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Abstract

Interstellar dust affects our view of the Universe, with half of the starlight emitted since
the Big Bang being absorbed by dust grains and re-radiated in the Infra-Red. This thesis
is concerned with understanding the origin of interstellar dust and determining the relative
importance of different dust formation sites in the Universe.

The sources and maximum amount of dust in early galaxies are investigated using
published extended atmosphere models, stellar evolution tracks and nucleation conditions.
A chemical evolution model is modified to include the estimated condensation efficiencies.
The implications are investigated and we show that a supernovae source is required to
produce large amounts of dust in galaxies. The atmospheres of AGB stars evolve too
slowly to be responsible for high redshift dust. If SNe are not responsible for dust, then
significant dust masses can only be generated at z > 5 by galaxies with very efficient star
formation and no dust destruction.

The first sub-millimetre analysis of the galactic remnant Kepler is presented with
0.3 — 3 Mg of dust, depending on the absorption properties. This a 1000 times more
than previous Infra-red observations found. The sub-mm emission anti-correlates with
the other wavelengths, including the warm dust and the most likely origin is from freshly
synthesised dust in the supernova and dust formed from the interaction of the supernova
shock with the ambient medium. Iron needles as a possible origin of the sub-mm emission
are investigated.

Finally, the sub-mm observations of the massive LBV star, n Carinae are presented
to show that the winds of massive stars may also be important contributors to the dust
budget. We conclude that supernovae, or their massive star progenitors, are a dominant
contributor to interstellar dust and make suggestions for future work.
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3 Astronomy Hiaku

Wise astronomers
sit and wait with hushed voices;
watching the room grow.

We listen intently
as the speaker weaves stories;
how dust plays a part.

Dark Astronomy
we sat in silence today;
all the great voices.

Haley Morgan, 2003
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Chapter 1

Introduction

“We owe our existence to stars, because they make the atoms of which we are formed.
So if you are romantic you can say we are literally starstuff. If you’re less romantic
you can say we’re the nuclear waste from the fuel that makes stars shine.”

Sir M.Rees, Astronomer Royal

1.1 An Introduction to Interstellar Dust

The Interstellar Medium (ISM) was once thought to be quiescent empty space,
yet it is now known to have many different phases, temperatures and components,
consisting of gas, high energy particles and magnetic fields. About 1% of the mass
of the ISM is thought to be dust grains, tiny particles composed of heavy elements
(mainly carbon and oxygen) which have been injected from stars. These dust grains
affect our view of the Universe by blocking out optical light and changing the visible
appearance of astrophysical objects. Dust grains scatter, absorb and re-emit light
to longer wavelengths so effectively that observing techniques at wavelengths other

than optical are needed to obtain a complete picture of the Universe.



2 CHAPTER 1. INTRODUCTION

Historically, dust grains were regarded as a nuisance element in observations
which needed to be overcome to explain scattering and extinction of starlight. Today,
dust is now regarded as an important area for study, particularly since the advent
of infra-red and sub-millimetre telescopes. These observations show that dust plays
an important part in the cooling processes of the gas and its interaction with the
gas dynamically, as well providing greater understanding of stellar chemistry. The
absorption efficiency of the dust allows gas clouds to cool and fragment into stars,
with the limit of the dust opacity likely to be responsible for the final mass of the star
formed (e.g. Ferrara 2003). Dust grains are attributed to be the source of molecular
hydrogen in clouds since the abundance of Hy cannot be explained by gas phase
reactions only as they are too slow in the general ISM (Hirashita & Ferrara 2002).
The grains act as a catalyst by accreting H atoms onto the surface which become
attached (via physical absorption) and random walk on the surface until ‘meeting’
another H atom, recombining and releasing binding energy as they are ejected (e.g.
Whittet 2003). In dense clouds, the grains provide cores on which mantles may
grow, removing material from the gas phase and providing an explanation for the
depleted levels of molecules observed in some environments with respect to solar
values (Dwek 1998 - hereafter D98; Tielens 1998; Whittet 2003; Draine 2003).

Dust appears to be an integral part of the dynamics of many astrophysical sources
e.g., around active galactic nuclei, young stars, evolved stars and in planetary nebula
(see Figure 1.1). Stars are born in a cloud of gas and dust, with the dust providing
the basic constituents of planetary systems and an efficient radiator of excess heat
energy. Dust grains may even contain the molecules relevant to the origin of organic
life (Whittet 2003). In evolved stars, dust which has condensed out of the gas phase
can be important in driving winds by creating an extra opacity source to the ions

and ultimately increasing the outflow rate of the star (Lamers & Cassinelli 1999).
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