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A bstract

Reliable localization of brain signal sources by using convenient, easy, 

and hazardless data acquisition techniques can potentially play a key 

role in the understanding, analysis, and tracking of brain activities for 

determination of physiological, pathological, and functional abnormali­

ties. The sources can be due to normal brain activities, mental disorders, 

stimulation of the brain, or movement related tasks.

The focus of this thesis is therefore the development of novel source local­

ization techniques based upon EEG measurements. Independent com­

ponent analysis is used in blind separation (BSS) of the EEG sources 

to yield three different approaches for source localization. In the first 

method the sources are localized over the scalp pattern using BSS in var­

ious subbands, and by investigating the number of components which are 

likely to be the true sources. In the second method, the sources are sep­

arated and their corresponding topographical information is used within 

a least-squares algorithm to localize the sources within the brain region. 

The locations of the known sources, such as some normal brain rhythms, 

are also utilized to help in determining the unknown sources. The final 

approach is an effective BSS algorithm partially constrained by informa­

tion related to the known sources. In addition, some investigation have 

been undertaken to incorporate non-homogeneity of the head layers in 

terms of the changes in electrical and magnetic characteristics and also 

with respect to the noise level within the processing methods. Exper­

imental studies with real and synthetic data sets are undertaken using 

MATLAB and the efficacy of each method discussed.



ABBREVIATIONS AND  

ACRONYMS

ALF Adaptive standardized LORETA/FOCUSS

AP Action potential

BOLD Blood oxygenation level dependent

BEM Boundary element method

BSS Blind source separation

CBF Cerebral blood flow

CJD Jakob Creutsfeldt disease

CNS Central nervous system

CRLB Cramer Rao lower bound

CT Computerized X-ray tomography

DC Direct current

d£ Infinitesmal length of conductor

ECD Equivalent current dipole

EEG Electroencephalography

EP Evoked potential
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EPSP Excitatory postsynaptic potential

EVD Eigen-value decomposition

FA Factor analysis
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FFT  Fast fourier transform
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Hz Hertz
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IC Independent component

ICr Information criterion
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JAD Joint approximation diagonalization
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JD joint diagonalization

KL Kullback-Leibler

L\ Norm of a current vector J, defined as | J | ! =  |J r |

L2 Norm of a current vector, defined as |J |2 =  >/5Zr=i l^^l2

LD linear distributed

LR Likelihood ratio

LORETA Low resolution brain electromagnetic tomography 

LS Least squares

MCS Most contributed signal

MEG Magnetoencephalography
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MF magnetic fields

MR Magnetic resonance

MRBSS Multi-resolution blind source separation

MRI Magnetic resonance imaging

MSP Model selection procedures

MUSIC Multiple signal classification

MLE Maximum likelihood estimation

MVUE Minimum variance unbiased estimator

fivolts Micro volts
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NGA Natural gradient Algorithm
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SQUID Super-conducting quantum interference device
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V Volts
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STATEMENT OF ORIGINALITY

As far as the author aware the majority of the work presented in Chapters 3 to 5 

represents original contribution to the area of Blind Source Separation (BSS), with 

partial constraints, and integration of certain effects of nonhomogeneous layers in 

localization of brain source signals. The originality is partially supported by tw'o 

journal and six conference papers. Different approaches for source localization have 

been proposed, as listed below:-

• In Chapter 3, topographic localization of sources over the scalp 

pattern using BSS in various subbands and by investigating the 

number of components which are likely to be the true sources is 

investigated. In this chapter, detection of the number of sources by 

implying spatial and frequency constraints is also investigated, and 

the result is compared with the Akaike Information Criterion.

•  In Chapter 4, the sources are separated based on correlation and 

their corresponding topographical information has been used bv 

a least-squares algorithm to localize the sources within the brain 

region.

• In Chapter 5, the locations of the known sources, such its some nor­

mal brain rhythms, have been utilized in two different approaches 

for determination of the unknown sources. The final approach refers



to development of an effective BSS algorithm partially constrained 

by certain information related to the known sources. In addi­

tion some investigation has been undertaken to incorporate non­

homogeneity of the head layers in terms of the changes in electri­

cal and magnetic characteristics and also with respect to the noise 

level. The experiments have been carried out using MATLAB and 

the related results presented at the end of each section.
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Chapter 1 

LOCALIZATION OF BRAIN 

SIGNAL SOURCES 

INTRODUCTION

Medical signal processing has an important role in technological science and en­

hancement of new systems such as computerized x-ray tomography scanner (CT), 

electroencephalographs (EEGs), magnetoencephalographs (MEGs), functional mag­

netic resonance imaging (fMRI), optical recording, and wireless communication. As 

advanced and reliable methods for recording and visualization are more in demand, 

methods such as blind source separation (BSS) become a potential enabler for new 

technological applications especially in biomedical engineering, econometrics, explo­

ration seismology, communication technology, medical imaging, remote sensing, and 

voice enhancement.

Biologists in particular, neuroscientists, require reliable techniques, which are able 

to extract and separate useful information contained within brain source signals, by 

using non-invasive recordings of human brain activities such as EEG and MEG for
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instance, in order to understand the brain’s ability to sense, recognize, store and 

recall patterns and crucial elements of learning [129], or locating sources of abnor­

malities such as due to epilepsy [130], Parkinson’s disease [132], and schizophrenia 

[131]. This can help in the design of a course of treatment. Therefore, the neurolo­

gist requires a technique to find the brain source signals and their locations, and to 

be able to identify instants of time during which dynamic changes are taking place. 

The result of hemodynamic responses in the brain can be recorded by the existing 

brain imaging modalities such as positron emission tomography (PET) and fMRI 

with a good spatial resolution, on the order of millimeters. But due to the slowness 

of hemodynamic responses of neural activity, the location of sources can only be 

monitored with a very low temporal resolution. Direct measurements of the electro­

magnetic fields produced by the neuronal activity on the other hand have a temporal 

resolution of less than 1 ms. The spatial resolution however, depends on the number 

of EEG electrodes.

A number of methods for localization of electromagnetic sources have been investi­

gated by researchers, among them methods based on an equivalent current dipole 

(ECD) model assumption of the sources have been very well established. In this 

approach it is assumed that the EEG/MEG signals are generated by a small num­

ber of focal sources which are modelled as single temporally independent [62], fixed, 

or reoriented dipoles. In this approach the number of focal sources is considered 

less in number than the available measurements (i.e. the mixing system is over­

determined). For the models with a large number of sources, some approximation 

techniques should be used. The solutions depend on the initial estimate of the lo­

cations and orientations of dipoles. In all ECD-based models, the solution relies on 

a given number of dipoles, but in reality, the actual number of sources cannot be 

determined (a priori). Another method is to consider all possible fixed source loca­

tions as an a priori. This assumption would generate a model known as the linear
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distributed (LD) model. This continuous current source model is more biologically 

approved than the ECD model [140]. However, the accuracy of such an algorithm 

is dependent on the number of both sources and sensors, otherwise the solution will 

be ill-posed. This means that there are many possible solutions, and hence an issue 

of uniqueness.

EEG source localization requires a solution to an ill-posed inverse problem. There­

fore many solutions can lead to the same response. An effective and simple technique 

for both separation and localization of the EEG sources therefore requires a priori 

information to constraint the solutions. This may be achieved by incorporating some 

physiological properties of the mixing system or by fusing the available information 

about the known sources and their locations into the algorithm. This approach is 

exploited in the major contributions within the thesis.

1.1 Neurophysilogical Basis of the EEG

B asic physiology

The brain has a mass of 1-2 kg in an adult person. It consumes 25 percent of the 

body’s total glucose, 20 percent of the body’s total oxygen, its cortex has a surface 

area of approximately 3000cm2 and there are about 3 x 1010 neurons in the human’s 

brain cortex [5]. W ithin the central nervous system (CNS) there are 100 billion 

nerve cells [6]. The most common nerve cells, or neurones, as shown in Figure 1.1, 

may vary in detailed structure from one kind to another, but typically comprise a 

cell-body, containing a nucleus, a long nerve fiber called an axon which carries nerve- 

impulses away from the cell-body, and many short branching processes, known as 

dendrites, which receive impulses from other cells and transfer them to the cell body 

[5],

Inside the neuron there is a high concentration of potassium ions (K +), meanwhile
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Figure 1.1: Schematic structure of a neural cell (neuron). The neuron consists of a 

cell body, dendrites, axon and synapse. Adopted from [7].

outside the neuron the potassium concentration is low. On the contrary, sodium 

(A a+) has a much lower concentration within the nerve cell than within the extra­

cellular fluid. These ions have a natural tendency to diffuse down their concentration 

gradients, as such potassium K + leaks out of the cell and sodium iVa+ inwards. The 

cell membrane has the property of being selectively much more permeable to potas­

sium K + ions and negatively charge chloride (Cl~) ions, but is impermeable to 

sodium N a+. Since an unequal amount of Cl~ is distributed across the cell wall 

a voltage gradient forms at the junction between the intracellular plasma and the 

outside of the cell. Therefore potassium diffuses out of the cell, but sodium cannot 

so readily diffuse inwards. This imbalance of ionic movements causes a net loss of 

positive charge from the cell, creating a difference of electrical potential across the 

cell membrane. An equilibrium is established when the negative potential inside the 

membrane with respect to the outside becomes large enough to prevent the contin­
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ued escape of K + ions. This occurs at about -70mV ( the resting potential) and the 

membrane is said to be ‘polarized’.

T he action potential

When the membrane potential is reduced (becoming less negative) beyond a cer­

tain threshold the selective ionic permeabilities change: suddenly, the membrane 

becomes impermeable to potassium, but sodium can move freely inwards down its 

concentration gradient. The local flow of positively charged sodium ions into the 

cell reverses the membrane potential at this point. This can be seen in Figure 1.2.

O < »

-50 < ► ---------

R esting  p stan tla l

O 1 2 5 - 4
m s e c

Figure 1.2: Schematic drawing of an action potential, adopted from [8], indicating 

the resting potential and the rising phase passing the threshold together with over­

shoot. In approximately 30inV the potential suddenly drops down. All this occurs 

within one millisecond.

When the inside of the membrane has become some 30mV positive with respect to 

the outside, the selective permeabilities rapidly return to their previous states. The 

inflow of sodium ceases and potassium again diffuses outwards, thus restoring the
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original membrane potential, and indeed producing a short-lived overshoot. This 

sequence of events lasts approximately 1 ms and is termed the action potential (AP). 

An AP occurring at a point in the cell membrane sets up local electric currents which 

in turn depolarize adjacent parts of membrane. Consequently, the AP spreads across 

the surface of the cell and in particular is swiftly propagated down the axon. The 

repeat operation of AP would tend to cause a gradual accumulation of sodium and 

loss of potassium within the cell. This is corrected by active transport of these ions 

across the cell membrane by a biological pump. The whole process consumes a large 

amount of energy which demands a high level of metabolic activity, hence it requires 

constant supply of oxygen and glucose for its survival. The AP transmits signals 

along the nerve fibres, different mechanisms are present in transmission between 

nerve cells. The axon of a neuron typically divided into several terminal branches 

which make contact with the dendrites and cell-bodies of other neurons. These 

points of close contact are called ‘synapses’. When an AP passing down the axon 

reaches the synapse, a chemical substance called a ‘neuron-transmitter’ is released, 

which diffuses across the very small distance to the membrane of the adjacent ‘post- 

synaptic’ neuron and produces changes in the physical properties of its membrane. 

The membrane of the nerve cell potential is subject to various fluctuations caused 

by synaptic activities (i.e. micro-electrode values of 60-70mV [5], with negative 

polarity).

These spontaneous activities are recorded at the electrode location and referenced 

against another recoded electrode location or ear lobe (i.e. silent electrode), with a 

frequency limit of up to approximately 100Hz within few milliseconds. This signal 

is referred to as the electroencephalograph (EEG) measurement.

Measuring the brain activity can be recorded in different ways

• Spontaneous: The normal EEG, which contains some activities that are un-
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correlated with any stimuli. This can be observed both during and in between 

stimulations, and is called spontaneous activity.

• Evoked potentials (EPs) are those components of the EEG that arise in re­

sponse to a stimulus ( which may be electric, auditory, or visual). The am­

plitude of evoked potentials is usually smaller than that of the spontaneous 

activities, and they are rarely visible in a single recording. These signals are 

also mostly below the noise level and thus not readily distinguished. One must 

use a train of stimuli together with signal averaging to improve the signal to 

noise ratio (SNR).

• Induced: Similar to EP, induced potentials are directly caused by the experi­

mental stimuli. They appear with varying latency or phase.

1.2 W hy Localization is Important?

The human brain weights approximately 1.5 kg [12]. It is divided into two hemi­

spheres. The hemispheres are divided into four lobes: frontal, parietal, occipital, 

and temporal lobes, as shown in Figure 1.3. The largest part of the brain is the 

cerebrum which has a surface area of approximately 1600 cm2, and its thickness is 

3mm. Each section of the brain consists of different neural types which are respon­

sible for activities or functionalities of different part of human bodies. For example, 

the visual sensors are located in the occipital lobe, and the sensory area and motor 

area are located on both sides of the central fissure. As shown in Figure 1.4.

The highly expanded surface of the brain neurons are arranged in functional columns 

within the distinct cellular layers that make up the cerebral cortex in each of the two 

hemispheres. This fact has allowed for the functional classification of the cortex into 

areas mediating awareness in each of the sensory modalities, control of voluntary
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Figure 1.3: Anatomy of the brain, adopted from [3], [4], and [5].
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Figure 1.4: Tiie division of sensory (left) and motor (right) function in the cerebral 

cortex, adopted from [13].
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movements, storage of information, and the capacity for higher intellectual activities. 

Knowledge about functionality of each section of the brain can help to detect the 

source of these activities. Another important feature of the brain activities are 

the frequencies which are generated in the brain. The frequency spectrum of the 

brain can be divided into following main parts, which are: The Alpha waves (8-13 

cycles/second) can be measured from the occipital in an awake eye-closed person. 

The frequency band of Beta wave (13-30 cycles/second) can be detected over the 

parietal and frontal lobes. The Delta band (0.5-4 cycles/second) is detected in 

infants and sleeping adults. The Theta wave (4-8 cycles/second) is mostly seen in 

children and sleeping adults. Acquiring information about different brain activities

Deha (0 3  -4 H i)
Infants, sleeping 
adults

Theta(4 8 Hz) 
Children, sleeping 
adults

Beta(13-30 Hz) 
(Frontal, parietal)

200 n
V | pV)

100 H
o -1

Time (s]4

Figure 1.5: Some examples of the EEG waves in different frequencies.

with the related location helps to understand the nature of cognition, memory, 

and other related brain functionality. Biologists and neuroscientists require reliable 

techniques which are able to obtain information about a human’s brain activity and 

their location, non-invasively but instantly. The result of slowness in hemodynamics
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responses causes the information regarding actual location of the sources to be lost, 

without being monitored. From the other side, the signal captured with the aid 

of the EEG /  MEG measurements reflects the brain’s neuronal electrical activity 

within an instant in time. The neuronal electrical current in the brain consists of 

tangential and radial components. MEG can only capture the tangential sources, 

but EEG is able to convey the tangential and radial characteristics of the sources. In 

the middle of the sphere the sources are always radial, and such sources anywhere in 

the sphere do not produce any external magnetic field. EEG, by contrast, would pick 

up all these currents (tangential, radial, and deep). In addition MEG can be easily 

affected and distributed by head motion and by the external field. An algorithm 

is therefore required to extract and separate and localize useful information from 

superimposed signals within the brain with spatial and temporal synchrony, using 

EEG recordings. To localize a source there are some physiological aspects which 

should be considered.

The source signals measured over the scalp penetrate and pass through the white 

and grey matters, cortex region, and blood fluid, skull, and scalp each of which 

have different conductivity or resistivity, before reaching the sensors these mixed 

signals are subject to noise and attenuation. The noise may be generated from 

other underlying unwanted signals, or physical muscle movements in the body such 

as eye blink and heart beats. The noise could also be generated from the outside 

body environment, such as electrodes connected to the head, or measurement device 

noise. In order to achieve an accurate localization, all the above aspects should be 

taken into consideration.
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1.3 D ecom p osition  o f the EEG s in to  their O rig­

inal Sources

Brain source separation in some ways resembles the cocktail party problem. Nor­

mally the human auditory system is able to block other speeches and even the 

background noise in the room and concentrate on only one person at a time in the 

party. This can be represented as a model which is able to separate sources from 

each other as shown in Figure 1.6. It is required to design a machine to separate 

individual speeches. This is the well known problem often referred to as the “Cock­

tail Party Problem” . It is essential to mention that in the cocktail party problem 

there is a time lag between each received signal to each sensor, where as in this 

work the source signals from the brain are considered instantaneous. The travelling 

time for the signals is therefore much less than the sampling interval. The solution 

to these kinds of problems is called “Blind Source Separation” (BSS). The term 

“Blind” means that, one knows very little, if anything, about the observed data, 

and makes little assumptions on the source signals. This can be described as a

Sensors Recovered Signals

Figure 1.6: Cocktail party problem 

block diagram model as shown in Figure 1.7. The observed data which are mixtures
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of some unknown sources are separated at the right end of Figure 1.7. They are 

called independent components (IC) of the observed data. ICs exploit statistical in­

dependence within a set of measurements. Independent component analysis (ICA) 

is a computational technique for revealing hidden factors such as statistical indepen­

dence that underlies sets of measurements or source signals. ICA is the most widely 

used algorithm for BSS. Generally, BSS estimates the original source signals even 

if they are not completely mutually statistically independent, while the objective of 

ICA is to determine such transformation which assures that the output signals are 

as independent as possible.

IC1

IC2

IC3

Figure 1.7: ICA model for a cocktail party problem

EEG measurements at the scalp electrodes are a sum of the large number of brain 

cell (neuron) potentials. During the EEG examination, an issue of interest is from 

where the brain source signals are originated. Measuring sources directly from within 

the brain requires inserting electrodes inside the head invasively by surgery. This 

is not desirable since it would be a risk to the subject and is not recommended in 

early stages of brain disease development. A better solution would be to obtain the 

desired signals from the EEG obtained on the scalp non-invasively.

Separated data

y ( t )= s .( t )  
l 1
yjMj

yM l,)

Observed data
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A pictorial representation of separating the ICs of the sources from the sensors on 

the scalp is shown in Figure 1.8. The sensors are different linear combinations of the 

sources, and sources are statistically independent (independent components). An­

other restriction for ICs extracted from the brain is that they generally must have 

non-Gaussian distribution, since two joint Gaussian distributions of unit variance 

have completely symmetric distribution. Therefore, it does not contain any infor­

mation on directions of the columns of the mixing matrix; consequently the mixing 

matrix can not be estimated. According to the central limit theorem, the sum of 

independent random variables has a distribution that is closer to Gaussian than the 

distribution of the source signal. As the components are known to be non-Gaussian 

and independent, the problem is now reduced to finding an unmixing matrix so tha t 

the non-Gaussianity of s* is maximized.

Hence as the original brain signals are super-Gaussian [27], consequently separation 

of their statistical distribution is possible.

When n source signals are mixed by a stationary channel, and no noise is present 

the m observed signals are given by [16, 22]

x(£) =  As(£) +  n(t) (1.1)

where x(t)  =  [xi(£). . .  , x m(t)]T is the m-dimensional vector of observed signals (or 

sensors), s(£) =  [sj(£ ) ,... ,  sn(£)]T is the vector of source signals (or sources), [.]T 

denotes vector transpose, n (t) = [ni(t) . . .  ,n m(£)]T and t denotes the discrete time 

index. A is an rn x n dimensional mixing matrix, containing information about 

sensors and direction of arrival of the source signals. The solution is found with the 

following limitations:

1. The energy of the sources cannot be determined because a scalar multiplier in 

Si results in the same x  as a scaling of the ith column in A.
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2. Sign of the sources cannot be determined for the same reason.

3. The order of the sources cannot be determined, because swapping two sources 

results in the same x if the corresponding columns in A are swaped accordingly.

Equation (1.1) is for instantaneous mixing system. In a convolutional model where 

the mixing system varies with time this equation changes to:x(t) =  H(£) *s(t) where 

* denotes convolution operation. However the mixing model for the EEG signals is 

considered instantaneous as the time lag may be only within a few milliseconds. 

Therefore for an instantaneous mixing model s can be computed as

y(t)  = S  (t) = W x { t )  (1.2)

where y (t) = s (t) is the estimated vector source signals, W  =  R D A -1 is the n  x m  

dimensional unmixing matrix, or inverse of mixing matrix, subject to permutation 

(denoted by R) and scaling (denoted by D) of the columns.

Although the skull attenuates the EEG signals, this does not affect the linear relation 

between the potentials in the brain and the potentials measured over the scalp 

[25]. Electrical or magnetic fields propagate to the sensors (electrodes) through the 

brain and skull without significant delays. Therefore, an instantaneous BSS can be 

adopted. Moreover, the environment and the source signals for the above case are 

non-stationary (e.g. semi-stationary or approximately cyclostationary). Additive 

Gaussian noise also affects the signals.

The EEG can be decomposed mathematically into a set of spatial and temporal 

independent components [28]. If the decomposition is confined to describing the 

distribution of components across the scalp, no model of head or its contents is 

required [30]. The decomposition can be done by producing components that are 

mutually orthogonal, such as principal component analysis (PCA), common spatial
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Figure 1.8: ICA unmixing operation showing the localized sources within the brain, 

the scalp sensors and the extracted IC components.

pattern decomposition [28], and ICA. ICA algorithms presently applied to brain data  

depend on several assumptions about the underlying processes which requires some 

a priori knowledge that may not be fully realizable. Therefore, it is desirable to alter 

the ICA methodology by weakening its existing assumptions to permit more proper 

modelling of EEG dynamics. Any a priori knowledge about the sources’ statistics 

or their locations may be mathematically incorporated into the conventional ICA 

algorithms as constraints. The noise and interferences involved in the EEGs can be 

exploited in the localization process if their characteristics and properties can be 

determined.

1.4 O b jectives o f th e  R esearch

The objective of this reseach is to find a solution to estimation of the locations of 

the neural activities from the EEG data, based on Blind Source Separation (BSS) 

technique. Three approaches are followed for this purpose. In the first approach 

the estimated components are projected and localized over the brain. In the second



approach the geometrical location of the selected sources within the brain are esti­

mated. This involves an accurate estimation of the number of the sources. Finally, 

some constraints regarding a priory knowledge about some of the sources are em­

bedded into the separation algorithm to improve the overall separation/ localization 

results. Identification of a single local source could be straightforward, i.e. those 

in sensory projection areas, or known anatomico-physilogical constraints could be 

used. It is also possible to use constraints from other imaging modalities [15]. How­

ever, when the source area is extended or when several areas are active at the same 

time, the patterns may be very complex. One can then identify the first source using 

different modalities or specific physiological conditions as a constraint, and then try  

to locate the remaining sources.

To describe the objectives, it is useful to mention that the equivalent current dipole 

(ECD) models are inefficient in accounting for the synchronous activation of broader 

cortical areas, and are unable to localize more deep sources [81], [17]. Alternatively a 

method described as the linear distributed approach considers all the possible source 

locations simultaneously and it has been considered in this work as the main inverse 

solution to the localization problem.

Concluding, the enquiry in this thesis should therefore consider the nature of the 

sources as a linear distributed model. The information which describes the location 

of certain known sources can then be used as the constraint within the proposed BSS 

algorithm. Hence this should lead to a solution to the ill-posed inverse problem of 

source localization. Non-homogeneity of the head tissues, on the other hand, should 

also be exploited.
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1.5 Layout of the Thesis

In Chapter 2, a brain source localization overview is given, and the background work 

covers the bioelectromagnetism, and concept of dipole modelling of the brain sources. 

Furthermore, BSS methods using PCA and ICA are discussed, and the JADE algo­

rithm [29] is described. In the same chapter some brain localization methods and 

different modalities are explained. In Chapter 3, an iterative separation technique 

based on second order blind identification is described, topographic localization of 

sources plus the issues about the number of sources with corresponding results are 

explained. In this chapter detection of the number of sources by implying spatial 

and frequency constraints is also investigated, and the result of independent sources 

are compared with the Akaike’s information criterion. Chapter 4, describes: local­

ization based on correlation; the information inherent within the mixing matrix A; 

the issues of number of sources; and also the issue of attenuation and noise caused 

non-homogeneity of the head tissues, with corresponding results. In Chapter 5, two 

methods based on partial constraints with some known brain sources is introduced, 

and some related simulations such as separating EEG recording with constraint on 

some known brain sources, and utilization of update equations in BSS for separation 

and consequently localization of sources are achieved. It is also demonstrated how 

EEG readings can help to approximately localize sources based on back projection 

of kurtosis on to the electrodes over the scalp. At the end of the chapter some re­

sults are drawn. In Chapter 6 conclusions and future work are presented. Last but 

not least in Chapter 7, the Appendices non-Gaussianity, least-squares estimation 

concept from information theory are outlined.
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Chapter 2

BRAIN SOURCE 

LOCALIZATION OVERVIEW

2.1 Background

2.1.1 T he concept of dipole m odeling o f the brain sources

In practice a way to investigate the functionality of a living organisms is to build a 

model that shows the operational behavior as close as possible to the real one. In 

most of the cases the hypothesis features make interactions between several variables, 

which have a same characteristics difficult to solve experimentally. The basic laws of 

science should be used to control a model’s behavior (e.g., Ohm’s law, Ampere, etc.).

The reason to construct a model is to handel better the interpretation of a practical 

phenomenon. The experiment that can be carried out on a model may not be possi­

ble to be done on a real living tissues. One can understand the model performance 

better than a real observable event.

The basic model of a directional magnetic source is a dipole. For a dipole at location
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1, the magnetic field observed at electrode i at location r (i) is achieved as shown in 

Figure 2.1

o

Figure 2.1: The magnetic field B at each electrode is calculated with respect to the 

moment of the dipole and the distance between the center of the dipole and the 

electrode.

/r0q  x  ( r ( i )  -  1)
B (*) = fo r  i = 1 , . . . ,  ri (2 .1 )

47r|r (z) —1|

where B is the magnetic field, q  is the dipole moment, which is a vector whose 

magnitude is the product of the current in and the area of loop and whose direction 

is the direction of the thumb as fingers of the right hand follow the direction of 

the current. /x0 denotes the magnetic permeability of free space=47r x 10~7N / A 2. 

This is frequently used as the model for magnetoencephalographic data observed 

by magnetometers. Equation (2.1) can be extended to the case of a dipole volume. 

The effect of a volume containing m dipoles on an electrode is shown in Figure 2.2. 

In the m-dipole case the magnetic field at point j  is obtained as:

q x (r(z) -  1 j)

j = i

f o r  i  =  1 , . . .  , / i (2 .2 )

where n is the number of electrodes and 1 j represents the location of the j th dipole. 

The matrix B can be considered as B =  [b(l), b (2 ). . .  b(n)].
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Figure 2.2: The magnetic field B at each electrode is calculated with respect to the 

accumulated moments of the m  dipoles and the distance between the center of the 

dipoles’ volume and the electrode.

Single or multiple current dipole fits using Least-Square or multiple signal clas­

sification (MUSIC) based approaches [113] are certainly the most popular source 

modelling techniques in EEG and MEG. But one of the key limitations of current 

dipole source models is that they may prove to be inefficient in accounting for the 

synchronous activation of broader cortical areas. The estimation of locations, ori­

entations, and strengths of ECD are limited to only few parameters in all. In all 

ECD-based methods, the solution depends completely on the number of dipoles as­

sumed but in reality, the actual number of ECD can not be determined a priori. 

Furthermore, the dipole or multi-pole model is unable to localize more deep sources 

[81]. The ECD may fit properly to the forward field produced by such an activation, 

but it is very likely that its location would be far from the centroid of the true acti­

vated patch, thus making the appraisal of the localization results rather problematic 

[17],
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2.2 EEG Source Signal D ecom position Based on  

Blind Source Separation

An important and great challenge in biomedical engineering is to asses the physiolog­

ical changes occurring inside the human brain non-invasively. Often the variations 

can be modelled as source signals that can be measured by techniques such as EEG, 

MEG and other non-invasive methods.

Brain signals are usually very weak and attenuate when passing through various 

medium such as skull. They are also non-stationary, and fluctuates irregularly to 

all directions, therefore no a priori knowledge of the desired signal is available, and 

the signal may also be distorted by noise and interferences. Moreover, they are 

usually mutually superimposed and their extraction is very difficult. These facts 

make extraction of the relevant information from diagnosis very complicated and 

challenging.

The BSS is a technique concerning the signals separability principles that can be 

applied to them without any knowledge about their origins. Basically, BSS extracts 

some source signals from a set of sensors in EEG, which receives a different com­

bination of underlying signals or sources. The signals received at the sensors are 

considered as the mixture signals. The sources generated within the head, are not 

measured directly and as described earlier there is no a priori information about 

the mixing process leading to the observed mixtures. However this lack of knowl­

edge about the generating process is compensated with strong statistical assumption 

about the independence between the sources.

Considering head as a closed box system where only a mixture of output is known 

through the sensors and the sources cannot be separated and examined one by one. 

In such system an input could be applied via natural senses: Visual, auditory (hear­

ing), somatosensory (feeling), olfactory (smelling) or gustatory (testing), and the
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output recorded with EEG sensors from scalp. At each EEG electrode a superposi­

tion of highly correlated neuron potentials (sources) are weighted sums, where the 

weights depend on the signal path from the neurons to the electrodes. A method 

to transform a multi-variable data set by subspace orthogonality, is referred to as 

principle component analysis (PCA).

To describe this mathematically lets consider A as the eigenvalue of a matrix A € 

R NxN and x  is the corresponding eigenvector:

A x =  xA (2-3)

This is true only if

det\A -  AI| =  0 (2.4)

Equation (2.4) can be expanded to a N th degree polynomial in A, whose roots are 

eigenvalues. This means that there are always N eigenvalues, of which some can be

equal. Equation (2.3) is valid for any multiple of x, in the following format:

AV =  V D  (2.5)

V  is orthogonal matrix to A and D is the diagonal matrix containing the eigen­

values. The eigenvalues of A correspond to the power contribution of the principle 

components to the data set, this means that the first principal component is the 

one corresponding to the largest eigenvalue. For that reason the eigenvalues and 

eigenvectors are often sorted by power so that Ai is the first principle component, 

and so on. The orthogonality of V  means that all the eigenvectors are perpendicu­

lar to each other and therefore form an orthonormal basis. It also means tha t the 

transpose of V is the same as its inverse.

V r  = V " ! (2.6)
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M atrix A  is diagonalizable if:

D =  V -1AV (2.7)

D is a diagonal matrix. If A is already diagonal matrix, the eigenvalues are simply 

the values along the diagonal and V is a indentity matrix.

It is clear that most of the variance in the data set is along the first principle com­

ponent.

The general application of PCA is to decorrelate the data and reduce the number 

of signals to analyze. In places where the signal and noise subspaces are separable 

PCA gives very good separation results. Its drawbacks is that it only manipulates 

the orthogonality of the data, whereas some other methods which will be described 

later such as independent component analysis (ICA) uses statistics of all orders to 

make the outputs statistically independent. PCA is used for certain post and pre 

processing steps such as exploring the characteristics of the recorded signals, dimen­

sionality reduction, or noise elimination. PCA has the advantages that the analysis 

can be based on a simple second-order statistics only.

BSS is a technique concerning the signals separability principles that could apply 

without knowledge about their origins. Basically, BSS estimates some source signals 

from a set of sensor mixtures. The signals received at the sensors are considered the 

mixture signals. The sources generated within the head, are not measured directly 

and as described earlier there is no a priori information about the mixing process 

leading to the observed mixture or sensor available. However this lack of knowl­

edge about the generating process is compensated with strong statistical assumption 

about the independence between the sources, which mostly in the separation result 

gives close information to the source or original signal.

In practice exact representation of statistical ICA can not be found. This leads to 

BSS, which tries to force the processed signals to be as independent as possible. The
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ICA requires:

1. The source signals s(k) have zero mean and are mutually statistically indepen­

dent.
N

p y (y ) = ( 2-8)
i =  1

where PyXVi) are marginal probability distribution functions and P y ( Y )  is the 

joint probability distribution function (pdf).

2. The mixing matrix A in equation (1.1) has full column rank.

3. At most one source has Gaussian distribution.

2.2.1 P re processing

In ICA pre-processing the data before applying different algorithms for estimation 

of the BSS parameters is an important practice. The pre-processing significantly 

simplifies the algorithm and can improve the resulting convergence.

Generally the mixtures and the sources are considered to be at zero mean, however 

if this is not the case, the data can be centered by subtracting the sample mean, 

forcing mean of the mixture to become zero.

Another pre-processing method in ICA is whitening of the data. Whitening is a 

coordinate transformation of data with an arbitrary multivariate density function 

into data with an spherical one [78]. The whitening process un-correlates the data.

W h ite n in g

Whitening is a linear transformation process which eliminates second order correla­

tion among the data. Hence vector x is white when

£ { x x 7’} =  I (2.9)
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where i£{.} is the statistical mean or the expected value, (.)T is the transpose 

operation, and I is identity matrix. A popular transformation is done by using 

eigen-value decomposition (EVD) of the covariance matrix of the observed data. 

£ { xxt }= G D G t where G is the orthogonal matrix of eigenvectors of £ '{xxT} and 

D is the diagonal matrix of its eigenvalues. The whitening can be done by:

x  = G D _1/2G tx (2.10)

where the matrix D -1,/2 is diag{d[x , . . . ,  dn1̂ 2).

Since

x =  As (2-11)

then

X  =  G D '1/2G r As = As (2.12)

Hence the new mixing matrix A  is orthogonal, i.e.

£ { x x r } =  A E { sst } A T = A A T =  I (2.13)

2.2.2 D iagonalization o f eignem atrices for fourth order cu- 

mulant

One approach for estimation of ICs consists of using higher order cumulant ten­

sor. The tensor can be considered as generalization of the covariance matrix. The 

fourth order tensor is defined by the fourth order cumulant cum(xi , Xj , Xk,xi). Thus 

the (fourth order) cumulant contains all the fourth order information, just as the 

covariance matrix gives all the second order information. Both moments and cumu- 

lants contain the same statistical information, because cumulant can be expressed 

in terms of sums of products of moments. It is usually preferable to work with 

cumulant because they present in a clearer way the additional information provided 

by higher-order statistics. Followings are some useful properties of cumulant:
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•  If Xi, Xj , are statistically independent random vectors having same dimension, 

then the cumulant of their sum x t = Xi +  Xj is equal to the sum of their 

cumulants. This property also holds for the sum of more than two independent 

random vectors;

• For the distribution of the random vector or process x of a multivariate Gaus­

sian, all its cumulants of order three and higher are identically zero.

Thus higher-order cumulants measure the departure of a random vector from a 

Gaussian random vector with an identical mean vector and covariance matrix. This 

property is highly useful, making it possible to use cumulants for extracting the non- 

Gaussian part of a signal. Moments and cumulants have symmetry properties tha t 

can be exploited to reduce the computational load in estimating them. A drawback 

in utilizing higher-order statistics is that reliable estimation of higher-order moments 

and cumulants requires much more sample than for second-order statistics. Another 

drawback is that higher-order statistics (i.e. such as kurtosis) can be very sensitive 

to outliers in the data. For example, a few data samples having the highest absolute 

values may largely determine the value of kurtosis. Which means that the single 

value makes kurtosis large, thus we see that the value of kurtosis may depend on only 

a few observation in the tails of the distribution, that may be erroneous irrelevant 

observation.

Note that if the X( are independent, all the cumulants with at least two different 

indices are zero. The i , j th element of the matrix given by the transformation, say 

Fjj, is defined as

kl
where m u  are the elements in the matrix M  that is transformed. As any symmetric 

linear operator, the cumulant tensor has an eigenvalue decomposition (EVD). An

(2.14)
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eigne-matrix of the tensor is, by definition, a matrix M  such that

F(M ) =  AM (2.15)

where A is a scalar eigenvalue. The cumulant tensor is a symmetric linear operator, 

since in the expression cum(xi,Xj,Xk,xi),  the order of the variables makes no dif­

ference. Therefore, the tensor has an eigenvalue decomposition. Let us consider the 

case where the data follows the ICA model, with whitened data:

z =  VAs =  W r s (2.16)

where W  denotes the transposed whitened mixing matrix. This is because it is 

orthogonal, and thus it is the transpose of the separating matrix W  for whitened 

data.

Joint approximate diagonalization of eigen-matrices (JADE) refers to the principle 

of solving the problem of equal eigenvalues of the cumulant tensor. Eigenvalue 

decomposition can be viewed as digonalization. The matrix W  diagonalizes F(M ) 

for any M. In other words, W F (M )W ^ is diagonal. This is because matrix F  

is a linear combination of terms of the form W jwf, assuming that the ICA model 

holds. Thus, we could take a set of different matrices Mj, i = 1 , . . . ,  A:, and try 

to make the matrices W F(M *)W  as diagonal as possible. The diagonality of a 

matrix Q =  W F(M )W V  can be measured, as the sum of the squares of off-diagonal 

elements: YlkjiiQki- Equivalently, since an orthogonal matrix W  does not change 

the total sum of squares of the elements in a matrix, minimization of the sum of 

squares of off-diagonal elements is equivalent to the maximization of the sum of 

square of diagonal elements. Thus, we can formulate:

J j a d e  = (W ) =  £  ||d«tg(W F(M j)W r )||2 (2.17)
i

where \ \diag( . ) \ \2 denotes the sum of squares of the diagonal. Maximization of J j a d e  

is then one method of joint approximate diagonalization of the F(M ;).
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The EEG signals recorded from the scalp are contaminated by system noise, artifact 

from human internal signals, and adjacent electrode signals. In order to localize the 

abnormalities from an EEG reading, the signals should be captured and prepro­

cessed and finally the sources detected and localized. In preprocessing a band pass 

filter between 0.5 to 40 Hz (i.e. 0.5-4 Hz Delta band, 4-8 Hz Theta band 8-13 Hz 

Alpha band, and 13-40 Beta band) is used to eliminate the system noise and other 

human internal signals. For EEG, multiplying the input data matrix by the ’Sepa­

rating’ matrix at the end of ICA training gives a new matrix whose rows, called the 

component activations, are the time courses of relative strengths or activity levels of 

the respective components onto each of the sensors. Four main assumptions underlie 

ICA decomposition of EEG time series:

1. W ithin the EEG frequency range the source signals are only attenuated by 

various head tissues; there is no time-delay involved.

2. Spatial projections of components are time invariant.

3. Source activations are statistically independent.

4. Statistical distributions of the sources within each EEG subband are not Gaus­

sian.

As described in the section 2.2.1 titled “Negentropy” , a measure of non-Gaussianity 

and an important concept in finding out how successful the ICA algorithm, is known 

as negentropy [86, 87]. It is known that the distribution with the highest entropy for 

the same variance, is Gaussian. The randomness of a signal can then be measured 

by its entropy.
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2.3 Brain Source Localization M ethods

Many anatomical, functional, pathological, and physiological abnormalities in the 

brain can be diagnosed using fMRI, PET and M EG/EEG recordings. The fMRI, 

and PET can only detect the haemodynamic changes in the brain and M EG/EEG 

detect the electric or electromagnetic signals of the brain. fMRI and PET are not 

able to reveal the transient activity of the brain sources due to their poor temporal 

resolution, and therefore the localization based on fMRI or PET may not give ac­

curate solution to localization of the sources.

In this work methods described are based on electromagnetic signals in order to be 

consistent, and can be applied to both EEG and MEG data, but only EEG data 

will be used to illustrate the results.

Localization of EEG sources within the brain relies on information obtained at the 

sensors, and can be classified into two main categories:

• Exploiting physiological aspects of the EEGs

• Norm of subspace head volume

Exploiting physiological aspects of th e EEGs

The brain consists of left and right hemispheres, each of which are divided into four 

lobes: frontal, parietal, temporal and occipital.

The EEG signals including normal and abnormal rhythms within the frequency 

range of 0.3 to more than 30 Hz within five main subbands, as described in Chapter 

1, indicate the activities of various part of the body. These signals are dissipated 

from particular locations of the brain lobe, representing activities and behavior of 

the person. Electroencephalographers, or brain specialists can detect some of the
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abnormalities occurring in the signal recorded from the EEG readings. Some other 

problem may be diagnosed by checking each frequency band. This is carried out 

by carefully filtering the EEG recordings according to the clinical expectation stem 

from the disease symptoms. In many cases the abnormalities cause some focal ac­

tivities which are localized over the scalp topograph. However a three dimensional 

location of the source signal requires further processing of the data.

N orm  of subspace head volum e

Norm of subspace head volume is based on geometrical distance measure. The 

distance measures between two n-dimensional vector x(t) = [xi(t), x 2(t) , . . . ,  xn(t)]T 

and y(£) =  [yi{t),y2(t), • • • > 2 / n W ] r  (i-e vectors of sensors and sources). To measure 

a model and to optimize the parameters of that model an estimation of the goodness 

of fit between measured and predicted data can be generated by Lp norm [1], which 

can be expressed as:
n

y ) =  “  Vi\P)* (2-18)
1=1

The mostly used Lp  norms on as explained in section 2.2.2, are

• P = l: The L I ,“absolute value” norm. The Ll-norm minimizes the sum of the 

activity and it accounts better due to the fact that the measured data grows 

with the amount of individual activity and not with the square of it.

n

d(x,y) = '^2'\xi - y i\ (2.19)
i=l

• P=2: The L2,“Euclidean” , “least squares” norm, which is simply Root mean 

square “RMS level” of the distance. This method can be used for a smooth, 

coherent reconstruction of gradient of the distribution. The smoothed L 2 norm
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represents a linear inverse solution with respect to the reduction of computa­

tion time. The solution to the localization of sources in low resolution electro­

magnetic tomography (LORETA) [52] [53] [128] is based on quadratic norm 

(L2 norm). This method is called the minimum norm least-squares (MNLS) 

estimator. _____________

• P=oo: The L-infinity, “Chebyshev” , “minimax” norm is a limiting case which

In previous chapter the methods to model the sources in the brain has been briefly 

described, here those methods are used to localize the sources. These methods can 

be classified into two main categories:

•  Equivalent current dipole

• Linear distributed method

2.3.1 Equivalent current d ipole m odel

The EEG/MEG inverse problem is ill-posed. This means there is no unique solution 

to the problem. Therefore it requires a priori assumption regarding the source model 

to achieve a unique solution. The separation of EEG signal into multiple components 

according to temporal characteristics is performed using dipole fitting algorithm such 

as R-MUSIC [63], RAP-MUSIC [118], which use the concept of equivalent current 

dipole method (ECD). In ECD approach the EEG signals are considered as a rel­

atively small number of focal sources, each of which can be modelled as a single 

fixed or moving dipole [81]. This helps to solve the inverse problem by considering

n

(2 .20)

becomes

d(x,y) = max \xt -  yt\
z= l ,2 , . . . ,n

(2 .21)
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fewer unknown parameters than the independent measurements available. Further 

limitations of ECD model is tha t they may prove to be inefficient in accounting for 

the synchronous activation of broader cortical areas, therefore assumption is to con­

sider the sources as temporally independent [62], and correlations of synchronized 

sources including prefect synchronization [64], hence the problem can be solved by 

using projection concept.

U sing  p ro je c tio n  co n cep t

Multiple signal classification [113], works due to the fact that signal vectors are 

orthogonal to noise subspace

s f v j  = 0,i = 1 ,2 ,.. .  ,p, j  = p +  l ,p  +  2 ,...,M  (2.22)

where s is the signals subspace vector, v is the vector of noise subspace, and (.)H is 

the hermitian transpose.

The MUSIC [113] or recursive MUSIC (R-MUSIC) [63] algorithms are methods to 

locate dipolar sources from EEG recordings. The algorithms scan and extract the lo­

cations of the sources through a recursive search of the head volume for multiple local 

peaks in the projection metric, use subspace projections within a three-dimensional 

head volume, and computes projections onto an estimated signal subspace.

In ECD methods, the solution depends on the assumed number of dipoles, but in 

general, the actual number of ECD can not be known. Thus, they produce large 

localization errors.

2.3.2 Linear d istributed  m ethod

In all equivalent current dipole based methods, the solution depends only on the 

number of dipoles assumed but in reality, the actual number of dipoles can not be 

known (as a priori). The implementation of few equivalent dipole sources may be

54



appropriate in modelling abnormalities such as focal epileptic foci or any other fo­

cal activities. However, in general, most dipole methods require correct estimation 

of the number of sources [81]. Another approach for source localization is to con­

sider a priori all possible fixed source locations. This approach is called distributed 

source model or linear distributed (LD) method. By incorporating several aspects 

of functional neuroanatomy such as the location of active areas, the time course of 

their activities, and the nature of their interactions, the probability of estimating 

the locations more accurately is maximized. Because of the ill-posed nature of the 

inverse problem some constraints are required to ensure the likelihood of the data 

or the log posterior of the conditional estimators has a unique maximum. A good 

solution is one that jointly maximizes the likelihood of the data while minimizing a 

cost function of the constraints. The cost function can be made up of some prior 

information such as that the “best” estimate maximizes the log posterior (i.e., the 

most likely estimate given the data). When the constraints are chosen, a unique so­

lution is obtained through minimizing the deviation from these constraints. However 

to establish uniqueness and stable condition often the constraint must be applied. 

Some of the constraint methods are listed below:

• 1. Weighted minimum norm [34].

• 2. sLORETA-FOCUSS [54],

• 3. Minimum variance spatial filtering [116].

Each of which are described in following sections.
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2.3 .2 .1 . W eighted m inim um  norm  (W M N )

The linear instantaneous EEG signal can be modelled as shown in equation (??). 

The weighted minimum norm is the weights that normalizes the mixing matrix A 

in the p̂-norm sense. A minimum norm estimate of sources s can be calculated as 

a solution of the optimization problem of.

mm||s||. (2.23)

The source estimation basis on measured sensor mixed data is an ill-posed problem. 

A regularization can be implemented in order to reduce the variance of the esti­

mated result by allowing a slight bias. This can be achieved by Tikhonov or Wiener 

regularization [82] and the singular value decomposition methods.

Assume the singular value decomposition of:

A =  UA V T (2.24)

where A is the mixing matrix from equation (1.1), U and V are unitary matrices and 

A is a diagonal matrix with their element values in descending order. By applying 

this to the mixing model we have:

A„Vr s =  U£x, (2.25)

where A„ is the n rows of A and Un includes the n first column of U. In this equation

the index n, is the regularization factor for optimization version to the problem in

equation(2.23). For small n, greater mismatch between x and As can satisfy the 

constraint in equation (2.25).

The minimum source estimate minimizes the sum of the absolute values (^i-norm) 

[83], leading to more focal source estimation rather than Euclidean (£2 ) norm. An 

iterative method to calculate the norms with order between 1 and 2 could be used 

for estimates with properties between the i\ and i 2.
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The minimum £2 -norm estimate can be considered as the maximum a posteriori 

probability estimate with Gaussian a priori source distribution, while the minimum 

£r norm estimate relates to an exponential a priori distribution.

The deep focal sources may be similar to superficial sources. Since sensors are more 

sensitive to the superficial sources, there would be errors for their estimation. This 

errors can be compensated by using a weighted norm [34], where the weight of each 

source component in vector s of equation (2.23) is proportional to the strength of 

the signal that a constant source in the same location produces, i.e. the Euclidean 

norm of a row of the matrix H. The weighted f^-norm of s is:

where w j is the weight of signal in N number of locations and sj is signal vector at 

source location j.

The disadvantage of the minimum £i-norm estimate is that the optimization prob­

lem cannot be solved directly, as compared to minimum £2-110011 estimate. The 

orientations of the source signals assumed to be perpendicular to the cortical sur­

face, and large number of reconstruction points helps to decrease the computational 

cost of the minimum G-norm estimate. The sparse signals are set and the minimum 

£2-norm can be used to find the solution.

The low resolution brain electromagnetic tomography (LORETA) algorithm [52] [53] 

corresponds to weighted minimum norm (WMN) method, which uses Laplacian op­

erator into the weighting matrix in order to acquire a neurophysiologically (spatial) 

smooth results. An alternative to LORETA is a recently developed method called 

standardized LORETA (sLORETA) [54]. In this method the resolution matrix is

N

(2.26)
j = 1

2.3.2.2. sLO RETA-FO CUSS
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used to normalize a coarse WMN estimation, hence the source signal would be re­

constructed in a noise free environment.

This is a technique for solving the EEG inverse problem, by combining a recursive 

process which takes the smooth estimate of sLORETA as initialization and then em­

ploys re-weighted minimum norm introduced by the focal underdetermined system 

solver (FOCUSS).

Standardized FOCal Under deter mined System Solver (FO C U SS)

EEG and MEG in certain environments and conditions, not only produce temporal 

resolution in few milliseconds but also the spatial source localization can be esti­

mated in accuracy of millimeters. The solution to estimate the distribution and 

source localization of sources within the brain from the electrode is an inverse ill- 

posed problem. External observed data at the electrode sensors are as the result 

of superposition of internal sources. Without any knowledge about the sources no 

unique solution for the internal sources can be determined. Furthermore limited 

availability of mathematically independent measurements, increases the underde­

termined nature of the problem. This means that the number of internal sources 

are much greater than the number of sensors. Hence assumptions are made for solv­

ing an underdetermined problem. Models for localized energy sources are obtained 

from physiological evidence, which describes that the underlying activity is often 

limited in spatial extent, or arbitrarily distributed shaped areas.

A modelling technique to solve the underdetermined problems and localizing the en­

ergy of the sources can be referred to as tomographic reconstruction method using 

FOCUSS. FOCUSS can be implemented by using a forward model that a source is 

to be projected to a predetermined reconstruction region, in order to keep the linear 

relation between the sources.

The FOCUSS algorithm is a recursive linear estimation procedure, which finds lo-
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calized solution by starting with a distributed estimate based on a weighted pseudo­

inverse solution. The weights at each step are derived from the solution of the 

previous iterative step. The algorithm converges to a source distribution in which 

the number of sensors should not exceed the number of sources. The initialization 

determines to which of these localized solutions the algorithm converges. Finally, 

only a small number of winning elements remain non-zero, yielding the desired lo­

calized sources.

There has been some research, which claims that using methods such as adap­

tive LORETA/FOCUSS(ALF) [55] and standardized shrinking LORETA-FOCUSS 

(SSLOFO) [58] and some other related papers [57] [56] a number of various resolu­

tions using different mesh intensities can be combined to achieve the localization of 

the sources with less computational complexity. The dipolar sources are presented 

using the approximate Laplace method [56].

FOCUSS [55] is a high resolution iterative WMN method that uses the information 

from the previous iterations. The FOCUSS algorithm can be summarized to the 

following steps [49]:

m m ||C  S | | | , subjec to X  =  L S (2.27)

where

c  = (Q - 'fC T 1 (2.28)

and

Q i = B Q i_1[dm^(Si_ i ( l ) . . .  Si_i(3n)] (2.29)

where B is the diagonal matrix that compensates for deep sources (B =  d i a y ( ^ ^  . . .  p^-y)) 

and Li denotes the ith column of L, and the solution at ith iteration becomes:

Si =  Q iQ f Lr (L Q iQ f L ^ X  (2.30)

S is the actual source amplitudes and L is an m  x 3n matrix representing the 

forward transmission coefficients from each source to the array of sensors, and f
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denotes pseudo inverse. L has also been referred to as the system response kernel or 

the lead-field matrix. The iterations will stop when there is no significant change in 

the estimation. The result of FOCUSS is highly dependent on the initialization of 

the algorithm. In practice the algorithm converges close to the initialization point. 

A clever initialization of FOCUSS has been suggested to be the solution to LORETA 

[55]-

As another option, standardized LORETA (sLORETA) achieves a unique solution 

to the inverse problem. It uses a different cost function, which is:

r r a n [ | |X - L S ^  +  A ||S |$ (2.31)

Hence, sLORETA uses a zero-order Tikhonov-Phillips regularization [57], which pro- 

vides a solution to the ill-posed inverse problems. Furthermore, there may be some 

more potential sources which deserve careful consideration form the re-weighted min­

imum norm sparse solution during iteration. The standardized shrinking LORETA- 

FOCUSS (SSLOFO) [50] can help eliminating nodes that do not contain any source 

activity, or if a node is incorrectly eliminated during iteration, to bring it back 

into solution space. This can be achieved by estimating sources using sLORETA, 

and initializing weighting matrix according to (2.28) and redefining, normalizing, 

and smoothing the solutions in various iterations until no changes occurs in two 

consecutive steps or the solution of any iteration is less sparse than the solution es­

timated by the previous iteration, and or the source strength of any node exceeds a 

threshold preset by the user. However, the accuracy of such algorithms is dependent 

on the number of both sources and sensors assuming fixed positions of the sources 

[114]. Moreover, in most of the above algorithms a head volume conductor model 

and a source model have to be defined. Therefore the associated computational 

complexity is generally very high.
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2.3.2.3. M inim um  variance spatial filtering

In this algorithm a localization method based on spatial filtering principle called 

linearly constrained minimum variance (LCMV) filtering, is exploited. These spatial 

filtering are designed to pass brain electrical activity from a specific location while 

attenuating activity originating at other locations.

The output power at a designed multiple spatial filter is an estimate of neural power 

activities from the spatial pass-band of the filter. The potential measured as the 

observed data vector x can be defined as:
L

x =  £ H t a ) m ( g t) +  n  (2.32)
i = i

where vector m(qi) are the x, y, z components of the dipole moment and n is the 

measurement noise. Ii(q) represents the material and geometrical properties of the 

medium in which the sources are submerged.

By constructing three spatial filters for each location, one for each component for the 

dipole moment, the three component filter output y =  111(9 0 ) is the inner product 

of W (q0) and x:

y =  W r (9o)x (2.33)

where W(go) is the spatial filter for narrowband volume element Qo centered at

location qo.

The LCMV can be expressed as:

m m frC (y ) (2.34)
W  (qo)

subject to orthogonality factor W T(qo)H(qo) =  I where C(y) is the covariance 

matrix of the dipole moment. Substituting for C(y):

min tr[W r (90)C(x)W (®)]
W  (qo)

subject to W T(9o)H(9o) =  I (2.35)
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The constraint in equation (2.35) can be incorporated into the main cost function 

to achieve an unconstrained Lagrangian L(W , L) as:

L{W , L) =  £r{W TC W  +  (W TH  -  I)2L} (2.36)

where 2L is the lagrange multiplier, (qo), and (x) are omitted for clarity. Denoting 

that £rB =  £rBT for any square matrix B:

L(W , L) =  t r{W r C W  +  (W t H  -  I)L +  LT(H r W  -  1} (2.37)

The matrix C is positive definite so the minimum of L(W , L) is attained by setting 

the first term to zero,

W  =  —C -1HL (2.38)

By substituting W  in the constraint W TH =  I, Lagrange multiplier L is now 

obtained

—Lt H t C _1H  =  I (2.39)

or

L t = - ( H t C _1H )_1 (2.40)

Substituting (2.40) into (2.38)

W (q 0) = [HT(q0) c - 1(x)H (q0)]-IH r (q0)C -1(x) (2.41)

Using (2.41 in (2.33) gives an estimate of the moment at location q0. The estimated 

variance of the activity can be defined as:

Var( qo) =  fr{H T(q0)C “ 1(x)H (q0)]“ 1} (2.42)

To preform localization, the estimated variance as a function of location within the 

volume of brain can be accomplished by evaluating (2.42).
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As the conclusion, the constrained methods described above are spatial inverse meth­

ods. These are not influenced by the temporal course of the sources, however, by 

processing only a single time sample, such methods usually have higher localiza­

tion errors on independent sources in the presence of noise. On the other hand 

considering only spatial inverse methods may also give error in the location of the 

sources when continuous EEG recordings are processed. Implementing high resolu­

tion methods such as ^i-norm [65] and FOCUSS, may generate discontinuous signals 

because of their nonlinear characteristics. Low-resolution methods implementation 

such as WMN, LORETA, sLOERTA usually mix the source signals within their 

wide spread functions.

2.4 Finite Element M ethod

In nonhomogeneous head model the numerical solutions are often required for solv­

ing the localization problem as the signals propagate through different layers of 

head. The surface boundaries for each layer must be extracted from MRI to per­

form boundary element method (BEM) computation. BEM model consider the 

conductivity is isotropic and homogenous within each volume separated by the sur­

faces. In contrast, the finite element method (FEM) can model the anisotropy and 

inhomogeneity of the conductivity, which are known to be significant for layers of 

head tissues [35].

In the fusion techniques a source localization method involves a priori assumptions 

about sources and their locations constructed in a patient- specific finite element 

model (FEM) [70], [71]. Electric current dipoles are usually used as sources, pro­

vided that the regions of activations are relatively focused [28].

To employ the finite element method, the object space has to be segmented into 

finite elements. Inside each element a set-up function has to be chosen, according to
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the model of interests. The resulting shape functions span a function space which 

includes the approximation of the solution. The grade of shape functions, the shape, 

the size, and the amount of used elements can vary widely which yields to a high 

flexibility.

Neuronal processes, such as cognition , coordination, perception are carried out via 

the propagation of electrical impulses through the brain. These impulses give rise 

to electromagnetic fields that can be measured extracranially by sensitive recording 

devices. These realistic model forward solutions can be generated using the bound­

ary element method (BEM) or FEM. Both methods can represent the complex 

boundaries and the inhomogeneous regions of realistic models. The FEM has the 

additional advantage that it can capture an isotropic conductivities of the domain. 

The main idea behind the FEM is to reduce a continues problem with infinitely many 

unknown field values to a finite number of unknowns by discretizing the solution 

region into elements. The value at any point in the field can then be approximated 

by interpolation functions within the elements. These interpolation functions are 

specified in terms of the field values at the corners of the elements, points known as 

nodes. It can be noted that for linear interpolation potentials, the electric field is 

constant within an element.

The finite element analysis requires a defined physical property to present an 

actual representation of the brain and head model in a forward problem. This can 

not be an accurate representation in an inverse problem.

2.5 Other M odalities for D etection of Brain Sources

Functional magnetic resonance imaging (fMRI) and positron emission tomography 

(PET) are used for detection of the locations of neural activity.

• Hemoglobin becomes demagnetized when oxygenated, and magnetized when
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deoxygenated, This causes change in the magnetic resonance (MR) signal of 

blood depending on the level of oxygenation. These differential signals can be 

detected using an appropriate MR pulse sequence as Blood Oxygenation Level 

Dependent (BOLD) contrast.

• A positron is an anti-electron, and they are given off during the decay of the 

nuclei of specific radioisotopes. A radioactive fluorine is a positron emitter. 

When m atter collides with its corresponding antimatter, both are annihilated. 

When a positron meets an electron, the collision produces two gamma rays 

having the same energy, but going in opposite directions. The gamma rays 

leave the patient’s body and are detected by PET scanner.

A multi-modal technique can incorporate a combined EEG/fMRI or EEG /PET to 

explain both high temporal resolution of EEG and high spatial resolution of fMRI 

or PET.
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Chapter 3 

TOPOGRAPHIC 

LOCALIZATION OF BRAIN 

SIGNAL SOURCES

3.1 Separation

Independent component analysis (ICA) refers to a family of related algorithms [76, 

79, 84] that exploit independence to perform blind source separation. EEG contains 

information about the brain and its functions.

The block diagram, shown in Figure 3.1 demonstrates the procedure for localization 

of the EEG sources based on back projection. Since the EEG’s are the result of 

combining a number of signals generated by the neurons, it would be difficult to 

relate each mixture to a particular brain’s functionality. The separation of indepen­

dent sources from a superposition of mixed EEG signal is accomplished by taking 

into account the structure of the mixing process and by making assumptions about 

the sources. The major factors required for consideration would be the geometrical
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Figure 3.1: Topographic localization based on back projection

location of the sources within the brain and also the existing clinical information is 

some distinct frequency band. Since various brain disorders manifest themselves as 

abnormal rhythms in certain frequency band, a multi-resolution blind source sepa­

ration (MRBSS) is adequate to efficiently discriminate the actual signal sources. 

The spherical head model is a simple reasonable model for calculating the location 

of EEG sources [63]. Although the realistic head model approximates the head as 

a set of homogeneous layers, typically the model comprises of three layers of scalp, 

the skull, and the brain [62], it causes localization of sources in the head to be 

inaccurate, due to different conductivity of the layers. The standard conductivity 

values for brain, skull and scalp are approximately 0.33, 0.0042 , 0.33(f]_1) respec­

tively. Further investigation has shown that the skull inhomogeneities causes source 

location error [93]. The inhomogeneities of the head layers will be discussed in next 

chapter.

The separation process will not be effective unless the independent components are 

identical to the original sources. A source signal may be statistically independent 

from other signals but the number of statistically independent components can be 

limitless. The separation should be based on desired features linked to optimal num­

ber of sources and frame size that would separate the feature of interest.
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The steps taken for topographical localization of the sources over the scalp are:

• EEG recordings in Sub-bands: Load the EEG signals and sub­

divide them into related sub-bands (i.e. Delta, Theta, Alpha, Beta, 

Gamma) using bandpass, filtering to capture diagnostic features 

specified by the physician for certain abnormalities in the brain. 

The signal spectrum is often estimated through autoregressive mov­

ing average (ARMA) modelling.

• BSS: Apply a BSS algorithm such as JADE, SOBI, or any other 

suitable algorithm to separate the EEG mixture recordings into a 

number of statistically independent sources (i.e. IC’s), normalizing 

the result and sort them with respect to their energy in a descending 

order.

•  E lim inate ICs, invert unm ixnig m atrix, and Back project :

Select one IC at the time, and eliminate the rest. Find the inverse 

of un-mixing matrix resulting from the selected IC. Back project 

the single IC to the topographic image using interpolation method.

• Identify the dom inant ICs: Repeat the process of elimination 

and back projection for all of the ICs, and observe the location 

of the most dominant ICs where they are repeating for an specific 

location on the projection over the scalp.
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3.1.1 Separation o f th e EEG source signals using iterative  

SOBI algorithm

In BSS n number of source signals, normally comes down to identifying the mixing 

matrix A such that one can find a matrix W  so that the matrix format of this 

model is shown in equations (1.1) and (1.2). A and W  are respectively mixing and 

unmixing matrices.

Assuming the sources have unit variance, for independent sources

(3.1)

where (•)* denotes the conjugate operator and (;)H denotes the hermitian operator. 

The covariance matrix for independent sources can be formulated as followings:

R ,( r )  =  E[s(t + T).s*(t)]  =

£ [ s i ( t  +  r ) . s ; ( f ) ]  . . .  0

0 . . .  E[s„(t +  T).s'n(t)\

(3.2)

The covariance matrix of the observation matrix:

R x(0) = £[x(t).x*(t)] =  A R ,(0 )A " +  <r2I (3.3)

R x(r) =  E[x(t +  r).x*(t)] =  A Rt (r) .A " , r  0 (3.4)

For the sources with unit variance

Rx(0) =  £[x(t).x*(t)] =  A IA "  +  <r2I (3.5)

Also note that R s(t) is a diagonal matrix. The first step of separation process is

the whitening step. This is done by applying a whitening matrix W  to the output

y(t):

£ {W y(t)y* (t)W } = W R y(0)W " =  W A A " w "  =  I (3.6)
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The above equation shows that if W  is a whitening matrix, then

W A =  U (3.7)

where U  is a n x n unitary matrix. Now the matrix A can be factorized as:

A =  (A t A )_1A t U =  W fU (3.8)

where f denotes the Moore-Penrose pseudoinverse [40]. From equations (3.1) and 

(3.3) it is true that A A H =  <r2I. Also from equation (3.4) the whitening matrix 

W  can be calculated from the covariance matrix of the observed signals, and the 

separation process is described as

z (t) =  W x(f) =  W (A s(t) +  n (0 ) =  U s (t) +  W n(f) (3.9)

The covariance matrix of z(t) is now

R 2(t ) =  W R x(r)W  (3.10)

From equation (3.3) and equation (3.8) we have:

R ,(r )  =  U R s(r)U  VT ^  0. (3.11)

The joint diagonalization of several matrices is a way to define the “average eigen- 

structure” shared be the matrices [74]. The separation matrix can be found by 

finding the global minimum of a cost function J(W ), which provides a measure of 

independence of the estimated sources. Therefore the goal of the diagonalization 

algorithm is to find a W  that will make the output covariance matrix R y diagonal. 

Hence minimizing J (W ) will ensure that the estimated sources are as independent 

as possible. The covariance matrix R y to be diagonalized, is given by

R y = W [R* + R„]W r  
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where R x is the estimation of the covariance matrix of signal mixtures over the cur­

rent block and R n is the covariance matrix of the noise. Since it has been assumed 

that the noise is uncorrelated R n will be a diagonal matrix [96].

R x - R n =  A RsA T (3.13)

where R s is a diagonal covariance matrix of the independent source signals. The LS 

estimate of W  is
t b

J(W ) =  a r g m m ^ 2  II^WIIf (3.14)
t=l

where || • | | f  is the Frobenius norm and E( t) is the error to be minimized between 

the covariance of the source signals R$ (diagonal due to independence) and the 

estimated sources R y and Tb is the data block length. Therefore a suitable cost 

function is defined that minimizes the off diagonal elements, defines as

Jm{W ) =  arg min Jm (W ) =  arg min(of  fdiag(Ry))2 (3.15)w w

where o f  fdiag[-] means off-diagonal elements of a matrix, i.e. (R y — diag[Ky]).

It has been found that estimating covariance matrices using SOBI is easier and 

computationally less expensive than estimating fourth order cumulants, hence it 

gained speeds up in estimating the covariance matrices. Since the signals in reality 

are not stationary, joint diagonalization of several matrices is a way to define the 

“average eigenstructure” shared by the matrices. Hence SOBI [138] or as in [122], can 

better cope with nonstationarity of the data. SOBI can separate functionally distinct 

neuronal signals from each other and from other noise sources under poor signal to 

noise ratio (SNR). SOBI also is able to recover components that are physiologically 

and neuroanatomically interpretable [138] [139]. On the other hand, the signals

may be considered stationary within short segments of approximately 10 seconds
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(or approximately 2000 samples). SOBI has been selected as the best BSS system 

for separation of the EEG signals and modified so W  can be estimated iteratively 

by jointly diagonalizing the cross-correlation function for a number of lags. As 

described in [135] y (t) is the output of the estimated original sources in (1.2).

3.2 Filtering

The paradigm of EEG recordings is the result of combining a number of signals gen­

erated by the neurons performing various tasks, it would be difficult to relate each 

mixture to a particular brain’s functionality without any mathematical analysis. 

The localization of ICs from a superposition of mixed EEG signal can be accom­

plished by consideration of the clinical information and the geometrical locations 

of the sources within distinct frequency bands. Hence it is required to subdivide 

the EEG signals into related sub-bands (i.e. Delta, Theta, Alpha, Beta, Gamma) 

for that particular geometrical location of the EEG recordings. This work is based 

on instantaneous assumption of the EEG signals. Therefore frequency subdivision 

or spatial filtering techniques such as Discrete Fourier transform (DFT) method or 

Auto-regressive (AR) or ARMA based estimation are only considered. AR estima­

tion of the spectrum is often preferred to DFT to avoid windowing and noise effect.

Filtering of the EEG signals using DFT based spectrum, from a patient with Jakob- 

Creutsfeldt disease (CJD) is shown in Figure 3.3. The EEG recordings of a normal 

person moving his left finger is demonstrated in Figure 3.4. Using autoregressive 

(AR) modelling with order of 8, the space frequency representation of the multi­

channel signals after filtering are represented in Figure 3.5. The amplitude peak 

location is approximately at 8 Hz (i.e. Alpha band).
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Figure 3.2: EEG signals from a patient with CJD symptoms
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Figure 3.3: Filtered signals at Delta band, from a patient with CJD symptoms (DFT 

is used for transformation).
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Figure 3.4: EEG recordings of a finger movement of a normal awake person.

Fi*qii«ncy

Figure 3.5: Space (electrodes)-frequency representation of filtered signals related to 

finger movement. AR with order of 8 is used for transformation. Hence, the highest 

peak amplitude at the electrode location seven in electrode axis with frequency of 8 

Hz is considered as the known source.



3.3 Localization Over the Scalp using Back Pro­

jection

A Matlab program was provided to localize a 2D geometrical location of the EEG 

recordings, another words to project the ICs to the scalp topograph. This program 

after applying BSS to the EEG recordings, selects one of the ICs, and sets the rest 

to zero, uses the invert of the mixing matrix (i.e. W -1), generates the mixture 

signal relating to the single IC, and plots the amplitudes of the selected ICs 011 each 

electrode as a pixel in an image and then interpolates to make a smooth image. 

Hence approximating the location of source corresponding to project the IC to the 

scalp topograph.

In figures 3.6(a) to 3.6(d), and 3.7(a) to 3.7(d), and 3.8(a) to 3.8(d), the dark red 

represents maximum and dark blue indicates the low amplitude. This can help to 

roughly estimate the geometrical location of the abnormal EEG activity from over 

the scalp without any help of an expert.

To carry out a simulation, EEG recordings of a patient with Creutzfeldt-Jakob 

disease (CJD) is considered. This is a spongiform encephalopathy disease that 

affects about one in each million inhabitants in most countries. Recently, a new 

variant of CJD has been linked to the epidemic of bovine spongiform encephalopathy. 

Therefore, vigilance concerning the disease’s incidence has been increased. CJD 

affects the frontal electrodes specially in Delta band. The result of the simulations 

for a patient with CJD and back projection of ICs are shown in Figures: 3.6(a) to 

3.6(d). The result indicates the sources are dissipating prominently in frontal lobe 

of the brain.

I11 the next simulation, the results of back projection of the ICs for a patient in 

state of drowsiness are shown in Figures: 3.7(a) to 3.7(d). The drowsiness normally 

dissipating from frontal and temporal lobes, and the results from back projection in
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Figure 3.6: A 2D topological view of the brains ICs for a patient with CJD. The 

dark red are the highly active areas: (a) IC1 (b) IC2 (c) IC6 (d) IC9.

this simulation confirm this.

Further experiment has been carried out and the result of the simulations for a 

patient with focal seizure, with 12 EEG electrode connections to his head, and back 

projection of ICs are shown in Figures: 3.8(a) to 3.8(d). The focal seizures are sharp 

focal sources dissipating around the head. In this simple approach the results can 

be confirmed by clinical trial and examinations. Since the sources of most of the 

abnormalities are close to the cortex the scheme provides very valuable results.

3.4 D etection  of the Num ber of Sources by im ­

plying Spatial and Frequency Constraints

Accurate estimation of location of the brain sources may be possible if the number 

of dipole sources is known a priori. Alternatively assumptions need to be made 

with regard to the number of dipole sources. Selecting the dominant eigenvalues 

and evaluation of the inconsistencies in their determination can be considered as 

an approach to identify the number of signal sources. Evaluating the eigenvalues 

could be sufficient for noiseless environment but localization of brain signals requires



(a) (b) (c) (d)

Figure 3.7: A 2D topological view of the brains ICs for a patient in state of drowsi­

ness. The dark red region represent high activity areas; frontal and temporal: (a) 

IC1 (b) IC7 (c) IC8 (d) IC9

estimation of the sources in a noisy condition. For simplification it is appropriate 

to mention that the deep source signals are very weak and not easy to detect. In 

addition the deep sources do not have considerable contribution to the distribution 

of either signal or noises, hence most of functional signals are generated from the 

sources close to cortex layer situated on the surface of the brain under the skull. 

Therefore it is expected to have a localized activity if the estimated sources are 

re-projected to the scalp one by one, and checked how peaky the topography is. 

The next step would be the frequency distribution constraint. The brain sources, 

particularly the desired sources are expected to be cyclic or semi-cyclic, hence by 

converting the estimated source signals into frequency domain, the peakedness of a 

signal in certain frequency ranges can be considered as the cycle frequency of the 

desired source. By a logical combination of large eigenvalues, peaky spatial topogra­

phy domain, and peaky spectrum, the number of the sources, and the signal -noise 

subspaces can be identified.

This can be represented using a synthetic simulation of some source signals. Let us

77



I

A

I '

(a) (b) (c) (d)

Figure 3.8: A 2D topological view of the brain’s ICs for a patient with focal seizure. 

The locations of most dominant sources are (a) IC5, (b) IC8, (c) IC9, and (d) IC10.

assume there are four source signals combined together as shown in Figure 3.9.

4 waveform  in Alpha band (i.e. 8. 9,10. and 11 Hz)

- 1  s  I-------------------1-------------------1-------------------i--------------------1-------------------1-------------------1____________ i____________ i___________ i____________ i
0 100 200 300 400 500 600 700 800 900 1000

So u rce  signal overlapping

Figure 3.9: Four synthetic waveforms in 8, 9 ,10 , and 11 Hz representing the source 

signals in Alpha band

The signals are mixed together with four generated random noise signals as shown 

in Figure 3.10.

The eigenvalue of the mixture signals are shown in Figure 3.11. Considering the 

contribution of larger eigenvalues as the source signals, and smaller eigenvalues as 

the noise. The distributions of the sources are shown in Figure 3.12, and the noise
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Figure 3.10: Mixtures of source and noise signals 

distributions are shown in Figure 3.13.

3

0

Figure 3.11: Plot of eigenvalues of the mixed signals

plot of total eigenvalues

num ber of sources

The distribution of source signal indicates super Gaussian, whereas the distribution 

of noise is Gaussian. The next step is to look into the topography of scalp and find 

the peak’s strength. This can be considered as a spatial constraint for the estimated
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Figure 3.12: Distribution of the source signals
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Figure 3.13: Distribution of the noise signals
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source signals.

maxirnaxiX ))
Spatial Peak — level o f  ICk = ------------=------  (3.16)

var(X)

where X  is re-projection of only one IC, and var(X)  is the variance of X .  The next 

step is to find the frequency constraint of the sources. Since the brain neural signals 

are cyclic or semi-cyclic in nature, it is expected that the true sources exhibit a strong 

peak in frequency domain. This can be evaluated and used to recheck whether the 

selected eigenvalue belongs to the true brain source.

Frequency Peak — level o f  ICk —------(3.17)
var | Yk |

where Yk is discrete Fourier transform (DFT) or AR spectrum amplitude of the k th 

IC, and |.| denotes the absolute value.

Finally the results for real sources can be checked with a scheme for rationally 

estimating the number of ICs from EEG recordings. The information about the brain 

sources known as model selection procedures (MSPs), or goodness of fit procedures 

[142] can be used to verify the results obtained. MSPs are evaluated for different 

source and noise. The theoretical criteria is referred to as information criterion (ICr). 

In the ICr method the number of independent dipole sources can be determined by 

only analyzing the eigenvalues of the covariance matrix of the measured data, thus it 

avoids solving the inverse problem. The most effective ICr method described in [143] 

is Akaike information criterion (AIC). AIC compares the log-likelihood function of 

the total error to a penalty term for different model. The penalty term contains 

the number of parameters. Note that the AIC resembles the Likelihood ratio (LR), 

which evaluates if one model is more likely than another.

The ICr [42] for the determination of the number of ICs from EEG or MEG can be 

summarized to the following steps:

81



1. Calculating the covariance matrix C of the measured EEG recordings data  

matrix .

2. Using SVD to decompose the covariance matrix C, and get all eigenvalues 

such that, Ai < ••• < Am, or in this simulation Ai > • •• > Am.

3. Calculating the ICr value with eigenvalues of the covariance matrix C. The 

ICr can be calculated when the distribution of the noise eigenvalues is known 

and when it is unknown [43].

4. According to the rule of the ICr method, the number of sources with minimum 

information criterion ICr is selected as the estimated number of sources.

A simulation carried out proved that the correct number of sources even without 

a prior knowledge about the sources, has been estimated. Based on equation (12), 

and (13) from [44], the ICr generated as shown in Figure 3.14, and Figure 3.15, when 

the noise information is available and when the noise information is not available 

respectively.

A p p lica tion  of th e  m eth o d  to  rea l EEG

The method was applied to a set of EEG recordings from a patient with focal 

epilepsy just before and during the seizure. Initially the dominant eigenvalues are 

identified, Therefore attempt was made to find the distribution of the sources and 

the noise signals before seizures are shown in Figures 3.16, and 3.17 respectively. 

The distribution of the sources and the noise signals during seizures are shown in 

Figures 3.18, and 3.19, respectively.

The next step is to find the spatial and frequency peaks based on the topographic 

projections and the frequency domain representation of the estimated sources. The 

result of the simulation indicate that the sources for the case of before seizure are
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Figure 3.14: Akaike information criterion when the noise information is available. 

Plot of n  sources from m  mixtures against ICr, where the Criterion reaches to a 

minimum value.

Noise information is not available

Number of sources (n)

Figure 3.15: Akaike information criterion when the noise information is not available. 

Plot of n sources from m  mixtures against ICr, where the Criterion reaches to a 

minimum value.
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Figure 3.16: Distribution of the source signals in a patient just before focal seizure.
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Figure 3.17: Distribution of the noise signals in a patient just before focal seizure.
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Figure 3.18: Distribution of the seizure related source signals in a patient during 

focal seizure.
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Figure 3.19: Distribution of the noise signals in a patient during focal seizure.
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most likely to be IC8, IC9, and IC10, and for the case of during seizure are likely to be 

IC9, IC10, since they have the highest peaks in the tomography and strong peaks 

in frequency domain. Figures 3.20(a), 3.20(b), and 3.20(c) show the locations of 

dominant sources before seizure and Figures 3.21(a), and 3.21(b) show the locations 

of dominant sources during seizure. In order to compare the results, the Akaike

(a) (b) (c)

Figure 3.20: The topography of the projected ICs for a patient with focal epilepsy 

before seizure (a) IC8 (b) IC9 (c) IC10, in these figure the amplitude of the peak 

in frequency domain at this IC is at the highest peak.

information criterion in equation (13) from [44] was used, in the case of before seizure 

three sources were identified as shown in Figure 3.22, the first minimum value in 

ICr against m  curve identifies the number of independent sources, where ICr is at 

minimum. And two sources is identified for the case of during seizure, as shown in 

Figure 3.23 this is the elbow of the first ICr curve at minimum location, indicating 

the number of true sources within the related EEG recordings. The above result 

confirms the correct calculation of true number of sources.
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(a) (b)

Figure 3.21: The topography of the projected ICs for a patient with focal epilepsy 

during seizure (a) IC5 (b) IC10, in this figure the amplitude of frequency at this IC 

is at the highest peak.

Figure 3.22: Plot of ICr against the number of sources before focal seizure, “o” 

indicates ICr of this particular EEG data. The first minimum value in the curve, 

which is the minimum of ICr versus m  identifies the number of independent sources. 

In this case the number of sources are three.

87



Figure 3.23: Plot of ICr against the number of sources during focal seizure, “o” 

indicates ICr of this particular EEG data. The first minimum value in the curve, 

which is the minimum of ICr versus m  identifies the number of independent sources. 

In this case the number of sources are two.



3.5 Conclusions

The BSS algorithm gives an estimation of dominant sources known as ICs, with 

some assumption about nature of the sources. A dominant source with higher am­

plitude gives a confirmation on nature of that individual IC. This is where the back 

projection can confirm the estimation of the location of the sources.

In this simulation the back projection helps to find some idea about the location of 

the sources. In some cases back projection of one IC may cover a large area over 

the head.

In order to obtain better results the number of sources can be reduced to the sig­

nals that are actually generating from the related neurons with their corresponding 

locations. This can be achieved by filtering the EEG recordings for the specified 

diagnostic abnormalities, i.e. CJD is dissipating more prominently in Delta band. 

After identifying the related frequency band, it is useful for identifying the regions 

of interest by constructing topographical plots of the power in a given frequency 

band. The topographical plots are important for assessing the location of sources. 

For diagnosis of an abnormality in the brain or pre-surgerical assessments it is very 

useful.

Considering spatial and frequency of the independent components within specific 

period in time can better solve the localization problem. The related number of ICs 

are estimated using the iterative criterion discussed earlier in this section.

89



Chapter 4

LOCALIZATION IN A 3D 

SPACE BASED ON THE 

CORRELATION 

MEASUREMENTS

A three dimensional space localization based on the correlation measurements of 

independent sources from a superposition of mixed EEG signal can be accomplished 

by considering the sparse structural condition of the mixed signal in form of an 

existing clinical information within specific distinct frequency band. Therefore the 

application of BSS and measurement of the correlation between ICs and the mix­

tures give the level of contribution of each estimated source to the electrode signals. 

In the separation process based on correlation, it is assumed that the ICs are iden­

tical to the original sources, and the separation should be based on desired features 

linked to optimal number of sources and frame size that would separate the features 

of interest.
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After identifying the correlations the least-squares (LS) algorithm can be imple­

mented to estimate the location of the corresponding sources. Hence to achieve a 

unique solution we need an extra point for the number of dimensions. So, since we 

are dealing with 3-D space the minimum number of electrodes for having a single 

solution is 4 [2].

The steps taken for localization of the sources based on correlation over the scalp:

• EEG recordings: Store the position of all the EEG readings ob­

tained in a lined up manner, so each position is known after each 

separation process.

• Sub-band: Subdivide the EEG signals into related sub-bands (i.e.

Delta, Theta, Alpha, Beta, Gamma) using bandpass, or auto-regressive 

moving average (ARMA) filtering to capture diagnostic features of 

abnormalities in the brain.

• W h iten in g , the mixture.

• BSS: Apply a BSS algorithms such as JADE, SOBI, or any other 

suitable algorithm to separate the EEG mixture recordings into 

number of statistically independent sources, normalizing the result 

and sort them in a descending order.

• C orrela tion : Since the separated data is sorted in a descending or­

der of amplitude the most dominant signal will be on top of the list.

By correlating the dominant signal of each independent component 

with the original mixed vector data x. The largest correlation value
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identifies the closeness of the source to the estimated location of the 

first most contributed EEG signal.

•  E lim inate  and  correlate: Store the most contributed signal and 

eliminate the electrode location contributing to this effect. Now 

there will be one less electrode Signal. Repeat the correlating pro­

cess with one less EEG electrode signal and store the result.

• T hresho ld : Repeat the procedure up to a threshold value or up to 

a level to ensure all the electrode locations corresponding to that 

specific geometrical feature are covered. If two sources are closed to 

the same electrode, the threshold set the final number of the most 

contributed EEG signals and their level of contribution.

• C onvert an  u n d e term in ed  condition  to  d e te rm in ed  condi­

tion: The most contributed values stored in each procedure corre­

spond to the specific electrode location, which contains the infor­

mation about the related diagnostic features. Hence it eliminates 

the repeated, or unwanted EEG signals. What is achieved here is 

to change an undetermined case into a determined case.

• In te rsec tio n  p o in t of th e  th ree  spheres using LS m eth o d :

Applying LS to find the intersection point of the three spheres [110] 

using the measure of correlation between the dominant IC, and the 

corresponding electrode signal. Assuming a homogeneous media for 

the head, the location of the source can be calculated by minimiz-
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ing the sum of the square error between the fitted value and the 

measured data.

Before outlining the localization based on correlation method there are some exper­

iments carried out as described below:

4.1 The Information Held by M ixing M atrix A

The mixing matrix A from equation (1.1) holds the information about the geometri­

cal location of the sources. To check the effect of geometrical location of the sources 

on mixing matrix consider two signals S\(t) and S2 {t) as sources shown in (4.1) de- 

sipating signals within a brain with a head radius of seven centimeters. Since the 

electrodes captures the sources which are attenuated by the head tissue, the mixing 

matrix A is expected to have its columns proportional to the inverse of the distances 

from the sources. We can consider the following synthetic sources:

Si(t )  =  sin(407rt)

52 (t) = sin(247rt) 

s (t) =  [si(«)s2 (t)]r  (4.1)
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4.5 9.4

3.8 8.9

3.7 8.1

3.8 7.5

4.3 6.8

5.9 5.5

6.7 4.5

8.0 3.8

8.9 4.0

9.5 4.5

(4.2)

The source signals are shown in Figures (4.1) and (4.2). JADE is applied to

Figure 4.1: Signal: si(£) =  sin(407r£)

n

Figure 4.2: Signal: s2{t) =  sin(247rt)
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generated mixing matrix x in (1.1), and separated source signals are shown in Figure

(4.3). Here B T representing the transpose of the un-mixing matrix.

0.0523 0.0282

0.0522 0.0307

0.0465 0.0262

0.0401 0.0204

0.0295 0.0096

0.0046 -0.0172

-0.0111 -0.0335

-0.0280 -0.0525

-0.0333 -0.0602

-0.0334 -0.0624

(4.3)

LOO 6 00  800 1000 1200 1400
Major Contributed source signals after B S S  jade algorithm

O 200 400 600  800 10OO 1200 1400 1600 1800
Major Contributed source signals after B S S  jade algorithm

Figure 4.3: Recovered signals by using the described separation algorithm

Now to simulate the condition for the case when one source is detected via different 

geometrical location sensors. This can be represented as two sources emitting the
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same signal, from different locations i.e. si(t) = S2 (t) =  sin(407rt) with the mixing 

matrix shown in (4.2). After applying the JADE algorithm to the mixed signals x 

from equation (1.1), the unmixing matrix B can be observed as shown in (4.4).

In this occasion the un-mixing matrix B ignoring the scaling factor is defined as:

3.8816 3.8816

1.4379 1.4379

-0.3844 -0.3844

1.7773 1.7773

-1.9326 -1.9326

1.0730 1.0730

-4.3742 -4.3742

-0.3844 -0.3844

-1.2286 -1.2286

-0.6445 -0.6445

(4.4)

It can be noted that the transpose of the un-mixing matrix is combination of similar 

values in both rows. When the elements of mixing matrix is altered the result of 

unmixing matrix displayed a new set of values but each row with a same values 

again.

In the next experiment, three signals were generated, two of them were the same and 

the third one was different, along with a three rows of mixing matrix . The result 

of unmixing matrix displayed two different rows. We can conclude tha t the JADE 

algorithm served its propose as for the two similar signals it separated accordingly. 

Further studies required to examine the unmixing matrix and their behavior to solve 

the localization problems.
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4.2 PC A  Rather Than ICA

In PCA the redundancy is measured by correlation between the data elements, while 

in ICA the concept of statistical independency is used. Also in ICA the reduction 

of the number data dimensionality of variables is less emphasized. Using only the 

correlation as in PCA has advantage that the analysis can be based on second- 

order statistics only. PCA is a useful pre and post processing step. Lets examine 

the difference between ICA and PCA with an experiment. In previous experiment 

the source signals are assumed to be those defined by (si(t) = S2 (t) = sin(407rt) 

with the mixing matrix shown in (4.2)), and they are configured as shown in (1.1) 

format. After running E=eig(cov(x’)), where x/ denotes transpose of x  in Matlab, 

and observing the eignevalues shown in (4.5) it is indicated that there is only one 

nonzero eignevalue meaning there is only one source in this mixed signal. As far as 

ICA is concerned the two signals are two independent entities with similar values. 

In PCA the correlation result gives only one value, that means PCA only shows 

one source where we have actually two sources, therefore PCA fails to represent the 

actual sources.
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-0 .0 0 0 0 0 0 0 0 0 0 >

0 -0 .0 0 0 0 0 0 0 0 0

0 0 -0 .0 0 0 0 0 0 0 0

0 0 0 -0 .0 0 0 0 0 0 0

0 0 0 0 -0 .0 0 0 0 0 0

0 0 0 0 0 -0 .0 0 0 0 0

0 0 0 0 0 0 -0 .0 0 0 0

0 0 0 0 0 0 0 -0 .0 0 0

0 0 0 0 0 0 0 0 -0 .0 0

0 0 0 0 0 0 0 0 0 749.9507 J

(4.5)

Observing un-mixing matrix can help to estimate the characteristics of the 

sources. Furthermore, if we apply the geometrical constraint (i.e. priori knowl­

edge about the appropriate location of a source within an specific frequency band 

and possibly the direction of arrival of the signals) it helps us to estimate the location 

of smaller number of sources.

4.3 Variance Test

A test to verify the result of the previous experiment i.e. “PCA rather than ICA” 

is the variance test; finding the covariance and eigenvalues of the mixed signals 

using fourth order cumulant as shown in equation (2.14) and estimate a threshold 

corresponding to the maximum eigenvalues. The covariance matrix of the mixed 

signal c =  (x(k)x(k)T) and the eigenvalues A =  eig{c); are used in BSS to evaluate 

the number of sources. Amongst the eigenvalues there are some values which are
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extremely small to be considered as element of any source, and should not be used 

for evaluating the sources. This is where threshold is set. The threshold value 

may be optimized by using an iterative procedure to have the maximum peak to 

average value for different cross correlations. The threshold value can be set by 

T H R  =  0.15A. where A are the eigenvalues. A threshold of 15 percent was set for 

this experiment, and the result on Figure (4.4) is obtained. The cross- correlations

1 2

e
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2

o T2 S 9 -| o6 a

Figure 4.4: The first n number of Eigenvalues of the 4th order cumulant tensor

between the outputs and the mixtures produce the correlation charts, as shown in 

Figure(4.5). In the correlation charts one may justify the number of sources when 

for each output there will be a separate dominant peak; also there will not be two 

same size peaks in one chart. The value of threshold can be updated. The number 

of sources is proportional to the eigenvalues above the threshold levels.

The algorithm seems to localize the abnormalities and makes sure that the localized 

signals are actually EEG sources and not noise. If the output dominant signals were 

noise the result from the correlation with the original signal would not. give a peak 

value, thus it proves that the resulting values are the actual sources which are to be 

localized.

In some occasions the threshold may result in localizing the abnormality. A three 

dimensional position of each electrode can be specified for the conventional 10 — 20
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Figure 4.5: The cross-correlations between the estimated sources and the mixtures 

and the corresponding correlation charts

EEG electrode cap as a hemisphere. A priori knowledge of frequency band (i.e. 

Delta, Alpha, Beta) of the abnormalities helps to filter out the noise and unwanted 

signals, resulting in the error reduction in the final calculations. Knowing the radius 

of the head and locations of the electrodes, the source positions can be estimated.

4.4 Localization of the Brain Sources

Sources may be localized by

• Finding the permutation R  and the mixing matrix A

• Separation and localization of the EEG signals based on correlation measure­

ment

Which each are described as followings:

4.4.1 Finding perm utation R  and m ixing m atrix A

Following our discussions about ICA in previous chapter, it is required to determine 

the order and scales of the independent components

x =  As =  (A D -1R -1)RD s where D is a diagonal scaling and R  is a permutation
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matrix.

Diagonal scaling or the variances (energies) D is unknown. This is because both s 

and A being unknown, any scalar multiplier in one of the sources s* could always be 

cancelled by dividing the corresponding column a* of A by the same scalar, say af.

x = Y V —aiXsiO!*) (4.6)
(* iI

As a consequence, we may quite as well fix the magnitudes of the independent 

components. Since they are random variables, the most natural way to do this is to 

assume that each has unit variance: £{s?j  =  1. Then the matrix A will be adapted 

in the ICA solution methods to take into account this restriction. Note tha t this 

still leaves the ambiguity of the sign: we may multiply an independent component 

by —1 without affecting the model. This ambiguity is, fortunately, insignificant on 

the localization of the sources as it can be normalized to a single scale factor. But 

we can not find the order of independent components due to the permutation m atrix 

R. Formally, R  or its inverse can be substituted in the model to give A =  R D W -1 . 

Generally, if R  is known then the mixing matrix, A will be obtained from the 

unmixing matrix, W . We insist that incorporating some constraints such as locations 

of some known sources within the brain, restriction on the geometrical boundaries of 

the region in which the sources are, or time-frequency properties of the signals within 

different subbands may solve the permutation problem thereby accurate localization 

of the sources can be achieved.

4.5 Separation and Localization of the EEG Sig­

nals Based on Correlation M easurem ent

This experimental simulation represents the algorithm developed in order to sepa­

rate the EEG in different frequency subbands.
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In this experiment the conventional 10-20 electrode setup is been considered. Figure 

4.6 shows a typical scalp electrode layout. There are ten electrode positions selected 

to be used in this experiment as shown below:

FP1 and FP2 : left and right fronto-polar 

F3 and F4 : left and right superior frontal 

C3 and C4 : left and right Central 

P3 and P4 : left and right Parietal 

01 and 02  : left and right Occiptial 

A1 and A2 : the referential ear electrodes.

%

%

Figure 4.6: Convention 10/20

In this experiment the EEG data acquired in referential mode, meaning that all 

channels are derived with reference to a common left and right ear electrodes.

The program initially read the mixed signal in the form of EEG recordings obtained 

from a patient with Jakob-Creutsfeldt disease (CJD). CJD introduces periodic spikes 

in delta band. Therefore a function in Matlab is generated in order to filters the 

EEG recordings for each frequency band. From known diagnostic hypothesis the

Irtion
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CJD’s EEG recordings were dissipated in Delta band, therefore a frequency range 

of 0.5 — 4 Hz for Delta band is focused in order to concentrate on the neurons gen­

erating such source signals. Hence the number of sources is reduced to a smaller 

number. The original mixed signals and the filtered mixed signals for this exam­

ple are shown in Figures 3.2, and 3.3, respectivley (at section “Filtering”). Next 

step JADE algorithm is used to separate the statistical characteristics of the EEG 

recordings (known as mixed signals) and then sort them in descending order (i.e. 

according to their eigne values). Therefore the first location in the sorted list signal 

would be the major contributed signal i.e. correlation = ^2 =̂l{Yi * Xi) where Yj is 

the most contributed signal after BSS, and Xi is ith mixed signal. This can be seen 

in Figure (4.7). The rest of the procedure is as explained at the beginning of this

ft

Figure 4.7: Correlation between 1st contributor and the mixed signals

chapter. Hence the result of correlation measurement gives several maximum values 

as shown in Figure 4.8.

The program stops and returns all of those major contributed signals obtained 

through the process, this is shown in Figure 4.9. Hence, the locations of these 

major contributed signals from the original EEG configuration help to find the clos­

est sensors location to the position of the sources. In this experiment the localized 

sources are at locations 01, 02  (left, right Occiptial), and C3 (left central).
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Figure 4.8: Blocking each contributor after correlation.
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Figure 4.9: Definite contributors to the mixed signals.
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4.5.1 E stim ation of the point o f intersection using the sig­

nals’ contributions

The mixture signals received from electrodes contain information which can help to 

localize the abnormalities in a patient. This can be achieved by initially separating 

the independent components of the mixture signals, as shown in equation (1.2) and 

sort their eigenvalues in a descending order (y = [2/1 , 7/2 , •••,£/a t ])-  The prim loca­

tion of signal y\, which has largest eigenvalues than other mixtures, represents the 

dominant signal from the separated signals after BSS. The next step is to correlate 

the dominant signal with the original set of the mixture signal C{ =< y\.X{ > for 

i= l , . .. ,n, the largest value of the correlation represents the closeness of the mixture 

to the source signal. This signal can be named as the most contributed signal (MCS). 

In each step the electrode location related to the MCS is eliminated in order to al­

locate further MCS signals. The process of elimination repeats until the resulting 

separated signals and their correlation with the dominant signal reaches a threshold 

value, which gives several maximum contributed values (i.e. the system doesn’t give 

unique MCS any longer). The resulting most contributed values represent the close­

ness to the location of the source signals. These values are normalized with respect 

to the radius of the head. If we consider the location of each major contributed 

electrode to be the center of a sphere, a point where all the spheres (the radius of 

each sphere is proportional to the inverse of the measured correlations) intersect is 

the location of the original source. Consequently the problem of determining the 

points of intersection of n spheres in Rn is applied [110].

Let us assume there are three electrode locations. The coordinate of electrodes are 

known and it is required to calculate the coordinates of an unknown point when the 

distances of the unknown point from the given points are known. This problem is 

clearly equivalent to finding the intersection point of the three spheres as shown in
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Figure 4.11 [110]. Assuming a homogeneous media for the head, the location of the 

source can be calculated using the following equation:

l|f^ — ajl!l =  j  =  1 , 2 , . . .  n

(4.7)

where k = 1 , . . . , 4  are the frequency sub-bands (i.e. Delta, Theta, Alpha, and 

Beta) of sources with their geometrical locations (i.e. let assume in a case they 

are three such as P3, C3, and 01), f£ are the three dimensional coordinates of 

the sources, and aj (x ,y ,z ) ,  are the pre-calculated geometrical locations of the elec­

trodes over the scalp shaped as shown in Figure (4.10) with the values shown in 

table 4.1. All the values in the table are in radians and the head radius is consid­

ered to be unity. Therefore for each individual case the radius should be calculated 

separately (i.e. Circumference = 2.tt.raduis).

z

F4

Y

Figure 4.10: Electrode position within a Cartesian coordinate

The result for intersection of three spheres in a common point from the last sim­

ulation when only homogenous condition is considered illustrated in Figure 4.12.
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Electrodes X Y Z

Fpl -0.29389 0.90451 0.30902

FP2 0.29389 0.90451 0.30902

F3 -0.47553 0.58778 0.65451

F4 0.47553 0.58778 0.65451

C3 -0.58778 0 0.80902

C4 0.58778 0 0.80902

P3 -0.47553 -0.58778 0.65451

P4 0.47553 -0.58778 0.65451

01 -0.29389 -0.90451 0.30902

02 0.29389 -0.90451 0.30902

F7 -0.76942 0.55902 0.30902

F8 0.76942 0.55902 0.30902

T3 -0.95106 0 0.30902

T4 0.95106 0 0.30902

T5 -0.76942 -0.55902 0.30902

T6 0.76942 -0.55902 0.30902

Fz 0 0.58778 0.80902

Cz 0 0 1

Pz 0 -0.58778 0.80902

Table 4.1: Geometrical locations of the electrodes over the scalp within a cartesian 

coordinate
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Figure 4.11: Cross-section of 3 spheres with an intersection point (left) and without 

a common intersection point (right) adopted from [110]

C3
/  017

02

v

Figure 4.12: Intersection of three sphere in a common point represents location of 

a source

108



In equation (4.7) all the parameters on the left side of the equation are the source and 

mixture coordinates. The parameter dj is inversely proportional to the correlation 

between the M estimated sources and the three major contributing signals:

fo r j  = 1,2,3 i = 1,2, . . . (4.8)

where dj is normalized with respect to the radius of the head. x\ is mixed signal, 

and yi is correlated MCS with corresponding mix signal. Hence the source location 

can be identified, as shown in Figure 4.13.

However, head comprises three layers of brain, skull, and scalp with different conduc­

tivities. Therefore the transitions from one layer to another has to be incorporated 

in the above calculation. This can be performed either by nonlinearly normalizing 

the links djs or by accurately considering the non-homogeneity of the brain. The 

estimated location of the sources in an inverse calculation solving for /*  in equation 

(4.7). As a conclusion, the purpose of this experiment is to use an iterative BSS

Figure 4.13: Part of scalp including the electrodes and the location of a source to 

be identified

method to detect the number of original contributed EEG signal sources, based on
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correlation between ICs and the electrode signals. This method changes an undeter­

mined system into a determined one. A priory knowledge of the geometrical location 

of these major contributed signals along with their related correlation values helps to 

localize the sources based on intersection of three spheres. We assume the medium 

is homogeneous and the source is located at a unique position. The outcome of 

the experiment with regards to localization of the CJD sources; the biopsy after 

postmortem has been indicated that the patient with CJD would have spongiform 

changes in cerebral cortex and cerebellum. The result of this experiment confirms 

the location of source in occipital lobe, where the cerebellum is situated.

4.6 Incorporating Non-hom ogeneity of the Head  

Tissues

There are various factors which violet the homogenous assumption of the dense 

media such as:

• Various magnetic properties of the layers: The hydrogen atoms alternately 

absorb and emit radio wave energy, generating non-homogenous environment 

between different medias of the head.

• Various resistivity (conductivity): The resistivity of different layers generate 

non-homogenous environment for penetration of the brain source signals to 

the sensors.

• Various noise: In general EEG signals are statistically non-stationary and 

corrupted by other human internal signals, such as eye blinking signal, heart 

beat, noise of the measurement system, environment noise, and interference 

from the adjacent electrode signals.
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All above phenomenon creates a nonlinear conditions for the signal sources of brain 

for calculation.

4.6.1 N on-hom ogenity problem

With some indeterminacy in the result we can approximate the location of the 

sources within the brain. Unlike the methods in [118] and [119], which consider the 

sources as magnetic dipoles, we simply consider them as the sources of isotropic 

signal propagations. Therefore the head (mixing medium) model only mixes and 

attenuates the signals. The attenuation corresponds to the distance and the resis­

tance of the medium between the sources and the fixed electrodes. Alpha waves are 

recorded from the occipital and parietal regions of the cerebral cortex. However, 

the Alpha waves from the occiptial area are prominent with higher amplitude [127], 

[134]. These sources generate reference signals within a small frequency band of 

7 — 13 Hz in healthy adults, without any attention, visual, or possibly auditory 

stimulation, and without dysfunction of the central nervous system (CNS). Since we 

can measure both the link weights and the energy of the mixtures within the selected 

bands we will be able to compensate for the nonhomogenity by finding a relation­

ship between A, found through measurement of the geometrical locations and A g, 

found through measurement of the energy of the signal(s) of the known source(s). 

The energy within the Alpha band is obtained by carefully bandpass filtering the 

EEGs around the peak in the range of Alpha frequencies. These amplitudes are 

then inverted to give the entries of the k columns of A.

On the other hand, the geometrical location of the known sources can be approx­

imately determined off-line (denoted A5). It is clear that A = / ( A s), where /  

represents the nonhomogenity of the medium between the known sources and the 

electrodes. Instead of using the sources of normal brain rhythms as a known a pri-
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ori, we may synthetically provide a number of sinusoidal sources in certain locations 

under the skull. This may be done by setting a number of electrodes under or close 

to the brain through the nose or mouth. No significant invasive surgical operation is 

needed for such purposes. In the second method, by using a set of sharp bandpass 

filters, projection of the sinusoidal waves to the electrodes can be easily evaluated. 

Therefore the entries of A will be accurately identified. Having more known sources, 

the positions of the sources as well as measuring the non-linearity resulting from the 

non-homogeneity of the head including the brain (white and gray tissues), the skull, 

and the scalp can be estimated more accurately. In a spherical model of the head we 

may consider three main layers; brain, skull, and scalp for which the thicknesses are 

known. To incorporate the non-homogeneity /  has to be completely identified for 

all the sources. In some simplified practical situations the column vectors of A are 

proportional to 1 /T a [rather than 1/T]. where a  is non-linear variable, as described 

in Chapter 4, Non homogeneity effects.

Having more than one known source location, in order to extend the above nonlin­

ear map to all the estimated source locations a simple means of extrapolation of the 

columns of the estimated mixing matrix would be adequate.

4.6.2 N on-hom ogeneity considered as N onlinearity o f th e  

head

In blind source separation the mixing matrix corresponds to the link weight between 

the sources and the sensors. After separation the resulting independent components 

are approximating the original sources. The BSS only reproduces the statistical 

representation of the original source without consideration of the scaling and order 

of the original signal. This separation is valid for both case of homogenous and 11011- 

homogeneous case of the media. In the non-homogeneous case of the brain where
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the source signals penetrate and pass the white and grey matters and blood fluid, 

skull, and scalp each of which with different conductivity or resistivity, until reaching 

to the electrodes causes attenuation to the signals received. The effect of this non- 

linearity or non-homogeneity can not be considered in BSS as the effect on scaling 

and rotation of the original signals is unaltered. It is required to generate a model 

that shows how the environmental noise are causing the attenuation of signals, hence 

this helps to create an inverse solution to the effect of non-homogeneity of different 

media in localization problem. In a homogeneous sphere model shown in Figure 

4.14, the isotropic sources are attenuated and mixed while travelled to the scalp 

across brain in all directions. High amplitude signals measured at the electrodes 

could represent the closeness of those electrodes to the abnormal sources within 

an specific frequency band, and thus they can be considered a prior knowledge for 

location of some of the sources. In a model this can be represented as weighted link 

between sources and electrodes. Hence, a minimum of three weighted links between 

sources and electrodes are sufficient to estimate the location of a source. Therefore, 

the problem of localization of sources can be considered as to find the intersection of 

three spheres in a three dimensional space, when the radii and centers of the spheres 

(the electrode locations) are known [110].

When the three spheres do not intersect in a common point, e.g. due to error in the 

estimated distances caused by noise and other nonlinearity factors, LS minimization 

can be used to obtain an optimum solution. If a solution exist, the intersection of 

the spheres sometimes gives two different points, but the selection between them 

can be done considering physiological aspects, for example, if one of the solutions 

lies outside the brain, it can be discarded. Therefore one solution would be the 

estimated location of the source.

To achieve a unique solution we need an extra sphere. Therefore, since we are 

dealing with three dimensional space the minimum number of electrodes for having
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Figure 4.14: Homogeneous spherical model of the brain 

a single solution is four.

In homogeneousspherical brain model, the largest value of the correlation represents 

the closeness of the mixture to the source signal. Therefore, the cross-correlation 

between the sources and the mixtures will be related to their distances. This as­

sumption enables us to estimate the distances as a function of the cross-correlation. 

However, the amount of internal noise increases with the distance from the elec­

trodes, assuming the noise is spatially uniformly distributed. Figure 5.4 illustrates 

the relationship between the electrodes and the mixing matrix A. The columns of 

the mixing matrix refer to the locations of brain sources within the brain. In a ho­

mogenous medium are inversely proportional to the distances from the sources

i.e. Ujj ~  fir- That is because, the signal is attenuated proportional to the square 

of the distance. On the other hand, in a non-homogenous medium it is not attenuate 

with the square of the distance but with some other power, which depends on the 

conductivities of the different layers, or nonlinearities caused by internal or external 

noise i.e. ~  ^ir~) w îere </(•) *s a nonlinear function that describes the effect of 

the head medium including the scalp, skull, and the brain (white and grey) tissues. 

Assuming a homogenous head medium each element of the columns of the mixing
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matrix is inversely proportional to the distances between the respective electrode 

and source. It means that the distance between each electrode and each source have 

the following relation:

r«  ~  4  (4.9)
Uij

Figure (5.4) shows the result of normalized geometrical source localization when the 

head is considered homogenous. The positions of the electrodes e* are depicted in 

Table 4.1 in cartesian (rectangular) coordinate. However, the homogeneity is a weak 

assumption. A more precise method can be achieved after the non-homogeneity of 

head is modelled and exploited [91] [92]. In a realistic environment where conduc­

tivity of the tissue layers and where the effect of noise (added uniformly to the signal 

sources) are involved, reasonable assumptions have to be made in construction of 

the head model and corresponding g(T) has to be estimated.

The relationship between homogeneity and non-homogeneity of the head medium is 

illustrated as a graph of distance against cross-correlation for the case of homoge­

nous media as the straight doted line and for the case of non-homogenous head 

model as an monotonically decaying curve in Figure 4.15. In reality the head has 

been considered to be a series of concentric spherical regions (brain, skull, and scalp 

each of which is considered to be homogenous), as illustrated in Figure 4.16 (Russ 

and Driscoll, 1969). In this model, the inner and outer radii of the skull are chosen 

to be 8 and 8.5cm, respectively, while the radius of the head is 9.2cm. For the brain 

and the scalp a resistivity of 2.22Qm is selected, whereas for the skull a resistiv­

ity of 80 x 2.22Qrn = 177Qm is assigned. These numerical values are given solely 

to indicate typical (mean) physiological quantities. Because of this symmetry, and 

simplicity, it is easy to construct a mathematical and computer model. It is also 

easy to perform calculations with a spherical geometry. Though this simple model 

does not consider the anisotropy and inhomogeneity of the brain tissue and cortical
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Figure 4.15: The graph of relationship between cross correlation of the source signal 

verses square of distance between the electrode at the scalp and sources inside the 

head in decimeters. The slope for Homogeneous spherical model of the brain is 

shown in doted line and an asymptotically decaying curve between the same cross 

correlation considering the non-homogenous case shown in solid line.

Scalp 2.22 flm
Skull 177  flm

r, = 8.0 cm 
r2 = 8.5 cm 
ra = 9.2 cm

Figure 4.16: Concentric spherical head model by Rush and Driscoll (1969). The 

model contains a region for the brain, scalp and skull, each of which is considered 

to be homogeneous.
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bone (Saha and Williams, 1992), it gives results that correspond reasonably well to 

the measurements.

Let assume there is no noise, no scaling and sign ambiguities caused by BSS, and no 

normalization is considered. The distance from electrode to the source is inversely 

proportional to the power-2 of the correlation between the source and the electrode 

signals.

A  = r«  (4.10)

where C is the correlation between the mixture Xj and the estimated source y*, a  is 

the non-linearity factor, and T is the distance between the source and the electrodes. 

Obviously the attenuation caused by the resistivity and conductivity of non-homogeneous 

brain layers makes no different in BSS results. Therefore the way of looking at the 

problem should be changed. Now we have to look at result of the BSS separated 

signal and rely our assumption on some other criterion. The most important and 

effective criterion is the noise. The BSS results are ICs which do not bear any in­

formation about locations of the sources. The noise can be a factor to indicate if 

the source is closer to the sensor or further away from it. By assuming the head 

containing large amount of noise coming from many directions, and our desire source 

signal is affected by such unwanted noises. There is no information about the nature 

of these noises and whether are additive or multiplicative. Consequently the sources 

closer to the cortex are less affected by noise than those deep inside the brain. Ac­

cording to this assumption the correlation and distance curve can be is shown in 

Figure 4.17, where from left of the figure straight line slop represents the nonlinear 

effect of noise caused by scalp and the line continuous in a parallel to horizontal 

line along with increase of distance between the sensor and the source this is the 

period when the signal passing through the skull, which shows no noise is affecting 

the correlation value, and finally as the signal passes through the brain a decaying
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curve shows the effect of noise as the signal is getting closer to the sensor location.

CVoss conealtion between sources and mixture signals
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Figure 4.17: Curve of Non-Homogeneous spherical model of the brain considering 

the effect of noise shown as solid line, and for the homogenous case shown as doted 

line

If the attenuation and noise characteristics of the head is given, then a  can be 

estimated in such a way to best describe the head model. Now, with such a non- 

homogenous model, we are required to generate a head model that can incorporate 

the estimated mixing matrix A  to localize the actual location of the sources. Starting 

by considering the voltage at sensor j  due to source i:

_ K l K 2 K 3

ej p2 r§
where K \ , K 2,Kz  model the resistivity of the three layers and F i , r 2 , r 3 are the 

segments of source-sensor intervals corresponding to the intervals within the three 

layers. Remembering that the thickness as well as resistivities of the layers are very 

different, we wish to find a relation similar to the one of the homogenous medium

(4.9). The elements of the columns of the mixing matrix now represent the following:

118



K x K 2 K 3
(4.12)

~  p 2  p 2  p 2

iji rn 03
which we wish to relate to the total distance 4 - +  T ^  as follows:

where a  is the non-linearity factor. The value of a  can be iteratively computed to

achieved parameter is then applied to the localization of real EEG sources.

4.3. LS solution

As described in the pervious chapter, given the mixing matrix A one can employ 

LS minimization [110] to find the location of source k using T = {rfcir/c2 ...r\m}

source and E  is the set of electrodes. The positions of the electrodes ej are depicted 

in Table I in cartesian (rectangular) coordinates. The values are computed

the point of intersection of n spheres. To achieve a unique solution we need an extra 

sphere for the number of dimensions. So, since we are dealing with 3-d space the 

minimum number of electrodes for having a single solution is 4. Also, the larger 

the number of electrodes is the better the localization is achieved since errors in 

measurements or model errors in individual electrodes will be less important. Also, 

the scaling problem caused by the estimation of the mixing matrix in BSS will be 

of less significant since the LS algorithm will attempt to find the closest solution.

(4.13)

have the best match between the synthesized sources and the estimated ones. The

where m  represents the number of sensors as: where is the coordinates of the k th

according to the non-homogenous model. The LS solution is equivalent to finding
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4.7 Conclusions

The work can be summarized into the following steps:

1 . Find A rather than W : Since mixing matrix A does not fully represented by 

W "1, we need to find a forward model to estimate A. The method introduced 

in [89] is valid only if the mixing matrix is square (i.e. the number of sources 

are equal to the number of mixtures). In our research we are assuming that 

the system is undetermined, and the number of sources are unknown to us. 

Within a iterative coupled loop and a priori knowledge about some of column 

of matrix A the remaining elements of mixing matrix can be calculated.

2. Incorporate the non-homogeneity of the head into the definition of non-linear 

normalization of the correlation measures. Refractions of current densities 

cause wrong estimation of the locations due to resistivity and conductivity of 

inhomogenous layers of the brain. In order to obtain a better estimation of 

the sources, the thickness and resistivity of scalp, skull, and brain should be 

taken into account [91] [92]. Its found that the skull conductivity ranges from 

0.0735 Sm - 1  to 0.00467 Sm - 1  The standard conductivity values for brain, 

skull and scalp are 0.33 S'm-1, 0.0042 Sm-1, 0.33 Sm - 1  respectively [93] (Sm - 1  

is siemens per meter( the German-born engineer Sir William Siemens (1823 — 

83), the siemens is a unit of electrical conductance equal to 1 /ohm. i.e.= 

l/[o/im — meter]).

3. The elements of the columns of the mixing matrix can be represented as: =

and it is required to relate to the total distance
VJl *J2 *J3

shown:
K

ai) =  ™ (4.14)
ij
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where a  is the non-linearity factor. The value of a  can be iteratively computed 

to have the best match between the synthesized sources and the estimated 

ones. The achieved parameter is then applied to the localizations of real EEG 

sources. Given the mixing matrix A, one can employ LS minimization [110] so­

lution is equivalent to finding the point of intersection of n spheres. To achieve 

a unique solution we need an extra sphere for the number of dimensions. So, 

since we are dealing with 3-D space the minimum number of electrodes for 

having a single solution is 4. However for every individual source a better 

localization can be achieved by increasing the number of electrodes involved, 

due to the geometrical configuration of the head and the sensors. Furthermore, 

the scaling problem caused by the estimation of the mixing matrix in BSS will 

be of less significance since the LS algorithm will attempt to find the closest 

solution.
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Chapter 5

PARTIALLY CONSTRAINED 

METHODS

5.1 Extension of the M ethod Based on the Cor­

relation Measurements

An effective and simple algorithm for localization of abnormal sources of the EEG 

signals within the brain has been developed here. In this method the signals are 

separated first, then the estimated independent components are lowpass filtered and 

normalized. In the next stage the correlation values between the estimated sources 

and the electrode signals are measured. On the other hand the sources with known 

locations are separated offline using narrowband bandpass filters. Finally, as the 

main contribution of this section of the thesis the mixing matrix is estimated using 

the information about the known sources and the estimated sources. The locations 

of the unknown sources are then measured with respect to the columns of the mixing 

matrix and the geometrical properties of the head and electrode locations. 

Localization of abnormal brain sources such as focal epilepsy has been an impor­
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tant subject of research by both clinical and signal processing workers for at least 

two decades. Some source localization techniques have been introduced by the re­

searchers in this area based on subspace estimation in beamforming and measure­

ment of the direction of arrival (DOA) of the signals such as MUSIC and RAP- 

MUSIC [104] [119]. Although in general these methods perform well even at the 

presence of noise they do not exploit the nature of the sources and make the best 

use of the prior knowledge about the known sources. Therefore the outcome suffers 

lack of accuracy in the localization especially where the number of sources is high. 

An effective and simple update equation has been used here for the separation and 

localization of EEG sources by incorporating blind source separation (BSS). In this 

method it is assumed that the normal (Control) EEG sources and also the abnormal 

rhythms (Tasks) are independent. In localization of the sources we use the fact that 

the geometrical coordinates of the sensors and the correlation between each indepen­

dent component (IC) and the observed EEGs can be measured and therefore will be 

known to us. Also we are able to filter out one or some of the known brain rhythms 

using carefully centred bandpass filters. The normal Alpha rhythm with a frequency 

of between 8  to 13 Hz, consistently exist for awaked adults. Also the location of 

the source is known to be in the hippocampus or the posterior brain lobes. This 

can be confirmed by correlating the filtered signal with all the electrode signals and 

localize the source (using the method explained in Section 3) with respect to the 

three electrode positions whose signals have the largest correlation with that source. 

After we estimate the location of all the sources (which are basically addressed by 

the columns of the mixing matrix) with some indeterminacy in the solution, we will 

be able to readjust the locations with reference to the location of the known sources. 

This is in fact equivalent to estimation of the permutation matrix. In the following 

sections the overall procedure is explained and the performance of the method for 

real EEG signals of a patient with epilepsy is given.



The Infomax BSS algorithm [108], [109], based on minimization of mutual informa­

tion or maximization of the entropy has been used here to separate the sources from 

the EEG mixtures (iterative SOBI can also be used here in the same way). The 

update equation for estimation of the unmixing matrix, W, is defined as

W  (t +  1 ) =  W  (t) +  AW(£) (5.1)

where by considering the extension to the Natural gradient Algorithm (NGA) pro­

posed by Amari [109] we have

AWW = m̂ vF wTw

^ { ^ I +  (1 - l +  exp(W x))(W x )r} W  (52)

Here J  is the Infomax cost function, fi is the learning rate, 7  is a constant, I is a 

unitary matrix. W  is initialized to W init = I and fi is calculated empirically via the 

following adaptive criterion:

M f)= M ° { p u r c + i i A 7 Cii} (5-3)

Where /zo, a, A  and £ are constants adjusted for adaptation.

It has also been demonstrated that the effect of noise on the performance of the

update equation is minor since minimization of the main objective function does 

not depend on the noise. The separation, however, is subject to the inherent scaling 

and permutation of the estimated sources i.e. A = R D W -1, where R  and D are 

the permutation and scaling matrices.

The proposed algorithm was implemented for separation and localization of epileptic 

sources. Figure 5.1 shows a set of EEG signals for a patient suffering from focal 

epilepsy. Various methods as described in [106] and [107] using a constrained BSS
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or based on an offline measure can be applied in advance to eliminate the effects of 

artifacts. Lowpass filtering seems to be very effective in removing the high frequency 

noise from the estimated ICs. The seizure effect may be observed in almost all the 

signals detected at the sensors. By looking at the spectrum of the signals we can 

easily see that the seizure signal has a prominent (slightly decreasing) frequency 

around 6  — 7 Hz. The normal Alpha rhythm has also a frequency of around 1 1  Hz. 

Figure 5.2 shows the contribution of the mixtures to the desired rhythmic outputs 

and the dominant ICs are illustrated in Figure 5.3. Each estimated source is then 

localized based on the approach described in [110]. At this stage the solution to the 

following least square problem was obtained:

m *n5(ffc),f fce R n (5.4)

where

S ( f c )  =  £ { l f t - % l l * - « y 2 ( 5 .5 )
j =  1

where f and aj refer to the source and the electrode coordinates respectively, and 

dj are nonlinearly proportional to the inverse of the correlations between the es­

timated source k and the electrode signals (the mixtures), j  = 1,2,3 represents 

the electrode involved in calculation of the correlation values, and k = 1 , 2 , . . . ,  M, 

shows the source number. In these equations all the variables except the source 

coordinates, f, are known. The solution gives the approximate locations of all the 

sources. Unfortunately, there are ambiguities in both the accuracy and the number 

of solutions. In order to mitigate the ambiguities we need to use a priori informa­

tion about the known sources. This is done in two steps: The estimated sources are 

scaled to make the energy of the known sources equal to those extracted by bandpass 

filtering. The permutation matrix, R, is estimated by minimizing ||AeiS-R W - 1  \\2F 

, where A es is an n x m  matrix with a number of known columns proportional to 

the known sources and zeros for the rest, W is the estimated unmixing matrix using
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BSS, and ||.||j? is Frobenius norm. The solution to this is simply achieved through 

linear programming. The mixing matrix A will be then determined as A =  R W -1. 

Unlike the localization methods in [104] and [119], which rely on decorrelation of the 

sources, this method exploits the independency of the sources. Moreover, the com­

putational cost is much lower. Using this method the seizure source was localized 

around the left tempro-lateral lobe segment. This has been verified by appearing 

white patches in the brain fMRI (BOLDs) in the same segment.

2 P  "lpn upa cqia 0 9 a ___ 1 npn__irapn___________ ic p a  < °p n  oqqq2 P  "lpn <90____ £ 9 0 ____0 9 a ___ 1 npn___irapn___________ ic p a ___< °p n ___oqqq

p 3 9 a -------*90------ £ 9 0 ____0 9 a ___ rnpn nfT n 1 «pn ic p n  ± a p a _ _ a a n (

-1 -------1-------1------- 1____ 1____ 1____ 1____ 1____ 1____ 1____ I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

sam ple, Fs=200 sam ples/sec

Figure 5.1: The original electrode signals during an ictal period.
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Figure 5.2: Representing the normalized correlation between the estimated sources 

and the mixtures (electrode signals), e.g the second bar in the third frame is the 

normalized correlation between the second mixture and the third output.

□ 200 400 600 800 1000 1200 1400 1600 1800 2000

-5 l -------L-------1-----------1 I___________|_
a 200 400 600 800 1000 1200 1400 1600 1800 2000

V A v M / W V v V v \ A A M r v A ^
O 200 400 600 800 1000 1200 1400 1600 1800 2000

sample. Fe—200 samples/sec

Figure 5.3: The separated dominant sources from the signals in Fig. 5.1; the top 

figure represents the normal Alpha rhythm. The middle one is clearly an epileptic 

seizure signal with a frequency of between 6-7 Hz. The bottom signal is a Delta 

rhythm.
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5.2 Partially Constrained BSS for Brain Source 

Localization

The instantaneous BSS formulation in (1 .1 ) and its corresponding estimation of the 

sources y in (1 .2 ), requires a solution for finding the unknown column vectors of the 

mixing matrix A and the sources s.

The separation matrix, W , can be found by finding the global minima (or max­

ima) of a cost function, which provides a measure of independency of the estimated 

sources. Using ICA we can attem pt to separate the signals into their independent 

components. The number of outputs may be approximated by one of the methods 

described in [119]. However, the separation is subject to the scaling and permutation 

of the sources i.e.

A =  D R W " 1 (5.6)

Where D and R  are the scaling and permutation matrices respectively, and W - 1  is 

the pseudo inverse. The effect of D can be constrained by the size of the head and it 

can be generally disabled by normalization of the estimated separating matrix after 

each iteration. However, without solving the permutation problem no solution to 

the estimation of A will be possible. This means there will be no clue to finding a 

unique solution to the localization problem.

As an example, Figure 5.4 shows part of the scalp including three electrodes and two 

sources located inside the brain. In general, the distances between the sensors and
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the sources are inversely proportional to the correlations between the corresponding 

estimated sources and the observed EEGs. To formulate the problem consider k out 

of m sources are known. This means that the scaled values of the k columns of A 

are known. In the example of Figure 5.4 we may expand the generative model to

X =

Z i a n «12 r  1

= A S  =
51

52
* 2 ^21 «22

-X\ _a31 0-32

(5.7)

and if source si is known we define a new matrix as A such that its columns corre­

spond to the known and the unknown sources the element of which are represented 

by a and a respectively. In general case

A =  [Ak : A Uk] =
l k

, u k
l l fc+l . . .  au klm

n k  n u k  n u k
n k  n k + l  ' ' ‘ n m

(5.8)

where A*; n x k, and A uk] n x (m-k), are respectively the known and unknown 

sub-matrices.

In most of the BSS algorithms W  is calculated iteratively in order to obtain the 

most statistically independent sources. Now, during the separation process we may 

simultaneously try to enforce the following constraint.

J c =  ||A  -  R W "1!^ =  trace([A -  R W 1] ^  -  K W "1]71). (5.9)

where || • \\p is the Frobenius norm. In this equation D is discarded since W  is 

normalized after each iteration. This constraint is then incorporated into the main 

BSS cost function resulting in an unconstrained problem for finding W . After each 

iteration the estimates of R  and Auk are also updated based on the procedure 

described in the next section. In order to locate the sources more accurately the
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non-homogeneity of the head region has to be exploited. In the proposed method a 

non-homogeneous head model has been used in order to compute the nonlinearity 

parameter and accurately estimate the geometrical locations of the sources from the 

estimated mixing matrix A = [ A k  : A u k ] .

x2

z2x1

z1

Scalp

ri:
22m

r
2

Figure 5.4: A section of the scalp including three electrodes and locations of the two 

sources

A number of recently developed techniques such as time-lagged second-order blind 

identification (SOBI) [138] or as in [122] can better cope with nonstationarity of the 

data. SOBI can separate functionally distinct neuronal signals from each other and 

from other noise sources under poor signal to noise ratio (SNR). SOBI is also able 

to recover those components that are physilogically and neuroanatomically inter­

pretable [138] [139]. On the other hand, the signals may be considered stationary 

within short segments of about 10 seconds (or about 2000 samples). SOBI has been 

selected as the best BSS system and modified so W  can be estimated iteratively 

by jointly diagonalizing the cross-correlation function for a number of lags. As de­

scribed in [135] y (t) is the output of the estimated original sources in equation (1.2). 

The separation matrix can be found by finding the global minima of a cost function 

J ( W ), which provides a measure of independence of the estimated sources. Hence 

minimizing J(W ) will make sure that the estimated sources are as independent as
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possible. T he covariance m atrix R y  to  be diagonalized is given by

R y =  W [R * +  R y]W T (5.10)

where R *  is the estimation of the covariance matrix of the signal mixtures over 

the current block and R y is the covariance matrix of the noise. Since it has been 

assumed that the noise is uncorrelated R y will be a diagonal matrix [96]. Following 

[96], the LS estimate is
T

J(W ) = a r 0 m m ]T ||£ (* ) ||F (5.11)
t=i

where || • | |f  is the Frobenius norm and E ( t) is the error to be minimized between 

the covariance of the source signals R s (diagonal due to independence) and the 

estimated sources Ry. Therefore a suitable cost function is defined that minimizes 

the off diagonal elements, defines as

Jm(W ) =  arg min J M(W ) =  argmm{offdiag(Ry ) ) 2 (5.12)w  w

where offdiag[]  means off-diagonal elements of a matrix. Therefore, to find W  

and R  one can add a constraint to the main cost function and solve the following 

unconstrained problem:

J(W ) =  J ro(W) +  AJC(W) (5.13)

where J m(W) is defined in (5.12) the main least-squares BSS cost function, J C(W ) 

is the constraint defined by equation (5.9), and A is the Lagrange multiplier. To 

minimize equation (5.13) the following update is used.

W t+1  =  W t -  /iVwJ (5.14)

where J  is defined in (5.13), fi is the learning rate, and V denotes the gradient 

operator. Therefore we have

J c =  tr (A  -  R tW (_1 )(AI'R fW t_lT) (5.15)
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expanding the above

J c = tr(A A T -  AR,r W f ‘T -

R tW (- 1A T +  R ,W ,-‘R r  W - 'T)

Let assume

U ^ W " 1 (5.16)

Using

Therefore

^ (y - i ) =  _ y - i j ^ (y ) y - i  and Y  = X

dU  „ . _ 2
d W t

Also from matrix manual

=  -W . - 2 (5.17)

5 J C _  3 J C d V
d W ,  -  { d v ){d w t > (518)

^  =  - A R r  -  ATR  +  Rr Ur R  + R U r R 7 (5.19)

replacing 5.16,5.17, and 5.19 into 5.18:

V wJ e =  A tK j W f  -  A fR ,W r 2 -

R fW f- i r R ,W r 2 -  R ,W ,-lTR fW ^ 2 (5.20)

(when m  ^  n, W _ 1  will be the pseudo inverse of W ) weighted by A and added to

the gradient of J m(W). Furthermore, within the same coupled iteration loop the

permutation matrix R  and A uk are updated through the following equations:

R t+1 =  R t -  7V*(JC) (5.21)
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where

Vfl(Je) =  2R((Wf+1W 1+1)- ' -  2A((W -11)r (5.22)

is the gradient of J c with respect to R, and

A ukt+l — A ukt — ( V Auk(Jc) (5.23)

where

V ^^Jc) =  2 (Ankt -  [Rt+,(W,-+11)] k +  1 : m)  (5.24)

is the gradient of J c with respect to Auk, and 7  and C are the learning rates (Matlab 

notation is used to denote the last m  — k columns in the right most term in equa­

tion (12)). After estimating W  in each iteration the rotation matrix R  and Auk 

are also iteratively calculated in a coupled loop. Consequently A = [Ak:Auk\ is a 

good estimation of the mixing matrix and location of the sources. Sequential itera­

tion of equations (5.14), (5.21), and (5.23) yields a robust solution to the ill-posed 

localization problem. Accurate selection of the learning rates fi, 7 , and £, ensures 

simultaneous convergence of the algorithm. The stopping condition is governed 

by a proper threshold on the norm of W t+i — W*. After each iteration they are 

automatically updated based on /im  =  ~}Wt), It+i =

and £t+i =  ConPrr̂ m (A u ^Û  ’ where norm(-) represents sum squared of the ma­

trix entries. The proposed algorithm was implemented using second order blind 

identification (SOBI) [136] [124] , which has been recently validated for its ability 

to recover correlated neuronal sources [125], followed by localization of the EEG 

sources as described earlier.

Localization of synthetic sinusoidal sources

A matrix of three signals containing three synthetic sinusoidal sources with specific 

geometrical locations were tested. The mixing matrix A is modelled once with three
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I:a

(a) (b)

Figure 5.5: The estimated source locations when (a) there is only one out of three 

sources known, and (b) two sources are known. represents the sensors locations, 

shows the actual locations of sources, and represents the estimated locations

of the sources, x, y, z are towards the front, lateral-right, and plannar views.

EEG electrodes via homogenous medium and another time via non-homogenous 

medium. Selection of matrix A was based on true geometry of the head model 

and the EEG 10-20 sensor positions. Accurate selection of the learning rates /r, 7 , 

and £, ensures simultaneous convergence of the algorithm. The stopping condition is 

governed by a proper threshold on the norm of W i+ 1  — W f . /i, 7 , and £, are initilized 

to fiQ = 7 0  = Co =  0 . 0 0 1  and after each iteration are automatically updated. The 

result of separation and localization were the same for both cases. The column 

vectors of the estimated mixing matrix, A, refer to the coordinates of the sources. 

The actual locations can be easily derived using the LS based sphere method [110]. 

In Figure 5.5(a), the original and simulated locations for one known source and, in 

Figure 5.5(b) with two known sources (for synthetic sources), are depicted. Using 

the SOBI BSS algorithm, the geometrical error e ( e =  ||Anetu — A>id||l) *s found to 

be less when the number of sources increases (e =  0.8648 with one known source
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Table 5.1: Error verses known sources
known sources 1 source 2  sources 3 sources

 ̂ =  ll-̂ new; A 0ld\\2 0.8648 0.1017 0

and € =  0.1017 with two known sources). This result is shown in Table 5.1.

3 sources2 sources1 source

Figure 5.6: Error versus the number of known sources

The convergence plots for unmixing m atrix W ,  is shown in Figure 5.7. Also, the 

LS convergence is convex and fast.

L ocalization o f the sources w ith in  a n on h om ogen eou s m edium

We are required to generate a head model with effect of the degradation process 

as space-invariant or the distorted calibration caused by non-homogenity of the 

different layers between the sources and the sensors and to localize the actual location 

of the sources from the sensors.

To visualize this we have generated a head model as a three-layer sphere with three 

sources s i, s2, s3 and three sensors x l, x2, x3 in which each layer has its own
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Figure 5.7: Convergence of the unmixing matrix W ; Plot of Error against number 

of iteration, E rror= ||W (t +  1) — W (£)||^, where W (t) is old unmixing matrix, and 

W (t+ 1) is new unmixing m atrix after each iteration.
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Figure 5.8: Least sqaures convergence plot, Error = | | f  — dl^,  where f  is the source 

and d  is inverse of correlations between the estimated source and electrode position.
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resistivity. Each element of A, the mixing matrix, is inversely proportional to the 

distance between a source and a sensor. The matrix A can be formed as

(  1/8.9 1/1.93 1/9.6 ^

A =  1 / 2 . 2  1 / 2 . 9  1 / 6 . 9  (5.25)

 ̂ 1/10 1/7.2 1/2.5 )

This is the result of homogeneity consideration. In a more realistic (non-homogenous) 

model, the entries of the mixing matrix are set to reflect the resistances of the layers. 

In order to reflect the resistance of each layer of the head we can write:

R — tipi  +  ?2p2 +  ?3p3 (5.26)

where pi is the resistivity of brain, P2 is the resistivity of skull, p$ is the resistivity 

of scalp, and ^1 ,^2 ? ^3 are respectively thicknesses of brain, skull, and scalp. For 

simplicity, let assume pi = P3 = 1 and p2 = 1 0  so, according to concentric head 

model of Rush and Discoll (1969) shown in Figure 4.16. One can write the mixing 

matrix A with the effect of resistivity as:

f  1/13.4 1/14.7 1/14.1 ^

A =  1/6.7 1/8.3 1/13.2 (5.27)

 ̂ 1/19 1/13.5 1/8.8 j

The elements of A are weighted inverse of the link between sources and sensors with 

effect of resistivities, p. After application of the BSS to the signal and iterative calcu­

lation of the W  =  A , the source signals will be constructed s (t) = y(t) = W *x(£). 

Now by calculating the correlations between the mixture signals and the major con­

tributed independent components the distance between source signals and the signals 

observed at the sensors can be calculated. Hence the locations of the sources can be 

obtained by LS algorithm.

137



Here the distance between the original location of sources and the location of sources 

with effect of the nonlinear factor a  described in equation (4.10) as error — distance. 

In a Matlab program for a  of values range between 0.1 — 2 and related error — 

distance between the original location of sources and the location of sources with 

the effect of a  were calculated. The experiment tries to find the best value of a , which 

gives the minimum error — distances. The result was that a = 0.5 gives minimum 

error distance value as shown in Figure 5.9. The distance between sources and

20 

15 

| 10 

5 

0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1B 2.0

a

Figure 5.9: error — distance plot against values of a  in (4.10) described in sec­

tion “Non-homogeneity considered as Nonlinearity of the head” for homogeneous 

spherical model of the brain

electrodes are inversely proportional to the signals’ correlations (i.e. d = 1 /Cij). A 

non-homogeneous model can be generated by adding uniformly distributed noise to 

the some synthetic signals, shown in Figure 5.11(a). After application of BSS and 

re-scaling and re-permuting the original condition of the sources as shown in Figure 

5.11(b), one can find the correlation and related contributor to each location and 

hence with the help of LS find the location of the source. At this stage there are 

the original location of the sources and the new locations after BSS application with 

the effect of the noise. The experiment requires to find a value for a  which gives 

minimum error—distance between the original source location and the displacement 

caused by nonlinearity of the noise after BSS application.

U
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Alpha Error Alpha Error

0 . 1 16.1196 1 . 1 7.9847

0 . 2 12.0628 1 . 2 8.0418

0.3 8.5218 1.3 8.5264

0.4 6.9677 1.4 8.6331

0.5 6.0998 1.5 8.8181

0 . 6 7.5027 1 . 6 8.984

0.7 7.5995 1.7 9.1018

0 . 8 7.6507 1 . 8 8.3089

0.9 7.7414 1.9 8.5124

1 . 0 7.8787 2 . 0 8.9145

Table 5.2: Error values for a set of a for homogeneous spherical model of the brain

O 95

0 .9

0  85

0 8

0 75

0 .7

0 .6 5

0 .5

- 0 .5 - 0.8- 0.6- 0 .4- 0.2
0.20 .4- 1 0.60.8

Figure 5.10: The estimated sources using BSS are shown in by “ which are 

overlapping the “ *” representing the actual sources, and represent the locations 

of the sensors for a homogeneous spherical model of the brain
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Figure 5.10 shows the estimated location of the sources without the effect of nonlin­

earity, where in Figure 5.13 and related error — distance shown in Figure 5.12 by 

setting the value of a to 0.7 a better source estimation can be observed.

The error — distance between each estimated source location for different values of 

a  ranging from 0.1 to 1.4 with the interval of 0.1 with added noise level of 2 percent 

are shown in Figure 5.12. Figure 5.14 shows similar results for the added noise level 

of 5 percent. In Figure 5.14 an increase in overall error — distance values can be 

observed, in comparison with overall error — distance value shown in Figure 5.12, 

which are caused by an increase in the correlations between the mixed signals and 

the noise.
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Figure 5.11: A synthetic source signals: (a) Original Signals, (b) The result of BSS;

the sources are scaled and permuted. The additional noise level is 0.1 percent.

By increasing the noise level in the mixture signal the error — distance increases 

too. Consequently, given the knowledge about the nonlinearity parameter a  and 

noise level the distance error can be obtained.
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Figure 5.12: error — distance between the original and estimated source locations 

with the effect of 2 percent noise added to the mixture signals. An average value of 

a  =  0.7 gives a minimum error — distance.

Black dot= electrod , star=  Original sou rce . Triangle= B S S  non linear
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Figure 5.13: The effect of nonlinearity parameter a  and error—distance of estimated 

sources: the location of the original source is shown in star, the triangles indicating 

the noisy estimation of the sources with nonlinear parameter value of a = 0.7. 

The black points are the electrode locations. The numbers shown on each location 

indicates the original order of each signal.
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Figure 5.14: Distance error between original and estimated first, second, and third 

source locations respectively, with the effect of 5 percent noise to the mixture signals. 

An average a = 0.7 gives a minimum error — distance between the original source 

and the estimated one.

Noise is a factor which exists in the brain and is caused by overlapping and mixing the 

signals from different unwanted sources and other internal and external undesired 

signals. The knowledge about the statistical properties of noise such as variance 

(magnitude) and distribution would improve the estimation of the actual location 

of the desired source signals in term of accuracy. More noise is added to the source 

signal when the path (or multi-path) from source to sensors get longer. Hence 

this reduces the correlation which is the main figure of measurement. Other more 

sophisticated nonlinear functions can also describe the relationship between r ^ s  and 

CijS such as:

=  s ign(Ci j )  x  (1 -  1° g (1 t _j ^ l ) ) (5 .2 8 )
log(l + a)

or

Tij = 1 — exp(a x Cij) (5.29)

These models were also implemented but by using Tij =  ^  and setting a = 0.7,
*7

the best localization result was achieved.
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L ocalization  o f real EE G  signals

For localization, the EEG signals for focal epilepsy with confirmed epileptic foci and 

normal EEG with both Delta and Alpha rhythm s were used. The electrodes were 

set up according to [137]. The electrode location of the known source with its peak 

frequency is shown in Figure 5.15. After the artifact removal technique used in [135]. 

The estimated location of unknown sources can be observed in Figure 5.16(a).

Amp

EUctroi

F req  4
(Hz)

Figure 5.15: Selection of highest am plitude level in Alpha rhythm as for the known 

source

The estimated location of unknown sources based on calculation of nonlinear param­

eter a = 0.7, can be observed in Figure 5.17(a) and its lateral view shown in Figure 

5.17(b) for better observation of three dimensional clarity. The result of the dipole 

method, as in Figure 5.18, represents dipoles in different colors. Hence illustrates 

that the proposed method can localize most of the source.
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1
Frontal

(a) (b)

Figure 5.16: Localization of the real EEG sources (a) The top view, and (b) The 

lateral perspective view of the locations of electrodes shown by “ • ” , the locations 

of the known sources are shown by and the estimated locations of the unknown 

sources are shown by “ * ”

5.3 Selection of the  K now n Sources

A method to measure nongaussianity is the absolute value of the fourtli-order cu- 

mulant at origin or kurtosis, hence it also can help to localize the location of the 

sources on the surface of the head. The kurtosis of a random signal y  shown in 

equation (7.1):

Kurt{y) = E{yi ) - Z ( E { y 2}f(5.30)

where E{.} denotes statistical expectation and, it is assumed that the random vari­

able has zero mean. The absolute value of the kurtosis is zero for Gaussian variable 

and greater than zero for nongaussian variables. By projection of the kurtosis mea­

sured from sensors, to the scalp, some of the brain source signals appear to have 

high peak in certain frequency bands. These can be considered as known sources. 

Initially the ICs are filtered in Delta, Theta, Alpha, and Beta bands and their kur-
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star* unknown localized sources, square = known source, tnangle= BSS nonlinear sources calculation
star* unknown localized sources, square * known source, tnangle* BSS nonlinear sou rces calculation

J
•1 Lateral

Frontal

(a) (b)

Figure 5.17: Localization of the real EEG sources with the effect of non-homogeneity; 

(a) the top view, and (b) the lateral perspective view of the locations of electrodes 

shown by “ • ” , the location of the known source shown by and the estimated 

locations of the unknown sources shown by “ * The calculated nonhomogeneous 

(nonlinear) effect on establishing an estimated location for the unknown sources are 

shown in “ A Each location is marked with a number and some of the sources 

found are overlapping

toses in frequency domain were measured. In the next step the kurtoses of the 

frequency domain signals are back projected to the scalp in each band to provide 

the topographic map of these variables as shown in Figure 5.19. In Figure 5.19, the 

main periodic source starts at lower Theta (higher Delta). The harmonics of the 

wave appear at the Alpha and Beta bands, ignoring the above harmonics in Alpha 

band, there are two prominent Alpha sources which can be considered as the known 

sources.
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Figure 5.18: Implementation of the dipole fitting method from the EEG lab, which 

confirms the location of some of the sources computed using the proposed partially 

constrained method.
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Figure 5.19: Projection of kurtosis to the scalp topography. The red patch in Beta 

range is the harmonic of the signals in Theta range.

146



5.3.1 Conclusions

In this chapter the work was to develop a partially constrained BSS algorithm to 

exploit the location of the known sources to separate and localize the unknown ones. 

Here we iteratively calculated the Rotational matrices R, and W  and A simultane­

ously. The reason for selecting SOBI as the separation algorithm was because: SOBI 

[138] [122] can better cope with nonstationarity of the data. SOBI can separate func­

tionally distinct neuronal signals from each other and from other noise sources under 

poor signal to noise ratio (SNR). SOBI is also able to recover the components that 

were physilogically and neuroanatomically interpretable [138] [139]. On the other 

hand, the signals may be considered stationary within short segments of about 10 

seconds (or about 2000 samples). The SOBI has been selected as the best BSS ap­

proach and modified so that W  can be estimated iteratively by jointly diagonalizing 

the cross-correlation function for a number of lags. Then, a priori knowledge about 

the known EEG sources and their locations have been effectively exploited in local­

ization of the other sources separated based on a partially-constrained BSS method. 

This method also exploits the nonlinearity effect of head conductivity and noise, 

and estimates the locations of the unknown sources. The normal brain rhythms 

with given source locations can be considered as the known sources. The existence 

of a normal brain rhythm can be checked by examining the spectrum of the signals 

in various conventional frequency bands and checking the kurtoses of the estimated 

sources in the frequency domain. The localized sources are not only independent of 

the pre-calculated head model, but also there is no need to know how deep or near 

to skull sources are located. The columns of the estimated A, refer to the locations 

of the sources. The LS based sphere method is finally used to obtain the estimated 

geometrical locations. The accuracy of the results increases with increase in the 

number of known sources. The approximation error in respect to source location
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is reduced by considering at least four intersecting spheres in the three-dimensional 

space.

Any prior information about the statistics and nature of the noise would benefit the 

estimation of locations of the desired sources. More noise is added to the source sig­

nal when the path (or multi-path) from source to sensors get longer. Consequently 

this reduces the correlation which is the main figure of measurement in this approach.
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Chapter 6 

SUMMARY, CONCLUSIONS, 

AND FUTURE WORK

6.1 Summary

Localization of the brain signal sources using the scalp EEG signal can be accom­

plished by mathematical analysis and consideration of physiological information. To 

achieve this it is also required to exploit sufficient information from the EEG signals 

in-order to select the right solutions when the problem is ill-posed. An ill-posed 

problem refers to infinite solutions, or no unique solution from the mixture signals 

received at the electrode. The ill-posed problem can be solved by reducing the num­

ber of solutions, by converting an undetermined system to a determined number of 

mixtures. Hence specifying some priori knowledge to the system. In order to classify 

the known sources as priori knowledge, some specification about the characteristic 

of the sources within the brain such as filtering within a certain frequency band and 

expected geometrical location of certain sources can be taken into account.

After identifying the related frequency band, and geometrical hypothesis location
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of the sources, it is useful to identify the regions of interest by constructing topo­

graphical plots of the power in a given frequency band. The topographical plots are 

important for assessing the locations of the sources.

An initial development of the algorithms incorporating an iterative application of 

the algorithm using high order statistics (HOS) was able to indicate successfully 

the number of MCS from the EEG sources within the brain by exploiting the geo­

metrical information about the electrodes and separate them into their constituent 

components. In this work it was assumed that the system is overdetermined but 

with an unknown number of sources. Decomposition of the signals into four con­

ventional frequency bands, not only ensured that the number of sources remained 

smaller than the number of sensors but in an overall term the process mitigated 

the permutation of the independent components. In other words, priori knowledge 

about the geometrical and physiological aspects of the acquired EEG recordings, 

helped to impose some constraints on the mixing/unmixing matrix. Thus, it is ex­

pected to estimate the entries of the mixing/unmixing matrices in a way to increase 

the accuracy of the results. Also, we resolved the inherent scaling and permutation 

ambiguities of the BSS algorithm through incorporating such constraints. Localiza­

tion based on instantaneous conditions of sources, usually has higher localization 

errors on independent sources in the presence of noise. On the other hand, consid­

ering only spatial inverse methods may also give error in the location of the sources 

when continuous EEG recordings are processed. Implementing the SOBI algorithm, 

with its time lags diagonalization characteristics for its update equation helped to 

overcome this problem.

In the next step of this work, a priori knowledge about the known EEG sources and 

their locations was effectively exploited in localization of the other sources separated
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based on a partially-constrained BSS method. Unlike dipole based methods the pro­

posed algorithm is computationally cost effective and is insensitive to noise (noise 

is either separated or cancelled out due to the inherent properties of BSS). The 

normal brain rhythms with given sources locations can be considered as the known 

sources. The known sources may also be generated synthetically. The existence of 

a normal brain rhythm can be checked by examining the spectrum of the signals 

in various conventional frequency bands. In the algorithm the unknown sources as 

well as the permutation matrix and the unmixing matrix were determined. The 

columns of the estimated A, then, refer to the locations of the sources. The LS 

based sphere method was finally used to obtain the estimated geometrical locations. 

The accuracy of the results increased with the number of known sources.

Application of the overall procedure leads to both detection and localization of the 

comprising normal and abnormal EEG sources for each EEG sub-band. However 

from the experiments carried out above the developed algorithm effectively localized 

the sources in an non-homogeneous environment.

6.2 Conclusions

Research here was an attempt to localize the brain sources using BSS. The main 

drawbacks of the approach are due to:

1 . The nature of the brain sources; unfortunately, there hasn’t been any estab­

lished findings in whether the sources are uncorrelated or independent; are 

they stationary or non-stationary, synchronous or not, etc. Therefore, here we 

tried to focus on separation and localization of the abnormal sources, given 

some knowledge about the known sources.

151



2. The number of the sources; many criteria for determination of the number of 

sources fails here mainly due to the right noise level and nonstationarity of 

the signals. Implementation of the new iterative minimization of the Akaike 

criterion [42] plus testing the behavior of the selected sources in both frequency 

and space gave some promising conclusions.

3. The effect of noise; this is probably the most troublesome phenomenon in the 

localization process based on the BSS. In this work we were hopeful that by 

exactly estimating the number of sources we could pave the path for efficiently 

separating the signal and noise subspaces using the corresponding independent 

components. Although some statistics of noise such as distribution can be 

identified using this method, but a robust solution to this problem is still 

under question.

6.3 Future work

Although the algorithms developed here were able to separate and localize some 

abnormalities from the EEG, future developments are:

1 . Further exploitation of information from the EEG signals is required, in-order 

to distinguish the signals originated from inside the brain and those from out­

side (i.e. undesired signals) with the aid of a priori knowledge i.e. specification 

/  characteristics of the sources within the brain. By applying nonlinear neu­

rons in Neural Networking, the neuron is trained to learn the specification 

and characteristics of the sources of the brain. After training, the neuron is 

capable of classifying the undesired signals.

2 . A time-frequency approach further enhances the performance of the localiza­

tion since it incorporates the physiological aspects and characteristics of the
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signals into the separation and localization algorithm. In subband BSS

• The system working with each band is less likely to be under-determined, 

since the sources of normal and abnormal rhythms are represented in 

distinct time-frequency domain.

• Implement BSS in combination with a wavelet transform.

3. Incorporate more robust method for the non-homogeneity of the head within 

the definition of non-linear normalization of the correlations. Furthermore, 

it is known that even the thickness of layers of the head are not uniform. 

Consequently, a true model of the head will be required to be constructed to 

precisely define the non-linear parameter, in this case a measure of indepen­

dence of the source rather than correlations between sources may result in 

better localization.

4. Sensitivity distribution of EEG electrodes: Locating the electrodes closer and 

closer to each other causes the current between electrodes to flow more and 

more at the surface of the skin region, without passing through the skull, and 

finally into the brain region, decreasing the sensitivity to the brain region [97]. 

Therefore, the number of electrodes related to specific requirement in each 

diagnostic case should be studied in order to give better results.

5. A hybrid system including the methods based on dipole assumptions, and 

constrained BSS may be an optimum solution to the localization problem.

6 . Fusion of fMRI into the EEG-based neuro-imaging requires further research 

in order to enhance the localization performance. Such a multi-modal system 

can optimize both space and time resolutions to enhance the performance of 

the localization algorithm.
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Chapter 7

APPENDICES

Appendix A 

Information theory

There are three different approaches, unified by the information theory; (a)Minimization 

of mutual information,(b)Maximum likelihood estimation (MLE) which is the same 

as Infomax, and (c)Maximization of Negentropy.

M utual information

Entropy is a measure of uncertainty in the signal and is expressed in terms of bits 

in digital domain. It is worth emphasizing here that entropy is not a measure of the 

”disorder” or ’’mixed-upness” of a system, though those terms are often used (rather 

loosely at times) to describe entropy due in part to this statistical interpretation.

154



H (x ) =  -  J  p(x).log[p(x)].dx =  -£{log[p(x)]} 

H (x ) = (A l)

where p(x) is probability distribution of x, and joint entropy is defined as:

Mutual information is the amount of information that a random variable, x, contains 

about another random variable, y( and vice-versa). I(x,y)= 0 , if x,y are independent, 

otherwise I(x , y) > 0. Minimizing the mutual information is equivalent to maximiz­

ing the joint entropy.

M LE ( such as Infom ax)

These algorithms are based on stochastic gradient ascent of the contrast function.

where W  is to be estimated in order to separate x into a set of independent com­

ponent signals u. UiS are independent if

where pu(U ) and Pi(uj) are respectively joint probably density function (pdf) and 

marginal pdf of set U and independent component U;.

H ( t / i , .  . .  , ? / n )  = H (yi) +  H (y2) H + H{yN) -  I ( y i ,y 2, ■ ■ - Vn )

= >  ^(2/(1,-,y)) : mutual in form ation  (A .2 )

u(£) =  W x(t) (-4-3)

P u ( u ) = n  Pi(u{); independency (-4.4)
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Log-likelihood function is defined as: L(u,W ) =  log| det(W )| +J2i l°g[Pt(u t)]- Con­

sequently, the gradient of this function is given as:

d n .

observed data are made uncorrelated and unit-variance.

The whitening may be accomplished by PCA projection: z(t) =  Vx(£), with 

E {z(t)zT(t)} = I. The whitening matrix V  is given by

where A = diag[\(l) , . . . ,  A(m)] is a diagonal matrix with the eigenvalues of the 

data covariance matrix E {x(t)xT(t)}, and U is a matrix with the corresponding 

eigenvectors as its columns. The transformed vectors z(t) are called white because 

all directions have equal unit variance. The term z(t) in equation (1.1) can be 

written as:

(A5)

A natural gradient approach (i.e. the gradient is multiplied by W TW ) for optimiza­

tion then, results in the following update [26]:

A W =  (I -  - ^ - . U T).W  
Pi(Ui)

(A6)

Negentropy

The whitening facilitates the separation of the underlying independent signals. The

V = a-^u t (A. 7)

z (t) = VAs (t) (AS)

and to show orthogonal matrix W  =  VA, Therefore, the solution is:

s (t) = W Tz (t) (A9)

156



There axe different ways to measure non-Gaussianity. One of them is the absolute 

value of the fourth-order cumulant or kurtosis. The kurtosis of a random signal y is 

given as:

Kurt(y) = E {y4} -  3{E{y2 } ) 2 (>1.10)

where it is assumed that the random signal has zero mean. The absolute value of 

the kurtosis is zero for Gaussian variable and greater than zero for non-Gaussian 

signals. For a Gaussian signal y, the fourth moment equals 3(E {y2})2. The kurtosis 

is negative for source signals whose amplitude has sub-Gaussian probability densities 

( i.e. more uniformly distributed), and positive for super-Gaussian (sharper than 

Gaussian). Maximizing the norm of the kurtosis leads to the identification of non- 

Gaussian sources. “Negentropy” is used as a measure of distance to normality. 

Consider a signal with a certain distribution, if the signal is Gaussian, the signal is 

said to have a normal distribution. A measure of non-Gaussianity and an important 

concept in finding out how independent component is separated can be referred to 

as negentropy [8 6 ] [87]. Negentropy is defined as:

J(y) = H(yGaussian) ~ H{y) C^-H)

where H(y) represents the differential entropy of the random variable y, and H (yGaussian) 

is the entropy of a Gaussian random variable with the same covariance as y.

It is known from information theory that a Gaussian variable has the largest entropy 

among all random variables of unit variance. This means that entropy could be used 

as a measure of non-Gaussianity. In fact, this shows that Gaussian distribution is 

the “most random” or the least structured of all distributions. Entropy is small for 

distributions that are clearly concentrated on certain values, i.e. when the variable 

is clearly clustered, or has a pdf that is very “spiky” . This property can be gen­

eralized to arbitrary variances, and what is more important, to multidimensional
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spaces: The Gaussian distribution has maximum entropy among all distributions 

with a given covariance matrix. Therefore the maximality property shows that en­

tropy could be used to define a measure of non-Gaussianity. Hence, in practice, by 

fixing the variance of the random variables to unity, the differential entropy can be 

used as a measure of non-Gaussianity. “Negnetropy” defines the concept of negative 

entropy, in information theory.

The disadvantage of kurtosis based approach is that kurtosis is sensitive to outliers. 

Although negentropy is, in some sense, the optimal estimator of non-Gaussianity, 

it is computationally expensive, since it requires the estimation of the probability 

density function. Therefore, only approximations of negentropy are used in practice.

Appendix B 

Least squares estim ation

In statistics, the Gauss-Markov theorem [77] states that, in a linear model in which 

the errors have expectation zero and are uncorrelated and have equal variances, the 

best linear unbiased estimators of the coefficients are the least-squares estimators. 

In the basic linear least-squares method equation (B.l) is the assumed model:

x(£) =  As (t) (B .l)

where s is n-dimensional unknown source vector, x is m-dimensional measurement 

vector. A is m x n real, typically a full column rank mixing matrix, and t is 

time index. If the number of sources is more than the number of measurements 

(i.e. m < n) the system is called underdetermined, and for the case of n > m  

the system is known as overdetermined, for determined case the number of sources 

are equal to number of measurements (i.e. m = n). For a determined system of
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equations there may be a unique solution for s, and infinite number of solutions or 

no exact solution in the case of underdetermined system.

Now in a system of linear equations consider

A s(t) = x(t) -  e(t) = x reai(t) (B .2)

where e =  Rm is the vector of unknown measurement errors, x reai = Mm is the vector 

of real but unknown values. In practice it is required to find a solution for the source 

s such that the approximation to be minimal norm and as close as possible to the 

its real value. This can be formulated as an optimization system in order to find s 

(where : is an estimation of source s) that minimizes the following cost function:

J p(s) =  ||x -  A s||p =  ||e(s)||p (B.3)

for p > 1 , where the error vector e has the component e(s) = [ei(s), . . . ,  em(s)]T for 

a given vector s.

||e||p is the p — norm  of the vector e. Therefore s minimizes the p — norm  of the 

error vector e with respect to vector s.

||x — As||p < ||x -  As||p Vs £ R n. (BA)

For the above optimization, there are three special cases to note:

• (a) p= 1, norm used for Laplacian or sparse error distribution problem.

• (b) p=2, is called the 2—norm, Euclidean, or linear least-squares (LS) problem,

used for normal distribution.

• (c) p=oo, is referred to as the Chebychev norm or minimax ( minimizing the 

maximum possible error) problem.

It should be noted that, in the special case of zero noise and square matrix A

(i.e. invertible A) the result of calculating error e is similar for all the three cases
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mentioned above (i.e. p=l,2,oo) Frobenous norm is used because it is an upper bound 

of any other norm, otherwise infinity norm (p=oo) is the most robust measurement. 

The linear least-square problem stated in equation (B.3) can be formulated as cost 

function described in equation (B.5).

1 1  1 1  
J(s) =  — A s||| =  - ( x - A s ) r ( x - A s )  =  -lle^ell =  5 ^ ^ ’ ^

where

2" 2 ' v 7 2"  " 2
t = i

e*(s) — Xj — A j s  = Xj -  AijSj (B .6 )
3= 1

The cost function converges to the global minimum when the gradient is zero: 

V J(s) =  A r (x -  As) =  0 (B .7)

Consequently s can have solution for the above mentioned three categories:

• (i) A  G Knxn determined case:

s =  A -1x fo r  J(s) =  0.

• (ii) A E Rmxn Over-determined case (i.e. n < m )

s =  (At A )- 1A t x =  A +x

when

J(s) =  ^ xT(I — A A )+x > 0 

where A + is the pseudo-inverse of A,

• (iii) A E KmXTl Under-determined case (i.e. m < n): the solution is not unique,

|2 
12but the LS problem can give the minimum 2-norm ||s ||2  unique solution:

s (t) =  A 1 ( A A t ) xx (t) =  A +x(t)
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with

Js(t) =  0

therefore the result value of the norm leads to :

P I I 2  = xT(f)(AAT)_1x(t).
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