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ABSTRACT

FUNCTIONAL AND STRUCTURAL DESCRIPTORS

FOR SOFTWARE COMPONENT RETRIEVAL

Identifying appropriate software components in a repository is an important
task in software reuse; after all, components must be found before they can be
reused. Program source code —— documents written in a computer program-
ming language —— has the possibility to be a software component. Program
source code is a form of data, containing both structure and function; it is
therefore important to make use of this information in representing programs
in a software repository. Existing approaches in software component retrieval
systems focus on retrieving a component based on either its function or struc-
ture. Such an approach may not be suitable to users that require examples of
programs that illustrate a particular function and structure, there is therefore
a need for combining this information together. The objective of this research
is to build a software repository of Java programs, to facilitate the search and
selection of programs using the information about a program’s function and
structure. The hypothesis is that retrieval of program source code is better
undertaken using a combination of functional and structural descriptors rather
than using functional descriptors on their own.

This thesis presents a program retrieval and indexing model which can
be used in developing a source code retrieval system. The model reveals on
how functional and structural descriptors are identified and combined into a

single representation. The functional descriptors are identified by extracting



selected terms from program source code and a weighting scheme is adopted
to differentiate the importance of terms. As programs in the repository are
from open-source applications, extracting information that does not rely on
semantic terms would be beneficial, as these programs are written by various
developers with different programming background and experience. Structural
descriptors that comprise of information generated based on structural rela-
tionships, such as design patterns and software metrics, are extracted from a
program to be added as the program descriptor. The functional and struc-
tural descriptors are combined into a single index, known as a compound in-
dex, which is used as a program descriptor. The degree of similarity between
a given query and programs in a repository is identified using measurements
undertaken based on vector model and data distribution based approaches.
Lessons learned from the experiments undertaken reveals that programs re-
trieved using the proposed method are less complex and easy to maintain.
Furthermore, it is suggested that programs from different application domains

contain different trends in their software metrics.
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CHAPTER 1

INTRODUCTION

1.1 Background

Software developers today need to create applications that are capable of providing
various functionality and this has to be done quickly in order to overcome the issues
of decreasing resources, time and budgets. Developing software that supports porta-
bility, flexibility, extensibility, and reliability is hard; developing high quality reusable
software components is even harder [1]. To facilitate software developers in achieving
such goals, software reuse, which is the process of developing software systems using
existing software artefacts, has been a popular topic of debate and discussion for over
30 years in the software community. Software artefacts include software products,
requirements and proposals, specifications, designs, program source code, program
output, user manuals and test suites. Anything that is produced from a software
development process can potentially be reused.

McClure [2] suggests that software artefacts have the possibility to be software
components. Software component retrieval is an important task in software reuse;
after all, components must be found before they can be reused. Based on existing

work in software component retrieval (3, 4, 5, 6, 7, 8], there are two types of retrieval:

1



1.1 Background 2

function-based and structure-based.

Given a query that describes what a required component should do, function-
based retrieval presents developers with software components that act similarly. This
means that the retrieved components illustrate the same function as that defined
in the query. For example, a developer may require a program source code that
illustrates the implementation of a solution to the Tower of Hanoi puzzle [9]. By
defining the developer’s query using the phrase Tower of Hanoi, a function-based
retrieval system presents them with relevant programs that contain all or part of
the search phrase. Similarity between the query and programs in the repository
are performed using the textual analysis approach (10, 11, 12, 3], which uses term
oceurrences [13] to represent the function of a program. Nevertheless, various other
methods have been used in representing functionality of a software component and
these can be found in Chapter 2.

In contrast to function-based retrieval which identifies components that act sim-
ilarly. structure-based retrieval presents developers with components that look alike.
An example would be two distinct programs that illustrate factorial function using
different approaches, e.g. recursion and looping; even though they have the same
function, they have a different structure. Further elaboration on existing approaches
of software component retrieval that identifies structural similarity can be seen in
Chapter 2.

In most of the work undertaken in the area of software component retrieval, users
are presented with components that are objects written to a specification such as
Component Object Model (COM) [14], Java Beans [15], etc. It is only by adher-
ing to the specification that the object becomes a component and gains features like
reusability. Even though software component reuse has emerged strongly in software

engineering, software developers who intend to use these components are inevitably
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restricted to the specification of the interfaces provided and required. When this
information conflicts with developers’ requirements, reusing the component is either
impossible or requires the original system to be modified. Additionally, the developer
could introduce a component adaptor [16] or some other wrapper [16] between the
system and the component. As Holzle [17] shows, however, there are complications
when multiple components must communicate with each other while they are con-
tained within some form of wrapper object. Hence, as an alternative, developers tend
to be opportunistic about reusing programs obtained from open-source applications.

This thesis employs the open-source program source code as the component that
may be retrieved from a software repository. Further in the thesis, the program source

code is referred to as a program and is defined as follows:

Definition 1 A program is a single file containing segments of code statements that
have been written to follow a particular language structure. For example, a program
which has been written using the Java programming language, contains package and

import statements, a class header and its body, and a method header and its body.

As a greater number of software developers make their programs available, there
is a need to store such open-source applications into a repository, and facilitate search
through the repository. The work described in this thesis concerns the mechanism that
supports the search and selection of programs from a software repository containing
Java programs. Only programs written using Java programming language have been
included in the repository due to the popularity of the language [18], and to ensure

evaluation of the work can be performed adequately.
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1.2 Research Problem

Existing approaches of function-based component retrieval (3, 4, 5, 6, 7. 8] use the
function of a component as the focal point of comparison between a given query
and components in a repository. Functionality of a component can be identified
using various methods and this includes textual analysis of software components [10,
11, 12] and textual description of software components [4, 19, 20, 5]. Nevertheless,
such methods concentrate only on the natural language text that exists in software
documentation and/or programs. Therefore, only well-documented software is best
suited for such retrieval methods. In the context of this thesis, what is meant by a

well-documented software is the following:

Definition 2 A well-documented software contains programs that use meaningful
identifiers — identifiers are named based on their functionality. For example, a method
named add illustrates the operation of adding two numbers. A well-documented soft-
ware also includes software documentation (information describing the functionality
of the software, and the required input and the expected output), program documen-
tation (information explaining the functionality of classes and methods, and patterns
used in implementing the code) and user manual (information on how to use the

software).

This means that software that is not accompanied with a user manual, and/or doc-
umentation would not benefit from textual analysis and/or textual description that
are employed in function-based approaches. In addition, if a program is written using
identifier names that do not explicitly reflect its function, then retrieval undertaken
based on textual analysis and/or textual description may not present developers with
relevant results. Furthermore. an inherent problem with many of these approaches

[21. 19. 12. 22] is that they are based on constructing a specific domain model [12] or
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vocabulary [21, 19], which restricts the scope and flexibility of their solutions. There-
fore, we need to support function-based retrieval by incorporating information that
does not rely on semantics of a component (i.e meaning of statements in program
source code or in software documentation).

Currently, there have been efforts to develop search engines specifically for retriev-
ing source code. These include Google code search (23] and the Koders search engine
[24]. which make use of the term occurrences approach to represent the function of a
program. A particular program is presented to the user if terms defined in a query
occurred in code statements of the program. However. Google code search [23] does
not perform a search in comment statements written in the program. Comments are
a very useful index term within a program as they quite often adequately explain
the functionality of the classes and methods contained in an object oriented pro-
gram. This causes them to contain words that often would not be in the code itself.
Furthermore, in the Google code search [23]. there is a lack of domain-knowledge as-
sociated with its queries. For example, if a user requires programs that implement a
connection to the SQL database, and the program should employ a particular design
pattern such as Observer, how can such requirements be represented as a query in
the Google code search? Another example would be the use of the term add as the
query for programs in a Google code search. This search would present users with a
very broad result; including how to add a record in a database, adding a panel into
a GUI component. and the assignment of a value to the variable add. If the required
program is from the application domain of Mathematics. i.e the term add is referred
to a mathematical operation, programs relating to other application domains would
not be useful.

Even though there has been work undertaken in retrieving components based on

their structure [25, 26, 27], this work does not embrace knowledge buried in a program,
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such as design patterns that have used in developing the code itself. Existing work
focuses on using pattern matching symbols [25, 26] in determining similarity between a
source code query and programs in a repository. Such an approach may be beneficial
to software maintainers who need to identify particular segments of code (e.g. a
nested for) in an application, but would not help a developer whose intention is
to find examples of programs that have been written to follow a particular pattern
(e.g Observer design pattern). Furthermore, a pattern matching approach requires
additional knowledge on pattern languages [25, 26] prior to defining a query for the
source code.

Classification of programs into application domain would facilitate program re-
trieval as developers could identify useful programs quickly and easily [28]. As many
developers are now posting their applications in open-source development reposito-
ries [29, 30], there is a need to automate organization of programs in such reposito-
ries. It is common to classify programs into application domains such as database.
graphics. networking and security. Existing open-source repositories which include
Sourceforge.net [29] and Freshmeat [30] classify a software into an application
domain by using natural language descriptions provided by the developer and in-
formation extracted from the software documentation. However, such an approach
may misclassify a software if it is not well-documented and/or is posted to the repos-
itory without relevant description by its developer. Nevertheless, neither existing
function-based nor structure-based retrieval approaches have employed appropriate
mechanisms to automate classification of components into application domains prior
to retrieval.

While existing component retrieval approaches (23, 24, 25, 26, 27] are based on
either the function or structure of a component, we are proposing to combine the two

tvpes of retrieval. In order to do so. the work described in this thesis concerns the use
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of two types of descriptors: functional and structural. These descriptors are defined

as follows:

Definition 3 Functional descriptors consist of information extracted from a program
that represents the functionality of the program. This includes terms extracted from

the code and comment statements written in a program.

Definition 4 Structural descriptors consist of structural information contained in
a program that illustrate relationships between properties of the program. This in-
cludes class inheritance, interface hierarchies, method invocations and dependencies,
parameters and return types, object creations, and variable access within a method.
In dddition, information inferred using structural information such as design patterns

and software metrics are also considered as structural descriptors.

By identifying functional and structural descriptors contained in a search query
and programs in a software repository, software developers are not only presented
with programs that function appropriately but also illustrate the required structure.
Furthermore, no work has been undertaken in program retrieval that uses a com-
bination of functional and structural descriptors. With an efficient organization of
prograimns and the use of structural and functional descriptors, open-source applica-
tions stored in a software repositorv can be made better use of. By understanding
a program’s function and structure, software developers are able to better adapt a
programn for their own applications.

Our approach of combining functional and structural descriptors in representing
programs in a software repository can also be extended to retrieve programs of other
languages, such as C++. Relevant parsers can be developed to extract functional

and structural descriptors from programs of different languages.
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1.2.1 Why the Research is Important

This research is important to help developers answer questions that arise prior to
retrieving rel\evant programs from a software repository. Such questions include, what
is the functionality of the program - what can be achieved when we execute the pro-
gram? and which application domain can we use the program for? For example, is
the program suitable for use in database applications? In addition, a developer might
notice that someone else’s code seems simpler and works better than theirs, and they
wonder how that particular developer achieves this simplicity. Therefore, a developer
whose intention is to use the retrieved programs as guidelines in developing their own
application may also like to know if the program has been written to follow a partic-
ular battern. This raises questions such as Are there any design patterns employed in
the program? If so, what design patterns are they?. Furthermore, what if the devel-
oper is also concerned about software quality [31]. As a developer performs a search
and is presented with a list of programs that illustrate the required function, they are
most likely to adapt a program that illustrates less complexity (e.g. containing fewer
method dependencies).

Based on the programming task illustrated in Figure 1.1, a retrieval system which
presents programs that function as required and illustrate the desired stfucture is
best suited for those who have the knowledge of design patterns and are keen to
use the knowledge in developing the application. These developers may define their
query consisting of relevant terms and a particular design pattern. Based on their
knowledge, they are able to identify suitable design patterns to be employed in the
application by inferring structural information (i.e dependencies between Weather-
Reporter and TextReport) in the given task. Therefore, these developers may define
their query as: weather report application AND observer design pattern.

Nevertheless, developers with little knowledge of design patterns can still benefit
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Develop a weather reporting application WeatherReporter class that stores the lat-
est weather data on-screen, the weather is displayed by two classes: GraphicReport
(cloud, sun, rain icons) and TextReport (Temperature: 25C, Sunny). When

the weather changes, WeatherReporter sends updates to TextReport object and

GraphicReport object.

Figure 1.1 Programming Task - Weather Reporting Application

from the retrieval system. By using an existing program which they are currently
writing for the programming task as a search query, they may still be able to retrieve
relevant programs from a repository. Structural descriptors contained in the query

program will contribute to the identification of similar programs in the repository.

1.3 Research Hypothesis and Questions

This thesis argues that retrieval of programs is better undertaken using a combination
of structural and functional descriptors rather than using functional descriptors on
their own.

The research hypothesis will be verified by developing a program retrieval system
that is built upon open-source applications and that presents users with examples of
programs that illustrate similar structure and function as illustrated in the query pro-
gram. The research is structured around four central questions discussed in sections
1.3.1, 1.3.2 and 1.3.3. Performance of the program retrieval system is later evaluated
through (1) objective analysis and (2) subjective experiments. The objective analysis
involves measuring the processing time of the retrieval system upon receiving a search
query and identifying the importance of structural descriptors in supporting programn

retrieval. On the other hand, in the subjective experiments, retrieval effectiveness
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of the proposed program retrieval system is analyzed through field experiments with

developers.

1.3.1 Information Extraction

Question 1: How can we extract information from a program that can be used

as functional or structural descriptors in a program retrieval system?

One of the first challenges that a retrieval system has to cope with is indexing the
programs contained in a repository. This is achieved by extracting relevant informa-
tion from a program to be used as the program descriptors. Open-source programs
t_vpi‘cally contéin irregularities as they are written by different developers with dif-
ferent programming background and experience. Examples of such irregularities are
identifier names used in a program that illustrate the content of the program and the
practice of writing a program following a particular pattern. Programs in the repos-
itory may use similar identifiers, nevertheless they are employed in different context
in the program. The challenge is to extract these identifiers and represent them (as
indices) based on their contexts. An additional challenge is to find (new) abstraction
information that is not explicitly available in the program (e.g design patterns) and
can be used to represent a program. Thus appropriate parsers are required to extract

different types of information that are explicitly or implicitly contained in a program.
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1.3.2 Creating New Representation

Question 2: How can we combine functional and structural descriptors of a

program to represent a query and programs in a repository?

Upon identifying functional and structural descriptors, how can this information be
integrated as a program descriptor? An issue that should be considered is the flex-
ibility of the proposed mechanism. It should be flexible enough so that additional

descriptors (functional and/or structural) can easily be incorporated into it.

1.3.3 Supporting Program Retrieval

Question 3: How can we use the information obtained in the first two questions

to support and improve program retrieval?

Several issues have to be addressed before the identified information in Question
1 can be used to improve program retrieval: how to deal with similar identifiers
that represent the different contexts of a program (e.g. variable name, class name)?
Also, what information can be inferred from structural information extracted from a
program? In order to identify the benefits of incorporating structural descriptors as
program descriptors. we need to perform relevant analysis on the programs retrieved

for a given query.

Question 4: How is similarity measurement undertaken between a query and the

program in a software repository?

The challenge is to identify measurements that can be used to determine similarity

between a query and programs in the repository, which have been represented using
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the mechanism identified in Question 2. Prior to that, we need to identify how a

query for source code is defined.

1.4 Scope of the Research

Although this thesis is set in the context of software reuse, the work undertaken
is discussed based only on retrieval perspective, e.g how different retrieval indexing
(functional or combination of functional and structural) affects the performance of
a source code retrieval system. Issues related to whether the mechanisms used in
determining functional and structural descriptors are sufficient enough for a source
code retrieval system are not the focal point of the thesis. We are focusing to learn
if the combination of functional and structural descriptors would generate a better
retrieval when compared to using functional descriptors on their own.

The work in this thesis focuses on program written using the Java language. Func-
tional descriptors identified from a Java program are restricted to keywords extracted
based on a program structure. On the other hand, structural descriptors that were
used in this work are the design patterns, application domains and software metrics.
Three design patterns, namely Singleton, Composite and Observer, are identified us-
ing the proposed design pattern identification mechanism. Currently, only programs
from database and graphics domains are included in this work and the classification

of programs into application domains is performed based on their software metrics.

1.5 Research Contributions

Several of the results set this research apart from other related approaches. The

overall solution is general and applicable to a wide range of programming languages
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and application domains. The research proposes and validates a new model that
supports source code retrieval and is applicable to a wide range of programming
language. The experiments shows that this approach provides better support for
a number of programming tasks (e.g connecting to a database system, retrieving
data from a database and organizing a set of images contained in a folder). The

contributions of this thesis are as follows:

e A model for extracting functional and structural descriptors contained in a
program source code. These descriptors are identified separately and later com-
bined into a single representation which is known as a compound index. Such
an approach can be extended to include other descriptors as identified and/or

required by the user.

e A model for retrieving programs based on a user providing the requirements
of a program, in a form of a query program (i.e program source code). This
model includes how similarity between a query program and programs from a
repository is identified and how programs that are relevant to the search are

sorted in the retrieval hit list.

e A new way of identifying design patterns employed in programs contained in
a repository. The identification mechanism is solely based on structural rela-
tionships, hence it can easily be modified to be used on programs written using
programming languages other than Java. Moreover, the proposed mechanism
can be extended to identify other design patterns as elaborated by Gamma et.

al [1].

o Classification of programs into applications domains; database and graphics.

The classification is performed using software metrics contained in the program
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and such an approach can be used to support program classification undertaken

based on semantic meanings.

1.6 Organization of the Thesis

Chapter 2 of this thesis presents a review of current work in the area of software
component retrieval. In particular, it focuses on component retrieval undertaken
using functional descriptors and structural descriptors on their own.

In Chapter 3, we describe the use of term occurrences, which are accompanied
by a weighting scheme to be used as query and program descriptors. Chapter 4
focuses on utilizing structural information contained in a program where we propose
the use of design patterns as structural descriptors of a program. In this chapter, we
demonstrate the identification of three design patterns contained in Java programs.

Chapter 5 illustrates how software metrics extracted from a program are used to
support program retrieval. The metrics are used to classify a program into appro-
priate application domain and to represent program reusability. It is demonstrated
later in the chapter that program retrieval that includes program classification, un-
dertaken based on software metrics, is better than the retrieval performed based only
on semantic terms.

Chapter 6 is central to this work, and gives details of how functional and struc-
tural descriptors identified in Chapters 3. 4 and 5 are incorporated into the program
retrieval system. We describe here how the similarity measurement is undertaken
between a query and programs in the repository.

Evaluation of the program retrieval system is described in Chapter 7, which also
includes empirical subjective evaluations. In addition, lessons learned from the eval-

uation are also presented and discussed in this chapter.
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Chapter 8 concludes the thesis by summarizing the contributions made and dis-

cussing future research directions.

1.7 Origins of the Chapters

Parts of this thesis were published previously. Portions of Chapter 3 are based on the
work presented in Yusof and Rana [32]. Portions of Chapters 4 and 6 are extended
from Yusof and Rana [33] and Yusof and Rana [34]. Most of Chapter 5 contains the
content of an article submitted to the IEEE Software Engineering, which is currently
under review, and most of Chapter 6 are based on the work presented in Yusof and

Rana.[35)].



CHAPTER 2

LITERATURE REVIEW

The development of a system for retrieving programs from a software repository
involves an understanding of software component retrieval. Issues related to repre-
sentation of programs in the repository are described in this chapter since they form
the basis for the research described in the subsequent chapters. The general area of
research under investigation here is related to applications of functional and structural

descriptors to address software component retrieval tasks.

2.1 Software Component Retrieval

A component retrieval mechanism works in the following way, as described by Mili et
al. [36](Figure 2.1): when faced with a programming task. the user understands it in
his or her own way, and then formulates a query, which may be as simple as a set of
keywords or as complex as specifications in a formal language. An example of this is
when a user wants to write a Java program to solve the Tower of Hanoi puzzle [9).
One possible way to represent a query for source code is by using a set of keywords.
such as Java program Tower of Hanoi. In practice, this first process results in the

loss of information since the user is not always capable of exactly understanding the

16
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problem, or being definite about the required problem solution or of encoding the
required solution in the query language. If the user is not aware of the different ways
of implementing the problem using the Java language, which includes recursive and
non-recursive solutions, then s/he will not include the required solution in the query.
Once a query has been generated, it is passed to the Matcher as shown in Figure
2.1, that is responsible for identifying similarity between the query and indices in the
code library. This process of classification (also known as indexing), may be manual
or automatic, and also results in the loss of information. This occurs because since
a component embodies various features, it is difficult to identify all of these features
and use them as code indices. For example, several pieces of information can be used
to represent the functionality of a component (functional descriptors), such as the
terms extracted from code statements, formal specifications of the component and
the sample of input/output data related to the component. However, if the indexing
is based only on a particular descriptor, for example sample of input/output data,
then a query that is represented using formal specifications may generates irrelevant
results. The search itself consists of comparing the query with the index and returning
the components that match the query. This information loss is the focus of all the
work in this area —— representing a program based on information that is anticipated
to be included in a query.

An application may contain more than a single artefact (e.g program source code,
user manuals, design documentation). Perhaps the most well known reusable arte-
fact is the program source code. This is because it is the most up to date artefact.
Developers may have made many changes in programs in order to achieve the desired
functionality but these changes may not be reflected in the documentation included
in the application. Hence, programs demonstrate best what function the application

offers and how it is implemented. The common practice in existing retrieval systems
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is to identify relevant programs based on their functionality. Therefore, a program
that is written to achieve a particular function (e.g adding two values) should be
represented by descriptors that abstract its most relevant functional (semantics) fea-
tures. Nevertheless, it should also be represented in a way that focuses on its relevant
structural (syntactic) features. This is because prior to software implementation,
developers tend to model the problem (programming task) using various modelling
tools (e.g UML [37]). Such a process generates structural features of the components
to be developed, for example, the relationships between two objects. A combination
of functional and structural descriptors (refer to Definitions 3 and 4 on page 7) to
represent programs in a repository would help developers to retrieve programs that il-
lustrate the required function and structure as modelled in the design documentation
(e.g entity relationship diagram (ERD)).

As existing source code retrieval systems such as Google code search [23] and
Koders search engine [24] only use functional descriptors in identifying similarity
between a query and programs in a repository, structural descriptors of a program
have not been utilized. Nevertheless, developers may require programs that illustrate
a particular function in a certain way. Developers should not only benefit from cutting
and pasting code statements from a program, other information embedded in the
code can also be reused. This can be achieved by including structural descriptors in
representing a program. Basili et al. [38] defined a reusable program as the realization
of some software development experience. Such an experience refers to the way how

a problem solution is designed prior to implementation.

2.1.1 Function-based

In the literature, several efficient ways to retrieve various types of software components

have been found [39, 4. 40, 41, 42, 43, 44, 7]. We present related work on softwarce
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component retrieval based on functional and structural descriptors as defined in Def-
initions 3 and 4 on page 7. Approaches undertaken in software component retrieval

based on functional descriptors are identified as using the following methods:

Information retrieval: these are methods that depend on a textual analysis of soft-
ware components. Components are represented using text and relevant compo-
nents are identified by understanding the meanings of the text that represents

the component (10, 11, 12, 3, 45].

Descriptive: descriptive methods depend on abstract representation of the compo-
nents. Such representation includes the use of a set of keywords or a set of facet
definitions [4, 20, 46, 47, 48, 5]. In deriving a faceted classification scheme, the
objective is to create and structure a controlled vocabulary [49] that is stan-
dard not only for classifying but also for describing a component in a domain
specific collection. Retrieval of relevant components is undertaken by identi-
fying components that minimize some measure of distance to the user query
(39, 41, 50, 51, 7]. Given a query that describes some required features of a
component, the retrieval system retrieves components that most closely match

a description of the features.

Operational semantics: these methods depend on the operational semantics of the
software components. This means that components are represented by how they
function. They exploit the exccutable nature of components by comparing the
input/output data specified by a search query to the one produced by stored

components [52, 53, 6].

Denotational semantics: these are methods that depend on the denotational se-

mantic definition of the software component. Denotational semantics is an
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approach to formalizing the semantics of a component by constructing mathe-
matical objects (called denotations or meanings) which express the semantics
of these components. These methods proceed by identifying a semantic relation

between the user query and software components [54, 40, 43, 55, 56, 57, 42, 8].

Nevertheless, only work undertaken using information retrieval and descriptive
methods are elaborated upon in this thesis as the proposed program retrieval system

employs a similar approach to these methods.

Information retrieval methods

Related work in information retrieval methods and their applications to the domain
of softv;'are is of irﬁportance. The research that has been conducted on the specific use
of applying information retrieval methods to source code includes Fischer [11], Frakes
and Nejmeh [10] and Maarek et al. [12]. Notable is work by Maarek et al. on the use
of an information retrieval approach for automatically constructing software libraries.
Their method relies on a natural language description of software components and
search queries. The indexing process automatically extracts a set of indices that
define its profile based on uncontrolled vocabulary. The uncontrolled vocabulary, also
referred to as free-text analysis, consists in analyzing term frequencies in natural text
[58]. On the other hand, controlled vocabulary consists of terms that are established
in order to group similar components [49]. The idea of a controlled vocabulary is
to reduce the variability of expressions used to characterize the component being
indexed, e.g. by avoiding synonyms and remove ambiguity (homonyms). Such an
approach can be seen in the work undertaken by Prieto-Diaz [4] and Yang et al. [5)]
described under the descriptive methods.

Because of the unlimited number of terms (uncontrolled vocabulary) used to rep-

resent a component, the search space in identifving relevant components is large,
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hence generating a greater possibility of having false positive results. To overcome
such a problem, Lindig (3] proposes that a user incrementally specifies a set of key-
words that the searched components are required to have. Such an approach is based
on precalculated concepts of the library, which are natural pairs of component and
keyword sets. The concepts form a lattice of super and subconcepts and are obtained
by formal concept analysis [59).

Marcus et. al [45] employ the term occurrences approach to indicate domain
knowledge and concepts embedded in a program source code. Identifier names and
comments are extracted from the program before latent semantic indexing (LSI) {60]
is performed. In addition to recording which keywords a program contains, the LSI
examines the program collection as a whole, to see which other programs contain some
of those same words. LSI considers programs that have many words in common to be
semantically close, and ones with few words in common to be semantically distant.

Similar to the work undertaken by Marcus et. al [45], we extract identifier names
from a program to represent the function of the program. In order to overcome
the drawback of using uncontrolled vocabulary (i.e large search space), we include
information on the program context for each of the extracted identifiers. Details of

the approach can be seen in Chapter 3.

Descriptive methods

Prieto-Diaz [4] extended the use of keywords into a multi-dimensional search space
through the use of a facet, consisting of a set of predefined keywords. There are
three steps involved in retrieving relevant software components. First, users need to
formulate the query and this is undertaken by selecting appropriate terms from a list
of provided terms (known as term space) for each facet in the classification. To solve

ambiguities, a thesaurus is designed by the researcher for each facet to make sure the
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kevword matched can only be within the facet context. Examples of the facet might
be a function. object/item-type. and system-type. Thus, organizing a collection of
software components into n facets implies that a query into the search space of the
collection would be made up of an n-tuple of keywords with the ith keyword drawn
from the term space of the ith facet. To determine similarity between a query and
software components, a weighted conceptual graph [4] is used to measure closeness
according to the conceptual distance among terms in a facet. The third step is to
rank the retrieved components. The ranking subsystem is based on reuse related
metrics. This estimates, for each of the retrieved components, the relative effort it
would take to reuse the component, that is, the effort required to adapt and integrate
the component into the new system. Components requiring the least amount of effort
are ranked at the top of the retrieval list.

Building on the work undertaken by Prieto-Diaz [4], Yang et al. [5] focus on the
problem of how to determine the ranks of the components retrieved by users. Factors
which can influence the ranking are extracted and identified through the analysis of
an ER-Diagram of the facet-based component retrieval system. Faceted classification
and retrieval has proven to be very effective in retrieving suitable components from
repositories [4, 5], but the approach is labour intensive. The reason for this is the
need for deriving and defining terms by experts so that the terms can later be used in
representing concepts relevant to the facet. From this, it has also been learned that
faceted classification is more effective for domain-specific collections than for broad,
heterogeneous collections such as an open-source repository. Even though this method
is gaining increasing attention because it takes domain knowledge into account when
designing facets [7], there exists a major concern in designing the facets. If facets are
designed too simple or few, there will be too many components in the retrieval list.

which will require users to examine the components manually in order to determine
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the relevant ones. On the other hand, if facets are designed to be too complex, it
is hard for users to understand them and hard for the repository administrator to
classify all components into different categories. Moreover, the process to classify
the components is susceptible to being subjective, so that two different people may
choose different keywords or facets to describe the same component. In this sense,
we employ automatic indexing to extract, from code and comment statements, terms
that describe a component.

In the work undertaken by Girardi and Ibrahim [47], an acquisition mechanism
automatically extracts from software documentations the knowledge needed to cata-
logue them in a software base. The system extracts lexical, syntactic and semantic
information and this knowledge is used to create a frame-based internal representa-
tion for the software component. The interpretation mechanism used for the analysis
of a software documentation does not pretend to understand the meaning of a de-
scription. It attempts to automatically acquire information to construct indexing
terms for a software documentation. The WordNet [61] lexicon is used to obtain
morphological information, grammatical categories of terms and lexical relationships
between terms. The software base contains a collection of frames, and each software
component (i.e software documentation) has a set of associated frames containing
the internal representation of its description along with other information associated
with the component (e.g program source code). The retrieval mechanism looks for and
selects components from the repository, based on the closeness between the frames
associated with a query and the software components. Closeness measures [62] are
derived from the semantic formalism and a conceptual distance between the terms
in the frames under comparison. Software components are scored according to their
closeness value with the user query. The ones with a score higher than a controlled

threshold become the retrieved software components.
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Similar to the work undertaken by Girardi and Ibrahim [47], Gu et al. [48] also rep-
resent components to be stored in the repository using frames. They adopt a frame-
based representation and reasoning system, CREEK [63], which unifies component-
specific cases and general domain knowledge within a single representation system.
In CREEK, information describing the functionality of a component is represented
as concepts, and a concept takes the form of a frame-based structure, which consists
of a list of slots. A slot acts as a relation from the concept to a value related with
another concept. Viewed as a semantic network, a concept (frame) corresponds to
a node, and a relation (slot) corresponds to a link between nodes. Slot values have
types or roles, referred to as facets. Similar to the work undertaken by [4], such a
approach is also'labour intensive as participation of an expert is required to design
the frame.

We are taking a similar approach to [4, 47] to represent functionality of compo-
nents by extracting relevant information from software components. Nevertheless.
our approach does not require the participation of an expert to design the facet and
determine suitable terms to be included in the term space. We employ program struc-
ture as the facets and use relevant terms extracted from a program as the term space
for the appropriate facet. Furthermore, we include a weighting scheme to illustrate
the importance of the facets. Elaboration on program structure and the weighting

scheme can be found in Chapter 3.

2.1.2 Structure-based

It is fair to say that most of existing software component retrievals identify rele-
vant components solely on the basis of their function: the system decides whether
to select a software component by matching the functional descriptors (refer to Def-

inition 3 on page 7) of the candidate component against desired functional features.
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An alternative rationale is to select software components not on the basis of their
function but rather on the basis of their structure: the system selects a software com-
ponent whenever there is a reason to believe that a possible solution to the query has
the same structure as the software component under consideration. Function-based
retrieval is very important, as it can provide effective and precise retrieval results.
Unfortunately the semantics of a software component identified using information
retrieval and descriptive methods may be hard to determine if the software is not
well-documented (refer to Definition 2 on page 4). Therefore, an alternative to using
functional descriptors in retrieving relevant components from the software repository
would be beneficial. In addition, the software repository used in our work contains

applications obtained from open-source repositories. This means that:

e it is contributed to by various developers, each with a different style of writ-
ing programs. This includes not naming objects and methods based on the
functionality that they offer. In addition, the repository might also include ap-
plications that are not well-documented. If the accompanied documentation is
poor, how can the existing information retrieval and descriptive methods that

rely mainly on text description be used as program descriptors?

¢ it may contain an application that requires a different environment or platform.
With this in mind, the possibility of identifying the desired components us-
ing operational methods is lessened if developers do not have the appropriate

environment.

o there are possibilities that there is only program source code included in an
application. Since most of the developers do not include specification docu-
ments in the application to be stored in the repository, retrieval methods based

on denotational semantics are not suitable. In addition, most of the denota-
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tional semantics approaches require a representation of the program in formal
language. Even though one could translate the appropriate repository contents
into a formal specification, it is unlikely to happen as such a process requires
additional effort especially if it is done manually. Furthermore, currently there

are no tools created to automate the translation process.

Programming Cliches

Over the past couple of decades, researchers have been investigating tools that can
help in the process of program understanding. One such tool attempts to recognize
common programming cliches. In this context, a cliche is a pattern that appears fre-
quently in many different programs (and possibly many different languages). Devel-
opers learn these patterns and use them to speed up the process of code construction:
when they need to produce some behaviour that matches a pattern, they do not need
to think about each line of code they write, but instead let their subconscious menm-
ory of the pattern generate the required statements. For example, developers have
probably already learnt the pattern for iterating through an array and can write such
behaviour quickly and reliably.

There are two types of programming cliches: general purpose cliches and specific-
domain cliches. The former refers to cliches that occur in programs throughout all
problem domains, such as iteration, while the latter are cliches that can be found only
in a particular domain. Typically, the specific domain cliches can be built on top of
the general purpose cliches. For example, such cliches can be found in programs that
sequentially simulate parallel systems. An elaboration of the example can be found
in the work undertaken by Wills [27].

Before any cliche can be retrieved by users. it needs to be identified. The recogni-

tion methods of programming cliches can be categorized into two categories: textual
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analysis [64] and graph parsing [27]. In the latter work, GRASPR is used to trans-
late a program into a language-independent graphical representation (i.e flow graph).
The cliches and the relationship between them are encoded in graph grammar rules.
Before a program is translated into a flow graph, it is first translated into a Plan
Calculus representation [65]. The structure of this graph explicitly captures data and
control flow, as well as aggregate data structure accessors and constructors and re-
cursion. Later, the translation process encodes the plan into an attributed flow graph
representation [27]. Recognition of programming cliches is undertaken by parsing the
program graphical representation in accordance with the graph grammar encoding of
the cliches.

The specification of a generic problem results in the creation of a problem schema
that is analogous to the notion of cliches in the Programmers’ Apprentice [64]. Waters
[64] used a variation of Ada’s procedure notation in representing cliches. Such a form
specifies the name of the cliche, and some declarations that define the important
features of the cliche, as well as the computation that corresponds to the cliche.
The cliches are stored in a library that is structured by the hierarchical generality
relation. Examples of cliches are FileEnumeration, which sequentially enumerates all
the records of a file and SimpleReport. which produces a report from a file, according
to a predefined format. Retrieval is later undertaken by matching cliches’ names
against queries that are submitted using natural language. Building on this work,
other types of component retrieval based on such structural descriptors has been
undertaken. For example, Waters and Rich [66], later expanded the work done by
Waters [64] by implementing the idea in the Design Apprentice [67]). The knowledge
of the Design Apprentice is personified in its cliches for typical specifications, design
and hardware characteristics. Examples of these cliches include initializing a device, a

generic device driver and an interactive display device. While a cliche may represent
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the implementation of a piece of an object, it does not illustrate the interaction of
the object with other objects, which may be depicted in a design documentation (e.g
Entity Relationship Diagram (ERD)). Therefore the existing methods [64, 66, 67] are
less useful for developers who are seeking for components that illustrate a similar

design as defined in their design documentation.

Pattern Language

Santanul and Atul [25, 26] presented a framework in which pattern languages are used
to specify the required code features. The pattern language is derived by extending the
source programming language with pattern-matching symbols. SCRUPLE, a finite
state’ machine-based program search tool implements the proposed framework. In
SCRUPLE [25]. the extensions include a set of symbols that can be used as substitutes
for syntactic entities in the programming language. For example, a code statement
of x = x + 1 is represented as $v3 = $v3 + 1 in the proposed pattern language.
When a search specification is written using one or more of these symbols, it plays
the role of an abstract template that can potentially match different code fragments.
If no symbol is used, the specification consists only of constructs that are valid in the
programming language, which effectively makes it a valid code fragment in itself, and
hence leads to only precise matches. While this is a powerful method for maintainers
of large software projects, it lacks the common retrieval fuzziness where components
are relevant for a query, but do not necessarily match it. Additionally, the method
requires some training prior to usage, because its query language is not standard.
If a user fails to understand and use the pattern language effectively, s/he may be
presented with a limited set of code fragments or even worse, s/he may not get any

results at all.
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Design Patterns

One of the characteristics of developing a reusable software component is to follow
existing standards so that it can later be used by not only the developer himself but by
other people who require components with the same capability. This includes patterns
which are devices that allow software developers to share knowledge about their
software design. In daily programiming, developers encounter many problems that
have occurred, and will occur again. The question that may arise is how the developer
is going to solve it this time. Documenting patterns is one way that developers
can reuse and possibly share the information that they have learned about how it
is best to solve a particular problem (i.e programming task). Gamma et al. [1]
employ"s Alexandér’s idea of explicitly describing implicit design knowledge and best
practices [68] in software design and such an approach has rapidly spread to various
scenes in software development. Like Alexander’s pattern language [68], a design
pattern is considered a well-formed language to represent software design. A design
pattern names, abstracts and identifies the key aspects of a common design structure
that can be used to develop a reusable program. Design patterns also identify the
participating classes and instances. their roles and collaborations, and the distribution
of responsibilities [1].

A design pattern is a way to pursue an intent - that uses classes and their methods
in an object-oriented language [69]. A description of design patterns can be found
in a documentation format such as described by Gamma et al. [1]. The authors
[1] presented 23 design patterns using a template containing of 13 characteristics -
Pattern Name and Classification, Intent, Also Known As, Motivation, Applicabil-
ity, Structure, Participants, Collaborations, Consequences, Implementation, Sample
Code, Known Uses and Related Patterns. Gamma et al. [1] claimed that the template

lends a uniform structure to the information, making design patterns easier to learn,
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compare and use. Even though software developers can learn about the use of design
patterns through this documentation which includes examples of code fragments, they
may later h;ave the problem of modifying the code to illustrate the required function
that suits a particular domain. As a retrieval system may be used as a learning tool,
we see the need of presenting users with programs that not only functioned appro-
priately but also illustrate the required design pattern. With this, the users can use
the retrieved programs as guidelines in creating their own applications.

A work conducted by Prechelt et al. [70] suggests the idea of using patterns in
developing an application can often result in components that are more easily main-
tained and modified. Given the frequency with which the need for modifications
arises in software development, the added flexibility that comes from using a pat-
tern seems to be a more optimized structure. Therefore. design patterns are clearly
a useful addition to the developer’s vocabulary and programming skill. Indeed, it
can be argued that even if design patterns are not widely employed in programs,
because of the complexity, simply studying them will itself encourage the develop-
ment of clearer thinking about design problem solution, and will convey some of the
benefits of experience. Even though design patterns are mostly likely to be used in
forward engineering process, such as when developers move from the design to the
implementation phase, they are equally important in the reverse engineering process.
In this thesis, reverse engineering is focused on the task of identifying design patterns
embedded in programs contained in an application.

Current approaches of design patterns detection can be categorized according to
the kind of analysis they perform: static (71, 72}, dynamic [73, 74] or a combination of
static and dynamic [75]. Static analysis is performed by examining the code without
executing the program and such a process provides an understanding of the code

structure. On the other hand, dynamic analysis involves the execution of the analyzed
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program. As open-source applications may require different execution environment
for it to be executed, the dynamic and a combination of static and dynamic analysis
in design ;;attern detection may not be suitable. Therefore, we only focus on existing
work that detect design patterns based on static analysis.

Most of the work undertaken using static analysis requires the analyzed programn
to be represented in an intermediate form such as an abstract syntax tree (AST)
[76. 77. 78] or an American Standard Code for Information Interchange (ASCII)-based
representation (71, 72]. Using AST as the intermediate format, every source file is
entirely represented as a tree of AST nodes. The first step in SPQR [76] is to translate
the AST obtained by GNU Compiler Collection (GCC) [79] to a format recognized by
a theorem prdver. GCC is an integrated distribution of compilers for several major
programming languages which currently includes C, C++, Objective-C, Objective-
C++, Java, Fortran, and Ada. In SPQR, the gcctree2oml tool was included to read
a tree file and later produces an XML description of the object structure features. A
second tool, omlZotter then reads this XML description and produces a feature-rule
input file to the automated theorem prover, OTTER [80]. OTTER finds instances
of design patterns by inference based on pre-defined rules employed as denotational
semantics. This approach relies heavily on the accuracy of the information extracted
in the first stage. Although extracting structural relationships seems straightforward,
it is complicated by variations in the implementations of some relationships, such as
aggregation [78]. Thus, these approaches can result in higher false positive or false
negative rates.

The design pattern detection mechanism introduced in FUJABA (78] works on the
abstract syntax tree (AST) which is produced by the JavaCC source code parser [81].
The design pattern detection mechanism is based on graph grammars working on

the AST and the patterns to be detected are defined by graph transformation rules.
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Each rule transforms a particular graph structure, i.e. a pattern or a subpattern, and
annotates it with an additional node to indicate the found design pattern instance
and additi;mal edges to indicate the participants of this instance. All patterns and
structures are organized in a graph that shows the compositions of patterns and
substructures and builds a dependency hierarchy between them. It analyses the rules
applied to the AST, and also tries to apply the transformation rules of patterns which
depend on these rules.

Previous work [71, 72] has used a structural analysis of code structure to identify
design patterns defined by Gamma et al. [1]. Keller et al. [72] use the C++ programn
analysis system, GEN++ [82] to generate an American Standard Code for Informa-
tion Interchange (ASCII)-based representation of the relevant source code elements
(CML/CDIF Intermediate Source Model). They [72] adopt the CDIF transfer for-
mat [83] as the syntax and the UML metamodel 1.1 [37] as the semantic model of
the intermediate format. Keller et al. [72] extract structural relationships from the
C++ source code and stores this information in an object oriented database. How-
ever, their approach requires developers to manually group design elements, such as
classes, methods, attributes, or relationships to reflect a pattern.

The approaches (78, 76, 71, 72| discussed above are restricted to having an interme-
diate mechanism in detecting design patterns embedded in a program. They require
either translation of patterns [78] or programs under analysis [72] into a particular

representation.

Software Metrics

Software metrics can be classified as either product metrics or process metrics [84].
Process metrics are measures of the software development process, such as overall

development, type of methodology used, or the average level of experience of the
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programming staff. On the other hand, product metrics are measures of the software
product (e.g program source code, software design, software documentation) at any
stage of software process, from requirements to installed systems. Product metrics
may measure the complexity of the software design, the size of the final program
(source code), or the number of pages of documentation produced. Examples of

product metrics are as follows:

1. Number of Modules (Nom) - modules in terms of a grouping of member func-
tions. For example, the C++ classes, Java classes and interfaces and Ada

packages are defined as modules.

2. Lines of Code (Loc) - this count follows the standard of counting non-blank.
non-comment lines of source code. Preprocessor lines are treated as blank.
In the context of this thesis, class and function declarations are counted, but
declarations of global data are ignored as such declarations(if the variables are

of the same type) can be made on a single line.

3. McCabe's Cyclomatic Complexity (Mvg) - a measure of the decision complexity
of the functions that make up the program. The definition of this measure is that
it is the number of linearly independent routes through a directed acyclic graph
that maps the flow of control of a given code fragments. An analyzer counts this
by recording the number of distinct decision outcomes contained within each
function, which yields a good approximation to the formally defined version
of the measure. Cyclomatic Complexity essentially represents the number of
paths through a particular section of code, which in object-oriented languages
applies to methods. Cyclomatic Complexity’s equation from graph theory is
as follows: CC = E — N + P where E represents the number of edges on a

graph, N the number of nodes, and P the number of connected components.
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Cyclomatic complexity can be explained as follows: every decision point in a
method (e.g if, for, while, or case statement) is counted; additionally, one is
added for the method’s entry point, resulting in an integer-based measurement
denoting a method’s complexity. For example, the code fragments illustrated in
Figure 2.2 will yield a cyclomatic complexity value of 3. There are two decision
points: an if and an else. Another value is obtained by adding the method's
entry point which automatically adds one. The less the complexity, the better.
More complexity means developers have more decision making and branching

occurring inside the code fragments. This makes it harder to test the function.

public int getValue(int parami) {
int value = 0;

if (parami == 0) {

value = 4;

}

else {

value = 0; }

return value; }

Figure 2.2 Method getValue

4. Depth of Inheritance Tree (Dit) - measures the depth of a class in the inheritance
tree. If the whole inheritance graph is a tree, then Dit is the path length from the
root to the class under investigation. This metric can be used to determine the
complexity of a class based on its ancestors, since a class with many ancestors

is likely to inherit much of the complexity of its ancestors.
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5. Coupling Between Object (Cbo) - the use of another object’s methods or in-
stance variables. Since this creates dependencies between objects, the higher
the n;xmber, the greater the possibility that reusability of class may decrease.
When either one object uses another object, then both objects are said to be
coupled. One major source of coupling is that between a superclass and a sub-
class. A coupling is also introduced when a method or field in another class is
accessed, or when an object of another class is passed into or out of a method
invocation. The more independent a class is, the more likely it is that it will be
possible to reuse. When a class is coupled to another class, it becomes sensitive
to changes in that class, thereby making maintenance difficult. In addition, a

" class that is overly dependent on other classes can be difficult to understand
and test in isolation. In the context of the work undertaken in this thesis. Cbo
is defined for classes and interfaces, constructors and methods. It counts the

number of reference types that are used in:

o field declarations
o formal parameters and return types

throws declarations

local variables

For example, the Cbo for class ComboBoxEditor which is illustrated in Figure
2.3 is 3: Component the return type for method getEditorComponent counts as
1, Object is counted as 2 since it is the return type for method getItem and it
is also the an argument for method setItem and ActionListener also counts

as 1 as i is the argument method addActionListener.
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}

public interface ComboBoxEditor {
public Component getEditorComponent();
public void setItem(Object anObject);
public Object getItem();

public void selectAll();

public void addActionListener(ActionListener 1);

6.

Figure 2.3 Class ComboBoxEditor

Weight Method per Class (Wmc) - the sum of a weighting function over the
functions of the module. The Wmc uses the nominal weight of 1 for each
function, and hence measures the number of functions; the larger the number
of methods in a Java class, the more complex the children will be because of
inheritance. A high number of methods will lessen the potential for class reuse
because the class is likely to become application specific. For example, the Wmec
for code fragments contained in class QueryReportResult, depicted in Figure
2.4, is 2 for Wmc - constructor QueryReportResult and method getTemplate

are counted as one respectively.

Fan-In measures the number of programs that pass information into the current
program. For a given program A, the Fan-In is the number of other programs
which use A. For example, the number of other programs (known as suppliers)
that pass information into the class ComboBoxEditor (known as client) in Figure
2.3 is equal to 3 - Component, Object and ActionListener. Three variants of
Fan-In are presented: a count restricted to the part of the interface that is

externally visible (Fivis), a count that implies that changes to the client must
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public class QueryReportResult extends VelocityResult {
public QueryReportResult() {

try{

velocityEngine.init();}

catch (Exception e) {

log.error(ej; }

}

protected Template getTemplate(OgnlValueStack stack,
VelocityEngine velocity, Actionlnvocation invocation, String
location) throws Exception {

Action action = invocation.getAction();

return super.getTemplate(stack, velocity, invocation, location);

}
}

Figure 2.4 Class QueryReportResult
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be recompiled if the supplier’s definition changes (Ficon), and an inclusive count

(Fiincl) of Fivis and Ficon.

8. Fan-Out measures the number of programs that accept information from the
current program. For a given program A, the Fan-Out is the number of other
programs which A uses. Similar to Fan-In, three variants of Fan-Out are pre-
sented: a count restricted to the part of the interface that is externally visible
(Fovis), a count that implies that changes to the client must be recompiled if

the supplier’s definition changes (Focon), and an inclusive count (Foincl).

Reusability is the degree to which a component can be reused, and reduces the
software developmeut cost by enabling less writing and more assembly. How users can
detect which component is the most reusable among several components implement-
ing the same function, and how users can select components with higher reusability
are key issues. Therefore, existing studies measure the reusability of components in
order to realize the reuse of components effectively [85, 86]. In the work undertaken
by Caldiera and Basili [85], domain experts determine components that have reuse
potential according to their experience and knowledge. Nevertheless, they paid too
much attention to the component function and neglected the quality of components.

In the work undertaken by Lai and Yang [87], they proposed a combination of
several metrics to be used by experts in identifying high quality software components.
Their approach defined the software component as including design specification.
program. and related documentation. Software metrics that are to be used include
the McCabe’s Cyclomatic complexity (Mvg) [88], Halstead data structure metric [89],
nesting level of program construct [90], test coverage [84], and coupling and cohesion
metrics [90]. To provide overall measurement of the reusable software component, Lai

and Yang [87] combine these metrics using a dynamically weighted linear combination
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that allows the assignment of different weight values to the same metrics in different
situations.

Washizaki and Fukazawa [86] present metric values of the JavaBeans [15] com-
ponents that are selected by a user from the retrieval list. They include the Depth
of Inheritance Tree (Dit) [91] and SCCr [92] in helping a user to decide whether the
selected component is suitable to be adopted into the application s/he is working on.
Nevertheless, Washizaki and Fukazawa did not demonstrate if the metrics can be used
in identifying similarity between a search query and components in the repository.

Based on existing work in software metrics, reusing a software component with
high reuse potential and high quality contributes to improve software quality and
proéuctivity [87, 86, 90]. With this in mind, we include software metrics, that mea-
sures the quality of a component, as structural descriptors of a program. In order
to identify the high quality programs from a software repository, discussion of the
measurable characteristics of reusable programs and their corresponding metrics is a
necessary step. Among the characteristics of a reusable program are the complexity
and coupling between objects [87].

Based on existing studies [87, 93. 94, 95]. in this research, we include six software
metrics to represent quality measurement of a complex program: Mvg, Wme, Fan-
In (Fivis, Ficon) and Fan-Out (Fovis, Focon). The complexity of a program is a
measure of the effort required to understand the program and is usually based on
the control and data flow of the program. While opinion as to what construes code
complexity is quite subjective, over the years the software industry has largely agreed
that a highly complex code can be difficult for software developers to understand
and therefore is harder to maintain [93, 95]. Moreover, a highly complex code has a
high probability of containing defects. Various studies [96, 97] have suggested that

a Cyclomatic Complexity (Mvg) value of 10 or higher for a particular program is
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considered complex.

Wmc is a predictor of how much time and effort is required to develop and maintain
a program. The higher the Wmc, the greater amount of testing is required and the
amount of maintenance is increased. Rosenberg et al. [93] suggest that an object
oriented class should have less than 20 functions, but up to 40 is acceptable. They
also claimed that with further analysis, programs with Wmc greater than 40 have a
low reliability [93)].

The Fan-In and Fan-Out metrics maintain a count of the number of data flows
from and into a program plus the number of global data structures that the program
updates. The higher the values of these metrics (i.e Ficon, Fivis, Fovis, Focon) in a
particular program, then the more complex the program is [84].

In the process of implementing an object oriented application, developers need
to ensure that sets of classes are loosely coupled [98]. An application that is loosely
coupled implies the number of relationships among all classes in the application has
been kept to the minimum. If every object has a reference to every other object,
then there is high coupling, and this is undesirable because there is potentially too
much information ‘ﬂow between objects. Hence, low Cbo is desirable; this means that
objects work more independently of each other. Developers who are searching for
examples of programs to be reused, would benefit from retrieving programs with low
coupling - low coupling programs minimize the ripple effect where changes in one

program cause the necessity for changes in other programs.

2.1.3 Similarity Measurement using Distance Measures

Given a query that contains some desired features, retrieval of components that depict
the exact features may sometimes not be possible. Therefore, users are presented with

components that come closest (approximate retrieval) to providing these features.
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Research have shown that software components and search queries are represented
using various representations: text [12], facet (4], graph [99] and formal specification
[40]. With such representations. one of the common methods to determine similarity
between components and a search query is through the use of distance measure. A
distance measure is a function that associates a non-negative numeric value with (a
pair of) sequences, with the idea that a short distance means greater similarity. Such
an approach expects that the outcome will either be an ezact match [100] or (failing
an exact match) one or more approrimate matches [100].

In the domain of component retrieval, there have been several approaches (7, 4, 20]
of distance measure and this includes the use of linear combinations [101), as in the
work undertaken by Girardi and Ibrahim [47], Spanoudakis and Constantopoulos
[102], and Sugumaran and Storey [7]. As mentioned in section 2.1.1, Girardi and
Ibrahim [47] represent software components in a descriptive manner (i.e frame-based).
The distance between a query and a software component is defined by a linear com-
bination of weighted terms, where each term corresponds to a slot of the frame [62].
The term associated to a given slot is the product of two factors: a weight, which
reflects the relative importance of the slot in defining the function of the asset: and
a similarity index, which reflects to what extent the slot of the query and the slot
of a component are similar. The weight is determined by the domain analyst who
stores the components in the library, while the similarity index is retrieved from the
WordNet [61], the natural language thesauri.

Sugumaran and Storey (7] present a semantic-based solution to component re-
trieval. The approach employs a domain ontology to provide semantics in refining
user queries expressed in natural language and in matching between a user query and
components in a repository. In identifying components that are relevant to a given

query. a distance measure proposed by Girardi and Ibrahim [62] is employed in the
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retrieval system.

Spanoudakis and Constantopoulos [102] define a measure of structural distance
between queries and assets on the basis of an analysis of their TELOS representations.
The distance they introduce is a weighted linear combination of four functions which
reflect whether relevant entities in the query and a component are identical and to
what extent the query and the component have common attributes via their shared
subclasses and their shared super-classes.

Another example of identifying relevant components based on distance measure is
the work done by Prieto-Daz [4] and Lucredio et al [20]. In the work undertaken by
Prieto-Daz, similarity between a query and software components in the repository is
undertaken by measuring closeness of the weighted conceptual graph [4] containing
terms described in a facet. Similar to the work by Prieto-Daz [4], Lucredio et. al [20]
also represent software component using facets. Nevertheless, they [20] proposed a K-
metric function which is based on number of insertions and removals (one substitution
counts as one removal followed by one insertion) of keywords that are needed in order
to make the keywords sets of the query equal to the keywords sets of a component in

the collection.

Vector Model

In addition to existing approaches of using distance measure in component retrieval,
we include the discussion on how vector model evaluates the degree of similarity of
the program P with regard to the query g using two calculations: Cosine Measure
and Euclidean Distance.

The cosine measure proposes to evaluate the degree of similarity of the program
P with regard to the query g as the correlation between the vectors P and g. This

correlation can be quantified, for instance, by the cosine of the angle between two
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vectors. That is,

E?:I(yi.P) X (yi.q) (2.1)
(\/Z?:l ¥p) X (\/Z?:] yiz.q)

where P is the program. ¢ is the query, y; is the ith data in the P or ¢, and n is the

- sim(P,q) =

number of data in the query. Ranking for cosine measure is done from highest value
to the lowest value, i.e. highest cosine measure are placed first. If the angle between
the vectors is small they are said to be near each other and a small angle means a
high cosine value.

Euclidean distance, or simply ED, examines the root of square differences between
data of a pair of component and query. In mathematics, the Euclidean distance or
Euclidean metric is the distance between the two points that one would measure with
a ruler, which can be proven by repeated application of the Pythagorean theorem.
By using this formula and symbols defined in equation 2.1, the distance between a

program in a repository and a given query can be obtained using the following :

distance(P, q) = Ji(yw ~ Yig)? (2.2)
=1

For the ED, ranking is done from lowest distance to highest distance, i.e. the

program with lowest ED is placed first.

Data Distribution

The degree of similarity of the program P with regard to a given query g can also
be identified based on the distribution of data in P and ¢. In the context of this
thesis, data distribution is an information on how data in a software component
representation (e.g index) are distributed. An example of data distribution measures

is the skewness [103]. In order to determine similarity between two programs, the
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distance between the data distribution measurement (e.g skewness) is determined.
Skewness characterizes the degree of asymmetry of a distribution around its mean

[103]. For a set of data containing y1, ¥2, ..., ¥a, the formula for skewness is:

skewness =

Z(:r(;yi—l)ys?’s (2.3)

where y; is the ith data in the index, 7 is the mean, s is the standard deviation,
and n is-the number of data that represents the program. The skewness for a normal
distribution is zero, and any symmetric data should have a skewness near zero. Neg-
ative values for the skewness indicate data that are skewed left and positive values
for the skewness indicate data that are skewed right. By skewed left, we mean that
the left tail is heavier than the right tail. Similarly, by skewed right we mean that

the right tail is heavier than the left tail.

2.2 Software Classification

Most of the applications stored in the open-source repository systems such as the
Sourceforge.net [29] and Freshmeat [30] are classified into various categories (e.g ap-
plication domain and programming language). If the applications in such sites are
correctly classified, retrieval of the required application would be greatly facilitated.
In order to reuse program source code, a user may need to manually analyse each
of the applications (that may contain more than one prograin) retrieved by the re-
trieval system. This is because the applications in these repositories are classified into
appropriate domains based on the overall description provided by the developers.
Retrieval of the relevant program source code can be made either by browsing
source code that are classified into application domains or by searching through post-

ing a specific search query that includes information on the desired program and
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application domain. But how are the programs categorized? A developer attempting
to organize a collection of programs would most likely categorize the programs based
on information in the source code itself (e.g identifier names), some design specifica-
tions and the documentation provided with the program. But to understand which
application domain the program belongs to, it is very likely the developer would try
to gather natural language resources such as comments and ReadMe files. Informa-
tion in natural language are extracted from either external documentation such as
manuals and specifications or from internal documentation such as comments and

identifier names.

2.2.1 Classifiers

Ugurel et al. [28] classified programs into appropriate application domains and also
programming languages using three components, namely, feature extractors, vector-
izers and Support Vector Machine (SVM) [104] classifiers. Ugurel et al. [28] demon-
strate an SVM based approach to programming language and topic classification of
software programs. They trained the classifier with automatically extracted features
from the code, comments, and the ReadMe files (i.e. tokens in the code, words.
and lexical phrases in the comments and ReadMe files). The results imply that large
archive collections of mixed software components such as software documentation and
program source code can effectively be automatically classified and categorized. Nev-
ertheless, such approach is based on semantic terms extracted from documentation
associated with the program. Therefore the approach is only applicable to software
that are well-documented. To the knowledge of the researcher, there is no work un-
dertaken in program classification that is based solely on information contained in the
program source code. In addition, other than SVM, there is no other work that uses

machine learning techniques in classifying program source code into application do-
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main. Examples of these techniques include the C4.5 [105] and K-nearest neighbour
(KNN) [106}:

The C4.5 [105] deserves special attention due to the fact that it presents the
result of research in machine learning that originated from the ID3 system [107].
Therefore, it has always be been the point of comparison for novel approaches in
machine learning approaches [108]. C4.5 builds decision trees from a set of training
data in the same way as ID3, using the concept of information entropy. The training
data is a set S = sy, S, ... of already classified samples. Each sample s; = 21,22, ... is
a vector where xl,x2, ... represent attributes or features of the sample. The training
data is augmented with a vector C = cl,¢2,... where cl,c2,... represent the class
(group) that each sample belongs to. C4.5 uses the fact that each attribute of the
data can be used to make a decision that splits the data into smaller subsets. C4.5
examines the normalized Information Gain (difference in entropy) that results from
choosing an attribute for splitting the data. The attribute with the highest normalized
information gain is the one used to make the decision. The algorithm then recurses
on the smaller sublists.

The K-nearest neighbour (KNN) {106] is one of the most popular algorithms for
text categorization [109]. Many researchers have found that the KNN algorithm
achieves very good performance in their experiments on various data sets [110, 111,
112. 113]. It is an algorithm where the result of new instance query is classified
based on majority of K-nearest neighbor category. The purpose of this algorithm is
to classifv a new object based on attributes and training samples. The classifiers do
not use any model to fit and only based on memory. Given a query point, we find K
number of objects or (training points) closest to the query point. The classification
is using majority vote among the classification of the K objects. K-Nearest neighbor

algorithm used neighborhood classification as the prediction value of the new query
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instance.

On the other hand, the use of statistical analysis in the domain of retrieval have
shown promising results [114, 115, 116]. Such approaches include the use of Discrim-
inant function analysis and Linear regression. Discriminant function analysis (DA) is
used to determine which attributes in an object, which is under analysis, discriminate
between two or more naturally occurring categories. The model is built based on a
set of objects (training set) for which the categories are known. Based on the train-
ing set. the technique constructs a set of linear functions of the predictors, known as
discriminant functions, such that L = byx; + byzy + + bz, + ¢, where the Vs are
discriminant coefficients, the z’s are the object attributes and c is a constant. These
discriminant functions are used to predict the category of a new object with unknown
category. For a k category problem k discriminant functions are constructed. Given
a new object, all the k discriminant functions are evaluated and the object is assigned

to category i if the ith discriminant function has the highest value.

2.3 Conclusion

Most of the work undertaken in software component retrieval focuses on identifying
and employing information from a component to be used as functional descriptors.
This is due to the common practice of developers to specify a program’s function as
the search query. It has been demonstrated by earlier work [4, 10, 7, 45] that the use of
information (e.g terms) extracted from the software components (e.g program source
code) is beneficial in representing the functionality of the component. Nevertheless,
such an approach may not be applicable to software that are not well-documented.
Therefore, we need to include additional information, that does not stem from se-

mantic features, as a components’ descriptors. Examples of such information is the
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design patterns and software metrics which can Be identified by analyzing structure
relationships that exist in a program source code. Even though such information
could not illustrate the function of the program, nevertheless similarity between a
given query and the programs in a repository can be realized.

Existing structural descriptors for program retrieval (e.g language pattern and pro-
gramming cliches) are employed to retrieve specific code fragments. This means that
a user submits a portion of code that is later mapped to programs in the collection.
Programs that contain similar code fragments are presented to the user in the retrieval
list. However, since the software developers design their problem solving based on the
relationships between objects and methods, there is a need to have a retrieval system
that includes such relationships in identifying similarities between a given query and
components in a repository. This research differs from those taken in existing studies
in that we are interested to identify relevant programs using a combination of func-
tional and structural descriptors. We see the limited use of existing search engines
for this particular problem, as code search engines such as the Google code search
[23] and Koders search engine [24] provide support only for function-based retrieval.
Our intention is to extend the search process supported by such search engines by
including structural descriptors to represent programs in a repository. Information
on design patterns and software metrics are inferred from structural relationships
that exist in a program and later employed as structural descriptors. To represent
a program’s function. terms extracted from the code and comment statements are

employed as functional descriptors.




CHAPTER 3

WEIGHTED TERMS AS
FUNCTIONAL DESCRIPTORS

Based on existing studies in software component retrieval 10, 4, 12, 5, 45, one of the
common approaches in identifying relevant components (e.g program) from a software
repository is using term occurrences - two components are considered to be similar
if thev contain a similar set of keywords. In this chapter. we illustrate how relevant
terms are extracted from a program and later used as functional descriptors of the

program.

3.1 Overview

A developer attempting to understand the function of an application would most likely
analyse resources based on the source code itself, some design specifications and the
documentation provided with the software. Information written in a natural language
can be extracted from either external documentation such as user manuals and design
specifications or from internal documentation such as comment statements and file
names. This seems reasonable since algorithms depicted in design specifications do

not clearly reflect concepts contained in a program but comments and identifiers

30
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do [117]). However, applications contained in open-source repositories [29, 30] may
not include external documentation which elaborate upon their functionalities, but
are always accompanied by program source code. Therefore, the functionality of
an application can only be identified based on information that are available in the
program.

As discussed in Chapter 2. various approaches have been used to represent the
function of a program and this includes the use of term occurrences. A typical example
of the term occurrences approach is the grep utility used by the UNIX manual system
[118]. This utility is used to look for a string pattern in one or more text files,
displaying lines that contain the desired pattern. This type of retrieval generates large
overheads in the time taken to generate the repository index. If such an approach is
employed in a program retrieval system as it is, all of the relevant text (e.g file name
and the Java keyword class etc.) in each of the programs are included as indices.
This generates a very large index, and as the utility is not accompanied by additional
mechanism that helps to reduce the search space, searching for a specific term of a
particular program context (e.g class name) may generate a list of programs that are
irrelevant to the query.

The work described in this chapter is similar to the work undertaken by Maarek
et al. [12] and Lindig (3] as we employ uncontrolled vocabulary [12] to represent
functionality of a program. Such an approach was undertaken for two reasons, first.
the repository contains prograins that are written by different developers with various
programming background, hence if controlled vocabulary [49] was employed, programs
that may be relevant to a given query but do not contain the pre-defined terms will
not be retrieved. The second reason was to build a repository index automatically.
If a controlled vocabulary was employed, participation of an expert in developing the

retrieval system is required to define sets of keywords that best describe or represent
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concepts relevant to the domain of discourse.

In the context of this thesis. similarity between a given query and programs in a
repository is identified based on the existence of the terms defined in a query. For
example, if a query contains the term add, then programs containing the exact word
are considered similar to the query. As a program is written to follow a certain
structure, (e.g in Java programming language, a class is defined as consisting of a
package, import statements, methods etc.) incorporating information related to a
program structure (defined in Definition 5) into the term occurrences approach is
believed to contribute to a better program retrieval. By incorporating information on
the program structure, the drawback of using uncontrolled vocabulary (i.e unlimited

number of terms that generates a broad search space) is overcome.

Definition 5 A program structure provides the components that make up a particular
language (e.g Java) program. This includes package and import statements, a class

header and its body, and a method header and its body.

One of the popular search engines (i.e Google) has introduced a specific search
engine, known as Google code search (23], for users to find examples of programs from
the web. However, the Google code search is primarily keyword-based, and there is a
lack of domain-knowledge associated with its queries. For example, if a user intends
to find a method that is able to calculate the sum of two numbers, he may define
a query that consist of the phrase method add or method sum. Upon receiving the
user’s query, the retrieval system presents the developer with programs that contain
both of the terms (method and add), followed by programs containing one of the
terms. Even though the system may present the developer with programs containing
both of the terms defined in the search query, these programs may not illustrate the

required domain. For example there is no code statement such as method add in a
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Java program. The method add is only reflected by the word add and not method
add as a whole word. With respect to this, terms occurring as a class name, method
name, package name or in comments should be treated differently.

The search process utilized in SourgeForge.net [29] and Freshmeat {30] also
makes use of keywords, and is based on the general descriptions given to each of the
applications stored in the repositories. Users of the repositories are presented with
applications that contain the terms defined in a search query. Nevertheless, neither of
these repositories {29, 30] performed program retrieval based on the different contexts
of a program, as elaborated in the example mentioned earlier (i.e method add). Our
intention is to extend the search process supported by such public domain software
repositories [29, 30] and existing code search engines [23, 24]; therefore we propose
terms extracted from program structure to be used as functional descriptors of a
program.

Similar to the grep utility, our retrieval system also works based on string match-
ing; nevertheless, we accompany the extracted terms with relevant weights. The
weighting scheme is employed to illustrate the importance of a term in representing
the function of a program. Details of the weighting scheme can seen in section 3.3 on
page 61. With the assumption that software developers are aware of which program
structure the search term refers to. the program retrieval system is able to present

the developers with relevant programs.

3.2 Terms as Functional Descriptors

A Java program consists of several components: class header, class body, method
header, method body, comments, packages, and import statements. An example of

a simple Java class is illustrated in Figure 3.1. Each of these components (illus-
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trated in Figure 3.1) plays a significant role in determining the functionality of a Java
program. In the context of this thesis, names extracted from these components (e.g

ActionEzample) are referred as identifier names.

package calculator; — Package statement

import java.io.*;
import javax.swing.*;

Import statement

public class ActionExample extends JFrame; .
{ ’ 7

Class header

//description of method body > Class body

public static void main{String args(]}
]
j> Method body . Method header

}

}

Comments (can be placed aimost everywhere)

Figure 3.1 Components of a Java program

The use of a program in part depends on the documenting ability of the names used
for its identifiers [119]. Identifiers are the names of any packages, classes, methods
and variables defined in a program. Identifier names are one of the important sources
of information about program components. as they give an initial idea of the role of
each identifier in a program. From the work undertaken by Lindvall and Sandahl [120]
and Marcus and Maletic [121], we learned that meaningful identifiers are considered a
significant aid to understanding a program. For example, if a developer is analyzing a
database program, then a method named add contained in the program may indicate

the process of adding a new record into a database. Therefore. many of the developers
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are naming the identifiers according to their function {122].

In designing object oriented applications, developers identify the fundamental
objects of the problem domain for a given programming task. These objects are
then used as the class name, hence illustrating the functionality of the class; code
statements written in the class body are related to the object. Once developers
identified the main objects, they next define the internal nature of each object: its
attributes (variables) and behaviours (methods). Attributes model the variation that
is allowed among different objects and an object maintains a value for each of the
defined attributes. All of these pieces of information are represented in identifiers
defined in the program(s) of the application, hence reflecting their function.

File names and package names are very useful terms for indexing, as they provide
meaningful information about the file or files they represent. In a Java program,
the file name provides two types of information. The first is the name of the main
class in the file along with the name of its constructors (as these are all the same).
This provides a mechanism for determining the difference between a constructor and
a method when parsing, as a constructor is a method with the same name as the
filename (provided there is only one class per file). The second information the file
name provides is some indication of the content of the file, or in a Java program,
information about the content of the class or an indication of what the class does.
For example, one of the files in a repository is known as Database. java. From this.
we can determine the name of the class and constructors and deduce that the class
possibly involves a connection to a database, or contains operations for data stored
in a database. Besides using\ﬁle names to indicate functionality, package names also
serve a similar purpose.

If an application consists of more than one object, similar objects can be grouped

together. It is good programming practice to group programs into packages of related
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classes. with each package in a separate directory [123]. This can be achieved with the
use of package statements. Similar to naming Java classes based on their function,
the package name also illustrate its function. Packages represent the way we organize
programs into different directories according to their functionality and usability, as
well as the category they should belong to. An example of packaging is the JDK
package from SUN [124]. The idea is that programs in one directory (or package)
would. have a different functionality from those of another directory. For example,
programs in the java.io package do something related to input/output, but programs
in the java.net package give us a way to deal with the Network. In GUI applications,
it is quite common for us to see a directory with the name ui (user interface), meaning
that this directory keeps programs related to the presentation part of the application.
On the other hand, if we see a directory called engine, this stores programs related
to the core functionality of the application instead.

One of the ways a developer can use classes defined in a package is by using the
import keyword. For example, the statement import repository.data.Database
allows developers to use the Database class, which is defined in the repository/data
subdirectory. The import statement can be used to infer the functionality of a pro-
gram as it tells a developer which classes the program is relying on (apart from the
standard Java library classes) in order for it to function.

Just as file names and package names contain information about their content, the
names of methods and variables often provide information about their content or use.
Class methods take on the property of being public, private, or protected. All of these
names can be useful as they provide information about the functionality of a class. For
example. the file Database. java obviously can hold or contain information about a
database. We may also be interested in finding out what kind of behaviour an instance

of database object can perform. For example, if one of the database methods is
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connect, this could indicate that it establishes a connection to the database. However,
even more information may be determined from the fact that the method is private,
indicating that this method is only used within the database class and therefore has
a very specific purpose within this class.

Variables can also come under different categories. The most common and possibly
the most useful are class variables. These are variables contained within a class
that are separate from methods, and can therefore be used by any class method.
constructor, etc. These often have very descriptive names in order to define effectively
the information they hold. For this reason, they are an effective index term. However,
besides the name, they also contain other information. Class variables can be private,
public, or protected. This can indicate whether the variable is specific to this class
or if it is more general and therefore could be used by other classes. There are also
local method variables, which can only be used within the method in which they are
declared.

The final component to be included in the program structure is program com-
ments. As the work of Nurvitadhi et al. [117] reported a significant difference in
programn understanding between programs with and without comments, we include
program comments as one of the program structure components to infer the function-
ality of a Java program. Comments are a very useful index term within a programn
as they quite often adequately explain the functionality of the classes and methods.
This causes them to contain words that often would not be in the code itself. For
example, a developer may need to ensure that there is only a single creation of a
class instance. Therefore, s/he might include a comment statement such as created
only once in her/his program. There are three types of comments available within a
Java program: javadoc comments, method comments and inline comments. Javadoc

comments, separated with /** and **/ are structured comments that describe the
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functionality of a class or method in detail. This causes them to have a very specific
structure (and therefore are easier to extract/parse). The second type of comment
are method comments. These are more general comments, separated with /* and
*/. They can span multiple lines or single lines, and they are often used to explain
in more detail methods, constructors, variables, or large sections of code. They are
more difficult to parse as they are less structured then javadoc comments and in or-
der to index them some assumptions need to be made about the way they are laid
out (for example, there is always a space between the /* and the first letter of the
comment). The last type of comment is the inline comment. The inline comment is
denoted by // and it has no ending symbol; instead, the comment simply ends when
the line does. This type of comment is a lot more specific than the first two types
of comments and usually describes some small section of code rather than a whole
method or constructor. After an analysis of Java programs relating to mathemati-
cal operations (programs contained in the Jama, JMP, Meditor, JNumeric and nMath
projects, which were obtained from Sourceforge.net [29]) it was found that even
though these comments can be very specific to a section, they may contain terms
that would be useful to index, so it was decided to index them in the implementation.
Common words such as a, the, an, etc. are removed from the comments, which greatly
reduces the amount of terms indexed for comments. In addition, object oriented pro-
gram commenting includes both a class-based comment that provides an overview
of a class and a method-based comment that gives information about the content of
a method. More specifically, a class-based comment is helpful in developing a high-
level knowledge of a program, such as the purpose of the class, what the class does,
or the interconnection between classes. On the other hand, a method-based comment
provides a more low-level understanding of the program, such as the purpose of the

method and implementation technique used.
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3.2.1 Extracting Relevant Terms based on Program Struc-
ture
In order to extract identifier names from program structure in the programs stored

in a software repository, we use the Java parser generator, Java Compiler Compiler

[tm] (JavaCC [tm]) [81] to create a JavaParser. JavaCC generates the following files:

e JavaCharStream. java represent the stream of input characters.
e Token. java represents a single input token
e TokenMgrError.java an error thrown from the token manager.

e ParseException.java an exception indicating that the input did not conform

to the parsers grammar.
e JavaParser.java the parser class.
e JavaParserTokenManager.java the token manager class.

e JavaParserConstants.java an interface associating token classes with sym-

bolic names.

Instances of objects from all of the files generated by JavaCC are created in a pro-
gram named ParseFile. java. This Java program examines a given program, which
is under analysis, by using the created instances to parse the program and iden-
tifies eleven Java components: Javadoc Comment, Method Comment, Inline Com-
ment, Import statement, Package declaration, Class name, Superclass, Interface class,
Method names, Variable names and Filename. To achieve this, firstly an instance
of object JavaCharStream is created before using it to create the instance of type

JavaParserTokenManager. Then, an instance of object Token, (t), is created to hold
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the value of constants found in the character stream under analysis. For example if the
token, t, is a kind of IMPORT constant, t.kind == JavaParserConstants.IMPORT,
then the token following t is assumed to be class or package name. The pars-
ing includes other token types such as CLASS, PACKAGE, ABSTRACT, IMPLEMENTS,
IDENTIFIER, SINGLE_LINE_COMMENT, FORMAL_COMMENT, MULTI_LINE_COMMENT, PUBLIC,
PRIVATE, PROTECTED, SEMICOLON, COMMA, DOT, LPAREN and RPAREN. This process is un-
dertaken until a constant of type End of File (t.kind == JavaParserConstants.EQF)
is identified. Below are examples of assumptions made when the token is of a partic-

ular type:
; PACKAGE - token following t is assumed to be package name.
e CLASS - token following t is assumed to be class name.
e EXTENDS - token following t is assumed to be superclass name.
e IMPLEMENTS - token following t is assumed to be interface class name.
e ABSTRACT - the second token following t is assumed to be class name.

The collected information (i.e identifier name) is later used as functional descrip-
tors of the program which is under investigation. Prior to writing the extracted term
into an index file, we need to ensure that white space from both ends of the string
(term) have been removed. This has to be done to ensure string matching can be per-
formed effectively. It is also necessary to identify if the terms to be used for functional
descriptors are not of type Java keywords (e.g throw, int, char, float, abstract, class).
and are not of type stopwords. Stopwords are words that may be entered into a search
query but cannot be searched for as individual words. For example, if a developer is
searching for the string connect to database. the word to is a stopword. We created

a stopwords.tzt file to include stopwords used by the Google search engine [125] and
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the Onix Text Retrieval Toolkit [126]. After ensuring that a term is not a Java stop-
word nor from the list in stopword.txt, only then the term is included in an indez.tzt
file. This file contains terms extracted from the programs in the repository and the
relevant information on terms (e.g file name of which the term is extracted from and
weight of the term). Related elaboration on the weighting schema is presented in the

next section.

3.3 Weighted Functional Descriptors

We make the following assumptions prior to developers submitting their query for

programs:

e Developers have some indication of the types of source code in which they are
interested. This could be in terms of the keywords they assume to be present
within such source code, or the likely method names that such source code
could contain. Although not likely to be valid in a general case, we have found
this assumption to hold true based on the existing source code archives such as
Sourceforge.net [29]. Perhaps one reason for this is that developers who offer
their source code for use by others often also attempt to describe their data

structures or method names with comments that could be relevant for others.

e Developers are familiar with the likely structure of the source code they are
trying to find. This may be particularly true for numerical approaches (where
nested loops are often used over arrays or similar data structures). Often many
programming languages are targeted towards the scientific computing commu-
nity which provides specialist support for such data structures (examples include

OpenMP and High Performance Fortran).
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As there are many terms that can be extracted from a program, we prioritize
these terms using the concept of weighted term frequency, which assigns high weights
to terms extracted from a certain component of a program (e.g identifier acting as a
class name) and low weights to terms obtained from other components of a program
(e.g comment). This is necessary for two reasons. The first is that search terms can
appear in a variety of areas in source code (i.e program structure), and depending on
where these terms occur, they have different meanings. For example, the same term
used for a class and a variable may have completely different meanings in each context.
Therefore,sin order to provide developers with relevant programs, the context in which
it is found needs to be determined and stored. The second is to allow a more advanced
form of ranking. For example, a program containing the search term as a class name
will be ranked on top of a program containing the term in its comment statements.
For this to work, it is necessary to assign a type to each term of the extracted terms -
types are derived from program components. Eleven types were determined by myself
in the end and this is based on the components of a program that appeared the most
in programs that we have stored in our repository. Nevertheless, determining these
types was actually a very difficult task as there are so many exceptions to the way
a program may be laid out. In order to simplify the process, it was assumed that a
program used standard conventions for layout and content, for example, the way a
javadoc comment is written. Below is a list of type of terms with their weights (i.e

provided in bracket()):

e Javadoc Comment (3): Javadoc Comments are specific to the Java language
and provide a means for a programmer to fully document his / her source code
as well as providing a means to generate an Application Programiner Interface

(API) for the code using the javadoc tool that is bundled with the JDK.
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e Method Comment (1): If a comment is going to span across more than one line
then a multi-line comment should be used. These are often useful for providing

more in-depth information.

e Import statement (1): Import statements point to classes or packages that
should be made available for use within the current class. For example, in order
to use the java.applet.Applet class in a Java file, the class would have to be
imported via the import java.applet.Applet; or import java.applet.x*;

statement.

e Package declaration (1): If included, the package declaration must be the first
statement in the file. The package keyword is followed by a package name.
The package name is a series of elements separated by periods. Each period
separated element must correspond to a filesystem subdirectory under which
the class file is located. For example, if a class was declared to be in the
com.database.gui package, it would be located in the com/database/gui/

subdirectory. Only one package declaration is allowed per .java file.
e Class (3): The class name.
e Extends (2): Class in which the existing class inherits (superclass).

o Implements (2): Indicates that a class contains methods for each of the opera-

tions specified by the interface.

e Method (2): A Java method is a set of Java statements which can be included
inside a Java class. Java methods are similar to functions or procedures in other

programming languages.

e Variable (2): Variables are data identifiers. Variables are used to refer to specific

values that are generated in a program - values that we want to keep around.
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Program data is often easier to understand and manipulate if each data has its

own name.

e Filename (3):‘ If a public class is present, the class name must match the
filename. For example, if a source file contains a definition for a public class
Database, then the source file must be named Database.java. A source file may

contain any number of non-public class definitions.

Baéed on the above weighting schema, a term t found in a filename is more
important than the same term found in a variable. This is due to the assumption
that the functionality and content of a file is reflected more by the name assigned to
the file than the variable.

The terms extracted from a program are known as weighted functional descrip-
tors and are used to represent the functionality of the program. Based on existing
work [4, 20, 46, 47, 48, 5], program retrieval performed using the weighted functional
descriptors can be considered similar to the descriptive methods (discussed in section
2.1.1 on page 22). This is similar to the practice of extracting relevant terms to be
employed in facets as undertaken by Prieto-Diaz [4]. The difference is that, in this
work, terms to be extracted are identified based on components of a program (e.g
import statements, class header, comments). Prieto-Diaz [4] employed a term as a

facet attribute while ignoring which context of a program the term is extracted from.

3.4 Similarity Measurement

To perform a similarity measurement between weighted functional descriptors ex-
tracted from a query and programs in a repository, we adopted the Levenshtein
distance measure [127]. Levenshtein distance (LD), which was developed in 1965 by

Vladimir Iosifovich Levenshtein, is a measure of the similarity between two strings,
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which we will refer to as the source string s and the target string t. The greater the
Levenshtein distance, the more different the strings are. The distance is the number

of deletions, insertions, or substitutions required to transform s into t. For example,

o If s is test and t is test, then LD(s,t) = 0, because no transformations are

needed. The strings are already identical.

o If s is test and t is tent, then LD(s,t) = 1, because one substitution (change s

to n) is sufficient to transform s into t.

The Levenshtein algorithm has been used in order to have a flexible retrieval system.
Corr;paring thié to the similarity measurement employed in existing search engine such
as Google code search [23] and in an open-source repository such as SourceForge {29]
and Freshmeat [30], which are undertaken based on exact string matching, we expand
such an approach by allowing a difference of a pre-defined numbers of letters between
the analyzed strings. This is achieved by allowing the users to determine a threshold
value which acts as a cutting point in identifying similar string defined in the search
query and in a program. For example, if a user defines string t in a query and the
value 2 as the threshold value. then, only terms contained in source string s that
require the maximum of two substitutions in order to be transformed into the target
string, t, are considered to be similar to t. With this, the program retrieval system
would present users with not only the exact match but also with an approzimate
match. The former result is obtained when there is an exact string matching between
a term in a query and functional descriptors of a program. On the other hand, an
approrimate match presents users with programs that contain terms that may be
similar to the terms defined in the query. By allowing substitution, deletion and/or
addition of a number of letters in a term, the presented program retrieval system is

able to consider misspelled terms to be similar to the terms defined in a search query.
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Our retrieval system works by allowing a user to use a program as the search query.
The program may be an existing program that the user is working on based on a given
programming task or any other programs that the user feels able to represent his code
requirements. In order to identify programs that are relevant to the query program,
for each of the programs in the repository, we summed up the weights of the weighted
functional descriptors that were similar to the descriptors contained in the query
program. Programs from the repository with greater totals of values were ranked at
the top of the retrieval list. Later in this thesis, a retrieval list is termed a hit list

and is defined as follows:

Definition 6 A hit list contains a lineup of programs that have been identified as
similar to a given query. A program listed on the top of the list is considered to be

most similar to a given query.

To illustrate how similarity between programs is identified, we mapped a query
program P(Q) against five programs (P(1), P(2), P(3), P(4), P(5)). In P(Q), there
are three terms identified as weighted functional descriptors: database, connect and
display. In this example, the similarity measure between the weighted functional
descriptors in P(Q) and P(), is undertaken based on ezact match [100] only. The
first search term consists of a filename and class name; the second and third terms
are of the method component. Hence, we obtained the value of 10 on summing
the weights of the descriptors in P(Q) - both of the terms database get the value
3 as they are from the filename and class name and both the term connect and
display are assigned the value 2 as they were identified to be method names. In the
below examples, P(i) represents the program under analysis while W (i) represents

the summed-up weights of descriptors in a particular program, i.
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P(Q) = {database, connect, display} — W(Q) = {(3+3) + 2+ 2} = 10
P(1) = {;1atabase, connect, display} — W(P1) = {(343) + 2+ 1} = 9
P(2) = {display} . W(P2) = {(2+1)} = 3

P(3) = {connect, display} — W(P3) = {2 + 2} = 4

P(4) = {} - W(P4) =0

P(5) ‘= {database} — W(P5) = {(3+3)} = 6

As the retrieval system ranks programs based on summation values of similar
teI‘I‘IlS, P(1) with W(P1) = 9 is presented at the top of the list. This is followed by
P(5), P(3), P(2) and P(4).

Below, we illustrate another example, which is undertaken based on approzimate
match [100]. This is achieved by defining the Levenshtein distance as being less or
equal to the value three, LD(s,t) <= 3. To illustrate how a similarity measure-
ment between programs is undertaken, we mapped the same query from the previous
example, P(Q), against five programs (P(11). P(22), P(33), P(44), P(55)) from the
repository. There are three terms used as weighted descriptors for program P(Q):
database, connect, and display. Only terms contained in P(i) that require at
the most three deletions, insertions. or substitutions in order to transform an existing
string s into the weighted functional descriptors for P(Q), t, are included as weighted
functional descriptors for the program. If P(%) contains several terms that are similar
to a term t, then the term with the similar weight or with the highest value of weight
is identified as an approzximate match to t. For example, the search term connect
can be mapped against connected and connects. If connected is a variable name
and connects is found in Java doc comment, the latter string will be identified as

a relevant match to the search term connect. This is because the string connects
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has the weight of 3 while connected is identified as 1. In the below program tuples,
only the strings identified as being an ezact match or approzimate match are included
for weighting calculation. For example, a total of ten identifier names (terms) were
extracted from program structure P(11). However, only three terms were included
for weighting calculation as the remainder of the seven terms require more than three
substitutions, insertions or deletions in order to transform them into the required

search terms.

P(Q) = {database, connect, display} — W(Q) = {(3+3) + 2 + 2 = 10}
P(11) = {database, connects, displays} — W(P11) = {(3+3) + 3 + 1 = 10}
P(22) = {connected, displayed} — W (P22) = {1 + 3 = 4}

P(33) = {connects, displays} — W(P33) = {3 + 1 = 4}

P(44) = {databases, displayed} — W (P44) = { 3 + 3 = 6}

P(55) = {databases} — W(P55) = {3 }

Based on the above itemized program tuples, the retrieval mechanism presents the
programs in the following descending order: P(11), P(44), P(22), P(33) and P(55).
Program P(11) is presented as the most similar program when compared to P(Q).
This is followed by P(44) and P(55) which depict only a single term similar to P(Q)

and so are ranked on the bottom of the retrieval hit list of five programs.

3.5 Conclusion

In an open-source repository such as Sourceforge.net [29], retrieval is performed

based on keyword search performed on the description provided for the application
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and/or the application’s name. As an application may contain more than one pro-
gram, users, whose intention is to reuse code statements, will then need to manually
examine the programs in the application to determine whether the programs contain
the required code. To help these users, we propose a retrieval system which employs
a similar approach. Nevertheless, our retrieval system is undertaken towards a repos-
itory of programs and presents users with programs that contain keywords of the
required context. The presented work employs a weighting scheme that differentiates
the functional descriptors (i.e identifier names) based on the context of the program.
With the assumption that the user of the repository is able to refine his search query,
for ‘example, to determine which program context (e.g class, method, package) the
search term refers to, the retrieval system is able to facilitate users with specific code
requirements.

In addition, our program retrieval system provides flexibility in generating queries;
allowing the use of program as a query. This expands the capability of expressing
search requirements as developers use the existing program developed for a given
programming task as the query program. Such an approach delivers context-sensitive
information related to both the given programming task and the background knowl-
edge of the user. Relevant terms are extracted from the query program and are
later mapped against the weighted functional descriptors of each programs in the

repository.



CHAPTER 4

DESIGN PATTERNS AS
STRUCTURAL DESCRIPTORS

In this chapter, we demonstrate the identification of design patterns in programs
that are obtained from open-source repositories. Information regarding the existence
of design patterns in a given program is later used as structural descriptors of the

program in a retrieval system.

4.1 Overview

Software developers find design patterns important for a number of reasons. First,
they give novice developers access to the best practices of more experienced devel-
opers. Second, they al<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>