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II

Abstract

The standard approach in quantum chemistry is to expand the eigenfunctions of the non 

relativistic Bom Oppenheimer Hamiltonian in terms of Slater determinants. The quality 

improvements of such wavefunctions in terms of the underlying one electron basis is 

frustratingly slow. The error in the correlation energy decreases only with L-3 where L 

is the maximum angular momentum present in the basis. The integral evaluation effort 

that grows with 0(N 4) prevents the use of ever larger bases for obtaining more accu­

rate results. Most of the developments are therefore focused on wavefunction models 

with explicit correlation to get faster convergence. Although highly successful these 

approaches are computationally very demanding. A different solution might be pro­

vided by constructing new operators which take care of the information loss introduced 

by truncating the basis. In this thesis different routes towards such new operators are 

investigated.



IV

Contents

Abstract II

Acknowledgements III

Table of Contents IV

List of Tables VI

List of Figures VIII

1 Introduction 1

1.1 The Schrodinger Equation .......................................................................... 1

1.2 Approximations...........................................................................................  3

1.2.1 The Variational Principle................................................................ 3

1.2.2 Rayleigh-Schrodinger Perturbation T h e o ry ................................  4

1.3 Wavefunctions..............................................................................................  7

1.3.1 The exact wavefunction ................................................................ 7

1.3.2 Approximate wavefunctions.........................................................  8

1.4 Second Q uan tisa tion .................................................................................  10

1.4.1 O perators........................................................................................  11

1.5 Standard models in Quantum Chem istry....................................................  14

1.5.1 The Hartree-Fock Approxim ation................................................  14

1.5.2 Configuration Interaction................................................................ 18

1.5.3 Coupled-Cluster T h e o ry ................................................................ 21

1.5.4 Mpller-Plesset Perturbation T h e o ry .............................................  25



CONTENTS V

1.6 Electron Correlation.....................................................................................  28

1.6.1 Static correlation.............................................................................  28

1.6.2 Dynamic correlation ......................................................................  30

1.7 Basis s e t s .....................................................................................................  32

1.7.1 Convergence of the correlation energy ..........................................  33

1.7.2 Errors in electronic structure calcu lations....................................  34

1.8 Explicitly correlated methods......................................................................  36

1.8.1 The transcorrelated method.............................................................  37

1.8.2 R12 m ethods...................................................................................  38

2 Extrapolated Hamiltonians 42

2.1 Scaled fluctuation potential.........................................................................  42

2.2 Im plementation............................................................................................ 45

2.2.1 Scaling f a c to r s ................................................................................ 48

2.3 Results...........................................................................................................  49

2.3.1 Rare gas dim ers................................................................................ 49

2.3.2 Calibration m o d e ls .........................................................................  50

2.3.3 Heteronuclear app lica tion .............................................................  53

2.3.4 Atomisation energies......................................................................  57

2.3.5 Properties.........................................................................................  58

2.4 Discussion..................................................................................................... 60

3 Completeness Relationships 61

3.1 Introduction.................................................................................................  61

3.2 D efin ition ..................................................................................................... 62

3.3 Configuration space of the Jastrow factor................................................... 65

3.4 Evaluation of the quadratic e r r o r ...............................................................  67

3.4.1 Derivation of the strong orthogonality expressions ....................  67

3.4.2 Resolution of the identity................................................................  70

3.4.3 Linear System ...............................................................................  72

3.5 Form of the correlation factor.....................................................................  74



CONTENTS VI

3.5.1 Integrals..........................................................................................  74

3.6 Results..........................................................................................................  76

3.6.1 R e c a lc u la t io n s ........................................................................... 76

3.6.2 Gaussian gem ina ls........................................................................ 81

3.7 Discussion...................................................................................................  82

4 Concluding remarks 87

A Extrapolated Hamiltonians 89

A. 1 Calibration d a ta ..........................................................................................  89

A. 1.1 MP2 calibration d a t a ....................................................................  89

A. 1.2 C C SD .............................................................................................  90

A.2 Additional d a t a ..........................................................................................  91

A.2.1 Simple atomic s c a l in g .................................................................  91

A.2.2 Weighted atomic sc a lin g ..............................................................  92

B Completeness Relationships 93

B.l Integrals......................................................................................................  93

B.1.1 r\2 K e rn e ls .................................................................................... 94

B.1.2 Geminal kernels ..........................................................................  95

B.2 Strong orthogonality expressions.............................................................. 97

B.3 Two electron p r o o f ...................................................................................  98

B.4 Hermitian constraint ................................................................................... 101

B.4.1 Non symmetric R I .......................................................................... 102

B.4.2 Symmetric R I ................................................................................... 102

B.5 Automatic code generation.......................................................................... 104

B.5.1 Normal o rd e r in g ............................................................................. 104

B.5.2 Contracting equivalent expressions................................................. 104

B.5.3 Expectation v a lu e s .......................................................................... 106

Bibliography 109



VII

List of Tables

1.1 Cl coefficients for H2 /STO-3 G .................................................................. 30

1.2 SCF and correlation energies for the Nitrogen m olecule.........................  36

2.1 Well depths of rare gas d im e rs .................................................................  51

2.2 Root mean square error for different calibration m odels .........................  52

2.3 Extrapolated Hamiltonian correlation energies for HF in Hartrees . . . .  54

2.4 Effective MP2 scaling factors for H2 , F2 and H F .....................................  55

2.5 Weighted correlation energies for H F ........................................................  56

2.6 Weighting effect of the nuclear c h a rg e ..................................................... 57

2.7 Atomisation e n e rg ie s ................................................................................. 58

2.8 Properties of carbon m onoxide.................................................................  59

3.1 Virial coefficients for different wavefunctions........................................  65

3.2 Projected Hamiltonian correlation energies for Helium in E /* ...............  77

3.3 Projected Hamiltonian correlation energies for H2 in E/*..........................  79

3.4 Projected Hamiltonian results for Neon .................................................. 80

3.5 Projected Hamiltonian results with Gaussian geminals............................  81

3.6 Projected hamiltonian matrix condition numbers.....................................  82

3.7 Slater type geminal energy contributions for Helium ...............................  84

A. 1 Atomic scaling factors for M P2...............................................................  89

A.2 Molecular scaling factors for M P 2 ...........................................................  90

A.3 Rare gas CCSD scaling fac to rs .................................................................  90

A.4 Scaled Hamiltonian results for H2 O ........................................................  91



LIST OF TABLES VIII

A.5 Scaled Hamiltonian results for C O ............................................................  91

A.6 Scaled Hamiltonian results for H2 O .........................................................  92

A.7 Scaled Hamiltonian results for C O .....................................   92

B.l Three electron terms in M2 ........................................................................  99

B.2 Allowed three electron terms in T and M .....................................................100

B.3 Expectation value generation........................................................................107

B.4 Spatial orbital reso lu tion ..............................................................................108



IX

List of Figures

1.1 H2 potential energy c u rv e s .......................................................................  41

1.2 Radial probability densities.......................................................................  41

1.3 Complete and incomplete basis naming convention ...............................  41

2.1 Hydrogen scaling on H F ..........................................................................  55

B.l Normal ordering procedure..........................................................................105

B.2 Graph representation of (B.41) and (B .4 2 )................................................... 106



1

Chapter 1

Introduction

1.1 The Schrddinger Equation

The fundamental quantity in quantum mechanics [10] is a partial differential equation 

called the Schrodinger Equation named after the Austrian physicist Erwin Schrodinger 

which takes the form 1.1 for a one particle system, is referred to as the wave-

function and f t  is known as the Hamilton operator or Hamiltonian which consists of a 

kinetic and potential energy part. The quantities r and t are variables of space and time.

fa t )  = W o w ( 1. 1)

If the potential V does not depend on time it is possible to factorise the wavefunction 

into space and time contributions C¥(r,t) =  \|f(r)^(t)). This leads to the time indepen­

dent Schrodinger Equation 1.2. The solutions of this eigenvalue problem are so called 

stationary states as the probability density given by | 1  does not change with time.

H W ) 'E(r) =  EWfa) ( 1.2)

The generalization to many particle systems is straightforward by replacing the ki­

netic and potential energy terms in the Hamiltonian with their many body counterparts.

i M 1 N N N i M N y  M M  y
£  =  - ^ X ^ - 5 X v ? + X l f - X X ^ + l X ^  (1.3)

A=\ 2 i=\ i=\j>irij A—\ i—l riA A=\B>A rAB
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For a molecular system in the absence of external fields and neglecting relativistic 

contributions the Hamiltonian in atomic units is given by equation 1.3 where upper and 

lower case indices denote nuclei and electrons respectively. Although this expression is 

of the same kind as equation 1.2 it is much more complicated to treat as there are 3M 

nuclear and 3N electronic coordinates. There is an additional set of coordinates which 

enter the wavefunction as a result of the spin properties of the particles. But since the 

Hamiltonian does not contain any spin coordinates and therefore commutes with the 

spin angular momentum operators an appropriate wavefunction can be constructed as 

product of spatial and spin factors.

A simplification may be achieved if one considers the fact that the nuclei are much 

heavier than the electrons. A proton is almost 2000 times heavier than an electron. 

Therefore it is expected that the nuclei move much slower than the electrons. This is the 

motivation behind the Bom-Oppenheimer approximation[45] where the nuclear frame­

work is kept fixed. In this way the motion of the electrons and nuclei is artificially 

separated leading to the electronic Schrodinger equation 1.4. With this approximation 

the molecular energies depend parametrically on the position of the nuclei and the con­

cept of a potential energy surface is introduced. When solving equation 1.4 the nuclear 

repulsion term can be omitted as it merely represents an additive constant to the energy.

i  N  jy jy 1 iw  ;v  7

9 { t i jZ in j  At i £ i rMj

N  N M  N

i=l
(1.4)

Despite all the simplifications equation 1.4 is - apart from the most simple systems 

- still too complicated to be solved analytically as the electron interaction terms pre­

vent any separation of variables. One is therefore left with the task of finding good 

approximate wavefunctions.
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1.2 Approximations

1.2.1 The Variational Principle

The conceptually most simple approach to obtain approximate solutions to the Schrodinger 

equation is given by the the variational principle which states that every trial wave­

function will lead to an energy greater or equal than the energy 1.5 of the true lowest 

eigenfunction.

, m  -  ^  F  n
{ 0 ( }

The mathematical statement 1.5 can be proven by using the fact that the eigen­

functions 1.6 of the Hamiltonian - being a hermitian operator - form a complete and 

orthonormal set. The eigenfunctions are assumed to be sorted according to increasing 

eigenvalues.

/f|q>„)=E„|q>„) n e N 0 (1.6)

The consequence of the completeness property is that any function in the same

space can be exactly represented by a linear expansion in eigenfunctions of the Hamil­

tonian 1.7.

V =  £ c"l(P''> C„ =  (\|/|(p„) (1.7)

After inserting expansion 1.7 into equation 1.5 and multiplying by the denominator 

the result is expression 1.8. As a result of the orthogonality of the basis only quadratic 

terms in the cn survive.

(\|/|tf|\j/) = ^ \ c n\2En > E 0^ \ c n\2 q.e.d. (1.8)
n n

The consequence of the variational theorem is the possibility to construct a trial 

wavefunction |>|/(cj)) which depends on some set of undetermined parameters c, that 

can be optimised to give the lowest possible energy which will be an upper bound to 

the true ground state. In the preceding discussion the wavefunctions were assumed to
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be complex. Since in practical calculations the wavefunctions are almost always real it 

seems appropriate at this stage to adopt a real formalism from now on. A special case is 

the linear parameterisation of the wavefunction as shown in equation 1.9.

_ CjCj(Xj\H\Xi)
c M U x d  (L 9 )

The expansion coefficients cj in equation 1.9 are determined via the variation of the

energy 1.10.

be
fcCjCkiXjlXk) + 2Ecj(Xj\Xi) =  2cj (Xj \H\Xi) (1.10)

Reordering expression 1.10 for the stationary condition BE/Bci = 0 leads to a gen­

eral eigenvalue problem 1.11 where H[j and Sij are matrices with elements H[j =  (Xi\H\Xj) 

and Sij =  (%i\%j). The solution of equation 1.11 leads to the N eigenvalues and eigen­

vectors which are solutions to N lowest lying eigenstates. It is possible to prove that the

upper bound property holds for all of these states under linear parameterisation which 

is known as the Hylleraas-Undheim-MacDonald[20, 37] theorem.

HijCj — SijEcj (1.11)

For nonlinear parametrisations the expansion coefficients are usually much harder 

to determine. But more importantly only the lowest eigenvalue is guaranteed to be an 

upper bound to the true ground state.

The variational principle only makes a statement about the energies and gives no in­

formation about the quality of the wavefunction. It may therefore happen that properties 

other than the energy may not be determined as accurately as the energy from a given 

wavefunction.

1.2.2 Rayleigh-Schrodinger Perturbation Theory

The idea behind perturbation theory [10, 76] is to partition the problem at hand into a 

major contribution which recovers the essentials of the system under investigation and is 

easily solved on its own. The components neglected in this simplified treatment are then
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recovered subsequently. Put in mathematical terms the perturbative treatment consists 

of separation of the Hamiltonian into two components as shown in equation 1.12 where 

//«» is the simple part and H ^  is the perturbation that is coupled in via the strength 

parameter X. For X =  1 the full Hamiltonian is recovered.

=  //(° )+ A //(1) (1.12)

The wavefunctions 1.13 and energies 1.14 of the system are expressed as power se­

ries in the strength parameter X. The index i denotes a particular state whose energy 

and wavefunction are to be corrected by the perturbative treatment. It is also assumed 

that the eigenvalue E of is not degenerate. For this expansion to work the con­

tributions of H M have to be small compared to H^°\ As an example application of 

perturbation theory it is probably helpful to think of a vibrational problem where the 

potential is only slightly different from a harmonic one. This problem can be tackled 

by setting equal to the harmonic contribution and use for the anharmonic 

correction.

Iv.) I  VI#)
n= 0

nrWEi =  X ^ e ;
X=n

(1.13)

(1.14)

Combining series expansions 1.13 and 1.14 with expression 1.12 yields eigenvalue 

equation 1.15. This equation needs to be fulfilled for all orders of X.

+  X  X"Ei
m=0

(m) £ x " | # ) = o (1.15)
n= 0

Expressions 1.16 to 1.19 show the resulting expressions for various orders of X. In 

the present form these relations do not suffice to calculate the corrections to the energies 

or the wavefunction. The eigenvalue equation 1.16 still holds if |\|/,-°̂ ) is multiplied by 

an arbitrary constant. Since all expressions contain a term (H there is 

an ambiguity for the corrections to the wavefunction as the equations are still satisfied 

if an unspecified amount of is added to |\|/w)).
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1 
1 

©

I
o'

l v l0)> =  0 (1.16)

l v ‘0)> =  0 (1.17)

[ t f (0) - e / 0)
1 oT"firi

H
E.

t

=  0 (1.18)

[ / / (« ) - -£ < 0)] |r|/|m)) +
k=0

=  0 (1.19)

In order to remove the ambiguities from the equations the unperturbed wavefunction 

is chosen to be normalised whereas the correction to the eigenvector are defined to be 

orthogonal to |v|/|°^). This convention is referred to as intermediate normalisation and 

summarised in 1.20.

<v'°Vi0)> =  1 <Vi0)IVin)> =  0 (1.20)

With these definitions it is now possible to calculate the corrections to the energies 

and wavefunctions. By projecting equation 1.19 onto the zero order wavefunction from 

the left an expression for the n-th order energy is readily obtained 1.21.

=  (V f)|ff(1)| ' | ' i " '1)> (1-21)

The projection onto |y,- ) alone does not use the complete information contained in 

the equations. In order to determine the corrections to the wavefunctions the remaining 

parts of the eigenspectrum of need to be used as well. This ansatz is demonstrated 

for equation 1.17 by the relations 1.22 and 1.23.

+  m ^ i  (1.22)

The higher order corrections to the wavefunction are obtained in a similar fashion 

but it should be noted that the energy of order E M is needed to calculate the wavefunc­

tion |\ |/n+1)).
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In contrast to the variational principle the calculated energies are no longer guar­

anteed to be upper bounds. It may be found that the energy corrections E M oscillate 

towards a final value or that the series does not converge at all.

1.3 Wavefunctions

1.3.1 The exact wavefunction

The set of functions that fulfils the Electronic Schrodinger equation 1.4 in a purely 

mathematical way is too vast to be of physical interest. The true wavefunction is char­

acterised by several properties some of which are given below [74].

•  In the Bom interpretation |\j/2| represents a probability density. This implies that 

the integral (\|/|\|/) must exist and be finite.

•  Electrons are indistinguishable particles with spin The Pauli antisymmetry 

requires that the wavefunction changes sign when the coordinates of two electrons 

are swapped.

• The electronic Hamiltonian 1.4 contains potential terms which rise to infinity as 

the corresponding radii approach zero. These singularities need to be balanced out 

by the wavefunction such that the local energy is constant and hence conservation 

of energy is obeyed. These requirements lead to the nuclear and electronic cusp 

conditions which will be investigated later.

• Equation 1.4 contains no reference to electron spin and the Hamiltonian com-
AA A

mutes with the operators S and Sz. The wavefunctions is therefore a simultaneous 

eigenfunction of the spin operators and electronic Hamiltonian.

• Under the Bom-Oppenheimer approximation the wavefunction provides an irre­

ducible representation for the point group of the Hamiltonian.

• The point group symmetry also requires the states to be eigenfunctions of L2 and 

Lz for atoms and of Lz only in case of a linear molecule.
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• The true wavefunction fulfils the Hellmann-Feynman theorem.

In actual calculations some of the properties of the true wavefunction have to be 

ignored in order for the problem at hand to be computationally tractable. The one and 

N-particle bases that span the vector spaces for a specific problem usually do not obey 

the cusp conditions. The symmetry properties which include angular momentum arise 

automatically provided that the basis is invariant under transformations of the point 

group of the Hamiltonian. But exploitation of symmetry is very important in practice as 

it allows the reduction of the Hamiltonian to block diagonal form which saves computa­

tional resources. Furthermore symmetry constraints may be used to calculate the lowest 

lying state in a given irreducible representation.

1.3.2 Approximate wavefunctions

A fundamental building block in constructing approximate wavefunctions that fulfil the 

permutational properties of electrons is the Slater determinant [30] 1.24. The %i(n) are 

one electron functions called spin orbitals where x n represents the three spatial coor­

dinates and the spin coordinate of electron n. In the current context the orbitals are 

assumed to form an orthonormal set. As a determinant changes sign when rows or 

columns are exchanged the antisymmetry is elegantly incorporated.

'v  = ~7=y/W.

Unfortunately a single Slater determinant is a too simple object to describe a system 

of interacting particles as the multiplicative nature of its constituent terms corresponds 

to a non correlated probability distribution. By expanding the wavefunction in sev­

eral Slater determinants it is nevertheless possible to recover correlation effects. Equa­

tion 1.25 illustrates how a function of two variables can be expanded as a product of one 

electron functions [5] by making the coefficients c,- explicit functions of X2 .

X l ( * l )  X l { x \ )  ■■■ %n{x  l )

X l ( * 2 )  %2(X2)  • ••  X n ( x 2 )

X\  (x n)  X 2 ( x n)  • • • Xn (x n)
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| F ( * i , * 2 ) )  =  | i ( * i ) ) ( i ( * i ) | F ( * i , . X 2 ) )  =  Ci (x2 ) \ i ( x i ) )

=  \ j ( x 2 ) ) ( j ( x 2 ) \ c i ( x 2 ) ) \ i ( x i ) )  =  C i j \ j ( x 2 ) ) \ i ( x i ) )
(1.25)

Restricted and unrestricted orbitals

Although nonorthogonal orbitals have very useful and interesting properties[47] most 

quantum chemical methods are formulated in an orthonormal framework 1.26. Orthog­

onal functions for instance have the advantage of providing very simple equations when 

projections are involved.

In order to fully describe an electron 4 coordinates are needed. Three of those de­

scribe the position in space. The fourth coordinate is the spin coordinate. Orbitals are

Given 1.27 and the orthogonality of the spin functions there are two different pos-

of orthogonal functions for both a  and P spin which are known as restricted orbitals. If 

different spatial parts are chosen for alpha and beta the set is called unrestricted orbitals. 

A detailed description of the functional form of the spatial part is given in section 1.7.

Spin Eigenfunctions

The electronic Hamiltonian does not contain any spin dependent part and the wavefunc­

tion should also be an eigenfunction of Sz and S2. Therefore the electronic wavefunction 

can be written as a product of a spatial and a spin part. Unfortunately a single Slater de­

terminant is only a spin eigenfunction for closed shell or high spin states1. Proper spin

*In a high spin state all unpaired electrons have parallel spins.

(p\q) =  8pq (1.26)

constructed as a product of a spatial and a spin function. The spin functions a  and P 

provide a two dimensional orthonormal basis.

(1.27)

sibilities to choose the spatial part of the orbitals. One can either choose the same set
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eigenfunctions can however be constructed as a linear combination of several Slater de­

terminants when restricted orbitals are used. These linear combinations are known as 

configuration state functions (CSF’s) and shall not be discussed further at this point.

1.4 Second Quantisation

In quantum chemistry N-electron wavefunctions of molecular species are represented 

as expansions in Slater determinants. The direct manipulation of determinants is rather 

inconvenient when new models are developed. A further complication is that the de­

terminant and the Hamiltonian both depend explicitly on the number of electrons for a 

given problem. Second Quantisation[52, 74] is a formalism which remedies all those 

shortcomings and provides a neat way to handle wavefunctions and operators.

At the heart of second quantisation lies an abstract 2M-dimensional vector space 

called the Fock space where M is the number of spin-orbitals present in a chosen basis2. 

Specific configurations are expressed via occupation number vectors. The elements 

of the occupation number vector are simply ones or zeros depending on whether that 

particular spin orbital is occupied. The dimensionality 2M is a result of the definition 

of the inner product as given in equation 1.28. The vector with zeros only is called the 

vacuum state as it presents a state with no particle.

(K\L) =  nS*,L, (1.28)
i

States with specific occupations are generated by application of operators on the 

vectors in Fock space. The effect of the creation operators cfip is to add an electron 

to spin orbital p. This is illustrated by equation 1.29. The Kronecker delta ensures 

that the result is zero if spin orbital p  is already occupied. The phase factor T  ensures 

antisymmetry.

al\K) = SKp0r p\ - , K p = l , - )  r , =  n ( - l ) *  (1.29)
1=1

2The term chosen should be understood in a rather abstract manner.
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Similarly annihilation operators ap which remove an electron from orbital p as 

shown by 1.30 can be defined. The Kronecker delta causes the expression to vanish 

if p  is unoccupied.

ap\K) = dKpi r p\ - , K p = 0 , - )  (1-30)

Although the phase factors Tp are necessary for the antisymmetry properties they 

can be omitted as they lead to the anticommutation relations 1.31, 1.32 and 1.33 which 

themselves keep track of the exchange properties.

[ap,aq)+ =  0 (1.31)

[°P -41+ =  0 (1.32)

[4>a?i+ =  8pq (1.33)

With the help of these anticommutators it is now possible to write any electronic 

state as a string of creation operators 1.34 acting on the vacuum state and the antisym­

metry properties hold as expected.

a\a^vac) =  - a\a\\vac) (1.34)

The usefulness of second quantisation does not stop at generating electronic states 

from the vacuum. The creation and annihilation may be combined to build excitation 

operators as shown in 1.35. The effect of these operators is to excite electrons from 

orbital q to orbital p  and so on. This proves useful for the development of correlated 

theories such as configuration interaction and coupled cluster.

&P = a\aq =  a*palasaq (1.35)

1.4.1 Operators

The second quantisation formalism is not complete without the redefinition of the oper­

ators. The expressions for one electron operators 1.36 and two electron operators 1.37
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are simply tensor elements over the basis functions that form the Fock space times a 

string of as many creation and annihilation operators as electrons are involved. The el­

ementary operators aj, and aq are in so called vacuum normal order which means that 

all annihilation operators appear to the right of the creation operators. This property

ensures that zero results if an unoccupied orbital is affected.

h =  Y ,hpqal aq hpq =  (P l% ) (1.36)
pq

8 = \  X  8pqrsa\a\asaq gpqrs = (p r \ r ^  \qs) =  (pr\qs) (1.37)
pqrs

It needs to be shown that these operators have the expectation values that are ex­

pected from Slater Condon rules [5]. The operator strings in 1.36 and 1.37 can be 

regarded as excitation operators like the one in 1.35. With the definition of the inner 

product of the Fock space 1.28 the recipe for evaluating expectation value of second 

quantisation operators is to single out the “excitations” that lead to non vanishing inner 

products.

One electron operators

In order to determine the expectation value there are three cases to distinguish.

1. Both ON vectors are equal. This result is obvious considering the definition of the 

inner product. The only operation the operators aj, and aq are allowed to perform 

is to map |fc) onto itself

(k\hDaĉpaa\k) =  ^ \hDDkD (1.38)
p

where kp is the spin orbital occupation number which can either be zero or one.

2. The ON vectors differ by one spin orbital. In order to generate a non vanishing 

contribution the elementary operators need to bring |/) in congruence with (k\. 

The phase factors are necessary at this stage to obtain the right sign.3

3Most authors refer the phase factor Txp to |£) but there is some freedom of choice due to associativity 

and aj, can be chosen to work on either (£| or |/).
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{k\hpqa ipaq\l) — hpql^pT^ (1.39)

3. The occupation number vectors differ by more than one spin orbital.

(k\hpqa\aq\l) =  0 0.40)

In this case it is not possible to change sufficiently many occupation numbers to 

generate a non vanishing inner product.

Two electron operators

The evaluation of the two electron operator proceeds along the same lines where use

1. The ON vectors are equal. Hence the elementary operators need to map \k) onto 

itself. This means that indices q and s need to refer to the functions p and r. This 

leads to either p = q,r = s or p = s,r = q where the latter variant is responsible 

for the exchange term as a result of the antisymmetry properties.

(̂ 1 lj8pqrsa p̂a\ asaq\k) =  ~Z ^ ,kpka(gDDaa — gpqqp) (1-41)
pq

Alternatively the following shorthand notation for the two electron integrals can 

be used

which unifies the coulomb and exchange term in a single object.

2. The ON vectors differ by one spin orbital. The orbitals with different occupation 

are denoted t and u. There are four different possibilities to bring the vectors 

to coincide: (p = t,q = u,r = s), (p =  t ,s =  u,q =  r), (r = t,q = u,p = s) and 

(r = t,s = u,p = q).

is made of the symmetry properties of the kernel r ^ 1. There are four basic cases to be 

covered:

9 k p k q(gppqq Spqqp) ~  ^  ^ k p k q ( P < l \ \P Q ) (1.42)

p
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3. The ON vectors differ by two spin orbitals.

{k\7^8pqrsa]ja\ asaq\l) — ^p^q^r^siSpqrs ~  gpsqr) (1*44)

4. The ON vectors differ by more than two spin orbitals. In this case the result is 

zero because only two orbitals can be modified at a time.

(k\^gpqrSa \aXasaq\l) =  0 (1.45)

1.5 Standard models in Quantum Chemistry

1.5.1 The Hartree-Fock Approximation

The most simple approximation to calculate the electronic energy of an atom or molecule 

is to use a single Slater determinant as trial wavefunction which is the idea behind the 

Hartree-Fock[17, 78] approach. Using the Slater Condon rule for matrix elements be­

tween determinants the energy expression 1.46 is obtained where p  and q denote spin 

orbitals. The functional notation Eh f [xF] is used to stress the point that the energy de­

pends on the functional form of ¥  which is ultimately determined by the spin orbitals.

Ehf M  =  (p\h\p) + 1  {pq\\pq) (1.46)

It is the goal of the Hartree-Fock approximation to variationally minimise energy 

by varying the orbitals. Blindly optimising the one electron functions will not have the 

desired effect when the orbitals are required to remain orthonormal. This constraint can 

be enforced by setting up the Lagrangian:

Eh f  =  {p\h\p) + ^ ( p q \ \p q ) - B Pg ( ( p \ q ) - d pg) (1.47)

With the help of the Lagrangian 1.47 it is now possible to apply the functional vari­

ation p —► p +  3p to all spin orbitals. Of special interest is the first order variation of 

the Lagrangian 8L which is set equal to zero. Since the undetermined multiplier method 

merely adds zero to the energy equation both equations will have the minimum for the
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same variation. The result of the variation is equation 1.48 where cc denotes the com­

plex conjugate of the first half of the expression.

§£//f =  (&p\h\p) +  ($pq\pq) -  (Spq \qp)-zqP{§p\q) 4-cc = 0 (1.48)

The complex conjugate in equation 1.48 does not present an additional degree of 

freedom therefore the real part is enough to determine the stationary point. From equa­

tion 1.48 it is possible to define the so called Fock operator 1.49 whose eigenfunctions 

are the spin orbitals. The operator P\ 2  has the effect of swapping the electron labels. The 

coulomb and exchange operators / ( l )  and ^(1) contain a summation over all occupied 

orbitals. They represent the average potential seen by electron 1 in orbital | p) which 

is the reason why Hartree-Fock is classified as mean field theory. The operator J  has 

a purely classical interpretation as it corresponds the interaction energy of an electron 

and the charge distributions of the remaining electrons4. The exchange operator on the 

other hand is a result of the antisymmetry. A'(l) is called a nonlocal operator because 

the potential depends on the form | p) throughout the whole space.

p\p) = j V ? + v , + £ ( ^ ) |  J - ( 1 - A 2)l«fe)>
Q.

\P) (1-49)

=  [ fc( l )+J( l ) -X( l ) ]p> (1.50)

=  I q)^qp (1-51)

Equation 1.49 does not look like an ordinary eigenvalue equation. It seems that the 

application of the operator P  on a function |p) creates a mixture of various functions. 

The equation can be brought to standard eigenvalue form by a unitary transformation as 

shown in 1.52.

I?) =  l P)Upq->P\q)=Zq\q) (1.52)

The validity of 1.52 can be proven by showing that the /(1 ), ^ (  1) and eqp are invari­

ant under unitary transformations. The eigenvalues zq correspond to the energy of an

4The coulomb operator also contains a self-interaction component which is removed by the exchange 

operator!
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electron in orbital |q). An additional interpretation of the eigenvalues is given by Koop- 

mans theorem which equates the negative eigenvalues of occupied orbitals to ionisation 

energies and the negative eigenvalues of unoccupied to electron affinities.

An interesting feature of the canonical Hartree-Fock equations 1.52 is that given 

by 1.53 which is known as the Brillouin condition. The matrix element of the Fock op­

erator between an occupied and an unoccupied orbital is zero by construction. It turns 

out that the individual contributions are exactly those that are given by the Slater Condon 

rules for Slater determinants which differ in one orbital. This means that the Hamilto­

nian matrix elements between the Hartree-Fock state and singly excited functions are 

zero.

(a|F  |i) =  (a\h\i) +  WHO') =  0 (1.53)

The Roothaan Hall equations

With the canonical Hartree-Fock equations 1.52 the problem at hand is still solving 

a partial differential equation which is notoriously hard to solve numerically in cases 

where the system is not highly symmetrical e.g. atoms or diatomics. Roothaan [9] 

recognised that there is a way around this problem by expanding the orbitals in a basis 

of functions 1.54.

l'> =  XbCa)Cai (1.54)
a

The most simple case is a restricted Hartree-Fock calculation for a closed shell sys­

tem which has the following Fock operator.

F = hl + ' £ ( 2 J - K )  (1.55)

Expanding the eigenfunctions of this operators in the basis 1.54 leads to a general 

eigenvalue problem 1.56. The quantity is called the density matrix.

— V  /jvcX 2^Aov) Ca/2C/x, (1.56)

FC = SCe (1.57)
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The Roothaan-Hall equations 1.56, 1.57 have to to be solved iteratively because the 

Fock operator depends on the orbitals which are the eigenvectors of F itself. For a given 

set of trial orbitals the Fock operator is constructed by evaluating the corresponding 

density. The eigenvectors of this new Fock operator are then used to define a new 

density matrix and operator until the energy is stationary. For a calculation to converge 

a suitable orbital guess for the starting density is needed. There are several possibilities 

to start a Hartree-Fock calculation where the most simple case is to use a zero density 

in the first step. The complexity of the Hartree-Fock approach is 0(N 4) where N  is 

the number of basis functions and results from the evaluation of the electron repulsion 

integrals

Open shell Hartree-Fock calculations

Unfortunately many interesting systems are not closed shell. For these cases Hartree- 

Fock theory is a bit more involved than the closed shell Roothaan Hall equations. The 

conceptually more simple approach is to allow independent spatial parts for the alpha 

and beta spin orbitals. This is known as the Unrestricted Hartree-Fock approach which 

goes back to Pople and Nesbet[26]. In this case it is possible to define individual Fock

operators for the a  and p electrons. The eigenfunctions of the operators 1.58 and 1.59

cannot be determined independently because they are coupled via the coulomb operators 

J.

Fa =  ha -\-Ja +J$ —Koi (1.58)

=  — (1-59)

Finding a set of restricted open shell orbitals is more difficult. Roothaan extended 

the restricted formalism to open shell systems [15]. For the present work only high spin 

states shall be of concern with the doubly occupied orbitals i , j , ..., the singly occupied 

orbitals with a-spin and virtuals a,b , .... For such as system a Fock operator

may be defined as in expression 1.60 [60] where the superscripts denote closed and 

open shell parts:
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F = ht +2Jc - K c + J ° - ) - K 0 (1.60)

The restricted open shell Hartree-Fock orbitals must fulfil the following constraints:

<fl|F|/> =  o 

(s\F + ±K°\i) = 0

=  0

(1.61)

(1.62)

(1.63)

There is no unique way of incorporating these condition into a working program. 

Specific choices are usually made to permit the efficient formulation of open shell per­

turbation theory[14] which happens to be less straightforward for restricted than unre­

stricted orbitals. One way of setting up the Fock matrix is given by[14]:

( \

(1.64)

/

W ij  {F + h KO)is F L
[F + \K°)si [F], [F -{K °]

V in *  [F - \ K°]as Wat,
The restricted Hartree-Fock orbitals are somewhat unphysical. For the described 

high spin state both a  and p electrons experience the same coulomb interaction but the 

exchange contribution that is felt by the a  electrons is larger than for the P electrons. 

By forcing the same functional form for spin up and spin down orbitals in the occupied 

space the a  electrons are subjected to some spurious potential.

1.5.2 Configuration Interaction

The Hartree-Fock approximation cannot provide an exact description of the electronic 

wavefunction because a single Slater determinant is not an exact wavefunction for inter­

acting fermions. A better description of the electronic problem can be achieved by ex­

panding the N particle state as a linear combination of several Slater determinants 1.65. 

This is the idea behind the configuration interaction method.

|CT) =  X c*|*>
K

(1.65)
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The coefficients of expansion 1.65 are determined by inserting the trial wavefunc­

tion 1.65 into the Hamiltonian and applying the variational principle 1.66 which leads 

to a standard eigenvalue problem as shown in section 1.11.

3 <C' I" |C'> = 0  ,1.66)
d a  ( c i \ c i )

From an N dimensional spatial basis a formidably large number of Slater determi­

nants can be constructed as shown in equation 1.67. When the set of full determinants 

is used the method is termed “Full Configuration Interaction”. Full Cl gives the lowest 

possible energy for a given N particle vector space. Unless a very small system is in­

vestigated and a small basis used the resulting eigenvalue problem is computationally 

intractable. FCI is however a very important benchmarking tool for all other approxi­

mate methods [54].

I (1.67)
\  n a J  y  np

The size of the problem can be reduced by selecting a subset of the FCI space. The 

configurations that enter the FCI wavefunction can be generated in a systematic way by 

application of the second quantisation formalism and its operators to the Hartree-Fock 

ground state. The determinants can be classified into singly, doubly, triply and higher 

excited configurations according to the number of orbitals that are replaced.

7i =  c f X f  =  c f a l m

\FC1) = (cq + T\+T2-\ h Tn )\0) T2 = c^jXjJ’ = cfjala^ajcii (1.68)

The starting point for reducing the variational space is equation 1.69 which shows 

that the energy can be extracted by projecting onto the Hartree-Fock state. As a result of 

the Slater Condon rules for matrix elements only contributions up to double excitations 

need to be evaluated. This suggests that these are the most important configurations and 

that a suitable approximation is to include only single and double excitations. This is 

known as the Configuration interaction singles doubles (CISD) method.
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<0|#|C/) =  (0|#(co +  7i +  T2 +  • • • 4- 7Jv)Jb) =  c0Eci \CISD) = (c0 4- T, +  T2)|0)
=o

(1.69)

The singly excited states do not contribute to the energy expression 1.69 directly due 

to Brillouins theorem. Their inclusion will however modify the coefficients of the dou­

bly excited determinants through the determining equations 1.70. The same is true for 

other configurations because the Hamiltonian matrix couples all excited determinants in 

a more or less direct manner. The importance of single excitations lies in the fact that 

they make an important contribution to the first order density matrix which is important 

for the first calculation of one electron properties.

(K\H\CI) = (K\H\L)cl = cKECI (1.70)

Size extensivity Truncated Cl

The truncation of the N particle Hilbert space not only reduces the quality of the calcu­

lated energy but also violates the criterion of size extensivity. The term size extensivity 

means that the total energy of a system of noninteracting particles must be equal to the 

sum of the individual subsystem energies when calculated as an ensemble.

Equations 1.71 through 1.75 define such a system with two noninteracting particles 

where the letters S and D denote the singly and doubly excited parts of the Cl wave­

function.

HA\CIA) = Ea \CIa) (1.71)

ICIA) =  lO*) +  |5a ) +  \Da ) (1.72)

HB\CIB) = Eb \CIb) (1.73)

ICIB) =  |0b) +  |Sb) +  \Db) (1.74)

flAB =  # t + # s  (1.75)

For the wavefunction the term size extensivity implies that the wavefunction of the
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supersystem is the product of the subsystem eigenfunctions as shown in the following 

equations:

Eab = {^ab\Hab\^ab) (1.76)

=  (1.77)

=  +  (1.78)

=  Ea +E b (1.79)

The product wavefunction for the chosen example is given by 1.80. It can be seen 

that multiplying the S and D components leads to triple (T) and quadruple (Q) excita­

tions.

I'Fa#) =  |C7a )|C7b) =  |Qab) +  |SUb) + 1 Dab) +  I Tab) +  \Qab) (1.80) 

Within the CISD approximation the wavefunction of the supersystem only contains 

single and double excitations 1.81. The energy calculated with this wavefunction will 

therefore differ from the expected answer. This problem exists for all truncation levels 

and the resulting energies are not size extensive.

ICIab =  |0ab) +  \Sa b ) +  \DAb ) ±  \CIA)\CIB) (1.81)

Various schemes to estimate the magnitude of the truncation error have been devel­

oped. One approach which tries to restore size extensivity is the Davidson correction[66]:

=  (1 — co)Ecorr£isD (1 -82)

The Full Cl approach is size extensive because it yields “exact” eigenvalues in a 

given Hilbert space. Pople and coworkers developed the quadratic Configuration inter­

action approach[25] which provides size extensive energies.

1.5.3 Coupled-Cluster Theory

A method which avoids the size extensivity problem when the excitation operator is 

truncated at some arbitrary level is the coupled cluster theory[33, 34, 35]. In this ap-
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proach the correlated wavefunction is expressed as the reference state times the expo­

nential of an excitation operator 1.83.

|C C > = /|0 )  (1.83)

The notion exponential of an operator becomes clear by considering the Maclau- 

rin expansion 1.84 of the exponential function. The object e^ is known as the cluster 

operator.

f2  f-3 f 4

e = X + t  + 2\ + 3!"+  4 \ + " '  (1-84)

Similar to the Full Cl expansion 1.68 the excitation operator can be decomposed

into various excitation levels, e.g. singles, doubles, etc. An important property of the

excitation operators a\ai for the development of coupled cluster theory is that they com­

mute

aaai > abaj = 0 (1.85)

since the contractions between creation and annihilation operators always refer to 

different subsets. Inserting the single excitations into the exponential 1.86 it becomes 

obvious that the result of the exponential is to generate higher order excitations such as 

doubles and triples and indeed all determinants that form the basis of the Hilbert space 

as products of the lower level excitations:

etl = 1 +Yjti alai + \ % % ti t)aiaialaj + --- = ŷ ti alai O-86)
ai ai bj ai

Although the series expansion of the exponential function is infinite the cluster op­

erator terminates when the maximum possible number of excitations from the reference 

state is exhausted. Carrying out the expansion with an excitation operator of the form 

t  =  t \  -I-... + and regrouping according to the excitation level
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*o =  1 (1-87)

Xi =  f, (1.88)

*2 =  ?2 +  ^ f,2 (1.89)

* 3 =  t i  + t i t i  + z t f  (1-90)o
: (i.9 i)

XN = t N + .. . (1.92)

further illustrates the appearence of higher order excitations in terms of lower level 

excitations and shows which terms contribute to a particular excitation level. Product 

terms such as are commonly refered to as disconnected clusters whereas the pure 

terms Tm are called connected clusters. The above equations also show that the fraction 

of connected clusters to a particular excitation level diminshes as the N electron limit is 

approached which further suggests truncation of the excitation operator although it must 

be said that the disconnected terms cannot guarantee an appropriate representation of the 

connected contributions as exemplified by the connected triples which are inadequately 

represented by disconnected components.

The multiplicative property of the exponential function =  exey is furthermore 

responsible for the size extensivity of the coupled cluster ansatz. For two noninteract­

ing systems it is possible to separate the excitation operator into subsystem contribu­

tions 1.93. As can be seen from 1.93 the wavefunction can therefore also be factorised.

| CCAB) = e ^ +ts\0AB) = ( / ' l |0l4» ( /* |0 i,»  (1.93)

In practical calculations the operator t  is truncated at some excitation level. This is 

mostly done at the doubly excited level leading to the coupled cluster singles doubles 

(CCSD) method. Triple excitations are mostly included via a perturbative treatment 

resulting in the CCSD(T)[41] model.

The difficult part in coupled cluster theory is to determine the wavefunction param­

eters t. The application of the cluster operator to the reference state generates the 

complete set of Full Cl configurations even when f  is truncated. In contrast to the FCI
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case the coupled cluster wavefunction depends on the amplitudes M na nonlinear fash­

ion as shown by equations 1.87 to 1.92. Although it would be desirable to determine the 

the coupled cluster solution variationally

d {C I \H \C I )= 0  d (CC\H\CC) Q
dct (CI\C1) dti (CC\CC)

such an approach is not practical because the stationary conditions 1.94 lead to a 

difficult nonlinear optimisation problem.

< 0 |ff/|0 ) =  Ecc (1.95)

(K\H^\0)  =  tfiEcc (1-96)

By projecting the coupled cluster energy expression with the reference state 1.95 and 

all excited determinants 1.96 it is possible to determine the energy and the wavefunction 

parameters but this comes at the price of losing the upper bound property for the energy. 

These equations are still not very convenient because the cluster amplitudes t and the

energy Ecc are coupled. A decoupling can be achieved by exploiting the inverse of the

cluster operator as shown in 1.97 and 1.98.

(Q\e-t Het \0) = Ecc (1.97)

(K\e-t Het \Q) =  0 (1.98)

An additional benefit of the application of e is the ability to rewrite e~^He^ as

Baker-Campbell-Hausdorff (BCH) series:

e~f Het  = H + [H,t} + ±  [[ff, t ] , t \  + , t } , t ) ,  t]

+ ^ [ { [[H , t] , t ] , t } , t }  + ... (1.99)

As a result of the comutation properties of the excitation operators in t  the BCH 

series terminates after the fourth nested commutator because the elementary operators
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in the hamiltonian H  can lead to a maximum of four contractions. Hence the expansion 

is at most quartic in the amplitudes.

What has effectively been done in equations 1.97 and 1.98 is a similarity transfor­

mation of the Hamiltonian into a new operator e~^He^ . An important consequence 

of this transformation is that the new operator is not hermitian any more and thus the 

variational principle does not apply. One is therefore left with the task of solving equa­

tions 1.97 and 1.98 iteratively. This is the standard approach used in coupled cluster 

theory.

There have been several attempts to arrive at variational coupled cluster methods. 

One such approach is the expectation value coupled cluster method XCC(n) of Bartlett 

and Noga [57] where the infinite order operator e ^ H e ^  is truncated based on the con­

tributions that enter the perturbative energies at order n. An alternative approach is to 

replace t  in the similarity transformed equations by

o =  f - f t (1.100)

which is anti hermitian and leads to a unitary transformation of H. This is the 

idea behind the unitary coupled cluster approach [58, 43]. Unfortunately the Baker- 

Campbell-Hausdorff series for a  does not break off at some finite order and some trun­

cation is necessary to make the approach practically viable.

The preceding discourse may give the impression that coupled cluster theory is more 

of a curse than a blessing for quantum chemistry. But the coupled cluster model is the 

most successful approach for purely determinantal expansions as it gives the best ap­

proximations to the Full Cl wavefunction. But the accuracy comes at a cost and the 

scaling[53] of 0 (N 6) for CCSD and 0(N1) CCSD(T) becomes prohibitive for large 

systems. Recent developments however have shown the implementation of linear scal­

ing approaches [46].

1.5.4 M0ller-Plesset Perturbation Theory

A different approach in electronic structure calculations that also provides size extensive 

energies is Mpller-Plesset Perturbation theory[13].
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H  =  / /(° )+ M /(1) (1.101)

M0ller-Plesset perturbation theory is an application of Rayleigh Schrodinger pertur­

bation theory (section 1.2.2) where the Fock operator 1.102 is used as zero order Hamil­

tonian. The perturbation H in equation 1.101 is expressed as the difference between 

the full Hamiltonian 1.103 and the H^°\ The operator 1.104 is called the fluctuation 

potential because it introduces fluctuations to the mean field potential of the Fock oper­

ator. The operators and are sometimes written as F and O. Throughout this 

section use will be made of the summation convention which implies summation over 

repeated dummy indeces.

/ / (0) =  (hpq + {pi\\qi))alaq (1.102)

# (1) =  H - H ^  = ^(pr\qs)alalasaq -(pi \\qi)alaq (1.104)

The contributions that can readily be evaluated with the knowledge of the Hartree- 

Fock state are the zero and first order energies (1.105 and 1.106). It can readily be seen 

that the sum of both components is equal to the Hartree-Fock energy 1.107. Therefore 

the first correction comes at second order.

E<0> =  <0|tf(0)|0) =  Atf +  (//||i./) (1.105)

£<» =  <0|ff(1)|0) =  j( ij \ \i j )  -  <0'II0'> (1-106)

£(0)+ £ (i) =  hu + X-( i j \ \ i j )= E scF (1.107)

The first order correction 11) is determined via equation 1.108. The function 11) is 

expressed as a linear combination of Slater determinants where the expansion coeffi­

cients are determined by projecting equation 1.108 from the left with determinants from 

the N particle space. The SCF state is omitted from the expansion in order to ensure the 

intermediate normalisation property introduced earlier in section 1.2.2.
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£ ( ° ) J  | l )  =  |0> (1.108)

Not all determinants that span the N particle vector space will contribute the first 

order correction. Equation 1.108 only contains one and two particle operators which 

means only single and double excitations need to be considered. Singly excited de­

terminants do not contribute to the first order wavefunction as a result of Brillouin’s 

theorem and the Hartree-Fock conditions. The first order wavefunction |1) thus only 

consists of double excitations.

|1> =  \tlfalalajai\0) (1.109)

The expression for the first order wavefunction is given in 1.109. The formula for
ab
ijthe amplitudes tf j* is obtained by projecting equation 1.108 from the left with all dou­

bly excited determinants. In deriving the expressions for the amplitudes tfj* use has 

been made of the fact that all Slater determinants generated from a canonical basis are 

eigenfunctions of the Fock operator. Inserting 11) into the second order energy expres­

sion leads to 1.110. The second order M0ller-Plesset energy calculations are among the 

most popular methods in applied quantum chemistry and recover around 80% of the 

correlation energy.

EMP2 = {0\h V \ \ )  = - \    ( i .u o )

The calculations of higher order contributions proceed along the same lines. From 

the equation that defines the second order wavefunction 1.111 it can be seen that singly, 

doubly, triply and quadruply excited determinants will be necessary for the calculation 

of the third order energy.

^ ( ° ) - £ ( ° ) j  |2) = e (2) |0} -  [ / / ( ')—£(')] |1) (1.111)

A derivation of the higher order corrections to the energy and the wavefunction 

will not be carried out as they are more laborious and expected to be of lesser impor­

tance. But there remains some level of uncertainty whether the perturbation series will
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converge for a given problem. Therefore this aspect has received much attention in re­

search [50]. An interesting feature is that the perturbation series has a finite radius of 

convergence [32] similar to complex series.

The Hartree-Fock approximation accounts for approximately 98% of the nonrelativistic 

electronic energy. Although this sounds very promising it is far from satisfactory as the 

energies involved in chemical processes are usually smaller than the error connected 

to the self consistent field approximation. The remaining part of the energy is called 

correlation energy and is associated with the shortcomings of using a single determinant 

as multi electron wavefunction. It is the aim of this section to give a detailed description 

of correlation effects.

1.6.1 Static correlation

Although this work focuses on dynamic correlation a discussion of static correlation 

is needed to give a complete description of correlation effects. Figure 1.1 shows two 

potential energy curves for the hydrogen molecule obtained from restricted Hartree- 

Fock (upper curve) and Full Cl (lower curve) calculations in a minimal basis. The zero 

reference energy is chosen for two infinitely separated hydrogen atoms. It is obvious 

that the Hartree-Fock approach gives a wrong value for the dissociation.

In order to investigate the shortcomings of the Hartree-Fock wavefunction it is nec­

essary to analyse the form of the orbitals. For the minimal basis set the eigenfunctions 

of the Fock operator which are given by equations 1.112 and 1.113 can be constructed 

by symmetry arguments where the normalisation constants depend on the inter atomic 

separation.

1.6 Electron Correlation

(1.113)

( 1. 112)
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The ground state of the hydrogen molecule is and the og orbital is doubly oc­

cupied in the restricted Hartree-Fock wavefunction. After expanding the Slater deter­

minant and grouping together spatial and spin factors equation 1.114 is obtained. A 

striking fact of expression 1.114 is that the spatial part of the wavefunctions contains 

terms that localise both electrons at the same nucleus no matter how far the atoms are 

apart. It is the failure to evenly distribute the two electrons that leads to the wrong 

dissociation limit.

|0 ) =  7E T7" (sAr\$Ar2 “b ^Ari^Br^ “b ^Ar2 ^Br\ “b $Br\ $Br2 )V2 Ng

Wavefunction 1.114 is not the only state of gerade symmetry that can be obtained 

with the orbitals 1.112 and 1.113. There exists also an excited determinant where the 

orbital of ungerade symmetry is doubly occupied which leads to a totally symmetric 

wavefunction. Expanding this wavefunction leads to expression 1.115.

1-^0 =  /=  TT" (sAr\SAr2 $Ar\$Br2 ^Ari^Br\ " b $Br\$Br2)V2 Ng

Although the Slater determinant 1.115 still contains the spurious terms they appear 

with a different sign. By forming appropriate linear combinations of the two determi­

nants it is possible to describe the wavefunction of the dissociating molecule in a more 

physical manner. Table 1.6.1 lists the Cl coefficients for a minimal basis. Close to 

the equilibrium the ground state component is dominating as for short separations it is 

not unlikely to find both electrons near the same nucleus and thus the SCF determinant 

dominates the wavefunction.

This inability of a single determinant to give a reasonable description of an electronic 

state is known as static correlation and sometimes also called left right correlation. In 

the present case the problem is caused by the inflexibility of the restricted orbitals. A 

UHF would lead to the correct result in the dissociation limit but unrestricted orbitals 

cannot be used to construct spin eigenfunction and thus a vital part of the physics is ig­

nored. Fortunately most systems of interest are studied near their equilibrium geometry

a i Pi 

0.2 P2

(1.115)

a i Pi

02 p2
(1.114)
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vFc/ = c0|0} + ci|/s:)

r [A] c0 ci

0.50 0.997415976689 -0.071842671480

0.75 0.993413927411 -0.114580839697

1.00 0.984513599364 -0.175308221902

1.50 0.926707105353 -0.375784434069

2.00 0.843746809694 -0.536741391297

2.50 0.770986878717 -0.636851028771

3.00 0.733105811485 -0.680114600025

Table 1.1: CI coefficients for H2/STO-3G

and their ground states are well separated from other electronic states. Hence a single 

determinant wavefunction provides a good starting point in most cases.

1.6.2 Dynamic correlation

For the ground state of the helium atom static correlation is not an issue. The complete 

basis set SCF energy for this state is -2.86167999E/j[ 16] whereas the true non relativis- 

tic energy would be -2.90372438E/I[12]. This difference is caused by the neglect of the 

Hartree-Fock wavefunction to account for the instantaneous interaction between elec­

trons and is known as dynamical correlation. Figure 1.2 shows the angular probability 

distribution for the Hartree-Fock and a Hylleraas type wavefunction[2, 65]. The plot 

is obtained by confining both electrons on a circle with radius R which contains the 

nucleus in its centre and varying the angle between the electrons. The constant prob­

ability distribution belongs to the Hartree-Fock wavefunction. This result is expected 

as the wavefunction is a simple product of independent probabilities. The cusped curve 

belongs to an explicitly correlated wavefunction.

By looking at the Hamiltonian 1.116 for the Helium atom it becomes obvious what 

the shortcomings of the Hartree-Fock wavefunction are. In order to obey conservation 

of energy the local energy must be constant. But for two coinciding electrons the in­
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teraction potential is singular and grows towards infinity. This singularity needs to be 

balanced somehow. There is no physical rationale which would require the attraction 

potentials to remove the interaction singularity. Therefore the local kinetic energy at the 

critical points must be singular with opposite sign to balance the coulomb terms.

A =  5 v ? + 5 v ? - r ~ r + r '  (U 1 6 >Z Z r\ r2 r 12

This requirement leads to the electronic 1.118 and nuclear 1.117 cusp conditions[74]:

dn
a'p

n=o

dn 2 >•12=0

=  -Z 'F (1.117)

(1.118)

Condition 1.118 only holds if *¥ does not vanish for n 2 = 0 . The nuclear cusp 

condition is fulfilled by a Slater type basis function. For coinciding electrons the wave­

function should have the following form:

2 ) =  ^ i +  ^ n 2 +  0 ( /f2) ^ ( n , n )  0-H9)

Most quantum chemistry methods expand the nonrelativistic N electron wavefunc­

tion in terms of Slater determinants and therefore are not of form 1.119.

v C / =  e - a ( r , + r 2) ^ 1/ >( ( c o s 0 i 2 )  £  £  C n |n2 ; ( r j l - l / ^ 2 - l  +r^1~1i^2~1) ( 1 .1 2 0 )

1=0 n\ =/+l «2 =/+l
Equation 1.120 shows one among many possibilities of writing a CI wavefunction 

for the helium ground state[74]. Where P/ denotes the Legendre polynomial / as a 

function of the angle between electron one and two and I is the angular momentum. 

The cosine can be expressed in terms of r\, and r \ 2  by application of the cosine 

rule which leads to 1.121. Equation 1.121 shows that only even powers of r \ 2  appear 

in the CI wavefunction whereas the electronic cusp condition 1.118 demands a linear 

dependence.

c o s e  (1.121)
2 r\T2
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Thus the determinantal expansion is an attempt to expand the linear r \ 2 behaviour in 

terms of even powers of the interelectronic distance and such an expansion is expected 

to converge very slowly. A quantitative analysis of the performance of this expansion is 

contained in the following section on basis sets.

1.7 Basis sets

In most quantum chemical calculations the spatial part of the orbitals is expanded in a 

basis of atom centred functions. Like the orbitals of the hydrogen atoms these functions 

are constructed by combining a radial and an angular part. The radial part is usually rep­

resented by a three dimensional Gaussian function although this functional form violates 

the nuclear cusp condition. Gaussians owe their popularity to the simplicity with which 

they can be handled. The angular part can either be represented by simple cartesian 

functions or by spherical harmonics leading to cartesian gaussians 1.122 or spherical 

harmonic gaussians 1.123 respectively. Cartesian gaussians are used at the heart of all 

integral programs. The spherical harmonics can be exactly expressed in terms of carte­

sian functions and a subsequent transformation at the end of the integral evaluation can 

be carried out. For a given angular momentum I the number of cartesian gaussians is 

greater or equal to that of spherical harmonic gaussians which means that the transfor­

mation leads to a smaller one electron space. Many programs however abstain from 

such a transformation.

Ga,L,mx,my,mz =  x " W ze~“''2 mx + my + mz = L (1.122)

Ga,L,m =  l(,m(0,<t>)e-<Xr2 (1.123)

A big difficulty when using Gaussian basis functions is achieving the right radial 

behaviour as they decay much faster than Slater functions. Therefore several gaussians 

are needed to recover the correct long range behaviour. In order to limit the vector space 

to reasonable dimensions the primitive gaussians (1.122, 1.123) are contracted to a new 

set of basis functions that mimic a desired radial behaviour:
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(1.124)
a

Many different basis sets have been published in literature and are in use today. 

While some basis sets try to mimic the structure of the atomic SCF orbitals other ex­

pansions represent the natural orbitals.

1.7.1 Convergence of the correlation energy

To perform a correlated calculation a basis set is needed that recovers dynamic corre­

lation efficiently. Such a family of basis sets has been developed by Dunning[70, 71, 

72, 40, 73]. To understand what inspired the development of these basis sets and find 

out what the best systematic approach to constructing a basis is an analysis is needed 

of how the correlation energy depends on the form of the one particle functions. This 

is best done by looking at the Helium atom in its ground state using natural orbitals as 

a one particle basis. The natural orbitals are the set of orbitals that diagonalise the first 

order density matrix and have the property that they lead to faster converging determi- 

nantal expansions than the canonical orbitals. The energy increment of a natural orbital 

on Helium is found to obey the following formula[16]:

Formula 1.125 makes clear that the most efficient way to increase the basis is to 

add sets of increasing main quantum number n. This procedure is known as principal 

expansion and stands in contrast to the partial wave expansion where all main quantum 

numbers n for a given angular momentum I are exhausted before proceeding to the 

functions with I +  1.

Since there are n2 functions for a given n the error introduced by truncating the basis 

at a given n = X  can be estimated via integration [79] which leads to the well known 

error formula

(1.125)

E(X) =  £(°°) +  CX-3 (1.126)
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where higher order exponents have been omitted. This formula is usually employed 

for extrapolating results to the complete basis set limit [3, 42] with the correlation con­

sistent baseis sets cc-pVXZ of Dunning although it is also suited for bases which have 

been obtained from natural orbitals such as the atomic natural orbital bases by Almlof 

and Taylor [27, 28]. The X-3 extrapolation only holds for the correlation energy. The 

convergence behaviour of the Hartree-Fock energy is roughly exponential [4, 21] but 

extrapolations of SCF results are not very reliable.

Good performance of atomic natural orbitals in correlated calculations is also ob­

served for atoms beyond helium and for molecules. This fact was exploited by Almlof 

and Taylor in the development of the atomic natural orbital bases ANO [27, 28]. It was 

found that the occupation numbers of the natural orbitals follow a similar pattern to the 

energies with almost equal values for a given main quantum number [27]. A drawback 

of these ANO bases is that the polarisation functions - functions of angular momentum 

unoccupied in the atomic SCF ground state wavefunction - are contractions of several 

primitives which adds to the computational cost. The correlation consistent basis sets 

by Dunning and coworkers [70, 71, 72, 40, 73] provide a more efficient representation 

of natural orbitals. Each polarisation function is represented by a primitive Gaussian 

optimised to recover a maximum amount of electron correlation. Despite this simple 

structure the cc-pVXZ bases the errors compared to the ANO bases are very small [70]. 

The only contractions defined in the Dunning bases are the orbitals occupied in the 

Hartree-Fock determinant for the atom. The functions with same angular momentum 

as the ones occupied in the atomic Hartree-Fock calculation added for correlation are 

again single primitive gaussians but are contained in the primitive set of the SCF or­

bitals. Thus the Dunning bases can be thought of as the set of primitives which exhaust 

the natural orbital space most efficiently.

1.7.2 Errors in electronic structure calculations

The introduction of a finite basis leads inevitably to errors. As a result of further ap­

proximations other kinds of errors are present and it seems therefore worthwhile to give 

a short summary of errors at this stage.
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Quantum chemical calculations are usually performed by ignoring relativistic ef­

fects. This is a reasonable approximation as relativistic effects are mostly felt for heavy 

elements as is for instance seen from the difference in properties between rows 5 and 6 

in the periodic table. Furthermore the Bom Oppenheimer approximation is introduced 

and the nuclear framework kept fixed. A rationale for this simplification was given at 

the start of the introduction. A possible way to reintroduce nuclear motion is to use 

a perturbative approach. The first order contribution in such a treatment is termed the 

Bom-Oppenheimer diagonal correction (BODC) which is simply the expectation value 

of the nuclear kinetic energy operator over the electronic wave function but the contri­

bution of the BODC is usually found to be small [48] although its effects can become 

important if energies of spectroscopic quality are needed [51].

In finding approximate solutions to the nonrelativistic electronic Schrodinger equa­

tion two different errors connected to completeness usually arise. The first of these is 

the one electron error or basis set error which is a result of the finite basis used to rep­

resent the orbitals. The N-electron error is a result of restricting the number of Slater 

determinants used for expanding the wavefunction in the N-particle space and thus is a 

measure of how good a particular method approximates the Full CI wavefunction which 

is the exact solution[54] in a given N electron basis. It is very important to distinguish 

between one and N electron errors as their effects are felt differently. The N electron 

error is in some way less problematic as coupled cluster models such as CCSD(T) [42] 

approximate the FCI wavefunction very well. The effects of the finite basis on the other 

hand are felt more strongly because the determinantal expansion attempts expanding 

odd powers of r \ 2  by means of even powers only.

An important question is what level of accuracy is needed to allow for a reliable 

comparison between calculation and experiment. For energy differences an error below 

one kcal/mol would be desirable which is known as chemical accuracy. Translated 

into atomic units the error should be around 1 mEh. In the following a quantitative 

analysis will be carried out for a single molecule. A more detailed discussion based 

on a test set of molecules can be found in reference [42]. Table 1.2 lists Hartree-Fock 

and correlation energies for the nitrogen molecule in its ground state. While the SCF



CHAPTER 1. INTRODUCTION 36

energies are already within 1 mEh for the quintuple zeta basis the correlation energy is 

still nowhere near the exact value. The desired value accuracy would be reached for a 

basis with X = 11. This is clearly unpractical because the number of basis functions N 

grows with 0 (X 3) whereas the number of two electron integrals gpqrs grows with fourth 

power.

N2 , cc-pVXZ, r=2.068ao 

X EHF Ecorr (MP2)

2 -108.9545532 -0.30528742

3 -108.9840934 -0.37276967

4 -108.9917353 -0.39786187

5 -108.9934198 -0.40823730

6 -108.9937418 -0.41294793

00 -108.993826* -0.4203993*

Table 1.2: SCF and correlation energies for the Nitrogen molecule

a) Numerical Hartree-Fock result from Ref [18]

b) MP2-R12 calculation from Ref [18]

1.8 Explicitly correlated methods

Explicitly correlated methods is the general term used for all models which include the 

interelectronic distance explicitly to overcome the shortcomings of the determinantal ex­

pansion outlined earlier. Hylleraas[19,75] was the first to realise that the convergence of 

a CI expansion on the helium atom could be accelerated by incorporating r 12-dependent 

terms into the wavefunction. Despite Hylleraas’ great success calculations with explic­

itly correlated wavefunctions remained limited for many years as the approach becomes 

extremely laborious for systems with more than two electrons.

A correlation factor also known as Jastrow factor[59] may be written as shown 

in 1.127 where /  denotes an arbitrary function of the interelectronic distance between 

electron i and j.
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^ = 1  +  S / M  (1.127)
i>j

When such a correlating factor is applied to a determinantal wavefunction and in­

serted into the electronic Hamiltonian of an atom or molecule with more than two elec­

trons difficult three and four body integrals arise 1.128.

f ( r n ) —  (1.128)n  2 r \ 2

How difficult such integrals may be to calculate is a separate issue. It is their number 

which is most problematic. The integral evaluation effort for the three electron integrals 

in the one particle basis is of the order 0(N6) while it is 0 (N S) for the four electron 

integrals. In view of the 0(N4) scaling of the electron repulsion integrals explicit cor­

relation rather adds to the problem than to the solution.

1.8.1 The transcorrelated method

In the 1960s Boys and Handy made an attempt at a new explicitly correlated approach 

known as the transcorrelated method[49]. They start their ansatz with a very ambitious 

wavefunction 1.129 where O is a Slater determinant. The parameters dp, dq as well as 

the orbitals that enter the Slater determinant are varied in the transcorrelated method.

'P  =  C 4 > C  =  U i > i e F ^ ' rJ)
1 (1.129)

F(n,r j)  = ’L adqGq(ri,rj ) +  I pdp {gp(n) + gp(rj)}

Inserting the wavefunction just introduced into the Rayleigh-Ritz quotient to calcu­

late an energy would be an almost impossible task as the resulting integrals turn out to 

be 3A-dimensional. In order to simplify the calculation of energies Boys and Handy 

applied a similarity transformation of the Hamiltonian:

C~'ffC<D =  £® (1.130)

This approach is similar to the simplification of the coupled cluster equations. Since 

C is not a unitary the new operator C~XHC is no longer hermitian and the calculated
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energies are no longer variational. The integrals that arise after the trasformation are at 

most of three electron type. Therefore in the original publication only very small basis 

could be used. The transcorrelated method did not find widespread use but has recently 

received new attention[67].

1.8.2 R12 methods

The most widely used approach to explicit correlation is due to Klopper and Kutzelnigg[81, 

82, 84, 83] and can be summarised as R12 methods. The idea behind this approach is 

to complement the doubles expansion in Slater determinants by terms linear in the in­

terelectronic distance[79]:

T2 =tfj’alalajai + t$B(AB\ri2\ij)alalajai (1.131)

Although second quantisation is usually thought of as a projection onto a finite vec­

tor space equation 1.131 expresses the correlation factor in terms of a basis. This is 

possible by introducing an abstract complete basis which contains the smaller basis set 

that is used for a specific calculation[82]. The naming convention for this basis is out­

lined in figure 1.3.

With the ansatz 1.131 one is still left with difficult integrals of the kind 1.128. Klop­

per and Kutzelnigg realised that such integrals could be simplified by an approximation 

which is called resolution of the identity [82]. The identity operator in a finite orthonor­

mal basis can be written as:

i =  X|v><v| (1.132)
V

Exploiting this relation it is for instance possible to approximate three electron inte­

grals as products of two electron integrals:

(pr t \mr^ \qsu)  «  Y,{pr\rn\qv)(yt\r^\su)  (1.133)
V

It is obvious that this insertion leads to errors and it is crucial to have some under­

standing of this error. The atomic case is the most simple one to consider. The functions
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p, r, t, q, s and u all belong to the finite basis which only contains functions up to some 

maximum angular momentum. Both kernels r \ 2  and r^ 1 preserve symmetry which 

means that only functions v are of importance that lead to totally symmetric integrals. 

Most integrals are therefore expected to have finite L expansions. If all indices on the 

left hand side of 1.133 refer to s functions then only vectors |v) of the same symmetry 

are needed in the expansion. The insertion 1.133 can be improved by applying a special 

fitting basis[80, 69].

Apart from the resolution of the identity Klopper and Kutzelnigg introduced sev­

eral other approximations. The first of these is the Generalised Brillouin condition 

(GBC) 1.134 which is equal to the assumption that the Hartree-Fock equations have 

been solved exactly.

f A = 0 (1.134)

The generalised Brillouin condition is not a very drastic approximation as the Hartree- 

Fock energy converges exponentially and it should therefore be possible to find orbitals 

of reasonable quality. The extended Brillouin condition 1.135 which is also postulated 

in reference [84] is a bit more drastic as it assumes that the Hartree-Fock equations are 

also solved exactly in the complete basis.

f *  = 0 (1.135)

An important consequence of the extended and generalised Brillouin conditions is 

the decoupling of the explicitly correlated and determinantal parts in 1.131 in second 

order perturbation theory. This leads to an explicitly correlated MP2-R12 ansatz which 

is essentially the classical MP2 energy expression 1.110 plus correlated parts. Some 

further approximations are introduced in reference [82] which lead to the variants MP2- 

R12 A and MP2-R12 B which have an L convergence of 0(L-5 ) and 0(L-7 ) respec­

tively.

The R12 ansatz has found its way into various orders of perturbation theory [82, 

84, 83], coupled cluster theory[31] and even multi reference approaches [62]. The for­

malisms introduced in the reference [82] can also be applied when correlation factors
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other than r\2 [l]. It has recently been argued[6] that of all technicalities involved in the 

MP2-R12 calculations the form of the Jastrow factor is most important.
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Figure 1.1: Hartree-Fock and FCI potential energy curves of the hydrogen molecule
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Figure 1.2: Radial probability densities of a Hartree-Fock and a Hylleraas type 

wavefunction[65] on Helium
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Figure 1.3: Complete and incomplete basis naming convention
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Chapter 2 

Extrapolated Hamiltonians

2.1 Scaled fluctuation potential

The principal expansion provides a systematic way for constructing a hierarchy of basis 

sets with a well defined convergence behaviour of the correlation energy. These energies 

are connected to specific Hamiltonian operators in second quantisation. Dunning’s cor­

relation consistent basis sets cc-pVXZ [70,71,72,40, 73] are a particular representative 

of the principal expansions and can be thought of as forming a series where a particular 

element is simply written as:

f i X = hXpqa]paq +  ^ / pqrsala\asaq (2.1)

A very intriguing feature of this series is its well behaved convergence pattern. The 

error in the associated correlation energies obey the formula

E(X) = E(°°)+CX~3 (2.2)

very well. Although other formulae which contain more adjustable parameters or 

higher order terms in X  have been suggested for extrapolating the corelation energy the 

success of formula 2.2 is unrivaled. The application of 2.2 is very convenient because 

only two results are needed. Halkier et al. have argued [3] that this simplicity is si­

multaneously responsible for the good quality of extrapolations to the basis set limit as 

formulae with more adjustable parameters require more data points where the results
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obtained from smaller bases unavoidably introduce larger errors. Bak et al. managed to 

obtain results of chemical accuracy [42] with triple and quadruple zeta extrapolations 

of cc-pCVXZ/CCSD(T) calculations for reactions and atomisation energies. In the de­

velopment of the model chemistries W1 and W2 by Martin and 01iveira[38] where the 

ambitious goal was set to obtain mean absolute errors below 0.24kcal/mol formula 2.2 

was again found to perform best.

The reliability of the X-3 formula for extrapolating correlation energies obtained on 

atoms and molecules suggests that the contributions from a natural orbital is similar in 

both cases and that the contributions are strongly atomic. This leads to the interesting 

question whether it is possible to create a modified extrapolated Hamiltonian which 

gives complete basis set results in a finite basis by exploiting atomic information.

A convenient starting point for constructing such a Hamiltonian is provided by per­

turbation theory which splits the electronic problem into a zero order and a correlated 

contribution:

H =  //<°) (2.3)

One way to look at the error in the correlation energy for a truncated basis obtained 

via perturbation theory is to argue that the corrections introduced by in equation 2.3 

are too weak when X equals one. This leads to the idea that larger values for X might 

be used to recover the exact correlation energy. This can be thought of as balancing the 

inadequacies of the finite basis representation of via the strength parameter X. As 

the basis is increased the deviations of X from unity are necessarily expected to decrease 

with the improved description of the fluctuation potential H ^ \

In standard Rayleigh-Schrodinger perturbation theory one usually refers to the Hamil­

tonian with X = 1 as the “physical Hamiltonian”. Following the preceding argument 

where the variation of X is employed to recover complete basis set results and X =  1 

only holds for a complete basis it is possible to interpret the finite space representation 

Hamiltonian to be unphysical for X equal to unity.

Equation 2.4 shows a redefinition of the Mpller-Plesset Hamiltonian which contains 

an additional term (1 — t1). This term has been added to ensure that the Hartree-Fock
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energy is constant for all values of X.

= + (2.4)

This equation forms the basis for the extrapolated Hamiltonian approach. In its 

present form this equation is too coarse to be use directly as it implies the use of a single 

X for a specific system which goes against the idea of incorporating atomic information 

into the molecular Hamiltonian but more importantly violates the size extensivity con­

straint. At infinite separation of the constituent atoms the energy of the molecule should 

be equal to the sum of the energies obtained for the atomic energies. For a single X 

this is not the case as all atoms are scaled the same way and not with their appropriate 

scaling factors. Equation 2.4 is however sufficient to adjust the correlation energies of 

any atom or homonuclear molecule in the perturbation expansion to the complete basis 

set limit via:

E (n)(X) =  £  %mE {m) = E & lfBS (2.5)
m=2

For the coupled cluster approach which is also a perturbative treatment the func­

tional dependence on X is not as straightforward but a value for lambda can be obtained 

iteratively. The methods for determining a suitable X will be discussed after an imple­

mentation for heteronuclear species has been developed in the next section.

Equation 2.4 gives rise to some questions connected to the convergence of the per­

turbation expansion. It is known that the perturbative approach has a finite radius of 

convergence similar to a complex series [76].

The radius of convergence is directly connected to the appearance of degeneracies 

for some value of X. In standard Mpller-Plesset perturbation theory X is simply taken to 

be equal to one but for the general case one has to consider X to be an arbitrary complex 

number. It can be shown [32] that the perturbation expansion will converge for some 

range of X between 0 and R if there is no point Xd in the complex plane with |A,£>| < R 

where two states of the Hamiltonian become degenerate. In conventional perturbation 

theory R simply defines the unit circle and a point of degeneracy occurring within the 

unit circle is referred to as intruder state[32]. Since Xd is a complex number the intrud­
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ers are classified according to their real part 9t(A,£>). Depending on the sign of 

the terms front and back door intruder are used where the former are interpreted as inter­

ference from low lying excited states and the latter are caused by highly excited states. 

The back door intruders usually appear in bases which are flexible enough to describe 

these highly excited states such as example C in reference [32]. Recently the back door 

intruders have been given new interpretations by Stillinger [22] and subsequently by 

Goodson et al. [8]. Stillinger has argued that the singularity for SR(A,) < 0  corresponds 

to a phenomenon where the electron dissociate from the nucleus because the electron 

repulsion will change to an attractive force for small enough X. This idea has been 

investigated further by Goodson [8] for the case of finite bases.

The divergence usually only becomes apparent at very high orders of perturbation 

theory. Helgaker et al. [32] also point out that the divergence does not deny the use 

of MP2 energies but makes the use of higher order corrections questionable for some 

systems. Since in the present work values of X beyond one are used there is the risk of 

picking up intruder states which remain undiscovered in standard perturbation theory.

2.2 Implementation

As was outlined before simply rescaling the energy components in the perturbation 

series is too crude. The fluctuation potential in second quantised form provides access 

to scaling at a much lower level:

 ̂ =  2^ pqrsap a r a sa q ~  \§pqii ~  8 piqi\ a ]va q (2 .6 )

Since expression 2.6 only contains electron repulsion integrals the task of rescaling 

the fluctuation potential can be recast into a rescaling of the electron repulsion integrals

8 { X ) p q r s  =  cpfJcqvcrpcscXj X j  X j  X j  (//v|po) (2.7)

where each atomic function is scaled by an appropriate scaling factor. For a homonu- 

clear system all X are equal and the approach reduces to the simple formula 2.4. The
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method of calculating a specific scaling factor lambda to be used in equation 2.7 will be

discussed later.

The rescaling of the electron repulsion integrals causes some implementational prob­

lems as the Fock operator depends directly on the coulomb integrals.

This means that the Fock operator changes once the scaling is applied which is 

problematic as most post SCF programs reconstruct the Fock operator at some point. By 

introducing an additional one electron potential it is possible to keep the Fock operator 

constant. This potential is simply the difference between scaled and unsealed integrals 

contracted with the SCF density matrix:

Adding this potential to the one electron Hamiltonian guarantees that the Hartree- 

Fock solution remains unchanged. The above expression only holds for closed shell 

systems. For open shell systems the approach is similar but slightly more involved as 

there are several possible ways to perform a perturbative treatment.

Starting from an unrestricted Hartree-Fock determinant where the alpha spin orbitals 

|pa) and beta spin orbitals |p$) are eigenfunctions of the Fock operators

correcting potentials need to be defined for both 2.10 and 2.11 as alpha and beta 

electrons experience different potentials

Ff" =  V  +  X pP° (HP®) -  ^(A'Plva) (2.8)
pa

(Aiv|pa)--(jtip|vo)

( H p a )  -  ^ (p p lv a ) }

(2.9)

Fa = h + j v + f l - K 0- 

F p =  h + f t  + jV -K P

(2.10)

(2 .11)

AFa = + -  h ( \ ) a + J ( \ f - K ( \ ) a ) (2.12)

AFp =  (y“ +  7p - X ’|3) - ( / ( X ) a +  y(X)P-A'(X)P) (2.13)
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where the shorthand notation J(X) and K(k) implies the scaling of the electron re- 

pulion integrals in the same fashion as in equation 2.9. With Fa and the definition 

of the zero order operator is trivial

ff (0) =  F “ +  F p (2.14)

and it is straightforward to apply perturbative corrections. It is well known that 

perturbation theory applied to UHF wavefunctions is slowly convergent when spin con­

tamination is large [56, 39]. Spin contamined wave functions are inherently unphysical 

and it is desirable to eliminate the problem. Methods which limit the effects of spin 

contamination by projecting out [29, 55, 24] components with wrong (S2) or by impos­

ing some constraints on the orbitals [60] have been developed but they pose additional 

implementation difficulties. Therefore only restricted open shell calculations shall be 

considered in the following.

The main difficulty in implementing a restricted open shell perturbation theory is 

the definition of the zero order operator H^°\ With restricted orbitals where alpha and 

beta spin orbitals share the same spatial part it is still possible to set up operators Fa 

and F$ (equations 2.10 and 2.11) but the orbitals are no longer eigenfunctions of these 

operators. Technically it is easy to set up a zero order operator as a sum of weighted 

projectors

#<°> =  \p)ep{p\ (2.15)

where the weights zp correspond to the orbital energies. For a closed shell system 

the choice of ep is obvious. For open shell problems there are different possibilities to 

define the quantities ep [14, 61] which are not of concern at this stage. An important 

consequence of using definition 2.15 is that Brillouin’s theorem is no longer obeyed and 

singles contributions appear in the first order interacting space.

For the scaled fluctuation potential formalism the choice of the zero order system 

is dictated by the way post Hartree-Fock methods are implemented. The Fock operator 

employed by MOLPRO [2] has the following structure
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< [F]y [F + ^K°]is [F]*

F = [F +  $*»]„ [F], [F -k K ° } m (2.16)

V i n *  [F - 1 K °] as W a t  /

in the MO basis where i, y, . . s , t , ... and a, b , ... are doubly occupied, singly occu­

pied and unoccupied orbitals respectively. The correcting potential is therefore simply 

the difference of operator 2.16 with scaled and unsealed two electron integrals:

AF = F - F ( X )  (2.17)

2.2.1 Scaling factors

For heteronuclear species it turns out that the simple scaling

^At{p) ̂ At (a) ^  IPG) (2 -18)

where scaling parameters are simply atomic can lead to problems as will be shown 

in section 2.3.3. This is a result of the non locality of the basis functions. It is therefore 

more appropriate to construct scaling factors which contain weighted contributions from 

all constituent atoms:

(2.19)

The weight parameter Woa measures the extent of //s  involvement on atom A. One 

way to extract this information is via the nuclear attraction potential:

= = 1 ( 2 - 2 0 )

The integrals (ji\VA\fj) contain the nuclear charge Za which does not contain any 

spatial information. This suggests that the weight r~x on its own might be enough. In 

section 2.3.3 it will be shown that better results are obtained by including Z^.

An important aspect of the extrapolated Hamiltonian or scaled fluctuation potential 

approach is the choice of the scaling factor X. One of the main ideas is to transfer
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information from atomic calculations onto other species. Hence a scaling factor X for a 

specific Dunning basis is determined by adjusting the atomic correlation energy to the 

complete basis set limit:

Xvxz,al -  Ecor, al(VXZ,X) =  EcJ rSrflt (2.21)

Alternatively scaling parameters for a given atom might also be obtained from homonu- 

clear molecules. In section 2.3 these two possibilities will be investigated. For the hy­

drogen atom the only way to obtain scaling parameters is to resort to H2 following the 

idea of Almlof and Taylor [27] also used by Dunning [70]. This is also true for alkali 

metals when only the valence electrons are correlated.

An even more important question is how to obtain the complete basis set limit. For 

atoms it is possible to perform explicitly correlated calculations but many molecules 

might be out of reach. Ideally the same method to estimate the CBS result should 

be used for the atoms and molecules in order to be able to assess the transferability. 

Furthermore MP2-R12 was the only explicitly correlated wavefunction model which 

was available for this work which would mean a restriction to second order perturbation 

theory for the extrapolated Hamiltonian. The method of choice is therefore to perform 

two point extrapolations of the correlation energy on atoms and molecules via the well 

known formula:

E(X) = EC0rr(o°) +  o r 3 (2.22)

Having established a calibration procedure for X and an estimation for the complete 

basis set the formalism is fully specified.

2.3 Results

2.3.1 Rare gas dimers

The first examples to be studied with the extrapolated hamiltonians are the dimers of 

Helium, Neon and Argon. The calculated well depths for these systems in //E/, are
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listed in table 2.1. The calculations were performed at the singles and doubles coupled 

cluster[l 1] level with the doubly augmented Dunning bases [70, 71, 72, 40, 73] and the 

counterpoise correction. The column headers conventional, scaled and X-3 refer to the 

standard implementation, the extrapolated Hamiltonians and the two point extrapola­

tions with X-3 . The complete basis set limit is taken to be the two point extrapolation 

of the two largest unsealed calculations. The scaling parameters were obtained by ad­

justing the atomic correlation energies for the d-aug-cc-pVXZ bases to the complete 

basis set limit which was again taken to be the 5—>6 extrapolated energy. The values of 

the scaling parameters are given in appendix A.l on page 89.

The calculations for the Helium dimer show that the extrapolated Hamiltonians pro­

vide consistent improvements over the conventional calculations but the accuracy and 

stability of the extrapolation formula remains unrivalled. The dissociation energies for 

the Neon dimer are also improved by the scaled fluctuation potential although the bind­

ing is severely overestimated for the smaller bases and the series of extrapolated Hamil­

tonian results now converges from below. The triple zeta result shows no net improve­

ment as it deviates by roughly 14^E/j from the CBS limit which is approximately the 

error in the unsealed calculation. The well depths obtained for the Argon dimer are 

substantially improved by the extrapolated Hamiltonians. The triple zeta result is quite 

far away from the CBS limit but still much better than the conventional d-aug-cc-pVTZ 

calculation. In general the results obtained for the rare gas dimers provide a first indi­

cation that the extrapolated Hamiltonian scheme can be used to improve the description 

of electron correlation which is the main source of interaction energy between rare gas 

atoms.

2.3.2 Calibration models

From a chemical standpoint the rare gas dimers are not the most interesting species 

and the next logical step is therefore to apply the extrapolated Hamiltonians to other 

problems. Before doing so it seems appropriate to investigate different possibilities for 

calibrating the scaling parameters. The scaling factor for a given element can either 

be obtained by adjusting the atomic correlation to the complete basis set value or al-
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X conventional scaled x - 3

He2*

D 11.40 20.65

T 24.32 27.75 29.15

Q 27.25 28.64 29.52

5 28.35 29.01 29.47

6 28.83 29.21 29.44

oo 29.44

Nez*

d 48.90 125.24

t 88.45 116.58 104.65

q 100.16 112.14 108.89

5 100.22 106.13 100.87

6 101.28 104.70 102.63

oo 102.63

Ar2a

d 107.22 337.75

t 269.30 357.85 339.86

q 294.04 330.92 314.08

5 305.88 326.54 317.47

6 316.62 328.65 330.97

OO 330.97

* r= 5.62ao, b r= 5.86ao, c r= 7.143ao 

From tables 5, 8 and 12 of ref. [77]

Table 2.1: Counterpoise corrected well depths of the rare gas dimers He2 , Ne2 and Ar2 

in jjEh obtained at the d-aug-cc-pVXZ/CCSD level.
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tematively by applying the same procedure to a molecule that only contains atoms of 

that specific element. These two variants can then be compared by analysing the errors 

in the atomisation energies of the homonuclear species. Table 2.2 gives some simple 

statistics of the two calibration variants for the elements Carbon, Chlorine, Fluorine, 

Nitrogen and Oxygen. The values are the root mean square error of the dissociation 

energy for the scaled Hamiltonian in a particular Dunning basis cc-pVXZ compared to 

the complete basis set limit which was obtained from a quintuple-sextuple zeta extrap­

olation. The molecular calculations were carried out at the experimental equilibrium 

distances which are given alongside the scaling parameters in appendix A. 1 on page 89. 

The electronic states of C2 and O2 used in the calculations are and 3Z“ . As can 

be seen from table 2.2 the difference between atomic and molecular calibrations are 

relatively small but favouring the molecular calibration overall. For the second order 

Mpller-Plesset results the differences are more pronounced than for the Coupled Clus­

ter calculations. The deviations are also more important for the smaller bases which is 

important because the extrapolated Hamiltonian approach aims to provide high quality 

results for small bases. It seems therefore justified to use the molecular calibration for 

the remaining examples in this chapter.

cc-pVXZ MP2 CCSD[11]

atomic molecular atomic molecular

D 0.036699 0.019083 0.020563 0.014427

T 0.009184 0.006319 0.005461 0.004676

Q 0.003792 0.002717 0.002118 0.001848

5 0.001853 0.001359 0.000827 0.000677

6 0.001122 0.000841 0.000472 0.000388

Table 2.2: Root mean square error of the atomisation energies in E/* for different cali­

bration models of the species C2 , CI2 , F2 , N2 and O2 obtained with different calibration 

models of the extrapolated Hamiltonian approach.
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2.3.3 Heteronuclear application

For the heteronuclear case there are different ways to perform the scaling. The simplest 

variant is to scale each basis function based on the atom it is centred on:

\fc(p) \o(o) I P°) 

In table 2.3 second order correlation energies for the hydrogen fluoride molecule 

at its experimental equilibrium distance are given. The scaling parameters have been 

obtained via a molecular calibration and are given in appendix A. 1. The same naming 

conventions as before are applied. As can be seen from the second column of table 2.3 

the extrapolated Hamiltonian results diverge more strongly from the complete basis set 

limit with increasing X.

The erratic behaviour leads to the question whether the increased strength parameter 

leads to a diverging perturbation expansion. Unfortunately it is not simple to give an 

answer as one would have to evaluate very high orders of perturbation theory. Helgaker 

et al. have shown [32] a diverging M0ller-Plesset series for the hydrogen fluoride with 

the aug-cc-pVDZ basis1 which is caused by highly excited intruder states. It does not 

appear very likely that the bases used in table 2.3 are flexible enough to describe such 

highly excited states and it is also unlikely that such an effect can be seen already at 

second order.

A similar behaviour to the one shown in table 2.3 can also be observed in other 

molecules such as water and carbon monoxide (tables A.4 and A.5 in appendix A.2.1 on 

page 91). These species are sufficiently different from hydrogen fluoride and it appears 

reasonable to assume that the divergence in the presented calculations has some other 

causes. Effective scaling parameters for H2 , F2 and HF are given in table 2.4 which can 

be simply obtained via the formula X(X) = y/E(oo)/E(X) for second order energies. 

This analysis reveals that the scaling parameters obtained for the Fluorine molecule and 

Hydrogen fluoride are essentially the same which suggests that the problems might arise 

from the hydrogen parameters.

Figure 2.1 shows a plot of the correlation energy for Hydrogen fluoride where the

1 See especially figure 9 of reference[32]
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Hydrogen fluoride, r = 0.91480A°, MP2

cc-pVXZ conventional scaled X~3

D -0.20161883 -0.31081901

T -0.27176402 -0.31843343 -0.30129884

Q -0.29750609 -0.32022988 -0.31629084

5 -0.30829455 -0.32248470 -0.31961358

6 -0.31296766 -0.32502897 -0.31938677

~  -0.31938677*

a From reference [1]

b 5—>6 X~3 extrapolation

Table 2.3: Extrapolated Hamiltonian correlation energies for HF in Hartrees

scaling parameter on the Hydrogen atom is varied between 1.024 and 1.036. The straight 

line corresponds to the complete basis set limit. Intuitively it would be expected that 

the reduction of the scaling factor on hydrogen atom leads to a decreasing correlation 

energy which happens to be true only for a certain region. In the actual calculation 

for the quadruple zeta basis the hydrogen functions were scaled with a factor of 1.017 

which is far off the left hand side of the plot.

Even though the hydrogen scaling parameters differ quite drastically from the Flu­

orine and Hydrogen fluoride parameters for all bases only the larger basis sets seem to 

be susceptible to this problem. Since the higher order bases contain more diffuse func­

tions the allocation of a specific function to an atom becomes questionable which is a 

well known phenomenon in the context of the Mulliken population analysis. It seems 

therefore more appropriate to use a weighting scheme to calculate the contribution of a 

specific function to an atom. Such a weighting scheme was outlined in section 2.2 and 

shall be used in the following.

Correlation energies for the hydrogen fluoride molecule are listed in table 2.5 where 

the scaled Hamiltonian energies have been obtained with the weighted scaling parame­

ters. It can be seen that the scaled fluctuation potential now provides a convergent series 

of values. The double and triple zeta values are quite far away from the complete basis



CHAPTER 2. EXTRAPOLATED HAMILTONIANS 55

cc-pVXZ h 2* f 2* HFC

2 1.139 1.245 1.259

3 1.040 1.081 1.084

4 1.017 1.036 1.036

5 1.009 1.018 1.018

6 1.005 1.010 1.010

“  r= 0.741 44A 

b  r= 1.41193A 

c r= 0.91480A

From reference [ 1 ]

Table 2.4: Effective MP2 scaling factors for H2 , F2 and HF

Hydrogen fluoride, MP2/cc-pVQZ, r = 0.91680 A
-0 .319

-0.31905

-0.3191

-0.31915"2
LU

Ap = 1.03557427
8

LU -0.3192

-0.31925

-0.3193

*coM 
CBS limit

-0.31935 —  
1.024 1.026 1.028 1.03 1.032 1.034 1.036

A

Figure 2.1: Effect of the H scaling parameter on Hydrogen fluoride correlation energy
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Hydrogen fluoride, r = 0.91480Aa, MP2

cc-pVXZ conventional scaled X~3

D -0.20161883 -0.29808677

T -0.27176402 -0.31078251 -0.30129884

Q -0.29750609 -0.31570539 -0.31629084

5 -0.30829455 -0.31778728 -0.31961358

6 -0.31296766 -0.31857131 -0.31938677

oo -0.31938677'’

a Data from reference [1] 

b 5—>6X~3 extrapolation

Table 2.5: Extrapolated Hamiltonian correlation energies for HF in Hartrees with 

weighting

set limit but are much lower than their unsealed counterparts. The corrected energies 

for water and carbon monoxide are provided in appendix A.2.1 which show the same 

improved behaviour.

The weighting performed on the scaling factors includes the nuclear charge which 

is not necessary for measuring the spatial extend of the basis functions. This leads 

to the question of how the inclusion of the nuclear charge affects the scaled energies. 

Table 2.6 lists differences between the scaled correlation energies and the complete 

basis set limits for the weighting scheme with and without inclusion of the nuclear 

charge for the molecules hydrogen fluoride and carbon monoxide. For the latter the 

effects of setting the nuclear charge equal to one are small. The correlation energies 

of Hydrogen fluoride are more susceptible to Z. From table 2.4 it can be seen that the 

effective scaling parameters for HF are equal to the ones of the Fluorine molecule. 

This explains the results obtained in table 2.6. Similar results have been found for 

other molecules that contain hydrogen. The hydrogen atom could in principle be scaled 

with the same factor as the atom it is bound to without violating the size extensivity 

requirement as the isolated hydrogen atom does not have a correlation energy. But 

this could prove problematic for the calculation of potential energy surfaces where a
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cc-pVXZ HF CO

Z Z = 1 Z Z =  1

D 0.02130000 0.04682832 0.01444382 0.01764713

T 0.00860426 0.02049906 0.00628937 0.00739871

Q 0.00368138 0.00934852 0.00280882 0.00330160

5 0.00159949 0.00454067 0.00136008 0.00160374

6 0.00081546 0.00261472 0.00057049 0.00071403

Table 2.6: Weighting effect of the nuclear charge relative to the complete basis set limit

proton transfer occurs as there would be a sudden change in scaling parameters. Since 

one attempts to implement a generally applicable approach using the weighting scheme 

with the nuclear charge included seems more appropriate.

2.3.4 Atomisation energies

The main aim of the extrapolated Hamiltonian method is to provide high quality cor­

relation energies for finite bases. Although the previous results have shown that the 

approach cannot fully close the gap between the complete basis set limit and the trun­

cated bases it seems worthwhile to assess the performance of the approach for atomisa­

tion energies on a small test set of molecules. The species chosen for the statistics are 

C 02, HNO, CH20 , N2, C2H2, NH3, H20, H2, HF, F2, CO, HCN. This is essentially 

the test set used by Bak et al. [42]. The molecules ethene and methane had to be re­

moved because they were computationally out of reach within the cc-pV6Z basis as the 

current implementation of the extrapolated Hamiltonian can only handle C\ symmetry. 

The geometries were optimised with the cc-pCVXZ basis using CCSD(T) with core 

correlation.

The root mean square errors in kJ/mol for the mentioned test set are listed in ta­

ble 2.7. Chemical accuracy would be reached for an error below one kcal/mol which 

corresponds to approximately to 4.2 kJ/mol. The term chemical accuracy in the present 

context refers to the deviations from the extrapolated basis set limits and a compari-
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MP2, kJ m o r 1

VXZ conventional scaled x - 3

2 116.925 44.007

3 42.616 14.112 24.302

4 17.877 5.973 3.430

5 8.967 2.638 0.801

6 5.049 1.778 0.000

Table 2.7: Root mean square error of the atomisation energies of the molecules: CO2 , 

HNO, CH20 , N2, C2H2, NH3, H20, H2, HF, F2, CO, HCN

son with experimental values might reveal much larger errors which also depend on the 

choice of the N electron model as outlined in reference [42]. As expected the conven­

tional MP2 atomisation energies differ more than 1 kcal/mol from the complete basis 

set limit even for the cc-pV6Z basis. Although the scaled results are much better than 

their unsealed counterparts they are only superior to the extrapolated values up to triple 

zeta level.

2.3.5 Properties

Although the electronic energy is important to assess the performance of a method 

derivatives of the energy are of equal importance because they are directly connected to 

observables. This demands a test of the extrapolated hamiltonians for properties. The 

equilibrium bond length and harmonic frequencies are very easily obtainable for a di­

atomic molecule. These properties have been calculated using the conventional MP2, 

the scaled fluctuation potential and the X ~3 extrapolation scheme. The parameters have 

been obtained by fitting a fourth order polynomial to 5 points on the potential energy 

surface around the equilibrium bond lengths. The points and the spacing between them 

were chosen in such a way that the frequencies of the SCF contributions determined this 

way match the values that are obtained with analytical derivatives to within 1 cm-1. The 

resulting equilibrium bond lengths and vibrational harmonic wavenumbers are given in
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X unsealed scaled x - 3

Equilibrium bond lengths [A]

2 1.1472 1.1648

3 1.1385 1.1437 1.1372

4 1.1346 1.1368 1.1337

5 1.1341 1.1351 1.1337

6 1.1339 1.1344 1.1337

oo 1.1337

Vibrational wavenumbers [cm 1 ]

2 2113.4 1972.3

3 2120.5 2077.6 2126.6

4 2127.5 2109.0 2131.4

5 2127.1 2118.0 2127.2

6 2127.1 2122.4 2127.2

OO 2127.2

Table 2.8: Equilibrium bond lengths and harmonic wavenumbers of Carbon monoxide 

obtained at the MP2 level

table 2.8. The 5—>6 extrapolations are again taken to be the complete basis set limit.

The equilibrium bond lengths converge quite quickly for the extrapolated calcu­

lations and already an extrapolation with triple and quadruple zeta data provide CBS 

quality. The extrapolated Hamiltonian on the other hand fails quite badly at reproduc­

ing the basis set limit. The bond lengths are severely overestimated for the double and 

triple zeta bases and the convergence is generally very poor. The scaled cc-pV6Z value 

is even worse than the conventional value. For the vibrational wavenumbers the findings 

are similar. The extrapolated Hamiltonian completely fails at recovering properties.
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2.4 Discussion

Even though the extrapolated Hamiltonian reduces the errors in the calculated corre­

lation energies its application is limited. The X~3 extrapolation scheme provides far 

superior results at estimating complete basis set results even for small bases. Although 

the scaled fluctuation potential provides improved results compared to conventional cal­

culations the differences to the exact basis set limit are substantial. It is vital for a new 

description model for electron correlation to perform well for small basis sets in order 

to be computationally tractable for medium size molecules. The analysis of atomisation 

energies in table 2.7 has revealed that deviations within chemical accuracy are only pos: 

sible at the quintuple zeta level whereas the extrapolation scheme already succeeds with 

a triple quadruple zeta extrapolation. A further complication with the scaled fluctuation 

potential is that it can only deal with C\ symmetries. An attempt to prove the invariance 

of the approach under the transformations of the point group of the Hamiltonian was 

unsuccessful for the weighted scaling procedure which reduces the efficiency of the ap­

proach for small molecules. This is however only a minor drawback as large and flexible 

molecules will most probably not contain a large number of symmetry elements.

The performance of the extrapolated Hamiltonian for the calculations of properties is 

especially disappointing. Much chemical insight can be gained from equilibrium struc­

tures and vibrational frequencies and it is therefore vital for any method to perform well 

at these tasks. The failure of the scaled Hamiltonian approach in these cases prevents 

almost any practical use of the method.
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Chapter 3 

Completeness Relationships

3.1 Introduction

The algebraic approximation in quantum chemistry implies using a finite basis which 

is conceptually equivalent to a projection. This insertion replaces operators by tensor 

elements

~ v 2 -  Tpq = ( p \ - - v \ )  (3.1)

-*■ gpqrs =  { p A r  12* I?5) (3 .2 )
r \2

~  Vpq = ( p \ - Z Ar^ \q )  (3.3)
r\A

which obscures their mathematical properties to some extent. Within the space of 

finite functions the singularity of the kinetic operator is suppressed and the local energy 

is no longer constant. The projected Hamiltonian thus leads to a wrong energy even 

when acting on the true wavefunction

<4'm « | / ? | ' i W )  „  ,  ( % r u e \ P f i P \ ' ¥ true) „
At, la, ' -T = E >rue *  ■ ' = Eapprox (3.4)

true] * true/ \x true\* true)

where the projector P  contains all Slater determinants that can be constructed from 

a given finite basis. The use of Slater determinants in equation 3.4 generates the tensor 

elements outlined above and simultaneously guarantees a complete decomposition of 

the N particle wave function f ¥ t rue) into finite basis products.
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This projection gives rise to the poor convergence of the correlation energy in the 

determinantal expansion. However much is known about the functional properties of 

the true wavefunction. The finite basis projector is of course also a known quantity. 

Exploiting both facts one might be able to gauge and correct the truncation error in an 

ad hoc fashion for a specific electronic problem by introducing a new operator. This 

is illustrated in equation 3.5 where the matrix elements Mpq are added in order to re­

trieve the exact energy with the approximate wavefunction |J£). This is the idea behind 

completeness relationships or the projected Hamiltonian approach.

hpq&paq “1“ ~ 8pqrsQpGr&sGq H" ̂ pqaJ>aq2 H 1^0 — E eXaCt\K)  (3 -5 )

In equation 3.5 the new object M  is represented as a one particle operator even 

though a two particle operator would seem more obvious for correlation effects. It is 

however much more convenient to use a one electron object as the number of matrix 

elements only grows with 0(N2). It can also be argued that a one electron object is 

able to capture two electron information via some inherent contraction of higher order 

density matrices.

3.2 Definition

Given equation 3.5 the important question is how the correlation information should or 

can be extracted. Although |*¥exact) is unknown a Slater-Jastrow type wavefunction[59] 

can provide a reasonable approximation to exact)- Since the SCF energies converge 

rapidly to the complete basis set limit it seems appropriate to define the new operator 

Mpq in such a way that it accounts only for electron correlation. Therefore the ma­

trix elements Mpq will be calculated once a Hartree-Fock solution has been obtained. 

The zero order wavefunction also contains important information about a specific sys­

tem which suggests the substitution of the exact wavefunction by a trial wavefunction 

which is simply a product of the Hartree-Fock determinant multiplied by a Jastrow fac­

tor as shown in 3.6. The Jastrow factor is given in terms of the complete basis second 

quantised formalism introduced in section 1.8.2 on page 38. The concrete form of the
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correlating functions / ( r t;) will be discussed later

I**’trial)  =  -W  J  =  1 +  \  {PR\f(rij)\QS)ala\aQas (3.6)

In Jastrow’s original work[59] the correlation factors were N electron functions con­

structed as products of two electron functions

n / M  (3-7)
i< j

which unavoidably lead to 3N dimensional integrals. Correlation factors of this 

complexity are mainly in use in the framework of Quantum Monte Carlo Methods[85, 

36]. The linear correlation factor presented in 3.6 can nevertheless be related to more 

complex variants following the ideas of the transcorrelated method via an exponential 

representation

=  ! +  £ / ( „ ,) + ' - ( + . . .  (3.8)
i> j Z \ i > j  J

where the simple linear form can be interpreted as a truncation of the MacLaurin 

series at the linear term.

What is needed is a formalism that allows to determine the error introduced by the 

projection or alternatively determine M  in such a way that the errors introduced to the 

finite basis Hamiltonian are minimised. Equation 3.9 gives the difference between a
A

first quantised operator O and the new operator M  when applied to a wavefunction. It 

is this error that should be minimised in order to make M  recover the properties of 0  in 

the finite basis.

A =  ( d  — Mpqdpdq^ I*¥trial) =  ( #  “  Mpqd^d^j 7|0> (3.9)

Equation 3.9 is not directly suitable for the determination of M  as it is not positive 

definite. For the purpose of minimisation the quadratic error is a much better choice.

min(0|7^ ( o  — Mpqd^dq'j 7|0) (3.10)
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To complete the formalism a concrete choice for the first quantised operator O has 

to be made. Inserting the whole Hamiltonian would be rather unpractical as the im­

plementation would probably have an associated complexity similar to other explicitly 

correlated methods. It can be argued that the coulomb terms are represented correctly 

in the second quantised Hamiltonian whereas the kinetic energy operator is represented 

inadequately by the one particle basis as the former still contains the singularity whereas 

the latter does not. The choice is therefore to replace O by the kinetic energy operator 

T and making 3.10 stationary to variations with respect to Mpq:

2 1 
—  (0 \ j ' (T vwJv aw - M pqalaq) j \ 0 ) = 0  Tvw = ~ -{V \V 2\W) (3.11)

With the previous definitions the second quantised Hamiltonian takes a new form 

where the matrix Mpq replaces the kinetic energy completely:

With this Hamiltonian it is obvious that all post Hartree-Fock approaches do not 

need any implementational amendment. After calculating the matrix elements Mpq it is 

however necessary to go through a Hartree-Fock step again as the Fock matrix will be 

no longer diagonal with the new kinetic energy operator. Some care needs to be taken in 

obtaining Mpq as the SCF state should remain unchanged. This issue will be addressed 

in the next section.

This equation reveals an advantage of the projected Hamiltonian approach: By re­

placing the kinetic energy operator it will be possible to reuse codes for post Hartree- 

Fock methods.

The effect of the operator M  should undoubtedly be to lower the electronic energy. 

It might seem counter intuitive that this is possible via a redefinition of the kinetic 

energy operator as one usually connects the contributions of the kinetic and potential 

energy operators to the whole electronic energy via the virial theorem. Thus a lower 

total energy would be associated with an increased kinetic energy. But this is only true 

if the wave function is “fully relaxed” which is not necessarily true for approximate
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wavefunctions[74]. The trial wavefunctions outlined above do not belong to this cate­

gory. Table 3.1 lists virial coefficients for different wavefunctions on the helium atom. 

It can be seen that the minimal basis SCF wavefunction is the only one to exactly fulfil 

the virial theorem. Even the variationally optimised r \ 2  dependent wavefunction devi­

ates from the expected value. This discrepancy would disappear if the exponent a  was 

simultaneously optimised. It can also be seen that the expectation values of the kinetic 

energy is lowered by the introduction of the correlation factor which justifies the choice.

pp> (T) (V) virial

|0> 2.848 -5.695 2.00

(l +  l /2 r12)|0) 2.297 -5.150 2.242

(co +  cm2)|0) 2.536 -5.411 2.134

|0) =  e -“('i+r2)j a  =  27/16

Table 3.1: Virial coefficients for different wavefunctions

3.3 Configuration space of the Jastrow factor

As outlined before the new operator M  should only account for correlation effects. In 

other words only the matrix elements Mab should be different from the true kinetic 

energy operator in order to leave the Hartree-Fock energy unchanged. But the trial 

wavefunction introduced contains large components outside the virtual space. First there 

is the constant factor one but it is also expected that important components will arise 

from integrals such as {ij\f(nj)\ij)  in:

Î tr ia l)  — + 2 ( ^ ^ \ f i rij)\Q^)a P̂aRaSaQSj  I®) (3.13)

It is therefore necessary to constrain the problem in such a way that the matrix 

elements of M  which contain indices in the occupied space remain unchanged. The 

most simple way to enforce this property is to introduce Lagrangian multipliers:
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dMpg
d

dkpi

[ ( % r i a l \ (T n - M p , , ) 2 \ % M } + ^ p i ( M p , -  Tpi) 

; [Wrtoil {Ttu -  Mpqf  I %rial) +  Xpi(Mpi -  Tpi)

=  0 (3.14)

=  0 (3.15)

The simplicity of this approach is certainly tempting. But this approach remains 

slightly unsatisfactory as the wavefunction still contains the occupied contributions 

which are expected to find their way into the virtual part. These contributions might 

be quite large because the Hartree-Fock energy is roughly 99% of the whole electronic 

energy and the virial theorem is well obeyed. An alternative method to obtain a purely 

virtual formalism is to use the strong orthogonality projector

Pso =  (1 — l*> <*l) (1 — |y>01) (3.16)

which removes all occupied components from the Jastrow factor and the problem 

can be recast in the following form:

^ — (0\j lo(TTu - M ab)2Jso\0) (3.17)

Introducing the shorthand notation R for the integrals over the correlating function 

f (n j )  the strongly orthogonal Jastrow factor J$o takes the form:

JSO =  RpQRS^p^r^S^Q ~ RiQRSa]^r^S^Q ~ RpQiS^p^Jas&Q +  ̂ i Q j S ^ J (3.18)

Although both approaches yield the desired properties the strong orthogonality ver­

sion turns out to be favourable. In appendix B.3 a proof is given that only two electron 

contributions have to be evaluated in the strong orthogonality framework whereas the 

Lagrangian multiplier leads to six electron contributions. The term contribution here 

refers to the number of occupied indices that arise from the evaluation of the expecta­

tion value of the SCF Slater determinant. Both approaches lead to the same complex 

many electron integrals that have to be simplified.

The Lagrangian multiplier method as well as the strong orthogonality approach have 

been implemented in MOLPRO [2]. In the following the focus will be on the strong 

orthogonality implementation but results for both variants will be given later.
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3.4 Evaluation of the quadratic error

The implementation process of the strong orthogonality and the Lagrangian multiplier 

variant are very similar. The differences are mainly in the linear system that determines 

the actual matrix elements which in the latter case has a higher dimensionality due to 

the constraints. The steps involved in obtaining concrete expressions for the quadratic 

error are:

• Normal ordering of the second quantised operators

• Contracting equal expressions

• Evaluation of the expectation value

• Reduction of multi centre integrals

All of the above steps can be performed within a computer program which al­

lows the rapid implementation of both the strong orthogonality and Lagrangian mul­

tiplier method. Details on the employed methods for code generation are given in ap­

pendix B.5. A derivation of the strong orthogonality expressions is carried in the next 

section to illustrate the types of expressions that have to be dealt with and to support ar­

guments in later sections. The explicit equations arising from the Lagrangian multiplier 

formalism are omitted because they turn out to be to numerous. There are around 100 

second quantised operators and 3700 expectation values to be handled in the Lagrangian 

approach.

3.4.1 Derivation of the strong orthogonality expressions

A useful starting point for the derivation is to bring the quadratic term (T — M)2 into 

normal order:
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(TTuOjau -Mgbolflbj =  MabMcda^aladab (3.19)

abMcd$bc®a®b 

— TTuMab§UaOrab 

-MabTTU^bT^lau
 ̂ +  >L

—2TTuMabaTa'aabau

The terms quadratic in the true kinetic energy operator T have been omitted as they 

will drop out once the derivatives with respect to Mab are taken. The next step is to put 

the above terms between the Jastrow factor

Jso  =  ~^RpQRSd]>a\asaQ -  -RiQRsa]a}RasaQ

-  ^RpQisapaJasag +  ^RiQjsa]a]asaQ (3.20)

and its hermitian adjoint J^q. The matrix elements {PR\f(rij)\QS) have been re­

placed by R p q r s  and a factor J has been included which corresponds to a correla­

tion factor of \ r \ 2 . The factors have been included to maintain consistency with ap­

pendix B.2 which lists the complete strong orthogonality expressions but they could 

have been omitted as the determining equations are only unique up to an arbitrary mul­

tiplier.

The derivation proceeds by multiplying the terms quadratic in M  with Jso  from the 

right and by J^0 from the left:

JsoMabalabMcdaladJso =  ••• (3.21)

The development can be simplified by ignoring all terms in Jso that contain occupied 

indeces in a first step. Normal ordering then leads to:
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4 R vw xY alax ar aw ^  ( M o o la h )  (M ^ a la ^  (^RpQRsa}pa}RasciQ^ =

^ R  VaX cM abM cd RbQdSa y  ̂ X a Sa Q +  -^RvaXT^abh^bdRdQTS^y^x^SaQ  +  • • • (3.22)

In the preceding equation a factor of four arises in both terms on the r.h.s. as a result 

of the possible contractions of the elementary operators and leads to the overall factor 

of 1 /4. The terms with particle rank greater than two have been omitted as they do not 

contribute to the determining equation when a Hartree-Fock reference determinant is 

used. In order to preserve strong orthogonality the normal ordering has to be repeated 

with the other terms that are obtained by multiplying out j \ 0MabĈaabMcda[adho- It 

is however simpler to analyse directly where contributions arising from the occupied 

space have to be eliminated and it is obvious that the following term needs to be added

— -^RvaxMabMbdRdQiSdydxaSaQ (3.23)

in order to remove single excitations. For the mixed contributions between M  and T 

there are three different contributions (from equation 3.19)

MahThua\au Tj,aMabcij'Cib (3.24)

where the second and third term are simply adjoint expressions. Evaluating the two 

electron expression analogous to 3.22 yields:

( ^ R v w x Y a y O x a Y a w ^  ( —Z M a b T T u a lo rW a b ')  ( ^ R p q r s ^p ^r ^s ^ q ^  =

— 2 ^ VTXa^obTTuRuQbSavax aSaQ +  • •. (3.25)

An inspection of the contracted indices reveals that the following projector terms are 

needed as well:
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2RViXaMabTiuRuQbSavaXaSaQ (3.26)

2RVTXa^abTTiRiQbS^v^xaSaQ (3.27)
1 + t  

-  ^ R V iX a M a b T ijR  jQ b S & ya x a Sa Q  (3.28)

The operator contraction —MabTi,ua\au results in:

^ v w x Y O y a ^ c i Y a w ^  ( —M a b T b u a la u ^ ) ( ^ R p q r s ^ p ^ r ^ s ^ q ^  =

-  ^ RVaXuMabTbTRTQUsayaxasaQ + . . .  (3.29)

The corresponding terms to remove occupied components are:

~̂RVaXTMabTbiRiQTSayOxasaQ (3.30)

^ RvaxMabTbTRTQiSaya}x asaQ (3.31)

-  ̂ RvaX jMabTbiRiQjsaya}x asaQ (3.32)

The terms involving form TjaMab can be obtained by forming the adjoint of the last 

four expressions.

3.4.2 Resolution of the identity

The expressions obtained in the previous section contain summations over the complete 

basis sets. These terms need to be modified to allow an efficient computation. One 

example is the following expression quadratic in the new operator:

RpaRTMabMbdRdQTS = MabMbd{PRd\f{r\2)f{r2?>)\aSQ) (3.33)

The three electron integral can be avoided by using the Resolution of the identity 

approximation[82] leading to a product of two electron operators:

(PRd\f(r\2 ) f(r23)\aSQ) «  (PR\f{rn )\ap){pd\f{rn )\SQ) (3.34)
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When evaluating expressions that contain both the true and the new kinetic energy 

operator slightly more care has to be taken. Replacing the summation over U in the 

following term would only lead to matrix elements Mab which are equal to Tab.

RpaRT Mab TbU Ru QT s (3.35)

Letting the Laplacian in T act directly on the correlating function leads to:

TbuRuQTS =  TRbQTS = - ^ ( b T \V 2xf { r X2)\QS) (3.36)

Expression 3.35 now reads

RpaRT Mab T RbQT S (3.37)

which still contains a three electron contribution which can be simplified by replac­

ing the index T with a function of the finite basis. For the adjoint of equation 3.35 the 

only difference is the appearance of the following type of integral:

RTpQRs = - \(P R \f{rn )V \\Q S)  (3.38)

There is a second type of three electron integral where both indices of the true kinetic 

energy operator are in the complete basis 3.39. In this case resolution of the identity has 

to be applied with more care.

RpTRaTTuMabRuQbS (3.39)

It seems tempting to only replace the index T with the finite basis to arrive at a 

product of two electron operator because it is the term V\ r \ 2  which gives rise to the

singularity in the kinetic energy. It turns out however that the right way to approximate

expression 3.39 is by introducing the finite basis projection in a symmetrised way:

RpTRaTTuM abRuQ bS ~ ^  {R TppRaM abRpQbS + R ppR aM abT RpQbs)  (3.40)
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The underlying reason behind this insertion is that an asymmetric approximation 

will lead to determining equations where M  is no longer hermitian and thus Mab /  Mba 

which is shown in appendix B.4 on page 101.

3.4.3 Linear System

With the second quantised expressions of the previous sections expectation values for 

a closed shell Hartree-Fock determinant can easily be obtained and this step shall be 

omitted. It is therefore assumed that closed shell expressions such as

Ria jc^ab^cdR-bid j Jĉ ab^cdRb jdi (3.41)

are already available. Thus the next step is to take the derivatives with respect to M:

dM b ( j r u aTau ~Mobal<*b) /so|0) =  0 (3.42)

This expression is slightly too general because the off diagonal elements Mab are re­

lated via the hermitian constraint which leads to ^N(N + 1) degrees of freedom instead 

of N2. If the resolution of the identity is applied in the symmetric fashion discussed 

previously the correct result is obtained even when taking the derivatives with respect 

to Mab and Mba at the same time. For the sake of computational efficiency and mathe­

matical elegance it is better to employ the relation Mab = Mba to reduce the size of the 

linear system which then reads:

Acd,abMab — Red b c ^  d (3.43)

This equation has a solution if the matrix Aĉ ab ls non-singular. This turns out to be 

the case in all calculations that were carried out. A close investigation of the terms that 

contribute to the matrix A reveals that under most circumstances the matrix A should in 

fact be singular as a result of the symmetry properties as will be shown below.

The true kinetic energy operator is a symmetry conserving operator which means 

that integrals over functions belonging to different irreducible representations i and j  

vanish:
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( p ^ T ^ h i j ^ M ^ h i j  (3.44)

The projected Hamiltonian M  is required to have the same property otherwise some 

symmetry breaking would be introduced which is clearly unphysical. Therefore the 

matrix A should have whole rows and columns equal to zero where the respective in­

dices belong to different symmetries. This leads to the question which terms lead to 

such symmetry forbidden contributions. Expression 3.45 gives one such term where the 

correlating functions are symmetry conserving operators.

RiajcMabMcdRbidj == {u\f{rl2)\ac)Aiab^cd{^^\f{rl2)\U) > ^ab,cd (3.45)

The most illustrative example of how the symmetry forbidden contributions arise is 

an analysis of the helium ground state where the product \i j) is totally symmetric. This 

means that the products \ac) and (bd\ need to be totally symmetric as well in order to 

add to the matrix which is fulfilled if a =  c and b = d. Setting a = 2s and b = 2pz leads 

to:

(lsls\f(ri2)\2s2s}(2pz2pz\f(r\2)\lsls)M2s2pzM2S2pz (3.46)

The integrals over the correlation function in this expression are totally symmet­

ric. The matrix elements M2SiPz should be zero but are also the unknown quantities at 

this stage. This explains why singular matrices have not been observed. Other terms 

quadratic in M  also lead to such contaminations.

In the performed calculations no symmetry forbidden terms were ever observed as 

the vector B in 3.43 does not contain any spurious terms. The vector therefore acts as a 

driver and removes these symmetry forbidden elements. The appearance of these terms 

is however disturbing. These contributions can be removed by exploiting the symmetry 

information included in the overlap matrix. Tests have shown however that there is no 

change in the computed matrix elements when this extra step is used.

Technically it will still be possible to find a solution for the linear system even when 

A becomes singular. By application of the singular value decomposition[86] it should 

be possible to get a reasonable set of matrix elements.
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3.5 Form of the correlation factor

So far the form of the correlating function has been left unspecified and in this sec­

tion different choices of the correlation factor are discussed. From the electronic cusp 

condition it is known that the wavefunction should behave as:

W  =  (l +  j r ,2  +  O(r?2) +  ...)|0> (3.47)

This suggests substituting f { r n )  with \ r \ 2  and neglecting higher order terms in a 

first approximation. As long as the interelectronic distance is small the linear term will 

dominate the expansion. But as the separation between the electrons increases the linear 

term grows which means that the electrons still feel strong correlation effects at long 

distances which is conceptually wrong. A more physical behaviour can be achieved by 

introducing a Slater type correlation factor:

e~arn =  1 — a n  2 +  (x2rf2 +  • •. (3.48)

In this way good correlation energies can be obtained [68]. Unfortunately integrals 

over Slater functions are usually difficult to handle. Gaussian geminals e~W2 on the 

other hand lead to analytically tractable expressions. Although this functional form also 

violates the cusp condition several studies have attempted to fit a linear expansion of 

Gaussian geminals to specific correlation factors to mimic the desired functional form. 

In this work Slater type correlation factors are represented by a frozen contraction of 

Gaussian geminals

g -a r .2 ~  £ Cje(-ir,'f2) (3 .49 )
i

as was recently suggested in references [7] and [6]. Calculations with both linear 

and Slater type correlation factors have been carried out and the results are presented in 

section 3.6.

3.5.1 Integrals

In the section on resolution of the identity 3.4.2 the following integrals were introduced:
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TRpqrs = {pr\Tif{rn )\qs) (3.50)

RTpqrS =  (pr\f(rn)Ti\qs) (3.51)

On the other hand the integrals provided by R12 theory are:

R pqrs  =  (pr\f(ri2)\qs) (3.52)

U pqrs ~  (pr\[{Tx+T2) J { r l2)\\qs) (3.53)

It would be very convenient to reuse as many contributions form R12 theory as 

possible for the new projected Hamiltonian approach. If it were possible to symmetrise 

the expressions obtained between electron one and two the following kernels would be 

needed where only the first one requires an additional implementation effort.

Q pqrs  =  (pr\f(rX2)(Tx+T2)\qs) (3.54)

Lpqrs = (pr\[(Ti+T2) , f ( r i 2)\\qs) + Q Pqrs (3.55)

Unfortunately such a symmetrisation of the expression turns out to be impossible as 

will be shown hereafter. The terms involving no projections in the occupied space are:

^ RpaRTMabTbuRuQTsa]>a\asaQ (3.56)

^RpTRuTTaMabRbQUSOpORasaQ (3.57)
1 + t
yRpaRTMabTTuRbQUsapapasaQ (3.58)

These terms can be symmetrised without any problems if the third expression is used 

evenly to complement the first two terms the following expressions are obtained:

~̂ R-PaRT MabLbQTS^pclRaSa’Q (3.59)

^QPaRTMabRbQTSOpORasaQ (3.60)
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The inability to achieve the symmetrisation results from the terms involving projec­

tors onto the occupied space:

-^RpaRMabTbT^TQiS^pO^asaQ (3.61)

1 t t -RpTRiTTaMabRbQiSapaRasaQ (3.62)

1 t t r^RPaRiMabTiT RbQT SapapaSaQ (3.63)
1 + 4*
■jRpaRTMab TTiRbQiS^p^p^S^Q (3.64)

The latter two equations cannot be used to symmetrise the first two because they 

appear with different prefactors. One is therefore left with having to implement the 

integrals with kernels1 V \f ( r \ 2 ) and f{ r \ 2 )V\. The necessary expressions for these 

integrals are given in appendix B.l on page 93

3.6 Results

3.6.1 R12 calculations

Helium

Singles and doubles configuration interaction correlation energies obtained with differ­

ent kinetic energy operators for the helium atom are listed in the upper half of table 3.2. 

The column Mpq refers to the Lagrangian multiplier method whereas Mab is used to 

denote the strong orthogonality approach. The complete basis set reference energy is 

obtained by a two point extrapolation with the X ~3 formula. Results for the projected 

hamiltonians could only be obtained up to the quintuple zeta level because the integral 

routines have not been tuned to full efficiency and use too much memory in the current 

implementation.

The second column in table 3.2 which lists the Lagrangian multiplier results looks 

quite promising for the double zeta basis as the correlation energy is brought within 

mEfc of the estimated exact result. The triple zeta value however presents a step back

1The integrals over the two kernels are related via Green’s theorem!
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as it moves further away from the complete basis set limit. What causes this erratic 

behaviour is not clear and the quadruple and quintuple zeta calculations again provide 

results that are closer to the extrapolated result. They fail however to significantly close 

the gap. The quintuple zeta results are particularly disappointing as the improvement is 

marginal. For the biggest basis it is also reasonable to expect that the errors connected 

to the resolution of the identity are small.

The strong orthogonality CISD results in the third column of table 3.2 look less 

promising than their Lagrangian multiplier counterparts apart from the quintuple zeta 

value which is of comparable quality. This suggests that the removal of the reference 

determinant and the single excitations from the trial wavefunction has quite severe ef­

fects.

v x z Tpq M  apq M abb

CISD

2 -0.03243435 -0.04122574 -0.03598012

3 -0.03907882 -0.04002438 -0.03975032

4 -0.04089665 -0.04159455 -0.04126243

5 -0.04152705 -0.04162476 -0.04161644

OO -0.04207797c

MP2

2 -0.02582834 -0.03102289 -0.02818721

3 -0.03313756 -0.03392970 -0.03368198

4 -0.03547800 -0.03615359 -0.03597884

5 -0.03640651 -0.03658329 -0.03657579

OO -0.03735764c

a Lagrangian multiplier variant 

b Strong orthogonality method 

c 5—»6 X ~ 3 extrapolation

Table 3.2: Projected Hamiltonian correlation energies for Helium in Eb

In second part of table 3.2 correlation energies obtained from second order Mpller-
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Plesset calculations are given for the helium atom. The first point to note is that the 

series of Lagrangian multiplier results Mpq show a more systematic behaviour with the 

triple zeta result now well in between cc-pVDZ and cc-pVQZ. The values obtained 

with strong orthogonality are again less accurate for the smaller bases but ultimately 

both approaches fail to reach the extrapolated result.

Hydrogen

It is useful at this stage to evaluate the performance of the projected Hamiltonian for 

another two electron system. Table 3.3 lists CISD and MP2 correlation energies for 

the Hydrogen molecule where the same conventions as before apply. Comparing the 

columns for the lagrangian multiplier and strong orthogonality implementations reveals 

that now both approaches lead to results of similar quality but fail at reproducing the 

CBS value.

Since the results for the Helium atom show a different behaviour for configuration 

interaction and MP2 (table 3.2) it is useful to compare different methods for the hydro­

gen molecule as well. The values obtained for the two different implementations are 

again similar. Both series show a systematic behaviour which is also true for the Cl 

results.

What caused the deviating triple zeta CISD result in table 3.2 is not clear. Simi­

lar effects have been observed in other cases. It is important to remember that in the 

Lagrangian multiplier approach the wavefunction still contains contributions of the oc­

cupied space which might have a strong influence due to their magnitude although the 

major component should be removed by restricting the matrix elements in the occupied 

space. For the remaining part only strong orthogonality results shall be presented as it 

stands on more solid conceptual grounds.
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v x z Tpq M a pq M ahb

CISD

2 -0.03460429 -0.03820311 -0.03837126

3 -0.03931928 -0.03998924 -0.03981949

4 -0.04028254 -0.04045644 -0.04043254

OO -0.04081213C

MP2

2 -0.02633528 -0.02845302 -0.02856090

3 -0.03166112 -0.03223212 -0.03210147

4 -0.03309783 -0.03330692 -0.03329354

OO -0.03422133c

a Lagrangian multiplier variant 

b Strong orthogonality method 

c 5—>6 X ~3 extrapolation

Table 3.3: Projected Hamiltonian correlation energies for H2 in E/,
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VXZ Tpq Maha

2 -0.19280699 -0.22388603

3 -0.26847498 -0.27348523

4 -0.29947759 -0.30319462

-0.32496535*

a strong orthogonality

* 5—>6 X  3 extrapolation

Table 3.4: Projected Hamiltonian MP2 correlation energies for Neon in E/, using the 

MWB effective core potential

The neon atom

The application of the projected Hamiltonian approach for many electron systems re­

quires special attention as it is common practice to only subject the valence electrons 

to a correlated treatment which can create some problems for the calculation of the ma­

trix elements of M. For the Lagrangian multiplier approach where the wavefunction is 

simply written as

I 'f  trial) =  (1 +  ^ 5 j ri;')l°) (3.65)
i> j

it is not clear how to perform the separation between core and valence electrons. 

The most straightforward way to avoid this problem is replace the core electrons via the 

introduction of an effective core potential.

The strong orthogonality approach should be less problematic in this respect as it 

only contains two electron contributions which suggests that it can be treated as a sim­

ple pair theory such as MP2. Since the implementation has not been carried out to 

discriminate between core and valence electrons effective core potential are also used in 

the framework of the strongly orthogonal model. The correlation energies of the Neon 

atom in the cc-pVXZ Dunning bases when using the MWB core potential are given in 

table 3.4. Although the correlation energies are lowered by the projected Hamiltonian 

the improvements are not significant.
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X Tpq_________ Maba

2 -0.02582834 -0.02373901

3 -0.03313756 -0.03306279

4 -0.03547800 -0.03588046

5 -0.03640651 -0.03650733

oo -0.03735764*

a strong orthogonality 

* 5—>6 X ~3 extrapolation

Table 3.5: Projected Hamiltonian MP2 correlation energies in Eb for Helium with Gaus­

sian geminals

3.6.2 Gaussian geminals

As was seen in the previous section the projected Hamiltonian approach fails to bridge 

the gap between the truncated bases and the complete basis set limit. Especially the 

corrections for large bases are very small. In these cases it is reasonable to assume that 

the errors introduced by the resolution of the identity are small [6]. Which suggest that 

the Jastrow factor is the main source of error and this fact shall be addressed in this 

section.

In accordance with paper[6] the exponent of the Slater function is chosen to be one. 

This Slater type geminal is expanded in nine even tempered Gaussians with ratio 3 and 

centre 8. The coefficients are determined in a least squares approach. The Mathematica 

input file for this procedure was kindly provided by Dr. F. Manby. The correlation 

energies obtained with this new correlation factor for Helium are given in table 3.5. It 

is obvious that the projected Hamiltonian fails completely at improving the correlation 

energies.
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v x z n  2 geminal

D 6.40 2.02

T 288.65 79.92

Q 3415.45 744.21

5 25454.73 3762.40

Table 3.6: Condition numbers of the linear system for the Helium calculation in the 

strong orthogonality implementation

3.7 Discussion

The correlation energies obtained with the projected Hamiltonians are disappointing. In 

the remaining part of this chapter an analysis of this failure will be given. There are sev­

eral approximations in the projected Hamiltonian that lead to errors. The replacement 

of the exact wavefunction by a Slater Jastrow type wavefunction is an approximation 

which can hardly be avoided whereas the resolution of the identity and the form of the 

correlation factor are parameters that can be controlled.

Before analysing these errors the attention shall be turned towards the linear system. 

Of special interest is the question whether the the matrix A is ill conditioned. The 

condition number of a matrix is simply given as the ratio[23]

K<\\ -  maX[XW ]
K{A) -  min[X(A)] (3-66)

where X(A) is the set of eigenvalues of A. Most mathematics texts on this subject 

state that a matrix is ill conditioned if K(A) is too high. A more tangible criterion is 

given in reference [86] which classifies a matrix as ill conditioned if the inverse of A'(A) 

is of the order of the machine precision. All calculations have been carried out in double 

precision where a critical value would be in the area of 10“ 12. The condition numbers 

for the linear system in the strong orthogonality case for helium are given in table 3.6. 

The condition numbers are all in a range where no numerical problems are expected. It 

is therefore safe to assume that there must be another source of error.

The resolution of the identity has received much attention [80, 6] in the framework
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of the R12 methods. It is usually found that the errors are only relevant for small bases. 

This has inspired the development of methods where special bases are used to perform 

the RI insertion[80]. In recent investigation of errors in explicitly correlated second or­

der M0ller-Plesset theory it has been shown for MP2-R12 calculations in a cc-pVQZ ba­

sis2 that the increase of the RI basis does not lead to very large improvements. Since the 

performance of the projected Hamiltonian is particularly poor for large bases it seems 

justified to assume that the problems are not caused by the resolution of the identity.

The fact that an improved correlation factor leads to worse energies is quite puz­

zling. The quality of the Slater type correlation factor represented by Gaussians has 

been shown in reference [6]. It was shown in table 3.1 on page 65 that the kinetic en­

ergy is reduced by the introduction of the Jastrow factor. The introduction of the factor 

1 +  1 / l r \ 2  reduced the kinetic energy by roughly 20% and this difference is far greater 

than the true correlation energy of helium. In table 3.7 an analysis is carried out how 

the introduction of a correlation factor (3 /2 —1 / 2e~rn) affects expectation values. The 

kinetic contribution to the correlation energy is quite substantial and corresponds to al­

most five times the true kinetic energy. The kinetic part is balanced by an increase in 

potential energy which leads to a correlation energy -0.028084763 E^. Although the 

Hartree-Fock wavefunction used in this analysis is very simple it would nevertheless be 

expected that the projected Hamiltonian leads to a significant lowering of the kinetic 

energy.

Having shown the huge discrepancy between the expected effect of introducing a 

correlation factor and the actual results obtained with the projected Hamiltonian leads 

to the question which components of the trial wavefunction are recovered by the matrix 

elements M  and which are neglected. The MP2-R12 wavefunction

\M P 2-R \2)  =  ^ 4 4 ^ 0 1  + tfjB(A B \f(rn )\i j)ayBaja,) |0> (3.67)

provides a convenient way to perform such an analysis as it contains a conventional 

Cl-like part and an explicitly correlated component. In R12 theory there are different 

ansatze to enforce the strong orthogonality conditions of the explicitly correlated part.

2 See figure 2 of ref. [6]
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|o>

(£> -2.847656249 -2.875741012

(T) 2.847656249 2.643825617

( V ) -5.695312498 -5.519566629

{E corr) -0.028084763

(TCOrr) -0.203830632

{Vcorr) 0.175745869

|0) =  «--«(n+r2)f a== 27/16

Table 3.7: Slater type geminal energy contributions for Helium

Ho = (l- |p}(p |)0 -|< 7> < 9l) (3.68)

Ho = ( 1 - I 0 ( ‘1 )(l-U ><;l) (3.69)

The first approach chosen by Klopper and Kutzelnigg [82] uses a strong orthog­

onality projector of form 3.68 which makes the r \ 2  dependent part orthogonal to all 

determinants in the finite basis. More recent implentations [80] of R12 theory use a 

less restrictive projector of type 3.69 which make the explictly correlated contribution 

orthogonal to the reference state and singly excited determinants only. The projec­

tors 3.68 and 3.69 are known as ansatz 1 and ansatz 2 respectively[80]. For the present

discussion ansatz 1 is more useful as the conventional and explicitly correlated parts are 

orthogonal to each other.

Evaluating the quadratic error expression

(MP2 — R\2\ (TTuaj-au ~ M aba\ab \  \M P 2-R \2)  (3.70)

leads to the following expressions:
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(MP2 -  Rn\TpQa'paQTRSa lRas\M P 2-R \2 ) (3.71)

+AtffMabMcdtbkfa]a)alak (3.72)

+AtffMabMbdtifa}a)a,ak (3.73)

-4 tclfT caMabtbkfa]a)alak (3.74)

—Atjf Mab Tbctkf  a] a t atak (3.75)

-%t“-MabTcdtk?a]a'j atak (3.76)

The quadratic term in T has not been evaluated since it is removed when taking 

the derivatives with respect to Mab. In deriving the other terms use has been made 

of the properties that the sets of functions and are orthogonal to each

other by virtue of ansatz 1. The terms involving the new operator M  only contains 

components in the incomplete basis which implies that the resulting matrix elements 

Mab will be equal to Tab. Hence in the quadratic error expressions double excitations into 

the complete basis are removed. The new matrix elements are therefore only determined 

by excitations of type tfj* which are far less important than the contributions tfP as 

can be seen from MP2-R12 calculations. This is the reason behind the failure of the 

projected Hamiltonian approach.

This problem would not exist if T would be replaced by a two electron operator. It 

is possible to set up the quadratic error expression by using the coulomb operator:

{MP2 — R\2\ (gPQRs 4 4 a saQ- M abaiaby \M P 2 - R \2 }  (3.77)

With this approach it is no longer clear what meaning should be attached to the 

one electron quantity M. Hence there is no straightforward way to use this object in a 

correlated calculation. This could be remedied by introducing a unknown two electron 

quantity Mabcd‘

(MP2 -R12\ {gpQRS^Pa\asaQ -  MabcdaWcadab)  \MP2 - R \2 )  (3.78)

Computationally such an approach is very punishing because the following system 

has to be solved:
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Ae fgh ,abcd^ abcd— Befgh (3.79)

The matrix A in this case has a memory footprint of 0(v8). Thus such an approach 

is computationally not viable.
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Chapter 4 

Concluding remarks

The purpose of this thesis was to investigate possible routes to recover the one electron 

error resulting from the application of a finite atomic basis set by constructing new oper­

ators. In doing so the conventional paradigm of developing more elaborate wavefunction 

models to improve the description of correlation effects was abandoned. The reasons 

behind this approach are the steep increase in computational cost when extending the 

one electron basis and the complexity of explicitly correlated wavefunction models both 

in a computational and implementational sense.

The extrapolated Hamiltonian approach introduced in chapter 2 attempts to use 

atomic information about basis set completeness for improving correlation energies on 

molecules. The conceptual basis for this approach is given by the convergence be­

haviour of the principal expansion. This inspired a redefinition of the perturbative treat­

ment by using strength parameters greater than one. Although the correlation energies 

could be improved the method cannot rival X ~3 two point extrapolations in quality. The 

results obtained for the calculation of properties that are expressed in terms of deriva­

tives of the energy turned out to be particularly disappointing. There appears to be no 

way to rectify the shortcomings of the extrapolated Hamiltonian approach as the scal­

ing parameters offer a limited amount of degrees of freedom. The stability of the X~3 

extrapolation however leaves the question open whether it is possible to estimate the 

complete basis set limit from a single calculation with the use of some atomic heuristic.

The completeness relationships or projected Hamiltonians (Chapter 3) attempt a re­
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definition of the kinetic energy operator which is inspired by the fact that the singularity 

of the kinetic energy operator is suppressed in the finite basis. New matrix elements for 

the kinetic energy operator are obtained by using an explicitly correlated trial wavefunc­

tion and minimizing the error between the true and projected kinetic energy operator. 

The method fails because it neglects a major fraction of the double excitations involv­

ing the complete basis. If a two electron first quantised operator was used the full set 

of double excitations could be recovered but the new operator then necessarily would 

have to be a two electron quantity as well. This however makes the approach intractable 

because the memory requirements scale as 0(N S). From a theoretical perspective it 

might still be interesting to investigate such an approach to analyse the validity of the 

assumptions made. In the atomic case with full exploitation of symmetry the calculation 

of new matrix elements might be possible for basis sets of reasonable size.

With the time available it was clearly not possible to investigate all conceivable ap­

proaches to develop new operators. The efforts in this thesis have concentrated on im­

proving post Hartree-Fock calculations. A different route towards new operators might 

be the construction of a “correlated” Hartree-Fock approach where one constructs an 

operator in such a way that a single Slater determinant can deliver a result close to the 

exact wavefunction.
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Appendix A 

Extrapolated Hamiltonians

A .l Calibration data

A .l.l MP2 calibration data

Atomic

cc-pVXZ

D T Q 5 6

c 1.22413458 1.07011113 1.03006129 1.01522246 1.00872296

F 1.31155031 1.09705247 1.04197411 1.02090669 1.01193919

N 1.26725856 1.07676731 1.03229271 1.01601031 1.00916898

O 1.30110192 1.09126949 1.03910608 1.01943904 1.01111008

Table A. 1: Atomic scaling factors for MP2

Molecular

cc-pVXZ

D T Q 5 6

c 2 O z p  

f 2

1.24048415

1.24522367

1.08039550

1.08122264

1.03161960

1.03557427

1.01606269

1.01784533

1.00920174

1.01021146
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H 2 1.13914811 1.03957028 1.01680262 1.00859519 1.00494714

n 2 1.17139870 1.06053167 1.02665629 1.01356547 1.00778343

° 2 ( % ') 1.35501708 1.10575113 1.04530017 1.02253847 1.01285915

r(C2) = 1.2425 A, r(F2) = 1.41193 A, r(H2) = 0.74144 A, r(N2) = 1.09768 A 

r(02) = 1.20752 A, from reference [1]

Table A.2: Molecular scaling factors for MP2

A.1.2 CCSD

d-aug-cc-pVXZ

D T Q 5 6

He 1.10020830 1.03022416 1.01182302 1.00550469 1.00317987

Ne 1.22251408 1.07147226 1.02932985 1.01441701 1.00828122

Ar 1.25400473 1.07673247 1.03155519 1.01757518 1.01009360

Table A.3: Rare gas CCSD scaling factors
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A.2 Additional data

A.2.1 Simple atomic scaling

H2Ofl, MP2

VXZ conventional scaled X ~ 3

D -0.20248326 -0.28563442

T -0.26233477 -0.29825750 -0.28753541

Q -0.28366041 -0.30114776 -0.29922236

5 -0.29238236 -0.30420281 -0.30153326

6 -0.29608765 -0.30643687 -0.30117733

oo -0.30117733*

“ r(OH) = 0.968565A, a(HOH) = 103.999825

* 5—>6 X  3 extrapolation

Table A.4: Scaled Hamiltonian results for H20

CO, r=l. 128323 k a, MP2

VXZ conventional scaled X ~3

D -0.28675617 -0.39502497

T -0.35508996 -0.39939728 -0.38386208

Q -0.38097268 -0.40192326 -0.39986007

5 -0.39167409 -0.40389567 -0.40290180

6 -0.39651766 -0.40839195 -0.40317093

oo -0.40317093*

a from reference [1] 

b 5—>6 X ~ 3 extrapolation

Table A.5: Scaled Hamiltonian results for CO
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A.2.2 Weighted atomic scaling

H2Ofl, MP2

VXZ conventional scaled X ~3

D -0.20248326 -0.27598934

T -0.26233477 -0.29113089 -0.28753541

Q -0.28366041 -0.29690446 -0.29922236

5 -0.29238236 -0.29931091 -0.30153326

6 -0.29608765 -0.30014598 -0.30117733

OO -0.301177334

“ r(OH) = 0.968565A, a(HOH) = 103.999825

4 5 ^ 6 X  3 extrapolation

Table A.6: Scaled Hamiltonian results for H20

CO, r= 1.128323 A*, MP2

VXZ conventional scaled x - 3

D -0.28675617 -0.38872711

T -0.35508996 -0.39688156 -0.38386208

Q -0.38097268 -0.40036211 -0.39986007

5 -0.39167409 -0.40181085 -0.40290180

6 -0.39651766 -0.40260044 -0.40317093

OO -0.403170934

a from reference [1] 

b 5—>6 X~3 extrapolation

Table A.7: Scaled Hamiltonian results for CO
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Appendix B 

Completeness Relationships

B.l Integrals

For the implementation of the projected Hamiltonians some special integrals involving 

the correlation factors are needed which are given by equations B.l, B.2 and B.3 where 

/ 1 2  is a generic correlation factor. The factor — \  included in the kinetic energy operator 

has been omitted from equations B.2 and B.3. The standard integrals of R12 theory 

are not sufficient due to an asymmetry in the expressions that determine the new matrix 

elements. Integrals B.2 and B.3 are related to each other but explicit expressions for 

both will be given in this section.

(ac\fn\bd) (B.l)

(ac\V\fn \bd) = {ac\ {V?/i2} + 2 |V i / i 2} Vi + fn r f \b d )  (B.2) 

(ac\f 1 2V i\bd) (B.3)

The integrals discussed in this section involve Cartesian Gaussians of the form B.4 

where B denotes the point at which the Gaussian is centred. The derivatives of this type 

of function are given in terms of the very useful recurrence relations B.5 and B.6. Since 

in all the expression only one Cartesian component will be affected at a time the short 

hand notations B.7 and B.8 are introduced. With the help of these recurrence relations 

the integrals B.2 and B.3 can be expressed in terms of integrals of type B.l.
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b

h b

=  xb = (X l- X B)

=  (k,„xlr '

(B.4)

(B.5)

=  ( h ,b { k b  -  1 -  * * b (2 lx ,b +  1 )xl?  +  4«V b 2)yb i b be~abrB (B.6)

k b
=  /|*(-l))-2a|&(+0> (B.7)

d \

dxj
=  / ( / - l ) |f c ( -2 ) ) -2 a (2 /+ l) |f c )+ 4 a 2|£>(+2)) (B.8)

Equation B.9 gives an alternative definition of the vector r\2 . This definition is used

in the following to properly generate higher angular momenta of the basis functions 

where products involving jci — * 2  occurr.

x\ —X2 =  (* 1  — Xb) — (X2 — Xd) +  (Xb — Xo) r \ 2  = rB~rD + (Rb — Rd) (B.9)

B.1.1 r \2  Kernels

The additional integrals needed for a correlation factor proportional to r \2 are given by 

equations B.10 and B.l 1. Integrals with kernel r \2 and are already implemented in 

MOLPRO [2]. Integral B.10 contains one term which corresponds to B.l 1. Therefore 

only the second and third term of B.10 need to be treated. Only the terms need for the 

x\ component are given here.

r\ — *

LR = {ac\V\r\2 \bd) = (ac\ 1-2— Vi + r\2 V\\bd) (B.10)
r \2 r \2

RL = (ac\r\2V\\bd) (B .ll)

d1RL = (ac\ri2 ^ \ b d )  = 1(1 -  \)(ac\r\2\b(-2)d)

—(4al + 2a){ac\ri2\bd) (B.12)

+4oc2 (ac\r\2 \b(+2)d)
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{ac\—— - - ^ —\bd) =  l(ac\r7'\bd) (B.13)
r 12 ox i

—2ab{ac\r^2 \b(+2)d)

- l(a c \r ^ \b ( - l)d (+ l) )

+2ab(ac\ri2\b(+l)d(+l))

+l{XB - X D){ac\r^2 \b {-\)d )

- 2 a b(XB - XD)(ac\r^2 |b [ + 1 )d)

B.1.2 Geminal kernels

The integrals needed for a correlation factor expanded in geminals are given by equa­

tions B. 14 and B. 15. Expression B. 15 is part of the first equation so only the three terms 

in B. 14 need to be evaluated.

{ac\V\gn\bd) = (ac\{V2gn ) + 2V\g\2V\ + g\2V2\bd) (B.14)

(ac\g\2V2\bd) (B.15)

In order to get recurrence relations for the different integral kernels the derivatives 

of a simple Gaussian geminal B.16 are needed. These are given by B.17 and B .l8. For 

the integral evaluation the difference (jci —*2 ) is replaced by B.9.

<rpri2 (B.l 6)

-2p(jE!- x 2)e-W i (B.17)

(4(32(jci - x 2f  -  (B.l 8)

e component x\ only.

£12 =

dx,
d2 -Rr2  e  PH2 —
dxf

The integral terms are given for thf
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( a c \ ( ^ g n )\bd) =  -2$(ac\g\2\bd)

-%$2(ac\gn\b{+\)d(+\))

+%{XB - X D)$l (ac\gn \b{+\)d)

- W 2{XB- X D)(ac\gn \bd(+ \))

+4$2(ac\gn \b(+2)d)

+4$2(ac\gn\bd(+2))

+ ^ 2{XB - X D)2{ac\gn \bd)

=  ~ 2l ^ ( a c \ s n \ b d )

+4pa(ac|gi2|6(+2)d)

+2/p(ac|gi2|fc (-l)d (+ l))

-4$a(ac\gn\b(+ \)d(+ \))

-2 l(X B- X D)$(ac\gu \b (-l)d )

-4{XB- X D)$a(ac\gn \b{+\)d)

(ac\si2^ i b d )  = / ( / -  \){ac\gn\b{-2)d) 

— (4a I +  2a) (ac\gn\bd) 

+ 4a2 (ac\g\2\b(+2)d)

(B.19)

(B.20)

(B.21)
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B.2 Strong orthogonality expressions

This section lists the two electron expressions of the projected Hamiltonian for a strongly 

orthogonal wavefunction. The Jastrow factor is given by equation B.22. The expres­

sion is obtained by applying a strong orthogonality projector (1 — |/)(ij)(l — |y)(y|) to 

J = 1 +  l/2ri2. Expressions for other correlation functions lead to the same form of 

equations allthough different factors may appear.

Jso  =  ^RpQRSOpORasaQ -  ^R iQ R sa]a \as a Q

-  ^RpQisapa}asaQ +  ^RiQjSa]a]asaQ (B.22)

The expressions are grouped in sections that are obtained by expanding and normal 

ordering of (T —M)2 and subsequent application of Jso  and j l 0 on those terms. Terms 

with particle rank greater than two have been omitted as they vanish when a Hartree- 

Fock reference state is used.

M a b M c d a i a b a l a d

J S O ^ cd^cflb& c® d.JSO  =  ^ R p a R c M a b M cdRbQdS®p@ R®S& Q

+ ~^RpaRT M abMfyrfRdQT S^p^R^S^Q

1 + +
— ~̂ RpaRiMabMbdRdQiSapaRaSaQ

+ . . .

- M a b T b u a l a u

—j l 0 M abT bU a l a u J s O  =  ~  ^ R paR U  ̂ Jab^bT  R t  QU S ^ p ^ r US^Q

1 t t+  ̂ RpaRT MabTbiRiQT SapaRaSaQ
1 r *}■ *J*

+  -^RpaRMab TbrRTQiSa pd RdsClQ

1 t t'̂ RpaRjMabTbiRiQjSQpO'R&SG'Q

+ . . .
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- T TaM aba \ - a b

"f* 1" l *J* +
—JSO^TaHab^Ta b h o  =  — -RpTRU TTa^abRbQUS^p^R^S^Q

+ -^RpiRU TiaMabRbQUS^paRaS^Q

+ ̂ RpTRiTTaMobRbQiSapaRasaQ

— ~ R p i R  j T i a M a b R b Q j S a ^pGfta S a Q  

+  . . .

- 2  TTuM aba'Ta \a ba v

•t* rw ^ "t* "1"
— 2Js o T ju M abO'jaaabau h 0  =

B.3 Two electron proof

In this section it will be proven that only two electron terms are needed in the strong 

orthogonality framework when the reference state is a the Hartree-Fock wavefunction. 

In order to shorten the notation where necessary an alternative notation for second quan­

tisation expressions is introduced to replace terms such as hpqcflpaq by either hpqJtpq or 

simply hpq.

m  i* t
-  -jRpTRaMabTTuRuQbsaPaRasaQ

1 t + 
Jr-jRpiRcMabRiljRuQbSapapaSaQ

+ 2 ^PTRâ ab^TiRiQbsaPaRasaQ 

2 RpiRaM-abRi jR  jQbS&p&p&S&Q 

+  . . .

{0\jJo(TTU- M ab)2Jso\0)
1 1 1 1  <B’23) 

Jso  =  -^RpQRS -  ^RiQRS -  jR pQ iS  +  -^RiQjS

Expanding the the central term (Tpu —Mai,)1 one obtains the following one and and 

two electron terms where the quadratic term in T was omitted as it will drop out under 

differentiation. The signs are ignored for simplicity.
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one electron two electron

MabMcd $bc&a &d

T'TuMabh\ja^rab

MabTru^bT^U

MabMcda\a\adab

ITTuMaba^Ojaijab

In a first step it will be shown that the terms in Mab can only generate two elec­

tron contributions. Use is made of the fact that (a\i) =  0. This means that the only 

non vanishing contributions arise from terms where the virtual indices are picked up by 

the complete basis functions in the Jastrow factor. Hence the two electron component 

MabMcd can only generate two electron terms. Therefore it remains to show what hap­

pens when MabMcd§bc is involved in a three electron term where a and d are picked 

up by Jso and J$0 . These terms are listed in table B.l and a close inspection reveals 

that although II. 1 and II.2 exist on their own they clearly cancel and the same is true 

for III. 1 and III.2 in table B.l. However cancellation only occurs due to the fact that a 

Hartree-Fock determinant is used to compute the expectation values.

JsO * MabMcd$bc * Jso

MabMcd$bc X Jso

1.1 \M abM cdRpQRs§bc§dP \ R pqrs

1.2 2,MabMcdRpQiS^bc^dP - \R p Q iS

4 o  x  LI

II. 1 \ R v w x y \R vW X YM abM cdRpQRS§Wa§bc&dpXvQ,XY,RS

II.2 — \ R v w x j - \R v W X  jM a b M cdRpQRS&Wa &bc §dP%VQ,X j,RS

4 o  x  n.2
III.l \ R v w x y — \R vW X Y M abM cdRpQiS§Wa$bc§dP%VQ,XY,iS

III. 2 — \ R v w x j \RVW X jM abM cdRpQiS§Wa&bc$dP%VQ,X j,iS

Table B.l: Three electron terms in M 2

For the terms involving Tju and Mab the situation is slightly more complex. For 

the true kinetic energy operator contributions involving the occupied functions exist but 

all occurrences where Tju does not act on the Jastrow factor Jso have to be eliminated
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from the start in order to retain the strong orthogonality imposed. A direct consequence 

of this is that one only has to consider the three electron terms created by TruMab&Ua 

and MabTju^bT- Where only a proof for the former will be conducted as the result for 

the latter becomes obvious by investigating the symmetry of the equations.

Table B.2 shows the terms obtained by applying Jso to TrijMabhua- The relevant 

blocks are II and III. By restricting the indices of the excitation operators % e f ,g b ,c d  

to the occupied part of the vector space it becomes clear that the terms in both blocks 

cancel.

h o  X TTuMab&Ua X h o

TTuMab&Ua X Jso

1.1 \  TruMabRpQRS^Ua^bP \ R p q r s

1.2 — \  Tj u  MabRpQiS &U a $bP - \R p Q iS

4 > x i . i

II. 1 \ R v w x y \R vW X Y T T u M abRpQRs5YT&Ua&bP%VW,XQ,RS

II. 2 — \R vkX Y — \R vikX YTTuM abRpQRS&YT&Ua$bP%Vk,XQ,RS

II. 3 ~ \R vkX Y  TTuM abRpQRS$kT$Ua&bP%VQ,XY,RS

II.4 \ R VkXl \R vk X lT T u M abRpQRS$kT§Ua$bpXvQ,Xl,RS

4 o  X H-2
III.l \ R v w x y - \ R v WXY T T uM abRpQiS§YT§Ua&bP%VW,XQ,iS

III. 2 

III. 3

— \R vk X Y \R vk X Y T T u M abRpQiS§YT§Uc$bP%Vk,XQ,iS 

\R vk X Y  TruMabRpQiS&kT &Ua$bpXvQ,XY,iS

III.4 \R v k X l -  \R v k X l TTuMabRpQiS&kT &Ua$bP%VQ,Xl,iS

Table B.2: Allowed three electron terms in T and M
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B.4 Hermitian constraint

Being hermitian is crucial for the projected Hamiltonian. In order to compute the ma­

trix elements some difficult integrals are approximated by the use of the resolution of 

the identity. How the resolution of the identity is applied determines whether the matrix 

elements form a symmetric matrix or whether symmetry has to be enforced. Equa­

tion B.24 contains two indices in the complete basis1. One of those indices has to be 

replaced with RI. In the case of a correlation factor of r \2  it is tempting to only replace 

the index T with the finite set of functions because this generates the singularity that is 

missing in the principal wave expansion. It will be shown in the following however that 

one needs to insert the resolution of the identity in a symmetrised fashion in order to 

preserve hermiticity.

RiTjaTtUMabRuibj ~  RiTjaRTU^abRujbi (B.24)

In order to show the effects of RI it is necessary to investigate the properties of the 

integral kernels f \ 2 ^ \  and V \fn -  Both of these terms are related to each other. This 

will be shown in the following by using Greens theorem[23]:

J  uV2vdx = j uVvdc — j  (Vu)(Vv)dx (B.25)

The analysis is carried out in equation B.26 through B.28 for a generic correlation 

factor / 1 2 . By applying Greens theorem[23] twice and making use of the fact that the 

integral over the surface is zero as a result of the boundary conditions a relation is 

established which in the finite basis takes the form of B.29.

I u V U f n v j d x  = / M[ V i / 12v d o - 1  Viu V1/ 12V dx

- J  Viv [f\2 v\d% + J  \W\u] [f\2v\dx

=  j  V / 1 2 V 1 udx

1 All expressions in this section are in given in spin orbital form.

(B.26)

(B.27)

(B.28)
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(pr\V\r\2\qs) = (qs\ri2'V]\pr) (B.29)

B.4.1 Non symmetric RI

Equation B.30 shows expression B.24 after resolution of the identity was applied to the 

index T.

RipjaM -abTRpibj ~  RipjaM -abTRpjbi (B.30)

In order to show that in this way one receives a non symmetric matrix one needs 

to consider the vector elements for Mab and Mt,a. These are given by equations B.31 

and B.32 which are obviously different as there is no way to rearrange them to be equal.

M ab * R ip ja T R p ib j R ip ja  T R p  jbi (B.31)

Mba * R ip jbT R pia j R ip jb  T R p  jai (B.32)

B.4.2 Symmetric RI

Equations B.33 and B.34 show symmetrised variants of the coulomb and exchange 

terms of equation B.30.

^ R iP jcM obT R pib j “1“ ^ R T ipjaM abR pibj (B.33)

— 2 ^ ip Ja^ ab T R p  jbi ~  2 RTip jaM-abR p jbi (B. 34)

The terms that determine Mab and Mba are given by by B.35 and B.36.
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By application of B.29 the coulomb term in B.36 can be converted to the corre­

sponding expression in B.35 as shown by equation B.37

2 ^ i p  jb T R p ia  j  +  2  RTipjbRpiaj = —RipjaTRpibj +  —RTipjaRpHjj (B.37)

The equivalence for the exchange terms is slightly more complicated. First the index 

labels i and j  are swapped in B.38. Then B.29 is applied in B.39 which yields B.40.

9 ^ipjbTRpjai ^RTipjbRpjai ^  • i j  (B.38)
ij

~~^RjpibTRpiaj ~  ~^RTjpibRpiaj > B.29 (B.39)

— 2  RTipjaRpjbi ~  2  Ripja T^Pjbi (B .40)

With this the proof is completed as both the coulomb and exchange terms of B.36 

have been turned into the same expressions as the ones in B.35.
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B.5 Automatic code generation

The implementation of the projected Hamiltonian or completeness relationships was 

greatly assisted by an automated code generation procedure. It would have been very 

hard to implement the Lagrangian multiplier variant without this tool. Although the 

strongly orthogonal expressions are much more manageable the availability of the au­

tomatic code generation tool meant that several ideas could be tested with ease. In the 

following some insight into the employed techniques will be given.

B.5.1 Normal ordering

This section describes an algorithm for the normal ordering of strings of creation and 

annihilation operators such as âpaqalas. A normal ordered string is one which has all 

annihilation operators to the right and all creation operators to the left. The described 

procedure was implemented in a C++ program. To simplify the notation the a* and a 

are expressed as C and A respectively.

The algorithm is also illustrated in figure B.l. In the first step the operators are put 

into an array and a pointer is set to the leftmost element. This pointer is moved to the 

right until an annihilation operator is encountered which has a creation operator to its 

right. At this stage two new strings are generated which have the operators swapped and 

resolved into a Kronecker delta. At this stage the procedure is repeated on both of the 

new strings. If the pointer hits the last element in the list the string is sorted.

B.5.2 Contracting equivalent expressions

The normal ordering of second quantisation expressions will usually lead to many terms 

which are not necessarily distinct. It is therefore of central importance to reduce these 

expressions. Investigation of the underlying combinatorics of normal ordering reveals 

the extent of the problem. By multiplying an n and an m electron operator one gets terms 

of max(n,m) up to (n+m) electron type while there will be for instance max(n,m) !/|n — 

m\ \ (max(n, m))-electron terms. This example clearly shows that the number of terms 

grows very rapidly.
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Cp Aq Cr As Cp Aq Cr As

8qr Cp As — Cp Cr Aq As

Figure B.l: Normal ordering procedure 

E 1 =  TTuMpqRpQRshup&qpaTa\asaQ (B.41)
J. J-

E 2 =  T jU ^ p q R p Q R S ^ U  p^qRO-T a p a Q a S  (B.42)

Expressions (B.41) and (B.42) are clearly equal. The problem is to find a represen­

tation which can easily be handled in a computer program to determine equality. It was 

realised that a possible solution to this problem is the representation of these expressions 

as directed graphs[64]. The tensor elements in (B.41) and (B.42) are represented as ver­

tices where the name of the tensor defines the colour of the vertex. Arcs are inserted 

to represent the Kronecker deltas. The arcs need to be weighted as not all Kronecker 

deltas are equal. 6\jp refers to the incomplete space for instance where bup would refer 

to the complete space. A simplified graph representation for (B.41) and (B.42) is given 

in figure B.2 which makes the equality obvious. If there are some elementary operators

which do not refer to arbitrary function as in (B.41) and (B.42) additional vertices have

to be added in order to allow for a unique representation of these properties as well.

A graph isomorphism algorithm was implemented from scratch which tries to bring 

the weighted adjacency matrices of two graphs to congruence. It was however realised 

that for these small graphs it is very likely that there exists some invariant which would 

allow more efficient isomorphism testing2. Although the used algorithm relies on brute

2Most o f the graphs are in fact directed trees
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E1 E2

W2 W2'

W1
W1

Figure B.2: Graph representation of (B.41) and (B.42)

force permutation generation inside subclasses of vertices [44] there is almost no time 

spent in isomorphism testing as all graphs are very small.

B.5.3 Expectation values

Once a suitable set of expressions is obtained the remaining step is to evaluate the expec­

tation values of the second quantisation terms between occupation number vectors[74]. 

This is easily done in the case of one and two electron operators but requires a little 

bit more work for contributions with higher particle rank. This section focuses on the 

generation of expectation values of a closed shell Hartree-Fock determinant. However 

spin orbital expressions for differing ON vectors can be readily obtained by following 

the same approach and generating the appropriate permutations for the bra and the ket 

vectors.

In their book Szabo and Ostlund [5] point out that an expectation value for the 

Hartree-Fock case can be obtained by restricting the indices of the elementary operators 

to the occupied space and subsequent reversal of normal ordered expression as shown 

in equation (B.43). It is obvious that the second term yields zero as a\ attempts to create 

an electron in an already occupied orbital and the familiar expression results. For an N  

electron operator reversing would yield N\ terms involving only Kronecker deltas where 

the index combinations are determined by all possible permutations.

(0\hija}aj\0) =  (0|Ay 8y -  |0) =  [5] (B.43)
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Although the reordering of these strings can be easily performed3 it is somewhat 

inefficient as it requires some additional parsing and generates many terms that are 

not needed. In section 1.4 it was shown that non vanishing terms only arise when the 

elementary operators bring the occupation number vectors to congruence. Since both 

bra and ket are equal to the SCF state the creation and annihilation operators must act 

on the same set of indices. The task is therefore to generate all permutations of these 

indices. The Johnson-Trotter4 algorithm was implemented according to reference [63] 

and used to create the necessary permutations. The generation scheme is illustrated in 

table B.3.

if^\0pqrstu^p^r^t
prt qsu prt qsu

ijk ijk (ijk\6\ijk) ijk kji ~{ijk\0\kji)

ijk jik -(ijk \0 \jik ) ijk kij (ijk\0\kij)

ijk jki (ijk\0\jki) ijk ikj ~{ijk\0\ikj)

Table B.3: Expectation value generation

The next task is to translate the spin orbital formulae into expressions which contain 

only the spatial orbitals. The sums in (B.44) show how one would proceed to eliminate 

the electron spin from the expectation values. It was realised that combinations of alpha 

and beta spin patterns in the functions corresponds to the n-bit long binary strings (B.45) 

from 0 to 2n — 1 where the i-th bit corresponds to the spin function associated with 

orbital i. By reordering the bit string according to the permutation of the bra and the ket 

two signatures are created. If both patterns are equal the term is spin allowed otherwise 

spin forbidden. An example is provided in table B.4 for a two particle operator.

N  N  N / 2 N / 2  N / 2 N / 2

X 2 ‘j -*■ X 2 (*’+*) u + D -* X X ‘j + +  v + ‘j I5] (B-44)
i= 1 j= l  i'=l j=  1 i= 1 j=  1

ij  +  *7+  ij +  U {00,01,10,11} (B.45)

3This is just the opposite case of normal ordering.
4Sometimes also referred to as Steinhaus-Johnson-Trotter algorithm.
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\  < U\ij > ~ \ < i j \ j i >  

ij 0 =  a  1 =  p

00 < 00|00 > < 00|00 >

01 < 01|0 1 > < 01|1 0 > = 0

10 < 10|10> < 10|0 1 > = 0

11 < 1 1 |11 >  < 1 1 |11>

2 < ij\ij > ~  < *717* >

Table B.4: Spatial orbital resolution
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