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Summary

Civil engineering design problems are typically approached using traditional techniques i.e. 
deterministic algorithms, rather than via stochastic search such as evolutionary algorithms. 
However evolutionary algorithms are adept at exploring fragmented and complex search 
spaces, such as those found in design, but do require potential solutions to have a 
‘representation’ amenable to evolutionary operators. Four canonical representations have been 
proposed including: strings (generally used for parameter based problems), voxels (shape 
discovery), trees and graphs (skeletal structures).

Several authors have proposed design algorithms for the conceptual layout design of 
commercial office buildings but all are limited to buildings with rectangular floor plans. This 
thesis presents an evolutionary algorithm based methodology capable of representing 
buildings with orthogonal boundaries and atria by using a 3-section string with real encoding, 
which ensures the initialisation and evolutionary operations are not too disruptive on column 
alignments encoded via the genome. In order to handle orthogonal layouts polygon- 
partitioning techniques are used to decompose them into rectangular sections, which can be 
solved individually. However to prevent the layout becoming too discontinuous, an 
‘adjacency graph’ is proposed which ensures column line continuity throughout the building.

Dome geometric layout design is difficult, because every joint and member must be 
located on the external surface and not impinge on the internal void. This thesis describes a 
string-based representation capable of designing directly in 3D using surface area and 
enclosed volume as the major search parameters. The representation encodes support and 
joint positions, which are converted into a dome by constructing its corresponding convex 
hull. Once constructed the hull’s edges become the structural members and its vertices the 
joints. This avoids many of the problems experienced by the previous approach, which suffers 
when restrictive constraints such as the requirement to maintain l/8th symmetry are removed.
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Abstract

The aim of this thesis is to investigate how some civil engineering design problems, in 

particular structures, can be represented using evolutionary algorithms (EA) and contains two, 

independent experimental chapters on building layout design and geometric dome design (an 

introduction to EAs and design is also provided).

Civil engineering design problems are typically approached using traditional techniques 

i.e. deterministic algorithms, rather than via stochastic search such as EAs. However EAs are 

adept at exploring fragmented and complex search spaces, such as those found in design, but 

do require potential solutions to have a ‘representation’ amenable to evolutionary operators. 

Four canonical representations have been proposed including: strings (generally used for 

parameter based problems), voxels (shape discovery), trees and graphs (skeletal structures).

Several authors have proposed design algorithms for the conceptual layout design of 

commercial office buildings but all are limited to buildings with rectangular floor plans. This 

thesis presents an evolutionary algorithm based methodology capable of representing 

buildings with orthogonal boundaries and atria by using a 3-section string with real encoding, 

which ensures the initialisation and evolutionary operations are not too disruptive on column 

alignments encoded via the genome. In order to handle orthogonal layouts polygon- 

partitioning techniques are used to decompose them into rectangular sections, which can be 

solved individually. However to prevent the layout becoming too discontinuous, an 

‘adjacency graph’ is proposed which ensures column line continuity throughout the building.

Dome geometric layout design is difficult, because every joint and member must be 

located on the external surface and not impinge on the internal void. This thesis describes a 

string-based representation capable of designing directly in 3D using surface area and 

enclosed volume as the major search parameters. The representation encodes support and 

joint positions, which are converted into a dome by constructing its corresponding convex 

hull. Once constructed the hull’s edges become the structural members and its vertices the 

joints. This avoids many of the problems experienced by the previous approach, which suffers
thwhen restrictive constraints such as the requirement to maintain 1/8 symmetry are removed.
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1 Introduction

1.1 Aim

The aim of this work is to investigate how some civil engineering design problems, in 

particular structures, can be represented in evolutionary algorithms. To achieve this aim, the 

thesis will consider two types of structural design problem: buildings and domes, both will be 

investigated by reviewing existing work, proposing a new solution (including a representation 

with associated evolutionary operators) and providing an illustrative example to assess 

performance. However it should be noted that each chapter is self contained and should be 

considered as such. The only link between them is that the same methodology was applied to 

both.

Conceptual design is a particularly pertinent topic as an efficient representation is 

essential in effectively harnessing the search capacity of evolutionary algorithms in decision 

support systems for conceptual design. At the present time, conceptual design is considered to 

be one of the most difficult challenges facing practising engineers. This is because the lack of 

information limits the effectiveness of procedural techniques to assist more junior designers. 

Therefore only senior engineers undertake this work as they have the necessary experience.

1.2 Objectives

This work has two main objectives:

• Investigate existing and develop new knowledge for orthogonal building layout design.

• Investigate existing and develop new knowledge for geometric dome design.

1.3 Arrangement of Thesis

The remaining chapters o f this thesis are arranged as follows:

1.3.1 Chapter 2: An overview of evolutionary algorithms

This c hapter p rovides an overview of evolutionary algorithms, a family of algorithms that 

search problem domains using biologically inspired search operators, and is the type of 

algorithm used in this thesis. It starts with the topic of s earch and s olution spaces b efore 

reviewing several categories of search techniques. Next, biological evolution is discussed
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because evolutionary algorithms are inspired by nature, before the chapter focuses on the 

components of a basic evolutionary algorithm including: initialisation, evaluation, evolution 

and termination. Finally, the chapter concludes with a description of the canonical 

implementations: evolutionary programming; evolutionary strategies; genetic algorithms and 

genetic programming.

1.3.2 Chapter 3: Representing civil engineering design problems in evolutionary 

algorithms

Civil engineering design problems are typically approached using traditional techniques i.e. 

deterministic algorithms, rather than via stochastic search. Evolutionary algorithms are a type 

of s tochastic search algorithm i nspired b y natural selection and a number o f authors have 

proposed them as a design tool. This chapter discusses how solutions to civil engineering 

design problems, in particular structures, have been represented in evolutionary algorithms 

without c onsidering implementation specific issues. The aim  of this chapter is  to consider 

representations used by other researchers.

1.3.3 Chapter 4: Conceptual layout design of orthogonal commercial buildings

The aim of this chapter is to investigate existing examples and develop new representation for 

orthogonal building layout design.

Conceptual layout design of commercial office buildings is a non-trivial task because the 

numerous variables create a large solution space. To aid designers, several decision support 

systems have been developed. However, all these systems are limited to buildings with 

rectangular floor plans.

This chapter presents an evolutionary algorithm for layout design of buildings with 

orthogonal boundaries and atria. To achieve this, polygon partitioning techniques are used to 

decompose a floor plan into rectangular sections. Also in order to prevent illegal solutions 

being generated, the representation ensures the initialisation and evolutionary operations are 

not too disruptive. The number of initial inputs has also been reduced, because this work is 

aimed at the conceptual design stage. Therefore the user only needs to dimension the external 

boundary and specify the location of any atria.
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1.3.4 Chapter 5: Conceptual geometric design of ‘geodesic-like’ domes

The aim of this chapter is to investigate existing and develop new knowledge for geometric 

dome design.

Geometric dome design is a non-trivial task because every joint and member must be 

located on the dome’s external surface and not impinge on the internal void. The only 

previous stochastic methodology (Shea and Cagan, 1997) tackles this by creating a 2D truss 

that is subsequently projected onto a predefined curved surface. Therefore the solution is a 3D 

object, but the search is conducted in 2D. While this ‘projection’ or 2.5D technique reduces 

the number of problem variables, by constraining the third dimension to be dependent on the 

planar layout, it also excludes a dome’s two most important variables from the search: surface 

area and enclosed volume. Thus the results, while spatially innovative, are typically sub- 

optimal.

This chapter describes a new methodology, using an evolutionary algorithm with string 

representation that is capable of designing a dome directly in 3D using surface area and 

enclosed volume as the major search parameters. The representation contains Point3D objects 

that encapsulate support and joint positions, which are subsequently converted into a dome by 

constructing its convex hull. Once constructed, the hull’s edges become the structural 

members and its vertices the joints. Finally, structural analysis is used to determine 

performance within the context of user-defined constraints. This technique avoids many of the 

problems experienced by the previous approach that suffers when restrictive constraints such 

as the requirement to maintain l/8 th symmetry are removed.

1.3.5 Chapter 6: Summary and future work

This chapter will consider the key findings, of this thesis, in relation to its original objectives 

and discuss possible directions for future work.
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2 An Overview of Evolutionary Algorithms

2.1 A bstract

This chapter provides an overview of evolutionary algorithms. Evolutionary algorithms are a 

family of algorithms that search problem domains using biologically inspired search operators 

and are the type of algorithm used in this thesis. The chapter starts with the topic of search 

and solution spaces before reviewing several categories of search techniques. Next, biological 

evolution is discussed, because evolutionary algorithms are inspired by nature, before the 

chapter focuses on the components of a basic evolutionary algorithm including: initialisation, 

evaluation, evolution and termination. Finally, the chapter concludes with a description of the 

canonical implementations: evolutionary programming; evolutionary strategies; genetic 

algorithms and genetic programming.

Keywords: search, evolutionary algorithms, evolutionary programming, evolutionary 

strategies, genetic algorithms, genetic programming.

2.2 In troduction

For every problem, a range of possible solutions must exist: with some solutions being more 

feasible than others. The problem’s ‘solution space’ (Figure 2-la) is constructed by 

incorporating a notional distance between solutions. To solve the problem, the solution space 

is ‘searched’ to locate the optimal values, often equivalent to finding a maxima or minima.

- l  - i

(a) Simple solution space 0>) Complex solution space

Figure 2-1 Exam ple simple and complex solution spaces

Unfortunately, solution spaces are seldom simple. For most non-trivial problems they are 

ill defined (with the search process often generating new points) and contain many local or 

false optima (Figure 2-lb). These complications are additional to the issues of where to start
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the search, how to conduct it and strategy for limiting the potential for pre-mature 

convergence. Consequently, search is generally a non-trivial task.

Primarily two types of search have been developed: stochastic and deterministic, 

although a third type ‘hybrid’ incorporating stochastic and deterministic elements (Figure 2-2) 

has also been developed.

Deterministic

Calculus Based Enumerative

Search

Hybrid Stochastic

Memetic Algorithms Blind
i

Direct Indirect Blind Guided Monte Carlo

Tracking

Greedy Newton
Rhaphson

Fibonacci

Branch
And

Bound

Dynamic
Programming

Guided

Tabu Evolutionary Simulated
Search Algorithms Annealing

Evolutionary Evolutionary Genetic Genetic
Programming Strategies Algorithms Programming

Figure 2-2 Indicative hierarchy of search (adapted from Goldberg, 1989)

Deterministic techniques are either calculus based requiring the problem to be modelled 

using derivatives (which may or may not be possible), or enumerative, which can suffer from 

the ‘curse of dimensionality’ if  the solution space is large. However, if  the solution space is a 

continuous s mooth s urface o r well u nderstood, a deterministic technique is often the most 

appropriate approach. Another disadvantage of deterministic algorithms is that they are often 

not robust enough to cope with ‘noisy’ data (as found in ‘real world’ problems) and domain 

knowledge maybe required to formulate and solve the problem, so this approach is less useful 

for conceptual design.

Stochastic algorithms, unlike deterministic techniques, are built on randomness, which 

improves the search for global optima by sampling random locations in the solution space. 

However, while this creates a more ‘robust’ algorithm capable of handling noisy data, it does 

mean that stochastic search cannot guarantee to find the global optimum solution.

All search techniques m ust distinguish between local and global optima. This issue is 

particularly pertinent if  some variables are discrete, as discrete variables create a 

discontinuous and disjointed solution space. A simple remedy for coping with local optima is
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to re-run the algorithm from another location and compare results, this is particularly 

important when using deterministic algorithms.

This work uses stochastic search algorithms because structural design uses a combination 

of related, discrete and continuous variables that can create extremely large, disjointed search 

spaces.

2.3 Why have so many search algorithms been developed?

Numerous search algorithms have been developed because their performance is problem 

dependant. This is because the algorithm’s assumptions maybe incorrect or utilise a 

methodology that is inefficient for the given solution domain. Consequently, there is no 

search panacea. This is emphasised by the ‘no free lunch theorems (NFL)’, which consider 

the utility of search algorithms a priori, without assumptions and from mathematical 

principles alone. The NFL theorems conclude “ ...any elevated performance over one class o f  

problems is exactly paid fo r  in performance over another class...” (Wolpert and Macready, 

1997). However, in practise, search maybe improved by incorporating additional domain 

specific information called ‘heuristics’. For example consider the ‘travelling salesman 

problem’1. The solution space is well known therefore a deterministic technique incorporating 

heuristics may out perform another more general, stochastic technique. However if the 

problem’s parameters are changed, the algorithm containing heuristics may perform worse 

because the heuristics are invalid.

2.4 Biological inspiration for algorithms

Mankind has always been fascinated by nature’s ability to create solutions to complex 

problem and this led to the development of a family of algorithms based on evolution, 

evolutionary algorithms. However, it is important to note that e volutionary a lgorithms a re 

only inspired by nature, not a duplicate. For example in nature, alleles can be dominant or 

recessive. However this feature is not often included in EAs. For a more comprehensive 

description of EAs see 2.5 Evolutionary Algorithms.

1 The ‘travelling salesman problem ’ is a deceptively simple combinatorial problem: “A salesman spends his time 

visiting a number o f cities. During one trip, he visits each city only once and finishes where he started. In what 

order should he visit the cities to minimise the total distance travelled?”

- 6 -
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The following sub-sections contain a brief discussion of two important issues in 

biological evolution, from the perspective of search, Darwin’s theory of natural selection and 

phenotype-genotype duality.

2.4.1 Darwin’s theory of natural selection

Darwin’s theory of natural selection (Darwin, 1859) proposes that organisms evolve over time 

due to environmental factors that favour certain traits. Roberts et al. (1993) summarised it into 

four propositions and two conclusions:

• Proposition 1: individuals are different.

• Proposition 2\ offspring generally resemble their parents.

• Proposition 3: not every offspring can survive to reproduce.

• Proposition 4\ fitter individuals are more likely to survive.

• Conclusion 1 : individuals that survive and reproduce, pass on to their offspring 

characteristics that have enabled them to succeed.

• Conclusion 2\ in time, a group of individuals that once belonged to the same species may 

give rise to two different groups that are sufficiently distinct to belong to separate 

species.

Unfortunately ‘The Origin o f the Species’ is often reduced to a single phrase ‘survival of 

the fittest’ but this is misleading, as an individual’s mortality is a relatively trivial issue in 

evolutionary terms. Fitness, in evolutionary terms, refers to the degree of adaptation shown by

an individual to its environment. The most adapted individuals will have the best fitness and

therefore pass on these beneficial characteristics to their offspring. The best individuals will 

often have many adaptations so it not necessarily the strongest, fastest or biggest that will 

prevail.

Ultimately, if  a species is to be successful its population must balance two issues:

• Selection: which reduces diversity (propositions 3,4 and conclusion 1).

• Reproduction: which introduces variation (propositions 1,2 and conclusion 2).
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Managing this conflict via populations represents one of biological evolution’s greatest 

strengths, as it encourages trial and error by favouring advantageous characteristics within a 

species.

2.4.2 Phenotype-genotype duality

Every cell in a living organism incorporates helical strands of deoxyribonucleic acid (DNA) 

that encodes its phenotype ( features and function). A gene is a short section of DNA that 

contains the instructions for a single feature e.g. eye colour. However, each gene may have 

several values e.g. eye colour = blue/ green/ brown, and these values are called alleles. An 

organism’s physical characteristics (its phenotype) are determined by the DNA sequence of 

its genes: its genotype. Therefore, every organism can be viewed from either a genotypic or 

phenotypic perspective: with the genotype encoding the phenotype.

2.5 Evolutionary Algorithms

Although there are many different types of evolutionary algorithm (EA), “...the common 

idea... is to evolve a population o f  candidate solutions to a given problem, by using search 

operations inspired by biology...” (Dumitrescu et al, 2000). This section introduces the basic 

EA by considering every major component.

2.5.1 Why use evolutionary algorithms?

Evolutionary algorithms are very good at discovering diverse solutions to problems but are 

not pure optimisation algorithms (De Jong, 1993). In spite of this they have made important 

contributions to this field especially with regard to problems involving mixed solution spaces 

(containing discrete and continuous variables) and in multi-objective optimisation. However, 

they tend to be out-performed in combinatorial and continuous parametric optimisation by 

more traditional techniques (Eiben and Schoenauer, 2002). Nevertheless, EAs were 

considered the most appropriate technique for this work because of the following 

characteristics:

• EAs can investigate large numbers o f inter-related parameters.

• EAs are adept at locating global optima even in discontinuous solution spaces.



David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

• EAs are robust2

It should also be noted that this work is focused on using EAs for design rather than 

optimisation and “ ...one should distinguish design problems where the goal is to find  at least 

one very good solution once, from day-to-day optimisation where the goal is to consistently 

find  a good solution fo r  different inputs. In the design context, a high standard deviation is 

desirable provided the average result is not too bad (exploration). In the optimisation context, 

a good average and a small deviation are mandatory (exploitation)..” (Eiben and 

Schoenauer, 2002).

2.5.2 Representation

Evolutionary algorithms are problem solvers that create solutions by applying search 

operators based on biological evolution. Unfortunately, most problems are not instantly 

amenable to biological search operators. Therefore, the potential solutions must be converted 

to a form that can be used by the EA. This involves developing a ‘representation’. Although 

there is some ambiguity in  literature about what constitutes a representation, in this thesis 

‘representation’ refers to the structure and encoding of a solution so that it can be 

incorporated into an EA.

The primary purpose of a representation is to convert every possible solution to a form 

that allows it to be included in the search. It should also be a compromise between 

computational effort and problem abstraction e.g. machine code is computationally efficient 

but how can it be used to represent a house?

Many standard representations exist e.g. strings, and this determines how the EA is 

applied to the problem, as some components of the EA are representation dependent. Back et 

al. (1997) describe two approaches to developing a representation: “...the first is to choose 

one o f the standard algorithms and to design a decoding function according to the 

requirements o f  the algorithm. The second suggests designing the representation as close as 

possible to the characteristics o f  the phenotype, almost avoiding the need fo r  a decoding 

function...”. Many researchers use the first method but the second generates a more efficient 

representation.

2 The balance between efficiency and efficacy i.e. the more robust the algorithm, the greater the range of 

problems it can be applied to (Coley, 2003).

- 9 -
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2.5.3 Representation space

Living organisms exhibit a phenotype-genotype duality because an organism’s characteristics 

are encoded in its DNA. In the same way, individuals3 within a n E A  also exhibit duality 

because they can be viewed from the perspective of their representation or ‘natural’ form. 

Therefore when a problem is solved by an EA, it has two problem domains, the solution space 

and the representation space (Figure 2-3). The solution space contains solutions in their 

natural form while the representation space contains solutions encoded via the representation.

Encode

Solution
Space

Figure 2-3 Solution and representation spaces

When solving most non-trivial problems, constraint handling is required because not 

every combination o f variables is valid. For example, in structural engineering constraints are 

often applied to structural members, indicating the permissible maximum stress. Therefore, 

constraints define the boundaries of the feasible region. Conceptually this is equivalent to 

dividing the representation space into islands of feasible representations, surrounded by an 

infeasible region (Figure 2-4).

3 EAs terminology has borrowed heavily from biology. A potential solution in an EA can be referred to as an 

individual.

- 10-
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Infeasible Region

Feasible
Region

Feasible
Region

Feasible
Region

Feasible
^Region

Figure 2-4 R epresentation space with feasible and infeasible regions

A fundamental feature of all EAs is that they operate on solutions encoded via the 

representation rather than directly on the solution. At first glance this may seem a 

disadvantage as it adds additional complexity. In reality, by converting solutions to a more 

abstract form, via the representation, the EA permits the use o f  standardised e volutionary 

operators.

It should be noted that while designing a representation is a vital stage in the development 

of an EA once complete, the representation (and its related operators) is hidden from the user 

allowing them to concentrate on analysis of the results (Borkowski and Grabska, 1995 ).

To convert between the two problem domains, a mapping must be applied. However, 

pleiotrophy4  and polygeny5 mean there are potentially five types of mapping (Figure 2-5):

• Illegal, a representation decodes to form a nonsensical solution. For example, if solutions 

are mathematical equations, = y x + / 3 would be illegal.

• Infeasible: in constrained problems, or those with discrete variables, not every 

combination of variables results in a feasible solution. Therefore the representation space is 

larger than the solution space, as it contains infeasible individuals. It should be noted that

4 The effect that a single gene may simultaneously affect several phenotypic traits (Fogel, 1995).

5 The effect that a single phenotypic characteristic (of an individual) maybe determined by the simultaneous 

interaction o f many genes (Fogel, 1995).
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infeasible solutions are different from illegal solutions: as infeasible solutions are invalid 

due to the constraints rather than being nonsensical or plain wrong.

• l-to-n\ one representation decodes to form n solutions. Obviously this is undesirable as a 

single representation can have multiple fitness values.

• n-to-l\ n solutions decode to form a single solution, while this scenario is applicable in 

practice it does enlarge the representation space increasing search difficulty.

• 1-to-l: one representation decodes to form a single solution. This is the ideal scenario as 

the solution and representation spaces are identical in size.

1-to-n

Infeasible

n-to-1

Figure 2-5 M appings from representation to solution space

2.6 The basic evolutionary algorithm

This s ection d escribes the main components of an evolutionary algorithm, although please 

note this is a high-level summary avoiding implementation specific issues. The following 

sections contain more detailed descriptions of the canonical implementations.

The evolutionary search process commences once a problem is identified and a suitable 

representation is developed. For optimisation problems, the EA attempts to locate and return a 

single optimum solution while for design problems the EA returns a range of possible 

solutions that are likely to be sub-optimal. This highlights the need to determine the EA’s 

aims and objectives from the outset so it can be appropriately implemented. In this thesis, the 

onus was on design and thus every EA tried to return a range o f potentially sub-optimal 

solutions (an exploration process).

- 12-



David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

2.6.1 Overview

The basic EA (Figure 2-6) starts by initialising the first population6  of solutions. Initialisation 

creates individuals from a random set of variables, based on the representation (although the 

initial population can be ‘seeded’ with known solutions but this biases the search). The 

population is then evaluated and assigned a ‘fitness’ based on how suitable it is, in the context 

of the problem. The algorithm then checks whether the termination criterion has been met 

(this usually considers whether a solution of appropriate fitness has been evolved or if a 

predetermined number of generations has been generated). If the algorithm terminates, it will 

return the best individual(s) evolved so far and if not, perform the evolutionary routine.

The next generation is evolved from the current population via selection. Selection picks 

individuals from the current population (based on certain criteria) and allows them to breed 

and pass on their genetic material (to the next generation). However because selection favours 

fitter individuals, those with more advantageous characteristics are more likely to be picked.

No

Yes

Start

Return. Best 
Solution.

Figure 2-6 Schem atic o f a basic evolutionary algorithm

The following description of the basic evolutionary algorithm will indicate an advantage 

of this search technique, most but not all of the methodology is problem independent. 

Therefore, search can be conducted before a full understanding of the problem is obtained.

6 A group o f potential solutions maintained by the EA

- 13 -
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This can be important for complex problems: in fact results generated by the EA may actually 

provide some insight.

2.6.2 Population- Representation independent component

EAs maintain at least one population of candidate solutions (this is one of the features that 

separates them from other search techniques) with each individual denoting a location in the 

representation space. However as in nature, each population must strike a balance between 

specialisation and variation. Population size is a fundamental variable in EA’s as large 

populations accomplish a more exhaustive search (which maybe unnecessary) but at greater 

computational expense than a smaller population (which may not cover a sufficient set of the 

solution space).

2.6.3 Fitness function- Representation independent component

Evolutionary algorithms are domain independent problem solvers i.e. the same algorithm can 

design buildings and solve scheduling problems, but each problem requires a different 

solution. Therefore, how does the EA search for the best?

As with biological evolution, individuals within an EA are required to exhibit measurable 

phenotypic differences. In EAs, individuals then are assigned a single, numerical value that 

reflects how * fit’ o r  good it is (as a solution). Unfortunately, assigning a single numerical 

fitness to an individual can be problematical especially in multi-objective optimisation. In this 

instance, a multi-objective or multi-criteria algorithm incorporating Pareto based techniques 

(Pareto, 1896) can be used.

Fitness values are determined by the ‘objective function’, which contains user-defined 

information about the solution space. However, the search for the solution to all but the most 

non-trivial problems must consider constraints. Constraint handling may be required due to 

problem related issues or simply because as the evolutionary operators only manipulate the 

genotype while the objective function only considers the phenotype, an evolved solution 

maybe invalid and occupy a point in the infeasible region. Several constraint-handling 

techniques exist (Michaelewicz, 1999):

- 14-
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•  Rejection: individuals that violate constraints are deleted, focusing the search on the 

feasible region. However, the loss of potentially valuable information can hamper search 

especially in disjointed solution spaces and leads to premature convergence.

•  Reparation: individuals that violate the constraints are modified to meet the constraints. 

Unfortunately repairing individuals can be exceptionally complex (or impossible) and thus 

hinder the search. Reparation also forces solutions to conform to a preconceived notion, 

which might not be appropriate.

•  Prevention: evolutionary operators are designed to prevent the formation of illegal 

solutions. This can be a practical method for dealing with constraints but can also produce 

conservative evolutionary operators that may slow the search process.

•  Penalisation: individuals that violate the constraints have their fitness reduced. Penalty 

functions are especially suited to disjointed solution spaces or scenarios where the best 

solutions lie close to  the feasible-infeasible boundary. This is often the case in design, 

where the optimum is located on the limit of what is feasible.

Once an individual has been assessed by the objective function and any constraint 

violations considered, its fitness can be determined. Several types of fitness measure may be 

used (Goldberg, 1989):

• Raw fitness: objective function adjusted for constraint violations (if appropriate).

•  Adjusted fitness: an amended raw fitness, where a lower fitness is  advantageous. The 

fittest individual has a fitness of 0 .

•  Standardised fitness: an amended adjusted fitness, limited to the range 0 —> 1.

•  Scaling: although not strictly a fitness measure, scaling is used to mitigate the effect of a 

few highly fit individuals (in  early generations) by scaling down the extraordinary and 

scaling up the rest, or in later generations when the fitness variance tends to fall, 

exaggerating phenotypic differences between individuals.

2.6.4 Selection- Representation independent component

Selection is used to choose which individuals are allowed to breed and pass on their genetic 

material to the next generation. Competition based selection is key to EAs as it drives the 

search and is solely based upon an individual’s fitness. However as in nature, selection does
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not push the population towards a predetermined goal but merely favours phenotypic changes 

that have occurred randomly.

Many selection techniques have been developed and the following list indicates some of 

the most widely used (this list is not exhaustive):

• Fitness proportionate'. Compares the raw fitness of the individual against the mean, raw 

fitness of the population (Holland, 1975). Therefore, an individual that is three times fitter 

than average, will be selected three times more often. Unfortunately this has two 

problems:

Premature convergence: a few sub-optimal but highly fit individuals present in the 

current population will dominate the next generation by virtue of their large fitness, 

dramatically reducing the population’s genetic variation.

- Slow convergence: if  the population only contains individuals of similar fitness, 

selection pressure will be low, therefore the algorithm degenerates to random search.

• Stochastic sampling with replacement ( ‘Roulette Wheel’): A predetermined number of 

individuals are randomly selected from the population and placed on a ‘roulette wheel’: 

with each individual’s segment proportional to its fitness (Baker, 1985). Once the wheel is 

‘spun’, the individual on the winning segment selected.

• Stochastic tournament: A predetermined number of individuals are randomly s elected 

from the population and ranked according to fitness, with the fittest individual being 

chosen. As the tournament size is increased, selection pressure is intensified as it 

magnifies the chance of a fit individual being selected.

• Ranking : The population is ranked, based on raw fitness, with the fittest at position 0. 

Although the actual mapping from rank position to selection probability is arbitrary, in all 

cases individuals are selected by their rank (not raw fitness). This preserves selection 

pressure but reduces the effect o f dominant individuals.

• Elitism : Ensures that the best member(s) from the last generation are copied into the next. 

This can be useful because fitness proportionate selection does not guarantee the survival 

of any individual (Coley, 2003). Elitism is not a selection technique in its own right but 

can be used in conjunction with others and while it maintains the best solutions, it does 

increase the likelihood of premature convergence.
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2.7 Termination Criterion- Representation independent com ponent

An EA should terminate once the desired solution has been obtained. However stochastic 

algorithms are not guaranteed to locate the global optimum solution and in many problems, 

including design, the form of the optimum solution is not known. Therefore problem specific 

criteria cannot be specified. In this instance, the termination criterion stops the algorithm after 

a fixed effort has been expended e.g. a predetermined number of generations have been 

evolved or a maximum number of CPU cycles.

2.8 Initialisation- R epresentation dependent component

Ideally, initialisation should create a well-distributed spread of individuals in the solution 

space. Unfortunately in practise this is hard to achieve, especially if the solution space is ill 

defined. Therefore, individuals are usually randomly constructed from a set of variables.

The initial population often has a low fitness, but its most important feature is diversity. 

‘Doping’ can be used to include good solutions into the population, based on the user’s 

experience, but this can create bias (Dumitrescu et al., 2000).

2.9 Evolutionary operators- Representation dependent com ponent

Search operators, inspired by biology, are a fundamental feature o f  all EAs. Evolutionary 

operators alter an individual’s genotype (as in biology) and enable EAs to be problem 

independent. EAs use a mixture of the following three operators (some implementations may 

even omit an operator altogether):

• Reproduction: copies an individual unaltered into the next generation.

• Recombination: two individuals (parents) are selected and exchange genetic information 

to produce two new individuals (offspring). Depending on the operator, offspring are 

either inserted directly into the next generation or inserted after some additional selection. 

Recombination is referred to as a conservation operation as it “ ...is used to exploit and 

consolidate what has already been obtained by the individuals in the population...” 

(Dumitrescu et al., 2000).

• Mutation: a single individual is selected and altered by deleting and randomly rebuilding 

a section of its genetic information. Mutation is referred to as an ‘innovation’ operation
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because it “...ensures that new aspects o f  the problem are taken into account...” 

(Dumitrescu et al., 2000).

2.10 Exploration vs. Exploitation

By employing a competition based selection process EAs encourage fitter individuals to pass 

on their genetic material, which focuses the search (exploitation). However, these individuals 

may not lie in the most productive region. By contrast, evolution injects new genetic material 

into the population, which encourages variation and thus the algorithm to consider another 

area of the solution space (exploration). EAs manage this conflict by allowing the user to set 

the probability of reproduction, recombination and mutation during a run.

2.11 Im plem enting Evolutionary Algorithms

The previous section introduced the basic EA without considering specifics. This will discuss 

the canonical forms of the principle implementations in more detail: Evolutionary 

Programming; Evolutionary Strategies; Genetic Algorithms; Genetic Programming (for a 

more comprehensive history of EA development see Fogel (1998)). However, these 

implementations should not be considered as discrete but rather as the most commonly used 

forms of evolutionary algorithm (each focusing on different aspects of the evolutionary based 

search). In fact the experimental chapters will only refer to evolutionary algorithms, as using 

more explicit descriptions encourages the reader to apply their preconceived ideas rather than 

focusing on what is being described.

Evolutionary search can be considered from two perspectives, top-down and bottom-up 

(Fogel, 1995):

• Top-down: emphasises the phenotypic behaviour of individuals (Evolutionary Strategies) 

or populations (Evolutionary Programming).

• Bottom-up: emphasises the genotypic mechanisms (Genetic Algorithms and Genetic 

Programming) of evolution.

2.11.1 Evolutionary Programming

Developed by Fogel (1962) as an attempt to create artificial intelligence that can predict 

future events based on historical information, Evolutionary Programming (EP) is used in
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continuous parameter optimisation problems. As a representation, EP uses ‘Finite State 

Machines (FSM )’ (Figure 2-7) t hat t ransforms an input s equence i nto an output sequence. 

FSM are composed of at least one state, one or more state transitions (these specify the FSM 

response to an input, based on its current state) and have a predetermined input and output 

alphabet.

During a run, a population of FSM receive an identical input sequence and process it. 

Fitness i s assigned b ased o n the accuracy o f  the response, with a m ore accurate response 

receiving a higher fitness. Individuals are then mutated (EP only incorporates mutation) to 

produce a single offspring. There are five mutation operators: mutate an output; mutate a state 

transition; insert a new state; delete an existing state; change the initial state. After mutation, 

the new offspring are evaluated against the initial input sequence. If the offspring is fitter than 

its parent, it survives, otherwise it is deleted and the parent survives. This process continues 

until the termination criterion is met.

A classic EP task is to predict the next character in a sequence, when given the last one. 

For example, consider the response of the three-state machine shown in (Figure 2-7) to the 

following series of inputs: 0 1 1 1 0 .

Input Alphabet: {0,1}
Output Alphabet: {a> [3, y}

0

y

0

p

y

Input Symbol 0 1 1 i 0

Present State C B c A A

Next State B C A A B

Output Symbol P CL y P P

Example EP Finite State Machine Example FSM response

Figure 2-7 Example EP representation (adapted from Fogel, 2000)
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2.11.2 Evolutionary Strategies

Developed by Rechenberg and Schwefel in 1964 (Beyer and Schwefel 2002), 

Evolutionary Strategies (ES) are a continuous parameter optimisation tool. To encode 

potential solutions, ES use a representation based on a pair of real-valued vectors v (Figure 

2 -8 ): the first vector x  encodes a point in the search space while the second a  is a vector of 

standard deviations.

v = ( x , a )  = ( (10 .9 .8 .7) ,  ( 1 .0 ,1 .0 ) )

Figure 2-8 Example ES representation

Although created independently, ES shares many similarities with EP including only 

using mutation as an evolutionary operator. In ES mutation, a vector randomly selected from 

a Gaussian or Normal distribution with a mean of 0 and variance of a can mutate each 

component of the representation. Therefore, the value of o controls the manner in which the 

algorithm can search the solution space. Originally, the value of a  was set to produce a fitter 

offspring at a ratio of 1:5 (Rechenberg, 1973). Thus this is often called the ‘1/5 success rule’. 

However, Schwefel (1975) proposed ‘self adaptation strategies’ that vary mutation parameters 

(including a) during a run.

Several mutation-selection techniques have been devised (all ES use the same 

representation and mutation methodology) that are identified by a notation system unique to 

ES literature:

• (1+1): a single individual is present in the population, which mutates to produce a single

offspring with only the fittest solution surviving to form the next generation.

H individuals mutate to produce X offspring (this produces a population larger than 

the original). If the offspring is fitter than its parent it survives, else it is deleted and the 

parent survives.

• (n, X): a population containing fj. individuals evolves to produce X offspring. But because

an individual m ay evolve more than one offspring ( 2  > //), the next generation is  only 

selected from the offspring. Therefore, an individual can only survive for a maximum of 

one generation (irrespective of fitness).
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Although these mutation-selection strategies have been extensively studied using 

empirical experiments, ES retains a tendency to converge on local optima: this is confirmed 

by the only theoretical model of ES mutation (Rudolph, 2001) which suggests that the ‘1/5 

success rule’ cannot guarantee convergence during numerical optimisation.

2.11.3 Genetic Algorithms

Holland (1975) is considered to have developed Genetic Algorithms (GA) in 1975 with the 

publication o f his seminal work. However, it is acknowledged that research had been 

conducted prior to this. Since then GAs have become the most widely known EA and are 

generally used as combinatorial optimisers although this issue is contentious (De Jong, 1993) 

because for design problems (as in this thesis) they are often used as search algorithms.

0 1 1 0 [ . . . ] 0 1 0

Figure 2-9 Example GA string representation

As a representation, the canonical GA uses a fixed-length, binary string (Figure 2-9) 

although other encoding are permitted including integers and real numbers. More advanced 

implementations even allow variable gene length. Other representations including voxels 

(Griffiths and Miles, 2004) and graphs (Borkowski et al, 2002) have also been developed. 

Another characteristic of the GA is their stochastic selection techniques and extensive use of 

recombination and mutation operators inspired by genetics.

2.11.4 Genetic Programming

Developed by Koza (1992), the Genetic Programming (GP) differs from the other EA 

implementations because it is pre-dominantly used for machine learning. GP is highly suited 

to this because its canonical tree representation can be constructed from ‘LISP S-Expressions’ 

(Figure 2-10), which are computer programmes. Therefore the GP trees can be used to evolve 

computer programmes and thus solve one of the fundamentals of computing: how can you 

make computers code themselves? Other representations based on graphs or linear structures 

have also been developed.
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Figure 2-10 Example GP tree representation

The mechanics of the GP closely related to the GA and is even considered by some to be 

‘a genetic algorithm using a tree based representation’. However unlike the GA, the GP tends 

to either ignore the mutation operator or use it infrequently. Evolved solutions are also ‘active 

structures’ that can be executed without post-processing, while GA’s typically operate on 

coded strings that require post-processing i.e. passive structures.

Within civil engineering the GP is a relatively new technique. Table 2-1 lists most 

published applications of the genetic programming in civil engineering. In general the GP is 

used for modelling purposes.

Table 2-1 Applications of genetic programming in civil engineering

Application Author Year
2003

Details
Estimation o f the shear strength o f deep RC 
beams, subjected to two point loads, from 141 
published experimental results.

Shear strength 
prediction o f deep RC 
beams

Ashour et al

Modelling of 
wastewater treatment 
plants

Hong and 
Bhamidimarri

2003 Modelling the dynamic performance o f municipal 
activated sludge wastewater treatment plants.

Detection o f traffic 
accidents

Roberts and Howard 2002 Detection o f accidents on motorways in low flow, 
high-speed conditions i.e. late at night based on 
three years o f traffic data whilst producing a near 
zero false alarm rate.

Flow through a urban 
basin

Dorado et al 2002 Construction o f sewage network model in order to 
calculate the risk posed by rain to the basin and 
thus providing prior warning o f flooding or 
subsidence.

Journey time prediction Howard and Roberts 2002 Forecasting motorway journey times.

Estimation of design 
intent

Ishino and Jin 2002 Using the GP to automatically estimate design 
intent based on operational and product-specific 
information monitored throughout the design 
process.

Modelling of water 
supply assets

Babovic et al 2002 In order to determine the risk of a pipe burst, a GP 
is evolved to ‘data m ine’ a database containing 
information about historic pipe bursts.
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Identification o f crack 
profiles

Kojima et al. 2001 Detection o f cracks inside hundreds of heat 
exchanger tubes i n a n uclear p ower p lant’s s team 
generator via analysis o f data measured via 
quantitative non-destructive testing.

Modelling rainfall 
runoff

Whigham and 
Crapper

2001 Discovery o f rainfall-runoff relationships in two 
vastly different catchments.

Improving engineering 
design models

Watson and Parmee 1998 Symbolic regression and Boolean induction to 
model engineering fluid dynamics systems.

Prediction o f long-term 
electric power demand

Lee et al 1997 Symbolic regression via genetic programming to 
predict the long-term electric demand o f Korea 
(based on training data from 1961 to 1980).

Systems identification Watson and Parmee 1996 Symbolic regression to calibrate Rolls Royce 
preliminary design gas turbine cooling systems 
software.

Traffic light control 
laws

Montana and 
Czerwinski

1996 Develop an adaptive control system for a network 
of traffic signals depending on variations in traffic 
flow.

Identification o f crack 
profiles

Koppen and 
Nickolay

1996 Agent generation to detect a nd t rack d ark r egions 
that could be cracks in greyscale images of 
textured surfaces.

2.12 Disadvantages o f Evolutionary Algorithms

This chapter has, thus far, focused on the positive aspects of evolutionary algorithms. 

However as previously stated, there is no search panacea and algorithm performance is 

problem dependent. This section discusses some general disadvantages associated with EAs.

A major disadvantage of evolutionary algorithms is the amount of computational effort 

expended when solving a problem because rather than solving the problem just once, it 

evaluates every individual (in every population) at least once per generation. In addition, 

while the evolutionary operators are computationally trivial e.g. swapping elements, the 

fitness function tends to be more complex and thus generates a large overhead. For example, 

Grierson (1993) estimates that 95% of a GA’s computational effort is devoted to calculating 

fitness. However, this figure should be considered indicative, as the actual value (of 

computational effort) is problem dependent. To counter this, one solution is to use a simple 

fitness function in early generations, when overall fitness is low.

Humans prefer to organise their conscious thinking in a parsimonious way for example in 

mathematics it is common practice to simplify equations. However fitness, not parsimony is 

the dominant factor in evolutionary algorithms. Therefore if a solution performs adequately, 

there is no fitness advantage and thus no selection pressure to improve it. This problem is 

particularly prevalent in the GP, as its representations have no fixed shape or size. 

Unfortunately, this means that solutions generally increase in size during a run: this is called
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‘programme bloat’. For example, (Jefferson et al, 1990) suggest that on average a GP tree will 

grow at one level per generation. A bloated solution will contain large sections of inactive 

code (Bhattacharya and Nath, 2001), which can slow convergence and increase the 

computational load. Bloat can also result in the evolution of solutions that while accurate, 

provide no new insight into the problem because of their complexity (Keijzer and Babovic, 

1999).

2.13 Conclusions

Evolutionary algorithms are domain independent problem solvers that utilise search operators 

inspired by biological evolution. Historically four implementations have been developed, 

which incorporate different representations and are used for different tasks, evolutionary 

programming is typically used to  predict future outcomes based on  historical information, 

evolutionary strategies are used as continuous parameter optimisation tools, genetic 

algorithms can either be used for discrete parameter optimisation or as a search tool while 

genetic programming is often used in machine learning.

This thesis will use EAs because they are robust enough to handle issues related to civil 

engineering design including large numbers of inter-related parameters, discrete and 

continuous variables creating discontinuous search spaces.
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3 Representing Civil Engineering Design Problems in Evolutionary 

Algorithms

3.1 Abstract

Civil engineering design problems are typically approached using traditional techniques i.e. 

deterministic algorithms, rather than via stochastic search. Evolutionary algorithms are a type 

of s tochastic search algorithm i nspired b y natural selection and a number o f  authors have 

proposed them as a design tool. This c hapter discusses how solutions to civil engineering 

design problems, in particular structures, can be represented in evolutionary algorithms 

without considering implementation specific issues.

Keywords: evolutionary algorithms, civil engineering, design

3.2 Introduction

This section considers the topic of engineering design. The following section discusses how 

computers can be utilized to aid the design process specifically via decision support systems.

Design is a highly complex process that has been investigated via numerous theoretical 

and empirical studies e.g. Lawson, 1997: Dym, 1994: Pahl and Beitz, 1996. In spite of this, a 

definitive design methodology remains elusive. This is because " .. .design is not a simple 

hierarchical process where the designer is presented with a set o f  requirements and works 

steadily through a decomposition strategy, moving from abstract concepts to the final 

concrete product. The design problem is ill-defined and changes as the designer explores it 

through solutions and partial solutions... ” (Hudson and Parmee, 1995). However design 

problems, regardless o f discipline, are generally solved iteratively: by constantly proposing 

and refining solutions rather than by a purely sequential methodology, but it should be noted 

that design does not iterate around a single solution but rather around a range of acceptable 

solutions (particularly in multi-disciplinary projects). Finally, it must be acknowledged that as 

the design progresses every partial solution will influence the final solution. Therefore, each 

partial solution generates “waves o f  consequences” (Moran and Carroll, 1996), so decisions 

made during the early stages influence the later stages (of the design). Even without a 

definitive model of the design process, it is generally accepted that any design involves the 

following stages, whether a prescriptive (Finger and Dixon, 1989) or descriptive (Dym, 1994) 

methodology is used:
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• Conceptual design: having determined a statement of need, the most important factor in 

conceptual design is the consideration of alternatives while developing a working 

solution (phrased at a high level).

• Embodiment design: “...the part o f the design process in which, starting from the 

working structure or concept o f  a technical project, the design is developed... to the point 

where subsequent detail design can lead directly to production...” (Pahl and Bietz, 

1996).

• Detailed design: the final stage where the embodied design is developed. This stage is 

almost procedural in nature and many algorithms have been created to aid designers.

This thesis will only consider the conceptual design stage because embodiment and 

detailed design have been extensively studied and are suited to classical/ procedural 

approaches. C onceptual d esign i s characterised by the lack of information available to the 

designer however evolutionary algorithms are adept at searching such solution spaces.

3.2.1 Characteristics of civil engineering design

Civil engineering design problems generally involve the construction of bespoke artefacts, as 

conditions are rarely identical on different projects. However, traditionally designers typically 

start by looking at existing solutions of similar projects and adapting them to the current 

specification. So, while the solution is generally unique it is often based on a previous design 

and so exhibits common characteristics.

It should be noted that design is different to optimisation: optimisation generally involves 

manipulating defined variables to achieve an optimal solution; however in design, especially 

conceptual design, the problem is not fully defined at the outset. To solve the problem the 

designer proposes and refines solutions that also define the problem. To highlight these 

issues, Hudson and Parmee (1995) suggest that design problems contain three issues that are 

not present in optimisation:

• Neither the structure of the final solution nor the design space is fixed.

• The evaluation of concepts is not a simple quantitative comparison.

• A range of feasible solutions is more important than a single ‘optimal’ one.
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However, i t is a cknowledged that the differentiation of design and optimisation is not 

clear. Rosenmann (1997) suggests a more general hypothesis that ‘design’ systems should be 

able to generate new solutions from random initial conditions using minimal heuristics.

3.2.2 Decision Support Systems for Conceptual Design

This section discusses the need for computer based Decision Support Systems (DSS) 

especially for civil engineering conceptual design, before the remainder of the chapter 

considers how solutions can be represented using a DSS based on evolutionary algorithms.

Decision Support Systems aim to expand the user’s existing skills and experience by 

providing a problem solving methodology, which enables them to make better decisions 

(Miles and Moore, 1994). DSS achieve this by providing the following functionality (Turban, 

1988):

• Allowing designers to quickly and objectively assess how their chosen solution responds 

if inputs or assumptions are changed.

• Providing a standardised framework for decision-making.

• Allowing all interested parties to participate in the design process, enabling everyone to

develop a clearer understanding of the problem and possible solutions.

• Cost savings. Although contentious, a well-designed DSS should focus a design team on

more viable solutions whereby reducing the chance of costly m istakes. 1 1  should also 

hasten the initial design process and thus reduce the overall cost.

Finally, a DSS can improve the final design by proposing a variety of ideas early in the 

design process. This is vital as Ullaman et al (1987) found that within 45 minutes of starting a 

design, designers have settled on their proposed solution and rather than consider alternatives 

they adapt it when problems arise. Therefore, by suggesting solutions without preconceived 

ideas and prejudices, a DSS should open the designer to more novel solutions (Sisk, 1999).

3.3 Representation

Evolutionary algorithms require candidate solutions to be evolved using operators based on 

biological evolution. Unfortunately most problems do not have solutions that are instantly 

amenable to these operators. Therefore they must be converted to a form that is. This involves 

developing an appropriate ‘representation’.
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In this work, ‘representation’ refers to the structure and encoding that allows potential 

solutions to be included in the search: some exclude the encoding methodology from the 

representation while others include the fitness function. The primary purpose of a 

representation is to convert every possible solution to a form that allows it to be included in 

the search.

The canonical evolutionary algorithms use a variety of representations:

•  Evolutionary Programming (EP): Finite state machines.

•  Evolutionary Strategies (ES): Real-valued vectors.

•  Genetic Algorithms (GA): String representation (with binary encoding).

•  Genetic Programming (GP): Representation based on tree, graph or linear structure.

The following discussion does not consider implementation specific issues but focuses on 

how structures can be represented (including the advantages and disadvantages of every 

approach). However it should be noted that most representations discussed are commonly 

associated with either the GA or the GP. This is because the EP and the ES are generally used 

as continuous parameter optimisation tools and are therefore not particularly suited to 

conceptual design. Also this thesis considers labelling evolutionary algorithms as GA or GP 

etc as potentially misleading because it encourages people to apply their preconceived ideas 

rather than focusing on what is being described.

3.4 String Representation

This section considers string representations. For the purpose of this thesis, ‘strings’ are one

dimensional structures that do not allow cycles and in general contain a sequence of 

parameters.

String representations are often appropriate for parametric problems or when discrete 

elements are required. Strings are composed of a series of variables (in some instances 

variable ordering is important). In any case, there are three ways to encode a string: binary, 

integer and real (although a single string may include several encodings).
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3.4.1 Binary-encoded string

A binary-encoded string (Figure 3-1) is often the most natural representation for Boolean 

variables. As binary-encoded strings formed the initial GA representation used by Holland 

(1975), they have become synonymous with GAs. Unfortunately, this means that they are 

often used irrespective of suitability. However, they do provide the most schemata7  per bit of 

information of any encoding and may be extended to encode integer and real numbered 

variables.

0 1 1 0

Figure 3-1 Example binary encoded string representation 

Within civil engineering examples of binary encoded strings include (Table 3-1):

Table 3-1 Binary encoded strings in civil engineering design

Application Year Author

Optimum composite laminate design 2000 Matous et al.

Reinforced concrete biaxial column design 1998 Rafiq and Southcombe

Building layout 1999 Park and Grierson

Truss design 1995 Shrestha and Ghaboussi

3.4.2 Integer-encoded string

Integer-encoded strings are often the most appropriate representation for a finite set of 

discrete variables or integer based variables (Figure 3-2). For example, the diameter of steel 

reinforcement bars. It should be noted that an integer-based variable could be converted to a 

binary bit string, which will provide more schemata per bit o f information. However, 

retaining the integer encoding ensures that two genes will remain close in both the solution 

and representation spaces and reduce the string’s overall length.

10 11 99 2

Figure 3-2 Example integer encoded string representation

7 A sub-region o f  th e  representation space created by including an additional ‘ don’t c a re ’ character in the 

representation’s encoding (Holland, 1975)
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Within civil engineering examples of integer encoded strings include (Table 3-2).

Table 3-2 Integer encoded string representation examples in civil engineering design

Application Year Author

Structural building design 2003 Sisk et al.

3.4.3 Real-encoded string

A real-encoded string (Figure 3-3) is often the most appropriate representation for continuous 

or high precision variables e.g. the length of a structural beam. It should be noted that as with 

integer variables, a real-based variable could be converted to a binary bit string. However, the 

disadvantage of converting to a binary representation is the level of precision must be 

specified in advance. Therefore the string can become exceptionally long if a large quantity of 

high precision variables is required.

9.2 80.3 10.1 11.3 [...] 52.4 99.9 19.7

Figure 3-3 Example real encoded string representation  

Within civil engineering examples of real encoded strings include (Table 3-3).

Table 3-3 Example applications of real encoded string representation in civil engineering design

Application Year Author

Design o f  reinforced concrete beams 1997 Coello et al.

3.5 Voxel Representation

This section describes ‘voxel’ representations, which are often appropriate for shape 

discovery problems because they decompose the solution space into discrete elements 

(usually square or triangular in shape) called ‘voxels’ (volume pixels). Once the solution 

space is decomposed, each voxel is allocated a Boolean value. If the value is true, then the 

voxel is considered to contain some material, and if false the voxel is empty. Therefore, this 

representation allows two-dimensional structures to be mapped to a binary string.

Unfortunately, because adjacent voxels are not guaranteed to remain adjacent in the 

genome, a d isadvantage of this representation i s that i t i s prone to  “ ...the development o f
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small holes, isolated voxels and jagged edges [...] and eliminating these deficiencies without 

having to apply strong guidance using heuristics poses a significant challenge...” (Griffiths 

and Miles, 2003). These issues can be mitigated by post-processing solutions or utilizing 

intelligent evolutionary operators (Zhang and Miles, 2004). A final disadvantage of voxels is 

the ‘fineness’ of the voxel grid must be determined at the outset, which significantly biases 

the final solution. However they are very well suited to modelling structures such as I beams.

1111 0 11 0 0 0 ll 111W:

Voxel Grid Associated String/Genome

Figure 3-4 Example voxel representation 

Within civil engineering examples of voxel representations include (Table 3-4).

Table 3-4 Applications of voxel representation in civil engineering design

Application Year Author

Optimisation o f I beam cross section 1999 Baron et al.

Optimisation o f I beam cross section (including shear stress) 2003 Griffiths and Miles

Optimisation o f I beam cross section (including shear stress) 2004 Zhang and Miles

3.6 Tree Representation

Trees are a non-linear, hierarchical and strictly acyclical data structures constructed from 

nodes (Figure 3-5). Every tree starts with a ‘root’ node, at depth 0. The root node is unique 

because it does not have a parent, but it does have children8. Each child forms a separate sub

branch and maybe a parent for other nodes. Any node that does not have a child is called a 

‘leaf. L eaf nodes generally contain inputs. The remaining n odes are ‘functions’. Function 

nodes process leaf inputs and transfer the result to their parent.

8 As with genealogical trees, tree representations use familial terminology when referring to other nodes
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Depth

Function

O iMf C >..>
 --- 3

Figure 3-5 Example b inary tree representation

Theoretically, every node has an arbitrary number of children. However trees are often 

designed with a predetermined number of children. For example, every binary tree node has a 

maximum of two children (Figure 3-5).

As previously stated, trees are hierarchical and strictly acyclical. Therefore, a child 

cannot have a higher depth that its parent (Figure 3-6).

Figure 3-6 Invalid tree representation

3.6.1 Yang and Soh’s (2002) tree representation

Within civil engineering design, only one set of authors has published papers incorporating a 

tree representation: Yang and Soh. This section discusses their representation while the 

following section discusses some of the issues related to using a tree representation (as 

proposed by Yang and Soh). The representation they propose incorporates a binary tree with 

two types of node:

• Function nodes: representing cross-sectional areas of the members Ap (p= i,j,k,l,m,n).

• Leaf nodes: representing structural joints N,- (/= 1,2,3,4).



David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

To decode which two nodes a member spans the tree is parsed by starting at the relevant 

node and progressing down the connection lines until a terminal node is reached. For example 

member A| spans nodes N4  and N 3 (Figure 3-7).

Am

(Ni)

Figure 3-7 Tree representation for structural design

3.6.2 Advantages of a tree representation

Tree encoding appears very simple, when compared to the equivalent binary string e.g. when 

designing a truss capable of supporting six loads, the tree representation required 29 nodes 

(16 joint and 15 members) where as Shrestha and Ghaboussi’s (1998) string representation 

required 25,200 bits. However this comparison is slightly unfair because tree nodes 

encapsulate9  data, while the string representation does not.

3.6.3 Disadvantages of a tree representation

During evolution, especially recombination, tree representations have a tendency to develop 

problems: consider the following crossover (Figure 3-8) between two identical parents 

encoding a six-member truss:

9 Process by which an object ‘hides’ data and provides methods to access it (in object-orientated programming).
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Parent 1 Parent 2

J4 J4

J1 J4 J2 J3 J4 J4

Figure 3-8 Example recombination operation between identical parents

There are three problems with these offspring:

• The ideal ‘1-to-l’ mapping can only be assumed during initialisation, as it can degenerate 

during evolution (Figure 3-9). Therefore, unless the evolutionary operators are restricted 

or individuals are repaired, evolution will produce a ‘n-to-1’ mapping with all its 

repercussions.

J1 J4 12 J3J1 J4 12 J3

Evolved solution * 1-to-1’ encoding

Figure 3-9 Degeneration of ‘1-to-l’ mapping

• Evolution may produce members that span between the same joint (a null member) or 

create several copies of the same member (Figure 3-10). While often not fatal to the 

structure, it does add a computational overhead and causes the solutions to ‘bloat’.
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J4 J4

J4 J2 J1 J4 J2 J3

(ft) Null member (b) Duplicates

Figure 3-10 Problem s after evolution for tree representation

3.7 G raph  rep resen ta tion

Graphs are a non-linear data structure composed of nodes connected by edges. However 

unlike trees, graphs allow cycles and can incorporate loops and recursive commands. This is 

because in addition to performing a function, graph nodes determine which node will be 

executed next.

Graphs are often a good representation for skeletal structures e.g. trusses, because they 

support the adaptability required for topological design. For example strings are linear 

structures, therefore each element has at most two connections: left and right. Unfortunately, 

most physical structures contain elements that connect to an arbitrary number of elements. 

Therefore, a higher dimensional representation maybe required having a m ore a ppropriate 

form.

Graphs are often used for modelling problems in civil engineering, within design only 

one paper has been published: Borkowski et al (2002). The representation proposed by 

Borkowski et al (2002) involves two elements:

• Composition graphs (CP-graphs). A directed labelled graph (Figure 3-11) representing a 

structure’s topological features (its genotype). CP-graphs are composed of nodes 

(representing joints) and edges connecting two nodes (representing members) both of 

which are labelled and attributed.

• Realisation schemes: A mapping that assigns properties to the CP-graph to generate the 

phenotype.
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,cb

a b  - a b u tm e n t  
bm  - b e a m

PL  pyl.°,nc b l  c a b l e  1  
c b 2  - c a b l e  2

abab

hnhn
bm bm

Figure 3-11 Example bridge and CP-graph representation (adapted from Borkowski and Grabska, 1995)

In addition to this, Borkowski et al (2002) suggest that a physical structure is created by a 

finite number of topologically identical units that they call ‘panels’. For each panel, a CP- 

graph in evolved. This reduces the representation space’s size.

3.8 O ther R epresentations

This chapter has covered the most common representations, however others do exist 

including:

• Homogenisation: The material (from which the structure is constructed) is considered to 

be ‘sponge-like’ containing an infinite number of micro-cells and voids, which can be 

assigned different densities (Bendsoe and Kikuchi, 1988).

• Voronoi-based: The structure is composed of a finite number of voronoi sites that define a 

voronoi diagram (Kane and Schoenauer, 1996).

• Shape Grammars: This method is often used for layout design. Shape grammars perform 

computations with shapes in two steps: recognition of a particular shape and possible 

replacements (Stiny and Gips, 1972).

3.9 R epresentation  and  tru ss  design

This section provides an introduction to trusses before reviewing the existing approaches to 

truss optimisation and design. Trusses have been selected because they are the most 

commonly studied type of structure for civil engineering design problems. Therefore there are 

a number of approaches to compare and contrast.
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Structural trusses Figure 3-12 are composed of at least two members (in tension or 

compression), which when joined together create a stable construction in either two 

dimensions (planar truss) or three dimensions (space truss). Trusses are a common 

engineering structure often used to support roofs or bridges.

Structural optimisation and design problems frequently use trusses this maybe 

attributed to the fac t that trusses usually possess many nodes and elements that can be deleted 

or retained without affecting the functional requirements. In addition, the truss is a relatively 

simple, yet non trivial structure...” (Kirsch, 1990).

3.9.1 Truss optimisation versus design

Truss o ptimisation involves m odifying an existing d esign s o t  hat i t i s more efficient. This 

usually involves reducing its weight whilst ensuring it remains fit for purpose and has been a 

research topic since Mitchell’s seminal paper in 1904 (Mitchell, 1904). When optimising a 

truss, there are three variables to consider:

• Sizing: Modifying the size of structural members.

• Geometry: Modifying the position of structural nodes.

• Topology. Modifying the number and connectivity of structural members.

(a) Planar Truss

<!>*-----------

Figure 3-12 Example planar and space truss
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Most existing approaches consider a truss’ sizing, geometry and topology to be 

independent and solve them in turn. However, sizing, geometry and topology are obviously 

not independent because the initial modifications will constrain those that come after. 

Nevertheless this approach is frequently adopted as it makes the problem more accessible.

Topological optimisation is the most difficult process to investigate because the 

representation must incorporate a mechanism by which member connectivity can be modelled 

(Deb, 2002) and this factor limits the applicability of classical/ procedural approaches. As if 

to highlight this, some approaches even neglect topology and concentrate on optimising sizing 

and geometry. Evolutionary algorithms, and in particular genetic algorithms, with their 

adaptive representations are more suited to this type of problem and many optimisation papers 

suggest using this approach Table 3-5, but all utilise a ‘ground structure’ first proposed by 

Dorn et al (1964).

Table 3-5 Topological optimisation via genetic algorithms

Author Year
Ruy et al. 2001
Deb and Gulati 2001
Camp et al. 1998
Rajeev and Krishnamoorthy 1997
Hajela and Lee 1995
Raj an 1995

Ground structures contain a large number of highly connected nodes (Figure 3-13). To 

optimise the topology, an algorithm removes all non-essential members (although it is 

arguable that because topology is predetermined, optimisation only occurs within a limited 

search space). This can be accomplished by associating an extra ‘flag’ gene, with each 

member in the genome indicating whether the member is present or not. To add or remove a 

member, the algorithm changes it flag status. Unfortunately, this produces long genomes 

containing large quantities of redundant information. Therefore, the final topology is biased 

by the ground structure. However, this approach does simplify the issue o f  representation 

because each genome contains every possible member configuration (even if the genome is 

excessively long).
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Figure 3-13 Example ground s tructu re

Truss design is a more difficult problem than optimisation, because there is no initial 

structure to adapt. Therefore, for it to be effective, the design algorithm must generate at least 

one potential solution and modify its sizing, geometry and topology simultaneously without 

the need to rely on a ground structure.

The major issue with topological design (of trusses) is how to represent the ‘node element 

diagrams’ of structural analysis and in particular that a member spans between two joints (in 

addition to its own properties). As topological design is a difficult subject and there are only 

three major representations to date, all will now be reviewed.

3.9.2 Shrestha and Ghaboussi (1998)

Shrestha and Ghaboussi suggest a solution based on a fixed length, string representation, by 

encoding individual joints and duplicating member information. Each string genome is 

composed of a fixed number of sub-strings (Figure 3-15), which encode joint locations using 

Cartesian coordinates. In  addition to this, the space around each joint is discretised into 8 

regions (Figure 3-14).

L4

L8

L2

L4

L5 L8

Figure 3-14 Sectorial jo in t representation  (adapted from  S hrestha and G haboussi 1998)

When a member is associated with a joint, the relevant joint region encodes its properties. 

However, because a member spans between two nodes, it can potentially have two different
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sets of properties (one maintained by each region). To decide which properties to use nodes 

are assigned priorities with the dominant node defining the member.

11 1 

Sector 7

\

▼ No d il
Vifrmtintifrw Sector 1

\
Sector 3 Sector 5 Sector 8

x  < nn o n I I I ?
s  s  " S 9 i  s  &

Figure 3-15 S tring  represen tation  (adapted from  Shrestha and  G haboussi 1998)

This indicates some of the deficiencies of a ID string representation: because it lacks a 

suitable structure, topology must be encoded in addition to the geometry and sizing 

information and this arbitrary representation (of topology) creates redundant information in 

the genome increasing its size.

3.9.3 Yang and Soh (2002)

Yang and Soh suggest a solution based upon a 2D adaptive tree structure, by encoding 

members and duplicating joint information. They propose that the tree should compose two 

types of node (Figure 3-16):

• L eaf nodes: representing structural joints.

• Inner nodes: representing structural members.

J3

l

J1

m

J1 J4 J4 n n J3

4) Node-Elctrucnt D iig r c n  b ) Tree Representation

Figure 3-16 Six m em ber truss and tree representation
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They also recognise that this encoding methodology only provides a ‘n-to-1’ mapping, 

which means that the same truss can be represented by several different tree configurations 

(Figure 3-17).

J2 J3

Tree representttim

J1 J4 J4 J2 J2 J3

AJtjgmitive represenlrtinn 

Figure 3-17 ‘n - to l’ mapping

While valid, ‘n-to-1’ mapping enlarges the solution space reducing an algorithm’s 

efficiency. Therefore Soh and Yang suggest an improvement to produce a ‘1-to-l’ mapping: 

joints and members are numbered and (without loss of generality) the lower numbered 

element considered first. To encode a truss, the following procedure is applied:

“...The lowest numbered member is selected to be the root node.

This member then has its start and end joints represented by children 

nodes to the left and right respectively. Then, from left to right, the lowest 

numbered member associated with each joint is removed from the 

structure and inserted into the tree. This procedure continues until every 

member is represented in the tree... ”

It is important that the left-right relationship of offspring and parent be maintained as the 

tree is constructed, because the nodes to its far left and far right define every member. For 

example, member i spans between joints J\  and J3 (Figure 3-16). For more information 

regarding issues with tree representations please refer to 3.6.3.

The following paragraph is slightly esoteric, but interesting nevertheless! Soh and Yang 

consider that using a tree structure indicates the use of genetic programming (Koza, 1992). 

However, because the phenotype (the truss) has a different structure to the genotype (the tree) 

an additional decoding step must be incorporated into the solution procedure. Therefore, the 

solutions are not ‘active structures’. It is this author’s opinion that if this work is to be pigeon 

holed into one o f  the four canonical EAs their work should be considered to be a genetic
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algorithm (Holland, 1975). However it is only by labelling their approach as genetic 

programming the authors have left themselves vulnerable to this sort of criticism. It is for this 

reason that this thesis will refer to any experimental work as an evolutionary algorithm using 

a particular representation.

3.9.4 Azid and Kwan (1999)

Azid and Kwan published an approach that allows the evolutionary operators, of a GA based 

system, to  act directly on the phenotype rather than its genotypic representation. However 

they must use some form of representation (as defined in this thesis), as it is impossible to 

implement any computer based technique without some form of representation. Therefore 

because trusses naturally form graphs it is assumed that they used a graph-based 

representation. They also highlight the problem of using a coded string: the evolutionary 

operators are highly disruptive. To mitigate this, several rules are used to  ensure that any 

offspring mimic their parents (to prevent too many infeasible solutions being generated):

• Any offspring formed by two structurally viable parents must be structurally viable i.e. 

not a series of discontinuous joints and bars in space.

• There must be some visual architectural resemblance between offspring and parent.

3.10 Conclusions

Conceptual design is the first stage in a highly complex process. To aid the designer, decision 

support system based on evolutionary algorithms maybe used because although conceptual 

design is characterised by the lack of information available to the designer, EAs are adept at 

exploring fragmented and complex search spaces. However EAs require candidate solutions 

to be converted to a form that is amenable to evolutionary operators. Many representations 

have been designed each with its own strengths and weaknesses: strings are generally used for 

parameters, voxels for shape discovery, trees and graphs for skeletal structures. Within civil 

engineering design, the most commonly studied structure is the truss and three main 

representations have been used, each with their own pros and cons.
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4 Conceptual Layout Design of Orthogonal Commercial Buildings

4.1 Abstract

The conceptual layout design of commercial office buildings is a non-trivial task because the 

numerous design variables create a large solution space. To aid designers, several decision 

support systems have been developed. However, all these systems are limited to buildings 

with rectangular floor plans.

This chapter presents a evolutionary algorithm based methodology capable of designing 

buildings with orthogonal boundaries and atria. To achieve this the floor plan is partitioned 

into rectangular s ections u sing a sweep 1 ine algorithm and to prevent u nrealistic solutions 

being generated, the representation (a 3-section string) ensures the initialisation and 

evolutionary operations are not too disruptive. The number o f  initial i nputs has a Iso been 

reduced, because this work is aimed at the conceptual design stage. Therefore the user only 

needs to specify the external boundaries shape and location of any atria.

The aim of this chapter is to investigate existing examples and develop new representation 

for orthogonal building layout design.

Keywords: commercial office buildings, conceptual layout design, evolutionary algorithm, 

polygon partitioning, orthogonal boundary.

4.2 Introduction

Conceptual design commences once a problem has been identified and a vague description of 

a solution has been formulated (usually in functional terms) called the ‘project brief. 

Generally, the aim of conceptual design is to generate a range of solutions that will be further 

developed during the subsequent design stages. Therefore although these solutions are based 

on limited information, they will determine most of the major design parameters. In fact it is 

often quoted that by the end of the conceptual design stage 70 to 80 percent of a project's 

resources are committed.

Conceptual design is also considered to be one of the most difficult challenges facing 

practising designers because of the range of possible options. For example, it is estimated that 

for a typical commercial building of 20 stories, even if one only considers the architectural 

and structural aspects, there are approximately 170 million possible design options
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(Khajehpour and Grierson, 2003). Therefore only experienced engineers carry out conceptual 

design tasks, because the lack of initial i nformation 1 imits the e ffectiveness o f  procedural 

techniques to assist more junior designers.

4.3 Related Work

In order to aid building designers, various papers (Table 4-1) have proposed Decision 

Support Systems (DSS) based on evolutionary algorithms. Evolutionary algorithms are suited 

to this role because they are adept at exploring fragmented and complex search spaces. 

However, all these systems are limited to buildings with rectangular floor plans.

Table 4-1 DSS for the conceptual design of buildings

Author Year Method Details
Harty and Danaher 1994 Knowledge Based 

System (KBS)
Produces realistic designs in structural steel and reinforced 
concrete for regularly shaped buildings

Grew 1995 KBS Uses simple calculations and rules o f thumb (can reuse 
knowledge gained from existing structures) for the design of 
portal framed buildings.

Fenves et al. 1995 Case Based Reasoning 
(CBR)

Part of the SEED system (Software Environment to Support 
the Early Phases in Building Design) that is user extensible.

Fuyama et al. 1997 KBS Based on behaviour considerations and first principles this 
system, implemented in an object orientated programming 
environment, designs moment resisting steel frames.

Rajeev and 
Krishnamoorthy

1998 GA (String) Design optimisation o f reinforced concrete plane frames 
using a genetic algorithm (taking into account factors related 
to detailing and placement o f reinforcement).

Khajehpour and 
Grierson

1999 GA (String) Conceptual design o f medium-rise office buildings using a 
multi-criteria genetic algorithm in conjunction with pareto 
optimisation theory.

Rafiq et al. 1999 GA (String) Design of concrete framed buildings using a genetic 
algorithm incorporating a neural network for a floor plan 
based on regular column spacings.

Soibelman et al. 2000 CBR + GA Structural design o f tall buildings by proving designers with 
adapted past design solutions generated by a distributed 
multi-reasoning mechanism.

Miles et al. 2001 GA (String) Design o f commercial office buildings using a genetic 
algorithm as a search engine to determine layouts with 
regular and irregular column spacings.

Grierson and 
Khajehpour

2002 GA (String) Cost-revenue conceptual design o f high-rise buildings using 
a multi-criteria genetic algorithm.

Eisfeld and Scherer 2003 KBS + Descriptive 
Logic Reasoning

Interactive planning algorithm using an expressive 
description 1 ogic 1 anguage t o represent structural knowledge 
acquired from practitioners.

Sahab et al. 2005 Hybrid GA (String) Two stage conceptual design of reinforced, concrete flat slab 
buildings.
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4.3.1 BGRID

The work published by Miles et al. (2001) called ‘BGRID’ will now be discussed in more 

depth, because this section of the thesis is a continuation of it. BGRID was developed in close 

collaboration with practising engineers and focuses on the design of rectangular floor plans, 

using a genetic algorithm (Holland, 1975) to generate column layouts. To achieve this, 

BGRID concentrates on a number of ‘first order’ design decisions:

• Dimensions of the structural, constructional, servicing and planning grids.

• Environmental strategy (for both lighting and ventilation).

• Floor-to-ceiling height including (spacing requirements for services).

• Structural depth and its impact on the building height.

• Cost

However the search within BGRID is heavily constrained, as the user is required to fix 

their preferred dimensions for the modular and structural grids at the start. The GA is also 

allowed to modify the overall building and atria dimensions to fit a potential grid. By heavily 

constraining the search and modifying the outline, BGRID is able to carry out a near 

exhaustive search of the feasible options. Unfortunately the final solutions are often only 

marginally better than the initial, random solutions. This lack of improvement could be due to 

the fact that the best solutions tend to lie on the boundary between the feasible and infeasible 

regions. Thus by not allowing the search to explore the infeasible region the algorithm’s 

search is restricted. It is also a reflection on the heuristics applied during initialisation, which 

ensures the population is only seeded with viable options.

After its development, BGRID was assessed by about 80 practising designers including 

architects, building services engineers and structural engineers and 68% of them suggested 

that this type of tool could be useful.

4.4 OBGRID

This section provides an introduction to the OBGRID (Orthogonal Building GRID) a DSS for 

the conceptual design of orthogonal buildings by considering some of the key issues. 

OBGRID is a continuation of BGRID however it must be stressed that the aim of this work is 

to develop a suitable representation (capable of handling non-rectangular floor plans) rather
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than a complete building design system. Therefore the fitness function and evolutionary 

operators used are to demonstrate the representation’s flexibility rather than to optimise 

performance. The following sections describe how OBGRID designs rectangular and 

orthogonal floor plans.

4.4.1 Column Layout

One of the most important features of commercial buildings is that columns should preferably 

be arranged in rectangular grids. This is not to say that other arrangements are not used, but 

regular rectangular grids tend to be easier and more economical to construct and provide a 

flexible layout that can be readily adapted during the life of the structure.

4.4.2 Structural Systems

At present OBGRID contains the information for three structural spanning systems: short, 

medium and long (however the system is user extensible). As stated previously, the aim of 

this work is to develop a suitable representation for orthogonal buildings. Therefore BGRID’s 

structural systems have been incorporated into OBGRID.

• Short: Slimflor™ has an integrated steel deck (minimising the depth of the structural 

zone). [Economic range = 5-8m].

• Medium: Composite steel beam and composite slab system. [Economic range 6-12m].

• Long: Steel stub girder and composite slab system. [Economic range 18-20m].

As larger column spacing generally produce a more flexible internal environment 

OBGRID tends to favour longer spans, which is admittedly biases the search.

4.4.3 Environmental Strategy (Ventilation)

Ensuring the correct ventilation is  a fundamental problem in  building design because it is 

difficult to change once built. Three environmental strategies have been considered (although 

others maybe added by the user):

• Natural ventilation: Natural ventilation is provided by the glazing system, but u sually 

only available in non-urban environments.

• Mechanical ventilation : If the building is too deep for natural ventilation then mechanical 

ventilation maybe suitable.
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• Air conditioning: In an urban environment this is often the only option as it allows the 

building to effectively maintain a self-contained environment.

4.4.4 Services Integration

The electrical, communication and ventilation services must be coupled with the structural 

system in one of three ways:

• Separate: The services and structural system are accommodated in adjacent zones. This 

approach is characterised by short spans and a shallow construction depth.

• Partial: If the structural system is deep enough, some of the services maybe 

accommodated within it. However, some services must be routed under the primary 

beams and thus out of the structural zone.

• Full: The services and structural system are accommodated in the same zone. This 

approach is often characterised by long spans with a deep construction depth (within 

cillular beams).

4.4.5 Clear floor-to-ceiling height

The clear floor-to-ceiling represents the usable ‘office’ space. A high floor-to-ceiling height is 

required if the client requires natural daylight and natural ventilation. It is suggested that this 

should be between 2.4m => 4.0m with a recommended minimum of 2.7m.

4.4.6 Floor-to-floor height

To calculate the floor-to-floor height, the floor-to-ceiling height is added to the distance 

required for the floor spanning system and services (Table 4-2).

Table 4-2 Dimensional allowances for services

Environmental Strategy

Air Conditioning 
(mm)

Mechanical
(mm)

Natural
(mm)

Se
rv

ic
es

In
te

gr
at

io
n Separate 900 635 350

Partial 650 500 325

Full 350 350 350
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4.4.7 Initial User Input

Because this work is aimed at the conceptual design stage, the number of input variables has 

been reduced. The user is only required to enter the dimensions of the boundary and atria in 

addition to specifying the total number of storeys. Other GA based DSS allow the algorithm 

to search for the optimum number of storeys e.g. Khajehpour and Grierson (1999) and Rafiq 

et al. (1999). However, during BGRID’s evaluation it was suggested that the client usually 

fixes this parameter at the outset therefore this option has been omitted (if the designer wishes 

they can re-run the algorithm with different numbers of floors to investigate this variable).

4.5 OBGRID and Rectangular Buildings

This section contains a detailed description of how OBGRID handles rectangular buildings. 

Layout design of rectangular floor plans is fundamental in this work, because every 

orthogonal floor plan will be partitioned into rectangles.

4.5.1 Representation

In an efficient building layout, columns should b e a ligned in straight rows. Therefore, the 

representation should be robust enough to reflect this feature even after the disruption caused 

by the evolutionary operators.

Initially an attempt was made to include individual column locations in the genome using a 

tree or graph structure (Figure 4-la). However, this representation proved to be slightly 

unstable and tended to leave some columns isolated in the floor plan particularly after 

evolution (Figure 4-lb). This is because by focusing on individual columns, these 

representations failed to incorporate the idea of rows. So if one column’s location was altered, 

the algorithm was unable to update the remaining columns.
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<>----------<>........

*............. \

(a) Before evolution (b) After evolution

Figure 4-1 Problem  using tree or g raph based representation in layout design

OBGRID uses a 3-section string representation (Figure 4-2) that focuses on aligning 

column rows by considering a column’s x and y coordinates independently, so a gene 

references a row of columns rather than an individual one. It should also be noted that the 

number of columns included in sections 1 and 2 is not fixed (and can vary during the search) 

thus this representation is a variable length genome.

• Section 1: contains column x spacing.

• Section 2: contains column y spacing.

• Section 3: contains the remainder of the information including: structural system, services

integration, environmental strategies and the floor to ceiling height.

X  Coardirntes Y  CoardiruLes B uilding Information.

r — f

0 10 20 40 50 0 15 25 30 1 2 0 2.95

Structural System  

Services Integration. 
EttvirunmenLtl Strategy

Floar-to-ceiling H ei^tt

Figure 4-2 Example genome for layout design

Sections 1 and 2 of the genome contain values that always increase from left to right. 

This ordering is maintained because it ensures a 1 -to-1 mapping between the representation 

and solution spaces. Span length, the distance between columns, is calculated by finding the 

difference between adjacent genes (as genes signify column locations).
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Each gene, in section 1 or 2, references a row of structural columns rather than just a 

single column. Therefore any change to an individual gene will not invalidate the layout 

because the whole row will be altered (see 4.5.3).

4.5.2 Initialising the genome for a rectangular floor plan

The following section will describe how the genome for a rectangular floor plan is initialised. 

To aid understanding, an example floor plan of 50m x 30m will be initialised. Each section of 

the genome is considered in turn:

• Section 1: starting at the upper left hand comer of the floor plan (it is always assumed that 

the top left hand comer has the local coordinates (0,0)) the algorithm generates random 

column spacings in the x direction until the end of the floor plan is reached.

r x
y  0 10 20 40 50

Initialised Section

0 10 20 40 50

Initialised Genome

Figure 4-3 R ectangular floor plan (Section 1 Initialised)

• Section 2: restarting at the upper left hand comer (0,0), the algorithm generates random 

column spacings in the y direction until the end of the floor plan is reached.
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y

15

25

30

Initialised Section

0 10 20 40 50 0 15 25 30

Initialised Genome

Figure 4-4 R ectangular floor plan (Section 2 Initialised)

Section 3: The final section is initialised with randomly selected genes from the 

appropriate gene set. For example the basic structural system gene set contains three 

elements: 0 = Short, 1= Medium, 2 = Long, so this gene will either be a 0, 1 or 2.

r x
y

Structi
Servic<
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ion: 2 = Air Condit 
drategy: 0 = Separa 
Height: 2.95m

ioning
te

Initialised Section

0 10 20 40 50 0 15 25 30 1 2 0 2.95

Initialised Gmame

Figure 4-5 Rectangular floor plan (Section 3 Initialised)

It should be stated that unlike BGRID no effort is made to constrain column positions to 

‘realistic’ spacing i.e. within the economical range for the selected spanning system. This is to 

encourage the algorithm to for solutions in both the feasible and infeasible regions. However,
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the fitness function does penalise individuals that contain a wide range of column spacing. 

This is to encourage a degree of uniformity in column spacing, which aids ‘buildability’ 

without adding much bias.

4.5.3 Evolutionary Operators

Evolutionary algorithms search the solution space by using biologically inspired operators. 

However because the genome is divided into 3 distinct sections of variable length, the 

evolutionary operators have been amended to reflect this:

• Mutation: used to inject new solutions into the population improving the search by 

(hopefully) preventing premature convergence (Goldberg, 1989). Having selected an 

individual’s genome, a new value is generated for a random gene. If the mutation operator 

selects a gene from sections 1 or 2 then it is replaced with a randomly generated value 

between 0 and the limits of the floor plan. Unlike BGRID that restricts the new spacing to 

a value between the two adjacent genes, OBGRID simply generates a random spacing and 

when it’s needed sorts the genome so that the column spacing increase from left to right10. 

If a gene from section 3 is selected a random gene from the appropriate gene set is used.

Start

Select section

Select gene

0 10 20 40 50 0 15 25 30 1 2 0 2.95

0 10 20 40 50 30 1 0 2.95

Mutate 0 10 20 40 50 0 27 25 30 1 2 0 2.95

r *
Sort section 0 10 20 40 50 0 25 27 30 1 2 0 2.95

Finish 0 10 20 40 50 0 25 27 30 1 2 0 2.95

Figure 4-6 Example mutation operation

10 The sorting algorithm is that contained in Java’s native java.utils package: a modified mergesort (in which the 

merge is omitted if  the highest element in the low sublist is less than the lowest element in the high sublist). This 

algorithm offers guaranteed n log(n) performance.
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• Recombination: used to exploit the information already in the population. OBGRID 

employs a s ingle p oint crossover o perator. S ingle point crossover i s u sed because i t i s 

simple to implement even with variable length genomes (as in OBGRID). However rather 

than applying the crossover operator on the whole genome, it performs a separate 

crossover on each of the genome’s three sections. Although for section 3, the cut point is 

always located at the same point to ensure this section of the genome remains of constant 

length.

0 10 20 40 50 0 15 25 30 2 0 1 2.95
Start

0 25 50 0 10 20 30 1 2 0 305

Select cut 
point*

Exchange

Fumh

0 10 1I40 50
° 1\li 25 30 a l1 °

1 12.95

0 1
» 0 20 30 ' h

0 31)5

0 10 M 1 50
0

20 | 30 h i h 0 2 95

t t
0 1

40 50
• P I 30

M | 1 305

0 10 20 23 50 0 20 30 a 2 0 2.95

0 40 50 0 10 15 25 30 i 0 1 1 305

Figure 4-7 Example recombination operator

4.5.4 Selection

BGRID originally used the standard fitness method (Bradshaw and Miles, 1 997) to select 

individuals during e volution. This technique ranks the individuals by raw fitness and then 

assigns a predetermined fitness to every individual according to their rank. However, 

OBGRID has replaced the standard fitness method with the more conventional tournament 

selection technique (Goldberg, 1989) to improve search performance.
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4.5.5 Fitness function

The fitness function assigns a single numerical value to an individual reflecting how ‘good’ it 

is. A multi-objective fitness function might be more appropriate for this work however the 

goal was to develop a representation capable o f  handling orthogonal layouts rather than a 

complete building system.

OBGRID is a minimisation algorithm, which means that the optimum solution has a 

fitness of 0. This is because floor plans are assigned an initial fitness of 0 but during 

evaluation are penalised if they break the predetermined criteria. Therefore a layout with 0 

fitness is not penalised and thus should be a very ‘good’ solution. OBGRID uses a penalty 

function because although this can be a conservative approach, convergence delay was 

considered to be less dangerous than the premature loss of material: as the o ptimum w ill 

typically be located on the boundary between the feasible and infeasible regions and this 

approach allows the EA to search from both directions. Although there are many types of 

penalty function OBGRID uses a quadratic penalty function, which assigns a greater penalty 

to a larger transgression.

OBGRID has three components to its fitness function but it is acknowledged that other 

factors could be added. However the following components are included to test the 

representation’s performance using relatively ‘realistic’ criteria:

• Overall height: The solution’s overall height must not exceed the value stipulated by the 

user. If the solution is larger it is penalised by the penalty function.

• Column spacing compatibility: Column spacing must be compatible with the economical 

span distance of the structural spanning system. For example, if the structural system is 

‘short’ (specified by the first gene in section 3), the span distances should be between 5 

and 8m (4.4.2 Structural Systems).

• Uniformity o f  the grid: OBGRID attempts to evolve solutions based on regular column 

spacing, so the standard deviation of the spacings is used in the fitness calculation. With a 

lower standard deviation being preferable (indicating greater spacing uniformity).

4.5.6 Running the algorithm

There are potentially two ways to run this algorithm: with the algorithm able to vary the 

flooring system during a run or by preventing the algorithm varying the flooring system and
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re-running for each flooring system. It was decided to use the second approach because this 

will typically evolve a good solution for each flooring system rather than ignoring it. This can 

be important in the ‘real world’, as practising engineers are typically sceptical of ‘black box’ 

solutions that ignore their criteria and might wish to view a particular spanning system 

(although OBGRID will indicate a solution’s suitability via its fitness).

4.6 Illustrative Example: Rectangular Building

This section provides an illustrative example of OBGRID designing a rectangular building. 

The parameters in the EA tableau (Table 4-3) should be considered indicative because the aim 

of this work is to develop a new representation rather than a complete building design system.

4.6.1 Introduction

The following test case was designed to assess OBGRID’s performance. Unfortunately, 

unlike structural optimisation, there are not standard test cases. This is possibly because there 

is no such thing as a standard building because they are multi-disciplinary structures (unlike 

trusses) therefore the following test case was used:

• Building dimensions: 60m x 18 m

• Height restriction: none.

Table 4-3 EA Tableau for Rectangular Building

Objective J Evolve example layout designs for a rectangular 
| boundary o f 60m x 18m with no height restrictions)

Representation 3-section string
Initialisation Random initialisation (no seeding)
Raw Fitness Based on: column spacing compatibility and column 

spacing uniformity
Selection Tournament (size = 2)
Major Parameters* P =  1,M  = 100, G = 50

Evolutionary Operators:
ReproductionDrob 0.1
Mutation operator Point
Mutationprob 0.3
Recombination operator One point crossover
Recombinationprob 0.6

*P = Number o f populations M = Population size G = Max number o f generations 

Some researchers may question why the probability of mutation is so high by comparison 

to a typical GA. There are two reasons for this:
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• The algorithm used in this these is described as an evolutionary algorithm rather than a 

pure genetic algorithm, for example. Therefore by considering it as such, the researcher 

has a tendency to apply preconceived ideas, which may or may not be appropriate.

• The mutation operator is mechanistically very similar to that used for recombination. 

Therefore the algorithm is less sensitive to changes in these probabilities than other 

implementations. However the mutation operator has the potential to introduce a gene 

pattern not already found in the population, while recombination simply exchanges 

existing gene patterns between individuals.

4.6.2 Results

The following graphs show the best, mean and worst fitness recorded during an indicative run 

for the medium structural spanning system. It is important to note that because OBGRID is a 

minimisation algorithm a lower the fitness indicates a better solution.

9

8

7

6

5(0
<04>
5Ll

4

3

2

1

0
10 2D0 5 15 25 30 35 40 45 50

Generation

Figure 4-8 Best fitness
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Figure 4-9 Average fitness

The best and average graphs trend downwards during the run. This indicates that the 

algorithm is converging towards the ‘optimum’ (although the algorithm is not guaranteed to 

locate it). The spread also narrows between the average and best, which suggests that the by 

employing fitness-based selection, the algorithm is encouraging the ‘better’ characteristics to 

propagate. However the same cannot be said for the worst fitness.
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Figure 4-10 Worst fitness

Although the worst fitness ‘stabilises’ in the range of 50 -300 after generation 10, it 

never reaches equilibrium and often ‘spikes’ e.g. generation 33. But again, this is to be 

expected. The evolutionary operators are potentially very disruptive and an individual’s 

fitness may actually be reduced afterwards. However this is why evolutionary algorithms are 

so powerful: although evolution may produce a harmful result for an individual it may also 

produce a beneficial change, which maybe be propagated throughout the whole population. 

This is shown in Figure 4-8 and Figure 4-9. During the run, the average fitness trends 

downwards in a fairly smooth manner, whilst the best proceeds in discrete steps. This is 

because the best individuals are formed by chance therefore they can be a huge improvement 

over their ancestors (this feature is especially prominent at the beginning of a run). However, 

as stated above, once the improvement has been found, it often spreads through the population 

reducing the overall fitness in a more gradual manner.

There is one final feature of Figure 4-8 worthy of mention: because the best solution is 

not explicitly copied into the next generation i.e. elitism is not used, the best fitness can rise 

between generations. For example, between generations 18 and 19 the best solution actually
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decreases in fitness. But this merely demonstrates how robust evolutionary algorithms can be. 

Even though the algorithm has lost its best solution to date, it quickly recovers and by 

generation 24 has found an even better solution. Ignoring the best of generation can also help 

to prevent premature convergence. For example, if the algorithm is forced include the best 

solution to  date, but this solution is simply a local optimum, then the algorithm would be 

hindered rather than helped. So by ignoring the effects of evolution on an individual, for 

example after recombination, the algorithm is free to search using all the information 

contained in the population and if the best solution to date is the global optimum, hopefully it 

will return to it!

Figure 4-11 shows the solutions returned when the algorithm is run for each structural 

spanning system.

O O
o o

o o o o

o o o o

(ft) Short (b) Medium

Figure 4-11 Returned solutions for rectangular building example

(c) Long

The final average spacings are all within the economic ranges and were as follows: short 

x = 7.5m y = 6m; medium x = 12m y =9m; long x = 20m y = 18m. However these averages 

are slightly misleading, as the column spacings returned are not necessarily uniform. In 

particular, as the number of columns increases, OBGRID finds it harder to retain regular 

spacings. Having OBGRID search explicitly for the number of rows per partition, rather than 

for column spacings could rectify this. However this would represent a much simpler 

challenge and thus was not pursued for this thesis.

4.6.3 Conclusion

Although simple, this example indicates how OBGRID solves rectangular building layouts. 

This is a fundamental process in this work because orthogonal layouts are decomposed into 

rectangular sections that are solved in this manner.
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4.7 OBGRID and Orthogonal Buildings

This section contains a detailed description of how OBGRID handles orthogonal11 buildings: 

by partitioning them into rectangles and using the previously described methodology to 

design a layout for each partition. This process is a novel feature of OBGRID that has not, so 

far as the author is aware, been previously used in building layout design systems and is an 

improvement over all existing examples that are limited to rectangular floor plans. To ensure 

column row continuation throughout the building an ‘adjacency graph’ is used.

4.7.1 Representation

OBGRID partitions an orthogonal floor plan into rectangles, using the sweep line algorithm 

described in 4.7.3, and associates a genome with each partition. Therefore each individual 

(representing an orthogonal boundary) contains a set of genomes rather than a single genome 

as per a rectangular floor plan (see Figure 4-12). However section 3 is considered to be 

standard for all genomes, as it refers to attributes applicable to the whole building rather than 

simply one area.

0 5 10 20 25 30 0 5 15 30 35 1 2 0 2.95

0 5 10 20 25 30 0 5 15 30 35 1 2 0 2 95
'A 1Sm mm  •

» •  « ,

0 5 10 20 25 30 0 5 30 1 2 0 2.95

0 5 10 20 25 30 0 10 15 1 2 0 2.95

0 10 25 30 35 40 0 10 15 1 2 0 2.95

Figure 4-12 Example orthogonal representation

To ensure column line continuity throughout the floor plan each partition is linked to its 

neighbours via the adjacency graph (see 4.7.4). For the remainder of this section, the same ‘C* 

shaped floor plan will be used as an example.

11 A layout involving right angles.
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4.7.2 Polygon Partitioning

Computational geometry (Shamos, 1978) is the study of efficient algorithms (usually 

computer based) and data structures for solving geometric problems. The partitioning of 

polygons is a major topic in this field and several algorithms have been developed. However a 

‘sweep line’ approach was considered the most appropriate for column layout design because 

of the n eed to e  nsure column 1 ine continuation throughout the building ( this i ssue will b e 

discussed later).

4.7.3 Sweep Line Partitioning Algorithm

Sweep lines algorithms (O’Rourke, 1998) move an imaginary line, the ‘sweep line’, over a 

polygon from top to bottom or left to right. At predetermined points the sweep line is stopped 

and the polygon partitioned. These points are called ‘event points’. In this work when 

partitioning orthogonal layouts without atria, event points are any reflex12 vertex on the 

boundary (see Figure 4-13).

Sweep Line 
(moving top ta bottom)

Event Point

Figure 4-13 An example sweep line 

Partitioning is completed in two stages:

• First stage', a line is swept from top to bottom. When the line encounters an event point it 

extends the boundary edge horizontally across the floor plan until it encounters another 

edge. The encountered edge is then split at the point of intersection, which partitions the 

building into several, ‘thin’ rectangles. For example in Figure 4-14a edges a and b have 

been extended to edge c.

12 A reflex vertex has an internal angle strictly greater than 7t.
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• Second stage: a line is swept from left to right across the boundary, further partitioning 

the rectangles created by the first stage. This creates the final grid pattern. For example in 

Figure 4-14b edge z  has been extended to split edges x  and y.

X

C

y
(a) First stage (b) Second stage

Figure 4-14 Example partitioning of orthogonal layout

It should be noted that for each floor plan, there is a unique partitioning. Therefore once it 

has been partitioned, no further partitioning is required during the search.

In terms of originality, as far as the author is aware, this is the first time a sweep line 

algorithm has been applied to building 1 ayout design. However, sweep line algorithms are 

commonly used in pure mathematics especially topology.

4.7.4 Adjacency Graph

This section describes the ‘adjacency graph’ a data structure that is used to ensure column line 

continuity throughout the building, which as far as the author is aware, is unique to this work.

With the floor plan decomposed into a grid of rectangles, via the sweep line algorithm, 

each partition must now share at least one edge with another partition (with an upper limit of 

four). The adjacency graph links partitions which share an adjacent edge and is used to repair 

individuals during initialisation or after evolution, reducing the potential for generating 

nonsensical solutions.

The adjacency graph is created from nodes, with each rectangular partition having a node 

associated with it (see Figure 4-15a). The nodes of adjacent partitions are then linked. For 

example in Figure 4-16b, node a is linked to nodes b and c but not directly to d  because they 

do not share an adjacent edge. However during initialisation and evolution, any updates are 

applied recursively therefore changes a’s genome will be reflected in partition d  too. Having
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linked all adjacent partitions, the adjacency graph is complete. But how does the adjacency 

graph help maintain column line continuity?

a b
♦ ♦

c ^
♦

d# e*

Figure 4-15Example adjacency graph of an orthogonal layout

When a partition’s genome is modified, either during initialisation or evolution, it updates 

the corresponding section of its neighbour’s genome. For example if any changes are made to 

the x coordinates (section 1) of partition a, then section 1 of partition c will also be updated 

(partition d will also be updated by c). However section 1 of partition b is unaffected because 

it does not share an edge in the x direction (they share one in the y direction). This is shown in 

Figure 4-16 where the column row at 10m in the x direction is deleted from partition d and the 

adjacency graph is used to ensure this gene is deleted from the genome’s of partitions a and c.
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Start
0 5 10 20 25 30 0 5 15 30 35 I

1 • 2 95

0 2 95

Change

Delete this row

Update
20 25 30 0 15 30 35 i 2 0 195

0 5 20 25 30 0 5 15 3 0 35 1 2 o * 4

0 5 20 25 30 0 5 30 I 2 0 2,95

0 5 20 25 30 0 10 15 I 2 0 2.95

Figure 4-16 Example genome update using the adjacency graph

This example also demonstrates why this sweep line algorithm was developed as it has 

been, because it ensures that adjacent edges are always of the same size. For example, some 

sweep line algorithms are used to solve the ‘least ink problem’ where the goal is to partition 

an orthogonal polygon using the smallest number of partitions, in terms of length. This 

problem is illustrated in Figure 4-17a with the least ink solution shown in Figure 4-17b. 

However the adjacent edge x  (between partitions a and b) is smaller than the left edge of 

partition b (see Figure 4-17c) and thus it would be much more complicated to ensure column 

line continuity during initialisation and evolution.

- 6 4 -



David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

Figure 4-17 Least ink problem  

4.7.5 An Alternative Partitioning Algorithm

Dr Rafiq of Plymouth University proposed the following partitioning and representation 

during a discussion about this work. The proposed methodology indiscriminately extends all 

edges across the floor plan (see Figure 4-18), allowing it to be expressed by a single genome 

rather than multiple genomes are proposed by this thesis.

Nyl

Ny2

Ny3

Nxl Nx2 Nx3

Figure 4-18 Dr Rafiq's partitioning

Unfortunately by extending edges across the whole floor plan, it has a tendency to 

generate superfluous partitions (not generated by this thesis’ technique) and thus bias the 

search towards shorter column spacings creating a less flexible layout. For example in Figure 

4-19 Dr Rafiq’s technique generates 24 partitions (see Figure 4-19a) while this technique 

generates 17 (see Figure 4-19b).
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Atria Atria

Figure 4-19 Com parison of partitioning techniques

4.7.6 Initialising an orthogonal genome

With the building layout partitioned and adjacent partitions ‘monitoring’ each other (via the 

adjacency graph), a genome is initialised for each partition.

The initialisation process starts by selecting the furthest left, upper partition. This is an 

arbitrary selection as the initialisation process could theoretically start at any partition, 

however to standardise the process it always starts at the same place. As the overall 

dimensions of this partition are known (and that it is a rectangle) the algorithm uses the 

initialisation procedure described earlier (see 4.5.2). At this stage the layout has one initialised 

partition (Figure 4-20a) however as frequently stated, maintaining column line continuity is 

essential. So an adjacent partition is initialised next. If there is more than one adjacent 

partition one is randomly selected. The adjacency graph is used to achieve this.

X

(a) ( b ) (c) (d)

Figure 4-20 Exam ple initialisation of orthogonal layout

Rather than initialising the adjacent partition as previously described, because the two 

partitions (the initial partition and its adjacent partition) must share a common edge, the
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algorithm firstly copies the column spacings for this edge. For example in Figure 4-20b, edge 

x is shared between the two partitions so the y spacings from section 2 of the initial partition’s 

genome are copied into the adjacent partition’s genome. The remaining section is initialised 

as before, by generating new spacings in the required direction (see Figure 4-20c). This 

process is then repeated for another adjacent partition until the floor plan is fully initialised 

(see Figure 4-20d).

In complicated buildings it is possible that a partition may have been initialised ‘by 

proxy’ i.e. because all of its adjacent partitions have been initialised, it already has a complete 

genome. In this instance it skipped and the algorithm considers the next partition.

By constantly maintaining and updating the status of neighbouring sections, via the 

adjacency graph, the algorithm ensures column line continuity throughout the building. This 

continuity is vital to prevent the building from becoming a series of blocks that when placed 

together do not form a coherent solution. For example, in Figure 4-21 when considered in 

isolation each section is valid however, when considered as a whole, the building’s layout is 

flawed because the columns do not align.

Figure 4-21 Invalid initialisation of orthogonal layout

The third section of the genome is assumed to be fixed throughout the building therefore 

every genome has an identical section 3 (see 4.7.1). It is acknowledged that because section 3 

is constant, it could be removed from the genome. However it has been retained because it 

adds transparency i.e. all information pertaining to an individual is contained in the genome.
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4.7.7 Evolutionary operators

The same evolutionary operators described previously are applied to each rectangular 

partition. However to ensure column continuity, the adjacency graph is incorporated at the 

end of the process to update the column line spacings in adjacent partitions:

• Mutation: Having selected the individual to mutate, the mutation operator randomly 

chooses (with uniform probability) one partition of the building and applies the mutation 

procedure discussed for a rectangular partition. Having mutated its genome, the section is 

placed back into the building and all adjacent sections are updated (Figure 4-22). This 

final step means the mutation operator is able to modify the building in only one location 

but the change ripples throughout the building, preventing column alignments 

degenerating. The adjacency graph used is during this process to determine which 

partitions need to be updated (for more information see 4.7.4).

Select PartitionPnor to 
MuUiion

Reinsert
Partition

Aftei
MuteUon

MuUte
Partition

Figure 4-22 Mutation operator for layout design

Prior to mutation, partitions a, c and d had 6 genes within section 1 of their genome 

(because they share an adjacent edge in the x direction therefore they had identical 

genome section 1). However after mutation both the number and value of these genes had 

been altered. This occurs because although only partition a was selected for mutation, the 

adjacency graph recursively applies the change to all adjacent partitions (c and d in the y 

direction and b in the x direction) after reinsertion.

• Recombination: OBGRID employs a single point crossover operator (Goldberg, 1989), 

which exchanges part of the genomes associated with a section of the building. 

Recombination is a s per a r ectangular p artition, h owever o nee r ecombination h as been 

accomplished, the altered sections are reinserted into the building and all other adjacent 

partitions updated (as with the mutation operator described above) (Figure 4-23).
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Prior to 
Crossover

Select Partitions Reinsert Update
Crossover

Figure 4-23 Crossover operator for layout design

It is noted that by updating adjacent partitions after reinsertion, the layout is 

substantially altered but this is the point. Recombination is a disruptive operator allows 

the algorithm to transfer spacings (or partial s pacings) from one individual t o another. 

However recombination can only transfer existing column locations between individuals, 

it cannot create new (although the column spacings maybe arranged in a new order).

4.7.8 Fitness function

OBGrid applies the same fitness function as previously described (see 4.5.5) to each partition 

in the floor plan and aggregates the results. Therefore individuals with more partitions will 

tend to have a numerically larger fitness, but remember, OBGRID aims to minimise this 

fitness.

4.8 Illustrative Example: Orthogonal Building

This section provides an illustrative example of OBGRID designing an orthogonal floor plan. 

The parameters in the EA tableau (Table 4-4) should be considered indicative because the aim 

of this work is to develop an appropriate representation rather than a complete building design 

system.

4.8.1 Introduction

The following test case was designed to assess OBGRID’s performance. Unfortunately, 

unlike structural optimisation, there are not standard test cases. Therefore the ‘C’ shaped 

layout shown in Figure 4-24 was developed ( no height restriction was imposed). The first
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stage of the solution process involved partitioning the layout using a sweep line algorithm 

described above Figure 4-24.

60m
cp- - - - - - - - - - - - - - - - - - - - - 1p- - - - - - - - - - - - - - - - - - - - - - <p

35m - -  V

30m
1

1
80m
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*
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. . . . . . — ' I  «
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—  , 3
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(a) Exam ple orthogonal layout (b) A djacency graph

Figure 4-24 Orthogonal layout example

Table 4-4 EA Tableau for Orthogonal Building

Objective 1 Evolve example layout designs for a ‘C ’ shaped 
boundary (with no atria or height restrictions)

Representation 1 3-Section string
Initialisation Random initialisation (no seeding)
Raw Fitness Based on: column spacing compatibility and column 

spacing uniformity
Selection Tournament (size = 2)
Major Parameters* P = 1, M = 100, G = 50, 100, 150 and 200

Evolutionary Operators: |
Reproductionprob 0.1
Mutation operator Point
MutationDrob 0.3
Recombination operator One point crossover
RecombinationDrob 0.6

*P = Number o f populations M = Population size G = Max number o f generations

4.8.2 Results

Although this example is  more complicated than the previous one, the results are actually 

fairly similar. For example, the best and average fitness trends downwards steeply at first 

before flattening off. The worst fitness does show a greater improvement that before, however 

it never converges and fluctuates between 30 and 85. Therefore this section will focus on how 

the number of generations affects a solution.
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The following 4 performance graphs (see Figures 4-25, 4-26, 4-27, 4-28) each show the 

combined average fitness after 10 runs, for the short spanning system, with a maximum 

number of generations of 50, 100, 150 and 200. The final graph (see Figure 4-29) overlays all 

the results on one graph.

120

100

SO

so

40

20

0
150 5 10 20 25 30 35 40 45 50

Figure 4-25 50 Generations
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Figure 4-26 100 Generations
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Figure 4-27 150 Generations
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Figure 4-28 200 Generations
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Figure 4-29 Performance graph for orthogonal building test

Figure 4-29 in particular indicates how robust this algorithm is, as all trend lines lie 

within a narrow range of each other. It also suggests that the most efficient number of 

generations to use is 100 (although it could be argued that 110 -  120 would be better). This is
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because the algorithm has not converged, at a solution, by 50 but soon after 100 it has. 

Therefore to continue the search beyond this point, for example to 150, is computationally 

wasteful. If you were determined to expend more CPU time on this problem, restarting the 

algorithm to repeat the earlier generations rather than continuing with a stable solution would 

yield a greater return.

Finally Figure 4-30 depicts the returned solutions for each structural system after 100 

generations.

(a) Short (b) Medium (c) Long

Figure 4-30 Returned solutions for orthogonal building layout

4.8.3 Conclusion

This example demonstrates how OBGRID solves orthogonal building layouts. To accomplish 

this, OBGRID partitions an orthogonal floor plan into rectangles and then uses the previously 

described rectangular methodology to design a layout. However an additional complication is 

the need to ensure column line continuation throughout the building. This constraint is 

achieved by using an ‘adjacency graph’, which updates adjacent partitions during 

initialisation and after evolution.

4.9 OBGRID an Orthogonal Buildings with Atria

This section contains a detailed description of how OBGRID handles orthogonal buildings 

with atria. It is acknowledged that this process is very similar to that for orthogonal buildings 

without atria, however this section has been included for completeness.
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4.9.1 Partitioning

The floor plan is partitioned in two stages using a sweep line algorithm Figure 4-31. 

However, event points are any reflex vertex on the boundary or any vertex on an atrium. It 

should be noted that partitions do not ‘cross atria’ for example line ‘x’ in Figure 4-31.

■■■X

(a) First stage (b) Second stage

Figure 4-31 Polygon partitioning for orthogonal layout with atria

It is apparent that once atria are included, the number of partitions is dramatically 

increased. This is because atria add additional event points during partitioning. However the 

additional partitions are required to retain column alignment via the adjacency graph.

4.9.2 Adjacency Graph

An adjacency graph is associated with a floor plan using the methodology previously 

described. For example see Figure 4-32. However it should be noted that internal atria are not 

associated with an adjacency node. Thus column spacings on one side of an atria may not be 

found on the opposite side.
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Figure 4-32 Adjacency graph for orthogonal layout with atria

4.10 Illustrative Example: Orthogonal Building with Atria

This section provides an illustrative example of OBGRID designing an orthogonal floor plan with atria.

The parameters in the EA tableau

Table 4-5 should be considered indicative because the aim of this work is to develop a 

representation rather than a complete building design system.

4.10.1 Introduction

The following test case was designed to assess OBGRID’s performance. Unfortunately, 

unlike structural optimisation, there are not standard test cases. Therefore the layout shown in 

Figure 4-33a was developed as was partitioned using the sweep line algorithm described 

above to give the adjacency graph shown in Figure 4-33b.
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(a) Orthogonal layout with atria (b) Adjacency graph

Figure 4-33 Orthogonal layout with atria example
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Table 4-5 EA Tableau for orthogonal building with atria example

Objective | Evolve example building designs for the layout shown in 
| Figure 4-29a

Representation 3-part string
Initialisation Random initialisation (no seeding)
Raw Fitness Based on: column spacing compatibility and column 

spacing uniformity
Selection Tournament (size = 2)
Major Parameters* J P = 1, M = 100, G = 150

Evolutionary Operators: |
ReproductionDrob 0.1
M utation operator Point
M utationDrob 0.3
Recombination operator One point crossover
RecombinationDrob 0.6

*P = Number o f populations M = Population size G = Max number o f generations

4.10.2 Results

The following 2 performance graphs showing the best, average and worst fitness during an 

indicative run for a short spanning system and a discussion of the results. Please note that 

because OBGRID is a minimisation algorithm, a lower fitness is considered beneficial.
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Figure 4-34 Best and average fitness

Figure 4-34 shows a much smaller spread between the average and best fitness when 

compared to the previous example without atria and for a rectangular outline. This could be 

because this problem is more challenging as it contains 11 partitions, compared to 5 for the 

example without atria and 1 for the rectangular outline. The partitions are also much more 

varied. For example, contrast the long, thin partition 4, with the almost square partition 10. 

Therefore after initialisation, the ‘best’ solution is only twice as good as the average (in the 

rectangular layout problem the best solution had a fitness of just under 8 while the average 

was approx. 160!). So on reflection a closer spread is expected. In spite of this, the best and 

average fitness have the usual characteristics: the best improves in steps, while the average 

gradually increases. This graph also demonstrates that the increased number of generations 

150 is not excessive, as better solutions are frequently evolved until generation 135 

(compared with generation 37 out of 50 in the rectangular example) reflecting this problems 

difficulty again.
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It is also important to note that elitism was used with layout i.e. the best of generation 

was always copied over to the next without modification. Although this approach can hinder 

the search by potentially focusing on local optima, because this is a significantly harder 

problem it was used after some experimentation indicated its value (see Figure 4-35). Figure 

4-35 highlights some of the characteristics found with elitism (if used in an appropriate 

setting): although both fitness curves have the same overall trend, without elitism it is more 

ragged and returns inferior results.

140

120

100

15080 90 100 110 120 130 14040 50 60 7020 30100

Figure 4-35 Comparison with and without elitism

Tbe worst fitness graph (see Figure 4-36) shows a greater trend of improvement when 

compared to the rectangular layout problem. This is probably because given that the problem 

is more complex they have less chance of destroying a good layout as these are harder to find 

(where as for the rectangular problem, the ‘best’ solution was actually quiet easy to locate). 

Also the evolutionary operators are only applied to one partition per generation. Therefore 

their effect is diminished because fitness is cumulative therefore they have less effect.
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Figure 4-36 W orst fitness

Figure 4-37 indicates the best layouts returned for each structural spanning system, all 

spans are within their economic range. However as previously noted, OBGRID does tend to 

struggle evolving regular column spacings as the number of columns increases.

(a) Short (b) Medium (c) Long

Figure 4-37 R eturned solutions for orthogonal building with a tria  

4.10.3 Conclusion

This example demonstrates that OBGRID is capable of solving orthogonal layouts including 

atria and indicates one deficiency of this methodology: the inclusion of atria tends to bias the 

search towards shorter spanning systems because the number of partition increases and thus
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each partition becomes smaller (when compared to the equivalent layout without atria). And 

as each partition is solved independently, the floor plan’s average span length is reduced. This 

could limit the performance of this approach with very complex layouts.

4.11 Conclusions

The EA based methodology described in this chapter is able to solve conceptual layout design 

problems for o rthogonal, c ommercial b uildings which i s an i mprovement over all e xisting 

systems that are limited to rectangular floor plans. This work achieves this, by partitioning 

orthogonal floor plans using a sweep line algorithm to create rectangular sections that can be 

solved individually. Also to ensure column line continuity, an adjacency graph that associates 

adjacent partitions, is used especially during initialisation and evolution. However the 

inclusion of atria, to a floor plan, tends to increase the number of partitions biasing the search 

towards shorter spanning systems. This is because once atria are included, the partitions 

become smailer and as each partition is solved independently the spans are reduced. This 

could limit the performance of this approach with very complex layouts however OBGRID 

seems to handle the examples effectively, although the only true test would be to trial 

OBGRID over a period of months in a design office.
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5 Conceptual Geometric Design of ‘Geodesic-like’ Domes

5.1 Abstract

Dome layout design is a non-trivial task because every joint and member must be located on 

the dome’s external surface and not impinge on the internal void. The only previous 

stochastic methodology (Shea and Cagan, 1997) tackles this by creating a 2D truss that is 

subsequently projected onto a predefined curved surface. Therefore the solution is a 3D 

object, but the search is conducted in 2D. While this ‘projection’ or 2.5D technique reduces 

the number of problem variables, by constraining the third dimension to be dependent on the 

planar layout, it also excludes a dome’s two most important variables from the search: surface 

area and enclosed volume. Thus the results, while spatially innovative, are typically sub- 

optimal.

This chapter describes a new approach using an evolutionary algorithm with string 

representation that designs directly in 3D, with surface area and enclosed volume as the major 

search parameters. The string representation encodes support and joint positions, which are 

converted into a dome by constructing its corresponding convex hull. Once constructed, the 

hull’s edges become the structural members and its vertices the joints. Finally, structural 

analysis is used to determine performance within the context of user-defined constraints. This 

technique avoids many o f  the problems experienced by the previous approach that suffers 

when restrictive constraints such as the requirement to maintain l/8th symmetry are removed.

The aim of this chapter is to investigate existing and develop new knowledge for dome 

design. It should be noted that there is no obvious connection between the structure 

investigated in this chapter and the last. This is because this thesis is focused on investigating 

how civil engineering structures can be represented using evolutionary algorithms. Therefore 

domes were deliberately chosen because they are very different to buildings and thus the 

research had to start at the beginning.

Keywords: geodesic domes, evolutionary algorithm, convex hull, incremental algorithm.

5.2 Introduction

Domes are a common architectural structure, synonymous with many landmark buildings 

including St Peter’s Basilica (Rome) and St Paul’s Cathedral (London). Traditionally domes
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are created by rotating an arch about its’ vertical axis. However, in the 1950’s a new approach 

was proposed: Geodesic domes.

5.2.1 Geodesic Domes

Invented by Buckminster Fuller in 1954 (The Buckminster Fuller Institute, 2005), geodesic 

domes have homogeneity in both member length and nodal angular incidence and are 

considered by some to be the strongest, lightest and most efficient building system (Motro, 

1994). Geodesic dome geometry is usually based upon the sub division of a spherical surface 

into triangles (because triangles are the simplest non-deformable rigid shape). However, 

geodesic dome geometry may also be based upon the sub division of any Platonic13 or 

Archimedean14 solid. Perhaps one of the most famous geodesic domes is the Epcot Center in 

Florida (Figure 5-1).

Figure 5-1 Epcot C enter (Florida)

There are four types of geodesic dome (Motro, 1994): frame (or skeleton) single layer 

domes; truss or double layer domes; stressed skin domes; formed surface domes. However, 

this chapter will only consider the first type.

13 Convex polyhedra with identical faces constructed of congruent, regular polygons. There are exactly five 

Platonic solids the cube, dodecahedron, isosahedron, octahedron and tetrahedron.

14 Convex polyhedra that have a similar arrangement of nonintersecting regular convex polygons o f two or more 

different types arranged in the same w ay a bout each v ertex w ith a l l s  ides t he s ame 1 ength. T here a re e xactly 

thirteen Archimedean solids (Weisstein, 2005).
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5.2.2 Geodesic Patterns

Geodesic domes based on spheres, start by inscribing ‘great circles’ onto the sphere (a process 

that can create no more than 120 similar but irregular triangles on the surface or a maximum 

of 20 equilateral triangles). Alternate and triacon breakdowns (Motro, 1994) are then applied 

to this network of triangles (Figure 5-2). In Figure 5-2 ‘frequency’ refers to the number of 

subdivisions per side of the original triangle. Thus a frequency 2 breakdown subdivides each 

side of the original triangle into two. Once a breakdown has been applied, the geodesic layout 

is complete.

Frequency 1 Frequency 2 Frequency 3 Frequency 4 

Triacon G eodesic Breakdown

Frequency 1 Frequency 2 Frequency 3 Frequency 4 

Alternate G eodesic Breakdown

Figure 5-2 Triacon and alternate geodesic breakdowns

It should also be noted that this work only creates domes with geodesic characteristics not 

strict geodesic domes. This is because geodesic breakdowns are not explicitly enforced 

therefore there the evolved structures may not adhere to geodesic patterns (as defined by the 

triacon and alternate breakdowns). Thus the solutions will be described as ‘geodesic-like’. 

Geodesic breakdowns cannot be enforced in this work, because the representation does not 

consider shapes, only points. However the representation is capable of evolving spatially 

innovative and structurally efficient designs.

5.3 Related W ork

Within the field of structural design using stochastic search algorithms, very little research has 

been published on d ome design. Therefore this s ection w ill discuss p apers by P orter e t al 

(1995) and Shea and Cagan (1997) in detail.
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Porter et al (1995) use a genetic algorithm to compute the length and location of 

geodesics15 (not geodesic domes) on complicated curved surfaces. They demonstrate a 

technique capable of producing results comparable to the theoretical optima for spherical 

surfaces. However, they only calculate a linear set of geodesics (between two points), so each 

geodesic links to at most two others (one at each end). In dome design however, an arbitrary 

number of members are connected at each structural joint. Therefore their technique is not 

appropriate for dome design.

Shea and Cagan (1997) apply simulated annealing (Kirkpatrick, 1973) combined with a 

shape grammar representation to dome design, a process they call ‘shape annealing’. Their 

technique, constructs a 2D truss that is projected onto a predefined 3D curved surface 

constraining the third coordinate (z) to be dependent on the other two (x,y). Therefore, search 

is conducted within a 2D design domain. However, while they demonstrate that shape 

annealing is capable of generating novel solutions that are comparable to those produced by 

other shape optimization techniques (Pedersen, 1973), projection hampers the search by 

removing two of the most important variables: enclosed volume and surface area. Therefore, 

once some of the constraints are removed e.g. design is required to maintain l/8th symmetry; 

most of the evolved solutions bear little resemblance to geodesic domes. For example, a few 

extremely large members may dominate the dome so that the evolved structure is actually 

more like a pyramid or simply not resemble a dome (Figure 5-3).

«

Figure 5-3 Example results from  Shea and Cagan (1997)

5.4 Convex Hulls

Computational Geometry is the design and analysis of efficient algorithms (usually computer 

based) for solving geometric problems (Shamos, 1978) and convex hulls are one of its

15 A locally length-minimising curve.
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fundamental structures. The following section will provide an overview of convex hulls 

including what they are, their applications and some issues related to their construction while 

the subsequent section will describe a hull construction algorithm in detail.

5.4.1 W hat are convex hulls?

The convex hull of a finite set of points is considered to be the convex polyhedra with the 

smallest volume that encloses that set (Figure 5-4). This work makes extensive use of convex 

hulls to create dome from a set of verticesby using the incremental algorithm, which are 

described in the following sections.

O
°  o  O 

o o
o

°  o  

(a) Set of points S

Figure 5-4 Convex hull CH(S) of S

5.4.2 Applications of convex hulls

Convex hulls produce convex approximations of non-convex point sets. Therefore they are 

commonly used in the following a pplications ( this 1 ist i s by no m eans e xhaustive, m erely 

indicative):

• Pattern recognition: A complex shape may be approximated via its convex hull and 

compared to a database of known shapes (Laszlo, 1996).

• Motion planning: A robot may approximate its footprint via a convex hull to simplify 

terrain negotiation (Laszlo, 1996).

• Computer animation: In computer games etc. collision detection may be improved by 

approximating shapes to their convex hulls and only comparing the actual shapes if the 

hulls indicate a collision (de Berg et al. 1997).

(h) CH(5)
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5.4.3 Polyhedra

This sub section contains a general discussion about polyhedra: the shape formed by convex 

hulls. Polyhedra are considered to be three-dimensional objects composed of a finite number 

of flat faces, edges and vertices (Figure 5-5a). They can also be described as the 3D 

generalisation o f  a 2D polygon16. Within this work, every dome will be convex and have 

triangular faces: technically a simplicial complex17. However, domes will be referred to as 

convex polyhedra.

Face

Vertex v0

v1 v2

(a) CCW face (b) Tetrahedron with 
CCW ordering

Figure 5-5 Polyhedral properties

(c) Right hand rule

Polyhedral faces (Figure 5 -5a), in this work, have an important feature: they maintain 

their vertices so that when ‘viewed’ from the exterior, vertices have a counter clockwise 

(CCW) ordering ensuring the right hand rule always yields a vector normal to the face, 

pointing away from the polyhedron (O’Rourke, 1998). This is not simply for aesthetic 

reasons, as the right hand rule is used judiciously during convex hull construction.

5.4.4 Signed volumes

The volume V of a pyramid with a base area B and height h can be calculated by:

B.h
V = (1)

However (Eq 1) does not allow for the direct computation of tetrahedral volume from 

vertices (as required during this work). Therefore, volumes will be calculated via the

16 The region of the plane bounded by a finite collection of line segments, forming a simple closed curve.

17 Space with a triangulation.
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determinant form of the cross product. For example, a tetrahedron defined by four vertices (xi: 

yi, Zj) has the volume:

V = -  
3!

y\ 
y  2 (2)

y  4

The volume calculated by (Eq 2) is described as ‘signed’ because it can be positive or 

negative. Signed volumes form an integral part of many algorithms in computational 

geometry because they remove the need to perform the complex calculations to determine 

angular relationships between points (especially when considering spatial relationships). For 

example, whether a point is to the left or right of another. During this work, a negative 

volume is generated when a face/form s a tetrahedron with a pointp  that can ‘see’ its vertices 

in a CCW manner (Figure 5-6).

Negative
' volume

Figure 5-6 Negative volume generated by CCW face f  and point p

5.4.5 Visibility

The incremental algorithm is based upon determining the visibility of a face from a point.

Therefore, a simple yet robust routine is required. A face /  is considered to be visible from 
18pointp ,  i f f  a line drawn from p  to some point x interior to / does not intersect with the 

polyhedra a t a ny p oint o ther than x. For e xample i n ( Figure 5 -7 ) ,/  is visible f  rom p  ’ b ut 

invisible from p

18 “if and only i f ’.
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Figure 5-7 Example visibility of face f  from points p’ and p”

Visibility can also be formally defined using sets (Eq 3). It should be noted that (Eq 3) 

defines a face that is ‘edge on’ to p  to be invisible. A face is considered to be ‘edge on’ when 

only its edge is visible from p  i.e. the face’s vertices and pointp  are coplanar.

iff p x r ,C H  = {x} (3)

The visibility of a face / from a point p  is determined by calculating the signed volume of 

the tetrahedron defined by / and p . / i s  considered to be visible from p, iff the signed volume 

is negative.

5.5 Incremental Algorithm  in 2D

Several algorithms have been developed to construct a convex hull (O’Rourke, 1998). 

However this chapter only considers one: the incremental algorithm. The following section 

discusses the incremental algorithm in detail, starting with an overview and an illustrative 

example in 2D. The following section describes the implementation for this work.

5.5.1 Overview

The incremental algorithm constructs the convex hull CH of a finite set of points S by taking a 

subset Ssub of S and constructing its convex hull CH(Ssub)- Having constructed CH(Ssub) the 

algorithm adds an additional point to Ssub and updates the hull ( i f  required). This process 

continues until all points from the original set S are included in the convex hull. Figure 5-8 

illustrates the incremental algorithm in 2D.
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O

O

O

Set S  Im tiil SubSiet of S  CHCJJbA) Add point to  UpdtLe h u ll

O

Add p oint to

Add point to

Updite h u ll Add point to Update h u ll

Update h u ll Finish

Figure 5-8 Illustrative example of the increm ental algorithm  in 2D

5.5.2 Illustrative example

This section provides an illustrative example of an evolutionary algorithm combined with a 

2D convex hull algorithm. The aim is to evolve the largest possible circle within a square of 

side length 200m. A string representation was used containing points randomly located in the 

problem domain. The EA tableau (Table 5-1) details the values applied to the key 

evolutionary parameters however it should be noted that no attempt has been made to 

optimise any values. For more information on the evolutionary operators and fitness function, 

please review the subsequent sections.

Table 5-1 EA tableau for 2D illustrative example

Objective Maximise enclosed area, minimise perimeter

Representation String containing random points
Initialisation Random initialisation (no seeding)
Raw Fitness Based on: enclosed volume and surface area
Selection Tournament (size = 3)
Major Parameters P =  1, M = 200, G = 60
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Evolutionary Operators:
Reproduction„rob 0.1
Mutation operator(s) Mutate existing point, add new points, delete existing 

points
Mutation„rob 0.4 (the actual mutation operator is selected at random)
Crossover operator n point crossover
Crossover prob 0.5

5.5.3 Results

Figure 5 -9 shows the fitness o f  the best of generation during the run, while (Figure 5-10) 

indicates the best layout found in generation 54 (the light grey circle indicates the optimum).

31500

677

31300
672

66731100

662
30900

657

30700 652

647
30500

642

30300
637

30100 632
0 5 10 15 20 25 30 35 40 45 50 55 60

Generation 

[—■ —A rea —♦ — P e rim e te r j

Figure 5-9 Performance graph for 2D example

Figure 5-10 Best of generation 54 for 2D example
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5.5.4 Conclusion

Although simple, this example demonstrates how effective the combination of an 

evolutionary algorithm and convex hull algorithm can be, as the best solution has an enclosed 

area (31392.4 m ) within 0.1% of the optimum, while the perimeter (639.99 m) is within 

1 .8% .

5.6 Incremental Algorithm in 3D

The previous section provided an overview of the incremental algorithm and an illustrative 

example in 2D, however domes are a 3D structure. Therefore the following sections describe 

how the incremental algorithm can be implemented in 3D. The implementation described is a 

0(n  ) algorithm. This means that if the number of points n doubles, algorithm execution time 

will increase four-fold. A possible improvement is discussed in the future work section of this 

thesis.

In this work, the initial subset Ssub always contains just four points: three non-collinear19 

points and a fourth non-coplanar point. This ensures that the initial convex hull is always a 

tetrahedron: its base formed by the non-collinear points and its apex by the non-coplanar 

point. If S does not contain these points, it is 2D and invalid for this problem.

When an additional point pi is added to Ssub, the issue of whether to update the existing 

convex hull CH(SSUb) involves considering the question: Are there any faces of CH(SSUb) 

visible from pp.

• No. If none of CH(Ssub)’s faces are visible from then /?, must be internal to CH(Ssub). 

Therefore CH(SSUb) is still valid, as it encloses all points and remains unaltered.

Yes. If some of CH(Ssuby s faces are visible from /?„ then pi must be exterior to CH(SSUb)- 

Therefore CH(SSUb) is invalid, because it no longer encloses all points and must be updated 

to include

19 Three or more points are collinear if  they lie on the same straight line.

20 Four or more points are coplanar if they lie on the same geometric plane.
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5.6.1 Updating the convex hull CHm

This section describes how an existing convex hull is updated to include a new point. The 

convex hull is updated in two stages: locating the horizon and incorporating the external 

point.

Conceptually, the external point /?, divides the existing hull into two regions: the visible 

and the invisible. The horizon (de Berg, 2000) is formed by the series of edges that are 

adjacent to both a visible and invisible face (Figure 5-11) and can be located once the 

visibility of every face from /?, has been determined.

To incorporate the external point into the existing convex hull, a new set of new faces 

must be appended to it. All new faces will be triangular, constructed from a horizon edge and 

have an apex at pi (Figure 5-11). After building these new faces, the original faces (that were 

visible from/?/) are now underneath the new faces and should be deleted (along with any 

superfluous edges and vertices). At the end of this process convex hull is completely updated 

(Figure 5-11).

Initial Convex Hull Fifst face appended New cone constructed 
(a) <b) <c>

Figure 5-11 Updating an existing hull (adapted from  O ’R ourke 1998)

At this point, it is worth returning to the definition of visibility that considers ‘edge on’ 

faces to be invisible (see 5.4.5 Visibility). If ‘edge on’ faces are considered to be invisible, 

then any new faces will be simply appended to existing ‘edge on’ faces. However, if ‘edge 

on’ faces are considered to be visible, then the algorithm will attempt to remove them and 

replace them with a single new face. Unfortunately, the new face may not be triangular or
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result in the existing face fracturing into a series of smaller faces making the algorithm 

significantly more computationally intensive (de Berg, 2000). This is why ‘edge on’ faces are 

treated as invisible (in this work).

5.7 Current W ork

This work uses an evolutionary algorithm (EA) with string representation to search for 

potential solutions and following sections describe its structure and function.

5.7.1 Representation

The representation allows potential solutions to be included in the EA’s search and several 

canonical forms have been published including string and trees. This section discusses how a 

representation was developed for geometric dome design.

Although domes are skeletal structures containing joints and loads, this work considers 

the members to be implicitly defined by the joint layout. This is because members must form 

the external surface and not impinge on the internal void. Therefore a member can only span 

between ‘adjacent’ joints. Geodesic domes are also composed of triangles, again limiting the 

joints a particular member can span to. In light of this, this work considers dome design to be 

more of a parametric problem. Once the joint layout has been evolved, member 

configurations can be determined. Parametric problems are generally best represented by 

string genomes. Therefore this work uses a 3-section string representation (Figure 5-12), with 

each gene encoding a potential vertex on the convex hull. Genes are composed of software 

objects as shown in Figure 5-13 (supports are considered to be vertices at Z = 0).

It is acknowledged that section 1 and sometimes section 2 (when user defined support 

locations are used) could be removed from the genome because they are constant for all 

individuals. However they have been retained because they add ‘transparency’. Transparency 

is the idea that the user should have a single reference to for an individual (as in nature where 

all cells contain the complete genome rather than just the sections appropriate to its own 

function). For example, if the location and magnitude of loads is removed from the genome 

where should it be placed and why?

• Section 1: encodes the location of and magnitude of loads that must be supported by the

structure (in addition to its self weight).
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• Section 2: encodes the location of the dome supports. Dome supports represent locations 

at which the dome is attached to the ground or supporting structure. In this work, dome 

supports are vertices in the plane z = 0. Supports can be user specified or searched for 

during the evolutionary process. For example if the user has predetermined support 

locations then it is pointless for the algorithm to search for the optimum because they are 

fixed. However if the user has no preference support locations are included in the search.

• Section 3: encodes the location of potential dome vertices (structural joints). For non

trivial structures this is the largest section of the genome. However, each gene is only a 

potential vertex because they may not lie on the genome’s convex hull (as generated by 

the incremental algorithm) and therefore may not form the dome.

User Defined Loads Potential Vertices

f ------>-----n . ■ ■ m

-300kN (10.0,10.0,10.0) (D.0 ,0.0) cp.o, io.o) (10.0,10.0) (2.0 ,7 .0 ,5 .0) (0.0,3.0 ,6 .0)

Dame Supports

Figure 5-12 Example genome for dome design

Load 
+getLoad() ’.double 
+setLoad(dDuble) :void

Vertex3D 

+getXQ .double 

-fgptYQ :double 
+getZ():double 

+setX(double) rvoid 

+seiY(double) .-void 

+setZ(double) rvoid

Figure 5-13 Class d iagram  for dome genes
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5.7.2 Genome ordering

The incremental algorithm has an interesting feature: as it gradually constructs the convex 

hull, the final structure is dependent on the order in which the vertices are added. So two 

convex hulls constructed from the same set o f  vertices but with different orderings, could 

have identical vertices but different arrangements of faces and edges and thus different 

structural responses. Therefore, the EA must consider genome ordering during its search.

5.7.3 Initialisation

As this work is aimed at the conceptual design stage, the initial number of input parameters 

has been kept to a minimum: the user is only required to input the location of any loads and 

define the size of the circular base. If required the user can stipulate the number and location 

of the dome supports and ensure that they are constant for all individuals but if not, the 

algorithm will search for appropriate support positions during the run.

5.7.4 Initialisation of dome supports

Dome supports represent the locations at which the dome is attached to the ground or 

supporting structure. Some structural optimization techniques specify support positions using 

a ground structure (Dorn et al, 1964), but this can bias or inhibit the search (especially when 

an asymmetric or lateral loading is applied to the dome). Therefore this work, removes the 

need for a ground structure including number and location of supports in the search.

Support locations are a series of randomly generated points on the circumference of the 

circular base (the base circumference is the same for all individuals) generated by selecting 

two numbers xj and X2 from a uniform distribution between -1 and 1 (ensuring that the sum of 

the square of both numbers is not greater than or equal to 1). The corresponding Cartesian 

coordinates related to xj and X2 are given by (Eq 4) (Weisstein, 2005).

Xj X2 ^.Xi .X2 f A\
x = ~ i— r  t  =X̂  + X2 X| + X2

NB z coordinates are not generated as the base is assumed to lie on the plane z = 0.
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5.7.5 Initialisation of dome vertices

Vertices are generated from random points within a cube that is centered on the dome’s base 

and with a side length of equivalent to the diameter of the base. This procedure is used to 

prevent the EA searching in completely unproductive regions (a large number of useless 

points will still be generated, however these must be included to allow the EA to explore the 

search space). To prevent additional supports being generated, vertices may not lie on the 

domain boundaries. While this does improve the search, it does prevent the algorithm from 

evolving domes, which has sections wider than the base.

At the outset each individual has a random number of vertices in its genome (an upper 

limit of 100 vertices and lower limit of 1 was generally used in this work, however this was 

purely arbitrary and no attempt was made to optimize it). However because the dome is only 

constructed from vertices that lie on the convex hull, it does not necessarily follow that all of 

these will be used to construct the dome. This can cause bloat.

5.7.6 Evolutionary operators

Within the EA’s search, the loads section of the genome is unaffected (as these loads must be 

carried by every solution) while the crossover and mutation operations are individually 

applied to the two remaining sections.

• Recombination: An ‘n-point’ crossover operator, which is a generalised version of one- 

point crossover with several cut points, is employed in this working creating variable 

length genomes. An example n-point crossover operator is shown in Figure 5-14 although 

integer genomes are used for clarity.
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Parent A Parent B

Select Parents

Select Cut 
Points

0 0 0 0 0 0 0 0 0

0 0 0 010 0 0 0 0

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1Q 1 1 D Q 1 1Q

Result 0 0 1 1 0 0 0 0 1  1 1 0 0 1 1 1 1 0

Child A Child B

Figure 5-14 Example n-point crossover

Mutation: Several mutation operators are used in this system: point, shuffle, addition and 

deletion. Point mutation (Figure 5-15) randomly selects a gene to alter and then uses the 

same procedures as described during initialisation to generate a new point depending on 

whether a support or vertex is selected. Shuffle mutation reorders a length of the genome 

(Figure 5-15). This operator is included because genome ordering is important thus a 

solution maybe improved by shuffling the genes. Addition mutation adds a random 

number of new points while deletion removes a random number (although there must 

always be at least 4 vertex in the genome).

Parent Parent

Select Section

Shuffle

Result

0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0

0 1 1 1 0 0 0 1 0

0 1 1 1 0 0 0 1 0
Child 

(a) Shuffle

Select Parent

Select Point

Mutate

Result

0 0 0 0 0 0 0 0 0

0 0|0|0|0|0 0 0 0

t
0 □|Q|1|0|Q 0 0 0

0 0 0 1 0 0 0 0 0
Child 

(b) Point

Figure 5-15 Mutation operators for dome design
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5.7.7 Selection

This work uses a conventional tournament selection technique (Goldberg, 1989). In 

tournament selection a predetermined number of individuals are randomly selected from the 

population and ranked according to fitness, with the fittest individual being chosen. As the 

tournament size is increased, the selection pressure is increased as it favours the chance of a 

fit individual being selected.

5.7.8 Fitness function

A fitness function is used by an EA to evaluate how ‘good’ a particular solution is. This work 

uses enclosed volume and surface area as its major objectives, which are combined with a 

structural parameter that seeks to ensure constraints such as allowable buckling, tensile and 

compressive stresses are not violated (it also includes a weight component).

To search for the optimum number and location of supports the EA initially generates a 

random number of supports and uses structural weight and stress constraints to guide it. This 

is because for every additional support there must be at least two additional structural 

members which increases the overall weight: while the removal of a support increases the 

loads carried by each remaining structural member which may violate a structural constraint. 

Both of these scenarios reduce the individual’s fitness and hence the algorithm is guided 

towards an optimum.

Before an individual’s fitness can be calculated, the vertices contained in  the genome 

must be converted into a domical structure. This process is accomplished by constructing the 

genome’s convex hull, via the incremental algorithm. Once a convex hull is constructed, its 

edges become the structural members of the dome. Having built the dome, structural analysis 

is used t o d etermine whether it performs within the constraints specified above, if not the 

individual is penalized using a quadratic penalty function (Richardson et al, 1989).

Finally the dome’s surface area and volume ratio is determined along with its overall 

weight. At the end of this process an all individuals are ranked according to the three main 

criteria (with position 0 being considered the best). An individual’s fitness is based upon the 

cumulative positions by ranking. Therefore this is a minimization problem.
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Shea and Cagan (1997) introduced several additional objectives into their fitness function 

such as an aesthetic value and group penalties that encouraged the evolution of member 

clusters with the same length or cross sectional area. These objectives have not been included 

in this work, as the requirement to minimize the surface area to volume ratio encourages the 

evolution of structures with similar member lengths.

However, there is one important omission from this work that was present in Shea and 

Cagan’s technique: assigning different cross sectional areas to individual members. This work 

applies one cross sectional area to the whole structure (although it can be modified during the 

evolutionary process). The genome applied during this work does not consider individual 

members, as an explicit parameter therefore there is no way of storing individual cross- 

sectional areas for exchange during the evolutionary process. Geodesic domes aim to have 

homogeneity with regard to member sizes, so this is not such a major issue.

5.7.9 ‘Junk’ genes

The fitness function does not stipulate that all of the genes contained in an individual’s 

genotype are expressed in the phenotype i.e. not all potential vertices in section 3 of the 

representation are expressed in the final dome. This is because some potential vertices will be 

internal to the convex hull and hence not present in the dome. These genes are called ‘junk’ 

genes and it is possible for the genome to contain numerous junk genes. To illustrate this 

concept, consider the convex hull created from a 2D set containing 4 points (Figure 5-16). In 

Figure 5-16 the convex hull is formed by three vertices, therefore the fourth point is 

superfluous i.e. a ‘junk’ gene.

B o

C
o

0i
A o

D

A B C D

CH(S)

A
D

A B C D

Junk Gene

A
D

A B C D

Figure 5-16 Example genome containing a ju n k  gene in dome design
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The fitness function does not penalize a solution for having junk genes because they are 

irrelevant to the phenotype however they do add a significant computational overhead. 

Unfortunately junk genes cannot simply be removed, because this c ould p otentially c ause 

vital information to be lost. As a compromise, before a solution is evolved all junk genes are 

identified and a deletion operator applied (each junk gene has a 50% chance of deletion). If 

this stage is not included, the genome tends to bloat as per genetic programming.

5.8 Illustrative Example

This section provides an illustrative example of the search technique described in this chapter. 

The aim of the experiment is to evolve a solution that maximizes the enclosed volume while 

minimizing the surface area at the same time.

5.8.1 Introduction

The following test case was designed to assess search performance, as there are no standard 

test cases. The EA tableau (Table 5-2) details the values applied to the key evolutionary 

parameters however it should be noted that no attempt has been made to optimise any 

parameters related to evolutionary operators.

Table 5-2 EA Tableau for dome design

Objective | Maximise enclosed volume, minimise surface area

Representation String containing points
Initialisation Random initialisation (no seeding)
Raw Fitness Based on: enclosed volume and surface area
Selection Tournament (size = 3) with Elitism
Major Parameters P =  1, M = 400, G = 25

Evolutionary Operators:

ReproductionDrob 0.1
Mutation operator Point, shuffle, addition and deletion
Mutation„rob | 0.4
Crossover operator N point crossover
CrossoverDrob 0.5

5.8.2 Results

The performance graph (Figure 5-17) shows the fitness of the best of generation during the 

run, while (Figure 5-18) indicates the best layout evolved.
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Figure 5-17 Perform ance graph for dome example

Figure 5-18 Example dome design for illustrative example
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5.8.3 Conclusion

This example demonstrates how the proposed representation maybe used to evolve ‘geodesic- 

like’ domes.

5.9 Conclusions
X

This chapter demonstrates an EA combined with a convex hull algorithm (incremental 

algorithm) to create a system capable of designing ‘geodesic-like’ domes directly in 3D. It is 

shown that this produces viable and efficient structural designs whilst avoiding many of the 

problem experienced by the previous approach that projected a 2D truss on to a predefined 

curved surface. However because the vertices section of the genome only contains potential 

genes, the genome has a tendency to bloat (contain large numbers of superfluous genes).
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6 Sum m ary and F uture W ork  

6.1 Introduction

This chapter will consider the key findings, of this thesis, in relation to its original objectives 

and discuss possible directions for future work. The aim of this work is to investigate how 

some efvil engineering design problems, in particular structures, can be represented in 

evolutionary algorithms. Many representations have been used in design each with its own 

strengths and weaknesses: strings are generally used for parameters based problems, voxels 

for shape discovery, while trees and graphs are used for skeletal structures. Within civil 

engineering design, the most commonly studied structure is the truss and three main 

representations have been used, each with their own pros and cons. However in general trees 

and graphs are the most suited to trusses because they permit the adaptability required for 

topological design: as strings are linear structures with each element having at most two 

connections: left and right. Unfortunately, most physical structures contain elements that 

connect to an arbitrary number of elements. Therefore higher dimensional representations 

such as trees or graphs have a more appropriate form.

6.2 Summary o f Investigative W ork Versus Original Objectives

This thesis had two main objectives, each will now be considered.

6.2.1 Investigate existing and develop new representation for orthogonal building 

design

Chapter 4 considers the conceptual layout design of commercial office buildings. It starts with 

a review of the existing work in this field, all of which are limited to rectangular floor plans. 

A 3-section string representation with real encoding is proposed as this ensures column 

alignment is retained during evolution, while polygon partitioning is used to decompose floor 

plans. This technique can evolve suitable solutions for orthogonal buildings with atria. This is 

an improvement over all previous research.

6.2.2 Investigate existing and develop new representation for dome design

Chapter 5 demonstrates an  evolutionary algorithm combined w ith a convex hull algorithm 

creating a system capable of designing ‘geodesic-like’ domes. However this work will only 

create domes with geodesic characteristics not true geodesic domes because geodesic
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breakdowns are not explicitly enforced. The previous approach projected a 2D truss on to a 

predefined curved surface losing the key variables of surface area and enclosed volume. This 

work searches using these variables and produces more ‘dome-like’ results. However the 

representation has a tendency to bloat because the vertices in the genome are not guaranteed 

to be included in the final structure.

6.3 Future W ork

This section discusses the possible directions for future work.

6.3.1 Orthogonal building design

While this work proposes a representation capable of solving an orthogonal layout it will not 

handle an irregular one, therefore this is most obvious area for future development (however 

this work could form the basis of such a system). One possible approach to consider would be 

to divide an irregular layout into rectangles and right-angled triangles (rather than simply 

partitioning a layout in rectangles). Triangular partitions could be represented by a similar 

genome arrangement to that already described, however the x and y column spacing would 

only apply to the opposite and adjacent sides. The other major area for improvement is the 

fitness function. At the present time this assigns a single numerical value to each solution. 

However if this representation to be used on real world problems, a multi-objective fitness 

function might be more appropriate.

6.3.2 Dome design

At present this work only considers enclosed volume, surface area and a structural component 

including structural response of the dome from its weight and applied loads and weight. A 

more realistic fitness function could include wind loading etc and perhaps incorporate the 

material used to cover the dome. On a more practical note, the convex hull algorithm could be 

improved to give O(n logn)  performance. To achieve this, the algorithm must maintain a 

‘conflict graph’ indicating which faces are visible (de Berg et al, 1997).

Also the proposed system has only been applied to the design of domes but theoretically 

it could be used to design any object that is required to have a continuous, convex surface for 

example aircraft nosecones.
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