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Abstract

The combination o f increasing quantities o f Municipal Solid Waste (MSW) and increased 

legislation for the disposal o f this type o f waste have created a need to develop different 

disposal or treatment routes for waste. Approximately 60% of MSW by mass is biodegradable 

and many disposal routes for this waste allow energy recovery. However the waste hierarchy 

presented in the National Waste Strategy for Wales emphasises the importance of materials 

recovery over energy recovery. It has been shown that the only way to achieve these targets is 

through the recovery of catering waste, which requires an in-vessel composting facility.

In order to gain an insight into the aeration requirements for in-vessel composting, 

calculations were performed to ascertain the required airflow for the supply of oxygen, the 

removal of excess moisture and the removal of excess heat. It was found that approximately 

450kJ are released for each mole o f oxygen utilised whilst 500kJ are released per mole of 

carbon dioxide evolved. It was found that the air requirement for removal of heat from the 

process was approximately 1 0 0  times greater than the air required to supply oxygen to the 

system. In order to determine the power of aeration equipment required for composting 

facilities a static pressure test rig was constructed. From the results gained a model relating 

the static pressure to the bulk density o f compost was developed.

Initially a windrow composting system processing green waste at the Carmarthenshire 

Environmental Resources Trust (CERT) composting facility was studied. A canopy system 

was developed to monitor the respiration rate o f this system and allow comparison between 

different feedstocks and control strategies. For a green waste only windrow the highest 

recorded respiration rate was 38gC02kgVS’1day’1. The respiration rate was observed to 

reduce with temperature above 55°C. In addition to the green waste windrows a temperature 

managed windrow and a windrow constructed from a mixture of green waste and chicken 

litter were also tested.

The final series of trials involved the testing of the ability of a containerised composting 

system to meet the Animal By-Products Regulations. The vessel was fed various mixtures of 

green waste and factory waste. Airflow and insulation within the vessel were analysed and a 

composting rate of over 4 5 gCC>2kgVS'1day‘1 was achieved. If this had been sustained then the 

vessel may have met the Animal By-Products Regulations.
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Symbol Definition Units
a Number of moles of microbial cell

A Cross sectional area m2

b Number of moles of carbon dioxide

c Number of moles of water

C Percentage by mass of carbon in substrate %

d Number o f moles of ammonia

D Equivalent spherical diameter o f particle m

e Void ratio

Eco2 Concentration o f carbon dioxide %

f  Number o f moles of methane

F Composting rate gC0 2 /kg VS-day

g Number o f atoms of carbon per mole of microbial cell

h Number o f atoms o f hydrogen per mole o f microbial cell

H Percentage by mass of hydrogen in substrate %

Hin Inlet enthalpy of air kJ/kg

Hout Exhaust enthalpy of air kJ/kg

HRin Humidity ratio o f inlet air kg/kg

HRout Humidity ratio o f exhaust air kg/kg

i Number of atoms o f oxygen per mole of microbial cell

j Number of atoms of nitrogen per mole of microbial cell

k width o f composting vessel m

1 Length o f composting vessel m

L Depth o f packed bed m

m Height of composting vessel m

mi Fill height o f composting vessel m

M Moisture content on a wet basis %

Mair Molecular mass of air g/mole

Mco2 Molecular mass of carbon dioxide g/mole

MH20 Molecular mass of water g/mole

M02 Molecular mass of oxygen g/mole

MC Moisture content on a wet basis

N Number of seconds per day (86,400) s/day



Percentage by mass of oxygen in substrate

Pressure

Calorific value

Heat lost through convection from surfaces

Heat released by composting process

Specific Gas Constant for carbon dioxide

Universal gas constant

Temperature

Gas Temperature

Temperature difference

Number o f atoms of carbon per mole o f substrate 

Superficial velocity of air

Average velocity

Number o f atoms of hydrogen per mole of substrate

Volumetric flow rate of air per cubic metre of compost

Volume o f gas in compost

Volume of solids in compost

Total volume of compost

Volume o f water in compost

Proportion of volatile solids on dry basis

Number of atoms of oxygen per mole of substrate

Mass o f gas in compost
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Mass o f water in compost
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Greek Letters

Hx Mean of data set x

tty Mean o f data set y

ttair Dynamic viscosity of air Pa s
Pair Density o f air kg/m3

Pash Density o f ash kg/m3

Pcompost Density o f compost kg/m3

Ps Density o f solids kg/m3

Pt Total density kg/m3

Pvs Density o f volatile solids kg/m3

pw Density o f water kg/m3

Pxy Correlation coefficient between data set x and data set y -

Ox Standard deviation of data set x •

ay Standard deviation of data set y *
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Introduction

1 Introduction

1.1 The Waste Problem

430 million tonnes of waste were generated in the UK during 2002 (Deffa, 2002), of 

this household waste accounted for 30 million tonnes and commercial waste 28 

million tonnes. The quantity of waste produced increases annually at a rate of between 

3 and 4% whilst population is growing at approximately 0.3% per annum.

Figure 1.1 shows that most of the waste that is generated is not recycled which 

generally means that it is sent to landfill. Whilst an increasing quantity of waste is 

recycled each year the rate of growth of total waste outstrips this and leads to 

increased quantities of waste not being recycled each year. In order to impact on the 

quantity of waste that is being landfilled each year more recycling and reprocessing 

plants and collection schemes will be required.

1983/4 1985/6 1987/8 1989/90 1991/2 1993/4 1995/6 1997/8 1999/2000 2001/2

Figure 1.1. Chart showing total household waste produced and the proportion of waste 
recycled per person in England and Wales. (Data from Deffa, 2002; 2003)

Of the waste that is generated annually a large portion is biodegradable. The 

Environment Agency estimate that 60% of municipal solid waste (MSW) is 

biodegradable whilst the Welsh Assembly Government puts the figure at 64% (WAG,
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2002). By targeting biodegradable waste a large reduction in the quantity o f waste that 

is sent to landfill could be achieved.

1.2 Drivers for Recycling

There are a variety o f legislative drivers to encourage a sustainable approach to waste 

management. In order to reduce the quantity o f methane released by landfill sites The 

European Landfill Directive (European Commission, 1999) has set limits on the 

quantity o f biodegradable waste that is allowed to be sent to landfill. Methane is a 

greenhouse gas with a global warming potential 2 1  times greater than carbon dioxide 

over 100 years (AESA, 2001). Methane is generated by the anaerobic decay of 

biodegradable wastes, such as in the conditions that can be found within landfill sites.

The targets set out by the directive are based on the quantities o f waste that were sent 

to landfill in 1995. The U.K.’s municipal waste arising were 29 million tonnes, as 

stated previously 60% or 17.4 million tonnes of this was biodegradable. The targets 

set out within the Landfill Directive require member countries to reduce the quantity 

o f biodegradable wastes sent to landfill to 75% of 1995 levels by 2006, 50% by 2009 

and 35% by 2016. However, because the U.K. sent more than 80% of its waste to 

landfill in 1995 it was able to apply for a four year extension to these dates meaning 

the targets need to be met by 2010, 2013 and 2020. Work performed by Emery et al.

(2 0 0 0 ) suggests that approximately one third o f waste sent to landfill is either kitchen 

or garden waste, with approximately two thirds of this coming from kitchens. This 

suggests that kitchen waste needs to be targeted in order to meet the targets laid out by 

the Landfill Directive.

In addition, the European Commission is working towards a soil thematic strategy 

which recognises soil as an important yet endangered resource. A Directive on the 

Biological Treatment o f Biological Waste (European Commission, 2001), the aims of 

which are to encourage the treatment of biological waste by biological methods, such 

as composting and anaerobic digestion has been presented for consultation. This 

directive would require member states to set up separate collection systems for
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Introduction

biodegradable wastes to maximise the quantity of material that can be treated and 

hence diverted from landfill. The European Commission had been committed to the 

preparation of a directive on biowastes by the end of the year 2004 (European 

Commission, 2004). However, the merger of the Directive on Sewage Sludge and of 

the initiative on Biological Treatment of Biodegradable Wastes under the Thematic 

Strategy on Soil was still being discussed in January 2005.

Wales, like all other countries of the U.K. has produced a national waste strategy 

published as Wise About Waste (WAG, 2002), within this are specific recycling 

targets that need to be achieved. Unlike other countries' waste strategies, Wise About 

Waste includes specific composting targets. By 2003/4 Wales was hoping to achieve a 

recycling figure of 15% of MSW of which 5% must have been due to composting. In 

2006/7 the recycling target increases to 25% with 10% composting and the final target 

is for 2009/10 by when 40% of MSW should be recycled with at least 15% being 

composted.

2 000
— 0% GROWTH 
— 1% GROWTH 
—A—2% GROWTH 
—  3% GROWTH

Landfill directive targets 
— Composting target at 3% growth 
—— Composting target at 0% growth

1 800

1 400

1 200
0 727 M tonnes

1 5691 000 M tonn is

0800
0 585 M 
tonnes

0 600

0 400
0 351 M 
tonnes

0 200

0000
20202005 2010 20151995 2000

Figure 1.2. Comparison of growth of biodegradable waste in Wales and Landfill 
Directive and Wise About Waste targets

To put all of the targets into perspective they are shown in Figure 1.2. In 1995 Wales 

sent 0.9 million tonnes of biodegradable waste to landfill. If this grows at a rate of 3% 

per annum then by 2010 Wales will have to deal with 1.402 million tonnes of
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biodegradable waste. But under the landfill directive Wales will only be able to send 

0.675 million tonnes to landfill, at the 3% level o f waste growth the National waste 

strategy will require the composting of 0.351 million tonnes of waste. In order to meet 

the landfill directive another 0.376 million tonnes will need to be diverted from 

landfill. If waste were to remain at 1995 levels then by 2010 Wales would need to be 

diverting 0.225 million tonnes of biodegradable waste from landfill, this can be met 

exactly by achieving the composting target set out in the National Waste Strategy 

(WAG, 2002).

Slowing the growth o f waste down is o f critical importance since if  waste continues to 

grow at 3% per year by 2020 Wales will need to divert 1.569 million tonnes of 

biodegradable waste from landfill to other processes to meet its obligations under the 

Landfill Directive. This reinforces the problem highlighted in Figure 1.1 which shows 

growth in recycling being outstripped by growth in total waste. Without the annual 

growth in waste the quantity to be diverted is only 0.585 million tonnes; 

approximately one third of the quantity requiring diversion at 3% growth.

In addition, there is concern over the use of peat as a growing media within the UK. 

Many peat bogs are recognised as nature conservation areas and the extraction of peat 

for use as growing media causes irreversible damage to these habitats. The RSPB 

produced a plan eliminating the use o f peat in the U.K. over a ten year period (RSPB, 

2001). Various bodies in the U.K. have moved away from the use o f peat, such as the 

National Trust who stopped using peat in 1999 (National Trust, 2002) and the Eden 

project which avoided using peat based products (Eden Project, 2004).

1.3 Disposal Routes for Biodegradable Waste

There are a variety o f different disposal routes for the biodegradable stream of 

municipal solid wastes (MSW). Currently most of this waste is sent to landfill but 

other options for the disposal o f MSW include:

• Anaerobic digestion,

• Gasification,
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•  Pyrolysis,

•  Incineration,

• Composting.

The waste hierarchy that is set out in the waste strategy for Wales (WAG, 2002) 

places the recovery o f materials above the recovery o f energy. This means that 

composting for the recovery of a growth medium is above the recovery of energy 

through anaerobic digestion, gasification, pyrolysis or incineration. Therefore 

composting is the preferred disposal route for biodegradable waste within Wales.

Anaerobic digestion can, however, be used to produce a biogas similar in composition 

to landfill gas which can be burnt to recover energy, it also leaves a residue which can 

be matured and used as a soil improver or growing medium. The heat released during 

the composting process is all lost and is o f a low grade and is therefore unrecoverable.

1.4 Regulatory Framework-Mandatory and Voluntary

Over the last few years in the U.K. there have been numerous animal health scares 

such as BSE, swine fever and foot and mouth disease. It is important that any material 

containing any o f the pathogens associated with animal disease is treated in an 

appropriate manner so that it causes no further risk to health. This has lead to a certain 

level o f turmoil within the composting industry over the last 5 years. The Animal By- 

Products Order (1999) controlled the disposal o f waste containing animal by-products 

and did not allow composting or biogas production as disposal routes for this material. 

However only catering waste that had been in contact with or contained animal 

carcases, parts of animal carcases or products of animal origin (other than those which 

have been incorporated into another product) was controlled by the Animal By- 

Products Order (1999). A guidance note was released by MAFF in 2001 that helped to 

clarify the situation with regards to disposal of animal by-products, the only 

exceptions which allowed composting were:

• catering waste which does not contain, and has not been in contact with, any 

meat or products of animal origin
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• catering waste to which ruminant animals, pigs or poultry (including wild 

birds) will not gain access

The outbreak o f Foot and Mouth disease during 2001 lead to the production of the 

Animal By-Products (Amendments)(Wales) Order 2001 and legislation was also 

passed for Scotland and England. The principal effect of this order was the ban on the 

use o f swill produced from catering waste containing meat.

During 2002, the European Union introduced regulation 1774/2002 which came into 

force on the 1st of May 2003. This regulation sets out the conditions under which 

animal by-products can be composted or treated by anaerobic digestion. The 

regulations split animal by-products into three categories based on risk to animal 

health. Category 1 material is the highest risk and includes all body parts of animals 

that could be infected with Transmissible Spongiform Encephalopathies or 

environmental contaminants as well as catering wastes from international transport. 

Category 2 material includes manure and digestive tract content as well as waste 

water from plants treating such material. Finally, Category 3 animal by-products are 

those parts of an animal that are fit for human consumption but for commercial 

reasons are not intended for human consumption, parts of an animal not fit for human 

consumption but unaffected by disease and former foodstuffs of or containing 

products o f an animal origin such as shells, hatchery by-products and catering waste.

Unsurprisingly, the composting o f Category 1 material is not allowed and the only 

approved disposal routes for this material are: incineration, rendering followed by 

incineration, rendering to the pressure cooking standard followed by landfill, and 

finally, landfill but only for catering wastes from international transport. The 

composting of Category 2 material is allowed provided that it has first been rendered 

to the pressure cooking standard o f 133°C, 3 bar for 20 minutes, however manure, 

digestive tract content, milk and colostrum can be composted without pre-treatment. 

Category 3 material is allowed to be composted, however if  the only Category 3 waste 

present is catering waste then this can be composted under national guidelines.
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A risk assessment was performed on behalf of Defra (Gale, 2002) to investigate 

treatment regimes other than the one laid out by the European legislation for the 

treatment of catering wastes. The results of this are shown in Figure 1.3 and the 

details for each barrier are shown in Table 1-1.

Mixing
Not meat 
excluded

MixingMeat
excluded

Barrier 1 Barrier 2

Barrier 1

Catering
Waste

Storage for 
18 days

Figure 1.3. Schematic of the multi barrier approach to the treatment of catering 
wastes

Table 1-1. Details for the barriers for the treatment o f catering wastes

'— System 
Parameter — ^

Composting in a 
closed reactor

Composting in a 
closed reactor

Composting in 
housed windrows

Maximum Particle 
Size 40 cm 6  cm 40 cm

Minimum
temperature 60°C 70°C 60°C

Minimum time at
minimum
temperature

2  days 1 hour
8  days, with 3 
turnings at intervals 
greater than 2  days

The introduction of these regulations means that to meet the targets set out by the 

Landfill Directive (European Commission, 1999) composting systems will have to 

incorporate an in-vessel stage for sanitisation of the material.

The guidance note on the Animal By-Products Regulations that was published on the 

7th of July 2003 (Defra, 2003a) required that all of the composting material achieved 

the required time temperature profiles and that all o f the heat to achieve this came 

from the composting process. Material that was to be treated through anaerobic
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digestion was allowed to undergo a pre-treatment pasteurisation phase where it could 

be heated to 70°C for one hour, however at this stage no such allowances were made 

for the composting process.

The Composting Association (2000) produced a set of standards for compost to 

introduce a level o f quality assurance into the compost production. These require 

regular testing of the finished product for heavy metals, physical contaminants, weed 

contaminants, phytotoxins and human pathogens. The scheme was run entirely by the 

Composting Association. The standards were used as a basis for WRAP (The Waste 

and Resources Action Program) in the production of BSI PAS 100, a publicly 

available standard for the quality assurance o f composted material which includes all 

o f the testing and limits set out in the Compost Association’s standards. Its main 

benefit lies in the fact that products meeting the standard can be sold as conforming to 

BSI PAS 100, providing a sense o f security for members o f the public who may be 

sceptical about recycled compost.

1.5 The Composting Process

At present there are a myriad of different techniques available to the investor or 

practitioner. Examples o f many in-vessel composting processes can be found in the 

Composting Association’s guide to in-vessel composting (Edwards et al., 1998), 

many o f these in-vessel systems are very technical in their approach to materials 

handling, aeration and control systems. However, the composting process is one 

which can and does occur naturally and simple systems such as windrows have been 

used successfully for many years.

The composting process was defined by Haug (1993) as the biological decomposition 

and stabilisation of organic substrates, under circumstances that allow development of 

thermophillic temperatures as a result o f biologically produced heat. Golueke (1972) 

defines composting as the biological decomposition of the organic constituents of 

wastes under controlled conditions. This allows for a large number o f descriptions to 

be applied to a composting system, including technological basis, management
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regimes and temperatures. In terms of this thesis the composting process is aerobic 

with the substrate being decomposed to produce carbon dioxide, water and other trace 

compounds.

In order to meet the legislation on the sanitisation of catering wastes, high 

temperatures and an in-vessel approach are required. The composting process 

normally consists o f a stabilisation phase, followed by a maturation phase once the 

material no longer requires management. To cope with these difficult wastes a 

sanitisation phase needs to be included, either as part o f the initial stabilisation phase 

or as a pre treatment to composting.

1.6 The CERT Composting Project

The Carmarthenshire Environmental Resources Trust (CERT) was set up as a not for 

profit company to distribute the Landfill tax credits o f the Carmarthenshire Waste 

Management (CWM) landfill site at Nantycaws near Carmarthen, West Wales. The 

composting facility is detailed in Chapter 5. There are several aspects o f composting 

that require addressing if  the U.K. is to meet the targets set by the Landfill Directive 

and perhaps even become a profitable process. Many of these areas are highlighted by 

the Animal By-Products Regulations and create an engineering challenge.

The research work presented in this thesis, funded by CERT and EB Nationwide 

through the Landfill Tax Credit Scheme, will look at developing some of the data that 

will be required to design composting systems to allow the U.K. to meet its Landfill 

Directive obligations.

During this project initial quantification of the composting process was undertaken on 

windrows to allow comparison between the level of composting within a 

technologically simple system and any highly complicated system.

As an enclosed area will now be required for the composting of material it is unlikely 

that the passive aeration, such as with windrows, will be enough to allow for rapid
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composting. It is therefore likely that aeration will be required, this presents several 

problems, such as direction o f aeration, quantity o f aeration and the static pressures 

required in order to get varying quantities o f air through the compost bed. A 

theoretical analysis o f the composting process was undertaken in order to gain an 

understanding of the aeration requirements of the composting process. The static 

pressures required to provide appropriate aeration were determined experimentally 

using a bespoke static pressure test rig.

A containerised in-vessel composting system has been monitored in order to see if 

this technology could be applied to meet the Animal By-Products Regulations in a 

simple manner. The system was monitored using both green waste and two substitutes 

for catering waste.
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2 Literature Review

2.1 Background and Optimisation

As discussed in Chapter 1, the composting process involves the breakdown of organic 

matter to a stabilised product in the presence of oxygen. Although composting is a 

biological process that occurs naturally, it can be dependant on various parameters 

which can affect how rapidly that degradation can occur. Although many composting 

facilities will be required to process a mixture o f green and kitchen wastes, the 

properties and quantities o f this mixture are likely to vary throughout the year. So 

although certain mixture ratios and moisture contents may be optimal it may not be 

possible to operate at those levels for the majority of the year.

2.1.1 Microorganisms

The two main types of micro organism involved in the composting process are 

bacteria and fungi. Fungi have a eukaryotic cell type-like plants and animals whilst 

bacteria have a prokaryotic cell type, meaning that the nuclear substance is not 

enclosed within a distinct membrane. There are currently about 5000 known types of 

bacteria and 70,000 types of fungi (Bryson, 2003). The sheer number of different 

micro organisms involved combined with difficulties in isolation o f species of micro 

organism make it unlikely that the exact make up of a composting system will ever be 

known. However there are various species which are known to cause illness in 

humans such as E. Coli and A. Fumigatus.

Inoculations have often been added to composting material to optimise the rate at 

which the composting activity occurs. Velikonja Bolta et al. (2003) compared 

compost inoculated with material from the active composting phase with non­

inoculated compost. The viable microbial biomass in the inoculated compost was 6  

times that of the non-inoculated compost, this caused the inoculated compost to heat 

up quicker initially and after turnings than the non inoculated compost. However by
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day 18 o f the trial the viable microbial biomass for both the inoculated and non­

inoculated composts had reached the same level, implying that any lag due to non­

inoculation had been made up and both systems were now at their optimal population 

levels. There were small differences between the quantities o f fungi, non- 

thermophiles, thermophiles and bacteria in the non-inoculated and the inoculated piles 

after the 18th day o f the trial, this implies that the system will move to an appropriate 

microbial population for composting o f the particular feedstock.

Singh and Sharma (2003) investigated the effect o f three different inoculants; each of 

these three inoculants was a pure culture o f a particular fungus. It was found that use 

of inoculate reduced the quantities o f cellulose, hemicellulose and lignin within the 

compost after the composting process.

2.1.2 Moisture Content

The moisture content has been shown to affect other properties o f the composting 

material, for instance Mears et al. (1975) showed that both the thermal conductivity 

and specific heat capacity o f a compost are linearly proportional to its moisture 

content. The specific heat capacity appeared to be most strongly related to the overall 

weight o f water that was present within the compost, whilst the solid part of the 

compost made a very small contribution to the overall specific heat capacity.

Jeris and Regan (1973a) observed that at moisture contents below 20% wet basis 

(w.b.) there was very little biological activity. The activity, as measured by oxygen 

uptake rate then increases linearly until a maximum is reached in the range of 50- 

70%. At moisture contents above this level the level of aerobic biological activity 

begins to decrease, although no observations or quantifications of anaerobic activity 

were made.

Suler and Finstein (1977) investigated the effect of moisture content on CO2 

production. Three different moisture contents were used: 50%, 60% and 70% (w.b.), 

all maintained at a temperature of 56°C. By monitoring the quantity o f CO2 produced
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in a 96 hour period it was shown that 60% was the optimum moisture content for the 

composting of waste. The material with a 50% moisture content produced almost as 

much CO2 as that at 60% moisture content. The higher moisture content of 70% 

generally produced about half as much CO2 as the compost with a moisture content of 

60%.

Cathcart et al. (1986) showed that for unshredded blue crab scrap mixed with straw 

the optimum moisture content was 67%, whilst for shredded blue crab scrap the 

optimum moisture content was 55%.

Hamoda et al. (1998) used bench scale tests to determine the optimum conditions for 

composting material. Half kilogram samples were tested at room temperature. It was 

found that at a moisture content of 60% approximately 12.5% o f the total organic 

carbon was lost in a period o f 15 days. The samples at moisture contents of 45% and 

75% only lost approximately 8.5% o f the organic carbon in the same time period.

It seems likely that the optimum moisture conditions may well vary with the different 

materials being investigated. Cathcart et al. (1986) show this with the difference 

between shredded and unshredded material. However, the range of 50% to 70%(w.b.) 

does appear to contain the optimum point for the majority of materials. It would 

therefore be beneficial to use this range in later composting trials.

2.1.3 Volatile Solids

The volatile solids content is found using BS EN 13039:2000 (BSI, 2000), this 

involves determination o f the loss on ignition at 450°C. The organic matter is the part 

of the compost that is being stabilised by the composting process. As CO2 is produced 

during the composting process the quantity of volatile solids reduces in relation to the 

quantity of ash present in the material. The Composting Association (2004) 

recommend a volatile solids content of at least 40% dry basis (d.b.) for the material to 

be suitable for composting.
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2.1.4 Nutrient Availability

The main indicator o f nutrient availability in composting is the ratio o f the mass of 

carbon to the mass o f nitrogen (C:N). The Composting Association (2004) suggests a 

range o f between 25:1 and 40:1 to be optimal for rapid composting. If  there is a lack 

of nitrogen, giving a high C:N ratio the composting process may be slow, if  there is 

too much nitrogen it may be lost as odorous ammonia. Various tables of carbon to 

nitrogen ratios are available within the literature, allowing estimation of mixtures to 

be found.

Cathcart et al. (1986) investigated the variables affecting composting o f blue crab 

scrap mixed with straw. Where the crab scrap had been shredded the C:N ratio did not 

appear to affect the rate o f composting. If  the scrap was left un-shredded the C:N ratio 

did affect the composting rate. C:N ratios in the range o f 12-28 were tested and the 

highest rates were found at these extremes with the lowest rate being at a C:N ratio of 

19. It is quite possible that a higher rate might have been achieved using a higher C:N 

ratio than 28.

Hamoda et al. (1998) found that the optimum C:N ratio for municipal solid waste was 

30:1 as 11% o f the total organic carbon (TOC) was degraded over a 15 day period at 

this level. At a C:N ratio o f 20:1 only 8.7% of TOC was degraded and 8 % at a C:N 

ratio o f 15:1. However no C:N ratios of greater than 30 were trialled and if  the results 

had been taken after only 6  days, rather than 15 then the C:N ratio of 15:1 would have 

been the best whilst the 30:1 ratio was the worst performing. The cooked rice residue 

that was used to adjust the C:N ratio of the samples would have had different physical 

properties to the municipal solid waste being used which may also have affected the 

results.

Sadaka and El-Taweel (2003) studied the composting process on Egyptian household 

waste using a laboratory scale composting unit. Three different C:N ratios were 

studied: 11,26 and 39. At different aeration rates the mixture with a C:N ratio of 26 

consistently heated up faster and reached higher temperatures than the other
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composts. This implies that it was composting at a greater rate than the other 

mixtures.

As with moisture content it is likely that different materials may have different 

optimum levels due to the availability o f either nitrogen or carbon to the composting 

micro organisms. If  a difficult feedstock is to be composted this may well have an 

affect upon the nutrient availability. Several have been used to augment the 

composting o f green waste or MSW, for example poultry litter (Lhadi et a l 2004; 

Tiquia & Tam, 2002). Because o f the importance o f nitrogen to the composting 

process various methods have been trialled in order to preserve it within the system, 

for example, Jeong and Kim (2001) used magnesium and phosphorus salts to 

precipitate ammonia produced during the composting process and conserve the 

nitrogen within the finished compost.

Although for municipal solid wastes the range o f 26:1 to 30:1 appears optimum, a 

different ratio will not inhibit activity altogether but it is likely to affect the overall 

composting rate. There is no guarantee that material being delivered to a site will be 

in the optimum range o f C:N ratio, meaning that either another material needs to be 

found to mix with the waste in order to augment the waste or that the waste delivered 

to site will simply have to be composted as it comes. If the first option is chosen, a 

suitable waste with security of supply needs to be sourced, shredded and mixed. All of 

this will add cost to the process which may be greater than simply accepting the cost 

associated with a reduction in capacity caused by a reduced composting rate.

2.1.5 Oxygen Supply

As the composting process should be kept aerobic in order to reduce offensive odours 

it is necessary to ensure that oxygen is supplied to the material. Suler and Finstein 

(1977) used several bench top composting chambers to investigate the effects of 

moisture, temperature and aeration. The residual oxygen concentration in the exhaust 

gas was measured and compared with the total CO2 evolved over a 96 hour period. 

Small amounts o f CO2 were formed with an oxygen residual of 2 %, whilst at oxygen
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residuals o f 10% and above significantly more CO2 was evolved. This implies that the 

greater quantity o f oxygen supplied to a composting system the better it will perform.

Beck-Friis et al. (2003) used a compost reactor to monitor the emissions from 

composting. Three oxygen levels in the compost gas were trialled: 1%, 2.5% and 

16%. The cumulative carbon emissions at the 16% oxygen concentration were greater 

than for either the 1% or 2.5 % concentrations. This indicates higher levels of 

composting activity occurring at higher oxygen supply rates. At the 16% oxygen 

concentration the composting activity begins at the start o f the trial whilst at the lower 

concentrations there is a lag period; 4 days for the 2.5% oxygen concentration and 9 

days at the 1% oxygen concentration.

2.1.6 Emissions from Composting

As mentioned previously the main emission from the composting process is CO2. A 

comparison of emissions from waste treatment processes was performed by the 

national society for clean air and environmental protection (NSCA, 2002). But there 

was insufficient data available from the composting process to allow a comparison of 

emissions with other waste disposal technologies such as pyrolysis, anaerobic 

digestion and landfill.

If there is an excess o f nitrogen present within the mixture the elevated temperatures 

and pH may lead to a volatilisation o f ammonia. Witter and Lopez-Real (1988) 

reported that up to 50% o f the total nitrogen present could be lost during the 

composting process whilst Eklind and Kirchmann (2000) recorded losses of up to 

70% of total nitrogen. This could be reduced using a variety o f different compost 

mixtures or additives, such as the magnesium and phosphorus salts used by Jeong and 

Kim (2001).

Hellebrand (1998) observed the release o f a variety of gases including ammonia, 

nitrous oxide, carbon monoxide and methane during field scale composting trials of 

grass and green wastes. It was observed that of the original 4300kg o f carbon present

2 -6



Literature Review

1.7 kg was lost as carbon monoxide, 75 kg as methane and 3500 kg as CO2. Of the 

158 kg of initial nitrogen 0.8 kg was lost as nitrous oxide and 1.9 kg as ammonia. The 

methanogens which produce the methane are strictly anaerobic therefore any methane 

produced must be coming from anaerobic pockets within the composting mass. These 

results show that the majority o f the carbon is lost as CO2 with only 2 % of the carbon 

lost being in a different form, showing that the process was highly aerobic, a very 

small portion, 1.7%, o f the nitrogen was lost. It was thought that the quantity of 

nitrogen lost by the system varied with the aeration regime and that lower nitrogen 

losses were recorded at higher air flow rates. Schmidt (2000) used a mixture of 

sunflower hulls and manure to assess the odour and gas emissions from composting 

and used two separate methods for assessing the nitrogen loss from the compost. The 

first method, which assumed that the quantity of ash present was constant throughout 

the whole process, recorded losses o f 37%, 32% and 58% for volumetric mixtures of 

1:1,2:1 and 3:1 o f sunflower hulls to manure. The second method, which assumed 

that the quantity o f phosphorus present was constant throughout the whole process, 

recorded losses of 50%, 35% and 42% for the same mixtures. Although the losses 

were high the disparities between the two sets o f results also suggest that there may 

have been a problem with the methods used.

The other major emission from the composting process is bio aerosols; these can be a 

serious health concern. Various sampling protocols have been used to monitor the 

release o f bio aerosols including one published by the UK Composting Association 

(1999). This method details a standardised approach to the sampling and enumeration 

of Bacteria and Aspergillus fumigatus. Hibbard and Strong (1996) stated that 

centralised composting systems do not introduce a significant risk o f Aspergillus 

Fumigatus induced disease, though certain specific design measures for the avoidance 

of potential health aspects in both workers and the general public can be taken such as 

the inclusion o f bio filters in plant design and the provision o f air filters to machinery.

Work by Fischer et a l (1998) showed that both the turning frequency and C:N ratio 

affect the release o f Aspergillus fumigatus in windrow composting. It was found that 

for the less frequently turned windrows counts of Aspergillus fumigatus within the 

compost remained elevated whilst in composts turned daily the level o f Aspergillus 

fumigatus within the compost were reduced. This may imply that Aspergillus
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fumigatus is released to the air during the frequent turnings, causing lower levels to be 

contained within the windrows. However, no atmospheric monitoring of Aspergillus 

fumigatus was performed during the study and it may be the case that both improved 

oxygen levels within the windrow and moisture removal by the turning process 

resulted in the reduced Aspergillus fumigatus levels.

2.1.7 Temperature

Temperature within the composting process is of great importance for two reasons: 

the inactivation of pathogens and the affect that temperature has on the rate of 

composting. However, it is often used as the only control parameter for a composting 

system. Polprasert (1989) explains that the succession is due to a series of events: 

initially the compost releases more heat than it can disburse, this leads to an increase 

in the compost’s temperature, but this is followed by a decrease in the temperature 

once the compost is generating less heat that it can disburse. This succession is shown 

in Figure 2.1.
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Figure 2.1. Patterns of temperature development within a compost pile (Redrawn from 
Polpraset, 1989)
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The temperature is dependant on several factors including the rate of heat released by 

the composting process, the rate at which heat is lost to the surroundings and the 

thermodynamic properties o f the composting material. The heat released by the 

composting process will be discussed in more detail in Section 2.4 and Chapter 3. 

Mears et a l (1975) showed that both the thermal conductivity and the specific heat 

capacity were both linearly proportional to the moisture content o f the compost. This 

means that the heat stored within the pile is dependant on the quantity of water 

present. The heat lost will be through the mechanisms o f mass transfer, convection, 

conduction and radiation.

The higher temperatures required for the sanitisation o f the compost are not 

necessarily beneficial to the organisms that are carrying out the process. Strom (1985) 

investigated the effect o f temperature on species diversity within a composting system 

and concluded that temperatures above 60°C have a marked detrimental effect upon 

species diversity. Droffener et a l (1995) showed that even in composts sampled at 

above 60°C bacteria strains that had been classed as mesophiles were isolated 

implying that they have survival and possibly replication mechanisms at elevated 

temperatures. Bacteria capable of withstanding extreme temperatures have also been 

isolated, such as the recent discovery of strain 121  which is capable o f surviving up 

to 130°C (Jha, 2003).

Various researches have investigated optimum respiration within composting 

materials and various optima have been found which can be feedstock specific. As 

long ago as 1949 Waksman et a l (1949) found that although the onset of 

decomposition in horse manure was most rapid at 65°C, after the first stages 50°C was 

found to allow composting to proceed more rapidly. It was also reported that 75°C 

was unfavourable to biological decomposition.

Wiley (1956; 1957) investigated dry weight loss, volatile solids loss, water production, 

CO2 production and oxygen utilisation as indicators o f composting activity compared 

with temperature. Maximum dry weight loss, volatile solids loss and water production 

all occurred at 60°C, maximum CO2 production was at 56°C whilst maximum oxygen 

utilisation occurred at 64°C.
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Rothbaum (1961) showed the optimum rate of CO2 production on thermophiles 

occurring on wool occurred at 60°C, but at 70°C 94% o f the optimum activity was still 

being recorded. The activity dropped readily at temperatures higher than this; at 74°C 

the level o f CO2 production had dropped to 53% of the optimum and only 5% at 78°C.

Jeris and Regan (1973) investigated a variety o f feedstocks using bench scale reactors 

with a volume o f 1.5 cubic feet (0.042m3). The reactors were kept at a constant 

temperature using a rheostat and heater this meant that the temperature experienced 

by the compost was not a result of biological activity. The feedstocks used included 

newsprint, municipal refuse, synthetically prepared refuse and composted mixed 

refuse. The newspaper reached its peak CO2 production rate at a temperature of 48°C 

and the stabilised mixed refuse peaked at 40°C. The lower temperatures were 

explained by the predominance o f micro organisms capable o f utilising cellulose to be 

mesophiles. The mixed refuse gave an optimum CO2 production rate close to 60°C, 

decreasing at higher temperatures.

Suler and Finstein (1977) investigated various parameters using a bench scale, 

continuously thermophillic reactor, which was held at temperature by a water bath. 

The optimum temperature for composting was determined to be in the range of 56°C 

to 60°C similar to several other results that have been recorded.

Cathcart et a l (1986) compared variables affecting the composting of blue crab scrap, 

both shredded and unshredded, these data were then used to create a predictive model 

of the CO2 generated by the composting process based on the properties of the initial 

scrap. The crab scrap was investigated both in shredded and un-shredded forms using 

0.2m3 reactors. For the shredded scrap the maximum CO2 production was recorded at 

a temperature o f 55-56°C and a moisture content of 55%, the rate was also found to be 

independent of the carbon to nitrogen ratio in the range 10.4:1 to 28.5:1. The un­

shredded scrap was found to give the greatest output o f CO2 at 63°C and 67% 

moisture content. Unlike the shredded crab scrap the CO2 evolution depended upon 

the carbon to nitrogen ratio, giving peaks at 26:1 and 1 2 :1 .
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Myrddin (2003) investigated the composting of difficult wastes in order to meet the 

Animal By-Products Order using a vertical composting unit. The maximum CO2 

production corresponded with a peak temperature of approximately 60°C.

Many o f these results are from relatively small composting vessels and an open 

windrow system or a large vessel may have its hottest point at the core with contours 

of lower temperature (perhaps even ambient temperatures) towards the edges of the 

system. If the temperature is o f sole interest in relation to the composting rate then 

several different respiration rates will occur throughout the pile, with the contour at 

60°C providing CO2 at the maximum rate and the other regions operating at a 

proportion o f this maximum.

2.1.8 Physical Properties

The physical properties o f the compost can affect the design and running of a compost 

plant. Something as simple as the bulk density will be used in the design of a site and 

the selection of equipment. The Composting Association (2004) recommends a range 

of 500 to 750 kgm'3, whilst Hewings et al. (2002) showed that green waste shredded 

in a Seko shredder had a density o f approximately 370 kgm ' 3 which increased as the 

material underwent the composting process. Both Michel et al. (1996) and Lamey et 

al. (2000) observed an increase in compost density over processing time. Hannon and 

Mason (2003) compared the effect o f two different shredders on the composting 

process. It was found that both the crush cut roller and low speed counter rotating 

shredder provided a suitable material for large scale windrow composting in remote 

areas. The crush cut roller was constructed from a second hand road compactor drum 

of diameter 750mm and length 1250mm. This was filled with concrete and helical 

steel blades were welded to the surface of the roller. This was then mounted on a 

tracked excavator. The low speed counter rotating shredder was rather more 

conventional and was a Brentwood TM 40.

Particle size and distribution present a variety of problems. The particle size gives an 

indication of the total available surface area within the compost, so may affect static
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pressures (Ergun, 1952) as well as area available for microbial growth (Nakasaki et 

al., 1986). With uniformly sized particles filling a volume, for example metal spheres, 

there is a limit on the proportion of the volume that will be filled. However with a 

variety of particle sizes the smaller particles are capable of fitting into the interstitial 

gaps between the larger particles, increasing the bulk density o f the material. The 

distribution is also affected by high moisture content which causes agglomeration of 

particles. This agglomeration can cause difficulty in measurement o f the particle size 

distribution. Agnew and Leonard (2003) conclude that further research is required to 

determine the most suitable method to provide reliable results of particle size 

distribution for composts.

Van Grinkel et al. (2001) showed that various physical properties o f composting 

material, such as gas permeability, oxygen diffusion coefficients and thermal 

conductivity were dependant upon other more simply measured characteristics. For 

example the oxygen diffusion coefficient varied with the gas filled volume of the 

compost whilst the thermal conductivity depended upon the moisture content of the 

material.

2.1.9 Stability and Maturity

The terms stability and maturity are used widely in the field o f composting and it is 

important to understand what is meant by these terms. Haug (1993) defines compost 

as being sufficiently stable when the rate o f oxygen consumption was reduced to the 

point that anaerobic or odorous conditions were not produced to such an extent that 

they interfered with the storage, marketing and use of the end product. A 

differentiation needs to be made between the terms stability and maturity. Lasaridi 

(1997) uses the terms interchangeably but with the caveat that where agronomic 

quality is considered the term maturity is preferred whilst in reference to the rate and 

extent of decomposition the term stability is favoured.
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The most simple test for stability is that mentioned previously in Section 2.1.7 and 

shown in Figure 2.1 where a drop in temperature indicates a reduction in composting 

activity. Other approaches include:

•  reheating potential (Dewar vessel),

• organic content,

• chemical oxygen demand,

• carbon content,

• oxygen uptake rate (SOUR, DSOUR and ASTM d-5975-96) and

• CO2 evolution rate (Solvita).

Richard and Zimmerman (1995) compared volatile solids lost, internal windrow 

temperature and a laboratory recorded respiration rate for a variety o f feedstocks. The 

results showed that peak respiration rates diminished with time and that the 

temperatures were not a significantly accurate or sensitive measure o f this.

Brewer and Sullivan (2003) used the definition that stability refers exclusively to the 

resistance o f compost organic mater to further degradation (Sullivan and Miller,

2001). Brewer and Sullivan (2003) compared the Solivita test, alkaline trapping of 

CO2 and the self-heating potential (Dewar flask). When results from these tests are 

plotted against time it can be seen that all three diminish as time increases. However, 

the alkaline trapping o f CO2 provided greater sensitivity than either the reheating 

potential or the Solvita tests.

Many o f the stability tests available create an ideal environment for bacteria to 

survive, such as the SOUR test (Lasaridi, 1997). This means that they cannot 

necessarily be related to the actual level o f composting activity. This idealised 

environment can include the addition o f nutrient solutions or holding the compost at a 

fixed temperature similarly to many o f the laboratory scale trials discussed in Section 

2.1.7. Both of these changes can affect the respiration rate o f the compost. Whilst the 

approach o f creating an ideal growth environment for bacteria will circumvent any 

limiting factors it cannot inform the user of whether or not the decay o f the rest of the 

composting material in a large scale system is actually being limited by the lack of a 

nutrient or inappropriate temperatures.
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2.2 Composting Systems

The composting process is relatively simple and can be observed occuring in nature as 

oxygen is used by micro organisms to break down and stabilise organic material, this 

causes the release of moisture, heat and CO2. There are, however, a variety of 

technologies available for the composting o f organic wastes and these can be 

categorised in the manner shown in Figure 2.2. There are several distinctions which 

can be made, the first o f which is whether or not the system is within a reactor or not, 

and how the material is treated in terms o f turning. The systems that are within a 

reactor are the in-vessel technologies.

Prior to the Animal By Products Regulations (2003) there was no real requirement for 

in-vessel composting technology. It has been known for some time, and was discussed 

in Chapter 1, that to meet the European Landfill Directive (European Commission, 

1999) targets catering waste would need to be diverted from landfill. As previously 

discussed apart from energy recovery (which includes anaerobic digestion), which 

rates lower on the waste hierarchy than composting, there is no other suitable disposal 

route apart form composting.

Prior to 2003 there were a number o f in-vessel composting systems available and 

some data were available for choosing an appropriate system (Walker et a l , 1986). 

Various claims were made as to their advantages over windrow composting, such as; 

reduction in odour potential, reduced treatment space and reduced composing time. 

Now that the composting of catering wastes is allowed there should be a relatively 

high demand for in-vessel systems that meet the Animal By-Products Regulations 

(2003). As shown in Figure 2.2 there are a variety of in-vessel technologies. The 

Composting Association divide all in vessel composters into 6  types (Anonymous,

2002):

• Containers,

• Tunnels,

• Agitated bays,

• Rotating drums,

• Silos or Towers and

• Enclosed halls.
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Containers are generally batch type reactors o f low capacity where air is often forced 

in through a perforated floor. One o f the main advantages of containerised 

composting is the relative ease with which the system can be expanded by adding 

further units. Using the hierarchy shown in Figure 2.2 Griineklee (1998) compared a 

no reactor, static, non encapsulated, triangular windrow with a reactor, static, box 

composting system. Coincidentally these are similar to the systems investigated in 

Chapters 5 and 6  o f this thesis. The conclusions were drawn that the containerised 

system was superior to the windrow system due to its uniform aeration and even 

temperature profiles combined with emission, moisture and odour control. Faster 

composting speeds, due to advanced aeration systems and accelerated initial mass 

loss, is one further reason given for the superiority of the in-vessel systems, though no 

data are given to confirm this. It may merely mean that the compost experiences a 

shorter residence time within the vessel than within the windrow, requiring the 

material from the vessel to be further matured before use. When estimating the 

required area for the composting o f 60,000 tonnes per year the windrow plant is 

approximately three times the size of the in-vessel composting plant.

In order to meet the multi barrier approach to sanitisation of catering wastes described 

in the Defra risk assessment (Gale, 2002) the whole of a container system would need 

to reach the target temperature, otherwise the vessel would need to be emptied, the 

material mixed, the vessel cleaned and reloaded all of which would add further 

expense to the process.

Tunnels are normally capable o f taking more material than a containerised 

composting system. Air is fed into the system and some systems use mechanical 

agitation. Various bagged tunnel systems are available which load the compost into a 

high tensile polythene skin-specialist machinery is required to do this and an aeration 

tube is also fed in at the time of loading. Hoitink and Keener (1995) described the 

operation of a tunnel system which had a 7 day residence period followed by a 28 day 

maturation period in windrows. Control of the system was through monitoring of 

oxygen and temperature levels within the compost. As with the container type 

systems the entirety o f the material needs to reach the target temperatures in order to 

meet the Animal By-Products Regulations (2003). Some of the bagged systems are 

achieving this through use of an insulative quilt (Roberts et a l , 2004). *rr
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Agitated bays are similar to tunnels; containing walls are constructed either side of the 

bay thus allowing a turner to straddle the bay and move the material along. Because of 

the containing walls the floor area can be used more efficiently than a windrow. 

Several bays can be constructed next to each other and the turning machine moved 

between them. Because they are contained they can not benefit from natural 

ventilation like windrows so they also need to be artificially aerated. There is the 

possibility of by-pass within this type o f system due to the material being thrown by 

an overhead compost turner. This would need to be addressed in order to meet the 

Animal By-Products Regulations (2003).

Rotating drums are large drums, horizontally mounted that rotate as the material is 

treated. Ali (2004) compared several commercially available rotating drum 

composting systems. Throughputs o f the systems were calculated using data available 

from manufacturers as well as an addition o f extra space for curing o f the material.

Ali (2004) concluded that although these systems do offer very short processing times 

it is uncertain as to whether or not they are capable of meeting the Animal By- 

Products Regulations. Because the process may be continuous there may be the risk of 

by-pass without treatment for material being processed in such a system.

Silos or towers are vertical units that normally operate on a continual basis, feedstocks 

are loaded at the top o f the vessel and finished compost removed at the bottom. The 

loading and unloading o f vessels can use some quite complex and heavy machinery 

such as augers. Because of the small footprint and height this type o f system can 

achieve large throughputs. Myrddin (2003) compared a variety o f in-vessel 

composting systems using manufacturers’ data for capacity, footprint and residence 

time within the composter. It was found that the highest throughput in kilograms per 

square metre per week was achieved by a vertical composting unit. However the area 

required for maturation o f the compost post treatment was not included in this 

calculation.

Enclosed halls hold all o f the material being processed at once, materials handling 

equipment such as large buckets or even specialist machines are used to move the 

material through the building as it undergoes composting. These are often aerated to 

ensure that the process remains aerobic. One o f the key problems with this type of
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system is that there is material of a variety of different ages within the vessel, because 

of this it is unlikely that these can be used to compost within the Animal By-Products 

Regulations.

Li et a l (1991) presents comparative capital and operational costs for tunnels, silos 

and agitated bins. For capital costs it was noted that the tunnel systems do not benefit 

from an economy o f scale with increasing throughput because more tunnels are 

needed for greater capacity. With many of the analyses and with much o f the 

commercial data the area required for the maturation of the finished product is not 

taken into account which as Ali (2004) shows can have a dramatic effect upon the 

total space required.

2.3 Respiration Rate

Haug (1993) states that the oxygen uptake rate is proportional to the rate of organic 

decomposition. By measuring the respiration rate o f the compost the performance of 

the feedstock or material can be assessed. Normally the respiration rate is measured 

using a form of standardised stability test, there are many tests such a SOUR 

(Lasaridi, 1997), AT4 (Bidlingmaie et al. 9 2002), Solvita, BOD5, COD as well as the 

self heating test performed using a Dewar vessel. Adani et a l (2002) demonstrated 

that there are correlations between many o f the test methods used by various 

researchers and that some tests are more sensitive than others.

Many results for the respiration rate o f composts are present in the literature, these are 

generally based on small samples placed in idealised conditions. For example Cronje 

et a l  (2004) assessed the respiration rate of pig manure using 3 litre jars in a water 

bath. Mari et a l  (2003) used two 145 litre drums to monitor the composting of olive 

press cake and olive mill water. Samples of 20 grams were taken to assess the 

respiration rate of the compost. The results are expressed on a dry weight (dw) basis 

rather than a volatile solids basis. A maximum rate o f 0.013 ml O2 min^g dw ' 1 

(approximately 25 g0 2  kg dw ' 1 day*1) was recorded by Mari et a l These results do
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show that the respiration rate decreased as the material aged. This is likely to be due 

to the decreasing volatile solids content.

Myrddin (2003) investigated the respiration rate o f compost in a vertical composting 

unit. This work showed a relationship between the peak temperature of the vessel and 

the respiration rate of the compost, with the optimum temperature being 

approximately 60°C. As discussed in Section 2.1.7 similar results have been shown in 

small scale laboratory tests. The implication of this is that the respiration rate of the 

whole volume of the compost within a system can be measured, rather than using just 

a small sample. With the move to in-vessel units required by the ABPR these data 

could be fed directly into a vessel control system for optimisation o f the process.

Some o f the tests used to measure respiration rates of compost require the addition of 

nutrient solutions and also control o f temperature. The temperature control may be 

provided by an incubator or a water bath. These changes bring the compost into 

previously recorded optimum conditions for degradation and also ensure that the 

degradation is not limited by lack o f any nutrients. This means that the test is 

measuring the materiaTs potential to degrade rather than the actual degradation that 

the material still within the system is undergoing. The potential to degrade should 

decrease with time and this is shown in the results of all o f the stability tests.

2.4 Heat release

Although the self-heating of aerobically degrading biomass is well documented, the 

quantification o f the energy that is released during this process has received limited 

interest. However, heat release is an indicator of the compost’s respiration rate and 

quantification of the heat released from composting material could give an indication 

of its level of stability. It is normally less expensive to use thermocouples than to buy 

gas detection equipment, so the usage of heat release could allow for control strategies 

based on the rate o f composting to be utilised.
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Because of its relative simplicity to measure and the effect that it has on microbial 

activity, temperature is often used to evaluate the performance o f a compost system. 

The temperature o f a composting system is not only related to activity within the 

system but other factors such as heat losses are just as important to the overall 

temperature. This is shown by McCartney et al. (2003) who showed the effect that 

different particle sizes (and hence different airflow rates) have on the temperatures 

within windrows.

Efforts have been made to quantify the heat released by the composting process. Haug 

(1980) used value o f 104.2 kcal/mole O2 or 436kJ/mol O2. The basis for this being 

that a methane type bond gives 26.05 kcal per electron transferred and oxygen is 

capable o f accepting four electrons. For example if  a mole of glucose, C6H 12O6, reacts 

with 6 moles o f oxygen it will produce six moles o f both CO2 and water and it will 

also release 2808.04 kJ. If  all o f that heat released went into heating the products of 

the reaction the temperature increase would be approximately 3,500°C . The energy 

release from glucose is equivalent to 468 kJ per mole of either oxygen used or CO2 

evolved.

Cooney et al. (1969) measured the heat evolution during microbial growth and 

correlated it with the oxygen consumption and CO2 evolution. The method involved 

monitoring the heat production within a nine litre fermenting vessel and the analysis 

of the air leaving the vessel in order to calculate oxygen usage and CO2 production. 

Different substrates such as glucose, molasses and soy bean meal were used to grow 

four different microbes, Escherichia coli, Bacillus subtilisf Candida intermedia and 

Aspergillus niger. Escherichia coli and Bacillus subtilis are both bacteria whereas 

Candida intermedia and Aspergillus niger are fungi. Figures 2.3 and 2.4 show the 

results for the organisms as the total heat produced against the total rate of oxygen 

consumption and CO2 evolution respectively.

The gradients of the best-fit lines in Figures 2.3 and 2.4 give quantity of energy 

released per mole o f gas. Although originally expressed in units o f kcal mmole'1, 

these can be easily converted into SI units, giving 460±41.8 kJ/mol O2 consumed and 

460±83.7 kJ/mol CO2 evolved. Overall the measurement error is ±9.1% when
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comparing heat release to oxygen consumption and ±18.2% when comparing the heat 

release to CO2 evolution.
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In Figure 2.3 the points that represent E. coli and B. subtilis, the two bacteria tested all 

lie above the best fit line. Points represented by C. intermedia and A. niger, the two 

fungi under test all lie beneath or on the line. This suggests that bacteria may have a 

lower level of heat release. Figure 2.4 shows a similar pattern except for two points:

C. intermedia using glucose as a substrate and B. subtilis using molasses as a 

substrate.

Sparling (1983) used microcalorimetry to estimate the microbial activity in soils. The 

average amount of heat recorded was 21.1 J cm ' 3 of CO2 at a temperature of 22°C, this 

equates to 510kJ/ mol CO2. The values were calculated based on active biomass. A 

range of values were recorded ranging from 8.66±0.645 to 37.63±0.952 joules per 

cubic centimetre o f gas, or 209±15.6kJ/mol CO2 to 909.5±23 kJ/mol CO2. Some of 

these samples were previously stored for up to eight months, the stored samples 

tending to have lower respiration rates than the fresh samples. This was thought to be 

due to there being less active biomass in the stored samples than the fresh samples. 

Some of the samples were amended with glucose; this had the effect o f increasing the 

respiration rate.

Harper et al (1992) used a tunnel reactor for mushroom composting and showed 

strong correlation between the heat production in Watts per kilogram of compost and 

the oxygen usage measured in kilograms of oxygen used per second per kilogram of 

compost. The data for heat production and oxygen usage were plotted against each 

other and using linear regression the gradient gives a heat production o f 9760 kJ for 

each kilogram o f oxygen consumed. This can be simply converted to SI units to allow 

comparison with the other results previously discussed, giving a value of 312 kJ 

mol'1. This value o f heat output did not vary with temperature. The heat production, 

and therefore oxygen consumption, during these trials was shown to reach a 

maximum at temperatures in the range of 55-63°C.

Tancho et al. (1995) also investigated the relationship between respiration and heat 

for a number of soils. The soils were treated with different contaminants and fed with 

glucose. Respiration was shown to increase after the soils were fed and this correlated 

with an increase in CO2 production rates. The comparison of CO2 evolution and heat
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production is shown in Figure 2.5. As opposed to some of the other data discussed 

where all of the data points on graphs of heat production against oxygen consumption 

lie on the best fit lines, the data shown in Figure 2.5 show a lot of scatter. It was also 

observed by Cooney (1969) that the results for energy release per mole of oxygen 

utilised were closer to the line of best fit than those for CO2 evolution. The best-fit 

line in Figure 2.5 gives an average result equivalent to 383kJ/mol CO2 evolved.
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Figure 2.5. CO2 evolution versus Heat production (Reprinted from Thermochinica A c ta251, T anchoe/o /. 
Relationship between substrate-induced respiration and heat loss from soil samples treated with various contaminants, pp. 21-28 
Copyright (1995), with permission from Elsevier)

Weppen (2001) used a bench scale calorimeter to investigate the relationship between 

heat generation and gas production. The calorimeters measured both oxygen uptake 

and CO2 evolution as well as the heat losses by conduction, evaporation, heating of air 

and heating of the compost and vessel. Comparing the data given for oxygen 

utilisation and CO2 evolution shows more moles of oxygen being used than moles of 

CO2 utilised. A control gave a C02:02 ratio of 0.95 whilst an experiment amended 

with fat gave a ratio of 0.87, implying that higher fat content will give a lower 

quantity of CO2 and hence a larger content of heat released per mole of CO2 . A total 

of 37 experiments were performed by Weppen (2001) which gave an overall average 

heat release of 452±29 kJ/mole O2 .
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Work by Rothbaum (1961) on the heat output of thermophiles and by Rothbaum and 

Stone (1961) on the Heat output of E. Coli also indicate the strong link between CO2 

evolution and heat production. E. Coli was grown by Rothbaum and Stone in a series 

of broths made from different mixtures of glucose and beef extract, these were kept at 

a constant temperature o f 37°C. The heat output was measured through the 

temperature differential between the water bath and the centre of the flask. The heat 

output by E. Coli was recorded as approximately 700 kJ per mole of CO2 evolved.

The data presented also show that the ratio of moles of oxygen utilised to moles of 

CO2 produced was less than 1 , and in fact varied between 0.65 and 0 .8  depending 

upon the mixture of the broth. The measurements by Rothbaum (1961) of heat output 

by thermophiles involved varying the temperature between 26°C and 78°C, the level 

of activity having maxima at both 37°C and 60°C but the heat output per mole of CO2 

evolved (average 530 kJ/mol) showed little variation with temperature.

Gustafsson and Gustafsson (1983) also show the strong link between the oxygen 

uptake, CO2 evolution and heat production. However, a relatively low value of 161 kJ 

per mole of CO2 evolved was recorded. This value is very different to the others 

discussed previously. It is worth noting that very small samples, approximately 2 ml 

of water and sediment mixture, were used to record the heat production and 

respiratory activity. Zanoni and Mueller related the calorific value of sewage sludge 

to the chemical oxygen demand (COD) o f the sludge. The relationship found states 

that 1 mol o f oxygen utilised would cause 512kJ to be released.

2.5 Aeration

As previously discussed in Chapter 1, the Animal By-Products Regulations (2003) 

require that composting o f catering wastes is performed where animals cannot gain 

access to the waste. Metcalf & Eddy (2002) state that the composting process can be 

inhibited at oxygen levels below 1 0 % and in order to ensure that the material is 

composting it may be necessary to supply air to the system. When supplying air to a 

system it is important to have an understanding of both the volumetric flow rate of air
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that is required and the static pressure that it needs to be supplied at in order to allow 

the flow.

2.5.1 Air requirements

Air is required for the composting process for a variety of reasons: to dissipate excess 

heat, to supply oxygen to the micro-organisms and to remove excess moisture. 

Monitoring of the respiration rate would allow the quantity of oxygen required to be 

calculated. But as we have previously seen the respiration rate appears to be affected 

by temperature so greater quantities of air may be required to remove the excess heat. 

It is often assumed that the molar ratio of oxygen utilised to CO2 is 1, however Harper 

et al (1992) whilst mushroom composting found that the ratio of C0 2 : 0 2  was in some 

cases greater than 1, though Harper et a l state that this may have been due to some 

anaerobic activity.

Rynk (1992) suggests a figure o f 5><10'5m3s' 1 per kilo of dry solids of compost for the 

temperature control o f an aerated static pile. Mu and Leonard (1999) use airflows in 

the range o f 3><10'5m3s' 1 to 19x 10'5m3s‘1 per kilogram of dry matter in order to assess 

the pressure drop through compost.

There are a variety o f methods for controlling the aeration through compost and 

several of these are mentioned by Haug (1993) and they include timer control, 

feedback based on temperature, CO2 or O2, or constant feed of the correct rate. A 

figure of 1660 ir^hour"1 per dry metric ton or 4.6x 10'4m3s*1 per kilogram of dry matter 

is suggested by Haug, This is an order of magnitude greater than the supply rate 

suggested by Rynk (1992).

Keener et a l (1997) in their analysis of aeration upon cost used the fixed figure of 

2.68 nA g'M ay'1, which equates to 3.1><10*5m3s' 1 per kilogram of compost. This is 

approximately the same as the figure suggested by Rynk once the compost’s moisture 

content is taken into account. This figure is also comparable with that used by Bari 

and Koenig (2001) in their laboratory scale trials. Whatever the quantity of air that is
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to be supplied to a system it will have an affect on both the production costs and 

installation costs of the composting facility.

2.5.2 Static Pressure

There are various models for describing the flow through packed beds; the most 

simple of these is Darcy’s law (Massey, 1989) which gives a linear relationship 

between the steady mean velocity and the pressure gradient. However, under turbulent 

or transitional flow conditions the relationship ceases to be linear. A good description 

of this behaviour is given by Coulson et al. (1978). Various empirical models, such as 

the Ergun (1952) equation have been developed to describe the behaviour o f turbulent 

fluid flow through packed beds and these are split into two terms reflecting the losses 

due to viscous drag and the loss o f energy due to turbulent eddies.

D is a representative particle size in m.

The Ergun equation, given as Equation 2.1, shows the static pressure as being 

dependant upon factors such as the void ratio of the bed, e, the particle size, D, and 

the properties of the fluid passing through the bed.

The idea of driving air through organic material is not a new one. Grains are dried for 

storage by blowing air through the bed of grain although this is performed to avoid 

microbial growth. Much work has been performed in this field to investigate different

-A P 
L

150— + 1.75 ^  e\ MrV 
e D e D

(2.1)

where AP is the static pressure in Pa,

L is the depth o f the bed in m, 

e is the proportion o f void space, 

juair is the dynamic viscosity in Pa S, 

U is the mean velocity in ms' 1 and
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grains (Shedd, 1953; Gunasekaran, 1987; Giner, 1996; Dairo, 1994; ASAE, 2000). 

These results generally show that the static pressure is related to the velocity, but not 

linearly.

Gunasekaran (1987) investigated pressure drops through grain sorghum at a range of 

superficial velocities between 0.05 and 0.3 ms' 1 with a range o f different moisture 

contents and bed depths. The observed pressure drop was found to increase with the 

bed depth and the superficial velocity but decreased with increasing moisture content. 

However the bulk density o f the material was found to decrease as the moisture 

content increased, meaning that the pressure drop increased with increasing bulk 

density.

Giner (1996) also shows that as the moisture content increased the overall bulk 

density decreases, higher static pressures were required for the drier grains than the 

moist grains again suggesting that the density of the grain affects the static pressure 

required. Also investigated in this study was the affect of fine material on static 

pressure. It was found that as the proportion of fine material increased so did the static 

pressure required to drive the airflow. The increase in fines would have caused a 

decrease in the average particle size and as suggested by Equation 2.1 the static 

pressure would increase.

Dairo’s (1994) results from investigating sesame seed show a similar pattern, as the 

moisture content is increased, the required static pressure decreases. It is of note that 

the moisture contents are much lower than those on compost, being in the range of 

zero to 22.3% (w.b.). It is therefore unlikely that the pore spaces between particles are 

filled with water. The inclusion of fine material also increases the static pressure. A 

plot of static pressure against bed depth also shows that the grains are incompressible.

The results from relatively dry grains all show that the bulk density of the material in 

the bed affects the required static pressure to aerate the bed. McGuckin et a l (1999) 

investigated the pressure drop through food waste compost with a variety of synthetic 

bulking agents added in varying ratios. The results from the investigations were 

compared with three different models in order to assess how well the airflow models 

fitted the data. The models were of the forms
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AP = A.UB'
, (2.2)

A TJ2AP = - j h “-----
ln(l + B2U)

HJ> = AyU + BlU 1 (-2 3 '>
(2.4)

where AP is the static pressure in Pa,

A], A2 A3 , B2 and B3 are experimentally derived constants and 

U is the superficial velocity in ms*1.

Equation 2.4 is of a similar form to Equation 2.1, it has both U and U2  terms that 

would be associated with viscous and kinetic energy losses from laminar and 

turbulent flow regimes. The bulking agents were added in different quantities varying 

the volume of bulking agent per kilogram of compost. The addition of bulking agent 

should affect both the void space within the mixture and the average particle size both 

of which, according to Equation 2.1, should cause a variation in static pressure. Some 

of the data recorded by McGurkin et al (1999) are shown in Figure 2.6.
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Figure 2.6. Static pressure per unit depth against superficial air velocity for different bulking
agents (Reprinted from Journal of Agricultural Engineering Research 72, McGuckin et al. Pressure Drop Through Raw Food Waste 
Compost Containing Synthetic Bulking Agents., pp. 375-384 Copyright (1999), with permission from Elsevier)

Figure 2.6 shows that as the quantity of bulking agent is increased the static pressure 

decreases, the required static pressure for the pine bark as a bulking agent was higher 

than for any of the plastic bulking agents being tested. As the volume of bulking agent 

used increases, the bulk density of the material decreases due to an increase in the
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void space. The increase in void space caused the static pressure required to decrease, 

this would also be expected from Equation 2.1.

Keener et al (1997) present the implication upon cost and design that is caused by 

aerating compost. They use a constant static pressure of 203 mmtUO (2.03 kPa) as a 

basis for the assumptions, which is very high in comparison to the values observed by 

McGuckin et al. (1999), Dairo (1994) and is at the top end of the ranges presented by 

most of the researchers already mentioned. As the sizing of aeration equipment could 

be critical to the commercial viability of a composting plant it is vitally important that 

the figures used in the design process are accurate.

Mu and Leonard (1999) investigated the relationship between flowrate and static 

pressure using a column o f 600 mm diameter and 2280 mm high. Volumetric 

flowrates of between 0.004 m3/s and 0.018m3/s were tested for a variety of composts 

at 3 different depths of compost (680 mm, 1450 mm and 2200 mm). Once filled to 

2200m the column was left to settle for two weeks which allowed the compost to 

settle giving a reduction in height of 230mm (approximately 10% of the original 

height). The relationship between static pressure and flowrate for the material on 

filling was found to be non linear. The data was fitted to a curve o f the form shown as 

Equation 2.5. The R2 values for this equation were shown to be greater than 0.999.

AP = (101637// + 173473)e(ft0,26" +I-»*>«>

(2.5)

where AP is the static pressure in Pa,

H  is the height of the compost column in metres and 

Q is the volumetric flow rate of air in m V 1.

Equation 2.5 shows that the height of the compost pile, //, is very important in 

determining the static pressure required to provide a particular flow rate. Using 

Equation 2.5 and the three heights of compost trialled the trend lines obtained from 

the experiments are shown in Figure 2.7. There are, however, two modifications; 

firstly the values obtained from Equation 2.5 have been divided by the depth of
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compost, //, to give the static pressure per metre depth and secondly the superficial 

velocity rather than volumetric flow rate has been used.

4

 Fresh Material
K=2.2 m

Fresh material 
H=1.45 m3

 Fresh Material
H=0 68 m

 After 2 weeks
settling h=1 97 m

2

1

0
0.000 0.010 0.020 0.030 0.040 0.050 0.060

Superficial velocity m s'

Figure 2.7. Static pressures for airflow through compost (adapted from Mu and Leonard, 1999)

It might be expected that the curves shown in Figure 2.7 for the fresh compost filled 

to different heights (when expressed as a pressure drop per unit depth) should all 

show the same pressure drop per unit depth. However, this is not the case and it is the 

tallest pile which gives the lowest static pressure per unit depth-but the highest total 

pressure. The only material property of the material given by the authors is the bulk 

density. When filled to 2.2m the bulk density was 720 kg m*3 whereas at a depth of 

0.68 metres the density was 870 kg m \  The increased bulk density implies lower air 

space within the compost, in accordance with the Ergun equation (Equation 2.1) the 

reduced pore space would cause an increase in static pressure. The densities are 

relatively high this is probably due to the material being screened through diamond 

shaped holes which were 25mm by 13mm. This reduced particle size would also have 

lead to an increase in the static pressures required for aeration according to Equation 

2.1.
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Mu and Leonard (1999) then allowed the compost to settle for two weeks. As can be 

seen in Figure 2.7 the settled material required much higher static pressures for 

aeration than the fresh material. It is likely that the settled material had a decreased air 

space within the compost due to the material compressing by approximately 10% of 

its original height. If  there had been any decomposition of the material the pore space 

may have also filled with moisture occurring as a by-product of microbial 

metabolism; highlighting the need for regular turning. Investigations were also 

performed into the uniformity o f flow. It was shown that there was greater airflow 

around the edge o f the column than at the centre for low depths of compost, but at 

greater depths the flow was uniform over the whole cross section.

Sadaka (2002) investigated airflow characteristics for both horizontal and vertical 

flow and compared the pressure drop per metre depth against the superficial air 

velocity, in this case depth reflects the direction of flow. The material in the bed 

experiencing horizontal airflow experienced lower pressure drops than the vertical 

column, the compost that experienced the horizontal airflow also had a lower bulk 

density. This may be due to the lower weight experienced by the material at the base 

of the reactor which is only 1 metre deep rather than 2.4 metres for the vertical flow 

reactor.

Barrington et al. (2002) investigated compost airflow resistance with a variety of 

bulking agents including pine shavings, chopped hay and straw mixed with pig slurry 

and tap water. The experiments were performed in a 105 litre capacity vessel with a 

depth of 0.95 metres. The highest recorded pressure drop was 268 Pa. Superficial 

velocities o f up to 0.002ms'1 were used and it was found that these fitted to laminar 

airflow equations based on the porosity, particle size distribution and depth of the 

compost bed.

A range of static pressures are given, many of these have been modelled using

empirical formulae of the form

AP=JHaif>

(2.6)

where J, a and b are empirical coefficients,
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H  is the height of the pile and 

U is the superficial velocity.

Although this does take into account the compressibility of the compost the main 

problem is that the results cannot simply be compared with each other. Generally the 

coefficients are all empirically derived and are not related to other properties such as 

free air space, particle size or even something as simple as bulk density. This makes 

them very specific. The result o f this is that it is difficult to calculate the required 

pressure for a new feedstock, meaning that testing of the feedstock is required in the 

development or design stage o f a composting facility to allow appropriate aeration 

equipment to be specified.

Many o f the coefficients derived during these tests are only valid for the material on 

test that day, they do not take the properties of the material into account. This may be 

workable in a situation where a system is fed with the same waste continuously over 

its entire operational lifespan. For instance although Mu and Leonard (1999) imply 

that the increased moisture content and decreased particle size cause the increased 

static pressure after a two week settling period no mention is made of these and other 

material properties at any other point, neither do these properties feature in the 

equation that was developed (2.5). The material that was left to settle for two weeks 

does not follow equation 2.5 and required a separate power law where the height of 

the pile is not a factor. The compaction of the material is also important, Mu and 

Leonard (1999) show that the static pressure for material that had been settling for 

two weeks was significantly higher than for material that was freshly shredded, this 

can also be observed in Figure 2.7.

The bulk density o f the compost appears to be an important factor in determining the 

static pressure, it is most likely that the compaction mentioned by Mu and Leonard 

(1999) which causes the large increase in static pressure also increased the bulk 

density. Das and Keener (1997) demonstrated the effect of compression on bulk 

density by applying different compressive stresses to compost using a hydraulic 

cylinder. This had the effect of increasing the bulk density of the compost as the force 

applied was increased. The larger the compressive stress applied to the compost the 

larger the static pressure required to drive air through the compost. This is not

2-32



Literature Review

surprising as only the air filled volume of the compost can be crushed, so it is the void 

ratio that decreases as the bulk density increases. This also agrees with the work 

preformed by Nicolai and Janni (2001) who show the pressure drop through a bed of 

compost increasing as the void space within the compost decreases.

The Ergun Equation (2.1) does not use the density of the compost as a variable, it is 

however highly dependent on the void ratio or free air space. Results from Agnew et 

a l (2003) and those from Baker (1998) are shown in Figure 2.8. These data show that 

for a constant moisture content the relationship between bulk density and free air 

space within the compost is linear. This may well explain why so much of the data 

recorded varies with bulk density, as it is a measure of free air space.

100

80

60
(O
£ 40

20

0

v o Manure compost 
-  MSW compost 
a Biosolids-mix 
x Amendment material 
x  Baker et al. (1998)

A

500 1000
—■»
1500

BD (kg/m 3)

Figure 2.8. Free air space against Bulk Density at a moisture content of 60 % (w.b.) (after 
Agnew et al., 2003)

It has been shown that the bulk density of compost in a pile or vessel varies with the 

depth of the bed (Schaub-Szabo, 1999; Agnew, 2003), this is a problem not included 

in many of the equations relating to packed beds as the measurements are often made 

on uniformly sized spheres or cubes. However the compressibility of compost needs 

to be taken into account, equation 2.6 does this by using the coefficient a.
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3 Calculations for Energy Release and Aeration 
Requirements and Implication Upon Design

3.1 Introduction

As discussed in Chapter 2 the composting process is aerobic; microbes utilise oxygen 

to digest biomass. The main products of this process are stabilised biomass, CO2 and 

water as well as a variety o f other compounds such as ammonia. During the process a 

quantity of heat is released which can be observed in the elevated temperatures 

recorded within composting systems. The parameters of oxygen utilisation, CO2 

evolution and heat release, which are the main indicators of composting activity, 

should all correspond.

Many different composting systems use temperature as an indicator of the conditions 

within the process and base the entire control strategy upon this parameter. However 

the role of temperature within a composting mass is very complicated. Heat is 

released as a result o f aerobic degradation of organic material. In turn, this heat causes 

an increase in the temperature of the substrate. Various investigations have been made 

into the effect that temperature has on microbial activity suggesting that the optimum 

lies in the range o f 55° to 60°C (Jeris and Regan, 1973; Cathcart et al., 1986; 1973; 

Myrddin 2003). Therefore the heat released by the composting process could increase 

the temperature of the compost so that it is no longer within the optimal temperature 

range. Temperature, then, is an indicator of the energy stored within the composting 

material and not a direct measurement of the energy released through the composting 

process. If factors such as the specific heat capacity and the rate at which heat is lost 

to the surroundings are known then the rate at which energy is released by the 

composting mass can be calculated.

For the design o f composting vessels to meet the relevant legislation as well as to 

achieve an optimised composting process it is important to know the quantity of air 

that would be required to replace depleted oxygen and to cool the vessel. This would 

allow the required air handling capability of blowers and filters to be found. However, 

the mass flow rate of air is not the only parameter required in order to calculate the
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power of blower as the static pressure also needs to be determined (see Section 2.5 

and Chapter 4).

The calculations presented in this chapter use simple relationships to investigate the 

release of energy by the composting process from a variety of organic wastes. Once 

the stoichiometry o f the reactions is known and the relationship between either CO2 

evolution or oxygen utilisation and heat production is understood, this information 

can be fed into the design process for a variety of composting vessels.

3.2 Stoichiometric Calculation of Energy Release

Shown in Table 3-1 are representative chemical formulae for the volatile component 

of a variety of feedstocks (Haug, 1980). If the organic matter breaks down in the 

presence of oxygen to form water and CO2 then all that will be left is the ash content 

of the original feedstock. The number o f moles of oxygen required for the complete 

breakdown is given in Table 3-1 as the theoretical molar oxygen demand.

Table 3-1. Substrates, with a representative formula and the quantities of oxygen and 
carbon dioxide involved in their complete degradation ________________________
Waste Component Typical chemical 

composition

Moles C02 

evolved with 

digestion of one 

mole of waste

Theoretical 

molar oxygen 

demand for one 

mole of waste

C02:02 ratio

Carbohydrate C6H12O6 6 6 1

Protein c 16h 24o 5n 4 16 16.5 0.97

Fat and Oil C5oH9o0 6 50 69.5 0.72

Primary Sludge C22H39O10N 22 26 0.85

Combined sludge C,oH190 3N 10 12.5 0.80

Refuse-total organic 1 C ^H .o^yN 64 70.75 0.90

fraction* 2 C99HU8O59N 99 105.75 0.94

Wood C295H42oOi86N 295 306.25 0.96

Grass C23H38Oi7N 23 23.25 0.99

Garbage c I6h 27o 8n 16 18 0.89

Bacteria c 5h 7o 2n 5 5 1

Fungi C,oH170 6N 10 10.5 0.95

* Two values are quoted by Haug (1980).

3-2



Calculations for Energy Release and Aeration Requirements and Implication Upon Design

The molar quantity of CO2 that would be released from the complete breakdown of 

the organic content is also expressed in Table 3-1. For many of these feedstocks, the 

ratio of CO2 evolved to O2 utilised is less than one, implying that fewer moles of CO2 

are released than moles of oxygen consumed.

It is not desirable that all o f the organic content be lost as this would leave only the 

ash content of the initial waste. One o f the main benefits of the composting process is 

that organic material can be returned to the soil in order to assist with moisture and 

nutrient retention as well as the structure of the soil. It is therefore useful to consider 

the creation of new biomass as a product of the process as well as the release of CO2 

and moisture during the composting process. This can be represented as:

Substrate + oxygen — ► new biomass+carbon dioxide +water+ammonia

or

1 (CuHvOwNy) + z 0 2----------► a(CgHhOiNj) + b C0 2 +c H20  +dNH3

(3.1)

The weight of the new biomass formed is governed by the yield coefficient, this is 

used to calculate coefficient a. The yield coefficient, Y, is equal to the weight of new 

biomass formed divided by the weight of substrate used. The yield coefficient is 

dictated by the conditions within the biological system. Values for the yield 

coefficient of between 0.1 and 0.2 are thought to be appropriate for the composting 

process (Haug, 1993). The value of coefficient a can be found using Equation 3.2 for 

different yield coefficients.

yx (l2«  + lv + 16w + 14x)
(l2g + lfc + 16i + 14/) (3.2)

By comparing coefficients for carbon, hydrogen, oxygen and nitrogen in Equation 3.1 

the relationships given by Equations 3.3, 3.4, 3.5 and 3.6 can be developed.

Equations 3.3, 3.4, 3.5 and 3.6 can be solved for different feedstocks by using the 

appropriate values from Table 3-1 for u, v, w and x. Values for either bacteria or 

fungi can be used to give the values of g, h, i and j  which can also be found in Table 

3-1. The value of a can be found at different yield coefficients.

Because Equation 3.1 is generic to suit all feedstocks no matter what their original 

carbon to nitrogen ratio, the coefficient d can take negative or positive values
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depending on whether nitrogen was added to the original feedstock or not. For 

feedstocks initially low in nitrogen, coefficient d will be equal to or less than zero. For 

feedstocks that have excess nitrogen the value of d will be positive implying that the 

excess nitrogen is lost as ammonia.

b  =  u - a g  (33)
v - a h - 3 d

c  ~  2  ( 3 - 4 )

d  =  x - a j  

a i  +  2 b  +  c - w

2 (3.6)

This allows calculation o f the stoichiometric quantities of oxygen, water, ammonia 

and CO2 at different yield coefficients for the substrates presented in Table 3-1 for 

breakdown by either bacteria or fungi. The complete results for each substrate at each 

yield coefficient for each type of degradation can be found in Appendix A.

Because the exact composition of most organic wastes is unknown, it is not possible 

to use enthalpies of reaction to find the heat released during the composting process. 

There are, however, various methods of calculating the calorific value or stored 

energy of fuels and these methods can be applied to the substrate, allowing the initial 

stored energy within the substrate to be found. The stored energy within the new 

biomass can also be found at each of the different yield coefficients. The difference 

between the initial stored energy and the final stored energy can be regarded as the 

energy released during the process. Two methods for calculating the calorific value of 

fuels are shown in equations 3.7 and 3.8 where C, H and O represent the percentage 

by mass of carbon, hydrogen and oxygen in the feedstock. The units used can be 

simply converted in to S.I. units and the calorific values of each feedstock on a molar 

basis are expressed in Table 3-2. The calorific values presented in Table 3-2 are on a 

dry, ash free basis and they can also be conveniently converted to a mass basis. For 

the two values for refuse and the value for garbage these are 21, 20.3 and 23 MJ/kg 

which is comparable with the figure of 22.6 MJ/kg volatile solids presented by 

Patumsawad and Cliffe (2002).
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The formula from Spoehr and Miller (1949) is

« m l / g ) . 127l^ 2 ^ C>*7 9 ^ ' f H O})»400
398.9

(3.7)
The formula presented by Fowler (1967) is

Q{B.TU./lb)= 145(C)+615 H - '- O
8

(3.8)
This allows the change in the stored energy to be calculated for various different yield 

coefficients. As the quantity o f oxygen utilised or CO2 evolved has already been 

found for each o f these yield ratios, then the energy release per mole o f either gas can 

be calculated.

Table 3-2. Calorific values o f substrates
Substrate Typical

chemical
composition

Carbon
content

(% m/m)

Hydrogen
content

(% m/m)

Oxygen
content

(% m/m)

Calorific 
value by 
Fowler 
(kJ/mole 
substrate)

Calorific 
value by 
Spoehr and 
Miller 
(kJ/mole 
substrate)

Average
calorific
value
(kJ/mole
substrate)

Carbohydrate C6H 120 6 40.00 6.67 53.33 2426 2843 2635

Protein C16H2405N4 54.55 6.82 22.73 8471 8865 8668

Fat + Oil C50H90O6 76.34 11.45 12.21 31366 30816 31091

Primary sludge c 22h 39o 10n 55.35 8.18 33.54 11611 12146 11879

Combined
sludge

C10H 19O3N 59.70 9.45 23.88 5902 5959 5930

Refuse (TOF) C64H 104O37N 51.96 7.04 40.05 30167 32800 31484

Refuse (TOF) C99H 148059N 51.79 6.45 41.15 44319 49013 46666

Wood C^sH^oOig^ 50.94 6.04 42.82 126147 141845 133996

Grass C^HsgOnN 46.00 6.33 45.33 9872 11180 10526

Garbage c 16h 27o 8n 53.19 7.48 35.46 8042 8558 8300

Bacteria c 5h 7o 2n 53.10 6.19 28.32 2451 2629 2540

Fungi C ioH i70 6N 48.58 6.88 38.87 4758 5185 4971

3.3 Results

Calculations for both bacterial and fungal degradation o f each feedstock at each yield 

coefficient using equations 3.1 to 3.8 have been performed. The results of these gave 

the quantity of heat, CO2 and water produced as well as oxygen utilised.
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Four ratios were calculated in order to analyse the results:

•  CO2 evolved to oxygen utilised,

• CO2 evolved to water evolved,

• energy released per mole o f CO2,

•  energy released per mole of oxygen.

The results for breakdown by bacteria are shown in Figures 3.1, 3.2, 3.3 and 3.4. 

Figures 3.5, 3.6, 3.7 and 3.8 show the data for fungal degradation of the material.

Figure 3.1 shows the C02:C>2 ratio for each feedstock plotted against the yield 

coefficient for degradation by bacteria. Only carbohydrate, represented by glucose, 

has a value o f 1 all o f the other series decrease as the yield ratio increases, showing 

that less carbon is released as more biomass is produced. If no new biomass is 

generated, then the yield coefficient will be zero, the curves would show the values 

given for C02:02 ratio in Table 3-1. The average value for all data points is 

0.872±0.023 at a 95% confidence level, with wastes such as refuse and garbage being 

in the middle of the group, showing that they are a conglomerate of other waste types.

Figure 3.2 shows the ratio o f CO2 evolved to water produced on a molar basis during 

bacterial degradation plotted against the yield coefficient. For all series except protein 

the values are closely grouped, the value for protein is approximately 2 to 3 times 

greater than for the other feedstocks, reflecting a low level of moisture production 

when composting proteins. The average value for this ratio is 1.21 ±0.12. All of the 

series, except protein, decrease in value as the yield coefficient increases this suggests 

either an increase in water production or a decrease in CO2 production at higher yield 

coefficients.

Presented in Figure 3.3 are the quantities of energy released per mole o f CO2 evolved 

for each feedstock during bacterial degradation plotted against the yield coefficient. 

The average value o f all points is 509.1 ±19.0 kJ/mole. The fat series has the highest 

values for the energy released and carbohydrate the lowest. For each individual series 

the quantity of heat released per mole is reasonably constant over the range of yield 

coefficients.
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Figure 3.4 shows the energy release per mole of oxygen utilised by bacterial 

degradation against the yield coefficient. These values are very closely grouped 

together, except for the protein series which has a slightly higher value. The average 

energy release per mole o f oxygen consumed was found to be 436.3±9.5 kJ/mole. The 

values for each series again remain relatively constant over the range o f yield 

coefficients.

The results of the CC>2:02 ratio for fungal degradation are shown in Figure 3.5. Unlike 

bacterial degradation where all the values remain below 1 both carbohydrate and grass 

have values greater than 1 across a range o f the yield coefficients. This high value of 

the CO2 .O2 ratio show that for these two feedstocks more moles of CO2 are produced 

than moles of oxygen used. The average value for these points is 0.892±0.024, 

slightly higher than the value for bacterial degradation.

The ratio of CO2 evolved to water evolved for fungal degradation is shown in Figure 

3.6. As with the bacterial degradation the protein series lies apart from all the other 

series. The CC^fUO ratio for protein increases in value as the yield increases, 

whereas for all the other series it falls. This suggests low amounts of water being 

produced during the composting o f substrates high in protein. The average value of 

the C02:H20 ratio for all data points is 1.53±0.26.

The release o f energy per mole o f CO2 evolved is shown in Figure 3.7. The energy 

release for each feedstock does not vary greatly with yield coefficient. However the 

values are again spread out and lie between 350 and 700 kJ/mole, with an average of 

514.4±17.8 kJ/mole. This value of heat release per mole o f CO2 is slightly higher than 

the value calculated for breakdown by bacteria. As with the bacteria the highest 

release was given by fat and the lowest by carbohydrate.

Figure 3.8 shows the energy release per mole of oxygen consumed for degradation by 

fungi. As with the bacterial breakdown the protein series is the only one that lies 

outside of a closely packed group. These data points give an average value of 

451.3±8.1 kJ/mole o f oxygen consumed. This value is also slightly higher than the
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heat release per mole o f oxygen calculated for the breakdown o f organic material by 

bacteria.

Generally it is the Refuse series which acts as a median in Figures 3.1 to 3.8. This is 

to be expected as Refuse is a mixture of all of the other series, although the weighting 

of the mixture is unknown. The average values previously mentioned are all within 

10% of the values represented in the Refuse series.

3.4 Anaerobic digestion

Anaerobic digestion is another potential disposal route for organic wastes as it is the 

degradation of organic material by bacteria in an oxygen free environment. The 

process produces methane which can then be combusted to extract the energy by 

electrical generation. In the same manner that the composting process was described 

by Equation 3.1 the anaerobic digestion process can be shown as

Substrate ----------► new biomass+C02 +water+-ammonia+methane

Or

1 {CuHvOwNx) ----------► a(CgHhOiNj) + b C02 +c H20  +d NH3 +fCH4

(3.9)
the gas mixture would then be combined with oxygen to give

(b C02 +c H20  +d NH3 +fCH4)+z 0 2  >b C02 +c H20  +d NH3

(3.10)

Coefficients o f carbon, hydrogen, oxygen and nitrogen can all be compared to 

calculate the values o f a, b, c, d , f  and z. The overall result is that for each substrate at 

each yield coefficient the products and reactants are the same as for the composting 

process, so the same endpoint has been reached, but by a different route. Hess' law 

states that the enthalpy change is independent o f the pathway so the amount of energy 

available from anaerobic digestion would be the same as the amount of heat released 

by the composting process.

3-16



Calculations for Energy Release and Aeration Requirements and Implication Upon Design

3.5 Discussion

T h e  d a t a  p r e s e n t e d  i n  F i g u r e s  3 . 1  t o  3 . 8  g i v e  a  l a r g e  q u a n t i t y  o f  i n f o r m a t i o n  a b o u t  t h e  

c o m p o s t i n g  p r o c e s s .  F i g u r e s  3 . 1  a n d  3 . 5  s h o w  t h e  m o l a r  r a t i o  o f  C O 2 e v o l v e d  t o  

o x y g e n  u s e d  f o r  b a c t e r i a  a n d  f u n g i  r e s p e c t i v e l y .  F o r  b a c t e r i a  t h i s  r a t i o  i s  l o w e r  t h a n  

f o r  f u n g i ,  m e a n i n g  t h a t  f u n g i  r e l e a s e  m o r e  C O 2 p e r  m o l e  o f  o x y g e n  u t i l i s e d  t h a n  

b a c t e r i a .  T a b l e  3 - 2  l i s t s  t h e  p e r c e n t a g e s  o f  c a r b o n ,  h y d r o g e n  a n d  o x y g e n  p r e s e n t  i n  

t h e  m a k e  u p  o f  e a c h  c e l l  t y p e .  B a c t e r i a l  c e l l  i s  5 3 . 1 0 %  b y  m a s s  c a r b o n  w h e r e a s  f u n g i  

i s  4 8 . 5 8 %  c a r b o n  b y  m a s s .  I f  a  y i e l d  c o e f f i c i e n t  o f  0 . 2  i s  c o n s i d e r e d  t h e n  2 0 0  g r a m s  

o f  m i c r o b i a l  b i o m a s s  n e e d s  t o  b e  c r e a t e d  f o r  e v e r y  k i l o g r a m  o f  w a s t e .  I f  t h e  w a s t e  

u n d e r w e n t  d e c o m p o s i t i o n  b y  b a c t e r i a  t h e n  t h e  2 0 0  g r a m s  o f  b i o m a s s  w o u l d  c o n t a i n  

1 0 6 . 2  g r a m s  o f  c a r b o n  w h i l s t  i f  f u n g a l  d e g r a d a t i o n  o c c u r r e d  o n l y  9 7 . 1 4  g r a m s  o f  

c a r b o n  w o u l d  b e  c o n t a i n e d  i n  t h e  n e w  b i o m a s s .  T h e  d i f f e r e n c e  b e t w e e n  t h e s e  t w o  

v a l u e s  o f  9 . 0 4  g r a m s  w o u l d  b e  l o s t  a s  C O 2 . T h i s  l o s s  i s  r e f l e c t e d  i n  t h e  h i g h e r  a v e r a g e  

C 0 2 :C >2 r a t i o s  f o r  f u n g a l  d e g r a d a t i o n .

T h e  h i g h e s t  C O 2 . O 2 r a t i o  i s  g i v e n  b y  c a r b o h y d r a t e  f o l l o w e d  b y  g r a s s ,  p r o t e i n ,  w o o d ,  

r e f u s e  2 ,  r e f u s e  1 ,  g a r b a g e ,  p r i m a r y  s l u d g e ,  c o m b i n e d  s l u d g e  a n d  f i n a l l y  f a t .  T h e  

o r d e r  i s  t h e  s a m e  f o r  b o t h  b a c t e r i a l  a n d  f u n g a l  d e g r a d a t i o n .  I f  t h e  r a t i o  o f  h y d r o g e n  

a t o m s  t o  o x y g e n  a t o m s  i n  t h e  f e e d s t o c k  i s  c a l c u l a t e d  t h e  o r d e r  i s  v e r y  s i m i l a r :  

c a r b o h y d r a t e ,  g r a s s ,  w o o d ,  r e f u s e  2 ,  r e f u s e  1 ,  g a r b a g e ,  p r i m a r y  s l u d g e ,  p r o t e i n ,  

c o m b i n e d  s l u d g e  a n d  f a t .  O n l y  t h e  p r o t e i n  s e r i e s  c h a n g e s  p o s i t i o n ,  t h i s  m a y  b e  d u e  t o  

t h e  e x t r a  h y d r o g e n  r e q u i r e d  t o  r e a c t  w i t h  t h e  r e l a t i v e l y  h i g h  n i t r o g e n  c o n t e n t  o f  t h e  

p r o t e i n .

I f  t h e  C 0 2 i 0 2  r a t i o  f o r  a l l  f e e d s t o c k s  w e r e  1 t h e n  t h e r e  w o u l d  b e  n o  d i f f e r e n c e  

b e t w e e n  t h e  h e a t  r e l e a s e d  p e r  m o l e  o f  e i t h e r  C O 2 e v o l v e d  o r  o x y g e n  u t i l i s e d ,  m e a n i n g  

t h e r e  w o u l d  b e  n o  d i f f e r e n c e s  b e t w e e n  F i g u r e s  3 . 3  a n d  3 . 4  o r  3 . 7  a n d  3 . 8 .  H o w e v e r  

t h i s  i s  n o t  t h e  c a s e  a n d  t h e  C O 2 . O 2 r a t i o  i s  r a r e l y  1 e v e n  i n  t h e  t h e o r e t i c a l  v a l u e s  f o r  

c o m p l e t e  b r e a k d o w n  s h o w n  i n  T a b l e  3 - 1 .  T h e  C O 2 . O 2 r a t i o  a l s o  v a r i e s  w i t h  y i e l d  

c o e f f i c i e n t .  F o r  e a c h  s u b s t r a t e  a t  e a c h  y i e l d  c o e f f i c i e n t  f o r  e a c h  t y p e  o f  d e g r a d a t i o n  

t h e  h e a t  r e l e a s e d  w a s  c a l c u l a t e d .  B y  d i v i d i n g  t h a t  h e a t  r e l e a s e  b y  t h e  m o l a r  q u a n t i t y  

o f  C O 2 e v o l v e d  o r  o x y g e n  u t i l i s e d  t h e  h e a t  r e l e a s e  p e r  m o l e  o f  g a s  w a s  f o u n d .  

C a r b o h y d r a t e  e x p e r i e n c i n g  b a c t e r i a l  d e g r a d a t i o n  d o e s  h a v e  a  C 0 2 : 0 2  r a t i o  o f  1 a n d
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t h e  e n e r g y  r e l e a s e d  p e r  m o l e  o f  C O 2 i s  t h e  s a m e  a s  t h a t  r e l e a s e d  p e r  m o l e  o f  o x y g e n  

u s e d ,  t h i s  i s  s h o w n  i n  F i g u r e s  3 . 3  a n d  3 . 4 .  T h e  f a t  s e r i e s  h a s  t h e  l o w e s t  C C > 2 :0 2  r a t i o  

a n d  a l t h o u g h  i t  i s  i n  w i t h  t h e  m a i n  g r o u p  i n  F i g u r e  3 . 4  t h e  l o w  q u a n t i t y  o f  C O 2 g i v e s  

i t  t h e  h i g h e s t  e n e r g y  r e l e a s e  p e r  m o l e  o f  C O 2 i n  F i g u r e  3 . 3 .

W i t h  f u n g a l  d e g r a d a t i o n  t h e  r a t i o  o f  C 0 2 :C >2 c a n  b e  g r e a t e r  t h a n  1 a s  s h o w n  b y  b o t h  

t h e  c a r b o h y d r a t e  a n d  g r a s s  s e r i e s .  T h i s  c a u s e s  t h e  e n e r g y  r e l e a s e  p e r  m o l e  o f  C O 2 

e v o l v e d  t o  b e  l o w e r  t h a n  t h e  e n e r g y  r e l e a s e  p e r  m o l e  o f  o x y g e n  u t i l i s e d ,  a s  s h o w n  i n  

F i g u r e s  3 . 7  a n d  3 . 8 .

M a c G r e g o r  et al. ( 1 9 8 1 )  s u g g e s t  t h a t  t h e  t o t a l  c o m b i n e d  v o l u m e  o f  C O 2 a n d  o x y g e n  i s  

c o n s t a n t  a n d  e q u a l  t o  2 0 . 7 8 %  o f  a i r  b y  v o l u m e ,  t h e  i m p l i c a t i o n  o f  t h i s  i s  t h a t  t h e  f o r  

e a c h  m o l e  o f  o x y g e n  u t i l i s e d  o n e  m o l e  o f  C O 2 i s  e v o l v e d .  T h e  m a j o r i t y  o f  r e s u l t s  

p r e s e n t e d  i n  F i g u r e s  3 . 1  a n d  3 . 5  d i s a g r e e  w i t h  t h i s  a n d  o n l y  c a r b o h y d r a t e  g i v e s  a  

r e s u l t  o f  o n e  f o r  b a c t e r i a l  d e g r a d a t i o n ,  c a r b o h y d r a t e  a n d  g r a s s  g i v e  r e s u l t s  o f  o n e  o r  

g r e a t e r  f o r  f u n g a l  d e g r a d a t i o n  w h i l s t  i n  a l l  o t h e r  c a s e s  t h e  r a t i o  i s  l e s s  t h a n  1 . 

M a c g r e g o r  et al. ( 1 9 8 1 )  o n l y  r e c o m m e n d e d  u s i n g  t h i s  r e l a t i o n s h i p  f o r  C O 2 

c o n c e n t r a t i o n s  u p  t o  6 . 5 % .  G i v e n  t h e  l i m i t e d  r a n g e  a n d  t h e  e q u i p m e n t  t h a t  w a s  u s e d  

t h i s  m a y  b e  a n  a c c e p t a b l e  a p p r o x i m a t i o n .  W e p p e n  ( 2 0 0 1 )  o b s e r v e d  a  C C > 2 :C )2 r a t i o  o f  

l e s s  t h a n  o n e .  A  v a l u e  o f  0 . 8 7 0  f o r  a  c o m p o s t  a m e n d e d  w i t h  f a t  w a s  o b s e r v e d  w h i l s t  a  

m i x t u r e  o f  o r g a n i c  g a r b a g e  a n d  w h e a t  s t r a w  h a d  a  C 0 2 : 0 2  r a t i o  o f  0 . 9 6 0 .  T h i s  a g r e e s  

w i t h  t h e  l o w  v a l u e s  o f  t h e  C02'.02 r a t i o  f o r  f a t  s h o w n  i n  F i g u r e s  3 . 1  a n d  3 . 5 .  B o t h  

g a r b a g e  a n d  s t r a w  h a v e  h i g h  l e v e l s  o f  c a r b o h y d r a t e s  a n d  t h e r e f o r e  p r o d u c e  h i g h  

v a l u e s  f o r  t h i s  r a t i o .  C r o n j e  et al. ( 2 0 0 4 )  a l s o  s h o w e d  r e s p i r a t i o n  q u o t i e n t s  ( C 0 2 : 0 2  

r a t i o s )  o f  b e t w e e n  0 . 5  a n d  1 f o r  t h e  c o m p o s t i n g  o f  p i g  m a n u r e .

F i g u r e  3 . 2  a n d  3 . 6  p r e s e n t  t h e  m o l a r  r a t i o  o f  C O 2 e v o l v e d  t o  w a t e r  e v o l v e d .  M o s t  o f  

t h e  s e r i e s  a r e  g r o u p e d  c l o s e l y  a t  a  v a l u e  o f  a r o u n d  1 f o r  b o t h  b a c t e r i a l  a n d  f u n g a l  

d e g r a d a t i o n  w i t h  a v e r a g e s  o f  1 . 2 1  a n d  1 . 5 3  r e s p e c t i v e l y .  T h e  p r o t e i n  s e r i e s  h a s  a  

m u c h  g r e a t e r  v a l u e  t h a n  t h a t  o f  t h e  o t h e r  s u b s t r a t e s .  T h i s  i s  l i k e l y  t o  b e  d u e  t o  t h e  

r e l a t i v e l y  h i g h  a m o u n t  o f  n i t r o g e n  p r e s e n t  i n  t h e  m a k e u p  o f  p r o t e i n  c o m p a r e d  t o  t h e  

o t h e r  f e e d s t o c k s .  E q u a t i o n  3 . 1  s h o w s  t h a t  e x c e s s  n i t r o g e n  i s  l o s t  a s  a m m o n i a .  T h i s  

w i l l  c a u s e  a  l o t  o f  t h e  h y d r o g e n  t o  b e  u t i l i s e d  r e s u l t i n g  i n  l e s s  w a t e r  b e i n g  p r o d u c e d  

a n d  t h i s  w i l l  i n  t u r n  c a u s e  t h e  m o l a r  r a t i o  o f  C O 2 t o  w a t e r  t o  b e  h i g h e r .
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F i g u r e s  3 . 3  a n d  3 . 4  s h o w  t h e  q u a n t i t y  o f  h e a t  r e l e a s e d  d i v i d e d  b y  t h e  n u m b e r  o f  m o l e s  

o f  C O 2 e v o l v e d  a n d  t h e  q u a n t i t y  o f  h e a t  r e l e a s e d  d i v i d e d  b y  t h e  n u m b e r  o f  m o l e s  o f  

o x y g e n  c o n s u m e d  f o r  b a c t e r i a l  d e g r a d a t i o n .  F i g u r e s  3 . 7  a n d  3 . 8  s h o w  t h e  e n e r g y  

r e l e a s e  f o r  f u n g a l  d e g r a d a t i o n ,  a s  w i t h  t h e  b a c t e r i a l  d e g r a d a t i o n ,  t h e  d i f f e r e n c e s  

b e t w e e n  t h e  t w o  f i g u r e s  a r e  d u e  t o  t h e  r a t i o  o f  C O 2 e v o l v e d  t o  o x y g e n  c o n s u m e d .  T h e  

a v e r a g e  v a l u e s  f o r  h e a t  r e l e a s e  a r e  s h o w n  i n  T a b l e  3 - 3 .

T h e  r e s u l t s  i n  T a b l e  3 - 3  s h o w  a  s l i g h t l y  g r e a t e r  r e l e a s e  o f  h e a t  f o r  f u n g a l  d e g r a d a t i o n  

t h a n  f o r  b a c t e r i a l  d e g r a d a t i o n .  T h e  r e s u l t s  f r o m  T a b l e  3 - 3  a r e  s h o w n  i n  c o m p a r i s o n  t o  

m e a s u r e d  v a l u e s  f r o m  H a u g  ( 1 9 9 3 ) ,  C o o n e y  et a l  ( 1 9 6 9 ) ,  T a n c h o  et a l  ( 1 9 9 5 ) ,  

S p a r l i n g  ( 1 9 8 3 )  a n d  W e p p e n  ( 2 0 0 1 )  i n  F i g u r e  3 . 9 .  T h e  m e a s u r e d  v a l u e s  a r e  s h o w n  i n  

F i g u r e  3 . 9  w i t h  a n  a v e r a g e  a n d  a n  u p p e r  a n d  l o w e r  b o u n d a r y .  T h e  c a l c u l a t e d  v a l u e s  o f  

e n e r g y  r e l e a s e  l i e  w i t h i n  t h e  r a n g e s  t h a t  h a v e  b e e n  m e a s u r e d  e x p e r i m e n t a l l y ,  

i n d i c a t i n g  a  g o o d  l e v e l  o f  a c c u r a c y  i n  t h e s e  t h e o r e t i c a l  r e s u l t s  a s  w e l l  a s  v a l i d a t i n g  

t h i s  m e t h o d  o f  a s s e s s i n g  e n e r g y  r e l e a s e .  W e p p e n  ( 2 0 0 1 )  d i d  n o t  g i v e  a n  o v e r a l l  

a v e r a g e  f o r  t h e  h e a t  r e l e a s e d  p e r  m o l e  o f  C O 2 e v o l v e d ,  h o w e v e r  i n  t h e  s a m p l e  o f  d a t a  

g i v e n  f o r  f i v e  o f  t h e  t e s t  r u n s  t h e  r a t i o  o f  COi'.Oi i s  i n  t h e  r a n g e  0 . 8 7 0  t o  0 . 9 6 0 .  

A p p l y i n g  t h i s  t o  t h e  e n e r g y  r e l e a s e  p e r  m o l e  o f  O 2 g i v e s  a  r a n g e  o f 4 7 0 . 8  t o  5 1 9 . 5  k J  

p e r  m o l e  o f  C O 2 .

T a b l e  3 - 3 .  A v e r a g e  e n e r g y  r e l e a s e s  f o r  m i c r o b i a l  d e g r a d a t i o n

T y p e  o f  M i c r o b e H e a t  r e l e a s e  p e r  

m o l e  o f  o x y g e n  

c o n s u m e d

H e a t  r e l e a s e  p e r  

m o l e  o f  C O 2 

e v o l v e d

B a c t e r i a 4 3 6 ± 9 . 5  k J / m o l e 5 0 9 . 1 ± 1 9 . 0  k J / m o l e

F u n g i 4 5 1 ± 8 . 1  k J / m o l e 5 1 4 . 4 ± 1 7 . 8  k J / m o l e

T h e  e s t i m a t e s  f o r  e n e r g y  r e l e a s e  a r e  h i g h e r  t h a n  t h e  e n t h a l p y  o f  f o r m a t i o n  o f  C O 2 o f  

3 9 3 . 5  k J / m o l e .  T h i s  i s  b e c a u s e  i t  i s  n o t  s i m p l y  t h e  e n t h a l p y  o f  f o r m a t i o n  o f  C O 2 t h a t  

i s  b e i n g  c o n s i d e r e d ,  f o r  e a c h  m o l e  o f  C O 2 e v o l v e d  t h e r e  i s  a p p r o x i m a t e l y  1 m o l e  o f  

w a t e r  c r e a t e d ,  a s  s h o w n  i n  F i g u r e s  3 . 2  a n d  3 . 6 .  T h e  e n t h a l p y  o f  f o r m a t i o n  o f  w a t e r  i s

2 4 1 . 8  k J / m o l e  i n  g a s e o u s  f o r m  o r  2 8 5 . 8  k J / m o l e  i f  i t  h a s  c o n d e n s e d .  T h e r e  i s  t h e n  a n  

u n k n o w n  q u a n t i t y  o f  e n e r g y  t h a t  i s  n e e d e d  t o  f o r m  t h e  n e w  b i o m a s s .  I t  i s  b e c a u s e  o f
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this unknown quantity of energy that an approach using calorific values was 

employed.
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Figure 3.9. Comparison of calculated energy release with measured values

3.6 Design implications

3.6.1 Heat Release

Relating the quantity o f heat released to the quantity of CO2 evolved allows the 

calculation of the quantities of air required for cooling as well as a structured 

approach to the design of composters. As discussed in Chapter 1 the Animal By- 

Products Regulations (2003) require that for in-vessel composting the entire contents 

reach either 60°C or 70°C depending on the treatment regime chosen. These are high 

temperatures and involve a large increase above the ambient temperatures in the UK 

as well as being higher than the suggested optimum temperatures for composting 

(Waksman et al., 1939; Wiley, 1956; Wiley, 1957; Rothbaum, 1961; Jeris and Regan, 

1973; Suler and Finstein, 1977; MacGregor et al., 1981, Cathcart et al., 1986). For the 

compost to reach these elevated temperatures a large quantity of heat is required and 

at these elevated temperatures the compost will be loosing heat at a rate that is 

proportional to its temperature difference compared to its surroundings.
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Mears et a l (1975) showed that the specific heat capacity is proportional to the 

moisture content o f the compost and is equal to,

Cp(kJ kg-'K '')=4.184(0.1551+0.00813A/)

(3.11)

where M  is the moisture content of the compost on a wet basis expressed as a mass 

percentage. As the compost heats up it needs to store the heat that is released whilst 

losses due to conduction and convection from the vessel, mass transfer and 

evaporation from airflow need to be minimised in order to achieve the treatment 

temperatures.

As previously shown the heat generated by the composting process and the CO2 

evolution are closely linked. The respiration rate, measured in grams of CO2 per 

kilogram of volatile solids per day, can be converted to a rate of heat output of the 

compost. It is therefore important to know the density, moisture content and volatile 

solids content of the material to be composted to allow the weight o f volatile solids to 

be calculated. Much of the green waste arriving at the CERT composting facility 

(described in Section 5.1) has a moisture content of approximately 50% (w.b.) and a 

volatile solids content o f 60% (d.b.). Once shredded the density is approximately 370 

kg m'3. The heat released by the composting process, Qgerh per cubic metre is,

0  509.1 x F  x pamposl x (l -  MC)x VS
ygen 44x86400 (3.12)

where 509.1 kJ is the heat released per mole of CO2,

F  is the composting rate in gC02 kgVS’1 day'1, 

pcompost is the bulk density of the compost in kg m’ ,

MC is the moisture content on a wet basis as a proportion,

VS is the proportion of volatile solids on a dry basis,

44 is the molar mass of CO2 and 

86400 is the number o f seconds in a day.
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The heat loss from the vessel can be calculated using empirical equations for turbulent 

convection from vertical and horizontal surfaces (Holman, 1976). The heat released 

can be quantified using the above relationship between heat and CO2 release. 

Assuming that the compost stays at a constant temperature then the heat released by 

composting can be compared with the heat lost from the vessel allowing a minimum 

composting rate to be found. Figure 3.10 shows a schematic of a composting vessel 

where the width, length and height of the vessel are represented by k, 1 and m, the 

dimension mi represents the fill height o f the compost inside the vessel.

The heat that is released by the vessel through turbulent convection, Qcom is

n

m mi

Figure 3.10. Schematic o f containerised composting reactor, dashed line 
represents compost fill height

dependant upon the exposed surface area and the difference in temperature between 

the surface and the surrounding air, AT,

m (2k + 2l)x0.95AT
y 1" >

1 " 
5

\

+ klx\.43AT* + klx  0.61
- J

(3.13 after Holman, 1976) 

For equation 3.13 the heat transfer coefficient is a function of the temperature 

difference, T, and a principle dimension. Assuming that the vessel is at a steady state 

of either 60 or 70°C depending upon the chosen treatment regime, there will be no 

change in internal energy or stored heat. The equations 3.12 and 3.13 can be solved 

for various different shapes at different temperatures to find a rate at which 

composting needs to occur in order to produce enough heat to meet the Animal By- 

Products Regulations (2003).
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Three different vessel designs are considered: i) the vessel used by Myrddin (2003) to 

investigate the composting of household waste, ii) the vessel designed by Wormtech 

which is used in trials detailed in Chapter 6 of this thesis and iii) a cuboid 

vessel similar to many available of dimensions 3 m wide 3 m high and 5 m long, the 

total compost fill height being 2.4 m.

The vessel used by Myrddin (2003) to investigate the composting of household wastes 

was a cylinder 3 metres high with a 1 metre diameter, because of the vessel’s shape 

Equation 3.13 needs to be modified. For a cylinder of height m and radius r Equation 

3.13 modifies to Equation 3.14 allowing Figure 3.11 to be generated.

f
i ~ i '

f  A r V

\

A T

\

2nrmx0.95T3 + tot1 xl.43AT3 + 7 irr x  0.61
W

J

(3.14 after Holman, 1978)

5.00
 AT-20»c
 AT=30°C
 AT=40°C
 A f= 50°C
 AT=60°C
 AT=70°C
 Heat Generated by composting
—  Heat Generated minus heat lost due to aeration

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00
120 140 1600 20 40 60 80 100

Rate, gC02 kgVS1 day1
Figure 3.11. Heat lost and heat generated as a function of temperature for the vessel used by 
Myrddin (2003)

In winter conditions the external air temperature may be 0°C or less, meaning that the 

temperature difference to meet the Animal By-Products Order (2003) would be at
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least 60°C or 70°C, requiring a composting rate of approximately 110 gCC^kgVS'1 

day-1, which is exceptionally high. The maximum rate achieved by Myrddin (2003) 

using this vessel was approximately 60 gCC^kgVS'May"1. It would seem that without 

insulation or addition of extra heat this vessel would have little chance o f meeting the 

Animal By-Products Regulations. The rate achieved of 60 gCC^kgVS'May"1 would be 

suitable for a temperature difference of approximately 45°C between the vessel and 

the ambient air and would probably meet the Animal By-Products Regulations in 

summer with warmer ambient temperatures or could be achieved in winter through 

use of insulation to lower the rate of heat loss through the walls giving a lower outer 

wall temperature. This vessel has a compost volume to surface area ratio of 0.179m.

The second vessel is that designed by Wormtech, drawings of which are shown in 

Appendix D. It is a containerised system 2.25 m wide, 2.37 m high, 5.8 m long with a 

fill height o f approximately 1.6 m. Using the same assumptions for the fill material as 

before Figure 3.12 can be created, allowing the “break even” composting rate to be 

determined.

The Wormtech vessel has a compost volume to surface area ratio of 0.325m, nearly 

twice that o f the vessel used by Myrddin, meaning that it has a comparatively greater 

volume o f compost. For this vessel to produce enough heat to meet the Animal By- 

Products Regulations (2003) and maintain a temperature difference o f 70°C it needs to 

be composting at a rate o f approximately 55 g CO2 kgVS'1 day'1, approximately half 

of that required by Myrddin’s vessel and as with Myrddin’s vessel insulation may be 

necessary to reduce the temperature difference and allow for a lower composting rate. 

The distribution o f the heat within the vessel is also of great importance.

The final vessel considered here is a hypothetical vessel that is 3 m wide, 3 m high,

5 m long and a fill height of 2.5 m. This gives a compost volume to surface area ratio 

of 0.481m, higher than either of the vessels used by Wormtech or Myrddin, the results 

for this vessel are shown in Figure 3.13. To maintain a temperature difference of 70°C 

the hypothetical vessel needs to achieve a composting rate o f approximately 38 g CO2 

kgVS'1 day*1 less than for either of the previous two vessels.
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AT =  6 0  °C 
A T = 70 °C

 AT =  5 0  °c
 AT=40°c

A T = 30  °c  
 A T = 20  °c
 Heat Generated by composting

Heat Generated minus heat lost due to aeration

R espiration Rate, g COz kgVS Day

Figure 3.12. Heat lost and heat generated as a function of temperature for the Wormtech 
vessel

 AT = 60°C
 AT =  70°C
 A T =50°C

AT = 4CfC 
AT = 30°C  
A T =20°C

 Heat Generated by composting
Heat Generated minus heat lost due to aeration

10 20 30 40 50 60

Respiration Rate, g C 0 2 kgV S1 D ay1

Figure 3.13. Heat lost and heat generated as a function of temperature for the 45 cubic metre 
vessel
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These calculations could be extended to other vessels either at the design stage to 

ensure that the most efficient design in terms o f heat retention is chosen or by a local 

authority which is interested in purchasing an in-vessel composting system for 

analysis o f claims made by the manufacturer.

3.6.2 Aeration

Air within a composting system is required for three reasons: i) to supply fresh 

oxygen for microbial activity, ii) to cool the compost and iii) to remove excess 

moisture. The supply o f oxygen to the composting mass is essential if  the process is to 

be successful and allow self-heating o f the compost to achieve sanitisation.

The average o f value o f the C02:C>2 ratio for bacterial degradation, as shown in Figure 

3.1, was 0.872 and for fungal degradation, shown in Figure 3.5 it was 0.892. These 

are expressed on a molar basis and give an overall average of 0.882. The volumetric 

flow rate of air in cubic metres o f air per cubic metre of compost per second to 

provide a stoichiometric supply o f oxygen can be found using equation 3.15.

air 1000 X  86400X  M COj x 0.882 x 0.23 x p air
(3.15)

where p COmposi is the density o f the compost in kgm"3,

MC is the moisture content on a wet basis,

VS is the volatile solids content on a dry basis,

F  is the composting rate in units o f gCC>2 kgVS'May'1,

M02 is the molar mass of oxygen (32),

1000 is used to convert grams into kilograms,

86400 converts from days to seconds,

Mcoi is the molar mass of CO2 (44),

0.882 is the average molar CO2 .O2 ratio,

0.23 is the proportion o f air that is oxygen by mass and 

pair is the density o f air in kgm'3.
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It is important to note that Equation 3.15 gives a stoichiometric value for the aeration 

and thus assumes that all o f the oxygen in the supply air is used by the composting 

process. However, it is recommended to have an oxygen content of 10% in the 

exhaust air, as oxygen makes up approximately 21% of air by volume so the value 

calculated using Equation 3.15 and shown in Figure 3.14 would need to be doubled in 

order to meet this. Flow rates for other concentrations of oxygen in the exhaust air can 

be calculated in a similar manner.

Volumetric air flow,

□  1.80E-03-1.90E-03
□  1.70E-03-1 80E-03
■  1.60E-03-1.70E-O3
■  1.50E-03-1.60E-03
■  1 40E-03-1 50E-03
■  1 30E-03-1 40E-03
■  1 20E-03-1 30E-03
■  1.10E-03-1 20E-03
□  1.00E-03-1.10E-03
■  9.00E-04-1 OOE-03
■  8 00E-04-9 00E-04
□  7.00E-04-8.00E-04
■  6.00E-04-7 00E-O4
□  5.00E-04-6.00E-04
■  4.00E-04-5.00E-04
□  3 00E-04-4 00E-04
□  2 00E-04-3 00E-04
■  1 00E-04-2 00E-O4 
HO.OOE+00-1.00E-04

800 E

700 £

600 ~

50 60 70 80 90 100 110 120 130 140 150
Com posting rate, g C 0 2 kgVS 1d a y 1

Figure 3.14. Aeration requirements per cubic metre of compost for oxygen supply as a 
function of composting rate and compost density

If the same assumptions are made about the composting material as before, that it has 

a 50% moisture content on a wet basis and a 60% volatile solids content on a dry 

basis and at an air temperature o f 23°C, Equation 3.15 is a function of the compost 

density and the composting rate. Figure 3.14 shows a range of compost densities and 

composting rates and can be used to determine the stoichiometric air supply for 

compost.

With the introduction o f the Animal By-Products Regulations (2003) the need to 

remove excess heat from compost is somewhat compromised. Although optimum 

composting temperatures have been reported by many, these are often below the
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temperatures required to meet the required levels of sanitisation. If further 

stabilisation or maturing of the compost were being carried out under controlled 

conditions then the quantity o f air that need to be supplied to keep one cubic metre of 

compost at a constant temperature could be calculated by,

y  Pampas, x (l-M C )x K S x F x 5 1 1 .7 5  
-  M co x 86400 -  H,n )pmr

(3.16)

where pCOmposh MC, VS, F, Mco3, 86,400 and pair all have the same meanings as before, 

511.75 is the average heat output per mole of CO2 and 

Hout and Hin are the exhaust and inlet air enthalpies in kJ kg-1.

A chart similar to that shown in Figure 3.14 can be generated if the same assumptions 

are made as before with regards to the material being composted and inlet and exhaust 

air conditions are assumed. Figure 3.15 shows a chart for inlet air conditions of 10°C 

air temperature and 80% relative humidity giving an enthalpy of 25.3 kJ kg'1 and 

exhaust air conditions o f 40°C air temperature fully saturated air, an enthalpy of

161.9 kJ k '1. The values for flow rate shown in Figure 3.15 are higher than those in 

Figure 3.14 by an order o f magnitude.

The final use of the air in a composting system is to remove excess moisture. 

Assuming that only the moisture that is generated by the composting process is to be 

removed the volumetric airflow per cubic metre of compost can be calculated by 

using the average CO2 to water ratio from Figures 3.2 and 3.6.

y  Pcom pos, X  0 -  MC)y. V S x F x  M Hjp
°lr 1000x 86400xA/CO; x 1.37x(HRoul-H R m) x p mr (3 , 7)

where pComposu MC, VS, F, 1000, 86400, Mco*, and pair represent the same uses as 

previously described,

M m  is the molar mass of water (18),

1.37 is the average CC^FbO ratio and

HRout and HRin are the exhaust and inlet air humidity ratios in kilograms of 

water per kilogram of dry air.
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Volumetric airflow, m3/s-m 3
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Figure 3.15. Aeration requirements per cubic metre of compost for removal of heat as a 
function of composting rate and compost density
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Figure 3.16. Aeration requirements per cubic metre of compost for removal of moisture 
produced during composting as a function of composting rate and compost density
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Using the same assumptions as before about both the composting material and the air 

being supplied, the humidity ratio of the inlet air is 0.0061 kg kg'1 and for the exhaust 

air it is 0.0491 kg kg'1. The requirement for cooling gives the highest airflow 

requirements, though all o f these are dependant upon various assumptions. For 

example one cubic metre o f compost o f density 400 kg m'3 composting at a rate o f 40 

g CO2 kgVS*1 day'1 would require 1.68*1 O'4 cubic metres of air per second for its 

oxygen requirement, 3.25*1 O'4 cubic metres to remove the moisture produced by the 

process and 3.99*10'3 cubic metres per second to remove the heat generated.

Rynk(1992) suggests a flow rate o f 5x10'5 m3/s-kg dry matter for temperature control 

of composting. When the value from Rynk is converted in to the same units as used in 

Figures 3.14 to 3.16 for a compost of400kgm'3 and 60% moisture content (w.b.) an 

air supply rate of 8* 10'3m3s'1m'3 is determined. This is within the same order of 

magnitude as the calculated airflow for temperature control. A greater rate or alternate 

assumptions regarding moisture content would achieve exactly the rate quoted by 

Rynk (1992).

3.7 Conclusions

The calculated heat releases closely match values that have been recorded 

experimentally, and are therefore useful for the design of systems in the composting 

process.

The heat released per mole of either CO2 or oxygen appears to remain relatively 

constant over a wide range o f carbon to nitrogen ratios for both fungal and bacterial 

degradation.

Each substrate has a different ratio of CO2 evolved to oxygen utilised.

The results for the energy release per mole of oxygen utilised are more closely 

grouped that those for the energy released per mole of CO2 evolved.
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The heat release for CO2 o f 500 kJ/mol is significantly higher than the enthalpy of 

formation of 393.51 kJ/mole. This shows that it would not be possible to use reaction 

enthalpies to calculate energy released, as the makeup of the substrates is unknown.

To minimise the heat losses from the vessel system attention should be applied to the 

compost volume to surface area ratio to ensure that it is as high as possible in order to 

minimise heat losses from the system.

If recovery of energy is required then it would be worth considering anaerobic 

digestion as the temperatures involved in the composting process are low. Anaerobic 

digestion produces methane that can be combusted in a gas turbine or other such 

technology allowing for energy recovery.

When supplying enough air to cool compost it is important to note that this may 

supply a large quantity o f oxygen which may encourage a greater level o f composting 

activity leading to a greater quantity o f heat being released.

If air is being supplied to meet the cooling load of the compost a drying effect may 

occur, so that extra moisture may need to be added, this may also affect the level of 

composting activity.
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4 Static Pressure Requirements

4.1 Introduction

In order to meet the European Landfill Directive (European Commission, 1999) waste 

arising from kitchens will need to be diverted from landfill. For catering waste to 

meet the Animal By-Products Order (2003) it needs to be composted in an in-vessel 

composting system. Many types of in-vessel system exist and the general types are 

discussed in Chapter 2. Unlike an open windrow composting system in-vessel 

technologies have to be fully contained and therefore cannot rely on the passive 

airflow to supply oxygen to the composting material. It is therefore necessary to 

supply air to the composting process through an aeration system.

Chapter 3 investigated the heat release from the composting process. This allowed the 

development of aeration requirements based on oxygen supply, moisture removal and 

cooling. Although this allows a total flow rate for the system to be calculated it does 

not give a complete picture of the required aeration system. The static pressure 

required to drive the air through the compost is unknown. Without knowledge of the 

static pressure requirements the design decisions on air handling equipment cannot be 

accurately assessed. As was discussed in Chapter 2 the static pressure required is 

likely to vary with the moisture content, volatile solids content, particle size 

distribution, bulk density and free air space of the composting material. During the 

composting process several of these parameters are likely to change. As volatile solids 

react with oxygen in the presence of micro-organisms they will release moisture 

possibly increasing the moisture content whilst decreasing the volatile solids content. 

The process will also cause a reduction in particle size which may further affect on 

the available free air space. These changes will all affect the bulk density of the 

material.

The heat given off and any aeration applied will tend to dry the compost, again 

affecting the density. The bulk density will reflect how much free air space there is 

within the compost, the lighter and fluffier the compost is the larger the proportion of 

air within the pile. The particle size distribution is likely to be reflected in the figures
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for the bulk density, for example if all o f the particles are similarly sized i.e. steel 

balls then there is a limit to the quantity o f space that can be filled. However, if  

smaller particles are then introduced then these will fit between the larger particles. If 

the particle size distribution is fairly broad then the bulk density will be increased. 

Many of these properties may also have an affect upon the static pressures required to 

aerate a compost pile.

The information presented in this chapter covers design data on the calculation of the 

static pressure. This allows the correct specification of compressors or fans to 

correctly aerate the composting process. By the careful use of such data, correct 

machinery and equipment can be incorporated into the design o f a composting facility 

in the early stages and by doing this, expensive upgrades to air handling equipment 

are not required and the installation o f overly expensive and powerful equipment can 

be avoided.

4.2 Methods of Measurement

4.2.1 Moisture content

The moisture content o f the compost was determined in accordance with BS EN 

13040:2000. After sampling in accordance with BS EN 12579:2000, three sub 

samples were dried in a ventilated oven. The samples were weighed before and 

afterwards allowing the mass of water lost to be calculated and expressed either as a 

proportion or a percentage o f the total mass.

4.2.2 Volatile solids content

The volatile solids content of the dry matter was determined in accordance with BS 

EN 13039:2000. The dried sample was ground to approximately 2mm particle size. 

This was then ashed in an oven at 450°C. The sample weights before and after ashing 

were recorded allowing the volatile solids content to be calculated and expressed 

either as a proportion or percentage of the dry mass.
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4.2.3 Particle size distribution

The particle size distribution was determined by placing a sample into a set o f sieves 

and shaking mechanically for 1 hour. The sieves used were 16, 8, 5.6, 2.8,1.4, 1 and 

0.5mm. This allows investigation of smaller particle sizes. The quantity o f material 

retained in each sieve was weighed and these figures were presented both as 

percentages retained in each sieve and cumulatively, allowing a median particle size 

to be found.

4.2.4 Bulk density

The bulk density is the mass divided by the total volume, which includes the void 

space within the material. The experiments were carried out using the pressure drop 

rig detailed in Appendix B and described in Section 4.5. The volume of the pressure 

drop rig is calculated from the internal diameter and the depth of the compost bed. 

The pressure drop rig was stood on a set o f scales manufactured by Loadscales Ltd. 

These scales were used to determine the mass of compost within the rig. This allowed 

calculation of the compost’s bulk density. The scales were 1 2 0 0 m m x  1200mm and 

certified for weighing in commercial operations. The range of the scales was 0- 

1500kg with a resolution of 0.5 kg. The weight of compost involved in each test was 

generally over 150 kilograms of compost meaning that the resolution of the scale 

caused a measurement error o f less than 0.3%.

4.2.5 Free air space

The free air space within compost is the volume that is occupied by gas rather than 

solids or water. A method for measuring this space is detailed in BS EN 13041:2000. 

This measuring process is very complex and involves specialised equipment. 

However, it is also possible to calculate the free air space as a function of other 

variables and this method is discussed in section 4.3.1.
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4.2.6 Static pressure

This was measured in a three metre high column of 450mm diameter; drawings for 

this are given in Appendix B. A plenum at the base receives air from a blower. There 

is a throttle valve to give control over the flow rate of the air and hence the superficial 

velocity through the column of compost. Static pressure taps are located at 500mm 

intervals, allowing the static pressure to be measured relative to atmospheric pressure 

using a U-tube manometer. The results can then be plotted either as a function of the 

depth or the velocity.

4.2.7 Superficial velocity

The velocity of air in the inlet pipe was measured initially using a hot wire 

anemometer (Testo 425) and the superficial velocity calculated. This was later 

replaced with a Rotameter which measured the volumetric flow rate. The superficial 

velocity through the column can be found by dividing by the cross sectional area of 

the column.

4.3 Theory

4.3.1 Free Air Space

The free air space is an important parameter when calculating pressure drops using 

the Ergun model (Ergun, 1952) for static pressures through packed beds as discussed 

in Chapter 2. This is because it is the free air space within a composting pile which 

allows the flow of fresh air through the compost pile. Although permeability and 

porosity are never the same as each other Das and Keener (1997) demonstrated that 

these two parameters are related for compost. The flow of air through the compost 

allows for the CO2 and moisture produced during the composting process to be 

removed and the provision of oxygen to allow the process to continue. The air
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flowing through a compost bed can also be used for cooling of the material to bring it 

back to an optimum temperature.

As compost is a compressible material with a density greater than that of air it is 

intuitive that as it is compressed the density of the compost will increase through a 

reduction in the proportion o f free air space. This of course assumes that the compost 

particles themselves do not compress. An expression relating the bulk density of 

compost and the proportion of free air space can be developed. The composting 

material is made up of a mixture of solids, liquids and gas. The solid component 

contains volatile solids and mineral ash, the liquid is mainly water and the gas 

component is air. Figure 4.1 helps to imagine this, where Vg, Vw and Vs represent the 

volumes of gas, water and solid and Wg, Ww and Ws represent the corresponding 

masses. In reality of course the compost is a mixture of these three components.

Vg Air/Gas

Vw Water

Vs Solids

Figure 4.1 Schematic o f components o f the composting pile

Density =
Mass _ Wg +Ww +Ws 

Volume Vg +Vw + Vs
(4.1)

Wt = Wg +Ww +Ws

v , = v e + vw + vs (4.2)

(4.3)

Combining equations 4.1,4.2 and 4.3 gives

p l(yg + v „ + v s) = w g + w w + w s (4.4)

(4.5)
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The volume of gas divided by the total volume is the proportion of free air space 

within the compost. The weight of the gas is very small in comparison to the weights 

of the water and the solids and this term can be removed so that Equation 4.2 becomes 

Equation 4.6.

W'=Ww+Ws
(4.6)

Also defining the moisture content, A/C, as,
W

MC = —
W,

gives 

Ww = WtMC

and

Ws =W,(l-MC)

This allows simplification to

^ = i -  
V t

(4.7)

(4.8)

(4.9)

' m g ' 1 -M C '+
K Pv J  ̂ Ps J

Pt

(4.10)

Equation 4.10 allows calculation of the volume of free air space as a function of the 

total density, the moisture content and the densities of water and solids. The moisture 

content and compost density can be found using the methods previously described in 

Sections 4.2.1 and 4.2.4. The density o f the solid material can be found in terms of the 

densities of ash and volatile solids as

_  _______ Pash P vs__________

P s~ ( \ - V S ) p vs+VSPash

(4.11)

where VS is the volatile solids content on a dry basis. British standard BS EN 

13041:2000 gives values for the densities of ash and organic matter as 2650 kg m'3 

and 1550 kg m*3 respectively. Although these values may sound rather high in 

comparison to compost it is important to realise that they do not include any void 

space and refer solely to the actual material.
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Equations 4.10 and 4.11 can be used to create a series of curves for varying moisture 

and volatile solids contents such as those shown in Figure 4.2. for a material with a 

volatile solids content of 0.7 (d.b.). The values shown in Figure 4.2 are very similar 

to those presented by Agnew et al. (2003) which were discussed in Chapter 2.

1

0.9

0.8
0.7

0.6

0.5
0.4

0.3

0.2
0.1

0
0 1400200 400 600 800 1000 1200

Bulk Density, kgm'3
Moisture Content____________________________________________________
—  0.3 0.4 0.5 — 0.6 — 0.7 — 0.8 — 0.9 — 1

Figure 4.2. Free Air Space as a function of compost bulk density and moisture content for a 

volatile solids content of 0.7 (d.b.)

4.3.2 Static Pressure

While the proportion of free air space is a measure of the porosity of the material, the 

static pressure required to drive air through the material is a measure of its 

permeability. As shown by Das and Keener (1997) these two factors are related, 

though not linearly. The relationship follows the cubic relationship which is outlined 

in the Ergun (Ergun, 1952) equation given in Chapter 2.
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As was discussed in Chapter 2 the pressure drop through a packed bed is dependant 

on a variety of factors including the height of the bed, the properties of the fluid 

flowing through the bed, the proportion of the bed that is void and a representative 

size of the particles within the bed. Many of the properties will change as the air is 

passed through the bed. For instance, the air will pick up moisture and heat up 

becoming less dense, the void space may decrease as the material settles under its 

own weight and the particle size will vary as the substrate breaks down.

Depending on the type o f flow through the bed, the pressure drop will either be 

proportional to the velocity if  it is laminar flow or the velocity squared for turbulent 

flow regimes. As discussed by Barrington et al. (2002) because the pile has a wide 

variety of pore widths and a non uniform velocity profile the flow is most likely to be 

a combination of these two flow regimes, giving an overall appearance o f transitional 

flow. The presentation o f much of the data from static pressure experiments in 

relation to compost and grains takes the form of

AP=JHaVb

(4.12)

where AP is the pressure drop across the bed,

J  is a constant,

H  is the height o f the bed, 

a is a compressibility exponent,

V is the superficial velocity and 

b is the velocity exponent.

The constant J was shown by Higgins et al. (1982) to be affected by the mixing 

regime, degradation of the compost and ageing. In comparison to the Ergun equation 

presented in Chapter 2, coefficient J represents free air space, particle size, air density 

and air viscosity.

Exponent a gives an indication of the compressibility of the compost. When this is 

equal to 1 the material was either incompressible or the bed depth used in the 

experiment was of insufficient depth to cause compression. The pressure drop per unit
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depth will also be constant through the height of the pile. This exponent was shown 

by Keener et a l (1997) to have a value of 1 for a compost with more than 40% dry 

matter and to be greater than 1 if the proportion of dry matter was less than 40%.

If b is equal to 1 then the flow would be laminar, as predicted by the Darcy equation 

discussed in Chapter 2. If the flow becomes turbulent then the value of b will 

approach 2. Generally, due to the small size of some of the passages through the bed, 

there will always be a laminar element to the flow. Saint-Joly et a l (1989) observed 

that the value o f b varied with the porosity of the compost material. The porosity 

gives the total free space for air flow so the size of channels available may depend 

upon it. The Reynolds number is used as an indicator of flow regime and requires a 

representative dimension-such as pore size-for its calculation. As the pore size and 

particle sizes changes so will the type of flow, depending upon the amount of viscous 

drag and inertial forces. This will be reflected by exponent b varying from 1 to 2 and 

an increase in the Reynolds number.

4.4 Aeration Quantities

The main thrust of this work is to develop accurate design data that can be used in the 

development o f composting sites. It is therefore sensible to use appropriate superficial 

velocities in the experimental test rig. The quantities of air required for cooling, 

moisture removal and oxygen supply as a function of both compost bulk density and 

composting rate were calculated in Chapter 3. The quantities of aeration required for 

the composting process were also discussed in Chapter 2. The values presented by 

Rynk (1992), Haug (1993) and Keener et a l (1997) have been used to calculate 

appropriate superficial velocities for the pressure test rig, as have the data developed 

in Chapter 3.

For a compost o f bulk density 370 kgm'3 the test rig would contain 176.5 kg of 

material. This is an appropriate figure for the density of the green waste shredded by 

the Seko shredder at the CERT composting facility (Hewings et al, 2002). The 

volumetric airflow rates can then be calculated and the superficial velocities for the
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test rig determined. The calculated velocities are shown in Table 4-1. The value 

derived from the values presented in Chapter 3 is the quantity o f air to cool a compost 

of density 370kgm'3 composting at a rate of 40 gCC^kgVS'May'1. This is a relatively 

high rate but the quantity of air required is still the lowest given. It should be noted 

that these velocities would apply to any system as they are the result o f dividing a 

volumetric flow rate by an area.

Table 4-1. Superficial velocities calculated for the pressure test rig

Source Suggested Airflow 
rate

Total airflow rate, 
m s

Superficial velocity 
through test rig, m s'1

Rynk (1992) SxlO ^m V kg dry'1 4.4x10''’ 0.028

Haug (1993) 4.6xlO",m V lkg dry'1 4.1xl0'2 0.255

Keener et al (1997) 3.1xiO'5m V k g '‘ 5.5x10'3 0.034

Chapter 3 1.85xl0'3m3s '1m':j 8.8x10'" 0.006

4.5 Method

To allow measurement o f the static pressure required to blow air through the compost 

a pressure test rig was constructed. The column was constructed from ground 

drainage pipe with an internal diameter of450mm. The test rig was 3 metres high 

with static taps at 500mm intervals. Photographs of the rig are shown in Figure 4.3, 

whilst full drawings are in Appendix B. At the base a plenum received the air from a 

fan and the compost was supported on a mesh surface above the plenum. Initially a 

sliding control valve was used to regulate the airflow through the compost by 

releasing some of the air from the system. The velocity in the feed pipe was initially 

recorded using a hot wire anemometer (Testo 425). Both the hot wire anemometer and 

sliding control valve were later replaced with a Rotameter and a gate valve allowing 

direct recording of volumetric flow rate and finer flow control.

The compost was manually loaded into the column and the plenum was connected to 

the fan. The plenum pressurised due to the resistance of the compost. The static
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pressure was recorded at half metre intervals using a U-tube manometer. The airflow 

rate was then adjusted to give a different superficial velocity and the static pressure 

readings were repeated for the new flow rate once the flow had settled.

Measurements were also taken for compost that had been allowed to settle in the 

vessel. The distance through which it had settled from the top of the column was 

measured at 4 points and an average taken. This was then combined with the weight 

from the scales to give a new density for the material. The vessel was emptied by 

hoisting the column upwards from the plenum and allowing the compost to slide out 

of the bottom of the column.

Static taps at half 
metre intervals

Plenum

Figure 4.3. Photographs of the static pressure test rig on top of the weigh platform

4.6 Results

The first test using the rig was performed on the 4th of June 2003. The rig was filled 

with freshly shredded material which appeared to be very fibrous. The particle size 

distribution for this material is given in Table 4-2. The moisture content of the 

material was analysed and found to be 51% (w.b.) whilst the density of the material 

was found to be 370kgm'3. Using the method described in Section 4.3.1 the proportion 

of free air space can be calculated as approximately 72%. The static pressure plotted 

against both superficial velocity and the depth of the compost bed are shown in

Air inlet to plenum
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Figure 4.4. Static pressure against superficial velocity for the test on 04/06/03
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Figure 4.5. Static pressure against depth for the test on 04/06/03
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Figures 4.4 and 4.5 respectively. Figure 4.4 shows a linear relationship between the 

static pressure and the superficial velocity, it was expected that the flow through the 

material would be turbulent. The relationship between the static pressure and the 

depth shown in Figure 4.5 does show a close fit to a quadratic relationship. This 

suggests that the compression of the compost under its own weight caused a non 

constant variation o f pressure with bed depth. The highest pressure recorded was 

152mmH20 at a bed depth of 3 metres and a superficial velocity of 0.148ms'1.

Table 4-2. Particle size distribution of the shredded material on 04/06/03

Mesh size, mm Weight retained, % Cumulative, %

0 (Pan) 1.0 1.0

0.5 2.9 3.9

1 4.8 8.6

1.4 16.1 24.7

2.8 13.6 38.3

5.6 7.1 45.4

8 5.9 51.4

16 48.6 100.0

The next test was performed on the 2nd of July 2003, this time the rig was filled with 

166.5 kilograms of material that had been composting for approximately 1 week. The 

density of this material was found to be 349kgm'3. A particle size distribution was 

performed and this is shown in Table 4-3, the moisture content was found to be 45% 

(w.b.). For this trial a weight of 17.5 kg was applied via a board on the top of the 

vessel for a period of 3 minutes to see what effect this would have.

The pressure measurements were repeated after 1 hour of further settling and no 

difference was found between these and the results recorded on filling. The material 

was then left in the vessel for a further week before the static pressure was measured 

again. During that week the height of the compost had reduced by 0.13 metres and the 

weight of the compost had reduced by 3kg. The new bulk density of the material was 

362 kgm*3. The graphs of static pressure against superficial velocity and depth for the 

filling material are shown in Figures 4.6 and 4.7 whilst Figure 4.8 shows the data after
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Figure 4.6. Static pressure against superficial velocity for composted material on 02/07/03
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Figure 4.7. Static pressure against depth for composted material on 02/07/03
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Figure 4.8. Static pressure against depth for composted material after 1 week settling on 
09/07/03

the one week settling period plotted as static pressure against depth. However, during 

the testing of the settled material the hot-wire anemometer used to record velocity in 

the air feed pipe was damaged meaning that only one velocity was accurately 

recorded. The accurately recorded velocity corresponds to the closed valve position 

and gives a superficial velocity of 0.141ms'1.

Table 4-3. Particle size distribution of the shredded material on 02/07/03

Mesh size, mm Weight retained, % Cumulative, %

0 (Pan) 17.2 17.2

0.5 16.3 33.5

1 15.3 48.9

1.4 14.4 63.2

2.8 12.1 75.3

5.6 9.4 84.7

8 8.2 92.9

16 7.1 100.0
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Figure 4.6 shows that during this trial the static pressure had a strong relationship with 

the square of the velocity, though the velocities used in this test were similar to those 

in the previous trial. Figure 4.7 shows a strongly linear relationship with the depth of 

the material suggesting that the density throughout the depth of the bed was constant. 

This linear relationship between static pressure and depth is also seen in Figure 4.8 

where the material had been allowed to settle for a week. The maximum static 

pressure has increased from 135mmH20 at the 3 metre depth with a superficial 

velocity of 0.162 ms'1 to 142 m mfkO at a depth of 2.84 metres and a lower 

superficial velocity of 0.141ms'1. The 50th percentile particle size for this case was 

much smaller than for the freshly shredded material at approximately 1.5mm.

The rig was filled on the 18th of November 2003 with 175 kilograms of freshly 

shredded material. The bulk density o f this material was calculated as 366.8 kgm* . As 

with the first trial this was close to the assumed value used to estimate flow rates in 

Section 4.4. A particle size distribution o f the material was taken and is shown in 

Table 4-4. The results for the static pressures plotted against superficial velocity and 

bed depth for the fresh material are shown in Figures 4.9 and 4.10. The compost was 

then allowed to settle for 6 days. After the settling period the depth of the compost 

bed had decreased by 0.43 metres and 1 kilogram of mass had been lost. The post 

settling density o f the material had increased to 428kgm*1. Pressure measurements 

were taken for the settled material and these are shown in Figures 4.11 and 4.12.

Table 4-4. Particle size distribution o f the freshly shredded material on the 18/11/03

Mesh size, mm Weight retained, % Cumulative, %

0 (Pan) 0.2 0.2

0.5 0.7 0.9

1 2.2 3.1

1.4 15.1 18.2

2.8 22.6 40.8

5.6 11.5 52.3

8 15.3 67.6

16 32.4 100.0
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Figure 4.9. Static pressure against superficial velocity for the freshly shredded material on 
18/11/03
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Figure 4.10. Static pressure against depth for the freshly shredded material on 18/11/03
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Figure 4.11. Static pressure against superficial velocity after 6 days settling
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Figure 4.12. Static pressure against depth after 6 days settling
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The linear nature of the graphs shown in Figures 4.10 and 4.12 for the plots o f static 

pressure against depth indicate that the material was compressed evenly during this 

experiment. The implication of this is that the density is constant all o f the way 

through the column and that free air space is distributed evenly throughout the 

column. The plots shown in Figures 4.9 and 4.11 however show strong quadratic 

relationships between the static pressure and the superficial velocity implying that 

turbulent flow was occurring through the material. Slightly higher velocities were 

used during this trial than the previous tests which would contribute towards this flow 

regime. As with the other trials high R2 values for the trend lines were recorded both 

on filling and after a 6 day settling period for the plots of static pressure against depth.

The Animal By-Products Order allows compost with a particle size of less than 12mm 

to be treated at 70°C for a period of one hour. This allows for a rapid sanitisation of 

the waste. However, this relatively small maximum particle size may cause significant 

increases in static pressure requirements and hence cost. The Ergun equation 

presented in Chapter 2 suggests that the required static pressure will increase as the 

nominal particle size decreases. Because o f this the next trial was performed using 

finished compost which had been screened to 10mm using a Seko screen. The 

material was loaded into the test rig on the 17/12/03. A particle size distribution was 

taken which is shown in Table 4-5. The rig was filled with 341kg of shredded material 

giving a density of 893.4kgm'3; more than twice that of the freshly shredded material 

used in earlier trials. The material was allowed to settle for approximately 5 weeks by 

which time its density had increased to 918.2kgm‘3. The moisture content of this 

material was found to be 52%(d.b.). The free air space within the material was much 

lower than for the freshly shredded material, on filling it was calculated to be 32.6% 

and after settling 29.7%.

Figure 4.13 shows the static pressure plotted against superficial velocity for the 

screened compost whilst the plot of static pressure against depth is shown in Figure 

4.14. The superficial velocities shown in Figure 4.13 are approximately one order of 

magnitude lower than those shown in Figures 4.4,4.6,4.9 and 4.11, but the recorded 

static pressures are comparable as those previously recorded. The trend lines shown in 

Figure 4.13 are also strongly quadratic, as are those in Figure 4.14 implying an 

uneven distribution of resistance with depth. The post settling data are shown in
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Figure 4.15. Static pressure against superficial velocity for the screened compost after settling
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Figure 4.16. Static pressure against depth for the screened compost after settling
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Figures 4.15 and 4.16. Unfortunately fewer data were recorded as the fan was 

struggling to provide air to the test rig and the flow was becoming unstable.

Table 4-5. Particle size distribution of the finished screened compost on the 17/12/03

Mesh size, mm Weight retained, % Cumulative, %

0 (Pan) 0.1 0.1

0.5 0.0 0.1

1 0.1 0.2

1.4 3.7 3.9

2.8 24.7 28.7

5.6 24.5 53.2

8 44.7 98.0

16 2.0 100.0

Table 4-6. Particle size distribution of the freshly shredded compost on the 21/01/04

Mesh size, mm Weight retained, % Cumulative, %

0 (Pan) 9.2 9.2

0.5 11.0 20.0

1 10.4 30.5

1.4 13.6 44.1

2.8 9.8 53.9

5.6 4.7 58.6

8 41.4 100.0

16 0 100.0

On the 21st of January 2004 the vessel was filled with 179.5 kg of freshly shredded 

green waste. As with previous trials once the initial measurements had been taken the 

material was allowed to settle in the column for a period of two weeks. The initial 

bulk density of this material was 376.2kgm‘3 after settling this had increased to 

393.9kgm'3. A particle size distribution of the material was taken and this is shown in 

Table 4-6, the 50th percentile particle size was approximately 4.2 mm.
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Figure 4.17. Static pressure against depth for the material shredded on 21/01/04
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Figure 4.18. Static pressure against superficial velocity for the material shredded on 21/01/04
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Figure 4.19. Static pressure against depth for the material shredded on 21/01/04 after 2 weeks 
settling
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Figure 4.20. Static pressure against superficial velocity for the material shredded on 21/01/04 
after 2 weeks settling
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Figure 4.21. Static pressure against depth for the mixture of factory and green waste
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Figure 4.22. Static pressure against superficial velocity for the mixture of factory and green 
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Figures 4.17 and 4.18 show plots of static pressure against depth and superficial 

velocity respectively for the freshly shredded material. The data for the material after 

the two week settling period are shown in Figures 4.19 and 4.20. For this material the 

relationships between static pressure and both superficial velocity and bed depth are 

quadratic. This implies turbulent flow through the material and a non-uniform 

distribution of density/free air space through the column.

To investigate the composting of catering wastes, factory waste consisting of garlic 

and onion peelings was mixed with green waste in a ratio of 1:2 by volume. This 

mixture was fed into the composting vessel used in Chapter 6 as well as a bay system 

(Hewings et al., 2004). The pressure test rig was also filled with this mixture and 

Figures 4.21 and 4.22 show the data for static pressure against depth and superficial 

velocity respectively. This material had a bulk density of 458.9 kgm'3, almost 50% 

higher than for the green waste on its own. The data for the mixture of factory waste 

and green waste also shows quadratic relationships between static pressure and both 

the bed depth and superficial velocity.

4.7 Analysis and fitting to models

Many of the results shown in Figures 4.4 to 4.22 fit either a quadratic or linear 

relationship to a great degree of accuracy. For tests with superficial velocities below 

approximately 0.15 ms’1, such as those shown in Figures 4.4 and 4.13, a linear trend 

line appears to fit the data more accurately than a quadratic relationship when static 

pressure is plotted against superficial velocity. A linear relationship between static 

pressure and superficial velocity is an indicator of laminar flow whilst a quadratic 

relationship is a strong indicator of turbulent flow. Above superficial velocities of 

0.15 ms'1 a quadratic curve appears to provide a better fit for the data. Equation 4.12 

used the exponent, b, to reflect this information. It is likely that some pores will be 

experiencing laminar flow and others turbulent flow due to the dimensions of the 

pore. This will cause exponent b in equation 4.12 to vary between 1 and 2 during the 

transitional phase until full turbulent flow is achieved. Barrington et a l (2002) reports
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laminar flow through grains for superficial velocities of up to 0.02 ms’1 with fully 

turbulent flow occurring at superficial velocities of over 1 ms'1.

In the data shown in Figures 4.5, 4.14,4.17,4.19 and 4.21 the plots of static pressure 

against depth give quadratic relationships whilst the other tests give linear 

relationships. Where the relationship between static pressure and depth is linear this 

suggests that the material compresses uniformly implying a uniform distribution of 

free air space throughout the column. In Equation 4.12 this is represented by 

exponent, a. If a is equal to 1 then the material has not been compressed, whilst if 

values of greater than 1 are recorded then compression has occured. This is essentially 

an indication of the bulk modulus o f the material. Keener et al. (1993) demonstrated 

that exponent a, has a value o f 1 for composts with a moisture content of up to 

60%(w.b.), whilst Das and Keener (1997) showed that free air space through the pile 

decreased with pile depth for moisture contents as low as 42.8%(w.b.).

The screened material, shown in Figures 4.14 and 4.16, was considerably denser than 

the shredded green waste used for the majority of the other tests. Figure 4.14 and 4.16 

show that the static pressure increased quadratically with increasing depth. This 

implies that the material compressed non uniformly under its own weight meaning 

that the compost at the base o f the column had less free air space, as observed by Das 

and Keener (1997). To show this increased resistance to aeration in the screened 

waste a comparison with freshly shredded waste is presented in Figure 4.23. The 

density of the freshly shredded waste was 366.8 kgm’3 whilst the screened waste had a 

density of 893.4 kgm’3.

Both curves shown in Figure 4.23 are quadratic-indicating turbulent flow for both 

cases. However, the denser screened material gives far greater static pressures even 

though the column is slightly less deep than for the shredded material. In addition the 

denser material may well have greater quantities of volatile solids per cubic metre 

than the less dense material. The aeration requirements presented in Chapter 3 are a 

function of both composting rate and density. Because of this the increased density 

would require a higher superficial velocity which would cause an increase in the 

required static pressure. This would have a significant effect on both the equipment 

used to supply the air and the running costs of the equipment.
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As discussed in Chapter 2 the particle size distribution has an effect on the bulk 

density. The European treatment regime for sanitisation of Animal By-Products 

requires a maximum particle size of 12mm, although this is slightly larger than the 

screened size of 10mm it will have a significant effect on the bulk density and the 

available surface area dramatically increasing the power requirement for any fans on 

site. The effect of reduced particle size is also seen in Chapter 5 where the addition of 

chicken litter significantly increases the density of shredded green waste and reduces 

the airflow within the windrow. Figure 4.2 shows the relationship between free air 

space and bulk density for changing moisture content and this is reinforced by Agnew 

and Leonard (2003). The Ergun equation, Equation 2.1, shows static pressure as being 

a function of both the particle size and the free air space. As both affect the bulk 

density it is reasonable to attempt to plot the static pressure as a function of the 

composts' bulk density.

120

100

♦ Screened, 2.4 meter depth 
■ Shredded, 2.5 meter depth

y = 62942x2 + 4279 8x 
R2 = 0.9966

60

40

20

0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700

Superficial Velocity, ms'1

Figure 4.23. Comparison of static pressure required to aerate freshly shredded material and 
compost screened to a 10mm particle size

Microsoft Excel was used to both create and analyse the trend lines shown in Figures 

4.4 to 4.22. Initially the equations relating static pressure and superficial velocity for a 

depth of 3 metres were found. The calculations from Chapter 3 allow reasonable flow
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Figure 4.24. Static pressures for a variety of superficial velocities plotted against bulk density 
for a bed depth of 3 metres
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Figure 4.25. Static pressures for a variety of superficial velocities plotted against bulk density 
for a bed depth of 3 meters including data from Mu and Leonard (1999) and Giner and 
Denisienia (1996)
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rates to be calculated. For a compost with a density o f400 kgm'3 composting at a rate 

of 30 gC02kgVS'1day'1 approximately 3x10"3 m3s'1m*3 of air needs to be supplied, 

this value is taken from Figure 3.15. The column contains approximately 0.48 m3 so 

the total air supply is 1.43x1 O'3 m3s'1, which gives a superficial velocity of 

approximately 0.01 m s'1. Superficial velocities of 0.005,0.01 and 0.02 m s'1 were fed 

into the equations regressed from the trend lines. Where the compost had settled, 

allowances were made for depth by factoring in the equations relating static pressure 

to depth, this was relatively simple where the relationship was linear but more 

complex where the material had not compressed uniformly. The plot of static pressure 

against bulk density is shown in Figure 4.24.

4.8 Discussion

The majority o f the relationships between the static pressure and the superficial 

velocity fitted a quadratic model very closely. One exception to this was the material 

loaded into the vessel on 04/06/03 shown in Figure 4.4. This material had a relatively 

low moisture content. This would have meant that the void spaces within the compost 

may have been relatively clear, giving less impedance to the flow of air through the 

bed of compost. Apart from the trial using screened compost the superficial velocities 

used for this test were some of the lowest tested which would also have lead to a less 

turbulent flow. In addition to this the 50th percentile particle size was also quite large 

for this material being approximately 15mm-this was mainly due to the fibrous nature 

of the feedstock used. The Ergun equation discussed in Chapter 2 infers that the 

increased particle size would lead to a reduced pressure requirement to drive airflow 

through compost.

The relationships between the static pressure and the bed depth generally gave a 

closer fit to a quadratic relationship than a linear one. The implication of this is that 

the material towards the base of the compost column had a reduced free air space than 

the material at the top of the column. This indicates an increase in the density of the 

compost at the base as the material settles under its own weight.
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A smaller particle size within the compost gives a larger total surface area within the 

bed. The larger surface area causes increased levels of friction. The freshly shredded 

material used to fill the vessel on the 18th of November, shown in Figures 4.9 and

4.10, gave relatively low static pressures in comparison to the freshly shredded 

material used on the 4th of June 2003 (Figures 4.4 and 4.5). For example the static 

pressure induced by a 3 metre column of compost at a superficial velocity of 

approximately 0.15ms’1 was 142mmH20 in Figure 4.4 and 50mmH2O in Figure 4.9. 

The densities of these materials are very similar at 370kgm’ and 366.8kgm’ . The 

significant difference in the static pressures could be due to the reduced proportion of 

fine material in this batch. Approximately 3.1% of the material used on the 18th of 

November was retained in the 1mm sieve or smaller in size whilst the material 

shredded on 04/06/03 had 8.6% retained in the 1 mm sieve or smaller. The results 

shown in Figures 4.17 and 4.18 further reinforce the importance of particle size.

These show the static pressures for a material with 30.5% of the weight retained in the 

1mm sieve or smaller. The static pressure recorded for a 3 metre column of this 

material was 73mmH20 at a much lower superficial velocity o f 0.01ms’1.

The screened waste trial produced very high static pressures for relatively low 

superficial velocities. For example 119 mmH20 for a 2.4 metre column at a 

superficial velocity of 0.021ms’1this is compared to a 2.5 metre column of shredded 

waste in Figure 4.23. The reduced particle size had the effect of increasing the bulk 

density to over twice that of the freshly shredded composts. The reduced particle size 

dramatically increased the bulk density and greatly reduced the free air space. The 

increase in static pressure requirements for increased quantities of fine material is in 

agreement with the work carried out by Ergun (1952) and McGurkin et al. (1999) as 

well as with the work on grains performed by Giner and Denisiena (1996).

It is important to consider the cost implications of design. If the wrong power of fan is 

sourced at the construction stage replacement with a more powerful fan can be costly, 

alternatively over specification may cause unnecessary expense at an early stage. It 

may also be likely that the equipment will not be operating at its most efficient duty 

point. Running costs may also be an important issue. A column of compost 3 metres
3 1high with a bulk density of400kgm would require a superficial velocity o f 0.01ms' , 

Figure 4.24 shows that this air would need to be supplied at a static pressure of
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approximately 10 mmHzO. For a compost of density 800 kgm'3 a greater quantity of 

air would be required. Figure 3.15 states that 6><1 O'3 m3s*1m'3 of air would be required 

for the denser compost to allow a composting rate of 30 gCC^kgVS^day'1- this gives 

a superficial velocity of 0.02 ms'1. Figure 4.24 shows that a static pressure of 

approximately 100 mmtLO would be required to supply this air. As fan power is a 

function of both flow rate and static pressure it can be determined that the denser 

compost would require approximately 40 times the energy to aerate than the less 

dense compost. This increase in power may cause problems with sites that have 

chosen to use the 12mm treatment profile to ensure sanitisation of the compost.

The figures recorded for static pressure were similar to those found by other 

researchers. For example Sadaka et al. (2002) recorded a pressure drop of 

approximately 45m m H 20ata  depth of 1.5 metres and superficial velocity of 

0.143 ms'1. Figure 4.7 shows at a depth of 1.5 m and superficial velocity of 0.149 ms'1 

a static pressure of 36 m m ltO  was recorded. The material used by Sadaka et al 

(2002) had a slightly higher bulk density o f 387kgm'3 rather that 349 kgm'3 for the 

material shown in Figure 4.7 which may explain the higher static pressures.

The graph shown in Figures 4.24 shows the variation in static pressures for a 3 metre 

column of compost with the compost’s bulk density. The data points were calculated 

using the trend lines from figures 4.2 to 4.22. There is a quadratic relationship 

between the static pressures and the bulk density. In Figure 4.25 further data from 

models presented by Mu and Leonard (1999) and Giner and Denisienia (1996) have 

been added. The majority of the added data were in a range not covered by the tests 

performed at the CERT composting facility in Carmarthen. The data further reinforce 

the quadratic relationship and only slightly modify the trend lines. The Ergun 

equation includes terms for the particle size and the proportion of free air space. As 

these parameters change the bulk density of the material will be affected. The bulk 

density of a material is relatively easy to determine and as was seen in Chapter 3 will 

affect the actual quantity of aeration required by the composting process. Because of 

the ease of determination it is an ideal parameter for compost practitioners and facility 

designers to use for calculating aeration requirements.
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4.9 Conclusions

Decreased particle size and increased bulk density increase the required static 

pressures.

The bulk density of compost appears to have a large affect on the airflow resistance 

and cost of aeration.

An allowance should be made at the design stage of composting equipment for the 

compaction of the compost.

An understanding o f the physical properties of the feedstock at an early stage will 

allow fairly accurate design of composting equipment, this may reduce refitting or 

initial costs.

There are certain cases where a laminar model for static pressure against superficial 

velocity appears to give the best fit, however generally turbulent flow models were 

more accurate.
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5 Windrow Composting Trials

5.1 The CERT Composting Facility

The Carmarthenshire Environmental Resources Trust (CERT) composting facility 

was originally constructed as a research facility for the composting of green waste in 

windrows. The site layout is shown in Figure 5.1. It consists of a large concrete pad 

with a covered area (C) approximately 50 metres long by 30 metres wide. The site 

was equipped with a Seko 600/200 tractor driven shredder, a Menart SP4000 tractor 

powered windrow turner, a Menart screen and two tractors-one with a front end 

loader. Photographs o f these are shown in Figure 5.2. The building was capable of 

housing 4 windrows which were approximately 1.7 metres high, 4 metres wide and 50 

metres long.

Using the equipment shown in Figure 5.2 the building was capable of holding 4 

windrows. In order to meet the quality assurance aspect of BSI PAS 100 (2002) each 

of the 4 locations for a windrow within a building was given a number. Each 

consecutive windrow was given a letter, for example the first windrow in position 1 

was called W1A and the second was W1B. This allowed various batches to be 

recognised and traced from material delivered to product sold. The same designation 

is used for the green waste windrows described in Section 5.3.

5.2 The Composting Rate

Often with much of composting the only parameter being measured is the temperature 

but this however is highly dependant upon not only the quantities of heat being 

produced but also the heat being lost by the compost as was discussed in Chapter 3. It 

therefore may be the case that temperature is not a good indicator of the composting 

activity and it is important to find an appropriate measure of the activity. This would 

also allow comparison between different techniques and methods allowing optimum 

conditions to be found.
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Figure 5.2. The composting equipment used on the CERT composting facility (Clockwise 
from top left: The Menart trommel screen, the Menart windrow turner in action, the Seko shredder 
unloading freshly shredded material and the shredder from the side)

The production of compost from a feedstock is a process that takes in the organic 

matter, combines with oxygen and produces carbon dioxide, water and stabilised 

biomass as shown by the schematic in Figure 5.3.

Stabilised
compostOrganic

Waste
Composting
System Water

Oxygen
Carbon
dioxide

Figure 5.3. Schematic of the composting process, showing main inputs and outputs
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By measuring one of these parameters the rate at which the material is composting 

can be quantified. The simplest of all of these to measure is either the rate at which 

oxygen is utilised or the rate at which carbon dioxide is produced. It is not a new 

concept to use these two parameters as an indicator of composting activity as they are 

often used in small scale stability tests such as those discussed in Chapter 2. However, 

to the knowledge of the author they have not been used in-situ to monitor the reaction 

rate of the composting material.

By monitoring the quantity of carbon dioxide in the exhaust air leaving the 

composting system and combining this with the air temperature and the volumetric 

flow rate the rate o f production of carbon dioxide can be found. It is then useful to 

base this on the mass of volatile solids present within the composting mass as this is 

the fraction that is being stabilised, the result is a rate measured in grams of carbon 

dioxide evolved per kilogram of initial volatile solids per day or g CO2 kgVS'1 day'1.

5.2.1 The Canopy System

The canopy system was developed in order to monitor the composting rate. Initial 

trials were carried out simply by using a tarpaulin stretched over several planks of 

wood which were supported by the windrow. A length of 110mm soil pipe was used 

as a chimney. The velocity, temperature and carbon dioxide concentration of the gas 

exiting through the chimney were recorded. A photograph of one of the initial trials 

can be seen in Figure 5.4.

From this starting point a canopy was designed and constructed from wood, using 

50mm x 50mm timbers for the frame, it was skinned on the inside with chipboard and 

the ends were made from 25mm plywood. A photograph of the canopy is shown in 

Figure 5.5. whilst design drawings are shown in Appendix C. Equipment capable of 

giving an appropriate resolution as well as giving an output that could be connected to 

a data logger was sourced. To record the velocity of the gas a hot film anemometer 

(E+E Electronik series EE65 or EE66) was mounted in the centre of the chimney. A 

thermistor (RS 813-828) was mounted in the chimney to record the temperature of the
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gas. Both the anemometer and thermistor were connected to a data logger (Delta T, 

DL2e) as was a type k thermocouple probe which was inserted into the core of the 

compost windrow to monitor the core temperature. The carbon dioxide concentration 

was measured using a separate meter with inbuilt logging capacity (Gas Data PCO2). 

The data were then downloaded to a laptop computer for off line analysis using an 

RS232 serial connection and Delta T’s Ls2win software.

Figure 5.4. A photograph of the tarpaulin with equipment for monitoring gas velocity, 
temperature and carbon dioxide concentration in the foreground

—  1

_ , -  _t; X J % - V, J

" S '

Figure 5.5. A photograph of the completed canopy system
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5.2.2 Analysis of Data

The data recorded by the carbon dioxide meter and the logger were downloaded and 

fed into an Excel spreadsheet. The rate of carbon dioxide release is calculated by

P x U x A x A E rniM CO 2 = ---------------------------
Rc 0 2 x Tg x 100 x 1000

(5.1)

where P is the atmospheric pressure 101325 Pa,

U is the mean velocity of gas through the chimney in m/s,

A is the cross sectional area of the chimney 8.22x1 O'3m2,

AEco2  is the change in concentration of carbon dioxide in %v/v (between inlet 

and outlet),

R c o 2 is the specific gas constant for carbon dioxide 188.96 Nm/kg K,

Tg is the temperature of the gas being released in Kelvin,

100 is used to convert the percentage of carbon dioxide to a concentration and 

1000 converts from kilograms to grams

Equation 5.1 can be simply derived. First the volumetric flow rate through the 

chimney is calculated using the cross sectional area and the mean velocity. Turbulent 

flow is assumed through the chimney meaning that the mean velocity is equal to 0.82 

multiplied by the maximum (centreline) velocity (Massy, 1989). The volumetric flow 

rate of carbon dioxide is then found by multiplying by the carbon dioxide 

concentration. The volumetric flow rate of carbon dioxide is converted into a mass 

flow rate by use of the perfect gas equation which gives temperature correction.

The mass of volatile solids present within the compost is determined in accordance 

with British Standards BS EN 13040:2000 and BS EN 13039:2000 (BSI, 2000b; 

2000c). Generally the initial volatile solids content of the green waste was found to be 

in the range of 50-70% (d.b.). The spreadsheet was capable of reducing the volatile 

solids content remaining in the material as carbon dioxide left the windrow. The 

spreadsheet can also be used to determine the enthalpy and specific volume of the 

inlet and outlet air allowing heat lost via the air flow through the windrow to be 

calculated.
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It is important to take into account the measurement errors encountered to give an 

indication of the accuracy of the results. The respiration rate is calculated by 

combining the gas velocity, temperature and carbon dioxide content with the mass of 

volatiles solids underneath the canopy. The usage of high resistance thermistors for 

the ambient and flue temperatures allows the minimisation of errors due to cable 

resistance. The thermistors used had a negative temperature coefficient meaning the 

resistance fell with increasing temperature, their resistance was 10 k£2 at 25°C with an 

accuracy of ±0.5°C. To measure the core temperature a type k thermocouple was 

used. A thermocouple gives a voltage output proportional to the difference in 

temperature between its hot and cold junctions and in order to ensure accuracy of this 

measurement a reliable cold junction is required. For these measurements the data 

logger’s internal cold junction was used. The error of the hot film anemometer used to 

measure the gas velocity was ±0.3ms_1 or ±3% of the value; the anemometer was 

designed to allow for misalignment of up to 20 degrees. The thermistors, 

thermocouple and anemometer were all connected to the data logger for testing and 

calibration. The carbon dioxide meter was a separate unit capable of logging data, the 

accuracy of the meter was ±2% of full scale. Variations in static pressure occur 

throughout the day and these will have an effect on Equation 5.1. However these 

variations are unlikely to exceed 3%.

In order to analyse the large amount o f data that were collected during the monitoring 

of the windrows some of the shorter sampling periods were averaged together to give 

a value with less noise than the raw data. It was of interest to test whether two 

variables were related; to do this the correlation between different variables was 

calculated and used for comparison. The correlation coefficient is the covariance of 

two series divided by the product of the standard deviations of the two data sets. It 

indicates the strength of a linear relationship between the two variables in question 

and is calculated by,

P x y = — ---------------------------------------

(5.2 (after Bendat and Piersol, 1971))

where jix is the mean value of data set x,

\iy is the mean value of data set y,
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pxy is the correlation coefficient between data set x and data set y, 

ox is the standard deviation of data set x, 

oy is the standard deviation of data set y and 

Xj and yj are data within the data sets.

A negative value indicates that as one variable rises the other will fall, whilst a 

positive value means that the two series move together. The absolute value of a 

correlation coefficient cannot exceed 1.

5.3 Green Waste Windrows

5.3.1 Introduction

In order to get a standard for comparison with other waste types and treatment 

processes several windrows constructed o f green waste as described in Section

5.1 were m onitored using the canopy system as described in Section 5.2.1. The 

green waste used came from civic amenity sites in the Carmarthenshire area.

5.3.2 Results

Although a large number of windrows were monitored the most coherent data are for 

two windrows in particular, windrow W1I and windrow W2F. The results for each of 

these windrows are presented in individual sections below. Much of the other data 

that were recorded consist of either only carbon dioxide measurements or were 

subject to equipment failure. Although the monitoring of any system is likely to 

interfere with the behaviour of the system, the daily monitoring required on site 

showed core temperatures beneath the canopy to be similar to the rest of the windrow. 

The canopy was also moved along the windrow showed similar behaviour at several 

points of the windrow.

5.3.2.1 Windrow W11

Windrow W1I was constructed using the green waste that was delivered to the 

composting site between the 3rd and 10th of October 2002 and was monitored from the
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1 8 th  o f  O c t o b e r ,  w h e n  t h e  w i n d r o w  w a s  a p p r o x i m a t e l y  1 w e e k  o l d ,  u n t i l  t h e  2 9 th  o f  

N o v e m b e r .  I t  w a s  t u r n e d  o n  t h e  2 3 rd  o f  O c t o b e r ,  t h e  3 0 th  o f  O c t o b e r ,  1 2 th  o f  

N o v e m b e r ,  t h e  2 0 th  o f  N o v e m b e r  a n d  t h e  2 7 th  o f  N o v e m b e r ,  c r e a t i n g  6  p e r i o d s  

b e t w e e n  t u r n i n g  e v e n t s .  A s  t h e  w i n d r o w  w a s  a l r e a d y  o n e  w e e k  o l d  w h e n  t h e  

m o n i t o r i n g  p e r i o d  h a d  s t a r t e d  t h e  c o r e  h a d  a l r e a d y  h e a t e d  u p  a n d  w a s  a b o v e  6 0 ° C  f o r  

m o s t  o f  t h e  t i m e  i t  w a s  m o n i t o r e d .  T h e  d a t a  f o r  t h e  m o n i t o r i n g  p h a s e  w e r e  r e c o r d e d  a t  

f i v e  m i n u t e  i n t e r v a l s  a n d  a s  s u c h  c o n t a i n e d  a  l a r g e  q u a n t i t y  o f  n o i s e  a n d  i n  o r d e r  t o  

f i l t e r  o u t  s o m e  o f  t h i s  n o i s e ,  2 5  m i n u t e  a v e r a g e s  h a v e  b e e n  t a k e n  a n d  a r e  p r e s e n t e d  i n  

t h e  f o l l o w i n g  f i g u r e s .

F i g u r e  5 . 6  s h o w s  t h e  d a t a  r e c o r d e d  d u r i n g  P e r i o d  1 f o r  w i n d r o w  W 1 I ,  b e t w e e n  t h e  

1 8 th  a n d  2 3 rd  o f  O c t o b e r  2 0 0 2 .  D u r i n g  t h i s  p e r i o d  t h e  a i r s p e e d  t h r o u g h  t h e  f l u e  v a r i e d  

b e t w e e n  0 . 8 9  a n d  1 . 8 3  m s ' 1 w h i l s t  t h e  C O 2 c o n t e n t  o f  t h e  e x h a u s t  g a s  v a r i e d  b e t w e e n  

0 . 5 4  a n d  1 . 3 8  p e r c e n t  c a u s i n g  t h e  c o m p o s t i n g  r a t e  t o  v a r y  b e t w e e n  7 . 9  a n d  3 7 . 8  g  

C O 2 k g  V S ' 1 d a y ' 1 . T h i s  i s  a  l a r g e  r a n g e  a n d  g r e a t e r  t h a n  t h e  r a n g e  f o r  e i t h e r  t h e  

a i r s p e e d  o r  C O 2 c o n t e n t  a l o n e .  D u r i n g  t h i s  p e r i o d  t h e  c o r e  t e m p e r a t u r e  e x p e r i e n c e s  a  

g e n e r a l l y  u p w a r d s  t r e n d  u n t i l  a p p r o x i m a t e l y  m i d d a y  o n  t h e  2 2 n d  o f  O c t o b e r  w h e n  

t h e r e  i s  a  s m a l l  s h a r p  i n c r e a s e  f o l l o w e d  b y  a  l a r g e r  f a l l .  T h i s  r i s e  a n d  f a l l  i n  t h e  c o r e  

t e m p e r a t u r e  c o i n c i d e s  w i t h  a n  i n c r e a s e  i n  t h e  C O 2 c o n c e n t r a t i o n  o b s e r v e d  i n  t h e  

c h i m n e y  a n d  s o m e  e r r a t i c  b e h a v i o u r  i n  t h e  r e a d i n g s  f r o m  t h e  h o t  w i r e  a n e m o m e t e r  

( w h i c h  h a s  j u s t  s u f f e r e d  a  b r e a k d o w n ) .  T h e  c o m p o s t i n g  r a t e ,  w h i c h  h a d  b e e n  

a p p r o x i m a t e l y  2 0 g C O 2k g V S ' 1d a y ' 1 t h r o u g h o u t  m u c h  o f  t h i s  p e r i o d ,  f e l l  t o  

a p p r o x i m a t e l y  1 2 g C 0 2 k g V S ' 1d a y ' 1 a f t e r  t h i s  b r i e f  r i s e  a n d  f a l l  i n  t h e  c o r e  

t e m p e r a t u r e .  T h e  a i r f l o w  m a y  h a v e  b e e n  i n c r e a s e d  d u e  t o  i n c r e a s e d  c o r e  

t e m p e r a t u r e s ,  s t r o n g  p r e v a i l i n g  w i n d s  o r  w e a t h e r  p r e s s u r e  f r o n t s .  T h e  i n c r e a s e d  

a i r f l o w  c o u l d  h a v e  l e a d  t o  i n c r e a s e d  o x y g e n  a v a i l a b i l i t y  w i t h i n  t h e  w i n d r o w .  B u t  t h e  

h i g h  t e m p e r a t u r e s  e x p e r i e n c e d  m a y  h a v e  h a d  a  d e t r i m e n t a l  e f f e c t  u p o n  t h e  m i c r o b i a l  

p o p u l a t i o n  w i t h i n  t h e  c o m p o s t .  A s  w o u l d  b e  e x p e c t e d  b o t h  a i r f l o w  a n d  C O 2 

c o n c e n t r a t i o n  h a v e  s t r o n g  c o r r e l a t i o n s  w i t h  t h e  r e s p i r a t i o n  r a t e ,  t h e s e  r e t u r n e d  

c o r r e l a t i o n  c o e f f i c i e n t s  o f  0 . 6 5  b e t w e e n  a i r f l o w  a n d  r e s p i r a t i o n  r a t e  a n d  0 . 8 7  b e t w e e n  

C O 2 c o n c e n t r a t i o n  a n d  r e s p i r a t i o n  r a t e .

T h e  a m b i e n t  a n d  f l u e  t e m p e r a t u r e s  a r e  a l s o  s t r o n g l y  c o r r e l a t e d  w i t h  e a c h  o t h e r ,  t h i s  i s  

t o  b e  e x p e c t e d  a s  t h e  d i f f e r e n c e  b e t w e e n  a m b i e n t  a n d  f l u e  t e m p e r a t u r e s  g i v e s  a n
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Figure 5.6. Data recorded from windrow W1I during Period 1
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Figure 5.7. Data recorded from windrow W1I during Period 2
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Windrow Composting Trials

i n d i c a t i o n  o f  t h e  h e a t  t r a n s f e r r e d  f r o m  t h e  w i n d r o w .  T h e  d i f f e r e n c e  b e t w e e n  a m b i e n t  

a n d  f l u e  t e m p e r a t u r e s ,  f r o m  h e r e  o n  k n o w n  a s  t h e  g a s  t e m p e r a t u r e  d i f f e r e n t i a l  o r  

G T D ,  c o r r e l a t e s  s t r o n g l y  w i t h  t h e  C O 2 c o n t e n t  o f  t h e  e x h a u s t  g a s - g i v i n g  a  c o r r e l a t i o n  

c o e f f i c i e n t  o f  0 . 6 1 .  T h e  g a s  t e m p e r a t u r e  d i f f e r e n t i a l  a l s o  s h a r e s  a  s t r o n g  n e g a t i v e  

c o r r e l a t i o n  w i t h  t h e  c o r e  t e m p e r a t u r e ,  r e t u r n i n g  a  c o r r e l a t i o n  c o e f f i c i e n t  o f  - 0 . 5 6  

d e s p i t e  t h e  s t r o n g  p o s i t i v e  c o r r e l a t i o n  c o e f f i c i e n t  b e t w e e n  t h e  f l u e  a n d  c o r e  

t e m p e r a t u r e s  o f  0 . 6 8 .

D e s p i t e  t h e  s t r o n g  r e l a t i o n s h i p s  b e t w e e n  t h e  G T D  a n d  t h e  c o r e  t e m p e r a t u r e  a n d  t h e  

G T D  a n d  C O 2 c o n c e n t r a t i o n ,  t h e r e  i s  n o  d i r e c t  c o r r e l a t i o n  b e t w e e n  t h e  c o r e  

t e m p e r a t u r e  a n d  t h e  C O 2 c o n t e n t  i n  t h e  e x h a u s t  g a s .  T h e s e  t w o  s e r i e s  d o  s h a r e  a  p e a k  

o n  t h e  1 9 th  o f  O c t o b e r  a n d  f r o m  t h e  2 2 n d  o f  O c t o b e r  u n t i l  t h e  e n d  o f  P e r i o d  1 t h e  

c u r v e s  s h a r e  a  s i m i l a r  s h a p e ,  b u t  b e t w e e n  t h e s e  d a t e s  t h e r e  i s  n o  o b v i o u s  r e l a t i o n s h i p .

R e s u l t s  f o r  P e r i o d  2 ,  b e t w e e n  t h e  t u r n i n g s  o n  t h e  2 3 rd  a n d  2 9 th  o f  O c t o b e r ,  a r e  s h o w n  

i n  F i g u r e  5 . 7 .  D u r i n g  t h i s  p e r i o d  t h e r e  w a s  a  b r e a k d o w n  o f  t h e  h o t  f i l m  a n e m o m e t e r ,  

t h e  d a t a  t h a t  w e r e  r e c o r d e d  s h o w  t h e  a i r  s p e e d  v a r y i n g  b e t w e e n  0 . 9 6  a n d  1 . 9 8  m s ' 1 . 

T h e  C O 2 c o n c e n t r a t i o n  o f  t h e  e x h a u s t  g a s  v a r i e d  b e t w e e n  0 . 0 4  a n d  1 . 6 9  p e r c e n t ,  

c a u s i n g  t h e  r e s p i r a t i o n  r a t e  t o  v a r y  b e t w e e n  3 . 3  a n d  3 0 . 6  g  C O 2 k g  V S ' 1 d a y ' 1 . 

H o w e v e r  b e c a u s e  o f  t h e  e q u i p m e n t  f a i l u r e  i t  i s  d i f f i c u l t  t o  b e  e n t i r e l y  a c c u r a t e  a b o u t  

e i t h e r  t h e  a c t u a l  v a l u e  o f  t h e  c o m p o s t i n g  r a t e  o r  t h e  s t r e n g t h  o f  c o r r e l a t i o n  w i t h  e i t h e r  

a i r f l o w  r a t e  o r  C O 2 c o n c e n t r a t i o n .  A t  t h e  s t a r t  o f  t h i s  p e r i o d  t h e  a i r  s p e e d  t h r o u g h  t h e  

c h i m n e y  w a s  a p p r o x i m a t e l y  1 . 2 m s ' 1 t h i s  r o s e  s t e a d i l y  t o  a p p r o x i m a t e l y  2 m s ' 1 . A t  t h e  

s a m e  t i m e  a s  t h e  a i r  f l o w  r a t e  w a s  i n c r e a s i n g  t h e  c o n c e n t r a t i o n  o f  C O 2 w a s  

d e c r e a s i n g .  T h i s  h a d  r i s e n  f r o m  0 . 5 %  p r i o r  t o  t u r n i n g  t o  a p p r o x i m a t e l y  1 . 7 %  

a f t e r w a r d s .  T h e  t u r n i n g  p r o c e s s  w o u l d  h a v e  p r o d u c e d  a n  i n c r e a s e  i n  t h e  f r e e  a i r  s p a c e  

w i t h i n  t h e  c o m p o s t  l e a d i n g  t o  a  l o w e r  r e s i s t a n c e  t o  a i r f l o w .  T u r n i n g  w o u l d  a l s o  h a v e  

r e p l a c e d  t h e  g a s  w i t h i n  t h e  p i l e  w i t h  f r e s h  o x y g e n  r i c h  a i r .  A t  t h e  s t a r t  o f  t h i s  p e r i o d  

t h e  c o r e  t e m p e r a t u r e  i s  l o w e r  t h a n  a t  t h e  e n d  o f  P e r i o d  1 d u e  t o  t h e  m i x i n g  o f  m a t e r i a l  

d u r i n g  t u r n i n g .  T h e  c o r e  t e m p e r a t u r e  r i s e s  t o  n e a r l y  7 0 ° C  w h i c h  c o i n c i d e s  w i t h  t h e  

l o w e s t  C O 2 c o n c e n t r a t i o n  o b s e r v e d  d u r i n g  t h i s  p e r i o d .

A s  i n  P e r i o d  1 t h e  f l u e  a n d  a m b i e n t  t e m p e r a t u r e s  a r e  s t r o n g l y  l i n k e d ,  h a v i n g  a  

c o r r e l a t i o n  c o e f f i c i e n t  o f  0 . 8 0 .  T h e  r e l a t i o n s h i p  b e t w e e n  t h e  G T D  a n d  t h e  C O 2
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c o n t e n t  o f  t h e  e x h a u s t  g a s  i s  a l s o  s t r o n g  d u r i n g  P e r i o d  2 ,  g i v i n g  a  c o r r e l a t i o n  

c o e f f i c i e n t  o f  0 . 7 4 .  A s  i n  P e r i o d  1 t h e  f l u e  a n d  c o r e  t e m p e r a t u r e s  s h a r e  a  s t r o n g  

c o r r e l a t i o n ,  h o w e v e r  u n l i k e  P e r i o d  1 t h e  G T D  a n d  t h e  c o r e  t e m p e r a t u r e  s h o w  n o  

c o r r e l a t i o n .  T h e r e  i s  a  v e r y  w e a k  c o r r e l a t i o n  b e t w e e n  t h e  C O 2 c o n t e n t  o f  t h e  e x h a u s t  

g a s  a n d  t h e  c o r e  t e m p e r a t u r e ,  h o w e v e r  o n  t h e  2 3 r d , 2 6 th  a n d  2 9 th  o f  O c t o b e r  i n c r e a s e s  

i n  t h e  c o r e  t e m p e r a t u r e  w e r e  a c c o m p a n i e d  b y  d e c r e a s e s  i n  t h e  c o n c e n t r a t i o n  o f  C O 2 

a n d  h e n c e  r e s p i r a t i o n  r a t e .  W h e n  t h e  t e m p e r a t u r e  f a l l s  o n  t h e  2 7 th  a n d  2 9 th  t h e  C O 2 

c o n c e n t r a t i o n  i n c r e a s e s  a g a i n .

D a t a  f o r  P e r i o d  3  o f  w i n d r o w  W 1 I  i s  s h o w n  i n  F i g u r e  5 . 8 .  T h e s e  d a t a  w e r e  r e c o r d e d  

b e t w e e n  t h e  3 0 th  o f  O c t o b e r  a n d  1 1 th  o f  N o v e m b e r .  A s  w i t h  t h e  p r e v i o u s  t u r n i n g  e v e n t  

t h e  c o r e  t e m p e r a t u r e  f e l l ,  b u t  r o s e  a g a i n  a n d  w a s  i n  t h e  r a n g e  6 5 ° C  t o  7 0 ° C  f o r  m o s t  o f  

t h i s  p e r i o d .  T h e  C O 2 c o n c e n t r a t i o n  a l s o  r o s e  a f t e r  t u r n i n g  a n d  f e l l  a s  t h e  c o r e  

t e m p e r a t u r e  i n c r e a s e d .  U n l i k e  t h e  p r e v i o u s  t w o  p e r i o d s  t h e r e  i s  a  v e r y  s t r o n g  n e g a t i v e  

c o r r e l a t i o n  b e t w e e n  t h e  c o r e  t e m p e r a t u r e  a n d  t h e  C O 2 c o n c e n t r a t i o n  o f  t h e  e x h a u s t  

g a s  g i v i n g  a  c o r r e l a t i o n  c o e f f i c i e n t  o f  - 0 . 7 9 .  O v e r  t h i s  p e r i o d  t h e  c o r e  t e m p e r a t u r e  

i n c r e a s e d  f r o m  a p p r o x i m a t e l y  5 5 ° C  t o  7 0 ° C ,  b e f o r e  s e t t l i n g  a t  a p p r o x i m a t e l y  6 5 ° C .  

T h i s  c o r r e s p o n d s  w i t h  t h e  g e n e r a l  f a l l i n g  t r e n d  i n  t h e  C O 2 c o n c e n t r a t i o n  w h i c h  s t a r t s  

a t  a  h i g h  o f  1 . 8 9 %  a n d  f a l l s  t o  a  v a l u e  o f  a p p r o x i m a t e l y  1 % .  S m a l l  p e a k s  i n  t h e  c o r e  

t e m p e r a t u r e  s e r i e s  c o r r e s p o n d  w i t h  s e v e r a l  t r o u g h s  i n  t h e  d a t a  f o r  C O 2 c o n c e n t r a t i o n .  

T h e r e  i s  a l s o  a  s t r o n g  n e g a t i v e  c o r r e l a t i o n  b e t w e e n  t h e  G T D  a n d  t h e  c o r e  t e m p e r a t u r e  

w i t h  a  c o e f f i c i e n t  o f  - 0 . 6 1 ,  t h e  G D T  a n d  C O 2 c o n t e n t  o f  t h e  e x h a u s t  g a s  a r e  s t r o n g l y  

c o r r e l a t e d  w i t h  a  c o e f f i c i e n t  o f  0 . 7 1

T h e  h o t  w i r e  a n e m o m e t e r  w a s  a g a i n  f u n c t i o n a l  f o r  t h i s  p e r i o d  a n d  t h e  a i r f l o w  v a r i e d  

b e t w e e n  0 . 8 4  a n d  1 . 8 9  m s ' 1,  b u t  r e m a i n s  r e l a t i v e l y  c o n s t a n t  w h e n  c o m p a r e d  t o  t h e  

c a r b o n  d i o x i d e  c o n t e n t  w h i c h  s h o w s  v a l u e s  i n  t h e  r a n g e  o f  0 . 1 7  t o  1 . 8 9  p e r c e n t .  A s  a  

r e s u l t  o f  t h i s  t h e  c o m p o s t i n g  r a t e  r a n g e s  f r o m  2 . 9  t o  3 5 . 1  g  C C ^ k g V S ' M a y ' 1 w i t h  t h e  

r a t e  b e i n g  h i g h e s t  t o w a r d s  t h e  s t a r t  o f  t h i s  p e r i o d  a n d  a t  i t s  l o w e s t  a t  t h e  e n d  w i t h  

s e v e r a l  p e a k s  a n d  t r o u g h s  i n  b e t w e e n .  T h e  c o m p o s t i n g  r a t e  i s  h i g h l y  c o r r e l a t e d  t o  t h e  

C O 2 c o n t e n t  o f  t h e  e x h a u s t  g a s ,  w i t h  a  c o e f f i c i e n t  o f  0 . 9 5 ,  w h i l s t  t h e  c o m p o s t i n g  r a t e  

a n d  a i r f l o w  o n l y  g i v e  a  c o r r e l a t i o n  c o e f f i c i e n t  o f  0 . 3 5 .
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- Ambient dry bub temperature, deg C 
Core temperature, deg C 
Air speed through flue, m/s_________

 Flue dry bulb temperature, deg C
 composting rate, g C02/(kgVS-day)

Percentage CQ2 ___________

Figure 5.8. Data recorded from windrow W1I during Period 3
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Figure 5.9. Data recorded from windrow W1I during Period 4
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Windrow Composting Trials

Figure 5.9. shows the data recorded for Period 4 of windrow W1I between the 12th 

and 19th of November. During this Period the hot film anemometer was again 

malfunctioning and no data were recorded for the airflow rate o f the exhaust gas, 

because of this the respiration rate could not be calculated. The CO2 content o f the 

exhaust gas; varied between 0.3 and 2.0 percent, with the peak value occurring shortly 

after turning. The core temperature was again reduced by the turning process and 

remained at approximately 60°C for two days after turning, it then rose by nearly 10 

degrees where it remained for the rest of this period, reaching a high point of 71°C. 

The increase in temperature coincides with the fall in CO2 concentration. 

Unfortunately due to the malfunction in the hotwire anemometer (possibly due to 

damage occurring in the removal of the canopy) the respiration rate could not be 

calculated.

As with the previous two periods there was again a strong negative correlation 

between the core temperature and the carbon dioxide content of the exhaust gas, 

giving a correlation coefficient o f -0.61. The data from the 14th of November gives a 

strong demonstration of this as the core temperature rises above 60°C there is a large 

decrease in carbon dioxide concentration. The positive correlation between the 

ambient and flue temperatures is still evident giving a coefficient of 0.47. The GTD 

again experienced a positive correlation with the carbon dioxide content with a 

coefficient of 0.47. However, the correlation coefficient between the GDT and the 

core temperature was weak during this period at -0.33.

Figure 5.10 shows the data recoded for Period 5 of windrow W1I, between the 20th 

and 26th of November. As with the previous period the hot film anemometer was not 

functional-again meaning that the composting rate was not calculable. Whereas the 

previous monitoring periods for this windrow had shown a post turning increase in 

carbon dioxide concentration it was not present during this period, though the drop in 

core temperature associated with a turning event did occur. The core temperature rose 

throughout this period from approximately 62°C to 72°C, whilst the carbon dioxide 

concentration in the exhaust gas followed a downwards trend. This gave a strongly 

negative correlation between these two series with a correlation coefficient of -0.69. 

As with previous periods the GDT and carbon dioxide concentration correlated 

strongly giving a coefficient of 0.71. This period showed no correlation between the
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flue and ambient temperatures and a very weak negative correlation between the GTD 

and the core temperature.

The final period for which data were recorded for windrow W1I is shown in Figure

5.11. Period 6 is much shorter than the other monitoring periods recording only data 

from the 27th to the 29th of November 2002. As opposed to previous periods the core 

temperature and carbon dioxide concentration both increase, despite the core 

temperature reaching 70°C. This gives a correlation coefficient of 0.65 between the 

core temperature and the carbon dioxide concentration, although the shortened 

timescale of this period and the proximity to turning may have affected this. Periods 2 

to 4 all showed similar behaviour during the days immediately post turning with a 

peak in carbon dioxide concentration occurring whilst the core temperature increases. 

The gap between the flue and ambient temperatures, the GTD, increases during this 

period giving a correlation coefficient of 0.91 between the GTD and the carbon 

dioxide concentration. The relationship between the core temperature and GTD for 

this period displays a positive correlation having a coefficient of 0.43.

The data shown in Figures 5.6 to 5.11 generally shows that the core temperature and 

carbon dioxide concentrations move in opposite directions to each other. During a 

turning event there appears to be a decrease in the core temperature. This may be 

caused by heat dispersal during the turning event or by mixing o f the cooler material 

from the edges of the windrow with the hotter core material. The concentration of 

carbon dioxide observed in the chimney generally increases post turning, often 

maintaining an elevated level for up to 2 days. The turning event will release excess 

moisture from the void space within the compost and replace the gases present with 

fresh air. The respiration rate of the compost often follows the carbon dioxide 

concentration very strongly, whilst the GDT also appears to be a strongly correlated 

with composting activity.
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Figure 5.10. Data recorded from windrow W1I during Period 5
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Figure 5.11. Data recorded from windrow W1I during Period 6
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5.3.2.2 Windrow W2F

Windrow W2F was completed on the 15th of July 2002; it was monitored from the 

19th of July until the 5th of August. The windrow was turned on the 23rd of July, the 

29th of July and the 2nd of August, splitting the time that the windrow was monitored 

into four periods between turnings.

The data recorded during Period 1 of windrow W2F, between the 19th and 23rd of July 

are shown in Figure 5.12. For much of this logging period there was a problem with 

the moisture trap on the carbon dioxide meter, leading to very low carbon dioxide and 

consequently respiration rate readings during this period. The airflow through the 

chimney varied between 1.04 and 1.55 ms'1, but remained at approximately 1.2 ms'1 

throughout the monitoring period.

The core temperature rose from approximately 52°C to 60°C during this period, whilst 

the GTD fell, giving a correlation coefficient of -0.68. Because of the blocked 

moisture trap which lead to low carbon dioxide readings it is not possible to gain an 

insight into the respiration rate.

Period 2 of windrow W2F is shown in Figure 5.13. During this period there was one 

brief failure of the hot film anemometer. The composting rate varied between 0 and 

24 g CO2 kg VS'1 day'1 due to the carbon dioxide concentration varying between 0.3 

and 1.4 percent and the airflow rate being between 0.87 and 1.53 ms’1, aside from the 

anemometer failure the lowest composting rate was approximately 11 gCC>2 kg VS'1 

day'1. As with Windrow W1I there was a drop in the core temperature during the 

turning event, but there was no great increase in the carbon dioxide concentration.

During this period the core temperature increased from approximately 55°C to 65°C 

whilst the composting rate followed a downwards trend. The composting rate shared 

strong correlation coefficients with both the carbon dioxide concentration of the 

exhaust gas and the airflow rate through the chimney, with a coefficient of 0.62 

between composting rate and CO2 concentration and 0.79 between air flowrate and 

composting rate. The GTD showed strong correlation with the carbon dioxide 

concentration with a coefficient of 0.66, however the carbon dioxide concentration
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Figure 5.12. Data recorded from windrow W2F during Period 1
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Figure 5.13. Data recorded from windrow W2F during Period 2
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did have a daily trough in the early afternoon whilst the ambient temperature was at 

its highest. The core temperature had negative correlations with both the GTD and the 

carbon dioxide concentration, the coefficients for these were -0.53 and -0.61 

respectively.

Figure 5.14 shows Period 3 of windrow W2F. These data were recorded between the 

29th of July and the 2nd of August 2002. This period shows a pronounced spike in the 

carbon dioxide content of the exhaust gases in the period immediately following 

turning this coincides with the lowest point in the core temperature series. After this 

the carbon dioxide concentration fell whilst the core temperature began to increase. 

The composting rate reached a maximum of 26.3 gCC^kgVSMay*1 with the carbon 

dioxide content reaching a maximum o f 1.7 percent. The composting rate correlated 

strongly with the carbon dioxide concentration giving a coefficient o f 0.95. The 

airflow rate remained relatively constant but gave a correlation coefficient o f 0.50 

with the composting rate. During this period there appeared to be no correlation 

between the GDT and the core temperature or carbon dioxide concentration in the 

exhaust gas, but the core did have a negative correlation with the carbon dioxide 

concentration with a coefficient of -0.53.

The final period recorded for this windrow is shown in Figure 5.15. The data for 

Period 4 were recorded between the 2nd and the 5th of August. During this period the 

carbon dioxide concentration of the exhaust gas varied between 0.72 and 1.7 percent, 

the airflow rate varied between 0.93 and 1.45 ms*1, and the composting rate reached a 

maximum of 26.1 g CO2 kg VS*1 day*1. The composting rate again shared strong 

correlation coefficients with the airflow rate and the carbon dioxide concentration 

giving coefficients of 0.61 and 0.97 respectively. The general trend o f both the 

composting rate and the carbon dioxide concentration was downwards whilst the core 

temperature increased from approximately 55°C to 72°C this can also be observed in 

the negative correlation coefficient between core temperatures and CO2 concentration 

of -0.81. The GTD showed a very weak negative correlation with the core 

temperature and a very weak positive correlation with the carbon dioxide 

concentration o f the exhaust gas.
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Figure 5.14. Data recorded from windrow W2F during Period 3
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5.3.3 Compost rate, carbon dioxide concentration and airflow

It is not surprising that the carbon dioxide concentration and airflow rate of the 

exhaust gas have an effect on the respiration rate of the compost as both are fed into 

the equation for calculating the respiration rate (Equation 5.1). By averaging time 

periods it is shown that the correlation between the carbon dioxide and respiration rate 

was generally stronger than between the airflow and respiration rate. This correlation 

is also shown graphically in Figures 5.16 and 5.17 for Windrow W1I and Figures 5.18 

and 5.19 for Windrow W2F. For the plots shown in Figures 5.16 to 5.19 any data 

points where the composting rate could not be calculated due to equipment failure are 

excluded.

The plots for composting rate against carbon dioxide, shown in Figures 5.17 and 5.19, 

show much stronger influence from the carbon dioxide concentration on the 

composting rate than from the airflow rate shown in Figures 5.16 and 5.18. The 

carbon dioxide concentration varied more than the airflow rate which in many cases 

remains relatively constant. It was thought that as the respiration rate depends on both 

the airflow and the carbon dioxide concentration that if one were to drop the other 

may rise and thus keep the respiration rate relatively constant. This would give a 

highly negative correlation coefficient between the two parameters but no such result 

exists in the data for either windrow.

The flue temperatures also have an effect upon the respiration rate as they too are 

used in Equation 5.1. The flue temperatures for W1I are in the range 15°C to 25°C 

whilst the range for Windrow W2F is 25°C to 35°C. The temperature used in Equation

5.1 has to be converted to Kelvin. The temperatures used are then in the range of 

288K to 308K so the 10°C range represents an error of approximately 3%. This may 

contribute to some o f the outlying points in Figures 5.16 to 5.19.

The data implies that continual monitoring of the airflow rate is not necessary and that 

the airflow rate can be monitored periodically rather than continually. Many airflow 

measurement devices, such as hot wire or film anemometers, incorporate fragile or 

delicate components which are not necessarily compatible with the composting
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process and the associated environments of elevated temperature, high humidity and 

airborne particles.
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Figure 5.16. A plot of compost rate against airspeed for Windrow W1I
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Figure 5.17. A plot of compost rate against carbon dioxide concentration in the exhaust for 
Windrow W1I
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Figure 5.19. A plot of compost rate against carbon dioxide concentration in the exhaust for 
Windrow W2F
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5.3.4 Core temperatures and composting rate

For the first five periods of Windrow W1I there is a strong negative correlation 

between the core temperature and the carbon dioxide content of the exhaust gas. The 

windrow is above 55°C for most o f its lifetime and this negative correlation reflects 

behaviour above an optimum temperature, whereas below the optimum temperature a 

positive correlation would be expected. Period 6 of Windrow W1I, however, gives a 

positive correlation between the core temperature and the carbon dioxide 

concentration, the temperature at this point is above 60°C which is as high as the 

temperatures achieved during other periods. Periods 1,2, 3 and 4 all have peaks in the 

carbon dioxide concentration in the exhaust immediately after turning. Period 6 may 

also be experiencing a post turning peak in carbon dioxide though the relatively short 

time period under consideration means it can not be stated for certain that this peak is 

present. The increase in CO2 immediately after turning is more likely due to the 

oxygen and substrate availability post turning rather than the optimisation of a 

parameter such as temperature.

Windrow W2F also shows a strongly negative correlation between the core 

temperature and the carbon dioxide concentration of the exhaust gas for Periods 2, 3 

and 4, but a strongly positive correlation during Period 1. The core of this windrow 

also remained over 60°C for much of the monitoring period, dropping to 

approximately 55°C after turning. The positive correlation during Period 1 is due to 

the blockage in the carbon dioxide sensor’s sampling tube rather than any activity of 

the compost.

The plots shown in Figures 5.20 and 5.21 are of the core temperatures against the 

respiration rate and as would be expected from the negative correlation coefficients 

between these two parameters there is a negative relationship between these two 

parameters. The lines shown in Figures 5.20 and 5.21 are ±1 standard deviation from 

the best fit line. From these two graphs the optimum composting temperature would 

appear to be less than approximately 55°C, this is in agreement with other results such 

as Waksman (1949), Strom (1985), Cathcart et al. (1986) and Myrddin (2003) and is 

in very strong agreement with Wiley (1956; 1957) who found optimum carbon dioxide 

production to occur at 56°C.
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Figure 5.20. Graph of windrow core temperatures against respiration rate for 
windrow W1I
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However, the temperature of 55°C is below either the European treatment standard o f 

70°C (Defra, 2004) or the UK treatment standard of 60°C (Gale, 2002). Figures 5.20 

and 5.21 indicate that an increase in temperature from 55°C to 70°C to meet the 

European union regulation for the treatment of animal by products could cause a 

reduction in composting activity of up to 50%, whilst a temperature increase from 

55°C to 60°C could cause a reduction in activity of up to 20%.

It is also worth noting that only the core temperature is under consideration and the 

average temperature o f the pile will be much less than this as the outside of the pile 

will be at the ambient air temperature. For example in the vessel used by Myrddin 

(2003) more than 50% of the volume o f the vessel is below 55°C, making the average 

temperature of the compost much lower than the peak temperatures. The same is true 

for the windrow composting method.

5.3.5 Heat release

Section 2.2 in Chapter 2 discussed observed heat releases from aerobic microbial 

degradation o f organic matter. These were shown to be in strong agreement with the 

theoretical model that was developed in Chapter 3, which suggests a heat output of 

approximately 500 kJ per mole of carbon dioxide released.

The GTD is an indication of the heat lost. However, because it only gives the 

difference in temperature between the ambient or incoming air and the exhaust air it 

cannot be used to calculate the heat lost to the air. In order to calculate the heat lost to 

the air passing through the windrow it is necessary to include the humidity of both the 

ambient and exhaust air. The exhaust air was observed to be condensing on contact 

with the ambient air so must therefore be fully saturated. No measurements were 

taken of the relative humidity of the ambient air.

The number o f moles of carbon dioxide released to the air can be simply calculated 

using the air flow rate and the carbon dioxide concentration, both of which were 

recorded by the data loggers. If a value of 70% relative humidity is applied to the
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Figure 5.24. Comparison of the heat released through the chimney and the number of mols of 
carbon dioxide released for Windrow W1I (during each 25 minute time period)
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Figure 5.25. Comparison of the heat released through the chimney and the number of mols of 
carbon dioxide released for Windrow W2F (during each 25 minute time period)
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ambient air an estimation of the heat transferred to the air can be made. Both the 

carbon dioxide and heat releases for each of the 25 minute periods can be calculated 

and are shown in Figures 5.22 and 5.23 for Windows W1I and W2F respectively.

Figures 5.24 and 5.25 show the amount of heat released through the chimney plotted 

against the number o f moles of carbon dioxide measured in the chimney. These 

Figures show the correlation between these two sets of data. The peak in Figure 5.24 

in the range of 6 to 8 moles o f carbon dioxide corresponds with the data recorded 

between the 18th and 25th o f October 2002. The material was young and may have still 

been heating up fully during this period and was also turned on the 23rd of October 

2002. Both of these factors may have contributed to the lack of correlation between 

the heat released and the mols of carbon dioxide released during this period.

The points on the left o f Figure 5.25 which lie off of the trend line correspond to the 

dates between the 22nd and 25th of July 2002. The material was turned on the 23rd of 

July which may have caused this anomaly. Other turning events on the 29th of July 

and 2nd of August also produce spikes on Figure 5.23 where the heat released appears 

to lag behind the moles o f carbon dioxide released.

It is evident that the energy transferred to the air and the number of moles of carbon 

dioxide are closely linked, but when a simple calculation is performed to calculate the 

energy release per mole of CO2 a figure of 43.3 kJ/mole is found for Windrow W1I 

whilst Windrow W2F gives 93.4 kJ/mole. Although this method is imperfect due to 

the assumed ambient relative humidity it is reinforced by the strong positive 

correlations between the GTD and the concentration of carbon dioxide in the exhaust 

gas.

The heat lost through the chimney accounts for only 10 to 20% of the estimated heat 

production meaning either the estimate is incorrect or that there is another large heat 

loss. The canopy itself is made of chipboard approximately 3mm thick, it has a 

surface area of approximately 10 m2. If the temperature differential across this surface 

is considered to be the same as the gas temperature differential then a simple 

conductive heat loss through the canopy skin can be calculated. A conductivity of 0.1 

W/m K (WPIF, 2004) was used for the chipboard skin of the canopy. When the heat
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lost through conduction through the canopy was combined with heat lost to the air 

passing through the windrow figures of 559.7 kJ/mole and 624 kJ/mole were found 

for Windrows W1I and W2F respectively. These figures are within 25% of the 

calculated value of 500 kJ/mole of carbon dioxide predicted by Chapter.

There are differences between the theoretical value of energy released per mole of 

carbon dioxide released and the recorded value, but they are very close and there are 

several contributing factors, such as:

• Not all o f the CO2 produced by the composting process will be transferred into 

the air passing through the windrow. Some will remain within the interstitial 

void of the windrow only to be released at a turning event. This leads to an 

under estimation o f the number of moles of carbon dioxide evolved and an 

over estimation of the heat release per mole of carbon dioxide.

• The assumed value for the relative humidity of the ambient air will vary not 

only with the seasons but with the time of day. This may lead to an incorrect 

estimation of the energy transferred to the air passing through the windrow. 

However, as the amount o f heat transferred to the air is around 20% of the 

total produced the effect of the estimation is somewhat limited.

• Changes in overall internal average temperature of the windrows have not 

been taken into account. The average temperature of the windrow is an 

indicator of the quantity of heat stored within the windrow; as the temperature 

increases more heat is stored within the compost and less released. This gives 

an underestimate o f the heat release per mole of carbon dioxide. Only the core 

temperature o f each windrow was measured and without details of the 

temperature distribution through the windrow the average temperature cannot 

be calculated.
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5.3.6 Conclusions

It is not necessary to record airflow rate continuously as it varies less than other 

parameters such as CO2 concentration.

The optimum core composting temperature appears to be below 55°C, with the 

average windrow temperature being below this.

There is still a level of composting activity at high core temperatures, though this is 

likely to be due to activity in the cooler sections of the windrow.

The heat output of the composting process as calculated in Chapter 3 is validated by 

these results.

Results for temperature against composting rate and for estimated heat releases, agree 

with many other sources. This shows that the canopy is a reliable method of 

monitoring windrow composting activity.

5.4 Green Waste Augmented with Chicken Litter

Windrow W2I was built on the 25th of November 2002 from a mixture of chicken 

litter and green waste. As chicken litter has a lower carbon to nitrogen ratio than green 

waste this should have brought the windrow into the optimum range for composting. 

To achieve this 67,085 kg of green waste was mixed with 34,300 kg of chicken litter 

as it had previously been calculated that this should reduce the carbon to nitrogen 

ratio of the green waste from approximately 70:1 to 20:1. The windrow was turned on 

the 3rd of December, 6th of December, 10th of December and 13th of December.
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5.4.1 Preparation of mixture

Calculations were performed using values of the carbon to nitrogen ratio of different 

organic materials. This allowed the quantity of chicken litter required to reduce the 

carbon to nitrogen ratio to be calculated prior to its delivery to the CERT composting 

facility. The estimate made using the data from Rynk (1992) is shown in Table 5-1. 

The estimate was based on a windrow o f approximately 100 tonnes and a final C:N 

ratio of approximately 20:1. Samples of the mixture were taken and the carbon to 

nitrogen ratio o f the mixture was analysed. The nitrogen content was analysed using 

the modified Kjeldahl method as specified in BS EN 13654-1:2001(BSI, 2001) and 

found to be 1.65% of the dry weight. The carbon content was analysed using a 

Shimadzu SSM 5000A total organic carbon analyser and was found to be 35.12% of 

the dry weight, giving a carbon to nitrogen ratio of 21.3:1.

The mixture was formed into a windrow approximately 4 metres wide, 2 metres high 

and 35 metres long. The average mass per metre length of windrow was 2,897 kg, the 

volume of one metre o f windrow was calculated as 4.2 m3, the total density o f the 

mixture was 688 kg m '3 a value higher than for a windrow made solely of green 

waste.

Table 5-1. Estimation of the carbon to nitrogen ratio of the mixture

Chicken litter Green waste

Total weight 34,300 kg 67,085 kg

Dry weight 27,440 kg 22,542.5 kg

Volatile solids 16,460 kg 23,479.8 kg

Organic Carbon 8,890 kg 12,679 kg

Nitrogen 889 kg 181.1 kg

Calculated total carbon to nitrogen ratio 20.2:1
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5.4.2 Results

The results from the 29th of November 2002 to the 16th of December 2002, covering 

the first three weeks of the windrow’s composting activity, were processed and split 

into five periods, which are defined as the period of time between turning events. The 

logger recorded the data every five minutes. In order to remove some of the noise the 

data has been grouped into sets of five giving averages for 25-minute periods. The 

data for each period are shown in Figures 5.26, 5.27, 5.28, 5.29 and 5.30. The core 

temperature of this windrow was generally below 60°C and dropped after turning 

events.

During Period 1, shown in Figure 5.26, the windrow is still heating up. As the 

windrow core heats up from 40°C to 55°C the concentration of carbon dioxide in the 

exhaust gas and the core temperature mirror each other i.e. as the core temperature 

rises the concentration of carbon dioxide falls. The carbon dioxide concentration is at 

its highest value of 1.9% whilst the core temperature is approximately 40°C. The two 

peaks in the core temperature on the 30th of November and the 1st of December 

coincide with troughs in the carbon dioxide concentration. Once the core temperature 

has reached 55°C the carbon dioxide concentration begins to rise again. As would be 

expected from this behaviour these two data series give a strongly negative correlation 

coefficient o f -0.85.

The carbon dioxide concentration also appears to correlate strongly with both the flue 

temperature and the GTD with a correlation coefficient of 0.97 between carbon 

dioxide concentration and flue temperature, whilst the carbon dioxide concentration 

and GTD correlate with a coefficient of 0.95. This effectively means that as the core 

temperature increases both the GDT and the flue temperature fall.

During Period 2, shown in Figure 5.27, the carbon dioxide content does not appear to 

follow the flue temperature as closely as it did during Period 1. Correlating the carbon 

dioxide content with the flue temperature gives a coefficient of 0.47, correlating it 

with the gas temperature differential gives a very weak coefficient of 0.21.

Comparison of the carbon dioxide content and the core temperature gives a 

correlation of 0.22, the only period to give a positive correlation between these two
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Figure 5.26. Data recorded during Period 1 of the windrow augmented with chicken manure
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Figure 5.27. Data recorded during Period 2 of the windrow augmented with chicken manure
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series. During this period there is a weak correlation between the flue and ambient 

temperatures of 0.23, this is the only period that has a weak relationship between 

these two parameters. Comparison of the core and ambient temperatures now gives a 

positive correlation of 0.418. There does, however, still appear to be some correlation 

between the core and flue temperatures with a coefficient of -0.43, taking the ambient 

temperature into account gives a correlation coefficient of -0.64 between the core 

temperature and GTD.

The data recorded during Period 3 are shown in Figure 5.28 again showed a close 

relationship between the carbon dioxide content and the temperature of the exhaust 

gas, giving a correlation coefficient of 0.82, correlating carbon dioxide with GTD 

gives a coefficient of 0.51. The relationship between the carbon dioxide content of the 

exhaust gas and the core temperature gives a negative correlation coefficient of -0.67. 

Apart from the initial peak in carbon dioxide concentration these two series mirror 

each other with the highest carbon dioxide concentration of 1.4% occurring at the 

lowest core temperature o f 49°C. The relationship between the core and flue 

temperatures in Period 3 is again strong with a correlation coefficient of -0.86, 

between the two series. When the ambient temperature is taken from both this falls to 

0.56. Correlation between the core and ambient temperatures gives a weak negative 

coefficient of -0.38.

Figure 5.29 shows the data recorded during Period 4 of the windrow. These data show 

no correlation between the core and ambient temperatures returning a coefficient of 

-0.03, but a strong correlation between the flue and ambient temperatures of 0.80.

As with Period 3 the core temperature initially falls from 59°C to 52°C before rising 

again, at the same time as this occurs the carbon dioxide concentration of the exhaust 

gas increases before falling. The behaviour of both the GTD and the flue temperature 

is also very similar to the behaviour of the carbon dioxide concentration.

Period 5 is shown in Figure 5.30. This period again showed no correlation between 

the core and ambient temperatures. There was a correlation between the flue and 

ambient temperatures returning a coefficient of 0.56. As with the other periods there 

was a negative correlation between the core-ambient and GTD with a coefficient of 

-0.66. Unlike the other periods there was a negligible correlation between the carbon
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dioxide content and the GTD with a coefficient of 0.08, but like the other periods 

there was a good negative correlation between the carbon dioxide content in the 

exhaust gas and the core temperatures with a coefficient of -0.53.

Unfortunately there were some breakdowns with the logging equipment during the 

lifetime of the windrow, Periods 1 to 5 cover days 3 to 20 of the windrow’s lifetime. 

Further data were also recorded between the 9th and 13th of January which 

corresponds with the windrow being between 45 and 49 days old, the 30th and 31st of 

January corresponding with the windrow being 65 and 66 days old, the 3rd and the 

11th of February corresponding with the windrow being between 69 and 77 days old 

and finally the 13th of February and 5th of March which corresponds to an age of 

between 78 and 98 days. The hot film anemometer used to record the gas velocity 

proved to be most problematic with very little data being recorded for this parameter.

The data recorded during the period between the 9th and 13th of January are shown in 

Figure 5.31. During this period there is a strong correlation between flue and ambient 

temperatures as with the earlier periods. Comparing the flue temperature with the 

carbon dioxide content of the exhaust gas gives a positive correlation coefficient of 

0.44, if  the CO2 content is compared with the gas temperature differential this 

increases to 0.55. The strong negative correlation between the core temperature and 

the GTD is also present during this period with a coefficient o f -0.72. This again gives 

a strong negative correlation between the carbon dioxide content and the core 

temperatures with a coefficient of -0.71 between the two series.

As previously mentioned the velocity o f the gas leaving the windrow was not 

recorded, however data from later on during the composting period does show the gas 

velocity. Figure 5.32 shows data recorded between the 30th and 31st of January 2003 

for the core temperature, carbon dioxide concentration and velocity of the exit gas. At 

this point the windrow was 65 days old and the core temperature had risen above 

60°C and the carbon dioxide concentration had fallen below 1%. Over this short 

period the core temperature dropped very slightly from 65.7°C to 64°C, whilst the 

concentration of carbon dioxide in the exhaust gas increased from 0.15% to 0.66%. 

The velocity of the gas through the chimney remained relatively constant at 

approximately 0.8 ms'1.
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Figure 5.28. Data recorded during Period 3 of the windrow augmented with chicken manure
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Figure 5.29. Data recorded during Period 4 of the windrow augmented with chicken manure
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Figure 5.30. Data recorded during Period 5 of the windrow augmented with chicken manure
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Figure 5.31. Data recorded between the 9th and 13 of January for the windrow augmented 
with chicken manure
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Figure 5.32. Data recorded between the 30th and 31st of January for the green waste 
and chicken litter windrow
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The data shown in Figure 5.33 also show the velocity of the gas through the chimney 

and again it remains relatively constant over the seven day period at approximately 

0.85ms'1. The concentration of carbon dioxide changes more greatly with an initial 

peak after turning and a decrease as the core temperature increases.

At the end of the experiment the C:N ratio was analysed in the same manner as at the 

start of the composting process. The total Kjeldahl nitrogen was found to be 2.06% of 

the dry mass and the carbon was found to be 30.17% of the dry mass, giving a 

finished C:N ratio of 14.6:1 showing an overall reduction in the C:N ratio of the 

compost as previously observed by Alexander (1961).

A temperature profile of the windrow was taken using a hand held temperature probe 

on the 72nd day of the composting process (06/02/2003) and is shown in Figure 5.34. 

Only half of the windrow was measured and symmetry has been assumed for the other 

half. Rather than the highest temperatures occurring at the centre of the windrow with 

contour rings of decreasing temperature concentrically around the core, as shown by 

Polprasert (1989) and Hewings et al. (2002); the hottest area was in a zone (“saddle” 

or “n” shaped) above and nearer the surface. Care must, therefore, be exercised in 

considering core temperature for this windrow since the highest temperatures do not 

occur at the core location. In some cases there may be temperatures within the 

windrow mass that are 15°C to 20°C higher than the core temperature.
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Temperature profile of windrow amended with chicken litter, taken on day 72
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5.4.3 Discussion

The inclusion of chicken litter increased the density of the composting mixture, the 

litter was also very fine causing a decrease in the average particle size. As discussed 

in Chapter 4 the static pressure required to drive air through a static bed is dependant 

on both of these variables, it is therefore likely that the temperature gradient was not 

great enough to supply adequate aeration to the composting material and air was 

unable to penetrate the core of the windrow. This is further supported by the 

temperature profile shown in Figure 5.34, where the core of the windrow is cooler 

than the saddle shaped area above. This implies that air was unable to penetrate into 

the centre of the windrow, so that less composting activity took place at the core 

leading to the reduced temperature.

A strong correlation between the flue and ambient temperatures would be expected as 

the flue temperature is a function of the ambient temperature and the heat picked up 

as the air passes through the windrow, it is therefore somewhat odd that there is a 

weak correlation between these two series during Period 2.

The carbon dioxide content and core temperature series are evidently related and these 

two variables for the first five periods are plotted against each other in Figure 5.35. 

There is always a sharp increase in the concentration of carbon dioxide within the 

exhaust gas immediately after a turning event. However, after this, the behaviour can 

be linked to the core temperature series. During Period 1 the temperature remains at 

approximately 40°C for the first day shown, but as the temperature increases the 

concentration o f carbon dioxide decreases. The temperature of 40°C is the optimum 

for mesophilic bacteria (Jeris and Regan, 1973; Kutzner 2000) so as the temperature 

increases the activity of the mesophiles decreases. On the 1st of December the core 

temperature reached 55°C one of the quoted optimum temperatures for thermophilic 

bacteria (Cathcart et al., 1986; Wiley, 1956; 1957), shortly afterwards the 

concentration o f carbon dioxide in the exhaust gas began to increase. The increase in 

carbon dioxide concentration implies an increase in the activity within the pile which 

may be due to the compost having reached an optimum temperature. During Period 1 

it is possible that the windrow moved from a mesophilic optimum temperature to a 

thermophilic optimum.
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The pattern o f increasing and decreasing concentrations of carbon dioxide as the core 

temperature moves away from an optimum is reflected through much of the rest o f the 

data. In Figure 5.28, Period 3, the core temperature gradually decreases from 

approximately 55°C to 49°C, over a period of 2 days before increasing back to 55°C 

over the next two days. Apart from the initial post-turning increase in carbon dioxide 

the concentration o f CO2 in the exhaust gas increases until the core temperature is at 

49°C, before falling as the temperature begins to increase. For this period the 

optimum would appear to be 49°C rather than 55°C but this could purely be due to the 

positioning of the probe recording the core temperature. The same pattern is repeated 

in Figure 5.29, Period 4 and to a lesser extent in Figure 5.30 for Period 5 with 55 °C 

appearing to be the optimum composting temperature. Figure 5.31, Period 5, shows 

the windrow at a late stage and the temperature within the windrow is continuously 

increasing and the concentration of carbon dioxide within the exhaust gas continually 

decreases.

Due to the failure o f the hot wire anemometer it is not possible to give an accurate 

representation o f the composting rate. However, the concentrations of carbon dioxide 

observed in the chimney were similar to those for green waste. Figures 5.32 and 5.33 

give an indication o f the velocity through the chimney being approximately 0.85ms1 

as opposed to approximately 1 m s'1 for the green waste windrows discussed in 

Section 5.3. During this trial there was approximately double the mass of volatile 

solids beneath the canopy than during the green waste only trials. The exhaust gas 

temperatures were similar to those observed during the green waste trials. Combining 

these factors gives the composing rate as being approximately 45% of that of the 

green waste only windrows. So where a carbon dioxide concentration in the exhaust 

of 1% would give a rate o f approximately 20 g CO2 kgVS'May'1 for the green waste 

only, the same concentration of CO2 for the augmented windrow indicates a rate of 

approximately 9 CC^kgVS'May'1.

The strongly negative correlation coefficients between the core temperature and the 

concentration o f carbon dioxide in the exhaust reflect the existence of an optimum 

temperature for composting. This relationship is also seen in Figure 5.35. Period 2 

however, shown in Figure 5.27 does not show this behaviour and in fact has a weak 

positive correlation between the carbon dioxide concentration and the core
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Figure 5.35. Core temperature against CO2 concentration in the exhaust gas for the first 5 periods 
of the windrow augmented with chicken litter against core temperature
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windrow augmented with chicken litter against core temperature
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temperature. The core temperature is only above 50°C at the very start o f this period 

which is lower than the suggested thermophilic optimum temperature for the 

composting process (Cathcart et al., 1986; Wiley, 1956; 1957). Apart from the initial 

heat up in Period 1 where the compost passes through the mesophilic optimum, Period 

2 is the only period where the compost is continually below the thermophilic optimum 

temperature. Because it is below the optimum a temperature increase brings the 

compost closer to the optimum temperature rather that away from it. It would be 

expected that this would cause an increase in the composting activity. Similarly a drop 

in temperature would move the system away from the optimum, decreasing the level 

of composting activity. This behaviour is clearly visible in Figure 5.27; on the 4th of 

December the temperature peaked at 53°C which lead to a peak in the carbon dioxide 

concentration of the exhaust gas, the temperature then dropped as did the exhaust gas 

carbon dioxide concentration, these two series continued to move together for the rest 

of the period.

The positive correlation between the carbon dioxide concentration and the GTD can 

be seen in Figure 5.36. This is simply due to the increased quantities of heat that are 

released with an increase in composting activity. The heat and carbon dioxide are both 

transferred into the air which is passing through the windrow. This exchange of heat 

causes a cooling o f the pile-which can be observed in Figures 5.26 to 5.29 where the 

GTD series generally moves in an opposite direction to the core temperature series. 

The strong correlation coefficients between core and flue temperatures confirm this 

relationship. The airflow through the windrow is also driven by a thermal gradient 

which causes a difference in the density of the air, as more heat is transferred into the 

air it becomes warmer and more buoyant causing a greater airflow and larger transfer 

of heat. Thus if  a windrow is too hot it will cause an increased airflow, cooling it back 

to an optimum temperature, where it will compost at a greater rate.

Although for the first five periods of composting activity, shown in Figures 5.26 to 

5.30, the airflow rate was not recorded this does not mean that analysis of heat release 

cannot be made. Both the rate of heat loss through the chimney and the rate at which 

moles of carbon dioxide leave through the chimney are dependant on the velocity 

through the chimney. However, calculating the heat released per mole of carbon 

dioxide released means that the flow rate of gas through the chimney is not important
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as it will cancel itself out. The same assumptions about the air humidity were made as 

in Section 5.3.5; that the exhaust air is fully saturated whilst the inlet air has a relative 

humidity of 70%. The heat release through the chimney per mole of carbon dioxide 

for the first 5 periods is shown in Figure 5.37. The average value is 84 kJ/mole, lower 

than estimated in Chapter 3 but in the range of values for Windrows W1I and W2F 

found in Section 5.3.5 of 43.3 kJ/mole and 93.4 kJ/mole. As was shown in Section 

5.35 it is possible to account for the remainder of the heat as being lost through the 

canopy.
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Figure 5.37. Heat release per mole of carbon dioxide for the first 5 Periods of the augmented
windrow (during each 25 minute time period)

5.4.4 Conclusions

The mixture did achieve a level of stabilisation during the composting process as 

noted in the reduction in C:N ratio.

The levels of heat released to the air passing through the windrow are similar to those 

for green waste.
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The rate of airflow through a windrow does not vary greatly over its lifespan.

Meaning that changes in activity are accompanied by increased temperatures and 

CO2 concentrations in the exhaust gas.

The size of the windrow and reliance on natural ventilation combined with the 

increased density and reduced particle size resulted in reduced airflow through the 

compost which inhibited the composting process.

The behaviour of the core temperature and the concentration of carbon dioxide within 

the exhaust gas indicate an optimum core temperature of approximately 55°C which is 

in agreement with other published figures.

5.5 Temperature Controlled Green Waste Windrow 

5.5.1 Introduction

There are various estimations of the optimum temperature for composting, some of 

these are based on species diversity and others are based on carbon dioxide 

production, oxygen uptake or dry matter loss; several of these are discussed in 

Chapter 2. The work from Sections 5.3 and 5.4 highlighted 55°C as being an optimum 

core temperature for the composting of wastes in the size of windrow being used at 

the CERT composting facility. It was decided to operate a windrow so that its core 

temperature was at 60°C, as this was the optimum temperature quoted by various 

researchers (Strom, 1985;Rothbaum, 1961; Wiley 1956; 1957). The aeration supplied 

to the windrow may also lead to more uniform temperature distribution within the 

windrow (Sesay et al., 1998). To supply a large enough quantity of air to remove the 

excess heat a forced ventilation system was used and this was controlled by an 

internal relay in the data logging equipment that monitored the core temperature of 

the windrow. However the results from Chapter 3 suggest that the supply of enough 

air to cool the windrow will also remove moisture from the windrow which may 

affect composting activity.
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5.5.2 Method

Some initial investigations were required in order to assess the quantity of air needed 

in order to remove the excess heat. A 15 metre long 4 metre wide and 2 metre high 

windrow was constructed on top of a 20 metre long section of 100 mm diameter 

perforated pipe. The windrow is shown in Figure 5.38. The pipe was bent into a “U” 

shape so that the arms were 1 metre apart under the centre of the windrow. The 

canopy was placed in the middle of the aerated section of the windrow in order to 

negate the end effects.

Figure 5.38. The short windrow built to determine air requirements for temperature 
control during the scoping studies

A blower was borrowed from a local agricultural equipment suppliers (J. Davies & 

Sons, Pencader) which was attached to the perforated pipe. Several tests were 

performed on the 1st of April 2003. A U-tube manometer capable of reading up to 300 

mmFhO was used to measure pressure and this along with the blower is shown in 

Figure 5.39. The static pressure that the fan could deliver at no flow was measured at 

118 mmFhO. The static pressure recorded at the outlet of the blower was 48 mml-hO, 

much less than the figure of 203 mmH20  assumed by Keener et al. (1997) for a 

column 2.4 metres high. The velocity head at the centre of the pipe was found to be 

53 mml-hO, this is equivalent to a maximum velocity through the pipe of 32.6 ms'1 

and assuming turbulent flow through the pipe a volumetric flow rate of 0.21 m V 1 can 

be determined. This is approximately 2.8* 10'3m3 s ’m*3 (cubic metres of air per cubic 

metre of compost per second).
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Theoretical aeration requirements were calculated in Chapter 3. Plots o f aeration 

requirements for oxygen supply, heat removal and moisture removal as a function of 

composting rate and bulk density are shown in Figures 3.14, 3.15 and 3.16. The 

shredded green waste composted at the CERT composting facility has a bulk density 

of approximately 370 kgm'3. The composting rate for the green waste shown in 

Section 5.3 was generally between 20 and 30 gCC^kgVS'May'1. Figure 3.15 shows 

that the aeration requirement for heat removal would be between 2><10‘3m3 s 'W 3 and 

3x 10'3m3s*1m*3. The quantity o f air supplied to the trial windrow, shown in Figure 

5.38, o f2 .8x l0 '3m3 s’1 m '3lies within this range.

The blower was turned on and the effect on temperature of the core, carbon dioxide 

concentration of the exhaust gas and flue temperature was monitored over a period of 

several hours. These results are shown in Table 5-2.

Table 5-2. Data recorded during the temperature control scoping test
Time

Variable 12.35 14.00 15.45
Core Temperature 76.4°C 68.7°C 64.7°C

Flue Temperature 16.0°C 22.5°C 18.0°C

CO2 Concentration 2.38% 0.47% 1.18%

The aeration successfully cooled the windrow during the first 85 minutes of continual 

blowing. The initial peak in the carbon dioxide concentration of 2.38 percent reflects 

the CO2 being blown out from the interstitial voids within the windrow. As was 

expected the windrow cooled rapidly as a greater quantity of heat was transferred into 

the air passing through it. Over the next 105 minutes the rate of cooling reduced but 

the concentration of carbon dioxide in the exhaust gas built up, possibly reflecting a 

larger amount o f composting activity within the windrow.

For the monitoring period a blower capable of delivering 1500 m3hour'1 or 0.42 m V 1 

at a pressure of 1000 Pascals (100 mmH20) was sourced to supply the windrow. A 

photograph of the experimental set up is shown in Figure 5.40. One of the data 

logger’s internal relay channels was used to control the fan. The logger sampled and 

recorded values for core temperature, flue temperature, ambient temperature and gas 

velocity every 5 minutes. If the core temperature was over the preset value of 60°C
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Figure 5.39. Equipment used to determine static pressure and flow rate to cool a windrow 
during the trial period

Figure 5.40. Canopy and cover on the green waste windrow during the monitoring period 
(the air supply fan is in the foreground)
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the relay channel supplied a 12V D.C. voltage to the coil of another relay which 

turned the fan on. The comparison was made every five minutes when the logger 

recorded temperatures. If the temperature was below 60°C then the fan would be 

turned off for the next five minutes.

As can be seen in Figure 5.40 the parts of the windrow that were not covered by the 

canopy were covered with a breathable membrane, this was done for regulatory 

reasons to comply with the waste management licence of the CERT composting 

facility.

5.5.3 Aeration Calculations

Theoretical estimation o f the required airflow to the windrow can be made using the 

figures presented in Chapter 3. These can be used to give an estimate of the airflow 

rate that should be expected through the chimney of the canopy. For a windrow 

composting at a rate o f 15 gCC>2 kg VS'1 day'1 and a density of 370kg m'3 

approximately 2* 10‘3m3s*1 of air per cubic metre of compost would be required to 

remove excess heat. Beneath the canopy there are approximately 12 cubic metres of 

compost. This gives a total aeration requirement of 2.4x10* m s ' . At the chimney this 

airflow would be observed as an average velocity of 1.44 ms*1, or as this is turbulent 

flow, a peak velocity of 1.76 ms*1.

5.5.4 Results

The construction o f the windrow was finished on the 1st of June 2003, and it was 

monitored from the 4th of June 2003. During the monitoring period there were a 

variety of breakdowns including the datalogger, the hot wire anemometer and the 

switching mechanism for the fan. Data are available for the windrow up to the 22nd of 

June and have been split into 3 periods. In order to allow greater clarity in the results
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instead of the period being defined as the time between turnings it is in this case, 

unfortunately, defined as the period between equipment breakdowns.

The data collected by the data logging equipment between the 4th and 10th of June 

2003 are shown in Figure 5.41, as with the data presented in earlier sections of this 

chapter the data have been slightly smoothed by averaging 25 minute periods from the 

raw data that were recorded every five minutes. The CO2 concentration in the exhaust 

gas reaches quite high concentrations of up to 4%. It also appears to follow a diurnal 

pattern causing the composting rate to move with it. The airflow appears to move 

inversely to the carbon dioxide concentration and there is a strong negative correlation 

of -0.61 between these two series. As with the green waste windrow there is a strong 

correlation between the rate and the carbon dioxide concentration of 0.62, whilst the 

correlation between the rate and the airflow is a very weak 0.16. During this period 

the logger was housed in a box above the windrow so the cold junction temperature is 

shown. This is still within the loggers operating range.

 Ambient dry bulb temperature, deg C -------- Flue dry bulb temperature, deg C Core temperature, deg C
 Composting rate, g C 02/ kgVS-day -------- Air speed through flue, m/s .............Percentage C02

Figure 5.41. Data from the temperature controlled windrow during Period 1
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Figure 5.42. Data from the temperature controlled windrow during Period 2
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Figure 5.43. Data from the temperature controlled windrow during Period 3
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Similarly to the green waste windrows during Period 1 the GTD correlated negatively 

with the core temperature. Unlike the non aerated windrows the GTD showed no 

correlation with the carbon dioxide concentration of the exhaust gas. The core 

temperature remained below 60°C for most of this period. There are two spikes which 

take it above the control temperature, however, temporary malfunctions of the control 

system meant that the aeration system remained on and brought the core temperature 

down to a much lower level, in one case 35°C.

Figure 5.42 shows the data recorded during Period 2 between the 12th and 14th of 

June. The core temperature of the windrow was above 60°C for most of this period.

As with the previous period the carbon dioxide concentration and composting rate 

appear to move together, only being separated when the aeration system is active. The 

composting rate and the carbon dioxide concentration have a correlation coefficient of 

0.42 whilst for the composting rate and the airflow rate this is -0.06. As the airflow 

increased the concentration of carbon dioxide in the exhaust fell, this had the effect of 

keeping the composting rate relatively constant. Unlike the non aerated windrows 

there was no correlation between the GTD and the carbon dioxide concentration.

Period 3, between the 16th and 22nd of June is shown in Figure 5.43. During this 

period the control system worked correctly and kept the core temperature below 60°C. 

Steps can be seen in the airflow series for the periods when the fan was operating. As 

with the previous period as the airflow increased the carbon dioxide concentration of 

the exhaust gas fell, this again had the effect of keeping the composting rate relatively 

constant. This strong relationship between airflow and CO2 concentration is shown in 

the strongly negative correlation coefficient of -0.73 between these two series.

5.5.5 Discussion

It is unfortunate that there were numerous breakdowns during the collection of these 

data but there are some suitable data to work with, particularly from Period 3 where 

the system was working correctly. In the previous experiments on green waste shown 

in Section 5.3, the composting rate was shown to be more dependant on the carbon
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dioxide concentration of the exhaust gas than its flow rate; Figures 5.41 and 5.42 

show that this is true for the first two periods of this experiment. However, the data 

recorded during Period 3, shown in Figure 5.43, show that the composting rate is 

highly dependant upon the airflow rate. This was the only period where the control 

system worked correctly.

The carbon dioxide concentration and airflow rate also moved inversely to each other 

for all three periods whereas in the green waste composting trials these two series 

appeared to be unrelated. This movement causes the respiration rate to remain 

relatively constant (particularly during periods 2 and 3). The increase in one 

parameter offsets the decrease in the other.

Figure 5.44 shows a plot of composting rate against core temperature for the 

temperature controlled windrow. Unlike the non controlled windrows shown in 

Figures 5.20 and 5.21 there is no definite trend linking the two parameters. There is a 

strong vertical cluster around the temperature of 60°C, this is the temperature at which 

the fan came on to aerate the windrow. During fan start up and run down periods a 

variety of carbon dioxide concentrations would have been observed leading to a 

variety of composting rates.

Between aeration periods it is likely that the interstitial carbon dioxide concentration 

will build up. Because the fan is controlled by the data logger once it is turned on the 

readings are not taken by the logger for another 5 minutes. It is likely that some of the 

interstitial carbon dioxide is blown out during the five minute interval between the fan 

being turned on and the next sample that the logger takes. It may then be the case that 

there is then no stored reservoir of carbon dioxide and all the CO2 that is produced is 

blown out and monitored. Figure 5.43 shows this well, once the aeration increases 

there is a sharp decrease in the respiration rate as all the interstitial CO2 is blown out. 

The respiration rate then recovers.

The composting rates, shown in Figure 5.44, above 60°C are as high as those below 

60°C, this may be a reflection of a more evenly distributed temperature within the 

composting pile or may be a result of mis-measurement of carbon dioxide levels due 

to aeration. For the green waste windrows a graph of estimated energy release and
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moles of carbon dioxide released, as shown in Figure 5.22 and 5.23, gave a good 

correlation between the two series. For the temperature controlled windrow the 

overall average for energy release was 1005 kJ per mole o f carbon dioxide released, 

nearly twice the level predicted in Chapter 3-this alone suggests that not all o f the 

carbon dioxide release was recorded.

Figure 5.45 shows the estimated energy lost to air and the moles of carbon dioxide 

measured for the temperature controlled windrow. During the time covered by Period 

1 where the temperature controller did not work there were peaks in both series. 

However Periods 2 and 3 have no peaks in the data for moles of carbon dioxide 

released but several in the estimated energy release. This further implies that much 

CO2 was lost and not measured during the period that the fan started up. The 

previously observed positive correlation between the gas temperature coefficient and 

the carbon dioxide concentration was not present during this experiment and this 

further suggests the incomplete measurement of carbon dioxide production.

The lack of relationship between the GTD and the core temperature, which for the 

non aerated windrows proved to be strongly negative, is due to the aeration system. 

Whilst the control system was malfunctioning (during Period 1) there is a strong 

negative correlation between these two parameters. During Periods 2 and particularly 

3 the relationship was less prevalent, because the control system was either partially 

or fully operational during these periods. This suggests that the forced aeration 

changed this characteristic of the windrow composting process.

The airflow rates recorded were quite obviously higher than for the non aerated green 

waste windrows whilst the fan was operational. When the fan was not operating the 

flow rate was similar to the non aerated windrows-which would be expected. The 

airflow rate whilst the fan was operating was slightly lower than the requirement 

predicted in Section 5.5.3, reaching a high of 1.7ms*1 during Period 3 rather than the 

predicted 1.76ms*1. The difference in values may be due to the assumptions taken in 

calculating the quantity of air required, but it is nonetheless in the correct range and 

validates the calculations performed in the theoretical analysis presented in Chapter 3.
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Figure 5.44. Plot of composting rate against core temperature for the temperature controlled 
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5.5.6 Conclusions

The fan system was capable of removing the excess heat and was capable of 

controlling the temperature, however the control system was very delicate.

Not all of the carbon dioxide produced by the composting process was measured, a 

large quantity was unobserved during the initial fan start up because of the 5 minute 

gap before readings were taken again.

Previously observed relationships for non aerated windrows, such as those between 

the GDT and the core temperature and the composting rate and carbon dioxide 

concentration, were not observed during this trial.

The calculations for aeration from Chapter 3 for the removal of excess heat were 

shown to be in the correct range with a predicted velocity of 1.76 m s'1 being supplied 

whilst the fan was operational.

5.6 Summary

For the non aerated green waste windrows it was shown that the carbon dioxide 

concentration was a very strong indicator of composting rate, this negates the need to 

monitor the air flow rate or flue temperature constantly.

The heat output per mole of carbon dioxide of 500 kJ/mole estimated in Chapter 3 

was validated by the results gained from the canopy system.

The results for non aerated windrows relating composting rate and temperature give 

confidence in the canopy system as a method of determining the respiration rate of the 

vessel.

The non aerated green waste windrows and the windrow augmented with chicken 

litter showed the optimum core temperature to be approximately 55°C.
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The highest recorded respiration rate for a green waste windrow was approximately 

35 gC02 kgVS 'day'1.

The airflow rate through compost varied for all the experiments, the fan obviously 

provided the highest flow rates and the chicken litter augmented windrow gave the 

lowest-due to the increased density and reduced free air space.

Although correction of C:N ratio may be an important facet of composting it is 

important not to gain it at the expense of something else of importance-such as 

airflow.

Monitoring equipment can be extremely sensitive to the harsh environments found 

within composting plants, the greatest number of failures being due to the hot film 

anemometer.
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6 Containerised Composting System

6.1 The Composting Vessel

There are a variety of in-vessel composting technologies available and an outline of 

these is available in the Composting Association's publication “A guide to In-Vessel 

Composting” (Edwards et al., 1998). Containerised composting systems offer a 

modular system of composting allowing a well planned site to expand the volume of 

compost being processed. Systems of this type available on the market include 

Alpheco, Stinnes Enerco and NaturTech. These systems, amongst others, were 

compared by Myrddin (2003) for a variety of categories, such as: residence time, 

temperature distribution and throughput. The throughput per unit area of this type of 

composting system was shown to vary between 16.97 and 46.15 kgm ^week'1.

The vessel used in the current research was supplied by Wormtech Ltd. and is based 

on the roll-on-off skips allowing simple transportation of the vessels using standard 

equipment. Drawings for the vessel are shown in Appendix B and photographs of the 

vessel are shown in Figure 6.1. The vessel is essentially a container of height 2.37 

metres, width 2.25 metres and 5.8 metres long and a mass of 3.5 tonnes when empty.

Figure 6.1. Photographs of the Wormtech vessel
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The vessel has a false floor which has a number of slits cut into it (see photograph on 

the right of Figure 6.1) air enters the plenum beneath the floor though three vents, one 

of which can be easily seen on the front of the vessel in Figure 6.1 (brown circle to 

the right of the ladder). Initially the vessel was configured to draw air out of the top of 

the vessel. The maximum depth of the compost in this vessel when filled is 

approximately 1.6 metres.

6.2 Positive Aeration

6.2.1 Introduction

In the configuration shown in Figure 6.1 the fan drew air from the top of the vessel 

and vented it to atmosphere. The fan was operated by a simple time clock, initially it 

was set to come on for 30 minute intervals spaced evenly throughout the day: 4 a.m., 

12 p.m. and 8 p.m. Initially the vessel was sited at the Rhondda Cynon Taff Materials 

Reclamation Facility in Llantrisant, South Wales. The material used to fill it was 

shredded green waste from the doorstep collection service.

6.2.2 Method

Two runs using green waste were performed in the positive aeration mode. Gemini 

Tiny Tag miniature data loggers were used to record the temperatures. The data 

loggers consisted of a 100mm long probe containing a negative temperature 

coefficient thermistor with an accuracy of ±0.2°C. The probe was connected via a 2 

metre cable to a small box which provided power through batteries and was capable 

of storing 16, 000 readings. The recorded data could then be downloaded to a 

computer for off-line analysis. Two of these probes were mounted within 1 metre long 

steel sheaths to allow them to be inserted into the core of the vessel whilst a further 6 

probes were inserted to measure the temperature near the wall. The layout of these 

probes for the first run is shown in Figure 6.2 and the distances are relative to the 

ground and the front of the vessel. The layout for the second run is shown in Figure
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6.3, with one of the long probes being inserted from the end. For the second run 

25mm of expanded polystyrene was used to insulate the comer of the vessel.

° 100mm probe 
X  1000mm probe

Core left

_M3Q_

1015

4.3fl

0 2 1 
Core right X

-50

Bend

F alse f lo o r

Ground

Figure 6.2. Location of probes during the first run of the vessel

°  100mm probe 
X 1000mm probe

coreleft

iBend

False flo o r

Figure 6.3. Position of probes for the second run
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6.2.3 Results

The material for the first run was loaded into the vessel on the 9th o f June 2003 and 

allowed to compost until the 19th of June 2003. The temperatures were recorded at 5 

minute intervals. The waste was shredded using a low speed shredder (Forus, HB171) 

and had a moisture content of 50.3%(w.b.) and a volatile solids content of 70% (d.b.), 

the nitrogen content was 1.22% (d.b). Using the relationship from Emeterio et al 

(1992) that carbon is 54% of the volatile solids by mass this gives C:N ratio o f 31:1. 

The particle size analysis of the material is shown in Table 6-1.

Table 6-1. Particle size distribution o f the material used in the first run of the vessel

Mesh size, mm Weight retained, % Cumulative, %

0 (Pan) 2.2 2.2

0.5 6.9 9.1

1 6.2 15.3

1.4 11.6 26.9

2.8 14.2 41.1

5.6 6.5 47.6

8 7.6 55.2

16 44.8 100

Table 6-2. Particle size distribution of the finished material from the first run

Mesh size, mm Weight retained, % Cumulative, %

0 (Pan) 15.8 15.8

0.5 15.7 31.5

1 15.6 47.1

1.4 15.4 62.6

2.8 14.0 76.6

5.6 10.6 87.2

8 8.2 95.5

16 “ 4.5 100.0
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The finished material had a slightly increased moisture content of 56.3% (w.b.). The 

particle size distribution for the finished material is shown in Table 6-2 and a 

comparison between the distributions of the feed and composted material is shown 

graphically in Figure 6.4. Figure 6.4 shows a reduction in larger material and an 

increase in small particle sizes during the composting period. Much of the initial large 

material consisted of leaves and grass but this was less evident in the finished 

material.

100%

80%

70%

60%

50%

40%

30%

20%

10%

0%
0 2 4 6 8 10 12 14 16 18

Retained in seive size, mm 

[—♦— WBal Finished]

Figure 6.4. Comparison of initial and final particle size distributions for the first trial

The temperatures recorded during the first run of the vessel are shown in Figure 6.5, 

the numbers in the legend refer to the positions of the temperature probes as given in 

Figure 6.2, whilst the vertical lines represent the aeration periods. The core left series 

remained above 60°C for much of the trial, whilst many of the probes at the side of 

the vessel were over 40°C. Although many of the probes cooled during the aeration 

period and increased in temperature between aeration, probe 5 did not. Instead the 

temperature of probe 5 increased during the aeration periods and decreased between 

them. The temperatures recorded at position 1 also bore no relationship to the 

aeration periods, these were the lowest temperatures recorded and it comes as no 

surprise that this probe was in the comer of the vessel.
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The second run was started on the 3rd of July 2003, the material again came from the 

doorstep collection of green waste but had a slightly higher moisture content o f 58% 

(w.b.). The temperatures recorded for the second run are shown in Figure 6.6, during 

this run probe 5 was monitoring the ambient temperatures. The temperatures 

achieved were lower than those from the first run despite the addition of insulation. 

All the probes that were within the compost show behaviour of cooling during the 

aeration period and heating between the aeration periods. The temperatures recorded 

by the probes in the core were not the highest temperatures recorded during this run.

6.2.4 Discussion

Since these two runs were primarily designed to gain experience with this particular 

vessel the datasets gained during these trials are not as comprehensive as those for 

later trials. There is an obvious difference between the behaviour for probe “Core 

Left” and the others during the first run. The temperature at this location rose rapidly 

(55°C in 16 hours) reaching and remaining above 70°C for two and a half days. The 

temperature at that location was above 60°C for 8 of the 10 day period shown in 

Figure 6.5. If all o f the vessel content followed this temperature pattern then 

compliance with the ABPR would be simple. However the behaviour at a similar 

distance from the wall but closer to the floor and end of the vessel (probe “Core 

Right”) is not so encouraging. Here the temperature rise is also rapid (40°C within 8 

hours) but reaches a maximum of 65°C and then steadily declines, remaining above 

60°C for only 12 hours. The reason for this behaviour is probably due to the increased 

heat loss through the adjacent walls rather than a poor composting rate, since it would 

be expected that the composting rate would be lower near probe “Core Left” (high 

temperature at that point and probably lower air supply as indicated by the reduced 

response to aeration pulses).

Five of the shorter probes (0,2, 3 ,4  and 5) were grouped closely together, it would 

therefore be expected that the behaviour of these points would be similar to each 

other. Probes 0,2 , 3 and 4 all behave in a similar fashion to each other generally 

showing temperatures in the range of 40°C to 50°C. The temperature at these locations
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increases between aeration periods with a fall in temperature while the material is 

being aerated. This indicates that a level of composting activity occurs between 

aeration pulses and this causes an increase in temperature. Probe 5, however, behaved 

differently to the other 4 probes. Probe 5 initially recorded similar temperatures to 

those of the probes close to it, but unlike those other locations the temperature 

decreased during the periods between aerations and gained temperature during the air 

pulses. There are two possible explanations for this: either the sudden availability of 

air during the aeration period causes an upsurge in composting activity at this location 

leading to a release of heat and increase in temperature, or heat is being transferred 

from the compost into the air passing through the compost and heating up this 

location as it flows past. The reduction in temperature at this location between 

aeration pulses and the fact that after the 17th of June the temperature at this location 

was the lowest suggests that there may have been a hollow at this position.

Probe 1 experienced very low temperatures and this was most likely due to its 

positioning in the comer of the vessel. The structure of the compost may be supported 

by the two walls which could have allowed a void to form in the comer. This location 

was strongly influenced by a diurnal temperature variation rather than by the aeration 

pulses supplied to the vessel which reinforces the idea of it sitting within a void.

The reduction in particle size, shown in Figure 6.4 is quite significant; initially 55.2% 

of the material was below 8mm but after the composting process this had increased to 

95.5%. The material retained in the 16mm sieve at the start of the trial contained a 

high proportion o f grass and leaves which appear to have been broken down during 

the composting period. The increase in the moisture content of the material from 

50.3%(w.b.) to 56.3%(w.b.) during the first run is not unreasonable as water is a by­

product of the composting process (See Chapter 3, Section 3.2). This increase in 

moisture content would not be sufficient to inhibit the composting process (Jeris and 

Regan, 1973a; Suler and Finstein, 1977).

Despite the addition of insulation to the vessel for the second run the temperatures 

achieved were lower than those for the first run. None of the probes recorded 

temperatures of above 60°C. Location “Core Left” reached a maximum of 46°C 

within 16 hours and gradually cooled down over the rest of the trial period. The “Core
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End” probe recorded similar, though slightly higher temperatures to the “Core Left” 

location despite being close to the false floor of the vessel.

The highest temperatures recorded during this trial were at location 0. This was also 

the highest probe, indicating that heat was rising through the vessel. Locations 2 and 3 

located near to the false floor experience lower temperatures, generally between 20°C 

and 30°C. Probe 1 experienced higher temperatures than probe 4 even though they 

were at a similar height, however probe 4 was only 50 mm away from the end wall so 

the difference in temperature is likely to be due to the increased heat losses.

The probes all increased in temperature in the intervals between aeration. For several 

of the probes the rate o f temperature increase diminishes during the period. This may 

be due to a limiting factor such as oxygen availability or high temperature. Unlike run 

1 the “Core Left” location was affected by the aeration periods and lost heat during 

them. However the reductions in temperature of the two core series were smaller than 

those experienced by the surface locations-suggesting that although the aeration was 

reaching the core most of it is being provided to the edges.

During the second run none of the material within the vessel achieved the appropriate 

temperatures to meet the Animal By-Products Regulations (2003). For the first run, 

applying a straight line temperature profile between the core probes and the edge 

probes, approximately one quarter of the material in the vessel reached temperatures 

high enough to meet the Animal By-Products Regulations. A statistical analysis 

(Hewings et al., 2004) shows that this would require the vessel to be emptied, cleaned 

and reloaded 21 times to reach the 99.8% level as stipulated by the Defra risk 

assessment (Gale, 2002).

6.2.5 Conclusions

The temperatures within the vessel were too low, meaning that although composting 

did occur the vessel in this configuration did not meet the Animal By-Products 

Regulations (2003).
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The insulation applied to the vessel for the second run did not increase temperatures.

6.3 Factory waste trial

6.3.1 Introduction

The main benefit o f an in-vessel composting system is its ability to compost catering 

waste to the standards specified under the Animal By-Products Regulations. Green 

waste can be composted easily in windrow systems, but without the composting of 

catering waste it is not possible to meet the targets set out in Wise About Waste 

(WAG, 2002).

The initial tests of the containerised system were performed using green waste only. It 

was necessary to find a suitable waste stream to use as a substitute for waste covered 

by the Animal By-Products Regulations to combine with the green waste to allow 

investigation of how the vessel would behave. Ideally this would have been kitchen 

waste from doorstep collection, but without a doorstep collection service for kitchen 

waste in place the quantity required would have been difficult to obtain. Instead a 

source was located from a factory which only processes vegetables meaning that it 

was outside the remit of the Animal By-Products Regulations (2003). The waste was 

delivered to site and used in both the containerised system as well as a turned bay 

system that was being developed (Hewings et al., 2004).

Whereas the previous trials had taken place at the Rhondda Cynon Taff Materials 

Reclamation Facility in Llantrisant, South Wales, prior to this trial the vessel was 

moved to the University’s Composting Research Station at the CERT facility near 

Carmarthen, West Wales.
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6.3.2 Method

In order to prepare the feed for the composting trial the shredded green waste was 

mixed with the vegetable waste in a ratio of 3:1 by volume. Approximately 12 tonnes 

of material were used in total to fill the vessel with around one third of that weight 

being vegetable waste. Due to the unknown composition of the material it was 

decided to manually monitor the interstitial CO2 concentration during the composting 

process and adjust the aeration appropriately. The CO2 concentration was recorded 

using a Gas Data PCO2 carbon dioxide meter with inbuilt data logging facility. A 

brass pipe of diameter 6mm and length 1 metre was inserted into the core of the 

compost to allow sampling of the interstitial gas. The sampled gas was passed through 

a moisture trap made from a 250ml Dreschel vessel filled with silica gel crystals to 

remove water which would inhibit the performance of the CO2 meter.

A Seko shredder was used to shred the green waste, as shown in Chapter 4 

approximately 50% of the shredded material has a particle size of less than 8mm. The 

density of the shredded green waste was shown by Hewings et al. (2002) to be 

approximately 360 kg m'3 and to remain below 400 kg m'3 for the first 20 days of 

windrow composting. The addition of the vegetable waste increased the density of the 

feed to 460 kg m 3.
 man______

O 100mm probes ^14 
X 1000mm probes
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Bend

F a lse  f lo o r

Ground

Figure 6.7. Location of probes during the vegetable waste trial
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Several probes were used to monitor the temperature of the vessel, laid out as shown 

in Figure 6.7. As with the previous trials these were Gemini Tiny Tag data loggers, as 

described in Section 6.2.2. Two of these probes had failed either due to the corrosive 

nature o f the compost or the settling action of the material during the composting 

period causing physical damage.

6.3.3 Aeration

For this trial the vessel was in the negative aeration mode. This means that the air was 

being blown by the fan into the void space at the top of the vessel, flowing 

downwards through the compost and leaving through the three vents beneath the false 

floor. The original control strategy for aeration of the vessel during this trial was 

based on human monitoring and to keep the interstitial CO2 concentration o f the 

compost below 10% so that composting activity would not be impeded. If the 

interstitial CO2 was found to be above 10% then the duration or frequency o f the 

aeration periods would be adjusted and the same would happen if the interstitial CO2 

content were too low. However during this trial it was discovered that the time clock 

on the control circuit o f the fan was malfunctioning leading to inaccurate control of 

the fan. The time clock was later replaced by a more reliable system with increased 

resolution.

6.3.4 Results

The temperature results during the vegetable waste trial are shown in Figure 6.8. The 

core temperature took 6 days to reach 60°C and remained above this temperature for 

less than two days, which would not be long enough to meet the Animal By-Products 

Regulations’ requirement of treatment at 60°C for 2 days. In the first and second runs 

of the vessel shown in Figures 6.5 and 6.6 the temperature of the composting material 

increased much more rapidly than during this trial.

6-13



Containerised Composting System

In order to meet the Animal By-Products Regulations it is necessary for the entirety of 

the vessel to experience a temperature greater than 60°C for 2 days or more provided 

that the particle size is less than 400mm. As can be seen from Figure 6.8 none o f the 

probes located close to the side wall (800, 801,802, 803 and 805) recorded 

temperatures in excess o f 60°C. Four of these probes (801, 802, 803 and 805) took 

approximately two and a half days to reach their peak temperatures, whilst probe 800 

took 7 days to reach a peak temperature of 59°C.

Due to the manual intervention in the control of this trial there are a lot of data 

relating to the control o f the system in the log book kept at site and this is detailed as 

follows. The vessel was filled on the 18th of November and the temperatures remained 

static until approximately 1300 hours on the 19th. At this time the interstitial CO2 

concentration in the core o f the vessel was observed to be 42% CO2. Because o f this 

high concentration the fan was switched on manually until 1415 hours, this is likely to 

have caused a large release of heat from the vessel, but it also coincided with the first 

increase in temperature within the vessel.

The temperatures recorded by the probes began to fall at 2244 on the 19th of 

November. On the 20th o f November it was observed that the CO2 concentrations had 

been very high all night and was recorded to be at 31% at 0815. Again the fan was 

manually set to operate until 0900 when the interstitial CO2 concentration had fallen 

to 4.6%. By 1005 it had reached 15% so the blower was again manually turned on 

until 1115, when the concentration had fallen to 3.7%. The blower was turned on 

constantly at 1300 and left on overnight, the CO2 concentration on the morning of the 

21st was 1.5%. The manual operation of the fan during the 20th of November 

coincides with the second increase in temperatures shown in Figure 6.8.

Apart from one brief period the fan was left constantly running until the morning of 

the 24th of November. During the constant aeration period between the 21st and 24th of 

November the core temperature probe and probe 800 both record increasing 

temperatures. Probes 801 and 805, however, experienced falls in temperature during 

this period while probes 802 and 803 experienced a fall in temperature followed by an 

increase.
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The time clock in the fan control circuit was replaced on the 26th o f November. Probe 

800 shows the aeration pattern after this date very clearly with a saw tooth pattern. On 

the 27th of November the fan was set to operate for 2 hours in every 4, this was 

reduced to 1 hour in every 4 on the 1st of December. The upwards stroke o f the saw 

tooth pattern in the series for probe 800 occurs whilst the fan is operating.

6.3.5 Discussion

Figure 6.8 shows that none of the locations recorded during this trial met the 

requirements of the Animal By-Products Regulations. The increases in temperature 

correlate strongly with the manual operation of the fan between the 20th and 24th o f 

November. The vessel showed no increase in temperature until the fan was operated 

manually, it is likely that up until this point there was not enough oxygen available 

within the composting mass to allow any activity. This is further reinforced by the 

pause in continuous aeration which occurred on the 19th of November and the brief 

pause on the 21st o f November, both of which caused decreases in the temperatures 

recorded by the probes. However, a large amount of heat would have been lost from 

the system during the manually operated aeration periods between the 20th and 24th of 

November which was detrimental to meeting the ABPR.

The calculations presented in Chapter 3 show that a composting rate o f 45 

gC02kgVS'1day'1 would be required in order for the vessel to remain at 60°C above 

the ambient temperature. This is quite high and almost double the recorded rates for 

windrow composting presented in Chapter 5. In addition to this it is shown in Figures 

5.20 and 5.21 that the composting rate reduces above 55°C. It is important to realise 

that as the temperature increases above 55°C to the treatment temperature of 60°C the 

respiration rate will decrease causing a reduction in the heat released by the compost. 

In addition, at the elevated temperatures the increased temperature difference between 

the vessel and its surroundings will increase the rate of heat transfer.

As with the previous two runs the probe closest to the end wall, 801, experienced very 

low temperatures. As with the previous runs this is likely to be related to its position
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close to two walls meaning that it experiences greater heat transfer to the atmosphere. 

Although this location reached 37°C as a result o f the constant aeration on the 21st o f 

November it was below 20°C for the majority o f the trial. In order to ensure treatment 

of material at this location either more heat needs to be released or introduced here or 

the rate of heat loss needs to be reduced.

Probe 800 experienced the highest temperatures of all o f the probes on the side wall. 

After the replacement of the time clock this location increases in temperature during 

the aeration periods. Figure 6.7 shows that this is the closest probe to the vessel’s 

false floor. As the vessel was configured for negative aeration it is likely that heat is 

being moved downward by the air flow into this location. This location is also hotter 

than the core during the constant aeration further implying that heat is being 

transferred downwards through the vessel. The low temperatures experienced by 

probe 805, the highest probe location, further reinforce this.

The density of the material may have affected air flow. During runs 1 and 2 many of 

the probes experienced changes in temperature which were related to the aeration 

pulses. However during this vegetable waste trial this only occurred at the location of 

probe 800. The implication of this is that the air flow through the composting material 

was reduced compared to the green waste only trials. The particle size analysis of the 

material used in Run 1 shows that 55% of that material was less than 8 mm. As shown 

in Chapter 4 approximately 60% of the green waste shredded by the Seko shredder 

will pass through an 8 mm sieve and all of the vegetable waste was less than 8mm. 

This means that there was a much higher proportion of fine material in this trial than 

in the previous tests. Although this creates a larger surface area on which composting 

can occur it also increases the resistance to airflow of the material. The increased 

density of the mixture, 460 kg m'3, rather than 360 kg m*3 for green waste reflects the 

reduction in particle size. The increase in density will also lead to a reduction in 

available pore space further inhibiting airflow.

The malfunction of the time clock required an increased level of manual operation of 

the system during the start of the trial. The increases in core temperature were 

strongly related to the periods during which the fan was operational. This implies that
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the composting process within the vessel when the fan was not operating there was 

insufficient oxygen within the vessel to allow composting to occur.

6.3.6 Conclusions

The vessel did not reach the required treatment temperatures, due to either insufficient 

respiration or excessive heat loss.

As the respiration rate was not recorded during this trial the system can not be 

compared to the windrow composting trials in Chapter 5.

Appropriate aeration is critical to allow the system to meet the Animal By-Products 

Regulations (2003).

The increased density and higher proportion of fine material appeared to impede 

airflow within the vessel.

6.4 Citrus Waste Trial

6.4.1 Introduction

It was decided to use factory processing waste as a replacement to the kitchen waste 

in the mix to feed the vessel as treatment of such wastes may have a commercial 

future. A difficult waste, namely citrus waste, was sourced from a factory in South 

Wales and incorporated into the feedstock. For this trial various improvements were 

made to the operation of the vessel including the recirculation o f air as described in 

Section 6.4.3. Unlike the previous trials data on respiration rates were recorded and a 

larger dataset is available.
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6.4.2 Preparation of the feedstock

The factory waste consisted mainly of orange pulp and peel and is shown in Figure 

6.9. To prepare the feedstock for the trial 4,460 kg of the factory waste were 

combined with 8, 240 kg of green waste. The green waste was first shredded using a 

Jenz hammer mill shredder, then mixed with the factory waste in batches using a Seko 

shredder. Photographs of the waste being prepared are shown in Figure 6.10. The 

photograph on the left of Figure 6.10 shows the mixture after it has been unloaded 

from the Seko shredder, orange flecks can be made out within the mixture. The waste 

mixture was then loaded into the vessel using a telehandler and levelled off by hand.

Figure 6.9. A photograph of the citrus waste as delivered

The final depth of compost within the vessel was approximately 1.25 metres. The 

weights of each of the wastes were analysed by towing trailers of wastes over the 

weighbridge on the Nantycaws landfill site owned by CWM Environmental. The final 

density of the mixture was 780 kg m"3, much higher than green waste by itself. 

Samples were taken in accordance with BS EN 12579:2000 of the individual 

feedstocks and the mixture that was used to fill the vessel. These were analysed at the 

School of Engineering’s laboratories in Cardiff and the results of the analysis are 

given in Table 6-3.
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Figure 6.10. Photographs o f the mixture o f green and citrus waste and the mixture being loaded 
into the vessel

Table 6-3. Analysis o f samples taken on day of filling the vessel

Factory Waste Green Waste Mix Used in Vessel

PH
(BS EN 13037:2000)

3.96 7.04 5.33

Electrical
Conductivity, mS/cm 
(BS EN 13038:2000)

0.30 0.50 0.73

Moisture content 
(w.b.)
(BS EN 13040:2000)

79.9% 46.7% 63.6%

Volatile solids content 
(d.b.)
(BS EN 13039:2000)

95.5% 49.5% 61.6%

6.4.3 Method

The vessel was configured to recirculate the air through positive aeration. This mode 

of aeration was chosen due to previous operational problems with too much 

condensation remaining in the plenum. A knock-out pot was also added to the 

aeration circuit to allow removal o f some o f the excess moisture. The knock-out pot 

was manufactured from a barrel approximately 400mm in diameter and 600mm high. 

The air was blown in tangentially allowing the excess moisture to condense on the 

side o f the pot. Air left through a pipe at the top o f the vessel. A tap located at the
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bottom of the knock-out pot allowed the moisture condensed from the air to be 

drained and quantified. Ten k type thermocouples were attached to the inside wall of 

the vessel to monitor the wall temperature. The thermocouples were connected to the 

datalogger (Delta T, DL2e). In addition to the wall thermocouples the inlet and 

exhaust air temperatures and the inlet relative humidity of the air were recorded and 

this information was also stored on the datalogger. A Gemini Tiny Tag data logging 

probe, as used in previous trials was inserted into the core to monitor the internal 

temperatures of the vessel. A 1 metre long 6mm diameter gas pipe was inserted 

horizontally into the compost, this was connected to a CO2 meter which recorded the 

interstitial concentration of CO2 within the composting mass.

Air inlet

Knock­
out pot

Compost

Pump
Plenum

Air outlet

Figure 6.11. Schematic of the vessel’s air recirculation system

During the trial the method of supplying air was changed, initially the air was 

supplied into the plenum beneath the false floor and sucked out of the top as shown 

schematically in Figure 6.11. Approximately 5% of the air was replaced through the 

inlet valve whilst the fan was operating with the remaining 95% being recirculated. 

Part way through the trial a new air delivery system was employed. Three 1 !/2”BSP 

pipes were driven into the composting pile at a height of half a metre above the false 

floor. The last 200mm of each pipe had a number of holes and the ends were capped. 

The central pipe was half way along the vessel with the other two being 1.5 metres 

either side of it, a photograph of this new air distribution system is shown in Figure 

6 .12.
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During the composting period several samples were taken for analysis of moisture, 

volatile solids, pH and electrical conductivity. Unlike the previous trials the 

respiration rate of the compost was analysed on days 11,13 and 19 of the composting 

process. This was done by monitoring the CO2 concentration, temperature and airflow 

rate of the exhaust gas. The final weight of the material in the vessel was measured by 

loading the vessel on to the back of a lorry and driving over the weigh bridge on the 

landfill site. At the end of the composting period the weight of material in the vessel 

was 8,280 kg. This represents a mass loss of 35 percent.

Figure 6.12. The new aeration system that was designed to supply air to the core of the vessel 

6.4.4 Life story

The life story of this trial is quite complicated and is shown in Figure 6.13. The line 

represents the proportion of the time that the fan was operational, this is shown on the 

right hand axis. For the majority of the life of the vessel the fan operated for 15 

minutes in every hour, on day 7 the aeration frequency was reduced to 15 minutes in 

every two hours, this was changed back on day 13 of the composting period. The
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brown columns shown in Figure 6.13 represent the amount of moisture drained from 

the knock out pot or the plenum; these correspond to the left hand axis.

The red vertical lines represent the days when the respiration rate was recorded at the 

outlet of the vessel, whilst the blue lines show when the aeration system was changed 

as described in Section 6.4.3. The line on day 26 shows the new system being 

installed whilst the line on day 43 is when the system was changed back to the 

original aeration system.

New aeration 
system installed

New aeration 
system removedRespiration rate recorded

400 0.3

350
0.25

300

0.2
250

Water drained from 
knock-out pot

200 0.15

150
0.1

100

0.05

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748

Moisture —♦-Aeration

Figure 6.13. The life story of the vessel during the citrus waste trial 

6.4.5 Results

The results for the core and wall temperatures are shown in Figure 6.14. Although 10 

wall temperature readings were taken these have been averaged and this is shown as 

the average wall series. The ambient temperature is also shown on Figure 6.15 for
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Figure 6.14. Temperature data recorded during the citrus waste composting trial
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comparison. Despite an initially slow start the core temperature does eventually reach 

above 60°C after 23 days. The temperature of the core then drops dramatically to 

approximately 30°C. The drop in core temperature coincides with the change in air 

delivery system. The second increase in core temperature coincides with the change 

back to the original air delivery system. Although the side wall temperatures show a 

diurnal pattern the core temperature does not until the replacement air delivery system 

is attached. This diurnal pattern within the core is out of phase with the pattern 

experienced by the sidewalls

Figure 6.15 shows the inlet and outlet temperatures that were recorded, like all o f the 

data these were recorded every five minutes. However, this produces approximately 

13,000 data points for each series in a trial of this length. In order to filter out some of 

the noise the lines shown in Figure 6.15 are moving average plots created in 

Microsoft Excel based on 20 periods. The highest temperatures experienced by the 

probes occurred between the 11th and 21st of June-this is also the period that the 

alternate air delivery system was in use. It is also during the period that the alternate 

aeration system was in use that the Gas Temperature Differential (GTD) became 

predominantly negative.

8 1.20

7
1.00

6

0.80
5

0.604

3
0.40

2

0.20
1

0.000  -I----
12/05/2004 17/05/2004 11/06/200406/06/200401/06/200422/05/2004 27/05/2004

[~*~PH  —+ - E C  I

Figure 6.16. pH and electrical conductivity of the composting material during the citrus
waste trial
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Figure 6.16 shows the electrical conductivity and pH of samples taken from the vessel 

during the composting trial, these are averages of 3 sub samples. Electrical 

conductivity and pH were measured in accordance with BS EN 13037:2000 and BS 

EN 13038:2000 (BSI, 2000e; 2000f) using a Hanna Instruments metre. The pH of the 

compost increases after the 1st of June to approximately 7.5 on the 8 th of June. Due to 

the acidic nature of the citrus waste the initial pH of the material was quite low. The 

electrical conductivity varies between 0.46 and 1.07 mS/cm.

6.4.6 Respiration rate

There are essentially three methods for the measurement of respiration rate within the 

containerised composter, these are:

• Direct measurement of CO2 lost at the outlet port,

• Measurement of interstitial CO2 recovery between aeration periods

• Analysis of the mass balance to work out volatile solids reduction during 

composting.

The first method, direct measurement at the outlet port was performed 3 times during 

the trial, on days 11,13 and 19. The sampling tube of a CO2 meter was inserted into 

the outlet port of the vessel. The meter was set to record the CO2 concentration 

automatically at one minute intervals. The velocity of the gas leaving the vessel was 

recorded manually using a Testo 425 hot wire anemometer. The CO2 records are 

shown in Figures 6.17,6.18 and 6.19. Occasionally, as with the third peak in Figure 

6.17 and peak E in Figure 6.18 there may have been a failure with the meter-for 

example a blockage within the moisture trap or pipe.

The data for airflow rate, CO2 concentration and air temperature can be combined to 

give a respiration rate. These respiration rates along with the volumetric flow rate of 

air leaving the vessel and the proportion of time that the fan was operating are shown 

in Table 6-4. As can be seen from Table 6-4 the greatest respiration rate occurred on 

day 13 of the composting process, with a high of 47.2 gCC>2 kgVS'May'1. This 

maximum value of respiration rate coincides with the increase in aeration frequency 

and the dramatic rise in core temperature shown in Figure 6.14. However, two days
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prior this, the recorded rate was approximately one third o f the maximum, whilst the 

aeration frequency was half. Once the core temperature had reached 50°C the rate had 

fallen to levels nearer a quarter of the maximum.

10

9

V c C> 5 m c
2 «© 4
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3

0
24/05/200413:38:02 24/05/200415:38:02 24/05/2004 17:38:02 24/05/200419:38:02

Figure 6.17. Carbon dioxide data for the vessel from day 11 (24th of May 2004)
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Figure 6.18. Carbon dioxide data for the vessel from day 13 (26th of May 2004)
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Figure 6.19. Carbon dioxide data for the vessel from day 19 (1st o f June 2004)

Table 6-4. Respiration rates recorded at outlet of vessel

Peak Day
Volumetric 
flow rate, 

m s

Proportion
aeration

operating

Respiration 
rate, 

gC 02 kgVS ' 1 
day' 1

A 11 0.053 0.125 14.3

B 11 0.053 0.125 18.6

C 13 0.052 0.25 47.2

D 13 0.052 0.25 41.3

E 13 0.052 0.25 3.2

F 19 0.050 0.25 8.3

G 19 0.050 0.25 13

The next method that can be used to assess respiration rate is the measurement of the 

interstitial CO2 concentration. The interstitial CO2 content was monitored for this trial 

in order to develop a strategy to keep it below 10%. Within the composting mass there 

is a volume of free air space. Equations 4.10 and 4.11 from Chapter 4 allow this 

volume to be calculated as a function of compost bulk density, moisture content and 

volatile solids content. The recovery rate of interstitial CO2 concentration can be

F G
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combined with the volume of free air space and the mass o f volatile solids to allow 

estimation of the respiration rate.

Figures 6.20, 6.21 and 6.22 show interstitial CO2 data for three key periods during the 

compost trial. Figure 6 .2 0  shows interstitial CO2 data between the 17th and 23rd of 

May. During the time shown in this figure the aeration period decreased from 15 

minutes in every hour to 15 minutes in every 2 hours. The decrease in frequency of 

aeration can be clearly seen in the data. Figure 6 .2 1  shows interstitial CO2 recorded 

between the 23rd and 29th of May. During this period the aeration was increased from 

15 minutes in every two hours to 15 minutes in every hour. The increase in aeration 

can be clearly seen in the data. The period shown in Figure 6.21 coincides with the 

maximum recorded respiration rate shown in Table 6-4 and with the increase in core 

temperature shown in Figure 6.14. Finally, Figure 6.22 shows the data for interstitial 

CO2 when the method of air delivery was changed as described in Section 6.4.3. The 

result of this was a dramatic fall in core temperatures. In this case the frequency of 

aeration pulses remained the same but the recovery rate of interstitial CO2 was greatly 

reduced.

The estimation of composting rate from these figures is rather difficult and assumes 

no loss of CO2 from the vessel when the fan is not operating. Approximately 12  

tonnes of waste were used to fill the vessel, the initial density o f that material was 780 

kgm' 3 and the moisture and volatile solids contents are shown in Table 6-3. Applying 

Equations 4.10 and 4.11 gives a proportion of free air space within the compost of 

0.35. The total volume filled by the compost was 16.3 m3, therefore the total free air 

space within the compost was 5.7 m3. In addition to this there is a volume o f air above 

the composting material in the headspace and a volume below beneath the false floor. 

It is likely that some of the CO2 from the composting process will leak into these 

volumes. However, it is unlikely that the gas in the headspace and the plenum will 

reach the same CO2 concentration as the gas in the interstitial void.

Figure 6.20 shows the decrease in aeration frequency that occurred on day 11. The 

aeration was initially for 15 minutes in every hour but was changed to 15 minutes in 

every two hours. Before this change in the aeration frequency the interstitial CO2 

concentration increased by approximately 3% in the 45 minute period between
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aerations. After the reduction in aeration frequency the CO2 concentration increased 

by approximately 5% in the 105 minute period between aerations. After a further 

day’s composting this reduced to around a 3.5% increase in interstitial CO2 in a 105 

minute period.

Figure 6 .2 1  shows the interstitial CO2 data from when the aeration frequency was 

increased from 15 minutes in every two hours to 15 minutes in every hour. Prior to 

the change the concentration of CO2 was increasing by 5% in the 105 minute interval 

between aerations. After the change in aeration frequency this had reduced to a 3% 

increase, but in the shorter period of 45 minutes.

Figure 6.22 shows what happened when the replacement air delivery system was 

installed. The recovery of interstitial CO2 concentration was initially 8 % in 45 

minutes. This initially reduced to 6 % in 45 minutes but after one day the recovery o f 

interstitial CO2 had diminished until it was approximately 2% in 45minutes. This is 

approximately a quarter of the rate prior to the change.
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Figure 6.20. Interstitial carbon dioxide recorded between the 17th and 23rd of May for the citrus 
waste composting trial
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Figure 6.21. Interstitial carbon dioxide recorded between the 23rd and 29th o f May for the 
citrus waste composting trial
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Figure 6.22. Interstitial carbon dioxide recorded between the 7th and 10th of June for the 
citrus waste composting trial
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Table 6-5 shows an estimation o f the respiration rate based on interstitial CO2 

recovery combined with the void space. Two rates are shown in the last two columns 

of the table. The final column assumes that the headspace above the compost reached 

the same concentration of CO2 as the interstitial volume, whilst the other rate given 

assumes that all of the CO2 remained within the interstitial void and none was 

released into the void space. The true rate will lie somewhere between these two 

extremes.

The rates shown in Table 6-5 are far lower than those shown for respiration rate as 

recorded at the outlet of the vessel shown in Table 6-4. For example the maximum 

rate shown in Table 6-4 of 47.3 gCC^kgVS'May' 1 occurred on the 26th o f May. One 

day later the rate calculated from interstitial CO2 recovery was 6 .1  gCC^kgVS ' 1 day'1. 

Though the maximum rate recorded by this method occurred on the 8 th of June prior 

to the installation of the alternate aeration system. At that point the core temperature 

was 64°C and the respiration rate was 15.5 gCC^kgVS'1.

Table 6-5. Respiration rate estimated from interstitial carbon dioxide increase

Date Recovery

percentage,

%

Time to 

recover, 

minutes

Rate excluding

headspace

gC02kgVS'1day' 1

Rate including 

headspace 

gC 02kgV S*1 day ' 1

20/05/04 3 45 1.9 6 .1

21/05/04 5 105 1.3 4.4

26/05/04 5 105 1.3 4.4

27/05/04 3 45 1.9 6 .1

08/06/04 8 45 4.7 15.5

09/06/04 2 45 1.3 4.3

The final method of calculating the respiration rate concerned the materials balance 

within the vessel. The initial moisture content of the material loaded into the vessel 

was 63.6%(w.b.) with a volatile solids content of 61.6%(d.b.). The total mass was 

12,700 kg with a density of 780 kgm'3. Forty three days later when the final samples 

were taken there was 8,280kg of material in the vessel with a moisture content of 

51%(w.b.) and a final volatile solids content of 55%(d.b.). The total mass, mass o f
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water present and mass o f volatile solids present at the start and end o f the process are 

shown in Table 6 -6 .

Table 6 -6 . Total mass, mass of moisture and mass of volatile solids (in kilograms)

Constituent On Filling After 43 days

Total mass 12,700 8,280

Mass of water 8,077 4,223

Mass of volatile solids 2,848 2,231

Mass of ash 1,775 1,826

It is not unreasonable that the quantity of ash present would remain constant. The 

difference between weight of ash on filling and after 43 days given in Table 6 - 6  is less 

than 3% of the weight of ash on filling. Much of the weight loss comes from a 

reduction in moisture-3,854 kilograms were lost between the start and end o f the 

composting trial. During the trial 527kg of leachate was drained off from the knock­

out pot. The calculations from Chapter 3 suggest that an approximately even number 

of moles of CO2 and water are produced by the composting process, so quantification 

of the average respiration rate should also allow calculation o f water produced during 

the composting process.

Overall 617kg o f volatile solids were lost. It has been suggested that volatile solids 

consist of approximately 55% carbon (Emeterio and Garcia, 1992; Haug, 1993), this 

can be reinforced by the figures shown in Table 3-2 in Chapter 3. Therefore it can be 

calculated that a total mass of 339,350 grams of carbon or 1 .2  kg o f CO2 were 

released during the 43 day composting period. This can then be divided by the initial 

mass of volatile solids, 2,848 kg, and the number o f days to give an average 

composting rate of 10.2 gCC>2 kgVS'May'1. This is generally higher than the values 

given in Table 6 .5 , which shows calculated rates based on interstitial CO2 increase. 

This average rate is comparable with those shown in Table 6-4 where low rates were 

recorded at the start and towards the end of the trial, with the higher rates being 

associated with the rapid heating o f the vessel. A similar mixture o f citrus waste and 

green waste was tested in a turned bay composting system (Hewings et al., 2004a)
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and a respiration rate based on interstitial CO2 recovery o f approximately 17 gCC>2 

kgVS'May' 1 was recorded.

As previously mentioned water is released by the composting process, the calculations 

in Chapter 3 predict that approximately 1 mole of water is produced for every mole of 

CO2 released. The previous calculations show that 28,279.2 moles o f CO2 were 

released. Application of the 1 :1 molar ratio between CO2 and H2O gives 509 kg of 

water produced by the process. This means a total o f4,363 kg o f water were removed 

from the vessel during this composting trial.

6.4.7 Discussion

It is evident from Figure 6.14 that the wall temperature of the vessel did not reach an 

appropriate temperature to ensure sanitisation of the composting material. The core 

temperature eventually reached 64°C but took 23 days to reach 60°C. The wall 

temperatures were strongly influenced by the diurnal variation in air temperature.

After the addition of the new aeration system the temperature differential between the 

wall and ambient temperatures increased. This implies that the heat previously stored 

within the core o f the vessel was being moved outwards by the new air delivery 

configuration. The core also experienced a diurnal fluctuation which lagged behind 

the diurnal trends recorded for the average wall temperature and ambient temperature.

In previous trials using the vessel it was not possible to calculate whether the quantity 

of air being supplied was appropriate. For example the moisture content for the first 

run increased from 50.3%(w.b.) to 56.3%(w.b.) during the trial. However because 

volatile solids are used by the composting process the actual weight of water in the 

vessel could have decreased, increased or remained the same. For the citrus waste trial 

the initial and final weights of the feedstock were measured and are shown in Table 6 - 

6 . Chapter 3 showed estimates of air requirements for composting material as a 

function of bulk density and composting rate (Figures 3.14, 3.15 and 3.16). The bulk
*  ^  1 1

density of this mixture was 780 kgm' and the required rate was 45 gCC^kgVS' day' .
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The calculations from Chapter 3 suggest that an airflow rate o f 6 ><1 0 '3m V 1 would be 

required to supply oxygen (assuming that all the oxygen is used), 0.15m3s'1 would be 

required to remove excess heat and 0 .1  lm V 1 would be required to remove excess 

moisture. The figures for airflow presented in Table 6-4 suggest that on day 11 there 

was an airflow rate of 6.63><10'3m3s"1. When the frequency o f aeration was increased 

the air flow rate rose to 1 .3 ><1 0 '2m3s'1, approximately double the estimate from 

Chapter 3. The estimate from Chapter 3 assumes that all oxygen in the air is used, as 

the control strategy was to keep the interstitial CO2 concentration below 1 0 % this rate 

needs to be doubled. Once the airflow rate was at 1.3x10* m s' the CO2 concentration 

could be kept to 1 0 % so as not to inhibit activity and the respiration rate could 

increase to the target value allowing the vessel to heat up.

The compost activity as indicated by measurement at the outlet port showed the 

greatest rate occurring on day 13 whilst the compost was approximately 42°C and the 

aeration had been increased. This precedes the rapid warm up o f the vessel and 

perhaps implies a mesophilic optimum temperature. By day 19, the 1st o f June, the 

core temperature had risen to approximately 58°C but activity had dropped to around 

a quarter of the previously recorded level. The airflow rate was still at the calculated 

level for oxygen supply so implies that there is some other limiting factor within the 

vessel. This may be due to a reduction in mesophilic bacteria as the temperature 

moved towards a thermophilic optimum but without a thermophilic population 

developing to take over the composting process.

Prior to the replacement air delivery system’s installation the GTD was generally 

positive meaning that the exhaust air was warmer than the inlet air. After the 

installation the GTD moved closer to 0°C and drops below 0°C quite frequently. In 

Chapter 5 it was observed that the GTD was an indicator of compost activity, the 

reduction in GTD which coincides with the installation of the new air delivery system 

implies a drop in composting activity.

Figure 6 .2 2  shows large recoveries in interstitial CO2 recovery-approximately 8 % in 

45 minutes equivalent to a rate of 15.5 gCC^kgVS'May*1 prior to the aeration system 

being replaced, at this point the core temperature was approximately 63°C. After the 

replacement air delivery system was installed the core temperature dropped to
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approximately 30°C and the compost rate to 4.3 gCC>2 kgVS'May'1, as with the 

windrow composting this suggests a relationship between the temperature and the 

composting rate.

The average composting rate as determined by a mass balance was 10.2 gCC^kgVS' 1 

day'1. This is lower than the rates recorded for the windrow composting in Chapter 5. 

Whilst the replacement aeration system was being used the composting rate appeared 

to be very low and it is likely to be this period of low activity that produced such a 

low rate of composting for the overall trial.

The pH rises once the material entered the thermophilic stage. It is usual for the pH of 

a compost to initially drop with the formation of CO2 and organic acids and then 

increase once the thermophilic stage begins (Haug, 1993). Lei et al. (2000) observed 

that while the adjustment of the pH affected microbial structure it did not affect 

oxygen consumption. This implies that the initially low pH was not necessarily a 

problem for the composting process, the material also moved into the optimum range 

of 7-8 (Nagasaki etal., 1992).

6.4.8 Conclusions

The replacement aeration system appeared to move heat from the centre o f the vessel 

to the extremities which also impeded composting activity at the core due to the 

reduced temperatures.

The replacement air delivery system did not supply adequate air to support higher 

respiration rates and did not redistribute the heat within the vessel appropriately.

An average respiration rate of 10.2 gCC^kgVS'May' 1 was recorded, approximately a 

quarter of the rate suggested in Chapter 3.

Interstitial CO2 concentrations of greater than 10% inhibited the composting process.
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A total mass reduction of 35% was recorded. This was made up o f approximately 

1,244 kg of CO2 and 4,363 kg of water, meaning that much o f the mass reduction 

comes from reducing the moisture content o f the material.

The vessel system did not meet the requirements o f the Animal By-Products 

Regulations during this trial. In order to meet these requirements better air distribution 

management may be required as well as minimisation of heat losses.

6.5 Insulation

6.5.1 Introduction

As calculated in Chapter 3 the vessel requires a rate of approximately 45 gCC>2 kgVS ' 1 

day' 1 in order to maintain a temperature of 60°C above ambient and allow it to meet 

the Animal By-Products Regulations (2003). As can be seen from Chapter 4 this rate 

is approximately double that of windrow composting. A rate o f this magnitude was 

reached during the heat-up of the vessel during the citrus waste trial, but could not be 

sustained. By reducing the temperature differential between the ambient air and the 

outer vessel wall a lower composting rate would be required to keep the vessel at the 

required treatment temperature. The development of a turned bay system by Hewings 

et al. (2004) used 50mm thick insulation. This demonstrated that high internal wall 

temperatures could be maintained. It was deduced that the thickness and type of 

insulation was important. During the second run of the vessel described in Section 6.2 

the vessel had been insulated with 25mm of expanded polystyrene and low 

temperatures had been recorded.

6.5.2 Method

The vessel wasjined on the inside using 50mm high density foam insulation. The 

floor of the vessel was left clear of insulation except for the 300mm next to the walls.
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It was hoped that this would channel more o f the air to the core o f the vessel. The air 

was supplied in the positive airflow direction and was recirculated. The k type 

thermocouples which had been previously mounted on the internal wall of the vessel 

during the citrus waste trial were moved to the internal side o f the insulation, thus 

keeping them in contact with the compost. The thermocouples were applied to the 

wall at heights of 0.5m, lm  and 1.5 metres above the false floor in three different 

locations along the vessel, in the comer, 1 metre from the comer and 2  metres from 

the comer. As with the previous trials a Gemini Tiny Tag temperature probe was 

inserted into the core of the compost to record internal temperatures at 5 minute 

intervals.

The vessel was filled with green waste collected at local civic amenity sites. This was 

shredded using a Jenz hammer mill shredder. The aeration was controlled to keep the 

interstitial CO2 concentration in the range of 5 to 10% so as not to inhibit the 

composting activity. Initially the fan was on for 15 minutes in every hour as this had 

been shown to cause the increase in temperature and high respiration rate during the 

citrus waste trial. The frequency was later reduced to 15 minutes in every two hours 

after the core o f the material had begun to cool.

6.5.3 Results

The core temperature was recorded at 5 minute intervals and is shown in Figure 6.23. 

The probe was inserted whilst the core was at approximately 33°C and recorded the 

rise in temperature to 75°C over the next 24 hours. The core temperature then 

declined over the next 5 days to approximately 70°C before rising back up again. The 

re-growth of temperature within the core coincides with the reduction in frequency of 

aeration from 15 minutes in every hour to 15 minutes in every 2 hours. The maximum 

recorded temperature was 81.7°C.

Unfortunately the junction box through which the thermocouples were routed before 

being fed into the logger was flooded with leachate at the start o f the trial. This caused 

irreparable damage to the connections within the box meaning that the wall
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temperatures could not be automatically logged. Temperatures were however taken 

manually by plugging the thermocouples into the handheld meter used for daily 

recording of temperature on site. The manually recorded temperatures are shown in 

Table 6-7. The temperatures recorded are almost all below the limit of 60°C required 

by the Animal By-Products Regulations.
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Figure 6.23. Core temperatures recorded during the insulated trial

6.5.4 Discussion

The core temperatures recorded were the highest observed whilst using the vessel and 

if this temperature pattern had been experienced by the entire vessel it would have 

meant that the system would be capable of meeting the European treatment standard 

for animal by-products as well as the UK treatment standards for catering waste. The 

high temperatures recorded during this trial suggest that the expanded polystyrene 

insulation applied in Section 6.2 was inadequate. The board used in this trial has a 

thermal conductivity of 0.04 Wm^K’1 and although expanded polystyrene has a lower
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thermal conductivity o f 0.03 Wm^K ' 1 the depth o f insulation during this trial was 

50mm as opposed to the 25mm of polystyrene used. A brief analysis o f these 

properties shows that the 25mm of expanded polystyrene would lose 50% more heat 

than the 50mm of board used in this trial for the same area and temperature 

difference.

The data shown in Chapter 4 for windrow composting suggest a reduction in 

composting activity for temperatures above 55°C. The rapid increase in temperature at 

the start o f this trial is an indicator of high composting activity, but the high 

temperatures reached would imply a reduction in the rate o f composting occurring 

within the core. However with the reduction in heat losses due to the insulation it 

would require a reduced rate of heat release to keep the core at the elevated 

temperatures.

Unfortunately the volumetric air flow was not recorded during this trial. The initial 

aeration frequency of 15 minutes in every hour allowed a rapid rise in the core 

temperature o f the vessel. The core temperature then decreased because it was losing 

too much heat. When the frequency was reduced to 15 minutes in every 2 hours the 

core temperature again increased. This implies that the initial quantity o f air supplied 

was enough to provide oxygen to the bacteria but not remove the excess heat, Chapter 

3 shows that for a given composting rate the quantity of air for heat removal is two 

orders of magnitude greater than for oxygen supply. However, once the high 

temperatures had been reached the previously high levels of activity were inhibited by 

temperature. The same amount of air was now enough to remove more heat than was 

being created, this lead to a fall in temperature. The aeration frequency was reduced to 

a level where less heat was being removed than was released by the composting 

process and the core temperature rose again.

Although these were the highest recorded core temperatures for the vessel the 

temperatures recorded at the wall shown in Table 6 - 6  show that the extremities o f the 

compost still do not reach an appropriate temperature to ensure sanitisation. 

Sanitisation could be achieved through either turning or mixing o f the material, which 

would require a great deal of mechanical handling at increased expense or through
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direct addition o f heat which is allowed under the 6 th draft o f  the guidance for 

treatment by composting to meet the Animal By-Products Regulations (Defra, 2004).

Table 6-7. Manually recorded temperatures (in °C) from the vessel sidewall

DAY 3 5 6

LOCATION TEMPERATURE

CORNER

UPPER 34 23 40

MIDDLE 39 27 46

LOWER 46 40 32

SIDE 1

lm from comer

UPPER 36 34 50

MIDDLE 42 39 69

LOWER 57 43 46

SIDE 2 

2m from comer

UPPER 37 33 NA

MIDDLE 48 NA 59

LOWER 37 33 46

6.5.5 Conclusions

The insulation increased the core temperature o f the vessel by reducing the rate at 

which heat was lost.

The core temperatures during this trial were the highest recorded in the vessel so far.

The vessel still did not meet the Animal By-Products Regulations.

The heat released by the initial high composting rate needs to be more evenly 

distributed around the vessel to allow compliance with the Animal By-Products 

Regulations.

The vessel requires an energy input of either mechanical handling or heating to meet 

the Animal Byproducts Regulations.
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6.6 Summary

The calculations in Chapter 3 showed that the vessel needed to achieve a composting 

rate of approximately 4 5 gCC>2kgVS'1day‘1 to provide enough heat to maintain the 

vessel at a temperature which would meet the Animal By-Products Regulations. This 

is a rate approximately 50% greater than the highest rate recorded during the windrow 

composting trials. However the results from the citrus waste trial showed that this rate 

could be achieved in the vessel. The citrus waste results also showed that the 

estimates for air requirements from Chapter 3 were reasonable.

The trials performed using the vessel have shown that the use o f insulation, method of 

air delivery and frequency of aeration all have a critical impact on the composting 

process. The recent inclusion of heat addition in the Defra guidance note (Defra,

2004) suggests that compost practitioners may also be finding difficulty in meeting 

the Animal By-Products Regulations.

There are several available brands of this type of composting vessel, based on roll-on- 

off skips, whilst they are useful for materials handling and transportation and are 

modular many were designed before the advent of the Animal By-Products 

Regulations. This means that they were not designed to meet the criteria laid out to 

ensure sanitisation.
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7 Conclusions and Recommendations

Depending on the growth rate of waste, by 2020 Wales will need to compost between 

585,000 and 1,569,000 tonnes. This is a huge amount and much o f it will need to be 

treated to the Animal By-Products Regulations to ensure that it does not cause any 

health problems. Despite the growth of interest in composting as a method for waste 

treatment and materials recovery it can be difficult to find useful data to aid the design 

of composting facilities. The importance of a relatively simple parameter, the bulk 

density, of compost is highlighted in this work. As well as allowing the throughput of 

composting systems to be determined the bulk density also affects both the rate at 

which air is supplied and the static pressure at which it must be supplied.

The models for energy release demonstrate that although the biomass yield coefficient 

can vary, the quantity of heat that is released per mole of carbon dioxide evolved 

remains almost constant at approximately 500kJ. This value is similar to those 

observed experimentally and from the windrow composting trials performed at the 

CERT composting facility. The calculations also indicate a value other than unity for 

the C0 2 :C>2 ratio during the composting process with approximately 450kJ released 

for each mole of oxygen utilised. The quantification of heat release allows respiration 

rates to be expressed as a power output and energy balances on composting systems to 

be performed.

By using a canopy system to cover a portion of a windrow it has been possible in the 

present study to measure in-situ respiration rates. A relationship between the core 

temperature and the respiration rate similar to those observed in small scale 

laboratory-based experiments was observed. The optimum core temperature for 

windrow composting was approximately 55°C although the average temperature of 

the windrow will be lower than this. The highest composting rate recorded for 

windrow composting was 38 gCC^kgVS'May*1.

When they reach the optimum temperature windrows appear to self limit. At the 

optimum temperature for composting a large amount of heat is produced, some of this 

heat will be used to increase the temperature of the compost. As the compost’s
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temperature increases the respiration rate, and hence quantity o f heat released, will 

decrease. Due to the increased temperature there will be an increased thermal drive of 

the air passing through the windrow. Both o f these effects will act to cool the 

windrow back to its optimum temperature and highest respiration rate.

In the static non-aerated windrows the carbon dioxide content o f the exhaust gas was 

a very strong indicator of composting activity. The Gas Temperature Differential 

(GDT) generally showed a strong positive correlation with the concentration of 

carbon dioxide for the green waste windrows and this was also observed for the 

windrow augmented with chicken litter. This would allow monitoring o f compost 

without use o f carbon dioxide measuring equipment-generally the most expensive of 

the sensors used.

The GTD is a very basic measure of the heat transferred into the air passing through 

the compost. It is also comparatively cheap to measure, requiring only 2 

thermocouples whilst the respiration rate requires measurement o f carbon dioxide 

concentration, temperature and airflow rate.

The chicken litter windrow highlighted the importance of the physical properties of 

compost. The small particle size of the chicken litter decreased the pore space in the 

compost causing an increase in the bulk density. The diminished pore space and 

greater surface area of this material inhibited the airflow through the windrow 

inhibiting composting activity at the core of the windrow, despite the enhanced C:N 

ratio of approximately 20:1 compared to a normal green waste o f about 70:1.

At the start o f this project the addition of heat to composting vessels in order to allow 

them to meet the Animal By-Products Regulations was not allowed. Because of this it 

was important to understand the operation of the containerised in-vessel composting 

system and to attempt to optimise its performance. The vessel that was discussed in 

Chapter 6  had numerous design features that would require some improvement, not 

least in the loading of the vessel which required a large level o f manual handing.

The latest guidance note to the Animal By-Products Regulations issued by Defra 

allows the addition of heat to composting systems provided that the appropriate time

7-2



Conclusions and Recommendations

and temperature profiles are met. Composting plants that are adding heat to compost 

still need to prove that biological degradation is taking place. To heat up the compost 

for treatment would require a large energy input so it would be preferable that as 

much of the heat required for composting comes from the composting process.

After several trials the vessel was shown to be able to meet the respiration rate of 

4 5 gC(>2kgVS‘1day*1 which should allow it to maintain a temperature o f 60°C, this 

occurred during the citrus waste trial during its rapid heat up phase. One o f the key 

problems to overcome in this type of composting system is the distribution of 

temperature and it would seem that air management is the key to this.

Further work on the composting process should look at optimising air management to 

a composting vessel to ensure that there is an even temperature profile. If  the entirety 

of the vessel can meet the treatment profiles then there is no need for mechanical 

handling to turn the material. If this can be done through heat released from bacterial 

degradation then there will be no energy costs associated with heating the material. If 

up to 1.596 million tonnes of material are to be composted it is important to ensure 

that there is a market for approximately 800,000 tonnes o f compost that will be 

produced. It may also be possible to use some of the data developed in this thesis to 

model the composting process using computational fluid dynamics software. This 

would allow more rapid modelling and testing of composting systems and their 

potential to meet the Animal By-Products Regulations.
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Appendix A: 

Results of Stoichiometric Equations for Bacterial Breakdown

Table A-l. Required reactants and products for composting of one mole of glucose (C6H12O6)
Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
bacterial
cell

Moles
C 02
evolved

Moles
H20
evolved

C02:0 2
ratio

C02:H20
ratio

0.502 0.8 2 .0 0 .8 2 .0 4.4 1 0.45
0.430 0.7 2.5 0.7 2.5 4.6 1 0.54
0.376 0 .6 3.0 0 .6 3.0 4.8 1 0.63
0.314 0.5 3.5 0.5 3.5 5.0 1 0.70
0.251 0.4 4.0 0.4 4.0 5.2 1 0.77
0.188 0.3 4.5 0.3 4.5 5.4 1 0.83
0.125 0.2 5.0 0 .2 5.0 5.6 1 0.89
0.063 0.1 5.5 0.1 5.5 5.8 1 0.95

Table A-2. Required reactants and products for composting of one mole of protein (C16H24O5N4)
Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
bacterial
cell

Moles
C 0 2
evolved

Moles
h 2o
evolved

C02:02
ratio

C 02:H20
ratio

0.502 -2.4 8.7 1.6 8 .2 2.9 0.94 2.85
0.430 -2 .6 9.7 1.4 9.2 3.3 0.95 2.81
0.376 -2.8 1 0 .6 1.2 10.1 3.7 0.95 2.77
0.314 -3.0 1 1 .6 1.0 11.1 4.0 0.96 2.75
0.251 -3.2 1 2 .6 0 .8 12.1 4.4 0.96 2.73
0.188 -3.4 13.6 0 .6 13.1 4.8 0.96 2.71
0.125 -3.6 14.5 0.4 14.0 5.2 0.97 2.69
0.063 -3.8 15.5 0 .2 15.0 5.6 0.97 2 .68

Table A-3. Required reactants and products for composting of one mole of fat (C50H90O6)
Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
bacterial
cell

Moles
c o 2
evolved

Moles
H20
evolved

C02:0 2
ratio

C 02:H20
ratio

0.502 3.5 52.0 3.5 32.5 38.0 0.63 0 .8 6
0.430 3.1 54.2 3.1 34.7 38.9 0.64 0.89
0.376 2 .6 56.4 2 .6 36.9 39.8 0.65 0.93
0.314 2.2 58.6 2 .2 39.1 40.6 0.67 0.96
0.251 1.7 60.8 1.7 41.3 41.5 0 .68 0.99
0.188 1.3 63.0 1.3 43.5 42.4 0.69 1.03
0.125 0.9 65.1 0.9 45.6 43.3 0.70 1.06
0.063 0.4 67.3 0.4 47.8 44.1 0.71 1.08

Table A-4. Required reactants and products for composting of one mole of primary sludge
( C 2 2 H 3 9 O 1 0 N )

Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
bacterial
cell

Moles
c o 2
evolved

Moles
H20
evolved

C0 2:0 2
ratio

C02:H20
ratio

0.502 1.1 15.4 2.1 11.4 13.8 0.74 0.83
0.430 0.9 16.7 1.9 12.7 14.3 0.76 0.89
0.376 0 .6 18.1 1.6 14.1 14.8 0.78 0.95
0.314 0.3 19.4 1.3 15.4 15.4 0.79 1.00

0.251 0.1 - 20.7 1.1 16.7 15.9 0.81 1.05
0.188 -0.2 2 2 .0 0.8 18.0 16.4 0.82 1.10

0.125 -0.5 23.4 0.5 19.4 16.9 0.83 1.14
0.063 -0.7 24.7 0.3 20.7 17.5 0.84 1.18
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Table A-5. Required reactants and products for composting of one mole of wood (C2 9 5H4 2 0O 186N)
Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of 
bacterial 
cell

Moles
C 02
evolved

Moles
H20
evolved

C0 2:0 2
ratio

C 02:H20
ratio

0.502 29.9 151.8 30.9 140.6 146.7 0.93 0.96
0.430 26.0 171.1 27.0 159.9 154.4 0.93 1.04
0.376 2 2 .2 190.4 23.2 179.2 162.2 0.94 1.10
0.314 18.3 209.7 19.3 198.5 169.9 0.95 1.17
0.251 14.4 229.0 15.4 217.8 177.6 0.95 1.23
0.188 10 .6 248.3 11 .6 237.1 185.3 0.95 1.28
0.125 6.7 267.6 7.7 256.4 193.1 0.96 1.33
0.063 2.9 286.9 3.9 275.7 200 .8 0.96 1.37

Table A-6 . Required reactants and products for composting of one mole of grass (C23H38O17N)
Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
bacterial
cell

Moles
C 02
evolved

Moles
h 2o
evolved

C0 2:0 2
ratio

C 02:H20
ratio

0.502 1.7 9.9 2.7 9.7 12.2 0.97 0.79
0.430 1.3 11 .6 2.3 11.3 12.8 0.98 0 .88
0.376 1.0 13.3 2 .0 13.0 13.5 0.98 0.96
0.314 0.7 14.9 1.7 14.7 14.2 0.98 1.04
0.251 0.3 16.6 1.3 16.3 14.8 0.98 1.10
0.188 0 .0 18.3 1.0 18.0 15.5 0.99 1.16
0.125 -0.3 19.9 0.7 19.7 16.2 0.99 1.22
0.063 -0.7 2 1 .6 0.3 21.3 16.8 0.99 1.27

Table A-7. Required reactants and products for composting of one mole of combined sludge
( C 1 0 H 1 9 O 3 N )

Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of 
bacterial 
cell

Moles
C 0 2
evolved

Moles
h 2o
evolved

C0 2:0 2
ratio

C 02:H20
ratio

0.502 -0.1 8 .0 0.9 5.5 6.2 0.69 0.89
0.430 -0 .2 8 .6 0 .8 6.1 6.4 0.71 0.95
0.376 -0.3 9.2 0.7 6.7 6.7 0.73 1.00

0.314

0• 9.7 0 .6 7.2 6.9 0.74 1.05
0.251 -0 .6 10.3 0.4 7.8 7.1 0.76 1.09
0.188 -0.7 10 .8 0.3 8.3 7.3 0.77 1.14
0.125 -0 .8 11.4 0 .2 8.9 7.6 0.78 1.18
0.063 -0.9 11.9 0.1 9.4 7.8 0.79 1.21

Table A-8 . Required reactants and products for composting of one mole of Refuse (TOF)
( C 6 4 H 1 0 4 O 3 7 N )

Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of 
bacterial 
cell

Moles
c o 2
evolved

Moles
H20
evolved

C0 2:0 2
ratio

C 02:H20
ratio

0.502 5.6 37.9 6 .6 31.2 37.4 0.82 0.83
0.430 4.7 42.0 5.7 35.3 39.0 0.84 0.90
0.376 3.9 46.1 4.9 39.4 40.6 0.85 0.97
0.314 3.1 50.2 4.1 43.5 42.3 0.87 1.03
0.251 2.3 54.3 3.3 47.6 43.9 0 .8 8 1.08
0.188 1.5 58.4 2.5 51.7 45.6 0 .88 1.13
0.125 0 .6 62.5 1.6 55.8 47.2 0.89 1.18
0.063 -0 .2 6 6 .6 0 .8 59.9 48.9 0.90 1.23
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Table A-9. Required reactants and products for composting of one mole of Refuse (TOF) 
(C^HmOyN)      ,________________

Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of 
bacterial 
cell

Moles
c o 2
evolved

Moles
h 2o
evolved

C02:02
ratio

C 02:H20
ratio

0.502 9.2 54.8 10.2 48.0 52.1 0.88 0.92
0.430 7.9 61.1 8.9 54.4 54.7 0.89 1.00
0.376 6.6 67.5 7.6 60.8 57.2 1 0.90 1.06
0.314 5.4 73.9 6.4 67.1 59.8 0.91 1.12
0.251 4.1 80.3 5.1 73.5 62.3 0.92 1.18
0.188 2.8 86.6 3.8 79.9 64.9 0.92 1.23
0.125 1.5 93.0 2.5 86.3 67.4 0.93 1.28
0.063 0.3 99.4 1.3 92.6 70.0 0.93 1.32

Table A-10. Required reactants and products for composting of one mole of Garbage (CifrH^OgN)
Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of 
bacterial 
cell

Moles
c o 2
evolved

Moles
h 2o
evolved

C02:02
ratio

C 02:H20
ratio

0.502 0.6 10.0 1.6 8.0 8.8 0.80 0.91
0.430 0.4 11.0 1.4 9.0 9.2 0.82 0.98
0.376 0.2 12.0 1.2 10.0 9.6 0.83 1.04
0.314 0.0 13.0 1.0 11.0 10.0 0.85 1.10
0.251 -0.2 14.0 0.8 12.0 10.4 0.86 1.15
0.188 -0.4 15.0 0.6 13.0 10.8 0.87 1.20
0.125 -0.6 16.0 0.4 14.0 11.2 0.87 1.25
0.063 -0.8 17.0 0.2 15.0 11.6 0.88 1.29

Results of Stoichiometric Equations for Fungal Breakdown.

Table A-11 . Required reactants and products for composting of one mole of glucose (C6H120 6)
Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
fungal
cell

Moles
c o 2
evolved

Moles
h 2o
evolved

C02:02
ratio

C 02:H20
ratio

0.502 0.37 2.16 0.37 2.34 3.44 1.08 0.68
0.430 0.32 2.64 0.32 2.80 3.76 1.06 0.74
0.376 0.27 3.12 0.27 3.26 4.08 1.04 0.80
0.314 0.23 3.60 0.23 3.71 4.40 1.03 0.84
0.251 0.18 4.08 0.18 4.17 4.72 1.02 0.88
0.188 0.14 4.56 0.14 4.63 5.04 1.02 0.92
0.125 0.09 5.04 0.09 5.09 5.36 1.01 0.95
0.063 0.05 5.52 0.05 5.54 5.68 1.00 0.98

Table A-l2. Required reactants and products for composting of one mole of protein (Ci6H240 5 N4)
Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
fungal
cell

Moles
C 02
evolved

Moles
h 2o
evolved

C02:02
ratio

C02:H20
ratio

0.502 -3.28 8.98 0.72 8.84 0.99 0.98 8.93
0.430 -3.37 9.92 0.63 9.74 1.62 0.98 6.02
0.376 -3.46 10.86 0.54 10.63 2.24 0.98 4.74
0.314 -3.55 11.80 0.45 11.53 2.87 0.98 4.02
0.251 -164 12.74 0.36 12.42 3.49 0.97 3.55
0.188 -3.73 13.68 0.27 13.32 4.12 0.97 3.23
0.125 -3.82 14.62 0.18 14.21 4.75 0.97 2.99
0.063 -3.91 15.56 0.09 15.11 5.37 0.97 2.81
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Table A-13. Required reactants and products for composting of one mole of fat (CsqH9q0 6)
Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
fungal
cell

Moles
C 02
evolved

Moles
H20
evolved

D0 2:0 2
ratio

C02:H20
ratio

0.502 1.60 52.72 1.60 34.02 33.81 0.65 1.01
0.430 1.40 54.82 1.40 36.02 35.21 0.66 1.02
0.376 1.20 56.91 1.20 38.01 36.61 0.67 1.04
0.314 1.00 59.01 1.00 40.01 38.01 0.68 1.05
0.251 0.80 61.11 0.80 42.01 39.41 0.69 1.07
0.188 0.60 63.21 0.60 44.01 40.80 0.70 1.08
0.125 0.40 65.30 0.40 46.00 42.20 0.70 1.09
0.063 0.20 67.40 0.20 48.00 43.60 0.71 1.10

Table A-14. Required reactants and products for composting of one mole of primary sludge
( C 2 2 H 3 9 O 1 0 N )

Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
fungal
cell

Moles
c o 2
evolved

Moles
h 2o
evolved

C0 2:0 2
ratio

C 02:H20
ratio

0.502 -0.03 15.82 0.97 12.30 11.21 0.78 1.10
0.430 -0.15 17.09 0.85 13.51 12.06 0.79 1.12
0.376 -0.27 18.36 0.73 14.73 12.91 0.80 1.14
0.314 -0.39 19.64 0.61 15.94 13.76 0.81 1.16
0.251 -0.52 20.91 0.48 17.15 14.61 0.82 1.17
0.188 -0.64 22.18 0.36 18.36 15.45 0.83 1.19
0.125 -0.76 23.45 0.24 19.58 16.30 0.83 1.20
0.063 -0.88 24.73 0.12 20.79 17.15 0.84 1.21

Table A-15. Required reactants and products for composting of one mole of wood (C295H420O186N)
Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
fungal
cell

Moles
c o 2
evolved

Moles
h 2o
evolved

C02:02
ratio

C 02:H20
ratio

0.502 13.13 157.87 14.13 153.69 109.58 0.97 1.40
0.430 11.36 176.42 12.36 171.35 121.95 0.97 1.41
0.376 9.60 194.97 10.60 189.01 134.31 0.97 1.41
0.314 7.83 213.51 8.83 206.68 146.68 0.97 1.41
0.251 6.07 232.06 7.07 224.34 159.04 0.97 1.41
0.188 4.30 250.61 5.30 242.01 171.41 0.97 1.41
0.125 2.53 269.16 3.53 259.67 183.77 0.96 1.41
0.063 0.77 287.70 1.77 277.34 196.14 0.96 1.41

Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
fungal
cell

Moles
c o 2
evolved

Moles
H20
evolved

C02:02
ratio

C02:H20
ratio

0.502 0 .2 2 10.44 1 .2 2 10.80 8.96 1.03 1.21

0.430 0.07 12.04 1.07 12.33 10.03 1 .0 2 1.23
0.376 -0.09 13.64 0.91 13.85 1 1 .1 0 1 .0 2 1.25
0.314 -0.24 15.24 0.76 15.38 12.16 1.01 1.26
0.251 -0.39 16.85 0.61 16.90 13.23 1 .0 0 1.28
0.188 -0.54 18.45 0.46 18.43 14.30 1 .0 0 1.29
0.125 -0.70 20.05 0.30 19.95 15.37 1 .0 0 1.30
0.063 -0.85 21.65 0.15 21.48 16.43 0.99 1.31
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Table A-17. Required reactants and products for composting of one mole of combined sludge
( C , q H 19Q 3N )

Yield co­
efficient

Moles
ammonia
required

Moles O2 
required

Moles of
fungal
cell

Moles
C 02
evolved

Moles
h 2o
evolved

302:02
ratio

C02:H20
ratio

0.502 -0.59 8.21 20.97 0.41 5.91 0.72 1.15
0.430 -0.64 8.75 23.97 0.36 6.42 0.73 1.17
0.376 -0.69 9.28 27.96 0.31 6.93 0.75 1.18
0.314 -0.74 9.82 33.56 0.26 7.45 0.76 1.20
0.251 -0.80 10.35 41.95 0.20 7.96 0.77 1.21
0.188 -0.85 10.89 55.93 0.15 8.47 0.78 1.22
0.125 -0.90 11.43 83.89 0.10 8.98 0.79 1.23
0.063 -0.95 11.96 167.78 0.05 9.49 0.79 1.24

Table A-l 8. Required reactants and products for composting of one mole of Refuse 1 (TOF) 
( C f t i H  1 0 4 O 3  7 N ) ________________ ____________________________________________________________________ ______________________ ______________________ _____________

Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
fungal
cell

Moles
c o 2
evolved

Moles
h 2o
evolved

C02:02
ratio

C 02:H20
ratio

0.502 2.01 39.20 18.25 3.01 33.95 0.87 1.15
0.430 1.63 43.14 20.86 2.63 37.70 0.87 1.17
0.376 1.25 47.08 24.34 2.25 41.46 0.88 1.19
0.314 0.88 51.03 29.21 1.88 45.22 0.89 1.21
0.251 0.50 54.97 36.51 1.50 48.97 0.89 1.22
0.188 0.13 58.92 48.68 1.13 52.73 0.89 1.24
0.125 -0.25 62.86 73.02 0.75 56.49 0.90 1.25
0.063 -0.62 66.81 146.03 0.38 60.24 0.90 1.26

Table A-19. Required reactants and products for composting of one mole of Refuse 2(TOF) 
(C99HM8O59N)_______ __________ __________ ___________________________________
Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
fungal
cell

Moles
c o 2
evolved

Moles
h 2o
evolved

C02:0 2
ratio

C 02:H20
ratio

0.502 3.66 56.77 4.66 52.36 39.85 0.92 1.31
0.430 3.08 62.90 4.08 58.19 43.93 0.93 1.32
0.376 2.50 69.02 3.50 64.02 48.01 0.93 1.33
0.314 1.92 75.14 2.92 69.85 52.09 0.93 1.34
0.251 1.33 81.26 2.33 75.68 56.17 0.93 1.35
0.188 0.75 87.38 1.75 81.51 60.26 0.93 1.35
0.125 0.17 93.51 1.17 87.34 64.34 0.93 1.36
0.063 -0.42 99.63 0.58 93.17 68.42 0.94 1.36

Table A-20. Required reactants and products for composting of one mole of Garbage (C16H27O8N)
Yield co­
efficient

Moles
ammonia
required

Moles 0 2 
required

Moles of
fungal
cell

Moles
c o 2
evolved

Moles
h 2o
evolved

C02:02
ratio

C 02:H20
ratio

0.502 -0.27 10.29 0.73 8.66 6.86 0.84 1.26
0.430 -0.36 11.26 0.64 9.58 7.50 0.85 1.28
0.376 -0.45 12.22 0.55 10.49 8.15 0.86 1.29
0.314 -0.54 13.18 0.46 11.41 8.79 0.87 1.30
0.251 -0.63 14.15 0.37 12.33 9.43 0.87 1.31
0.188 -0.72 15.11 0.28 13.25 10.07 0.88 1.32
0.125 -0.82 16.07 0.18 14.16 10.72 0.88 1.32
0.063 -0.91 17.04 0.09 15.08 11.36 0.89 1.33

A-5



Appendix B: 
Design of Static Pressure Test Rig

§
ao

o
o

Static taps every 
500mm

Figure B .l. Design of pressure test rig used for static pressure measurement 
in Chapter 4'
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Figure B.2. Detail o f the plenum of the pressure test rig used in Chapter 4 
(dimensions in mm)

oo

Figure B.3. Detail o f the top of the column and static taps of the pressure test rig used in 
Chapter 4 (dimensions in mm)
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Appendix C: 
Design Drawings of the  Canopy System

Figure C.l. The frame of the canopy, showing dimensions

Figure C.2. The frame of the canopy skinned with fibreboard and 15mm plywood used 
ends



C
-2 Figure C.3. Projection of the finished canopy on top of a windrow



Appendix D: 
W orm tech V essel Drawings

Figure D -l. The Wormtech vessel, with front panel removed showing the plenum 
beneath the false floor (dimensions in millimetres)

Figure D.2. Empty Wormtech vessel set up for recirculation of air



Appendix E: Risk Assessment for CERT Composting 
Facility
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Risk assessment:

Site Name and address: CERT composting facility,
Nantycaws landfill site, 

Llanddarrog road, 
Nantycaws, Carmarthenshire, SA32 8BG

Performed by: David Notton 
Date assessm ent carried out: 21/08/02 
Review date: annually and with addition o f new 
equipment

Contents:

Physical layout:
Activities carried out:
Machinery, equipment and vehicles: 
Chemicals and substances:
Activity hazards:

2
2
4
4
5

Maintaining machinery and equipment. 
Physical layout hazards:
Chemical and substance hazards:

Delivery of green waste 
Inspection and shredding of waste 
Building compost windrows. 
Turning of compost windrows. 
Screening of finished compost. 
Sampling of Compost.

5
6 
8 
9 
11
13
14

15
16
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Physical layout:

This is a new specially constructed compost facility standing on an engineered 
concrete base. There is a covered, labelled C in figure 1, where the composting 
process takes place. Other operations such as shredding and screening take place 
outside in the area marked B in figure 1. Other areas of the hard standing are set aside 
for specific tasks such as: Waste reception (A), Storage of wood, Maturation area (J) 
(L) and Storage o f non-compostable waste (L).

The covered area is well lit with lights being shown by an X in figure 1. The drainage 
from the covered area is sealed and any liquid is stored in a leachate tank situated 
within a bund (D). In addition to the site there is also an office building (O) where 
there is a small kitchen and a basic laboratory.

Activities carried out:

Delivery of green waste to site by lorries up to 40 cubic yard capacity.
Sorting and litter picking o f waste.
Shredding of green waste-including loading, unloading and manoeuvring of shredder 
Building compost windrows.
Turning of compost windrows.
Screening of finished compost.
Sampling of Compost.
Maintaining machinery and equipment.
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Machinery, equipm ent and vehicles:

The majority o f equipment on this site has hydraulic systems and exposed moving 
parts and hence has the ability to kill or maim.

Two tractors permanently on site, one of which is permanently connected to a Seko 
batch shredder. The shredder consists of two large augers, with teeth attached, 
rotating in the bottom o f a feed trailer. The augers are powered from the shredders 
own hydraulic system, which is driven by the tractors power-take off shaft. The 
shredder is unloaded through a conveyor belt and door located on the side of the 
shredder. The lowering o f the conveyor, opening and closing of the side door and 
starting of the conveyor are all carried out remotely from within the cab of the tractor.

The other tractor has a front-end loader with bucket. This is used for the 
transportation o f green waste (both shredded and fresh) and compost. This tractor is 
also used to power the windrow turner. The turner is a large auger, which is driven 
through the windrow in order to aerate the compost. The turner is also powered by its 
own hydraulic system powered from the tractor's power-take off shaft. The turner also 
has guards and travel wheels that are raised and lowered from a remote position in the 
cab of the tractor.

A s creen i s p resent o n si te. T his h as i ts o wn e ngine, w hich d rives a 1 arge rotating 
mesh drum. At one end o f the drum is a hopper for finished compost. At the other end 
of the drum oversized objects are deposited in a heap. The office building has some 
computer equipment, a kettle and an oven.

Chemicals and substances:

Within the laboratory building there are various office substances such as printer ink, 
tipex and cleaning products ( washing-up 1 iquid and bleach). The office cleaning is  
carried out by a contract cleaner who is familiar with operations on waste disposal 
sites.

There are also substances associated with machinery such as: diesel fuel, engine oil 
and hydraulic oil. A contractor carries out much of the maintenance, so contact with 
engine and hydraulic oils by site personnel is minimised, except in the case of failure.

As part of the compost process both fresh and shredded green waste is present on site, 
as is compost and leachate from the compost. These can cause reactions in sensitive 
receptors.
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Activity hazards:

Activity: Delivery o f green waste to site

Description of activity: Fresh green waste is delivered on to site by lorries with up to 
a 40 cubic yard capacity. The waste is tipped off of the lorry in the area specified on 
the site plan.

Hazard Description o f existing workplace precautions

Se
ve

rit
y

Li
ke

lih
oo

d

•a
a

Risk of collision with 
site machinery

Before entering the site all vehicles should stop 
at the site entrance and make their presence 
known. Drivers will then be informed of any 
vehicle or personnel movements on site.

Site tractors are fitted with an orange warning 
light to make them move visible.

Speed limit o f 10 miles per hour on site.

3 1 3

Risk of impact with 
site personnel

Before entering the site all vehicles should stop 
at the site entrance and make their presence 
known. Drivers will then be informed of any 
vehicle or personnel movements on site.

Whilst on site, personnel are required to wear 
high visibility (day glow) vests or coats at all 
times

5 1 5

Accidental tipping of 
waste on to personnel 
or machinery

Drivers are responsible for the tipping of the 
waste. It is up to them to ensure that the waste 
is tipped in a safe manner in accordance with 
their training.

If for any reason site personnel need to enter 
the tipping area they should make themselves 
known to the driver and await 
acknowledgement of their presence.

5 1 5
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Activity hazards:

Activity: Inspection and shredding of green waste

Description of activity: The front-end loader is used to spread out a portion of the 
waste from the stockpile o f green waste. This is then inspected for items that are 
unsuitable for composting, such as: metals, plastics and large logs. The inspected 
waste is then loaded into the running shredder again using the front-end loader. The 
waste is left resident in the shredder for an interval until the correct consistency has 
been achieved. The shredder is then unloaded. This is achieved through use of the 
shredder’s integral conveyor belt that is located on its side. Whilst the shredded 
material is being unloaded the whole tractor/shredder assembly if  moved forward to 
avoid the pile of shredded waste becoming too tall.

Hazard Description o f existing workplace precautions

Se
ve

rit
y

Li
ke

lih
oo

d

R
is

k

Risk of impact 
between front end 
loader and site 
personnel

No personnel should be in the area of the 
shredder or loader whilst in operation.

Site personnel are required to wear high 
visibility clothing at all times.

Tractor has orange warning light to increase 
visibility.

Anybody going on to site whilst a tractor is in 
use should make their presence known to the 
driver and await acknowledgement.

5 1 5

Risk of impact 
between shredder and 
personnel. Whilst the 
shredder is being 
moved/ remotely 
operated.

No personnel should be in the area o f the 
shredder whilst it is in use.

If anybody is required to go on to site whilst 
the shredder is in use should make their 
presence known to the driver and await 
acknowledgement.

Site personnel are required to wear high 
visibility clothing at all times.

5 1 5

Risk of collision 
between shredder and 
delivery lorries.

All deliveries are required to stop at the site 
entrance and await permission to proceed.

Good driving practises to be used- assume 
nothing

Speed limit o f lOmile per hour on site.

3 1 3
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Damage to equipment All machinery is to be serviced at the 3 2 6
making it unsafe and recommended intervals.
likely to cause an
accident Equipment to be given a cursory daily check

for any obvious dangerous defects.

Waste entering shredder is to be inspected
thoroughly to ensure that unsuitable objects are
not allowed to enter the shredder. Over sized
logs to be stacked in the set area for disposal.
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Activity hazards:

Activity: Building windrows

Description of activity: From where the shredded waste is deposited by the 
shredder’s conveyor belt it is moved using the front-end loader. Once inside the 
building it is formed in to windrows to allow the composting process to take place.

Hazard Description o f existing workplace precautions

Se
ve

rit
y

Li
ke

lih
oo

d

2
Risk of impact with 
site personnel

No personnel should be in the area of the front- 
end loader whilst in operation.

Personnel are required to wear high visibility 
clothing

If  personnel need to go on to site they should 
make their presence known to the operator and 
await acknowledgement.

5 1 5

Risk of impact with 
site machinery or 
delivery lorry

All deliveries are required to stop at the site 
entrance and seek permission to proceed.

Tractors are fitted with orange hazard lights to 
increase visibility.

Speed limit o f 10 miles per hour on site.

3 1 3

Vehicle movement 
hazards i.e. tipping 
over

Qualified and certified operators to be used.

Good driving practises to be used.
-keep speed low
-keep load in loader as low as possible 
-avoid uneven surfaces if  possible

4 1 4



Activity hazards:

Activity: Turning o f compost windrows

Description of activity: To ensure aeration o f the composting material it is necessary 
to turn the windrows. This is achieved using a Menart 4000 SP windrow turner. The 
turner is normally connected to the to the back of the tractor that has the front-end 
loader. The turner is driven by the tractor’s power take-off shaft. It consists of a large 
auger, which is driven through the w indrow. The turner also has two hydraulically 
driven wheels that propel the whole tractor/tumer assembly. The turner has two 
positions; travel and working. Between these two [positions there are several 
operations that need to be performed that involve remotely controlled hydraulic 
components.

Hazard Description o f existing workplace precautions

Se
ve

rit
y

Li
ke

lih
oo

d

R
is

k

Connecting turner to 
tractor including 
hydraulics and power 
take off.

When connecting equipment to the power take­
off ensure that the tractor’s ignition is turned 
off and the ignition keys are in the position of 
the operator. When connecting the hydraulic 
hoses to the tractors hydraulic system ensure 
that there is no pressure in the system.

5 1 5

Risk of collision with 
personnel

No personnel should be in the area o f the turner 
whilst in operation.

Any personnel on site are to wear high 
visibility clothing.

5 1 5

Risk of projectile 
striking equipment or 
operator

No personnel should be on foot in the area of 
the turner.

Large objects should not be present in the 
windrow.

The deflecting guard behind the auger should 
be adjusted correctly to ensure that as much 
material as possible is deflected towards the 
ground.

The t umer s hould o nly be u sed w ith a t ractor 
with an enclosed cab to ensure that no 
projectiles strike the operator.

5 1 5
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Risk of collision with 
site machinery

No site vehicles should be operating in the area 
o f the turner.

Delivery vehicles should stop at the site 
entrance and await permission to proceed.

Speed limit of 10 miles per hour on site.

3 1 3

Inhalation o f particles 
thrown up by turner.

No personnel to  b e  o n  foot in  the area o f  the 
turner.

Operator to be within closed cab-preferably 
filtered

4 1 4

Risk of damaged 
equipment causing an 
accident and injury.

All large and non-compostable items should 
already be removed from the mixture at the 
inspection stage.

All machinery is to be serviced at the 
recommended service intervals.

Machinery should be given a cursory check to 
ensure no obvious defects are present. Whilst 
inspecting machinery it should be disconnected 
from the tractor and the keys should be in the 
operators possession.

5 1 5
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Activity hazards:

Activity: Screening o f finished compost

Description of activity: Once the compost is judged to be finished, it is screened in 
order to separate the various size fractions. This is achieved using a menart screen that 
is loaded by the front-end loader. The screen consists of a rotating mesh drum that 
sieves out the required size particles. Oversize material and the fraction that is 
required are removed by the front-end loader and stored separately.

Hazard Description o f existing workplace precautions

Se
ve

rit
y

Li
ke

lih
oo

d

s
Risk of impact with 
site personnel

No personnel should be in the area of the front- 
end loader or turner whilst in operation.

Personnel are required to wear high visibility 
clothing

If personnel need to go on to site they should 
make their presence known to the operator and 
await acknowledgement.

5 1 5

Risk of impact with 
site machinery or 
delivery lorry

All deliveries are required to stop at the site 
entrance and seek permission to proceed.

Tractors are fitted with orange hazard lights to 
increase visibility.

Speed limit o f 10 miles per hour on site.

3 1 3

Vehicle movement 
hazards i.e. tipping 
over

Qualified and certified operators to be used.

Good driving practises to be used.
-keep speed low
-keep load in loader as low as possible 
-avoid uneven surfaces if  possible

4 1 4

Inhalation of particles 
thrown out by screen

No p ersonnel to  b e on  foot in  the area o f  the 
screen whilst it is operational.

Operator to be within closed cab-preferably 
filtered.

4 1 4

Risk of accident due 
to poorly maintained 
machinery.

Maintenance to be carried out in accordance 
with manufacturers schedule.

Cursory checks to be given to all machinery

4 1 4
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before use to ensure that there are no obvious 
defects.

No personnel to be on foot in the immediate 
area o f the screen whilst it is operating.

Risk of injury from 
rotating mesh drum

No operation to be carried out whilst screen is 
operating.

All maintenance to be carried out with engine 
stopped and keys in operators possession.

5 1 5
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Activity hazards:

Activity: Sampling o f compost

Description of activity: Due to the research nature of the site and in order to meet 
compost association standards it is necessary to take samples of the compost.

Hazard Description o f existing workplace precautions

Se
ve

rit
y

Li
ke

lih
oo

d

R
is

k

Risk of interaction 
with site machinery

No personnel to be on site in the immediate 
vicinity o f any machinery.

All personnel to wear high visibility clothing 
whilst on site.

5 1 5

Contact with 
composting material.

Gloves should be worn whilst handling 
compost.

Wash hands after handling compost.

3 1 3

Injuries from hand 
tools.

Do not apply too much force to prevent 
slipping.

Ensure handles and tools are in good order 
before using.

2 1 2

Use of oven for 
drying samples.

Familiarise yourself with the operation of the 
oven before use.

Ensure sufficient insulation between hands and 
tray before removing from oven.

2 2 4
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Activity hazards:

Activity: Maintaining machinery and equipment.

Description of activity: Although an external contractor carries out most of the 
maintenance, some minor tasks can be performed by site personnel.

Hazard Description o f existing workplace precautions

Se
ve

rit
y

Li
ke

lih
oo

d

s
Risk of injury whilst 
changing mesh on 
screen.

Ensure that engine i s stopped and keys are in  
operator’s possession.

Use gloves to avoid damage to hands.

Keep screen at lowest height.

Inform others o f what you are doing.

5 1 5

Injury from 
maintaining teeth 
within shredder.

Ensure that shredder is fully disconnected from 
driving tractor. Keys should be in possession of 
operator.

Use gloves to avoid damage to hands.

Inform others o f what you are doing.

5 1 5
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Physical layout hazards:

Description: As mentioned above there are various storage piles for compost, logs 
and non compostable materials as well as various processes that can create mess and 
hazards. Much o f this is already covered in the waste management license but a brief 
description is given below.

Hazard Description o f existing workplace precautions

Se
ve

rit
y

Li
ke

lih
oo

d

$
2

Danger of log pile 
collapse.

Logs to be disposed o f as soon as is practicable. 

No climbing on the log pile.

Logs to be stacked sensibly.

4 1 4

Danger of collapse of 
storage piles

Avoid climbing on windrows or compost 
storage piles.

Piles should be kept to a manageable size.

4 1 4

Trip hazards due to 
waste being spread 
out for inspection, 
turned and screened.

Concrete surface to be kept clear o f obstacles in 
accordance with waste management license.

Any major hazards to be moved as soon as 
practicable.

2 2 4
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Chemical and substance hazards:

Description: Where applicable consult the materials safety data sheet (COSHH sheet) 
for details, these should be stored on site.

Substance Description o f Substance

Green waste 
/Compost/ 
composting material

This is the material that is delivered, is shredded and formed 
in to windrows. It also has a variety o f bacterial species 
present in it. It may cause a reaction in sensitive receptors. 
Compost has been related to various illnesses, such as farmers 
lung.

Wear gloves when handling compost.

Wash hands after contact.

Do not eat.

If  irritation occurs after contact, seek medical advice.

Compost Leachate This is fluid that has drained from the composting material. It 
has a variety o f bacterial species present in it. The floor of the 
composting building is sloped so that leachate can be 
collected in the leachate tank. It may cause a reaction in 
sensitive receptors.

Avoid contact if  possible.

Rinse off if  contact occurs.

Do not drink.

If any irritation occurs after contact seek medical advice.

Diesel fuel As part o f the site operation, machinery operators are required 
to refuel the vehicles.

Consult material safety data sheet.

Diesel engine oil As machinery is maintained by a contractor contact with 
diesel oil should be minimised-except in the case of spillage. 
Compost has good absorbent properties and can be used to 
clear up spills.

Engine oil has the ability to be carcinogenic.

Consult material safety data sheet.
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Hydraulic oil As machinery is maintained by a contractor contact with
hydraulic oil should be minimised-except in the case of
spillage. Compost has g ood absorbent properties and can be
used to clear up spills.

Consult material safety data sheet.
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Appendix F: List of Publications

Commercial Scale Dynamic Respiration*Rate as a Process Optimisation Tool. 
Methods, Results and Analysis from Several Different Composting Systems. 2005. 
Hewings, G. Notton, D.J. Griffiths, A.J and Williams, K.P. Presented at the 20th 
International Conference on Solid Waste Technology and Management, Philadelphia, 
PA. 3rd-6th April 2005.

Dynamic Respiration Rate Measurement &Thermodynamic Modeling to Increase 
Compost Production Rates. Notton, D.J. Hewings, G. Griffiths, A.J and Williams, 
K.P. The Composting Council o f  Canada's 13th Annual National Composting 
Conference, 24 -26th September 2003, London, Canada.

Compost Manufactue for an Emerging Market in the U.K. Hewings, G. Notton, D.J. 
Griffiths, A.J and Williams, K.P. The Composting Council o f  Canada's 13th Annual 
National Composting Conference, 24th-26th September 2003, London, Canada.

The standards registration process a practical approach. Hewings, G. Notton, D. J. 
presented to the Welsh assembly Government and the Waste and Resources Action 
Programme seminar on  C ompost quality A ssurance and S tandards, 2 5th of Febuary
2002
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