
Automatic Construction of Virtual Technical

Documentation

A Thesis submitted

to Cardiff University

for the degree of

Doctor of Philosophy

by

Charilaos Pasantonopoulos BEng MSc

Manufacturing Engineering Centre,

Cardiff University,

United Kingdom

2005

i

UMI Number: U584766

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584766
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Synopsis

The main objective of the research reported in this thesis is the generation of

intelligent documentation of complex manufactured products. The construction of

documentation is a major part of product support that increases the competitiveness of

the product and its effective and proper use during its life-time. At the same time, it is

also a complicated and time-consuming task occupying highly trained personnel. The

need for systems that increase the productivity of documentation authoring teams

becomes even more apparent as other design and manufacturing activities progress

towards their automation and integration through the various CAD/CAM systems.

The first target of this research is to provide a system to assist the integration of the

documentation authoring to the Product Data Management System, the primary

source of product data. The second target is to increase the efficiency of the

information systems used for this purpose and automate the process to the extent that

is feasible using the available tools and ideas that are proposed in this thesis.

The first contribution presented in this thesis is an Object-Oriented framework that

aims to assist software developers in the design and implementation of electronic

documentation systems.

The second contribution is a novel distributed architecture for an intelligent

documentation system that will allow the automation of a major part of the authoring

procedure and the generation of electronic manuals based on information reused from

the Product Data Management System.

The third contribution is a new technique for the generation of virtual documents. The

technique is rule-based so as to support the decision-oriented nature of data selection

within the authoring procedure. The technique follows knowledge-based principles

allowing authors to design documents at a higher level of abstraction.

Acknowledgements

I would like to thank my supervisor Prof. D.T. Pham for giving me this opportunity to

conduct research in his laboratory.

I would also like to thank the Intelligent Information Systems group which helped

with their feedback and support throughout these years.

I must thank everyone at the Manufacturing Engineering Centre for the various times

they helped.

Finally I want to thank my family for tolerating me all these years.

Declaration

This work has not previously been accepted in substance for any degree and is not
being concurrently submitted in candidature for any degree.

Signed (C.Pasantonopoulos - Candidate)

Date

Statement 1

This thesis is the result of my own investigations, except where otherwise stated.
Other sources are acknowledged by giving explicit references. A bibliography is
appended.

S i g n e d (C.Pasantonopoulos - Candidate)

D ate....... 'I / '. &■/.&<?.*?.....

Statement 3

I hereby give consent for my thesis, if accepted, to by available for photocopying and
for inter-library loan and for the title and synopsis to be available to outside
organisations.

Signed- - 6 ^ 5 (C.Pasantonopoulos - Candidate)

Date ..

Table of Contents

Chapter 1 - Introduction

1 Introduction 2
1.1 Motivation 3
1.2 Research Objectives 5
1.3 Thesis Outline 6

Chapter 2 - Literature Review

2 Literature Review 8
2.1 Product Support & Documentation 9

2.1 Traditional Product Support 10
2.2 Advanced Product Support 10
2.3 Efforts on Automatic Documentation Generation 12

2.2 Information Objects 15
2.2.1 Concept of an Information Object 16
2.2.2 Areas of Application 22
2.2.3 Implementations 26

2.3 Virtual Documents 27
2.3.1 Model-Based Virtual Documents 27
2.3.2 Virtual Documents for Reuse of Data 28
2.3.3 Virtual Documents through Natural Language Generation 30
2.3.4 Practical Applications of Virtual Documents 31

2.4 Intelligent Agents 32
2.4.1 Autonomous Agents 33
2.4.2 Information Agents 35
2.4.3 FIPA Compliant Agents 39

2.5 Rule-Based Systems 39
2.6 Summary 42

Chapter 3 - An Object-Oriented Framework for Virtual Documentation

3. An Object-Oriented Framework for Virtual Documentation 43
3.1 Problems on Documentation System Development 44

3.1.1 Web Enabled Documentation 45
3.1.2 Information Integration 45
3.1.3 Ensuring High Quality Information Systems for Documentation 46

3.2 The Need for an Extensible Documentation Framework 46
3.2.1 Advantages of Object-Oriented Analysis and Design 46
3.2.2 Benefits of Software Frameworks 47

3.3 An Object-Oriented Framework for the Generation of Documentation 47
3.4 Enabling Object Technologies 49

3.4.1 Servlet Technology 49
3.4.2 Java Database Connectivity 50
3.4.3 XML Xerces 50
3.4.4 Text Pattern Matching 51

3.5 System Architecture 51
3.6 An Application Based on the Object-Oriented Framework for Product 62

Documentation
3.7 Discussion 68
3.8 Summary 69

Chapter 4 - An Intelligent Information Object Architecture

4. An Intelligent Information Object Architecture 72
4.1 A Critique of the Information Object 74

4.1.1 Areas of Application 74
4.1.2 Analysis o f the Information Object Definitions 74
4.1.3 An Overall Definition 79
4.1.4 Advantages 79
4.1.5 Disadvantages 80

4.2 Ways towards an Intelligent Information Object 82
4.2.1 Deployment of Autonomous Agents 82
4.2.2 Application of AI Techniques 83

4.3 An Intelligent Information Object 84
4.4 A Novel Architecture for Information 86

4.4.1 A Dynamic Middle Layer Based on Intelligent Information Objects 88
4.4.2 Consequences of the Intelligent Information Object Organisational 91

Structure
4.5 Realisation of an Intelligent Information Object Architecture 92

4.5.1 Useful Technologies 92
4.5.2 System Architecture 97

4.6 An Intelligent Information object Case-Study 105
4.6.1 System Presentation 105

4.7 Discussion 107
4.8 Summary 108

Chapter 5 - A Rule Based Approach to Virtual Document Generation

5. A Rule Based Approach to Virtual Document Generation 110
5.1 An Analysis of the Existing Virtual Document Generation Techniques 111

5.1.1 Complexity o f Encoding 117
5.1.2 Weak Level of Abstraction 118
5.1.3 Lack of Decision Orientation 118
5.1.4 Lack of Code Reuse 119
5.1.5 Non-Iterative Development 119

5.2 Enhancements to the Current Techniques 121
5.2.1 A Declarative Approach 121
5.2.2 A Knowledge Based Approach 121
5.2.3 A Rule Based Approach 122
5.2.4 Use of Ontologies 122
5.2.5 Interactive Development 123

5.3 A Novel Technique for the Description of Virtual Documents 123
5.4 A Higher Level of Abstraction in Document Generation 125
5.5 An Ontology for Virtual Documents 126

5.5.1 Conceptual Structure 132
5.5.2 Rule Sets 132

5.6 A Rule Based Virtual Document Architecture 133
5.7 A Case-Study of a Rule Based Virtual Document System 136
5.8 Discussion and Conclusions 139
5.9 Summary 144

Chapter 6 - Conclusions

6 Contributions, Conclusions, and Further Work 145
6.1 Contributions 146
6.2 Conclusions 148
6.3 Further Work 149

Appendix

Appendix A - Object-Oriented Framework Sample Code 150
Appendix B - FIPA-OS Agent Sample Code 161
Appendix C - Rule-Based System (CLIPS) Code Fragments 172
Appendix C.l - Template Definitions 172
Appendix C.2 - Rule Definitions 174
Appendix D - PDM Systems 182

References

References 183

List of Figures

Figure 3.1 The Framework Class Diagram 52

Figure 3.2 The Component Subsystem and the Utility Classes 53

Figure 3.3 The PDM and Web Interfacing Subsystems 57

Figure 3.4 Web Application State Machine (class Main) 59

Figure 3.5 PDM Monitor State Machine 60

Figure 3.6 The State Machine for Update Checking 61

Figure 3.7 A Request Served By the Application Produced with the Object- 64
Oriented Framework

Figure 3.8 Entrance, User Model and Login States 65

Figure 3.9 Content Adapted on a Technical User Profile 66

Figure 3.10 Content Adapted on an Operator User Profile 67

Figure 4.1 The Process o f Documentation Authoring 73

Figure 4.2 Intelligent Information Object 87

Figure 4.3 Phases o f Technical Authoring 89

Figure 4.4 A Dynamic Information Middle Layer 90

Figure 4.5 The FIPAOS Multi-Agent platform 94

Figure 4.6 The Web Server and Servlet Container Components 96

Figure 4.7 The Overall System Architecture 98

Figure 4.8 IIO System Interactions 100

Figure 4.9 Internal IIO States 103

Figure 4.10 The Generated Documentation 106

Figure 5.1 A Virtual Document Prescription 113

Figure 5.2 A PHP Document Prescription 114

Figure 5.3 A Perl CGI Document Prescription 115

ix

Figure 5.4 A Typical Virtual Document Generation System 120

Figure 5.5 A Rule-Based System for the Generation o f Virtual Documents 124

Figure 5.6(a) The Protege 2000 Ontology Development Environment 129

Figure 5.6(b) A CLIPS Template createdfor a Protege class 130

Figure 5.7 Virtual Document Ontology 131

Figure 5.8 A Rule-Based Virtual Document System Architecture 134

Figure 5.9 A Rule-Based Virtual Document System Interface Components 135

Figure 5.10 A Rule-Based Virtual Document Example 137

Figure 5.11 An Instantiation o f a Rule-Based Virtual Document 140

Figure 5.12 A Rule-Based Virtual Document Example Output 141

x

List of Tables

Table 2.1 Information Object Advantages 18

Table 2.2 Information Agent Categorisation 37

Table 2.3 Information Agent Implementation Strategies 37

Table 4.1 Information Object Definitions, Part 1 77

Table 4.2 Information Object Definitions, Part 2 78

xi

Abbreviations

ACC Agent Communication Channel

ACL Agent Communication Language

AI Artificial Intelligence

AMS Agent Management Service

AOP Agent-Oriented Programming

AP Application Protocol

API Application Programming Interface

BIG resource-Bounded Information Gathering

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CE Concurrent Engineering

CGI Common Gateway Interface

CLIPS C Language Integrated Production System

DBMS Data Base Management System

DF Directory Facilitator

DME Device Modelling Environment

DOI Digital Information Identifier

DOM Document Object Model

DSSSL Document Style Semantics and Specification Language

DTC Design To Criteria Scheduler

DTD Document Type Definition

EE Extended Enterprise

FIPA Foundation for Intelligent Physical Agents

HTML HyperText Markup Language

HyTime Hypermedia/Time-based structuring language

IA Information Agent

IB Information Brick

IE Information Element

IIO Intelligent Information Object

10 Information Object

IPM Intelligent Product Manual

JDBC Java Data Base Connectivity

JESS Java Expert System Shell

JSP JavaServer Pages

MIT Massachusetts Institute of Technology

NL Natural Language

NLG Natural Language Generation

0 0 Object-Oriented

OOAD Object-Oriented Analysis and Design

OOP Object-Oriented Programming

OQL Object Query Language

OS Operating System

PDF Portable Document Format

PSS Product Support System

PDM Product Data Management

PHP Hypertext Preprocessor

RETSINA Reusable Environment for Task-Structured Intelligent

Networked Agents

RIO Reuse of Information Objects

SAX Simple API for XML Parsing

SGML Standard Generalised Markup Language

SQL Standard Query Language

STEP Standard for the Exchange of Product model data

VD Virtual Document

VTDS Virtual Technical Documentation System

VTM Virtual Technical Manual

XML extensible Markup Language

xiv

Chapter 1 - Introduction

Chapter 1 - Introduction

In this chapter, a brief introduction to this thesis is given. The chapter continues with

a description of the motivation and objectives for this research and concludes with an

outline of the thesis consisting of a short description of the contents of each chapter

and its purpose.

1

Chapter 1 - Introduction

1 1ntroduction

Today’s requirements for "complete solutions" and not mere products have leveraged

the role of product manuals. These complete solutions are a combination of products

and services. The role of the company in this new strategy generates the need for

basic and custom services. This role places the documentation within the basic

services, as part of the product support, and within the custom services, as part of the

product information used internally within an enterprise for the product

customisation. Within the tight customer-provider relationship and the new

relationships created by the Extended Enterprise (EE) model [HaakeOl] between the

partnerships, product information has emerged as an ingredient that requires more

flexibility, transportability, and intelligence than ever before.

An Intelligent Product Manual (IPM) is a conceptual model for a product manual that

goes beyond the conventional manuals to intelligent electronic Web-based forms. A

development methodology for the IPM model, an adaptive IPM architecture that

challenges the problems of user-adaptation, and a case-based reasoning approach for

adaptive hypertext have also been developed. Furthermore, utilising the Concurrent

Engineering (CE) approach for IPM authoring, an integrated authoring environment

that enables the CE approach to be applied to the documentation development was

constructed, and a collaborative authoring environment was implemented [Setchi99,

Pham02]. Finally, the integration of expert systems in IPMs, as a troubleshooting

facility, led to an agent-based expert system which automatically updates its fault

knowledge, and automatically classifies new fault data provided by the maintenance

engineers [SorokaOO].

2

Chapter 1 - Introduction

Modern approaches to documentation systems have successfully incorporated

hypertext, multimedia, adaptive hypertext, and personalised interfaces. Automatic

generation of the documentation has been extensively exploited only in the realm of

source code documentation using literate programming techniques [Knuth84], mainly

by the JavaDoc [Friendly95] system. However, in the generic sense of documentation,

automation has not been yet utilised, except in minor research projects. Stepping into

the area of automatic generation allows viewing product manuals as Virtual

Documents (VD) [Gruber95]. The concept of “virtual documentation” can promote

manuals to a new level of existence.

Other trends include the use of Artificial Intelligent techniques, such as Intelligent

Agent systems and Information Agents that can be deployed in the area of

documentation for helping in the various stages of design, construction and

maintenance, or even user adaptation.

1.1 Motivation

As has been established, research in Intelligent Product Manuals [Pham99, PhamOO]

has been striving to extend the reality of product documentation to meet the current

needs and technological trends in today’s manufacturing.

The main inspiration for this research comes from four subjects: Object-Oriented

systems, Information Objects, Virtual Documents, and the current status of software

documentation.

3

Chapter 1 - Introduction

The documentation systems for software frameworks and components, being closer to

information technology developments, have strongly benefited over the last few years

from literate programming techniques and Java's JavaDoc toolkit [Javadoc04].

Technical documentation of large complicated products has the disadvantage of

lacking a strictly formalised framework, which programming languages possess. This

makes the process of producing such documentation much more complicated and

reduces the degree of automation that can be applied. Thus, a way of handling the

structure and the meaning of the product data is needed. The data have to be handled

explicitly, in order to impose on the arbitrary product a formality, a set of rules and

strategies that will enable more efficient handling of the product information. As a

result, it is possible to automate partially the construction of the documentation as in

the case of software documentation.

Virtual Documents can be very useful tools for the generation of technical

documentation providing integration with the most up-to-date data and user specific

document generation. According to Gruber et al [Gruber97], one drawback that is

encountered is the modelling bottleneck. In order for the author to design virtual

documents, he/she has to prepare models, which can be a very complicated and time-

consuming task.

4

Chapter 1 - Introduction

1.2 Research Objectives

The main objectives of this research are the following.

1. The Identification of today’s Technical Documentation requirements.

(Chapter 2)

2. The creation of an Object-Oriented Framework that will increase the

productivity of the software developers involved in documentation system

projects. (Chapter 3)

3. An analysis of the Information Object (10) concept, and an evaluation of its

benefits and inefficiencies within the documentation authoring process.

(Chapter 4)

4. The exploration of the Information Object as an active entity and its

realisation as an Autonomous Agent that provides an Active and Intelligent

Information Object (IIO). (Chapter 4)

5. Examination of the advantages of the novel IlO-based architecture for the

IPMs. (Chapter 4)

6. The introduction of a technique for the generation of Virtual Documents that

has a focus on Technical Documentation and offers better productivity and

ease of encoding. (Chapter 5)

7. Creation of an ontology for Virtual Technical Documentation Systems

(VTDS). (Chapter 5)

8. Construction and presentation of case studies of automatically generated

Virtual Technical Manuals (VTM) based on the findings. (Chapters 3,4,5)

9. Discussion of the possible extensions and shortcomings of this research and

findings. (Chapter 6)

5

Chapter 1 - Introduction

1.3 Thesis Outline

The remainder of this Thesis comprises five chapters.

Chapter 2 surveys the literature relevant to the field of research. The subjects of

Virtual Documents, Information Objects, and Autonomous Agents are reviewed in

order to clarify the benefits that they intrinsically provide. The different approaches

are criticised and a good understanding is reached that yields an effective combination

of ideas and technologies that will meet the expectations of the research objectives.

Chapter 3 presents an Object-Oriented framework for Virtual Documentation. The

basic requirements and principles of a documentation system are modelled into an

Object-Oriented design to provide an infrastructure for producing documentation

systems. A web-based documentation application is presented that generates a

dynamically updated virtual web-site.

Chapter 4 is concerned with Intelligent Information Objects. A novel architecture for

IPMs is proposed based on the Intelligent Information Object (IIO) concept. This new

concept encompasses aspects from autonomous agents and the concept of information

objects. An IIO forms a concept-specific information agent that offers several benefits

when related to technical documentation, as illustrated in the rest of the chapter.

Chapter 5 describes a rule-based approach to virtual document generation. The focus

is on the description of Virtual Documents and on a criticism of the current

approaches. A novel approach using knowledge-based techniques is proposed, which

aims to address the problems concerning the description of Virtual Documents.

6

Chapter 1 - Introduction

Chapter 6 concludes the thesis. The results of this research are shown in the form of

distinct contributions and the final conclusions are stated. A vision for the future of

the presented systems is also given in this chapter.

7

Chapter 2 - Literature Review

Chapter 2 - Literature Review

In this chapter, the literature on the topics of Product Documentation, Information

Objects, Virtual Documents, Autonomous Agents, and Rule-Based Systems is

presented. At first, current work in Product Support and documentation is shown.

Next, the concept of Information Objects is analysed. Then, the different systems

proposed for Virtual Documents are described. Consequently, Autonomous Agents

are studied with an emphasis on those that are focused on information acquisition and

synthesis. Finally, Rule-Based Systems are shown as a way of realising an intelligent

system that could fulfil the needs of intelligent behaviour within the documentation

authoring procedures.

8

Chapter 2 - Literature Review

2 Literature Review

2.1 Product Support and Documentation

The objective of performance support systems (PSS) is to enhance the performance of

users supporting them in their daily work activities and tasks for a specific product.

Bezanson [Bezanson95] defines performance support as “a product or process

attribute that aims to enhance user performance, through a user interface and support

environment that anticipates user needs and supports them conveniently and

effectively”. According to Cantanto [Cantanto96], PSSs are “integrated, readily

available sets of tools that help individuals do their job and increase their productivity

with minimal support”. Desmarais et al. [Desmarais97] and Sleight [Sleight93]

identify as the primary objective of PSSs the support of the users with specific tasks

related to the product. Bezanson [Bezanson95] outlines also the learning aspects of

support systems by providing “just in time support” and giving the users the ability to

retrieve information at the moment it is needed.

By the use of performance support systems the value of the manufactured product

offered increases. The users find it easier to work with the supported product, the

companies achieve more effective usage of the product and thus increased

productivity, and in the same time they can reduce costs for training and hiring expert

users for supporting, maintaining, and operating their infrastructure. Desmarais et al.

[Desmarais97] shows claims of a number of companies that have achieved large gains

by the use of PSSs. This also counterbalances the costs of investment for the

development of such a system.

9

Chapter 2 - Literature Review

2.1.1 Traditional Product Support

Traditionally, product support includes the paper-based product manuals, lectures,

courses from expert instructors, consultation from representatives of the company etc.

Other aids are known such as pocket reference cards, colour codes, lists of

abbreviations, and specification sheets. These can be thought to be adequate for some

products but as the product complexity and the volume of information increases

problems start to appear and their effectiveness is reduced. According to Bezanson

[Bezanson95], “traditional user support methods are no longer effective”, because

“traditional training methods are not responsive to the individual needs as they

emphasize training rather than learning”. Furthermore, according to Pham et al.

[Pham99] problems arise with the collection, integration, and retrieval of product

information, the book oriented form of the documents, the reference manual (as

opposed to educational) structure, and the presentation formats that may be

unavailable or non-suitable under different conditions. Ventura [VentureOO] focuses

more on the problems associated with portability, complexity, accuracy, reliability,

and maintainability of the product information presented to the user.

2.1.2 Advanced Product Support

Advanced product support employs personal computers, web technologies, and

artificial intelligence techniques to enhance the product support and limit the role of

costly human experts. According to Cantando [Cantando96], the purpose of an

electronic PSS is to replace or supplement human experts, paper-based

documentation, and costly training programs. Sleight [Sleight93] defines five

characteristics for electronic PSSs. Namely that they are computer-based, provide

10

Chapter 2 - Literature Review

access to discrete and specific task-related information during task performance, are

used on the job, are controlled by the user, and reduce the need for prior training.

Advanced PSSs can include help systems, front end to information databases, expert

systems and knowledge bases, application and productivity software, learning

experiences, assessment feedback and monitoring [Cantando96].

Performance Support Systems may be stand-alone or embedded. In the case of

embedded solutions the PSS works in accordance with the main system as in the case

of wizards provided along with popular software products. The embedded system

complements and interacts with the main system. In the stand-alone form PSSs can be

used on their own independently for learning separately from the system they are

intended to support.

Intelligent Product Manuals [PhamOO] have started a long line o f research, advancing

product specific and documentation centred performance support issues. Intelligent

Product Manuals (IPM) have produced Electronic Documentation solutions resulting

in Portable Data Format (PDF), HyperText Mark-up Language (HTML), and

extensible Mark-up Language (XML) format documentation systems. Setchi has

presented an Integrated Authoring Environment [Setchi99] for Intelligent Product

Manuals accompanied by an authoring methodology. This allows the authors to

operate on top of Pro-Intralink and allows the documentation authors to use the

utilities offered by Pro-Intralink and author the documentation along with the product

data and finally present them as a web site. The contributions continue with an

Adaptive Product Documentation [Setchi99] system that uses user models and CBR

(Case-Based Reasoning). It presents user-tailored documentation to the users that

11

Chapter 2 - Literature Review

increases the productivity and the effectiveness of the manual. Finally, Soroka

[SorokaOO] developed an agent-based system that performs automatic updating of the

fault data used by an expert system for supporting troubleshooting procedures

performed by technical personnel dealing with a manufactured product.

2.1.3 Efforts on Automatic Documentation Generation

The main efforts in the automatic generation of documentation are focused on

software engineering. They start with the Literate Programming paradigm and they

are extensively utilised in the Java documentation system JavaDoc. In order to

achieve automation of the process a method is needed that will integrate the design

procedure and the documentation authoring and a system that will exploit this

integration to extract, process and produce the documentation output. The main

drawback in this approach is the transfer of the authoring as part of the designer

workload and the increase of the complexity of the design as a process.

Literate Programming [Knuth84] started promoting a methodology and a system for

producing software applications and their documentation with an integrated strategy

where the documentation is written as part of the design process and is then extracted

and formatted by a separate software system. This changes the traditional attitude

towards the design of programs, transferring the focus from explaining to the

computer what should be done, to explaining to other humans what the computer has

to do. The designer can then be viewed as an essayist writing a report about the

program in human terms and including parts of programming language code as a

consequence of the concepts and ideas explained therein. This tries to impose a

different approach to the design in that the primary target is the explanation and the

12

Chapter 2 - Literature Review

code produced is a product that closely follows this explanation. At the end of the

process the human language explanation is used to automatically produce

documentation, and the code fragments are assembled to produce the actual design

implementation.

The Literate Programming paradigm could be seen as a largely ambitious plan. Sun

Microsystems created JavaDoc [Friendly95], the Java Documentation system that is

strongly influenced by the literate programming paradigm but has more modest

targets since it has to be a commercially viable solution. In the Literate programming

paradigm the author/designer is focused on the high level description of the design

and the computer produces the implementation of the design from the literate

description. The goal of JavaDoc is to take a design expressed in the usual way and

produce a quality literate description. The Java documentation tool automatically

generates cross-references, indexes, and outputs Document Type Definition (DTD)

compliant HTML code. In the Literate Programming paradigm the purpose is to

actually produce the design, so the literate description is going into much more detail

within the method implementations of the program. The JavaDoc toll targets to

produce Application Programming Interface (API) documentation and thus eliminates

the need for that level of complexity. The documentation in this case focuses on the

choice of elements to be extracted and the commenting syntax. These two elements

are further processed to produce the cross-referencing and the indexes, resulting in a

fully web-enabled documentation.

Another approach to the creation of technical documentation is that of Automatic

Generation, based on Natural Language Generation (NLG) by Reiter et al [Reiter95].

13

Chapter 2 - Literature Review

Reiter et al comment on the advantages of NLG such as, reduced cost to generate and

maintain documentation, guaranteed consistency between documentation and design,

conformance to standards, multi-linguality, user model based tailoring of

documentation, and multimodality. As in the case of JavaDoc where additional work

is needed from the designer to add the comments following the specified syntax, again

in this case the designers are expected to add annotations in the CAD files and/or

additional information through some knowledge representation system. In the NLG

approach there is a fixed overhead for producing the knowledge base for the language

generation itself. Additional work is needed to make the linguistic structures,

vocabulary etc. This can be limited by using standards such as the European

Association of Aerospace Industries (AECMA) Simplified English that is popular in

the aerospace industry. Another problem that arises is the Quality Assurance of the

documentation. As in the case of Literate Programming, where a more ambitious

higher level documentation is targeted, the intelligence of the system compromises the

predictability and thus may introduce errors in the generated document. In many cases

this is not acceptable since it might induce severe hazards. Computation time can also

be a problem in automatic documentation systems since the generation time and thus

the response time of the system has to be in the magnitude of a few seconds in order

for the system to be useful.

In conclusion, the Literate Programming approach may be too ambitious but it makes

a valuable point. It emphasises the need for the designer to be conscious of his

involvement with the documentation of the final product and attempts to produce a

methodology and a system that will ease the contribution of the designer to the

documentation authoring. The JavaDoc system takes a much more restricted approach

14

Chapter 2 - Literature Review

and makes a commercial viable system. The NLG approach goes into a very detailed

documentation generation but has the drawback of requiring a considerable amount of

work in order to extract the necessary information and the linguistic part of the

system.

2.2 Information Objects

The task of preparing documentation is an important part of the product design

process. The documentation has to be up-to-date, accurate, and concise. The

performance of the product and its marketability are linked to the quality of its

documentation.

The focus is on the collection, processing, and structuring of product data in order to

generate high quality product manuals. In other words, the main interest is on the

procedure of authoring technical documentation. In this section a review on the

Information Object (10) concept is provided. Although IOs are extensively used, there

is no single clear definition. Different authors view the term IO from different

perspectives and apply it in different areas. The aim is to add together these efforts,

and complete any missing parts, in order to make a complete evaluation and identify

any possible shortcomings and extensions to the concept.

The Information Object has been considered as a basic concept of Virtual Documents

[Paradis98, Vercoustre97, and Harris95], and other dynamic hypermedia applications

[Setchi99]. It has also appeared in the literature as the cornerstone of an attempt to

tackle the problem of producing technical documentation using Object-Oriented

techniques and methods [Price97, Bist96, Mattheus92], and as a base concept in an

15

Chapter 2 - Literature Review

effort to bridge the gap between product data and product documentation [Tucker97].

Overall, the Information Object concept can be found even to evolve as a standard for

indexing of information [Ions03, Doi03].

2.2.1 Concept of an Information Object

The term Information Object has been used for any grouping of data, homogeneous or

heterogeneous, text, graphics, or multimedia that can be included in a document. This

data can either be pure or tagged by meta-data using a mark-up language that

expresses presentational - HTML, SGML etc. - or knowledge - XML - semantics.

Information Objects are handcrafted pieces of information, parts of existing

documents, or structured data, that the author transforms in various ways and reuses in

new documents. The concept of the Information Object has been studied with respect

to reusability strategies [Paradis98, Vercoustre97, Harris95] and structuring

techniques on information systems [Bist96, Price97]. At the same time, it provides the

means for applying the Object-Oriented (00) model to technical information systems

[Bist96, Price97, Matthews92].

The 10 has been very valuable, as a reuse-facilitator of information (1) and as a

structuring component of a document (2). It defines the information as a unit

providing encapsulation and thus making it easier to modify/alter it in order to fit it

into a newly assembled document [Bist96, Vercoustre97, Paradis98] (3). The IO

clarifies the characteristics that this information must have in order to be reusable. It

enables this information to be rated according to attributes, such as granularity,

modularity, autonomy, homogeneity etc. [Ranwez99, Vercoustre97], and properties

16

Chapter 2 - Literature Review

such as size, style, role, coherence, ontology and others (4). It helps authors to divide

information in chunks according to the concepts that they represent [Bist96,

Ranwez99, Vercoustre97] (5), and thus build documents by assembling these objects,

according to the way they are related, in various different orders and combinations

[Ranwez99, Vercoustre97] (6).

In summary, the advantages (Table 2.1) include the following:

1. The 10 approach enables reuse.

2. It is a basic information-structuring concept.

3. It applies the Divide and Conquer method on information providing encapsulation.

4. It defines a chunk of information as a separate entity with specific characteristics.

5. It enables a conceptual separation of the information.

6. It provides a basis on which one can see the relationships between the concepts

more clearly.

Tucker and Harvey define the Information Object in the context of product

documentation, as "a locution of product data that describes one idea” [Tucker97].

They base their research on the fact that in the first steps of the product life-cycle the

STEP standard [Owen97, Kemmerer99] is heavily used by CAD/CAM and Product

Data Management (PDM) applications. In the later stages, SGML [Sgml04] has

proved to be very useful for the management and presentation of product documents.

They investigate a way to introduce continuity from engineering design data (STEP)

17

Chapter 2 - Literature Review

Table 2.1 Information Object Advantages

Information Object Advantages

Information Reuse

Information Structuring

Divide & Conquer

Application of characteristics

Conceptual Separation

Conceptual Relationships

18

Chapter 2 - Literature Review

to technical document presentation data (SGML). They define a Perceptual

Information Object (presentation view) and a Conceptual Information Object

(conceptual view), and research the technical and application differences between

STEP and SGML in order to find a way to harmonise the documentation process from

the design to the presentation stage.

Paradis et al in their research on Virtual Documents, call Information Objects "the

pieces of information that their document interpreter gathers from heterogeneous data

sources and manipulates in order to fill-in a predefined template" [Paradis98]. This

template is constructed by a user with an integrated editor, and thus generates a

Virtual Document. They present a centralised system that addresses the problems of

plurality of heterogeneous sources and efficient evaluation of the Virtual Documents,

minimising the re-evaluation of information objects in these case where some of the

information object sources have not been updated.

Ranwez and Crampes define in a similar way the Information Brick (IB) as "a

fragment of a document that can be rendered in at least one medium, is characterised

by a conceptual model, and is insert-able into a real document" [Ranwez99].

According to the authors, the building of a real document is then a matter of selecting,

organising, and assembling the pertinent IBs. The IBs can also be segmented to sub­

bricks and then assembled into composite bricks. Another important aspect is that

they make a distinction between "homogeneous" and "non-homogeneous" information

bricks. They also define the homogeneous IBs on the basis of the source of extraction

of the information, and they note the characteristics, such as size, style, ontological

domain, role, and content coherence, that are affected.

19

Chapter 2 - Literature Review

Vercoustre and Paradis present a language for Information Object reuse that allows

users to write virtual documents, in which dynamic information objects can be

retrieved from various sources, transformed, and included along with static

information in SGML documents. The information objects can be SQL tables, Objects

from an object Database, or semi-structured fragments of HTML. The language

allows for flexible templates to be written, that include static data, queries, and

mapping of the retrieved data to the virtual document, thus enabling the integration of

the Information Objects by creating a higher level design view of the document

[Vercoustre97].

Harris and Ingram describe the transition of a documentation team in IBM from

conventional documentation to Information Element (IE) based Virtual

Documentation. They define the Information Element as "a piece of text that

comprises one or more topics to be presented as a unit" [Harris95].

Bist proposes the use of Object-Oriented (0 0) modelling for technical

documentation. He states that the structured design and the typical top-down

documentation structure fails to accommodate the needs of reuse, flexibility,

conceptual clarity, and non-book-oriented presentation. He argues that the use of the

Object-Oriented modelling will solve these problems and further on will enable

teamwork. Bist mentions that none of the existing tools follow this paradigm and tries

to describe the features that an 0 0 Technical Documentation system should have.

This 0 0 approach to authoring strongly depends on the use of Information Objects

that are based on an 0 0 Analysis of the domain in hand [Bist96].

20

Chapter 2 - Literature Review

Price presents an Object-Oriented methodology for the design of documentation

systems based on Information Objects [Price97]. He describes an analysis procedure

where concepts are discovered which qualify as information objects, and then are

categorised in types according to the nature of the information they provide. After that

some characteristics are identified in each object, such as function or responsibility,

sub-components, membership, attributes etc. These information objects can then be

reused in various ways, implementing a web-site, a CD-ROM, an on-line help system,

or a printable document [Price97].

Setchi defines Information Objects as "a data structure that represents an identifiable

and meaningful instance of information in a specific presentation form" [Setchi99].

She defines product and documentation elements. These elements are a higher

granularity construct that is created for organisational and addressing purposes, and

which in turn contains the information objects. Each information object is

characterised by a set of meta-data that enable management, usage, type, and

knowledge representation criteria.

Various information systems use the Information Object for indexing the information.

In other words, it is employed as a unique identifier for keeping track of the data and

the changes made [Ions03]. Furthermore, as the Internet evolves and electronic

publishing becomes more and more popular, the Information Object is used for

indexing, as a working standard through the Digital Information Identifier (DOI)

[Doi03].

21

Chapter 2 - Literature Review

Finally, CISCO is active in the area of Information Objects with the RIO Project

[Rio03]. The Reusable Information Objects (RIO) strategy describes a methodology

for constructing training courses made out of reusable information objects that

increase the productivity of the technical writer and improve the structure and overall

quality of the course. The user benefits from a consistent approach throughout the

course, just-in-time information delivery, customisation, and improved search

[Rio03].

2.2.2 Areas of Application

The Information Object has been defined in four different ways for use in four

different areas. In most cases the concept is used as a simple indexing mechanism.

Vercoustre et al [Vercoustre97a] and Ranwez [Ranwez99] define it for use within

Virtual Documents. Matthews et al [Matthews92], Price [Price97] and Bist [Bist96]

use it for applying Object-Orientated methods to the documentation authoring

process. Tucker [Tucker97] defines it in the realm of Technical Documentation.

Harris and Ingram [Harris95] combine the two into an approach for producing Virtual

Technical Documentation.

Indexing in Information Systems

In all information systems, data are stored in some medium to provide resilience. In

some cases databases are used and in some other cases the data are stored in files. In

all cases, the data are indexed in a way that is dependent on the storage strategy

chosen. The files are described by names, the databases contain tables etc. In order for

the system to be able to find and handle the information more easily, it is more

22

Chapter 2 - Literature Review

comfortable to have a unique identifier that represents the information. Some

information systems have already started using the term Information Object for

defining such a uniquely named set of information items.

In conclusion, the key aspect of the Information Object applied in the information

systems today is that of the unique identifier.

Generation o f Virtual Documents

Paradis et al [Paradis98a] use Information Objects to generate Virtual Documents.

The Information Objects are data stored in the tables of a relational database, in the

objects of an Object-Oriented database, or in HTML and SGML fragments. An editor

is used to create document prescriptions, which are processed by a document

interpreter that has access to the Information Objects and thus creates the final

document. The Information Objects are returned by a query, and then are included and

transformed to fit into the new output document.

In a more practical way, Harris and Ingram [Harris95] prepare Information Objects,

Document Structures, and Content Templates and use conditional statements and an

Effectivity Specification to generate Virtual Technical Documents. The document

structures form a template and the content models arrange the organisation of the

information elements. The complete document source is processed in a document

processor and the conditionals are triggered according to the Effectivity

Specifications. The output document is finally presented as a printed document, an

online hypertext, or a multimedia document.

23

Chapter 2 - Literature Review

Ranwez and Crampes [Rawnez99] attempt a more theoretical exploration of the 10.

They start by forming definitions for the concepts of Document, Information Brick

(Object), Virtual and finally Virtual Document. Then they try to formalise the Virtual

Document by focusing on the Information Brick/Object combined with a type of

engine and a set of specifications.

The key idea behind the Information Object as a virtual document building unit is the

arrangement of the object, according to the specifications, as a composite part.

Application o f Object-Orientation on Documentation

Bist [Bist96] discusses the application of the Object-Oriented model into the technical

documentation domain. The analogy between the programming paradigm and the

authoring practices is presented and Object-Orientation is proposed as a

modernisation of technical authoring. The Object-Oriented model is considered

mainly as an entity-relationship way of analysis, and information objects are

constructed on top of the defined entities. Finally, tools for equipping such an

authoring environment are described that allow for 10 based authoring, diagrams,

shared resources, different levels of information views, and multiple output formats.

Price [Price97] writes about Object Orientation from the perspective of applying the

methodology to the authoring process. He uses basic steps for identifying Information

Objects and tries to define the attributes that they should have. Again as in the case of

Bist [Bist96] the implementation is conceived in a way that leads towards hypertext

authoring.

24

Chapter 2 - Literature Review

Matthews and Grove [Mathews92] present a more elaborate investigation of the topic.

They do take into account the functional part of an Object, conceptualising the

Information Object as a proper state and behaviour entity, responding to messages and

servicing requests through its interface. They discuss the encapsulation provided and

they present the interface as possible information types and possible questions posed

to the object. They also define in the document hierarchy structural and behavioural

links. The structural links are normal links that the user has to trigger with his actions,

and behavioural are links between the objects that they themselves handle in the

background without the intervention of the user. Unfortunately Matthews and Groves

do not provide further detail nor do they attempt an implementation that will provide

evidence of the benefits.

The main idea behind an Object-Oriented view of documentation can be seen as the

mapping of the information objects onto a conceptual structure, such as the one that a

class hierarchy forms for Object-Oriented programming. The idea of adding a

functional part to the information also appears but has not been successfully and

sufficiently defined.

Technical Product Documentation

Technical Product Documentation is strongly influenced by the product design. As the

product is designed in a hierarchical way forming a system of discrete parts, the data

are generated and stored in a similar way.

Tucker [Tucker97] attempts to harmonise the design data with the documentation

objects. The information objects are defined as a locution of product documentation

25

Chapter 2 - Literature Review

that describes one idea and are modelled by SGML, which in turn is embedded within

STEP files. Finally, the information objects are collected and mapped onto some

already defined publishing structure.

The main focus is both on having a continuity that will allow the information to travel

from the design stages to the final documentation stage in a more effective and easy

manner, and on establishing a conceptual continuity between the product structure and

the documentation.

2.2.3 Implementations

As far as the implementation of the information objects is concerned, most of the

authors propose an SGML approach [Tucker97, Bist96, Vercoustre97, and Paradis98].

In the case of Tucker [Tucker97], HyTime [Hytime04], and DSSSL [Dsssl04] is a

proposed solution for presenting the information, and in the case of Vercoustre and

Paradis a document interpreter does the processing of the document. Ranwez and

Crampes use their Conceptual Evocative Engine and XML for implementing their

information objects [Ranwez99]. Tucker proposes the embedding of the information

objects within the STEP data and the creation of a STEP AP for handling the

embedded information objects. Also proposed is modelling of the information objects

along with the product using EXPRESS [Tucker97].

26

Chapter 2 - Literature Review

2.3 Virtual Documents

Virtual Documents (VDs) is an area of research that has been viewed through

different prisms by various researchers. These prisms include model-based generation,

data reuse, generation through natural language techniques, and more practical and

simpler approaches which are applied in industrial environments.

2.3.1 Model-based Virtual Documents

A Virtual Document according to Gruber is a document generated on demand in

response to user input [Gruber97]. Gruber et al propose a model-based approach to

enable this generation. The model consists of a system that describes numerical

models for various devices and thus can simulate their operation.

The DME (Device Modelling Environment) is a tool for modelling and simulating

dynamic engineering systems. The user can work with the DME’s libraries of

components to connect them and thus create a model of a device. The DME can then

compute numerical and discrete simulations to predict the behaviour of the device.

Based on this simulation the system can produce explanations concerning the device

and its inner workings. These explanations are natural language generated fragments

that are sorted and presented to the end-user in the form of a Virtual Document

[Gruber97].

One implication of Model-Based Virtual Documentation as it is identified by Gruber

et al, is the integration of documentation and design practices. The usual process

27

Chapter 2 - Literature Review

model has documentation as a separate part decoupled from the design that leads to

out-of-date and inaccurate documentation. With a virtual approach to documentation,

the design and documentation processes are integrated and the engineer can author the

documentation by annotating the models already needed for analysis. Another basic

point that should be mentioned is the capability of Virtual Documents to provide a

shared context of collaborative work, since they can integrate shared databases and

resources of a distributed team working on top of a computer network.

Finally, an inherent limitation is identified in Virtual Documents. Virtual

Documentation is limited by an authoring bottleneck in a similar way that static

documents are limited by the authoring bottleneck. The models need a considerable

amount of work to be prepared and implemented. This makes virtual documentation

expensive. The only way around this is when the domain of interest has very stable

domain models that are easy to express with a formal representation [Gruber95].

2.3.2 Virtual Documents for Reuse of Data

Vercoustre and Paradis [Vercoustre98, Vercoustre97a] are mainly concerned with the

reuse of existing resources such as documents and databases within the newly

generated Virtual Documents. In this case, the Virtual Document is not based on a

complex model and a modelling environment, but in a user defined prescription that

provides a template with which the document processor works to assemble the pieces

of information from the information sources and integrate them into the virtual

document.

28

Chapter 2 - Literature Review

Vercoustre and Dell’Oro [Vercoustre96] evaluate different approaches for the

generation of the VD. They use three different implementation approaches, a CGI

script, the 02 Object-Oriented Database, and an OQL API. Moreover, an application

is built on top of PHP [Williams04] and SQL [Earp03]. They focus more on the PHP

server with which, they claim, simpler documents are easy to make and more complex

ones are feasible. Through this study they come to the conclusion that four things are

needed for the generation of virtual documents. These are: query, mapping,

construction, and presentation. They propose the creation of languages supporting

these functions and they conclude that the DSSSL (Document Style Semantics and

Specification Language) is a good candidate for such an application. Finally, they

discuss the possibility and the benefits of extending an editor as an integrated

development environment for Virtual Documents.

Paradis [Paradis98b] presents a language for Virtual Documents with query and

mapping capabilities. With this language, queries, such as the ones made with SQL or

OQL, can be easily integrated within the document and the query result can be further

manipulated to select a specific subset of answers. Furthermore, the language allows

the definition of mapping constructs between results and tags (such as HTML), in

order to transform the data into a form that can be seemingly integrated into the

virtual document. As an HTML example, a list dynamically retrieved by a query can

be mapped into a tag, and a table retrieved from a relational database can

be mapped and presented into an HTML table [Musciano97].

Vercoustre and Paradis [Vercoustre98] describe the RIO (Reuse of Information

Objects) approach and architecture, with the language shown by Paradis [Paradis98b]

29

Chapter 2 - Literature Review

enhanced to support definition of links between Virtual Documents. They also

propose further extensions to the language, such as control instructions for adapting

the resulting document according to more specific queries.

2.3.3 Virtual Documents through Natural Language Generation

Dale et al aim towards a more puristic Virtual Document that is generated starting

from more fine-grained components and Natural Language Generation (NLG)

techniques [Dale96, Dale97, Dale98a, Dale98b, Dale98c, Dale98d].

Natural language generation techniques combined with raw data can offer better

flexibility and functionality to virtual documents, compared to the methods using

metadata annotated fragments [Dale98a]. Some of the advantages reported by Dale et

al are: the description of the internal data included in the source (e.g. database), the

contextual tailoring according to variables (e.g. user model), and multi-lingual output.

The proposed architecture is a typical NLG system that wraps the text into an HTML

template, while the selection of the links from the user is used as a discourse goal for

the system. The only problem identified is that an existing database created for a

different purpose might not be optimally structured for such a task [Dale98a].

Although Natural Language (NL) offers many attractive advantages [Reiter95] when

it is used to produce extensive documents, and more specifically, technical

documentation, some problems arise. The generation system needs a considerable

knowledge base, which makes it more costly than producing normal documents. In

addition, the increased possible outputs may not be welcome in documents that have

30

Chapter 2 - Literature Review

to undergo a quality assurance process [Reiter95]. Church and Rau point out that the

most successful NLG systems attribute much of their success to the limited

vocabulary, grammar, and semantics they have [Church95]. These standards may be

an advantage in technical documentation, where simplified English might be in use

(e.g. aerospace industry), but they can be a serious disadvantage for the more general

notion of Virtual Documents.

2.3.4 Practical Applications of Virtual Documents

Harris and Ingram [Harris97] have assessed virtual document generation in industrial

environments. They present two case studies on documentation systems for IBM.

Harris et al [Harris97] show a Virtual Documentation System using the FrameMaker

electronic publishing tool. The system uses variables and conditional statements to

produce conditional views of the data superset. Harris clearly states the cost

effectiveness of Virtual Documentation but also presents the difficulties technical

writers encounter in such a paradigm shift.

Ingram [Ingram97] again from IBM, presents a methodology for producing virtual

technical documentation. The methodology consists of five parts: information

modelling, content modelling, design for reuse, standards and templates, and the

incremental development and review techniques. Information modelling is the process

of mapping product information to customer requirements using control and book

definition files. Content modelling is a refinement of the information model that

resembles, outlines, and helps engineers to review the content model; and information

31

Chapter 2 - Literature Review

developers to guide the information gathering and writing process. Design for reuse

handles the reusability factor of information models and content models, in order to

render them with an abstraction that will make them reusable, thus forming the basis

for future Virtual Documents. Standards and templates are the specification of style

definitions, in order for the system to be able to update document formats from a

centralised control file. The incremental development and review stages consist of the

early creation of usable drafts that promote the quality assurance of the final Virtual

Document System. The author then shows graphs with the productivity (page

authoring per month) and cost (development cost per month) results. These show the

page development to be slightly lower in the first year compared to the conventional

authoring, and then having a dramatic increase (from 2 to 22) in the monthly

generated pages. The inverse happens to the cost of the document production. The

most important argument from Ingram is his view of virtual document development as

software development, although it reduces the hope of virtual document development

becoming a simple process that can be applied by non-programmers.

2.4 Intelligent Agents

The concept of agents has been quite confusing as far as its definition is concerned.

The different definitions by different researchers on agent technology are numerous

[Franklin96]. The fact remains that everybody accepts it as the modem approach to Al

[Norvig95]. It is also viewed as the latest paradigm in software engineering

[JenningsOO] and has been successfully applied in many areas [Jennings98]. Although

there are many diverse approaches to agency, some basic notions have started

becoming a standard [Fipa04] and thus provide a more usable and productive

framework for the creation and deployment of multi-agent systems.

32

Chapter 2 - Literature Review

2.4.1 Autonomous Agents

Autonomous agents are software applications, programs, or computational entities

that act autonomously, are proactive, realise a set of goals and tasks, perceive an

environment, act, reason, and have social ability. These are only a few of the

properties autonomous software agents have according to the different views of

researchers.

Agent Definitions

One of the most popular definitions of an agent is that it is “anything that can be

viewed as perceiving its environment through sensors and acting upon that

environment through effectors” [Norvig95]. This definition is generic, but it gives a

good idea of the basic concept of agency, which communicates the fact of someone or

something that acts on behalf of someone else. As Maes puts it “Autonomous Agents

... realise a set of goals or tasks for which they are designed” [Maes95]. A stricter

definition would be too limiting because, as Norvig states, “the notion of an agent is

meant to be a tool for analysing systems, not an absolute characterisation that divides

the world into agents and non-agents” [Norvig95].

Agents as a new Software Paradigm

According to a more flexible point of view autonomous software agents are an

approach, a paradigm for the analysis and design of software systems. Agent-Oriented

33

Chapter 2 - Literature Review

Programming (AOP) proposed by Shoham [Shoham93] aims to build systems as

societies of agents. The main features that this approach aims to exploit are that agents

are autonomous concurrent processes, are cognitive systems with beliefs, goals etc,

are reasoning systems, and are communicating with other agents. AOP has three

layers. The first is the logical system for the definition of the mental states and

behaviour, the second is an interpreted programming language for implementing the

logical specifications, and the third is a layer that produces the executable agents that

form the specifications [Wooldridge97].

Wooldridge et al define an Agent-Oriented analysis and design software development

methodology [Wooldridge99]. The main characteristic of the methodology is that it

abstracts the system in two levels, an agent micro-level, and a social macro-level.

They separate the methodology into an analysis stage and a design stage. The analysis

has as a purpose to build the organisational model of the system. The organisational

model is decomposed into the role model and the interaction model. Then the design

process produces the agent model, the service model, and the acquaintance model.

Once this methodology is followed, the system is decomposed into a level that can be

handled with the traditional Object-Oriented design process.

Agent Applications

Since the concept of autonomous agents is so global, its applicability is equally broad.

Autonomous agents have been used to implement various types of systems, and in

different domains. Jennings and Wooldridge categorise agent applications into four

34

Chapter 2 - Literature Review

domains, industrial, commercial, medical and entertainment applications

[Jennings98]. In industrial applications, process control, manufacturing and air traffic

control, are some domains that are considered promising for multi-agents systems. In

commercial applications, agents are used for information management, electronic

commerce, and business process management. In the medical context, such systems

are utilised in patient monitoring and health care management. Finally, entertainment

agents are quite heavily used in computer games.

2.4.2 Information Agents

Information Agents (IA) are autonomous agents that focus on assisting users to handle

large information spaces. Nowadays, Google has indexed 8,058,044,651 web pages

[Google05]. Information Agents use artificial intelligence, knowledge-based systems,

distributed information systems, information retrieval, and human computer

interaction, to improve and partially automate the users searching capabilities.

Information Agent Definition

An Information Agent is defined by Klusch as "an intelligent agent that has access to

one or more heterogeneous and geographically distributed information sources, and

which pro-actively acquires, mediates, and maintains relevant information on behalf

of users or other agents, preferably just-in-time” [KluschOl]. According to this

definition an Information Agent is responsible for information acquisition and

management, information synthesis and presentation, and intelligent user assistance.

35

Chapter 3 - An Object-Oriented Framework for Virtual Documentation

to all the objects that provide services, such as the PDM Monitor, the User Model, the

Logic Engine etc.

As a result, with this architectural pattern, the Document Component forms a

structured community of objects and acquires some basic “social” abilities thus

achieving communication between the Document Components. Furthermore, the roles

that different parts of the system serve (PDM, User Model etc.) and their use, is

controlled more effectively by the Document Components.

The second main behaviour of the Component is that it is a placeholder for data. As

such, it plays two main roles, being an extractor of data and a responder to queries.

The extraction is isolated in the Extract Information Interface and the response to

queries is isolated in the Detailed Query Interface. The extraction is the part that is

associated with the PDM monitor and gets the data, while the detailed query is the

interface that ensures that the component can answer specific queries that can be used

by the other components.

With this interface two new views of the information in the PDM are created. One

view responds to the question ‘what should be extracted from the PDM?’ and the

other to the question ‘what are the sub-sets of this extracted information that could be

useful to the other Document Components?’. This way the information is viewed as a

large selection set extracted from the original data and subdivisions of this set suitable

for reuse in the communication between the components.

54

Chapter 3 - An Object-Oriented Framework for Virtual Documentation

The Report Interface (Figure 3.2) generates reports of the data contained in the

component in the form of HTML Documents. These reports are generated using the

Logic Engine and the User Model for selection and adaptation of the data that will be

presented to the specific user in hand and the use of the Detailed Query Interface.

A Report is a description that coordinates the interaction between the Components

and the use of the Detailed Query Interface. It provides a central point of reference

that shows the selected information reused through the queries between the

Components.

The Rule Engine component (Figure 3.2) is an abstraction that supports simple “if

then” rules, and if needed acts as a wrapper to a proper rule based engine.

The Text Processing subsystem (Figure 3.2) includes the Text Processor and the

Product Dictionary. The Product Dictionary keeps a record of all the component

names instantiated. Also, the names are broken down if they are multiple words and

the relevance to existing terms in the dictionary is checked. In the case that two terms

are found to be related, the larger one acts as the main term and the other is noted as a

related sub-term. The text processor uses this dictionary to parse the text content of

the components and to automatically create hyperlinks pointing to the related

component. An additional link is created as a star (*). This link shows the lexically

related terms as well as additional links that point to a proper dictionary database.

The User Management subsystem (Figure 3.3) contains the Login Handler and the

User Model components. The Login Handler identifies the user according to his

55

Chapter 3 - An Object-Oriented Framework for Virtual Documentation

username and password. Then the User Model object, according to the username,

finds and retrieves the previously set values of the User Model for the specific user.

The PDM Integration (Figure 3.3) component consists of three parts: the PDM

Monitor, which is the main controller class, the update checker, which uses a timer

and probes the files to check for updates, and the node objects that act as an

intermediate placeholder for the data. The PDM Integration allows the system to

access the PDM database in a higher level of abstraction where the data are handled in

larger, meaningful parts that answer to specific questions about the product and the

parts that it involves.

The Web Integration (Figure 3.3) module comprises of a set of Servlets that feed the

output of the components reporting interface to the web. The Servlets also handle the

requests received by parsing the parameters and feeding them to the root component.

The Main Servlet holds the state management of the web application by utilising

sessions and cookies (an encoded signature placed on the web browser) [Cookie04,

Netscape04] that identify the user. The Side Servlet holds the lexically related links

and the links to the Dictionary Servlet, while the Menu Servlet serves the structural

menu created by the components of the application.

56

Chapter 3 — An Object-Oriented Framework for Virtual Documentation

On reload

LOGIN
On exit

On exit
On login but user
model not exist On exit

On login and
user model
exists

USER MODEL FORM
On reloadOn reload

On Submit
On reload

On update
User Model USER MODEL CHECK

AND SET
On update
User ModelOn User

Model
Is set

On request HANDLE REQUESTENTRANCE

On reload On reload

Fig. 3.4 The Web Application State Machine (class Main)

59

Chapter 3 - An Object-Oriented Framework for Virtual Documentation

PDM CONSTRUCTION INITIALISATION SET PRODUCT ID

On scan finished

PRINT PDM SCAN PDM TREE

On NO nextOn PDM found

START MONITORING
SCAN PDM

On next existsOn nodes found

MAKE NODE SCAN NEXTEXECUTE CHECK FOR UPDATES

Fig. 3.5 The PDM Monitor State Machine

60

Chapter 3 - An Object-Oriented Framework for Virtual Documentation

If Entry is Dir

RUN CHECK FOR UPDATES

When
recursion
is over

CHECK IF NEWCHECK PDM DIR

IfNew

CREATE NEW NODESCAN NEXT DIR

SIGNAL PRODUCT TO ADD NODE AND REMAKE RELATIONS,
BUT THIS MUST BE DONE AFTER THE COMPLETE PRODUCT
TREE HAS BEEN UPDATED

If Exists

CHECK FOR UPDATES

UPDATE NODE

SIGNAL PRODUCT TO
UPDATE COMPONENTS
CONTENTS

Fig. 3.6 The State Machine for Update Checking

61

Chapter 3 - An Object-Oriented Framework for Virtual Documentation

3.6 An Application Based on the Object-Oriented Framework for

Product Documentation

The framework presented has a twofold use. It can be utilised as a complete and ready

made application or as an extensible software framework for the development of more

evolved electronic documentation systems. In this section an application is shown -

the framework is deployed as is without any need for writing additional code - which

presents partial documentation for a Fork Lift Truck and two assemblies, the Braking

System assembly and the Fuel Tank assembly. This documentation system can be

used by users with different profiles to browse the up-to-date documentation

customised according to their user models thus achieving better results in the delivery

of information.

Figures 3.7 and 3.8 show the resulting output from the web application. In the left

frame, the menu that was prepared by the components is presented. In the case that

the links are followed, a coded request towards the information components of the

web application will be generated. In the middle frame, the report developed by the

currently addressed component is illustrated. The first part of the report is a

dynamically generated natural language section describing the structural positioning

of the component.

The next part is a textual description of the entity represented by the component that

has been pre-processed by the text processor; hyperlinks have been added

dynamically. Next to the link there is the star (*) link that produces the results in the

right frame. Then a graphic is presented. Finally, a selection from the contents of a

62

Chapter 3 - An Object-Oriented Framework tor Virtual Documentation

■B3SSSEE1
I File Edit ViI File Edit V iew Go Bookmarks Tools W indow Help

| ^ http://mec1 .engi.cf.ac.uk:8080/sim pleGW /servlet/ipm ,fram eSet

-si Hom e Q Book marks Q Salem Q Inform ation Objects
H E Search

i j jc: m T g m m w F M & m & r m anuaU
taCWBHBi

E N T P R O D U C T M A N U A C
IN ’rClJ-JCil.N I P H O I A C I MANL AI

Structural
M enu

The F ilter is a P art. It is p art o f th e Fuel T an k A ssem b ly . T he F ilter a lso re la tes to th e Fuel
T an k , th e Q R in g , and th e C hain w ith R in g .

♦ Fork L ift
Truck.

♦ Fuel Tank
Assem bly

♦ Bolt

♦ Fuel Tank

♦ Gasket

♦ O Ring

♦ Spring
Washer

The Filter 1*1 filters the fuel that is fed to the Fuel Tank: 1*1 and removes any dirt
or garbage that may be present vhen refueling is performed in an field work
environment. It is secured b y the n K-ing 1 *1 and the Chain that also holds the Cap
on its other end.

1 fill QT GS3 I Document: Done (0.787 secs)

O P E R A T IN G IN F O R M A T IO N : THE F IL T E R H E L PS TO K EEP THE FU E L C L E A N
E VEN IF T H E R E F U E L IN G C O N D IT IO N S A R E H A R D - L IK E ON SIT E E M E R G E N C Y
R E F U E L IN G

D A IL Y M A IN T E N A N C E : D A IL Y M A IN T E N A N C E M U S T BE P E R F O R M E D BEFO RE
C A / ^ U jP E C T T P t n r t u p t p a t -u c e t i t p p c u i - ittt r> n r? p

R elations
M enu

DICTIONARY
o ring

• j r £ . .■(-* v V r . n

'■: " . -i f

Fig 3.7 A Request served by the Application Produced with the Object-Oriented Framework

64

http://mec1

LMpto 3 - An v t t f m m m m m m w m m m m m m m

Pedal

3 | t a t p ; / i n e c i . r - o t j i j F a r .u Jc lU »»V »H <<vlri.W /» .-r vl<H, <«r* .S .-t .

Fite Ei*. « w Favorites Taeis; Help

U p: . m e t I e n g » .c r .a c .u k :8 G 8 0 /s tm p le G W /s c n * k * *pm .t -

Fie Edit View Favorites Tools help I SF-1
|:Qeack. j . i h i^ ' 58arch F«w*“ <*(> -v *) * £ i E]

“3 i3«oAddress | <£} http://mecl engi.cf .ac.uk :8080/simpteGW/servlet/ipm. frame Set

a j j r . W r tS f f ^ y F i T,^ C T k ^ r MA V UA
.jc,r^Tflpitf>r>i.icrr m a n u a lU C T M A N U A l.

iX.TGE.NT PR O D U C T M A N U A L

Hydrau
Brake
Amplifi.

Nipple

Rear Lt
Tube

Spring

S u p o o i

Tee2E

(J) e o * - - x ‘| Z I Search F ovofges Med» *

ad * e ss i aT o ://rn ec l.en d cEac.uk:MBO/siiripleGW/servietA^.LoginHarKller v | f l Go Links■ m
INTELLIGENT

INFORM ATION O BJECT
BASED IPM

R ESE A R C H IN G A U TO M A TIC
G EN ER A TIO N O F INTELLIG EN T

PR O D U C T M A N U A L S
USERID :
FTRST_NAME:
LAST_NAME:
ORGANISATION
TRAINING:
EXPERIENCE:
EDUCATION:
QUALIFICATION:
JOB:
TASK :
A c n v m r :
ACTTVTTY_AS SESMENT: |7
TASK_FKEQUENCY:
REFERENCE_KEY:
REFEREN CE_LEVEL:
REFERENCE_FILE:
REQUEST:
MODALITY:

SUBMIT USER-MODEL

|SCECP2

(ch a r u e

(electronics

F---------
{ENGINEER

(m aintenance ENGINEE

|BRAKES MAINTENANCE

(in spec t io n

Relation:
M enu

Please enter your Login Name, Password, and P IN to log m
Ai * StBU

File fdit Vfew Favortfte* Toots Hate

*** - O ’ L*| L~I /*>
Address http://m eet.engl.cf.ac.uk:8080/simpleG

LOGIN

|JAMES.DAT

(in spec t io n n o t e s

(diag ram s

Structur:
M enu

IPM - Entrance R elations
M enu

Truck

. Fuel
Tank
Asseml

• Bolt

4

• Fuel
Tank .

i >r

Fig 3.8 Entrance, User Model Form and Login States

65

http://mecl
http://meet.engl.cf.ac.uk:8080/simpleG

Chapter J - An Ubject-Uriented Framework for Virtual Documentation

. | g | x |

W W W 1. MAN.,A:

T MAKUAL
.CEN T PRODUCT MANUAl

Relations Mens

• Fuel Tank
A »«* lr

• a a

• Fuel Tank

• Gasket

• Srra« Washer

• Fuel Tick Cap

• Etei

• Chw wjthFjyt

♦ Brass Rag

♦ Braking System
Assembly

IECHMCAL MAINTENANCE: DAILY INSPECTION TOR LEAKAGE IS RECOMENDED

TECHNICAL MAINTENANCE: TECHNICAL INSPECTION AFTER 240-2*0 MACHINE-HOURS

TECHNICAL MAINTENANCE: IN THE YEARLY MAINTENANCE THE TANK SHOULD HE MSASEMBI m i m n H i m

TECHNICAL SPECIFICATIONS: FUEL CAPACITY 50k

TECHNICAL SPECIFICATIONS: FUEL INTAKE DIAMETER 20t»

File Edit View Go Bookmarks Tools He|p

• v • |§ ? ^ i _ http://mecl.enql.cf.ac.i*:8060/s Q Go

3
PartED: 102

The Fuel Tank is a ParL It is part of the Fuel Tank Assembly. The Fuel Tank also relates to
the Bolt, the Gasket, the 0 Ring, the Spring Washer, the Fuel Tank Cap. the Filter, the Chain
with Ring, die Cap. and the Brass Ring.

T h is i s t h e f u e l t a n k p e d a l d e s c r i p t i o n p e d a l a n d som e c h a n g e s
a n d so io e s to r e

F u e l T an k [«] a n d t h e P e d a l

X 1 TECHNICAL MAINTENANCE : DAILY INSPECTION FOR LEAKAGE IS

File g d lt V iew g o Book m arks T o o ls Me Ip RECOMENDED

.< J ' L-I>> * c S ? I h t tp : / /m e c l.e n g l.c f .a c .i_ jeJ © Go llCS- TECHNICAL MAINTENANCE : TECHNICAL INSPECTION AFTER 240-260
MACHIN E-HOURS

n s s e m b l} ' : . ajabricatodproduct r o » / a w . » g the component parts o j a machine,
mechanism, or the like. Afi&tary Stcience. the act orJa.it o j assembling, especially tits
grouping ojunits or atrcrctfl at a specific point. Titus, assembly area, assembly point,
assembly position. Computer Programming, the process o j translating a source program
yvritten in assembly language into an object program consisting o j machine instructions.

3 TECHNICAL MAINTENANCE: IN THE YEARLY MAINTENANCE THE TANK
SHOULD BE DISASSEMBLED AND CLEANED

TECHNICAL SPECIFICATIONS : FUEL CAPACITY 50h

TECHNICAL SPECIFICATIONS : FUEL INTAKE DIAMETER 20cmj D on e

Done

Fig 3.9 Content Adapted on a Technical User Profile

66

http://mecl.enql.cf.ac.i*:8060/s
http://mecl.engl.cf.ac.i_

LMpref 3 - An UDjeci-uneniea rrameworK ror virtual Documentation

File Edit View Go Bookmarks Tools Help

' . ' & Q) f n h ttp ://m ec l.eng i.c f. _w | © Go f lG l

PaitID: 102

The Fuel Tank is a Part It is part of the Fuel Tank Assembly. The Fuel Tank also
relates to the Bolt, the Gasket, the O Ring, the Spring Washer, the Fuel Tank Cap.
the Filter, the Chain with Ring, the Cap. and the Brass Ring.

T i t le l a t h e f u e l t a n k p e d a l d e s c r i p t i o n p e d a l a n d n n r c h a n g e s
a n d sc u te s t o r e
a n d so m e s t o r e
fuel Tank [«]and the Pedal

OPERATING INFORMATION: SHIFT INSPECTION MUST BE
PERFORMED BEFORE AND AFTER EACH CHANGE OF SHIFT TO ENSURE
THE LEVEL OF FUEL IS WITHIN ACCEPTABLE LIMITS

OPERATING INFORMATION: SHIFT MAINTENANCE INSPECTION MUST
BE PERFORMED BEFORE AND AFTER EACH CHANGE OF SHIFT IN THE
OPERATION OF THE TRUCK

DAILY MAINTENANCE : DAILY MAINTENANCE MUST BE PERFORMED
AFTER THE END OF THE TRUCKS DAILY OPERATION WHICH INCLUDES
CLEANNING OF THE CAP

Done

Fig 3.10 Content Adapted on an Operator User Profile

M A S UAI

r r MANUAL
K itlN T P R O D U C T MAN UAi

Relations M enu

DICTIONARY

THE LEVEL OF FUEL IS WITHIN ACCEPTABLE LIMITS
r BE PERFORMED BEFORE AND AFTER EACH CHANGE OF SHIFT TO ENSURE

Q fE R A n yC INFORMATION: SHUT MAINTENANCE INSPECTION MUST BE PERFORMED BEFORE AND AFTER EACH CHANGE OF SHIFT
IN THE OPERATION OF THE TRUCK

http .//mac l.engi.cf. ac.tA 8090/s nTfj k ~

*£> T om cat Gateway - Mozilla Firefox
File Edit View Go B ookm arks Tools Help

' u L - / r h t » : / / m e c l . e n q

fuel accumulator : . see ACCt/MC/DXTOA H **: |

fuel filter : . a component in a piece oj'equipment? such as an internal-combustion
engine, tliat serves to remove particles from fuel.

fuel : . any material that evolves energy in a chemical or nuclear
reaction. Materials, specifically, a material that can he used to provide power fo r
an engine, power plant, or nuclear reactor.

Done

"3 ooo IS"s j i • J : IKU://™cl.eul.cf.«;.iJc:«WV*rpaGWAtrvletflpm.»«i»Se<”

Structural Menu

. ' . Tut.lsH'raatjj

• RjtlTmk
Asieobiv_______

67

Til
'

http://mecl.engi.cf

Chapter 3 - An Object-Oriented Framework for Virtual Documentation

3.7 Discussion

The framework presented in this chapter models the main features of an application

for documentation systems. The main entities involved in the process are identified

and abstracted in a software system.

The system, as it is shown in the case study, is capable of generating a fully functional

Virtual Document. It allows dynamic updating of the data and offers a rich set of

utilities such as the dynamic linking, personalised output based on the XML data,

dictionary support etc. The application can be executed as it is or extended to provide

solutions customised to more specific needs of documentation systems.

As a reusable framework, the system can assist in the increase of productivity for the

documentation system developers by sub-classing and extending the existing

subsystems or by addition of new subsystems that can interact with the already

implemented ones.

The framework proposes as main utilities for product documentation systems the User

Modelling and Management for promoting security and intelligence, the Rule Engine

for enhancing the intelligence and decision making of the system, the Document

Component for the structural decomposition of the documents, the integration to the

Product Data Management system for better updating, the implementation of a web

accessible layer for improved accessibility to the end-user and the use of Text

Processing for the mining of the textual resources for related references.

68

Chapter 4 - An Intelligent Information Object Architecture

Chapter 4 - An Intelligent Information Object

Architecture

This chapter provides a definition for an Intelligent Information Object. The original

concept of Information Objects that was presented in the literature review is analysed,

its shortcomings are presented, and the ways of Information Objects taking an

intelligent form are discussed. The Information Object concept is extended and

promoted to that of an Autonomous Agent, thus addressing the fourth aim of this

research. Then, a new architecture that is based on Intelligent Information Objects is

presented, realising the fourth objective. Finally, an application of Intelligent

Information Objects implementing an Intelligent Product Manual is presented. The

results of the system are shown and the effect of the use of the Intelligent Information

Object concept is discussed.

71

Chapter 4 - An Intelligent Information Object Architecture

4 An Intelligent Information Object Architecture

In the realm of technical documentation, it is expected that the product is designed

and the data stored and structured within a Product Data Management (PDM) system.

In an ideal world, it would be preferable to have the documentation produced

automatically, without any human intervention, such as suggested by Literate

Programming techniques [Knuth84] and tools such as JavaDoc [Friendly95]. This

ideal documentation would be presentable in many formats, printable, and electronic.

It could use many modalities and have many forms, such as that of a user manual,

maintenance manual, or specifications. Furthermore, the documentation would be

adapted to, and be adaptable by, the user as in the case of Adaptive Intelligent Product

Manuals (IPM). It should be capable of delivering just in time and should cater for

personalised information.

Two main stages can be readily identified in the information involved in product

documentation. First, there are raw data that are structured by the PDM system and

then, in the last stage, a complete and coherent document is formed and is presented

to the end-user (Figure 4.1). In between, there is a gap that technical authors have to

bridge in order to generate the technical manual. The authoring procedure is a highly

complex human task and a time-consuming endeavour. These factors compromise the

success and limit the profits of the potential product. Thus, a method is needed for

facilitating this data transformation process and moving towards its automation.

The Information Object has been an important and valuable tool for authoring as

shown in many studies. It has helped developers to divide and conquer the procedure

of technical documentation authoring. It has enhanced its management, and has made

user adaptation feasible [Harris95, Price97].

72

Chapter 4 - An Intelligent Information Object Architecture

A U TH O R IN G)

Figure 4.1 The Process of Documentation Authoring

73

Chapter 4 - An Intelligent Information Object Architecture

document component nature, and as Information Elements to promote the unique

identification of the information. The most popular name was found to be

“Information Object”, and therefore this was adopted in this research. Furthermore,

the term Object works better for the Object-Orientation part of the literature.

An Information Object (IO) is defined by the phrases, "a locution of product

documentation" [Tucker97], "a fragment of a document" [Ranwez99], "one or more

topics" [Harris95] and "pieces of information gathered from data sources"

[Paradis98a] (Table 4.1). In order to produce something that will encompass all the

existing definitions, the highest abstraction will be chosen. The phrase "a set of data"

will be used, ignoring the documentation/document specification that points to the

type of use of the data, and also to the topics that deal with the problem of

decomposition of information objects to smaller information objects.

According to the existing definitions an IO has a property, namely "characterising",

"describing" or "presenting" an "idea", a "conceptual model", or a "unit" (Table 4.2).

This will be combined with the principle of unique identification that comes from the

generic notion of the information object within information systems [Ions03], and it

will be represented by the phrase “it is uniquely identified by a concept".

A second property defined is that of being "insertable into a new document". This

states the fact of the IO being a composite part of a document (Table 4.2). As has

been mentioned, the information object can be part of a document or a stand-alone

piece of information. The best choice to formulate this is: "it can be a component of a

document".

75

Chapter 4 - An Intelligent Information Object Architecture

A third property is that it is “manipulatable” by an actor in order to show or hide

different parts of information or alter in any way part of its contents to present a

specific view to a user, either modified to fit better within a document or a

personalised view adjusted to specific user needs. A more appropriate choice would

be a very high level view of this property, simply stating that the information object

"can enable control over its contents and itself' in order to capture all the aspects of

modification of the information object. This allows the option of including

modification of the contents as well as structural modifications of a set of information

objects and their interconnections; having in mind that the pointers to the related IOs

can be part of an IO’s contents.

Finally, the Object-Oriented definition is ignored because it is a major issue by itself.

It must be said that in the literature various attempts have been made to approach the

information object through an object orientated perspective. Some useful parts of the

literature mostly apply the methodological view of object orientation, but none

actually defines Object-Oriented frameworks capable of handling the authoring in a

proper Object-Oriented way, that is in the way it is applied in programming through

Object-Oriented languages. This matter strongly depends on the definition of object

orientation that each person will choose to start with. For this reason, this will not be

further analysed. A flexible phrase stating that the information object "adheres to a

certain degree with the methods and practices of Object-Oriented analysis and design"

will be added to the definition of information objects.

76

Chapter 4 - An Intelligent Information Object Architecture

Table 4.1 Information Object Definitions, Part 1

1 [Tucker97] An Information

Object

is a locution of product

documentation

2 [Ranwez99] An Information

Brick

is a fragment of a document

3 [Harris95] An Information

Element

comprises one or more topics

4 [Paradis98a] Information Objects are pieces of information

gathered from data sources

77

Chapter 4 - An Intelligent Information Object Architecture

Table 4.2 Information Object Definitions, Part 2

Describing one idea

Characterising a conceptual model insertable into a new

document

Presenting a unit

Manipulatable in order to create

virtual documents

78

Chapter 4 - An Intelligent Information Object Architecture

4.1.3 An Overall Definition

The overall definition that encompasses all up-to-date work on Information Objects is

the following.

An Information Object defines a set of data that is uniquely identified by a concept,

can be a component of a document, can enable control over its contents and itself, and

adheres to a certain degree with the methods and practices of Object-Oriented analysis

and design.

4.1.4 Advantages

According to the literature [Paradis98, Vercoustre97, Harris95, Bist96, Price97], the

main advantages that have been identified in the use of the Information Object

concept are that it enables the reuse of product data, facilitates information

structuring, and allows better information management. The latter advantage arises

from the application of divide-and-conquer strategies to the authoring process. The

encapsulation of information by an IO and the definition of information entities with

specific characteristics help technical writers to organise better the processing of the

reused information. Finally, the conceptual separation allowed by IOs and the

relationships that they enable to be defined between concepts result in generated

documents with increased consistency and clarity.

79

Chapter 4 - An Intelligent Information Object Architecture

These advantages allow documentation authors to structure and manage their

documentation processes and techniques and thus increase their productivity and

quality of documentation design.

4.1.5 Disadvantages

Overall, it can be stated that the main shortcoming of the information object concept

is the lack of automation in its use. This can be divided into three main areas. These

are, lack of a global definition that will enable the automation, lack of an autonomous

nature that will realise the automation, and lack of use of intelligent techniques that

will further enhance the automation of the Information-Object-based authoring

process.

Lack of Global Definition

The Information Object has been given different definitions and names and has been

used in different ways and for different purposes. This leads to confusion as to what

the IO actually is. An overall study would improve the concept and would put it in a

more rigid foundation, making it more usable and useful.

Lack of Autonomous nature

Continuing on the line of thinking that led the IO to Object Orientation, which

actually means the action and processing of the data that the IO holds, the “action”

can be generalised. One can think of the IO not just as an object that provides

80

Chapter 4 - An Intelligent Information Object Architecture

methods for manipulating the data it contains, but as an actor, an agent that

autonomously acts on the data it contains to achieve a specific goal. Agent-Oriented

Programming (AOP) is the future successor of Object-Oriented Programming (OOP)

[TveitOl], so the concept of the Information Object is naturally driven to that of an

autonomous agent by following the evolution of software engineering practices.

Also as Tveit states "Agents are similar to objects, but they also support structures for

representing mental components, i.e. beliefs and commitments" [TveitOl]. Having in

mind the difference in semantical complexity of data as in strings or integers used in

normal programming practices compared to the data held by an information object, a

higher level approach is much more suited to the information object type of data and

behaviour.

Lack of Intelligent Techniques

The above reflections on a global definition of the IO and on its autonomy suggest

that the information object has much to benefit from artificial intelligence techniques.

Furthermore, the application of text planning, text mining, and natural language

generation could be applied within, and in combination with, the information object

either for automating some of the characteristics that have been defined or for

generating part of the descriptions, included in the information object, which are

based on the semantics of its interconnections with other information objects. Other

techniques might also prove to be useful and help in the development of a more

evolved information object concept.

81

Chapter 4 - An Intelligent Information Object Architecture

4.2.2 Application of AI Techniques

Various Artificial Intelligence techniques can be utilised for adding intelligence to

information. In the case of IO, techniques such as text mining, knowledge-based

information retrieval, and natural language generation, can prove to be very efficient

for discovering relations between the IOs, presenting adapted information, and

generating descriptions.

Natural Language Processing and Generation

Natural Language Generation has been shown to be very helpful, but it suffers from

restrictions in the size of the document and the domain dictionary. The best results are

achieved when the generated text is in a very restricted and well-defined sub-language

[Church95]. Information Objects help subdivide the information in smaller and more

easily controllable units where the NLG could prove to be more applicable. As an

example of this, the generation of short paragraphs describing the structure between

information objects can be presented, given that the meaning of the structural links

follows a specific pattern.

Knowledge-Based Information Retrieval

One technique that has proved very useful for information delivery is that of

Knowledge-Based Information Retrieval. It has been used effectively in many

applications including the current IPMs [Setchi99] with simple Information Objects.

Intelligent Information Objects can benefit from such a technique if they are thought

83

Chapter 4 - An Intelligent Information Object Architecture

of and implemented as elements that are tagged with an appropriate language such as

XML. This would allow an information agent to apply its ontology on the contained

data and to execute an inference for selecting the relevant XML fragments to be

displayed to the user, or to decide upon the way that these data have to be presented.

Text Mining

Within the context of Information Objects, text mining could be used for the

identification of references from within an Information Object, which could be linked

with the conceptual model represented by another Information Object. These could

then be used to represent some semantic relationship between the Information Objects

realised as an HTML hyperlink.

4.3 An Intelligent Information Object Definition

An Information Object acts as a document structuring component. It gives authors the

opportunity to define methodologies for the generation of documents and thus

formalise the authoring procedure. It gives a clearer and more solid foundation on the

art of authoring which was, and is still is, a very complex human activity, by dividing

the information in meaningful discrete units, and forming the document by

assembling them [Ranwez99, Price97, Bist96].

An information agent is an autonomous agent. According to Maes [Maes95]

"Autonomous agents are computational systems that inhabit some complex dynamic

environment, sense and act autonomously in this environment, and by doing so realize

84

Chapter 4 - An Intelligent Information Object Architecture

a set of goals or tasks for which they are designed". More specifically, according to

Klusch [KluschOl] an information agent satisfies the requirements of information

acquisition and management, information synthesis and presentation, as well as

intelligent user assistance.

The resulting combination is a computational system realising goals and tasks, such as

the acquisition, management, synthesis, and presentation as described in the

information object based authoring methods and practices. This allows the use of the

agent notion to automate the construction and the deployment of the information

objects. In this manner the complexity that a monolithic approach to the document

construction introduces is overcome.

Based on the existing definitions for the Information Object and the definition of the

Information Agent, a definition is provided for an Information Object that will be

intelligent and will improve the authoring of technical documentation. The domain of

application is restricted to technical documentation because that is the area in which

the information object has been established. Technical documents have inherent

characteristics that make information objects a more productive approach, an effect

that cannot be expected from other types of documents.

The following definition is therefore proposed.

An Intelligent Information Object is a concept-specific autonomous agent that

searches an appropriately structured information source and discovers the concepts

to be represented. It extracts a set o f data to initialise its contents, updates itself can

render its contents customised according to external parameters, and interacts with

85

Chapter 4 - An Intelligent Information Object Architecture

other Intelligent Information Objects in order to build a complete instance o f a

document.

The Intelligent Information Object and its main characteristics, as they are

implied/stated in the definition, are shown in Figure 4.2. This illustrates that an

Information Object will automate a major part of the technical authoring process and

will generate intelligent virtual documents of customised information that will

increase the productivity of information delivery to the user.

4.4 A Novel Architecture for Information

The use of the Intelligent Information Object produces a novel architecture for

electronic technical documentation. This architecture is based on Intelligent

Information Objects and uses the concept to build a highly dynamic middle layer

where the information will be formed according to the conceptual model of the

existing information objects. At the same time the information in this middle layer

will be interlaced due to the active nature of Intelligent Information Objects.

86

Chapter 4 - An Intelligent Information Object Architecture

AQUISITIONDATA

REPORT
INFERENCE

OUTPUT INTERACTIONS

KNOWLEDGE AQUISITION

Figure 4.2 Intelligent Information Object

87

Chapter 4 - An Intelligent Information Object Architecture

4.4.1 A Dynamic Middle-Layer Based on Intelligent Information
Objects

The phases that can be identified in the procedures of technical authoring are those of

information extraction, information processing, and generation of the output of the

virtual documentation to be presented. The required information has to be extracted

from the Product Data Management System. Then the technical author or

documentation team has to process the data in various ways (Figure 4.3), and in the

end one or more manuals that the company has to offer as part of its product support

are created. The problem lies in the information processing phase where a collection

of very complex tasks has to be executed.

In the Intelligent Information Object architecture, and through the use of Intelligent

Information Objects, a buffering zone is introduced between the information source

and the presentation of the information. This buffer is realised as a set of information

nodes based on specific concepts. The nodes are represented by Intelligent

Information Objects that are able to apply transformations upon the contained

information and on the structure imposed on the nodes.

This creates an intermediate stage where the pertinent information has been extracted,

but has not been fully formed, thus resulting in an instance of a Virtual Document

(Figure 4.4). In this stage, the information exists in a completely dynamic state and

part of the procedure has occurred, including the information extraction from the

sources and its separation/classification in Information Objects.

88

Chapter 4 - An Intelligent Information Object Architecture

OUTPUT

GENERATIO
INFORMATION
EXTRACTION

INFORMATION
PROCESSING
■V ■ >

PDM

Figure 4.3 Phases of Technical Authoring

89

Chapter 4 - An Intelligent Information Object Architecture

PDM [x i ■

n o

i io
IIO

[110/ .

IIO

IN FO R M A TIO N
EXTRACTIO N

LAYER

IN FO R M A TIO N
PROCESSING

LAYER

MANUAL

IN FO R M A TIO N
PR ESENTA TIO N

LAYERmmmm

Figure 4.4 A Dynamic Information Middle Layer

90

Chapter 4 - An Intelligent Information Object Architecture

However, the second stage of processing the information during which the

information becomes even more structured, in accordance with the User Model and

other structural relations deriving from the analysis of textual data, has yet to be

applied.

4.4.2 Consequences of the Intelligent Information Object
Organisational Structure

The consequences of the intelligent information object architecture affect many

systemic properties of the electronic documentation and also enable up-to-date

technological approaches to be applicable.

The conceptual separation, encapsulation, and structuring characteristics enforced by

the 10 concept can be fully utilised within the IIO architecture. The localisation of the

search within the strict boundaries of the IIO for references to other parts of the

conceptual model can yield more focused and enriched results, as well as a wealth of

associations between the IIOs.

Distributed objects can be reused at runtime and be part of many different products

simultaneously, since in an autonomous agent architecture each agent can locate and

associate itself with another at runtime, independently of the exact location and/or

system where each of the components resides.

The distribution of information in nodes, which comprise a conceptual model that acts

as a dynamic network, provides a more computationally effective way of dealing with

the extraction and processing of the product data. In such a distributed architecture,

91

Chapter 4 - An Intelligent Information Object Architecture

different tasks can be executed in parallel and thus the procedure of the generation of

the final Virtual Manual can be more effective.

4.5 Realisation of an Intelligent Information Object Architecture

Realising the IIO Architecture involves an innovative set of cutting-edge

technologies. The IIO has been defined as an autonomous agent and thus it will be

realised and deployed within an agent platform. Furthermore, in order to support the

knowledge-based extensions and web deployment, an expert system shell providing

an inference engine will be used, and a servlet engine will provide the gateway

towards the World Wide Web.

4.5.1 Useful Technologies

After researching the available tools implementing the technologies that were needed

by the systems specifications the following list of tools has been selected.

• The FIPA-OS Agent Platform.

• The JESS Java Expert System Shell.

• The Tomcat Servlet Container.

FIPA-OS Agent Platform

The FIPA-OS for Intelligent Autonomous Agent development was the choice of

platform for the deployment of the agents. FIPA-OS is an open source project created

by Emorphia [Emorphia05] in order to have a platform to be used as a benchmark for

the FIPA Standards. According to the standards reference model it supports DF

(Directory Facilitator) and AMS (Agent Management Service) agents, a transport

layer (Message Transport System), and connections between distributed platforms

92

Chapter 4 - An Intelligent Information Object Architecture

through ACC (Agent Communication Channel) (Figure 4.5). The FIPA-OS Platform

and FIPA ACL are equipped with performatives enabling the use of Speech Acts,

Communication Protocols and Conversation Management [PosladOOa, PosladOOb].

With the use of performatives the agents can use communicative acts (such as inform,

request, confirm etc.) within their messages and protocols that will specify the

interactions in the specific conversational pattern. For example the FIPA “request”

protocol specifies that after a request the receiver can reply with an “agree” or a

“refuse” performative. After an “agree” the continuation will be an “inform” act or a

“failure” of the conversation. This way the FIPA specification enables the

management of the agent interactions through this formalised conversational tactics.

JESS Expert System Shell

The JESS Java Expert System Shell is a rule engine written entirely in Java. It is

based on the CLIPS System and uses the Rete algorithm to realise a production

system. The Rete [Forgy82] algorithm has advantages over the previous algorithms

for rule-based systems. Typically, the set of rule is stable, the knowledge base

continuously changes by the addition of new facts. The amount of new facts added is

comparatively small. A simple algorithm would take all the rules and in every cycle

iterate through the rule set and try to match the left hand side with the facts in the

knowledge base. This is a very inefficient tactic since the same operations with the

already known results are constantly repeated. Rete instead remembers the past test

results and only the new facts are tested. In addition to this JESS can be seamlessly

integrated in any Java application and there is an existing wrapper in order for it to be

used as an

93

Chapter 4 - An Intelligent Information Object Architecture

AGENTS

DF

A A A A
. K

< E x t e r n a l MTPs /t e r n a 1 MTP

Figure 4.5 The FIPA-OS Multi-Agent platform [PosladOOa]

94

Chapter 4 - An Intelligent Information Object Architecture

inference engine within the FIPA-OS platform. It is quite often used as an expert

system for the construction of Intelligent Agents [Friedman03].

Tomcat Servlet Container

Tomcat is a Servlet Container used in the official reference implementation for the

Servlet and JSP technology specifications. Servlets offer a better performance than

that of the traditional CGI and again they can be easily and seamlessly integrated to

other Java Applications. The Servlet Container cooperates with the Web Server and

handles the dynamic content requests.

The Tomcat Servlet container will be used in this architecture to provide a gateway

towards the World Wide Web, thus allowing the output of the dynamic middle layer

of the IIO architecture to be delivered anywhere and at any time it is needed,

facilitating the use of any of the available electronic formats supported by today’s

web technologies [Tomcat03].

A typical scenario of Tomcat cooperating with the Apache web server is shown in

Figure 4.6. The web server receives HTTP requests and when targeting a dynamic

resource the request is forwarded to Tomcat to handle the loading and execution of

the appropriate Servlets.

Chapter 4 - An Intelligent Information Object Architecture

reques
- type

WEB
BROWSER

new
thread

Eg. APACHE

WEB
SERVER

E g . TOMCAT

SERVLET
CONTAINER

dynami

Figure 4.6 The Web Server and Servlet Container Components

96

Chapter 4 - An Intelligent Information Object Architecture

4.5.2 System Architecture

The architecture that has been described defines a multi-agent system with

knowledge-based agents operating autonomously. It is separated in three main layers:

the web presentation layer, the agent middle-ware layer, and the supportive layer. The

web presentational layer consists of the Servlet Container that handles the output

servlets. These arrange the generic presentation of the web-site that the system

publishes as an output. This allows for further customisation where the servlet could

be substituted with a different one, so that instead of a web document could wrap the

output into a PDF or other format. The second part of the web layer is the web server

that receives requests from the clients’ browser and passes it to the appropriate servlet

to be processed. Finally, the web layer consists of the World Wide Web facility and

the HTML browser of the end-user (Figure 4.7).

The agent middle-ware layer is the central part of the architecture and contains a set

of resource agents that provide standard services and the Intelligent Information

Object agents (Figure 4.7). The resource agents’ services act as utility agents that the

IIOs contact to fulfil specialised tasks and access data from outside of the system.

The supportive layer consists of more fundamental facilities which the agents can use

such as databases containing user models or technical dictionaries, inference engine

etc. The supportive layer could also be used as an extension and customisation layer,

where various resources more specific to the instance of the system in hand can be

plugged-in to enrich the provided services (Figure 4.7).

97

cnaprerq - «n intelligent iniormauun uojeei Arcmiei'iur?

/ N

WEB­
BROWSER

Vw)
%(*www; tl

f i
WEB­

SERVER
V

5
/■ N

SERV LET
CONTAINER

V J

PRESENTATION

LAYER

+ - ♦

TEXT
PROCESSOR

PRODUCT
DICTIONARY

MIDDLE-WARE "DM
LAYER M ONITORING

AGENT

vA

A a LaA rs A ̂ Y n,i- i O ^
/ \ V _ J TC I ?USER

MODEL SYSTEM
MANAGER

. ^
~ _

SUPPORTIVE
UMDB DB LAYER

Figure 4.7 Overall System Architecture

98

uiapier 4 - An intelligent imormanon uojeet Arcmieciure

System Text Product User PDM PDM IIO Web
Manager

I
Processor

I
Dictionary

I
Modeller

1
Agent

I
Monitor

I I
Gateway

Create
Create

Request new

Request dictiona ■
 ►

Create

Create
"*! Create !

IIO

Create

Request* target
 1--------

Request registrationlto Product Dictionary— i-------------------- ,---------------------- 1----

&
Requjest User Model

Request] processing of textual data

Get Report

Request
Protocol

Request

Inform

Figure 4.8 IIO System Interaction

100

Chapter 4 - An Intelligent Information Object Architecture

The PDM Monitoring module is an agent that scans the Product Management System

(PDM) and identifies new nodes or extracts data from these nodes, either for

initialisation of an IIO or for updating purposes. When a new node is found in the

system then the PDM Agent will request the System Manager to create a new IIO. If

some data of an existing IIO have been updated, the agent will notify the IIO to

update the specific data, thus minimising the updating procedure.

Intelligent Information Object Unit

The Intelligent Information Object is the main unit of the presented system. The IIO

utilises the services offered by the resource agents. It keeps the data and organises the

way the various services will be used. The system’s resource agents offer

management and interface components. The IIO is the comerstone/vital gear that

utilises the various services to realise its goal of cooperatively producing the

documentation.

The Product IIO is first created by the system manager agent, and then it contacts the

PDM monitoring agent and extracts the relevant data. After the contents of the IIO

have been initialised, the IIO can look at the subsystems it includes and delegate to

the system manager the creation of the respective IIOs (Figure 4.9). These new IIOs

will request their data and thus the procedure will propagate through the product tree

having all the necessary population of IIOs created and initialised. Moreover, during

the initialisation phase the IIO will contact the product dictionary agent to register

with it.

101

Chapter 4 - An Intelligent Information Object Architecture

After the data initialisation has been completed, each IIO will be receiving update

messages from the monitoring agent whenever any of the data changes and so their

content can always be up-to-date. In the data pre-processing phase, the IIOs will

contact the text processing utility agent to send along their textual content so that

possible links to the other current IIOs of the systems’ population (Figure 4.9) may be

discovered. The text processing utility agent talks with the product dictionary agent to

obtain the list of the current members of the community. Then the IIO goes into an

idle state until it is contacted either with a data update signal from the PDM

monitoring agent or with a request for data. The request for data is a signal received

from the servlet and directed to the product IIO, and then each IIO propagates it,

searching cooperatively to find the IIO it addresses.

In the data presentation phase, the IIO has been found and it is asked for information.

Then it can look-up the user, by contacting the user model agent, and request its user

model. This enables it to infer, through the use of the Jess production system,

knowledge content that is more relevant to the user needs. In this way, it can parse the

XML content and customise it, filtering out the redundant information.

102

Chapter 4 - An Intelligent Information Object Architecture

INITIALISATION PHASE

INITIALISE DATA

CHECK FOR SUBCOMPONENTS

REQUEST NEW IIOSREGISTER IN DICTIONARY

DATA PROCESSING PHASE

SEND TEXT DATA FOR PROCESSING

REQUEST NEW IIOS

UPDATE DATA

CHECK FOR NEW SUBCOMPONENTS

DATA PRESENTATION PHASE
i r

GET USER MODEL

PROCESS USER MODEL

PARSE XML CONTENT

PREPARE HTML AND SEND

Figure 4.9 Internal IIO States

103

Chapter 4 - An Intelligent Information Object Architecture

User Interface

For the user interface of the system a Java Servlet approach was chosen to

dynamically generate a web interface accessible from anywhere with full flexibility

and customisation. The contents that the Servlet passes to the web server are

requested and prepared by the community of the IIO’s. One Servlet is responsible for

the presentation of a side menu that presents the product structure. The IIOs cooperate

to add themselves in a properly formatted HTML list that afterwards is submitted to

the Servlet. The IIOs handle the main content preparing a standardised report

according to their data, a textual pre-processed part, and a part that consists of natural

language generated according to a template and part of the data. The IIOs also

generate an adapted report that presents the XML content after it has been filtered

according to the user’s user-model. The user interface provides a secondary menu of

lexically related links to other IIOs, and links to a dictionary of basic terms related to

the IIO’s name.

104

Chapter 4 - An Intelligent Information Object Architecture

4.6 An Intelligent Information Object Case Study

For a case study, a braking system assembly has been chosen to demonstrate the IIO

in action. The resulting web-site is generated on-the-fly by the relevant data and is

constantly updated as the data evolve.

4.6.1 System Presentation

A sample of the automatically constructed web-site is shown (Figure 4.10). The first

section of the IIO report is a natural language generated text describing the structural

position of the part represented by this intelligent information object. The second

section is a short description of the part such as the one normally existing in every

PDM describing each node. Then a graphic is retrieved and presented. The content

continues with a piece of text tagged by XML, specifying the knowledge type it

represents. After the appropriate processing of the user model and the XML, the

applicable instructions are shown to the user. Finally, on the left, the structural menu

is shown, which has been created by the Intelligent Information Objects. To do this

the IIOs added their names on a common repository and passed the result to the

appropriate Servlet. Also, the system presents a right menu of the dictionary and

lexically related items found. The star (*) next to the automatically generated links

has to be selected to focus the right menu to the lexical or dictionary links that the

user would like to see.

105

Chapter 4 - An Intelligent Information Ubject Architecture

P p t l . l o g
t-e-dal . l o g
Rfc*«ar_Le»rtw Tube> . l o g
r »n i —n n -J fid b
S p r i n g . l o c i
S p r i n g M a s h e r . lo g
S ta r x n C C . sh
S to r tA g c * n t .L o a d er .&h
^ ta r* * -r IP h O '; . =r.
Lt.arr.RH I Nam«»3«*rview. *h
StartltonCURBANaweServ'ice .sh
6 t « r U l i 2 « r d . 9 h
S u p p o r t . l o g
T e e 2 E 6 . lo g

FBI R u n t i m e I It'H I 1: Binding df

,251.27.65 - Ending

FOUND

RH1 TCP Connecttoo(4)-131.251,

RH1 TCP Connect lonU >-131.251. Ending

;1. loader. £
l all pack a;
pro* i le-Oii
: :3000/ams'

inmari

ngem
B raking System
twmhh

i f f i p a o s . p l s t f o r m .O i r e c i
i u b s c r i p t i o n F a c t o r y 0 1 5 2 5 3 d t

Tools
Running A gents

iio -agent 1
iio -agent 2
n o-agent3
no agent-!
no aqentr>
lio -agent6
: iio -agen t/
l lo a g e n t*
l lo a g e n t9

U in-anem lA

Intelligent Product Manual
Assembly ID: 200

NLGStnwlani Report:
T he B rak ing System A ssem bly b a n A ssem bly. II b com posed o r the B ach , the C leaves, the
H ydrau lic B rake A m plifier. the N ipple, the P eda l, th e H ea r L eft T ube, the Spring , the Suppo rt, a n d
the Tcc2E<>. I t b p a r t o f th e F o rk Lift T ru ck .

BKAKINt;SYSTEM: T he B rak ing System includes a h a n d b ra k e lever, a c tu a tin g the s e rv o b rak e on the
final d r iv e o r the f ro n t d r iv e a x le , a console with a m a in b rak ing cyU nder, b rak e P e d a b (tw o, fo r
the d r iv e r 's convenience >, p ipes an d pipe connections. Presseing the b ra k e Pedal ac tu a te s the m ain
b rak in g c y linder, from w here the b rak in g fluid b Ted to the b rak in g c y linders o r the d r iv e ax les. T he
fluid is fed to the b rak ing cyU nder a long the pipes.

le x ira ly Rela ted
Item s in the
P roduc t

• Pedals
• Pedal

Known A gents
flute stagent
isw m gdfgui
jpingagent
jpdm-agent
jl io — agent

&.) d & <3 % © i* E?I 11* Quantl& IPM cj|j9 fiia /h j f]E t«rm | £M| Thu Fab 3. 23:04:19 1 ^ n !&s ^ feil£P H j£ 0 f e | % Q & R 1 <j> Novjgg H i a J n RMfj Tf Flpj: 1 Etarl €M\ Thu Fab 3. 23:07:43

£He £dlt Yiew \jjeb £o Bookmarks ja b s fcjeip

O ~ ^ ^ ® 1100 \ Z \ Ifile A home.phd/scecpSlenipboaolndex.html
N « i B«ck ■’ « v r id M n l i Horn, FuUacrMn 1 1 1 1

Nov.aW «toAcc« X | hltK/Znwcl .angf c X | TITLE x IPM GMeWay x |

■ n 4i a m *- « « v ©

Figure 4.10 The Multi-Agent System Generated Documentation

106

Chapter 4 - An Intelligent Information Object Architecture

4.7 Discussion

An Intelligent Information Object with an architecture that emerges from its use can present

interesting results after this study. The main points that have to be discussed are the strengths

and weaknesses of the approach adopted in the realisation and deployment of the system.

The effect of the IIO as an autonomous/active structuring component shows the amount of

manipulations that can be achieved in automating a large part of the selection-processing-

presentation cycle of documentation. The autonomy is a quality that can offer useful results

allowing technical authors to deal mainly with the design of the documentation rather than

select-and-paste or formatting activities. This automation on the other hand has its tradeoffs.

It needs standards and agreements as to what the data selection process will be, what

manipulations will be imposed on the data, and what the presentational requirements will

finally be.

With these points in mind, an agent system can be addressed by other user programming,

knowledge engineering, or machine learning techniques and by the development of a set of

standards for the organisation of the data within the PDM.

The main strengths that can be identified include a more computationally effective

organisation of the IPM architecture, a distributed system that is more robust and scalable.

The system with its deployment on the agent platform can have many instances of its utility

agents executed in parallel providing back-up services in case of failure and load balancing in

the case of heavy traffic. Furthermore, the system can be easily extended and have new

107

Chapter 4 - An Intelligent Information Object Architecture

functionality added, since all the tasks executed are heavily compartmentalised within the

boundaries of the responsibilities of the agents.

4.8 Summary

The concept of an Information Object was studied and criticised in order to identify possible

shortcomings and extensions. Possible solutions to the problems identified were proposed.

The effects of these solutions led to the definition of a new concept, namely an Intelligent

Information Object. The effects of the Intelligent Information Object resulted in a novel

architecture that gave a new perspective on Intelligent Product Manuals. A tactic for its

realisation was formed and analysed. The relevant needs and technologies were specified.

The system was implemented and its advantages and shortcomings were discussed. The

results showed a robust, computationally effective architecture and a good combination of

systemic properties that automates a large part of procedures that otherwise can be tedious

and time consuming. By its nature, the system is dynamic and easily expandable to

accommodate different needs and features.

108

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

Chapter 5 - A Rule-Based Approach to Virtual Document

Generation

In this chapter, a novel technique for describing virtual documents is presented. First, virtual

documents are introduced and then existing techniques are discussed together with their

disadvantages and shortcomings. Solutions are proposed for the problems that were

identified. The consequences of these enhancements are analysed and the novelty of the

proposed technique is further explained. The chapter continues with an example of an

ontological description for virtual documentation and finally the proposed architecture is

described. The chapter concludes with a case study.

109

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

5. A Rule-Based Approach to Virtual Document Generation

As mentioned previously, Virtual Documents (VDs) are documents generated electronically

on demand. They can provide a report that includes the most recent data, since the data are

retrieved and integrated at run-time. Also VDs can have content that is tailored according to a

set of user specific parameters, which enable better adaptation and customisation of the

information delivery to the end-user.

The level of abstraction in the design of the VD can vary from simple copy-and-paste of data,

in a form or template such as the results of a web search-engine, to more elaborate

approaches that utilise the dynamic changes to the document in more complex ways

[Gruber95, Paradis98a]. A major feature of virtual documents according to Vercoustre and

Paradis is that they focus on the reuse of existing data instead of duplication and include them

in new documents [Vercoustre97b]. Virtual documents have been used for producing

dynamic web-sites and dynamically composing explanations for the inner workings of

devices on the fly based on model-based reasoning.

The literature highlights the absence of abstraction within virtual document development. The

writers of Virtual Documents have to possess or acquire programming skills, in order to put

together such documents in some formal computable definition or be able to use a very

complex system made for this specific purpose [Gruber95].

Rule-based systems are systems that use expert knowledge codified as heuristic rules to help

humans or agents to accomplish tasks that involve complex decision making [Giarratano98].

110

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

<HTML>

<?define $staff as sql(select * from STAFF where
portfolio="EDC")>
<?define $proj as oql(select p from Proj p where
p .portfolio=MEDC")>
<?define $pub as
url(http://www.mel.dit.csiro.au/pubs/pubs.html)>

<Hl>Activity report for 1997</H1>

<H2>Participants</H2>

<LIX?map $staf f . name>

<H2>Proj ects</H2>

<ULX?map $p in $proj>

< H 3 x ? $ p . summary. header. titleX/H3>
< P X ? $ p . summary excluding header></P>

<H2>Publications</H2>

<PX?pick $onepub from $pub.H2 as $header[$i],
$pub. [$i+l] .LI as $ onepub,
$staff.name as $name
where $header contains "1997", $ onepub contains $name>
</P>

</HTML>

Figure 5.1: A Virtual Document Prescription

113

http://www.mel.dit.csiro.au/pubs/pubs.html

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

<html>
<body>

<?php

$conn=odbc_connect('mydatabase','',1');

if (!$conn) {
exit("Connection Failed: " . $conn);

}

$sql="SELECT * FROM mytable";

$rs=odbc_exec($conn,$sql);

if (!$rs) {
exit("Error in SQL");

}

echo "<table><tr>";

echo "<td>Column l</td>";

echo "<td>Column 2</td X / t r > " ;

while (odbc_fetch_row ($rs))
{

$datal=odbc_result($rs,"datal");
$data2=odbc_result($rs,"data2") ;
echo "<tr><td>$datal</td>";
echo "<td>$data2</tdx/tr>" ;

}

odbc_close($conn);

echo "</table>";

?>

</body>
</html>

Figure 5.2: A PHP Document Prescription

114

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

#!/usr/local/bin/perl
use CGI;
use DBI;
$query = new CGI;
use CGI::Carp qw(fatalsToBrowser);
print "Content-type: text/html\n\n";
print "<html><headxtitle>Perl CGI Example";
print "</title></headxbody>";
print "Perl CGI Example</hlXp>";
$dbh = DBI->connect("dbi:mysql:mydatabase","example","")

or die("Couldn't connect");
$query->import names(1R 1);
$sth = $dbh->prepare("select * from mytable where feature

or die("Couldn't prepare");
= 9 "? ")

$sth->execute($R::myquery);
if($sth->rows == 0)
{

print "No information for " . $R::myquery;
}
else
{

print "<table border=2>\n";
while ($resptr = $sth->fetchrow_hashref())
{

print "<tr>";
print "<td>"
print "<td>"
print "<td>"
print "<td>"
print "\n";

$resptr->{"datal"}
$resptr->{"data2"}
$resptr->{"data3"}
$resptr->{"data4"}

print "</table>\n";
}
print "</body></html>\n";
$dbh->disconnect;

Figure 5.3: A Perl CGI Document Prescription

115

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

more complicated, and conditional statements can be seen in the scripts that enforce error

handling in the case that the instructions given fail to execute.

The other alternative is to use a custom made system, as in the case of DME, that allows the

generation of virtual documents around a very specific domain and only after a large amount

of modelling and implementation work.

Existing methods of Virtual Document generation abstract the data in order to make the

composition easier for the author. This abstraction level is done in most cases on top of

wrappers that help with the better integration of the various data sources (SQL, 0 0

databases, HTML, SGML etc.) and the document interpreter (Figure 5.4) handles the

processing and integration of the data.

In the cases that the virtual documents are described by proper scripting or programming

languages, the execution of the script can result in custom made documents according to user

models, but not without significantly complicating the encoding of the document.

Moreover, the existing techniques do not focus on reuse of the code of the document

prescriptions themselves. The complete focus has been devoted to the reuse of the underlying

data.

The development of the documents has separated the author from the final outcome of his

efforts, since by coding a document in an intermediate language the author has no direct

contact with the final document viewed by the end-user.

116

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

There are five main disadvantages that can be seen in the existing VD prescription methods.

First, the languages are oriented towards more complex principles than the ones needed by a

pure technical or other type of writer with weak programming skills. Second, the level of

abstraction of these languages drives the author into a level of detail that is not needed. Third,

the document preparation is a highly decision-oriented process that involves the ordering of

thematic groups in knowledge types, thus making a declarative and rule-based approach more

appropriate. Fourth, the encoding used does not encourage code reusability. Finally, the

Virtual Documents produced can only be seen and evaluated by the user, thus not catering for

a continuous and interactive development session, as far as the writer is concerned.

5.1.1 Complexity of Encoding

The encoding of Virtual Documents is the major problem that has to be faced. Virtual

Documents can be encoded using a variety of programming and scripting languages such as

Java (Servlets), CGI (C, C++, Perl) and PhP. This is a major drawback, since it limits the

authoring of such documents to highly trained programmers and alienates the traditional

authors that hold all the qualifications associated with the actual art of documentation

authoring.

The main attempts on the topic have been made by Vercoustre and Paradis [Vercoustre97b]

who have invested significant efforts to ease the encoding of the virtual documents. They

have partially left the programming approach by designing a language which is based on

SGML, is simplified as much as possible, and is accompanied by an editor so as to make

authoring as easy as possible. However, this procedural language is rather complicated for

117

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

authors without any programming background. Furthermore, it does not support adaptation of

the document according to a user model or other parameters.

5.1.2 Weak Level of Abstraction

The level of abstraction in the current Virtual Document techniques suffers since the authors’

approach to Virtual Document design concentrates purely on the data level, having no

intermediate level between raw data and the document design level.

In most cases, the data are abstracted according to the source. This means that a data

repository, such as a relational or Object-Oriented database, XML database or an SGML

document, is referenced and a query is made to retrieve some portion of the data included

within. Therefore, the author has to be knowledgeable about the actual content, about the type

of the data source, and about the way the data are stored within.

5.1.3 Lack of Decision Orientated Semantics

The process of documentation authoring involves activities of selection and pre-processing of

existing data that have been created during the product design stages and are present within

the Product Management System.

For the creation of more advanced types of documentation, the authors have to decide both

among different types of manuals that focus on specific topics and about the personalisation

of the manuals on standardised user models, in order to achieve just-in-time knowledge

delivery and to increase the effectiveness of the manual.

118

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

DOCUMENT
PROCESSOR

DATA
SOURCES

VIRTUAL
DOCUMENT

_

ABSTRACT
DOCUMENT
DESCRIPTION

Figure 5.4 A Typical Virtual Document Generation System

120

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

from the final outcome and thus establish an iterative and interactive approach which would

permit one to go through successive development cycles and improve the final product.

The Virtual Document is finally realised the moment the end-user requests the actual

information from the server. This breaks the development cycle. The development of Virtual

Documents thus cannot follow the usual iterative development which has proven to be

particularly useful in all design procedures. If we compare this to the traditional software

development life-cycle, it actually means that the engineer writes the software and has no

way of testing to see if the application behaves as expected.

5.2 Enhancements to Existing Techniques

There are four main aspects that can result in positive enhancements to the methods used for

describing virtual documents. A declarative approach can be more comfortable for a non­

programmer. A language that will have a more decision-oriented expression can help in the

adaptation of the document. Finally, knowledge reuse and code reuse can make the efforts

dedicated to the process of the creation of the virtual documents much more productive.

5.2.1 A Declarative Approach

A solution that can ease the composition of the prescriptions of the Virtual Documents is the

use of a declarative approach. Declarative approaches are more compatible with the ways a

non-programmer thinks and will allow authors to express their authoring expertise more

fluently.

5.2.2 A Knowledge-Based Approach

A knowledge-based approach can offer great benefits in the preparation of the document

121

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

prescription. The main problem in the authoring phase of the Virtual Document is the fact

that the designer integrates a multitude of data sources within the current prescription. Each

data source may have its own type of content and it may externalise it through different

interfaces (SQL, 0 0 Languages etc.). In the case of traditional programming approaches to

VD generation, the author is a programmer who has knowledge of the internal ways the data

sources operate and uses an application programming interface to access the source and

extract the data he/she needs to add to the document. In order to ease the development of the

required prescriptions, the data source has to be concealed from the user. Therefore, the level

of abstraction used in the access procedure of the data source has to be increased.

5.2.3 A Rule-Based Approach

A Rule-based approach is a decision-oriented approach that can offer good results. It can ease

the burden of generating adapted documents, since the selection of the content according to a

user model is clearly a decision making process [Turban88].

5.2.4 Use of Ontologies

Reuse of the code which is involved in-the virtual document generation process is a vital

characteristic within the proposed approach. Ontology is a candidate that can assist in

knowledge reuse [Gruber93]; additionally, recycling of rules is useful.

Ontologies define a common vocabulary representing the knowledge that must be shared

between different systems and/or reused at the future. An ontology defines “terms”, like

“person”, and properties like name, address, age etc. These terms (vocabulary) can be

translated into a frame-system or a relational database and thus be usable by different systems

122

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

that employ the respective technology. In the definition of these terms, knowledge is

abstracted in an implementation independent way, and as a result the reusability increases.

By the use of ontologies, a conceptualisation of the virtual document knowledge base is

developed that can be reused and extended by knowledge engineers, in order to provide

enhanced knowledge bases which support a virtual document system.

5.2.5 Interactive Development

In order to enable an iterative design, a number of requirements should be met. First, the

dynamically generated document has to be stored so that it may be inspected by a

representative of the authoring group. Second, a more automated approach would involve

having embedded rules within the system which will notify the authors when a specific

instance of document is generated that cannot be fully realised. Since the document is

dynamically generated all the possible outcomes cannot be known and it is most probable that

components of a specific combination of information objects will be missing. These rules will

provide a boolean feedback (exists/not exists) to the authors and alert them into designing the

specified piece of information. In addition, a more complex evaluation scheme could be used.

5.3 A Novel Technique for the Description of Virtual Documents

An approach that can handle the five problems which have been identified would use a set of

rules encoded by the technical writers. The structure of such a system should be divided into

four main subsystems, the structural, the content management, the formatting, and the

evaluation (Figure 5.5).

123

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

EVALUATION
NOTIFICATIONDATA

CONTENT
MANAGEMENT

RULES

STRUCTURAL FORMATING
RULESRULES

\

! _ i _ T p o
J l l EV-Ww&Xf ii " SlltPsr ' J

■■^VALUATIOw,"
RULES

2^ 1.4 f -; ■■■•;>

STRUCTURAL

TEMPLATE
POPULATED
TEMPLATE

M i l l i s VIRTUAL
DOCUMENT

to 1 - ■■
FORMATED
DOCUMENT

Figure 5.5 A Rule-Based System for the Generation of Virtual Documents

124

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

The main consideration that has to be addressed is how this system should be structured in

order to facilitate the task of the developer in organising such a set of rules that would

produce a Virtual Document. The most basic characteristics that are identified in a document

are structure, content, and formatting. There should be separate and interdependent sets of

rules concerning these three characteristics, in order to have a clearer and better system

organisation that would assist in the system development. Furthermore, a set of rules

operating as constraints that are met during the generation of the document should be created.

These rules would evaluate the generation process and will allow the developer to receive

feedback on the quality of the document that was generated.

The structural set of rules should allow authors to dynamically generate a document structure

that realises the best result for the user needs and the content targeted. These rules define the

titles, paragraphs and graphics that should be included in the document and the sequence in

which they should be presented. The content rules define the knowledge types that should be

included in each part of the structure. These types should be identified within the data of the

product and reused within the document. The content should depend on the user needs and

the structural positions where it is placed. The rule-set arranging the formatting should map

the structural and user ontology to an appropriate format for presentation.

5.4 A Higher Level of Abstraction in Document Generation

The rule-based technique has several advantages when applied to the design of virtual

documents. Firstly, it is a declarative approach with which the experts can encode their

knowledge without getting involved with the detailed programming aspects. Secondly, since

the approach is knowledge-based and focuses on knowledge types combined in documents,

the approach results in a higher level of abstraction in the description of Virtual Documents.

125

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

This is more productive and closer to the way technical writers approach the task of authoring

documentation.

One problem that arises from this approach is the uncertainty of whether the abstraction that

is referenced exists in the system or not. This can be solved by introducing constraints, which

are either satisfied or not, during the instantiation of a specific instance of a document. This

data can be returned as feedback to the technical writer, in order to compensate for the lack of

information or the specific knowledge structure and add it to the system.

Moreover, the productivity of this approach can be improved and the design can be facilitated

through the use of an ontology and a knowledge acquisition tool or environment, such as the

Protege knowledge acquisition tool. The ontology can assist in the reuse of knowledge and

the introduction of standardised framework to save work done by the document designers.

A further advantage introduced by such a system is that by nature it can be integrated with an

agent system such as the one shown in Chapter 3 and thus be deployed into a more effective

architecture.

5.5 An Ontology for Virtual Documents

Creating a knowledge-based system requires a considerable amount of work. One of the

shortcomings of a rule-based system for the generation of virtual documents would be that its

development is time-consuming and labour intensive. In order to increase the productivity of

the knowledge-based description, the creation of an ontology describing the domain is

proposed.

126

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

lists knowledge types the user is expected to be more familiar with in order to provide

emphasis on the less known. The “set user type” set of rules is mapping attributes of the user

model to a predefined set of user types that qualify the user to a role associated to the

product. The user model includes a more specific query attribute that is handled by the “get

user query” module and sets the query template with details for the current query. Upon the

query and the user type specifications a discourse pattern is selected by the “select discourse

pattern module”. The discourse pattern is a sequence of knowledge types that are considered

appropriate for presentation to the specified user type and the query submitted to the system.

These are listed in the “discourse patterns” template. Based on the user type, a document

structure is selected such as “Technical Specification Manual” or “Maintenance Manual”

with the “select document structure” rules. The different types of possible documents are

specified in a “document types” template. The “document template” is instantiated by

populating the document structure implied by the document type with the respective

discourse pattern. The instantiated document is then processed by the “format document”

module that applies formatting rules to the document structure based on document structure

elements, such as titles and paragraphs, and also the knowledge types that are defined in the

user knowledge profile. Finally, the formatted document is exported to be processed by the

document processor that will populate it with information objects.

The common ground between the Protege ontology and the CLIPS system is that each of the

classes declared in the Protege translates into a CLIPS template as shown in Figure 5.6(b).

The CLIPS code defines the template and the corresponding slots that represent attributes

with which the user is characterised. As an example, the ontology designed translates to 300

lines of code declaring the templates and facts of the rule-based system.

128

uidpiu j - a iiuil-imsiu Hjijjiudiii m 1 v mu<im)tmiiiii['"uuiuduui'i'

1 VirtrualDocGenerator Protege 2.1.2 <ffle:\G:\Program%20FHes\Protege_2. IW irtrualDocGenerator.pprj, Standard T. (O S
Project Edit Window Help

D OSf £P *o r* % |
((cj)) C lasses

Relationship SupercL . •,r'

*
V C i> X USER (fype=:STANDARD-CLASS)

C.c) THING
©:SYSTEM-CLASSa
®-©:META-CLASSa
®-©:CONSTRAINTa
® - © : ANNOTATION A
^ © DELATION A

© QUERY
©DISCOURSE
© DOCUMENT-TEMPLATE
© DISCOURSE-PATTERNS
© USER-TYPE
© DOCUMENT-TYPE
© FORMATED-DOCUMENT
© USER-KNOWLEDGE-PROFILE
© USER-TYPES
© KNOWLEDGE-TYPES
© DOCUMENT-TYPES
© U S E R

Mr
Superclasses
© . SYSTEM-CLASS A

Name Documentation Constraints V c
USER

Role

Concrete

Template Slots

J[j first-name
Jast-nam e

(S] experience
S] education
(S] job (
S]task
JDtask-frequency
!D request
2 modality

Name JM§_ Cardinality Other Facets
String
String
String
Integer
String
String
String
String
String
String

single
single
single
single
single
single
single
single
single
single

default={000000)

default={0}
value={none}

value={none}
value={text}

Education Last-name Task

none

First-name Modality TasMrequency

jtext

Id Request Experience

000000 jnone ■■■'“ 1 °!

Job

Figure 5.6(a) The Protege 2000 Ontology Development Environment [Noy2001a]

129

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

; The User Model of the current user
(deftemplate USER "The User Model"

(slot id (type INTEGER))
(slot first-name (type STRING))
(slot last-name (type STRING))
(slot experience (type INTEGER))
(slot education (type STRING))
(slot job (type STRING))
(slot task (type STRING))
(slot task-frequency (type INTEGER))
(slot request (type STRING))
(slotmodality (type STRING))

)

Figure 5.6(b) A CLIPS Template created for a Protege class

130

Chapter 5 - A Rule-Based Approach to V irtual Document Ueneration

populate user model make profile KNOWLEDGE
TY P ESUSER

USER
KNOWLEDGE

P R O F IL Eget user query
set user type USER TYPES

QUER

USER TYP

select discourse pattern DOCUMENT
TYPESselect document strucuture

DISC O U R SE
DOCUME

TYPE
instantiate document

DOCUMENT
TEM PLATE DOCUMENT

SPECIFICATIONformat document FORMATED
DOCUMENT

D ISC O U R S
PATTERNS export document

Figure 5.7 Virtual Document Ontology

131

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

5.5.1 Conceptual Structure

In the Virtual Document Ontology, concepts should appear that allow modelling the

document itself, and that refer to structural issues as well as the presentational and the

qualitative properties of the content. Also, as part of the document, extension concepts

should be taken into account, such as the user and his characteristics, discourse

patterns, additional queries and anything else that the author might think can influence

the document qualities.

All the above are thought of as interacting entities whose properties and their current

state decide the triggering of specific rules, in order to create a specific instance of a

document.

5.5.2 Rule Sets

Sets of rules have to be defined for triggering the interactions within the designed

ontology. These rules follow a condition-action strategy, and according to their

purpose they can be grouped into modules. The benefit is that they can be reused

along with the ontology. The component-based architecture that is developed

alleviates the process of system management and maintenance. Possible cases

include:

1. When concepts of the ontology change, the rules that are related with the updated

concepts have to be altered as well, but all the rest can remain the same.

2. Portions of the ontology are reused and therefore the modules that are associated

with the respective entities can also be included in the system.

132

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

SPECIFICATION
—----- i—;----:---------

RULE-BASED
SYSTEM ----------------------- ►

USER DOCUMENT
MODEL ONTOLOGIES

DOCUMENT

VIRTUAL
DOCUMENT

■

DATA
SOURCES

DOCI
PROCES!

Figure 5.8 A Rule-Based Virtual Document System Architecture

134

O H pici j - a ivuic-oascu nppiuacn iu v uiuai uucumciii uciieiauuii

^ V r l r tu D o tO M W ilM P r « t» |» M 2 (fil» :\C :V ro jfjm 1i2 0fil« !\P r(it»{* .M W iflru i«)M 6in w ito r ppr]. Standard T

Project E # WnOow Help

Q Sf 0 « ■ I I f'tt A R
@ Clesses

ReutostfSJteni * : v C 4 X , ‘

f '3 SYST3-CU3S‘*"|«nwt*s‘
► IQfflM*
©QUERY
? DISCOURSE ioOCUteNT-lEHPtATE
|0(8C0UR8tWTTERN8
©USER-TYPE
©OOCUKMT-TYPE
©EORMEMOCHeir ÛSBMNOWiaXJEfflOflf
c LISER-TYPES © KNCYIEDCE-TYPES
©OOCUKMT-TYPES
© USER

A
Superclasses

© U S E S D p e s S W H W R M U S S)

V c ♦ -

TonpMeSMs It
... .m. _...... :.....M Otiei Facets

HtImmm
S ,la s k ia m e
S ex jenence
S . educationmIN

i l s s w e q i e s t)
iieq u s slIntf*

Spin) single lle fa d b lO O M))
Stnng single
S tm j single
Integer single defau«=(0)
S tnnj single value={none)
Stnng single
String sn g le
S ting single
String single v a lue^none)
S ting single v a t e M

Kodatrty

test

TasPtequency

Id

ioooooo
Request Eipeiience

JEdit - rbs4vds.clp

File Edit Search Markets Folding View Utilities Macros Plugins Help

J * ® / 1113 OOsrOO S J l l
O itsdvds dp (E:\PrototypestC_vti10ocSystJessOevelt)

c m
tlL i-j ©

t u n : rMSlttt (ident teak) (Celt Mint))
■> .
(assert (HAIM:: add-tag maintainance-luunrledge)).

(defrule append-know-tag 'sppeads to che contents of the fcmiedge tatdt. '
?fact<- (Rill: lUSER-KfOiLEDGE-PRDFILE (K-types «?1*))-
?tlag<-(Kill::add-ug ?x) »>.
(printout i "Appending Tag; ”» c t l f).
(modify ?fact (K-types (create? ??is ?x))).
(retract ?flag)

[)*
; ; ; check for duplication .

(itefrule shoe "shcua the conten t of the Jooomielge wufc.~
(EAIH::USIR-KSO¥LEDCE-PROFILE (R-types ??ls)) .
»>.
(priutoet t c r i f).
(pnntoat t "The iJser ft£»i«4gt Profile is noa se t to : "D1s c t lf) .
(priatoit t c tlf) .

;; Hcdule get-ueers-query

(deCaodule get-users-query).

(detrule get-query "Seta th t quexy Scca the t
(HAIH::USER (request ?q))
?foct<-(Hill::QUEPY (query »)) .
(test (eq ?x unset)),
»>.
(modify ?fact (query ?q))

(defrule shoa-query *sheas the contents of the users query."
(HAIM::QUEST (query ?ls))

(printout t A H i i i t t H W i M t t f * f tf t t f l l f f K t l i l J f T ctlf)
(printout t "The Query is now set to : "?ls c t l f) .

He Emote MftJi Ofim H*

H a lo , C t iW a o i .
W t k o i n t to t h e R u la - B is td V rtu U D o c u m e n t S t n t n t o r .
P I m m w t w a r th e q u a r t a n s a n d w t Ml c r e * e
i Y rtu a f D o c u M n t a c c o rd in g to y o u r n e a d s .

W h i t is y o u r u s t r id ? 348851
W h it i t y o u r f ir s t n » e ? (s tn n g) C h r il ie s
W h i t i s y o u r l i s t i u m ? (s tn n g i P a s a n to o o p e u lo s
H aw m any y e a rs e x p e r ie n c e d o y o u h a v e ? 5
W h i t le v e l o f e d u c r t o n do yo u h a v e ? (s tr in g) MSc
W h a t is y o u j a b d e s c r ip tio n ? (s tr in g) E n g in e e r
W h i t i s y o u r c u r r e n t tx sT ? (strm g] M a in te n a n c e
W h * is t h e c u r r e n t t a s k s f r e q u e n c y ? 2
G iv e a s tn n g O u t b e t te r id e n tif ie s y o u r r e q u e s t (s tn n g) F u e l Tank
W h it is t h e m o dality o f y o u r p r e f e r a n c e ? (s tn n g) t e x t

T b t U se r K no w led g e P rofile d n o w s e t t o : ig t n e i k - t n e w l e d g e m t e r a i p e n j l - k n e w l e d j t h d p H u w w te d g e)

A p p e n d in g T ig : O i ia i ie M b ly H n fo n u tio nMtimmmiutmMtummmumiii
Y i n U i e r K no w led g e P rofile is n e w s e t t o : igenerK -kivow rtedge n fo m a t ie n a l - k n o w le O je b e lp - tp o w le d je O i s a s s e i ie i f - tn f o n u te A)HMwrnttuHtMimimHtmmiMM ©

JessWin JEdit on JESS Mode Protege Environment

Figure 5.9 A Rule-Based Virtual Document System Interface Components

135

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

mode that recognizes the JESS language and makes the editing easier for the

developer. The JessWin environment is a graphical front-end for the Jess engine,

where the clips file can be loaded and the user can interact with the rule-based system

to provide input and create the virtual document. The document specification is saved

as an XML file on the file system and it is then processed by the document processor

to produce the final HTML document. The document processor is a Java application

that parses the XML document specification and substitutes with the appropriate

information objects that are retrieved from an XML database.

The proposed approach reduces the complexity by introducing a rule-based system

handling the generation of the virtual document prescription. It enhances the level of

abstraction observed by the authoring team by the use of conceptual structures

describing the document and the users. The rule based nature of the system promotes

the description of adaptive virtual documents. Finally, the approach enables the reuse

of code in the level of document prescriptions by employing ontologies in the design

of the knowledge-based system.

5.7 A Case-Study of a Rule-Based Virtual Document System

As an example, the document ontology provided is employed to create a document

using the technique proposed in this chapter (Figure 5.10). Following the usual

procedure of an expert system, the program presents a series of questions to acquire

data concerning the user (populate-user-model). This data is kept in the user model

(USER) and is the means with which the system makes further decisions based on its

internal knowledge.

136

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

USER

Job: Engineer
Task: Maintenance

IF job=engineer AND
T ask=maintenance
Add knowledge types
Assembly-
instructions
Disassembly-

USER-KNOWLEDGE
PROFILE

Assembly-instructions
Disassembly-instructions
Maintenance-procedures

IF Task=maintenance
USER-TYPE=
Maintenance Engineer

USER-TYPE

Maintenance Engineer

DOCUMENT- | IF USER-TYPE= 1 IF USER-TYPE=
TYPE | Maintenance Maintenance Engineer

I Engineer Add to DISCOURSE
MAINTENANCE- i DOCUMENT- Maintain Introduction
DOCUMENT j TYPE= Disassembly-instructions

! MAINTENANCE ! Maintenance-procedures
| -DOCUMENT Assembly- instructions

INSTANTIATE
DOCUMENT

DOCUMENT-TEMPLATE

Title: Maintenance DocumerL
Title: Introduction
Maintain Introduction
Title: Disassembly Instructions
D isassembly- instructions
Title: Maintenance Procedures
Maintenance-procedures
Title: Assembly Instructions
Assembly-instructions
Notes

FORMAT
DOC
IF TITLE
THEN HI
IF NOTES
THEN I

DISCOURSE

Maintain Introduction
Disassembly-instructions
Maintenance-procedures
Assembly-instructions

<Hl>Maintenance document</Hl>
<H2> Introduction </H2>
Maintain Introduction
<H2> Disassembly Instructions</H2>
Disassembly-instructions
<H2> Maintenance Procedures</H2>
Maintenance-procedures
<H2> Assembly Instructions</H2>
Assembly-instructions
<I>Notes</I>

Figure 5.10 A Rule-Based Virtual Document Example

137

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

The system holds a pool of knowledge types (KNOWLEDGE-TYPES) from which a

subset is selected with the use of the “make-profile” module of rules (make-profile)

and the resulting knowledge profile (USER-KNOWLEDGE-PROFILE) is being

stored. The user type (USER-TYPE) is decided from an existing set of user types

(USER-TYPES) and the set-user-type (set-user-types) rules.

Based upon the user type a document type (DOCUMENT-TYPE) is selected (select-

document-structure) from the set of defined document types (DOCUMENT-TYPES)

within the system. This describes the document and implies a document structure that

is realized later on by the system.

The user type is used in conjunction with the query to select a discourse pattern

(DISCOURSE) that describes the information objects and their sequence. This pattern

will then be presented to the user. A set of defined discourse patterns (DISCOURSE-

PATTERNS) is used to choose the appropriate pattern for the current problem.

The document type and the discourse are used as the basis for the instantiation of the

document by the “instantiate document” procedure. This is the only part of the

system that deviates from the declarative rule-based strategy in order to tackle more

easily the sequential nature of the actions that need to be taken. At this point, a

procedural construct is used to make the mapping between the discourse and the

document structure and produce the final document template (DOCUMENT-

TEMPLATE). The document template is populated by a variable number of sections

that match the respective entries in the discourse pattern.

138

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

Finally, the template is processed with a formatting module (format-document) of

rules that map the different document items to a specific formatting. The final

outcome of this process is the formatted document prescription (FORMATTED-

DOCUMENT). This can now be exported by the system and is ready to be used as

the prescription that the virtual document processor instantiates.

In Figures 5.11 and 5.12, two instantiations can be seen presenting maintenance

information to a novice and a senior maintenance engineer. For the novice, a more

extended document is presented that starts with introductory information, then shows

the main disassembly, assembly and inspection instructions and closes with reminders

and final notes. The senior maintenance engineer only gets the main instructions and

graphics that will provide essential information in the fastest possible way.

5.8 Discussion

In this chapter, a novel technique for the generation of virtual documents was

introduced. This new technique simplifies the encoding of virtual documents,

increases the level of abstraction, introduces code reuse in the description of virtual

documents, and applies a decision-oriented strategy in their development.

139

Chapter 5 - A R ule-B ased Approach to Virtual D ocum ent Generation

3 E : \ P r o to t y p e s \ C _ V i r tD o c S y s \D o c P r o c \ o u t .h t m l - M i c r o s o f t I n t e r n e t E x p lo r e r

Fie Edt View Favorites Tools Help

Qeatk ' [*] r'ij yJ Search Favorites tjfMeda 4& '

E:V5rototypes\C_VlrtDocSysV3ocProc\out.html flGo

Maintenance Document
The Annual Maintenance Procedure has to be conducted anly once per year, preferably before the beginning o f the next calendar year During the maintenance procedures a senior maintenance engineer should be present to validate the the
procedure itself as veil as specialists in every subsystem o f the product that will make the qualitative estimation on the state o f the respective parts and assemblies. The Annual Maintenance Forms should be completed and signed by each expert
for each subsystem, as well as from the senior Maintenance Engineer in charge

In this part of the procedure the brake drum, half axles and hubs of the front and rear drive axles have to be dismounted, then the inspection procedure of each subsystem has to take place by the respective expert. The systems hare to
be reassembled after any needed replacements. Flnaly, the Maintenance Forms have to be completed and signed.

Preparation: 1. Engage the Hand Brake 2. Jack the rearaxxle off the ground 3. Verily the stability of the track
Dismounting of the wheel: 1. Unscrew the 8 nuts 2. Take off die 8 spring washers 3. Dismount the wheel
Dismounting the Brake Drum: 1. Release the hand brake 2. Take off the brake drum 3. Clean it 4. Inspect for Damage 5. Replace fonlty parts
Dismounting of the Carrier X. Unscrew the 4 bolts 2. Take off the 4 spring washers 3. Take off die 4 screws 4. Take off the Carrier 5. Clean It 6. Inspect for Damage 7. Replace faulty parts
Dismounting of die Ring Gear 1. Unfold the spur of the salty washer 2. Unscrew the outer round nut with a spured spanner 3. Take offthe salty washer 4. Unscrew the inner round nut with a spured spanner 5. Take out the ring gear
Dismounting of the Hub: 1. Take out the hub, watching out for the'bearing and the thrust ring 2. Clean die bearing by flushing it with diesel foel 3. Dry all parts 4. Inspect for damage (especially on the bearing and the thrust ring) 5.
Replace all faulty parts
Checking the Servo Brake: 1. Check for any leakage of braking fluid: a) on the brake cylinder b) around the bleeding valve c) around die pipe connection 2. Check and if necessary tighten the different parts 3. Check for wear on the
brake lining 4. Inspect for damage or worn-out parts 5. Replace if necessary
Clean tha Servo Brake: 1. Clean all parts 2. Check the linings are not oily or greasy

Checking die Servo Brake: 1. Check for any leakage of braking fluid: a) on die brake cylinder b) around the bleeding valve c) around the pipe connection 2. Check and If necessary tighten the different parts 3. Check for wear on the
brake lining 4. Inspect for damage or worn-out parts 5. Replace if necessary
Clean tha Servo Brake: 1. Clean all parts 2. Check the linings are not oily or greasy

Reassembly of the Hub: 1. Fill the bearings and up to half of the space around them with fresh grease 2. Put die hub in the axle, push in the axle,watch out for the bearings
Reassembly of the Gear. 1. Put the gear in place, whilst watching out for the bearings 2. Place the inner nut
Clearing Adjustment for the Hub bearings: 1. Screw in the inner nut until it is hand tight 2. Unscrew the nut by 1/6 th to lfltfa of a turn 3. Put die salty washer in place 4. P lare^ie outer round nut so as to lock into place the inner round nut
5. Fold in the best placed spur into the notch of die outer nut 6. Make sure die hub can rotate freely
Remounting of the Carrier: 1. Place the carrier 2. Replace die 4 screws 3. Replace the 4 spring washer 4. Screw in the 4 bolts
Remounting ofthe Brake Drum: 1. Replace the brake drum
Remounting of die Wheel: 1. Replace die wheel 2. Replace die 8 spring washers 3. Screw in die 8 nuts 4. Engage the hand brake 5. Tighten the 8 nuts

Checking ofthe Assembly: 1. Release the hand brake 2. Make sure that the wheel can rotate freely 3. Check the nut Is screwed in adequately 4. Lower the axle back onto the ground 5. After the truck has been moving for some time, chek the
eating o f the wheel hub
I f it's too hot to be Inched by hand, adjust the bearing clearance once again

ATTENTION The Maintenance Forms have to be completed and signed tmedtately after the end o f the maintenance

g£| Done My Computer

Figure 5.11 An Instantiation of a Rule-Based Virtual Document

140

C h ap ter 5 — A R u le -B a se d A p p ro a ch to V irtu a l D o c u m e n t G en era tio n

3 E :\P ro to ty p e sV C _ V ir tD o e S y sV D o c P ro c \o u t.h tm l - M ic ro s o f t I n t e rn e t E x p lo re r

H e E<tt view Favorites Tools Help

© B a t * ♦ © / Search ^ F a v o r i te s t f f M e d a £ > - * S * j

A.i-r- i it] E :VTototYpes\C_VlrtDocSysV3ocProc\outhtrril

u o m

v Qgo

Maintenance Document

Preparation: 1. Engage the Hand Brake 2. Jack the rear axxle off the ground 3. Verify the stability of the track
Dismounting of the wheel: 1. Unscrew the 8 nuts 2. Take off the 8 spring washers 3. Dismount the wheel
Dismounting the Brake Drum: 1. Release the hand brake 2. Take off the brake drum 3. Clean it 4. Inspect for Damage 5. Replace faulty parts
Dismounting of the Carrier 1- Unscrew the 4 bolts 2. Take off the 4 spring washers 3. Take off the 4 screws 4. Take off the Carrier 5. Clean it 6. Inspect for Damage 7. Replace faulty parts
Dismounting of the Ring G ear 1. Unfold the spur of the salty washer 2. Unscrew the outer round nut with a spured spanner 3. Take off the salty washer 4. Unscrew the inner round nut with a spured spanner 5. Take out the ring gear
Dismounting of the Hub: 1. Take out the hub, watching out for the bearing and the thrust ring 2. Clean the bearing by flushing it with diesel fuel 3. Dry all parts 4. Inspect for damage (especially on the bearing and the thrust ring) 5.
Replace all faulty parts
Checking the Servo Brake: 1. Check for any leakage of braking fluid : a) on the brake cylinder b) around the bleeding valve c) around the pipe connection 2. Check and if necessary tighten the different parts 3. Check for wear on the
brake lining 4. Inspect for damage or worn-out parts 5. Replace if necessary
Clean tha Servo Brake: 1. Clean all parts 2. Check the linings are not oily or greasy

[Image 1 If Image 2l[Image 3lflmage 4]f Image 51 [Image 6]

Checking the Servo Brake: 1. Check for any leakage of braking fluid : a) on the brake cylinder b) around the bleeding valve c) around the pipe connection 2. Check and if necessary tighten the different parts 3. Check for wear an the
brake lining 4. Inspect for damage or worn-out parts 5. Replace if necessary
Clean tha Servo Brake: 1. Clean all parts 2. Check the linings are not oily or greasy i

Reassembly of the Hub: 1. Fill the bearings and up to half of the space around them with fresh grease 2. Put the hub in the axle, push in the axle,watch out for the bearings
Reassembly of the Gear: 1. Put the gear in place, whilst watching out for the bearings 2. Place the inner nut
Clearing Adjustment for the Hub bearings: 1. Screw in the inner nut until it is hand tight 2. Unscrew the nut by l/6th to l/8th of a turn 3. Put the salty washer in place 4. Place the outer round nut s
5. Fold in the best placed spur into the notch of the outer nut 6. Make sure the hub can rotate freely
Remounting of the Carrier. 1. Place the carrier 2. Replace the 4 screws 3. Replace the 4 spring washer 4. Screw in the 4 bolts | \
Remounting of the Brake Drum: 1. Replace the brake drum ^
Remounting of the Wheel: 1. Replace the wheel 2. Replace the 8 spring washers 3. Screw in the 8 nuts 4. Engage the hand brake 5. Tighten the 8 nuts

[Image Hf Image 21 [Image 31flmagc 4lflmage SI [Image 6]

i as to lock into place the inner round nut

3 E \The*i*\default ' Microsoft internet Explorer

Fte Edt «•» F m h b T o d s H*>

O e * * • O V j i ; , SMrcn y-VFMrtK tfM K b
a-. M E:\TTct! » : B S °

£ |D c n e i j j My Computer

ĵ Done

Figure 5.12 A Rule-Based Virtual Document Example Output

141

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

The simplification of the encoding is significant from the point of view that the usual

procedural programming approach is no longer needed. However, this does not mean

that the complete document system will be easily constructed by non programmers.

The gain is mostly in the ease of converting the instructions/knowledge of the

documentation author to a rule-based system as opposed to developing a traditional

procedural software application. The rule-base of the system should be relatively easy

to construct for documentation authors. With this technique, it is expected that the

software developers per documentation team will be reduced drastically. The

approach is likely to require only one knowledge engineer per documentation team,

who will prepare the ontology along with the authors and will encode the parts of the

system (such as the document instantiation function) according to their instructions.

The increase in the level of abstraction is inherently supported by the use of

knowledge-based systems. With the design of the document and its supporting entities

as a conceptual model, a clearer representation of the documentation is created that

can be understood, reviewed, extended and reused more easily by the human

authoring team. In the case study, conceptual structures such as the discourse patterns,

the user model, the user and document types, as well as the separation of rules in

modules with specific purpose are defined, thus allowing the developers to create an

higher abstraction layer and also conceptualise the documentation, the user, the

knowledge types and the processes involved in the preparation of the documentation.

However, this benefit implies an added effort by the development team and an

involvement of knowledge engineering expertise.

142

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

The added knowledge-engineering work is counter-balanced by the use of the

documentation ontology. The ontology allows the reuse of these models and thus

increases greatly the productivity of the process. The ontology can be reviewed,

enhanced and reused by graphically manipulating the conceptual structure in the

Protege environment. This representation translates to reusable CLIPS templates and

fact declarations that can be directly included to the rule-based system code. In

addition, they result in reusable code for the rule based system.

The decision-oriented strategy of the rule-based system can be questioned for the

normal and simpler virtual documents. As long as the focus moves to adapted virtual

documents, where the document is tailor-made according to a user profile, the facts

are dramatically changed. In this case, the benefit of the decision-oriented strategy of

rules is obvious for the selection of the information and structure, as well as for

formatting and for introducing additional parameters that might influence the

document generated.

Finally, it can be said that this technique might not bring virtual document generation

to the end user, but it can significantly improve the state of virtual documentation

from the developers’ perspective. The improvement anticipated is proportional to the

work done on the ontologies and the standards for documentation systems.

143

Chapter 5 - A Rule-Based Approach to Virtual Document Generation

5.9 Summary

Existing Virtual Document techniques have been studied and analyzed. Some

shortcomings have been identified, such as the complexity of encoding, the weak

level of abstraction, lack of decision-oriented strategy, lack of code reuse and non­

interactive development cycle. These problems have been further discussed. A

declarative programming approach, rule-based systems, and ontologies have been

proposed as solutions that could improve the state of virtual document generation.

The novelty of the technique has been discussed and its advantages have been

presented, showing as a result a higher level of abstraction and better expressiveness

in the document prescriptions. The importance of the ontology utilization in terms of

productivity increase has also been stated. Finally, an example has been presented and

the results have been discussed showing an improvement from the developers’

perspective and a reduction of programming expertise in the process.

144

Chapter 6 - Contributions, Conclusions, and Further Work

Chapter 6 - Contributions, Conclusions, and Further

Work

In this chapter, the contributions presented in this thesis are summarised, the

conclusions that have been reached are stated and further work is proposed in order to

extend this line of research.

145

Chapter 6 - Contributions, Conclusions, and Further Work

6. Contributions, Conclusions, and Further Work

6.1 Contributions

The research presented in this thesis aims to promote the use, quality and efficiency of

electronic documentation. The main aim is to help documentation developers

automate the process of creating Intelligent Product Manuals. At first, the trends

towards virtual documentation and towards automatic generation of documentation

are identified. A link is formed between software documentation and manufactured

products. Then, the contributions that are presented are as follows:

1. Object-Oriented Framework for Virtual Documentation

The Object-Oriented Framework provides an infrastructure that enhances the

productivity and the efficiency of developing electronic documentation systems. It

allows developers to reuse and extend basic functionality components of a

documentation system and to have a virtual documentation system ready with

minimal effort. A definition is provided that encompasses all the aspects that

existing research has found, and a critique on the advantages and disadvantages is

detailed.

2. A Global Definition on the Information Object

The Information Object is a useful concept for the development of documentation. It

enables reuse, promotes robust structuring, and allows for better conceptualisation of

the data. The drawbacks of the 10 are that it is defined loosely, does not have an

active nature, and does not exploit intelligent techniques. The existing definitions are

studied and a definition is provided that unites the existing work on the concept.

146

Chapter 6 - Contributions, Conclusions, and Further Work

3. Intelligent Information Object Definition

The Intelligent Information Object is a concept-specific autonomous agent that

searches an appropriate structured information source and discovers the concepts to

be represented. It extracts a set of data to initialise its contents, updates itself, can

render its contents customised according to external parameters, and interacts with

other Intelligent Information Objects in order to build a complete instance of a

document. The IIO is delegated to handle information concerning a meaningful entity

in the domain in hand. It acts proactively to keep this information up to date and

independently mines the information to keep itself closely related to the data of the

other information objects.

4. Intelligent Information Object Architecture

The Intelligent Information Object acts as a building block for the IIO documentation

system architecture. This architecture creates a highly dynamic middle layer where

the information takes form according to the conceptual model of the existing

information objects and at the same time it is interlaced by the active nature of the

Intelligent Information Objects. This middle layer acts as a buffer between the data

repository and presentation layers. Within this buffering zone, the information is

processed and enhanced.

5. Rule-Based Approach to Virtual Documents

A Rule-Based Approach to virtual document authoring uses a declarative paradigm

and is knowledge-based. It offers a better level of abstraction, ease of coding and a

decision-oriented strategy that is very important for user adaptation. With the

147

Chapter 6 - Contributions, Conclusions, and Further Work

employment of ontologies a significant code reuse can also be achieved, which in

turn, increases the efficiency of the authoring process.

6. Ontology for Virtual Technical Documentation

The Ontology for Virtual Documentation systems describes the documentation

domain from the point of view of adaptively generated reports. It provides a basis for

creating virtual document prescriptions conditionally, that is according to the sets of

rules that are used. It is an extensible asset and can be used as a starting point for the

developers to build on top their specific requirements.

6.2 Conclusions

1. Techniques for automatic construction of documentation can be realised in the

case of technical documentation as in the case of software documentation.

2. In the case of technical documentation, there is no strict formalism as in the case

of programming languages, but the PDM structure and addition of meta-data can

overcome the difficulties of this lack of formality.

3. Object-Oriented frameworks are a viable solution for technical documentation that

can increase productivity, but may be limiting in the case of larger products.

4. The Intelligent Information Object can provide good results with large products

exploiting the PDM structuring, but it needs agreements, in a finer level of detail,

on the ways that the data will be organised on the product nodes.

5. The Intelligent Information Object Architecture and the middle layer it creates for

the pre-processing of the data is very promising and can provide added value to

the information through the dynamic mining of relationships between the contents

of the IIOs and the entities they represent.

148

Chapter 6 - Contributions, Conclusions, and Further Work

6. Virtual Document prescriptions can be expressed as a rule-based system with a

strong advantage for adaptive generation of documentation.

7. The abstraction level and the reusability of the document prescriptions are

enhanced with the rule-based technique for virtual documents.

6.3 Further Work

For Intelligent Information Objects, a possible research direction could be to organise

strategies that will allow a collection of Intelligent Information Objects to generate

larger reports co-operatively.

Another direction relating to Intelligent Information Objects could be the addition of

an IIO layer structured not upon the product structure, but on the knowledge structure

that is present within the documentation data. This will allow for manuals that do not

follow the hierarchical product structure but a thematic structure.

For Virtual Documents, a matter for future research could be a solution to the problem

of the discontinuity of design that their dynamic generation introduces. This would

involve the development of a method for the evaluation of the generated document in

order to provide feedback automatically to the author for enabling the iterative nature

of document design.

Finally, methodologies for the organisation of the data within the PDM system, with

minimal involvement from the product designers, are always a challenge. Agent

systems could be a valuable solution for the processing of the data and the partial

automation of the selection and transformation of media.

149

Appendix

APPENDIX

APPENDIX A - Object-Oriented Framework Sample Code

package ipm;//XML HANDLING
import org.w3c.dom.*;
import javax.xml.parsers.*;
II FILE VECTOR ETC import java.util.*; import java.lang.Character;
import java.io.File; import java.io.*;
* The Component class is designed to be a singleton in order to avoid syncronisation * problems in Updating. The
instance is provided through the static public instance() * which when called the first time initialises the root Object. The default and normal * constructors are private to avoid further instantiation.
* members.tripod.com/rwald/java/articles/singleton_in_Java.html
*/public class Component {

l / m m i l H I I I I I I I I I I I I I I I I
l i m DATA
/ / m m i i i t i t i i i i i i i i i i i i
private String ID= new String();private String Name= new String();
private String Type= new String();private String Description= new String();private Document XmlDescriptionFiles; II XML filesprivate String GrfxFiles= new StringQ; II BLOBS ?private Component SuperComponent; II Objectsprivate Component!] Subcomponents; II Objectsprivate Component!] Relations; II Objectsprivate StringBuffer Rules= new StringBuffer();private static String webappDir;
//####//////// l l l l I I I M H M l l l l II l l l l II ////// II
l i m IIO BASICS

* Registry of ptrs to all the instantiated Component objects.
*/static private Hashtable _Registry=new Hashtable();
I* *

* Counter of Components so far instansiated.
*/static private int componentNo;

I**

* Singleton implementation.
*/static private Component _instance=null;
lim REPORT

* Storage for the generated report.
*/

150

Appendix

static private StringBuffer _Report= new StringBuffer();
j irk

* Storage for the recursively generated menu.
7
static private StringBuffer MenuOutput =new StringBuffer();
m i i i i i i i i i i i i i i i i i i i m i m m//## DATA-KNOWLEDGE-UM-XML

* Local reference to the PDM Agent.7
static private PDM _PDM;
I**

* User Model Object.7
static private userModel UM;
j-kk

* Object Specific Logic Engine.7private LogicEngine LE;
jirk

* User Specific Knowledge Tags produced by the Objects Reasoning process.7
private static LinkedList userKnowledgeTags= new LinkedList();
/ m i i i i i i i i i i m i i f i t i i i i i i i n t t i i i i i i i H i i i i m
t / m nlp
//##
I**

* Holder for the Side Lexical Menus.7private LinkedList sideMenus = new LinkedList();
jirk

* Product Dictionary.
7private static ProductDictionary dictionary=new ProductDictionary(webappDir);

jirk

* The Text Processor Object.
7private TextProcessor textProcessor=new T extProcessor(dictionary, webappDir);

l l l l IIII I I II I I I IM M IH IIII tI I I II I I I l l l l l l t t lF t t## -
l i m CONSTRUCTORS

* The first constructor gets a pointer to the PDM agent and creates the product IIO,
* that is the root of the product tree, the rest of the component instantiations are* performed by the second type of constructor provided.
7private Component(PDM PDMptr) { II Constructor for the root (No parent)

try { PrintStream myErr= new PrintStream(new FileOutputStream(new File(webappDir+"logs/Components.log")));System.setErr(myErr);}catch(java.io.lOException e){System.err.println("problem :"+e.getMessage());}

System.err.println("DEBUG SINGLETON THIS default :"+this);

151

Appendix

_PDM=PDMptr;
new Component(_PDM.getProductlD(),null);

II If this is the initialisation of the last component - then start relationmapping
if(componentNo==_PDM.getPopulation()){

System.err.printlnf");
System.err.println("###/////W#//"); System.err.println("## PRODUCT TREE COMPLETE ");
System, err. pri ntl n(”## ALL COMPONENTS INITIALISED "); System.err.println("m I t I I IM t t l l I I I I t i l l I I i m f t i I I I I I t I ");
System.err.printlnfTotal From PDM :"+_PDM.getPopulation()); System.err.printlnfTotal Instances :M+componentNo);System.err.printlnf");
System.err.println ("###/////m////////////m//////////</////////////////"); System.err.printlnf## STARTING RELATION MAPPING ");
System.err.println f###// "); System.err.printlnf");
II THINGS TO BE DONE ONLY ONCE
dictionary.eliminateEntrySubsets();Component test=this.getProductRr(); test.initRelationMapping();

}System.err.printlnf DEBUG SINGLETON THIS END");
}
j-kit

* The second type constructor gets the parent componet and the ID of the component
* to be created and creates the new IIO.
*/private Component(String JD, Component Parent){ if(_instance==null)_instance=this;SuperComponent=Parent;ID =_ID;System.err.printlnf DEBUG SINGLETON THIS normal :"+this);_Registry.put(ID,this); II add an ID - ptrTolnstance to the Registry

componentNo++;
this.init();

}
I**

* This method adds a new component after the product structure has been initialised.
7public void addComponent(String childID, String ParentID) {

II find parent in RegistryComponent parent=(Component)_Registry.get(ParentlD);Component newComponent=new Component(childlD.parent);
II update parent 4 //parent.Update(parent.getlD(),4);

}
I**

* This method implements the singleton patem.
7static public synchronized Component instance(PDM PDMptr.String _webappDir) {

if(_instance==null) {webappDir=_webappDir; new Component(PDMptr);
II Constructor is called here but the instance is set by the normal constructor

 }___

152

Appendix

return Jnstance;
}

j i t*

* This method initialises the component (extracts data, init logic,* and adds components name to the product dictionary).* Does not mess with relations other than part-of.
7public void init() {

System.err.printlnf Initialisation of Component for — > M+ID);this.extractName();th i s. extractT y pe();
this.extractDescription();this.extractXmlDescriptions();this.extractGrfx();Coherencethis.extractSubComponents();this.extractRules();LE = new LogicEngine(Rules);
dictionary. addEntry(N ame, ID);

}
I**

* This method is called when the product structure is complete (no references to non-initialised* objects ie. PDM no. of objects = no. of Components) to map the relations and convert ourproduct * tree to a graph.
7public void initRelationMapping() {

II dictionary.eliminateEntrySubsets();Description=textProcessor.processText(Description,this.lD);
System.err.printlnf The Descr:"+Description); sideMenus=textProcessor.getSideMenu();System.err.printlnfThe side:"+sideMenus.toString());System.err.printlnfMapping Relations of Component for — > ”+ID);
this.extractRelations();
try{ for(inti=0;i<SubComponents.length;i++)System.err.println(SubComponents[i].getlD());

for(int i=0;i<SubComponents.length;i++) {SubComponents[i].initRelationMapping();
}}catch(Exception e){System.out.println("EDW : n+e.getMessage());}

}
j**

* This method is called when the product structure is updated (called by PDM agent)* and re-extracts the data. If the name is updated, the dictionary is also updated, if
* the description is updated, it is also re-processed by the text processor, is the* sub-components are updated and some of them are new, they are created. The components
* rules are also reloaded.
7public void Update(String _ID_,int type) { if(this.lD.equals(_IDJ) {

if(type==1) {this.extractName();dictionary.updateEntry(Name.lD);
Jelseif(type==2) {this. extractT ype();
Jelse

 if(type==3) {_____________________________________

153

Appendix

this.extractDescription();
Description=textProcessor.processText(Description,this.lD);Jelse
if(type==4) {

this.extractSubComponents();Jelse
if(type==5){

this.extractRelations();Jelseif(type==6) {
this.extractXmlDescriptions();Jelse

if(type==7) {this.extractGrfx();Jelseif(type==8) {
this.extractRules();

}LE.reloadRules(Rules);
}else for(int i=0;i<SubComponents.length;i++)

SubComponents[i].Update(JD_,type);
}
J k k

* This method simply returns the ID of the Component.7public String getlD() { return ID;}
J k k

* This method simply returns the Name of the Component.
7public String getName() {return Name;}

J k k

* This method simply returns the Type of the Component.
7public String getType() {return Type;}

j i r k

* This method simply returns the Description of the Component.
7public String getDescription() {return Description;}

j k k

* This method simply returns the XML associated with the Component.
7public Document getXmlDescriptions() {return XmlDescriptionFiles;}

J k k

* This method simply returns the Grafic file of the Component.
7public String getGrfxFiles() { return GrfxFiles;}

j k k

* This method simply returns the list of Super-Components of the Component.
7public String getSuperComponents() {String Name=new Stringf");

if(SuperComponent!=null)Name=SuperComponent.getName();
return Name;

i ___

154

Appendix

j i r k

* This method simply returns the list of Sub-Components of the Component.7
public String[] getSubComponents() {

StringO Names=new String[1];Names[0]="";
if(SubComponents!=null) {

Names=new String[SubComponents.length];
for(int i=0;i<SubComponents.length;i++) {

Names[i]=SubComponents[i].getName();
}

}

return Names;

* This method simply returns the list of Related Components to the Component.7
public String[] getRelations() {Strinĝ Names=new String[1];Names[0]="M; if(Relations!=null) {Names=new String[Relations. length];

for(int i=0;i<Relations.length;i++) {
Names[i]=Relations[i].getName();

}
}return Names;

}
J k k

* This method extracts from the PDM agent the Name of the Component.7public void extractName() {Name=_PDM.getName(ID);}
j k k

* This method extracts from the PDM agent the Type of the Component.
7public void extractTypeQ {Type=_PDM.getType(ID);}

j k k

* This method extracts from the PDM agent the Description of the Component.
7public void extractDescription() {Description=_PDM.getDescription(ID);}I**
* This method extracts from the PDM agent the XML of the Component.
7public void extractXmlDescriptions() { XmlDescriptionFiles=_PDM.getXmlDescriptions(ID);}I**
* This method extracts from the PDM agent the Grafics of the Component.
7public void extractGrfx() {GrfxFiles=webappDir.substring(webappDir.indexOf(7webapps/")+8)+_PDM.getGrfxFiles(ID).substring(_

PDM.getGrfxFiles(ID).indexOf("PDM"));
}
j i r k

* This method extracts from the PDM agent the list of Sub-Components of the Component.
7_____public void extractSubComponentsQ {__________________________________

155

Appendix

Vector Sub=_PDM.getSubComponents(ID); if(Sub!=null) {
SubComponents=newComponent[Sub.size()]; for(int i=0;i<Sub.size();i++) {

II look if object exists in registry
boolean exists=_Registry.containsKey(Sub.get(i));if(exists) {

SubComponents[i]=(Component)_Registry.get(Sub.get(i));
}
II if not create it. else {

SubComponents[i]=new Component((String)Sub.get(i),this);
}

}
}

}
j i t*

* This method extracts from the PDM agent the list of Related Components to the Component.* Uses the pointers from the Registry in order not to replicate the objects.
7
public void extractRelations() {Vector Relat=_PDM.getRelations(ID); if(Relat!=null) {

Relations=new Component[Relat.size()]; for(int i=0;i<Relat.size();i++)
Relations[i]=(Component)_Registry.get(Relat.get(i));

}
}I**
* This method extracts from the PDM agent the Rules of the Component.
7public void extractRules() {Rules=_PDM.getRules(ID);} public StringBuffer getReport() {return _Report;}

I* *

* We can't have recursive functions returning value, so we made Report void and* we added the _Report static to our class. The recursion passes through the tree* and when the target is found the report is stored in _Report (static)* so then we call getReport to collect.
7public void Report(String _ID_) { if(this.lD.equals(_IDJ) {_Report=this.Report();

}else for(int i=0;i<SubComponents.length;i++)Su bCom ponents[i] .Report(_l D_);
}
II the ending step of the resursion... the actual report,
public StringBuffer Report() {StringBuffer HTMLOutput = new StringBuffer(); HTMLOutput.append(H<HTML><HEAD><TITLE>H);HTMLOutput.append(HTITLE");HTMLOutput. append(H</TITLE></HEAD>");HTMLOutput.append("<BODY BGCOLOR=#CCCCCC>");HTMLOutput.append(<P>
");

HTMLOutput.append("<P>
");HTMLOutputappend(Type);HTMLOutput.append("ID:");HTMLOutputappend(ID);HTMLOutputappendfcHRxP̂);
_____ HTMLOutput. appendr");_________________________________

156

Appendix

HTMLOutput.append(HThe");HTMLOutputappend(Name);HTMLOutputappendf is a"); if(Type.equals(HAssemblyH))HTMLOutput.append(Hn");HTMLOutput.append(" "+Type+".");HTMLOutputappendf");
if(Type.equals("Product")||Type.equals(H Assembly")) {HTMLOutput.append("lt is composed of');

try{ for(int i=0; i<SubComponents.length; i++) {if((i==SubComponents.length-1)&&(SubComponents.length!=1))
HTMLOutputappendf and");HTMLOutput.append(" the");HTMLOutputappendf "+
(SubComponents[i].getName())+"");if((i==SubComponents.length-1)&&(SubComponents.length!=1)) HTMLOutputappendf."); else HTMLOutputappendf,");

}}catch(Exception e) {System.err.printlnfTI PAPARIA H+e.getMessage());}
}HTMLOutputappendf"); if(Type.equals("Part")||Type.equalsfAssembly")){HTMLOutputappendf It is part of the");HTMLOutputappendf "+

(SuperComponent.getName())+,,");HTMLOutputappendf.");
}HTMLOutputappendf"); if(Relations.length!=0)HTMLOutputappendfThe "+Name+" also relates to");
try{ for(int i=0; i<Relations.length; i++) {if((i==Relations. length-1)&&(Relations. length !=1))HTMLOutputappendf and");

HTMLOutputappendf the");HTMLOutputappendf <a href=\"http://mec1.engi.cf.ac.uk:8080/simpleGW/servlet/ipm.Main?PresentContent="+ipm.URLUTF8Encoder.encode((String)Relations[i].getlD())+"\"
target=\"Main\" >"+ (Relations[i].getName())+"");

if((i==Relations.length-1)&&(Relations.length!=1))
HTMLOutputappendf."); else HTMLOutputappendf,");

}Jcatch (Exception e) {System.err.printlnfTI PAPARIA H+e.getMessage());
}HTMLOutput.append("<HR>");HTMLOutput.appendf<P>
<PRE>");HTMLOutputappend(Description);HTMLOutput.append("</PRE><P>
");
HTMLOutputappendf <IMG ALIGN=TOP SRC=V'");

__________ HTMLOutputappend(this.getGrfxFilesQ);___________________________

157

http://mec1.engi.cf.ac.uk:8080/simpleGW/servlet/ipm.Main?PresentContent=%22+
http://mec1.engi.cf.ac.uk:8080/simpleGW/servlet/ipm.Main?PresentContent=H+
http://mec1.engi.cf.ac.uk:8080/simpleGW/servlet/ipm.Main?PresentContent=%22+

Appendix

HTMLOutput.append(T>");HTMLOutputappendf");
HTMLOutput.append(this.parseXMLDocs().toString());HTMLOutput.append("</BODY>");HTMLOutputappendf </HTML>"); return HTMLOutput;

}public void dumpRegistry() {System.err.println("");System.err.printlnf//////////////////////##//#//#'////////////////////////////////#####");
System.err.printlnf## STATIC COMPONENT REGISTRY DUMP ");
System.err.println(7/////////////////////##//####//////////////////////////////#####,,); System.err.printlnf");
System.err.println(_Registry.toString());System.err.printlnfM);

}public void numberOfComponents() {System.err.printlnf");System.err.printlnf#////////////////////######//#////////////////////////////////////# "); System.err.printlnf## NUMBER OF COMPONENTS INSTANSIATED:M); System.err.printlnf## No:"+ componentNo);
System.err.printlnf//////////////////////##////##////////#////////////////////////////##"); System.err.printlnf");

}private Component getProductPtr() {
Component!] temp=new Component[componentNo]; int k=0;for(Enumeration e=_Registry.elements();e.hasMoreElements();) { temp[k]=(Component)e.nextElement(); k++;
}System.err.printlnf");System.err.printlnf//##"); System.err.printlnf## LOOKING FOR PRODUCT IN REGISTRY "); System.err.println (7/////////////////////////////##////#////////////##////#//##//////#"); System.err.printlnf");
try{ for(int i=0;i<temp.length;i++) {

if(tem p[i]. getT ype(). equalsf Product")) {System.err.printlnf");System.err.printlnf//////////#//////////# PRODUCT FOUND
MMMIlMm "); System.err.printlnf");

return temp[i];
}

}} catch(Exception e) {System, out. printlnf Exc :"+e.getMessage()); e.printStackTrace();}
return null;

}public StringBuffer getMenu() {MenuOutput=new StringBuffer();System.err.printlnf");System.err.printlnf//"); System.err.printlnf## MAKING THE PRODUCT MENU ");
System.err.printlnf////////////////////////////////##//"); System.err.printlnf");MenuOutput.appendf <HTML><HEAD><TITLE>");
MenuOutput.appendf TITLE");__________ MenuOutput.appendf </TITLE></HEAD>");_______________________

158

Appendix

MenuOutput.append("<BODY BGCOLOR=#CCCCCC>");
Menu0utput.append("<CENTER><H2>Structural Menu</H2></CENTER>"); MenuOutput.appendf <TABLE B0RDER=\"4\">"); this.makeMenu();
MenuOutput.append(H</TABLE>

");MenuOutput.append("<p><a href=\"http://mec1.engi.cf.ac.uk:8080"+7simpleGW/servlet/ipm.Main?"+

"PresentContent=Exit\" target=\"TopFrame\"> Exit "); Menu0utput.append("<pxahref=\"http://mec1.engi.cf.ac.uk:8080"+7simpleGW/servlet/ipm.Main?"+ "PresentContent=UpdateUM \" target=\"Main\"> Update UserModel H);
MenuOutput.appendf </BODY>");
MenuOutput.appendf </HTML>"); return MenuOutput;

}private void makeMenu() {
try{ System.err.printlnf APPENDING MENU ITEM ... ID :"+ID+" NAME :*+Name); MenuOutput.appendf <TR><TD");

if(this.Type.equalsf Assembly"))MenuOutput.appendf BGCOLOR=\"#COCOCO\M"); if(this.Type.equals("Part"))MenuOutput.appendf BGCOLOR=\"#FFFFFF\""); MenuOutput.appendf ><p>H);MenuOutput.appendf "+ this.Name+"</ax/UL></TRx/TD>");for(inti=0;i<SubComponents.length;i++)
SubComponents[i].makeMenu();}catch(Exception e) {System.err.printlnf Here");}

}public StringBuffer getSideMenu(String ID.String menuNo) {MenuOutput=new StringBufferQ;System.err.printlnf");System.err.printlnf//////////////////#//##");System.err.printlnf## MAKING THE SIDE MENU "); System.err.printlnf////////////////̂/#//#");System.err.printlnf");MenuOutput.appendf<HTML><HEAD><TITLE>");
MenuOutput.appendf TITLE");MenuOutput.appendf </TITLEx/HEAD>");
MenuOutput.append("<BODY BGCOLOR=#CCCCCC>");MenuOutput.appendf <CENTER><H2>Relations Menu</H2></CENTER>"); MenuOutput.appendf <TABLE BORDER=\"4\">");System.err.printlnf ID:"+ID+"menu no:"+menuNo+"Registry:"+_Registry.toString());
if(ID!=null && menuNo!=null) {((Component)_Registry.get(ID)).makeSideMenu(menuNo);
}MenuOutput.appendf </TABLE>

");MenuOutput.appendf </BODY>");MenuOutput.append("</HTML>"); return MenuOutput;

}private void makeSideMenu(String menuNo) {__________System.err.printlnf");_______

159

http://mec1.engi.cf.ac.uk:8080%22+
http://mec1.engi.cf.ac.uk:8080%22+
http://mec1

Appendix

System.err.println(";
System.err.println("THE SIDE MENU FOR:"+Name); System.err.println(sideMenus.toString());System.err.println (MM//M/////////////////////tf###");System.err.printlnf");
for(int i=0; i<sideMenus.size(); i=i+3) {

if(((String)sideMenus.get(i)).equals(menuNo)){
System.err.printlnfAPPENDING SIDE MENU ITEM..."); MenuOutput.appendf<TR><TD");
MenuOutput.appendf BGCOLOR=\"#COCOCO\""); MenuOutput.appendf ><p>H);
MenuOutput.appendf LEXICAL</TRx/TD>"); for(int y=0;y<((LinkedList)sideMenus.get(i+2)).size();y++) { MenuOutput.appendf <TR><TD");MenuOutput.appendf BGCOLOR=\"#FFFFFF\""); MenuOutput.appendf ><p>");

MenuOutput.append(((LinkedList)sideMenus.get(i+2)).get(y)); MenuOutput.appendf </TR></TD>");
}MenuOutput.appendf <TR><TD");
MenuOutput.appendf BGCOLOR=\M#COCOCO\""); MenuOutput.appendf><p>");MenuOutput.appendf DICTIONARY</TR><̂ TD>"); for(int x=0;x<((LinkedList)sideMenus.get(i+1)).size();x++) { MenuOutput.append("<TR><TD");MenuOutput.appendf BGCOLOR=V'#FFFFFF\M");

MenuOutput.appendf ><p>");
MenuOutput.append(((LinkedList)sideMenus.get(i+1)).get(x)); MenuOutput.appendf </TRx/TD>");

}
}

}
}public void setUserModel(userModel um) {

UM=um;this.processUserModel();
}public void setWebAppDir(String dir) { webappDir=dir;
}private void processUserModel() {userKnowledgeT ags=new LinkedList();StringD attribs=new String[UM.getAttributes().length];attribs=UM.getAttributes();for(int i=0;i<attribs.length;i++) {userKnowledgeTags.addAII(LE.match(UM.getAttributeValue(attribs[i])));

}
}private StringBuffer parseXMLDocs() {StringBuffer buffer=new StringBuffer(); for(int i=0;i<userKnowledgeTags.size();i++) {parseXML(XmlDescriptionFilesI(String)userKnowledgeTags.get(i),buffer);

}return buffer;
}private static void parseXML(org.w3c.dom.Node node, String tag, StringBuffer buffer) { if(node.getNodeName().equals(tag.trim())){org.w3c.dom.Node _child = (org.w3c.dom.Node)node.getFirstChild(); buffer.appendf <Pxu>"+tag.trim()+": </u>"+_child.getNodeValue()+"");
 *__

160

Appendix

org.w3c.dom. Node _child = (org.w3c.dom.Node)node.getFirstChild(); for (; _child != null; _child = (org.w3c.dom.Node)_child.getNextSibling()) { parseXML(_child, tag, buffer);
}

}
}

APPENDIX B - FIPA-OS Agent Sample Code

package fipaos.llO_Agent_System;
II---
//import the superclass import fipaos.skill.jess.JessAgent;
II Import the fipa classes import fipaos.ont.fipa.*;
II Import the agent management classes (as we are registering with the platform) import fipaos.ontfipa.fipaman.*;
II We will also need to import agent classes import fipaos.agent.*;
II We'll need tasks import fipaos.agent.task.*;
II We'll need conversation import fipaos.agent.conversation.*;
II Import registration exception classesimport fipaos.platform.ams.AMSRegistrationException;import fipaos.platform.df.DFRegistrationException;
II ACL message import fipaos.parser.acl.*;
II JESS classes needed import jess. JessException;
import jess.Value;
II Finally import the diagnostics class for output import fipaos.util.DIAGNOSTICS;
import java.util.*;//XML HANDLING import org.w3c.dom.*;
import javax.xml.parsers.*;
import java.io.*;
II---
public class IIOAgent extends JessAgent
{

//
II Agent Data String _ID=new String();String _NAME=new String(getAID().getName().substring(01getAID().getName().indexOf('@')));
String _TYPE= new String();String _DESCRIPTION= new String();String _GRAPHICS= new String();Vector _PARENTS= new Vector();Vector _SUBCOMPONENTS= new Vector();
Vector _RELATIONS= new Vector();
Document _XML;StringBuffer _RULES= new StringBuffer();
String _SIDEMENU= new StringQ;StringBuffer _Report= new StringBuffer();_____StringBuffer MenuOutput = new StringBufferQ;______________________

161

Appendix

LinkedList userKnowledgeTags= new LinkedList();
II End Agent Data
///

///
II Agent Management ~ Construction, Shutdown IdleTask MyTask = new ldleTask();
I**

* Constructor: instansiates the superclass, and sets a listener task.*
* @param platform Jocation location of the platform profile *@param name name of the agent *@param owner owner of the agent
7
public IIOAgent(String platformjocation, String name, String owner)
{ super(platform_location, name, owner);//start listening to the message requests

super.setListenerTask(MyTask);
II use the push model of agent comms startPushing();
II Now we can register with the local AMS (i.e. the platform) as the fist action our agent
II makes try
{

II Attempt to register with AMS registerWithAMS();DIAGNOSTICS.printlnf Registered with AMS", this, DI AGNOSTICS. LEVEL.MAX);
}catch (AMSRegistrationException amsre)
{

II An exception has occured - this indicates that the AMS registration failed for some
reason

II Display the exceptionDIAGNOSTICS.println(amsre, this, DIAGNOSTICS.LEVEL_MAX);
II We can easily find the exception reason from the exception....String reason = amsre.getExceptionReason();
II If the exception reason is not "already-registered", we can probably ignore the

failure
II (since this Agent was probably not de-registered the last time it ran!) if (reason == null || !reason.equals(FIPAMANCONSTANTS.AGENTiALREADY_REGISTERED))
{

II Shutdown nicely:)shutdown();
return;

}
}DIAGNOSTICS.printlnfReady!", this, DIAGNOSTICS.LEVEL_4);
initialiselntlnfoObj();DIAGNOSTICS.println("lnitialising IIO...", this, DIAGNOSTICS.LEVEL_4);
try { PrintStream myErr= new PrintStream(new FileOutputStream(new

File(_NAME+H.log")));System.setErr(myErr);}catch(java.io.FileNotFoundException e){System.err.println("problem :"+e.getMessage());}
System.err.println("");System.err.println ("//#####"); System.err.println("## AGENT CONTENTS ");

__________ System.err.printlnf"//#//////////////////////////////////###");___________

162

Appendix

System.err.printlnfname :"+_NAME);
System.err.println("type :"+_TYPE);System.err.println("id :"+_ID);System.err.println("description :"+_DESCRIPTION);System.err.printlnfgraphics :"+_GRAPHICS);
System.err.printlnfparents :"+_PARENTS);
System.err.println("subcomponent:"+_SUBCOMPONENTS);System.err.printlnfrelations :M+_RELATIONS);System.err.println("xml :"+_XML);
System.err.println("rules :H+_RULES);

}
j-k*

* Shuts down the agent by first deregistering with the DF and AMS* (if registered) and then invoking shutdown() on the FIPAOSAgent shell
*/public synchronized void shutdown()
{

II Check if we've registered with the DF if (registeredWithDF() == true)
{ try

{
II Attempt to deregister with DF deregisterWithDF();DIAGNOSTICS.printlnfDeregistered with DF", this,DIAGNOSTICS.LEVEL_MAX);

}catch (DFRegistrationException dfre)
{

I IA problem deregistering occured we can obtain the reason though!String reason = dfre.getExceptionReason();
DIAGNOSTICS.println(dfre + + reason, this,

DIAGNOSTICS.LEVEL_MAX);} // end catch
}
II Check if we're registered with the AMS
if (registeredWithAMS() == true)
{ try

{
II Deregister with AMS deregisterWithAMS();DIAGNOSTICS.println("Deregistered with AMS”, this,

DIAGNOSTICS.LEVEL_MAX);
}catch (AMSRegistrationException amsre)
{

I IA problem deregistering occured we can obtain the reason though!String reason = amsre.getExceptionReason();
DIAGNOSTICS.println(amsre + + reason, this,

DIAGNOSTICS.LEVEL_MAX);
}

}
II Now call shutdown in the agent shell to release the core components super.shutdown();

}
II End Agent Management
lll________________________

163

Appendix

ll
II Agent Utility methods - init, inferenceI* *

* Agent specific Initialisation as opposed to platform init that is done within the* constructor.*
* Calls all the Requests from the Pdm Agent for the Information Object Data.7private void initiaiiselntlnfoObj() {

sendRequest("get","id",_NAME);
sendRequestfget", "type",_N AM E); sendRequestfget","description",_NAME); sendRequestfget","xml", JMAME);
sendRequestfget","graphics",JMAME); send Requestf get", "parent" ,_N AM E); sendRequestfget","subcomponents",_NAME); sendRequestfget","relations",_NAME); sendRequestfget","rules",JMAME);
DIAGNOSTICS.printlnflnitialisation of IIO completed I", this, DIAGNOSTICS.LEVEL_4); sendUMRequestfget","model","scecp2");
DIAGNOSTICS.printlnf IIO getting user model!", this, DIAGNOSTICS.LEVEL_4);

}
jirk

* Runs the JESS engine.*
* @param factorial the number we want to calculate the factorial for.
* @retum result, or 0 if failed 7public int runEngineCyde(int factorial)
{ int int_result=0;DIAGNOSTICS.printlnf Task is to do factorial of" + factorial, this, DIAGNOSTICS.LEVEL_2);

try
{ // load the rulebaseengineExecuteCommand("batchfactorial.clp");

II reset the Jess - ie. apply the rules just given reset();
//run the do-factorial function and covert result into an int Value result = engineExecuteCommandf do-factorial" + factorial); int_result = result.intValue(getGlobalContext());

}catch (JessException je)
{ DIAGNOSTICS.printlnf JESS couldn't run the command:" + je, this,

DIAGNOSTICS.LEVEL_4);
}catch (Throwable t)
{ DIAGNOSTICS.printlnfProblem (not JESS related):" +1, this,

DIAGNOSTICS.LEVEL_4);
}return int_result;

}
II End Agent Utility Methods
ll_______________________

164

Appendix

lll
II Outgoing Communication Messsages
/*
* Forms Requests towards pdm-agents in the form of [command operand name].
* Were command is like "get", operand is like "graphics", and name is a valid* agent name.
* example: "get graphics Bolt" (get the graphics file of the Bolt agent...)
*/
public void sendRequest(String command, String operand, String agentName)
{ ACL_acl= newACL();

_acl.setPerformative("request");
try { _acl.setSenderAID(getAID());

_acl.setReceiverAID(new AgentlD("(agent-identifier :name pdm-agent@localap)")
);

}catch (Exception ex) {
DIAGNOSTICS.printlnf'Agent ID was not valid", this, DIAGNOSTICS.LEVEL._MAX);

}_acl.setProtocol("fipa-request");_acl.setContentObject("(" + command +"" + operand +"" + agentName +
_acl.setPerformative(FIPACONSTANTS. REQUEST); try
{ MyTask.send(_acl);
}catch (Throwable mse)
{ DIAGNOSTICS.println("Problem with the message" + _ad + "\n" + mse, this, DIAGNOSTICS.LEVEL_MAX);
}DIAGNOSTICS.printlnfllO Sending PDM request!"+_acl, this, DIAGN0STICS.LEVEL_4);

}
r* Forms Requests towards pdm-agents in the form of [command operand name].* Were command is like "get", operand is like "graphics", and name is a valid
* agent name.* example: "get graphics Bolt" (get the graphics file of the Bolt agent...)
*1public void sendDictionaryRequest(String command, String operand, String agentName)

{ ACL _acl= new ACL();_acl.setPerformative("request");
try { _acl.setSenderAID(getAID());_acl.setReceiverAID(new AgentlD("(agent-identifier :name product-dictionary-

agent@localap)"));
}catch (Exception ex) {DIAGNOSTICS.printlnf Agent ID was not valid", this, DIAGNOSTICS.LEVEL_MAX);
}_acl.setProtocol("fipa-request");_acl.setContentObject("(" + command +"" + operand +"" + agentName +")"); _acl.setPerformative(FIPACONSTANTS.REQUEST);
try
{ MyTask.send(_acl);

 1__

165

Appendix

catch (Throwable mse)
{ DIAGNOSTICS.println("Problem with the messageH + _ad + "\n" + mse, this, DIAGNOSTICS.LEVEL_MAX);
}

DIAGNOSTICS.println("IIO sending dictionary request!M+_acl, this, DIAGNOSTICS.LEVEL_4);
}
/*
* Forms Requests towards TextProcessing-agents in the form of [command id text].* Were command is like "process", id is like "203", and text is a portion of text.
*

* example: "process 1000 #&# This is the description of the part nomber 1000 blah blah blah"* (process the text following the #&# sign)7
public void sendTPRequest(String command, String id, String text)
{ ACL _acl= new ACL();_acl.setPerformative("request"); try { _acl.setSenderAID(getAID());_acl.setReceiverAID(new AgentlD("(agent-identifier :name text-processing-agent@localap)"));

}catch (Exception ex) {DIAGNOSTICS.printlnf Agent ID was not valid", this, DIAGNOSTICS.LEVEL_MAX);
}_acl.setProtocol("fipa-request");_acl.setContentObject("(" + command +"" + id +" #&#" + text +")");_acl.setPerformative(FIPACONSTANTS.REQUEST);try
{ MyTask.send(_acl);
}catch (Throwable mse)
{ DIAGNOSTICS.printlnfProblem with the message" + _acl + "\n" + mse, this,

DIAGNOSTICS.LEVEL_MAX);
}

DIAGNOSTICS.printlnfllO sending text processing request!"+_acl, this,
DIAGNOSTICS.LEVEL_4);

}
r
* Forms Requests towards TextProcessing-agents in the form of [command id text].* Were command is like "process", id is like "203", and text is a portion of text.
*

* example: "process 1000 #&# This is the description of the part nomber 1000 blah blah blah"
* (process the text following the #&# sign)
7public void sendUMRequest(String command, String oper, String username)

{ ACL _acl= new ACL();_acl.setPerformative("request");
try { _acl.setSenderAID(getAID());_acl.setReceiverAID(new AgentlD("(agent-identifier :name user-model-

agent@localap)"));
}__________ catch (Exception ex) {____________________________________

166

Appendix

DIAGNOSTICS.printlnf Agent ID was not valid", this, DIAGNOSTICS.LEVEL.MAX);
}_acl.setProtocol("fipa-request");_acl.setContentObject("(" + command +"" + oper +"" + username +_acl.setPerformative(FIPACONSTANTS.REQUEST);try
{ MyTask.send(_acl);
}catch (Throwable mse)
{ DIAGNOSTICS.printlnfProblem with the message" + _ad + "\n" + mse, this, DIAGNOSTICS. LEVEL_MAX);
}DIAGNOSTICS.printlnfllO sending text processing request!"+_acl, this,DIAGNOSTICS. LEVEL_4);

}
II End Outgoing Communication Messages
lll

///
II Incomming Communications
II---//INNER TASKS
II---public class IdleTask extends Task
{ public void send(ACL _acl)

{ forward(_acl);
}public void handleAgree(Conversation conv)
{ DIAGNOSTICS.printlnfllO Received a Agree!"+conv.getACL(conv.getLatestMessagelndex()), this, DIAGNOSTICS.LEVEL_4);
}

public void handleNotUnderstood(Conversation conv)
{ DIAGNOSTICS.printlnf110 Received a NOT UNDERSTOOD!"+conv.getACL(conv.getLatestMessagelndex()), this, DI AGNOSTICS. LEVEL_4);
}

public void handleFailure(Conversation conv)
{ DIAGNOSTICS.printlnfllO Received a FAIL *?>,.<xCX!"+conv.getACL(conv.getLatestMessagelndex()), this, DIAGNOSTICS.LEVEL_4);
}
j-k-k

* This method is called (by Task) when this agent receives a request message.
★
* @param conv the conversation just starting
7public void handleRequest(Conversation conv)

{ DIAGNOSTICS.printlnfllO Received a request!", this, DIAGN0STICS.LEVEL_4);
II get the last message (the request message).ACL msg = conv.getACL(conv.getLatestMessagelndex());
//get the content_______________ String content - (String) msg.getContentObjectQ;__________________

167

Appendix

//take the brackets from the message and trimcontent = content.replace('(,)'');content = content.replace('),');content = content.trim();try
{ String command= new String();String name= new String();String nodeName= new String();

command=content.substring(0,content.indexOf(' ')).trim(); name=content.substring(content.indexOf(' ')).trim(); DIAGNOSTICS.printlnfRequest is: M+"*M+command+,,*,,+name+,,*,,I this,DIAGNOSTICS. LEVEL_4);
II if it works, send agree if(command.equals("get"))
{ sendAgree(conv);

II run the engine and examine the result if (name.equalsfid")) II OK
//calculation successful sendlnform(conv, _ID, name);

}else if (name.equalsftype")) II OK
{ sendlnform(conv, _TYPE, name);
}else if (name.equalsfdescription")) II OK
{ sendlnform(conv, .DESCRIPTION, name);
}else if (name.equalsfxml"))
{ sendlnform(conv, _XML, name);
}else if (name.equalsfgraphics")) II OK
{ sendlnform(conv, .GRAPHICS, name);
}else if (name.equalsfparents"))
{ sendlnform(conv, .PARENTS, name);
}else if (name.equalsfsubcomponents"))
{ sendlnform(conv, .SUBCOMPONENTS, name);
}else if (name.equalsfrelations"))
{ send Inform (conv, .RELATIONS, name);
}else if (name.equalsfrules"))
{ sendlnform(conv, .RULES, name);
}else
{ //calculation failedsendFailure(conv, "error... No subject to get I!");

168

Appendix

}else
{ sendFailure(conv, "error... No get command found!!");
}

}catch (Exception nfe)
{ //int conversion didn't work

DIAGNOSTICS.printlnfRequest didn't involve an acceptable ID:'" + content + this, DIAGNOSTICS.LEVEL_4);
sendNotUnderstood(conv, nfe.toStringO);

}} II handleRequest()public void handlelnform(Conversation conv)
{ DIAGNOSTICS.printlnfllO Queried!", this, DIAGNOSTICS.LEVEL_4);// get the last message (the request message).ACL msg = conv.getACL(conv.getLatestMessagelndex()); DIAGNOSTICS.println(msg, this, DIAGNOSTICS.LEVEL_4);String replyTo = new String(msg.getlnReplyTo()); if(replyTo.equalsf store")) {

} elseif (replyTo.equalsfmodel")) {
DIAGNOSTICS.printlnfGetting Knowledge Tags"+((String) msg.getContentObject()).replace('(',' ').replace(')',' ').trim(), this, DIAGNOSTICS.LEVEL_4);userKnowledgeTags=((LinkedList)msg.getContentObject());

} elseif (replyTo.equalsfid")) {DIAGNOSTICS.printlnfGetting _ID"+((String) msg.getContentObject()).replace('(',' ').replace(')',' ').trim(), this, DIAGNOSTICS.LEVEL_4);_ID=((String) msg.getContentObject()).replace('(',' ').replace(')',' ').trim(); sendDictionaryRequestf store", _NAME,JD);
} elseif (replyTo.equalsftype")) {DIAGNOSTICS.printlnfGetting _TYPE"+((String)

msg.getContentObject()).replace('(',' ').replace(')',' ').trim(), this, DIAGNOSTICS.LEVEL_4);_TYPE=((String) msg.getContentObject()).replace('(',' ').replace(')','
'J.trimO; } elseif (replyTo.equalsf description")) {DIAGNOSTICS.printlnfGetting _DESCRI"+((String)
msg.getContentObject()).replace('(',' ').replace(')',' ').trim(), this, DIAGNOSTICS.LEVEL_4);_DESCRIPTION=((String) msg.getContentObject()).replace('(','
').replace(')',' ').trim(); sendTPRequest("process", _ID, _DESCRIPTION); sendTPRequest("get-side-menu", _ID, _DESCRIPTION);

} elseif (replyTo.equalsf xml")) {DIAGNOSTICS.printlnfGetting
_XML"+(Document)msg.getContentObject(), this, DIAGNOSTICS.LEVEL_4);_XML=(Document)msg.getContentObject();

}elseif (replyTo.equalsf graphics")) {DIAGNOSTICS.printlnfGetting _GRAFIX"+((String)
msg.getContentObject()).replace('(',' ').replace(')',' ').trim(), this, DIAGNOSTICS.LEVEL_4);_GRAPHICS=((String) msg.getContentObject()).replace('(',' ').replace(')','
■).trimQ; ___

169

Appendix

if (replyTo.equals("parent")) {DIAGNOSTICS.printlnfGetting
_PARENTS"+(Vector)msg.getContentObject(), this, DIAGNOSTICS.LEVEL_4);_PARENTS=(Vector)msg.getContentObject();} else

if (replyTo.equalsf sub-components")) {DIAGNOSTICS.printlnfGetting _SUBS"+(Vector)msg.getContentObject(),this, DIAGNOSTICS.LEVEL_4);
_SUBCOMPONENTS=(Vector)msg.getContentObject();} else

if (replyTo.equalsf relations")) {DIAGNOSTICS.printlnfGetting _RELAT"+(Vector)msg.getContentObject(), this, DIAGNOSTICS.LEVEL_4);_RELATIONS=(Vector)msg.getContentObject();} elseif (replyTo.equalsf rules")) {DIAGNOSTICS.printlnfGetting _RUL"+(StringBuffer)msg.getContentObject(), this, DIAGNOSTICS.LEVEL_4);_RULES=(StringBuffer)msg.getContentObject();} else
if (replyTo.equalsfprocess")) {DIAGNOSTICS.printlnfGetting _DESCRIPTION"+((String)

msg.getContentObjectOJ.replaceCC,' ’J.replaceC)',' ').trim(), this, DIAGNOSTICS.LEVEL_4);_DESCRIPTION=((String) msg.getContentObjectO).replace('(',''J.replaceO',' ’).trim(); } elseif (replyTo.equalsfget-side-menu")) {DIAGNOSTICS.printlnfGetting side menu"+((String)
msg.getContentObjectOJ.replaceCC,' 'J.replaceO',' ').trim(), this, DIAGNOSTICS.LEVEL_4);_SIDEMENU=((String) msg.getContentObjectOJ.replaceCC,1 'J.replaceO','
').trim(); } else { DIAGNOSTICS.printlnf Inform in reply to unknown signal: H+
msg.getContentObject().toString(), this, DIAGNOSTICS.LEVEL_3);

}} II handlelnform()
I* *

* This method would be called when this agent would like to send a not-understood
* message.*
* @param conv the conversation which this failure message would belong to
* @param content the content of this failure message
*/private void sendNotUnderstood(Conversation conv, String content)
{ ACL nu_msg = conv.getFilledlnACL(); //conv.getMessage(

conv.getLatestMessagelndex());nu_msg.setReceiverAID(conv.getSenderAID(0));
nu_msg.setSenderAID(_owner.getAID()); nu_msg.setContentObjectf f + content +■)*); nu_msg.setPerformative(FIPACONSTANTS.NOTJJNDERSTOOD);
try
{ forward(nu_msg);
}catch (Throwable mse)
{_________________ DIAGNOSTICS.printlnf Problem with the message ” + nu_msg + V +

170

Appendix

mse, this, DIAGNOSTICS.LEVEL_MAX);
}DIAGNOSTICS.printlnf'Sent not-understood:"+ nu_msg, this,DIAGNOSTICS. LEVEL_3);

}
j i t*

*
*
*
* @param conv the conversation which this failure message would belong to* @param content the content of this failure message
7
private void sendFailure(Conversation conv, String content)
{ ACL failure = conv.getFilledlnACL(); //conv.getMessage(conv.getLatestMessagelndex());

failure.setReceiverAID(conv.getSenderAID(0)); failure.setSenderAID(_owner.getAID());
failure.setContentObject("("+ content +')"); failure.setPerformative(FIPACONSTANTS. FAILURE); try
{ forward(failure);
}catch (Throwable mse)
{ DIAGNOSTICS.printlnfProblem with the message" + failure + "\n" + mse,this, DIAGNOSTICS.LEVEL_MAX);
}DIAGNOSTICS.printlnfSent failure: M+failure, this, DIAGNOSTICS.LEVEL.3);

}I* *

* Send an agree message.*
* @param conv The conversation that this message belongs to**1
private void sendAgree(Conversation conv)
{ ACL reply = conv.getFilledlnACL(); //conv.getMessage(

conv.getLatestMessagelndex());reply.setReceiverAID(conv.getSenderAID(0)); reply.setSenderAID(_owner.getAID()); reply.setlnReplyTo(conv.getACL(0).getReplyWith()); reply.setContentObject(conv.getACL(0).toString());
reply.setPerformative(FIPACONSTANTS.AGREE);
try
{ forward(reply);
}catch (Throwable mse)
{ DIAGNOSTICS.printlnfProblem with the message" + reply + "\nH + mse,

this, DIAGNOSTICS.LEVEL.MAX);
}DIAGNOSTICS.printlnfSent agree: * + reply, this, DIAGNOSTICS.LEVEL_3);

}private void sendlnform(Conversation conv, Object content, String inReplyTo)
{ ACL acl = conv.getFilledlnACL();_______________ DIAGNOSTICS.printlnf ad, DIAGNOSTICS.LEVEL_MAX);_____________

171

Appendix

acl.setReceiverAID(conv.getSenderAID(0)); acl.setSenderAID(_owner.getAID());
acl.setlnReplyTo(inReplyTo.trim()); acl.setContentObject(content); acl.setPerformative(FIPACONSTANTS.INFORM);
try
{ forward(acl);
}catch (Throwable mse)
{ DIAGNOSTICS.println(BProblem with the message" + ad + "\n" + mse,this, DIAGNOSTICS.LEVEL_MAX);
}

DIAGNOSTICS.printlnf'Sent inform:" + acl, this, DIAGNOSTICS.LEVEL_3);
}}// IdleTask

II End Incomming Communications
lll

APPENDIX C - Rule-Based System (CLIPS) Code Fragments

APPENDIX C.1 - Template Definitions

; Template Definitions - Data Structures
■ImiMiM User Model m m m m m m m The user model of the current user (deftemplate USER "The User Model"(slot id (type INTEGER))(slot first-name (type STRING))(slot last-name (type STRING))(slot experience (type INTEGER))(slot education (type STRING)) -

(slot job (type STRING))(slot task (type STRING))
(slot task-frequency (type INTEGER)) (slot request (type STRING))(slot modality (type STRING))

iiiiiidii User Types ,i),iii,iiiiiiiiiihii List of all user types allowed in the system (deftemplate USER-TYPES "Main User Profiles"
(multislot user-types)

)

11) mi mi i USer Type in nil ini nil mini; The user type of the current user (deftemplate USER-TYPE "Main User Profiles" (slot user-type (type STRING))

172

Appendix

;;;;;;;;;; Knowledge Types ;;;;;;;;;;;;List of all the knowledge types allowed in the system (deftemplate KNOWLEDGE-TYPES "Knowledge Types Found Across the System" (multislot knowledge-types)

;;;;;;;;;;; User Knowledge Types ;;;;List of knowledge types concerning the current user
(deftemplate USER-KNOWLEDGE-PROFILE "The Knowledge Types that correspond to the User Model" (multislot K-types)

;;;;;;;;;;;; Query(deftemplate QUERY "A string that best identifies the Users target" (slot query (type STRING))

;;;;;;;;;;;; Discourse Pattern (deftemplate DISCOURSE "A Discourse Pattern Described" (multislot discourse-pattern)

l U I I I M I M I D l);;;;;;;;;;;; Discourse Patterns (deftemplate DISCOURSE-PATTERNS "The pool of system wide Discourse Patterns" (slot pattern-name (TYPE STRING))(multislot discourse-pattern)

;;;;;;;;;;;; Document Structures ;;;;;;;;;;;;;;;;(deftemplate DOCUMENT-TYPE "A Structural Document Pattern Described"
(slot document-name (type STRING))

)(deftemplate DOCUMENT-TYPES "List of Document Patterns"
(multislot document-names)

)(deftemplate TECHNICAL-MAINTAINANCE-MANUAL "A Structural Document Pattern Described"
(slot title (type STRING))(slot title-format (type STRING))(slot introduction (type STRING))(slot introduction-format (type STRING))
(multislot section-ids)(slot notes (type STRING))(slot notes-format (type STRING))
(slot closure (type STRING))(slot closure-format (type STRING))

(deftemplate TECHNICAL-SPECIFICATION-MANUAL "A Structural Document Pattern Described"
(slot title (type STRING))(slot title-format (type STRING))
(multislot sections)

)(deftemplate SECTION "A Section of Document Described"
(slot id (type STRING))(slot title (type STRING))(slot title-format (type STRING))
(multislot paragraphs)

)(deftemplate PARAGRAPH "A paragraph"_____________________________

173

Appendix

(slot text)
(slot style)

;;;;;;;;;;;; Questionaire Data(deftemplate QUESTION "The Question Model"(slot text (type STRING))(slot type (type STRING))(slot ident (type STRING))
)(deftemplate ANSWER "Temporary Holder for the Users Answers"

(slot ident (type STRING))(slot text (type STRING))
)(deftemplate STATE "Represents the Current State of the System"(slot current (type STRING))
)(deftemplate SECTION-ID "Represents the Current State of the System" (multislot ids)

APPENDIX C.2 - Rule Definitions

Dl);; Module ask (defmodule ask)(deffunction ask-user (?question ?type) "Ask a question, and return the answer" (bind ?answer"");; (while ((not (is-of-type ?answer ?type))(not (eq ?answer""))) do (printout t ?question"")(if (eq ?type string) then
(printout t "(string)"))(bind ?answer (read))

;;)(return ?answer)
)(deffunction is-of-type (?answer ?type) "Check that the answer has the right form"
(printout t "checking" ?answer" is of" ?type)(if (eq ?type string) then (return (stringp ?answer)) else (if (eq ?type number) then (return (numberp ?answer)))
else (return (> (str-length ?answer) 0))

)
)(defrule ask::ask-question-by-id"Given the identifier of a question, ask it and assert the answer"
(declare (auto-focus TRUE))(MAIN::QUESTION (ident ?id) (text ?text) (type ?type))(not (MAIN::ANSWER (ident ?id)))?ask <- (MAIN::ask ?id)?fact<- (MAIN::USER (id ?x))
=>
(bind ?answer (ask-user ?text ?type))(assert (ANSWER (ident ?id) (text ?answer)))(set-value ?fact ?id ?answer)
(retract ?ask)
(return)

)(deffunction set-value (?fact ?slot ?answer) "Set the value in the user model."

174

Appendix

out t "checking" ?slot11" ?answer crlf)
(eq ?slot id) then (modify Tfact (id ?answer)))(eq ?slot first-name (eq ?slot last-name (eq ?slot organisation (eq ?slot training
(eq ?slot experience (eq ?slot education (eq ?slot qualification (eq ?slot job (eq ?slot task (eq ?slot activity

) then (modify Tfact (first-name) then (modify Tfact (last-name) then (modify Tfact (organisation) then (modify Tfact (training
) then (modify Tfact (experience) then (modify Tfact (education) then (modify Tfact (qualification) then (modify Tfact (job) then (modify Tfact (task

Tanswer))) Tanswer)))
Tanswer))) Tanswer))) Tanswer))) Tanswer))) Tanswer))) Tanswer))) Tanswer)))) then (modify Tfact (activity Tanswer)))(eq Tslot activity-assesment) then (modify Tfact (activity-assesment Tanswer))) (eq Tslot task-frequency) then (modify Tfact (task-frequency Tanswer))) (eq Tslot reference-key) then (modify Tfact (reference-key Tanswer)))(eq Tslot reference-level) then (modify Tfact (reference-level Tanswer)))(eq Tslot reference-file) then (modify Tfact (reference-file Tanswer)))

(eq Tslot request) then (modify Tfact (request Tanswer)))(eq Tslot modality) then (modify Tfact (modality Tanswer)))

;; Module startup
(defmodule startup)(defrule print-banner
=>
(printout t "Type your name and press Enter>")(bind Tname (read))(printout t crlf)(printout t***" Qf |fj
(printout t" Hello," T n a m e " crlf)(printout t" Welcome to the Rule-Based Virtual Document Generator." crlf) (printout t" Please answer the questions and we will create " crlf) (printout t" a Virtual Document according to your needs. " crlf)
(printout t" " crlf)(printout t ”**" crlf)
(printout t crlf)

;; Module get-user-model
(defmodule get-user-model)(defrule request-id
=>
(assert (ask id))(assert (MAIN::STATE (current request-first-name)))

)(defrule request-first-name (MAIN::STATE (current request-first-name))
=>
(assert (ask first-name))(assert (MAIN::STATE (current request-last-name)))

)(defrule request-last-name
(MAIN::STATE (current request-last-name))
=>
(assert (ask last-name))(assert (MAIN::STATE (current request-experience)))

)(defrule request-experience (MAIN::STATE (current request-experience))
=>

175

Appendix

(assert (ask experience))(assert (MAIN::STATE (current request-education)))
)(defrule request-education
(MAIN::STATE (current request-education))
=>
(assert (ask education))
(assert (MAIN::STATE (current request-job)))

)(defrule request-job (MAIN::STATE (current request-job))
=>
(assert (ask job))(assert (MAIN::STATE (current request-task)))

)(defrule request-task (MAIN::STATE (current request-task))
=>
(assert (ask task))(assert (MAIN::STATE (current request-task-frequency)))

)(defrule request-task-frequency (MAIN::STATE (current request-task-frequency))
=>
(assert (ask task-frequency))(assert (MAIN::STATE (current request-request)))

)(defrule request-request (MAIN::STATE (current request-request))
=>
(assert (ask request))(assert (MAIN::STATE (current request-modality)))

)(defrule request-modality (MAIN::STATE (current request-modality))
=>
(assert (ask modality))

)

;; Module make-user-knowledge-profile (defmodule make-user-knowledge-profile)
(defrule set=> (assert (MAIN::add-tag disassembly-information))
);; Rules for knowledge selection;;;;;;;;;;;;;;;;;;;;;;;; for each slot in the user model we can have a number of acceptable
;; values (defrule set2(MAIN::ANSWER (ident task) (text maint))

=>
(assert (MAIN::add-tag maintainance-knowledge))

)(defrule append-know-tag "appends to the contents of the knowledge tank." ?fact<-(MAIN::USER-KNOWLEDGE-PROFILE (K-types $?ls))
?flag<-(MAIN::add-tag ?x) =>(printout t "Appending Tag: "?x crlf)(modify Tfact (K-types (create$ $?ls ?x)))
(retract Tflag)

);;; check for duplication_____

176

Appendix

I t l U I M M M M M I I M I I I H I I I I I I I I(defrule show "shows the contents of the knowledge tank."
(MAIN::USER-KNOWLEDGE-PROFILE (K-types $?ls))
=>
(printout t "//#////" crlf)
(printout t "The User Knowledge Profile is now set to: "$?ls crlf)(printout t "//ff//" crlf)

I H H I I I I I I I I I I I I I I I D i n i l l M I I I I I I M I I I I I M I I M I I I M I I M I M I M I I M M M i n i n;; Module get-users-query (defmodule get-users-query)(defrule get-query "Gets the query from the user model."(MAIN::USER (request ?q))?fact<-(MAIN::QUERY (query ?x))(test (eq ?x unset))
=>
(modify Tfact (query ?q))

)(defrule show-query "shows the contents of the users query."(MAIN::QUERY (query ?ls))
=>
(printout t M//////////////tf/////////////////////////////ftf/////////M###//#f///##" crlf) (printout t "The Query is now set to: "?ls crlf)(printout t "//#////////////////////////////##" crlf)

t i i i f m i i i h i m) i t j j m i i i i i i m m i i i m i i m j m i 11 i i i i m i i i i i i i i i i n m m 11 j;; Module decide-user-type (defmodule decide-user-type)(defrule decide-user-type "shows the contents of the knowledge tank." ?fact<-(MAIN::USER-TYPE (user-type Tut))(MAIN::USER (job engineer))(test (eq Tut unset))
=>
(modify Tfact (user-type engineer))

)(defrule show-user-type "shows the contents of the user type." (MAIN::USER-TYPE (user-type TIs))
=>
(printout t ’7////////////////////f#f/////////////////W////////////////////tf//////#" crlf)
(printout t "The User Type is now set to: "TIs crlf)(printout t "/////////////////////M///////////////////M//////////////M//#////////" crlf)

 .;; Module select-document-stmcture
(defmodule select-document-structure)(defrule set-document-structre "sets the document structure."Tfact<-(MAIN::DOCUMENT-TYPE (document-name Tx)) (MAIN::USER-TYPE (user-type engineer))

(MAIN::USER (task maint))
(test (eq Tx unset))
=>
(modify Tfact (document-name technical-maintainance-manual))

)(defrule show-document-type "shows the contents of the document type." (MAIN::DOCUMENT-TYPE (document-name TIs))
=>
(printout t "//////////////////////̂//////////////////f##////////////////////////////////H crlf) (printout t "The Document Type is now set to: "TIs crlf)(printout t"///////////////////////ff//////////////////f##////////////////////////////////" crlf)

) __

177

Appendix

i t i;; Module select-discourse-pattem
(defmodule select-discourse-pattem)(defrule select-discourse-pattern-1 "Selects an appropriate discourse pattern"Tfact<-(MAIN::DISCOURSE (discourse-pattern $?x))(MAIN::USER-TYPE (user-type engineer))(MAIN::USER (task maint))(MAIN::USER-TYPE (user-type engineer))

(MAIN::DISCOURSE-PATTERNS (pattern-name maintainance-discourse) (discourse-pattern $?pl)) (test (member$ unset $?x))
=>
(modify Tfact (discourse-pattern $?pl))

)(defrule show-document-type "shows the contents of the discourse pattern."(MAIN::DISCOURSE (discourse-pattern $?ls))
=>
(printout t "//////////#ff#f/////////////////////////////M//////f///////////////////##" crlf)
(printout t "The Discourse Pattern is now set to: "$?ls crlf)(printout t "//##" crlf)

;; Module make-document (defmodule make-document)(defrule start-doc-build-technical-maint-man "start building the document." (MAIN::DISCOURSE (discourse-pattern $?x))
(MAIN::DOCUMENT-TYPE (document-name ?y)) ?fact2<-(MAIN::SECTION-ID (ids $?z))?fact<-(MAIN::TECHNICAL-MAINTAINANCE-MANUAL (section-ids ?w))
;;(test (printout t "discourse:"$?x crlf))"(test (printout t "doc-name :"?y crlf))"(test (printout t "sectionid:"?z crlf))
;;(test (printout t "fact :"?fact crlf))
=>
(build-document ?x ?y ?z Tfact Tw Tfact2)(printout t "//M/M////#" crlf) (printout t "The Document is now being built." crlf)(printout t "//##" crlf)

)(defrule show-doc(MAIN::TECHNICAL-MAINTAINANCE-MANUAL
(title Tx)(introduction Ty)(section-ids $Tz)
(notes Ta)(closure Ts)

)
=>
(printout t H//////////////m///W/////#" crlf) (printout t "The Document has been generated." crlf)
(printout t "//#" crlf) "(printout t ”title:"Tx crlf)."(printout t "introduction:'?y crlf)"(printout t "sections:"$Tz crlf);;(printout t "notes:"Ta crlf)"(printout t "closure:"Ts crlf)

)(defrule show-sect(MAIN::SECTION
(id Tx)__________ (title Ty)____________________________

178

Appendix

(paragraphs $?z)
)
=>
"(printout t "section id :"?x crlf)"(printout t "section title:"?y crlf)"(printout t "section parag:"$?z crlf)

);; Where ?discourse is the discourse for which we build.;; ?doc-type is the document type we want ;; ?section-ids is the list of all the existing section ids ;; Tfact is the fact no of the document structure ;; TIs is the list of the current sections in it ;; Tfact2 is the fact holding the section ids
(deffunction build-document (Tdiscourse Tdoc-type Tsection-ids Tfact TIs Tfact2) "Builds the document." ;; For each of then make a section with a unique id ;;(printout t "#### In build m m I I I I I I I I H I M " crlf)(bind Tnumber (length$ Tdiscourse))

;;(printout t "#### we have "Tnumber" sections." crlf)(while (> Tnumber 0)"(printout t "#### doing section "Tnumber crlf)
(bind Tsection-id (unique-id Tsection-ids Tfact2))"(printout t "#### section id is :"Tsection-id crlf)(modify Tfact2 (ids (create$ Tsection-ids Tsection-id)))"(printout t "#### mod glob ids to:" Tsection-ids Tsection-id crlf)(bind Tsection-ids (fact-slot-value Tfact2 ids));; Fill in the section with the topic
(assert (SECTION (id Tsection-id)(title (nth$ Tnumber Tdiscourse));;(paragraphs T)

)
);; Add the id of the section to the paragraphs of the document.(modify Tfact(section-ids(create$ Tsection-id(fact-slot-value Tfact section-ids)

)

)
)(bind Tnumber (- Tnumber 1))

);;(printout t (fact-slot-value Tfact title) crlf)"(printout t (fact-slot-value Tfact introduction) crlf)"(printout t (fact-slot-value Tfact section-ids) crlf)"(printout t (fact-slot-value Tfact notes) crlf)"(printout t (fact-slot-value Tfact closure) crlf)

(deffunction unique-id (Tsection-ids Tfact) "makes an id that is unique." "(printout t "####### In unique #################" crlf) "(printout t "####### ids:" Tsection-ids crlf)
(while (< 1 2)(bind Tx (random))(if (not (member$ Tx $Tsection-ids)) then"(printout t "####### the unique:" Tx crlf) (return Tx)

____________ i_________________________________

179

Appendix

)

)

;; Module format-document
(defmodule format-document)(defrule title-style

(test (printout t "set title form" crlf))
?fact<-(MAIN::TECHNICAL-MAINTAINANCE-MANUAL (title ?x)

(title-format unset)
)
=>
(modify ?fact (title-format))

)(defrule intro-style(test (printout t "set intro form" crlf))
?fact<-(MAIN::TECHNICAL-MAINTAINANCE-MANUAL (introduction ?y)

(introduction-format unset)
)
=>
(modify Tfact (introduction-format <i>))

)(defrule note-style(test (printout t "set note form" crlf)) ?fact<-(MAIN::TECHNICAL-MAINTAINANCE-MANUAL (notes ?a)(notes-format unset)
)
=>
(modify Tfact (notes-format "<i>"))

)(defrule closure-style(test (printout t "set close form" crlf)) Tfact<-(MAIN::TECHNICAL-MAINTAINANCE-MANUAL (closure Ts)(closure-format unset)
)
=>
(modify Tfact (closure-format <i>))

n i m i i i i i i i m i i i i i i i i D i i i i i i n i i m i n i i m m i i i i i i i i;; Module export-document (defmodule export-document)(assert (MAIN::STATE (current exportl)))(defrule export-doc-a(test (printout t "axp a fire" crlf)) (MAIN::TECHNICAL-MAINTAINANCE-MANUAL
(title Tx)(title-format Tf)(introduction Ty)(introduction-format Tg)

)
=>
(printout t "//##W crlf) (printout t "Exporting Document." crlf)(printout t"//" crlf) (printout t"" Tf Tx Tf crlf)(printout t"" Tg Ty Tg crlf)_____(assert (MAIN::STATE (current export2)))_____________

180

Appendix

;; ?fact points to the section
(deffunction export-sections (?fact2) "function for exporting the sections of the document" (printout t"" (fact-slot-value ?fact2 id) crlf)(printout t"" (fact-slot-value ?fact2 title) crlf)
)(defrule export-doc-b(MAIN::STATE (current export2))(test (printout t "secs fire" crlf))

?fact<-(MAIN::TECHNICAL-MAINTAINANCE-MANUAL (section-ids $?z)) ?fact2<-(MAIN::SECTION (id ?x))(test (not (eq (nth$ 1 $?z) 0)))
=>
(printout t "next" (nth$ 1 $?z) crlf)(printout t "ids left:" $?z crlf)(modify Tfact (section-ids (delete$ $?z 11)))(export-sections ?fact2)(assert (MAIN::STATE (current export3)))

)(defrule export-doc-c(MAIN::STATE (current export3))(test (printout t "Notes fire" crlf)) (MAIN::TECHNICAL-MAINTAINANCE-MANUAL (notes ?a)(notes-format ?h)(closure ?s)(closure-format ?k)
)
=>
(printout t"" ?h ?a ?h crlf)(printout t"" ?k ?s ?k crlf)

)
I I I I I I I I I I I I I I I I D I I I I I I I I I i n i l M I I I I I I I I I I M I I I I I I M I I I I I I I I I I I I I I M I I I D I));; Main(deffunction run-system ()(reset)(focus startupget-user-modelmake-user-knowledge-profile

get-users-querydecide-user-typeselect-document-structureselect-discourse-pattem
make-documentformat-documentexport-document)(run)

);; (while TRUE (run-system)
;;) __

181

Appendix

APPENDIX D - PDM Systems

The Product Data Management (PDM) Systems are Database systems that enable

control of the product design data and the design process itself. They provide

Component and Document classification as well as a product tree abstraction and

facilities for easily querying the data as part of their data management procedures.

Furthermore, they offer a data vault with versioning utilities.

Process Management is the second main advantage of PDM systems. This includes

Work Management, Workflow Management, and Work History Management. Work

Management arranges the roles and persons that have control over specific subsets of

data. Workflow Management defines a timeline that manages the transfer of control

over the data from one user to another. And Work Management keeps track of all the

events and actions that occur during the products life-cycle.

Benefits of PDM systems include:

■ Reduced Time-to-Market

■ Improved Design Productivity

■ Improved Design and Manufacturing Accuracy

■ Better use of Creative Team Skills

■ Comfortable to Use

■ Data Integrity Safeguarded

■ Better Control of Projects

■ Better Management of Engineering Change

■ A Major Step Toward Total Quality Management

182

References

References

[Bales02] Bales, D. K., (2002), “Java Programming with Oracle JDBC”, Thomson

International, MA, USA.

[Bezanson95] Bezanson, W. R. (1995), ’’Performance Support Online, Integrated

tViDocumentation and Training”. Proceedings of the 13 Conference on Engineering

from Chaos: Solutions for the Growing Complexity of our Jobs, Sept 30-Oct 3, 1995,

Savannah, GA, USA, pp. 1-10.

[Bist96] Bist, G. (1996), "Applying the Object-Oriented Model to Technical

Information”. IEEE Transactions on Professional Communication, Vol. 39, pp.49-

57, 1996.

[Cantanto96] Cantanto, M. (1996), “Vision 2000: Multimedia Electronic

th •Performance Support Systems”, Proceedings of the 14 Annual International

Conference on Marshalling New Technological Forces: Building a Corporate,

Academic, and User Oriented Triangle, Research Triangle — United States, Oct 19-22,

pp. 111-114.

[Cawsey98] Cawsey, A, (1998), “The Essence of Artificial Intelligence”, Prentice

Hall, London, UK.

183

References

[Cgi04] 2004, The Common Gateway Interface , [WWW] URL:

http://hoohoo.ncsa.uiuc.edu/cgi/ [Accessed 17 February 2004].

[Church95] Church, K.W., Rau, L.F., (1995), “Commercial Applications of

Natural Language Processing”, Communications of the ACM, Vol. 38, Issue 11,

pp.71-79.

[CLIPS04] 2004, The CLIPS Programming Language - Wikipedia, [WWW]

URL: http://en.wikipedia.org/wiki/CLIPS programming language [Accessed 17

February 2004].

[Cookie04] 2004, Cookie Central - The Cookie Concept, [WWW] URL:

http://www.cookiecentral.com/c_concept.htm [Accessed 17 February 2004].

[Desmarais97] Desmarais, M. C., Leclair, R., Fiset, J., and Talbi, H., (1997), Cost-

Justifying Electronic Performance Support Systems, Communications of the ACM,

Vol. 40, No. 7, Jul. 1997, pp.39-48.

[Doi03] 2003, DOI - Digital Object Identifier, [WWW] URL: www.doi.org

[Accessed 17 February 2003].

[Dsssl04] 2004, DocBook DSSSL StyleSheets, [WWW] URL:

http://docbook.sourceforge.net/proiects/dsssl [Accessed 23 December 2004].

184

http://hoohoo.ncsa.uiuc.edu/cgi/
http://en.wikipedia.org/wiki/CLIPS
http://www.cookiecentral.com/c_concept.htm
http://www.doi.org
http://docbook.sourceforge.net/proiects/dsssl

References

[Earp03] Earp, R. and Bagui, S., (2003), “Learning SQL: a step by step guide

using Oracle”, Addison-Wesley, MA, USA.

[Emorphia05] 2005, Emorphia Home Page, [WWW]

URL:http://www.emorphia.com [Accessed 14 January 2004].

[Fipa04] 2004, FIPA Home Page, [WWW] URL: http://www.fipa.org [Accessed 14

January 2004].

[Forgy82] Forgy, C.L., (1982), “Rete: A Fast Algorithm for the many pattern /

many object pattern match problem”, Artificial Intelligence, 19(1), pp.17-37, 1982.

[Friedman03] Friedman-Hill, E., (2003), “Jess in Action: Rule-Based Systems in

Java”, Manning Publications, Greenwich, UK.

[Friendly95] Friendly, L., (1995), “The Design of Distributed Hyperlinked

Programming Documentation”, Proceedings of the International Workshop on

Hypermedia Design ’95 (IWHD ’95), F. Garzotto et al. eds., Springer, Monpellier, pp.

151-183.

[Gamma95] Gamma, E, Helm, R., Johnoson, R., Vlissides, J., (1995), “Design

Patterns: Elements of Reusable Object-Oriented Software”, Addison-Wesley,

MA, USA.

185

http://www.emorphia.com
http://www.fipa.org

References

[Giarratano94] Giarratano, J. C, (1994), “Expert Systems: Principles and

Programming”, PWS Publishing, Boston, MA, USA.

[Goldfarb99] Goldfarb, C. F. and Prescod, P., (1999), “The XML Handbook”,

Prentice Hall, London, UK.

[Google05] 2005, Google Home Page, [WWW] URL: http://www.google.co.uk

[Accessed 14 January 2005].

[Gruber95] Gruber, T.R, Vemuri, S., Rice, J., (1995), “Virtual Documents that

explain How Things Work: Dynamically generated question-answering

documents”, Knowledge Systems Laboratory, Stanford University, Technical Report,

1995.

[Gruber97] Gruber, T.R, Vemuri, S., Rice, J., (1997), “Model-based virtual

document generation”, International Journal of Human-Computer Studies, Vol. 46,

Issue 6, pp. 687-706.

[Gruber93] Gruber, T.R., (1993), “Toward Principles for the Design of Ontologies

Used for Knowledge Sharing”, Knowledge Systems Laboratory, Stanford

University, Technical Report, 1993.

[HaakeOl] Haake, J.M., (2001), “Applying Collaborative Open Hypermedia

Concepts to Extended Enterprise Engineering and Operation”, Open Hypermedia

Systems and Structural Computing: 6th International Workshop, OHS-6, 2nd

186

http://www.google.co.uk

References

International Workshop, SC-2, San Antonio, Texas, USA, May 30 - June 4, 2000, pp.

17-27.

[Harris95] Harris, S.L. and Ingram, J.H. (1995), ’’Real Information, Virtual

Documents", Proceedings of the 13th annual International Conference on Systems

Documentation, (pp.71—76), Savannah, Georgia, United States.

[Hytime04] 2004, ISO 10744: Hypermedia/Time-based Structuring Language

(HyTime), 2nd edition, [WWW] URL: http://xml.coverpages.org/hvtime.html

[Accessed 31 December 2004].

[Ions03] IONS, (2003), “Information Object Numbering Systems”, [WWW] URL

: http://www.iisc.ac.uk/uploaded documents/ACF5B.doc [Accessed 12 November

2004].

[Jackson98] Jackson, P, (1998), “Introduction to Expert Systems”, Addison-

Wesley Longman Limited, Essex, UK.

[Javadoc04] 2004, javadoc-The java API Documentation Generator, [WWW]

URL: http://iava.sun.eom/i2se/l.4.2/docs/tooldocs/windows/iavadoc.html [Accessed

10 January 2004].

[Jennings98] Nicholas R. Jennings and Michael J. Wooldridge, “Applications Of

Intelligent Agents”, in Nicholas R. Jennings and Michael J. Wooldridge (Ed.), Agent

Technology Foundations, Applications, and Markets , Springer-Verlag, NJ, USA,

1998.

187

http://xml.coverpages.org/hvtime.html
http://www.iisc.ac.uk/uploaded
http://iava.sun.eom/i2se/l.4.2/docs/tooldocs/windows/iavadoc.html

References

[JenningsOO] N. R. Jennings (2000) "On Agent-Based Software Engineering"

Artificial Intelligence, 117 (2) 277-296.

[Kemmerer99] Kemmerer, S. J., (1999), “STEP: The Grand Experience”,

Manufacturing Engineering Laboratory, National Institute of Standards and

Technology, NIST Special Edition, Technical Report.

[KluschOl] Klusch, M., (2001), “Information Agent Technology for the Internet:

A Survey”, Journal on Data and Knowledge Engineering, Special Issue on Intelligent

Information Integration, D. Fensel (Ed.), Vol. 36(3), pp.337-372.

[Knuth84] Knuth, D., E., (1984), “Literate Programming”, Oxford University

Press, The Computer Journal, Vol.27, Issue 2, pp. 91-111, UK.

[Lesser03] Lesser, V., Horling, B., Klassner, F., Raja, A., Wagner, T. and Zheng, S.

X. Q., (2003), “BIG: A Resource-Bounded Information Gathering Agent”,

UMass Computer Science Technical Report 1998-03, [WWW] URL:

http://dis.cs.umass.edu/research/big/big.html [Accessed 12 November 2003].

[Maes95] Maes, P., (1995), “Artificial Life Meets Entertainment: Life Like

Autonomous Agents”, Communications of the ACM, Vol. 38(11), pp. 108-114, 1995.

[Matthews92] Sky Matthews, Carl Grove,(1992), "Applying Object-Oriented

Concepts to Documentation", Proceedings of the 10th annual international

conference on Systems documentation, (pp.265-271), Ottawa, Ontario, Canada, 1992.

188

http://dis.cs.umass.edu/research/big/big.html

References

[Musciano97] Musciano, C. and Kennedy, B., (1997), “HTML, The Definitive

Guide”, O’Reilly, 2nd edition, CA, USA.

[Negnevitsky02] Negnevitsky, M, (2002), “Artificial Intelligence: A Guide to

Intelligent Systems”, Addison-Wesley/Pearson Education , Harlow, England.

[Netsage02] 2002, NetSage: Network Monitoring System Configuration

Database, [WWW] URL: http://www.net.emu.edu/netsage/index.html [Accessed 22

March 2002].

[Netscape04] 2004, Client Side State - HTTP Cookies, [WWW] URL:

http://wp.netscape.com/newsref/std/cookie spec.html [Accessed 22 March 2004].

[NodineOO] Nodine, M., Fowler, J., Ksiezyk, T., Perry, B., Taylor, M. and Unruh, A.,

(2000), “Active Information Gathering in InfoSleuth”, International Journal of

Cooperative Information Systems, Vol. 9, Issues 1-2, pp. 3-28.

[Noy2001a] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M.

A. Musen. “Creating Semantic Web Contents with Protege-2000”. IEEE

Intelligent Systems 16(2):60-71, 2001.

[Noy2001b] N. Noy and D. L. McGuinness. “Ontology Development 101: A Guide

to Creating Your First Ontology”. Technical Report, Knowledge Systems

Laboratory, Stanford University, 2001.

189

http://www.net.emu.edu/netsage/index.html
http://wp.netscape.com/newsref/std/cookie

References

[Oro04] 2004, Jakarta ORO, [WWW] URL: http://iakarta.apache.org./oro

[Accessed 14 March 2004].

[Owen97] Owen, J., (1997), “STEP: An Introduction”, Information Geometers, 2nd

edition, Winchester, UK.

[Paradis98a] Paradis, F. and Vercoustre, A.N. and Hills, B. (1998), ”A Virtual

Document Interpreter for Reuse of Information", Proceedings of Electronic

Publishing '98, published as Lecture Notes on Computer Science 1375, (pp.487-498),

Saint-Malo, France.

[Paradis98b] Vercoustre, A.N., Paradis, F., (1998), “Reuse of Linked Documents

through Virtual Document Prescriptions”, Lecture Notes in Computer Science,

Vol. 1375, pp. 499-512.

[Perry04] Perry, B. W., (2004), “Java servlet and JSP cookbook”, O’Reilly, CA,

USA.

[Pham99] Pham, D. T., Dimov, S. S. and Setchi, R. M., (1999), “Intelligent Product

Manuals”, Proceedings of the Institution of Mechanical Engineers, IMechE, Vol.

213, Part I, pp. 65-76.

[PhamOO] Pham, D. T., Dimov, S. S. and Peat, B. J., (2000), “Intelligent Product

Manuals”, Proceedings of the Institution of Mechanical Engineers, IMechE, Vol.

214, Part B, pp. 411-419.

190

http://iakarta.apache.org./oro

References

[Pham02] Pham, D. T., Setchi, R. M. and Dimov, S. S., (2002), “Enhanced Product

Support through Intelligent Product Manuals”, International Journal of Systems

Science, Vol. 33, Issue 6, pp. 433-449.

[PosladOOa] Poslad S. J., Buckle S. J., Hadingham R., (2000), “ The FIPA-OS agent

platform: Open Source for Open Standards,” Proceedings of PAAM 2000,

Manchester UK, April 2000, pp. 355-368.

[PosladOOb] Poslad S. J., Calisti, M., (2000), “ Towards improved trust and

security in FIPA agent platforms,” In Autonomous Agents 2000 Workshop on

Deception, Fraud and Trust in Agent Societies, Barcelona, June 2000.

[Price97] Price, J. (1997), ’’Introduction: Special Issue on structuring complex

information for electronic publication", IEEE Transactions on Professional

Communication, Vol. 40, pp.69-77, 1997.

[Ranwez99] Ranwez, S. and Crampes, M. (1999), "Conceptual Documents and

Hypertext Documents are two Different Forms of Virtual Document", Workshop

on Virtual Documents, Hypertext Functionality and the Web, In 8th International

World Wide Web Conference, Toronto, Canada, May 1999.

[Reiter95] Reiter, E. Mellish, C. and Levine, J. (1995), "Automatic Generation of

Technical Documentation", Journal of Applied Artificial Intelligence, Vol. 9, pp.

259-287, 1995.

191

References

[Rio03] 2003, RIO - Reusable Information Object Strategy, [WWW] URL:

http ://www. cisco. com/warp/public/779/ibs/so lutions/publishing/whitepaper s/

[Accessed 12 May 2003].

[Rodriguez04] Rodriguez, I., Nunez, M. and Rubio, F., (2004), “Specification of

Autonomous Agents in E-commerce Systems”, Lecture Notes in Computer Science,

Vol. 3236, pp. 30-44.

[Rudolph04] 2004, Some Guidelines for Deciding Whether to Use A Rules

Engine,[WWW] URL: http://herzberg.ca.sandia.gov/iess/guidelines.shtml [Accessed

30 December 2004].

[Rumbaugh91] Rumbaugh, J, (1991), “Object-Oriented Modelling and Design”,

Prentice Hall, NJ, USA.

[Setchi99] Setchi, R., (1999), “Enhanced Product Support through Intelligent

Product Manuals”, PhD Thesis, Cardiff University, UK.

[Sgml04] 2004, Standard Generalised Markup Language (SGML), [WWW]

URL: http://xml.coverpages.org/sgml.html [Accessed 30 December 2004].

[Sleight93] Sleight, D. A., (1993), ’’Types of Electronic Support Systems: Their

Characteristics and Range of Desings”, Educational Psycology Michigan State

University, [WWW], <URL: http://www.msu.edu/~sleightd/epss copv.html>

[Accessed 30 September 2004].

192

http://herzberg.ca.sandia.gov/iess/guidelines.shtml
http://xml.coverpages.org/sgml.html
http://www.msu.edu/~sleightd/epss

References

[SorokaOO] Soroka, A., (2000), “An Agent Based System for the Acquisition and

Management of Fault Knowledge for Intelligent Product Manuals”, PhD Thesis,

Cardiff University, UK.

[Sun04] 2004, Java Servlet Technology, [WWW] URL:

http://iava.sun.com/products/servlet/ [Accessed 30 December 2004].

[Sycara03] Sycara, K., Paolucci, M. Van Velsen, M. and Giampapa, J., (2003), “The

RETSINA MAS Infrastructure”, Autonomous Agents and Multi-Agent Systems,

Vol. 7, Issue 1-2, pp. 29-48.

[Tomcat03] The Jakarta Site, (2003), “Apache Jakarta Tomcat”, [WWW] URL :

http://jakarta.apache.org/tomcat/ [Accessed 12 November 2003].

[Tucker97] Tucker, H. and Harvey, B. (1997), "SGML Documentation Objects

within the STEP Environment", In SGML Europe '97, Barcelona, Spain,

[http ://www. eccnet. com/papers/ step. html].

[Turban88] Turban, E., (1988), “Decision support and expert systems: managerial

perspectives”, Collier Macmillan, London, UK.

[TveitOl] Tveit, A., (2001), “A survey of Agent-Oriented Software Engineering.”

Proceedings of the First NTNU Computer Science Graduate Student Conference.

Norwegian University of Science and Technology May 2001.

193

http://iava.sun.com/products/servlet/
http://jakarta.apache.org/tomcat/

References

[VenturaOO] Ventura, C. A., (2000), ’’Why Switch From Paper to Electronic

Manuals?”, Proceedings of the ACM Conference on Document Processing Systems,

January 2000, pp. 111-116.

[Vercoustre97a] Vercoustre, A.M., Dell'Oro, J., and Hills, B., (1997), “Reuse of

Information through Virtual Documents”, in Second Australian Document

Computing Symposium, Melbourne Australia, pp. 55-64.

[Vercoustre97b] Vercoustre, A.N. and Paradis, F. (1997), ”A Descriptive Language

for Information Object Reuse through Virtual Documents”, In 4th International

Conference on Object-Oriented Information Systems (OOIS'97), Brisbane, Australia,

pp. 239-311, November 1997.

[Williams04] Williams, H. E. and Lane, D., (2004), “Web database applications

with PHP and MySQL”, O’Reilly, 2nd edition, CA, USA.

[Wooldridge97] Wooldridge, M., (1997), “Agent-Based Software Engineering”,

IEE Proceedings Software Engineering, 144(1), pages 26-37, February 1997.

[Wooldridge99] Wooldridge M. J., Jennings N. R. and Kinny D.

”A methodology for Agent-Oriented analysis and design”,

Proceedings o f the third International Conference on Autonomous Agents , pages 69-

76, Washington, USA, 1999.

194

References

[Wurman98] Wurman, P. R., Wellman, M. P. and Walsh, W. E. (1998), “The

Michigan Internet AuctionBot: A Configurable Auction Server for Human and

Software Agents”, Proceedings of the Second International Conference on

Autonomous Agents (Agents-98), May 1998, Minneapolis, USA, [WWW] URL:

http://www.csc.ncsu.edu/facultv/wurman/Papers/Wurman-Agents98.ndf [Accessed 14

February 2003].

[Xerces02] 2002, Xerces Java Parser, [WWW] URL: http://xml.apache.org/xerces-i

[Accessed 2 December 2002].

195

http://www.csc.ncsu.edu/facultv/wurman/Papers/Wurman-Agents98.ndf
http://xml.apache.org/xerces-i

