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Summary.

Greater concentrations of fulvestrant are being employed within the clinic due 
to increased oestrogen receptor (ER) down-regulation and greater clinical 
benefit in ER+ breast cancer. However, complete ER down-regulation has not 
been achieved. The importance of residual ER is unknown and could allow 
cells to survive initial anti-hormone impact and progression to hormone 
insensitivity. This project aims to go further than current clinical therapy, 
using the MCF-7 cell model to target and assess the importance of residual 
ER.

Cells were treated with fulvestrant aiming to achieve maximal ER 
down-regulation. The effect of any residual ER on signalling and growth was 
subsequently assessed. An alternative model for ER loss, ER siRNA, was 
employed to see whether this had a greater anti-ER effect. Finally, fulvestrant 
and ER siRNA were employed in combination to assess whether these agents 
work synergistically to give greater ER down-regulation and increased anti­
tumour effect.

With fulvestrant at 10'7M, ER levels were markedly reduced, although 
residual ER was observed that remained with increasing drug concentrations. 
There was significant reduction of ER signalling, proliferation and growth, but 
the inhibition was incomplete. When ER siRNA was assessed, similar results 
were obtained, with comparable and incomplete ER loss, residual signalling 
and growth. Following combination treatment of fulvestrant and ER siRNA, 
residual ER was almost undetectable, though this did not correspond to greater 
loss of ER signalling or growth when compared to either agent alone.

While this work showed greater ER loss than previously recorded by 
targeting both protein and mRNA together, no greater anti-tumour activity was 
observed. Thus, while the mechanism underlying residual growth warrants 
future investigation (along with longer exposure), targeting ER alone, no 
matter how successfully, may not be the best treatment regimen and a 
combination of targets may be required as the optimum strategy to treat ER+ 
breast cancer.



Dedication.

This thesis is dedicated to the memory of my mum, Jacqueline Pamela 

Longman.

Fondly remembered, forever loved, and so sorely missed.



Acknowledgements.

There are so many people deserving of thanks, responsible for me standing 

where I am today, that it would fill a second volume this size to mention you 

all by name.

However, particular thanks must go to Professor David Lloyd, for 

originally encouraging me to apply for a PhD. 1 would also like to thank both 

my supervisors, Professor Robert Nicholson and Dr Iain Hutcheson, for their 

guidance, insights, and continued support throughout some incredibly difficult 

periods o f my life.

I would also like to thank all members o f staff and students both past 

and present of the Tenovus Centre for Cancer Research; especially all the 

technical staff, you all taught me so much and were always more than willing 

to help, as well as being good friends to me over the course of this work.

Thank you for turning a young and naive graduate into the scientist I 

am today.

Special thanks go to my family, my Mum and Dad, my two sisters 

Samantha and Kimberley, and my brother Andrew, as well as my 

grandparents, aunts, uncles and cousins. You all believed in me, even when I 

didn’t believe in myself and words can not express how much your support 

has meant to me over the years.

I would also like to thank my niece and nephew, Tiffany and Caleb 

who may one day read these words. Your innocent, unbiased and 

unconditional love for your ‘uncle mike’ is a blessing I am undeserving of.

Thank you all, for so much.

Michael.



Declarations.

This work has not previously been accepted in substance for any degree and is 

not being concurrently submitted in candidature for any degree.

Michael Roy Longman (Candidate).

Date

Statement 1.

This thesis is the result o f  my own investigation except where otherwise 

stated. Other sources are cited in the text, and a list o f references appended.

Signed.. rr^TTT........................Michael Roy Longman (Candidate).

D ate..3 ./S .^ ( W..............................

Statement 2.

I hereby give my consent for my thesis, i f  accepted to be available for 

photocopying, for interlibraiy loan and for the title and summary to be made 

available to outside organisations.

S igned ../^ Michael Roy Longman (Candidate).



Contents.

Page Number.

Summary............................................................................................................... i
Dedication............................................................................................................ ii
Acknowledgements............................................................................................ iii
Declarations........................................................................................................ iv
Contents............................................................................................................... v
List o f figures...................................................................................................... x
List of Tables................................................................................................... xiii
Oral and Poster Presentations......................................................................... xiv
Abbreviations....................................................................................................xv

Chapter 1. Introduction Section............................................................................. 1

1.1. Cancer...........................................................................................................2

1.2. Breast cancer................................................................................................ 5
1.2.1. UK and Worldwide facts and figures.................................................5
1.2.2. Risk factors in breast cancer............................................................... 7
1.2.3. Breast Cancer stages and treatments................................................ 10

1.3. Oestrogens and their link to breast cancer...............................................13
1.3.1. Oestrogens...........................................................................................13
1.3.2. Oestrogen function in breast cancer..................................................14

1.4. Oestrogen receptors (ER)..........................................................................15
1.4.1. Oestrogen receptor discoveries and genetic structure..................... 15
1.4.2. Oestrogen receptor protein structure................................................ 15
1.4.3. Activator function domains of oestrogen receptors.........................18

1.5. Oestrogen receptor signalling................................................................... 19
1.5.1. ‘Classical’ genomic ER signalling................................................... 20
1.5.2. ‘Non-classical’ genomic ER signalling............................................24
1.5.3. Non-genomic ER signalling..............................................................25

1.6. Anti-hormone therapy............................................................................... 26
1.6.1. Selective oestrogen receptor modulators..........................................27
1.6.2. Aromatase inhibitors.......................................................................... 29
1.6.3. Selective oestrogen receptor down-regulators................................. 32
1.6.4. Endocrine resistance...........................................................................42

1.7. RNA interference....................................................................................... 56
1.7.1. Discovery of RNA interference.........................................................56
1.7.2. Mechanism of RNAi action............................................................... 58

-v-



1.7.3. Applications of siRNA in scientific research...................................60
1.7.4. Clinical uses of siRNA........................................................................61
1.7.5. Delivery of siRNA.............................................................................. 63
1.7.6. Limitations of siRNA..........................................................................66

Specificity of siRNA’s..........................................................................66
Activation of innate immune-systems.................................................67
siRNA stability......................................................................................67

1.8. Aims and hypothesis of PhD project........................................................ 68

Chapter 2. Materials and Methods Section..........................................................71

Section 2.1. Materials....................................................................................... 72

Section 2.2. Methods........................................................................................ 80
2.2.1. Cell culture......................................................................................... 80

Routine cell culture.............................................................................. 80
Experimental cell culture.....................................................................82

2.2.2. SiRNA transfection............................................................................86
2.2.3. Immunocytochemical methods (ICC)..............................................89

2.2.3.1. Cell fixation.................................................................................89
Cell fixation by ER-ICA fixation....................................................... 90
Cell fixation by Formal-saline fixation..............................................91

2.2.3.2. Immunocytochemical staining.................................................. 91
Total oestrogen receptor staining....................................................... 91
Total progesterone receptor staining.................................................. 92
Total pS2 staining................................................................................ 93
Total Ki67 staining...............................................................................94
ICC assessment.....................................................................................95

2.2.4. mRNA analysis.................................................................................. 96
RNA extraction and Quantification....................................................96
Reverse Transcription Polymerase Chain Reaction..........................98
Reverse Transcription..........................................................................99
Polymerase Chain Reaction...............................................................100
Agarose Gel Electrophoresis............................................................. 102

2.2.5 Protein analysis.................................................................................. 103
Cell lysis, Protein extraction and quantification..............................103
Protein Quantification using the Bio-Rad system............................104
Sodium-Dodecyl-Sulphate-Polyacrylamide Gel Electrophoresis
(SDS-PAGE)....................................................................................... 105
Western Blotting................................................................................. 106
Immunodetection of Proteins.............................................................107
Immunoprobing of nitrocellulose membrane................................... 108

2.2.6 ERE reporter gene assay................................................................... 111
ERE construct, amplification and maintenance............................... 111
Dual-luciferase reporter gene assay.................................................. 111

2.2.7. Cell growth assays............................................................................ 114

-vi-



Coulter counter growth assay.
MTT growth assay.................

2.2.8. Statistical analysis.............

114
115
116

Chapter 3. Results Section...................................................................................118

3.1. The Effect of the ‘pure* anti-oestrogen fulvestrant on MCF-7 cells. .119
3.1.1. Optimal concentration of fulvestrant for maximum ER down 
regulation and growth inhibition................................................................120

ER down regulation............................................................................ 120
Growth response................................................................................. 121

3.1.2. Influence of culture conditions on fulvestrant response in MCF-7 
cells...............................................................................................................122
3.1.3. The Effect of fulvestrant treatment on oestrogen receptor 
expression levels in MCF-7 cells, grown in both stripped and whole 
serum............................................................................................................123
3.1.4. The Effect of fulvestrant treatment on oestrogen signalling 125

Measure of fulvestrant effect on mRNA and protein expression of
PR andpS2..........................................................................................125
PR mRNA expression....................................................................... 125
pS2 mRNA expression...................................................................... 126
PR protein expression........................................................................ 126
pS2 protein expression.......................................................................128
Effect of fulvestrant on ERE signalling in MCF-7 cells.................129
Fulvestrant exposure in oestradiol stimulated cells.........................130

3.1.5. The effect of fulvestrant treatment on MCF-7 cell proliferation. 131
IGF-1R signalling component analysis............................................ 132
Ki67 analysis...................................................................................... 133
Viability assay and total cell count analysis.................................... 134

3.2. The effect of the Dharmafect transfection lipid, and optimisation of ER 
siRNA knockdown in MCF-7 cells...............................................................149

3.2.1. Optimisation of transfection lipid and knockdown efficiency 149
ER siRNA Knockdown......................................................................151

3.2.2. Efficiency of knockdown using an individual siRNA or a pool. .152 
ER protein knock-down following ER siRNA transfection with a
pool or individual siRNA...................................................................153
Effect of ER siRNA pool and components on cell proliferation. ..153

3.3. The Effect of specific ER siRNA on MCF-7 cells................................157
3.3.1. ER siRNA response on oestrogen receptor levels in MCF-7 cells. 
......................................................................................................................157
3.3.2. The Effect of ER siRNA transfection on oestrogen signalling.... 159 

The effect of ER siRNA transfection on PR and pS2 mRNA and
protein expression...............................................................................159
PR mRNA expression........................................................................ 160
pS2 mRNA expression....................................................................... 160



PR protein expression.........................................................................160
pS2 protein expression....................................................................... 162
ERE activity........................................................................................ 163
ER siRNA effect on oestradiol stimulation......................................164

3.3.3. The Effect of ER siRNA transfection on MCF-7 cell proliferation. 
.......................................................................................................................165

IGF-1R signalling component analysis............................................ 166
Ki67 analysis...................................................................................... 166
Proliferation assays............................................................................ 167

3.3.4. Possible Off target effect of siGenome ER siRNA.......................168

3.4. The Effect of the combination of ‘pure’ anti-oestrogen fulvestrant and 
ER siRNA treatment on MCF-7 cells...........................................................184

3.4.1. The effect of the combination of fulvestrant and ER siRNA on ER 
levels in MCF-7 cells.................................................................................184
3.4.2. The Effect of fulvestrant and ER siRNA combination treatment on 
oestrogen receptor signalling....................................................................186

Effect o f the Combination treatment on ER-regulated genes 186
PR and pS2 mRNA expression........................................................ 186
PR protein expression....................................................................... 187
pS2 protein expression......................................................................188
ERE studies........................................................................................190
Oestradiol Challenge.........................................................................191

3.4.3. The Effect of the combination of fulvestrant and ER siRNA 
treatment on MCF-7 cell growth..............................................................192

IGFR signalling.................................................................................192
Ki67 analysis.....................................................................................193
Growth and proliferation assays......................................................194

3.4.4. Combination treatment o f ER siRNA and fulvestrant effect on the 
EGFR signalling in MCF-7 cells............................................................. 195

Chapter 4. Conclusions and Discussion Section............................................. 210

4.1. The effect of the pure anti-oestrogen fulvestrant on ER expression and 
activity in MCF-7 cells..................................................................................212

4.1.1. Acute fulvestrant exposure promotes ER down regulation but not 
complete ER loss........................................................................................212
4.1.2. The effect of fulvestrant on E2-regulated transcription and residual 
ER activity..................................................................................................215
4.1.3. Comparison of the effects o f fulvestrant on tumour growth and ER 
down-regulation......................................................................................... 218

4.2. The use of ER siRNA to reduce ER levels and its value as an anti­
tumour therapeutic strategy........................................................................... 219

4.2.1. ER siRNA is able to reduce ER mRNA levels and consequently 
protein levels in MCF-7 cells.................................................................... 220



4.2.2. Treatment with ER siRNA inhibits ER signalling activity in a 
comparable manner to fulvestrant..............................................................224
4.2.3. ER siRNA transfection showed comparable growth inhibition and 
anti-proliferative effects to fulvestrant...................................................... 227

4.3. The effect of the combination treatment of fulvestrant and ER siRNA 
on MCF-7 cells................................................................................................230

4.3.1. The combination of ER siRNA and fulvestrant gives greater ER 
down regulation than either agent alone................................................... 230
4.3.2. The combination treatment of ER siRNA and fulvestrant showed 
greater ER protein down-regulation, but no further inhibition of ER 
activity......................................................................................................... 232
4.3.3. The combination of ER siRNA and fulvestrant showed no greater 
growth-inhibitory or anti-proliferative affects in vitro............................ 236

4.4. Conclusions and future prospects.......................................................... 239

Chapter 5. References Section...........................................................................243

Chapter 6. Appendices Section..........................................................................267

-ix-



List o f figures.

Page Number.
Chapter 1.

Figure 1.1. Diagram of ERa and ERp proteins showing A-F domains,
percentage homology, and functional structures................................................. 16
Figure 1.2. Structure of 17p-estradiol and the common anti-oestrogens,
tamoxifen and fulvestrant......................................................................................18
Figure 1.3. Mechanism’s of Estrogen receptor signalling (adapted from Schiff 
et al 2003).............................................................................................................. 20

Chapter 2.

Figure 2.1. Assembly of Gel cassette for protein transfer................................107

Chapter 3.

Figure 3.1. The optimal fulvestrant concentrations for MCF-7 ER protein
down regulation and growth inhibition............................................................. 135
Figure 3.2. ER expression levels in MCF-7 cells treated with fulvestrant and
cultured in stripped or whole serum.................................................................. 136
Figure 3.3. ER mRNA and protein expression levels of hormone responsive 
and anti-hormone resistant breast cancer cells after fulvestrant treatment.... 137 
Figure 3.4. PR and pS2 mRNA expression in MCF-7 cells treated with
fulvestrant, cultured in stripped and whole serum........................................... 138
Figure 3.5. PR protein expression in MCF-7 cells treated with fulvestrant and
cultured in stripped or whole serum.................................................................. 139
Figure 3.6. pS2 protein expression in MCF-7 cells treated with fulvestrant and
cultured in stripped or whole serum.................................................................. 140
Figure 3.7. Level of ERE signalling in MCF-7 cells treated with fulvestrant or
oestradiol, cultured in stripped or whole serum............................................... 141
Figure 3.8. PR and pS2 protein expression in MCF-7 cells cultured in stripped
serum supplemented with oestradiol and treated with fulvestrant.................. 142
Figure 3.9. IGFR signalling in MCF-7 cells cultured in stripped or whole
serum and treated with fulvestrant.................................................................... 143
Figure 3.10. Ki67 expression of MCF-7 cells culture in stripped or whole
serum, treated with fhlvestrant...........................................................................144
Figure 3.11. The effect of fulvestrant on growth of Hormone-responsive cells
cultured in stripped or whole serum.................................................................. 145
Figure 3.12. Effect of the transfection lipid Dharmafect #1 on MCF-7 cells.
.............................................................................................................................. 155
Figure 3.13. SiRNA transfection efficiency and protein knockdown effects in 
MFC-7 cells using siRNA pool or individual siRNA with reduced transfection 
lipid.......................................................................................................................156



Figure 3.14. ER mRNA and protein expression in MCF-7 cells cultured in
stripped or whole serum, treated with ER siRNA.............................................170
Figure 3.15. ER protein expression in MCF-7 cells cultured in stripped or
whole serum, treated with ER siRNA................................................................ 171
Figure 3.16. PR and pS2 mRNA expression in MCF-7 cells cultured in
stripped and whole serum, treated with ER siRNA.......................................... 172
Figure 3.17. PR protein expression levels in MCF-7 cells cultured in stripped
or whole serum, and treated with ER siRNA.................................................... 173
Figure 3.18. pS2 protein expression levels in MCF-7 cells cultured in stripped
or whole serum, and treated with ER siRNA.................................................... 174
Figure 3.19. Level of ERE signalling in MCF-7 cells treated with ER siRNA,
cultured in stripped or whole serum.................................................................. 175
Figure 3.20. PR and pS2 protein expression in MCF-7 cells cultured in 
stripped serum supplemented with oestradiol and treated with ER siRNA... 176 
Figure 3.21. The effect of ER siRNA on IGFR signalling in MCF-7 cells
cultured in stripped or whole serum.................................................................. 177
Figure 3.22. Ki67 expression in MCF-7 cells cultured in stripped or whole
serum, treated with ER siRNA...........................................................................178
Figure 3.23. The effect of ER siRNA on growth of MCF-7 cells cultured in
stripped or whole serum..................................................................................... 179
Figure 3.24. The effect of ER siRNA on ERK signalling in MCF-7 cells
cultured in either striped or whole serum......................................................... 180
Figure 3.25. ER level expression in MCF-7 cells cultured in stripped and
whole serum, treated with a combination of fulvestrant and ER siRNA 196
Figure 3.26. ER protein expression in MCF-7 cells cultured in stripped or
whole serum, treated with a combination of fulvestrant and ER siRNA 197
Figure 3.27. PR and pS2 mRNA expression in MCF-7 cells cultured in either 
stripped or whole serum, and treated with a combination of fulvestrant and ER
siRNA...................................................................................................................198
Figure 3.28. PR protein expression in MCF-7 cells cultured in stripped serum 
or whole serum, and treated with a combination of fulvestrant and ER siRNA.
.............................................................................................................................. 199
Figure 3.29. pS2 protein expression in MCF-7 cells cultured in stripped serum
or whole serum, and treated with a combination of fulvestrant and ER siRNA.
 200
Figure 3.30. Level of ERE signalling in MCF-7 cells cultured in stripped or
whole serum, treated with a combination of fulvestrant and ER siRNA....... 201
Figure 3.31. PR and pS2 expression of MCF-7 cells cultured in stripped serum 
supplemented with oestradiol and treated with a combination of fulvestrant
and ER siRNA.................................................................................................... 202
Figure 3.32. The effect of the combination of fulvestrant and ER siRNA on
IGFR signalling in MCF-7 cells, cultured in stripped or whole serum........... 203
Figure 3.33. Ki67 expression of MCF-7 cells cultured in stripped or whole
serum, treated with a combination of fulvestrant and ER siRNA...................204
Figure 3.34. The effect of the combination of fulvestrant and ER siRNA on 
growth of MCF-7 cells cultured in stripped or whole serum.......................... 205

-xi-



Figure 3.35. The effect of the combination of fulvestrant and ER siRNA on 
EGFR signalling in MCF-7 cells, cultured in stripped and whole serum 206

-xii-



List o f Tables.

Page Number.
Chapter 1.

Table 1.1. Lipids and their functions within an siRNA liposome.....................65

Chapter 2.

Table 2.1 Cell seeding densities, media amounts and culture apparatus used
for each experiment type and its duration............................................................84
Table 2.2. Treatments added to either whole or stripped serum containing
media to produce conditions used throughout the project..................................85
Table 2.3. Amounts of siRNA stock and transfection lipid needed for each
well size.................................................................................................................. 87
Table 2.4. Primer sequences, amplicon sizes, annealing temperatures and cycle
numbers used for genes used in PCR................................................................ 101
Table 2.5. Table showing concentrations for standard curve.......................... 104
Table 2.6. Primary antibodies, concentrations and incubation conditions.... 109

Chapter 3.

Table 3.1. ER H-score analysis of MCF-7 cells grown in stripped or whole
serum after 4 days fulvestrant exposure (n=3)................................................. 146
Table 3.2. PR H-score analysis of MCF-7 cells grown in stripped or whole
serum after 4 days fulvestrant exposure (n=3)................................................. 147
Table 3.3. pS2 H-score analysis o f MCF-7 cells grown in stripped or whole
serum after 4 days fulvestrant exposure (n=3)..................................................148
Table 3.4. ER H-score analysis o f MCF-7 cells grown in stripped or whole 
serum after 4 days ER siRNA transfection or fulvestrant exposure (n=3).... 181 
Table 3.5. PR H-score analysis of MCF-7 cells grown in stripped or whole
serum after 4 days ER siRNA or fulvestrant exposure (n=3)..........................182
Table 3.6. pS2 H-score analysis of MCF-7 cells grown in stripped or whole
serum after 4 days ER siRNA or fulvestrant exposure (n=3)..........................183
Table 3.7. ER H-score analysis of MCF-7 cells grown in stripped or whole 
serum after 4 days ER siRNA transfection and fulvestrant exposure (n=3)..207 
Table 3.8. PR H-score analysis of MCF-7 cells grown in stripped or whole
serum after 4 days ER siRNA and fulvestrant exposure (n=3).......................208
Table 3.9. pS2 H-score analysis of MCF-7 cells grown in stripped or whole 
serum after 4 days ER siRNA and fulvestrant exposure (n=3).......................209



Oral and Poster Presentations.

Oral Presentations.

Michael. R. Longman. Prof R.I. Nicholson and Dr I. R. Hutcheson. Can 
current Oestrogen Receptor Therapies be further improved, and is this 
desirable in the clinic?. Presented at the 2008 Welsh school of Pharmacy 
Postgraduate Research Day. Cardiff University

Poster Presentations.

Michael. R. Longman. Prof R.I. Nicholson and Dr I. R. Hutcheson. 
Optimisation o f  RNAi technology fo r  use in Oestrogen Receptor Knockdown 
studies to understand growth in Breast cancer cells. Presented at the 2006 
Welsh school o f Pharmacy Pstgraduate Research Day. Cardiff University.*

Michael R Longman, Prof R. I. Nicholson and DR I. Hutcheson. Using new 
technology to assess the importance o f  the Residual Oestrogen Receptor 
protein in the growth o f  breast cancer cells. Presented at the 2007 Speaking of 
Science Conference. Cardiff Universty.

N.B. Presenter underlined, available abstracts in appendices section.*Awarded 
prize.



Abbreviations.

• \i - Micro, when used as a prefix.

• ADP -  Adenosine di-phosphate.

• AF -  Activator function, AF-1 or AF-2.

• AG02 - Argonaute 2.

• AI -  Aromatase inhibitor.

•  AKT -  Protein kinase B.

• AMD - Age-related macular degeneration (wet-form).

• APS -  Ammonium persulphate.

• AP-1 - Activating protein 1.

• ATP -  Adenosine tri-phosphate.

• bp -  Base pair.

• BSA -  Bovine serum albumin.

• CA9 - Carbonic anhydrase IX.

• CB -  Clinical benefit.

• cDNA -  complementary DNA.

• CHS - Chalcone synthase.

• CoR -  Co-repressor.

• C-terminal -  Carboxy-terminal/COOH.

• DAB -3 .3  ’-diaminobenzidine.

• DAPI -  4 ’6-diaminidio-2-phenylindole-2HCL.

• DBD - DNA binding domain.

• DCCM -  Defined cell culture medium.

• DCIS - Ductal carcinoma in situ.

• DMSO - dimenthyl sulphoxide.

• DNA -  Deoxyribonucleic acid.

• DNMTI - DNA methyltransferase.

• dNTP -  Deoxynucelotide tri-phosphate.

• DPX -  Di-butylpthalatexylene.



• DTT -  Di-thiothreitol.

• E -  Oestrogen.

• E l - Estrone.

• E2 - 17p-oestradiol.

• E3 -  Estriol.

•  EDTA -  Ethylene diamine tetraacetic acid.

• EGFR -  Epidermal growth factor receptor.

• ER -  Oestrogen receptor.

• ERa -  Oestrogen receptor Alpha.

• ERp -  Oestrogen receptor Beta.

• ErbB -  Epidermal growth factor receptor family.

• ERE -  Oestrogen response element.

• ERICA -  Oestrogen receptor immunocytochemical assay.

• ERK -  Extracellular-signal regulated kinase.

• FCS -  Foetal calf serum.

• Fulv -  Fulvestrant.

• g -  Gram.

• GLUT-1 -  Glucose transporter 1.

• H2 O -  Water.

•  HAT - Histone acetyltransferase.

• HCL -  Hydrochloric acid.

• HD -  High dose.

• HD AC - Histone deacetylase.

• HER -  Human epidermal growth factor receptor.

• HGF -  Human growth factor.

• HRP -  Horse-radish peroxidise.

• HSP -  Heat shock protein.

• ICC -  Immuno-cytochemistry.

• IGF-1 - Insulin-like growth factor ligand.

• IGF-1R- Insulin-like growth factor receptor.



• KDa -  Kilo Daltons.

• KRT- Keratin.

• L -  litre.

• LBD - ligand binding domain.

• LD -  Low dose.

• LTED - Long term oestrogen deprivation.

• M -  Molar.

• m -  Milli, when used as a prefix.

• MAPK -  Mitogen-activated protein kinase.

• MCF -  Michigan Cancer Foundation.

• MEK -  MAP-kinase extra-cellular signal-regulated kinase.

• MgCl2 -  Magnesium chloride.

• MMLV-RT -  Molony-murine leukaemia virus reverse transcriptase.

• mRNA -  Messenger RNA.

• mTOR -  Mammalian target of rapamycin.

• MTT -  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide.

• Na2HPC>4 -  Di-sodium hydrogen orthophosphate anhydrous.

• Na2MoC>4 -  Sodium molybdate.

• NaCl -  Sodium chloride.

•  NaF -  Sodium fluoride.

•  NaH2PC>4 -  Sodium di-hydrogen orthophosphate.

•  NaOH -  Sodium hydroxide.

• NaVC>4 -  Sodium orthovanadate.

• NCoA - Nuclear-receptor co-activator.

• N-terminal-Amino terminal/NH2 .

•  NHS -  National Health Service.

• NLS - Nuclear localisation sequence.

• NR - Nuclear receptor.

• OD -  Optical density.

• PAGE -  polyacrylamide gel electrophoresis.

• PBS -  Phosphate-buffered saline.

-xvii-



• PCR -  Polymerase chain reaction.

• PI3K -  Phosphatidylinositol-3-kinase.

• PKC -  Protein kinase C.

• PKR - Serine/threonine protein kinase.

• PMSF -  Phenylmethylsulfonyl fluoride.

• PR -  Progesterone receptor.

• PSMA - Prostate specific membrane antigen.

• RH -  Random hexamers.

• RIP 140 - Nuclear receptor-interacting protein 1.

• RiSC - RNA-induced silencing complex.

• RNA -  Ribonucleic acid.

• RNAi -  RNA interference.

• RNase -  Ribonuclease.

• rpm -  Revolutions per minute.

•  RPMI -  Roswell Park Memorial Institute.

• RT-PCR -  Reverse transcription-polymerase chain reaction.

• SARS -  Severe acute respiratory syndrome.

• SDS -  Sodium dodecyl sulphate.

• SERD -  Selective oestrogen receptor down-regulator.

•  SERM -  Selective oestrogen receptor modulator.

• SFCS -  Charcoal-stripped foetal calf serum.

• SiC -  siRNA control.

• siRNA -  Small interfering RNA.

• SNALP - Stable nucleic acid-lipid particle.

• SP-1 - Specificity protein 1.

• SRA - steroid receptor RNA-activator.

• STMN1 -  Stathmin.

• TAE -  Tris-acetate-EDTA buffer.

• Taq - Thermus aquaticus.

•  TBS -  Tris-buffered saline.

• TBS-Tween -  Tris-buffered saline containing 0.05% v/v tween-20.



• TEMED -N ,N ,N \N ’-tetramethylene-diamine.

• TESPA -  3-aminopropyltriethoxysilane.

• TGFa -  Transforming growth factor alpha.

• TLR - Toll-like receptor.

•  Tris -  Tris(hydroxymethyl)aminomethane.

• TTP -  Time to progression.

• Tween-20 -  Polyoxyethylene-sorbitan monolaurate.

• UY -  Ultra violet.

• V -V olts.

• VEGF - Vascular endothelial growth factor.

• VIM -  Vimentin.

• v/v -  Volume per volume.

• w/v -  Weight per volume.



Chapter 1. Introduction Section.

Chapter 1. Introduction Section.



Chapter 1. Introduction Section.

1.1. Cancer.

Cancer is probably the most feared of all medical diagnoses, a group of 

diseases which are typified by the uncontrolled division of cells, leading to 

tumour formation and subsequent local tissue degradation, and invasion into 

surrounding tissues (metastases). This aberration of normal cell behaviour, 

increased proliferation and imbalanced tissue homeostasis is due to alteration 

by inappropriate activation or suppression of components within cell 

regulatory systems. Occurrence of cancer is not confined to a specific area 

within the body, and over two-hundred different forms have been 

characterised, in all major tissues and organs, most commonly named after the 

site of original tumorigenesis.

Cancer is also not a recent discovery, since reference to the phenomena 

of a tumour of the breast was discovered on Egyptian papyrus dated roughly 

3500 years ago. The most common term for cancer is Carcinoma and was 

coined by the “Father of medicine” the Greek physician Hippocrates, who 

determined the difference between benign and malignant tumours around 2400 

years ago, due to the crab-like (Carcino) swelling (Oma) he observed in 

malignant tissue (Hippocrates 400B.C.).

Today cancer is a major world-wide disease, estimations determine 

that in 2008 there were over 7.6 million cancer related deaths worldwide and 

12.7 million new cases of cancer diagnosed in this period (Jemal et al 2011). 

This means globally, nearly 21,000 people die from cancer and 35,000 people 

are newly diagnosed with cancer daily and the incidence rate is rising.
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Globally the most commonly diagnosed cancers in males are that of the lung, 

equating to 13% (1.6 million) of new cases and 18% (1.4 million) of cancer 

related deaths. Breast cancer is the most common form of cancer in females 

equating to 23% (1.38 million) of all new cancer cases in 2008 and 14% 

(458,400) of total cancer deaths (Jemal et al 2011).

In the United Kingdom there is a 1 in 3 risk of developing cancer over 

a lifetime. Between the years 2004-2006 an average of 147,000 males and

146.000 females were diagnosed with cancer each year, and approximately

80.000 males and 74,000 females died from cancer each year during this 

period. In 2004 in the UK, cancer accounted for 29% of total male death, and 

25% of total female death. Of these incidences breast cancer was most 

common, and accounted for a third of all new cases in 2006 (Office for 

National Statistics 2009).

Due to increases in health care there has been a decline in number of 

deaths caused by the other major European killers (infectious disease, heart 

disease and stroke). This means the proportion of cancer-related deaths has 

increased. However, while the incidence of cancer cases has increased by 26% 

between 1979 and 2008, with 309,500 new cases now diagnosed annually. 

Cancer-related mortality in the UK has actually decreased by 20% between 

1979 and 2008 with 156,000 deaths from cancer in 2008 and lung, bowel, 

breast and prostate cancer all showing significantly reduced mortality rates, 

especially within the last decade (Cancer Research UK Statistical Information 

Team 2011). The improvement in cancer-related mortality is due primarily to 

earlier detection and greater availability of therapeutic options. However even
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without new therapeutic options it is believed that approximately 50% of all 

cancer cases could be prevented if significant lifestyle changes were 

implemented worldwide, attitudes on tobacco, alcohol, physical activity and 

sun exposure being the most important of these (Stein & Colditz 2004).

Today cancer still claims a large number of patients and understanding 

the biology of cancer is of paramount importance. Cancer development is 

complicated, and now known to be due to a cellular evolutionary process 

caused by genomic instability (Schneider and Kulesz-Martin 2004). It has 

been discovered for example, that more than half of all cancers show 

mutations within the TP53 gene. This gene encodes for the p53 tumour 

suppressor protein, which usually plays a protective role against DNA 

damage, thus these cancers lack this pro-apoptotic function and become 

tumours rather than undergoing apoptosis (Vogelstein et al 2000, Hanahan and 

Weinberg 2000). Cancers have six commonalities, various aberrant 

mechanisms that contribute to their behaviour, and these are;

1. Self-sufficient growth signalling.

2. Insensitivity to growth inhibition signals.

3. Resistance/evasion of apoptosis (programmed cell death).

4. Limitless replication potential.

5. Sustained angiogenesis.

6. Metastasis.

These processes are all still important areas of research, able to deliver real 

clinical benefit to patients by discovery and manipulation of novel therapeutic
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targets within these systems. However despite the best effort of science, 

currently 1 in 4 people will still die of cancer.

1.2. Breast cancer.

1.2.1. UK and Worldwide facts and figures.

Breast cancer is the most common form of female cancer in the UK, with a 

lifetime risk of suffering from the disease now being roughly 1 in 8. This 

disease accounts for more than 30% of all female cancer (Quinn et al 2001) 

with approximately 45,000 new cases in the UK (Cancer Research UK 2009), 

and 1 million new cases diagnosed worldwide annually (Jemal et al 2007). 4.4 

million cases have been diagnosed within the last five years (Parkin and 

Fernandez 2006), this representing by far the most common form of cancer in 

women worldwide (Boyle et al 2005).

In the UK 12,082 people (11,990 women and 92 men) died from breast 

cancer in 2007, making it the second most common cause of death from 

cancer (after lung) in women (Cancer Research UK 2009). Worldwide,

465,000 people died from breast cancer in 2007, again making it the second 

most common form of cancer worldwide when both sexes are considered 

(Parkin and Fernandez 2006), highlighting the importance of breast cancer as a 

major health issue (Irvin and Carey 2008).
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Approximately 80% of UK cases occur in postmenopausal women 

who are 50 years plus in age, this is roughly 36,000 of the new cases each year 

(Cancer Research UK 2009). Despite increases in survival rates, breast cancer 

still claims an average of 12,500 lives a year in the UK alone. This equates to 

17% of all female cancer related deaths.

More than half of all breast cancer cases occur in the ‘developed’ 

world, with the highest incidence rate being in the USA, with approximately

180,000 new cases expected in 2007 (Jemal et al 2007). The increased 

incidence rate is believed to be due in part to better access to screening 

programmes in these areas (Parkin and Fernandez 2006). The lowest incidence 

rates are in African and Asian populations, who have a five -fold lower risk 

(Key et al 2001), though the incidence there is also on the increase (Parkin and 

Fernandez 2006, McPherson et al 2000). The increasing incidences in 

developing countries are thought to be on the rise as a westernised lifestyle 

becomes adopted, adopting as well the related risk factors associated with 

breast cancer. It has also been noted that people moving from low to high risk 

countries acquire the same level of risk as natives of the host country within 

two generations (Key et al 2001), illuminating the importance of life-style 

choice, socio-economic status as well as environmental factors in the 

development of breast cancer (Parkin and Fernandez 2006, McPherson et al 

2000). In the UK between 1981 and 2005, the incidence rate increased by 

57%, due mainly to the introduction of a national screening programme by the 

NHS in 1988 (Hery et al 2008). This lead to an increase in breast cancer 

incidence as early undiagnosed cancers were detected in women aged 50-64
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(Quinn and Allen 1995), with an estimated 1400 UK women being saved 

annually by this programme.

Unfortunately while there are large differences in the incidence rates 

between countries, the difference in mortality rates is far smaller, meaning that 

in the less developed world more breast cancer sufferers die from the disease 

(Parkin and Fernandez 2006). However, encouragingly in the UK there has 

been a steady decrease in death rate since the 1980’s believed to be due to the 

improved screening, and the development and application of more effective 

treatments including anti-hormonal measures of which tamoxifen has been the 

principal agent (Peto et al 2000).

The high incidence rate of breast cancer and the fact that the disease 

claims over 400,000 lives globally every year, shows the worldwide health 

threat that this disease presents, and also shows the importance of the ongoing 

research into breast cancer. The understanding of this disease with onus on 

new methods to reduce mortality and incidence rates should be a global goal, 

which would benefit millions worldwide.

1.2.2. Risk factors in breast cancer.

There are many factors which can increase a person’s chance of 

developing breast cancer; both environmental and genetic factors have been 

associated with an increased risk of being diagnosed. Some modifiable risk 

factors associated with Western lifestyle choices, which increase the chance of



Chapter 1. Introduction Section.

developing breast cancer are; obesity (Van den Brandt et al 2000), alcohol 

consumption (Hamajima et al 2002) and a lack of exercise (Key et al 2001) 

although the extent of the risk is not fully determined.

One of the greatest risk factors (after gender) leading to an increased 

chance of breast cancer development is age, with over 80% of breast cancer 

cases in women over 50 years of age, which arise postmenopausally 

(McKeage et al 2004). Increasing age is an important risk factor in both pre 

and post-menopausal women, though the risk is increased following 

menopause (Barlow et al 2006). Breast cancer incidence doubles roughly 

every 10 years until the menopause, so that the risk of developing breast 

cancer by the age of twenty nine is estimated at 1 in 2,300, but by the age of 

forty nine, the chance has increased to 1 in 52 (Cancer research UK 2009).

As women account for over 99% of all breast cancer cases (Brekelman 

2003), many breast cancer risk factors are associated with increased life-time 

exposure to female steroid hormones, in particular oestrogens, and exposure to 

both endogenous and exogenous oestrogens are major factors in development 

of breast cancer (McPherson et al 2000). Some exogenous oestrogens present 

in the environment identified as having oestrogen agonistic qualities can 

include xenoestrogens, phytoestrogens and mycoestrogens and are either 

synthetic, derived from plants, or from fungi, respectively, and are not always 

steroidal in structure (Fang et al 2001). However major risk factors associated 

with increased endogenous oestrogen exposure include, early menarche 

(before age 11) and late menopause (after age 54) (Kelsey et al 1993). A
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woman’s later age at first full-term pregnancy and parity (Layde et al 1989), 

as well as choice not to breast feed (Lipworth et al 2000) can all increase risk 

of developing breast cancer. Use of oral contraceptives (McPherson et al 

2000) and hormone replacement therapy (HRT) (Beral 2003) have been shown 

to slightly increase the risk. The level of risk in these cases depend on duration 

and type of therapeutic used, and the risk will return to previous levels after 

treatment is stopped, though this can take up to a decade (Veronesi et al 2005).

While most breast cancers are ‘sporadic’, caused by accumulation of 

mutations over a lifetime, leading to incomplete DNA repair, loss of apoptotic 

triggers, uncontrolled proliferation and an increased migratory capacity in 

these cells (Pisano et al 2008, Finkel 1999), some breast cancers are linked to 

inheritance of mutated genes. Women with family history of the disease are 

responsible for up to 10% of breast cancers in the western world (McPherson 

et al 2000), suggesting involvement o f hereditary genetic factors. Indeed 

several genes have been identified which are believed to be responsible for an 

inherited pre-disposition to developing breast cancer. Of these the tumour 

suppressor genes BRCA1 and BRCA2 are the most understood and clinically 

relevant. Carrying a mutated form of BRCA1 or BRCA2 is believed to account 

for up to 10% of patients diagnosed breast cancer (McPherson et al 2000) and 

up 45% in families diagnosed with multiple cases (Evans et al 1994). Carrying 

a mutated form of /significantly increases the chance of developing 

breast cancer (Telli and Ford 2010). Encouragingly though, the survival rates 

for patients with such tumours are similar to that of patients with sporadic
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tumours (Chang and Elledge 2001) despite BRCA1 expressing cancers being 

associated with more aggressive disease (Evans et al 1994).

1.2.3. Breast Cancer stages and treatments.

Breast cancer is classified into grades and stages and treated accordingly, 

depending whether the tumour is classed as non-invasive (confined to the 

breast ducts without the ability to spread, also termed Ductal carcinoma in situ 

(DCIS)) or invasive, what is generally meant when the term ‘breast cancer’ is 

used . Invasive ductal carcinoma describes a tumour that has spread into the 

breast tissue and is also able to spread to other parts of the body. Tumours are 

graded following histological assessment, looking at cellular appearance to 

give an indication of growth rate and metastatic potential, with the grade 

increasing in direct correlation. Invasive breast cancer is split into four stages 

depending on the spread and size o f the tumour, known as the tumour, node, 

metastasis system (McGuire 1991);

• Stage 1. The tumour is less than 2cm with no sign of spread.

• Stage 2. The tumour is 2-5cm with/out lymph node spread and no 

spread to other parts o f the body.

• Stage 3. The tumour is larger than 5cm but is fixed to chest wall, 

muscle or skin.

• Stage 4. The tumour is any size, with/out lymph node 

involvement but has spread to other parts of the body 

(metastases).

-10-
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Surgery is the most common strategy to treat most stages of cancer; 

this can be combined with chemotherapy or radiotherapy therapy either prior 

or post surgery (Bundred 2001). Radiotherapy is commonly given after 

surgery to destroy cancerous cells not removed during the operation. 

Chemotherapy can also be used prior to surgery to shrink the size of the 

tumour or afterwards to destroy any cells that may have spread, or used in 

patients unable to undergo surgery (Veronesi et al 2005). The surgical 

operation performed is dependant on how advanced the cancer is. The 

operations range from a lumpectomy (removal of the tumour with some 

surrounding breast tissue) to the more extreme modified radical mastectomy 

(complete breast removal and some muscle tissue removal from the chest 

wall). Lymph nodes can also be removed as a measure of cancer spread 

beyond the breast (Axelsson et al 1992), although more recently sentinel node 

biopsy has been employed as a measure of detecting cancer spread, with a 

negative sentinel node biopsy giving only a 0.3% change of axillary re­

occurrence (Van der Ploeg et al 2010).

Roughly half of the patients treated with surgery and radiotherapy will 

relapse and die from metastatic disease and it is believed that in these cases the 

cancer must have spread undetected before the surgery is performed (Richards 

and Smith 1994). As the risk of relapse and spread is likely, additional 

(adjuvant) chemotherapy or anti-hormone therapy may be given post surgery. 

The use of adjuvant systemic therapy has been shown to save an additional 10 

or 12 lives per 100 patients treated (Early Breast Cancer Trialists Collabritive 

Group 2002).

-11-
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The choice of which adjuvant therapy to use depends on the tumours 

endocrine responsiveness. This is indicated by histological staining of the 

tumour for the presence of steroid hormone receptors, the presence of either 

the progesterone receptor (PR) or the oestrogen receptor (ER) being a good 

indication that endocrine therapy will be effective (Veronesi et al 2005) and 

testing for these receptors is now standard following surgery. In hormone 

receptor positive cancer endocrine therapy is preferable to chemotherapy due 

to higher success rates, and patient toleration as it is associated with less 

severe side-effects. In pre-menopausal cases ovary function is ablated either 

surgically or therapeutically, removing the primary oestrogen source in these 

patients, and can be accompanied with anti-oestrogen therapy. However in 

post-menopausal cases, patients are offered a variety of anti-hormone 

therapies; these are discussed in depth in a following section (see section 1.5.).

Patients with no indication of PR or ER are offered courses of 

chemotherapy to prevent disease development (Veronesi et al 2005). 

Chemotherapy is the administration of various cytotoxic compounds, tailored 

for best responses in individual cases. These are usually administered every 3- 

4 weeks during a 4-6 month period (6 courses in total), but unfortunately this 

is usually accompanied by severe side-effects, including infertility, chronic 

fatigue, nausea and hair loss despite its anti-tumour efficacy.

-12-
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1.3. Oestrogens and their link to breast cancer.

1.3.1. Oestrogens.

Oestrogens, the primary ligand for the oestrogen receptor (ER) play an 

important role in development of the secondary sexual characteristics of 

females during puberty, and are vital in the maintenance of reproductive 

function. Oestrogens also perform a variety of other functions, with roles in 

cardiovascular, musculoskeletal, immune and central nervous systems in both 

males and females (Gustafsson 2003). They are a unique family of aromatic 

steroids being produced in the body by conversion of cholesterol to 

androstenedione and then testosterone. Testosterone is finally converted to 

17p-estradiol (E2) which is catalysed by the cytochrome p450 enzyme 

aromatase. Primarily oestrogens are produced in the ovaries, but secondary 

sources o f oestrogens include the brain, liver and adipose tissue (Dowsett et al

2005) which become the main source o f this ligand following menopause. 

While E2 is the most biologically important oestrogen in females between 

menarche and menopause, it has two metabolites, oestrone (E l) and oestriol 

(E3) with more E l than E2 present following menopause. However, E l has far 

less of an agonistic effect than E2 on the ER despite high affinity binding 

(Kuiper et al 1997).

-13-
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1.3.2. Oestrogen function in breast cancer.

Many breast cancer risk factors (described in section 1.2.2.) relate to increased 

lifetime oestrogen exposure, and both clinical and experimental evidence of 

the link between oestrogens and breast cancer development has been 

documented for over 150 years. However, the greatest breakthrough came in 

1896 when George Beatson demonstrated that breast tumour regression could 

occur following oophrectomy (removal o f ovaries) in patients (Beatson 1896). 

The biological link between oestrogen ablation and tumour regression came 

over 50 years later with the discovery by Elwood Jenson of an oestrogen 

binding protein found in a rat uterus, now recognised as ER-alpha (Jenson 

1962). Several years later the first ER assay was developed and was 

subsequently used to determine whether patients would respond to either 

oopherectomy (pre-menopausal patients), or adrenalectomy (post menopausal 

patients) (Jenson et al 1971).

It is now widely accepted that the presence of functional estrogen 

receptor within a tumour indicates its hormone responsiveness (Bundred 2001 

and Veronesi et al 2005), and roughly 60-70% of breast cancers are termed 

hormone responsive and as such are reliant on oestrogen for growth and may 

respond to anti-oestrogen therapy (discussed further in section 1.6.).

-14-
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1.4. Oestrogen receptors fERV

1.4.1. Oestrogen receptor discoveries and genetic structure.

Following the discovery of the oestrogen binding protein (ERa) by Jacobson 

and colleagues, the gene encoding this receptor was eventually cloned from 

the MCF-7 human breast cancer cell line and designated ESR1 (Green et al 

1986). ESR1 is a large gene, 322kb in size and located on the long arm of the 

sixth chromosome (MacGregor and Jordan 1998). This gene contains a large 

promoter region (over 150kb) and a protein coding region of approximately 

140kb, containing 8 exons and 7 introns (Gosden et al 1986) which encodes 

for a complete protein of 595 amino acids with a molecular weight of 66kD 

(MacGregor and Jordan 1998).

A second distinct oestrogen receptor (ERp) was later discovered and 

cloned from rat prostate (Kuiper et al 1996) and is encoded by the ESR2 gene. 

The ESR2 gene is 235kb in size and located on the fourteenth chromosome, 

encoding for a protein of 485 amino acids with a molecular weight of 55kD 

(MacGregor and Jordan 1998).

1.4.2. Oestrogen receptor protein structure.

ERa and ERp are both members o f the nuclear receptor superfamily (NR), a 

family of hormone activated transcription factors able to initiate or enhance

-15-
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transcription of genes containing hormone responsive elements. Other 

members of this family include the progesterone receptor (PR), thyroid 

hormone receptor, retinoid and vitamin-D receptors (Mangelsdorf et al 1995). 

Both ER proteins are divided into six structural domains, dedicated A-F from 

the Amino (NH2) terminus to the carboxyl (COOH) terminus and share some 

homology between domains, especially in the DNA binding domain (Figure

1 . 1 .).
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Figure 1.1. Diagram o f  ERa and ER/1 proteins showing A-F domains, 

percentage homology, and functional structures.

The A and B domains present at the amino terminus are poorly 

conserved and contain the transcription activation function (AF-1) site, a 

ligand-independent transcriptional activation function domain which is 

constitutively active (Campbell et al 2001).The C domain contains the highly
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conserved DNA binding domain (DBD). The DBD comprises two zinc-fingers 

able to fold into helical structures, these are involved in the recognition of 

oestrogen responsive elements (ERE) on the DNA, one helix binds directly to 

the DNA and the second supports this structure (Schwabe et al 1993).

The D domain is termed the hinge region, between the DBD and the 

ligand binding domain (LBD) (Osborne et al 2000). This domain also contains 

nuclear localisation sequences (NLS), and sites important for receptor 

dimerisation, which is required for full transcriptional activity, as well as sites 

important for co-factor interaction (Klinge 2001). The C terminus region is 

comprised of the E and F domains which also contain sequences important for 

receptor dimerisation, co-factor interaction sites and sites for binding of 

chaperone proteins, such as HSP90 (Parker et al 1993). This region also 

contains the ligand binding domain (LBD) and the second transcription 

activation function (AF-2) domain (Nicholson et al 2002). The LBD is a 

structure comprised of 12 a-helices. Five of these helices form a hydrophobic 

pocket to allow ligand binding. The binding between E2 and ER results in an 

alteration in receptor conformation, with helix 12 (H I2) forming a Tid’ over 

the binding pocket, securing the ligand and with interactions between helices 

3-5 promoting co-factor recruitment and transcriptional activity (Brzozowski 

et al 1997). In the presence of an oestrogen antagonist, which usually contain 

a bulky side chain (figure 1.2.) H12 is displaced preventing co-activator 

recruitment to this domain and so inhibiting AF-2 driven transcription (White 

and Parker 1998).

-17-
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Figure 1.2. Structure o f  17p-estradiol and the common anti-oestrogens,

tamoxifen andfulvestrant.

1.4.3. Activator function domains of oestrogen receptors.

AF-1 is constitutively active and does not require the presence of a ligand to 

function, however its activity can be increased following phosphorylation at 

multiple sites. One example would be phosphorylation of the serine 118 

residue, required for maximal activity of the AF-1 domain (Nicholson et al 

2002). AF-2 is dependant on ligand binding to the LBD for full transcriptional 

activity.
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While activation of both AF-1 and AF-2 is usually required for 

maximal ER transcriptional activity, not all genes need both AF-1 and AF-2 to 

be active for successful transcription. The fact that both domains are able to 

function independently has implications for some forms of anti-oestrogen 

therapy (Osborne et al 2000).

1.5. Oestrogen receptor signalling.

In the absence o f E2 the ER exists in an inactive, monomeric form most 

commonly within the nucleus, bound in a large protein complex containing 

stabilising chaperone proteins such as the heat-shock proteins HSP90, HSP70 

and heat-shock interacting protein p23 (Pratt and Toft 1997). Following E2 

exposure there are three mechanisms of oestrogen receptor signalling, 

‘classical’ and ‘non-classical’ genomic signalling and non-genomic signalling. 

These processes are illustrated in figure 1.3. and explained in more detail in 

the following sections, briefly however ‘classical’ genomic ER signalling 

occurs when E2 binds to the nuclear ER, the receptor forms a dimer which 

binds to oestrogen responsive elements (EREs) on gene promoters, which 

subsequently recruits and drives the transcription machinery. In non-classical 

genomic signalling, E2 binds to the nuclear ER and dimerisation occurs but 

the E2-ER complex interacts with other transcription factors to drive 

transcription at alternative promoters. Finally non-genomic ER signalling 

occurs rapidly, where cytoplasmic or membrane associated ER binds with E2
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and forms direct protein-protein interactions which activate growth signalling

pathways.

ER ER
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Figure 1.3. Mechanism ’s  o f  Estrogen receptor signalling (adaptedfrom Schiff

et a l 2003).

1.5.1.  ‘C la ss ica l’ gen om ic  ER signalling.

E2 is steroidal and lipid soluble in nature and thus able to pass through the cell 

plasma membrane and into the nucleus where it binds at the LBD within ER 

(section 1.4.2.). This causes a conformational change in the receptor leading to
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phosphorylation at multiple serine and tyrosine residues occurring and its 

dissociation from the HSP90-based chaperone complex (Nicholson et al 

1999), permitting maximal AF-1 activity (Osborne and Schiff 2005). The now 

active ligand-receptor complex rapidly homo or hetero-dimerises and binds to 

specific sequences of DNA present in the gene promoters known as EREs 

(White and Parker 1998). EREs are repeats of a palindromic sequence of 

GGTCA split by three variable nucleotides, though most oestrogen-regulated 

genes do not have perfect ERE sequences (Driscoll et al 1998). The ERE 

bound ER complex is able to recruit numerous co-regulatory proteins, able to 

either enhance (known as co-activators) or suppress transcription (co­

repressors) and depending on the ratios of these co-regulators present in the 

tissue, The ER/DNA/co-regulator complex promotes or represses transcription 

of the gene. Many of the genes regulated by oestrogen in this way are involved 

in processes such as increased cell proliferation, inhibition of apoptosis or 

regulation of invasion (Osborne et al 2005). The interactions between the ER 

and these co-regulators are complex due to the fact over 200 have currently 

been identified, and new ones are still being discovered (Lonard and O’Malley 

2006).

Co-activators have been shown to contain an ‘nuclear receptor box’ 

(NR box), comprised of a conserved 5 amino acid motif containing three 

leucines and two other amino acids in an a-helical LxxLL structure. Within 

the NR box the leucines create a hydrophobic surface that is able to bind to the 

major groove of the receptor4s AF-2 domain (McKenna and O’Malley 2002, 

2002a, Hall and McDonnell 2005). AF-1-interacting co-activators have also
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been described, including steroid receptor RNA-activator (SRA) and p68RNA 

helicase (Lanz et al 1999, Endoh et al 1999). The most common function of 

most co-activators is histone acetyltransferase (HAT) activity.

The common compact chromatin state is due to attraction between 

positively charged lysine residues present on histones and the negatively 

charged DNA phosphate backbone which wraps around these, limiting access 

to the transcriptional machinery, and thus the efficiency of gene activation. 

HAT enzymatic function catalyzes the acetylation of these lysine residues in 

histone tails, removing the positive charge resulting in a less condensed 

chromatin structure which, in parallel with other DNA modifications, results 

in local decondensation of the chromatin necessary for gene activation 

(Tsukiyama and Wu 1997, Umov and Wolffe 2001). The resulting 

remodelling of the local chromatin structure allows recruitment of the 

transcriptional machinery, facilitating gene transcription. (Histone 

deacetylase’s (HDAC’s) are able to remove these acetyl groups from the 

lysine residues, reversing this process and reducing gene activation, see 

below).

The most established AF-2 interacting co-activators are the three 

members of the p i60 family, nuclear-receptor co-activator 1 (NCoAl or 

SRC1), NCoA2 (TIF2 or GRIP1) and NCoA3 (P/CIP, ACTR, AIB-1, RAC3 

or TRAM1) (McKenna et al 1999). While these contain intrinsic HAT activity 

their primary function is believed to be recruitment of other co-activators 

which contain NR boxes and HAT activity such as the SWI/SNF complexes
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(Sudarsanam and Winston 2000), p300/CBP-associated factor (PCAF) (Vo 

and Goodman 2001), and the CREB binding protein.

Co-repressors play an equally important role in regulation of ER- 

mediated gene expression by repressing transcription by interacting with 

unliganded or antagonist-bound receptors (Dobrzycka et al 2003). Co­

repressors are able to repress transcription via a number of mechanisms such 

as competitive binding versus co-activators, localisation of ER to the 

cytoplasm, and can interfere with DNA binding by condensing chromatin via 

intrinsic HDAC activity or recruitment of HD AC’s (Dobrzycka et al 2003).

The first studied co-repressors were the nuclear receptor co-repressor 

(NCoR) (Horlein et al 1995) and the silencing mediator of retinoid and thyroid 

hormone receptor (SMRT) (Chen and Evans 1995). These co-repressors bind 

to the LBD of ER as they contain two domains termed CoR-NR boxes which 

are similar to the NR boxes found in co-activators (Hu and Lazar 1999). 

NCoR and SMRT are both able to suppress transcriptional activation of ER in 

the absence of ligand (though they dissociate upon agonist binding) by 

containing intrinsic silencing domains (Horlein et al 1995, Chen and Evans 

1995) and by the recruitment of other co-repressors, such as mSin3 which 

associate with HDACs (Hu and Lazar 2000). Other ER co-repressors, such as 

nuclear receptor-interacting protein 1 (RIP 140), associate with ligand bound 

ER, preventing access to AF-2 for co-activators, and interact with HDAC 

complexes (Smith and O’Malley 2004), to bring about one mechanism of 

oestrogen-repressed events.
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New research suggests that although they have opposite functions, both 

co-activators and co-repressors are both associated with ER in the same multi­

protein complex. Oestrogen binding to the receptors results in a rapid 

reorganisation of these co-factors, the balance and activity of which regulate 

the expression o f the nuclear receptor target genes (Acconcia and Kumar

2006).

1.5.2. ‘Non-classical’ genomic ER signalling.

‘Non-classical’ genomic ER signalling utilises protein-protein interactions 

(also known as tethering) between ER and other DNA-bound transcription 

factors to regulate transcription of genes without traditional ERE sequences. 

Signalling in this manner, the ER itself acts as a co-activator for alternative 

transcription factors, strengthening DNA binding and recruiting other co­

activators to the transcription-factor complex to promote gene expression 

(Shupnik 2004). Through this mechanism ER is able to facilitate transcription 

of a wider variety of genes by tethering, for example to AP-1 (activating 

protein 1) transcription factor, which is comprised of a heterodimer of c-jun 

and c-fos and driving transcription at AP-1 binding sites. Genes such as cyclin 

D1 and Insulin-like growth factor ligand (IGF-1) are regulated by E2 in this 

way (Cheung et al 2005, Osborne et al 2005). As well as mediating 

transcription at AP-1 binding sites, activated ER is also able to bind with the 

Specificity protein 1 (SP-1) transcription factor which regulates transcription 

of genes controlled by GC-rich promoters (Kim et al 2005). Other promoter

-24-



Chapter 1.___________________________  Introduction Section.

sequences that are influenced by non-classical genomic ER signalling also 

include the STAT and NF-kB response elements (Nicholson et al 2002) which 

can lead to the regulation of proteins important for cell proliferation and 

survival, such as insulin-like growth factor receptor (IGF-1R) and Bcl-2 

(Osborne et al 2005).

1.5.3. Non-genomic ER signalling.

Genomic ER signalling as previously described, takes hours to occur, however 

recently, evidence of more rapid events occurring within minutes of exposure 

to steroid hormones, which can not be attributed to transcriptional activation 

of genes by ER have been reported (Song and Santen 2006). Non-genomic 

signalling is thought to take place at either the plasma membrane or in the 

cytoplasm and can require translocation of ER from the nucleus, or ER 

previously present at these positions (Shupnik 2004). Upon activation by E2 

these membrane/cytoplasmic ER are able to rapidly (within seconds), activate 

signalling molecules such as IGF-IR, EGFR, Raf, AKT, Protein Kinase C and 

MAPK (Levin 2005, Song and Santen 2006). ER phosphorylation forms a 

docking site for SH2-domain containing proteins (Barletta et al 2004) 

allowing a formation of a large signalling protein complex which allows 

direct, physical associations between the ER and molecules such as She, Src 

and PI3K (Shupnik 2004). These protein complexes can then activate EGFR 

and IGF-IR through these interactions. (Song and Santen 2006).
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Downstream activation of MAPK and AKT signalling pathways in this 

manner, can cause up-regulation of genomic ER transcription through 

phosphorylation of serine residues (118, and 116) on the AF1 domain of ER 

present within the nucleus (Campbell et al 2001). Non-genomic ER signalling 

via MAPK and AKT can also promote phosphorylation of AP-1 and SP-1 

transcription factors tethered to E2 bound ER further increasing their 

transcription activity (Levin 2005). Thus, non-genomic ER signalling has the 

capability to exert rapid control over ER-responsive genes, via this impact on 

nuclear ER function (Campbell et al 2001), as well as via direct growth factor 

signalling (kinase) mechanisms.

1.6. Anti-hormone therapy.

As oestrogen, via oestrogen receptor signalling is able to increase 

proliferation, as well as decrease apoptosis and increase cell survival in ER 

positive breast cancers various therapies based on inhibiting this phenomenon 

have been developed. These treatments include the anti-oestrogenic ER 

inhibitors known as selective oestrogen receptor modulators (SERM’s) and 

selective oestrogen receptor down-regulators (SERD’s), which work by 

competitively binding to the ER to block its function and in the case of 

SERD’s promote degradation of the receptor. An alternative class of anti­

hormones are the aromatase inhibitors (AI’s) which prevent the formation of 

endogenous oestrogens by inhibition of a vital step in oestrogen synthesis. The
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mechanism of these compounds, their use in the clinic and complications that 

can arise from their application will be discussed in the following sections.

1.6.1. Selective oestrogen receptor modulators.

Selective oestrogen receptor modulators (SERM’s) are synthetic non-steroidal 

anti-oestrogens. They are termed SERM’s as they have the ability to act as 

both ER antagonist and agonist in a tissue specific manner (Lewis and Jordan 

2005). The most commonly known and used molecule in this class is 

tamoxifen, a non-steroidal triphenylethylene derivative. Tamoxifen was 

originally developed as a contraceptive, as anti-oestrogens were shown to 

prevent ovulation in animals, however this did not translate into human studies 

and treatment actually induced ovulation (Jordan 2006). After evaluation in 

the breast cancer context, in the 1970’s the drug tamoxifen was ‘’reinvented” 

as the first adjuvant therapy for ER positive breast cancer, shown to be 

inhibitory in breast cancer and so becoming the most commonly administered 

form of endocrine therapy. It emerged as the gold standard treatment for over 

25 years with 400,000 women believed to be alive today as a direct result of 

its use (MacGregor and Jordan 1998 and Jordan 2003, 2003a, 2006).

Tamoxifen competitively binds to the ER at the LBD, thus, preventing 

oestrogen from doing so. Similar to E2 binding the tamoxifen-ER complex 

induces a conformational change in the receptor, causing chaperone 

dissociation, receptor dimerisation and translocation of the tamoxifen-ER 

dimer to promoters of genes regulated by oestrogen (Nicholson et al 2002).
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However due to the shape of tamoxifen with its side chain, H 12 of the LBD is 

in an alternative position than when E2 is bound and, thus, inhibits the ligand 

dependent AF-2 domain (Pearce et al 2003). This prevents full activation of 

the ER and inhibits AF-2 mediated gene transcription, disrupting ‘normal’ 

regulatory signalling controlling tumour proliferation and to some extent cell 

survival (Osbourne et al 2000). This conformational change in the tamoxifen- 

ER dimer can also further inhibit gene transcription by preferential recruitment 

of co-repressors such as NCoR and SMRT to the gene promoters bound by 

this complex (Webb et al 2003, Lewis and Jordan 2005).

Unfortunately, tamoxifen inhibition of ER signalling is incomplete and 

genes that require the AF-1 domain for enhanced transcription are unaffected 

by use o f tamoxifen, indeed, some genes show increased expression due to the 

partial agonist properties of tamoxifen (Howell 2006 and Osbome et al 2000). 

The oestrogenic activity of tamoxifen through AF-1 mediated gene 

transcription can be further increased due to receptor phosphorylation of ER at 

serine residues 118 and 167 by growth-factor signalling pathways promoting 

ligand independent gene transcription and cell growth (Ring and Dowsett 

2004, Shah and Rowan 2005). Binding of tamoxifen to ER can also promote 

non-genomic ER signalling which can in turn promote the activation of these 

growth factor signalling pathways, further enhancing tamoxifen agonist 

activity on genomic ER signalling (Fan et al 2007). Tamoxifen has also been 

shown to act in agonistic manner through non-classical genomic oestrogen 

receptor signalling particularly in interaction with AP-1 sites (Osbome et al 

2000).
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Although well tolerated in the clinic, the incomplete inactivation of ER 

activity by tamoxifen can lead to resistance and due to its oestrogen agonistic 

activity in other tissues. Long term tamoxifen use can lead to increased 

incidences o f unwanted side-effects such as stroke and endometrial cancer as 

well as recurrence (Fisher et al 1998). As such tamoxifen treatment is often 

limited to 5 year maximum (Jones and Buzdar 2004). However, recent studies 

such as the ATLAS trial which explored 10 vs. 5 years tamoxifen have re­

visited this concept and interesting have shown that there may be some benefit 

to continuing tamoxifen treatment beyond this period (Peto et al 2007).

1.6.2. Aromatase inhibitors.

Following the complications associated with long term tamoxifen use and the 

possibility o f acquired resistance in the clinic, a new class of drug was 

designed to treat oestrogen receptor positive breast cancer. These are called 

aromatase inhibitors (A i’s), o f which the third generation compound 

anastrozole (Arimidex) is the most commonly used in post-menopausal 

women. As stated previously, the main sites for oestrogen synthesis following 

menopause is adipose and muscle tissue, while some breast tumours 

themselves can also be sources of oestrogen production (Green and Fun- 

1999). The AI’s are compounds designed to prevent the synthesis of oestrogen 

by interfering with the precursor conversion of androstenedione to oestrone by 

the inhibition of the cytochrome p450 enzyme aromatase. This treatment
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reduces the level of oestrone available for conversion to E2 by 17p- 

hydroxysteroid dehydrogenase (Green and Furr 1999). The effect of this 

treatment is a reduction in the levels of circulating oestrogens within the body, 

removing it as a stimulus for oestrogen dependent tumours, oestrogen 

synthesis being disrupted in a similar manner to oopherectomy in pre­

menopausal women (Nicholson and Johnston 2005). Zoladex (chemical 

castration) is used to bring about E2-deprivation in pre-menopausal women as 

A I’s are not appropriate in this setting.

While the original first generation AI’s had poor specificity and were 

not well tolerated due to high toxicity, the current third generation AI’s 

including Anastrozole (as well as Letrozole and Exemestane) have proven 

highly effective at reducing estrogen levels (by 85-92%) (Nicholson and 

Johnston 2005) and oestrogen driven ER effects on cancer growth, as well as 

having high selectivity and a reduced toxicity profile (Jones and Buzdar 2004).

The AT AC trial comparing Anastrozole to tamoxifen (alone or in 

combination) in the clinic has shown that Anastrozole significantly prolonged 

disease-free survival, time to disease recurrence and reduced risk of distant 

metastases (and even some evidence of fewer deaths following recurrence of 

disease in the Anastrazole arm which may become more significant after long­

term follow up) when compared to tamoxifen at all time points including the 

median end point o f 120 months (Cuzick et al 2010). AI’s were also better 

tolerated than tamoxifen, with fewer associated risks and side-effects such as 

endometrial cancer and thrombolytic events (Cuzick et al 2010). There were 

however some associated side-effects following Al treatment, such as an
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increased number o f fractures in this group. The fractures were attributed to 

loss o f bone mineral density, though this can be countered by co-treatment 

with compounds such as bis-phosphonates which reduce bone 

demineralisation (Cuzick et al 2010). Despite some side-affects these data led 

to the recommendation that Anastrazole replace tamoxifen as the adjuvant 

therapy in post-menopausal ER positive cancer (Howell et al 2005) though 

further longer term studies into survival rates of patients using prolonged Al 

therapy need to be conducted (Nicholson and Johnston 2005).

The reason for AI’s ability to out perform tamoxifen in this study 

maybe due to the ability o f AI’s to inhibit both oestrogen dependant genomic, 

and non-genomic ER signalling, where as tamoxifen has some weak agonistic 

activity, and may stimulate non-genomic ER signalling (Osbourne and Schiff 

2005). Interestingly however the combined arm of tamoxifen and Anastrozole 

gave no clinical benefit over the tamoxifen condition alone and was stopped 

prior to the studies completion (Howell et al 2005). These data are not 

surprising as again tamoxifen is a weak oestrogen agonist at AF-1 and able to 

activate non-genomic functions o f ER, promoting growth-factor-receptor and 

oestrogen independent ER signalling pathways (Staka et al 2005). Thus its 

addition prevented the impact o f oestrogenic deprivation (Osbome and Schiff 

2005).

AI’s have been used successfully in the clinic, however there is scope 

for acquisition of resistance to AI’s to develop in the clinic (Nicholson and 

Johnston 2005), and this has been indicated via generation of MCF-7 cell
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models which have become resistant to oestrogen deprivation (Staka et al 

2005).

1.6.3. Selective oestrogen receptor down-regulators.

Due to the side effects and risk of development of resistance, which can be a 

serious issue in the otherwise well received use of tamoxifen, work was also 

undertaken to discover compounds with equivalent (or improved) levels of 

success in ER positive breast cancer treatment, compounds with complete, 

rather than partial ER antagonistic effects (Morris and Wakeling 2002).

The search for a true ER antagonist able to block all ER signalling 

prompted the synthesis of a series of steroidal 7a-alkylamide oestradiol 

analogues. The original ‘pure’ oestrogen antagonist of this steroidal class to be 

investigated was ICI 164,384. This compound was first described by Wakeling 

and Bowler; their research showed this compound was able to completely 

block the action of both oestradiol and tamoxifen in rat uterus (Wakeling and 

Bowler 1987). Later work developed a far more potent pure anti-oestrogen,

ICI 182,780 which is now known as fulvestrant (Faslodex) (Wakeling et al 

1991). Fulvestrant is a 7a-alkylsulphinyl analogue of 17p-oestrdiol and like 

E2 is a steroidal compound, with a similar structure to E2. Crucially however, 

fulvestrant contains a long side chain present on the seventh carbon, vital for 

fulvestrant’s anti-oestrogen properties determined by the length, flexibility and 

position of this chain (Bowler et al 1989, Howell 2006). The chemical 

structure of fulvestrant differs from tamoxifen and accounts for the differences
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in function between these two compounds. Being based on the structure of E2 

fulvestrant has a much closer ER binding affinity to the ER than tamoxifen, 

89% of E2 (Wakeling and Bowler 1987). Fulvestrant was termed a ‘pure’ anti­

oestrogen as it shows no oestrogen agonistic properties (Howell et al 2000) in 

any tissues (Osborne et al 2000). Fulvestrant was classed as a selective 

oestrogen receptor down-regulator (SERD) (Nicholson et al 2002) due to it 

possessing the property of being able to cause down-regulation of ER protein, 

reducing its cellular levels (Howell et al 2000).

Fulvestrant competitively binds to the ER at the LBD and by binding 

in this manner induces a serious conformational change (Osborne et al 2004, 

Morris and Wakeling 2002) in the receptor allowing dissociation of 

chaperonins. Once fulvestrant is bound, the H 12 of LBD is disorientated and 

does not fit over the ligand, blocking transcriptional activity. The interference 

of the side-chain means the fulvestrant-ER complex is unable to homodimerise 

effectively and energy-dependant shuttling of ER between the cytoplasm and 

the nucleus is prevented, blocking ER nuclear localisation (Fawell et al 1990, 

Dauvois et al 1992). In addition to this fulvestrant exposure and subsequent 

ER binding causes a decrease in cellular ER levels via several mechanisms. 

The fulvestrant-ER complex is unstable in the cytoplasm and rapidly degraded 

by the Ubiquitin-proteasome pathway, reducing ER half-life, increasing ER 

turnover and reducing ER protein levels (Fawell et al 1990, Dauvois et al 

1992, Wijayaratne et al 1999). As opposed to tamoxifen action, fulvestrant 

binding blocks the activity of both the AF-1 and AF-2 domains, thus although 

any remaining fulvestrant-ER complexes within the nucleus can bind to DNA,
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ER regulated gene transcription is suppressed (Wijayaratne et al 1999). 

Fulvestrant not only suppresses transcription at ER mediated ERE’s by ER 

protein down-regulation and preventing co-activator association but also 

suppresses non-classical genomic signalling, for example at AP-1 sites (Webb 

et al 2003). Fulvestrant also has been shown to suppress non-genomic 

signalling, with MAPK pathway activation via membrane associated ER 

ablated in the presence of fulvestrant in vitro (Improta-Brears et al 1999). In 

fact, when microarray analysis was performed by Frasor and colleagues on 

oestrogen regulated genes, fulvestrant was shown to suppress transcription of 

95% of E2 up-regulated genes and to induce 91% of the E2 down-regulated 

genes studied (Frasor et al 2003). This was in stark contrast to the activity of 

tamoxifen which suppressed transcription of only 47% and induced 26% of E2 

up-regulated and down-regulated genes respectively. Tamoxifen also showed 

agonist-like activity on 23% and 31% up-regulated and down-regulated genes 

respectively (Frasor et al 2003).

Fulvestrant exposure has been shown to have greater anti-tumour 

activity than Tamoxifen in both ER positive breast cancer cell models and 

animal studies. Preclinical use o f fulvestrant resulted in a reduction of ER 

protein levels (but not mRNA) as well as decreased expression of ER- 

regulated genes such as progesterone receptor (PR) and pS2 in the MCF-7 

breast cancer cell line (McClelland et al 1996). In MCF-7 xenograft models 

this was also the case, and reduced levels of other oestrogen-regulated genes 

such as LIV1 were also observed (Osborne et al 1994,1995). This xenograft 

model is the transplantation of MCF-7 cells mixed with Matrigel via
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subcutaneous injection into an animal model, most commonly a nude mouse, 

and is used as a model to mimic tumour growth and development within the 

clinic. Fulvestrant was also shown to inhibit growth of the MCF-7 cell line 

with greater efficacy than tamoxifen, under the same conditions in even the 

earliest experiments (Wakeling and Bowler 1987). In vivo studies, using either 

MCF-7 or BrlO xenografts in nude mice, showed a complete growth arrest of 

tumours that had been continuously treated with E2 for four weeks following a 

single injection o f fulvestrant (Wakeling et al 1991). A further MCF-7 

xenograft study showed that fulvestrant treatment suppressed tumour growth 

for twice as long than tamoxifen treatment (Osbome et al 1995).

Due to the evidence gained from preclinical studies, the value of 

fulvestrant as an ER positive breast cancer therapy has been assessed clinically 

in a variety of ways. Clinical use o f fulvestrant was shown to reduce ER levels 

beginning with a study from DeFriend (DeFriend et al 1994). Further study 

showed that in ER positive breast tumours a significant ER protein down- 

regulation after short term treatment with fulvestrant was observed compared 

with only a small effect on ER protein level when tamoxifen was used 

(Robertson 2001, Robertson et al 2001). Furthermore, clinical use of 

fulvestrant has shown evidence o f reduced ER signalling as treatment was able 

to reduce oestrogen regulated genes in a concentration dependent manner, 

with reductions in PR and also Ki67 proliferation marker levels being 

significantly greater following 250 mg/month of fulvestrant when compared to 

a treatment of 20 mg/day of tamoxifen (Robertson et al 2001). Indeed, PR
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levels were actually increased with tamoxifen due to its agonistic effects 

(Robertson et al 2001).

Fulvestrant has also been assessed as a first line therapy for advanced 

breast cancer in postmenopausal women. Trial 0025 compared 250mg/month 

fulvestrant and 20mg/day tamoxifen (Howell et al 2004). Disappointingly 

however there was no significant difference observed between the treatments 

in time to progression (TTP) of disease. The drugs were tolerated equally well, 

though tamoxifen patients suffered statistically more hot flushes than 

fulvestrant treated patients. Gastrointestinal disturbances, vaginitis and 

thromboembolic disease were reported equally between groups. Tamoxifen 

treatment also showed a significantly higher clinical benefit (CB), with CB 

rate o f 62% to 54.3% for tamoxifen and fulvestrant, respectively. Time to 

treatment failure, (fulvestrant 5.9 months, tamoxifen 7.8 months) and overall 

survival (fulvestrant 36.9 months to 38.7 months for tamoxifen) were also 

similar, and unfortunately fulvestrant treatment in this manner did not meet the 

requirement o f tamoxifen non-inferiority when used as a first line therapy 

(Howell et al 2004). However, in this study approximately 20% of patients 

had unknown ER status. Re-analysis o f these data looking at ER and/or PR 

positive breast cancer patients (thus those most likely to respond to endocrine 

therapy) showed a TTP of 8.2 and 8.3 months with fulvestrant and tamoxifen 

treatment, respectively. The CB and overall survival rates were similar as well 

indicating tamoxifen and fulvestrant had similar efficacy (Howell et al 2004). 

Further analysis o f both ER and PR positive patients showed similar TTP, CB 

and survival rates between the two treatments and prompted further studies of
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using fulvestrant in a first line setting (Howell et al 2004). Developing the 

optimum treatment strategy using therapeutic fulvestrant has also been 

investigated, with trials still ongoing.

As endocrine therapy suppresses hormone-responsive tumour growth, 

rather than being directly cytotoxic, the time to treatment response maybe 

longer than for chemotherapy (Torrisi et al 2004). Fulvestrant patients may 

actually see some tumour progression in the first two months of treatment 

before an objective response is seen. This is most likely due to time taken for 

the agent to reach therapeutic levels. Reaching the therapeutic plasma 

concentrations of fulvestrant can take 3-6 months to reach steady-state levels 

at 250mg/month dosages (Robertson et al 2004), showing scope for 

improvement by using a loading dose (LD) or high dose (HD) treatment 

regimens. Indeed phase III clinical trials 0020 and 0021 showed that repeated 

rather than single doses took less time to reach steady state fulvestrant levels, 

and these trials mirrored the pharmokinetic predictive models (Robertson et al 

2004). As such, further pharmokinetic models were used to evaluate both LD 

and HD models. A LD model o f 500mg fulvestrant on day 0 plus 

250mg/month, and a HD model o f 500mg monthly plus 500mg on day 0 and 

14 of month 1 both showed a steady fulvestrant plasma concentration achieved 

within one month. The HD model actually showed roughly twice the 

fulvestrant plasma concentration when compared to usual treatment of 

250mg/month fulvestrant (Robertson 2007). While reducing the time taken to 

attain a steady state has the potential to reduce time to reach therapeutic levels, 

in trials 0020 and 0021 the 250mg/month fulvestrant dose showed similar time
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to response and time to progression to that o f the Al anastrazole at 1 mg/day 

(Robertson et al 2003, Robertson et al 2004), which only takes 7 days to reach 

a steady state and maximal oestrogen suppression in 2-4 days (Buzdar et al 

2002), indicating a possible improvement over AI’s if a therapeutic steady 

state level o f fulvestrant could be achieved at an earlier point during treatment.

However, increased concentrations of fulvestrant have been under 

evaluation to see whether they confer a greater anti-tumour response in ER 

positive breast cancer patients. Increased fulvestrant concentrations have 

previously been demonstrated to increase ER down-regulation in a dose 

dependent manner. For example, in clinical trial 0018 a single fulvestrant dose 

o f either 50mg, 125mg or 250mg was given prior to surgery, and ER and PR 

levels were assessed. This study showed that there was a dose dependant, 

significant down regulation of both ER and PR when compared to placebo, 

though the level of ER reduction was incomplete (70% down regulation at 

250mg fulvestrant) (Robertson et al 2001, Nicholson et al 2001). Other biopsy 

studies have also confirmed clinical residual ER (up to 50%), even after six 

months o f fulvestrant treatment (Gutteridge et al 2004). Dose dependent ER 

down regulation by fulvestrant was also seen in a clinical trial using daily 

injections o f short acting fulvestrant, with 6mg/day significantly down 

regulating ER and PR expression, but not as significantly as the higher 

18mg/day concentration. (DeFriend et al 1994)

These dose dependant fulvestrant effects are thought to be due to the 

fulvestrant plasma concentrations, with single doses of 50mg, 125mg, and 

250mg giving plasma fulvestrant levels o f lng/ml, 2.5ng/ml and 5.0ng/ml,
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respectively. 18mg/day of short-acting fulvestrant gave fulvestrant plasma 

levels o f 23ng/ml compared to 7ng/ml as seen in the 6mg/day arm. Indirect 

comparisons o f ER expression showing a mean ER H-score of 60 at lng/ml 

fulvestrant plasma levels and a predicted fulvestrant plasma level of 20ng/ml 

and an ER H-score of 30 when a 500mg fulvestrant dose is used. This 

Suggests higher fulvestrant dosage equates to a higher fulvestrant plasma 

concentrations, leading to greater ER down regulation and subsequently ER 

signalling hopefully leading to clinical benefit (Robertson 2001). It also 

suggests that a steady state fulvestrant level will be achieved more quickly. 

However, currently there has o f yet been no direct relationship between 

fulvestrant plasma levels, ER down regulation and clinical efficacy defined 

(Robertson 2001).

In the NEWEST (Neoadjuvant Endocrine therapy for Women with 

Estrogen-Sensitive Tumors) trial, a phase II clinical trial comparison of 

monthly 500mg and 250mg fulvestrant treatment showed that the higher 500 

mg dose results in (higher fulvestrant plasma levels and) significantly greater 

down regulation of ER, PR and Ki67 than the approved 250 mg dose (Kuter et 

al 2008) and so a higher fulvestrant concentration may give better clinical 

benefit in a first line setting.

In fact in the last few months the initial results from the CONFIRM 

(COmparisoN of Faslodex In Recurrent or Metastatic breast cancer) trial have 

been presented at the San Antonio Breast Cancer Symposium. This 

international phase III trial compared the usual 250mg/month fulvestrant 

regimen with 500mg/month fulvestrant (plus 500mg on day 14 of month 1) in
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patients with ER-positive advanced breast cancer who have relapsed or 

progressed on previous endocrine therapy. This was a double blind, double 

dummy study of 736 women (362 and 374 taking 500mg/month or 

250mg/month fulvestrant, respectively). This study showed the 500mg 

fulvestrant regimen significantly prolonged TTP compared to fulvestrant 250 

mg, with a median TTP of 6.5 months to 5.5 months, respectively. There was 

also a 16% reduction in the risk of mortality for patients receiving 500mg 

fulvestrant when compared with 250mg fulvestrant (though this was not 

significant). The objective response rates were also similar, with 13.8% at 

500mg and 14.6% at 250mg, respectively. The rate of clinical benefit was 

45.6% and 39.6% for the 500 mg and 250 mg arms. Importantly however the 

safety profile was the same for both groups and the duration of clinical benefit 

was 16.6 months at the 500mg/month fulvestrant dose compared with 13.9 

months for 250mg/month fulvestrant (Di Leo et al 2009). These data all lead 

to Dr Angelo Di Leo (the CONFIRM principal investigator) announcing:

“We believe that based on the results of this (the CONFIRM) study, 

treatment and practice should change. Patients should routinely receive the 

500mg (fulvestrant) dose”. This subsequently resulted in 500mg/month 

fulvestrant being the new recommended dose (Di Leo et al 2010).

Fulvestrant was the first of the ‘pure’ anti-oestrogens to enter clinical 

development (Nicholson and Johnston 2005). Although the true potential as a 

first-line therapeutic and its effectiveness with respect to AI’s and tamoxifen 

are still being assessed, it is currently licensed as a second line therapy 

following disease progression from other anti-hormone therapies (such as
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Tamoxifen and AI’s), as further clinical benefit can be gained from the drug 

when used in this manner (Howell et al 2002, Ingle et al 2006). Due to the 

lack o f ER agonist effects from use of fulvestrant there are less risks of 

endometrial cancers and stroke than tamoxifen use and it is well tolerated in 

clinic with only minor side-affects reported (Howell 2006). The ability of 

fulvestrant to confer clinical benefit on disease that has progressed from 

tamoxifen therapy means it is invaluable as a second line therapy (Gradishar 

2004, Gradishar and Morrow 2002) due to its lack of cross-resistance with 

other endocrine therapies (Johnston 2006). As well as dose-related studies, 

there are further first-line studies comparing 500mg/month fulvestrant versus 

aromatase inhibitors including the FIRST study, comparing fulvestrant vs. 

Anastrazole alone, which interestingly demonstrated that high dose fulvestrant 

treatment was associated with a significantly longer TTP than the Al 

(Robertson et al 2009). While AI’s and tamoxifen gave no greater clinical 

benefit in combination, AI’s combined with alternative ‘pure’ anti-oestrogens 

may feasibly have a greater clinical benefit, as a combined treatment of AI’s 

with fulvestrant for example could potentially allow for inhibition of any 

further oestrogen independent ER activity still active following Al treatment 

alone (Osbome and Schiff 2005). However preliminary results from the FACT 

phase III clinical trial suggest that while the combination treatment is well 

tolerated (with only a slightly higher incidence of side-effects when compared 

to anastrozole alone) there may be no additional benefit of such combination 

therapy. This showed no improvement over Al alone in hormone-responsive
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post-menopasual patients who had relapsed from disease despite the promising 

pre-clinical evidence (Bergh et al 2009).

1.6.4. Endocrine resistance.

While anti-hormone therapies are tolerated well in the clinic, and responsible 

for much of the recent improved breast cancer survival rates, the story is not a 

complete success. Resistance to therapy is observed in vitro (McClelland et al

2001) and subsequent disease relapse is also a major clinical problem (Howell 

2006, Robertson 2007). Through their mechanisms of action, anti-hormone 

therapy is only beneficial to patients with ER positive tumours (60-70% of 

patients) (Bundred 2001). The ER negative tumours are intrinsically (or de 

novo) resistant to this type of therapy due to lacking the target receptor, the 

major cause of this type of resistance. Patients presenting with ER positive 

tumours may also be unresponsive to one or more endocrine therapies, with up 

to a third also showing de novo resistance (Johnston 2005). However, roughly 

two thirds of patients with ER positive tumours will initially respond to anti­

hormone treatment. Unfortunately, o f the tumours which do respond to 

endocrine therapy at the outset many will relapse and acquire resistance during 

the course o f treatment (Clarke et al 2003, Nicholson et al 2005, McClelland 

et al 2001 and Santen et al 2005). Therefore, understanding mechanisms of 

both de novo and acquired endocrine resistance is vital to our understanding of 

the disease and therapeutic improvement therein, as resistance often results in 

the aggressive recurrence of the disease and a higher mortality rate (Ring and
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Dowsett 2004) and is expected to effect 5 million women within the next 

decade (Jemal et al 2005).

Some mechanisms proposed and investigated in both de novo and 

acquired endocrine resistance include;

1. Alteration or loss o f ER function or loss of ER expression.

2. Redistribution of ER from the nucleus to cytoplasm.

3. Alteration in expression or function of ER co-regulators.

4. Increased metabolism of the endocrine agent.

5. Increased growth factor signalling.

6. Undefined actions of ER(3.

The mechanisms behind acquisition of resistance to endocrine therapy 

are not yet fully understood. The transition o f a clinical tumour or cancer cell 

model from an initial hormone and endocrine therapy sensitive phenotype to 

an anti-hormone resistant and/or hormone independent phenotype is 

complicated and multi-factorial. Mechanisms underlying acquisition of 

endocrine resistance are also contextual, depending on original presentation of 

cancer genotype and phenotype, exogenous environmental factors (such as 

culture conditions, levels of hormones and other growth factors) and duration, 

intensity and sequence of endocrine therapies the cells are exposed to, the 

pressure exerted by the treatment itself being the major factor driving 

acquisition o f resistance in almost all cases. Tumours are highly plastic and 

capable o f remodelling their cell populations in response to host immunity or 

endocrinology, or administration o f therapies (both local and systemic). This
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can occur by selection between different cells within the population (different 

populations die out, others become more dominant) and by adaptation of 

individual cells alteration of their transcriptomes/proteosomes (Clarke et al 

2003).

While acquisition of resistance is not yet completely understood, 

various mechanisms responsible for this form of endocrine resistance in ER 

positive breast cancers have been proposed and investigated. The insights 

provided into acquired resistance are largely due to the generation of in vitro 

cell models resistant to hormone therapy. These resistant cell models are 

generally o f two kinds, created either by continuous culture of hormone 

sensitive breast cancer cell lines (usually MCF-7 based) with sub-toxic levels 

o f anti-oestrogens until growth is recovered and cells are no longer growth 

inhibited by these agents (producing either tamoxifen or fulvestrant resistant 

cells), or produced by long term culture within an environment low or devoid 

o f oestrogens (also known as long term oestrogen deprivation or LTED). This 

is to mimic the activity of AI’s until growth is recovered, producing a model 

o f Al resistant breast cancer.

These models of resistance and models resistant to multiple endocrine 

therapies differ in their phenotype, protein expression, growth rate, 

invasiveness, migratory capacity and favoured signalling pathways, and there 

is also differentiation both between different therapies and between other 

resistant models to the same endocrine therapy generated by different groups. 

However despite the differences there is also some commonality between 

models. In the broadest terms, endocrine therapy drives a transition in
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signalling within these cells from oestrogen/ER driven cell signalling and 

growth to alternative growth factor dependant signalling and growth 

(Nicholson et al 2003, 2004).

Due to a lack of ER being the major cause of de novo endocrine 

resistance it has subsequently been studied in relation to acquisition of 

resistance. There has been some evidence that continued use of anti-hormone 

agents can lead to a loss of ER expression by a variety of means under certain 

circumstances with both in vitro and in vivo examples. In the clinic, up to 30% 

of ERa positive patients with metastatic breast tumours that acquire resistance 

to tamoxifen have shown loss of ER expression during treatment with this 

agent (Oh et al 2001). Further clinical evidence shows that ER loss can also 

occur when aromatase inhibitors are used in clinical disease; this transition to 

an ER negative phenotype can occur during therapy and is associated with 

poorer prognosis. Clinical studies have shown that 10% of ER positive 

patients undergoing neo-adjuvant treatment with the Al Letrozole became ER 

negative and this was associated with elevated mortality and relapse (Ellis et 

al 2008, 2008a).

Methods that may contribute to ER loss include promoter 

hypermethylation and subsequent transcriptional loss or acquired mutations 

within the ESR1 gene itself. While hypermethylation at CpG islands within 

the ER promoter has been reported in approximately 25% of ER negative 

tumours in vivo (Lopez-Tarruella and Schiff 2007), the link between 

methylation and ER status remains unclear. It has been reported by both 

Falette and colleagues and Hori and colleagues that there was no association
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between ER status in breast tumours and ESR1 gene methylation at specific 

sites o f the ER gene promoter (Falette et al 1990, Hori et al 1999). However, 

other studies have provided indirect data showing loss of ER due to promoter 

methylation. Evidence has shown that ER expression can be reversed through 

exposure to 5-Azacytidine, a de-methylating agent as well as the Histone 

deacetylase (HDAC) inhibitor Trichostatin A (Bovenzi and Momparler 2001, 

Ferguson et al 1995). Subsequent studies have shown the presence of both 

HDAC and DNA methyltransferase (DNMTI) at the promoters of ER and that 

they were responsible for silencing ERa in some ER negative breast tumours 

(Macaluso et al 2007). This silencing was shown to be reversible by use of 5- 

Azacytidine, which inhibited DNMTI (Yang et al 2001).

As well as hypermethylation as a cause of ER loss, alternative research 

has suggested that natural mutations in the ER occurring during cancer 

progression could contribute to ER negativity in some tumours (Behbod and 

Rosen 2005). While various natural single point mutations have been observed 

in human clinical samples, such as the missense A86V mutation (Herynk and 

Fuqua 2004), and this correlates with lower levels of ER protein, there is no 

conclusive data that this mutation has a significant correlation with ER loss in 

clinical breast tumours (Herynk and Fuqua 2004). It is believed these types of 

mutations are probably too rare in occurrence to contribute to a widespread 

reason for ER negativity in general within the clinic (Chu et al 2007).

Similarly, a variety of ER splice variants have been reported in breast 

tumours (Herynk and Fuqua 2007). Usually un-translated ERa exons have 

been discovered and alternate splicing o f these exons has been shown to affect

-46-



Chapter 1. Introduction Section.

the subsequent activity and function of the ER. There is however no clear 

evidence that presence of splice variants within a tumour is associated with the 

development o f an ER negative phenotype. While an exon 5 deleted splice 

variant o f ER has been observed in some ER negative and PR positive breast 

cancers (Herynk and Fuqua 2004), there is no recorded data of exon 5 having 

any association with clinical ER or PR status (Zhang et al 1996).

The rarity of these epigenetic events and presence of mutations 

indicate that there are other more important mechanisms of acquired endocrine 

resistance. In fact while loss o f ER levels and activity can lead to endocrine 

insensitivity and resistance to anti-hormone agents, many tumours with 

acquired tamoxifen resistance still respond to second line anti-oestrogens such 

as fulvestrant (Hutcheson et al 2003), and 75% of tumours with acquired 

tamoxifen resistance still express levels of ER equal to those prior to treatment 

(Clarke et al 2003). As such in most cases of acquired resistance ER loss can 

not be the primary resistance mechanism. For example, our in-house 

tamoxifen resistant MCF-7 cell model still expresses ER (Hutcheson et al 

2003).

Alternative evidence from in vitro studies have shown elevated 

expression o f the ER co-activators CBP, P300 and AIBI, correlating with 

HER2 over-expression implying a link with acquired endocrine resistance, and 

AIBI and HER2 co-expression has been associated with poor clinical outcome 

(Johnston 2006, Osbome et al 2003). Furthermore a decrease in recruitment of 

the ER co-repressors NCoR and SMRT was found in mouse models of 

acquired tamoxifen resistance compared to the tamoxifen sensitive models
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(Lavinsky et al 1998, Herynk and Fuqua 2004), suggesting a link between 

mismanaged co-activator recruitment and endocrine resistance.

Despite the above, the apparent primary mechanism in most forms of 

acquired endocrine resistance seems to be due to increased growth factor 

signalling (Nicholson and Johnston 2005). This can occur either by the up- 

regulation of growth factor receptors, or by an increased supply of growth 

factors by auto- or paracrine means. The epidermal growth factor receptor (or 

ErbB) family as well as the insulin-like growth factor receptors, have been 

shown to be responsible in multiple cases o f endocrine resistance (Nicholson 

et al 2004). The ErbB family is a group of receptor tyrosine kinases containing 

4 members, EGFR (ErbBl/HERl), HER2 (ErbB2/NEU), ErbB3 (HER3) and 

ErbB4 (HER4). These receptors can be activated by various growth factor 

ligands such as Epidermal growth factor (EGF), Transforming Growth Factor 

(TFGa) and the Heregulins (Nicholson and Johnston 2005). These receptors 

are able to homodimerise or heterodimerise with one another to activate 

growth factor signalling pathways leading to growth and survival via AKT or 

ERK/MAPK activation. Much previous research has shown activation of 

MAPK and AKT provide proliferative and survival signals in anti-oestrogen 

resistant cells (Staka et al 2005, Nicholson et al 2004, and Knowlden et al

2003).

Over expression of the EGFR and HER2 (as well as increased 

expression o f TGFa and activation o f ERK) has been found to be responsible 

for acquired resistance to fulvestrant in cell models (Nicholson et al 2003) and 

also in patients with de novo tamoxifen resistant ER positive breast tumours
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(Gee et al 2005). The FasMCF-7 model o f acquired fulvestrant resistance 

developed by the Tenovus Centre o f Cancer Research shows increased EGFR 

and HER2 expression (McClelland et al 2001), and the ER positive cell line 

BT-474 which is de novo tamoxifen resistant expresses high levels of these 

receptors (Gee et al 2005). Also artificial over-expression of HER2 in MCF-7 

cells was also able to confer de novo tamoxifen resistance in in vitro and 

xenograft studies as it increased the agonist qualities of the drug (Shou et al

2004). Interestingly increased EGFR/HER2 dependence is important as it is 

thought to allow survival of initial anti-hormone insult during acquisition of 

resistance to both fulvestrant and tamoxifen (McClelland et al 2001, Gee et al 

2003), and inhibition of EGFR signalling was able to overcome development 

o f resistance in both cases in MCF-7 cells. This shows induction of alternative 

compensatory signalling occurs during fulvestrant or tamoxifen treatment, 

with hormone responsive cells switching from preferred cross-talk between 

E2 and Insulin-like growth factor receptor signalling (Fagan and Yee 2008) to 

dependence on alternative (erbB) growth factor driven pathways (Gee et al 

2003).

While there is little clinical information on acquired fulvestrant 

resistance, the importance of increased growth factor signalling and its 

downstream effects has been shown in multiple cell models of acquired 

fulvestrant resistance. This includes the FasMCF-7 model of acquired 

fulvestrant resistance mentioned previously. This model was based on the 

MCF-7 cell model and was generated after 3-4 months of continuous 

fulvestrant exposure in vitro. In this model termed FasMCF-7, elevated EGFR
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and MAPK signalling was observed, and cells were subsequently growth 

inhibited by use of gefitinib (an EGFR inhibitor) (McClelland et al 2001). 

IGF1-R signalling has also shown to be deregulated in vitro in some models of 

fulvestrant resistance (Frogne et al 2005, Campbell et al 2001).

Other models of acquired fulvestrant resistance generated by in vitro or 

in vivo methods include the MCF-7/182-R (and 164-R) cell lines, 

MCF7/LCC9, MCF7/F, MCF7/HER2/«ew-7£, MCF7/HER2-18 and ICI-R. 

Most o f these fulvestrant resistant models, like the McClelland FasMCF line, 

retain ER protein expression, detectable ER mRNA (Brunner et al 1997, 

Dumont 1996, Fan et al 2009, Jensen et al 1999, and Larsen et al 1997) and 

show dependence on increased growth factor signalling. The MCF-7/182-R 

and 164-R series o f cell lines shows increased expression of EGFR as well as 

increased activation of HER3, AKT and MAPK and is preferentially sensitive 

to the inhibitory effects of gefitinib, compared to parental cells (Sonne-Hansen 

et al 2010, Frogne et al 2009). In models o f fulvestrant resistance, changes in 

the growth factor receptor pathways have been observed at the receptor level, 

ligand level and downstream targets which could further enhance activation of 

these pathways (McClelland et al 2001, Atlas et al 2003, Sommer et al 2003, 

Frogne et al 2005 and Fan et al 2006). There has also been evidence of 

increased growth inhibition in cells with acquired fulvestrant resistance by 

combination inhibition of ErbB family members, either by combining 

individual signal transduction inhibitors or by use of a pan-ErbB inhibitor such 

as C l-1033. However there seems to be some reversibility, and an adaptability 

to switch between ER and growth factor signalling dependant on the pressure
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provided by inhibition (Sonne-Hansen et al 2010), and interestingly in the 

FasMCF-7 model, similar to the other models mentioned above, the low ER 

expression and function was found to be reversible after a period of anti- 

hormone removal (Nicholson et al 2005, McClelland et al 2001).

Further evidence of the important induction of compensatory signalling 

following anti-hormone treatment was demonstrated when both fiilvestrant 

and gefitinib were used in combination in MCF-7 cells, leading to a significant 

anti-tumour effect (Hutcheson et al 2003, Knowlden et al 2003), and lack of 

resistance to either molecule developing following long-term exposure 

(Nicholson et al 2005, Gee et al 2003, Nicholson et al 2004). Interestingly, 

while co-treatment with fiilvestrant and growth factor inhibitors can delay the 

onset o f resistance to fulvestrant in cell models, activation of HER2 by 

Heregulin reduces the time taken to acquire resistance. This Heregulin 

mediated rescue o f fulvestrant induced anti-tumour effect can be stopped by 

HER2 inhibition, indicating that the effect was mediated through ErbB 

activation, likely by HER3/4 dimerisation with HER2 (Sonne-Hansen et al 

2010). The inhibitory effect of C l-1033 on the MCF-7/182-R series was also 

more pronounced in the presence of fulvestrant as cells were prevented from 

utilising ER signalling due to the anti-oestrogen effect (Sonne-Hansen et al 

2010).

The cross-talk between ER and growth factor receptors is clearly more 

important and more common in development of endocrine resistant than first 

thought, and the ability to switch between signalling networks is a major 

factor in acquisition of endocrine resistance. Work has led to the discovery of
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a bidirectional cross-talking loop between ER and EGFR signalling in 

tamoxifen resistant cells (Nicholson et al 1999, 2004).

Increased activation of EGFR by TGFa and amphiregulin, leads to 

activation of ERK, and AKT signalling, increasing the phosphorylation of the 

ER at serine residues 118 (Kato et al 1995) and 167 respectively (Campbell et 

al 2001). While these sites are normally required for maximal AF-1 and AF-2 

mediated transcription, in the presence of tamoxifen this leads only to an up- 

regulation of AF-1 transcriptional activity, causing an increase in hormone 

independent ER transcription (Ring and Dowsett 2004) and increased growth 

in the presence o f the anti-hormone. Furthermore, increased EGFR dependent 

activation o f ERK (Knowlden et al 2003) and AKT (Jordan et al 2004), in 

addition to elevated ER phosphorylation (Britton et al 2006) has been 

demonstrated in in vitro models o f acquired tamoxifen resistance. This has 

also been demonstrated in some fulvestrant resistant cell lines (Sonne-Hansen 

et al 2010).

Significantly, EGFR can also interact with insulin-like growth factor 

receptor 1 (IGF-1R) signalling to aid resistant growth with IGF-II promoting 

IGF-1R driven activation of c-SRC, which in turn causes phosphorylation of 

tyrosine 845 on EGFR to up-regulate EGFR activity (Knowlden et al 2005).

Additionally, EGFR may also promote further gene transcription by 

increasing activation of ER co-activators, and decreasing activation of ER co­

repressors (Ring and Dowsett 2004). This bi-directional cross-talk in total is 

believed to allow ligand independent ER driven gene transcription in the
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presence of tamoxifen leading to increased expression of growth factors, such 

as TGFa and amphiregulin (Nicholson et al 2003, Britton et al 2006).

As well as increases in EGFR/HER2 activity following ER promoted 

genomic signalling in this autocrine signalling ‘loop’, non-genomic ER 

signalling is also suggested to be able to stimulate growth factor signalling at 

the plasma membrane in some models of endocrine resistance (Schiff et al 

2004, Chung et al 2002, and Massarweh et al 2008). For example, ER has 

been shown to promote EGFR signalling via direct interactions with adaptor 

molecules such as SHC and c-SRC (Fan et al 2007, Yue et al 2007).

De-regulated growth factor signalling as a mechanism of resistance has 

also been reported in models resistant to severe E2 deprivation in vitro, with 

elevated levels o f IGF-R1, EGFR, HER2 and MAPK and P13K/AKT 

signalling observed. These signalling molecules are again subsequently able to 

interact with ER via both genomic and non-genomic ER signalling (Santen et 

al 2005, Martin et al 2005).

While the ER dependant bi-directional loop with growth factor 

signalling elements holds true for some models of endocrine resistance, in 

others (primarily including models o f fulvestrant resistance) there are also 

mechanisms o f ER-independent activation of growth factor receptors. 

Activation o f ErbB family members have been shown to repress ER 

expression, making cells less sensitive to endocrine therapy (Liu et al 1995, 

Stoica et al 2000, and Oh et al 2001, Bayliss et al 2007) and vice-versa 

(Sonne-Hansen et al 2010). This is supported by clinical evidence showing the 

inverse relationship between ER and EGFR/HER2 with the over-expression of
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the latter leading to decreased anti-oestrogen sensitivity (Housten et al 1999, 

De Laurentis et al 2005). This is likely due in part to increased activation of 

ERK, a downstream element of EGFR/HER2 signalling which confers 

resistance to tamoxifen and poor patient prognosis in the clinic (Gee et al 

2001).

There is further clinical evidence of increased growth factor signalling 

in anti-hormone resistance. Elevated growth factor signalling has been 

associated in the clinic with both de novo tamoxifen resistance as well as 

acquired resistance (Gee et al 2005, Gee et al 2001) and correlates with poorer 

patient prognosis (Gee et al 2001). Increased HER2 and p38 MAPK signalling 

has also been observed in clinical tamoxifen relapse samples (Gutierrez et al

2005). Also in ER positive, pre-menopausal breast cancer patients who have 

undergone anti-hormone treatment who also had high levels of AKT activity 

were shown to have an increased likelihood of relapse on treatment and a 

greater risk o f metastases (Perez-Tenorio et al 2002). Increased levels of 

EGFR and HER2 have also been associated with a decreased ability of anti­

hormones to lower tumour proliferation compared to those without (Dowsett 

et al 2005, Miller et al 2005). Other clinical studies have shown patients with 

phosphorylated HER2 or those over-expressing EGFR had the shortest 

survival time (DiGiovanna et al 2005). Evidence for ER/growth factor cross­

talk during acquisition of resistance has also been obtained in the clinic. Thus 

fulvestrant can work effectively as a second line agent in two thirds of ER+ 

patients following tamoxifen relapse (Howell 2006), while clinical response to
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anti-growth factor blockade (e.g. gefitinib) was reported in some ER positive 

patients following tamoxifen relapse (Gutteridge et al 2010).

It is important also to note that while most models of acquired 

fulvestrant resistance still display ER, long-term culture (for over two years) 

has been shown to produce a completely irreversible ER-negativity in a 

fulvestrant resistant cell model, produced in the Tenovus Centre for Cancer 

research (Nicholson et al 2005, Hiscox et al 2006). Only one other model, the 

MCF7-F model (Liu et al 2006) shows similar characteristics to this FasR cell 

line in that it also demonstrates complete and irreversible loss of ER protein 

and mRNA. However the resistance mechanism is less clearly understood in 

these ER-negative MCF-7 models o f late fulvestrant resistance, though there is 

increased expression of various signalling molecules, including the c-Met 

receptor and exposure to HGF can increase these cells invasive capacity 

(Hiscox et al 2006a). Growth factor receptors and their downstream kinases 

have also been implicated in other models o f acquired resistance to both anti­

hormones, and E2 deprivation strategies (McClelland et al 2001, Brodie et al

2007). The long-term activation of these growth factors and the subsequent 

constituent AKT and MAPK signalling may similarly lead to acquisition of an 

ER negative, endocrine resistant phenotype in some instances.
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1.7. RNA interference.

1.7.1. Discovery of RNA interference.

The phenomenon known as RNA interference (or RNAi) was only first 

documented in the 1990’s by plant scientists, Napoli, Jorgensen and 

colleagues (Napoli et al 1990, Jorgensen et al 1996). The initial research was 

interested in the development o f a deeper purple colouration in the petals of 

petunia plants. In petunias as in many plants, the anthocyanin biosynthesis 

pathway is responsible for pigmentation. Chalcone synthase (CHS) is a key 

enzyme in this pathway, and Napoli and Jorgensen believed it to be the rate- 

limiting enzyme in anthocyanin biosynthesis. Thus, in an attempt to generate 

dark-violet petunias, Napoli and Jorgensen over-expressed CHS in petunias, by 

artificially inserting multiple copies o f double-stranded (ds)RNA specific for 

this gene. This experiment however, unexpectedly resulted in pale purple and 

even white petunias. When investigated further, the levels of CHS (both 

endogenous and introduced) in the experimental plants were found to be 50- 

fold lower than in the wild-type petunias. This led to the hypothesis that the 

introduced dsRNA was somehow able to suppress the endogenous CHS gene 

(Napoli et al 1990).

In the following years, similar phenomenon was recorded in other 

organisms such as a red bread mould, Neurospora crassa (Romano and 

Macino 1992), and in the nematode worm Caenorhabditis elegans (Guo and
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Kemphues 1995). It was at this time noted that introduction of either sense or 

antisense RNA resulted in degradation of the specific mRNA (Guo and 

Kemphues 1995) though this was later proved to be due to contamination of 

the antisense RNA preparation with the sense strand (Fire et al 1998). The 

publishing of Fire and colleagues paper showed the trigger for gene silencing 

was double-stranded rather than single stranded (ss)RNA in their experiments 

in C.elegans, with ssRNA (sense or antisense) being 10-100 fold less effective 

than dsRNA at targeting the same mRNA (Fire et al 1998). The fact dsRNA 

exposure caused systemic silencing (Voinnet and Baulcombe 1997), and could 

be passed on to future generations (Grishok et al 2000) led to belief that there 

was a stable intermediate involved. While it was thought the antisense strand 

was the one that bound to the mRNA, the full-length strand could never be 

detected. Short fragments of roughly 25 nucleotides were eventually 

discovered (Hamilton and Baulcombe 1999) and these small interfering 

(si)RNA’s were shown to be necessary for RNAi to function.

The definitive papers on the subject came when artificially synthesised 

siRNA’s were shown to silence both heterologous and endogenous genes in 

Drosophilla, and for the first time RNAi was demonstrated in mammalian 

cells (Elbashir et al 2001, 2001a). While a role for using siRNAs as a gene 

silencing tool had now been established in animal cells, questions remained 

about the precise mechanism of RNAi. Eventually however the enzymes 

responsible for the first RNAi step of conversion of dsRNA to siRNAs, and 

the second step o f cleavage of target mRNA were discovered (Hammond et al
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2000, Bernstein et al 2001). The mechanism of RNAi will be discussed in the 

following section (and shown in figure 1.4.).

1.7.2. Mechanism of RNAi action.

Once dsRNA is introduced into the cell it is cleaved by a type III RNase III 

enzyme called Dicer, an endoribonuclease which contains two RNase III 

motifs and an amino-terminal helicase domain, able to cleave dsRNA into 

siRNA’s o f 20-25 nucleotides in length (Bernstein et al 2001). Dicer 

homologues have been discovered in all organisms which exhibit RNAi 

(Sontheimer 2005). The double stranded siRNA duplexes formed become 

associated with a multi-enzyme complex including an RNA recognition site, 

an exonuclease component, and an endonuclease component in the form of the 

enzyme Argonaute 2 (AG02). This RNA-induced silencing complex (RiSC) 

then discards and cleaves the siRNA sense strand (Matranga et al 2005). This 

siRNA-RiSC protein complex becomes activated by adenosine tri-phosphate 

(ATP), and once activated it recognises mRNA sequences complementary to 

its bound siRNA strand and is able to bind to them. The bound mRNA is then 

degraded by the endonuclease activity o f AG02, cleaving the mRNA strand 

between complementary nucleotides 10 and 11 of the siRNA (from 5’ end). 

Once degraded the siRNA-protein complex is free to bind another 

complementary mRNA in a catalytic manner, and as such this process is able 

to reduce specific mRNA to very low levels, rapidly (Hutvagner and Zamore
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2002). This loss o f mRNA causes gene silencing by allowing down regulation 

o f the protein to low levels (with the time taken depending on the half life of 

the protein) with no further protein being translated. In addition to full RNAi 

activity by introduction of dsRNA for a gene, it is possible to use this 

phenomenon as a tool for genetic knockdown studies in mammalian cells by 

introduction of synthetic siRNA to a gene of interest, since previously the 

introduction of long dsRNA into mammalian cells was shown to elicit an 

interferon response that caused a general inhibition of translation leading to 

loss o f the RNAi specificity (Elbashir et al 2001a). This process works in the 

previously described manner excepting that it by passes the Dicer step as they 

are already processed into small RNA of 20-25 nucelotides in length. These 

siRNA have been shown to be effective at nanomolar (or lower) 

concentrations (De Fougerolles et al 2007).
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1. dsRNA introduced into the 
cell is cleaved by Dicer into 
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mRNA

Figure 1.4. Mechanism o f RNAi action.

1.7 ,3 . A p p lication s o f  s iR N A  in sc ien tific  research.

In recent years the RNAi pathway and use of siRNA’s has become the major 

means o f assessing loss of gene function in many organisms. Conventional 

mutagenesis requires production of single mutants and for double mutants two 

single mutants then need to be crossed, this is inefficient, and in some cell
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lines and models impossible. The ease with which single genes, or by use of 

multiple siRNA’s, whole pathways can be silenced by siRNA has led to the 

generation and screening of genome-wide siRNA libraries in many organisms 

(Westbrook et al 2005, Sen et al 2004, Shirane et al 2004, Bems et al 2004). 

While generation of siRNA librarys can be designed in silico using various 

algorithms freely available (Reynolds et al 2004, Pei and Tuschi 2006) the 

only tried and true way to select the most potent siRNA is empirically, by 

experimentation. However in recent years siRNA production and subsequent 

testing has been fully exploited by industry. It is now possible to buy 

artificially produced siRNA molecules specific to almost any gene you desire. 

Commercial siRNA’s are designed for stability and knockdown is highly 

efficient and guaranteed. Various positive and negative controls are also 

available such as non-targeting scramble controls that don’t target any known 

gene within the cell line, and using RT-PCR and Western blotting techniques 

it is easy to assess whether the siRNA is knocking out the gene of interest.

SiRNA due to its remarkable ability to modulate gene expression has 

become an invaluable tool in gene mapping; pathway dissection and gene 

function analysis and may lead to finding the initial and further functions of 

the 25,000 human genes and pseudogenes we don’t yet fully understand.

1.7.4. Clinical uses of siRNA.

After initial discovery the possible therapeutic applications of siRNA 

technology quickly became apparent. The ability of siRNA technology to
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down regulate a gene (or genes) o f interest has lead to research into its 

development as clinical therapy for a number o f diseases where inhibition of 

specific genes could be a valid druggable target in the disease setting, 

especially where small molecule inhibitors are not a valid option (reviewed in 

De Fougerolles et al 2007 and Aagaard and Rossi 2007). Research has been 

conducted into a wide range o f diseases and delivery methods, from SARS 

treatment with an intranasal preparation to intra-ventricular preparations 

designed to target genes in diseases o f the central nervous system. There has 

also been some work in preparations designed to target tumours, though 

effective delivery is still an issue new preparations are being devised all the 

time (De Fougerolles et al 2007). RNAi has moved from research into clinical 

trials rapidly. Initial trials unsurprisingly focused on well known therapeutic 

targets such as the vascular endothelial growth factor (VEGF) pathway to treat 

the wet form o f age-related macular degeneration (AMD). This was the first 

clinical trial o f  an siRNA based therapeutic (Sah 2006). As o f February 2008, 

there were five ongoing clinical trials o f siRNA therapeutics. O f these 

therapeutics, Bevasiranib and AGN-745 are both targeted to the VEGF 

receptor, all its isoforms or VEGF-1R respectively to treat wet AMD. 

RTP801i-14 has been designed to work synergistically with either of these 

agents by targeting the hypoxia-inducible gene RTP801. The forth therapeutic, 

ALN-RSV01 targets the viral nucleocapsid (N) gene to treat respiratory 

syncytial virus infection. An siRNA based therapeutic targeting the p53 gene 

is undergoing trials to treat acute renal failure. However as successful delivery 

is still an issue, these drugs are all uncomplexed, or saline-based formulations

-62-



Chapter 1. Introduction Section.

and are designed for direct delivery. However new siRNA therapies are 

currently under development, using lipid-nanoparticles and conjugated 

siRNA’s to allow for systemic delivery for use in a wider variety of diseases 

(reviewed by De Fougerolles 2008).

1.7.5. Delivery of siRNA.

As siRNAs are relatively large, negatively charged molecules they do not 

easily pass through the cell plasma membrane into cells. While some types of 

cells; such as those present in eyes (Reich et al 2003, Shen et al 2006), lungs 

(Bitko et al 2005, Li et al 2005), and the central nervous system (Makimura et 

al 2002, Dorn et al 2004) have been shown to uptake uncomplexed siRNA 

molecules directly into the cytoplasm many cell types will not, and the 

mechanism behind this is not well understood. Most siRNA need to be 

artificially introduced into cell models, and effective siRNA delivery is the 

most important limiting factor in RNAi technology, and is even more of a 

barrier in developing siRNA based drugs and in vivo studies. Because of this 

various methods o f siRNA modification and packaging have been developed. 

siRNA modification can take the form o f conjugate with a cholesterol 

molecule, which was initially used as a conjugate to anti-sense 

oligonucleotides to for hepatic delivery (Biessen et al 1999), other lipophillic 

molecules, proteins, short-peptides; such as penetratin and transportan 

(Muratovska and Eccles 2004), transferrin, folate, or Arg-Gly-Asp peptides 

(Hu-Lieskovan et al 2005, Kim et al 2005, Schiffelers et al 2004 respectively).
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Antibodies and aptamers have also been conjugated with siRNA for improved 

delivery (De Fougerolles et al 2007). The use o f siRNA conjugates is an 

interesting method for development o f future siRNA based delivery 

technology for two reasons; initially from a technical point o f view, as only 

the antisense siRNA strand is required for gene knockdown, this leaves the 

passenger or sense strand as a perfect candidate for conjugation with no 

detriment to the effectiveness of the siRNA. Secondly from a drug design 

issue, the conjugate could theoretically be cell or tissue specific, for example 

siRNAs conjugated to an RNA aptamer specific for the prostate specific 

membrane antigen (PSMA) which is over-expressed in prostate cancer cells 

and tumour vasculature were recently used both in vitro (Chu et al 2006) and 

in vivo (McNamara et al 2006) with some success. These PMSA aptamers 

were conjugated to siRNA specific for the survival genes PLK1 and BCL2 and 

were uptaken into cells leading to RNAi mediated cell death in vivo 

(McNamara et al 2006). Though useful for local delivery these aptamer- 

siRNA conjugates can be rapidly removed by normal kidney function, and 

have a half-life unsuitable for systemic therapy without further formulation 

(Nimjee et al 2005).

While siRNA can also be introduced into cells by prior packaging into 

viral capsules, the most common form of siRNA delivery is with a lipid 

transfection reagent, forming a lipid nanoparticle (De Fougerolles 2008). The 

lipid complex is usually comprised o f a phospholipid bilayer, surrounding an 

aqueous compartment, able to transport substances into cells by fusion with 

cell membranes to deliver its load. When complexed with siRNA they are
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termed lipoplexes or Liposomes/SNALPs (stable nucleic acid-lipid particles) 

(Judge et al 2005). Liposomes are particles with stable physiochemical 

characteristics, making them suitable drug delivery systems (De Fougerolles

2008). Liposomes for siRNA delivery tend to be comprised of multiple lipids, 

each with a specific function within the liposome, (Torchilin 2006, Li and 

Szoka 2007) outlined in the following table (see table 1.1.).

Type o f lipid. Function within liposome.

Cationic lipids Aids formulation, cellular uptake and 

endosomal release.

Fusogenic lipids Facilitates endosomal release.

Polyethylene glycosolated lipids 

(PEGs)

Stabilise the lipoplex, and have 

fusogenic properties.

Cholesterol Stabilises the lipoplex.

Table 1.1. Lipids and their Junctions within an siRNA liposome.

In contrast lipoplexes are formed spontaneously on combination between 

siRNA and commercially available cationic transfection lipids. These 

amorphous siRNA lipoplexes tend to be less structurally stable, more 

heterogenous in nature, and can rapidly aggregate. Lipoplexes are therefore 

prepared immediately prior to application (De Fougerolles 2008).
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1.7.6. Limitations of siRNA.

As stated previously effective delivery is the greatest limiting factor in use of 

siRNA, however other limitations o f the technology need to be taken into 

account.

Specificity o f siRNA’s.

While RNAi technology can be used to silence gene expression with 

high specificity, even able to specifically silence alleles containing a single 

nucleotide polymorphism (Schwarz et al 2006), there is still the possibility of 

‘off-target’ effects. An off-target effect is when the siRNA used is able to 

interfere with alternative mRNA expression, most common in mRNAs sharing 

partial homology with target mRNA. The degradation of other undesired 

mRNA’s may have its own effects on cell behaviour. These off-targets 

however tend to be three-fold lower than the gene of interest (Jackson et al 

2003, Lin et al 2005 and Qui et al 2005), however to accurately assess all 

possible off-targets from use o f an siRNA would require either detailed 

proteomic analysis or Aflymetric gene expression evaluation (Jackson et al 

2003, Lin et al 2005 and Qui et al 2005).
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Activation o f innate immune-svstems.

A further unwanted side-effect o f siRNA use can be the undesired 

activation o f the serine/threonine protein kinase (PKR) pathway, this is usually 

a defence against viral infection, but can recognise dsRNA greater than 30 

nucleotides in length, though at higher concentrations shorter siRNA maybe 

able to activate this pathway, resulting in cell death (Schlee et al 2006). 

Another concern is the possible activation of Toll-like receptors (TLRs) which 

trigger production o f type one interferons, pro-inflammatory cytokines and can 

induce NF-kB activation (Homung et al 2005), though immunostimulation by 

siRNA’s can be circumvented by sequence choice, for example preventing 

TLR activation by choosing siRNA sequences that are not Guanine and 

Uracil-rich as TLR-7 and 9 binding has been shown to be GU specific 

(Homung et al 2005, Judge et al 2006).

siRNA stability.

Though not studied comprehensively in various fluids, uncomplexed or 

‘naked’ siRNA has a half life o f minutes in human plasma (Layzer et al 2004, 

Choung et al 2006), degraded rapidly by the high level of endo and 

exonuclease activity, but by chemical modification of the siRNA this can be 

overcome. Introduction o f a phosphorothioate linkage at the 3’ end of the 

siRNA and modification o f sugars by adding methyl or fluoro groups can 

confer exo and endonuclease resistance respectively (De Fougerolles et al
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2005, Layzer et al 2004, and Choung et al 2006) and this can be performed 

without loss o f silencing ability. The inclusion o f siRNA into various carrier 

systems can also give additional protection from nuclease digestion.

While these points are slight weaknesses in the technology rather than 

unassailable problems and research is ongoing currently to improve on these 

areas, and although still a relatively new technology, it has been rapidly 

utilised with good degrees of success, answering previously unanswerable 

questions.

1.8. Aims and hypothesis o f  PhD project.

There is much evidence, both in pre-clinical models and in the clinic, that the 

ER plays a vitally important role in the majority o f breast cancers. The most 

successful current breast cancer therapies are based around inhibiting ER 

signalling (tamoxifen and fulvestrant), or lowering levels o f oestrogens (AI’s). 

However none o f these therapies have yet been shown to be able to completely 

ablate ER action, and an ER positive phenotype has been shown to remain for 

a considerable period into disease progression. This can occur even following 

clinical use o f fulvestrant, the most potent ER down-regulator available, and 

the only one currently sanctioned for clinical use. It has also been shown that 

there is a role o f continued ER activity during acquisition of some forms of 

endocrine resistance, with both model and clinical evidence of acquired 

tamoxifen, Al or fulvestrant resistance often showing an anti-tumour response 

to further endocrine agents such as fulvestrant. Emerging clinical evidence



Chapter 1. Introduction Section.

shows that increasing concentrations o f fulvestrant are able to further reduce 

ER levels and function, and to contribute to better anti-proliferative and 

patient response. However, it remains unknown if  maximal depletion of ER 

during the hormone responsive phase could subvert residual cell proliferation 

(and thus potentially acquisition o f resistance).

This thesis aims to assess the biological importance of this residual ER 

in breast cancer, by attempting to produce a complete loss o f ER levels and 

assessing subsequent signalling activity and anti-tumour effect. This will be 

achieved by the use of the following three methodologies to manipulate ER 

levels;

1. The use o f short-term, high-concentration fulvestrant exposure, 

in our MCF-7 cell model to assess the maximum ER down- 

regulation, and signalling inhibition achievable by targeting the 

ER protein using this drug, and its effect on tumour growth and 

proliferation.

2. By targeting translation of ER mRNA, utilising the novel 

mechanism o f RNAi to inhibit ER mRNA, to provide an 

alternative means to subsequently reduce ER protein levels,

. signalling, and its tumour activity. This mechanism will be 

assessed as a model to see whether ER mRNA targeting could 

be ah improved therapeutic strategy in treatment o f ER positive 

breast cancer.

3. Finally, both strategies for targeting ER protein or ER mRNA 

will be used in conjunction, to see whether there is any
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synergistic action of these in combination, and whether this can 

achieve complete ER ablation. The project will address whether 

a complete/greater ER loss than previously recorded in cell 

models or within the clinical setting can be achieved, and if  this 

shows greater anti-tumour activity in our cell-models. This 

should help address if  a greater improvement in ER targeting 

could be of future therapeutic benefit to patients presenting 

with ER positive breast tumours beyond other current 

therapeutic regimens.
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Section 2.1. Materials.

Below is a complete list o f all materials used in subsequent experiments and 

the companies they were purchased from. Please see section 2.2. For their use.

•  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), 

from Sigma-Aldrich, Poole, Dorset, UK.

•  3-(aminopropyl)triethoxy-silane (TESPA), from Sigma-Aldrich, Poole, 

Dorset, UK.

•  Acrylamide/bis-acrylamide (30% solution (v/v), 29:1 ratio), from 

Sigma-Aldrich, Poole, Dorset, UK.

•  Activated charcoal, from Sigma-Aldrich, Poole, Dorset, UK.

•  Agarose, Bioline Ltd, London, UK.

•  Ammonium persulphate (APS), from Sigma-Aldrich, Poole, Dorset, 

UK.

•  Amphotericin B (Fungizone), from Invitrogen, Paisley, UK.

•  Antibiotics (penicillin/streptomycin), from Invitrogen, Paisley, UK.

•  Anti-mouse horseradish-peroxidase-linked IgG (source: sheep), from 

Amersham, Little Chalfont, UK.

•  Anti-rabbit horseradish-peroxidase-linked IgG (source: donkey), from 

Amersham, Little Chalfont, UK.

•  Anti-rabbit/Anti-mouse EnVision™+ System, Peroxidase (DAB) kits, 

from Cytomation, California, USA.
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•  Bovine serum albumin (BSA), from Sigma-Aldrich, Poole, Dorset, 

UK.

•  Cell culture medium: R P M I1640 and Phenol-red-free R PM I1640, 

from Invitrogen, Paisley, UK.

•  Cell culture medium: Phenol-red-free DCCM, from Biological 

Industries Ltd, Israel.

•  Cell scrapers, from Greiner Bio-One Ltd, Gloucestershire, UK.

•  Chemiluminescent Supersignal® West HRP Substrate (Pico, Dura and 

Femto), from Pierce and Warriner Ltd, Cheshire, UK.

•  Coulter Counter counting cups and lids, from Sarstedt AG and Co., 

Ntimbrecht, Germany.

•  Di-butylpthalatexylene (DPX), from Sigma-Aldrich, Poole, Dorset, 

U K ..

•  Dimethyl sulphoxide (DMSO), from Sigma-Aldrich, Poole, Dorset, 

UK.

•  Disposable Cuvettes, from Fisher Scientific UK Ltd, Loughborough, 

U K

• DNase free, DNA free, RNase free and RNA free H2O, from Sigma- 

Aldrich, Poole, Dorset, U K

• dNTPs (dGTP, dCTP, dATP, dTTP; lOOmM), from Amersham, Little 

Chalfont, U K

• Dual-Luciferase Reporter Assay system, from Promega Ltd, WI, USA.

•  Ethidium bromide (EtBr), from Sigma-Aldrich, Poole, Dorset, UK.
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•  Ethylene diamine tetraacetic acid (EDTA), from Sigma-Aldrich, Poole, 

Dorset, UK.

•  Ethylene glycol-bis(2-amino-ethylether)-N,N,N’,N’-tetraacetic acid 

(EGTA), from Sigma-Aldrich, Poole, Dorset, UK.

•  Filter paper (grade 3), from Whatman, Maidstone, UK.

• Foetal calf serum (FCS), from Invitrogen, Paisley, UK.

•  General laboratory glass- and plastic ware, from Fisher Scientific UK 

Ltd, Loughborough, UK.

•  Glass coverslips, from Fisher Scientific UK Ltd, Loughborough, UK.

•  Glass slides, from Fisher Scientific UK Ltd, Loughborough, UK.

•  Glycerol, from Fisher Scientific UK Ltd, Loughborough, UK.

•  Glycine, from Sigma-Aldrich, Poole, Dorset, UK.

•  Hydrochloric acid (HC1; 5M), from Fisher Scientific UK Ltd, 

Loughborough, UK.

•  Hyperladder™ I and Hyperladder™ IV, from Bioline Ltd, London, 

UK.

•  Isoton, from Coulter Beckman, UK.

•  Kodak Medical X-ray film, from Genetic Research Instrumentation 

(GRI), Rayne, UK.

•  LB-Agar EZMix™ powder and LB-Broth EZMix™ powder, from 

Sigma-Aldrich, Poole, Dorset, UK.

•  Leupeptin, from Sigma-Aldrich, Poole, Dorset, UK.

•  L-glutamine, from Invitrogen, Paisley, UK.
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•  Lower buffer for SDS-PAGE Gels (Tris 1.5M, pH 8.8), from Bio-Rad 

Laboratories Ltd, HERTS, UK.

•  Magnesium chloride (MgCh), from Sigma-Aldrich, Poole, Dorset, UK.

» Methyl green, from Sigma-Aldrich, Poole, Dorset, UK.

•  Micro-centrifuge tubes (0.5ml and 1.5ml), from Elkay Laboratory 

Products, Basingstoke, UK.

•  Molony-murine leukaemia virus (MMLV) reverse transcriptase, from 

Invitrogen, Paisley, UK.

•  mRNA primers for ER, pS2, PR and Actin, from MGW biotech, 

Germany.

•  N,N,N’,N’-tetramethylene-diamine (TEMED), from Sigma-Aldrich, 

Poole, Dorset, UK.

•  Nitrocellulose transfer membrane (Protran® BA85; 0.45pm pore size), 

from Schleicher and Schuell, Dassell, Germany.

•  pH calibration buffer tablets (pH 4 ,7  and 10), from Fisher Scientific 

UK Ltd, Loughborough, UK.

•  Phenylarsine oxide, from Sigma-Aldrich, Poole, Dorset, UK.

•  Phenylmethylsulfonyl fluoride (PMSF), from Sigma-Aldrich, Poole, 

Dorset, UK.

•  Phosphate buffered Saline (PBS), from Sigma-Aldrich, Poole, Dorset, 

UK.

•  Phospho-EGFR antibody (tyrl068), from Cell Signalling Technology, 

Danvers, MA, USA.
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•  Phospho-ERK antibody (E-4) sc-7383, from Santa Cruz 

Biotechnology, Heidelberg, Germany.

•  Phospho-IGF-IR antibody (Y1131), from Cell Signalling Technology, 

Danvers, MA, USA.

•  Pipette tips, from Greiner Bio-One Ltd, Gloucestershire, UK.

•  Polyoxyethylene-soibitan monolaurate (Tween 20), from Sigma- 

Aldrich, Poole, Dorset, UK.

•  Ponceau S solution (0.1% [w/v] in 5% acetic acid), from Sigma- 

Aldrich, Poole, Dorset, UK.

•  Potassium chloride (KC1), from Sigma-Aldrich, Poole, Dorset, UK.

•  Random hexamers (RH), from Amersham, Little Chalfont, UK.

•  RNase-free H2O, from Sigma-Aldrich, Poole, Dorset, UK.

•  RNasin® ribonuclease inhibitor, from Promega, Southampton, UK.

•  siGenome ER siRNA smartpool, individual siGenome ER siRNA, 

Scrambled siRNA, On-Target ER siRNA smartpool, siTOX siRNA 

and Dharmafect #1 transfection lipid, from Dharmacon, CO,US A.

•  Sodium azide, from Sigma-Aldrich, Poole, Dorset, UK.

•  Sodium chloride (NaCl), from Sigma-Aldrich, Poole, Dorset, UK.

•  Sodium dodecyl sulphate (SDS), from Sigma-Aldrich, Poole, Dorset, 

UK.

• Sodium fluoride (NaF), from Sigma-Aldrich, Poole, Dorset, UK.

•  Sodium hydroxide (NaOH; 5M), from Fisher Scientific UK Ltd, 

Loughborough, UK.
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•  Sodium molybdate (Na2Mo0 4 ), from Sigma-Aldrich, Poole, Dorset, 

UK.

•  Sodium orthovanadate (NaVC>4), from Sigma-Aldrich, Poole, Dorset, 

UK.

•  Solvents (acetone, chloroform, ethanol, formaldehyde, isopropanol and 

methanol), from Fisher Scientific UK Ltd, Loughborough, UK.

•  Sterile bijou vials (5ml), from Bibby Sterilin Ltd, Stone, UK.

•  Sterile cell culture plasticware (i.e. flasks, Petri-dishes, 12-, 24- and 

96-well plates), from Nunc Int., Roskilde, Denmark.

•  Sterile Falcon tubes (15ml and 50ml), from Sarstedt AG and Co., 

Nttmbrecht, Germany.

•  Sterile phosphate buffered saline (PBS), from Invitrogen, Paisley, UK.

•  Sterile syringe filters (0.2pm), from Coming Inc., Coming, NY, USA.

•  Sterile syringe needles (BD Microbalance™ 3; 25G x 5/8”), from 

Becton Dickinson (BD) UK Ltd, Oxford, UK.

•  Sterile syringe needles (Sherwood Medical Monoject; 21G x 114”), 

from Sherwood - Davis & Geek, Gosport, Hampshire, UK.

•  Sterile syringes (BD Plastipak™; 1ml, 5ml and 10ml), from Becton 

Dickinson (BD) UK Ltd, Oxford, UK.

•  Sterile universal containers (30ml), Greiner Bio-One Ltd, 

Gloucestershire, UK.

•  Sterile, disposable serological pipettes (5ml, 10ml and 25ml), from 

Sarstedt AG and Co., Ntimbrecht, Germany.
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•  Taq DNA polymerase (BioTaq™; 5U/pl), from Bioline Ltd, London, 

UK.

•  Total Beta actin antibody (Sigma clone AC-15), from Sigma-Aldrich, 

Poole, Dorset, U K

• Total EGFR antibody (1005) sc-03, from Santa Cruz Biotechnology, 

Heidelberg, Germany.

•  Total ER antibody clone 6F11, from Vector, CA, USA.

•  Total ERK antibody (9101) p44/p42 MAPkinase, from Cell Signalling 

Technology, Danvers, MA, USA.

•  Total IGF-1R antibody (N-20) sc-712, from Santa Cruz Biotechnology, 

Heidelberg, Germany.

•  Total HER2 antibody (2242), from Cell Signalling Technology, 

Danvers, MA, USA.

•  Total IRS1 antibody (2382), from Cell Signalling Technology, 

Danvers, MA, USA.

•  Total Ki67 antibody (M7240) mouse monoclonal anti-human Ki67 

antigen MIB-1 clone, from DAKO, Denmark.

•  Total PR antibody (VP-P976) mouse monoclonal clone 16, from 

Vector, CA, USA.

•  Total pS2 antibody (NCL-pS2) rabbit polyclonal, from Novacastra, 

Newcastle, UK.

•  TRI-Reagent, from Sigma-Aldrich, Poole, Dorset, UK.

•  Tris HC1, from Sigma-Aldrich, Poole, Dorset, U K

•  Triton X-100, from Sigma-Aldrich, Poole, Dorset, UK.
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•  Trizma (Tris) base, from Sigma-Aldrich, Poole, Dorset, UK.

•  Trypsin/EDTA lOx Solution, from Invitrogen, Paisley, UK.

•  Upper buffer for SDS-PAGE Gels (Tris 0.5M, pH 6.8), from Bio-Rad 

Laboratories Ltd, HERTS, UK.

•  Virkon, from Antec International Ltd, Suffolk, UK.

•  Western Blocking Reagent, from Roche Diagnostics, Mannheim, 

Germany.

•  X-ray film developer solution (X-O-dev) and X-ray film fixative 

solution (X-O-fix), from X-O-graph Imaging System, Tetbury, UK.
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Section 2.2. Methods.

2.2.1. Cell culture.

Routine cell culture.

The hormone-sensitive MCF-7 wild type cell line (MCF-7) was a kind 

donation from AstraZeneca Pharmaceuticals (Macclesfield, Cheshire, UK), 

though was originally obtained from the American Type Culture Collection 

(ATCC #HTB-22). The oestrogen receptor positive T-47D, BT-474 and 

MDA-MB-361 cell models were also originally sourced from the American 

Type Culture Collection (ATCC #HTB-133, HTB-20 and HTB-27, 

respectively).

All cell-culture was carried out under sterile conditions in a MDH 

Class II laminar-flow safety cabinet (BIOQUELL UK Ltd, Andover, UK). All 

equipment and consumables were either purchased sterile for single use or 

were sterilized at 119°C using a Denley BA852 autoclave (Thermoquest Ltd, 

Basingstoke, UK).

The MCF-7 and T-47D cell lines used were routinely maintained in 

75cm2 flasks (T-75), containing a liquid medium comprised of R PM I1640 

(with phenol-red pH indicator) which contained 5% (v/v) foetal calf serum 

(FCS), and the antibiotics; penicillin (10 units/ml), and streptomycin 

(lOOpg/ml) and the anti-fungal agent amphotericin B at 2.5pg/ml.
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The cells were grown in a Sanyo MCO-17AIC incubator (Sanyo E&E 

Europe BV, Loughborough, UK) at 37°C in a humidified atmosphere of 5% 

CO2 in air. The culture medium was replaced with fresh media every 3-4 days 

and the cells were visually assessed during this culture using a Nikon Eclipse 

TE200 phase-contrast microscope (Nikon UK Ltd, Kingston-upon-Thames, 

UK). The cells were passaged approximately every 7 days (once reaching a 

confluency of approximately 80%) with a seeding ratio of one in ten (1:10).

Passaging of cells was performed by removal of media, followed by 

disruption o f the cell monolayer by addition of 10ml of Trypsin/EDTA 

(0.05%/0.02% w/v) in Dulbecco’s phosphate-buffered saline (PBS), and 

returned to the incubator for a period of 3-5 minutes until the cells were in 

suspension. The Trypsin/EDTA was neutralised by addition of lOmls phenol- 

red containing RPMI 1640 containing 5% (v/v) foetal calf serum (FCS). Cells 

were then pelleted by centrifugation at lOOOrpm for 5 minutes, and followed 

by re-suspension of the cell pellet in 1ml phenol-red containing RPMI 1640 

containing 5% (v/v) foetal calf serum (FCS). This suspension was drawn into 

and expelled from a pipette tip until no clumps of cells were visible, one tenth 

of this suspension was then added to a T-75 containing 15mls of routine 

culture media.

The BT-474 and MDA-MB-361 cell lines were cultured and passaged 

in the same manner as the MCF-7 and T-47D cell lines though were routinely 

cultured in a liquid medium comprised of RPMI 1640 (with phenol-red pH
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indicator) which contained penicillin (10 units/ml), streptomycin (lOOpg/ml) 

and amphotericin B at 2.5pg/ml but 10% (v/v) FCS.

The fulvestrant-resistant FasMCF MCF-7 cell line was previously 

developed in-house following culture of wild-type MCF-7 cells in phenol-red 

free RPMI 1640 which contained 5% (v/v) charcoal stripped (steroid-depleted) 

foetal calf serum (SFCS) (See appendix 1 for charcoal stripping procedure), 1- 

glutamine (4mM), penicillin (10 units/ml), and streptomycin (lOOpg/ml) and 

amphotericin B (2.5pg/ml). This media was supplemented with 10‘7M 

fulvestrant. Culture was maintained for a period of approximately 12 months, 

until after initial growth inhibition, out-growths of resistant cells were 

observed. For this thesis, the resultant FasMCF cells were maintained in a 

similar manner to MCF-7 cells, except they were routinely cultured in phenol- 

red free RPMI 1640 which contained 5% (v/v) 5% SFCS, 1-glutamine (4mM), 

penicillin (10 units/ml), and streptomycin (lOOpg/ml) and amphotericin B 

(2.5pg/ml), supplemented with 10*7M fulvestrant.

Experimental cell culture.

The seeding media used for the MCF-7, T-47D, BT-474 and MDA-MB-361 

cell lines was either; phenol-red free RPMI containing 5% (v/v) SFCS, 1- 

glutamine (4mM), penicillin (10 units/ml), and streptomycin (lOOpg/ml) and 

amphotericin B (2.5pg/ml) for the stripped serum conditions, or for the whole 

serum experimental condition the media was as follows; phenol-red free RPMI
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containing 5% (v/v) FCS, 1-glutamine (4mM), penicillin (10 units/ml), and 

streptomycin (lOOpg/ml) and amphotericin B (2.5pg/ml).

The seeding media used for the FasMCF cells was phenol-red free 

RPMI 1640 which contained 5% (v/v) SFCS, 1-glutamine (4mM), penicillin 

(10 units/ml), and streptomycin (lOOpg/ml) and amphotericin B (2.5pg/ml), 

supplemented with 10*7M fulvestrant.

Prior to seeding cells for experimentation, cell monolayers were 

washed twice in PBS, before dispersion, centrifugation and re-suspension as 

described previously. The suspension was then passed through a sterile 25G 

syringe needle to obtain a single-cell suspension. A 50pl aliquot of this 

suspension was added to lOmls of Isoton solution and cell number was 

calculated using a Coulter™ Multisizer II (Beckman Coulter UK Ltd, High 

Wycombe, UK). Once counted the desired cell number was then added to the 

correct amount o f seeding media according to the number of conditions and 

type of experiment to be conducted (see table 2.1. for comprehensive figures 

for cell seeding densities into experimental culture apparatus for each 

experiment type and duration o f experiments). Once cells were seeded out into 

desired culture apparatus, 24 hours were allowed for cells to adhere to culture 

surfaces then seeding media was removed and treatment media was added, and 

refreshed every 4 days during the time course of the experiment. Table 2.2 

shows the composition of the various treatment media used in this thesis and 

the conditions used for each experiment are shown in figure legends.

A
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Cell seeding densities for experimental work.

Plate
size

Media 
used/well 
(Seeding or 
Treatment 
media)

Initial
seeding
density/
plate

Type of experiment. Duration of 
experiment.

35mm
Dish

1.5ml lxlO5 Immunocytochemistry 
(1 dish per condition, at 
least 3 replicates)

Immunocytochemistry 
-  4 or 8 days)

6 well 
plate

1.5ml lxlO6 Protein harvest.
(1 well per condition, at 
least 3 replicates)

Protein harvest for 
Western blotting 
analysis -  4 or 8 days

12
well
plate

1ml lxlO6 RNA harvest. (1 well 
per condition, at least 3 
replicates)

RNA harvest for RT- 
PCR -  4 days.

24
well
plate

1ml lxlO6 Total cell counting, (3 
wells used per 
condition, at least 3 
replicates).
ERE reporter gene 
assay. (3 wells used per 
condition, at least 3 
replicates)

Total cell counting -  8 
days.
ERE reporter gene 
assay -  4 days.

96
well
plate

150|il lxlO6 MTT assay. (8 wells 
used per condition, at 
least 3 replicates)

MTT assay -  8 days.

Table 2.1 Cell seeding densities, media amounts and culture apparatus used

fo r  each experiment type and its duration.
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Treatment Volume added to 1ml media 
(Containing whole or stripped 
serum)

Final treatment concentration

Media Control No treatments N/A
10',0M, 10'VM, 10'8M, 10'7M 
or lO^M Fulv

lp l of 10'7M-10 jM 
Fulvestrant stock 
(respectively) in Ethanol. NB. 
Vehicle control was lpl 
Ethanol.

O.lnM-lOOOnM Fulvestrant 
respectively

10-7M Fulv lp l of lO^M Fulvestrant stock 
in Ethanol

lOOnM Fulvestrant

Lipid (2nM-10nM) 0.1pl-0.5pl Dharmafect#l 
transfection lipid as supplied

2nM-10nM Dharmafect 
respectively.

siRNA control/siC 5 pi o f stock siControl siRNA 
as described in 2.2.2. 
combined with 0.1 pi 
Dharmafect#l transfection 
lipid as supplied.

lOOnM siRNA and 2nM 
Dharmafect

siTOX 5pl o f stock siTOX siRNA as 
described in 2.2.2. combined 
with 0.1 pi Dharmafect#l 
transfection lipid as supplied.

lOOnM siRNA and 2nM 
Dharmafect

siGenome siER/siG siER 5 pi o f stock siGenome siER 
siRNA (25% each of siER 
constructs 1-4) as described in 
2.2.2. combined with 0.1 pi 
Dharmafect#l transfection 
lipid as supplied.

lOOnM siRNA and 2nM 
Dharmafect

siER 1-4 constructs 5pl of stock siER siRNA 
constructs 1-4 respectively as 
described in 2.2.2. combined 
with 0.1 pi Dharmafect#l 
transfection lipid as supplied.

lOOnM siRNA and 2nM 
Dharmafect

On-target siER/Ont siER 5pl o f stock On-target siER 
siRNA as described in 2.2.2. 
combined with 0.1 pi 
Dharmafect#l transfection 
lipid as supplied.

lOOnM siRNA and 2nM 
Dharmafect

siRNA control 
+Fulvestrant/siC+fulv

5pl o f stock siControl siRNA 
respectively as described in 
2.2.2. combined with 0.1 pi 
Dharmafect# 1 transfection 
lipid as supplied. Also 1 pi of 
lO^M Fulvestrant stock in 
Ethanol

lOOnM siRNA, 2nM 
Dharmafect and lOOnM 
Fulvestrant.

Combination condition/On- 
target siER +Fulvestrant/ siER 
+Fulv

5pl o f stock On-target siER 
siRNA as described in 2.2.2. 
combined with 0.1 pi 
Dharmafect# 1 transfection 
lipid as supplied. Also 1 pi of 
lO^M Fulvestrant stock in 
Ethanol

lOOnM siRNA and 2nM 
Dharmafect and lOOnM 
Fulvestrant.

N.B. Any +E2 conditions additionally contained lpl o f lO^M 17p-oestradiol stock (in ethanol) per 
ml media for a final concentration 10'9M E2
Table 2.2. Treatments added to either whole or stripped serum containing

media to produce conditions used throughout the project.
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2.2.2. SiRNA transfection.

This methodology was adapted from Dharmacon Technologies product 

information supplied with Dharmacon smartpool siGenome siRNA.

All the commercially obtained oestrogen receptor siRNA constructs 

(SiGenome ESR1 smart p o o l  SiGenome ESR1 siRNA constructs 1-4 and On- 

target ESR1 smart pool) and siRNA controls (On-target non-targeting pool - 

siControl and TOX transfection control- siTOX) were all treated in the same 

way and made into individual standard stock solutions using the lx  siRNA 

buffer provided. The lx siRNA buffer was made up from a 5x solution by the 

addition of four times the volume of DNase and RNase-free H2O (from 

Sigma). SiRNA buffer was added to the siRNA to make up to a final 

concentration 20pM(pmol/pl) and aliquoted in 20pl aliquots into sterile 

microcentrifuge tubes, to prevent degradation by multiple freeze-thaw cycles. 

The siRNA stock was stored at -20°c, until required. Dharmafect #1 

transfection lipid was supplied ready for use at the concentration provided and 

stored at l-4°c (Dharmacon transfection reagent 2002).

The amount of siRNA and transfection lipid required varied depending 

on media required for the plate sized used. The recommended concentrations 

of Dharmafect# 1 transfection lipid according to the manufacturer’s 

instructions were found to be highly cytotoxic. The protocol was then 

optimised to reduce cytotoxicity, (see table 2.3. for lipid amounts originally 

recommended and final optimised amounts. N.B. For both the optimised and
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original siRNA use, the final siRNA concentration was the same shown in 

table 2.2. The original Dharmafect final concentration was 5-fold higher than 

table 2.2. indicates), and see section 3.2 for explanation of optimisation 

performed.

To perform siRNA transfection, cells for experimentation were 

harvested as previously described in section 2.2.1. and the desired number of 

cells were diluted into correct amount of seeding media per size and number 

o f plates required (see table 2.1.). Cells were allowed to settle for 24 hours 

prior to treatment, in an incubator (37°C, in a humidified atmosphere of 5% 

CO2 as previously described).

Transfection lipid and siRNA used for different sizes of culture apparatus.

Plate/Well Stock 

siRNA (pi)

Optimised

Dharmafect

(PD

Original

Dharmafect

(pl)

Media

(mis)

60mm Dish 25 0.5 2.5 5

35mm Dish 5 0.1 0.5 1

6 well plate 10 0.2 1 2

12 well plate 5 0.1 0.5 1

24 well plate 2.5 0.05 0.25 0.5

96 well plate 0.75 0.015 0.075 0.15

Table 2.3. Amounts o f  siRNA stock and transfection lipid neededfor each well 

size.
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After 24 hours the seeding media was removed, just prior to removal 

the siRNA constructs was allowed to thaw on ice and then each pipetted at the 

desired amount into separate sterile micro-centrifuge tubes and the correct 

amount of Dharmafect transfection lipid required was then added to each 

micro-centrifuge tube containing siRNA constructs, additionally a further 

micro-centrifuge containing only lipid was used as a Dharmafect lipid control.

The Dharmafect lipid and siRNA were each then gently mixed up and 

down three times through a pipette tip. The mixture was then allowed to stand 

for 20 minutes to allow formation o f micelles. After micelle formation these 

siRNA/lipid complexes (or lipid alone) were then added to the relevant 

treatment media (already containing the serum, glutamine and antibiotics as 

previously described and fulvestrant in the case of the combination and 

siControl +fulvestrant conditions, see table 2.2.). For example, for the 

siControl arm of an MTT experiment, 8 wells each containing 150pl of 

treatment media are required (Table 2.1), so 6pl of siControl siRNA stock 

would be added to 0.12 pi of Dharmafect which was then added to 1.2ml 

treatment media (see Table 2.2) , and 150pl of this completed treatment 

media was then added to each o f the 8 wells.

These various media were added to the cells after removal of seeding 

media. Cultures were replenished with freshly made treatment medium every 

4 days for duration of experiment containing freshly formed siRNA/lipid 

complexes, at 0 and 4 days for an 8 day experiment (such as MTT) or only on 

day 0 for a 4 day experiment (such as RNA harvest).
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The experimental ER siRNA was always used with several controls to 

ensure that any observed effect was due to the use of the experimental siRNA 

of interest only. Dharmafect lipid alone and Dharmafect with a scrambled 

siRNA control (one designed so it does not target any known mRNA 

sequences) was deemed sufficient to determine whether the effect observed is 

due to knockdown of the gene of interest alone and not the process of 

transfection and siTox positive control was used to determine transfection 

efficiency.

2.2.3. Immunocvtochemical methods (ICC).

2.2.3.1. Cell fixation.

Cells for experimentation were harvested as previously described in section

2.2.1. and lxlO5 cells were diluted into 1.5ml of experimental media per 

condition and time point required. Cells were then seeded onto sterile TESPA- 

coated coverslips placed into the bottom of 35mm culture dishes, cells were 

allowed 24 hours to settle and adhere to the coverslips prior to removal of 

seeding media and then the media containing treatments were added for the 

desired duration. After the desired time point was reached the cells were then 

fixed using either an ER-ICA fixation for total ER, PR and pS2 assays, or a 

formal-saline fixation for the Ki67 assay, prior to immunocytochemical 

staining for these proteins.
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These assays are all standard assays within our laboratory and the 

decision to use the fixes for the assays below was based upon the expert 

advice, given by members o f our ICC department. The phosphate-buffered 

saline (PBS) used in all immunocytochemical experiments was a 0.01 M PBS 

(see appendix 2 for recipe).

Cell fixation by ER-ICA fixation.

The oestrogen-receptor immunocytochemical assay, or ER-ICA, fix was 

originally developed for the detection of the oestrogen receptor, but has also 

been found to be an effective fixation method, allowing for 

immunocytochemical staining of a number of proteins.

Firstly coverslips were placed in a rack and submerged in 3.7% 

formaldehyde solution at room temperature for 15 minutes (to make 300ml 

3.7% formaldehyde solution add 30ml of 37% formaldehyde into 270ml PBS). 

Racks were removed and placed into PBS at room temperature for 5 minutes. 

Once the PBS wash was complete, racks were placed in 100% Methanol 

(between -10°C and -30°C) for 5 minutes. Following that racks were placed in 

Acetone (between -10°C and -30°C) for 3 minutes. Finally racks were placed 

in PBS at room temperature for 5 minutes. Coverslips were then removed 

from racks and placed into clean 35mm dishes. Coverslips could be stained 

immediately or filled with sucrose storage medium (SSM, see appendix 3 for 

recipe) and stored at -20°C prior to immunocytochemical staining.
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Cell fixation bv Formal-saline fixation.

Media was removed from coverslip dishes. Dishes were filled (approximately 

lml) with a formal-saline solution (comprised of 4.5g Sodium Chloride, 50ml 

37% Formaldehyde solution and 450ml Tap Water) for 10 minutes at room 

temperature. Formal saline solution was replaced with 100% ethanol at room 

temperature for 5 minutes (followed by a quick 100% ethanol rinse). The 

ethanol was removed and dishes were rinsed quickly with PBS. Dishes were 

filled with PBS at room temperature for 5 minutes. Dishes were then quickly 

rinsed with PBS. The PBS was then removed and the coverslips were stained 

immediately or the dishes were filled with sucrose storage medium. The 

35mm dishes were stored at -20°c prior to immunocytochemical staining.

2.2.3.2. Immunocytochemical staining.

All primary antibodies were selected on (i) the expert quality control advice of 

the Tenovus group technical staff for current ER and PR antibodies and (ii) for 

highest sensitivity in the case of ER in the monolayer cultures, to allow for 

greatest detection of any residual ER remaining following treatments.

Total oestrogen receptor staining.

The cells were fixed by ER-ICA fixation (as in 2.2.3.1.) and if previously 

stored at -20°c in sucrose storage media, the assay was started by washing the
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coverslips o f sucrose storage media by three, 3 minute washes in room 

temperature PBS. Then a 0.02% PBS tween solution (see appendix 4 for 

recipe) was applied to the coverslips for a further 3 minutes. The excess was 

then removed prior to addition of the primary antibody. Vector Total ER clone 

6F11 (mouse) antibody was then applied at 1/75 in PBS for 90 minutes and 

50pl o f primary antibody was used per coverslip. Following the 90 minute 

incubation the coverslips were washed twice in 0.02% PBS tween for 5 

minutes per wash. The excess was removed and DAKO Mouse Envision (1 

drop per cover slip) was applied for 75 minutes. After the secondary antibody 

incubation, the coverslips are washed twice in 0.02% PBS tween for 5 minutes 

per wash. Dako DAB was then applied to the coverslips for 10 minutes (1 

drop o f DAB to 1ml of substrate) and 70pl per cover slip was used. Coverslips 

were then washed twice in dFhO for 5 minutes per wash. After the excess was 

removed an aqueous solution of 0.5% methyl green was applied for 5 minutes 

as a counter stain. The coverslips were washed twice in distilled water for 2 

minutes per wash. Finally coverslips were allowed to dry completely before 

being mounted onto slides using DPX mountant. The slides were then stored 

for assessment under a microscope for ER expression.

Total progesterone receptor staining.

The cells were fixed by ER-ICA fixation (As in 2.2.3.1.) and if previously 

stored at -20°c in SSM, the assay was started by washing the SSM from the 

coverslips by three, 3 minute washes in room temperature PBS. Then a 0.02%
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PBS tween solution was applied to the coverslips for a further 3 minutes. The 

excess was then removed prior to addition of the primary antibody. Vector 

Total PR clone 16 (mouse) antibody was applied at 1/30 in PBS for 60 

minutes and 50pl of primary antibody was used per coverslip. Following the 

60 minute incubation the coverslips were then washed twice in 0.02% PBS 

tween for 5 minutes per wash. The excess was removed and DAKO Mouse 

Envision (1 drop per cover slip) was applied for 75 minutes. After the 

secondary antibody incubation, the coverslips were washed twice in 0.02% 

PBS tween for 5 minutes per wash. Dako DAB was applied to the coverslips 

for 10 minutes (1 drop of DAB to 1ml of substrate) and 70pl per coverslip was 

used. Coverslips were then washed twice in CIH2O for 5 minutes per wash. 

After the excess was removed an aqueous solution of 0.5% methyl green was 

applied for 5 minutes as a counter stain. The coverslips were washed twice in 

distilled water for 2 minutes per wash. Finally coverslips were allowed to dry 

completely before mounting them onto slides using DPX mountant. The slides 

could then be assessed under a microscope for PR expression.

Total p S2 staining.

The cells were fixed by ER-ICA fixation (As in 2.2.3.1.) and if stored at -20°c 

in sucrose storage medium, the assay was begun by washing the SSM from the 

coverslips by three, 3 minute washes in room temperature PBS. Then a 0.02% 

PBS tween solution was applied to the coverslips for a further 3 minutes. The 

excess was removed prior to addition of the primary antibody. NovoCastra

-93-



Chapter 2. Materials and Methods Section.

pS2 antibody (Rabbit) at 1/400 in PBS was applied for 90 minutes using 50pl 

o f primary antibody per coverslip. Following the 90 minute incubation the 

coverslips were washed twice in 0.02% PBS tween for 5 minutes per wash. 

The excess was removed and Dako Rabbit Envision (1 drop per cover slip) 

was then applied for 60 minutes. After incubation with the secondary 

antibody, coverslips were washed twice in 0.02% PBS tween for 5 minutes per 

wash. The excess was removed and Dako DAB was applied to cover slips for 

10 minutes (1 drop of DAB to 1ml of substrate) and 70pl per coverslip was 

used. Coverslips were then washed twice in dH20 for 5 minutes per wash. The 

excess was removed and an aqueous solution of 0.5% methyl green was 

applied for 5 minutes as a counter stain. The coverslips were then washed 

twice in distilled water for 2 minutes per wash. Finally cover slips were 

allowed to dry completely before mounting them onto slides using DPX 

mountant. The slides could then be assessed under a microscope for pS2 

expression.

Total Ki67 staining.

The cells were previously fixed by Formal saline fixation (As in 2.2.3.1.) and 

if stored at -20°c in SSM prior to the following assay, the assay was begun by 

washing SSM from the coverslips by three, 3 minute washes in room 

temperature PBS. 0.02% PBS tween was applied to the coverslips for 3 

minutes but removed prior to addition of primary antibody. Dako MIB-1 

(clone M7240) at 1/100 in 0.02%PBS tween was applied to coverslips for 60
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minutes and 50pl o f primary antibody was used per coverslip. After 

incubation with primary antibody, coverslips were washed twice in 0.02%

PBS tween for 5 minutes per wash. Excess was removed prior to addition of 

secondary antibody. Dako Mouse Envision (1 drop per cover slip) was applied 

to the cover slips for 75 minutes. Once incubation with the secondary antibody 

was complete coverslips were washed with PBS for 3 minutes, followed by 

two five minute washes in 0.02% PBS tween. The excess was removed and 

Dako DAB was applied to coverslips for 10 minutes (1 drop of DAB to 1ml of 

substrate) and 70pl per coverslip was used. Coverslips were then washed 

twice in dFhO for 5 minutes per wash. The excess was removed and an 

aqueous solution of 0.5% methyl green was applied for 5 minutes as a counter 

stain. The coverslips were then washed twice in distilled water for 2 minutes 

per wash. Finally cover slips were allowed to dry completely before mounting 

onto slides using DPX mountant. The slides could then be assessed under a 

microscope for the percentage of cells expressing Ki67.

ICC assessment.

Following fixation and staining, slides were assessed by H-score analysis 

(Nuclear and cytoplasmic cell expression for ER and pS2, nuclear, 

cytoplasmic and total cell expression for PR) or % nuclear positivity alone (for 

Ki67).

Each coverslip for a particular treatment and experiment was assessed 

by looking at six fields o f view (under x20 magnification using a light
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microscope, assessing approximately 2000 cells. For HScore analysis, in every 

field the percentage of cells within each staining intensity category (0= no 

visible staining, 1+ = weak staining, 2+ = moderate staining, 3+ = highly 

intense staining) was estimated and this was used in the following formula to 

calculate a field HScore: (% 1+ x l) + (%2+ x2) +(%3+ x3)

H-score values thus lay on a 0-300 scale, with means averaged over the six 

fields of view giving a H-score for the treatment in that experiment. The 

corresponding treatments from replicate experiments (at least 3) were also 

assessed in the same manner and the H-scores were averaged to give a final 

H-score which were then used in subsequent statistical analysis.

Percentage positivity was assessed in a similar manner, with cells 

being ranked as either positive (any detectable staining) or negative (no 

detectable staining) giving a % positivity out 100.

2.2.4. mRNA analysis.

RNA extraction and Quantification.

This procedure was adapted from the Sigma-Aldrich TRI REAGENT protocol 

(Product number T 9424 Technical Bulletin MB-205 August 99).

Cells for experimentation were harvested as previously described in 

section 2.2.1. and lxlO6 cells suspended into 12 ml of experimental medium 

for each 12 well plate required. Cells were then seeded into the 12 well plates
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(lm l per well) and allowed to settle for 24 hours at 37°C in a humidified 

atmosphere of 5% CO2 . Following incubation, the seeding medium was 

removed and media containing treatments were added (lm l per well), these 

media were refreshed every 4 days. After the desired time point was reached 

the experimental media was removed, and cells were washed twice with 37°C 

sterile PBS.

After the PBS was removed 300pl o f TRI-reagent (Sigma) was added 

to each well and left for 5 minutes. Using a cell scraper, cells were agitated 

from the bottom of each well and pipetted into separate sterile 1.5ml 

microcentrifuge tubes and were stored for at least 24 hours at -20°c (for short­

term storage, up to a month) or at -80°C (for longer term storage, up to 6 

months).

RNA isolation was continued by thawing of the samples on ice for 10- 

20 minutes, followed by standing at room temperature for 5 minutes. lOOpl of 

100% chloroform was then added to each sample, and samples were vortexed 

to mix (for 30 seconds). Samples were then allowed to stand at room 

temperature for 10 minutes, before centrifugation for 15 minutes at 13,000 

rpm at 4°C in a microcentrifuge. After centrifugation, RNA was retained in the 

upper (aqueous) clear phase, with DNA sedimented at the interface and 

protein in the lower (aqueous) pink phase. The upper aqueous phase (about 

200|il) was carefully removed from each sample and placed without disturbing 

the interface into a fresh microcentrifuge tube. 200pl of 100% isopropanol was 

added to each of these new samples. These samples were vortexed 

(lOseconds) and then left to stand for 10 minutes at room temperature. To

-97-



Chapter 2. Materials and Methods Section.

precipitate down the RNA the samples were then centrifuged for 15 minutes at 

13,000 rpm at 4°C, pelleting down the RNA as a whitish smear at the bottom 

of the tube. Supernatant was then carefully poured off; keeping the 

precipitate/pellet, 600pl of 75% ethanol was added to each sample. The 

samples were then vortexed (5 seconds) to wash, and then centrifuged for 15 

minutes at 13,000 rpm. Supernatants were poured off carefully without 

disturbing the pellet. Samples were then air-dried on ice. Once samples were 

dried, lOpl o f sterile RNase free H2O (Sigma) was added to each sample. 

Finally samples were stored at -20°C (for short-term) or -80°C (for long-term) 

for later analysis.

Prior to storage the RNA was quantified by spectrophotometry. 2pi of 

RNA sample was diluted in lml o f DNase free, RNase free H2O. The optical 

density (OD) at 260nm (RNA value) and 280nm (DNA value) were then 

measured. The ratio between the two values was used to give a measure of the 

purity o f the RNA (a ratio of >1.7 representing a pure nucleic acid solution). 

The RNA concentration was determined by multiplication of the optical 

density at 260nm by the RNA co-efficient (40) and then multiplied by the 

dilution factor.

Reverse Transcription Polymerase Chain Reaction.

RT-PCR is a method to amplify and identify specific sequences of mRNA that 

maybe present in a sample of RNA. It is performed in two steps, the first is 

Reverse Transcription, a process whereby all RNA molecules are replicated
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into more thermally stable complementary DNA molecules (cDNA) . The 

second step of a Polymerase Chain Reaction (PCR) is an exponential 

amplification of a specific region of the cDNA (RNA) of interest through the 

use of specific oligonucleotide primers. All PCR reactions were performed in 

a Labconco Purifier PCR Enclosure (GRI, Rayne, UK) and sterile pipette tips 

and reaction tubes were used at all times. Prior to experimentation all 

equipment and work surfaces were wiped with 70% ethanol and allowed to 

air-dry.

Reverse Transcription.

Aliquots o f RNA samples to be used for reverse transcription were diluted to a 

concentration o f lpg/7.5pl into DNase and RNase free H2O. Following this, 

7.5pl o f each sample was added to 1 lp l of a Reverse Transcriptase master mix 

(see appendix 5.). The RNA in these samples were then denatured at 95°C for 

5 minutes in a PTC-100 thermocycler (MJ Research Ltd, Massachusetts, 

USA), followed by rapid cooling on ice. The samples were pulse spun in a 

micro-centrifuge (IEC Micromax RF, Thermo Electron Corporation, 

Hampshire, UK) to recollect all the solution, and the samples were returned to 

the ice. lp l MMLV-reverse transcriptase enzyme (100u/pl)and 0.5pl RNasin 

(an RNase inhibitor, 40u/pl) was added to each sample, making a total sample 

volume of 20pl. The samples were returned to the PTC-100 thermocycler and 

reverse transcribed for a single cycle under the following conditions:-
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22°C for 10 minutes (annealing time)

42°C for 42 minutes (RT extension time)

95°C for 5 minutes (denaturing time)

The resulting cDNA can be used instantly or stored at -20°C until required. 

Polymerase Chain Reaction.

To perform PCR on the previously obtained cDNA samples; lp l of cDNA was 

added to 24pl o f a PCR master mix (see appendix 6.). Table 2.4. shows primer 

sequences used and annealing temperatures and cycle numbers for each gene 

studied. A negative control in which cDNA was substituted with an equal 

volume o f sterile PhOwas also run for each experiment. To prevent saturation 

o f Actin for subsequent normalised densitometry (performed using Alpha 

digiDoc RT v.4.1.0 with AlphaEaseFC imaging system from Alpha Innotech) 

only genes with lower cycle numbers were co-amplified (PR and pS2).
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Gene Primer Sequence
Amplic 

on size

Annealing

Temp(°C)

Cycle

no.

p-

Actin

For 5’- ggagcaatgatcttgatctt -3’
204 55 28

R ev 3’- ccttcctgggcatggagtcct -5’

ERa
For 5’- ggagacatgagagctgccaac -3’

432 55 30
R ev 3’- ccagcagcagcatgtcgaagatc -5’

PR
For 5*- ccatgtggcagatcccacaggagtt -3’

320 55 25
R ev 3*- tggaaattcaacactcagtgcccgg -5’

pS2
For 5’- catggagaacaaggtgatctg -3’

336
55

25
R ev 3*- cagaagcgtgtctgaggtgtc -5’

Table 2.4. Primer sequences, amplicon sizes, annealing temperatures and

cycle numbers used fo r  genes used in PCR.

The PCR reaction samples were vortexed in a micro-centrifuge (IEC Micro­

max RF, Thermo Electron Corporation, Hampshire, UK) to mix, and were 

loaded into the PTC-100 thermocycler. The heated lid was set at 100°C and 

the PTC-100 thermocycler was set to the following programme (Continued 

overleaf);

•  2 minutes at 95°C, 1 minute at 55°C, 5 minutes at 72°C (initial 

denaturation).

•  A cycle o f 1 minute at 95°C (denaturation), then 30 seconds at 55°C 

(Annealing), followed by 1 minute at 72°C (Extension). These 3 steps
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were repeated for appropriate number o f cycles from primers used 

(shown in table 2.3).

• 1 minute at 94°C (a final denaturation step).

• 5 minutes at 72°C (final extension step).

The PCR products were stored at 4°C (or -20°C for long-term storage) until 

needed for agarose gel electrophoresis.

Agarose Gel Electrophoresis.

PCR amplified products were visualised using a 1% (w/v) agarose gel in Tris- 

Acetate-EDTA buffer (TAE, see appendix 7.) which contained lp l of a 

lOmg/ml ethidum bromide solution per 50ml gel solution. Gels were cast and 

run using a horizontal gel Electrophoresis System (Bio-Rad) connected to a 

Powerpac 1000 power pack (Bio-Rad). lOpl of each PCR sample was added to 

5pl loading buffer (see appendix 8.) and carefully pipetted into wells present 

on the gel. A DNA size marker (Hyperladder™ IV lOO-lOOObp; 5pi) was also 

added to a parallel lane to allow easier identification of gene fragment of 

interest. Once loaded the gel was run at lOOvolts (constant voltage) for 

approximately 40 minutes. Gels were visualised under UV light using a 

FOTODYNE 3-3002 UV trans-illuminator and photographed using the 

digidoc system (GRI) and alpha ease FC software to generate a digital 

photograph.
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2.2.5 Protein analysis.

Cell lvsis. Protein extraction and quantification.

Cells for experimentation were harvested as previously described in section

2.2.1. and seeded out at a density of lxlO6 cells per 6-well plate required 

(1.5ml media/well). Cells then were incubated at 37°C in a humidified 

atmosphere o f 5% CO2 in air for 24 hours to allow adherence to the culture 

surface. Following incubation, the seeding medium was replaced with media 

containing desired treatments (1.5ml treatment medium per well), and was 

refreshed every 4 days. After the desired time point was reached (4 days 

unless stated) the medium was removed. The cultures were then washed three 

times with ice-cold sterile PBS. Excess PBS was then removed prior to 

addition o f 200pl of ice-cold complete lysis buffer (see appendix 9. for recipe) 

to each well, and then left to stand on ice for 5 minutes. Using a sterile cell 

scraper the cells were removed from the growth surface, and the dishes were 

then inclined and left on ice for a further 5 minutes. Cell lysis was aided by 

pipetting several times, and the resulting lysate was transferred to a sterile, ice- 

cold microcentrifuge tube and incubated on ice for a further 10 minutes.

Cell lysates were then centrifuged at 13,000rpm for 15 minutes at 4°C 

to remove cell debris. The supernatants were dispensed into 50pl aliquots in 

sterile microcentrifuge tubes to prevent degradation of sample by multiple 

freeze-thaw cycles and stored at —20°C (or —80°C for long-term storage). Prior 

to storage the protein concentration in these samples was quantified.
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Protein Quantification using the Bio-Rad system.

Using a method based on the Bradford assay, the protein concentration in each 

sample was measured by comparison with a standard curve using known 

concentrations o f a Bovine Serum Albumin (BSA) solution (from 0-25pg/ml) 

prepared as follows, (see table 2.5.).

Concentration (pg/ml) BSA (1 mg/ml stock) 

0*0

dH20  (pi)

0 0 1000

5 5 995

10 10 990

15 15 985

20 20 980

25 25 975

Table 2.5. Table showing concentrations fo r  standard curve.

Using plastic cuvettes, 200pl of Bio-Rad Dye concentrate (Bio-Rad) 

was added to 800pl o f the BSA standards described in table 2.5, and these 

standards were produced in duplicate. The protein samples to be quantified 

were diluted by 1/200 also in duplicate. 4pl o f protein sample was added to 

796pl o f dH20 , to which was added 200pl o f Bio-Rad Dye concentrate. The 

cuvettes were inverted several times to mix and a stable colour was allowed to 

develop for a minimum of 10 minutes prior to measuring absorbance.
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The absorbance of the protein standards was measured spectro- 

photometrically, at a wavelength of 595nm, producing a standard curve. The 

test protein samples were also measured at this wavelength and were 

automatically plotted against the standard curve to give the protein 

concentration of each sample.

Sodium-Dodecvl-Sulphate-Polvacrvlamide Gel Electrophoresis (SDS-PAGEL

Protein lysates were resolved by SDS-PAGE using the Bio-Rad Mini- 

Protean® III system (Bio-Rad). The apparatus was assembled as described in 

the manufacturer’s manual. A discontinuous system was used based on the 

method o f Laemmli (Laemmli 1970) consisting of a 12% resolving Gel (see 

appendix 10. for details) overlaid with a 4.5% stacking gel (see appendix 11. 

for details) into which well-forming combs were set.

The polymerised gels were transferred to a gel dock and the central 

reservoir thus formed was filled with lx  Running Buffer (diluted with dHhO 

from a lOx stock, see appendix 12.). Protein samples (equivalent to 50pg of 

protein) were mixed with an equal volume of 2x Laemmli sample loading 

buffer (see appendix 13.) and were denatured at 100°C for 5 minutes. These 

samples were then loaded into the wells, along with a final well containing 5pi 

o f Rainbow molecular weight marker to verify the size of the protein signal, 

lx  Running buffer was then placed in the outer reservoir of the apparatus, so 

that both the top and bottom of the gel was in contact with the buffer ensuring 

that an even current would pass through the gel. Electrophoresis was
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performed at 150 volts (constant volts) for approximately 1 hour (until the 

sample buffer dye had run the length of the gel).

Western Blotting.

Following SDS-PAGE, the proteins were transferred onto a nitrocellulose 

membrane (0.45pm pore size). This was done by using the Mini-Protean® III 

Transblot gel apparatus powered by a Powerpac Basic™ power pack (Bio- 

Rad). This system takes two gel holder cassettes for electro-protein transfer of 

mini format gels.

Two Teflon sponge pads, two pieces of grade 3 filter paper, and one 

piece o f Protran BA83 nitrocellulose membrane (0.45pm pore size) cut to the 

same size as the gel were all pre-soaked with Transfer buffer (see appendix 14. 

for details) prior to assembly. The SDS-PAGE gel was carefully removed 

from the glass plates and separated from stacking gel, and placed in transfer 

buffer to equilibrate for 30 seconds. The Western blotting transfer cassette was 

then assembled as follows (see figure 2.1. for diagram); placed on the black 

side o f the cassette was a Teflon sponge, followed by filter paper, SDS-PAGE 

gel, the nitrocellulose membrane, a second piece of filter paper and finally the 

second sponge, the opaque side of the cassette was then closed over this. Prior 

to closure one o f the glass plates was drawn across the assembled ‘sandwich’ 

to expel any air bubbles between the gel and nitrocellulose membrane (as air 

bubbles can prevent even protein transfer).
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Anode (♦)

so'
3
O
-O
3
29

]  C assette (Opaque side)

Teflon Sponge
Filter paper 

Nitrocellulose membrane

SDS-gel

------------- Filter paper
Teflon Sponge

Cassette (Black side)
Cathode (-)

Figure 2.1. Assembly o f  Gel cassette fo r  protein transfer.

The gel holder cassette was then inserted into the transfer apparatus 

with the white side facing the positive anode (this ensures the negatively- 

charged proteins migrate across to the nitrocellulose membrane). An ice pack 

and a magnetic stirring bar were added to the apparatus to prevent over­

heating o f the gel, and to maintain an even temperature throughout. The 

transfer apparatus was completely filled with transfer buffer and run at 

1 OOvolts (constant volts) for 60 minutes.

Immunodetection of Proteins.

Once transfer was complete the nitrocellulose membrane was placed into a 

lidded sterile plastic container able to accommodate the membrane, and 

unreacted binding sites on the membrane were blocked by incubation with 5% 

Marvel milk (commercially obtained, powdered milk) solution (w/v) in TBS 

containing 0.05% (v/v) Tween 20 (TBS-Tween), for 1 hour at room
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temperature on a gently rocking platform. This step was necessary to minimise 

non-specific binding of proteins during later stages of the procedure.

Immunoprobing of nitrocellulose membrane.

Following blocking the nitrocellulose membrane was washed with TBS- 

Tween (two 5 minute washes) then probed with primary antibody, prepared in 

either 1% (w/v) Marvel milk in TBS-Tween for total anti-bodies or 5% (v/v) 

Western blocking reagent in TBS-Tween for phospho-antibodies. The primary 

antibody dilutions employed and incubation conditions are outlined in table 

2.6. Primary antibodies were selected on the expert advice of the Tenovus 

group technical staff and for highest sensitivity in the case of ER, to allow for 

greatest detection of any residual ER remaining following treatments.
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Antibody (see 

section 2.1. for 

details of 

supplier).

Source. Dilution. Incubation

conditions.

Total-P Actin Mouse 1/100,000 2 hours, room 

temperature.

Total-ERa Rabbit 1/10,000 Overnight, 4°C.

Phospho-EGFR 

(tyr 1068)

Rabbit 1/1,000 2 hours, room 

temperature.

Total-EGFR Rabbit 1/1,500 2 hours, room 

temperature.

Total-HER2 Rabbit 1/1,500 Overnight, 4°C

Total-ERK Rabbit 1/1000 Overnight, 4°C.

Phospho-IGF-IR

(Y1131)

Mouse 1/1000 Overnight, 4°C

Total-IGF-IR Rabbit 1/1000 Overnight, 4°C.

Total-IRSl Rabbit 1/1000 Overnight, 4°C.

Table 2.6. Primary antibodies, concentrations and incubation conditions.

Once the primary incubation was finished the blot was washed with TBS- 

Tween (three washes o f 10 minutes each), to remove any unbound antibody. 

The complementary secondary antibody (either mouse or rabbit depending on 

species of primary antibody), made up at 1/10,000 in a solution of 1% 

powdered milk (w/v) in TBS-Tween was then applied. The compensatory
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secondary antibody was incubated with the nitrocellulose membrane at room 

temperature for 1 hour while being constantly rocked, followed by washing in 

TBS-Tween (five washes of 10 minutes each). Once incubation was complete 

five further washes of ten minutes in TBS-Tween were performed and the blot 

was then ready for development.

After washing, the bound antibody and thereby the protein of interest 

was visualised using a variety of commercially available chemiluminescent 

detection systems (Supersignal West Pico, Supersignal West Dura or 

Supersignal West Femto reaction). These were all antibody conjugated 

enzymes using a luminol/peroxide based system. Luminol (in the supersignal 

product) is oxidised by horse radish peroxidase (conjugated to the secondary 

antibody), in the presence of peroxide which produces an excited state 

product, which upon decaying releases photons of light which can be captured 

on x-ray film.

The protocol was the same for each detection system. For a single blot, 

125 pi o f both the Luminol and peroxide reagents were mixed together in a 

microcentrifuge tube; this was then pipetted onto the nitrocellulose membrane 

which had been placed in a Kodak x-comet x-ray film cassette between the 

plush sheet, where a Kodak photographic film was placed over the blot for a 

set time.

The strength of the signal can vary, so that several different exposure 

times with film maybe required to obtain the optimum signal. X-ray films 

were developed using an X-O-graph Compact X2 x-ray developer (X-O-graph 

Imaging System, Tetbury, UK).

-110-



Chapter 2. Materials and Methods Section.

2.2.6 ERE reporter gene assay.

ERE construct, amplification and maintenance.

The ERE construct (an ERE-tk-luc(/?re/7y) reporter) was a gift to the 

department from Professor Malcolm Parker. A structurally similar construct, 

tk-[uc(renilla) reporter (Promega) was also used as a constitutively active 

control reporter . The plasmids were maintained within the E.coli strain DH5- 

alpha (Invitrogen). Bacteria for transformation were made competent and 

transformed by the method of Cohen (Cohen et al 1973). To obtain the 

plasmid constructs for transfection into breast cancer cell lines, several 

transformed E.coli colonies containing the plasmid were picked from ‘streaked 

out’ colonies grown on L-broth Agar containing ampicillin to use as an 

antibiotic marker to select for transformed colonies, and grown as 5ml starter 

cultures this was then used to inoculate 250ml overnight cultures. Reporter 

gene constructs were recovered by using these cells with a plasmid 

purification kit, the Qiagen Plasmid Maxi Kit (Qiagen, UK) as per instructions 

provided.

Dual-luciferase reporter gene assay.

Cells for experimentation were harvested as previously described in section

2.2.1. and lxlO6 cells were diluted in 25ml of seeding media per 24 well plate 

required, this gave a final dilution of 4xl04 cells/well. Cells were allowed to
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settle for 24 hours in an incubator (37°C, in a humidified atmosphere of 5% 

CO2 in air as previously described).

For each condition, three wells were used per time point. To prepare 

the reporter gene construct, excess DCCM with 2% (v/v) 1-glutamine was 

prepared and warmed to 37°C. To a sterile microcentrifuge tube 30pl of this 

medium was added per well to be transfected, to this tube 1.5pl Dharmafect 

transfection lipid was added for each well to be transfected. To a second tube 

30pl o f the DCCM +l-glutamine was added per well to be transfected, to this 

0.55pg o f plasmid DNA was added. This 0.55pg comprised of 200ng of ERE 

construct, 75ng of REN construct and 275ng of ‘junk’ PCR script (a non- 

transcriptionally active plasmid which was used as carrier DNA, to make up 

the DNA concentrations to levels required for reliable transfection, obtained 

from Stratagene.). The first and second tubes were then gently shaken and 

each left to separately equilibrate at 37°C for 45 minutes.

During the incubation period a third tube was prepared containing 

190pl DCCM+l-glutamine for each well to be transfected (to give a final 

volume o f 250pl per well). To this tube 2.5pl molecular grade DMSO was 

added per well to be transfected (which has been shown in-house to improve 

transfection efficiency).

After the 45 minutes, the first and second tubes were gently mixed 

together, and returned to the incubator for 15 minutes, after which this 

combined mix was added to the third tube to give the final transfection media.

The original seeding media was removed from the wells to be 

transfected, and wells were washed with 250pl of DCCM and the 250 pi of
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the final transfection media was applied to each well to be transfected. To 

obtain a background fluorescence value as a control, 3 wells were left 

untransfected, but treated the same in all other respects. The cells were then 

left to incubate at 37°C, in a humidified atmosphere of 5% CO2 in air for 6 

hours. After incubation the ERE transfection media was removed, and 

experimental media containing treatments was added for the duration of the 

experiment. For the siRNA treatment experiments, all treatment media was 

made up as indicated in table 2.2. After adhering, cells were transfected with 

the ERE constructs for 6 hours. This ERE transfection media was then 

removed and cells treated (with the treatment media containing faslodex, ER 

siRNA, co-treatment etc. as in Table 2.2) for a further 4 days in the same 

manner as for non-siRNA experiments.

After 4 days of treatment, the treatment medium was removed and the 

wells were washed twice with 1ml of room temperature PBS. The excess was 

removed and lOOpl o f lx  Passive Lysis Buffer (Dual-Luciferase Reporter 

Assay System, Promega UK Ltd) diluted from 5x stock with sterile H2O was 

added to each well. The cells were then scraped from the wells and transferred 

to sterile microcentrifuge tubes. The microcentrifuge tubes were kept on ice 

until all wells were harvested, then stored at -70°C. Cells were stored in this 

manner so a single freeze-thaw would complete the lysis.

To determine reporter activity a Dual-Luciferase Reporter Assay 

System kit was used. To each thawed sample, lOOpl of LARII was added 

(resuspended firefly Luciferase Assay Substrate in Luciferase Assay buffer II, 

provided). This mixture was read for 10 seconds by a Lumat LB 9507
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luminometer, which gave the ERE Luciferase reading. The sample was then 

removed and lOOpl of Stop & Glo reagent was added (Stop & Glo substrate 

dissolved in Stop & Glo substrate solvent provided). This terminated the ERE 

luciferase activity, and initiated renilla luciferase activity, this sample was then 

read a second time. This was repeated for all samples to be read. To calculate 

the ERE activity, the constitutively active Renilla reported luciferase activity 

was used to normalise the ERE-transactivated firefly luciferase value.

2.2.7. Cell growth assays.

Coulter counter growth assay.

Cells for experimentation were harvested as previously described in section

2.2.1. and lxlO6 cells were diluted into 25ml of experimental media per 24 

well plate required, this gave a final dilution of approximately 4xl04 

cells/well. Cells were allowed to settle for 24 hours prior to treatment in an 

incubator (37°C, in a humidified atmosphere of 5% CO2 as previously 

described). After 24 hours the media was removed and fresh media containing 

desired treatments were added (1ml per well). During the course of the 

experiment the media was removed and fresh media containing treatments 

were replaced every 4 days.

For each desired time point the media was removed from the required 

cells and the cells were incubated with 1ml of trypsin at 37°C for 

approximately 3 minutes (or until the cells were seen to be in suspension
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under a microscope). Cells were then turned into a single cell suspension by 

passing through a BD.Microlance 25 gauge needle into a syringe, and passed 

back through the needle three times. To collect all the cells present, 1ml of 

isoton was added to the well and drawn up the syringe, this was repeated 

twice. The cells present in the 4mls now in the syringe (3mls isoton, 1ml 

trypsin) were then passed through the needle into a coulter counter cup 

containing 6mls o f isoton. A Coulter Multisizer II was then used to count each 

cup twice, at a fixed volume of 500pl (counts were then multiplied by 20 to 

give total cell number per well). For each arm of the experiment three wells 

were treated and counted twice for each condition, and at each time point, with 

3 wells used as a base count after the initial 24 hour incubation.

MTT growth assay.

The MTT assay was first described by Mosmann in 1983. It is a marker of 

cellular proliferation by utilisation of a mitochondrial dehydrogenase enzyme 

present in healthy cells, which is able to reduce a soluble yellow compound (3- 

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, also known as 

MTT) to form insoluble dark blue formazin crystals. When the cells are lysed 

by addition of Triton the formazin crystals can dissolve and the absorbance of 

the resultant solution can be read, with the absorbance value being 

proportional to cell number.
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Cells are prepared as described in section 2.2.1. and diluted into 20mls 

of experimental media seeded out at lx l 04 cells/well (200pl media per well) 

per number of 96 well plates required. Cells were allowed to settle for 24 

hours prior to treatment in an incubator (37°C, in a humidified atmosphere of 

5% CO2 as previously described). After 24 hours the media was removed and 

fresh media containing treatments (200pl media per well, and 8 wells used per 

condition) were added. For the duration of the experiment media and 

treatments were refreshed every 4 days. Once the desired time point was 

achieved the media was removed and the cells are washed twice with 37°C 

sterile PBS (200pl per well). Cells were then incubated with 200)il per well of 

0.5mg/ml MTT solution (made up in 37°C phenol-red free RPMI 1640 with no 

additions) for 4 hours in the incubator. After incubation the MTT solution was 

then carefully removed, the wells are carefully washed twice with sterile PBS. 

Finally lOOpl o f Triton X-100 (made up to 10% v/v in PBS) was added to 

each well to lyse the cells. This was incubated at 4°C overnight. After 

incubation the plate was brought up to room temperature, gently agitated to 

mix the samples and read on a Multiskan® MCC/340 plate-reader (Titertek, 

USA) at a wavelength of 540nm.

2.2.8. Statistical analysis.

Where the data allowed, statistical analysis of the recorded values was 

performed, using SPSS v l6  software, using either a Mann Whitney-U test or
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analysis o f variance (ANOVA) with a Dunnett post hoc test for confidence 

intervals of 95% (p<0.05) or greater.
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3.1. The Effect o f the ‘pure’ anti-oestrogen fulvestrant on

MCF-7 cells.

The ability of fulvestrant to act as an anti-oestrogen by blocking function and 

facilitating degradation of the oestrogen receptor (ER) protein, and thus 

reducing oestrogen driven growth of breast cancer cells, has been previously 

documented both in breast cancer cell lines and in the clinic (Robertson 2007, 

Nicholson et al 2001). This research showed ER degradation to be incomplete, 

and residual levels of ER were shown to be maintained until acquisition of 

resistance to fulvestrant in preclinical studies (McClelland et al 2001). ER 

negativity was reached only after a 2 year period of exposure to this pure anti- 

oestrogen (Nicholson et al 2005). The aim of this study was to investigate 

whether the residual ER observed following fulvestrant treatment provides a 

growth signal that allows the cells to tolerate the initial impact of the anti­

oestrogen and, thus, whether targeting the residual ER improves fulvestrant 

response. Initial experiments were undertaken to discover the acute (4-8 days) 

effect of fulvestrant as a single treatment agent on ER expression and activity 

in our cell models. Special interest was paid to residual ER expression and 

functionality, to see how much scope there was for improving the action of 

fulvestrant in our model system.
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3.1.1. Optimal concentration of fulvestrant for maximum ER 

down regulation and growth inhibition.

MCF-7 cells, which are widely used to examine ER function in breast 

cancer, were the principal cell model used in these studies. Initially in our 

MCF-7 cell model, two fulvestrant concentration response experiments were 

performed after 8 days treatment in order to determine the optimal 

concentration o f fulvestrant to induce maximal down-regulation of ER protein 

expression and growth inhibition of MCF-7 cells. ER protein down-regulation 

was assessed by immuno-histochemical staining of the ER and subsequent 

nuclear H-score analysis. Anti-proliferative activity was assessed by cell 

counting using a Coulter counter.

ER down regulation.

Untreated MCF-7 cells were found to have a high basal ER expression, 

exclusively within the nucleus, with the cells showing intense staining in 90% 

of the population, and moderate staining in the remaining cells (figure 3.1. A.). 

Exposure of these cells to increasing concentrations of fulvestrant resulted in a 

decrease in ER protein expression in the cells, with moderate to low nuclear 

ER staining observed in 90% of the cells treated with 1010M fulvestrant 

(figure 3.1.A.). From a concentration of 10'9M fulvestrant, substantial ER 

protein down regulation was achieved with 20% of cells being ER negative,
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but low expression being observed in the remaining cells (figure 3.1.A.). 

Corresponding ER nuclear H-scores (figure 3.I.B.) also showed a 

concentration dependant loss of ER expression in response to fulvestrant, with 

significant (p<0.05, n=3) down regulation being observed at concentrations as 

low as 10'IOM fulvestrant. The fulvestrant induced ER down regulation 

reached a plateau at 10'9M fulvestrant with no further significant ER down 

regulation being observed beyond this concentration. A low level of residual 

ER staining was still observed even at the highest concentrations of fulvestrant 

(lO^M) used in this study (figure 3.1.A. and enlargement images).

Growth response.

Fulvestrant exposure caused a concentration-dependant growth 

inhibition o f MCF-7 cells with significant (p<0.05, n=3) growth inhibition 

being achieved at 10'9M fulvestrant, and no greater growth inhibition being 

achieved beyond 10' M fulvestrant (figure 3.I.C.) with a maximal 60% growth 

inhibition being observed at the highest concentration used. Growth inhibition 

was incomplete at all fulvestrant concentrations used. Although a statistically 

significant reduction in ER levels was observed at a concentration of 10'10M 

fulvestrant, no significant growth inhibition was observed at this 

concentration. Indeed, maximal growth inhibition was only observed at a 

concentration of 10'8M fulvestrant, a 100 fold higher concentration. A 

concentration of 10'7M fulvestrant also maximally reduced both ER and cell 

growth and was consequently used in all further studies.
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3.1.2. Influence of culture conditions on fulvestrant response

in MCF-7 cells.

Initial studies were performed using MCF-7 cells cultured in 

experimental media containing stripped foetal calf serum (5% SFCS). MCF-7 

cells cultured in this way experience an environment with low concentrations 

o f exogenous oestrogens, a condition that provides reduced competition for 

fulvestrant binding to the ER, thus potentially maximising response to this 

agent. However this experimental design (with residual oestrogens of the order 

o f 10'13M), while approximately equivalent to the oestrogen deprivation 

achieved in patients taking aromatase inhibitors, does not encompass 

oestrogen levels in untreated postmenopausal women. To provide a greater 

understanding of the importance of residual ER across a such a cohort of 

patients, experiments were also performed in media containing 5% whole 

foetal calf serum (FCS) instead of stripped serum, which is approximately 

equivalent to post-menopausal oestrogen levels, and furthermore in stripped 

serum containing 10'9M oestradiol, providing a highly oestrogenic 

environment, probably exceeding pre-menopausal levels. All the stripped and 

whole serum experiments were repeated in the MCF-7 cell line to allow direct 

comparison, and also for easier reference and comparison to most previous 

oestrogen receptor positive breast cancer in vitro studies.
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3.1.3. The Effect of fulvestrant treatment on oestrogen 

receptor expression levels in MCF-7 cells, grown in both 

stripped and whole serum.

Western blotting analysis revealed that there was an impressive down 

regulation o f total ER protein expression after 4 days of 10'7M fulvestrant 

treatment in MCF-7 cells grown in either stripped or whole serum conditions 

while beta-actin, used as a control was equivalent (figure 3.2.A.). Despite 

using an optimal concentration of fulvestrant this down regulation of ER was 

not complete in either serum type with residual ER clearly detectable (figure

3.2.A.).

This residual ER protein expression following fulvestrant treatment 

was also apparent following assessment by immunocyto-chemical staining of 

fulvestrant treated MCF-7 cells cultured in both stripped and whole serum 

(figures 3.2.B.). The untreated MCF-7 cells showed high levels of oestrogen 

receptor expression in both serum conditions, with high staining intensity in 

80% of the cells nuclei and moderate staining in the remaining nuclei. No 

detectable cytoplasmic or membrane ER was observed. In the fulvestrant 

treated MCF-7 cells, under both serum conditions, neither cytoplasmic or 

membrane ER was detected, and greatly reduced levels of nuclear staining was 

observed. However while approximately 5-10% of cells showed some 

moderate staining in either culture condition (figure 3.2.B.), 20% of cells were 

negative for nuclear ER expression, but the remaining cells all showed low but
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detectable levels o f residual ER expression (figure 3.2.B. enlargements). The 

decrease in ER expression was statistically significant (p<0.05, n=3) under 

both experimental conditions, shown by subsequent nuclear H-score analysis 

(figure 3.2.C). When examined in FasMCF cells the residual levels of ER 

observed were maintained through to the acquisition of resistance to the pure 

anti-oestrogen, with similar low level expression being observed in MCF-7 

cells treated with 10'7M fulvestrant for either 8 days or in the 12 months 

FasMCF cells (figure 3.3.A. and enlargements). These resistant cells were able 

to grow despite the presence of the pure anti-oestrogen in the growth medium.

The residual ER protein observed in MCF-7 cells following fulvestrant 

exposure, was not unique to the MCF-7 cell model, as similar findings were 

observed in three alternative ER positive breast cancer cell lines (T-47D, BT- 

474 and MDA-MB-361 cells). Assessment of nuclear ER by H-score analysis 

revealed that following fulvestrant exposure, an incomplete down regulation 

of ER was observed in all three cell lines, with low levels of residual ER 

clearly apparent (figure 3.3.B.). Interestingly, while the initial ER levels were 

varied across the cell lines used the down-regulation caused by fulvestrant 

treatment was approximately equal, with all cell lines showing an approximate 

ER protein down-regulation of between 65-85% following fulvestrant 

exposure.

The mechanism of fulvestrant action is to bind to the ER protein at 

EREs, to prevent normal transcription and facilitate receptor down regulation. 

To determine that the observed down regulation of ER protein expression was 

due to mechanism of fulvestrant action and not an unrelated ER mRNA down
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regulation, ER mRNA expression levels were assessed by RT-PCR. A short­

term fulvestrant treatment of 4 days showed no effect on oestrogen receptor 

mRNA expression in MCF-7 cells grown in stripped serum or whole serum 

when compared to untreated controls (figures 3.3.C.).

3.1.4. The Effect of fulvestrant treatment on oestrogen

signalling.

As fulvestrant treatment showed a significant but incomplete down 

regulation of ER protein expression, the next set of studies were designed to 

investigate whether this residual ER had any apparent genomic biological 

activity by assessment of ER transcriptional activity, pre and post fulvestrant 

treatment in MCF-7 cells.

Measure o f fulvestrant effect on mRNA and protein expression of PR and pS2. 

PR mRNA expression

The transcriptional activity o f this residual ER was initially investigated by 

measurement of the expression of classic ER regulated genes, Progesterone 

receptor (PR) and pS2. A down regulation of PR mRNA expression was 

observed when MCF-7 cells, cultured in both stripped and whole serum were 

treated with fulvestrant. However the down regulation of PR at the mRNA
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level was not complete, with residual PR mRNA expression still clearly being 

observed (figure 3.4.A.).

p S2 mRNA expression.

In the stripped and whole serum cultured MCF-7 cells, analysis of pS2 mRNA 

expression also showed that under both serum conditions, expression of this 

gene was reduced in the presence of fulvestrant (figure 3.4.B.). As with PR 

gene expression, the down regulation of pS2 mRNA expression was 

incomplete in both serum conditions again providing evidence for the presence 

o f residual ER transcriptional activity.

Although fulvestrant repression of ER transcriptional activity on PR 

and pS2 transcription was incomplete at the gene level, the level of repression 

observed may be sufficient to inhibit the protein expression of these genes.

The effect o f fulvestrant on the protein expression of the PR and pS2 was 

therefore assessed by Immuno-cytochemistry.

PR protein expression.

In stripped serum the basal level of PR protein expression in MCF-7 

cells was low (figure 3.5.A.), but observable expression was present, being 

both cytoplasmic (20% of cells) and nuclear (40% of cells) with the remainder 

being PR negative (blue cells). The fulvestrant treated cells revealed a 

reduction in PR expression with detectable staining in the cytoplasm of 15%
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of the cells and 20% of cells showed some nuclear expression (figure 3.5.A. 

enlargement 1.); the remaining cells were PR negative. These observations 

were confirmed by the nuclear H-score analysis (figure 3.5.B.) which showed 

a significant (p<0.05, n=3) down regulation of PR expression in the fulvestrant 

treated cells, but the presence of residual nuclear PR was also apparent in a 

small population (see table 3.2. for complete H-score breakdown).

Both cytoplasmic and nuclear PR protein expression was observed in 

MCF-7 cells cultured in whole serum (figure 3.5.A.), with high intensity 

staining being observed in the nucleus o f 70% of the cells and lower 

expression levels observed in the remaining cells. There was also very high 

expression of cytoplasmic PR in 60% of the cells with the remaining cells 

showing moderate staining. Fulvestrant treatment greatly reduced PR protein 

expression but low level nuclear staining was still observed in 40-50% the 

cells (figure 3.5.A. enlargement 2.). Cytoplasmic staining was also decreased 

but low staining was observed in 40-50% of cells and no PR expression in the 

cytoplasm of the remaining cells. Furthermore, approximately 20% of the cells 

were negative for both nuclear and cytoplasmic PR combined in both culture 

conditions. Nuclear PR was used for the corresponding H-score assessment 

(figure 3.5.B. and table 3.2.) because PR function is mainly nuclear. Both a 

statistically significant (p<0.05, n=3) reduction of PR protein expression, and 

a clear presence of residual nuclear PR expression was demonstrated 

following fulvestrant exposure under both culture conditions.
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pS2 protein expression.

Looking at pS2 protein expression in MCF-7 cells cultured in stripped 

serum (figure 3.6.A.), a pattern of low pS2 expression exclusively within the 

cytoplasm was observed. Untreated MCF-7 cells showed moderately intense 

staining in the cytoplasm of 20% of the population, with pS2 negative cells 

comprising 15% of the population and very low pS2 expression observable in 

the cytoplasm of the remaining cells. Fulvestrant exposure caused a loss of all 

moderate intensity cytoplasmic staining with 20% of cells showing low pS2 

expression and the remaining cells showing no pS2 expression. The 

corresponding cytoplasmic H-score analysis (figure 3.6.B. and table 3.3.) 

showed a significant (p<0.05, n=3) down regulation in the presence of 

fulvestrant but also indicated the presence of very low residual pS2 protein 

expression in the fulvestrant exposed cells (enlargement 1. in figure 3.6.A.).

Untreated MCF-7 cells showed no nuclear staining for pS2 protein 

(figure 3.6.A.) when cultured in whole serum, however moderate cytoplasmic 

staining was observed in 60% of the population, low staining in 30% and no 

staining in 10% of cells. There was a clear reduction in pS2 protein levels 

across all the cells in the fulvestrant treated arm, and no nuclear staining was 

observed, but 20% of the cells demonstrated moderate to low cytoplasmic 

staining and the remainder were pS2 negative (figure 3.6. A.). Some of the pS2 

expression observed following fulvestrant exposure was peri-nuclear, 

indicating the continued transcription of pS2 protein following fulvestrant 

treatment. The corresponding cytoplasmic H-score analysis (figure 3.6.B. and
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table 3.3.) reflected these observations, showing a statistically significant 

(p<0.05, n=3) down regulation in the fulvestrant exposed cells but still clear 

evidence of residual pS2 protein expression.

Effect o f fulvestrant on ERE signalling in MCF-7 cells.

To assess quantitatively the level of oestrogen receptor genomic 

signalling activity remaining after fulvestrant treatment, an oestrogen 

responsive element (ERE) driven dual luciferase assay was performed. MCF-7 

cells were transfected with an ERE driven firefly luciferase reporter gene 

construct alongside a constitutively active firefly renilla construct to act as a 

transfection control. The cells were transfected with both constructs and 

cultured with either stripped or whole serum for 4 days and treated with either 

fulvestrant, oestradiol as a positive control or vehicle control. Fulvestrant 

treatment caused a significant (p<0.05, n=3) but modest 30% reduction in 

ERE transcriptional activity (figure 3.7.A.) in MCF-7 cells cultured in stripped 

serum. After fulvestrant treatment, residual ERE transcriptional activity levels 

were still clearly apparent, although it should be noted that these levels are 

quite low since under stripped serum conditions the level of ERE activity in 

the control condition is already minimal. This experiment also showed a 

statistically significant (p<0.05, n=3) increase of 25 fold in ERE activity in the 

oestradiol stimulated arm, compared to the untreated MCF-7 cells.

In the MCF-7 cells cultured in whole serum (figure 3.7.B.) a 

statistically significant (p<0.01, n=3) 80% reduction of ERE activity was
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observed in the presence of fulvestrant, and the basal ERE was higher due to 

the higher oestrogenic environment in this culture condition. Though 

fulvestrant exposure decreased ERE transcriptional activity significantly, the 

residual level of ERE activity was still 20% of the control and ten-fold greater 

than the background fluorescence readings in cells not transfected with the 

ERE construct. Due to the higher basal ERE activity under whole serum 

conditions only a 6-fold increase in oestrogen receptor signalling activity was 

also observed in the presence of oestradiol when compared to the unstimulated 

MCF-7 cells.

Fulvestrant exposure in oestradiol stimulated cells.

As shown under whole serum culture conditions, the presence of 

moderate levels of oestradiol enhances ER signalling. However, fulvestrant 

was able to block this effect. Further studies were performed to examine the 

ability of fulvestrant to overcome high levels of exogenous oestradiol (10‘9M) 

as some breast carcinomas have been shown to produce high levels of 

oestrogens in vivo (Green and Furr 1999) and these studies could also better 

reflect the pre-menopausal situation observed within the clinic.

When MCF-7 cells grown in stripped serum were stimulated with the 

addition of 10'9M oestradiol to the media the basal expression levels of both 

PR and pS2 protein were increased when compared to unstimulated cells in 

stripped serum control conditions. The oestradiol stimulated cells showed 

intense staining of PR in the nucleus of all of the cells, and high expression of
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PR in the cytoplasm was also observed in 80% of the cells, with less intense 

staining also being seen in the remainder of the cells (figure 3.8.A.) Similarly 

the oestradiol-stimulated cells showed far stronger staining for pS2 across the 

MCF-7 population, with many cells showing intense cytoplasmic staining. A 

significant down regulation of oestradiol-induced PR expression was apparent, 

following exposure to fulvestrant in the presence of oestradiol, with 40% of 

cells showing reduced intensity staining in both the nucleus and the cytoplasm, 

and evidence of some PR negative cells. Oestradiol-treated MCF-7 cells 

exposed to fulvestrant showed less intense peri-nuclear pS2, with 10% of cells 

showing no expression of pS2 protein at all (figure 3.8.A.). Corresponding H- 

score analysis of nuclear PR and cytoplasmic pS2 staining supported these 

observations and both showed a statistically significant down regulation of PR 

and pS2 expression following fulvestrant treatment (figure 3.8.B. and table

3.2.). However both the immunocytochemical pictures (see enlargements) and 

the subsequent H-score analysis showed presence of residual PR and pS2 after 

fulvestrant exposure.

3.1.5. The effect of fulvestrant treatment on MCF-7 cell

proliferation.

As the previous studies revealed that fulvestrant exposure produced an 

incomplete down regulation of ER expression and transcriptional activity, 

experiments were then performed to assess whether the growth inhibitory
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activity of this agent was also incomplete. A number of parameters were 

assessed to examine the effect on MCF-7 cell growth, proliferation and 

viability:

A) Expression of Insulin-like growth factor (IGFR) signalling pathway 

components as IGF-1R and IRS1 are oestrogen regulated genes, as 

well as key growth regulators of MCF-7 cells, thus providing a means 

o f showing treatment impact on genomic activity of ER relevant to 

proliferation.

B) Expression of the proliferation marker Ki67.

C) Assessment of cell viability by MTT assay.

D) Assessment of cell number by Coulter counter analysis.

IGF-1R signalling component analysis.

Insulin-like growth factor signalling component analysis (IGF-1R), 

showed that fulvestrant treatment caused a slight down regulation of total 

and phosphorylated IGF-1R and a greater down regulation of total IRS1 

compared to the untreated MCF-7 cells in both stripped and whole serum 

culture conditions (figures 3.9.A. and B.). It should be noted however that 

the reduction was incomplete for both proteins, under both culture 

conditions.
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Ki67 analysis.

Untreated MCF-7 cells cultured with stripped serum demonstrated high 

levels o f nuclear staining for the proliferation marker Ki67 in 30% of the 

population and less intense staining in a further third of the population. The 

remaining cells did not express the antigen (figure 3.10.A.). Untreated MCF-7 

cells cultured with whole serum showed a higher percentage of cells 

expressing the antigen compared to the control MCF-7 cells grown in stripped 

serum, with 80% of the whole serum cultured control cells expressing nuclear 

Ki67 (figures 3.10.A. and B.). The total Ki67 positivity score was 65% and 

80% for cells cultured with stripped and whole serum respectively and 

indicated that roughly two thirds and four fifths of the cells in these 

populations were actively proliferating (figure 3.10.B.). Fulvestrant exposure 

caused a significant decrease in Ki67 positivity under both culture conditions. 

The remaining staining was far less intense across the population compared to 

the untreated MCF-7 cells, with only a quarter of cells showing any presence 

of the antigen within the nucleus, in the stripped serum condition (see 

enlargements). In the whole serum condition the antigen was still present in 

the nuclei of 30% o f cells following fulvestrant treatment (shown in 

enlargement 2. of figure 3.10.A.).
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Viability assay and total cell count analysis.

MTT assays also revealed incomplete growth inhibition in response to 

fulvestrant. An experiment of 8 days fulvestrant exposure showed a small but 

significant (p<0.05, n=3) drop in growth of 20% in stripped serum in response 

to fulvestrant exposure (figure 3.11.A.). A more significant (p<0.05, n=3) 

growth inhibition of 70% by fulvestrant exposed was observed in cells 

cultured in whole serum, but levels of residual growth were still apparent in 

the presence of the anti-oestrogen (figure 3.11. A.). This incomplete decrease 

in growth rate was also reflected by the decrease in cell number observed 

following fulvestrant treatment when the total cell counts were assayed by 

Coulter counter analysis. In the cells cultured in stripped serum a significant 

(p<0.05, n=3) decrease of 50% in total cell number was observed when the 

cells were exposed to fulvestrant (figure 3.11.B.), whereas studies conducted 

in whole serum revealed a statistically significant (p<0.05, n=3) decrease in 

total cell number of 60% in response to fulvestrant treatment (figure 3.11.B.). 

Once again a greater response was observed in the whole serum conditions but 

growth inhibition was still incomplete. Coulter counter analysis also showed 

that the incomplete growth inhibition in response to fulvestrant was not unique 

to MCF-7 cells, with T47D, BT474 and MDA361 ER positive breast cancer 

cell models showing growth inhibitions of 35%, 20% and 50% respectively at 

day 7 (figure 3.11.C.).
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The optimal fulvestrant concentrations for MCF-7 ER protein down 
regulation and growth inhibition.
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Figure 3 .1.(A) Immunocytochemical staining (enlargements, indicating residual staining and 
negative cells in green and pink respectively) (magnification x20) and (B) average nuclear ER 
H scores (n=3) of MCF-7 cells cultured in phenol-red free RPMI containing 5% charcoal- 
stripped steroid-depleted foetal calf serum (SFCS) and treated with increasing concentrations 
of fulvestrant (10-10M to 10-6M) for 8 days (n=3). (C) Effect of increasing concentrations of 
fulvestrant (10-10M to 10-6M) on basal MCF-7 cell growth cultured in phenol-red free RPMI 
containing 5% SFCS on day 8 from initial treatment and represented as percentage of 
untreated control after Coulter counting (n=3). N.B . *= P<0.05. **= P&0.01 vs Control.
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ER expression levels in MCF-7 cells treated with fulvestrant and cultured
in stripped or whole serum.
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Figure 3.2.(A) Western analysis of ERa and (3-actin expression in MCF-7 cells 
cultured in phenol-red free RPMI containing 5% SFCS or FCS and treated with 
10-7M fulvestrant or vehicle control, on day 4 from initial treatment. (B) 
Immunocytochemical staining (enlargements, indicating residual staining and 
negative cells in green and pink respectively) (Magnification x20) and (C) average 
nuclear ER H scores (n-3) of MCF-7 cells cultured in phenol-red free RPMI 
containing 5% SFCS or FCS and treated with 10-7M fulvestrant or vehicle 
control, on day 4 from initial treatment. N.B. *= PZ0.05. vs Control.
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ER mRNA and protein expression levels o f hormone responsive and anti­
hormone resistant breast cancer cells after fulvestrant treatment.
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Figure 3.3. (A) Immunocytochemical staining of ERa in MCF-7 cells and fulvestrant 
resistant MCF-7 cells (FasMCF) cultured in phenol-red free RPMI containing 5% SFCS 
treated with 10-7M fulvestrant, on day 4 from initial treatment (enlargement indicating 
residual staining and negative cells in green and pink respectively) magnification x20. (B) 
Average nuclear ER H-score (N=3) in MCF-7, T-47D, BT-474 and MDA-MB-361 cells 
cultured in phenol-red free RPMI containing 5% SFCS, treated with either 10-7M 
fulvestrant or vehicle control, on day 8 after initial treatment and % ER down-regulation.
(C) Expression of ER a and p-actin mRNA in MCF-7 cells cultured in phenol-red free 
RPMI containing 5% SFCS or FCS, treated with either 10-7M fulvestrant or vehicle control 
on day 4 after initial treatment and normalised densitometry. N.B. *= PZ0.05 vs Control.
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PR and pS2 mRNA expression in MCF-7 cells treated with fulvestrant. 
cultured in stripped and whole serum.
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Figure 3.4. (A) Expression of PR and fi-actin mRNA in MCF-7 cells cultured in 
phenol-red free RPMI containing %5 SFCS or FCS, treated with either 10-7M 
fulvestrant or vehicle control, on day 4 from initial treatment. (B) Expression of 
pS2 and p-actin mRNA in MCF-7 cells cultured in phenol-red free RPMI 
containing 5% SFCS or FCS, treated with either 10-7M fulvestrant or vehicle 
control, on day 4 from initial treatment.
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PR protein expression in MCF-7 cells treated with fulvestrant and cultured
in stripped or whole serum.
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Figure 3.5. (A) Immunocytochemical staining (enlargements, indicating residual 
staining and negative cells in green and pink respectively) magnification x20 and 
(B) average nuclear PR H-scores (n-3) of MCF-7 cells cultured in phenol-red free 
RPMI containing 5% SFCS or FCS and treated with 10-7M fulvestrant or vehicle 
control, on day 4 from initial treatment. N.B. *= PZ0.05 vs Control.
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pS2 protein expression in MCF-7 cells treated with fulvestrant and 
cultured in stripped or whole serum.
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Figure 3.6.(A) Immunocytochemical staining (enlargements, indicating residual 
staining and negative cells in green and pink respectively) magnification x20 and 
(B) average cytoplasmic pS2 H-scores (n=3) of MCF-7 cells cultured in phenol- 
red free RPMI containing 5% SFCS or FCS and treated with 10-7M fulvestrant or 
vehicle control, on day 4 from initial treatment. N.B. *= PZ0.05 vs Control.
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Level o f ERE signalling in MCF-7 cells treated with fulvestrant or 
oestradiol. cultured in stripped or whole serum.
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Figure 3.7. (A) Reporter gene assay showing average ERE expression (n=3) in 
MCF-7 cells cultured in phenol-red free RPMI containing 5% SFCS, treated with 
either 10-7M fulvestrant, 10-9M oestradiol or vehicle control on day 4 from initial 
treatment; with enlargement of scales to show background fluorescence. (B) 
Reporter gene assay showing average ERE expression (n=3) in MCF-7 cells 
cultured in phenol-red free RPMI containing 5% FCS, treated with either 10-7M 
fulvestrant, 10-9M oestradiol or vehicle control on day 4 from initial treatment; 
with enlargement of scales to show background fluorescence. N.B. Basal 
normalised fluorescence values shown above bars *= p^0.05 **= p<,0.01 vs 
Untreated Control or where indicated by lines.

-141-



Chapter 3. Results Section.

PR and pS2 protein expression in MCF-7 cells cultured in stripped serum 
supplemented with oestradiol and treated with fiilvestrant.
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Figure 3.8. (A). Immunocytochemical staining of PR and pS2 (enlargements, 
indicating residual staining and negative cells in green and pink respectively) 
magnification x20 (B) and average nuclear PR and cytoplasmic pS2 H-scores 
(n=3) of MCF-7 cells cultured in phenol-red free RPMI containing 5% SFCS and 
10-9M oestradiol and treated with 10-7M fulvestrant or vehicle control, on day 4 
from initial treatment. N.B. *= PZ0.05 vs Control +E2.
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IGFR signalling in MCF-7 cells cultured in stripped or whole serum and
treated with fulvestrant.
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Figure 3.9.(A) Western blotting analysis of Total IGFR, Phospho-IGFR and (5- 
actin protein in MCF-7 cells cultured in phenol-red free RPMI containing 5% 
SFCS or FCS and treated with 10-7M fulvestrant or vehicle control, on day 4 from 
initial treatment. (B) Western blotting analysis of Total IRS1 and fi-actin protein in 
MCF-7 cells cultured in phenol-red free RPMI containing 5% SFCS or FCS and 
treated with 10-7M fulvestrant or vehicle control, on day 4 from initial treatment.
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Ki67 expression of MCF-7 cells culture in stripped or whole serum, 
treated with fulvestrant.
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Figure 3.10. (A) Immunocytochemical staining (enlargements, indicating residual 
staining in green) magnification x20 and (B) average total Ki67 positivity (n=3) of 
MCF-7 cells cultured in phenol-red free RPMI containing 5% SFCS or FCS and 
treated with 10-7M fulvestrant or vehicle control, on day 4 from initial treatment. 
N.B. *= P<0.05 vs Control.

-144-



Chapter 3.   Results Section.

The effect o f fulvestrant on growth o f Hormone-responsive cells cultured
in stripped or whole serum.
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Figure 3.11.(A) Effect of 10-7M fulvestrant on basal MCF-7 cell growth, cultured 
in phenol-red free RPMI containing 5% SFCS or FCS on day 8 from initial 
treatment and represented as percentage of vehicle control after MTT 
assessm ent (n=3) or (B) Coulter counting (n-3). (C) Effect of 10-7M fulvestrant 
on basal MCF-7, T-47D, BT-474 and MDA-MB-361 cell growth, cultured in 
phenol-red free RPMI containing 5% SFCS or FCS on day 8 from initial treatment 
and represented as percentage of vehicle control after Coulter counter analysis % 
growth inhibition indicated above bars (n=3) . N.B. .* = p<X).05, ** = p<,0.01 vs 
Control.
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Complete ER H-score analysis of MCF-7 cells following fulvestrant exposure.

-

Nuclear H-score Cytoplasmic H-score

Control (stripped 

serum).

238.3(+/-5.1) 0

Fulvestrant (stripped 

serum)

41.7(+/-5.1) 0

Control (whole serum) 249.1(+/-11.1) 0

Fulvestrant (whole 

serum).

49.1(+/-3.7) 0

Table 3.1. ER H-score analysis o f MCF-7 cells grown in stripped or whole 

serum after 4 days fulvestrant exposure (n=3).
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Complete PR H-score analysis o f MCF-7 cells following fulvestrant exposure.

-

Nuclear H-score Cytoplasmic H- 

score

Total H-score

Control (stripped 

serum)

102.5(+/-6.8) 48.6(+/-5.3) 122.5(+/-6.6)

Fulvestrant 

(stripped serum)

53.3(+/-6.0) 20.4(+/-2.1) 75.6(+/-4.4)

Control (stripped 

serum +E2)

273.3(+/-5.1) 185.7(+/-13.5) 284.8(+/-9.4)

Fulvestrant 

(stripped serum 

+E2)

55(+/-4.5) 32(+/-3.1) 81.8(+/-7.3)

Control (whole 

serum)

244.1(+/-7.4) 177(+/-11.6) 263.6(+/-8.8)

Fulvestrant 

(whole serum)

58.3(+/-6.1) 30.3(+/-2.4) 84.7(+/-7.2)

Table 3.2. PR H-score analysis o f  MCF-7 cells grown in stripped or whole 

serum after 4 days fulvestrant exposure (n—3).
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Complete p S2 H-score analysis of MCF-7 cells following fulvestrant

exposure.

Nuclear H-score Cytoplasmic H-score

Control (stripped 

serum)

0 155.8(+/-8.0)

Fulvestrant 

(stripped serum)

0 50(+/-7.7)

Control (stripped 

serum +E2)

0 277.5(+/-7.6)

Fulvestrant 

(stripped serum 

+E2)

0 115.0(+/-7.1)

Control (whole 

serum)

0 263.3(+/-5.2)

Fulvestrant 

(whole serum)

0 123.3(+/-6.8)

Table 3.3. pS2 H-score analysis o f MCF-7 cells grown in stripped or whole 

serum after 4 days fulvestrant exposure (n=3).
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3.2. The effect o f the Dharmafect transfection lipid, and 

optimisation of ER siRNA knockdown in MCF-7 cells.

3.2.1. Optimisation of transfection lipid and knockdown

efficiency.

After observing residual ER expression and the incomplete inhibition of ER 

activity and growth inhibition following fulvestrant treatment, an alternative 

mechanism of ER ablation was investigated using the alternative mechanism 

of protein ‘knock-down’ by utilising siRNA technology. This procedure 

targets specific mRNA expression as opposed to direct protein interaction as 

with fulvestrant. However, during initial siRNA transfection studies in the 

MCF-7 cell line, as per the manufacturer’s methodology, a toxic effect was 

observed for the siRNA and lipid control conditions. This was typified by a 

decrease in cell number following initial application, with increased toxicity 

following re-transfection of the siRNA after 4 days, hindering taking the 

experiment to an 8 day conclusion. The Dharmafect# 1 transfection lipid being 

used was eventually determined to be the cause, and an optimised method was 

developed.

MCF-7 cells cultured in the absence of lipid for 8 days showed a 

healthy culture of cells, grown almost to 100% confluency. These cells 

appeared packed tightly together as a complete monolayer, with the cells 

attached securely to the bottom of the culture apparatus (figure 3.12.A.). In
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contrast, MCF-7 cells cultured for 8 days exposed to the recommended 

concentration (lOnM) of transfection lipid demonstrated a substantial decrease 

in cell number, with a greater number of dead cells observed floating in the 

media (enlargement 2.). Some of the remaining lipid exposed cells also 

showed classic symptoms of cellular distress, being more rounded in 

appearance with vacuoles and pyknotic nuclei (an indication of apoptosis) 

being observed, and cells also demonstrated reduced adhesion to the bottom of 

the culture dish (enlargement 1.).

After observing the lipid effect on the MCF-7 cells an experiment was 

performed to assess the effect of this lipid concentration on cell growth, and to 

determine an optimal lipid concentration for future studies that would 

maximise siRNA transfection but show a less toxic profile. Studies showed 

that at lOnM transfection lipid there was a significant, 70%, decrease in MCF- 

7 cell number compared to untreated cells following an 8 day exposure (figure 

3.12.B.). MCF-7 cells exposed to lower lipid concentrations of 8, 6 and 4nM 

transfection lipid also showed significant growth inhibition compared to 

untreated cells. The lowest concentration of transfection lipid assessed (2nM), 

showed no significant growth inhibition compared to control. An 8 day 

exposure to this reduced lipid concentration showed a healthier MCF-7 cell 

culture that was far closer in appearance to the untreated MCF-7 cells than the 

cells exposed to lOnM of lipid (figure 3.12.C.). The cell number was far 

greater, the cells were less rounded in appearance and more securely attached 

to the surface of the culture flask and were arranged in a tighter monolayer.
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Though the reduced concentration of the transfection lipid showed 

significantly reduced toxicity, if  this concentration was unable to form viable 

lipid-siRNA complexes and facilitate siRNA passage, in biologically active 

quantities into cells then the reduced toxicity profile would be irrelevant. To 

assess the siRNA uptake efficiency of the reduced lipid concentration siTOX 

siRNA was used. When siTOX siRNA is successfully transfected into a cell, 

the cell becomes arrested, and can not progress through its cell cycle and 

subsequently dies. Using Coulter counter assessment, at the reduced lipid level 

of 2nM, siTOX successfully reduced cell number by 60% and 90% after 4 and 

8 days respectively (figure 3.13.A.) showing a conservative transfection 

efficiency of at least 60% after 4 days, though due to the time taken for siTOX 

to kill transfected cells the initial transfection efficiency is likely to be higher.

ER siRNA Knockdown.

Western blot analysis was used to assess the effect of a 4 day oestrogen 

receptor siRNA transfection, using the optimised Dharmafect# 1 lipid 

concentration, on the expression o f total ER protein (figure 3.13.B.). There 

was no observable difference in ER expression between the untransfected 

MCF-7 cells, the lipid treated control and the scrambled siRNA-treated cells. 

SiGenome ER siRNA showed a significant down regulation in ER protein 

expression in the MCF-7 cells transfected with siGenome ER siRNA 

combined with the reduced lipid concentration. It further showed that the 

reduced lipid concentration was able to facilitate siRNA transfection and
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allowed a good knockdown of the gene of interest and as such could be used 

for all future experiments. Though not directly compared the ER siRNA 

knockdown of ER following transfection with either 2nM or lOnM 

Dharmafect was equivalent and potentially more efficient at the lower 

optimised level, due to cells not needing to survive both the effect of ER 

protein inhibition and severe lipid toxicity. This experiment also showed that 

the controls selected for use in future siRNA experiments do not effect ER 

expression.

3.2.2. Efficiency of knockdown using an individual siRNA or 

a pool.

The siGenome ER siRNA purchased from Dharmacon was a pool comprising 

of 4 different individual siRNA molecules provided in equal parts. It is 

provided in this manner as a method to reduce the severity of possible ‘off- 

target’ effects that can occur when using siRNA. However use of a pool of 

siRNA can also increase the frequency o f possible ‘off-target* effects. In a 

single cell line one of the components o f any siRNA pool may be more 

effective at down regulating the target gene than the other components of the 

pool. To ensure in the MCF-7 cell model being used that the ER siRNA was 

being utilised in the most optimal manner possible, the pool and its individual 

components were assessed for protein knockdown efficiency and growth 

inhibition.
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ER protein knock-down following ER siRNA transfection with a pool or 

individual siRNA.

A Western blot, probed for total ER expression of MCF-7 cells after a 4 day 

transfection with either the complete ER siRNA pool or each of the 4 

components showed that the untransfected MCF-7 cells, the lipid-treated and 

the scramble siRNA-treated cells again showed no differential ER expression 

(figure 3. B.C.). The cells transfected with any of the four individual ER 

siRNA constructs or the pool all showed clear down regulation of ER protein 

expression. There was only slight variations observed in effectiveness of 

protein down regulation between the individual siRNA components of the ER 

siRNA pool; with construct 1 promoting greatest ER down regulation and the 

least efficient construct being number 3. However the ER siRNA pool of all 

four constructs was shown to be the most effective at down regulating ER 

protein expression.

Effect of ER siRNA pool and components on cell proliferation.

An experiment to determine whether the complete siRNA pool or one of its 

components showed the greatest growth inhibition was also performed (figure 

3. B.C.). MCF-7 growth after an 8 day transfection with either the total ER 

siRNA pool, or one of its four components showed that the scrambled siRNA 

treatment and the lipid treatment caused no significant growth inhibition 

compared to the untreated MCF-7 cells. There was an equal and significant

-153-



Chapter 3. Results Section.

60% decrease in growth observed after transfection with all individual ER 

siRNA constructs. The total siGenome ER siRNA pool however showed the 

greatest growth inhibition compared to the individual components, though the 

difference was not significant. Based on these findings the complete ER 

siRNA pool was selected for all future experiments.
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Effect of the transfection lipid Dharmafect #1 on MCF-7 cells.

A

Control 10nM Lipid

V acuoles

Enlargements, showing rounded cells with vacuoles (1) and pyknotic nuclei (2).

B
120

Control 2nM 4nM 6 nM 8 nM 10nM

Control 2nM Lipid

Figure 3.12. (A) MCF-7 cells cultured in phenol-red free RPMI containing 5% SFCS, 
treated with 10nM Dharmafect or no lipid (control) on day 4 from initial treatment 
(x20 magnification). (B) Effect of increasing concentrations of Dhamnafect (2nM- 
10nM) on basal MCF-7 cell growth cultured in phenol-red free RPMI containing 5% 
SFCS on day 8 from initial treatment and represented as percentage of untreated 
control after Coulter counting (n=3). (C) MCF-7 cells cultured in phenol-red free 
RPMI containing 5% SFCS, treated with 2nM Dharmafect or no lipid (control) on day 
4 from initial treatment (x20 magnification). N.B.*= PZ0.05 vs Control.
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SiRNA transfection efficiency, and protein knockdown effects in MFC-7 
cells using ER siRNA pool or individual ER siRNA with reduced

transfection lipid.

1 2 0  
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Figure 3.13. (A) Effect of siTOX, and 2nM lipid on basal MCF-7 cell growth 
cultured in phenol-red free RPMI containing 5% SFCS on day 4 from initial 
treatment and represented as percentage of untreated control after Coulter 
counting (n=3). (B) Western analysis of ERa and fi-actin expression in MCF-7 
cells cultured in phenol-red free RPMI containing 5% SFCS and treated with 
either siGENOME ER siRNA pool or (C) individual siGENOME ER siRNA’s, on 
day 4 from initial treatment. (D) Effect of siGENOME ER siRNA pool and 
components on basal MCF-7 cell growth cultured in phenol-red free RPMI 
containing 5% SFCS on day 4 from initial treatment and represented as 
percentage of untreated control after Coulter counting (n=3). N.B. *= PZ0.05. . **- 
PZ0.01 vs Control for lipid and siTOX and siControl for siER’s  respectively.
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3.3. The Effect o f specific ER siRNA on MCF-7 cells.

Down-regulation of ER protein expression following fulvestrant exposure in 

MCF-7 cells was previously shown to be incomplete (section 3.1.). In this 

section experiments were conducted to see how effective ER siRNA was at 

reducing oestrogen receptor levels, ER signalling activity and growth, and thus 

whether targeting ER mRNA was a more effective strategy for reducing the 

residual ER levels than targeting the ER protein levels with fulvestrant. During 

the course of the project, Dharmacon released a second class of siRNA 

products, called On-target siRNA in addition to their siGenome siRNA range. 

This new class of siRNA’s had been optimised and selected for greater 

knockdown and less off-target effects. The new On-target siRNA construct to 

the oestrogen receptor was also assessed in this project.

3.3.1. ER siRNA response on oestrogen receptor levels in

MCF-7 cells.

A 4 day transfection with either siGenome or On-target ER siRNA pools 

revealed a clear down-regulation of oestrogen receptor mRNA expression in 

MCF-7 cells cultured in both stripped and whole serum when compared to 

lipid-treated, scrambled siRNA-treated, and untransfected MCF-7 control cells 

(figure 3.14.A.). The fulvestrant treated arm again showed no effect on ER
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mRNA expression. The down regulation with either ER siRNA constructs was 

substantial; however residual ER mRNA was still present.

Western blotting analysis also revealed an impressive down regulation 

of total ER protein expression following a 4 day transfection with either ER 

siRNA pool in MCF-7 cells cultured in stripped or whole serum (figure

3.14.B.). MCF-7 cells transfected with either ER siRNA constructs again 

showed the presence of residual ER protein expression at largely equivalent 

levels to that seen following fulvestrant treatment in both whole and stripped 

serum conditions.

Incomplete down regulation of ER protein expression following 

siRNA knockdown was also apparent following immunocyto-chemical 

assessment and subsequent nuclear ER H-score analysis (figure 3.15.A. and 

B.). A 4 day exposure of MCF-7 cells to scrambled siRNA, transfection lipid 

and culture medium showed no effect on ER protein expression, with high 

staining intensity in 95% of the cells nuclei and moderate staining in the 

remaining nuclei being observed. Subsequent nuclear H-score analysis (figure

3.15.B. and table 3.4.) for both ER siRNA constructs utilised in this study 

showed a clear decrease of ER protein expression, with only 40% of cells 

showing any nuclear staining. This residual nuclear ER staining was of low 

intensity but still clearly apparent. MCF-7 cells grown in stripped or whole 

serum treated with ER siRNA also showed a few highly stained nuclei, 

possibly an indication of untransfected cells within the population, as it 

occurred regardless of siRNA construct used (see enlargements). ER down 

regulation observed following ER siRNA transfection, and fiilvestrant
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exposure was statistically significant (p<0.05, n=3) under both serum 

conditions compared to the controls, but there was no significant difference in 

ER protein expression levels observed between the two ER siRNA constructs 

and fulvestrant exposed cells in either serum condition.

3.3.2. The Effect of ER siRNA transfection on oestrogen

signalling.

Transfection of ER siRNA in MCF-7 cells produced a significant but 

incomplete down regulation of ER protein expression, comparable to 

fulvestrant treatment. Further studies were subsequently performed to 

investigate whether the residual ER remaining following ER siRNA 

transfection possessed similar activity by assessment of ER transcriptional 

activity.

The effect of ER siRNA transfection on PR and nS2 mRNA and protein 

expression.

The transcriptional activity o f the residual ER following ER siRNA 

transfection was initially investigated by measurement of PR and pS2 mRNA 

and protein expression.
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PR mRNA expression.

A down regulation of PR mRNA expression was observed when MCF-7 cells, 

incubated in both stripped and whole serum, were transfected with either ER 

siRNA construct, and was comparable to levels observed following fulvestrant 

exposure. Once again the down regulation of PR at the mRNA level was 

incomplete, with residual levels observed following ER siRNA transfection 

(Figures 3.16. A.).

p S2 mRNA expression.

In stripped and whole serum culture conditions, analysis of pS2 mRNA 

expression also showed that levels were reduced following transfection with 

either ER siRNA, and the pS2 mRNA expression was comparable to the levels 

observed following fulvestrant treatment (figures 3.16.B.). As with PR gene 

expression, the down regulation of pS2 mRNA expression was incomplete in 

both serum conditions again suggesting the presence of residual ER 

transcriptional activity.

PR protein expression.

Untransfected MCF-7 cells cultured in stripped serum showed low 

cytoplasmic (40% of cells) and nuclear (60% of cells) PR protein expression 

with the remainder of the cells being PR negative (figure 3.17. A.). The ER
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siRNA transfected cells revealed a reduction in PR protein expression, with 

detectable staining in the nucleus and cytoplasm of only 10% of the cells with 

the remaining cells being PR negative. Confirmation of these observations by 

subsequent nuclear H-score analysis showed a significant (p<0.05, n=3) down 

regulation of PR expression in cells transfected with either ER siRNA 

construct, however the presence of residual nuclear PR was also detected in a 

small population (see enlargements 1. and 2.). The reduction in expression 

observed following transfection with both ER siRNA constructs was similar to 

that observed following fulvestrant exposure (figure 3.17.B. and table 3.5.).

Both cytoplasmic and nuclear PR protein expression was observed in 

MCF-7 cells cultured in whole serum under all control conditions (figure 

3.17.A.), with medium to high intensity staining being observed in the nucleus 

o f 70% of the lipid-treated, scrambled siRNA-treated and untransfected MCF- 

7 cells. These cells also displayed very high expression of cytoplasmic PR in 

60% of these control cells with moderate staining in the remaining cells. ER 

siRNA transfection with either construct significantly reduced nuclear PR 

protein expression but low level o f residual nuclear PR staining was still 

observed in 40% the cells (with some high intensity staining) with no 

expression observed in the remainder (enlargements 3. and 4.) which was 

similar to fulvestrant treatment. Cytoplasmic staining was also decreased 

following transfection with ER siRNA but low level staining was again 

observed in 40% of cells and no PR expression in the cytoplasm of the 

remaining cells. Corresponding nuclear H-score assessment (figure 3.17.B. 

and table 3.5.) also demonstrated both a statistically significant (p<0.05, n=3)
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reduction of PR protein expression after transfection, and residual PR 

expression levels equivalent to expression following fulvestrant exposure.

pS2 protein expression.

Overall pS2 protein expression levels in MCF-7 cells cultured in stripped 

serum (figure 3.18.A.) was exclusively within the cytoplasm. Lipid-treated, 

scrambled siRNA-treated and untransfected cells showed some moderate 

intensity staining in the cytoplasm of 40% of the population, with lower pS2 

expression in the cytoplasm of the remaining cells. Transfection with either 

ER siRNA construct caused a loss of all high intensity cytoplasmic staining, 

but residual pS2 expression was observed in the cytoplasm of 10% of the 

population. The corresponding cytoplasmic H-scores showed a significant 

(p<0.05, n=3) down regulation in the presence of either ER siRNA and also 

demonstrated the presence of residual pS2 protein expression, with levels 

comparable to that observed in fulvestrant exposed cells (figure 3.18.B. and 

table 3.6.).

In whole serum culture conditions, all MCF-7 cells again showed only 

cytoplasmic pS2 protein expression (figure 3.18.A.). Lipid-treated, scramble 

siRNA-treated and untransfected MCF-7 cells showed moderate cytoplasmic 

staining across 40% of the population with low staining in 20%, and the 

remaining cells showed no cytoplasmic staining. There was a clear reduction 

in pS2 protein levels across all the population following transfection with 

either ER siRNA construct, no nuclear staining was observed but 15% of the

-162-



Chapter 3. Results Section.

cells demonstrated moderate to low residual cytoplasmic staining and the 

remainder were pS2 negative. Corresponding cytoplasmic H-score analysis 

(figure 3.18.B. and table 3.6.) reflected these observations, showing a 

statistically significant (p<0.05, n=3) down regulation in the ER siRNA 

transfected cells but still clear evidence of residual pS2 protein expression 

identical to that seen in the fulvestrant exposed cells.

ERE activity.

An ERE driven dual luciferase assay was again utilised to 

quantitatively measure the level o f ER signalling following ER siRNA 

transfection of MCF-7 cells. These studies showed an equivalent and 

statistically significant (p<0.05, n=3) fall in ERE activity in both ER siRNA 

transfected and fulvestrant-treated cells, cultured in media containing stripped 

serum (figure 3.19.A.). However residual ERE transcriptional activity was still 

apparent after exposure to either ER siRNA construct or the pure anti­

oestrogen with all treatments reducing ERE activity to a similar degree.

In the MCF-7 cells cultured in whole serum (Figure 3.19.B.) a 

statistically significant (p<0.01, n=3) 70-80% reduction in ERE transcriptional 

activity was observed following ER siRNA transfection (with either construct) 

or fulvestrant treatment, with fulvestrant treatment showing a significantly 

greater reduction than either ER siRNA alone. Though ER siRNA transfection 

or fulvestrant treatment decreased ERE transcriptional activity significantly, 

there was still a residual activity equivalent to 20% of control, which was
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statistically significantly greater than the background fluorescence produced 

from cells not transfected with ERE constructs.

ER siRNA effect on oestradiol stimulation.

To determine whether ER siRNA transfection, like fulvestrant treatment, was 

able to overcome enhanced ER signalling following oestradiol challenge. The 

ability of ER siRNA to reduce oestradiol-stimulated ER regulated PR and pS2 

protein expression was assessed.

When MCF-7 cells cultured in stripped serum were stimulated with the 

addition of 10‘9M oestradiol to the media the basal expression levels of both 

PR and pS2 protein expression were increased though only slightly for PR 

expression (figure 3.20.) when compared to unstimulated cells previously 

shown (in figure 3.17.). The oestradiol stimulated cells treated with either 

scrambled siRNA, transfection lipid or culture media showed PR expression in 

the nucleus of all o f the cells, and high expression of PR in the cytoplasm was 

also observed in 40% of the cells, with less intense staining also observed in 

the remainder o f the cells (figure 3.20. A.). When stimulated with oestradiol, 

MCF-7 cells cultured with stripped serum also showed increased cytoplasmic 

levels of pS2 expression, compared to unstimulated cells. All control cells 

showed intense cytoplasmic staining. A significant (p<0.05, n=3) down 

regulation of oestradiol-induced PR protein expression was apparent, 

following ER siRNA transfection, with 30% of cells showing reduced 

intensity staining in the nucleus with occasional strong staining (see
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enlargements) and some residual PR expression present in the cytoplasm, with 

30% of cells being PR negative. Oestradiol-treated, ER siRNA transfected 

cells, showed only low levels cytoplasmic pS2 staining, with 15% of cells 

showing no expression of pS2 at all (figure 3.20.A.). Subsequent H-score 

analysis o f nuclear PR and cytoplasmic pS2 staining supported these 

observations and showed a statistically significant (p<0.05, n=3) down 

regulation of both PR and pS2 expression following ER siRNA transfection 

with either construct (figure 3.20.B. and tables 3.5. and 3.6.). However both 

the pictures and the H-score analysis showed presence of residual PR and pS2 

after ER siRNA transfection and these levels of reduction and residual 

expression was comparable to the MCF-7 cells treated with fulvestrant.

3.3.3. The Effect of ER siRNA transfection on MCF-7 cell

proliferation.

These previous findings clearly show that ER siRNA transfection resulted in 

an incomplete down regulation of ER expression and ER transcriptional 

activity in a manner comparable to fulvestrant treatment. As fulvestrant 

treatment subsequently produced an incomplete blockade of cell proliferation 

the influence of ER siRNA transfection on cell proliferation was examined to 

determine whether a similar pattern was evident with this therapeutic strategy. 

Again effects on proliferation were assessed in multiple ways, through 

monitoring effects on IGF-1R signalling component expression, nuclear Ki67
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expression analysis and through the use o f cell viability and cell counting 

assays.

IGF-1R signalling component analysis.

Measurement of IGF-1R signalling component expression, assessed by 

Western blotting following a 4 day transfection with either ER siRNA 

construct, showed a down regulation of total and phosphorylated IGF-1R 

levels, as well as total IRS 1 expression, in ER siRNA transfected cells 

compared to scrambled siRNA-treated, lipid-treated and untransfected MCF-7 

cells cultured in either stripped or whole serum. This reduction was 

comparable to the down regulation observed following fulvestrant treatment 

(figures 3.21.A. and B.) and again the inhibition observed was incomplete for 

both ER siRNA constructs regardless o f serum conditions.

Ki67 analysis.

In MCF-7 cells treated with scrambled siRNA, transfection lipid and 

untransfected cells, cultured in stripped serum, high levels of nuclear staining 

for the proliferation marker Ki67 was observed in 40% of the population and 

less intense staining recorded in a further 20% of the population with the 

remaining cells showing no expression o f the antigen (figure 3.22.A.) The 

total Ki67 positivity score was roughly 65% for all these conditions (figure 

3.22.B.). Similarly scrambled siRNA-treated, lipid-treated and untransfected
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MCF-7 cells cultured in whole serum all showed a high percentage (80%) of 

cells expressing the Ki67 antigen in the nucleus (figures 3.22.A. and B.). ER 

siRNA transfection with either construct decreased staining significantly 

compared to the controls, with staining observed in 30% and 40% of cells 

cultured with stripped and whole serum respectively. The reductions were 

again comparable to levels observed following exposure to fulvestrant. Once 

more despite a significant (p<0.05, n=3) reduction in nuclear Ki67 positive 

cells in both serum conditions, some cells still showed presence of the marker 

in the ER siRNA transfected cell populations (see enlargements). Transfection 

with either ER siRNA was also shown to reduce Ki67 expression to a similar 

degree in both stripped and whole serum.

Proliferation assays.

MTT assays revealed incomplete growth inhibition in response to ER siRNA 

transfection with either construct. An 8 day transfection with On-target ER 

siRNA resulted in a small but significant growth inhibition of 20% in MCF-7 

cells cultured with stripped serum, an inhibition comparable following 

fulvestrant exposure (figure 3.23.A.). However a greater growth inhibition of 

60% was observed following siGenome ER siRNA transfection under these 

culture conditions. In whole serum culture conditions, a significant growth 

inhibition of 50% was observed following transfection with On-target ER 

siRNA (figure 3.23.A.), transfection with siGenome ER siRNA caused a 70% 

growth inhibition, which was comparable with fulvestrant treatment.
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Coulter counter analysis (figure 3.23.B.) o f MCF-7 cells transfected with 

siGenome ER siRNA showed a significant decrease of 70% and 40% in total 

cell number when cultured with stripped and whole serum respectively. A 

significant growth inhibition of 40% was observed following On-target ER 

siRNA transfection under both serum conditions. Fulvestrant exposure caused 

a greater growth inhibition than On-target ER siRNA transfection under both 

culture conditions, and a greater growth inhibition when compared to 

siGenome ER siRNA transfection with whole serum, but not under stripped 

serum conditions. Residual growth was again observed following transfection 

with either ER siRNA construct under both culture conditions.

3.3.4. Possible Off target effect of siGenome ER siRNA.

During the course of the previous growth experiments, transfection with 

siGenome ER siRNA seemed to produce a more substantial impact than the 

reputedly more specific On-target ER siRNA construct in MCF-7 cells. 

Further studies revealed that use o f SiGenome ER siRNA could cause an off- 

target effect, leading to, or directly causing a down-regulation of total ERK 

protein expression, an important growth regulatory protein in MCF-7 cells. 

This down regulation was observed under both culture conditions (figures 

3.24.A. and B.), all other treatments, including the On-target ER siRNA 

transfected cells and the fulvestrant exposed cells, showed no effect on ERK 

protein expression. Evidence of an off-target effect acting either directly or 

indirectly on ERK regulation made the siGenome class of ER siRNA
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unreliable for future experiments due to the importance of ERK on MCF-7 cell 

proliferation and survival.
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ER mRNA and protein expression in MCF-7 cells cultured in stripped or 
whole serum, treated with ER siRNA.
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Figure 3 .14 (A) Expression ofERa and (3-actin mRNA in MCF-7 cells cultured in 
phenol-red free RPMI containing 5% SFCS or FCS, treated with either 10-7M 
fulvestrant, 2nM lipid, scrambled siRNA control, siGenome siER, On-target siER 
or vehicle control on day 4 from initial treatment. (B) Western analysis of ERa and 
fi-actin expression in MCF-7 cells cultured in phenol-red free RPMI containing 5% 
SFCS or FCS and treated with either 10-7M fulvestrant, 2nM lipid, scrambled 
siRNA control, siGenome siER, On-target siER or vehicle control on day 4 from 
initial treatment.
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ER protein expression in MCF-7 cells cultured in stripped or whole 
serum, treated with ER siRNA.
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Figure 3.15. (A) Immunocytochemical staining (enlargements, indicating residual staining 
and negative cells in green and pink respectively) magnification x20 and (B) average 
nuclear ER H scores (n=3) of MCF-7 cells cultured in phenol-red free RPMI containing 5% 
SFCS or FCS and treated with either 10-7M fulvestrant, 2nM lipid, scrambled siRNA control, 
siGenome siER, On-target siER or vehicle control, on day 4 from initial treatment. N.B. *= 
PZ0.05 vs Control or siC for Fulv and siER’s  respectively. -171 -
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PR and pS2 mRNA expression in MCF-7 cells cultured in stripped and 
whole serum, treated with ER siRNA.
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Figure 3 .16 (A) Expression of PR and fi-actin mRNA in MCF-7 cells cultured in phenol-red free 
RPMI containing 5% SFCS or FCS, treated with either 10-7M fulvestrant, 2nM lipid, scrambled 
siRNA control, siGenome siER, On-target siER or vehicle control on day 4 from initial treatment 
and actin normalised densitometry values (B) Expression of pS2 and (3-actin expression in MCF-7 
cells cultured in phenol-red free RPMI containing 5% SFCS or FCS and treated with either 10-7M 
fulvestrant, 2nM lipid, scrambled siRNA control, siGenome siER, On-target siER or vehicle control 
on day 4 from initial treatment and actin normalised densitometry values. N.B. *= PZ0.05 vs 
Control or siC for Fulv and siER’s  respectively. j ^
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PR protein expression levels in MCF-7 cells cultured in stripped or whole 
serum, and treated with ER siRNA.
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Figure 3.17 (A) Immunocytochemical staining (enlargements, indicating residual staining in 
green) magnification x20 and (B) average nuclear PR H-scores (n=3) of MCF-7 cells cultured 
in phenol-red free RPMI containing 5% SFCS or FCS and treated with either 10-7M 
fulvestrant, 2nM lipid, scrambled siRNA control, siGenome siER, On-target siER or vehicle 
control, on day 4 from initial treatment. N.B. *= PZ0.05 vs Control or siC for fulv and siER’s  
respectively. -173-
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pS2 protein expression levels in MCF-7 cells cultured in stripped or whole 
serum, and treated with ER siRNA.
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Figure 3.18. (A) Immunocytochemical staining (enlargements, indicating residual 
staining in green) magnification x20 and (B) average cytoplasmic pS2 H-scores 
(n=3) of MCF-7 cells cultured in phenol-red free RPMI containing 5% SFCS or 
FCS and treated with either 10-7M fulvestrant, 2nM lipid, scrambled siRNA 
control, siGenome siER, On-target siER or vehicle control, on day 4 from initial 
treatment. N.B. *= PZ0.05 vs Control or siC for fulv and siER’s respectively.
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Level o f ERE signalling in MCF-7 cells treated with ER siRNA. cultured
in stripped or whole serum.
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Figure 3.19. Reporter gene assay showing average ERE expression (n-3) in 
MCF-7 cells cultured in phenol-red free RPMI containing 5% SFCS or FCS, 
treated with either10-7M fulvestrant, 2nM lipid, scrambled siRNA control, 
siGenome siER, On-target siER, or vehicle control on day 4 from initial treatment; 
with background fluorescence levels indicated by red line (n-3). N.B. *= p£0.05 
**= p<X).01 vs control or siControl for fulv and siER’s respectively or where 
indicated by bars.
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PR and pS2 protein expression in MCF-7 cells cultured in stripped serum 
supplemented with oestradiol and treated with ER siRNA.
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Enlargements, showing residual PR (1 and 2) and residual pS2 (3 and 4) expression in oestradiol stimulated
cells, following ER siRNA transfection.
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Figure 3.20 (A) Immunocytochemical staining of PR and pS2 (enlargements, indicating 
residual staining in green) magnification x20 and (B) average nuclear PR and cytoplasmic 
pS2 H-scores (n=3) of MCF-7 cells cultured in phenol-red free RPMI containing 5% SFCS 
and 10-9M oestradiol and treated with either 10-7M fulvestrant, 2nM lipid, scrambled 
siRNA control, siGenome siER, On-target siER or vehicle control, on day 4 from initial 
treatment. N. B. *= P£0.05 vs Control or siC for fulv and siER’s  respectively.
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The effect o f ER siRNA on IGFR signalling in MCF-7 cells cultured in
stripped or whole serum.
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Figure 3.21. (A) Western blotting analysis of Total IGFR, Phospho-IGFR and p- 
actin protein in MCF-7 cells cultured in phenol-red free RPMI containing 5% 
SFCS or FCS and treated with either 10-7M fulvestrant, 2nM lipid, scrambled 
siRNA control, siGenome siER, On-target siER or vehicle control, on day 4 from 
initial treatment (B) Western blotting analysis of Total IRS1 and p-actin protein in 
MCF-7 cells cultured in phenol-red free RPMI containing 5% SFCS or FCS, 
treated with either 10-7M fulvestrant, 2nM lipid, scrambled siRNA control, 
siGenome siER, On-target siER or vehicle control on day 4 from initial treatment.
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Ki67 expression in MCF-7 cells cultured in stripped or whole serum.
treated with ER siRNA.
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Figure 3.22 (A) Immunocytochemical staining (enlargements, indicating residual staining in 
green) magnification x20 and (B) average total Ki67 positivity (n-3) of MCF-7 cells 
cultured in phenol-red free RPMI containing 5% SFCS or FCS and treated with either 10- 
7M fulvestrant, 2nM lipid, scrambled siRNA control, siGenome siER, On-target siER or 
vehicle control, on day 4 from initial treatment. N.B. *= PZ0.05 vs control or siC for fulv and 
siER’s  respectively. _ j yg_
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The effect o f ER siRNA on growth o f MCF-7 cells cultured in stripped or
whole serum.
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Figure 3.23.(A) Effect on basal MCF-7 cell growth, cultured in phenol-red free 
RPMI containing 5% SFCS or FCS treated with either 10-7M fulvestrant, 2nM 
lipid, scrambled siRNA control, siGenome siER, On-target siER, or vehicle 
control on day 8 from initial treatment and represented as percentage of vehicle 
control after MTT assessm ent (n=3) (B) or Coulter counting (n=3). N.B. . * = 
p$0.05, ** = pZ0.01 vs control or siControl for fulv and siER’s respectively.
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The effect o f ER siRNA on ERK signalling in MCF-7 cells cultured in 
either striped or whole serum.
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Figure 3.24. Western blotting analysis of Total ERK and (i-actin protein in MCF-7 
cells cultured in phenol-red free RPMI containing 5% SFCS or FCS and treated 
with either 10-7M fulvestrant, 2nM lipid, scrambled siRNA control, siGenome 
siER, On-target siER or vehicle control, on day 4 from initial treatment.
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Complete ER H-score analysis of MCF-7 cells following ER siRNA
transfection.

Nuclear H-score Cytoplasmic H-score
Control (stripped 
serum)

235(47-4.5) 0

Fulvestrant 
(stripped serum)

49.2(+/-ll.l) 0

Lipid (stripped 
serum)

235.8(+/-5.8) 0

siRNA control 
(stripped serum)

233.3(+/-6.8) 0

siGenome ER 
siRNA (stripped 
serum)

48.3(+/-11.7) 0

On-target ER 
siRNA (stripped 
serum)

49.2(4-/-10.7) 0

Control (whole 
serum)

249.2(4-/-11.1) 0

Fulvestrant 
(whole serum)

43.3(47-7.5) 0

Lipid (whole 
serum)

250(47-10.5) 0

siRNA control 
(whole serum)

248.3(47-9.3) 0

siGenome ER 
siRNA

42.5(47-5.2) 0

On-target ER 
siRNA

44.2(47-6.6) 0

Table 3.4. ER H-score analysis o f  MCF-7 cells grown in stripped or whole 
serum after 4 days ER siRNA transfection or fulvestrant exposure (n=3).
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PR H-score analysis of MCF-7 cells following ER siRNA transfection.

Nuclear H-score Cytoplasmic H- 
score

Total H-score

Control (stripped 
serum)

102.5(+/-6.9) 48.6(+/-5.3) 122.5(+/-6.6)

Fulvestrant 
(stripped serum)

53.3(+/-6.1) 20.4(+/-2.1) 65.6(+/-4.4)

Lipid (stripped 
serum)

101.7(+/-6.8) 45.7(+/-3.3) 121.8(+/-7.2)

siRNA control 
(stripped serum)

100.8(+/-7.4) 45.2(+/-7.2) 123.4(+/-6.2)

siGenome ER 
siRNA (stripped 
serum)

52.5(+/-5.2) 21.3(+/-5.3) 66.2(+/-6.5)

On-target ER 
siRNA (stripped 
serum)

53.3(+/-6.8) 21.7(+/-3.8) 65.9(+/-7.2)

Control (stripped 
serum +E2)

273.5(+/-5.2) 205.7(+/-13.5) 274.8(+/-9.4)

Fulvestrant 
(stripped serum 
+E2)

55(+/-4.5) 52(+/-3.1) 90(+/-7.3)

Lipid (stripped 
serum +E2)

274.2(+/-9.7) 201.1(+/-12.1) 272.5(+/-8.2)

siRNA control
(stripped
serum+E2)

275(+/-7.1) 207.7(+/-14.6) 273.2(+/-8.9)

siGenome ER 
siRNA (stripped 
serum +E2)

54.2(+/-6.6) 56.2(+/-7.2) 85.2(+/-7.1)

On-target ER 
siRNA (stripped 
serum+E2)

54.2(+/-8.6) 52.2(+/-4.5) 87.6(+/-8.1)

Control (whole 
serum)

244.4(+/-7.3) 177(+/-11.6) 253.6(+/-8.8)

Fulvestrant (whole 
serum)

61.7(+/-8.8) 40.3(+/-2.4) 89.7(+/-7.2)

Lipid (whole 
serum)

245(+/-8.4) 178.2(+/-10.3) 255.7(+/-8.1)

siRNA control 
(whole serum)

251.6(+/-5.2) 176.6.(+/-9.9) 257.3(+/-10.2)

siGenome ER 
siRNA

60.8(+/-4.9) 38.6(+/-3.9) 91.2(+/-8.6)

On-target ER 
siRNA

61.6(+/-6.8) 41.6(+/-4.3) 89.4(+/-6.8)

Table 3.5. PR H-score analysis o f  MCF-7 cells grown in stripped or whole

serum after 4 days ER siRNA or fulvestrant exposure (n=3).
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pS2 H-score analysis of MCF-7 cells following ER siRNA transfection.

Nuclear H-score Cytoplasmic H-score
Control (stripped 
serum)

0 155.8(+/-8)

Fulvestrant 
(stripped serum)

0 58.3(+/-5.2)

Lipid (stripped 
serum)

0 154.2(+/-4.9)

siRNA control 
(stripped serum)

0 153.3(+/-5.2)

siGenome ER 
siRNA (stripped 
serum)

0 59.2(+/-5.8)

On-target ER 
siRNA (stripped 
serum)

0 60.8(+/-3.8)

Control (stripped 
serum +E2)

0 278.3(+/-8.2)

Fulvestrant 
(stripped serum 
+E2)

0 118.3(+/-6.1)

Lipid (stripped 
serum +E2)

0 275.8(+/-8)

siRNA control
(stripped
serum+E2)

0 279.2(+/-7.4)

siGenome ER 
siRNA (stripped 
serum +E2)

0 117.5(+/-6.9)

On-target ER 
siRNA (stripped 
serum+E2)

0 118.3(+/-6.1)

Control (whole 
serum)

0 258.3(+/-6.8)

Fulvestrant (whole 
serum)

0 118.3(+/-5.2)

Lipid (whole 
serum)

0 255.8(+/-5.8)

siRNA control 
(whole serum)

0 255(+/-4.5)

siGenome ER 
siRNA

0 117.8(+/-5.2)

On-target ER 
siRNA

0 116.7(+/-6.1)

Table 3.6. pS2 H-score analysis o f  MCF-7 cells grown in stripped or whole

serum after 4 days ER siRNA or fulvestrant exposure (n=3).
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3.4. The Effect o f the combination o f ‘pure’ anti-oestrogen 

fulvestrant and ER siRNA treatment on MCF-7 cells.

The previous work in this project showed that fulvestrant exposure and On- 

target ER siRNA transfection both reduced ER protein expression to an 

equivalent degree, fulvestrant by facilitating degradation of the oestrogen 

receptor protein, and ER siRNA by initiating down regulation of ER mRNA, 

reducing translation of ER protein. These treatments also reduced oestrogen 

driven signalling and growth in MCF-7 cells, however the level of ER protein 

down regulation and the subsequent effects on down-stream ER signalling and 

growth inhibition were incomplete when each agent was used alone. Residual 

ER was present in both serum conditions and in the presence of exogenous E2 

and exerted residual signalling and potentially growth. The studies in this next 

section were designed to assess whether the combination of ER siRNA and 

fulvestrant, targeting both ER mRNA and protein simultaneously would be a 

more effective anti-oestrogen strategy and eliminate expression of residual 

ER.

3.4.1. The effect of the combination of fulvestrant and ER 

siRNA on ER levels in MCF-7 cells.

The combination treatment of fulvestrant and on-target ER siRNA transfection 

for 4 days showed no greater down regulation of ER mRNA expression in
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MCF-7 cells cultured, in either stripped or whole serum, when compared to 

ER siRNA transfection alone (figure 3.25.A.). MCF-7 cells treated with either 

scrambled siRNA, or fulvestrant and scrambled siRNA showed no reduction 

in ER mRNA expression.

Assessment of ER protein expression by Western blotting in MCF-7 

cells cultured with either stripped or whole serum revealed a greater down 

regulation of total ER protein levels after a 4 day combination treatment of 

fulvestrant and ER siRNA (figure 3.25.B.), when compared to either 

fulvestrant or ER siRNA treatment alone. Residual ER protein levels were 

barely detectable in the combination treatment arm in both serum conditions. 

Extremely low levels o f residual ER protein expression were detected 

following the 4 day fulvestrant and ER siRNA combination treatment of 

MCF-7 cells by immunocyto-chemical assessment under both stripped and 

whole serum conditions (figure 3.26.A.). The untransfected cells and the 

scrambled siRNA-treated MCF-7 cells cultured in either stripped of whole 

serum showed high levels of ER expression, with high staining intensity 

observed in 90% of the cell nuclei and moderate staining in the remaining 

nuclei (figures 3.26.B. and in table 3.7.). Regardless of culture conditions the 

combination treatment o f fulvestrant and ER siRNA resulted in extremely low 

levels o f nuclear ER staining with only 5-10% of cells showing any ER 

protein expression (see enlargements). This decrease in ER expression as 

determined by H-score assessment was statistically significant (p<0.05, n=3) 

under both experimental conditions compared to untransfected MCF-7 cells.

In both serum types however the combination treatment also showed a greater
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ER protein down regulation compared to either fulvestrant or ER siRNA 

alone. The corresponding nuclear ER H-score analysis showing a significant 

(p<0.05, n=3) 70% decrease in ER expression in the combination condition 

compared to either fulvestrant or ER siRNA treatment alone.

3.4.2. The Effect of fulvestrant and ER siRNA combination 

treatment on oestrogen receptor signalling.

As the combination treatment of fulvestrant and ER siRNA showed greater, 

(and almost complete) down regulation of ER protein expression compared to 

either agent alone, further studies were performed to assess whether this 

greater impact on nuclear ER expression had a superior inhibitory effect on 

ER transcriptional activity. Any transcriptional activity following combination 

treatment was initially investigated by measurement PR and pS2 mRNA and 

protein expression.

Effect o f the Combination treatment on ER-regulated genes.

PR and pS2 mRNA expression.

As previously observed with each agent alone, a down regulation of both PR 

and pS2 mRNA expression was observed in MCF-7 cells following a 4 day 

combination treatment incubated with both stripped and whole serum. The
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down regulation of PR at the mRNA level was not complete in the 

combination condition, with residual PR expression being observed (figure 

3.27.A.). As with PR gene expression, down regulation of pS2 mRNA 

expression was also incomplete in both culture conditions indicating the 

possibility o f residual ER transcriptional activity (figure 3.27.B.). Importantly, 

the combination treatment showed no greater PR or pS2 mRNA down- 

regulation compared to fulvestrant or ER siRNA treatment alone, despite the 

greater loss of residual ER previously observed.

PR protein expression.

Under both stripped and whole serum culture conditions, both cytoplasmic and 

nuclear PR protein expression was observed in scrambled siRNA-treated and 

untransfected MCF-7 cells (figure 3.28.A.), with 20% and 30% of cells 

showing cytoplasmic and nuclear expression, respectively, under stripped 

serum conditions, with the remainder o f the cells being PR negative in both 

treatment arms. Following fulvestrant and ER siRNA combination treatment 

MCF-7 cells showed a reduction of PR expression, with detectable staining 

only observed in the cytoplasm and nucleus o f 10% of the cells. Under whole 

serum conditions scrambled siRNA-treated and untreated MCF-7 cells showed 

high expression in the nucleus of 40% of the cells and moderate to low 

expression observed in a further 40% of cells, with no expression observed in 

the remaining cells. There was also high to moderate cytoplasmic PR 

expression in 60% of the cells with no further expression observed across the
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population. The combination of fulvestrant and ER siRNA treatment 

significantly (p<0.05, n=3) reduced PR protein expression, under whole serum 

conditions, though very low level nuclear staining was still observed in 10% 

the cells (figures 3.28.A. and B. and table 3.8.). Cytoplasmic staining was also 

completely undetectable after combination treatment (figure 3.28.A.). 

Corresponding nuclear PR H-score analysis showed a significant (p<0.05, 

n=3) down regulation of PR expression following combination treatment, 

compared to untreated MCF-7 cells under stripped serum culture conditions. 

Under whole serum conditions however, nuclear H-score assessment revealed 

that there was a slightly reduced nuclear PR protein expression level when the 

effect o f the combination treatment was compared to ER siRNA transfection 

alone; though this was not determined to be statistically significant. The 

presence of low levels of residual nuclear PR was observed under both culture 

conditions. There was also no significant difference in the level of nuclear PR 

protein expression when the effect o f the combination treatment was compared 

to either fulvestrant expression or ER siRNA transfection alone, under both 

culture conditions (figure 3.28.B. and table 3.8.).

pS2 protein expression.

pS2 protein expression in MCF-7 cells cultured with stripped serum (figure 

3.29.A.), was exclusively observed within the cytoplasm. Scrambled siRNA- 

treated and untreated MCF-7 cells showed moderate intensity staining in the 

cytoplasm o f 20% of the population, with lower pS2 expression in the
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cytoplasm o f 60% of cells, the remaining cells showed no pS2 expression. The 

combination of fulvestrant and ER siRNA treatment caused a significant loss 

o f cytoplasmic staining, with only low level expression present in 20% of the 

population. However pS2 expression levels were similar in cells treated with 

the combination of fulvestrant and ER siRNA and cells treated with either 

fulvestrant or ER siRNA alone. MCF-7 cells cultured with whole serum all 

showed no nuclear staining for pS2 protein (figure 3.29.A.). Untreated and 

scrambled siRNA transfected MCF-7 cells cultured in whole serum all showed 

moderate cytoplasmic staining across 50% of the population with 10% 

showing low staining and 40% no cytoplasmic staining. There was again a 

clear reduction of pS2 protein expression across all the cells following 

combination treatment, with only 20% of the cells demonstrating moderate to 

low staining with the remainder o f the cells pS2 negative. pS2 expression 

following combination treatment was comparable to the expression levels 

observed after fulvestrant and ER siRNA treatment alone. Corresponding H- 

scores o f cytoplasmic staining under both culture conditions revealed the 

down regulation of cytoplasmic pS2 to be significant (p<0.05, n=3) following 

the combination treatment and again demonstrated that residual pS2 protein 

expression was present and that the combination was no more effective than 

either fulvestrant or ER siRNA treatment alone (figure 3.29.B. and table 3.9.).
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ERE studies.

ERE reporter gene studies showed a statistically significant (p<0.05, n=3) drop 

o f 35% following combination treatment compared to the untransfected and 

scrambled siRNA-treated MCF-7 cells. Though the combination treatment 

showed a slightly greater down-regulation of ERE activity compared to the ER 

siRNA transfected cells alone, this series of experiments showed no greater 

inhibition of ERE activity compared to fulvestrant treatment alone in MCF-7 

cells cultured with stripped serum (figure 3.30.A.), and residual ERE activity 

was still clearly apparent.

In the MCF-7 cells cultured with whole serum (figure 3.30.B) a similar 

profile was observed, the combination treatment causing a statistically 

significant (p<0.01, n=3) reduction of 85% compared to untreated and 

scrambled siRNA transfected controls. Combination treatment again also 

demonstrated a significantly greater down-regulation of ERE activity when 

compared to ER siRNA transfection alone (p<0.05, n=3). However, again 

there was no significant difference in ERE activity following the combination 

treatment when compared to fulvestrant treatment alone (p>0.05, n=3), with 

both culture conditions showing significant residual ERE activity after 

combination treatment.
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Oestradiol Challenge.

When MCF-7 cells grown in stripped serum were stimulated with the addition 

o f 10'9M oestradiol to the media the basal expression levels of both PR and 

pS2 were increased. The oestradiol-stimulated scrambled siRNA-treated and 

untransfected MCF-7 cells showed intense staining of PR in the nucleus of all 

o f the cells, and high expression of PR in the cytoplasm was also observed in 

70% of the cells, with less intense staining also being seen in the remainder of 

the cells (figure 3.31.A.). A significant (p<0.05, n=3) down regulation of 

oestradiol-induced PR expression was apparent, following exposure to the 

combination treatment of ER siRNA and fulvestrant with only 30% of cells 

showing low intensity staining in both the nucleus and the cytoplasm, and 

30% of cells observed being PR negative. When stimulated with oestradiol, 

cells cultured in stripped serum showed increased cytoplasmic levels of pS2 

expression, when compared to unstimulated MCF-7 cells (previously shown in 

figure 3.29.). Scrambled siRNA-treated and untransfected MCF-7 cells 

showed intense to moderate cytoplasmic staining in 80% of cells, with 

detectable pS2 expression in the remainder. Oestrogen stimulated cells 

exposed to fulvestrant and ER siRNA in combination showed less intense 

cytoplasmic staining, with 10% showing no expression of pS2 at all (figure 

3.31.A.). However the combination treated cells showed no greater down 

regulation of PR or pS2 expression than fulvestrant or ER siRNA treatment 

alone. Corresponding H-score analysis of nuclear PR and cytoplasmic pS2 

expression both clearly showed a statistically significant (p<0.05, n=3) down
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regulation of expression following combination treatment (figure 3.3 l.B. and 

tables 3.8. and 3.9.). However both the immuno-histochemical images and the 

subsequent H-score analysis showed presence of residual PR and pS2 after 

exposure to ER siRNA and fulvestrant in combination when MCF-7 cells were 

oestradiol stimulated.

3.4.3. The Effect of the combination of fulvestrant and ER 

siRNA treatment on MCF-7 cell growth.

Although there was no greater effect on classical ER signalling following the 

combination treatment, the greater loss of residual ER may have a greater 

impact on growth and proliferation than the use of either agent alone by 

another mechanism. The effect of the combination treatment on IGF-1R 

signalling component expression, nuclear Ki67 expression, cell viability and 

cell number were therefore assessed in the following studies.

IGFR signalling.

Following the fulvestrant and ER siRNA combination treatment a down 

regulation o f total and phosphorylated IGF-1R was observed when compared 

to scrambled siRNA-treated and untreated MCF-7 cells under both culture 

conditions but no greater down regulation when compared to either fulvestrant 

or ER siRNA treatment alone (figures 3.32.A. and B.). This inhibition was
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again incomplete following combination treatment in both serum conditions. 

Furthermore, an incomplete inhibition of IRS 1 was also observed following a 

4 day combination treatment in MCF-7 cells cultured with either serum type, 

again there was no observable difference between the combination treatment 

and either fulvestrant treatment or ER siRNA transfection alone (figures

3.33.A. and B.).

Ki67 analysis.

When the effect of the combination treatment on nuclear expression levels of 

the proliferation marker Ki67 was examined, scrambled siRNA-treated and 

untreated MCF-7 cells showed a total Ki67 positivity score of 65% and 80% 

for the stripped and whole serum culture conditions, respectively (figures

3.33.A. and B.). ER siRNA and fulvestrant exposure in combination caused a 

decrease in nuclear KJ67 positivity under both culture conditions. The 

observed staining was less intense across the population compared to the 

controls, with only 25% and 30% of cells showing any presence of the antigen 

in the nucleus in stripped and whole serum, respectively. There was no 

difference in the combination treatment arm when compared with either ER 

siRNA or fulvestrant treatment alone. Once more, despite a clear reduction in 

Ki67 positive cells, some positively stained cells were still evident in the 

combination treated cell populations.
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Growth and proliferation assays.

MTT assays revealed incomplete growth inhibition in response to the 

combination treatment, an 8 day exposure showed a small but significant drop 

in growth of 20% in stripped serum conditions, similar to that seen with 

fulvestrant alone and equal to siRNA transfection alone (figure 3.34.A.). There 

was a significant (p<0.05) but incomplete growth inhibition of 70% in 

combination treated cells cultured in whole serum; this was again equivalent 

to fulvestrant exposure alone but significantly greater than that seen by siRNA 

transfection alone (figure 3.34.A.). The incomplete decrease in growth was 

also reflected in total cell number observed following analysis by Coulter 

counter. Under stripped serum culture conditions a significant (p<0.05) 

decrease of 50% in total cell number was observed following exposure to the 

combination treatment (figure 3.34.B.). Under whole serum culture conditions 

studies showed a statistically significant (p<0.01) decrease in total cell number 

o f 60% in response to combination treatment, significantly greater than ER 

siRNA alone (figure 3.34.B.). Both culture conditions showed residual growth 

after combined fulvestrant and ER siRNA exposure with the combination 

treatment providing no greater growth inhibition compared to fulvestrant 

exposure alone. However the combination treatment showed greater growth 

inhibition when compared to ER siRNA transfection alone under both culture 

conditions.
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3.4.4. Combination treatment of ER siRNA and fulvestrant 

effect on the EGFR signalling in MCF-7 cells.

The apparent lack of further growth inhibition in the combination condition 

could also possibly be explained by an increase in compensatory signalling 

through the epidermal growth factor receptor pathway (EGFR) on ER 

blockade, so the effect of the combination condition on components of EGFR 

signalling pathway were assessed by Western blotting.

Basal levels of EGFR and HER2 expression in MCF-7 cells were low 

and difficult to detect, however a combination treatment o f ER siRNA and 

fulvestrant treatment showed no increase in phosphorylated EGFR expression 

in either serum condition (figure 3.35.A.). Interestingly however, there was an 

observable increase in total EGFR at this early time point, however this was 

very slight and a similar increase was also observed following fulvestrant 

treatment as well under stripped serum conditions. This was also the case 

under whole serum conditions though ER siRNA transfection alone was also 

observed to induce increased Total EGFR expression, though again this was 

slight. Furthermore, there was also evidence of slight induction of Total HER2 

expression in the combination condition, above fulvestrant treatment alone, 

though this was only observed in the stripped serum cultured MCF-7 cells, but 

together indicates the possibility o f induction of growth factor signalling in 

response to severe ER down regulation, albeit not in general exceeding that 

observed following fulvestrant treatment alone in this study.
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ER level expression in MCF-7 cells cultured in stripped and whole serum, 
treated with a combination o f fulvestrant and ER siRNA.
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Figure 3.25 (A) Expression ofERa and fi-actin mRNA in MCF-7 cells cultured in 
phenol-red free RPMI containing 5% SFCS or FCS, treated with either 10-7M 
fulvestrant, scrambled siRNA control, scrambled siRNA control and fulvestrant, 
On-target siER, On-target siER and fulvestrant or vehicle control, on day 4 from 
initial treatment and actin normalised densitometry. (B) Western analysis of ERa 
and p-actin expression in MCF-7 cells cultured in phenol-red free RPMI 
containing 5% SFCS or FCS and treated with either 10-7M fulvestrant, scrambled 
siRNA control, scrambled siRNA control and fulvestrant, On-target siER, On- 
target siER and fulvestrant or vehicle control, on day 4 from initial treatment. N.B.
. * = p<X).05 vs siControl or siControl +fulv for siER and siER +fulv respectively.
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ER protein expression in MCF-7 cells cultured in stripped or whole 

serum, treated with a combination o f fulvestrant and ER siRNA.
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Figure 3.26 (A) Immunocytochemical staining (enlargements, indicating residual staining in 
green) magnification x20 and (B) average nuclear ER H scores (n=3) of MCF-7 cells 
cultured in phenol-red free RPMI containing 5% SFCS or FCS and treated with either 10-7M 
fulvestrant, scrambled siRNA control, scrambled siRNA control and fulvestrant, On-target 
siER, On-target siER and fulvestrant or vehicle control, on day 4 from initial treatment. N.B. 
*= PZO. 05 indicated by lines. _ j
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PR and pS2 mRNA expression in MCF-7 cells cultured in either stripped or 
whole serum, and treated with a combination of fulvestrant and ER siRNA.
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Figure 3.27. (A) Expression of PR and (3-actin mRNA in MCF-7 cells cultured in phenol-red free 
RPMI containing 5% SFCS or FCS, treated with either 10-7M fulvestrant, scrambled siRNA 
control, scrambled siRNA control and fulvestrant, On-target siER, On-target siER and 
fulvestrant or vehicle control on day 4 from initial treatment and actin normalised densitometry. 
(B) Expression of pS2 and fi-actin mRNA in MCF-7 cells cultured in phenol-red free RPMI 
containing 5% SFCS or FCS and treated with either 10-7M fulvestrant, 2nM lipid, scrambled 
siRNA control, siGenome siER, On-target siER or vehicle control on day 4 from initial 
treatment and actin normalised densitometry. N.B. .* = pZ0.05 vs control or siControl or 
siControl +fulv for fulv, siER and siER +fulv respectively. - 1 9 8 -
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PR protein expression in MCF-7 cells cultured in stripped serum or whole 

serum, and treated with a combination o f fulvestrant and ER siRNA.
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Figure 3.28 (A) Immunocytochemical staining (enlargements, indicating residual staining in 
green) magnification x20 and (B) average nuclear PR H-scores (n=3) of MCF-7 cells 
cultured in phenol-red free RPMI containing 5% SFCS or FCS and treated with either 10-7M 
fulvestrant, scrambled siRNA control, scrambled siRNA control and fulvestrant, On-target 
siER, On-target siER and fulvestrant or vehicle control, on day 4 from initial treatment. N.B. 
*= P^O. 05 vs control or siC for fulv and siER respectively. - 199-
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pS2 protein expression in MCF-7 cells cultured in stripped serum or 
whole serum, and treated with a combination of fulvestrant and ER

siRNA.
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Figure 3.29. (A) Immunocytochemical staining (enlargements, indicating residual staining in 
green) magnification x20 and (B) average cytoplasmic pS2 H-scores (n-3) of MCF-7 cells 
cultured in phenol-red free RPMI containing 5% SFCS or FCS and treated with either 10-7M 
fulvestrant, scrambled siRNA control, scrambled siRNA control and fulvestrant, On-target 
siER, On-target siER and fulvestrant or vehicle control, on day 4 from initial treatment. N.B. 
*= PZ0.05 vs control or siC for fulv and siER respectively.
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Level o f ERE signalling in MCF-7 cells cultured in stripped or whole 
serum, treated with a combination of fulvestrant and ER siRNA.
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Figure 3.30. Reporter gene assay showing average ERE expression (n-3) in 
MCF-7 cells cultured in phenol-red free RPMI containing 5% SFCS or FCS, 
treated with either 10-7M fulvestrant, scrambled siRNA control, scrambled siRNA 
control and fulvestrant, On-target siER, On-target siER and fulvestrant or vehicle 
control, on day 4 from initial treatment; with background fluorescence indicated by 
red line (n-3). N.B. *= p£0.05 **= pz0.01 vs control or siControl for fulv and siER 
respectively or indicated by lines.
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PR and pS2 expression o f MCF-7 cells cultured in stripped serum 
supplemented with oestradiol and treated with a combination of  

fulvestrant and ER siRNA.
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Figure 3.31. (A) Immunocytochemical staining of PR and pS2 (enlargements, indicating 
residual staining in green) magnification x20 and (B) average nuclear PR and cytoplasmic 
pS2 H-scores (n=3) of MCF-7 cells cultured in phenol-red free RPMI containing 5% SFCS 
and 10-9M oestradiol and treated with either 10-7M fulvestrant, scrambled siRNA control, 
scrambled siRNA control and fulvestrant, On-target siER, On-target siER and fulvestrant or 
vehicle control, on day 4 from initial treatment. N.B. *= PZ0.05 vs Control +E2 or siC +E2 for 
fulv+E2 or S/ER+E2 respectively. -202-
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The effect o f the combination o f fulvestrant and ER siRNA on IGFR 
signalling in MCF-7 cells, cultured in stripped or whole serum.
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Figure 3.32. (A) Western blotting analysis of Total IGFR, Phospho-IGFR and p- 
actin protein in MCF-7 cells cultured in phenol-red free RPMI containing 5% 
SFCS or FCS and treated with either 10-7M fulvestrant, scrambled siRNA control, 
scrambled siRNA control and fulvestrant, On-target siER, On-target siER and 
fulvestrant or vehicle control, on day 4 from initial treatment. (B) Western blotting 
analysis of Total IRS1 and P-actin protein in MCF-7 cells cultured in phenol-red 
free RPMI containing 5% SFCS or FCS, treated with either 10-7M fulvestrant, 
scrambled siRNA control, scrambled siRNA control and fulvestrant, On-target 
siER, On-target siER and fulvestrant or vehicle control on day 4 from initial 
treatment.
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Ki67 expression o f MCF-7 cells cultured in stripped or whole serum, 
treated with a combination o f fulvestrant and ER siRNA.
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Figure 3.33. (A) Immunocytochemical staining (enlargements, indicating residual staining in 
green) magnification x20 and (B) average total Ki67 positivity (n-3) of MCF-7 cells 
cultured in phenol-red free RPMI containing 5% SFCS or FCS and treated with either 10- 
7M fulvestrant, scrambled siRNA control, scrambled siRNA control and fulvestrant, On- 
target siER, On-target siER and fulvestrant or vehicle control, on day 4 from initial 
treatment. N.B. *= PZ0.05 vs control or siC for fulv and siER respectively. -204-
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The effect o f the combination of fulvestrant and ER siRNA on growth of 
MCF-7 cells cultured in stripped or whole serum.
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Figure 3.34 (A) Effect on basal MCF-7 cell growth, cultured in phenol-red free 
RPMI containing 5% SFCS or FCS treated with either 10-7M fulvestrant, 
scrambled siRNA control, scrambled siRNA control and fulvestrant, On-target 
siER, On-target siER and fulvestrant or vehicle control on day 8 from initial 
treatment and represented as percentage of vehicle control after MTT 
assessm ent (n-3) (B) or Coulter counting (n=3). N.B. * = p<>0.05, ** = p^0.01 vs 
control or siC for fulv and siER respectively or indicated by lines.
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The effect o f the combination o f fulvestrant and ER siRNA on EGFR 
signalling in MCF-7 cells, cultured in stripped and whole serum.
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Figure 3.35 (A) Western blotting analysis of Total EGFR, Phospho-EGFR and p- 
actin protein in MCF-7 cells cultured in phenol-red free RPMI containing 5% 
SFCS or FCS and treated with either treated with either 10-7M fulvestrant, 
Scramble siRNA control, Scramble siRNA control and fulvestrant, On-target siER, 
On-target siER and fulvestrant or vehicle control, on day 4 from initial treatment. 
(B) Western blotting analysis of Total HER2 and fi-actin protein in MCF-7 cells 
cultured in phenol-red free RPMI containing 5% SFCS or FCS, treated with either 
10-7M fulvestrant, Scramble siRNA control, Scramble siRNA control and 
fulvestrant, On-target siER, On-target siER and fulvestrant or vehicle control on 
day 4 from initial treatment.

-206-



Chapter 3. Results Section.

ER H-score analysis of MCF-7 cells following combination treatment.

Nuclear H-score Cytoplasmic H-score
Control (stripped 
serum)

244.2(+/-8.6) 0

Fulvestrant 
(stripped serum)

49.2(+ /-ll.l) 0

siRNA control 
(stripped serum)

245.8(+/-13.9) 0

siRNA
control+fulv
(stripped)

49.2(+/-3.8) 0

On-target ER 
siRNA (stripped 
serum)

59.2(+/-10.7) 0

Combination 
(stripped serum)

9.2(+/-5.8) 0

Control (whole 
serum)

251.7(+/-11.7) 0

Fulvestrant 
(whole serum)

49.2(+/-4.9) 0

siRNA control 
(whole serum)

250.8(+/-10.2) 0

siRNA 
control+fulv 
(whole serum)

50.8(+/-5.8) 0

On-target ER 
siRNA

49.2(+/-9.7) 0

Combination 
(whole serum)

10(+/-4.5) 0

Table 3.7. ER H-score analysis o f  MCF-7 cells grown in stripped or whole 
serum after 4 days ER siRNA transfection and fulvestrant exposure (n=3).
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PR H-score analysis of MCF-7 cells following combination treatment.

Nuclear H-score Cytoplasmic H- 
score

Total H-score

Control (stripped 
serum)

102.5(+/-6.9) 28.6(4-/-5.3) 112.5(4-/-6.6)

Fulvestrant (stripped 
serum)

53.3(+/-6.1) 10.4(+/-2.1) 55.6(+/-4.4)

siRNA control 
(stripped serum)

100.8(+/-7.4) 25.2(+/-7.2) 113.4(47-6.2)

siRNA
control+fulv(stripped
serum)

51.7(47-6.1) 10.3(+/-5.2) 54.2(47-6.9)

On-target ER siRNA 
(stripped serum)

53.3(47-6.8) 11.7(+/-3.8) 55.9(47-7.2)

Combination 
(stripped serum)

52.5(47-4.2) 10.9(+/-5.8) 56.1(47-2.1)

Control (stripped 
serum +E2)

273.3(+/-5.2) 50.7(+/-13.5) 274.8(47-9.4)

Fulvestrant (stripped 
serum +E2)

55(+/-4.5) 22(+/-3.1) 66(47-7.3)

siRNA control 
(stripped serum+E2)

275(+/-7.1) 57.7(4-/-14.6) 273.2(47-8.9)

siRNA control 
+Fulv(stripped 
serum+E2)

53.3(47-6.1) 21.9(+/-4.2) 68.4(47-6.2)

On-target ER siRNA 
(stripped serum+E2)

58.3(47-4.1) 22.2(+/-4.5) 67.6(47-8.1)

Combination 
(stripped serum+E2)

54.2(+/-3.8) 23.2(+/-5.7) 68.2(47-7.2)

Control (whole 
serum)

244.2(47-6.6) 157(+/-11.6) 253.6(47-8.8)

Fulvestrant (whole 
serum)

41.7(+/-8.6) 10.3(47-2.4) 39.7(47-7.2)

siRNA control 
(whole serum)

251.7(+/-5.2) 156.6.(47-9.9) 257.3(4-/-10.2)

siRNA control +fulv 
(whole serum)

39.2(47-8.6) 12.2(+/-4.2) 40.8(47-8.6)

On-target ER siRNA 
(whole serum)

61.7(47-6.8) 11.6(+/-4.3) 39.4(47-6.8)

Combination (whole 
serum)

39.2(+/-6.6) 10.8(4-7-5.6) 41.5(47-9.1)

Table 3.8. PR H-score analysis o f  MCF-7 cells grown in stripped or whole 
serum after 4 days ER siRNA and fulvestrant exposure (n=3).

-208-



Chapter 3. Results Section.

pS2 H-score analysis of MCF-7 cells following combination treatment.

Nuclear H- 
score

Cytoplasmic H-score

Control (stripped 
serum)

0 149.2(+/-6.6)

Fulvestrant (stripped 
serum)

0 53.3(+/-4.1)

siRNA control 
(stripped serum)

0 148.3(+/-6.1)

siRNA control +fulv 
(stripped serum)

0 53.3(+/-2.2)

On-target ER siRNA 
(stripped serum)

0 53.2(+/-5.2)

Combination 
(stripped serum)

0 53.3(+/-2.6)

Control (stripped 
serum +E2)

0 269.2(+/-5.8)

Fulvestrant (stripped 
serum +E2)

0 115(+/-7.1)

siRNA control 
(stripped serum+E2)

0 266.7(+/-4.1)

siRNA control+fulv 
(stripped serum+E2)

0 115.8(+/-7.4)

On-target ER siRNA 
(stripped serum+E2)

0 115(+/-7.1)

Combination(stripped
serum+E2)

0 112.5(+/-5.2)

Control (whole 
serum)

0 214.2(+/-9.7)

Fulvestrant (whole 
serum)

0 80.8(+/-9.7)

siRNA control 
(whole serum)

0 208.3(+/-8.2)

siRNA control +fulv 
(whole serum)

0 83.3(+/-6.1)

On-target ER siRNA 
(whole serum)

0 80.8(+/-5.8)

Combination (whole 
serum)

0 80.8(+/-7.4)

Table 3.9. pS2 H-score analysis o f  MCF-7 cells grown in stripped or whole 
serum after 4 days ER siRNA andfulvestrant exposure (n=3).
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The majority of breast cancers and breast cancer cell models typically express 

tens o f thousands of ER proteins per cell at any one time; these act to 

coordinate the growth and survival signalling of these cells, which are 

mediated by oestrogen (Bundred 2001 and Veronesi et al 2005). This involves 

actions both at the cell membrane/cytoplasm and the nucleus, where they 

enhance growth factor signalling and gene transcription respectively (Osbome 

et al 2005). However, while much detail is understood about the molecular 

actions o f E2/ER complexes (Howell 2006), many fundamental issues 

involved in their signalling remain poorly understood; critically within this 

thesis, how many of the thousands of ER present within the breast cancer cells 

are required to mediate the full anti-tumour actions of anti-hormone drugs and 

to what degree does it matter if the ER is not completely ablated by the 

treatment. Indeed, it is currently unknown whether complete loss of all cellular 

ER could lead to more effective therapies and a delay or even prevention of 

the development o f an acquired resistance phenotype. Currently, only one anti- 

hormonal drug, fulvestrant, is registered for use as an ER down-regulator and 

clinically it achieves only an approximate 50% ER protein knockdown, with 

numbers o f tumour remissions approximately equal to those achieved by other 

anti-hormone therapies. With respect to this, the current project set out to 

illuminate the relationship between the capacity of fulvestrant to promote 

growth inhibition in MCF-7 cells (an ER positive breast cancer cell line, 

commonly used to investigate hormone and anti-hormone actions in oestrogen 

responsive cancers) and its ability to reduce ER levels and subsequent 

signalling activity. These studies were then compared with the more modem
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method of RNAi to promote ER down-regulation, and finally the two methods 

were employed in combination to investigate whether residual ER remaining 

in the breast cancer cells following each treatment was at biologically active 

levels and therefore potentially able to contribute to subsequent acquired 

resistance mechanisms. As the combination treatment effectively reduced the 

ER to undetectable levels, this study effectively answers the issue of whether a 

complete ER down-regulation is a desirable clinical goal.

4.1. The effect of the pure anti-oestrogen fulvestrant on ER 

expression and activity in MCF-7 cells.

4.1.1. Acute fulvestrant exposure promotes ER down 

regulation but not complete ER loss.

Initial studies presented in this thesis focused on the ability of fulvestrant to 

impact on ER expression levels and activity in ER-positive MCF-7 cells under 

differing culture conditions. In broad terms, at a concentration of 10'7M 

fulvestrant this was a highly effective ER down-regulator. This concentration 

reduced ER levels by upwards of 80%, a value comparable to that achieved in 

other studies using this pure anti-oestrogen (Lykkesfeldt et al 1994, Nicholson 

et al 1996, McClelland et al 1996, McClelland et al 2001, Pink and Jordan 

1996 and Staka et al 2005). The residual ER staining remaining with 10-7M 

fulvestrant following ICC and Western blotting techniques used in this project
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was believed to be residual ERa and not non-specific binding, an artefact of 

the detection assays used, or indeed ERp due to residual ERa present 

following fulvestrant exposure in the literature (McClelland et al 2001) and 

also that further reduction of this residual staining was achieved following a 

combination of specific ERa inhibition using the ER siRNA. The fulvestrant 

effect was achieved at 96 hours (day 4), a time point which, although shorter 

than usually employed by others, enabled a direct comparison to be made with 

the siRNA studies (later discussed in part 4.2.). Importantly, the capacity of 

fulvestrant to significantly down-regulate ER levels by day 4 is not surprising 

since it has been calculated that fulvestrant is able to reduce the half-life of the 

ER protein from 5 hours to less than an hour (Long and Nephew 2006). 

Theoretically, therefore, a 95% loss of ER could occur within the first 5 hours 

of fulvestrant treatment, providing no further ER was produced by the cell. 

The observation of unchanged ER mRNA levels following 4 days fulvestrant 

exposure, however, suggests that ER mRNA transcription and translation 

continues during early treatment presumably to, in part, counteract the 

capacity of fulvestrant to fully eliminate all cellular ER. It is of note that the 

capacity of fulvestrant to reduce ER protein within cells:

1. Does not increase if higher concentrations are used, as no further ER 

loss was observed at 10’6M fulvestrant, suggesting that maximum 

rates of ER degradation have been achieved.

2. Does not significantly alter by day 8, or as cells become resistant to 

fulvestrant (FasMCF) (McClelland et al 2001), and the levels of 

residual ER remain at approximately 20% of control levels.
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3. Occurs in other ER-positive breast cancer cell lines, giving a 65-85% 

down-regulation in ER indicating that ER down-regulation by 

fulvestrant is not cell line specific.

4. Is independent of serum or E2 levels in vitro, when fulvestrant is 

used at the 10'7M concentration.

5. Parallels in part the effect achieved by E2, which reduces ER half- 

life to roughly 3 hours by facilitating ER ubiquitination and 

degradation via the ubiquitin-proteasome pathway, although the 

effects of fulvestrant are more pronounced than the 50% ER down- 

regulation usually seen following E2 exposure (Laios et al 2005).

In total, the above data suggests that although fulvestrant is a more efficient 

ER down-regulator than E2, it is unable as a single agent to completely reduce 

ERa levels within breast cancer cells in vitro. The inability of fulvestrant to 

completely down-regulate all ER protein may be due that maximal activity of 

the ubiquitination proteosome pathway responsible for degradation of ER 

protein has been reached, another potential explanation could be that some ER 

is bound in multi-protein complexed ‘signalsomes’ preventing 

ubiquitinisation.
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4.1.2. The effect of fulvestrant on E2-regulated transcription

and residual ER activity.

The ability of fulvestrant to act as an ER down-regulator within breast cancer 

cells further implies that it would correspondingly reduce subsequent ER 

signalling, leading to anti-tumour actions. Indeed, as fulvestrant is defined as a 

pure anti-oestrogen, lacking oestrogen-like activity, it is suggested that it has a 

further property by producing biologically inactive ER complexes and out 

competing E2 binding to the ER (Howell et al 2000). Further corroborating 

this data, fulvestrant exposure in the present study was shown to reduce the 

expression of two well established E2 regulated genes, PR and pS2 and ER 

regulated growth relevant genes IGF-1R and IRS1, at both the mRNA and 

protein level as well as causing a significant reduction in the activity of an 

ERE construct transiently transfected into fulvestrant treated MCF-7 cells. 

Importantly however, while the effects of fulvestrant on these endpoints were 

considerable, and were consistent with the established literature both in vitro 

(Howell et al 2000, McClelland et al 1996) and in vivo investigations 

(Osborne et al 1994, 1995), as well as the data generated in limited clinical 

studies (Robertson et al 2001), it is noteworthy that, in all instances, the 

knockdown of E2 regulated events by fulvestrant was incomplete. Thus 

following fulvestrant treatment of MCF-7 cells, at a concentration which 

produces maximum ER down-regulation, limited PR and pS2 expression was 

still evident at approximately 30 and 25% of their initial values respectively.
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Unfortunately, explanations for these observations are numerous and could, 

for example, result from the activation of the many growth factor driven 

response elements which are known to be present in the promoters of various 

E2-regulated genes, indeed, residual production of PR following ER 

degradation and inactivation could potentially result from growth factor 

sensitive SP1 sites present in its promoter sequence (Bjomstorm and Sjoberg

2005). Continuing residual IGF-1R expression (another E2-regulated gene), 

may result from non-classical genomic activation by ER tethering to TPA and 

NF-kB response elements in the presence of the anti-oestrogen (Nicholson et 

al 2002, Osborne et al 2005). Alternatively non-genomic ER signalling in the 

presence of anti-hormones has been described (Levin 2005, Song and Santen

2006) and has shown this can lead to residual IGF-1R expression and activity 

at the cell membrane, also involving residual IRS-1 expression (Lee et al 

1999, Stewart et al 1990).

Importantly, studies from the Tenovus Centre for Cancer Research 

have also identified a further mechanism which may contribute to growth 

factor driven residual ER signalling which directly results from the capacity of 

oestrogens to suppress the expression of a number of growth factor signalling 

elements, most notably members of the erbB receptor family (Hutcheson et al 

2003, Britton et al 2006). Several studies have described the reversal of the 

suppression of these genes following anti-hormone exposure, thereby enabling 

alternative compensatory signalling to occur during the anti-hormone 

responsive phase to allow initial promotion of cell survival and eventually 

resistant growth (Nicholson et al 2004). Interestingly, these events are able to
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promote cell growth and survival in either an ER dependant or independent 

fashion depending on the strength of the growth factor signalling (Nicholson 

et al 2004). Thus, at moderate levels of growth factor receptor activation 

(primarily EGFR and HER2), such as is present in cells with acquired 

resistance to tamoxifen, ER can be activated by growth factor signalling 

elements, including AKT and ERK (Staka et al 2005, Nicholson et al 2004, 

Knowlden et al 2003) through the phosphorylation of the ER and its co­

activators (Nicholson and Johnston 2005). However, at a higher level of 

receptor activation the growth factor driven responses are so strong that they 

proceed in an ER independent manner (Sonne-Hansen et al 2010). Within the 

context of this thesis, therefore, the incapacity of fulvestrant to apparently 

block all ER signalling may result from growth factor driven ER activation or 

growth factor promoted expression of ER regulated genes through alternative 

signalling elements and pathways. Interestingly, this project showed some 

evidence of induction of growth factor signalling pathways when EGFR and 

HER2 were assessed following fulvestrant exposure.

Importantly, although a further explanation for the above could be in 

an inability of fulvestrant to saturate, and thus occupy all the ER and fully 

prevent all ER/E2 binding, however this explanation is unlikely as the 

concentration of fulvestrant used throughout this thesis was shown to fully 

block cellular actions of exogenous E2 in MCF-7 cells, following E2 

stimulation studies.
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4.1.3. Comparison of the effects of fulvestrant on tumour 

growth and ER down-regulation.

As expected with MCF-7 cell growth being primarily driven by 

oestrogens, the significant loss o f ER protein expression levels and subsequent 

signalling following fulvestrant treatment was associated with a potent growth 

inhibitory effect of the anti-hormone as determined by MTT and Coulter 

counter assays, and ICC assessment of Ki67 expression levels. Critically 

however, once again the effect o f fulvestrant was incomplete, and limited cells 

growth was observed at 10'7M fulvestrant. These data, once again are 

consistent with the literature and lead to the development of a fully fulvestrant 

resistant phenotype within 10-12 weeks (McClelland e ta l 2001).

Importantly, the incomplete growth inhibitory capacity of fulvestrant 

in MCF-7 cells was mirrored in the other ER positive breast cancer cell lines 

investigated in this study and is entirely consistent with the reported effects of 

this anti-hormone in the literature in several other in vitro breast cancer cell 

lines (Wakeling and Bowler 1987), in vivo cell models (Wakeling et al 1991, 

Osborne et al 1995), and in clinical material when fulvestrant was used either 

as a first-line therapy (Howell 2006, Robertson 2007) or following relapse 

from previous endocrine therapy (Howell et al 2002, Ingle et al 2006). The 

similar ER protein down-regulation across the ER positive cell-lines against 

the markedly different growth inhibition effects following fulvestrant 

treatment shows the quantity of mechanistic response (ER protein down-
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regulation) does not always equate to quality of growth inhibitory response, 

something further proven by the combination of siRNA and fulvestrant, which 

completely removed ER protein but still showed residual growth equal to that 

following fulvestrant treatment alone. This suggests factors other than ER 

inhibition may determine the effectiveness of antihormone response. This may 

potentially be a consequence of induction of compensatory growth signalling 

pathways (de-repression of oestrogen suppressed genes such as EGFR or 

HER2) or as a consequence of the inherent genotype of the cell lines 

conferring partial de novo resistance. For example, the BT-474 cell line has 

higher expression of HER2 and may be more adapted to grow via growth 

factor signalling than the MCF-7 cell line, potentially explaining the differing 

fulvestrant induced anti-tumour effect shown in this project.

4.2. The use of ER siRNA to reduce ER levels and its 

value as an anti-tumour therapeutic strategy.

Though siRNA is now routinely used in many laboratories, optimisation for its 

successful application is required in most cases. After initial issues with the 

toxicity profile caused by the concentrations of transfection lipid used, the 

system was optimised for MCF-7 cells with the use of a substantially reduced 

concentration of Dharmafect #1 transfection lipid (2nM) and a pooled ER 

siRNA. The ER siRNA pool provided the greatest ER protein knockdown and 

growth inhibition when compared to any of the individual constructs alone.

i
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Greater knockdown with use of a pool/mix of ER siRNA in MCF-7 cells has 

also been shown by Bouclier (Bouclier et al 2008), who arrived at the use of a 

mixture of two siRNA sequences to halve the off-target effects occurring by 

random sequence complementation between unrelated mRNA and the siRNA 

used.

A few recently published studies have also utilised ER siRNA within 

breast cancer cell lines. However, reported ER siRNA use has been in the 

main utilised as a mechanism of ER inhibition to elucidate the relationship 

between the ER and another molecules/mechanisms of interest, rather than the 

effect of ER inhibition alone. For example, a study by Araizi showed an 85% 

ER protein knockdown following ER siRNA transfection by Western blotting, 

though, this was only used as a comparison to show that the GPR30 siRNA 

being utilised was specific, and did not have an effect on ERa levels (Araizi et 

al 2010).

4.2.1. ER siRNA is able to reduce ER mRNA levels and 

consequently protein levels in MCF-7 cells.

To confirm the potential of targeting ER mRNA to ablate ER protein 

expression and activity, the use of ER siRNA was assessed and directly 

compared to the post-translational ER inhibition observed following 

fulvestrant exposure. The data presented within this study initially showed that 

the ER siRNA constructs assessed were both working via the previously
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understood mechanism of RNAi action (De Fougerolles 2007). The ER siRNA 

utilised were able to reduce ER mRNA levels, leading to subsequent loss of 

protein expression, whereas fulvestrant was shown to have no effect on ER 

mRNA as expected. This result was consistent with other studies which have 

shown ER mRNA down-regulation following the use of a transient ER siRNA 

transfection system both in cell models (Araizi et al 2010, Bourdeau et al

2008), and in vivo studies (Bouclier et al 2008). Furthermore, the use of stable 

short-hairpin ER siRNA transfection into MCF-7 cells has also demonstrated 

an ER mRNA reduction of 50-80% in three generated clones when assessed 

by real-time PCR (Luqmani et al 2009).

Importantly, transient ER siRNA transfection was also shown to lead 

to significant but incomplete loss of ER protein expression, comparable to the 

previous findings for fulvestrant. An approximate 80-90% ER loss was 

observed when assessed by ICC and subsequent H-score regardless of the 

culture conditions used. Previous optimisation data using siTOX siRNA 

indicated that, using ER siRNA by the employed methodology, uptake would 

be incomplete and not all cells within the population would be transfected. 

Thus, a small number of cells within the ER siRNA treated population showed 

high nuclear ER protein expression probably indicating that these cells were 

untransfected. This was not observed within the fulvestrant treated arm as each 

cell was exposed equally to the anti-hormone. The untransfected cells 

introduce the complication of false-positive readings on the true effect of the 

ER siRNA within the cell population. However, even though many ER- 

negative cells were observed post siRNA treatment, a population of low ER-
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expressing cells were still apparent suggesting that even in cells likely to have 

been transfected, ER mRNA and protein down-regulation was still incomplete. 

Interestingly, in the cells most likely to have been transfected with ER siRNA 

loss of ER expression appeared to be greater than in cells treated with 

fulvestrant. This could indicate the possibility that post-transcriptional ER 

targeting could be more effective than use of fulvestrant to down-regulate ER 

expression in this model.

Slight differences in levels of ER protein down-regulation were 

observed between ER siRNA transfection using pooled ER siRNA and 

individual constructs, which has also been shown by other groups. For 

example, while Boucher’s initial transfection experiments in MCF-7 cells 

showed only a 60% loss of ER protein expression after 5 days when using 

either of two individual ER siRNA sequences, when using a 50% pooled mix 

of both siRNA constructs an 85% loss of ER protein was achieved, by 

densitometry assessment of western blots (Bouclier et al 2008). As previously 

mentioned an 85% ER protein knockdown following ER siRNA transfection 

was also reported by Araizi (Araizi et al 2010), while similar ER levels were 

reported in this thesis by ICC methods. While a loss of ER expression has also 

been reported using the pre-cursor technology of anti-sense nucleic acids 

(Taylor et al 2001), the efficiency of the transient siRNA system employed 

within this thesis was far more effective and thus further comparisons with this 

technology were unlikely to be meaningful. The higher oestrogenic 

environment within the whole serum culture condition employed within this 

study had no apparent effect on ER protein expression following ER siRNA
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transfection. This observation is corroborated by Bourdeau who also reported 

a significant (but incomplete) reduction of ER protein expression following 

transient ER siRNA transfection in MCF-7 cells cultured with stripped serum, 

regardless of E2 stimulation (Bourdeau et al 2008).

The significant but incomplete ER protein knockdown effect following 

ER siRNA transfection reported in this study has also been shown when using 

stable ER siRNA transfection, with Luqmani reporting residual ER after 15 

and 35 passages, in a stably ER siRNA transfected MCF-7 cell model 

designated pH (Luqmani et al 2009). Interestingly, due to use of a selection 

media employed by Luqmani to identify ‘pure’ clones containing the ER 

siRNA construct and thus generate a homogeneous model, there were no 

untransfected cells present (and hence false-positive readings). This further 

indicates the possibility of a greater ER protein down-regulation due to the 

transient transfection system employed within this thesis.

The ER knockdown effect observed within this study support the 

previous premise of the value of continued siRNA research, and to employing 

this technique as a potential therapy with increased clinical benefit. Indeed 

further evidence for this hypothesis has been reported in a pre-clinical study 

using MCF-7 xenograft models (Bouclier et al 2008). The use of an ER 

siRNA mix incorporated into a PEG-PCL/MA (PEG- -caprolactone-malic 

acid) nanocapsule was reported to produce the same ER protein down- 

regulation as when it was in a complex with a simple transfection lipid in 

MCF-7 cells; conditions similar to the transfection lipid employed within this 

thesis. However the former preparation had the added advantage of being a
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viable in vivo formulation for siRNA delivery. Subsequent subcutaneous 

injection of this preparation into a xenograft model, resulted in a significant 

reduction of ER protein expression, though only a modest 40-50% decrease 

was observed (Bouclier et al 2008), rather than the 85% observed in vitro in 

this thesis. Cumulatively the data presented within this thesis, and the 

corroborative evidence cited above support the potential of ER siRNA activity 

as a possible therapeutic option and further highlights the importance of 

efficient delivery of agents in vivo to gain greatest knockdown effect.

Furthermore, with fulvestrant not yet recommended for use in the 

clinic for pre-menopausal women, this project indicates that the use of an ER 

siRNA that does not have to compete with E2 to achieve successful ER down- 

regulation could be a potential therapeutic option in this clinical setting since 

this thesis showed an ER down-regulation and growth inhibition using ER 

siRNA under all serum or oestrogen stimulated conditions. However, a 

significant hurdle that would need to be overcome in such a clinical setting 

would be effective delivery of the ER siRNA to its target.

4.2.2. Treatment with ER siRNA inhibits ER signalling 

activity in a comparable manner to fulvestrant.

The data presented in this study showed a clear reduction in ER 

transcriptional activity following ER siRNA transfection when PR and pS2 

mRNA and protein levels were assessed. However, these reductions in gene
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and protein expression were again incomplete, comparable to the findings with 

fulvestrant exposure. While some of the residual ER transcriptional activity 

may potentially be due to the unaltered ER activity present in the 

untransfected cells within the ER siRNA treated population, residual protein 

expression of the investigated genes was shown to be present in many cells 

(when assessed by ICC). This would indicate potential residual activity of 

remaining ER within the transfected cell population. Indeed, in a stably ER 

siRNA transfected MCF-7 cell line where all cells contained ER siRNA, a 

significant but incomplete loss of approximately 90% of both PR and pS2 

mRNA expression was reported following assessment by real-time PCR. This 

was after several weeks of continuous culture when compared to parental cells 

(Luqmani et al 2009). These findings support the evidence presented here of 

continued transcription of PR and pS2 possibly by residual ER transcriptional 

activity, rather than detection of PR and pS2 protein levels which would 

continue to reduce over time following natural tumover/half-life. Furthermore, 

another transient ER siRNA study showed incomplete inhibition of cyclin D1 

mRNA expression, another E2 regulated gene (Bordeau et al 2008) and further 

indication of continued transcription possibly by residual ER.

Further evidence of potential residual ER transcriptional activity could 

be deduced from this thesis following the observation of residual ERE 

transcription present following ER siRNA transfection. The residual ERE 

expression observed following either ER siRNA of fulvestrant treatment was 

approximately five fold higher than the controls used to obtain a background 

reading. Cells were read in the absence of the Stop and Glo reagent, cells not
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transfected with the ERE construct were read, as well as readings taken from a 

sterile saline solution to obtain a background fluorescence value for the assay 

and the spectrophotometer. This indicates the residual ERE activity observed 

is a measure of continued transcription rather than an artefact of the assay.

Interestingly, the residual ERE transcriptional activity in the whole 

serum culture conditions (an environment with higher levels of exogenous 

oestrogens) was greater following ER siRNA transfection than observed 

following fulvestrant exposure. This was despite ER protein expression being 

equal between the ER siRNA and fulvestrant treatment arms. These data 

shows the potential importance of receptor occupancy by fulvestrant causing 

inhibition of transcription, rather than its ability to down-regulate ER protein 

expression. This also reveals the possibility of a potential synergistic effect 

being achieved if fulvestrant and ER siRNA were used in combination.

Incomplete loss of ERE signalling following ER siRNA treatment has 

also been shown in other transient ER siRNA in vitro transfections in MCF-7 

cells (Bouclier et al 2009), further supporting data presented in this study. 

However, Bouclier also showed complete loss of PR mRNA expression at 4 

and 6 hours following transfection, though observed basal levels of control 

cells were also very low and clear residual ERE signalling was detected 

(Bouclier et al 2009).

There has also been some reported in vivo data supporting the 

observation within this study of potential continued ER transcriptional 

activity. ER siRNA treated mouse xenografts showed residual protein 

expression of the oestrogen regulated gene CD34 (Bouclier et al 2009)
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following assessment of biopsies. This is unsurprising however as the levels of 

residual ER were much higher following siRNA transfection in xenograft 

models due to limitations in efficacy of delivery.

The implications of residual signalling potentially via remaining ER 

following siRNA transfection are identical to that following fulvestrant 

exposure; that residual signalling could confer some growth stimulation in 

these cells, possibly allowing for future adaptation and survival of initial ER 

insult and future acquisition of resistance.

4.2.3. ER siRNA transfection showed comparable growth 

inhibition and anti-proliferative effects to fulvestrant.

With ER siRNA treatment producing similar effects on ER expression and 

activity to that seen with fulvestrant, a significant but incomplete growth 

inhibition and reduction of proliferative capacity in these cells was also 

expected following ER siRNA transfection. This proved to be the case with 

incomplete inhibition of growth and proliferation following ER siRNA 

transfection being observed regardless of culture conditions. The growth 

inhibition following ER siRNA transfection was comparable to fulvestrant 

treatment indicating some continued growth promoting signal potentially due 

to the presence of the residual ER signalling previously observed or the 

induction of compensatory growth factor signalling elements as discussed 

previously. The effect of transient ER siRNA transfection on MCF-7 cell
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growth has recently been reported, with groups showing inhibition of 

proliferation (Bourdeau et al 2008, Bouclier et al 2009). Both papers report an 

approximate growth inhibition of 50% in MCF-7 cells following transfection, 

complementary to the data presented in this thesis, again growth inhibition 

was shown to be incomplete, and additionally irrespective of E2 stimulation 

(Bouclier et al 2009). Also interestingly, recent pre-clinical evidence of the 

anti-tumour activity of ER siRNA in vivo has emerged, supporting the data 

within this thesis. MCF-7 xenograft tumours injected with ER siRNA, showed 

only a doubling in size over a four week period (when measured with 

callipers), with control tumours more than trebling in size in the same period 

(Bouclier et al 2009). Furthermore when biopsied it was also reported that 

these tumours contained fewer cells, large banks of fibrotic tissue and 

extensive areas of necrotic and apoptotic damage.

The reason for the incomplete inhibition of growth and proliferation 

could potentially be due to a change in ER level equilibrium, similar to that 

described for maximal fulvestrant exposure previously. While ER mRNA is 

rapidly degraded via use of an siRNA, following the use of RNAi there is no 

mechanism in place to stop continued transcription of further ER mRNA 

within the cells. Thus, potentially some of the ER mRNA will escape 

degradation, and be translated which could account for the residual ER protein 

expression observed within this thesis. Its potential continued activity therein, 

could be providing a continued growth promoting effect on these cells, though 

at the markedly reduced rate observed. However there is also a noted 

incomplete inhibition of IGFR and IRS1 which can also promote growth. No
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subsequent loss of ERK was observed following On-target ER siRNA 

transfection, however, the siGenome ER siRNA which had some off target 

effects, lead to a loss of ERK and showed a greater growth inhibition, showing 

the vital importance of ERK signalling within these cells. Under the conditions 

of residual ER the observed induction of HER2 and EGFR following siRNA 

transfection is indicative of subsequent compensatory signalling which could 

contribute to continued growth and survival and ERK lies downstream of such 

induced signalling (Gee et al 2003).

In conclusion, the use of ER siRNA within this thesis has illuminated 

two important points; firstly that ER siRNA does have the potential to be a 

therapeutic strategy in the management of breast cancer if an effective 

delivery method can be designed. Its use showed significant if incomplete 

anti-tumour activity in the cell model studied in this thesis, corroborated by 

some early promising recent pre-clinical evidence. Secondly, the incomplete 

loss o f ER expression and residual signalling could be contributing to 

continued growth within these cells. Together these data support the original 

rational for combination of post-transcriptional and post-translational methods 

of ER interference to further increase loss of remaining ER and, thus, 

potentially improve on the efficacy of the anti-ER treatment. Furthermore, ER 

siRNA transfection while shown to have a potentially greater capacity for ER 

down-regulation than fulvestrant treatment showed no subsequent 

improvement in inhibition of signalling or growth inhibition. This could 

potentially again indicate the importance of fulvestrant occupancy of the 

receptor causing transcriptional repression, and indicate a possible synergy
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between the two mechanisms of action as the residual ER protein is not further 

antagonised following ER siRNA transfection.

4.3. The effect o f the combination treatment o f fulvestrant 

and ER siRNA on MCF-7 cells.

The reported residual ER present in this study, following either 

fulvestrant exposure or ER siRNA transfection, and the subsequent residual 

ER signalling observed left open the possibility that the two agents could act 

synergistically to promote greater ER down-regulation and reduction in ER 

activity, and might thereby effect a more substantial tumour cell growth 

inhibition. However, while greater loss of residual ER could potentially 

improve the anti-tumour response, it could also induce potentially undesirable 

compensatory signalling, which could override the potential benefit.

4.3.1. The combination of ER siRNA and fulvestrant gives 

greater ER down regulation than either agent alone.

Prior to the commencement of this thesis, the combination of ER 

siRNA and fulvestrant had not been reported in the literature and complete ER 

negativity had only been reported following the generation of endocrine 

resistant cell models via a prolonged period of exposure to anti-hormones 

(Nicholson et al 2007, Hiscox et al 2006, Liu et al 2006). Notably, the stably
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ER negative fulvestrant resistant MCF-7 cell line created by the Tenovus 

Centre for Cancer Research which took over two years of continuous culture 

to achieve a completely irreversible ER negative phenotype (Nicholson et al 

2007, Hiscox et al 2006). The data presented in this thesis showed a rapid and 

almost complete loss of ER protein expression, following only 96 hours of 

combination treatment, significantly greater than the use of either agent alone. 

This appears to be achieved as a consequence of the targeting of both ER 

mRNA and protein levels. Significantly, however, complete ER negativity was 

not achieved, with approximately 5% of cells showing some (although weak) 

immunostaining and most likely reflects cells that were untransfected by the 

ER siRNA, and hence have low levels of residual ER due to the action of 

fulvestrant alone. However, in the majority of cells, complete ER negativity 

was achieved, something previously unreported within the literature following 

short-term exposure to such treatment. Post-transcriptional and post- 

translational methods may thus potentially work synergistically to ablate ER 

protein expression.

While no evidence of the synergistic effect of ER siRNA and SERD’s 

on ER loss had been published prior to the work in this study, a very recent 

study supports the evidence presented herein (Bouclier et al 2009). Bouclier 

and colleagues reported a greater loss of ER protein expression following 

combination treatment in MCF-7 cells, though the delivery method of the 

siRNA, the sequence of siRNA itself (as previously shown to be important 

within this project, for siGenome versus On-target ER siRNA), the SERD 

(RU556) used, and its delivery method were all different from those employed
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in the present study. Significantly, Bouclier assessed ER level by Western blot 

analysis, and a long exposure time with the x-ray film was required to obtain 

any residual ER signal in the combination condition by this method when 

employed in this thesis. This might indicate an over-estimation of the level of 

ER down-regulation following combination treatment by Bouclier and 

colleagues. Importantly, they also reported a similar effect in vivo when ER 

levels were assessed by ICC in MCF-7 xenografts (Bouclier et al 2009). The 

levels of residual ER, however, were much higher following treatment in vivo 

with 30-40% of tumour cells still expressing observable, significant residual 

ER following the combination treatment. This indicates that treatment with 

either agent (and hence the combination treatment) is still not optimal within 

this setting, when compared to maximal ER protein down-regulation observed 

in MCF-7 cells by fulvestrant (and similar levels achieved by ER siRNA 

transfections) shown in this thesis and by Boucher's in vitro studies (Bouclier 

et al 2009).

4.3.2. The combination treatment of ER siRNA and fulvestrant 

showed greater ER protein down-regulation, but no further 

inhibition of ER activity.

With the greater ER loss observed in this study following combination 

treatment, a greater loss of ER activity was also expected when compared to 

the single agents alone. Interestingly however this thesis reports that the levels
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of PR and pS2 mRNA expression, while reduced compared to parental cells 

were equivalent following either the combination treatment or either agent 

alone when assessed by RT-PCR, however, this is not a quantitative measure 

of expression and, thus slight differences in mRNA levels are difficult to 

detect. These data contrast with those of Bouclier (Bouclier et al 2009) who 

showed a complete PR mRNA loss following SERD and ER siRNA 

combination treatment under E2 stimulated conditions. Importantly, they also 

observed a complete loss of PR following ER siRNA transfection alone 

making an additive effect impossible to determine. Unsurprisingly, in this 

thesis as both PR and pS2 mRNA expression following combination treatment 

or fulvestrant exposure were equal, protein expression levels of PR and pS2 

also showed no difference in levels following combination treatment or 

fulvestrant under all conditions examined.

When ER transcription was examined quantitatively using ERE 

reporter gene assays the combination treatment did not improve on the 

response shown with fulvestrant alone. It is likely, therefore, that although the 

effect was greater than that achieved with the ER siRNA alone, the effect of 

fulvestrant was dominant, as in the study using a SERD in MELN cells by 

Bouclier (Bouclier et al 2009), with the combination treatment and SERD 

utilised both showing equal down-regulation of ERE activity, and ER siRNA 

alone showing slightly higher residual activity. As with ER expression levels, 

following combination treatment in vivo there was still marked residual 

protein expression of the E2 regulated genes GLUT-1 and CD34 though this 

was lower than treatment with either agent alone (Bouclier et al 2009) but this
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not surprising due to the limited effectiveness of ER ablation following 

combination treatment within this setting shown by Bouclier. While the 

presence of residual PR and pS2 following combination treatment could be 

simply ascribed to the fact that their transcription can be driven by factors 

other than ER, the presence of residual transcriptional activity (significantly 

higher than background levels) at ERE sites is more complicated to explain. 

However, there are several possible reasons for this continued ERE activity 

following the combination treatment. One explanation is that the ER is not 

completely saturated by fulvestrant and thus unrepressed residual ER is able to 

drive transcription at these sites. It is also possible that the assays used to 

assess ER expression levels underestimated the residual ER and more ER is 

present than believed. It is also possible that compartmentalised ER (such as 

membrane associated ER) was able to avoid degradation by the combination 

treatment and able to drive transcription in this assay. Some evidence also 

suggests that the ER can be phosphorylated in the presence of fulvestrant, as 

seen in the LTED model MCF-7X (Staka et al 2005) and this could drive ERE 

transcription potentially driven by growth factor signalling kinases. Finally, it 

is possible that the residual ERE expression is due to the action of ERp. While 

ERp expression has not been directly assessed within this thesis, Luqmani and 

colleagues reported increased ERp within their stable transfected ER siRNA 

cell model (Luqmani et al 2009). It has also been established that siRNA can 

be specific for mRNA containing a single base pair change (Elbashir et al 

2001, 2001a) and thus the siRNA used was unlikely to effect ERp expression. 

The role of ERp in breast cancer still remains controversial and while it shows
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preferential hetero-dimerisation with ERa, in the absence of ERa its function 

is not fully understood. Some studies report that increased ERp expression 

correlates with an ERa negative phenotype and prevents ERE signalling 

(Ogawa et al 1998), and that increased ERp relates to tamoxifen resistance 

(Speirs et al 1999). Other studies have shown lowered ERp expression can be 

indicative of tamoxifen resistance (Elledge et al 2000). While it has been 

suggested that ERp is not just a surrogate for ERa and it may contribute to 

growth and proliferation through an alternative set of downstream target genes 

(Bates et al 2008), another recent study showed an overlap of ERa and ERp 

target genes in MCF-7 cells, and when both ERa and ERp were present ERa 

was shown to be dominant over ERp and to displace it to alternative binding 

sites. Importantly however, if ERa was absent then ERp would preferentially 

bind to these former sites to drive transcription, though less efficiently (Cham 

et al 2010). This may offer an explanation of the continued transcription at 

ERE sites, and potentially the residual PR and pS2 observed following 

combination treatment, and it would be of possible future benefit to assess 

whether there is a change in ERp expression or its activity within the 

combination treated cells presented in this thesis. ERp expression and activity 

may potentially be able to promote growth following the combination 

treatment.

Taken as a whole these data illuminates several interesting biological 

points. The first is that transcription at ERE elements (and by extension other 

oestrogen regulated genes), in the system assessed may not be solely 

dependent on the presence of ERa as it is clear that the ERE reporter gene
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studies reveal ER transcriptional activity despite almost complete absence of 

ERa expression following the combination treatment. Another point to note is 

the similarity in activity between fulvestrant exposure alone and the 

combination condition. If the observed increased loss of ER following 

combination treatment is accurate, this result could indicate that transcriptional 

activity of the residual ER following fulvestrant exposure is blocked by 

occupancy by fulvestrant. This again raises the important clinical point that 

further reduction of residual ERa following fulvestrant treatment may give no 

further clinical benefit as the receptor is fully occupied and inhibited by 

fulvestrant.

4.3.3. The combination of ER siRNA and fulvestrant showed 

no greater growth-inhibitory or anti-proliferative affects i n

v i t r o .

With the effect on signalling shown to be equal between the 

combination treatment condition and fulvestrant exposure alone, this study 

also reports that while a significant reduction in proliferation and growth was 

observed following the combination treatment this was also equal to 

fulvestrant treatment alone. This was despite the greater ER loss achieved 

following combination treatment within 4 days. When viability and 

proliferation of combination treated MCF-7 cells was assessed by MTT assay 

and Ki67 positivity respectively, a similar pattern to ERE signalling was
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observed. The greatest reduction in proliferation was observed in the 

combination and fulvestrant alone arms and was equivalent in each arm; with 

ER siRNA transfection alone shown not to be as effective. The slight 

differences in proliferation measured by MTT compared to the larger 

difference in Ki67 positivity observed most likely results from the relatively 

low sensitivity of the MTT assay technique when at low cell number under 

stripped serum conditions. This may be due to use of smaller wells, and thus 

smaller sample size, plus possible disruption of the more delicate monolayer 

when washing cells of media and application of MTT solution. These data are 

comparable to the study by Bouclier (Bouclier et al 2009), which used a 

colourmetric Cell Titer 96 Aqueous One Solution Cell Proliferation Assay 

from Roche. In the absence of E2, the same conditions under which growth 

was assessed in this thesis, reduction of proliferation in the combination 

condition was equal to RU556 exposure alone at both 10'8M RU556 (35% 

inhibition) and at 10‘6M RU556 (60% inhibition) and there was no significant 

difference between this and the combination (Bouclier et al 2009). This data 

was also mirrored by the Coulter counter assessment of total cell growth 

employed in this project.

In conclusion, the above data suggests that not all growth of ER 

positive breast cancer cells is dependant on the activity and presence of ERa, 

since the combination treatment was unable to further growth arrest these cells 

beyond fulvestrant alone, despite a greater loss of ER. In biological terms, the 

complete dependence on a single factor is not an optimum survival strategy 

and many alternative signalling pathways are available to breast cancer cells
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since they are surrounded by a rich milieu of hormone, steroids and various 

growth factors (Nicholson et al 2004). Indeed, many paracrine options are 

available to the cells in addition to autocrine and endocrine factors. Finally, as 

stated previously, it is conceivable that since anti-hormones are known to 

induce compensatory growth and survival signalling, that a more complete 

loss of ER promotes such elements more efficiently to counteract the 

effectiveness of the combination treatment. The induction of genes, such as 

EGFR and HER2 observed in this thesis for example, could potentially 

contribute to the growth response observed within this study following 

fulvestrant or the combination treatment. Indeed, these genes have been 

identified as mediators of anti-hormone resistance both in the clinic and 

preclinical in vivo and in vitro cell models. When EGFR and HER2 were 

assessed in the present thesis, there was an increase in total EGFR and HER2 

following the combination treatment and fulvestrant treatment potentially 

leading to subsequent ERK and AKT signalling and an induction to a hormone 

dependant phenotype. This rapid induction of potential compensatory 

signalling has potential clinical implications as there is a noted correlation 

between activation of growth signalling pathways and endocrine insensitivity 

and resistance to anti-hormone therapy (Nicholson et al 2004), and 

consequently more aggressive disease and poor prognosis (Gee et al 2001). 

These data could indicate that maximal ER inhibition could potentially induce 

this unfavourably phenotype at an earlier stage, and thus targeting ER alone 

may not be an optimal strategy. There has been further evidence for an 

induction of an unfavourable phenotype in Luqmani’s ER siRNA stable
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transfected cell model pH (Luqmani et al 2009), these cells that had markedly 

reduced ER expression showed increases in vimentin (VIM), CD68, carbonic 

anhydrase IX (CA9), loss of keratin (KRT) and over-expression of CD68 and 

stathmin (STMN1) which have been associated with ER loss and increased 

aggression and migration (Thompson et al 1992, Sommers et al 1989, 

Cobleigh et al 2005, Curmi et al 2000), however Luqmani also showed a 

reduction in EGFR and HER2 rather than the induction observed in this thesis, 

showing the treatment and cellular context is important in adaptation to anti­

hormone treatment. While only some of the EGFR family members were 

assessed within this thesis and while no obvious inherent behavioural changes 

were observed, future work looking for the appearance of these markers could 

indicate that the combination treatment is pushing the cells towards a more 

aggressive phenotype, with induction of EGFR family members and 

downstream signalling kinases seen in some pre-clinical models of anti­

hormone resistance (Gee et al 2011). Whatever the explanation, the data 

suggest that maximum ER blockade in the clinic may not necessarily promote 

further clinical benefit.

4.4. Conclusions and future prospects.

This thesis answers the fundamental questions that residual ER following 

fulvestrant treatment can be further reduced and ER can be almost completely 

removed in the in vitro setting within this project, but that this has no greater
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influence on growth inhibition than fulvestrant treatment alone. This does 

however open up new areas of work and questions, such as

• Clarifying any differences in induction of compensatory signalling 

following ER siRNA and fulvestrant combination compared with 

fulvestrant alone.

• Whether the combination treatment is more effective in a co-targeting 

setting (ER and HER2/EGFR) than fulvestrant alone.

• Is the combination treatment improved in Tamoxifen resistant disease 

above fulvestrant alone? (As fulvestrant is the current clinical 

treatment following Tamoxifen relapse).

• Whether there is a greater duration of response associated with the 

combination treatment, potentially answerable by use of a stably 

transfected ER siRNA cell line treated with fulvestrant.

• The phenotype of the cells with residual ER and determining the 

occupancy of residual ER following fulvestrant treatment.

While historically increased efficacy of ER ablation has been desirable 

and clinically beneficial, this thesis has taken it to its logical conclusion by 

employing a strategy of combining a SERD with an siRNA and has shown 

that it is not a ‘cure’ in its own right. However it must be noted that this study 

used short-term treatment and looked at initial response and not duration of 

response, whereas increasing dosage in clinical trials has shown greater time 

to progression (Robertson et al 2007). An example of this is the FIRST study, 

comparing 500mg monthly fulvestrant to lmg daily Anastrozole. Both
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treatment regimens showed similar clinical benefit rate and objective response, 

however the time to progression was significantly higher in the fulvestrant 

treated arm and at data cut-off only 29.4% of fulvestrant treated patients had 

progressed in comparison to 41.7% receiving anastrazole (Robertson et al

2009). Importantly, however, while many explanations maybe proposed to 

explain the incomplete growth inhibition observed following the combination 

therapy, the induction of compensatory signalling seen in this thesis and in 

models of endocrine resistance suggests that combination therapies attacking 

such induced elements may be beneficial alongside fulvestrant therapy. If this 

is so, the direction of breast cancer treatment must therefore progress from 

targeting ER as a single target in isolation to an individual patient tailored 

therapy targeting ER and the genes responsible for resistance mechanism(s). 

Significantly, there has been some work on this to date, exposure to both 

fulvestrant and the EGFR specific tyrosine kinase inhibitor Iressa prevented 

development of resistance to either agent in MCF-7 cells. Indeed there was a 

high level of cell loss associated with the co-treatment with any remaining 

cells being growth arrested for over six months (McClelland et al 2001). 

Similar results have been obtained by combining the pan-ErbB inhibitor 

Cl-1033 with fulvestrant (Sonne-Hansen et al 2010). Critically, there is 

tentative evidence that the combination of an ER antagonist with inhibition of 

growth factor pathways may also increase clinical benefit. Thus, a recent 

phase II neo-adjuvant study showed the efficacy of the Al letrozole was 

significantly enhanced when co-treated with an mTOR inhibitor, a 

downstream ErbB target (Baselga et al 2009). Further clinical trials combining
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signal transduction inhibitors and traditional ER antagonists have been 

proposed and the work presented in this thesis indicates that this maybe the 

way forward in the future successful management of breast cancer. However, 

there is a need to screen for compensatory signalling within clinical disease 

during treatment to ensure patients receive the most beneficial therapy for 

their disease. As evidence that the screening for compensatory signalling in 

patients to find the correct targets for a combination treatment is absolutely 

paramount, a phase III clinical trial by Johnston et al. combining the Al 

Letrozole and a dual tyrosine kinase inhibitor against EGFR and HER2 

(lapatinib) showed only limited value in HER2 negative patients compared to 

Al alone (although the combination was superior in hormone receptor 

positive, HER2 positive patients (Johnston et al 2009)).
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Appendix 1. Charcoal stripping o f foetal calf serum.

To strip 100ml o f foetal calf serum (FCS), the following solution is made

• 2g Activated charcoal

• O.Olg Dextran T70

• 18ml distilled H2 O

This solution is stirred vigorously for one hour. FCS is pH adjusted to 4.2 with 

5M Hydrochloric acid (HCL) and allowed to equilibrate for 30 minutes at 4°C. 

5ml charcoal solution is added to FCS and stirred for 16 hours at 4°C.

Charcoal is removed by centrifugation at 12,000g for 40 minutes. Pass 

supernatant through Whatman filter paper No.4 (repeat filtration 2-3 times). 

Adjust serum to pH to 7.2 with NaOH (5M) and sterilise by passing through 

0.2pm bottle-top filter. Stripped serum can be aliqouted and stored at -20°C.

Appendix 2. 0.01M Phosphate buffered saline fPBSl for 

Immunocvtochemistrv.

42.5g NaCl (Sodium chloride) and 7.15g di-potassium hydrogen 

orthophosphate anhydrous (K2HPO4) is made up to 5L with distilled H2O.
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Appendix 3. Sucrose storage medium for Immunocvtochemistrv.

42.8g Sucrose

0.33g MgCl2 (Magnesium Chloride)

~ Dissolved into 250ml 0.01M PBS (appendix 2.).

Added to 250ml glycerol and stored at -20°C prior to use.

Appendix 4. 0.02% PBS Tween.

50 jl i1 Tween added to 250ml 0.01M PBS (see appendix 2.)

Appendix 5. Reverse-transcription master mix for PCR.

11 ia.1 o f Reverse Transcriptase master mix solution is comprised of:- 

5pi dNTPs (2.5mM stock comprised of 0.625mM each o f dGTP, dCTP, dATP 

and dTTP).

2pl PCR buffer (comprised o f lOmM Tris-HCl pH 8.3, 50mM KC1, 1.5mM 

MgCl2 0 .0 0 1 % w/v gelatine)

2pl dithiothreitol (DTT) (0.1M stock)

2pl Random hexamer oligonucleotides (RH) (lOOpM stock).

This is sufficient for one 7.5pl sample containing lpg  of RNA, and should be 

scaled up accordingly
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Appendix 6 . PCR master mix.

2.5pl lOx PCR buffer (comprised o f lOmM Tris-HCl pH 8.3, 50mM KC1, 

1.5mM MgCl2 0.001% w/v gelatine).

2pl dNTPs (2.5mM stock, comprised o f 0.625mM each of dGTP, dCTP, 

dATP and dTTP)

0.2pl Taq polymerase (5 u/pl)

And 0.625pi each o f desired forward and reverse Primers (20pM stock)

Made up to 24pl with sterile H2O

N.B. if  p-actin primers are being used, 0.3pi o f forward and reverse primers 

were used, with an additional 0.65pl DNase free H2O added due to abundance 

o f gene present.

Appendix 7. 50x Tris-Acetate-EDTA (TAE1 buffer.

Component Amount (for 1L) Final concentration

Tris base 242g 2M

Glacial acetic acid 57.1ml 1M

EDTA (0.5M, pH8 ) 1 0 0 ml 0.05M

Make up to 1L with distilled H2 O and adjust pH to 8.3, dissolve 1 in 50 with 

distilled H2O prior to use.
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Appendix 8 . RNA loading buffer.

Component Amount (for 10ml) Final concentration

Sucrose 6 g 60% (w/v)

Bromophenol blue 0.025g 0.25% (w/v)

Add to 10ml RNase-ffee H2O, and pass through 0.2pm syringe filter to 

remove undissovled bromophenol blue.

Appendix 9. Complete protein lvsis buffer.

Lysis buffer stock comprised of:-

Component Amount (for 100ml) Final Concentration

Tris base 0 .6 g 50mM

EGTA 0.19g 5mM

NaCL 0.87g 150mM

Triton X -100 1 ml 1 % (v/v)

Distilled H2O 1 0 0 ml -

Adjust pH to 7.5 with HCL (5M), and store at 4°C.

Add following phosphatase/protease inhibitors immediately prior to use (See 

overleaf);
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Inhibitor Stock

concentration

Solvent Volume to 

add to 5ml 

Lysis buffer

Final

concentration

Sodium

orthovandate

lOOmM h 2o lOOpl 2mM

PMSF lOOmM Isopropanol 50pl ImM

Sodium

fluoride

2.5M H20 50pl 25mM

Sodium

molybdate

1M h 2o 50pil lOmM

Phenylarsine

oxide

20mM Chloroform 5 pi 20pM

Leupeptin 5 mg/ml h 2o lOpl lOpg/ml

Aprotinin 2 mg/ml h 2o 25 pi lOpg/ml
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Appendix 10. 12% Resolving Gel for SDS-PAGE.

Component. To make 15ml (12% 

w/v)

Final concentration.

Lower buffer (1.5M 

Tris-HCl buffer pH 8 .8 )

3.75ml 1 2 % (w/v)

Acrylamide/Bis- 

acrylamide (30% 

solution).

4.95ml 375mM

Distilled H2O 6 ml -

SDS (10% solution in 

H20 )

150pl 0 .1 % (w/v)

APS (10% solution in 

H20 )

lSOfil 0 .1 % (w/v)

TEMED 15pl 0 .1 % (v/v)

Acrylamide solution had an acrylamideibis-acrylamide ratio o f 29:1, and 

TEMED was added last to commence polymerisation.
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Appendix 11. 4.5% Stacking gel for SDS-PAGE.

Component To make 10ml (4.5% 

w/v)

Final concentration.

Upper buffer (0.5M 

Tris-HCL pH 6 .8 )

2.5ml 125mM

Accrylamide/Bis- 

acrylamide (30% 

solution).

1.3ml 4.5% (w/v)

Distilled H2O 6 .1ml -

SDS (10% solution in 

H20 )

lOOpl 0 .1 % (w/v)

APS (10% solution in 

H20 )

50pl 0.05% (w/v)

TEMED lOpl 0 .1 % (v/v)

Acrylamide solution had an acrylamide:bis-acrylamide ratio o f 29:1, and 

TEMED was added last to commence polymerisation.
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Appendix 12. lQx Running buffer for SDS-PAGE.

Component Amount (to make 1L) Final concentration

Tris base 30g 2.5M

glycine 144g 19.2M

SDS 1 0 g 1 % (w/v)

Distilled H2O 1L -

Adjust to pH 8.3 with 5M hydrochloric acid (HCL), and diluted to 1 in 10 with 

distilled H2O prior to use.

Appendix 13. 2x Laemli sample loading buffer.

Component To make 10ml (2x 

stock)

Final concentration 

(when diluted with cell 

lysate)

SDS (10% solution in

h 2o )

4ml 2 % (w/v)

Glycerol 2 ml 1 0 % (v/v)

Tris Base (1M stock pH 

6 .8 )

1 .2 ml 60mM

Distilled H2O Make up to 10ml -

Bromophenol blue 0 .0 0 2 g 0 .0 1 % (w/v)

Prior to use 8 pg DTT is added per 0.5ml buffer to be used.
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Appendix 14. Transfer buffer for SDS-PAGE.

Component Amount (to make 1L) Final concentration

Tris base 3.03g 0.25M

Glycine 14.4g 1.92M

Methanol 2 0 0 ml 2 0 % v/v

Distilled H2O 800ml -

Appendix 15. Tris-buffered saline (TBS) and TBS-tween.

Component Amount (to make 1L) Final concentration

Tris base 1 .2 1 g lOmM

Sodium chloride (NaCl) 5.8g lOOmM

Distilled H2O 1L -

Adjust to pH 7.6 with 5M hydrochloric acid (HCL).

TBS-tween.

TBS is made as above, but with addition of 50pl Tween 20, to give a final 

concentration o f 0.05% (v/v).
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Can current Oestrogen Receptor Therapies be further improved, and is this
desirable in the clinic?

Michael. R. Longman. Prof R.I. Nicholson and Dr I. R. Hutcheson.
Tenovus centre for Cancer research, Welsh school o f Pharmacy, Cardiff University, King 

Edward VII Avenue, Cardiff, CF10 3XF, Wales, UK.

Breast cancer is the most common cancer in females, affecting 1 in 9 women worldwide. This 
number is increasing every year. Approximately three-quarters of these cancers are termed 
hormone-responsive. This means that the growth of these tumours is driven by the female 
hormone oestrogen, via its interaction with the Oestrogen Receptor (ER). The most common 
treatment o f breast cancer is by use of anti-oestrogens, the first and most widely used agent in 
this class being Tamoxifen. Although effective in many cases Tamoxifen only partially 
impairs ER function and can also be oestrogenic, another issue is that long-term use can 
promote Tamoxifen resistance, leading to more aggressive tumour growth and poor prognosis. 
Because of this newer anti-oestrogens, more able to ablate ER function were developed, the 
leading molecule from this research being Faslodex. Faslodex has no oestrogenic activity and 
gives a more complete ER blockade; it is also able to degrade the ER at the protein level. 
Although Faslodex is well tolerated in the clinic, its inhibition o f ER function is not complete 
and long-term Faslodex treatment can lead to resistance. The presence of Residual ER is 
believed to be responsible for development of resistance in both cases, and consequently this 
project to assess whether a more complete ER inhibition can be achieved, by utilisation of 
siRNA to the ER in combination with Faslodex, and if  a more complete ER inhibition can be 
achieved to see whether this is of benefit within the clinic and in what setting.

Ribonucleic acid interference (RNAi) is a relatively new technology that by addition 
of a specific small interfering RNA molecule (siRNA), is able to utilise a natural cellular 
process to down regulate a specific gene at the mRNA level, and subsequently at the protein 
level as well. However these siRNAs are relatively large and charged molecules and do not 
readily pass across the cell membrane without the aid of a transfection agent. Transfection 
lipids allow siRNA uptake but disrupt the cell membranes integrity resulting in cell death. 
This lipid toxicity is a major limitation of the use of siRNAs, and an optimal balance must be 
found, this can then be used in combination with Faslodex as a treatment in vitro.

Initially the toxic effect o f the recommended concentration transfection lipid was 
optimised, while minimising toxicity the optimised concentration was still able to deliver 
siRNA effectively, down-regulating the ER at both mRNA and protein levels. Most siRNA 
are purchased and used as pools o f four different siRNA to the same gene, to give a good 
knockdown in most cell lines while minimising off-target effects. The four components o f the 
ER siRNA pool were assessed individually and against the pool to see whether the were 
differential levels of ER knockdown in the cell lines used, as each component o f the pool gave 
comparable knockdown and the pool gave the greatest knockdown, the pool was used 
throughout. The combination treatment of ER siRNA and Faslodex was compared against 
Faslodex treatment alone and the combination showed a greater knockdown o f ER at mRNA 
and protein levels. The combination treatment was also shown to have a greater effect on 
‘classical’ oestrogen regulated genes, showing greater down-regulation on estrogen induced 
genes such as progesterone receptor (PR) and pS2 than Faslodex treatment alone. The 
combination treatment showed greater down regulation of oestrogen signalling than Faslodex 
alone when components o f the Insulin-like growth factor pathway were observed. While there 
was some indication that the combination condition had a greater reduction of proliferation 
than Faslodex there did not seem to be any significant difference on cell growth. This pattern 
of results from the hormone-sensitive cell line (MCF-7) seems to be true for the Tamoxifen 
resistant line derived from MCF-7’s (TAM-R), the combination of ER siRNA and Faslodex 
give a more complete ER blockade than Faslodex alone, however the growth effects still need 
to be assessed.

Work will now focus on investigating whether the effects shown in MCF-7 cells are 
comparable in other hormone dependant breast cancer lines and whether this combination 
treatment is effective in anti-hormone resistant, ER positive breast cancer. With siRNA 
technology constantly developing, a newer construct to ER is available and will be assessed 
for consistency.
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Breast cancer affecting 1 in 9 women worldwide, is the most common female cancer. 
Seventy-five percent of these cancers are termed hormone-responsive; this means the 
growth of the cancer is driven by the female hormone Oestrogen via its interaction 
with the Oestrogen receptor protein (ER). As such the most common way to treat 
these tumours is by use of an anti-Oestrogen compound. The most common drug of 
this class is Tamoxifen, a drug which partially impairs normal ER function, and as 
such its use has been shown to inhibit breast cancer growth.

Although impeding ER function has an effect on growth, Some ER remains 
and resistance develops. The role this Residual Oestrogen Receptor plays in 
formation of resistance in a range of different breast cancer cell is not yet fully 
understood.

Recently a new technology (RNAi) which has the ability to completely 
eliminate the Oestrogen Receptor is being used to shed further light on this area of 
research.

/
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Breast cancer is the most common cancer in females, affecting 1 in 9 women worldwide1. This 
number is increasing every year. Approximately three-quarters of these cancers are termed 
hormone-responsive. This means that the growth of these tumours is driven by the female 
hormone oestrogen, via its interaction with the Oestrogen Receptor (ER). This is why the most 
common treatment of breast cancer is by use of anti-oestrogens, the most widely used agent in 
this class being the anti-oestrogen Tamoxifen. Tamoxifen partially impairs ER function, and 
as such its use has been shown to slow or stall the progress of hormone-responsive breast 
cancer. This compound acts as an antagonist in breast tissue but as an agonist in other tissues 
and is therefore termed a selective oestrogen receptor modulator or SERM. A further class of 
molecules called ‘pure’ anti-oestrogens are coming into wider use, the most common of these 
being fulvestrant (Faslodex). Faslodex is also able to slow or stall breast cancer growth 
through down regulation o f the ER protein. Though it is known that impairing the ER function 
has an effect on growth, the role of the residual ER present in anti-oestrogen treatment and its 
function in the continued growth of a range of different breast cancer cells is not yet fully 
understood. The aim of this project is to assess and to fully understand the role of the residual 
Oestrogen Receptor on growth of breast cancer cells.

Ribonucleic acid interference (RNAi) is a relatively new technology that by addition 
o f a specific small interfering RNA molecule (siRNA), is able to utilise a natural cellular 
process to down regulate a specific gene at the mRNA level, and subsequently at the protein 
level as well. This technology is able to almost completely eliminate a desired protein from a 
cell. However these siRNAs are relatively large and charged molecules and do not readily 
pass across the cell membrane without the aid of a lipid based transfection agent. Transfection 
lipids allow siRNA uptake but disrupt the cell membranes integrity resulting in cell death. 
This lipid toxicity is a major limitation of the use of siRNAs, and an optimal balance must be 
found.

The RNAi technology was used in a range of breast cancer cells and a series o f in 
vitro cell growth experiments were conducted to see whether a less toxic concentration of 
lipid could be found. An optimum concentration displaying minimum detrimental affects on 
cell number over a prolonged time period was found. A second series of experiments were run 
to determine whether this optimum lipid concentration still facilitated siRNA uptake. The 
optimised siRNA protocol gave significant ER knockdown at the protein level. Also the 
difference in ER knockdown between the pool of four siRNAs most commonly used and the 
individual siRNAs was investigated. The individual siRNAs all gave a significant protein 
knockdown compared to all the control conditions, but the siRNA pool gave a more efficient 
knockdown though this was not significantly different when compared to the individual 
siRNAs.

The optimised siRNA protocol is able to consistently and effectively knockdown the 
ER. We are now investigating this effect of removing the ER on the growth of the Cancer 
cells. The next step will be to look at changes in downstream signalling targets o f the ER, and 
to detect this using certain classical markers. This use of optimised RNAi for breast cancer 
should prove a powerful tool in elucidating the full function of the Oestrogen Receptor and its 
importance in the progression o f breast cancer.

1. Office for National Statistics. Registrations o f  cancer diagnosed in 1993-1996, England and Wales. 
Health Statistics Quarterly 1999; 04:59-70.


