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Abstract
The effective uptake/absorption of macromolecules through the body 
involves several processes: one o f these is the transport o f the molecule 
through the mucus layer. The mucus layer is a complex mixture of 
biological components. Among them, mucin is the molecule that mainly 
contributes to the gel properties of the layer. Therefore, an in-vitro mucin 
gel can mimic, to a first approximation, the in-vivo physico-chemical 
properties o f the mucus.

Therapeutic agents are often conjugated to polymers which behave as drug 
carriers to improve the tissue targeting specificity of the therapeutic 
molecule. Therefore, the understanding of the permeability o f polymers 
through mucin solutions is fundamental in the construction of polymer- 
based drug delivery systems for therapeutics which can be adsorbed 
through the airways and the gastrointestinal tract. Furthermore, in the case 
o f respiratory disorders such as cystic fibrosis (CF), the mucus can 
represent a real barrier for the therapeutics’ access. The mobility through, 
and interactions with, mucin solutions of non-ionic/cationic/anionic 
polymers with different structures (from linear to dendritic) were studied 
by pulsed-gradient spin-echo nuclear magnetic resonance (PGSE-NMR) 
and small-angle neutron scattering (SANS). The interaction of non-ionic 
polymers were limited and related to the steric hindrance o f the mucin 
networks. On the contrary, charged polymers such as polyamidoamines 
(PAMAM) dendrimers exhibited a pH-dependent interaction with the 
mucin molecules. At physiological pH, strong binding with mucin 
molecules was observed for positively charged polymers.

PEGylation is a widely used modification o f molecules, proteins and drug 
delivery systems by covalently attaching one or more polyethylene glycol 
(PEG) chains: in fact, PEG-modification can reduce the toxicity, increase 
the half-life o f drug delivery systems by enhancing their body resistance 
and reducing the plasma clearance. PEGylation o f positively charged 
PAMAM dendrimers reduced their adhesive interaction with the mucin 
molecules, improving greatly the diffusion o f these polymers in mucin 
solutions. After being PEGylated, PEG-PAMAM conjugates can be 
positively considered as model drug carriers.

Although mucin is the main component in mucus, a more complex and 
realistic mucus system was studied by SANS. Mucin solutions were 
enriched with extra components present in mucus, such as phospholipids 
and serum albumin. Hydrophobic lipid-mucin and protein-mucin 
interactions were observed. However, the adhesion of mucus components 
with mucin should be positively considered for the understanding of the 
mucus as a protective barrier and in the improvement o f any treatment for 
the reinforcement of the mucosal barrier.



Die Slowly
He who becomes slave o f habit,
repeating the same paths every day,
he who never changes brands,
does not risk to wear a new colour
and does not talk to whom he doesn't know,
dies slowly.

He who avoids a passion, 
he who prefers black on white 
and dotted "i" to a whirlwind o f emotions, 
the kind that make your eyes glimmer, 
that turn a yawn into a smile,
that make the heart pound in front of the stumbling and the feelings, 
dies slowly.

He who does not overthrow the table when he is unhappy at work, 
he who does not risk the certain for the uncertain to follow a dream, 
he who does not allow himself at least once in his life, 
to flee from sensible advice, 
dies slowly.

He who does not travel, he who does not read, 
he who does not listen to music, 
he who does not find grace in himself, 
dies slowly.

He who destroys his self-esteem, 
he who does not accept somebody’s help, 
dies slowly.

He who spends his days complaining of his bad luck 
or o f the incessant rain, 
dies slowly.

He who abandons a project before starting it,
who does not ask about a subject he does not know
or who does not answer when being asked about something he knows,
dies slowly.

Let’s avoid death in small doses,
remembering always that to be alive requires an effort by far greater than 
the simple fact o f breathing.

Only a burning patience will lead to the attainment o f a splendid 
happiness.

Martha Medeiros
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Chapter 1

Chapter 1. Introduction

Context

The transport o f macromolecular drugs and colloidal drug carriers in- 

vivo requires overcoming major biological barriers between the site of 

initial administration and its action at the target site within the body. Non- 

injectable routes of administration will have to overcome either a mucosal 

epithelial surface or cross the epidermis o f the skin. However, to access 

the mucosal cell surface the influence of a bio-gel, the mucus layer, which 

coats the exposed mucosal epithelial surfaces o f the respiratory and 

intestinal tracts needs to be considered to ensure adequate bioavailability 

o f the therapeutic.

The mucus is a thick and viscous gel which provides protective and 

lubricative functions between the external environment and the cellular 

components o f the epithelial layer. Despite its biological role, the mucus 

will, for some molecules, represent a potential barrier for the 

absorption/transport of macromolecules, for example genes, proteins and 

polymeric drug delivery systems. Furthermore, in some respiratory 

disorders such as cystic fibrosis, the mucus viscosity can be so great as to 

almost totally hinder access of corrective gene delivery systems to the 

underlying epithelium. An understanding of the mobility and/or binding 

o f macromolecules in mucosal systems is fundamental in the development 

o f macromolecule drug delivery systems.

In this chapter, a general introduction to the composition of mucus and 

its physico-chemical characteristics is first given. An analysis of the 

different architectures of macromolecules such as polymers seen as drug 

delivery carriers is then presented. Finally, a section is dedicated to the 

studies already performed on the transport o f macromolecules through 

mucus layer and, consequently, to the aims of this thesis.
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Chapter 1

1.1. The mucus gel and the mucin

1.1.1. The mucus gel

The mucus gel layer is a highly hydrated protein gel which covers 

several epithelial surfaces for example the gastrointestinal, pulmonary, 

oral, nasal and urogenital tracts. Its function and composition differs 

depending on the site of secretion, but a general and fundamental role of 

the mucus is to protect the mucosal tissues from dehydration, mechanical 

stress, foreign particles -  i.e., harmful microorganism, toxic substances. 

Therefore, the mucus coating can represent a potential barrier to the 

efficient delivery of therapeutics to the epithelium and beyond M.

The thickness of the mucus layer depends on its location and it ranges, 

for example, from 7-70 pm in the airways ’ , 50-500 pm in the stomach ’ 

7 and 15-150 pm in the colon 8-11. The thickness of the mucus combined 

with its inherent viscoelasticity are important factors which affect the 

pharmacokinetics of therapeutic agents 12,13. This situation is exacerbated 

by the presence of any disease, such as cystic fibrosis (CF) that results in a 

reduced hydration of mucus and an increase in its viscosity 14, and 

ulcerative colitis (UC) where the mucus layer is extremely thin, almost 

nonexistent15.

1.1.1.1. Composition o f mucus

Mucus is essentially a water-rich bio-gel, the main components being 

water (~ 95%) 16,17, glycoproteins and lipids (0.5-5%), mineral salts (0.5- 

1%) and free proteins (1%) 18,19. An estimation o f the proportion of each 

type of molecules within mucus is given in Table 1.1.
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Constituents Wt% of total weight Wt% of dry mass

Water -9 5

Mucins 5

Lipids 37

Proteins
5

39

DNA 6

Table 1.1 Composition o f  pig gastric mucus ,8’19.

The composition differs slightly depending on the site o f secretion (e.g., 

ocular mucus: protein 29 % w/w [of dry solids], carbohydrate 53 % w/w, 

lipid 12 % w/w; submaxillary gland mucus: protein 31 % w/w, 

carbohydrate 58 % w/w, lipid 11 % w/w)18, the physiological role of the 

mucus layer and the presence of any disease. Apart from water, the main 

component of mucus is the glycoprotein mucin -  with an approximate
1 7concentration of 50 mg/ml -  and it is also the most critical component in 

terms of the physico-chemical properties of the mucus gel 18,2°.

1.1.2. Mucin

As mentioned above, the viscoelastic properties o f the mucus are 

determined by the mucin molecules. Mucin consists of high molecular 

weight (ranging from 0.5 to 20 M g mol'1) O-linked glycoproteins. Even 

though some differences can be found from one mucous barrier to 

another, the chemical composition and the physico-chemical properties 

described below can be considered as representative for all types of mucin.

3
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1.1.2.1. Chemical composition o f the mucin

The chemical composition of the mucin depends on the origin o f the 

sample as well as the physiological conditions o f the host from which the 

sample is taken. Therefore, it can be difficult to determine the exact 

chemical composition o f the mucin. Studies on mucin can be performed 

after purification of a mucus extract with the purification process 

involving several steps during which mucin degradation can occur.

Polypeptide backbone

Mucin monomers comprise glycosylated and non-glycosylated peptide 

blocks linked by intra-moleCular disulphide bridges. The polypeptide 

backbone o f mucin (Table 1.2) contributes to 10-30% of the total weight 

o f the mucin molecule. The polypeptide chain consists o f a large number 

o f repeated units rich in serine, threonine and proline. The presence o f the 

serine and threonine amino acids is fundamental in forming the link 

between the protein backbone and the carbohydrate side chains via their 

hydroxyl group. The high level o f proline is important in determining the 

conformation o f the mucin molecule.

4
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-CO-CH-NH-

R
-R

%  in small 

intestine mucin

% in 

stomach 

mucin

Thr

- CH-OH

c h 3

16.8% 25.3%

Ser -CH2-OH 10.5% 14.2%

Pro y c o 9.8% 17.8%

Glu -CH2-CH2-COOH 8.7% 4.7%

Asp -CH2-COOH 8 .1 % 2.4%

Ala - c h 3 6.5% 1 0 .8 %

Gly -H 7.4% 6.7%

Arg

NH

-(CH2)3-NH-C-NH2

3.1%

2 .1 %

Lys -(CH2)4-NH2 3.3% 4.8%

Cys -CH2-SH 1.5% -

Table 1.2 Amino acids composition o f  the gastrointestinal mucin.

Oligosaccharide side chains

The oligosaccharide side chains are mainly composed of five different 

monosaccharides: galactose, fucose, N-acetylglucosamine, N-

acetylgalactosamine and sialic acid (Figure 1.1). The carboxyl group on 

the sialic acid molecules (pKa ~ 2.6), together with the sulphated sugars 

(pKa ~ 1 ), is responsible of the negative charge on the mucin glycoprotein 

contributing to the low isoelectric point (IEP) of mucin estimated to be 

between 2 and 3 ' . Typically a mucin side chain consists of 2-20

monomers, even though these chains are branched and can exhibit 

heterogeneity in terms of length and complexity 24. They represent more

5
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than 50% of the molecular weight o f the mucin molecule 17, 25. A 

schematic representation o f the mucin molecule is illustrated in Figure 1.2. 

Furthermore, the high degree o f mucin glycosylation provides resistance 

to proteolysis by rendering the peptide core less accessible to enzymatic 

hydrolysis and therefore affording a protective role for the mucus layer in 

mammalian organs3’26.

Fucose

Acetyl-D-Glucosamine

ISIH
C -0
I

c h 3

Acetyi-D-Galactosamine

COOH

V £ r ^ CH~ a cH 20H
NH
C=0
CH3 

Sialic acid

O
— C - C H — N 

OH OH I

? H2

NH
6=0
I

c h 3

O-glycosidic linkage

Figure 1.1 Chemical structures o f the sugar units generally found in

mucin.
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N- and C- terminal endPolypeptide backbone

.  l i t .  Polyuccharide A A Cyrtcine nch-domaim 
side chain V \ f  (hydrophobic patches)

Figure 1,2 Schematic representation o f the mucin molecule. Taken from  

Lafitte G. 27.

Cvsteine-rich domains

Apart from the glycosylated domains, the mucin contains non­

glycosylated regions called ‘naked domains’. They are typically found in 

the N-terminal and C-terminal part of the polypeptide backbone and are 

enriched in cysteine residues. These domains have been shown to be 

involved in the dimerization and eventual mucin polymerization to form 

large mucin supramolecular complexes connected via disulfide bond 

formation 28.

1.1.2.2. Mucin conformation in solution

Since the mucin is a large and complex molecule, it is hard to determine 

its exact conformation. However, despite it being a glycoprotein no 

evidence o f folded structures, such as a-helix and/or p-sheet, is observed 

24. The glycosylated domains o f the mucin tend to interact well with water, 

resulting in an extended random coil conformation for the mucin molecule

7
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24, 29

microns

with a length ranging from a few hundred nanometres up to several
30,31

1.1.23. Mucin association in solution

A general characteristic of polymer solutions is their aggregation which 

depends on the molecular weight of the polymer as well as the 

concentration of the polymer in solution.

For a polymer solution, three regimes can be distinguished: dilute, semi­

dilute and concentrated 32. The concentration at which the polymer coils 

start to overlap is known as the overlap concentration C*. For 

concentrations at less than the overlap concentration -  i.e., c<C* -  each 

polymer molecule can be considered as a single non-interacting chain and 

any interaction between polymer molecules can be neglected. In the semi­

dilute regime, the chain of one polymer is likely to come in contact with 

chains of other polymers, forming a non-connected network. In the 

concentrated regime c » C * , all polymer chains become highly entangled 

and the properties of the system come close to those of a polymer melt. A 

summary of the three regimes described is described in Figure 1.3.

c<C* c>C* c»C ’
Figure 1 3  Dilute, semi-dilute and concentrated regimes in a polymer 

solution.

Since mucin is a high molecular weight molecule, the overlap 

concentration is low (2-4 mg/ml) 33, and at physiological concentration in 

the mucus gel (~ 50 mg/ml) mucin molecules are expected to be highly 

entangled. This type of interaction is also the main type of interaction 

responsible of the viscoelastic properties of concentrated mucin solutions. 

Bhaskar et al. 34 reported viscometry, analytical ultracentrifugation and

8
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dynamic light scattering (DLS) studies that showed a noticeable increase 

in the viscosity and aggregation o f mucin in vitro when the pH was 

lowered from pH 7 to pH 2. Similarly, Hong et al. used atomic force 

microscopy (AFM) to show that mucin aggregates at low pH forming 

clusters o f 10 or fewer molecules at pH 2, and suggesting that 

oligosaccharide side chains are not directly involved in the aggregation 

process. DLS, turbidity and rheo-small angle light scattering (rheo-SALS) 

methods have also shown that mucin solutions tend to aggregate at pH 2
36

The aggregation/gelation behaviour o f mucin is essential, for example, 

in the protection of the stomach from auto-digestion, at the physiological 

gastric pH o f 2. Cao et al. 37'39 studied the pH-dependent conformational 

change o f gastric mucin by DLS and showed that mucin undergoes a 

reversible conformational change from a random coil at pH> 4 to an 

extended conformation at pH< 4, interpreted as a sol-gel transition. At low 

pH, the extended conformation exposes the hydrophobic regions of the 

mucin polymer, leading to a more accessible protein-protein interaction, 

which increases the viscosity. Pig gastric mucin (PGM) gelatination 

involves interactions between aspartic acid and glutamic acid residues 

(pKa ~ 4) from the non-glycosylated side chains o f the molecule. At 

pH>4, salt bridges between negatively charged carboxylate side chains 

and positively charged amine groups in the non-glycosylated regions 

induce a random coil that results in the hydrophobic domains becoming 

folded and hidden. At pH<4, the carboxylate groups o f the salt bridges 

become protonated and mucin unfolds, exposing the hydrophobic and 

promoting a more extended conformation 20. A model showing the 

conformational change o f the mucin with the pH is illustrated in Figure

1.4.

9
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Random Coil AspAilu
„ u k n -

hytlrophohiiruniMRi cuil 
n  inhuman, m

Decrease pH

hyUrophtihic

worm-like
cunlornMUun

increased
ctaiLViUiuikin

hydn*phohH: 
ili mi.mis

Hydrophobic junction Zone

Figure 1.4 A model showing how the electrostatic interactions at pH  < 4 

can produce a conformational change from a random coil to a rod, 

leading to gelation. Taken from Bansil R. 20.

1.1.2.4. Physico-chemical properties o f the mucin

As mentioned earlier, the presence of sialic acid molecules in the 

carbohydrate side chains makes the mucin a highly negatively charged 

polymer. However, the glutamic acid and aspartic acid in the protein core 

as well as the sulphate groups on the side chains contribute also to the 

negative charge of the mucin molecule. Considering an isoeletric point 

(IEP) between 2 and 3, the mucin molecule can be assumed to be fully 

charged at a pH above 2.6, which is the pKa of sialic acid. Thus, the 

mucin is fully charged at pH 7 and the degree of negative charge decreases 

with decreasing pH. From a physiological point of view, this means that 

the charge of mucin changes from being fully charged at physiological pH 

(~ pH 7.4) to weakly positively charged at the low pH (pH 1-2) in the 

gastric tract.

10
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Another important aspect from a physico-chemical point o f view is the 

presence of hydrophobic patches in the mucin molecule. Even though 

most hydrophobic groups belong to the polypeptide backbone and in 

particular to the cysteine-rich domains, some functional groups in the 

oligosaccharide side chains -  for example, the fucose -  can have similar 

properties: in fact, the methyl group at the equatorial position in the fucose 

molecule (Figure 1.1) confers some hydrophobicity to that specific region 

of the molecule 40.

The rheological properties of mucin are mainly determined by the 

intermolecular disulfide bridges between the polypeptide backbones in 

mucin molecules, responsible of the mucin gel-network formation. This 

makes the mucin a viscoelastic gel. However, mucin molecules are 

differently able to form intermolecular disulfide bridges, probably due to a 

different chemical composition and arrangement o f the amino acids on the 

peptide backbone. Therefore, some molecules are able to form viscoelastic 

gels while others can only form loose gels 17.

Summarizing the physico-chemical properties of mucin as hydrophobic 

patches, negative charges and disulfide bridges, it is easy to understand 

why mucin molecules have been compared to hydrophobically modified 

polyelectrolytes 24. Similarly to polyelectrolytes, mucin molecules are 

subjected to structural changes when changing the external conditions and 

they are also able to form a loose, highly solvated, and greatly expanded 

structure.

1.1.3. Advantages and limitations o f using commercial mucin compared 

to 'real’mucus

Mucin can be easily purchased from Sigma Aldrich in the form of dried 

porcine gastric mucin (PGM), from which mucin solutions can be readily 

made up. Commercial porcine gastric mucin is widely used in several 

mucin-related studies 41-43 since: (i) it is quite well representative of the 

mucin present in ‘real’ mucus; (ii) it does not require all the extraction and 

purification processes of the mucin extracted from fresh mucus samples.

11
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Indeed, the purification of pig gastric mucin from fresh mucus involves 

several steps: (i) collection of the mucus after gently scraping the surface 

o f the stomachs of freshly slaughtered pigs; (ii) purification o f mucin 

samples through exhaustive dialysis, high-speed centrifugation and 

isopycnic density-gradient centrifugation.

Although all the advantages in using commercial pig gastric mucin (i.e.: 

avoiding long and tedious purification processes), it has been found that 

the gel properties of the commercial mucin cannot reproduce those 

observed in-vivo, as demonstrated by rheological studies performed by 

Kocevar-Nared et al. 44. The rheological investigation o f rehydrated dried 

Sigma porcine gastric mucin and natural pig gastric mucus demonstrated 

that after rehydration o f Sigma mucin, a model mucus system with 

rheological properties equivalent to fresh isolated natural mucus cannot be 

obtained. Obviously, the isolation procedure o f commercial mucin 

changes the physico-chemical properties of the PGM. The commercial 

mucin is highly degraded: in fact, the extraction and purification processes 

damage the disulfide bridges in the cysteine-rich domain, leading to a lack 

o f gel formation and, therefore, to a much weaker sol-gel transition around 

pH 4. Nevertheless, the protein backbone and the carbohydrate side-chains 

appear to be unchanged during the purification process.

Therefore, commercial PGM can then be regarded as an interesting 

material to study the mobility through, and interactions with, mucin 

solutions o f other molecules, while investigation o f the mucin gel 

properties should be carried out on mucin purified from fresh natural 

mucus.
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1.2. Polymer architecture and drug delivery

1.2.1. Use o f water-soluble polymers to promote targeting and delivery 

o f therapeutic agents

A  successful drug delivery system should be able to traverse several 

physicochemical and biological barriers en-route to the site of action and 

provide for a sufficient uptake of the active therapeutic. The interface of 

polymer chemistry and biomedical science has given birth to nano-sized 

(5-100 nm) polymer-based pharmaceuticals, which have been termed 

‘polymer therapeutics’ 45. The term ‘polymer therapeutics’ is used to 

describe polymeric drugs 46, polymer-drug conjugates 47 and polymer- 

protein conjugates 48, 49, drug entrapment in polymer micelles 50 and 

polymeric multicomponents polyplexes used as non-viral vectors 51. A 

schematic diagram of polymer therapeutics is illustrated in Figure 1.5.

In polymer-drug systems, the polymer is seen as a physical carrier for 

low-molecular-weight drugs to improve their tissue targeting specificity. 

Polymer and drug can be, for example, coupled via biodegradable linkers 

that release the drug at the target site upon exposure to a given biological 

stimuli. In polymer-protein conjugates -  e.g., PEGylation -  the polymer 

may also increase protein solubility and stability, reduce protein 

immunogenicity and prolong plasma half-life.

The polymer, as a delivery vehicle, must b e 52:

>  Biocompatible, non-toxic, non-immunogenic and non-pathogenic

>  Able to carry and protect the payload from degradation

>  Stable

>  Able to:

- target the appropriate cell type

- avoid the accumulation in the liver

- release the therapeutic agent at the target site

>  Easy to administer

>  Inexpensive to synthesize and purify

13
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Advances in polymer chemistry have allowed the synthesis o f  polymers 

with specific chemical structure. These structures can go from simple 

linear polymers to highly branched dendrimers 53 and they can be designed 

to have well defined physical and chemical properties, as well as three- 

dimensional structure in the case o f  dendrimers.

a  Polymeric drug or sequestrant b Polymer-protein conjugate C Polyplex: polymer-DNA complex

Hydrophilic
block
DMA

Cationic
block

Mw = 6-40.000 Da ~20r»m 40-60 nm

d  Polymer-drug conjugate *  Polymeric micelle

Targeting residue

5-16 nm

Figure 1.5 Schematic representation o f polymer therapeutics. Taken from  

Duncan R. 45.

1.2.2. Polymer architecture

For a controlled release formulation and a drug-targeting system, 

polymeric materials, including natural, semi-natural and synthetic 

polymers, provide several opportunities to modulate the properties o f drug 

delivery systems. Any polymer selected for drug delivery formulations is 

usually classified according to (i) chemical nature (such as polyester, 

polyanhydride), (ii) backbone stability (biodegradable, non- 

biodegradable), (iii) and water solubility (hydrophobic, hydrophilic) 54.

60-100 nm
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Polymer architectures relevant to drug delivery application are presented 

in Figure 1.6 . Linear polymers considered are water-soluble polymers to 

create polymer-drug conjugates. Branched polymers are characterized by 

the presence of branch points. Some studies have revealed that branched 

polymers have significantly different physical properties from linear 

polymers and polymer networks, such as melt rheology, mechanical 

behaviour, and solution properties 55. Although undesirable branching can 

occur in several polymerization reactions, branches in branched polymers 

should be preferably prepared via controlled polymerization techniques. 

Most o f the cross-linked polymers, including the interpenetrating polymer 

networks (IPN), involve chemical cross-linking techniques to form drug 

delivery systems which go beyond nanoscale in size. Therefore, they will 

not be considered in the following descriptions.
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a. Linear Polymers

oooooooooooooooo
homopolymer

M M M M O O O O O O O O  

AB-type diblock copolymer

b. Branched Polymers

hyper-branched polymer

star-shaped polymer

dend rimer

c. Cross-linked Polymers

polymer network

interpenetrating polymer network (IPN)

Figure 1,6 Polymer architecture: (a) linear polymers, (h) branched 

polymers, and (c) cross-linked polymers. Adaptedfrom Qui L. Y. 53.
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Linear water-soluble polymers

Linear polymers present the simplest architecture form. Two are the 

main advantages that have been specially noted: (i) the formation of 

random coil structures of 5-15 nm in size in good solvents depending on 

molecular weight and polymer-solvent interactions; (ii) a tailored 

multivalency achieved by introducing functional groups along the polymer 

backbone, typically used as centres for polymer-drug conjugations.

Polymers frequently used for drug carriers include vinyl polymers, 

polysaccharides, poly(amino acids), proteins and poly(ethylene glycol) 

(PEG) 54,56. Poly(iV-vinylpyrrolidone) (PVP) with an active group on one 

chain end introduced during polymerization can conjugate with certain 

drugs (e.g.,/?tfra-nitroaniline) to increase drug solubility and stability 57‘59. 

The functional side groups o f poly(amino acids), such as poly(L-lysine), 

poly(L-glutamic acid), and poly[(7V-hydroxyalkyl) glutamine], can be also 

coupled with drug molecules 60. These polymers have the disadvantage to 

have complicated chemical compositions, which make it difficult to 

characterize the product. Polysaccharides, such as dextran, alginate, 

chitosan, have been well used because o f their good compatibility as 

natural polymers and their possibility of drug conjugation through their 

functional side groups 61_63. PEG has been widely used to modify several 

therapeutic proteins (PEGylation of a protein) by enhancing their stability, 

plasma half-life, and reducing their immunogenicity in vivo 64'66. 

PEGylation has been able to improve the low solubility of small drugs.

Branched polymers

A general problem encountered with linear polymers is the low loading 

of these polymers: a PEG chain, for instance, possess only one or two 

hydroxyl terminal groups that can be activated. To overcome this 

limitation, branched and dendritic polymer structures have been 

considered.
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A typical example of branched polymer used in drug delivery is 

polyethylenimmine (PEI). This hyper-branched polymer possesses 

primary, secondary and tertiary charged amino groups. Therefore, it can 

work as a cationic polyelectrolyte which can strongly attract anionically 

charged organic and inorganic materials, colloids and surfaces: in fact, PEI 

is widely involved in the applications for anionic DNA delivery.

Star polymers have a three-dimensional hyper-branched structure where 

linear arms radiate from a central core. The most significant advantage for 

star polymer-shape unimolecular micelles is the higher stability when 

compared with micelles formed from amphiphilic molecules because these 

unimolecular micelles have covalently fixed branching points.

Another class of polymers possessing a three-dimensional structure are 

represented by the dendrimers, where a series of layered branches 

regularly extend from a central core 67’68. A typical dendrimer comprises 

three main structural components: a multifunctional central core, branched 

units and surface groups. The repeated layers are called “generations”. 

Compared to linear polymers, dendrimer polymers architecture can be 

favourably used for drug delivery applications. The internal cavity o f the 

dendrimer provides a location for non-covalent encapsulation of 

hydrophobic drugs and possibly controls the release afterwards. 

Furthermore, the controlled multivalency of dendrimers can be used to 

attach combination of drug molecules and targeting groups in a well- 

defined way. Dendrimers are usually low polydiperse which should 

provide a more reproducible pharmacokinetic behaviour. Like the star 

polymers, dendrimers are more stable when compared to polymeric 

micelles at any concentration because they are unimolecular covalently 

bound micelles and they do not dissociate. It has been studied 69,70 that the 

generation o f dendrimers also affects the drug release. For 

polyamidoamines (PAMAM) dendrimers, an increase in generation means 

a transform from a flexible (GO-3) to semi-rigid container-type structure 

(G4-6). Obviously, dendrimers with larger generation show longer
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retention in drug release because with increased generation the structure 

becomes more compact.

1.3. Diffusion and permeability o f macromolecules through 

mucus

The mucus is a thick and viscous gel. Its physicochemical properties, 

afford bio-adhesion which has been extensively used to promote localised 

delivery. Mucoadhesive drug delivery systems require an interaction 

between the mucus and the drug delivery device 71'73 which results then in: 

(i) a prolonged residence time o f the delivery system, (ii) a localization of 

the delivery device at a specific target site, and (iii) an increase in the drug 

concentration gradient 8’ 74, 75. Despite the value o f bio-adhesion in 

promoting localised delivery, the focus o f this thesis is on quantifying the 

mobility and permeability o f macromolecules (polymers, nano-sized drug 

delivery constructs) through the mucosal layer and to develop an 

understanding how molecular interactions affect the pharmacokinetics.

Many studies have considered the ability of macromolecules to diffuse 

within the mucosal network using a range of different techniques, 

including multiple-particle tracking (MPT), diffusion chamber system and 

fluorescence recovery after photobleaching (FRAP). An overview of these 

techniques will be given together with their findings on the mobility of 

nano-sized drug delivery constructs in bio-gels.

1.3.1. Multiple particle tracking (MPT)

Multiple-particle tracking (MPT) is a well established technology which 

can be used to study the diffusion of particles through biological 

environments. In this method, the microscopic motion of hundreds of 

particles is recorded by video microscopy. The kind o f information that 

can be extracted from the analysis of time-resolved particle trajectories are 

both quantitative (diffusion coefficients related to the mobility of the 

particle) and qualitative (direction and transport mode). Data thus obtained 

can provide direct and indirect information about particle-environment
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interactions and it can be easily applied to study the effect of intracellular 

(e.g., cell cytoplasm)76 and extra-cellular media (e.g., mucus) 11.

MPT has been applied to study the diffusion o f uniform polystyrene 

(PS) particles o f various diameters (100, 200 and 500 nm) in cystic 

fibrosis mucus. Smaller particles showed a greater transport rate compared 

with larger particles, revealing their more facile mobility within pores 

formed in the cystic fibrosis mucus network 13, 76. Similarly, Lai et al. 78 

found that larger polystyrene nanoparticles (500 and 200 nm in diameter), 

when coated with poly(ethylene glycol), diffuse faster through cervico- 

vaginal mucus compared to smaller 100 nm coated particles. These same 

workers showed that PEGylation not only reduced obstruction for larger 

PEG-PS (200 and 500 nm) but also increased the homogeneity of transport 

compared with similar sized PS particles.
70Furthermore, Dawson et al. investigated the transport rates in mucus of 

cationic nanoparticles made from poly(D,L-lactic-co-glycolic) acid 

(PLGA) and the cationic surfactant dimethyldioctadecylammonium 

bromide (DDAB) coated with DNA (PLGA-DDAB/DNA) as potential 

nanoparticle gene carriers. Their results showed that transport rates of 

PLGA-DDAB/DNA nanoparticles in mucus were higher than that of the 

slightly smaller PS nanoparticles because the DNA coating makes the 

PLGA-DDAB/DNA nanoparticles moderately hydrophilic when 

compared to PS nanoparticles, allowing a greater mobility within the 

relatively hydrophobic mucus media.

1.3.2. Diffusion chamber system

The diffusion chamber is somewhat dated but is still used to study 

diffusion o f particles through bio-gels. It involves the vertical mounting of 

two chambers, one donor and one receiver, either side o f a mucus or gel 

solution as shown in Figure 1.6. The donor compartment is filled with the 

drug delivery system (DDS) under investigation, while the receiver is 

filled with the buffer solution of the same composition but without the 

DDS. Diffusion rates o f the drug or DDS through the mucus are calculated
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by measuring the change in drug concentration in serial samples removed 

from donor, receiver or both compartments as a function o f time. The 

advantages of this method are its simplicity and the fact that the mucus 

composition can be changed or altered, simulating several disease states or 

physiological situations. Disadvantages include the need for lengthy 

experiments (usually several hours) and that during this period, native 

mucus with its endogenous proteolytic enzymes can degrade the mucus 

glycoproteins 18.

N2

(bio)gcl between 
two membranes

m

Figure 1.6 Schematic representation o f a model diffusion chamber system. 

Donor compartment (I) is filled with drug and the acceptor compartment 

(III) with buffer. A thin layer o f a bio-gel (II) is placed between the two 

compartments and hold between two membranes. Taken from Sanders 
N.N.

10 QA
Sanders et al. ’ studied the transport of fluorescently labelled

polystyrene particles (with size comparable to that of some transfection

systems for cystic fibrosis gene therapy) through a 220 pm thick cystic
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fibrosis mucus layer with a vertical diffusion chamber system. It was 

found that the largest PS nanospheres (560 nm) were sterically obstructed 

by the mucus network, while the smaller nanospheres (124 nm) were 

retarded only by a factor o f 1.3 when compared with buffer.

The diffusion of a selection of drugs, such as isoniazid, pentamidine, 

rifampicin, /^-aminosalicylic acid and pyrazinamide (which can be all 

potentially delivered as pulmonary aerosols) through mucin has been 

carried out by Bhat et al. 81, 82. They showed that the mucus layer 

presented an additional diffusional barrier to the drugs of 50-57% of the 

total observed resistance, the latter due to a combination of factors 

including protein binding, viscosity and physical obstruction. When the 

mucus was replaced with different cystic fibrosis mucus solutions, there 

was a 28-75% decrease in drug permeability 83, indicating that significant 

decreases in drug transport rate occur when crossing cystic fibrosis mucus 

and that these could play an important role in reduced pulmonary 

bioavailability.

Similarly, Desai et a l 84’ 85 investigated the diffusion through mucus 

gel of a range of solutes with various molecular weights (126 < Mw < 

14,400 g m o l1) and physical properties, including phloroglucinol, 5- 

hydroxy-L-tryptophan, P-nicotinamide adenine dinucleotide (NAD) and 

ribonucleic acid (RNA). This study showed, for all solutes studied, a 

retardation of solute flux in mucus by a factor o f at least two when 

compared to the diffusion of the same solute in aqueous solutions. The 

limitations o f the diffusion chamber methodology centre on the risk of 

artefacts arising from practical difficulties, principally the inability to 

control the layer of bio-gel and its propensity to obstruct the filters, 

reducing the apparent diffusion coefficient.

1.3.3. Fluorescence recovery after photobleaching (FRAP)

Many studies have used fluorescence recovery after photobleaching 

(FRAP) to investigate the mobility of a range o f solutes in sub-cellular 

compartments. Besides this application, FRAP has also been used to study
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the mobility of molecules in extracellular matrices such as mucus and 

related bio-gels. In a FRAP experiment, one component in a multi- 

component system is selectively fluorescently labelled. The sample is 

placed on a microscope and a high intensity laser beam is rastered across 

the sample, bleaching the fluorescence of the labelled molecules, causing a 

drop in the fluorescence intensity. Diffusion o f the non-bleached 

molecules into the area previously bleached results in recovery of the 

fluorescence intensity, Figure 1.7. The diffusion coefficient is then 

obtained by fitting the curve of the recovery profile

M )  f=0 cc

Time

Figure 1,7 Schematic representation o f a FRAP experiment. Before 

bleaching, the initial fluorescence is recorded as F(i). At t = 0, a high 

intensity light beam bleaches the molecules causing a drop in fluorescence 

to F(0). Due to the random motion/diffusion, the bleached molecules will 
exchange their position in the bleached area with non bleached 

fluorescent molecules from the surrounding. This results in a recovery o f 

the observed fluorescence. The characteristic diffusion time ( t d )  is 

indicated as the time at which half o f the fluorescence has recovered. 
Taken from Meyvis T. K. L. 86.

The diffusion of polystyrene microspheres (59-1000 nm) viruses, and 

artificial virus-like particles derived from the capsid layers of human
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papilloma virus HPV (55 nm, ~ 20,000 g mol-1) and Norwalk virus (38 

nm, ~ 10,000 g mol'1) in fresh human cervical mucus were quantified 

using FRAP 87. When compared to virus-like particles of similar size, the 

PS microspheres were bound more tightly to the mucin fibres. Even the 

smallest microspheres (59nm) showed no detectable diffusion by FRAP.

FRAP was also used by Afdhal et al. to examine the influence o f mucin
OQ

in the aggregation of cholesterol enriched vesicles . An increase in the 

vesicle size (calculated from the diffusion coefficients measured by 

FRAP) was explained by binding o f the vesicles to the mucin, suggesting 

that both glycosylated and non-glycosylated domains of the mucin are 

involved in the interaction even though the effect is reversible in the 

absence o f non-glycosylated domains.

1.4. Aims and overview of the studies in this thesis

The overall aim of this thesis was to exploit the technologies of small- 

angle neutron scattering (SANS) and pulsed-gradient spin-echo nuclear 

magnetic resonance (PGSE-NMR) to reveal physicochemical interaction 

of mucin with polymer-based DDS.

Using SANS, conformation o f the mucin molecule in solution was 

determined. The behaviour o f mucin in solution was studied as function of 

the concentration, pH, ionic strength and in the presence of TV-Acetyl-L- 

cysteine (NAC) as mucolytic agent (Chapter 4). The conformation of 

mucin in solution was described by mathematical scattering models.

The mobility through, and interactions with, mucin solutions of model 

polymer DDS were then studied. SANS was able to detect the 

influence/perturbation o f the polymeric DDS on the scattering from 

mucin. PGSE-NMR was used to investigate the diffusion through mucin 

solution o f the polymeric DDS. Theories relative to these techniques are 

explained in Chapter 3.

Non-ionic/cationic/anionic polymeric DDS with different structures 

(linear, branched, dendritic) were then considered and the influence of
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their electrical charge and structure upon mobility through, and 

interactions with, mucin solutions studied by SANS and PGSE-NMR 

(Chapter 5).

The effect of covalently linking polyethylene glycol (PEG) chains to 

polymers exhibit binding towards mucin molecules was then explored. 

PEG is widely used for the modification (PEGylation) of interactive 

molecules. The synthesis of these conjugates with different degrees of 

PEGylation (from 10% to 100%) was performed. The effect of these PEG- 

modified polymers on mucin solutions were explored by PGSE-NMR and 

SANS (Chapter 6).

Finally, a more complex mucus model was studied comprising 

phospholipids and serum albumin. SANS was used to investigate the 

conformation o f this more complex model (Chapter 7).
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Chapter 2. Theory and techniques

T h isch ap ter presents some o f  the theoretical aspects o f  the major 

techniques used for foe studies presented in this thesis: pulsed-gradient 

spin>echo nuclear magnetic resonance (PGSE-NMR), small-angle neutron 

scattering (SANS) and viscosimetry. In particular, it focuses on those 

aspects relevant to foe data analysis showed in foe subsequent chapters. 

M ore detailed theoretical aspects can be found in foe Appendix.

2.1. Pulsed-Gradient Spin-Echo NMR (PGSE-NMR)

2.1.1. Introduction

Like all nuclear magnetic resonance (NMR) techniques, foe pulsed- 

gradient spin-echo NMR (PGSE-NMR) offers a numbers o f  advantages 

when applied to  multi-component or heterogeneous systems: it is non- 

invasive, non-destructive but most importantly foe chemical specificity o f  

NM R enables the behaviour o f  each component within the mixture to be 

identified and analysed in a single experiment. This powerful technique 

provides information on the self-diffusion coefficient o f  the species under

investigation which is determined by foe structure o f  foe condensed matter
l

2.1.2. Self-diffusion and self-diffusion coefficient

Diffusion, as a translational mass transfer process, is manifest as 

physical (permeation o f  fluids through porous adsorbents such as oil 

reservoir rocks), chemical (properties o f  ordered fluids such as liquid 

crystals) o r biological (circulation o f  body fluids), and spans a very wide 

range o f  tim escales2.

W hen external forces are applied such as electric fields or other 

gradients {e g.: concentration, temperature, pressure), the diffusion process 

is said to be directed. In the absence o f  these external forces, foe 

displacements o f  the particles result from their internal thermal agitation.
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The process is know n as self-diffusion and is defined as the random  

translational m otion ( ‘random  w alk’) o f  the particles driven by their 

internal kinetic energy. Figure 2.1 illustrates the random  walk o f  a particle 

betw een tim e x = 0 and x = t due to its self-diffusion.

Figure 2.1 Illustration o f  the random walk o f  a particle resulting from its 

thermal motion -  i.e., self-diffusion.

The trajectory o f  a particle experiencing a Brownian w alk in a three 

dim ensional space is param eterized by  its self-diffusion coefficient, Ds, 

given by  the E instein-Sm oluchow sky equation (Eq. 2.1):

diffusion tim e A t ,  the angular brackets signifying an average 3.

For solutions with low  viscosity, the d isplacem ent o f  a particle due to 

the diffusion corresponds to a self-diffusion coefficient Ds o f  the order o f

Position at time 
r = t

Initial position at 
T = 0

X

6A r
Eq. 2.1

w here is the m ean square displacem ent o f  the particle over a

Q 10 0 1
10' -10 ' m s' . For highly  viscous liquids, the m obility  o f  the particle 

can be significantly retarded by  several order o f  m agnitudes 4. The self- 

diffusion coefficient provides also inform ation about the size and shape o f
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the species o f  interest. The diffusion o f  a molecule is closely related to its 

molecular size, as shown by the Stokes-Einstein equation (Eq. 2.2) l:

where kB is the Boltzmann’s constant, T  represents the absolute 

temperature and /  is the frictional factor. For a spherical particle with 

hydrodynamic radius Rh and viscosity //, the frictional factor is given by 

the Eq. 2.3:

By combining the equations Eq. 2.2 and Eq. 2.3, the self-diffusion

However, the Stokes-Einstein equation is valid only under ideal 

conditions in which diffusing species sees the solvent as a continuum and 

that the diffusing species are essentially at infinitive dilution (i.e., 

interactions between diffusing species can be ignored). Despite its 

limitations, the Stoke-Einstein equation provides a useful and intuitive 

framework for the interpretation o f the diffusion d a ta 5.

In the case o f  a polymer in a dilute solution, the polymer molecules can 

be considered greatly separated, so that they do not interact with each 

other, but only with the solvent. In some cases, the solvent will expand the 

polymer chain in the solution: such solvent is referred as ‘good’ solvent. 

In other cases the solvent and polymer will not strongly interact, and the 

polymer chain will fold back on itself in order to minimize its contacts 

with the solvent, giving rise to a small globular conformation: such solvent 

is called ‘poor’ solvent.

kBT Eq. 2.2
/

f  = 6 m}Rh Eq. 2.3

coefficient is expressed by the familiar Stokes-Einstein relation (Eq. 2.4) :

Eq. 2.4
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Between these two extreme situations, the polymer and the solvent can 

interact just enough so that the polymer chain is randomly distributed. 

This limit o f a ‘random coil’ o f a polymer is conventionally chosen as the 

‘ideal’ polymer solution, and a solvent showing these characteristics is 

called ‘theta’ (&) solvent. Under these conditions, the diffusion o f the 

polymer can be calculated as a correction o f the Stoke-Einstein equation:

D, = k‘T E q . 2.5
6 mjR'

where Re is the equivalent radius o f the polymer. This radius is calculated 

to be

Re =0.676(/?2) '/2 Eq. 2.6

/  2 \ 1 /2in which (R ) is the root-mean-square radius o f gyration, the common

measure o f  the size o f the polymer molecule in solution.

In ‘good’ solvents and ‘poor’ solvents, the diffusion coefficient still is 

estimated from the Stoke-Einstein equation, but the relation between the 

equivalent radius Re and the root-mean-square radius (R) seems less well 

known 6.

The self-diffusion process can be quantified by PGSE-NMR to provide 

the measurement o f the self-diffusion coefficient o f the species 

investigated. Before analyzing in more details the theory behind the 

PGSE-NMR technique, a summary o f  the basis o f  NMR is given.

2.1.3. Measuring diffusion with magnetic field  gradients

The basis o f all diffusion NMR measurements is spatially resolved NMR 

achieved by superimposing pulsed magnetic field gradients on the static 

magnetic field. Therefore, the central feature o f  a diffusion NMR 

experiment is a spatially varying magnetic field produced by the 

application o f  a magnetic field gradient G(r) that encodes into the NMR
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signal (via the frequency, co) the position o f  the molecule, r, as shown by 

Eq. 2.7:

B(r) = Bq + yG{r) E q .2 .7

where B(r) is the effective field at the position r, Bo the static field strength 

and y the gyromagnetic ratio, constant for a particular nucleus.

Therefore, the addition o f  magnetic field gradients in the z-axis to the 

external magnetic field Bo affects the frequency o f  a nucleus such as

G>#=G>o+l<j(r) E q .2 .8

The Larmor frequency o f  the nucleus becomes a spatial label with 

respect to the direction o f  the gradient because any nucleus changing its 

location will have a Larmor frequency varied. This frequency change is 

observed in a spin-echo (SE) experiment 4. More detailed aspects on the 

basics o f  NMR and the pulse programmes can be found in the Appendix 

A.

2.1.4. Calculating the self-diffusion coefficient

The spin-echo recorded in the PGSE experiment can be Fourier 

transformed to get the spectrum. The spectrum obtained presents all the 

peaks belonging to the different components in the system: the peak 

intensities decay differently. Therefore, the self-diffusion coefficients o f 

several species present in a multi-component system can be measured 

simultaneously from their attenuation functions, as illustrated in Figure 

2.2.
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1000015000
T r a ce#  Frequency channel

Figure 2,2 Attenuation decays o f peaks belonging to various species in a 

multi-component system.

The w ell-established procedure for extracting the self-diffusion 

coefficient, Ds, quantifying the Brownian m otion o f  a specie in a com plex 

N M R dataset is to isolate a peak assignable in an unam biguous m anner to 

one o f  the com ponents, extract the peak height or integral and fit the signal 

decay to Equation 2.9:

A(S, g,A) = Ao [exp- (*DS J E q . 2.9

where A is the peak am plitude in the absence (A0) or presence o f  the field 

gradient pulses o f  duration 6\ ram p tim e cr, intensity  G and diffusion tim e 

A; p  characterize the polydispersity o f  that com ponent: it m ay assum e 

values betw een 0 and 1, the latter o f  which is related to the m onodipserse 

case.

Being y the gyrom agnetic ratio o f  the nucleus probed, k is given by Eq. 

2 .10:
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2/~<2k = - y  G 30A(<S + cr)2 ~(lO<?3 + 30 0 8 2 + 35cr2<S + 14<93) 
30

Eq. 2.10

The self-diffusion coefficients are obtained from Eq. 2.9. By plotting the 

attenuation functions versus k, it is possible to determine the self-diffusion 

coefficient, Ds.

In the case o f a biexponential decay (i.e., when there are two different 

species diffusing in the same sample), the Eq. 2.11 becomes:

M S, g, A) = A0  [exp- (kDsX )^‘ +exp(-fcDs2/ 2] Eq.2 .11

where Dsj and DS2 are the self-diffusion coefficients o f  the two molecules 

in the sample, with one usually diffusing faster than the other; pi and p2 

characterize the polydispersity o f the two components.

Attenuation functions o f  polymers in solution displaying a monodisperse, 

biexponential and polydisperse behaviour are illustrated in Figure 2.3.

Attenuation Attenuation Attenuation
1

0.1

ai

1e+60 0

1

0.1

k/cm’^s k/cmJs k/an

(a) (b) (c)

Figure 2,3 Attenuation functions arising from the integral o f a simple 

polymer in solution and in a polymer blend showing (a) monodisperse, (b) 

bi-exponential and (c) polydisperse behaviour.
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2.1.5. Protocols fo r quantifying self-diffusion coefficients

The method to calculate the self-diffusion coefficient just discussed 

involves measuring the integral o f  a characteristic peak arising from the 

molecule o f  interest and fitting die exponential attenuation o f  this signal. 

However, there are various analysis protocols for quantifying the self­

diffusion coefficient. More elaborate protocols also exist where a priori 

information is used to further refine the analysis by constraining input 

parameters to known spectra or to the known number o f  diffusion 

coefficients.

A protocol commonly employed is the DOSY (Diffusion Ordered 

SpectroscopY) NMR approach. This method is normally based on routines 

developed by Provencher et al. 1 (i.e., CONTIN). After some interpolation 

and smoothing, the combined results are displayed in a two-dimensional 

(2D) representation o f  the diffusion coefficients versus spectral 

characteristics8.

This is a particularly powerful approach i f  one is interested in editing or 

resolving spectra based on diffusion rates since discriminates between 

chemical compounds both on the basis o f  their chemical shifts and 

diffusion coefficients. However, one o f  the limits o f  this method is the 

smoothing feature broadens all o f  the peaks and even the monodisperse 

components show significant linewidths.

Another approach, which is found o f  particular use in studies on 

complex systems, is called CORE-NMR (Component Resolved NMR 

spectroscopy). Complex systems in these aspects are systems in which, for 

example, the signal from different compounds are overlapping and/or the 

echo decays are multiexponential (i.e., studies on aggregation and/or 

binding in polymer solutions).

In CORE-NMR applications, usually the number o f  components in the 

sample are known beforehand and also i f  one or more component are 

likely to show polydispersity behaviour. CORE permits the selection o f 

significant frequency channels and to mask out unwanted regions. CORE
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evaluates the experimental data in two dimensions by a global least- 

squares fit, yielding estimations o f  the diffusion coefficients for each 

species in the sample. The output data include the fitted parameters o f the 

optimized model, the global fit and the global difference map.

CORE processing is well applied in data evaluation o f  PGSE-NMR data 

sets for very complex systems. It is used to solve or improve estimation 

problems originating from poor signal/noise or overlapping bandshapes 9.
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2.2. Small-angle neutron scattering (SANS)

2.2.1. Introduction

When investigating relationships between physical properties and 

molecular structure, the determination o f  molecular organization within 

colloidal systems is fundamental. Small-angle neutron scattering is a 

powerful technique providing useful information on molecular size, shape 

and structure o f colloidal systems. SANS belongs to a wider range o f 

small-angle scattering techniques, which also includes small-angle light 

scattering (SALS), small-angle X-ray scattering (SAXS), etc. All these 

techniques are based on the interaction occurring between the incident 

radiations (neutrons, light, X-rays) and the particles present in the system 

under investigation.

One o f the differences in the three small-angle scattering methods is the 

nature o f the radiation, which has a fundamental impact on the actual 

length scale that can be probed as well as the kind o f system that can be 

analysed. Typical colloidal systems {i.e., micelles, microemulsions, 

microgels) lay in a size range o f 10-10,000 A; comparable wavelengths, X, 

are needed to probe these systems and obtain information about the size, 

the shape and interactions between the different components p resen tI0.

Light and X-rays are both electromagnetic radiation and interact with the 

electron cloud surrounding the atomic nuclei. SALS, with a wavelength 

range o f  4000-8000 A, is mostly used for the characterization o f larger 

colloidal particles even though it cannot be used for optically opaque 

samples. Smaller systems with a size order o f  100 A can be probed by 

SAXS (X = 0.5-2.3 A) although the high energy o f the X-ray photons can 

damage more sensitive and delicate samples such as biological ones.

Neutron radiation wavelengths, typically comprising between 0.1-30 A, 
can be used to investigate sizes in the range o f  10-1000 A. As the energy 

o f a neutron is lower than that o f the X-ray photon for a comparable 

wavelength, neutrons provide a non-invasive and non-destructive method
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to study colloidal systems. Moreover, neutrons are scattered by the nuclei 

o f the atoms and not by the electron cloud, which has important 

implications on the way neutrons/X-rays interact with the nuclei o f various 

atoms (Figure 2.4). Therefore, SANS can discriminate different isotopes 

o f a given element, the most used example being the Hydrogen -  

Deuterium contrast, allowing an experimental approach called ‘contrast 

variation’ (for further details see the Appendix B).

ATOMS SEEN BY X-RAYS

o o  o  o  o  O
81 Cl T l

H-1

O0*2

NUCLEI SEEN BY NEUTRONS

o O o Q  •
C O S i >*— s  /-v
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u

Figure 2,4 Schematic diagram o f the neutron interaction with atoms o f 

various elements (nuclei dependant) compared to the X-rays interaction 

(electron cloud dependant). Negative neutron scattering length are 

represented in dark. Taken from Hammouda B . u .

2.2.2. SANS instrument

In a SANS experiment, the neutron beam is scattered by the sample and 

the intensity, I(Q), o f  the scattered beam at the angle 0 is measured. Figure 

2.5 shows a schematic view o f the scattering geometry, where the detector 

is placed at a distance L from the sample and the scattered beam is
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m easured at a radial distance R<|. A m ore extended explanation on neutron 

production and scattering theory can be found in the A ppendix B.

Detector 
Sample

Incident 
neutron beam

Figure 2.5 Schematic representation o f  the SANS experiment. Usually, 

lm<L<20m and 6<10°.

2.2.2.1. The scattering intensity

Scattering data are usually presented as plots o f  the intensity o f  the 

scattered neutron beam , I(Q), versus the scattering vector, Q. The 

scattering vector Q is proportional to the scattering angle, 0, and is the 

m odulus o f  the resultant betw een the incident and the scattered 

w avevectors. The geom etrical relationship for the determ ination o f  the 

scattering vector Q is given in details in the A ppendix B.

In a SANS experim ent, the collim ated neutron beam  illum inates a small 

volum e o f  the sam ple, typically < 0.5 cm 3. Som e o f  the incident radiation 

can be scattered, som e can be transm itted and som e can be adsorbed. The
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detector then records the flux o f radiation scattered into a solid angle 

element, which can be expressed as the following:

I(X ,0 )  = /„ (A)Aflti(X)T(X)Vs ( 0  Eq. 2.12
d i l

being Io(2) the incident flux, AQ the solid angle element, rj the detector 

efficiency, T(X) the sample transmission, Vs the illuminated sample volume

and ---- (Q) the differential scattering cross-section which contains
dCl

19information on the size, shape and interactions o f the scatter bodies .

dL
The differential scattering cross-section ---- (Q), also indicated as I(Q)

dQ.

(scattering intensity), provides structural information o f the sample, is 

measured and can be expressed as follows:

^  (0 = HQ) = N PVP2 (Ap f  P(Q )S(Q ) + Bmc Eq. 2.13

where Np is the number o f scattering bodies, Vp the volume o f the 

scattering body, (Ap) the contrast term, P(Q) the form factor, S(Q) the 

structure factor and B,-„c the incoherent background.

Eq. 2.14 shows that the contrast term can be described as the squared

difference in scattering length densities between the particle, /?p, and the

solvent, p s:

(Ap ) 2 =( pp - p s ) 2 Eq. 2.14

The scattering length density p  o f a molecule o f i atoms can be calculated 

as follows:

p = Y jbi PbultNA Eq. 2.15
i M  w

where b; is the coherent neutron scattering length o f the nucleus, ptuik the 

bulk density o f the scattering body, NA Avogadro’s number and M w the 

molecular weight.
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The scattering length o f an atom can be described as the strength o f the 

interaction o f free neutrons with the nucleus; its value can vary randomly 

through the periodic table and it is isotope dependent. This is used to 

differentiate the scattering o f the hydrogen (bn) from the scattering o f the 

deuterium (bo) since their scattering lengths are widely different (bn = - 

3.739 x 10‘15 m and bD= 6.671 x 10'15 m; the negative sign in front o f bH 

means that the scattered neutrons wavefunction is out o f phase with 

respect to the incident neutrons wavefunction).

2.2.3. Form and structure factor

The Eq. 2.22 describing the scattering intensity I(Q) contains two 

important factors: (i) the form factor, P(Q), and (ii) the structure factor, 

S(Q). Both o f them are mathematical functions giving information to a 

intra- and inter-molecular level respectively.

The form factor is a function that describes how the angular dependence

o f the scattering, ---- (Q) , is modulated by interference effects between
dQ

radiation scattered by different parts o f the same scattering body. 

Therefore, P(Q) is very dependent on the shape o f the scattering body.

The structure factor is a function that explains how the angular

(JYi
dependence o f the scattering, (Q), is modulated by interference effects

dQ

between radiation scattered by different scattering bodies. Therefore, S(Q) 

is dependent on the degree o f local order in the sample.

2.2.3.1. Form factor

The form factor P(Q) provides information on the size and shape o f the 

scattered bodies on an intra-molecular level. P(Q) functions are known for 

the most common molecular shapes such as sphere, disc, rod. Table 2.1 

includes some o f the P(Q) analytical expressions for a solid spherical
I

particle o f radius R , a disc shape particle o f radius R and small
19thickness, and a rod shape particle o f length L and small cross-section .
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Shape Form factor P(Q)

Sphere, radius R

Disc, radius R, small thickness 
(Ji: a first order Bessel function)

Rod, length L, small cross-section 
Si', the Sine integral function)

P(Q) =

P(Q) =

P(Q) =

3(sin(QR) -  QR cos(QR)
(QR)3

•A (2 QR) 
QR(QR)

2 S,(QL) sin2 (Q L/2 )
QL QLI2

Table 2.1 P(Q) mathematical functions fo r  sphere, disc and rod shapes.

2.23.2. Structure factor

The structure factor S(Q) depends on the inter-particle interactions in the 

system, which can be o f attractive, repulsive or excluded volume. The 

inter-particle structure factor is expressed as:

S ( 0  = 1 + -ZZ7T  Jfe(r ) “  lV sin(Qr)dr Eq. 2.16
xl" o

where r is the radial distance from the centre o f any scattering body in the 

sample. Therefore, scattering can be used to achieve information about the 

location o f the scattering centres, usually through the ‘radial distribution 

function’ (r.d.f.):

4 7zN Dr 2
r-d. / .  = — g(r) Eq. 2.17

where the density distribution g(r) is obtained from Eq. 2.25 by Fourier

inversion.

An effective way o f reducing S(Q) for interacting systems is by diluting 

the sample (in the case o f concentrated dispersions) or by adding salt (in 

the case o f charged particles). However, for diluted non-interacting 

systems N p -»  0 , so, from Eq. 2.25, <S(0 —» 1 12.
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2.2.4. SANS approximations

After having recorded the scattering pattern I(Q) versus Q for a given 

sample, a first information o f the size and shape o f the scattering particles

intensity, I(Q), plotted against functions o f the scattering variable, Q. This 

can also serve as a starting point for the data fitting using more refined and 

complex models.

These approximations are known as the Guiner, Porod and Zimm 

approximations. A description o f the Zimm approximation is given since 

'  this is the SANS approximation used in the scattering data analysis 

discussed in Chapter 4. The Guiner and Porod approximations are 

described in details in the Appendix B.

Zimm approximation

The Zimm approximation applies to low Q range values and finds wide 

use in polymer solutions. The Zimm approximation relates the scattering 

intensity I(Q) to the correlation length

Assume a Lorentzian form for the Q-dependance o f  the scattering 

intensity:

A plot o f 1/I(Q) versus Q2 yields l/Io as intercept and £2/Io as slope. The

can be estimated from linear plots o f the functions o f the scattered

Eq. 2.18

correlation length is obtained as =
slope

intercept

In the low-Q region, Eq. 2.18 can also be expressed as follow:

Eq. 2.19

3

Therefore, R g = £a/3 for the low-Q region.
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The Zimm plot can be applied also beyond the low-Q region. In the high 

Q regime where Q2̂ 2 is smaller than 1, Eq. 2.18 can be written as follows:

In this region, the form factor for a single polymer chain behaves as

2/Q2Rg2, so that % = Rg /y l2 . Therefore, Rg = for high-Q.

In the case o f polymer solutions with excluded volume interactions, Eq. 

2.20 becomes:

where u is the excluded volume exponent (u = 3/5 for fully swollen chains, 

i) = 1/2 for theta chains and u = 1/3 for collapsed chains) 14.

2.2.5. SANS data analysis

Once the scattering profile is obtained as a plot o f the intensity o f the 

scattered neutron beam, I(Q), versus the scattering vector, Q, a model- 

fitting approach using programs like Fish is commonly used to analyse the 

scattering data. Fish is a powerful program developed by Richard Heenan 

15 and it is able to fit the scattering data to a specific model: an iterative 

least-squared algorithm determines the best structural parameters and 

residuals for the specific scattering data set chosen within the specific 

model used. Obviously, depending on the specific conformation o f the 

scattering bodies, different fitting models can be applied to each data set.

When fitting a scattering data set to a specific model with Fish, the 

following steps need to be followed: (i) Fish will first read in the data set 

to be fitted; (ii) then, Fish will load all the model files among which the 

specific model o f interest can be selected; (iii) each fitting model will have 

specific parameters which will fit specific sizes in the model (e.g.: the 

sphere radius, the length o f the rod, the thickness o f the shell); (iv) by

Eq. 2.20

2 Eq. 2.21
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setting appropriately the values o f  the parameters, by constrain some o f 

the values and by allowing a continue cycle through the fitting routine, a 

good fit to the data can be obtained.

The model used to fit the scattering data from mucin solutions (as it will 

be extensively discussed in Chapter 4) is a quite complex model which 

includes several parameters taking into account contributions for: (i) 

radius (R) o f polydisperse solid spherical particles; (i) volume fraction { (f)) 

o f the dispersed spheres; (iii) radius o f gyration (Rg) for Gaussian coil; (iv) 

correlation length (£ ) as gel-network term. The radius o f gyration, Rg, and 

the correlation length, £, were obtained from the Zimm plots for each data 

set as explained in the section above. The values o f these parameters were 

inputted in the fitting model and constrained. The radius o f polydisperse 

solid spherical particles, R, the volume fraction o f  the dispersed spheres, (f), 

were obtained as fitted parameters o f the model using Fish program. Fitted 

parameters showed no change in the fit up to a ± 5% change in the value 

o f the parameters. Therefore, 5% was considered the sensitivity o f the 

parameters to the overall fit.
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2.3. Viscosimetry

Viscosity is an internal property o f a fluid and is described as a fluid’s

resistance to flow. Therefore, viscosity measurements consider the 

resistance o f a fluid deformed by shear stress. All real fluids show some 

resistance to stress; a fluid which does not exhibit resistance to shear stress 

is known as an ideal fluid.

Generally, when a shear stress is applied to a fluid, layers will flow at 

different velocities and the viscosity will be determined by the shear stress 

between the layers that opposes any applied force. Thus, for a parallel and 

uniform flow, the shear stress, x, between layers is proportional to the

du
velocity gradient, — , in the direction perpendicular to the layers, as

where rj is a constant known as the coefficient o f  viscosity or viscosity. 

There are several ways for characterizing the solution viscosity. 

Considering rj0 the viscosity o f the pure solvent, rj the viscosity o f a 

solution using that solvent and c the solution concentration, the solution 

viscosity can be expressed as the following:

n
(i) Relative viscosity Tfr  =  —

c —>0 c

Relative viscosity is self-explanatory. Specific viscosity expresses the 

incremental viscosity due to the presence o f a solute {i.e., polymer) in

shown in the following equation

Eq. 2.22

(ii) Specific viscosity r]sp

(iii) Inherent viscosity rji = — -
c

(iv) Intrinsic viscosity [77] = lim —
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TJ
solution. Normalizing rjsp to concentration gives —— which expresses the

c

?Jsp
capacity o f  a solute to cause the solution viscosity to increase. Since —-

c

will be concentration dependent, it is useful to extrapolate it to zero

77
concentration. The extrapolated value o f —— at zero concentration is

c

known as the intrinsic viscosity, [77].

Like t j sp ,  ln //r is zero for pure solvent and increases with increasing 

concentration. Thus, In r/r also expresses the incremental viscosity due to 

the presence o f the solute in solution. Normalizing In rjr to the

concentration, — gives the inherent viscosity, 77,. In the limit o f zero
c

TJ
concentration, 77, extrapolates the same as —-a n d  becomes equal to the

c

intrinsic viscosity. This can be demonstrated by:

,» ln (1  + ^ } = ^  = M  E q .2.23
c—>0 c  c —>0 c  c—>0 c

Therefore, [77] can be found by extrapolating or 77, to zero
c

concentration. When c is not equal to zero the specific viscosity and 

inherent viscosity will be different, even for an ideal solution. In ideal 

TJ sP
solutions —— will be independent o f concentration, but 77, will depend on

c

concentration 16.

2.3.1. Viscosity measurement o f  a flu id

To measure the viscosity o f a fluid, a viscometer is usually required.

A standard laboratory viscometer for liquids is a U-tube viscometer. This 

device shown in Figure 2.18 is also known as glass capillary viscometer or 

Ostwald viscometer. It consists o f a U-shaped glass tube placed in a
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controlled temperature bath. The glass capillary is located in one arm o f 

the U-tube. On top o f the capillary there is a bulb and another bulb can be 

found lower down on the other arm. The lower bulb in the viscometer is 

filled in with the test solution up to the mark level (mark C in Figure 

2.18). The solution is then transferred to the upper bulb by suction and 

allow to flow down through the capillary into the lower bulb. The time 

required by the solution to move between the two marks in the upper bulb 

(marks A and B in Figure 2.18) is then recorded. It is best to chose a 

viscometer such that the flow time is greater than 1 0 0  seconds so to ignore 

any kinetic energy term.

Viscometers are usually supplied with a conversion factor or they can be 

calibrated by a fluid o f known properties. The relative and specific 

viscosity o f the solution is then calculated by comparing the flow time o f 

the solution, t, to the flow time o f the pure solvent, to:

ijr = — and t]sp = Eq- 2.24
^0 ^0

o:Upper bulb

Lower bulb

Capillary

Figure 2,18 Illustration o f a standard laboratory U-tube viscometer.
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Chapter 3. Materials and methods

All materials used and experimental approaches applied in the studies 

presented in this thesis have been collected in Chapter 3 herein. Some 

materials are common to all the studies; some others have been used only 

in specific studies and the related chapters are specified.

3.1. Materials

3.1.1. Mucin

Dried porcine gastric mucin (PGM) type III used in all experiments was 

purchased from Sigma Aldrich (UK) and used without any further 

treatment.

3.1.2. Chemicals 

Solvents

Samples for viscosity measurements have been prepared in Millipore 

water.

Samples for SANS and PGSE-NMR experiments have been made up in 

deuterium oxide (D2O) purchased from Fluochem Ltd., UK.

Dimethyl sulfoxide (DMSO) anhydrous, > 99.9%, was purchased from 

Sigma Aldrich (UK) and used for the synthesis of the PEG-PAMAM 

dendrimer conjugates.

Bases and acids

Sodium deuteroxide (NaOD) solution 40 wt% in D2O, 99 atom % D 

(Sigma Aldrich, UK) and deuterium chloride solution (DC1) 35 wt% in 

D2O, 99 atom % D (Sigma Aldrich, UK) were used for changing the pH in 

mucin samples in SANS and PGSE-NMR experiments.
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Sodium hydroxide (NaOH) beads (Sigma Aldrich,UK) and hydrochloric 

acid (HC1) 37% (Sigma Aldrich ,UK) were used for changing the pH in 

mucin samples in viscosity measurements.

Mucolytic agent (Chapter 4)

jV-Acetyl-L-Cysteine (NAC), > 99% was purchased from Sigma Aldrich 

(UK) and used without any further treatment.

Polymers (Chapter 5 and 6 )

A series o f water-soluble polymers -  termed ‘probe’ polymer -  were 

examined and their characteristics are presented in Table 3.1. Polymers 

were used as received.

Linear poly(ethylene glycol) (PEG) and branched polyethylenimine (PEI) 

with different molecular weights were studied in this work. 

Polyamidoamine (PAMAM) dendrimers with a tetra-functional 

ethylenediamine core have been investigated. PAMAM dendrimers 

generation 2.0 and 4.0 contain 16 and 64 surface amino groups, 

respectively. PAMAM dendrimers generation 3.5 and 5.5 contain 64 and 

256 surface carboxylate groups, respectively.
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Polymer
Molecular weight 

/  g mol"1
Source

[Linear] Poly(ethyIene glycol) 

(/-PEG 1 OK)
1 0 ,0 0 0

Sigma-Aldrich

(UK)

[Linear] Poly(ethylene glycol) -  

deuterated 

(/-(tf)PEG10K)

1 0 ,0 0 0

Polymer

Laboratories

(UK)

4-arms-Poly(ethylene glycol) 

(&-PEG20K)
2 0 ,0 0 0

Nektar

(US)

[Linear] Poly(ethylene glycol) 

(/-PEG50K)
50,000

Polymer

Laboratories

(UK)

Dextrin

(Dextrin50K)
50,000

ML

laboratories

(UK)

[Linear] Poly(ethylene oxide) 

(/-PEG100K)
1 0 0 ,0 0 0

Sigma-Aldrich

(UK)

[Branched] Polyethylenimine 

(6-PEI2K)
2 ,0 0 0

Sigma-Aldrich

(UK)

[Branched] Polyethylenimine 

(6-PEI25K)
25,000

Sigma Aldrich 

(UK)

Polyamidoamine dendrimer G2.0 

(PAMAM G2.0)
3,260

Dendritech Inc. 

(US)

Polyamidoamine dendrimer G4.0 

(PAMAM G4.0)
14,210

Dendritech Inc. 

(US)

Polyamidoamine dendrimer G3.5 

(PAMAM G3.5)
12,930

Dendritech Inc. 

(US)

Polyamidoamine dendrimer G5.5 

(PAMAM G5.5)
52,900

Dendritech Inc. 

(US)

Table 3.1 Molecular characteristics o f  the polymers used in this thesis.
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PEGvlation reagent (Chapter 6)

Methyl-PEGn-Af-Hydroxysuccinimide (NHS) Ester was purchased from 

Thermo Scientific (USA) and used for the synthesis of the PEG-PAMAM 

dendrimer conjugates.

Lipids and albumine (Chapter 7)

The lipids l,2-dihexanoyl-s«-glycero-3-phosphocoline (DHPC) and 1,2- 

dipalmitoyl-sw-glycero-3-phosphocholine (DPPC) were obtained from 

Avanti Polar Lipids (US). Both phosphocholines were purchased in the 

hydrogenated (h) and deuterated (d) form. Their chemical structures are 

illustrated in Figure 3.1. The critical micelle concentrations (c. m. c.) of 

the two phospholipids are 0.46 nM for the DPPC and 1.4 mM for the 

DHPC, respectively.

Bovine serum albumine (BSA) was obtained from Sigma Aldrich (UK).
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h-DHPC

d-DHPC

h-DPPC

d-DPPC

O
II

O2  O2 Q

d  H O"

^ S ArAo^x^-o'f
D2 t>2 /  \  o r
P2 Pz /  H

Do Do

x t

pa P2 D2 D2 Pa

Nt'

Nt

D 2 P 2 D 2 6 2 D 2 D 2 P 2  y V ,
Ds D{ Do Do Do Do Do

.tyV yV yW /Dj D2 Dj D2 D2 O3 Dj o

Figure 3,1 Chemical structures o f the hydrogenated (h), and deuterated 

(d) DHPC and DPPC
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3.2. Methods

3.2.1. Samples preparation

Preparation of mucin solutions

Solutions with different mucin concentrations (1 wt% < [mucin] < 5 

wt%) were prepared by simply dissolving the required mass of mucin in 

D2O (99.5 atom % D) or H2O. Samples were left for at least 2h but 

typically overnight at room temperature to allow full dissolution and 

equilibration. The solutions were not filtered.

Preparation of the mucin samples with the mucolytic agent (Chapter 4)

Mucin solution 5 wt% in the presence of 0.5% NAC were prepared in 

the following way. A stock solution of 5% NAC was made up in distilled 

water. 250 mg of mucin were dissolved in 4.5 ml o f distilled water. Once 

mucin was dissolved in water, 0.5 ml of the NAC 5% stock solution were 

added. In this way a 5 ml mucin solution 5 wt% in the presence of NAC

0.5% was obtained. Since the mucolytic agent performs better at pH 7.0-

9.0, the pH of the sample was then adjusted within a pH range of 7.0-9.0 

adding sodium hydroxide. The mucin sample in the presence of NAC at 

pH 7.0-9.0 exhibited a light purple color. This is due to the fact that the 

commercial NAC contains a chelating agent, ethylendiaminetetra-acetic 

acid (EDTA). The light purple color indicates metal ion rem ovall.

Preparation of mucin- polymer solutions (Chapter 5 and 6 )

Solutions with different mucin concentrations (1 wt% < [mucin] < 5 

wt%) and a constant ‘probe’ polymer concentration (0.5 wt%) were 

prepared by simply dissolving the required masses o f polymer in D2O 

(99.5 atom % D) or H2O. Samples were left for at least 2h but typically 

overnight at room temperature to allow full dissolution and 

equilibration. The solutions were not filtered.
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Preparation of mucin-lipid/protein solutions (Chapter 7)

Solutions containing a constant concentration of DHPC (5 mM), and/or 

BSA (500 ppm and 5000 ppm) in mucin (1 wt% < [mucin] < 5 wt%) were 

prepared by simply dissolving the required masses of polymer in D2O 

(99.5 atom % D). Solutions containing a constant concentration of DPPC 

(5 mM) in mucin (1 wt% < [mucin] < 5 wt%) were made up by adding the 

dried amount of mucin in the DPPC vesicles solution already done. 

Samples were left for at least 2h but typically overnight at room 

temperature to allow full dissolution and equilibration. The solutions were 

not filtered.

3.2.2. Synthesis o f the PEG-PAMAM dendrimers (Chapter 6)

PEG-PAMAM dendrimers G2.0 and G4.0 conjugates with different 

degrees of PEGylation -  10%, 50% and 100% PEGylated -  were 

synthesized via the procedure shown in Scheme 3.1. Methy 1-PEG 12-iV- 

Hydroxysuccinimide (NHS) Ester was used as activated PEG for the 

modification of the PAMAM dendrimer surfaces.

iV-Hydroxysuccinimide (NHS) Ester is one o f the most popular type of 

reactive groups used for protein modification or any macromolecule 

bearing primary amino groups (-NH2). NHS-ester reagents react 

efficiently at pH 7-9 with primary amino groups by nucleofilic attack, 

forming stable amide bonds and releasing the NHS, as shown in Scheme

3.1.

To a solution of a second (G2.0, Mw = 3,260 g mol'1) or fourth (G4.0, 

Mw = 14,210 g mol*1) generation PAMAM dendrimer (2 mg ml'1) in 

dimethyl sulfoxide anhydrous (DMSO), methy 1-PEG 12-iV-

Hydroxysuccinimide (NHS) Ester (Mw = 685.71 g mol"1) was added and 

the solution stirred for two hours at room temperature under nitrogen. 

Obviously, the amount of NHS-PEGylation reagent added depended on 

the degree of PEGylation and the generation of the PAMAM dendrimer. 

For the 100% PEGylated PAMAM dendrimers G2.0 and G4.0, 6 .6  mg
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(9.6 nmol) and 4.4 mg (6.4 nmol) of NHS-PEGylating reagent were 

respectively added to a solution of 2 mg ml"1 (0.6 nmol ml"1) PAMAM 

dendrimer G2.0 and 2 mg ml"1 ( 0.1 nmol ml"1) PAMAM dendrimer G4.0. 

The following amount of methyl-PEGi2-NHS ester were used for a 10% 

PEGylation of PAMAM dendrimer G2.0 and G4.0: 0.62 mg (0.9 nmol) for 

a 2 mg ml' 1 PAMAM dendrimer G2.0; 0.41 mg (0.5 nmol)for a 2 mg ml"1 

PAMAM dendrimer G4.0. For a 50% PEGylation of PAMAM dendrimer 

G2.0 and G4.0, the quantity of methyl-PEGi2-NHS ester used was: 3.3 mg 

(4.8 nmol) for a 2 mg ml"1 PAMAM dendrimer G2.0; 2.2 (3.1 nmol) mg 

for a 2 mg ml"1 PAMAM dendrimer G4.0.

The products from the syntheses were purified by dialysis against water 

for 48 hours using a membrane with a different molecular weight cut-off 

(MWCO), depending on the molecular weights of the synthesized 

conjugates. Given that the molecular weights of the 100% PEG-PAMAM 

G2.0 and G4.0 conjugates 12,650 g mol' 1 and 51,760 g mol"1 respectively, 

dialysis tubes with a MWCO of 12-14000 Daltons (Medicell International 

Ltd, UK) were used. The same dialysis tubes were used for the 10% and 

50% PEG-PAMAM dendrimer G4.0 conjugates, given their molecular 

weights 17,953 g mol"1 and 32,953 g mol'1, respectively. Whereas, for the 

10% and 50% PEG-PAMAM dendrimer G2.0 conjugates -  bearing 

molecular weights 4,492 g mol' 1 and 7,946 g mol"1, respectively -  dialysis 

tubes with a MWCO of 2000 Daltons (Sigma Aldrich, UK) were 

employed. The dialyzed products were then lyophilized and used for 

further characterization. Finally, with the aid of a freeze-drier, the water 

was removed from the products. Yields were ~ 75% for all conjugates 

synthesized.

The synthesized PEG-PAMAM conjugates were characterized by 1H- 

NMR spectroscopy using D2O as solvent (the chemical shift o f HDO is 

4.8 ppm). ^ -N M R  spectra were recorded on a Bruker Avance 500 MHz 

spectrometer. PEGylation was confirmed by the appearance of signals at 

3.52-3.67 ppm and 3.28 ppm in JH NMR spectra of the conjugates, which 

correspond to the protons of CH2CH2O repeat unit and terminal OCH3
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groups of PEG, respectively. The degree of PEGylation (the actual 

average number of PEG arms per dendrimer) was estimated using the 

proton integration method, by taking the characteristic peaks of PEG and 

PAMAM into account4.
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3.2.3. Preparation o f the DPPC vesicles (Chapter 7)

h-DPPC and d-DPPC vesicles were prepared in D2O following exactly 

the same procedure.

A 5 mM DPPC solution was prepared by dissolving 11 mg of 

phospholipid in 3 ml of chloroform. The solvent was then completely 

removed by the rotavap until a film was formed. At this stage, 3 ml of 

D2O were added to the film for hydration to deliver a final concentration 

of 5 mM. The solution was left in a water bath set at 52 °C (~ 10 °C higher 

than the phospholipid transition temperature) for half an hour, mixing 

occasionally. After, the solution was first dipped into liquid nitrogen for 

five minutes, then defrosted in warm water for five minutes and finally 

vortex for five minutes. This cycle (water bath/liquid nitrogen/vortex) was 

repeated three times to break multilamellar vesicles (MLV) into 

unilamellar vesicles (ULV) 2’3. At this point the DPPC vesicles are ready 

to be extruded. The extrusion process was performed above the lipid 

transition temperature using an extrusion unit (Lipex Biomembranes Inc., 

Canada) illustrated in Figure 3.2. The DPPC vesicles were produced by 

extrusion through polycarbonate nucleopore membrane filters (Whatman 

International Ltd., UK), starting with membranes having a pore size of 400 

nm to finish with membranes with a pore size of 100 nm. The opalescent 

blue-ish solution obtained was kept at + 4 °C.
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Figure 3.2 Extruder unit used for extrusion o f the DPPC vesicles.

3.2.4. Samples for SANS

SANS measurements were used to study the conformation o f mucin in 

solution and to detect any change in the mucin conformation due to 

possible m ucin-‘probe’ polymer interaction.

SANS measurements were performed on the fixed-geometry, time-of- 

flight LOQ diffractometer at the ISIS spallation neutron source, 

Rutherford Appleton Laboratories (Didcot, UK). A Q = (4 /r /A )s in (0 /2 )  

range between 0.008 and 0.25 A'1 was obtained by using neutron 

wavelengths (X) spanning 2.2 to 10 A with a fixed sample-detector o f  4.1 

m. The samples were contained in 2 mm path length, UV- 

spectrophotometer grade, quartz cuvettes (Hellma Ltd, UK) and mounted 

in aluminium holders on top o f an enclosed, computer-controlled, sample 

chamber. Sample volumes were around 0.4 cm 3. All experiments were 

conducted at 37 °C (unless otherwise stated). Temperature control was 

achieved by using a thermostatic circulating bath pumping fluid through 

the base o f the sample chamber, achieving a temperature stability o f  ± 0.2 

°C. Experimental measuring times were approximately 40 minutes.
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All scattering data were (a) normalized for the sample transmission, (b) 

background corrected using a quartz cell filled with D2O, and (c) corrected 

for the linearity and efficiency of the detector response using the 

instrument specific software package.

3.2.5. Samples for PGSE-NMR

PGSE-NMR was used to investigate the mobility of the ‘probe’ 

polymers in mucin solutions by measuring their diffusion coefficients as 

function of the mucin concentration. For each polymer probed in the 

mucin media, six samples were prepared in D2O spanning a mucin 

concentration 0 wt% < [mucin] < 5 wt%. The diffusion coefficients of the 

probe polymers were measured for each solution at 310.3 K.

PGSE-NMR experiments were performed on a Bruker AMX360 

spectrometer, operating at 360 MHz (!H) and using a stimulated echo 

sequence together with current-regulated field gradient drivers and ramped 

gradient pulses 6. Three field gradient pre-pulses were applied before 

every scan. Experiments were performed in a 5 mm diffusion probe at the 

set temperature of 310.3 K. Temperature stability was maintained by the 

standard air heating/cooling system of the spectrometer, to an accuracy of 

± 0.3 °C.

!H-NMR signals from mucin result in broad peaks at 3.65 ppm. This 

caused often an overlap between the wide peaks from mucin and the peaks 

from the polymer under investigation: therefore, the self-diffusion of the 

polymer might be affected by the diffusion of the mucin.

For instance, the ’H-NMR spectrum of /-PEG in D2O consists of a singlet 

at 3.50 ppm. When in mucin solutions, the peak from the PEG results in a 

broad peak which include buried signals belonging to the mucin.

For this reason two approaches to analyzing the data were employed: 

where there was a little spectral overlap o f the signals from mucin with the 

peak of interest of the polymer (e.g., PAMAMs in mucin), the diffusion 

coefficients have been extracted by an analysis of the peak integrals 

(Figure 3.3); however, where spectral overlap was pronounced (e.g., PEGs
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in mucin), a more involved component-resolved (CORE) approach was

sections 2.1.6  and 2.1.7 in Chapter 2.

In both approaches, a double exponential fitting was applied for the 

diffusion of the species in mucin solutions, considering the ‘probe’ 

polymer always the specie diffusing faster than mucin (the diffusion of 

mucin as a thick gel was slow compared to the diffusion time of the other 

species considered).

In both cases, the self-diffusion coefficient Ds was extracted from an 

analysis of the peak amplitude according to the Eq. 4.1:

where A is the peak amplitude in the absence (Aa) or presence o f the field 

gradient pulses of duration 8  (400 jus < S < 2.8 ms), ramp time er (250 //s), 

strength G (0.86 T m '1) and diffusion time A (140 ms); /? is an empirical 

parameter relating to the polydispersity which was kept to 1; A: is given by 

Eq. 4.2:

being y the gyromagnetic ratio (for protons, y = 26.7520 e' 7 T V 1).

Samples were prepared in vials and then pipetted to the NMR tubes 

when liquid. Since the experiments were conducted at the temperature of 

310.3 K, a 30 minutes equilibration time was allowed to the sample in the 

NMR spectrometer before starting the experiment. An experimental error 

o f ± 5% is considered for all data, representing the sample to sample 

reproducibility achieved.

adopted (Figure 3.4) 7. Both methods have been already discussed in

Eq. 4.1

Eq. 4.2
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c0
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1  0.1

I

o  PAMAM G 2.0 in D20
□ PAMAM G 2.0 in mudn 2 wt%
A PAMAM G 2.0 in mudn 5 wt%

0.01
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Figure 3.3 Attenuation functions from the integral o f the peak at 2.57 ppm 

o f the PAMAM dendrimer G2.0 in D2O (open circles), in mucin 2 wt% 

(open squares) and in mucin 5 wt% (open triangles).

Trace # Frequency channel T race# Frequency

Figure 3.4 Sequence o f FT-PGSE spectra (left panel) and CORE fit to the 

data set (right panel) for the system o f l-PEG lOKg m o t1 in mucin 3 wt%.
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3.2.6. Samples for viscosity measurements

Viscosity measurements were performed using U-tube viscometers (also 

known as glass capillary viscometers or Ostwald viscometers) purchased 

from Poulten Selfe & Lee Ltd. (England, UK). Different viscometers sizes 

(B, C, D) were used depending on the viscosity o f the solution measured. 

The sample volume required for each measurement may vary from 15 up 

to 30 ml, depending on the size of the viscometer. Experiments were 

performed at 37 °C. Temperature was controlled by using a thermostatic 

water bath. An experimental error of ± 0.4% was considered for all data 

according to the viscometers manufacture. Viscosity values were 

calculated considering viscosity of water at 37 °C equal to 0.696 mPa s.
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Chapter 4. Study o f the conformation o f 

mucin in solution by SANS

This chapter focuses on the behaviour o f mucin glycoprotein in solution. 

An introduction on previous studies performed on the conformation o f 

mucin in solution is provided. In the present study, the conformation o f the 

mucin was investigated by small-angle neutron scattering (SANS). 

Characterization o f the behaviour o f  mucin in solution upon changing 

concentration, pH, ionic strength, temperature and in the presence o f a 

mucolytic agent was explored and discussed.

4.1. Introduction

Understanding the molecular structure o f mucin is still a challenging 

question. The conformation o f  mucin in solution has been difficult to 

characterize due to the large molecular weight, polydispersity and high 

degree o f glycosylation o f the mucin molecule. Furthermore, the chemical 

heterogeneity, the long-range charge effects and the tendency o f the mucin 

molecules to associate make the overall study more complex.

However, several models have been proposed to describe the solution 

structure o f mucin: (i) aggregates o f rod-shaped molecules comprising a 

central linear polypeptide core o f  1 0 0 ,0 0 0  < Mw < 250,000 g mol' 1 with 

radial oligosaccharide side chains o f 2  to 1 2  monosaccharide residues, 

attached to serine and threonine residues by O-glycosidic linkages 2; (ii) 

a solvated random coil o f flexible linear glycoprotein3, 4, that is either 

stiffened by the glycosylated fragments 5 or their interaction -  the so- 

called “zipper” or bottle-brush model 6’7; (iii) liquid crystalline structures 

; and (iv) a double globule comb structure . This complexity is amplified 

by the tendency o f mucin to aggregate at low concentration and low pH l'
9,10
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Despite these models, only a few studies have considered a either 

neutron or X-ray scattering approach to describe the conformation o f 

mucin in solution 8’ n . Therefore, the aim o f this current work is to 

quantify the conformation o f non-purified porcine gastric mucin (PGM) in 

solution by small-angle neutron scattering (SANS). As a non-destructive 

technique, SANS can be easily applied for the study o f  delicate biological 

materials such as mucin. Mucin molecules in solution were studied by 

SANS as function o f concentration, pH, ionic strength and temperature. 

Moreover, studies on mucin conformation in the presence o f TV-Acetyl-L- 

cysteine as mucolytic agent were performed by SANS to better understand 

changes in the mucin structure caused by the mucolytic agent.

4.2. Studies o f the conformation o f mucin in solution

4.2.1. SANS from PGM solutions

The typical scattering from 5 wt% non-purified porcine gastric mucin 

(PGM) solutions at 37 °C is presented in Figure 4.1. As may be seen, there 

are a number o f features in the data, including pronounced maxima against 

a slowly decaying background signal. The two main maxima are at Q 

values (Qmax) o f 0.031 A ' 1 and 0.063 A ’1. Considering the relationship 

between the wavevector Q and a distance/size R (Eq. 4.1):

the Qmax values correspond to distances/sizes o f 20.3 nm and 10.0 nm, 

respectively. Interestingly, the location (Q value) o f the second maxima 

occurs at twice Q o f  the first, i.e., Qmax(peak2) = 2Qmax (peak! ) ,

indicating a regular distribution o f scatterers. Therefore, these maxima 

arise due to interference from scattering centres within the solution, 

implying some level o f order.
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Figure 4.1 Scattering from mucin 5 wt% (closed circles) at 37 °C, pH  7; 

fitting to the scattering data (solid line); globule form factor P(Q) (dotted 

line); globule structure factor S(Q) (dashed line); Q  (dashed-dotted 

line); and Q 4 (dashed-dotted-dotted line) terms.

Early SANS studies on mucin were performed by Waigh et al. n . 

Although the same type o f mucin was used (porcine gastric mucin 

purchased from Sigma Aldrich), the first important difference observed 

between the scattering data from mucin solutions presented by Waigh’s 

group and the scattering data here presented is the absence o f the two main 

maxima in the scattering profile from mucin solutions obtained by Waigh. 

Therefore, Waigh could approximate the scattering from mucin to a 

homogeneous cylinder and fit the scattering data to a Guiner expression, 

from which the cross section and the radius o f gyration o f  the cylindrical 

molecule was obtained. Unfortunately, this model was not able to fit the 

scattering data from mucin solution presented in Figure 4.1. Subsequently, 

the same group re-analyzed their SANS data in light o f the SAXS study 8 

and invoked a dumbbell model in which two globular structures are
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connected by  a glycosylated spacer with a thickness o f  a few nanom eters: 

a double G uiner fit was developed for the analysis o f  the dum bbell 

structure which suggested two globular structure with dim ension o f  10-20 

nm linked by a glycosylated spacer o f  40-50 nm.

The dum bbell m odel described by W aigh’s group on the basis o f  their 

SAXS results on m ucin contained the essential features which represented 

a starting point to build up a m odel able to fit the com plex SANS data 

from m ucin here presented (Figure 4.1). Therefore, a m ore com plex form 

factor approach has been adopted here that em bodies the essence o f  the 

dum bbell m odel, in which the scattering from m ucin solutions has been 

analyzed using a m odel that com prises two m ain scattering terms:

HQ) = HQ) peptide backbone + 1 (Q)globule Eq. 4.2

The first term  o f  the Eq. 4.2 is the contribution from the glycosylated 

peptide backbone w hilst the second term  accounts for the dispersion o f  

hydrophobic globules connected by  the glycosylated peptide backbone. A 

graphic representation o f  this m odel from a polym eric m ucin m olecule is 

idealized in Schem e 4.1.

Hydrophobic globules

Glycosylated spacer

  Peptide backbone
  Carbohydrate side chain

Scheme 4.1 Solution conformation o f  a polymeric mucin molecule 

comprising hydrophobic globules connected by a glycosylated spacer. 

Adapted from Yakubov G. E. 12.
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The peptide backbone is modeled as

(̂̂ )peptide backbone 4*3

where I x and h  characterize the contribution to the scattering arising from 

the peptide backbone with characteristic length scale £ (where ifQ 1 > 1) 

and from some larger, ill-defined structure, £. Figure 4.1 illustrates the 

contributions o f Q"2 (dashed-dotted line) and Q "4 (dashed-dotted-dotted 

line) terms to the fit o f the scattering data. As may be seen from Figure

4.1, the Q"4 term contributes rather weakly to the overall fit; indeed, the fit 

is dominated by the Q* and globule terms.

Considering the Lorentzian form for the Q-dependence o f the scattering 

intensity as expressed in Eq. 2.18 in Chapter 2, an analysis o f the low-Q 

region o f the scattering data in a Zimm plot (1/I(Q) versus Q ) would 

provide information on the correlation length £  which gives a good 

estimation o f the average entanglement length for mucin solutions, and the 

radius o f gyration Rg. Figure 4.2 shows the Zimm plot for mucin 5 wt% at 

low-Q region. From the analysis o f  the Zimm plot, the correlation length £

is obtained as £ = — 1g— while the radius o f  gyration R = £^3  . 
V intercept

The fit resulted in a correlation length £ o f  23.5 nm and a radius o f

gyration Rg o f 41.0 nm. These data are in good agreement with those
10obtained by Yakubov et al. .

It could be argued that the datum point displayed in Figure 4.2 are not 

lined up and, therefore, not easy to fit to a straight line. The slightly 

curved trend arises from the presence o f the main peak in the scattering 

from mucin at low Q. Considering only the first six datum points (dashed 

line in Figure 4.2) would allow a more linear trend but the low-Q region 

considered would be very limited (already with all the eight datum points 

is limited and that it is due to the main peak in the low-Q region). The 

correlation lengths (£) and radius o f gyration values (Rg) -  given by
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£ _  j_ ^o p e _  « _  ^ ^ 3  _  considering a sjx or eight datum points 
\  intercept

fit were calculated: the correlation length resulted 21.0 nm and 23.5 nm 

for a six and eight datum points fit, respectively; the radius o f gyration 

was 36.4 nm and 41.0 nm for a six and eight datum points fit, respectively. 

The difference in the correlation length and radius o f gyration values when 

considering a six or eight datum points fit was about 10%. Therefore, 10% 

can be considered the sensitivity o f these parameters (correlation length 

and radius o f gyration) to the fit.

0.25

Mucin 5 wt%
Fit to 8 datum points 
Fit to 6 datum points0.20

0.15

O

0.10

0.05

0.00 ----
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

Q2 / A'2

Figure 4,2 Zimm plot for mucin 5 wt% (37 °C, pH  7) at low-Q region 

(0.009 A'1 < Q < 0.023 A'1), with linear fit  to eigth datum points (solid 

line) and six datum points (dashed line).

The second term in Eq. 4.2, I(Q)giobule, is responsible for the scattering

from the locally ordered hydrophobic globules, and it was thought most 

appropriate to model this structure as a concentrated dispersion o f 

uncharged (polydisperse) spheres, given (i) the liquid ordering scaling o f
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the peak positions with concentration (see Figure 4.3) and (ii) the fact that 

no change in their scattering profile is observed as result o f the increase in 

the ionic strength (see Figure 4.8), as it will be discussed afterwards. 

Therefore,

/ ( < 2 W  = N V H p n - p , ) 2 P(Q) S(Q) Eq. 4.4

where N  is the number o f scatterers o f volume V per unit volume and 

{pm -  p s) 2is their contrast against the solvent (D2O). The form factor

P(Q) is calculated using a distribution o f polydisperse spherical scatterers 

with

P(Q) =
3(sin(QR)-QRcos(QR))

W f
Eq. 4.5

integrated over a modified Schulz distribution 13.

f (R )  =
(z + l)'

R

Z+l

Rz exp
f  1 ^

Z- P - R
R J r(z+i) Eq. 4.6

where R is the mean sphere radius, z is a parameter related to the width o f 

the distribution.

In particular, one has a polydispersity index p

p = t
Eq. 4.7

where crR is the root-mean-square deviation from the mean size,

<JD =
R

V(z + l ) Eq. 4.8

Therefore, combining Eq. 4.7 and Eq. 4.8, p  is given by

P = V(z + l ) Eq. 4.9

81



Chapter 4

This model, idealized in Scheme 4.1 with the various contributions to 

the overall fit illustrated in Figure 4.1, is most sensitive to the position o f 

the peaks, allowing the size, R, and volume fraction, <j> (= NV), o f the 

globules to be readily parameterized (R = 9.0 nm, <j> -  0.37). The values
o

obtained are in very good agreement with those obtained by Waigh et al. .

For a two globule chain structure, it has been shown that the radius o f 

gyration Rg is related to the radius o f  the globule R (assumed equal for 

both globules) and the distance between the globules centres L 14. The 

relationship is expressed by the following equation:

t 2

R / = R 2 +—  Eq. 4.105 4

Therefore, considering a Rg value o f 41.0 nm and a radius o f the globule R 

equal to 9.0 nm, L results equal to 80.0 nm.

All the parameters obtained from this model describing the mucin 

molecule and the Zimm plot are summarized in Table 4.1.

Radios o f  

gyS^W i,

Correlation

length,

{(nm)

jRndiuspftjhe 

R  (nm)

Volume 

;; fraction,

\___-li.............

Distance between 

the globule centres, 

L  (nm)

41.0 ±4.1 23.5 ± 2.4 9.0 ± 0.5 0.37 ± 0.02 80.0 ± 18.3

Table 4,1 Parameters obtained from the model which describes the mucin 

molecule.

4.2.2. SANS from PGM solutions as function o f concentration, pH, ionic 

strength and temperature

Mucin solutions have been analyzed by SANS over a range o f 

concentrations (1 wt% < [mucin] < 5 wt%), pH (2 < pH < 9), ionic 

strength (0 < [salt] < 0 .1  M NaCl) and temperature (25 °C and 37 °C) to
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better understand the effect o f these parameters on the conformation o f 

mucin in solution.

Concentration

Scattering from mucin solutions over the entire concentration range 

studied, 1 wt% < [mucin] < 5 wt%, at 37 °C are showed in Figure 4.3. The 

scattering profiles revealed a decrease in intensities o f the main peaks 

while decreasing the mucin concentration. However, these maxima are 

still present in the scattering even at concentration as low as 1 wt%. 

Again, the location o f the second maxima for each concentration moves 

regularly at twice Q o f the first, i.e., Qmax {peak!) = 2 £>max (peakl) ,

indicating still a regular distribution o f  scatterers. The position o f the main 

peak corresponds to a distance o f 20 nm at 5 wt% mucin increasing to 42 

nm at 1 wt% mucin, implying larger separation in the mucin network.

100 — i-----------------------------------------------i i i i i i i i r

V  Mucin 1 wt%
O Mucin 2 wt%
□ Mucin 3 wt%
A Mucin 4 wt%
O Mucin 5 wt%

0.01 0.1 

Wavevector, Q / A' 1

Figure 4,3 Scattering (symbols) and fit(solid lines) to the scattering model 

from mucin solutions over a concentration range ( 1  wt% < [mucin] < 5  

wt%) at 37 °C.
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Upon dilution from [mucin ] = 5 wt% to 1 wt%, the peaks in the data 

move to lower Q. Figure 4.4 shows the Q values o f the main peak in the 

scattering from mucin plotted against mucin concentration. There is a 

power dependence found for Q on concentration c as expressed by the Eq. 

4.11:

Q  = a e /) Eq. 4.11

From the fitting o f  the data, a is 0.016, while p  is 0.41.

1/2The position o f the peak is known to follow a c  dependence in semi­

diluted hydrophobic polyelectrolytes solutions 15,16; the c 1/3 dependence

is characteristic o f liquid-like ordering. The c ('0'41±0'05') scaling o f the peak 

position observed is, therefore, denoting an intermediate behaviour o f the 

mucin solutions.

0.1

0.01
0 21 3 4 5 6

Mucin concentration / wt%

Figure 4.4 Plot o f the Q values for the main peak in the scattering from 

mucin against mucin concentration.
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Zimm plots in the low-Q region for the scattering from mucin at 

different concentrations are presented in Figure 4.5. Zimm plots were 

analyzed to obtain the correlation length £ and radius o f gyration Rg for 

each sample.

Since the main peak in the scattering from mucin solutions shifts to lower 

Q while decreasing the mucin concentration, the low-Q region considered 

for the Zimm plots was reduced to very low-Q values when decreasing the 

mucin concentration: avoiding the low-Q region comprising the main peak 

in the scattering allowed to have a linear decay in the Zimm plots. 

However, for the scattering from 1 wt% mucin solution this was not 

applicable because the main peak in the scattering profile is situated at 

very low-Q values: therefore, no Zimm plot was considered for this 

specific mucin concentration.

0.4

O Mucin 2 wt% 
□ Mucin 3 wt% 
A Mucin 4 wt% 
O Mucin 5 wt%0.3

^  0.2

0.1

0.0 —  

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

Q2 / A' 2

Figure 4.5 Zimm plots at low-Q region (0.009 A ' 1 < Q < 0.023 A'1)  for 

mucin solutions over a concentration range (2 wt% < [mucin] < 5 wt%), 

with linear fit  to the data (solid line).
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The correlation length, the radius o f gyration, the distance L together 

with the radius o f the globule and the volume fracture obtained for each 

sample are summarized in Table 4.2. The distance L between the globule 

centres was calculated using Eq. 4.10.

Clearly, the radius o f gyration, the correlation length and the distance 

between the globule centres increase while mucin concentration decreases. 

The volume fraction seems not to be particularly affected by the dilution 

while the radius o f the globule decreases slightly when the mucin reaches 

concentrations o f 4-5 wt%.

M udn

concentration

(wt%)

Radius o f

gysati

R? (nm)

Correlation

length,

£(nm )

Radius o f  the 

gJtibulOj 

R (nm)

Volume

fraction,

*

Distance between 

the globule 

centres,

L (nm)

5 41.0 ±4.1 23.5 ± 2.4 9.0 ±0 .5 0.37 ± 0.02 80.0 ± 18.3

4 45.0 ± 4 .5 26.0 ± 2 .6 9.0 ± 0.5 0.38 ± 0.02 89.0 ±20.5

3 49.0 ± 4 .9 28.0 ± 2 .8 11.5 ± 0 .6 0.38 ± 0.02 95.0 ±21.8

2 52.5 ± 5.2 30.0 ± 3 .0 11.5 ± 0 .6 0.36 ± 0 .02 102.5 ±23 .6

1 - - 11.5 ± 0 .6 0.36 ± 0 .02 -

Table 4,2 Parameters obtained from the model for the scattering from 

mucin solutions over a concentration range (1 wt% < [mucin] < 5 wt%).

Effects o f  the concentration on mucin solutions have been explored also 

by viscosity measurements. Viscosity experiments were performed on 

mucin solutions over a concentration range 0.1 < [mucin] < 5 wt% - at pH 

7 and 37 °C - in an Ostwald viscometer. Over the concentration range 0.1 

< [mucin] < 5 wt%, solutions o f PGM are viscous, as viscosity 

measurements show in Figure 4.6, and follow a trend such as 

rj oc [mucin]2. Results obtained were consistent with results found by
1 7Naresh et al. .
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1

Mucin pH 7, 37 °C

0.1 1 10 

Mucin concentration / wt%

Figure 4.6 Viscosity o f PGM solutions as function o f mucin concentration 

measured at pH  7 and 37 °C.

EH

Scattering profiles from mucin solutions 5 wt% over the pH range 

studied, 2 < pH < 9, at 37 °C are illustrated in Figure 4.7. Upon alteration 

o f the pH, the scattering from 5 wt% mucin solutions showed identical 

maxima, like if  the conformation o f the mucin does not change over this 

pH range. However, the sample at pH 2 did exhibit a little difference in the 

scattering: the intensity o f the maxima is slightly reduced but there is no 

change in the peak position.

Also the viscosity data o f mucin 5 wt% over a pH range o f  2 < pH < 9 

showed that mucin solutions did not exhibit relevant change in the 

viscosity upon alteration o f the pH (Figure 4.8). Therefore, no pH- 

dependent sol-gel transition was observed in these mucin sample. The 

problem is that the gel properties o f the commercial mucin cannot 

reproduce those observed in-vivo, as demonstrated by rheological studies 

performed by Kocevar-Nared et al. 18. The commercial mucin is highly
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degraded: in fact, the extraction and purification processes damage the 

disulfide bridges in the cysteine-rich domain, leading to a much weaker 

sol-gel transition around pH 4 and the lack o f gel formation. Nevertheless, 

the protein backbone and the carbohydrate side-chains appear to be 

unchanged during the purification process.

Therefore, commercial mucin can then be regarded as an interesting 

material to study the interaction between the glycoprotein and other 

molecules, while investigation o f the mucin gel properties should be 

carried out on mucin purified from fresh natural mucus.

1 0 0

Eo

O

COc<D
c
05c
Is</) 0.1

0.01
0.01 0.1

Wavevector, Q / A' 1

Figure 4.7 Scattering (symbols) and fit  (solid lines) to the scattering 

model from mucin solutions 5 wt% over a range o f pHs (2 < pH  < 9) at 37 

°C.
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•  Mucin 5 wt%, 37 °C

pH

Figure 4.8 Viscosity o f mucin 5 wt% as function ofpH at 37 °C.

Zimm plots in the low-Q region for the scattering from mucin 5 wt% 

over a pH range are shown in Figure 4.9. Zimm plots were analyzed to get 

the correlation length £ and radius o f gyration Rg for each sample.

Table 3.3 summarizes all the parameters obtained from the model and the 

Zimm plots for each mucin 5 wt% sample over the pH range considered. 

The data obtained resulted o f particular interest: in fact, when decreasing 

the pH, the correlation length together with the radius o f gyration and the 

distance between the globules exhibited an increase. This variation is 

consistent with the more extended conformation that mucin reveals at pH 

lower than 4. Also the hydrophobic globule shows a reduction in size, 

probably as a consequence o f a stronger hydrophobic interaction when 

lowering the pH.

Therefore, although from a rheological point o f view it is not possible to 

observe a pH-dependent sol-gel transition, the scattering on mucin sample 

at pH lower than 4 can give some information revealing that commercial 

mucin can still exhibit a more extended, unfolded conformation when the 

pH is lower than 4.
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Figure 4.9 Zimm plots at low-Q region (0.009 A 1 < Q < 0.023 A '1) for  

mucin solution 5 wt% over a pH  range (2 < pH  < 9), with linear fit  to the 

data (solid line).

Mucin 5 wt% 

pH

Radius o f  

gyration, 

Rf{m a)

Correlation

length,

£{dm)

Radius o f  the 

globule, 

R ( m )

Volume

#

Distance between 

the globule 

c&itres, 

X (nm )

2 71.0 ±7.1 41.0 ±4.1 7.0 ± 0.3 0.34 ± 0.02 141.0 ±32 .4

5 61.5 ± 6 .2 35.5 ± 3 .6 9.0 ± 0 .5 0.33 ± 0.02 1 2 2 .0  ±28.1

7 41.0 ±4.1 23.5 ± 2.4 9.0 ± 0 .5 0.37 ± 0.02 80.0 ± 18.3

9 43.0 ± 4 .3 25.0 ± 2.5 9.0 ± 0.5 0.34 ± 0.02 83.5 ± 19.2

Table 4.3 Parameters obtained from the model for the scattering from 

mucin solution 5 wt% over a pH  range (2 < pH  < 9).
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Ionic strength

Scattering from mucin solutions 5 wt% in a sodium chloride ambient 

over a range o f 0 < [salt] < 0 .1  M NaCl are displayed in Figure 4.10. 

Interestingly, the main peaks do not move with increasing ionic strength 

implying that they do not arise due to an electrostatic structure factor.

The Zimm plots in the low-Q region for the scattering from mucin 5 

wt% over a range o f  NaCl concentration are presented in Figure 4.11. The 

results from the analysis from the Zimm plots together with the other 

parameters obtained from the fit o f the SANS datasets are reported in 

Table 4.4. A significant difference in the radius o f  gyration, correlation 

length and distance between the globules is observed only when a 

concentration o f 100 mM is added to the 5 wt% mucin solution, while the 

size o f the globules is not affected by the presence o f  the salt.

These results are in agreement with those found by Waigh et al. 8, who 

performed SAXS studies on mucin in the presence o f  salt. They showed 

that the addition o f salt (0 < [NaCl] < 0 .1  M) caused a decrease in the 

radius o f gyration o f the mucin molecule due to a contraction o f  the 

distance between the globules attributed to an increased screening o f the 

electrostatic interactions o f the peptide backbone.
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Figure 4,10 Scattering (symbols) and fit(solid lines) to the scattering 

model from mucin 5 wt% solutions in a NaCl ambient over a range o f 0< 

[NaCl] < 100 mM at 37 °C.

0.30

Mucin 5 wt%
Mucin 5 wt% + NaCl 0.1 mM 
Mucin 5 wt% + NaCl 1 mM 
Mucin 5 wt% + NaCl 10 mM 
Mucin 5 wt% + NaCl 100 mM
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Figure 4,11 Zimm plots at low-Q region (0.009 A 1 < Q < 0.023 A'1) for 

mucin solution 5 wt% over a range o f 0< [salt] <0.1 M  NaCl, with linear 

f i t  to the data (solid line).
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[NaCl] added 

to mucin 5 

wt% (mM)

Radius of 

gyration, 

Rg (nm)

Correlation

length,

£ (nm)

Radius of the 

globule,

R (nm)

Volume

fraction,

<!>

Distance between 

the globule 

centres,

L (nm)

0 41.0 ±4.1 23.5 ± 2.4 9.0 ±0 .5 0.37 ± 0.02 80.0 ± 18.3

0 .1 33.0 ±3 .3 19.0 ± 1.9 9.5 ± 0.5 0.37 ± 0.02 64.0 ± 14.7

1 36.5 ± 3 .6 21.5 ± 2 .2 9.5 ± 0.5 0.37 ± 0.02 70.5 ± 16.2

1 0 42.0 ± 4.2 24.0 ± 2.4 9.0 ±0 .5 0.36 ± 0.02 82.0 ± 18.9

1 0 0 29.0 ± 2 .9 17.0 ± 1.7 9.0 ±0 .5 0.37 ± 0.02 54.5 ± 12.4

Table 4,4 Parameters obtained from  the model fo r  the scattering from  

mucin solution 5 wt% over a range ofO< [salt] <0.1 M  NaCl.

Temperature

The effect o f the temperature on the mucin conformation was also 

studied. Scattering from mucin 4 wt% at 25 °C and 37 °C are presented in 

Figure 4.12. The scattering from mucin does not appear to be affected by a 

temperature variation, implying that no change in the mucin conformation 

is observed upon the temperature interval investigated. These results are in 

agreement with what found by Nystrom et al. 19, who reported that no 

change in the mucin structure could be observed in this temperature 

interval.
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Figure 4.12 Scattering (symbols) and fit  (solid lines) to the scattering 

model from mucin 4 wt% solutions at 37 °C and 25 °C .

4.2.3. The effect o f mucolytic agents on the mucin structure

After having defined a model able to explain and to fit the scattering 

from PGM solutions, we wanted to explore the scattering from mucin 

solution in the presence o f TV-Acetyl-L-Cysteine (NAC), a mucolytic 

agent. The interest focused on studying the effect o f the mucolytic agent 

on the mucin structure as function o f the incubation time o f the mucin 

with the mucolytic agent.

4.2.3.1. The mucolytic agents

Mucolytic agents are able to dissolve thick mucus and they are usually 

used for treatment in respiratory difficulties. A mucolytic agent tends to 

break down the gel structure o f mucus and therefore decreases its 

elasticity and viscosity, helping to clear the mucus from the airways which 

makes it difficult to breath.

The most common mucolytic agents are A-Acetyl-L-Cysteine (NAC) and 

domase alfa. The NAC disrupts disulfide bonds in mucus as mode o f
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action, while the domase alfa acts enzymatically breaking down DNA in 

airways secretions. Since the interest is on mucus structure and how this 

can be altered by mucolityc agents, we will focus on 7V-Acetyl-L-Cysteine. 

The mechanism o f action o f NAC on mucin molecules consists o f 

reducing the disulfide bridges in mucin to free thiol (sulfhydryl) groups,
<%A

breaking the mucin polymer into smaller, less viscous units , as shown in

Figure 4.13. As a result both the viscosity and the elasticity o f the mucus

are lowered. NAC begins to reduce viscosity immediately. Its mucolytic
0 1activity increases with higher pH and is optimal with a pH o f 7.0-9.0 .

MUCOPROTEIN
• • • • • • •

+ 2 HS-

COCHj
I
NH

CH-sCH

COOH
• • • • • • •
MUCOPROTEIN N-acctylcystcinc

MUCOPROTEIN
• • • • • • •

I
SH

SH
I

• • • • • • •
MUCOPROTEIN

COCH,

NH

COCH3
I
NH

HCCHv-S-S-CHiCH
I " I
COOH COOH

N-N-Di acetylcysteine

Figure 4,13 Mechanism o f action o f N-Acetyl-L-Cysteine on mucin
7fimolecules. Taken from Schrier B.

4.2.3.2. Viscosity study

A viscosity study was carried out on mucin solution 5 wt% in the 

presence o f NAC 0.5% at pH 7 and 37 °C as function o f incubation time 

o f the mucin with the NAC. Viscosity data in Figure 4.14 illustrates how 

the viscosity o f  mucin was affected greatly by the presence o f NAC. After 

only an incubation time o f 1 0  minutes, the viscosity o f the mucin reduced 

by 33%. After 10 minutes, the viscosity o f mucin shows a continuous 

decrease reaching a 50% viscosity reduction after 135 minutes.
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Figure 4.14 Viscosity o f mucin solution 5 wt% in the presence o f NAC 

0.5% at pH  7 and 37 °C as function o f the incubation time.

4.2.3.3. Kinetic study by SANS

The effect o f NAC consists o f breaking down the disulfide bridges in 

mucin which are relevant in determining the mucin structure 

Furthermore, the presence o f NAC in mucin solutions affected 

significantly the viscosity o f the mucin. Therefore, a SANS study looking 

at the changes o f mucin structure as function o f the incubation time with 

the mucolytic agent would be o f interest.

Scattering from mucin 5 wt% in the presence o f NAC 0.5 % at pH 7 was 

recorded as function o f time, considering an incubation time range o f 

mucin solution up to 25 minutes at 37 °C (Figure 4.15). Despite the great 

changes observed in the viscosity o f mucin solutions immediately after the 

NAC was added, changes in scattering from mucin 5 wt% in the presence 

o f  NAC were less pronounced.

The position o f the main peaks in the scattering from mucin did not result 

affected by the incubation o f  the mucin with NAC. The major changes
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were related to the two main maxima at Q values (Qmax) o f 0.031 A ' 1 and

0.063 A ' 1 which appeared to be weaker in intensity when increasing the 

incubation time o f mucin with NAC. Figure 4.16 shows the scattering 

intensity o f  the main peak from the scattering from mucin (0.031 A 1) 

plotted against the incubation time o f the mucin with NAC: the scattering 

intensity decreases o f 1 cm ' 1 from the incubation time t = 0  to the time t = 

5 minutes; after this time, any prolonged incubation time did not affect the 

scattering intensity o f  the peak any further.

Mucin 5 wt% t=0 
Mucin 5 wt% t=5 min 
Mucin 5 wt% t=10 min 
Mucin 5 wt% t = 15 min 
Mucin 5 wt% t=20 min 
Mucin 5 wt% t=25 min

e°tor Q/A ' 1

Figure 4,15 Ternary plot displaying scattering (symbols) and fit  (solid 

lines) to the scattering model from mucin 5 wt% solutions in the presence 

o f NAC 0.5% at pH  7 as function o f the incubation time at 57 °C.
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I

10 15

Time / min

Figure 4,16 Plot o f the scattering intensities o f  the main peak in the 

scattering from mucin against incubation time o f mucin with NAC.

The Zimm plots in the low-Q region for the scattering from mucin 5 

wt% over an incubation time with NAC are presented in Figure 4.17. The 

results from the analysis from the Zimm plots together with the other 

parameters obtained from the fit o f the SANS datasets are reported in 

Table 4.5. A decrease in the radius o f gyration, correlation length, distance 

between the globule and also the radius o f the globules is observed 5 

minutes after the incubation o f mucin with NAC. These alterations could 

imply a break-down in the mucin structure as effect o f  the mechanism of 

action o f  the mucolytic agent. However, after this time, no significant 

changes are recorded.

The fact that changes in mucin structure are not particularly pronounced 

could be due to a degradation that commercial pig gastric mucin 

experiences during the purification process. The degradation occurs 

mainly in the cysteine-rich domain and consequently the disulfide bridges 

are damaged 18.
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Figure 4.17 Zimm plots at low-Q region (0.009 A'1 < Q < 0.023 A'1) for 

mucin solution 5 wt% over an incubation time (0 min < time < 25 min) 

with NAC, with linear fit  to the data (solid line).

Incubation time 

o f  mucin 5 wi% 

m m U A C  

(min)

Radltisof 

i " I S y ! < ■

, f V > ** 1 4
'1 ■ ■ ■■■ ■■ _

Correlation

M # (n tii)

-

Radius o f the 

globule, 

k  (inn)

Volume

fraction,

#

Distance between 

die globule centres, 

f Z(nm )

0 41.0 ±4.1 23.5 ± 2.4 9.0 ± 0 .5 0.37 ± 0.02 80.0 ±18.3

5 35.0 ± 3 .5 2 0 .0  ± 2 .0 7.5 ± 0.4 0.29 ±0.01 68.0 ± 15.6

1 0 36.0 ± 3.6 2 1 .0  ± 2 .0 7.7 ± 0.4 0.27 ± 0.01 71.0 ± 16.3

15 35.5 ± 3.6 20.5 ± 2.0 7.8 ± 0.4 0.31 ±0.02 69.0 ± 15.9

2 0 35.0 ± 3 .5 2 0 .0  ± 2 .0 7.7 ± 0 .4 0.29 ±0.01 67.5 ± 15.5

25 36.0 ± 3 .6 2 1 .0  ± 2 .1 7.7 ± 0.4 0.31 ±0.02 71.0 ± 16.3

Table 4.5 Parameters obtained from the model for the scattering from 

mucin solution 5 wt% over an incubation time (0 min < time < 25 min) 

with NAC.
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4.3. Conclusions

The conformation o f mucin in solution has been explored by SANS and 

a more comprehensive approach was applied to analyze the scattering 

from mucin in solution. The analysis o f the complex scattering profile 

from mucin solution was believed to most appropriate model a dispersion 

o f hydrophobic globules -  described as a dispersion o f uncharged 

polydisperse spheres -  connected by the glycosylated peptide backbone. 

According to this model, the radius o f  the globule, R, and the volume 

fraction, (f>, resulted to be 9.0 nm and 0.37, respectively. Furthermore, a 

Zimm plot analysis o f the low-Q region revealed a radius o f gyration, Rg, 

o f the mucin equals to 41.0 nm, a correlation length, (, o f  23.5 nm and 

distance between the two globules o f 80.0 nm. Despite the scattering 

profile from mucin did not change upon alteration o f  the ionic strength o f 

the mucin solutions, a Zimm plot analysis showed a decrease in the Rg o f 

the mucin molecule due to the addition o f NaCl, attributed to a contraction 

o f the glycosylated peptide spacer. These results are in agreement with
o

SAXS studies on mucin solutions performed by Waigh et al .

Upon dilution, the scattering from mucin exhibited the characteristic 

peaks even at concentration as low as 1 wt%. However, these peaks 

resulted shifted at lower Q, interpreted as a larger separation in the mucin 

network when diluted. Indeed, the correlation length, the radius o f 

gyration and the distance between the globules exhibited an increase while 

decreasing the mucin concentration, while no change in the radius o f the 

globules was observed.

Changes on the temperature did not affect the scattering from mucin at all.

Notwithstanding the sol-gel transition observed by Cao et al. on 

mucin solutions at pH lower than 4, interestingly the commercial PGM 

mucin here employed did not exhibit any relevant sol-gel transition over a 

broad pH range. The main reason seemed to be the fact that commercial 

mucins undergo to extraction and purification processes which damage the 

disulfide bridges in the cysteine-rich domain, main responsible o f the sol-
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gel transition. However, scattering from mucin upon alteration o f the pH 

showed that a pH < 4 the mucin conformation exhibited an increase in the 

correlation length, in the distance between the two globules and in the 

radius o f gyration: this could be related to a more extended conformation, 

typical o f  the mucin molecule at pH lower than 4.

The rapid decrease o f the viscosity o f  mucin solutions caused by the 

mucolytic agent NAC was in agreement with what found by Schrier et al. 

20. However, the relevant effect o f the NAC on the viscosity o f mucin was 

not equally supported by the effect o f  the mucolytic agent on the 

conformation o f mucin: a decrease o f  the correlation length and radius o f 

gyration o f the mucin was observed over the incubation time with the 

NAC; however, these changes were not as pronounced as the variation in 

viscosity due to the mechanism o f action o f NAC on mucin. The reason 

why changes in mucin structure were not particularly evident could be 

related, once more, to the degradation o f the commercial mucin.

Understanding the conformation o f mucin in solution upon the alteration 

o f some external conditions (concentration, pH, ionic strength, 

temperature, the presence o f a mucolytic agent) was o f fundamental 

importance from a physiochemical point o f view because it provided a 

complete picture o f the behaviour o f  mucin in solution when changing the 

external environment. Moreover, SANS studies on the conformation o f 

mucin here presented put the bases for undertaking any further and deeper 

SANS studies on mucin in solution: in fact, when considering delivering 

particles (i.e.: therapeutic molecules) through the mucosal barrier it 

fundamental to understand first the conformation o f the mucin in solution 

to better evaluate the impact that the mucin gel-network might have on the 

transport o f the particles.
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Chapter 5. SANS and PGSE-NMR 

studies on the interaction between polymers 

and mucin solutions

This chapter presents a comprehensive study on the diffusion and 

interaction o f a series o f water-soluble polymers with mucin solutions. 

The polymers considered are o f interest in the field o f polymer-drug 

delivery systems because they can be conjugated to liposomal carriers, 

nanoparticles and proteins to increase their solubility and stability or they 

can be involved in applications for gene delivery. Therefore, an 

understanding o f the dynamics o f the mobility through and/or binding o f 

these polymers to the mucosal barrier is o f fundamental interest for the 

design and development o f polymer-drug delivery constructs. An 

introduction to the applications o f pulsed-gradient spin-echo NMR 

(PGSE-NMR) and small-angle neutron scattering (SANS) on bio-gel 

system is first given.

5.1. Introduction

5.1.1. Application o f PGSE-NMR to bio-gel systems

As a non-invasive technique, PGSE-NMR can be used to quantify the 

diffusion o f micro- and nano-sized drug delivery constructs (liposomes, 

surfactant micelles, micro-emulsions, polymers) ’ in colloidal systems 

and bio-gels such as mucin glycoprotein solutions 8‘10, cartilage n , curdlan
10 1 1 f\gels , whey and casein protein gels " .

As explained in Chapter 2, a PGSE-NMR experiment quantifies the 

measurement o f the self-diffusion coefficient o f the species investigated 

within the solution. The diffusion coefficient thus determined contains 

dynamical and structural information defined by the size and shape o f the 

diffusing species and the solution within which it is dispersed. Diffusion 

coefficients decrease with increasing molecular size and as a reflection o f

105



Chapter 5

any binding or obstruction the diffusing species experience within the 

solution 17. In dilute solutions, hydrodynamic radii are most frequently 

calculated from self-diffusion coefficients via the Stokes-Einstein 

relationship (Eq. 2.4), notwithstanding its limitations (since it applies best 

for large, spherical molecules).

Associations and other interactions (such as binding) between diffusing 

species leads to a reduction in diffusion rate, commensurate with the 

increased size o f  the aggregate, modulated by the lifetime and 

concentration o f  the aggregate. For the situation where the aggregate is 

long-lived compared to the NMR timescale, two discrete NMR 

populations are manifest, sometimes giving rise to two discrete NMR 

signals 10. More commonly, fast exchange occurs and the effective 

diffusion coefficient is a population weighted average o f the two discrete 

environments, the faster rate associated with the non-aggregated species 

and the slower rate associated with aggregates, as shown in Eq. 5.1:

In the case o f small, rapidly diffusing molecules interacting with large, 

slowly diffusing structures, there is a significant sensitivity to the 

concentration o f the non-aggregated fraction o f the small molecule, and 

thus NMR diffusion measurements are highly useful for the study o f weak 

interactions.

In this context, diffusion NMR is used here to probe either the diffusion,

binding, interaction o f polymers with mucin solutions. The polymers

considered in this study -  such as poly(ethylene glycol), polyamidoamine

dendrimers, polyethylenimines -  are usually employed in the construction

o f  drug delivery systems, in particular they are polymeric carriers which

can be conjugated via covalent (often cleavable) bond to the therapeutic 
18moiety The polymeric carrier confers aqueous solubility,

biocompatibility to and improves the pharmacokinetics o f the therapeutic 

agent. The bioavailability o f the therapeutic agent is closely coupled to its

C  D fast 4 -  Caverage _  non-aggregated  T  ^ Eq. 5.1
C  total
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ability to be transported to the site o f action. Therefore, a key aspect in 

defining structure-activity relationships for drug delivery systems derived 

from polymer diffusion data is the requirement to separate the effects o f 

obstruction -  the reduction in polymer mobility due to the increased 

diffusion path-length associated with the polymer having to diffuse around 

and through the mucin network -  from the effects o f binding -  the 

reduction in polymer mobility due to a specific interaction between the 

polymer and the mucin molecules.

5.1.2. Application o f SANS to bio-gel systems

Small-angle neutron scattering (SANS) has been proved to be a unique 

and powerful tool to probe not only structures o f macromolecules in 

solutions, but also interactions o f different components in the system 

under investigation, and phase transitions o f soft-matter systems 19. The 

understanding o f inter-particle interactions, aggregation and cluster 

formation is still an important aspect in a number o f areas, ranging from
90cluster formation in various diseases process {i.e., Alzheimer’s disease)

91to the design o f drug-delivery systems . Several studies have used SANS
99 9-5

to investigate protein-protein or protein-surfactant interaction , to 

follow the cluster formation in protein solutions and colloids 24, to study 

the aggregation o f amphiphilic molecules into micelles and 

microemulsions 19.

In the present study, the use o f  SANS has been applied to quantify 

changes induced in the structure o f mucin by the addition o f a second 

polymer. The polymers tested are considered o f particular interest in the 

construction o f polymer-drug delivery systems: (i) poly(ethylene glycol) 

(PEG) has been widely used in the PEG coating (PEGylation) o f
9S 96 97

nanoparticle , liposomal carriers and proteins to enhance their 

stability and solubility; (ii) polyamidoamine (PAMAM) dendrimers and 

polyethyleneimine (PEI) find large applications in drug encapsulation28

90and in polyelectrolyte complexes (polyplexes) for gene delivery -  i.e., 

polymer-DNA complex; (iii) dextrin is a natural biodegradable polymer 

used to make up polymer-drug conjugates -  i.e., dextrin-doxorubicin
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conjugate 30, where doxorubicin is an anti-cancer drug. Examples o f 

polymer-protein conjugates commercially available are PEG-L- 

asparaginase (Oncaspar® 31) for the treatment o f acute lymphoblastic 

leukemia, PEG-adenosine deaminase (Adagen® 32) for the treatment o f 

severe combined immunodeficiency disease, and PEG-interferon-a 

conjugates (PEGASYS® 33 and PEG-INTRON® 34) as treatments for 

hepatitis C.

Therefore, the behaviour o f these polymers towards the mucin 

molecules is o f fundamental importance when looking at the delivery o f 

therapeutics through the mucosal barrier.

5.2. Results

5.2.1. SANS results

The scattering o f mucin 5 wt% in the presence o f  a series o f polymers 

has been investigated to quantify any perturbation in that structure induced 

by the addition o f the second ‘probe’ polymer. Characteristics o f all 

polymers used can be found in Table 3.1 in Chapter 3. The ‘probe’ 

polymers considered have been divided into three main groups: (i) 

uncharged polymers, which includes PEGs and dextrin; (ii) positively 

charged polymers, comprising PAMAM dendrimers G2.0 and G4.0 (with 

amine terminal groups) and PEI; (iii) negatively charged polymers such as 

PAMAM dendrimers G3.5 and G5.5 (with carboxyl terminal groups). In 

the mucin-‘probe’ polymer solutions, the concentration o f the mucin and 

o f the ‘probe’ polymers have been kept constant: 5 wt% for the mucin and 

0.5 wt% for the ‘probe’ polymer.
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5.2.1.1. Uncharged polymers

The scattering from 5wt% PGM solutions (37 °C) in the presence o f 

0.5wt% /-PEG 10K g m o l1, 6 -PEG 20K. g m ol'1, /-PEG 100K g mol' 1 and 

dextrin 50K g mol' 1 data are presented in Figure 5.2, 5.3, 5.4, 5.5, 

respectively.

To satisfy the so-called ‘contrast variation’ condition (explained in the 

Appendix B), a deuterated /-PEG 1 OK was used to minimize the scattering 

observed from the polymer when added to mucin solutions. Figure 5.1 

shows the scattering from 0.5 wt% /-PEG 1 OK in the hydrogenated (h) and 

deuterated (d) form in D2O: both the hydrogenated and deuterated /- 

PEG 1 OK exhibited a very low scattering. This means that, at the 

concentration o f 0.5 wt%, the scattering from an hydrogenated polymer in 

the mixture mucin-‘probe’ polymer solutions can be ignored. Therefore, 

hydrogenated forms were used for the other polymers when performing 

scattering experiments on the mixture mucin-‘probe’ polymer solutions: 

the concentration o f the polymers was too low to detect measurable 

scattering.

The scattering from mucin shows its typical profile -  as already seen on 

Figure 4.1 in Chapter 4 -  characterized by pronounced maxima against a 

slowly decaying background signal. The scattering experiments were 

performed in the mucin-‘probe’ polymer solutions at two different pHs 

which were physiologically relevant, viz pH 2 and 7. The same 

observations were made for all pHs examined.

SANS data were analyzed according to the model discussed in section

4.2.1 in Chapter 4. For each SANS data set, the radius o f  the globule o f 

the mucin molecule and the volume fraction were obtained from the fitting 

o f  the I(Q) globule scattering term in the Equation Eq.4.2; parameters fitted

by the HQ)gi0bule scattering term are expressed in the Equation Eq. 4.4. 

Zimm plots in the low-Q region for the scattering from mucin 5 wt% in
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the presence o f these ‘probe’ polymers were analyzed to derive the 

correlation length £ and radius o f gyration Rg.

Table 5.1 shows all the parameters obtained from the model and the Zimm 

plots for each mucin 5 wt% sample in the absence and in the presence o f 

the uncharged ‘probe’ polymer at the pHs considered (pH 2 and 7). The 

values for the radius o f gyration, correlation length, radius o f the globule 

and the distance between the globules for the mucin molecule in the 

presence o f the ‘probe’ polymer at pH 2 and 7 are not affected and 

resulted comparables to the values obtained for the mucin at the same pHs.

Clearly, the presence o f the ‘probe’ polymers in mucin solutions showed 

no significant differences from the scattering from the 5 wt% PGM 

solution at the pHs studied. The simplest interpretation o f this observation 

is the lack o f an interaction between the mucin and the various PEGs and 

dextrin, at least to a degree that induces a structural perturbation in the 

mucin.

•  Linear d-PEG 10K g mol'1, pH 7 
O Linear h-PEG 10k g mol'1, pH 7

Eo
O’

£
c
c
o>c■c

3(/)

0.01
0.01 0.1 

Wavevector, Q / A'1

Figure 5.1 Scattering (symbols) from 0.5 wt% l-PEG 10K g m ot1 in the 

hydrogenated (h) and deuterated (d) form in D2O at pH  7.
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•  Mucin 5 wt%, pH 7 
O Mucin 5 wt% + /-PEG 10K g mol'1, pH 7
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Figure 5.2 Scattering (symbols) and fit (solid lines) from 5 wt% mucin in

the absence and in the presence of 0.5 wt% deuterated l-PEG lOKg mol1

at pH  7 (top) and pH  2 (bottom).
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•  Mucin 5 wt%, pH 7 
O Mucin 5 wt% + 6-PEG 20K g mol'1, pH 7
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0.01 0.1

Wavevector, Q / A' 1

Figure 5,3 Scattering (symbols) and Jit (solid lines) from 5 wt% mucin in 

the absence and in the presence o f 0 . 5 wt% b-PEG 20K g moT1 at pH  7.
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•  Mucin 5 wt%, pH 7 
O Mucin 5 wt% + /-PEG 100K g mol'1, pH 7
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•  Mucin 5 wt%, pH 2 
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Figure 5,4 Scattering (symbols) and fit (solid lines) from 5 wt% mucin in

the absence and in the presence of 0. 5 wt% l-PEG 100K g  mot1 at pH  7

(top) and pH  2 (bottom).
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100
•  Mucin 5 wt%, pH 7 
O Mucin 5 wt% + Dextrin 50K g mol'1, pH 7
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Figure 5,5 Scattering (symbols) and fit (solid lines) from 5 wt% mucin in

the absence and in the presence of 0.5 wt% dextrin 5OK g mot1 at pH 7

(top) and pH  2 (bottom).
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Polymer added to 

mucin 5 wt%

Radius o f 

gyration, 

Rg (nm)

Correlation

length,

£(nm)

Radius o f the 

globule,

R (nm)

Volume

fraction,

<t>

Distance 

between the 

globule centres, 

L (nm)

none pH 7 41.0 ± 2 .0 23.5 ± 1.2 9.0 ±0 .5 0.37 ± 0.02 80.0 ± 18.3

none pH 2 71.0 ±3 .5 41.0 ± 2 .0 7.0 ± 0.3 0.34 ± 0.02 141.0 ± 32 .4

/-PEG 10K pH 7 40.0 ± 2.0 23.0 ± 1.2 8.5 ± 0.4 0.38 ± 0.02 78.0 ± 17.9

/-PEG 1 OK pH 2 72.0 ± 3 .6 41.5 ±2.1 6.8 ± 0.3 0.35 ± 0.02 143.0 ± 32 .9

6-PEG 20K pH 7 44.0 ± 2.2 25.0 ± 1.3 9.0 ± 0.5 0.37 ± 0.02 85.0 ± 19.5

/-PEG 100K pH 7 42.0 ±2.1 24.0 ± 1.2 8.1 ± 0 .4 0.37 ± 0.02 82.0 ± 18.9

/-PEG 100K pH 2 73.0 ± 3 .7 42.0 ±2.1 6.6 ± 0.3 0.34 ± 0.02 145.0 ±33.3

Dextrin 5OK pH 7 39.0 ± 2 .0 22.5 ± 1.1 9.2 ± 0.5 0.40 ± 0.02 75.5 ± 17.4

Dextrin 50K pH 2 68.0 ± 3 .4 39.5 ± 2.0 6.7 ± 0 .3 0.35 ± 0.02 136.0 ± 31.3

Table 5.1 Parameters obtained from  the model fo r  the scattering from  

mucin solution 5 wt% in the absence and in the presence o f  a range o f  0.5 

wt% uncharged polymers at p H  2 and  7.
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5.2.1.2. Positively charged polymers

Unlike the effect o f the uncharged polymers on the scattering from 

mucin solutions, the addition o f cationic polymers -  such as 0.5wt% 

PAMAM dendrimers amino terminated G2.0 and G4.0, PEI -  to 5wt% 

mucin solutions did induce changes in the mucin scattering. Any 

contribution from the PAMAM dendrimers and PEI to the scattering from 

mucin solutions has been ignored as there was no measurable scattering 

from these ‘probe’ polymers in the absence o f the mucin, as shown from 

Figure 5.6.

The presence o f 0.5 wt% PAMAM dendrimer G2.0 in 5 wt% mucin did 

not show any major change in the scattering from mucin solutions at pH 2 

and pH 9, while a perturbation in the scattering from mucin was observed 

at pH 7, as illustrated in Figure 5.7. The same trend was observed when 

0.5 wt% PAMAM dendrimer G4.0 was added to 5 wt% mucin solution 

(Figure 5.8). The most obvious change at pH 7 is the weakening o f the 

principle maximum on addition o f  the dendrimer, and the shift o f both 

maxima to lower Q. In particular, the two main maxima are at Q values 

(Qmax) o f 0.027 A '1 and 0.053 A"1, which correspond to distances/sizes o f 

23.3 nm and 11.8 nm respectively. This indicates that the structure giving 

rise to these features has increased in size and/or their separation has 

increased o f ~ 15-20% {i.e., become more dilute). Analogous behaviour 

was observed for the PAMAM dendrimer G4.0 in mucin solutions.

SANS data were analyzed according to the model discussed in section

4.2.1 in Chapter 4, from which information on the radius o f the globule o f 

the mucin molecule and the volume fraction were obtained. Zimm plots in 

the low-Q region for the scattering from mucin 5 wt% in the presence o f 

PAMAM dendrimers G2.0 and G4.0 were analyzed to derive the 

correlation length £ and radius o f  gyration Rg. Table 5.3 shows all the 

parameters obtained from the model and the Zimm plots for each 5 wt% 

mucin sample in the absence and in the presence o f the PAMAM 

dendrimers at the pHs considered (pH 2, 7 and 9).
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Parameters found at pH 2 and 9 for the mucin 5 wt% in the presence of 

PAMAM dendrimer G2.0 were analogous to those observed for mucin 

only solutions at the same pHs. Interestingly, the radius o f gyration, the 

correlation length and the distance between the globules in the system 

‘mucin + PAMAM dendrimer’ at pH 7 were larger compared to those 

observed for mucin only in solution at the same pH. In particular, when 

the polymer was added to mucin solutions at pH 7, an increase o f ~ 18-20 

% on the radius o f gyration and the correlation length o f the mucin 

molecule was observed. These results are in agreement with the shift to 

lower Q o f the main peaks observed in the scattering o f mucin in the 

presence o f PAMAM dendrimer G2.0 at pH 7. This means that the shift o f 

the main peaks in the scattering profile is related to a change in the radius 

o f gyration, Rg, and the correlation length, £  o f the mucin molecule: the 

more they move to lower Q, the larger Rg and £ are. Same results were 

obtained for the mucin in the presence o f PAMAM dendrimer G4.0.

The changes in the scattering from mucin due to the presence o f the 

positively charged PAMAM dendrimers resulted mainly pH-dependent 

and clearly indicated an interaction between these ‘probe’ polymers and 

mucin.

“Signature” pH effects were also observed when 6-PEI2K was added to 

the 5wt% mucin solutions as shown in Figure 5.9. The changes in the 

perturbations in the scattering were much more pronounced that the 

dendrimer case: no change in scattering was reported at pH 2 but a much 

larger difference in scattering was observed at pH 7. The presence o f the 

6-PEI2K at pH 7 and pH 9 in mucin solutions caused a noticeable 

weakening o f  the main maxima, typical o f  the scattering from mucin 

solutions. Furthermore, from the analysis o f the Zimm plots and the 

parameters obtained from the model, significant increase in the correlation 

length, radius o f gyration, distance between the globules and the size of 

the globules was observed in the system ‘mucin + 6-PEI2K’ at pH 7 and 9, 

as reported in Table 5.3. Therefore, the &-PEI2K showed a stronger 

interaction towards mucin compared to the interaction exhibited by the 

PAMAM dendrimers with mucin solutions.
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The presence o f 6-PEI25K caused flocculation o f  the mucin solutions 

and therefore, this system was not studied further but serves to underline 

the importance o f the relative signs and magnitudes o f the respective 

charge in these systems.

•  PAMAM G2.0, pH 9 
O PAMAM G4.0, pH 9
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Figure 5,6 Scattering (symbols) from 0.5 wt% PAMAM dendrimers G2.0 

and G4.0 in D2O at pH  9.
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Figure 5.7 Scattering (symbols) and fit (solid lines) from 5 wt% mucin in

the absence and in the presence of 0.5 wt% PAMAM dendrimer G2.0 at

pH  2 (top), pH 7 (middle) and pH 9 (bottom).
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Figure 5,8 Scattering (symbols) and fit (solid lines) from 5 wt% mucin in

the absence and in the presence of 0.5 wt% PAMAM dendrimer G4.0 at

pH  2 (top) and pH 7 (bottom).
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Figure 5,9 Scattering (symbols) and fit (solid lines) from 5 wt% mucin in

the absence and in the presence o f 0.5 wt% PEI 2K g mot1 at pH 2 (top),

pH  7 (middle) and pH 9 (bottom).
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Polymer added to 

mucin 5 wt%

Radius of 

gyration, 

Rg (nm)

Correlation

length,

£ (nm)

Radius o f  the 

globule,

R (nm)

Volume

fraction,

<!>

Distance 

between the 

globule centres, 

L (nm)

none pH 2 71.0 ±3 .5 41.0 ± 2 .0 7.0 ± 0.3 0.34 ± 0.02 141.0 ±32.4

none pH 7 41.0 ±2 .0 23.5 ± 1.2 9.0 ± 0.5 0.37 ± 0.02 80.0 ± 18.3

none pH 9 43.0 ±2.2 25.0 ± 1.3 9.0 ± 0.5 0.34 ± 0.02 83.5 ± 19.2

PAMAM G2.0 

pH 2

73.0 ±3.7 42.0 ±2.1 6 .8  ± 0.3 0.38 ± 0.02 144.5 ±33.2

PAMAM G2.0 

pH 7

50.0 ±2.5 28.0 ± 1.4 9.5 ±0.5 0.36 ± 0.02 98.0 ± 22.5

PAMAM G2.0 

pH 9

43.0 ±2.2 25.0 ± 1.3 9.8 ± 0.5 0.36 ± 0.02 84.5 ± 19.4

PAMAM G4.0 

pH 2

71.0 ± 3.5 41.0 ±2 .0 6.7 ±0 .3 0.35 ± 0.02 141.0 ±32.4

PAMAM G4.0 

pH 7

48.5 ± 2.4 28.0 ± 1.4 9.2 ± 0.5 0.35 ± 0.02 95.0 ±21.8

6 -PEI 2K pH 2 73.0 ±3.6 42.5 ±2.1 6 .6  ±0 .3 0.35 ± 0.02 146.0 ±33.6

6 -PEI 2K pH 7 51.5 ±2.6 30.0 ± 1,5 10.5 ±0 .5 0.32 ± 0.02 100.5 ±23.1

6 -PEI2K pH 9 52.0 ±2.6 30.0 ± 1.5 1 1 .2  ± 0 .6 0.31 ±0.02 102.0 ±23.5

Table 5.3 Parameters obtained from  the model fo r  the scattering from  

mucin solution 5 wt% in absence and in the presence o f  a range o f  0.5 

wt% positively charged polymers at p H  2, 7 and 9.
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5.2.1.3. Negatively charged polymers

Compared to the effect o f  the full generation PAMAM dendrimers G2.0 

and G4.0 on the scattering from mucin solutions, the half-generation 

PAMAM dendrimers G3.5 and G5.5 exhibited a similar modulation o f the 

scattering -  as illustrated in Figure 5.10 and 5.11 -  but with three notable 

differences:

(i) the change in scattering exhibited a rather different pH profile viz 

there was no change induced by the dendrimers at pH 2, but 

perturbations were evident at pH 7, which became more 

pronounced at pH 9;

(ii) the peaks moved in the opposite direction, i.e., towards higher Q 

values, indicating smaller scatterers and/or a decreasing 

separation. In the specific case, the position o f the main peaks at 

pH 9 has shifted to 0.035 A"1 and 0.065 A"1, which correspond to 

distances/sizes o f  18.0 nm and 9.7 nm, respectively. This 

indicates smaller scatterers and/or a decreasing separation o f ~ 5- 

10%;

(iii) there appears to be slight drop in scattering intensity in the 

presence o f the dendrimer which increases with the strength o f 

the interaction, i.e., it is more pronounced with increasing the pH 

(no such change was observed in the PAMAM G2.0 and G4.0 

cases).

Table 5.3 shows all the parameters obtained from the model and the 

analysis o f the Zimm plots for each mucin 5 wt% sample in the absence 

and in the presence o f the PAMAM dendrimers G3.5 and G5.5 at the pHs 

considered (pH 2, 7 and 9). While no significant changes in the parameters 

were recorded for the system ‘mucin + PAMAM dendrimer G3.5 (or 

G5.5)’ at pH 2 compared to those observed for the mucin only in solution 

at the same pH, a strong decrease in the correlation length, radius of 

gyration and distance between globules was detected when the PAMAM 

dendrimers were added to the mucin solution at pH 7 and pH 9, as 

reported in Table 5.3. These alterations, already noticeable at pH 7,
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became more pronounced at pH 9. In particular, when the polymers were 

added to mucin solutions at pH 9, a decrease o f  ~ 10 % was observed on 

the radius o f gyration and the correlation length o f the mucin molecule. 

These results are in agreement with the shift to higher Q o f the main peaks 

observed in the scattering o f mucin in the presence o f PAMAM 

dendrimers G3.5 and G5.5 at pH 9. Again, the shift o f the main peaks in 

the scattering profile is related to a change in the radius o f gyration, Rg, 

and the correlation length, £, o f the mucin molecule: the more they move 

to higher Q, the smaller Rg and £ are.

Therefore, the changes in the scattering from mucin due to the presence of 

the negatively charged PAMAM dendrimers resulted mainly pH- 

dependent and clearly indicated an interaction between these ‘probe’ 

polymers and mucin.
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Figure 5.10 Scattering (symbols) and fit (solid lines) from 5 wt% mucin

in the absence and in the presence of 0.5 wt% PAMAM dendrimer G3.5 at

pH  2 (top), pH  7 (middle) and pH  9 (bottom).
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Figure 5.11 Scattering (symbols) andfit (solid lines) from 5 wt% mucin

in the absence and in the presence of 0.5 wt% PAMAM dendrimer G5.5 at

pH  2 (top), pH  7 (middle) and pH  9 (bottom).
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Polymer added to 

mucin 5 wt%

Radius o f 

gyration, 

Rg (nm)

Correlation

length,

E  (nm)

Radius o f 

the globule, 

R (nm)

Volume

fraction,

*

Distance 

between the 

globule centres, 

L (nm)

none pH 2 71.0 ± 3.5 41.0 ± 2 .0 7.0 ± 0 .3 0.34 ± 0.02 141.0 ±32.4

none pH 7 41.0 ± 2 .0 23.5 ± 1.2 9.0 ± 0.5 0.37 ± 0.02 80.0 ± 18.3

none pH 9 43.0 ± 2 .2 25.0 ± 1.3 9.0 ± 0.5 0.34 ± 0.02 83.5 ± 19.2

PAMAM G3.5 

pH 2

71.5 ± 3 .6 41.0 ± 2 .0 6.6 ± 0.3 0.36 ± 0.02 142.0 ±32.7

PAMAM G3.5 

pH 7

38.0 ± 2 .0 22.0 ± 1.1 8.9 ± 0.4 0.38 ± 0.02 74.0 ± 17.0

PAMAM G3.5 

pH 9

36.0 ± 1.8 21.0 ±1.1 8.9 ± 0.4 0.38 ± 0.02 70.0 ± 16.1

PAMAM G5.5 

pH 2

71.0 ± 3.5 41.0 ± 2 .0 6.6 ± 0 .3 0.34 ± 0.02 141.0 ±32.4

PAMAM G5.5 

pH 7

38.0 ± 2 .0 22.0 ± 1.1 8.9 ± 0.4 0.37 ± 0.02 74.0 ± 17.0

PAMAM G5.5 

pH 9

37.0 ± 1.8 21.0 ±1.1 8.7 ± 0 .4 0.40 ± 0.02 71.5 ± 16.4

Table 5.3 Parameters obtained from  the model fo r  the scattering from  

mucin solution 5 wt% in the absence and in the presence o f  a range o f  0.5 

wt% negatively charged polymers at p H  2, 7and 9.
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5.2.2. PGSE-NMR results

The same ‘probe’ polymers tested in mucin solutions by SANS have 

been investigated by PGSE-NMR. Diffusion NMR provided a 

complementary indication o f  any interaction via the mobility o f the 

‘probe’ polymers within the mucin solution. The diffusion o f these 

polymers (at fixed polymer concentration, 0.5wt%) has been examined in 

a range o f  mucin solutions (0 < [mucin] < 5wt%) at 37 °C.

All polymers showed a decrease in the diffusion rate with increasing 

mucin concentration. Therefore, it is important to separate the effects o f 

any specific interactions (e.g., binding) from that arising due to simple 

obstruction, namely that the ‘probe’ polymers have to diffuse around the 

mucin and there is the associated increase in diffusion path-length. 

Additionally, there is the complication that the ‘probe’ polymers are 

inherently o f different molecular weights and this will also affect their 

absolute diffusion rates.

5.2.2.1. Uncharged polymers

The diffusion o f a series o f uncharged ‘probe’ polymers -  including 

PEGs with different molecular weights and structure, dextrin -  in mucin 

solutions has been studied.

Diffusion data o f  /-PEG 1 OK and /-PEG100K in mucin solutions are 

presented in Figure 5.12: the top graph shows the absolute self-diffusion 

coefficients o f  these polymers in mucin solutions; the same data 

normalized to the measured self-diffusion coefficient o f the PEGs in free 

solution (i.e., when [mucin] = 0  wt%) are illustrated in the bottom graph.

The normalized self-diffusion coefficient, , corresponds to the ratio
D0

between the self-diffusion coefficient o f  the polymer in mucin solution (at 

the specific mucin concentration), Ds, over the self-diffusion coefficient o f 

the polymer in free solution, Do.
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The diffusion o f  both /-PEG 1 OK and /-PEG100K decrease with 

increasing mucin concentration. Since the self-diffusion coefficient Ds is

proportional to the inverse o f  the radius o f  gyration Rg, Ds oc — , and the
Rs

radius o f  gyration is proportional to the inverse o f  the root squared o f the

molecular weight M w R  oc * for [mucin] = 0, DS(10K) > DS(100K) o f a
*

factor o f  3.5, which is consistent with the lOx decrease in molecular 

weight. The normalized diffusion data should, at least to a first 

approximation, remove the inherent effect o f  molecular weight and permit 

a comparison o f the retardation induced by the mucin.

The normalized self-diffusion coefficients o f  6-PEG20K, /-PEG50K and 

dextrin 50K are displayed in Figure 5.13. Although the difference in 

molecular weight, the diffusion behaviour o f  the &-PEG20K and /- 

PEG50K in mucin solution looks similar: the reason could be due to the 

different architecture o f the two ‘probe’ polymers -  branched for the 

PEG20K and linear for the PEG50K -  which slows down the diffusion o f 

the 6-PEG20K in mucin to a degree comparable to the diffusion o f the /- 

PEG50K in mucin.

In contrast, even i f  the /-PEG50K and the dextrin 50K have the same 

molecular weight, the bulkier and more rigid structure o f the dextrin 

together with its glycosydic chemical composition (which could lead to 

some affinity to the glycosydic chain o f the mucin molecule) makes the 

dextrin diffusing in mucin to a lower rate compared to the /-PEG50K 

because more sterically hindered.
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5.2.2.2. Positively charged polymers

Compared to the diffusion o f the PEGs in mucin where a more linear trend 

could be identified (Figure 5.12), the diffusion o f  the PAMAM dendrimers 

(Figure 5.14) as well as o f the 6-PEI2K (Figure 5.15) in mucin solution 

showed a rapid decrease in rate when increasing the mucin concentration 

until a plateau is reached, suggesting a retardation o f the ‘probe’ polymer 

from the mucin network.

Moreover, the normalized diffusion data o f PAMAM G2.0 and G4.0 in 

mucin solutions showed a complex pH-dependence, in a fashion 

reminiscent o f the characteristic profile observed in the SANS experiment. 

In particular, the data revealed a higher diffusion rate in mucin solutions at 

pH 9 (Figure 5.14, top graph) when compared to the diffusion o f these 

probe polymers in mucin at pH 7 (Figure 5.14, bottom graph), suggesting 

that the same complex pH-dependent interaction between the dendrimers 

and the mucin is observable in the diffusion data. Therefore, supporting 

the SANS data, from the diffusion data is clear that a strong interaction 

between the PAMAM G2.0 and G4.0 and the mucin takes place at pH 7 

and no relevant interaction can be considered at pH 9.

Further, the diffusion o f &-PEI2K was strongly retarded in mucin, 

interpreted as a strong interaction between the PEI and the mucin (Figure 

5.15). A manifestation o f  this strength o f interaction was the short “shelf- 

life” o f 6-PEI25K/mucin samples, which phase separated after just a few 

hours.

132



Chapter 5

c
©o
£
<D

8
|
CO

si

vco
T>
CD
N
Id

0.1

□ PAMAM G2.0 in mucin, pH 9 
■ PAMAM G4.0 in mudn, pH 9

0.01
1 2  3 4

Mucin concentration / wt%

c©
o
£
CDOO
co
"co

CD
CO
■o
CD
N

1 -

0.1 -

0.01

n

PAMAM G2.0 in mudn, pH 7 
PAMAM G4.0 in mudn, pH 7

2 3 4

Mucin concentration / wt%

Figure 5.14 Normalized self-diffusion coefficients o f PAMAM dendrimer 

G2.0 and G4.0 at pH  9 (top) and pH  7 (bottom) in mucin solutions.

133



Chapter 5

♦  PEI 2K g mol'1 in mucin, pH 7 
O PEI 2K g mol'1 in mudn, pH 9

1.0
c
CDO
*§ 0.8oo
c0 
‘to
1  06

<D
CO
T3 0.4 a>
N
CO
EL_oz

0.2

0.0
0 1 2 3 4 5

Mucin concentration / wt%

Figure 5.15 Normalized self-diffusion coefficients o f b-PEI 2K g m ot1 at 

pH  9 and pH  7 in mucin solutions.

134



Chapter 5

1.0
ca?
o
% 0.8oo
c  o 
■<0 
,2  0.6
T3

0.4
a>(0
■o<D 
N
75
E
O  0.2

0.0 •— L-  
0

♦  PEI 2K g mol'1 in mucin, pH 7 
O PEI 2K g mol'1 in mudn, pH 9

♦o ♦
2 3 4

Mucin concentration / wt%

Figure 5,15 Normalized self-diffusion coefficients ofb-PEI 2K g mol-1 at 

pH  9 and pH  7 in mucin solutions.

134



Chapter 5

5.2.2.3. Negatively charged polymers

The normalized diffusion data o f the half-generation PAMAM 

dendrimers G3.5 and G5.5 in mucin solutions exhibit a rapid decrease 

while increasing the mucin concentration, after which a very slow 

decrease correspond to an increase in mucin concentration (Figure 5.16). 

The diffusion data o f these ‘probe’ polymers in mucin solutions revealed a 

pH-dependent behaviour similar to the one observed for the SANS 

experiment: in fact, the diffusion o f the half-generation PAMAM 

dendrimers showed a higher rate at pH 7 (Figure 5.16, bottom graph) than 

at pH 9 (Figure 5.16, top graph). Supported by the SANS experiment, the 

diffusion data suggested that an interaction between the PAMAM 

dendrimers occurs and that it is stronger at pH 9 than at pH 7.
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5.2.3. Viscosity results

Together with SANS and PGSE-NMR, measuring the viscosity of 

mucin-‘probe’ polymer solutions can provide further information on the 

behaviour o f these polymers within mucin solutions.

The viscosity data o f mucin solutions over a range o f concentration, 0.1 

wt% < [Mucin] < 5 wt%, in the presence and in the absence o f 0.5 wt% /- 

PEG 10K g mol’1 and 0.5 wt% PAMAM dendrimer G2.0 at pH 7 and 9 are 

showed in Figure 5.17.

However, a clearer view o f the mucin-‘probe’ polymer solutions 

viscosity behaviour is given by the relative viscosity values,

Tlmucm+ probe polymer . .n  f a c t  ̂ fas relative viscosity reflects the effect o f the
mucin

‘probe’ polymer on the viscosity o f mucin without taking into account the 

increase in viscosity due to the increase o f mucin concentration.

The relative viscosity from mucin solutions (0.1 wt% < [mucin] < 5 

wt%) on the addition o f  the 0.5 wt% /-PEG 10K. g m ol'1, ,
7  mucin

showed no relevant changes as illustrated in Figure 5.18. The relative 

viscosity values resulted equal to — -“cw+m7 = 1.04 ±0.03 over the entire
7  mucin

mucin concentration range, indicating that the ‘probe’ polymer 

contribution to the viscosity o f mucin was irrelevant.

In contrast, the pH-dependent interaction showed by the PAMAM 

dendrimers G2.0 with mucin solutions was confirmed by the relative 

viscosity data as illustrated in Figure 5.19. The relative viscosity from 

mucin solutions (0.1 wt% < [mucin] < 5 wt%) on the addition o f the 0.5

wt% PAMAM dendrimer G2.0, ^ mucin.+PAMAMG2° ? exhibited an interesting
mucin

trend when solutions were measured at pH 7 (Figure 5.19, top graph): the 

relative viscosity showed an initial rapid decrease followed by a slow
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increase. This behaviour can be interpreted as a ‘titration’ o f the fixed 

concentration o f the PAMAM dendrimer (0.5 wt%) with an increasing 

concentration o f mucin solution (0.1 wt% < [mucin] < 5 wt%): initially the 

concentration o f mucin is low (lower than 1 wt%) compared to the 

concentration o f  the PAMAM dendrimer (0.5 wt%); therefore, the mucin 

tends to interact strongly with the PAMAM leading to a rapid decrease in 

viscosity. When the mucin concentration increases ([mucin] > 1 wt%), a 

slow increase in viscosity is observed which can be mainly attributed to 

the increase in mucin concentration: thus, it is like if  the PAMAM 

molecules have been already saturated by mucin molecules when mucin 

concentration is greater than 1 wt%.

When performing the measurements at pH 9, the relative viscosity showed 

no relevant changes (Figure 5.19, bottom graph), and the relative viscosity

values resulted equal to *1 mucm+PAMAMGi.o _  q gg ± Q Q3  over entire
mucin

mucin concentration range.

The viscosity data resulted in agreement with the SANS and PGSE- 

NMR experiments: in fact, the presence o f uncharged polymers such as l- 

PEG 10K did not affect greatly the viscosity o f  mucin solutions while 

positively charged polymer like the PAMAM dendrimer G2.0 exhibited a 

complex pH-dependent behaviour, implying an interaction between the 

PAMAM and the mucin at pH 7.
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5.3. Discussion

For all the ‘probe’ polymer-mucin samples explored, the SANS and 

PGSE-NMR experiments together with the viscosity measurements gave a 

complementary insight into the interaction o f the probe polymer with the 

mucin.

The non-ionic polymers (/-PEG 1 OK, /-PEG100K, 6-PEG20K, /- 

PEG50K, dextrin 50K) displayed a behaviour consistent with there being 

no interaction with the mucin: there was no change in the scattering profile 

and the viscosity o f  mucin was not affected by the presence o f these 

polymers, in agreement with what found by Huang et al. . Therefore, one 

may conclude that the moderate retardation in the diffusion arises simply 

due to the obstruction effect, which originates from the fact that the 

‘probe’ polymers have to diffuse around the mucin and there is the 

concomitant increase in the path-length o f the diffusing species . Indeed,
37the diffusion o f probe molecules can be affected by the polymer matrix ’ 

38 and, in the specific case, PEG molecules can be retarded by obstruction
o

effects exerted by the mucin matrix. A study by Lafitte et al. on the 

effect o f  PGM on the diffusion o f a series o f PEGs as function o f pH, ionic 

strength and temperature demonstrated that pH imparted a stronger impact 

on the PEGs diffusion rate compared with that due to ionic strength and 

temperature. The results reflected the underlying changes in mucin 

network homogeneity, flexibility and viscosity, which enhanced the 

diffusion o f  the probes when increasing a pH-dependent flexibility o f the 

mucin network, with the mucin molecules being more flexible at pH 7 

than at lower pH.

In analyzing the diffusion o f a series o f PEGs with different molecular 

weights, there is the obvious molecular weight dependence to consider 

when discussing the absolute diffusion rates o f the non-ionic ‘probe’ 

polymers in mucin, but the normalized diffusion rates suggested no 

specific molecular weight dependent interaction with mucin. However, a 

similar study on the self-diffusion o f PEGs and dextran in cartilage
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conducted by Trampel et al. 11 reported that the non-specific obstruction 

effect o f the collagenous network o f  cartilage together with the molecular 

weights o f the polymers were the main responsible reasons for the 

restricted diffusion experienced by the polymers.

Despite some studies have shown that PEG can be muchoadhesive, 

presumably by interpenetrating polymer network (IPN) effects between 

PEG chains and the mucus mesh 39-44 and/or hydrogen bonding between 

ether oxygen atoms in PEG and sugars on glycosylated mucins 45*47, Lai et 

al. 48, 49 demonstrated that low molecular weight PEG and high (dense) 

PEG surface coverage are both required for rapid mucus penetration of 

PEG-coated particles. Indeed, PEG-coated particles demonstrated a 

reduced hydrophobic interactions, hydrogen bonding and IPN effects with 

mucin. However, the hydrogen bonding interactions between the PEG and 

the mucin discussed by Efremova et al. 45 was pH-dependent, with the 

adhesion being considerably higher at pH 2 than pH 7.

The PAMAM dendrimers experienced a significant retardation in their 

diffusion within the mucin solutions -  sometimes close to an order o f 

magnitude -  but under conditions where the PAMAM and mucin bore 

opposite charge. Concomitantly, there was a movement o f the peak in the 

SANS data to lower Q, related to an increase o f ~ 18-20 % on the radius 

o f  gyration, Rg, and the correlation length, £  o f the mucin molecule: 

clearly, the interaction between the mucin and the PAMAM dendrimers at 

pH 7 gave rise to a larger feature in which the mucin molecule -  mainly 

the glycosylated spacer -  “wraps” around the dendritic polymers, 

expanding the mucin network. This mechanistic insight observed at pH 7 

was supported also by the viscosity data: in fact, a major reduction in the 

viscosity o f  mucin due to the addition o f the PAMAM dendrimer is 

observed up to mucin 1 wt%; when increasing the mucin concentration up 

to 5 wt%, the mucin network is saturated by the PAMAM dendrimers and 

the small increase in the viscosity can be mainly attributed to the increase 

o f  mucin concentration.
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Changing the pH (pH 2 and pH 9) to reverse the charge on either mucin or 

‘probe’ polymer, “turned o f f ’ the interaction. This effect was visible from: 

(i) the diffusion data, where the PAMAM dendrimers exhibited a higher 

diffusion rate in mucin at pH 9 than at pH 7; (ii) the scattering data, where 

no significant change was observed in the scattering from mucin when the 

PAMAM dendrimers were added to the mucin solutions; (iii) the viscosity 

data, since no relevant change in the viscosity o f mucin were recorded due 

to the presence o f the PAMAM dendrimers. Therefore, the mechanism o f 

interaction appears to be driven by electrostatic interactions36.

For the amino terminated PAMAMs (G2.0 and G4.0) at pH = 7, the 

amine groups are largely protonated (positively charged) 50 while the 

mucin glycoprotein is deprotonated and negatively charged -  via the 

carboxylate acid groups o f  the protein backbone (pKa ~ 3.9 - 4.1) and the 

side groups o f sialic acid (pKa ~ 2.6) 51, sulfated glucosamine and 

galactoamines (pKa ~ 1) -  leading to the observed strong electrostatic

interaction. The peak in the scattering moves to lower Q values, indicating 

that the separation o f the scattering centres has increased o f ~15-20%. 

SANS parameters mainly affected are the radius o f gyration, Rg, the 

correlation length, £  and the distance between the globules, L, in the 

mucin molecule. The addition o f PAMAM dendrimer G2.0 to mucin 

solutions at pH 7 caused an increase of: (i) the radius o f gyration from 

41.0 nm (mucin only) to 50.0 nm (mucin + PAMAM G2.0); (ii) the 

correlation length from 23.5 nm to 28.0 nm; (iii) the distance between the 

globules from 80.0 nm to 98.0 nm. It is hypothesized that the reason o f 

this increase is because the PAMAM binds electrostatically to the 

oppositely charged mucin monosaccharide side-chains, causing their 

collapse and perceived dilution (further apart). In Waigh’s model 53, this 

would suggest the glyscoylated spacer had become more extended, 

pushing the globules further apart. At pH = 2, the amine groups are 

completely protonated (positively charged) but the mucin is also partially 

positively charged (IEP = 2 - 3 )  54'56, and accordingly, no interaction is 

observed.
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The fact that the scattering from mucin was stronger affected by the b- 

PEI2K than by the PAMAM dendrimers could be due to a charge density 

that, in the case o f PEI2K is one order o f magnitude higher compared to 

the PAMAM dendrimer one.

The effect o f positively charged surfactants on proteins such as bovine 

serum albumin (BSA) has been investigated by Gull et al. showing by 

SANS that the binding o f cationic surfactants to proteins disrupt the native 

structure o f the protein. Earlier studies on mucus by scanning electron
co

microscopy and atomic force microscopy demonstrated that the 

addition o f cationic polymers -  i.e., poly(vinyl pyridine), chitosan -  

altered the mucin fiber network caused by electrostatic interactions 

between the polymer and the mucin molecules, generating a gel with 

regions o f  aggregated fibers.

In contrast, for the half generation PAMAMs (G3.5 and G5.5) at pH = 7, 

the terminating carboxylic acid groups are already moderately 

deprotonated (i.e., negatively charged) and the mucin is also negatively 

charged, surprisingly an interaction is still observed. This interaction 

becomes more pronounced at pH = 9, i.e., where the negative charge on 

the mucin is further increased. Indeed, at pH 9 the peak in the SANS 

pattern has moved to higher Q, resulting in a decrease o f ~ 10 % on the 

radius o f gyration, Rg, the correlation length, £  and the distance between 

the globules, L, in the mucin molecule: this indicates that the separation o f 

scattering centres has decreased. The addition o f PAMAM dendrimer 

G3.5 to mucin solutions at pH 9 has definitely caused a decrease of: (i) the 

radius o f gyration from 43.0 nm (mucin only) to 36.0 nm (mucin + 

PAMAM G3.5); (ii) the correlation length from 25.0 nm to 21.0 nm; (iii) 

the distance between the globules from 83.5 nm to 70.0 nm. Supported by 

the SANS experiments, also the diffusion data suggested that an 

interaction between the PAMAM dendrimers 3.5 and 5.5 and mucin 

occurs: this interaction appears to be stronger at pH 9 rather than at pH 7 

since the diffusion o f the PAMAM dendrimers 3.5 and 5.5 in mucin are 

more retarded at pH 9 than at pH 7.
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Clearly, a different mechanism is operating in the full and half- generation 

PAMAMs. The origin o f the interaction in the half generation PAMAMs 

is most likely to be hydrogen bonds between the charged carboxylic acid 

groups on the PAMAM and the sugar residues on the monosaccharide 

side-chains. The decrease in the separation may occur via a number of 

mechanisms -  the collapse o f  the glysosylated spacer in Waigh’s m odel53 

-  driven presumably by the PAMAM inducing bridging between adjacent 

saccharide structures. No interaction is observed at pH 2 where the 

PAMAM is fully protonated (i.e., no charge is bore) and no hydrogen 

bonding can take place between the carboxylic acid groups on the 

PAMAM and the sugar residues on the monosaccharide side-chains. 

However, Willis et al. reported that the presence o f anionic polymer 

such as the poly(acrylic acid) had a little effect on the structure o f mucin 

from a scanning electron microscopy analysis.

A summary o f  the PGSE-NMR study performed on the wide family o f 

‘probe’ polymers with mucin solutions is presented in Figure 5.20. The 

results o f this large study are illustrated in the bar-chart representation, 

where the normalized self-diffusion coefficients have been tabulated at 

one representative mucin concentration, 3 wt%. The unshaded bars 

correspond to those systems for which SANS confirmed the lack o f an 

interaction whereas the shaded bars correspond to the interacting systems. 

The non-interactive systems demonstrated a reduction in the diffusion o f 

the ‘probe’ polymer in mucin o f 40% when compared to the diffusion o f 

the polymer in free solution {i.e., [mucin] = 0 ); in the interactive systems 

the reduction in the diffusion rate resulted o f 90%. This relevant difference 

can be explained considering simply an obstruction effect in limiting the 

diffusion o f the non-interactive ‘probe’ polymers in the mucin network, 

while a more specific electrostatic interaction binds the interactive ‘probe’ 

polymers to the mucin molecules.
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5.4. Conclusions

A series o f polymers-mucin solutions has been investigated to probe the 

effect o f different polymers on the structure o f mucin. ‘Probe’ polymer- 

mucin solutions have been explored by small-angle neutron scattering 

(SANS), pulsed-gradient spin-echo NMR (PGSE-NMR) and viscosity 

measurements. The SANS data provided a simple measure o f the 

occurrence and nature o f any interaction between the probe polymer and 

the mucin. The diffusion data together with the viscosity measurements 

gave a complementary insight into these systems, trying to differentiate 

and quantify obstruction effects from specific interactions.

Non-ionic polymers such as /-PEG 10K and /-PEG100K did not exhibit 

a specific interaction with the mucin, but suffered a moderate retardation 

in their diffusion through the mucin, associated to an obstruction effect of 

the polymer within the mucin gel-network. A pH-dependent interaction 

was found for a series o f PAMAM dendrimers (positively and negatively 

charged) and PEI, exposing a strong electrostatic interaction. An attractive 

or repulsive electrostatic interaction was experienced by the polymers 

depending on the charge bore by both the polymer and the mucin at the 

specific pH under investigation. This specific interaction resulted in a 

significant retardation in the diffusion o f these polymers in the mucin 

solution.

This study has shown that it is possible to distinguish and separate the 

effects o f specific interactions between the ‘probe’ polymer and mucin 

from simple obstruction effects.

These conclusions should direct the choice o f polymer structure to be 

adopted when designing polymer based delivery systems for the delivery 

through such mucin-rich environments.
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Chapter 6

Chapter 6. Synthesis and 

characterization of PEGylated PAMAM 

dendrimers in mucin solutions

Results presented in this chapter show the effect of PEGylation of full 

generation polyamidoamine (PAMAM) dendrimers on the interaction with 

mucin. Because of their unique structure -  regularly branched polymers 

with a well-defined dendritic architecture and several functional groups on 

their periphery which can be used for the attachment of drugs -  PAMAM 

dendrimers are relevant polymers in polymer-drug delivery systems. 

PAMAM dendrimers with different degrees of PEGylation were 

synthesized and characterized. Studies on the PEGylated PAMAM 

dendrimers in mucin solutions were performed by small-angle neutron 

scattering (SANS) and pulsed-gradient spin-echo NMR (PGSE-NMR) to 

investigate whether the PEG coating could reduce the interaction shown 

by PAMAM dendrimers towards mucin molecules.

6.1. Introduction

6.1.1. The importance o f PEGylation ofproteins and peptides

PEGylation consists on a simple modification of a molecule -  i.e., a 

protein, peptide or non-peptide molecule -  by the covalently linking of 

one or more poly(ethylene glycol) (PEG) chains which is able to improve

the pharmacological properties of a drug, especially for peptide and
1 1protein therapeutics ' . Indeed, PEG is a non-toxic, non-immunogenic, 

non-antigenic, water-soluble polymer. Thanks to these properties, PEG is 

widely used as a modifying polymer to decrease the immunogenicity and 

antigenicity as well as to increase the body-residence time and stability of 

proteins, enzymes, organic molecules. Furthermore, the Food and Drug 

Administration (FDA, USA) has approved the use of PEG in foods, 

cosmetics and pharmaceuticals, in different types of formulations -  

including injectable, topical, rectal and nasal. Examples of PEG
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conjugates commercially available are: (i) PEG-L-asparaginase

(Oncaspar® 4), for the treatment of acute lymphoblastic leukemia; (ii) 

PEG-adenosine deaminase (Adagen® 5), for the treatment of severe 

combined immunodeficiency disease; (iii) PEG-interferon-a conjugates 

(Pegasys® 6 and PEG-Intron® 7), used to remove hepatic and extra-hepatic 

hepatitis C virus infection.

PEGylation was firstly described in the late 1970s by Davis 8 and 

Abuchowsky 9’ 10 who reported a chemical modification via covalent 

attachment of poly(ethylene glycol) chains to proteins (i.e., albumin) and 

enzymes (i.e., catalase). At that time, modifying chemically a protein or an 

enzyme was innovative since proteins were considered delicate molecules 

able to stand only few gentle alterations. Their study revealed unexpected 

findings, showing that PEGylation not only protects proteins from 

destruction during drug delivery, but also improves the pharmacokinetics 

(i.e., mobility of the drugs throughout the body) and pharmacodynamics 

(i.e., changes in measureable clinical parameters related to a drug, such as 

increase in antitumor activity, decrease in nausea) properties of 

polypeptide drugs by increasing water solubility, reducing renal clearance 

and limiting toxicity.

Thereafter, PEGylation became a very common method for the 

modification of molecules, not only proteins 11 with the purpose to 

overcome the limitations -  such as inadequate water solubility and poor 

pharmacokinetic profile -  o f some therapeutic agents.

Before reacting with a polypeptide, the PEG needs to be activated. A 

variety of chemical modifications are used to synthesize an active PEG 

derivative with an electrophilic functional group -  such as active 

carbonate, active ester, aldehyde, as illustrated in Figure 6.1 -  which can 

be easily coupled to a specific site (e.g., amine, sulphydiyl group or other 

nucleophile) on the therapeutic molecule. The PEG molecule can be made 

monofunctional by the use o f methoxy-PEG (m-PEG), since this PEG 

form possesses only one hydroxyl group for activation and the methoxy 

group is inert to standard chemical processes 12.
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One of the sites which is frequently used for PEG conjugation is the 

amino group since it is the most common group in proteins and is usually 

well-exposed to the solvent and, therefore, can be easily modified. 

However, PEGylating site-specifically can reduce the loss of biological 

activity and reduce immunogenicity of the protein. For instance, because 

cysteines are rarely present in peptides, PEGylation of the thiol groups of 

cysteines not involved in disulphide bridges is ideal for specific 

modifications.

PEG derivatives suitable for amine modification include N- 
hydroxysuccinimidyl-activated esters (generating an amide linkage), PEG- 

epoxide (amine linkage), PEG-carbonyl imidazole (urethane linkage), 

PEG-tresylate (amine linkage) and PEG-aldehyde (amine linkage). Thiol 

groups can be modified by use of PEG-maleimide and vinyl sulfone 13' 15.
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Figure 6.1 Method for the activation o f PEG molecles. (A) Cyanuric 

chloride method; (B) A variation on the cyanuric chloride method; (Ca) 

PEG-succinimidyl succinate method; (Cb) Substitution o f the succinate 

residue by glutarate; (Cc) Substitution o f  the aliphatic ester in (Ca) by an 

amide bond; (D) Imidazoyl formate method; (E) and (F) Variations using 

phenylcarbonates o f  PEG; (G) Succinimidyl carbonates o f PEG; (H) 

Succinimydyl active ester o f PEG. Taken from Harris J. M. 2.

Obviously there are some limitations in the use o f  PEG. First o f all, PEG 

is a synthetic polymer which means that can be polydisperse: in the 

conjugation o f  the PEG with protein or drugs, this leads to a population of 

protein or drug conjugates which might have different biological 

properties. Nowadays, the limitation o f the polydispersity can be easily 

overcome considering all the new methods o f  synthesis and purification 

which bring on the market low polydisperse PEGs.

Another problem for the use o f PEG refers to its elimination from the 

body. If  PEGs can be usually eliminated through urine or feces, high 

molecular weight PEGs can accumulate in the liver. Therefore, a
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molecular weight of 30 KDa was calculated as a threshold for renal 

clearance l. However, enzymes such as cytochrome P450 16 or alcohol 

dehydrogenase 17 can break down branched PEG chains. Therefore, the 

higher PEG molecular weight used in protein conjugation is 40 KDa in the 

branched form 18.

6.1.2. Other applications o f PEGylation

PEGylation has found several applications including the modification of 

drug delivery systems such as liposomal carriers, nanoparticles and 

polymeric carriers.

Liposomes {i.e., bilayer vesicles) have been widely used as carriers for 

the delivery of encapsulated agents. However, liposomal delivery presents 

a number of limitations. Liposomes are often retained by the liver, 

kidneys, spleen and the liposomal systems tend to ‘leak’ drug while in 

circulation. Many of these limitations can be improved by PEGylation 19, 

20. Indeed, PEGylated liposomes demonstrated an increased half-life, a 

decreased plasma clearance together with the liposomal system being less 

likely to leak drug while in circulation. PEG is incorporated into the lipid 

bilayer of the liposome, forming a hydrated shell that protects it from

plasma proteins and lipoproteins, bringing an eight-fold increase in plasma
01

half-life of the liposome compared to an unmodified liposome .

Recent studies on the encapsulation of thrombolytic agent into PEGylated 

liposomes reported a prolonged circulation lifetimes of the therapeutic 

agent by five-fold compared with the drug lifetime encapsulated into the 

unPEGylated liposome 22.

Liposome technologies have been applied also for the treatment of 

metastasis breast cancer and ovarian cancer. Several studies revealed that 

PEGylated liposomal doxorubicin (with doxorubicin being an anticancer 

drug for the treatment of solid tumors) -  CAELYX®/DOXIL® -  showed 

significantly reduced cardiotoxicity, vomiting and alopecia in the 

treatment of metastatic breast cancer when compared to the treatment with 

conventional doxorubicin 23'27. Also for the treatment of ovarian cancer,
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the use of PEGylated liposomal doxorubicin improved the delivery of the 

therapeutic agent to the target tumor tissue, allowing enhanced uptake by 

cancer cells, together with a lower toxicity profile 28"30.

Surface-modification o f delivery vehicles with PEG has been reported 

also as a promising method to improve the stability and performance of 

some non-viral and gene vectors 31'37. Diffusivity measurements of 

PEGylated nanoparticles demonstrated how the PEG-surface-modifkation 

improved greatly the diffusivity o f the nanoparticles compared to 

unPEGylated nanoparticles as well as reduced adhesive interactions o f the 

nanoparticles with intracellular components. Furthermore, PEGylation has 

shown to improve particle transport through biological barriers, such as 

mucus from healthy volunteers 38 or patients with cystic fibrosis 39 since 

PEG coating can reduce the adhesion and, therefore, enhance the mobility 

o f particles indie mucus gel-network.

Because of their unique structure -  highly branched polymers with a 

well-defined dendritic architecture and many reactive surface groups 

which can be used for the attachment o f drugs -  polymers like 

poly(amidoamine) dendrimers are widely used in biomedical and 

pharmaceutical applications (i.e., drug and gene delivery vehicles 40-45) but 

-  especially the PAMAM dendrimers bearing amino terminal groups -  

show cytotoxicity (i.e., being toxic to cells) and hemolytic properties (i.e., 
destroying red blood cells). Conjugation of the PAMAM dendrimers with 

PEG chains has been considered as a method to improve their 

biocompatibility and reduce the toxicity 46.

Several studies 47-52 indeed demonstrated that PEGylation o f the surface 

o f the PAMAM dendrimer can considerably increase the drug carrier 

cytocompatibility. In addition, the optimized degree o f PEGylation for the 

PAMAM dendrimers would still allow an high drug payload on die 

dendrimer 49. However, studies on partly PEGylated PAMAM dendrimers 

used as carriers for the anticancer drug doxorubicin revealed that the 

antitumor activity o f the conjugates increased with increasing the
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PEGylation degree 48,50. The PEGylation o f PAMAM dendrimers resulted 

to have increased their drug-loading capacity, reduce their drug release 

rate and haemolytic toxicity when PEGylated PAMAM dendrimers were 

used as drug delivery systems for antitubercular drug (i.e., rifampicin) 53, 

as DNA delivery systems 51 and for pulmonary delivery of heparin54.

Considering all the positive effects showed by the PEGylation 

techonology, the idea o f the study here presented is to investigate whether 

the PEGylation of the amino terminated PAMAM dendrimers studied in 

Chapter 5 can ‘turn o ff  the interaction showed by these polymers in 

mucin solutions. Furthermore, having synthesized the PEG-PAMAM 

conjugates with different degrees o f PEGylation, the critical degree of 

PEGylation o f PAMAM dendrimers needed to reduce the interaction with 

mucin was explored. The effects o f PEG-PAMAM dendrimer conjugates 

on mucin solutions have been investigated by SANS and PGSE-NMR.

6.2. Results

6.2.1. Synthesis and characterization ofPEG-PAMAM dendrimer 
conjugates

In order to study the effect o f PEGylation on PAMAM dendrimers, a 

series o f PEG-PAMAM dendrimer conjugates -  10%, 50% and 100% 

PEGylated PAMAM dendrimers G2.0 and G4.0 -  were synthesised 

following the method explained in section 3.2.2 in Chapter 3.

The PEG-PAMAM dendrimer conjugates were characterized by 1H- 

N M R 55.

!H-NMR spectrum of the 100% PEGylated PAMAM dendrimers G2.0 in 

D2O is illustrated in Figure 6.1. The 1H NMR chemical shifts (ppm) of the 

signals from the PEG-PAMAM dendrimer are as follow: Spamam 2.31 (br, 

-NCH 2CH2CO-), Spamam  2.42 (m, -CONHCHjN- and -NCHjCHjN-), 

Spamam  2.53 (br, -CONHCH2CHjN-), Spamam  2.71 (br, -N CH 2CH2CO-), 

Spamam  3.21 (m, -ONHCH2CH2N-), Speg 3.28 (s, -OCH j), Spec 3.52 (m, - 

OCH2CH2OCH3 ), Speg  3.59 (b, -0C H 2CH20 -  ), Speg 3.67 (m, -
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NHCOOCH2-). ‘H-NMR spectra o f the 50% and 10% PEGylated 

PAMAM dendrimers G2.0 in D2O are reported in Figure 6.3 and 6.4 

respectively.

1 H-NMR spectrum of the 100% PEGylated PAMAM dendrimers G4.0 

in D2O is presented in Figure 6.5. The NMR chemical shifts (ppm) of 

the signals from the PEG-PAMAM dendrimer are as follow: S p a m a m  2.32 

(br, -NCH 2CH2CO-), 8 p a m a m  2.43 (m, -CONHCH2N- and -N CH 2CH2N- 

) ,  S p a m a m  2.53 (br, -CONHCH2CH2N-), 8 PAm a m 2 .7 1  (br, -N CH 2CH2CO- 

) ,  8 PAm a m 3 .2 1  (m, -ONHCH2CH2N-), 8 PEg 3 . 2 8  ( s , -O C H 3), 5 p e g 3 .5 3  (m, 

-OCH2CH2OCH3 ), 5peg 3.60 (b, -0C H 2CH20 -  ), 5PEG 3.68 (m, - 

NHCOOCHr). JH-NMR spectra of the 50% and 10% PEGylated 

PAMAM dendrimers G4.0 in D20  are shown in Figure 6 .6  and 6.7, 

respectively.

Integration of the NMR peaks belonging to the PEG, PAMAM 

dendrimer G2.0 and PAMAM dendrimer G4.0 provided an estimation of 

number o f conjugated PEG molecules per dendrimer for each PEG- 

PAMAM conjugate, as illustrated in Table 6.1. The degrees of PEGylation 

(10%, 50% and 100%) for the PEG-PAMAM conjugates reported good 

yields, laying between 87.5% and 100%.

163



Chapter 6

3:50 3JOO 250

Figure 6.2 1 H-NMR spectrum of the PEG-PAMAM G2.0 conjugate 100%
PEGylated, full (top) and zoomed in (bottom), in D2 O.
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Figure 6.3 1 H-NMR spectrum of the PEG-PAMAM G2.0 conjugate 50%
PEGylated, full (top) and zoomed in (bottom).
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Figure 6.4 1 H-NMR spectrum of the PEG-PAMAM G2.0 conjugate 10%
PEGylated, full (top) and zoomed in (bottom).
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Figure 6,5 1 H-NMR spectrum of the PEG-PAMAM G4M conjugate 106%
PEGylated, full (top) and zoomed in (bottom), in D2O.
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Figure 6.6 1H-NMR spectrum o f the PEG-PAMAM G4.0 conjugate 50%
PEGylated, full (top) and zoomed in (bottom), in DyO.
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Figure 6.7 1 H-NMR spectrum of the PEG-PAMAM GAO conjugate 10%
PEGylated, full (top) and zoomed in (bottom), in D2 O.
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Conjugate
Feed ratio 

PEG:PAMAM 
(by mole)

No. of-N H 2 
groups

No. of 
conjugated PEG 

(expected 
values)

No. of 
conjugated PEG 
(by 'H-NMR)

Degree of 
PEGylation 

(%>
Yield (%)

Molecular 
weight (g m of1)

PAMAM 
dendrimer G2.0

- 16 - - - - 3260

PAMAM G2.0 
10% PEGylated

1 .6 14.4 1 .6 1.4 10 87.5 4492

PAMAM G2.0 
50% PEGylated

8 8 8 8 .0 50 1 0 0 7946

PAMAM G2.0 
1 0 0 % 
PEGylated

16 0 16 16.0 1 0 0 1 0 0 12650

PAMAM 
dendrimer G4.0

- 64 - - - - 14210

PAMAM G4.0 
10% PEGylated

6.4 57.6 6.4 6 .1 10 95 17953

PAMAM G4.0 
50% PEGylated

32 32 32 32.0 50 1 0 0 32953

PAMAM G4.0 
1 0 0 % 
PEGylated

64 0 64 61.1 1 0 0 95.5 51760

Table 6.1 Characteristics o f  PAMAM dendrimers and PEG-PAMAM dendrimer conjugates.
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6.2.2. SANS results

As previously discussed in Chapter 5, the addition of either PAMAM 

G2.0 or G4.0 dendrimers to mucin solutions demonstrated a pH-dependent 

specific electrostatic interaction occurred between the dendrimer and the 

mucin, which appeared to be significant at pH 7. Here, the effect of 

PEGylation o f the PAMAM dendrimers on mucin solutions is investigated 

by SANS.

The scattering from 5 wt% mucin solutions in the presence of 0.5 wt% 

PEG-PAMAM G2.0 and G4.0 conjugates 100% PEGylated at pH 7 is 

shown in Figure 6 .8 . The concentration o f the conjugates was too low to 

detect measurable scattering: therefore, it is possible to ignore their 

contribution to the scattering o f mucin when performing scattering 

experiments on the mixture mucin/PEG-PAMAM conjugates solutions. 

As illustrated in Figure 6 .8 , whereas the presence o f the PAMAM 

dendrimer G2.0 or G4.0 clearly perturbed the scattering from mucin at pH 

7, no significant changes were observed in the scattering from mucin 

when the PEG-PAMAM G2.0 and G4.0 conjugates 100% PEGylated were 

added to mucin solutions.

When the degree o f PEGylation of the PAMAM dendrimers was 

lowered from 100% to 50% and 10% the scattering from mucin was 

slightly affected by the presence of the partly PEGylated PAMAMs, as 

showed in Figure 6.9. The effect exhibited by the partly PEGylated 

PAMAMs in mucin solutions was not as strong as the one showed by the 

unPEGylated PAMAM dendrimers. This indicates that the partly 

PEGylated PAMAMs exhibited a small residual electrostatic interaction 

with the mucin molecules due to the free amino groups which have not 

been PEG coated.

Parameters obtained from the model and from analysis of the Zimm 

plots are shown in Table 6.2 (for the PEG-PAMAM G2.0 conjugates) and 

Table 6.3 (for the PEG-PAMAM G4.0 conjugates). The values obtained 

for the addition o f 100% PEGylated PAMAM G2.0 and G4.0 conjugates
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to mucin solutions do not report great difference compared to the ones 

observed for mucin only in solution at pH 7, indicating a non-interactive 

system.

For the 50% and 10% PEGylated PAMAM G2.0 and G4.0 conjugates in 

mucin solutions, parameters such as the radius o f gyration, the correlation 

length and the distance between the globules o f the mucin molecules 

reported slightly larger values than the ones observed for the mucin only 

samples. This is related to the small electrostatic interaction exhibited by 

the partly PEGylated PAMAM conjugates with the mucin molecules.

Overall, PEG chains generated a ‘shell’ able to mask the positively 

charged surface o f die PAMAM dendrimers which indeed ‘turned o ff  the 

electrostatic interaction between the dendrimer and the mucin 

glycoprotein. The interaction was completely removed when the degree of 

PEGylation o f the PAMAM was equal to 100%. A degree of PEGylation 

lower than 1 0 0 % was, however, able to reduce the strong interaction 

between the PAMAM and the mucin.
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Figure 6.8 Scattering from 5 wt% mucin in the absence and in the 

presence of: 0.5 wt% PEG-PAMAM dendrimer G2.0 conjugate 100% 

PEGylated and 0.5 wt% PAMAM dendrimer G2.0 (top); PEG-PAMAM 

dendrimer GAO conjugate 100% PEGylated and 0.5 wt% PAMAM 

dendrimer G4.0 (bottom).
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Figure 6.9 Scattering from 5 wt% mucin in the absence and in the 

presence of: 0.5 wt% PEG-PAMAM dendrimer conjugate 50% 

PEGylated, 0.5 wt% PEG-PAMAM dendrimer conjugate 10% PEGylated 

and 0.5 wt% PAMAM dendrimer. The top graph presents the situation for 

the PEG-PAMAM G2.0 conjugate in mucin 5 wt% while the bottom graph 

illustrates the state for the PEG-PAMAM G4.0 conjugate.
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PEG-PAMAM 

conjugate added to 

mucin 5 wt%

Radius o f 

gyration, 

Rg (nm)

Correlation

length,

£ (nm)

Radius o f 

the globule, 

R (nm)

Volume

fraction,

*

Distance 

between the 

globule centres, 

L (nm)

none pH 7 

(mucin only) 41.0 ±2.0 23.5 ± 1.2 9.0 ± 0.5 0.37 ± 0.02 80.0 ±18.3

PAMAM G2.0 

0% PEGylation 

pH 7

50.0 ± 2.5 27.5 ± 1.4 9.5 ± 0.5 0.36 ± 0.02 98.0 ± 22.5

PEG-PAMAM 

G2.0 

10% PEGylation

44.0 ± 2.2 25.5 ± 1.3 9.2 ± 0.5 0.38 ± 0.02 86.5 ±19.9

PEG-PAMAM 

G2.0 

50% PEGylation

42.0 ±2.1 24.0 ± 1.2 9.4 ± 0.5 0.39 ± 0.02 82.0 ± 18.9

PEG-PAMAM 

G2.0 

100% PEGylation

40.5 ± 2.0 23.5 ± 1.2 8.9 ± 0.4 0.37 ± 0.02 79.5 ± 18.3

Table 6,2 Parameters obtained from the model for the scattering from 

mucin solution 5 wt% in the presence and absence o f PEG-PAMAM G2.0 

conjugates with different degrees o f PEGylation and PAMAM dendrimer 

G2.0 at pH  7.
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PEG-PAMAM 

conjugate added to 

mucin 5 wt%

Radius o f 

gyration, 

Rg (nm)

Correlation

length,

£ (nm)

Radius of 

the globule, 

tf(nm )

Volume

fraction,

Distance 

between the 

globule centres, 

L (nm)

none pH 7 

(mucin only) 41.0 ±2.0 23.5 ± 1.2 9.0 ± 0.5 0.37 ± 0.02 80.0 ± 18.3

PAMAM G4.0 

0% PEGylation 

pH 7 

PEG-PAMAM 

G4.0 

10% PEGylation

48.5 ± 2.4

44.5 ± 2.2

28.0 ± 1.4 

25.5 ± 1.3

9.2 ± 0.5

9.2 ± 0.5

0.35 ± 0.02 

0.37 ± 0.02

95.0 ±21.8

87.0 ± 20.0

PEG-PAMAM 

G4.0 

50% PEGylation

42.5 ±2.1 24.5 ± 1.2 8.7 ± 0.4 0.40 ± 0.02 83.0 ± 19.1

PEG-PAMAM 

G4.0 

100% PEGylation

40.5 ± 2.0 23.5 ± 1.2 9.0 ± 0.5 0.38 ± 0.02 79.0 ± 18.2

Table 6,3 Parameters obtained from the model for the scattering from 

mucin solution 5 wt% in the presence and absence o f PEG-PAMAM G4.0 

conjugates with different degrees o f PEGylation and PAMAM dendrimer 
G4.0 at pH  7.
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6.2.3. PGSE-NMR results

As already discussed in Chapter 5, the diffusion o f PAMAM dendrimers 

in mucin solutions was greatly slowed compared to the diffusion of the 

dendrimer in free solution (i.e., [mucin] = 0). In addition, the reduced 

mobility o f the PAMAM dendrimers within mucin solutions resulted to be 

pH-dependent with pH 7 being the pH at which the dendrimers exhibited 

the strongest interaction towards the mucin.

Following the PEGylation, the PEG-PAMAM G2.0 conjugate full 

PEGylated has increased in size -  having a bulkier shape, as idealized in 

Figure 6.10 -  as well as in molecular weight compared to the original 

PAMAM dendrimer G2.0, from 3,260 g mol*1 (Mw of the PAMAM 

dendrimer G2.0) to 12,650 g mol’1 (Mw of the PEG-PAMAM G2.0 

conjugate 100% PEGylated). A comparison o f the normalized diffusion 

data o f the PAMAM dendrimer G2.0 and PEG-PAMAM G2.0 dendrimer 

100% PEGylated in mucin solutions are presented in Figure 6.11. Hie first 

thing that is evident is that the diffusion o f the PEG-PAMAM G2.0 

dendrimer 100% PEGylated in mucin solutions was greatly enhanced 

compared with the diffusion o f the much smaller PAMAM G2.0 

dendrimer. Because o f their similarity in molecular weight, the normalized 

diffusion data from the PEG-PAMAM G2.0 in mucin solutions were 

compared with the normalized diffusion data from the /-PEG 10K g mol' 1 

in mucin solutions, as illustrated in Figure 6.11. Despite their different 

shape (random coil for the /-PEG and spherical for the PEG-PAMAM 

G2.0 conjugate), the diffusion data o f the two polymers follow a similar 

linear trend. Whereas the PAMAM dendrimer G2 .0  showed more 

adhesion than diffusion when increasing the mucin concentration, the full 

PEGylation o f die dendrimer demonstrated a lack o f significant interaction 

with the mucin.

Similarly, the diffusion NMR study o f the PEG-PAMAM G4.0 full 

PEGylated in mucin solutions showed a significant increase in the 

diffusion rate o f the conjugate when compared with the parent PAMAM
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dendrimer G4.0, as illustrated in Figure 6.12. After the PEGylation, the 

size and the molecular weight o f  the PEG-PAM AM  G4.0 conjugate has 

increased from 14,210 g m o l'1 (Mw o f the PAMAM dendrimer G4.0) to 

51,760 g m ol'1 (Mw o f the PEG-PAM AM  G4.0 conjugate 100% 

PEGylated). Considering the similarity in m olecular weight with the /- 

PEG 50K g m ol'1 (but still a different shape: random coil for the /-PEG 

and a more spherical shape for the PEG-PAM AM  conjugate), the 

normalized diffusion data o f  the PEG-PAMAM G4.0 conjugate full 

PEGylated in mucin solutions were compared to the normalized diffusion 

data from the /-PEG 50K g m ol'1 in mucin solutions (Figure 6.12). Even 

though the normalized diffusion data o f the two polymers in mucin 

solutions exhibited a similar linear trend, the large spherical-shaped PEG- 

PAMAM G4.0 conjugate demonstrated a higher mobility in mucin 

solution compared to the random coiled /-PEG. As already seen for the 

PEG-PAM AM  G2.0 conjugate, also the PEG-PAM AM  G4.0 conjugate 

demonstrated a lack o f  significant interaction with the mucin when 

compared to the relative parent PAMAM dendrimers.

Figure 6.10 Schematic representation o f a PEG-PAMAM dendrimer 

100% PEGylated. The PAMAM core is black and the PEG chains are 

blue. Red circles indicate primary amine sites on the PAMAM. Taken from 

LuoD. 51.
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6.3. Discussion

In the study here presented, the behaviour of partly and fully PEGylated 

PAMAM dendrimers as potential polymeric carriers for therapeutics in the 

mucin gel network has been explored. The synthesis of total (100%) or 

partial (10% and 50%) PEGylated PAMAM dendrimers G2.0 and G4.0 

was carried out to mask fully or partly the amino terminal surfaces of 

these polymers, main responsible o f the specific interaction exhibited by 

the dendrimers towards the mucin. The effect of PEGylation on PAMAM 

dendrimers in terms of interaction with the mucin has been evaluated by 

SANS and PGSE-NMR.

The SANS study revealed that the presence of the PEGylated PAMAM 

dendrimers G2.0 and G4.0 reduced the specific electrostatic interaction 

exhibited by the PAMAM dendrimers towards mucin molecules.

100% PEGylated PAMAM dendrimer conjugates did not show significant 

change in the scattering from mucin solutions, at least to a degree that 

induces a structural perturbation in the mucin. These results could be 

interpreted as an evidence of a lack of an interaction between the 1 0 0 % 

PEGylated conjugates and the mucin. Indeed, the fully PEG modified 

dendrimers appear like bulky, spherical molecules coated by a dense layer 

of inert PEG chains which cover the amino surfaces o f the PAMAM, as 

idealized in Figure 6.10: therefore, a shielding of the positive charge on 

the dendrimer surface is played by the attached PEG chains. For this 

reason, the PEG-PAMAM conjugates did not exhibit any relevant change 

in the scattering from mucin since they were behaving as neutral 

molecules.

From the diffusion NMR study performed on the fully PEGylated 

PAMAM dendrimers G2.0 and G4.0, fundamental findings were obtained. 

The PEG-PAMAM conjugates demonstrated an enhanced diffusion in 

mucin solutions compared with the unPEGylated PAMAM denrimers. 

Although an almost four-fold increase in molecular weight is observed in 

the 100% PEGylated PAMAM conjugates compared with the parent 

PAMAM dendrimers, the conjugates exhibited a higher diffusion rate in
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mucin solutions thanks to their non interactive properties given by the 

PEG coating.

50% and 10% PEGylated PAMAM dendrimer conjugates exhibited a 

small electrostatic interaction with mucin molecules due to the residual 

positively charged amino groups which have not been PEGylated. 

However, the scattering from mucin in the presence of the partly 

PEGylated PAMAM conjugates was not significantly affected by the 

presence o f the conjugates when compared to the perturbation on the 

scattering from mucin caused by the unPEGylated PAMAM dendrimers. 

The fact that changing the degree of modification of the PEG-PAMAM 

conjugates did not affect greatly the interaction with mucin is in 

agreement with the findings from Yang et al. 49 who demonstrated that 

PEGylation degree on low generation PAMAM dendrimers could be 

reduced dramatically while maintaining the drug carrier cytocompatibility.

PGSE-NMR data, together with the scattering data, can be considered an 

evidence o f a less interactive behaviour between the PEGylated conjugates 

and the mucin. The achievement obtained after PEG modification of the 

PAMAM was in agreement with the results reported by Lai et al. 38 who 

demonstrated how the PEG-coating process increased the transport of 

nanoparticles through mucus. Also, the effect of PEG modification on 

PAMAM dendrimers towards the mucin resulted in accordance with 

studies reporting a less toxicity of the PEG-PAMAM conjugates compared 

to the unPEGylated PAMAM 47'52. As the cytotoxicity of cationic 

PAMAM dendrimers is thought to be the result o f the interaction between 

positively charged dendrimers and negatively charged cell surfaces, in the 

same way the interaction between the PAMAM and mucin is driven by an 

electrostatic interaction between the positively charged dendrimers and the 

negatively charged mucin glycoprotein. In both cases, PEGylation is able 

to reduce this electrostatic interaction.

Moreover, the PEG modification o f PAMAM dendrimers allow these 

polymers to maintain their unique structure and, at the same time, to show
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less specific interaction towards mucin molecules as well as to show 

reduced cytotoxicity and haemolytic activity. Therefore, PEG-PAMAM 

conjugates can potentially be used as polymeric carriers for therapeutic 

molecules which can be either entrapped/encapsulated in the dendritic 

cavities o f the modified dendrimers 54, 56 or covalently linked to the 

modified branch of the polymer 48.
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6.4'. Conclusions

Despite their unique structure and the ability to carry high drug payload, 

PAMAM dendrimers exhibited a strong interaction towards mucin, as 

findings on Chapter 5 demonstrated. Therefore, the study here presented 

has arisen from the possibility to keep the structural characteristics typical 

of the PAMAMs and to reduce their interaction with mucin by building up 

a PEG-coating shell around the PAMAM dendrimers, known the inert 

properties of the PEG.

A series of PEG-PAMAM conjugates (PAMAM dendrimers G2.0 and 

G4.0) with different degree o f PEGylation (10%, 50% and 100%) has 

been synthesized. Their behaviour in mucin solutions has been 

investigated by SANS and diffusion NMR. The PEG-PAMAM conjugates 

were much less interacting with the mucin network compared to the 

unPEGylated PAMAM dendrimers, thanks to the PEG chains that provide 

them an inert shell. The degree of PEGylation did not influence 

significantly the system mucin-conjugate, even though the 1 0 0 % 

PEGylated PAMAM dendrimers conjugates were the less interactive. Also 

the self-diffusion of the conjugates in mucin resulted greatly improved 

compared to the self-diffusion of the parent PAMAM dendrimers in 

mucin, merit of the PEG modification which reduced any specific 

interaction of the PAMAM dendrimers with the mucin glycoprotein.

The study presented here was further confirmation on the effect of 

PEGylation on PAMAM dendrimers: in fact, the PEG chains modification 

of these polymers not only makes these polymeric carriers less toxic but 

also decreases greatly the interaction with the mucosal barrier. Therefore, 

PEG-PAMAM conjugates could be positively considered as potential 

polymeric carriers for the delivery of therapeutics -  encapsulated in the 

dendritic cavities or covalently bound to the modified branches of the 

polymer -  through organs bearing a mucus gel layer {i.e., gastrointestinal, 

pulmonary, oral, nasal and genital tracts).
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Furthermore, PEGylation technology could be extended also to the half- 

generation PAMAM dendrimers. Although they have showed to be less 

cytotoxic and hemolytic compared to the full generation PAMAM 

dendrimers 57, PEG chains conjugation to the half-generation dendrimers 

could definitely improve their behaviour as potential polymeric carriers 

for therapeutic molecules.

Based on the initial hypothesis of the positively effects of PEGylation on 

PAMAM dendrimers, it can be concluded that PEGylation experiments 

have produced the expected effects, removing or significantly reducing the 

interaction of the PAMAM dendrimers with mucin.
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Chapter 7 . Towards a more realistic 

mucus model

In this chapter, the study focuses on investigating more complex mucin 

solutions, which are closer to a more realistic mucus. Mucin solutions 

have been enriched with phospholipids and proteins, these being the main 

constituents in mucus. These more complex systems have been examined 

by small-angle neutron scattering (SANS).

7.1. Introduction

7.1.1. The importance o f the presence o f phospholipids and proteins in 

mucus

Although the main organic component in mucus is represented by the 

mucin 1,2 (as already extensively discussed in Chapter 1), mucus is rich in 

lipids (free fatty acids, phospholipids), surfactants and proteins 3 (see 

composition of mucus in Table 1.1 in Chapter 1).

Phospholipids, the major lipid components of mucus, are amphiphilic 

molecules containing a polar head group and a non-polar hydrocarbon 

(fatty acid) tails. The major classes of phospholipids include 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

phosphatidylinositol (PI), and phosphatidylserine (PS). Their chemical 

structures are illustrated in Figure 7.1.

The phospholipids composition of the mucus which covers epithelial 

surfaces can vaiy depending on its location and role 4’5. The major surface 

active component of lung surfactant is the dipalmitoyl phosphatidylcholine 

(DPPC), which contains two saturated fatty acids, palmitic acid (DPPC 

16:0/16:0); whereas for the gastric mucus the main phospholipids are 

phosphatidylcholine (PC) species -  containing one saturated (palmitic acid 

16:0 or stearic acid 18:0) and one unsaturated (oleic acid 18:1 or linoleic 

acid 18:2) fatty acid -  and phosphatidylethanolamine (PE) 6. A 

phospholipid composition of gastric mucus is presented in Table 7.1.
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Phosphatidylcholine
(PC)

NH3* Phosphatidylethanolamine 
(PE)

Phosphatidylinositol
(PI)

Phosphatidylserine
(PS)

Figure 7.1 Chemical structures of the phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), and 

phosphatidylserine (PS) (highlighted in the pink boxes). Each one is 

attached to two palmitic acid (16:0/16:0) chains.
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Phospholipid Mean percentage (%)

Phosphatidylcholine (PC) 33.1 ±0.72

Phosphatidylethanolamine (PE) 29.6 ± 0.48

Phosphatidylinositol (PI) 23.2 ± 0.57

Phosphatidylserine (PS) 2 .1  ± 0 .1 2

j
Table 7.1 Phospholipid composition in human gastric mucus .

The role of pulmonary surfactant is to maintain alveolar function in 

mammalian lungs. The high resistance to compression of the dipalmitoyl 

phospatidylcholine opposes surface tension forces in the alveolus, 

generating a very high surface pressure, which prevents alveolar collapse 

at end expiration. These functions are critical for efficient respiration 8’ 9. 

Also, surfactant posses anti-inflammatory properties 10, facilitates mucus 

clearance n , plays a role in preventing pulmonary infection 10. Respiratory 

diseases, such as cystic fibrosis (CF), asthma, and chronic bronchitis, are 

usually associated with excessive insoluble accumulation of secretory 

material in the airways which may be responsible for the airway 

obstruction leading to cough and sputum production. Surfactant 

composition and function are chemically and physically altered in patients 

with cystic fibrosis and asthma. The surface activity of surfactant was 

markedly repressed and a deficiency in quantity and composition of the 

phospholipids -  in particular a decrease in phosphatidylcholine and 

phosphatidylglycerol content 12 -  was observed in CF and asthma patients 

than in controls: some of these changes have been associated with 

increases in mucus rigidity or increased mucus adherence to the 

respiratory mucosa 13,14. To help the surfactant deficiency in patients with
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chronic respiratory problems, the exogenous administration of synthetic 

surfactant preparation seemed to be promising to improve mucus 

clearance 15‘17, even though a surfactant replacement therapy remains still
1 fta clinical challenge .

In contrast, gastric surfactant -  synthesized and secreted from cells of 

the gastric mucosa -  is fundamental to form a barrier to avoid back- 

diffusion of hydrogen ions and following damage to mucosal surfaces in 

the stomach 4’ 19. The ‘hydrophobic gastric mucosal barrier’ is a complex 

and dynamic defence system for the gastric mucosa to resist the corrosive 

effects of peptic hydrochloric acid secretion and the surface active 

phospholipids have been reported to play a key part in the gastric 

cytoprotection ' . Therefore, a defective mucosa with a variation in the 

phospholipid composition may result in the development of gastritis or 

ulcerative colitis: in particular, quantitatively less phosphatidylcholine and 

lysophosphatidylcholine were reported from mucus of patients with 

ulcerative colitis than from healthy controls, even though it is not 

completely clear whether this is due to a reduced biosynthesis and/or
A O

increased breakdown of these phospholipids . For this reason, a 

treatment with phosphocholine rich phospolipids for reinforcing the mucus 

hydrophobic barrier was thought as therapeutic approach for ulcerative
AA

colitis, considering also the promising results .

Together with the lipids, another component contributing to the 

complexity of the mucus is represented by the non-mucin proteins. 

Proteins such as IgA, lysozyme, lactoferrin and lactoperoxidase, which all 

have protective functions against bacterial infections, have been identified
30 31in mucous secretions 5 .

Studies performed on different types of mucus -  pulmonary 32'34, gastro-
AC AC AA

intestinal ’ , cervical -  reported that some common proteins present in 

the mucus are related to serum proteins such as albumin. Serum albumin 

is also one of the most abundant plasma proteins and one of its main role 

is the maintenance of the colloid osmotic pressure (COP) -  i.e., a form of
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osmotic pressure exerted by proteins that usually tends to pull water into 

the system.

Considering the complexity o f the mucus composition, in this Chapter 

the attention was focused on the analysis of a more realistic mucus, 

investigating the contribution, binding, interaction of phospholipids and 

proteins towards the mucin. Bovine serum albumin (BSA), 1,2- 

dihexanoyl-sH-glycero-3-phosphocoline (DHPC) and l,2 -dipalmitoyl-5«- 

glycero-3-phosphocholine (DPPC) were chosen as main representative 

components for serum protein, ‘short-chain’ lipid and ‘long-chain’ lipid to 

enrich mucin solutions and create a more realistic mucus. Their effects on 

mucin solutions were analyzed by SANS.

7.2. Results

The addition of bovine serum albumin (BSA), 1,2-dihexanoyl-sn- 

glycero-3-phosphocoline (DHPC) and l,2-dipalmitoyl-sw-glycero-3- 

phosphocholine (DPPC) on mucin solutions was investigated by SANS. 

Effects of each single component were first studied on mucin solutions 

(binary mixtures); afterwards, the mixture o f more than one component 

with mucin solutions was investigated (ternary mixtures).

The scattering from 5 mM DPPC vesicles in D2O was also studied.

7.2.1. SANS study on DPPC vesicles

DPPC vesicles were prepared according to the procedure described in 

Section 3.2.3 in Chapter 3. Therefore, unilamellar DPPC vesicles were 

obtained after the extrusion process.

The scattering from 5 mM h-DPPC vesicles in D2O is presented in 

Figure 7.1. The scattering data were modelled to a polydisperse shell 

sphere describing the DPPC bilayer divided into three concentric shells 

corresponding to two polar headgroups region (one on each side of the 

bilayer) and the bilayer center spanning hydrocarbon region, as idealized 

in Scheme 7.1.
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For dispersions of monodisperse centrosymmetric particles, the scattered 

intensity is given by Eq. 7.1:

particles, |F (0 | 2 their form factor -  |F ( 0 | 2 = P(Q)- and S(Q) the

interparticle structure factor. The interparticle structure factor S(Q) is 

approximately equal to 1 for dilute and weakly interacting particles, which 

is a good approximation for unilamellar vesicles at phospholipid 

concentration lower than 2  wt% 38,39.

The form factor |F (0 | = P(Q) is the Fourier transform of the contrast 

Ap(r) between the coherent neutron-scattering length density (SLD) of 

the bilayer and the solvent. For unilamellar vesicles bilayer model 

represented in the Scheme 7.1, F(Q) is given by Eq. 7.2:

where Ap t (r) is the SLD contrast and Adi = R, -  is the thickness of

the z'th strip 40.

As illustrated in Scheme 7.1, the radii -  Ri, R2, R3 and R4 -  measure the 

distance from the center o f the spherical vesicles to the border of the ith 

concentric shell: the values of the radii for a 5 mM DPPC vesicle are 

reported in Table 7.1. The DDPC vesicle has a radius (R4) of ~ 830 A, 
which is consistent with the DPPC vesicles extruded through 100 nm 

membrane filter. The thickness of the polar region (R2-R1 and R4-R3) of 

the DPPC bilayer can be deduced from the data o f other authors as w ell41'

45. A constrained value of 9 A was considered as thickness of the 

headgroups layer (R2-R1 and R4-R3). The calculated thickness of the 

phospolipid bilayer (R4-R 1) resulted of 56 A, which is in agreement with 

the data from Nagle et al. 44.

I(Q) = Np\F{Q)fS(Q) Eq. 7.1

where Q is the scattering vector Q = ? ]\fp the number density of

sin(0 ) Eq. 7.2
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Figure 7.1 Scattering (symbols) and fit  (solid lines) from 5 mM (h) DPPC 

vesicles in D2O.

Scheme 7.1 Representation o f the DPPC vesicle: the pink circle 

represents the headgroups thickness; the green circle is the phospholipid 

bilayer; the blue circle symbolizes the inside aqueous compartment.

Ri (nm) R2 (nm) R3 (nm) Ri (nm)
77.1 ±3.8 78.0 ±3.9 81.8 ± 4.1 82.7 ±4.1

Table 7.1 Values for the radii o f  the DPPC vesicle sketched in Scheme 7.1.
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7.2.2. SANS study on binary mixtures

Scattering from 5 wt% mucin solutions was studied in the presence of 

one of each added component: (i) 500 ppm and 5000 ppm BSA; (ii) h- and 

d-DHPC 5 mM; and (iii) h- and d-DPPC vesicles 5 mM. The BSA 

concentrations used are in agreement with the albumin concentration 

present in the respiratory tract as reported by Rennard et al. 46. Since the 

surfactant concentration in the lungs is above 2-3 mg/ml 47 -  values for 

neonatal lungs which tend to diminish to adult level -  the phospholipids 

concentrations used were selected accordingly.

The scattering from 5 wt% mucin solutions after the addition of BSA at 

a concentration of 500 and 5000 ppm are presented in Figure 7.2. The 

presence of the bovine serum protein perturbed the scattering from mucin 

shifting the maxima to lower Q, corresponding an increase in size/distance 

o f ~ 15 %. Increasing the BSA concentration to 5000 ppm did not induce 

any further changes to the scattering from mucin. The changes in the 

scattering from mucin could be attributed to a possible protein-protein 

interaction between the bovine serum albumin and the mucin glycoprotein.

The effects of the addition of 5 mM DHPC on 5 wt% mucin solutions is 

shown in Figure 7.3. Whether the phospholipid was added in the 

hydrogenated or deuterated form made no significant difference to the 

scattering from mucin solutions as both forms induced a similar change, 

which means that the scattering from h-DHPC 5 mM could be assumed to 

be insignificant. The addition of DHPC 5 mM to 5 wt% mucin solutions 

caused the movement of the position of the main maxima to lower Q 

(0.027 A"1 and 0.059 A*1), comparable to the BSA case: also in this case, it 

indicates the formation of some larger structures due to a possible DHPC- 

mucin aggregation.

All the parameters obtained from the model and the analysis of the 

Zimm plots for each mucin 5 wt% sample in the presence of BSA and 

DHPC are presented in Table 7.2. When the protein or phospholipid were 

added to mucin solutions at pH 7, an increase of ~ 15 % on the radius of
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gyration and the correlation length of the mucin molecule was observed 

when compared to the values obtained for 5 wt% mucin only solutions at 

pH 7. These results are in agreement with the shift to lower Q of the main 

peaks observed in the scattering o f mucin in the presence of BSA and 

DHPC.

100
•  Mucin 5 wt%, pH 7
O Mucin 5 wt% + 500 ppm BSA, pH 7
□ Mucin 5 wt% + 5000 ppm BSA, pH 7

Eo 10

O

COc
c
O)c•c0)*s

0.01
0.10.01

Wavevector, Q / A'1

Figure 7,2 Scattering (symbols) and fit (solid lines) from 5 wt% mucin in 

the absence and in the presence o f BSA 500 ppm and BSA 5000 ppm at 

pH  7.
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100
•  Mucin 5 wt%, pH 7 
O Mucin 5 wt% + h-DHPC 5mM, pH 7 
□ Mucin 5 wt% + d-DHPC 5mM, pH 7
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&
c  1
£
O)c•Ca>
8 01c/)
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0.01 0.1
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Figure 7.3 Scattering (symbols) and fit (solid lines) from 5 wt% mucin in 

the absence and in the presence o f 5 mM hydrogenated h-DHPC and 

deuterated d-DHPC at pH 7 .

Protein or 

phospholipid 

added to mucin 5 

wt%

Radius o f 

gyration, 

Rg{nm)

Correlation

length,

S(nm)

^..*: i

Radius o f 

the globule, 

jR(nm)

Volume

fraction,

*

Distance 

between the 

globule centres, 

L (nm)

none pH 7 41.0 ±2 .0 23.5 ± 1.2 9.0 ± 0.5 0.37 ±0.02 80.0 ± 18.3

BSA 500 ppm 46.5 ± 2.3 27.0 ±1.3 9.7 ± 0.5 0.35 ± 0.02 91.0 ±20.9

BSA 5000 ppm 47.0 ± 2.3 27.0 ± 1.3 9.5 ± 0.5 0.37 ± 0.02 92.0 ±21.2

h-DHPC 5 mM 47.0 ± 2.3 27.0 ± 1.3 9.5 ± 0.5 0.38 ±0.02 91.5 ± 21.0

d-DHPC 5 mM 47.5 ± 2.4 27.5 ± 1.4 9.6 ± 0.5 0.38 ± 0.02 92.5 ±21.3

Table 7.2 Parameters obtained from the model for the scattering from 

mucin solution 5 wt% in the presence and in the absence of BSA or 

DHPC at pH 7.
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The effect of h- and d-DPPC vesicles on 5 wt% mucin solution is 

illustrated in Figure 7.4. For the h-DPPC/mucin system, two different h- 

DPPC vesicles concentrations were considered: 2.75 mM and 5 mM. In 

the case of d-DPPC vesicles in mucin solutions, only 5 mM d-DPPC 

vesicles concentration was studied.

All DPPC vesicles investigated in mucin solutions were prepared 

according to the procedure described in Section 3.2.3 in Chapter 3. 

Therefore, unilamellar DPPC vesicles were obtained after the extrusion 

process.

In the binary mixtures h-DPPC/mucin, the position of both maxima are 

shifted at lower Q: the two main maxima are now located to a Q values of 

0.025 A'1 and 0.059 A'1, which correspond to a distance/size of 25.1 nm 

and 10.6 nm, respectively. These values indicate that the presence of the 

phospholipid has given rise to some features with an increased size. 

Furthermore, the scattering profile presents a Bragg peak at Q = 0.089A'1, 

corresponding to a distance of -70  A which is consistent with a regular 

stacking of lipid bilayers u ’48'50. Due to the presence of this Bragg peak, 

the fit of the scattering profile from mucin 5 wt% in the presence of h- 

DPPC 5 mM and 2.75 mM was not possible: for this system, only the 

scattering data are presented in Figure 7.4.

The scattering experiment was repeated in the presence of deuterated d- 

DPPC 5 mM. If in the mixture h-DPPC/mucin the scattering profile was 

given by the contribution of both the h-DPPC and the mucin glycoprotein 

(open circles in Figure 7.4), in the d-DPPC/mucin mixture the ‘contrast 

variation’ condition (explained in the Appendix B) is satisfied and the 

scattering profile belongs only to the mucin and reflects the effect of the 

DPPC on mucin (open squares in Figure 7.4). The position of both 

maxima has moved to higher Q and they can be found at 0.033 A'1 and

0.067 A'1: these Q values correspond to sizes of 19.0 nm and 9.5 nm, 

respectively. This indicated that the presence of h-DPPC in mucin gives 

rise to some features (probably h-DPPC/mucin aggregates) with a larger 

size but the presence of d-DPPC in mucin clarifies that the mucin
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molecules are affected by a reduction in size/distance of ~ 20% when the 

phospholipid is added.

All the parameters obtained from the model and the analysis of the Zimm 

plots for each mucin 5 wt% sample in the presence of d-DPPC are 

presented in Table 7.3. When the phospholipid was added to mucin 

solutions at pH 7, a decrease of ~ 18 % on the radius of gyration and the 

correlation length of the mucin molecule was observed when compared to 

the values obtained for 5 wt% mucin only solutions at pH 7. These results 

are in agreement with the shift to higher Q o f the main peaks observed in 

the scattering o f mucin in the presence of d-DPPC.

Moreover, it is possible to clearly observe the disappearance of the 

Bragg peak, indicating a feature related more to the DPPC itself than to 

any particular structure bom from the adhesion/binding of the DPPC with 

the mucin. Considering that the scattering from 5 mM DPPC vesicles in 

D2O (Figure 7.1) showed the typical scattering from unilamellar vesicles 

and did not exhibit any interaction peak characteristic of multilamellar 

structures, the Bragg peak might indicate that the presence of the mucin 

can induce a re-organization of the DPPC lipid bilayers into one­

dimensional periodic lattice of periodicity d ~ 70 A.

If in the unilamellar structure the structure factor S(Q) = 1, the structure 

factor in the multilamellar structure -  which gives rise to the characteristic 

interaction peak -  can be approximated by Gaussian distribution function 

as the following:

5 ( 0  = l + ^exp (q -Q oy
2 a 2

Eq. 7.3

where cr is the width of the interference peak, and Qo is the position of its 

center, which is inversely related to the distance between bilayers -  

2 n
Q peak  = ------------------• The coefficient k  corresponds to the amount of

dbilayer spacing

multilamellar structures 49
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100
•  5 wt% mucin pH 7
O Mucin 5 wt% + h-DPPC 5 mM, pH 7
a  Mucin 5 wt% + h-DPPC 2.75 mM, pH 7
□ Mucin 5 wt% + d-DPPC 5 mM, pH 7
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Figure 7.4 Scattering (symbols) and fit (solid lines) from 5 wt% mucin in 

the absence and in the presence o f 5 mM and 2.75 mM hydrogenated h- 
DPPC and 5 mM deuterated d-DPPC at pH 7.

Phospholipid 

added to mucin 5 

wt%

Radios o f 

gyration, 

Rg(nm)

Correlation 

length, ' 

£{nm)

Radius o f 

the globule, 

!?{um)
f • ' v • i -■*

, * V , f, * * ,. ‘ ’

Volume

fraction,

4

H*-’ ...

Distance 

between the 

globule centres, 

L (nm)
.....„

none pH 7 41.0 ±2.0 23.5 ± 1.2 9.0 ±0.5 0.37 ± 0.02 80.0 ± 18.3

d-DPPC 5 mM 33.0 ± 1.6 19.0 ± 1.0 9.2 ± 0.5 0.37 ±0.02 64.0 ±14.7

Table 7.3 Parameters obtained from the model for the scattering from 

mucin solution 5 wt% in the presence and in the absence o f DPPC at pH  

7.
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7.2.3. SANS study on ternary mixtures

As a preliminary exposition o f the complexity of these mixtures, a 

ternary mixture comprising 5 wt% mucin / DHPC 5 mM / BSA 5000 ppm 

was examined as illustrated in Figure 7.5.

When all the three components considered (mucin, DHPC and BSA) are 

in the hydrogenated form, the scattering observed is a contribution from 

all o f them (open circles in Figure 7.5): the scattering profile exhibits a 

shift to lower Q compared to the mucin-only case (closed circles). This 

shift corresponds to an increase o f -15  % in the characteristic dimension 

giving rise to the peak. This change in the peak position is consistent with 

the contribution of the single extra components -  h-DHPC and BSA -  to 

the scattering from mucin since both of them individually caused a shift to 

lower Q of the main peak when added to the mucin solutions (open 

squares in Figure 7.2 and open circles in Figure 7.3). The parameters 

obtained from the model and the analysis o f the Zimm plots for mucin 5 

wt% in the presence o f BSA 5000 ppm and h-DHPC 5 mM are presented 

in Table 7.4. The addition o f the BSA and h-DHPC both together to a 5 

wt% mucin solution caused an increase o f -  15 % on the radius of 

gyration and the correlation length of the mucin molecule, which is in 

agreement with the shift at lower Q observed in the scattering profile.

However, the scattering profile changes when one of the component, d- 

DHPC, is added in the deuterated form. In this case, the scattering profile 

comes from the contribution of the mucin and the BSA in the presence of 

the deuterated DHPC (closed squares in Figure 7.5). This time a shift to 

higher Q of the peak is observed which corresponds to a contraction in 

dimension of -  15 %: in fact, parameters reported in Table 7.4 show a 

reduction of -  15 % on the radius o f gyration and the correlation length of 

the mucin molecule when the BSA 5000 ppm and d-DHPC are both added 

together to the mucin 5 wt% solution. This could be interpreted as if, in 

the presence of d-DHPC, the mucin and the serum albumin give rise to 

collapsed structure with a reduced dimension.

206



Chapter 7

100
•  Mucin 5 wt%, pH 7
O Mucin 5 wt% + h-DHPC 5 mM+ BSA 5000 ppm, pH 7 
□ Mucin 5 wt% + d-DHPC 5 mM+ BSA 5000 ppm, pH 7
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Figure 7.5 Scattering (symbols) and fit (solid lines) from 5 wt% mucin in 

the absence and in the presence o f hydrogenated h-DHPC 5mM + BSA 

5000ppm and deuterated d-DHPC 5 mM + BSA 5000ppm at pH  7.

Protein and 

phospholipid 

added to mucin 5 

wt%

Radius o f 

gymtion,

Correlation

length,

f(nm )

Radius o f 

the gkfoule, 

R{nm)

Volume

fraction,

>

Distance 

between the 

globule centres, 

Z(nm)

none pH 7 41.0 ±2.0 23.5 ± 1.2 9.0 ±0.5 0.37 ± 0.02 80.0 ± 18.3

BSA 5000 ppm + 

h-DPPC 5 mM

47.5 ± 2.4 27.5 ± 1.4 9.7 ± 0.5 0.37 ± 0.02 92.5 ±21.3

BSA 5000 ppm+ 

d-DPPC 5 mM

36.0 ±1.8 21.0 ± 1.0 9.2 ± 0.5 0.35 ±0.02 70.0 ± 16.1

Table 7.4 Parameters obtained from the model for the scattering from 

mucin solution 5 wt% in the presence and in the absence o f BSA and 
DHPC at pH  7.
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7.3. Discussion

BSA, as serum protein, DHPC and DPPC, as phospholipids, were used 

to enrich mucin solutions and simulate a more realistic mucosal system. 

The effects of these compounds were tested on mucin solutions by SANS. 

The addition of BSA -  and similarly the addition o f DHPC -  on mucin 

solutions exhibited a perturbation on the scattering profile causing a shift 

to lower Q of the main peaks: this resulted in an increase on the radius of 

gyration, correlation length and distance between the globule centres in 

the mucin molecule when compared to the values obtained for 5 wt% 

mucin only solutions. These changes might be related to the formation of 

larger structures that could be associated to a protein-protein interaction 

(in the case of the bovine serum albumin) or lipid- protein interaction (in 

the case of the DHPC) of the mucin towards these compounds. Indeed, 

mucin molecules contain a large number of binding sites for hydrophobic 

ligands. These hydrophobic binding domains are situated in the 

unglycosylated portion of the peptide and are involved in the binding of 

biliary lipids 51.

Particularly interesting resulted the behaviour of DPPC in mucin 

solutions which, together with a shift to lower Q of the maxima, gave rise 

to a Bragg peak. Once more, the movement in the position of the main 

peaks is related to a possible lipid-protein aggregation between the DPPC 

and the mucin. The Bragg-peak present in the scattering of mucin with the 

addition of the hydrogenated h-DPPC, suddenly disappears when the h- 

DPPC is substituted with the deuterated form of the phospholipid, d- 

DPPC. The Bragg-peak at Q = 0.089A '1, corresponding to a distance of 

~70 A, is related to a regular stacking of bilayers of DPPC. Therefore, it 

looks like if the mucin enhances the piling of DPPC bilayers.

The system was made further complex by the addition of two extra 

components to the mucin solutions: BSA and DHPC were added together 

to mucin solutions. Again, the main peaks moved to lower Q implying that 

larger structures are formed due to the association of BSA / DHPC /
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mucin. This result was in agreement with the contribution that the BSA 

and DHPC individually gave to the scattering from mucin: in fact, both of 

them independently caused a shift to lower Q of the scattering from 

mucin.

Early rheological investigation by List et al showed clear evidence of 

increased viscosity of pig gastric mucin with addition of serum albumin. 

Interestingly, similar findings were not obtained with a-casein, 

haemoglobin, collagen or immunoglobulin G, suggesting that there was 

some specificity for albumin from the mucin. The mucin-albumin 

association appeared to involve non-covalent hydrophobic interactions 

which were enhanced by heating but not significantly weakened by the 

increase of pH or ionic strength. Murty et al demonstrated that also 

lipids have the effect to increase the viscosity of mucin.

More recent studies performed by Feiler et al 53 reported that the BSA 

associates with the mucin layer via hydrophobic interactions, causing 

stiffening. Moreover, it is thought that the BSA molecules swell the 

mucin-albumin complex, which would be in agreement with our SANS 

findings relative to the mucin-BSA mixture.

Several studies have denoted the affinity o f mucin for lipids and 

hydrophobic molecules 3’51,54'56. In particular, it has been reported that the 

non-covalent hydrophobic binding properties of the mucin are related to 

the hydrophobic domain of the mucin glycoprotein, presumably on the 

non-glycosylated polypeptide core. However, the mucin-lipid aggregation 

did not report any disruption of the mucin network. Instead, the mucin- 

associated lipid resulted to enhance the protective effect as hydrophobic 

mucosal barrier against oxygen radicals 57 as well as its acid-resistant 

properties. Therefore, the binding of phospholipids to gastric mucin may 

be potentially important in the formation and maintenance o f the gastric
20 23 26mucosal barrier in various gastric ulcers ’ ’ .
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7.4. Conclusions

Changes induced by the addition of a second material (BSA, DHPC, 

DPPC) in the position and intensity of the maxima observed in the SANS 

from mucin solutions are an indication of the perturbation caused to the 

structure o f the mucin molecules. The effects of 500 ppm BSA, 5000 ppm 

BSA and 5 mM DHPC on mucin solutions consisted in an increase of the 

parameters characterizing the size of the mucin molecule (increased Rg, £  

L). On the other hand the mixture DPPC/mucin did cause a significant 

impact on the scattering profile o f mucin, introducing a degree of higher 

order not seen in any of the other systems. However, all the systems 

studied (binary and ternary mixtures) reported binding/aggregating 

phenomena of the single components with mucin giving rise to larger 

structures.

The protein-protein interaction exhibited in the system mucin-BSA 

mixture could be relevant in the field of biomaterial: in fact the ability of 

the albumin to alter and tune the physical properties of the mucin can have 

important implications for biomaterial coating strategies, for example in 

the area of contact lens coating. The use of mucin and albumin is also 

particularly significant to the area of biolubrificant.

The hydrophobic interaction in the mucin-1 ipid mixture could be 

positively considered as an enhancing factor for the protective role of the 

gastric mucosal barrier.

The study of the interaction/binding/adhesion of mucus components 

with mucin should be carefully evaluated for the understanding of the 

mucus as a protective barrier and in the improvement of any treatment for 

the reinforcement of the mucosal barrier. However, further work is needed 

to better resolve the precise structure in this complex system.
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Chapter 8. General conclusions

The overall aim of this thesis was to understand and improve the 

potential efficiency of drug delivery through mucus by analyzing the 

limiting factors in the transport of potential drug carriers through mucus 

and evaluating how these limitations could be overcome. Studies 

presented in this thesis showed how technologies such as small-angle 

neutron scattering (SANS) and pulsed-gradient spin-echo nuclear 

magnetic resonance (PGSE-NMR) can be applied as non-invasive 

techniques to study delicate bio-materials like mucin and to reveal 

physicochemical interaction of mucin with polymer-based drug delivery 

systems (DDS).

In first instance, the conformation of mucin in solution was investigated 

by SANS and the analysis o f the complex scattering profile from mucin 

solutions was believed to most appropriate model a dispersion of 

hydrophobic globules -  described as a dispersion of uncharged 

polydisperse spheres -  connected by the glycosylated peptide backbone. 

Mucin molecules in solution were described by a the radius of the globule, 

R, o f 9.0 nm, a volume fraction, of 0.37, a radius of gyration, Rg, of the 

mucin o f 41.0 nm, a correlation length, £  of 23.5 nm and distance between 

the two globules, L, o f 80.0 nm. Conformation of mucin in solution 

together with its behaviour upon alteration of some external conditions 

(concentration, pH, ionic strength, temperature, the presence of a 

mucolytic agent) was further studied by SANS and viscosity 

measurements.

The results achieved at this stage were very important since they put the 

bases for undertaking any further and deeper SANS studies on the 

conformation of mucin in solution.

A series of ‘probe’ polymers-mucin solutions was investigated to 

evaluate the effect of different polymers on the structure of mucin. 

Understanding the mobility through, and interactions with, mucin

217



Chapter 8

solutions of model polymer DDS is fundamental when designing polymer 

based delivery systems for the delivery through such mucin-rich 

environments. The SANS data supported by the diffusion study and the 

viscosity measurements allow to differentiate and quantify obstruction 

effects from specific interactions experienced by the ‘probe’ polymers in 

mucin solutions.

Non-ionic polymers such as /-PEG 10K and /-PEG100K did not exhibit a 

specific interaction with the mucin, but suffered a moderate retardation in 

their diffusion through the mucin, associated to an obstruction effect of the 

polymer within the mucin gel-network. A pH-dependent interaction was 

found for a series of PAMAM dendrimers (positively and negatively 

charged) and PEI, exposing a strong electrostatic interaction towards 

mucin molecules. An attractive or repulsive electrostatic interaction was 

experienced by the polymers depending on the charge bore by both the 

polymer and the mucin at the specific pH under investigation. This 

specific interaction resulted in a significant retardation in the diffusion of 

these polymers in mucin solution.

However, thanks to their unique structure, PAMAM dendrimers are 

considered o f relevant importance in the field of polymer-drug delivery 

systems. To reduce the specific interaction exhibited by PAMAM 

dendrimers towards mucin, a series of PEG-PAMAM conjugates with 

different degree o f PEGylation were synthesized. SANS and PGSE-NMR 

data demonstrated that PEG-PAMAM conjugates were much less 

interacting with the mucin network compared to the unPEGylated 

PAMAM dendrimers, thanks to the PEG chains that provide them an inert 

shell. The degree of PEGylation did not influence significantly the system 

mucin-conjugate, even though the 100% PEGylated PAMAM dendrimers 

conjugates were the less interactive. Also, the self-diffusion of the PEG- 

PAMAM conjugates in mucin resulted greatly improved compared to the 

self-diffusion o f the parent PAMAM dendrimers in mucin, merit of the 

PEG modification which reduced any specific interaction of the PAMAM 

dendrimers with the mucin glycoprotein.
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Therefore, PEG chains modification o f these polymers is able not only to 

make these polymeric carriers less toxic but also to decrease greatly the 

interaction with the mucosal barrier: thus, PEG-PAMAM conjugates could 

be positively considered as potential polymeric carriers for the delivery of 

therapeutics through organs bearing a mucus gel layer (i.e., 
gastrointestinal, pulmonary, oral, nasal and genital tracts).

The findings related to the studies of ‘probe’ polymers with mucin 

solutions were of fundamental importance in the field of drug delivery 

through mucus: in fact, they can direct the choice of a polymer structure to 

be adopted when designing polymer based delivery systems for the 

delivery through such mucin-rich environments depending on the purpose 

that wanted to be achieved (i.e.: increase the mobility of the drug delivery 

device or enhance the mucoadhesion). Furthermore, the PEG-coating of 

the PAMAM dendrimers represented one o f the biggest achievement since 

a PEG shell was able to turn these polymers from being strongly 

interactive polymers into potential polymeric carriers.

Finally, a more complex mucin solution, closer to a more realistic 

mucus, was studied. Mucin solutions enriched with phospholipids (DHPC, 

DPPC) and serum albumin (BSA) were investigated by SANS. The 

addition o f a second material (BSA, DHPC, DPPC) to mucin solutions 

caused some changes in the scattering profile of mucin, which can be 

related to some binding/aggregating phenomena of the single components 

with mucin giving rise to larger structures. O f particular interest was the 

mixture DPPC/mucin where the DPPC in mucin cause a significant 

impact on the scattering profile mucin, introducing a degree of higher 

order not seen in any o f the other systems.

The hydrophobic interaction/binding/adhesion o f mucus components with 

mucin could be positively considered as an enhancing factor for the 

protective role of the gastric mucosal barrier. Also, the ability of mucus 

components to alter and tune the physical properties o f the mucin can have 

important implications for biomaterial coating strategies, for example in 

the area of contact lens coating, or in the area of biolubrificant. However,
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further work is needed to better resolve the precise structure in these 

complex systems.

All the studies performed in this thesis have been evaluated and 

optimized on commercial mucin samples, as good representative of the 

‘real’ mucus. Useful and important results have been achieved in the field 

o f the transport of macromolecules/drug delivery systems through mucin, 

which could be applied to a more fresh ‘real’ mucus. Therefore, as future 

studies, it would be o f interest looking at the mobility and/or interaction of 

the ‘probe’ polymers investigated within fresh ‘real’ mucus.
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Appendix A

Basics of NMR

Nuclear spin

Nuclear magnetic resonance (NMR) is based on the magnetic property 

possessed by the atomic nuclei, which have an intrinsic angular 

momentum known as spin. The spin angular momentum /  is a vector and

its magnitude is defined by [ /( /  + l )]12  — , where h is the Planck’s
2 n

constant and 7 the spin quantum number, which can take values of 0, V2, 1, 

V2 , 2 , etc. (depending on the number of unpaired protons and neutrons). 

For a spin of a given quantum number 7, there are 27+1 possible 

projections onto an arbitrarily chosen axis: for an hydrogen nucleus ]H, 7 = 

V2 and there are two possible projections. When applying a magnetic field 

along the z-axis, the magnitude o f the angular momentum /  is equal to

I z =~ ~ i  with m being the magnetic quantum number which can take

21+1 values laying between -1 and +1: for an hydrogen nucleus !H, 7=  XA 
and m can take two values ranging between -V2 and +V2. In the absence of 

an external magnetic field, all the 27+1 orientations posses the same 

energy level. Therefore, the spins can orientate randomly. However, in the 

presence o f an external magnetic field, energy levels are split and spins 

take well-defined states. In a field Bo, these energy levels are equal to 

E = -myB0h l 2 n , being y the gyromagnetic ratio of the nucleus. In the

case o f an hydrogen nucleus lH (7 = XA ), the energy levels are shown in 

Figure 1A (left panel).
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I=V2
m= -V2 

E2= yBoh/471

00• in  

&
I  m — V2 n

E j=  -yB0h/47t

Figure 1A Energy levels allowed for a nucleus o f spin /=  V2 - i.e., proton - 
(left panel) and the precession o f the macroscopic magnetic moment, M, 
around Bo at the Larmor frequency coo (right panel).

Since macroscopic samples contain a large number of nuclei, a vector 

sum of the individual magnetic moments is considered, which is known as 

the macroscopic magnetic moment M. When applying a magnetic field, 

Bo, to a particle with a magnetic moment, nuclei adsorb energy and their 

spins move from a lower energy level to an higher one: spins are said to be 

in resonance. The nuclei precess (i.e., change the orientation of their 

rotation axis) with Larmor frequency, (Do, equal to the resonance frequency 

(Figure 1 A, right panel). The Larmor frequency, ©0, for a nucleus with a 

gyromagnetic ratio y  and in the presence of a constant magnetic field Bo is 

expressed by Eq. la:

o)0 =yB0 Eq. la

The resonance condition depends on the nucleus itself, on the external 

magnetic field Bo and also on the environment the nucleus experiences in 

the molecule \  The resonance frequency is expressed by the following 

equation:

(°o = (1 -  a )  Eq. 2a

where a is the so-called shielding constant. The shielding effect is the 

perturbation of the applied magnetic field Bo by a secondaiy ‘induced’
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magnetic field as effect o f the surrounding electrons on the nucleus in a 

molecule.

The chemical shift describes the dependence of nuclear magnetic energy 

levels on the electronic environment in a molecule. The chemical shift S is 

usually expressed in part per million (ppm) and for the fth nucleus it is 

calculated with the following equation:

g  =  _ l  T M S _  E q . 3 a

Spectrometer

where eu, is the resonance frequency o f the fth nucleus, co tm s is the 

resonance frequency for the tetramethylsilane (TMS) - which is usually 

used as internal standard for calibrating the chemical shift for other nuclei 

- and coSpectrometer is the frequency o f the NMR spectrometer. The chemical 

shift o f the singlet of TMS is assigned as <5=0.0 ppm.

Relaxation process

Since a small perturbation in the magnetic field can have a large effect 

on the frequency of a nucleus, the application of a short intense pulse of 

radiofrequency radiation to a sample causes M to precess. When a nil 
pulse is applied along the x-axis, it causes the rotation of the 

magnetization M towards the 7 -axis. Afterwards, the spins return to their 

equilibrium state through a relaxation process where an energy exchange 

between themselves and their surroundings occurs. Two relaxation 

processes can take place: the spin-spin relaxation and the spin-lattice 

relaxation. A schematic representation of the two relaxation processes is 

showed in Figure 2A.
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Spin-spin
relaxation

Back to 
equilibrium

Spin-lattice
relaxation

n il (along x)

x

Figure 2A Schematic representation o f the relaxation processes o f the 

magnetization M  following a k/2 pulse along the x-axis: (a) Spin-spin 

relaxation and (b) Spin-lattice relaxation.

In the spin-spin relaxation, the magnetization M, decays in the xy-plane 

(that is why it is also know as transverse relaxation) with a relaxation time, 

T2. The spin-lattice (or longitudinal) relaxation occurs along the z-axis 

with a characteristic time Ti. Both relaxation processes take place at the 

same time and both relaxation times, T1 and T2, can be measured by NMR. 

Usually Ti is the longer of the two relaxation times and its knowledge 

provides information on the molecular environment of the nucleus.

Pulse program m es

Spin-echo (SE) concept

The inhomogeneity o f the magnetic field affects the frequency of a 

nucleus, coeff, causes a dephasing of the transverse magnetization following 

a nil (90°) pulse along the x-axis. The pioneering work of Hahn in the 

50’s 2 revealed that this loss of phase coherence can be reversible.

A nil (90°) pulse rotates the magnetization along the z-axis into the x-y 

plane and creates phase coherence. After a time x, spins dephase due to the 

inhomogeneity of the magnetic field. A n (180°) pulse applied after the 

delay time x inverts the dephasing effect and spins refocus after another
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delay time t  along the x-axis. Therefore, after a time of 2x all spins have 

refocused and the signal observed and recorded is called spin-echo or 

Hahn spin-echo. An illustration o f the Hahn spin-echo sequence is given 

in Figure 3A.

nTl (along x) n (along y) echo

Figure 3A Schematic representation o f the Hahn spin-echo pulse 
sequence.

However, a complete refocusing o f the echo signal can only be observed 

if the precession frequency o f every spin has been constant during the time 

interval 2t. If the nuclei have experienced a displacement from their 

original positions in the inhomogeneous field, their frequency will vary 

and the spin-echo signal will result attenuated. Therefore, in the case of 

the self-diffusion displacement, the refocusing of the spin vectors will be 

incomplete at the time o f the echo 3. The concept is illustrated in Figure 

4A: the nuclei e and / i n  the figure are the only ones which experienced a 

self-diffusion displacement, leading to an incomplete refocusing of their 

spins at the time o f the echo.
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Figure 4A Illustration o f the basic concept o f diffusion measurements 
through the spin-echo (SE) technique. Taken from Stilbs P. 3.

Steiskal-Tanner sequence

The spin-echo effect noted by Hahn was significantly improved by 

Stejskal and Tanner 4 with the introduction of pulsed field gradients, 

leading to the PGSE-NMR technique and its related applications. Pulsed- 

gradients o f magnitude g, duration 5 and separated by a time A are applied 

to the spin-echo sequence. Figure 2.6 represents a schematic illustration of 

the Stejskal-Tanner pulse sequence.
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A first 7t/2 gradient pulse sets the spin positions in the direction of the 

gradient, creating phase shifts. A second n pulse, together with the 

radiofrequency pulse, refocuses the phase shifts and generates an echo 

signal, indicating whether the spins have experienced any translational 

motion in the direction o f the gradient during the time A. The echo 

attenuation, as described in the Figure 5A, is given by the following 

equation:

A = A0 exp ~ ~ r 2D ,g2S2 r>/3 Eq. 4a

where Aq is the initial amplitude at x = 0. In Eq. 2.12, the first exponential

term, exp 2t , is related to the spin-spin relaxation time, T2, while the

second term, exp[- y 2Dsg 28 2r 3 / 3 ], is associated to the attenuation due to

the diffusion. Therefore, diffusion measurements become extremely 

difficult for systems where T2 is short, y is low or Ds is small.

r.f. pulse

ntl (along x)

1

Gradient pulses

Signal

k (along y) echo

I

time

Figure 5A The Stejskal-Tanner pulse sequence.
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Stimulated echo pulse sequence

In the Eq. 4a, the main limiting factor in measuring slow diffusion is 

actually the associated short T2 times 5. The application of a three pulses 

or multi-pulses sequences to generate stimulated echoes attempts to 

overcome this limitation by storing the magnetization to prevent spin-spin 

relaxation. In particular, a stimulated echo pulse sequence consisting of 

three 90° pulses is often used. In this case, it was shown that the limiting 

factor then becomes spin-lattice relaxation time Ti. Therefore, for 

polymers where often T 1 is much larger than T2, the use of the stimulated 

echo pulse sequence is an advantage.

The stimulated pulse echo sequence is shown in Figure 6A where a first 

90° pulse rotates the magnetization from the z-axis into the xy-plane and 

the spins start dephasing. After a delay time ii, the second 90° pulse is 

applied which stores the memory o f the current phase shifts in the z- 

direction. Usually those are not affected by the field gradient and relax in 

the longitudinal direction. After a time 12, the third 90° pulse restores the 

phase shifts with a reversed sign and the spins form an echo recorded at 

time x = ii + X2-

The application of a three pulse sequence generates five echoes: a 

primary echo (PE) at 2xi, the stimulated echo (STE) at x\ + 12, and three 

secondary echoes that are usually not of interest. A phase cycling is 

usually required to remove the other echoes.

Three pre-pulses are applied before each sequence. The current pulses 

used in the pulsed gradient experiments can produce heat, mechanical 

forces and minor currents. For a pulse to be reproducible, the use of pre­

pulses allows the system to reach a state close to the one experienced 

during the PGSE sequence.

By properly setting the values o f the diffusion time A, the ramp time a, 
the amplitude S and the magnitude g o f the gradient pulse, a wide range of 

self-diffusion coefficients can be investigated.
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a: ramp time

Figure 6A The stimulated echo pulse sequence.
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Appendix B

Neutrons and their production

Neutrons

The first description o f neutrons was given in 1932 by James Chadwick 

(Cavendish Laboratory, Cambridge), when he first discovered a new 

radiation form made of uncharged particles bearing a similar mass to that 

o f a proton 6. The neutron is an uncharged particle with a mass of 

1.6749x10 24 g. The neutron is slightly heavier than a proton (the proton 

mass being 1.6726x1 O'24 g) and 1839 fold greater than an electron (the 

electron mass being 9.1094x1 O'28 g). It has a spin of Vi and possesses a 

magnetic moment. The half life o f a neutron is 894 seconds, decaying into 

a proton, an electron and an antineutrino. Since the interaction of a neutron 

with the matter are rare, it usually penetrates well through the matter, 

making it a unique probe for investigating bulk condensed matter.

Production

Neutrons can be produced to perform scattering experiments either via a 

nuclear reactor or through a spallation neutron source. A nuclear reactor is 

used for neutrons production at the Institute Laue Langevin (ILL, in 

Grenoble, France). A spallation neutron source operates at ISIS in 

Rutherford Appleton Laboratories (Didcot, U.K.).

Nuclear reactor

In a nuclear reactor, neutrons are produced by the fission of Uranium- 

235. Each fission results in the release of two to three neutrons, one of 

which is used to sustain the chain reaction (Figure IB). Wavelength 

selection is obtained by Bragg scattering from a crystal monochromator or 

by selecting the neutron velocity with a mechanical chopper. The nuclear 

reactor at the ILL is a 57 MW HFR (High-Flux Reactor). Figure 2B shows 

a schematic representation o f the D 11 instrument at ILL.
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Fission C hain Reaction

fusion
fragment

2 to 3 fission 
neutronsincident

neutron
radiative 
i capture

fissile nucleus 
(U-235, Pu-239)

gamma
neutrons used for
neutron scattering

Figure IB  Typical fission chain reaction for a reactor-based neutron 

source. Taken from Hammouda B., from

www. ncnr. nist. sov/staff/hammouda/the sans toolbox, pdf.

Velocity selector Keutror guides Sample Defector
(MoRontromator) ,  {Collimators} {position sensitive)

Neutron guides
(CoHimofors) d iaphragm s Evaluated tu b e  (40m )

Figure 2B Schematic layout of the D ll  instrument at ILL. Taken from ILL 

website, www. ill, eu/instruments-support/instruments-

sro ups/instrumen ts/d 11/.
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Spallation neutron source

This method is an accelerator-based pulsed neutron source. High energy 

proton beams obtained via acceleration in a synchrotron are used to 

bombard a heavy-metal (neutron rich) target {e.g.: U, Ta, W) and release 

pulses of neutrons with a range of wavelengths (Figure 3B) 7. Direct 

determination of the energy and wavelength o f each neutron is achieved 

by using time-of-flight (TOF) techniques on the polychromatic ‘white’ 

neutron beam.

At ISIS, the spallation neutron source is based around a 200 pA (800 

MeV) proton synchrotron operating at 50 Hz, the heavy metal target is 

made of tantalum (Ta), and about 15 neutrons are produced per incident 

proton. A schematic representation of the spallation neutron source at ISIS 

is showed in Figure 4B.

Spallation Nuclear Reaction

\  /
X

to 30
•  ► -----neutrons

incident emitted
H ion

1  i \high Z nucleus
(W-183, U-238)

neutrons used for 
neutron scattering

Figure 3B Spallation nuclear reaction fo r  a accelerator-based pulsed  

neutron source. Taken from  Hammouda B., from  

www.ncnr.nist.sov/staff/hammouda/the sans toolbox.pdf
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SYNCHROTRON

HEP Test 
Beam

70 MeV H Linac

Figure 4B Schematic layout o f  the spallation neutron source and 

instrument facilities at ISIS. Taken from ISIS website, 

www. isis. rl. ac. uk/ISIS99/introduction/ISIS_pla.JPG.

It is easy to understand that the use o f  neutron radiation and the 

scattering experiments are not simple laboratory ‘benchtop’ techniques. 

These facilities are high costly and they are financially supported and 

operated by several countries at governmental level. The neutron beam 

time is allocated on a competitive proposal based system.

Scattering theory

The radiation-matter interactions can generate scattering events where 

the neutron beam can be scattered in different modes: elastic or inelastic, 

but also coherent or incoherent.

In an elastic scattering -  i.e., when scattered neutrons have the same 

energy than the incident neutrons -  information from the spatial 

organization o f nuclei to ‘large-scale’ structures (e.g.: polymers, 

aggregates) can be obtained. When some o f the energy is lost (or gained)
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by the neutron interacting with the matter -  i.e., inelastic scattering -  data 

related to the dynamic behaviour of the sample can be achieved.

Coherent scattering can generate patterns of constructive and destructive 

interference bearing structural information of the colloidal arrangement. In 

contrast, incoherent scattering arises from random events (e.g.: thermal 

motion) and carries no information about the structure of the sample, but 

about its dynamics.

However, in a SANS experiment, only the coherent elastic scattering is 

taken into account. The incoherent scattering, appearing as a background, 

can be easily measured and subtracted from the total scattering1.

The scattering vector O

Scattering data are usually presented as plots of the intensity of the 

scattered neutron beam, I(Q), versus the scattering vector, Q. The 

scattering vector Q is proportional to the scattering angle, 0, and is the 

modulus o f the resultant between the incident and the scattered 

wavevectors, kj and ks. For coherent elastic scattering Eq. lb can be 

applied:

Eq. lb

Since

Eq. 2b

combining Eq. lb  and Eq. 2b, we can obtain

Eq. 3b

where the refractive index, n, is equal to 1 for neutrons and X is the 

neutron wavelength. Figure 5B illustrates the geometrical correlation 

involved in Eq. 3b.
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Q /2

Figure 5b Geometrical relationship for the determination o f the scattering 
vector Q.

Considering Bragg’s law of diffraction (Eq. 4b) which correlates the 

angle o f diffraction, 6 , o f a radiation of wavelength A, for planes separated 

by a distance d

Combining together the Eq. 3b and the Bragg’s law (Eq. 4b), the 

following relationship is obtained

where Q values are proportional to the inverse o f a distance d.

values can probe small scale structures, and vice versa.

The scattering vector Q, therefore, depends on both the angle and the 

neutron wavelength. This highlights the two different approaches in

>  On a reactor-based neutron source (ILL), a monochromatic neutron 

beam is scattered by the sample. For a constant wavelength, the 

scattering intensity must be measured at different angles. In order to

Eq. 4b

Q has the dimensions of (length)'1 and is usually expressed as A '1. High Q

SANS:
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achieve that, the sample-detector distance is varied using a moveable 

detector.

>  On a spallation neutron source (ISIS), the neutron wavelength varies 

and is determined by time-of-flight (TOF) method, therefore the 

position of the detector is fixed.

Contrast variation

The contrast term can be described as the squared difference in 

scattering length densities between the solute, pp, and the solvent, 

Ps'.(Ap)2 =  ( p p -  p s)2 . If  both the solute and the solvent have the same

scattering length densities, the contrast term is equal to zero, which means 

there will be no measurable scattering and therefore no structural 

information can be obtained. In this case, solute and solvent are said to be 

contrast matched.

However, as mentioned above, the large difference in the scattering 

lengths between hydrogen and deuterium is employed in SANS 

experiments to highlight details of the structure and composition of the 

sample under investigation. This can be obtained by exchanging hydrogen 

with deuterium, either in the solvent or the solute, or even in some specific 

part o f the solute. Figure 6B illustrates the contrast variation principle in a 

simple diagrammatic way. While none of the elements could be 

differentiated in panel A, by matching the background to one of the 

elements, the red lobes and the yellow core can be probed (panel B), then 

the blue lobes and the yellow core (panel C), and even both red lobes and 

blue lobes by matching the yellow centre (panel D).

This concept could be applied in a more realistic case of a core shell 

particle -  i.e., a microemulsion droplet -  where the core, the shell and the 

solvent can be selectively hydrogenated or deuterated to study different 

parts o f the same colloidal system.
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C  D

Figure 6B Diagrammatic illustration o f the contrast variation principle.

Additional measurements required

The measurement o f the scattering intensity o f the sample under 

investigation requires several other measurements to be taken into 

account. Specifically, the scattering intensity and the transmission o f  (i) 

the empty beam, (ii) the cell, (iii) the background solvent o f  the sample, 

(iv) a calibration sample and (v) the investigated sample. The SANS raw 

data are corrected using Eq. 6b

Is (Q )= ~  (rg>  --■ Eq. 6b
*  s+ c  c

237



Appendix

where I s (Q) is the scattering intensity from the sample, I s+c (Q ) is the 

scattering intensity from the sample + cell, I C( Q )  is the scattering 

intensity from the empty cell, I b ( Q )  is the scattering with the empty 

beam, Ts+C is the transmission for the sample inside the cell and Tc is the 

empty cell transmission. Note that Ts+C = T S Tc .

The 2D corrected data are radially averaged to produce ID data (i.e., 
scattering pattern I(Q) vs. Q). The data are then reduced considering the 

type o f instrument used.

SANS approxim ations

Guiner approximation

The Guiner approximation relates the low Q part of the scattering profile 

(Guiner regime) to the characteristic dimension R of the scattering 

particle. It can be used to probe disc, spheres and cylindrical shapes and it 

is expressed as follows:

I(Q) k Q D exp Eq. 7b

where D is equal to 1, 0 and 2 and K to 4, 5 and 12 for cylinders, spheres 

and discs respectively. However, Eq. 2.28 is valid for non-interacting 

particles (i.e., S(Q) —» 1) only, and over a restricted Q-range.

By plotting different quantities against Q2, the characteristic dimension R 

o f the particle can be obtained (i.e., the disc thickness, the sphere radius or 

the cylinder radius). Table IB shows the different Guiner representations 

for these shapes.
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Shape Guiner Plot Characteristic dimension R

Disc Ln[I(Q)-Q2] vs. Q2 Thickness = slope x 12

Sphere Ln[I(Q)] vs. Q Radius = slope x 5

Cylinder Ln[I(Q)-Q] vs. Q Radius = slope x 3

Table IB  Guiner plots and extracted characteristic dimensions for a disc, 
a sphere and a cylinder shape.

The curve giving a linear decay over the low Q values will give the most 

probable particle shape. One restriction applies to the Guiner plot for a 

spherical shape, for which the product Q-R must be smaller than 1 8.

Porod approximation

At high Q values, the Porod approximation can be used. In this region, 

the scattering intensity I(Q) is more sensitive to the scattering arising from 

local surfaces and can be related to the total interfacial area by the 

following equation:

I(Q) = 2x(Ap) Eq. 8b

where S/V is the total interfacial area per unit volume of sample, in cm'1. 

The Porod approximation is limited to smooth interfaces, in a Q range 

much greater than the reciprocal characteristic dimension (i.e., for Q »
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A B S T R A C T

Mucus, a thick and slimy secretion produced by submucosal cells, covers many epithelial surfaces in 
mammalian organs and prevents foreign particles that enter the body from accessing cells. However, the 
mucus layer also represents a potential barrier to the efficient delivery of nano-sized drug delivery systems 
(polyplexes, lipoplexes, particles) to the underlying mucosal epithelium. Many studies have considered the 
ability of nano-sized particles and polymers to diffuse within the mucosal network using a range of different 
techniques, including multiple-partide tracking (MPT), diffusion chamber studies and fluorescence recovery 
after photobleaching (FRAP). This review highlights the current understanding of the interaction of the 
diffusion of nano-sized structures within mucosal networks. Moreover, this article presents an introduction 
to pulsed-gradient spin-echo NMR (PGSE-NMR), a potential new tool to investigate the mobility of molecular 
species through mucosal networks and related biological gels.
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1. Introduction

A successful drug delivery system  should be able to traverse several 
biological barriers en-route to the site o f action and to give a sufficiently 
high uptake o f the active therapeutic. Low molecular w eight m olecules

* Corresponding author.
E-mail address: griffithspc@cf.ac.uk (P.C. Griffiths).

0169-409X/S -  see front m atter © 2008 Elsevier B.V. All rights reserved. 
doi:10.1016/j.addr.2008.08.006

can usually traverse bio-membranes whilst nano-sized drug delivery 
constructs (liposomes, nanoparticles, macromolecular drugs, polymer 
therapeutics) m ust cross the cells to have access to the body. 
Nevertheless, there are still several physicochemical and biological 
barriers to be overcome to ensure an adequate bioavailability [ 1 ]. One 
barrier that has been frequently investigated is the cell plasma 
m embrane. However, prior to encountering the cell membrane, the 
m ucus layer which covers several epithelial surfaces in mammalian 
organs (e.g. respiratory tract, gastrointestinal and reproductive tract)

http://www.elsevier.com/locate/addr
mailto:griffithspc@cf.ac.uk
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must be overcome. This mucus coating has a fundamental role in 
limiting the exposure of human tissues to external particles and as 
such mucus potentially represents a significant barrier to the efficient 
delivery of nano-sized drug delivery constructs to the epithelium 
and beyond [2-5]. The thickness of the mucus layer which ranges 
from 7-70 pm in the airways [6.7], 50-500 pm in the stomach [3,8] and 
15-150 pm in the colon [9-12], combined with its inherent viscoelas­
ticity, are important factors which affect the pharmacokinetics of the 
therapeutic agent [ 13,14]. This situation is exacerbated by the presence 
of any disease that causes an overproduction of mucus (e.g. cystic 
fibrosis (CF), ulcerative colitis).

Mucoadhesive drug delivery systems require an interaction 
between mucus and the polymeric drug carriers, chitosan [15,16] 
and the thiol group containing polymers polycarbophil-cysteine 
conjugates have been employed [17]. The interaction of the polymers 
with the mucosal layer results in: (i) a prolonged residence time of the 
delivery device, (ii) a localization of the delivery system at a specific 
target site, and (iii) an increase in the drug concentration gradient 
[9,18,19]. Despite the value of bio-adhesion in promoting localised 
delivery, the focus of this article is on quantifying the permeability and 
diffusion of nano-sized drug delivery constructs through the mucosal 
layer and to develop an understanding of how molecular interactions 
affect the pharmacokinetics. Accordingly, this review presents an 
overview of the techniques currently available to investigate the 
mobility of nano-sized drug delivery constructs in bio-gels, focusing in 
particular on the ability of pulsed-gradient spin-echo NMR (PGSE- 
NMR) to provide a unique insight into this challenging discipline.

2. Composition and structure of the mucus

2.1. Mucus
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Fig. 1. Chemical structures of the sugar units generally found in mucin (Reprinted from 
Advanced Drug Delivery Reviews. 56, Peppas, N. A. et at. Nanoscale technology of 
muchoadhesive interactions, 1657-1687, Copyright 2004, with permission from 
Elsevier [18]).

Mucus is a water-rich bio-gel, the main components being 
water (up to 95%), mucin (generally no more than 5%), inorganic 
salts (about 1%), carbohydrates and lipids. The composition differs 
slightly depending on the site of secretion (e.g. ocular mucus: protein 
29% w/w [of dry solids], carbohydrate 53% w/w, lipid 12% w/w; 
submaxillary gland mucus: protein 31% w/w, carbohydrate 58% w/w,

Tablet
Amino acid composition of gastrointestinal mudn

-CO-CH-NH- -R % in small intestine % in stomach

I
R

lipid 11% w/w), the physiological role of the mucus layer and the 
presence of any disease.

22. Mucin

Mucin consists of high molecular weight (ranging from 0.5 to 
20 M g mol-1) O-linked glycoproteins. It represents 80% of the 
organic component of mucus and controls its Theological character 
[20,21]. Mucin is a high ordered molecule, whose assemblies yield 
structures exhibiting length scales from a few hundred nanometers 
up to several microns [22,23]. Mucin monomers comprise glycosy­
lated and non-glycosylated peptide blocks linked by intra-molecular 
disulphide bridges. The smallest molecular components in mucin are 
a small number of amino acids (Table 1) that form the protein backbone 
and sugar residues, largely galactose, fucose, N-acetylglucosamine, N- 
acetylgalactosamine and sialic acid (Fig. 1) that form the oligosaccharide 
chains. The presence of the sialic add, together with the sulphide 
residues, gives the mudn molecule a negative charge at physiological pH 
(IEP~5). Interestingly, whereas different members of the mucin family 
might differ greatly in molecular weight, the composition of the 
glycoprotein domains does not greatiy vary [24,25].

Mucin is a rod-shaped molecule with a central linear polypeptide 
core of 100,000<Mw<250,000 g mol-1 with radial oligosaccharide 
side chains, consisting of 2 to 12 monosaccharide residues, attached to 
the serine and threonine residues by O-glycosidic linkages, Fig. 2 
[26,27], The high degree of mucin glycosylation provides for resistance 
to proteolysis by rendering the peptide core less accessible to 
enzymatic hydrolysis and afford a protective role for the mucus 
layer in mammalian organs [4,28].

Mucins are extremely large molecules, with radii of gyration Rg as 
measured by light-scattering, in the of between 150 and 200 nm [30]. 
Rg values of this magnitude imply that at the low mucin concentra­
tions used in these studies, typically 1-2 mg ml"1, the polymer 
molecules start to physically overlap. It has been proposed that at
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Fig. 2. Schematic representation  o f th e  m ucin m olecule (Fig. reproduced, w ith 
permission, from Lafitte e t at. [29]).

physiological concentrations o f  1 0 -5 0  m g  m l-1, the  overlap is likely to 
be extensive and the m ucus layer form s an entangled  netw ork [28].

2.3. Mudn aggregation

One o f the m ost im portant physicochem ical properties o f m ucus is 
its viscoelasticity. Mucin m olecu les aggregate at low  concentrations, 
thereby forming viscous so lu tions or v iscoelastic  gels [31,32], Bhaskar 
et al. [33] reported viscom etry, analytical ultracentrifugation and 
dynamic light scattering (DLS) stu d ies that show ed  a noticeable  
increase in the viscosity and aggregation  o f  m ucin in vitro w h en  the  
pH was lowered from 7 to 2. Similarly, H ong e t  al. [34] used atom ic  
force microscopy (AFM) to sh o w  that m ucin aggregates at low  pH 
forming clusters o f  10 or few er m o lecu les at pH 2, suggesting that

oligosaccharide side chains are not directly involved in the aggrega­
tion process. DLS, turbidity and rheo-sm all angle light scattering 
(rheo-SALS) m ethods have also show n that m ucin solutions tend to 
aggregate at pH 2, w here the polymer becom es weakly charged [35].

The aggregation/gelation behaviour o f  mucin is essential for the 
protection o f the stom ach from auto-digestion, at a physiological 
gastric pH o f 2. Cao et al. [26,36,37] studied the pH -dependent 
conform ational change o f  gastric mucin by DLS and show ed that 
m ucin undergoes a reversible conformational change from a random  
coil at pH > 4  to an extended  conform ation at pH <4, interpreted as a 
sol-gel transition. At low  pH, the extended conformation exposes the  
hydrophobic regions o f  the m ucin polymer, leading to a more 
accessible protein-protein interaction, w hich increases the viscosity. 
Pig gastric m ucin (PGM) gelatination involves interactions betw een  
acidic Asp or Glu residues (pK a~4) from the non-glycosylated side 
chains o f the m olecule, such as. At pH >4, salt bridges betw een  
negatively charged carboxylate side chains and positively charged 
am ine groups in the non-glycosylated regions induces a random coil 
that results in the hydrophobic dom ains becom ing folded and hidden. 
At pH < 4 , the  carboxylate groups o f  the salt bridges becom e  
protonated and m ucin unfolds, exposing the hydrophobic and 
prom oting a m ore extended conformation results [20]. In summary, 
high m ucin concentration and low  pH lead to gel formation due to 
interplay o f hydrophobic and electrostatic interactions betw een  those  
parts o f  the m ucin m olecule that have little or no glycosylation, Fig. 3.

3. Diffusion and permeability of nanoparticles through mucus

3.J. Network characteristics of mucosal systems

The thickness o f  the m ucus layer is a key factor for determ ining the  
m obility o f a drug species through i t  The thickness, as described  
previously, differs depending on the organ bearing the m ucus coating.

Scanning electron m icroscopy (SEM) o f dried mucin has been used  
to quantify the structure and physical characteristics o f the mucin  
fiber network and to explore the effect o f synthetic polym ers on these
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Fig. 3. A model show ing how  the  electrostatic interactions a t pH <4 can produce a conform ational change from a random  coil to a rod, leading to gelation (Reprinted from Current 
Opinion in Colloid & Interface Science, 11, Bansil R. e t al.. M ucin structure, aggregation, physiological functions and biomedical applications, 164-170, Copyright 2005, w ith  perm ission 
w ith Elsevier [20]).
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1

Fig. 4. Scanning electron microscophs of human cervical mucus (a) un-treated, (b) treated with PEG-33 0.001% v/v, (c) PVP-4O0 0.001% v/v and (d) PAA-3000 0.001% v/v (Reprinted 
from Biomaterials. 22, Willits R. et al.. Synthetic polymers alter the structure of cervical mucus. 445-452, Copyright 2001. with permission from Elsevier [38]).

mucin fibers. Mucin possesses an inter-fiber spacing betw een  80 and 
4 0 0  nm and a fiber network m esh size o f 1 pm [38,39]. As m entioned  
above, m ucus is m ade o f high molecular w eight negatively charged 
glycoproteins: hence the ionic character, as w ell as the hydrophobi- 
city/hydrophilicity o f  the delivery device are significant factors 
[18,40,41].

W illits et al. [38] revealed that addition o f the non-ionic poly 
(ethylene glycol) (PEG), the cationic poly(vinyl pyridine) (PVPy) at a 
buffered pH o f 7.4 altered the mucin fiber network, w hile the anionic 
poly(acrylic acid) (PAA) had little effect on the structure. It w as 
postulated that PEG-mucin interaction occurs through hydrogen  
bonding o f the ether oxygen w ith the acid m oieties in mucin, forming 
fiber patches in the mucin gel, on the other hand, PVPy interacts w ith  
mucin via an electrostatic interaction forming a gel w ith regions of 
aggregated fibers. Fig. 4.

Larhed et al. [42] quantified the diffusion o f  lipophilic low  
molecular w eight drugs such as m etoprolol, propranolol, hydrocorti­
sone and testosterone in native m ucus and in solutions m ade from  
purified mucin. Different mucus com ponents w ere identified and 
separated by density gradient centrifugation. Analysis o f the self­
diffusion coefficients o f these drugs in the different com ponents using  
a tracer technique at a pH betw een 6.4 and 6.9 show ed that it w as the

lipid and cholesterol com ponents that retard drug diffusion in native 
m ucus, rather than m ucin glycoprotein com ponent o f mucin.

3.2. Quantifying diffusion through mucus

32.1. Multiple-particle tracking
M ultiple-particle tracking (MPT) technology can be used to study  

the diffusion o f particles through biological environm ents. In this 
m ethod, the m icroscopic m otion  o f  hundreds o f  particles is recorded 
by video microscopy. Both quantitative information (diffusion coeffi­
cients) and qualitative information (direction and transport m ode) are 
extracted from an analysis o f  tim e-resolved  particle trajectories. 
Therefore, data thus obtained can g ive  direct and indirect information  
about particle-environm ent interactions and is easily applied to study  
the effects o f intracellular (e.g. cell cytoplasm ) [43] and extra-cellular 
m edia (e.g. m ucus) [44].

MPT has been  app lied  to  stu d y  the d iffu sion  o f  uniform  
polystyrene (PS) particles o f  various d iam eters (100 , 2 0 0  and  
5 00  nm ) in cystic fibrosis m ucus. Smaller particles show ed a greater 
transport rate com pared w ith  larger particles, revealing their m ore  
facile m obility w ithin  pores formed in the cystic fibrosis m ucus 
netw ork [14,45]. Similarly. Lai e ta l. [46] found that larger polystyrene
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Fig. 5. (a) Mean square displacement (MSD) of PLGA-DDAB/DNA and PS nanoparticles in PGM. (b) The normalized diffusion coefficients of PS and PLGA- DDAB/DNA (Reprinted from 
Advanced Drug Delivery Reviews, 57, Dawson. M. et al., Real-time multiple-particle tracking: applications to drug and gene delivery. 63-78, Copyright 2004, with permission from 
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Fig. 6. Schematic representation of a FRAP experiment Before bleaching, the initial 
fluorescence is recorded as P(i). At f-0, a high intensity light beam bleaches the 
molecules causing a drop in fluorescence to f(0). Due to the random motion/diffusion, 
the bleached molecules will exchange their position in the bleached area with non­
bleached fluorescent molecules from the surrounding. This results in a recovery of the 
observed fluorescence. The characteristic diffusion time (tD) is indicated as the time at 
which half of the fluorescence has recovered (Figure reproduced, with permission, from 
Meyvis et al. (541).

nanoparticles (500 and 200 nm in diameter), when coated with poly 
(ethylene glycol), diffuse faster through cervico-vaginal mucus 
compared to smaller 100 nm coated particles. This study showed 
that PEGylation not only reduced obstruction for larger PEG-PS (200 
and 500 nm) but also increased the homogeneity of transport 
compared with similar sized PS particles.

Furthermore, Dawson et al. [47] investigated the transport rates in 
mucus of cationic nanoparticles made from poly(D,L-Iactic-co-

glycolic) acid (PLGA) and the cationic surfactant dimethyldioctadecy- 
lammonium bromide (DDAB) coated with DNA (PLGA-DDAB/DNA) as 
potential nanoparticle gene carriers. Their results showed that 
transport rates of PLGA-DDAB/DNA nanoparticles in mucus were 
higher than that of the slightly smaller PS nanoparticles because the 
DNA coating makes the PLGA-DDAB/DNA nanoparticles moderately 
hydrophilic when compared to PS nanoparticles, allowing a greater 
mobility within the relatively hydrophobic mucus media, Fig. 5.

322. Diffusion chamber studies
The diffusion chamber is somewhat dated but is still used to study 

diffusion of particles through bio-gels. It involves the vertical 
mounting of two chambers, one donor and one receiver, either side 
of a mucus or gel solution. The donor compartment is filled with the 
drug delivery system, while the receiver is filled with the buffer 
solution. Diffusion rates through the mucus are calculated by 
measuring the change in drug concentration in serial samples 
removed from donor, receiver or both compartments as a function 
of time. The advantages of this method are its simplicity and the fact 
that the mucus composition can be changed or altered, simulating 
several disease states or physiological situations. Disadvantages 
include the need for lengthy experiments (usually several hours) 
and that during this period, native mucus with its endogenous 
proteolytic enzymes can degrade the mucus glycoproteins [2,21].

Sanders et al. [ 13,48] studied the transport of fluorescently labelled 
polystyrene particles (with size comparable to that of some transfec­
tion systems for cystic fibrosis gene therapy) through a 220 pm thick 
cystic fibrosis mucus layer with a vertical diffusion chamber system. It 
was found that the largest PS nanospheres (560 nm) were sterically 
obstructed by the mucus network, while the smaller nanospheres 
(124 nm) were retarded only by a factor of 1.3 when compared with 
buffer.

0+ r2 r, + r2

Fig. 7. Stimulated echo sequence showing the rf and field gradient pulses and the helix induced in the phase isochromats (Figure reproduced, with permission, from Johnson (62]).
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The diffusion of a selection o f  drugs, such as isoniazid, pentam i­
dine, rifampicin, p-am inosalicylic acid and pyrazinamide (w hich can 
be all potentially delivered as pulmonary aerosols) through mucin  
has been carried out by Bhat et al. [49,50]. They show ed that the 
mucus layer presented an additional diffusional barrier to the drugs o f 
50-57% o f the total observed  resistance, th e  latter due to a 
combination o f factors including protein binding, viscosity and 
physical obstruction. W hen the m ucus was replaced w ith different 
cystic fibrosis mucus solutions, there w as a 28-75% decrease in 
drug permeability [51], indicating that significant decreases in drug 
transport rate occur w hen  crossing cystic fibrosis m ucus and that these 
could play an important role in reduced pulmonary bioavailability.

Similarly, Desai et al. [52,53] investigated the diffusion through 
mucus gel o f a range of solutes with various molecular weights 
(126 < M w < 1 4 ,4 0 0  g m ol-1 ) and physical properties, including  
phloroglucinol, 5-hydroxy-L-tryptophan, (3-nicotinamide adenine 
dinucleotide (NAD) and ribonucleic acid (RNA). This study showed, 
for all solutes studied, a retardation of solute flux in mucus by a factor 
of at least tw o w hen compared to the diffusion o f the same solute in 
aqueous solutions. The limitations o f the diffusion chamber m etho­
dology centre on the risk of artefacts arising from practical difficulties, 
principally the inability to control the layer o f bio-gel and its 
propensity to obstruct the filters, reducing the apparent diffusion 
coefficient.
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32.3. Fluorescence recovery after photobleaching (FRAP)
Many studies have used FRAP to investigate the mobility of a range 

of solutes in sub-cellular compartments. Besides this application, 
FRAP has also been used to study the mobility of molecules in 
extracellular matrices such as mucus and related bio-gels. In a FRAP 
experiment, one component in a multi-component system is 
selectively fluorescently labelled. The sample is placed on a micro­
scope and a high intensity laser beam is rastered across the sample, 
bleaching the fluorescence of the labeled molecules, causing a drop in 
the fluorescence intensity. Diffusion of the non-bleached molecules 
into the area previously bleached results in recovery of the 
fluorescence intensity, Fig. 6. The diffusion coefficient is then obtained 
by fitting the curve of the recovery profile [54],

The diffusion of polystyrene microspheres (59-1000 nm) viruses, 
and artificial virus-like particles derived from the capsid layers of 
human papilloma virus HPV (55 nm,~ 20,000 g mol-1) and Norwalk 
virus (38 nm, ~ 10,000 g mol-1) in fresh human cervical mucus were 
quantified using FRAP [55]. When compared to virus-like particles of 
similar size, the PS microspheres were bound more tightly to the 
mucin fibers. Even the smallest microspheres (59 nm) showed no 
detectable diffusion by FRAP.

FRAP was also used by Afdhal et al to examine the influence of 
mucin in the aggregation of cholesterol enriched vesicles [56]. An 
increase in the vesicle size (calculated from the diffusion coefficients 
measured by FRAP) was explained by binding of the vesicles to the 
mucin, suggesting that both glycosylated and non-glycosylated 
domains of the mucin are involved in the interaction even though 
the effect is reversible in the absence of non-glycosylated domains.

4. Pulsed-gradient spin-echo NMR (PGSE-NMR)

4.1. Theoretical considerations

Like all nuclear magnetic resonance (NMR) techniques, PGSE-NMR 
offers a numbers of advantages when applied to multi-component or 
heterogeneous systems - it is non-invasive, non-destructive but most 
importantly the chemical specificity of NMR enables the behaviour of 
each component within the mixture to be identified and analysed in a

single experiment Furthermore, the typical length scales present in 
nano-scale structures coupled to their characteristic diffusion rates 
results in measurable changes in NMR signal over the appropriate 
timescale for the NMR experiment The only drawback is that the 
sample must contain a spin-active nucleus, but 1H and 19F are 
particularly viable for biological samples.

The pulsed-gradient spin-echo NMR [57-77] (PGSE-NMR, some­
times referred to PFGSE-NMR) experiment has been reviewed 
previously in the context of polymer solutions [60,68,78,79], gels 
[80-83], self-associating and supramolecular systems [77,84-88] and 
porous or heterogeneous media [58,86,89-101]. A full description of 
this technique is beyond the scope of this article so here we provide 
only an introduction to the technique and its application to the 
diffusion of small molecules in mucusal systems.

The central feature of the PGSE-NMR experiment is the application 
of magnetic field-gradients G(r) that encodes into the NMR signal (via 
the frequency, to) the position of the molecule, r;

B(r) = B0 -l-y G(r) (1)

where B(r) is the effective field in the presence of field gradients, B0 
the static field strength and y  the magnetogyric ratio, a constant for a 
particular nucleus.

Diffusion experiments are generally pseudo-2D experiments, in 
that a series of typically 16-64 high resolution ID spectra are 
recorded, following an evolution period during which diffusion 
leads to a displacement of the molecules. The field-gradients are 
pulsed at the start and end of the evolution time to encode and decode 
respectively, the NMR signal with the spatial information. The 
diffusion period is a very useful experimental parameter in itself 
and may be used to test for the presence of and subsequently “size” 
any boundaries present within the system.

Many pulse sequences have been written in order to quantify the 
diffusion for a range of different sample circumstances (strong signals, 
solvent suppression, convection compensation, the presence of back­
ground gradients, etc) [67,68,71,72,102-132] but arguably the most 
commonly used are the Stejskal-Tanner, stimulated echo and long­
itudinal echo decay sequences. Central to all pulse sequences are a set
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of matched field gradient pulses that perform the encoding and 
decoding of the spatial information. The stim ulated echo sequence is 
depicted in Fig. 7.

The first o f the 90 degree pulses tips the m agnetization into the xy 
plane where its precessional frequency is determ ined by the applied  
field gradient pulse, accordingly to Eq. (1). A second 90 degree pulse  
m inim ises the effects o f spin-spin relaxation by storing the m agne­
tization in the longitudinal plane, particularly useful for materials 
such as polymers w here T i » T 2 values. After the evolution tim e, the  
final 90  degree pulse tips in m agnetization back into the xy plane 
w here the second field gradient pulse quantifies changes in the  
precessional frequency induced by diffusion o f the m olecules leading  
to a different effective field being sensed, Fig. 7.

A typical raw 2D dataset is presented in Fig. 8 w here the normal 1H 
NMR spectrum  runs left to right and the spectra decrease in intensity  
w ith increasing field gradient duration (fixed m agnitude) running  
back to front. It is clear that various peaks decay -  attenuate -  at 
different rates, corresponding to different diffusion coefficients.

4.2. Calculating diffusion coefficients

There are various analysis protocols for quantifying the diffusion  
coefficient; the sim p lest in vo lves m easuring th e  integral o f  a 
characteristic peak arising from the m olecule o f  interest and fitting 
the exponential attenuation o f this signal, Fig. 9(a). If the m olecule o f  
interest is m on od isp erse , the diffusion behaviour should give a sim ple  
exponential decay. Polydispersity or slow  exchange -  w here the 
m olecule exists in tw o discrete dynam ic environm ents that are not 
averaged on the NMR tim escale -  lead to non-exponential behaviour 
that often presents a challenge to interpret but is nonetheless a 
valuable insight. N on-exponential behaviour may also arise from the 
attenuation o f a signal arising from similar functional groups in tw o o f  
the com ponents i.e. w here there is significant “spectral overlap". In 
these  cases, fitting to a bi- or sum  of exponentials m ay still provide a 
valid insight. Fig. 9(b), (c).

More elaborate protocols also exist w here a priori information is 
used to further refine the analysis by constraining input param eters to
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known spectra or to the known number of diffusion coefficients, this 
latter approach particularly useful if one needs to identify an unknown 
species in a mixture. Arguably the most commonly employed protocol, 
which is not without drawbacks, is the DOSY (Diffusion Ordered 
SpectroscopY) NMR approach in which an inversion of the attenuation 
function for each point in the spectrum leads to a 2D representation of 
the diffusion coefficient vs. spectral characteristic, Fig. 10. This is a 
particularly powerful approach if one is interested in editing or 
resolving spectra based on diffusion rates, Fig. 11.

The diffusion coefficients thus determined contains dynamical and 
structural information defined by the size and shape of the diffusing 
species and the solution within which it is dispersed. Diffusion 
coefficients decrease with increasing molecular size and as a reflection 
of any binding or obstruction the diffusing specie experiences within 
the solution. In dilute solutions, hydrodynamic radii are most 
frequently calculated from diffusion coefficients via the Stokes- 
Einstein relationship, notwithstanding its limitations.

Associations and other interactions (such as binding) between 
diffusing species leads to a reduction in diffusion rate, commensurate 
with the increased size of the aggregate, modulated by the lifetime 
and concentration of the aggregate. For the situation where the 
aggregate is long-lived compared to the NMR timescale, two discrete 
populations are manifest, sometimes giving rise to two discrete NMR 
signals. More commonly, fast exchange occurs and the effective 
diffusion coefficient is a population weighted average of the two 
discrete environments, the faster rate associated with the non­
aggregated species and the slower rate associated with aggregates;

In the case of small, rapidly diffusing molecules interacting with large, 
slowly diffusing structures, there is a significant sensitivity to the 
concentration of the non-aggregated fraction of the small molecule, 
and thus NMR diffusion measurements are highly useful for the study 
of weak interactions.

4.3. Application of PGSE-NMR to bio-gel systems

Several classes of vehicles employed for drug delivery systems are 
now available including (i) liposomes, (ii) surfactant micelles, (iii) micro­
emulsions, and (iv) polymers [134]. As a non-invasive technique, PGSE- 
NMR can be used to quantify the diffusion of micro- and nano-sized drug 
delivery constructs [135] in colloidal systems [136-140] and bio-gels 
such as mucin glycoprotein solutions [29,141,142], cartilage [143], 
curdlan gels [ 144], whey and casein protein gels [145-148],

Diffusion measurements of PEG polymers with different molecular 
weights (1080, 8500, 82,250 g mol-1) in whey protein solutions and 
gels were carried out by Colsenet et al. [145]. Their studies revealed 
that PEG diffusion in both whey solutions and gels was strongly 
related to the probe polymer size i.e. an increase in the size of the PEG 
resulted in a reduction in its diffusion coefficient This effect was more 
pronounced with increasing protein concentration. Thermal-aggrega- 
tion of the whey protein caused structural changes in the protein, 
leading to an increase in inter-particle distances, enhancing the 
diffusion of all PEGs. Similarly, a diffusion study of PEGs in curdlan gels 
[144] showed a dependence on the polysaccharide concentration, the 
size of the PEG and the temperature.

Lafitte et aL [29] studied the effect of pig gastric mudn on the diffusion 
of PEGs spanning a molecular weight range 1020 g moP1 < Mw< 716,500 g 
moP1 in 5 wt% mudn gels (equivalent to the normal human physiological 
concentration in the stomach) as functions of pH, ionic strength 
and temperature. They concluded that the structure of the mudn 
molecules revealed a stronger dependency on the PEG diffusion as a 
result of changes in the pH compared with changes in ionic strength and 
temperature. In fact, it was found that intermediate molecular weight PEG 
that displayed a slower diffusion at pH 4 compared to pH 1 and 7, Fig. 12. 
The increase in diffusion between pH 1 and 4 was due to the mudn 
network being less homogeneous at pH 1 compared with pH 4  More 
surprising was the fact that die diffusion of the PEGs was faster at pH 7 
than at pH 4, explained by the decrease in flexibility of the PGM molecules 
within the network induced by stronger hydrophobic interactions as a 
result of the decreasing pH. These interactions facilitate the diffusion of 
PEGs of intermediate but not the largest PEGs which are too sterically 
hindered.

The same research group investigated the transport in mucin and 
mucus of polysorbate 80 (PS-80), a non-ionic surfactant commonly 
used as an exdpient in many pharmaceutical formulations [ 142]. The 
PGSE-NMR attenuation functions for PS-80 in mucin solution and 
mucus showed a bi-exponential nature (see Fig. 13). This is ex­
plained by the existence of two populations of PS-80 molecules 
within a single sample; a non-surface-active fraction that can move 
freely in the system (PS-80free) and a surface-active fraction that 
forms micellar structures resulting in a slower diffusion in the bio-gel 
(PS-80mic). However, the reduced transport rate of PS-80 in mudn is 
not due to a specific interaction with mucin but to a simple 
interaction of the PS-80 with the mucin network. PS-80 consists of 
and fatty acid chains and long ethylene oxide chains and as such, they 
are expected to behave in a similar fashion to PEG, showing steric 
hindrance on diffusion processes in the mucin network. When the 
excipient is mixed with mucus in solution, the PS-80 experiences a 
greater decrease in its diffusion coeffident The abundant lipids
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Fig. 12. Relative diffusion coefficients of PEG probe molecules in PGM solutions at 5 wt.% reported as function of the Mw of the polymers (a) and as function of the pH (b) (Figure 
reproduced, with permission, from [29]).
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Fig. 13. Echo-decays obtained by PGSE-NMR for different concentrations of PS-80 in the presence of 5 wt% mucin (a) and 5 wt% mucus (b) (Figure reproduced, with permission, from [ 149]).

contribute most to reduce the diffusion of drugs in native mucus [42], 
acting as adsorption sites for amphiphile molecules through hydro- 
phobic interactions.

Upon addition of the cationic surfactant tetradecyltrimethylam- 
monium chloride (TTAC) to the mixture of mudn and PS-80, the 
formation of mixed micelles between PS-80 and TTAC occurred [ 141 ]. 
Depending on the composition of the mixture, complex-formation led 
to predpitation. PGSE-NMR measurements demonstrated that at low 
concentrations of PS-80, mixed PS-80, TTAC and mudn aggregates 
were formed, but an increase in PS-80 concentration caused the 
dissolution of die preapitate, limiting the interactions between the 
mixed micelles and the mudn. Our interest focuses on “polymer 
therapeutics” [150,151], polymeric carriers conjugated via a covalent 
(often deavable) bond to the therapeutic moiety. The polymeric 
carrier confers aqueous solubility, biocompatibility or biodegradabil- 
ity and improves the pharmacokinetics of the therapeutic agent The 
bioavailability of the therapeutic agent is dosely coupled to its ability 
to be transported to the site of action. Therefore, a key aspect in 
defining structure-activity relationships for polymer therapeutics 
derived from polymer diffusion data is the requirement to separate 
the effects of obstruction -  the reduction in polymer mobility due to
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Fig. 14. Relative self-diffusion coefficients measured by PGSE-NMR for a series of polymers 
in different concentrations of mucin, polyethylene glycol) 10 K g moT1 and 100 K g mol 
~1; PAMAM dendrimers generation 2 and 4 and polyethylene imine) 25 Kg mol- 1.

the increased diffusion path-length assodated with the polymer 
having to diffuse around the mudn molecules -  from the effects of 
binding against the backdrop of inherently varying molecular weight 
and chemical structures of the range of polymers being examined. One 
approach to achieve this is to examine the diffusion coeffident of the 
polymer as a function of mudn concentration. By normalising such 
diffusion data to the diffusion rate observed at infinite dilution in 
terms of the mucin concentration J K !lL . one may to a first 
approximation remove the effects of mdlecular weight, Fig. 14.

It is clear from Fig. 14 that the relative diffusion coeffidents vary 
significantly with mudn concentration, being substantially slower in 
die presence of physiological amounts of mudn. These data also show 
a complex relationship with molecular weight — there is the expected 
decrease in diffusion rate for the two PEGs (10 K and lOK gmol1) but 
there is a negligible difference in the relative G2 and G4 diffusion rates 
given their rather different molecular weights (3256 g mol"1 and 
14,215 g mol”1 respectively). Further, the mudn retards the diffusion 
of the two PAMAMs to a comparable degree to the larger PEG, 
notwithstanding its much greater size. The greatest reduction is 
shown by the highly branched polyethylene imine) 25 K g mol-1 
sample. These data reflect the complex interplay between obstruc­
tion-only behaviour (PEG, e.g. the basis of PEGylation [152]) and 
obstruction plus binding to the mudn (PAMAM, PEI) where additional 
retardation arises due to the molecular characteristics of the polymer 
and the mudn.

5. Outlook and future perspectives

This article has surveyed the range of techniques commonly used 
to measure the diffusion of particles, polymers and self-assembled 
structures through mucosal systems. Some interesting and unex­
pected behaviour has been highlighted, for example a non-monotonic 
behaviour of diffusion rate on partide size, requiring further study. 
The PGSE-NMR technique has been discussed in some detail as it 
offers an as-yet unexploited approach to studying the diffusion of both 
small molecules such as drugs and larger polymer-based drug delivery 
systems in mudn. Considerable effort is required to separate the 
effects of spedfic interactions between the spedes of interest and the 
mucin from simple obstruction effects, in order to define the 
underlying structure-activity relationships.
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The viscous mucus coating that adheres to the epithelial surfaces of mammalian organs provides protection fen* 
the undedying tissues and is an efficient barrio: to drug delivery. Pulsed-gradient spin-echo NMR and small- 
angle neutron scattering have been used to study the aqueous solution interaction of various model polymer 
therapeutics with mucin, the principle organic component within mucus. Nonionic polymers such as linear and 
star-branched poly(ethylene oxide) (PEO) and dextrin showed no appreciable interaction with mucin but suffered 
a moderate retardation in their rate of diffusion through the mucin solution. A strong interaction with mucin was 
observed for a series of polyamidoamine (PAMAM) dendrimers and hyperbranched poly (ethylene imine) (PEI), 
which displayed a characteristic pH-dependent profile and led to significant reductions in their rates of diffusion. 
These observations have implications for the design of optimized polymer therapeutic structures being adopted 
for the delivery of therapeutic moieties through mucin-rich environments.

Introduction
Significant progress has indeed been made over the past 

decade ip the , design and development of polymer-based 
nanosized hybrid therapeutics with several such delivery systems 
entering clinical trials but many challenges remain.1

Epithelial surfaces in mammalian organs (e.g., conductive 
airways of the lung and the gastrointestinal and reproductive 
tract) bear a mucus coating, a complex mixture of glycoprotein, 
lipid, and electrolytes that provides protection for the underlying 
cells and, therefore, represents an inherently efficient barrier to 
drug delivery. The efficacy of this barrier depends on its 
physicochemical state such as hydration and mucin content, 
which in turn is defined by its site of secretion and the presence 
of any disease (e.g., cystic fibrosis), all of which are factors 
that can affect the absorptive pharmacokinetics of the therapeutic 
agent.2

Mucus is in essence a water-rich biogel, the main components 
being water (up to 95%), mucin (generally no more than 5%), 
inorganic salts (about 1%), carbohydrates, and lipids. Mucin 
consists of high-molecular-weight (ranging from 500 to 20 000 
kg mol-1) O-linked glycoproteins (of varying length scales from 
a few hundred nanometers up to several micrometers) in turn 
composed of glycosylated and nonglycosylated peptide blocks 
linked by intramolecular disulfide bridges,3 calcium ion or 
peptide cross-linking,4 carbohydrate—carbohydrate bonds, and 
hydrophobic associations.5 Mucins have a low isoelectric point 
(IEP »  2 to 3); because of the anionic nature of their 
oligosaccharide side chains (sulfate and sialic acid units).

Several models have been invoked to describe die solution 
structure of mucin; aggregates of rod-shaped molecules com­

* To whom correspondence should be addressed. Tel: +44-29 20875858. 
Fax: +44-29 20874030. E-mail: griffithspc @ cardiff.ac.uk.

f School of Chemistry, Cardiff University.
* Welsh School of Pharmacy, Cardiff University.
s Rutherford Appleton Laboratory.

prising a central linear polypeptide core of 100 000 < Afw < 
250 000 g mol-1 with radial oligosaccharide side chains of 2 to 
12 monosaccharide residues attached to serine and threonine 
residues by O-glycosidic linkages,6 a solvated random coil of 
flexible linear glycoprotein7 that is either stiffened by the 
glycosylated fragments8 or their interaction (the so-called 
“zipper” or bottle-brush model),9 liquid crystalline structures,7 
and a double globule comb structure.10 This complexity is 
compounded by the tendency of mucin to aggregate at low 
concentrations (and pH).

The aim of this study is to examine by pulsed-gradient 
spin-echo NMR (PGSE-NMR), the diffusion of a series of 
water-soluble polymers intended to represent model polymer 
therapeutics within mucin solutions and to quantify by small- 
angle neutron scattering (SANS) changes induced in the 
structure of mucin by the addition of that second polymer.

Material and Methods
Materials. Dried porcine gastric mucin (PGM) type HI was 

purchased from Sigma Aldrich and used without any further treatment. 
Over the concentration range 0.5 < [mucin] < 5 wt %, solutions of 
PGM are viscous (Figure SI in the Supporting Information) and exhibit 
a pronounced concentration dependence (tj x  [mudn]2) but do not 
form gels. There is no pronounced sol—gel transition (Figure S2 in the 
Supporting Information), as has been reported previously for com­
mercial samples of mudn. A series of water-soluble polymers, termed 
die “probe” polymer, have been examined in the presence of PGM, 
and these also were not further purified: linear PEO (1-PEG10K) 
nom inal molecular weight Mw =  10 000 g mol-1 (Sigma-Aldrich, U.K.); 
linear deuterated PEO nominal molecular weight Mw=  10 000 g mol-1 
(Polymer Laboratories, U.K.); linear PEO (1-PEG100K) nominal 
molecular weight Mw =  100 000 g mol-1 (Sigma-Aldrich, U.K.); 
branched polyethylenimine (b-PEI2K) nominal molecular weight Mw 
=  2000 g mol-1 (Sigma-Aldrich, U.K.); branched polyethylenimine 
(b-PEI25K) nominal molecular weight Afw =  25 OOO g mol-1 (Sigma

10.1021/bm9009667 © 2010 American Chemical Society
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Aldrich, U.K.); polyamidoamine dendrimer G2.0 (PAMAM G2.0) 
nominal molecular weight Afw =  3260 g mol-1 (Dendritech); polya­
midoamine dendrimer G4.0 (PAMAM G4.0) nominal molecular weight 
Mw =  14 210 g mol-1 (Dendritech); polyamidoamine dendrimer G3.5 
(PAMAM G3.5) nominal molecular weight M« =  12 930 g m or1 
(Dendritech); polyamidoamine dendrimer G5.5 (PAMAM G5.5) nomi­
nal molecular weight Mw *  52 900 g moT1 (Dendritech); dextrin (type 
1, com) nominal molecular weight Mw *  60 000 g/mol (ML labora­
tories, Keele, U.K.).

Preparation of Polymer-Mudn Solutions. Solutions were pre­
pared with different mucin accentuations (1 wt % < [mudn] < 5 wt 
%) and a constant probe polymer concentration (0.5 wt %) by simply 
dissolving the required masses of polymer in D2O (99.5 atom % D). 
Samples were left for at least 2 h but typically overnight at room 
temperature to allow full dissolution and equilibration. The solutions 
were not filtered, and the pH was adjusted by the addition of HC1 or 
NaOH.

Small-Angle Neutron Scattering. SANS experiments were per­
formed on the fixed-geometry, time-of flight LOQ diffractometer at 
the ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, 
Didcot, U.K. A Q =<MIX) sin(0/2) range between 0.008 and 0.25 A " 1 
is obtained by using neutron wavelengths (A) spanning 2.2 to 10 A  
with a fixed sample—detector distance of 4.1 m. The samples were 
contained in 2 mm path length, UV-spectrophotometer grade, quartz 
cuvettes (Hellma, GmBh) and mounted in aluminum holders on top of 
an enclosed, computer-controlled, sample chamber. Sample volumes 
were ~0.6 cm3. All experiments were conducted at 37 °C (unless 
otherwise stated). Temperature control was achieved by using a 
thermostatted circulating bath pumping fluid through the base of the 
sample chamber, achieving a temperature stability of ±0.2 °C. 
Experimental measuring times were approximately 30—40 min.

All scattering data were (a) normalized for the sample transmission, 
(b) background corrected using a quartz cell filled with D20 , and (c) 
corrected for the linearity and efficiency of the detector response using 
the instrument specific software package.

Pulsed-Gradient Spin—Echo NMR (PGSE-NMR). Pulsed-gradient 
spin-echo NMR experiments were carried out on a Broker AMX360 
NMR spectrometer operating at 360 MHz (*H) and using a stimulated 
echo sequence, as described elsewhere.11 For each measurement, a 5 
mm diffusion probe and a Broker gradient spectroscopy accessory unit 
was used. All experiments woe conducted at 37 °C. Temperature 
stability was maintained by the standard air heating/cooling system of 
the spectrometer to an accuracy of ±0.3 °C.

Two approaches to analyzing the data were employed; where there 
is little spectral overiap with the peaks of interest (e.g., PAMAMs in 
mucin), the diffusion coefficients have been extracted by an analysis 
of the peak integrals; however, where spectral overlap is pronounced 
(e.g., PEG in mucin), a more involved component-resolved (CORE) 
approach (Figure S3 in the Supporting Information) was adopted.12

In both cases, the self-diffusion coefficient D, was extracted from 
an analysis of the peak amplitudes according to eq 1

A(&, G, A) =  A„ exp[(—AD,)] (1)
where A is the peak amplitude in the absence (Ao) or the presence of 
trapezoidal field gradient pulses of duration 6  (400 fis < 6 < 2.8 ms), 
ramp time o  (250 fit) strength G (0.86 T m_1) and separation A (140 
ms), and Ic is given by eq 2

k =  >2c 2|30A(d +  o?  -  (lOd3 +  3Pad2 ±  35<?d +  14d3) j

(2)

where y  is the gyromagnetic ratio.

Results
In this current work, PGSE-NMR has been used to quantify 

the diffusion o f model polymer therapeutics (the “probe”
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Figure 1. Scattering from mucin 5 wt % (closed circles) at 37 °C, pH 
7; fitting to the scattering data (solid line); globule form factor P(Q) 
(dotted line); globule structure factor S(Q) (dashed line); Q~2 (dashed- 
dotted line); and Q~* (dashed-dotted-dotted line) terms. The final data 
points have been omitted for clarity.

polymer) within aqueous mucin solutions. SANS has been used 
to detect any perturbation in the mucin solution structure induced 
by the addition o f the probe polymer and thus to provide a 
complementary indication of any interaction between the mucin 
and probe polymer. However, we first present the SANS analysis 
o f simple mucin solutions, subsequently, that from mixtures of 
mucin—probe polymer, before elaborating on the PGSE-NMR 
study.

SANS from PGM  Solutions. The SANS from 5 wt % (50
mg mL-1) (nonpurified) porcine gastric mucin PGM solutions 
at 37 °C is presented in Figure 1. As may be seen, there are a 
number of features in the data, including pronounced maxima 
against a slowly decaying background signal. The maxima arise 
as a result o f the interference from scattering centers within the 
solution, implying some level o f order. The spacing (£) 
associated with these maxima scale with concentration 
(£ oc c-o.38 (±0.03) (over the entire range studied 1 < [mucin] < 5
wt %)) characteristic o f liquid-like ordering (£ oc c—1/3) (Figure
S4 in the Supporting Information). These maxima are still 
present in the scattering, even at concentrations as low as 1 wt 
% (10 mg mL-1). These features are more pronounced than 
those in the SANS (and SAXS) studies of Waigh et al.10,13-16 
Interestingly, the peak does not move with increasing ionic 
strength (ambient < [salt] < 0.1 M NaCl, where on the basis o f 
conductivity measurements the ambient ionic strength is com­
parable to ~ 1 0  mM NaCl), implying that they do not arise as 
a result o f an electrostatic structure factor (Figure S5 in the 
Supporting Information).

In their early SANS study, Waigh et al.16 interpreted their 
data in terms o f  representing mucin glycoprotein as a homo­
geneous cylinder, for which a Guiner analysis suggested that 
the length o f the glycosylated regions was ~ 1 0 0  nm with a 
radius o f 24 ±  1 nm. Subsequently, they reanalyzed their SANS 
data in light o f the SAXS study10 and invoked a dumbbell model 
in which two globular structures (with dimension 10—20 nm) 
are connected by a 40—50 nm glycosylated spacer with a 
thickness o f a few nanometers.

A  more complex form factor approach has been adopted here 
that embodies the essence o f the dumbbell model, in which the 
scattering has been analyzed using a model that comprises two 
main scattering terms

M )  =  Q)peptidebackbone +  / ( f ? W  0 )

The first term of eq 3 is the contribution from the glycosylated 
peptide backbone (Scheme 1), whereas the second term accounts
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Scheme 1. Solution Conformation of Mucin Comprising 
Hydrophobic Globules Connected by a Glycosylated Spacer3

“ Hydrophobic globules are modeled in terms of a dispersion of 
polydisperse spheres, whereas the spacer gives rise to a Q~2 contribution 
to the overall scattering (adapted from ref 10).

for the dispersion o f hydrophobic globules connected by the 
glycosylated peptide backbone. The peptide backbone is mod­
eled as

KQ)peptidebackbone m  j.g .r e
(4)

where the intensities I\ and /2 characterize the contribution to 
the scattering arising from the peptide backbone with charac­
teristic length scale £  (where £2Q2 > 1) and from some larger, 
ill-defined structure, £.

The second term in eq 3, /(<2)giobuie, is responsible for the 
scattering from the locally ordered hydrophobic globules, and 
it was deemed most appropriate to model this structure as a 
concentrated dispersion o f uncharged (polydisperse) spheres 
given (i) the liquid ordering scaling o f  the peak positions with 
concentration and (ii) the fact that no change in scattering is 
observed as a result o f the increase in the ionic strength (Figure 
S5 in the Supporting Information). Therefore,

= nv\ p„ ) (5)
where N  is the number o f scatterers of volume, V, per unit 
volume and (pm — ps)2 is their contrast against the solvent. The 
form factor P(Q) is calculated using a distribution o f polydis­
perse spherical scatterers with

P(Q)
_ ?\ sin QR — QR cos QRV

J
integrated over a modified Schulz distribution

- ( Z  +  1)
exp — ---------------------

( Z + J I Y

(6)

n(R) =
iz+i

(R ~  /?,)J
(R -  * , r

(R -  /?,)(/? -  /?,)

T ( Z +  1)

(7)

with width a  =  ((/? —/?i))/((Z +  1 )1/2) to account for variation 
in size.

This model, idealized in Scheme 1 with the various contribu­
tions to the overall fit illustrated in Figure 1, is most sensitive 
to the position o f the peaks, allowing the size, R , and volume 
fraction, <p (=  NV), o f the globules to be readily parametrized 
(R «  10—15 nm, <f> «  0.30 to 0.40), yielding values that are in 
very good agreement with those obtained by Waigh et al.10 The 
Q~2 contribution to the overall fit can be reanalyzed representing 
the data in a Zimm plot to yield a correlation length o f ~ 1 3  
(± 1 ) nm (and over the high Q limit, R$ «  9 (± 1 )  nm). This 
observation is consistent with previous reports o f a swollen coil, 
commensurate with the type o f structure envisaged by Waigh 
as a glycosylated spacer. A s may be seen, the Q~4 term 
contributes rather weakly to the overall fit; indeed, the fit is 
dominated by the Q~2 and globule terms. Therefore, there is 
also a resonance o f this model with the “bottle brush” and
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Figure 2. Scattering from 5 wt % mucin in the absence (closed circles) 
and in the presence of 0.5 wt % deuterated PEG10K g mol-1 (open 
circles) at 37 °C, pH 7. The lines correspond to the fits to the model 
described in the text.

“zipper” m odels,17 which lends support to and gains credence 
from the aforementioned various models used previously to 
describe the solution conformation of mucin.

Upon dilution from [mucin] =  5 to 1 wt %, the peak in the 
data m oves to lower (2 (£ 00 c~°38 (±003)). The peak position 
corresponds to a distance o f 21 nm at 5 wt % mucin increasing 
to 39 nm at 1 wt % mucin. The scattering from 5 wt % mucin 
solutions over a pH range of 2 < pH< 9 (at 37 °C) (Figure S6 
in the Supporting Information) showed identical maxima, 
indicating that the conformation o f the mucin does not change 
over this pH range, in contradiction to that observed by Cao et 
al.18 However, the sample at pH 2 did exhibit slightly different 
scattering: the intensity o f the maxima is slightly reduced, but 
there is no change in the peak position. This observation 
confirms what is known about commercial PGM samples: the 
extraction process disrupts the disulfide bridges, leading to a 
much weaker sol—gel transition around pH < 4 and the lack of 
gel formation. The Supporting Information also presents sup­
porting viscosity studies (Figure S2 in the Supporting Informa­
tion).

SANS from PGM Solutions in the Presence of the 
Polymers. The scattering from 5 wt % PGM solutions (37 °C) 
in the presence o f 0.5 wt % /-PEG 1 OK, b-PEG20K, and 
/-PEG100K showed no significant differences from the 5 wt % 
PGM solution. A typical data set is presented in Figure 2. A 
deuterated /-PEG 1 OK was used, so no scattering is observed 
from this polymer in D20 ,  the so-called “contrast match” 
condition. For the other polymers, the concentration was too 
low to detect measurable scattering. The simplest interpretation 
of this observation is the lack o f an interaction between the 
mucin and the various PEGs, at least to a degree that induces 
a structural perturbation in the mucin. The same observations 
were made for all pHs examined, viz., pH 2, 7, and 9 (Figure
57 in the Supporting Information presents as exemplar the pH 
2 data). Similarly, there is no change in the (relative) viscosity 
of the mucin solutions upon the addition o f the PEG (Figure
58 in the Supporting Information).

The addition o f 0.5 wt % PAMAM dendrimers (amino- 
terminated G2.0 and G4.0, carboxylic acid terminated G3.5 and 
G5.5) to 5 wt % mucin solutions did induce changes in the 
mucin scattering, as exemplified in Figure 3, indicating an
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Figure 3. Scattering from 5 wt % mucin in the absence (dosed circles) 
and in the presence of 0.5 wt % PAMAM dendrimer G2.0 (open 
drcles) at 37 °C, pH 7. The lines correspond to the fits to the model 
described in the text.

interaction between these polymers and mucin. These changes 
were pH-dependent. Any contribution to the scattering from the 
PAMAM has been ignored because there was no measurable 
scattering in the absence o f  the mucin. The scattering from 0.5 
wt % G2.0 (and G4.0) in 5 wt % mucin did not show any major 
change from the 5 wt % mucin scattering for pHs 2 and 9 
(Figure S9 in the Supporting Information presents the pH 9 
data), whereas a perturbation was observed at pH 7, Figure 3. 
Similar trends were observed in the viscosity behavior (Figures 
S10 and S l l  in the Supporting Information).

The most obvious change is the shift o f the maxima to lower 
Q. This indicates that the separation o f the structures giving 
rise to these features has increased. Analogous behavior was 
observed for PAMAM G4.0.

In the case of the half-generation dendrimers, G3.5 (Figure 
S12a,b,c in the Supporting Information) and G5.5 (data not 
presented), a similar modulation o f the scattering was observed 
but with three notable differences: (i) the change in scattering 
exhibited a rather different pH profile, viz., there was no change 
induced by the dendrimer at pH 2, but perturbations were evident 
at pH 7, which become more pronounced at pH 9; (ii) the peaks 
moved in the opposite direction, that is, toward higher Q values, 
indicating a decreasing separation o f scatterers; and (iii) there 
appears to be slight drop in scattering intensity in the presence 
of the dendrimer, which increases with the strength of the 
interaction (no such change was observed in the G2.0 and G4.0 
cases). Analogous behavior was observed for PAMAM G5.5. 
“Signature” pH effects were also observed when &-PEI2K 
(Figure S13 in the Supporting Information) was added to the 5 
wt % mucin solutions (the changes in the perturbations in the 
scattering were much more pronounced that the PAMAM G2.0 
and G4.0 dendrimer cases): no change in scattering at pH 2 but 
a much larger difference in scattering at pH 7. The presence of 
&-PEI25K caused flocculation o f the mucin solutions; therefore, 
this system was not further studied but serves to underline the 
importance of the relative signs and magnitudes of the respective 
charge in these systems.

PGSE-NMR Study on M ucin Solutions in the Presence 
of Probe Polymers. The diffusion o f a series of probe polymers 
(at fixed polymer concentration, 0.5 wt %) in a range of mucin 
solutions (0 < [mucin] < 5 wt %) has been examined at 37 °C. 
All polymers showed a decrease in the diffusion rate with
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Figure 4. Normalized self-diffusion coefficients of 0.5 wt % PEG10K 
g mol-1 (closed circles) and PEG100K g mol-1 (open circles) in mucin 
solutions at 37 °C, pH 7.

increasing mucin concentration. Therefore, it is important to 
separate the effects of any specific interactions (e.g., binding) 
from that arising as a result o f simple obstruction, namely, that 
the probe polymers have to diffuse around the mucin and there 
is the concomitant increase in diffusion path length. Addition­
ally, there is the complication that the probe polymers are 
inherently of different molecular weights, and this will also 
affect their absolute diffusion rates.

Figure 4 presents representative normalized self-diffusion 
coefficients o f Z-PEG10K and /-PEG100K in mucin solutions, 
these being normalized to the measured self-diffusion coefficient 
o f the PEG in free solution, that is, when [mucin] =  0 wt %. 
The diffusion of both Z-PEG10K and /-PEG100K decreases with 
increasing mucin concentration because for [mucin] =  0, DS(10K) 
> £>s(100K) by a factor of 3.5 (Figure S14 in the Supporting 
Information), which is consistent with the 10 x decrease in 
molecular weight. The normalized diffusion data should at least 
to a first approximation remove the inherent effect o f molecular 
weight and permit a comparison of the retardation induced by 
the mucin.

The (normalized) diffusion of 0.5 wt % PAMAM G2.0 and 
G4.0 shows a complex dependence on [mucin] and pH (Figure 
5) in a fashion reminiscent of the characteristic profile observed 
in the SANS experiment. In particular, the data revealed a higher 
diffusion rate in mucin solutions at pH 9 (Figure 5) when 
compared with the diffusion o f these probe polymers in mucin 
at pH 7 (Figure 5), suggesting that the same complex pH- 
dependent interaction between the dendrimers and the mucin 
is observable in the diffusion data. Analogous behavior was 
observed for G3.5 and G5.5, Furthermore, the diffusion of 
&-PEI2K was strongly retarded in mucin, interpreted as a very 
strong interaction between the dendrimer and the mucin. A 
manifestation of this strength of interaction was the short “shelf- 
life” o f 6-PEI25 K/mucin samples, which phase separated after 
just a few hours.

A wider family of polymers has been examined by PGSE- 
NMR than has been possible by SANS, including dextrin, but 
over a more focused pH range. The conclusions of this larger 
study are presented in the bar-chart representation of Figure 6, 
where the normalized self-diffusion coefficients have been 
tabulated at one representative mucin concentration, 3 wt %.
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Figure 5. Normalized self-diffusion coefficients of 0.5 wt % PAMAM 
dendrimer G2.0 (open symbols) and G4.0 (filled symbols) at pH 9 
(squares) and pH 7 (circles) in mucin solutions and 37 °C.
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Figure 6. Bar chart of the normalized self-diffusion coefficients of ail 
probe polymers in aqueous 3 wt % mucin solutions. The unshaded 
bars correspond to those systems for which SANS confirmed the lack 
of an interaction whereas the shaded bars correspond to interacting 
systems.

Discussion
For all polymer—mucin samples explored, the SANS and 

PGSE-NMR experiments gave complementary insight into the 
interaction of the probe polymer with the mucin. The nonionic 
polymers (dextrin 7K, dextrin 50K, /-PEG10K, /-PEG50K, 
/-PEG100K, 4-arms-PEG20K) displayed a behavior consistent 
with there being no interaction with the mucin; there was no 
change in the scattering profile, and one may therefore conclude 
that the moderate retardation in the diffusion arises simply 
because of the obstruction effect. There is the obvious molecular 
weight dependence to consider when discussing the absolute 
diffusion rates, but the normalized diffusion rates suggest no 
specific molecular-weight-dependent interaction with mucin. A 
similar study by Lafitte et al.19,20 on the effect of PGM on the 
diffusion of PEG as a function of pH, ionic strength, and 
temperature demonstrated that pH imparted a stronger impact

on the PEG diffU^oa fate compared with that f t*  to foidc 
strength and temperature, reflecting the underlying changes in 
mucin network homogeneity and viscosity. Furthermore, Lai 
et al.21 found from their particle-tracking measurements that 
the diffusion of nanoparticles through mucin showed a complex 
dependence on particle size, but those particles coated with low- 
molecular-weight PEG diffused through mucus only slightly 
slower (x4—6) than in pure water. The same group22 later 
showed diat higher molecular weight PEGs led to mucoadhesion, 
highlighting the complexity of studying these systems, Cut would 
be consistent with the observation hoe of the slightly reduced 
normalized diffusion coefficient for the PEG 100K g mol-1 
sample compared with the PEG 10K g mol-1 one.

The PAMAM dendrimers experienced a significant retardation 
in their diffusion within the mucin solutions (sometimes close 
to an order of magnitude) but under conditions where the 
PAMAM and mucin bore opposite charge. Concomitantly, there 
was a movement of the peak in the SANS data. Changing the 
pH to reverse the charge on either mucin or probe polymer 
“turned o ff’ the interaction. The mechanism of interaction 
appears, therefore, to be driven by electrostatic interactions.

For the amino-terminated PAMAMs (G2.0 and G4.0) at pH 
7, the amine groups are largely protonated (positively charged), 
whereas the mucin glycoprotein is deprotonated and negatively 
charged (via the carboxylic acid groups of the protein backbone 
(p/sfa «  3.9 to 4.1) and the side groups of sialic acid (pAa 
2.6), sulfated glucosamine, and galactoamines (pK„ «  1)), 
leading to the observed strong electrostatic interaction. The peak 
in the scattering moves to lower Q values, indicating that the 
separation of the scattering centers has increased. It is hypoth­
esized that the PAMAM binds electrostatically to the oppositely 
charged mucin monosaccharide side chains, driving an expan­
sion of the glyscoylated spacer, thus pushing the globules further 
apart. At pH 2, the amine groups are completely protonated 
(+ve charged), but the mucin is also partially positively charged 
(IEP =  2 to 3), and accordingly, no interaction is observed.

In contrast, for the half-generation PAMAMs (G3.5 and G5.5) 
at pH 7, die terminating carboxylic acid groups are already 
moderately deprotonated (i.e., negatively charged), and whereas 
the mucin is also negatively charged, suzprisingly an interaction 
is still observed. This interaction becomes more pronounced at 
pH 9, that is, where the negative charge on the mucin is further 
increased. (No interaction is seen at pH 2.) Now, the peak in 
the SANS pattern has moved to higher Q, indicating that the 
separation of the globules has decreased. Clearly, a different 
mechanism is operating in the full- and half-generation PAM­
AMs. The origin of this interaction is most likely to be hydrogen 
bonds between the charged carboxylic acid groups on the 
PAMAM and the sugar residues on the monosaccharide side 
chains, leading to a collapse of die glysocylated spacer as the 
PAMAM induces bridging between adjacent saccharide structures.

Conclusions
The structure of aqueous probe polymer—mucin solutions has 

been explored by SANS, viscosity, and pulsed-gradient spin-echo 
NMR (PGSE-NMR). The SANS data provide a simple measure 
of die occurrence and nature of any interaction between the 
probe polymer and the mucin. The diffusion and viscosity data 
provide complementary insight into these systems. The scat­
tering data were found to be most appropriately analyzed by a 
model describing the mucin as a dispersion of polydisperse 
spherical scatterers with a typical size of ~10 nm distributed 
throughout a polymeric matrix. Nonionic polymers such as
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/-PEG 1 OK and /-PEG100K did not interact with the mucin and 
caused no change in the bulk viscosity of the mucin/PEG 
solution but suffered a moderate retardation in their diffusion 
through the mucin. A pH-dependent interaction was found for 
a series of PAMAM dendrimers and PEI, exposing a strong 
electrostatic interaction. This study has shown that it is possible 
to distinguish and separate the effects of specific interactions 
between the probe polymer and mucin from simple obstruction 
effects. These conclusions should direct the choice of polymer 
structure to be adopted when designing polymer-based delivery 
systems for the delivery through such mucin-rich environments.
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