipl.

3.11.4.6 Plcd4

Phospholipase C, delta 4 is a phosphatidyl inositol phospholipase C enzyme isoform 

that shows increased expression in fast proliferating hepatoma cells189. Investigation of 

human PLCD4 protein, by forced ectopic expression in MCF-7 breast cancer cells, has 

demonstrated up-regulation of EGFR and HER2, leading to ERK1/2 signalling activity and 

proliferation190. There is therefore evidence of interaction between PLCD4 and receptor 

tyrosine kinase proteins. In light of this and the finding of up-regulated levels of Plcd4 in 

colon polyps following acute EGFR inhibition, it is suggested Pcld4 may represent a 

mechanism to circumvent the effects of EGFR blockade and be an emergent resistance 

pathway predictive of non-response to EGFR inhibition.

3.11.4.7 Erbb3
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ERBB3 is the 3rd member of the EGF receptor tyrosine kinase family and interest has 

grown recently due to its central role in driving oncogenic signals in tumours191. For example 

the intestinal specific deletion of ErbB3 in Apcmm/+ mice has shown a dramatic reduction in 

intestinal tumours mediated by reduced PI3K/AKT signalling and caspase 3 mediated 

apoptosis192. It has also been demonstrated both in vitro and in tumours in vivo that 

resistance to tyrosine kinase inhibitors (TKIs) is driven through up-regulation of ERBB3 and 

consequent PI3K/Akt signalling77. Furthermore cell culture experiments have found 

prolonged cetuximab exposure promotes up-regulation of EGFR through altered 

internalisation and degradation with resultant activation of ERBB3145 leading to resistance.

In view of these findings, the increase in ErbB3 expression in colon polyps following 

acute and chronic gefitinib exposure (table 3.6) is significant as ErbB3 is likely to be driving 

resistance to EGFR blockade in the Apcm,n/+ mouse. Experiments using this model reinforce 

the potential importance of ErbB3 in tumourigenesis and raise the possibility that the 

direction of early ERBB3 expression changes, in response to EGFR blockade, may have a role 

in determining the outcome of such treatment in K-RAS wild type colorectal cancer. If it 

does, then therapies targeting ERBB3 may be useful in circumventing such mechanisms and 

could be tested in the Apcmm/+ mouse in a similar way IGF1R antagonists have been explored 

(Chapter 5).

3.11.4.8 Ereg

Epiregulin is one of many ligands which bind to the EGFR family having a low affinity 

for EGFR and ErbB4, but increased affinity when ErbB2 is present with ErbB4 and ErbB3193. 

Epiregulin drives tumour growth through EGFR signalling and interference with TKIs has 

been shown to produce anti-tumour effects194,195. Furthermore, disruption of ligand binding 

to the EGF receptor by cetuximab, has been proposed to explain the association between 

increased tumoural EREG and response to cetuximab in K-RAS wild type colorectal cancer24, 

49. Similarly the Apcmm/+ model system also shows dramatic up-regulation of epiregulin in 

colon polyps196. Taken together it is suggested that the documented fall in expression of 

Ereg in Apcmm/+ colon polyps, in response to acute Egfr blockade, contributes to the 

observed positive response gefitinib therapy has in Apcmm/+ mice (5.3.1). Thus an acute
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reduction in epiregulin in response to EGFR blockade is postulated to represent a positive 

biomarker of clinical outcome.

3.11.5 Transcript expression after chronic gefitinib exposure

The initial gene signature in response to EGFR blockade was chosen at 4 hours on the 

basis this would capture a 'pure' molecular signal of tumour cell response to agents. It is 

reasoned that this avoided additional 'molecular noise' a later time point would introduce, 

when a greater number of molecular events drive dividing cells. Despite this it remained of 

interest to examine the relationship between early transcript changes and the molecular 

changes responsible for or at least associated with resistant tumour growth following long 

term administration of gefitinib (Chapter 5).

3.11.5.1 Chronic transcripts affirming gefitinib induced 4 hour transcript changes

It has only been possible to examine the fold changes of a limited number of 

transcripts from colon polyps following long term administration of gefitinib (2.1.3.3). 

However, despite this Bmf, Cbl, ErbB3, H ipl and Ikbkg are all up-regulated in Apcm,n/+ colon 

polyps exposed to chronic gefitinib to a greater extent than their 4 hour counter parts (table 

3.6).

It has been hypothesised that a positive tumour response may follow increased Bmf 

or Cbl gene expression at 4 hours given the pro-apoptotic and anti-EGFR signalling effects of 

these proteins. That both transcripts remain elevated in Apcmm/+ colon polyps assumed to be 

resistant to gefitinib, does not necessarily negate their hypothesised predictive potential. 

However this suggests the presence of resistance mechanisms countering any positive 

contribution Bmf or Cbl had toward inhibition of tumour growth. It is attractive to speculate 

the transcripts responsible for resistance to Egfr blockade in Apcmm/+ mice might include 

ErbB3, Hipl and Ikbkg.

The increased longevity of Apcmm/+ mice following gefitinib treatment (5.3.1) and 

associated up-regulated expression of ErbB3, H ipl and Ikbkg is potentially relevant to our 

understanding of resistance mechanisms to EGFR blockade in K-RAS wild type colon cancer, 

especially in light of the discussed biologically plausible evidence supporting such transcripts 

in this process (3.11.3.1, 3.11.4.5, 3.11.4.7). If these transcripts are important it appears
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they initiate resistance mechanisms soon after the first dose of gefitinib; it would therefore 

be of great interest to inhibit each of these putative resistance mechanisms in the Apcmm/+ 

mouse to identify optimal drug sequencing and timing. Such experiments could improve our 

understanding of resistance mechanisms and potentially improve patient outcomes if 

translated in clinical trials.

3.11.5.2 Chronic transcripts opposing gefitinib induced 4 hour transcript changes

Cxcl9 and Ubd were both down-regulated at 4 hours but show up-regulated colon 

polyp expression in response to chronic gefitinib (table 3.6). It is possible that induced 

molecular pathways produce this pattern of transcript change, over time, causing the 

reversal of any hypothetical biological effects each transcript initially had. One may 

therefore speculate that increased expression of Ubd reflects attempts to increase 

fatylation of up-regulated Egfr, following chronic gefitinib exposure (5.5.1), as a 

consequence of increased H ip l activity.

3.11.6 Transcripts identified in patients' rectal cancer specimens

The availability of good quality rectal cancer tissue biopsies has hampered this 

aspect of my research, which consequently remains anecdotal. The two patients included 

harboured K-RAS and B-RAF wild type rectal cancers and in common demonstrated reduced 

expression of BMF, remaining free from disease recurrence (table 3.8). It was not possible to 

examine the expression level of all transcripts given the low yield of RNA, but of those 

tested patient 2 also demonstrated reduce levels of EPHA3 and IKBKG.

No conclusions can be drawn, but it is encouraging that some of the transcripts 

identified by the mouse model are also differentially expressed in human rectal cancer 

specimens, in response acute cetuximab exposure. Low level expression of IKBKG and 

EPHA3 may represent biological mechanisms contributing towards the favourable outcome 

in patient 2 reflected by reduced NF-kappaB 162 and oncogenic activity of EPHA3. This takes 

no account of the reduced expression of BMF however, which would be predicted to 

promote tumour cell survival. If there is any credibility in this approach, it would be 

necessary to interpret the spectrum of induced transcript changes together, whilst
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accepting certain transcripts may have a dominant effect. Clearly this work is at an early 

stage.

The Xerxes trial highlights some of the challenges faced when undertaking 

translational research. Rectal cancers are accessible to sequential biopsy to assess the 

molecular effects of cetuximab monotherapy but, multimodal therapy for rectal cancer has 

complicated the assessment cetuximab therapy alone can have on treatment outcome. In 

addition, recruitment has been difficult in view of the reduced complete pathological 

response rate (5-9%) when pre-operative radiotherapy plus cetuximab is combined with 

capecitabine ± oxlaliplatin56' 57. This compares with pathological complete response rates of 

16% 58 when cetuximab is excluded. At best it was hoped sufficient rectal cancer biopsy 

material would be available to demonstrate that targets identified using the mouse model, 

could be shown in human samples exposed to cetuximab. This data may have led to further 

hypotheses regarding their potential predictive significance.

In light of this, further investigation of the role identified mouse transcripts play, 

either together or as isolated targets, in response to cetuximab monotherapy, is required. 

This may be achieved by examining archival FFPE samples from patients in a prospective 

randomised controlled tria l46, including K-RAS wild type metastatic colorectal cancers, for 

correlations between transcript expression and known response outcomes to therapy.

3.11.7 Summary

Colon polyps from the Apcmm/+ mouse have been shown to be wild type for K-ras and 

B-raf underscoring the relevance of this model for the study of K-RAS and B-RAF wild type 

colorectal cancer. Furthermore, acute exposure of Apcmm/+ mice to Egfr blockade has been 

shown to suppress Egfr, Erk and Akt phosphorylation, in keeping with its known action as an 

inhibitor of EGFR tyrosine kinase activity, resulting in morphological change consistent with 

acute anti-tumour effects in the intestine. In addition the transcript changes identified using 

Apcmm/+ colon polyps and acute Egfr blockade, has led to the clinically purposeful 

identification of novel biomarkers of response to cetuximab in K-RAS wild type metastatic 

colorectal cancer {IKBKG, CCNE2 and CXCL9). Biological consideration of the remaining 

mouse transcripts has also helped build a picture of how acute gene expression changes can 

be interpreted and hypothesised to represent favourable or unfavourable tumour
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responses. As a result, novel resistance mechanisms to EGFR blockade have been proposed 

[HIP1 and IKBKG) or reinforced (ERBB3). Applying this knowledge to patients' tumours could 

be a means of identifying new drug combinations to overcome EGFR resistance pathways, 

which may appear immediately after a single drug exposure. The Apcmm/+ mouse may 

therefore be used to investigate and inhibit resistance pathways, and by testing novel drug 

combinations, help make progress towards better treatment combinations for future 

colorectal cancer patients.
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Chapter 4

4. Verification of K-ras wild type specific transcript changes in colon polyps using a 

conditional transgenic mouse model of colon tumourigenesis

4.1 Introduction

Having identifying putative targets of response to Egfr blockade in Apcmm/+ K-ras wild 

type colon tumours, by excluding the presence of common K-ras mutations in harvested 

colon polyps, I wanted to verify these transcript changes using an alternative model of 

intestinal tumourigenesis harbouring a mutant K-ras allele. This was made possible by using 

a conditional transgenic model of colon cancer which under the control of the AhCre 

promoter is able to induce intestinal specific loss of Ape with or without expression of an 

endogenous mutant K-ras (V12) allele114. As a consequence I have been able to examine 

transcript changes in response to gefitinib in mouse models with or without K-ras mutant 

colon polyps. On the assumption Egfr inhibition would have negligible effects upon the 

transcriptional profile of colon polyps harbouring mutant K-ras it was anticipated that 

comparison between K-ras wild type and mutant transcriptional profiles would reveal K-ras 

wild type specific expression changes. Use of this approach has also allowed verification of 

transcript changes in a mixed genetic background more akin to that seen in humans.

This work has help identify Apcmm/+ colon polyp transcripts which have been 

validated as K-ras specific gene changes in response to Egfr blockade, and therefore 

provides a means of prioritising transcripts which should be tested in human specimens for 

their ability to predict outcome in response to EGFR targeted therapy in K-RAS wild type 

colorectal cancer.
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4.2 Results

4.2.1 Gefitinib induced transcript changes in the context of K-ras mutation status.

The putative biomarkers of response to Egfr blockade identified using the Apcmm/+ 

mouse (table 4.1) were probed for in colon polyps harvested from AhCreT/+ Ap(?/+Krasvl2/+ 

mice exposed to gefitinib 75mg/kg for 4 hours (2.3.2.4) and expressed relative to transcript 

expression in similarly exposed AhCreT/+ ApcP/+Kras+/+ colon polyps (table 4.1). On 

examination of the transcript changes, gefitinib exposure in mice with endogenous K-ras 

allele activation results in reduced colon polyp expression of Ikbkg, Cxcl9, Ccne2, Cbl and 

Ereg and increased expression of Plcd4 and ErbB3.

If comparison is made between the fold changes for the different experimental 

conditions, then one would anticipate that an increased transcript expression in Apcmm/+ K- 

ras wild type polyps, in response to gefitinib, would be associated with the induction of 

opposite expression changes in K-ras mutant polyps relative to K-ras wild type polyps. 

Failure to comply with this would suggest that a transcript change is not specific to K-ras 

wild type status. With this is mind Ikbkg and Cbl are therefore identified as K-ras wild type 

specific changes in response to gefitinib. However, the remaining transcripts, identified 

from K-ras mutant tumours, do not appear to be specific to K-ras wild type tumours as they 

demonstrate either no gene expression differences (Epha3, Bmf and Hipl) or increased 

expression (Plcd4, ErbB3, Cxcl9, Ccne2 and Ereg).

Transcript Fold change 

(Gef K-ras mutant: Gef K-ras wt)

Fold change 

Gef:Veh [Apcmm/+ K-ras wt)

Ikbkg 0.8 3.4

Plcd4 2.1 2.2

Epha3 1.1 2.1

Erbb3 2.3 2.1

Cxcl9 0.38 0.2

Ccne2 0.46 0.6

Bmf 0.8 3.8

Cbl 0.75 2.4
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Transcript Fold change 

(Gef K-ras mutant: Gef K-ras wt)

Fold change 

Gef:Veh (Apcmin/+ K-ras wt)

Ereg 0.5 0.4

Hipl 0.9 1.7

Ubd - 0.3

Table 4.1 Altered gene expression patterns (qRT-PCR) in K-ras mutant colon polyps relative 

to K-ras wild type colon polyps in response to gefitinib at 4 hours. Transcripts identified as 

definitive candidates of response to Egfr blockade using K-ras wild type colon polyps from 

the Apcmm/+ model showing the fold changes in response to gefitinib (75mg/kg) at 4 hours 

relative to vehicle (0.5% Tween80) are also presented. Bold red numbers indicate a P value of 

0.04 was reached (Mann-Whitney).'-' transcript not examined.
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4.3 Discussion

With the approach taken, I have assumed that a target previously up-regulated in 

response to gefitinib in Apcm,n/+ colon polyps, would also be up-regulated in K-ras wild type 

colon polyps harvested from the AhCreT/+ ApcP/+Kras+/+ conditional transgenic model. As 

gefitinib induced transcript changes in K-ras mutant colon polyps have been expressed 

relative to K-ras wild type transcripts it follows an up-regulated target in K-ras wild type 

tissue would be reflected by down-regulation of the same target in K-ras mutant tissue. 

With this is mind Ikbkg and Cbl transcripts were the only transcripts verified by this 

approach and confirmed as gefitinib induced K-ras wild type specific changes. The 

importance of Ikbkg and Cbl and their potential relevance to K-ras wild type tumour 

responsiveness to Egfr targeted therapy has been discussed in detail (3.11.3.1 and 3.11.4.2).

It is worth noting that the gefitinib induced Apcmm/+ targets were defined using a 

greater pool of colon polyps than for the conditional transgenic model which incorporates 

the K-ras mutation. This could affect the accuracy of the data obtained for the latter as 

smaller sample sizes increase the likelihood of including false positive extreme values. The 

failure to detect corresponding transcript changes in the remaining candidates excluding 

Ikbkg and Cbl may reflect differences in the genetic background of the animals used197. The 

transcript changes seen in response to Egfr blockade may therefore no longer be seen or 

'off target' transcript changes may be detected which bear no association with Egfr 

signalling.

The question arises whether failure to confirm some of the transcript changes 

{Epha3, Bmf, Hipl, Plcd4, ErbB3, Cxcl9, Ccne2 and Ereg) using the conditional transgenic 

model means disregarding them altogether? Certainly if a series of patients with mixed 

genetic backgrounds is sufficient to obscure the identified target genes, then this is of 

concern, however Cxcl9 and Ccne2 have been shown to dichotomise clinical response to 

cetuximab monotherapy using transcriptome data from patients with K-ras wild type 

colorectal metastatic tumour (3.11.3). This suggests there is potential value in evaluating 

the targets in other ways. One approach to this would be to examine the relationship 

between the candidate genes and their ability to associate with clinical response status to 

cetuximab monotherapy in the context clinical trials. This could be achieved by examining
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archival FFPE K-RAS wild type metastatic colorectal cancer specimens from a prospectively 

randomised controlled trial of cetuximab monotherapy vs. best supportive care to test the 

ability of the transcripts to dichotomise clinical response. The same approach could be 

repeated in K-RAS mutant tumour samples from the same trial with the expectation that 

none of the transcripts would be associated with outcome if they are specific to K-RAS wild 

type tumours.

The finding that gefitinib up-regulated ErbB3 (2.3 fold) in K-ras mutant relative to K- 

ras wild type colon polyps is particularly interesting especially in light of a recent report 

showing K-ras mutant HCT116 colon cancer cells lines are attenuated by increased apoptosis 

in the presence of siRNA against ErbB3192. ErbB3 activity may therefore not only be a 

mechanism of resistance to gefitinib in K-ras wild type tumours (3.11.4.7) but also play a 

role in mediating molecular responses in the setting of K-ras mutations. Indeed evidence is 

accumulating that EGFR targeted therapy in patients with K-RAS mutant colorectal cancer is 

detrimental47. A possible explanation for this may be increased mitogenic signalling, as a 

consequence of EGFR blockade up-regulating ERBB3 in patients with K-RAS mutant 

colorectal cancer, leading to increased PI3K/AKT pathway activation in addition to 

constitutive pathway activation downstream of K-RAS.

These findings may also have relevance in relation to resistance mechanisms which 

may arise in K-RAS mutant colon cancers treated using MEK inhibitors (Chapter 7). It is 

possible that similar up-regulation of ERBB3 could occur leading to activation of parallel 

PI3K/AKT signalling activity and circumvention of disruption of MEK/ERK signalling. It will 

therefore be important to examine this possibility in tumour tissue from mouse experiments 

incorporating prolonged MEK inhibition.

In summary, the use of a conditional transgenic mouse model carrying K-ras 

mutations has helped to reinforce Ikbkg and Cbl as potential K-ras wild type specific gene 

expression changes in response to Egfr blockade. Having not validated all transcripts by this 

method is disappointing, but on reflection perhaps highlights those transcripts which should 

be prioritised for further study using human tissue samples, to assess their ability to predict 

outcome in response to EGFR targeted therapy in K-RAS wild type colorectal cancer.
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Chapter 5

5. Investigating Ig flr  pathway activation in Apcmm/+ K-ras wild type colon polyps in response 

to Egfr blockade

5.1 Introduction

Previously (Chapter 3) I have shown that exposure to the Egfr inhibitor, gefitinib, led 

to elevated phosphorylation of the insulin-like growth factor 1 receptor (Igflr) in 

Apcmm/+colonic polyps. This observation implicates the lgf-1 pathway in response to Egfr 

blockade. This finding was particularly relevant given the accumulating evidence that IGF1R 

pathway activity may be important in conferring resistance to EGF receptor blockade80'82, 

based upon in vitro cell culture and xenograft studies. I therefore next wanted to test the 

importance of the Igf pathway, in promoting resistance to Egfr blockade, in a relevant in vivo 

model using the Apcmm/+ mouse, which I have shown develops intestinal colon tumours 

which are wild type for K-ras and B-raf. This is a clinically important area to explore in the 

setting of K-RAS and B-RAF wild type colorectal cancer given monoclonal antibodies 

targeting the EGF receptor are now licensed for use and tumour resistance will be an 

inevitable consequence.

I have tested the hypothesis that blockade of Egfr signalling is being tempered by 

compensatory activation of the Igf pathway by examining the effect of chronic suppression 

of Ig flr using AZ12253801, a small molecular tyrosine kinase inhibitor of Ig flr (2.1.3.1.2), 

alone and in combination with gefitinib. Apcmm/+ mice were treated for a period of 8 weeks 

with gefitinib and then subsequently exposed to single agent gefitinib or combination 

therapy against Egfr and Ig flr  (2.1.3.3; fig 2.1). In addition to having already shown 

concurrent suppression of Egfr and induction of Igf signalling in murine intestinal tumours, 

combined dosing w ith gefitinib and AZ12253801 suppressed both small and large intestinal 

tumourigenesis relative to vehicle and single agent controls. As well as establishing a 

rationale for combinatorial therapy, this data also implicates Erk phosphorylation in 

response to chronic Ig flr  inhibition, suggesting that Mek inhibition may abrogate against 

resistance to Ig flr inhibition. Finally, I have provided direct in vivo proof of the concept that 

early molecular pathway changes may be useful as biomarkers for response/resistance 

prediction.
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5.2 Results

My initial work was aimed at choosing an appropriate dose of investigational drugs 

for long term studies in Apcmm/+ mice. Pilot studies were therefore undertaken which also 

tested, at transcript level, whether increased Ig f lr  levels occurred in intestinal tumours in 

response to chronic Egfr inhibition.

5.2.1 AZ12253801 test doses

The company brochure recommended a dosing schedule of AZ12253801 12.5mg/kg 

12 hourly, but this was not feasible at a practical level. AZ12253801 was therefore 

administered 12.5mg/kg twice daily (8 hours apart). This unfortunately resulted in weight 

loss over a 5 day period of treatment and was clearly dose limiting. I therefore reduced the 

dose level to 12.5mg/kg once daily which was much better tolerated without weight loss. 

This became the favoured dosing regimen. Company data available for AZ12253801 

describes significant anti-tumour effects of doses ranging from 6.25mg/kg to 25mg/kg/day 

(AZ12253801 Investigators brochure). A single dose of AZ12253801 25mg/kg in Apcmm/+ 

mice resulted in marked hyperglycaemia and would not be tolerated in a long term study. 

No public information was available regarding alternative AZ12253801 dosing regimens.

5.2.2 Gefitinib test doses

The dose of gefitinib was initially chosen based on xenograft studies that 

demonstrated a radio-sensitising effect of gefitinib 75mg/kg administered as a suspension in 

0.5% Tween80132. Chronic once daily dosing of gefitinib 75mg/kg was tolerated well by intra- 

peritoneal injection in a pilot study involving 7 Apcmm/+ mice (2.3.2.3). This pilot study also 

provided evidence to support the importance and rationale of the experimental approach 

by the demonstrating a 2-fold increase in Ig f lr  transcript in pooled colon polyps exposed to 

chronic gefitinib relative to vehicle treatment (fig 5.1).
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Ig f lr  transcript levels in Apcmm/+ pooled colon polyps

2.5 i ------------------------------------------------------------------------------------

■ fold change

Chronic 0.5% TweenSO Chronic gefitinib 75mg/kg

Figure 5.1 qRT-PCR de te rm ined  transc rip t expression o f Ig flr  in colon polyps from  Apcmm/+ 

mice treated w ith  long te rm  vehicle (1% Tween80) or ge fitin ib  (75mg/kg) until the 

development o f an in testina l tu m o u r burden. Primer sequences are listed in table 2.4.

5.3 Consequences o f chronic trea tm en ts  in Apcmm/+ mice upon survival, tum our volume and 

tum our counts

It was im p o rta n t fro m  the  ou tse t to  ensure th a t the age of mice starting treatm ents, 

in each cohort, was the  same to  exclude th is  as a fac to r which could influence various 

endpoint measurements. There w ere how ever no detectable differences in the median ages 

of mice starting experim enta l tre a tm e n ts  (fig 5.2; median age vehicle 54 days vs. ge fitin ib  61 

days, P=0.14; vehicle 54 days vs. AZ12253801 52 days, P=0.56; vehicle 54 days vs. 

com bination 57 days, P 0.28; com bina tion  57 days vs. ge fitin ib  61 days, P=0.63; com bination 

57 days vs. AZ12253801 52 days, P=0.07; ge fitin ib  61 days vs. AZ12253801 52 days, P=0.1; 

Mann-W hitney).

Figure 5.2 Box p lots show ing the  age range o f mice at the start o f each trea tm ent
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Ages of mice a t start of each treatm ent

70-

65-

60-

(A >
■D 55 -

50-

45-

40-

vehicle 1% Tween80 gefitinib 75mg/kg AZ12253801 12.5mg/kg Combination

1 next de te rm ined th e  in fluence o f each chronic tre a tm e n t upon Apcmm/+ mice in 

term s o f longevity and in testina l tu m o u r m etrics:-

5.3.1 G efitin ib (Egfr inh ib ition )

Apcmm/+ m ice receiving chron ic da ily ge fitin ib  75m g/kg had an im proved median 

survival re lative to  vehicle tre a tm e n t (158 days vs. 194 days, P<0.0001; log rank test; fig 5.3 

A). Median colon polyp num bers at death w ere s ign ificantly reduced in ge fitin ib  treated 

animals compared to  vehicle tre a tm e n t (2 vs. 8 colon polyps, P=0.002; fig 5.3E). However, 

no difference was observed in colon tu m o u r vo lum e between ge fitin ib  and vehicle 

treatm ents (8m m 3 vs. 158.5m m 3, P=0.136; M ann-W hitney test; fig 5.3D), indicating tha t 

the reduced num ber o f colon tum ou rs  in ge fitin ib  trea ted mice grew to  a larger size, 

presumably as a d irec t consequence o f enhanced longevity. No differences were observed 

at death in the  median num ber o f small in testina l tum ours (37.5 vs. 29, P=0.2664; M ann- 

W hitney test; fig  5.3C) or small in testina l tu m o u r volum es (128 m m 3 vs. 123 m m 3, P=0.4998; 

M ann-W hitney test; fig  5.3B), despite increased longevity. These data there fo re  argue tha t 

gefitin ib  exposure delays both  small and large intestina l tumourigenesis.

5.3.2 AZ12253801 ( Ig f lr  inh ib ition )
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Figure 5.3. Survival and intestinal tum our metrics of Apcmin/+ mice treated with once daily gefitinib 
75mg/kg, AZ12253801 12.5mg/kg or combination gefitinib 75mg/kg+AZ12253801 12.5mg/kg.
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The median survival of Apcmm/+ mice receiving once daily AZ12253801 12.5mg/kg 

was also increased relative to vehicle controls (158 days vs. 208 days, P<0.001; log rank test; 

fig 5.3A). At the time of death there was an increase in median small intestinal tumour 

volume relative to vehicle (248.5mm3 vs. 128.5 mm3, P=0.0382; Mann-Whitney test; fig 

5.3B) which in the absence of a detected difference in the small intestinal tumour count 

(37.5mm3 vs. 48 mm3, P0.0668, fig 5.3C) indicates tumours grew to a larger size in the 

AZ12253801 treated cohort. However, there were no differences in median colon polyp 

tumour volume (158 mm3 vs. 19.5 mm3, P0.2280; fig 5.3D) or colon polyp number despite 

increased longevity of the mice (8 vs. 5, P0.2217, fig 5.3E). These data indicate that exposure 

to AZ12253801 increases survival specifically through a reduction in colon polyp burden.

Interestingly, small intestinal tumour volume and both small and large intestinal 

tumour counts were greater in single agent Ig flr inhibitor treated Apcmm/+ mice relative to 

Egfr inhibitor and dual Egfr/lg flr inhibitor cohorts (median small intestinal tumour volume 

248 mm3 [AZ12253801] vs. 123 mm3 [Gef], P=0.0046 and 47 mm3 [Combo], P=0.0003; 

median small intestinal tumour counts 48 [AZ12253801] vs. 29 [Gef], P=0.0082 and 20 

[Combo], P=0.0004 and median colon polyp tumour counts 5 [AZ12253801] vs. 2 [Gef], 

P=0.0496 and 3 [Combo], P=0.0187; Mann-Whitney test fig 5.3B-E). This suggests loss of a 

protective effect of continuous gefitinib when it is withdrawn after 8 weeks treatment in the 

AZ12253801 monotherapy cohort.

5.3.3 Combined Gefitinib with AZ12253801 (Dual Egfr and Ig flr inhibition)

Combined once daily gefitinib 75mg/kg and AZ12253801 12.5mg/kg treatment 

similarly resulted in a prolongation of Apcmm/+ median survival (158 days vs. 182 days, 

P=0.002; log rank test; fig 5.3A) and at the time of death significantly reduced small and 

large intestinal tumourigenesis relative vehicle as measured by both tumour number and 

volume (median number small intestinal tumours 20 vs. 37.5, P=0.0222; median number 

colon polyps 3 vs. 8, P=0.0003; Mann Whitney; median small intestine tumour volume 47 

mm3 vs. 128.5mm3, P=0.0034; median colon tumour volume 10.5 mm3 vs. 158.5mm3, 

P=0.0150; fig 5.3B-E). The combination of Egfr/lgflr blockade therefore appears to improve 

survival by delaying both small and large intestinal tumourigenesis.
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When comparison is made between the three chronic treatment regimes, 

combination treatment reduced the median small intestinal tumour number compared to 

Ig flr inhibition (20 [combo] vs. 48 [AZ12253801], P=0.0004) but not against gefitinib (20 

[combo] vs. 29 [gefitinib], P=0.22; fig 5.3C). Similarly, in the large intestine, combined 

therapy reduced colon polyp number compared to AZ12253801 treatment, but not against 

gefitinib (3 [combo] vs. 5 [AZ12253801], P=0.0187 and 3 [combo] vs. 2 [gefitinib], P=0.718; 

fig 5.3E). No differences were observed in median colon polyp tumour volume between the 

treatments (10.5mm3 [combo] vs. 19.5mm3 [AZ12253801], P=0.0648 and 10.5mm3 [combo] 

vs. 8mm3 [gefitinib], P=0.482; fig 5.3D). It is clear however that combination treatment leads 

to reduced median small intestinal tumour volume (47mm3 [comb] vs. 248mm3 

[AZ12253801], P=0.0003 and 47mm3 [comb] vs. 123mm3 [gefitinib], P=0.0042; fig 5.3B).

Although combined treatment reduced tumour burden at death compared to single 

agent exposure, the survival data for the different regimens showed that all three regimens 

resulted in similar increased longevity compared to vehicle controls (median survival 158 

days [Veh] vs. 194 days [Gef], P<0.0001; vs. 208 days [AZ12253801], P<0.0001; vs. 182 days 

[Combo], P=0.002; 182 days [Combo] vs. 208 days [AZ12253801], P=0.301; 182 days 

[Combo] vs. 194 days [Gef], P=0.370; 194 days [Gef] vs. 208 days [AZ12253801], P=0.0723, 

log rank method).

5.3.4 Adverse effects of chronic treatment

In keeping with pilot experiments, chronic treatment of Apcmm/+ mice with the 

various drugs was well tolerated. Weekly assessments showed that mice maintained their 

weight throughout treatment until the development of an intestinal tumour load which 

indicated the end point of the study. Mice receiving chronic gefitinib developed wavy fur (fig 

5.4A), without obvious distress. Five mice receiving combination AZ12253801 12.5mg/kg 

and gefitinib 75mg/kg developed intra-abdominal collections (presumed to be abscesses) of 

varying severity (Fig 5.4B) resulting in early cull. A separate survival analysis however, 

excluding mice developing intra-abdominal pathology, had no effect on the end result, 

suggesting this complication did not obscure a survival advantage for combination therapy. 

Blood glucose samples were unfortunately not taken from any mice when culled, and would
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have been po ten tia lly  helpfu l in determ in ing w hether hyperglycaemia contributed to  the 

pathogenesis o f the  in tra-abdom ina l lesions.

Fig 5.4

A B

Fig 5.4 Adverse effects o f chronic adm in is tra tion  o f drugs in mice.

Chronic adm inistration o f once daily ge fitin ib  75m g/kg leads to  wavy hair in the Apcmm/+ 

mouse (A). An in tra-abdom ina l abscess at the  site o f in tra-peritoneal in jection in a mouse 

receiving chronic AZ12253801 12.5m g/kg in com bination w ith  gefitin ib  75m g/kg (B).

5.4 Acute effects o f drug exposure in tum ours  from  Apcmm/+ mice

I next sought to  dissect the  mechanisms o f response to  these targeted agents in 

term s o f the acute effects upon Apcm/n/+in testina l tum ours w ith  respect to  cell death and 

pro liferation and the underly ing m olecu lar effects.

5.4.1 Tumour phenotypic change

Following 4 hour exposure o f Apcmm/+ mice to  combined EGFR/IGF1R antagonism 

there  is increased small in testina l tu m o u r apoptosis (1.37% ± 0.5 [combo] vs. 0.33% ± 0.1 

[vehicle] and 1.37% ± 0.5 [com bo] vs. 0.34% ± 0.1 [AZ12253801]) and a trend towards 

elevated cleaved caspase 3 pos itiv ity  (5.18% ± 3.8 [combo] vs. 1.3% ± 0.9 [vehicle] and 

5.18% ± 3.8 [com bo] vs 2.1% ± 0.9 [AZ12253801]; fig 5.5 A, B). No differences in small 

intestinal tu m o u r m ito tic  rate or Brdu cell labelling were however identified when 

comparing vehicle, AZ12253801 or com bination treatm ents at 4 hours (Fig 5.5 C, D). In colon
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Figure 5.5 Phenotypic changes in Apcmin/+ small intestinal tumours post 4 hr drug
exposure
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polyps, there was no change in levels of apoptosis with either AZ12253801 or combination 

therapy relative to vehicle (data not shown). The effect of gefitinib has previously been 

described (3.3.1.1).

5.4.2 Molecular effects of acute drug exposure

5.4.2.1 AZ12253801

The immediate effects of gefitinib have previously been described (3.3.3.1). 

Inhibition of Ig flr  signalling by AZ12253801 alone resulted in an expected reduction in 

phosphorylation of Akt (Fig 5.6 D) and an apparent paradoxical rebound increased 

phosphorylation of the Ig flr  (Fig 5.6 C). In the context of an unchanged level of Egfr 

phosphorylation (Fig 5.6 B) AZ12253801 also induced phospho-Erk signalling (Fig 5.6 E). 

Thus we can hypothesise inhibition of Ig flr  initially suppresses downstream signalling as 

evidenced by reduction in phospho-Akt, but that this change leads to loss of feedback 

upstream resulting in increased Ig flr  phosphorylation (possibly through reduced PTPB1 

activity). Such rebound activation of the Ig flr  pathway following Ig flr inhibition may explain 

the increased level of Erk phosphorylation or alternatively reflect altered Egfr trafficking.

5.4.2.2 Combined Gefitinib with AZ12253801

In view of the signalling changes described for Egfr and Ig flr inhibition alone, I 

anticipated combined E gfr/lg flr inhibition would produce either competing or additive 

molecular effects four hours after exposure. The former is demonstrated for both Egfr and 

Erk phosphorylation (Fig 5.6 B, E) where the level of activity is between that for each agent 

alone. For phospho-AKT suppression, an additive effect is demonstrated compared to either 

treatment in isolation (Fig 5.6 D). For phospho-lgflr, combination therapy resulted in either 

similar (Ig flr inhibition) or reduced (Egfr inhibition) levels compared to individual 

treatments (Fig 5.6 C).

5.5 Molecular signalling changes in tumours chronically exposed to drugs

I next examined signal transduction pathway changes associated with chronic drug 

to determine potential tumour resistance mechanisms and ask if the acute signalling
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Figure 5.6 Acute downstream signalling changes in Apcmin/+ colon polyps post 4 hr drug
exposure

Vehicle Gefitinib AZ12253801 Comb +ve

B

T Egfr 

P Egfr

TE rk

P Erk 

T Ig flr  

P Ig flr  

T Akt

P Akt

Tubulin

Phospho-Egfr densitom etry Phospho-lgflr densitometry

m ilt
Veh 1% Gef AZ3801 AZ3801+Gef Veh 1% Gef AZ3801 AZ3801+Gef

2.5

1.5

0.5

Phospho-Akt densitom etry

I l i a
Veh 1% Gef AZ3801 AZ3801+Gef

2.5

1.5

0.5

Phospho-Erk densitometry

I
Veh 1%

J m

Gef AZ3801 AZ3801+Gef

Fig 5.6 (A) W estern b lo ts  to  show  im m ed ia te  (4 hr) e ffec t o f 1% Tween80 (Veh), G efitin ib  
75m g/kg  (Gef), AZ12253801 (AZ3801) 12 .5m g/kg  and AZ12253801 12 .5m g/kg+G efitin ib  
75m g/kg  on th e  respective  p ro te ins . Loading con tro ls  w ere e ith e r B actin o r tubu lin . Polyps 
w ere pooled fro m  3 m ice fo r  each tre a tm e n t ( fu rth e r de ta il in appendix 2.6) (B-E) D ensitom etry 
readings fo r phospho -p ro te ins .+ve  sign ifies positive con tro l. Error bars represent range o f 
values.



pathway changes bear any relevance to those signalling pathways altered following chronic 

exposure.

5.5.1 Chronic Gefitinib

Chronic treatment of Apcmm/+ mice with gefitinib (relative to vehicle) results in 

increased protein levels of total Egfr, total Ig flr  and phospho-lgflr (Fig 5.7A, B, E, F). Given 

that levels of both Egfr and Erk phosphorylation (Fig 5.7 A, C, D) are not elevated, this argues 

that Ig flr activity may be driving resistance to therapy. However, despite evidence of 

activation of the lgf-1 receptor, phosphorylation of the downstream effectors usually 

associated with this pathway (Akt and s6 ribosomal protein- densitometry data not shown) 

is not seen. This suggests that, in the setting of chronic blockade of Egfr, activation of the 

Ig flr pathway is mediating tumour growth through alternative, unidentified mechanisms. 

Furthermore, the observation that acute gefitinib exposure induced activation of the Ig flr at 

4 hours highlights that resistance mechanisms are initiated early in a treatment schedule 

and that they can be predicted by this method.

I also examined immuno-stained sections of gefitinib treated Apcmm/+ mice to explore 

the patterns of protein expression and if there are similarities between tumours from the 

small and large intestine. Colonic and small intestinal tumours demonstrate a marked 

reduction of phospho-Erk in nuclear and cytoplasmic compartments as a consequence of 

chronic gefitinib exposure compared to vehicle treatments (Fig 5.8 and 5.11). Cytoplasmic 

Ig flr immuno-reactivity was particularly increased in colon polyps in response to chronic 

gefitinib whereas in small intestinal microadenomas the changes in staining were more 

noticeable in nuclear and cytoplasmic compartments (Fig 5.9 and 5.10). Immuno-staining for 

Phospho-Akt in colon tumours did not show any appreciable difference between chronic 

gefitinib and vehicle treatment, however in small intestinal tumours there appeared more 

prominent nuclear phospho-Akt staining (Fig 5.12 and 5.13). On reflection, the staining 

patterns for phospho-Erk, Ig flr  and phospho-Akt immuno-reactivity of both small and large 

intestinal tumours m irror the quantitative protein changes demonstrated in colon polyps, 

suggesting the same molecular changes occur irrespective of tumour site.

5.5.2 Chronic AZ12253801
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Figure 5.7 Signalling pathways in Apcmin/+ tumours following chronic treatm ent
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Figure 5.8. Phospho-Erk immuno-reactivity in colon polyps from Apcmin/+ mice treated with long term  vehicle, Egfr or E g fr/lg flr
combined antagonists.

Gef/AZ3801

Figure 5.8. Phospho-ERK immuno-reactivity in colon polyps from Apcmm/+ treated mice. Upper pane (x o jec iv , . nanel.
(x40 objective). Outlined areas within the upper panels indicate which region of the tumour has been ^ S 111 ie 1 
Veh 1% Tween80, Gef Gefitinib 75mg/kg, Gef/AZ3801 Gefitinib 75mg/kg+AZ12253801 12.5mg/kg. Each rug was gi 
daily intra-peritoneal injection.



Figure 5.9 Ig flr  immuno-reactivity in colon polyps from Apcmm/+ mice treated with long term  vehicle, Egfr or Egfr/lg flr combined
antagonists.

Veh Gef Gef/AZ3801

Figure 5.9. Ig flr  immuno-reactivity in colon polyps from treated mice. Upper panel (x4 o b j e c t i v e ) ;  lower panel (x40
objective). Outlined areas within the upper panels indicate which region o f the tum our has been magni ie in e o .

1% Tween80, Gef Gefitinib 75mg/kg, Gef/AZ3801 Gefitinib 75mg/kg+AZ12253801 12.5mg/kg. Each drug was given as 
intra-peritoneal injection.



Figure 5.10. Ig flr  immuno-reactivity in small intestinal adenomas from Apcmin/+ mice treated with long term  vehicle, Egfr, Ig flr  or Egfr/lg flr
combined antagonists.

Veh Gef AZ3801 Gef/AZ3801

Figure 5.10. Ig flr  immuno-reactivity in small intestinal adenomas from Apcmin/+ treated mice. Upper panel (xlO objective); lower panel (x40 
objective). Outlined areas within the upper panels indicate which region o f the tumour has been magnified in the lower panel. Veh 1% 
Tween80, Gef Gefitinib 75mg/kg, AZ3801 AZ12253801 12.5mg/kg, Gef/AZ3801 Gefitinib 75mg/kg+AZ12253801 12.5mg/kg. Each drug was 
given as once daily intra-peritoneal injection.



Figure 5.11. Phospho-Erk immuno-reactivity in small intestinal adenomas from Apcmin/+ mice treated with longterm  vehicle, Egfr, Ig flr  or
Egfr/lg flr combined antagonists.
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Figure 5.11. Phospho-Erk immuno-reactivity in small intestinal adenomas from Apcmm/+ treated mice. U pper panel ( x 4 ^  VehP10/o 
(x40 objective). Outlined areas w ithin the upper panels indicate which region of the tum our has been ma8n' i n  E  c u  ^ u p  was
TweenSO, Gef Gefitinib 75mg/kg, AZ3801 AZ12253801 12.5mg/kg, Gef/AZ3801 Gefitinib 75mg/kg+AZ12253801 12.5mg/kg. Each drug was 
given as once daily intra-peritoneal injection.



Figure 5.12. Phospho-Akt immuno-reactivity in small intestinal adenomas from Apcmin/+ mice treated with long term  vehicle, Ig flr  or
Egfr/lg flr combined antagonists.
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Figure 5.12. Phospho-Akt immuno-reactivity in small intestinal adenomas from Apcmin/+ treated mice. Upper panel (x4 objective); 
lower panel (x40 objective). Outlined areas within the upper panels indicate which region of the tum our has been magnified in the 
lower panel. Veh 1% Tween80, Gef Gefitinib 75mg/kg, AZ3801 AZ12253801 12.5mg/kg, Gef/AZ3801 Gefitinib 
75mg/kg+AZ12253801 12.5mg/kg. Each drug was given as once daily intra-peritoneal injection.



Figure 5.13. Phospho-Akt immuno-reactivity in colon polyps from Apcmm/+ mice treated with long term  vehicle, Egfr or E gfr/lg flr

combined antagonists.

Gef/AZ3801

Figure 5.13. Phospho-Akt immuno-reactivity in colon polyps from Apcmm/+ treated mice. Upper panel (x4 objective), lower pane 
(x40 objective). Outlined areas w ithin the upper panels indicate which region o f the tum our has been magnified in the lower pane 
Veh 1% Tween80, Gef Gefitinib 75mg/kg, Gef/AZ3801 Gefitinib 75mg/kg+AZ12253801 12.5mg/kg. Each drug was given as once

daily intra-peritoneal injection.



The only change observed following chronic inhibition of Ig flr through 

administration of AZ12253801 after 8 weeks gefitinib monotherapy was a reduction in 

phospho-Egfr levels relative to vehicle (Fig 5.7A-F). Given the suppressed level of phospho- 

Egfr, the maintenance of phospho-Erk (Fig 5.7 A, D) is presumed to be via an Egfr 

independent mechanism, such as repression of an inhibitor of phospho-Erk such as sprouty. 

Chronic Ig flr inhibition results in different pathway dynamics to acute Ig flr inhibition, 

where I observed reciprocal activation of phospho-Egfr (to a level similar to vehicle where 

Egfr activity is unopposed in promoting tumour growth) and increased phospho-Erk. If the 

level of phospho-Erk is crucial in driving Ig flr resistant tumours, then the acute data 

showing an increase in phospho-Erk potentially reflects a mechanism of resistance. This 

raises the possibility that Ig flr  inhibitor resistance may be overcome by combined Ig flr and 

Mek inhibition.

I was only able to probe immuno-staining of small intestinal tumours after treatment 

with chronic AZ12253801, which was not possible for colon tumours. Both phospho-Erk and 

phospho-Akt appeared suppressed in small intestinal tumours in response to AZ12253801 

treatment relative to vehicle (Fig 5.11 and 5.12). This demonstrates the limitations of 

immuno-histochemistry as no difference in small intestinal tumours levels of either 

phosphorylated protein was evident following quantitative assessment (Fig 5.7 A, D; 

densitometry data not shown for phospho-Akt). However, there was a better concordance 

between Ig flr immuno-reactive staining and protein level assessments in small intestinal 

tumours exposed to long term AZ12253801 monotherapy and vehicle treatments (Fig 5.10) 

where Ig flr protein levels are similar (Fig 5.7A,E).

5.5.3 Chronic combined Gefitinib with AZ12253801

Insufficient colon polyps were available for quantitative pathway analysis of the 

effects of dual Egfr/lg flr therapy on tumours. This led to a reliance on immuno- 

histochemistry data from intestinal tumours, which although not quantitative, gave insight 

into molecular pathway changes.

Apcmm/+ mice exposed to chronic AZ12253801 12.5mg/kg combined with gefitinib 

75mg/kg exhibited a reduction in nuclear and cytoplasmic staining for phospho-Erk in colon 

tumours whereas staining in small intestinal tumours was similar to vehicle treatments (Fig
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5.8 and 5.11). The level of phospho-Akt staining appears similar in small intestinal tumours 

treated with combination therapy and vehicle (Fig 5.12), whereas for colon tumours there is 

a propensity for increased nuclear staining associated with dual therapy relative to vehicle 

(Fig 5.13). Immuno-staining against Ig flr appeared increased in small and large intestinal 

tumours from Apcmm/+ mice treated with either gefitinib containing regimen, although the 

pattern of staining was restricted to the cytoplasm in colonic tumours (Fig 5.9, 5.10).
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5.6 Discussion

I have described the acute and chronic effects of inhibiting Egfr and Ig flr alone and 

in combination in the Apcmm/+ mouse. Given that K-RAS and B-RAF wild type status is 

predictive of EGFR targeted response in patients46' 50, and having demonstrated that Apcmm/+ 

mice intestinal polyps remain wild type for K-ras and B-raf (3.2), underscores the relevance 

of this model for studying EGFR blockade. In terms of responsiveness to agents that target 

EGFR and IGF1R, there is increasing evidence for cross communication between these two 

pathways from both cell line and xenograft studies77' 80' 81,95' 96, 198,199. Here I have now 

extended this analysis to an autochthonous in vivo animal model.

5.6.1 Ig flr up-regulation and activation in response to chronic gefitinib treatment

I have confirmed the significance of early gefitinib induced Ig flr signalling in colon 

polyps in relation to resistance as Ig flr  and Ig flr phosphorylation are increased at the 

protein level in chronic gefitinib exposed resistant tumours (fig 5.14). Furthermore this data 

suggests resistance mechanisms are initiated very early in a treatment schedule and that it 

may be possible to sample tumours early in a course of treatment to assess molecular 

responses and identify biomarkers predictive of resistance.

Interestingly phospho-Akt and phospho-s6p were not activated despite Ig flr 

pathway activity, suggesting an alternate pathway is responsible for signal transduction 

promoting tumour growth. It appears that tumour cells in an attempt to overcome Egfr 

blockade also increase Egfr protein but fail to increase activation of Egfr signalling as shown 

by an absence of change in Egfr phosphorylation and reduced Erk phosphorylation (fig 5.14). 

It is possible that certain transcripts differentially expressed in colon tumour tissue, in 

response to long term gefitinib (Cbl, Ubd and Hipl), are involved in up-regulated expression 

of Egfr through their previously discussed effects on Egfr turnover (3.11.4.2, 3.11.4.4, 

3.11.4.5). Egfr is able to engage with alternate effector pathways, such as Src/Fak, Stat or 

Plcy/Pkc67 which I have not probed, but may be responsible for mitogenic signal 

transmission. EGFR-IGF1R hetero-dimerisation has been reported in response to gefitinib 

treatment of human NSCLC cell lines200 and may explain a role for increased Egfr expression, 

to circumvent Egfr blockade, in concert with up-regulated Igflr.
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Fig 5.14. Resistance m echanism s postu la ted  as a consequence o f chronic Egfr o r Ig f l r  in h ib itio n
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Previous work has shown that inhibition of EGFR-ERK pathway activity by EGFR 

blockade enhances IRS1 interaction with PI3K/AKT signalling80. This together with the 

finding of increased Ig flr  activity following Egfr blockade led me to expect increased Akt 

phosphorylation, however I failed to demonstrate this in vivo following chronic Egfr 

treatment.

The quantitative changes of increased protein expression of Igflr, and reduced 

phospho-Erk in response to chronic gefitinib are mirrored in the immuno-staining results for 

the respective proteins in colon and small intestinal tumours (Figs 5.8-5.11). Furthermore it 

is interesting to note that although chronic gefitinib induced no detectable difference in 

phosph-Akt protein expression levels in either small or large intestinal tumours, immuno- 

staining revealed a propensity toward increased nuclear phospho-Akt in regions of small 

intestinal tumours in response to gefitinib. It is possible that up-regulated Ig flr in response 

to gefitinib, mediates its growth promoting effects by influencing the cellular localisation of 

phospho-Akt (at least in small intestinal tumours) rather than increasing protein expression. 

The biological importance of AKT nuclear localisation has not been addressed until recently, 

where it has been found that nuclear AKT through its pleckstrin homology (PH) domain, 

binds to a major nucleolar phosphoprotein B23, rescuing it from caspase 3 mediated 

apoptotic cleavage to enhance cell survival201. Nuclear AKT activity has also been shown to 

be associated with inhibition of apoptosis and poor survival in certain malignancies 

suggesting that it could feasibly have a role in resistant tumour growth202,203. As IGF1R has 

been shown to be involved in nuclear translocation of AKT204 and cellular location of AKT 

regulates its function205, leads me to speculate that Ig flr may achieve its growth promoting 

effects, in response to chronic gefitinib, by driving nuclear Akt accumulation thereby 

suppressing apoptosis and promoting cell proliferation.

5.6.2 Treatment outcome in Apcmm/+ mice following chronic drug exposures.

The median age of Apcmm/+ mice at the start of treatment within the various 

treatment cohorts was not significantly different (Fig 5.2) therefore permitting comparison 

of the survival times in response to each therapeutic approach. The design of the different 

treatment schedules (Fig2.1) with the exception of vehicle control, incorporated an initial 8 

week period of gefitinib exposure on the assumption this would drive gefitinib resistant
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tumour clones. In retrospect it would have been useful to incorporate a small pilot study to 

confirm the presence of intestinal tumours, subject to treatment, and also show the up- 

regulated expression Ig flr  driving gefitinib resistant tumour growth.

5.6.2.1 Chronic Gefitinib

There was a clear survival advantage in Apcmm/+ mice treated with once daily gefitinib 

75mg/kg as median survival was extended by 36 days or 23% (158 days vs. 194 days, 

P<0.0001; log rank test; Fig 5.3A). This was a consequence of cell cycle inhibition and 

increased apoptosis (3.3.1.1) leading to reduced intestinal tumourigenesis (delayed small 

intestinal tumourigenesis and inhibition of colon polyp initiation). The observation of 

perturbed cell cycling supports an earlier report of gefitinib reducing proliferation and the 

number of aberrant crypt foci and colonic microadenomas in an azoxymethane model of 

colonic carcinogenesis149.

5.6.2.2 Chronic AZ12253801

qc
The IGF1R has been implicated in the development of tumours in various settings 

and I anticipated inhibition of the Ig flr  would be of potential therapeutic significance in this 

model, which has been confirmed; Ig flr  inhibition (following gefitinib monotherapy for 8 

weeks) improved median survival compared to vehicle by 50 days or 32% (158 days vs. 208 

days, P<0.001; log rank test; Fig 5.3A). In demonstrating Egfr blockade enhanced Ig flr 

activity and that monotherapy against Ig flr  enhances survival in Apcmm/+ mice I have 

provided further additional support for the in vivo proof of concept that Ig flr targeted 

therapy is of benefit in tumours expressing high receptor levels and is a potential predictive 

biomarker206.

At the time of death there was an increase in median small intestinal tumour volume 

relative to vehicle, which in the absence of a detected difference in the small intestinal 

tumour count, indicated tumours grew to a larger size in the AZ12253801 treated cohort. 

This increase in small intestinal tumour burden is also observed for AZ12253801 exposure 

relative to single agent gefitinib and combined gefitinib/AZ12253801 treatment in addition 

to an increase in small and large intestinal tumour counts. This appears to reflect the loss of 

a therapeutic effect of gefitinib in the AZ1253801 cohort of mice which only received
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gefitinib for 8 weeks prior to AZ12253801 monotherapy, suggesting that the scheduling 

sequence of short term gefitinib is sub-optimal despite the survival advantage documented. 

It is possible that the withdrawal of gefitinib at 8 weeks results in loss or reduced expression 

of Igflr, the target o f AZ12253801, and could explain why continued EGFR blockade with 

gefitinib is necessary to maximally suppress small intestinal tumour growth. Ideally to 

investigate the tim ing of Ig flr  expression in relation to EGFR blockade, Apcmm/+ should have 

been treated for 8 weeks to confirm up-regulation of tumoural Ig flr expression and 

subsequent loss or reduced expression demonstrated upon withdrawal thereafter to 

support this hypothesis.

The failure to detect changes in cell death and proliferation arising from acute 

AZ12253801 exposure is likely to reflect the selection of an inappropriate time point as the 

prolongation in survival afforded by AZ12253801 monotherapy must be reflected by anti­

tumour phenotypic changes. Unfortunately it was not feasible to re-examine cell death and 

proliferation at further time points which would be a logical step forward.

5.6.2.3 Chronic combined Gefitinib w ith AZ12253801

The acute increase in Ig flr  activity in colon polyps following exposure to Egfr 

blockade raises the possibility of testing tumour specimens or circulating tumour cells207 for 

their initial response to drug. Such responsiveness could then be considered in determining 

therapeutic combinations. To address this approach, I determined if the acute activity in 

Ig flr predicted improved outcome (in terms of tumour burden/survival) when Ig flr 

inhibition was combined with Egfr blockade. I have demonstrated a dramatic suppression of 

intestinal tumourigenesis w ith combination treatment relative to vehicle as evidenced by an 

almost 3 fold reduction of small intestinal tumour volume and 16 fold reduction of median 

colon tumour volume. The documented increase in apoptosis in small intestinal tumours 

following acute (4 hour) exposure to combined Egfr/lg flr blockade (fig 5.5A), without a 

difference in Brdu labelling, suggests increased cell death is the important determinant of 

this response. Similar reports of enhanced apoptosis with the combination have been 

published w ith81 or w ithout increased anti-proliferative effects80' 95.

The reduction in small intestinal volume remains equally impressive when compared 

to gefitinib treatment alone reinforcing the therapeutic advantage of adding Ig flr blockade
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to gefitinib. Surprisingly however, although a survival advantage is seen compared to vehicle 

treatment (158 days vs. 182 days), there was no improvement in survival for this 

combination beyond that seen for either gefitinib or Ig flr inhibitor monotherapy.

The finding that none of the treatment arms exhibited a superior median survival in 

favour of a particular treatm ent regimen may at first appear confusing. However the mouse 

cohorts may not have been large enough to detect a true but small significant difference in 

survival that exists between the treatment arms. And in addition, if tumour response is a 

primary albeit non-exclusive determinant of survival and response rates are less than 50%, 

which is likely here, it follows that the median survival measured at the point 50% of 

animals have died is controlled by the non-responding groups208. Therefore in this setting 

the median survivals are unlikely to be different across the treatment arms given response 

rates for the treatment arms are probably less than 50%.

5.6.2.4 Adverse effects

Previous experiments have described a wavy hair phenotype in wa-2 homozygous 

mice arising from a point mutation in the EGFR tyrosine kinase domain (glycine to valine 

substitution at residue 743) resulting in impaired kinase activity209. This clearly explains the 

phenotype of wavy fur in Apcmm/+ mice in response to chronic gefitinib (fig 5.4A) and 

provides biological evidence that EGFR tyrosine kinase has been targeted in the 

experiments.

The development of abdominal collections at sites of intra-peritoneal injection in 

mice receiving combination treatment w ith AZ12253801 12.5mg/kg and gefitinib 75mg/kg, 

was clearly a problem in a small number of animals, which were culled as a consequence (fig 

5.4B). Given that EGFR signalling has been shown to have important roles in cutaneous 

wound healing210 and innate immunity211, and that Ig flr blockade can impair blood sugar 

homeostasis, it is likely these factors contributed to the observed abdominal wall 

complications seen w ith Eg fr/lg flr inhibition. It is highly probable therefore, that the 

combination of impaired wound healing and drug induced diabetes gave rise to intra­

abdominal infection and early death, thus concealing any potential survival advantage for 

dual inhibitor blockade. Furthermore, as mice on combined treatment were culled before 

reaching the experimental primary endpoint, i.e. anaemia secondary to an intestinal tumour
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burden, a reduced tumour burden was observed at death in the absence of a survival 

advantage. Further enquiry could include exposure of wild type mice to the combined 

treatments, w ith blood sugar monitoring and microscopy and culture of any subsequent 

intra-abdominal wall lesions, to examine if fatalities are linked with deregulated glucose 

metabolism and infection. These complications may have been avoided had the drugs been 

administered via oral gavage and it is of some reassurance that the agents have been 

designed for oral ingestion, reducing the concern of serious skin complications in patients 

enrolled in early phase trials testing Eg fr/lg flr combinations.

5.6.3 Acute downstream molecular effects of drug treatments

Analysis of the acute signalling pathway changes following drug administration was 

undertaken to increase understanding of mechanisms accounting for drug treatment effects 

and possible early indications of stimulated resistance mechanisms.

Acute exposure of Apcm,n/+ mice to gefitinib suppressed Egfr, Erk and Akt 

phosphorylation in keeping w ith its known action as an inhibitor of EGFR tyrosine kinase 

activity131.This combined w ith published evidence of the importance of Egfr signalling in 

Apcmm/+ mouse intestinal tumours109 including genetic manipulation studies with 

hypomorphic Egfr alleles {Egfrwa2allele) and pharmacologic manipulation110, supports a role 

for Egfr in intestinal tum our development. Short term exposure to gefitinib led to increased 

apoptosis and mitotic blockade in small intestinal tumours and reduced cell cycling in colon 

polyps. I also observed increased Ig flr  phosphorylation. These observations predicted long 

term exposure to gefitinib may improve survival by delaying the development of intestinal 

tumours and furthermore, that gefitinib resistance may develop, possibly through 

deregulation of pathways such as Ig flr. This early observation indicated to me that this 

model would be useful to test the effect of Ig flr  antagonism alone and in combination with 

gefitinib, which has been confirmed.

Signalling pathway changes in response to acute Ig flr inhibition (fig 5.6 A-E) resulted 

in an expected reduction in Akt phosphorylation but also a paradoxical increase in Ig flr 

phosphorylation along w ith an increased level of Erk phosphorylation in the absence of any 

change in Egfr activity. I propose that AZ12253801 initially suppresses Ig flr phosphorylation 

leading to the observed reduction in Akt activity, with this itself triggering feedback leading
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to increased Ig flr  phosphorylation, possibly through reduced protein tyrosine phosphatise 

IB (PTP1B) activity (Fig 5.15). Support for this comes from evidence showing interaction 

between PTP1B and IGF1R and the regulation of IGF1R kinase activity and function by 

PTP1B212' 213. Alternatively the increase in Ig flr phosphorylation may be due to induction of 

cytosolic reactive oxygen species by tyrosine kinase inhibitors77 which are known to inhibit 

PTPs214. This rebound activity in Ig flr signalling may account for the marked increase in Erk 

phosphorylation. Alternatively, the increased Erk activity may be consequent upon subtle 

changes in Egfr trafficking in the absence of a detectable change in Egfr phosphorylation or 

secondary to suppression of cytoplasmic phosphatases DUSP 6,7 or 9215.

Taken together, I speculate that the predominant initial response to AZ12253801 is 

suppression of Akt signalling, followed by a switch to predominant Erk signalling resulting in 

loss of response and increased adenoma growth. If this hypothesis is correct it may be 

possible to suppress or prevent tumour resistance to Ig flr blockade by inhibiting Erk 

activity; indeed partial inhibition of Erk phosphorylation is seen by adding gefitinib to Ig flr 

inhibition (fig 5.6E). Such incomplete Erk inhibition may explain why combination with Egfr 

blockade therapy ultimately fails, and also suggests that more potent suppression of Erk 

activity for example with a Mek inhibitor in the context of Ig flr inhibition may be a 

preferred combination80.

In terms of understanding the mechanism of adenoma suppression with combined 

Egfr/lgflr treatment, I undertook protein analysis four hours following Egfr and Ig flr 

blockade alone and in combination. I anticipated demonstrating maximal suppression of 

Akt phosphorylation for the combination against both drug comparisons80, 81 however, I 

found only suppression of tumoural Akt signalling for combination against vehicle and 

gefitinib treatment (fig 5.6 D), but not Ig flr  inhibition. Expectation of maximal suppression 

of Akt signalling for the combination does assume a simple additive relationship in terms of 

the effects seen by either drug in isolation, and it is possible that in combination the 

relationship between pathways is more complicated such that at the level of Akt, pathway 

inhibition and loss of negative feedback does not equate with an additive outcome in vivo as 

expected. Therefore in terms of understanding the signalling responsible for combinatorial
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Figure 5.15. Rebound ac tiva tion  o f Ig f l r  s ignalling fo llow ing  Ig f lr  inh ib ition  th rough reduced 
P tp lb  ac tiv ity .
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Fig 5.15. (A) Represents a tu m o u r  cell w h ich  is depen den t upon Ig f l r  ac tiva tion  to  p rom o te  
g row th  . A c tiva tion  leads to  increased ph o sp h o -A k t a c tiv ity  w h ich creates a feedback loop 
con tro lling  th e  rate at w h ich  Ig f lre c e p to rs  are de -phosphory la ted  via th e  phosphatase ac tiv ity  
o f p ro te in  ty ros ine  phosphastase IB  (P tp lb ) .  (B) In th e  presence o f AZ12253801, it is 
suggested th a t im m e d ia te  in h ib it io n  o f I g f l r  p hosph o ry la tion  leads to  reduced phospho-A kt 
which subsequently  leads to  suppressed a c tiv ity  o f P tp lb  creating  a s itua tion  w here  de­
phosphory la tion  o f Ig f l r  is reduced, th e re b y  increasing th e  phosphory la tion  status o f Ig flr .



tumour suppression I can conclude that relative to vehicle, a reduction in Egfr and Akt 

phosphorylation appears to be important.

5.6.4 Molecular effects of chronic treatment against Ig flr and Egfr/lgflr inhibition

This analysis was primarily undertaken to identify potential pathways mediating 

intestinal tumour resistance to chronic drug treatment in the Apcmm/+ mouse. The changes 

relating to chronic gefitinib treatment and Ig flr have already been discussed (5.6.1).

Chronic exposure to Ig flr inhibition reduces Egfr phosphorylation (Fig 5.7 A-F). 

Recent studies support a role for EGFR family members in resistance to IGF1R inhibitors 80, 

95, 96, 198 ancj suggests at |east jn the Apcmm/+ mouse that the response to chronic Ig flr 

therapy does not involve increased activity in Egfr. The reduction in abundance of Egfr 

following chronic Ig flr  inhibition is of potential concern in relation to combined Egfr/lgflr 

blockade, as the level of Egfr expression may be critically important for combination therapy 

to be maximally effective. The mechanism of reduced Egfr phosphorylation is unclear but it 

may result from an increased protein tyrosine phosphatise IB (PTP1B) interaction216 with 

endocytosed EGFR on the endoplasmic reticulum217. I propose that chronic inhibition of 

Ig flr in the absence of Egfr activation may reflect may reflect repression of an inhibitor of 

phospho-Erk (e.g. sprouty215) resulting in Erk activity equivalent to vehicle treatment 

culminating in intestinal tumour growth. It would be of interest to examine the role of Erk 

signalling in this setting by testing the therapeutic effect of additional Erkl/2 signalling 

inhibition. This could be achieved by combining Ig flr antagonism with Mek inhibition. 

Enhanced IGF1R directed AKT signalling80 has been documented with Mek inhibitor 

monotherapy making this a logical approach for this additional reason.

Weak immuno-staining for phospho-Erk and phospho-Akt in small intestinal tumours 

(fig 5.11 and 5.12) is inconclusive given that quantitative protein level data for Erk and Akt 

phosphorylation (fig 5.7A and E) does not suggest a difference in expression between 

chronic vehicle and Ig flr  inhibition. Ig flr immuno-staining of small intestinal adenomas is in 

agreement with protein level data showing similar levels of Ig flr expression between 

chronic vehicle and Ig flr  inhibitor treatment (Fig 5.10). Based on the available protein level 

data, Ig flr protein expression appears to be driven by continuous gefitinib exposure (fig 5.7 

E). As gefitinib was only administered for 8 weeks to mice receiving Ig flr inhibitor
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monotherapy, I propose that withdrawal of Egfr blockade removes the stimulus to up- 

regulate Ig flr  expression compromising the therapeutic effect of Ig flr inhibition in terms of 

intestinal tumour suppression.

In the absence of protein level data for pathway changes in response to chronic 

combination therapy, immuno-staining was undertaken to help identify potential changes 

occurring in tumours following chronic drug exposure. The apparent increase in phospho- 

Erk staining in small intestinal tumours (fig 5.11) may suggest that Erk activity mediates 

resistance in response to chronic combined therapy, although this pattern is not repeated in 

colon polyps (fig 5.8). The mechanism for this observed increase in small intestinal tumour 

phospho-Erk immuno-staining following chronic Egf/lgf-1 receptor blockade may be 

secondary to suppression o f auto-regulatory feedback loops acting at nodal levels in the 

MAPK pathway151' 218. An alternative response to dual Egfr/lgflr inhibition may be 

determined by the pattern o f phospho-Akt staining which is predominantly nuclear in colon 

polyps in particular, following chronic treatment (fig 5.12 and 5.13). This nuclear localisation 

of phospho-Akt may reflect a mechanism of inhibiting apoptosis201 or promoting cell 

proliferation204 to confer resistance and therefore signify an important biological response 

which needs further investigation. Quantification of the immuno-histological changes would 

have introduced a more objective assessment.

5.7 Summary

In summary I have shown that, in Apcm/n/+intestinal tumours, acute Egfr blockade by 

gefitinib reduces Egfr signalling, but activates Ig flr, a potential resistance pathway. Chronic 

monotherapy against either Egfr or Ig flr  enhances survival but ultimately adenomas still 

develop. Combination E gfr/lg flr blockade produced the most effective tumour suppression, 

and this data therefore supports the concept of Egfr resistance mediated through induced 

Ig flr signalling, and provides a rationale for combinatorial therapy.

Finally, the ability to  detect the emergence of activated Ig flr following de novo 

exposure to gefitinib raises hope in our ability to identify drug resistance pathways very 

early within treatment schedules. Applying this principle could increase our ability to stratify 

patients according to drug induced tumour molecular responses to determine which 

additional pathways should be targeted to maximise anti-tumour responses (Fig 5.16).
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Figure 5.16. H ypothetica l clinical tr ia l s tra tify ing  patients according to  drug induced tum our 

molecular pro file . In the  absence o f a va lidated surrogate (tissue/blood), sequential tum ou r 

biopsies are taken at baseline and 4 hours fo llow ing  EGFR blockade w ith  targeted 
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inh ib ition w ith  AZ12253801. The p rim ary  endpo in t o f the  study would be % progression free 

and alive a 3 m onths fro m  s ta rt o f tre a tm e n t. This design assumes a p roportion  o f tum ours 

w ill not become resistant to  EGFR blockade th rough IGF1R activation and gain no benefit 

from  IGF1R inh ib ition . mCRC m etasta tic  co lorecta l cancer.
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Chapter 6

6. Enhancing the therapeutic effect of gefitinib in the Apcmm/+ mouse

6.1 Introduction

Having demonstrated that gefitinib has anti-tumour effects in the Apcmm/+ mouse 

(Chapter 5) I was interested in exploring how this treatment effect could be improved. 

Recent work using NSCLC cell lines has demonstrated enhancement of gefitinib-induced 

apoptosis by the addition of a BH-3 mimetic ABT-73775. This drug is a small molecule 

inhibitor of the anti-apoptotic proteins Bcl-2, Bel- XL and Bcl-w and does not directly initiate 

apoptosis but mediates its effects by enhancing death signals129 (1.8.1). It is now known that 

tumour sensitivity to ABT-737 correlates with increased levels of BCL-2, BCL-Xl, NOXA and 

BIM and low expression of MCL-1128' 13°. With this in mind it was of great interest to find that 

the expression of Bim (also known as B c l2 lll)  was 2.2 fold increased in Apcmm/+ small 

intestinal tumours219.

This led to the hypothesis that increased levels of Bim in Apcmm/+ intestinal tumours 

may indicate sensitivity to ABT-737 and that combined ABT-737/ gefitinib treatment would 

therefore maximise cell death128 and build upon the improved Apcmm/+ survival already 

demonstrated for chronic gefitinib treatment (5.3.1). BH-3 mimetics have been shown to

potentiate the effects of oncogenic kinase inhibitors by converting predominant cytostatic
128responses into cytotoxicity

This chapter describes ongoing work to explore the therapeutic potential of ABT-737 

in the Apcmm/+ mouse. I will describe short term effects of ABT-737 with and without 

gefitinib in intestinal tumours and plans to exploit therapy in longer term studies.
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6.2 Results

I initially sought evidence that would confirm increased Bim expression in Apcmm/+ 

intestinal tumours as a predictor of sensitivity to the BH-3 mimetic, ABT-737.

6.2.1 Probing Apcmm/+ microarray data for Bim transcript levels

Previous work in the ARC laboratory (Dr Karen Reed, unpublished) has explored 

microarray gene expression changes in Apcmm/+ colon tumours relative to adjacent normal 

colonic tissue. By mining the microarray database for probe ID's attached to Bim (Bcl2likell) 

it was possible to calculate fold change differences in colon polyps relative to normal colon 

for this gene (Table 6.1). As shown, four of the five probe IDs indicate statistically 

significantly increased expression of Bim transcripts in Apcmm/+ colon tumours relative to 

normal colon. The increased expression of Bim transcript in intestinal tumours points to the 

increase likelihood ABT-737 would have an anti-tumour effect in this setting.

Probe ID Fold change Tumour/Normal t-test
1426334_a_at 4.8 0.00586661
1435449_at 3.5 3.16E-05
1456005_a_at 1.6 0.12099079
1456006_at 1.9 0.00495264
1435448 at 2.7 0.00553042

Table 6.1.Mouse GeneChip 430 2.0 array probe ID's linked to Bim (Bcl2 lll) and associated 

transcript fold changes in Apcmm/+ colon polyps relative to normal adjacent colon tissue. P 

values were obtained using the two sample t test. Colon polyps from 3 Apcmin/+m ice were 

obtained and equal quantities of RNA from individual polyps pooled for each mouse prior to 

hybridisation on 3 gene chips. RNA from adjacent normal colon tissue from each mouse was 

also obtained for reference (For further detail regarding fold change calculations and 

statistics see 2.10.3).

As I have previously shown, the immediate phenotypic effects of targeted agents can 

be assessed in vivo using the Apcm,n/+ mouse to determine mechanisms of anti-tumour drug 

effects. In addition, the acute effects of a compound may be used as a surrogate for 

therapeutic anti-tumour activity supporting the design of expensive long term pre-clinical
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studies. I therefore proceeded to examine the immediate effects of ABT-737 drug 

combinations on intestinal tumours from Apcmm/+ mice.

6.2.2 Acute effects of drug exposure in tumours from Apcmm/+ mice

Mice received a single intra-peritoneal dose of 75mg/kg ABT-737 in acute 

pharmacodynamic experiments as this dose has previously been well tolerated for up to 21 

days in xenograft studies demonstrating significant anti-tumour effects129. ABT-737 dosed at 

lOOmg/kg (i.p) has previously demonstrated apoptosis as early as 2 hours after treatment 

with a 12-fold increase evident within 16 hours129; a 4 hour time-point for assessment of 

induced effects was chosen based on this data.

6.2.2.2 Colon tumours

There is a statistically significant approximate 3-fold increase in cleaved caspase 3 

immuno-staining of colon tumours exposed to combined gefitinib 75mg/kg with ABT-737 

75mg/kg relative to gefitinib 75mg/kg or ABT-737 75mg/kg alone. Caspase-3 immuno- 

reactivity in colon tumours across the different treatments is shown in fig 6.1 A-D. These 

data suggest that the immediate effect of combination treatment is to enhance cell death in 

colon tumours relative to single agents alone (14.8%±5.2 [Combo] vs. 5.7%±1.9 [Gef], P0.05; 

vs. 5.8%±0.7 [ABT-737], P0.03, Mann-Whitney; Fig 6.1 E). Gefitinib 75mg/kg monotherapy, 

in keeping with previous results (3.3.1.1) did not induce increased caspase-3 staining 

(5.7%±1.9 [Gef] vs. 7.2%±2.1 [Veh 0.5%], P0.19, Mann-Whitney) and surprisingly, ABT-737 

75mg/kg alone also failed to increase caspase-3 immuno-staining in colon tumours 

compared to vehicle at 4 hours (5.8%±0.7 [ABT-737] vs. 5.9%±2.5 [ABT-737 Veh], P0.47, 

Mann-Whitney).

6.2.2.3 Small intestinal microadenomas

Haematoxyin and Eosin stained sections of small intestinal adenomas from Apcmm/+ 

mice at a 4 hour time point following intra-peritoneal injection of ABT737 75mg/kg in 

combination with gefitinib 75mg/kg also demonstrated increased levels of apoptosis, 

although a formal count is outstanding (Fig 6.2 A-D).

150 | P a g e



Fig 6.1 Caspase 3 immuno-staining in Ape min/+co\on tumours at a 4 hr tim e point following
ABT-737 adm inistration w ith and w ithout gefitinib and gefitinib alone

A B C
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% cleaved caspase 3 in colon polyps
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Veh (0.5% Tw80) Veh (ABT-737) Gef 75mg/kg ABT-737 75mg/kg Gef 75mg/kg+ABT-
737 75mg/kg

Fig 6.1. Caspase-3 im m uno-reactivity at 4 hr in colon tum our from Apcmin/+ mice 
administered a single intra-peritoneal injection of: (A) ABT-737 vehicle, (B) ABT-737 
75mg/kg, (C) Gefitin ib 75mg/kg, (D) ABT-737 75mg/kg combined with Gefitinib 
75mg/kg. (E) % cleaved caspase 3 scoring in colon tumours at a 4 hour time point 
following exposure to  single doses of various drugs. Veh (0.5% Tw80), 0.5% Tween80, 
Veh (ABT-737) 30% propylene glycol/5% Tween80/65% D5W, Gef Gefitinib. 4 mice 
used for each drug exposure except Veh (0.5% Tw80) and Gefitinib where 3 mice were 
used, 3 tumours were scored from  each mouse in 15/18 mice. Error bars represent 
mean value ± lx  standard deviation.* P values calculated using Mann-Whitney test, 
*P= 0.05, * *  P=0.03.



Fig 6.2 Apoptosis in Apcmin/+ small intestinal microadenomas at a 4 hr time point
following ABT-737 administration with and without gefitinib and gefitinib alone

Fig 6.2. Apoptotic bodies in Haematoxylin and Eosin stained sections of Apcmin/+ small 
intestinal microadenomas follow ing a single intra-peritoneal injection of: (A) ABT-737 
vehicle, (B) ABT-737 75mg/kg, (C) Gefitinib 75mg/kg/ (D) ABT-737 75mg/kg combined 
with Gefitinib 75mg/kg and culled after 4 hr. Vehicle 30% propylene glycol/5% 
Tween80/65%D5W. Magnification x40. Arrows point to apoptotic bodies.



6.3 Discussion

In keeping with the finding of elevated Bim gene expression in small intestinal 

tumours from Apcmm/+ mice219 it is apparent that Apcmm/+ colon tumours also express 

increased levels of Bim based upon Apcmm/+ microarray data (table 6.1). As Bim can bind and 

sequester all anti-apoptotic Bcl2 family members with high affinity128 its up-regulation is 

naturally important in mediating sensitivity to ABT-737 cell death220; ABT-737 effectively 

binds and saturates Bcl-2, Bcl-XL and Bcl-w pro-survival proteins allowing Bim freedom to 

bind MCL1 and A1 such that all pro-survival pro-apoptotic family members are blocked128.

In view of the increased level of Bim in Apcmm/+ intestinal tumours and evidence that 

ABT-737 combined with gefitinib enhances apoptosis in NSCLC cell lines it was anticipated 

that this would also hold true for intestinal tumours exposed to the combination. This has 

been confirmed by showing combined ABT-737/Gefitinib results in a 3-fold increase in 

caspase-3 activity beyond single agent treatments in colon tumours (fig 6.1). A similar effect 

seems likely in small intestinal tumours (fig 6.2). This suggests that the combination of 

gefitinib and ABT-737 may improve the median survival of gefitinib monotherapy in Apcmm/+ 

mice (194 days; 5.3.1) by enhancing cell death in intestinal tumours.

Not expected was the demonstration that ABT-737 75mg/kg did not induce 

apoptosis beyond that seen for vehicle, given the increased expression of Bim transcript in 

colon tumours. However this takes no account of protein translation which may not result in 

greater Bim levels. Furthermore, the dose of ABT-737 may have been too small or the 

apoptotic effects assessed too early following the single intra-peritoneal dose. The dynamics 

of tumour response, pharmacokinetics and pharmacodynamics are likely to be context 

dependent and different for in vivo Apcmm/+ colon tumours rather than xenograft studies 

used to assess ABT-737.

A further explanation may relate to the level of Mcl-1 in Apcmm/+ intestinal tumours 

which is a known predictor of resistance to apoptosis by ABT-737128. Cox inhibition has been 

shown to reduce colorectal polyps in familial adenomatous polyposis221 possibly mediated 

through reduced Mcl-1 expression222. Mcl-1 may therefore be a factor driving anti-apoptotic 

signals in colon polyps as a consequence of Cox-2 derived PGE2223. In view of this I have 

probed the differential expression of Mcl-1 transcripts in Apcmm/+ colon tumours using the
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Apcmm/+ m icroarray data described earlier (6.2.1). By examining probes identities linked to 

Mcl-1 (table 6.2), an approxim ate  2-fold reduction in colon polyp Mcl-2 transcript expression 

was evident suggesting Mcl-1 is not responsible fo r  the  lack o f an apoptotic in response to  

ABT-737 75m g/kg, indeed th is  w ould indicate sensitiv ity128. Further investigation is required 

and w ill begin by exam ining qRT-PCR mRNA and prote in  expression levels o f Bim and Mcl-1 

in colon polyps exposed to  ABT-737 re la tive to  vehicle.

Table 6.2. Mcl-1 m icroarray probe transcrip t changes in Apcmm/+ colon tum ours relative to  

adjacent normal colon.

Probe ID Fold change Tumour/Normal t-test
1416881 at 0.63 0.272804
1448503 at 0.62 0.018483
1456243 x at 0.67 0.004526
1437527 x at 0.64 0.000309
1456381 x at 0.64 0.010769
1416880_at 0.64 0.072075

Given the enhancem ent o f apoptosis seen w ith  combined ABT-737 and gefitin ib, 

long term  experim ents are being designed to  test the  hypothesis tha t combined therapy in 

the Apcmm/+ mouse w ill trans la te  in to  a the rapeu tic  e ffect im proving survival beyond tha t 

seen fo r single agent ge fitin ib  75m g/kg o r ABT-737 75m /kg.

To test th is cohorts  o f Apcmm/+rr\\ce (n=20) w ill begin trea tm en t w ith  once daily in tra- 

peritoneal in jections o f e ith e r (A) ABT-737 75m g/kg, (B) G efitin ib  75mg/kg (C) ABT-737 

75mg/kg plus G efitin ib  75m g/kg o r (D) vehicle contro l 30% propylene glycol/5% 

Tween80/65% D5W (Dextrose 5% w a te r) upon the  earliest develop o f an intestinal tum our 

burden (pale fee t o r rectal b leeding). Anim als w ill need to  be closely m onitored fo r potentia l 

complications related to  th rom bocy topen ia  and lym phopenia which was reported in 21 day 

dosing schedules on ABT-737 75m g/kg129. T rea tm ent w ill continue until in testinal tum our 

burdens are clearly increasing at w hich po in t the survival endpo in t w ill be reached. The 

Kaplan M eier m ethod w ill be used to  de te rm ine  differences in survival and tum our metrics 

assessed as previously described (Chapter 5).

152 | P a g e



Interestingly, circulating biomarkers of cell death after treatment with ABT-737 have 

been used in a xenograft study of lung cancer demonstrating early increases in cleaved 

cytokeratin 18 map to drug specific tumour regression, and that intact cytokeratin 18 levels 

correlate with tumour burden224. By applying these finding, I plan to incorporate blood 

sampling into the above long term experiments to test how monitoring intact cytokeratin 18 

and cleaved cytokeratin 18 levels correlate with presumed initial response and eventual 

resistance to the proposed treatments. One difficulty will be to address the impact non­

tumour derived epithelial cleaved and intact cytokeratin 18 may have as a potential 

confounding factor as expression has been reported in normal colonic mucosa in addition to 

adenomas and carcinomas225. Pilot studies looking at the expression of both cleaved and 

intact cytokeratin 18 levels in mice w ithout tumours in response to ABT-737 and vehicle will 

help assess how great a contribution this may be. As cytokeratins are not expressed in 

haematopoetic cells, thrombocytopaenia and lymphopaenia toxicities should not confound 

the measurement of cytokeratins226.

Finally, examining the immediate effect of signal transduction inhibitors and inducers 

of apoptosis upon pathway activation and anti-tumour phenotypic changes provides an 

opportunity to optimise drug sequencing and dosing strategies in mouse models of cancer. 

Combining this approach, with the potential of introducing other treatment modalities such 

as radiotherapy, has the potential therefore to define novel, rationale interventional 

strategies which can be taken forward into early clinical trial design.

In summary, combined exposure to ABT-737 and gefitinib enhances cell death in 

Apcmm/+ intestinal tumours. This combination may translate into improved Apcmin/+ longevity 

when administered long term and build upon the survival advantage demonstrated for 

chronic gefitinib monotherapy. The relationship between tumour responses and expression 

of BCL-2 family members needs to be explored in further detail and longer term studies may 

also test the ability of circulating biomarkers to predict treatment responses.
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Chapter 7

7. Investigating the immediate effect of Mek inhibition in a genetically defined and clinically 

relevant autochthonous model of human colorectal cancer.

7.1 Introduction

Bowel cancer is the 2nd most common cause of cancer death in the UK, with 16,000 

deaths pa. Approximately 9% of patients present with Dukes D disease at diagnosis with a 5 

year survival figure of only 7% \ However, patients with colorectal liver metastases treated 

with hepatic resection have improved 5 year survival rates of between 28-41%227. 

Unfortunately, 50% of patients who have undergone potentially curative surgery for early 

stage disease will relapse w ith metastatic disease making it a significant burden of disease2.

Despite treatment advances a large proportion of patients with metastatic colorectal 

cancer remain refractory due to the common presence of K-RAS mutations, which predict 

poor response and outcome to cytotoxic drugs and targeted monoclonal antibodies against 

the epidermal growth factor receptor (EGFR)45'47' 228. There is therefore a pressing need for 

new therapeutic strategies to improve outcomes for patients with K-RAS mutant tumours 

which currently represent an unmet clinical need. Here I have used mouse models of colon 

cancer harbouring the same mutations seen in human colorectal cancer to test the 

hypothesis that inhibition of MEK is a rational treatment approach.

Currently, the extent of experimental data derived from an in vivo setting to support 

MEK inhibition remains relatively limited largely by virtue of the experimental systems used. 

To counter this, my research employs Mek inhibition in conditional transgenic mouse 

models of colon cancer (Ape deleted and endogenous K-ras activated114: 1.6.2), where I plan 

to examine the immediate and long term effect of targeting the Raf/Mek/Erk pathway. This 

is an attractive approach as MEK inhibition targets a pathway known to be deregulated in 

colorectal cancer121 and the model described avoids cell based assays and tumour bearing 

xenografts which are unreliable predictors of clinical drug activ ity". The results from these 

experiments have the potential to influence the design of future clinical studies in 

metastatic colon cancer and set new standards for preclinical drug assessment using this in 

vivo platform.
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This next section describes my preliminary work examining the acute effects of Mek 

inhibition using AZD6244 in the Apcmm/+ model of colon tumourigenesis (wild type for K-ras 

and B-raf; 3.2) and AhCreT/+Apc?/+Kras+/+ and AhCreT/+Apcfl/+Krasvl2/+ conditional transgenic 

models.
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7.2 Results

7.2.1 Phosphorylated Erk levels in AhCreT/+Apc?/+Kras+/+ and AhCreT/+ApcP/+Krasvl2/+ intestinal 

tumours

It is important to validate the mouse models in terms of their ability to mirror 

activated Erk signalling in preparation for targeted inhibition. My initial efforts therefore 

sought to define the degree of Raf/Mek/Erk intestinal tumour pathway activation in the 

models used, as measured by Erk phosphorylation due to presence or absence of a 

constitutive K-ras mutation.

Phosphorylated-Erk immuno-staining of both small and large intestinal tumours 

obtained from AhCreT/+ApcP/+ Kras+/+ and AhCreT/+ApcP/+ Krasvl2/+ mice demonstrates more 

intense staining of both cytoplasm and nuclei in AhCreT/+ApcP/+ Krasvl2/+ tumours (Fig 7.1 and 

7.2), in keeping with the presence of an activated Ras/Raf/Erk pathway as anticipated.

7.2.2 Acute pharmacodynamic effects of Mek inhibition using AZD6244 delivered by intra- 

peritoneal injection

7.2.2.1 AhCreT/+ApcP/+Krasvl2/+ derived intestinal tumours

The acute effects of exposure to 30mg/kg AZD6244 in AhCreT/+ApcP/+Krasvl2/+ 

intestinal tumours are provisional given that vehicle treatments only include n=2 mice. 

Despite this, at 4 hours there is a trend towards an increased level of H and E scored 

apoptosis and cleaved caspase-3 scoring in colon tumours from AhCreT/+ApcP/+ Krasvl2/+ mice 

exposed to AZD6244 (apoptosis, 0.7% ± 0.003 [Veh] vs. 4.2 % ±4.0 [AZD6244]; cleaved 

caspase-3, 1.8% ± 0.7 [Veh] vs. 5.0% ± 3.9 [AZD6244]; Fig 7.3 A, B). This is in keeping with a 

trend towards increased cell death. There is no alteration in the level of mitotic activity 

(0.3% ± 0.1 [Veh] vs. 0.4% ± 0.3 [AZD6244]; fig 3.7C) but an increase in the percentage of 

cells labelled by Brdu (6.1% ± 2.6 [Veh] vs. 16.7 ± 2.6 [AZ6244]; fig 7.3D). These findings may 

indicate that more cells are going through S phase, but increased cell death is occurring, so 

the M phase component remains unchanged. Alternatively cells may be trapped in S phase 

(S phase block) due to reduced cell exiting.
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Fig 7.1 AhCreT/+ApcP/+ Kras+/+ and AhCreT/+ Apc^/+Krosvl2/+ derived colon polyps immuno-stained
for Erk phosphorylation.

K-ras w ild  type

K-ras m u ta n t

Fig 7.1 P-Erk im m u n o -s ta in in g  in K-ras m u ta n t colon polyps (low er panel) 
dem onstrates m ore  in tense  s ta in ing  o f  cy top lasm ic and nuclear com ponen ts 
consistent w ith  ac tiva tio n  o f th e  Erk s igna lling  pa thw ay as a consequence o f an 
activated K-ras m u ta n t a lle le . Each tu m o u r  im age (x40) is fro m  an ind iv idua l m ouse 
(to ta l n=4)



Fig 7.2 A h C re ^ A p c ^  Kros+/+ and AhCreT/+ApcfJ/+Krasvl2/'h derived small intestinal microadenomas
immuno-stained for Erk phosphorylation.

K-ros w ild  typ e  K-ras m u tan t

Fig 7.2 P-Erk im m u n o -s ta in in g  in K-ras m u ta n t sm all in tes tina l m icroadenom as (righ t 
panel) dem ons tra te  m ore  in tense  s ta in ing  o f  cy top lasm ic and nuclear com ponen ts  
consistent w ith  a c tiva tio n  o f th e  Erk s igna lling  pa thw ay as a consequence o f an 
activated K-ras m u ta n t a lle le . U ppe r pane l x4 m agn ifica tion  and low e r panel x40. 
Inset w h ite  box ind ica tes  reg ion  o f tu m o u r  en larged.



Fig 7.3 Acute effect of AZ6244 in AhCreT/+Apcf]/+Krasvl2/+ colon and small intestinal tumours.
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Fig 7.3 The acu te  e ffec ts  o f a s ing le  in tra -p e rito n e a l dose o f AZ6244 30m g/kg  o r 
vehic le  are show n  w ith  respect to  (A) apoptosis, (B) im m uno-s ta in ing  against 
cleaved caspase-3, (C) m itos is  and (D) Brdu cell labe lling  in colon tum ours , (E) 
apoptosis  and (F) m itos is  in sm all in te s tin a l adenom as fro m  AhCreT/+Apcfl/+Krasvl2/+ 
mice. M ice  w e re  cu lled  a t 4 h r fo llo w in g  AZ6244 3 0m g /kg  (n=4) and vehicle, 0.5% 
hydroxypropy l m e th y lce llu lo se  0.1%  Tw een80 (n=2). The acute data is provis ional 
in v ie w  o f m ouse num bers  and is re flec ted  in th e  absence o f s ta tis tica l tests. SI 
sm all in te s tin a l tu m o u rs . E rror bars rep resen t m ean ± Ix  standard dev ia tion .



In small intestinal tumours there is an apparent 2-fold increase in the level of 

apoptosis in response to AZD6244 30mg/kg (3.3% ± 0.9 [Veh] vs 5.9% ± 0.7 [AZD6244]; Fig 

7.3E) in the absence of a demonstrable change in the level of mitotic activity (0.5% ± 0.2 

[Veh] vs. 0.4% ± 0.2 [AZD6244]; fig7.3F). In small intestinal tumours therefore, these 

provisional findings suggest that cell death is increased in response to AZD6244.

7.2.2.2 Apcmm/+ intestinal tumours (K-ras and B-raf wild type)

In order to examine whether the acute effects of Mek inhibition are limited to 

tumours carrying activating mutations of K-ras (or B-raf), single 30mg/kg intra-peritoneal 

doses of AZD6244 or vehicle have been administered to Apcmm/+ mice at 4 and 24 hours to 

examine effects upon cell death and proliferation. To date only the 24hr time point data is 

available (Fig 7.4). It is seen that small intestinal tumours show an increased level of 

apoptosis and decreased mitotic activity in response to AZD6244 30mg/kg (apoptosis 1.3% ± 

0.6 [Veh] vs. 2.8% ± 0.4 [AZD6244], P0.04, Mann-Whitney; mitosis 1.3% ± 0.8 [Veh] vs. 0.6% 

± 0.05 [AZD6244], P0.04; Mann-Whitney, Fig 7.4 C,D). These data suggest that AZD6244 

increases cell death and causes perturbation of tumour cell cycling in small intestinal 

tumours at 24 hours, in the absence of constitutive K-ras or B-raf activation. The same 

effects are not however evident in colon tumours where no differences in apoptosis or 

mitosis are found at 24 hours in response to AZD6244 30mg/kg (apoptosis 1.6% ± 0.7 [Veh] 

vs. 1.8% ± 0.9 [AZD6244], P=0.5, Mann-Whitney; mitosis 0.8% ± 0.2 [Veh] vs. 1.1% ± 0.8 

[AZD6244] P=0.5, Mann-Whitney; Fig 7.4 A, B).

7.2.3 Acute pharmacodynamic effects of Mek inhibition using AZD6244 by oral gavage

AZD6244 has been designed to be administered by the oral route. I therefore next 

tested the effect of AZD6244 by this route.

A single dose of AZD6244 30mg/kg via oral gavage in Apcmm/+ mice showed a 2 fold- 

increase in apoptosis in colon tumours (2.2% ± 0.4 [Veh] vs. 4.4% ± 0.4 [AZD6244], P=0.04, 

Mann Whitney; fig7.5) w ithout a detected change in mitosis at 4 hours (0.9% ± 0.1 [Veh] vs. 

0.8% ± 0.3 [AZD6244], P0.33, Fig 7.5). This suggests oral AZD6244 administration is able to 

increase immediate cell death, supporting the notion that the effects of Mek inhibition are 

not confined to the presence of activating K-ras and B-raf mutations.
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Fig 7.4 Acute effect of AZD6244 in Apcmin/+ colon and small intestinal tumours at 24 hr.
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Fig 7.4 The acute  e ffects  o f a s ingle in tra -p e rito n e a l dose o f AZ6244 30m g /kg  o r vehicle 
are shown w ith  respect to  (A) apop tos is , (B) m itos is in Apcmin/+co lon  polyps and (C) 
apoptosis and (D) m itos is  in Apcmin/+ sm all in tes tina l tum ours . M ice w ere  culled at 24 hr 
fo llow ing  AZ6244 3 0 m g /kg  (n=3) and veh ic le , 0.5% hydroxypropyl m e thy lce llu lose  0.1% 
Tween80 (n=3). E rro r bars rep resen t m ean ± l x  standard dev ia tion . * P values reached 
0.04 (M a n n -W h itn e y  tes t).



Figure 7.5 Acute effects of AZD6244 administered by oral gavage in Apcmin/+colon tumours
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Fig 7.5 Acute e ffects o f AZD6244 30m g/kg or vehicle adm inistered by oral gavage in

Apcmm/+mice w ith  respect to  apoptosis and m itosis in K-ros w ild  type colon tum ours. Mice

were culled at 4 hours fo llo w in g  AZD6244 30m g/kg (n=3) and vehicle 0.5% hydroxypropyl 

methylcellulose 0.1% Tween80 (n=3). Error bars represent mean ± lx  standard deviation. * 

P value reached 0.04 (M ann-W hitney).

7.2.4 Phosphorylated Erk im m uno-s ta in ing  o f in testina l tum ours in response to  Mek 

inhib ition

I next w anted  to  explore th e  e ffec t o f M ek inh ib ition  on the levels o f ta rget Erk 

activity in in testina l tum ou rs  w ith  and w ith o u t K-ros m utations.

A single in tra -pe ritone a l dose o f AZD6244 30m g/kg results in a reduction o f nuclear 

phospho-Erk im m uno-sta in ing  com pared to  vehicle contro l in colon tum ours from  

AhCreT/+Apdl/+Krasvl2/+ m ice at a 4 hour tim e  po in t (Fig 7.6). A sim ilar pattern o f staining as a 

consequence o f AZD6244 30m g/kg is also seen in small in testinal adenomas from  mice of 

the same genotype (Fig 7.7). Conversely, cytoplasm ic phospho-Erk staining in both small and 

large in testina l tum ou rs  appears re la tive ly  unchanged. Therefore the acute im m uno- 

histochemical response to  M ek in h ib itio n  in both small and large intestinal K-ras m utant 

tum ours is reduced nuclear accum ulation o f phospho-Erk.

A s im ila r 4 hour com parison o f phospho-Erk im m uno-reactiv ity  examining the 

im m ediate e ffect o f AZD6244 30m g/kg in Apcmm/+ colon and small intestinal tum ours is not 

yet available, how ever Erk phosphory la tion  in Apcmm/+ colon tum ours 24 hours fo llow ing
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Fig 7.6 Phospho-Erk immuno-reactive staining of colon tumours from AhCreT/+Apcfl/+ Krasvl2/+ mice exposed to MEK inhibitor (AZD6244) and
Vehicle for 4 hours

P-Erk

Fig 7.6 Images (xlO) and inset enlarged 
areas (x40) show the acute effect of 
AZD6244 30mg/kg and vehicle on the 
localisation of P-Erk staining. There is a 
marked loss o f nuclear P-Erk staining at 4 
hours relative to vehicle (arrows) resulting 
from MEK inhibition, whereas cytoplasmic 
levels of P-Erk appear unchanged. Colon 
tumours were from AhCreT/+Apcf,/+ Krasvl2/+ 
mice treated w ith a single intra-peritoneal 
injection of AZD6244 30mg/kg (n=3) and 
vehicle 0.5% hydroxypropyl methyl cellulose 
in 0.1% Tween80 (n=2) and culled after 4 
hours.



Fig 7.7 Phospho-Erk immuno-staining of small intestinal microadenomas from AhCreT/+ Apcf1/+
Krasvl2/+ mice exposed to acute AZD6244 and Vehicle
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Fig 7.7 P-Erk immuno-staining in K-ros mutant small intestinal microadenomas 
demonstrate more intense staining o f nuclear components at 4 hours in vehicle 
treated mice (top panel) consistent w ith  activation of the Erk signalling pathway . 
AZD6244 30mg/kg treated mice at 4 hours show less intense nuclear P-Erk staining in 
keeping w ith in terruption o f Erk pathway signalling. Vehicle 0.5% hydroxypropyl 
methylcellulose 0.1% Tween80. and AZD6244 30mg/kg both administered via intra- 
peritoneal injection. Magnification x40.



AZD6244 30mg/kg does not demonstrate any differences in nuclear or cytoplasmic 

localisation relative to vehicle (Fig 7.8). This finding is consistent with the failure to detect 

phenotypic changes in cell death or proliferation in colon polyps in response to Mek 

inhibition at 24 hours (7.2.2.2)

7.2.5 Phosphorylated Erk immuno-staining of epidermal tissue

As sequential tumour biopsies can be difficult to obtain in patients, it is important 

that alternative non tumoural tissue can be used to show activity of pharmacodynamic 

biomarkers to confirm target hit, w ithout resorting to the use of tumour tissue. In view of 

this it is appropriate to explore these possibilities in the mouse models used, and ultimately 

plan to compare pharmacodynamic data between tumour and non-tumour tissue and 

treatment outcome.

In light of this, phospho-Erk immuno-staining of the epidermis and hair follicles from 

Apcmm/+ mice exposed to a single intra-peritoneal dose of AZD6244 30mg/kg at 4 hours, 

shows a marked reduction in cytoplasmic and nuclear staining (Fig 7.9). This suggests skin 

phospho-Erk levels may act as a surrogate marker for pharmacodynamic tumour response 

to Mek inhibition by AZD6244.
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Fig 7.8 Phospho-Erk immuno-staining of K-ras wild type Apcmin/+ colon polyps from mice treated with acute AZD6244 or Vehicle treatm ents
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Fig 7.8 Images (xlO) and inset enlarged areas 
(x40) show the acute effect o f AZD6244 
30mg/kg and vehicle on the localisation of P- 
Erk staining in Apcmm̂ + colon polyps. 
AZD6244 30mg/kg does not alter nuclear or 
cytoplasmic localisation of P-Erk relative to 
vehicle in the presence of K-ras wild type 
alleles 24 hours post dose. Apcmin/+ mice 
were treated with either AZD6244 30mg/kg 
(n=3) or Vehicle 0.5% hydroxypropyl 
methylcellulose 0.1% Tween80 (n=2) and 
culled at a 24 hour time point.
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Fig 7.9 Phospho-Erk immuno-staining of epidermis from Apcmin/+ mice exposed to acute AZD6244
or Vehicle.

Vehicle AZD6244 30m g/kg
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Fig 7.9 P-Erk im m u n o -s ta in in g  o f  e p id e rm is  fro m  Apcmin/+ m ice exposed to  in tra  
peritonea l AZD6244 3 0 m g /k g  o r Veh ic le  p r io r  to  cu ll a fte r  4 hours. Stained sections o f 
ep iderm is ( lo w e r pane l x lO ) and o f  h a ir fo llic les  (uppe r panel x40) show  a m arked 
reduction  in P-Erk im m u n o -s ta in in g  fo llo w in g  exposure to  AZD6244 re la tive  to  vehicle. 
Vehicle 0.5% hyd roxyp rop y l m e th y lce llu lo se  0.1%  Tw een80.



7.3 Discussion

The frequency of K-RAS mutations in metastatic colorectal cancer, prognosis and 

paucity of treatment options for this subset of patients, has stimulated me to explore how 

genetically modified mouse models of colon cancer can be used to fill an unmet clinical 

need. The data I have presented is part of ongoing work in response to this need, exploring 

the activity of Mek inhibition in colon cancer mouse models carrying K-ras mutations.

Although not a quantitative assessment of Erk signalling activity, phospho-Erk 

immuno-staining shows increased nuclear and cytoplasmic staining in small and large 

intestinal tumours harbouring an activated K-ras mutant allele compared to tumours wild 

type for K-ras (Fig 7.1 and 7.2). Interestingly, the original paper describing this model114, did 

not report gross activation of the pathway in all small intestinal adenomas, describing only 

occasional positive nuclei for phospho-Erk in a proportion of intestinal adenomas (10%) 

arising in AhCreT/+Apc?/+Krasvl2/+ mice. In addition phospho-Erk staining of colon tumours 

was not reported but now evidence showing increased Erk activity in colonic tumours from 

AhCreT/+ApcP/+ Krasvl2/+ mice is shown. Ras/Raf/Erk pathway signalling is therefore activated 

in intestinal tumours from this mouse model carrying an endogenously activated K-ras allele 

and underscores its use to test the activity of a targeted Mek inhibitor. Protein level 

quantitative assessments of phospho-Erk to confirm this finding are underway.

The data available to examine the acute phenotypic effects of AZD6244 30mg/kg 

upon K-ras mutant intestinal tumours is limited to date (n=2 mice, vehicle) and 

consequently the results presented require further repetition. However these preliminary 

results show that AZD6244 30mg/kg induces cell death (Fig 7.3 E), as shown by an increase 

in apoptosis and cleaved capsase-3 scoring in small intestinal tumours and a trend towards 

increased cell death in colonic tumours following acute administration (Fig 7.3 A and B).The 

phenotypic changes induced by Mek inhibition in the setting of K-ras mutant intestinal 

tumourigenesis therefore concurs with previous work showing AZD6244 25mg/kg 

significantly increases cleaved caspase 3 scoring in tumour bearing xenografts of Calu-6 

(NSCLC K-ras mutant) or Colo-205 (CRC B-raf mutant) cell lines after 8 hours exposure (by 

gavage)122. A 4 hour time point was chosen to examine apoptosis rather than 8 hours (for
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the published gavage study122) reasoning that pharmacokinetics would favour assessment at 

an earlier time point with intra-peritoneal administration.

Documenting an increased level of Brdu cell labelling in colonic tumours (Fig 7.3 D) 

may result from more cells passing through S phase as a consequence of AZD6244 exposure. 

This has not consequently elevated the number of cells in M phase possibly through 

attrition of cells due to increased apoptotic cell death. Alternatively this may reflect an S 

phase block induced by AZD6244, leading to cell accumulation in S phase due to reduced cell 

exit. Previous work has shown that ceil proliferation is reduced in xenografts after 24 hour 

exposure to AZD6244 25mg/kg122, but this time point has yet to be assessed in the 

AhCreT/+Apc?/+ Krosvl2/+ model.

To explore the relationship between Mek inhibition and its acute anti-tumour 

phenotypic effects in relation to the activation status of Ras/Raf/Mek/Erk pathway 

signalling, AZD6244 30mg/kg was administered to Apcmm/+ mice permitting an assessment of 

its effects on intestinal tumours in the absence of constitutive activation of either K-ras or B- 

raf alleles (section 3.2). With this approach it has been shown that 24 hours following a 

30mg/kg dose of AZD6244, there is an approximate 2-fold increase in apoptosis and a 

comparable decrease in mitosis in Apcmm/+ small intestinal tumours (Fig 7.4 C and D) without 

detected changes in colon tumour cell death or proliferation (Fig 7.4 A and B). Therefore in 

K-ras and B-raf wild type small intestinal tumours, AZD6244 increases cell death and 

reduces M phase activity. This contrasts w ith evidence of S phase block and unchanged M 

phase activity possibly due to elevated levels of cell death, induced by AZD6244 at 4 hours in 

the setting of K-ras mutant colon tumours.

Based on these Apcmm/+ small intestinal tumour findings, it is possible that AZD6244 

may have useful therapeutic activity in K-ras wild type intestinal tumours due to 

interruption of signalling pathways downstream of the EGF receptor which is known to be 

activated in Apcmm/+ intestinal tumours109. That AZD6244 30mg/kg (by oral gavage) also 

induces a 2 fold increase in apoptosis in K-ras wild type colon tumours from Apcmm/+ mice at 

4 hours(Fig 7.5) adds further support to the notion that the effects of Mek inhibition may 

not be restricted to K-ras mutant intestinal tumours. Such findings suggest that K-ras 

mutation status may not be a reliable predictor of response to Mek inhibition, at least in the
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in vivo models described, contrary to published data125. Thus any long term treatment effect 

of AZD6244 30mg/kg may be very similar to that seen with chronic administration of 

gefitinib 75mg/kg (5.3.1). What remains to be seen is whether chronic dosing with AZD6244 

will be any more effective (in terms of tumour burden/longevity) in the setting of K-ras 

mutant intestinal tumours. The effect of Mek inhibition on the 24 hour tumour phenotype 

in AhCreT/+Apc?/+ Krasvl2/+ mice will be of particular interest in this respect. If there is no 

difference in the treatment effects of long term Mek inhibitor dosing according to tumoural 

K-ras mutation status, and assuming AZD6244 30mg/kg is the optimal anti-tumour dose, this 

may reflect failure to counter critical 'addicted' pathway(s) driving mutant K-ras tumour 

growth.

The loss of phospho-Erk nuclear staining consequent upon AZD6244 30mg/kg in 

small and large intestinal tumours from AhCreT/+ApcP/+KrasvU/+ mice (Fig 7.6 and 7.7) is 

consistent with published findings122, which have reported a greater reduction of phospho- 

Erk nuclear staining compared to cytoplasmic signals in xenografts following acute AZD6244 

(25mg/kg by oral gavage)122. This loss of tumoural nuclear phospho-Erk may be 

mechanistically linked with the acute effects of AZD6244 30mg/kg based on the association 

with increased apoptosis in small intestinal tumours and trend towards increased apoptosis 

in colon tumours from AhCreT/+Apcfl/+Krasvl2/+ mice (Fig 7.3). Indeed this fits with evidence 

showing that translocation of ERK to the nucleus is important in the regulation of mitogenic 

signals229 and that nucleo-cytoplasmic distribution of ERK is relevant to the control of ERK 

signalling230. Furthermore, nuclear phospho-ERK localisation has been associated with 

resistance to cisplatin-induced apoptosis in OVCAR-3/CDDP cells231 suggesting that loss in 

nuclear phospho-Erk may indicate increased apoptosis. The failure to observe alterations in 

nuclear localisation of phospho-Erk im mu no-reactivity in colon tumours from Apcmm/+ mice, 

24 hours post AZD6244 30mg/kg dosing (Fig 7.8) is in keeping with the absence of any 

detected change in apoptotic or mitotic activity at this time in colon tumours (Fig 7.4). It will 

thus be of great interest to confirm reduced nuclear localisation of phospho-Erk in Apcmm/+ 

colon polyps in view of increased apoptosis in response to AZD6244 30mg/kg at 4 hours. 

Similarly, given increased apoptosis and reduced mitotic counts in Apcmm/+ small intestinal 

tumours 24 hours following AZD6244 30mg/kg, the pattern of nuclear phospho-Erk 

localisation in these tumours will be of interest.
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As sequential tumour biopsies are not always possible or comfortable for patients, 

attempts are being made to sample substitute tissues to examine the status of 

pharmacodynamic biomarkers in clinical studies. With this in mind it has been possible to 

show a marked loss of nuclear and cytoplasmic phospho-Erk immuno-staining of Apcmm/+ 

epidermis and hair follicles (Fig 7.9) following acute AZD6244 dosing. Given the correlation 

with increased apoptosis in Apcmm/+ mice colon tumours at 4 hours, it is attractive to 

postulate that hair follicles for phospho-Erk staining could have potential value as a future 

surrogate biomarker of in vivo pharmacodynamic activity. Unfortunately, in a phase I study 

however, skin biopsies following 15 days AZD6244 treatment (±7 days) has been found to be 

uninformative due to variability and minimal baseline levels of phospho-Erk
139immunoreactivity . Nevertheless, being able to explore the potential utility of 

pharmacodynamic or predictive biomarkers in surrogate tissues from genetically modified 

animal models exposed to experimental drugs, may help to refine the approach taken in 

early phase clinical trials.

7.3.1 Future direction

Preliminary data using AhCreT/+Apc?/+Kras+/+ and AhCreT/+Ap(?/+Krasvl2/+ mouse 

models has pointed to increased intestinal tumour Raf/Mek/Erk signalling activity 

compatible with the model being potentially useful for investigating the effects of Mek 

inhibition with AZD6244. In addition to any acute anti-tumour effects of AZD6244 in Apcmm/+ 

tumours, it has been demonstrated that this Mek inhibitor induces immediate anti-tumour 

phenotypic changes in small intestinal if not colonic tumours arising in 

AhCreT/+Apc?/+Krasvl2/+ mice, associated w ith a loss of nuclear phospho-Erk accumulation 

(pharmacodynamic biomarker). In light of these results, long term experimental treatment 

cohorts of AhCreT/+ApcP/+Kras+/+ and AhCreT/+Apc/l/+Krasvl2/+ will be dosed with AZD6244 

30mg/kg and vehicle to specifically test whether K-ras mutation status sensitises tumours to 

chronic Mek inhibition. Treatment will start once symptoms of an intestinal tumour burden 

have developed (earliest evidence of pale feet, rectal prolapse, swollen abdomen or rectal 

bleeding). Mice of each genotype (n=20) will receive once daily AZD6244 30mg/kg or 

vehicle, 0.5% hydroxypropyl methylcellulose 0.1% Tween80 via oral gavage until any 

treatment effect is lost and the survival endpoint is reached. Kaplan Meier survival curves
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w ill be p lo tte d  fo r  each geno typ e /trea tm en t and the log rank test used to  calculate 

sta tis tica lly  s ign ifican t d ifferences in survival (Fig 7.10)

Fig 7.10 Theore tica l survival curves fo r long te rm  trea tm ent w ith  AZD6244 in 

AhCreJ/*Apcfl/+Kras*/+ and AhCreT/+Apd>/+KrasJl2/+ mouse models

Ape*/* Kras*12/* vehicle 

ApeV* Kras*12/* AZ6244 30mg/kg 

Ape/1/* Kras*/* vehicle 

Ape*/* Kras*/* AZ6244 30mg/kg 

Shift in survival

Fig 7.10 Theoretica l survival curves o f Ap(Jl/+Kras+/+ and Apc/I/+Krasvl2/+ mouse cohorts in 

response to  AZD6244 30m g/kg. The survival o f mice carrying the Krasvl2/+ allele is known to  

be reduced com pared to  m ice w ith  w ild  type  alleles, Kras+/+122. It is antic ipated tha t once 

daily tre a tm e n t w ith  AZD6244 30m g/kg  w ill sh ift the  Apcfl/+Krasvl2/+ survival curve to  the 

right; w he the r any tre a tm e n t e ffec t w ill be restric ted to  th is genotype is unknown and w ill 

be tested by long te rm  tre a tm e n t o f Apc/I/+Kras+/+ cohorts.

As previously described fo r  experim ents  incorpora ting  long te rm  trea tm en t of 

Apcmm/+ cohorts w ith  g e fitin ib  and AZ12253801 (5.5), at the  survival endpo int, tum ours w ill 

be harvested fo r signalling pa thw ay analysis to  probe the potentia l mechanism(s) 

responsible fo r  resistance, assum ing a survival advantage is docum ented. It w ill be of 

particu lar in te res t to  exam ine a c tiv ity  in PI3K/AKT signalling where evidence o f increased 

AKT activ ity  may expla in resistance to  MEK in h ib itio n 84,232. As increased levels o f phospho- 

Ig f- lr  were p reviously found  as early as 4 hours post ge fitin ib  dosing in Apcmm/+ colon 

tum ours (3.3.3.1), levels o f phospho-A kt w ill also be examined in tum ours from  

AhCreT/+Apc?l/+Krasvl2/+ in tes tina l tu m o u rs  to  see if pathway activation is acutely in itia ted. If 

P i3k/Akt pa thw ay ac tiva tion  in response to  Mek inh ib ition  is confirm ed, the natural step 

fo rw ard  w ill be to  com bine  in h ib itio n  o f both M ek and P i3k/Akt signalling pathways in 

fu tu re  experim ents using th e  AhCreT/+Apc/l/+Krasvl2/+ model. This com bination has already 

been shown to  be the rapeu tica lly  advantageous in the se tting o f Kras6120 induced mouse

Time
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lung tumours233. Indeed Phase I studies testing the combination of dual blockade of MEK 

and AKT inhibition are underway using MK2206 and AZD6244 

(http://clinicaltrials.gov/ct2/show/NCT01021748).

From a clinical standpoint, AZD6244 (lOOmg bid) has been compared to capecitabine 

(1250mg/m2) in a phase II study of patients with metastatic colorectal cancer who have 

failed prior chemotherapy234. In the 69 patients enrolled and randomised to treatment, 

AZD6244 treatment was well tolerated, although no statistically significant difference was 

observed between treatments with respect to progression free survival. Furthermore, no 

stratification for K-RAS of B-RAF mutation status was made, and data concerning the 

mutation status of patients included in the trial, is not available. The usefulness therefore of 

AZD6244 in colorectal tumours carrying a mutation in either K-RAS or B-RAF is unknown.

In summary I have designed a trial protocol to test the role of MEK inhibition using 

AZD6244 in patients completing first line therapy for metastatic colorectal cancer (Fig 7.11). 

Trials of this design are a potentially useful way to test new agents early in the trajectory of 

metastatic cancer treatments, with incorporation of therapy during the interval normally 

free from treatment, when patients have a low burden of disease. If long term treatment 

with AZD6244 proves to be successful in AhCreT/+ApcP/+Krasvl2/+ mouse cohorts, then the 

impetus to undertake this or a similar early clinical study will be reinforced.
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Fig 7.11 Interval therapy in colorectal cancer using AZD6244

Metastatic colorectal cancer, stable or responding 
disease after 12 weeks of 1st line chemotherapy

I
Screening K-RAS/B-RAF 
mutation status

I

AZD6244Placebo

Randomisation

K-RAS and B-RAF 
wild type

K-RAS or B-RAF 
mutation

Treat until documented evidence of disease progression. Primary endpoint is Progression
Free Survival at 16 weeks

Fig 7.11 A three arm double blind placebo-controlled randomised phase 2 trial is proposed 

with progression free survival at 16 weeks as the primary endpoint. Patients with metastatic 

colorectal cancer who have received 12 weeks of standard palliative first line chemotherapy 

and have stable or responding disease will be eligible. At screening, consent will be obtained 

to type tumour samples for K-RAS and B-RAF mutation status. Patients with measurable 

disease will be allocated randomly to receive either AZD6244 (lOOmb bid) or placebo. Those 

in the AZD6244 group will be split into two arms; those with tumours carrying K-RAS and/or 

B-RAF mutation and those wild type for both K-RAS and B-RAF mutations. Patients will be 

monitored until progressive disease is documented at which time conventional 

chemotherapy will be re-started. The trial protocol was developed with Prof Tim Maughan 

and Gareth Griffiths and trial design discussed at the 10th ECCO-AACR-ASCO Workshop 

Methods in Clinical Cancer Research, Flims, Switzerland, 21-27th June 2008.
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Chapter 8

Conclusion

This work has demonstrated how genetically engineered mouse models of colon 

tumourigenesis can be used to explore biomarker discovery, target validation, therapeutic 

trials and modelling resistance to targeted agents. Such discoveries have potential 

translational relevance which now needs to be defined in order to test the true utility of 

these autochthonous in vivo platforms compared to tumour-bearing xenografts.

Given K-RAS wild type status is predictive of response to EGFR targeted 

therapy in colorectal cancer patients46, determining that Apcmm/+ mouse colon polyps were 

K-ras and B-raf wild type underscores the relevance of this model for studying Egfr 

blockade. This is important as prediction of response to EGFR targeted therapy in 

approximately 30% of colorectal cancer patients is unknown51. I have shown that acute 

exposure to gefitinib suppresses downstream Egfr signalling, in keeping with its known 

action as an inhibitor of EGFR tyrosine kinase activity, resulting in morphological change 

consistent with anti-tumour effects in the intestine. In addition, probing the associated 

transcript change in Apcmm/+ K-ras wild type colon polyps has identified 11 putative 

predictive biomarkers of response to Egfr targeted therapy. When transcriptome level data 

from K-RAS wild type metastatic colorectal cancer patients is examined for murine gene 

expression changes, IKBKG, CCNE2 and CXCL9 have been identified. These genes are 

therefore postulated to have clinical value in terms of segregating clinical response outcome 

to cetuximab monotherapy. Interpretation of the remaining mouse transcripts, in terms of 

their known biological function, has made it possible to build a picture of how expression 

patterns may hypothetically influence tumour response to anti-EGFR targeted therapy. As a 

consequence, novel resistance mechanisms to EGFR targeted therapy have been proposed 

through altered levels of gene expression (e.g. HIP1 and EPHA3) or reinforced as in the case 

of increased expression of ERBB3. Such data may help devise clinical strategies to overcome 

resistance to EGFR targeted agents.

SAM analysis revealed an interesting 2.4 fold increased expression of Axin2, a know 

target of Wnt signalling which constitutes a negative feedback loop controlling its activity

235. This data therefore reinforces the published evidence of cross talk between Egfr and
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Wnt pathways. EGFR has been shown to be a target of Wnt pathway activation and 

suggested to drive mitogenic signals in a beta catenin driven model of mouse liver cancer

236. Furthermore in mammary cancer, Wnt signalling has been shown to increase levels of 

cyclin D1 through activated MAPK via induction of EGFR237. It is possible therefore that 

Axin2 may represent a mechanism of action mediating a therapeutic response to gefitinib 

through negative regulation of W nt pathway activity in Apcmm/+ tumours. As such this early 

response could be an important predictor of outcome to EGFR targeted therapy and should 

be examined in more detail. Drugs which are able to induce negative regulators of Wnt 

signalling may therefore be attractive targets for therapeutic development.

Given the accumulating evidence that IGF1R pathway activation may be important in 

conferring resistance to EGF receptor blockade80'82, the finding that exposure to the Egfr 

inhibitor, gefitinib, led to  elevated phosphorylation of the insulin-like growth factor 1 

receptor (Igflr), in Apcmm/+ colonic polyps, further implicates the lgf-1 pathway in response 

to Egfr blockade. I have subsequently shown that chronic monotherapy against either Egfr 

or Ig flr enhances survival but that ultimately adenomas still develop. However, combined 

Egfr/lgflr blockade produced the most effective tumour suppression and supports the 

concept that Egfr resistance is mediated through lgf-1 receptor signalling, and also provides 

a rationale for combinatorial therapy in K-RAS wild type colorectal cancer.

Of further potential clinical significance is the finding that molecular changes 

following acute drug exposures occur w ithin 4 hours. This raises the attractive opportunity 

of being able to identify drug resistance pathways very early within a treatment schedule 

following a single drug exposure and tumour biopsy. This approach could increase the 

future ability to stratify patients in clinical trials according to drug induced molecular 

changes and is also a means of highlighting which pathways should be antagonised to 

minimise activated drug resistance pathways. This will have particular relevance if 

circulating tumour cells or tumour tissue substitutes can be effectively used for such 

purposes.

Examining the molecular effects of chronic drug administration in Apcfr'in/+ mice has 

been shown to facilitate analysis of pathways mediating intestinal tumour resistance. In the 

case of long term gefitinib exposure, acute Ig flr  pathway activity is reinforced by elevated
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Ig flr protein expression. This is accompanied by increased Egfr protein levels. Having noted 

gefitinib induced transcript changes (Cbl, Ubd and Hipl) include functions linked with EGFR 

turnover, it is clear that this model has been useful in terms of increasing understanding of 

the mechanisms underlying tumour resistance mechanisms. Taking a similar approach in 

mice treated with chronic Ig flr  inhibition has challenged recent evidence supporting EGFR 

family members in resistance to Ig flr  blockade80' 95,96, 198, suggesting at least in the Apcmm/+ 

mouse that response to chronic Ig flr  therapy does not involve increased Egfr activity. 

Interestingly, Erk activity appears to be maintained in such tumours, suggesting this may be 

a means of driving tum our growth. This finding may indicate that combined Ig flr and Mek 

inhibition would provide additional therapeutic activity.

I have also investigated Mek inhibition with AZD6244 in different genetically 

engineered mouse models, namely AhCreT/+ApcP/+Krasvl2/+ and AhCreT/+ApcP/+Kras+/+ in 

addition to Apcmm/+ mice. This has enabled preliminary investigation of its anti-tumour 

effects with respect to K-ras mutation status. This is of translational importance in light of 

the need for targeted therapy in K-RAS mutant colorectal cancer and initial data suggesting 

tumour cells with K-RAS mutations are likely to be sensitive to MEK inhibition122,125.

Elevated Erk phosphorylation, indicating Ras/Raf/Erk pathway signalling, has been 

demonstrated in intestinal tumours from AhCreT/+Apcfl/+Krasvl2/+ mice carrying an 

endogenously activated K-ras allele and again underscores its use as an in vivo platform to 

test the activity of AZD6244. The anti-tumour effects of AZD6244 are more apparent in 

small intestinal tumours, including induction o f cell death and perturbation of the cell cycle. 

However these effects are not limited to K-ras mutant intestinal tumours which have also 

shown a reduction in nuclear Erk activity in response to Mek inhibition. Based on these early 

findings, any long term treatm ent effect of AZD6244 may be independent of K-ras mutation 

status producing similar survival for mice w ith and without K-ras mutations. The added 

benefit from such work will potentially increase understanding of resistance mechanisms in 

response to Mek inhibition. The results from a chronic dosing study may also help guide 

whether MEK inhibitor therapy is worth pursuing in future clinical studies restricted to K- 

RAS mutant colorectal cancers.
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Finally, acute exploration of the effects of a BH-3 mimetic in combination with 

gefitinib has been explored, in the hope that improvements in Apcmm/+ survival in response 

to gefitinib monotherapy, can be achieved. A 3 fold elevation in cell death has been shown 

for the combination in Apcmm/+ colon tumours after acute exposure, raising expectation that 

this may translate into an additional survival advantage with chronic administration. If a 

positive outcome is shown, clinical studies may incorporate the addition of a BH-3 mimetic 

to monoclonal antibody targeting EGFR. The interruption of signalling pathways combined 

with induction of apoptosis provides an opportunity to optimise drug sequencing and dosing 

strategies based upon immediate anti-tumour phenotypic effects. The Apcmin/+ mouse 

model may also serve to increase knowledge of how BCL-2 protein levels influence intestinal 

tumour response to BH-3 mimetics.

Taken together, the mouse models have served as a useful resource with potential 

clinical relevance. To determine their true value and the significance of the presented data, 

further clinical evaluation is required. My hope is this work will be of value and perhaps 

contribute towards improving cancer patients' lives.
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Appendix 2.1 Colon polyp RNA pooling for specific Apcmin/+ treatm ent times.

Sample Mouse Injection Timepoint Tissue
Size

(mm) Abs 260/280 RNA (ng/ul)
RNA

(ug/ul)

1 m inl69 0.5%tween80 Ohr polyp 5 2.08 239.35 0.24

2 m inl69 0.5%tween80 Ohr polyp 5 2.10 183.00 0.18

3 m inl69 0.5%tween80 Ohr polyp 5 2.07 241.80 0.24

4 m inl69 0.5%tween80 Ohr polyp 4 2.11 151.10 0.15

5 m inl69 0.5%tween80 Ohr polyp 3 2.09 184.40 0.18

6 minl69 0.5%tween80 Ohr polyp 3 2.08 122.70 0.12

7 m inl69 0.5%tween80 Ohr polyp 3 2.04 82.75 0.08

9 CD2(2) 0.5%tween80 Ohr polyp 4 2.10 336.25 0.34

10 CD2(2) 0.5%tween80 Ohr polyp 3 2.20 76.50 0.08

11 CD2(2) 0.5%tween80 Ohr polyp 5 2.06 529.55 0.53

12 CD2(2) 0.5%tween80 Ohr polyp 5 2.10 346.05 0.35

13 CD2(2) 0.5%tween80 Ohr polyp 4 2.21 111.30 0.11

14 CD2(2) 0.5%tween80 Ohr polyp 3 2.02 78.40 0.08

15 CD2(2) 0.5%tween80 Ohr polyp 3 2.10 80.35 0.08

16 CD2(2) 0.5%tween80 Ohr polyp 4 2.14 75.00 0.08

17 CD2(2) 0.5%tween80 Ohr polyp 3 2.07 64.00 0.06

22 CD2(4) 0.5%tween80 Ohr polyp 5 2.08 289.55 0.29

23 CD2(4) 0.5%tween80 Ohr polyp 4 2.08 180.55 0.18

24 CD2(4) 0.5%tween80 Ohr polyp 3 2.07 85.85 0.09

25 CD2(4) 0.5%tween80 Ohr polyp 4 2.06 83.80 0.08

26 CD2(4) 0.5%tween80 Ohr polyp 4 2.10 231.20 0.23

27 CD2(4) 0.5%tween80 Ohr polyp 4 2.09 242.55 0.24

Filled colours represent polyps contributing to 3 RNA pools which were subsequently run on 3 separate
Affymetrix GeneChips for data relating to time zero/vehicle treatment.



Appendix 2.1 Colon polyp RNA pooling for specific Apcmin/+ treatm ent times.

Size RNA
Sample Mouse Injection Timepoint Tissue (mm) Abs 260/280 RNA (ng/ul) (ug/ul)

28 M inl43 Gefitinib 75mg/kg Ohr polyp 3 2.10 210.25 0.21

29 M inl43 Gefitinib 75mg/kg Ohr polyp 3 2.04 511.75 0.51

30 M inl43 Gefitinib 75mg/kg Ohr polyp 3 2.08 382.10 0.38

31 M inl43 Gefitinib 75mg/kg Ohr polyp 5 2.10 307.60 0.31

32 M inl43 Gefitinib 75mg/kg Ohr polyp 7 2.10 647.15 0.65

33 M inl43 Gefitinib 75mg/kg Ohr polyp 6 2.11 725.00 0.73

34 M inl43 Gefitinib 75mg/kg Ohr polyp 3 2.12 64.75 0.06

35 M inl43 Gefitinib 75mg/kg Ohr polyp 5 2.11 158.90 0.16

37 M inl43 Gefitinib 75mg/kg Ohr polyp 5 2.08 215.60 0.22

49 M inl31 Gefitinib 75mg/kg Ohr polyp 3 2.00 302.80 0.30

51 M inl99 Gefitinib 75mg/kg Ohr polyp 4 2.31 205.80 0.21

52 Min 199 Gefitinib 75mg/kg Ohr polyp 6 2.11 444.60 0.44

39 M inl68 Gefitinib 75mg/kg Ohr polyp 4 2.10 125.00 0.13

40 M inl68 Gefitinib 75mg/kg Ohr polyp 4 2.09 148.90 0.15

41 M inl68 Gefitinib 75mg/kg Ohr polyp 5 2.09 395.30 0.40

42 M inl68 Gefitinib 75mg/kg Ohr polyp 5 2.10 156.20 0.16

43 M inl68 Gefitinib 75mg/kg Ohr polyp 3 2.09 88.25 0.09

44 M inl68 Gefitinib 75mg/kg Ohr polyp 2 2.10 59.45 0.06

Filled colours represent polyps contributing to 3 RNA pools which were subsequently run on 3 separate
Affymetrix GeneChips for data relating to time zero/gefitinib treatment.



Appendix 2.1 Colon polyp RNA pooling for specific Apcmin/+ treatm ent times.

Size Abs
Sample Mouse Injection Timepoint Tissue (mm) 260/280 RNA(ng/ul) RNA(ug/ul)

60 M in l4 0  Gefitinib 75mg/kg 4hr polyp 4 2.15 101.90 0.10

61 M in l4 0  Gefitinib 75mg/kg 4hr polyp 6 2.1 1336.30 1.34

62 M in l4 0  Gefitinib 75mg/kg 4hr polyp 6 2.04 369.20 0.37

63 M in l4 0  Gefitinib 75mg/kg 4hr polyp 7 2.09 1680.70 1.68

64 Min 140 Gefitinib 75mg/kg 4hr polyp 6 2.09 1179.20 1.18

65 M in l4 0  Gefitinib 75mg/kg 4hr polyp 5 2.07 259.90 0.26

66 M in l4 0  Gefitinib 75mg/kg 4hr polyp 4 2.11 247.50 0.25

67 M in l4 0  Gefitinib 75mg/kg 4hr polyp 4 2.1 256.70 0.26

68 M in l4 0  Gefitinib 75mg/kg 4hr polyp 5 2.04 284.90 0.28

69 M in l4 0  Gefitinib 75mg/kg 4hr polyp 6 2.12 1032.60 1.03

70 M in l4 0  Gefitinib 75mg/kg 4hr polyp 6 2.09 1369.60 1.37

71 M in l4 0  Gefitinib 75mg/kg 4hr polyp 6 2.09 1708.50 1.71

84 M in l5 9  Gefitinib 75mg/kg 4hr polyp 3 2.05 505.40 0.51

87 M in l5 9  Gefitinib 75mg/kg 4hr polyp 5 2.08 247.60 0.25

88 M in l5 9  Gefitinib 75mg/kg 4hr polyp 6 2.03 427.60 0.43

89 M in l5 9  Gefitinib 75mg/kg 4hr polyp 5 2.06 370.60 0.37

90 M in l5 9  Gefitinib 75mg/kg 4hr polyp 7 2.04 390.20 0.39

91 M in l5 9  Gefitinib 75mg/kg 4hr polyp 7 2.09 1362.90 1.36

92 M in l5 9  Gefitinib 75mg/kg 4hr polyp 8 2.1 1481.20 1.48

73 M in l6 7  Gefitinib 75mg/kg 4hr polyp 8 2.06 2818.70 2.82

74 M in l6 7  Gefitinib 75mg/kg 4hr polyp 5 2.05 365.40 0.37

75 M in l6 7  Gefitinib 75mg/kg 4hr polyp 4 2.09 178.00 0.18

76 M in l6 7  Gefitinib 75mg/kg 4hr polyp 3 2.08 102.30 0.10

77 M in l6 7  Gefitinib 75mg/kg 4hr polyp 4 2.01 123.20 0.12

78 M in l6 7  Gefitinib 75mg/kg 4hr polyp 8 2.1 91.90 0.09

79 M in l6 7  Gefitinib 75mg/kg 4hr polyp 7 2.1 1508.30 1.51

80 M in l6 7  Gefitinib 75mg/kg 4hr polyp 7 2.09 1899.10 1.90

81 M in l6 7  Gefitinib 75mg/kg 4hr polyp 3 2.08 96.20 0.10

Filled colours represent polyps contributing to 3 RNA pools which were subsequently run on 3 separate
Affymetrix GeneChips for data relating to time 4hours/gefitinib treatment.



Appendix 2.1 Colon polyp RNA pooling for specific Apcmin/+ treatm ent times.

Size RNA
Sample Mouse Injection Timepoint Tissue (mm) Abs 260/280 RNA (ng/ul) (ug/ul)

94 Min251 0.5% tween 80 4 polyp 6 2.11 173.70 0.17

95 Min251 0.5% tween 80 4 polyp 5 2.06 103.30 0.10

96 Min251 0.5% tween 80 4 polyp 4 2.08 134.00 0.13

97 Min251 0.5% tween 80 4 polyp 5 2.13 80.60 0.08

98 Min251 0.5% tween 80 4 polyp 5 2.06 348.50 0.35

99 Min251 0.5% tween 80 4 polyp 5 2.13 178.90 0.18

100 Min251 0.5% tween 80 4 polyp 4 2.1 189.90 0.19

101 Min251 0.5% tween 80 4 polyp 4 2.1 115.00 0.12

102 Min251 0.5% tween 80 4 polyp 6 2.06 312.00 0.31

103 Min251 0.5% tween 80 4 polyp 6 2.03 547.00 0.55

104 Min251 0.5% tween 80 4 polyp 5 1.06 421.50 0.42

106 Min204 0.5% tween 80 4 polyp 7 2.03 398.10 0.40

107 Min204 0.5% tween 80 4 polyp 6 2.1 1380.00 1.38

108 Min204 0.5% tween 80 4 polyp 7 2.05 235.60 0.24

109 Min204 0.5% tween 80 4 polyp 4 2.07 101.50 0.10

110 Min204 0.5% tween 80 4 polyp 5 2.09 1156.40 1.16

111 Min204 0.5% tween 80 4 polyp 5 2 459.10 0.46

112 Min204 0.5% tween 80 4 polyp 5 2.09 249.10 0.25

113 Min204 0.5% tween 80 4 polyp 5 2.12 1179.80 1.18

115 Min247 0.5% tween 80 4 polyp 6 2.04 298.70 0.30

116 Min247 0.5% tween 80 4 polyp 10 2.01 3281.20 3.28

117 Min247 0.5% tween 80 4 polyp 10 1.97 3461.40 3.46

118 Min247 0.5% tween 80 4 polyp 8 2.08 1403.00 1.40

120 Min242 0.5% tween 80 4 polyp 5 2.13 99.20 0.10

121 Min242 0.5% tween 80 4 polyp 6 2.07 335.50 0.34

122 Min242 0.5% tween 80 4 polyp 3 2.09 53.00 0.05

123 Min242 0.5% tween 80 4 polyp 3 2.15 104.50 0.10

124 Min242 0.5% tween 80 4 polyp 3 2.04 91.50 0.09

125 Min242 0.5% tween 80 4 polyp 5 2.08 230.10 0.23

126 Min242 0.5% tween 80 4 polyp 3 2 66.30 0.07

127 Min242 0.5% tween 80 4 polyp 4 2.07 158.30 0.16

Filled colours represent polyps contributing to 3 RNA pools which were subsequently run on 3 separate
Affymetrix GeneChips for data relating to time 4hour/vehicle treatment.



Appendix 2.1 Colon polyp RNA pooling for specific Apcmin/+ treatm ent times.

Abs RNA
Sample Mouse Injection Timepoint Tissue Size (mm) 260/280 (ng/ul) RNA (ug/ul)

200 Min255 0.5% tw een80 8hr Polyp 8 2.11 1702.50 1.70

201 Min255 0.5% tw een80 8hr Polyp 8 2.07 2670.30 2.67

202 Min255 0.5% tween80 8hr Polyp 3 2.03 43.60 0.04

203 Min255 0 .5% tw een80 8hr Polyp 3 2.06 90.20 0.09

204 Min255 0 .5% tw een80 8hr Polyp 4 2.04 508.60 0.51

205 Min300 0 .5% tw een80 8hr Polyp 4 2.08 338.40 0.34

206 Min300 0 .5% tw een80 8hr Polyp 4 2.07 80.3 0.08

207 M in300 0 .5% tw een80 8hr Polyp 4 2.07 333.60 0.33

208 Min300 0 .5% tw een80 8hr Polyp 4 2.07 257.00 0.26

209 M in300 0 .5% tw een80 8hr Polyp 5 2.07 205.30 0.21

210 Min300 0.5% tw een80 8hr Polyp 3 2.12 123.70 0.12

212 Min300 0 .5% tw een80 8hr Polyp 3 2.03 90.60 0.09

213 Min300 0 .5% tw een80 8hr Polyp 3 2.13 88.70 0.09

214 Min302 0.5% tween80 8hr Polyp 4 2.06 124.30 0.12

215 Min302 0.5% tw een80 8hr Polyp 6 2.09 1307.70 1.31

216 Min302 0 .5% tw een80 8hr Polyp 6 2.12 1126.00 1.13

217 Min302 0.5% tween80 8hr Polyp 3 2.11 203.40 0.20

218 Min302 0.5% tw een80 8hr Polyp 4 2.18 90.00 0.09

220 Min302 0.5% tw een80 8hr Polyp 3 1.96 44.40 0.04

221 Min302 0.5% tw een80 8hr Polyp 4 2.07 182.30 0.18

222 Min333 0.5% tw een80 8hr Polyp 6 2.11 1132.80 1.13

223 Min333 0.5% tw een80 8hr Polyp 4 2.11 118.10 0.12

224 Min336 0.5% tw een80 8hr Polyp 6 2.11 941.80 0.94

225 Min336 0.5% tw een80 8hr Polyp 4 2.07 135.30 0.14

226 Min336 0.5% tw een80 8hr Polyp 4 2.10 124.70 0.12

229 Min351 0.5% tw een80 8hr Polyp 5 2.06 197.00 0.20

230 Min351 0.5% tw een80 8hr Polyp 4 2.07 133.30 0.13

231 Min351 0.5% tw een80 8hr Polyp 5 2.06 342.80 0.34

232 Min351 0.5% tw een80 8hr Polyp 4 2.06 214.70 0.21

233 Min351 0.5% tween80 8hr Polyp 4 2.10 125.30 0.13

Filled colours represent polyps contributing to 3 RNA pools which were subsequently run on 3 separate
Affymetrix GeneChips for data relating to time 8hours/vehicle treatment.



Appendix 2.1 Colon polyp RNA pooling for specific Apcmin/+ treatm ent times.

Size Abs RNA RNA
Sample Mouse_______ Injection______ Timepoint Tissue (mm) 260/280 (ng/ul) (ug/ul)

236 Min248 Gefitinib 75mg/kg 8hr Polyp 5 2.07 108.4 0.1

237 Min248 Gefitinib 75mg/kg 8hr Polyp 4 2.07 100.1 0.1

238 Min248 Gefitinib 75mg/kg 8hr Polyp 4 2.18 86.2 0.09

243 Min342 Gefitinib 75mg/kg 8hr Polyp 7 2.01 436.5 0.44

244 Min342 Gefitinib 75mg/kg 8hr Polyp 7 2.09 268.1 0.27

245 Min342 Gefitinib 75mg/kg 8hr Polyp 4 2.07 180.7 0.18

246 Min342 Gefitinib 75mg/kg 8hr Polyp 4 2.08 75.6 0.07

247 Min342 Gefitinib 75mg/kg 8hr Polyp 5 2.08 217.5 0.22

249 Min342 Gefitinib 75mg/kg 8hr Polyp 4 2.11 427 0.43

250 Min259 Gefitinib 75mg/kg 8hr Polyp 5 2.07 302.6 0.3

251 Min259 Gefitinib 75mg/kg 8hr Polyp 8 1.85 948.6 0.95

252 Min259 Gefitinib 75mg/kg 8hr Polyp 5 2.06 177.7 0.18

253 Min259 Gefitinib 75mg/kg 8hr Polyp 5 2.09 224 0.22

254 Min259 Gefitinib 75mg/kg 8hr Polyp 4 2.23 55.2 0.06

255 Min259 Gefitinib 75mg/kg 8hr Polyp 4 2.08 119.2 0.12

257 Min259 Gefitinib 75mg/kg 8hr Polyp 3 2.11 105.8 0.11

258 M in l7 4 Gefitinib 75mg/kg 8hr Polyp 3 2.11 87.5 0.09

259 M in l7 4 Gefitinib 75mg/kg 8hr Polyp 3 2.07 219.4 0.22

260 M in l7 4 Gefitinib 75mg/kg 8hr Polyp 7 21 439.8 0.44

261 M in l7 4 Gefitinib 75mg/kg 8hr Polyp 6 2.06 184.8 0.14

262 M in l7 4 Gefitinib 75mg/kg 8hr Polyp 6 2.04 436.9 0.44

263 M in l7 4 Gefitinib 75mg/kg 8hr Polyp 5 2.08 315.8 0.32

264 M in l7 4 Gefitinib 75mg/kg 8hr Polyp 6 2.06 178.5 0.18

265 M in l7 4 Gefitinib 75mg/kg 8hr Polyp 5 2.02 313.6 0.31

266 M in l7 4 Gefitinib 75mg/kg 8hr Polyp 5 2.06 158.6 0.16

267 M in l7 4 Gefitinib 75mg/kg 8hr Polyp 5 2.03 56.6 0.05

268 Min233 Gefitinib 75mg/kg 8hr Polyp 5 2.04 256.4 0.26

269 Min233 Gefitinib 75mg/kg 8hr Polyp 5 2.02 130.7 0.13

270 Min233 Gefitinib 75mg/kg 8hr Polyp 5 2.07 215.5 0.22

Filled colours represent polyps contributing to 3 RNA pools which were subsequently run on 3 separate
Affymetrix GeneChips for data relating to time 8hour/gefitinib treatment.



Appendix 2.1 Colon polyp RNA pooling for specific Apcmin/+ treatm ent times.

Size Abs
Sample Mouse Injection Timepoint Tissue (mm) 260/280 RNA (ng/ul) RNA (ug/ul)

273 Min272 Gefitinib 75mg/kg 12hr polyp 7 2.04 230.80 0.23

274 Min272 Gefitinib 75mg/kg 12hr polyp 4 2.01 119.60 0.12

275 Min272 Gefitinib 75mg/kg 12hr polyp 4 1.98 126.30 0.13

276 Min272 Gefitinib 75mg/kg 12hr polyp 7 2.04 1067.00 1.07

277 Min272 Gefitinib 75mg/kg 12hr polyp 5 2.04 219.40 0.22

278 Min272 Gefitinib 75mg/kg 12hr polyp 5 2.05 242.50 0.24

280 Min272 Gefitinib 75mg/kg 12hr polyp 3 2.03 82.30 0.08

282 Min237 Gefitinib 75mg/kg 12hr polyp 4 2.09 161.10 0.16

283 Min237 Gefitinib 75mg/kg 12hr polyp 3 2.33 28.60 0.03

284 Min237 Gefitinib 75mg/kg 12hr polyp 4 2.1 124.90 0.12

285 Min237 Gefitinib 75mg/kg 12hr polyp 5 2.08 169.80 0.17

286 Min237 Gefitinib 75mg/kg 12hr polyp 5 2.11 217.30 0.22

287 Min237 Gefitinib 75mg/kg 12hr polyp 4 2.11 64.90 0.06

289 Min237 Gefitinib 75mg/kg 12hr polyp 4 2.04 43.10 0.04

290 Min245 Gefitinib 75mg/kg 12hr polyp 5 2.1 129.80 0.13

291 Min245 Gefitinib 75mg/kg 12hr polyp 4 2.05 148.80 0.15

292 Min229 Gefitinib 75mg/kg 12hr polyp 5 2.06 335.10 0.34

293 Min229 Gefitinib 75mg/kg 12hr polyp 6 2.11 1285.40 1.29

294 Min229 Gefitinib 75mg/kg 12hr polyp 7 2.1 1388.10 1.39

295 Min229 Gefitinib 75mg/kg 12hr polyp 6 2.1 256.90 0.26

297 Min222 Gefitinib 75mg/kg 12hr polyp 4 2 59.70 0.06

298 Min222 Gefitinib 75mg/kg 12hr polyp 4 2.05 52.80 0.05

300 Min222 Gefitinib 75mg/kg 12hr polyp 4 2.05 73.10 0.07

303 Min243 Gefitinib 75mg/kg 12hr polyp 5 2.07 131.80 0.13

304 Min243 Gefitinib 75mg/kg 12hr polyp 5 2.07 197.70 0.20

434 Min525 Gefitinib 75mg/kg 12hr polyp 3 2.11 88.40 0.09

436 Min525 Gefitinib 75mg/kg 12hr polyp 6 2.09 1002.80 1.00

437 Min525 Gefitinib 75mg/kg 12hr polyp 6 2.07 164.30 0.17

438 Min525 Gefitinib 75mg/kg 12hr polyp 8 2.1 1458.10 1.46

439 Min525 Gefitinib 75mg/kg 12hr polyp.. 7 2.11 663.90 0.66

Filled colours represent polyps contributing to 3 RNA pools which were subsequently run on 3 separate
Affymetrix GeneChips for data relating to time 12hour/gefitinib treatment.



Appendix 2.1 Colon polyp RNA pooling for specific Apcmin/+ treatm ent times.

Size Abs
Sample Mouse Injection Timepoint Tissue (mm) 260/280 RNA (ng/ul) RNA(ug/ul)

306 Min466 0.5% tween80 12hr polyp 6 2.1 1110.80 1.11

307 Min466 0.5% tween80 12hr polyp 7 2.09 2260.40 2.26

308 Min466 0.5% tw een80 12hr polyp 6 2.11 1418.50 1.42

309 Min466 0.5% tween80 12hr polyp 6 2.11 1043.30 1.04

310 Min466 0.5% tween80 12hr polyp 4 2.12 112.65 0.11

312 Min466 0.5% tw een80 12hr polyp 3 2.12 131.00 0.13

313 Min466 0.5% tw een80 12hr polyp 3 2.07 216.70 0.22

314 Min466 0.5% tween80 12hr polyp 3 2.05 246.20 0.25

315 Min466 0.5% tw een80 12hr polyp 4 2.06 273.70 0.27

316 Min400 0.5% tw een80 12hr polyp 2 1.96 53.40 0.05

317 Min400 0.5% tw een80 12hr polyp 5 2.07 217.90 0.22

318 Min400 0.5% tw een80 12hr polyp 6 1.98 515.70 0.52

319 Min400 0.5% tw een80 12hr polyp 5 2.09 596.40 0.60

320 Min400 0.5% tween80 12hr polyp 5 2.08 160.80 0.16

321 Min400 0.5% tween80 12hr polyp 6 1.99 483.60 0.48

322 Min400 0.5% tw een80 12hr polyp 7 2.09 1510.70 1.51

323 Min400 0.5% tw een80 12hr polyp 5 2.04 392.00 0.39

324 Min400 0.5% tw een80 12hr polyp 6 2.05 440.60 0.44

325 Min400 0.5% tween80 12hr polyp 5 2.03 181.30 0.18

328 Min496 0.5% tween80 12hr polyp 4 2.08 186.20 0.19

329 Min496 0.5% tween80 12hr polyp 5 2.09 1477.20 1.48

330 Min496 0.5% tween80 12hr polyp 5 2.07 334.50 0.33

331 Min496 0.5% tween80 12hr polyp 4 2.14 60.90 0.06

332 Min496 0.5% tween80 12hr polyp 5 2.1 188.10 0.19

333 Min496 0.5% tw een80 12hr polyp 4 2.04 334.20 0.33

334 Min441 0.5% tween80 12hr polyp 5 2.09 613.10 0.61

335 Min441 0.5% tween80 12hr polyp 5 2.1 769.10 0.77

336 Min441 0.5% tween80 12hr polyp 6 2.09 2020.60 2.02

337 Min441 0.5% tween80 12hr polyp 5 2.1 896.50 0.90

Filled colours represent polyps contributing to 3 RNA pools which were subsequently run on 3 separate
Affymetrix GeneChips for data relating to time 12hour/vehicle treatment.



Appendix 2.1 Colon polyp RNA pooling for specific Apcmin/+ treatm ent times.

Size
Sample Mouse Injection Timepoint Tissue (mm) Abs 260/280 RNA (ng/ul) RNA (ug/ul)

341 Min386 0.5% tween80 24hr polyp 8 2.08 2651.70 2.65

342 M in386 0.5% tween80 24hr polyp 7 2.10 1147.10 1.15

343 Min386 0.5% tween80 24hr polyp 7 2.09 2214.40 2.21

353 Min386 0.5% tween80 24hr polyp 3 2.00 79.60 0.08

354 Min386 0.5% tween80 24hr polyp 4 2.06 299.40 0.30

355 Min386 0.5% tween80 24hr polyp 3 2.16 52.15 0.05

356 Min364 0.5% tween80 24hr polyp 6 2.09 1702.60 1.70

357 Min364 0.5% tween80 24hr polyp 6 2.07 358.35 0.36

358 Min364 0.5% tween80 24hr polyp 7 2.09 1977.60 1.98

359 Min364 0.5% tween80 24hr polyp 5 2.07 313.40 0.31

360 Min364 0.5% tween80 24hr polyp 5 2.10 1262.90 1.26

361 Min364 0.5% tween80 24hr polyp 4 2.08 199.50 0.20

362 Min364 0.5% tween80 24hr polyp 3 2.06 90.80 0.09

364 Min368 0.5% tween80 24hr polyp 4 2.10 249.30 0.25

365 Min393 0.5% tween80 24hr polyp 5 1.99 496.30 0.50

366 Min393 0.5% tween80 24hr polyp 5 2.06 570.50 0.57

367 Min393 0.5% tween80 24hr polyp 4 2.07 179.20 0.18

368 Min393 0.5% tween80 24hr polyp 4 2.06 325.40 0.33

369 Min393 0.5%tween80 24hr polyp 3 2.12 72.50 0.07

370 Min405 0.5% tween80 24hr polyp 5 2.05 414.80 0.41

371 Min405 0.5% tween80 24hr polyp 4 2.06 159.40 0.16

408 Min470 0.5% tween80 24hr polyp 6 2.10 1263.00 1.26

409 Min470 0.5% tween80 24hr polyp 6 2.10 1163.80 1.16

410 Min470 0.5% tween80 24hr polyp 6 2.11 1053.20 1.05

411 Min470 0.5% tween80 24hr polyp 5 2.07 407.80 0.41

412 Min470 0.5% tween80 24hr polyp 5 2.10 621.10 0.62

413 Min470 0.5% tween80 24hr polyp 4 2.04 337.40 0.34

414 Min470 0.5% tween80 24hr polyp 4 1.98 350.60 0.35

415 Min470 0.5%tween80 24hr polyp 3 1.99 357.00 0.36

417 Min470 0.5% tween80 24hr polyp 4 2.03 325.00 0.33

Filled colours represent polyps contributing to 3 RNA pools which were subsequently run on 3 separate
Affymetrix GeneChips for data relating to time 24hour/vehicle treatment.



Appendix 2.1 Colon polyp RNA pooling for specific Apcmin/+ treatm ent times.

Sample Mouse Injection Timepoint Tissue
Size

(mm)
Abs

260/280 RNA (ng/ul) RNA (ug/ul)

373 Min279 Gefitinib 75mg/kg 24hr polyp 5 2.08 203.50 0.20

374 Min279 Gefitinib 75mg/kg 24hr polyp 4 2.05 184.90 0.18

375 Min279 Gefitinib 75mg/kg 24hr polyp 3 2.18 53.70 0.05

376 Min279 Gefitinib 75mg/kg 24hr polyp 5 2.07 322.00 0.32

377 Min279 Gefitinib 75mg/kg 24hr polyp 5 2.04 438.60 0.44

378 Min279 Gefitinib 75mg/kg 24hr polyp 3 2.03 46.15 0.05

379 Min279 Gefitinib 75mg/kg 24hr polyp 2 2.02 50.00 0.05

380 Min279 Gefitinib 75mg/kg 24hr polyp 4 2.06 622.80 0.62

382 Min279 Gefibnib 75mg/kg 24hr polyp 4 2.05 255.20 0.26

384 Min380 Gefitinib 75mg/kg 24hr polyp 6 2.05 1442.30 1.44

385 Min380 Gefitinib 75mg/kg 24hr polyp 5 2.06 183.80 0.18

387 Min380 Gefitinib 75mg/kg 24hr polyp 3 2.02 202.90 0.20

388 Min380 Gefitinib 75mg/kg 24hr polyp 3 2.03 125.10 0.13

389 Min241 Gefitinib 75mg/kg 24hr polyp 4 2.03 653.20 0.65

390 Min241 Gefitinib 75mg/kg 24hr polyp 3 2.07 250.90 0.25

391 Min241 Gefitinib 75mg/kg 24hr polyp 3 2.10 53.40 0.05

392 Min241 Gefitinib 75mg/kg 24hr polyp 5 2.05 256.50 0.26

394 Min328 Gefitinib 75mg/kg 24hr polyp 5 2.03 899.90 0.90

395 Min328 Gefitinib 75mg/kg 24hr polyp 3 2.00 115.20 0.12

396 Min328 Gefitinib 75mg/kg 24hr polyp 3 2.02 138.30 0.14

397 Min309 Gefitinib 75mg/kg 24hr polyp 3 2.02 248.60 0.25

399 Min348 Gefibnib 75mg/kg 24hr polyp 3 2.00 516.80 0.52

400 Min348 Gefibnib 75mg/kg 24hr polyp 4 2.05 701.70 0.70

401 Min348 Gefibnib 75mg/kg 24hr polyp 3 2.08 130.00 0.13

402 Min348 Gefibnib 75mg/kg 24hr polyp 5 2.03 746.70 0.75

403 Min457 Gefibnib 75mg/kg 24hr polyp 5 2.04 991.10 0.99

404 Min457 Gefibnib 75mg/kg 24hr polyp 5 2.11 1540.80 1.54

405 Min457 Gefibnib 75mg/kg 24hr polyp 6 2.11 976.30 0.98

406 Min457 Gefibnib 75mg/kg 24hr polyp 3 2.06 188.50 0.19

407 Min457 Gefibnib 75mg/kg 24hr polyp 4 2.08 308.20 0.31

Filled colours represent polyps contributing to 3 RNA pools which were subsequently run on 3 separate
Affymetrix GeneChips for data relating to time 24hour/gefitinib treatment.



Appendix 2.2 Colon polyp RNA pools for biological replicate experiments of Apcmin/+
mice trea ted  w ith  0.5% tw een80, gefitinib, lx  PBS or ME1 for 4 hours.

Sample Mouse IP Injection
Polyp size 

(mm)
Abs

260nm/280nm
RNA (ng/ug) 
DNasd RNA.

RNA
ug/ul

640 M in799 0.5% tween 80 10 2.04 1898.90 1.90
641 Min799 0.5% tween 80 6 2.03 186.20 0.19
642 M in799 0.5% tween 80 5 2.06 1059.10 1.06
643 Min799 0.5% tween 80 5 2.07 145.20 0.15
644 Min799 0.5% tween 80 5 2.05 181.70 0.18
645 Min799 0.5% tween 80 7 2.02 288.80 0.29
646 Min799 0.5% tween 80 4 1.95 106.30 0.11
647 Min799 0.5% tween 80 4 2.00 382.60 0.38
648 Min572 0.5% tween 80 4 2.01 92.80 0.09
649 Min572 0.5% tween 80 5 2.12 136.00 0.14
650 Min572 0.5% tween 80 8 2.04 1908.10 1.91
651 Min572 0.5% tween 80 5 2.02 227.80 0.23
652 Min802 0.5% tween 80 8 1.98 399.40 0.40
653 Min802 0.5% tween 80 5 2.03 172.30 0.17
654 Min552 0.5% tween 80 4 2.02 315.50 0.32
655 Min552 0.5% tween 80 4 2.04 336.80 0.34
657 Min610 0.5% tween 80 6 2.07 223.70 0.22

658 Min610 0.5% tween 80 5 2.08 1313.80 1.31

659 Min610 0.5% tween 80 5 2.07 78.00 0.08

660 M in610 0.5% tween 80 4 2.10 259.20 0.26

661 Min610 0.5% tween 80 5 2.07 466.00 0.47

662 M in610 0.5% tween 80 5 2.11 158.00 0.16

663 Min610 0.5% tween 80 8 2.07 368.70 0.37

664 Min610 0.5% tween 80 5 2.02 561.30 0.56



Appendix 2.2 Colon polyp RNA pools for biological replicate experiments of Apcmin/+
mice treated  w ith  0.5%  tw een80, gefitinib, lx  PBS or ME1 for 4 hours.

Sample Mouse
1

IP Injection
Polyp size 

(mm)
Abs

260nm/280nm
RNA (ng/ug) 
DNasd RNA.

RNA
ug/ul

501 Min 581 Gefitinib 75mg/kg 5 2.03 205.60 0.21
502 Min 581 Gefitin ib 75mg/kg 4 2.06 191.40 0.19
503 Min 581 Gefitin ib 75mg/kg 5 2.03 243.10 0.24
504 Min 581 G efitin ib 75mg/kg 3 2.06 108.10 0.11
505 Min 581 G efitin ib 75mg/kg 6 2.05 1535.30 1.54

506 Min 581 G efitin ib 75mg/kg 4 2.05 98.80 0.10
507 Min 581 G efitin ib 75mg/kg 4 2.08 179.40 0.18

508 Min 581 Gefitin ib 75mg/kg 5 2.06 122.50 0.12

509 Min 581 G efitin ib 75mg/kg 5 2.06 906.00 0.91

510 Min 581 G efitin ib 75mg/kg 4 2.07 131.70 0.13

511 Min 581 G efitin ib 75mg/kg 5 2.06 195.10 0.20

512 Min 581 G efitin ib 75mg/kg 4 2.03 188.60 0.19

513 Min 580 G efitin ib 75mg/kg 8 2.02 336.00 0.34

514 Min 580 Gefitin ib 75mg/kg 6 2.00 390.60 0.39

517 Min 580 Gefitin ib 75mg/kg 6 2.04 358.20 0.36

518 Min 580 G efitin ib 75mg/kg 4 2.01 309.40 0.31

519 Min 580 G efitin ib 75m g/kg 6 2.05 1649.30 1.65

520 Min 580 G efitinib 75m g/kg 4 2.05 232.10 0.23

521 Min 580 Gefitinib 75mg/kg 7 2.06 1514.00 1.51

522 Min 580 G efitinib 75m g/kg 5 2.08 273.80 0.27

523 Min 580 Gefitinib 75mg/kg 5 2.07 117.40 0.12

524 Min 580 Gefitinib 75mg/kg 6 2.04 1088.60 1.09

525 Min582 Gefitinib 75mg/kg 8 2.05 1528.00 1.53

526 Min582 Gefitinib 75mg/kg 6 2.05 1097.80 1.10

527 Min582 Gefitinib 75mg/kg 8 2.03 2121.80 2.12

528 Min582 Gefitinib 75mg/kg 6 2.04 1325.70 1.33

529 Min 582 Gefitinib 75mg/kg 5 2.03 261.70 0.26

530 Min582 G efitinib 75mg/kg 4 2.00 171.80 0.17

531 Min582 Gefitinib 75 mg/kg 6 2.03 1508.20 1.51

532 Min582 Gefitinib 75mg/kg 6 2.04 756.70 0.76



Appendix 2.2 Colon polyp RNA pools for biological replicate experiments of Apcmin/+
mice treated  w ith  0.5%  tw een80, gefitin ib , 1XPBS or ME1 for 4 hours.

Sample Mouse IP Injection
Polyp size 

(mm)
Abs

260nm/2 8 0 _
RNA (ng/ug) 
DNasd RNA. RNA ug/ul

775 Min951 lxPBS 4 20.60 184.40 0.18
776 Min951 lxPBS 6 2.10 1356.10 1.36
111 Min951 lxPBS 4 2.03 424.80 0.42
778 Min951 lxPBS 5 2.07 1022.60 1.02
779 Min951 lxPBS 5 1.98 340.40 0.34
780 Min951 lxPBS 4 2.00 85.90 0.09
781 Min951 lxPBS 10 2.08 2037.00 2.04
782 Min951 lxPBS 5 2.10 1371.60 1.37
783 Min951 lxPBS 3 2.06 100.00 0.10
784 Min951 lxPBS 4 2.11 638.20 0.64
785 M in l0 1 2 lxPBS 4 2.10 1036.20 1.04
786 M in l0 1 2 lxPBS 3 2.08 278.00 0.28
787 M in l0 1 2 lxPBS 4 2.04 365.90 0.37
788 M in l0 1 2 lxPBS 5 2.09 1446.00 1.45
789 M in l0 1 2 lxPBS 4 2.10 1055.80 1.06
791 M in l0 1 5 lxPBS 2 2.05 163.70 0.16
793 M in l l7 0 lxPBS 3 2.05 133.60 0.13
794 M in l l7 0 lxPBS 2 1.93 52.70 0.05
795 M in l l7 0 lxPBS 2 1.98 167.30 0.17
796 M in794 lxPBS 3 2.08 256.10 0.26
797 Min780 lxPBS 5 2.10 1568.00 1.57
798 Min780 lxPBS 3 2.04 103.20 0.10
799 M in780 lxPBS 6 2.14 1835.40 1.84
800 M in780 lxPBS 5 2.05 359.20 0.36
801 Min780 lxPBS 4 2.06 217.30 0.22
802 Min780 lxPBS 4 2.08 269.00 0.27
803 Min780 lxPBS 7 2.03 398.70 0.40
804 M in780 lxPBS 3 2.05 79.80 0.08
805 M in l l7 8 lxPBS 6 2.09 1191.60 1.19
806 M in l l7 8 lxPBS 6 1.96 476.70 0.48



Appendix 2.2 Colon polyp RNA pools for biological replicate experiments of Apcmin/+
mice treated  w ith  0.5% tw een80, gefitin ib , 1XPBS or ME1 for 4 hours.

Polyp size Abs RNA(ng/ug)
Sample Mouse IP injection (mm) 260nm/280nm DNasd RNA. RNAug/ul

740 M in l l7 2 ME lm g 5
-------- n m < ---------nm

2.02 449.80 0.45
741 M in l l7 2 ME lm g 7 2.09 1525.00 1.53
742 M in l l7 2 ME lm g 8 2.06 2673.70 2.67
743 M in l l7 2 ME lm g 4 2.05 159.70 0.16
744 M in l l7 2 ME lm g 5 1.99 463.00 0.46
745 M in l l7 2 ME lm g 4 2.01 396.30 0.40
746 M in l l7 2 ME lm g 3 2.10 175.20 0.18
747 M in l l7 2 ME lm g 3 2.08 300.60 0.30

748 M in l l7 2 ME lm g 4 2.04 379.80 0.38

749 Min848B ME lm g 3 2.05 335.80 0.34

750 Min848B ME lm g 4 2.10 129.50 0.13

751 Min848B ME lm g 4 2.05 367.00 0.37

752 Min848B ME lm g 5 2.06 260.80 0.26

753 Min848B ME lm g 2 2.09 77.60 0.08

755 M in756 ME lm g 3 2.09 92.60 0.09

756 Min756 ME lm g 6 2.05 315.20 0.32

757 Min756 ME lm g 5 2.05 311.80 0.31

758 Min756 ME lm g 6 2.09 1832.30 1.83

759 Min756 ME lm g 5 2.10 1175.70 1.18

760 Min756 ME lm g 5 1.97 472.90 0.47

761 Min756 ME lm g 7 2.04 2807.50 2.81

762 Min756 ME lm g 3 2.06 158.80 0.16

763 Min902 ME lm g 4 2.05 328.90 0.33

764 Min902 ME lm g 4 2.03 382.50 0.38

765 Min902 ME lm g 3 2.06 180.70 0.18

766 Min902 ME lm g 7 2.09 2116.30 2.12

767 Min755 ME lm g 8 2.09 2142.00 2.14

768 Min755 ME lm g 9 2.07 2479.60 2.48

769 Min755 ME lm g 7 2.06 214.20 0.21

770 Min755 ME lm g 6 2.08 1833.00 1.83



Appendix 2.3 Colon polyp RNA pools for Apcm i n mice exposed to chronic vehicle or
gefitinib until survival endpoint reached

size
polyp Abs RNA RNA

sample mouse________ IP injection________ (mm) 260nm/280nm (ng/ul) (ug/ul)
1C Min920 1% tween80 daily 3

n m *  n m

1.83 91.90 0.09

2C M in920 1% tween80 daily 4 1.86 126.80 0.13

3C M in920 1% tween80 daily 2 1.96 20.40 0.02

4C Min920 1% tween80 daily 4 1.87 86.40 0.09

5C Min920 1% tween80 daily 4 1.84 101.10 0.10

6C Min920 1% tween80 daily 5 1.83 84.90 0.08

7C Min972 1% tween80 daily 3 1.87 43.20 0.04

8C Min972 1% tween80 daily 5 1.85 156.20 0.16

IOC Min972 1% tween80 daily 2 1.99 38.20 0.04

11C Min972 1% tween80 daily 3 2.12 48.20 0.05

13C Min738 G efitin ib 75mg/kg daily 5 1.91 41.00 0.04

14C Min738 Gefitin ib 75mg/kg daily 2 1.90 25.80 0.03

15C Min738 Gefitin ib 75mg/kg daily 2 2.08 33.90 0.03

16C Min738 G efitin ib 75mg/kg daily 2 1.91 38.30 0.04

17C Min751 G efitin ib 75mg/kg daily 6 1.80 81.40 0.08

19C Min751 Gefitinib 75m g/kg daily 4 1.94 52.00 0.05

20C Min751 Gefitinib 75mg/kg daily 4 1.82 248.00 0.25

21C Min751 Gefitinib 75mg/kg daily 5 1.85 163.70 0.16

23C Min729 Gefitinib 75mg/kg daily 5 1.86 98.90 0.10

24C Min729 Gefitinib 75mg/kg daily 5 2.04 110.60 0.11

NB. RNA was extracted using the illustra triplePrep kit.



Appendix 2.4 Colon polyp RNA pool from  AhCreT/+ Apc+/Kras+/+ polyps exposed to a single
dose of gefitinib

polyp size Abs RNA(ng/ug) RNA 
sample mouse_______ IP injection________ (mm) 260nm/280nm DNasd RNA. ug/ul

159D AKA455
Gefitin ib 75mg/kg 

(4hrs) 3 1.79 17.50 0.02

160D AKA455
G efitin ib 75mg/kg 

(4hrs) 6 1.97 272.10 0.27

161D AKA431
G efitin ib 75mg/kg 

(4hrs) 6 1.87 174.40 0.17

162D AKA431
G efitin ib 75mg/kg 

(4hrs) 4 2.08 90.90 0.09

163D AKA431
G efitin ib 75mg/kg 

(4hrs) 5 1.44 131.60 0.13

164D AKA431
G efitin ib 75mg/kg 

(4hrs) 3 2.00 36.80 0.04

165D AKA431
Gefitin ib 75mg/kg 

(4hrs) 2 2.10 46.00 0.05

166D AKA431
G efitin ib 75mg/kg 

(4hrs) 3 2.07 64.60 0.06

167D AKA431
G efitin ib 75mg/kg 

(4hrs) 3 1.84 70.90 0.07

168D AKA431
Gefitin ib 75mg/kg 

(4hrs) 2 1.80 22.10 0.02



Appendix 2.4 Colon polyp RNA pool from  AhCreT/+ Apc+/'Kras vl2/+ polyps exposed to a single 
dose o f gefitin ib

polyp size Abs RNA (ng/ug) 
sample mouse IP injection (mm) 260nm/280nm DNasd RNA. RNA (ug/ul)

170D AKA1078
Gefitinib 75mg/kg 

(4hrs) 4 2.00 165.30 0.17

171D AKA1078
Gefitin ib 75mg/kg 

(4hrs) 3 2.10 77.50 0.08

172D AKA1078
G efitin ib 75mg/kg 

(4hrs) 5 1.83 193.50 0.19

173D AKA1078
Gefitin ib 75mg/kg 

(4hrs) 3 2.08 129.20 0.13

174D AKA1078
G efitin ib 75mg/kg 

(4hrs) 2 2.02 185.90 0.19

175D AKA1078
G efitin ib 75mg/kg 

(4hrs) 2 2.07 46.00 0.05

176D AKA1125
G efitin ib 75mg/kg 

(4hrs) 5 1.87 57.80 0.06

177D AKA1125
Gefitinib 75mg/kg 

(4hrs) 5 1.92 75.00 0.08

178D AKA1125
G efitin ib 75mg/kg 

(4hrs) 5 1.93 95.80 0.10

179D AKA1125
G efitin ib 75mg/kg 

(4hrs) 3 2.10 177.70 0.18



Appendix 2.5 RNA extraction from human rectal cancer specimens

sample ID___________ Details___________ abs 260nm/280nm RNA (ng/ul) RNA(ug/ul)
1XE XE007/001/01 baseline 1.86 181.25 0.18

2XE
XE007/001/02 4hrs post 

cetuximab 1.90 30.00 0.03
6XE XE007/003/01 baseline 1.80 314.00 0.31

7XE
XE007/003/02 4hrs post 

cetuximab 1.69 92.90 0.09

NB RNA extracted using illustra triplePrep kit. On column DNase performed.



Appendix 2.6 Colon polyp protein determ ination from Apcmin/+ mice exposed to IX  PBS
for 4 hours

Sample Mouse
Polyp size 

(mm) Abs 480nm Protein ug/5ul Protein ug/ul

1 M in l3 1 5 5 0.614 27.9 5.6

2 M in l3 1 5 3 0.771 5.2 1.0

3 M in l3 1 5 5 0.621 26.9 5.4

4 M in l3 1 5 2 0.741 9.5 1.9

5 Min 1148 3 0.765 6.0 1.2

6 Min 1148 4 0.69 16.9 3.4

7 Min 1148 4 0.751 8.0 1.6

8 M in 1148 4 0.691 16.7 3.3

9 M in l l8 8 2 0.746 8.8 1.8

10 M in l l8 8 3 0.687 17.3 3.5

11 M in l l8 8 4 0.637 24.5 4.9

12 M in l l8 8 2 0.724 12.0 2.4

13 M in l l8 8 4 0.615 27.7 5.5

14 M in l l8 8 4 0.61 28.4 5.7

15 M in l l8 8 3 0.691 16.7 3.3

17 M in l0 9 5 4 0.687 17.3 3.5

18 M in l095 5 0.641 24.0 4.8

19 M in l095 6 0.611 26.4 5.3

20 M in l095 3 0.69 14.7 2.9

21 M in l0 9 5 3 0.65 20.6 4.1



Appendix 2.6 Colon polyp protein determ ination from  Apcm'n/+ mice exposed to M E lfo r
4 hours

Sample Mouse
Polyp size 

(mm)
Abs

480nm Protein ug/5ul Protein ug/ul

22 Min 1177 5 0.574 31.9 6.4

23 Min 1177 3 0.648 20.9 4.2

24 M in 1177 4 0.692 14.4 2.9

25 M in 1177 3 0.677 16.6 3.3

26 M in 1177 2 0.742 7.0 1.4

27 Min 1177 2 0.758 4.6 0.9

28 Min 1177 3 0.595 28.8 5.8

31 Min 1177 2 0.695 14.0 2.8

32 M in l l8 6 2 0.666 18.3 3.7

33 M in l l8 6 3 0.637 22.6 4.5

34 M in l l8 6 2 0.718 10.6 2.1

35 M in l l8 6 3 0.685 15.5 3.1

36 M in l l8 6 2 0.583 30.6 6.1

37 M in l l8 6 4 0.658 16.0 3.2

38 M in l l8 6 6 0.652 17.1 3.4

39 M in l l8 6 2 0.711 6.3 1.3

40 M in l l8 6 2 0.698 8.7 1.7

41 M in l l8 6 3 0.659 15.8 3.2

42 M in l l8 6 3 0.7 8.3 1.7

43 M in l l8 6 3 0.693 9.6 1.9



Appendix 2.6 Colon polyp protein determ ination from  Apcmin/+ mice exposed to
AZ12553801 for 4 hours

Polyp size
Sample Mouse (mm) Abs 480nm Protein ug/5ul Protein ug/ul

ID Min 1032 2 0.723 4.1 0.8

2D Min 1032 2 0.728 3.2 0.6

3D Min 1032 2 0.725 3.8 0.8

4D Min 1032 3 0.643 18.7 3.7

5D Min 992 2 0.706 7.2 1.4

6D Min 992 3 0.709 6.7 1.3

7D Min 992 4 0.63 21.1 4.2

8D M in 992 3 0.698 8.7 1.7
9D Min 992 3 0.683 11.4 2.3

Colon polyp protein determ ination from  Apcmin/+ mice exposed to 1% Tween80 vehicle 
for 4 hours

Sample Mouse
Polyp size 
(mm) Abs 480nm Protein ug/5ul Protein ug/ul

94D M in ll2 2 3 0.603 24.52 4.90

95D M in ll2 2 2 0.728 4.50 0.90

96D M in ll2 2 3 0.622 22.83 4.57

97D M in ll2 2 3 0.726 4.84 0.97

98D M in ll2 2 4 0.579 30.26 6.05

99D M in ll2 2 4 0.544 36.31 7.26

100D M in l l2 2 2 0.705 8.47 1.69

101D M in ll2 2 3 0.681 12.62 2.52

106D M in l245 3 0.664 15.56 3.11

107D M in l2 4 5 3 0.648 18.33 3.67

108D M in l2 4 5 3 0.671 14.35 2.87

109D M in l245 2 0.679 12.97 2.59

HOD M in l245 2 0.735 3.29 0.66

111D M in l029 3 0.7 9.34 1.87

112D M in l029 3 0.738 2.77 0.55

113D M in l029 3 0.599 24.06 4.81

114D M in l029 3 0.69 10.58 2.12

115D M in l029 4 0.565 29.10 5.82

116D M in l029 4 0.596 24.51 4.90



Appendix 2.6 Colon polyp protein determ ination from Apcmin/+ mice exposed to gefitinib
for 4 hours

Sample Mouse
Polyp size 
(mm)

Abs
480nm

Protein
ug/5ul

Protein
ug/ul

50d M in l l8 7 3 0.68 17.1 3.4

51d M in l l8 7 3 0.557 40.1 8.0

52d M in l l8 7 4 0.644 23.9 4.8

53d M in l l8 7 5 0.564 38.8 7.8

54d M in l l8 7 4 0.656 21.6 4.3

55d M in l l8 7 4 0.578 36.2 7.2

56d M in l l8 7 3 0.71 11.5 2.3

57d M in l l8 7 5 0.57 37.7 7.5

58d M in l l8 7 6 0.511 48.7 9.7

59d M in l l8 7 6 0.548 41.8 8.4

60d M in l2 6 2 2 0.701 13.2 2.6

61d M in l2 6 2 4 0.596 32.8 6.6

62d M in l2 6 2 6 0.374 61.4 12.3

63d M in l262 6 0.573 29.4 5.9

64d M in l262 4 0.584 27.6 5.5

65d M in l262 3 0.679 12.3 2.5

66d M in l262 3 0.702 8.6 1.7

67d M in l2 6 2 5 0.58 28.2 5.6

68d M in l2 1 6 4 0.565 30.6 6.1

69d M in l2 1 6 3 0.605 24.2 4.8

70d M in l2 1 6 3 0.596 25.6 5.1

71d M in l2 1 6 2 0.686 11.2 2.2

72d M in l2 1 6 2 0.69 10.5 2.1

73d M in l2 1 6 3 0.648 17.3 3.5

74d M in l2 1 6 3 0.701 8.7 1.7

75d M in l216 3 0.695 9.7 1.9



Appendix 2.6 Colon polyp protein determination from Apcmin/+ mice exposed to gefitinib 
and AZ12253801 fo r 4 hours

Sample Mouse
Polyp size 

(mm)
Abs

480nm
Protein
ug/5ul

Protein
ug/ul

76d M in l3 1 1 3 0.701 8.7 1.7

77d M in l3 1 1 3 0.694 9.9 2.0

78d M in l3 1 1 3 0.659 15.5 3.1

79d M in l3 1 1 3 0.699 9.1 1.8

80d M in l3 1 1 3 0.651 16.8 3.4

81d M in l3 1 1 4 0.585 27.4 5.5

82d M in l3 1 1 3 0.65 17.0 3.4

83d M in l3 1 1 3 0.712 7.0 1.4

85d M in l3 1 7 3 0.724 5.0 1.0

86d M in l3 1 7 6 0.448 49.5 9.9

87d M in l2 5 5 2 0.714 6.7 1.3

88d M in l2 5 5 5 0.703 8.4 1.7

89d M in l2 5 5 3 0.714 6.7 1.3

90d M in l255 3 0.64 18.6 3.7

91d M in l2 5 5 3 0.61 23.4 4.7

92d M in l255 3 0.611 23.2 4.6

93d M in l2 5 5 5 0.499 41.3 8.3



Appendix 2.6 Colon polyp protein determ ination from  Apcmin̂ + mice exposed to gefitinib
Durs

Sample Mouse
Polyp size 

(mm)
Abs

480nm Protein ug/5ul Protein ug/ul
117d M in468 4 0.634 18.9 3.8
118d Min468 3 0.631 19.3 3.9
120d M in468 3 0.649 16.7 3.3
121d M in468 4 0.609 22.6 4.5
122d M in468 4 0.547 31.8 6.4
123d Min468 2 0.723 5.7 1.1
124d Min468 3 0.689 10.7 2.1
125d M in468 3 0.624 20.4 4.1
126d M in468 2 0.702 8.8 1.8
127d M in468 2 0.666 14.1 2.8
129d M in468 2 0.739 3.3 0.7
130d M in468 2 0.744 2.6 0.5
131d Min514 4 0.454 54.3 10.9
132d Min514 2 0.704 11.1 2.2
133d M in514 3 0.689 13.7 2.7
134d Min514 4 0.618 26.0 5.2
135d M in514 4 0.647 20.9 4.2
136d M in l2 2 0 5 0.589 31.0 6.2
137d M in l2 2 0 4 0.648 20.8 4.2
138d M in l2 2 0 4 0.664 18.0 3.6
139d M in l2 2 0 3 0.708 10.4 2.1
140d M in l2 2 0 5 0.614 26.6 5.3

Colon polyp protein determ ination from  Apcmin/+ mice exposed to 0.5% Tween 80 vehicle 
for 8 hours

Sample Mouse
Polyp

size(mm)
Abs

480nm Protein ug/5ul Protein ug/ul

141d M in l2 0 6 2 0.748 3.5 0.7

142d M in l2 0 6 5 0.566 34.9 7.0

143d Min495 6 0.47 51.5 10.3

144d Min495 7 0.524 42.2 8.4

145d Min495 6 0.502 46.0 9.2

146d Min495 6 0.524 42.2 8.4

147d Min495 5 0.602 28.7 5.7

148d Min499 4 0.625 21.0 4.2

149d Min499 3 0.677 12.6 2.5

150d Min499 5 0.564 30.8 6.2

151d Min499 5 0.507 45.1 9.0

152d Min499 3 0.539 34.8 7.0

153d Min499 4 0.509 39.7 7.9

154d Min499 3 0.672 13.4 2.7

155d Min499 4 0.667 14.2 2.8

157d Min499 2 0.706 7.9 1.6



Appendix 2.6 Colon polyp protein determ ination from  Apcmin/+ mice treated with chronic
1% Tween 80 vehicle

Polyp size 
Sample Mouse (mm)

1C Min920 3
2C M in920 4
4C M in920 4
5C M in920 4
6C M in920 5
8C Min972 5
9C Min972 3

Abs
480nm

Protein
ug/5ul

Protein
ug/ul

0.611 24.6 4.9
0.636 20.3 4.1
0.486 46.5 9.3
0.556 34.2 6.8
0.449 53.0 10.6
0.498 44.4 8.9
0.739 2.2 0.4

Colon polyp protein determ ination from  Apcmin/+ mice treated with chronic gefitinib

Polyp size Abs Protein Protein 
Sample Mouse (mm) 480nm ug/5ul ug/ul

13C M in738 5 0.581 29.9 6.0
17C Min751 6 0.483 47.0 9.4
18C Min751 4 0.656 16.8 3.4
19C Min751 4 0.682 12.2 2.4
20C Min751 4 0.548 35.6 7.1
21C Min751 5 0.544 36.3 7.3
23C Min729 5 0.511 42.1 8.4

24C Min729 5 0.517 41.1 8.2

Colon polyp protein determ ination from  Apcmin/+ mice treated w ith chronic AZ12253801

Polyp size Abs Protein Protein 
Sample Mouse (mm) 480nm ug/5ul ug/ul

25C M in l0 0 3 4 0.59 28.7 5.7
26C M in l0 0 3 3 0.548 34.7 6.9
27C M in l0 0 3 4 0.607 26.2 5.2
28C M in l003 3 0.741 7.0 1.4
29C M in l003 2 0.77 2.9 0.6
30C M in l003 2 0.66 18.6 3.7
31C M in l0 5 0 4 0.66 18.6 3.7
32C M in l0 5 0 4 0.655 19.4 3.9
33C M in l0 5 0 3 0.65 20.1 4.0
34C Min 1050 4 0.606 26.4 5.3
35C M in l0 5 0 4 0.662 18.4 3.7
36C M in l058 3 0.692 14.1 2.8
37C M in l058 4 0.679 15.9 3.2

38C M in l058 4 0.594 28.1 5.6



Appendix 2.7 Protocol for Haematoxylin and Eosin staining

Step Reagent Time

1 Xylene 2min

2 Xylene 2min

3 Xylene 2min

4 100% Ethanol 2min

5 100% Ethanol 2min

6 100% Ethanol 2min

7 95% Ethanol lm in

8 70% Ethanol lm in

9 W ater 3min

10 Gills II Haematoxylin 5min

11 W ater 3min

12 1% Acid alcohol lOsec

13 W ater 5min

14 1% Eosin 5min

15 W ater 30sec

16 70% Ethanol 30sec

17 95% Ethanol lm in

18 100% Ethanol lm in

19 100% Ethanol 2min

20 100% Ethanol 2min

21 Xylene lm in

22 Xylene 2min

23 Xylene 2min

Sections mounted under cover glass using DPX mountant. All reagents 
and consumables obtained from Thermo Fisher Scientific


