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Abstract

In  this thesis various iterative channel estimation and data detection tech

niques for tim e-varying frequency selective channels w ith  m ultiple fre

quency offsets are proposed.

Firstly, a maximum likelihood approach for the estimation of complex 

m ultipa th  gains (MGs) and real Doppler shifts (DSs) for a single input 

single ou tput (SISO) frequency selective channel is proposed. In a time di

vision m ultip le  access (TD M A ) system, for example the third-generation 

global system, or mobile GSM communications, the p ilo t symbols are 

generally inadequate to  provide enough resolution to estimate frequency 

offsets. Therefore, our approach is to use the p ilo t sequence for the esti

mation and equalization of the channel w ithout consideration to  frequency 

offsets, and then to use the soft estimates of the transm itted signal as a 

long p ilo t sequence to determine iteratively the m ultip le  frequency offsets 

and refine the channel estimates. Inter-symbol interference (ISI) is re

moved w ith  a linear structure turbo equalizer where the filte r coefficients 

are chosen based on the m inimum mean square error (MMSE) criterion. 

The detection performance is verified using the b it error rate (BER) curves 

and the frequency offset estimation performance through comparison w ith 

appropriate Cramer-Rao lower bounds.

This work is then extended for a multi-user transmission system where 

the channel is modelled as a m u lti input m u lti output (M IM O ) TD M A 

system. For the iterative channel estimation, the M IM O  frequency se

lective channel is decoupled in to m ultiple SISO flat fading sub-channels 

through appropriately cancelling both inter-symbol-interference (ISI) and 

inter-user-interference (IU I) from the received signal. The refined channel



estimates and the corresponding frequency offset estimates are then ob

tained for each resolved M IM O  m ultipath tap. Simulation results confirm 

a superior BER and estimation performance.

Finally, these iterative equalization and estimation techniques are ex

tended to orthogonal frequency division multiplexing (OFDM) based SISO 

and M IM O  systems. For OFDM, the equalization is performed in two 

stages. In  the first stage, the channel and the frequency offsets are es

tim ated in the time domain, while in the second stage, the transmitted 

symbols are estimated in  the frequency domain and the mean values and 

the variances of the symbols are determined in the frequency domain. 

These two procedures interact in an iterative manner, exchanging infor

mation between the tim e and frequency domains. Simulation studies show 

that the proposed iterative scheme has the ab ility  to track frequency off

sets and provide a superior BER performance as compared to a scheme 

that does not track frequency offsets.
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S tatem en t of Originality

The contributions in this thesis are on the proposal and analysis of 

iterative channel and frequency offset estimation and detection algorithms 

for m u ltipa th  channels w ith  multiple frequency offsets. New techniques 

have been proposed for both SISO and M IM O  systems and for TD M A  

and O FDM  access schemes. The novel contributions are supported by 

one IEEE journal, four IEEE conference papers. The summary of these 

contributions are given below.

1. In chapter 3, and [I, II] an iterative approximate maximum likelihood 

(AM L) estimator for a SISO m ultipath channel w ith  distinct frequency 

offsets (FOs) has been proposed. The pilo t symbols are generally inad

equate to obtain an accurate estimate of the FOs due to lim ita tion  on 

the frequency resolution of the estimator. Hence the soft estimate of the 

transmitted signal are treated as a long pilo t sequence to determine mul

tip le FOs and to refine channel estimates iteratively. The performance of 

the proposed scheme has been studied for both flat-fading and frequency 

selective fading channels in a GSM system. The performance of the pro

posed scheme has been investigated w ith  and w ithout error control coding, 

and compared w ith  appropriate Cramer-Rao Lower bounds (CRLB).

2. In chapter 4, the parameter estimation and equalization proposed for a 

SISO channel has been extended to M IM O  m ultipath channels w ith  dis

tinc t FOs. The soft estimates of the transmitted signal has been used as 

a p ilo t signal to resolve m ultip le users and multipaths and estimate and 

correct FOs in each resolved paths. The simulation results include BER



X

curves and comparison of the variance of the FO estimates w ith  the cor

responding CRLBs. The results have been published in [III, V].

3. In  chapter 5 and [IV], iterative FO estimation and correction tech

niques for an O FDM  system have been proposed to track multiple FOs 

due to d istinct Doppler shifts associated w ith  multipaths. The long tra in

ing signal available in an O FDM  symbol has been used to obtain in itia l 

estimates of the channel and FOs. Then the soft estimates of the data 

symbols are obtained in an iterative manner to track carrier frequency 

offsets and m ultipa th  channels coefficients in the subsequent packets. The 

proposed iterative technique has the ab ility  to resolve multipaths, thereby 

converting the jo in t m ultip le FO estimation problem into estimation of 

distinct FOs. The technique has also been extended to a M IM O  OFDM 

system [VI].
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Chapter 1

INTRODUCTION

The demand for high data rate applications such as multimedia and inter

active services over wireless links is steadily increasing [1]. The research ac

tiv ities in wireless communication systems such as 3G [2], 4G, W LAN  [3], 

DAB [4] and DVB [5] are focussed on supporting high bandwidth and high 

data rate services. In  order to  meet these requirements, development of 

advanced signal processing algorithms for m itigating channel impairments 

becomes an im portant task.

In this thesis, various transm itter and receiver signal processing tech

niques are proposed in  order to improve the system performance, specif

ically through the use of m ultip le antennas at the transm itter and the 

receiver. High data rate communications are lim ited by several factors, 

among which intersymbol interference (ISI), which results from the signal 

spreading characteristic of the channel, plays an im portant role. More

over, the effect of frequency offset (FO) introduced by local oscillator 

mismatch or Doppler shifts (DS) w ill become more severe as the data rate 

is increased.

1.1 Signal fading

In a wireless system, a communication channel is often no longer a single 

line of sight path, particu la rly  in an urban environment. The received sig

1



Section 1.1. Signal fading 2

nal consists of a large number of reflected, refracted and scattered waves. 

The signal from the transm itter to the receiver arrives via more than 

one path. Due to m u ltipa th  propagation, different attenuated versions of 

the transm itted signal arrive sequentially at the receiver. The differential 

time delay introduces a relative phase shift between different components. 

These signals could add constructively or distractively at the receiver so 

that the received signal could vary significantly. In  a dynamic environ

ment, due to the m otion between the transm itter and the receiver, there 

is a continuous change in path lengths. The amplitude and the phase of 

the signal could continuously vary w ith  time whereby there are construc

tive additions in some locations and distractive additions in certain other 

locations. This phenomenon is known as signal fading.

LARGE-SCALE FADING A N D  SMALL-SCALE FADING

Large-scale fading represents the average signal power attenuation or path 

loss due to motion over large areas [6]. This phenomenon is affected by 

prominent terra in  such as hills, forests and buildings between the trans

m itte r and receiver. Small-scale fading is used to describe the rapid fluc

tuation of the am plitude of a radio signal over a short period of time or 

travel distance, so tha t large-scale path loss effects may be ignored. Small- 

scale fading is caused by interference between two or more versions of the 

transmitted signal which arrive at the receiver at slightly different times. 

For mobile radio applications, the channel is time-variant because motion 

between the transm itter and receiver results in propagation path changes. 

M u ltipa th  in the radio channel creates small-scale fading effects. The 

three most im portant effects are [6]:

•  Rapid changes in signal strength over a small travel distance or time 

interval.
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•  Random frequency modulation due to varying Doppler shifts on dif

ferent m u ltipa th  signals.

•  Time dispersion (echoes) caused by m ultipath propagation delays.

This thesis is aimed at providing various signal processing techniques to 

m itigate the effect of small scale fading, in particular for high data rate 

transmission over wireless links. The work covers both single input and

single output (SISO) and m ultip le input and m ultiple output (M IM O)

systems as well as tim e division m ultiple access (TD M A ) and orthogonal 

frequency division m ultip le  (O FDM ) access schemes.

1.1.1 Doppler shift

Due to relative m otion between the mobile and the basestation, each mul

tipath  wave experiences an apparent shift in frequency. The shift in the 

received signal frequency due to this motion is named “Doppler shift” 

(DS). In  order to improve the link  layer performance of the receiver, the 

effects of the tim e selectivity of the channel due to DS must be cancelled. 

In  most of the available lite ra ture  [7-10], all m ultipaths have been assumed 

to have identical DSs. In  th is case, the DS can be compensated for prior 

to equalization. The phase change in the received signal is defined is [6]

. , 2nvA t . . .
A(f> =  — -— cosO (1.1.1)

A

where v is the velocity of the transm itter relative to the receiver in me

ters/second: positive when moving towards one another, negative when 

moving away. A t  is the tim e required for the signal to travel from the 

transm itter to the receiver. A is the wavelength, and 9 is the angle of 

arrival in radians. Therefore, the DS is given is [6]
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The equation in (1.1.2) shows that if  the relative speed between the trans

m itter and receiver is constant, then the DS is a function of the angle 

of arrival. Therefore, each m ultipath which arrives w ith  different angle 

of arrival could have different frequency offsets, and this effect should be 

accounted for in the receiver design. This is one of the main motivation 

of this thesis.

1.1.2 Channel Classification

A channel is said to be non-distorting if, w ith in  the bandwidth, B W , 

occupied by the transm itted signal, the amplitude response, A(cj), of the 

channel is constant, tim e-invariant and the phase response, 6(uj), is a linear 

function of cu. However, i f  the amplitude of the spectrum is time varying, 

the fading in the signal is called frequency non-selective or fla t fading. In 

the time domain, i t  can be said tha t the delay spread denoted as Td, is 

less than the symbol period, Ts [11,12]. F la t fading does not produce ISI. 

Therefore, for fla t fading, the channel satisfies

Td < Ts (1.1.3)

On the other hand, m u ltipa th  propagation can spread the transmitted 

signal over an interval of tim e which is longer than the symbol period, 

which can cause ISI, tha t lim its  the data rate of a communication system 

and increases the associated b it error rate. In the frequency domain, it  

means tha t the frequency response is not fla t for the entire bandwidth of 

the signal. Hence, each frequency component of the signal is amplified 

and phase shifted differently. The fading in the received signal in this 

case is called frequency selective fading. Therefore, for frequency selective 

fading,

Td >Ts (1.1.4)
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Frequency selective fading occurs in the so-called ‘small scale’ m ultipath 

fading which dictates the instantaneous behaviour of the underlying chan

nel conditions; whereas “Large scale” refers to long term effects of the 

channel over a longer period of time. The design of a relatively low com

plexity receiver tha t can provide significant improvement in BER perfor

mance over a conventional receiver in a frequency selective environment 

is the focus of this thesis.

1.2 Outline of the Thesis

C h a p te r 2: A  detailed lite rature survey is provided together w ith  nec

essary theoretical background. Various FO and channel estimation tech

niques are reviewed followed by the introduction of m inimum variance 

unbiased estimation techniques. A  detailed discussion on the existing 

equalization techniques is also provided.

C h a p te r 3: Parameter estimation and iterative equalization techniques 

for a SISO system are proposed. The FOs associated w ith  each path of the 

channel have been assumed to be distinct. Unlike an identical DS problem 

as in [7,13,14], the d istinct DSs can not be compensated prior to equaliza

tion. Hence a sophisticated equalizer is required. In  order to design such 

an equalizer, the complex m ultipa th  gains (MGs) and FOs are required. 

A  maximum likelihood (M L) estimation approach is used to obtain the 

complex MGs and FOs. In  a T D M A  based communication system, such 

as GSM, the p ilo t symbols are generally inadequate to obtain an accurate 

estimate of the FOs due to lim ita tion  on the frequency resolution of the es

tim ator. Therefore, in the proposed technique, an in itia l channel estimate 

is obtained using a very short p ilo t (training) signal and the soft estimate 

of the transm itted signal is then treated as a p ilo t signal to determine
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multiple FOs and to refine channel estimates iteratively. The proposed 

iterative technique has the ab ility  to resolve multipaths, thereby modify

ing the m ultip le FO problem into one in which distinct frequency offsets 

are estimated. The performance of the estimator is assessed through com

parison of the variance of estimates w ith  the Cramer-Rao lower bound 

(CRLB).

C h a p te r 4: The work presented in chapter 3 is extended to a M IM O 

frequency selective channel. M IM O  systems are very attractive in order 

to boost the capacity of a wireless communication system that operates 

in a rich m ultipa th  environment. In  this chapter, communication over a 

M IM O  system, allowing for a frequency selective channel between each 

transmit and receive antenna is considered w ith  each path having distinct 

DSs. The tra in ing signals transm itted from the antennas are assumed to 

be spatially and tem porally uncorrelated. An iterative channel parameter 

estimator is provided whereby the M IM O  frequency selective channel is 

decoupled in to m ultip le  SISO fla t fading sub-channels through appropri

ately cancelling both inter-symbol-interference (ISI) and the inter-user- 

interference (IU I) from  the received signal. The refined channel estimates 

and the corresponding FO estimates are then obtained for each resolved 

M IM O  m ultipa th  tap. The performance of the algorithm is compared 

w ith  the matched filte r bound. In  addition to providing superior BER 

performance, the proposed estimator is also efficient in that it  tends to 

atta in the CRLB derived assuming all transmitted symbols in the burst 

are known p ilo t symbols.

C h a p te r 5: Parameter estimation and equalization techniques for a M IM O- 

OFDM system w ith  tim e-varying channels are proposed. To combat mul

tipa th  delay spread in  high data rate wireless systems, wireless commu
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nication standards such as IEEE 802.11 adopted an OFDM  transmission 

scheme which transforms a m ultipath channel into parallel independent 

flat-fading subchannels. O FDM  systems are very sensitive to FOs, and 

an iterative technique is proposal to estimate and track FOs. In itia l esti

mates of the channel gains and FOs are obtained using the long training 

signal available in  O FDM . These estimates are used to obtain the soft 

estimates of the data symbols in the subsequent packets in an iterative 

manner to track carrier FOs. The merit of this iterative method is its 

ab ility  to track FOs. The proposed iterative technique has the ability  to 

resolve m ultipaths, bringing the m ultiple FO problem into the estimation 

of distinct FOs. Simulation results show a superior BER performance for 

the proposed algorithm  over a scheme that does not consider FO correc

tion.

C h a p te r 6: Conclusions are drawn and possible future research direc

tions are outlined.



Chapter 2

PARAMETER ESTIMATION 

AND EQUALIZATION

The demand for wireless communication systems that can potentia lly sup

port high qua lity and high data rate multimedia and interactive services is 

continuously increasing. The channels in mobile radio systems are usually 

frequency selective and m ultipaths may give rise to intersymbol interfer

ence (ISI), which lim its  high data rate transmission [15]. In order to 

remove the effect of ISI, an equalizer is generally required, which in turn  

requires a channel estimator.

Noise

Channel
Estimator

Detector or 
Equalizer

interleaverSignal
Source

Channel
Decoder

Receiver
Filter

Modulator

Multipath
Channel

Channel
Encoder

Deinterleaver

Figure 2.1. Block diagram of a baseband wireless communication system 

utiliz ing channel estimator and equalizer.

8
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Fig. 2.1 depicts a block diagram of a baseband wireless communication 

system, which employs a channel estimator and equalizer at the receiver. 

The signal is usually firs t protected by channel coding and interleaving 

against fading phenomena, after that the binary signal is modulated and 

transmitted over the m u ltipa th  fading channel. A t the receiver, the task 

of the equalizer is to remove or m itigate the effect of ISI introduced by the 

m ultipath channels. A  significant amount of research has been performed 

in the area of equalization over the last few decades and several well known 

techniques are available [6,15]. However, equalizers such as the maximum 

likelihood sequence estimator (MLSE) or maximum a posteriori proba

b ility  (M AP) detector need to know the channel impulse response (CIR) 

to ensure successful equalization (removal of ISI). Usually, the channel 

estimation is based on a known sequence of bits, which is unique for a cer

ta in transm itter and known to the receiver. The channel estimator could 

estimate C IR  for each burst separately by exploiting the known transm it

ted bits and the corresponding received samples. Note tha t equalization 

w ithout separate channel estimation (e.g., adaptive linear and decision- 

feedback equalizer) is also possible, however their performance m ight not 

be sufficient for a rap id ly  varying wireless channel. A fter equalization, 

the signal is deinterleaved and decoded to extract the original message. 

In this chapter, a b rie f background on channel parameter estimation and 

equalization is presented.

2.1 Channel parameter estimation techniques

An im portant part of a receiver design is to develop an accurate channel 

estimation technique. Even w ith  lim ited knowledge of the wireless channel 

properties, a receiver can gain insight into the information that was sent 

by the transm itter using a known pilo t signal. The channel need to be
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estimated before equalization and this is the focus of this section.

3 26 3
Tail 58 

data bits
Training 58 

data bits
Tail

bits sequence bits

F ig u re  2.2. GSM burst structure; channel estimator utilizes the known 

training bits.

In a burst d ig ita l communication system, for example GSM [16], the 26 

training bits in the middle of the burst are dedicated for channel estimation 

as shown in Fig. 2.2. The receiver can utilize the known training bits 

and the corresponding received samples to estimate C IR  for each burst 

separately. The best known channel estimation methods are Maximum 

likelihood estimation (M LE ) and Least-squares (LS) estimation [17].

2.1.1 Maximum likelihood estimation

Consider a baseband communication system, which is assumed to be cor

rupted by zero mean additive white Gaussian noise (AWGN) as depicted 

in Fig. 2.3.

The dig ita l signal s(n) from a fin ite constellation is transmitted over a 

fading m ultipa th channel of length L, where ‘n ’ denotes the discrete tone 

index. Thermal noise is generated at the receiver and it  is modelled by the 

zero mean Gaussian d istribu tion. The received signal is passed through a 

filter which is matched to the frequency band of the transmitter. There

fore, if  the sampling rate at the receiver is equal to the symbol transmission 

rate, then the received signal can be w ritten in the convolution form as
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Noise w(n)

s(n)
Receiver

filter

Channel
estimator

Signal
source

Detector or 
Equalizer

Multipath
channel

Figure 2.3. Block diagram of a noise-corrupted baseband communication 

system.

L—1
u (n ) =  '^^/ h( l )s(n — I) +  uj(n) (2-1.1)

1—0

where h(Z) is the unknown complex channel gain for the Zth tap, L  is the 

length of the channel and uj(n) is additive circularly symmetric zero mean 

white (complex) Gaussian noise w ith  variance of,.

The method of maximum likelihood determines the parameters tha t max

imize the likelihood of the available set of observed data. In principle, the 

M LE technique may be applied to most of the data models [17], however, 

the implementation could be computationally expensive. The M  received 

samples in (2.1.1) can be w ritten  in a vector form as

u =  Sh + uj (2.1.2)
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where

u = u(0) u ( l)  • • • u (M  — 1)

S =

5(0)

5(1)

5 ( - l )

5(0)

8(1 -  L)  

s(2 -  L)

s ( M - l )  s ( M  — 2) ••• s ( M - L )

and

h = h( 0) h{ 1) ••• h ( L - l )

U) =  [ cj(0) cu(l) • • • u ( M  — 1)

The likelihood function of the received samples can be w ritten  as

M - l

p (u ;h )  =  p [u ( i) ;h ] . (2.1.3)
i= 0

In  many cases, i t  is more convenient to work w ith  the natural logarithm 

of the likelihood function, rather than w ith  the likelihood function itself. 

Thus
M - l

ln [p (u ;h )] =  ^ l n p [ u ( i ) ; h ]
i = 0

=  In
1

- M

( u —S h )  ( u —S h )

(u -  S h )* (u  -  Sh)
In (7ra l )2 -  a<Lu

The logarithm ic function ln[p(u; h)]  is a monotonically increasing func

tion of p ( u ; h )  between 0 and 1. Therefore, the parameter vector for
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which the likelihood function p(u; h)  is a maximum is exactly the same as 

the parameter vector for which the log-likelihood function ln[p(u; h)]  is a 

maximum. Taking the derivative of the log-likelihood function produces

2 i= |fc i! .  i(s 'u -s-sh )
UJ

= 4r(S " S ){(S " S )“1S " u - h }  

which upon being set to  zero yields the M LE

h  =  (SHS)-1SHu. (2.1.4)

To find how effective the maximum likelihood method is, a lower bound, 

namely the Cramer Rao Lower Bound (CRLB), on the variance of any 

unbiased estimate is derived in  section 2.3. I f  the variance of an unbiased 

estimator is equal to the CRLB [17], then, the estimator is said to be 

efficient.

An M LE has the following three salient properties [17],

•  Maxim um -likelihood estimators are consistent, i.e., increasing the 

sample size of a maximum likelihood estimator decreases the vari

ance of the estimate. I t  attains the CRLB asymptotically.

•  M axim um -likelihood estimators are asymptotically unbiased; that is

lim  E { 0 }  =  0.
N —h x >

•  The d istribu tion  of the maximum-likelihood estimators are asymp

to tica lly  Gaussian.

The drawback of the M LE  can be its complexity and its difficu lt to apply 

for the signal models where the noise is not Gaussian.
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2.1.2 Least squares estimation

Least squares estim ation (LSE) is widely used in practice due to its ease 

of implementation and op tim a lity  in Gaussian noise. A  salient feature of 

the method is tha t no probabilistic assumptions are made about the data, 

only a signal model is assumed. The main drawback of the least squares 

estimator is tha t i t  does not generally guarantee the optim ality of the 

estimator. Furthermore, the statistical performance cannot be assessed 

w ithout some specific assumptions about the probabilistic structure of 

the data. An LSE of an unknown parameter vector, 0, minimizes the sum 

of the squared error between the real observed data, u(n)  and the estimate 

s(n) as [17]

M - l

J (° )  =  M n) -  s(n)i2
71=0

where the observation interval is assumed to be n =  0, 1, • • • , M  — 1, and 

the dependence of J  on 9 is via s(n). The value of 6 tha t minimizes J(9) 

is the LSE. The performance of the LSE w ill undoubtedly depend upon 

the properties of the corrupting noise as well as any modelling errors. LSE 

is usually applied in  situations where a precise statistical characterization 

of the data is unknown or where an optim al estimator cannot be found or 

may be too complicated to  apply in practice [17].

2.1.3 Joint estimation of channel impulse response (CIR) and fre

quency offset (FO)

In this section, an approximate maximum likelihood (A M L) estimator of 

the complex channel gains (CGs) and a single FO is considered. I t  is 

assumed tha t the signal is propagated through L  different paths and each 

path has the same Doppler shift (DS) fd . The received complex baseband
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signal is given by

L —l

U (n ) =  ^ 2  h( l )s(n  — l)e^2n d̂n +  w(n) (2.1.5)
1=0

and M  received samples in  a vector form can be expressed as

where

Aw =

u — ArfSh + uj

1 0  0 0

0 ej2* fd 0 0

0 0 ' - .  0 

0 0 0

(2.1.6)

(2.1.7)

The tra in ing signal m atrix , S, and the m ultipath gains (MGs) vector, 

h, have been defined in  the previous section. Thus, the log-likelihood 

function of the received signal can be expressed as (ignoring the constant 

terms)

lnp(u; h; f d) =  - ( u  -  AdSh)"(u -  A rfSh) (2.1.8)

where (.)H denotes conjugate transpose. M axim ization of the log-likelihood 

function (2.1.8) is equivalent to m inim izing the following cost function [18]

J ( h; f d) =  (u -  A«JSh)"(u -  A<;Sh) (2.1.9)

which is a nonlinear least-squares problem. M inim ization of (2.1.9) w ith  

respect to h* yields

9 J (h ; h )
dh*

=  - S ffA ? u  +  S"Sh,H, (2.1.10)



Section 2.1. Channel parameter estimation techniques 16

Equating i t  to zero, then

h  =  u. (2.1.11)

The m atrix A d is unknown and depends on fd- Therefore h  in (2.1.11) can 

not be estimated in  the current form. The FO is estimated by minimizing 

the cost function, obtained by substituting (2.1.11) into (2.1.9)

J( fd)  =  u " u  -  u HA ,iS(SHS )-1SHA f u  (2.1.12)

Note tha t the tra in ing  samples s(n) are assumed uncorrelated. Therefore 

S^S ~  kl ,  where k is constant over the frame considered. The minimiza

tion of (2.1.12) is therefore equivalent to maxim ization of the second term 

in (2.1.12) tha t can be w ritten  as [18]

<t>(fd) =  u ^ A r fS S ^ A fu
1 M - l  L - 1

=  M  E E -  0 |2 . (2.1.13)
71=0 1=0

The maximum likelihood solution of fd is therefore,

f d =  arg max <j>(f) (2.1.14)

The FO fd can be estimated using a grid search method. The grid search 

method could determine the frequency bin that maximizes (2.1.13), but it  

requires a very high com putational complexity. However, in practice [15] a 

less computationally expensive approach called the Fast Fourier Transform 

(FFT) can be used. Once the FOs are estimated, the CGs, h, can be 

estimated using (2.1.11).
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2.2 Frequency estimation techniques

A frequency offset creates an extra burden for the equalizer in order to 

track channel variations. In  such cases the equalizer can be simplified by 

estimating the FO and removing it  as much as possible before equaliza

tion starts. Frequency offset estimation can be divided into two broad 

categories, data-aided and non-data-aided or blind techniques.

For known tra in ing signals and channel information, an FO estimator 

based upon the maximum-likelihood (M L) criterion was presented in [19]. 

Likewise, [20] and [21] proposed methods where only the training signals 

are required to be known. In  [20], the least squares (LS) criterion has been 

employed, while in [21], the M L criterion has been adopted to jo in tly  es

timate the channel and the FO. How to choose the best tra in ing sequence 

for the above estimation problem has been addressed in [8,22]. When 

the tra in ing signals are periodic, Moose [23] provided an M L estimator 

for the FO based on two identical O FDM  symbols. The maximum offset 

that can be handled is one subcarrier spacing. However a scheme using 

one tra in ing O FDM  symbol w ith  two identical components, where the 

estimation range is two subcarrier spacing has been proposed in [24]. A 

narrow estimation range means tha t oscillators w ith  high precision should 

be used, thus improving the cost of the system. In  [25], an enhanced FO 

estimation scheme was proposed to  extend the estimation range to M  sub

carriers spacing, using one O FDM  symbol w ith  M  identical components. 

The methods in [26] and [27] exploit the redundancy associated w ith  a 

cyclic prefix.

Various techniques are available for the estimation of frequency compo

nents. Among them, the following two technique are very powerful.
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2.2.1 Classical techniques based on Fourier transform

Spectral analysis based on the frequency domain transformations of the 

received signal is a basic technique for the estimation of FO. The received 

signal samples are converted in to the frequency domain by using the dis

crete Fourier transform (D FT). The FOs in the received signal samples 

can be estimated by determining the frequency at which the periodogram, 

or “spectrum” , attains its maximum [28]. The amplitude of the received 

samples at different frequencies can be determined by using the discrete 

Fourier transform [17,29-31],

1 M - l

=  M  E  (2.2.1)
71=0

where F ( f )  is the complex amplitude of the received signal at frequency 

/  and u(n)  is the received signal sample. One drawback of this method 

is tha t i t  is d ifficu lt to determine the frequency offsets when multiple 

frequency offsets are present in the m ultipath channel.

2.2.2 Subspace methods

Subspace methods can provide high resolution frequency estimation but 

could result in  increased computational complexity. These techniques are 

based on the principle of separating the noisy data into a signal subspace 

and a noise subspace. The FO is determined using the fact that the sig

nal vectors w ill be orthogonal to the noise subspace. V. F. Pisarenko, 

first introduced this concept in 1973 and his technique is known as the 

Pisarenko harmonic decomposition [32]. This concept was later used to 

develop more advanced techniques such as MUSIC (multiple signal clas

sification) and ESPRIT (estimation of signal parameters via rotational 

invariance) [33-35]. These methods require an eigenvalue decomposition
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of the received sample covariance m atrix  R  to determine the signal and 

the noise subspaces

R  =  Q A Q H (2.2.2)

where A  is a diagonal m atrix of eigenvalues of the covariance m atrix, and

Q =  [Qs C M  (2.2.3)

where Qs and Q n  contain the basis vectors for the signal and the noise 

subspaces respectively. Thus the MUSIC based spectral estimator is 

formed as the inverse of the sum of inner products between the signal 

vector and the vectors in the noise subspace. The frequencies of the signal 

components are taken to be the peaks of the M USIC spectral estimate [34]

1 1

s " ( /)Q ;v Q £ s ( /)  ^  2 ’ 2
S m U S I c U ) =  n \ H  f  e \  / e( ~ o ’ ol (2.2.4)

T 1Twhere s( / )  =  1 e- i 2irf  ... e - j 2 i r f N  js ^he frequency scanning vec

tor, and N  is the order of the covariance m atrix. A  drawback in using 

sub-space based algorithms is tha t as the number of frequency components 

in the received signal increases, the order of the associated covariance ma

tr ix  needs to be increased. Therefore, performing eigenvalue decomposi

tion of a higher order covariance m atrix , requires very high computational 

complexity.

2.2.3 Blind parameter estimation

Most existing FO estimation techniques rely on periodic transmission of 

p ilot symbols, which could inevitably reduce bandwidth efficiency. A  blind
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FO estimation technique is attractive because it  saves bandwidth, i.e., no 

training signals are required. However, b lind algorithms generally require 

a very large set of data to estimate the parameters, hence they are suit

able only when the channel changes slowly. Therefore, they are not good 

for burst communication, where only a small number of bits is available. 

Various blind FO estimation techniques can be found in  [36-38] and the 

references therein. Since these techniques are not suitable for a highly dy

namic wireless environment, this approach w ill therefore not be considered 

in this thesis.

2.3 Cramer Rao lower bound

Being able to  place a lower bound on the variance of any unbiased estima

to r is extremely useful in practice. There are various methods available to 

determine the lower bound on the variance of the estimators, e.g. [17,39], 

but the Cramer-Rao Lower Bound (CRLB) [17] is straightforward to de

termine. An estimator that is unbiased and whose variance is always 

m inimum when compared to other estimators bu t is not less than CRLB 

is called the M inim um  Variance Unbiased estimator (M V U E).

2.3.1 The estimation problem

Assume real sample u(n) contains the parameter of interest 9 corrupted 

by noise cu(n) ,

u(n)  =  9 +  tu(n) (2.3.1)

where uj(n) is an additive white Gaussian noise (AW GN) process w ith 

PDF N { 0, a2). The observation of 9 made at M  intervals is given by the 

data set [u(0), u ( l) ,  • • • , u ( M  — 1)]. The jo in t probability d istribution 

of data is given by p(u(0), u{ 1), • ■ • , u ( M  — 1); 9) or simply in vector



Section 2.3. Cramer Rao lower bound 2 1

form as

1 1 M~l 
P(U; 6) =  (2n<r)W  eXp(_ 2^  E ,  (“ ( " )  “  (2'3'2)

' n=0

The PDF is a function of both the data u  and the unknown parameter 

0. When the PDF is viewed as a function of the unknown parameter 0 

it  is called the likelihood function. In tu itive ly, the PD F describes how 

accurately the parameter 0 can be estimated.

I f  the probability d istribution of the data is known, then the problem of 

finding an estimator 0 is simply finding a function of data which maximizes 

the likelihood function. The variab ility of the estimates determines the 

efficiency of the estimator. The higher the variance of the estimates the 

less effective (or reliable) the estimates are. Hence various estimators can 

be found for the data but the one w ith  the lowest variance is the best 

estimator.

2.3.2 Minimum variance unbiased estimation

Efficient estimation of channel parameters is very im portan t to decode the 

transmitted data accurately. Therefore, i t  is very im portant to determine 

whether the estimator being designed is unbiased or biased and if  i t  is 

unbiased what is its variance about the true value. An estimator is said 

to be unbiased iff

E { 6 }  =  0, a < 9  < b

where a and b represent the start and end range of possible values of 0. 

On the other hand an estimator is said to be biased if

6(0) =  E{ 6 }  - 0 ^ 0
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which is the bias of the estimate. The mean squared error (MSE) can be 

denoted as

M SE{0} =  E { { 9 - 9 ) 2}

= E { { { e -E{e) )  +  { E { 6 ) - e ) ] 2}

=  Var(9)  +  [E(9) -  9]2 

=  Var{9)  +  b2(9)

I t  can be seen tha t the MSE takes in to account the variance of the esti

mator as well as its bias. I f  the estimator is constrained to  be unbiased, 

and determined as the one w ith  m inimum variance, such an estimator is 

called m inimum variance unbiased estimator (M V U E ).

There are several methods for determining the M VU E . The most common 

ones are based on the Cramer Rao Lower Bound (CRLB).

2.3.3 Cramer Rao lower bound

The theory of the CRLB allows the determ ination of the M VUE, if  it  

exists. Therefore, i f  the PDF p(u; 9) satisfies the regularity condition [17]

£ j a i n g u ^ ) j = ( )  f Q r a l i e  (2 3 3)

where the expectation is taken w ith  respect to p{u; 9) and if  9 is the 

estimator of 9, then the bound on the variance of an unbiased estimator 

is given as

^ (2.3.4)

Equality is the so called CRLB and the condition for equality is
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d ln p ( u ;0 )_  1 ,

ae ~ W r  ’ { ’

where c(9) is a scalar constant whose value may depend on 6. Therefore, 

this equation implies that if  the log-likelihood function can be w ritten  in 

this form then 9 w ill be the MVUE. By differentiating (2.3.5) again, the 

value of c(9) can be found as

a d lnp (u ;6 )  _  a (  1
ae ae ae \c(e)

d2 lnp (u ; 6 )  l _  _  o\
ae2 c($) ae  ̂ '

c(6) =  1

Therefore, i f  (2.3.5) can be w ritten in general form

9lnpg{p e) =  1(6) (g(u) -  6) ,  (2.3.6)

then the efficient M VU E and its variance bounded by the CRLB are given 

by (2.3.7) and (2.3.8) respectively.

9 =  g( u) (2.3.7)

(2.3.8)

where 1(6) is termed the Fisher information. An example is given below 

[17]. Consider a DC level estimation problem for samples observed in zero 

mean white Gaussian noise.

VAR(6)  =
1(6)

u(n) =  6 +  uj(n) n =  0 ,1 ,..., N  — 1 (2.3.9)
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where uj(n) is W GN w ith  variance a2. The likelihood function can be 

w ritten as

1 1 M ~ l  

P ( U ; S )  =  (2x<t)m/2 eXpl~ 2 ^  ~  g)2l (2'3 '10)

Taking the first derivative

<91np(u;0) d j  r/  2 \  —
de do

M - l

G  71=0

M
=  - z ( u - 0 )  (2.3.11)

cr̂

This can be compared to (2.3.5), where u is the sample mean. Differenti

ating (2.3.11) again,
32ln P( u ; * ) _  M

de2 r 2

In this case, the second derivative is a constant, and the CRLB is given 

as
2

Var{6)  >  ~  (2.3.13)

The CRLB derived in this section can easily be extended for vector para

meters and it  w ill be used throughout the thesis to assess the performance 

of the estimators [17].

2.4 Equalization techniques

Equalization techniques have been developed from the 1960s, [40-42]. An 

equalizer is required at the receiver in order to m itigate the effect of ISI. 

Equalization techniques fall into two broad categories: linear and non

linear. The linear equalization techniques are generally the simplest to
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implement. However, linear equalization techniques typ ica lly suffer from 

more noise enhancement than the nonlinear equalizers, and therefore they 

are not used in most wireless applications. Among nonlinear equalization 

techniques, decision-feedback equalization (DFE) is the most common, 

since it  is fa irly  simple to implement and generally performs well.

Noise w(n)

u(n)s(n) s(n)
H(z) Equalizer

F ig u re  2.4. Baseband representation of a channel and an equalizer.

For the discussion, the system model in Fig. 2.4 w ill be used. The trans

m itted signal s(n) is passed through an ISI channel modelled as a F inite 

Impulse Response (FIR) filte r w ith  z-domain transfer function H(z) .  As in 

(2 .1.1), the distorted channel output u(n) is then processed by an equalizer 

that provides an estimate of the transmitted symbol s(n).

2.4.1 Linear transversal MMSE equalizer

A linear equalizer can be implemented using an F IR  filter. The current 

and the past values of the received signal are linearly weighted by the filte r 

coefficients and summed to produce the output, as shown in Fig. 2.5.

The equalizer input u(n) and the output s(n) before decision making can 

be expressed in the convolution form as [6]

p -1
s(n) =  w*{p)u{n — p) =  w Hu(n)  (2-4.1)

p = o
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u(n)

w*(0)

A A -1

w*(l ) w*(P-3) /O s  w*(P-2) 
 ►

0 — > 0 —
s(n).

F ig u re  2.5. A  linear equalizer implemented as a transversal filter.

where P  is the length of the equalizer, w  =  [w{0), w(  1), ••• , w(P  — 1)]T 

represents the equalizer tap weight vector, and the received signal vector 

is denoted as u =  ['u(O), u(n — 1), • • • , u(n — P  — 1)]T. I f  the equalizer 

approximates the inverse of the channel, this is referred to as a zero- 

forcing equalizer where the coefficients are chosen based on the zero-ISI 

criterion [43]. Normally, this leads to a very long equalizer and large 

noise amplification when the signal is weak. Instead of using the zero-ISI 

criterion, the LE  coefficients can be chosen such tha t s(n) becomes as 

closer to s(n) as possible in the mean square error sense. This is a well- 

known and widely used approach and known as a M inimum  Mean Square 

Error (MMSE) filter. Since the complex MMSE equalizer design w ill be 

of special interest in Chapter 3, 4 and 5, thus only a brief in troduction to 

MMSE equalizer design is provided here. Suppose the equalizer is designed 

to retrieve the transmitted signal, s(n), w ith  a delay d, the mean square 

error can be w ritten as
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J  =  E { | s(n) — s(n — d) |2}

=  E {  \ w Hu(n) — s(n — d) |2}

-  w ^ { u ( ? i ) u H( n ) }w  -  w HE{u {n )s * (n  -  d)}  

—E { u H(n)s(n — d )} w  +  E { \  s(n) |2} (2.4.2)

where the statistical expectation E  is taken over the statistics of the noise 

and the data sequence. Define a channel convolution m atrix  H  of dimen

sions P  x (L  +  P  — 1) as

H  =

h0 hi  . . .  hL-\  0 . . .  0

0  ho • • • h i - 2  h ^  i  • • :

: 0 .. . 0

0 . . .  0 ho h\ . . .  hi,—i

(2.4.3)

Differentiating the cost function in (2.4.2) w ith  respect to w *, the MMSE 

equalizer is obtained as [17,18]

2 \  —1
% )  H cd (2.4.4)

where I  is an identity m atrix and Cd is a coordinate vector such tha t Hcd 

chooses the dth column of H.

w  =  ( H H ^  +

2.4.2 Decision feedback equalization

The DFE has been of considerable attention due to its improved perfor

mance over a linear equalizer and reduced implementation complexity as 

compared to a nonlinear maximum-likelihood receiver. The basic idea be

hind decision feedback equalization is that once an in form ation symbol 

has been detected and decided upon, the ISI tha t i t  induces on the future
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symbols can be estimated and subtracted out before detection of subse

quent symbols [15]. This is done by a feedforward filte r (FFF) A(z)  and 

a supplementary feedback filter (FBF) B(z).  The FBF is driven by the 

decision on the output of the detector, and its coefficients can be adjusted 

to cancel the ISI on the current symbol from past detected symbols. A  

block diagram of the DFE structure is shown in Fig. 2.6.

w(n)

B(z)

H (z )

Decision
device

F ig u re  2.6. The baseband model of a channel and a decision feedback 

equalizer (DFE).

Assuming tha t the equalizer has N f  taps in the feed forward filte r and 7V& 

taps in the feedback filter, the filters A(z) and B(z) are w ritten  as

N f - 1

A(z)  =  £  ^
i —0

Nb

B{z)  =  Y , b*
kz

(2.4.5)

(2.4.6)
k= 1

Combining the output of the feedforward and feedback filters, the equalizer 

output can be expressed as
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Nf - 1  Nb

y ( n ) =  f * u ( n ~ * ) _  Y 2 b̂ n ~ d ~ k)
i=0 k—1

=  f ^ u  — b Hs

=  f * ( H s  +  w) -  b ^ M s  (2.4.7)

where s(n — d) is the hard decision of the previously estimated symbols 

at the output of a nonlinear decision device, and f  =  [ / o  / i  ■ • • f { N f - i ) ] H  

is the forward filte r tap weight vector and b =  [61 62 • • ■ b ^ ] 11 is the 

feedback tap weight vector. The vector s is related to s through the 

m atrix M  as

SjV6xl =  [OjVbXd I Nbx N b ONbx( Nf + N h- l - N b- d ) ] S( Nf + N h- l ) x l  =  M s  (2.4.8)

where Nh is the channel length. The mean squared error function can be 

w ritten as

J ( f ,b )  =  E { | y(n) -  s(n -  d) |2}

=  ( f " H  -  bHM )(H Hf -  M"b)cr2 +  f" f< r2 -  ( f f lH  -  b HM ) a 2scd 

—cd ( H Hf  -  M"b)<72 +  f7g (2.4.9)

where cd is a coordinate vector. The expressions for the feedback and 

feedforward tap weights can be obtained as

b  =  M H " f  (2.4.10)

2

f  =  (H ( I  -  M " M ) H "  +  ^ ) - ' H c j  (2.4.11)

The DFE is known to outperform the trad itional linear equalizer, partic

u larly i f  the channel has deep spectral nulls in its frequency response [15]. 

However, performance degradation in the DFE occurs when incorrectly
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detected symbols are fed through the FBF. The DFE output reflects this 

error during the next few symbols. This phenomenon is called error prop

agation. Various techniques for m itigating error propagation have been 

proposed [44,45], including DFE structures that contain a soft decision 

device in the feedback path to compensate for unreliable decisions. Most 

of these approaches require an increased complexity. In  the work in this 

thesis, a soft decision based iterative equalizer is adopted which w ill be 

explained in the next section.

2.4.3 Iterative equalization

Iterative equalizers (turbo equalizers) work sim ilarly to the DFE, the d if

ference is that, in  DFEs, previously estimated symbols are fedback and a 

decision on the current symbol is made only once. However, in  iterative 

equalization the previously estimated symbols are fedback and decisions on 

the current symbol are made more than once. Hence the iterative methods 

can obtain more accurate estimates. Turbo equalizers were first proposed 

in [46] and further developed in [47], [48]. MAP-based techniques, most of

ten a V ite rb i algorithm  (VA) producing soft output inform ation [49], are 

used exclusively for both equalization and decoding [46], [47]. Further

more, in [50] i t  is shown that a combined turbo coding and equalization, 

could yield tremendous improvement in terms of b it error rate (BER) per

formance.

The M A P /M L  based methods often suffer from high computational com

plexity. A  major research issue has been the complexity reduction of such 

iterative algorithms. The work in [51] proposed a jo in t coding and equal

ization approach, distinct from turbo equalization, working w ith  convo

lutional coding and a DFE. Here, w ith in  the DFE, soft in form ation from 

the DFE feedforward filte r and tentative (hard) decisions from the decoder
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using the VA are fed back. Wang and Poor [52] proposed a turbo equaliza

tion based multiuser detector for code division m ultiple access (CDM A) 

schemes. This iterative scheme is based on turbo equalization using an 

LE to reduce ISI and M AP decoding. The M AP equalizer is thus replaced 

w ith  an LE, where the filte r parameters are updated using the MMSE 

criterion.

Extrinsic Information

MMSE
Equalizer

Channel DecoderEncoder

F ig u re  2.7. An MMSE iterative equalization scheme.

A SISO MMSE iterative equalization scheme is shown in Fig. 2.7. The 

noise is assumed to be uncorrelated and zero mean. Therefore, E { u >n} =  0, 

E{u>nu>n} =  a* I, E {  sujH} =  0. Moreover, let s(n) =  E {s (n ) } ,  s =  jE7{s}, 

v3(n) =  Cov[s(n),s(n)], and v a =  us(0) u5( l)  ••• vs{P  +  L  -  2) .

The MMSE equalizer w n of length L  for the soft estimates of s(n) is given 

by [53], [54]

w n =  (Hdiag(v3) U H +  cr l l )~ l h.da2s (2.4.12)

where H  is the P  x (P  +  L  — 1) channel convolution m atrix , and is 

the dth column of H  [55]. The estimate for s(n) is given by

s(n) = s(n) +  w ^(u(n ) — Hs) (2.4.13)
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To find a posteriori values of vs(n) and s(n) to use in (2.4.12) and (2.4.13), 

the following steps are required.

Step 1 By assuming no knowledge in the first iteration about the future 

decisions, in itia lize all the mean values s(n) =  0. This corresponds to 

diag(vs) =  I. The estimate s(n) is obtained using(2.4.12) and (2.4.13).

S tep 2 The a priori and a posteriori LLRs of s(n) are defined as [50,55]

p{s(n) =  1}
L[s(n)] =  In 

£ [s(n )kn )] =  In

p{s(n) =  - 1 }  
and

p{s(n) =  l | s(n)}

p{s(n) =  1 |s(n)}

The MMSE equalizer output s(n) is used to obtain the difference between 

the posteriori and a priori log-likelihood ratio (LLR), also called the ex

trinsic inform ation as

A L [s (n )] =  L[s(n)\s{n)] -  L[s(n)]

=  =  (2.4.14)
p{s(n) =  - l |s ( „ )} p{s(n) =  - 1 }

Using Bayes’ theorem, p{a\b) =  , (2.4.14) can be w ritten  as

AL[S(n)] =  In ^  _  ln =  U
p {s (n )|a(n)=_ i}p {s (n ) =  - 1 }  p{s(n) =  - 1 }

_ p{^(n-)ls(n)=l}
p {3 (n )|5(„)=_ i}

=  L [s(n )|s(n)]

To find L [s (n )|a(n)], it  is assumed that the probability density function 

(PDF) of s(n) is Gaussian w ith  variance crj, i.e.

p {s (n )}  =  1 exp (  -  £ {» ( ” ) } ) (» ( " )  -  ^ { s ( ^ ) } ) '
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Therefore, the conditional PDF of s(n) becomes

m i 1 (  ( s ( n ) - m b) ( s ( n ) - m b) * \
P{«WI*(n)=ft} =  / 2I- ..—  e x p -----------------    ,

V ^ | 5 ( n ) = 6  V  ° s \ s { n ) = b  J

where m b and crj | 3(n)=b are respectively the conditional mean and variance 

of s(n). Here, a binary phase shift keying (BPSK) system is considered for 

which b =  {+ 1 , —1}, therefore, for the above PDF, the conditional mean 

and the variance are obtained from the knowledge of the channel and the 

equalizer as follows [55], (e.g. d =  0),

m b =  £ [s (n )|s(n)=6]

=  £ [w " (H (s  —s) +  u,)]

=  £ [w ^ ( h 0s(n) +  hi(s(n -  i) -  s(n -  i) )  +  u>)]
i^O

=  w ^ h  0b

^«|a(n)=6 =  C ov{s(n ),s (n )|s(n)=6}

=  £ '{s (n )s (n )*} — m bm l  

=  w %(Hdiag(v8) H H +  cr£l)wn -  w f h 0h ^ w n 

=  w ^ h 0( l  -  h jfw n) (2.4.15)

In general, when the delayed signal s(n — d) is estimated, the mean and 

variance can be w ritten as

mb =  w%hdb

a s\s[n )= b  =  w "  M 1 -  h " w n)

Therefore, the required extrinsic information L [s (n )|s(n)] can be expressed
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-£'[s(n)|s(n)] —

4Re{s(n)m(+1)}

4Re{s(n)}
l - h f w „ (2.4.16)

The mean of the symbol (soft estimate) sn to be used in (2.4.13) is obtained 

as [55]

The variance required for the MMSE equalizer in (2.4.12) is also computed 

as follows [53]

In  the subsequent iterations, the iterative methods use the extrinsic in for

mation obtained in the previous iteration to estimate the current symbols. 

Therefore, more and more accurate estimates are obtained by repeating 

this a number of times.

2.5 Summary

In this chapter, a brief background on the available techniques for m it i

gating the effect of m ultipath channels was provided. In  order to m itigate 

the effect of a m ultipath channel, several linear, nonlinear and adaptive 

equalization techniques can be used. However, in a fast fading channel,

S n  =  p{s{n) =  + l | s ( n ) }  - p { s ( n )  =  1 |s(n)} (2.4.17)

vs(n) =  \b ~  =  6kn )) (2.4.18)
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the adaptive equalizer can not track the channel variations. Therefore, 

equalization techniques w ith  explicit estimation of the channel parameters 

are preferred. The problem of channel and frequency offset estimation has 

been formulated and an overview of various estimation techniques has been 

provided. The performance of the equalizer depends on the variance of 

the channel parameter estimators. Therefore, the concepts of M inim um  

Variance Unbiased Estimation (MVUE) and Cramer-Rao Lower Bound 

have been introduced.



Chapter 3

ITERATIVE PARAMETER 

ESTIMATION AND 

EQUALIZATION FOR SISO 

CHANNELS WITH MULTIPLE 

FREQUENCY OFFSETS

Wireless communication channels are subject to channel impairments such 

as m ultipath propagation and fading in addition to additive noise. More

over, the performance of a communication system could seriously degrade 

when FO introduces time-variations into the m ultipa th  channel. For a 

high data rate transmission, FO is introduced due to movement between 

the transm itter and the receiver (DS) [56] or poor synchronization be

tween the transm itter and the receiver carrier frequencies. The reason for 

poor synchronization is due to imperfection of local oscillator due to tem

perature variations. I t  could also arise due manufacturing imperfection as 

certain tolerance is allowed in the components design. I t  is crucial tha t 

the FO should be estimated and taken into account in  the receiver design 

to enable accurate decoding of the transmitted signal.

36
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In this chapter, an iterative channel estimation and data detection tech

nique for a TD M  A based communication system is studied. For a T D M  A 

communication system, a SISO channel w ith  each m ultipa th  possibly hav

ing distinct DS is considered. For linear-time-invariant (LT I) channels 

equalizers may be easy to implement. Since an FO introduces tim e selec

t iv ity  into the channel that degrades the BER performance of an equalizer, 

i t  is necessary to estimate the FO and cancel its effect prior to equalization. 

In a T D M A  system, it  is difficult to estimate the FO due to the lim ited 

number of bits available for training, for example in GSM, each burst of 

142 bits contains only 26 training data samples [57]. Therefore, the soft 

estimate of the transmitted signal could be used as a long p ilo t sequence 

to determine the FO in an iterative manner. For a T D M A  communica

tion system, various FO estimation techniques have been widely studied. 

Morelli [13] and Huseyin [58] proposed FO estimation algorithms for fla t 

fading channels based on the autocorrelation of the channel. The channel 

estimates are noisy and require low pass filtering and the bandwidth of 

the low pass filte r depends on the Doppler spread. Thus, such receivers re

quire adaptive low pass filtering that makes these algorithms complicated. 

Krasny [14] has proposed optimal and sub-optimal algorithms based on the 

maximum likelihood method to determine FO, where i t  is assumed tha t 

the channel is non-dispersive but it  does not require any filtering. For a 

dispersive channel, the channel and FOs are estimated in [59] based on 

channel impulse response estimation. In  this method, in order to estimate 

FO, channel estimation is mandatory. Harish [7] proposed a maximum 

state accumulation technique of FO estimation tha t does not require an 

explicit estimation of the channel. A ll of these algorithms, assume that 

the FO is identical for each multipath.

In contrast to previous works, in this chapter, equalization of a channel for



Section 3.1. Problem statement 38

a single transm it and receive antenna system, under a general framework 

that allows distinct FOs for each m ultipath, is addressed. This scenario 

could arise when either the receiver or the transm itter moves at very high 

speed resulting into various Doppler shifts for paths w ith  different an

gle of arrivals [18] and [60,61]. A  similar scenario could also arise when 

the same signal is transmitted from various basestations e.g., in  coopera

tive diversity scheme, [62]. In  this case, even for a fixed wireless system, 

local oscillator frequency mismatch associated w ith  various basestations 

could result in different frequency offsets for different paths. Both sce

narios result in an identical mathematical model, i.e. m ultipaths w ith  

multiple frequency offsets. In this scenario, by exploiting the correlation 

property of the transmitted training symbols an approximative maximum 

likelihood (A M L) estimator is proposed. Here, unlike channel estimation, 

frequency offset estimation requires a long data sequence to get a rea

sonably good estimate due to the resolution associated w ith  a maximum 

likelihood method such as power spectral estimation based on the discrete 

Fourier transformation (DFT) [17]. Therefore, an iterative estimation and 

detection technique for m ultipath channels w ith  m ultiple frequency offsets 

is proposed.

3.1 Problem statement

Consider a communication system employing a single transm it and receive 

antenna, and assume that the signal has propagated through L  different 

paths, w ith  each path possibly having different frequency offset. The 

received baseband signal is given by

L - 1
u(n) =  u(n) +  uj(n) =  his(n — l)e^2n̂ in +  co(n), (3.1.1)

1=0
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where hi and f i  are the unknown complex channel gain and frequency 

offset for the Zth channel tap. Herein, it  is assumed tha t hi and f i  are 

quasi-stationary, not changing significantly over the observed data frame, 

and varying only between the data frames. Further, s(n) is the transm itted 

signal w ith  variance a2, and uj{n) is an additive circularly symmetric zero 

mean white (complex) Gaussian noise w ith  variance a2. Let

s  1 ,7 s(n — I) s(n — I — 1) . . .  s(n — I — M  +  1)
i T

(3.1.2)

and Si,n =  diag(s/)n), where M  is the frame length, and (-)T denotes the 

m atrix transpose. Further, let the vector of dimension M x l

(3.1.3)

model the effect of frequency offset on the signal vector of length M  asso

ciated w ith  the I th  path. Define an M  x L  m atrix

W n  —  So,n  O  ©O.n • • • SL - l , n  ©  e L - l , r  

where © denotes the Schur-Hadamard product. For example,

s(n) e j 2 n f 0 (n)

s(n — 1) e j 2 7 r / o ( n - l )

®0,n ©  ®0,n — 0

s(n — M  +  1) e j 2 n f o ( n - M + l )

s{n)ej2nfo^  

s(n — l)e J'27rZo(w-i)

s(n -  M  +  l ) eJ'2^/o(n-M+i)

(3.1.4)

(3.1.5)
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Hence, the frame constructed from M  consecutive received samples can 

be expressed as [18,63]

A
un =  u(n) u(n — 1) . . .  u(n — M  +  1)

L—l

—   ̂  ̂hlSl,n&l,n 
1=0

-  Q nhL +  Vn (3.1.6)

where

and

ho h i . . .  Hl ~ i

uj(ri) uj(n — 1) . . .  c<j(n — M  +  1)

Here, the problem of interest is that given un and the tra in ing symbols 

(s (n )}, estimate the unknown parameter vector

T
e =

A

ho h i  . . .  h L - i  fo  f i  . . .  f L —i

h I  f I  T

(3.1.7)

where =  [ /0 . . .  In the next section, to estimate the unknown

channel gains and FOs a computationally efficient approach is presented.

3.2 Estimation of multipath gains and frequency offsets

In this section, an approximative maximum likelihood (A M L) estimator 

of the complex channel gains and the FOs is outlined. Consider tha t the 

received signal, as expressed in (3.1.6), is only a function of the complex 

channel gains and FOs. The likelihood function of the received sample 

vector to be maximized can be w ritten as

p(un;0) =
1 ~  ( u n — Q n  h ^  ) ( u n  - Q n h ) 

. ~~*2 (3.2.1)
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The probability of an event occurring can be between 0 and 1, and ln(p) 

is a monotonically increasing function for p e (0 1]. Therefore, using the 

log-likelihood function w ill not alter the maximization problem. The log- 

likelihood function can be expressed as (ignoring the constant terms)

ln p (u n; 0) «  — \  (un -  Q nh L)H (un -  Q nh L) • (3.2.2)
®u>

Maxim ization of (3.2.2) w ith  respect to h^, yields [18]

h i  =  ( Q " Q „ ) Q " u „  =  Q t u „  (3.2.3)

where Q t denotes the Moore-Penrose pseudo-inverse. Substitu ting equa

tion (3.2.3) in to (3.2.2), the FOs can be estimated by m inim izing the cost 

function, J(£l ) [18]

J ( h )  =  u%un -  u ^ n Qnun, (3.2.4)

where I lQ n =  Q n Q l is the projection onto the range space of Q n. The 

training sequence, s(n) is chosen as E  j s*(n -  k)s(n — p) }  =  Sp- k, 

where 8q denotes the Kronecker delta function, the n -dimensional m in

im ization problem in (3.2.4) can be decoupled in to n  one-dimensional 

problems, hence the complexity of the m inim ization can be significantly 

reduced. Here Q ^ Q n w ill be dominated by the large diagonal terms, w ith  

almost negligible contribution from the off-diagonal terms, i f  s(n) is chosen

as a pseudo-random sequence (as in the case of a tra in ing  signal). There

fore, Q n Q n  »  E t'o  |s(n)|2I  =  gl, where q is constant over the frame 

considered, enabling the m inimization of (3.2.4) to be approximated as 

the maximum of [18]
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J'{  i L) =  u " Q nQ ^ u n
L - 1

= E
p = o

M —l

u*(n)s(n — p)ej27r̂ pT
n=0

(3.2.5)

maximising the cost function in (3.2.5) w ith  respect to f l , the approximate 

maximum likelihood (AM L) estimator of each ind iv idua l FO is w ritten 

as [18]

2

f x =  argmax
M—1
y  u*(n)s(n — x)e^2lv̂ n
n = 0

(3.2.6)

The approximation is due to the assumption Q n is an identical m atrix, 

hence multidimensional search is reduced to single dimension search for 

frequency offsets. The equation in (3.2.6) can be efficiently evaluated 

using the fast Fourier transform (FFT). Once the FOs are estimated, the 

channel gains, h/, can be estimated using (3.2.3).

3.3 MMSE equalizer design

As discussed earlier, identical FOs from each m u ltipa th  can be compen

sated easily before equalization by rota ting channel outputs by appropriate 

phase angles. However distinct FOs are d ifficu lt to  compensate. D istinct 

FOs produce time selectivity in the channel tha t could severely degrade the 

BER performance. Therefore, the estimation of FO and its exploitation 

in equalization is crucial to enable accurate decoding of the transmitted 

information.

3.3.1 Equalizer for channels without frequency offsets

In this section, in itia lly  the M MSE equalizer for communication channels 

not affected by FOs is considered. For an equalizer of length M , the 

received signal vector is given by
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U n  — H sn -f- U)n (3.3.1)

where

Un = u(n) . . .  u(n — M  +  1)

Sn — s(n) . . .  s(n — M  — L  +  2)

w. u{ri) . . .  u (n  — M  +  1)

and H is the M  x (L  +  M  — 1) channel convolution m atrix ,

H  =

ho h i  . . .  h i - i  0

0 ho . . .  2 ^ L - i

1 0 :

0 . . .  0 /io

0

. hi,—i

(3.3.2)

By m inim izing the cost function

J (w ) =  E {| s(n -  u) -  w ^U n  |2}

the MMSE equalizer aimed to retrieve the transm itted signal w ith  delay 

v, i.e., s(n-d) is obtained as [17,18],

w =  ( HH" + -£ I  I He
-1

(3.3.3)

where I is the identity m a trix  and cd is a coordinate vector, only containing 

a non-zero component at the dth position, i.e.,

T

c d = 0 0 1 0 . . .  0
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3.3.2 Equalizer for channels with frequency offsets

In the presence of frequency offsets, the effective channel convolution ma

tr ix  H  w ill vary over time. For an equalizer of length M, the received 

signal vector of dimension M  x 1 is given as [18]

(3.3.4)

where u>n is the additive white Gaussian noise vector, H  is the M  x (L  +  

M  — 1) channel convolution m atrix,

H  =

h 0 h i  

0 ho 

: 0 

0 . . .  0

/lL-1 0

hL-2 hh - 1

h e h i

0

0

hL- i

and the m atrix  rjL accounts for the frequency offsets,

(3.3.5)

0 i n —1 0

• O ' - .  0

0 . . .  0 i ' n - M + l  _

(3.3.6)

e j 2 i r f o n  ' ' ' e j 2 i r f L - i n (3.3.7)

Set the equalizer length the same as the channel length, i.e., M  =  L. 

(Note: The equalizer length is set same as the channel length only for the 

iterative MMSE equalizer. However, when the signal is equalized at the 

first time, a conventional M MSE equalizer is used whose length is set much 

large than the channel length). For this case (i.e. m =  L), the m atrix H c 

in (3.3.4) w ill appear as
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' h0 ej27r^o (n ) . . .  h L _ 1ej 2 * f l ' - l (-n '> 0 . . .  0

0 /i0 e^2,rA )(n —1) . . .  h L _ 2 ej 2 l T f L - 2 ( " - 1) 1 e3 ^  f  L  - 1  ("  ~ 1) ;

o ' .  : . . .  o
0 . . .  0 h 0 eJ' 2 ,r /  o (n - i  + 1) h i e j2 ’r -f l ( n _ z ' +  1) . . .  h z, _ 1e;’2’r / ^ - l ( ’1 - I '+1)

(3.3.8)

Also decompose (3.3.4) to exp lic itly  show the symbol w ith  delay L  — 1 as

— H csn d~ H cCl S ( ti  L  d~ 1) d- (3.3.9)

where operator c ,̂ is a coordinate vector such tha t H cC£ w ill choose the 

L th column of H c, and the vector sn includes all the elements of sn except 

s(n — L  d- 1), i.e.,

sn =  [s(n) . . .  s(n — L  d -  2) 0 s(n — L)  . . .  s(n — 2L  d-  2)]T (3.3.10)

Note

H ccc,

h L - i
e j 2iTfL _ i ( n )

;-*i 1 S3

g j27r/x /_ 2 ( n - l )

©

i— 
-

 ̂
.

0 1

e j 2 n f 0 ( n - L + l )

(3.3.11)

Therefore, the FOs can be removed by

— (un H csn) ©

e - j 2 7 r / L _ i ( n )

e - j 2 i r f L - 2 ( n - l )

Q—j 2 n f o ( n —L + l )

— D (H csn d- Hcsn)

=  D (Hc(sn Sn ) d~ ^ n ) (3.3.12)
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where D  =  diag(/3), ( 3  =  [ e - J ’27rA , - iO i )  e - 32lx f L - 2 ( n - i ) e - j2 7 r /0 ( n - L + i ) j T

and sn is the mean of sn obtained from the extrinsic information passed 

by the Bahl, Cocke, Jelinek, and Raviv (BCJR) based M AP decoder in 

Fig. 3.2. The estimate of the transm itted symbol w ith  delay L — 1 is 

obtained using an ite ra tive  M MSE equalizer as s(n — L  +  1) =  w ^ u n. 

M inim ization of the mean square error w ith  respect to w j  yields,

E { u nu ^ } w n -  2E { s ( n  -  L  +  l ) u n} =  0 (3.3.13)

Assuming transm itted symbols are tem porally uncorrelated,

JF{(sn — sn)(sn — sn)H }  can be w ritten  as a diagonal m atrix  diag{yn),

where v n is constructed from the variance of the symbols as in (3.4.6).

Note the L th  element of v n is equal to E { \  s(n) |2}  =  u2s because the L th  

element of sn is zero. Hence

E {  u „ u £ }  =  D (H cdiag(vn) H f  +  a 2J )T > H (3.3.14)

and

E{s (n  — L  +  l)u„} =  E { s ( n  — L  +  1)D (H c(sn — sn) +  c v n ) }  =  D H ccL

(3.3.15)

where E {s (n  — L  +  l)sn} is 0 because sn does not contain s(n — L  +  1) 

and all other symbols in  sn are uncorrelated w ith  s(n — L  +  1). Hence the 

MMSE equalizer is w ritten  as,

w „  =  (D (H cd ia g (v „ )H f  +  D H c C i  (3.3.16)

The MMSE equalizer in (3.3.16) requires knowledge of the channel para

meter m a trix  H c and the frequency offsets f/, (in D ).



Section 3.4. Iterative channel estimation 47

Received signal u ( n )

Training sequence

LLR

Iterative Equalizer

Frequency offset and 
Channel Estimator

F ig u re  3.1. The block diagram describing iterative channel estimation 

and equalization at the receiver.

3.4 Iterative channel estimation

Short p ilo t symbols are inadequate to estimate the frequency offsets due 

to the lim ita tion  on the resolution associated w ith  D FT. Therefore an 

iterative channel and frequency offset estimation technique where soft es

timates of the transm itted signal can use as a p ilo t signal to improve the 

estimation performance is proposed.

3.4.1 Iterative channel estimation

The in itia l channel estimate is obtained from a tra in ing sequence contained 

in the middle of a burst. This estimate is used to design the MMSE 

equalizer and to obtain an in it ia l estimate of the transm itted data. The 

soft decision based estimate of the transm itted data is then treated as a 

pilot signal to obtain a refined estimate of the channel as shown in Fig 

3.1. The a p rio ri and a posteriori LLRs of s(n) are defined as [50,55]
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p{s{n) =  1}
L|s(n)J =  In

p{s(n) =  - 1 }  
and

p{s(n) =  l | s(n)}
p{s(n) =  1 |s(n)} '

The MMSE equalizer ou tpu t s(n ) is used to obtain the difference between 

the posteriori and a p rio ri log-likelihood ratio (LLR), also called the ex

trinsic inform ation as

A L[s(n)] =  L[s(ra)|s(n)] -  L[s(n)]
=  P{s(n) -  1|<W} _  p {s (n ) =  1}

p{»(n) = - 1 U B)} ?W ») =  -1 } '   ̂ ^

Using Bayes’ theorem, p(a\b) =  , (3.4.1) can be w ritten  as

AL[s(n)] = ln P y (» ) I .W - iM ^ )  = 1} _ ln pW «) = 1}

=  In

P {5 (n )|s(n)=_1}p {s (n ) =  - 1 }  p{s(n) =  - 1 }  

P {« W li(n )= l}
P {s (n )|5(n)=_ i}

=  T [s (n )|s(n)],

To find L [s (n )|s(n)], i t  is assumed tha t the probability  density function 

(PDF) of s(n) is Gaussian w ith  variance aJ, i.e.

p {s (n )} =  - 1 =  exp ( _ ( « ( " ) .
V  '  a s /

Therefore, the conditional PD F of s(n ) becomes

_ r ; / „ \ i  •, 1  (  ( s W - m fe) ( s ( n ) - m 6)*^
P { s ( n ) |s (n )= i> }  —  /------ si  e X P  \  /t-21 )  ’

V 7r<7s |s (n )= 6  V ffala(n)=6 /

where mj, and a j|*(n)=& are respectively the conditional mean and variance 

of s(n). Here, a binary phase shift keying (BPSK) system is considered for
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which b =  { + 1 , - 1 } ,  therefore, for the above PDF, the conditional mean

and the variance are obtained from the knowledge of the channel and the

equalizer as follows [61]

m b =  £ [s (n ) |s(n)=6]

=  E [w ^ D  (H c(sn -  sn) +  u n)\

=  w ^ D H ccl 6 (3.4.2)

*8\s ( n ) = b  =  Cov{s(n),s (n) \s{n)=b}

— E{(s (r i )  -  m b)(s(n)  -  m fe)*}

=  F7{s(n)s(n)*} — m bm l  

=  w ^ D H ccl (1 -  w ^ H ccl ) (3.4.3)

Therefore, the required extrinsic in form ation L [s (n )|s(n)] can be expressed 

as

Tr~, m n (s W  -  m (+i))(s (n ) -  m (+i))* ( (s(n) -  m (_1))(s(n) -  m (_i))* 
L K ™ ) |s (n )J  = ---------------------------------- ~ 2 ------------------------ —  +   ~ 2 --------------

u  s  s

4R e{s(n)m (+i) }

=  ^

=  (3.4.4)
1 -  w ^ H ccl

The mean of the symbol (soft estimate) sn to be used in  (3.3.12) is obtained 

as [55]

Sn =  p{s(n)  =  T 1 |s (n )} - p ( 5(n) =  - ! | s ( n ) }  (3.4.5)

=  tanh ( ^ ! f M M

Then the soft estimates of the transm itted signal are treated as a p ilo t sig

nal to determine the m ultip le  frequency offsets and to refine the channel 

estimates in an iterative fashion. The iterative scheme has the ab ility  to re

solve m ultipaths, i.e. each element of (un — H csn) forms the contribution
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of a particular m u ltipa th  and the corresponding frequency offset. Hence, 

the frequency offsets by collecting the gleaned samples from (un — H csn) 

for all n can be estimated . For example the sequence obtained by collect

ing the first element of (un — H csn) w ill be used to estimate the frequency 

offset / l - i  while the sequence obtained using the L th terms of (un — H csn) 

w ill be used to obtain the estimate of fo- Finally, the variance required 

for the MMSE equalizer in (3.3.16) is computed as [55],

V „ =  1 -  |s „|2 (3.4.6)

where sn denotes the soft estimates of the transm itted symbol from the 

equalizer output.

3.4.2 Iterative channel estimation with MAP decoder

Soft-output equalizers tha t exploit a p rio ri in form ation on the channel in

puts are fed to a soft-input channel decoder, and the soft decoder outputs 

are used by the equalizer as a p rio ri in form ation to  form more reliable 

estimates of the FO and channel gain in  the subsequent iterations [46] as 

shown in Fig 3.2. Here a packet radio transmission based on four bursts is 

considered. The data sd(n) in  the packet are encoded and interleaved to 

form four bursts. A  p ilo t sequence of length 26 is inserted to each burst and 

transmitted through a frequency selective channel. A t the receiver, the 

channel corresponding to each burst is estimated and equalized separately, 

but the data symbols from all four bursts are collected, deinterleaved and 

decoded. The in it ia l channel estimate is obtained using the p ilo t sequence 

contained in the middle of each burst. This estimate is used to design 

an MMSE equalizer and to  obtain an in itia l estimate of the transmitted 

data. In the subsequent iterations, the received signal vector un in  (3.3.4) 

is passed to the iterative M MSE equalizer in (3.3.16) together w ith  prior
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Frequency offset and 
Channel Estimator

u ( n ) jk

Iterative MMSE Equalizer
Frequency 
Selective 
Channe1 w(n) S(n)

s (n )

DeinterleaverInterleaverInterleaver

MAP DecoderEncoder

F ig u re  3.2. The block diagram describing the transm itter as well as the 

iterative channel estimation, equalization and decoding at the receiver.

information from the decoder so tha t the contribution of all other symbols 

except the symbol of interest can be removed from the received signal as 

in (3.3.12). The LLR  of four consecutive bursts from the MMSE equal

izer output as shown in (3.4.4) are collected, de-interleaved and decoded 

using the M A P  algorithm  [64]. The M AP decoder would then provide 

the extrinsic in form ation L e2 (sn) of the uncoded symbols. The mean of 

the symbol (soft estimate) sn to  be used in (3.3.12) is then found from 

this extrinsic in form ation as sn =  tanh (Le2(-Sn)) [55]. The soft estimates 

of the transm itted signal are also treated as a p ilo t signal to determine 

the m ultip le frequency offsets and to refine the channel estimates in an
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iterative fashion. W ith  reliable estimates of the transmitted symbols from 

the decoder, the vector (un — H csn) in (3.3.12) can be approximated to

1
T—11

•

e j 2 n f L- i { n )

A t , - 2
e j2 7 r /L - 2 ( n - l )

©

1 0 1

g j 2 7 r / o ( n - L + l )

apart from the effect of noise. Hence the iterative scheme has the abil

ity  to resolve m ultipaths, bringing the m ultip le frequency offset problem 

into estimation of d is tinct harmonics. Here the variance required for the 

MMSE equalizer in  (3.3.16) can be computed by using the soft estimates 

of the transm itted symbol from the decoder output sn in  (3.4.6).

3.5 Simulations

To evaluate the performance of the proposed iterative frequency offsets 

and channel estimator, a normal burst structure as in  GSM w ith  116 data 

symbols and 26 p ilo t symbols in the middle [16] is considered. Conven

tionally the 26 tra in ing  symbols drawn from binary alphabets are used for 

time synchronization and channel estimation. In  order to assess the perfor

mance of the proposed A M L  estimator, a randomly chosen fixed channel 

w ith  three paths [ho =  —0.3380 — 0.7207?, hi  =  —0.3981 +  0.3426?, h2 =  

0.0492 — 0.2968?], and fixed frequency offsets [fo =  0.001, f \  =  0.002, f 2 =

0.003] is considered. The channel is first estimated using the p ilo t signal of 

length 26 symbols, and the transm itted signal is retrieved using an MMSE 

equalizer of length M  =  8 taps. The soft estimates of the transmitted 

signal are then used to  resolve m ultipaths, determine the m ultiple fre

quency offsets and to refine the channel estimates in an iterative fashion. 

In each iteration, the soft estimate of the transm itted signal is obtained
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CRLB for 142

CRLB for 26

1st Iteration 

2nd Iteration

3rd Iteration

4th Iteration

9th Iteration

6 8 10 120 2 4 14
SNR

F ig u re  3.3. Comparison of the variance of the iterative channel gain 

estimates for ho and the CRLBs assuming 26 and 142 p ilo t symbols.
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CRLB for 142 
CRLB for 26 
1 st Iteration 
2nd Iteration 
3rd Iteration 
7th Iteration 
9th Iteration
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F igu re  3.4. Comparison of the variance of the iterative channel gain 

estimates for h\  and the CRLBs assuming 26 and 142 p ilo t symbols.

CRLB for 142 
CRLB for 26 
1st Iteration 
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F igu re  3.5. Comparison of the variance of the iterative channel gain 

estimates for hi  and the CRLBs assuming 26 and 142 p ilo t symbols.
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using the iterative M M SE equalizer of length three as in (3.3.16). The 

estimation performance by comparing the variance of the channel esti

mate and the FO estimate to the CRLB using 26 training symbols and 

142 training symbols is depicted in  Fig. {3.3, 3.4 3.5} and Fig. {3.6, 

3.7, 3.8}. The results reveal an im portant observation tha t although only 

26 training symbols are available in the burst, estimators after adequate 

iterations a tta in  the CRLB as i f  the length of the tra in ing signal is 142. 

The derivation for the Cramer-Rao lower bound (CRLB) can be found 

in Appendix 1 and [17,18], [30]. This confirms tha t the iterative scheme 

makes fu ll use of the soft estimates of the transm itted signal.

0  C R LB  fo r 142

□ C R LB  fo r 26

1 st Iteration 

*  2nd Iteration

O 3rd Iteration

x 4 th  Iteration

O 9th Iteration

CO
_Jmo■ocro
0 3ra
E

-6

l
S'c<D=3er0
0
.g

o
0Oc<0
5

10 12
SNR

F igu re  3.6. Comparison of the variance of the iterative frequency offset 

estimates for / 0 and the CRLBs assuming 26 and 142 p ilo t symbols.

In order to evaluate the BER performance, a two path wireless commu

nication channel and an in it ia l equalizer of length 8 is considered. A  ran

domly chosen fixed channel w ith  two paths [ho =  0.7673 — 0.2365z,hi =  

—0.5208 — 0.2899z], and fixed frequency offsets [ f o  =  0.001, f \  =  0.005] are
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0 CRLB for 142
□ CRLB for 26
+ 1 st Iteration
* 2nd Iteration
o 3rd Iteration
X 7th Iteration
0 9th Iteration

F igu re  3.7. Comparison of the variance of the iterative frequency offset 

estimates for / i  and the CRLBs assuming 26 and 142 p ilo t symbols.

CRLB for 142 
CRLB for 26 
1st Iteration 
2nd Iteration 
3rd Iteration 
7th Iteration 
9th Iteration
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F ig u re  3.8. Comparison of the variance of the iterative frequency offset 

estimates for / 2 and the CRLBs assuming 26 and 142 p ilo t symbols.
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considered. The complex channel gains h0 and hi  have been assumed to 

be constant throughout a burst. The results depicted in Fig. 3.9 show the 

BER performance by sim ulating GSM data transmission. The training 

sequence has been chosen as explained above. Here two scenarios are con

sidered. In  the firs t scenario, an equalizer is designed ignoring the effect 

of FOs. In the second scenario, the FOs and the channel gains have been 

estimated using the proposed iterative approach. As expected, the perfor

mance of the proposed scheme significantly outperforms an equalizer not 

employing FOs estimation.

O Ignore the effect o f FOs 
+  1 s t Iteration
O 2nd Iteration
>  3rd Iteration
0  7th Iteration
□ 9th Iteration

SNR

F ig u re  3.9. The BER performance of the proposed iterative equalizer 

and an equalizer which ignores the effect of frequency offsets.

The proposed scheme can be applied to a frequency selective fading chan

nel as well. In  this case, the channel is assumed to be quasi-stationarity,

i.e. the channel is changing for every new burst but remains fixed w ith in  a 

burst. The channel and frequency offset could not be estimated perfectly
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during a bad channel condition. However, the performance of the channel 

and FO estimator can be enhanced, by using the MMSE equalizer output 

as a priori in form ation and passing them to a M AP decoder as explained 

in the previous sections. To illustra te  this, a quasi-stationary channel w ith  

random frequency offsets is considered, so tha t the channel coefficients and 

FOs do not change w ith in  a burst, but would change between bursts ac

cording to a complex Gaussian d is tribu tion  for the channel coefficients and 

uniform d istribu tion (between 0 and 0.005) for frequency offsets. This is 

reasonable as the maximum DS for a vehicular speed of 250 km /h  (RA250 

channels as defined in  GSM standards) at a carrier frequency of 900 MHz 

is 1.3 KHz, which corresponds to 0.005 when normalised to the symbol 

rate of 270 KHz as in  GSM [57]. The length of the channel is assumed 

to be five. In  this simulation, a ha lf rate convolutional code and a MAP 

decoder [55] is considered. The generating polynomials for the coder have 

been chosen as in GPRS CS1-CS3, (i.e, GO =  1 +  D 3 +  D A and G l =  

1 +  D  +  D 3 +  D 4), [65] and [66]. The data bits corresponding to four con

secutive bursts have been interleaved using a random interleaver, coded 

and modulated according to  BPSK. Then a p ilo t symbol burst of length 

26 has been inserted in  each burst and transm itted. A t the receiver, each 

bursts is separately equalized as explained in  the previous section, and the 

equalizer outputs of four consecutive bursts are collected, de-interleaved 

and decoded using M AP algorithm . The soft estimates of the uncoded 

bits are interleaved again and fedback to the iterative equalizers. The re

sult depicted in Figure 3.10 shows the uncoded BER performance for five 

iterations. The result is also compared to the matched filte r bound. For 

the matched filte r bound, the BER of a five path channel assuming no FOs 

and perfect resolution of m ultipaths w ith  ideal channel knowledge at the 

receiver is assumed. The result also depicts the BER curve of an equalizer 

that was designed ignoring the effect of FOs. The proposed scheme signif
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icantly outperforms the conventional equalizer and attains a performance 

closer to the matched filte r bound.

LU 10

Matched Filter Bound 
W ithout frequency offset estimation 
First Iteration 
Second Iteration 
Third Iteration 
Fourth Iteration

F ig u re  3.10. The uncoded BER performance of the proposed iterative 

equalizer and an equalizer which ignores the effect of frequency offsets. A 

half rate convolution coding scheme has been used.

3.6 Summary

In this chapter, the estimation and equalization of a frequency selective 

channel w ith  d istinct FOs have been considered. This problem could arise, 

when the receiver or transm itter moves w ith  very high speed w ith  different 

paths experiencing d istinct DSs, due to different angles of arrival. Accord

ing to the proposed method, m u ltipa th  gains are in it ia lly  estimated using 

the available short p ilo t sequence, and then the soft estimates of the trans

m itted signal are used to estimate the frequency offsets and to refine the 

channel estimates iteratively. In  addition to providing superior BER per-
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formance, the proposed estimator is also efficient in tha t it  attains the 

CRLB derived assuming all 142 symbols in the burst are known pilot 

symbols.
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3.7 Appendix 1

The Cramer Rao lower bound (CRLB) for the estimates of MGs and FOs 

is derived [18]. Let

u(0) =  u{n)  . . .  u(n — M  +  1) (3.7.1)

and

0 = R e(hL)T Im (h L)r  f j (3.7.2)

Under the assumption tha t cj(n) is complex white Gaussian w ith  zero 

mean and variance the CRLB can be found using Slepian-Bangs for

mula [30],

c r l b ( 0 ) \ i tP ~  |
d u H (0) d u (0 ) )

^  1 d0i dd7 ] (3.7.3)

where [P]i,p denotes the ( /,p ) th  element of P , and

=  E  -  0 ) {0  -  0 )H )  > P C r l b  (3.7.4)

Further note tha t

du(n)

du(n)  
dh\ 

du(n )

~ d T

=  ej27rfinu(n -  I)

=  j e j2” finu{n  -  I)

=  j 2 ' i m h i e :’ 27r f i n u ( n  —  I )

where h\ and h\ are the I th element of Re(hjC/) and Im (h L).

(3.7.5)



Chapter 4

ITERATIVE PARAMETER 

ESTIMATION AND 

EQUALIZATION FOR MIMO  

CHANNELS W ITH MULTIPLE 

FREQUENCY OFFSETS

The use of m ultip le input m ultip le  output (M IM O ) communication chan

nels for enhancing system capacity and link  re liab ility  has become a major 

research topic w ith in  the last decade [67-69]. W ith  multi-element antenna 

arrays at both the transm itter and the receiver, independent data streams 

could share the same frequency band and tim e slot to  increase spectral 

efficiency enormously [68]. I t  has been shown tha t the theoretical ca

pacity increases linearly w ith  the number of antennas in rich scattering 

environments [69]. However, to realise its fu ll potentia l, i t  is also very 

im portant to have efficient channel and frequency offset estimation tech

niques. Often, M IM O  transmission schemes proposed in the literature 

are based on somewhat idealized assumptions. Most M IM O  transmission 

schemes are designed for frequency-flat channels [70,71]. However, if  there 

are m ultipa th signals w ith  large propagation delays, the assumption of a

62
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frequency-flat channel may not be valid, depending on the symbol dura

tion.

Besson [70] discussed the estimation of FOs for M IM O  fla t fading channels 

w ith  distinct FOs between each transm itter and receiver. Sajid [63] and 

Qiang [72,73] extended th is  work for M IM O  frequency selective channels 

that allows distinct FOs for each m ultipa th  between each transm it and 

receive antenna. As discussed in  chapter 3, the performance of such mul

tiple antenna based systems may seriously degrade in  the presence of FOs. 

Therefore, i t  is of importance to determine these FOs and to take them into 

account in the equalizer design. In  this scenario, to estimate the FOs and 

MGs, an A M L estimator is proposed tha t exploits the correlation prop

erty of the transm itted tra in ing  sequence. However, in a T D M A  system, 

for example GSM, the p ilo t symbols are generally inadequate to obtain an 

accurate estimate of the FOs due to lim ita tion  on the frequency resolution 

of the estimator. Therefore, in  th is chapter, an iterative estimation and 

detection technique for M IM O  frequency selective channels w ith  multiple 

frequency offsets is proposed. Accordingly, an in it ia l channel estimate is 

obtained using a very short p ilo t (tra in ing) signal and the soft estimate 

of the transm itted signal is then treated as a p ilo t signal to determine 

multiple frequency offsets and to  refine the channel estimates iteratively. 

Even though the proposed iterative scheme does not need to adhere to a 

specific standard, in order to  evaluate the performance, a burst structure 

w ith  p ilot sequences of 26 symbols, and 116 data symbols for each user as 

in the global system for mobile communication (GSM) standards [16] is 

considered. In  addition to the superior BER performance, the estimation 

performance through comparison of the variance of the estimates w ith  the 

corresponding CRLBs is given.
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4.1 Problem statement

Consider a M IM O  communication system w ith  N t transm it and Nr receive 

antennas, where the signal is propagated through L  different paths for each 

transmit-receive antenna pair, w ith  each path possibly having different 

frequency offsets. The received baseband signal at antenna q is therefore 

w ritten as

r q(n) =  uq{n) +  ujq{n)
N t L —l

qt(l)ej2* f °“ nst (n - l )  +  u>,(n), (4.1.1)
t = 1 1=0

where q =  1, ... , Nr , and hqt(l) and f qti are the unknown complex chan

nel gain and the frequency offset between the receive antenna q and the 

transmit antenna £, for the m u ltipa th  tap /; each channel is assumed to be 

quasi-stationary and frequency selective, i.e., the channel impulse response 

and frequency offsets remain fixed during a burst interval but change be

tween bursts. Here { ^ ( n ) }  is the signal transm itted from the 1?h antenna 

and u>q(n) is additive, circu larly symmetric zero mean (complex) Gaussian 

noise w ith  variance cr  ̂ and is assumed to be tem porarily  and spatially un

correlated. Let

s u st (n — I) . . .  st (n — I — M  +  1) (4.1.2)

and Sti =  diag(s^), where M  is the frame length, and (-)T denotes the 

m atrix transpose.

r i Teqt(l) =  eJtofqtW . . . e j 2 n f qt l ( n - M + l )  (4.1.3)
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is a vector containing the FO between the receive antenna q and the 

transmit antenna t for the I th  path. Further, suppose that

Q qt —  S to G g i(O )

Q q =  Qgl Qg2

St(L-l )eqt(L — 1) (M  x L)

Q qNt (M  x N tL)

Hence, the frame constructed from M  consecutive received samples can 

be expressed as [63]

A
U „  = uq(n) . . .  uq(n — M  +  1)

(4.1.4)

where

K t (  o ) hqt(L -  1)
l T

V qt = Wgt(0) Vqt{L ~  1)

CJQ1 (jJqNj'

Estimating various channel gains, h gt(Z) and frequency offsets fqti , is the 

target. Let

T

fqtO f q t l f q t ( L - l )  

Tf T  c T  c T
■•■gl Lq2 qNt

(4.1.5)

(4.1.6)

Then the unknown parameter vector, 6q, corresponding to receive antenna
T

q, can be w ritten  as 0q =  

of estimating 6q is considered.

hT frq q . In  the next section, the problem
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4.2 Estimation of multipath gains and frequency offsets

In this section, an approximate maximum likelihood (AM L) estimator is 

outlined, which fu lly  exploits the structure of the transm itted training 

sequence. Since the noise, cuq(n), at each receive antenna is spatially un

correlated, the parameters associated w ith  each receiver can be estimated 

independently from the received signal. Considering (4.1.4), the likelihood 

function of u q can be w ritten  as [17]

Taking the natural logarithm  and ignoring the constant terms, as they 

w ill not affect the m axim ization of the likelihood function, (4.2.1) can be 

formulated as m inim ization of

Substituting the optim al solution of (4.2.3) in to (4.2.2) function, and m ini

mizing w ith  respect to fq, and considering a given path k, from  the transm it 

antenna j  to the receive antenna q, the approximative maximum likelihood 

(AM L) estimator of the frequency offsets is obtained as follows [18],

1 (u q  —Q qrhq i)^ (uq r —Q q h g )
^ 77? (4.2.1)

ln p (u „; 0q) «  - L  (u , -  Q ,h „ )H (u , -  Q ,h „)  (4.2.2)

This yields

=  (Q fQ ,)_1Q fu g, (4.2.3)

2

e j 2 n f n (4.2.4)

The optim ization involved in (4.2.4) can be efficiently evaluated using the 

FFT. Once the FOs are estimated, the MGs, h g, can be estimated by 

inserting the estimated values of the FOs in  (4.2.3).
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4.3 M IM O  M M SE equalizer design

For an equalizer o f length M , the received signal vector of dimension 

Nr M  x 1 is given as [63]

u (n ) =  H c(n)s(n) +  uj{n) (4.3.1)

where u>(n) is additive white Gaussian noise vector and H c(n) is the 

NrM  x N t (L +  M  — 1) channel convolution m atrix  and s(n) is the N t( M  4- 

L  — 1) x 1 transm itted signal vector and are defined as

T
u(n) =  

u  q(n) =

U i(n )  . . .  u ^  (n)

uq(n) uq(n — M  +  1)

and

H y(n) —

s(n) =  s f(n )  . . .  s Jr(n)

S t(n) = st (n) . • • st (n - M  - L  +  2)

' H n (n) H  12(n) . . .  H iM (n)

H  c(n) =
H  21(n) H  22 (n) . . .  H 2;vt(n)

_ Hivri(n) HNr2(n) . . .  H NrNt (n)

h(0)n h ( l) n . ..  h(L — l ) n 0

0 h (O )^ -1) . ..  h (L  — 2)(n_1) h (L  — l) (n_1)

: 0 :

0 . ..  0 h (0) (n-M+1) h ( l ) (n_M+1) . h(L — 1)([ n - M + 1)

where h(Z)n =  [hi j(l)ej2nfii in]. Using these definitions, the equalizer out

put for the symbol transm itted from antenna t  can be w ritten  as
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yt (n) =  w f  H c(n)s(n) +  w  fu>{n) (4.3.2)

The equalizer is obtained by m inim ising the mean square error cost func

tion

J  =  E { ( y t (n) -  st (n -  d))*(yt (n) -  st {n -  d ))} (4.3.3)

where t  e (1 ,2 , . . . ,  N t ) and d e ( 0 ,1 , . . . ,  M  +  L  — 2), therefore

where cd is the N t ( M  +  L  — 1) x 1 co-ordinate vector, only containing a 

nonzero element at position d, i.e.

The position of the nonzero element in cv determines the equalizer cor

responding to various transm itters t  e (1, 2 , . . . ,  N t) and retrieval delays 

d 6 (0 ,1 , . . . ,  M  -T L  — 2).

R e m a rk  1. Here, to  estimate the transm itted symbols perfect (apart 

from the effect of noise) the condition tirM  >  tit{ M  +  L  — 1) must be 

satisfied or [74]

which implies tha t for a m u ltipa th  channel Ur >  tit■ Moreover, M  >

(4.3.4)

cd =  0 . . .  0 1 0 . . .  0 (4.3.5)

1))
\ n R - n T \  > )
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4.4 Iterative M IM O  M M SE equalizer design

In the presence of FOs, the effective channel convolution m atrix H c(n) is 

time varying. Set the temporal equalizer length the same as the channel 

length, i.e., M  =  L  (M  =  L is adequate for the iterative method as this has 

the ability  to resolve m ultipaths and the equalizer converges to a matched 

filter), and decompose (4.3.1) to  exp lic itly  show user t symbol w ith  delay 

(L-1) as

u(n) =  H c(n)s(n) +  H c(n)ctLst (n -  L  +  1) +  w (n) (4.4.1)

where operator ctL is a coordinate vector such tha t H c(n )c ^  w ill choose 

the Lth column of H c(n) corresponding to  the 1?h transm itter antenna. 

The vector s(n) includes a ll the elements of s(n) except st (n — L +  1), i.e.,

s(n) =  s f(n ) 5Nt (n) (4.4.2)

where s<(n) =  [s*(n) . . .  s*(n — L  +  2) 0 Si{n — L)  . . .  s*(n — 2L  +  2)]T 

if  i =  t, and s<(n) =  [s»(n) . . .  Si(n — 2L  +  2)]r  when i ^  t. According to

(4.4.1) the frequency offsets can be removed by

e-j27rft>i

u (n ) =  (u (n ) — H c(n)s(n)) © •

e—j2-Kft,Nr

=  D t (H c(n)(s(n) -  s(n)) +  u>(n)) (4.4.3)

where © denotes the Schur-Hadamard product, ft,q =  [ft,qL - i (n )  ■ • • 

ft,qo(n — L  +  1)]T , s(n) is the mean of s(n) obtained from the extrin

sic inform ation passed from the BCJR based M A P  decoder and D t =
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diag(/3), (3 =  [e-J'2,rft'9 . . .  e~j2'7r{t’Nr]T . Assuming tha t the transmitted sym

bols are temporally uncorrelated, denoting E{(s(n)  — s(n))(s(n) — s(n))H} 

as a diagonal m a trix  d iag(v*(n)), where v*(n) provides the variance of the 

symbols transm itted from antenna t as in (4.5.4). Hence

E {u (n )u (n )H}  =  D * (H c(n )d iag (v*(n ))H c(n )^  +  < ; I ) D f  (4.4.4)

and

E{st (n -  L  +  l) u ( n ) }  =  E{s t (n — L  +  l ) D t (H c(n)(s(n) -  s(n)) +  w (n ))}

=  D tH c(n )c tL (4.4.5)

where E { s t (n — L  +  l) s (n ) }  is 0 because s(n) does not contain st (n — L + 1) 

and all other symbols in s(n) are uncorrelated w ith  st (n — L  +  1). Hence 

the iterative M IM O  M M SE equalizer is w ritten  as,

w ,(n ) =  (D t (H c(n )d iag (V ((n ))H c(n )/? +  a l  I )D f ) 1 D (H c(n)ct i

(4.4.6)

The symbol w ith  delay L  — 1 is estimated as

st {n — L + l )  =  w t (n)Hu(n)  (4.4.7)

The M IM O  MMSE equalizer in  (4.4.6) requires knowledge of the channel 

parameter m atrix  H c(n) and the frequency offsets f t,q (in D ). However 

short p ilo t symbols are inadequate to estimate the frequency offsets due 

to lim ita tion  on the resolution associated w ith  the D FT. Therefore an 

iterative channel and FO estimation technique is proposed where soft es

timates of the transm itted signal are used as a p ilo t signal to improve the 

estimation performance.
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u(n)

De
interleaver

De
interleaver

Interleaver

Interleaver

MAP
decoder

MAP
decoder

MIMO
Equalizer

F ig u re  4.1. Iterative M IM O  receiver.

4.5 Iterative Channel Estimation

The in itia l channel estimate is obtained using the tra in ing  sequence con

tained in the m iddle of a burst. This estimate is used to design a M IM O  

MMSE equalizer as in  (4.3.4) and to obtain an in it ia l estimate of the trans

m itted data. The in it ia l estimates of the transm itted signal at the linear 

M IM O  equalizer output are deinterleaved and passed to  a M A P  decoder as 

shown in Fig. 4.1. The M A P  decoder would provide the likelihood ratios 

(soft estimates) of the uncoded transm itted symbols which are interleaved 

and passed to the iterative M M SE equalizer. A t each iteration, the re

ceived signal vector u (n ) in (4.3.1) w ill be passed to the iterative M IM O  

MMSE equalizer in (4.4.6) together w ith  the prior in form ation from the 

decoder so tha t the contribu tion of a ll other users except the user of in

terest can be removed from the received signal as in  (4.4.3) for each user 

t. The M IM O  MMSE equalizer output st (n) is used to obtain a posterior 

log-likelihood ratios as follows [50,55]
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A L [s*(n )] =  In PRM Iatfr) =  1} 
P {5t(n)|at(n) =  - 1 }  

4Re{st (n )}
(4.5.1)

1 -  w t (n)HH c(n)ctL

where p {s*(n )|St(n) =  6}  is determined using a Gaussian distribution as

sumption as follows

For the above PDF the conditional mean and the variance are obtained 

from the knowledge of the channel and equalizer as follows [55]

The log-likelihood ratios of a ll user symbols w ill be determined in a simi

lar way. As in  the SISO case, a four-bursts based packet radio transmis

sion is considered. Therefore each burst is separately equalized and the 

equalizer outputs of four consecutive bursts for each user are collected, 

de-interleaved and decoded using M A P  algorithm  [64]. The M AP decoder 

provides a log-likelihood ra tio  (LLR ) estimate of the coded and uncoded 

symbols after each iterations. The mean of the symbol s(n) in (4.4.3) 

is found from the LLRs; updated de-interleaved and p ilo t symbols are 

reinserted. The soft estimate of the transm itted signal is then used to 

separate users and to determine the m ultip le  frequency offsets and to re

fine the channel estimates in an iterative fashion. The variance required 

for the M IM O  M MSE equalizer in  [72] is also computed as follows

(st(n)-mh)2
(4.5.2)

m b =  E [s t (n)\St(n) =  b] =  w  t {n)HD tU c(n)ctLb (4.5.3)

^st|st(n)=6 =  C ov{3t ( n ) ,5*(n )|St(n) =  b}

=  E { s t (n)st (n)* }  -  m bm l  

=  w t (n)HD tH c(n)ctL( l  -  w t (n)HH c(n)ctL)
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v*(ra) =  1 -  st (n)2 (4.5.4)

where st (n ) denotes the soft estimates (real) of the transm itted symbol 

from the decoder output.

4.6 Simulations

In order to examine the performance of the proposed iterative FOs and 

channel estimator, a system using two transm it and three receive antennas 

is simulated. As in  the SISO case, a normal burst structure as in GSM 

w ith  116 data symbols and 26 p ilo t symbols in the middle is considered. 

For each user, a p ilo t sequence was generated randomly from binary al

phabets. The length of each channel is five. Also a half rate convolutional 

code and a M A P  decoder is considered. The generator polynomials have 

been chosen as in  GPRS CS1-CS3, (i.e, GO =  1 +  D 3 +  D 4 and G1 =  

1 +  D  +  D 3 +  D 4), [65] and [66]. The data b its corresponding to four con

secutive bursts have been added, interleaved using a random interleaver, 

and modulated according to  BPSK. Then a p ilo t symbol burst of length 

26 has been inserted in  each burst and transm itted. A t the receiver, each 

burst is separately equalized as explained in  the previous section, and the 

equalizer outputs of four consecutive bursts for each user are collected, de- 

interleaved and decoded using the M AP algorithm . The soft estimates of 

the uncoded bits are interleaved again and fedback to  the iterative equal

izers.

In the simulation, parameters are estimated and the variances of the esti

mators are compared w ith  the corresponding CRLB, which is derived in 

Appendix 2 and [17], [30], [63]. Fig. 4.2 and Fig. 4.3 depict the vari

ance of the estimators for the MGs and the FOs, respectively. In this 

simulation, the results are presented only for the firs t transmit-receive
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antenna pair, but s im ilar results were observed for the remaining anten

nas. Here, a random ly chosen fixed channel w ith  five paths is considered. 

Frequency offsets were also chosen randomly in the interval 0 and 0.005 

using a uniform  d istribu tion . The channel is first estimated using the pilot 

signal burst of length 26, and the transm itted signal are retrieved using 

an MMSE equalizer of length eight and a ha lf rate convolutional decoder. 

(The equalizer length is set same as the channel length only for iterative 

MMSE equalizer. However, when the signal is equalized at the first time, 

a conventional M M SE equalizer is used whose length is set much greater 

than the channel length). The soft estimates of the transm itted signal are 

then used to separate users, resolve m ultipaths, determine the m ultiple fre

quency offsets and to refine the channel estimates in  an iterative fashion. 

In each iteration, the soft estimates of the transm itted signal are obtained 

using the iterative M M SE equalizer of temporal length five as in (4.4.6). 

The results depicted in  Fig. 4.2 and Fig. 4.3 for the channel and the 

frequency offset estim ation reveal an im portant observation tha t although 

only 26 tra in ing symbols are available in  the burst, estimators after ade

quate iterations approach the CRLB as i f  the length of the tra in ing signal 

is 142. However, M IM O  channel need a very powerful decoder in order to 

cancel both ISI and IU I. A  possible way to reduce the gap between the 

variance of the estimate and CRLB in Fig. 4.2 and Fig. 4.3 is to increase 

the code rate or to use more powerful coding scheme such as turbo codes.

In order to evaluate the BER performance, a frequency selective M IM O  

channel w ith  random frequency offsets is used, so tha t the channel co

efficients and frequency offsets do not change w ith in  a burst, but would 

change between bursts according to a complex Gaussian d istribu tion for 

the channel coefficients and uniform  d is tribu tion  (between 0 and 0.005) 

for FOs. The uncoded BER performance for five iterations has been pro-
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+  1st Iteration
O 2nd Iteration
*  3rd Iteration
x 4th Iteration
□ CRLB for 142
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F igu re  4.2. Comparison of the variance of the iterative channel gain 

estimate for h u  and the CRLBs assuming 26 and 142 p ilo t symbols. hqt 

is the channel gain between the first receive antenna and the transmit 

antenna t for path k. The estimation performance for hqt is also similar 

to that of hn , hence not depicted.

duced, and compared w ith  the single-user matched filte r bound in Fig. 4.4. 

For the matched filte r bound, the BER of a three receive antenna and five 

path channel assuming no frequency offsets and perfect resolution of the 

m ultipath w ith  ideal channel knowledge at the receiver is obtained. The 

BER curve of a M IM O  equalizer tha t was designed ignoring the effect of 

FOs has also been produced. The proposed scheme significantly outper

forms the conventional equalizer and attains a performance closer to the 

matched filte r bound.
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0  CRLB for 26
+  1 st Iteration
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x 4th Iteration
□ CRLB for 142
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F igu re  4.3. Comparison of the variance of the iterative frequency offset 

estimate for f n  and the CRLBs assuming 26 and 142 p ilo t symbols. f qt 

is the frequency offset between the firs t receive antenna and the transmit 

antenna t for path k. The estimation performance for f qt is also similar 

to that of / n ,  hence not depicted.

4.7 Summary

In this chapter, an iterative algorithm  for the estimation of MGs and FOs 

for the frequency selective M IM O  channel w ith  d is tinct FOs is provided. 

According to the proposed method, m ultipa th  gains are in it ia lly  estimated 

using the available short p ilo t sequence, and then the soft estimates of the 

transmitted signal are used to  estimate the frequency offsets and to refine 

the channel estimates iteratively. In  addition to provid ing a superior BER 

performance, the proposed estimator is also efficient in  tha t i t  tends to 

atta in the CRLB assuming all 142 symbols in  the burst are known pilot 

symbols.
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W ithout frequency offset estimation 
First Iteration 
Second Iteration 
Third Iteration 
Fourth Iteration 
Matched Filter Bound

SNR

F ig u re  4.4. The BE R  performance of the proposed M IM O  iterative 

equalizer and a M IM O  equalizer which ignores the effect of frequency 

offsets.
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4.8 Appendices 2

The Cramer Rao lower bound (CRLB) for the estimates of MGs and FOs 

for a M IM O  environment is derived [63]. Recalling (4.1.1), and stacking 

all the received samples from  tim e n  to (n — M  +  1), from all antennas,

(4.1.1) can be w ritten  in vector form as

w ith  u and u> formed sim ilarly. Denote the unknown desired vector para-

r  =  u + (4.8.1)

where

r  =  r (n )T • • • r  (n — M  +  1)T

r (n ) — r i ( n )  ••• r Nr(n)

meters

(4.8.2)

where

0q = [ R e { h qf  I m ( h q) T  f t (4.8.3)

Since the noise sequence u q(n) is spatia lly uncorrelated, the Fisher infor

mation m atrix  (F IM ) for the estimation of 6 can be found using Slepian- 

Bangs formula [17,30].
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where

d u H
deq

d u H
d R e ( h q)

d u H
d l m ( h q )

d u H
- d f q

(3NtL  x Nr M )

du d u d u  d u (.NrM  x
d e l  1- d R e ( h t T ) d I m ( h t T ) d f t ^

=  1 , 2 , iVr . The F IM  can be w ritten  as

'  F ( l , l ) F ( l,2 ) F ( l,  N r )

F  =
F (2 ,1) F (2 ,2) ••• F(2 , N r )

. F(7Vr , 1) F(JVr ,2) F (Nr , N r )

(4.8.5)

where F(g, t) denotes the (q, i ) th  sub-m atrix of the F IM  corresponding to 

the parameters 0q and 0t . From (4.8.4), i t  can be noted tha t F (q,t) =  0 

whenever q ^  t. Hence, there is a decoupling between the estimation error 

in parameters corresponding to two different receive antennas and the F IM  

is block diagonal, which justifies tha t the parameters corresponding to 

each receive antenna can be estimated independently. Let F q =  F(q,q),  

the F IM  of size 3NtL  x  3NtL  corresponding to the estimation of 6q =  

[Re(hq)T I m ( h q)T f q ]T , then F q can be represented as

F  =  r  q

F q[Re(hq) ,R e (h q)] F q[Re(hq), I m ( h q)] F q[Re(hq), f q\

F q[ Im ( h q) ,R e (h g)] F q[ Im (h q) J m ( h q)] F q[ Im (h q), f q]

F q[ f q, Re(hq)] F g[fg, I m ( h q)] F q[ f q, f q]
(4.8.6)
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and the elements of F g can be found using the differentials

a S g o  =  - 0  <4-8.7.)

^ L = , V ^ % ( n - 0  (4.8.7b)

/  (  71 ^
—  =  j n h qt(l)ej2irf<ltinst(n -  Z) (4.8.7c)

VJqtl

Introduce

TJ =  P HP

Pg=[ Pgl ( 0 )  ••• P g l ( L - l )  ••• p qNt(L  — 1)]

P q t iP ) =  ^ q k ^ q t iP )

D n =  diag (0,1, • • • , N  -  1)

■Dk ~  diag (hqi(0), • • • hq\ [ L  1), , hqNt [L  1))

T  q =  P fD „P ,D ^  

G , =  D fP fD ^ P ,D ft 

B  =  [Re(Gg -  T ^ U " 1T ,) ]_1

The individual elements corresponding to the estimation of 6q can be

found from (4.8.4). Therefore, the in it ia l row of the submatrices in (4.8.6)

can be w ritten  as

F ,[/te (h ?),.Re(h,)] =  ,R e [P fP j  (4.8.8)

F , [/?e(h,),/m (h,)] =  - / to [P fP ,]  (4.8.9)

F , [fle(h,), /,] = - / t o  [P f  D nP ,D h] (4.8.10)

The second row of matrices can be w ritten  as

Fq [7m(hg), Re(hq)} = Im [P f  P j  (4.8.11)

Fg [7m(hg), 7m(hg)] =  Re [ P f P j (4.8.12)
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F , [ I m ( \ ) , f q] =  Re [P fD „ P ,D h] 

Similarly, the th ird  row of matrices can be w ritten  as 

F , [/„  Re(h,)] =  - I m  [P fD nP ,D „]H

F , [ / „  I m ( h q)\ =  Re [P *D nP ,D ft]H

F g [ fq , fq ]  =  l?e(D"P, D„P,D),] 

In compact form (4.8.6) can be w ritten  as

(4.8.13)

(4.8.14)

(4.8.15)

(4.8.16)

F =r Q

Re( U q) —I m ( \ J q) —I m ( T q) 

Im(XJq) Re(\Jq) R e (T q)

_ —I m ( T q)T R e (T q)T Re (G q)

(4.8.17)

Note tha t there is a coupling in  the estimation error between the channel 

parameters and the FOs. The CRLB is obtained as the inverse of the 

FIM , i.e.,

CRLB(0,) =  F - 1. (4.8.18)

The inverse of F q can be calculated by using the m a trix  inversion lemma, 

i.e,

c r„
CRLB(0q) =  - f -

Re( U "1) - I m (  U - 1) 0 

/m C U -1) R e (V q l ) 0 

0 0 0

+

x

I m (  U - ‘T ,) 

I

[Jte(G, -  T ?  U,-‘T,)] -1

I m ( U Z ' T ' F  - R e ( V - l T q)T I (4.8.19)
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From (4.8.19), the C R LB associated w ith  the FOs becomes

C R LB(/„) =  [R e (G g -  T f  U ^ T ,) ]_1, (4.8.20)

and the CRLB for the real and the imaginary parts of the MGs are given 

as

CRLB[Re(h,)] =  [^ (U ^ 1) + /m (U -1T5)B /m (U ,:1T ,)T]  

CRLB[/ro(h,)] =  [ ^ (U " 1) +  i?e(U -1T ,)B R e(U -1T ,)r ]



Chapter 5

FREQUENCY 

SYNCHRONIZATION AND 

CHANNEL ESTIMATION 

TECHNIQUES FOR MIMO  

OFDM SYSTEMS

Most future wireless communication networks w ill be based on broadband 

transmission and reception. The broadband services require reliable and 

high data rate communications over time-dispersive (frequency-selective) 

channels w ith  lim ited  spectrum and intersymbol interference (ISI) caused 

by m ultipa th  fading. Orthogonal frequency division m ultip lexing (OFDM) 

is a leading m odulation and access technique for broadband wireless com

munications. This combined w ith  m ultip le  inpu t m ultip le  output (M IM O ) 

transmission systems [68] promises a substantial increase in  the through

put to support data intensive services such as m ultim edia and interactive 

applications.

OFDM  is very sim ilar to  the well known and w idely used technique of 

frequency division m ultip lexing (FD M ). I t  uses the same principle as in

83
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FDM  to allow m ultip le  messages to be sent over a single radio channel. 

The main difference between FD M  and OFDM  is tha t in OFDM, the 

spectrum of the ind iv idua l carriers could m utually overlap. These sub

carries overlap in  the frequency domain but do not cause IC I due to the 

orthogonal nature o f the subcarriers. Another advantage of OFDM  is 

its ab ility  to transform  a wideband frequency-selective channel into a set 

of parallel fla t fading narrowband channels. This substantially simplifies 

the channel equalization problem. The principal weakness of OFDM is 

its sensitivity to frequency offsets caused by Doppler shifts and/or local 

oscillator mismatches. In  particular, the presence of frequency offset in

troduces in ter-carrier interference (IC I) tha t could significantly degrade 

the radio link  performance [75]. In  th is chapter, the basics of OFDM  are 

reviewed and the frequency synchronization problem is studied in detail. 

Issues such as tim ing  synchronization and sampling clock synchronization 

are im portant, bu t w ill not be treated here. Assuming tha t the system 

has perfect frame and tim e synchronization, only carrier frequency offset 

estimation is considered here. Several FO schemes for O FDM  have been 

proposed in  the lite rature. Tracking of the frequency offsets using pi

lots has been analyzed for single-antenna systems in  [76]. Lately, M IM O  

OFDM has been considered, and several papers investigated both p ilot 

design [77] and FO estim ation techniques [78].

Again all previous works assumed single FOs. However, in  th is chapter, 

estimation and detection techniques for O FD M  channels w ith  multiple 

FOs is investigated.

5.1 A brief overview of an OFDM  system

Assume tha t the in form ation symbols are transm itted at the rate of R 

symbols per second over a m u ltipa th  channel. The duration of each sym
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bol is therefore Ts =  1 / R. I f  the delay spread, Tm a x  > Ts/ 10, then the 

receive signal may suffer from significant intersymbol interference (IS I). 

Such a channel is said to  be dispersive or frequency selective. There are 

two main approaches to  cope w ith  such channels. The first approach is to 

use a single carrier system w ith  an equalizer at the receiver to compensate 

for the ISI. The im plem entation of the equalizer may become very chal

lenging for channels w ith  large delay spreads, specially at very high data 

rates. The second approach is based on m ulticarrier modulation, such 

as orthogonal frequency division m ultip lexing (O FD M ). In  this chapter, 

OFDM is focus on investigating. A  SISO based O FD M  system is first 

investigated and then generalised to a M IM O  system. The basic princi

ple of an O FD M  system is tha t the available bandw idth is divided into 

a large number of subbands, and over each subband the wireless channel 

can be considered nondispersive or fla t fading. The original data stream 

at rate R  is sp lit in to  K  parallel data streams, each at the rate R / K .  The 

symbol duration, T , for these parallel data streams is therefore increased 

by a factor of A ,  i.e., T  =  K T S. Conceptually, each of the data streams 

modulates a carrier w ith  a different frequency and the resulting signals 

are transm itted simultaneously. Correspondingly, the receiver consists of 

K  parallel receiver paths. Due to  the increased symbol duration, the ISI 

over each channel is reduced to  r max/ ( K T S) symbols.

OFDM systems transm it low-rate signals simultaneously over a single 

transmission path. Low symbol rate makes O FD M  resistant to the ef

fects of ISI caused by m u ltipa th  propagation. The effects of ISI on an 

OFDM signal can be fu rther improved by the addition of a guard period 

at the start of each symbol in the tim e domain. The guard period is gener

ally a cyclic copy of the last bits of the actual data being transm itted. The 

length of the cyclic prefix is kept at least equal to  L  — 1 samples. Under
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F ig u re  5.1. Baseband O FD M  system model.

this condition, a linear convolution of the transm itted sequence and the 

channel is converted to  a circular convolution. Therefore, the effects of 

ISI are easily and completely removed. Moreover, th is approach enables 

the receiver to  use the F F T  technique for O FD M  implementation [79].

5.2 Problem statement (SISO case)

The baseband equivalent representation of an O FDM  system is depicted 

in Fig 5.1. The inpu t data are first fed in to a serial to parallel (S/P) 

converter. For sim plicity, BPSK in  a ll N  subcarriers is considered. The 

modulated data symbols, represented by 5(0), ..., S ( N  — 1), are then 

transformed using the inverse fast Fourier transform  (IF F T ) and parallel 

to serially converted to obtain the transm itted data in the time domain
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where the term  ^7= is used to  ensure the to ta l symbol energy is not changed 

by the transform ation. In  order to avoid intersymbol interference (ISI), 

cyclic prefix (CP) symbols o f length v, are added to each O FDM  symbol 

and transm itted though the channel. Let the signal transm itted through 

the channel be 5(0 ), s ( l) ,  ..., s (N  +  v — 1). The received data sequence 

y(0), y ( l) ,  ..., y ( N  +  v — 1) corrupted by m u ltipa th  fading and zero mean 

AWGN is converted back to frequency domain signals T (0 ), ..., Y ( N  — 1) 

after removing the CP, and perform ing FFT . A  m u ltipa th  length of L  w ith  

distinct FOs is considered. The received signal at the channel output is 

w ritten as [80]

l -  1

y(n) =  his(n  — Z)ej27r̂ n +  o;(n), n =  0 ,1 ,..., N  +  v — 1 (5.2.2)
1=0

where hi and f i  are the unknown complex channel gain and frequency 

offset for the Ith channel tap, and u>(n) is an additive circu larly symmetric 

zero mean white (complex) Gaussian noise w ith  variance cr .̂

5.2.1 Time domain estimation

A frame of 60 O FD M  symbols w ith  each O FD M  symbol consisting of 

64 subcarriers is considered. In  each frame, the firs t transm itted OFDM 

symbol is a long tra in ing  sequence based on two consecutive identical sets 

of OFDM  samples [81]. Assuming the channel impulse response (CIR) 

and FOs change from  frame to frame according to a complex Gaussian 

d istribution and uniform  d is tribu tion  (0 - 0.005), respectively. W ith in  each 

frame, the FO for the Ith path varies between O FD M  symbols according 

to a random walk model

f i  =  o tfi +  (1 -  a)r j (n ) (5.2.3)
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where a  has been chosen as 0.99 in our simulation. 77(71) is a zero mean

real Gaussian variable w ith  variance equal to 0.001. Furthermore i t  is

assumed tha t the system has perfect tim e synchronization. Let si n —
1Ts(n — I) . . .  s(n  — I — N  +  1) and s(n) be the soft estimate of the 

transm itted signal s(n). Th is soft estimate is treated as a p ilo t signal to de

termine the m ultip le  frequency offsets and to refine the channel estimates.
r  I 2Further, the vector o f dimension iV x  1 e^n =  eo^fin  ej 2nfi(n-N+i)

models the effect of frequency offset on the signal vector of length N  as

sociated w ith  the f h path. Define a n iV x L  m atrix  Q n =

So,n ©  ® 0 ,n  • • • l ,n  ©  ® L —l ,n

product. For example,

, where © denotes the Schur-Hadamard

So,n ©  ®0,n

e j2 7 r /0 (n )

e j 2 n f o ( n - l )

©

e j 2 i r f o ( n - N + l )

s{n) 

s(n — 1)

s(n  — N  +  1)

s(n)eJ'27r/o(n) 

s(n  — l)e-727r̂ °(n~1)
(5.2.4)

Therefore equation (5.2.2) using the soft estimate of the transm itted signal 

can be w ritten  in  a vector form  as

l —1
Yn — ^  ̂h iS itnGijTl +  U)n — Qn^-L T (5.2.5)

1=0

where h l  =  [ho . . .  H l- i ] t , <̂ n — [w{n) . . .  co(n — N  +  1)]T and 

S =  diag(sZjn). The various channel gains, hL and frequency offsets 

fz, =  [fo ■■■ f L- i ] T are estimated in  the tim e domain using the received 

signal 7/(71) and the soft estimate of s(n). The unknown parameter vector



Section 5.2. Problem statem ent (S ISO case) 89

6 can be w ritte n  as 0 =  [h0 . . .  / i l - i  /o • • • / l - i ] t  =  [hTL / J ] T. The 

log-likelihood function is given by [18],

ln p (y n; 0) «  — \  (y n -  Q nh L)H (y n -  Q nh L) (5.2.6)

By maxim ising (5.2.6) w ith  respect to  h L, the maximum likelihood esti

mate of h l  is obtained as follows [18]

h i, =  (Qn Q n ) '1 Q ^y »  (5.2.7)

Substituting the op tim a l solution (5.2.7) in to (5.2.6), and m inim ising w ith  

respect to //,, the approxim ative maximum likelihood (A M L) estimator of 

frequency offsets is obtained as follows [18],

f x =  arg max
p - i

y*(n )s (n  — x)e^2ir^n
7 1 = 0

(5.2.8)

where P  is the number of sample used for the estimation. The optim iza

tion involved in  (5.2.8) can be efficiently evaluated using the fast Fourier 

transform (FFT ). Once the frequency offsets have been found, the channel 

gains are obtained using (5.2.7).

5.2.2 Iterative channel and FO estimation in SISO OFDM

The proposed ite ra tive  technique for the estim ation of m ultip le  FOs uses 

the long tra in ing  signal available in O FDM  to obtain an in it ia l estimate 

of channel gains and m ultip le  FOs. I t  then combines th is w ith  the soft 

estimate of the data to continuously track m ultip le  FOs as shown in Fig. 

5.2.

The in it ia l channel estimation is used to  obtain the channel gain at each
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Figure 5.2. O FD M  tra in ing  structure.

subcarrier. Denote the gain in  the n th subcarrier as H n. In  a conventional 

OFDM receiver, a per tone M M SE equalizer is employed as

Wn =  (H nH*n +
e r f

(5.2.9)

Using this per tone equalizer, the soft estimate of the transm itted signal 

is obtained as

S(n) =  W *Y  (n) (5.2.10)

where Y (n )  is the received signal at the nth subcarrier (after FFT). The 

a priori and a posteriori LLRs of S(n) are defined as [55]

L [S (n )] =  In
p {S (n ) =  1} 

p {S (n ) =  - 1 }
and

M 1 , P {5 ( " )  =  1U (n)}
£ [S M s (» ) ]  -  l n p {5 ( „ )  =  _ i ,  }

The output S(n) is used to obtain the difference between the posteriori and 

a prio ri log-likelihood ra tio  (LLR ), also called the extrinsic information,
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of S (n ) is as follows [50,55]

AL[S(n)] = L[S(n)|a(B)]-L [S (n )]

p {5 (n )  =  - 1 |  §{n)} p {S (n ) =  - 1 }

Using Bayes’ theorem, p (a ; b) =  , (5.2.11) can be w ritten  as

AL[5(«)] = In = 1> _ ln K5(«) = 1}

In

p {5 (n ) |5(n)=_ i}p {S (n )  =  - 1 }  p {S {n ) =  - 1 }

P{^Wlg(n)=l}
P {S (n )\S{n )= -i}

=  4R-el.^ M  (5.2.12)
l  -  w ; H n

The mean of the symbol (soft estimate) is obtained as

S(n) =  tanh(AZ/[*S(n)]) (5.2.13)

After the IF F T , the soft estimates of the transm itted symbols are then

treated as a tra in ing  signal to  determine m ultip le  FOs and to refine the

channel estimate and FOs in  an iterative fashion. The estimate of the 

transm itted signal are updated using the new channel estimate and the 

FOs. Once the FOs are determined, /), at each ite ra tion  stage, the FOs 

can be corrected in  the received signal. The correction procedure can be 

mathematically described as

=  (5.2.14)
1=0

where yi(n) is the resolved m u ltipa th  corresponding to path I and obtained 

using the iterative method as
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L —l

Vi(n) =  y{n )  — hms(n — m)ej27T̂ rnn (5.2.15)
77i=0,

This procedure w ill be continued u n til the residual error has no significant 

effect on the system performance. Having obtained the estimated FOs, 

the CSI can be updated afterwards.

5.2.3 Simulations results for SISO channels

In  this section, i t  is assumed tha t 60 O FD M  symbols are in  each frame, 

w ith  each O FD M  symbol having N  =  64 subcarriers. For all simula

tions, the length of the CP is kept equal to  the order of the channel and 

the number of carriers is equal to the number of symbols in an OFDM 

block. The transm itted  frequency domain symbols are BPSK. In

order to assess the performance of the proposed A M L  estimator, a ran

domly chosen fixed channel w ith  two paths [/to =  —0.2502 +  0.0363z, h i =  

—0.8932+  0.3719z], and fixed frequency offsets [ /0 =  0.001, f \  =  0.005] are 

considered. The channel is firs t estimated using the long tra in ing signal 

available in O FD M  symbol. The soft estimates of the transm itted signal 

are then used to  resolve m ultipaths, determine m ultip le  FOs and to refine 

the channel estimates in  an iterative fashion. A t each iteration, the soft 

estimate of the transm itted  signal are obtained using the new FO and 

channel estimation. The results are depicted in  Fig. 5.3 and Fig. 5.4 

for the channel and the FO estimation, respectively. The derivation for 

the CRLB can be found in  [17,18], [30] and [63]. This confirms tha t the 

iterative scheme makes fu ll use o f the soft estimates of the transmitted 

signal at moderate to  high SNR.

In order to evaluate the BER  performance, a quasi-stationary channel w ith  

distinct m u ltipa th  FOs is considered, so tha t the FO and channel coeffi

cients change between frames of 60 O FD M  symbols according to uniform
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(0 - 0.005) and complex Gaussian distributions, respectively. However, 

the m ultip le FOs have been assumed to  vary between O FDM  symbols in 

each frame according to  (5.2.3). The proposed iterative scheme has the 

ab ility  to track the FOs as depicted in  Fig. 5.5. The length of the channel 

is assumed to be two. The results depicted in  Fig. 5.6 show the BER 

performance of the proposed iterative method for three iterations. The 

result is compared to  a scheme tha t does not track frequency offsets. A 

substantial gain in  terms of dB is obtained using the proposed method. 

Note unlike our previous results for T D M A  system, the CRLB is achieved 

only w ith  the firs t iteration. This is because an in it ia l frequency offset 

estimation is obtained by using the long tra in ing symbol in OFDM.

1 st Iteration 
2nd Iteration 
3rd Iteration 
CRLB for 64

S 10

SNR

F ig u re  5.3. Comparison of the variance of the iterative channel gain 

estimate for h0 and the CRLBs assuming 64 p ilo t symbols. The estimation 

performance for h i is also sim ilar to th a t of ho, hence not depicted.
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F ig u re  5.4. Comparison of the variance of the iterative frequency offset 

estimate for / 0 and the CRLBs assuming 64 p ilo t symbols. The estimation 

performance for f i  and is also sim ilar to  tha t o f fo, hence not depicted.

x 10' Tracking information for 1st path

-2

---------True frequency offset variation for fo
---------The estimate for tracking frequency offset

LJ
.1-------------- 1--------------- 1

0

x 10"

50 100 150 200 250

Tracking information for 2nd path

300 350

True frequency offset variation for f1 
The estimate for tracking frequency offset

300 350200 250100 150

F ig u re  5.5. Tracking frequency offsets for m ultipa th  channel.
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*  Without frequency offset tracking
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F ig u re  5.6. The BER  performance of the proposed iterative method and 

the one which does not track the frequency offsets.
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F ig u re  5.7. 2 x 2  M IM O  O FD M  baseband system.

5.3 Problem statement (M IM O  case)

Fig. 5.7 illustrates a baseband M IM O -O FD M  system. The original data 

stream is firs t encoded by a convolutional encoder (assumed to  be 1/2- 

rate), interleaved and serial-to-parallel converted in to N T parallel data 

substream, where N t  is the number of transm it antennas. Each data 

substream is mapped onto a stream of symbols. A fte r modulation, the 

IF F T  is performed on each stream of symbols, a cyclic prefix of length v 

is inserted and transm itted. The signal is propagated through L  differ

ent paths for each transmit-receive antenna pair, w ith  each path possibly 

having different FOs. The receive signal at the qth receiver antenna is

n t  l - i

Vq(n) =  EE  hqt(l)s t {n l)e^ ^q -\-ojq{ri), (5.3.1)
i = 0  1—0

where n  =  0 ,l,...,7 V  +  u — 1, hqt(l) and f qti are the unknown complex 

channel gain and the frequency offset between the receive antenna q and
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the transm it antenna t , for the Ith. path. Here {s f (n )} is the signal trans

m itted from the tth. antenna and cuq(n) is an additive, circularly symmetric 

zero mean white (complex) Gaussian noise w ith  variance a^ and assumed 

to be spatia lly uncorrelated.

5.3.1 Iterative channel and FO estimation

In this section, the channel impulse response (C IR) and frequency offsets 

are assumed to  change between frames according to  a complex Gaussian 

d istribu tion and un ifo rm  d is tribu tion  (0 - 0.005), respectively. W ith in  each 

frame, however, the frequency offsets and the channel gains are assumed to 

be changing between O FD M  symbols according to a random walk model

/,T i+1 =  “ /,? ! +  ( !  -  (5.3.2)

K l +1(l) =  0h™(l) +  (1 -  0)V2(m) (5.3.3)

where /JJ and h ^ ( l)  are the FOs and the channel gain for the path I be

tween the t ih transm it antenna and qth receive antenna at O FDM  symbol 

number m. r ji(m )  is the real Gaussian variables w ith  variances equal to 

0.001 and 772 (m) is zero mean complex Gaussian variables w ith  variances 

equal to 0.1. The value of a  and (3 are chosen as 0.99.

For the M IM O  frequency selective channel, denote the gain in the n th  sub

carrier as H (n ). Therefore, as in a conventional M IM O  O FDM  receiver, 

to decode the transm itted signal, a per-tone M IM O  M MSE equalizer is 

employed as
2

W (n )  =  (H (n )H (n ) *  +  ^ I ) " 1! ! ^ )  (5.3.4)
^S

Using this per tone equalizer, the soft estimate of the transm itted signal 

is obtained as
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St (n) — (n )Y (n ) (5.3.5)

where Y (n )  is the received signal at the n th  subcarrier (after FFT) and 

w t (n) is the t ih column of the M IM O  equalizer W (n ). The output St (n) 

is used to obtain the difference between the posteriori and a priori log- 

likelihood ra tio  (LLR ) as follows [50,55]

Lel[St(n)] =  =  -  ‘- v l T T ^ T Tp {5 t(n )  =  - l | $ t(n)} p {S t (n) =  - 1 }

=  In̂ (^WUdn)=+l}

4 R e {^ (n ) }
1 -  w t (ra )*H t (ra) ( j

where H t (n) is the t th column of the H (n ). The mean of the symbol (soft 

estimate) is obtained as

St(n) =  ta n h (L ei[5 t(n )])  (5.3.7)

After the IF F T , the soft estimates of the transm itted symbols are then 

treated as a tra in ing  signal to  separate users and to determine the m ultiple 

FOs and to refine the channel estimate and FOs in an iterative fashion. 

The estimate of the transm itted  signal are updated using the new channel 

estimate and the frequency offsets. Once the FOs estimate fq in (4.2.4) is 

obtained, at each ite ra tion  stage, the FO can be corrected in the received 

signal. The correction procedure can be m athem atically described as

N t L - 1

%(«) = E E y U n '>e~j2'rfqun (5-3-8)
t =  1 1=0

where ylqt{n) is the resolved m u ltipa th  between the receive antenna q and 

the transm it antenna t which is obtained using iterative method as
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N t L —l

ylqt(n ) — Vq(n ) - ^ 2  K t ( m )st(n -  m)ej2nfqtrnn (5.3.9)
t = 1 m = 0 ,m ^ l

For each O FD M  symbol in  the frame, the frequency offsets and the channel 

gains are estimated, and the estimate of the channel is used to obtain an 

in itia l estimate of the transm itted signal in  the subsequent O FDM  symbol. 

This procedure continues u n til the last O FDM  symbol is reached in the 

frame. Once the soft estimates of all O FDM  symbols are obtained in 

the frame (of 60 O FD M  symbols), they are deinterleaved and passed to 

a M AP decoder to obtain soft estimates of the transm itted signal which 

w ill be used to perform  iterations a number of times to obtain a refined 

estimate of the channel, frequency offsets and the transm itted symbols.

5.3.2 Simulations results for M IM O  channels

Two transm it and two receive antennas have been used for the iterative 

receiver. The length of the channel is assumed to be two. A  half rate con

volutional code and a M A P  decoder are considered. The generator poly

nomials have been chosen as GO =  1+  D 3 +  D 4 and G1 =  1 +  D  +  D z +  D 4. 

The data bits w ith  length 60 x N  have been interleaved using a random 

interleaver, and m odulated according to OFDM . A t the receiver, the equal

izer outputs for each user are collected, de-interleaved and decoded using 

the M AP algorithm . The soft estimation of the uncoded bits are inter

leaved again and fedback to  the iterative equalizers. The soft estimates of 

the transm itted signal are then used to separate users, resolve multipaths, 

determine m ultip le  frequency offsets and to refine the channel estimates 

in an iterative fashion. A t each iteration, the soft estimate of the trans

m itted signal is obtained using the updated frequency offset and channel 

estimates. The proposed iterative scheme has the ab ility  to  track the FOs 

as depicted in Fig. 5.8. There are two scenarios are considered. In  the
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first scenario, the FOs are changed according to (5.3.2) between OFDM 

symbols (64 samples), bu t the channel is assumed to be fixed through

out the frame. The results are depicted using solid lines in Fig. 5.9. In 

the second scenario, in  add ition to frequency offset variation, the chan

nel coefficients also changed according to  (5.3.3). The result are depicted 

using dashed lines in  Fig. 5.9. The result shows the BER performance 

for three iterations, and compares the BER result when the FOs are not 

tracked. The sim ulation results show tha t the proposed iterative scheme 

outperforms a scheme tha t assumes fixed channel coefficients w ith in  the 

frame.

5.4 Summary

In this chapter, ite ra tive  channel and frequency offset estimation algo

rithms for m u ltipa th  channels w ith  m ultip le  frequency offsets for an OFDM 

environment have been proposed. According to the proposed method, 

m ultipath gains are in it ia lly  estimated using the available long p ilo t se

quence in an O FD M  symbol, and then the soft estimates of the transm itted 

signal are used to estimate the frequency offsets and to refine the channel 

estimates iteratively. The sim ulation results demonstrated the proposed 

technique has the a b ility  to track m ultip le  frequency offsets. In  addition 

to providing superior BER  performance, the proposed estimator is also 

efficient in  th a t i t  atta ins the CRLB derived assuming all 64 symbols in 

the O FDM  symbol are known p ilo t symbols.
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F ig u re  5.9. The BER  performance of the proposed iterative method and 

the one which does not track frequency offsets for a M IM O  O FDM  system.



Chapter 6

CONCLUSION AND FUTURE 

WORK

6.1 Conclusion

For the equalization o f wireless channels w ith  long delay profiles, optimal 

M L techniques are not feasible due to high com putational complexity. A 

review of low com plexity LE  and DFE equalizers shows tha t the gain in 

terms of com plexity is traded against reduced performance. In  order to 

keep down com plexity while m aintaining satisfactory performance, itera

tive equalization techniques have been adopted. By ite ra tive ly processing 

data, good performance can be achieved. For high data rate transmis

sion, the mobile channel introduces significant Doppler shifts in the car

rier frequencies which result from  tim e variations in  the frequency selective 

channels. Estim ation of channel parameters becomes a challenging prob

lem in fast tim e varying channels. Therefore, the main focus of this thesis 

has been on the parameter estimation and equalization techniques for fre

quency selective channels, w ith  particu lar focus on iterative methods.

In the first part of the thesis, a simple tim e-varying channel has been 

considered for very high data rate transmission. Due to the relative mo

tion between the transm itte r and receiver, various m ultipaths experience
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different DSs due to  different angles of arrival. A t first, the equalization 

of a SISO channel th a t allowed m ultipaths w ith  d is tinct DSs was con

sidered. To m itiga te  the effects of the channel and FOs, the equalizer 

required knowledge of both  CSI and FOs. However, in a GSM system, 

the p ilo t symbols are generally inadequate to obtain an accurate estimate 

of the FOs due to  lim ita tio n  on the frequency resolution of the estimator. 

Therefore, an ite ra tive  algorithm  has been considered, so tha t the soft 

estimate of the transm itted  signal were treated as a long p ilo t sequence 

to determine m ultip le  FOs and to refine channel estimates iteratively. To 

validate the performance of FOs and CSI estimators, the variance of the 

estimates has been compared w ith  appropriate CRLBs. The BER perfor

mance showed superiority of th is scheme over conventional equalizers.

In the second part of the thesis, the techniques proposed for SISO channel 

have been extended to  a M IM O  frequency selective channel. Using the 

iterative technique, the M IM O  frequency selective channel was decoupled 

into m ultip le single-input single-output (SISO) fla t fading sub-channels 

through appropriate ly cancelling both inter-symbol-interference (ISI) and 

the inter-user-interference (IU I) from the received signal. As in the case 

of a SISO channel, the d is tinct FOs could not be compensated prior to 

equalization. Therefore, they were accounted for in the iterative equalizer 

design. The soft estimate of the transm itted signal was used to separate 

users and to determine the m ultip le  FOs and to  refine the channel esti

mates in an ite ra tive  fashion. The sim ulation results revealed tha t the 

iterative scheme made fu ll use of the soft estimates of the transmitted 

signal.

Finally, the iterative estim ation and equalization techniques proposed for 

SISO and M IM O  T D M A  systems have been extended to SISO and M IM O
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OFDM systems. The O FD M  scheme is very sensitive to  frequency offsets 

caused by Doppler shifts and /or local oscillator mismatches. The pres

ence of frequency offset (FO) introduces inter-carrier interference (IC I) 

that could sign ificantly degrade link  layer performance [75]. Using both 

the time and frequency samples, a low complexity iterative algorithm was 

proposed. M u ltip a th  gains were in it ia lly  estimated using the available 

long p ilo t sequence in  O FD M  symbol. These tim e domain estimates were 

used to design a per tone M M SE equalizer to decode the transm itted sig

nal in the frequency domain. An IF F T  was performed on the estimated 

frequency domain samples to obtain the tim e domain symbols. These time 

domain samples were used to estimate the m u ltipa th  gains and frequency 

offsets iteratively. The m erit of th is iterative method is its  capability of 

tracking frequency offsets. The proposed iterative technique has the abil

ity  to resolve m ultipaths, bring ing the m ultip le  frequency offset problem 

into the estim ation of d is tinc t frequency offsets. The simulation results 

demonstrate the superiority of the proposed scheme over a scheme that 

does not consider frequency offset correction. For most scenarios, the al

gorithm required only three iterations and provided substantial gain in 

terms of dB as compared to  the conventional scheme.

6.2 Future work

A few possible extensions to the work presented in th is thesis are listed 

below.

In the last three chapters, iterative algorithms have been proposed for 

SISO and M IM O  systems. The E X IT  chart analysis could be performed 

for both SISO and M IM O  systems. E X IT  charts show the inpu t/ou tp u t 

re liab ility  using the m utual inform ation. I t  is possible to understand the
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convergence behavior of the iterative receiver through the E X IT  chart 

mapping (one for the equalizer and the other for the channel decoder).

Another possible extension is to use superimposed tra in ing  to improve 

channel and frequency offset estimation. Since tra in ing  is superimposed 

w ith  data, th is technique could possibly provide better spectrum efficiency. 

Moreover, using ite ra tive  techniques, the data sequence could also be re

used together w ith  the tra in ing  to improve the estimation performance.

Only quasi static fading channels, i.e. channel changed between blocks 

according to  a Rayleigh fading profile, but unchanged w ith in  each block 

were considered in  the thesis. The work can be extended to consider 

variations w ith in  each block. This w ill require estimation of the fading 

waveforms together w ith  frequency offsets. Use of superimposed training 

may prove to be beneficial as th is provides continuous tra in ing  for tracking 

channel variations.

In this work, a m ulipa th  channel w ith  each path experiencing single fre

quency offset has been considered. However, each path could also expe

rience m ultip le  frequency offsets due to scattering as in  a fading channel 

model. However, th is problem has not been considered in  this work. I t  

may be possible to  extend th is work along this direction. In  this case, one 

needs to look for m u ltip le  peaks in  the power spectral density function.
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