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Abstract
This thesis presents a framework for soft tissue modelling, facial surgery simulation, and 

facial movement synthesis based on the volumetric finite element method.

Assessment of facial appearance pre- and post-surgery is of major concern for both patients 

and clinicians. Pre-suigical planning is a prerequisite for successful surgical procedures and 

outcomes. Early computer-assisted facial models have been geometrically based. They are 

computationally efficient, but cannot give an accurate prediction for fecial surgery 

simulation. Therefore, in this thesis, the emphasis is placed on physically-based methods, 

especially the finite element technique.

To achieve realistic surgery simulation, soft tissue modelling is of crucial importance. 

Thus, in this thesis, considerable effort has been directed to develop constitutive equations 

for facial skeletal muscles. The skeletal muscle model subsequently developed is able to 

capture the complex mechanical properties of skeletal muscle, which are active, 

quasi-incompressible, fibre-reinforced and hyperelastic. In addition, to improve the 

characterisation of in-vivo muscle behaviour, a technique has been developed to visualise 

the internal fibre arrangement of skeletal muscle using the FEM-NURBS method, which is 

the combination of the finite element method and the non-uniform rational B-spline solid 

mathematical representation.

Another principal contribution made in this thesis is the three-dimensional finite element 

facial model, which can be used for the simulations of facial surgery and facial movement. 

The procedure of one cranio-fecial surgery is simulated by using this facial model and the 

numerical predictions show a good agreement with the patient post-surgical data. In 

addition, it would be very helpful to also simulate the fecial movement and facial 

expressions. In this thesis, two facial expressions (smile and disgust) and the mouth 

opening are simulated to assess the post-suigical appearance and test the muscle-driven 

facial movement simulation method.
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Chapter 1 Introduction

Chapter 1 

Introduction

Since the development of modem medical imaging techniques, such as computer 

tomography (CT) and magnetic resonance imaging (MRI), computer assisted facial surgery 

has become a reality. Experimental limitations and difficulties are another drive for 

developing computer aided facial surgery simulation systems. The early facial models are 

parameterised, and just aim at the facial animation on a computer. More recent facial 

models are moving towards physically-based techniques, since they can give more realistic 

simulations. Methods for developing physically-based models include the mass-spring, the 

mass tensor and the finite element methods. The models developed in this thesis are finite 

element based.

1.1 Motivation and objectives

The motivations for the work presented in this thesis include the finite element modelling 

of facial soft tissues, the outcome prediction of the facial surgery and the simulation of 

facial movements.

•  Facial soft tissue modelling

For the purpose of realistic suigery simulation, the soft tissue deformations under external 

forces are of crucial importance, and depend on the constitutive law of soft tissues. The 

more precise the physical properties of the soft tissues in the facial model, the more
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realistic will be the simulation. More details about the response of soft tissues can be found 

in Fung’s book (1981). Most of the current soft tissue models are based on the linear elastic 

approximation, because it is robust and efficient. However, this kind of model cannot 

accurately describe the mechanical properties of soft tissues, and is not suitable for large 

deformations. Thus a model with appropriate soft tissue constitutive relations is a 

prerequisite in providing a realistic facial surgery simulation.

•  Facial surgery simulation

In modem society, personal looks are crucial in interpersonal relationships. For this reason, 

people with facial disharmony and diseases are more likely to seek facial surgery to 

normalise their facial appearance and to make them more attractive. From the patient’s 

point of view, it would be of great benefit to be able to predict their post-surgery facial 

appearance. From the clinician’s point of view, the post-surgical prediction could help plan 

the surgery and optimize the surgical procedures. Therefore, a reliable facial surgery 

simulation system would be considerably valuable for use by both clinicians and patients.

•  Facial movement simulation

Patients may be unfamiliar with their facial appearance after surgery. Sometimes the patient 

and close family and friends are dissatisfied with the new appearance and would like to 

seek further corrections to achieve their goal. Therefore, prior to surgery, the patient should 

have the opportunity to preview the planned post-surgery facial appearance especially 

when the swelling has receded. The clinician could improve and adjust their surgical 

techniques to enhance the positive and minimize the negative facial effects. For these 

reasons, it would be very helpful to preview not only the post-surgical static face, but also 

the movement of the post-surgical face exhibited during facial expressions.

The arguments above have provided the motivation of this study. The objectives of this 

thesis are to develop reliable numerical soft tissue models and a facial model, which can 

give an accurate prediction of the facial surgery and can be used for the simulation of facial 

movements.
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1.2 Contributions

The major contributions of this thesis are summarised as follows.

•  A validated three-dimensional constitutive skeletal muscle model

Existing three-dimensional (3D) constitutive skeletal muscle models are mainly derived 

from either Hill-type three-element or Huxley-type cross-bridge models. Due to the lack of 

experimental data published on skeletal muscle mechanical properties, existing 3D 

constitutive skeletal muscle models are not reliable. The first contribution of this thesis is a 

validated 3D constitutive skeletal muscle material model. This model is able to characterise 

the skeletal muscle complex mechanical behaviour, including active, quasi-incompressible, 

fibre-reinforced and hyperelastic response. The model is validated by comparing the finite 

element (FE) simulation results with published experimental studies on the New Zealand 

white rabbit tibialis anterior muscle. The results show that the model is able to capture both 

the active and passive muscle tissue behaviour for strains below failure.

•  A three-dimensional finite element facial model

Due to the complex facial anatomy, it is impossible for the clinician to predict the 

post-surgical soft tissue changes. Thus, a computer-aided facial surgery system is needed to 

assist with the prediction of the post-surgical appearance. The second contribution of this 

thesis is a three-dimensional finite element fecial model which can be used for the 

prediction of facial surgical outcome and the simulation of facial movements. This facial 

model is an anatomy-based model, where the skull and fecial skin are reconstructed from 

the patient specific Cone Beam Computerised Tomography (CBCT) scan data with the 

facial muscle geometry being taken from a standardised forensic database provided by the 

School of Life Sciences, University of Dundee.
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•  Simulations of the cranio-facial surgery and facial movements

The numerical facial model developed in this work can be used for many kinds of 

simulation. The third contribution is the simulation of cranio-facial surgery and 

muscle-based facial movements using the developed facial model. The simulation of a 

clinical case requiring cranio-facial surgery is presented. The result of the numerical 

prediction agrees with the patient’s 6-month post-surgical data, showing the correction of 

the developed facial model. For the simulation of facial movements, a novel approach is 

proposed. In this approach, the muscles responsible for facial expressions are assigned by a 

3D skeletal muscle material model specifically developed. Using this approach, two facial 

expressions and the mouth opening process are simulated.

•  FEM-NURBS method for modelling the fibre arrangement of skeletal 

muscle

To accurately characterise the in vivo muscle behaviour, the internal features, such as the 

fibre arrangement, need to be visualised. The last contribution of this thesis is the proposed 

FEM-NURBS method, which is the combination of the finite element method (FEM) and 

the non-uniform rational B-spline (NURBS) solid mathematical representation. Several 

numerical examples demonstrate that this method is able to characterise both the fibre 

arrangement and the biomechanical response of skeletal muscle.

1.3 Outline and organisation

The structure of the present thesis consists of six chapters: 1) Introduction, 2) Background 

knowledge, 3) Constitutive skeletal muscle model, 4) Three-dimensional finite element 

facial model and facial movement simulation, 5) Modelling the fibre arrangement of 

skeletal muscles using the FEM-NURBS method, 6) Conclusions and future work.

Chapter 1 gives the motivation and objectives of this thesis, and the contributions to the 

science and technology.
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Chapter 2 provides the background knowledge on which this thesis is based. Facial 

anatomy is briefly described. Information on the skeletal muscle structure, architecture and 

mechanical properties are then provided. Finally, basic notions and mathematics relevant to 

general elastic constitutive models are summarised and presented.

Chapter 3 concerns the mechanical description of constitutive skeletal muscle model. 

Firstly, a review is given on existing constitutive skeletal muscle models and experimental 

data published on skeletal muscle mechanical properties, which suggests a validated 3D 

constitutive skeletal muscle model is needed. Then the detailed description of the 

developed constitutive skeletal muscle model and the LS-DYNA implementation of this 

model are presented. Finally, the validation of the developed skeletal muscle model is 

provided through several numerical tests.

Chapter 4 focuses on the construction of a three-dimensional (3D) finite element facial 

model and the simulation of facial movements. After an overview of various facial models, 

including geometric models, mass-spring models, finite element models, etc., the procedure 

for constructing the 3D finite element facial model is detailed. Then the applications of this 

facial model, including the outcome prediction of a cranio-facial suigery and the simulation 

of muscle-based facial movements, are presented.

In Chapter 5, a FEM-NURBS method is presented to model the fibre arrangement of 

skeletal muscle. Firstly, the related work on muscle fibre arrangement representations is 

reviewed. Secondly, the background information on the NURBS mathematical description 

is summarised. Following this, a FEM-NURBS method using ABAQUS is introduced and 

the relevant muscle constitutive relation is provided. Finally, the validation of the proposed 

FEM-NURBS method is discussed.

Chapter 6 summarises the main results of this thesis and provides the guidelines for future 

improving work.
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Chapter 2 

Background Knowledge

The biomechanical modelling of the facial structure requires a comprehensive knowledge 

of three major fields: facial anatomy, facial physiology and continuum mechanics. 

Anatomy is the study of internal and external structure of the body and the physical 

relationships among body parts. In contrast, physiology is the study of how living 

organisms perform their vital functions. Anatomy and physiology are closely integrated 

both theoretically and practically. Anatomical information provides clues about functions, 

and physiological mechanisms can be explained in terms of the underlying anatomy. The 

knowledge of anatomy and physiology of the human face enables us to understand 

important mechanisms of the human face. The knowledge of continuum mechanics enables 

us to simulate the mechanisms of human facial movements, that is the biomechanics of the 

human face.

In this chapter, firstly the facial anatomy is described. Then, the focus is placed on the 

physiology and mechanical properties of human skeletal muscle. Finally, a basic 

knowledge of the non-linear solid mechanics is provided. These are the fundamental 

sections that form the basis of this thesis.

2.1 Facial anatomy

This section presents knowledge of the anatomy of the facial skin, facial muscles around 

the head and neck, and the skull.



__________________________________________________________ Chapter 2 Background Knowledge

2.1.1 Facial Skin

Facial skin provides the outermost covering of the face. The facial skin structure consists of 

three main layers: the epidermis, the dermis and the hypodermis (Maurel, Wu, Thalmann et 

al., 1998). The superficial layer, the epidermis, is a relatively thin layer of stratified 

epithelium. It is around 0.1 mm thick (Odland, 1991). The underlying dermis is mainly 

composed of collagen fibres, ground substance and elastic fibres. Since there is no sharp 

boundary between the dermis and the subcutaneous layer, the thickness of the dermis is 

hard to measure and varies over a range from 0.5 mm to 4.0 mm (Odland, 1991). The third 

layer, the hypodermis, is composed of loose fatty connective tissue. Thus it is also called 

the subcutaneous layer. Atypical structure of human skin is shown in Figure 2.1.

HUMAN SKIN

■ Stratum corneum 
Granular cell layer

Spinous cell layer
cell layer

Sebaceous gland
Erector pili muscle

Sweat gland 
Nerves 
Hair follicle

Collagen and 
elastin fibres
Artery
Vein
Fat (adipose) 
tissue©  Epidermis ©  Dermis 

©  Subcutaneous tissue

Figure 2.1 Structure of human skin (Melbourne Dermatology, 2009)

2.1.2 Muscles of human head and neck
The muscular structure that connects the facial skin and the skull is extremely complex. 

A muscle in the muscular system shortens under neural control, causing the soft tissues and 

bony structures to move. Each muscle has two attachments to these structures, called origin 

and insertion according to their roles in the movement. The origin is the end of the muscle 

that is attached to the least movable structure and the insertion is the other end of the
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muscle that is attached to the more movable structure. In general, the insertion of a muscle 

moves toward the origin when the muscle contracts.

The muscles of the human head and neck can be divided into several groups by functions. 

In this thesis, three groups of them are considered, i.e. muscles of facial expression, 

muscles of mastication and the hyoid muscles.

Zygomaticus minor"

•  Muscles of Facial expression

The muscles of facial expression are paired muscles in the superficial fascia of the facial 

tissues, as shown in Figure 2.2. All the muscles of facial expression originate from the 

surface of the skull bone and insert into the dermis of the skin tissue. When the muscle

contracts, the facial skin moves.

Epicranial —
aponeurosis

Procerus

Levator labii 
superioris 

alaeque nasi

Nasalis 

Levator labii
superioris

Zygomaticus major

Levator anguli oris 

Risorius

Depressor anguli

Platysma 

Depressor labii inferioris

Occipitofrontalis 
I frontal belly

Corrugator supercilii 

Orbicularis oculi

Levator labii superioris 
alaeque nasi

Levator labii superioris 

Zygomaticus minor 

Zygomaticus major 

Levator anguli oris

Buccinator 

Masseter 

Orbicularis oris

Depressor anguli oris

Depressor labii inferioris

Mentalis

Figure 2.2 Muscles of facial expression (Schuenke, Schulte, Schumacher et al., 2007)
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During facial expression, the muscles act in various combinations to vary the appearance of 

the face (MaKinley and Olxxighlin, 2005; Martini, Ober, Garrison et al., 2006; 

Martini,Timmons and Tallitsch, 2008; Schuenke, Schulte, Schumacher et al., 2007), as 

summarised in Table 2.1. Examples of facial expressions by using some of these muscles 

are shown in Figure 2.3. In Figure 2.3A, the patient uses levator labii superioris muscle, 

levator anguli oris muscle, risorius muscle, zygomaticus minor and major muscles to 

provide a look of smile; In Figure 2.3B, the patient uses corrugator supercilii muscle, 

levator labii superioris alaeque nasi muscle and depressor anguli oris muscle to provide a 

look of disgust.

Table 2.1 Muscles of fecial expression and their associated fecial expressions

Muscles Facial Expression

Buccinator Chewing

Corrugator supercilii Frowning

Depressor anguli oris Frowning

Depressor labii inferioris Lowering lower lip

Epicranial Surprise

Levator anguli oris Smiling

Levator labii superioris Raising upper lip

Levator labii superoris alaeque nasi Raising upper lip and dilating nostrils in a sneer

Mentalis Raising chin and protruding lower lip

Orbicularis oculi Closing eyelid

Orbicularis oris Closing and pursing lips, pouting and grimacing

Platysma Raising neck skin and grimacing

Risorius Stretching lips

Zygomaticus major Smiling

Zygomaticus minor Raising upper lip, assisting in smiling
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Levator angul 
ori< 

Risorius

Levator labii 
superioris

Zygomaticus
major

Zygomaticus
minor

Corrugator supercilii 
muscle

Levator labii superioris 
alaeque nasi muscle

Depressor anguli oris 
muscle

Figure 2.3 Examples of facial expressions, Left: smiling; Right: Disgusted (Schuenke,

Schulte, Schumacher et al., 2007)

•  Muscles of m astication

The muscles of mastication are four pairs of muscles attached to the mandible: the masseter, 

the temporalis, the medial pterygoid and the lateral pterygoid muscles (Figure 2.4).

The muscles of mastication are responsible for closing the jaws, moving the lower jaw 

forward or backward and shifting the jaw laterally. These jaw movements involve the 

movement of the mandible, while the rest of the skull remains relatively stable.

Medial pterygoid

Masseter

Temporalis

Lateral
pterygoid

Figure 2.4 Muscles of Mastication (Schuenke, Schulte, Schumacher et al., 2007)
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•  Hyoid muscles

The hyoid muscles assist in the actions of mastication, swallowing and opening of the 

mouth, etc. Most of these muscles are in a superficial position in the neck tissues. The 

hyoid muscles are attached in a complex way to the hyoid bone. Based on their relationship 

to the hyoid bone, they can be grouped to the suprahyoid muscles, which are above the 

hyoid bone, and the infrahyoid muscles, which are below the hyoid bone, as shown in 

Figure 2.5. The hyoid bone is a horseshoe-shaped bone suspended beneath the mandible, 

with the open end of the horseshoe pointed posteriorly. The hyoid bone does not articulate 

with any other bone and its only connection with other bones is through muscles and 

ligament attachment.

muscle

Sternothyroid
muscle

Anterior belly of 
digastric muscle

Posterior belly of 
digastric muscle

Thyroid cartilage

Sternohyoid muscle

Sternocleidomastoid
muscle

Inferior belly of 
omohyoid muscle

Mylohyoid

Stylohyoid muscle

Hyoid bone
Superior belly of 
omohyoid mscle 

Thyrohyoid muscle

Figure 2.5 Neck muscles (Fehrenbach and Herring, 2006)

The specific origin and insertion of facial muscles of interest are listed in Table 2.2.
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Table 2.2 Origin and insertion of fecial muscles (Fehrenbach and Herring, 2006)

Muscles Origin Insertion
Anterior digastric intermediate tendon medial surface of mandible

Buccinators Maxilla, mandible and 
pterygomandibular raphe Angle of mouth

Depressor anguli oris Mandible Angle of mouth
Depressor labii 

inferioris
Mandible Lower lip

Geniohyoid Genial tubercles of mandible Body of hyoid bone

Lateral pterygoid

Superior head: greater wing 
of sphenoid bone 

Inferior head: lateral 
pterygoid plate from sphenoid 

bone

Both heads: pterygoid 
fovea of mandible

Levator labii superioris Infraorbital rim of the maxilla Skin tissue of the upper lip
Levator labii superioris 

alaeque nasi
Frontal process of the maxilla The skin tissue of the ala of 

the nose and the upper lip
Levator anguli oris Maxilla Angle of mouth

Masseter

Superficial head: anterior two 
thirds of lower border of 

zygomaticus arch 
Deep head: posterior one 

third and medial surface of 
zygomaticus arch

Superficial head: angle of 
mandible

Deep head: ramus of 
mandible

Medial pterygoid Pterygoid fossa of sphenoid 
bone

Angle of mandible

Mentalis Mandible chin
Mylohyoid Mylohyoid line of mandible Body of hyoid bone

Orbicularis oculi Orbital rim, frontal and 
maxillary bones

Lateral region of eye, some 
encircle eye

Orbicularis oris Encircle mouth Angle of mouth
Posterior digastric mastoid notch of temporal 

bone
intermediate tendon

Risorius Fascia superficial to masseter 
muscle Angle of mouth

Stylohyoid Styloid process of temporal 
bone Body of hyoid bone

Temporalis Temporal fossa Coronoid process of 
mandible

Zygomaticus major Zygomatic bone Angle of mouth
Zygomaticus minor Zygomatic bone Upper lip
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Chapter 2 Background Knowledge

2.1.3 Human Skull

The human skull is the foundation for the soft tissues of the face and head. The bones of the 

skull play several different roles. They protect the brain, form the facial skeleton, and 

participate in jaw movement. The skull is composed of 22 bones which can be grouped into 

two categories based upon their roles. Eight bones make up the neurocranium, surrounding 

the brain and fourteen bones make up the viscerocranium, forming the face. Some of these 

bones are single, e.g. the frontal bone, mandible, etc., and some are paired bones, e.g. the 

maxilla, temporal bones, zygomatic bones, etc.

2.1.4 Temporomandibular Joint

The temporomandibular joint (TMJ) is a joint located on each side of the skull that allows 

for the movement of the mandible. As its name indicates, the TMJ is the articulation 

between the temporal bone and the mandible, as shown in Figure 2.6.

TEMPORAL BONE

MANDIBLE

Mandibular fossa

Zygomatic process 
of temporal bone

Articular eminence

Lateral pole of condyle

Temporomandibular 
joint (TMJ)

External auditory 
meatus

Mandibular condyle 
Tympanic plate 
Neck of condyle

Mastoid process

Figure 2.6 Lateral view of the bones of the temporomandibular joint (Liebgott, 2001)

The TMJ has two distinct types of movement: a rotational movement and a gliding 

movement. The gliding movement allows the lower jaw to move forward (protrusion) and 

backward (retrusion). The protrusion involves the bilateral contraction of the lateral 

pterygoid muscles and the retrusion involves the contraction of the posterior portions of 

both temporalis muscles. The movements accomplished by TMJ rotation are the depression
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and elevation of the mandible. The muscles involved in elevating the mandible are the 

bilateral masseter, temporalis, and medial pterygoid muscles, while the muscles involved in 

depressing the mandible are the inferior heads of the lateral pterygoid and the anterior 

suprahyoid muscles.

The various movements of the jaw during speech and mastication are accomplished by the 

combination of these two basic movements: gliding and rotation. For example, opening the 

mouth involves both depression and protrusion of the mandible and closing the mouth 

involves both elevation and retrusion of the mandible, as shown in Figure 2.7.

FibrousArticular fossa

Postglenoid process 

Condyle

Articular eminence

Figure 2.7 Opening and closing of the mouth (Bath-Balogh,Fehrenbach and Thomas,

2006)
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2.2 Skeletal muscles

In this section, the structure, architecture, mechanical properties and the contraction 

dynamics of the skeletal muscle tissue will be reviewed.

Skeletal muscle

Intercalated disks Cross-striations Myocytes
Nuclei

A m

Muscles are distinguished from other soft tissues by their specific contractile properties.

They can be classified into three types based on the functions they fulfil (Pocock and

Richards, 2004; Widmaier, Raff and Strang, 2005):

•  Smooth muscle: This

muscle lies in the hollow Nuclei Cross-striations

organs and blood vessels of 

the body and is regulated by 

the autonomic nervous 

system.

•  Cardiac muscle: This

muscle forms the wall of 

the heart and is also 

controlled by the autonomic 

nervous system.

•  Skeletal muscle: This

muscle is also called 

voluntary muscle, since 

they can be made to 

contract or relax by 

conscious control. As its 

name implies, skeletal 

muscle is the muscle 

directly attached to the 

bones of the skeleton and its

men /V

mmmMillId
GUM
Cardiac muscle

Nuclei Smooth muscle 
cells

Smooth muscle

Figure 2.8 Microscopical appearance of 

skeletal muscle, smooth and cardiac muscle 

(Pocock and Richards, 2004)

role is to maintain posture and move the limbs by contracting.
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2.2.1 Skeletal muscle structure

A hierarchical structure of the skeletal muscle is shown in Figure 2.9. It can be seen that a 

muscle belly comprises a large number of fasciculi enclosed in a connective sheath, the 

epimysium. The fasciculi are formed by bundles of muscle fibres surrounded by a strong 

connective sheath, the perimysium. The spaces between the muscle fibres within a bundle 

are filled by a soft connective tissue called endomysium. Within a muscle fibre, there are a 

large number of myofibrils, whose diameter is approximately 1pm. The filaments of 

myofibrils are called myofilaments which are the formation of the smallest functional unit 

of muscle, termed the sarcomere. The sarcomere consists of two types of filaments: thin 

and thick filaments. The thin filaments consist primarily of the protein actin and the thick 

filaments consist primarily of the protein myosin (Berne and Levy, 2000).

Myosin

Cross-bridge
Actin Sarcomere

Figure 2.9 The organisational hierarchy of skeletal muscle adapted from Gray’s anatomy

(Warwic and Willems, 1973)

Muscle belly
Bundle fibres

Myofibril

The structure of a myofilament and the spatial arrangement of the actin and myosin 

molecules are shown in Figure 2.10. It is shown that each myofibril is composed of arrays 

of myofilaments, which are divided transversely by the Z-disk into serially repeating 

regions called sarcomere which is about 2.5 pm long. The area between the Z-disk is 

further divided into two bands: I band and A band, where the I band mainly contains thin 

actin filaments, whose diameter is about 5nm and the A band contains myosin filaments, 

whose diameter is around 12nm. Within the A band, the central region is called the H band, 

where there is no actin-myosin overlap when the muscle is in a relaxed state. Finally, the
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line transversely across the H band is called the M-line. More information of the 

myofilament structure can be found in Carola, Wynsberghe et al.(1995), Silverthom, Ober 

et al. (2009), Warwic and Willems (1973) and Widmaier, Raff et al. (2005).

Z disk Z disk

Thin filament

Thick filament

1 band H zone M  line Outer edge o f A band
thin filaments thick filaments thick filaments linked thick and thin

only only with accessory proteins filaments overlap

Sarcomere

Z disk

Figure 2.10 Structure of a myofilament (Silverthom, Ober, Garrison et al., 2009)

The actin filaments are attached at one end to the Z-line and are free at the other end to 

interact with the myosin filaments. When a muscle contracts, the actin is pulled along 

myosin toward the centre of the sarcomere until the actin and myosin filaments are 

completely overlapped. If the muscle contracts greatly, I- and H- bands may narrow to 

extinction, but the A-bands remain unaltered, as shown in Figure 2.11. This is called the 

sliding filament theory of muscle contraction (Tortora and Grabowski, 2002; Vander, 

Sherman and Luciano, 2003).
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2 Sarcomeres
 1

H zone I band A band
I— 1— I I '--------- 1---------L

l i i l t l i L i J n i l ii i n i ' h t '
w p t ^ i W r i

I Thick filament 
Z disc Thin filament Z disc M line Z disc

(a) Relaxed muscle

(b) Partially contracted muscle

’.'i'.T *"r :

(c) Maximally contracted muscle

Figure 2.11 Sliding filament mechanism of muscle contraction (Tortora and Grabowski,

2002)

2.2.2 Skeletal muscle architecture

The muscle architecture is defined by the arrangement of the muscle fibres (Warwic and 

Willems, 1973). The most common muscle architectures are the parallel fibred and the 

pennate, as shown in Figure 2.12. In a parallel fibred muscle, the fibres are arranged along 

the long muscle axis and have almost the same length as the muscle. In contrast, the 

pennate muscle fibres run obliquely to the long axis and are relatively short compared to 

the muscle length. The uni-pennate muscles have the tendon running along one side. In 

bi-pennate muscles, the tendon passes through the centre of the muscle and the fibres are 

attached to it on either side. In multi-pennate muscles, the fasciculi are arranged such that 

they converge on many tendons. The fibres of a pennate muscle are connected to the 

aponeurosis of the muscle, which is also called the internal portion of the tendon since its 

properties are the same as those of the external portion of the tendon. Figure 2.13 shows the
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Figure 2.12 Muscle architectures, from left to right: unipennate, bipennate and fusiform

C

Figure 2.13 Muscle-tendon architecture in a pennate muscle (Zajac, 1989)

2.2.3 Mechanical properties of skeletal muscle

In this section, the main mechanical properties of skeletal muscle will be discussed.

Non-linearity: The muscle tissue exhibits a non-linear stress-strain relationship which is 

characterised by four regions: in region I, the tissue is under low strains, its response is 

linear; in region II, the tangential modulus of the tissue increases due to the straightening of 

the collagen fibres; in region III, all the fibrils become taut and the tangential modulus of 

the tissue reaches a maximum value, thus the stress increases linearly with the strain in the

Muscle
S'  ' \

aponeurosis
fibres

external internal
 s--------------------y ----------------------

Tendon
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region; in region IV, groups of fibrils begin to fail and tissue destruction occurs, therefore 

the tangential modulus decreases, as shown in Figure 2.14.

in IV

Strain

Figure 2.14 Non-linear stress-strain curve of soft tissue (Fung, 1981)

Anisotropy: If a material property depends on the material directionality, it is called 

anisotropic material. Skeletal muscle is generally anisotropic because of the arrangement of 

its muscle fibres (Swatland, 1995). In this study, the muscle tissue is modelled as a 

transversely isotropic material by assuming the muscle is made of one branch of muscle 

fibres.

Viscoelasticity: The response of a viscoelastic material depends on the history of the 

deformation, i.e. the stress produced in the material is a function of not only the strain but 

also the strain rate and the strain history. The stress values appear higher at larger strain rate 

than those at a lower strain rate for the same strain, as shown in Figure 2.15 (Davis, 

Kaufman and Lieber, 2003; Myers, Wooley, Slotter et al., 1998). The stress relaxation 

behaviour of the muscle tissue has been demonstrated by the Van Loocke group (Van 

Loocke, Lyons and Simms, 2008). They performed compression tests in vitro on fresh 

porcine skeletal muscle at various rates and in different orientations of the tissue fibres.
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The test results showed that when the muscle is compressed and maintained at its new 

length, the amplitude of the stress gradually drops with the time. Other time-dependent 

behaviour of the muscle tissue includes creep, which means when the tissue is suddenly 

submitted to a constant tensile stress, its length gradually increases with the time. The 

evidence of creep phenomenon in the muscle tissue can be found in Pinto and Patitucci 

(1977).

•■—Myers et al.'s data, strain rate 25/s 
■•—Myers et al.'s data, strain rate 10/s 
a— Myers et al.'s data, strain rate 1/s 
▼—Davis et al.'s data, quasi-static

Engineering strain (%)

Figure 2.15 Engineering stress versus strain curves for passive rabbit leg muscle

Quasi-incompressible material: Muscle tissue can be regarded as a quasi-incompressible 

material because it is made up of about 80% incompressible water, 3% fat and 10% 

collagenous tissues.

2.2.4 Contraction dynamics of skeletal muscle

Differing from other soft tissues, the skeletal muscle tissue has a unique feature of 

voluntary contraction. The contraction dynamics of the muscle is discussed below.

Force-Iength relationship: The force-length relationship provides an isometric contraction 

characteristic for the skeletal muscle tissue. This relationship is obtained from the static 

tests of muscle tissues (Edman, 1966; Gordon, Huxley and Julian, 1966). The muscle was
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held at different lengths, and both the passive and the fully contracted muscle forces were 

recorded. The active force is the difference between the forces developed when muscle is 

activated and when muscle is passive.

—■—Active 
— Total  
—a-  Passive

u.

Length L'

Figure 2.16 Muscle force-length relationship curves -  fully activated state (Zajac, 1989)

— Active 
—• —Total 
—* Passive

u_

u.

Length L*

Figure 2.17 Muscle force-length relationship curves -  half activated state (Zajac, 1989)

The isometric active and passive force-length curves are shown in Figures 2.16 and 2.17, 

where in Figure 2.16, the muscle is fully activated and in Figure 2.17, the muscle is 50% 

activated. The sliding filament theory of muscle contraction provides a clear explanation 

for the skeletal muscle force-length relationship. When the muscle is at its resting length, 

there is a maximum tension, because the thin and thick filaments overlap optimally and
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form a maximum number of cross-bridges. As the muscle lengthens, the filaments are 

pulled apart and the number of cross-bridges reduces. This leads to a decline in the ability 

of the muscle to generate tension. As the muscle shortens, the filaments from each end of 

the sarcomere touch in the centre of the A band and each interferes with the motion of the 

other. As a result, tension development declines.

Force-velocity relationship: The force-length relationship cannot account for muscle 

dynamic properties. Thus the force-velocity relationship is developed by measuring the 

velocity of a fully activated shortening muscle subjected to a constant tension. A 

force-velocity graph is shown in Figure 2.18. The mechanical power output that the active 

muscle can deliver is described in the force-velocity curve. It can be seen that the peak 

power output occurs when the muscle shortens at around OJvmax (Woledge, Curtin and 

Homsher, 1985).

 Force-velocity
 Power-velocity

O

H

Power output
Force

0.075 cx

0.0250 .2 -

0.0
-0.4 - 0.2 0.0 0.2 0.4 0.6 0.8 1.0

Normalised velocity, v/vo 

Figure 2.18 Muscle force-velocity relationship curve (McMahon, 1984)

When a fully activated muscle is subjected to a constant tension, it will first shorten and 

then stop. The length where the shortening terminates corresponds to the length specified 

by force-length relation curve of the fully activated muscle. As a result of this, the 

mechanical properties of skeletal muscle can be described by a force-length-velocity 

relation (Gatto and Swannell, 1990).

Page 23



Chapter 2 Background Knowledge

2.3 Basics of non-linear solid mechanics

Skeletal muscle tissue is usually considered as an active, quasi-incompressible, transversely 

isotropic and hyperelastic material. There is currently no available software which 

presently describes these kinds of materials. However, ABAQUS and LS-DYNA provide 

the interfaces which allow the users to define their own material models. Before developing 

the constitutive models, it is worthwhile to revisit the basic notions and some general 

constitutive models within the framework of non-linear solid mechanics.

Summarised below in Chapter 2.3.1 are some basic notions, including definitions of 

deformation gradient, Cauchy stress, etc. for more details, see Belytschko, Liu and Moran 

(2000) and Shabana (2008); Summarised below in Chapter 2.3.2 are some general elastic 

constitutive models, including hyperelastic models, isotropic hyperelastic models and 

transversely isotropic hyperelastic models, for more details, see Belytschko, Liu and Moran 

(2000) and Weiss, Maker et al. (1996).

2.3.1 Basic notions

Let By be a continuum body which is a set of points, referred to as particles. The domain of 

the body By in the initial state is denoted by fio and called the reference configuration, 

which is also called the undeformed configuration. The domain of the body in the current 

state is denoted by Q, and called the current configuration, which is also called the 

deformed configuration. The boundaries in the reference and current configurations are 

denoted by T0 and Tt , respectively. The domain can be one-, two- or three-dimensional. 

Thus, the boundary corresponding to the two end-points is a line segment in one dimension, 

a curve in two dimensions and a surface in three dimensions. Two neighboring particles in 

the undeformed configuration are denoted by Po and Qo and the corresponding particles in 

the deformed configuration are denoted by Pt and Qt, as shown in Figure 2.19.
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y,Y

u+du

dX

X+dX x+dx

z. Z

Figure 2.19 Reference and current configurations of a continuum body 

A. Lagrangian and Eulerian coordinates

The position vector of a material point in the reference configuration is given by 

(Belytschko, Liu and Moran, 2000):

X = XI EI (2.1)

where X Y are the components of the position vector in the reference configuration and 

E1 are the unit base vectors of a rectangular Cartesian coordinate system in the reference 

configuration. The coordinates X x give the position of a material point, thus are called 

material coordinates or Lagrangian coordinates.

Correspondingly, the position vector of a point in the current configuration is given by 

(Belytschko, Liu and Moran, 2000):

X = x,e' (2.2)

where x  are the components of the position vector in the current configuration and e' 

are the unit base vectors in the current configuration. The coordinates xt give the spatial 

position and are called spatial coordinates or Eulerian coordinates. In this thesis, whenever 

indicial notation is employed, lower-case letters refer to the deformed configuration and 

upper case to the reference configuration.

Page 25



Chapter 2 Background Knowledge

B. Motion and displacement

A point in the reference configuration &0 is mapped to the point in the current 

configuration Q* through the following relationship (Shabana, 2008):

x = <p(X,0 = X+a(X,0 (2.3)

where x is the position of the material point X at time t and u(X,t) is the displacement of 

a material point.

C. Deformation gradient

The deformation gradient is an important variable in the characterisation of the deformation. 

It is defined as (Belytschko, Liu and Moran, 2000):

F(X ):=d#>/3X = X |S - e ‘EI (2.4)
aX j

It should be noted that, in the terminology of mathematics, the deformation gradient F is

the Jacobian matrix of the mapping function <p(X, t ) . The determinant of F is called the

Jacobian determinant or the determinant of the deformation gradient.

J  := detF (2.5)

Note that, Jis a scalar and for an incompressible material, it equals one.

A multiplicative decomposition of the deformation gradient is always applied to decouple 

the deviatoric and dilatational response (Flory, 1961):

(26)

where := Jl/3I  is the dilatational part, also called the volumetric response and 

:= J~113F is the deviatoric part, sometimes called the isochoric response.

The determinant of the deviatoric deformation gradient is always unity, i.e. det^*,) = 1. 

Therefore, det(Fw/) = detF = J , which means only the volumetric deformation gradient Fw/ 

contributes to the volume change of the material.
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D. Strain measures

There are a number of different measures of strain used in non-linear continuum mechanics. 

The ones considered in this thesis are the Green strain, the right and left Cauchy-Green 

deformation tensors. In this section, the definitions of these strain measures are given.

The Green strain or Lagrangian strain measures the difference of the square of the length of 

an infinitesimal segment in the current configuration and the reference configuration.

The square of the length of the material vector dX in Figure 2.19 is given by:

(dX)2 = dXtdXf = SijdXidXj (2.7)

In the deformed configuration, this is given by:

(dx)2 = dxidxi = Svdxidx] (2.8)

where is the kronecker delta, with 5i}, = 1 if i = j and Si} = 0 if i * j.

Then the difference of the square of the length is given by:

(d x f  -  (dX)2 = 2dXE</X (2.9)

where E is the Green strain tensor and given by

E = |(F rF -l)  (2.10)

or

(211 )

I is the second order unit tensor.

The right and left Cauchy-Green deformation tensors are defined respectively as (Weiss, 
Maker and Govindjee, 1996):

C:=FTF = FtfFi/E/Ey (2.12)

B:=FFT=FtfF^eV  (2.13)
The right and left Cauchy-Green deformation tensors can be used as a measure of the 

deformation because in the case of an arbitrary rigid-body displacement, they remain 

constant and are equal to the identity matrix.
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Based on the multiplicative split of the deformation gradient, the right and left 
Cauchy-Green tensors can be decomposed as:

C = FrF = J 2I30  (2.14)
B = FFr = J 2/3B (2.15)

where C and B are the right and left Cauchy-Green tensors with the volume change 
eliminated.

£. Stress measures

In non-linear solid problems, various stress measures can be defined. However, in this 

thesis, only three of them are considered: the Cauchy stress a , the first Piola-Kirchhoff 

stress tensor P (nominal stress tensor) and the second Piola-Kirchhoff stress tensor S. Their 

definitions are given below.

A deformed body can be divided into two portions by a plane. Consider a surface element 

ds on the cross-section in the current configuration. Let vector a be the outward unit vector 

to this cross section. Correspondingly, let dS and A represent the surface element and the 

outward normal vector in the reference configuration, as shown in Figure 2.20.

>

Figure 2.20 Definition of the stress measures

The traction exerted on the surface element ds in the current configuration is called the 

Cauchy traction vector t. The corresponding traction exerted on dS in the reference 

configuration is called the first Piola-Kirchhoff traction vector to.

Page 28



Chapter 2 Background Knowledge

According to Cauchy’s law, the following relation exists (Marsden and Hughes, 1994):

a o d s  = df = tds (2.16)

and in the reference configuration (Marsden and Hughes, 1994):

A-PdS = df = tQdS (2.17)

where a  and P are the Cauchy stress tensor and the first Piola-Kirchhoff stress tensor, 

respectively.

The relation between these two stresses can be obtained by using the Nanson’s relation 

(Malvern, 1969), which relates the current normal to the reference normal by:

ads = J A P ldS (2.18)

Further using Equations (2.16) and (2.17), the following equation is obtained.

JAP~l odS = APdS (2.19)

Thus the Cauchy stress tensor can be related to the first Piola-Kirchhoff stress tensor by:

P = J F 1 a  (2.20)

The second Piola-Kirchhoff stress S is widely used for path-independent materials. It is 

defined by (Marsden and Hughes, 1994):

A SdS  = F"1 </F = F '1 tods' (2.21)

Using Equations (2.17) and (2.21), the second Piola-Kirchhoff stress is related to the first 
Piola-Kirchhoff stress by:

P = 8 F r (2.22)
Thus the Cauchy stress and the second Piola-Kirchhoff stress relate to each other by:

o = J lF S F r (2.23)

It is worthy to note that: the Cauchy stress is expressed in terms of the area and normal of 

the deformed surface; the first and second Piola-Kirchhoff stresses are defined in terms of 

the area and normal of the undeformed surface; the Cauchy stress and the second 

Piola-Kirchhoff stress are symmetric, i.e. cr = a 7 and S = Sr ; the first Piola-Kirchhoff 

stress is not symmetric.
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23.2 General elastic constitutive relations

The notions given in the preceding section are general, but they are not sufficient for 

describing the behaviour of non-linear solids. To complete the description of the 

mechanical properties of a material, a set of equations, called the constitutive equations, is 

needed. These equations should be objective and should not lead to any change in the 

eneigy of the stresses under an arbitrary rigid-body motion. Different constitutive equations 

allow us to distinguish between different materials.

If the constitutive equations of a material depend only on the current state of deformation, 

the behaviour is said to be elastic (Shabana, 2008). If the stresses can be derived from a 

strain eneigy function, the material is called hyperelastic or Green elastic material; if the 

stresses cannot be derived from a strain energy function, the material is called Cauchy 

elastic material (Ogden, 1997). In this section, some general hyperelastic constitutive 

relations are presented.

A. Hyperelastic material

Hyperelastic material is a special case of elastic materials with the property that the work is 

independent of the load path. That is, the work done depends only on the initial and final 

states. Hyperelastic materials are characterised by the existence of a stored energy function 

or strain eneigy function (Belytschko, Liu and Moran, 2000; Ciarlet, 1988; Holzapfel, 

2000). This strain energy function is also called the Helmholtz free-energy function and 

must obey the principle of Material Frame Indifference, which means that the constitutive 

equations must be invariant under changes of observer frame of reference.

For a hyperelastic material, the second Piola-Kirchhoff stress is derived from the strain 

energy as (Belytschko, Liu and Moran, 2000):

( 2 2 4
sc ae

where W and W are the strain energy functions; C and E are the right Cauchy-Green
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deformation tensor and the Green strain, respectively. The relationship between these two

tensors is E=—(C-1), where I is the second order unit tensor. Thus, the relation between 
2

the two scalar functions is given as fV(C) = ̂ (2E+ 1).

According to Equation (2.23), the Cauchy stress for hyperelastic material can be written as:

a  = U ' F dWJ ^ ) r  (2.25)
SC

The material version of the second elasticity tensor C is obtained by differentiating of the 

second Piola-Kirchhoff stress tensor S with respect to the deformation tensor C, as given 

below (Weiss,Maker and Govindjee, 1996):

C = 4 - ^ -  = 2 | |  = 2 -^ -E '® E - '® E r ®Et (2.26)
jrj

The spatial version of the second elasticity tensor C is defined as the push-forward of the 

material elasticity tensor C (Marsden and Hughes, 1994):

C = yFF-C-F7'Fr (2.27)

B. Isotropic hyperelastic material

In the case of isotropic materials, the constitutive behaviour is the same in any material 

direction. Thus, the relation between the strain energy function W and the right 

Cauchy-Green deformation tensor C is independent of the chosen material axes. As a 

consequence, the strain energy function W depends only on the invariants of the right 

Cauchy-Green deformation tensor C and can be written as a function of the principal 

invariants (I ltI2,I3) of the right Cauchy-Green deformation tensor C (Gurtin, 1981; 

Malvern, 1969; Truesdell and Noll, 1992):

(2.28)
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The standard definitions of the principal invariants are given by (Spencer, 1984):

Ix=trC = ^ + ^ + ^  (2.29)

12 = izVfrCf -  trC2 ] = %% + %% + (2.30)

I, = detC = J 2 = %%% (2.31)

where A,2, % and ^  are the eigenvalues of the right Cauchy-Green tensor C; \ ^  

and 4, are the eigenvalues of the deformation gradient F and represent the principal 

stretches along the principal direction of F.

The invariants of the right Cauchy-Green tensor C have a clear physical meanings. For 

example, the first invariant /, is the sum of the square of the eigenvalues of the right 

Cauchy-Green deformation tensor C. It is an invariant that represents the multi-axial state 

of deformation within the material, specifically the ground substance. Therefore, it 

represents the isotropic shear and bulk behaviour of the matrix. The second invariant I2 is 

less used than /, and can be omitted for biological soft tissues (Holzapfel, 2000). The 

third invariant / 3 characterises the volumetric response of the material and is directly 

related to the degree of compressibility. As biological soft tissues contain a large proportion 

of water (Fung, 1973), they can be assumed to be incompressible. In the case of 

incompressible materials, the third invariant / 3 can be set to 1 and does not appear in the 

equations. For more details about the physical interpretations of the above invariants, see 

Limbert and Middleton (2004), Shabana (2008) and Zhurov, Limbert et al. (2007).

The derivatives of these invariants with respect to the right Cauchy-Green tensor C are 

given as below:

^  = 1, %  = /,I-C , %  = / 2I - / 1C+C2=/3C-1 (2.32)
dC dC dC

Using these results and Equation (2.24), the second Piola-Kirchhoff stress for isotropic 

hyperelastic materials can be written as:
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s  = 2 2 ^ 5 ;  = 2(wt +I,W2)l-2W2C+ZI3WsCr' (2.33)
m oli CC

where = dIF / dla (a  = 1,2,- • •) has been applied.

Incompressible isotropic hyperelastic model: When the material is incompressible, 

which means / 3 = J2 = 1, IF is a function of only Ix and 12 . However, another scalar 

called hydrostatic pressure enters into the expression of S as a reaction to the kinematic 

constraint in the deformation field. In this case, the second Piola-Kirchhoff stress is written 

as (Weiss, Maker and Govindjee, 1996):
3 riW

S  = 2 Y ^ - - ^ + pC -i =2{(W1+IlW2) l-W 2C} + p C i (2.34)
I=1 a/, a c
i*3

where p is the hydrostatic pressure, Wa = dW / dla {a  = 1,2,* • •) has been applied.

Based on Equations (2.23) and (2.34), the Cauchy stress for incompressible isotropic 

hyperelastic material can be written as:

a  = 2{(Wt + IfV2)B -  W-fi2} + p i  (2.35)

The following relations have been used to derive the above equation:

FaFp5u =FaFjI=Bil (2.36)

FtfFjj Cjj = Fa Fjj Frf F^ — (Fu F^ )(F^ F^ ) = BimB jm (2.37)

F'FpC* = F ^ F ^ F J  = 8) (2.38)

Compressible isotropic hyperelastic model: When the material is slightly compressible, 

the strain energy function can be split into the deviatoric and dilatational parts (Ogden, 

1997):

w q £ > - w ^ j ) + w J &  (2.39)

where W ^J) is the dilational component relating to the volume change and JF*v(C)is
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the deviatoric component, which is a function of the right Cauchy-Green deformation 

tensor with volume change eliminated, C .

The corresponding second Piola-Kirchhoff stress can also be split into two parts:

S = S wJ+SAv (2.40)

with

In order to obtain the second Piola-Kirchhoff stress, the following decoupled invariants are 

introduced (Holzapfel, 2000):

7 ,= trC = J -2/3/ l (2.42)

h  =^[(trCf - trC 2] = J ,nI2 (2.43)

The derivatives of these decoupled invariants with respect to both the right Cauchy-Green 

tensor and the isochoric part of the right Cauchy-Green tensor are given below:

= ^ - ( J 1,3trC) = J -2131 - - I . C 1 
SC cC 3 1

-2 t = I , ^  = /,I -C  
SC dC

Further

dC dO oC

where L is the fourth order unit tensor.

(2.44)

(2.46)

f  = l7 C -  (2.47)

80 €>C + J-2l3^ -  = - - J - 2,3C-'®C + J-2,3L (2.48)
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Based on the above relations, the specific expression of the second Piola-Kirchhoff stress 

for a compressible isotropic hyperelastic material is given by:

S = d**”' JC ' + 2J-2I\ 8WJ?  -  • C)C_1)
SJ 8C 3 ac

a/
(2.49)

where W ^,= dW dev/d I l and = d w ^ ld l7

Introducing an operator £>£F[], which is the deviatoric projection operator for stress-like 

quantities in the reference configuration:

DEV[.] = [.]-j([-]:C )C -1 (2.50)

Then Equation (2.49) can be rewritten as:

S = ^  JC~l + 2J-1,3D E V P ^ ]  (2.51)
dJ dC

The above constitutive relations for a quasi-incompressible, isotropic hyperelastic material 

are apparently due to Simo, Taylor et al. (1985) and Weiss, Maker and Govindjee (1996).

It is worthwhile to note that there are some isotropic hyperelastic material models available 

in the existing commercial software ABAQUS and LS-DYNA, like the neo-Hookean 

model, the Mooney-Rivlin model, the Arruda-Boyce model, the Ogden model, etc. 

Isotropic hyperelastic models are widely used in modelling rubber-like material. When 

modelling fibre-reinforced materials, like skeletal muscle tissue, these models are shown to 

lead to unrealistic results.

C. Transversely isotropic hyperelastic material

Transversely isotropic hyperelastic material can be regarded as isotropic hyperelastic 

material embedded by one set of fibres. Here, one unit vector N in the undeformed 

configuration is introduced to denote the principal direction of the fibres. After the material
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undergoes deformation, the fibres will deform with the body as shown in Figure 2.21. 

Then, another unit vector n is introduced to describe the fibre direction in the deformed 

configuration. The relationship between the fibre direction in the undeformed configuration 

and that in the deformed configuration is given by (Martins, Pires, Salvado et al., 1998):

A; n=F.N (2.52)

where Xf  is the fibre stretch ratio in the direction of the undeformed fibre. Since n is a 

unit vector, Xf  can be expressed as:

xf =4C:(N0N) (2.53)

Figure 2.21 Schematic representation of fibre direction (Limbert and Taylor, 2002)

In order to characterise the material behaviour induced by the reinforced fibres, two other 

invariants, namely / 4 and J5, are introduced into the strain eneigy function (Spencer, 

1984). In this case, the potential is expressed in terms of five invariants:

W(C) = W(/1,I2,I1,Ii,I5) (2.54)

where / 4 and /; are defined as (Spencer, 1984):

/ 4=(N®N):C and / 5 =(N®N):C2 (2.55)

From Equations (2.55), it can be seen that the invariant / 4 is the square of the stretch in 

the fibre direction which is the projection of the right Cauchy-Green deformation tensor C 

along the undeformed fibre direction N. It has a straightforward physical interpretation
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that it characterises the directional mechanical properties of the soft tissues introduced by 

the presence of collagen fibres. The invariant J5 has similar physical interpretation as 

/ 4, but it involves the quadratic terms of the deformation tensor C. Since the effect of 

transverse isotropy has already been captured with / 4, the invariant I5 is always 

omitted in the strain eneigy function W.

The derivatives of invariants / 4 and / s are given by:

®± = N®N and ^ -  = N®C»N+N»C®N (256)8C dC '  ’

Using these results and Equation (2.54), the second Piola-Kirchhoff stress for transversely 

isotropic hyperelastic materials can be written as:

S = 2 ± * * * l
31, SC (2.57)

= 2(F̂  +IJV2)1-2W2C+2I3W3Ct1+W4N®N+W5(N®C*N+N.C®N)

where Wa = dW!dla(a - 1,2,—) has been applied

Incompressible transversely isotropic hyperelastic model: With the strain energy 

Equation (2.54), the second Piola-Kirchhoff stress for an incompressible, transversely 

isotropic hyperelastic material can be written as:

S = 2 ± ^  + PC '
^  (2.58)

= 2{(JT, + IlW2)l-W 2C + 1VtN®N + Ws(N®C»N + N*C®N)} + pC~' 

wherep  is the hydrostatic pressure and Wa = dWldla(a  = 1,2,---) has been applied.

The corresponding Cauchy stress is given as:

a  = 2{(fPJ + I,W2)B-W2B2 + l4w4n® n + Ijr5(n® B' n+n.B®n)}  + pl  (2.59)

The material elasticity tensor takes the form:
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A dL wAF afT2 „^dW 2 m dCC = 4{10—-f-+I01P2 —J-+I07, — 2—C 0 — -—W7 — + 
oU dU dU oU dU

d i . d w .  „r a2/ , , a c -1 n®n® _ +—j-®  . .  +y« _ }+pa^dw Ow Ow oUoU 0C

(2.60)

Making use of the chain rule:

dwa _ew a a/, , a ^  a/2 . 0?ra a/4 . a r a a/5
ac  a/, ac  a/2 ac  a/4 ac  a/5 ac (a = 1,2,*) (2.61)

and further using the following relations (Marsden and Hughes* 1994):

'dC'
0 - ) n «  “ ac = 4 M j,+ * a )

m «=
rdC~"

ac

gU

= ^ = - | ( c * Q '+ W )
J&l

(2.62)

(2.63)

The general form of material elasticity tensor for an incompressible, transversely isotropic 

hyperelastic material can be obtained as

C = 4{(0r11 + 7WX1IX +W2J l2 + W2)l®I-(WX2 +FF22/iXI®C+C0I) + »r22C0C-lF2L 

+ (IF,4 + r 24/,)fl®N®N + N®N®I)+r 5J ^ + ( ^ 3/ 1 + IF15) f l® f i+ |^ ® I )
oUou cv cv» ^  54^

-fF24(C®N®N+N®N®C)-Wr25(C®— +— ®C)+W,,<4N®N®N®Nac ac
+ )T45(N ® N ® ^ .+ ^ .® N ® N )+ » '„ (^ ® ^ )}+ p L <rl

where L is a fourth order unit tensor and Wafj -  d2W ldladlp(a = 1,2,•••;/? = 1,2,---) has 

been introduced.

Using Equation (2.27), the spatial version of the second elasticity tensor can be obtained as:
C = 4{(FFn + 1WX21X + W2 + Wn I 2yB 0  B -  (FF12 + W J X)(B 0  B2 + B2 0  B) + JP22B2 0  B2

+(WU + ̂ 24/,)(B®n®n+n®n®B) + ̂ 5<p J ^ +

(W„lx +fF15XB®?>‘ ^ |-+ ? > '^ -® B )-» r24(B2 ®n®n+n®n®B2) -  2̂65^
ac ac

fSJ *SJ
r B(B2 ®< p - £  + <p -^•®B2) + JF44n®n®n®n+ dC dC

fT45(n®n®<P ^  + <P ^ ®n®n) + wa (v ' ^ -® < f  ^ -)} - pL cv» dU cv cv»
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where
*m

dC
QJ

q> —|-= /4(n®Bn+n-B0n) (2.66)

To derive the spatial version of the second elasticity tensor, following relations have been 

used:

F ilF pF jxFfr (I 0  i)uKL = (F a F jjIu  ) ® i^kK^IL^KL ) ~ ^ ij ® Bu  (2.67)

F u F p (1 0 0 ) UKL = (FjjFjjIjj) 0 (Fk FbCkl) = Btj 0 (B^B^ ) (2.68)

FiiFjjFtfrFfr (Lc_i )LfKL = ~ L ^ (2.69)

(Lg-i),̂ y = FiIFpFkKFu\.UKL = —(2?̂  2?̂  )/2  (2.70)

Compressible transversely isotropic hyperelastic model: If a material is slightly 

compressible, sometimes called quasi-incompressible, the strain energy function takes the 

uncoupled form:

W = W ^(J)  + W ^{ I l9I 2J 4, I5) (2.71)

The corresponding second Piola-Kirchhoff stress can be written as:

r)W r)W
S = — J C 1 + 2J -2I*DEV[—J?-] (2.72)

aj ac  v }

and the Cauchy stress takes the form:

dWwl 2a  = — —I + —dev 
dJ J dC

(2.73)

where the operator <fev[ ] is defined as (Weiss, Maker and Govindjee, 1996):
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Chapter 3 

Constitutive Skeletal Muscle Model

3.1 Introduction

Skeletal muscle tissue plays an important role in the human body system and function. It 

can generate voluntary forces leading to human body motion and also provide protection to 

the upright skeleton. One way of studying the skeletal muscle tissue is through using the 

finite element method. With the rapid development of computer capacity, the finite element 

method has been used widely in studying the biomechanics of soft tissues and this method 

continues to expand across all areas of biomechanics.

Skeletal muscle exhibits very complex mechanical behaviour. It is active, incompressible, 

transversely isotropic because of the presence of a single muscle fibre direction, highly 

deformable and highly non-linear. The most important of all is that skeletal muscle fibres 

can be activated through neural stimulation. In this chapter, a three-dimensional (3D) finite 

element muscle model is developed to characterise the complex behaviour of the skeletal 

muscle tissue. The developed muscle material model is implemented into the finite element 

solver LS-DYNA by means of user-defined material (UMAT) subroutines. The 

performance of the developed muscle model is evaluated by comparing the finite element 

(FE) simulation results with the published experimental studies on the New Zealand white 

rabbit tibialis anterior (TA) muscle.
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3.2 Literature reviews on constitutive muscle models

A number of mathematical skeletal muscle models have been developed over the past two 

decades. They can be classified into two commonly used skeletal muscle models: Hill-type 

and Huxley-type muscle models.

3.2.1 Hill-type muscle models

The first commonly used and phenomenologically based constitutive muscle model is 

originated from Hill’s work (1938). The parameters involved in the Hill-type model are 

derived from the Fenn and Marsh’s (1935) experiments. Hill’s model is the basis for most 

of currently used muscle models and his model is composed of three elements, as depicted 

in Figure 3.1:

•  The contractile element (CE): This is used to model the active part of the muscle. 

It can freely extend when the muscle is non-activated and it is responsible for 

force generation within the muscle when activated.

•  The series elastic element (SEE): This is a non-linear spring arranged in series 

with the contractile element. It allows a rapid change of the muscle states from 

inactive to active and provides an energy storing mechanism.

•  The parallel element (PE): This is a non-linear spring in parallel with CE and 

SEE. It is responsible for the passive behaviour of the muscle when stretched. It is 

related to the elasticity of the connective tissues.

JSEE

— 'wvw-H
Lce

SEE T<SEE CE

AA/WV
CE

PE lPE

JPE

Figure 3.1 Hill's three-element muscle model
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In Hill's model, the contractile element generates a force with a magnitude that depends on 

the deformation velocity, the relative muscle length, and the activation degree over time. 

The generated force can be expressed as:

Fce = (0 * /v (v) x /» (0  (3 .1)

where FM is the maximal isometric force; / v is a function of the relative contraction 

velocity; f x is a function of the relative muscle length and f t is the activation function.

From figure 3.1, it is clear that the total muscle force Ff  equals the sum of the force in the 

parallel element Fm and that in the contractile element F^ :

Ff = Fpe + Fce (3.2)

The force in the contractile element F^ equals that in the series elastic element F ^  :

F c e = F s e b  ( 3 -3 )

On the other hand, the muscle length LPE equals the sum of the length of the contractile 

element LCE and the length of the series elastic element .

LpE — + ̂ SEE (3-̂ )

Hill's three-element model has been used in studying the mechanical behaviour of different 

muscle tissues (Audu and Davy, 1985; Pandy, Zajac, Sim et al., 1990; Winters, 1990; Zajac, 

Topp and Stevenson, 1986). However, Hill’s model is only one-dimensional (ID). In order 

to investigate the complex three-dimensional geometry and the mechanical behaviour of 

skeletal muscle tissue, Hill's ID model has been extended into the three-dimensional (3D) 

scope. The approach of extension, which has been employed by most researchers, is to add 

up the longitudinal stress from the muscle fibres , stress from the embedding matrix 

mo** stress related to the incompressibility of the muscle o ittcomp. Thus, the Cauchy 

stress a  produced in 3D muscle can be expressed as:

<* = < V , +or—* (35)
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In the 3D Hill-type skeletal muscle model proposed by Kojic, Mijailovic et al. (1998), the 

contractile element and the series elastic element played the role of the active muscle fibre, 

and the parallel element played the role of the surrounding matrix which was assumed to be 

isotropic linear elastic. The incompressibility constraint was not taken into account. Thus 

from Equation (3.5), the total stress in their muscle model was expressed as:

or = a E ( l - # ) + * / t( O o s (3.6)

where <j> was the volume fraction of the muscle fibre; f t was the activation function; 

Oe was the stress produced in the surrounding matrix; o s was the stress produced in the 

active muscle fibre which has a non-zero component only in the fibre direction.

Based on Kojic, Mijailovic et al.’s model, Tang, Stojanovic et al. (2005) and Tang, Tsui et 

al. (2007) incorporated muscle fatigue into the 3D skeletal muscle model. In their new 

model, the force developed in a fatigued muscle was described by a muscle fatigue formula 

which was a function of the time t, the activation a a and the stretch X . Stojanovic, Kojic 

et al. (2006) extended Kojic, Mijailovic et al.’s work by taking different fibre types into 

account. The model consisted of a number of different types of sarcomeres coupled in 

parallel with the connective tissue. Each sarcomere was modelled by one non-linear elastic 

element which was connected in series with one active contractile element, as shown in 

Figure 3.2.

a
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Gm SEEj. CE. o f  ^
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W W W  1 1“
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...

W W V — '1  I

PEE
--------------- /W W V ,--------------- —

a 
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Figure 3.2 Multi-fibre types muscle model (Stojanovic, Kojic, Rosie et al., 2006)
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Martins, Pires et al. (1998) developed a 3D Hill-type skeletal muscle model based on the 

concept of a fibre-reinforced composite. This was a modified form of the constitutive 

equation proposed by Humphrey and Yin (1987) for cardiac tissue. The strain energy 

density per unit volume of the reference configuration was given by:

U^UjilD + U f O i f ^  + UAJ) (3.7)

where UT was the strain energy stored in the surrounding matrix; Uj was the strain 

energy associated with volume change, which were the same as those used in Humphrey 

and Yin’s model (1987); Uf  was the strain energy stored in the muscle fibre, which had 

the following form:

Uf (If ^ CB) = UPS(If ) + USEE(If ^ CE) (3.8)

where UPE and were the strain energy stored in the parallel element and the series 

elastic element, respectively.

The Cauchy stress can be derived from the total strain energy Equation (3.7) by a standard 

routine (Belytschko, Liu and Moran et al., 2000). The same as the stress expression in 

Equation (3.5), the derived stress can also be divided into three parts: the first from the 

muscle fibre, the second from the matrix and the third due to the volume change.

Martins, Pires et al.’s (1998) 3D hyperelastic muscle model has been widely adopted and

extended by other authors. Blemker, Pinsky et al. (2005) introduced two more strain 

invariants, namely Bi and B2 (Criscione, Douglas and Hunger, 2001), into the model to 

account for the shearing response along the muscle fibres and that transverse to the fibres. 

The biceps brachii was studied using this model and the analysis revealed that the variation 

in fascicle length within the muscle and the curvature of the fascicles were the primary 

factors contributing to the non-uniform strains. Martins, Pato et al. (2006) recently updated 

their previous model (1998) by multiplicative decomposition of the fibre stretch into 

contractile stretch and elastic stretch in the series elastic element. The stresses in the 

contractile element and the series elastic element can therefore be easily solved. Tang,
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Zhang et al. (2009) extended Martins, Pires et al.’s (1998) model to considering concentric, 

eccentric, isometric and isotonic contractions of the skeletal muscle under either 

quasi-static or dynamic conditions. The proposed model has been used to simulate the 

dynamic response of a squid tentacle during a strike to catch prey.

In the 3D Hill-type skeletal muscle model proposed by Johansson, Meier et al. (2000), the 

Cauchy stress component in the active muscle fibre direction was described as the sum of 

an active part produced in the contractile element and a passive part developed in the 

parallel element. The series elastic element was not considered in this model. Therefore, it 

was mainly appropriate for the dynamic analysis of the muscle behaviour.

In the 3D Hill-type muscle model proposed by Hedenstierna, Halldin et al. (2008), the 

super-positioned muscle finite element (SMFE), which is the combination of the passive, 

non-linear, visco-hyperelastic solid elements with the active Hill-type truss elements 

(Figure 3.3), has been first evaluated. An asymmetric model of a rabbit tibialis anterior 

muscle was used for the model validation. The model was tested under different strain rates 

and in both active and passive states. The analysis showed the SMFE muscle model was 

capable of simulating tensile experiments for quasi-static and dynamic loadings (1, 10, 25 

s'1), in both passive and active states.

element 

Solid element

Figure 3.3 SMFE element (Hedenstierna, Halldin and Brolin 2008)
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3.2.2 Huxley-type muscle models

The second most commonly used constitutive muscle model is based on the biophysical ID 

cross-bridge model proposed by Huxley (1957). Huxley’s model focuses on an ensemble of 

myosin heads, which are always referred to as cross-bridges. It is assumed that each 

myosin head is capable of binding to an actin binding site and acts independently of other 

cross-bridges. It is further assumed that at any given time instant a cross-bridge can only 

bond to its nearest actin site. The mechanical model of Huxley’s cross-bridge model is 

shown in Figure 3.4, where ‘x’ is the displacement of the myosin head relative to the 

equilibrium position. Huxley’s original theory also assumes that a cross-bridge could exist 

in two biochemical states: attached and detached. In the attached state, the cross-bridge 

generates a force proportional to its displacement ‘x’.

myosin filament
equilibrium position

of M site I

actin filament

Figure 3.4 Schematic diagram of a cross-bridge (Huxley, 2000)

Huxley developed a mathematical description of his two-state cross-bridge theory. He used 

a distribution function n(x,t) to represent the fraction of attached cross-bridges with 

displacement ‘x’ at time ‘t ’. Furthermore, he introduced a scaling factor ‘h’, which was the 

maximum displacement of the myosin head where the attachment can occur. Then the rate 

of change of this distribution function can be expressed by a partial differential equation:

0  -  0  -  «(<) = / ( O P  -  0 ] -  * « X  S,  0dt d t OS
(3.9)
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where £ - x ! h  \ u(t) is the scaled shortening velocity of a half sarcomere; /(£ )  and 
g(£) represent the attachment rate function and the detachment rate function respectively.

A number of researchers have extended Huxley’s work. Zahalak and Ma (1990) broadened 

the basic Huxley model to taking account of the role of calcium in activating the contractile 

machinery. They employed the consensus of opinion among biophysicists and biochemists 

concerning how calcium induces muscular contraction: (1) an action potential depolarises 

the sarcoplasmic reticulum (SR), causing a transient increase in the permeability of the SR 

to Ca** ions; (2) the calcium ions diffuse rapidly out of the SR, which is driven by a 

calcium concentration difference between the interior and exterior of the SR; (3) the 

calcium ions bind to specific receptor sites on troponin molecules located at intervals along 

the thin actin filaments; (4) the troponin molecules with bound calcium, release an 

inhibition which they impose in their calcium-free state on actin sites, permits myosin to 

bond to actin and generates force and motion. This activation process is illustrated in 

Figure 3.5.

Stimulation

^r77T7Yy//77/f/V7-77\
k Sarcoplasmic reticulum

Myosin
V c , - /

y \  If Myofibrillar

, T ce
Actin Troponin

Figure 3.5 Schematic diagram of the activation-contraction coupling (Zahalak and Ma,

1990)

Based on this activation-contraction mechanism, they introduced a parameter ‘r’, which 

was referred to as the activation factor and given by:

r([Ca]) = ---------------   (3 10)
1 y  |T] + [YCa]+[7Ctf2]

where ‘T* stands for troponin; ‘Ca’ for the free Ca2+ ions; ‘TCa’ for troponin bound to one 

calcium ion and ‘TCa2 ’ for troponin bound to two calcium ions.
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Incorporating the activation factor ‘r’ into Huxley’s original rate Equation (3.9), a modified 

two state Huxley equation can be obtained:

^ - « ( f ) ~  = f r { p - n \ ~ g n  (3.11)
dt oq

where (p represents the fraction of participating myosin heads; ‘r’ is the activation factor 

given in Equation (3.10).

Huxley’s theory requires a solution for the bond distribution function t) . However, for 

describing the macroscopic muscle behaviour, only certain moments of the distribution 

function are needed. In order to avoid the solution of the partial differential equations, 

Zahalak (1981) developed a ‘distributed-moment (DM) approximation’ method, which can 

give the direct approximation of these moments. Applying his DM approximation to 

Equation (3.11) yields (Zahalak and Ma, 1990):

<~ jf = q> r 'P‘> - r^ie-^e-0 (3 12)

where (p represents the fraction of participating myosin heads; ‘r’ is the activation factor 

and Qe is the 6-th normalised moment of the bond distribution function:

& = £ .* •« « , m  (3.i3)

and

A = i (3.14)al—00

* . = r f V ( f ) - » ( f . < w  (3.15)J —00

( 3 1 6 )J—00

It can be seen that, through Zahalak’s DM method, Huxley’s partial differential equation 

has been transformed into a system of ordinary differential equations, which are 

computationally much simpler. Furthermore, the three lowest order moments, as described 

in Equation (3.13), have direct physical meanings: Q0 is proportional to the instantaneous 

stiffness of the contractile tissue; Qx is proportional to the instantaneous muscle force and
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Q2 is proportional to the total elastic eneigy stored in the cross-bridges.

In applications, Gielen, Oomens et al. (2000) proposed a geometrically and physically 

non-linear continuum muscle model which has been used to study the mechanical 

behaviour of both passive and active skeletal muscles. In their model, the total stress o  in 

the muscle tissue was defined as a superposition of the active stress a a and the passive 

stress o  p. The active stress cra was derived from Huxley’s cross-bridge theory and had 

the following form.

CT„(O = 0-o/lJ £ n(£>t) d£ = a <lX Q](t) (3.17)

where a Q was a material constant, which represented the maximal isometric stress with 

the maximum number of cross-bridges attached and X was the extension ratio in the fibre 

direction.

The analysis of the rat TA muscle behaviour has been performed with Gielen, Oomens et 

al.’s model for the aim of future validation work. As far as we know, Gielen, Oomens et 

al.’s continuum skeletal muscle model is the first model that incorporates Huxley’s 

contraction model for the active behaviour of the muscle.

Based on Gielen, Oomens et al.’s work, Oomens, Maenhout et al. (2003) used the same 

continuum muscle model for describing the mechanical behaviour of rat TA muscle. The 

results were compared with the experimentally determined strains at the surface of the 

muscle. Qualitatively there was good agreement between the measured and the calculated 

strains.

In summary, Hill-type and Huxley-type models are both phenomenological models, but are 

based at different architectural levels. Hill-type models account for the force-velocity and 

force-length relationship of the muscle, thus are based at the macroscopic level. 

Huxley-type models describe the muscle behaviour at the molecular level. They are mainly 

used to understand the properties of the microscopic contractile element.
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3.2 J  Other types of muscle models

Besides Hill-type and Huxley-type muscle models, there are various other kinds of muscle 

models. For example, in order to gain insight into the complex biomechanical phenomena 

related to skeletal muscle modelling, Bol and Reese (2008) formulated a novel 

micromechanically-based skeletal muscle model which split the Helmholtz free energy into 

passive and active parts. The passive part was represented by an assembly of tetrahedral 

and non-linear truss elements, and the active behaviour was implemented into 3D truss 

elements. The stimulus rate dependence on the muscle contraction, the influence of muscle 

fibre type and fibre recruitment on the muscle activation were incorporated into the 3D 

model.

Van Loocke, Lyons et al. (2006) adapted li , Guo et al.’s (2001) strain dependent Young’s 

moduli model to represent the compressive behaviour of skeletal muscle tissue. The model 

gave a good prediction for the muscle behaviour when it was compressed at various angles 

from the fibre direction. Van Loocke, Lyons et al. (2008) extended their previous model 

with Prony series to represent the skeletal muscle viscoelastic behaviour. This model 

successfully predicted the muscle stress-relaxation behaviour at 60° from the fibre direction 

and the muscle behaviour at compression rates of 0.05% s'1 and 5% s'1.

3.2.4 Reviews on muscle experimental data

It is worthy to review the experimental data available for studying 3D muscle models. The 

published data can be divided into two groups according to the experiment types: data from 

compression tests and data from tensile tests.

There has been some published experimental data on the compressive behaviour of passive 

skeletal muscle. Grieve and Armstrong (1988) performed in vitro unconfined compression 

tests on aged porcine samples in their transverse direction. Zhang, Mak et al. (1999) 

developed an ultrasound indentation system with a pen-size hand-held probe and used it to 

carry out manual indentation tests on the in vivo human forearm. Bosboom, Thomassen et
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al. (2001) performed indentation experiments on an excised muscle of a rat to determine 

the passive transverse mechanical properties of skeletal muscle. Later on, Bosboom, 

Hesselink et al. (2001) performed the compression tests on four rat TA muscles in vivo and 

employed an incompressible viscoelastic Ogden model to describe the passive muscle 

behaviour. The results showed that the measured behaviour can be accurately simulated 

with the Ogden model. Van Loocke, Lyons et al. (2006) conducted uniaxial, unconstrained 

compression experiments on both aged and fresh animal muscle samples oriented at 

various angles from the fibre direction. They compared their experimental results with 

other available published data, as shown in Figure 3.6, which serves as a short summary of 

the published data from the compressive type of experiments. Besides, Palevski, Glaich et 

al. (2006) performed rapid indentation tests on fresh porcine gluteus muscle in vitro to 

measure the transient shear modulus of the tissue in the transverse direction. In 2008, Van 

Loocke, Lyons et al. complemented their previous study by investigating the 

time-dependent properties of passive skeletal muscle. They performed uniaxial ramp and 

hold compression tests in vitro on fresh porcine skeletal muscle at various rates and 

orientations of the tissue fibres. The results showed that the viscoelastic component plays a 

significant role in muscle mechanical properties
100

compression tension

CL

£  - 100 -

— Hawkins & Bey (1997)
— Van Loocke aged (2006)
— Zheng etal. (1999)
— Bosboom in vitro (2001)
— Bosboom in vivo (2001)

W -300-

-400
0.2 0.4-0.4 - 0.2 0.0

Engineering strain

Figure 3.6 Published muscle tissue data from compression tests (VanLoocke,Lyons and

Simms, 2006)
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A number of authors have conducted tensile tests on animal muscles to study skeletal 

muscle behaviour. Muhl (1982) determined the active length-tension relation for the left 

digastric muscle of seven New Zealand White rabbits. Gareis, Solomonow et al. (1992) 

determined experimentally the muscle length-force relations by using nine different skeletal 

muscles in the hindlimb of the cat. Hawkins and Bey (1994) developed a comprehensive 

approach for studying the mechanics of partially intact muscle-tendon and this approach 

was applied to study a rat tibialis anterior muscle. They (1997) also investigated the 

force-length properties of the rat TA muscle and tendon by determining the lengths 

occurred in the rat body during the ankle joint motion ranging from 20° to 90° of flexion. 

Davis, Kaufman et al. (2003) performed length-tension experiments on the isolated TA of 

the New Zealand White rabbit to quantify the relationship between the intramuscular 

pressure and muscle force during isometric contraction. Van Loocke (2007) summarised the 

test data obtained by these authors in his thesis, as shown in Figure 3.7. In addition, Myers, 

Wooley et al. (1998) measured the passive and stimulated engineering stress-strain 

mechanical properties of skeletal muscle at the mid-belly of the rabbit tibialis anterior. 

They also measured the effect of the strain rate on these responses and obtained good data 

for active muscle behaviour, which will be used in this study for validating the developed 

constitutive muscle model.

2.5

1.5

0.5

0.75 1.25 1.5

—  Mulh Rabbit 
Woittiez Rat 
Gareis Cat

^ — Hawkins 1994 Rat
—  Hawkins 1997 Rat 

Davis Rabbit

n̂/̂ mO

Figure 3.7 Published muscle tissue data from tensile tests (Van Loocke, 2007)
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3.3 The constitutive skeletal muscle model

The skeletal muscle model developed in this chapter is based on the Hill-type model. The 

constitutive relation is derived through the total strain energy and the formulations are within 

the framework of non-linear solid mechanics (Truesdell and Noll, 2004).

The muscle is regarded as a fibre-reinforced composite comprising a ground substance 

matrix and the muscle fibres (Figure 3 .8). The fibres are assumed to be distributed in parallel 

and have a single direction.

Muscle fibres

Matrix

Figure 3.8 Diagram illustration of a parallel-fibred muscle

The total strain energy in the muscle is given by:

u  = U ,(i\)  + Uf (Xf ,A,) + Uj(J) (3.18)

where

t/7(/Ic )=c{Sxp|*{7Ic -3 )j- l}  (3.19)

is the strain energy stored in the isotropic matrix;

U f (Ay ,AS) =: J* \& s e e  ^ pe (A)]pfA (3.20)

is the strain energy stored in the muscle fibres and

(321)

is the strain energy associated with the volume change. In these definitions, /,c is the first 

invariant of the right Cauchy-Green strain tensor with the volume change eliminated; b and 

c are material parameters; Af is the fibre stretch ratio with the volume change eliminated; 

As is the stretch ratio in SEE; A is the fibre stretch ratio; o’SEE(A9As) is the stress
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produced in SEE; cjpe (X)  is the stress produced in PE; J  is the Jacobian of the 

deformation gradient; and D  is the compressibility constant.

33.1 Stress produced in the series elastic element

Based on the experiments of Pinto and Fung (1973) on the papillary muscle of a rabbit heart, 

a recurrence relation is proposed to express the stress produced in SEE (Fung, 1981):

“ o '®  = ( 'o w  + p)~ P  (3.22)

with

'oW = /S [e“a ~‘) - l ]  (3.23)

where a , ft are material constants

Equation (3.22) contains one unknown, namely and this can be solved using the 

method proposed by Kojic, Mijailovic et al. (1998). The idea is to set up a non-linear 

equation with the unknown AXS by utilizing the stresses relationship between CE and SEE, 

i.e. the stress in CE is equal to the stress in SEE at any moment.

M*va'=Mia aB (3.24)

33.2 Stress produced in the contractile element

The stress produced in CE is given by:

,+V C£ =<T0-f,(t + A t)-fA(Xf ) - f v( im) (3.25)

where cr0 is the maximal isometric stress; f t(t + At) is the muscle activation function; 

f x (Xf ) is the muscle force-stretch function; and f v (Am) is the muscle force-velocity 

function.

(a) The activation function
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The activation behaviour of the muscle is quite complex and still under research. In the 

model developed in this thesis, an exponential function, which has also been used by Meier 

and Blickhan (2000), is adopted:

■«,, v  t < t 0
f,(t) = • n, +(n2- t \ )  h , i f  lo < l < l, (3.26)

«i +(n2-«!>•/*,f t ,r0) - [ ( » 2 - n l) ht(tl,t0)] ht( tj1), if  t > t x
with

h,(tl,t„) = b-vq>{-S (ti -/,)]}  (3.27)

where nj is the activation level before and after the activation; « 2  is the activation level 

during the activation; to is the activation time; ti is the deactivation time; and S is the 

exponential factor. When modelling single muscle fibres, the magnitude of parameter S is 

related to the rate of the chemical processes. For modelling large muscles, S represents the 

time dependent recruitment of different motor units.

Figure 3.9 shows the activation function curves for t0 = 0.1s, tx =0.4s, w, =0.0 and 

n2 =1.0, where the solid curve is with S = 50 and the dotted curve is with S = 100. The 

diagram shows that the bigger the value of 5, the faster the activation process.
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Time (s)
Figure 3.9 Activation function curve

(b) The force-stretch function

The force developed in a muscle depends on its sarcomere length. In order to find the 

relationship between the isometric tension and the sarcomere length, Gordon, Huxley et al. 

(1966) conducted a series of experiments on a single fibre of frog skeletal muscle and found 

a piecewise linear isometric tension versus length dependency, as shown in Figure 3.10, 

where the slack sarcomere length is 2.1 ion. By definition, the slack sarcomere length is the 

one when the extension ratio is 1.0. It can be seen from the Figure 3.10 that when the 

sarcomere length is too small or too large, the maximum tension will drop to zero. When the 

sarcomere length falls in the range of 2.0 -  2.2/jh, the tension is maximal.
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Figure 3.10 Isometric tension versus length curve (Gordon, Huxley and Julian, 1966)

In the muscle model developed in this thesis, a smooth quadratic function proposed by 

Blemker, Pinsky and Delp (2005) is used to approximate Gordon’s experimental curve. This 

quadratic function has also been used by Bol and Reese (2008) and it has the following form:

0,
9 ( 'V 4 * ,-0 .4 ) 
1 - 4 ( 1 - ^ / ^ )

if
i f  0 . 4 < ^ / ^ < 0 . 6  

i f  0.6<% !Xopt <1.4 (3.28)

9CVV-1*6) ’ *f !.4< /̂ /^<1.6
o, i f  % i X opt> 1.6

where Aopt is the optimal fibre stretch.

The smooth force against stretch function for Xopt= 1.05 is plotted in Figure 3.11. 

Compared to the piecewise linear function used by Tang, Zhang et al. (2009), this smooth 

function has the big advantage that it reduces the parameter inputs from five to one.
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Figure 3.11 Normalised force versus extension ratio curve

(c) The force-velocity function

It is well-known that the force generated in the muscle during contraction is highly 

dependent on its velocity of contraction (Hill, 1970). In 1938, Hill proposed a hyperbolic 

relation between the muscle force and the velocity, which is still used by scientists today 

(Hill, 1938), see Appendix C for more detail.

However, Hill’s force-velocity equation is restricted to the concentric and isometric 

contraction of the muscle. The tension-velocity relation for muscle lengthening was first 

characterised in the form of an equation by Otten (1987). Later, this hyperbolic equation 

was used by Van Leeuwen (1991).

The force-velocity function, which is incorporated into the muscle model developed here, 

is derived from the following equation:
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mm ml ' ''m
i + M „ M 7 ’

d - ( d  -1)
l - k k eK  Kc e ml  m

if  4 ^ 0  

if K> 0

(3.29)

where kc and ke are shape parameters of the hyperbolic curves, which control the curvature 

of the curve; d  is the offset of the eccentric function; Am is the stretch rate in the CE and 

/Tin is the minimum stretch rate.m

The effect of A:con the force-velocity function is shown in Figure 3.12 and the effect of ke 

on the eccentric contraction part of the force-velocity function is presented in Figure 3.13. 

The two diagrams indicate that: during eccentric contraction, the force increases as kc and ke 

increase; however, the force decreases as kc increases during concentric contraction.

<lTo

0.8

0.6
o

0.4

0.2

1 -0.5 0 0.5 1
Normalised stretch rate,

Figure 3.12 Effect of kc on the normalised force versus velocity curve
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Figure 3.13 Effect of ke on the normalised force versus velocity curve

By using Equations (3.22), (3.24) and (3.25), the following non-linear equation for solving 

the stress increment in SEE, can be obtained:

f ( M s) = ( a 2 + a 3AAs)eaA* - - a 4M s - a 5 =0(3.30)

where, in case of muscle shortening

kc a ,
/1 7 -A/ .m y

kk.
AT At

aA - - P kc-'fx{Af ) f t{t + At) 
AT -At

a u  ( T  \  f  (* * tf x ^ / ) ' M  + A t ) - P - k c
a 5 = P + f A ^ / ) ’f l (t + A0  — ------------------------------------------Amm At

(3.31)

(3.32)

(3.33)

(3.34)

and in case of muscle lengthening

(3.35)
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(3.36)

p - K ' k c+ ' f ^ f YfAt  + ixY(d-k' .ke + d - V) h (3.37)

,L { * ‘f ) ‘f t { t + t o Y Q - d - d ' k . ' k c ) - P ' K k ' a  ( 3 3 8 )

with

a x=(\  + ky^Xf - tXm-k% (3.39)

The derivation of ax is explained in Appendix D. Once AAS is solved, the stress in SEE 

can be obtained by using Equation (3.22).

333  Stress produced in the parallel element

When a muscle is not activated, the forces in CE and SEE are zero. The force in PE is 

positive when a muscle is stretched and null when it is compressed. Based on the 

experimental test (Chen and Zeltzer, 1992), the stress in PE can be expressed as:

where A is a material parameter.

Figure 3.14 shows an example of the normalised axial force against the muscle fibre stretch 

ratio with A = 4.0. It should be noted that since the muscle fibre cannot resist any axially 

compressive load, the force developed in the muscle fibre is null when the stretch ratio is 

less than 1.0.

(3.40)

with

fpB ('*% )=
,+%  > 1 (3.41)

0, otherwise

Page 61



Chapter 3 Constitutive Skeletal Muscle Model

3.5

2.5
w . a.4̂-1
©oUi
<2
T3a>CO

0.5

0.6 0.8 1 1.2 1.4 1.6 1.8 2
Stretch ratio, Xf

Figure 3.14 Normalised force in PE versus stretch ratio curve

With the stress expressions of Equations (3.22) and (3.40), the strain energy produced in 

the muscle fibres can now be obtained from Equation (3.20). Then the strain energy in the 

whole composite can be solved by using Equation (3.18). The Cauchy stress tensor can be 

derived from the strain energy following the procedure stated in Chapter 2.3.

3.4 LS-DYNA implementation of the skeletal muscle 

material model

The software LS-DYNA (LSTC, Livermore, 2007) gives the possibility of defining up to 

10 Fortran-routines. Thus a user can implement his or her own material model into the 

software through the use of a user-defined material (UMAT) subroutine. There are two 

formats of user routines: scalar or vector. In the scalar case, the user routine is sequentially 

called for each element. In the vector case, the routine is called with a block of elements 

and the size of this block depends on the type of machine. The scalar routines are called 

umat41, umat42, ..., umat50 and the vector routines are called umat41v, umat42v, ... ,
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umat50v. The material subroutine used in this thesis is scalar.

The structure of the skeletal muscle material subroutine developed in this thesis is shown in 

Figure 3.15. The LS-DYNA code calculates the strain increments for a time step and passes 

them to the UMAT subroutine at the beginning of each time step. The material constants 

are read from the LS-DYNA input file by the subroutine. The history variables can be used 

to store the accumulated variables. By using the history variables, the subroutine is able to 

calculate the stresses at the end of the time step by using an incremental form of the 

constitutive equations. The skeletal muscle material subroutine code developed in this 

thesis is given in Appendix E.
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START

First iteration?

Termination 
time reached?

END

Calculate Ui, Uf, Uj

Update the stretch in SEE and CE

Define initial values: •  Calculate the fibre stretch:
•  Call the force-stretch function subroutine 

•  Call the activation function subroutine

•  Calculate the Cauchy stress 
•  Update the history variables for the next time step

Determine A^by solving the non-linear equation:

/(A A .) = {a2 + - a 4M ,-a s = 0

•  Read in material constant values from input file 
•  Pass the deformation gradient, etc. from the main code 

•  Read in the history variable values from the previous time step

Figure 3.15 Flowchart for the implementation of the user defined material in LS-DYNA
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The user-defined material routine is invoked by LS-DYNA user material interface through 

a LS-DYNA Keyword input deck which uses the keyword 

‘ *MAT_USER_DEFINED_MArERIAL_MODELS\ The input parameter cards associated 

with this keyword, which are needed for the skeletal muscle routine developed in this thesis, 

are listed from Table 3.1 to Table 3.6 and the variables are explained in Table 3.7.

Eight history variables are defined in the developed skeletal muscle model. The first four of 

them store the stress in the matrix, the stress in PE, the stress in SE and the stress due to the 

volume change, respectively. These variables are stored for the purpose of validation and 

verification. The last four of them are for calculating the Cauchy Stresses, updated at the 

end of the routine and passed to the next time step iteration. All user-defined material 

models require a bulk modulus and a shear modulus for transmitting boundaries, contact 

interfaces, rigid body constraints and time step calculations. The bulk modulus K and shear 

modulus G used in the developed skeletal muscle model are given as:

K = — - —  (3.42)
3(1-2v)

G = —- — (3.43)
2(1 + v)

where E and v are the Young’s modulus and Poisson’s ratio of the skeletal muscle, 

respectively. Based on the measurements of Duck (1990), a stiffness value of E -  6.2 KPa 

is used for Young’s modulus of the muscle at rest. The Poisson’s ratio v is set as 0.499999, 

since the skeletal muscle tissue is incompressible. Thus, K  = 1.03xl03 MPa, G -  2.07 KPa.

An example of the input file for the developed skeletal muscle material routine is given in 

Figure 3.16.
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Table 3.1 User defined material model card 1 (LS-DYNA, 2007)

Variable MID RO MT LMC NHV IORTHO IBULK IG

Type A8 F I I I I I I

Table 3.2 User defined material model card 2 (LS-DYNA, 2007)

Variable IVECT IFAIL ITHERM IHYPER DEOS

Type I I I I I

Table 3.3 Define LMC material parameters using 8 parameters per card (a)

Variable PI P2 P3 P4 P5 P6 P7 P8

Type F F F F F F F F

Table 3.4 Define LMC material parameters using 8 parameters per card (b)

Variable P9 P10 Pll P12 P13 P14 P15 P16

Type F F F F F F F F

Table 3.5 Define LMC material parameters using 8 parameters per card (c)

Variable P17 P18 P19 P20 P21 P22 P23 P24

Type F F F F F F F F

Table 3.6 Define LMC material parameters using 8 parameters per card (d)

Variable P25 P26 P27 P28 P29 P30 P31 P32

Type F F F F F F F F
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Table 3.7 Variable description

VARIABLE DESCRIPTION
MID Material identification
RO Mass density, 1060.0 kg/m3 for muscle material.
MT User material type (41-50 inclusive).

LMC Length of material constant array.
NHV Number of history variables to be stored.

IORTHO Set to 1 if the material is orthotropic
IBULK Address of bulk modulus in material constants array

IG Address of shear modulus in material constants array
IVECT Vectorisation flag (on =1)
IFAIL Failure flag (on = 1)

ITHERM Temperature flag (on =1)
IHYPER Deformation gradient flag (on =1 or -1)

EEOS Equation of state (on =1)
P1-P2 Material constants b and c for determining the stress in matrix

P3 Material constant <r0, the maximal isometric stress

P4 Material constant D, the compressibility constant
P5 Material constant k, the length ratio between SEE and CE

P6, P7 Material constants a and P for determining the stress in SEE
P8 Material constant , the minimum stretch rate

P9,P10J>11 Material constants k«, ke and d for the force-velocity function
P12, P13 Bulk modulus and shear modulus, respectively
P14, P15 Activation time and deactivation time, respectively

P16 Material constant S, the rate of the chemical process
P17 Material constant A for determining the stress in PE
P18 Activation level before and after the activation
P19 Activation level during the activation
P20 The optimal fibre stretch

P21-P24 Reserved for future development
P25,P26rP27 Coordinates of muscle origin point P
P28,P29,P30 Coordinates of muscle insertion point Q
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*MAT_USER_DEFINED_MArERIAL_MODELS

17 1060.0 43 32 8 0 12 13

0 0.0 0 1 0

23.46 379.0 1.6e5 1.0e-9 0.3 10.0 1 0e5 -17.0

5.0 5.0 1.8 1.033e9 2.07e3 0.0 0.49 50.0

4.0 0.0 1.0 1.05 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Figure 3.16 Example of skeletal muscle material definition in LS-DYNA

In order to create the LS-DYNA executable file used for the developed skeletal muscle 

model, the following is needed:

•  Fortran user material subroutine

•  Intel@ Fortran 10.1 Compiler

•  Makefile (Appendix F)

•  The Fortran file dyn21 .f

•  Object code files

The last three items are supplied by LS-DYNA distributor and they will need the 

specifications for the operating system (OS) to be used. The systems used in this thesis are 

described in Table 3.8.
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Table 3.8 System specifications

Computer Type Personal computer Merlin cluster

Computer OS Window XP V2002 SP2 RHEL5

Processor Intel(R) Core(TM) 2 CPU 6320 
@ 1.86GHz, 1.97 GB of RAM

2><Xeon E5472 3.0 GHz, 
1600FSB, 16GB of RAM

Compiler Intel@ Fortran Compiler 10.1 
for windowsXP

Intel@ Fortran Compiler 10.1 
for Linux

Pre-processor Oasys Primer 9.3 Oasys Primer 9.3

LS-DYNA version LS-DYNA 971R3 LS-DYNA 971R3

Post-processor Oasys D3plot 9.3 Oasys D3plot 9.3

In the file dyn21.f, all the available subroutines for user material routines can be found. 

There are two ways to link the user routine to the compilation, either adding the code in the 

dyn21.f file or commenting out a call in the dyn21.f and placing the user routine in a 

separate file. When having done so and having the Makefile and the object code files in the 

same directory, the user can execute the compilation and link the files by typing ‘nmake’ on 

a command line. Now a new executable file should be generated.

In this thesis, two versions of executable files are generated: SMP and MPP. The SMP 

version of executable file is used in the personal computer and the MPP version, which 

enables the user to execute one LS-DYNA simulation on multiple processors, is used in the 

cluster-Merlin.

3.5 Validations and verifications of the developed skeletal 
muscle model

The muscle model described in Section 3.3 is active, quasi-incompressible, fibre-reinforced 

and hyperelastic. This model was implemented into LS-DYNA by means of user-defined
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material (UMAT) subroutines. There are 14 material parameters in this muscle model, as 

listed in Table 3.9.

Table 3.9 Material parameters

Stress in 
the matrix

Stress 
in SEE

Stress 
in PE

Stress in CE Compressibility
constant

m /A ) fl ( /̂)

b c a A oo s kc he d 2 min Am Aopt k D

Parameters b and c are used to characterise the stress produced in the isotropic matrix and 

they first appeared in an exponential form expression proposed by Humphrey and Yin 

(1987). In their work, die values of b and c were determined in a least-squared sense from 

the experimental data. However, it was pointed out that the best-fit material parameters 

varied with the experimental protocol. In this thesis, the data set b = 23.46 and c = 379.0 Pa 

is chosen, as it has also been used in Martins et al.’s study (2006, 2007).

To determine the stress in the SEE, Pinto and Fung (1973) performed experiments on the 

papillary muscle of a rabbit heart and it was found that the derivative of stress with respect 

to strain is a linearly increasing function of the stress. From their experimental work, it is 

found that a = 10.0 andp = l.OxlO3 Pa.

Chen and Zelter (1992) performed the tension-length experiment on frog muscle to 

measure the force for the passive muscle. To express the experimental tension-length 

curve, they subsequently proposed a quadratic function, as shown in Equation (3.41), 

where the parameter A was set to 4.0 to best fit the experimental curve. With regard to the

maximum isometric stress o0, it is reported that a0 ranges from 0.16 MPa to 1.0 MPa

(Zajac, 1989).

There is only one parameter S used to define the muscle activation function. Parameter S is 

an exponential factor. When modelling single muscle fibres, the magnitude of S is related 

to the rate of the chemical processes and when modelling large muscle compartments, S
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represents the time-dependent recruitment of different motor units. In this thesis, S is set as 

50.0 to mimic the muscle activation process (Meier and Blickhan, 2000).

Four parameters kc, ke, d  and i j ” are used to describe the muscle force-velocity 

relationship. It is reported that the value of kc for slow muscle fibres is 5.88 and its value 

for fast muscle fibres is 4.0 (Close, 1964; Otten, 1987). The value of ke varies in the 

literature. In Van Leeuwen’s work (Van Leeuwen, 1991), it was chosen as 7.56. In Bol and 

Reese’s work (Bdl and Reese, 2008), it was 5 and in Tang et al.’s work (Tang, Zhang and 

Tsui, 2009), it was set to 3.14 for frog gastrocenemius muscle and 7.56 for squid tentacle. 

The dimensionless constant d  is the offset of the function due to the eccentric movement. It 

is seen from Equation (3.29) that the maximum eccentric stress at time t + At is 

dominated by the parameter d. The ultimate tension that a muscle can sustain is limited 

from 1.1 a0 to 1.8a0 (Zajac, 1989). Therefore, the value range for rfis from 1.1 to 1.8. ft 

is reported that the minimum stretch rate X™ is -17 s'1, although this cannot be reached 

due to the inertia of muscle (Meier and Blickhan, 2000). In this thesis, the muscle inertia is 

not taken into account. Therefore, X™n is chosen as -17 s'1.

In the developed muscle model, the muscle force-stretch relationship is characterised by 

one parameter, namely Xopt. In this thesis, the value of Xopt is set as 1.05 in order to fit 

Gordon’s isometric tension-length curve obtained from the experiments on a single fibre of 

frog skeletal muscle (Gordon, Huxley and Julian, 1966). Parameter k is the ratio of the 

length of the contractile element to that of the series elastic element and is always assumed 

to be 0.3 (Fung, 1981; Kojic, Mijailovic and Zdravkovic, 1998).

Parameter D is a compressibility constant and it can be best understood as a penalty 

parameter which is used to penalise the volume change. Therefore, the value of D is chosen 

on the condition that the object volume is preserved during the deformation.

From the above analysis, it is seen that the parameters b, c, a, fi and A have been 

determined by best fitting with the corresponding experimental data. Parameters a0, S,
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i j"  and X0pt have their physical meanings. Parameters kc, ke and d  are for characterising 

the muscle force-velocity curves. The analysis also shows that parameters a0, k& ke and d  

have their own value ranges. In this thesis, the investigations are performed to test if the 

developed muscle constitutive model can predict some experimental data by tuning the 

parameters within their value ranges. To do so, the experimental data from the New 

Zealand white rabbit hind leg muscle tibialis anterior (Davis, Kaufman and Lieber, 2003; 

Myers, Wooley, Slotter et al., 1998) are used. Passive and activated elongation simulations 

are performed and the simulation results are compared with the experimental data. The 

values of the parameters o0, D, ke, kc and d  were tuned to make the numerical results fit 

with the experimental data. Finally, a good set of parameter values were found, as listed in 

Table 3.10.

Table 3.10 Material parameters

Description Parameter Value Source

Stress in Matrix
b 23.46 Humphrey and Yin 

(1987)c (N/m2) 379.0

Stress in SEE
a 10 Pinto and Fung (1973)

P i  N/m2) 1.0e3

Stress in PE
A 4.0 Chen and Zelter (1992)

<r0(N/m2) 7.0e5 Zajac (1989)

Stress 
in CE

/,(*) S is1) 50 Meier and Blickhan 
(2000)

fM „ )

kc 5 Close (1964)
Bol and Reese (2008) 

Tang et al. (2009)

ke 5
d 1.5

jttim
A**!,m

-17

\ p t 1.05 Gordon (1966)

k 0.3 Fung (1981)

Compressibility
constant

D (m2/ N) 1.0e-9

Page 72



Chapter 3 Constitutive Skeletal Muscle Model

Aother two tests, isometric contraction and isometric contraction followed by concentric 

contraction, are performed for the purpose of model verification, even though no test data is 

available.

A simple muscle model shown in Figure 3.17 is used for the validations and verifications. 

The length of the muscle is 5.0 cm. The diameter is 0.9 cm for the smallest cross section 

and 1.75 cm for the largest cross section. The initial direction of the parallel distributed 

fibre is chosen to be along the Z direction.

Y

«----------------------------------5.0cm------------------------------ ►

Figure 3.17 Finite element mesh of the muscle

3.5.1 Passive elongation

In the passive elongation test, one end of the muscle was fully fixed and the other end of the 

muscle was pulled quasi-statically at a controlled velocity of 5.0 mm/s from its rest length, 

while the muscle was not activated. The engineering stress versus strain relationship was 

obtained from the simulation results and plotted in Figure 3.18, with the available 

experimental results included for comparison. Figure 3.18 shows a reasonably good 

agreement between the experimental data and the passive elongation simulation results.
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—  FE simulation
—  Experiment data Davis (2003)

CL

S 15

CD

10

CDC
LU

5 100 20
Engineering strain (%)

Figure 3.18 Engineering stress versus strain curves for passive elongation

3.5.2 Activated elongation

The activated elongation simulation is divided into two stages. In the first stage, the muscle 

was held constant in length while being stimulated for 0.5 s, at the end of which the muscle 

reached full activation. In the second stage, while one end of the muscle was still fully fixed, 

the other end of the muscle was released and pulled quasi-statically at a controlled velocity 

of 5.0 mm/s. In this stage, the full activation was maintained. The stress response predicted 

by the developed model is in accordance with the experimental data up to 15% engineering 

strain (Figure 3.19).
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10 .

—  FE simulation
—  Experiment data Myers (1998)

8.00

<2 6.00 
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■g 4.00
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0.00
0 5 10

Engineering strain (%)
15 20

Figure 3.19 Engineering stress versus strain curves for activated elongation

3.5.3 Isometric contraction

In this example, the muscle was subjected to an isometric contraction, thus its two ends were 

fully fixed during the simulation. A neural excitation with the amplitude of 1.0 was applied 

at 0.1 s and kept constant for 0.3 s, after which the neural excitation was gradually dropped 

to zero. Thus, the parameters in the activation function are set as: rij = 0.0; n2= 1.0; to= 0.1; 

ti = 0.4. The activation curve is shown in Figure 3.20.
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Figure 3.20 Activation curve for the isometric contraction simulation

The Cauchy stress components in the z axis direction have the following relation:

° 3 3  =  ° C E 3 3  + &VOL32 " * " ° ’/ 3 3  +  & PE33 (3.44)

where a 33 is the Z direction Cauchy stress component; <JCE33 is the component produced 

in CE; g VOL33 is the hydrostatic stress component; o I33 is the component produced in the 

matrix; and <JPE33 is the component produced in PE .

The five stress components versus time at a node located in the middle part of the muscle 

are plotted in Figure 3.21. Since the length of the muscle is held constant during the 

simulation, the stresses produced in the parallel element and the isotropic substance matrix 

are zero, as expected. The variation of the other three stresses with time reflects the 

evolution of the activation function, i.e. they have the same shape as the activation function. 

Those theoretical predictions are verified by the numerical results shown in Figure 3.21.
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■Z direction stress 
■ Stress in SE 
Hydrostatic stress 
Stress in isotropic matrix 
Stress in PE

t------------- r
0.3 0.4

Time (s)

Figure 3.21 Z-direction stress verse time curves at a node in the centre of muscle for the
isometric contraction simulation

3.5.4 Isometric contraction followed by concentric contraction

This test is divided into two stages. In the first stage, the muscle was subjected to an 

isometric contraction. Its two ends were fixed and the muscle was stimulated until the 

tetanised state was reached. The stimulus was kept for 0.4 s in this example. In the second 

stage, one end of the muscle was released and the muscle was contracting quasi-statically at 

a controlled velocity of 5.0 mm/s, while the full activation was maintained.

The four stress components from a node located in the middle part of the muscle versus 

time are plotted, as shown in Figure 3.22. From time 0.0 s to 0.4 s, the muscle was 

contracting isometrically and from 0.4 s to 2.4 s, the muscle was contracting concentrically 

and quasi-statically. Since in reality the muscle fibre cannot resist a compressive force 

along the fibre, the stress in the parallel element is zero in this simulation. The total length 

of the muscle does not change during the isometric stage, thus the stress produced in the 

isometric matrix is zero. In the concentric contraction stage, the matrix is producing a 

resistant force. Thus the stress in the matrix is negative during concentric contraction. 

These theoretical predictions are verified by the numerical results (Figure 3.22).
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—  N ode 3641 S tr e s s  in CE
—  N ode 3 6 4 2  H ydrostatic s tr e ss
—  N ode 3 6 4 2  S tr e s s  in PE
—  N ode 3 6 4 2  S tr e s s  in Matrix

CL

0 0 .5 1.0 1.5 2.0 2 .5
Time (s)

Figure 3.22 Stress components versus time curves

Furthermore, the variation of the stress in the contractile element during the controlled 

concentric contraction stage is discussed. The stress in CE is defined in Equation (3.25), 

and given once more as below:

,+V „  =<r0 . / , ( /  + ( 3 . 4 5 )

During the concentric contraction, the activation function f t (t + At) is a constant, since 

the muscle was kept in a tetanised state. The muscle was contracting at a constant velocity, 

thus the force-velocity function / v(Am) did not change in this stage. Therefore, the stress 

in CE depends on the force-stretch function f x (Xf ). In this simulation, the force against 

extension ratio curve as shown in Figure 3 .23 was input into the model. The variation of the 

normalised stress produced in CE against the extension ratio (Figure 3.24) reflects the 

relationship between the input force and extension ratio, thus verifies the stress expression 

in CE.
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Figure 3.23 Normalised force versus extension ratio curve (input)
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Figure 3.24 Normalised stress in CE versus extension ratio curve (output)

Page 79



Chapter 3 Constitutive Skeletal Muscle Model

3.6 Parametric studies of the parameters

Given that some of the input parameters are effectively guessed within their values ranges, 

the sensitivity of these parameters needs investigating. In this thesis, the sensitivity tests of 

D, a0, kCy ke and d  are performed, as their values were tuned during the fitting process. In 

these tests, while the value of one parameter is varied, the values of the remaining 13 

parameters are taken from Table 3.10. Since parameter kc and d  are used in the 

characterisation of muscle active stress, the sensitivities of kc and d  are performed in the 

activated elongation simulation. The results from the sensitivity tests (Figures 3.25 and 

3.26) show that the engineering stress increases with the increase of a0, kc and d  and 

decreases with the increase of D. It is seen from Figure 3.25 (top) that parameter D has a 

considerable influence on the total engineering stress and so its value should be carefully 

chosen. In the thesis, the value of D is set based on the conditions that the muscle volume 

has been preserved and the resulting stress-strain curves fit closely to the corresponding 

experimental curve. Parameter a0 has also a considerable influence and it is seen that the 

relative difference between the engineering stresses at the maximal and minimal o0 is up 

to 60.7% at strain 0.2. Therefore, it is crucial to choose the right value for a0 in the 

numerical simulations. Since the value variation of a0 depends on the muscle type, it is 

hoped that the value of o0 can be experimentally determined for individual muscle in the 

future. It is seen from Figure 3.26 (top) that parameters kc has little influence on the muscle 

stress. Since parameter ke has similar effects on the muscle force-velocity curves as kc 

(Figures 3.12 and 3.13), the sensitivity of ke is similar to that of kc. Therefore, the 

sensitivity result of ke is not included here. It can be seen from Figure 3.26 that parameter d  

has a bigger influence than parameter kc and ke.
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Figure 3.25 Sensitivities of parameters D and o0 in the passive elongation simulation.
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Figure 3.26 Sensitivities of parameters kc and d in the activated elongation simulation
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3.7 Summary

In this chapter, a three-dimensional (3D) Hill-type skeletal muscle model has been developed 

to characterise the complex mechanical behaviour of skeletal muscle, which is active, 

quasi-incompressible, fibre-reinforced and hyperelastic. This model is derived based on the 

concept of fibre-reinforced composite, where the muscle fibre is simulated using Hill’s 

three-element model and the surround matrix is assumed to be an isotropic material. The 

developed constitutive equations have been implemented into the non-linear finite element 

analysis programme, LS-DYNA by means of user defined material (UMAT) subroutines. A 

number of tests have been performed to demonstrate the ability of the model to simulate 

various response of skeletal muscle. Myers, Wooley et al.’s (1998) and Davis, Kaufman et 

al.’s (2003) experimental data have been used to validate the model. The developed model 

has been shown to be able to capture both the passive and active muscle behaviour during 

both the shortening and lengthening movements.

However, the development of a realistic skeletal muscle model based on the finite element 

method is still in its early stages. Further studies should look at (i) integrating the viscous 

effects into the muscle model, as the skeletal muscle tissue is rate-sensitivity and strain 

history dependence (Myers, Wooley, Slotter et al., 1998); (ii) developing multi-scale finite 

element model to account for the typical micro-structure of the muscle; and (iii) 

incorporating long-term tissue phenomena like ageing and tissue growth in the model.
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Chapter 4 

Three-Dimensional Finite Element 
Facial Model and Facial Movement 
Simulation

4.1 Introduction

This chapter begins with a review of various facial models developed for the simulations of 

facial animation and facial suigery, followed by a detailed introduction to the procedure of 

constructing the three-dimensional (3D) finite element facial model. The construction work 

involves the usage of patient specific Cone Beam Computerised Tomography (CBCT) scan 

data of the facial bones and facial surface together with the adjusted generic facial muscles 

which are taken from a standardised forensic database in the School of Life Sciences, 

University of Dundee. The simulation of patient specific cranio-facial surgery is performed 

and subsequently validated with the patient’s post-surgical CBCT and surface scanning 

data. Finally, a muscle-controlled facial movement simulation method is proposed. In this 

method, the facial movement is created by activating the responsible muscles and the 

muscle activation-contraction process is modelled by the developed muscle material model 

which is described in Chapter 3. The facial movements, including two facial expressions 

(smile and disgust) and the mouth opening process, are simulated by using the developed 

finite element facial model.
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4.2 Overview of various facial simulation models

This section gives an overview of various fecial simulation models. Special attention is 

placed on the simulations of facial surgery and facial movement.

4.2.1 Geometric models

The first facial models were geometrically based and aimed just at facial animations. For 

example, Parke (1982) proposed an early parametrised fecial model, in which the head 

was represented by polygons. Platt and Badler (1981) proposed a muscle-controlled facial 

expression model, in which the skin was the outermost level represented by a set of 3D 

points defining a movable surface and muscles are groups of elastic arcs underneath the 

skin surface. Waters (1987) developed a parameterised muscle-controlled facial model for 

creating realistic facial expressions. DiPaola (1992) developed a parametric facial 

animation system, in which the fecial expressions were accomplished by modifying the 

parameters that define the facial model. A survey for parameterised facial models and facial 

animation is provided in Parke and Waters’ (2008) book.

The geometric models are computationally efficient. However, they do not reflect the 

physical properties of the fece, thus they are mainly used in computer-aided design. As a 

consequence of the demand for accuracy in the facial surgery simulation, physically-based 

models are needed. In the following sections, several physically-based facial models are 

reviewed with the focus on mass-spring models (MSM) and finite element models (FEM).

4.2.2 Mass-spring models

Mass-spring systems are also called mass-spring-damper (MSD) systems. In these systems, 

an object is modelled as a collection of point masses connected by springs in a lattice 

structure as shown in Figure 4.1. The spring forces are often linear (Hookean law), but 

non-linear springs can be used to model complex tissues such as human skin.
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Figure 4.1 Mass-spring model (Gibson and Mirtich, 1997)

Mass-spring systems were first exploited by Miller (1988). Now, mass-spring systems have 

been widely applied to a variety of problems, such as cloth motion, facial animation and 

surgery simulation. The research interest herein lies in their applications into the 

simulations of facial animation and facial surgery.

In facial animation, Terzopoulos and Waters (1990) proposed a 3D hierarchical model of 

the human face. This model consisted of three layers of elements representing the 

cutaneous tissue, subcutaneous tissue and muscle layer. The springs in each layer had 

different stiffness parameters in accordance with the non-homogeneity of real facial tissue. 

A set of anatomically-motivated facial muscle actuators was incorporated into the model. 

Thus the facial animations were produced as a result of the muscle contractions. 

Examples of some of their produced facial animations are shown in Figure 4.2. Following 

their work, Lee, Terzopoulos and Waters (1993; 1995) proposed a more accurate 

biomechanical model for facial animation. The basic element used in their model is shown 

in Figure 4.3. The epidermal surface is defined by nodes 1, 2 and 3, which are connected by 

epidermal springs. The fascia surface is defined by nodes 4, 5 and 6, which are 

interconnected by fascia springs. Nodes 7, 8 and 9 define the skull surface.
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i
(a) —  (b) ~  (c)

Figure 4.2 Facial animations: (a) Jaw rotated; (b) Smile; (c) Anger (Terzopoulos and

Waters, 1990)

Figure 4.3 Triangular

In addition, Kahler, Haber et al. (2001) proposed a muscle-based model for facial 

animation using a three-layer mass-spring system to connect the skull, muscle and the skin. 

Pitermann and Munhall (2001) presented a dynamic inversion of a muscle-based model 

that allows the facial animation to be created from the kinematical recordings of facial 

movements. In this model, the facial tissue was modelled as a three-layered mesh: the 

epidermis layer, the fascia layer and the skull layer. More recently, Zhang, Prakash et al.

Muscle

Epidermal Surface 

Dermal-fatty Layer

skin tissue prism element (Lee, Terzopoulos and Walters, 1995; Lee,

Terzopoulos and Waters, 1993)

Epidermal Nodes

Fascia Surface

Bone Nodes
7 , 8 , 9
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(2004) presented a physically-based 3D facial model. Their facial model had a multilayer 

biomechanical structure and incorporated a set of anatomically-motivated facial muscle 

actuators. In this model, non-linear springs were used to simulate the non-linear 

viscoelastic behaviour of soft tissues, which is an improvement of the previous mass-spring 

models.

Mass-spring systems have been also widely used in surgery simulations. Keeve, Girod et al. 

(Keeve, Girod and Girod 1996a, b; Keeve, Girod, Kikinis et al., 1998) adopted a layered 

mass-spring tissue model (Lee, Terzopoulos and Walters, 1995; Lee, Terzopoulos and 

Waters, 1993) for simulating cranio-facial surgery. The basic tissue element used in Keeve, 

Girod et al.’s model is shown in Figure 4.4, in which the mechanical properties of each 

tissue layer are represented by various spring constants, and the incompressibility of human 

tissue is taken into account by adding a volume preservation force to each node.

epidermis 
dermis 
fascia 
muscles 

— bone

Figure 4.4 Basic tissue element (Keeve, Girod, Kikinis et al., 1998)

Teschner, Girod et al. (1999) developed a system for interactive, 3D cranio-facial surgery 

simulations. The system was based on the multi-layer soft tissue model, in which the layer 

springs represented the soft tissue layers, the bone springs represented connections between 

the bones and the soft tissues, and the boundary springs prevented the soft tissues from any 

global transformation, as shown in Figure 4.5. This system was able to simulate bimaxillary 

osteotomies and physiological jaw movement. Later, Teschner, Girod et al. (2000) 

improved their mass-spring system to model patient individual soft tissue deformation. In

Page 88



Chapter 4 Three-Dimensional Finite Element Facial Model and Facial Movement Simulation

the new system, the non-linear deformation and incompressibility of soft tissues were taken 

into account. Furthermore, the mass and skin turgors were integrated into the proposed soft 

tissue model. The developed methods have been tested for soft tissue deformation using 

cuttings of six individual patient data. Figure 4.6 shows one of the test results showing the 

soft tissue deformation for two different surgery options: the simulated realignment of a 

part of the lower jaw and that of the chin.

boundary spring layer spnng soft tissue position

bone bone

bone spnng
Figure 4.5 Multi-layer soft tissue model (Teschner, Girod and Girod, 1999)

(b)

Figure 4.6 Surgery simulation: (a) Simulated bone realignment; (b) The corresponding soft 

tissue changes (Teschner, Girod and Girod, 2000)
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Mollemans, Schutyser et al. (2003) proposed a tetrahedral-based Mass-Spring Model 

(MSM) for a suigery planning system to predict soft tissue changes caused by the skeletal 

changes. In contrast to traditional MSM, their extended model consisted of three types of 

elements: mass points, springs and tetrahedrons. The tetrahedrons were extracted from the 

3D tetrahedral mesh. The mass points were set on the mesh nodes and the linear springs on 

the mesh edges. This MSM was quantitatively validated by measuring distances between 

the predicted and the post-operative facial surface for three patients, suggesting that good 

results could be achieved (Mollemans, Schutyser, Cleynenbreugel et al., 2004).

The main problem with MSM systems is how to experimentally determine the parameters 

of the springs. In order to overcome this problem, Vicente, Buchart et al. (2009) proposed a 

new MSM which was derived from a continuum and the scaled displacement method. With 

the scaled displacement technique, neither re-meshing nor removing of elements was 

required during the simulation of maxillofacial surgery. Therefore, a more reliable 

description of the post-stugical displacement of soft tissues was achieved.

From the above, it can be seen that mass-spring systems have been widely used in the 

simulations of facial animation and facial surgery. Mass-spring models are easy to 

construct and allow for both interactive and real-time simulations. In addition, they are 

efficient in dealing with laige deformation problems.

However, mass-spring systems have several significant drawbacks. First of all, mass-spring 

models give an insufficient approximation of true physics, because they only offer a coarse 

approximation of true material properties. That means this system cannot provide required 

accuracy for some complex composite materials such as soft tissues. Secondly, the material 

behaviour relies on the spring constants, but accurate values for these constants are very 

difficult to obtain from experiments. Furthermore, some material properties, such as 

incompressibility and anisotropy, cannot be modelled in this system. In addition, 

mass-spring systems are also weak in modelling thin surfaces, which resist bending. Last
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but not least, when modelling nearly rigid objects, large constants are needed. In this case 

the mass-spring systems behave stiffly because of their poor stability resulting from a large 

number of spring constants.

As a consequence, for simulations of complex objects such as human face, or complex 

materials such as soft tissues, or accurate simulations such as surgical operations, other 

methods should be employed, such as the finite element method, the finite difference 

method, etc.

4.23 Finite element models

Mass-spring systems typically model an object in a discrete manner. In contrast, the finite 

element method (FEM) is capable of modelling deformable objects as a continuum system. 

Thus, a more realistic and accurate solution can be achieved by using the FEM. In addition, 

the finite element technique is superior to other techniques when modelling deformable 

objects, since it allows arbitrary geometries. However, the main limitation of the finite 

element method lies in the computational costs. The more elements that are used, the more 

computer resources are needed. Regardless of this limitation, the finite element method is 

still widely used in many applications, such as soft tissue modelling and surgery 

simulations.

Koch, Gross et al. (1996) proposed a surface based finite element model for the simulation 

of facial surgery. In their approach, the facial surface was represented by C1-continuous 

thin plate finite elements and connected to the skull by springs, as shown in Figure 4.7. The 

spring stillness parameters were computed according to the segmentation of the underlying 

CT data. This model has been successfully used in the simulation of facial surgery and 

emotion editing (Koch, Gross and Bosshard, 1998). However, the model lacked true 

volumetric physics and therefore was unable to account for some effects, such as volume 

preservation. For volumetric soft tissue modelling, Koch (2000) extended the surface based 

model towards volumetric finite element modelling. The material incompressibility was 

incorporated into the model by means of linear elasto-mechanics. In this approach, instead
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of connecting top and bottom triangles with a spring, they established prism elements 

during the set-up of the facial model. Koch, Roth et al. (2002) presented a framework for 

the simulation of facial surgery based on volumetric finite element modelling. However, 

their model was restricted to linear elastic theory, which could not deal with large 

deformations. To achieve both volumetric and non-linear soft tissue modelling, Roth, Gross 

et al. (1998) developed the tetrahedral Bemstein-Bezier elements by combining the finite 

element method with Bemstein-Bezier representations. Although higher order 

interpolations and incompressible, non-linear material behaviour were incorporated, it was 

restricted to C°-continuous interpolation across element boundaries. To overcome this 

shortcoming, Roth (2002) proposed a tetrahedral C1-continuous Bemstein-Bezier finite 

element model, whose simulation results were better than the C° solution.

Figure 4.7 Spring mesh for soft tissue modelling (Koch, Gross, Carls et al., 1996)

Chabanas, Payan et al. have worked on the simulation of maxillo-facial surgery (Chabanas, 

Luboz and Payan, 2003; Chabanas, Marecaux, Chouly et al., 2004; Chabanas, Marecaux, 

Payan et al., 2002; Chabanas and Payan, 2000; Chabanas, Payan, Marecaux et al., 2004; 

Luboz, Chabanas, Swider et al., 2005) by using the finite element method. They developed 

a 3D mesh of a generic human face by using three surface meshes: the external surface 

mesh represents the facial skin, the internal surface mesh corresponds to the projection of

skin surface

strut spring
tissue springs

skull surface 
v neighbour(i,

neighbour(i,3)

neighbour(i,0) mam spring
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the external surface onto a standard skull and the intermediate surface mesh lies at the 

interface between the dermis and the hypodermis. Two layers of hexahedral elements were 

created by connecting the nodes of these surfaces, see Figure 4.8 (right). The facial muscles 

were represented by labelling the corresponding elements inside the outer layer of the 3D 

mesh, so that they can be prescribed with specific mechanical properties. Figure 4.8 (left 

and middle) shows the final 3D mesh of a generic human face. Finally, patient specific 

model can be quasi-automatically built up by adapting the generic mesh to an individual 

patient’s morphology using the Mesh-Matching algorithm. The simulation of facial 

expression is one application of their facial model. In their simulation, facial expressions 

were created by muscular contractions which were modelled by a low-level force generator 

applying forces on nodes located between the two extremities of the muscle. Figure 4.9 

shows one example of the facial deformation caused by the muscle activation. The 

simulation of maxillofacial surgery is a further application of their model. This was 

accomplished by displacing the internal nodes of the mesh which were in contact with the 

osteotomised bone segments. The quality of the simulation was assessed by comparing the 

modelled deformation and the actual patient’s data using MESH software, as shown in 

Figure 4.10.

external
surfaceouter

lay^r

intermediate
surface

Internal
surface

inner layer

Figure 4.8 The generic 3D mesh with embedded main facial muscles (Chabanas, Marecaux,

Payan et al., 2002)

Page 93



Chapter 4 Three-Dimensional Finite Element Facial Model and Facial Movement Simulation

Figure 4.9 Face deformation due to the activation of the zygomaticus muscles (Chabanas,

Luboz and Payan, 2003)

5,041

4-0*1

0 4 * 0

Figure 4.10 Quantitative evaluation of the simulation (Chabanas, Marecaux, Chouly et al.,

2004)

Gladilin, Zachow et al. have undertaken considerable work on the simulation of 

cranio-maxillofacial surgery (Gladilin, 2003; Gladilin and Ivanov, 2009; Gladilin,Ivanov 

and Roginsky, 2004; Gladilin, Zachow, Deuflhard et al., 2003a; Zachow, Gladilin, 

Zeilhofer et al., 2001; Zachow, Hege and Deuflhard, 2006) and the simulation of individual 

facial expression (Gladilin, 2003; Gladilin, Zachow, Deuflhard et al., 2002a; Gladilin, 

Zachow, Deuflhard et al., 2002b, 2003b; Gladilin, Zachow, Deuflhard et al., 2004) using 

the finite element method. In their simulations, the individual geometrical models of 

patients’ anatomy were generated from CT data and the triangulated surfaces were
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generated to represent the boundaries between the different tissue regions, see Figure 

4.11(a). Since a volumetric mesh was needed for the finite element analysis, they generated 

unstructured tetrahedral meshes on the basis of the non-manifold surface triangulations 

with the advancing front method, see Figure 4.11(b). With this reconstructing method, they 

were able to generate an adequate 3D patient specific model for the surgical planning and 

soft tissue simulation. Several clinical cases have been simulated. Figure 4.12 shows one 

case of the surgery simulations for a patient with maxillary retrognathism and mandibular 

prognathism. The predicted facial appearance as a result of a bimaxillary operation is 

shown in Figure 4.12(b). In their facial animation simulation approach, the individual facial 

expressions were estimated by the superpositioning of pre-computed single muscle actions. 

Some of the simulated expressions are shown in Figure 4.13, where happiness was 

generated by superimpositioning of single muscle actions of zygomaticus major, 

zygomaticus minor, risorius and orbicularis oris; and disgust was created by 

superpositioning of single muscle actions of depressor angularis oris left, depressor labii 

left, mentalis left, levator labii right and orbicularis oris left and right.

(a)

Figure 4.11 Facial model: (a) Simplified surface model; (b) Tetrahedral mesh (Zachow, 

Gladilin, Zeilhofer et al., 2001)
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w  0>)

Figure 4.12 Simulation of the cranio-maxillofacial surgery: (a) Pre-surgery; (b)

Post-surgery (Gladilin, 2003)

Figure 4.13 Simulation of facial expressions: (a) Happiness; (b) Disgust (Gladilin, Zachow,

Deuflhard et al., 2004)

In addition, Vandewalle, Schutyser et al. (2003) discussed the modelling of tissue growth as 

a result of maxillofacial surgery using the finite element method. Yu, Baik et al. (2007) 

constructed a 3D finite element model of cranio-facial bones and the maxillary teeth to 

simulate actual bone reactions. Barbarino, Jabareen et al. (2008) developed a 3D finite 

element model of the face aiming at improving the design of medical devices used for 

plastic surgery on the human face. Later, they (Barbarino, Jabareen, Trzewik et al., 2009) 

validated the response of their facial model to gravity loads, and to the applications of a 

pressure inside the oral cavity and of an imposed displacement. The ageing response of the
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face has also been modelled. Although this model has not been used for predicting the 

outcome of a patient specific plastic surgery, the potential of this has been discussed in their 

work.

4.2.4 Other models

Besides these two commonly used physically-based models (MSM and FEM), there are 

some other physically-based models that can be applied in the simulations of fecial 

animation and fecial surgery, as described below.

Mollemans, Schutyer et al. (2005) presented a Mass Tensor Model (MTM) to simulate soft 

tissue deformations after maxillofacial surgery. They (2007) subsequently compared the 

novel MTM with three other computational strategies: linear Finite Element Models, 

non-linear Finite Element Models and Mass-Spring Models. The pre-operative and 

post-operative CT data obtained from 10 patients, who underwent maxillofacial surgery, 

was used to validate these techniques. They showed that the MTM strategy gives both a 

fast solution and accurate results.

Sarti, Gori et al. (1999) presented an approach based on the use of embedded boundary 

condition techniques, which allowed the simulation of cranio-fecial surgery directly on the 

grid of 3D CT images of the patient. However, their method demanded a large amount of 

data and the simulation has to been implemented on a supercomputer, which is a 

considerable drawback.

4.3 Construction of the 3D finite element facial model

Building a three-dimensional (3D) finite element model of the human face is a complex 

task. It involves a multi-disciplined knowledge base and a considerable understanding of 

typical anatomy is required. This section presents the procedure for building a 3D finite 

element mesh which is capable of accurately capturing fecial geometry.
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4.3.1 Reconstruction of the facial geometry

Accurate data acquisition is an important step in this procedure. In this thesis, the facial 

skin and skull structures were based on the available patient specific data. The geometry of 

the patient specific face was re-visualised by using the cone-beam computer tomography 

(CBCT) scanning. The scanned images in the DCM format were manipulated, and 

triangulated surfaces in an STL format were obtained for the reconstruction of the facial 

geometry. In this project, the scanning and image manipulation were done by the technical 

staff in the School of Dentistry, Cardiff University. Finally, the patient specific STL files of 

the facial skin and skull were provided. The muscles were obtained from a standardised 

forensic database (Wilkinson, Rynn, et al. 2006) with each muscle being simulated 

separately and stored as an STL file, which contains the original geometric data. The STL 

files for the muscles used in the thesis were provided by Caroline Wilkinson at the School 

of Life Sciences, University of Dundee.

The second step in this procedure is to reconstruct the geometric surfaces from the patient 

STL files. The resulting triangulated mesh surface data, which is stored as STL files, can be 

quite coarse due to holes, noise points, sharp edges, etc. If finite element models were 

constructed using these raw data, meshes with sharp angles are likely to induce 

inaccuracies in the resulting analysis. Therefore, the triangulated mesh of an STL model 

needs to be converted into a parametric surface so that the geometrical parameters of the 

3D objects’ outer surfaces can be controlled. This work is difficult to implement in 

common computer-aided design (CAD) software, even in the powerful CAD packages such 

as UG and Pro/Engineer. However, the reverse engineering software, RapidForm, provides 

the ability to solve this problem.

Reverse engineering is a modelling process which translates original data to a concise 

geometric model which is exportable to CAD/CAM/FE packages. RapidForm is a software 

based solution system that allows users to go from 3D scan data to a folly parametric CAD 

model. It possesses automated methods for creating optimised polygon mesh models and
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also has functions to remove disparate geometries such as holes and noise points.

Therefore, in this thesis, RapidForm (INUS Technology Inc. & Rapidform Inc. 2006) was 

used to process the raw data. The dense point clouds were cleaned, holes were filled-in and 

sharp edges were smoothed using standardised algorithms. Non-Uniform Rational Basis 

Spline (NURBS) surface were employed to mathematically represent the exterior 

anatomical structures. Three examples are given to show the differences before and after 

the process. Figures 4.14 (a), (c) and (e) show the raw triangulated mesh models which are 

stored in the format of STL files. Figures 4.14 (b), (d) and (f) show the corresponding 

NURBS surface models after the smoothing process was applied.
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(a). Raw mandible (b). Processed mandible

(c). Raw levator (d). Processed levator

(e). Raw mentalis (f). Processed mentalis

Figure 4.14 Data process. Left: triangulated mesh models; Right: NURBS surface models
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43.2 Creation of the 3D finite element facial model

Constructing a three-dimensional finite element model of the human face is a complicated 

task. First of all, human face is a complex structure. Even in a simplified form, human face 

has approximate 27 components, including the skull, facial skin, 20 facial muscles, etc. For 

the finite element computation, these components should be correctly connected within the 

continuum system. However, in the geometry reconstruction process, when using the 

parametric surface approximates the triangulated mesh, the geometry of each component 

may be expanded or shrunk due to the approximation. Thus, some overlaps and gaps may 

occur between the components. Therefore, in order to accurately predict the soft tissue 

deformation, any overlapped sections should be removed and the gaps should be replaced 

or filled to provide an accurate description of the facial construct.

Secondly, either rigid node constraints or contact constraints should be applied to the 

surfaces where two components contact with each other. The difficulty here is to identify 

the contact surfaces or nodes and furthermore geometrical irregularity makes this process 

even more difficult.

Also, facial skin and bone structure have quite different material properties. What is further 

complicated is that facial muscles have different mechanical properties. Therefore, while 

building a finite element model of human face, the nodes and elements should be classified 

such that corresponding components can be described within elemental and nodal data sets.

Because of the difficulties mentioned above in developing a finite element facial model, 

choosing the appropriate software is a critical process. ABAQUS (Hibbit, Karlsson and 

Sorensen Inc. 2006) is a highly sophisticated, general purpose finite element analysis (FEA) 

package and is widely used in many research areas, such as mechanical engineering, 

structural design and biomedical analysis. However, in this application, it is quite difficult 

for ABAQUS to automatically detect the contact surfaces. MSC Corporation developed 

MSC/PATRAN (MSC. Software Corporation, 2008) which is the world leading
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pre/post-processing software for finite element analysis and MSC/PATRAN provids solid 

modelling, meshing, and analysis setup for ABAQUS, LS-DYNA, ANSYS, etc. 

Unfortunately, MSC/PATRAN still has the problem of identifying the contact surfaces.

To overcome some of these problems, the Simpleware software package (Simpleware Ltd., 

2008) +ScanCAD, ScanIP and +ScanFE and the Oasys.PRIMER (Oasys Ltd & Arup, 2009) 

were chosen as the pre-processing software for building the finite element facial model.

Simpleware is a well developed software solution for the conversion of 3D images into 

CAD/STL files, rapid prototyping applications and finite element meshes. Simpleware 

offers three software options for processing and meshing 3D image data: +ScanCAD, 

ScanIP and +ScanFE. The +ScanCAD module is mainly used for working with implants and 

allows importing CAD models, positioning them interactively and generating a ScanIP 

mask of the combined data. The ScanIP module provides an extensive selection of image 

processing tools to assist the user in visualizing and segmenting regions of interest from 

any volumetric 3D data (e.g. MRI, CT, Micro CT). Segmented images can be exported as 

STL files for CAD analysis or RP manufacturing. The +ScanFE module generates volume 

and/or surface meshes, contact surfaces and material properties from segmented data. The 

relationship between these modules is shown in Figure 4.15.

CT,MRI,Micro-CT ►

CAD,
STL

ScanIP 
Image processing tools

Import -■ 
Export —

U ~ l
CAD,STL

ScanCAD 
Integrating CAD into image

ScanFE 
Volumetric meshing FE, CFD

Figure 4.15 Simpleware software products
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In this thesis, 27 STL files, which are geometrical data of the 27 facial components, were 

imported into +ScanCAD. In +ScanCAD, 27 masks wore created by using the ‘CAD to 

Mask’ method and all the muscles were placed as accurately as possible according to their 

anatomic positions. Then all the masks were exported into ScanIP, in which the 

subcutaneous tissue was created. In ScanIP, the overlapped sections were automatically 

identified and were fixed by using ‘Boolean’ operations. Finally the facial model was 

exported into +ScanFE for generating the volumetric meshes. An important component in 

the facial model is the subcutaneous tissue, which fills the gaps among the fecial skin, the 

bones and the fecial muscles. It is worthy to mention that the subcutaneous tissue is created 

by using ScanIP and the creation process is shown in Figures 4.16.
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- i tlza k s  p iay ie i/

(a). Step 1 (b). Step 2

(c). Step 3 (d). Step 4

Figure 4.16 Procedure for the creation of the subcutaneous tissue
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In step 1, a duplicated face was created and the nose, eye and mouth openings were filled. 

In step 2, the ‘Morphological filter & Dilate’ tool was used to expand the face 10mm 

forward and backward. In step 3, Boolean operations were used to subtract the face from 

the dilated face. In step 4, ‘Segementation’, ‘FloodFill’ tools were used with the inner 

dilated face retained and the rest of the dilated face being deleted.

Oasys Ltd is the software house of Arup and distributor of LS-DYNA software in UK, 

India and China. Arup developed the Oasys suite of pre- and post- processing software for 

use with LS-DYNA. The Oasys shell is shown in Figure 4.17.

stages:

preparation

solution

post
processing

reporting

Oasys LS-DYNA Environment 9.2

PRIMB?

LS-DYNA

T/HIS D3PLOT ^

REPORTS? r-

Monftor

i

Manuals

Support

Figure 4.17 Oasys shell

In this thesis, the finite element facial model was exported from +ScanFE as a keyword file, 

which was later read into Oasys PRIMER for preparing the facial model. One application 

of Oasys PRIMER is to set up the connections. As mentioned, the geometry of the facial 

components may have been expanded or shrunk after the geometry reconstruction process. 

The geometrical expansion is likely to induce wrong connections which are automatically 

defined in ScanIP, and these connections are redundant. The geometrical shrinkage is likely
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to induce the missing of some connections. For example, the top left comer of the masseter 

muscle should connect with the maxilla from the anatomy point of view. However, in the 

reconstructed model, there is a gap between them, as indicated in Figure 4.18 (a). In order 

to define this missing connection, prescribed nodes from the maxilla were connected with 

prescribed nodes from the masseter, as shown in Figure 4.18 (b). Through studying the 

facial anatomy and using expertise within the Department of Anatomy at Cardiff University, 

the redundant connections generated in the facial model were detected and detached using 

the ‘clipboard’ tool in Oasys PRIMER; the missing connections were detected and defined 

by using the ‘noderigidbody’ keyword for defining attachments between two deformable 

bodies and using the ‘extra nodes’ keyword for defining attachments to the rigid body. The 

facial model with the connections being corrected is shown in Figure 4.18 (b), where the 

dense points indicate the position where the connection corrections were made.

Connection
■issing Hissing

connection
defined

(a) Model from ScanFE (b) Model with the connections corrected

Figure 4.18 Correcting the connections in the finite element facial model

The second application of Oasys PRIMER is to define the boundary conditions. The 

assumption of facial symmetry was introduced to allow the development of a half-facial
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model, which reduced both the size of the finite element model and the computational time 

considerably. Plane symmetry was assumed in the facial structure and plane symmetrical 

boundary conditions were applied to the symmetry plane, as shown in Figure 4.19. Because 

of the symmetrical boundary conditions, the nodes located in the symmetrical plane are 

fixed and cannot move left or right. However, for the cases when the loading and constraint 

conditions are not symmetrical to the middle plane, the symmetrical boundary condition 

should be removed and the half model should be mirrored to build the whole facial model. 

In the following two applications, the loading and constraint conditions are both 

symmetrical to the symmetrical plane. So using a half-facial model is appropriate in this 

case.

(a) front view (b) Side view

Figure 4.19 Symmetry boundary conditions in the finite element facial model

Other applications of Oasys PRIMER include defining the temporomandibular joint, and
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assigning the material properties. In the facial model developed in this thesis, the revolute 

joint is used to simulate the human temporomandibular joint (TMJ). A revolute joint (also 

called hinge joint) is a one degree of freedom kinematic pair used in mechanisms. Revolute 

joints provide single-axis rotation function used in many places such as door hinges, 

folding mechanisms, etc. In this thesis, the revolute joint is used to define the TMJ, where 

the maxilla stands still and the mandible rotates along a horizontal axis which is located at 

the maxilla-mandible connection. The material properties for the individual component are 

detailed in the following section.

4.3.3 Description of the 3D finite element facial model

In the finite element facial model, 20 muscles are simulated as listed in Table 4.1.

Table 4.1 List of facial muscles modelled

Muscle type Muscles

Buccinator
Zygomaticus major
Zygomaticus minor

Risorius
Depressor anguli oris

Muscle of facial expression Orbicularis oculi
Orbicularis oris

Mentalis
Levator labii superioris alaeque nasi (LLSAN)

Depressor labii inferioris
Levator labii superioris

Temporalis
Muscles of mastication Masseter

Lateral pterygoid
Medial pterygoid

Stylohyoid
Posterior digastric

Hyoid muscles Mylohyoid
Anterior digastric

Geniohyoid

The 20 facial muscles are illustrated in Figure 4.20.

Page 108



Chapter 4 Three-Dimensional Finite Element Facial Model and Facial Movement Simulation

LevatorLabiiSuperio
risAlaequeNasi
(LLSAN)

Orbicularis
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Figure 4.20 Finite element facial model - muscle illustration: Top: Lateral view (external);

Bottom: Lateral view (internal)
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Page 109



Chapter 4 Three-Dimensional Finite Element Facial Model and Facial Movement Simulation

Besides the facial muscles, three bones are modelled: mandible, maxilla and hyoid bones, 

as illustrated in Figure 4.21 (a). In addition, the eyeball, the nose cartilage and the 

subcutaneous tissue are modelled, as shown in Figures 4.21 (b) and (c). Finally, the patient 

specific facial skin is implemented into the facial model, as shown in Figure 4.21 (d).

(a) (b)

Maxilla

Mandible

Eve ball

cartilage

Subcutaneous
tissue

Facial
skin

(c) (d)

Figure 4.21 Finite element facial model illustration
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The 3D finite element model of the half face is meshed with approximately 2 million 

tetrahedral solid elements and the element size is approximately 1 mm, as shown in Figure 

4.22, where the left figure shows the whole facial mesh and the right figure shows the 

enlarged mesh around the mouth. It should be noted that the finite element mesh was 

generated in +ScanFE and in the current version of +ScanFE (version 3 .1), the control of the 

element size is restricted. As the further development of +ScanFE and the permission of 

controlling the element is gained, the developed facial face should be meshed with coarse, 

bigger elements and the mesh in the concerned zones should be refined. In this way, the 

computational time will be considerably reduced.

Figure 4.22 Mesh of the finite element facial model

The mechanical property of facial tissues plays an important role in the finite element 

analysis. Different material properties could induce different simulation results. Thus, the 

most accurate choice for the soft tissue materials is critical for achieving accurate 

simulations. In this work, various facial tissue models have been explored. Then the
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material models for different facial tissues are selected or developed on the consideration of 

both the model simplicity and the simulation accuracy.

The mechanical properties of facial skin are complex because of its intricate structure. 

Extensive experiments have shown that facial skin is an inhomogeneous, anisotropic, 

multi-layered and viscoelastic material (Fung, 1981; Tran, Charleux, Rachik et al., 2007). 

In the developed facial model, the facial skin is modelled as an isotropic linear elastic 

material with two independent material constants, Poisson ratio and Young’s modulus. The 

Poisson ratio is chosen as 0.49 in order to simulate the quasi-incompressibility of the skin 

tissue. The Young’s modulus is set to 15 KPa , according to Fung’s work (Fung, 1981). A 

more accurate material model should be considered in the future. However, in this thesis, 

the influence of facial skin is considered to have less impact to the overall results, so a 

linear elastic approximation to the facial skin is appropriate.

Two sets of material properties are defined for the skeletal muscle, one for active muscles, 

and the other for non-active muscles. For muscles in the active state, they are characterised 

as active, quasi-incompressible, fibre-reinforced and hyperelastic materials as described in 

Chapter 3. For the muscles in the non-active state, they are characterised as linear elastic 

materials with the Young’s modulus of 6.2 KPa, as measured by Duck (1990). The Poisson 

ratio is set to 0.49, as skeletal muscle is mainly composed of water, thus incompressible.

To simplify the facial model, the gaps among the facial skin, muscles and bones, are filled 

with only one material, i.e. the subcutaneous tissue. In this work, the subcutaneous tissue is 

treated as a non-linear slightly compressible material and simulated by the neo-Hookean 

model with the strain energy density function given by:

U = C10(/, -3 )  + 0.5K (J  - 1)2 (4.1)

where /, is the first invariant of the strain tensor, J  is the Jacobian of the deformation 

gradient, C10 and K  are material parameters. The values of C10 and K  are taken from 

Tran et.al.’s indentation tests: C10= 0.42 KPa and K =  36 KPa (Tran, Charleux, Rachik et

al., 2007).
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The mechanical properties of bones vary a lot, depending upon the age, anatomical location, 

liquid content, etc. In the model developed in this thesis, the bones are assumed to be rigid 

elastic material, since the main focus in this work is the deformation of the soft tissues. The 

material parameter values for the bones are taken from Sarkar, Majumder et al.’s (2004)

work, i.e. density = 1412Ag7/w3, Young’s Modulus = 6.5e3 MPa and Poisson’s ratio =

0.22. The nose cartilage and the eyeball were modelled as a linear elastic material with the 

Young’s modulus of 6.1 MPa and Poisson’s ratio of 0.2 (Protsenko and Wong, 2007).

Figure 4.23 shows the material models used for different facial tissues.

Facial bones 

Rigid material

Subcutaneous tissue -  

Neo-Hookean material

N ose cartilage and 

eyeball -  Linear elastic 

material

Facial skin -  Linear 

elastic material

M uscles -  User Defined 

materials or linear 

elastic material

Figure 4.23 Materials for the finite element facial components
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This concludes the review of how the 3D finite element facial model was formed. The 

non-linear finite dement analysis programme LS-DYNA is employed as the computational 

analysis tool and Oasys D3PLOT 9.3 is used for post-processing, i.e. the visualisation of 

results, animations, viewing the displacement and stress, etc. The procedure for developing 

the facial model is summarised in Figure 4.24.

Obtain surface data from 
CBCT and database

 ____________
Create NURBS surfaces 

using RapidForm

1Z.
Create FE solid model 

using Simpleware package

. . . . . . a
Set up the model with connections, 
boundary conditions, materials etc.

using Oasys PRIMERa
Perform the analysis using LS-DYNA explicit

Visualise the results using Oasys D3PLOT

No
/  Is the result

satisfactory?

IT Yes 

(  Done j

Figure 4.24 Procedure for developing the 3D finite element facial model
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4.4 Cranio-facial surgery simulation

One application of the facial model is the outcome prediction of facial surgery. In this 

section, a cranio-facial surgical procedure is simulated and the accuracy of the simulation is 

discussed.

4.4.1 A clinical case report

A male student was referred to the University Hospital of Wales with the lower jaw anterior 

to the upper (Class m  and skeletal 3 malocclusion). The permission was obtained from this 

patient to use his data for research. The sequence of the surgical procedures is outlined in 

Figure 4.25. His 3D facial surface was captured using two Konica Minolta Vivid 910 laser 

cameras. The surface scan and the skeletal structures were placed in the correct spatial 

relationship and then aligned to the horizontal plane based on the inner canthi and 

mid-sagittal planes, as shown in Figure 4.25 (a). In order to determine the soft tissue 

discrepancies for this patient, an average facial template matched for age and sex was fitted 

to the individual’s face. The details of the discrepancies were quantified using a colour 

deviation map, as shown in Figure 4.25 (b), which clearly highlighted a mid-face 

insufficiency and that the lower lip was prominent. The ‘cut-away’ approach was used 

whereby the half facial shell was removed to reveal the underlying skeletal structure, as 

shown in Figure 4.25 (c). As the individual’s face was long by 4mm, a bi-maxillary suigical 

procedure was planned. The maxilla and mandible were removed from the computerised 

model just leaving the cranial base, as shown in Figure 4.25 (d). A Le fort 1 procedure was 

proposed to move the maxilla upward 4mm and forward by 5mm, as shown in Figure 4.25 

(e). The upper and lower dental casts were scanned in a best-fit occlusion and then 

superimposed on the maxillary dentition, as shown in Figure 4.25 (f). A sagittal split 

procedure was performed, the anterior part of the mandible was aligned and fitted to the 

mandibular dental cast and the posterior fragment left in its original position, as shown in 

Figure 4.25 (g). Finally, the individual’s surface laser scan was repeated post-operatively, 

aligned and fitted to the original facial surface, as shown in Figure 4.25 (h).
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Figure 4.25 Procedure of the cranio-facial surgery (Richmond, Beldie, Lu et al., 2010)
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The clinical photographs of the patient before and after orthodontic alignment and 

orthognathic surgery are shown in Figures 4.26 and 4.27.

Figure 4.26 Changes of the dental occlusion before (left) and after (right) operation

Figure 4.27 Changes of the patient appearance before (left) and after (right) operation
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4.4.2 Finite element simulation results

In the clinical case described in Section 4.4.1, the patient specific data for the skull and the 

outer facial shell was used to construct the finite element facial model, while the muscle 

data came from the standardised forensic database. The procedure for building the finite 

element facial model has already been described in Chapter 4.3. The finite element analysis 

(FEA) was performed to simulate the surgical procedure listed in Figure 4.24 in the 

Advanced Research Computing @ Cardiff (ARCCA) High-Performance Computing (HPC) 

Cluster - Merlin. The simulation took around 3 minutes when using 8 processors.

In the finite element simulation, a Le Fort 1 was performed with the maxilla being moved 

upwards by 4mm and forwards by 5mm. A sagittal split was performed on the mandible. 

The anterior part of the mandible was moved to create the best fit (occlusal fit) with the 

upper jaw and the posterior fragment was left in its original position. The finite element 

simulation is outlined in Figure 4.28, where the left column shows the facial features before 

the surgery, the middle column shows the facial features in the middle of the simulation and 

the right column shows the facial features after the surgery.
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4.4 .3Validation of the finite element prediction

The patient returned 6-month after the surgery, at which time the facial swelling has 

reduced (Kau, Cronin and Richmond, 2007) and the surface scans were repeated. The 

6-month post-surgical facial shell (gray) was superimposed on the pre-surgical facial shell, 

as shown in Figure 4.29 (a). For comparison, in Figure 4.29 (b), the finite element 

simulated face (green), which corresponds to the 6-month post-surgical face, was 

superimposed on the pre-calculated finite element face (red), which corresponds to the 

pre-surgical face. The colour map based on the differences between pre-surgical and 

6-month post-surgical faces was drawn in Figure 4.29 (c), in which one can see a 

significant improvement in the mid-face (yellow-orange) and the retraction of the mandible 

(blue) after the surgery. In Figure 4.29 (d), the differences between the computationally 

simulated face and the pre-surgical face were quantified in comparison with Figure 4.29 (c). 

The clinic data and the finite element simulated results show similar facial movements 

resulting from the surgery, as can be seen by comparing the colour deviation maps in 

Figures 4.29 (c) and 4.29 (d).

(d)
Figure 4.29 Superimposition of the pre-surgical and 6-month post-surgical faces. Left:

clinic data, Right: finite element results
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The finite element simulated face after the cranio-facial surgery was also superimposed on 

the patient’s face at 6-month post-surgery using Geomagic Qualify 10 (Raindrop Geomagic, 

Inc., 2008), as shown in Figure 4.30 (a). The differences are highlighted using a colour 

deviation map, as shown in Figure 4.30 (b), where the green represents a tolerance level of 

±2.0 mm, which is the acceptable mean surface error (Kaipatur and Flores-Mir 2009), the 

yellow area (the bridge of the nose and the lower lip) represents the prominence of the 

simulated face and the blue area (the chin) represents the less prominence of the simulated 

face. The superimposition shows that the finite element prediction of the face after surgery 

is in good agreement with the patient’s surgical outcome, with an overall agreement of 85% 

while the error was generally contained within a ± 2.0 mm threshold. That means 85% of 

the points from the finite element prediction model are within the tolerance of ± 2.0 mm 

with the patient’s 6-month surgical outcome. The areas which show less accuracy are the 

lower lip and a localised area of the lower cheek. The results are promising, especially 

showing that the use of generic facial muscles does not compromise the predicted results. 

However, more development work is needed before the proposed method can be used as a 

tool in the day-to-day planning of cranio-facial surgery. For example, the need of a more 

efficient segmentation technique is required to build a patient specific facial model.

Figure 4.30 Superimposition of facial finite element simulation with patient data at
6-month post-surgery
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4.5 Facial movement simulation

The other application of the fecial model is the simulation of fecial movement. Two fecial 

expressions (smile and disgust) and mouth opening process are simulated. The simulations 

were performed with 8 processors in the ARCCA HPC duster - Merlin. The simulation 

times for each analysis are listed in Table 4.2

Table 4.2 Simulation times for each analysis

Simulation
type

Pre-surgery
smile

Pre-surgery
disgust

Post-surgery
Smile

Post-surgery
disgust

Mouth
opening

Simulation
time

5 hours 38 
minutes

5 hours 48 
minutes

3 hours 43 
minutes

3 hours 52 
minutes

3 hours 50 
minutes

4.5.1 Facial expression simulation

Simulating facial expressions is challenging, since there is little knowledge of the muscles 

involved and the amount of contraction each muscle undertakes during various facial 

expressions. Secondly, the feet that the muscle fibres generally intertwine with each other 

makes it very difficult to measure the amount of contraction of active muscles during facial 

expression. Finally, the size and shape of the muscles may vary slightly from person to 

person.

In this thesis, research has been concentrated on the simulation of two expressions, which 

are smile and disgust. With the finite element facial model developed in this thesis, some 

other expressions cannot be simulated because of the shortage of fecial muscle data. For 

example, surprise and frowning cannot be simulated since they require epicranial and 

corrugator supercilii muscles, respectively, which are not modelled in the finite element 

facial model here.
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The developed constitutive muscle model, described in Chapter 3, is applied to the half 

facial model to simulate the &cial expressions. During the simulation of fecial expressions, 

the active muscles are assigned with the developed muscle material model and the 

activation function used for the simulation of fecial expressions is defined as follows: the 

activation levels before and after the stimulation are set to zero to simulate the rest state of 

facial muscle; the activation level during the stimulation is set to one to simulate the folly 

contracted state of fecial muscle; the activation is set to start from time zero and the 

deactivation time is set to infinity so that the simulated fecial expression is maintained. 

Please refer to Chapter 3.3.2 for the detail of the activation function applied.

According to Fehrenbach and Herring’s (2006) work, for the expression of smile, the 

muscles activated are the Zygomaticus Major, the Risorius and the Orbicularis Oculi 

muscles; and for the expression of disgust, the muscles activated are the Levator Labii 

Superioris Alaeque Nasi, the Orbicularis Oculi and the Depressor Anguli Oris muscles.
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The smile and disgust expressions were first simulated in the pre-surgical facial model, as 

shown in Figure 4.31.

Figure 4.31 Facial expressions in the pre-surgical facial model - smile (first row) and 

disgust (second row). Left: at simulation time zero; Middle: in the middle of the simulation;

Right: at the end of the simulation
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The smile and disgust expressions were then simulated in the post-surgical facial model, as 

shown in Figure 4.32. The simulations of facial expressions in the post-surgical facial 

model can be used as an additional virtual tool to give more information about the outcome 

of the surgery, to assist the clinician to study various surgery plans, and to help the patient 

understand the suggested outcomes.

Figure 4.32 Facial expressions in the post-surgical facial model - smile (first row) and 

disgust (second row). Left: at simulation time zero; Middle: in the middle of the simulation;

Right: at the end of the simulation
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Figure 4.33 Finite element simulation of the mouth opening. Left: at the simulation time 

zero; Middle: in the middle of the simulation; Right: at the end of the simulation

4.5.2 Mouth opening simulation

A simulation of the mouth opening process was performed in the pre-surgical facial model 

by activating Anterior Digastric and Mylohyoid muscles. The results are shown in Figure 

4.33. The work is still at its early stages and development. The ultimate goal of this is to 

simulate the facial movement during speech.
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4.6 Discussion and conclusion

In this chapter, a finite element facial model was created based on the patient specific facial 

skin, skull data and the generic muscles. The Simpleware package and Oasys PRIMER 

were employed in the procedure of developing the finite element facial model. The 

developed finite element facial model was firstly used to simulate a cranio-facial surgical 

procedure. The results of the finite element prediction showed good agreement with the 

patient's 6-month post-surgical data, with the errors generally being within the range of 

-2.0 mm to +2.0 mm. The areas that showed least agreement were the lower lip with a 4.2 

mm variation and a small area of the lower cheek with a 2.8 mm deviation. These results 

are promising, especially showing that the use of generic facial muscles does not 

compromise the predicted results. However, further work is needed before the proposed 

method can be used as a tool in the day-to-day planning of cranio-facial suigery, such as 

the need of a more efficient segmentation process of the facial muscles leading to a more 

accurate patient specific finite element facial model.

Secondly, the finite element facial model was used to simulate the facial movements, which 

includes two facial expressions and the mouth opening process. In this thesis, a novel 

approach for the simulation of facial movement was proposed. In this method, the muscles 

responsible for individual facial expression were assigned with the developed muscle 

material model, which was described in Chapter 3. Two facial expressions, smile and 

disgust, were successfully performed on both pre- and post-suigical facial models by 

activating the corresponding muscles. In addition, the mouth opening process was 

simulated by activating the Anterior Digastric and Mylohyoid muscles. The simulation of 

the aforementioned facial movements showed promising results of the proposed simulation 

method. Furthermore, the simulation of the facial expressions post-suigery can be included 

in the process of planning the maxillofacial suigery, as a virtual tool to help predict the 

outcome of facial suigery and help the suigeon exploring various different suigery 

scenarios. A more quantitative comparison of the simulation of the facial expressions with
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the actual patient expressions would have been beneficial, however not enough data post 

suigery was available in order to accommodate this. Work is currently being undertaken to 

establish a three-dimensional database for normal facial movement and compare and 

contrast facial movement of patients with facial disharmony with this normative group 

prior to surgery and post-operatively. We hope to use this as one of the measures to 

quantify movement and success of suigery.

The potential for this work to provide a virtual training tool is enormous. It has been 

demonstrated in this chapter that the computational tool can provide detailed 

three-dimensional anatomy of the human face. Different surgical scenarios can be 

demonstrated. With the development of force-feedback haptic technology, computational 

models could potentially deliver the same 'hands on’ feeling as the dummy simulators. 

However, to use the computational models for educational purposes, significant research 

and development are required and the researchers need to overcome the limitation of the 

current modelling frameworks and liaise with clinical experts to identify their needs.

In order for the models to be clinically useful, several factor need to be addressed, such as 

the computational speed, reliability and user friendliness of the software tools. The solution 

procedure of current model is too slow and sometimes unstable, which precludes real-time 

clinical application. The inclusion of detailed anatomical information will require more 

computational power and efficiency to cope with the complexity of the models. In order to 

overcome the speed issue, advanced numerical methods are required to handle the 

increased nonlinearities and computational demand. Besides, the model reliability needs to 

be improved by quantitatively validating the predictions against experimental data and/or 

clinical measurements. To data, little work has been done using such models as clinical 

tools. The next stage of model development should be carried out in collaboration with 

clinicians to assess their needs and requirements. In general, a clinical/educational tool 

should have the following features: a quick and easy interface with reasonable precision 

and accuracy; a clear display; the capacity to store, search, and quickly retrieve patient
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information; and the ability to connect to an online database for cross-reference and 

diagnosis.

In the finite element modelling, a finer mesh typically results in a more accurate solution. 

However, as a mesh is made finer, the computational time increases. Therefore, a mesh 

convergence study should be preformed to get a mesh that satisfactorily balances accuracy 

and computing resources. As the version of Simpleware we used (version 3.1) does not 

allow the user to change the element size, the convergence study was not performed in this 

thesis. The newly released Simpleware (version 4.0) has enabled the user to refine the mesh. 

Therefore, a convergence analysis of the developed facial model is highly recommended in 

the future to determine a proper mesh density.

More future development work concerns (i) improvement of the accuracy of the finite 

element facial model by constructing the patient face using patient specific muscle data 

instead of generic muscle data and by modelling a variety of muscle fibre arrangements; (ii) 

development of better models for the facial skin instead of the linear elastic model used in 

this thesis. The skin shows a non-linear stress-strain relationship, behaves time-dependent, 

incompressible, anisotropic and inhomogeneous. Besides, the skin has a wrinkling 

phenomenon. Incorporating these features into the FE facial model will lead to a 

realistically simulated appearance of the face; (iii) quantitative validation of the simulated 

facial movements by comparing the results with the actual patient facial movements 

through collection of post-operative patient data; and (iv) using the developed finite 

element facial model to simulate speech and other facial actions.
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Chapter 5 

Modelling the Fibre Arrangement of 
Skeletal Muscle Using the FEM- 
NURBS Method

5.1 Introduction

Skeletal muscle is responsible for the movement of human body. In contrast to other 

biological tissues, they display the ability of active contraction and when activated, they 

contract along their fibre directions. In order to more precisely characterise their in vivo 

behaviour, it is very important to visualise their internal features such as the fibre 

orientation arrangements.

Skeletal muscle has a complex fibre orientation arrangement and this makes the creation of 

an accurate finite element (FE) muscle model a difficult task. In general, each change in the 

fibre orientation requires a new material to be defined in ABAQUS. As a result, it is nearly 

impossible to simulate the complex fibre arrangement using existing techniques. In this 

chapter, a FEM-NURBS method, which is the combination of the finite element method 

and the non-uniform rational B-spline (NURBS) solid mathematical representation, is 

proposed. With the introduction of this method, only one ABAQUS material per muscle is 

needed to be prescribed. The initial direction of the muscle fibre is specified as the tangent 

direction of the NURBS curve which the fibre lies on. The direction at each Gauss point is
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calculated from the NURBS mathematical formulation and passed into the finite element 

software as the initial fibre direction. In the subsequent calculation, the fibre directions are 

updated using the initial fibre directions, the deformation gradients and the fibre stretches. 

Several numerical examples are used to demonstrate the ability of the proposed 

FEM-NURBS method.

5.2 Related work on muscle fibre representation

One way of simulating the muscle fibre arrangement is through using a series of line 

segments (Chao, Lynch and Vanderploeg, 1993; Delp, Loan, Hoy et al., 1990; Hoy, Zajac 

and Gordon, 1990; Jensen and Davy, 1975; Nedel and Thalmann, 1998). In Hoy, Zajac et 

al.’s (1990) approach, the musculotendon actuators (Iliopsoas, hamstrings and vasti) were 

modelled as a single straight line from the origin to the insertion, as shown in Figure 5.1. In 

Nedel and Thalmann’s (1998) work, the Biceps Brachii muscle was represented by two 

action lines running from the insertion points to the origin points (Figure 5.2). In this 

method, the line segments pass through the approximate centroidal path of the muscle and 

represent the muscle action lines. This fact makes it very challenging to define a series of 

line segments for muscles with complex geometries and muscles wrapping around the 

underlying structures. In addition, the line segment muscle representation method assumes 

that all fibres within a muscle have the same length and moment arm (Zajac, 1989). 

However, studies (Herzog and Keurs, 1988) show that the variations in fibre lengths and 

moment arms could greatly affect the muscle force, especially for muscles with complex 

geometries. Thus the line segment method cannot accurately represent in vivo muscle 

behaviour.
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Iliopsoas

•Vasti
Hamstrings

Figure 5.1 Straight-line approximation for musculotendon actuators(Hoy, Zajac and

Gordon, 1990)

Figure 5.2 The biceps Brachi muscle and its action line (Nedel and Thalmann, 1998)

Considerable research has been reported in the use of the finite element method for 

simulating the muscle behaviour (Blemker and Delp, 2005; Blemker, Pinsky and Delp,

ontrol

msertio]
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2005; Chen and Zeltzer, 1992). The finite element model is usually created by considering 

the volumetric shape of the muscle, which makes the solution more accurate. However, it is 

difficult to define the fibre orientation arrangement in the finite element muscle model due 

to the complex geometries. In Blemker, Pinsky et al.’s (2005) model, the long head of the 

biceps muscle tissue was represented with a finite element hexahedral mesh, as shown in 

Figure 5.3(a). In order to define the initial fibre direction vector for each element in the 

mesh, a fibre map was created based on the fascicle arrangement measurements from 

ultrasound images, as shown in Figure 5.3(b). In Tang et al.’s (2009) FE muscle model, the 

fibre orientation was determined by a line joining the two central points of the two surfaces 

of a hexahedron (Figure 5.4). This method restricted its application to muscle models 

meshed only with regularly arranged hexahedrons. In the presence of a complex 

geometrical model meshed with tetrahedrons, this method could lose its applicability. Bol 

and Reese (2008) proposed an approach to model the complex muscle structures with 

arbitrary fibre orientation arrangement by combining truss elements with tetrahedrons. The 

orientations of the muscle fibres were taken into account through 3D truss elements. 

However, in their approach, a so-called finite element unit cell, consisting of one 

tetrahedral element and six truss elements, needed to be formed to mesh the object which 

made their model quite difficult for general applications.

muscle tissue

external
element

proximal
aponeurosis

dz distal aponeurosis
sagittal view top view

(a)

anterior
direction

centerline sagittal view top view

(b)

Figure 5.3 Finite element model of biceps brachii: (A) muscle tissue mesh; (B) muscle 

fibre map (Blemker, Pinsky and Delp, 2005)
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Z^x

Figure 5.4 Schematic diagram o f  muscle architecture (Tang, Zhang and Tsui, 2009)

M uscle  
connective tissue

It has been demonstrated that a B-spline solid model can be used to represent a large 

variety o f muscle shapes (Ng-Thow-Hing and Fiume, 1997). The B-spline solid model 

allows the internal structures to be specified over the entire domain o f  the solid. A 

framework o f how to create different B-spline muscle solids from the contour curves, 

which are extracted from medical images, has been proposed in Ng-Thow-Hing and Fiume 

(2002), as shown in Figure 5.5. However, a B-spline solid representation is just a geometric 

description and it cannot be used to capture the biomechanical behaviour o f skeletal 

muscle. In order to do this, Teran et al. (2003) proposed a finite volume method to simulate 

the skeletal muscle, where the B-spline solids were used to model the fibre directions.
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1) Sketch origin and insertion curves

m l

3) Build B-spline solid from profiles 4) Edit solid by manipulating profile curves

Figure 5.5 Stages o f development o f B-spline solids for representing muscle 

(Ng-Thow-Hing and Fiume, 2002)

By combining the merits o f the Non-Uniform Rational B-spline (NURBS) geometric 

representation and the Galerkin finite element method, a FEM-NURBS method for 

modelling skeletal muscle was first proposed by Zhou and Lu in 2005. In this method, the 

finite element equations were derived directly from the existing NURBS geometric 

description, and so no finite elements needed to be generated. The passive stretch o f one 

muscle was simulated using their FEM-NURBS method, as shown in Figure 5.6, where the 

dots represented the control points o f the NURBS solid. Following Zhou and Lu’s idea, a

2) Sketch axial curve
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FEM-NURBS method using ABAQUS is proposed in this chapter. In this method, the 

NURBS representation is integrated into the commercial finite element software ABAQUS 

(Hibbit, Karlsson and Sorensen Inc. 2006) by means o f user-defined material (UMAT) 

subroutines. Thus, the discretised governing equations are formulated implicitly rather than 

explicitly, making the method much easier for applications. In addition, the NURBS 

representation is only used in the direction definition o f  the undeformed fibres at each 

Gauss point. No NURBS information is required in the subsequent calculation procedure, 

because the directions o f the deformed fibres are calculated from the initial fibre directions, 

the deformation gradient and the fibre stretch ratio. Furthermore, the method proposed here 

has no restrictions on element types and therefore it is easy for the simulations o f general 

deformable bodies and easy for general applications.

(b)

Figure 5.6 Passive stretch o f a muscle: (a) Initial shape; (b) Deformation (Zhou and Lu,

2005)

5.3 Mathematical description of the NURBS

Before introducing the proposed FEM-NURBS method, it is worthwhile to give a brief 

mathematical description o f the NURBS. The non-Uniform Rational B-Splines, or NURBS, 

was first studied in the 1950s for the aim o f mathematically precise representation o f  

freeform surfaces. The pioneering work was undertaken by Pierre Bezier and Paul de
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Casteljau in the late 1960s and early 1970s. The first personal computer NURBS modeller 

was developed in 1985 for the creation of ships and workboats. Today, NURBS are the 

standard for describing objects in computer aided design and computer graphics and are 

widely used in areas from automobile bodies to animated characters in films. In this section, 

the mathematical definitions of NURBS curve, surface and solid are presented.

53.1 NURBS Curve definition (Rogers, 2001)

A B-spline curve is a curve generated by using the vertices of a control polygon. Letting P(t) 

be the position vector along the curve as a function of the parameter t, a B-spline curve is

given by:

»+i
P(0 = 2 B ,tf (,  (*),/„» -  * < W 2<,k<n + l (5.1)

1=1

where B. are the position vectors of the n+1 control polygon vertices, and Ni p are the 

normalised B-spline basis functions.

For the iA normalised B-spline basis function of order p, the basis functions Ni p(u) are 

defined by the Cox de Boor recursion relation and given by:

^ » = + NMp_,(u) (5.2)

with
u i+p - l ~ u i u i+p ~ u i+l

Ar,o(«) = {l; u' * " <Um (5.3)10, otherwise

where w. and uM are the elements of the knot vectors.

A NURBS curve is the generalisation of a B-spline curve. It is defined by its basis 

functions and a set of weighted control points. A NURBS curve in four-dimensional (4D) 

homogeneous coordinate space is given as:

w+l
P ( 0  =  £ B ? t f ,.,(<) (5 .4)

1=1
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where Bj1 are the 4D homogeneous control polygon vertices; Ni p are the non-rational 

B-spline basis functions previous given in Equations (5.2) and (5.3).

Projecting Equation (5.4) back into 3D space by dividing through the homogeneous 

coordinate yields the rational B-spline curve

^  B w (t\ IH-lZ ^ A / o
p(o = -^ ------------= Z BA ,(0  (55)

Z wA ,( ') »=i 
i=l

where B. are the 3D control polygon vertices for the rational B-spline curve; wi are the 

homogeneous coordinates, which are also called the homogeneous weighting factors or just 

weights, and

wtNt m(0
* ,,(0 =  „t, 'P (5.6)

Z w,itf,i.,(o
il=l

are the rational B-spline basis functions.

From the definitions, it can be seen that the non-rational B-spline curves are a special case 

of rational B-spline curves. The primary difference is the weighting of the control points 

which makes the NURBS curves rational. One example of NURBS curve and its control 

points are shown in Figure 5.7.
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 NURBS curve
O control point

£ ----  9

2 3 4 5 6 7 81

Figure 5.7 A NURBS curve (blue line) and its control polygon (red dot)

533, NURBS Surface definition (Rogers, 2001)

Since non-rational B-splines are a special case of rational B-splines, as stated in Chapter 

5.3.1, only rational B-spline surface and solid definitions are presented in the sections to 

follow.

A Cartesian product rational B-spline surface in 4D homogeneous coordinate space is given

by:

tt+l m+1
CK«, v) = (5.7)

»=i j=i

where Bfy are the 4D homogeneous polygonal control vertices, and Nip(u) and 

Nj q (v) are the non-rational B-spline basis functions which have been previously defined 

in Equations (5.2) and (5.3).
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Projecting back into 3D space by dividing through the homogeneous coordinate gives the 

rational B-spline surface:
w+l m+ 1

_ +i
Q ( ^ ) = ------------------------ = Z Z B (JSu («,v) (5.8)

feIM
»•=1 7=1

where Bi ; are the 3D control net vertices; wt . are the weight factors associated with the 

vertices; and St j(u,v)  are the rational B-spline surface basis functions which are defined 

as:

wt .Nt Ju)N, (v) wt .Nt _(i/W, _(v)
s , j<*.v)= =  - z L - J f 1  (59>

il=l /1=!

One example of NURBS surface and its control points can be seen in Figure 5.8.

I N U R B S  surface

+■ control points

-10 -10

Figure 5.8 A NURBS surface (colour area) and its control points (red stars)

Page 140



Chapter 5 Modelling the Fibre Arrangement of Skeletal Muscle Using the FEM-NURBS Method

533  NURBS solid definition (Hoschek and Lasser, 1993)

A NURBS solid representation is the generalisation of NURBS representation of curves 

and surfaces. A position of a generic point in the solid is defined as:

rt+l w+l J+l

/=! k=l 
n+1 aH-1 1+1

1 = 1  J = 1  * = l

where Bi J k are the control point position vectors; wi j k are the weights associated with 

the control points; and p(u) yNj q(v) y Nk r(w) are the basis functions previously 

defined in Equations (5.2) and (5.3).

Giving the rational B-spline solid basis functions:

SUA U’V’W)=  -    = — — -------------
S Z Z » « u . ^ ( * > WA . ( ^ W  S«m (u,v,w )
*1=1 /1=U1=1

(5.11)
The NURBS solid representation (5.10) can then be written as:

n+1 w+1 1+1

h(«,v, w) = 2 ;z Z c ..m ‘s..m (“>v-w) (512>,=i j—i *=i

53.4 NURBS solid construction

There is no information about NURBS solids available directly from any existing 

geometric modelling system. In most applications, a NURBS solid is described in terms of 

its boundary surfaces. Therefore, the way of constructing a NURBS solid is through 

extending its corresponding NURBS surfaces. There are several existing common methods, 

for example ruling, sweeping, skinning and shrinking (Ma, Lin and Chua, 2001). hi this 

application, the shrinking method proposed by Ma, Lin and chua (2001) is used for 

constructing the NURBS solid. The shrinking method has been frequently used to deal with
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close or periodic NURBS surfaces. For example, by shrinking a sphere to its centre point, a 

spheroid is derived and by shrinking a cylinder surface to its centreline, a cylinder volume 

is obtained. The NURBS solids presented in this chapter are derived by shrinking their 

boundary surfaces to their centrelines.

It is assumed that the centreline of the NURBS solid lies in the v direction. Therefore, the 

mathematical description of the NURBS solid can be written as (Ma, Lin and Chua, 2001):
w+l m +l f+1

H(»,v,w) = Z  Z  Z  CL  ̂  ,  (u)N^ (v)Nt,  (w) (5.13)
1=1 j= \  Jt=l

where C j/t0=B jy and = Dy; Dy are the control point vectors of the centreline 

and given as (Ma, Lin and Chua, 2001):

(M 4 >

Projecting back into 3D space by dividing through by the homogeneous coordinate gives 

the NURBS solid:
w+l m+l 1+1

Z „ +1 w

----------------------------------- = S I I CwA m (b.v. w)
Z  Z  Z  (v)*rM o-w ., (*) **i=1
,=1 ;=1 *=1

(5.15)

where Si J k (w, v, w) is defined in Equation (5.11).

The derivatives of the NURBS solid are obtained by formal differentiation of Equation

(5.15) and given as:
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H NH

D
(5.18)

where NH and D" are the numerator and denominator of Equation (5.15), respectively.

(5.19)
  w+l /w+l f+1

i - l  7=1 Jt=l

  w+l m+1 /+1

1=1 /=! *=1
(5.20)

Their derivatives are given as:
  w+l m+1 f+1

,=1 7=1 Jfc=l 

w+l m+1 f+1

K  = S I I » , A A , ( * W . , W
i= l 7=1 k=\

w+l m+1 f+1

n»h =
j= 1 7=1 *=1

A" =
i= l 7=1 Jfc=l

A" =
,=1 7=1 it=l 

  w+l m+1 f+1

A ? = I I S ^ A W m W ^ w
i= l 7=1 k= l

w+l m+1 f+1

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

From the definition of a NURBS solid, it can be seen that the NURBS solid is able to 

describe not only the exterior surface of an object but also the interior. In this thesis, the 

mathematic description of NURBS solid is applied to the finite element muscle model to 

characterise the muscle fibre orientation arrangement.

In order to formulise the NURBS solid, the information on its boundary surface is required. 

There are two different ways to construct the boundary NURBS surfaces for a solid. In the 

first approach, the boundary surfaces are obtained directly form the Visible Human Data.



Chapter 5 Modelling the Fibre Arrangement of Skeletal Muscle Using the FEM-NURBS Method

Firstly, the contours lines are extracted from Data Slices. Then the boundary NURBS 

surfaces are created by using these contour lines. This approach is illustrated in Figure 5.9.

(a) (b) (c)

Figure 5.9 3D reconstruction o f  muscle shape with NURBS: (a) Contour o f muscle 

boundary in one slice; (b) Stacks o f contour curves; (c) NURBS surface by skinning the

NURBS contours (Zhou and Lu, 2005)

In the second approach, the boundary NURBS surfaces are created from the muscle 

geometry. Taking the depressor anguli oris muscle as an example to illustrate this method, 

Figure 5.10 (a) shows the geometry o f this muscle. First, the corresponding contour lines, 

as shown in Figure 5.10 (b), are extracted from the geometric model by using the 

pre-processing tool, ANSA (BETA CAE Systems S.A., 2009). Then the boundary NURBS 

surfaces, as shown in Figure 5.10 (c), are generated by blending the contour lines in the 

CAD package software Pro/ENGINEER (Parametric Technology Corp, 2004). Finally, 

these NURBS surfaces are exported as an IGS file, from which the corresponding 

information is extracted for creating the NURBS solid model.
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Figure 5.10 Procedure o f creating boundary NURBS surface: (a) Muscle geometry; (b) 

Muscle contour lines; (c) NURBS surface

In the applications presented in this chapter, the second method o f creating NURBS 

boundary surfaces is used. The NURBS solids are created by shrinking the boundary 

NURBS surfaces to their centrelines. This step is accomplished by writing a FORTRAN 

code. The corresponding programme is given in Appendix G.

5.4 FEM-NURBS method

Characterising the complex interior fibre orientation arrangement o f skeletal muscle is the 

motivation for developing the FEM-NURBS method. The basic idea o f the FEM-NURBS 

method proposed in this chapter is to use the NURBS solid for representing the muscle 

fibre orientation arrangement, and pass the fibre directions at each Gauss point into the 

finite element model as the initial fibre directions.

A quarter o f a torus is created as an example to illustrate the FEM-NURBS method. 

Figure 5.11 (a) shows a finite element torus model meshed with tetrahedrons. A NURBS 

solid o f the same size, as shown in Figure 5 .11(b), is constructed by using the shrinking
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method which is introduced in Chapter 5.3.4. The fibres within the quarter torus are 

assumed to be the isocurves in the circumference direction, as shown in Figure 5.11(b). 

Thus, the initial fibre direction at any point within the quarter torus can be calculated by 

computing the tangent of the isocurve on which the point lies.

Pass in the 
coordinates

Pass back the 
fibre direction

Figure 5.11 Illustration of the FEM-NURBS method: (a) FE model with tetrahedrons; (b) 

NURBS solid model with the fibre orientation arrangement indicated

As an example, assuming a fibre lies on an isocurve P and the fibre direction is along the 

u-direction, then on this isocurve P, the values of the other two directions are constant, i.e. 

{v,w} = {v0,w0}. This isocurve can be expressed mathematically as:

(5.27)
l m n

H(u,v0,w0) = 2 Z Z Cu A /.t( “> vo-wo)
i=0 j~0 k=0

The tangent vector of this isocurve can be obtained by taking the derivative of Equation

(5.27) with respect to u. The normalised form can be expressed as:

m.u,v0,w0)/du (5.28)

The fibre direction at a point, which lies on the isocurve P and has the coordinate of 

k > vo>'*'o}. is given by:
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A(«„,v0>w0) = 1̂ ^ (5.29)
“o|3H(“ ,v„,w0)/5u|

where the derivative of the isocurve P = H(i/,v0,h'0) with respect to u is given in 

Equation (5.16).

In the first iteration of the finite element calculation, the fibre directions at all Gauss 

integration points are calculated using Equation (5.29). These fibre direction vectors are 

then passed back to the finite element solver as the initial fibre directions. In the subsequent 

iterations, the fibre directions at each Gauss integration point are updated by (Weiss et al. 

1996):

a = (5.30)
Xf

where a is the deformed fibre direction; A is the undeformed fibre direction; F is the 

deformation gradient and Xf  is the fibre stretch ratio. The process of how the 

FEM-NURBS method is implemented into ABAQUS is shown in Figure 5.12.

doi=l, steps
do j=0, increments in each step

do m=0, iterations in each increment 
do n=l, elements in the model

do p=l, integration points in each element
if((i .eq. 1) and. (j .eq. 0) .and. (m eq.O)) then 

call the FEM-NURBS method to assign the fibre directions 
else

use Equation (5.30) to update the fibre directions
endif

enddo
enddo

enddo
enddo

enddo

Figure 5.12 Fibre direction assignment process in ABAQUS
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Finally, it should be noted that the FEM-NURBS method can be implemented into any 

commercial finite element software, as long as enough information is passed to the 

user-defined material subroutines. The specific information needed for the FEM-NURBS 

method is the coordinates of each Gauss point. The user-defined material subroutine 

interface in ABAQUS is shown in Figure 5.13, where COORDS is an array containing the 

coordinates of current Gauss integration point.

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
1 RPL,DDSDDT,DRPLDE,DRPLDT,
2 STRAN,DSTRAN,TIME,DT1ME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,
3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
4 CELENT,DFGRDO,DFGRD 1 ,NOEL,NPT,LAYER,KSPXKSTEP,KINC)________

Figure 5.13 User subroutine interface in ABAQUS

The FEM-NURBS method cannot be implemented into LS-DYNA at this stage, because 

the coordinates of each Gauss point is not available from the LS-DYNA user subroutine 

interface. Figure 5.14 shows the user-defined material subroutine interface in LS-DYNA. It 

is seen the information in the LS-DYNA user subroutine interface is less than that in the 

ABAQUS user subroutine interface and it is restricted at the moment.

SUBROUTINE UMAT43 (CM, EPS, SIQ EPSP, HSV, DTI, CAPA, ETYPE, TIME,
1 TEMP, FAILEL, CRY)__________________________________________

Figure 5.14 User subtoutine interface in LS-DYNA

5.5 Muscle constitutive relation

Since the FEM-NURBS method cannot be implemented into LS-DYNA at this stage and 

the validated three-dimensional (3D) finite element (FE) skeletal muscle model presented 

in Chapter 3 was developed in LS-DYNA, this model cannot be used for the calculations 

undertaken in this chapter.
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In this chapter, a 3D FE skeletal muscle model was developed in ABAQUS (Hibbit, 

Karlsson and Sorensen Inc. 2006). The muscle constitutive relation is proposed by Tang et 

al. (2009) and this model has been validated through several scenarios in their work. The 

model is able to capture the complex behaviour of skeletal muscle, which is active, 

quasi-incompressible, transversely isotropic and hyperelastic (Herzog, 2000; Oomens, 

Maenhout, Drost et al., 2003). Different from that in LS-DYNA, the material constitutive 

model in ABAQUS requires the spatial form of the material tensor to be defined. Thus it is 

worthwhile to give an overview of Tang et al.’s 3D skeletal muscle constitutive relation.

Tang et al.’s model is an extension of the Hill-type muscle model (Figure 5.15), consisting 

of a contractile element in series with a series elastic element (SEE) and in parallel with a 

parallel elastic element (PE).

--------------------- 'WWV,-----------
PE

Figure 5.15 Hill’s three-element muscle model

The strain energy function used in their model has the following form:

U = (/7(/1c )+C// (X/ ,a fl,M )  + Uy(J) (5.31)

where U}, Uf  are the strain energy stored in the isotropic matrix and the muscle fibre 

structures, respectively; and Uj is the portion of strain energy associated with the volume 

change.

The ground substance consists of the connective tissue and the water. In Tang et al.’s (2009) 

model, the ground substance is modelled as an isotropic material with the following strain 

energy form:

{// (7,c )= Ĉ xp[6(7,c -3)J-l}  (5.32)
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where b and c are material constants; I f  is the first invariant of the right Cauchy-Green 

strain tensor with the volume change eliminated.

In order to preserve the volume during the deformation, an additional item Ud(J) is 

added into the total strain energy:

as a penalty parameter for incompressibility. Thus, nearly incompressibility can be 

modelled with a rather small value of D.

The muscle fibre strain energy has the following form:

where Xf  is the stretch ratio in the muscle with the volume change eliminated; aa is the 

activation function and AXS is the stretch increment in the series elastic element; UPE, 

are the energy stored in the parallel element (1%) and series elastic element (SEE), 

respectively. They can be expressed as the integral form of stress in PE (a PE) and stress in 

SEE (fJss) over the muscle stretch X :

(5.33)

where J  is the Jacobian of the deformation gradient; the constant D can be best understood

Uf (Xf ,(Xa, AXS) — UPE (Xf ) + Use(Xj- ,cz a, A Ay) (5.34)

(5.35)

(5.36)

where

&PE (^f ) — O-Q ,0, otherwise
(5.37)

0, otherwise

a SE(A/ ,a a,AA,) = fiifsqp\a(AJ - l) ] - l} (5.38)

where cr0 is the maximal isometric stress and a, P are material constants.

The process of updating Xs has been given in Chapter 3.3, where the stress relationship
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between CE and SEE is used, i.e. the stress in CE equals to the stress in SEE. Since the 

stress expression in CE here is different from that in Chapter 3.3, it is worthwhile to give 

the expression of the stress in CE at time t + A t:

'  i+ M ./A ^
t+At ’V  Â <0 

’if AA- >01+kcke AAfo /  A/̂ ,0

where 'cr0 is the stress corresponding to the fibre stretch kc=cr0 /av and ke are

the shape parameters of the hyperbolic tension force-velocity curve of the contractile 

element.

The 2nd Piola-Kirchhoff stress tensor S can be obtained from the strain energy density 

given in Equation (5.31) (Belytschko, Liu and Moran et al., 2000):

dU 2=v I t m + JU’jC-1 (5.40)

The Cauchy stress is defined by the push-forward of S (Marsden and Hughes, 1994): 

1

where

with

■* ( 9 > (
U\ 2 + U'J

\  3 V

— 1   'N
+U’j  I

U> -  3)]dl ,

U f —U PE(Af)+U sE(Af ,aa,AAs)

. = 8 U l  = 2L (j _  1)

J dJ D x ’

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
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For the hyperelastic material specified by a strain energy function U, the material elasticity 

tensor is given by:

H ^ 4 ^ L  = 2 *
OwCv dw

=4j /̂3u;(i®i)-jj-2/3(u; +IIcu;)(l®c-, +c-' ®i>

where

+ |/ ,c(c/; +/,cu;)+~Af (u/  +Afu})+ j (uJ +ju])

+r * nA}2 (iU'f + A}'U’f XN ® N ® N ® N)
(5.47)

3

- 2

- J - ln(U’f +A;'(/;xN®N®C-1 +C"1 ®N®N)

+ l-Af Uf
3 5 y

) i j 1d  -

rdC~1̂
dC JijU

+c,-'c;) (5.48)

The spatial form of the material tensor is again defined as the push-forward of the material 

elasticity tensor H (Marsden and Hughes, 1994):

h := iF F H F rFr
J

= -U ]  B ® B -  -  J"1 (U] + TfU] )(B ® I + 1 ® B)
%J 3

+
J
pf

^ ( U )  +I lcU')+^Af (U'f  +Af U'f )+JQJ'J +JUj)
zz y

(i® i)

(5.49)
+ — {U"f  -^.;'f// Xn®n®n®n)

i X1 _
+A;‘f// X n® n® I+I® n® n)

3 J

+ — 
J

1y icU'+~AfUf -JU'JjL 

where L is the symmetric 4th order unit tensor

and

Lijkl — 2 (Pik^jl + l^jk ) (5.50)

(5.51)
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U f  = U  PE(Af ) + U  sE(Xf9a d9AXs) (5.52)

„ _  (8 (^ -1 ),for Xf >1
U„{Xf y ^ a A y  hJ f  (5.53)

[0 otherwise

— 1 + k
U sE{A.f ,a a,tU s) = a p ——  exp[a(As -1)] (5.54)

ft

jt” 2
^  ^  (5-55)

where k is the ratio of the length of contractile element to that of series elastic element.

The material parameter values are adopted from Tang et al. (2009) and given in Table 5.1.

Table 5.1 Muscle material model parameters

b c
(N/m2)

D
(m2/N)

a P
(N/m2)

d kg i«*0
(s1)

^0
(N/m2)

av
(N/m2)

k

1.79 821 1.0e-9 100 0.1 1.65 3.14 2 2.2e5 7.0e4 0.3

5.6 Numerical examples

The proposed FEM-NURBS method and the muscle constitutive equations outlined in 

Chapter 5.5 were implemented into ABAQUS (Hibbit, Karlsson and Sorensen Inc. 2006) 

by programming user-defined material (UMAT) subroutines. The ability of the proposed 

FEM-NURBS method is demonstrated through the examples presented below.

The muscle response can be classified as active or passive. The active muscle response is 

induced by the brain signal. The active muscle force is generated by the contraction of 

muscle fibres and the contraction magnitude is controlled by the neural input, which is 

represented by the activation function a a in the constitutive model. In the following five 

numerical examples, only the active responses of several different muscles are simulated
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and the muscles are stimulated from time zero. It is assumed that the muscles take 0.005 s 

to reach the fully activated level and then the fully activated muscle is maintained in this 

state until the end of the simulation. The total activation time is defined as 0.2 s. This 

muscle activation function is shown in Figure 5.16.

12  — ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1 - j - ----------------- -------------------------------------------------------------------------------------------------

0.8  -

g 0.6 o
’A>
*§ 0.4

0.2

0  1 1 1 *----------------
0 0.05 0.1 0.15 0.2 0.25

Time (s)

Figure 5.16 The muscle activation function for the simulations

In the following five examples, only one boundary NURBS surface is generated for each 

muscle. The orders of the two basis functions, which are used for defining the NURBS 

surface, are set to 4. Each NURBS solid is created by shrinking its corresponding boundary 

NURBS surface to its centreline. The control points in the centreline are obtained using 

Equation (5.14). The order of basis function in the shrinking direction is set to 2. The 

weight at each control point is set to 1. The knot vector and control point values are fetched 

from the IGS files, which contain the NURBS surface information.

5.6.1 Example one: contraction of a cone

A muscle with a conical shape is considered for the test in this example. The top diameter 

of the cone is 0.8 cm, the bottom diameter is 4.0 cm and the height is 5.0 cm (Figure 5.17).
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The bottom face of the cone is fully fixed during the simulation (Figure 5.18). The fibres 

within the cone are assumed to be arranged in the way described in Figure 5.19.

0.8cm

J L

5.0cm

4.0cm

Figure 5.17 Geometry of the cone

Figure 5.18 Boundary condition on the cone Figure 5.19 Fibre arrangement in the cone

Two methods are used for simulating the fibre arrangement within this cone. In the first 

approach, the fibre directions are approximated as being along the z-direction. In the 

second approach, the fibre arrangement is simulated using the NURBS method. The 

deformed contour lines from these two methods, together with the undeformed contour
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lines, are plotted in Figure 5.20. From this figure, it can be seen that the deformations from 

the two methods are almost identical. The deformation of the cone and the Z-directional 

displacement distribution are presented in Figure 5.21.

undeformed contour shape
-  ♦- deformed contour shape (NURBS)
—  deformed contour shape (0,0,1)

4.00

&
73C
1o
SN

3.00

2.00

1.00

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
Y coordinate (cm)

Figure 5.20 The undeformed and deformed contour lines of the cone

u, u3 (m m )
+ 1 .855e 03 

1 . 586e-01  
- 3 . 190e-01  
-4 .7 9 4 e -0 1  
- 6 . 398e-01  
- 8 . 003e-01  
-9 . 607e-01  
-1.121e+00 
- 1 . 282e+00 
-1 .442e+ 00  
- 1 . 602e+00 
-1 .763o+00  
-1 . 923o+00

Figure 5.21 (a) Deformation of the cone: Shaded area represents the deformed shape and 

the red lines represent the undeformed shape; (b) Z-directional displacement distribution
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5.6.2 Example two: contraction of a barrel shape muscle

In this case, a barrel shape muscle is constructed for the test. The length of this muscle is 

5.0 cm, the diameter at the two ends is 0.9 cm, and the diameter in the middle is 1.75 cm, 

as shown in Figure 5.22. The left end o f the muscle is fully fixed during the simulation 

(Figure 5.23). The fibres inside this muscle are assumed to be arranged in the way 

described in Figure 5.24.

<----------------------------------- 5.0cm-------------------------------►

Figure 5.22 Geometry of the barrel shape muscle

Figure 5.23 Boundary condition on the barrel shape muscle

Figure 5.24 Fibre arrangement in the barrel shape muscle
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Two methods are used to model the fibre arrangement in this barrel shape muscle. In the 

first approach, it is assumed the muscle fibres are arranged parallel in a single direction 

(Z-direction). In the second approach, the fibre arrangement shown in Figure 5.24 is 

simulated using the NURBS technique. The deformed contour lines from the two methods, 

together with the undeformed contour lines, are plotted in Figure 5.25. From the resulting 

configurations, it can be concluded that the muscle deformations from these two methods 

are almost identical, which agrees with that from the first example. The deformation of this 

muscle and the displacement distribution are presented in Figures 5.26, 5.27 and 5.28. It is 

known that muscle tissue is basically an incompressible material. Thus, the little change in 

the muscle fibre arrangement cannot make a big difference in the total deformation. The 

results from the two approaches therefore demonstrate that the NURBS technique can 

provide accurate results.

undeform ed contour shape 
" deform ed contour shape (NURBS) 
  deform ed contour shape (0,0,1)

1.00

0 . 5 0

£n
3 . 0 0 4 . 0 0 5 .  0 6.000.00 1.00 2.00

- 0 . 5 0

- 1.00
Z coordinate (cm)

Figure 5.25 The undeformed and deformed contour lines of the muscle

X Z

Figure 5.26 Deformation of the muscle: Shaded area represents the deformed shape and the
red lines represent the undeformed shape
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U, U3 (m)
+2.108e-05 
-4.767C-04 
-9  745e-04 
-1 .472e-03  
-1 .9708-03  
-2  468e-03 
-2 .966e-03  
-3 .4638-03  
-3  9618-03 
-4 .4598-03  
-4 .9578-03  
-5 .4548-03  
-5 9 5 2 8 -0 3

Figure 5.27 Z-directional displacement distribution in the muscle

W .

U , M a g n itu d e  (m) 
+ 5 . 9 9 4 e - 0 3  

■H- + 5 . 4 9 5 e - 0 3  -4- + 4 . 9 9 5 e - 0 3  
— \- + 4 . 4 9 6 e - 0 3  
— t- + 3 .  9 9 6 e - 0 3  

+ 3 . 4 9 7 e - 0 3  
3 -  + 2 . 9 9 7 e - 0 3  
- 4  + 2 . 4 9 8 e - 0 3  
M -  +1 9 9 8 e - 0 3  
H -  + 1 . 4 9 9 e - 0 3  
U -  +9 .  9 9 0 e - 0 4  

+4. 9 9 5 e - 0 4  
+0.  0 0 Oe +00

Figure 5.28 Magnitude displacement distribution in the muscle

5.6.3 Example three: contraction of a whole torus

In this example, a whole torus is considered for the demonstration. The geometry of the 

torus is shown in Figure 5.29(a), where the inner radius is 0.9 cm and the outer radius is 1.7 

cm. It is assumed that the torus has a parallel circular fibre arrangement as shown in Figure 

5.29(b). In the finite element analysis, the eighth torus model is utilised due to the 

symmetry of the torus. Plane symmetrical boundary conditions are applied to the eighth 

torus model, as shown in Figure 5.30, where ‘ZSYM’, ‘YSYM’ and ‘XSYM’ represent 

Z-plane, Y-plane and X-plane symmetrical conditions, respectively. However, the eighth 

torus model is only used in the finite element calculation. To better visualise the
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deformation of the torus, the results on the whole torus are used and they are obtained 

through mirroring the results from the eighth torus model.

1.7cm'
>.9ci

(a) (b)

Figure 5.29 (a) Geometry of the torus; (b) Fibre arrangement in the torus

ZS

XSYM

YSYM

Figure 5.30 Boundary conditions on the eighth torus

In practice, when the torus is stimulated, it would contract along its circular fibres. Then the 

circular fibres will shrink towards the centre of the torus after the deformation. On the other 

hand, since the torus is modelled as an incompressible material, it will become thicker in 

Z-direction. These theoretical predictions are matched by the finite element results 

presented in Figures 5.31 and 5.32, where ‘U l ’ and ‘U3’ represent X-directional and 

Z-directional displacements, respectively. It should be noted that the aim of this example is 

towards the realistic simulation of the orbicularis oris muscle which also has circularly 

arranged fibres.
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(a)

Figure 5.31

the red lines

(a) Deformation of the torus: Shaded area represents the deformed shape and 

represent the undeformed shape; (b) X-directional displacement distribution

u, u3 (cm)
+ 1 . 3 0 3 e - 0 1  
+ 1 .  0 8 6 e - 0 1  
+ 8 .  6 8 7 e - 0 2  
+ 6 . 5 1 5 e - 0 2  
+ 4 . 3 4 2 e - 0 2  
+ 2 . 1 7 0 e - 0 2  
- 2 . 8 2 2 e - 0 5  
- 2 . 1 7 5 e - 0 2  
- 4 . 3 4 8 e - 0 2

  - 6 . 5 2 1 e - 0 2
U -  - 8 .  6 9 3 e - 0 2  
■  - 1 .  087 e  0 1  
■ -  - 1 .  3 0 4 e - 0 1

Figure 5.32 (a) Deformation of the torus: Shaded area represents the deformed shape and 

the red lines represent the undeformed shape; (b) Z-directional displacement distribution

5.6.4 Example four: contraction of a half torus

In this example, a half torus is built with the inner radius of 0.7 cm and the outer radius of 

1.3 cm (Figure 5.33). The fibres within this half torus are assumed to be arranged 

circumferentially, as shown in Figure 5.34. During the simulation, one end of the half torus 

is fully fixed, as shown in Figure 5.35. If the half torus is regarded as a muscle, this fully
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fixed end can be regarded the origin side of the muscle which is always attached to a least 

moveable structure.

0.7cm-
-1.3cm-

Figure 5.33 Geometry of the half torus

Figure 5.34 Fibre arrangement in the half torus

Figure 5.35 Boundary condition on the half torus

In this example, two methods are used to simulate the fibre arrangement inside this half 

torus. In the first approach, the half torus is divided into two segments from the middle and 

the fibre direction in each segment is approximated by a single unchanged direction, as 

shown in Figure 5.36, where the green part represents one segment of the half torus, the 

grey part represents the other segment, and the red arrow lines represent the fibre direction
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Fibre direction:

in each segment. The results from this method are presented in Figures 5.37 and 5.38.

Figure 5.36 Fibre directions in segments of the half torus (method 1)

Figure 5.37 Deformation of the half torus from method 1

u, u l (cm)
+ 4 .479e-01  
+4.106o-01  
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+3.359e-01  
+ 2 .986e-01  
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+1. 8 6 6 e -0 1  
+ 1. 4930-01  
+ 1 .120e-01  
+ 7 .465©-02 
+3.733O-02 
+ 0 .000e+00

u
Figure 5.38 X-directional and Y-directional displacement distribution in the half torus

(method 1)

02 (cm) 
+7 .242e-01  
+ 6 .632e-01  
+6.023O-01 
+ 5. 413e - 01 
+ 4 .804e-01  
+ 4 .194e-01  
+ 3 .585e-01  
+2.975e-01  
+ 2 .366e-01  
+ 1 .756e-01  
+ 1 .147o-01  
+5.371O-02 
-7 .2 4 4 0 -0 3

In the second approach, the fibre arrangement within the half torus is represented using the 

NURBS technique and the results from this method are presented in Figures 5.39 and 5.40.
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Figure 5.39 Deformation of the half torus from method 2

u, u l (cm)
+ 3 . 1 0 5 e - 0 1  

■  + 2 . 8 4 6 e - 0 1  
W- +2. 587e -01 
— \- +2. 3 2 9 e - 0 1  
U 4  +2. 0 7 0 e - 0 1  U- +1. 8 l i e - 01 
■ -  +1.  5 5 2 e - 0 1  
H -  +1. 2 9 4 e - 0 1  
W -  +1. 0 3 5 e - 0 1  
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Figure 5.40 X-directional and Y-directional displacement distribution in the half torus

(method 2)

It is obvious that the results from the second approach are more realistic than those from 

the first approach. The first approach causes more vertical displacement (Y-directional 

displacement) in the free end of the half torus and more horizontal displacement 

(X-directional displacement) at the top of the deformed half torus. Furthermore, the first 

approach causes a hollow part at the place where the two segments connect with each other, 

which is not expected in reality.

5.6.5 Example five: contraction of the depressor anguli oris

In this demonstration, a human facial muscle is considered. The shape of the depressor 

anguli oris muscle is taken from the standardised forensic database provided by School of
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Life Sciences, Dundee University. The geometry of this muscle is shown in Figure 5.41. 

The fibres within this muscle are assumed to be arranged from one end to the other end 

along Z-direction. During the simulation, one end of the muscle is fully fixed, as shown in 

Figure 5.42.

0.4cm

Figure 5.41 Geometry of the depressor anguli oris muscle

Figure 5.42 Boundary condition on the depressor anguli oris muscle

Two approaches for simulating the fibre arrangement inside the depressor anguli oris 

muscle are performed here. In the first approach, the muscle is divided into two segments 

from the middle and the fibre directions in each segment are approximated by one single 

unchanged direction, as indicated by the red arrow lines in Figure 5.43. It should be noted
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that this approach is widely used in most of the musculoskeletal human body systems 

where the muscles are represented by the line segments. The simulated muscle shape and 

the displacement distributions from this approach are presented in Figures 5.44 and 5.45, 

respectively. It can be seen that the free end has rotated away from the undeformed 

configuration, suggesting the deformation is not realistic.

Fibre directions

Figure 5.43 Fibre directions in the segments of the muscle (method 1)

Figure 5.44 Deformation of the depressor anguli oris muscle (method 1)
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Figure 5.45 Displacement distributions in the depressor anguli oris muscle (method I)

In the second approach, the fibre arrangement is represented using the NURBS technique. 

The deformed muscle shapes and the displacement distributions from this approach are 

shown in Figures 5.46 and 5.47, respectively. It is seen that the results from the second 

approach are more realistic than those from the first approach. The muscle contracts along 

this shape in the second approach. This suggests that the FEM-NURBS technique is 

capable of simulating the fibre arrangement in an irregular muscle as long as the fibres 

within the muscle can be represented by the isocurves of a NURBS solid.
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Figure 5.46 Deformation of the depressor anguli oris muscle (method 2)
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Figure 5.47 Displacement distributions in the depressor anguli oris muscle (method 2)
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5.7 Summary

In this chapter, the FEM-NURBS method, which is based on the combination of the finite 

element method and the non-uniform rational B-spline (NURBS) solid mathematical 

representation, has been proposed to characterise the fibre orientation arrangement of 

skeletal muscle. This method has been implemented into a non-linear finite element 

analysis programme, ABAQUS, by means of user-defined material (UMAT) subroutines. 

A number of examples have been used to demonstrate the ability of this method to model 

muscle structures. The results show that the proposed method is able to characterise both 

the fibre arrangement and the biomechanical response of skeletal muscle.

The FEM-NURBS method proposed in this thesis provides an alternative way of describing 

the fibre orientation arrangement. Compared to the commonly used line segment method, 

the FEM-NURBS method characterises the fibre orientations more accurately. Compared to 

the method of using a local element coordinate system, the FEM-NURBS method is easier 

for modelling objects with complex geometries.

The advantages of the proposed FEM-NURBS method are its ability to model curved fibre 

arrangement and die feature that it takes use of the commercial software (ABAQUS) for 

the calculation. The skeletal muscle architectures are the parallel fibred and the pinnate 

fibred, as stated in Section 2.2.2. The FEM-NURBS method is able to simulate the parallel 

and unipennate arranged muscle fibres. However, for a bi-pennate or multi-pennate muscle, 

one single NURBS solid is unable to represent its fibre arrangement. In this case, two or 

more NURBS solids need to be created. However, how will this perform is unknown so far. 

Future work should investigate the ability of the FEM-NURBS method to model 

multi-branches muscles. Another limitation of the FEM-NURBS method is that the muscle 

fibres are assumed to be the isocurves in the NURBS solid. Therefore, the fibre orientation 

arrangement is not based on the actual muscle architecture. In the future, it is hoped the 

muscle fibre orientation information can be accurately obtained from the MRI data and 

then input into the finite element model for the calculation.
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It should be noted that the FEM-NURBS method developed in this chapter enables a more 

accurate simulation of the facial muscles. However, because of the limitation of the data 

that can be fetched to the LS-DYNA user subroutine interface, this FEM-NURBS method 

cannot be implemented into LS-DYNA at this stage. Therefore, this method has not been 

applied to the facial model developed in Chapter 4. In the future, as the development of 

LS-DYNA progresses, the implementation of the FEM-NURBS method will become 

achievable and this will permit a more accurate facial model. Furthermore, the muscle fibre 

orientation arrangements of the facial model could also be considered for investigation 

using the FEM-NURBS method developed in this chapter.
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Chapter 6 

Conclusions and Future Work

6.1 Summary and conclusions

This chapter summarises the general conclusions that are drawn from the present 

investigation and gives guidelines for future research. For specific conclusions and future 

research directions, readers are directed to these sections at the end of each chapter.

The research objectives of this thesis, as outlined in Chapter 1 - introduction, were to:

1. Develop reliable numerical facial soft tissue models

2. Develop a numerical facial model which can be used for the simulations of facial 

surgery and facial movement.

In respect to these objectives, the following research has been undertaken, which has led to 

the following conclusions being made:

•  Skeletal muscle model development

A finite element skeletal muscle model has been developed to simulate the skeletal muscle 

mechanical behaviour which include the active, quasi-incompressible, fibre-reinforced and 

hyperelastic behaviour. This model is phenomenological and based on Hill’s three-element 

model. The force-velocity and force-length relationships of the muscle are incorporated 

into the model. The model is implemented into a non-linear finite element analysis
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programme LS-DYNA by means of user-defined material subroutines and validated by 

comparing the finite element analysis results with the published experimental data on the 

New Zealand white rabbit tibialis anterior muscle. It is shown that the model is able to 

capture the passive and active muscle behaviour during both the shortening and 

lengthening movements. This work is presented in Chapter 3.

The constitutive skeletal muscle model developed in Chapter 3 is able to capture the 

complex mechanical behaviour of skeletal muscle. However, in this model, it is assumed 

that the skeletal muscle fibres are distributed parallel and have a single direction. Thus, the 

model fails to capture the complex fibre arrangement within a skeletal muscle system. To 

overcome this problem, in Chapter 5, a FEM-NURBS method is proposed to model both 

the mechanical properties and the internal fibre arrangement of skeletal muscle. This 

method is implemented into the non-linear finite element analysis programme, ABAQUS 

by means of user defined material subroutines. A number of numerical examples have been 

carried out to demonstrate that the proposed method is able to capture both the 

biomechanical response and the fibre arrangement of skeletal muscle.

•  Finite element facial model development

A finite element facial model has been developed which can be used for the simulation of 

facial surgery and facial movement. In this model, the facial skin and the skull structures 

are based on the patient specific CBCT data, and the muscle geometry is taken from a 

standardised forensic database. The subcutaneous tissue is created to fill the gap among the 

facial skin, the skull and the muscles. This facial model is first used to simulate 

cranio-facial surgical procedures. The results are compared with the patient’s 6-month 

post-surgery data. Good agreement is achieved, suggesting that the finite element 

modelling technique can serve as a predictive tool for surgical procedures.

Apart from using the developed facial model for predicting a patient’s post-surgical facial 

changes, simulations of human facial movement are also considered. In these simulations, a
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novel approach is proposed. In this method, the facial muscles responsible for individual 

facial expressions are assigned with the constitutive muscle material model developed in 

Chapter 3. Thus, muscles can be activated and contracted to generate individual facial 

expressions. To test this method, firstly, two facial expressions (smile and disgust) are 

performed on the patient’s pre- and post-surgical facial models. This is followed by the 

simulation of mouth opening process by activating the anterior digastric and mylohyoid 

muscles. The simulations of the aforementioned facial movements show promising results.

6.2 Directions for future work

As a consequence of the above conclusions, directions for future work are suggested in the 

following areas:

•  Finite element skeletal muscle model development

Although, an active, quasi-incompressible, fibre-reinforced and hyperelastic finite element 

skeletal muscle model has been developed in this thesis, the development of the skeletal 

muscle model is still in its early stages. In order to consider some of the shortcomings, the 

model can be improved from the following perspectives:

(i) The skeletal muscle behaviour is known to be viscoelastic. It is shown that the skeletal 

muscle tissue stress-strain curves are affected by the loading rate (Myers, Wooley, 

Slotter et al., 1998). Therefore, when modelling the dynamic behaviour of the skeletal 

muscle, it is necessary to take the muscle strain rate effects into account.

(ii) The developed skeletal muscle model is based on Hill-type and is based at the 

macroscopic level. This model is able to describe the general macroscopic phenomenon 

of skeletal muscle, including the skeletal muscle force-velocity and force-length 

relationships. The shortcoming of this model is that it always involves many material 

constants, some of which do not have physical interpretations and cannot be measured 

from experiments. However, in the micro-structural Huxley-type model, most
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parameters have a physical meaning and some of them can be measured directly. 

Besides, the Huxley-type model describes the muscular contraction dynamics at a 

micro-scale level, which is more reasonable when compared to the Hill-type model. 

However, the Huxley-type model increases the level of complexity due to the need of 

capturing data at the micro level. Future work here could be to develop a multi-scale 

skeletal muscle by combining the merits of Hill-type and Huxley-type models.

(iii) A FEM-NURBS method has been proposed and is able to characterise the fibre 

orientation arrangement of skeletal muscle. However, this method is unable to handle 

an arbitrary muscle fibre arrangement at present. When the muscle has multiple 

branches, this method loses its applicability. Further improvement could be carried out 

to deal with multi-branches muscles in the future.

•  Development of accurate finite element facial models

Further to the developed finite element facial model for the simulations of facial surgery

and facial movement, more studies are suggested in the following areas:

(i) In this thesis, a finite element facial model is constructed from the patient specific 

CBCT data of the facial bones and facial skin together with the adjusted generic fecial 

muscles. As the development of MRI and image segmentation techniques and patient 

specific muscle data becoming available, more accurate simulation is possible. Here, in 

particular, patient specific muscle data instead of generic muscle data would provide 

enhanced results. In addition, MRI will provide detailed fibre orientation of each facial 

muscle. Inputting the fibre orientation information into the FE facial model will 

significantly increase the simulation accuracy.

(ii) Human skin is a complex tissue consisting of several distinct layers. The complex 

structure of the skin leads to complex mechanical behaviour. The skin shows a 

non-linear stress-strain relationship, time-dependent, incompressible, anisotropic and
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inhomogeneous behaviour (Hendriks, Brokken, Eemeren, et al. 2003). Besides, 

wrinkling is a phenomenon common to all human skin. On the face, certain wrinkles 

are important for self-expression. Any model of skin should take the complex 

mechanical behaviour and skin wrinkling into consideration in order to make realistic 

predictions. Therefore, future work should look at developing better facial skin models 

instead of the linear elastic model used in this thesis.

(iii) In this thesis, the simulation of facial surgery using the finite element technique has 

only been validated by using one patient. Quantitative validation of the simulation 

should be considered in the future. On the other hand, in this thesis, simulations of two 

facial expressions and the mouth opening process have been performed. However, none 

of these results have been validated at present. In the future, both pre-surgery and 

post-surgery facial movement data could be collected and used for the validation of 

these simulated facial movements (facial expressions and mouth opening).

(iv) The FEM-NURBS technique developed in this thesis has been implemented into the 

ABAQUS system. Because of the restriction of the data passed into LS-DYNA user 

subroutines, the FEM-NURBS method cannot be implemented into LS-DYNA at 

present. However, the facial model is developed in LS-DYNA. Thus, the FEM-NURBS 

method cannot be applied into the developed facial model at the current stage. Further 

extension of the LS-DYNA code would allow the implementation of the proposed 

FEM-NURBS technique to the facial model. Then, the accuracy of the facial model 

with the muscle fibre orientation arrangement modelled by the method presented herein 

should be investigated.

(v) After the facial surgery, clinician and patient are interested in the expected facial 

contours and shape some months after the swelling has disappeared. During this healing 

period, the soft tissue changes due to not only reduced swelling but also ageing and 

growth. Therefore, incorporating of the soft tissue growth into the finite element facial
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model will increase the accuracy of simulating the long-term post-surgery facial 

movements.

(vi) In addition, more work is needed before the proposed method can be used as a tool in 

the day-to-day planning of maxillofacial surgery, such as simplifying the process of 

creating the finite element facial model and the need of finding faster segmentation 

methods for facial muscles. More future challenging work could be to simulate speech 

and other fecial actions.
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Appendix A — Abbreviations
ID One-dimensional

3D Three-dimensional

4D Four-dimensional

ARCCA Advanced Research Computing @ Cardiff

CAD Computer-aided Design

CAM Computer-aided Manufacturing

CBCT Cone Beam Computerised Tomography

CE Contractile element

CT Computer Tomography

DM Distributed moment

FE Finite element

FEA Finite Element Analysis

FEM Finite Element Model

HPC High-Performance Computing

MRI Magnetic Resonance Imaging

MSD Mass-Spring-Damper

MSM Mass-Spring Model

MTM Mass Tensor Model

NURBS Non-uniform Rational Basis Spline

OS Operating system

PE Parallel element

SEE Series elastic element

SMFE Super-positioned muscle finite element

SR Sarcoplasmatic reticulum

TA Tibialis anterior

TMJ Temporomandibular joint
UMAT User-defined material
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Boldface is used for tensors

Chapter 2

a Outward unit vector in the current configuration

A Outward unit vector in the reference configuration

B Left Cauchy-Green deformation tensor

B Left Cauchy-Green tensor with the volume change eliminated

By A continuum body

C Right Cauchy-Green deformation tensor

C Right Cauchy-Green tensor with the volume change eliminated
A

C Material version of the second elasticity tensor

C Spatial version of the second elasticity tensor

E Green strain tensor

E1 Unit base vector components in the reference configuration

e! Unit base vector components in the current configuration

F Deformation gradient

Fvoi Dilatational part of the deformation gradient

Fdev Deviatoric part of the deformation gradient

I x, 12,..., 15 Strain invariants

7,, I2, / 4,1s Strain invariants with the volume change eliminated

J  Jacobian determinant of the deformation gradient

n Fibre direction in the deformed configuration
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N Fibre direction in the undeformed configuration

P First Piola-Kirchhoff stress tensor

Pt A particle in the deformation configuration

Po A particle in the undeformed configuration

Qt A particle in the deformation configuration

Qo A particle in the undeformed configuration

s Second Piola-Kirchhoff stress tensor

Svol Dilatational part of the deformation gradient

Sdcv Deviatoric part of the deformation gradient

t Cauchy traction vector

to First Piola-Kirchhoff traction vector

U Displacement of a material point

i/(X,o Displacement of material point X at time t

W(C) Strain energy function

K Derivatives of strain energy function W with respect to Ia {a = 1,2, • • •)

Dilational part of the strain energy

Deviatoric part of the strain energy

X Position vector of a material point in the current configuration

Components of position vector in the current configuration

X Position vector of a material point in the reference configuration

* / Components of position vector in the reference configuration

kf Fibre stretch ratio in the direction of the undeformed fibre

Eigenvalues of the deformation gradient F

a Cauchy stress
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r 0 Boundaries in the reference configuration

r, Boundaries in the current configuration

Mapping function

V'(E) Strain eneigy function

o 0 Reference configuration

n , Current configuration

Chapter 3

A Material constants associated with PE

b,c Material constants associated with the isotropic matrix

d Offset of the eccentric part of force-velocity function

D Compressibility constant

E Young’s modulus

m Attachment rate function

/ v Muscle force-velocity function

fx Muscle force-length function

/ , Muscle activation function

F c e Force generated in the contractile element of Hill’s muscle model

F f Total muscle force generated in Hill’s muscle model

F«« Maximal isometric force

FPE Force generated in the parallel element of Hill’s muscle model

F se e Force generated in the series elastic element of Hill’s muscle model

g tf) Detachment rate function

G Shear modulus
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I Second order unit tensor

I\ First invariant of the right Cauchy-Green strain tensor with the volume change

eliminated

J Jacobian of the deformation gradient

K Bulk modulus

Shape parameters of the force-velocity curves

L Symmetric fourth order unit tensor

Lpe Total muscle length

Lcb Muscle length component in the contractile element

LSEE Muscle length component in the series elastic element

N Fibre direction vector in the undeformed configuration

n Fibre direction vector in the deformed configuration

n(x,t) Distribution function

Activation level before and after the activation

n2 Activation level during the activation

Qe 0-th normalised moment of the bond distribution function

r Activation factor

S Parameter related to the rate of the chemical process

*0 Activation time

Deactivation time

u(t) Scaled shortening velocity of a half sarcomere

u Total strain energy in the muscle

Uf Strain energy stored in the muscle fibre

U, Strain eneigy stored in the isotropic matrix
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U j Strain energy associated with the volume change

U „ Strain energy stored in the parallel element (PE)

U su m Strain energy stored in the series elastic element (SEE)

V Poisson’s ratio

<*a Fibre activation

a yp Material constants associated with SEE

ax, Fibre stretch increment in the series elastic element

gCB A non-dimensional quantity proportional to the strain of CE

X Extension ratio in the fibre direction

Fibre stretch ratio with the volume change eliminated

Fibre stretch in the series elastic element

4 opt Optimal fibre stretch

j m t n

A m Minimum stretch rate

K Stretch rate in CE

a Cauchy stress produced in the whole muscle

° 0 Maximal isometric stress

° a Active stress generated by all cross-bridges

&CE Stress produced in the contractile element

** fibre Stress produced in the muscle fibres

o incomp Stress due to the volume change

®  matrix Stress produced in the surrounding matrix

° P
Passive stress produced in the muscle model

&PE Stress produced in the parallel element

® SEE Stress produced in the series elastic element
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a E Stress produced in the surrounding matrix

a* Stress produced in the active muscle fibre

* Fraction of the muscle fibre

<P Fraction of participating myosin heads

Chapter 4

U Strain energy density function

h First invariant of the strain tensor

J Jacobian of the deformation gradient

r'“'10 Material parameter

K Material parameter

Chapter 5

B, Control point position vectors for NURBS curve

B w Control point position vectors for NURBS surface

B,m Control point position vectors for NURBS solid

B* Four-dimensional homogeneous control vertices

Bf.y Four-dimensional homogeneous control net vertices

B Left Cauchy-Green strain tensor with the volume change eliminated

b,c Material constants associated with the isotropic matrix

C Right Cauchy-Green deformation tensor with the volume change eliminated

Control point vectors of the centreline

D Material constant associated with the volume change

d Offset of the eccentric force-velocity function
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E Green strain tensor

F Deformation gradient tensor

H(m, v, w) Rational B-spline solid representation

H Material tangent stiffness tensor

h Spatial form of the material tangent stiffness tensor

I Second order unit tensor

II First invariant of the right Cauchy-Green strain tensor with the volume change 

eliminated

J  Jacobian of the deformation gradient

k Material constant, ratio of length of CE to that of SEE

ke, av Shape parameters of hyperbolic force-velocity curve of contractile element

L Symmetric fourth order unit tensor

N Fibre direction vector in the undeformed configuration

n Fibre direction vector in the deformed configuration

Ni p(u) Non-rational B-spline basis functions

P(t) B-spline curve representation

Q(u, v) Cartesian product rational B-spline surface representation

Ri p (t) Rational B-spline curve basis functions

S Second Piola-Kirchhoff stress tensor

SUJ (u, v) Rational B-spline surface basis function

(w> v>w) Rational B-spline solid basis function 

U Total strain energy in the muscle

Uj Strain energy stored in the isotropic matrix

Uy Strain energy stored in the muscle fibre
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Uj Strain energy associated with the volume change

UPE Strain energy stored in the parallel element (PE)

UM Strain energy stored in the series elastic element (SEE)

wi.J Weight factors

<*a Activation function

a 9p Material constants associated with the series elastic element

AX, Fibre stretch increment in the series elastic element

A'mO Strain rate corresponding to the maximum isometric tetanised force

Xf Fibre stretch ratio with the volume change eliminated

a Cauchy stress tensor

Material constant, the maximal isometric stress

&PE Stress produced in the parallel element (PE)

&SE Stress produced in the series elastic element (SEE)
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Appendix C — Hill’s Force-Velocity 
Equation

The most famous equation in muscle mechanics is Hill’s equation (Hill, 1938). The 

equation refers to the property of a skeletal muscle in the tetanised condition. It has the 

form:

(y + P)(T + ?) = P(T0 + q) (C. 1)

where T represents the tension in a muscle; v represents the velocity of contraction; T0 
is the maximum tension developed in the muscle under isometric condition; and q, p  are 

constants.

Hill’s Equation (C. 1) is an empirical equation based on the experimental data from the frog 

Sartorius muscle. During the experiment, the muscle was held under the isometric 

condition, i.e. its ends were clamped. Then the muscle was stimulated electrically at a very 

high voltage and frequency to generate the maximum tension. After this, the muscle was 

released suddenly to a new length. The tensile force T corresponding to this new length was 

developed. T is smaller than T0. Immediately after the release, the contraction velocity was 

measured. The experimental data are plotted in Figure (C. 1), where the circles represent the 

experimental data and the solid curve represents Hill’s Equation (C.l) with q = 357 

gram/sq.cm; q!T0~ 0.22;p -  1.03 cm./sec.
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CO

Load (g.wt.)

Figure C .l. Relation between load (g.wt.) and speed of shortening (cm./sec.) during

isotonic contraction. (Hill, 1938)

From Figure C. 1, it is seen that Hill’s equation shows a hyperbolic relation between Tand v . 

The higher the contraction velocity, the lower is the tension; the slower the contraction 

velocity, the higher is the tension.

Anon-dimensional form of Hill’s equation is given as:

T ^ l- (v /v 0) 
T0 l + *,(v/v0)

(C.2)

Or

y i - (7 v r ,)
v„ 1 + kq(T/T„)

(C.3)

where kq = T0 lq  and the maximum velocity v0 = pT0 ! q . The constant q is almost 

proportional to T0. The value of kq for skeletal muscle is in the range of 1.2 to 4 (Fung 

1981)
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Appendix D — Geometry Relation in 
Hill’s Three-Element Model

✓
✓
✓
✓

CE

LmO ‘

SEE

U”

Lpo-

Lso'

Figure D .l Geometry of Hill’s Model (Kojic, Mijailovic and Zdravkovic, 1998)

When the Hill’s three-element muscle is stretched without activation, the geometry relation 

among the three elements can be drawn in Figure D.l. The following relation can be 

obtained from this figure:

Lp»+U l=L m0+U :+LM+U: (D.l)

where Lp0 is the total initial length; Zm0and Ls0 are the initial lengths of the contractile

and series elastic elements respectively; Up is the total displacement, U°m and Ug are

the displacements of the contractile and series elastic elements respectively. Since the 

muscle is passively elongated, the displacement in the series elastic element is zero, 

i.e. Ug = 0, as illustrated in Figure D. 1

Assuming the ratio of the length of contractile element to that of series elastic element as:

k = L ,JLm0 (D.2)

When the muscle has no deformation, the following relation holds:

Lpo = Lm o +Ls0 (P-3)

Page 204



Appendix D — Geometry Relation in Hill’s Three-Element Model

Dividing Equation (D.l) by and using Equations (D.2) and (D.3), the following 

relation is obtained:

AA® = (1+£)AA® -  kAA°s (D.4)

where AA®, AA® and AA® are defined as: AA® = -^5L, AA® = and AA° = . In
Lmo Ls0

the initial state, i.e. the muscle has no deformation, AA® = 0, AA® = 0 and AA® = 0

Now considering an arbitrary time t state, the following equation can be obtained:

'L„ =L l t+,U = L^, +U l + J T  vmdt + LM+-U, (D.5)«o

where vm is the velocity of the contractile element contraction, and t0 is the activation

time. Dividing Equation (D.5) by Lm0, the following equation can be obtained:

(l + k ) % = % + \‘^ -d t+ k %  (D.6)

7 -4- *77 7 4- 77°
where 'A. , A®, and 'A are defined as: tXs -  — -----   , A® = ——-----— ands  7 m p  s  j  7 m j

s0 mO

L^ + 'U Z-%

'  L* V

Further, Equation (D.6) can be written at the end of the time step as:

(1 + k)‘+%  = X  + AAm +k%  +*AA, (D.7)

Then, the increment of stretch in the contractile element can be obtained as:

AXm= a x-kAXs (D.8)

where

a ^ i l + k y ^ - X - k ^  (D.9)

AA is the stretch increment in the contractile element.
191
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Appendix E — Fortran Codefor the 
Skeletal Muscle Model

Subroutine umat43 (cm,eps,sig,epsp,hsv,dt 1 ,capa,etype,time,temp,failel,crv)

c LS-DYNA user defined routine for skeletal muscle constitutive model
c Copyright: Yongtao Lu, School of Engineering, Cardiff University

dllHIIIHImm nil I input variables explanation IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIII 
c cm(l) — cm(32) = variables comes from the LS-DYNA keyword input deck
c Cauchy stress components 
c sig(l) = local x Cauchy stress
c sig(2) = local y Cauchy stress
c sig(3) = local z Cauchy stress
c sig(4) = local xy Cauchy stress
c sig(5) = local yz Cauchy stress
c sig(6) = local zx Cauchy stress
c history variables 
c hsv(l) = 1st history variable
c hsv(2) = 2nd history variable
c 
c 
c
c hsv(n) = nth history variable
c other variables 
c dtl = current time step size
c time = current time
c temp = current temperature

include 'nlqparm' 
include 'iounits.inc*
common/bk06/idmmy,iaddp,ifil,maxsiz,ncycle,ctime(2,30) 
character* 5 etype
dimension cm(*),eps(*),hsv(*),crv(lq 1,2, *),sig(*) 
logical fiule

DIMENSION GC(3,3),CBAR(3,3),GB(3,3),BBAR(3,3),AN0(3),ANN0(3,3),
1 FN(3), AN 1 (3), ANN 1 (3,3),UNIT2(3,3), ST(3,3),DFGRD 1 (3,3),
2 STI(3,3),STFPE(3,3),STFSE(3,3),STJ(3,3)

PARAMETER (ONE=1.0D0,TWO=2.0D0,THREE=3.0D0,SIX=6.0D0)
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if (etype.eq.'solid') then 
b = cm(l) ! b
c = cm(2) I c
TMO = cm(3) ! SIGMAO, maximum isometric stress
D = cm(4) ! D
AK = cm(5) ! CONTANT K
ALFA= cm(6) ! ALFA
BETA= cm(7) ! BETA
DDRSMO= cm(8) ! anmdafm-zero-dot
AC = cm(9) ! K-c
AB = cm(10) ! K-e
AD = cm (ll) ! d
TimeO = cm(14) ! tOithe activation time
Timel = cm(15) ! t l :the deactivation time
Factor = cm(16) ! S: the exponential factor
APE =cm(17) ! material constant A
aLevell = cm(18) ! activation level before and after contraction^. 0
aLevel2 = cm(19) ! activation level during contraction, 1.0
emda opt = cm(20) ! the optimal fibre stretch

c
c calculate the intial fibre direction according to the two nodes' coordinates
c

FX1 = cm(25); FY1 = cm(26); FZ1 = cm(27)
FX2 = cm(28); FY2 = cm(29); FZ2 = cm(30)
DIS = sqrt((FX2-FX 1 )* *2+(F Y2-FY1 )* *2+(FZ2-FZ 1)* *2)
FXO = (FX2-FX1)/DIS; FYO = (FY2-FY1)/DIS; FZO = (FZ2-FZ1)/DIS 
AN0(1)=FX0; AN0(2)=FY0; AN0(3)=FZ0

c
c NHV=8, thus,deformation gradient stored in hsv(9),.. .,hsv( 17)
c pass the deformation gradient to the matrix DFGRD(3,3)
c

DFGRD 1(1,1 )=hsv(9); DFGRD l(l,2)=hsv( 12); DFGRDl(l,3)=hsv(15);
DF GRD1 (2,1 )=hsv( 10); DFGRD l(2,2)=hsv( 13); DFGRD l(2,3)=hsv( 16); 
DFGRD1(3, l)=hsv(l 1); DFGRD l(3,2)=hsv( 14); DFGRD l(3,3)=hsv( 17);

c
c compute the Jacobian
c

DET = DFGRD1(1,1) * DFGRD1(2,2) * DFGRD1(3,3)
2 + DFGRD1(1,2) * DFGRD1(2,3) * DFGRD1(3,1)
3 + DFGRD1(1,3) * DFGRD1(3,2) * DFGRD1(2,1)
4 - DFGRD1(1,2) * DFGRD1(2,1) * DFGRD1(3,3)
5 - DFGRD1(1,3) * DFGRD1(3,1) * DFGRD1(2,2)
6 - DFGRD 1(2,3) * DFGRD1(3,2) * DFGRD1(1,1)

SCALE 1 = DET* *(-ONE/THREE)
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SCALE2 = DET* *(-TWO/THREE)
c
c compute right Cauchy-Green tensor -  GC(3,3)
c

DO 2001= 1,3 
DO 200 J = 1,3 

GC(I,J)= 0.0 
DO 200 K=l,3

GC(I,J)= GC(I, J)+DFGRD 1 (K,I)*DFGRD 1 (K, J)
200 continue

c
c compute the right Cauchy-Green tensor with the volume change eliminated,
CBAR(3,3)
c

DO 2101=1,3 
DO 210 J=l,3

CBAR(I,J) = GC(I,J)* SCALE2 
210 continue

c
c compute left Cauchy-Green tensor — GB(3,3)
c

DO 2201= 1,3 
DO 220 J = 1,3 

GB(I,J)= 0.0 
DO 220 K=l,3

GB(I,J)= GB(I, J)+DFGRD 1 (I,K)*DF GRD1 (J,K)
220 continue

c
c compute the left Cauchy-Green tensor with the volume change eliminated,
BBAR(3,3)
c

DO 2301=1,3 
DO 230 J=l,3

BBAR(I,J) = GB(I,J)* SCALE2 
230 continue

c
c compute the first invariant with the volume change eliminated
c

HTOARC1=CBAR(1,1)+CBAR(2,2)+CBAR(3,3)
c
c compute the fibre stretch ratio in the undeformed configuration
c

DO 2401=1,3 
DO 240 J=l,3
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ANNO(I,J)=ANO(I)*ANO(J)
240 continue

ANMDF = 0.0 
DO 250 1=1,3 

DO 250 J=l,3
ANMDF =ANMDF CBAR(I,J)*ANN0(J,I) 

250 continue
ANMDF = SQRT(ANMDF)

c
c compute the current muscle fibre direction
c

DO 1=1,3 
FN(I) =0.0 
DO K=l,3

FN(I) =FN(I}+DFGRD1(I,K)*AN0(K) 
END DO

AN 1(1) = SCALE 1 *FN(I)/ANMDF
END DO

c
c set the initial values for some variables
c

RSS = hsv(5) 
RSM = hsv(6) 
SIGM0 = hsv(7)

stretch ratio in SEE, =Ls(t)/Ls(0) 
stretch ratio in CE, =Lm(t)/Lm(0) 
maximum stress of CE at initial time

DRSM = hsv(8) ! stretch increment in CE, =Um(t)/Lm(0)

AAA0=0.0 
DO 1=5,8 

AAA0=AAA0+ABS(hsv(I»
END DO
IF (AAA0.EQ.0.) THEN ! first iteration

RSS =1.0
RSP =1.0 ! stretch ratio in PE 
RSM = (1.0+AK)*RSP-AK ! the stretch ratio in CE

DRSM=0.0
call ForceExten(RSP,emda_opt,ForceNor)
SIGM0 = TM0*ForceNor
goto 900 ! store the history variables and go to the next iteration

ENDIF
RSP=ANMDF

c
c compute the activation level at time t 
c
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ATIME=time
if((ATIME.GT.TimeO) .AND. (ATIME.LT.(Timel-K). 1))) then

call ActiLevel(ATIME, ALFAA,aLevel 1 ,aLevei2,HmeO, Time 1 J 7 actor) 
else ! the muscle is in the non-activation state

SIGMS = 0.0 ! stress in CE and SE equals zero
goto 800 

endif
c
c computing the stress in CE at the previous time step 
c

EXPARS=EXP(ALFA*( RSS-1.0))
SIGMS= BETA*(EXPARS-1.0)

c
c compute the cofficient A1
c

Al=(l +AK)*RSP-RSM-AK*RSS 
DRSM0=DT 1 *DDRSM0

IF (DRSM. GT.0.0) THEN ! lengthening case
A2=(SIGMS+BETA)*(1.0-AB* AC* A1/DRSM0) 
A3=(SIGMS+BETA)*AB*AK*AC/DRSM0

A4=(AB*BETA* AC+SIGM0* ALFAA*(AD* AB* AC+AD-1.0))* AK/DRSM0 
A5= BETA+ SIGM0* ALFAA+

1 (SIGM0* ALFAA*( 1 0-AD-AD*AB* AC)-AB*BETA* AC)*A1/DRSM0
ELSE ! shortening case

A2==(SIGMS+BETA)*(1 .0+AC* A1/DRSM0)
A3=-( SIGMS+BETA) * AK* AC/DRSMO 
A4=(SIGM0*ALFAA-BETA*AC)*AK/DRSM0
A5= BETA+SIGM0*ALFAA+(BETA*AC-SIGM0*ALFAA)*A1/DRSM0 

ENDIF
c
c solve the unknown RSS by standard Newton's method
c

DRSS=0.0
CALL DNEWT(DRSS, A2,A3,A4,A5,ALFA,ncycle)

c
c update the variables for the next step
c
c update RSS and RSM

RSS= RSS+DRSS 
DRSM=A1 - AK*DRSS 
RSM=RSM+DRSM 

c calculate SIGMS at current time step
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EXPARS=EXP(ALFA*( RSS-1.0))
SIGMS= BETA*(EXPARS-1.0)

800 IF(ANMDF.GT. 1.0) THEN ! muscle is stretched 
FPE = APE*(ANMDF-1.0)**2 

ELSE ! muscle is shortening, no force in PE
FPE = 0.0 

ENDIF
c
c calculate the strain energy
c

U1PE=TM0*FPE 
U1SE = SIGMS 
U 1F=U1PE+U 1SE 
UlI=b*c*EXP(b*(HIB ARC 1 -3.0))
U1 J=2. *(DET-1,0)/D

c
c compute the Cauchy stress from the strain energy 
c

DO 2601=1,3 
DO 260 J=l,3

ANN 1 (I, J)=AN 1 (I)* AN 1 (J)
260 continue

DO 1=1,3 
DO J=l,3

UNIT2(I,J)=0.0 
END DO

UNIT2(I,I)=1.0 
END DO

DO 2701=1,3 
DO 270 J=l,3

STI(I,J) = (U1I*(2.0*BB AR(I, J)-2.0*HIB ARC 1 *UNIT2(I, J)/3.0))/DET 
270 continue

DO 2801=1,3 
DO 280 J=l,3

STFPE(I,J)=(UlPE#(ANMDF*ANNl(I,J)-1.0*ANMDF*UNIT2(I,J)/3.0))/DET 
280 continue

DO 2901=1,3 
DO 290 J=l,3
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STFSE(I,J)=(U 1 SE*(ANMDF* ANN1(U> 1.0* ANMDF*UNIT2(I,J)/3.0))/DET 
290 continue

c
DO 300 1=1,3 

DO 300 J=l,3
STJ(I, J)=U 1 J*UNIT2(I, J)

300 continue
c

DO 3101=1,3 
DO 310 J=l,3

ST(I,J) = STI(I,J)+STFPE(I,J)+STFSE(I,J)+STJ(I,J)
310 continue

c stored as history variables for output purpose 
hsv(l)=STI(3,3) 
hsv(2)=STFPE(3,3) 
hsv(3)=STFSE(3,3) 
hsv(4)=STJ(3,3)

c
c pass Cauchy stress
c

sig(l)= ST(1,1); sig(2)= ST(2,2); sig(3)= ST(3,3) 
sig(4)= ST(1,2); sig(5)= ST(2,3); sig(6)= ST(1,3)

c
c compute the muscle at time t
c

Call ForceExten(RSP,emda_opt,ForceNor)
SIGM0 = TM0*ForceNor

c
c pass back the history varialbes for the next iteration
c
900 hsv(5) = RSS ! rate of stretch in SEE

hsv(6) = RSM ! rate of stretch in CE
hsv(7) = SIGM0 ! maximum stress of CE at time t+dt 
hsv(8) = DRSM ! increment rate of stretch of CE

c
else

write ( *,20) etype
write (iohsp,20) etype 
write (iomsg,20) etype 
call adios(2) 

endif
c
20 FORMAT(/
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1 ' *** Error element type ',a,' can not be1,
2 ' run with the current material model.')

c
RETURN
END

c
c------------------------------Subroutines definition-------------------- --------------------------
c
SUBROUTINE ActiLevel(t,acti,aLevel l,aLevel2,TimeO,Timel, Factor)
£************************************************************************
♦
c subroutine to define the activation function

c//////////////////////////////////input parameters explanation IIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIHIII 
c t = the current time
c alevell = the activation level before and after the activation
c alevel2 = the activation level during the activation
c TimeO = the activation time
c Timel = the deactivation time
c Factor = the rate of the chemical process
c///////////////////////////////output parameters explanation IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIlllllll 
c acti = the activation level corresponding to the current time t

if(t .LT. TimeO) acti = aLevell
if((t .GE. TimeO) .and. (t .LT. Tlmel)) then

acti = aLevell + (aLevel2-aLevel 1) * (1 -exp(-factor* (t-HmeO))) 
endif
if(t .GT. Tlmel) then

tempi = (aLevel2-aLevell)*(l-exp(-factor*(Timel-TlmeO))) 
acti = aLevell + tempi - templ*(l-exp(-factor*(t-Timel))) 

endif 
RETURN 
END

SUBROUTINE ForceExten(x,xl,y)

c subroutine to define the force — extension function
g * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c//////////////////////////////////input parameters t^Xtmatioiilllllllllllllllllllllllllllllllllllllllllllllllllllll 
c x = the current stretch
c xl = the optimal fibre stretch
c/////////////////////////////////output parameters explanation///////////////////////////////////////////////////// 
c y = the normalised force corresponding to the current stretch
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tmp = x/xl
if(tmp .LT. 0.4) y=1.0e-4
if((tmp .GE. 0.4) .and. (tmp XT. 0.6)) y=9*(tmp-0.4)**2
if((tmp .GE. 0.6) .and. (tmp .LT. 1.4)) y=l-4*(l-tmp)**2
if((tmp .GE. 1.4) .and. (tmp .LT. 1.6)) y=9*(tmp-1.6)**2
if(tmp .GT. 1.6) y=1.0e-4 

RETURN 
END

SUBROUTINE FS(X,F,DY,A2,A3,A4,A5,ALFA)
C* ************************ ************* ********************************** 
c subroutine to compute f(x)=F and di7dx=DY
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

dllllllHIIIIIIIIIIIIIIHIIIH/llirmvuX parameters explanation IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIII 
c X = the independent variable
c A2 -  A5 = coefficient of the non-linear equation
c ALFA = the material constant a
c/////////////////////////////////o\itput parameters explanation IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIH 
c F = the value of the non-linear equation
c DY = the Jacobian df'dx

F = (A2+A3*X)*EXP(ALFA* X)-A4* X-A5 
DY=(A3+ ALFA *(A2+A3* X))* EXP(ALFA* X)-A4 

RETURN 
END

SUBROUTINE DNEWT(X, A2,A3,A4,A5,ALFA,NITE) 
£************************************************************************
c subroutine for newton iteration method
g * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c///////////////////////////////////input parameters explanation///////////////////////////////////////////////////// 
c A2 -  A5 = coefficient of the non-linear equation
c ALFA = the material constant a
c NITE = the current iteration number
c/////////////////////////////////output parameters explanation////////////////////////////////////////////////////^ 
c X = the solution

EPSS = 1 .OE-6 ! used to control the solution precision
L=60 ! the most iterative number to be given
CALL FS(X,F,DY,A2,A3,A4,A5,ALFA)

30 IF ((ABS(DY)+1.0.EQ. 1.0) .AND. NITE GT. 0.0) THEN
L=0
WRITER,2000)
RETURN
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END IF 
X1=X-F/DY
CALL FS(X1 ,F,DY, A2, A3, A4, A5, ALFA)
IF ((ABS(X1-X).GE.EPSS) AND. (ABS(F).GE.EPSS)) THEN 

L=L-1 
X=X1
IF (L.EQ.O) RETURN 
GOTO 30 

END IF 
X=X1
if(NITE .EQ. 0) X=0.0 

RETURN 
2000 FORMAT(lX,' ERR')

END
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Appendix F — Makefile for Building 
LS971.exe on WindowsXP

FC=ifort
FFLAGS=-c -WO -WB -unroll -fp:precise -4Yportlib -assume:byterecl, bufferedio \ 
-Qfpp2 -DPCWIN -DINTEL -QxK

SMPS = -DOPENMP -Qopenmp
NSMPD= -DAUTODOUBLE -4R8 -418
SMPD = -DOPENMP -Qopenmp -DAUTODOUBLE -4R8 -418

FFLAGS = $(FFLAGS) $(SMPS)
LFLAGS = -F:4000000 -link -force -nodefaultlib: msvcrt. lib 
OBJS= dyn21.obj dyn21b.obj umat43.obj
LIBS= libdyna.lib libansys.lib libguide.lib shell32.1ib user32.1ib comctl32.1ib comdlg32.1ib

ls971.exe: $(OBJS)
$(FC) -w -q -o ls971.exe $(OBJS) $(LIBS) $(LFLAGS)

dyn21.obj: dyn21.F
$(FC) $(FFLAGS) dyn21.F 

dyn21b.obj: dyn21b.F
$(FC) $(FFLAGS) dyn21b.F 

umat43 .obj: umat43.F
$(FC) $(FFLAGS) umat43.F

clean:
-if exist *.obj erase *.obj
-if exist ls971.exe erase ls971.exe
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Appendix G — Fortran Code for 
NURBS Solid Representation and its 

Derivatives

SUBROUTINE NURBSOLID(Vertex, OrderU,OrderV,NumPointU,
1 NumPointV,VectorKnotU,VectorKnotV) 

£************************************************************************
c Subroutine to calculate a Cartesian product rational B-spline Solid 
c using an open knot vector and write the derivatives into a file
c Copyright: Yongtao Lu, School of Engineering, Cardiff University
£ * * ***** * ***** * * * ** * * # * * * * *** * ** ** * * **** * ** * * * * ********** * ** * *# * * * ** * *** * 
dllllllllllllllllllll/ll/llllllllirmvuX parameters explanation IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIUIIIIIIIIII 
c Vertex 0  = array containing the NURBS surface control net vertices
c Vertex (:, 1) contains the x component of the vertex
c Vertex (:,2) contains the y component of the vertex
c Vertex (:,3) contains the z component of the vertex
c Vertex (:,4) contains the homogeneous weighting factor
c OrderU = order of the NURBS in u direction
c OrderV = order of the NURBS in v direction
c NumPointU = number of the control net vertices in u direction
c NumPointV = number of the control net vertices in v direction
c VectorKnotUO = open uniform knot vector in u direction
c VectorKnotVO = open uniform knot vector in v direction

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
integer OrderU,OrderV,OrderW,iOutFile 
dimension Point(3),PointCoordi(3),PointTemp(3),
1 BasisU(NumPointU), BasisV(NumPointV), BasisW(2),
2 Vertex(200,4),VertexTemp(200,4),
3 VertexNet(NumPointU,NumPointV,2,4),
4 VectorKnotU(200), VectorKnotV(200), VectorKnotW(4),
5 BasisDU(NumPointU), BasisDV(NumPointV), BasisDW(2),
6 DerU(3),DerV(3),DerW(3),ZBar(3),ZUBar(3),ZVBar(3),ZWBar(3) 
PARAMETER (ZERO=O.ODO,ONE=1 0D0,TWO=2.0D0,THREE=3.0D0)

c ///////////initialization part//////////
OrderW = 2 ! order of the NURBS in w direction
NumPointW = 2 ! number of control net vertices in w direction
NumMeshU =100 ! number of mesh in cylinder axial direction
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NumMeshV =100 ! number of mesh in cylinder circumferential direction
NumMeshW =10 ! number of mesh in cylinder radius direction
VertexTemp = 0.0 ! VertexTemp is a matrix

! calculate the number of knot vectors in each direction 
NumKnotU = NumPointU + OrderU 
NumKnotV = NumPointV + OrderV 
NumKnotW = NumPointW + OrderW 

! assign the vector kont in w direction 
VectorKnotW = [0.0,0.0,1.0,1.0] 

c//////////////end initialization partHill III III 
! open a file for output the results 

iOutFile = 20
open(iOutFile, file=” information, txt”, status='Replace')

! calculate the total number of control points 
NumNode = (NumMeshU+1 )*(NumMeshV+l )*(NumMeshW+1) 
write(iOutfile, *), NumNode

c----------- parti set up the control polygon vertex net---------------
! assign the exterior circle 

do i=l, NumPointU 
do j= l, NumPointV

j l  = NumPointV*(i-l) + j 
VertexNet(i,j, 1,1) = Vertex(j 1,1)
VertexNet(i,j, 1,2) = Vertex(j 1,2)
VertexNet(i,j,l,3) = Vertex(jl,3)
VertexNet(i,j, 1,4) = Vertex(j 1,4) 

enddo 
enddo

! calculate the interior circle and assign to the control net 
do i=l, NumPointU 

do j= 1, NumPointV
VertexTemp(i, 1) = VertexTemp(i, 1) + VertexNet(i,j, 1,1) 
VertexTemp(i,2) = VertexTemp(i,2) + VertexNet(i,j,l,2) 
VertexTemp(i,3) = VertexTemp(i,3) + VertexNet(i,j,l,3) 
VertexTemp(i,4) = VertexTemp(i,4) + VertexNet(i,j,l,4) 

enddo
do j= l, NumPointV

VertexNet(i,j,2,l) = VertexTemp(i,l)/NumPointV 
VertexNet(i,j,2,2) = VertexTemp(i,2)/NumPointV 
VertexNet(i,j,2,3) = VertexTemp(i,3)/NumPointV 
VertexNet(i,j,2,4) = VertexTemp(i,4)/NumPointV 

enddo 
enddo

c--------------------- end p arti-------------------------------------
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c---------- part2 find the parametric lines in each direction---------
do u=VectorKnotU(l),VectorKnotU(NumKnotU),
1 abs(VectorKnotU(NumKnotU)-VectorKnotU(l))/NumMeshU

call dbasisF(OrderU,u,NumPointU,VectorKnotU,BasisU,BasisDU) 
do v=VectorKnotV(l),VectorKnotV(NumKnofV),

1 abs(VectorKnotV(NumKnotV)-VectorKnotV(l))/NumMeshV
call dbasisF(OrderV,v,NumPointV,VectorKnotV,BasisV,BasisDV) 
do w=VectorKnotW( 1), VectorKnotW(NumKnotW),

1 VectorKnotW(NumKnotW)/NumMeshW
call dbasisF(OrderW,w,NumPointW,VectorKnotW,BasisW,BasisDW)

! sum of basis function 
call sumrbas 1 (VertexNet,BasisU,BasisU,BasisW,NumPointU,

1 NumPointU,NumPointW,sum)
! calculate the B-spline solid 

PointCoordi = 0.0 ! set the array to zero
do i=l, NumPointU 

do j= l, NumPointV 
do k= 1,NumPointW 

do m=l,3
qtemp = VertexNet(i,j,k,4)*VertexNet(i,j,k,m)

1 *BasisU(i)*BasisV(j)*BasisW(k)/sum
PointCoordi(m) = PointCoordi(m) + qtemp 
enddo 

enddo 
enddo 

enddo
! calculate the derivatives 

call sumrbas2(VertexNet,BasisU,BasisV,BasisW,NumPointU,
1 NumPointV,NumPointW,ZBar)

call sumrbas 1 (VertexNet,BasisU,BasisV,BasisW,NumPointU,
1 NumPointV,NumPointW,DBar)

! 1. derivatives with respect to u 
call sumrbas2(VertexNet,BasisDU,BasisV,BasisW,NumPointU,

1 NumPointV,NumPointW,ZUBar)
call sumrbasl (VertexNet,BasisDU,BasisV,Basis W,NumPointU,

1 NumPointV,NumPointW,DUBar)
do k=l,3

DerU(k) = ZUBar(k)/DBar-(DUBar/DBar**2)*ZBar(k) 
enddo

! 2. derivatives with respect to v 
call sumrbas2(VertexNet,BasisU,BasisDV,BasisW,NumPointU,

1 NumPointV, NumPointW, ZVBar)
call sumrbasl (VertexNet,BasisU,BasisDV,BasisW,NumPointU,

1 NumPointV,NumPointW,DVBar)
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do k=l,3
DerV(k) = ZVBar(k)/DBar-(DVBar/DBar**2)*ZBar(k) 

enddo
! 3. derivatives with respect to w 

call sumrbas2(VertexNet,BasisU,BasisV,BasisDW,NumPointU,
1 NumPointV, NumPointW, ZWBar)

call sumrbas 1 (VertexNet,BasisU,BasisV,BasisDW,NumPointU,
1 NumPointV,NumPointW,DWBar)

do k=l,3
DerW(k) = ZWBar(k)/DBar-(DWBar/DBar**2)*ZBar(k) 

enddo

! calculate the normalised tangent vector of the isocurve with respect to u 
disance = sqrt(DerU( 1 )* *2+DerU(2)* *2+DerU(3)* *2)
DirectionX = DerU(l)/disance 
DirectionY = DerU(2)/disance 
DirectionZ = DerU(3)/disance

! write out the results, just write the u direction derivatives in this example 
write(iOutfile, 100),PointCoordi( 1 ),PointCoordi(2),PointCoordi(3),

2 DirectionX,DirectionY,DirectionZ
100 format(F12.6,F12.6,F12.6,F12.6,F12.6,F12.6,F12.6,F12.6,F12.6)

enddo
enddo

enddo
c----------    end part2---------------------------

RETURN
END

C
c------------------------------------ subroutine definition
c

SUBROUTINE sumrbas 1 (VertexNet,BasisU,BasisV,BasisW,NumPointU,
1 NumPointV,NumPointW,sum)

£*** ̂  *********************** ******** *************** ************ ********* 
c subroutine to calculate the sum of the nonrational basis functions

dllllllllllllllllllllllllllll input parameters explanation ///////////////////////////////////////////////////
c VertexNet 0  = array containing the NURBS solid control net vertices
c Vertex 1) contains the x component of the vertex
c Vertex 2) contains the y component of the vertex
c Vertex (:,:, :,3) contains the z component of the vertex
c Vertex 4) contains the homogeneous weighting factor
c BasisUQ = array containing the nonrational basis functions for u
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c BasisVO = o array containing the nonrational basis functions for v
c BasisWO = o array containing the nonrational basis functions for w
c NumPointU = number of the control net vertices in u direction
c NumPointV = number of the control net vertices in v direction
c NumPointW = number of the control net vertices in w direction
dlllllHIIIIIHIIIIHIIIIIlllll output parameters explanation HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHHIIIIII 
c sum = sum of the nonrational basis functions

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
dimension VertexNet(9,21,2,4),
1 BasisU(NumPointU), BasisV(NumPointV), BasisW(NumPointW) 

sum = 0.0
do i= 1,NumPointU ! along the cylinder

do j= 1,NumPointV ! cylinder circumferential direction 
do k= 1,NumPointW ! cylinder axial direction

sum = sum + VertexNet(ij,k,4)*BasisU(i)*BasisV©*BasisW(k) 
enddo 

enddo 
enddo

RETURN
END

SUBROUTINE sumrbas2(VertexNet,BasisU,BasisV,BasisW,NumPointU,
1 NumPointV,NumPointW,summ)

^ )|l ft 4 C *  £ *  4 C  ♦  ♦  ♦  ♦  ♦  ♦ ♦ ♦  ♦ ♦ ♦ ♦  ♦ ♦ ♦  ♦  ♦  ♦  ♦ ♦  ♦ ♦  ♦  ♦  ♦  ♦  ♦ ♦  ♦ ♦  ♦ ♦  ♦ ♦ ♦  ♦ ♦  ♦ ♦ ♦ ♦  ♦ ♦ ♦  ♦  ♦  ♦  ♦  *  ♦  ♦  ♦ *  ♦  ♦ ♦ ♦ ♦  ♦  ♦  ♦  ♦ ♦

c subroutine to calculate the sum of the rational basis functions with vertex value
£  ) | C  f t  f t  J l  f t  f t  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ^  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦

dlllllllllllllllllllllllllllll input parameters explanation ///////////////////////////////////////////////////// 
c same as those in subroutine sumrbasl
dlllllllllllllllllllllllllllll output parameters explanation ///////////////////////////////////////////////// 
c summ(:) = sum of the rational basis functions with vertex value

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
dimension VertexNet(9,21,2,4), summ(3),
1 BasisU(NumPointU), BasisV(NumPointV), BasisW(NumPointW) 

summ = 0.0
do i= 1,NumPointU ! along the cylinder

do j=1,NumPointV ! cylinder circumferential direction 
do k= 1,NumPointW ! cylinder axial direction

summ(l) = summ(l) + VertexNet(i,j,k,l)*VertexNet(i,j,k,4)
1 *BasisU(i)*BasisV(j)*BasisW(k)
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summ(2) = summ(2) + VertexNet(ij,k,2)* VertexNet(ij,k,4)
1 *BasisU(i)*BasisV(j)*BasisW(k)

summ(3) = summ(3) + VertexNet(y,k,3)*VertexNet(i,j,k,4)
1 *BasisU(i)*BasisV(j)*BasisW(k)

enddo 
enddo 

enddo

return
end

SUBROUTINE dbasisF(Order,t,NumPoint,VKnot,Basis,BasisD \)

c subroutine to generate B-spline basis functions and their derivatives 
c for open knot vectors
g * * * * * * * * * * * * * * * * * * * * * * * * * # * * * * * * * * * * * * * * # * * * * * * * # * * * * * * * * * * * * * * *
c///////////////////////////// input parameters explanation IIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
c Order = order of the B-spline basis function
c t = parameter value
c NumPoint = number of control polygon vertices
c VKnotO = knot vector
dllHHIIIIIIinillHIIIHII output parameters explanation lllllllllllllllllllllllllllllllllllllllllllllllllllll 
c BasisO = array containing the basis functions
c BasisDl() = array containing the derivatives of the basis functions

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
integer Order
dimension temp(200), temp1(200), VKnot(NumPoint+Order),
1 basis(NumPoint), basisDl (NumPoint)

PARAMETER (ZERO=0.0D0,ONE=1.0D0,TWO=2.0D0,THREE=3.0D0)
NumKnot = NumPoint + Order ! number of knot values

EPS = 1.0E-6
temp = 0.0 ! ARRAY
tempi = 0.0 ! ARRAY

c calculate the first-order basis functions n(i, 1) 
do i=l, NumKnot-1

if((t .ge. VKnot(i)) .and. t .It. VKnot(i+l)) then 
temp(i) = 1

else
temp(i) =0 

end if
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enddo
! handle the end specially by setting the first-order basis functions 

if(abs(t-VKnot(NuniKnot)) .It. EPS) temp(NumPoint) = 1

c calculate the higher-order basis functions and their derivatives 
do k=2, Order

do i=l, NumKnot-k 
! calculate basis function

! first term of the basis function 
if(temp(i) /= zero) then

bl = ((t-VKnot(i))*temp(i))/(VKnot(i+k-1)-VKnot(i))
else

bl =0.0 
endif

! second term of the basis function 
if(temp(i+l) /= zero) then

b2 =((VKnot(i+k)-t)*temp(i+1 ))/(VKnot(i+k)-VKnot(i+1))
else

b2 = 0.0 
endif

c calculate first derivative
if(temp(i) /= zero) then

fl = temp(i)/(VKnot(i+k-l)-VKnot(i))
else

fl * 0 
endif
if(temp(i+l) /= zero) then

£2 = -temp(i+1 )/(VKnot(i+k)-VKnot(i+1))
else

£2 =  0 
endif
if(templ(i) /= zero) then

f3 = (t-VKnot(i)) *temp 1 (i)/(VKnot(i+k-1)-VKnot(i))
else

f3 = 0 
endif
if(templ(i+l) /= zero) then

f4 = (VKnot(i+k)-t)*templ(i+l)/(VKnot(i+k)-VKnot(i+l))
else

f4 = 0 
endif

temp(i) = bl + b2 
templ(i) = fl+ £2  + f3+f4
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enddo
enddo

pass the results back 
do i=l, NumPoint 

basis(i) = temp(i) 
basisdl(i) = templ(i) 

enddo

RETURN
END
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