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Summary

Recent genetic studies have linked a C to T single nucleotide polymorphism (SNP) in the 

protein tyrosine phosphatase (PTP) non-receptor type 22 (PTPN22) to several autoimmune 

diseases (ADs). This changes amino acid at position 620 from an Arginine (R) to a 

Tryptophan (W) in the protein, Lyp. Lyp is thought to be a negatively regulator of TCR 

signalling by dephosphorylating Src family kinases Lck and Fyn, and Zap70. However, the 

cellular and molecular mechanisms of predisposition to ADs by the R620W polymorphism 

are not yet understood. Several studies have reported the R620W polymorphism as a “gain of 

function” change resulting in an increase in the PTP activity of Lyp. It has been further 

hypothesised that the W620 isoform suppresses TCR signalling more potently than the R620 

isoform, resulting in the survival of auto-reactive cells that would normally be deleted by 

negative selection in the thymus. Alternatively, the impact of Lyp W620 on TCR signalling 

may have an effect on the development and functioning of T regulatory cells.

To investigate the effect of the R620W polymorphism in T cells, lentivirus plasmids
n

expressing the R and W isoforms of Lyp were generated and used to introduce the Lyp and 

wLyp isoforms in leukaemic T cells thereby generating H9 and E6.1 cell lines over-
R Wexpressing the Lyp and Lyp isoforms. Investigation of activation marker expression and 

cytokine production by these T cell lines post activation showed no differences in CD69 

activation marker expression between the RLyp and wLyp expressing T cells or between the 

R/wLyp expressing and control cells (not expressing exogenous Lyp).

However, there was a trend towards a reduction in IL-2 production observed by R/WLyp 

expressing H9 T cells compared to control cells. In addition, a significant reduction in IL-10 

production by R/wLyp expressing H9 T cells compared to control cells was observed. This 

effect of Lyp on IL-10 production suggests a potential mechanism by which wLyp, if indeed 

a more active PTP, may predispose to ADs
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Chapter 1

Introduction

1.1 Autoimmune diseases

Paul Ehrlich first described the concept of autoimmunity at the beginning of 20th century as a 

“horror autotoxicus”. Autoimmune disease (AD) is a complex chronic disease caused by the 

activation of T cells or B cells or both by self-antigens, in the absence of an ongoing infection 

or other apparent cause (Davidson and Diamond 2001; Kivity et al. 2009). There are 

currently over 80 diseases classified as autoimmune. ADs, with the exception of Rheumatoid 

arthritis (RA) and Autoimmune Thyroiditis are individually rare, but together they affect 

approximately 5% of individuals in western countries (Jacobson et al. 1997; Sinha et al.

1990). After heart diseases and cancer, ADs are the third leading cause of morbidity and 

mortality in the industrialised world (Kivity et al. 2009). ADs can affect almost every site in 

the body although most ADs are not fatal. ADs develop through a combination of genetic, 

environmental, immunological and hormonal factors (Figure 1.1) (Cojocaru 2008; Kivity et 

al. 2009).

Although the aetiology of AD is yet to be fully deciphered, it is well documented that T cells 

are the key mediators of many ADs, such as Type 1 diabetes (T1D), Autoimmune 

Thyroiditis, and RA (Murphy et al. 2007a). Furthermore, there is mounting evidence that 

normal healthy individuals have potentially pathogenic self-reactive T cells. Therefore, T 

cells and their role in preventing and mediating autoimmunity will be the focus of this 

Introduction.

Each autoimmune disorder has its own aetiology, however, failure of immunological 

tolerance in one or more lymphocyte subsets appears to be a common observation in all AD 

(Hoyne 2011; Murphy et al. 2007a). The random gene arrangement mechanisms that occur 

during the development of T and B cells result in the generation of diverse T and B cell 

receptors capable of recognising a wide variety of foreign antigens. However, this also results 

in the generation of auto-reactive receptors that can potentially react to self-antigens 

(Appleman and Boussiotis 2003; Bluestone 2011; de Souza et al. 2010; Hogquist et al. 2005).
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Hence, distinct tolerance mechanisms, central and peripheral have to be in place to prevent 

ADs in normal individuals.

1.2 Mechanisms of generation of T cell receptor diversity

Huge receptor diversity is encoded in the mammalian genome so that mammals can 

potentially recognise a huge range of chemical structures in order to fight off possible 

microorganism induced infections. Autoimmunity is a consequence of this deliberately 

random receptor generating process (Figure 1.2) (Racanelli et al. 2011) . The vast receptor 

diversity possessed by lymphocyte populations is achieved by the processes of two somatic 

genome modifications. First is the mechanism of V(D)J recombination where the Variable 

(V), Diversity (D) and Joining (J) gene segments are assembled together during T cell 

differentiation to generate diverse and unique T cell receptors (TCRs) (reviewed in Goldrath 

and Bevan 1999; reviewed in Kronenberg et al. 1986). There are multiple different copies of 

V, D and J gene segments encoded in the germline DNA and these can be arranged together 

in various combinations to give rise to a different V(D)J sequence each time. This 

combinatorial diversity is the main source of the diversity of the variable antigen binding 

region (Goldrath and Bevan 1999; Murphy et al. 2007a). In addition, junctional diversity at 

the joints between the different gene segments due to the addition and subtraction of 

nucleotides by the recombination process introduces another source of diversity in the V(D)J 

sequence (Goldrath and Bevan 1999; Murphy et al. 2007a). Finally, the many possible 

different combinations of alpha and beta chain V region that can pair to form a TCR gives 

rise to further receptor diversity (reviewed in Goldrath and Bevan 1999; Kronenberg et al. 

1986; Wilson et al. 1988). Once these recombination events have succeeded in producing a 

functional receptor, further rearrangement is prohibited, therefore increasing the likelihood 

that each lymphocyte expresses only one receptor specificity (Goldrath and Bevan 1999). B 

cells further diversify their BCR by the process of somatic hypermutation. Somatic 

hypermutation in activated B cells introduces point mutations into the rearranged V-region 

genes creating further diversity that can be selected for enhanced binding to antigen (Murphy 

et al. 2007a). T cells with a functional TCR are not known to diversify their V region after 

rearrangement through somatic hypermutation (Goldrath and Bevan 1999).
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Failure o f Central or Peripheral . Environm ental Factors and
Tolerance M echanism s ■ Im m unological Factorsu

Tolerance

*
A u to im m u n ity

Figure 1.1 Factors involved in development of autoimmunity

Autoimmune diseases result due to a genetic predisposition, which plays a role in the failure 

of central and peripheral tolerance mechanisms in place to prevent autoimmunity and due to 

environmental and immunological triggers such as infection, inflammation, molecular 

mimicry and hormones. This leads to a failure o f immunological tolerance, which in turn 

leads to autoimmunity.
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Figure 1.2 The germline organisation and rearrangement of T cell receptor alpha and 

beta chain gene

The TCRa and p chain genes are composed o f discrete variable (V shown as blue rectangle), 

diversity (D, green rectangle) and joining (J, yellow rectangle) gene segments. The TCR a 

locus (top) consists of 70-80 Va gene segments and 61 Ja gene segments followed by a single 

Constant (C, red rectangle) gene segment. Any one of the functional 70-80 Va gene segments 

can rearrange with any one of the 61 Ja gene segments to form a TCR a chain. The TCR p 

locus (bottom) has a different organisation to TCR a chain locus with a cluster of 52 

functional Vp gene segments located distantly from two separate clusters each containing a 

single D gene segment together with 6 or 7 J gene segments and a single C gene. Any of the 

VP gene segments can rearrange with either Dp gene segments and any of the jp  gene 

segments to form a rearranged TCR p chain. This is called combinatory diversity and is the 

main source of diversity of the variable antigen binding region. Adapted from (Murphy et al. 

2007b)
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1.3 Immunological tolerance

The state of unresponsiveness to self and foreign antigen is known as immunological 

tolerance. Every individual is tolerant of their own antigens and the failure of this self­

tolerance is the fundamental cause of autoimmunity (Figure 1.1) (Kivity et al. 2009). There 

are a variety of mechanisms for tolerance induction, each of which is only partly effective in 

preventing self-responses, and all of them act together to prevent autoimmunity without 

impairing immunity. There is hence a fine balance between effective immunity and 

autoimmunity. Every individual has potentially autoreactive lymphocytes that are part of their 

peripheral T cell repertoire but it is rare that these autoreactive cells lead to ADs (Appleman 

and Boussiotis 2003; Bouneaud et al. 2000; reviwed in de Souza et al. 2010). In fact, some 

degree of autoreactivity is thought to be a physiological requirement because immature 

lymphocytes need a TCR that recognises self-MHC: peptide for positive selection in the 

thymus and continuous low level TCR ligation via contact with self peptide: MHC complexes 

is required for survival of the mature T cells in the periphery (Freitas and Rocha 1999; Viret 

et al. 1999; Werlen et al. 2003). Mechanisms of tolerance induction are classically divided 

into two categories: central tolerance and peripheral tolerance.

1.3.1 Central tolerance mechanisms

Central tolerance is the process of deleting self-reactive cells in the thymus and bone marrow 

(Bluestone, J.A. 2011; Metzger and Anderson 2011; Starr et al. 2003). Central tolerance 

mechanisms are the first and the most important tolerance mechanisms that take place in the 

central lymphoid organs during the generation and development of naive lymphocytes by 

which the newly developing lymphocytes are ensured to be non reactive to self (reviewed in 

Bluestone, J.A. 2011; von Boehmer and Melchers 2010). The hallmark mechanism used 

during central tolerance of both B and T lymphocytes is clonal deletion via negative selection 

(Bluestone, J.A 2011; von Boehmer and Melchers 2009). Clonal anergy and receptor editing 

are also thought to play roles in tolerance induction of T cells in the thymus, however these 

are thought to be of much lower significance compared to clonal deletion (de Souza et al. 

2010; Goodnow et al. 2005; Hammerling et al. 1991; Hogquist et al. 2005; Roberts et al. 

1990; Wang et al. 1998) .
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Most of the double negative (DN, do not express CD4 or CD8 receptors) developing 

thymocytes in the thymus express a TCR that does not recognise a self peptide: MHC 

complex and therefore die by neglect (Figure 1.3) (Benoist and Mathis 1989; reviewed in de 

Souza et al. 2010). Some of these DN thymocytes express TCR that recognises self-peptide: 

MHC complex but responds only weakly to this TCR ligation thereby receiving survival 

signals to continue their development. This is called positive selection (Figure 1.3) (de Souza 

et al. 2010; Metzger and Anderson 2011). These cells are non-responsive to self-antigens in 

the periphery. A small number of developing thymocytes (about 5%) respond with high 

affinity to the TCR ligation by self peptide: MHC complex (Laufer et al. 1999; reviewed in 

Metzger and Anderson 2011; van Meerwijk et al. 1997; reviewed in de Souza et al. 2010). 

These thymocytes are potentially autoimmune and therefore need to be deleted (clonal 

deletion) from the peripheral T cell repertoire to avoid autoimmunity (Kappler et al. 1987; 

Kisielow et al. 1988; MacDonald et al. 1988; Metzger and Anderson 2011; Venanzi et al. 

2004; Woodland et al. 1990; Zal et al. 1994; reviewed in de Souza et al. 2010). Negative 

selection is the mechanism of deleting these self-reactive and potentially autoimmune 

thymocytes, thereby generating a repertoire of T cells in the periphery that are self-tolerant 

(Figure 1.3).

The thymic cortex is the site for positive selection and cortical thymic epithelial cells (TEC) 

are the main players in mediating positive selection of the developing thymocytes. However, 

the developmental stage and therefore the site at which negative selection occurs has been a 

source of some controversy in the past as the stage of development at which negative 

selection occurs differs depending on the particular experimental system and the particular 

antigen used (reviewed in Goodnow et al. 2005). Some experiments indicate that clonal 

deletion (negative selection) occurs in the thymic cortex and others indicate that it occurs in 

the thymic medulla. Initially, it was also thought that thymic negative selection was a 

sequential process taking place after positive selection. However, it is now accepted that 

negative selection of thymocytes takes place throughout thymocyte development both in the 

thymic cortex and the thymic medulla but the thymic medulla is thought to be the main site of 

negative selection (Baldwin et al. 1999; reviewed in Goodnow et al. 2005; Metzger and 

Anderson 2011; Ohashi et al. 1990; Spain and Berg 1992).
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Figure 1.3 Checkpoints in the development of T cells in the thymus

The Immature thymocytes in the thymus need to be able to generate a TCR that recognises 

self MHC: peptide complexes to undergo positive selection. Failure to recognise a self MHC: 

peptide complex leads to apoptotic death of the cell, a phenomenon known as “death by 

neglect”. A Low affinity TCR: MHC-self peptide interaction provides signal for positive 

selection, which allows continuation down the developmental pathways. However, high 

affinity TCR: MHC-self peptide interactions lead to clonal deletion via negative selection.
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There is a general concensus in literature that cortical TECs are the mediators of positive 

selection. However, the importance of the role played by cortical TECs in negative selection 

has been controversial (Lorenz and Allen 1989a, b; Palmer 2003). Medullary TECs have 

been shown by several studies to significantly contribute to negative selection and therefore 

tolerance induction (reviewed in Metzger and Anderson 2011; Palmer 2003). The role played 

by cortical TECs in negative selection is less clear as they themselves are not known to be 

effective APCs (reviewed in Palmer 2003). The effectiveness of different APCs in mediating 

negative selection is variable with the most important cells for negative selection appearing to 

be bone marrow derived dendritic cells (DC) and macrophages followed by medullary TECs 

(Bluestone 2011; Sprent and Webb 1995; Stockinger and Hausmann 1994). It is also known 

that most thymocytes undergo negative selection in the medulla, mainly due to the fact that 

relevant APCs for negative selection, the DCs, almost exclusive reside in the medulla 

(reviewed in Bluestone 2011; Metzger and Anderson 2011; Palmer 2003). Additionally, 

thymocytes themselves can cause negative selection of self-reactive cells by acting as APCs, 

although this reaction may be of secondary significance (Sprent and Kishimoto 2001, 2002). 

Medullary TECs have been shown to express a transcription factor known as autoimmune 

regulator, AIRE, which allows them to promiscuously transcribe and express certain genes 

such as insulin and myelin basic protein that are normally only expressed in peripheral tissue 

(reviewed in Anderson et al. 2000; Bluestone 2011; Hanahan 1998; Heino et al. 1999; Klein 

et al. 2000; Metzger and Anderson 2011). People who express a defective form of AIRE 

suffer from autoimmune polyendocrine syndrome type 1, a multi organ form of 

autoimmunity (Consortium. 1997). Mice deficient in AIRE expression develop a pattern of 

ADs similar to the human syndrome (Ramsey et al. 2002). The absence of AIRE expression 

only from the medulla is sufficient to cause disease (Villasenor et al. 2005).

The role of costimulatory molecules in negative selection has been a source of some 

controversy. Some studies have shown that costimulatory molecules are important for 

negative selection (Buhlmann et al. 2003; Gao et al. 2002; Kishimoto and Sprent 1999; Page 

1999; Page et al. 1993; Palmer 2003; Punt et al. 1994; Sprent and Kishimoto 2001, 2002). 

However, other studies with mice genetically deficient in expression of costimulatory 

molecules have failed to show a defect in negative selection (Dautigny et al. 1999; Li and 

Page 2001; Palmer 2003; Walunas et al. 1996; Williams et al. 2002). The lack of a defect 

seen in mice genetically deficient for individual costimulation genes is that many 

costimulatory molecules may have the redundant same function. Therefore, any single gene
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knockout will fail to show any defect. Alternatively it maybe that costimulatory molecules 

are not required for the deletion of high affinity thymocytes but only for the deletion of low 

affinity thymocytes. If the deletion of high affinity thymocytes is possible in the absence of 

costimulatory signal then it may be possible for the TCR to deliver signals for negative 

selection (Palmer 2003; Sprent and Kishimoto 2002; Sprent and Kosaka 1993).

It is also not clear how a developing thymocyte can discriminate between a positive selection 

and a negative selection signal and initiate the positive or negative selection pathway 

respectively. Although it is generally agreed that low affinity peptide: MHC ligand leads to 

positive selection and high affinity peptide: MHC ligand leads to negative selection, it is not 

entirely understood how a TCR can discriminate between a low affinity and a high affinity 

signal (reviewed in Gascoigne and Palmer 2011; Palmer 2003; Starr et al. 2003). There are 

currently two proposed mechanisms of how a developing thymocyte might make the 

distinction between a low affinity and a high affinity signal. First, is the serial triggering 

model whereby a single peptide: MHC complex can engage and activate multiple TCRs over 

time (reviewed in Palmer and Naeher 2009; Valitutti et al. 1995). An increase in number of 

TCR interactions by a peptide: MHC complex repeatedly engaging multiple TCRs on the T 

cell surface (serial triggering) would lead to a multiplication of the peptide: MHC induced 

signals resulting in negative selection (Rachmilewitz and Lanzavecchia 2002). In this way 

one or two peptide: MHC complexes can lead to apoptosis via negative selection. Second, is 

the kinetic proofreading model of T cell activation whereby a T cell detects ligand affinity by 

measuring how long a peptide: MHC complex remains bound to the TCR. In this model, a 

high affinity TCR: peptide: MHC ligands would occupy the TCR for a longer period of time 

(slower off-rate) and have a longer half life providing sufficient time for the formation of 

fully activated TCR: CD3 complexes (Kalergis et al. 2001; Kersh et al. 1998; reviewed in 

Palmer and Naeher 2009; Savage and Davis 2001; Teague et al. 2008). A low affinity TCR: 

peptide: MHC complex in contrast would have a faster off-rate and a shorter half life 

resulting in incomplete activation of the TCR: CD3 complexes (reviewed in Palmer and 

Naeher 2009; Rabinowitz et al. 1996). In terms of signal transduction, TCR ligation by high 

affinity ligand for a longer period of time would induce a set of early and late signals whereas 

TCR ligation by a low affinity ligand would only induce a set of early signals (Alam et al. 

1996; Gascoigne and Palmer 2011; Palmer 2003; Starr et al. 2003). Therefore, a single 

receptor complex might determine the affinity of the ligand molecule by determining the time

20



it remains bound to the TCR and thus the signal transduced (Gascoigne and Palmer 2011; 

McKeithan 1995).

Central tolerance via negative selection is very effective in getting rid of T cells with high 

affinity TCRs against self-peptides. However, it does not purge the system of all self-reactive 

T cells. Self-reactive T cells are present in the periphery of healthy individuals. So how is it 

that despite having self-reactive T cells present in the periphery only 3 to 6% of individuals 

go on to develop autoimmunity (Jacobson et al. 1997)?

1.3.2 Peripheral tolerance mechanisms

Negative selection in the thymus does not eliminate all self-reactive lymphocytes (Bluestone 

2011; Bouneaud et al. 2000; Metzger and Anderson 2011; Mueller 2009; Peterson et al. 1999; 

von Boehmer and Melchers 2009). Self-reactive lymphocytes do exist in the natural immune 

repertoire and they can be activated by immunization with self constituents along with potent 

adjuvant or by repeated stimulation with self-antigens in vitro (Weigle 1980; Wekerle et al. 

1996). Deleting.every weakly self reactive lymphocyte would compromise the immune 

system because every TCR, self reactive or not, is potentially capable of generating an 

effective immune response against foreign antigens. The immature DN progenitor cells in the 

thymus can only successfully undergo positive selection if they recognise self-peptide: MHC 

complexes and signal via their TCR. These cells are therefore capable of reacting against 

self-peptide (de Souza et al. 2010). However, in the periphery these same cells effectively 

ignore the self-peptide that triggered their positive selection in the thymus (Davey et al. 1998; 

Wong et al. 2001). Such normally “self-ignorant” cells may still be capable of being activated 

in the periphery if the stimulus is strong enough (Sandberg et al. 2000). However, these cells 

are highly unlikely to be activated and lead to autoimmunity because the strength of TCR 

signal produced by the self-peptide that lead to positive selection is not enough to activate the 

cell in the periphery. There are intrinsic difference between a developing thymocyte and a 

mature T cell. Immature thymocytes are undergoing a developmental programme in the 

thymus, genes are being switched on/off, epigenetic changes taking place and thresholds 

being set. It may be the case that certain signalling regulators are also developmentally 

regulated and therefore all the regulatory mechanisms that is functional in a mature T cell 

may not be present in a developing thymocyte. Thus upon encounter with the same antigen an
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immature thymocyte that recognises this antigen may signal differently (higher thereshold) at 

this stage than when it has diffemtiated into a mature T cell. Therefore, a signal that is 

enough to activate a thymocyte in the thymus and lead to positive selection is not normally 

enough to activate the same T cell in the periphery. A more significant risk to autoimmunity 

is posed by those autoreactive cells that have medium to high affinity for self-antigens which 

escape tolerance mechanisms in the central lymphoid organs (Van Kaer 2010). T cell with 

lower avidity for self-peptide: MHC complexes than that required for induction of negative 

selection will fail to be deleted in the thymus and will escape to the periphery (Jiang and 

Chess 2004). An autoreactive T cell might escape negative selection because the particular 

self-antigen that it recognises is not expressed in the thymus or is not expressed in sufficient 

quantity to induce negative selection or is only mildly immunogenic (reviewed in Walker and 

Abbas 2002). In these cases peripheral tolerance mechanisms play an important role in 

preventing autoimmunity and AD (Figure 1.4).

Peripheral tolerance mechanisms act on mature self-reactive lymphocytes to prevent them 

from causing autoimmune disorders. Indeed, autoreactive cells that have broken tolerance can 

still be regulated so that they do not cause ADs (de Souza et al. 2010; von Boehmer and 

Melchers 2009). This regulation takes two forms, intrinsic regulation and extrinsic regulation 

(Figure 1.4)
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Figure 1.4 Pathways of peripheral tolerance

Not all self-reactive cells are deleted in the thymus. Cells that escape negative selection can 

still be regulated in the periphery by mechanisms of peripheral tolerance acting either directly 

on the self-reactive T cell (T cell intrinsic) or indirectly via additional cells (T cell extrinsic).
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1.3.2.1 Intrinsic regulation

Intrinsic regulation involves built in mechanisms in the cell itself to control autoreactivity.

The mechanisms used for intrinsic regulation of autoreactive cells in the periphery are 

Ignorance of Self, Anergy, Phenotype Skewing (Cytokine deviation) and Clonal Deletion 

Figure 1.4) (Walker and Abbas 2002). Ignorance of self-antigen is the probably the simplest 

form of intrinsic regulation. Autoreactive T cells with low affinity to self-antigens will ignore 

self antigen in the periphery either because the self antigens are sequestered in sites that are 

not easily accessible to the blood/ lymph borne immune system (immune privileged sites) or 

because they are not present in sufficient quantity to reach a threshold required to trigger a T 

cell response (Alferink et al. 1999; reviewed in de Souza et al. 2010; Kurts et al. 1998; Kurts 

et al. 1999; Zinkernagel 1996). Under normal circumstances, recognition of sequestered self 

antigens in the immune privileged sites does not activate these autoreactive T cells. However, 

these autoreactive T cells simply ignore the presence of the self-antigen and are not actively 

tolerised by the presence of the self antigens (reviewed in de Souza et al. 2010; Ohashi et al. 

1991; reviewed in Walker and Abbas 2002). However, if T cells are activated elsewhere in 

the body by the same self antigen (normally sequestered or sufficiently unavailable), they are 

capable of mounting an immune response towards these autoantigens, even in immune 

privileged sites (Goverman et al. 1993; Lafaille et al. 1994; Oehen et al. 1992; Ohashi et al. 

1991; Streilein et al. 1997; Walker and Abbas 2002).

Phenotype skewing or cytokine deviation can help maintain tolerance by avoiding a 

pathogenic response even when the T cells are fully activated (reviewed in Nurieva et al.

2011; Walker and Abbas 2002). During the course of a normal immune response, CD4+ T 

cells can differentiate into various types of effector cells, namely T helper type 1 (ThI), T 

helper type 2 (Th2) and T helper type 17 (Th17) (de Souza et al. 2010). This differentiation 

can help maintain tolerance because only certain cytokines and chemokines and particular Th 

responses are linked with pathogenicity (Bradley et al. 1999; de Souza et al. 2010; Young et 

al. 2000). Therefore, differentiation into phenotypes that produce immunosuppressive 

cytokines may help in controlling autoreactivity. However, the involvement of different 

phenotypes in disease pathogenicity is not always straightforward. For example, ThI cells 

and cytokines have been found to be responsible for the pathogenicity of T1D (Hancock et al. 

1995; Lyons et al. 2000; Tian et al. 1998) and Multiple Scelerosis (MS) whereas Systemic 

Lupus Erthromatous (SLE) pathogenicity involves both ThI and Th2 cells. In general, Th2
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responses are associated with downregulation of autoimmunity (Bradley et al. 1999; Young 

et al. 2000), although this is not always the case (Pakala et al. 1997). IL-17 producing Th17 

cells have also been implicated in having a central role in the pathogenesis of experimental 

models of AD including RA, SLE and MS (reviewed in de Souza et al. 2010). There is also a 

close association between cytokine differentiation and chemokine receptor expression 

(Charles et al. 1999; Chensue et al. 2001). Chemokine receptor expression can play an 

important role in recruitment of T cells into sites of inflammation and infection by acting as 

chemo-attractant to autoreactive T cells (Borges et al. 1997; Hill et al. 2003).

Alternatively, T cell encounters with self-antigens might lead to functional inactivation or 

anergy (reviewed in de Souza et al. 2010; Lamb et al. 1983; Rocha et al. 1993; Schwartz 

1990). The fact that a given peptide can both activate or induce unresponsiveness depending 

on the presence of APC, indicated the requirement of a second signal, other than that from 

TCR ligation which influences the T cell fate (activation or anergy) (Appleman and 

Boussiotis 2003; Lafferty et al. 1978). Later studies showed that TCR ligation in the absence 

of costimulation leads to anergy (Appleman and Boussiotis 2003; Bour-Jordan et al. 2011; 

reviewed in de Souza et al. 2010; Quill and Schwartz 1987). However this costimulation is 

not limited to activation of cell surface receptors that potentiate TCR signalling such as CD28 

or inducible costimulator (ICOS) but also includes immuno-inhibitory receptors such as 

cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death 1 (PD-1) and the 

soluble cytokine, IL-2 (reviewed in Appleman and Boussiotis 2003; Mueller 2009; Nurieva et 

al. 2011). In fact, it was demonstrated that the absence of activatory costimulatory signals 

(CD28) alone in the absence of inhibitory costimulation (CTLA-4 or PD-1) is not sufficient 

to induce anergy in vivo (reviewed in Appleman and Boussiotis 2003; Bour-Jordan et al. 

2011; Wells et al. 2001). It has been demonstrated that active ligation of immunoinhibitory 

receptor is required for anergy induction rather than just the absence of costimulation 

(Greenwald et al. 2001; Perez et al. 1997). CTLA-4 exerts negative regulatory effects on T 

cell activation and blocking CTLA-4 with antibody has been shown to lead to higher T cell 

activation (Greenwald et al. 2001; Kearney et al. 1995; reviewed in Mueller 2009; Vanasek et 

al. 2001). CTLA-4 has been shown to inhibit T cell proliferation, cell cycle progression and 

IL-2 production(Bour-Jordan et al. 2011). CTLA-4 knockout mice have a 

lymphoproliferative disorder and die within 3-4 weeks (Tivol et al. 1995; reviewed in Walker 

and Abbas 2002; Waterhouse et al. 1995). In addition, Programmed Cell Death 1 (PD-1) has 

been shown to be expressed in high amount by anergic cells and mice lacking PD-1 receptors
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or its two ligands PD ligand 1 (PD-L1) and PD-L2 develop ADs (Ansari et al. 2003; Bour- 

Jordan et al. 2011; Freeman et al. 2000; Keir et al. 2006; reviewed in Mueller 2009;

Nishimura et al. 1999; reviewed in Walker and Abbas 2002).

A hallmark of anergic T cells is that they do not produce IL-2 when stimulated with an 

antigen, even in the presence of co-stimulatory signals (Appleman and Boussiotis 2003; 

Jenkins et al. 1987; Quill and Schwartz 1987). IL-2 is not only critical for T-cell expansion 

but also has been shown to have a non-redundant tolerogenic function. Mice and humans 

deficient for IL-2 or IL-2 receptor develop lymphoproliferation and multi-organ 

autoimmunity (Sadlack et al. 1995; Suzuki et al. 1995). Polymorphisms in the IL-2 and IL-2 

receptor genes have also been associated with autoimmunity (Cavanillas et al. 2010; 

reviewed in Wang et al. 2009) although this might not be a direct effect but an effect due to 

the role played by IL-2 in regulatory T cell biology.

Another effective mechanism of intrinsic peripheral tolerance is the clonal deletion of 

autoreactive cells. There is a limit on survival and proliferation of lymphocytes due to 

activation induced cell death (AICD) that is in place to limit damage. As self-antigens cannot 

be easily cleared, repetitive TCR engagement might be a feature of T-cell encounter with 

self-proteins, which perhaps serves as a trigger for AICD (de Souza et al. 2010). Apoptosis is 

induced by Fas receptor engagement by FasL and Bim-dependent triggering of a Bcl-2 and 

Bcl-xL-regulated mitochondrial death pathway (reviewed in Marrack and Kappler 2004; 

Mueller 2009; Walker and Abbas 2002). Spontaneous autoimmunity and T cell 

lymphoproliferative disease is observed in mice with a mutant allele of Fas that fails to 

transmit a death-inducing signal (de Souza et al. 2010; Watanabe-Fukunaga et al. 1992). 

Defects in the Fas pathway in humans are also associated with autoimmune 

lymphoproliferative syndrome (de Souza et al. 2010; Fisher et al. 1995; Walker and Abbas 

2002). Cells in mice deficient for Bim are also resistant to apoptosis, and with age these mice 

spontaneously develop immune complex-mediated glomerulonephritis (Bouillet et al. 1999). 

Bim is thought to function as a natural antagonist of the survival protein Bcl-2, and both Bim- 

deficient and Bcl-2 transgenic OT-I CD8+ T cells fail to undergo peripheral deletion after 

their adoptive transfer (Davey et al. 2002). Therefore, peripheral deletion of autoreactive T 

cells is essential for maintaining peripheral tolerance (Mueller 2009; Nagata et al. 2010).
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1.3.2.2 Extrinsic regulation

The extrinsic regulation of peripheral autoreactive cells also involves a small subset of T cells 

with regulator phenotypes such as Natural killer T (NKT) cells, CD8+suppressor T cells, and 

T regulatory (T reg) cells that exert their effect on activated T and B cells as well as antigen 

presenting cells (de Souza et al. 2010; Jiang and Chess 2004) (Figure 1.5).

Natural Killer T cells

Natural Killer T (NKT) cells are a distinctive population of T cells generated in the thymus. 

They express alpha, beta TCR and have properties of Natural Killer cells (Bendelac 1995; 

Cerundolo et al. 2009; Godfrey et al. 2004; Jiang and Chess 2004). NKT cells specifically 

recognize glycolipids related to the glycolipid (alpha)-galactosylceramide that often occurs in 

pathogenic microorganisms and tumor cells via binding to the CD1 molecule (Cerundolo et 

al. 2009; Kinjo et al. 2006; Kinjo et al. 2005; Mattner et al. 2005). The CDl-glycolipid 

complex activates NKT cells and triggers it to lyse targets and secrete cytokines (Bendelac et 

al. 1995; Bendelac et al. 1997; Cerundolo et al. 2009; Mattner et al. 2005). Originally NKT 

cells were thought to mediate the innate immune responses that lyse tumor cells and 

pathogens (Cerundolo et al. 2009; Cui et al. 1997; Godfrey et al. 2004). NKT cells have also 

been implicated in human ADs where they have been shown to have a protective role 

(Mattner et al. 2008; Novak et al. 2007; Novak and Lehuen 2011). In monozygotic twins that 

are discordant for T1D, the twin with diabetes tends to have fewer NKT cells than the twin 

without diabetes (Wilson et al. 1998). However, the numbers of NKT cells were found to be 

unaltered in T1D compared with healthy controls (Lee et al. 2002). In the NOD diabetic 

mouse, injection of cell populations enriched for NKT cells prevents T1D (Beaudoin et al. 

2002; Cain et al. 2006; Falcone et al. 1999; Sharif et al. 2001), whereas depletion of NKT 

cells early in the development of diabetes accelerates the onset of diabetes (Frey and Rao 

1999). In mouse models of T1D and MS, depletion of NKT cells accelerates the onset of 

disease, while activation of NKT cells by treatment with (alpha)-galactosylceramide 

ameliorates, prevents or reduces severity of the disease (Furlan et al. 2003; Kojo et al. 2005; 

Wu and Van Kaer 2009). These effects are absent in mice that are deficient in CDld (Wu and 

Van Kaer 2009). In mouse models of TID, RA and MS, NKT cells have been shown to have
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a suppressive function by secretion of IL-10 and IL-4 that favor Th2 responses (Baxter et al. 

1997; Chiba et al. 2004; Hammond et al. 1998; Miellot et al. 2005; Wu and Van Kaer 2009).

CD8+ suppressor T cells

CD8+ suppressor T cells are thought to regulate autoreactive cells in the periphery by deleting 

or suppressing potentially pathogenic self-reactive T cells. They selectively suppress self­

reactive lymphocytes with intermediate avidity for self and foreign antigens and possibly play 

an important role during the remission phase of AD (Jiang and Chess 2004; Jiang et al. 2003). 

Two key findings have highlighted the existence of this suppression pathway. Firstly, it was 

noticed that CD8+ T cells participate in resistance to the re-induction of experimental 

autoimmune encephalomyelitis (Jiang and Chess 2004; Jiang et al. 1992; Koh et al. 1992; 

reviewed in Van Kaer 2010) and secondly, they suppress relapses of the disease 

(Panoutsakopoulou et al. 2004). The mechanism of this suppression was shown to be via 

preferential down regulation of autoreactive T cells that have intermediate avidity for 

peptides derived from myelin basic protein. The regulatory functions of CD8+ T cells were 

also observed in other models of ADs, including collagen-induced arthritis, autoimmune 

myocarditis, and herpes simplex virus-induced stromal keratitis (Lu and Cantor 2008). CD8+ 

T cells with suppressor activities have also been implicated in human ADs, including MS and 

inflammatory bowel disease (Brimnes et al. 2005; Tennakoon et al. 2006).

Some activated T cells express self-peptides bound to MHC class lb molecule (Qal in mice 

and HLA-E in humans) (reviewed in Jiang and Chess 2000; Jiang et al. 1995; Li et al. 2001; 

Rodgers and Cook 2005; reviewed in Van Kaer 2010; Ware et al. 1995). The presentation of 

Qal-self peptide complexes to the CD8+ suppressor T cells is thought to trigger their 

differentiation into effector cells, which suppress any activated T cells expressing the same 

Qal-self peptide complexes during secondary immune response (reviewed in Jiang and Chess 

2004; Jiang et al. 1992). Activated CD4+ T cells with intermediate avidity for their cognate 

antigen express Qal (HLA-E) predominantly bound by Heat shock protein 60 species 

(HSP60sp). These cells are effectively suppressed by HSP60sp specific CD8+ suppressor T 

cells. In contrast to intermediate avidity CD4 T cells, CD4 T cells with high or low avididty 

for their cognate antigen: MHC complexes express Qal (HLA-E) molecules that are 

predominantly occupied by Qdm (B7 species) peptides and are therefore out of the control of
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HSP60sp specific CD8+ suppressor T cells. In addition, CD4+ T cells with specificity for 

myelin basic protein-derived peptides can be used as a vaccine to induce CD8+ T cells that 

protect against experimental autoimmune encephalomyelitis (Jiang et al. 2001; Jiang et al. 

1998a; reviewed in Van Kaer 2010). Antibodies directed against the Qal molecule block this 

protection. Mice deficient in Qal or CD8 develop severe experimental autoimmune 

encephalitis when exposed to myelin-associated peptides (Hu et al. 2004; reviewed in Van 

Kaer 2010).

Furthermore, another distinct population of non Qal-restricted CD8+ suppressor T cells have 

also been shown to suppress immune responses by directly interacting with dendritic cells 

(DCs) and rendering them tolerogenic in vitro (Chang et al. 2002; Jiang et al. 2010; Jiang et 

al. 1998b). Up-regulation of inhibitory Ig-like transcript 3 (ILT3) and ILT4 receptors 

expressed on the DCs is thought to be involved in the suppression (reviewed in Jiang et al. 

2010; Suzuki et al. 2008). APCs tolerised by CD8+ T cells induce antigen specific 

unresponsiveness in CD4+ T cells and have reduced expression of costimulatory molecules. 

The function of these cells in vivo and the mechanisms of suppression are still not clear 

(Jiang et al. 2010; Van Kaer 2010). In humans, in vitro studies have shown that Qal 

restricted CD8+ T cells can be induced to differentiate into suppressor cells whose phenotype 

depends on HLA-E expression (Jiang et al. 2010; Li et al. 2001).
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Figure 1.5 Generation of T suppressor cells in the thymus and periphery

Inductive model of T suppressor cell lineage commitment. High affinity TCR: peptide: MHC 

interactions in augmented by CD28 signalling and additional yet unknown signals converge 

to induce Foxp3 expression and thus T Suppressor lineage commitment. Foxp3 expressing T 

reg cells are highly enriched in but not restricted to CD4+ T cell population. Certain 

conditions and cytokine environment in the periphery can induce conversion of Foxp3- 

effector T cells to a Foxp3+ or Foxp3" regulatory T cell phenotype. Adapted from (Fontenot 

and Rudensky 2005)
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CD4+ regulatory T cells

One of the major cell types with a regulatory phenotype is the specialised subset of CD4+T 

cells that are able to control destructive immune responses to pathogens and to prevent 

immune responses against inappropriate targets, such as self antigens or non harmful external 

antigens. These cells are known as T regulatory (T reg) cells. They are generated in the 

thymus and their function is to maintain peripheral tolerance (Figure 1.5) (reviewed in 

Germain 2008; Itoh et al. 1999; reviewed by Sakaguchi 2000; reviewed in Vignali et al.

2008).

The idea of T reg cells dates back to early 1970s when immunologists noticed the phenomena 

of induced CD4+ T cell non-responsiveness by a suppression mechanism via thymically 

derived “suppressor” T cells (Baker et al. 1970; Droege 1971; Gershon and Kondo 1971; 

Okumura and Tada 1971). This idea was further developed by the observation that patients 

with ADs have a greater percentage of MHC class II + CD4+ cells in peripheral blood than 

healthy patients. RA patients and SLE patients were observed to have a higher than normal 

percentage of MHC class II + CD4+ cells in peripheral blood (reviewed in Costantino et al. 

2008; Yu et al. 1980). This was further supported by the observation that MHCII+ CD4+ T 

cell clones induce anergy when they present antigen to other CD4+ T cells (Costantino et al. 

2008; Lanzavecchia et al. 1988).

Evidence from these studies was used to argue for the existence of anti-idiotypic T cell 

networks and suppressor T cells that were thought to recognise the antigen receptor of 

autologous CD4+ cells and prohibit activation with specificity directed against the suppressed 

cell (Germain 2008). Immunologists had a clear grasp of how these T cells were activated 

and what interleukins were necessary for their activation and expansion. However, whilst 

there was detailed information about the cytotoxic and helper T cells, whereby their 

specificity and restriction element of their antigen-binding receptor were known, there was 

little or no knowledge about these parameters for suppressor T cells. It was unclear whether 

or not suppressor T cells were antigen specific, or if they were MHC restricted (Germain

2008). No information was available about how they exhibited their suppressive function; 

whether they directly inhibited helper T cells or if they also influenced B cells (Germain 

2008; Moller 1988).

31



In fact, the existence of suppressor T cells was highly debated (Costantino et al. 2008). There 

was a lack of unique markers to identify these suppressor T cells. In addition, the inability to 

confirm the existence of the so called “I-J gene”, described by several papers as a governor of 

functions of suppressor T cells and suppressive factors and mapped to within the I complex 

of MHC region and the constantly changing soluble suppressor molecules (they have at 

different times contained la antigen and I-J antigen, been VH restricted and I-J restricted or 

both been antigen specific or non-specific) which were never clearly identified and 

characterised posed questions about their real existence (Reviewed in Costantino et al. 2008; 

Germain 2008; Moller 1988). In the years that followed, the biochemical and molecular 

mechanisms behind these suppression mechanisms could not be determined. MHC II was 

relegated to be a marker of late CD4+ T cell activation, many early studies of suppressor T 

cells were discredited or disapproved and therefore the idea of T suppressor cells fell out of 

fashion (reviewed in Costantino et al. 2008; Germain 2008; Rouse 2007).

However, T suppressor cells came back due to the persistence of a few scientists who were 

able to demonstrate their presence or existence by using animal models (Fukuma et al. 1988; 

Penhale et al. 1975). The existence of T reg cells was demonstrated not as suppression of an 

immune response to non-self-antigen, but rather as a spontaneous development of AD after 

the depletion of a particular T cell subpopulation (Penhale et al. 1975; Sakaguchi et al. 1985; 

Sugihara et al. 1988). The field of T reg cells experienced a renaissance with the observation 

from Shimon Sakaguchi’s group in 1995, which identified a subset of CD4+ T cells that co­

expressed the IL-2a chain receptor, CD25 (Sakaguchi et al. 1995). Further studies by 

Thornton and Shevach (1998) supported the existence of these suppressor cells by showing 

that they could limit expansion of CD4+ and CD8+ T cells in vitro (Thornton and Shevach 

1998). These suppressor T cells were henceforth referred to as natural T reg cells.

Since the 1990s, research into these T reg cells has really gathered momentum and 

contributed greatly to our knowledge of their character, generation and function (Rudensky 

2011; Sakaguchi 2008). T reg cells found in the periphery are a heterogeneous population of 

cells with different origins. Upon activation, T reg cells suppress proliferation and IL-2 

production by responder CD4 or CD8 T cells (reviewed in Rouse 2007). T reg cells 

themselves have a reduced capacity to proliferate and produce IL-2 or pro-inflammatory 

cytokines under these conditions (Rouse 2007; Sakaguchi 2008). The main subset of T reg 

cells, known as natural T reg cells, are generated in the thymus by intermediate affinity 

interaction with agonist ligands and express CD25 and CD62L (Baecher-Allan et al. 2001;



Jordan et al. 2001; Suto et al. 2002). Instead of deletion by negative selection, the 

intermediate affinity self-peptide: MHC interaction in these T cells leads to the generation of 

T reg cells. Unlike conventional CD4+ CD25' T cells, with natural T reg cells, it is thought 

that the same agonist ligand that leads to the generation of T reg phenotype in the thymus 

also activates the same T reg cell in the periphery. This means that the organ specific peptide 

ligands that are ectopically expressed in the thymus (Gotter and Kyewski 2004) can be 

involved both in the intrathymic generation of natural T reg cells and their activation in the 

periphery (Apostolou et al. 2002). In addition to high constitutive expression of the high 

affinity IL-2 receptor alpha chain (CD25) they are positive for CTLA-4 (Sakaguchi et al. 

1995; Takahashi et al. 2000), glucocorticoids induced tumour necrosis factor receptor (GITR) 

and HLA-DR (Shimizu et al. 2002). They also display low expression of the IL-7 receptor 

alpha chain (CD127) (Bolacchi et al. 2006).

However, to date, the most reliable marker for the naturally occurring T reg is the 

transcription factor forkheadbox 3 (Foxp3), a member of the forkhead box winged helix 

family (Rudensky 2011). The Foxp3 transcription factor was identified from the X linked 

recessive mutant mouse strain, Scurfy, which shows hemizygous lethality in males a month 

after birth due to hyperactivation of CD4+ T cells and overproduction of proinflammatory 

cytokines (Godfrey et al. 1991). The gene defective in Scurfy mice was identified and 

designated Foxp3 (Brunkow et al. 2001). The human homologue for the same gene Foxp3 

was also found to be the cause of IPEX (immune dysregulation, polyendocrinopathy, 

enteropathy, X-linked) syndrome in humans (Bennett et al. 2001; Chatila et al. 2000; Wildin 

et al. 2001). IPEX is an X-linked immunodeficiency syndrome associated with multi-organ 

autoimmunity, atopic dermatitis and fatal infections (Bennett and Ochs 2001). Foxp3 mainly 

acts as a repressor of transcription and acts as a master regulator in the development and 

function of T reg cells (Rudensky 2011). The full protein transcribed by the Foxp3 gene is 

encoded by 11 exons and contains a forkhead DNA binding domain at the C-terminus, which 

directly or by forming a repressor complex with nuclear factor of activated T cells (NFAT) 

can bind to the IL-2 promoter and repress IL-2 mRNA transcription (Bettelli et al. 2005; 

Mantel et al. 2006). In addition to a DNA binding domain, the protein encodes zinc finger 

and leucine zipper domains that permit homodimerization or heterodimerization with other 

forkhead family members or other DNA binding co-factor. In addition, the N terminus of 

protein has essential sites for repressor activity (Bettelli et al. 2005; Mantel et al. 2006). In 

bone marrow chimera with a mixture of cells from wild-type and Foxp3-deficient mice,
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Foxp3-deficient bone marrow cells fail to give rise to CD25+CD4+ T reg cells, whereas 

Foxp3-intact bone marrow cells generate T reg cells that suppress disease development 

(Fontenot et al. 2003; Fontenot et al. 2005b). In transgenic mice that overexpress Foxp3, the 

number of CD25+CD4+ T cells is enhanced; CD25~CD4+ T cells and CD8+ T cells expressed 

high levels of Foxp3 and exerted suppression in vitro (Khattri et al. 2003). Additionally, 

forced expression of Foxp3 in naive T cells can convert them to cells with T reg like 

phenotype (Fontenot et al. 2003; Hori et al. 2003) However, it is now recognized that Foxp3 

expression is necessary for suppressive function but its expression alone is not sufficient for 

lineage commitment (Lin et al. 2007).

IL-2 is also a critical factor required for T reg cell development (Sakaguchi 2008). This 

explains the puzzling observation that IL-2 or IL-2 receptor deficiency lead to autoimmunity 

instead of defects in T cell activation as IL-2 is thought to be an inflammatory cytokine 

required for proliferation and differentiation of activated T cells (reviewed in Akdis et al.

2011). IL-2 is also required for the sustained expression of Foxp3 and CD25 in natural T reg 

cells and enhances their suppressive function, at least in vitro (Fontenot et al. 2005b; Shevach 

et al. 2006)

The induction of suppression by natural T reg cells requires antigen stimulation but the 

exerted suppression is antigen non specific (Thornton and Shevach 2000). Activated T regs 

can inhibit a wide range of immune suppression through bystander suppression (Karim et al.

2005). Natural T reg cells exert suppressive function mainly via cell to cell contact 

(Takahashi et al. 1998; Thornton and Shevach 1998) however, in vivo, secreted cytokines are 

found to play a role in induction of suppression (Figure 1.6) (Annacker et al. 2001;

McGeachy et al. 2005; Uhlig et al. 2006). Cytotoxicity is another mechanism by which 

natural T reg cells can exert their suppressive function (Figure 1.6). There is evidence that 

natural T reg cells can kill by mediating granzyme B dependent cytotoxicity against target 

cells (Grossman et al. 2004) which might be perforin dependent (Zhao et al. 2006) or 

independent (Gondek et al. 2005). T reg cells are also known to induce suppression of 

effector T cells by metabolic disruption. T reg cells have also been found to induce cytokine 

deprivation mediated apoptosis (Pandiyan et al. 2007). The expression of CD39 and CD73 by 

T reg cells has been shown to generate pericellular adenosine, which suppresses effector T 

cell function through activation of adenosine 2A receptor (Borsellino et al. 2007; Deaglio et 

al. 2007; Kobie et al. 2006). T reg cells have also been shown to inhibit effector T cells 

directly by transferring cyclic adenosine monophosphate (cAMP) into effector T cells



through membrane gap junctions (Bopp et al. 2007). In addition, T reg cells have been shown 

to suppress T cell function by inhibiting APC maturation and function, which are required for 

the activation of effector T cells (Tadokoro et al. 2006; Tang et al. 2006). T reg cells have 

been shown to condition DCs to express indoleamine 2,3-dioxygenase (IDO), a potent 

regulatory molecule known to induce the production of pro-apoptotic metabolites from the 

catabolism of tryptophan (Fallarino et al. 2003).

Adaptive T reg cells, like all T cells are thought to initially originate in the thymus but are 

derived from either classical T cell subsets in the periphery (Curotto de Lafaille and Lafaille

2009). These cells may be generated when the TCR of these naive T cells is stimulated by 

agonist peptide in low concentration or/ and with lack of stimulation (tolerogenic conditions) 

(Apostolou and von Boehmer 2004; Mahnke et al. 2003; Sakaguchi 2000; Thorstenson and 

Khoruts 2001). Several types of adaptive T reg cells have also been described; IL-10 

producing type 1 regulatory T (Trl) cells and IL-10, IL-4 and TGF-P producing Th3 cells.

Trl cells can be cultured in vitro in the presence of a large amount of IL-10 and their 

development is helped by the presence of IFN-a (Bacchetta et al. 1994; Groux et al. 1997; 

O'Garra and Vieira 2004). They secrete high amounts of the immunosuppressive cytokine IL- 

10 and low to moderate amounts of TGF-P when activated but no IL-4. Once activated, Trl 

cells suppress APCs and T cells in an antigen non-specific manner (Cavani et al. 2000; Kitani 

et al. 2000). This suppression by Trl cells may be mediated by both cell-to-cell contact 

(Vieira et al. 2004) and by production of cytokines (reviewed in Roncarolo et al. 2001; Vieira 

et al. 2004).

Th3 are found to play a role in tolerance induction in the mucosal immune system (Coombes 

et al. 2007; Sun et al. 2007). They were first identified in mice after oral tolerance induction 

using myelin basic protein (MBP) (Chen et al. 1994). In vivo, after treatment with MBP, the 

majority of the MBP specific CD4+ T cells secrete TGF-P and suppress the induction of MBP 

specific experimental autoimmune encephalitis (Fukaura et al. 1996). They function to 

control immune activation in the mucosa and lack of these cells is associated with 

autoimmunity in the gut and is linked to inflammatory bowel disease (Weiner 2001). Th3 

produce IL-10, IL-4 and a large amount of TGF-P and hence the mechanism of suppression is 

thought to be cytokine mediated.
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Figure 1.6 Mechanisms of suppression used by natural T reg cells

Inhibitory cytokines produced by natural T reg (nTreg) cells inhibit effector T cell activation. 

Metabolic disruption by production of adenosine, cyclic adenosine monophosphate (cAMP) 

mediated inhibition and cytokine deprivation are also mechanisms of suppression used by 

natural T reg cells. Cytolysis by Granzyme A and B dependent perforin mediated killing and 

suppression of APCs by targeting mechanisms that modulate APC maturation and function 

are yet other mechanisms used by natural Treg to suppress T effector cells. Adapted from 

(Vignali et al. 2008)
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The role of cytokines in immune suppression

TGF-p, IL-35 and IL-10 are the key cytokines associated with T reg cell mediated immune 

suppression. IL-10 and TGF-P have generated a lot of interest for their role in the extrathymic 

generation of TrI and Th3 cells, respectively. However, whilst the general 

immunosuppressive role of IL-10 and TGF- P is appreciated, the role of these cytokines in T 

reg cells biology in vivo is not yet clearly understood. Whereas in vitro data suggests a 

limited role for soluble IL-10 and TGF- P in T reg cell mediated immune suppression, studies 

involving in vivo models suggest otherwise.

TGF-P

The role of TGF-P in mediating suppression of T cell proliferation in vitro is controversial 

(Nakamura et al. 2001), however, there is some consensus that, in vivo, TGF-P plays an 

important role in mediating suppression. Fahlen et al (2005) using a mouse model of colitis 

showed that T cells unable to respond to TGF-P escaped immune suppression by T reg cells 

(Fahlen et al. 2005). In addition, TGF- p deficient natural T reg cells were unable to prevent 

the development of colitis (Li et al. 2007). There is also increasing evidence for the role of 

membrane bound TGF-P in T reg cell mediated immune suppression (Chen et al. 2006; Green 

et al. 2003). CD4+CD25+ cells have been reported to mediate suppression of CD8+ T cells 

involved in autoimmunity or tumour rejection. This suppression requires intact TGF-P II 

receptor on the CD8+ T cells (Chen et al. 2006; Green et al. 2003). It is however not apparent 

whether this inhibition requires TGF-P production by the CD4+CD25+ T reg cells or by other 

cells such as APCs. Some studies have reported that CD4+CD25+ T reg cells stain with 

antibodies to TGF-P whereas increased expression of TGF-P RNA has not been noted in 

CD4+CD25+ Treg cells (Green et al. 2003).

IL-35

IL-35 is a newly discovered cytokine thought to play a very important role in T reg cells 

mediated suppression of effector cells both in vitro and in vivo. IL-35 is the member of the 

IL-12 family alongside IL-12, IL-23 and IL-27 (reviewed by Akdis et al. 2011). The IL-12 

family members are all heterodimeric proteins composed of two chains, one of which is 

either pl9, p28, or p35 and the second chain is either p40 or Epstein-Barr virus induced gene 

3 (EBB) (reviewed by Akdis et al. 2011; Devergne et al. 1997). IL-35 is formed by 

heterodimeric pairing of an EBB and the p35 subunit of IL-12 (IL-12a) (Devergne et al.
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1997; reviewed by Zhao Ning-Wei 2010). EBI3 is preferentially upregulated in mouse 

Foxp3+ T reg cells (Gavin et al. 2007) and the EBI3/IL-12a heterodimer was found to be 

constitutively secreted by these cells (Collison et al. 2007; Gavin et al. 2007). Increased 

expression of the EBI3/IL-12 a  heterodimer in mouse Foxp3+ T reg cells and further 

transcriptional analysis indicated that expression of EBB is regulated by Foxp3 (Collison et 

al. 2007). Assessment of the suppressive ability of EBB knockout or IL-12a knockout T reg 

cells in vitro has showed that in the absence of EBB or IL-12a, the suppressive capacity of 

the T reg cells is reduced (Collison et al. 2007).

Stimulation of CD4+CD25+ mouse T reg cells with IL-35 has been shown to induce 

proliferation and IL-10 production by these cells without affecting Foxp3 expression (Ning- 

Wei 2010). However, stimulation of CD4+CD25’ effector T cells with IL-35 and anti 

CD3/CD28 antibodies increases IFN-y production (Niedbala et al. 2007). In addition, 

CD4+CD25+T cells expanded in the presence of IL-35 were shown to suppress CD4+CD25" 

effector T cells (Niedbala et al. 2007). However, in human the role of IL-35 in T reg cell 

mediated immune suppression is questionable. A study by Allan et al (2008) demonstrated 

that unlike mouse T reg cells, ex vivo human T reg cells did not express significant EBB 

mRNA. The level of p35 mRNA in T reg cells was also found to be similar to the levels in T 

effector cells. Therefore neither EBB nor p35 mRNA was affected by over-expression of 

Foxp3 in human T reg cells, suggesting that IL-35 might not contribute to the suppressive 

mechanism of human T reg cells (Allan et al. 2008; reviewed by Zhao Ning-Wei 2010).

IL-10

IL-10 is considered to be one of the key molecules involved in immunosuppression in vivo. 

Its immunosuppressive effect protects the host from exaggerated immune responses to 

microbial infection as well as ADs. Several studies have reported the importance of IL-10 in 

inducing unresponsiveness in vivo (Bacchetta et al. 1994; Sundstedt et al. 2003; Van Parijs et 

al. 1997). T r I  cells are generated by and mediate their suppressive function via IL-10 

(Roncarolo et al, 2006). CD4+CD25+ natural T reg cells have also been reported to produce 

IL-10 in vivo (Annacker et al. 2001; Klein et al. 2003). In fact, certain diseases e.g. colitis, 

are suppressed by CD4+CD25+ natural Treg cells and this suppression requires the secretion 

of IL-10 by these cells (Asseman et al. 1999; Suri-Payer and Cantor 2001).
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IL-10 exhibits multiple modulatory effects on the immune system. The IL-10 gene maps to a 

cytokine cluster that includes IL-19, IL-20, IL-24, IL-26 on chromosome lq31 -32 (reviewed 

by Akdis et al. 2011 2011; Kim et al. 1992). As an anti-inflammatory and 

immunosuppressive cytokine, IL-10 strongly inhibits the activation of myeloid derived cells, 

macrophages, dendritic cells and monocytes resulting in a reduced production of pro- 

inflammatory mediators and results in diminished T cell stimulation (de Waal Malefyt et al. 

1991a; Peguet-Navarro et al. 1994). IL-10 directly affects APC functions by downregulating 

the expression of MHC class II molecules (Akdis and Akdis 2009). IL-10 is known to inhibit 

the expression of many cytokines including IL-la, IL-lb, IL-6, IL-12, IL-18 and TNF-a; 

chemokines including monocyte chemoattractant protein (MCP)-l, MCP5, macrophage 

inflammatory protein (M lP)-la (CCL3), MIP10 (CCL4), RANTES (CCL5), IL-8 (CXCL8), 

and CXCL10; and chemokine receptors (reviewed by Akdis et al. 2011; de Waal Malefyt et 

al. 1991a; de Waal Malefyt et al. 1991b).

IL-10 inhibits cytokine production and proliferation of CD4+ T cells mainly indirectly 

through its effects on APCs (reviewed by Akdis et al. 2011; de Waal Malefyt et al. 1991a; de 

Waal Malefyt et al. 1991b). IL-10 also directly affects T cell activation by suppressing CD28, 

CD2 and signaling of the Inducible T-cell co-stimulator (ICOS) via the protein tyrosine 

phosphatase, SHP-1 (Taylor et al. 2007). In addition, IL-10 is also thought to play a role in 

influencing the balance between Thl versus Th2 cytokines. As a pro inflammatory cytokine 

IL-10 promotes survival, proliferation, and differentiation of human B cells and increases the 

production of IgG (Akdis and Akdis 2009).

ADs result when there is a breakdown in multiple layers of these tolerance and regulation 

mechanisms. Different environmental factors and numerous genes are associated with 

autoimmunity.

1.4 The role played by environmental factors in development of ADs

Although a degree of predisposition to autoimmunity is present in everyone, clinically 

relevant AD develops only in susceptible persons. Even with a genetic predisposition most 

people do not develop ADs unless some environmental factor acts as a trigger (Cojocaru
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2008; Racanelli et al. 2011). The evidence for this is provided by familial and twin 

concordance studies and also animal models of ADs such as NOD mice where genetically 

identical mice that develop T1D do so with different disease kinetics and some escape disease 

altogether (Murphy et al. 2007a). Concordance rates for ADs in monozygotic twins are 30- 

70% but not 100% implying that environmental factors play an important role in disease 

development (Simmonds and Gough 2005). The environmental triggers for ADs only act in 

the presence of genetic predisposition and do not affect the population at large (Cojocaru 

2008). Many studies have noted that there is an association between microbial infection and 

the induction or exacerbation of ADs (Bachmaier et al. 1999; Miller et al. 1997). It is not 

known whether this is due to molecular similarity between microbial epitopes and self - 

antigens (molecular mimicry). Although there is evidence for molecular mimicry in some 

cases (Gautam et al. 1998; Panoutsakopoulou et al. 2001; Steere et al. 2001), most ADs 

linked to infections are related to the release of sequestered self antigens which the normal 

immune system ignores (Miller et al. 1997) or to the non specific inflammatory effect of 

infection which is thought to alter the phenotype of APCs and modify cell trafficking (Ehl et 

al. 1998; Horwitz et al. 1998; Keffer et al. 1991; Kivity et al. 2009). The innate immune 

system has also been implicated in the breakdown of self-tolerance leading to AD. An 

aberrant innate reaction to self-tissue might provide an activatory cytokine environment and 

relevant costimulation for an autoimmune response from autoreactive T cells. This is shown 

by the requirement of NK cell involvement in the development of experimental myasthenia 

gravis in mice (Shi et al. 2000).

1.5 Genetics of Autoimmunity

The genetic basis of autoimmunity is not clearly understood but genetic defects alone do not 

always lead to ADs. Genes that predispose to autoimmunity affect one or more of the layers 

of tolerance. Genetics evidently plays an important role in predisposition to ADs as is shown 

by the fact that some familial clustering of some ADs occurs suggesting a role for genetic 

susceptibility (Heward and Gough 1997). Additionally, if one of the two monozygotic twins 

is affected the other one is very likely to as well, whereas concordance of the disease is much 

less in dizygotic twin (reviewed in Heward and Gough 1997; Murphy et al. 2007a). Various 

animal models of autoimmunity such as the non-obese diabetic (NOD) strain of mice, which 

are very likely to get autoimmunity provide more evidence for the role of genetics in
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predisposing to ADs. Genes that predispose to autoimmunity can be classified as follows: 

genes that affect auto-antigen availability and clearance, genes that affect apoptosis, genes 

that affect cytokine gene expression, genes that affect co stimulatory molecules and genes 

that affect signalling thresholds (Murphy et al. 2007a).

The genes that affect antigen availability or clearance can affect the induction of central and 

peripheral tolerance mechanisms leading to autoimmunity. Low or inadequate expression of 

self antigens in the thymus can compromise the negative selection of developing thymocytes 

as the T cells that are reactive to these antigens can escape deletion and will be released in the 

periphery where they can react to self antigens leading to AD. An example of this is mutation 

in the AIRE gene, which results in APECED by affecting antigen availability in the central 

and peripheral lymphoid organs (Anderson et al. 2000; Hanahan 1998; Heino et al. 1999; 

Klein et al. 2000). In addition, polymorphisms in the insulin gene affecting its regulation are 

associated with T1D (Barratt et al. 2004; Pugliese et al. 1997; Vafiadis et al. 1997). The 

disease-associated allele shows reduced expression in the thymic epithelium and increased 

expression in the pancreatic islet cells. This is thought to predispose to a lack of central 

tolerance to insulin in the developing thymocytes in the thymus (Chentoufi and 

Polychronakos 2002). Graves disease is also associated with polymorphisms in the thyroid 

stimulating hormone receptor gene the product of which is a target autoantigen in Graves 

disease (Dechairo et al. 2005). In terms of peripheral tolerance, hereditary deficiencies in the 

complement proteins such as C lq, C3 and C4, which are important in clearing apoptotic cells 

and complexes, have been associated with the development of SLE (Botto and Walport 2002; 

Pickering et al. 2000; Walport 2002).

Genes that control apoptosis such as Fas are important in limiting the duration and vigour of 

the immune response. Mutations in the Fas gene which is involved in induction of apoptosis 

predisposes to autoimmunity by compromising intrinsic peripheral tolerance mechanisms 

such as AICD (de Souza et al. 2010; Watanabe-Fukunaga et al. 1992 (de Souza et al. 2010; 

Fisher et al. 1995; Walker and Abbas 200). AICD ensures that most cells that have been 

activated in response to an antigen will die by apoptosis thereby limiting inflammation and 

excessive damage to the tissue which would lead to release of autoantigens (Zhang et al.

2004). AICD also helps maintain tolerance by keeping in check self-reactive cells in the 

periphery, which have escaped other tolerance mechanisms (Kabelitz and Janssen 1997; 

Zhang et al. 2004).
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Genetic defects in costimulatory molecule expression also predispose to ADs. This is because 

costimulatory molecules on the T cell surface modulate activation of T cells via their TCRs. 

Additionally, costimulatory signals affect Treg development, homeostasis, and suppressive 

function independently of their effect on effector T cells (reviewed in Bour-Jordan and 

Bluestone 2009). Thus, costimulation plays an important role in tolerance induction at 

multiple levels through signals mediated by positive and negative costimulatory molecules 

that affect effector T cells (Bour-Jordan et al. 2011). CD28, CTLA-4, and ICOS are co­

stimulatory molecules expressed on T cells which bind to homologous ligands on APCs 

(reviewed by Keir and Sharpe 2005). CD28 and ICOS provide positive signals whereas 

CTLA-4 is generally a negative regulator of T cell activation (reviewed by Chen 2004; van 

Berkel and Oosterwegel 2006). CTLA-4 knockout mice develop lymphoproliferative disease 

that results in their death by 3-4 weeks (Tivol et al. 1995). Furthermore, CTLA-4 

polymorphisms have been associated with a variety of ADs including Graves disease, SLE, 

MS, T1D and RA (Holmberg et al. 2005; Nistico et al. 1996; Plenge et al. 2005; Ueda et al. 

2003; Yanagawa et al. 1995). The odds ratio of association between the different CTLA-4 

polymorphisms and ADs is between 1.1 and 1.5 (Brand et al. 2005). One of the proposed 

mechanisms of this predisposition is associated with the finding that the CTLA-4 risk 

haplotype has been linked with lower levels of a splice variant encoding a soluble form of 

CTLA-4 which can interact with CD80 and CD86 and block their interaction with co­

stimulatory molecules such as CD28 (reviewed by Gough et al. 2005). This might cause a 

lack of local blocking of the effector T cells.

Similar to CTLA-4, PD-1 protein which is an important co-inhibitor of T cell activation has 

also been associated with ADs (reviewed in Bour-Jordan et al. 2011). The autoimmunity due 

to complete loss of PD1 expression in mice however is observed to be much milder than that 

associated with loss of CTLA-4 (Nishimura et al. 1999; Nishimura et al. 2001). 

Polymorphisms in the PD1 gene have also been found to be associated with RA, Graves 

disease, T1D, MS and SLE in humans (Kroner et al. 2005; Nielsen et al. 2003; Prokunina et 

al. 2002).

Defects in genes that are involved in cytokine-cytokine receptor expression or signalling can 

also lead to autoimmunity (Zenewicz et al. 2010). Overexpression or underexpression of the 

genes involved in cytokine production leading to over- or underexpression of the respective 

cytokines can lead to autoimmunity (O'Shea et al. 2002; Ogura et al. 2005). Cytokines are 

required for proper activation and recruitment of the innate and adaptive immune cells for a



regulated immunological response. Correct expression of the cytokine receptors is also 

required for effective signalling and polymorphisms in cytokine receptors have been 

associated with human ADs (reviewed in O'Sullivan et al. 2007; Zenewicz et al. 2010). For 

example, the IL2 receptor alpha gene has been associated with both T1D and MS and MS has 

also been associated with IL-7 receptor alpha.(Barrett et al. 2009; Hafler et al. 2007) 

Overexpression of pro-inflammatory cytokines could for example lead to improper and 

excessive activation of autoreactive T and B cells and lead to wide tissue damage causing 

release of sequestered antigens and recruitment of more autoreactive cells (Murphy et al. 

2007a). On the other hand underexpression of cytokines that are involved in mediating 

immune suppression could lead to autoimmunity because of the defect in cytokine mediated 

suppression of T cells, B cells and APCs (Murphy et al. 2007a). Many cytokines have been 

associated with ADs. Overexpression of TNF-a IL-2, IL-7, IL-10, IL-12 has been associated 

with inflammatory bowel disease (IBD) (Marquez et al. 2009; van Heel et al. 2007; van Heel 

et al. 2002; WellcomeTrust 2007). Overexpression of INF-y is associated with SLE (Fan and 

Wuthrich 1997; Harigai et al. 2008; Prud'homme et al. 1995). Additionally, underexpression 

of TNF-a and TGF-J3 have been associated with SLE (Baechler et al. 2004; Ronnblom et al.

2006).

The genes affecting signalling thresholds represent the largest category of mutations 

associated with predisposition to ADs (Murphy et al. 2007a). Adjusting the signalling 

thresholds by making the signalling more or less sensitive can equally result in autoimmunity. 

If thymocytes are unable to respond adequately to signals delivered via their TCR due to 

defects in downstream signalling molecules, this can lead to defective negative selection in 

the thymus and therefore ADs (Gregersen and Behrens 2006). For example, in mice it has 

been shown that a loss of function mutation in Zap-70 which is a molecule involved in TCR 

signalling results in reduced negative selection and subsequent escape of self reactive cells 

into the periphery leading to autoimmune arthritis in these mice (Sakaguchi et al. 2003). In 

contrast, increasing TCR sensitivity in the periphery can lead to greater and prolonged 

activation of the T cells once again resulting in autoimmunity. This can be observed in 

mutations in negative regulators of TCR signalling which can lead to hyperproliferation of 

lymphocytes and exaggerated immune responses (Bour-Jordan et al. 2011; Gregersen and 

Behrens 2006), for example, CTLA-4 polymorphisms, which have been linked to 

autoimmunity as discussed above.
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In addition, genes affecting signalling thresholds can impact on individual T cell lineages, for 

example, the generation of T reg cells in the thymus requires TCR ligation of intermediate 

strength and if the TCR is hyporesponsive, the quantity and quality of T reg cells generated 

may be affected (Baecher-Allan et al. 2001; Davidson and Diamond 2001; Jordan et al. 2001; 

Suto et al. 2002). A role for genes implicated in signalling in the generation and function of 

particular T cell lineages is seen in involvement of Foxp3 with T reg cell generation 

(Rudensky 2011). Foxp3 mutations result in rare autoimmune disease, IPEX, in humans 

(Bennett et al. 2001). T reg cells are also critically dependent on IL-2 for their proliferation 

and function and a lack of IL-2 or its receptors can lead to autoimmunity (Fontenot et al. 

2005a; Setoguchi et al. 2005).

1.5.1 Identification of genes involved in ADs

Human genetics has provided powerful insights into ADs. There are two approaches to 

identifying genes associated with ADs. First is the candidate gene approach, where a 

particular genetic polymorphism in a specific gene is chosen due to its known involvement in 

crucial immunological pathways and studies are carried out to check for any association of 

this gene with ADs. Either a linkage study involving a group of unrelated patients and healthy 

controls can be carried out to check for any association between the candidate gene and ADs 

or a family based study involving genetically similar individuals from different families who 

either have or do not have a AD can be used to identify any association between the gene and 

the AD (Gregersen and Behrens 2006). Alternatively, instead of picking a candidate gene, 

random Single Nucleotide Polymorphisms (SNPs) distributed throughout the genome can be 

scanned to check if a polymorphism in any part of the genome is associated with 

autoimmunity (Gregersen and Behrens 2006). Once again the association study can either be 

a linkage or a family based study.

The most common and the strongest genetic contributors to ADs are polymorphisms in the 

MHC alleles (Simmonds and Gough 2005). The human MHC (termed HLA) region is located 

at chromosome 6p21.3 and spans across a 7.2 Mb genomic segment (reviewed by Rai and 

Wakeland 2011; Shiina et al. 2004). The human leukocyte antigen (HLA) region contains 

over 400 genes many of which play an important role in antigen processing, presentation, 

cellular activation, inflammation and various other crucial functions of the innate and
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adaptive immune systems (Simmonds and Gough 2005). The HLA region can be divided into 

three different parts: class I, class II and class III. The class I region encodes HLA-A, HLA-B 

and HLA-C molecules which are expressed on the cell surface of nucleated cells and are 

involved in the presentation of endogenous antigens to CD8+ T cells (Simmonds and Gough

2005). The class II region encodes various membrane bound proteins expressed on the cell 

surfaces of B-lymphocytes, macrophages, dendritic cells and activated T lymphocytes, which 

are involved in the processing and presentation of exogenous antigens to CD4+ T cells 

(Simmonds and Gough 2005). The class III region is located between class I and class II 

regions and encompassing genes encoding components of the complement region (C2 and 

C4), the heat shock protein (HSP70) and the tumour necrosis factor (TNF) (Simmonds and 

Gough 2005). The HLA region is very polymorphic and variations are strongly associated 

with almost every AD (Rai and Wakeland 2011). It is thought that variations in MHC peptide 

binding properties modulate T cell antigen recognition in the periphery, leading to potentially 

increased susceptibility to a breakdown in tolerance in the T cells (Todd. 2010). About 30% 

of the estimated genetic heritability for most AD is due to the polymorphisms in the HLA 

region and hundreds of associations between HLA alleles and ADs have been identified (Rai 

and Wakeland 2011; Shiina et al. 2004). For the majority of the ADs, susceptibility is linked 

to a MHC class II allele but in some cases particular MHC class I alleles have also been 

shown to have strong associations (reviewed by Elder et al. 2009 2010; Handunnetthi et al. 

2010; Todd 2010. 2010). MHC class III region (complement region) has also been associated 

with AD (Harley et al. 2009). However, there is a strong linkage disequilibrium across the 

entire HLA region making interpretation of associations difficult (Rai and Wakeland 2011) .

Genes outside of the MHC regions have also been associated with ADs. For example AIRE, 

CTLA-4, Foxp3, Fas and PD-1 have all been associated with ADs (see above). There are 

many other genes which have also been found to correlate with autoimmunity, however, the 

most robust association with ADs outside of the MHC region has been found to be a SNP in 

the genes encoding for the protein tyrosine phosphatase non-receptor type 22 (PTPN22).

Several association-based genetic studies and candidate gene based studies have linked a SNP 

in PTPN22 to ADs such as T1D (Bottini et al 2004, Qu et al 2005), RA (Begovich et al

2004), Graves Disease (Velaga et al 2004) and SLE (Kyogoku et al 2004).
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1.6 Protein Tyrosine Phosphatases

A number of molecular regulatory mechanisms exist in immune cells to maintain the fine 

balance between immune protection and autoimmunity. One such mechanism is protein 

phosphorylation, a reversible biochemical event regulating many signalling pathways. Protein 

phosphatases are a large class of enzymes that remove phosphate from specific residues in 

proteins. Dephosphorylation is an important means of resetting a phosphorylated protein 

back to its original state and thus potentially switching a signal off.

Initially, protein phosphatases were viewed as passive housekeeping enzymes that functioned 

promiscuously to reverse the action of protein kinsases. However, it is now clear that the 

kinases which catalyze phosphorylation and the phosphatases that promote 

dephosphorylation are partners, working in a coordinated fashion in the regulation of 

signalling responses (Alonso et al. 2004b). The kinases have been implicated in controlling 

the amplitude of the signalling whereas the phosphatases are thought to have an important 

role in controlling the rate and duration of the response (Heinrich et al. 2002; Hornberg et al.

2005).

Protein tyrosine phosphatases (PTPs) are a large family of enzymes that remove a phosphate 

group from phosphorylated tyrosine residues in proteins. The human genome encodes a total 

of 107 PTPs. Of the 107 PTPs, 11 are catalytically inactive, 81 encode active protein 

phosphatases, 13 dephosphorylate inositol phospholipids and 2 dephosphorylate messenger 

RNA (mRNA) (Alonso et al. 2004b; Mustelin et al. 2005). These enzymes are defined by the 

active-site signature motif (H/V)CXsR(S/T) (reviewed by Zhang 1998).

PTPs can be divided into four major subfamilies, class I, class II, class III which use a 

cysteine as a nucleophile for catalysis and class IV PTPs which use an aspartic acid as a 

nucleophile (Figure 1.7). The class I PTPs use a cysteine-based catalytic mechanism. This is 

the largest sub-family and contains 38 well known “classical” PTPs and 61 “dual specific” 

PTPs (Andersen et al. 2004). The classical PTPs are strictly tyrosine specific and can be 

further divided into transmembrane receptor-like PTPs which generally have an extracellular, 

putative ligand binding domain, a single transmembrane region and one or two cytoplasmic 

PTP domains and the intracellular non-receptor PTPs which contain a single catalytic domain 

and various amino- or carboxy- terminal extentions. There are 21 receptor type PTPs and 17 

non-receptor type PTPs in the human genome (Andersen et al. 2004). Unlike the classical
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PTPs, the dual specific PTPs can utilize protein substrates that contain phospho-tyrosine as 

well as phospho-serine and phospho-threonine (Zhang 2001). Dual specific PTPs are much 

more diverse than the classical PTPs and can be divided into seven subgroups. Eleven out of 

the 61 dual specific PTPs are specific for the MAP kinases Erk, Jnk and p38 (Alonso et al. 

2004a; Keyse 1998; Saxena and Mustelin 2000). A second subgroup referred to as “atypical 

dual specific phosphatase” includes 16 small enzymes (less than 250 amino acid residues) 

that lack MAP kinase targeting motifs. The third and fourth subgroups are the three 

slingshots (SSH1, SSH2 and SSH3) and the three PRLs (PRL-1, PRL-2 and PRL-3). The 

fifth subgroup is the CDC14 group, which contains 4 enzymes. The sixth and the seventh 

subgroup of the dual specific phosphatases are the PTENs (5 genes) and the myotubularins 

(16 genes) which specifically dephosphorylate the D3 phosphates of inositol phospholipids 

(Wishart and Dixon 2002).

The class II PTPs are also cysteine based and this group contains only one low molecular 

weight phospho tyrosine phosphatase. The class III phosphatases are also cysteine based and 

tyrosine/ threonine specific. This group contains three p80Cdc25 cell cycle regulators. The 

class IV PTPs use an asparatate-based mechanism of catalysis and contain the four Eya 

proteins, which were discovered to be tyrosine specific or dual serine and tyrosine specific 

phosphatases (reviewed by Alonso et al. 2004b; Rayapureddi et al. 2003; Tootle et al. 2003).

The expression pattern of PTPs varies from ubiquitous to tissue specific. Most cells express 

30-60% of the entire complement of PTPs. Haematopoietic and neuronal cells tend to express 

higher numbers of PTPs, for example T cells contain 60 to 70 different PTPs. Some PTPs are 

tissue specific such as PTPN22 or Lyp, which is restricted to haematopoietic cells. Other 

haematopoetic-restricted PTPs include PEST enriched phosphatase (PEP-mouse ortholog of 

Lyp), SHP-1 (Src homology 2-domain-containing-PTPl), CD45 and HePTP (Haematopoietic 

PTP) (Alonso et al. 2004b). Approximately 20 of the 60-70 PTPs expressed in T cells, 

regulate signalling events between the TCR and the transactivation of the IL-2 gene 

(Mustelin et al. 2005). Most of these PTPs effect TCR signalling in a negative manner but 

some such as CD45 and SHP-2 have positive regulatory roles (Mustelin et al. 2005).

Several human diseases have been linked to PTPs. For example, the absence of PTPip, which 

is thought to act as a negative regulator for insulin signalling leads to an increased sensitivity 

to insulin and resistance to obesity in mice (Elchebly et al. 1999; Klaman et al. 2000). In 

addition, PTPa has been implicated in promoting cell transformation by activating Src family
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kinases via dephosphorylation of the inhibitory carboxy-terminal phosphotyrosine on the 

kinase (Ponniah et al. 1999; Su et al. 1999; Zheng et al. 1992). Cdc25 phosphatases have also 

been implicated in cancers as they play an important role in cell cycle regulation by removing 

the inhibitory phosphatase from tyrosine and threonine residues of the cyclin dependent 

kinases. Cdc25A and Cdc25B are consequently thought to be proto-oncogenes (reviewed by 

Kristjansdottir and Rudolph 2004). In addition, PTPs have also been linked to several ADs. 

The first example of this was the discovery that the motheaten mouse had a mutation in the 

SHP-1 gene (Tsui et al. 1993). These mice have hyper responsive T and B cells and 

overactive phagocytic cells. They also develop inflammatory pathology in several tissues. In 

humans, a genetic polymorphism in PTPN6 (which encodes SHP-1) has not yet been linked 

to ADs (Mustelin et al. 2005). However, CD45, which is a positive regulator of TCR 

signalling, has been implicated in ADs. CD45 abnormalities were detected in T cells from 

patients with SLE and loss of CD45 was found in some patients with severe combined 

immunodeficiency (Jury et al. 2004; Tchilian et al. 2001).

Recently several studies have associated a genetic polymorphism in the gene PTPN22 to 

several ADs. Outside of the MHC region, this polymorphism has shown the most robust 

association with ADs (Burn et al. 2011).
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Figure 1.7 Classifications of the Protein Tyrosine Phosphatases in the human genome.

Of the 107 identified Protein Tyrosine Phosphatases (PTPs) in the human genome, 81 are 

active PTPs. This superfamily is divided into four major subfamilies, Class I- IV. Class I- III 

are cysteine based PTPs whereas class IV is an asparate based PTP. Class I PTPs are further 

divided into classical and dual specific phosphatases. Class II PTPs are low molecular weight 

phospho-tyrosine based phosphatases. Class III containes p80 Cdc 25 cell cycle regulators 

and Class IV contains four Eya proteins.
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1.6.1 Protein Tyrosine Phosphatase Non receptor Type 22: PTPN22

PTPN22 is a member of the class I, classical PTP family and belongs to the non-receptor like 

subfamily. It is one of the PEST domain-containing phosphatases alongside BTP1 and PTP- 

PEST (Cohen et al. 1999; Matthews et al. 1992). The PTPN22 gene maps to chromosome 

lpl3.3- lpl3.1 and encodes an 807 amino acid residue protein referred to as lymphoid 

specific phosphatase (Lyp) in humans or PEST domain containing PTP (PEP) in mice (Cohen 

et al. 1999; Matthews et al. 1992). Lyp and PEP share 89% identity between PTP domains 

and 61% identity for their non-catalytic portions (Cohen et al. 1999). Lyp and PEP are both 

exclusively expressed in haematopoietic cells (Chow and Veillette 1995; Cloutier and 

Veillette 1996; Cohen et al. 1999). Lyp mainly has a cytoplasmic subcellular localization, 

however, some PEP has been found in the nucleus (Cohen et al. 1999; Gjorloff-Wingren et al. 

2000). Lyp and Pep are approximately 105kDa and llOkDa in size respectively (Cohen et al. 

1999; Gjorloff-Wingren et al. 1999). Lyp contains a 300 amino acids N-terminal PTP 

domain, a central region of approximately 300 amino acids of unknown function also called 

the interdomain, and a C-terminal portion of approximately 200 amino acids (Figure 1.8) 

(Cohen et al. 1999; Matthews et al. 1992). The C-terminal of Lyp contains four proline-rich- 

motifs termed P1-P4. P4 is part of the C-terminal homology (CTH) domain found in all 

members of the PEST group of PTPs (Cohen et al. 1999; Cote et al. 2002; Spencer et al. 

1997).

Lyp and PEP have been found to have several binding partners. Lyp has been reported to 

interact with adapter molecule, Grb2, and E3 ligase, c-Cbl (Cohen et al. 1999; Hill et al. 

2002). However, the best characterized binding partner of Lyp/PEP is the C-terminal Src 

kinase (Csk). Csk is thought to bind to PI region of Lyp/PEP via its Src homology 3 (SH3) 

domain (Cloutier and Veillette 1996; Ghose et al. 2001; Gregorieff et al. 1998).
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Figure 1.8 Domain structure of Lyp

Lyp has an amino terminal protein tyrosine phosphatase domain of approximately 300 amino 

acids, followed by approximately 200 amino acids long interdomain whose function is not yet 

known and approximately 300 amino acids carboxy terminal. The carboxy terminal of Lyp 

contains four prolin-rich-motifs termed PI - P4 (represented as orange ovals). The R620W 

polymorphism lies in the PI motif of the C-terminal. P4 is part of the C- terminal homology 

domain.
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1.6.1.1 Function of Lyp/PEP

Lyp and PEP are thought to negatively regulate TCR signalling by acting immediately 

downstream of the TCR. PEP has been implicated in the dephosphorylation of the positive 

regulatory tyrosine residue in the activation loop of the Src family kinases, Lck (Tyr 394), 

and FynT (Tyr417); and the PTP, Zap 70 (Tyr493) (Cloutier and Veillette 1999; Gjorloff- 

Wingren et al. 1999) (Figure 1.9). Additionally, PEP has been reported to negatively regulate 

TCR-induced phosphorylation of the tyrosine residues within the immunoreceptor tyrosine 

based activation motifs (ITAMs) in the CD3/£ chains (Cloutier and Veillette 1999). However, 

this effect may be indirect due to the effect of Lyp on Src family kinases as the Src family 

kinases are responsible for the phosphorylation of the ITAMs. Lck, Zap 70, ITAMs of the 

CD3/^ chains, Vav and valosin-containing protein have also been identified as potential 

substrates by a study using a substrate trapping mutant version of Lyp together with a mass 

spectrometry based peptide identification technique (Wu et al. 2006). The ability of Lyp/PEP 

to bind Csk may be important for Lyp/PEP function. Csk phosphorylates the C-terminal 

negative regulatory tyrosine in Lck and FynT, thereby negatively regulating signalling via the 

TCR (Cloutier and Veillette 1999; Gjorloff-Wingren et al. 1999).
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Figure 1.9 A model for the role played by Lyp/Pep in TCR signalling

Lyp acts as a negative regulator of TCR signalling by acting directly downstream of the TCR. 

Lyp/Pep has been shown to dephosphorylate tyrosine residues in the activatory loop of the 

Src family kinases, Lck, which is constitutively associated with the co-receptor and CD3 

assocated protein FynT. Lyp/Pep has also been shown to dephosphorylate Zeta chain 

associated protin Zap-70 and ITAM motifs on the CD3 complex and the TCR Zeta chain.

This Lyp mediated dephosphorylation is thought to result in the suppression of the TCR 

signalling. Lyp and Csk have been shown to be binding partners. Csk phosphorylates the 

tyrosine residues in the inhibitory loop of Src family kinases thereby inhibiting downstream 

TCR signalling.

53



1.6.1.2 Association of C1858T polymorphism in PTPN22 with ADs

A single nucleotide polymorphism in the PTPN22 gene has been associated with several 

ADs. The SNP in the PTPN22 gene that is associated with a predisposition to autoimmunity 

is a C to T substitution at nucleotide position1858. Bottinni et al (2004) were the first to 

report a linkage of the R620W polymorphism with T1D. They reported that 3.7% of 

individuals with T1D were homozygous for the 1858T allele compared to 1 % of healthy 

controls in a North American sample, and in an Italian sample within a more homogenous 

population, twice as many individuals with T1D as compared to controls were heterozygous 

with respect to 1858T. The only individual who was homozygous for the 1858T allele had 

T1D (Bottini et al. 2004). In the following year, this association was confirmed in additional 

larger population based studies (Ladner et al. 2005; Onengut-Gumuscu et al. 2004; Smyth et 

al. 2004). In addition, in 2004, Begovich et al reported an association of the 1858T 

polymorphism with Rheumatoid Arthritis (RA) (Begovich et al. 2004). The association with 

RA was confirmed by additional studies (Criswell et al. 2005; Hinks et al. 2005; Lee et al. 

2005; Viken et al. 2005). Subsequently, several studies have been conducted which have 

found significant association of the 1858T polymorphism with other ADs such as SLE 

(Criswell et al. 2005; Kyogoku et al. 2004), Graves Disease (Heward et al. 2007; Skorka et 

al. 2005; Smyth et al. 2004; Velaga et al. 2004), Addison’s Disease (Skinningsrud et al. 2008; 

Velaga et al. 2004), Juvenile Idiopathic Arthritis (Hinks et al. 2005; Viken et al. 2005), 

Myasthenia Graves (Vandiedonck et al. 2006), Generalized Vitiligo (Canton et al. 2005; 

LaBerge et al. 2008) and Wegener’s Granulomatosis (Jagiello et al. 2005).Genome wide 

association study involving 14,000 British patients with common diseases confirmed the 

association of the C1858T SNP in PTPN22 to several ADs including T1D and Rheumatoid 

Arthritis (RA) (WellcomeTrust 2007). Some ADs have been found not to be associated with 

the C1858T polymorphism in the gene PTPN22. These include MS (Begovich et al. 2005; 

Criswell et al. 2005; Hinks et al. 2005), Inflammatory Bowel Diseases such as Crohn’s 

disease (Martin et al. 2005; van Oene et al. 2005; Wagenleiter et al. 2005) and Ulcerative 

Colitis (Martin et al. 2005; Prescott et al. 2005), Celiac Disease (Rueda et al. 2005; Smyth et 

al. 2008; Viken et al. 2005), Primary Sclerosing Cholangitis (Viken et al. 2005), Primary 

Biliary Cirrhosis (Milkiewicz et al. 2006) and Psoriasis (Hinks et al. 2005).

The PTPN22 C1858T polymorphism has also been found to have a protective effect against 

certain ADs. A recent large study suggested the C1858T polymorphism in the PTPN22 gene
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might have a protective role in Crohn’s disease and Behcet’s disease (Baranathan et al. 2007; 

Barrett et al. 2008). It is not clear why PTPN22 associates with certain ADs and not with 

others. However, it has been suggested that the PTPN22 C1858T polymorphism strongly 

associates with ADs with a significant autoantibody component. There is some experimental 

data in support of this hypothesis. For example, the PTPN22 C1858T polymorphism is 

associated with Graves Disease, which has a strong autoantibody component and there is the 

observation that association of PTPN22 C1858T polymorphism with RA is restricted to a 

subgroup positive for anti-cyclic citrullinated peptide antibody (Kallberg et al. 2007; 

McGonagle et al. 2009). However, this is not always the case as is seen in the case of Celiac 

Disease, which also has a strong autoantibody component but has no association with the 

PTPN22 C1858T polymorphism (Rueda et al. 2005; Smyth et al. 2008; Viken et al. 2005).

There is a clear geographic gradient with regard to the frequency of the disease -associated 

T1858 allele in Europe (Burn et al. 2011). The T1858 allele is relative rare in southern 

European populations with a frequency of only 2% in Italy and 6% in Spain. The frequency 

increases northward through Europe reaching 8% in U.K, 12% in Sweden and 15.5% in 

Finland. The T1858 allele is almost absent in the Asian and African American populations 

(Ikegami et al. 2007; Lee et al. 2009; Mori et al. 2005; Zhang et al. 2008). One explanation 

for such a varied geographic difference in PTPN22 T1858 allele frequency may be that the 

polymorphism appeared recently during evolution and/or its frequency is severely affected by 

selection due to its protective effect against certain infections or diseases, for example, the 

T1858 allele has been found to have a protective role against Tuberculosis (Gomez et al.

2005; Lamsyah et al. 2009).

PTPN22 is a general autoimmunity gene like the MHC genes and CTLA4 gene. The T1858 

allele increases the risk to multiple ADs as discussed above. PTPN22 contributes 

approximately 2% to the familial clustering in T1D compared to an approximately 40% 

contribution by HLA (Concannon et al. 2005). The PTPN22 T1858 allele behaves as a 

dominant variant, conferring an increased risk of disease already when present in single copy 

(Bottini et al. 2006; Gregersen et al. 2006). The risk conferred by PTPN22 is variable among 

the ADs, but it is substantial in T1D and RA, with average reported odds ratios of 1.7-2.0 per 

single allele copy.
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1.6.1.3 How does the Lyp R620W polymorphism effect T cell activation?

The C1858T polymorphism in the PTPN22 gene that is associated with a predisposition to 

autoimmunity, changes amino acid residue 620 from arginine to tryptophan in the Lyp 

protein (Begovich et al. 2004). It was originally proposed that the R620W polymorphism 

results in a loss of function of the protein, Lyp, leading to a hyperactive TCR. This was 

because the R620W polymorphism was thought to severely disrupt the Lyp-Csk complex 

(Begovich et al. 2004; Bottini et al. 2004; Vang et al. 2005). The residue 620, which is 

located in the PI region of Lyp is important for interaction with the SH3 domain of Csk. As 

PEP and Csk in complex were reported to downmodulate TCR signalling in a cooperative 

manner (Cloutier and Veillette 1999; Gjorloff-Wingren et al. 1999), the inability of WLyp to 

bind Csk was expected to impair Csk mediated negative regulation of the TCR signalling
n

resulting in hypereactive T cells. This model was supported by the finding that although 

Lyp bound strongly to the SH3 domain of Csk, wLyp was unable to bind to Csk (Begovich et 

al. 2004; Bottini et al. 2004; Vang et al. 2005). The inability of Csk to bind to Lyp was 

thought to result in less suppression of TCR activity hence a more active TCR which could 

lead to autoimmunity in the periphery.

Unexpectedly however, the R620W polymorphism was found to be a gain-of function 

mutation by Vang et al (2005), resulting in an increase in the TCR signalling threshold rather 

than a decrease as was originally predicted. This study showed that when expressed in both
R WJurkat T cells and human primary T cells, both Lyp and Lyp downregulated TCR 

signalling in a dose dependent manner, but at equivalent expression levels wLyp was 

consistently more potent at downregulating signalling via TCR. Lck mediated TCR£ chain 

phosphorylation, LAT phosphorylation, Lck (Tyr 394) phosphorylation and activation of the
W  RErk2 kinase were observed to be reduced in Lyp expressing cells compared to Lyp. TCR 

mediated intracellular calcium flux was also inhibited more by wLyp compared to RLyp 

expressing cells (Vang et al. 2005). Additionally, activation of the proximal IL-2 promoter 

was also inhibited more by the wLyp expressing cells in comparison to the RLyp expressing 

cells. This was detected by measuring levels of luciferase activity using a system containing 

the luciferase reporter gene driven by the nuclear factor of activated T cells (NFAT)/ 

activator protein-1 (API) transcription factor complex. Furthermore, T cells from the 

peripheral blood of T1D patients heterozygous for the R620W polymorphism secreted less 

IL-2 in response to CD3/CD28 costimulation than T cells from patients homozygous for the
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RLyp allele. Naive, memory, CD4+, CD8+ and CD4+CD25+ T cell subsets were all observed 

to be similar between the two groups excluding the possibility that the reduced IL-2 levels 

was due to a skewing in these subsets. Importantly, stimulation of these T cells from patients 

with phorbol ester and ionomycin to bypass proximal TCR signalling resulted in very similar 

levels of IL-2 secretion between the two groups confirming that the effect of Lyp was at the 

level of signalling events immediately downstream of the TCR. In this study Vang et al 

(2005) also measured the catalytic activites of RLyp and WLyp immunoprecipitated from cells 

and observed that WLyp was approximately 1.5 fold more active as a phosphatase than RLyp 

despite not binding Csk. In support of the Vang et al (2005) study, Aarnisalo et al (2008) also 

reported a reduction in IL-2 production and decreased proliferation of CD4+ cells from T1D 

patients carrying the WLyp expressing allele and a reduced intracellular calcium flux in 

response to TCR stimulation (Aarnisalo et al. 2008). Rieck et al (2007) in their study also
W  Robserved that Lyp was a more potent negative regulator of TCR signaling than Lyp. They 

reported reduced calcium mobilization and IL-2 production by T cells from wLyp 

homozygous and heterozygous subjects respectively when compared to T cells from Lyp 

homozygous subjects (Rieck et al. 2007). The majority of published studies report a 

decreased TCR-mediated T cell activation in primary T cells from individuals homozygous or 

heterozygous for the WLyp variant compared to individuals homozygous of the RLyp variant. 

However, Zikherman et al (2009), by using phosphorylation of the MAPK Erk as a readout, 

after transfecting Jurkat cells with RLyp or wLyp either alone or in conjunction with Csk and 

then stimulating T cells through the TCR/CD3 complex, reported the R620W polymorphism 

as a hypomorph leading to a loss of function (Zikherman et al. 2009). Phospho-Erk was 

significantly increased in cells co-expressing wLyp and Csk. In addition, it was shown that 

calcium mobilisation in cells co-expressing WLyp and Csk was more efficient in comparison 

to RLyp and Csk. These results imply that the WLyp phosphatase, when co-expressed with 

Csk, is a loss-of-function variant leading to increased TCR signalling following stimulation 

(Zikherman et al. 2009). Another exception to the gain-of function hypothesis is provided by 

a report on Myasthenia Gravis, whereby the R620W polymorphism was associated with 

increased TCR-induced IL-2 production (Lefvert et al. 2008). However, this result has not 

been replicated by other groups also investigating the effect of R620W polymorphism in 

Myasthenia Gravis (Chuang et al. 2009). Further research into the effect of the R620W 

polymorphism on T cell activation is required to substantiate the current view of the R620W 

polymorphism as a “gain-of-function” polymorphism.
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The molecular mechanism by which the R620W polymorphism, which is not in the catalytic 

region, but is found approximately 300 amino acid residues downstream from the end of the 

catalytic PTP domain, may result in change in the PTP activity of the protein is poorly 

understood. It has been speculated that the non-catalytic portion may play a regulatory role in 

the function of the catalytic domain. The evidence for this comes from the observation that 

deletion of the C-terminal half of PEP results in a five fold increase in its PTP activity 

(Gjorloff-Wingren et al. 1999). Furthermore, it was recently demonstrated that the activity of 

Lyp is modulated by an intramolecular interaction between the proximal interdomain and the 

catalytic domain by studying serial truncation mutants of a recombinant form of Lyp (Liu et 

al. 2009). This study shows that the proximal portion of the interdomain of Lyp may directly 

interact with the catalytic domain and reduce its activity (Liu et al. 2009). Crystallization of 

the catalytic domain of the phosphatase also showed that the enzyme might be autoregulated 

by a reversible oxidation mechanism involving a Cys residue (Tsai et al. 2009). These studies 

suggest an interaction between the N and C termini of the protein. Therefore, it is plausible 

that the R620W polymorphism disrupts the autoregulatory function of the interdomain acting 

on the catalytic domain of the phosphatase thereby increasing its phosphatase activity. It is 

also probable that binding of ligands to the C-terminal of Lyp or PEP may affect the catalytic 

activity of Lyp or PEP. It has been observed that although RLyp coimmunoprecipitated with 

Csk, no coimmunoprecipitation was observed between wLyp and Csk (Vang et al. 2005). In 

the case of wLyp, the loss of a binding partner such as Csk might lead to an increase in PTP 

activity due to the possible loss of the regulatory role played by the binding of the ligand.

A second hypothesis is that the R to W polymorphism at amino acid position 620 in the 

protein Lyp gives the PI region of wLyp an increased ability to interact with other proteins 

and these proteins bring about a more catalytically preferential conformation of the Lyp PTP 

domain (Vang et al. 2008). Currently, there are no experimental data to support this 

hypothesis. A third hypothesis is based on the observation that Lyp is negatively regulated by 

Lck mediated phosphorylation of an inhibitory tyrosine residue, which might be an important 

regulatory mechanism influencing TCR signalling. This Lck mediated regulation of Lyp is in 

turn dependent on interaction between Lyp and Csk, which is thought to facilitate the 

interaction between Lck and Lyp. This could mean that an abnormality in the Csk mediated 

post-translational modification of wLyp leads to gain of function due to the lack of Lck 

mediated negative regulation (Fiorillo et al. 2010). However, this observation does not 

explain how the R620W polymorphism leads to a more potent PTP in vitro. Another
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hypothesis is that the R620W polymorphism in Lyp changes the amount of free Lyp and 

bound Lyp in the cells (Vang et al. 2008). Assuming that there is an equilibrium between the 

free Lyp and the Lyp bound to known (Csk, Grb-2, c-Cbl) and unknown proteins, any 

skewing of this equilibrium may have profound cellular effects. In support of this hypothesis 

is the fact that in mice 25-50% of PEP is found bound to Csk (Cloutier and Veillette 1996). 

Assuming that this might also be the case for human Lyp then it is plausible that a disruption 

of Lyp-Csk interaction as in the case of WLyp results in an increase in the pool of free Lyp for 

binding to other proteins. The increase in free Lyp coupled with the altered ligand specificity 

of the wLyp may contribute to making WLyp a more active PTP leading to a stronger 

inhibition of TCR signalling (Vang et al. 2008).

An altered subcellular localization of the protein Lyp due to new set of interacting partners of 

Lyp because of the R620W polymorphism may be another explanation for the observed 

increased inhibitory effect of wLyp on TCR signalling (Vang et al. 2008). Lastly, alteration in
W  Rthe substrate specificities and/or substrate affinities of the Lyp compared to Lyp may be 

responsible for the augmented TCR signalling observed with the WLyp expressing cells 

(Vang et al. 2008). All or some of these explanations or something other may lead to the 

augmented PTP activity observed in wLyp. A thorough investigation is required to clarify 

how the polymorphisms lead to a more active PTP.

1.6.1.4 How does an apparent reduction in TCR stimulation lead to autoimmunity?

Based on the notion that Lyp W620 is a “gain-of function” polymorphism, it is hypothesised 

that the WLyp isoform suppresses TCR signalling more potently than the RLyp isoform. 

Although a decrease in TCR signalling resulting in autoimmunity is counterintuitive there is 

some evidence for a decrease in TCR signalling leading to autoimmunity in some ADs 

(Stanford et al. 2010). Reduced TCR signaling has been reported in T cells from NOD mice 

and in peripheral T cells from T1D patients (Buchs and Rapoport 2000; Zhang et al. 1998). 

Studies of SKG mice have provided additional evidence for an association between decreased 

TCR signalling and autoimmunity (Sakaguchi et al. 2003). It has been demonstrated in this 

and other mouse models that attenuation of TCR signalling due to a “loss of function” 

mutation of Zap70, one of the substrates of Lyp, results in dysregulated thymic selection and 

a spontaneous AD similar to RA (Hsu et al. 2009; Sakaguchi et al. 2003; Siggs et al. 2007).
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There are several theories as to how a decrease in TCR signalling due to the R620W 

polymorphism could result in autoimmunity (Figure 1.10). One of the favoured hypotheses is 

that it may result in the survival of auto-reactive cells that would normally be deleted by 

negative selection in the thymus. Alternatively, the impact of WLyp on TCR signalling may 

have an effect on the development and functioning of T regulatory cells (Figure 1.10). It may 

be the case that fewer T reg cells are generated in wLyp expressing individuals compared to 

individuals who are homozygous for the RLyp isoform. Alternatively, there may be no 

difference in the number of T reg cells generated but their TCR signalling may be suppressed 

and therefore they may not be as effective in suppressing effector T cells as T reg cells 

expressing exclusively the RLyp isoform. This hypothesis is supported by the finding that 

PEP is constitutively expressed in the thymus and PTPN22 knockout mice show anomalies in 

thymic selection like Zap-70 mutant mice. Normalisation of signalling in the thymus of the 

Zap-70 mutant SKG mice is able to rescue the phenotype of the SKG mice (Sakaguchi et al. 

2003) and therefore it is reasonable to assume that normalisation of the signalling in the 

PTPN22 knockout mice would also rescue the reported anomalies of thymic selection.

Other mechanisms not involving a thymic selection defect by which the R620W 

polymorphism may result in autoimmunity have also been proposed. For example, an 

increase in activity of the Lyp in effector T cells might negatively impact the activity or 

expansion of the peripheral T reg cells in carriers of WLyp (Marson et al. 2007). In addition, 

decreased TCR signalling leading to a decreased IL-2 production by effector T cells may 

impair expansion of T reg cells. This is supported by the observation that T reg cells are 

highly dependent on IL-2, and decreased IL-2 levels has been shown to impair expansion of 

T reg cells in mouse T1D, and neutralisation of IL-2 in vivo induces autoimmunity in mice 

through a T reg mediated mechanism (Setoguchi et al. 2005; Tang et al. 2008; Yamanouchi et 

al. 2007). The PTPN22 gene has also been recently identified as being a target gene of 

Foxp3. (Marson et al. 2007). This study also showed that T reg cells express a lower amount 

of the phosphatase compared to effector T cells suggesting the existence of a direct 

mechanism by which the gain of function of Lyp can affect T reg function.

TCR signalling strength is also an important regulator of naive T cell differentiation and it is 

possible that a decrease in TCR signalling may affect the polarisation of naive T cells into 

specialised T helper (Th) subsets, for example by favouring the polarisation into Thl subset 

in WLyp carriers (Stanford et al. 2010). In T1D Thl cells have been associated with the 

disease pathology. This hypothesis is supported by the observation that peripheral T cells
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from WLyp expressing individuals have a different cytokine secretion pattern with reduced 

production of IL-10 (Rieck et al. 2007).

Alternatively, other mechanisms are also worth considering as the R620W polymorphism is 

only associated with ADs that have an autoantibody component. T follicular helper (Tfh) 

cells characterized by stable expression of CXCR5 receptor, play an important role in 

regulating humoral immunity by providing “help” to B cells and regulating their 

proliferation, immunoglobulin class switching and B cell homing into germinal centres (GC). 

Alternatively it could be the case that the R620W polymorphism affects B cell differentiation 

or tolerisation directly (Figure 1.10).
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Figure 1.10 Schematic diagrams showing how R620W Lyp polymorphism might predispose to autoimmunity

The R620W polymorphism associated with several ADs has been found to be a “gain of function” resulting in an increase in phosphatase 

activity of Lyp. This results in an increase in Lyp mediated suppression of TCR signalling increasing the TCR signalling thresholds. It has been 

hypothesied that the increase in TCR signalling thresholds may result in impaired negative selection in the thymus resulting in escape of 

autoreactive T cells and/or defective generation of T reg cells in the thymus and/or impaired suppression of autoreactive T cells by the T reg 

cells in the periphery resulting in autoimmunity. Increase in suppression of TCR signalling might also affect the function or development of T 

follicular helper (Tfh) cells which in turn may impact B cell development and maturation. The lack or reduced help provided by Tfh cells to B 

cells might lead to production of hyperactive B cells or may impair B cell negative selection leading to autoimmunity. wLyp may also directly 

suppress BCR signalling impairing B cell negative selection and tolerisation resulting in predisposition to autoimmunity.
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1.7 Project aims

It is clear from the genetic studies discussed above that there is a robust association between 

the R620W polymorphism in Lyp and ADs. Knowledge about the function of Lyp in T cell 

signalling is constantly growing. The prevailing consensus to date is that Lyp acts as a 

negative regulator of TCR signalling by acting immediately downstream of the TCR. The 

mechanism for this negative regulation by Lyp is thought to be due to Lyp mediated 

dephosphorylation of the Src family kinases Lck and FynT, Zap70, and the ITAMs in the 

CD3/^ chains (Cloutier and Veillette 1999; Gjorloff-Wingren et al. 1999; Wu et al. 2006).

Lyp mediated dephosphorylation of the activatory loop of the negative regulatory kinase Csk 

is also thought to play a role in Lyp mediated negative regulation of TCR signalling (Vang et 

al. 2005). However, research in this field is at an early stage and several questions remain 

unanswered.

Even less is known about the molecular mechanism of how the R620W polymorphism in the 

protein Lyp results in predisposing individuals to ADs. The current consensus is that the 

R620W polymorphism is a gain-of-function polymorphism resulting in a decrease in TCR 

signalling which in turn eventually leads to ADs. If this is true, it would be of great interest to 

establish whether monoclonal antibodies selectively targeting the wLyp isoform could have 

selective blocking effects. If it could be shown that such an antibody exclusively targeting the 

wLyp isoform did have selective blocking effect on PTP in vitro, this would provide 

confidence for the generation of small molecule inhibitors designed to selectively block the 

wLyp isoform. Such an inhibitor could prove a valuable reagent for further investigating the 

biology of Lyp and also for development of therapeutic strategies aimed at reducing the 

severity of ADs or delay the initiation and/or progress of ADs. To explore this hypothesis the 

first aim of the project was to attempt to generate monoclonal antibodies specifically 

recognising either the R or W Lyp isoforms.

The cellular and molecular mechanisms underpinning the increase in Lyp phosphatase 

activity and leading to a predisposition to ADs are currently unknown. The most popular 

hypothesis for the R620W mediated predisposition to ADs is an impairment of thymic 

selection due to a decrease in TCR signalling associated with the wLyp isoform eventually 

leading to release of autoreactive T cells in the periphery which go on to result in
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autoimmunity. Impairment of TCR signalling in the thymus may also affect the generation of 

natural T reg cells, which play a major role in mediating peripheral tolerance.

There are also several other hypotheses proposed to explain the molecular and cellular 

mechanisms by which the R620W polymorphism in Lyp leads to AD. However, there is 

currently no direct evidence to support any of these. Nevertheless, some studies have 

investigated the functional effect of the R620W polymorphism on T cells. These studies have 

explored the potential effect of the R620W polymorphism in TCR mediated cytokine 

production and calcium mobilization when comparing T cells expressing each of the two 

polymorphic forms of Lyp. One of these described studies looked at the effect of 

overexpression of Lyp isoforms by nucleofection of primary human T cells (Vang et al.

2005). Nucleofection is a non-viral electroporation based transfection method which utilises a 

device that delivers unique electrical parameters in order to introduce genes directly into the 

nucleus of the cells being transfected. This method can be highly toxic to cells, especially T 

cells. Hence, a better more stable method of transfecting T cells is required which can 

potentially be used to transduce primary T cells. Therefore, the second aim of this project was 

to generate recombinant Lyp expressing lentivirus plasmids that could be used to generate
R Wrecombinant lentivirus particles expressing the Lyp or the Lyp isoforms. The recombinant 

Lyp expressing lentiviruses were subsequently used to transduce T cells to generate stable 

permanently transduced T cell lines. Three previous studies have concentrated on the 

differences in cytokine production by T cells from patients who are either heterozygous or 

homozygous for the RLyp isoform (Aarnisalo et al. 2008; Rieck et al. 2007; Vang et al. 2005). 

In the above study no purification of different T cell subsets was carried out. As a 

consequence, the previous studies did not take into account possible skewing of T cell subsets 

and therefore it cannot be unambiguously stated that the differences observed in cytokine 

expression are due to the intrinsic effects of different Lyp isoforms on T cell function. 

Therefore the third aim of this project was to generate R/wLyp transduced homogenous 

populations of cells by transducing leukaemic T cell lines with the recombinant R/WLyp 

lentiviruses and the fourth aim of this project was to study the functional effects of over­

expression of the R/wLyp isoforms in leukaemic T cells. Knowledge of how the
R Woverexpression of the Lyp and Lyp isoform affects the function of a monoclonal 

population of T cells would allow further investigation and dissection of pathways that might 

be affected by Lyp.
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The proposed hypothesis was that overexpressing R and W Lyp isoforms in T cells would 

lead to a decrease in activation status and cytokine production by the T cells expressing 

exogenous Lyp isoforms compared to controls not expressing exogenous Lyp and this 

reduction will be more profound in WLyp expressing T cells compared to RLyp expressing T 

cells.

The specific aims of the project were:

• To generate monoclonal antibodies specific against the R and the W isoforms of Lyp.

• To generate recombinant lentivirus plasmids encoding the two isoforms of Lyp.

• To generate R/wLyp expressing recombinant lentiviruses.

• To use the R/wLyp expressing recombinant lentiviruses to transduce leukaemic T cell 

lines to generate T cell lines permanently expressing either the R or the W isoforms of

Lyp-

• To assess the TCR activation status of the leukaemic T cells expressing either the R or 

the W isoforms of Lyp.

• To assess cytokine expression by the leukaemic T cells expressing either the R or the 

W isoforms of Lyp.
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Chapter 2

Materials and Methods

2.1 Reagents and consumables:

2.1.1 Antibiotics

Antibiotic solutions were sterile filtered through a 40pl syringe filter and stored in stocks at 

either -20°C or at 4°C for continuous use.

Ampicillin

Ampicillin was purchased from Sigma Aldrich [Gillingham, Dorset, U.K.] and reconstituted 

in dh^O to give a lOOmg/ml stock.

2.1.2 Antibodies

The primary antibody solutions, anti-Lyp, anti-GFP and anti-actin were aliquoted and stored 

at -20°C. The fluorescent and the HRP conjugated secondary antibodies were stored at 4°C 

for continuous use.

Immunoblotting antibodies

The goat anti-Lyp polyclonal antibody was purchased from R&D systems [Abingdon, U.K.]. 

The rabbit anti-actin polyclonal antibody was purchased from Sigma Aldrich [Gillingham, 

Dorset, U.K.]. The horseradish peroxidase (HRP) conjugated goat anti-mouse and goat anti­

rabbit antibodies were purchased from Bio-Rad [Bio-Rad, Hercules, CA]. The HRP 

conjugated rabbit anti-goat antibody was purchased from Sigma Aldrich [Gillingham, Dorset, 

U.K.]

Fluorescent conjugated anti-rat and anti-human antibodies fo r  detecting protein expression

Anti-rat CD2 PE antibody was purchased from Serotec [Oxford, U.K.]. Aqua live/deadAmCyan 

stain was purchased from Invitrogen [Paisley, U.K.]. Anti human CD69 PE antibody was 

purchased from eBioscience [Hatfield, U.K.].
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2.1.3 Cell media and associated reagents

Roswell Park Memorial Institute medium (RPMI), Dulbecco modified Eagle’s minimal 

essential media (DMEM), L-glutamine, penicillin, streptomycin, sodium pyruvate and 0.5% 

trypsin in HBSS were purchased from Gibco, Invitrogen [Paisley, U.K].

2.1.4 Chemical reagents

Tris was obtained from Sigma and Tween 20 and Nonidet P-40 (NP-40) were supplied by 

BDH [Poole, Dorset, U.K]. All other reagents were purchased from Fisher Scientific 

[Leicester, U.K] unless stated otherwise.

2.1.5 Distilled water (dH^O)

Distilled water (dFUO) was obtained from a Millipore reverse osmosis system followed by 

filtration through two ion exchange resin columns using a Millipore Milli-Q system.

2.1.6 Foetal calf serum (FCS)

Foetal calf serum (FCS) was purchased from Gibco, Invitrogen [Paisley, U.K] and was heat 

inactivated at 56°C for an hour.

2.1.7 MACs Buffer

MACs Buffer (0.5% BSA (Sigma), 2mM EDTA (Sigma), GIBCO PBS (Invitrogen)) was 

sterile filtered using a 0.2pm bottle top filter and store at 4°C.

2.1.8 Plasmid DNA

Plasmids for DNA sequencing and screening by restriction digestion were purified using an 

Invitrogen plasmid Mini-prep kit. Plasmid DNA for DNA sub-cloning was purified using a 

Qiagen Gel Extraction kit. Plasmids for transfection were prepared using an Invitrogen 

PureLink HiPure Plasmid filter Maxiprep kit and then stored at -20°C in TAE buffer.
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2.1.9 Tissue culture plastic

All tissue culture flasks (T25, T75 and T180), tissue culture plates (6, 24 and 96 wells) and 

petri- dishes were supplied by Nunc [Thermo Fisher Scientific].

2.2 Cell based techniques

2.2.1 Cell counting by trypan blue exclusion

lOpl of cell suspension was mixed with 10pl of 0.1% trypan blue in PBS, loaded on to an 

improved Neubauer haemocytometer [Weber Scientific International Limited, Lancing, U.K.] 

and viable cells counted at 100 times magnification under white light.

2.2.2 Cryopreservation of cell lines

Cells were removed from tissue culture and washed with PBS by centrifugation at 1800rpm 

for 3 minutes at 4°C. Cells were re-suspended in freezing buffer (90% FCS and 10% DMSO 

[Sigma]) to give 0.5 -  2 x 106 cells per ml, and 1ml aliquots dispensed in to cryo-vials. The 

cryo-vials were placed in a Nalgene 5100 cryo-freezing container [Merc Laboratory Supplies, 

Dorset, U.K.] for 24 hours at -80°C before being transferred to liquid nitrogen. Cells were 

removed from cryopreservation by thawing rapidly at 37°C (water-bath) and then washing in 

PBS by centrifugation at 1500rpm for 5 minutes at 4°C, before being placed in culture.

2.2.3 Flow cytometer

A FACS Calibur flow cytometer [BD Biosciences, San Jose, CA] fitted with an argon-ion 

(488nm) and red diode laser (635nm) and capable of four channels of fluorescent detection 

was used throughout this study. Acquired data was analysed using Summit [Dako Colorado, 

Inc] or FlowJo software (Tree Star Inc, Ashland, OR].

Single colour immunoflourescent staining

1 x 106 cells were pelleted in 5ml FACS tubes by centrifugation at 1600 rpm for 5 minutes. 

The pellets were washed once with 300pl cold PBS and centrifuged at 1600 rpm for 5 

minutes. For anti Rat CD2 and anti human CD69 staining, cells were resuspended in 30pl of
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1/10 diluted anti Rat CD2PE or anti Rat CD69PE antibody. For SLY tetramer (HLA-A*0201 

biotinylated monomer was refolded with SLYNTVATL peptide and tetramerised using 

Streptavidin-PE [Invitrogen]) staining. 2.5pg SLY tetramer was used per stain. Cells were 

incubated for 15 minutes in the dark at room temperature. Cells were washed twice by adding 

200pl of PBS and centrifuged at 1600rpm for 5 minutes. Supernatant was removed and the 

cells were resuspended in 300pl of PBS for immediate analysis or fixed with paraffin 

formaldehyde (PF). For fixation, cells were resuspended in 300pl of 1% PF and incubated at 

4°C in the dark until analysis could be performed. Negative control wells (consisting of cells 

not expressing rat CD2 for anti Rat CD2 staining and unstimulated cells for anti CD69 

staining) were included in all experiments. For anti CD69 and anti tetramer staining, 

unstained cells were also used as an additional control. In addition, for tetramer staining, a 

diabetes peptide tetramer (ALWGPDPAAA peptide, tetramerised using Streptavidin-PE 

[Invitrogen]) was also used as a negative control. Where GFP was the fluorochrome to be 

detected, cells were washed twice with PBS and resuspended in either 300pl of PBS for 

immediate analysis or 300pl of 1% PF and stored at 4°C in the dark until acquisition and 

analysis be performed.

2.2.4 Protein analysis

Immunoblotting techniques were used to detect the levels of Lyp expression in 293T cells 

that had been transfected with Lyp Lentivirus and Lyp pGEM plasmids, and also to screen 

hybridoma clones for antibody production against denatured full length Lyp. Actin was used 

as an internal control.

Detergent lysis o f cells

Cells were removed from culture, washed and counted. The cells were then pelleted and the 

supernatant was carefully removed. The pelleted cells were re-suspended in an appropriate 

volume of ice cold detergent lysis buffer (1ml lysis buffer per 107 cells). Either NP-40 

(150mM NaCl, 50mM Tris-HCL pH 8.0, 25mM NaF, ImM sodium orthovanadate 0.5% 

Nonidet P40) or RIPA (150mM NaCl, 50mM Tris pH 8.0, 1% NP-40, 0.5% Deoxycholic 

acid, 0.1%SDS) detergent lysis buffer containing protease inhibitors (10pg/ml Aprotinin, 

lOpg/ml Leupeptin, 10p.g/ml Pepstatin A, ImM EDTA, ImM Phenylmethylsulfonylfluoride), 

which were added immediately prior to lysis, was used. Cells were allowed to lyse for 30
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minutes on ice and unlysed cells/nuclear material removed by centrifugation (Beckham 

GS15R) at 1300rpm for 10 minutes at 4°C. The supernatant was collected and mixed with 6X 

sample buffer (0.35M Tris pH 6.8, 1.65M Dithiothreitol, 33% glycerol, 10% SDS, 0.12 

mg/ml bromophenol blue [Sigma Aldrich]. The cell lysate was then heated for 10 minutes at 

70°C and if not immediately required for analysis stored at -20°C.

SDS-Polyacrylamide Gel Electrophoresis

Proteins were resolved using NuPAGE Novex 4-12% Bis-Tris pre-cast gels [Invitrogen] 

mounted in a XCell SureLOck Mini-Cell [Invitrogen] which was filled with NuPAGE lx 

MOPS SDS running buffer [Invitrogen], according to the manufacturer’s instructions. SDS- 

PAGE samples were boiled for 10 minutes at 70°C and microfuged at 13000rpm for 30 

seconds. Samples were loaded into the wells of the gel by careful pipetting using gel tips. For 

size discrimination of the resolved proteins, lOpl of SeeBlue Plus 2 prestained standard 

protein ladder [Invitrogen] was loaded into one well. The gels were resolved at 200 Volts for 

1 hour.

Immunoblotting

Polyvinylidenedifluoride (PVDF) membranes [Immobilon-P, Millipore, Bedford, MA] were 

cut to 7.5cm x 8cm size, wet with methanol for 10 seconds, rinsed in dHzO and equilibrated 

in lx NuPAGE transfer buffer (5% of 20x NuPAGE transfer buffer and 10% Methanol in 

dHzO) until required. Two pieces of filter paper were also cut to 7.5cm x 8cm in size and 

placed in the lx  NuPAGE transfer buffer until required. Five blotting pads were soaked in 

400mls of lx  NuPAGE transfer buffer until required. Following electrophoresis for one hour 

at 200 Volts, the gel was removed from the gel cassette trimmed and the gel, PVDF 

membrane, filter paper and blotting pads assembled according to manufactures instructions 

[Invitrogen XCell II Blot Module], The gel/membrane/blotting pads assembly was carefully 

placed into the Invitrogen XCell II blot module and the Gel Tension Wedge inserted and 

locked into position. The lower buffer chamber was filled with lx  NuPAGE transfer buffer 

until the gel/membrane assembly was covered and the outer buffer chamber was filled with 

650 ml dH20 . The lid was placed into position and the gel blotted at 30 Volts for 1 hour 30 

minutes.
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Immuno-detection by Enhanced Chemiluminesence (ECL)

The non-specific binding sites of the PVDF membrane were blocked by placing it in blocking 

buffer (PBS containing 3% non-fat milk) overnight at 4°C. The membranes were then 

incubated for two hours in primary antibody at a dilution of 1 in 1600 for Lyp and 1 in 1000 

for Actin in blocking buffer, by constant rocking at 4°C. The PVDF membrane was then 

rinsed briefly in PBS solution followed by a 5minute wash in wash buffer (0.05%Tween 20 

in PBS) and two 5 minute washes in PBS, at room temperature by constant rocking.

Secondary antibodies, anti-goat (for Lyp) and anti-rabbit (for Actin) were added at a dilution 

of 1 in 3000 in blocking solution and incubated for 1 hour by gentle rocking at room 

temperature. The membranes were rinsed then washed once in washing buffer for 5 minutes, 

followed by one wash in PBS for 5 minutes at room temperature by constant rocking. The 

membranes were then covered with a 1:1 mixture of ECL reagents 1 and 2 [Amersham] and 

allowed to react for 1 minute before being sealed in a polyethene sleeve. The membranes 

sealed in the polyethene sleeve were subsequently exposed to photographic film for 10 

seconds to 20 minutes and the photographic film developed automatically using a Compact 

X2 Processor [X-Ograph Ltd., Wiltshire, U.K.]

2.3 Molecular Biology

In order to over-express Lyp, a lentiviral system known to be effective for transducing T cells 

was used. To achieve over-expression of R620 and W620 Lyp using lentiviruses, two parallel 

lentivirus plasmids expressing the R620 and W620 isoforms of Lyp were generated, and to 

allow potential identification of transduced cells, truncated rat CD2 and GFP were selected as 

reporter genes. The reporter gene was required to be expressed from the same mRNA as the 

gene of interest, Lyp, therefore a self-cleaving peptide, 2A, was introduced for the purpose. 

The generation of R/wLyp-2A-CD2 or R/wLyp-2A-GFP lentivirus plasmids first required the 

assembly of R/w Lyp, self-cleaving 2A peptide and CD2/GFP cassettes. A pUC x-2A-y vector 

was used for this purpose.

All DNA manipulations were carried out using autoclaved tips, tubes, vials and solutions. All 

polymerase chain reaction (PCRs) were performed on a Biometra Tpersonal PCR machine 

[Thistle Scientific].
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Buffer Contents

1 xTBE

(lin 5 dilution of 

5x stock).

5x TBE: 108g Tris, 55g Boric acid [Sigma Aldrich], and 40mls of 

0.5M EDTA pH 8.0

Agarose gel loading 

dye

3.6mM Bromophenol Blue and 1.2M Sucrose

Lauria-Bertani (LB) 1% Tryptone Soya Broth [Oxoid, Basingstoke, U.K], 0.5% Yeast 

extracts [Oxoid] and 1% NaCl [Sigma Aldrich], buffered to pH 7.0 

then autoclaved and allowed to cool at room temperature.

LB Ampicillin broth lOOpg/ml final ampicillin was added to cooled (below 50°C) LB 

broth, immediately prior to use.

LB Ampicillin plates 1.5% Agar granules added to LB broth, autoclaved and cooled to 

50°C before the addition of the ampicillin (100p.g/ml final 

concentration)

Table 2.1 Buffers and Broths 

2.3.1 PCR

A number of different PCRs were carried out to molecularly clone the different cDNA 

sequences for the generation of the recombinant Lentivirus and other plasmids for this 

project. PCRs were primarily conducted out using Phusion polymerase [Finnzymes, Finland]. 

The only exceptions to this were the mutagenesis PCRs, which were carried out using Pfu 

Turbo [Stratagene]. All the PCR primers used for amplification, mutagenesis and sequencing 

of the DNA were obtained from MWG Biotech. The primers were reconstituted according to 

manufacturer’s instructions using dFLO to achieve a concentration of lOOpmol/pl and then 

diluted to 25pmol/|al.
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Primer name Primer Sequence Description

Lyp 5'X bal 

mutagenesis 

primer

5 CCAGAAAGAACTCTGGAGTCCTTCTTTC3

G— ► C mutation 

to remove the 

internal Xbal site in 

Lyp cDNA.

Lyp 3' Xbal 

mutagenesis 

primer

5 GGTCTTTCTTGAGACCTCAGGAAGAAAG3

G— mutation 

to remove the 

internal Xbal site in 

Lyp cDNA.

CD2 5 'Xbal 

mutagenesis 

primer

5 CTTG AGG ATTCTGG AG ATGGTCTC3

G— ►C mutation 

to remove the 

internal Xbal site in 

the truncated rat 

CD2 cDNA.

y c m - x b a i

mutagenesis

primer

5 GAACTCCTAAGACCTCTACCAGAG 3

G— mutation 

to remove the 

internal Xbal site in 

the truncated rat 

CD2 cDNA.

5'Lyp-KpnI

mutagenesis

primer

5 CTCC A AGTGGT AC A AGTTCT A AG ATGTC3

A— ► T mutation to 

remove the internal 

Kpnl site in Lyp 

cDNA.

3'Lyp-A/?«7

mutagenesis

primer

5’g a g g t t c a c c a t g t t c a a g a t t c t a c a g 3’

A— mutation to 

remove the internal 

Kpnl site in Lyp 

cDNA.
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5'Lyp-tryp

mutagenesis

5 CTT CCT GTA TGG ACA CCT G3’

C— ► T mutation to 

convert the 

Arginine form of 

Lyp into a 

Tryptophan form

3'Lyp-tryp

mutagenesis

5 G AAG GAC ATA CCT GTG GAC3

C— ► T mutation to 

convert the 

Arginine form of 

Lyp into a 

Tryptophan form

Lyp 5'primer 

with Kozak 

sequence.

5 AAA TCTAGA CCA GCCATG  GAC CAA 

AGA GAA ATT CT3

Lyp amplification 

primer

incorporating Xbal 

site and Kozak 

consensus sequence

Lyp 3'primer 

with Myc tag

5 TGA ACC TTA TAA CTT GTT TTT GAA TAA 

AGA CTTCTTCTA  GAC GAG CTC AAA3’

Lyp amplification 

primer

incorporating c-myc 

tag and Xhol site.

Lyp 5'primer 

with new Kozak 

sequence.

5 AAA TCTAGA GCC GCCACC  ATG GAC 

CAA AGA GAA ATT CT3

Lyp amplification 

primer

incorporating Xbal 

site and most used 

Kozak consensus 

sequence

Lyp 3'primer 

without myc tag

5 GGTGGTTGA ACC TTA TAA GAGCTCAAA3’ Lyp amplification 

primer

incorporating Xhol 

site.
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3’ CD2 

sequencing 

primer ior Xbal 

site mutagenesis

5 CA GAA CCT TCC TTG TCT ACA 3

CD2 sequencing 

primer to sequence 

Xbal site directed 

mutagenesis

3’ Lyp Xbal 

mutagenesis 

sequencing 

primer

5 GA TAG GAC TGT GGT ACC TTT 3 Lyp sequencing 

primer to sequence 

Xbal site directed 

mutagenesis

5’ primer for 

CD2 

amplification

5 AAA GGT ACC  ATG AGA TGT AAA TTC3

5’ primer 

incorporating Kpnl 

site for 

amplification of 

truncated rat CD2 

sequence

3’ primer for 

CD2 

amplification

5 CTTCTCCTTTTTTGCCATTCGCCGGCGAA3

3’ primer 

incorporating Notl 

site for 

amplification of 

truncated rat CD2 

sequence

5’Lyp primer for 

amplification of 

the missing Lyp 

DNA sequence

5AAAGAGCrCATCTGGGATGTA3’ 5’Lyp primer 

incorporating a SacI 

site for 

amplification of the 

missing DNA
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3’Lyp primer for 

amplification of 

the missing Lyp 

DNA sequence

5 GATTTGTGGTTL4 TGCA 7AAA 3 3’Lyp primer 

incorporating a 

BsaAI site for 

amplification of the 

missing DNA 

sequence

5’primer for Lyp 

amplification

5 AAAGG7MCC ATGGACC AAAGAGA AATT 

CTG3

5’Lyp amplification 

primer 

incorporating a 

Kpnl site for 

cloning Lyp into 

“y” site of pUC 

GFP-2A-y plasmid

3’ primer for Lyp 

amplification

5 GTGGTGGTTGAACCTTATAAATTCGCCGG 

CGAAA 3

3’Lyp amplification 

primer 

incorporating a Notl 

site for cloning Lyp 

into “y” site of 

pUC GFP-2A-y 

plasmid

5’ primer for 

GFP 

amplification

5’A A ATCTA GA GCCGCCA CC ATGGTG AGC A A 

GGGC3

5’GFP 

amplification 

primer 

incorporating a 

Xbal site for 

cloning GFP into 

“x” site of pUC x- 

2A-y plasmid
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3’ primer for 

GFP 

amplification

5 CTGCTCGACATGTTCG^GCrCAAA3 3’GFP 

amplification 

primer 

incorporating a 

Xhol site for 

cloning GFP into 

“x” site of pUC x- 

2A-y plasmid

5’RFP 

amplification . 

primer

5 AAA TCTAGA GCC GCCACC  ATG GCC 

TCC TCC GAG AAC3

5’ RFP 

amplification 

primer 

incorporating the 

Kozak sequence 

and Xbal site.

3’RFP

amplification

primer

5 GCGGTGGTGGACAAGGAC04GC7TAAA 3 3’RFP amplification 

primer 

incorporating the 

Xhol site.

5’ Kozak GFP 

primer

5 AAATCTAGAGCCGCCACCATGGTG  

AGCAAGGGC3

5’ primer for GFP 

amplification 

incorporating Xbal, 

site to generate 

GFP-2A-Lyp 

plasmid.
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3’ Kozak GFP 

primer

5 AAAC7’CG4GCTTGTACAGCTCGTC3 3’ primer for GFP 

amplification 

incorporating Xhol 

site to generate 

GFP-2A-Lyp 

plasmid.

5’Lyp Kpnl 

amplification 

primer

5 AAAGG7MCCATGGACCAAAGAGAAATTC 

TG3’

5’ primer for Lyp 

amplification 

incorporating Kpnl 

site to generate 

GFP-2A-Lyp 

plasmid.

3’Lyp Notl 

amplification 

primer

5’a a a g c g g c c g c t t a a a t a t t c c a a g t t g

GTGGTG3

3’ primer for Lyp 

amplification 

incorporating Notl 

site to generate 

GFP-2A-Lyp 

plasmid.

5’ myc tag-2 A 

sequencing 

primer

5 CAG GCC CAA TCT ATA GAA3 5’ sequencing 

primer to sequence 

the 2A-myc tag 

junction

5’pUC Lyp-2A- 

GFP/CD2 

sequencing 

primer 1

5 C AAGGCG ATT A AGTTGGGT A3 Sequencing primer 

to sequence entire 

puC Lyp-2A- 

GFP/CD2 plasmids
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5’pUC Lyp-2A- 

GFP/CD2 

sequencing 

primer 2

5 GGT AG A ACT ATCCCTG AT A A3 Sequencing primer 

to sequence entire 

puC Lyp-2A- 

GFP/CD2 plasmids

5’pUC Lyp-2A- 

GFP/CD2 

sequencing 

primer 3

5 GCTGAAAAAAGGAAATCTGA3 Sequencing primer 

to sequence entire 

puC Lyp-2A- 

GFP/CD2 plasmids

5’pUC Lyp-2A- 

GFP/CD2 

sequencing 

primer 4

5 CATTAGTTCAAACGCAGGAA3 Sequencing primer 

to sequence entire 

puC Lyp-2A- 

GFP/CD2 plasmids

5’pUC Lyp-2A- 

GFP/CD2 

sequencing 

primer 5

5 TGCACCCTGCTAAATCAAGC3 Sequencing primer 

to sequence entire 

puC Lyp-2A- 

GFP/CD2 plasmids

5’pUC Lyp-2A- 

GFP/CD2 

sequencing 

primer 6

5 TTGGAATCTCAACCACATGA3 Sequencing primer 

to sequence entire 

puC Lyp-2A- 

GFP/CD2 plasmids

5’pUC Lyp-2A- 

GFP/CD2 

sequencing 

primer 7

5 CTACATCCCTCTTCTCTTATTA3 Sequencing primer 

to sequence entire 

puC Lyp-2A- 

GFP/CD2 plasmids
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5’pUC Lyp-2A- 

GFP/CD2 

sequencing 

primer 8

5 ACCAAGCAAGAGTGTAAAAC3 Sequencing primer 

to sequence entire 

puC Lyp-2A- 

GFP/CD2 plasmids

5’pUC Lyp-2A- 5’c a g a a t c t g t t c a g t c a a a t 3 Sequencing primer

GFP/CD2 to sequence entire

sequencing puC Lyp-2A-

primer 9 GFP/CD2 plasmids

5’pUC Lyp-2A- 5 ACGGCCACAAGTTCAGCGTG3 Sequencing primer

GFP/CD2 to sequence entire

sequencing puC Lyp-2A-

primer 10 GFP/CD2 plasmids

5’pUC Lyp-2A- 5 CGAGCTGAAGGGCATCGACT3 Sequencing primer

GFP/CD2 to sequence entire

sequencing puC Lyp-2A-

primer 11 GFP/CD2 plasmids

5’pUC Lyp-2A- 5 TCCTGCTGGAGTTCGTGACC3 Sequencing primer

GFP/CD2 to sequence entire

sequencing puC Lyp-2A-

primer 12 GFP/CD2 plasmids
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5’ Lyp 

genotyping 

primer

5 TCACCAGCTTCCTCAACCACA3 5’ primer for 

genotyping R620W 

polymorphism in 

Lyp

3’ Lyp 

genotyping 

primer

5 TTT A AGGC A ACTTCGTTGTT AT AG 3’ 3’ primer for 

genotyping R620W 

polymorphism in 

Lyp

Table 2.2 PCR primer sequences used in the generation of recombinant plasmids.

The primer name is shown alongside the sequence with any modifications to the cDNA that 

were introduced or the introduced of restriction sites and Kozak consensus sequence in the 

right hand column. Restriction endonuclease sites, Kozak consensus sequences and c-myc tag 

sequences are shown in the primer sequence in italics, any introduced stop codons are shown 

in bold and single base pair mutations in the cDNA sequence are underlined.

Amplification PCR using Phusion

A typical 50pl PCR reaction using Phusion polymerase [Finnzymes, Finland] contained the 

following reagents:

50ng of DNA template,

2.5mM of each dNTP [Invitrogen],

5X HF Phusion buffer [Finnzymes, Finland],

25pmoles of forward primer [MWG Biotech],

25pmoles of reverse primer [MWG Biotech],

dH20 to take the reaction volume to 5 0 p l,

and 0.5pl of Phusion polymerase [U/pl Finnzymes, Finland].
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The PCR was performed on a Biometra Tpersonal PCR machine [Thistle Scientific]. Each 

PCR consisted of the following cycles:

Initial denaturing at 98°C for 3 minutes.

30 cycles of:

Denaturing : 98°C for 15 seconds.

Annealing: 55°C for 15 seconds (annealing temperature is dependent upon the 

specific primer used).

Extension: 72°C for 1 minute.

Followed by a final extension at 60°C for 4 minutes.

Pfu Turbo PCR

Pfu Turbo polymerase [Stratagene] was used for “Quick change” in vitro mutagenesis PCR. 

This reaction consisted of:

50ng of DNA template,

2.5mM of each dNTP [Invitrogen],

10X Pfu turbo buffer [Stratagene],

x pM of forward primer [MWG Biotech], (primer concentration dependent on the primer 

sequence and worked out using the following formula

y pM of reverse primer [MWG Biotech],

dHzO to take the reaction volume to 50pl,

and 0.5pl of Pfu Turbo [U/pl Stratagene].

The PCR was performed on a Biometra Tpersonal PCR machine [Thistle Scientific]. Each 

PCR consisted of the following cycles:

Initial denaturing at 95°C for 30 seconds.
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12 cycles of:

Denaturing : 95°C for 30 seconds.

Annealing: 55°C for 60 seconds (annealing temperature is dependent upon the

specific primer used).

Extension: 68°C for 12 minute (extension time is dependent on the size of the

plasmid containing the template DNA)

2.3.2 Genotyping

Genotypping for the C1858T SNP was conducted using PCR restriction fragment length 

polymorphism. The genomic DNA was extracted using a Relia Prep™ gDNA tissue 

Miniprep system [Promega, U.K.]. A set of forward and reverse oligos shown in Table 2.2 

previously used by (Bottini et al. 2004) were used to amplify a 215bp sequence of the 

genomic DNA by PCR. The PCR reaction was carried in a 50pl reaction using Phusion 

polymerase [Finnzymes, Finland] containing the following reagents:

50 ng of genomic DNA,

2.5 mM of each dNTP [Invitrogen],

5X HF Phusion buffer [Finnzymes, Finland],

25 pM of forward primer [MWG Biotech],

25 pM of reverse primer [MWG Biotech],

dlUO to take the reaction volume to 50 p i ,

and 0.5 pi of Phusion polymerase [U/pl Finnzymes, Finland].

The PCR was performed on a Biometra Tpersonal PCR machine [Thistle Scientific]. Each 

PCR consisted of the following cycles as described by (Bottini et al. 2004):

30 cycles of:

Denaturing : 95°C for 30 seconds.
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Annealing:

Extension:

60°C for 30 seconds 

72°C for 30 seconds.

Followed by a final extension at 60°C for 4 minutes.

The amplified 215bp fragment of the PTPN22 gene sequence encompassing the C1858T 

polymorphism was genotyped by Xcml restriction endonuclease digestion as described in 

section 2.3.5.

2.3.3 Agarose gel electrophoresis

PCR products and DNA fragments were separated and visualised by agarose gel 

electrophoresis. 1% (w/v) agarose [Invitrogen] in lx  TBE buffer was melted in a microwave 

oven and allowed to cool before the addition of 0.4pg/ml of ethidium bromide. The agarose 

was poured into a gel casting tray, an appropriate size comb inserted and allowed to set. After 

PCR amplification using Phusion polymerase, 5pl of the sample was loaded onto a Wo (w/v) 

agarose gel containing ethidium bromide (0.4pg/ml) with 5pl of loading buffer. In addition, 

3pl of 1Kb Plus DNA ladder [Invitrogen] was also loaded onto the gel. The gels were run at 

120 Volts for 60 minutes. The DNA within the gel was visualised using a UV 

transilluminator and the images captured on a digital camera using a Bio Rad gel 

documentation system.

2.3.4 Purification of PCR products

PCR products were purified using an Invitrogen PCR purification kit prior to restriction 

endonuclease digestion. The manufacturer’s protocol was used for the PCR purifications. In 

brief, the DNA was bound to a silica membrane, washed and then eluted using 50pl of 

elution buffer or TAE. The concentration was determined by absorbance at 260nm.

2.3.5 Restriction endonuclease digestion

The PCR products and plasmids were digested using the relevant restriction endonucleases. 

All the restriction endonucleases were purchased from New England Biolabs [Hitchin, Herts, 

U.K]. PCR products and plasmid vectors were restricted using restriction endonucleases to 

produce complimentary DNA ends before ligation reactions were performed. A typical 50pl 

restriction digest reaction contained 5pl of 10 x NEB Buffer, 20-30pl of cDNA and lp l of
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NEB restriction endonuclease (if a double digest was required, lp l each of the two restriction 

endonucleases). The reactants were then briefly mixed and incubated for 2 hours at 37°C.

2.3.6 Purification of restricted PCR products and vectors

The restricted PCR products and plasmid vectors were purified from agarose gels using a 

Qiagen QIAquick gel purification kit [Qiagen Crawley, West Sussex, U.K], To purify the 

restricted PCR products and restricted plasmid vectors from an agarose gel, the product was 

loaded into a 1% agarose gel with ethidium bromide, the gel slice containing the DNA band 

was excised with a clean sharp scalpel, the size of the gel slice minimized by removing 

excess agarose and the DNA extracted according to the manufacturer’s instructions. Briefly, 

the agarose was dissolved in sodium iodide, the DNA bound to a silica matrix, washed and 

eluted into 50pl of elution buffer. The concentration was determined by absorbance at 260 

nm.

2.3.7 Ligation

Purified restricted inserts and plasmid vectors were ligated using T4 DNA Ligase [New 

England Biolabs]. Per recombinant plasmid, four to five ligation reactions with a varying 

vector to insert ratio (usually 1:0, 1:3, 1:3.5, 1:4) were set up. Typically, a lOpl ligation 

reaction containing lpl of 10 x Ligase reaction buffer, 0.5pl T4 DNA ligase, lpl vector, Xpl 

insert (a 3 fold molar excess of insert calculated by (3x ((mass (ng) of vector x size (kb) of 

insert)/size (kb) of vector) was used) was prepared, mixed briefly and incubated for 15 to 20 

minutes at room temperature.

The ligated DNA was transformed into bacteria directly from the ligation mix.

2.3.8 Transformation

The ligated plasmid DNAs were transformed into 50pl aliquots of competent Escherchia Coli 

strain, DH5a, using heat shock for 20 seconds at 42°C. Transformed bacteria were then 

grown without selection in 950 pi of LB medium for 1 hour at 37°C to allow synthesis of 

plasmid-encoded antibiotic resistant proteins. The bacteria were then centrifuged at 13000 

rpm for 2 minutes, 950pl of the supernatant removed, the pellet re-suspended in remaining 

50pl of LB and streaked on to LB agar plates containing 100 pg/ml of ampicillin and allowed 

to grow for 16 hours at 37°C.
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2.3.9 Plasmid selection

Following transfection by heat shock, 1ml cultures were centrifuged to pellet the bacteria 

which was then re-suspended in 50pl of LB broth and streaked onto LB-ampicillin plates and 

allowed to grow for 16 hours in an incubator at 37°C. Bacterial cultures from frozen stocks 

were directly streaked onto LB-Ampicillin plates and allowed to grow for 16 hours in an 

incubator at 37°C.

2.3.10 Bacterial colony screening

Bacterial colonies were screened by restriction digestion analysis of DNA isolated from 

cloning and identity confirmed by DNA sequencing. Ampicillin resistant bacterial colonies 

were picked from the ampicillin agar plate and grown for 16-18 hours in 5mls of LB broth 

containing 100 pg/ml of ampicillin. The plasmid DNA was extracted for each clone and the 

DNA quantified using a spectrophotometer. Subsequently, the DNA was screened by 

restriction endonuclease digestion. Typically, 5 pi of purified DNA was digested as described 

above but in a 15 pi total volume using specific restriction endonuclease(s), which were 

dependent on the recombinant being screened.

2.3.11 Plasmid DNA isolation

Following a restriction endonuclease digestion screen, the positive LB broth cultures of 

single colonies picked from agar plates and inoculated in 5 ml LB-Ampicillin (100 pg/ml) 

broth were subsequently, used as starter cultures to inoculate a much larger LB broth culture. 

Typically, 1ml of starter culture was used to inoculate 500 mis of LB-Ampicillin broth and 

incubated overnight at 37°C on an orbital shaker. Bacteria were collected by centrifugation at 

6000 rpm for 10 minutes at 4°C on a Sorvall Evolution centrifuge. Plasmids were isolated 

from 500 ml LB-culture using an Invitrogen PureLink HiPure Plasmid filter Maxiprep kit 

according to manufactures protocol. In brief, the bacteria were lysed and the DNA bound to a 

silica matrix and following a wash, the DNA was eluted in elution buffer then precipitated 

using isopropanol and 70% ethanol and re-constituted in 500 pi of TBE buffer. The DNA 

was stored at -20°C unless immediately required.

2.3.12 Storage of bacterial clones
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500 pi of a 5ml starter culture was mixed in a 1:1 ratio with glycerol freezing buffer (65% 

glycerol, 0.1M MgSC>4 and 0.23M Tris pH 8.0) and stored at -80°C.

2.3.13 DNA sequencing

The recombinant plasmids generated were DNA sequenced using the Big Dye TM 

Terminator Cycle Sequencing Kit [Perkin Elmer]. ClustalW2 software available online at 

[http://www.ebi.ac.uk/Tools/msa/clustalw2/] was used to align the sequences. The 

sequencing reaction contained:

200 to 300ng of plasmid DNA,

2.5pmol of either forward or reverse sequencing primer,

lpl of Big Dye 3.1 [Applied Biosystems] containing fluorescent tagged dideoxynucleotides 

(ddNTPs).

3 j l i 1 of Big Dye 3.1 buffer and

dHzO to make the reaction volume up to 15pl

The sequencing reaction was performed on a Biometra Tpersonal PCR machine [Thistle 

Scientific] and consisted of 25 cycles of the following steps: 96°C for 15 seconds, 50°C for 

30 seconds and 60°C for 4 minutes.

Following the reaction, the DNA was precipitated by adding 35 pi of 100% ethanol, 

incubating on ice for 5 minutes and subsequently collected by centrifuging for 10 minutes at 

13000 rpm. The DNA was then washed once again with 50 pi of 70% ethanol. The DNA 

pellet was left to air dry for 5 minutes before sequencing by the DNA sequencing facility of 

Cardiff University [Central Biotechnology Services, Henry Wellcome Research Institute, 

Cardiff University] using a ABI prism 3130X1 Genetic Analyzer.

2.3.14 Plasmid vectors

The plasmid vectors used within this project, pUC x-2A-y, pUC X-2A-GFP, Lenti-SxW, 

pGEM-4Z, pCS2 and Lenti SeW were kindly provided by Mr Matthew Ketterling 

[Department of Infection, Immunity and Biochemistry]. The Lenti-CD2 plasmid which was 

used as a control was generated in the department by Dr Laurence Pearce [Department of
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Infection, Immunity and Biochemistry]. All the recombinant pUC and lentivirus plasmids 

generated in this project were designed using Vector NTI® Software, Invitrogen.

2.3.15 “Quick Step” in vitro mutagenesis

“Quick step” in vitro mutagenesis was used to remove internal Xbal and Kpnl sites from the 

Lyp coding sequence, an Xbal site from the rat CD2 coding sequence and to execute the 

Arginine to Tryptophan change at position 620 of Lyp. For each modification, sense and anti­

sense primers (Table 2.2) incorporating a change in a single nucleotide were designed and 

ordered from MWG biotech. Each mutagenesis PCR reaction was carried out using high 

fidelity Pfu turbo polymerase [Stratagene] and specific cycling parameters (initial denaturing 

at 95°C for 30seconds, 12 cycles of 95°C for 30seconds, 55°C for 60seconds, 68°C for 12 

minutes). Dpnl digestion was performed by adding lpl of Dpnl to 25pl of PCR product and 

incubating at 37°C for two hours to cleave the methylated parental DNA. Dpnl digested DNA 

was then transformed into DH5a competent cells. Colonies were picked and grown in 5ml 

cultures followed by extraction of the plasmid DNA using an Invitrogen mini prep kit. The 

mutant DNA was screened by restriction endonuclease digest and confirmed by sequencing.

2.4 Tissue culture and lentivirus production

2.4.1 Culture conditions

Cells were cultured in either RPMI or DMEM (4.5g/L glucose and L-Glutamine), with 10% 

heat-inactivated FCS, 100 IU/ml penicillin and 100 pg/ml streptomycin, 2mM L-glutamine, 

ImM sodium pyruvate unless mentioned otherwise. Cells were maintained at 37°C in a 

Heraeus incubator with a humidified atmosphere of 5% CO2 . Adherent and non-adherent 

cells were grown to 50-90% confluence before being split. When splitting non-adherent cells, 

the tissue culture flask was tapped twice on the side to release the slightly sticky cells. The 

cells were then removed from the flask, filtered and returned to the tissue culture plastic. 

Adherent cells were split by incubating the cells with 0.5% trypsin in HBSS. The media was 

removed from the cells, and the cells were rinsed once with PBS and incubated with warm 

trypsin for 5-7 minutes. Cells were then removed from the plastic, filtered, washed with PBS 

by centrifugation and finally passed through a 29G needle to create a single cell suspension
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before being returned to the tissue culture plastic. Cells grown in tissue culture plates or petri- 

dishes were placed in a ventilated plastic container with a small reservoir filled with PBS

Cell Line Description Maintenance

293 T (HEK) Human Embroynic Kidney cell line 

derived from adenoviral transformation 

of kidney cells from a healthy aborted 

fetus. 293T cells transfect very easily and 

have been used for lentivirus production.

Cultured in 10% FCS- 

DMEM (DIO) media and 

split 1:10, 2 times a week.

E6.1 (Jurkat) Human leukaemic T cell lymphoblast 

cell line, clonal derivative of Jurkat T 

cell line. The Jurkat cell line was 

established from the peripheral blood of 

a 14 year old boy.

Clone E6.1 cells produce large amounts 

of IL-2 after stimulation with phorbol 

esters and either lectins or monoclonal 

antibodies against the T3 antigen (both 

types of stimulants are needed to induce 

IL-2 production).

Cultured in 10% FCS-RPMI 

(RIO) media and split 1:3, 2- 

3 times a week.

E6.1 gag+ E6.1 cells infected with lentivirus 

particles generated from recombinant 

plasmid containing pSLY -TCR 

Alpha.T2A.beta (kindly provided by Dr 

John Bridgeman, Department of 

Infection, Immunity and Biochemistry, 

Cardiff University)

Cultured in 10% FCS-RPMI 

(RIO) media and split 1:3, 2- 

3 times a week.
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H9 (HuT78) H9 cell line is a clonal derivative of HuT 

78 cell line which was derived from 

peripheral blood of a 50 year old male 

patient with Sezary syndrome.

Cultured in 10% FCS-RPMI 

(R10) media and split 1:3, 2- 

3 times a week.

H9 gag+ H9 cells infected with lentivirus particles 

generated from recombinant plasmid 

containing pSLY -  TCR 

Alpha.T2A.beta. (H9 gag+cell line was 

kindly provided by Dr John Bridgeman, 

Department of Infection, Immunity and 

Biochemistry, Cardiff University)

Cultured in 10% FCS-RPMI 

(R10) media and split 1:3, 2- 

3 times a week.

Table 2.3 Description of established cell lines used.

2.4.2 Lentivirus production

Lentiviruses are diploid single stranded RNA viruses belonging to the retrovirus family. 

Lentiviruses are composed of two copies of RNA, a nuclear capsid, a membrane associated 

matrix, a capsid, envelope proteins, enzymes such as Integrase, Reverse Transcriptase, 

Protease and accessory proteins, Vip, Vpr, Vpu, Nef, Tat, and Rev (Buchschacher and Wong- 

Staal 2000). Lentiviruses are capable of infecting both dividing and non-dividing cells 

because their pre-integration complex consisting of matrix, vpr and integrase contains a 

localisation sequence that allows them to manipulate nuclear import machinery of a cell, 

allowing them to enter an intact nuclear membrane (Buchschacher and Wong-Staal 2000). 

Replication deficient HIV-1 based lentiviruses were produced using a three-plasmid 

transfection system (Buchschacher and Wong-Staal 2000). A packaging cell line was 

trainsiently transduced with three plasmids. First plasmid encodes the gene of interest flanked 

by a self inactivationg viral LTR and psi sequence (packaging signal) and driven by spleen 

focus forming virus (Sffv) promoter known to be proficient at driving gene expression in T 

cells. A second and third plasmids, pCMVdelta8.91 (coding the gag/pol and rev proteins) and 

pMD2G (coding the vesicular stomatitis virus G protein), respectively. pCMV delta8.91 and
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pMD2G lack the psi sequence therefore cannot be packaged into a virions. Only the first 

plasmid encoding the gene of interest contains the psi sequence and is packaged into virions.

A total of 6 xlO6 293T cells were cultured in a T75 flask with complete DMEM medium 24 

hrs prior to transfection with plasmid DNA. A few minutes prior to transfection, the media 

was replaced with 8mls of fresh medium. A lipid based transfection kit, Effectine [Qiagen], 

was used according to manufacturer’s instructions to produce lentivirus particles. Briefly, to 

transfect cells in a T75 flask, lpg  of Lenti Lyp-2A-GFP/CD2 plasmid was mixed with 0.5pg 

of pMD2G plasmid and 0.75pg of pCMVdelta8.91 plasmid and 300pl of EC buffer was 

added to the mixture followed by 16pl of the Enhancer reagent, which condenses the plasmid 

DNAs. The plasmid DNAs, EC buffer and Enhancer mixture was then vortexed for 1 second 

and incubated for 2-5 minutes at room temperature. Subsequently, 60pl of Effectine reagent 

was added to the DNA, EC buffer, Enhancer mixture, vortexed for 5-10 seconds and 

incubated for 5 - 1 0  minutes at room temperature. The Effectine reagent coats the condensed 

DNA in lipid, which allows it to enter the cells. After 5 - 1 0  minutes of incubation, 3 ml of 

fresh complete DMEM medium was then added to the DNA transfection complexes before 

being added to the T75 flask. Cells were maintained for 72 hours at 37°C in a Heraeus 

incubator with a humidified atmosphere of 5% COz.

Viral harvest was carried out at 48hrs and 72hrs post transfection. The media supernatant was 

harvested at 48 hrs and replaced with 8mls of fresh DMEM medium, followed by another 

harvest at 72 hrs. Cell debris was removed from the supernatant by centrifugation at 3000 

rpm for 5 minutes. The harvested virus was subsequently concentrated by centrifugation at 

600 000 rpm for 2hrs at 49C in a Beckman Coulter Optima™ L-100 XP ultracentrifuge. The 

virus pellet was then resuspended in 300 - 500pl of DMEM media with no additives and 

stored at -80°C in 70pl aliquots.

2.4.3 Viral transduction of T cell lines

The H9sag+and E6.1gag+cell lines were each transduced with either RLyp-2A-CD2 or WLyp- 

2A-CD2 or CD2 lentivirus particles to generate the H9gag+RLyp-2A-CD2, H9gag+wLyp-2A- 

CD2, H9gag+ CD2, E6.1gag+RLyp-2A-CD2, E6.1gag+wLyp-2A-CD2 and E6.1gag+CD2 cell 

lines. Viral transduction was carried out by adding 64pl of concentrated lentivirus particles 

drop-wise to each well of a 24 well tissue culture plate containing 2 x 105 cells per well in
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500pl of complete RPMI media. The cells were then incubated for 48-72 hours at 372C 

before the transduction efficiency was checked by flow cytometry.

2.5 T cell based functional assays

2.5.1 Enrichment of rat CD2 expressing cells using anti PE magnetic beads

Lentiviral transduced cells were harvested into a 15ml Falcon tube and centrifuged. The 

supernatant was removed and the cells were washed once with 1ml of PBS. Cells were then 

incubated for 15-10 minutes in the dark with 15pl of anti-rat CD2 PE antibody per 107 cells. 

Cells were then washed once and rat CD2 expressing cells enriched according to 

manufacturer’s instructions. Briefly, cells were resuspended in MACs buffer and stained 

with anti-PE biotin conjugate beads. A MS column was prepared and cells were washed once 

and passed through the column. Rat CD2 positive cells, which were bound to the column, 

were harvested into a sterile 15 ml falcon tube. This rat CD2 enriched cell fraction was then 

expanded in culture.

2.5.2 T cell activation

SLY (SL9) gag peptide

The SLY peptide sequence encoding SLYNTVATL was purchased from Severn Biotech Ltd 

[Kidderminister, Worcs, U.K.]. The SLY peptide is HLA-A2 specific. The peptide was 

reconstituted in DMSO to give a stock concentration of 5mg/ml and stored in 30pl aliquots at 

-202C.

The HLA-A2 restricted B cell line, C1R, was used as a source of antigen presenting cells 

(APCs) for the activation of T cells using the SLY peptide. A day prior to the activation, the 

T cell lines (E6.1 cells were HLA-A3 and H9 cells were HLA-A1 restricted) were rested 

overnight at a density of 1 x 106 cells per ml in complete RPMI media supplemented with 2% 

FCS (R2). The following day, 45 000 APCs per well, were pulsed with varying concentration 

of peptide (from 10‘3M to 10'9M) or left unpulsed (control) for one hour in R2 media at 372C. 

Following an hour incubation, the 96 well plate was washed once with complete R2 media
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and 150,000 T cells in lOOpl were added to each of the well at a 1:3 APCs: T cells ratio. The 

cells were then incubated for 24 hours at 37 -C. After 24 hours, the supernatants were 

harvested and stored at -80 ~C for cytokine analysis. The cells were then harvested, washed 

and incubated with anti-human CD69PE antibody and analysed by flow cytometry for CD69 

expression.

2.5.3 IL-2, IL-10 and MIP-10 ELISAs

IL-2 ELISAs

The levels of IL-2 in culture supernatents was analysed using an IL-2 ELISA kit [R&D 

systems, Abingdon, U.K]. The IL-2 ELISA was carried out on supernatants followings 

peptide stimulation of all eight cell lines, H9gag+, H9gas+RLyp-2A-CD2, H9gag+wLyp-2A- 

CD2, H9gag+rCD2 cell lines and E6.1gag+, E6.1gag+RLyp-2A-CD2, E6.1gag+wLyp-2A-CD2 

and E6.1gag+rCD2 cell lines. ELISA plates were coated with lOOpl of 1 pg/ml anti-human IL- 

2 capture antibody diluted in IX reagent diluent [R&D systems, Abingdon, U.K] and 

incubated overnight at room temperature. Next day, the wells were aspirated and washed 

three times with PBS + 0.05% Tween-20 (Sigma). To each well was then added 300pl of lx 

Reagent dilutent and the plates incubated at room temperature for 2 hours. After incubation, 

the wells were aspirated and washed three times as previously. lOOpl of diluted samples were 

added in duplicates. E6.1gag+ (Jurkat) cell supernatants were diluted lin 2.5 in reagent dilutent 

for the IL-2 assay whereas H9 gag+ (Hut78) cell supernatants were diluted 1 in 4 with reagent 

dilutent. Control standards were also added starting with 1000 pg/ml with doubling dilutions 

down to 15.6 pg/ml diluted in the lx  reagent dilutent and samples incubated for 2 hours at 

room temperature. After incubation the wells were aspirated and washed three times as 

previously described. To each well was added lOOpl of a 1 in 180 diluted IL-2 detection 

antibody. The plates were once again incubated at room temperature for 1.5 hours after which 

the plates were aspirated and the wells washed three times as previously described. To each 

well was then added 100 pi of a 1:10,000 diluted strepavidin HRP after which plates were 

incubated at room temperature for 1 hour. The wells were then aspirated and washed three 

times as previously described. 100 pi of colour substrate [R&D systems, Abingdon, U.K] 

was added to each well and the colour allowed to develop for approximately 2-5 minutes in
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the dark. The reaction was stopped by the addition of 50 pi of stop solution [R&D systems, 

Abingdon, U.K] to each well before reading the plate at 450-650nm

IL-10 ELISAs

The levels of IL-10 in culture supematents was analysed using an IL-10 ELISA kit 

[BioLegend, Cambridge, U.K ]. The IL-10 ELISA was carried out on supernatants following 

peptide stimulation of H9gag+, H9gag+RLyp-2A-CD2, H9gag+wLyp-2A-CD2 and H9gag+rCD2 

cell lines. The IL-10 ELISA was carried out according to manufacturer’s instructions. Briefly 

ELISA plates were coated with lOOpl of IL-10 capture antibody diluted in PBS and incubated 

overnight at room temperature. Next day, the wells were aspirated and washed three times 

with PBS + 0.05% Tween-20. To each well was then added 300pl of lx Reagent dilutent 

[R&D systems, Abingdon, U.K] and the plates incubated at room temperature for 2 hours. 

After incubation the wells were aspirated and washed three times as previously described and 

lOOpl of H9gag+ (Hut78) cell supernatants diluted 1 in 10 with reagent dilutent was added in 

duplicates. Control standards were also added starting with 500pg/ml of IL-10 with doubling 

dilutions down to 15.6 pg/ml diluted in the lx  reagent dilutent. Samples were then incubated 

for 2 hours at room temperature. After incubation, the wells were aspirated and washed three 

times as previously described. To each well, was added lOOpl of 1 in 200 diluted IL-10 

detection antibody. The plates were once again incubated at room temperature for 1 hour 

after which the plates were aspirated and the wells washed three times as previous. To each 

well was added 100 pi of diluted HRP conjugated antibodies, for IL-10 this was avidin HRP 

conjugate diluted 1:10,000 in reagent dilutent and the plates were incubated at room 

temperature for 30 minutes. The wells were then aspirated and washed three times as 

previously described. 100 pi of colour substrate [R&D systems, Abingdon, U.K] was then 

added to each well and the colour allowed to develop for approximately 2-5 minutes in the 

dark. The reaction was stopped by the addition of 50 pi of stop solution [R&D systems, 

Abingdon, U.K] to each well before reading the plate at 450-650nm
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MIP-10 ELISAs

The levels of MIP-1J3 in culture supernatents were analysed using a MIP-ip ELISA kit [R&D 

systems, Abingdon, U.K]. The MIP-lp ELISA was carried out on supernatants following 

peptide stimulation of E6.1gag+, E6.1gas+RLyp-2A-CD2, E6.1gag+wLyp-2A-CD2 and E6.1gag+ 

rCD2 cell lines. The MIP-lp ELISA was carried out according to manufacturer’s 

instructions. Briefly, ELISA plates were coated with lOOpl MIP-ip capture antibody diluted 

in lx reagent dilutent [R&D systems, Abingdon, U.K] and incubated overnight at room 

temperature. Next day, the wells were aspirated and washed three times with PBS + 0.05% 

Tween-20. To each well was then added 300pl of lx  Reagent dilutent and the plates 

incubated at room temperature for 2 hours. After incubation the wells were aspirated and 

washed three times as previously described and lOOpl of lin 2.5 diluted samples in reagent 

dilutent added in duplicates. Control standards were also added starting with 1000 pg/ml of 

MIP-ip with doubling dilutions down to 15.6 pg/ml diluted in the lx  reagent dilutent.

Samples were incubated for 2 hours at room temperature. After incubation, the wells were 

aspirated and washed three times as previously described. To each well was added lOOpl of 

lin 200 diluted M IP-ip detection antibody. The plates were once again incubated at room 

temperature for 1.5 hours after which the plates were aspirated and the wells washed three 

times as previously described. To each well was then added 100 pi of 1 in 200 diluted 

strepavidin HRP after which plates were incubated at room temperature for 1 hour. The wells 

were aspirated and washed three times as previously described. 100 pi of colour substrate 

[R&D systems, Abingdon, U.K] was added to each well and the colour allowed to develop 

for approximately 2-5 minutes in the dark. The reaction was stopped by the addition of 50 pi 

of stop solution [R&D systems, Abingdon, U.K] to each well before reading the plate at 450- 

650nm.

2.6 Monoclonal Antibody Production

2.6.1 Animals

All mice used for hybridoma generation (both sources of antibody producing B cells and 

feeder cells) were of the Balb/c strain and were bred in house at the Biomedical Services Unit 

(BSU) located at the School of Medicine, Heath Park, Cardiff University.
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2.6.2 Preparation of antigens

11 amino acid long peptides encompassing the R620 (peptide B-PLPVRTPESFC) or the 

W620 (peptide A-PLPVWTPESFC) isoforms of PTPN22 were synthesised (in house by Ms 

Miriam Vigar) and checked by mass spectroscopy [Central Biotechnology Services, Henry 

Wellcome Research Institute, Cardiff University], The peptides were coupled to bovine 

serum albumin (BSA) using an m-maleimidobenzoyl N-hydroxysuccinimide ester (MBS) 

heterobifunctional cross-linker and the conjugation checked by mass spectroscopy and 

Coomassie blue stained protein gel.

2.6.3 Coupling of Lyp peptides to bovine serum albumin (BSA)

lg of bovine serum albumin (BSA) was dissolved in lOOmls of 0.01M phosphate buffer pH7 

(1 in 10 dilution of 0.1 M stock solution consisting of 57.7mls of 1M Na2HP04 42.3mls of 1M 

NaH2P04 and 900mls of H2 O). 5mg of heterobifunctional cross-linker m-maleimidobenzoyl 

N-hydroxysuccinimide ester (MBS) was dissolved in 333.3pl of Dimethylformamide (DMF). 

The MBS and BSA solutions were mixed by adding 140pl of MBS solution in 1ml of BSA 

solution and rotated for 30 minutes at room temperature. Subsequently, 0.05M Phosphate 

buffer pH6 (1 in 2 dilution of 0.1M stock solution consisting of 12.0mls of 1M Na2HP04 

88.0mls of 1M NaH2P04 and 900mls of H2 O) was used to purify the BSA/MBS solution 

using low pressure liquid chromatography. Finally, 500pl of H2 O was added to the purified 

BSA/MSA solution.

2.8mg of each peptide (2.8mg of peptide A and 2.8mg of peptide B) were dissolved in 76pl 

of DMF each. 1ml of purified BSA/MBS solutions was rapidly added to each of the dissolved 

peptide solutions and mixed. 8.25pl of 2M NaOH was added immediately to both the peptide 

A/BSA/MBS and peptide B/BSA/MBS solutions. Next, the peptide/BSA/MBS solutions 

were rotated for 3 hours at room temperature before adding 2.25mls of 0.1M ammonium 

bicarbonate to each of the two peptide/BS A/MBS solutions. Subsequently, the 

peptide/BS A/MBS solutions were snap frozen by rotating the falcon tubes containing the 

solutions in a dry ice/ethanol bath to form a thin frozen layer sheet around the circumference 

of the falcon tubes. The samples were then lyophilised overnight and stored at -20°C until
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required. The coupled proteins were checked by mass spectroscopy [Central Biotechnology 

Services, Henry Wellcome Research Institute, Cardiff University] as well as protein gels with 

coomassie blue staining.

2.6.4 Immunisation schedule

BSA conjugated RLyp and wLyp peptides were used to immunise mice. Three mice per 

peptide were initially immunised subcutaneously with lOOpg of peptide/carrier conjugate 

mixed 1:1 with complete Freund’s adjuvant. The mice were subsequently boosted with lOOpg 

of peptide/carrier conjugate mixed 1:1 with incomplete Freund’s adjuvant at 2 weeks, 4 

weeks and again at 6 weeks. The antibody titre in the sera directed against RLyp and WLyp 

peptides was measured 12 days after the last immunisation using an Enzyme Linked 

Immunosorbent Assay (ELISA). Four days prior to fusion and harvest of splenocytes, the 

mouse selected for this purpose was boosted intra-peritoneally for a final time with 50pg of 

conjugated peptide in PBS.

2.6.5 Measuring the polyclonal antibody titre in sera of immunised mice

Blood was used to measure the antibody titre in the serum of the six immunised mice. Firstly, 

the mouse was restrained and the tip of the tail sprayed with ethyl chloride BP [Acorus 

Therapeutics Limited, Durham, U.K.] and allowed to numb. A small section of the tail was 

removed at its tip and 30-50pl of blood taken by aspirating with a Gilson P200 pipette fitted 

with a small pipette tip. If blood was required at the end of an experiment, it was taken via a 

cardiac puncture. The mouse was placed in a chamber, which was subsequently filled with 

anaesthetic gas (isofluorane) using oxygen as a carrier gas. Once the mouse showed signs of 

anaesthesia it was transferred to a face mask with a lower concentration of anaesthetic gas. A 

28G needle was inserted below the sternum and a cardiac withdrawal of blood performed 

with a syringe. The blood was then left to clot for 10 minutes on ice, centrifuged at 1300rpm 

for 10 minutes at 4°C and the serum collected.
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2.6.6 Preparation of feeder cells for hybridomas

Peritoneal macrophages from Balb/c mice were used as feeder cells for hybridomas.

Peritoneal macrophages from one Balb/c mouse produced enough feeder cells for ten 96 well 

plates of hybridomas.

Typically, mice were killed by asphyxiation in a rising concentration of CO2 , followed by 

cervical dislocation. Peritoneal macrophages were harvested by flushing the peritoneal cavity 

with lOmls of sterile cold RPMI using a syringe and a 21 gauge needle, gently massaging and 

withdrawing as much RPMI as possible into the syringe. The content of the syringe was then 

transferred into a sterile falcon tube and washed twice with cold RPMI by centrifuging at 

1600 rpm for 4 minutes at 4°C.

For growing primary hybridoma clones directly after fusion and during the first round of 

cloning, the peritoneal cell pellet was re-suspended in the required volume (lOOmls per ten 96 

well plates) of warm Hypoxanthine Aminopterin Thymidine (HAT) supplemented with 

complete RPMI 1640 media and plated at lOOpl per well into the required quantity of 96 well 

plates (ten directly after fusion and 30 during first round of cloning).

The peritoneal macrophage feeder cells used for the second round of limiting dilution cloning 

were re-suspended in warm HT supplemented complete RPMI 1640 medium and in warm 

20% FCS RPMI 1640 medium during the third round of limiting dilution cloning and 

expansion.

2.7 Generation of hybridomas.

2.7.1 Harvesting the splenocytes.

Four days after the final i.p boost the immunised mouse was killed by asphyxiation in a rising
)

concentration of CO2 . The spleen was excised using a sterile dissection kit and the fat was 

removed. Splenocytes were harvested by gently pressing the spleen in 5 ml of sterile cold 

RPMI with the back of a sterile syringe until only the intact fibrous capsule remained. The 

splenocytes were filtered into a sterile Falcon tube and washed thrice in 20mls of cold RPMI 

by centrifugation at 1600rpm for 4 minutes at 4°C. The splenic cell pellet was then finally re­

suspended in 20mls of warm RPMI 1640 media (no additives).
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2.7.2 Preparation of the myeloma cells

The human myeloma cell line SP2/0 used for hybridoma production was a kind gift from Dr 

Claire Harris [Department of Medical Biochemistry and Immunology, Henry Wellcome 

Research Institute, Cardiff University]. The SP2/0 cells were maintained in complete RPMI 

1640 medium. Human myeloma cells SP2/0 were passaged one day prior to fusion and lx  10 

cells harvested the next day whilst in log phase of growth. Subsequently, the SP2/0 cells were 

washed thrice in 30mls of sterile cold RPMI by centrifugation at 1600rpm for 4minutes at 

4°C. The SP2/0 myeloma cell pellet was then re-suspended in 20mls of warm RPMI 1640 

media (no additives).

2.7.3 Cell fusion

The re-suspended splenic cells and SP2/0 cells were mixed by adding the 20mls of re­

suspended splenic cells to the Falcon tube containing the 20mls of re-suspended SP2/0 

myeloma cells. The mix was then washed once by centrifugation at 1600rpm for 4 minutes at 

room temperature. The supernatant was carefully removed leaving the cell pellet as dry as 

possible. The pellet was gently flicked to re-suspend the splenic, SP2/0 cells and 1ml of pre­

warmed polyethylene glycol 1500 (PEG) [Roche Diagnostic, Indianapolis, USA] was added 

drop-wise from a syringe with a 19 gauge needle over a 1-2 minute period with constant 

agitation of the cells by flicking and rotating the Falcon tube. The cells were then allowed to 

stand for 30 seconds after which 20mls of warm RPMI media (no additives) was added drop- 

wise over 1-2 minute period whilst gently agitating the cells by flicking and rotating the 

falcon tube. A further lOmls of warm RPMI media was added and the cells were centrifuged 

at 1200rpm for five minutes at room temperature. The cell pellet was then re-suspended in 

98mls of warm HAT RPMI 1640 media and plated (lOOpl per well) into the prepared 10 x 96 

well plates with feeder cells. The 96 well plates containing the primary hybridoma clones 

were incubated in a humidified atmosphere of 5% CO2 at 37°C and left to grow for seven 

days. The hybridoma clones were fed 75pl per well of warm HAT RPMI 1640 media on day 

seven and left to grow until day ten when they were screened by a peptide based ELISA and 

15 of the most positive clones cloned by limiting dilution cloning.
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2.7.4 Cell culture

Primary hybridoma clones generated immediately following fusion (described below) and 

hybridomas during the first round of limited dilution cloning, were cultured in complete 

RPMI 1640 medium supplemented with 1% Hypoxanthine Aminopterin Thymidine (HAT) 

[Gibco]. Hybridomas during the second round of cloning were weaned off HAT supplement 

and cultured in RPMI 1640 medium supplemented with 1% Hypoxanthine Thymidine (HT) 

[Gibco]. Hybridomas during the third round of cloning were cultured in complete RPMI 

1640 medium with 20% FCS and established monoclonal hybridomas whilst and after 

expansion were cultured in complete RPMI 1640 with 15% FCS.

2.7.5 Producing monoclonality

Peptide based ELISA screen

The hybridomas were screened for antibody production against RLyp o rwLyp peptide using a 

peptide based ELISA. 96-well ELISA plates [Greiner bio-one] were coated overnight at 4°C 

with 50pg/ml of RLyp or wLyp peptide, washed once in wash buffer (0.05% Tween 20 in 

PBS) and blocked for an hour at 37°C with 50pl of blocking solution (5% Milk in PBS). The 

96-well ELISA plates were then washed three times with wash buffer and incubated for 2 

hours at room temperature with 75pl of hybridoma supernatant followed by three more 

washes with the wash buffer. Subsequently, 50pl of a secondary goat anti-mouse IgG (H+L) 

antibody conjugated with HRP [Bio-Rad] was added and the ELISA plates were incubated 

for an hour at room temperature. Finally the ELISA plates were washed three times with 

wash buffer and developed using TMB substrate reagent [BD] and measured at 450nm using 

a spectrophotometer.

Limiting Dilution Cloning

One day prior to cloning, mouse feeder cells were isolated and the required number of 96 

well plates (this number depends on the number of wells to be cloned with two 96 well plates 

required per well to be cloned) prepared with 100pl per well of feeder cells in appropriate 

medium (the medium used depends on the stage of cloning, first stage cloning uses HAT 

RPMI 1640, second stage cloning uses HT RPMI 1640 and any other stage cloning uses 20%
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FCS RPMI 1640). Hybridoma clones in the 10 to 15 most promising wells (based on the 

strength of the positive signal on the ELISA screen) were picked for further cloning to 

produce monoclonality. The cells in these chosen wells were re-suspended and viable cells 

counted using the trypan blue exclusion method. 3000 cells were counted and transferred into 

6mls of appropriate medium, mixed gently and 200pl of this solution transferred to each well 

across the first three columns (the limited dilution cloning was done in triplicates) using a 

multichannel pipette so that each well in the first three column should now contain ~ 100 

cells each in 300pl. Subsequently, the contents of each of these wells were mixed by 

pipetting up and down using a multichannel and lOOpl from each of these wells were 

transferred to each of the wells in the next three columns (lOOpl from wells in column 1, 2, 3 

is transferred to column 4, 5, 6 respectively). This process was repeated across the two 96 

well plates (lOOpl from column 4, 5, 6 was mixed and transferred to 7, 8, 9 respectively and 

so on until the end of the second 96 well cloning plate). lOOpl of appropriate media was then 

added to wells 4 to 12 in the first 96 well cloning plate and wells 1-9 in the second 96 well 

cloning plate were (wells in the first three and the last three columns contain 200pl per well). 

The clones were then left to grow for 4 days at 37°C at 5% CO2 . On day four, the clones were 

fed 75pl per well of the appropriate medium and left to grow for further 6 days when they 

were screened and cloned again until they were monoclonal. After the third round of limiting 

dilution cloning they are generally expected to be monoclonal.

Expanding the established monoclonal hybridomas

After the third round of cloning, the hybridoma clones were screened by peptide based 

ELISAandl8 of the most positive clones (2 clones from each set of cloning plates) were re­

suspended by gentle pipetting and expanded onto a 24 well plate. Subsequently, when the 

hybridoma cells in the 24 well plate reached 70-80% confluence, they were once again 

expanded onto 6 well plates, then onto T15 flasks, followed by T25 flasks, then finally onto 

T75 flasks.
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2.7.6 Characterization of the monoclonal hybridomas

ELISA screen

The individual monoclonal hybridoma supernatants were tested using peptide based ELISAs 

for cross-reactivity between the two Lyp isoforms, R620 and w620. Two rows of the 96 well 

ELISA plate were coated with the w620 (peptide A) or R620 (peptide B) and the ELISA 

screen performed according to the above protocol.

Immunoblotting screen

Established monoclonal hybridoma supernatants were screened by immunoblotting to check 

if any of the monoclonal antibodies produced by the different monoclonal hybridoma clones 

recognised the denatured Lyp protein. Typically, a SDS-Polyacrylamide Gel Electrophoresis 

was performed with RAMOS or DAUDI (B cell lines that are known to produce Lyp) or 

Lenti-GFP-2A-Lyp transfected 293 T cells lysates, untransfected 293 T cell lysates were used 

as a negative control for Lyp detection. Subsequently, the proteins were transferred onto 

PVDF membrane. The PVDF membrane was then cut into half and the bottom half 

(below75kDa) was immunoblotted for Actin. The top half of the membrane was cut into 

strips (one well = one strip) and incubated in individual monoclonal hybridoma supernatants 

to test if any of the supernatant could recognise the denatured full length Lyp protein. The 

remaining steps of the immunoblotting were performed as described above.

2.8 Statistical analysis

The level of differences in cytokine production between the panel of transduced E6.1gag+ 

(Jurkat) T cells and between the panel of transduced H 9gag+ (Hut78) T cells was compared by 

Two-way ANOVA using the PRISM software and are shown to the 95% (P < 0.05) , 99% (P 

< 0.01) or 99.9% (p < 0.001) confidence level.

102



Chapter 3

The generation of polymorphism specific anti-Lyp monoclonal 
antibodies

3.1 Introduction

There are currently no reported antibodies specific for the R620 or W620 isoforms of 

PTPN22. However, there are potential benefits from raising antibodies against both the 

isoforms of PTPN22. For example, if the W620 polymorphism leads to an increase in PTP 

activity resulting in predisposition to ADs, then it is plausible that an antibody selectively 

directed against the W620 isoform may have a blocking activity. If it could be shown using in 

vitro assays that a monoclonal antibody generated against the wLyp isoform had a blocking 

effect exclusively against the WLyp isoform, this would indicate that there might be some 

structural differences between the R and the W isoform of Lyp that could be targeted. This 

would provide proof of principle for generation of a reagent such as a small molecule 

inhibitor that may be able to selectively target the WLyp isoform. In principle, such a small 

molecule inhibitor may potentially decrease the severity of AD or even defer the initiation 

process. Therefore, in this chapter the expertise in monoclonal antibody production by the 

research group led by Dr Claire Harris was utilised in an attempt to generate specific
R Wmonoclonal antibodies against the Lyp and Lyp isoforms.

B cells are an important part of the adaptive immune system. The secretion of antibodies, 

which bind pathogens or their toxic products in the extracellular space of the body, is the 

main effector function of B cells in adaptive immunity (Murphy et al. 2007a). The technique 

of monoclonal antibody production exploits this specific antibody-producing feature of the B 

cells. However, because B cells have a limited life span monoclonal antibody production 

requires a method of immortalising the antibody producing B cells. The advent of hybridoma 

technology by Kohler and Milstein in (1975) allowed the establishment of hybrid cell lines 

that could be grown indefinitely to produce large amounts of antibody of a desired specificity 

(Kohler and Milstein 1975). In this technique a myeloma cell is physically united with a B 

cell whose antigen specificity is known, creating a hybrid cell (hybridoma). The generation of 

a hybridoma requires cell fusion in which the plasma membranes of a B cell and a myeloma 

cell are joined such that the cytoplasm is combined. Therefore, monoclonal antibody 

production involves fusion of a myeloma with antibody producing B cells from the spleen
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(splenocytes) of an animal immunised with the antigen of interest. Following fusion, limiting 

dilution cloning of the hybridoma cells ensures the monoclonality of the antibody producing 

hybridoma. Consequently, the generation of monoclonal antibody requires both in vivo (for 

generation of specific antibody secreting B cells) and in vitro (for fusion and limiting dilution 

cloning) procedures.

3.2 Mouse anti human RWLyp monoclonal antibody

Eleven amino acid peptide sequences encompassing either the R 620 isoform 

(PLPVRTPESFC) or the W620 isoform of Lyp (PLPVWTPESFC) were kindly synthesized 

by Ms Miriam Vigar. Subsequently, each of the peptides was coupled to BSA using MBS 

hetero-bifunctional cross-linker as described in the Materials and Methods. The conjugation 

was checked by mass spectroscopy (data not shown) and Coomassie blue stained protein gel 

(Figure 3.1).
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Figure 3.1 Coomassie blue protein staining of BSA-Lyp peptide conjugates

Each of the peptide i.e the R or the W isoform o f Lyp was coupled to BSA using an MBS 

hetero-bifunctional cross-linker. Coomassie blue staining of the BSA alone, MBS and BSA, 

wLyp Peptide, BSA and MBS conjugate and RLyp peptide, BSA and MBS conjugate was 

carried out to check that the conjugation was successful.
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3.3 Generation of anti-peptide antibody secreting B cells

BALB/c mice were immunised with the BSA conjugated RLyp and WLyp peptides as 

described in Materials and Methods. Three BALB/c mice were immunised with each of the
R Wtwo peptide isoforms of Lyp. The antibody titre in the sera directed against Lyp and Lyp 

peptides was measured 12 days after the last immunisation by a peptide based ELISA screen 

as described in Materials and Methods (Figure 3.2 and 3.3). All six of the immunised mice 

(three for each peptide) were shown to produce high titre antibodies against the RLyp and the 

wLyp peptides. Sera from mice not immunised with the Lyp peptides was used as a negative 

control for the ELISA.
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Figure 3.2 Pre-fusion ELISA screen o f sera from mice immunised with RLyp peptide

The three RLyp peptide immunised mice and a control unimmunised mouse were tail bled, 

the collected blood allowed to clot and serum prepared. A peptide based ELISA screen was 

used to determine the antibody titre of the anti- RLyp peptide antibodies in the sera of the 

immunised and the control mice. Above, the volume/volume dilution of the sera was plotted 

against absorbance at 450 nm. All three of the RLyp peptide immunised mice were seen to 

produce high titre (six fold increase compared to the control mouse) antibody against the 

RLyp peptide.
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Figure 3.3 Pre-fusion ELISA screen of sera from mice immunised with "Lyp peptide

The three " Lyp peptide immunised mice and a control unimmunised mouse were tail bled, 

the collected blood allowed to clot and serum prepared. A peptide based ELISA screen was 

used to determine the antibody titre of the anti- "Lyp peptide antibodies in the sera of the 

immunised and the control mice. Above, the volume/volume dilution of the sera was plotted 

against absorbance at 450 nm. All three of the "Lyp peptide immunised mice were seen to 

produce high titre (six fold increase compared to the control mouse) antibody against the 

" Lyp peptide.
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3.4 Generation of hybridomas secreting anti Lyp antibodies

Fusion was attempted thrice to generate hybridomas secreting peptide specific antibodies 

using three different mice but only the last attempt was successful. Following one further 

intra-peritoneal boost with the RLyp isoform, one of the immunised mice was sacrificed and 

the spleen harvested. The harvested splenocytes were fused with mouse myeloma cells 

(SP2/0). Following fusion, the fused cells were distributed into ten 96 well tissue culture 

plates containing peritoneal macrophages as feeder cells. The hybridomas were cultured for 

ten days in HAT selection medium (complete RPMI medium supplemented with 

Hypoxanthine Aminopterin Thymidine (HAT)). HAT media selects for hybridomas based on 

their capacity for nucleotide synthesis. Normal cells synthesise nucleotides using both the de 

novo pathway and the salvage pathway. Aminopterin in HAT media blocks the de novo 

pathway of nucleotide synthesis. Normal B cells have the capability to synthesise nucleotides 

using the salvage pathway but cannot survive long in an in vitro culture unless immortalised. 

The myeloma cell lacks the enzyme hypoxanthine-guanine phosphoribosyl transferase 

(HGPRT) essential for functioning of the salvage pathway. Therefore, when grown in HAT 

media, myeloma cells die due to lack of nucleotide synthesis. Hybridomas which have the 

capability to use the salvage pathway and are immortalised, are the only cells that are able to 

grow in HAT selection media. Subsequently after ten days of culture in HAT medium, the 

culture supernatant was tested for anti Lyp antibody production by ELISA.

3.5 Screening of the antibody producing hybridoma cells by ELISA

n

Supernatants from the hybridoma clones were screened for anti Lyp peptide antibody 

production by direct ELISA. Hybridoma supernatant was incubated on an ELISA plate 

coated with RLyp peptide (the same peptide as was used to immunise the mouse). Bound 

antibody was detected with an HRP conjugated anti mouse antibody. Hybridoma clones 

giving a positive signal by ELISA were further cloned three times by limiting dilution 

cloning on peritoneal macrophages as feeder cells. After three rounds of cloning the antibody 

producing hybridoma cells were accepted to be monoclonal. Three hybridomas producing 

specific monoclonal antibodies were identified using this technique.
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3.6 Characterization of the monoclonal antibody generated against Lyp peptide

Supernatants collected from the three monoclonal cell lines were used to characterize the 

properties of each of the monoclonal antibodies. The antibody was checked for cross 

reactivity with the WLyp peptide by peptide based ELISA whereby the plate was coated with
W RLyp peptide instead of the Lyp peptide. None of the monoclonal antibodies were found to 

be polymorphism specific. When tested by ELISA screening against the WLyp peptide, all the 

antibodies gave a positive signal (Figure 3.4). Immunoblotting was carried out to determine 

whether any of the monoclonal antibodies produced recognised the denatured intact Lyp 

protein. From Figure 3.5 it can be seen that antibody from hybridoma clones 12 and 18 

detects proteins in the 293 T cell lysates, one of which seems to be of similar size to Lyp. 

Supernatant from hybridoma clone 12 which was used to probe for Lyp in untransduced 293 

T cells (therefore not expressing the protein Lyp) also detected proteins in the cell lysates 

making it difficult to interpret the result. However, upon further examination it is clear that 

the proteins detected by the different monoclonal antibodies are almost identical in the 

negative control and the samples (Figure 3.5). As the supernatant from hybridoma 12 detects 

the same pattern of protein in transduced and non transduced (not expressing Lyp) 293T cells 

it is unlikely that the proteins detected correspond to Lyp. Therefore, in summary none of the 

monoclonal antibodies appear to recognise denatured human Lyp by immunoblot (Figure 

3.5).
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l 2 3 4 5 6 7 8 9 10 11 12

A 0.213 0.17 0.028 0.213 0.251 0.205 0.102 0.095 0.1 0.101 0.313 0.017

B 0.159 0.117 0.313 0.246 0.114 0.086 0.11 0.219

C 0.228 0.124 0.314 0.246 0.227 0.195 0.189 0.157 0.179 0.209 0.245 0.017

D 0.265 0.169 0.314 0.23 0.261 0.089 0.184 0.147

E

F

G

H

I

RLyp Peptide  

wLyp Peptide

Figure 3.4 ELISA based screening of the monoclonal antibodies produced for peptide 

cross-reactivity

All of the monoclonal antibody producing clones generated by immunisation of the mice with
R WLyp peptide were screened for cross-reactivity with the Lyp peptide. Each well represents 

an antibody producing clone. Rows A and B (top 2 rows) were coated with unconjugated 

RLyp peptide whereas rows C and D (bottom two) were coated with unconjugated WLyp 

peptide. Negative controls were incubated with serum from a mouse not immunised with the 

Lyp peptides and are shown in bold. Positive controls wells were incubated with serum from 

an Lyp immunised mouse and are highlighted by underlining. Since the mice were
D

immunized with Lyp peptide, all the established clones will be positive when screened
R  R

against Lyp peptide (rows A and B) however, clones specific for the Lyp peptide should 

not produce a positive signal when screened against wLyp peptide (rows C and D).



Actin— 
— 39 kDa

Figure 3.5 Immunoblot analysis of the monoclonal antibody generated against anti- 

Lyp peptide for recognition of denatured Lyp protein.

Untransfected 293T cells (negative control) and 293T cells transfected with Lyp were lysed 

in NP-40 lysis buffer, reduced and equivalent numbers of cells loaded into each lane of a 

10% SDS-PAGE gel. The SDS-PAGE gel was transferred to a PVDF membrane and the top 

half of the membrane was probed for Lyp protein with supernatant from each of the seven 

monoclonal anti-Lyp hybridoma clones or with goat anti-human Lyp polyclonal antibody 

(positive control). Negative control was probed with supernatant from clone 12 for primary 

antibody and a anti-mouse HRP secondary antibody. The bottom PVDF membrane was 

probed for housekeeping protein Actin as a loading control.
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3.7 Discussion

In this Chapter conventional hybridoma technology was used to generate monoclonal 

antibodies against RLyp and wLyp peptides. Synthetic peptides instead of intact proteins were 

used as antigen for generation of the monoclonal antibodies. As the aim of this chapter was to 

generate R620W polymorphism specific monoclonal antibodies, use of synthetic peptides 

incorporating the R620W polymorphism was thought to be the best approach. Although B 

cells dominantly recognise conformational epitopes in an intact protein they can also 

recognise linear epitopes in the protein. In the case of a small synthetic peptide, it is unlikely 

that a small peptide will form or contain a conformational epitope, therefore B cells will only 

recognise the linear epitopes in the peptide. B cells can produce an antibody response to 

linear epitopes as small as about five amino acid residues (Tribbick 2002). Therefore, if using 

intact Lyp (807 amino acid in length) as an immunogen, there would be many linear and 

conformational epitopes in the protein that could elicit an antibody response from the B cells. 

In that regard it would be very difficult to isolate antibodies against a specific polymorphism, 

corresponding to a single amino acid change in the Lyp protein, by immunisation with the 

intact Lyp. The use of synthetic peptide as an immunogen allowed the potential targeting of a 

particular region of Lyp for monoclonal antibody production. As the aim of this chapter was 

to generate monoclonal antibodies against a specific single amino acid change as a result of 

the R620W polymorphism in Lyp, synthetic peptides were chosen as immunogens instead of 

the intact Lyp protein. The use of a small synthetic peptide instead of an intact protein would 

also drastically limit the epitopes recognised by the B cells thereby increasing the chance of
R Wgenerating Lyp or Lyp specific antibodies. Therefore a stretch of 11 amino acids 

incorporating the R620W polymorphism was selected for the generation of the synthetic 

peptide to be used as an immunogen for the production of polymorphism specific monoclonal 

antibodies.

The next step was to prepare the antigen for immunisation of the mice. A small synthetic 

peptide is not usually sufficiently immunogenic on its own. Therefore the synthetic peptides 

were coupled to carrier proteins to boost the immunogenic response. The synthetic RLyp and 

wLyp peptides were conjugated to Bovine serum albumin (BSA) by using MBS as a bi­

functional linker. BSA is a 59kDa carrier protein routinely used for coupling to synthetic 

peptides to generate anti-peptide antibodies (Lateef et al. 2007). A carrier protein is a 

relatively large molecule capable of stimulating an immune response on its own. The
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synthetic peptide coupled to the carrier protein acts as a hapten and antibodies specific for the 

hapten can be produced (antibodies against the carrier protein are also produced). The 

conjugation was successfully carried out and the BSA-MBS-peptide conjugates were used to 

immunise six mice, three for each Lyp peptide. After three rounds of immunisation, blood 

samples were obtained from the mice by tail tipping. The obtained sera were screened for 

anti-Lyp peptide antibody production by peptide based ELISA and all of the six mice were 

found to contain the sufficient antibody titre (usually 5-6 fold increase compared to control is 

considered sufficient). Three mice were sacrificed at different times, their spleens harvested 

and the B cells fused with myeloma cells in an attempt to generate monoclonal antibody 

secreting hybridomas. However, only the final attempt was successful in generating 

hybridomas secreting monoclonal antibody. Of the remaining three mice, two succumbed to
n

death and one was sacrificed. Subsequently, one of the mouse immunised with Lyp peptide 

was boosted with soluble antigen intra-peritoneally, sacrificed three days later, spleen 

removed and splenocytes harvested. The splenocytes were fused with myeloma cells to 

generate hybridomas. The hybridoma clones were screened for anti RLyp peptide antibody 

production by ELISA and the positive clones selected and further cloned three times by 

limiting dilution to generate monoclonal hybridoma clones.

Hybridoma clones producing mouse anti-Lyp peptide monoclonal antibodies were selected 

and checked for cross reactivity against wLyp peptide. All the monoclonal hybridoma clones 

generated by immunisation with the RLyp peptide were found to be reactive against the wLyp
n

peptide as well as Lyp peptide. A mouse immunised with an 11 amino acid residue synthetic 

peptide can generate an antibody response to the peptide when its B cells recognise a linear 

epitope as small as only five amino acid residues. If the particular immunogenic linear 

epitope in the Lyp peptide that was recognised by an individual antibody producing B cell 

did not contain the region with the R to W single amino acid change then the antibody 

generated would not be specific against the region incorporating the polymorphism. As all 

other ten amino acids are exactly the same for both the peptides excepting the single amino 

acid change due to the SNP the majority of the anti-peptide antibodies produced will 

recognise both the peptides. The fact that none of the hybridoma clones generated secreted 

peptide specific antibody could be due to a random chance that the epitope recognised by the 

B cell used for fusion did not include the single amino acid change or it may be the case that 

the amino acid residue, the R to W change in the peptide sequence did not form an epitope 

for B cell recognition.
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Subsequently, anti-Lyp peptide antibodies produced by the hybridoma clones were tested for 

reactivity against denatured Lyp protein by immunoblotting. It was observed that none of the 

antibodies from the three hybridoma clones recognised the denatured Lyp protein. Some of 

the hybridoma clones were found to secrete antibody that showed a non-specific binding 

pattern to other proteins in the 293T cell lysates. One of the proteins detected approximated 

to the size of Lyp, however the same protein was also detected in the negative control lysates 

which did not express Lyp and was therefore attributed to non specific binding of the 

antibody to other proteins present in the cell lysates. The main disadvantage of generating a 

monoclonal antibody by immunisation with a synthetic peptide is that the antibody may not 

recognise the full length protein. This is because an antibody produced in response to a 

simple linear peptide will most likely recognise a linear epitope. However, proteins form 

secondary and tertiary structures in their native conformation and therefore, the linear epitope 

recognised by the antibody produced to the peptide may not be accessible or recognisable to 

the monoclonal antibody when the protein is in its native conformation. However, when the 

protein is denatured it should revert to a linear conformation the linear sequence of the 

peptide used to generate the monoclonal antibody may be accessible to the monoclonal 

antibody and therefore recognised by the antibody. The 11 amino acid peptide sequence 

chosen as an immunogen to produce the polymorphism specific monoclonal antibody was 

predicted to be highly hydrophilic and to have a high turn tendency in the protein. Peptide 

sequences that have an increased likelihood of forming turns and loop structures are generally 

found on protein surfaces connecting other areas of secondary structure and are therefore 

likely to be accessible to the antibody. In addition, high predicted hydrophilicity means that 

the region of Lyp encompassing the R/W620 peptides is likely to be solvent exposed and thus 

accessible to antibody. These properties increase the chances of the producing a monoclonal 

anti- peptide antibody recognising a native or denatured protein. However, even after SDS- 

PAGE the epitopes may not have been in a linear conformation, therefore may not be 

recognised by the monoclonal anti-peptide antibody.

In summary, while it is relatively simple to produce monoclonal antibodies directed against 

synthetic peptide, it is difficult to generate monoclonal antibodies against peptides which 

recognise the native protein and antibodies which can distinguish two peptides differing by 

only one amino acid. The generation of a polymorphism specific monoclonal antibody would 

require the amino acid at position 620 of Lyp to be part of an epitope recognised by the
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antibody producing B cell. Unfortunately, the successful generation of anti-peptide antibodies 

does not necessarily mean that the antibodies will recognise a protein containing the same 

stretch of amino acid sequence as found in the peptide. In order for this to occur the amino 

acid in the peptide sequence of the intact protein must be orientated to the antibody in a 

similar way to how the amino acid is orientated in the synthetic peptide. This orientation 

depends on the conformation of the peptide in solution, the conformation of the peptide 

sequence in the protein and the accessibility of the stretch of the peptide sequence in the 

protein. All of this is not impossible to achieve, however in this instance it was unsuccessful.
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Chapter 4

Generation of the recombinant lentivirus cDNAs encoding isoforms of Lyp

4.1 Introduction

In vitro functional assays have suggested that the R620W polymorphism in Lyp is a gain-of 

function mutation, resulting in an increase in TCR signalling threshold rather than the 

decrease that was originally predicted (Aarnisalo et al. 2008; Rieck et al. 2007; Vang et al. 

2005). Based on.the notion that WLyp may be a gain-of function polymorphism, it has been 

hypothesized that the wLyp isoform suppresses TCR signalling more potently than the R Lyp 

form, resulting in the survival of auto-reactive cells that would normally be deleted by 

negative selection in the thymus. Alternatively, the impact of WLyp on TCR signalling may 

be on the development and functioning of T reg cells. It may be that fewer T reg cells are 

generated in wLyp expressing individuals compared to individuals who are homozygous for 

the RLyp isoform. Additionally, there may be no difference in the number of T reg cells 

generated but their TCR signalling may be suppressed and therefore they may not be as 

effective in suppressing effector T cells as T reg cells expressing exclusively the Lyp 

isoform. It is possible that the effect of this polymorphism may be different in distinct T cell 

subsets.

The WLyp isoform behaves in a dominant manner as individuals heterozygous for this form 

of Lyp have an increased predisposition to autoimmune disease. Therefore, it is plausible that 

introducing exogenous wLyp into homozygote wild type T-cell populations will partially 

mimic the situation in heterozygote individuals and allow examination of the effect of the 

R620W polymorphism. Over-expression studies conducted previously have used the 

technique of nucleofection to introduce exogenous RLyp or wLyp into T cells (Vang et al. 

2005). Nucleofection is a non-viral electroporation based transfection method which utilises a 

nucleofector device that delivers unique electrical parameters in order to introduce genes 

directly into the nucleus of the cells being transfected. This method can be highly toxic to 

cells, especially T cells. The aim of this project was to study the effect of over-expression of 

Lyp isoforms in T cell subsets. As this would potentially involve the study of relatively small 

populations of cells it was considered necessary to use a non-toxic gene delivery system that
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would not result in cell death. Thus, it was proposed that lentiviral based vectors be used to 

deliver Lyp to different primary T cell populations. Lentiviruses, a family of retroviruses, are 

one of the most efficient gene delivery vectors that infect dividing and non-dividing cells 

with high efficiency, resulting in long term stable expression of the transgene. Furthermore 

and of relevance to this study, lentiviruses are known to be capable of infecting primary T 

cells.

Before the impact of over-expression of R620 and W620 Lyp using lentiviruses could be 

assessed it was first necessary to generate cDNAs expressing the two isoforms of Lyp. To 

allow potential identification of transduced cells, truncated rat CD2 and GFP were selected as 

reporter genes. The rationale behind designing plasmids expressing GFP was to allow easy 

visual detection and estimation of transduction efficiency whilst rat CD2 would allow rapid 

and economical isolation of transduced cells. The reporter gene was required to be expressed 

from the same mRNA as the gene of interest, Lyp, therefore a self-cleaving peptide derived 

from a Thosea asigna virus (TaV) known as 2A was used for the purpose (Donnelly et al. 

2001; Radcliffe and Mitrophanous 2004). The 2A technology is the most efficient multiple 

transgene co-expression strategy currently available. Internal ribosomal entry sites (IRESs) 

sequences can also be used to co-express multiple transgenes, however the large sizes of the 

IRESs (~ 0.5kb) and the difficulties of ensuring a well-balanced co-expresssion makes them 

inferior to 2A technology (de Felipe 2004; Radcliffe and Mitrophanous 2004). 2A peptides 

are '19  amino acid sequences that direct its own separation from the growing polypeptide 

chain during translation. 2A peptides occur in many viral genomes and are critical elements 

in the control of their protein biogenesis (Doronina et al. 2008). The small 2A peptide 

interacts with the exit tunnel of the ribosome to induce the “skipping” of the last peptide bond 

at the C-terminal of 2A, however the ribosome is able to continue translating the second 

protein after releasing the first protein fused in its C-terminal to 2A (de Felipe 2004). TaV 

drived 2A has been found to have over 99% self processing ability (Donnelly et al. 2001).
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Figure 4.1 The Thosea asigna virus 2 A  peptide sequence

Shown above is the 2A  sequence derived from the Thosea asigna virus (TaV). The black 

filled arrow indicates the site of the self-processing. The 2A  arrow indicates the sequence 

retained in the C- terminal of the upstream protein (Lyp) and the 2B arrow indicates the 

amino acid retained at the N-terminal of the downstream protein (GFP or truncated rat CD2).
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4.2 Overview of the cloning strategy

The generation of R/wLyp-2A-CD2 or R/wLyp-2A-GFP lentivirus cDNA plasmids first 

required the assembly of contiguous R/wLyp, self-processing 2A peptide and rat CD2/GFP 

cDNA cassettes. The pUC19 x-2A-y and pUC19 X-2A-GFP vectors (Figures 4.2 and 4.3), 

previously designed and generated in the Department, were used for this purpose. It was 

preferable to clone the reporter gene downstream of the gene of interest, therefore the cassette 

was assembled so that Lyp was cloned into the “x” or XbaHXhoI sites and a truncated rat 

CD2 or GFP reporter gene was introduced into the “y”or KpnI/Notl sites of the pUC19 x-2A- 

y plasmid. The assembled Lyp-2A-GFP/CD2 cDNA cassettes were then extracted by BamHI 

restriction digestion and cloned into the BamHI site of the lentivirus vector (Lenti SxW) 

(Figure 4.4) to generate the lentivirus plasmids encoding the two isoforms of Lyp.

4.3 Assembly of R/wLyp-2A-GFP/CD2 cDNA cassettes

4.3.1 Cloning of truncated rat CD2 into the “y” site of the pUC19 x-2A-y vector

The pUC19 x-2A-y plasmid (Figure 4.2) was used as a vector for the generation of the 

pUC19 R/wLyp-2A-CD2 plasmids. A truncated rat CD2 cDNA sequence was cloned into the 

“y” or Kpnl, N otl site of the pUC19 x-2A-y vector to generate a pUC19 X-2A-CD2 plasmid 

(Figure 4.4A).To do this a rat CD2 sequence was first PCR amplified from a rat CD2 cDNA 

template using specific sense and anti-sense primers (Materials and Methods). The vector and 

the PCR amplified insert were double restriction digested using Kpnl and Notl restriction 

enzymes and gel purified. The vector DNA was also Shrimp Alkaline Phosphatase, (SAP) 

treated and purified before a ligation was performed using T4 DNA ligase. The DNA was 

transformed into DH5a competent cells and individual ampicillin resistant colonies screened 

using Kpnl, Notl restriction digestion to identify the colonies containing the recombinant 

plasmids. The sizes of the truncated rat CD2 sequence and the pUC19 x-2A-y vector are 

612bp and 2763bp, respectively. Of the four colonies screened all four were found to be 

recombinant plasmids as shown by the presence of DNA fragments at 612bp representing the 

truncated rat CD2 cDNA and at approximately 2.8kb encoding for the pUC19 vector (Figure 

4.5B).
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p (b l a ; BarriKI (4 0 3 )  

X ba  I (4 0 9 ) ’'! 

X ho  I (4 1 5 )
— SGSG 2A

Ampicillin.
resistance

p l)C 1 9  x- 2A-y
B am H I (519) 

P(LAC)
2 7 6 3  bp

Figure 4.2 Schem atic of the plasm id vector used to assemble “Lyp-2A-CD2” cassettes

The restriction sites used for cloning are shown in maroon (subcloning sites for cDNA 

cassette assembly) and red (flanking BamHI site for subsequent restriction of assembled 

cDNA cassettes and cloning into lentivirus plasmid vector (Lenti SxW)).

The pUC19 x-2A-y plasmid vector, containing a self processing 2 A peptide sequence in 

between the two sets of cloning sites, was used to assemble R/wLyp-2A-CD2 cDNA cassettes 

in the pUC19 plasmid for subsequent cloning into the lentivirus plasmid. To generate the 

pUC19 R/wLyp -2A-CD2 plasmid , the Lyp cDNA was cloned into the Xbal/Xhol or “x” site 

and the truncated rat CD2 cDNA was cloned into the Kpnl/Notl or “y” site.
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P(BLA) Bam  HI (4 0 3 ) 

X bal (4 0 9 )

X/10I (4 1 5 ) 
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m  Kpnl (5 0 9 )

Ampicillin
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p l)C 19  X-2A-GFP
3 4 8 2  bp

GFP coding sequence

\~~ATof I (1231)

. Bam  HI (1 2 3 8 ) 

P(LAC)

ORI

Figure 4.3 Schematic of the plasmid vector used to assemble “Lyp-2A-GFP” plasmids

A pUC19 X-2A-GFP plasmid, already containing the self processing 2A peptide and the 

green fluorescent protein (GFP) downstream of the 2A sequence was used for the 

assembly of R/wLyp-2A-GFP cDNA cassettes before cloning into the lentivirus plasmid.
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LTR HIV-1 K '  SV40 promoter-enhancer

gpt (OFR-frame shift)

Figure 4.4 Schematic of the plasmid vector used to generate Lenti-Lyp plasmids

The R/wLyp-2A-CD2, R,wLyp-2A-GFP and GFP-2A- R/wL.yp cDNA cassettes were each 

cloned into the BamHI site of the lentivirus plasmid vector (Lenti SxW) to generate Lenti- 

R/wLyp-2A-CD2, Lenti- R/wLyp-2A-GFP and Lenti- GFP-2A- R/wLyp cDNA plasmids 

respectively. In the Lenti SxW plasmid vector, Spleen focus forming virus promoter 

(SffV) facilitates the transgene (R/wLyp-2A-CD2 or R/wLyp-2A-GFP or GFP-2A- R/wLyp) 

transcription and Woodchuck hepatitis regulatory element (WPRE) enhances the 

transcription levels of the transgene.
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A.

P(BLA) BamHI (403)

pUC19 x-SGSG 2A-y
2763 bp

BamHI (519) 

P(LAC)

B.

Marker 1 2  3 4

Vector 2.8kb 

Insert 612bp

Figure 4.5 Generation of the pUC X-2A-CD2 plasmids

A. Schematic diagram showing the strategy of cloning the truncated rat CD2 cDNA into 

the pUC x-2A-y plasmid vector to generate a recombinant pUC X-2A-CD2 plasmid.

B. Colony screening by Notl, Kpnl restriction digestion of the plasmid DNA from 

ampicillin resistant colonies to identify colonies containing recombinant pUC19 x- 

2A-CD2 plasmids. This Figure shows that all four colonies screened contain 

recombinant pUC X-2A-CD2 plasmids as they all contain the 612 bp rat CD2 insert.
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4.3.2 Cloning of RLyp into the “x” site of the pUC19 X-2A-CD2 vector

The cloning of a RLyp cDNA into the “x” site of the pUC19 X-2A-CD2 vector first required 

the removal of the internal Xbal sites from the coding sequences of truncated rat CD2 (Figure 

4.6) and Lyp (Figure 4.7). “Quick step” in vitro mutagenesis was performed using a 

Stratagene protocol and Pfu Turbo polymerase (Materials and Methods). Mutagenesis was 

checked by an Xbal restriction digestion and confirmed by DNA sequencing (Materials and 

Method). The RLyp cDNA (insert) was PCR amplified using specific oligos incorporating a 

5’Kozak consensus sequence and a 3’myc epitope tag (Materials and Methods Table 2.2).

The pUC19 X-2A-CD2 vector and the RLyp cDNA were restriction digested using Xbal, Xhol 

restriction enzymes and gel purified. The RLyp cDNA was then cloned into the SAP treated, 

gel purified vector following a ligation reaction using T4 ligase (Figure 4.7). The DNA was 

transformed into DH5a competent cells and the plasmid DNA from ampicillin resistant 

colonies screened using Xbal, Xhol restriction digestion to identify the colonies containing 

recombinant plasmids. The sizes of the RLyp insert and the pUC19 vector are 2.6kb and 3.4 

kb, respectively. Of the eight colonies screened only colony number four contains 

recombinant pUC19 RLyp-2A-CD2 plasmid (Figure 4.8).
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P(BLA) BaraHI (403) 

Xbal (409)

Xhol (415) 

k SGSG2A

pUC19 x-SGSG 2A-CD2
3382 bp

In-vitro mutagenesis

 N otl (1131)

BamH\ (1138) 

P(LAC)

ORI

P(BLA) B a m H l  (403) 

,V6al (409)

Xhol (41.-, 1 

k SGSG 2A

p U C 1 9  x - S G S G  2 A -C D 2
3382 bp

Truncated CD2

 Natl (113O

' 'f i a m H I  (1138) 

P(LAC)

ORI

Figure 4.6 Strategy for deletion of the internal Xbal site

Schematic diagram showing the removal of the internal Xbal site from the rat CD2 

cDNA sequence. The internal Xbal site from the rat CD2 cDNA needed to be removed 

to facilitate the cloning o f the upstream gene, Lyp, into the Xbal, Xhol site of the pUC 

X-2A-CD2 plasmid. The internal Xbal site from the rat CD2 cDNA was removed by 

quick step in-vitro mutagenesis.
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Figure 4.7 Cloning strategy for the generation of the pUC19 RLyp-2A-CD2 plasmid

Schematic diagram showing the strategic removal of internal Xbal site from the RLyp cDNA, 

followed by PCR amplification of the RLyp cDNA and subsequently cloning of the mutated RLyp 

into the Xbal, Xhol site of the pUC19 X-2A-CD2 vector (top right to bottom right) to generate 

recombinant pUC19 RLyp-2A-CD2 plasmid.
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Marker 1 2 3 4 5 6 7  8

V ecto r  3 .4 k b  

Insert 2 .5 k b

Figure 4.8 Generation of the pUC19 RLyp-2A-CD2 plasmids

Colony screening by Xbal, Xhol digestion of the plasmid DNA from ampicillin resistant 

colonies to identify colonies containing recombinant pUC19 RLyp-2A-CD2 plasmids. The 

size of the pUC X-2A-CD2 vector backbone is 3.4 kb and the RLyp insert is 2.5kb. Above 

Figure shows that only colony 4 contains recombinant pUC19 RLyp-2A-CD2 plasmids.
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4.3.3 Generation of pUC19 wLyp-2A-CD2 plasmids

The pUC19 wLyp-2A-CD2 plasmid was generated from pUC19 RLyp-2A-CD2 plasmid using 

Quick step in vitro mutagenesis (Materials and Method) to change a single nucleotide at 

position 1858 which in turn changes the amino acid at position 620 from Arginine to 

Tryptophan (Figure 4.9).
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Figure 4.9 Schematic diagrams showing the generation of pUC19 "Lyp-2A-CD2 

plasmids

Schematic diagram showing the generation of pUC19 wLyp-2A-CD2 plasmid from the 

pUC19 RLyp-2A-CD2 plasmid by using site directed in vitro mutagenesis to change the 

Arginine at amino acid position 620 of Lyp to Tryptophan.
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4.3.4 Generation of the pUC19 ^ ^ y p  -2A-GFP plasmids

To facilitate potential additional molecular manipulations of Lyp cDNA the Kpnl restriction 

site needed to be removed from the Lyp coding sequence (Figure 4.10). This was achieved by 

“Quick step” in vitro mutagenesis and the resultant plasmids were checked by DNA 

sequencing. The pUC19 X-2A-GFP vector (Figure 4.3) was used for the generation of 

pUC19 R/wLyp-2A-GFP plasmids. RLyp and wLyp cDNAs were extracted and purified by 

Xbal, Xhol restriction digestion from the pUC19 RLyp-2A-CD2 and wLyp-2A-CD2 plasmids, 

respectively and cloned into the ‘x’ site of the Xbal, Xhol digested, SAP treated pUC19 x- 

2A-GFP vector. Figure 4.11A shows Xbal, Xhol digestion screening of 10 plasmid DNA
D

from ampicillin resistant colonies to identify colonies containing pUC19 Lyp-2A-GFP 

plasmids. From this figure it can be seen that only colonies 4 and 10 are recombinant pUC19
D
Lyp-2A-GFP plasmids. Figure 4.1 IB shows that only colonies 1 and 8 contain recombinant 

pUC 19wLyp-2A-GFP plasmids.
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Figure 4.10 Strategy for K pnl site removal from Lyp sequence

Schematic diagram showing the strategic removal of internal Kpnl site from the Lyp cDNA 

by site directed in vitro mutagenesis to generate a Kpnl mutant Lyp for easier future 

manipulations.
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Marker 1

V ecto r  3 .5 k b

Insert 2 .4 k b

B

Marker 1

V ecto r  3 .5 k b

Insert 2 .4 k b

Figure 4.11 Generation of the recombinant pUC19 RmLyp-2A-GFP plasmids

A. Colony screening by Xbal, Xhol restriction digestion of the plasmid DNA from 

ampicillin resistant colonies to identify those colonies containing recombinant pUC19 

RLyp-2A-GFP plasmids. O f the ten colonies screened only colonies 4 and 10 contains 

recombinant pUC19 RLyp-2A-GFP plasmids.

B. Colony screening by Xbal, Xhol restriction digestion of the plasmid DNA from 

ampicillin resistant colonies to identify those colonies containing recombinant pUC19 

vvLyp-2A-GFP plasmids. Of the ten colonies screened only colonies 1 and 8 contains 

recombinant pUC19 wLyp-2A-GFP plasmids.
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4.4 Generation of the lentivirus plasmids

4.4.1 Generation of Lenti- Arginine (R) and Tryptophan (W) Lyp-2A-CD2 plasmids

Lentivirus vector (Lenti-Sffv-x-WPRs or Lenti SxW) (Figure 4.4) was used for the 

generation of the Lenti-R/wLyp-2A-CD2 plasmids (Figure 4.12). RLyp-2A-CD2 and WLyp- 

2A-CD2 cassettes were extracted and purified by BamHI, Asel double digestion from the 

pUC19RLyp-2A-CD2 and pUC19 wLyp-2A-CD2 plasmids respectively. Asel digestion 

allows a clear separation of the pUC19 vector from the R/wLyp -2A-CD2 cDNA cassette as it 

further restricts the pUC19 plasmid vector into smaller DNA fragments. The cDNA cassettes 

were then cloned into BamHI digested, SAP treated lentivirus vector. The DNA was 

transformed into DH5a competent cells and plasmid DNA from ampicillin resistant colonies 

was screened using a BamHI digestion to identify recombinant colonies and an EcoRI 

digestion was performed to determine the orientation of the cloned insert. The size of the 

Lyp-2A-CD2 cDNA cassette is 3.2kb and the lentivirus vector is 9kb. Of the 10 colonies 

screened using BamHI digestion, 1-9 were recombinant Lenti- lyp-2A-CD2 colonies, 

whereas colony no 10 contained a self-ligated vector only (Figure 4.13A). EcoRI digestion 

was performed to check the orientation of the insert cloned in the vector. If the insert had 

been cloned in the correct orientation, DNA fragments of sizes 139bp, 2283bp and 9326bp 

would have been expected whereas cloning in the incorrect orientation would have given 

DNA fragments of 139bp, 1786bp and 9823bp. From Figure 4.13B it can be seen that only 

colony 4 contained plasmid DNA whereby the cDNA cassette has been inserted in the correct 

orientation as it is the only clone that has a plasmid that releases a DNA fragment at 2283bp 

upon EcoRI digestion. Figure 4.13A shows that all 6 colonies screened contained 

recombinant Lenti wLyp-2A-CD2 cDNAs and from Figure 4.13B it can be deduced that 

colonies 1, 4 and 6 contain plasmid DNA whereby the cDNA cassette has inserted in the 

correct orientation.

134



W P R E

N ot I (11458) 

K pn l (11449) 

B am H I (11423) 

N o tl  (11416) 

Truncated CD2 

Kpnl (10794)  

SGSG2A 

EcoRI (10145)

EcoRI (10006)

K p n l(9882)

LYP1 CDS

LTR-HIVdelU3

V Amp. Res.

Lenti Lyp SGSG2A CD2.
12256 bp

BamHI (8231)^

3' SFFVLTR 

EcoRI (7 7 2 3 )_

CPRT „
RRE-Rev responsive element

N o tl  (6651)

/
SV40 promoter-enhancer

gpt(OFR-frame shift)

LTR HIV-1

Figure 4.12 Generation of the Lenti- R/wLyp-2A-CD2 plasmids

Schematic representation of the Lenti-Lyp-2A-CD2 plasmid. The R/wLyp-2A-CD2 cDNA 

cassettes were extracted from the pUC R/wLyp-2A-CD2 recombinant plasmids by BamHI 

restriction digestion and cloned into the BamHI site of the lentivirus plasmid vector (Lenti 

SxW) to generate Lenti- R/wLyp-2A-CD2 plasmids. In this plamid vector, Spleen focus 

forming virus promoter (Sffv) facilitates the transgene, R/wLyp-2A-CD2, transcription 

and Woodchuck hepatitis regulatory element (WPRE) enhances the transcription levels of 

the transgene.
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Figure 4.13 Generation of the Lenti- Lyp-2A-CD2 plasmids

A. Colony screening by BamHI digestion of the plasmid DNA from plasmid DNA from 

ampicillin resistant colonies to identify the recombinant Lenti- Lyp-2A-CD2 

plasmids. This Figure shows that of the 10 colonies screened, colonies 1-9 contain 

recombinant Lenti-RLyp-2A-CD2 plasmids.

B. EcoRI digestion to check the orientation of the cloned RLyp-2A-CD2 cDNA cassette 

in the lentivirus vector. Cloning in the correct orientation produces an indicative DNA 

fragment at 2283bp whereas cloning in the incorrect orientation produces a DNA 

fragment at 1786bp. This Figure shows that only colony 5 contains plasmids with 

RLyp-2A-CD2 cDNA cassette in the correct orientation.
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Figure 4.14 Generation of the Lenti- wLyp-2A-CD2 plasmids

A. Colony screening by BamHI digestion of the plasmid DNA from plasmid DNA from 

ampicillin resistant colonies to identify the recombinant Lenti-wLyp-2A-CD2 

plasmids. This Figure shows that of the 6 colonies screened, all contain recombinant 

Lenti-wLyp-2A-CD2 plasmids.

B. EcoRI digestion to check the orientation of the cloned wLyp-2A-CD2 cDNA cassette 

in the lentivirus vector. Cloning in the correct orientation produces an indicative DNA 

fragment at 2283bp whereas cloning in the incorrect orientation produces a DNA 

fragment at 1786bp. Above Figure shows that only colonies 1, 4 and 6 contain 

plasmids with wLyp-2A-CD2 cDNA cassette in the correct orientation.
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4.4.2 Generation of Lenti- Arginine (R) or Tryptophan (W) Lyp-2A-GFP plasmids

RLyp-2A-GFP and wLyp-2A-GFP cDNA cassettes were extracted and purified by BamHI, 

Asel double digestion from the pUC19RLyp-2A-GFP and pUC19 wLyp-2A-GFP plasmids 

respectively. The cDNA cassettes were cloned into BamHI digested, SAP treated lentivirus 

vector to generate Lenti R/wLyp-2A-GFP/CD2 plasmids (Figure 4.15). The DNA was 

transformed into DH5a competent cells and colonies screened using BamHI digestion to 

identify recombinant colonies and EcoRI digestion to check the orientation of the cloned 

insert. Of the 10 colonies screened using BamHI digestion, 2 to 10 contained recombinant 

Lenti-RLyp-2A-GFP plasmids (Figure 4.16A). Furthermore, it can be seen from Figure 4.16B 

that clones 4, 5, 9 and 10 contained plasmids with cDNA inserts cloned in the correct 

orientation as indicated by the release of a DNA fragment of 2283bp upon EcoRI digestion. 

Figure 4.17A shows that all 10 colonies screened contained recombinant Lenti-wLyp-2A- 

GFP plasmids and from Figure 4.17B it can be deduced that colonies 1, 3, 4, 7, 8, 9 and 10 

contained plasmids with cDNA inserts cloned in the correct orientation.
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Figure 4.15 Schematic diagram showing the design of the Lentivirus ^L yp-Z A -G FP  

plasmid

The R/wLyp-2A-GFP cDNA cassettes were extracted from the pUC R/wLyp-2A-GFP 

recombinant plasmids by BamHI restriction digestion and cloned into the BamHI site of 

the lentivirus plasmid vector (Lenti SxW) to generate Lenti- R/wLyp-2A-GFP plasmids. In 

this plamid vector, Spleen focus forming virus promoter (SffV) facilitates the transgene, 

R/wLyp-2A-GFP, transcription and Woodchuck hepatitis regulatory element (WPRE) 

enhances the transcription levels o f the transgene.
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Figure 4.16 Generation of the Lenti- Rlyp-2A-GFP plasmids

A. Colony screening by BamHI digestion of the plasmid DNA from ampicillin resistant 

colonies to identify those colonies containing the recombinant Lenti-RLyp-2A-GFP 

plasmids. This Figure shows that colonies 2-10 contain recombinant Lenti-RLyp-2A- 

GFP plasmids.

B. EcoRI digestion to check the orientation of the cloned Lyp-2A-GFP cDNA cassette 

in the lentivirus vector. Cloning in the correct orientation is indicated by the release of 

a DNA fragment of 2283bp. Above Figure shows that colonies 4, 5, 9, and 10 contain 

plasmids with RLyp-2A-GFP cDNA cassette in the correct orientation.
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Figure 4.17 Generation of the Lenti- wLyp-2A-GFP cDNAs

A. Colony screening by BamHI digestion of the plasmid DNA from the plasmid DNA 

from ampicillin resistant colonies to identify those colonies containing recombinant 

Lenti-wLyp-2A-GFP plasmids. This Figure shows that all the colonies screened 

contain the recombinant Lenti-wLyp-2A-GFP plasmids.

B. EcoRI digestion to check the orientation of the cloned wLyp-2A-GFP cDNA cassette 

in the lentivirus vector. Cloning in the correct orientation releases an indicative DNA 

fragment at 2283bp whereas cloning in the incorrect orientation releases a DNA 

fragment at 1786bp. From this Figure it can be seen that colonies 1, 3, 4, 7, 8, 9 and 

10 contain plasmids with wLyp-2A-GFP cDNA cassette in the correct orientation.
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4.5 Testing of the Lenti Lyp-2A-GFP plasmids

293T cells were transient transfected with the lentivirus plasmids, Lenti R/w Lyp-2A-GFP, to 

confirm expression of R/wLyp and GFP. Transfection efficiency, as indicated by the 

expression of GFP, was checked by both visualising the cells using fluorescence microscopy 

and by flow cytometry.

There was a very low level of GFP expression observed in 293T cells transfected with the 

Lenti wLyp-2A-GFP plasmid compared to the positive control (Lenti SeW) plasmid (Figure 

4.18A & 4.18B). The positive control, Lenti SeW is the same lentivirus plasmid as the one 

used to generate the Lentivirus Lyp plasmids but with eGFP cloned into the BamHI site. 

Immunoblot analysis was performed to check if both the Lyp and GFP expression were 

impaired and/or whether cleavage was taking place between the 2A sequence and GFP 

(Figure 4.19).

Immunoblot blot data shows some Lyp expression and no GFP expression with the Lenti- 

wLyp-2A-GFP plasmid but control plasmid does demonstrate GFP expression. Both control 

Lenti-GFP and Lenti-Lyp-2A-GFP are driven by the same Spleen Focus Forming Virus 

(SFFV) promoter known to be efficient in driving expression in T cells and 293T cells. First 

interpretation of this result may be that Lyp is being expressed but not GFP but this 

discrepancy in results could be due to the affinity of the antibodies rather than differential 

expression of the two proteins. Therefore, expression of both the proteins was analaysed 

using an “w vitro coupled transcription translation” in collaboration with Prof Martin Ryan at 

the University of St Andrews. The pGEM 4Z Lyp-2A-GFP and Lyp-2A-CD2 plasmids were 

generated by myself and sent to Prof Martin Ryan, University of St Andrews where the “m 

vitro coupled transcription translation” analysis was carried out.
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Figure 4.18 Testing of the Lenti Lyp -2A-GFP plasmids

A. Fluorescent microscopic analysis of GFP expression by 293 T cells following 

transient transfection with Lenti-wLyp-2A-GFP plasmid.

B. Flow cytometric analysis o f GFP expression by 293T cells following transient 

transfection with Lenti-^ Lyp-2A-GFP plasmid.
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Figure 4.19 Immunoblot analysis of the Lyp and GFP protein expression

Confirmation of Lyp and GFP expression by immunoblot analysis using a myc epitope tag 

antibody for Lyp detection and a GFP specific antibody for GFP detection.
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4.5.1 “/«  vitro coupled transcription translation” analysis of Lyp-2A-CD2/GFP cDNAs

“In vitro coupled transcription translation” is a simple and fast method of synthesizing small 

amounts of proteins by transcribing RNA directly from DNA using a prokaryotic phage RNA 

polymerase and promoter (T7, T3 or SP6). The mRNA is subsequently translated into 

radioactively labelled protein using rabbit reticulocyte lysate and detected using 

autoradiography. Lyp-2A GFP/CD2 plasmids driven by a T7 promoter were generated by 

extracting the Lyp-2A GFP/CD2 cDNA cassettes from the pUC19 Lyp-2A GFP/CD2 

plasmids by BamHI restriction digestion and cloning into BamHI restricted, SAP treated 

pGEM-4Z plasmid vector which is driven by T7 promoter (Figure 4.20A).

Of the 8 colonies screened using BamHI digestion, all contained plasmids which were 

recombinant pGEM-4Z RLyp-2A-CD2 (Figure 4.20B). EcoRI restriction digestion was then 

carried out to identify the pGEM-4Z recombinants with the RLyp-2A-CD2 cDNA cassette 

cloned in the correct orientation. If the insert was cloned in the correct orientation DNA 

fragments of 139bp, 1386bp and 4513bp were expected whereas cloning in the incorrect 

orientation was expected to release DNA fragments of 139bp, 1796bp and 4103bp upon 

EcoRI digestion. It can be seen from Figure 4.20C that clones 1, 2 and 5 have plasmids with 

inserts that have been inserted in the correct orientation releasing a DNA fragment of 1386bp 

upon EcoRI digestion. Of the 10 colonies screened using BamHI digestion, 2, 4, 6 and 10 

contained recombinant pGEM-4Z wLyp-2A-GFP plasmids (Figure 4.21A). It can be seen 

from Figure 4.2IB that clones 4, 6 and 10 have plasmids with the wLyp-2A-GFP cDNA 

cassette inserted in the correct orientation as shown by the release of a DNA fragment of 

1386bp upon EcoRI digestion.

“In vitro transcription translation” analysis showed no major differences in the expression 

levels of Lyp and GFP (Figure 4.22) suggesting that both Lyp and GFP were being 

expressed. There were also no Lyp-GFP/CD2 fusion protein detected suggesting an almost 

100% self processing of the 2A peptide (Figure 4.22). However in addition there seemed to 

be several Lyp internal initiation products being synthesised indicating that the problem may 

not be with the cleavage between the two proteins, or continuation of translation after the 2A 

sequence but the initiation of translation at the 5’ end of Lyp mRNA. It seems that the 

ribosome may not able to efficiently start translation at the first ‘in frame’ start codon 

suggesting that the Kozak consensus sequence that has been used may not be optimal for the 

purpose.
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Figure 4.20 Generation of the pGEM -4Z Lyp-2A-GFP/CD2 plasmids

A. Schematic diagram showing the design o f the Lyp- 2A-GFP pGEM-4Z plasmid. In 

this plasmid the transgene expression was driven by T7 promoter.

B. Colony screening by Bam H I digestion of the plasmid DNA from ampicillin resistant 

colonies to identify theose colonies containing recombinant RLyp-2A-CD2 pGEM-4Z 

plasmids. This Figure shows that all the colonies screened contain recombinant RLyp- 

2A-CD2 pGEM-4Z plasmids.

C. EcoRI digestion to check the orientation o f the cloned RLyp-2A-CD2 cDNA cassette 

in the pGEM-4Z vector. Cloning in the correct orientation is indicated by release o f a

1.4 kb DNA fragment. This Figure shows that colonies 1, 2 and 5 contain plasmids 

with RLyp-2A-CD2 cDNA cassette in the correct orientation.
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Figure 4.21 Generation of the pGEM-4Z wLyp-2A-GFP/CD2 plasmids

A. Colony screening by BamHI digestion of the plasmid DNA from the plasmid DNA 

from ampicillin resistant colonies to identify recombinant wLyp-2A-GFP pGEM-4Z 

plasmids^ This Figure shows that colonies 2, 4, 6 and 10 contain recombinant wLyp- 

2A-GFP pGEM-4Z plasmids

B. EcoRI digestion to check the orientation of the cloned wLyp-2A-GFP cDNA cassette 

in the pGEM-4Z vector. Cloning in the correct orientation is indicated by release of a

1.4 kb DNA fragment. This Figure shows that colonies 4 and 6 contain plasmids with 

wLyp-2A-CD2 cDNA cassette in the correct orientation.
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Figure 4.22 Evaluation of the self processing of the 2A peptide

“//? vitro coupled transcription translation” was used to evaluate the self processing of the 2A 

peptide and to verify if any Lyp-GFP or Lyp-CD2 fusion was being expressed. This 

experiment was performed and the data provided by the group of Prof. Martin Ryan, 

University of St Andrews.



4.6 Changing the Kozak consensus sequence

A 5’ oligo incorporating a different, longer consensus sequence (Figure 4.23) and an Xbal 

restriction site was designed and used to PCR amplify a wLyp cDNA. The wLyp cDNA with 

the new 5’ Kozak consensus sequence was subsequently cloned into pUC19 X-2A-GFP to 

generate a pUC19 wLyp-2A-GFP plasmid. All six colonies screened were pUC19 wLyp-2A- 

GFP recombinants (Figure 4.24A).The Lyp-2A-GFP cDNA cassette was subsequently 

extracted by BamHI restriction digestion from the pUC19 wLyp-2A-GFP plasmid and cloned 

into the lentivirus vector to generate Lenti-wLyp-2A-GFP plasmid. EcoRI digestion was 

performed to check the orientation of the insert (Figure 4.24B) The Lenti-wLyp-2A-GFP 

plasmid was then tested by transient transfection of 293T cells. There were again very low 

levels of GFP expression observed compared to the positive control, very similar to the first 

wLyp-2A-GFP plasmid, suggesting that the Kozak sequence was not the problem in 

achieving strong expression (data not shown). However, the Kozak consensus sequence of 

the Lenti- Lyp-2A-GFP plasmid was also changed to the consensus sequence shown in 

Figure 4.22 as described above (data not shown). This was done to ensure that both the
R Wsequence of the Lenti- Lyp-2A-GFP and Lenti- Lyp-2A-GFP recombinant plasmids had no 

other difference other than the two isoforms of Lyp.

As the Kozak sequence did not appear to be the reason for the difficulty experienced with the 

expression of the Lenti-R/wLyp-2A-GFP recombinant plasmids, it was decided to generate 

Lenti- RFP-2A-GFP recombinant plasmid as a positive control using the same Lenti SxW 

vector backbone and strategy of cloning as used in the generation of Lenti-R/wLyp-2A-GFP 

recombinant plasmids.
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CCA GO Q  Q Original Kozak consensus sequence

GO0 GCC AO AT G G New Kozak consensus sequence

Figure 4.23 K ozak consensus sequences

Figure showing the sequence of the original Kozak consensus sequence used and the new 

Kozak concensus sequence that was used to replace it.
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sequence

A. Colony screening by Xbal, Xhol digestion of the plasmid DNA from plasmid DNA 

from ampicillin resistant colonies to identify the colonies containing recombinant 

pUC19-wLyp-2A-GFP plasmids. This Figure shows that all the colonies screened 

contain pUC19-wLyp-2A-GFP plasmids.

B. Colony screening by BamHI digestion of the plasmid DNA from ampicillin resistant 

colonies to identify the recombinant Lenti-wLyp-2A-GFP plasmids followed by 

EcoRI digestion to check the orientation of the cloned wLyp-2A-GFP cDNA cassette 

in the lentivirus vector.
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4.7 Generation of Lenti- RFP-2A-GFP plasmid as a positive control

4.7.1 Cloning of red fluorescent protein (RFP) into the pUC19 X-2A-GFP vector

The generation of a recombinant Lenti-RFP-2A-GFP plasmid would allow it to be used as a 

positive control for the Lenti X-2A-GFP vector. As the only difference between Lenti-RFP- 

2A-GFP and Lenti-Lyp-2A-GFP is the protein upstream of the 2A peptide, Lyp versus RFP, 

the expression of the Lenti-RFP-2A-GFP plasmid would delineate where problems lie in 

expression of Lyp. With the RFP-2A-GFP cDNA cassette insert, cells expressing both the 

upstream and downstream proteins, RFP and GFP respectively, should fluoresce green when 

stimulated with light of blue wavelength and fluoresce red when stimulated with light of 

green wavelength.

The RFP cDNA was PCR amplified from a DsRed plasmid using a 5’ primer incorporating 

an^fra/site and Kozak consensus sequence (GCCGCCACC) and a 3’ primer incorporating 

an Xhol restriction site. The PCR product was restriction digested using Xbal, Xhol 

restriction enzymes and purified by gel extraction. The RFP cDNA was then cloned into the 

V  site of Xbal, Xhol digested, SAP treated pUC19 X-2A-GFP vector. Figure 4.25A shows 

Xbal, Xhol digestion screening of plasmid DNA from six ampicillin resistant colonies 

following ligation and transformation of the RFP cDNA into pUC19 X-2A-GFP vector. From 

Figure 4.25A it can be seen that colonies 3, 4, 5 and 6 contain recombinant pUC19 RFP-2A- 

GFP plasmids.

To generate recombinant lentivirus plasmid, the RFP-2A-GFP cDNA cassette was extracted 

and purified by BamHI, A sel double digestion from pUC19 RFP-2A-GFP plasmid. The 

cDNA cassette was then ligated into BamHI digested, SAP treated lentivirus vector. The 

DNA was transformed into DH5a competent cells and colonies were screened using BamHI 

digestion to identify recombinants and a Bsal digestion was performed to determine the 

orientation of the cloned insert. The size of the RFP-2A-GFP cDNA cassette and the 

lentivirus vector are 1516bp and 9kb respectively. Of the 7 colonies screened using BamHI 

digestion, all contained recombinant Lenti-RFP-2A-GFP plasmids (Figure 4.25B). Bsal 

digestion was further performed to check the orientation of the cloned insert in the vector. If 

the insert had been cloned in the correct orientation DNA fragments of sizes 1830bp, 1985bp, 

2746bp and 4010bp would have been expected whereas cloning in the incorrect orientation 

would produce DNA fragments of 1454bp, 1830bp, 3757bp and 4010bp. From Figure 4.25C
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it can be seen that colonies 2, 3, 5, 6, 7, 8 have insert in the correct orientation as they release 

a DNA fragment at 2746bp upon Bsal digestion.

Following transient transfection of 293T cells with the Lenti-RFP-2A-GFP plasmid, a high 

percentage of coincident red and green cells were observed. This result suggested that the 

problems with expression originated with Lyp and the rest of the vector was functioning 

correctly (Figure 4.26A). The Lenti- RFP-2A-GFP plasmid demonstrated the efficiency of 

cleavage with the 2A peptide as no fusion protein could be detected. Immunoblot using anti- 

GFP antibody on the lysates of 293 T cells transfected with Lenti-RFP-2A-GFP indicated a 

100% self processing efficiency as no migrating protein band corresponding to a RFP-2A- 

GFP fusion protein was observed (Figure 4.26B).

The 5’ and 3’ ends of Lyp and the 2A-GFP sequence had been checked by repeat DNA 

sequencing but the entire 2.4kb Lyp sequence had never been sequenced. At this stage, it was 

thought necessary to check the entire Lyp cDNA sequence in a further attempt to identify the 

problem experienced with the expression of Lenti- Lyp -2A-GFP recombinant plasmids.
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Figure 4.25 Generation of the Lenti-RFP-2A-GFP plasmid

A. Colony screening by X b a l , X h o l  digestion of the plasmid DNA from ampicillin 

resistant colonies to identify those colonies containing recombinant pUC19-RFP-2A- 

GFP plasmids. This Figure shows that colonies 3, 4, 5 and 6 contain recombinant 

pUC19- RFP-2A -GFP plasm ids.

B. Colony screening by B am H I digestion of the plasmid DNA from ampicillin resistant 

colonies to identify colonies containing recom binant Lenti-RFP-2A-GFP plasmids. 

This Figure shoes that all the colonies screened contain recombinat Lenti-RFP-2A- 

GFP plasmids.

C. B sal digestion to check the orientation of the cloned RFP-2A-GFP cDNA cassette in 

the lentivirus vector. C loning of the insert in the correct orientation is indicated by 

the presence of a DNA fragm ent at 2746 bp and an absence of a DNA fragment at 

3757 bp. This Figure shows that colonies 1, 2, 3, 5, 6, 7 and 8 contain plasmids with 

RFP-2A-GFP cD N A  cassette in the correct orientation.

3
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Figure 4.26 Testing the L enti-R FP-2A -G FP  plasm id

A. RFP and GFP expression by 293Tcells following transient transfection of 293T cells 

with Lenti-RFP-2A-GFP plasmid (left) and Lenti-GFP plasmid (right).

B. Immuno blot data showing cleavage efficiency of the 2A peptide. No RFP-2A-GFP 

fusion protein was detected when immunoblotted with an anti-GFP antibody.
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4.8 Modifying/Correcting Lyp cDNA

The original Lyp cDNA was obtained as a clone in the Sport Vector from Gene Service 

Cambridge and advertised as a full length cDNA clone from the NIH Mammalian Gene 

Collection repository of full length cDNAs. However it emerged from discussion with the 

Gene Service, Cambridge that whilst the 5’ and 3 ’ ends of the Lyp had been checked by DNA 

sequencing the entire 2.4kb Lyp sequence had never been sequenced. At this stage, it was 

therefore decided to sequence the entire Lyp-2A-GFP cDNA cassette in the pUC19 vector to 

confirm that the Lyp sequence was correct. Indeed, DNA sequencing revealed that there was 

an internal deletion of 165 nucleotides from the Lyp sequence (Figure 4.27). The missing 165 

nucleotides corresponded to two exons that appear to have been spliced out from the Lyp 

cDNA.

The 165 nucleotides were subsequently confirmed to be missing from the original Lyp cDNA 

from Gene Service. The Lyp cDNA had been assumed to be full-length but unfortunately was 

not the case. The missing 55 amino acids due to this internal deletion may account for the 

truncated form of Lyp observed by in vitro transcription translation. This missing Lyp 

sequence may also be responsible for the problems experienced in obtaining GFP expression 

with the Lentivirus Lyp-2A-GFP plasmids. The loss of the 55 amino acids could make the 

Lyp protein unstable and it is conceivable that negative regulatory feedback mechanisms 

might operate in the cell to prevent the ribosome from translating additional protein. This 

may explain the low levels of GFP expression observed during transient transfection of 293T 

cells using the Lenti-Lyp-2A-GFP plasmid.

It was decided to correct the original Lyp cDNA obtained from Gene Services using a second 

full length Lyp cDNA. However, in parallel another Lenti- RLyp-2A-GFP plasmid was also 

generated using the second full length Lyp cDNA in the event that there were further 

problems associated with the original Lyp cDNA.
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Figure 4.27 Sequence alignment of Lyp showing the missing exons

Top sequence is the reference sequence of full length Lyp cDNA, Bottom is the cDNA 

sequence of Lyp obtained from Gene Service, Cambridge.



4.8.1 Strategy for correcting the internal deletion in the original Lyp cDNA

The second verified full length Lyp cDNA was acquired from Dr. Andres Alonso, University 

of Valladolid, Spain and the sequence further confirmed by DNA sequencing. It was decided 

to replace the missing 55 amino acids in the Lyp cDNA bought from Gene Services, 

Cambridge using the new Lyp cDNA acquired from Dr Andres Alonso. Fortunately, the 

missing Lyp sequence was flanked by two unique restriction sites, BsaAI (1530) and S a d  

(624). This allowed for the potential correction of the first Lyp cDNA from Gene Service by 

insertion of the missing sequences into the original cDNA sequence. The 906 bp sequence 

flanked by the above mentioned restriction sites was PCR amplified using a 5’ oligo 

incorporating the BsaAI site and a 3’oligo incorporating the S a d  site (Table 2.2, materials 

and method) and cloned into BsaAI, S a d  sequential digested pUC19 Lyp-2A-GFP plasmid 

(Figure 4.28 and 4.29 ). The DNA was transformed into DH5a competent cells and individual 

colonies screened using S ad , BsaAI restriction digestion to identify the recombinant pUC19 

R/w Lyp-2A-GFP plasmid with a full length Lyp cDNA sequence. The size of the Lyp insert 

is 906bp and the pUC19 vector backbone is 5 kb. Of the 6 colonies screened in Figure 4.30A, 

colonies 1, 2 and 4 contained pUC19 RLyp (corrected)-2A-GFP recombinant plasmids. From 

the 10 colonies screened for recombinant pUC19 wLyp-2A-GFP, colonies 2, 4, 5, 6, 7 and 9 

contained the correct recombinant plasmids as they have both the vector and insert DNA 

fragment present (Figure 4.30B).

R WTo generate lentivirus plasmids, Lyp-2A-GFP and Lyp-2A-GFP cDNA cassettes were 

extracted and purified by BamHI, A sel double digestion from pUC19 Lyp-2A-GFP and 

pUC19 wLyp-2A-GFP plasmids respectively. The cDNA cassettes were subsequently cloned 

into BamHI digested, SAP treated lentivirus vector. The DNA was transformed into DH5a 

competent cells and colonies screened using a BamHI digestion to identify colonies 

containing recombinant plasmids and EcoRI digestion was performed to determine the 

orientation of the cloned insert. The size of the R/wLyp-2A-GFP cDNA cassette and the 

lentivirus vector were 3.3kb and 9kb respectively. Of the 10 colonies screened using BamHI 

digestion, 1, 5 and 10 contained recombinant Lenti-RLyp-2A-GFP plasmids (Figure 4.31 A). 

EcoRI digestion was performed to check the orientation of the cloned cDNA insert in the 

vector. For inserts cloned in the correct orientation DNA fragments of sizes 139bp, 2283bp 

and 9326bp were expected whereas cloning in the incorrect orientation generated DNA
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fragments of 139bp, 1786bp and 9823bp. From Figure 4.3IB, it can be seen that only colony 

1 has the insert in the correct orientation as it is the only clone that releases a DNA fragment 

at 2283bp upon EcoRI digestion. Figure 4.32A shows that colonies 1, 2, 3, 5, 6, 7, 8 and 9 

contained recombinant Lenti- wLyp-2A-GFP plasmids and from Figure 4.32B it can be 

deduced that colonies 7 and 8 contain plasmid DNA whereby the cDNA cassette is inserted 

in the correct orientation. The corrected R/wLyp-2A-GFP cDNA cassettes were checked by 

DNA sequencing and found to be correct.
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Figure 4.28 Schematic diagram showing the strategy used to correct the missing 165 

nucleotides in Lyp cDNA

The missing 165 nucleotides from the Lyp cDNA bought from Gene Service was corrected 

by insertion of the missing sequences flanked by SacI/ BsaAI restriction sites into the original 

cDNA sequence. Therefore, the pUC R/W Lyp-2A-GFP plasmid vector was prepared by 

BsaAI, SacI sequential digestion for the cloning of the missing sequence.
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Figure 4.29 Strategy used for the correction of the missing 165 nucleotides in Lyp cDNA

To correct the Lyp cDNA from Gene Service by insertion of the missing sequences into the 

original cDNA sequence, the 906 bp sequence, flanked by the SacI, BsaAI restriction sites, 

was PCR amplified using a 5’ oligo incorporating the BsaAI site and a 3’oligo incorporating 

the S a d  site and cloned into BsaAI, SacI sequential digested pUC19 Lyp-2 A-GFP plasmid.
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Figure 4.30 Generation of the corrected pUC R/wLyp-2A-GFP plasmids

A. Colony screening by SacI, B sa A I  restriction digestion of the plasmid DNA from 

ampicillin resistant colonies to identify colonies containing recombinant pUC19- 

RLyp-2A-GFP plasmids. From this Figure it can be seen that colonies 1, 2 and 4 

contain recom binant pUC19- Lyp-2A -G FP plasmids.

B. Colony screening by SacI, B sa A I  restriction digestion of the plasmid DNA from 

ampicillin resistant colonies to identify the colonies containing the recombinant 

pU C 19-wLyp-2A -GFP plasm ids. This Figure shows that colonies 2, 4, 5, 6, 7 and 9 

contain recom binant pUC19 wLyp-2A -G FP plasmids.
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Figure 4.31 Generation of the corrected Lenti Lyp-2A-GFP plasmids

A. Colony screening by B am H I  digestion of the plasmid DNA from ampicillin resistant 

colonies to identify the colonies containing recombinant Lenti- Lyp-2A-GFP 

plasmids. From this Figure it can be seen that colonies 1, 5 and 10 contain 

recombinant Lenti- RLyp-2A -G FP plasmids.

n

B. EcoRI digestion to check the orientation of the cloned Lyp-2A-GFP cDNA cassette 

in the lentivirus vector. C loning in the correct orientation releases an indicative DNA 

fragment at 2283bp w hereas cloning in an incorrect orientation releases a DNA 

fragment at 1786bp. This Figure shows that only colony 1 contains plasmids with 

RLyp-2A -GFPcassette in the correct orientation.
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Figure 4.32 Generation of the corrected Lenti wLyp-2A-GFP plasmids

A. Colony screening by B am H I digestion of the plasmid DNA from ampicillin resistant 

colonies to identify the colonies containing recom binant Lenti- wLyp-2A-GFP 

plasmids. From this Figure it can be seen that colonies 1, 2, 3, 5, 6, 7, 8 and 9 contain 

recom binant Lenti- wLyp-2A -G FP plasmids.

B. E coR I digestion to check the orientation of the cloned vvLyp-2A-GFP cDNA cassette 

in the lentivirus vector. C loning in the correct orientation releases an indicative DNA 

fragment at 2283bp w hereas cloning in an incorrect orientation releases a DNA 

fragm ent at 1786bp. This Figure shows that colonies 7 and 8 contain plasmids with 

wLyp-2A -GFPcassette cloned in the correct orientation.
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4.9 Generation of Lenti-Lyp-2A-GFP plasmids using full length RLyp cDNA

To generate a Lenti Lyp-2A-GFP plasmid using the Lyp cDNA obtained from Dr Andreas 

Alonso in parallel with correcting the original Lenti R/wLyp-2A-GFP, the internal Xbal site 

was first removed from the Lyp cDNA using site directed mutagenesis. The Lyp cDNA was 

subsequently PCR amplified, Xbal, Xhol double digested and cloned into SAP treated, Xbal, 

and Xhol digested pUC19 X-2A-GFP plasmid vector (Figure 4.3). The size of the pUC19 x- 

2A-GFP vector and Lyp insert are 3.3kb and 2.5kb respectively. From Figure 4.33A it can be 

seen that colonies 1 to 5 contain recombinant plasmids. The RLyp-2A-GFP cDNA cassette 

was then extracted by BamHI restriction digestion and cloned into SAP treated, BamHI 

digested lentivirus vector.

The size of the RLyp-2A-GFP cDNA cassette is 3.3kb and the lentivirus vector is 9kb. Of the 

8 plasmid DNA from ampicillin resistant colonies screened using BamHI digestion, colonies 

1,2,3,4,6 and 8 contained recombinant Lenti-RLyp(Spain)-2A-GFP colonies (Figure 4.33B). 

EcoRI digestion was performed to check the orientation of the insert cloned into the vector. If 

the insert had been cloned in the correct orientation, DNA fragments of sizes 139bp, 2283bp 

and 9326bp would have been expected whereas cloning in the incorrect orientation would 

have given DNA fragments of 139bp, 1786bp and 9823bp. From Figure 4.33C it can be seen 

that only colony 4 contained recombinant plasmid DNA in the correct orientation as 

recombinant plasmid DNA from this colony released a DNA fragment of 2283bp upon EcoRI 

digestion.

In order to check that there were no further problems associated with achieving Lyp 

expression using the corrected wLyp and the full length RLyp from Spain without the 

complication of the 2A-GFP reporter genes Lyp- pCS2 plasmids were also generated in 

parallel to the generation of corrected Lenti R/wLyp-2A-GFP and the Lenti RLyp (Spain)-2A- 

GFP plasmids.
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Figure 4.33 Generation of Lenti- RLyp (Spain)-2A-GFP plasmids

A. Colony screening by X bal, X h o l  digestion of the plasmid DNA from ampicillin 

resistant colonies to identify the colonies containing the recombinant pUC19- RLyp 

(Spain)-2A-GFP plasmids. This Figure shows that colonies 1-5 contain recombinant 

pU C 19-RLyp (Spain)-2A-GFP plasmids.

B. Colony screening by B am H I digestion of the plasmid DNA from ampicillin resistant 

colonies to identify the colonies containing the recombinant Lenti- RLyp (Spain)-2A- 

GFP plasmids. This Figure shows that colonies 1, 2, 3, 4, 6 and 8 contain recombinant 

L en ti-RLyp (Spain)-2A-GFP plasmids.

C. E coRI digestion to check the orientation of the cloned RLyp (Spain)-2A-GFP cDNA 

cassette in the Lentivirus vector. Cloning in the correct orientation releases an 

indicative DNA fragm ent at 2283bp whereas cloning in an incorrect orientation 

releases a DNA fragm ent at 1786bp. This Figure shows that only colony 4 contain 

plasmids with RLyp (Spain)-2A-GFPcassette cloned in the correct orientation.
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4.10 Generation of the Lyp-pCS2 plasmids for parallel comparison of the two 
Lyp cDNAs

In parallel to the generation of Lenti- Lyp (Spain)-2A-GFP plasmids and the correction of the 

original R/wLyp-2A-GFP, Lyp-pCS2 plasmids were also generated. pCS2 is a mammalian 

expression plasmid driven by a T3 promoter that allows quick expression of Lyp in 293 T 

cells in order to confirm that Lyp expression could be achieved (using both constructs) 

without the 2A-GFP complication.

In order to test the “corrected” Lyp cDNA in parallel with the full length Lyp cDNA from 

Spain, two further Lyp plasmids were generated in the conventional mammalian expression 

vector, pCS2, using a “Spanish” Lyp cDNA and the “corrected” Lyp cDNA from Gene 

Services (Figure 4.34). The sizes of the Lyp inserts and pCS2 vector were 2.4kb and 4.66kb 

respectively. From Figure 4.35A it can be seen that of the 10 colonies screened, 1-6, 9 and 10 

contained recombinant “corrected” WLyp pCS2 plasmids. Figure 4.35B shows that of the 10 

colonies screened, 2 and 7 are the only ones to contain recombinant RLyp (spain)- pCS2 

plasmids. The pCS2 plasmids allowed simultaneous comparison in mammalian cells of the 

expression of the two Lyp cDNA, without any potential complications relating to the “2A- 

GFP” reporter gene.

Transient transfection of 293T cells with the two pCS2 plasmids (RLyp (Spain) and w Lyp 

(corrected) was then carried out, cell lysates prepared following successful transient 

transfection and Immuno blot analysis performed on the transfected cell lysates. From the 

immunoblot data (Figure 4.36) it can be seen that both the Lyp cDNAs (Corrected wLyp 

cDNA and the RLyp cDNA from Spain) could be expressed in 293 T cells using the pCS2 

expression vector. This result suggested that if there were further problems encountered in 

getting Lyp expression using a lentivirus plasmid then the problem may lie with the lentivirus 

plasmid, either the assembly of the Lyp-2A-GFP cDNA cassette or simply the combination of 

Lyp cDNA and the lentivirus promoter.

167



Sp6 primer

SV40 PA terminator 

promoter 

M13 reverse primer 

M13pUC rev primer 

a  lac promoter

Lyp

pCS2+MT
4352 bp

f1 origin  _

pBR322 origin

AmpR promoter

Ampicillin

Figure 4.34 Generation of the pCS2 RAVLyp plasmids

Schematic diagram showing the strategic generation of the two pCS2 R/wLyp plasmids. 

Both the “Corrected” and the “Spanish” Lyp cDNAs were PCR amplified incorporating 

the BamHI and Xhol restriction sites and cloned into the BamHl/XhoI site of the pCS2 

plasmid.
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Figure 4.35 Generation of the R/wLyp pCS2 plasmids

A. Colony screen of the plasmid DNA from  ampicillin resistant colonies by BamHI, 

X h o l  double digestion to identify the colonies containing recombinant wLyp 

(corrected) pCS2 plasmids. This Figure shows that colonies 1-6, 9 and 10 contain 

recom binant wLyp (corrected) pCS2 plasmids.

B. Colony screen of the plasm id DNA from  ampicillin resistant colonies by BamHI, 

X ho l double digestion to identify the colonies containing the recombinant RLyp 

(Spain) pCS2 plasmids. This Figure shows that colonies 2 and 7 contain recombinant 

RLyp (corrected) pCS2 plasm ids.
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Figure 4.36 Analysis of the Lyp protein expression using the pCS2 plasmids

Immunoblot analysis of the expression levels of Lyp following transfection of 293T cells 

with either w Lyp (corrected) pCS2 or R Lyp (Spain) pCS2 plasmids. This figure shows that 

the Lyp protein is being overexpressed by 293T cells expressing the exogenous Lyp.
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4.10.1 Testing the Lenti-RLyp (Spain) 2A-GFP and Lenti- wLyp (corrected) 2A-GFP 
plasmids

Lipid based reagents (Effectine, Qiagen) were used to produce infectious virus particles of 

Lenti-RLyp (Spain)-2A-GFP; Lenti- WLyp (corrected)-2A-GFP (Materials and Method). 

These virus particles were used to transduce human leukemic T cell line, Jurkat (Figure 4.37). 

Following 48 hours of transduction the cells were analysed by flow cytometry (BD 

FacsCalibur) (Figure 4.38).
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Lenti- wLyp (corrected) 2A-GFP Lenti-RLyp (Spain) 2A-GFP

Figure 4.37 Testing the Lenti- Lyp-2A- GFP plasmids

Fluorescent image showing transduced Jurkat cells in green with the Lenti- wLyp 

(corrected) 2A-GFP and Lenti-RLypspain 2A-GFP plasmids.
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Figure 4.38 Flow cytometric analysis of the Lenti "Lyp-2A-GFP plasmid

Flow cytometry data showing successful transduction of Jurkat cells by the Lenti- ^Lyp- 

2A-GFP viruses. Expression was assessed using GFP expression.
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4.11 Generation of Lenti ™ wLyp-2A-CD2 plasmids

4.11.1 Assembly of the Lyp-2A-CD2 cDNA cassette in a pUC19 vector

Following successful transduction of Jurkat cells by wLyp- 2A-GFP lentivirus particles Lenti- 

R/wLyp-2A-CD2 plasmids were generated. Generation of the Lenti R/w Lyp-2A-CD2 plasmids 

first required the assembly of the R/w Lyp-2A-CD2 cDNA cassettes using the pUC19 x-2A- 

CD2 vector. The R/W Lyp cassette inserts were extracted from pUC19 RLyp-2A-GFP and 

wLyp-2A-GFP plasmids respectively by Xbal, Xhol restriction digestion and gel purified. The 

pUC19 X-2A-CD2 vector was prepared by restriction digestion using Xbal, Xhol restriction 

enzymes and gel purified. The vector was also SAP treated and purified before a ligation 

reaction using T4 ligase was performed. The DNA was then transformed into DH5a 

competent cells and individual colonies were screened using Xbal, Xhol restriction digestions 

to identify the recombinant plasmids. The sizes of the Lyp insert and the pUC19 vector are 

2.4kb and 3.4 kb, respectively. Of the seven colonies screened, colonies 3 and 6 were found 

to contain pUC19 RLyp-2A-CD2 recombinants (Figure 4.39A) and of the eight colonies 

screened all were found to contain pUC19 wLyp-2A-CD2 recombinants (Figure 4.39B).
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Figure 4.39 Generation of L e n ti117 wLyp-2A-CD2 plasmids

A. Colony screen by Xbal, Xhol restriction digestion of plasmid DNA to identify the 

colonies containing recombinant pUC19-RLyp-2A-CD2 plasmids. This Figure shows 

that of the seven colonies screened only colonies 3 and 6 contain recombinant 

pUC19-RLyp-2A-CD2 plasmids.

B. Colony screen by Xbal, Xhol restriction digestion of plasmid DNA to identify the 

colonies containing recombinant pUC19-wLyp-2A-CD2 plasmids. This Figure shows 

that of the eight colonies screened all contain recombinant pUC19-wLyp-2A-CD2 

plasmids.
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4.11.2 Generating Lenti ^  Lyp 2A CD2 plasmids

To generate the lentivirus plasmid, Lentivirus vector (Lenti-SxW) was prepared by BamHI 

restriction digestion to generate the appropriate ends and SAP treated to prevent self ligation. 

w/RLyp-2A-CD2 cDNA cassettes were extracted and purified from pUC19 RLyp-2A-CD2 

and wLyp-2A-CD2 plasmids respectively by BamHI, Asel double digestion and then cloned 

into BamHI digested, SAP treated SxW lentivirus vector to generate the recombinant 

lentivirus plasmids. From Figure 4.40A it can be seen that all the clones screened were
n

recombinant Lenti Lyp-2A-CD2 plasmids. The orientation of the insert cloned was checked 

by EcoRI restriction digestion. If the RLyp-2A-CD2 cDNA cassette was cloned in the correct 

orientation DNA fragments of 2283bp, 139bp and 9326bp would be present whereas if the 

insert was cloned in an incorrect orientation, DNA fragments of 1786bp, 139bp and 9823bp 

would be observed. From Figure 4.40B it can be seen that clones 3, 4, 5, 6, 8 and 9 are in 

correct orientation. From Figure 4.41 A it can be seen that only clone 2 is a Lenti wLyp-2A- 

CD2 recombinant and Figure 4.4IB shows that it is in a correct orientation. The two R/WLyp - 

2A-CD2 recombinant lentivirus plasmids were tested by producing recombinant ^ L y p  -2A- 

CD2 lentivirus particles and transducing Jurkat T cell lines. The R/wLyp -2A- CD2 lentivirus 

particles were observed to successfully transduce Jurkat T cells when analysed by flow 

cytometry of the rat CD2 PE staining (Figure 4.42).
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Figure 4.40 Generation of the Lenti-RLyp-2A-CD2 plasmid

A. Colony screen by B am H I  restriction digestion of plasmid DNA to identify the 

colonies containing recom binant Lenti-RLyp-2A-CD2 plasmids. This Figure shows 

that all nine colonies screened contain recom binant Lenti- Lyp-2A-CD2 plasmids.

B. E coR I digestion of plasm id DN A  to identify the colonies containing recombinant 

plasmid with RLyp-2A -CD 2 cD N A  cassette cloned in the correct orientation. Cloning 

in the correct orientation is indicated by the release of DNA fragments of 2283bp 

whereas cloning in an incorrect orientation releases DNA fragments of 1786bp. From 

this Figure it can be seen that clones 3, 4, 5, 6, 8 and 9 contain plasmids with RLyp- 

2A-CD2 cDNA cassette cloned in correct orientation.
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Figure 4.41 Generation of the Lenti-wLyp-2A-CD2 plasmids

A. Colony screen by B am H I  d igestion of the plasmid DNA to identify colonies 

containing recom binant L enti-wLyp-2A -CD 2 plasmids. This Figure shows that only 

clonies 2 and 10 contain recom binant Lenti-wLyp-2A-CD2 plasmids.

B. E coR l digestion of plasm id D N A  to identify colonies containing the plasmids with the 

wLyp-2A-CD2 cD N A  cassette cloned in the correct orientation. Cloning in the correct 

orientation is indicated by the release of DNA fragments of 2283bp whereas cloning 

in an incorrect orientation releases DNA fragm ents of 1786bp. From this Figure it can 

be seen that only clone 2 contains plasm id with wLyp-2A-CD2 cDNA cassette cloned 

in correct orientation.
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Figure 4.42 Flow cytometric analysis of the Lenti RAVLyp-2A-CD2 plasmids

Flow cytometry data showing a successful transduction of Jurkat cells by the Lenti- Lyp-2A- 

GFP virus particles. Jurkat T cells were lentivirally transduced with R/wLyp-2A-CD2 

recombinant viruses. Expression was assessed using anti-rat CD2 PE staining. Rat CD2 

staining of the parental H9gag+ cell line not transduced with rat CD2 was used as a negative 

control and is shown in black.



4.12 Discussion

This chapter describes the generation of recombinant R and W Lyp expressing lentivirus 

plasmids for use in over-expression of Lyp in T cells in order to study the functional effects 

of the polymorphism. pUC x-2A-y, and pUC X-2A-GFP plasmids were used to assemble the 

Lyp-2A-CD2 and Lyp-2A-GFP cassettes respectively. Subsequently, the assembled cassettes 

were extracted by BamHI restriction endonuclease digestion and cloned into the BamHI site 

of the Lentivirus plasmid (Lenti SxW) to generate recombinant Lenti R/wLyp-2A-GFP and 

R/wLyp -2A-CD2 plasmids. However, when expressed in 293T cells by transient transfection 

very low levels of GFP expression were observed with the recombinant Lentivirus Lyp-2A- 

GFP plasmids when compared to the positive control Lenti-GFP (Lenti SeW) plasmid.

Initially, it was thought that the low level reporter gene GFP expression observed in 293T 

cells may be due to some problems with the self-processing of the 2A peptide. At the initial 

stage it was not clear if the problem was with the expression of GFP only allowing the 

upstream protein Lyp to be expressed. Immunoblot analysis was performed to check if both 

the Lyp and GFP expression were impaired and/or whether cleavage was taking place 

between the 2A sequence and GFP. Immunoblot data showed some Lyp expression but no 

GFP expression with the Lenti-wLyp-2A-GFP plasmid but control plasmid did demonstrate 

GFP expression. This result suggested that Lyp was being expressed but not GFP but this 

discrepancy in results could be due to the affinity of the antibodies rather than differential 

expression of the two proteins. Therefore, the expression of both the proteins was analysed 

using an “in vitro coupled transcription translation” in collaboration with Prof Martin Ryan at 

the University of St Andrews. “In vitro coupled transcription/translation” showed no major 

differences in the expression levels of Lyp and GFP and there were also no Lyp-GFP/CD2 

fusion protein detected suggesting an almost 100% self processing of the 2A peptide. 

Therefore it was thought that the low level expression of GFP with Lenti-Lyp-2A-GFP may 

be due to defective transcription initiation of the Lyp sequence. The Kozak consensus 

sequence used was thought to be sub optimal and was changed to a more widely used Kozak 

sequence (GCCGCCATG). However, despite this change in the design of the vector, the level 

Qf GFP expression with the Lenti Lyp-2A-GFP plasmids was not improved. Lenti-RFP-2A- 

GFP plasmid was therefore generated as a positive to control to ensure that the problem with 

GFP expression downstream of Lyp was due to the Lyp-2A-GFP cassette and not due to any 

intrinsic problems with the lentivirus plasmid vector (Lenti SxW). The Lenti RFP-2A-GFP
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plasmid gave successful expression of both the upstream protein RFP and the downstream 

protein GFP ensuring that the problems experienced in expression of Lenti Lyp-2A-GFP 

were due to Lyp and not the lentivirus vector.

At this stage, the entire Lyp-2A-GFP cDNA cassette, which had never before been 

sequenced, was sequenced to ensure that the Lyp sequence was correct. DNA sequencing 

revealed that there was an internal deletion of 165 nucleotides from the Lyp sequence and the 

missing 165 nucleotides that have been spliced out of the Lyp cDNA was thought to be the 

reason for the observed problems with GFP expression using the Lenti-Lyp-2A-GFP 

plasmids. It was plausible that the lack of 55 amino acids from the Lyp cDNA could make the 

Lyp protein unstable and there may exist a negative regulatory mechanism in the cell that was 

preventing the ribosome from translating additional Lyp protein.

The missing 55 amino acids were replaced into the original wLyp cDNA using a full length 

RLyp cDNA obtained from Dr Andreas Alonso, University of Valladolid, Spain. Additionally 

recombinant Lenti- RLyp-2A-GFP plasmids were generated in parallel using the RLyp cDNA 

obtained from Dr Andreas Alonso. In parallel to the generation of Lenti- Lyp (Spain)-2A- 

GFP plasmid, Lyp-pCS2 plasmids were also generated in order to test the “corrected” Lyp 

cDNA in comparison with the full length Lyp cDNA from Spain, without the complication of 

the 2A-GFP and outside the context of the lentivirus vector. Transient transfection of 293T 

cells with the two pCS2 plasmids (RLyp (Spain) and w Lyp (corrected) pCS2) followed by 

immunoblotting showed a successful expression of Lyp using both the recombinant plasmids. 

The immunoblotting data also confirmed that Lyp could be successfully expressed using a 

pCS2 plasmid.

Following successful generation of the Lenti-RLypspain-2A-GFP, Lenti- wLyp corrected-2A-GFP 

recombinant plasmids, they were tested by production of recombinant lenvirus particles and 

used to infect human leukemic Jurkat T cell line. The recombinant lentiviruses expressing 

both the RLyp (Spain) 2A-GFP and the WLyp (corrected) 2A-GFP were observed to 

successfully infect the Jurkat T cells. Following successful infection of Jurkat T cells by 

wLyp- 2A-GFP lentivirus particles, Lenti- R/wLyp-2A-CD2 recombinant plasmids were also 

successfully generated and tested.

In summary, in this chapter recombinant R/wLyp -2A- GFP lentivirus plasmids were 

successfully generated and used to successfully transduce Jurkat T cells despite the initial set­

back due to the missing 55 amino acids in Lyp cDNA sequence. In this chapter the self

181



processing ability of the 2A peptide was also assessed and found to be extremely efficient by 

“m vitro coupled transcription/translation” experiment performed in collaboration with Prof. 

Martin Ryan and by immunoblotting of GFP in RFP-2A-GFP expressing 293T cell lysates. 

Following the successful generation of the GFP reporter gene expressing lentivirus plasmids 

(R/wLyp -2A-GFP), R/wLyp -2A- CD2 lentivirus plasmids expressing truncated rat CD2 as a 

reporter gene were also successfully generated. The rationale for generating recombinant 

lentivirus plasmids with the rat CD2 reporter gene was that it would allow economic and 

convenient means of sorting transduced cells. The R/wLyp -2A- CD2 lentivirus plasmids were 

tested by generation of R/wLyp -2A- CD2 lentivirus particles, which were observed to 

successfully transduce Jurkat T cells. Collectively, the data presented in this chapter 

demonstrate that the RLyp-2A-CD2, wLyp-2A-CD2 lentivirus plasmids were successfully 

generated and were capable of expressing Lyp in T cells.
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Chapter 5

Generation of Lyp T cell lines over-expressing Lyp

5.1 Introduction

In Chapter 4, Lenti R/wLyp-2A-CD2 recombinant lentivirus constructs were generated for the 

purpose of over-expressing the R and W isoforms of Lyp in T cells. This part of the study 

was focussed on generating these T cell lines. Leukaemic T cell lines were used as these are 

the basic model system which has been extensively used in the study of T cell signalling. The 

advantages of using the leukaemic T cell lines over primary T cells is their relative ease to 

culture, requiring no cytokine supplements and their monoclonal origin which means that 

they act in a uniform manner. The use of T cell lines also eliminates the main disadvantage 

associated with the use of primary T cells, namely a potential variation in the composition of 

T cell sub-populations, which may make interpretation of results difficult. The major 

disadvantages of using T cell lines are that as a single clonal population, observations made 

in these cells may not necessarily demonstrate what happens in other T-cell lineages. 

Furthermore, as these cells are transformed, mutations may exist in important cell signalling 

intermediates. T cell clones which have also been widely used for cell signalling studies were 

also a good potential source of T cells for studying Lyp functions. T cell clones of different 

specificities were potentially available, however, they are technically more demanding and 

time consuming to generate and maintain. As time was a major limiting factor, it was thought 

best to use the readily available leukaemic T cell lines, E6.1 (Jurkat) and H9 (Hut78), in this 

study.

Two established T cell lines, E6.1gag+ and H9gag+, generated by Dr John Bridgeman (Cardiff 

University) were used to generate T cell lines permanently over-expressing R/wLyp. E6.1gag+ 

and H9gag+ cell lines are E6.1 (Jurkat) and H9 (Hut78) cell lines respectively expressing an 

exogenous TCR that recognises the HIV gag peptide sequence, SLYNTVATL (SLY), as a 

result of transduction of the E6.1 and H9 cells with a pSLY-TCRalpha.T2A.TCRbeta 

recombinant lentivirus. The exogenous gag TCR expression by the T cells allows them to be 

activated by HLA-A2 specific SLY peptide pulsed APCs.

R/wLyp-2A-CD2 and CD2 lentivirus particles generated using a three plasmid system were 

used to transduce E6.1 gag+ and H9 gag+ cells to generate, E6.1gag Lyp-2A-CD2, E6.1gag+
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wLyp-2A-CD2 and E6.1gag+CD2 and H9gag+RLyp-2A-CD2, H9gag+wLyp-2A-CD2, H9gag+ 

CD2 cell lines respectively.

5.2 Genotyping of the E6.1 gag+ and H9 gag+ cells

The E6.1 gag+ and H9 gag+cell lines were genotyped to ensure that they were homozygous for 

the PTPN22 C l858 allele. This was necessary because the aim was to introduce exogenous 

wLyp into homozygote wild type (RLyp/RLyp) T cell populations. As wLyp has been 

observed to function in a dominant manner it was thought plausible that the introduction of 

wLyp into homozygote wild type (RLyp/RLyp) T cell populations would partially mimic the 

situation in heterozygote individuals and allow examination of the effect of the R620W 

polymorphism. PCR restriction fragment length polymorphism analysis was performed on 

each cell line as previously described by (Bottini et al. 2004). Briefly, genomic DNA was 

extracted from the E6.1 gag+ and H9 gag+cells and a PCR reaction was performed out as 

described in Materials and Methods using the forward and reverse primers shown in Table 

2.3. The amplified 215bp fragment of the PTPN22 gene sequence encompassing the C1858T 

polymorphism was genotyped by X cm l restriction endonuclease digestion. Xcml recognizes 

its target sequence only when the PTPN22 1858T allele is present. Figure 5.1 shows that both 

the E6.1 and H9 cell lines only release a 215bp DNA fragment upon Xcml restriction 

endonuclease digestion. Therefore both cell lines are homozygous for the PTPN22 C l858 

allele. A control reaction was also set up using pUC WLyp-2A-GFP to ensure that the Xcml 

restriction endonuclease was recognizing its target sequence (data not shown).
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Marker

Figure 5.1 Genotyping of the T cell lines

The E6.1 gag+ and H9 gag+cell lines w ere genotyped by a restriction fragment length 

polymorphism-PCR based assay. The C to T change at codon 620 creates a restriction site for 

X cm l in the *T allele. The polym orphism  was identified by X cm l restriction endonuclease 

digestion of the PCR am plified fragm ent. The digestion was resolved on a 1% agarose gel. 

Following electrophoresis, the gel was stained with ethidium  bromide and the fragments were 

visualized by U.V.
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5.3 Generation of the panel of Lyp modified leukaemic T cell lines

To test whether the two isoforms of Lyp give rise to any functional differences in T cells, the 

two leukaemic T cell lines, H9gag+ and E6.1gag+, were lenti viral ly transduced with the two 

isoforms of Lyp. The two H9gag+and E6.1gag+cell lines were also transduced with a 

recombinant lentivirus encoding truncated rat CD2 as a control for the lentiviral integration 

and any potential effects of the truncated rat CD2 reporter gene used in the Lyp-2A-CD2 

recombinant plasmids.

Generation o f Lyp expressing H98ag+ derived leukaemic T cell lines

Recombinant Lenti Lyp-2A-CD2 plasmids generated in Chapter 4 and recombinant Lenti 

CD2 plasmid, a kind gift from Mr Laurence Pearce, were used for the production of 

recombinant lentivirus particles using a three plasmid system consisting of a plasmid 

encoding the gene of interest under the control of an SFFV promoter, a pCMVdelta8.91 

plasmid (coding for the gag/pol proteins under the control of a CMV promoter) and a 

pMGD2 plasmid (coding for the VSVG env protein) required for lentiviral replication and 

packaging, and viral entry into the cell respectively, under the control of the CMV promoter. 

A lipid based transfection method as described in Materials and Methods, was used to 

generate the recombinant lentivirus particles using this system.

H9gag+ cells were transduced with either recombinant RLyp-2A-CD2 or wLyp-2A-CD2 or 

CD2 lentiviruses to generate the H9gag+ RLyp-2A-CD2 or H9gag+ wLyp-2A-CD2 or H9gag+ 

CD2 cell lines, respectively. Following expansion the cells were assessed by flow cytometry 

for truncated rat CD2 reporter gene expression using an anti-rat CD2 PE antibody (Figure

5.2). To obtain populations of cells with high rat CD2 expression the H9gag+T cells were 

stained and positive cells sorted using MACs anti-PE magnetic sorting. Following sorting, 

cells were again stained to demonstrate the success of the sorting process, expanded and 

sorted further. Transduction efficiencies with all three lentiviruses, RLyp-2A-CD2, wLyp-2A- 

CD2 and CD2, were low with a maximum transduction efficiency of 37% (Figure 5.2). 

However, the percentage of cells staining positive for truncated rat CD2 was increased to 

99% for H9gag+ RLyp-2A-CD2 and H9gag+ wLyp-2A-CD2 (Figure 5.2) by three subsequent 

rounds of cell sorting of the rat CD2 PE positive cells using anti PE magnetic beads as 

described in Materials and Methods. The cells were expanded after each sort before being
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sorted again. The percentage of truncated rat CD2 expressing cells was increased to 97% for 

H9gag+CD2 (Figure 5.3) after two anti-PE magnetic sorts.

Generation o f Lyp expressing E6.1gag+ derived cell lines

E6.1gag+ cells were transduced with either recombinant RLyp-2A-CD2 or wLyp-2A-CD2 or 

CD2 lentiviruses to generate E6.1gag+RLyp-2A-CD2 or E6.1gag+wLyp-2A-CD2 or E6.1gag+ 

CD2 cell lines, respectively. Transduction efficiencies with RLyp-2A-CD2 and wLyp-2A- 

CD2 lentiviruses were comparable with over 90% of cells expressing rat CD2 as assessed by 

staining with anti-ratCD2 antibody (Figure 5.4). Transduction efficiency with CD2 

lentiviruses was very high with over 99% of the cells expressing rat CD2 (Figure 5.4). 

Therefore, no cell sorting was performed.
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Figure 5.2 CD2 expression in H 9gag+ cells pre- and post- sorting.

H9gag+ cells were lentivirally transduced with R/wLyp-2A-CD2 or CD2 recombinant viruses. 

Expression was assessed using anti-ratCD2 PE staining. Rat CD2 staining of the parental 

H9gag+ cell line not transduced with rat CD2 was used as a negative control and is shown in 

black. The cells were expanded after each sort and then sorted again three further times to get 

a final percentage o f rat CD2 transduced cells o f 99%.
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Figure 5.3 CD2 expression in H9gag+ cells pre- and post- sorting.

H9gag+ cells were lentivirally transduced with truncated rat CD2. Expression was assessed 

using anti-ratCD2 PE staining. Rat CD2 staining of the parental H9gag+ cell line not 

transduced with rat CD2 was used as a negative control and is shown in black. The cells were 

expanded after each anti-PE magnetic sort and then sorted again to get final percentage of rat 

CD2 expressing cells of over 97%.
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Figure 5.4 CD2 expression in E6.1gag+ ceils pre- and post- transduction.

E6.1gag+ cells were lentivirally transduced with RAVLyp-2A-CD2 or CD2 recombinant viruses. 

Lyp expression was assessed using anti-ratCD2 PE staining of the truncated rat CD2 reporter 

gene. Rat CD2 staining o f the parental E6.1gag+cell line not transduced with rat CD2 was 

used as a negative control and is shown in black.
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5.4 Assessment of the SLY TCR expression by the modified T cell lines

E6.1gag+ and H9gag+ derived leukaemic T cell lines were assessed for SLY TCR expression to 

ensure that there was minimal variation in TCR expression between the cell lines being 

compared and to. ensure that any differences in activation and cytokine secretion was not due 

to variability in TCR expression. An SLY tetramer (HLA-A*0201 biotinylated monomer 

refolded with SLYNTVATL peptide, tetramerised using Streptavidin-PE [Invitrogen]) was 

kindly provided by Dr John Bridgeman (Cardiff University). The SLY tetramer was used to 

stain the four H9gag+ derived T cell lines and the four E6.1gag+ derived T cell lines used in this 

study. Almost all H9gag+ cells (> 99%) expressed the SLY TCR (around 97% of H9gag+ Lyp- 

2A-CD2 cells and around 95% of H9gag+ CD2 cells) (Figure 5.5). Thus, comparable 

expression of SLY TCR was observed amongst the four cell lines (Figure 5.5). The 

expression of SLY TCR by the E6.1gag+ derived T cell lines was also comparable (around 

87%) (Figure 5.6). Therefore, any variation observed in CD69 expression post activation and 

also cytokine production between the H9gag+ derived T cell lines and between the E6.1gag+ 

derived cell lines should not be due to variation in TCR expression between the different cell 

lines.
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Figure 5.5 Assessment o f the SLY TCR expression by the four H9gag+ T cell lines.

SLY TCR expression (red) was assessed using a PE conjugated SLY tetramer. 1 x 106 cells 

were stained using a saturating concentration o f  a anti-SLY tetramer PE conjugate. A PE 

conjugated non-specific tetram er (black) was used as a negative control.
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Figure 5.6 Assessment of the SLY TCR expression by the four E6.1gag+ T cell lines

SLY TCR expression (red) was assessed using a PE conjugated SLY tetramer. 1 x 106 cells 

were stained using a saturating concentration o f a anti-SLY tetramer PE conjugate. A PE 

conjugated non-specific tetramer (black) was used as a negative control.
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5.5 Assessment of Lyp expression of the T cell lines by immunoblotting

The percentage of T cells transduced with the recombinant lentiviruses for each of the Lyp 

isoforms was verified by flow cytometric analysis for expression of the downstream truncated 

rat CD2 reporter gene expression. However, the upstream Lyp expression within the 

lentivirus constructs remained to be directly assessed. Therefore, immunoblotting was 

carried out to ensure that there was expression of the Lyp isoforms and not just rat CD2 and 

that the level of expression was comparable between the two isoforms of Lyp. Lysates for 

immunoblot analysis were prepared from the E6.9gag+and H9gag+T cells transduced with
n ur

Lyp-2A-CD2 and Lyp-2A-CD2 using NP-40 as a membrane detergent. Lysates were 

reduced with P-mercaptoethanol and separated on a 10% polyacrylamide gel before being 

transferred to a PVDF membrane. The top half of the PVDF membrane was probed with a 

goat anti-human Lyp polyclonal antibody in conjunction with a mouse anti-goat HRP 

secondary antibody. As a loading control the bottom half of the membrane was probed for the 

housekeeping protein, actin, using rabbit anti-Actin polyclonal antisera in conjunction with a 

mouse anti-rabbit HRP secondary antibody. Immunoblot data demonstrated that both RLyp 

and WLyp were over-expressed as revealed by the stronger band that resolves at llOkDa in 

the Lyp transduced E6.9gag+ (Figure 5.7) and H9gag+ lysates (Figure 5.8) when compared to 

the non-transduced and CD2 transduced E6.9gag+and H9gag+T cell lines, respectively. The 

levels of over-expression between the R and W isoforms of Lyp were also found to be 

comparable in both the E6.9gag+and H9gag+T cell lines (Figures 5.7 and 5.8).
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Figure 5.7 Immunoblot analysis o f Lyp protein expression by the panel of E6.1gag+ T cell 

lines.

Transduced and non-transduced cells were lysed in NP-40 lysis buffer, reduced and 

equivalent numbers of cells loaded into each lane of a 10% SDS-PAGE gel. The PVDF 

membrane was either probed with a goat anti-human Lyp polyclonal antibody and mouse 

anti-goat HRP secondary antibody (top) or with rabbit anti-Actin polyclonal antibody and 

mouse anti-rabbit HRP secondary antibody (bottom). The 293T (Human Embryonic Kidney) 

cells were used as a negative control for Lyp expression. The densities of Lyp protein bands 

relative to Lyp protein band density in Non-transduced control cells are represented as bar 

graph (Bottom).
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Figure 5.7 Immunoblot analysis of Lyp protein expression by the panel of H9gag+ T cell 

lines.

Transduced and non-transduced cells were lysed in NP-40 lysis buffer, reduced and 

equivalent numbers o f cells loaded into each lane o f a 10% SDS-PAGE gel. The PVDF 

membrane was either probed with a goat anti-human Lyp polyclonal antibody and mouse 

anti-goat HRP secondary antibody (top) or with rabbit anti-Actin polyclonal antibody and 

mouse anti-rabbit HRP secondary antibody (bottom). The 293T (Human Embryonic Kidney) 

cells were used as a negative control for Lyp expression. The densities of Lyp protein bands 

relative to Lyp protein band density in Non-transduced control cells are represented as bar 

graph (Bottom).



5.6 Discussion

This chapter describes work focussing on the generation of Lyp modified leukaemic T cells 

to be used for functional analysis of the effect of Lyp expression on human T cells. 

Leukaemic T cell lines permanently over expressing either the R or the W isoform of Lyp 

were generated by transducing E6.1gag+ and H9gag+ leukaemic T cells with recombinant 

lentiviruses encoding either RLyp-2A-CD2, wLyp-2A-CD2 or CD2 alone (control). To 

address whether the E6.1gag+ and H9gag+ leukaemic T cell lines were homozygous for the 

PTPN22 C1858 allele, E6.1gag+ and H9gag+ cells were genotyped using PCR-RFLP analysis. 

The T cells were required to be homozygous for the PTPN22 C l858 allele. This is because 

the W620 Lyp isoform behaves in a dominant manner and individuals heterozygous for this 

form of Lyp have an increased predisposition to autoimmune disease. Therefore, it is 

plausible that introducing exogenous Lyp W620 into homozygote wild type T-cell
n p

populations ( Lyp/ Lyp) will mimic the situation in T cells isolated from heterozygote 

individuals and allow examination of the effect of the R620W polymorphism. Although the 

exogenous introduction of Lyp may be more exaggerated compared to a normal physiological 

condition, this should nevertheless allow us to observe any differences and trends which 

might provide clues as to what may be occurring physiologically. From the genotyping assay 

it was demonstrated that the cells were homozygous for the R620 Lyp isoform and therefore 

amenable to further study.

E6.1gag+ T cells were transduced with recombinant RLyp-2A-CD2 or wLyp-2A-CD2 or CD2 

lentiviruses to generate the E6.1gag+RLyp-2A-CD2, E6.1gag+wLyp-2A-CD2 and E6.1gag+CD2 

cell lines respectively. E6.1gag+ cells are derived from the Jurkat T cell line and are easily 

transducible. In this chapter, it was observed that E6.1gag+ T cells are very susceptible to viral 

entry as expected and gave transduction efficiencies of over 91% when transduced using the 

recombinant RLyp-2A-CD2 or wLyp-2A-CD2 or CD2 lentiviruses. The transduction 

efficiency using recombinant CD2 lentivirus was much higher at almost 100% compared to 

around 90% with the RLyp-2A-CD2 or wLyp-2A-CD2 recombinant lentiviruses. This is in 

line with the greater infectivity observed with the CD2 alone lentivirus compared to the 

others. It is not clear why this should be the case. It may be that the size of the inserted gene 

affects the generation of infectious virus particle and infectivity in that the larger the size of 

the gene insert the lower the virulence of the generated lentiviruses. Nevertheless, since all 

E6.1 derived cell lines had a transduction efficiency of greater than 90% and the R and W
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isoforms of Lyp expressing E6.1 cells had comparable transduction efficiencies, it was 

concluded that any functional difference observed in the cells expressing the two isoforms of 

Lyp could be attributed to the effect of isoforms of Lyp on the cell thus the cell lines were 

considered ready for further analysis.

H9gag+ T cells were also transduced with recombinant RLyp-2A-CD2, wLyp-2A-CD2 and 

CD2 lentiviruses to generate the H9gag+RLyp-2A-CD2, H9gag+wLyp-2A-CD2 and H9gag+CD2 

T cell lines, respectively. H9gag+ T cells were more difficult to transduce compared to E6.1 T 

cells giving transduction efficiencies of 37% and 22% when transduced with recombinant
R  WLyp-2A-CD2 and Lyp-2A-CD2, respectively. However, transduction with the recombinant 

CD2 alone lentiviruses gave a higher transduction efficiency of 75% but this was still lower 

than those observed with E6.1gag+T cells. The much higher transduction efficiencies seen 

with recombinant CD2 alone lentivirus compared to the recombinant Lyp encoding lentivirus 

is once again similar to that seen with E6.1gag+ T cells and could be due to similar issues 

relating to insert size in the vector. The transduced rat CD2 expressing H9gag+cells were 

magnetically sorted multiple times on rat CD2 PE increasing the percentage of rat CD2 

expressing cells to > 99% and 97% for H9gag+RLyp-2A-CD2, H9gag+wLyp-2A-CD2 and 

H9gag+CD2 T cell lines, respectively. Since all H9gag+derived cell lines had a transduction 

efficiency of higher than 97% and the R and W isoforms of Lyp expressing H9gag+cells had 

comparable transduction efficiency at 99.09% and 99.68% respectively, it was concluded that 

any functional difference observed in the cells expressing the two isoforms of Lyp could be 

attributed to the effect of isoforms of Lyp on the cell and therefore, the cell lines were 

considered ready for further analysis.

In this chapter it was also demonstrated that SLY TCR expression was comparable between 

the different cell lines. Therefore, any variation observed in functional analysis between the 

H9gag+ derived T cell lines expressing Lyp and those not expressing Lyp and between the 

E6.1gag+ derived cell lines expressing Lyp and those not expressing Lyp could be attributed to 

the affect of Lyp expression on these cells and not due to any variation in TCR expression. 

Furthermore, the expression of Lyp protein in the cell lines was also directly assessed using 

immunoblotting where it was demonstrated that the expression of Lyp protein was up- 

regulated in the E6.1gag+ and H9gag+ T cells expressing the two isoforms of Lyp. It was also 

observed that the expression of the Lyp isoforms was comparable between the RLyp and the 

wLyp expressing E6.1gag+ and H9gag+ T cells. Therefore, any observed difference in the
R Wfunctional analysis between the cells expressing either Lyp or Lyp would be as a result of
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the expression of that particular isoform of Lyp in the cells and not due to variations in 

expression of Lyp between the cells expressing the two different Lyp isoforms.

In summary, in this chapter E6.1 and H9 T cells expressing either the R or W isoforms of Lyp 

or CD2 alone were generated and phenotypic analysis of the generated T cell lines was 

performed. Firstly, it was demonstrated that the E6.1gag+ and H 9gag+ T cells used to generate 

Lyp expressing cells were homozygous for the R620 Lyp isoform. It was also demonstrated 

that the E6.1 gag+ and H9 gag+ T cells expressing either of the two isoforms of Lyp or CD2 

alone had a comparable percentage of cells expressing the rat CD2 reporter gene. Thirdly, the 

expression of exogenous SLY TCR was demonstrated to be comparable between the 

generated E6.1 gag+ T cell lines and between the generated H 9gag+ T cell lines. Lastly, a direct
n  \v r

assessment of Lyp protein expression was carried out between the Lyp and Lyp expressing 

E6.1 gag+ and H9 gag+ T cell lines and it was demonstrated that there was comparable levels of 

Lyp expression in cells expressing either the R or the W isoform of Lyp. Collectively, the 

data presented in this chapter demonstrated that the RLyp-2A-CD2, wLyp-2A-CD2 or CD2 

alone expressing E6.1 gag+ and H9 gag+ cell lines generated are comparable and ready to be 

used for functional analysis of Lyp isoform expression on T cells.
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Chapter 6

The effect of over-expression of Lyp isoforms on cytokine production by
human leukaemic T Cell lines

6.1 Introduction

Lyp is regarded to be a suppressor of TCR signalling and the Lyp R620W variant has been 

further shown to be a “gain of function” polymorphism (Aarnisalo et al. 2008; Rieck et al. 

2007; Vang et al. 2005). Previous studies have also investigated the effect of the R620W 

polymorphism on cytokine production by T cells. Vang et al (2005) was the first to observe 

that T cells (involving no purification of phenotypic lineages such as CD4+ or CD8+) from 

Type 1 Diabetes (T1D) patients who were heterozygous for the R620W polymorphism 

(genotype PTPN22 1858C/1858T) secrete less IL-2 than T cells from T1D patients homozygous 

for the arginine isoform of Lyp (genotype PTPN22 1858C/1858C)# Aarnisalo et al (2008) also 

observed a reduction in IL-2 production by CD4+T cells from T1D patients heterozygous for 

the R620W polymorphism compared to CD4+ T cells from T1D patients homozygous for the 

R isoform of Lyp. Rieck et al (2007) investigated the functional effect of the Lyp R620W 

polymorphism on CD4+ T cells from healthy individuals by examining the secretion of IL-2, 

IL-4, IL-5, IL-10, IFN-y and TNF-a and reported a significant reduction in IL-10 production 

by PTPN22 1858C/1858T expressing CD4+ T cells relative to PTPN22 1858C/1858C expressing 

CD4+ T cells. In addition they also noted a decrease in IL-2 and IL-4 secretion, which did not 

reach statistical significance and no difference in IFN-y, and TNF-a secretion in 1858C/1858T 

CD4+ T cells relative to PTPN22 1858C/1858C expressing CD4+ T cells (Rieck et al. 2007).

Rieck et al also observed a decrease in CD25 activation marker expression by 1858C/1858T 

expressing CD4+ T cells relative to 1858C/1858C expressing CD4+ T cells. These results are 

striking and highlight the potential importance of Lyp in T cell biology. However, from both 

of these studies it cannot be conclusively determined that the differences seen in cytokine 

production and CD25 expression are due to an intrinsic effect of Lyp isoform expression on T 

cell function following TCR triggering. The above studies do not take into account possible 

skewing of T cell subsets as a result of Lyp isoform expression. For example, a possible
1858C/1858Tdecrease in IL-10 producing cells in genotype individuals may account for the

decreased IL-10 secretion that was observed and therefore there may be no intrinsic effect of 

the Lyp R620W polymorphism on TCR triggered cytokine production. Vang et al (2005)
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reported that there was no skewing of CD4+T cell, CD8+ T cell and memory T cell subset 

observed in the patient samples. However these heterogeneous polyclonal populations may 

contain subpopulations of memory and effector phenotypes that may be skewed as a result of 

Lyp isoform expression.

In addition, the T cells isolated from patient samples and CD4+ cells isolated from healthy 

individuals used in the above studies (Rieck et al. 2007; Vang et al. 2005) may have distinct 

TCR signalling thresholds influenced by the products of multiple genes which would 

potentially obscure interpretation of the observed variations in cytokine secretion.

In the study by Vang et al (2005) it was also observed that primary human T cells 

nucleofected with RLyp secrete less IL-2 than those nucleofected with wLyp and that T cells 

transfected with either forms of Lyp produced less IL-2 that the control T cells. There is 

however an ambiguity about this study with the nucleofection efficiency stated at between 

60-80%. It is not clear if the T cell populations transfected with the two Lyp isoforms have a
n

comparable transfection efficiency. If the percentage of T cells transfected with Lyp was 

60% and the population transfected with wLyp was 80%, the difference in IL-2 production 

between the two isoforms of Lyp could be simply due to more Lyp being expressed in the 

wLyp transfected population rather than due to differences in the two Lyp isoforms. Vang et 

al (2005) also nucleofected Jurkat T cells with either WLyp or WLyp and a luciferase reporter 

gene driven by the nuclear factor of activated T cells (NFAT) with the two isoforms of Lyp.

In this study it was observed that when stimulated via their TCR, Jurkat T cells expressing 

varying amount of Lyp show reduced luciferase activity in a dose dependent manner and that 

Jurkat T cells expressing WLyp always exhibited lower luciferase activity when compared to
p
Lyp at each level of Lyp expression.

A comprehensive analysis of activation marker expression and cytokine production by T cells 

over-expressing either the R or W isoform of Lyp has not been performed. Therefore work 

described in this chapter sought to address whether expression of CD69, an early activation 

marker, is altered in cells over-expressing one or other of the two isoforms of Lyp. In 

addition, cytokine production by a homogenous population of T cells over-expressing either 

the R or the W isoform of Lyp was investigated using cells lines derived from two distinct 

human T cell leukaemias, E6.1 (Jurkat) and H9 (Hut78). The monoclonality of the T cells in 

each cell line meant that any observed effects due to Lyp isoform expression are intrinsic to 

that particular subset of T cells and are not due to skewing of the T cell subsets or other
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genetic effects on the signalling thresholds. This focusing on a single homogenous population 

of T cells should allow further investigation and dissection of the pathways that might be 

affected by Lyp.

6.2 Analysis of CD69 expression by the panel of E6.1gag+ cells

E6.1gag+RLyp-2A-CD2, E6.1gag+wLyp-2A-CD2, E6.1gag+CD2 and E6.1gag+non transduced 

control cells were stimulated for 24 hours with APCs pulsed with varying concentrations of 

the SLY peptide before staining with PE conjugated anti-human CD69 antibodies and 

analysing by flow cytometry. Figure 6.2 shows the cellular response to SLY peptide 

stimulation with induced CD69 expression indicating the degree of T-cell activation (Figure

6.2). All T cells demonstrated a response to SLY peptide stimulation with a positive 

correlation of CD69 expression with peptide concentration. The lowest levels of CD69 

expression were observed in response to the lowest concentrations of SLY peptide. 

Approximately 22% of all T cells express CD69 when left unstimulated which increases to 

approximately 43% when the cells are stimulated with the highest concentration of peptide 

pulsed APCs (Figure 6.2). All four cell lines exhibited comparable CD69 upregulation upon 

peptide stimulation. The result from the E6.1gag+ T cells suggest that over-expression of Lyp 

does not result in a down-regulation in the expression of CD69 (or inhibition of up­

regulation) in Lyp expressing cells when compared to control cells (non-transduced and CD2 

transduced) as might have been expected. In addition, there was no difference in CD69 

expression between the cells transduced with the two isoforms of Lyp. However, it cannot be 

formally concluded from these data that there are no differences in the functional capacity of 

the Lyp transduced and control cells.
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Figure 6.1 Analysis of flow cytometric data from T cell activation assays.

Figure showing the method used to analyse flow cytometric data from T cell activation 

assays. Non-transduced E6.1gag+ T cells, which were either left unstimulated (top, black line) 

or incubated in the presence 10 '3 M concentration o f SLY peptide (bottom, red line) for 24 

hours were analysed using a flow cytometer following staining with PE-conjugated anti- 

CD69 antibody. FACS dot plot showing gating o f live T cell population (left). The gated live 

T cell population was further analysed for CD69 PE expression using a histogram. The gating 

for separating CD69' and CD69+ T cell population is indicated in the histogram (middle). 

Shown on the right is an overlay showing the CD69 expression in an unstimulated and 10’3 M 

peptide stimulated T cells.
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Figure 6.2 Activation profiles of E6.1gag+ T cell lines expressing the two isoforms of Lyp.

Non-transduced E6.1gag+ T cells, E6.1gag+ T cells expressing rat CD2 only or E6.1gag+ T cells 

expressing the indicated form of Lyp were incubated in the presence of varying 

concentrations of SL9 peptide for 24 hours. Following incubation T cells were stained with 

PE-conjugated anti-CD69 antibody and analysed using a flow cytometer. Results are 

representative of four separate experiments. Top figure shows percentage of CD69 expressing 

cells whereas bottom figure shows the Mean flurosence intensity (MFI) of the CD69 PE 

expression. The data are presented as mean ± SD.
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6.3 Analysis of CD69 expression by the panel of H9 gag+ cells

H9gag+RLyp-2A-CD2, H9gag+wLyp-2A-CD2, H9gag+CD2 and H9gag+non transduced control 

cells were stimulated for 24 hours with APCs pulsed with varying concentrations of SLY 

peptide before staining with PE conjugated anti-human CD69 antibodies and analysing by 

flow cytometry. Figure 6.3 shows the cellular response to SLY peptide stimulation with 

CD69 expression indicating the degree of T-cell activation. All cells showed a response to 

SLY peptide stimulation with a positive correlation between CD69 expression and peptide 

concentration. The lowest levels of CD69 expression were observed in response to no SLY 

peptide stimulation. Approximately 22% of all T cells expressed CD69 when unstimulated 

which increases to a maximum of 67% of all T cells when the cells are stimulated with the 

highest concentration of peptide pulsed APCs (Figure 6.3). All four T cell lines show a 

comparable ability to upregulate CD69 upon peptide stimulation. The result from the H9gag+ 

T cell experiments suggest that over-expression of Lyp does not result in lower expression of 

CD69 when compared to control cells (non-transduced and CD2 transduced) as might have 

been expected. In addition, there is no difference in CD69 expression when comparing the 

cells transduced with the two isoforms of Lyp. However, as above, it cannot be formally 

concluded from these data that there are no differences in the functional capacity of the Lyp 

transduced and control H9 cells.
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Figure 6.3 Activation profiles of H9gag+ T cell lines expressing the two isoforms of Lyp.

Non-transduced H9gag+T cells, H9gag+T cells expressing rat CD2 only or H9gag+T cells 

expressing the indicated form of Lyp were incubated in the presence of varying 

concentrations of SLY peptide presented by APCs for 24 hours. Following incubation cells 

were stained with PE-conjugated anti-CD69 antibody and analysed using a flow cytometer. 

Results are representative of four separate experiments. Top figure shows percentage of 

CD69 expressing cells whereas bottom figure shows the Mean flurosence intensity (MFI) of 

the CD69 PE expression.The data are presented as mean ± SD.
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6.4 Functional analysis of cytokine production by the panel of Lyp modified
E6.1gag+ leukaemic T cells.

In order to determine whether significant experimental differences could be detected in the 

activation of the Lyp modified T cells, in this section, cytokine secretion by Lyp transduced 

and control cells (both non-transduced and truncated rat CD2 alone transduced) was 

investigated. E6.1gag+ T cells transduced and expanded as described in the previous chapter 

were tested for IL-2 and M IP-ip cytokine production in response to SLY peptide stimulation 

in the presence of APCs. E6.1gag+ T cells were left untransduced, transduced with truncated 

rat CD2 or transduced with either the R or W isoforms of Lyp. Following in vitro expansion, 

cells were stimulated for 24 hours with SLY peptide pulsed APCs and IL-2 and MIP-lp 

release in culture supernatants was measured (Figures 6.4-6.7). E6.1gag+ leukaemic T cells 

only produce detectable amount of IL-2 and M IP-ip cytokines. They are not known to 

secrete detectable levels of IL-10.

6.4.1 Minimal differences in IL-2 secretion in Lyp transduced E6.1gag+ T cells compared 

to control E6.1gag+ T cells.

An IL-2 ELISA was carried out as described in Materials and Methods using supernatants 

from four separate experiments. Results from two representive experiments are shown 

(Figures 6.4-6.5). The result of the first experiment shows a slight reduction in IL-2 secretion 

by Lyp transduced E6.1gag+ T cells compared to the non-transduced control (Figure 6.4). The 

result from the second experiment (Figure 6.5) shows no difference in IL-2 secretion between 

any of the four cell lines compared. The conclusion from the data of all four separate 

experiments is that there appears to be a trend towards a decrease in IL-2 secretion by Lyp 

transduced E6.1gag+ T cells compared to control E6.1gag+ T cells.
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Figure 6.4 Experiment 1: The effect of Lyp isoform expression on peptide pulsed APC 
mediated IL-2 release in transduced E6.1gag+T cells.

Non transduced E6.1gag+T cells or T cells expressing CD2+/- the indicated isoform of Lyp 
were activated for 24 hours with different concentrations of SLY peptide pulsed APCs. 
Following incubations, the media was removed and tested for cytokine secretion using an IL- 
2 ELISA kit. A) Effect of varying peptide concentration on IL-2 secretion in all four E6.1gag+ 
T cell lines. B) Comparison of the effect of varying peptide concentration on IL-2 secretion in 
E6.1gag+CD2 cells with the non transduced E6.1gag+T cells. C) Comparison of the effect of 
varying peptide concentration on IL-2 secretion in E6.1gag+RLyp-2A-CD2 cells with the non 
transduced E6.1gag+T cells. D) Comparison of the effect of varying peptide concentration on 
IL-2 secretion in E6.1gag+wLyp-2A-CD2 cells with non transduced E6.1gag+T cells. Result 
from one experiment. The data are presented as mean ± SD. *P < 0.05 ** P  < 0.01 *** P < 
0.001 by Two way ANOVA compared to Non-transduced E6.1gag+T cells.
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Figure 6.5 Experiment 2: The effect of Lyp isoform expression on peptide pulsed APC 
mediated IL-2 release in transduced E6.1gag+T cells.

Non transduced E6.1gag+T cells or T cells expressing the indicated isoform of Lyp were 
activated for 24 hours with different concentrations of SLY peptide pulsed APCs. Following 
incubations, the media was removed and tested for cytokine secretion using an IL-2 ELISA 
kit. A) Effect of varying peptide concentration on IL-2 secretion in all four E6.1gag+Tcell 
lines. B) Comparison of the effect of varying peptide concentration on IL-2 secretion in 
E6.1gag+CD2 cells with the non transduced E6.1gag+T cells. C) Comparison of the effect of 
varying peptide concentration on IL-2 secretion in E6.1gag+RLyp-2A-CD2 cells with the non 
transduced E6.1gag+T cells. D) Comparison of the effect of varying peptide concentration on 
IL-2 secretion in E6.1gag+RLyp-2A-CD2 cells with non transduced E6.1gag+Tcells. Result 
from one experiment. The data are presented as mean ± SD.
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6.4.2 A lack of difference in MIP-ip secretion in Lyp transduced E6.1gag+ T cells 

compared to non Lyp transduced E6.1gag+ T cells

A MIP-lp ELISA was done with supernatants from four separate experiments. Results from 

all four of the experiments are shown (Figures 6.6-6.7). Experiments shown 6.6 and 6.7 show 

no difference in M IP-ip secretion by Lyp transduced E6.1gag+ T cells compared to the 

controls (non transduced and rat CD2 transduced E6.1gag+ T cells). In addition, there was no 

significant difference in M IP-ip secretion between the cells transduced with the two isoforms 

of Lyp.

2 1 0



150-j

g  100-

50-

Peptide concentration (M)

160*,NT

CD2
W lyp -2A -C D 2 ,  
R ly p -2 A -C 0 2  a 100'

Peptide concentration (M)

NT
CD2

150-1

o) 100-

Peptide concentration (M)

NT
RLyp-2A-CD2

200-i

I  150-

100-

50-

Peptide concentration (M)

NT
W typ-2A -CD 2

Figure 6.6 Experiment 1: M IP-ip secretions by E6.1gag+cells expressing the two 
isoforms of Lyp.

Non transduced E6.1gas+T cells or T cells expressing the indicated isoform of Lyp were 
activated for 24 hours with different concentrations of SLY peptide pulsed APCs. Following 
incubations, the media was removed and tested for cytokine secretion using an MIP-1|3 
ELISA kit. A) Effect of varying peptide concentration on MIP-ip secretion in all four 
E6.1gag+Tcell lines. B) Comparison of the effect of varying peptide concentration on MIP-1 (3 
secretion in E6.1gag+CD2 cells with the non transduced E6.1gag+Tcells. C) Comparison of the 
effect of varying peptide concentration on MIP-ip secretion in E6.1gag+RLyp-2A-CD2 cells 
with the non transduced E6.1gag+T cells. D) Comparison of the effect of varying peptide 
concentration on M IP-lp secretion in E6.1gag+wLyp-2A-CD2 cells with non transduced 
E6.1gag+T cells. Result from one experiment. The data are presented as mean ± SD.
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Figure 6.7 Experiment 2: M IP-ip secretions by E6.1gag+ ceils expressing the two 
isoforms of Lyp.

Non transduced E6.1gag+T cells or T cells expressing the indicated isoform of Lyp were 
activated for 24 hours with different concentrations of SLY peptide pulsed APCs. Following 
incubations, the media was removed and tested for cytokine secretion using an MIP-ip 
ELISA kit. A) Effect of varying peptide concentration on MIP-ip secretion in all four 
E6.1gag+Tcell lines. B) Comparison of the effect of varying peptide concentration on MIP-ip 
secretion in E6.1gag+CD2 cells with the non transduced E6.1gag+Tcells. C) Comparison of the 
effect of varying peptide concentration on M IP-ip secretion in E6.1gag+RLyp-2A-CD2 cells 
with the non transduced E6.1gag+T cells. D) Comparison of the effect of varying peptide 
concentration on M IP-ip secretion in E6.1gag+ Lyp-2A-CD2 cells with non transduced 
E6.1gag+T cells. Result from one experiment. The data are presented as mean ± SD.
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6.5 Functional analysis of cytokine production by the panel of Lyp modified
H9gag+ T cells.

In order to determine whether significant experimental differences could be detected in 

cytokine production by the Lyp transduced (including both isoforms of Lyp) and control 

cells, H9gag+ T cells were left un-transduced, transduced with truncated rat CD2 or transduced 

with either the R or W isoforms of Lyp. Following in vitro expansion, T cells were stimulated 

for 24 hours with varying concentrations of SLY peptide pulsed APCs and IL-2 and IL-10 

release in culture supernatants was measured using ELISA (Figures 6.8-6.11).

6.5.1 Minimal differences in IL-2 secretion in Lyp transduced H9gag+ T cells compared 

to non Lyp transduced H9gag+ T cells

The IL-2 ELISA was done using the culture supernatants of four separate experiments. 

Results from two representative experiments are shown (Figures 6.8-6.9). Results from 

experiments 1 and 2 (Figures 6.8 and 6.9 respectively) show a reduction in IL-2 secretion in 

Lyp transduced H9gag+ T cells compared to the non-transduced controls (Figures 6.8C &D 

and 6.9 C& D) whilst there is no significant difference in IL-2 secretion between the rat CD2 

transduced H9gag+ T cells and the non transduced H9gag+ T cells (Figures 6.8B and 6.9B). The 

data from these experiments suggest that there is a slight reduction in IL-2 secretion by Lyp 

transduced H9gag+ T cells compared to non Lyp transduced controls (truncated rat CD2 

transduced cells). However, there was no difference in IL-2 secretion between the cells 

transduced with the two isoforms of Lyp (Figures 6.8 and 6.9).
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Figure 6.8 Experiment 1: The effect of Lyp isoform expression on peptide pulsed APC 
mediated IL-2 release in transduced H9gag+ T cells.

Non transduced H9gag+T cells or T cells expressing the indicated isoform of Lyp were 
activated for 24 hours with varying concentrations of SLY peptide pulsed APCs. Following 
incubations, the media was removed and tested for cytokine secretion using an IL-2 ELISA 
kit. A) Effect of varying peptide concentration on IL-2 secretion in all four H9gag+ T cell lines. 
B) Comparison of the effect of varying peptide concentration on IL-2 secretion in H9gag+ CD2 
cells with the non transduced H9gag+T cells. C) Comparison of the effect of varying peptide 
concentration on IL-2 secretion in H9gag+ RLyp-2A-CD2 cells with the non transduced H9gag+ 
T cells. D) Comparison of the effect of varying peptide concentration on IL-2 secretion in 
H9gag+wLyp-2A-CD2 cells with non transduced H9gag+T cells. Result from one experiment. 
The data are presented as mean ± SD. ** P < 0.0i *** P < 0.001 by Two-way ANOVA 
compared to Non-transduced H9gag+T cells.
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Figure 6.9 Experiment 2: The effect of Lyp isoform expression on peptide pulsed APC 
mediated IL-2 release in transduced H9gag+ T cells.

Non transduced H9gag+T cells or T cells expressing the indicated isoform of Lyp were 
activated for 24 hours with varying concentrations of SLY peptide pulsed APCs. Following 
incubations, the media was removed and tested for cytokine secretion using an IL-2 ELISA 
kit. A) Effect of varying peptide concentration on IL-2 secretion in all four H9gag+Tcell lines. 
B) Comparison of the effect of varying peptide concentration on IL-2 secretion in H9gag+ CD2 
cells with the non transduced H9gag+T cells. C) Comparison of the effect of varying peptide 
concentration on IL-2 secretion in H9gag+ RLyp-2A-CD2 cells with the non transduced H9gag+ 
T cells. D) Comparison of the effect of varying peptide concentration on IL-2 secretion in 
H9gag+wLyp-2A-CD2 cells with non transduced H9gag+T cells. Result from one experiment. 
Result from one experiment. The data are presented as mean ± SD. ** P < 0.01 *** P <
0.001 by Two-way ANOVA compared to Non-transduced H9gag+T cells.
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6.5.2 Reduction in IL-10 secretion in Lyp transduced H9gag+ T cells when compared to 

control transduced H9gag+ T cells.

The IL-10 ELISAs were done with supernatants from four separate experiments. 

Representative results from two of the four separate experiments are shown below (Figures 

6.10-6.11). Results from experiments 1 and 2 (Figures 6.10 and 6.11) show a highly 

significant reduction in IL-10 secretion by Lyp transduced H9gag+ T cells compared to the non 

transduced controls. Although in experiments 1 and 2 (Figures 6.10 and 6.11), there is a 

reduction in IL-10 secretion observed at unstimulated and 10"3M (Figures 6.1 OB) or 

unstimulated and 10’5M (Figures 6.1 IB) peptide concentration between the non transduced 

cells and the rat CD2 transduced cells this difference is not as significant as the differences in 

IL-10 secretion detected between Lyp transduced and control cells. Overall, the significant 

reduction in IL-10 secretion in the Lyp transduced H9gag+ T cells compared to control cells in 

observed suggests that Lyp reduces IL-10 production in the Lyp transduced H9gag+ T cells. 

However, there was no difference in IL-10 secretion between the cells transduced with the 

two isoforms of Lyp.
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Figure 6.10 Experiment 1: IL-10 secretion by H9gag+cells expressing the two isoforms of
Lyp

Non transduced H9gag+T cells or T cells expressing the indicated isoform of Lyp were 
activated for 24 hours with varying concentrations of SL9 peptide pulsed APCs. Following 
incubations, the media was removed and tested for cytokine secretion using an IL-10 ELISA 
kit. A) Effect of varying peptide concentration on IL-10 secretion in all four H9gag+T cell 
lines. B) Comparison of the effect of varying peptide concentration on IL-10 secretion in 
H9gag+CD2 cells with the non transduced H9gag+T cells. C) Comparison of the effect of 
varying peptide concentration on IL-10 secretion in H9gag+RLyp-2A-CD2 cells with the non 
transduced H9gag+T cells. D) Comparison of the effect of varying peptide concentration on 
IL-10 secretion in H9gag+wLyp-2A-CD2 cells with non transduced H9gag+Tcells. Result 
from one experiment. The data are presented as mean ± SD. The data are presented as mean 
± SD. * P < 0.05 ** P < 0.01 *** P < 0.001 by Two-way ANOVA compared to Non- 
transduced H9gag+T cells.
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Figure 6.11 Experiment 2: IL-10 secretion by H9gag+ cells expressing the two isoforms of 
Lyp

Non transduced H9gag+T cells or T cells expressing the indicated isoform of Lyp were 
activated for 24 hours with varying concentrations of SL9 peptide pulsed APCs. Following 
incubations, the media was removed and tested for cytokine secretion using an IL-10 ELISA 
kit. A) Effect of varying peptide concentration on IL-10 secretion in all four H9gag+T cell 
lines. B) Comparison of the effect of varying peptide concentration on IL-10 secretion in 
H9gag+CD2 cells with the non transduced H9gag+T cells. C) Comparison of the effect of 
varying peptide concentration on IL-10 secretion in H9gag+RLyp-2A-CD2 cells with the non 
transduced H9gag+T cells. D) Comparison of the effect of varying peptide concentration on 
IL-10 secretion in H9gag+wLyp-2A-CD2 cells with non transduced H9gag+Tcells. Result from 
one experiment. The data are presented as mean ± SD. * P < 0.05 ** P < 0.01 *** P < 0.001 
by Two way ANOVA compared to Non-transduced H9gag+T cells.
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6.6 Discussion

Lyp has been previously demonstrated to act as a negative regulator of TCR signalling and to 

reduce cytokine production by T cells (Aarnisalo et al. 2008; Rieck et al. 2007; Vang et al. 

2005). In this chapter, the role of Lyp as a negative regulator of T cell activation and the 

potential effect of Lyp isoform expression on cytokine production by leukaemic T cell lines 

was investigated. No difference in CD69 activation marker expression was observed in 

E6.1gag+ and H9gag+ cells expressing the two isoforms of Lyp compared to controls. The 

required signalling thresholds for activation marker upregulation is different to that required 

for cytokine production (Bucy et al. 1995). Minimal activation of the T cell via their TCR is 

enough to upregulate activation markers. This minimal signalling requirement may have 

masked any subtle differences in activation due to Lyp mediated suppression of signalling. 

Rieck et al (2007) did observe a decrease in the level of CD25 activation marker expression 

by normal p t p N221858C/1858T expressing CD4+ T cells relative to PTPN221858C/1858C 

expressing CD4+ T cells. However there was no transduction and over-expression of Lyp in 

the Rieck study and there were also differences in the method of stimulation of the T cells; 

stimulation by MHC/SLY peptide and stimulation using anti CD3/CD28 beads or APCs/anti 

CD3 antibody may account for the lack of difference in Lyp mediated CD69 expression in 

this study compared to Rieck et al (2007). Hence, the role of Lyp in reducing TCR activation 

marker expression will require further investigation.

Previous studies have examined cytokine expression by T cells expressing different isoforms 

of Lyp. Vang et al (2005) investigated the effect of Lyp on IL-2 production and demonstrated 

that primary T cells from T1D patients with PTPN22 1858C/1858W genotype secrete lower levels 

of IL-2 compared to T1D patients with PTPN22 1858C/1858C genotype. In the same study, it was 

also shown that primary T cells nucleofected with the two isoforms of Lyp produce 

significantly lower amounts of IL-2 when compared to the control and the WLyp nucleofected
n

primary T cells produce even lower levels of IL-2 when compared to Lyp nucleofected 

primary T cells (Vang et al. 2005). Likewise, Aarnisalo et al (2008) observed a significant 

difference in IL-2 secretion by prpp]sj221858C/1858T CD4+ T cells from T1D patients relative to 

PTPN221858C/1858C expressing CD4+ T cells from T1D patients. Interestingly, Rieck et al 

(2007) also investigated the functional effect of the Lyp R620W polymorphism on CD4+ T 

cells from healthy individuals by examining the secretion of IL-2, IL-4, IL-5, IL-10, IFN-y 

and TNF-a and only detected a significant decrease in IL-10. In the same study, subtle
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decreases in IL-2 and IL-4 secretion, which did not reach statistical significance, and no 

differences in IFN-y and TNF-a secretion in PTPN22 1858C/1858T versus PTPN22 1858C/1858C 

expressing CD4+ T cells were also observed (Rieck et al. 2007).

The result from this study suggests that there may be a trend towards reduction in IL-2 

secretion by the Lyp transduced E6.1gag+ T cells when compared to controls. This data is 

consistent with that expected from literature review. However, there were no differences in 

MIP-ip cytokine secretion observed between the Lyp transduced and control cells. In 

addition, there were no differences in cytokine secretion observed between the E6.1gag+ T 

cells expressing the two isoforms of Lyp.

A functional study of the Lyp modified H9gag+ leukaemic T cells demonstrated a slight 

reduction in IL-2 secretion by H9gag+ T cells expressing Lyp compared to the non-transduced 

controls. This result is consistent with the previous studies discussed above which also 

demonstrated an Lyp-mediated decrease in IL-2 secretion. However, in this study there was 

no difference observed in the IL-2 secretion between the two isoforms of Lyp contrary to that 

observed in the Vang et al (2005) study. Vang et al (2005) demonstrated a significant 

reduction in IL-2 secretion by T1D T cells from individuals with PTPN22 1858C/1858W
1 flW p/1 c c o r

genotype compared to those with PTPN22 genotype. This discrepancy may be due

to difference in the methods used for activating T cells in this study compared to Vang et al 

(2005) study. SLY peptide pulsed APC, a more physiologic means of activation was used to 

activate T cells in this study whereas anti-CD3/anti-CD28 coated beads were used to activate 

T cells in the Vang et al (2005) study. In this same study Vang et al (2005) also 

demonstrated that WLyp nucleofected primary T cells showed a significant reduction in IL-2 

secretion compared to the RLyp nucleofected cells. Rieck et al (2007) also demonstrated 

lower levels of IL-2 secretion by CD4+ T cells with the PTPN22 1858C/1858W genotype 

compared to CD4+ T cells with the PTPN22 1858C/1858C genotype that did not reach statistical 

significance. However, Rieck et al (2007) also used a less physiologic method of activating T 

cells using anti-CD3/anti-CD28 coated beads which may account for the lack of difference in 

IL-2 secretion between the RLyp and WLyp expressing cells in this study.

IL-10 secretion was significantly reduced in the Lyp expressing H9gag+ T cells compared to 

controls. However, there was no difference observed in IL-10 secretion between cells 

expressing the R and the W isoforms of Lyp. This may be because the overexpression of R
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and W isoforms of Lyp using lentiviruses in this study is so exaggerated that it masks a subtle 

difference in IL-10 secretion that may exist under physiological conditions between the cells 

expressing the R and the W Lyp isoforms. The extent of IL-10 reduction is much higher than 

that detected for IL-2. Intriguingly, this data is consistent with the Rieck et al (2007) study 

where it was demonstrated that CD4+ T cells with the PTPN22 1858C/1858W genotype showed a 

significant reduction in IL-10 secretion compared to CD4+ T cells with a PTPN22 1858C/1858C 

genotype. However, no difference was observed in IL-10 secretion between the two isoforms 

of Lyp in my study. The significantly reduced IL-10 level due to Lyp expression is very 

interesting and may have implications for therapeutics. Several studies have found altered IL- 

10 expression levels to strongly correlate with many ADs (Cohen et al. 1995; Cush et al.

1995; Houssiau et al. 1995; Llorente et al. 1993; Lopatin et al. 2001; Mongan et al. 1997). IL- 

10 is produced by multiple cell types that include CD4+, CD8+T cells, CD4+CD25+ cells, 

activated B cells, monocytes, macrophages and keratinocytes but the four major producers of 

IL-10 are thought to be Th2 cells, TrI cells, ThI cells and Th17 cells (Akdis et al. 2011). IL- 

10 exhibits a multiple modulatory effect on the immune system. As an anti-inflammatory and 

immunosuppressive cytokine, IL-10 reduces production of pro-inflammatory mediators and 

results in diminished T cell stimulation (de Waal Malefyt et al. 1991a; Peguet-Navarro et al. 

1994). Studies using genetically IL-10 deficient mice have illustrated the importance of IL-10 

in limiting autoimmune pathologies. Mice lacking IL-10 or treated with blocking anti­

receptor antibodies succumb to what would normally be sublethal doses of 

lipopolysaccharides (Berg et al. 1995). Furthermore, normally self-contained bacterial and 

parasitic infections can result in lethal autoimmune mortality in IL-10-deficient mice 

(Gazzinelli et al.. 1996; Hunter et al. 1997) and in almost every mouse model of 

autoimmunity, including experimental autoimmune encephalitis, RA, and inflammatory 

bowel disease, disease is dramatically exacerbated in mice lacking IL-10. These studies 

demonstrate the crucial role of IL-10 in limiting an over-exuberant immune response and 

preventing autoimmunity. Therefore, Lyp mediated reduction in IL-10 levels could be a 

major contributing factor leading to predisposition to autoimmunity. The molecular 

mechanism of how Lyp results in a reduction in IL-10 levels potentially holds great promise 

in the development of treatments for AD.

Interstingly, a reduction in IL-2, M IP-lp and IL-10 cytokine secretion by H9 and E6.1 cells 

was observed at the lowest concentration of the peptide stimulation compared to 

unstimulated. This dip in cytokine secretion when transitioning from unstimulated to
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stimulation with low peptide concentration could an effect of B cells which were used as 

APCs. It may be that because unstimulated T cells still contain APCs but no SLY peptide, the 

B cells are also producing the respective cytokines, however addition of the once the B cells 

are pulsed with SLY peptide they are targeted by T cells resulting in B cell death leading to a 

cessation in cytokine production by B cells therefore an overall decrease in cytokine levels 

from unstimulated to stimulation with lowest peptide concentration. In addition, there may 

also be an added tonic inhibition effect. There may be an allogenic stimulation taking place 

between the B cells and T cells which maybe dominant when unstimulated leading to the 

production of cytokines, this effect would cease once the B cells are peptide pulsed leading to 

B cell death and reduction in cytokine production.

In summary, in this chapter a functional analysis of Lyp-modified leukaemic T cells was 

performed. This analysis revealed several interesting findings. Firstly, no difference in CD69 

activation marker expression was observed between the exogenous Lyp expressing and 

control E6.1gag+ and H9gag+ T cells. In addition, no difference was observed in MIP-ip 

secretion between the exogenous Lyp expressing and control E6.1gag+ T cells however a trend 

towards reduction in IL-2 was observed in Lyp trasduced E6.1gag+ T cells compared to 

controls. A small reduction in IL-2 expression was observed in Lyp transduced H9gag+ cells 

compared to control cells. In addition, a highly significant reduction in IL-10 secretion was 

observed in Lyp expressing H9gag+ cells compared to controls. The data presented in this 

chapter highlight a potential preferential effect of Lyp activity on cytokine secretion, 

particularly IL-10 which is known to play an important anti-inflammatory role in 

autoimmunity and reduction or impairment of IL-10 could pre dispose to autoimmunity.
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Chapter 7

Final Discussion

The notion of autoimmunity has been around for a very long time, although the pathogenic 

mechanisms leading to ADs are not clearly understood. The focus of the immune response in 

ADs, namely self antigens, makes them difficult to cure at present. ADs affect otherwise 

relatively healthy individuals, often young adults, making it a huge physical, physiological 

and economic burden (Rioux and Abbas 2005). The current available treatments target the 

resulting organ damage rather than the underlying cause of the disease (Rioux and Abbas 

2005). Despite some of these treatments having some remarkable success, they tend to come 

with the huge risk of side effects due to the general nature of the treatment. Additionally, as 

the underlying causes of the ADs are usually unknown the available treatments can only slow 

down disease progression and provide relief from the symptoms. Genetics is known to 

strongly influence the development of autoimmunity and understanding the mechanism of 

this influence will increase our understanding about the causal derangements and may lead to 

development of better treatment strategies (Rioux and Abbas 2005).

Whilst the genetic contribution to ADs is now a widely accepted phenomenon, the influence 

of any individual predisposing allele is modest and therefore the relationship between the 

predisposing variant and the disease state is influenced by other factors such as other genes 

and the environment. Despite this modest effect, understanding the effect of these genes in 

predisposing to ADs would help piece together the mechanism of ADs. MHC polymorphisms 

are the major contributor to ADs (Simmonds and Gough 2005). However as MHC genes 

exert their effect on multiple components of the immune system, how they lead to ADs is 

likely to be complex. In addition, it has been difficult to confidently associate many of the 

causal MHC genes to ADs due to the high degree of linkage disequilibrium between the 

MHC alleles. Genes outside of the MHC region predisposing to ADs are alternatively much 

easier targets for studying their contribution to autoimmunity and for developing treatments 

that can target the disease mechanism resulting from the genetic polymorphisms. Single gene 

defects leading to ADs have provided understanding of the pathways of disease and normal 

physiology. However, most ADs result from the interactions of several predisposing genes, 

which affect multiple immune parameters, and deciphering the link between genetics and 

molecular mechanisms leading to ADs poses a significant challenge.
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A recently identified SNP in the gene, PTPN22, implicated in several ADs has aroused 

considerable interest. Outside of the MHC region, the PTPN22 C1858T polymorphism 

represents the most robust association of any genes linked to ADs. Much work has been 

directed at finding the association between this SNP and various ADs. However, studies 

involving the normal physiological role of the Lyp protein encoded by the PTPN22 gene and 

the functional effect of this R620W polymorphism on Lyp are less well developed. 

Experiments described in this thesis were devised to investigate the functional effect of the 

PTPN22 C1858T polymorphism in T cells. Specifically, does over-expression of the R/WLyp 

proteins result in altered physiologic activation of T cells? Is there a difference in cytokine 

production by T cells over-expressing the R and W isoforms of Lyp?

In addition, it was of great interest to determine whether a monoclonal antibody generated 

specifically against the WLyp isoform would have a selective blocking effect on Lyp activity. 

If so, this would mean that there are sufficient differences in the conformational epitopes 

formed by the intact R and W Lyp proteins to be distinguished by the antibody. This in turn 

would provide confidence that other reagents, such as a small molecule inhibitor could be 

designed to specifically target either the R or W Lyp protein. Potentially such a reagent could 

be very useful in assisting in understanding the molecular basis of R620W polymorphism in 

predisposing to ADs. In addition, the reagent may also assist in development of therapies. 

Therefore, an attempt was made to generate polymorphism specific monoclonal antibodies 

against the R and W isoforms of Lyp. Unfortunately, this proved difficult and only on the 

third attempt was it possible to generate monoclonal hybridomas against the Lyp peptide. 

Three different hybridoma clones were generated but antibody secreted by each of these 

clones was unable to distinguish between the R and W Lyp peptides. Furthermore, none of 

the three secreted antibodies was able to detect denatured full length Lyp protein by 

immunoblotting. Therefore, attempts to generate polymorphism specific monoclonal 

antibodies were unsuccessful in this instance.

In order to examine the effect of the PTPN22 C1858T polymorphism in T cells, it was 

important to design a suitable system to over-express the two Lyp isoforms. The rationale for 

over-expression of Lyp was based on the fact that the W620 Lyp isoform is known to behave 

in a dominant manner (increased risk of AD in individuals who are heterozygous for wLyp 

isoforms). Therefore, it is conceivable that introducing exogenous Lyp W620 into RLyp/RLyp
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homozygote T-cell populations would partially mimic the cellular environment in T cells 

isolated from heterozygote individuals and allow examination of the effect of the R620W 

polymorphism. To achieve this goal, recombinant lentivirus plasmids for use in over­

expression of Lyp in T cells were designed and generated. Recombinant lentivirus plasmids 

encoding either the R or the W isoform of Lyp together with a “self-processing” TaV derived 

2A peptide and either GFP or truncated rat CD2 reporter genes were generated. The 

recombinant R/WLyp-2A-GFP and R/WLyp-2A-CD2 plasmids generated in this thesis are 

ideal tools for over-expressing Lyp isoforms in T cells and the rat CD2 reporter gene allows 

direct sorting of transduced cells from the non transduced population.

To carry out critical evaluation of the functional effect of over-expressing the two isoforms of 

Lyp in T cells it was important to generate T cell lines over-expressing the Lyp isoforms. 

Human leukaemic T cell lines, E6.1 (Jurkat) and H9 (Hut78) previously transduced with an 

SLY specific class I restricted TCR, were further transduced with lentiviruses particles 

encoding either RLyp-2A-CD2, wLyp-2A-CD2 or CD2 alone hence generating E6.1 and H9 

T cell lines expressing RLyp-2A-CD2, wLyp-2A-CD2 and CD2 respectively. The cell lines 

were successfully generated and shown to have comparable SLY TCR expression. In 

addition, the two cell lines expressing the R and the W isoform of Lyp were shown to have 

comparable reporter gene expression. The E6.1 and H9 cell lines were used as initial model 

systems due to their advantage over primary human T cells in terms of ease of maintenance in 

culture and their relative ease of transduction (especially Jurkat T cells). Maintaining primary 

T cells in culture requires periodic restimulation, which may affect surface expression of 

activation markers such as CD69 and CD25. Furthermore, the cells often need to be rested for 

long periods before the expression of activation markers returns to basal levels. In addition, 

there was also an advantage of the speed with which functional assays could be conducted 

using T cell lines once the exogenous Lyp expressing cell lines had been generated. Indeed, 

any interesting observations made with the T cell lines could be taken forward for further 

investigation into primary human T cells and other specialised subsets of T cells such as T 

reg cells and T follicular helper cells for examination of proliferation, suppression and 

cytokine secretion.

There were a trend towards reduction observed in this study in IL-2 production between Lyp 

transduced and control E6.1 cells. This result was consistent with other studies, which have 

observed a decrease in IL-2 secretion upon Lyp over expression by transduction (Vang et al.
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2005) and a reduction in IL-2 production in heterozygous WLyp expressing T cells when 

compared to homozygous RLyp expressing T cells (Aarnisalo et al. 2008; Rieck et al. 2007; 

Vang et al. 2005). However, there was no difference observed in MIP-ip production between 

the Lyp transduced and control E6.1 T cells.

The key findings of particular significance obtained during this study were the effects of Lyp 

over expression on H9 cells. Results described in this report suggest that there may be a slight 

reduction in IL-2 secretion by H9 T cells over-expressing the R and W isoforms of Lyp when 

compared to H9 T cells not expressing Lyp. There was however no difference observed in IL- 

2 secretion between the H9 T cells expressing the two isoforms of Lyp. The over-expression 

of the two isoforms of Lyp may be so exaggerated in this model that it may have obscured a 

subtle difference in cytokine secretion between the two isoforms of Lyp. This overexpression 

may account for the lack of differences observed in IL-2 and IL-10 cytokine secretion
R Wbetween the Lyp and the Lyp expressing cells in this study. Despite the expression of Lyp 

in this model being more exaggerated than the normal physiologic levels of Lyp expression in 

the cell, it nevertheless has potentially provided potential important indications as to how Lyp 

may be functioning. The potential use of zinc finger nucleases to promote homologous 

recombination at nucleotide position 1858 in the PTPN22 gene of a T cell homozygous for 

the PTPN22 C l858 allele in order to create a cell with a PTPN22 C1858/T1858 genotype or 

further conversion to a PTPN22 T1858/T1858 genotype would provide a much more 

physiologically relevant model (Rahman et al. 2011). This could be achieved by co­

introduction of zinc finger nucleases and a PTPN22 cDNA encompassing the desired 

nucleotide change at position 1858 into a T cell with a PTPN22 C1858/C1858 genotype. The zinc 

fingers in the zinc finger nuclease would recognise and bind to the target sequence in the 

PTPN22 gene enabling the attached non specific cleavage domain from the FokI 

endonuclease to cleave the spacer region and create a double stranded break in the DNA 

(Rahman et al. 2011). This double stranded break would induce a homology directed repair 

between the defective DNA and the co-transfected PTPN22 T1858 encoding DNA, resulting 

in a C to T change in the PTPN22 gene (Rahman et al. 2011). Following limiting dilution 

cloning, the monoclonal cells could be genotyped and potentially cell lines established for all 

three genotypes (PTPN22 C1858/C1858, PTPN22 C1858m858 and PTPN22 T18wr1858). This method 

would avoid the need for overexpression of the PTPN22 T1858 allele in order to mimic a 

heterozygous cell and would eliminate the limitations associated with overexpression in the 

current model.
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This study also revealed that H9 cells expressing Lyp showed a significant reduction in IL-10 

secretion when compared to H9 cells not expressing Lyp. This report is not the first 

highlighting a role of Lyp in reduction of IL-10 production. However, the previous study was 

conducted in CD4+ T cells isolated from healthy controls who were either RLyp/RLyp
R Whomozygous or Lyp/ Lyp heterozygous and therefore the effect observed could not 

necessarily be attributed to a intrinsic effect of Lyp in CD4+ T cells. In addition, a different 

method of activating T cells was used (Rieck et al. 2007). Results from the current study 

suggest a direct cell intrinsic effect of Lyp on the production of the cytokine IL-10. Although 

no differences in IL-10 secretion were observed between the H9 cells expressing the R and W 

isoforms of Lyp in this study, if wLyp is indeed a “gain of function” variant as indicated by 

several studies then it is conceivable that the wLyp isoform would result in further decreases 

in IL-10 production when compared to Lyp expressing cells. Hence the enhanced reduction 

in IL-10 production that would be predicted for the WLyp isoform may implicate reduced IL- 

10 levels as the key pathogenic mechanism by which the wLyp variant predisposes to ADs.

Although over-expression of R and W isoforms of Lyp in H9 cells in this report has 

highlighted an important intrinsic effect of Lyp expression on IL-10 production, further work 

is required to provide supporting evidence that this effect is consistently observed in other T 

cell lines and primary T cells as well as to identify any other effects of Lyp expression in T
R Wcells. Generation of other T cell lines and primary T cells over-expressing Lyp and Lyp by 

using lentivirus particles encoding R and W isoforms of Lyp produced using the method 

optimised in this study will allow analysis of IL-10 and IL-2 production by these cells and 

may confirm if the effect of Lyp seen with H9 cells is indeed a major effect of Lyp on T cells 

in general. It would also be interesting to investigate the effect of Lyp expression on cellular 

production of other cytokines in addition to IL-2 and IL-10. Rieck et al (2007) in their study 

observed a small non-significant reduction in IL-4 but no difference in interferon-y and TNF- 

a secretion by CD4+ T cells from heterozygous (RLyp/wLyp) individuals when compared to 

CD4+ T cells from homozygous (RLyp/RLyp) individuals (Rieck et al. 2007). The authors in 

the Rieck et al (2007) study also reported that the Lyp R620W polymorphism resulted in a 

decrease in anti-inflammatory cytokine IL-10 reduction, whereas the production of pro- 

inflammatory cytokines was not affected as much. It would be interesting to investigate if 

indeed the effect of Lyp is more profound in the production of anti-inflammatory cytokines 

by T cells than the production of pro-inflammatory cytokines and if so how Lyp may mediate
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this selective effect on cytokine production. Additionally, the role of Lyp in cytokine 

production and T and B cell biology could be further explored in a more physiological 

context. Funcational analysis of cellular proliferation, activation and cytokine producion of 

immune cells from C57B1/6 R620W Lyp knock-in mouse or Pep’7’ mouse would provide a 

more physiological model for exploring the role of Lyp in these cells. Additionally, 

generation of R620W conditional knock out or inducible knock-in mouse with inducible 

expression of Lyp in specific cell types would provide attractive models for exploring the role 

of Lyp in T and B cells biology.

It is conceivable that a reduction in IL-10 production due to Lyp expression may aid 

development of ADs as IL-10 seems to have a protective role in several ADs. Patients with 

deficient IL-10R expression develop severe form of IBD (Glocker et al. 2009). Furthermore, 

several polymorphisms in the IL-10 promoter region have been identified that are associated 

with altered IL-10 expression and altered IL-10 expression as a result of such genetic 

variation has been linked to a number of ADs (Akdis et al. 2011). IL-10 is a potent anti- 

immune and anti-inflammatory cytokine and is a member of a family of cytokines that 

include IL-19, IL-20, IL-22, IL-24, IL-26, IL-28 and IL-29.

IL-10 plays a crucial role in the development of an immune response. It is therefore of great 

importance that production of IL-10 is carefully regulated. Several layers of regulation of IL- 

10 expression exist and some of these mechanisms are conserved among all IL-10 producing 

cells, while others appear to be cell specific (Mosser and Zhang 2008). IL-10 gene expression 

is controlled by constitutively and ubiquitously expressed transcription factors Spl and Sp3 

(Tone et al. 2000). Chromatin modification at the IL-10 locus is another proposed mechanism 

of IL-10 regulation. Histone deacetylase 11 protein has been shown to bind to the IL-10 

promoter region resulting in a formation of a more compact chromatin upon deactylation 

further leading to impaired accessibility of this region for IL-10 inducing transcription factors 

such as STAT3 (Villagra et al. 2009). Post-trancriptional mechanisms of regulating IL-10 

production also exist. This was first suggested by the finding that T cell clones actively 

transcribing IL-10 were unable to yield detectable levels of IL-10 mRNA (Naora et al. 1994). 

In addition, IL-10 mRNA levels were found to vary between cell lines showing comparable 

promoter activity (Tone et al. 2000). Multiple copies of mRNA destabilizing motifs are found 

to be present in the 3 ’ untranslated region (UTR) of the IL-10 mRNA (Powell et al. 2000). 

Powell et al (2000) cloned three potential mRNA destabilising motifs AUUA located in the
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3’ UTR region of IL-10 mRNA individually and together into luciferase reporter plasmids 

with SV40 promoter/luciferase expression unit. In this system, if the cloned AUUA sequence 

contained an RNA-destabilising activity then it would generate a reduced luciferase activity 

when compared to the luciferase activity of the control plasmid. Following luciferase reporter 

assays, they observed a 50% reduction in luciferase activity when plasmids encoding each of 

the three AUUAs were individually transfected in non stimulated T cells. The reduction in 

luciferase activity increased to 80% when the T cells were transfected with a plasmid 

encoding all three of the AUUA sequences (Powell et al. 2000). This suggests that 

constitutively expressed IL-10 mRNA is unstable unless stabilised by post-trancriptional 

modification. Although IL-10 is ubiquitously transcribed, the actual production and secretion 

of IL-10 protein depends on the post-transcriptional signal.

The result showing the reduction in IL-10 production by H9 cells transduced with Lyp leads 

to the proposal of a hypothesis presented in Figure 7.1 and 7.2. These figures suggest how 

Lyp expression may result in a reduction in IL-10 production. It is hypothesised that the 

reduction in IL-10 production may be the effect of Lyp at the proximal TCR signalling 

cascade or alternatively Lyp may affect other signalling cascades that play a role in regulating 

IL-10 production. Lyp may directly dephosphorylate and therefore inactivate transcription 

regulators of IL-10 leading to reduced production of IL-10 (Figure 7.2). This hypothesis 

could be tested by carrying out Immunoprecipitation studies on the R and W Lyp 

overexpressing T cells to investigate if Lyp interacts with regulators of IL-10 transcription 

such as Sp-1 or Sp-3. Alternatively, Lyp may have as yet unknown binding partners that may 

interact with IL-10 regulators influencing production of IL-10. Once again 

Immunoprecipitation of Lyp in exogenous Lyp expressing T cells may help identify as yet 

unknown binding partners. In addition, Lyp may interact with proteins that affect the post 

transcriptional IL-10 mRNA. Lyp may affect the phosphorylation status of these proteins 

thereby inactivating or activating them which may in turn affect their function in stabilising 

IL-10 mRNA resulting in degradation of IL-10 mRNA leading to reduction in IL-10 

production. Lyp may directly bind to microRNAs that play a role in post-transcriptional 

regulation of IL-10 or interact with proteins that regulate such microRNAs, resulting in a 

decrease in IL-10 production. Yet again, Immunoprecipitation, Co-immunoprecipitation of 

Lyp in Lyp over-expressing cells may identify such substrates of Lyp.

229



Maximal expression of IL-10 following re-stimulation of ThI cells has been shown to require 

a strong TCR signalling (Saraiva et al. 2009). It may be that a similarly strong TCR signal is 

required for IL-10 production in H9 cells and therefore Lyp mediated suppression of TCR 

signal strength may have resulted in the impaired IL-10 production observed in this study 

(Figure 7.1). As there was a comparatively much larger reduction in IL-10 secretion 

compared to IL-2 secretion in Lyp transduced cells, this may indicate a minimal effect of Lyp 

in the transcription of cytokine genes. Further, if the reduction in cytokine secretion is not 

due to an effect of Lyp on the transcription of cytokines an alternative suggestion is that Lyp 

may be playing a role in post-transcriptional modification. This is supported by the 

observation that IL-2 has not been observed to be post-transcriptionally modified whereas IL- 

10 has been reported to be post-transcriptionally modified. This is consistant with the 

observation in this study that whereas IL-2 is only minimally reduced, the reduction in IL-10 

secretion is more profound. Currently there is no evidence to directly support either of these 

hypotheses.
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Figure 7.1 Hypothesis for Lyp mediated suppression of IL-10 production

The reduction of IL-10 production by H9 cells expressing Lyp may be due to the effect of 

Lyp in TCR signalling. Lyp mediated dephosphorylation of Src family kinases, Lck and 

FynT, and Zap70 which is thought to result in a suppression ofTCR signalling may lead to a 

reduction in IL-10 production by the suppressed T cells.
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Figure 7.2 Hypothesis for the effect o f Lyp on IL-10 transcription and translation

The reduction in IL-10 production by exogenous Lyp expressing cells suggests a potential 

role for Lyp in directly affecting IL-10 transcription and translation. Lyp may interact with 

IL-10 transcriptional regulators and dephosphorylate and inactivate them directly or 

indirectly via its as yet unknown binding partner (represented by a circle with a question 

mark). In addition, the effect o f Lyp may be due to its known effects on post transcriptional 

modification mediators o f IL-10. Lyp may dephosphorylate these post transcriptional 

modification mediators thereby affecting their function in stabilising the IL-10 mRNA. In 

addition, Lyp may affect IL -10 production by acting as a competitor or binding partner of 

these transcription and translation mediators and thereby affect their availability to cells to 

regulate IL-10 transcription or stabilise IL-10 mRNA.
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The m echanism  of how Lyp m ay have influenced IL-10 production is of great interest. 

W hether this Lyp m ediated reduction in IL-10 production is at transcriptional level or post 

transcriptional level requires investigation. As a first step, conducting a quantitive PCR (real 

time PCR, RT-PCR) to com pare the m R N A  levels betw een the exogenous Lyp expressing 

and the control cells (not expressing exogenous Lyp) could provide some answers as to 

whether the regulation is at a transcriptional level or post transcriptional level. If the IL-10 

mRNA levels are com parable betw een the exogenous Lyp expressing and the control cells 

than this would suggest that the difference in IL-10 secretion observed is due to differential 

post transcriptional m odification of the IL-10 m RNA transcripts in the exogenous Lyp 

expressing cells when com pared to the control cells. As the only difference between the 

control cells and the exogenous Lyp expressing cells is expression of exogenous Lyp, this 

would suggest that Lyp m ay be playing a role in post transcriptional modification of IL-10 

mRNA. However, if by conducting quantitative PCR it is observed that IL-10 mRNA 

transcription in the cells expressing Lyp and the control cells is different and consistent with 

the differences seen for IL-10 protein, then this would suggest a role for Lyp at the level of 

transcription of IL-10 m RN A. Lyp m ay play role in directly or indirectly regulating IL-10 

transcriptional regulators.

It is feasible that the effect of this polym orphism  may be different in different T cell subsets. 

This hypothesis has not been explored previously, therefore would be of great interest to 

explore if the R620W  polym orphism  has d ifferent effects in different T cell subsets in an in- 

vitro setting. Identifying the cell populations that are altered by the WLyp is a critical step in 

understanding how this polym orphism  eventually  results in autoimmunity. T reg cells have 

been shown to be a key p layer in suppression of autoreactive T cells in the periphery and 

have been im plicated in autoim m unity (Costantino et al. 2008; Laurent et al. 2009). If indeed 

wLyp is a “gain of function” polym orphism  as suggested by m ost studies then it is plausible 

that the impact of WLyp on TC R  signalling  may have an effect on the developm ent or/and 

functioning of T reg cells. Few er natural T  reg cells may be generated in W 620 Lyp 

expressing individuals or they m ay not be as effective in suppressing effector T cells as T reg 

cells from hom ozygous R 620 Lyp expressing individuals because their TCR signalling is 

more negatively suppressed. T he question of w hether T reg cells in WLyp expressing 

individuals are less able to exert suppressive effect on effector T cells than T reg cells from 

RLyp homozygous individuals can be addressed by introducing R and W isoforms of Lyp into 

the T reg cells using infectious lentivirus particles generated using the recom binant R and W
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Lyp encoding lentivirus plasm ids generated in this study. Subsequently, these R and W Lyp 

expressing T reg cells m ay be analysed by suppression assays to observe if indeed a 

difference in their ability to suppress exists.

Furthermore, it m ay be the case that the R620W  polym orphism  does not significantly affect T 

reg cell function, but rather has a profound effect on T follicular helper (Tfh) cells which are 

known to play an im portant role in providing help to B cells for homing into germinal centre 

and immunoglobulin class sw itching (Laurent et al. 2009). Results from Pep knockout study 

carried out by H asegaw a et al (2004) observed spontaneous generation of germinal centres in 

Pep 7" mice which was seen to depend on cooperation between T and B cell as administration 

of an anti CD 40L m onoclonal antibody disrupted the enhanced germinal centre formation 

(Hasegawa et al. 2004). This suggested that the spontaneous germinal centre formation is 

unlikely to be due to a B cell intrinsic defect but may be due to defects in T cell mediated 

help to B cell. Therefore, as T fh cells play a role in B cell maturation, they are good 

candidates for further investigation. The im pact of Lyp expression on Tfh cells could be 

assessed by isolating T fh cells from  tonsils and lymph nodes of patients, transducing with 

lentivirus particles encoding R and W  isoform s of Lyp and assessing for altered cell function. 

Expression of cell surface m arkers such as CXCR5, ICOS and CXCR7 by Tfh cells over­

expressing either the R or the W  isoform s of Lyp could be assessed by flow cytometry. The 

ability of Tfh cells over-expressing either the R or the W  isoforms of Lyp in producing 

cytokines such as IL-21 and IL-6 cytokine production could also be assessed. Tfh cells are 

known to induce IgG production by B cells, therefore it would be interesting to assess the 

ability of transduced Tfh cells to drive B cell proliferation and IgG production by co culturing 

with B cells.

Alternatively, the B cell population rather than T cell population might be more significantly 

affected by the R 620W  polym orphism . R ieck et al (2007) observed an association of the 

wLyp variant with a dim inished response to B cell receptor stimulation suggesting that B cell- 

intrinsic processes may be directly  altered by the WLyp variant. Therefore, further 

assessment of the effect o f R 620W  polym orphism  on other lymphocyte population such as 

the B cells to identify the cell populations where cell function may be critically altered, would 

help to better understand the effect of Lyp in cellular im munology.

In summary, the generation of RLyp-2A -CD 2 and wLyp-2A-CD2 encoding recombinant 

lentivirus plasm ids w hich w ere used to produce infectious lentivirus particles and the
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subsequent over expression of Lyp in E6gag+ and H 9gag+ T cells together with the sorting of 

the transduced cells based on CD2 reporter gene expression has proven to be a useful model 

system to assess Lyp m ediated effect on cytokine production. A limitation of this model 

system has also been identified in this current study. The exaggerated expression of 

exogenous Lyp in this system  m ay be the reason for the lack of differences observed between 

the R and the W  Lyp expressing cells. The use of zinc finger nucelases for conversion of the
R R /R W \homozygous Lyp/ Lyp expressing cell into a heterozygote cell ( Lyp/ Lyp) or a 

homozygous cell (wL yp/wLyp) w ould address this issue and provide a more physiologic 

model for further study.

The use of this m odel system  has how ever, allowed identification of a critical role of Lyp in 

cytokine production by H9 cells. There was a trend towards reduction in IL-2 production 

observed in Lyp expressing cells com pared to control cells, but more importantly there was a 

significant reduction in IL-10 production by Lyp expressing cells when com pared to control 

cells despite there being no difference in CD 69 expression between these cells. It would be 

interesting to further analyse the effect of Lyp on IL-10 production in other T cell lines and in 

primary cells and if so analyse w hether the differences in IL-10 expression are at a 

transcriptional or post transcriptional level as it may provide further insights into the role of 

Lyp in T cells. N otw ithstanding, this result suggests an important role for the Lyp in the 

immune regulation o f IL-10 and provides a potential mechanism for association of the 

PTPN22 gene to ADs.
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